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Abstract 

The Smalltalk-80 system is an object-oriented programming environment for which a novel virtual 

memory is being constructed. This Large Object-Oriented Memory (LOOM) maintains two distinct 

address spaces and compresses pointers when an object is swapped from disk to core. Although 

objects are the logical unit of transfer between disk and core, LOOM swaps disk pages between the 

disk and the in-core disk buffer. The grouping of objects on disk pages can be a critical factor in 

the determination of speed of Smalltalk application programs. 

An examination of the reference behavior of Smalltalk-80 provides useful insights for designing 

grouping strategies and explaining virtual memory performance. After reviewing the experimental 

methodology and the Large Object-Oriented Memory, this thesis describes nine static grouping 

techniques and a reference stream compression algorithm. Performance measurements taken from 

simulations of LOOM and a conventional page-swapping virtual memory are discussed and 

compared. The effects on the page fault rate of modifying parameters and policies of LOOM are 

described and an evaluation of LOOM-like virtual memories is offered. 

In terms of the number of page faults, an object-oriented virtual memory generally outperforms a 

page-swapping virtual memory for a range of small memory sizes that depends on the particular 

grouping strategy. The existence and stability of good groupings also impact the choice of a virtual 

memory design. 
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1. Prelim inaries 

1.1 Introduction 

Because most computing systems are configured with a multilevel memory, a primary problem has 

been to determine the distribution as well as the movement of information between levels of 

memory. Early attempts at memory management were manual and became known as the overlay 

solution. The programmer organized both code and data into blocks and explicitly moved these 

blocks between memory devices. These techniques became automated when assemblers and 

compilers analyzed the structure of programs, partitioned them into blocks. and automatically 

moved the blocks between primary memory and the secondary memories [ACMj. 

Virtual memories [COFF, DENN. PARMj soon replaced the overlay technique as the primary focus 

of those researchers and programmers interested in memory management. Sayre claimed that 

virtual memory techniques were competitive with and likely superior to overlay strategies [SA YR]. 

Empirical results demonstrated that with only a small bit of knowledge of the actual (not the 

virtual) environment, programmers could create code with much better paging performance 

[BRAW68, BRAW70]. Numerous suggestions for programming in a virtual memory environment 

were proposed and compiled [OUER, KUEH, McKEL]. The key property that accounts for the 

exceptional level of performance of virtual memories is called locality of reference [DENN]. 

Numerous program behavior studies [BELA66, FINE] have empirically supported the long-observed 

locality property. 

Increasing the locality of programs to realize better paging performance became the next goal. 

Code was partitioned into blocks [BAER72. KERN, LOWE. RAMA, VERH] and related blocks 

were assigned to the same virtual page in a process of pagination. Numerous researchers have 

investigated this process of restructuring programs and then distributing code to maximize locality 

[COME. FERR74. HATF, INFO, JOHN, TSAO]. 

With the advent of high level, object-oriented programming languages sllch as CLU [LISK]. recent 

studies have examined object-oriented, virtual memory management policies. Such schemes manage 

real memory in terms of objects rather than disk pages. Bishop [BISH] partitions the virtual 

memory into a number of reasonably-sized areas to allow the efficient garbage-collection of very 

large address spaces. His dissertation describes a mover that dynamically relocates objects in an 

effort to increase the locality of reference. In a paper design of an object-based personal computer, 

Luniewski [LUNI] builds upon Bishop's scheme of an object-oriented virtual memory and 

dynamically relocates objects by the breadth-first traversal of the compacting garbage collector. 

Snyder [SNYDa], on the other hand, obviates the need for organizing objects in the virtual memory 
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by assuming the future existence of fast-access secondary storage devices that are efficient enough to 

swap even small object') instead of conventional pages. 

1.2 Background 

Smalltalk [XERO] is a high level, object-oriented, programming environment developed at Xerox 

PARCo It runs on personal computers with powerful graphics capabilities, such as Altos and 

Dorados, that arc normally attached to the local network called Ethernet [METC]. Smalltalk is a 

collection of interlinked objects. Consider, for example, the set of instructions an object executes 

when it receives a specific message. Both the source text and compiled code for. these instructions 

are objects. User-defined types and primitive types are also represented as objects. All 

instantiations of these types, including the frames of the run-time stack, are ordinary objects. 

The current implementation of Smalltalk will eventually be supported by a 31-bit virtual memory 

system called the Large Object-Oriented Memory (LOOM) [KAEH]. LOOM swaps objects between 

memory levels on demand. To support this object-oriented view, memory pages are swapped 

between core and disk (or between core, disk, and a remote file server, such as WFS [SWIN)) on 

demand. The desired object is then copied to or from the disk page. Since many objects can fit on 

a single page, one page fault typically transfers a set of objects to the in-core disk buffer. Until this 

page is flushed from the disk buffer, swapping other objects on that page into primary memory may 

be accomplished without incurring additional page faults. It is likely that intelligent groupings of 

Small talk objects on disk pages will be a critical factor in the determination of the speed of 

SmaUtalk application programs. 

Of prime importance is the persistence of the programming environment. Many Smalltalk objects 

have lifetimes that transcend single user sessions. It is therefore possible to consider the objects 

comprising the system and their interactions. This infonnation can then be used to place related 

objects on the same page. LOOM is not committed to any specific strategy for grouping objects on 

pages and therefore places no constraints on the set of grouping schemes. Such an environment is 

conducive to experimenting with various algorithms for grouping objects on pages in an attempt to 

reduce the frequency of page faults. 

A simulation of a conventional page-swapping virtual memory was employed to determine the 

effects of such static grouping algorithms on that type of virtual memory. [n addition, a direct 

comparison between object-oriented and page-oriented virtual memories under various grouping 

strategies is reported. [n a paged virtual memory, whenever an object on a page is referenced, all 

objects on that page are automatically transferred into primary memory. If not all of these objects 

are required, memory will be underutilized. In the object-oriented case, memory will be fully 

utilized. However, one drawback of such a scheme is that loading a page of objects into primary 

memory may require as many page faults as there are objects on that page. In terms of paging 

performance, the better type of virtual memory will depend upon the grouping strategy, execution 

sequence, and primary memory size. 
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1.3 Novel Extensions 

The primary focus of this thesis will be an investigation into the perfonnance of a small but varied 

collection of static grouping algorithms for object-oriented and page-swapping virtual memories. 

Much of the work done to support this endeavor concerns realms that previously had been largely 

unexplored. The object-oriented nature of Smalltalk provides some of the novelty; the remaining 

investigations are interesting in their own right: 

Memory accessing behavior for an interactive programming environment is analyzed on 
two levels. [n addition to capturing detailed reference tendencies. efforts were directed at 
studying the paging requirements of Smalltalk. ,Unlike most published studies. which 
were concerned with physical attributes such as virtual memory addresses or page 
references. the emphasis here is on logical structures. Definitions and results are 
expressed in terms of programmer-chosen units (objects) rather than fixed-size pages. 

At times a distinction is made between code and data references. This partitioning allows 
their low-level behavior in an object-oriented environment to be analyzed in isolation. 
The two memory accessing behaviors are compared and contrasted, and their individual 
contributions to the composite picture are detennined. 

Previous restructuring techniques tended to be concerned only with the code segments of 
a single program. A few also considered the areas for temporary data structures that were 
allocated at compile/assembly time. Smalltalk grouping schemes. on the other hand. are 
designed to accommodate an entire programming environment composed of existing code. 
data. and support structures. 

Finally, empirical measurements of the dynamic paging performance of both object
swapping and page-swapping virtual memories under varieus grouping algorithms were 
made. These results are then compared and contrasted. 

L.4 Some Results 

Grouping of code, data, and support structures can have a large impact on performance in an 

object-oriented programming environment. The simple, efficient grouping techniques employed in 

this study achieved substantial reductions in the number of page faults for both the page-swapping 

virtual memory and for LOOM. More complicated schemes that considered reference count 

information or knowledge derived from actual dynamic behavior did not provide additional 

improvements. 

[n the paged virtual memory, any reasonable grouping scheme substantially reduced the amount of 

paging from the level caused by the random, ungrouped initial placement. Differences between 

grouping schemes were not too significant. [n LOOM, on the other hand, the amount of 

improvement in paging performance depended heavily on the type of grouping. Although LOOM 

was more sensitive to the type of the grouping scheme, grouping had less of an effect on LOOM 

than it did on the paged virtual memory. This result is due to the fact that LOOM selectively 

swaps information between primary memory and the disk. It does not necessarily swap all the 

information on a given page. 

A direct comparison between the two types of virtual memories indicated that LOa M outperforms 

a paged virtual memory for a range of small memory sizes. Such results were invariably obtained 
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for wann starts, cold starts. simulations that did reference counting, and those that did not. [n 

addition to the particular computation, the initial placement computed by the grouping strategy 

played an important role in detenning the memory size interval for which LOOM outperformed the 

paged virtual memory. Since the length of this interval varied inversely with the quality of the 

initial placement, the desirability of a (,OOM -like virtual memory will depend on the existence and 

stability of quality initial placements. 

t.5 A Road Map 

The structure of this thesis closely parallels the work whose results are reported herein (Figure 1-1). 

Chapter 1, the introduction, briefly surveys the history of virtual memories. motivates the problem, 

and outlines the important research areas and results. Chapter 2 discusses issues relevant to 

swapping strategies and introduces the LOOM virtual memory. A description of the virtual 

machine emulator used to generate reference traces is presented in Chapter 3. while a thorough 

analysis of the reference behavior of. the Smalltalk virtual machine is contained in Chapter 4. 

Chapter 5 describes the grouping strategies and the static analysis performed on them. The next 

chapter details the algorithm used to compress a full reference trace into one suitable for driving 

virtual memory simulations. Chapters 7 and 8 discuss the simulated dynamic behavior of a paged 

virtual memory and LOOM. [n Chapter 9, these two types of virtual memories are directly 

compared. Chapter 10 makes a brief excursion into the areas of memory management schemes and 

the stability of static groupings. The last chapter then surveys the accomplishments and failures of 

this endeavor. 
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2. Swapping Strategies and Grouping 

2.1 Logical versus Physical Swapping 

Physical units of infOimation are swapped between memory levels if the amount of data transferred 

at one time depends only upon the characteristics of the hardware, microcode, and software 

implementing the virtual memory but not upon the data. [n other words, the swapping size is data 

independent. Logical elements of information are swapped if computational entities are the units of 

transfer. Examples of logical swapping include transferring files, sets of objects, single objects, 

portions of objects, or individual fields. Physical units of swapping include bits, bytes, words, pages, 

and disk sectors. 

Some systems combine these two extremes. LOOM, for example, swaps entire disk pages from the 

disk to an in-core disk buffer, but swaps Smalltalk objects between this buffer and the rest of core. 

Conventional virtual memories swap fixed-size pages between core and disk. Predictive schemes, 

which preload related pages in addition to the one causing a page fault, add a logical flavor to a 

physical swapping strategy. Another combination is a segment-swapping virtual memory in which 

each segment is an integral number of disk pages. The appropriate scheme depends on the 

underlying machine, the position in the memory hierarchy, the expected nature of reference 

patterns, and the computational overhead and complexity of the chosen algorithms. 

2.2 Effectiveness of Grouping 

As long as the interface to secondary memory dictates that fixed-size sets of bits are to be 

transferred, it is only reasonable to endeavor to structure both code and data so that a large 

percentage of the swapped information is used as quickly as possible. This statement holds for both 

object-swapping and page-swapping virtual memories. [n both cases, most or all of the grouping 

decisions should be automated. 

Grouping can only affect performance if the physical units of swapping are larger than the size of 

the logical elements. Differences between grouping strategies are likely to appear only when these 

sizes are within an order of magnitude. Consider, for example, grouping Smalltalk objects on disk 

pages. Because objects directly refer to a small set of other objects and are themselves typically 

referenced by only one object, most grouping algorithms will tend to partition the system into sets 

of related objects in a similar manner. One critical indicator of the feasibility of object grouping is 

the ratio between the size of a disk page and the average size of an object. If this value is 

extremely large, hundreds or thousands of objects would comprise a single unit of information 

transferred between memory levels. Most pages would contain many of these sets of related objects 

and different grouping strategies would have similar effects on performance. The particular 

technique employed would be the simplest and fastest. 
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[f the length of an object were comparable with page size, some objects would span more than one 

page, but the average number of objects on a single page would be close to unity. For such 

systems, conventional page-swapping virtual memories are nearly equivalent to simple object

swapping schemes as far as the average amount of data transferred between object space and disk. 

Pointer compression, unresolved pointers, and other enhancements found in LOOM (section 2.4), 

however, are not directly applicable to such conventional systems. 

At the other end of the spectrum lie systems in which the objects are far larger than the page size. 

It is still possible to swap entire objects to and from secondary memory, but the gains realized from 

such a scheme are highly dependent upon the normal types of reference patterns. Rearranging 

fields within objects may make sense in a page-swapping environment. 

Grouping strategies will have different effects if a small number of objects fit on each page. because 

a set of related objects will span many pages. Hatfield suggests that the best results for a paged 

environment occur when 3 to 10 objects fit on a page [HATF]. Similar conditions should also suit 

object-swapping virtual memories. 

2.3 A Hierarchy of Groupings 

The size and nature of the units of information that are manipulated by grouping schemes depend 

upon the memory component under consideration as well as the types of transfer between these 

components. In a multi-level virtual memory configuration. there are numerous possibilities for 

restructuring information in order to enhance performance. 

Field swapping, in which single fields are swapped, is similar to object swapping 10 that the size 

restrictions imposed by the hardware interface to secondary memory are hidden from the manager 

of primary memory. This scheme is equivalent to a page-swapping strategy that has a tiny page size 

and is typical of caches that do not prefetch information. Grouping, however, is not applicable at 

this memory leveL 

1\ more general approach is to partition the fields of each object into blocks such that each field is 

in exactly one block and fields in the same block are physically adjacent (Figure 2-1). Call such 

virtual memory schemes block-swapping. [f the block size is constant, the result is essentially a 

page-swapping virtual memory when the blocks are the unit of swapping. Block size may differ 

from object to object and even within an object. [f the blocking pattern is the same for all 

instances of a single, fixed-length class, this information may be kept in the class object and shared 

by all instances of the class. An interesting question for variable-length classes is the specification 

of the blocking pattern and its placement. High level blocking information may be retained within 

the class object but the particular parameters such as block size(s) may be held by each instance. [n 

block-swapping virtual memories, the compiler can group information by reordering fields within 

blocks and/ or blocks within an object 
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Block Number: o 1 2 3 

I I I II I I I /I I I I I I I I I I I 
Field Number: 0 1 2 3 4 5 6 7 8 9 (etc.) 

Figure 2-1 An Object Partitioned into Blocks 
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Hybrid schemes are also possible. For example, the virtual memory manager can group small 

objects on pages and swap them individually . Very large objects, such as local or remote files, may 

be partitioned into a number of blocks. Only the most recently used block(s) would remain in core. 

Although this scheme can place an upper bound on the quantity of infOlmation transferred at one 

time, one drawback is the overhead in time and space required to manage these "partial" objects. 

A novel viewpoint is taken by the PIE [GOLD] personal information environment which is 

implemented in Smalltalk-76 [INGA 78]. The smallest unit of information in PIE is an attribute of 

an object. Changes to the system, called layers, are collections of new attribute values for objects. 

For such a system, grouping, organizing, and! or swapping may be done on a layer basis rather than 

on an object basis. 

Depending on the possible amounts of data transferred between memory levels and the size of the 

computational items and their substructures, a natural unit of swapping may be identified. [f this 

unit is composed of finer stmctures which are themselves meaningful entities, these structures may 

be grouped and/or swapped to enhance performance when data is transferred between a pair of 

lower memory levels. 

For example, if the expected number of objects on a page is ten, then it is feasible to group objects 

and swap single objects or small collections of objects. [f the unit of swapping dictated by the 

underlying cache hardware is only four words, then fields ought to be grouped and collections of 

fields swapped. 

Grouping at one memory level of the system neither requires nor precludes grouping at other levels. 

Memory configurations usually consist of a number of physical devices with different transfer rates, 

access times, error rates, capacities, and costs. Information is continuously shuffled from one layer 

of memory to another, while the quantity of information transferred is highly dependent upon the 

two memory levels involved. Therefore, the appropriate choice of entities to group or swap is 

strongly correlated with the particular aspects of the virtual memory performance being tuned. 

Once this choice has been made, however, most if not all of the actual grouping decisions ought to 

be automated. 

2.4 LOOM 

2.4.1 . Object Swapping 

[n order to avoid the complexities of analyzing a three-level memory system (the actual Smalltalk 

implementation strategy), only two levels will be considered (Figure 2-2). The large, slow secondary 

memory is a collection of disk pages which may be confined to the local disk, located on a remote 

file server, or replicated and distributed across the local network. For purposes of simplicity, the 

secondary memory will be modeled as a single repository containing all the pages required for any 

computation. Call this memory disk. 
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Primary memory is composed of an in-core disk buffer and object space (core). The disk buffer is a 

small, fixed-size collection of disk pages. Pages are swapped between the disk and this butTer on 

demand. The buffer acts as a simple cache for disk pages. 

Objects are the unit of swapping between the disk buffer and core. At most, one copy of an object 

may be in core. Fields of an object may be read or written only if the object is in core. If the 

Smalltalk interpreter needs to access an object that is not in core and is therefore inaccessible, an 

object fault occurs. The required disk page is read into the disk buffer and the object is copied into 

core. 

If there is not enough free space in primary memory to swap in an old object or create a new 

object, compaction is done. The memory manager collects all free words in primary memory into 

one contiguous block. If this free block is large enough to accommodate the memory allocation 

request, space for the new object is carved from the front of the block. Otherwise, some objects are 

removed from core and purged to the disk. Each object has an in-use bit that is set if the object 

has been touched by the virtual machine since the last time it was considered as a candidate for 

purging. I f this bit is set, the virtual memory manager clears the bit and considers another object. 

Otherwise, the bit is not set. The object was not Llsed in the recent past and is purged. If the 

object is clean, it is simply discarded. Otherwise. an object fault occurs. The appropriate disk page 

is read into the buffer and the current contents of the object are copied from core into the buffer. 

One implication of object swapping is that the optimal object-fetching policy is not necessarily a 

demand policy. Formal proof.'i of the demand nature of the optimal strategy for page-swapping 

virtual memories exist [MAr[T]. However, since the cost is measured in page t:1ults rather than 

object faults, all such proofs are not applicable to the object-swapping portion of such systems. 

Note that the optimal page-fetching policy for· LOOM will always be a demand strategy. 

2.4.2 Pointer Compression 

Interesting naming considerations arise when a Smalltalk object is transferred from core to disk, 

especially when the disk is a remote file server of a distributed database supported by the Ethernet. 

All objects have two formats: their representations in core and on the disk. In-core pointers are l6-

bit indices into a table of in-core objects called the OT. Disk pointers are 32 bits long and arc 

essentially disk addresses. Objects that change size are accommodated on the disk by using 

forwarding markers. 

Whenever an object is brought into core, all of its pointers must be converted from a 32-bit format 

to a 16-bit format. The 0'1' is used as a hash table with the 32-bit address of an object as its key. 

Since all in-core objects contain their 32-bit disk address, establishing the presence or absence of the 

desired object is straightforward. [f such a 32-bit pointer references an in-core object, then the 16-

bit name of the object is used. 
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Consider the example shown in Figure 2-3, in which objects A, B, C, and [) are all on the disk. 

Solid lines indicate object references, while dashed lines represent the 32-bit disk address held by 

each in-core object. These backpointers are the only type of disk reference allowed in primary 

memory. Note that there are no references from disk to core. Assume object B only is initially in 

main memory and that object A is needed for a computation. When A is swapped into core, all of 

its 32-bit pointers must be converted to a l6-bit format. Since B already has a 16-bit name, this 

name is placed in field m of the in-core version of A. 

[f the referenced object is not present there are three alternatives. First. the referenced object may 

itself be swapped into core. While some objects may be prefetched and thus swapped into core 

before they are actually referenced, this scheme cannot always be used. The complete set of objects 

may not fit into core or the desired object may not be immediately available. 

A second alternative is to create a leaf for the object which is essentially the object without any of 

its data fields. This alternative was chosen for the reference to C contained in object A. An object 

may exist in core as an object or as a leaf. but not as both simultaneously. The small size of leaves 

allows a representative for an object to be in core that docs not occupy the space needed by the full 

object. Leaves provide a level of indirection and allow the existence of short pointers to 

nonresident objects. For example. if an object being purged has a non-zero in-core reference count, 

it is replaced by a leaf in a process called contraction. 

Another alternative is to replace the pointer with a lambda. as was done for the reference in A to 

object D. Lambdas are special references with a constant value used to indicate unresolved 

pointers. Whenever the Smalltalk interpreter comes across such a reference, the virtual memory 

manager refetches the disk representation of the object containing the lambda to determine the true 

pointer value. Since this process of lambda resolution can generate many page fetches per "in-core" 

object. its frequency of occurrence is a critical performance factor. 

Dynamically created objects initially receive only a 16-bit name. Since these temporary objects tend 

to have relatively short lifetimes and are rarely purged. 32-bit names and a home location on the 

disk are not granted unless they are required. [n order to purge a temporary object that has no 

counterpart on disk, disk space is first allocated. The disk address of the object becomes its external 

name. 

Whenever an object is transferred to or from the disk, all pointers must be converted to the 

appropriate format. This name translation penalty trades off against increased pointer size and the 

reduced number of objects in core. Another benefit provided by this two-level name space is the 

lack of a fixed relationship between the name and location of an object in core and its location on 

the disk. 
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2.4.3 Storage tvl anagement 

Memory is reclaimed in LOOM by using reference counts. At times, three separate reference 

counts may be maintained for a single object. The true reference count is actually the sum of the 

individual counts. Disk objects contain the count of the holders of their 32-bit external name. In

core reference counts, which represent the number of holders of 16-bit internal names, are 

maintained in the OT. Leaves arc also involved with LOOM's complex reference counting scheme 

and their role is briefly described in section 8. L 

2.4.4 Relevant Smalltalk Terminology 

A small number of tenns with particular Smalltalk meanings need to be defined. Objects 

communicate by sending rnessages. The name of a message is called the selector. Upon receipt of a 

message, the receiver performs some set of actions, possibly sends other messages, and then returns 

a value. This sequence of instructions perfonned by the receiver is called a method. Sending a 

message in Smalltalk corresponds to calling a procedure in a conventional programming language. 

The context is changed in both cases by pushing a new frame on the stack and updating the 

program counter (PC) to point to the tirst instruction in the new method/procedure. The source

level representation for a method is a sequence of Smalltalk statements that may be compiled to 

form object code intelligible to the virtual machine. This object code is represented as a sequence 

of compile-time literals followed by a collection of 8-bit bytecodes and is a called a 

CompiledMethod. A CompiledMethod may be decompiled to produce a close approximation of the 

original source code. While the word "method" may refer to either the source-level statement') or 

the object codc, the appropriate meaning will usually be clear from the context. 

Every Smalltalk object belongs to exactly one class. This class detennines the internal 

representation of the object as well as the set of messages such an object is prepared to accept. All 

instances of each class share a collection of methods that arc located in a single object held by the 

class object. This repository, called the message dictionary, maintains a mapping between selectors 

and CompiledMethods. Under this naming convention, the receiver of a message determines the 

context in which to resolve the specific selector. Therefore, a single selector appearing in a method 

may refer to any number of CompiledMethods. The binding of the selector to a specific 

CompiledMethod is not done until ntn time. Classes arc arranged in a superclass hierarchy for the 

purpose of code inheritance. This arrangement further complicates the binding between selectors 

and CompiledMcthods. 

Consider the hypothetical number hierarchy depicted in Figure 2-4. Assume a Smallinteger receives 

a message with selector M. The Smalltalk interpreter first determines the class of the receiver, 

which in this case is SmalHnteger. Each class maintains the mapping from selectors to methods in 

its own message dictionary. [f M is found in the message dictionary associated with the class 

SmaUlnteger, the corresponding method is executed. Otherwise, the Smalltalk interpreter looks in 

the superclass field of the object that is the class Smalllnteger and finds a reference to the Integer 

class. The message dictionary of this class is then checked for M. This search process continues 
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toward the root of the system (class Object) until either a method is found or the root is reached. 

If the latter event occurs, an error message is sent and the execution is suspended. Since the user 

may insert and delete message dictionary entries at nll1 time, the binding between a selector and a 

method cannot be established before the particular message is sent. 
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3. Virtual Machine Emulation 

Precise empirical comparisons of the paging performance of an object-oriented and a page-oriented 

virtual memory require a reproducible sequence of memory references. The inability to exactly 

duplicate the timing and nature of user input derived from the keyboard and mouse prevent the 

direct use of two Smalltalk implementations with different virtual memory configurations. Such a 

testing environment would have required the construction of two virtual memories. Implementing a 

paged virtual memory that dealt with 32-bit references would have necessitated a complete 

restructuring of the existing Smalltalk-80 virtual machine which deals exclusively with 16-bit 

poimers. For these reasons, a decision was made to use a fixed set of inputs and to simulate both 

virtual memories. This option required substantially less implementation and debugging effort and 

provided flexibility at the cost of the degradation in performance associated with simulations. Since 

any set of memory references is independent of both the original layout of objects in the virtual 

memory and the type of virtual memory, objects could be grouped by any static algorithm and 

policies and parameters of the virtual memory could be modified without invalidating the input 

trace. 

3.1 Empirical Data versus Mathematical Models 

Data to drive virtual memory simulations may be obtained from mathematical models of program 

behavior or actual execution traces. Analytic techniques have compact, tlexible representations, low 

construction and usage costs, and the ability to reproduce an output sequence. Such models also 

tend to be mathematically tractable and convenient by making simplifying assumptions that in many 

cases do not accurately reflect the true operation of the program [BATS76, SALT]. However, 

without model calibration and validation, any results derived from such a model are only of 

theoretic interest [SPIR]. 

Alternatively, an execution trace or event trace may be extracted from a running system and used to 

drive a virtual memory simulation. This information is a time-ordered collection of events whose 

occurrence is (or may be) relevant to a concurrent or future simulation. Advantages of an event 

trace in.elude reproducibility and accuracy. Offsetting these benefits are the problems of excess 

detail, lack of flexibility, and substantial difficulties in generating and employing the data. 

Event traces were selected over mathematical models for three reasons: 

There is no generally accepted procedure for validating program models. Ferrari 
[FERR78] has summarized the current set of tools as ad hoc methods, partial tests, and 
common sense. 

No empirical measurements have been reported for a single-user. display-oriented, object
based. interactive programming environment such as Smalltalk. This lack of data would 
have prohibited any serious attempts at model validation. 



24 A LARGE OBJECr-OR[ENTED VIRTUAL MEMORY 

Finally, the analysis of a detailed reference trace would yield statistical data for an object
oriented system that may be compared with similar infOimation derived from programs 
written in other languages and executing in vastly different run-time environments. 

3.2 F:mulation of Smalltalk-80 

Two methods of obtaining event traces are to modify the existing microcoded virtual machine and 

to construct an emulator that simulates the exact behavior of the virtual machine. Changing the 

existing microcode has a number of benefits. Most of the design, implementation. and debugging is 

already accomplished. The one remaining task, augmenting a running system, would cause only a 

slight degradation in performance. Smalltalk would remain a useful programming environment. 

Timing characteristics of an interactive session or a connection with a remote server would remain 

well within the ranges established by previous releases of Smalltalk nll1ning on lower-performance, 

personal computers. [n contrast, an emulator written in Smalltalk would execute instructions orders 

of magnitude more slowly and thereby prevent normal patterns of usage from occurring. 

Changing the virtual machine also has a number of unattractive features. Space limitations in the 

microcode store would tend to restrict the class of data compression techniques available. while the 

low level of the microcode language would inhibit program debugging, modification, and 

maintenance. Smalltalk, on the other hand. would provide all the advantages of a high level 

language. the simulation facilities found in an object-oriented programming environment, and more 

computational power by essentially removing the restrictions on program size. 

[ chose neither extreme. I wrote the bytecode interpreter of the emulator in Smalltalk. but used the 

virtual machine for it') storage management facilities and execution of the low-level messages called 

primitives. This configuration supported the full genenllity of a program written in a high level 

language, allowed the use of a good deal of existing Smalltalk code, and provided some of the 

speed of the actual machine. Once constructed, the emulator was readily adapted to making 

measurements quite different from those initially envisioned. The emulator has become a general 

tool for obtaining statistics and has been integrated into a new display-oriented. interactive debugger 

with a single-step capability. Except for the tremendous cost in speed, the emulator has been 

invaluable for both its intended purpose and new applications. 

3.3 Execution Trace Validity 

Primitive methods are written in microcode and serve two purposes. By providing the basic 

arithmetic and logic functions, primitives end the infinite regress of message sending. Primitives 

also enhance performance. since a number of heavily used methods are written in microcode and 

thus execute rapidly. 

Restricting emulation to the bytecode interpreter meant that the actions of the microcode when 

performing primitives had to be integrated into the event trace. In order to avoid compromising the 

validity of the statistics derived from the traces, a small subset of the primitives (about one-third) 
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were chosen according to usage frequency. For these primitives. the emulator recorded the memory 

references made by the microcode. 

When a primitive method is encountered. the emulator instructs the virtual machine to attempt to 

perform the necessary actions. If the primitive succeeds. the microcode has perfonned the desired 

actions. The corresponding method is not executed and there is no new stack frame. A primitive 

fails when a situation occurs that the microcode is not prepared to handle. For example. one or 

more of the arguments in the message may not be of the expected type or within the appropriate 

value range. When a primitive fails. the corresponding method is executed by pushing another 

frame on the stack and setting the program counter to the first bytccode in the new method. For 

both successful and unsuccessful primitives. the emulator detennined and recorded the set of 

references made by the microcode. 

Logical functions, integer arithmetic. and comparison of two object identifiers are examples of 

operations that only access the top element(s) of the stack. These heavily used primitives do not 

contribute any references to object space. Determining the references made by the microcode is 

straightforward for most of the remaining operations. For example. array and string subscripting. 

object creation, and stream accessing are all characterized by a fixed set of references made to the 

receiver of the message and the arguments. Only one primi~ive required an extensive algorithm to 

compute the references made by the microcode. BitBlt, an acronym for bit boundary block transfer, 

is the primitive that manipulates, clips, and transfers areas between bitmaps. A complete 

description may be found in [INGA81]. Between 80% and 95% of all cal1s on primitive methods 

were detected and compensated for in this manner. Since primitives are a fraction of all methods 

and send instructions arc a subset of all bytccodes, the missing references are not substantial. The 

event traces may be considered both representative and complete. 
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4. Detailed Reference Behavior 

A number of measurements of a running Smalltalk system were taken and subsequently analyzed in 

order to investigate the basic reference tendencies of an object-oriented system. Results of the 

analysis were used to suggest. evaluate. and compare stalic grouping algorithms and had 

implications for cache management. swapping granularity, and event trace compression. Dynamic 

characteristics, such as the distribution of object lifetimes and the distribution of pointer distances 

(where the measure is the difference in creation time), are discussed in Chapter 10. 

Although data was obtained from a wide variety of computations. one important result was the high 

degree of similarity between the measurements for different execution sequences. These statistics 

report characteristics of the Smalltalk-80 system rather than the peculiarities of the particular 

computations. Another conclusion drawn from the analysis is that the quiescent characteristics. 

measured when the system is not active, are a valuable but not infallible predictor of their nm-time 

counterparts. 

Each distribution compiled from these measurements was characterized by seven numbers: the 

median, mean, minimum, maximum, two quartiles, and the standard deviation. The entire 

collection of statistics is presented in Appendix A. 

4.1 [)(~finitions 

Let an object reference be the reading or the writing of one field of any object except a stack frame 

done strictly for computational purposes. [n this chapter only, all references made for storage 

management purposes are neglected. For example, all operations concerning reference counts, 

garbage collection, compaction, indirection through forwarding markers, contraction, expansion, 

purging, and faulting are not considered. This detinition isolates the set of object references that 

are essential to the computation and that would occur if core were unlimited and the storage 

manager did not exist. 

Define a reference string (stream. trace) to be a time-ordered collection of object references. In 

most virtual memory studies, reference strings are sequences of virtual memory addresses or virtual 

page references. Our object-oriented notion abstracts from the particular organization of objects in 

memory and is a more fundamental characterization of the accessing tendencies of the virtual 

machine. Batson [BATS76] and Ferrari [FERR76] have called such high-level information symbolic. 

Even though a code fragment in Smalltalk is represented by an object that responds to messages as 

does any data object, access patterns are different. Methods are referenced in a highly regular 

manner (i.e., sequential bytecodes occasionally interrupted by jumps, returns. literals, and 

method/block activations), while most data objects are not. Most memory systems and previous 
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studies, however, do not make a distinction between data and code in reference strings and/or 

working sets. Spirn and Denning [SPIR] have identified this partitioning as an important research 

topic. 

In the statistics presented in this chapter, a distinction is made between code and data in an attempt 

to separate the accessing patterns of each and detennine the relative influence each exerts on the 

total picture. 1\ somewhat arbitrary (but strictly enforced) decision was made partitioning objects 

into the two sets: code and data. Code objects are CompiledMethods and message dictionaries. 

Message dictionaries, which contain the mapping from message selectors to CompiledMethods, are 

implemented as conventional hash tables in order to support efficient lookups when messages are 

sent. While not actually executable code, these dictionaries are so closely associated with the 

CompiledMethods that a decision was made to include them in the code set. Except when source 

code is compiled or some CompiledMethods are discarded, the code set represents a static, read-

only structure. Objects not present in the code set are by definition in the data set. 

Although the 32K -field bitmap that supports the display is an actual Smalltalk object. it is 

considered to be a pennanent resident of primary memory as is any other interface to an I/O 

device. For our purposes, the bitmap is not an entity that may be swapped in and out of core. 

Unless the contrary is explicitly stated, the 32K bitmap will not be considered hereafter. 

(n order to compare nm-time characteristics with those corresponding to a quiescent state, three 

types of distributions were computed for most of the statistics: static, dynamic, and quasi-static. A 

static distribution is the distribution of counts of objecls in existence whose attribute is a given 

value. A dynamic distribution is associated with an event trace and is the distribution of counts of 

references to objects in that trace whose attribute· is a given value. A quasi-stalic distribution is 

associated with an event trace and is the distribution of counts of objects used in the trace whose 

attribute is a given value. [chose the word "quasi-static" in order to avoid the confusing tenn 

average used by Batson and Brundage [HA TS77]. 

[n a lengthy computation involving many cycles of purging and fetching, the dynamic weightings 

may be indicative of the set of older objects in core that survive many purge attempts. One 

shortcoming of this interpretation is the possibility that most or all accesses to an object were made 

during a very short time span and were not unifonnly spread throughout the computation. The 

total ordering defined by the number of times an object was accessed mayor may not be correlated 

with the probability of avoiding being purged. Quasi-static distributions offer useful comparisons 

with both the static and dynamic cases. If primary memory is initially empty at the start of the 

computation and objects are swapped instead of pages, the quasi-static distributions reflect the 

contents of core before any objects have been purged. 

4.2 T race Data 

Five radically different execution sequences provided a representative set of statistics that could be 

used to investigate the (non)unifonnity of the reference patterns in an object-oriented programming 
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environment. These traces would either highlight the differences or underscore the similarities 

between small windows on the reference stream generated by a typical user session. Compiling, 

entering the debugger, browsing through source code, editing text, and displaying characters in a 

window comprise the chosen operations. 

In all graphs, charts, and text, the symbol K is used as an abbreviation for the integer 1024. All 

traces were exactly 144K references in length. Except for one case in which only UK bytecodes 

were executed, between 31 K and 39 K instructions were interpreted by the emulator for each trace. 

The one exception represents the potential of the BitBlt primitive to require enormous quantities of 

references in order to accomplish a single instruction. Discounting the presence of the bitmap 

display object of size 32K, the span of the set of the objects touched ranged from 14K to 21K 

fields. Between 422 and 1240 distinct objects were touched in each trace, of which 85 to 393 were 

dynamically created. 

4.3 Object Size 

The distribution of object sizes is useful when deciding whether grouping is applicable and whether 

different grouping strategies are likely to have different effects on paging performance. Both 

questions were answered affirmatively. 

Size is defined to be the number of fields of an. object. Each object contains two or more fields. 

Lenglh and class fields are present in all objects and require one word each. The size and core 

requirements are numerically equal for objects with word fields. For classes with byte fields, the 

space in primary memory occupied by an instance of size n is rn/21+ 1. 

Since the BitBlt operation has a potential to cause many thousands of references to a 32K bitmap, 

the dynamic size results are presented twice. One set contains all references: the presence of the 

bitmap is clear in all four traces in which it appears. A second data set ignores references to 

bitmaps and instead concentrates on the remaining objects, each of which has a size of at most 2K 

fields. 

Object~ tend to be small, with data objects smaller than code objects. [n all three .object partitions, 

dynamic size measurements are larger than both their static and quasi-static counterparts (Figure 4-

1). The quasi-static sizes roughly equal (and generally slightly exceed) the static figures. As far as 

size is concerned, the computations involved typical objects. Substantially larger dynamic sizes 

imply that the distribution of references is not uniform but correlated with size. A more thorough 

analysis of the dependency is presented in section 4.7.2. 

Of primary importance is the fact that objects tend to be much smaller than disk pages. A static 

median (mean) of 10 (19) fields, coupled with a 2: 1 expansion of pointers for very large address 

spaces and 512-byte pages, means that one can expect roughly 6-13 objects to be placed on the 

same disk page. Since many of the byte fields will remain bytes, the factor of two is a strict upper 

bound on the expansion of objects transferred from core to disk. Although most objects are 
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smaller than a page, hundreds of objects are not able to fit on a page. If this were the case, then 

the distinction between any pair of reasonable grouping algorithms that traverse the directed graph 

composed of objects and pointers would be blurred. Smalltalk-80's ratio of page length to object 

size suggests that pages are the appropriate size for grouping objects. 

In an empirical study of Algol programs, Batson and Brundage [BATS77] reported size distributions 

of arrays, program segments, and contour data segments. Mean sizes were larger than median sizes 

in both the Algol and Smalltalk size distributions. However, the dynamic statistics did not dominate 

their quasi-static counterparts in Algol as they did in Smalltalk. In Tables 4.1 and 4.2, the Algol 

measurements are expressed in words while the Smalltalk figures are in fields. 

Dynamic Dynamic Quasi-Static Quasi-Static 
Mean Median Mean Median 

Program Segment Size 38.8 23 93.1 33 
Array Segment Size 343.1 16 616.6 30 
Contour Data Segment Size 17.9 9 13.2 6 
Total Memory/Contour 28.1 9 724.8 7 

Table 4.1 Segment Sizes in Algol Programs 

Dynamic Dynamic Quasi-Static Quasi-Static Static Static 
Mean Median Mean Median Mean Median 

Code Objects 64-103 34-41 32-40 16-20 31 17 
Data Objects 19-62 10-10 9-18 4-10 14 8 
All Objects 51-80 27-30 16-26 9-13 19 10 

Table 4.2 Object Sizes in Smalltalk Computations 

Earlier empirical work by Batson et a1. [BA TS70) also found surprisingly large numbers of small 

segments in a university computing environment. Sixty percent of the in-use segments were smaller 

than 40 words. McKeeman [McKEE] measured a mean program segment size of 60 words in a 

collection of compiled scientific programs. Snyder [SNYDa), on the other hand, reported 3 as the 

average size of dynamically created objects in a small number of CLU programs. 

One final remark is the visibility of well-known classes of objects in the size distributions. The 

popularity of 10 for quartiles and means in the size statistics is due to class objects. Class objects 

are. frequently accessed. since they are touched at least once every time a message is sent or a new 

object is created. Message dictionaries. which have a capacity slightly larger than some integral 

power of two, caused spikes just beyond 64, 128, and 256. 

4.4 Fractional Utilization 

Memory may be underutilized because of fragmentation, which is caused by filling memory with 

unneeded information [KUCK]. Randell [RAND1 has partitioned this problem into internal and 

external fragmentation ("checkerboarding"). Internal fragmentation corresponds to the storage 

wasted by rounding up the size of each object to the nearest multiple of the smallest memory 

allocation unit. Except for wasting one byte in the case of objects with an odd number of byte 
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fields. LOOM avoids this problem by swapping objects instead of pages. External fragmentation 

occurs when non-relocatable objects prevent a memory allocation request from being satisfied even 

though the total amount of free storage can accommodate the request. LOOM attempts to avoid 

this type of memory underutilization by compacting in-core objects when a memory allocation 

request fails. If the size of the free block created by the compaction routine does not exceed some 

threshold. then purging occurs before compaction is again attempted. 

Memory may also be wasted by information that is potentially useful but happens not to be 

reterenced while the object/page is in core. 'lbe presence of such information in core has been 

called superjluity [KUCK] and temporal fragmentation [MORR]. From empirically derived functions 

mapping page size to the minimum number of pages required to perfonn a given computation 

[O'NEL BELA69], superfluity has been determined to be roughly proportional to the page size 

[KUCKJ. However, the author knows of no published reports that examine superfluity in logical 

objects as opposed to physical pages. 

Define the Jractional utilization of an object used during a computation as the percentage of fields 

of the object that were touched (read or written), neglecting any initialization for dynamically 

created objects. All fields of objects are considered. even self-descriptive aspects such as the length 

and class fields. This definition formalizes the density oj reference notion discussed by Morrison 

[MORR]. 

4.4.1 Discussion 

Fractional utilization distributions examine memory usage and may be used to evaluate proposed 

units of memory allocation and information swapping. Even though the computations did not 

reference all the fields in all objects touched at least once, the average usage was high enough to 

dictate against pure field swapping or hybrid schemes that swap both fields and objects. No finn 

conclusions could be drawn concerning the correlation between object size and fractional utilization. 

An incremental analysis indicated the observed usage levels approximated equilibrium values and 

were not highly dependent upon the length of the trace. 

All objects used by the system. except for message dictionaries, were included in the following 

analysis. Heavy use of hash tables in the form of message dictionaries, arbitrary load factors. and 

ambiguity in defining appropriate fractional usage levels led to the exclusion of such hash tables 

from the fractional utilization statistics. 

Quasi-static measurements arc the natural choice for fractional utilization results, which were 

initially tabulated for the entire length of each trace (144K references). Section 4.4.2 deals with 

shorter window sizes. On the average, only 39% to 51% of the fields of an object were accessed 

during the five computations. Data objects spanned the entire range from 0% to 100%. while the 

code objects did not. ObjeCts with a zero percent value were newly created entities that had not yet 

been accessed. No. code object showed a complete utilization. Three trailing bytes in each 

CompiledMethod serve as hints for the location of the source code and play no part in the 
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execution of the method. Since the length and class fields of CompilcdMethods are also 

infrequently accessed, not all fields in a CompiledMethod are typically used. 

Two interesting spikes in the fractional usage plots were values at 75% for data objects and 14% for 

code objects (Figure 4-2). Instances of class Point, which have 4 fields, account for the bulk of the 

first anomaly. Three fields, the x, y, and class fields, were heavily used. The length field of a 

point, which is only needed for storage management purposes, was not explicitly used during the 

computation. Quick methods, which have no bytecodes but instead contain the number of a field 

in the receiver that is the returned value of the method, have only 7 fields. Only one of these seven 

fields is touched by the microcode. These quick methods, which are not shared between classes, 

contributed heavily to the large value that occurred at 14% for code objects. 

Except for the spike at 14%, most methods had 40% to 90% of their fields touched. Conditional 

branches, early returns, and iterators operating over empty sets of data prevented all bytecodes from 

being executed and all literals from being needed. 

Data objects, on the other hand, had a much larger spread in their fractional usage values. [n all 

five cases the standard deviation for data objects exceeded the corresponding number for code 

objects. There was a striking difference between code and data for the first quartile and median in 

the first four reference traces. For example, the median fractional usage for data varied from 25% 

to 33%, while for code it varied from 51% to 57%. Ranges for the first quartile were 5% to 20% and 

15% to 40%, respectively. However, the intervals were nearly equivalent by the third quartile: 67%-

75% and 68%-73%. The fifth trace is anomalous because data fractions exceeded code fractions at 

both quartiles as well as the median. The impact of the large quantity of point objects (at least 25% 

of all data objects in the fifth trace) skewed the "last distribution and also significantly raised the 

third quartile in the other four cases. 

Fractional utilization is important since the apparent size of memory may be viewed as the product 

of the physical size and the utilization rate. If the utilization of core is low, then alternate swapping 

strategies based upon smaller structures, such as fields, may increase the apparent size of core by 

increasing the fraction of core used. As the unit of swapping gets smaller, however, there is 

typically more required overhead in time and/or space. This requirement is due to the larger 

number of unit') of data in core at one instant. More time, "space, or hardware is required to 

determine if a particular unit of information is immediately available or not. 

Other problems are aggravated when the unit of swapping is increased. For example, as the 

granularity of swapping gets coarser, the fractional usage tends to fall. Usually only a subset of the 

objects on a page are touched during the time the page remains in core. The same also holds true 

for the fields of an object. When the fields in a page are considered, the two effects are 

multiplicative. Utilization can get no larger when coarser structures are swapped, since any 

configuration in the coarser system may be duplicated in the finer system. Offsetting this 

advantage, however. is the fact that finer systems require much more overhead to manage a larger 

set of swapping units and may increase the likelihood of thrashing. 
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4.4.2 Incremental Analysis 

In the preceding analysis, a tixed window size of 144K references was employed. On the average, 

only half of the infonnation in an object was used during this time span. Larger primary memories, 

which increase the average residence time for objects, enlarge this window and should shift the 

distribution of fractional usage to the right. Longer periods of time will increase the probability 

that formerly unused fields will be touched. Narrower time slots correspond to smaller core sizes 

and should tend to push the distribution to the left for the obvious reasons. In general, the 

measured utilization level will be a function of the window size. 

For very small windows, the distribution may shift in apparently the wrong direction. This anomaly 

would be due to the influence of the relatively large number of (newly created) objects touched for 

the first time in the computation. [nelusion of these objects by using larger time slots would shift 

the distribution to the left. For smaller time slots, their absence would translate the function to the 

right. A elose examination of the fractional utilization of objects as a function of window size 

supports the original set of intuitive hypotheses. 

Each trace was subsequently analyzed using only the tirst lK, 2K, 4K, 8K. 16K, 32K, or 64K 
references. The quartiles, medians, and means of the fractional usage distribution rapidly converged 

to the values corresponding to the full 144K trace (Figure 4-3). This convergence was nonnally 

asymptotic from below, but small oscillations above and below the final value occurred. One 

remarkable fact was the relative invariance of the general shape of the distribution. Spikes in the 

graph appeared as the analyzed portion of the traces became longer, yet their only apparent effect 

was a proportional reduction in the value of the function at all the other points of the domain. 

While the complete data set may be found in Appendix A, the examples in Table 4.3 are indicative. 

Trace Length lK 2K 4K 8K 16K 32K 64K 144K 

All (Median # 5) 20 20 20 25 30 50 54 59 
Code (Median # 5) 44 44 40 40 40 43 45 45 
Data (Median #5) 10 10 20 25 25 67 67 75 

All (Median #3) 25 25 25 30 37 39 40 29 
Code (Median #3) 39 45 50 54 52 54 54 57 
Data (Median # 3) 20 25 20 25 25 25 28 25 

All (Mean # 5) 23 23 29 36 41 47 . 49 51 
Code (Mean #5) 39 39 41 40 40 41 42 42 
Data (Mean # 5) 15 16 22 33 41 51 53 56 

All (Mean # 3) 31 33 36 39 42 43 44 39 
Code (Mean #3) 37 37 44 48 47 49 51 53 
Data (Mean # 3) 26 30 31 35 40 41 41 35 

Table 4.3 Selected Fractional Utilization Values 

The fractional utilization function for code objects may be closely approximated by examination of 

a very short reference trace. Data from the 16K or 32K window sizes are remarkably close to their 

values for a 144K window. Except for sending messages (subroutine calls), CompiledMethods are 
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heavily accessed during a short time period and not touched again until a later invocation. The 

execution of a small number of methods yielded enough data to derive reasonable approximations. 

Recently touched objects. on the other hand. usually receive a number of messages in a short period 

of time. The span of time during which an object is used ranges from one to dozens of method 

executions. Apparently the short time periods used were not long enough to allow a true 

equilibrium to establish. Newly created objects and objects touched for the first time tended to 

reduce the overall fradional utilization. However, the rate of change of the utilization value with 

respect to the difference in trace length decreased with longer traces. 

Comparisons of similar statistics for different traces having the same length indicate only a slight 

predictive tendency for the final ordering. Results for the 1K windows cannot be used to accurately 

predict the high to low ordering of the 144K windows. The motion of the spread of the values 

corresponding to a particular fractional usage statistic was generally monotonically increasing. For 

example, the endpoints for the band defined by the largest and smallest medians for a particular 

trace length both grew as the trace length was increased. Although the size of this band fluctuated, 

its midpoint never decreased. Table 4.4 illustrates this tendency. 

Trace lK 4K 16K 64K 144K 

# 1 (Code) 37 46 50 54 54 
#2 (Code) 45 50 50 50 51 
# 3 (Code) 39 50 52 54 57 
#4 (Code) 38 45 54 54 54 
#5 (Code) 44 40 40 45 45 
Range 37-45 40-50 40-54 45-54 45-57 
MidPoint 41 45 47 49.5 51 

# 1 (Data) 20 25 25 30 33 
#2 (Data) 20 25 25 25 33 
#3 (Data) 20 20 25 28 25 
#4 (Data) 20 25 30 30 30 
# 5 (Data) 10 20 25 67 75 
Range 10-20 20-25 25-30 28-67 25-75 
MidPoint 15 22.5 27.5 47.5 50 

Table 4.4 Median Fractional Utilization Values for Varying Window Sizes 

4.4.3 Effect of Object S'ize 

A second question raised by the initial analysis is the dependence of the fractional utilization value 

on object size. If the fractional utilization of objects increases with size. object swapping has an 

advantage over field swapping for most objects larger than some size. The success of an object

swapping scheme depends on the size distribution of objects swapped into primary memory. 

A negative slope on the fractional utilization versus object size function implies the opposite. One 

solution to the underutilization of core by large objects is to use a hybrid scheme. Objects smaller 

than some threshold where average utilization falls off are swapped. while larger objects have their 
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fields swapped only. Performance of such hybrid schemes depends upon the variance of the 

utilization function as well as the choice of the cutoff level. An alternate solution is to use a per

object indicator (hint) to decide whether to swap the entire object or just the desired field(s). Hints 

could be static information derived from a number of typical execution sequences. This knowledge 

could also be updated dynamically, depending on the number of fields accessed the previous time 

the object or any of its tields were in core. 

1\ tlat distribution implies that the fractional utilization is relatively independent of object size. 

Depending on the actual fractional usage value, pure field swapping mayor may not be a better 

memory management policy than pure object swapping. 

For code objects smaller than thirty fields, there was a marked increase in the average utilization as 

size increased. Much of this difference is directly attributable to the five infrequently used fields of 

the CompiledMethod, since the remaining fields were heavily utilized. The importance of these 

fields is inversely proportional to method size and is evident in Figure 4-4. Beyond this simple 

observation, no firm conclusions may be drawn for large code objects because of the sparseness of 

the fractional utilization distributions for large object sizes. 

For data objects, there was a slight tendency for the fractional utilization to decrease with increasing 

object size. However, the extremely high utilization of a small number of objects with sizes in the 

30-70 range argues against using a hybrid scheme with a sharp division between swapping objects 

and fields. The wide variation in usage for objects with size less than forty was also disturbing in 

that pure object swapping or pure field swapping may fail miserably under certain circumstances. 

4.4.4 Conclusions 

Object swapping may be viewed as an attempt to increase the utilization of core memory by 

releasing the constraints imposed by the static placement of objects on pages. Just as objects (or 

code segments) can be grouped on pages to increase the fraction of the page actually utilized, 

swapping fields or collections of fields on demand may increase the portion of the in-core pieces of 

the object that are used while in primary memory. The best possible scenario from the standpoint 

of the fractional utilization measure is a complete utilization of core coupled with the optimum (and 

hence unrealizable) field-purging policy. Attempting to maximize the fractional usage value by 

swapping fields on demand and using realizable purging algorithms may lead to extremely poor disk 

cache perforrnance in addition to an unacceptable computational overhead for each reference. 

Thrashing and much of this overhead may be reduced or even avoided for both the loading and 

purging of data by the intelligent grouping of information in secondary memory and/or the 

swapping of larger units of information. 

When a primitive method is handled by the microcode, only two fields of the CompiledMethod are 

actually accessed. Successful primitives and the five infrequently used fields biased the fractional 

utilization of code objects. Interpreting the fractional utilization distributions in light of this 

additional knowledge indicates that methods ought to be viewed as indivisible units and swapped in 
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their entirety. Analysis of the results from progressively longer traces have shown that the fractional 

statistics found for code objects represent equilibrium values. 

Incremental analysis has indicated that more investigation needs to be done for data objects, since 

they are accessed differently than code objects both intuitively and empirically. Longer execution 

traces need to be analyzed in order to determine the plateau value and rise time of the utilization 

function for the data objects. The low utilization values observed may indicate the existence of a 

natural partitioning of large data objects. References occurring over a small period of time mayor 

may not cluster about certain fields of an, object. If this clustering docs in fact occur, then an 

effective memory management scheme is to break large objects into blocks and swap blocks instead 

of fields or entire objects. A further consideration is the movement of the cluster as well as the 

invariance of the partition it defines. 

One critical insight was provided by the analysis of the progressively longer traces. Some sequences 

of fractional usage values asymptotically approached their final (Le., 144K) value from belm .. ·. The 

slope of the curve fitted to these points had a positive slope that decreased with increasing trace 

length. Other sequences first rose and then oscillated before obtaining their final value for a 144K 

window. Such behavior indicates the presence of a dynamic equilibrium and the inability of a small 

window size to filter sho~t-term behavior. Rapidly decreasing slopes for the functions of the first 

kind, fluctuations present in t.he functions of the second kind, and a general agreement between all 

traces for 144K values are the key pieces of evidence that most of the transient behavior had been 

overshadowed by an equilibrium state. 

Many of the classical time-space analyses of algorithms and data structures lose their asymptotic 

relevance for programming environments with small core sizes. Instead, nearness of data in time 

and space and fractional utilization of memory' become the important criteria for purposes of 

performance evaluation. The importance of fractional utilization decreases for smaller units of 

swapping but cannot be eliminated completely with conventional mass storage devices. This ideal 

can be attained only with a secondary memory that support'i the efficient transfer of arbitrarily 

small units of data (fields). For example. if an in-core disk buffer is lIsed and complete pages are 

swapped between this buffer and the disk, field swapping can substantially reduce but cannot 

completely eliminate the importance of the fractional utilization of both code and data objects. 

Fractional usage "is by no means the only measure for comparing virtual memory designs. Factors 

such as pointer compression, computational overhead, paging performance, and implementation 

requirements also affect the choice of a virtual memory design. 

4.5 Intcrrcferencc Headway 

Define the interreference headway distance of a reference to an object A as one plus the total 

number of references occurring between that reference and the next reference to A. For example, 

consecutive references to the same object yield a distance of one. When compiling statistics for data 

only, code references are ignored and vice versa. When statistics are obtained for all objects, both 
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k.inds of references are counted. This definition partitions references into data space and code space 

and allows investigation into either area without interference from the other. 

Distributions of data interreference head ways were remark.ably similar to those for code references. 

Locality of reference was clearly present even in the composite reference traces and can be exploited 

at different levels of the memory system. These results also indicate that simple techniques could 

be used to substantially compress the reference stream without a great loss of information. 

For all five traces, the median interreference headway for code objects was one (Figure 4-5). 

Except for looking up message selectors in hash tables, returning to the calling/home context, or 

interpreting a CompiledMethod in a new context, the next code reference was to the same 

CompiledMethod. Average headways far exceeded the median and even the third quartile. 

Distributions were skewed by a substantial number of large headways. These values arose from 

message lookup, since any number of bytecodes may have been executed before another message to 

an object of the same class (or subclass) was sent. Sending a message, performing the required 

operations, and returning a result also widely separated two accesses to a CompiledMethod. The 

portion of the distribution dealing with code headways greater than one is an approximate 

indication of the distribution of the time in code references required to send a message. 

Data headways were likewise characterized by small numbers and highly skewed distributions. 

Medians ranged from one to eight, while the means were far larger than the third quartiles. The 

third quartiles and mean values of the headway distribution were lower for data than for code 

objects. One factor that contributed to this result is the inherent difference between the roles 

played by messages and the receivers (senders) .of messages. Except for the case of (possibly 

indirect) recursion, a CompiledMethod is not accessed after sending a message until the appropriate 

computation completes. Normally, some of the objects local to the calling method are parameters 

to portions of this computation and arc referenced before control returns to the original method. 

Conversely, the remaining local objects are not accessed during this execution sequence and 

contribute to the large headways. 

Mean headways varied between 118 and 307. These figures are significantly larger than the average 

number of distinct pages between two references to the same page reported by Lewis and Yue 

[LEW I]. '[beir means. which varied from 1.2 to 2.2, were much smaller than the mean Smalltalk 

distances because distillcl pages were counted instead of all intervening object references. 

Composite headway distances are necessarily at least as large as the corresponding code or data 

results. because all references were included in the composite case. While the first quartile of the 

composite headway distribution was still only one, the median varied between one and seven. 

Locality in time and space was evident even in the composite traces. 
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Perfonnance gains appear to be realizable over a rather large spectrum of memory configurations. 

from a tiny hardware cache handling dozens of objects to a conventional core memory handling 

thousands of objects. A large gain may be realized by caching a small number of objects. Since 

objects tend to be small, swapping small. fixed-size blocks between the cache and core will realize 

the gains secured from object swapping without most of the computational overhead. Fractional 

utilization resuiL-; and the frequency of send instnlctions indicate that caching blocks of 

CompiledMethods rather than caching individual tields or the entire object would result in larger 

performance gains. I.ower fractional utilization values for data objects imply that caching tields (or 

small groups of fields) would be better than caching entire data objects. Enlarging such a cache 

beyond the capability of containing a small number of objects would yield only moderate 

improvements in both hit rate and perfonnance. These empirical results also indicate that LRU 

purging algorithms would be well-suited to the observed reference behavior. 

Headways were calculated to explore the amount of locality present in the data-only, code-only. and 

composite reference streams. Distributions for code, data, and composite headways are markedly 

similar. exhibiting great locality and indicating that simple techniques can greatly compress the 

reference stream. Similarities between code and data reference tendencies indicate that neither 

cache management schemes, virtual memory managers, nor compression algorithms ought to 

distinguish these two sets of objecl~. 

4.6 [nstanee to Class Compression 

Counting the classes of the objects touched during a given computation instead of the particular 

instances referenced yields an estimate of the portion of the system that. played a role in the 

execution sequence. Any static grouping algorithm that relies on infonnation garnered from such 

traces will be extremely limited when it deals with instances of classes for which it has no 

information. Since two of the grouping algorithms presented in Chapter 5 depend on dynamic 

information, knowledge of the fraction of the system utilized by the monitored computations is 

important when evaluating the perfonnance improvements realized by these two grouping schemes. 

Call the fields owned by every instance of a class the fixed fields of that class. For each class, we 

create a prototypical instance that contains an entry for each fixed field that maintains the number 

of references made to the corresponding fixed field in all instances of the class. Sorting the 

reference totals will produce an ordering of fields for each class that ranks the fields in terms of 

usage. identifies the high traffic fields. and provides data to drive static grouping algorithms. The 

only information input to the grouping schemes dependent upon dynamic data was the ordering of 

the fixed fields in each class. This information guided the traversal of the system by the grouping 

algorithms' by ordering the set of offspring referenced by the fixed fields of an object 
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Let the fixed fields extent of a computation be the percentage of fields in the prototypical objects 

that would contain nonzero values at the end of the computation. Only a small percentage of all 

fixed fields was actually touched during any of the monitored execution sequences. Of the roughly 

200 classes found in the Smalltalk-80 system. only a small subset had at least 90% of their fixed 

fields touched during a particular trace. Although there was some overlap between traces, these 

subsets were largely disjoint. Table 4.5 reports the number of such classes for each trace, as well as 

the accessed fraction of all fixed fields in all prototypical objects. 

Trace 

Number of Classes Above 90% 

Percent of All Fixed Fields Touched 

1 

11 
11 

2 

11 

11 

3 

13 
6 

Table 4.5 Trace Extent as rvleasured by All Fixed Fields 

4 

7 

8 

5 

9 

9 

The above infonnation is dynamic and highlights those fixed fields that were referenced most 

frequently. A similar but unused technique for obtaining data to drive static grouping algorithms is 

to record only quasi-static data by ordering the fields according to first-use statistics. For every 

object involved in a computation, consider only the first reference to any fixed field of that object. 

The prototypical object for each class could maintain the number of times that each fixed field was 

referenced first Identification of such "quick-use" fields will allow grouping strategies to place 

objects referenced by these fields extremely close to the object that references them. 

Static grouping algorithms may use infonnation regarding the stability of fields containing object 

references. A field is said to be clean at the end of a computation if its contenl<; were not written 

by the computation. Otherwise. the field is dirty. One possibility is to order clean fields by some 

rule and dirty fields by the same or some other rule. Because dirty fields were written at least once. 

they are potentially unstable. Therefore, the corresponding descendant need not be initially placed 

near the object in question, and the dirty fields can be placed after all the clean fields in the 

composite ordering. 

Since the monitored computations involved only a small number of classes. dynamic infonnation 

derived from the traces can have a limited impact only on the initial placement of objects by static 

grouping algorithms. [n most cases, the dynamic data supplies no infonnation for a class, so the 

grouping algorithm uses the default identity permutation. For short periods of time, much of the 

user's interaction with the programming environment is supported by a small number of classes. 

Perhaps monitoring a few key classes for a short duration will yield enough infonnation to allow a 

static grouping algorithm to enhance substantially virtual memory perfonnance. 

Only the fixed portion of classes widl variable-length instances were monitored, because reference 

statistics collected from relatively short computations would probably not be significant for the 

variable-length portions. [n the static grouping algorithms. the fixed portion of an object was 

considered before the variable part. The pennutation for the variable portion, which was always the 



44 A LARGE OBJECT-ORIENTED VIRTUAL M EMORY 

identity pennutation. matches best with a sequential traversaL On the other hand. this type of static 

grouping is not particularly suited to nonsequential reference tendencies. 

The success of fixed-field grouping schemes based upon dynamic information depends on the 

validity of two assumptions. In order for sllch a technique to improve performance, the usage of a 

field must be independent of the particular pointer present in the field as well as the particular 

instance of the class. If the reference patterns are predictablc, repeatable, and independent of a 

particular instance of the class, thcn such a static grouping scheme will perform well. However, if 

the reference pattern is dependent upon both the specific instance of the class as well as the current 

contents of the instance, then no static scheme will be highly successful. Completely random 

inspection of fields is neither aided nor hindered by a fixed-field grouping strategy nor by any other 

realizable scheme. 

The appropriate meaning of "usage" cannot be adequately expressed by a quasi-static or dynamic 

definition but instead depends on the virtual memory configuration. its policies, and the reference 

behavior of the computation. Let f be a field in object A capable of referencing any other object. 

Assume object A was fetched and purged s times and field f was touched at least once in t of these 

s times in core. Define the usage of f to be lOO*t/s. This value is the probability that the field was 

referenced at least once during one fetch-purge cycle for the object. Our original questions may 

now be reformulated. Is the usage of a field a function of the contents of that field? If not, is the 

usage of a field a function of the state of the object? 

Field usage is independent of field contents as long as the information contained in this field cannot 

be ascertained by inspecting other fields of the object. [f objects arc fetched on demand. an object 

is swapped into core only when it is faulted upon. A reasonable assumption is that little or no 

knowledge of the contents of the object exists in primary memory. [n order to determine the 

contents of any field. the computation must explicitly touch that field. Except for contrived cases. 

field usage is independent of the contents of the field. Dynamic usage, on the other hand. has the 

potential to be extremely sensitive to the contents of the field. 

The success of fixed-field grouping also depends on the independence of field usage with object 

state. Information is lost by the data compression technique that discards the particular instance 

referenced and records only its class. For many classes of objects, the state of the object is more 

important than its class in predicting the usage of its fields. Consider two possible implementations 

for a hash table. Instances of the first class are composed of an array of keys and a pointer to an 

array of values. The second implementation is just an array of pointers to key-value pairs. Usage 

of the fields in the key array in the first class and the only array in the second class is independent 

of the particular class (implementation) of the hash table object. It is highly dependent upon the 

nature of the add/delete/find requests and the current state of the hash table. The same 

dependency is even more obvious for the usage of the field containing a reference to the value array 

in the first implementation. Although the computation may not know the contents of the value 

array. the absence of the particular key in the key array implies that the desired value is also not 
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present. On the other hand. there are cases where the usage of a field is dependent only upon the 

class. Consider a hypothetical subclass of Array called SpecialArray. Instances of this class act as 

nannal arrays but may take special actions. For example. during a debugging session. a 

programmer may wish to monitor the values stored into a specific field of a collection of arrays. 

Each of these arrays could be instances of SpecialArray. [n addition to the usual fields of an array. 

there would also be a reference to an ordered sequence of values stored into the special location. 

Deciding whether to record a given store operation is independent of the state of the SpeciaiArray. 

In summary. the usage of a fixed field is essentially independent of the content" of that field. The 

same conclusion. however. does not apply to the other fields of the object. There are cases w'here 

the state of the object is the dominant factor. Other examples indicate that the usage of a field is 

more a function of the class of the object. Most classes span a portion of this spectrum. Where 

individual instances lie depends upon their state. the current state of their class. and global values 

and variables. as well as the particular virtual memory configuration. its policies. and the 

computation in progress. 

4.7 Access· Frequency 

Each reference trace was analyzed in order to determine the frequency of access. The access 

jreque!u}' function maps a number n into the fraction of objects that were referenced n times. This 

distribution generalizes the notion of the average number of times that an object was accessed and 

is important for the design and evaluation of data compression schemes. The following analysis 

indicates the existence of a small set of key objects that are heavily utilized. However. there seems 

to be no need to extend preferential treatment to members of this set. A naive. demand-driven 

cache management scheme would suffice. 

4.7.1 Discussion 

The access frequency functions for data objects were for the most part decreasing. while the code 

functions generally increased to a maximum and then fell with a similar slope (Figure 4-6). Code 

objects on the average were touched more frequently than data objects. Unlike code objects. most 

data objects were touched a small number of times in a computation. Except for quick methods 

and primitives handled by the microcode. if a code object were touched once. there was a high 

probability that it would be needed a large number of times. There is an inherent asymmetry 

between code and data contained in (but not peculiar to) the Smalltalk-80 virtual machine. Each 

bytccode executed requires at least one reference to the method. Extended bytecodes require two 

or three such accesses. However. many bytecodes and primitives do not touch object space at all. 

while a majority of the remaining operations touch one or two objects a small number of times. A 

comparison of the ranges defined by the means and the medians of the access frequency 

distribution highlights this difference between code and data. For code objects. the medians ranged 

from 24 to 94 while the means fell into the interval from 181 to 355. Corresponding extrema for 

data objects were 6 and 17 for the median and 61 to 183 for the mean. neglecting the 32K bitmap 

in the fifth trace. 
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Except for code objects in trace five, the average number of times an object was touched is far 

larger than the corresponding value at the third quartile. A small number of objects accounted for 

a large percentage of the accesses. This claim is supported by two other observations. In four of 

the five traces. 25% of the data objects were touched at most three times. Moreover, more than 

one-fourth of the data objects in the second trace were accessed at most once. 

4.7.2 Effecl of Object Size 

Consider a function that maps an object size into the average number of references made to objects 

of that particular size (Figure 4-7). Call this function the imporlance curve, since it exhibits the 

level of need for data in objects of a certain size. The component-wise multiplication of the 

importance curve with the quasi-static size function for the same trace yields the dynamic size 

distribution for that execution sequence. No new information' is being provided by the importance 

function. It is simply a different view of the same data. However. this alternate view proved to be 

beneficial by indicating the absence of-any consistent correlation between object size and access rate. 

A flat importance function implies that the probability of accessing an object from a given set of 

recently used objects does not depend on the size of the object If objects were not touched a 

great deal. then this shape of the importance curve is plausible. Small objects would have their 

fields touched many times .. Larger objectc; would have a number of accesses roughly equal to their 

size in fields. Very large objects would essentially be repositories for data: only a small fraction of 

their fields would be touched during a given computation. As the overall average number of 

accesses increases. however. such an importance curve becomes less likely. 

A decreasing importance function is counterintuitive and would result if the access frequency were 

inversely related to object size. Data in larger objects would not be needed as much as data in 

smaller objects. One explanation is that large objects are often used as data repositories. Although 

circumstances exist where the mode of processing is to iterate over all members of a set, in many 

cases only the knowledge concerning the membership or absence of a particular value is required. 

If the average number of accesses increases with size. then a rising importance function would 

appear. All data is equally important under .these conditions. regardless of where it is found. Since 

the amount of data an object contains is typically proportional to its size, one expects the 

.~ importance function to increase. The limiting case in which every field is equally likely to be 

accessed results in a linear importance function with a normalized slope of one. 

Analysis of the importance function for data objects yields some hypotheses. but more data points 

are needed before they may be termed conclusions. Except for two data points, the curves for the 

first and third traces linearly increase with object size with a nonnalized slope much less than unity. 

The remaining three traces have a two-tier function. There are two approximate values. say hi and 

10. that the importance curve attains. Define the 10 set to be the collection of points at which the 
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function takes on the 10 value. The hi set is defined similarly. Restriction of the importance 

function to either one of these sets results in a flat or slightly increasing linear fit. 

Code importance functions were also superpositions of 10 and hi functions. Rarely used message 

dictionaries. quick methods. and microcoded primitives are all accessed a small number of times and 

account for some of the 10 activity. Hi values only occurred for large objects with at least 60 fields. 

In addition to size. hi values were caused by the repeated execution of methods and the frequent 

evaluation of blocks of code that served as the body of loops. However. there are not enough data 

points to warrant any conclusions regarding the overall slope of the importance function for code 

objects. 

4.7.3 Implications for Caches 

The importance function effectively partitions objects into two sets. Objects in one set were. on the 

average. accessed repeatedly during the computation. while elements of the other group were not. 

Size is not a valuable predictor of membership in these sets. The 10 values may be clustered near 

small (trace 5. code objects) or large (trace 4. code objects) sizes. Within either set. the importance 

curve may be approximated by a linear function with a normalized slope varying between zero and 

a positive value less than one. Given that an object is used during a computation, its importance 

can not be predicted solely .from the knowledge of its size. However. size can be used to estimate 

the relative importance of the object within either set. 

The access frequency distributions and importance functions reveal that a small number of both 

code and data objects are heavily referenced by the Smalltalk virtual machine. These two sets are at 

times correlated in that the repeated evaluation of.a block context comprising a loop corresponds to 

the processing of elements of an array, entries in a hash table. or bit sequences in a bitmap. Other 

frequently used code objects correspond to class dictionaries and methods that are accessed to 

perform messages sent to a large number of distinct. short-lived receivers. 

Code-data distinctions and size observations cannot be profitably used to gauge the reference 

importance of a given object. Instance to class compression has indicated that while computations 

have some classes and objects in common, there will be little overlap on the size scale of small 

hardware caches. Even if frequently used objects andlor classes of objects can be identified and 

given preferential treatment. little gain would be realized beyond what may be achieved by a naive, 

demand-fetching. cache management scheme. 

4.8 Reference Counts 

One important consideration in any grouping scheme is the distribution of the reference counts of 

objects in the system. As long as a page is the physical unit of swapping from the disk to core. it is 

important to maximize the weighted sum of pointers that are within a page. 

Weighting factors may be gained from a static, quasi-static, or dynamic analysis. Section 4.6 

discussed a number of quasi-static and dynamic weights. A static analysis. however, is the simplest 
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to obtain. Without requiring any knowledge of the system beyond indistinguishable objects and 

pointers, static weighting schemes based only on reference counts can be employed. For example, 

all incoming pointers to an object could be considered equivalent. Then the weight of a pointer 

may be defined to be the multiplicative inverse of the tme reference count of the object to which it 

refers. All weights would therefore lie in the half-open interval (0, 1). These weights could then be 

input to a graph-theoretic algorithm that optimizes the intrapage pointers. Objects in interesting 

topological regions, such as cliques, cycles, or strongly connected regions. could also be identified 

and grouped together. 

Roughly 75% of all objects in the Smalltalk-80 system had a reference count of one. The 

distribution of reference counts then fell off rapidly, with a small number of objects having the 

overflow value of l27. Even in the presence of high overflow counts, the static mean was still only 

two. 

Two lengthy. execution sequences were monitored in order to secure dynamic and quasi-static 

reference count information. The reported values represent the reference counts of all touched 

objects at the conclusion of the computation. Permanent objects and dynamically created objects 

whose reference count dropped to zero during the computation were not included. Compared to 

the static case, there was a slight decline in the fraction of objects with a reference count of one in 

both computations. For reference counts larger than one, the dynamic and quasi-static curves were 

similar in shape to the static distribution. Quasi-static reference counts were only slightly larger 

than their static counterparts. Although the median was one in both cases, the third quartile had 

risen to 4 and 5 while the mean had climbed to 9. Dynamic reference counts were comparable to 

the quasi-static results. 

Reference counts alone yield limited infonnation when ordering the fields of an object according to 

the reference counts of the objects named in the fields. Three-fourths of all objects cannot be 

distinguished on the basis of their reference counts. Most grouping permutations for objects 

derived from reference counte; will default to the identity permutation. The initial placement for the 

reference count grouping algorithm will therefore be similar to the arrangement derived from the 

default grouping strategy. While reference counts do not provide enough information to distinguish 

most objects, the high fraction of objects with a reference count of one substantially reduces the 

number of decisions made by a grouping algorithm based on static connectivity. 

One disturbing result from the standpoint of static grouping was the moderate use of objects with 

reference counts substantially larger than one. The ability of any static grouping algorithm to 

handle such an object depends on the nature of the references to that object. [f a single object 

causes most of the dynamic accesses to this object, or if the set of objects that dynamically refer to 

this object may be easily grouped on a single page with~ut adverse performance implications, the 

presence of these types of objects does not pose serious problems. Oli. the other hand, if neither of 

these two conditions are met, then regardless of the initial placement, there is a high probability that 

a fault on this object will not be satisfied by the in-core buffer and hence will cause a page fault. [f 
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the static importance of a high reference COllnt has a counterpart in the dynamic domain. then after 

the first fault on this object, the object should tend to remain in corc. Subsequent references to this 

object will probably not cause an object fault. since the object should be accessed often enough to 

survive many purge attempts. I n this case. the initial placement of the object is not critical in an 

object-swapping scheme. [n a page-swapping environment in which objects are not dynamically 

moved, the location of such an object in the virtual memory can have a nontrivial impact upon 

paging performance because the use of that object requires that the entire page be kept in core. 

This example highlights one of the features expected to be present in an object-swapping system. 

Different initial placements will tend to have less of an effect on perfonnance in object-swapping 

systems than in paged virtual memories. 

4.9 Selectors as a Percentage of' Literals 

A literal is a compile-time, manifest constant. CompiledMethods may contain one or more of these 

constants in what is called a literal frame. Some literals, known as selectors, are used to designate 

the names ·of messages sent to objects and correspond to the names of procedures in conventional 

programming languages. While the message name is known at compile time. the binding of this 

name to the code that performs the appropriate actions is not accomplished until run time. This 

binding. delayed because the true context in which the selector name is resolved is not available at 

compile time, is dependent upon the class (and possibly the superclasses) of the receiver and the 

contents of the message dictionaries for these classes. 

This fonn of indirect linkage and delayed binding is not limited to selectors and CompiledMethods. 

One common example out~ide of Smalltalk-80 is the resolution of file names ina multiprogramming 

environment. A symbolic file name supplied by the user or a program is mapped into an actual file 

according to the user, the directory to which he is connected, the search rules. and the contents of 

the file directory. 

A single selector may have a static and dynamic correspondence with any number of 

CompiledMethods. The inability to easily map a selector into a unique CompiledMethod prevented 

any serious efforts at grouping methods. However. all methods occur in exactly one message 

dictionary. Methods within a particular dictionary belong to the same class and are certainly 

related. Hence the system automatically partitions' the methods into related subsets in a manner 

that may be utilized by grouping strategies. 

The chief goal of the this analysis was to detennine the relative importance of selectors compared to 

all literals. Static data was obtained by calculating the selector-literal ratio for all 

CompiledMethods. Quasi-static and dynamic results considered only the accessed fields in the 

literal frame of a method and neglected untouched literals. Each Compiled Method used during the 

computation gave rise to a quasi-static and a dynamic fraction. Quasi-static counts of selectors and 

literals distinguished between instances of the same literal appearing in distinct CompiledMcthods. 
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In any given method, the expected value for the selector-literal ratio was three-fourths. Given a 

literal from any method's literal frame, however, the probability that it was a selector was about 

two-thirds. This discrepancy arose because the fractions from all CompiledMethods were weighted 

equally and were not assigned a value proportional to the length of the literal frame. 

Most quasi-static and dynamic selector-literal figures slightly exceeded their static counterparts 

(Figure 4-8). One exception was the dynamic median for the first execution sequcnce, which was 

much larger than the static median. [f selectors and non-selectors wcre evenly distributed within a 

method, then the presence of conditional jumps, early returns, and iteration statements would not 

affect the selector-literal ratios. However, there was a pronounced tendency for this ratio to rise in 

the quasi-static case and especially in the dynamic case. 

Message selectors comprised the bulk of the literals in both the static and dynamic measurements. 

[f literals are to be considered, static grouping algorithms ought to concentrate on selectors. 

Although code relocation in conventional programming languages has proved to be an effective 

technique in improving virtual memory performance, no serious attempt was made to group 

CompiledMethods for the following reasons: 

[n the spirit of blurring the code-data distinction, CompiledMethods were 
considered to be ordinary objects and were treated as such, even· by static grouping 
algorithms. 

Motion of code segments had been previously researched and has shown its worth. 
A similar investigation into grouping of data objects needed to be done. 

Delayed binding of selectors to code and the lack of a type (-inference) mechanism 
would have unduly hindered efforts to determine the important intermethod links. 
Inferring the types of receivers of messages by monitoring lengthy computation 
sequences would have provided only a probabilistic mapping from an instance of a 
selector to a set of CompiledMethods and not a deterministic function. 

Research needs to be done in the area of code motion in object-oriented systems containing type 

inheritance. At the very least, its utility would derive from a simple comparison between the 

improvements in paging performance due to code relocation and the gains realized by grouping 

data. An investigation into the validity and ease of translating dynamic behavior into type 

information may remove a tremendous documentation burden from the programmer or a static 

type-inference mechanism. Such an effort could also determine the distribution for the number of 

classes in the hierarchy searched before finding the appropriate CompiledMethod. 

4.10 Summary and Conclusions 

A number of important points may be drawn from the preceding set of analyses. First and 

foremost is the high level of consistency between traces based upon radically different 

computational sequences. A random comparison between any statistic from one trace and the same 

statistic from another trace usually yields a close agreement. The measurements report inherent 

properties of the Smalltalk-80 programming environment rather than the characteristics of the 

monitored computations. Secondly, this close agreement lends support to the conclusion that the 

traces were long enough to filter most of the transient behavior. Incremental measurements of 
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fractional usage, the statistic most susceptible to this type of problem, support this claim. Finally, 

most of the abnormalities, unexpected data spikes, and overall trends in the distributions were easily 

explained by a quick analysis of the portions of the reference trace that gave rise to these findings. 

The importance of class objects (size ten) and message dictionaries (size roughly equal to a power of 

two) was highlighted by the appearance of relevant numbers in the statistics and spikes in the bar 

charts. 

While the preceding analysis presents an in-depth picture of the reference behavior of Smal1talk-80, 

the generality of the results must be questioned at this time. As was evident from the discussion in 

section 4.6, the entire system was not analyzed. Only those portions needed to support the five 

computations were thoroughly monitored and studied. The total number of objects touched in each 

reference trace was very small. Since the measured system was designed, written, and implemented 

by only a handful of researchers. the programming styles and techniques evident in Smalltalk 

represent at most a few points in a wide spectrum. Compounding this problem is the fact that a 

close collaboration between these individuals for extended periods has undoubtedly influenced and 

merged their respective styles. A second important limitation is the nature of Smalltalk itself. This 

programming environment was designed to be a system undergoing continous change, modification, 

and evolution. All measurements, however, were made with a single snapshot That is, all traces 

were taken from a single version that could be started from a particular state of the virtual machine 

any number of times. On the other hand, this instantaneous snapshot prevented any time

dependent tendencies from corrupting the data. Finally, it must also be noted that only one 

particular system was analyzed. Similar research needs to be undertaken on other object-oriented 

systems before the generality and relevance of these results may be ascertained. 
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5. Static Grouping Algorithms 

Application of a particular grouping scheme to a running Smalltalk system produces an initial 

placement that represents the position of all objects in the virtual memory. N inc different initial 

placements were used in performance studies for the two types of virtual memories. Before any 

dynamic tests were done. the initial placements were statically analyzed to determine their 

similarities and differences. As Chapter 4 predicted, information derived from actual reference 

traces or from static reference counts had only a limited impact on grouping schemes. Performance 

predictions for both LOOM and a paged virtual memory were made using this knowledge. These 

static measurements are evaluated in Chapters 7 and 8 as to their predictive or non-predictive 

capabilities. Information regarding initial placements was also available after the fact and was used 

to explain the behavior of the virtual memory simulators under various configurations and purging 

policies. Numerical results cited in this chapter are presented in Appendix B. 

5.1 Nine Algorithms 

Consider a total ordering on all objects in a given Smalltalk environment. This ordering, together 

with the disk size of the objects. yields a unique virtual memory position for each object. Define 

the mapping from the set of objects to their disk addresses resulting from some grouping scheme G 

as the initial placement generated by G. Hereafter, configuration. grouping, and arrangement will be 

used as synonyms for initial placement. 

Nine distinct grouping strategies were applied to the entire set of objects in the programming 

environment. These nine algorithms and initial placements fell into five categories. Groupings 

within a category produced similar measurements in both static and dynamic environments. [nitial 

placements in different categories were not alike in a static sense. Their dynamic behavior. 

however. was not consistently different. 

Two groups of three algorithms are graph-theoretic and use the directed graph where Smalltalk 

objects are represented by nodes and pointers are represented by directed arcs. One category of 

grouping schemes is based upon a depth-first traversal of this graph and attempts to put high

probability paths on the same page. The second collection uses a breadth-first approach and 

endeavors to locate all offspring of an object on a single page. When a new node is encountered in 

either type of traversal. a decision must be made as to the order in which the descendants of the 

node are to be investigated. This ordering may be succinctly described by a _ permutation. The 

default case is the identity permutation. which corresponds to an examination of an object's fields in 

the order assigned by the compiler when the class of that object was defined. Another permutation 

arose from reference counts. Pointers referring to objects with the lowest reference counts are 

followed first, while ties are resolved by defaulting to the ordering decreed by the identity 
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permutation. Finally, information garnered from traces of actual execution sequences similar to the 

ones analyzed in the preceding chapter provided the third permutation. Under this grouping 

strategy, fields accessed the most are investigated first. The identity permutation is again used when 

the dynamic information cannot distinguish between two fields. Because of the inherent inefficiency 

of the virtual machine emulator, only a limited amount of dynamic information could be obtained. 

Nevertheless, the dynamic permutation differed from the identity permutation 23% of the time. 

Each of the three permutations was llsed in hoth types of traversals. The foregoing discussion 

defines six of the nine initial placements. 

Since the Object-Oriented Zoned Environment (OOZE) virtual memory [KAEH8l] for Smalltalk-76 

grouped objects by class, the initial placement derived by packing together all instances of a class 

was called the OOZE configuration. A one-to-one hash function, which simply permutes the bits of 

the unique identifier (UlD) of objects, was used to scramble the OOZE ordering and derive the 

hash or random initial placement. This random arrangement was used to establish a benchmark 

against which improvements in paging performance could be classified as trivial or substantial. Of 

critical importance was the existence of an inverse of this hash function. This inverse function 

simply applies the inverse permutation to the bits of a number in order to compute the UID of an 

object. This inversion capability allowed the LOOM simulator to use a close approximation of the 

purging policy found in the original OOZE virtual memory implementation. 

The ordering of the objects in the ninth grouping was derived from the compressed traces that are 

discussed in Chapter 6. For any reference trace T, consider the ordering on objects defined by the 

first object reference to each object mentioned by T. Assume all objects not referenced by Tare 

ordered in some fashion such that all unneeded objects are ordered after all referenced objects. 

Call the initial placement defined by this ordering an oplimalgrouping with respect to T. For any 

page-swapping virtual memory that can process T without purging, this arrangement is optimal in 

the sense that the number of page faults is minimized. There may be many initial placements that 

cause this number of page faults while processing T. However, there is in general no initial 

placement for a given trace that is optimal across all types of virtual memory configurations, values 

of parameters, and kinds of policies. 

OPTl, OPT2, and OPT3 are the names of the groupings derived from the three compressed 

reference traces. To distinguish between the optimal and the other initial placements, call the 

strategies generating the remaining eight arrangements the realizable grouping algorithms. The 

optimal and random groupings bound the region of reasonable static arrangements and act as 

benchmarks from which the relative as well as the absolute improvements in paging performance 

for a given initial placement can be ascertained. 

Snyder [SNYDr] defines two levels of grouping, internal and external, and three techniques: a 

priori, a posleriori, and dynamic. lnternal restructuring relocates fields within an object while 

external restructuring rearranges atomic objects. All nine groupings are forms of external 

restructuring. No groupings are dynamic because the placement of objects is always fixed in 
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advance. The two initial placements derived from dynamic data, as well as the optimal groupings, 

are a posteriori arrangements in that they utilized information gained from performing computations 

in the programming environment. The six other initial placements were derived with a priori 

techniques because only statically available information was utilized. 

5.2 Static Pointer Distance 

Define a pointer to be immediate if the particular object referenced by this pointer may be 

identified from an examination of only the numeric value of the pointer. Nil, true, false, and 

Small Integers are examples of immediate pointers. All references not having this special property 

are defined to be non-immediate. Objects referenced by non-immediate pointers are true entities 

requiring space in core, a home on the disk. or perhaps both. Let p be a non-immediate pointer 

contained in object A that refers to object B. Assume dA (dB> is the disk address of the first word 

of A (8). Then the static distance associated with p is IdA -dBI. Notice that the distance of p is not 

a function of its relative position in A. 

Figure 5-1 indicates that surprisingly few pointers had a static distance less than one disk page (256 

16-bit words). Only 1 pointer in 7 for the depth-first initial placements satisfied this criterion. while 

the fraction of close pointers for the optimal grouping varied between 1I7th and 11 10th. 

Compounding this problem was the existence of page boundaries. Of all pointers with a distance of 

less than one page, one may expect only half to lie on a single page. This on-page pointer ratio 

dropped to 1 in 33 for the OOZE initial placement. 1 in 300 for the random initial placement. and 

only 1 in 500 for the breadth-first cases. 

On-page pointer ratios do not provide information upon which a valid judgment of a breadth-first 

restructuring can be made. These grouping strategies depend on the fact that a single page fault for 

anyone offspring of an object moves many of its siblings at least as far as the in-core disk buffer. 

Distributions of pointer distances partitioned the set of initial placements into five categories. The 

numbers for the three depth-first configurations were similar. So were the figures for the three 

breadth-first initial placements. The OOZE. random, and optimal groupings. on the other hand. 

were each markedly different from the others. Similarities within a category and striking differences 

between categories appeared not only in this and other static analyses but at times in the dynamic 

measurements reported in Chapters 7 and 8. 

Except for noise, the distance function for the random initial placement was monotonically 

decreasing and appeared to be a dying exponentiaL A truly "random" initial placement would have 

a linear, decreasing distribution. Since the median. the mean. and first quartile of the theoretical 

random configuration were larger than the measured values, the random initial placement was not 

truly random. Because it was drastically different from all other initial placements according to the 

neighbor relation (section 5.3.2). the random configuration was retained as a benchmark. 
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There are many reasons why only a small percentage of pointers had short distances. First, every 

object contains a reference to the class to which it belongs. While many classes had only a few 

instances, other classes contained well over a hundred instances. A second cause of tile low on-page 

pointer ratios is the size of objects. In LlSP systems, for example, list cells contain only two fields 

and the CAR of such an clement is typically immediate. Hence the CDR will normally fall on the 

same page, once a linearizing of the list structure has been accomplished. Clark [CLAR 76, 

CLAR 77. CLAR 781 has reported that approximately 85% of all list pointers do not cross a page 

boundary. After linearizing by a depth-first traversal in either the car or cdr direction, this 

percentage was increased to over 90%. Most Small talk objects have more than two fields. Since 

references may point to arbitrarily large structures, it is not possible to effect a similar linearizing of 

the stnlcture. The third problem is the relatively high percentage of objects that have a reference 

count of one. Placing such objects as' close as possible to their sale reference severely limited the 

number of possible initial placements. 

The selected static grouping strategies had their greatest impact on the fraction of short pointers: 

medians, means, and quartiles of the distance distributions are comparable. From the standpoint of 

paging performance in an object-swapping scheme, the fraction of intra-page pointers is of prime 

importance. Less critical is the distribution of lengthy pointers. A pointer distance of 2 disk pages is 

equivalent to a distance of. 2000 disk pages. unless secondary factors, such as disk arm movement, 

are under consideration. 

One shortcoming of this distance measure is its inability to capture the notion of a swapping set. [t 

is often the case that when an object is brought into core, there is a high probability that a small 

collection of other objects will subsequently be accessed. [f these objects arc not packed onto a 

single page, then the number of page faults required to transfer this swapping set into core will tend 

to decrease as the number of pages containing these objects is reduced. The distance of the inter

page pointers within a swapping set is inconsequential. Swapping set size in disk pages is what 

affects performance. 

In addition to the static notion of pointer distance, a dynamic, time-varying interpretation exists. A 

pointer is followed by gaining an in-core reference to the object (or its leaf) specified by the pointer. 

If the pointer is a lambda, then it must first be resolved. The dynamic distance of a pointer is 

defined to be zero if the pointer can be followed without causing any page faults. Otherwise, that 

pointer is said to have an infinite dynamic distance. 

If the current grouping of objects on the disk is not considered, then at any given moment in an 

object-oriented virtual memory, the only portion of the state of the environment due to the static 

grouping algorithm is the set of objects residing in the in-core disk buffer. A static grouping 

algorithm has only a limited effect on the dynamic distance, which is primarily a result of the 

purging policy as well as the dynamic grouping strategy used by the virtual memory. However, 

controlling this small portion of the state of the virtual memory can have a large cumulative effect 

on dynamic performance. 
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5.3 Neighbor Relation 

The following measure of the degree of similarity bctween two initial placements investigates local 

grouping arrangements by examining the collections of objects on a single page. For any initial 

placement [P, dcfine the neighbor relation for IP as the set of unordered pairs (A, B), such that 

A:;r: B and A and B arc both on the same page under IP. This relation is the same as the 

equivalence relation defined by the partitioning of the set of objects according to page boundaries 

except that the neighbor relation is not reflexive. Including the pair (A, A) for all objects A would 

significantly reduce the differences between distinct groupings. The neighbor relation is symmetric 

but not quite transitive. However, if R is the set of pairs corresponding to the neighbor relation, 

then 

(A, B) E R " (B, C) E R " A:;r:C => (t\, C) E R. 

Given two initial placements, IP land IP 2' and their corresponding neighbor relations, R land R2, 

one measure of their similarity is the proportion of elements in R 1 found in R2 (and vice versa). 
Define the size of a neighbor relation to be the number of unordered pairs in the relation and 

denote the size operator by two vertical bars: IRll. Let R be Rl n R2, which is the set of pairs of 

objects that are found together on the same page in both [PI and IP 2' The fraction of R1 retained 

by R2 is then defined to be: 

As an abbreviation, the value of the preceding formula will be referred to as the retained fraction or 

retained value. 

5.3.1 Effect of a Continuous Displacement 

The following example attempts to establish an intuitive correlation between retained fraction values 

and different initial placements. Consider any initial placement, IP l' and its corresponding neighbor 

relation, R l' Let A be an object not found in IP 1 that has a disk size of As' where As is at most the 

size of one disk page. If f is the fraction of a disk page occupied by A. then O(f( L Let IP 2 be the 

initial placement created by placing A at the beginning of IP l' Then all objects in IP 2 will be offset 

from their position in IPI by As' [f m is the expected number of objects on a page, the number of 

unordered pairs in the neighbor relation derived from a typical page will be 

= m*(m-l). 
2 

In [P2• the corresponding set of objects falls on two pages. The expected number of objects from 

this set on the first page will be (1-t)*m, while the remaining f*m objects will be found on the 

second page. The number of unordered pairs due to this set of objects that arc retained under IP2 
is 

p (fm)(fm - 1) + 
2 

«1 - Om)« 1 - Om - 1). 
2 
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Let r(m. f) be the ratio of preserved pairs to total pairs for this page, i.e. pit. After a few 

arithmetic simplifications, 

r(m, 0 1- 2f(1-0. 
1- 11m 

Assuming there are m objects on each page, the preceding analysis is valid for all pages in IP L' 

Hence r(m, f) is the retained fraction. Note that r is an increasing function of m. For a tixed t: as 

the average number of objects per page increases, the two initial placements become more similar. 

When m is fixed. r attains a maximum value of 1 if f=O or f= l. Because of the symmetric nature 

of this problem, r attains its minimum when f= 112. Since m=6 for a page size of 128 words, the 

calculated minimum is 40%. This value is a bit smaller than the observed values of 49.6% for the 

depth-first traversal with the identity permutation and 49.2% for the hash initial placement. 

One surprising outcome of this simple example is that two initial placements identical except for a 

half-page offset have a retained value of less than 50%. The maximum occurs only in the limit as 

m goes to infinity. This characteristic is due to the quadratic nature of the neighbor relation, since 

a page containing m objects contributes 0(m2) entries to the neighbor relation. An important 

weakness of the retained fraction measure exposed by the preceding example is its inability to 

effectively capture the intuitive notion of the degree of similarity between two initial placements. 

The retained fraction measure sharply distinguishes between intra-page pointers and inter-page 

pointers. Since the disk buffer is generally larger than a single page. it may be more appropriate to 

define the page size for this measure to be the number of words occupied by some fraction of the 

disk buffer. In this way, some pointers that are inter-page in the static sense are assumed to be 

intra-page (actually intra-buffer) in the dynamic sense. One problem with this definition is inability 

to statically predict the sequence of pages swapped between the disk and the disk buffer. 

5.3.2 Discussion 

The retained value of each initial placement with respect to all other initial placements was 

calculated for three different page sizes. For a given page size, the aforementioned partitioning of 

the initial placements was evident. When any two breadth-first arrangements were compared, the 

retained value varied between 45% and 81 %. For any two depth- first initial placements. the 

corresponding range was narrower, extending from 52% to 63%. On the other hand, when any 

breadth-first initial placement was compared with any depth-first grouping, the retained fraction 

ranged from only 17% to 24%. All retained values for the OOZE initial placement fell into the 

interval from 16% to 24%, while the corresponding numbers for the random configuration were 

between 0.2% and 3.3%. Retained fractions for the three optimal arrangements spanned a wide 

spectrum from 0.2% to 40.1%. Comparisons bctween optimal initial placcments were not 

meaningful because of the. limited overlap between any two. In light of the results of the preceding 

example, these figures indicate a strong similarity within each category and a great difference 

between categories. 
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5.3.3 Effect of Page Size 

Some interesting tendencies of the neighbor relation were noticed as the page size was varied from 

128 bytes to 256 bytes and finally to 512 bytes. The additional infonnation derived from the 

following analysis also partitioned the grouping strategies into (he same five categories. 

The linear dependence of the size of the neighbor relation on page size is easily explained. If there 

are m objects on a page and p pages in the initial placement, there will be approximately 

IRI = pm(m-l) 
2 

elements in the neighbor relation. Increasing the page size by a factor of s will mean there will be 

s*m objects on an average page but only pis pages. Then the size of the relation will be 

Hence, 

IR'I (p/s)(sm)(sm-l) pm(sm-l) IRI(l + m(s-I) }. 
2 2 m-l 

lB1 = 
IRI 

1 + m(s-I), 
m-1 

which is LIs - 0.1 for m= 11. This formula yields close agreement with the empirical results for 

s = 2 and s = 4. Actual values, however. were slightly smaller than the preceding analysis would 

predict. 

The retained fraction for the hash initial placement increased against all other configurations as the 

page size was increased. This may be explained by considering a truly random initial placement 

and a second, non-random inidal placement. Assume these initial placements each occupy p pages. 

Given any two objects, the probability that both lie on the same page is lip, neglecting the portions 

of the pages occupied by the objects. For a given page in the non-random configuration, the 

expected fraction retained by the random initial placement will be 

(1/p)(m(m-1)/2) 1. 

m(m-l)/2) p 

Assume the page size is increased by a factor of s. Then the expected fraction retained will be 

(s/p)(sm(sm-1)/2) s. 
sm(sm-l)/2) p 

Both of these retained fractions scale from a page to the entire initial placement. Therefore, the 

ratio of retained fractions for the random initial placement will roughly -be equal to the ratio of the 

page sizes. A doubling occurred in the retained value of the hash initial placement with respect to 

all three depth-first initial placements in the 128-to-256 case as well as in the 256-to-512 case. 

Although the retained values of the random initial placement with respect to the three breadth~first 

configurations approximately doubled when the page size was increased from 128 words to 256 

words, only a 30% increase occurred when the page size was increased from 256 to 512. While the 

OOZE-hash and optimal-hash retained fractions increased each time, the ratios were much less than 

two. Most of these discrepancies arose from the fact that the hash initial placement was not truly 
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random. A total of 1580 pages implies that the predicted retained value for the 256-word page size 

would be 0.06%. Empirical results. however, were in the 0.3% to 2.9% range. 

Except for the interactions with the hash configuration, the retained value of two initial placements 

derived from different types of grouping schemes typically fell for larger page sizes. For example. 

the retained fraction of the OOZE neighbor relation with respect to the other six realizable initial 

placements fell as the page size was increased. In 34 of the 36 retained fractions between a depth

first initial placement and a breadth-first initial placement. the value fell. Very small increases 

caused the two anomalies. An intuitive explanation for these observations is that as the page size 

increases, larger and larger segments of the two initial placements are being compared. Differences 

between the two configurations should become more evident as long as there are still a moderate 

number of pages. (Note that if the entire initial placement ~ts onto a single page, then all initial 

placements are equivalent under this measure.) A more formal explanation for this behavior is the 

linear dependency between the size of the neighbor relation and the size of a disk page that arose 

from the squared term in the number of pairs of objects per page. In effect, more and more 

comparisons are being made. If the number of successful comparisons does not grow at least 

linearly with the page size, then the retained fraction will fall. 

Conflicting changes were seen when retained fractions for two arrangements produced by similar 

grouping schemes were examined. For the three breadth-first arrangements, increasing the page size 

increased the retained value in 10 of 12 cases. The breadth-first initial placements became more 

alike as larger portions were compared. For the depth-first arrangements, only 5 of 12 retained 

fraction values increased. These results are explained by an inherent difference between a depth

first and a breadth-first traversal of a graph. In a breadth-first strategy, reordering the offspring has 

only a local effect as far as the offspring are concerned. These object') will be adjacent regardless of 

the particular permutation used. As the page size is increased, more and more siblings will be on 

the same page, differences in their order will become less significant, and the retained value will 

increase. In a depth-first traversal, however. reordering the offspring can have a more substantial 

impact on the resulting initial placement. Each offspring may be the root of an arbitrarily large 

subtree of the tree defined by the traversaL Siblings may be placed arbitrarily distant from each 

other and their common parent. The particular permutation employed can thus have a substantial 

effect on the final placement of the offspring. While increasing the page size potentially increases 

the number of siblings on the same page. the number of clements in the neighbor relation is also 

increased. Depending on the relative importance of these two conflicting tendencies, a larger page 

size may increase or decrease the retained fraction between any two. arrangements produced by 

depth-first grouping strategies. 

The value retained by [P1 with respect to IP2 is comparable with but usually not equal to the value 

retained by lP2 with respect to [PL' Different numbers of elements in the respective neighbor 

relations cause different neighbor relation sizes, prevent the retained fraction operator from being 

commutative, and thus mar th~ symmetry of the retained value tables. Neighbor relation size again 

differentiated between most initial placements but upheld the similarities within the breadth-first 
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and depth-first groupings. The OOZE configuration had by far the largest such relation. This may 

be attributed to the packing together of objects of similar size. Pages containing only small objects 

had a substantial impact on the size of the neighbor relation because of the quadratic effect The 

obvious simple example indicates that the influence of the small objects is enough to overcome the 

opposing tendency of the pages containing only large objects. 

5.4 Conclusions and Predictions 

The retained fraction measure, which only considers the intra-page adjacency of objects, was used to 

compare and contrast the initial placements. One deficiency is the naivete of this measure. All 

neighboring objects were assumed to be equally important. But this is simply not the case. Many 

of the objects on a page were related: others were placed on the page only because the attention of 

the grouping algorithm had turned to a new yet unrelated portion of the graph. A more 

sophisticated measure might take these differences into account. For example, one could rank the 

importance of the elements of the neighbor relation by assigning weights to each such element. 

Such a weighting scheme may be based upon the number of direct pointers between the objects, the 

presence or absence of a cycle involving the two objects. or a more complicated function that 

depended on the number and nature of all "short" paths between the two objects. However, while 

this type of measure may potentially be more useful in predicting the relative paging performance 

of two groupings, it would not be as useful nor as quick as the neighbor relation for purposes of 

comparing initial placements. 

A static analysis of the nine initial placements has highlighted the differences and similarities of the 

groupings. [nitial placements .derived from nearly similar grouping strategies were roughly the 

same: great differences existed between those generated from distinct grouping algorithms. One 

untested hypothesis suggested by the measurements is that all possible arrangements derived from 

one kind of search strategy are very similar. Low static connectivity meant that minor modifications 

to any grouping algorithm based primarily on connectivity would have only a limited effect on the 

final placement of objects. The particular set of permutations used during the traversal would not 

have a substantial impact on the final grouping as defined by the retained-fraction measure. 

Traversal type, on the other hand. would be the dominant factor. This theory holds for the 

breadth-first traversal of the Smalltalk environment, where in many cases all offspring may be 

packed onto a small number of pages. Although the three depth-first arrangements were very 

similar. this information does not constitute a proof that all possible depth-first traversals will yield 

similar groupings. The permutations used in the three depth-first traversals were not appreciably 

different in a sizable fraction of the cases. Other unexplored permutation sets may exist that yield 

vastly different depth-first initial placements. 

Information gained from monitored execution sequences and static reference counts had only a 

slight effect on the groupings generated by a particular traversal strategy. For both the depth-first 

and breadth-first schemes, the initial placement derived from the dynamic data surprisingly had a 

higher on-page pointer ratio than did the other two arrangements. The difference between the 
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ratios for all elements within each category was small enough to render this distinction of dubious 

value. Since the dynamic information dealt with only a small number of classes and the reference 

count data could not distinguish between three-fourths of the objects, it was only natural for the 

initial placements generated by the same traversal type to be very similar. 

Another hypothesis suggested by the data is that the static similarities would carryover into the 

dynamic domain. Paging performance and other monitored statistics should be very similar for the 

breadth-tirst as well as the depth-first arrangemenl~. No solid conclusions were made regarding 

comparisons of ditferent categories. Common sense indicates that the random and optimal 

arrangements should have the poorest and best performance, respectively. On-page pointer ratios 

would rank the depth-first groupings as the best, followed by the OOZE initial placement. the 

random configuration, and finally the breadth-first arrangemen~s. The sibling-packing tendencies of 

(he breadth-first strategies would undoubtedly improve their performance. Low fractional utilization 

values for data objects have indicated that many fields of an object are not touched during a 

computation. Since three fourths of all objects have a reference count of one. all siblings are not 

always needed. This information limits the performance improvement provided by sibling packing. 

There was no firm evidence to support a general consensus as to the "best" static grouping 

algorithm or even if there would be one. Rankings may depend upon the utility function used to 

evaluate their performance7 Furthermore. this ranking m;.iy change when factors such as memory 

size, buffer size. fetching policies. and purging techniques arc varied. 
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6. Reference String Compression 

Actual reference traces provided the input data for the virtual memory simulators. Obtaining traces 

lengthy enough to cause moderate virtual memory interaction from the Smalltalk emulator required 

substantial computational power. lnvesting time and energy into data compression realized 

substantial benefits in the form of relatively efficient simulations as well as compact data files. 

Readers uninterested in the nature of the compression algorithm may skip immediately to section 

6.2 without a loss of continuity. The only other portions of the thesis that require an understanding 

of the compression scheme are sections 8.3.7 and 9.1. 

6.1 Developing the Algorithm 

Much of the difficulty in presenting the compression algorithm will be avoided by applying a 

stepwise refinement approach to the main objective. The chief goal of the algorithm was to 

transform a complete reference trace derived from an emulation of the Smalltalk virtual machine 

into an equivalent, compact representation. Two reference traces are defined to be equivalent with 

respect to a virtual memory if, and only if, they cause the same sequence of page and/or object 

faults and the same sequence of page and/or object swaps. 

Achieving this equivalence conflicted with an efficiency constraint. On the average, only a small 

, amount of computation could be done for each reference generated by the emulator. Because of 

this restriction, the compression algorithm endeavored to preserve a weaker fonn of equivalence. 

lnstead of guaranteeing the same sequence of object swaps both to and from primary memory, the 

compression algorithm concentrated on faulting at the expense of purging. Enough infonnation was 

preserved to guarantee that the insertion of any reference deleted by the compression routine would 

not cause an object fault. However, information regarding the last use of an object was not 

explicitly included in the output of this algorithm. This lack of knowledge prevented an accurate 

recreation of the in-usc bits on both pages and objects. Other minor difficulties arose from the fact 

that the compression scheme is object-oriented while the virtual memory simulation described in 

Chapter 7 is page-oriented. 

6.1.1 A Simple Compression Scheme 

In order to increase the efficiency of the virtual machine emulation without requiring huge amounts 

of secondary storage, the compression scheme was designed to operate as a one-pass algorithm. 

Generation of the complete reference stream by the emulator, manipulation of this stream by the 

compression algorithm. and production of the final. compressed trace were done simultaneously. 

The algorithm may be viewed as a FIFO compression scheme that cached the set of most recently 

used objects filling a fixed size of primary memory. Define the size of such a cache to be the sum 

of the sizes of the objects contained in the cache. 
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References to any objects contained in this cache were simply discarded. A reference to an object 

not in the cache was appended to the output trace. This new object was then inserted in the cache. 

If the new size of the cache exceeded its limit, then some objects were purged using a FIFO object 

replacement policy. Since the cache was a window on the final segment of the output trace, the 

output trace defined the FIFO ordering on cache clements. An index into the output file called the 

purge index provided the infonnation necessary for purging. 

Cache size is the key to equivalence. Clearly, the size of the cache must be less than the smallest 

anticipated core size of any virtual memory simulation. Let this smallest memory size be M. Then 

the maximum cache size may be expressed as f*M, where O(f(1. 

Consider a clock associated with a virtual memory that advances whenever an object is swapped 

into core or a new object is created. This clock advances one tick for each field in either type of 

object. Assume a virtual memory configuration with a core of size M and a particular purging 

policy can guarantee that an object will not be purged until at least f*M ticks have passed since it 

had been accessed. Then the original and compressed traces are equivalent (in the weak sense) with 

respect to this virtual memory. 

This constraint guarantees that an object will remain in core for at least f*M ticks after the virtual 

memory processes a refere~ce to it. All references deleted from the full trace by the compression 

algorithm are automatically satisfied, since any object specified by a deleted reference is guaranteed 

to have remained in core in the virtual memory simulation for at least f*M ticks. 

Cache size. and therefore the efficiency of the compression algorithm, may be traded off against 

either the minimum anticipated core size or the co.mplexity of the purging policies. Increasing f*M 

will lead to shorter compressed traces. At the same time, however, either the smallest possible core 

size will be increased or more constraints will be placed upon the purging schemes. 

Unfortunately, there is no such f for some purging policies. Optimal. FIFO, random, and simple 

clock-based purging schemes may purge an object/page on the first reference after its last access. 

Although such occurrences are unlikely, since the guaranteed time before purging is zero. f must be 

zero. However, this concept is not applicable to optimal purging schemes. [f an optimal scheme 

purges an object/page. then it will not appear in the reference trace for at least M ticks. Although 

no time guarantee exists for optimal replacement algorithms, the above compression scheme will 

preserve equivalence for these unrealizable algorithms for all f less than or equal to one. 

Any purging policy that maintains a total ordering on objects/pages according to last access, such as 

LRU, can guarantee 'an f arbitrarily close to unity.. More complicated clock algorithms, which 

monitor the ratio of the total size of all recently-touched objects to the total size of all untouched 

objects, can also guarantee any f. Demand paging with an LRU replacement algorithm was used in 

the simulation of the paged virtual memory. This simulation did not constrain the choice of f. 

Since an unsophisticated clock algorithm was used in the LOOM simulation, a conservative value 
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for f was used. M was 20K and f was one-half. which meant that the maximum cache size was 10K 

words. Section 9.1 will argue that this choice of f was valid. 

6.1.2 A More Detailed Algorithm 

Distinguishing between read and write operations allowed the cleanliness of pages flushed from the 

LOOM disk buffer to be recorded and analyzed. A dirty bit in the cache entry for an object 

recorded the type of reference to that object in the portion of the output trace windowed by the 

cache. Read and write operations were distinguished in the compressed trace. A read reference was 

added to the output trace when the virtual machine emulator read a field from an object not 

contained in the cache. Whenever the emulator wrote on a clean object. a write reference was 

appended to the compressed trace. This action was taken regardless of the contents of the cache. 

All other references generated by the emulator were treated as before. An object may have 

appeared twice in some portion of the compressed trace delineated by the cache. If this event 

occurred, the first reference would necessarily be a read and the last reference would always be a 

write. Writing onto a clean object moved that object to the top of the ordering defined for the 

cache. Unless any other clean object in the cache was subsequently dirtied, this object would be 

purged after all the other objects currently in the cache. This promotion of the object in the cache 

ordering was effected by simply ignoring the read reference to the object in the compressed trace. 

When the purge index passed the read reference. the object would not be purged from the cache. 

The set dirty bit associated with the object's entry in the cache indicated that there would be an 

upcoming write reference to that object. This write reference would cause the object to be removed 

from the cache. In summary, dirty objects were purged only when the purge index swept across 

their unique write reference in 'the output trace. Clean objects were purged when the purge index 

swept cross their unique read reference. Because objects could appear more than once in f*M ticks 

of the compressed trace, the effective value of M was actually less than the chosen value. 

Dynamically created objects could trivialize the importance of the initial placements. Computations 

that did not require many new objects could have been chosen. This approach was not taken 

because it would have seriously constrained the set of possible execution sequences. Completely 

neglecting new objects was another alternative. However. under that scenario, the LOOM 

simulation would not benefit from its late binding of objects to disk addresses. An acceptable 

compromise was the assumption that unique identifiers would not be reused. All objects with the 

same UIn were assumed to have the same size. Therefore. at most one disk location was ever 

assigned to any UfO. Garbage collection. reference counting, and/or compaction of secondary 

memory were not considered. Because the simulations did not implement a changing mapping from 

U [Ds to object size, references to nonexistent fields were assumed to be references to the last field 

of the object. 

The assumption concerning the invariance of the U ID-size mapping was confirmed. Between 94% 

and 97% of all references agreed on the mapping from UlDs to in-core sizes. Much of the 

discrepancy arose from the 'become:' operator and could not be easily accommodated by the 
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simulations. All in-core objects in Smalltalk are referenced indirectly through the object table (OT). 

'Become:' simply modifies the starting address of an object by changing its entry in the OT. This 

capability is important for variable-length objects that provide the illusion of an infinite capacity. 

Two changes to the emulator reduced the amount of processing the compression algorithm was 

forced to perform. All references to the 32K display bitmap were ignored. By definition, this 

object would remain in core at all times in every simulation. The size of the display bitmap was 

not included in the amount of core used in a virtual memory simulation. since core memory was 

reserved for other objects. To translate the core size associated with a specific simulation to the 

actual size of core simulated. 32K sixteen-bit words must be added. 

A substantial fraction of the references to Compiled Methods was not passed along to the 

compression routine. Code references were almost always consecutive, as section 4.5 has indicated. 

To preserve weak equivalence, the virtual machine emulator explicitly generated the first and last 

references to a Compiled Method. An additional reference to the CompiledMethod was generated 

whenever a subcomputation terminated and control returned to the associated stack frame. 

6.1.3 LOOA! Requirements 

The preceding compression scheme is adequate for a paged virtual memory. However. the LOOM 

simulation requires additional run-time information, because of the use of compressed pointers, 

lambdas. and reference counts. 

Let V be the contents of the field of an object. Define a value V to be short if, and only if, it is a 

sequence of bits, an immediate pointer, or a non-immediate pointer that refers to an in-core object. 

Whenever a field in an object is read in a LOOM -like system, its contents must be short in order 

for the computation to proceed. Whenever a field in an object is updated, both the new and the 

former values must be short. Since the new value was certainly used in the preceding. computation 

and placed on the stack, it must be short In either case, the compressor must provide the LOOM 

simulation with enough information to guarantee that the former contents of the field represent a 

short value. Instead of a simple sequence of accessed objects. the reference stream was 

implemented as a stream of ordered pairs of the form (A, B). The first element of the pair. referred 

to as a left or object reference. represents the· accessed object, while the second clement. referred to 

as a right or leaf reference, corresponds to the former value of the field. [n LOOM. the ordered 

pair above would ensure that A was in core in itl) entirety: a leaf for B would be created only if the 

second pointer were not short. 

The compression algorithm maintained additional· information for each of its cached objects. 

Specifically. for each object in the cache. there was a single bit that told whether the object had 

appeared only on the right (as a leaO or at least once on the left (as an object) in the recent past. 

For simplicity, the ordering of the leaves in the cache was defined to be the ranking of the set of 

objects with which they first entered the cache. Object references were treated as before. except 

that appearing as a leaf was equivalent to not appearing in the cache. If a leaf reference already 
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appeared in the cache as an object or as a leaf, then its status did not change when the ordered pair 

was appended to the output stream. Remaining details of the compression algorithm and the exact 

technique used to purge the cache are straightforward. 

6.1.4 Equivalence 

There are a number of minor problems with this compression algorithm. Equivalence may be lost 

for a paged virtual memory because of two reasons. First. unless the static groupings arc extremely 

successful and a large percentage of core is utilized. useful objects will not be tightly packed. The 

cache measured the sum of the in-core sizes of the objects. This number will differ from the total 

number of pages actually containing the objects because not all objects on these pages appeared in 

the cache simultaneollsly. Compounding this problem is the fact that all pointers in the paged 

virtual memory simulation occupied two words. Many objects required twice as much disk space as 

core space. However. the cache size in the compression algorithm was computed assuming all 

objects were in core. 

Another drawback of the compression scheme is the fact that it was object-oriented instead of page

oriented. While this choice allowed the compressor to operate independently of any initial 

placement, it may have provided a slight benefit to the paged virtual memory .. Consider an object 

straddling a page boundary. Although the emulator may have accessed portions of the object lying 

on different pages, the compressor would have discarded all but a couple of references to the object. 

[n most cases, only one page would be required during a simulation of the paged virtual memory. 

The LOOM simulator, however, would be forced to swap in both pages in order to transfer the 

object into core. Two factors limited this advantage. First. there were cleven objects on an average 

page and only one of these could straddle a page boundary. Secondly, grouping was done in an 

attempt to concentrate references to a small set of pages. It may have been the case that the 

required but unfetched page contained objects referenced at about the same time the straddling 

object was accessed. 

6.2 Three Execution Sequences 

Three lengthy execution sequences were monitored to produce reference streams that were 

compressed by the algorithm described in the preceding section. Between 960K and 2280K, 

bytecodes were executed in each trace, causing the emulator ~o generate three to eight million 

references. These traces were reduced to lengths between 40K and 80K reference pairs. The 

compression ratio was roughly 100: 1. 

Execution sequences were chosen by selecting actions the user or system would typically invoke~. 

Many distinct types of computations were performed in a very short time span in order to produce~ 

a reference trace suitable for exercising a virtual memory. 

The first trace involved the creation, initialization, and scheduling of a five-paned window called' a 

Browser that was subsequently used to display the source code for a CompiledMethod. Messag~ 
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dictionaries in various classes were queried in order to determine the presence or absence of a 

particular Compiled Method. The entire display was cleared and all windows were cleared, framed, 

and titled. Finally, the decompiler was run on a CompiledMethod in order to produce source code. 

In the second execution trace, source code from a particular protocol within a class was "filed out." 

This process entailed creating a new disk file, finding the source code for each CompiledMethod 

defined by this class-protocol pair, and writing the resulting text stream into the new file. A unique 

string was created and authenticated, the instance count of a class was calculated, and both the 

compiler and decompiler were invoked. For one class, the set of CompUedMethods that sent a 

particular selector was determined. Finally, an error message was sent to an object. The debugger 

was then entered by expanding the window created by the preceding error message. 

The third compressed trace was twice as long as the other two and involved heavy user interaction. 

Operations for inserting, cutting, and pasting text were performed. Commands for undoing the last 

operation, canceling all operations, evaluating an expression, and invoking the compiler were input 

by selecting the appropriate sections of a pop-up menu. Scrolling and thumbing operations, which 

modified the portion of the text visible in a window, were also accomplished. [n addition, a new 

class was defined and installed, a global variable was declared, and an existing disk file was opened. 

The contents of this file were read and compiled in an operation known as "filing in." Finally, the 

set of classes that responded to a particular message selector was determined. 

6.3 Reference Spread 

Two measures of the spread of the references to each object were obtained in order to analyze the 

compressed traces as well as to evaluate the compression algorithm. This algorithm successfully 

removed unneeded references and yielded compressed reference traces suitable for driving virtual 

memory simulations. 

[n these measurements, only object references were examined; leaf references were neglected. 

Consider an object A. Assume A was first referenced as an object on the ith reference pair and last 

referenced as an object on the jth reference pair. Define the thin spread of A to be j-i. Notice that 

if A were only referenced once, it would have a thin spread of zero. If A were referenced twice 

and the two pairs were consecutive, then A would have a thin spread of one. [n the first two traces, 

at least one-fourth of all objects appeared only once. The median thin spread for all three traces 

was one. Leaf references caused many duplicate object references, which in turn gave rise to 

nonzero medians. Mean thin spreads were at least three orders of magnitude larger than the 

medians (Figure 6-1). 

These facts indicate the size of the 10K cache for the compression scheme was adequate. The ratio 

of cache size to mean object size was 539. [f the 10K cache size were too small, most objects would 

appear quite often and most thin spreads would be approximately some mUltiple of 539. This did 

not occur. Many objects were involved in only a particular portion of the entire computation and 

~appearcd in the compressed trace a small number of times. Each reference pair in the compressed 
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traces would therefore be likely to cause faulting and possibly purging in a later virtual memory 

simulation. The compression algorithm was effective at eliminating redundant references and on 

,this level was a clear success. 

Large thin spreads, which raised the mean well above the median in all three traces, were caused by 

objects that spanned major portions of the execution sequence. Not all subcomputations were 

disjoint. Therefore. in addition to performing major context shifts, the virtual memory simulators 

were also compared as to their ability to predict and retain collections of objects used intermittently 

during the computation. 

A second measure, fat spread, was also obtained. Let sk be the disk size of the object portion of the 

kth reference pair in the reference stream. Then the fat spread of the above object A would be 

5i + 1 + si + 2 + ... 5j-l + sj-

Distances were rounded up to the nearest 256-word page. [n all three reference traces, the median 

fat spread was one page. Average fat spreads were two to three orders of magnitude larger than the 

medians. falling into the 350 to l400 page range. For the same reasons as above, low medians and 

much larger means are again indicative of a successful compression technique. 
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7. Grouping and a Paged Virtual Memory 

This chapter begins with a concise description of the simulation of a paged virtual memory. The 

effects of static grouping on the dynamic perfonnance of such a configuration are then presented 

and discussed. Finally, the predictions of paging behavior hased upon the static analysis of the 

initial placements are evaluated. Appendix C presents a subset of the numerical information used 

in the following discussion. 

7.1 Simulating a Paged Virtual Memory 

In the simulation of a paged virtual memory, core was completely devoted to object space. No 

,space was reserved for the table of in-core pages. purging information. or other memory 

management data. This was done so as not to constrain the comparison of actual paged virtual 

memories with LOOM. In Chapter 9, the requisite overhead as a function of core size is 

determined. The mapping between equivalent amounts of object space for the paged virtual 

memory and the object space for [,OOM is then established. 

The paged virtual memory simulator was a two-leveL demand-paged hierarchy with no restrictions 

on the placement of disk pages in core. Core was assumed to be empty initially. Given a reference 

pair. the leaf reference was neglected while the object reference and a field offset were used to 

calculate the accessed page. Space for dynamically created objects with new U IDs was carved from 

the bottom of the free block at the high end of secondary memory. New objects with previously 

used UIDs were assigned to the location previously granted to that UID. Contents of the fields of 

objects were not maintained by the simulator. All that was necessary was a mapping from the set of 

UIDs to starting disk addresses. A strict LRU purging policy was employed because of its multiple 

simulation implications. Since LR U obeys the subset property [MA 1T], all core sizes could be 

simultaneously simulated in a one-pass sweep of the compressed trace. The one statistic obtained 

for this virtual memory was the mapping from core size to the number of page faults. 

7.2 Results 

The realizable grouping algorithms caused similar improvements in the performance of the paged 

virtual memory. Each of these strategies substantially reduced the number of page faults that 

occurred under the lI~grouped. random arrangement. The particular grouping scheme was not 

critical; the fact that objects were grouped was the key factor in determining performance. 

As previously noted in the static analysis of the groupings. initial placements generated from similar 

grouping strategies were similar. Initial placements in distinct categories were substantially different. 

A slight modification of this claim is applicable to their dynamic faulting behavior. Groupings 

generated by similar schemes were indistinguishable with respect to faulting rates. While categories 
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had distinct perfonnance characteristics. their relative ordering and the degree to which they 

differed depended on core size. 

Optimal groupings consistently outperfonned all other initial placements (Figure 7-1). In all three 

traces. the best-to-worst ordering for small core sizes (20K) was optimal. depth-first. OOZE. 

breadth-first, and finally random. The seven middle groupings fonned a narrow band in a much 

wider region bounded by the optimal and random initial placements. These groupings will 

hereafter be referred to as the band groupings. 

Grouping algorithms may be evaluated by how closely their arrangement approximates the optimal 

initial placement. For a given core size. assume the optimal grouping causes fo fewer page faults 

than a random grouping. Assume another grouping causes fa fewer page faults than the same 

random initial placement. Define the page fault reduclioll ratio to be fa/fo. This number measures 

the degree to which a grouping algorithm has succeeded. assuming the optimal and random 

groupings are the best and worst possible arrangements. respectively. The page fault reduction ratio 

is essentially independent of the number and nature of the dynamically created objects. An 

unqualified version of this claim holds for tasks that do not cause the virtual memory to purge any 

information: the qualification must be added to cover smaller core sizes that force purging to occur. 

Minimum and maximum page fault reduction ratios for the band groupings are presented in Table 

7.1. The success of the grouping schemes varied from moderate to good. Consistently coming 

closer than 75% of the optimal, however. will probably be extremely difficult to achieve. 

Core Size 20K 60K lOOK l40K 

Trace # 1 -- Low 35.0% 65.9% 67.0% 56.0% 
Trace # 2 -- Low 39.1% 63.5% 50.5% 45.6% 
Trace # 3 -- Low 37.7% 61.9% 70.5% 61.4% 

Trace # 1 -- High 54.6% 80.0% 79.3% 69.7% 
Trace #2 -- High 57.7% 78.2% 77.8% 79.1% 
Trace # 3 -- High 58.7% 75.8% 81.8% 74.4% 

Table 7.1 Extrema for the Page Fault Reduction Ratios 

Within the narrow paging perfonnance band. the ranking ()f the categories of grouping algorithms 

depended on the particular trace as well as the size of core. For small core sizes. the best-to-worst 

ordering was depth-first. OOZE. and then breadth-first. This advantage of the depth-first schemes 

declined for larger core memory sizes. In the first trace. the depth-first and OOZE groupings had 

similar faulting rates for core sizes above 90K. OOZE was actually better than any depth-first 

grouping in the second and third traces for all core sizes above 60K. Even though the depth-first 

arrangements outperfonned the breadth-first groupings in the first trace .. for large core sizes in the 

second and third traces. their perfonnance was strikingly similar. These reversals precluded a 

definitive evaluation of the grouping techniques that was independent of core size. 

Let core utilization be the percent of core containing objects that were touched. An underlying 
:t.{ 

assumption is that if an object were touched. than all its fields were touched. While this hypothesi~, 
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is not true, the actual core utilization may be estimated by multiplying the core utilization by the 

mean fractional utilization of objects. 

For large core sizes, core utilizJtion and not purging policy was the important factor in detennining 

the number of page faults. Dynamically created objects, which utilize 100% of the disk pages they 

occupy, can blur the utilization differences between initial placements. Since the total size of all 

new objects is known, their effect could be removed from the average utilization. Table 7.2 

presents core utilization ratios for very large core sizes. 

BFS DFS OOZE Random BFS DFS OOZE Random 

Trace 1 48.9% 55.6% 53.8% 37.7% 33.8% 40.0% 38.3% 24.4% 
Trace 2 53.8% 53.2% 65.3% 47.0% 44.4% 43.8% 56.3% 37.8% 
Trace 3 58.3% 53.2% 61.8% 46.8% 40.7% 35.8% 44.3% 30.2% 

Table 7.2 Core Utilization [ncluding (left) and Discounting (right) New Objects 

Assuming eleven objects per page and a trace that referenced only a small fraction of all old objects. 

a tnlly random initial placement would utilize roughly one-eleventh (9.1%) of core. Observ'ed 

values for the random grouping were higher because the grouping was not completely random and 

the trace referenced a sizable fraction of the objects. A number of pages contained more than one 

accessed object. Core utilization for the optimal initial placement~ was by definition 100%. 

\Vhile a 100% utilization of core is theoretically possible, the maximum attainable value is probably 

much less. Empirical measurements of the fractional utilization of all objects indicate that between 

39% and 51% of the fields of objects are touched during a computation 144K references in length. 

Since roughly three-fourths of all objects had a static reference count of one, any strategy that 

groups objects solely on the basis of connectivity and does not distinguish between heavily used and 

rarely used fields will have a utilization of core by old objects approximately equal to the fractional 

utilization of objects. This limit has been approached by the nonrandom groupings. Although 

these grouping schemes have had some effect, there may be room for improvement. Surpassing this 

bound requires the a priori knowledge of heavily accessed fields and the invariance of high-access 

tendencies. Even though utilization can be increased if this set of fields is on a per object basis, the 

grouping algorithm is much simpler if the high-access fields depend primarily upon the class and 

not the specific instance of the class. The dynamic statistics lIsed to influence one depth-first and 

one breadth-first grouping were a first attempt in this direction. Further investigations into-this 

area, however, are beyond the scope of this thesis. 

7.3 Analysis of Predictions 

The predictive capabilities of the static analysis of the initial placements may be evaluated in light 

of the performance of a paged virtual memory. Certainly the similarity of the paging rates for 

similar initial placements was upheld. However, except for the dismal performance of the random 

initial placement. the distinctiveness of the band initial placements was not strongly evident. 

Breadth-first groupings clearly outperformed the random initial placement and predictions limiting 

thc;r degree of improvement were upheld. Low fractional utilization of object'i prevented the 
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breadth-first initial placements from becoming the best arrangements. The static analysis did not 

predict reversals in the ordering of grouping schemes. These reversals were due to a perfonnance 

degradation intrinsic to the depth-first groupings. Since the relative loss of performance of the' 

depth-first algorithms for larger core sizes was evident in all three reference traces, this decline 

seems to be related to the traversal type (depth-first) and the amount of purging but not to the 

particular traces. However. the exact nature of this degradation was not investigated. 

The retained fraction measure for the optimal groupings was able to accurately predict the paging 

performance for the paged virtual memory simulations. OPT1 predicted a best-to-worst ordering of 

depth-first, OOZE, breadth-first, and random, which in fact was the ordering for small core sizes in 

the first reference trace. As the page size was increased to 256 and 512 words, the depth-first and, 

OOZE initial placements swapped positions. For simulations of the first trace with large core sizes~' 

this reversal in performance actually occurred. Retained fractions with respect to OPT2 and OPT3' 

ordered the groupings as follows: OOZE, depth-first, breadth-first, and finally random. While the 

first two grouping categories were swapped in the ordering defined by paging performance witli 

small core sizes, this ranking was confinned for moderate and large core sizes for the second and 

third reference traces. As the page size was increased to 256 and 512 words, the retained fractions 

for the depth-first and breadth-tirst groupings became similar. This similarity caused the breadth

first groupings to catch and at times to outperform the depth-first initial placements with regard to 

paging rates for moderate and large memory sizes. 

One explanation for the correlation between retained fraction values for larger page sizes and paging 

performance for larger primary memory sizes is the reduction in purging. When the size of core is 

increased, fewer pages arc discarded. Individual pages and groups of pages tend to remain in core 

longer. Inter-page pointers become as important as intra-page pointers because their dynamic 

distances are not distinguishable. Enlarging the page size in the retained fraction measure has a 

similar effect. Not only are intra-page pointers considered in the analysis: short inter-page 

references also contribute to the final value. 
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8. Grouping and LOOM 

This portion of the thesis describes the LOOM simulator and contrasts it with the actual system. 

The dynamic performance of the simulator under a number of policies and configurations is 

presented. Finally, performance predictions based upon the static analysis of the initial placements 

are examined in the light of actual results. Appendix C contains the collection of statistics and data 

on which the following discussion is based. 

As in the case of the paged virtual memory, the realizable grouping strategies improved the 

performance of LOOM. However, there were two significant differences between the simulations of 

LOOM and the paged virtual memory. These two features arose because of the object-swapping 

characteristic of LOOM and the typically short stay of disk pages in the in-core buffer. First, the 

performance differential between the random initial placement and any realizable arrangement was 

not as great in LOOM as it was in the paged environment. LOOM was able to perform rather well 

in the face of the adverse conditions caused by the random initial placement. Secondly, the 

performance of LOOM w~s sensitive to the grouping strategy used. Different grouping strategies 

realized different performance benefits. 

Another result gleaned from these simulations is the importance of a grouping strategy to LOOM

like systems. Other virtual memory policies and parameters play a secondary role and are 

essentially independent of the initial placement. 

S.l Simulating LOOM 

For the reference pair (A, B), the LOOM simulator first determined if the object A were in core. If 

not, then an object fault would occur and the object A would be swapped into core. Any leaf for A 

would be discarded, since the leaf would have been expanded and replaced by the complete object 

A in the actual LOOM system. [f B were already in core, either as an object or as a leaf, then 

nothing further would be done. Otherwise, a leaf for B would be created, since by definition the 

referenced field in A is assumed to have been a lambda. Call the resolution of such a pointer a 

lambda fault. Resolving such a pointer requires that the 32-bit pointer that references B be found 

in the disk representation for the object A. Note that only object A need be accessed. LOOM does 

not need to access an object in order to create a leaf for that object. While many lambda faults 

cause page faults, the necessary page may already be in the disk buffer. Depending on the nature 

of the reference and the previous state of the in-core object A, the clean-dirty bit for A would then 

be set appropriately. 

Core memory and the disk buffer were initially empty. Both objects and pages were fetched on 

demand. The disk buffer employed a F[FO page replacement algorithm, while a clock purging 

scheme was used for primary memory. 
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Continuolls compaction of core was assumed. If enough space existed for an object or a leaf, then 

it would be placed into core without causing any further disk interactions. Whenever the remaining 

free space could not accommodate a new object or leaf, the purging algorithm was invoked. A 

clock scheme was used for purging, which was done incrementally as needed. An index: cycled 

through the table of in-core objects. There were three possible cases: a touched object, an 

untouched object, or a leaf. Touched objects were marked untouched, untouched objects were 

contracted to leaves, and leaves were simply discarded, since by assumption they were clean. Clean 

object contractions caused no disk references, but dirty contractions forced the object to be written 

to the disk. 

This cleanliness remark deserves clarification. The one important piece of information contained in 

a leaf is the change in the disk reference count of the object that it represents. An assumption was 

made that a realizable algorithm could be found and employed that makes this delta reftrence count 

zero when the leaf is purged. When this number is zero, the actual reference count located on the 

disk is correct and need not be updated. Since it contains only a disk address, the leaf is clean and 

may be discarded without any disk interactions. One algorithm is very simple: always assume the 

final disk reference count of an object will be one. When a dirty object is contracted, the disk 

reference count may be set to one and the delta reference count adjusted appropriately. Since three 

fourths of all static reference counts are one, this algorithm is likely to succeed. Another possibility 

assumes that some constant fraction of all in-core references to the object eventually become disk 

references to the object. Other bases for predictions surely exist. However, the analysis of such 

algorithms is beyond the scope of this thesis. All these predictive schemes depend upon the 

contraction of dirty objects in order to set the disk reference count to the best guess of its final 

value, because the disk reference count of these objects may be set without incurring any further 

paging penalties. Clean objects present a problem, since their disk reference count cannot normally 

be adjusted when they are contracted without causing a page fault Many of the clean objects are 

CompiledMethods, which typically have a stable reference count. These kinds of system objects do 

not pose serious problems. For other clean objects, the best policy is probably not to tamper with 

the disk reference count until the in-core reference count of the leaf changes to zero. 

The LOOM simulator did not maintain the contents of the fields of all objects, nor did it maintain 

the starting address of all in-core objccts. Instead, the simulator kept a table of in-core objects as 

well as a list of pages in the disk buffer. Six statistics were maintained for each LOOM simulation. 

Object faults. lambda faults, clean contractions. dirty contractions, disk buffer hits. and disk buffer 

misses were all counted. [n addition, the simulator carefully monitored the utilization of pages in 

the disk buffer. For the purposes of this measurement. if an object were dirty, then all its fields 

were assumed to be dirty. If a portion of an object residing on a particular page were touched. 

then all the fields of that object on that same page were assumed to be touched. 
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8.2 Differences Between the Simulation and LOOM 

The simulator was a fairly detailed model of the actual LOOM virtual memory. Pointers were 

compressed, lambdas and leaves were used, and new objects were considered immature and hence 

not immediately written to disk. On the other hand, a number of simplifications were made. 

First, hints were not used to decide which pointers to resolve when an object was swapped into 

core. Instead. a simple dynamic decision was made. [f the 32-bit pointer referenced an in-core 

object or a leaf for that object, then the pointer was resolved. Otherwise, the pointer became a 

lambda. In fact, the contents of all pointer fields were assumed to follow this pattern. A pointer 

was a lambda if, and only if, neither the referenced object 'nor its leaf were in core. Creating or 

destroying a leaf would automatically change all in-core references to this object. This effect was 

not important, however, since roughly three-fourths of all objects had a total static reference count 

of one. Moreover, not all objects were in core simultaneously. By definition, in-core reference 

counts were less than the total reference count. 

In-core as well as disk reference counts were not kept by either simulator. The compression 

algorithm eliminated much of the information required to maintain these two sets of counts. Except 

for the reuse of aUlD, neither simulation knew that an object had been destroyed. In the paged 

virtual memory, an inaccessible object would continue to occupy some fixed number of disk fields. 

[n the LOOM simulation, such an object would eventually contract, possibly mature, and occupy a 

portion of the disk.' Since the net result was similar in both simulators and UIDs were frequently 

rellsed, the inability to detect object destruction was not critical. Neglecting this aspect of memory 

management allowed enonnous gains to be realized by a compression of the actual reference trace. 

!\. complete analysis of different types of memory allocation and deallocation schemes is beyond the 

scope of this thesis. 

Another minor difference was the omission of forwarding markers in the LOOM simulator. An 

implicit assumption was that the disk name of the object always mapped into its in-core name. 

Since forwarding markers are used only when immature objects are forced to the disk. the' effect 

arising from this omission may safely be neglected. Finally, contraction of objects referring to 

immature objects was not prohibited. LOOM would either prevent the contraction or mature the 

referenced object. Again, the effects of this simplification were not substantial. 

8.3 Results 

f--:ach compressed reference trace drove a LOOM simulator with a buffer size of 8 disk pages and a 

fixed core size. The smal1e~t core size was 20K words. Simulations were repeated with larger core 

sizes using increments of 20K words until no purging was required. Unlike the LRU policy utilized 

in the paged virtual memory simulation, the LOOM purging scheme did not obey the subset 

proper~y and simulations of different sizes could not be run simultaneously. 
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8.3.1 ResulLs Independent of Grouping 

Four of the six event~ counted during each LOOM simulation were independent of the grouping 

scheme used. For a given trace, the number of object and lambda faults, as well as the quantity of 

clean and dirty object contractions, depended only upon the size of primary memory. All four 

counts were monotonically nonincreasing for the set of core sizes simulated. 

The number of object faults was always greater than the number of lambda t~lUlts. On the average, 

less than one lambda was resolved for cach object that was swapped into corc. Although this 

average is important, the general distribution of the number of resolved lambdas per object ought to 

be examined. Predictive schemes for deciding which pointers to resolve when an object is 

transferred into core can then take this information into account. 

No such simple relation was evident between the numbers of clean and dirty contractions. For very 

small core sizes, the ratio of clean to dirty objects that were purged varied from two to six. When 

the size of core was large enough to cause only a small amount of purging, most of the contracted 

objects were dirty. In these large-core simulations, no purging equilibrium was established. The 

low clean-dirty purge ratio reflects a transient caused by the particular purging scheme since purged 

objects were a random sample of all in-core objects. In simulations of moderate and small core 

sizes, however, numerous purge cycles crcated a rcasonable balance bctween marked and unmarked 

objects. The associated clean-dirty contraction ratios reflect not the clean-dirty ratio of in-core 

objects but the characteristics of the set of objects that had not becn recently accessed. 

Data supporting the success of the purging algorithm may be found by comparing the change in 

object faults with the change in object contractions as the size of core is decreased. If these two 

changes are comparable, then most object contractions later gave rise to an object fault. Such 

results would indicate that the purging algorithm was not performing well. On the other hand, if 

the number of new contractions is much larger than the change in the number of object faults, then 

most of the object contractions did not cause a subsequent object fault. The purging algorithm. 

would be selecting the appropriate objects to discard. For example, when the core size is 

decremented by 20K from the smallest size for which no purging occurs, the ratio of the changes in 

object faults and object contractions was less than one-tenth for all three traces. Most of the 

contracted objects were not subsequently accessed. However, when the 40K to 20K transitions are 

considered, this range shifts upward. These ratios. which fall into the interval from two-thirds to 

six-sevenths, indicate the presence of thrashing. A majority of the contracted and purged objects 

were later needed. 

Two of the six event counts, the number of hits and misses for pages in the disk buffer, clearly· 
. ;.: '.:: ~ 

depended upon the grouping. Intuitively, for a given reference trace, the sum of the hits and miss~s: 

for the disk buffer ought to be independent of the initial placement. However, this sum was n()t; 

constant. Objects straddling pages caused a slightly different number of pages to be accessedfo~ 
each arrangement. 
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8.3.2 Paging Perfonnance 

Whenever the LOOM simulation interacted with the disk, a page reference was generated. Page 

references were caused by all object faults, lambda faults, and dirty contractions. Some of these 

page references named pages in the disk buffer and caused a hit. If the specified page were not in 

the buffer, then a miss, also called a page fault, occurred. Let the hit rate be the fraction of page 

references satisfied by the disk buffer. While this rate for the most part increased for larger 

primary sizes, a few minor anomalies occurred. Consider the third reference trace. (n all three 40K 

to 60K transitions in the depth-first groupings, the hit rate and the number of page faults declined. 

Substantial reductions in the number of object and lambda faults caused fewer page references and 

allowed this set of conflicting events to occur. 

One measurement obtained from the LOOM simulations was the number of page faults caused by 

each grouping (Figure 8-1). As in the paged virtual memory simulations, paging performance 

upheld the similarities between initial placements generated by grouping strategies of the same type. 

However, there were no reversals between initial placements derived from different grouping 

categories. The seven middle arrangements were again found in a band situated in the wide region 

delineated by the optimal and random initial placements. Within this band, the depth-first 

groupings were the best in two out of three traces, while the OOZE initial placement had the best 

performance in the other ·simulation. Breadth-first arrangements did poorly in all three traces, 

outperforming only the random initial placement. 

rn order to detennine the relative effectiveness of the chosen grouping strategies in different types 

of virtual memories, the LOOM page . fault reduction ratios were calculated. One caveat that must 

be mentioned is the fact that the optimal initial 'placements may not be optimal for the LOOM 

simulations. Contraction of dirty objects and resolution of lambdas may have caused the derived 

initial placements to be non-optimal. Therefore, the faulting rates of our "optimal" grouping must 

be considered to be close upper bounds on the paging rates for a true optimal arrangement. Table 

8.1 presents the maximum and minimum value of the page fault reduction ratios for the seven band 

groupings. 

Core Size 20K 40K 60K 80K lOOK 120K 

Trace # 1 -- I.ow 22.7% 22.2% 23.4% 21.9% * * 
Trace #2 -- [.ow 40.6% 38.0% 39.5% 40.8% 40.4% 40.5% 
Trace # 3 -- Low 24.8% 21.8% 19.1% 18.5% 19.0% 18.1% 

Trace # 1 -- High 50.3% 48.2% 49.6% 48.1% * * 
Trace # 2 -- High 62.7% 58.9% 61.3% 61.7% 62.7% 63.6% 
Trace # 3 -- High 58.0% 55.7% 50.6% 46.9% 47.1% 46.0% 

Table 8.1 Extrema for the Page Fault Reduction Ratios 

Two differences stand out between the two types of virtual memories. Both the minima and 

maxima of the LOOM band were smaller than the corresponding values for the paged virtual . 

memory. Secondly, the relative width of the LOOM band was larger. In the paged virtual 
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memory, any reasonable grouping scheme substantially reduced the amount of paging from the level 

caused by the random initial placement Differences between grouping schemes were not too 

significant. [n LOOM, the amount of improvement in paging performance depended heavily on the 

type of grouping. Although LOOM was more sensitive to the type of the grouping scheme, 

grouping had less of an effect on LOOM than it did on the paged virtual memory. [n the latter 

case, pages tended to remain in core for long periods. The critical measure wac; core utilization. 

Pages remained in the disk buffer in LOOM for only brief periods of time. The magnitude of the 

effect of a grouping scheme depended upon the short-term reference behavior of the Smalltalk 

virtual machine and the probability that the generated object and lambda faults would be 

successfully handled by the disk buffer. 

8.3.3 Page Utilization and Cleanliness 

The LOOM simulation maintained the set of objects read from or written to a page 10 the disk 

buffer. When a page was flushed, its usage and cleanliness were tabulated. These fractions gave 

rise to the disk page utilization and cleanliness distributions. 

A verage page utilization values ordered the initial placements in the exact ordering defined by 

paging perfonnance. Means for the realizable grouping schemes were bunched in the 15% to 25% 

range and increased only slightly for larger core sizes (Figure 8-2). Page utilization rose with 

memory size for two reasons. First, static grouping algorithms attempted to place on a page the set 

of objects that were likely to be needed at the same point of a computation. Little attention was 

paid to the dual problem of sets of objects likely to be purged at the same time. Larger core sizes 

increased the relative amount of faulting with respect to purging. Secondly, smaller amounts of 

purging meant that each disk page on the average remained in the buffer for a longer period of 

time. Longer residence times increased the probability that another object on the same page would 

be accessed before the page was flushed. 

A substantial number of page transfers actually transferred only a single object. [n the first 

reference trace with a depth-first grouping, for example, the median number of referenced objects 

per page was only one. The mean was slightly higher, reaching a maximum of three when no 

purging occurred. 

Set ~part from the realizable groupings was the performance of the optimal groupings, which 

utilized 30% to 50% of the pages swapped into the buffer when purging occurred. Unlike the 

realizable arrangements, the optimal initial placements drastically increased their mean utilization to 

the 60% to 70% range when there was no purging. Resolution of lambdas prevented a full 100% 

disk page utilization for these optimal initial placements. This low utilization value indicates that 

many lambda faults were not satisfied by the disk buffer and hence caused a page fault. Since the 

optimal arrangements had the highest mean page utilization values, a higher fraction of these 

lambda faults would undoubtedly have caused page faults in non-optimal groupings. As far as page 

utilization is concerned, lambda resolution was much more harmful than purging. Efficient 
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algorithms determining which pointers to resolve when an object is swapped into core can thus have 

an important impact on paging performance. While purging had little effect on the page utilizations 

achieved by realizable groupings. it had a substantial impact on the optimal utilizations. As better 

grouping schemes that accommodate faulting are found. the effect of purging will become more 

critical to the overall performance of the virtual memory. 

These utilization figures indicate that page references caused by purging or lambda resolution ought 

to be treated differently than page references caused by faulting. One possible distinction is to keep 

any page used only for lambda resolution and purging at the lowest priority level in the disk buffer. 

Instead of elevating such a page to the top of the FIFO/LRU ordering. the page would remain at 

the bottom and would be the first to be discarded. The disk buffer working set would not be easily 

clobbered, because at all times at most one page in the disk buffer would have been used for 

purging or lambda resolution. 

Between 60% and 85% of aU pages were clean when flushed from the disk buffer in simulations that 

involved purging. These cleanliness fractions are much larger than the 10% to 60% interval reported 

for page-swapping virtual memories [KUCK]. Differences are due to the fact that Smalltalk 

permanent objects tend to be read-only. Dynamically created objects. which are by definition dirty, 

usually perish before being purged to the disk. For the most part. dirty pages in LOOM contained 

only a single dirty object. Exceptions occurred when dynamically created objects were matured and 

simultaneously written to the disk. The cleanliness of disk pages did not significantly depend on 

either the grouping involved or the size of core employed. This independence arose because both 

the initial groupings and the purging algorithm made no attempt to increase the number of dirty 

objects per flushed page. 

Decreasing the number of dirty pages flushed from the disk buffer is important because it 

eliminates many double page faults and increases the lifetime of a write-once secondary storage 

medium. As long as a full disk page is the physical unit of transfer. these benefits arise in both 

page-swapping and object-swapping virtual memories. Simple attempts at rectifying this situation 

include grouping typically clean objects with similar objects, as well as grouping typically dirty 

objects with other normally dirty objects. A straightforward modification to the purge routine 

would be the determination of the in-core status of objects on a page in the disk buffer when a 

dirty object is contracted onto that page. [f any of these objects are both unmarked and dirty, then 

purging them immediately would tend to reduce the number of dirty pages flushed from the disk 

buffer. 

8.3.4 Effect of Core Purging Policy 

Many LOOM simulations were repeated for one or two initial placements with different virtual 

memory parameters and policies. These additional runs provided data that yielded the relative 

importance of grouping as well as the effect of grouping on a particular parameter or policy change. 

A complete factorial design was not attempted because of the prohibitive number of experiments it 

requires. 
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Since the grouping algorithms were geared towards faulting tendencies as opposed to purging 

requirements, the purging policy was modified to take into account the initial placement. This 

change caused mixed results in performance that were independent of the grouping strategy. Unless 

grouping schemes sensitive to purging issues are employed, the result~ indicate that the purging 

scheme may act independently of the initial placement without incurring a substantial performance 

penalty. 

This change in the purging policy was effected by modifying the ordering of UIDs through which 

the purge index cycled. Since the randomizing function that produced the hash initial placement 

was invertible, the ordering of objects in secondary memory in this grouping could be easily 

determined at nm time. This ordering, instead of the linear sequence (1, 2, 3, . . . ), was 

consistently used when the purge status of objects was checked. Call this scheme the random purge 

policy and the original scheme the lillear purge policy. The random policy was chosen in an attempt 

to purge objects on the same page at the same time. In addition to repeating the hash simulations, 

one depth-first grouping was also rerun for all three compressed reference traces. Since the depth

first grouping was strongly correlated with the linear U [1) ordering utilized by the original purge 

policy, these additional simulations would determine if changing the purging policy had distinct 

effects on different static arrangements. If the new purging policy worked as intended, the faulting 

rates for the depth-first and random initial placements would increase and decrease, respectively. 

Page utilization and dirtiness were expected to change in the direction opposite to that undergone 

by the page fault total. 

The random purging scheme was modeled after the policy utilized by the Object-Oriented Zoned 

Environment (OOZE) virtual memory for Smalltalk-76~ OOZE also purged objects according to 

their ordering on the disk. One shortcoming of the simulation policy is that immature objects 

forced to the disk were appended to the set of objects already on on the disk without regard to their 

U IDs. The random purge operating on the random initial placement thus reflected the ordering of 

old objects but not the ordering of dynamically created objects. 

The effect of the random purging policy was essentially independent of the initial placement and 

the compressed reference trace (~igure 8-3). For small core sizes, which caused a substantial 

amount of purging, there was a 3% to 10% increase in the number of page faults. This difference 

decreased for larger. core sizes. (n fact for the second and third compressed reference traces, the 

random purge outperformed the original policy by 1% to 5% for moderate to large core sizes. This 

new policy had only negligible effects on page utilization and cleanliness for both initial placements. 

Different numbers of dirty contractions, object faults, and lambda faults were the prime causes of 

differing faulting rates. Contraction of roughly equal numbers of dirty objects had a similar effect 

on the overall number of page faults for both initial placements. However, the particular sets of 

objects discarded by the purge routine had a nontrivial impact on paging perforniance and served to 

distinguish the linear purging policy from the random purging policy. The relative change in the 

number of page faults was larger in magnitude for the depth-first arrangement than for the random 
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initial placement. Absolute changes in faulting rates were roughly equivalent. One unconfirmed 

hypothesis drawn from these results is that random initial placements are not as sensitive to changes 

in the purging policy as are non-random initial placements. Because there was no true relationship 

between objects located on a single page in the random arrangement, modification of the purging 

policy tended to have a smaller relative effect. 

The two implemented purging schemes arc similar to a simple bOlloming technique in which objects 

are purged from core according to the time at which they tirst appeared in core. If all objects are 

scanned in each purge cycle. then this technique differs from the previous two only in the 

permutation followed by the purge index. Analysis of enhancements to this type of purging 

algorithm, including special-casing new and old objects and partial instead of full core sweeps, is 

beyond the scope of this thesis. 

Since the single attempt at grouping-directed purging did not realize consistent gains. these resuits 

do not rule out the possibility of such purging schemes. If more purging emphasis is placed on the 

grouping algorithm, it may be possible to improve performance by having the purging algorithm 

depend on the current mapping from objects to disk addresses. Otherwise, the purge algorithm 

should be free to choose objects to discard. For example. a purging policy could distinguish 

between clean and dirty objects. Contracting dirty objects could be delayed and perhaps entirely 

avoided. The important consideration is to purge the optimal set of objects regardless of the 

concomitant overhead. Flushing objects grouped on pages may reduce paging locally. but this 

strategy can have disastrous global effects. Since the optimal purging policy is unrealizable. efforts 

should be directed toward designing. simulating, implementing, and measuring realizable policies 

that investigate the local-global performance tradeof(<;. Static groupings ought to be constructed to 

accommodate the purging policy in addition to the anticipated reference tendencies of the virtual 

machine. 

8.3.5 Variable Buffer Size 

A second variation in the LOOM simulator was the size of the disk buffer. As the disk buffer 

increased in size. an equal amount of memory was removed from object space. Simulations for all 

three reference traces and all core memory sizes were repeated for 10 additional disk buffer sizes 

ranging from 2 to 32 disk pages (Figure 8-4). f-<:ach increase in buffer size corresponded to an equal 

decrease in the amount of primary memory reserved for objects. 

The expected improvement in paging performance occurred for a range of larger buffer sizes. 

Performance declined when large buffers were coupled with small sizes of main memory. This 

effect was also anticipated and is due to the reduction in main memory reserved for objects. 

However, the computations were not lengthy enough to cause this phenomenon for any but the 

smallest memory sizes. The relationship between the optimum buffer size and the amount of main 

memory was not determined. 
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The number of page fault') dropped in most of these additional simulations. Paging perfonnance 

typically improved as the buffer size increased. Larger buffcr sizes increased the average residence 

time for pages in the buffer and transfonned many buffer misses into butTer hits. Smaller buffer 

sizes naturally implied the opposite. For all simulations involving buffers smaller than the initial 8-

page buffer. paging perfonnance declined. In the first trace, for example, there were 4% to 52% 

more page faults for buffers of size 2, 4, and 6. The magnitude of this decline increased slightly for 

larger core sizes. When purging was occurring frequently, smaller buffers moderately impeded the 

progress of the computation. However, for large memory sizes where purging was infrequent or 

nonexistent, small buffers acted as a bottleneck that severely limited the throughput of objects. 

Very large buffer sizes coupled with tiny core sizes were the second cause of paging perfonnance 

reduction. By reducing the amount of core reserved for objects, larger bu ffers caused more object 

purging, object faulting, and lambda resolution. All three actitivites in turn caused more page 

references. Large buffers increased both the hit rate and the number of page references. The net 

effect of these two conflicting tendencies depended upon the specific trace and the relative sizes of 

core and buffer. Consider a fixed core size of 20K words. [n all three reference traces, the 

minimum number of page faults was achieved at buffer sizes larger than the original value of eight 

disk pages. As the buffer size increased, the number of page faults climbed and in two of the three 

reference traces eventually surpassed the original level. 

Varying the buffer size had only slight effects on both the utilization and cleanliness of pages. The 

means, medians, and quartiles of these two distributions slowly climbed as the buffer size was 

increased. Consider the simulations of the first refcrence trace that had a buffer size of two pages. 

A verage page utilization varied· between 21% for a 20K. core and 29% for an 80 K core. When the 

buffer was extended to 32 pages, the average utilizations ranged from 28% to 34%. 

Although the emphasis in this analysis has heretofore been placed solely on paging, there are two 

contributing factors that detennine the perfonnance characteristics of an object-swapping virtual 

memory. There is the obviolls problem of page faults, which arise when a page reference is not 

satisfied by the disk buffer. Object faults, dirty contractions, and lambda resolutions also contribute 

to the total cost. At the very least, the computation at hand is momentarily suspended while the 

request made by the virtual machine is satisfied. The disk buff~r is queried and data is eventually 

swapped between the buffer and core. Many of these requests also cause one or more page faults~· 

The weighted sum of the costs for the disk-buffer transactions and the buffer-core interactions must 

be minimized subject to the constraint that the sum of the buffer and core sizes equals the available 

amount of primary memory. Tiny butTers are not optimaL since the buffer hit rate rapidly declines 

for small si~es. Choosing extremely large buffer sizes is also counterproductive, since it increases 

the number of contractions and object faults and may cause thrashing on two levels. 

The size of the disk buffer is characterized by decreasing returns to scale. Doubling the buffer size 

from two to fOllr pages had a substantial impact on paging performance. A similar increment of 

two pages from 10 to 12, or even a doubling from 16 to 32 pages, had a much smaller effect on the 
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number of page faults. Because the size of the disk buffer trades off against the amount of core 

available for objects. larger buffers increase the number of object contractions. lambda resolutions. 

and perhaps page faults. For any given core memory size. cost criteria, initial placement. and 

expected set of reference tendencies, there is an optimum buffer size. The relationship between this 

optimum buffer size and the amollnt of available primary memory cannot be gleaned from available 

data, since the simulations represent only a handful of small core sizes. One expects the optimum 

buffer size to increase for larger primary memories. Whether this growth rate is linear, sublinear, 

nonexistent, or some combination of all three is currently an open question. 

8.3.6 Effect of Disk Buffer Purging Policy 

Another policy changed in the LOOM simulator was the purging scheme for the disk buffer. 

Instead of a FIFO replacement scheme, an LRU purging algorithm was used. Simulations for the 

random arrangement and one of the depth-first initial placements were repeated for all core sizes 

and all three reference traces. The LRU scheme realized a small but consistent performance 

improvement. 

The LRU scheme outperformed the FIFO scheme for both initial placements and all core sizes 

(Figure 8-5). For the depth-first grouping, this policy change realized a 3.8% to 6.1% reduction in 

the number of page faults. Slightly smaller relative reductions, in the 2.5% to 4.4% range. were 

realized when the random initial placement was used. Absolute reductions in the numb.er of page 

faults were again comparable. with the depth-first reductions slightly smaller than those for the 

random configuration. Modifying the buffer purging policy had only slight effects on the page 

utilization and cleanliness distributions. 

As in the simulations where the purging algorithm for object space was modified. the random initial 

placement was less sensitive to this policy change than was the depth-first arrangement. These 

result~ provide further evidence that as the grouping scheme becomes "better," the relative 

beneficial effects of changes that involve grouping become larger. 

8.3.7 In-Core Residence Times 

Recall the clock associated with a virtual memory that was introduced during the presentation of the 

reference trace compression algorithm in section 6.1.4. Time advances one tick for each field in 

every object created dynamically or swapped into core. Define the in-core residence time (in-core 

lifetime) of an object to be the number of ticks that occur from the time an object first appears in 

core until it is purged. An object that is repeatedly faulted upon and subsequently flushed during a 

computation has a number of in-core residence times. Distributions of in-core lifetimes were 

graphed (Figure 8-6) in order to evaluate the validity of the purging assumptions made during the 

design of the compression algorithm. Section 9.1 argues that such assumptions were justified. 

Scatter diagrams plotting core entry and exit times for objects were created (Figure 8-7) in order to 

determine the correlation between faulting and purging tendencies. These plots indicate the 

presence of sets of objects that are· simultaneously faulted upon. While many of these sets are. 
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purged at roughly the same time, there are sets whose members are purged at different times. For 

these sets, static schemes cannot effectively group objects to accommodate both faulting and purging 

tendencies. 

The means, medians, and quartiles of the residence distributions generally increased as the size of 

core grew larger. Residence data confirms the assumption that average objects remain in core for 

longer periods of time in larger memories. [n almost all cases. the larger standard deviation value 

for the residence distribution increased with core size. For small memories in which thrashing was 

a problem, most residence times were similar because objects did not have a chance to distinguish 

themselves. Larger core sizes provided enough time for frequently used objects to establish 

themselves as such, which resulted in a spreading of the in-core residence time distribution. Less 

purging and faulting occurred in larger memories, which in turn decreased the total number of ticks 

that occurred during a given computation. With a smaller possible maximum, the observed 

maximum of the residence distribution typically declined for larger core sizes. 

Because the set of residence distributions was not weighted with respect to the core size of objects, 

it was possible for the average residence time to exceed the size of primary memory. Such 

anomalies were due to the fact that some small objects had large lifetimes and some large objects 

had small lifetimes. 

Scatter diagrams of object entry and exit times indicate that the faulting and purging tendencies 

were not completely correlated. Part of this exit time differential may be attributed to the particular 

purging scheme used. A substantial portion of the discrepancy is due to an inherent asymmetry 

between faulting and purging (Le., between the first-use and last-use of objects). These results 

indicate that objects may be statically grouped for either faulting or purging but not always for 

both. Some swapping sets undoubtedly exist, in that many collections of objects are characterized 

by similar times for first-use and last-use in most computations. On the other hand, there are sets 

of objects that are simultaneously faulted upon yet have very different in-core residence time 

profiles. Static grouping cannot achieve satisfactory paging performance for both faulting and 

purging for these kinds of object collections. At most, one transfer direction may be effectively 

accommodated in both object-swapping and page-swapping virtual memories. I f these first-use and 

last-use relationships are not time invariant, then static groupings may not be able to efficiently 

accommodate either direction of data transfer. One clear advantage LOOM has over a paged 

virtual memory for these collections is that the static placement constraints are not necessarily the 

dynamic constraints. Core utilization may be retained at an arbitrarily high level in LOOM. In a 

paged virtual memory without copying, there are no dynamic choices to be made short of deciding 

which full page to discard during a page fault. Another LOOM advantage is the delayed binding of 

dynamically created objects to disk homes. [f most of the last-use discrepancy is due to the first 

time new objects are purged, then LOOM has solved the problem by consecutively packing together 

on the disk newly matured objects. Problems still remain if this packing is not suited for future 

purging and/or faulting tendencies. While not proving the nonexistence of grouping techniques 
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that efficiently handle the bi-directional transfer of objects, the scatter diagrams of core entry and 

exit times indicate that the search for such algorithms is likely to be difficult. 

8.4 Analysis of Predictions 

The paging performance predictions based on static analysis of the initial placements may now be 

compared with the results for LOOM. Since the LOOM results were similar to the paged virtual 

memory data, the same predictions were uphcld. Similar initial placements had similar paging 

performance, while the random initial placement consistently underperformed all other static 

arrangements. Retained fraction values for the optimal groupings predicted either the OOZE or the 

depth-first initial placements to be the best realizable grouping strategy, depending on the reference 

tracc. Breadth-first groupings were granted third place followed by the random initial placement. 

These predictions were upheld in their entirety, except for the reversal of the first two categories of 

grouping strategies in the third trace. The breadth-first groupings again improved their perfonnance 

vis-a-vis the on-page pointer ratio predictions, but their upward performance climb was strongly 

curtailed. Unlike the results for the paged virtual memory, there were no reversals in the LOOM 

simulations. In a given trace, the distance between any two of the three band categories was 

essentially independent· of the core size. 

The location of the realizable groupings in the performance range defined by the optimal and 

random initial placements indicate some success with static grouping. However, there is still room 

for improvement. Unlike the paged virtual memory, in which the relative difference between band 

groupings was dwarfed by the improvement over the random initial placement. the LOOM 

simulation was much more sensitive to the particular grouping. Better groupings will have a much 

larger performance impact on LOOM than on a paged virtual memory. 

Since there was no body of empirical data for LOOM-like systems, a number of parameters and 

policies were modified in order to determine the relative importance of grouping as well as its 

effects on these changes. Page fault reduction ratios indicate that grouping reduced the number of 

excess page faults by 18.1% to 63.6%, depending on the initial placement and the trace. Further 

absolute reductions of up to 30% could be achieved by expanding the disk buffer at the expense of 

having the buffer handle more page references. Changing the buffer purging policy netted about a 

5% reduction in the number of page faults, while a modification of the core purging policy 

produced mixed results. 

Data from these simulations may be summarized by a few key points. First, a good grouping 

algorithm can substantially affect the performance of any LOOM-like system. Other virtual 

memory parameters and policies are of secondary importance. Secondly, modifications to these 

parameters and policies will have larger relative improvements for better grouping strategies. Third. 

these simulations have identified lambda resolution as a key problem deserving study. In order to 

eliminate many page references and page faults. a good predictive algorithm needs to be found for 

detennining the set of pointers to resolve immediately when an object is faulted upon. Finally. 

these results have underscored the importance of endeavoring to establish a synergistic relationship 



CHAPTER 8. GROUPING AND LOOM 99 

between static grouping algorithms and the dynamic purging routine. (f no accommodating static 

grouping can be found, then the purge algorithm ought to have the option of ignoring the initial 

placement as it perfonns its task. Related to this interaction between purging and grouping is the 

dynamic allocation and deallocation of new ohjects as well as their purging and placement. A brief 

introduction to such topics in the context of initial placement stability is presented in Chapter 10. 
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9. LOOM Versus a Paged Virtual Memory 

In addition to measuring the effect of static grouping in LOOM and a paged virtual memory, the 

simulations and compression algorithm were designed to support a direct empirical comparison 

between their paging perfonnances. Appendix C contains the relevant numerical details supporting 

the following analysis. 

Adjusunents to the core size of the LOOM simulation were made in order to account for the 2K 

disk buffer and the object table (aT), which contains the starting addresses and other infonnation 

of all in-core objects. The appropriate OT size was derived from the maximum number of in-core 

objects when purging began in the LOOM simulations. A safety margin of 10% was added to the 

table length, which ranged from 2.5K words (20K core) to 15.5K words (lOOK core). No 

adjusunents were made for the paged virtual memory, since the memory requirements for page 

tables and other associated information were small enough to be neglected. 

A number of simplifications to the simulations avoided areas beyond the scope of this thesis and in 

doing so may have given either type of virtual memory a slight advantage. For example, all 

pointers in the paged virtual memory simulation were assumed to be direct, so that no indirection 

table was required. However, the problem of handling the 'become:' operator was not solved. No 

real management of secondary memory was done in either simulation. One disadvantage for the 

paged virtual memory was the unavailability of dynamic copying schemes to compact working sets. 

A fixed static allocation of new objects and the assumption of UIO reuse may have scattered the 

working set over many pages. Leaf references, on the other hand, provided the LOOM simulation 

with enough information to effectively manage primary memory. Since these right references were 

at times neglected in the paged memory simulation, it gained a nontrivial advantage over LOOM. 

Another s!mplification was the omission of the run-time stack. Because of pointer compression, the 

LOOM simulation would have derived a small advantage from the inclusion of the stack. This 

benefit would not have been significant. since it would have been proportional only to stack depth. 

t\ direct comparison between the two types of virtual memories indicates that LOOM outperforms a 

paged virtual memory for a range of small memory sizes. Such results were invariably obtained for 

warm starts, cold starts, simulations that did reference counting, and those that did not [n addition 

to the particular computation, the initial placement played an important role in detennining the 

memory size interval for which LOOM outperformed the paged virtual memory. Since the length 

of this interval varied inversely with the quality of the initial placement, the desirability of a 

LOOM -like virtual memory will depend on the existence and stability of quality initial placements. 
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The relative performance of LOOM is explained by examining its costs and benefits. LOOM 

increases the apparent size of main memory by compressing pointers and swapping objects. Pointer 

compression reduced memory requirements by one-third, while object swapping guaranteed a 

complete utilization of primary memory. Since page fault curves typically contain a "knee," the 

importance of this increase in the apparent size of memory decreases for core sizes large relative to 

the computation. 

LOOM's method of extending the apparent memory size incurs costs. Resolution of a lambda 

requires an access to the disk representation of the object containing the lambda. Although lambda 

resolution becomes less costly for larger core sizes (see section 9.3), it causes a small but not 

insignificant fraction of the page faults. The other cost arises from the policy of swapping objects 

instead of pages. When an object is faulted upon, the page containing the object is swapped into 

the disk buffer if it is not already there. Only the required object is copied from the disk buffer 

into core. References to objects on one page can therefore cause more than one LOOM page fault. 

Purging objects on the same page can also cause more than one page fault. Page-swapping virtual 

memories, on the other hand, prefetch information by bringing all objects on a page into core 

whenever any object on that page is accessed. All objects on a single page are also purged 

simultaneously. This advantage of page swapping is synergistic with good groupings of objects on 

pages. Because the performance of LOOM is not as strongly dependent on the quality of the 

grouping scheme, grouping schemes have a limited effect on the number of page faults in LOOM. 

Although pages are physically swapped in both types of virtual memory, these two swapping 

schemes are inherently different. LOOM's finite disk buffer size causes some page faults that are 

not encountered by the paged virtual memory. If primary memory is large enough to accommodate 

a computation without purging information, the paged virtual memory is optimal in that it causes 

the smallest number of page faults. LOOM too can achieve this performance level for all disk 

buffers larger than a certain size. Without a large enough buffer, however, the performance of 

LOOM can be substantially worse, since references to objects on a single page can cause multiple 

page faults. 

[n >short, LOOM's benefits are important for primary memory sizes that are small relative to the size 

of the computation. The overhead caused by· a finite buffer becomes criti.cal when the buffer is 

small in absolute terms or in terms of the size of main memory. Since a small, fixed-size buffer was 

employed in these experiment~, the overhead substantially degraded LOOM's performance for large 

primary memory sizes. 

9.1 Equivalence and the Compression Algorithm 

[n order for the compression scheme to preserve weak equivalence between the full and compressed 

reference traces, the virtual memory simulations had to guarantee that the minimum residence time 

was lOK ticks. In the LOOM simulations for a 20K core, the first quartile for the in-core residence 

time distributions varied between 10K and 12K ticks. For at least three-fourths of the times at 

which an object appeared in core, this equivalence preservation criterion was met. In LOOM 
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simulations involving 40K core memories, the tirst quartile varied between 24K and 30K ticks, 

which indicates that the number of violations was not significant for any memory size above 20K 

words. 

One insight that eliminates most of these possible violations is the fact that clocks for larger core 

sizes nm slower than clocks corresponding to smaller core sizes. As long as no faulting anomalies 

occur, larger core sizes purge and fault less often and thus their associated clocks tick slower. The 

minimum requirement of 10K ticks referred to a clock associated with a 10K main memory. 

However, the in-core residence times in question were obtained for a 20K core. For very small core 

sizes in which a substantial amount of purging occurs, changing the core size has a nontrivial impact 

on the virtual memory clock. Table 9.1 estimates the ratio of clock speeds by comparing maximum 

in-core residence times. The top portion presents clock speed ratios for differences in core sizes of 

20K, while the bottom half of the table presents ratios when the core size is halved. Conservative 

extrapolations for the 20K to 10K clock rate ratio fall into the 1.3 to 1.5 range. Since the in-core 

residence time distribution falls off rapidly as the abscissa approaches zero, even small clock rate 

ratios will substantially reduce the number of possible violations. Most of the few remaining small 

in-core residence times occurred during the first purge cycle. 

Core sizes Trace # 1 Trace #2 Trace #3 

120K v. lOOK * 1.00 1.01 
lOOK v. 80K * 1.05 1.03 
80K v. 60K 1.01 1.06 .1.08 
60K v. 40K 1.04 1.17 1.15 
40K v. 20K 1.30 1.36 1.39 

l20K v. 60K * 1.11 1.13 
80K v. 40K l.05 1.16 1.25 
40K v. 20K 1.30 1.36 1.39 

Table 9.1 Estimated Clock Speed Ratios 

The paged virtual memory, which used an LRU purging scheme, guaranteed a minimum in-core 

residence time equal to the size of core. However, the clock associated with a paged virtual 

memory ran faster than a clock in an object-oriented virtual memory for two reasons. Exclusively 

using 32-bit pointers caused a 50% expansion in the size of the computation. Secondly, every page 

swapped into core contributed a number of ticks equal to the page size (256 words), regardless of 

the size of the object that caused the page fault. Since core utilization ranged from 2/5· to 3/5, 

there was another clock speed increase of 67% to 150%. In the worst case, the paged virtual 

memory for a 10K core size ran nearly 4 times as fast as the corresponding clock in the compression 

algorithm. 

Page fault reductions for the 10K to 20K transitions for the paged virtual memory ranged from 9% 

to 12% for the random initial placement and from 19% to 23% for the band arrangements. Optimal 

groupings had changes in the interval from 37% to 45%. A clock slowdown factor of nearly two 

occurred for the optimal arrangement in the 10K to 20K transition. Also offsetting the clock rate 

increase was the fact that any reference to a page moved the page (and therefore all objects on that 
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page) to the top of the LRU ordering. These actions, which would increase the duration of the in

core lifetime for all objcct~ on the page, made the core size a strict lower bound on all in-core 

lifetimes. 

Although equivalence may have been lost for simulations of very small core sizcs, comparisons 

between all LOOM simulations and all paged virtual memory simulations are still valid. Each 

computation was represcnted by a fixed, compressed reference trace. The only warning that must 

be issued is that very small core sizes in both simulations may not accu rarely reflect the true 

behavior of the Smalltalk-80 programming environment. However, since the quantity of possible 

violations was low, the actual behavior was closely approximated by the simulations. Two 

independent factors confirm this assumption. First, the paging behavior for small core sizes fits 

naturally with the faulting rates for large core sizes, which' unquestionably represent the actual 

behavior of Smalltalk-80. Secondly, most of the serious violations for LOOM occurred during the 

first purge cycle, before an equilibrium between marked and unmarked objects had been achieved. 

Wann-start simulations are described in section 9.4 and show that cold starts accurately described 

paging behavior. Any violations that did occur had only a negligible impact on the overall level of 

performance. 

9.2 A Naive Comparison 

The same partitioning of grouping strategies into distinct categories was seen 1I1 the paging 

performance of both types of virtual memory. Except for the lack of reversals in LOOM and an 

occasional swap of two adjacent categories, the performance rankings of static groupings were 

independent of the virtual memory type. As was previously mentioned. the paged virtual memory 

band was narrow, while the LOOM band was wider and closer to the performance of the random 

initial placement. 

. The virtual memory type with the better paging performance depended upon the reference trace, 

the core size, and the specific grouping scheme (Figure 9-1). For all realizable grouping strategies, 

LOOM dominated for some range of small core sizes. Pointer compression and a high utilization of 

core allowed LOOM to perform rather well. while the low utilization of core and uncompressed 

pointers caused the paging scheme to thrash. At a certain core size. depending on the reference 

trace and the initial placement. the paging performances became similar. I.et the crossover point be 

the core size at which the function representing the taulting rate for LOOM intersects from below 

the corresponding function for the paged virtual memory. At all points less than the crossover. the 

LOOM simulation had a better paging performance than the paged virtual memory. For all larger 

core sizes, the paged virtual memory dominated as its faulting rate declined further. LOOM's 

faulting rate decreased slowly and became constant at the relatively small core size for which no 

purging occurred. 

One cause of LOOM's poor performance for moderate and large core sizes was the fixed size of the 

buffer. Many pages were faulted upon more than once in LOOM in order to satisfy faults on 

different objects. In the paged virtual memory, when a page was brought into core for one object. 
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all other objects on the page were automatically transferred into core. This set of objects remained 

in core until the page was purged. LOOM also had to contend with the resolution of lambda 

pointers, which caused additional references to the same page. The paged virtual memory naturally 

outperformed LOOM when little or no purging occurred. Swapping a large working set into core 

was a simple task for the paged virtual memory, since it was only a sequence of page transfers. In 

dealing with object faults and lambda faults, however, the LOOM buffer became a bottleneck that 

severely limited the throughput of needed objects and data. 

Because the optimal initial placements caused little purging for even the smallest core sizes in the 

paged virtual memory simulations, the LOOM simulation with the optimal grouping was 

outperformed for all memory sizes. No crossover point existed. On the other hand, the LOOM 

simulation with the random initial placement performed well for a wide spectrum of primary 

memory sizes. The extremely low utilization of core by the paged virtual memory caused thrashing 

for a large range of core sizes. 

These uninterpreted faulting rates are potentially misleading for a number of reasons. First. the 

simulations represent a cold start. Core memory is initially empty and is filled as the computation 

proceeds. In the Smalltalk programming environment, there is never a cold start. The image of 

core is loaded from a disk. file (by swapping pages!) when the user session begins. When the user 

leaves the Smalltalk environment, the core image is saved by swapping pages to the disk. An 
intervening user actions are supported by a warm system that is normally full of objects. Warm

start simulations were performed in order to determine the effect of cold and warm start<; in both 

types of virtual memories. The analysis of these nms ~s presented in section 9.4. 

Another note of caution in interpreting these paging results concerns storage management. Object 

references in the compressed reference traces, which were inherently related to the computation, 

were independent of the particular memory management scheme used. Leaf references, on the 

other hand, represented the requirements of a reference counting policy used by any type of 

memory. This factoring of requirements into computational needs and memory management needs 

allowed comparisons to be made on simulations that included or neglected the leaf references. The 

LOOM simulation was originally at a disadvantage, because it was required to process the leaf 

references in order to perform the computation. Except for violations of the assumption concerning 

clean leaves, storage management would have caused no additional page faults. By ignoring the leaf 

references, the paged virtual memory simulation effectively did no memory management. 

Additional simulations, in which the paged virtual memory treated leaf references as object 

references or the LOOM simulation neglected leaves and leaf references, were performed. Section 

9.3 contains the analysis of these runs. 

Comparisons between LOOM and a paged virtual memory indicate that any type of grouping 

scheme realized tremendous performance benefits for the latter. These gains were largely due to 

the increase in core utilization. LOOM, which selectively allows objects into core, can perfonn 

reasonably well in the face of a poor initial placement. If the quality of an initial placement is 
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time-variant and extremely volatile, then LOOM is successful. On the other hand, if initial 

placements tend to behave consistently for all kinds of computations and do not decay after long 

periods of usc and modification, then a definitive evaluation between the two types of virtual 

memories requires a more extensive analysis and also depends on the existence or nonexistence of 

better grouping schemes. Let the stability of an initial placement be the rate at which it deteriorates 

and becomes obsolete. The relative success of a naive, paged virtual memory then depends on the 

existence and stability of quality initial placements. 

9.3 Leaf/No-Leaf Comparisons 

[n order to determine the effect of leaf references on the two types of virtual memory, simulations 

for two different initial placements, a random and a depth-first, were repeated for all three reference 

traces. Call the two original simulations the initial simulations. The original LOOM simulation will 

also be referred to as the leaf simulation, while the original paged virtual memory simulation will at 

times be called the no-leaf simulation. For these extra runs, the no-leaf simulation for LOOM 

neglected all leaf references, except for object contraction created no leaves, and never resolved any 

lambdas. All pointers were assumed to be short and object fault~ were handled normally. On the 

other hand, for these repeated runs, the leaf simulation for the paged virtual memory treated leaf 

references as object references. This interpretation of the reference trace corresponds to a reference 

counting scheme in which the reference count is kept with the object. 

These additional sets of comparisons substantially improved the perfonnance of LOOM when 

compared to the paged virtual memory. By equalizing the memory management duties, a more just 

picture emerges. The main memory size intervals for which LOOM dominates were extended. 

LOOM's relative improvements over the paged virtual memory for small core sizes also increased. 

Requiring the paged virtual memory to treat leaf references as object references consistently led to 

an increase in the number of page faults. For small core sizes (30K), the increases fell into the 22% 

to 35% range. These increases peaked for moderate memory sizes and substantially declined for 

larger core sizes. Maxima were attained for core sizes at the "knee" of the page fault function for 

the no-leaf paged virtual memory. Larger core sizes handled the leaf references with only a small 

perfonnance degradation. For very large core sizes in which purging did not occur, leaf references· 

caused less than a 5% increase in the number of page faults. Most of the leaf references did not 

cause additional page taults, because the objects to which they referred were already in core or 

would soon be swapped into core. 

Paging rates for the no-leaf LOOM simulation represent a lower bound on any lambda resolution 

scheme that does not prefetch objects because this "policy" was better than the optimal lambda 

resolution scheme. Page fault reductions of 20% to 34% and 15% to 32% occurred for the depth

first and random initial placements, respectively. Relative decreases in the number of page faults 

were again larger for the depth-first initial placement, while absolute reductions were slightly larger 

for the random initial placement. 
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Both relative and absolute page fault reductions typically decreased for larger core sizes. The 

apparent size of core was larger because no leaves were created for leaf references. Because the 

stope of the page fault function is not constant but decreasing, this apparent change in memory size 

was more important for smaller core sizes in which thrashing occurred. Slightly larger memory sizes 

caused substantially fewer page faults . 

. The second link between core size and perfonnance improvement arose from the hit rate of page 

references caused by lambda resolution. Call these values the lambda hit rales. As an 

approximation to this value, consider the e~cess number of hits and misses generated by the leaf 

simulation of LOOM as compared to the no-leaf simulation of LOOM. Table 9.2 presents the hit 

rate of these additional page references. 

Core Size 20K 40K 60K SOK lOOK 120K 

OFSID #1 64.8% 64.9% 70.4% 78.0% * * 
DFSID #2 67.5% 67.4% 72.6% 71.4% 70.5% 76.4% 
DFSID #3 67.8% 70.5% 71.0% 72.1% 72.3% 77.7% 

Hash #1 57.6% 58.6% 62.5% 72.6% * * 
Hash #2 60.9% 61.1% 65.6% 63.7% 62.1% 68.2% 
Hash #3 57.3% 61.5% 59.1% 62.7% 62.3% 66.7% 

Table 9.2 Lambda Hit Rates 

Between half and three-fourths of all references caused by lambda resolution were satisfied by the 

disk buffer and did not cause page faults. This lambda hit rate was much higher than the hit rate 

for the no-leaf simulation or the composite hit rate for the initial simulation. Depth-first lambda hit 

rates were larger than those for the random initial placement. A higher utilization of the disk 

buffer, longer residence times for disk pages, and a larger on-page pointer ratio accounted for these 

differences. Larger core sizes. which caused less purging and faulting, meant that fewer page 

references were generated. This reduction caused pages to remain in the disk buffer longer and 

increased the lambda hit rate. Hence the page fault reductions in the no-leaf simulations were 

generally smaller for larger core sizes. 

Neglecting leaf references had a small effect on both page utilization and page cleanliness in the 

LOOM simulations. Because no lambdas were resolved, a higher fraction of page references were 

due to the contraction of dirty objects. Page utilization declined in the no-leaf simulation for two 

reasons. First, the page utilization was smaller for purging than for faulting, and the lack of lambda 

resolutions increased the relative amount of purging versus faulting. Secondly, some resolved 

lambdas in the initial simulation referenced an object on the same pagc. [f this page were missing 

from the buffer, then resolving the lambda would have referenccd two objects on the same page. 

[n the no-leaf simulation, however, only the referenced object, and not the object containing the 

lambda pointer, would be accessed. Since for even the depth-first groupings the on-page pointer 

ratio was exceedingly low, this effect was negligible. 

Comparisons between the two leaf simulations or the two no-leaf simulati()ns, as opposed to the two 

initial simulations, improved the performance of LOOM with respect to the paged virtual memory 
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(Figure 9-2). In general. the leaf and no-leaf crossover points were closer to each other than either 

was to the original crossover point. These results indicate that the original comparison severely 

penalized LOOM by not requiring the paged virtual memory to reclaim free storagc. Substantial 

shifts in the crossover point occurred when the reference counting policy was uniformly included or 

neglected in the simulations. 

9.4 \Varm-Start Comparisons 

There are three extremes to consider in comparing virtual memory performance: an empty memory, 

a memory full of irrelevant objects, and a memory full of useful objects. Except for purging. a 

memory full of irrelevant objects is similar to an empty one. Cold starts provide information on the 

first scenario, while warm starts with very large core sizes yiel~ data for the third. Warm starts with 

tiny core sizes represent a mixture of both useful and useless objects. 

Wann-start simulations were done for the random configuration and one depth-first initial 

placement for all three reference traces. Memory was filled by running a cold-start simulation on 

the last half the reference trace. All event counts were set to zero and the virtual memory 

simulators then processed the entire reference trace in the normal direction. 

Becausc our definition of page faults only counts the number of pages swapped from disk to core 

and not vice versa. the wann starts for the paged virtual memory always outperformed the 

corresponding cold starts. For extremely small core sizes, however, the LOOM warm starts caused 

more page faults than the corresponding cold starts. Nevertheless, warm starts for LOOM 

outperformed cold starts for moderate and large sizes of primary memory. Warm starts did not 

shift the crossover point consistently in either' direction. 

All wann-start simulations of the paged virtual memory outperformed the corresponding cold-start. 

The definition of a page fault for the paged virtual memory guaranteed that the warm start would 

I;>e no worse. Whenever a page reference was not satisfied by the set of in-core pages, the simulator 

would discard the least recently used page and fetch the required page. There was exactly one page 

'fault. regardless of whether the discarded page was clean, dirty, or unused. The set of in-core pages 

remaining from the warm start could therefore be viewed as empty or valid, if a page needed to be 

discarded or a reference needed to be satisfied. respectively. Typical page fault reduction ranges 

were 3.4% to 6.9% (30K). 11.8% to 41.0% (120K), and 30.0% to 70.2% (240K). Relative perfonnance 

improvements generally increased with core size for the obvious reasons. While the relative 

performance improvements were typically larger for the depth-first initial placement. the absolute 

improvements in paging perfonnance were larger for the random grouping. In fact. for very large 

core sizes. the warm-start random configuration outperformed the warm-start depth-first 

arrangement. This anomaly was due to the much larger set of pages of the random initial 

placement that was accessed during the wanning phase. Many untouched objects located on these 

pages were later used in the simulation of the full reference trace. 
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In the wann-start LOOM simulations, the change in paging performance depended on core size and 

the particular reference trace. Consider the first and third compressed reference traces. For small 

core sizes, wann starts caused more page faults than cold starts. This perfonnance degradation, 

which was less than 6%, was due to additional purging. The contraction of dirty objects that were 

swapped into primary memory during the wamling phase caused additional page references. In aU 

three reference traces, the relative paging perf o ffila nce improved as the size of core was increased, 

because a larger fraction of the in-core objects was not purged. For a core size of 60K, the 

reduction in page faults was 4.1% to 15.9%. [f the core size were large enough to prevent purging. 

then the interval of performance improvements jumped to 48.9% to 84.9%. Unlike the paged virtual 

memory simulation, no warm start for the random initial placement ever outperformed the 

corresponding depth-first warm start. Except for the disk buffer, the initial contents of primary 

memory were independent of the particular grouping involved. Neither of the two groupings 

dominated in the relative perfonnance improvement category, although the random initial 

placement for the most part had the larger absolute reduction in the number of page faults. The 

important factor in deciding the level of performance improvement was core size, which determined 

the amount of useful data already in hand. 

In three of the six comparisons between warm and cold crossover points, the warm start was 

preferred by LOOM. Two of the remaining comparisons yielded close crossover points and 

indicated that a cold start bettered the relative performance of LOOM. The wann-start simulation 

of the second reference trace involving the depth-first initial placement had no crossover point. 

This small data set indicates that the preferential start for LOOM is not known a priori. Instead, 

the particular reference trace, range of core sizes, and initial contents of the two core memories 

determine whether LOOM benefits more from a cold or warm start. 

Warm-start faulting rates for the LOOM simulation declined so rapidly that a second crossover 

point occurred in the graphs for the second and third reference traces for the depth-first initial 

placement (Figure 9-3). Another such point nearly occurred for the first reference trace. These 

crossover points are the duals of the points that correspond to small core sizes, because at these 

points the page fault function for LOOM intcrsecl~ the other curve from above. There is a range of 

smaller core sizes for which the paged virtual memory outperformed LOOM and a range of larger 

core sizes for which the opposite occurred. LOOM was able to outperform the paged virtual 

memory because of its roughly 100% utilization of core. No unneeded objects were ever swapped 

into core by LOOM. U nlcss a perfect static grouping can be found that is not time-variant, the 

paged virtual memory will always swap unnecessary objects into core. Let u be the apparent usage 

of core by the paged virtual memory, where usage is defined to be the ratio of the total size of all 

referenced, in-core objects to the size of primary memory. Then the actual utilization of core (as 

measured by short pointers) will be ulc, where c is the average compression ratio of disk size to 

core size. Therefore, for any grouping strategy, the utilization of core by LOOM will always be 

greater than the corresponding utilization by the paged virtual memory. 
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Between the two crossover points was a wide range of core sizes for which the benefits of a wann 

start did not allow LOOM to overtake the performance of the paged virtual memory. However, 

I,OOM was processing leaf references while the paged virtual memory was not. 

Warm starts had opposite effects on the average page utilization and cleanliness values. Partially 

full memories meant that either fewer objects were faulted on, more objects were purged. or both. 

These tendencies increased the relative importance of purging over faulting and accounted for the 

increase in dirty pages as well as the general decrease in disk page utilization. Page utilization 

increases were seen, however. in 4 of the 6 simulations in which no purging occurred. 

9.5 A Note Concerning Page Faults 

Although a consistent definition of a page fault applied to both types of virtual memory simulations. 

the LOOM scheme encountered an inherent penalty. A page fault was defined as the physical 

swapping of a disk page from disk to core. Regardless of whether the displaced page was clean, 

dirty, or empty, only one fault occurred. Therefore, every reference not satisfied by the contents of 

core in the paged virtual memory caused exactly one page fault In LOOM, on the other hand, an 

object fault may have caused more than one page fault. [f core were full, then purging had to 

occur. Dirty object contractions caused page faults if the generated page references were not 

satisfied by the disk buffer. After enough purging had been accomplished. if the page containing 

the object were not in the disk buffer, then another page fault occurred. 

9.6 Extending These Results 

One shortcoming of the analysis between the two types of virtual memory is the restriction on 

computation length and the size of the set of accessed objects enforced by a virtual machine 

emulator that executed bytecodes 1000 times as slow as the actual Smalltalk-80 interpreter. The 

important question is whether these results will scale to lengthy computations involving more objects 

in larger systems. 

Each crossover point may be associated with a measure relating the size of the computation to the 

available amount of core memory. For a given computation c, let M be the smallest size of core 

memory for which a LOOM system would never purge an object. Let m be the crossover point. 

Define the crossover size ratio to be M/m. Tables 9.3 and 9.4 present the crossover size ratios for 

selected simulations involving a depth-first grouping. assuming a linear interpolation between 

empirically measured page fault rates for the LOOM virtual memory. 

These ratios highlight the importance of uniformly processing or neglecting leaf references. For 

example, when LOOM used leaf references but the paged virtual memory neglected them, the well

defined crossover ratios varied from 2.3 to 5.3. One such ratio did not exist. When the leaf 

references were treated uniformly by both types of simulations, the crossover size ratios were all 

de tined and fell into the 1.6 to 2.9 range. 
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Trace LOOM Paged Virtual Memory Initial Crossover 
Number Leaf Watm Start Leaf Warm Start Placement Size Ratio 

#1 Yes No Yes No DFSID 1.59 
#2 Yes No Yes No DFSID 2.71 
#3 Yes No Yes No DFS[O 2.11 

#1 No No No No DFSIO 1.64 
#2 No No No No OFSID 2.71 
#3 No No No No DFSID l.99 

#1 No Yes No Yes DFSIO 1.74 
#2 No Yes No Yes DFSID 2.90 
#3 No Yes No Yes DFSIO 2.16 

Table 9.3 Leaf/N 0-Leaf Comparisons 

Trace LOOM Paged Virtual Memory Initial Crossover 
Number Leaf Warm Start Leaf Warm Start Placement Size Ratio 

#1 Yes Yes No Yes DFSIO 2.57 
#2 Yes Yes No Yes OFS[O none 
#3 Yes Yes No Yes OFS[O 3.00 

#1 Yes No No No DFSIO 2.31 
#2 Yes No No No DFSIO 5.34 
#3 Yes No No No DFSID 2.80 

Table 9.4 Initial Comparisons 

These crossover size ratios .correspond to one of the best realizable grouping schemes employed in 

this study. For other less successful arrangements, such as the random initial placement, the ratios 

would be much lower since the LOOM simulation outperformed the paged virtual memory for a 

wider spectrum of core sizes. As the initial placement becomes worse, the crossover point shifts to 

larger core sizes, the crossover size ratio falls, and LOOM becomes more attractive. This 

degradation in the arrangement may also arise from the effects of normal usage. References are 

copied and updated, new objects are created, and old objects eventually become inaccessible and 

disappear. Unless efficient and effective dynamic grouping strategies can be found that place new 

objects and move old objects, the attractiveness of any static grouping will decline. The rate of the 

decline, the costs of dynamic grouping, and the type of virtual memory will determine the 

appropriate average usage time before another static regrouping is necessary. 

LOO M represents an object-oriented virtual memory with 16-bit in-core pointers. The simulation of 

the conventional virtual memory swaps pages and uses 32-bit references. A virtual memory 

containing aspects of both is an object-oriented virtual memory which does not compress pointers. 

While this virtual memory was not explicitly simulated, we can estimate its performance by noting 

that pointer compression reduced the total span of a computation by about one-third. This fact 

may be obtained by finding the ratio of the smallest main memory sizes for which the paged virtual 

memory with an optimal arrangement and the LOOM simulation with any arrangement did no 

purging. The utilization of core is 100% in both cases. Neglecting the presence of leaves, this ratio 

is the average compression of objects and was roughly 1.5 for all three compressed traces. Since all 

pointers are always resolved, there no page faults due to lambda resolution. If the quantity of 
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leaves is negligible, results from the LOOM simulation may be transtormed into the results of a 32-

bit, object-oriented virtual memory by multiplying the core size by 1.5 and removing the number of 

page faults due to lambda resolution. Comparison of the derived results for this hypothetical virtual 

memory indicate that pointer compression does not substantially affect the paging performance for 

LOOM. The validity of these results. which are based upon the estimate of the disk buffer hit rate 

for resolving lambdas derived from the no-leaf simulations, depend on the accuracy of two 

simplifications. First, the LOOM simulation did not explicitly maintain the contents of the fields of 

objects. [t used a simple algorithm to decide whether a pointer was a lambda. The accuracy of this 

model is not known. Second, a naive lambda resolution scheme was employed in the simulator. 

Other algorithms that can substantially reduce the number of lambdas encountered by the virtual 

machine may exist. While our judgment of pointer compression remains inconclusive, these results 

indicate the need for serious study of the tradeoffs involved. 

Let the span of a computation be the set of both existing and dynamically created objects used in a 

computation. Two important factors concerning spans need to be addressed before these empirical 

results can be applied to lengthy user sessions involving computations that use large portions of the 

set of objects comprising the programming environment. First, the distributions of span size, 

turnover rate, and degree of commonality must be determined. The effects of system evolution on 

these distributions must also be considered. 

Rough estimates of the span size may be obtained from the initial set of monitored computations 

that provided data for the detailed analysis of reference behavior presented in Chapter 4. 

Neglecting the display bitmap and the run-time stack, the computations involved sets of objects that 

would fit into 20K words of object space. Rough estimates of similarities between computational 

spans may be garnered from comparisons between warm and cold-start LOOM simulations. Very 

small core sizes (20K) initially contained some or all of the span that was in core at the end of the 

warming phase. During the actual simulation following the warming process, some of the in-core 

objects were used before being purged. Other irrelevant objects were purged without being 

referenced. The ratio of the sizes of these two sets of objects, as well as the relative costs of 

fetching and purging objects, dctermined the differential in page faults between a wann and a cold 

start. Since warm starts caused both increases and decreases in the number of page faults, one 

immediate conclusion is that the degree of commonality between two spans depends upon the 

corresponding computations. Some context shifts will cause little purging and faulting while others 

will cause moderate amounts of both. Except for the compressed traces, which attempted to change 

contexts with unnatural haste, no infonnation is currently available regarding span turnover rates in 

such interactive, display-oriented programming environments. Work needs to be done in this area 

before an informed evaluation of LOOM can be made. 

Two modes of system evolution will also impact the reference behavior of such an object-oriented 

environment. First of all. Smalltalk is a programming environment that has undergone substantial 

modification since its inception as Smal1talk-72 [SHOe]. Changes will undoubtedly occur for the 

forcseeable future, not only by the implementors. but also by the users. Except for the virtual 



CHAPTER 9. LOOM VERSUS A PAGED VIRTUAL MEMORY 115 

machine, the entire Smalltalk programming environment is under the immediate control of the user. 

Both ofticial releases and private systems will evolve with time, meaning that typical user sessions 

and computations will vary. 

The reference behavior of any such system is also dictated by the performance constraints imposed 

by the hardware, microcode, and software implementing the underlying virtual machine and the 

top-level system. Perfonnance considerations typically affect the data structures and algorithms 

chosen to implement a desired feature. Users of the system are constrained not only by the set of 

existing and constructible tools and properties but also by the feasibility of implementing and 

running new applications. While larger sizes of primary memory may initially favor a paging 

scheme by moving the operating region to the right beyond the crossover point, span sizes may 

drastically increase as larger and more ambitious subsystems evolve. Computations requiring a 

profusion of intermediate data structures, heavily-accessed personal databases, and large-scale, 

detailed simulations may become feasible and thus arise in such a memory-rich computing 

environment. Such applications would shift the operating point to the left and favor a LOOM-like 

system. Other computations, which were feasible in smaller memory configurations, will continue to 

be used and will restrict this movement. What is important is the composite effect of system 

evolution, new applications, and core memory enlargements. Knowledge concerning the 

dependence of span size on total system size and/or core memory size is required before this net 

effect can be estimated and the appropriate type of virtual memory ascertained. 

9.7 An Evaluation of LOOM 

Long-term changes in the size of the entire system and individual spans, as well as the short-term 

fluctuations in computation size and span turnover, will tend to shift the crossover size ratio of the 

programming environment. The "better" virtual memory depends upon the location and movement 

of this ratio in addition to the particular cost function of the client. 

There are costs to a LOOM system besides paging perfonnance that must be considered. LOOM is 

a complex system that is much more difficult to fully design, implement, debug, maintain, and 

modify than a conventional paging scheme. Secondly, much of the computational overhead of a 

paged virtual memory can be eliminated via hardware assists and/or caching techniques that are 

readily supported by current machine architectures. Many facets of l.OOM, such as lambda 

resolution. the maintenance of up to three reference counts for each object, and the fact that 

variable-length sequences of information instead of fixed-length blocks are the units of swapping, 

require nontrivial algorithms. This complexity will be evident in the additional time, hardware, 

and/or software required to satisfy requests made to the virtual memory manager. Finally, the 

assumption that all leaves were clean is not true. Only experience with LOOM will provide the 

pertinent statistics. 

Balancing these cost<; are the obvious LOOM benefits of a high core utilization, pointer 

compression, and a relative invariance to the degradation of spatial locality. There are also a 

number of possible improvements to LOOM and the static grouping algorithm in usc. 
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Grouping strategies may be enhanced by treating code objects in a special manner. The current 

grouping schemes did not special-case CompilcdMethods and were probably penalized. Once a 

Smalltalk type system become~ reality. such grouping methods will be feasible and should yield 

substantial improvements in paging performance for LOOM. Packing together code objects without 

large literals intervening (as was naively done in the OOZE and breadth-first initial placements) 

should realize gains. lntensive code-grouping efforts will also improve the performance of the 

paged virtual memory. However. incomplete utilization of CompiledMethods, in addition to 

primitives handled by the microcode, will limit the reduction in page faults for the paged virtual 

memory. Open questions include the worth of cleanliness grouping as well as hybrid graph

theoretic schemes that traverse the subtree corresponding to a node in a manner depending on the 

state of the node and its class. 

There are a number of possible improvements to LOOM. For example, empirical results in section 

8.3.6 have shown that an LRU ordering in the disk buffer outperformed a FIFO purging scheme. 

Various lambda-resolution and even object-prefetching schemes need to be implemented and 

evaluated. Purging policies. such as those that distinguish clean from dirty or young from old 

objects. also require investigation. Finally, a virtual memory environment such as LOOM, which 

maintains a strict disk-core separation, may also be used to explore dynamic grouping schemes that 

place and purge objects related by creation time and/or connectivity. 

There is no doubt that LOOM will be an excellent testbed for virtual memory research. Empirical 

evidence has shown that LOOM will substantially outperform a conventional paged virtual memory 

for poorly organized initial placements and for memory sizes well below the knee of the page fault 

function. Small reference counts and similar object usage pa~terns in wildly different computations 

have indicated that useful static groupings are efficiently constructed by simple algorithms. [n 

addition, the possibility of dynamic grouping, either by real-time copying [BA KE) or swapping 

mini-pages [BAER76], the relative ease of implementing a paged virtual memory, and the absence 

of huge performance gains for moderate and large memory sizes dictate against LOOM. 

In addition to primary memory sizes that are small relative to the expected computations and 

unstable initial placement'), two other scenarios strongly favor LOOM. First, some machine 

architectures "require" short pointers for acceptable performance. Memory and cache word size, 

register length, and bus and data path widths all constrain the maximum pointer size that the virtual 

machine can efficiently handle on every object reference. LOOM guarantees that all references seen 

by the virtual machine are short regardless of the total number of objects in the system. The 

problem of maintaining a compact representation for the set of name-location pairs for recently used 

objects is solved by LOOM's two separate name spaces. Short of paging an object table (OT) that 

encompasses the entire system, the corresponding requirement for the paged virtual memory has not 

been adequately addressed nor analyzed. The time and space overhead of any such scheme will 

enhance the relative performance of LOOM. This enhancement could be substantial if references to 

the OT show little spatial locality. Secondly, in relational data base systems and other applications 

where relationships are indirect and not by pointers, reference counts and pointers are meaningless 
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because objects can never become inaccessible and the boolean connectivity of the data docs not 

constrain the motion of queries in data space. If high quality initial placements that are 

independent of queries cannot be found, then any static arrangement will be comparable with the 

random initial placement lIsed in the simulations and a LOOM-like system will be preferable. 
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10. Dynamic Characteristics and Degradation of Initial Placements 

t 0.1 Introduction 

A tinal set of measurements were made using the Smalltalk-80 emulator in order to determine the 

relative amount of time computations spend updating the structure of objects grouped into some 

initial placement. Besides indicating the level of degradation of the initial placement in a short 

computation, this data may be used to evaluate and design memory management policies for 

dynamically created objects, since temporary structures cause most of the memory management 

workload. These studies concentrated on memory allocation and reclamation, object lifetimes, and 

dynamic pointer distances. Data from which the following discussion draws may be found in 

Appendix D. 

Unlike all preceding monitored simulations, the nm-time stack was included in this analysis. The 

contexts comprising the stack are ordinary Smalltalk objects whose behavior accounts for much of 

the dynamic characteristics of the system. Requests for new objects were explicitly caught and 

processed, while object destructions were noticed by checking the reference count of an object 

whenever a pointer to it was clobbered. Except for initializing the pointer fields of a new object to 

nil, all pointer field updates were tallied and processed. On the other hand, the act of reading and 

following a pointer value was neglected by the statistical package. 

Five distinct computations were monitored, including sending an error message, displaying text in a 

window on the screen, determining the set of classes prepared to accept a specific message selector. 

compiling a method, and opening a browser. Since opening a browser required an enormous 

number of bytecodes, that sequence was arbitrarily halted. All other computations were run to 

completion. 

Simple counts of events indicate that most of the effects of the computation were transient and did 

not substantially restructure the graph of existing objects. This fact highlights the futility of 

investigating initial placement stability via detailed simulations. [n order to have even a small effect 

on the set of objects in secondary storage, an actual running system or a high-level simulator must 

be employed. Nevertheless, a number of interesting observations were made concerning detailed 

aspects of object lifetimes and characteristics of new pointers. 

The total number of store operations was slightly ·larger than the number of bytecodes executed~ 

On the average. one pointer was updated for every bytecode interpreted by the virtual machine. 

Although thousands of object instances were created. few remained at the end of the computation. 

A small number of old objects that had existed before the computation began also perished. 
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10.2 Stack-like Allocation and Oeallocation 

One view of the behavior of dynamically created objects is that their existence is stack-like. 

According to this model. given a set of objects used by some computation, the object in that set that 

is the most likely to perish is. the youngest. While this view was not entirely validated, the lifetime 

behavior of most objects seemed to follow a stack-like discipline. !\ related question suggested by 

the analysis is the correlation between the deallocation of a stack frame and the deallocation of 

objects created in that stack frame. 

!\ stack of existing dynamically created objects was maintained to determine the validity of this 

model. Newly created objects were pushed onto this stack while freed objects were removed. If the 

destroyed object was not at the top of the stack, then nothing else occurred. Otherwise. the stack 

was repeatedly popped until its top again referred to an' existing object. 

[n general, . the maximum stack length for a trace was only slightly longer than the stack size at the 

end of the computation. Most of the stack was empty, since the number of existing objects was 

much less than the stack length. A small number of objects violated the assumption of stack-like 

lifetimes and caused these conditions. Without compaction, the stack size grew as the computation 

proceeded and would tend to grow without bound for arbitrarily long computations. 

To remedy this situation, compaction was assumed to be performed continuously. When an object 

was deallocated, its distance from the top of the stack was recorded. Call this offset the long 

deallocalion distance. This object was removed from the stack and all younger objects were moved 

one slot to fill the gap. !\ perfect stack-like behavior would cause only zeros to be recorded and no 

movement of younger objects. Although some empirical distances were nonzero, the third quartiles 

and means of the long deallocation distance distribution were either zero or one. The durations of 

most objects followed a stack discipline. 

All objects involved in the computation that were not created dynamically were assumed to be 

pennanent or old. Whenever a permanent object is given a reference to a new object, there is a 

high probability that the death of the new object and all its descendants will seriously violate the 

stack ordering. To account for this likelihood, whenever a reference to a new object was given to 

an old object, the new object and any of its' descendants that were new were removed from the 

stack and became old. Again, younger objects moved as many stack slots as necessary in 'order to 

eliminate the resulting empty spaces. The obvious parallel in an actual implementation would be 

the copying of the entire new structure from new space to old space. [n this scenario. the stack only 

contains references to new objects that are not referenced directly nor indirectly by old objects. 

Pointers are unconstrained in either space and pointers may go from new space to old space but not 

vice versa. When an object in new space perishes. call Its offset from the top of the stack its short 

deallocation distance. For each trace. the long and short deallocation distance distributions were 

quite similar. Removing these objects from the stack had only a negligible effect on the quartiles. 

means, and medians of the deallocation distance functions. In two cases, however, the maximum 

deallocation distance was drastically reduced. 
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At the end of each computation, less than 2% of all dynamically created objects still existed. 

However, at least 75% of the words copied from new space to old space still belonged to existing 

objects. Most of the copying was not done in vain. Except for the fifth trace, which represented an 

uncompleted computation, at least 90% of the remaining new objects were automatically transferred 

to old space by the aforementioned algorithm. This simple predictive mechanism had a high degree 

of accuracy and may thus be profitably used in memory management schemes that distinguish 

between new space and old space. 

10.3 Object Lifetime 

Consider a clock associated with the Smalltalk virtual machine that ticks once for each (extended) 

bytecode executed. Assume a new object A is created at time tc and becomes inaccessible at time 

td' Define the lifetime of A to be td-tc If a computation c spans at least the period from tc to td' 

then A is a transient object in computation c. Logging allocation requests and carefully monitoring 

reference counts allowed lifetimes for all transient objects to be detennined. Lifetime distributions 

for the computation sequences were highly skewed and had medians in the range from 13 to 30 and 

means in the interval from 264 to 696 (Figure 10-1). tv1cans much larger than even the third 

quartile were the result of both long-lived stack frames and objects, as well as local objects passed 

by result up the can stack. These results are not surprising since a majority of objects had stack-like 

lifetimes. Batson and Brundage [BATS77] reported similar findings of skewed lifetime distributions 

for arrays and contours (stack frames) in an empirical study of Algol programs. 

10.4 Dynamic Pointer Distance 

Associated with each new object is its time of creation. Let the creation time for all pennanent 

objects be minus infinity. For two objects A and B with respective creation times ta and tb' assume 

A contains a non-immediate reference to B. Hence B is not a SmallInteger nor the "nil" object. 

Let the dynamic distance of this pointer from A to B be ta -tb' Note that positive distances point 

backward in time while negative distances point forward in time. If B is old and A is not, then the 

distance is plus infinity. If A is old and 13 is not, the distance is minus infinity. If both are new, 

the distance is detennined by ordinary subtraction. Otherwise, both objects are old and the distance 

is undefined. 

Based upon the nature of the CONS operation and the infrequent use of RPLACA and RPLACD 

operators, researchers in Lisp systems have predicted that most dynamic pointer distances will be 

positive [LlEB]. That is, most references will be from a list cell to an older list cell. These 

assumptions are not directly applicable to Smalltalk because of the high use of primitives and 

CompiledMethods that update old pointer fields and the fact that stack frames are ordinary objects. 

The dynamic distance of the new reference in each store operation was recorded for the five 

monitored computation sequences. Not surprisingly, the bulk of the store operations updated new 

objects. However, slightly more than half of these pointers that were non-immediate referred to 

permanent objects. Call these operations new-old stores. Every MethodContext frame on the stack 
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referred to an existing CompiledMethod and hence code references contributed a substantial 

number of new-old stores. All global variables, method literals. and classes were old and caused 

additional new-old references. These pointers were primarily used in a read-only mode, since very 

few old objects were ever updated or destroyed. The small number of store operations that created 

links from permanent objects to new structures severely limited the required amount of copying 

from new space to old space. 

Self-reference, which arose when a pointer to the current stack frame was pushed on the stack. 

caused a few references to have a dynamic distance of zero. Since stack frames were necessarily 

created before local objects were defined, creating a new object and pushing it on the stack usually 

resulted in a reference with a small but negative dynamic distance. On the other hand, all message 

arguments were necessarily created before the corresponding stack frame was activated. Pushing an 

argument onto the stack usually resulted in a small but positive dynamic distance. This positive 

distance would tend to balance the small negative distance recorded when the same argument was 

first pushed on the stack in the calling environment. Unlike a Lisp-like system, where one exper~~ 

almost all references to point backwards in time, references in new Smalltalk objects pointed 

forward in time quite often. For example, the ratio of tinite positive pointers to finite negative 

pointers ranged from l.59 to 6.85. Pointers from new space to old space have a positive infinite 

distance. When these infinite pointers are also considered, the interval ranged from 4.40 to 17.47. 

These ratios indicate that pointers forward in time may be common but in general are exceptions 

rather than the rule. 

While most statistics for negative pointer distances were smaller than their positive counterparts, all 

pointer distance distributions were skewed (Figures 10-2. and 10-3). In 9 of 10 cases, for example. 

the mean distance was far larger than the median. Mean positive pointer distances were in the 

interval from 1832 to 10,417, while negative pointers had mean distances from -599 to -3897. 

Median pointer distances were much smaller in magnitude and fell into the ranges from 8 to 375 

and from -2 to -12. 

10.5 Degradation of an Initial Placement 

The preceding analysis indicates that efforts at improving algorithms that manage primary memory 

ought to concentrate on the set of newly created objects and operations contained within this set. A: 

simple transport rule, which copies objects from new space to old space, filters out a significant 

portion of the long-lived objects. A conventional mark and sweep garbage collector in new space 

would perform well at the end of a computation, because few accessible objects would remain in 

new space. One penalty, however, is the initial requirement of enough free space to allow the." 

computation to run to completion without reclaiming core. A second consideration is the overhead 

of checking for old-new pointers. 

White emphasizing the asymmetry in the update frequency of new and old objects, the speed 

limitations of the Smalltalk emulator prohibited a full investigation into the rate at which an initia~, 

placement degrades with usage. There are two key methods by which an initial placement will 
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evolve over time. First. old objects arc updated and destroyed at a relatively slow ratc. This 

process corresponds to a gradual modification of the underlying graph structure and the elimination 

of unconnectcd components. A second aspcct of this modification is the introduction of new 

permanent objects that were dynamically created, matured, and f()rced to the disk. 

Snapshots of an in-core version of Smalltalk were made once evcry four hours over a twelve-hour 

usage span. Sessions involving the implementation, debugging, and usage of the software package 

that tallied and processed the dynamic events reported in this chapter comprised the bulk of the 

usage. A depth-first initial placement was computed for the objects of the first snapshot. This 

placement was used to calculate static pointer distances and the fraction of these distances that were 

less than 256 words in all four snapshots. The four distance distributions were quite similar, while 

the on-page pointer ratio slowly declined from 16.9% to 16 . .1%. As measured by static pointer 

distance distributions, this initial placement degraded only slightly after a moderate amount of use. 

Needless to say, these measures only considered objects that occurred in both the initial placement 

and the specific snapshot. Objects present in a snapshot but not in the initial placement were not 

included in the analysis. This single sequence of snapshots is not indicative of a user modifying 

more than a small collection of classes. Most of the computation was concentrated in a small part 

of the system. which mayor may not be typical. Work is needed to detennine the net effect of 

new objects matured to the disk and to design, implement, and test a variety of dynamic grouping 

algorithms that handle the transfer. placement, and movement of ncw pClmanent objects. Only 

then will the true degradation rates of initial placements and the need for periodic static rcgroupings 

be known. 
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II. Conclusions 

The key finding of this thesis arose from a direct empirical comparison between object-oriented and 

page-swapping virtual memories. [n terms of the number of page fault';, LOOM outperformed a 

conventional virtual memory for a range of small memory sizes that depended on the quality of the 

initial placement generated by the grouping strategy. The better virtual memory design depends on 

the existence of quality initial placements and the rate at which they become obsolete. 

[n order to review the remaining major conclusions of this thesis. I have included a recapitulation of 

each chapter as well as warnings for areas not addressed. After discussing LOOM, this chapter 

provides suggestions for future research. 

1l.1 A Review 

Chapter 2 provided a quick introduction to the LOOM virtual memory and the Smalltalk system. 

While LOOM logically swaps objects between memory levels, it always transfers physical pages 

between core and disk. Under certain circumstances. objects are the appropriate entities to be 

grouped when restructuring information in the secondary memory to enhance paging performance. 

On the average. objects should be smaller than a single disk page but not much more than an order 

of magnitude smaller. 

The emulator for the Smalltalk~80 virtual machine that was constructed to produce actual execution 

traces was described in Chapter 3. While the emulator did not generate all references made by the 

virtual machine. the missing fraction was negligible. The traces discussed in this thesis are therefore 

representative and complete. 

Chapter 4 investigated the basic reference tendencies of Smalltalk by examining event traces for five 

diverse operations that frequently occur in typical user sessions. Some statistics highlighted the 

differences between the access patterns of code objects from those of data objects. However. these 

distinctions did not warrant special treatment by cache management schemes. main memory 

managers, or grouping strategies. Object size distributions supported the claim that objects are the 

appropriate entity to group on disk pages. The observed locality of reference predicted a substanti~l 

reduction in the size of event traces by simple compression schemes. 

The next chapter presented nine static grouping schemes. A static analysis of the initial placements 

generated by these grouping algorithms partitioned them into five categories. Under two static 

measures of similarity. initial placements within a category were remarkably alike. while those in 

different categories were not alike. This partitioning extended somewhat to the dynamic domain. 

Initial placement<; in the same category had similar paging perfonnanc~s. The converse of this 

statement. however, did not always hold. 
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Chapter 6 described a one-pass compression algorithm that reduced the length of event traces 

intended to be used as input to virtual memory simulations. If a few simple requirement') are met 

by the simulation, this algorithm guarantees a weak equivalence between the initial and compressed 

reference traces. A reduction ratio of 100: 1 was attained. 

The effects of static grouping on the dynamic perfomlance of a page-swapping virtual memory were 

presented in Chapter 7. Any of the realizable grouping strategies substantially reduced the number 

of page faults caused by an ungrouped initial placement. Performance differences between the 

grouping schemes were not relatively significant. The average utilization of main memory, as 

opposed to the particular grouping strategy, was the dominant factor. 

Chapter 8 described the effects of static grouping on the object-oriented virtual memory LOOM. 

These grouping schemes realized limited performance gains,· since LOOM was able to perform 

rather well in the face of an ungrouped initial placement. Other virtual memory policies and 

parameters played a secondary role in determining the number of page faults and were essentially 

independent of the initial placement. 

The following chapter reported the direct empirical comparison between the object-oriented and 

page-swapping virtual memories. In tenus of the number of page faults, LOOM outperformed the 

conventional virtual memory for a range of small memory sizes. Similar intervals were obtained for 

warm starts, cold starts, simulations that did reference counting, and those that did not. However, 

the length of this interval varied inversely with the quality of the initial placement. 

Chapter 10 briefly examined the memory management problems of Smalltalk and pointed out the 

need to efficiently handle dynamically created objetts, since most have extremely short lifetimes. 

Although most updated references in newly created objects pointed backwards in time, object 

lifetimes were not governed by a strict stack discipline. 

While the Smalltalk-80 emulator provided these novel results, its nature prohibited the investigation 

of other related areas. Computation size, turnover rate, and composition could not be easily 

measured. The empirical comparisons between the two types of virtual memories could not be 

directly used to answer hard questions concerning real or imagined systems. Issues of initial 

placement stability were not thoroughly addressed, and the entire domain of dynamic grouping was 

avoided. 

1l.2 Recommendations 

Inherent difficulties in implementing an object-swapping scheme must be considered before the 

choice of a virtual memory type is finalized. Potential performance benefits provided by LOOM 

must be carefully weighed against the costs. Such an analysis considers the interactions between the 

physical and virtual environments. Primary memory size is the one important physical parameter. 

The size and nature of the current and future computations, the existence of good grouping 

algorithms, and the stability of quality initial placements are the remaining inputs. These three 
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factors detennine the nominal position of the crossover point. the short term fluctuations about this 

point. and the long-term trends that translate this point. A comparison between the distribution of 

the crossover point locations and the physical memory size will indicate the relative paging 

performance an object-oriented virtual memory would be expected to provide. 

LOOM should not be viewed as a quick virtual memory implementation that will function as a 

panacea. Instead, such a scheme must be considered as part of a long-tenn research project whose 

success cannot be evaluated without a running prototype. An actual implementation of LOOM can 

be used to validate or invalidate the results presented in this thesis and e,~plore the issues side

stepped by simplifications. Of critical importance to a page-swapping virtual memory are the 

questions of initial placement stability and the existence of efficient dynamic grouping schemes. A 

rapid degradation of the initial placement in the direction of a random grouping will substantially 

shift the crossover point. A real system will not be burdened by the speed constraints encountered 

in emulations and simulations and can measure this degradation rate. Experimentation can easily go 

beyond the bounds established by this study in attempting to solve these problems. If good 

arrangements are inherently stable or effective dynamic algorithms can be found. then the 

advantages of LOOM will be more than offset by the costs for memory sizes comparable to the 

expected span of computations. 

11.3 Directions for Future Research 

Simulations of LOOM have identified a number of important considerations that can substantially 

affect the paging perfOlmance of object-swapping virtual memories. I,ambda resolution schemes. 

object-prefetching policies, and. purging algorithms need to be closely examined in isolation. with 

respect to each·" other, and in conjunction with different types of initial placements. 

The static grouping algorithms employed in this study emphasized the object-fetching behavior of 

the virtual machine using either a priori or a posteriori knowledge. Just as important is the 

minimization of disk accesses for purging policies and lambda resolution schemes. New 

restructuring techniques that are cognizant of these characteristics should be designed. evaluated, 

and compared with the set of simple algorithms used here. 

The nature and extent of dynamic modification to the initial placement needs to be investigated. 

New objects are constantly matured and added to the set of permanent objects. Fields are 

continuously updated and old objects eventually perish. Dynamic grouping [BAER76]. copying 

[BAKE, SVOB]. and maturing techniques deserve an examination for both object-oriented and 

page-swapping virtual memories. 

The effects of memory reclamation algorithms, such as reference counting, [rcal-time] garbage 

collection, and hybrid schemes. will certainly depend on the initial placement and virtual memory 

type. [t may be the case that both static and dynamic grouping schemes should be tuned to the 

anticipated memory management policies. 



CHAPTER 11. CONCLUS[ONS l27 

Finally, the experiments and measurements performed on Smalltalk-80 ought to be duplicated on 

other object-oriented, interactive programming environments in order to determine whether the 

reported results apply to only one system or characterize general computational tendencies. 
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Appendix A 

A-O. Basic Data 

Trace All Code Data All Primitives Primitive 
Number References References References Primitives Caught Percentage 

#1 144K 81,157 66,299 7543 6327 83.9% 
#2 144K 93,358 54,098 6242 5829 93.4% 
#3 144K t02,161 45,295 6791 5688 83.8% 
#4 144K 95,256 52,200 8446 7544 89.3% 
#5 144K 36,456 111,000 2139 1883 88.0% 

Trace ByteCodes All Size of All New Size of New 
Number Executed Objects Objects Objects Objects 

#1 39,527 705 49,214* 89 1442 
#2 32,556 1240 52,427* 393 2381 
#3 37,042 878 18,079 186 1542 
#4 40,000 723 51,099* 85 2625 
#5 14,044 422 46,761 * 100 899 

*Includes the 32K bitmap 
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A-I. Size Distribution 

MIN MAX MED Ql Q3 MEAN ST. DEV. 

All 2 32K 10 5 17 25 354 
All <2K 2 1593 lO 5 17 19 48 
All Code 4 1201 17 12 34 31 47 
All Code <2 K 4 1201 17 12 34 31 47 
All Data 2 32K 8 4 14 22 414 
All Data <2K 2 1593 8 4 13 14 47 

Static Size Distribution 

MIN MAX MED Ql Q3 MEAN ST. DEV. 

All<2K 2 502 10 4 20 24 50 
All Code (2K 4 502 18 10 36 34 53 
All Data <2K 2 485 5 4 10 14 45 

Quasi-Static Size Distribution # 1 

MIN MAX MED Ql Q3 MEAN ST. DEV. 

All <2K 2 502 9 4 17 16 30 
All C.-de <2 K 4 502 18 10 36 32 47 
All Data <2K 2 258 5 4 10 9 15 

Quasi-Static Size Distribution #2 

MIN MAX MED Ql Q3 MEAN ST. DEV. 

All (2K 2 515 13 5 20 21 36 
All Code (2K 4 260 20 11 36 33 40 
All Data <2K 2 515 10 5 20 15 33 

Quasi-Static Size Distribution # 3 

MIN MAX MED Ql Q3 MEAN ST. DEV. 

All (2K 2 530 12 -5 24 26 52 
All Code (2K 4 473 19 12 36 33 43 
All Data (2K 2 530 5 4 10 18 59 

Quasi-Static Size Distribution #4 

MIN MAX MED Ql Q3 MEAN ST. DEV. 

All (2K 2 502 10 4 21 25 48 
All Code (2K 4 502 16 7 36 40 63 
All Data <2K 2 258 4 4 10 11 21 

Quasi-Static Size Distribution # 5 
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MIN MAX MEl) Ql Q3 MEAN ST. DEV. 

All 2 32K 41 14 182 5864 12,370 
All (2K 2 502 27 II 68 67 98 
All Code 4 502 41 25 116 74 89 
All Code (2K 4 502 41 25 116 74 89 
All Data 2 32K 41 10 32K 12,953 15,780 
All Data (2K 2 485 LO 5 34 52 113 

Dynamic Size Distribution # 1 

MIN MAX MED Ql Q3 MEAN ST. DEV. 

All 2 32K 34 10 68 2615 8711 
All(2K 2 502 27 10 43 54 80 
All Code 4 502 36 22 68 66 85 
All Code (2K 4 502 36 22 68 66 85 
All Data 2 32K 10 10 258 7013 13,277 
A 11 Data (2 K 2 260 10 10 10 29 60 

Dynamic Size Distribution #2 

MIN MAX MED Ql Q3 MEAN ST. DEV. 

All 2 515 27 to 65 51 66 
All (2K 2 515 27 10 65 51 66 
All Code 4 260 36 25 68 65 68 
All Code (2K 4 260 36 25 68 65 68 
All Data 2 515 10 10 10 19 46 
All Data (2K 2 515 10 10 10 19 46 

Dynamic Size Distribution # 3 

MIN MAX MED Ql Q3 MEAN ST. DEV. 

All 2 32K 33 14 70 3175 9513 
All (2K 2 530 27 12 68 64 99 
All Code 4 473 34 25 68 64 80 
All Code (2K 4 473 34 25 68 64 80 
All Data 2 32K 10 10 32K 8852 14,343 
All Data (2K 2 530 10 10 34 62 134 

Dynamic Size Distribution # 4 

MIN MAX MED Ql Q3 MEAN ST. DEV. 

All 2 32K 32K 68 32K 21,204 15,278 
All (2K 2 502 30 to 68 80 127 
All Code 4 502 40 20 116 103 141 
All Code (2K 4 502 40 20 116 103 141 
All Data 2 32K 32K 32K 32K 28,134 10,761 
All Data (2K 2 258 10 10 20 19 32 

Dynamic Size Distribution # 5 
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A-2. Fractional Utilization 

M[N MAX MEl) Ql Q3 MEAN ST. DEV. 

All 0 lOO 50 20 68 45 28 
All Code 3 92 54 25 68 48 24 
All Data 0 lOO 33 20 71 43 30 

Fractional Utilization # 1 

MIN MAX MED Q1 Q3 MEAN ST. DEV. 

All 2 100 50 10 75 45 33 
All Code 3 93 51 15 68 48 25 
All Data 2 100 33 10 75 45 34 

Fractional Utilization #2 

MIN MAX MED Q1 Q3 MEAN ST. DEV. 

All 0 100 29 7 70 39 32 
All Code 3 91 57 40 73 53 25 
All Data 0 100 25 5 67 35 32 

Fractional Utilization # 3 

MIN MAX MED Ql Q3 MEAN ST.DEV. 

All 0 100 40 20 74 44 29 
All Code 3 89 54 35 67 49 23 
All Data 0 100 30 10 75 41 32 

Fractional Utilization #4 

MIN MAX MED Q1 Q3 MEAN ST. DEV. 

All 1 100 59 20 75 51 30 
All Code 3 94 45 14 60 42 26 
All Data 1 100 75 25 75 56 31 

Fractional Utilization # 5 
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T race Length MIN MAX MED Ql Q3 MEAN ST. DEY. 

IK 5 77 24 14 57 33 24 
2K 5 100 25 13 57 36 26 
4K 5 1O0 37 15 68 40 26 
8K 5 100 37 15 68 40 26 
16K 5 100 40 20 74 42 27 
32K 0 100 40 20 75 44 27 
64K 0 100 47 20 75 45 28 
144K 0 100 50 20 68 45 28 

Incremental Fractional Utilization # 1 (All) 

Trace Length MIN MAX MED Q1 Q3 MEAN ST. DEV. 

lK 0 100 20 14 45 31 23 
2K 0 100 25 20 55 34 24 
4K 0 100 30 20 64 38 25 
8K 0 100 30 20 73 41 27 
16K 0 100 40 17 73 42 27 
32K 2 100 44 20 75 45 28 
64K 2 100 40 13 75 45 33 
144K 2 100 50 10 75 45 33 

Incremental Fractional Utilization #2 (All) 

Trace Length MIN MAX MED Ql Q3 MEAN ST. DEV. 

1K 0 80 25 14 45 31 20 
2K 2 80 25 14 50 33 21 
4K 2 86 25 14 60 36 25 
8K 3 100 30 14 67 39 28 
16K 0 100 37 14 68 42 31 
32K 0 100 39 14 76 43 32 
64K 0 100 40 13 75 44 31 
144K 0 100 29 7 70 39 32 

Incremental Fractional Utilization # 3 (All) 

Trace Length MIN MAX MEl) Q1 Q3 MEAN ST. DEY. 

lK 0 75 20 14 43 29 20 
2K 5 77 30 15 60 37 24 
4K 5 86 30 15 65 38 25 
8K 5 89 33 15 68 41 26 
16K 5 95 46 20 7S 44 27 
32K 3 100 50 20 7S 45 27 
64K 0 100 48 20 75 46 30 
144K 0 100 40 20 74 44 29 

Incremental Fractional Utilization #4 (All) 

Trace Length MIN MAX MED QI Q3 MEAN ST. DEV. 

IK 0 77 20 10 29 23 20 
2K 1 77 20 10 29 23 20 
4K 1 86 20 10 40 29 22 
8K 1 100 25 14 57 36 26 
16K 1 100 30 14 74 41 29 
32K 1 100 50 17 75 47 30 
64K 1 100 54 20 75 49 30 
144K 1 100 59 20 7S 51 30 

Incremental Fractional Utilization #5 (All) 
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Trace Length M.IN . MAX MEl) Q1 Q3 MEAN ST. DEY . 

1K 5 77 37 14 57 35 23 
2K 5 77 37 14 57 35 23 
4K 5 85 46 14 60 42 25 
8K 5 85 46 14 60 42 25 
16K 5 89 50 15 67 46 25 
32K 2 89 54 33 65 47 24 
64K 2 92 54 36 67 50 23 
144K 3 92 54 25 68 48 24 

Incremental Fractional Utilization # 1 (Code) 

Trace Length MIN MAX MED Q1 Q3 MEAN ST. DEV. 

1K 3 85 45 14 59 39 25 
2K 3 85 45 14 60 42 24 
4K 3 85 50 14 65 43 25 
8K 3 85 50 14 65 45 25 
16K 3 88 50 14 65 46 25 
32K 3 89 51 14 68 47 25 
64K 3 89 50 15 68 47 25 
144K 3 93 51 15 68 48 25 

Incremental Fractional Utilization #2 (Code) 

Trace Length MIN MAX MED Ql Q3 MEAN ST. DEY. 

lK 5 71 39 14 57 37 21 
2K 5 71 45 14 56 37 21 
4K 5 86 50 14 64 44 24 
8K 3 91 54 14 68 48 26 
16K 3 91 52 19 65 47 26 
32K 3 91 54 25 70 49 26 
64K 3 91 54 39 73 51 25 
144K 3 91 57 40 73 53 25 

Incremental Fractional Utilization #3 (Code) 

Trace Length MIN MAX MED QI Q3 MEAN ST. DEY. 

IK 5 68 38 14 57 33 22 
2K 5 77 46 15 60 40 23 
4K 5 79 45 14 62 40 24 
8K 5 89 50 . 14 63 43 25 
16K 5 89 54 15 66 47 25 
32K 3 89 53 15 63 46 24 
64K 3 89 54 35 67 49 23 
144K 3 89 54 35 67 49 23 

Incremcntal Fractional Utilization #4 (Code) 

Trace I.cngth MIN MAX MEl) Ql Q3 MEAN ST. DEY. 

lK 11 77 44 13 56 39 22 
2K 11 77 44 13 56 39 22 
4K 5 86 40 14 63 41 25 
8K 3 88 40 14 59 40 25 
16K 3 88 40 14 59 40 25 
32K 3 89 43 14 60 41 26 
64K 3 94 45 14 63 42 26 
144K 3 94 45 14 60 42 26 

Incremental Fractional Utilization # 5 (Code) 
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Trace Length MIN MAX MEO Q1 Q3 MEAN ST.OEV. 

lK 5 75 20 13 50 32 25 
2K 5 100 25 13 75 36 27 
4K 5 100 25 20 75 39 27 
8K 5 100 25 20 75 39 27 
16K 5 100 25 20 75 40 28 
32K 0 100 30 20 75 41 29 
64K 0 100 30 20 75 42 31 
144K 0 100 33 20 71 43 30 

Incremental Fractional Utilization # 1 (Data) 

Trace Length MIN MAX MED Ql Q3 MEAN ST. DEV. 

lK 0 100 20 20 25 26 20 
2K 0 100 25 20 30 30 22 
4K 0 100 25 20 64 35 25 
8K 0 100 25 20 75 38 28 
16K 0 100 25 20 75 39 29 
32K 2 100 29 20 75 42 30 
64K 2 100 25 10 75 43 35 
144K 2 100 33 10 75 45 34 

Incremental Fractional Utilization #2 (Data) 

Trace Length M[N MAX MEO Q1 Q3 MEAN ST.DEV. 

lK 0 80 20 11 30 26 19 
2K 2 80 25 20 33 30 21 
4K 2 86 20 11 40 31 "24 
8K 4 100 25 11 67 35 28 
16K 0 100 25 10 80 40 33 
32K 0 100 25 10 80 41 34 
64K 0 100 28 10 80 41 33 
144K 0 100 25 5 67 35 32 

Incremental Fractional Utilization # 3 (Data) 

Trace Length M[N MAX MED Ql Q3 MEAN ST. DEV. 

lK 0 75 20 20 30 27 19 
2K 5 75 25 20 75 35 25 
4K 5 86 25 20 75 38 26 
8K 5 86 30 20 75 40 27 
16K 5 95 30 20 75 43 28 
32K 5 100 30 20 75 44 29 
64K 0 100 30 10 75 44 34 
144K 0 100 30 10 75 41 32 

Incremental Fractional Utilization #4 (Data) 

Trace Length MIN MAX MEl) Ql Q3 MEAN ST. DEV. 

lK 0 67 10 8 20 15 14 
2K 1 67 10 8 20 16 14 
4K 1 83 20 10 25 22 17 
8K 1 100 25 10 50 33 27 
16K 1 100 25 20 75 41 31 
32K 1 100 67 20 75 51 31 
64K 1 100 67 20 75 53 31 
144K 1 100 75 25 75 56 31 

Incremental Fractional Utilization # 5 (Data) 
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1\-3. Access Frequency 

MIN MAX MED Ql Q3 MEAN ST. DEV. 

All 1 26K 16 5 59 209 1221 
All Code 1 8K 31 8 116 236 915 
A\1 I )ata 1 26K lO 3 24 183 1454 

Access Frequency # 1 

MIN MAX MED Ql Q3 MEAN ST. DEV. 

All 1 12K 6 1 24 118 554 
All Code 1 7K 34 10 152 256 665 
All Data 1 12K 6 1 7 61 473 

Access Frequency #2 

MIN MAX MED Ql Q3 MEAN ST. DEV. 

All 1 6K 16 4 70 167 538 
All Code 1 6K 74 18 246 355 758 
All Data 1 4978 9 2 28 76 355 

Access Frequency # 3 

MIN MAX MED Ql Q3 MEAN ST. DEY. 

All 1 14K 14 5 64 203 839 
All Code 1 9K 24 8 125 250 832 
All Data 1 14K 10 3 25 150 842 

Access Frequency #4 

MIN MAX MED Q1 Q3 MEAN ST. DEV. 

All 1 95K 32 13 140 349 4706 
All Code 1 3370 94 30 246 181 321 
All Data 1 95K 17 .8 64 502 6491 

Access Frequency # 5 
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1\-4. lntcrrcfercncc Headway 

MIN MAX MEl) Ql Q3 MEAN ST. DEV. 

All 108K 2 1 23 180 2643 
All Code 74K 1 1 18 t34 1960 
An Data 34K 1 1 6 50 778 

Interrefcrcnce Headway # 1 

MIN MAX MEl) Q1 Q3 MEAN ST. DEV. 

All 1 128K 2 1 56 307 4234 
All Code 1 86K 1 1 41 233 3115 
All Data 1 31K 2 1 16 78 1149 

Interreference Headway #2 

MIN MAX MED Ql Q3 MEAN ST. DEV. 

All 1 97K 7 1 51 239 1876 
All Code 1 65K 1 1 32 139 1055 
All Data 1 30K 8 1 21 100 767 

Interreference Headway # 3 

MIN MAX MED Ql Q3 MEAN ST. DEV. 

All 1 93K 1 1 60 118 1513 
All Code 1 67K 1 1 45 74 1095 
All Data 1 25K 2 1 18 44 520 

lnterreference Headway # 4 

MIN MAX MED Q1 Q3 -MEAN ST. DEV. 

All 1 108K 1 1 1 176 1518 
AU Code 1 20K 1 1 24 128 491 
All Data 1 91K 1 1 1 57 950 

Interreference Headway # 5 
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A-S. lnstance to Class Compression 

Trace 

N umber of Classes Above 90% 
Percent of A II Fixed Fields Touched 

1 

II 
11 

2 

11 
11 

3 

13 
6 

A-6. Reference Counts 

MIN MAX MED Q1 Q3 

All 1 127 1 1 2 
All < 127 1 llO 1 1 1 
1 < All < 127 2 110 5 3 7 

Static Reference Count 

MIN MAX MED Ql Q3 

All 1 127 1 1 4 
All < 127 1 112 1 1 4 
1 < All < 127 2 112 5 3 9 

Quasi-Static Reference Count # 1 

MIN MAX MED Ql Q3 

All 1 127 1 1 8 
All < 127 1 112 1 1 6 
1 < All < 127 2 112 7 4 19 

Dynamic Reference Count # 1 

MIN MAX MED Ql Q3 

All 1 127 1 1 5 
All < 127 1 104 1 1 5 
1 < All < 127 2 104 6 4 10 

. Quasi-Static Reference Count #2 

MIN MAX MEl) Ql Q3 

All 1 127 1 1 7 
All < 127 1 104 1 1 5 
1 <All < 127 2 104 7 3 10 

Dynamic Reference Count #2 

4 

7 
8 

MEAN 

3 
2 
7 

MEAN 

9 
5 

10 

MEAN 

18 
9 

22 

MEAN 

9 
5 

12 

MEAN 

16 
6 

15 

5 

9 
9 

ST. DEV. 

8 
5 
9 

ST. DEV. 

24 
11 
16 

ST. DEV. 

38 
21 
30 

ST. DEV. 

24 
11 
15 

ST. DEV. 

36 
16 
23 
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A -7. Selectors as a Percentage of Literals 

Type MIN MAX MED Ql Q3 MEAN ST. DEV. 

Static 0 100 78 50 100 73 
Quasi-Static # 1 0 100 75 58 100 73 
Dynamic # 1 0 100 95 60 100 78 
Quasi-Static #2 0 100 80 50 100 75 
Dynamic #2 0 100 87 50 100 77 

SELECTORS NON - SELECTORS FRACTION 

Static 
Quasi-Static # 1 
Dynamic #1 
Qua~i-Static #2 
Dynamic #2 

ByteCodes executed: 

10,737 
470 

8077 
523 

7454 

96,256 in Trace # 1 
95,901 in Trace #2 

5357 
218 

2048 
202 

2976 

66.7% 
68.3% 
79.8% 
72.1% 
71.5% 

29 
28 
28 
27 
28 
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Appendix B 

H-O. Abbreviations 

DFS -- depth-first search 
BFS -- breadth-first search 
10 -- using identity permutations 
Dyn -- permutations arising from dynamic information 
Refct -- permutations arising from reference counts 
Ooze -- based on the grouping for the Object-Oriented Zoned Environment virtual memory 
Hash -- a random grouping based on permuting the bits in the unique identifier of the object 
OPTi -- the optimal grouping based on the iLh compressed trace 

B-1. Static Pointer Distance* 

CLOSE** MIN MAX MED Q1 Q3 MEAN ST. DEV. 
BFSID 0.19% 0 1538 386 155 854 508 409 
BFSRefct 0.14% . 0 1535 408 149 879 520 424 
BFSDyn 0.20% 0 1539 386 155 854 507 409 
DFSIO 14.8% 0 1541 296 7 864 478 506 
DFSRefct 14.8% 0 1537 298 6 825 472 500 
DFSDyn 15.0% 0 1536 311 7 860 476 501 
Ooze 3.32% 0 1559 569 128 1199 630 513 
Hash 0.35% 0 1576 353 85 840 488 443 
OPT1 13.1% 0 244 69 17 134 80 67 
OPT2 12.4% 1 475 191 36 340 192 155 
OPT3 10.0% 1 352 81 35 167 103 84 

For the realizable groupings: 
Number of Objects: 17,268 
Space requirements: 404,384 (1580 pages) 
Total Pointers: 88,729 
Immediate Pointers: 31,027 
Non- Immediate Pointers: 57.702 

*All distances were rounded up to the nearest 256-word page. Smalllntegers and "nil" were defined to 
be immediate pointers. Only non-immediate pointers were considered in this analysis. 

**CLOSE is the percentage of non-immediate pointers which are within one page of their referent. 
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11-2. Neighbor Relation 

BFSID I3FSRefct BFSDyn DFSID DFSRefct DPSDyn Ooze Hash 

BFSID * 46.3% 73.L% 22.4% 23.1% 22.5% 18.9% 0.5% 
BFSRefct 46.7% * 45.5% 23.3% 23.0% 22.8% 19.0% 0.6% 
BFSDyn 73.5% 45.4% * 21.9% 22.7% 22.5% 19.3% 0.6% 
DFSIO 20.8% 21.5% 20.2% * 60.8% 59.4% 22.7% 0.2% 
DFSRefct 21.5% 21.1% 20.9% 60.8% * 58.9% 21.2% 0.3% 
DFSDyn 21.1% 21.1% 21.0% 59.8% 59.4% * 21.6% 0.3% 
Ooze 20.3% 20.2% 20.7% 26.3% 24.5% 24.8% * 2.2% 
Hash 0.5% 0.6% 0.5% 0.2% 0.3% 0.3% 1.9% * 
OPT1 4.6% 3.5% 4.6% 9.1% 8.6% 8.9% 8.1% 0.2% 
OPT2 14.5% 13.4% 14.4% 21.2% 20.1% 20.3% 36.1% 1.4% 
OPT3 6.3% 3.6% 6.6% 9.3% 8.4% 8.9% 10.5% 0.4% 

BFSfO * 46.2% 75.0% 21.7% 22.7% 21.9% 17.7% 1.0% 
BFSRefct 46.3% * 47.2% 23.7% 22.4% 22.3% 18.1% 1.0% 
BFSDyn 75.1% 47.2% * 22.0% 22.5% 21.9% 18.4% 1.0% 
OFSIO 19.5% 21.2% 19.7% * 59.9% 61.2% 21.5% 0.7% 
DFSRefct 20.5% 20.3% 20.4% 60.4% * 59.1% 20.2% 0.7% 
DFSDyn 19.9% 20.2% 19.9% 62.3% 59.2% * 20.0% 0.7% 
Ooze 19.2% 19.5% 19.9% 25.9% 24.2% 23.8% * 2.9% 
Hash 0.9% 0~9% 0.9% 0.7% 0.7% 0.7% 2.4% * 
OPTl 4.4% 3.8% 4.6% 8.3% 8.0% 8.0% 8.3% 0.3% 
OPT2 11.6% 11.5% 11.8% 18.5% 17.3% 17.6% 40.1% 1.7% 
OPT3 6.9% 4.3% 6.9% 7.9% 7.3% 7.3% 9.6% 0.4% 

BFSID * 46.9% 80.4% 21.3% 21.4% 19.8% 16.7% 1.3% 
BFSRefct 47.3% * 47.6% 21.3% 21.3% 21.1% 16.0% 1.3% 
BFSDyn 80.7% 47.3% * 20.9% 20.8% 20.3% 16.4% 1.3% 
OFSID 19.0% 18.8% 18.6% * 58.4% 52.7% 19.9% 1.4% 
DFSRefct 19.1% 18.9% 18.6% 58.5% * 59.7% 18.0% 1.4% 
OFSDyn 17.7% 18.7% 18.1% 53.1%' 60.0% * 17.9% 1.4% 
Ooze 18.1% 17.5% 18.0% 24.6% 22.3% 22.0% * 3.3% 
Hash 1.1% 1.1% 1.1% 1.4% 1.3% 1.3% 2.6% * 
OPT1 4.1% 4.0% 4.3% 7.6% 7.9% 7.3% 8.3% 0.4% 
OPT2 9.3% 9.3% 9.4% 15.4% 13.9% 14.6% 37.2% 1.8% 
OPT3 6.9% 4.4% 6.8% 6.9% 6.6% 6.6% 9.3% 0.6% 

Retained fraction of unordered pairs with page sizes of128, 256, and 512 words 

OPTI OPT2 OPT3 OPT1 OPT2 OPT3 OPT1 OPT2 OPT3 
(Page Size) 128 128 128 256 256 256 512 512- 512 

OPTI * 5.66% 8.40% * 5.06% 7.41% * 4.83% 6.52% 
OPT2 14.0% * 7.50% 13.8% * 6.17% 14.2% * 5.66% 
OPT3 17.4% 6.28% * 16.8% 5.23% * 15.0% 4.56% * 

Retained fraction of unordered pairs between optimal initial placements 



Page Sizc Ll(.;'SID 

128 72,970 
256 145,359 
512 283.048 

ApPENDIX B 

BFSRcfct BFSDyn DFS1D DFSRcfct DFSDyn Ooze 

73,582 73,360 67,795 67,765 68J26 78,429 
145,799 1-+5,651 130,596 Ul,809 13 2,153 157,686 
285,659 283,840 252,167 252,751 253,868 311,895 

Pagc Size OPTi OPT2 OPT] 

128 7386 19,513 15,580 
256 14,304 38,547 30,754 
512 27,123 74,612 59,878 

Number of unordered pairs in the specified neighbor relation 

R-3. Neighbor Relation under Continuous Displacement 

OFFSFl'* 
o 
4 
8 

12 
16 
20 
24 
28 
32 . 
36 
40 
44 
48 
52 
56 
60 
64 
68 
72 
76 
80 
84 
88 
92 
96 

100 
104 
108 
i12 
116 
120 
124 

DFSlO 
100% 
94.2% 
88.4% 
83.3% 
78.3% 
73.6% 
69.5% 
65.8% 
62.6% 
59.6% 
56.8% 
54.8% 
53.0% 
51.6% 
50.5% 
49.9% 
49.6% 
49.8% 
50.3% 
51.3% 
52.5% 
54.3% 
56.4% 
58.9% 
61.8% 
65.1% 
68.9% 
73.2% 
77.8% 
82.6% 
8~LO% 
93.6% 

HASH 
100% 
94.1% 
88.1% 
82.4% 
77.4% 
72.7% 
68.8% 
64.9% 
61.7% 
58.7% 
56.3% 
54.2% 
52.4% 
51.0% 
50.0% 
49.4% 
49.2% 
49.4% 
50.0% 
51.0% 
52.4% 
54.1% 
56.2% 
58.8% 
61.6% 
64.9% 
68.4% 
72.7% 
77.3% 
82.2% 
87.8% 
93.6% 

*In 16-bit words with a page size of l28 words 
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Hash. 

67.225 
129,983 
241030 
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Appendix C 

CoO. Abbreviations and Trace Data 

DFS -- depth-first search 
BFS -- breadth-first search 
10 -- using identity permutations 
Oyn -- pennutations arising from dynamic infonnation 
Refet -- permutations arising from reference counts 
Ooze -- based on the grouping for the Object-Oriented Zoned Environment -virtual memory 
Hash -- a random grouping based on pClmuting the bits in the unique identifier of the object 
OPTi -- the optimal grouping based on the ilh comprcssed trace 

TRACE 
NUMBER 

#1 
#2 
#3 

TRACE 
NUMBER 

* 
#1 
#2 
#3 

#1 
#2 
#3 

TRACE 

#1 
#2 
#3 

TRACE 

#1 
#2 
#3 

COMPRESSED 
REFERENCES 

41,580 
43,049 
80,443 

BYTECODES 
(ESTIMATE) 

lllOK 
960K 

2280K 

STATISTIC NON-POINTER COMPILED 
TYPE OBJECTS METHODS 

static 47.9% 19.6% 

quasi -static 23.1% 33.9% 
quasi -static 12.3% 16.4% 
quasi -static 35.3% 20.9% 

dynamic 3.9% 34.7% 
dynamic 3.7% 28.2% 
dynamic 6.3% 29.3% 

MIN MAX MED Q1 Q3 

0 41K 0 4 
0 43K 0 2579 
0 79K 1 14 

Thin Spread 

MlN MAX MEl) Ql Q3 

1 4887 1 I 1 
1 ·-6145 1 1. 191 
1 13,313 1 I 2 

TOTAL REFERENCES 
(ESTIMATE) 

3885K 
3360K 
7980K 

POINTER 
OBJECTS 

32.5% 

43.0% 
71.3% 
43.8% 

61.4% 
68.1% 
64.4% 

MEAN ST. DEV. 

2938 9369 
4170 10,127 
7865 18,676 

MEAN ST. DEV. 

350 1109 
469 1203 

1391 3221 

Fat Spread (rounded up to next 256-word pagc) 
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Col. Paged Virtual Memory 

20K 30K 40K 50K 60K 70K 80K 90K 

BFS[D 10,489 8574 7100 5213 3734 2702 2101 1747 
BFSRefct 10,537 8702 7278 5404 3894 2740 2144 1782 
BFSDyn 10,519 8644 7118 5257 3756 2721 2132 1776 
DFSID 8367 6780 5101 3629 2519 1946 1542 1261 
DFSRefct 8208 6794 5131 3749 2584 1997 1591 1299 
DFSDyn 8308 6774 5113 3752 2610 2003 1582 1293 
Ooze 9805 7954 6224 4458 2982 2209 1657 1367 
OPT1 2812 1506 935 694 572 534 492 459 
Hash 14,690 13,379 12,300 11,371 10,305 8363 6439 4518 

lOOK 110K 120K 130K 140K 150K 160K 170K 

BFSID 1461 1258 1195 1148 1102 1066 1022 998 
BFSRefct 1503 1289 1211 1170 1102 1078 1040 1010 
BFSDyn 1494 1278 1216 1166 1114 1084 1040 998 
DFS[D 1106 1039 976 945 903 868 853 811 
DFSRefct 1136 1054 995 960 922 891 873 836 
DFSDyn 1146 1069 1009 974 934 896 879 854 
Ooze 1152 1068 1009 966 917 884 865 831 
OPTI 437 428 * * * * * * 
Hash 3669 3012 2579 2336 1974 1772 1625 1550 

180K 190K 200K 210K 220K 230K 240K 250K 

BFSID 967 931 915 875 * * * * 
BFSRefct 987 968 931 893 887 * * * 
BFSDyn 975 940 921 881 * * * * 
DFS[D 796 770 * * * * * * 
DFSRefct 821 788 * * * * * * 
DFSDyn 820 789 * * * * * * 
Ooze 817 796 * * * * * * 
OPTI * * * * * * * * 
Hash 1501 1438 1378 1333 1289 1256 1232 1202 

260K 270K 280K 290K 300K 310K 320K 330K 

Hash 1178 1154 1134 * * * * * 

Page faults as a function of core size (trace # 1) 
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20K 30K 40K 50K 60K 70K 80K 90K 

l3FSID 12,407 LO,203 8503 6653 5137 3857 3391 3135 
BFSRcfct 12,4 78 LO,381 8690 6791 5194 3857 3409 3154 
BFSDyn 12,427 LO,257 8560 6668 5220 3842 3378 3164 
DFSID 9877 8059 6263 4952 3648 3254 3083 2907 
DFSRcfct 9984 8256 6457 5185 3770 3325 3153 2979 
DFSDyn 9920 8073 6257 4933 3716 3338 3166 2988 
Ooze 10,960 8755 6780 5189 3651 2672 2175 1979 
OPT2 4130 2508 1677 1448 1307 1189 896 835 
Hash 17,830 16A25 14,940 13,399 12,034 9962 8515 6276 

lOOK 1l0K 120K 130K 140K 150K 160K 170K 

BFSID 2928 2650 2440 2320 2182 1760 1701 1623 
BFSRefct 2931 2677 2461 2355 2236 1779 1700 1630 
BFSDyn 2945 2671 2472 2374 2231 1783 1715 1635 
DFS[D 2732 2602 2494 2414 2340 1793 1725 1684 
DFSRcfct 2789 2643 2509 2433 2356 2277 1723 1680 
DFSDyn 2802 2663 2550 2453 2393 2314 1750 1702 
Ooze 1749 1581 1436 1372 1339 1289 1260 1219 
OPT2 773 737 716 703 680 662 658 656 
Hash 5162 4666 4374 4126 3827 3566 3247 3000 

180K 190K 200K 210K 220K 230K 240K 250K 

BFSID 1584 1515 1463 1427 1411 1389 1374 1359 
BFSRefct 1577 1528 1453 1425 1406 1382 1362 1344 
BFSDyn 1593 1532 1472 1434 1416 1393 1373 1356 
DFS[D 1661 1618 1576 1523 1462 1430 1410 1387 
DFSRefct 1656 1626 1574 1539 1466 1425 1408 1379 
DFSDyn 1666 1641 1592 1556 1486 1427 1404 1383 
Ooze 1200 1178 1156 1123 1091 1055 1007 1005 
OPT2 * * * * * * * * Hash 2695 2252 2130 2027 . 1928 1849 1767 1709 

260K 270K 280K 290K 300K 310K 320K 330K 

BFS[D 1323 1277 1248 1241 1221 * * * BFSRefct 1320 1278 1249 1243 1220 * * * BFSDyn 1315 1277 1250 1246 1224 * * * OFS[D 1369 1341 1303 1274 1244 * * * DFSRefct 1352 l325 1286 1243 1233 * * * DFSDyn 1361 1335 1293 1271 1245 1243 * * Ooze * * * * * * * * OPT2 * * * * * * * * Hash 1669 1627 1592 1567 1532 1492 1471 1409 

340K 350K 360K 370K 380K 390K 400K 410K 

Hash 1396 * * * * * * * 

Page faults as a function of core size (trace #2) 
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20K 30K 40K 50K 60K 70K SOK 90K 

BFSID 22,585 18,642 15.794 12,934 9157 6992 5565 4451 
BFSRefct 22,874 18,967 15,978 13,192 9562 7228 5862 4617 
BFSDyn 22,570 18,7 31 15.7 38 12,938 9142 6968 5565 4441 
OFSID 17,917 14,955 12.501 9511 7238 5855 4801 4075 
DFSRefcl 18,040 15,253 12,935 9980 7525 6160 5096 4346 
DFSDyn 18,100 15,218 12,802 9754 7538 6266 5224 4440 
Ooze 20,759 16,613 13,390 10,291 6663 4774 3862 3313 
OPT3 8176 5105 3112 2168 1615 1389 1200 1063 
Hash 31,763 28,776 26,412 24,407 22,491 20,466 17,012 12.881 

lOOK 110K 120K 130K 140K 150K 160K 170K 

BFSID 3656 3138 2782 2568 2405 2228 2120 1987 
BFSRefct 3796 3220 2853 2649 2471 2277 2164 2017 
BFSDyn 3680 3190 2769 2564 2409 2250 2137 2009 
DFSID 3462 2990 2773 2600 2450 2355 2229 2141 
DFSRctct 3688 3079 2880 2647 2487 2370 2251 2148 
DFSDyn 3889 3323 2952 2699 2527 2418 2295 2211 
Ooze 2774 2452 2222 2091 1913 1839 1757 1639 
OPT3 974 864 790 726 696 671 659 656 
Hash 10,855 9004 7564 6432 5442 4864 4241 3741 

180K 190K 200K. 210K 220K 230K 240K 250K 

BFSID 1904 1813 1721 1604 1454 1313 1227 1159 
BFSRefct 1941 1853 1758 1638 1515 l339 1250 1185 
BFSDyn 1923 1832 1751 1627 1480 l348 1261 1203 
DFSID 2061 1967 1842 1718 1596 1518 1440 1374 
DFSRefct 2061 1965 1842 1727 1597 1516 1448 1392 
DFSDyn 2109 2011 1922 1809 1704 1586 1497 1437 
Ooze 1525 1445 1301 1236 1162 1100 1078 1069 
OPT3 * * * * * * * * 
Hash 3454 3168 2959 2800 2636 2463 2327 2189 

260K 270K 280K 290K 300K 310K 320K. .130K 

BFSID 1141 1131 1126 * * * * * 
BFSRefct 1152 1139 1133 * * * * * 
BFSDyn 1164 1151 1142 * * * * * 
DFSID 1328 1293 1252 1242 1232 * * * 
DFSRefct 1332 1290 1256 1243 1234 * * * 
DFSDyn 1360 1318 1275 1258 1249 1244 * * 
Ooze 1061 * * * * * * * 
OPT3 * * * * * * * * 
Hash 2069 1927 1802 1659 1547 1488 1440 1418 

340K. 350K. 3{)0K. 370K 38UK. 390K. 400K 410K 

Hash 1406 1401 * * * * * * 

Page f~1ults as a function of core size (trace # 3) 
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C-2. Loom Simulation 

CORE OBJECT LAMBI)A CLEAN DIRTY Cr.EAN-I)IRTY 
SIZE FAULT FAULT CONTRACT CONTRACT RATIO 

20K 6626 5669 4070 2112 l.93 
40K 4836 3466 1742 1575 l.tl 
60K 4504 2975 594 1173 0.51 
80K 4432 2598 0 0 * 

Trace # 1 -- Data Invariant of Initial Placement 

BUFFER BUFFER HIT BUFFER BUFFER HIT 
MISS HIT RATE MISS HIT RATE 

BFSID 7724 7597 49.6% 4890 5552 53.2% 
13FSRcfct 7820 7515 49.1% 4989 5452 52.2% 
BFSDyn 7668 7554 49.6% 4926 5495 52.7% 
DFSID 6705 8632 56.3% 4289 6158 58.9% 
DFSRefct 6711 8605 56.2% 4285 6178 59.0% 
DFSDyn 6735 8574 56.0% 4295 6131 58.8% 
Ooze 7405 7881 51.6% 4687 5731 55.0% 
OPTl 4691 10,714 69.5% 2884 7640 72.6% 
Hash 8741 6528 42.8% 5589 4817 46.3% 

Trace # 1 -- Core Size 20K Trace # 1-- Core Size 40K 

BUFFER BUFFER HIT BUFFER BUFFER HIT 
MISS HIT RATE MISS HIT RATE 

BFSID 3991 5168 56.4% 2780 4661 62.6% 
BFSRefct 4054 5112 55.8% 2842 4602 61.8% 
BFSDyn 3983 5153 56.4% 2766 4646 62.7% 
DFSID 3414 5748 62.7% 2202 5245 70.4% 
DFSRefct 3444 5734 62.5% 2212 5238 70.3% 
DFSDyn 3418 5722 62.6% 2206 5216 70.3% 
Ooze 3757 5380 58.9% 2540 4883 65.8% 
OPTl 2185 7067 76.4% 934 6599 87.6% 
Hash 4625 4516 49.4% 3378 4045 54.5% 

Trace # 1 ---Core Size 60K Trace # 1 -- Core Size 80K 
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CORE OBJECT LAMBDA CLEAN DIRTY C[ .EAN-{)LR'l'y 
SIZE FAULT FAULT CONTRACT CONTRACT RATIO 

20K 12,356 6587 9998 1724 5.80 
40K 8626 4520 5594 1357 4.12 
60K 8198 3999 4662 693 6.73 
80K 7582 3337 3402 667 5.10 
lOOK 7195 3152 391 628 0.62 
120K 7195 2859 0 0 * 

Trace # 2 -- Data Invariant of Initial Placement 

BUFFER BUFFER HIT BUFFER BUFFER HIT 
MISS HIT RATE MISS HIT RATE 

BFSID 10,522 11,594 52.4% 7182 8296 53.6% 
BFSRefct 10,538 11,579 52.4% 7196 8286 53.5% 
BFSDyn 10,347 11,672 53.0% 7120 8302 53.8% 
DFSID 8982 13.188 59.5% 6184 9344 60.2% 
DFSRefct 8934 13.149 59.5% 6171 9297 60.1% 
DFSDyn 8959 13.111 59.4% 6177 9285 60.1% 
Ooze 8598 13,420 61.0% 5953 9481 61.4% 
OPT2 5326 16,892 76.0% 3514 12,060 77.4% 
Hash 14.096 7969 36.1% 9451 6017 38.9% 

Trace #2 -- Core Size 20K Trace # 2 -- Core Size 40K 

BUFFER BUFFER HIT BUFFER BUFFER HIT 
MISS HIT RATE MISS HIT RATE 

BFSID 5941 7745 56.6% 5214 7100 57.7% 
BFSRefct 5911 7779 56.8% 5196 7134 57.9% 
BFSDyn 5860 7790 57.1% 5140 7148 58.2% 
DFSID 5045 8686 63.3%. 4424 7927 64.2% 
DFSRefct 5052 8634 63.1% 4439 7883 64.0% 
DFSDyn 5057 8609 63.0% 4444 7862 63.9% 
Ooze 4726 8925 65.4% 4178 8113 66.0% 
OPT2 2574 11,211 81.3% 2275 10,145 81.7% 
Hash 8138 5547 40.5% 7241 5082 41.2% 

Trace #2 -- Core Size 60K Trace #2 -- Core Size 80K 

BUFFER BUFFER HIT BUFFER BUFFER HIT 
MISS HIT RATE MISS HIT RATE 

BFSID 4891 6763 58.0% 4113 6565 61.5% 
BFSRetct 4873 6802 58.3% 4092 6612 61.8% 
BFSDyn 4831 6813 58.5% 4038 6623 62.1% 
DFSID 4077 7608 65.1% 3330 7400 69.0% 
nFSRefct 4111 7557 64.8% 3327 7366 68.9% 
DFSDyn 4lt2 7529 64.7% 3340 7334 68.7% 
Ooze 3822 7807 67.l% 3022 7632 71.6% 
OPT2 2032 9724 82.7% 1302 9480 87.9% 
Hash 6826 4831 41.4% 6030 4653 43.6% 

Trace #2 -- Core Size lOOK Trace #2 -- Core Size 120K 
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CORE OBJECT LAMBDA CLEAN DIRTY CLEAN-DIRTY 
SIZE FAULT FAULT CONTRAC'[' CONTRACT RATIO 

20K 16,273 15,012 13,115 3056 4.29 
40K 10,471 8513 6782 2593 2.62 
60K 8455 5759 3841 2401 1.60 
80K 7378 5003 1317 1958 0.67 
lOOK 7012 4638 406 1472 0.28 
120K 6957 4315 0 0 * 

Trace # 3 -- Data Invariant of Initial Placement 

BUFFER BUFFER HIT BUFFER BUFFER HIT 
MISS HIT RATE MISS HIT RATE 

BFSID 19,011 17,160 47.4% 11,512 11,263 49.5% 
BFSRefct 19,697 16,465 45.5% 11,985 10,812 47.4% 
BFSDyn 18,980 17,188 47.5% 11,492 11,280 49.5% 
DFSID 16,045 20,215 55.8% 9685 13,115 57.5% 
DFSRefct 16,033 20,254 55.8% 9728 13,110 57.4% 
DFSDyn 16,288 20,054 55.2% 9801 13,007 57.0% 
Ooze 18,467 17,719 49.0% 10,979 11,800 51.8% 
OPT3 11,397 24,985 68.7% 6669 16,268 70.9% 
Hash 22,434 13,822 38.1% 13,471 9340 41.0% 

Trace # 3 -- Core Size 20K Trace # 3 -- Core Size 40K 

BUFFER BUFFER HIT BUFFER BUFFER HIT 
MISS HIT RATE MISS HIT RATE 

BFSID 8839 8768 49.8% 7135 8057 53.0% 
BFSRefct 9216 8426 47.8% 7534 7695 50.5% 
BFSDyn 8831 8770 49.8% 7175 8031 52.8% 
DFSID 7571 10,036 57.0% 6232 8956 59.0% 
DFSRefct 7595 10,057 57.0% 6285 8950 58.7% 
DFSDyn 7657 9956 56.5% 6336 8867 58.3% 
Ooze 8321 9267 52.7% 6680 8509 56.0% 
OPT3 4994 12,762 71.9% 3792 11,560 75.3% 
Hash 10,214 7407 42.0% 8386 6820 44.9% 

Trace # 3 -- Core Size 60K Trace # 3 -- Core Size 80K 

BUFFER BUFFER H[T BUFFER BUFFER HIT 
MISS HIT RATE MISS HIT RATE 

BFS[D 6236 7656 55.1% 4844 7050 59.3% 
BFSRefct 6649 7293 52.3% 5226 6704 56.2% 
BFSDyn 6269 7631 54.9% 4834 7061 59.4% 
DFSID 5415 8476 61.0% 3989 7909 66.5% 
DI":"SRefct 5446 8483 60.9% 4032 7899 66.2% 
DFSDyn 5514 8404 60.4% 4067 7850 65.9% 
Ooze 5837 8051 58.0% 4436 7460 62.7% 
OPT3 3093 10,949 78.0% 1596 10,438 86.7% 
Hash 7483 6410 46.1% 6027 5863 49.3% 

Trace # 3 -- Core Size100K Trace # 3 -- Core Size 120K 
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C-3. Selected Page Utilization and Cleanliness Rates 

CORE SIZE MIN MAX MED Ql Q3 MEAN ST. DEY. 
20K 0 100 10 4 30 22 26 
40K 0 100 9 4 29 22 27 
60K 0 100 11 4 32 24 28 
80K 0 100 16 5 45 30 32 

Trace # 1 -- Page usage for DFSID 

CORE SIZE MIN MAX MED Ql Q3 MEAN ST.DEV. 
20K 0 100 0 0 0 3 12 
40K 0 100 0 0 2 3 9 
60K 0 100 0 0 0 3 9 
80K 0 0 0 0 0 0 0 

Trace # 1 -- Page dirt for DFS[D 

CORE SIZE MIN MAX MED Ql Q3 MEAN ST.DEV. 
20K 0 100 14 5 33 24 26 
40K 0 100 13 5 33 24 27 
60K 0 100 14 5 34 24 26 
80K 0 100 14 5 34 25 28 

lOOK 0 100 14 5 36 26 28 
120K 0 100 17 6 38 28 29 

Trace #2 -- Page usage for DFSID 

CORE SIZE MIN MAX MED Ql Q3 MEAN ST. DEV. 
20K 0 100 0 0 0 2 10 
40K 0 100 0 0 0 2 11 
60K 0 100 0 0 0 1 7 
80K 0 100 0 0 0 1 8 

lOOK 0 100 0 0 0 1 7 
120K 0 0 0 .0 0 0 0 

Trace #2 -- Page dirt for DFSID 

CORE SIZE MIN MAX MED Q1 Q3 MEAN ST. DEV. 
20K 0 100 11 4 28 21 25 
40K 0 100 10 4 27 22 26 
60K 0 100 9 4 27 20 26 
80K 0 100 9 4 27 21 26 

lOOK 0 100 9 4 27 22 27 
120K 0 100 12 5 31 25 30 

Trace #3 -- Page usage for DFSID 

CORE SrZE MIN MAX MED Q1 Q3 MEAN ST. DEY. 
20K 0 100 0 0 0 2 10 
40K 0 100 0 0 0 3 11 
60K 0 100 0 0 0 3 12 
80K 0 100 0 0 0 3 12 

lOOK 0 100 0 0 0 3 11 
120K 0 0 0 0 0 0 0 

Trace # 3 -- Page dirt for DFS 10 
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CORE SIZE MIN MAX MED Ql Q3 MEAN ST. DEV. 
20K 1 31 1 1 2 2 2 
40K 1 31 1 1 2 2 3 
60K 1 31 1 1 2 2 3 
80K 1 31 1 1 3 3 4 

Trace # 1 -- Page usage (in terms ofobject<;) for DFSlD 

TRACE MIN MAX MED Q1 Q3 MEAN ST. DEV. 
BFSID 0 100 9 4 27 20 25 
BFSRefct 0 100 9 4 27 19 23 
BFSDyn 0 100 8 4 27 20 25 
DFSID 0 100 10 4 30 22 26 
DFSRefct 0 100 11 4 32 22 25 
DFSDyn 0 100 11 4 30 22 26 
Ooze 0 100 9 5 27 21 26 
OPT1 0 100 17 5 49 31 31 
Hash 0 100 7 4 24 18 23 

Trace # 1 -- Page usage for core = 20 K 

TRACE MIN MAX MED Ql Q3 MEAN ST. DEV. 
BfSID 0 100 9 5 32 25 30 
BFSRefct 0 100 9 4 30 24 29 
BFSDyn 0 100 10 5 33 25 30 
DFSID 0 100 16 5 45 30 32 
DfSRefct 0 100 16 5 46 30 31 
DFSDyn 0 100 15 5 44 32 32 
Ooze 0 100 12 5 37 27 31 
OPTI 0 100 88 27 100 65 38 
Hash 0 100 8 4 27 21 28 

Trace # 1 -- Page usage for core = 8DK 
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C-4. Effect of Core Purging Policy 

CORE BUFfER BUFFER HIT FAULT BUFFER BUFFER HIT FAUlT 
S[ZE MISS HrI' RATE RED. MISS HIT RATE RED. 

20K 7385 8166 52.5% -10.14% 9413 6090 39.3% - 7.69% 
40K 4665 5858 55.7% - 8.77% 5990 4495 42.9% - 7.17% 
60K 3454 5460 61.3% - 1.17% 4686 4207 47.3% - 1.32% 
80K 2202 5245 70.4% 0.00% 3378 4045 54.5% 0.00% 

DFSIO -- Trace # 1 Hash -- Trace # 1 

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT 
SIZE MISS HIT RATE RED. MISS HIT RATE RED. 

20K 9554 12,712 57.1% - 6.37% 14,679 7534 33.9% - 4.14% 
40K 6703 9428 58.4% - 8.39% 10,178 5897 36.7% - 7.69% 
60K 5343 8488 61.4% - 5.91% 8498 5295 38.4% - 4.42% 
80K 4432 7582 63.1% - 0.18% 7159 4815 40.2% +1.13% 

lOOK 3857 7521 66.1% +5.40% 6545 4790 42.3% +4.12% 
l20K 3330 7400 69.0% 0.00% 6030 4653 43.6% 0.00% 

DFSID -- '[race #2 Hash -- Trace # 2 

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER H[T FAULT 
SIZE MISS HIT RATE RED. MISS HIT RATE RED. 

20K 16,836 19,555 53.7% - 4.93% 23.172 13,228 36.3% - 3.29% 
40K 10,575 12,314 53.8% - 9.19% 14,272 8648 37.7% - 5.95% 
60K 8228 9369 53.2% - 8.68% 10,720 6895 39.1% - 4.95% 
80K 6810 8753 56.2% - 9.23% 9151 6426 41.3% - 9.12% 

lOOK 5139 8144 61.3% +5.10% 7224 6065 45.6% +3.46% 
120K 3989 7909 66.5% 0.00% 6027 5863 49.3% 0.00% 

DFSID -- Trace #3 Hash -- Trace # 3 
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c-s. Effect of Buffer Size 

CORE nu FFER BU FFER HIT FAULT BUFFER BUFFER HIT FAULT 
SIZE MISS HIT RATE RED. MISS HIT RATE RED. 

20K 8949 5654 38.7% -33.5% 7722 7122 48.0% -15.2% 
40K 5704 4438 43.8% -33.0% 4859 5312 52.2% -13.3% 
60K 4973 4114 45.3% -45.7% 4047 5054 55.5% -18.5% 
80K 3337 4110 55.2% -51.5% 2659 4788 64.3% -20.8% 

Buffer Size =2 (DFSID # 1) Buffer Size =4 (DFSID # 1) 

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT 
SIZE MISS HIT RATE RED. MISS HIT RATE RED. 

20K 7127 8013 52.9% -6.3% 6630 9109 57.9% 1.1% 
40K 4466 5801 56.5% -4.1% 4067 6509 61.5% 5.2% 
60K 3658 5458 59.9% -7.1% 3238 5957 64.8% 5.2% 
80K 2383 5064 68.0% -8.2% 2083 5364 72.0% 5.4% 

Buffer Size =6 (DFSID # 1) Buffer Size = 10 (DFSID # 1) 

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT 
SIZE MISS HIT RATE RED. MISS HIT RATE RED. 

20K 6443 9810 60.4% 3.9% 6378 10,636 62.5% 4.9% 
40K 3888 6734 63.4% 9.3% 3586 6986 66.1% 16.4% 
60K 3133 6091 66.0% 8.2% 2914 6264 68.3% 14.6% 
80K 1977 5470 73.5% 10.2% 1855 5592 75.1% 15.8% 

Buffer Size = 12 (DFSID # 1) Buffer Size = 16 (DFSID # 1) 

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT 
SIZE MISS HIT RATE RED. MISS H[T RATE RED. 

20K 6452 11,563 64.2% 3.8% 6661 12,377 65.0% 0.7% 
40K 3413 7238 68.0% 20.4% 3204 7370 69.7% 25.3% 
60K 2710 6453 70.4% 20.6% 2597 6556 71.6% 23.9% 
80K 1753 5694 76.5% 20.4% 1731 5780 77.0% 21.4% 

Buffer Size =20 (DFSID # 1) Buffer Size =24(DFSID #1) 

CORE BUFFER BUFFER HIT FAULT BUFFER RUFFER H[T FAULT 
SrZE MISS HIT RATE RED. MISS HIT RATE RED. 

20K 7004 13,350 65.6% - 4.5% 7692 14,439 65.2% -14.7% 
40K 3221 7630 70.3% 24.9% 3117 7891 71.7% 27.3% 
60K 2470 6620 72.8% 27.7% 2389 6688 73.7% 30.0% 
80K 1750 5883 77.1% 20.5% 1774 5973 77.1% 19.4% 

Buffer Size = 28 (DFSID # 1) Buffer Size = 32 (DFSID # 1) 
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BUFFER SIZE MIN MAX MED Ql Q3 MEAN ST. DEY. 
2 0 100 9 4 27 21 25 
4 0 100 9 4 27 21 25 
6 0 100 10 4 29 21 25 
8 0 100 10 4 30 22 26 

10 0 100 10 4 30 22 26 
12 0 100 II 4 31 23 26 
16 0 100 II 5 32 23 27 
20 0 100 12 5 33 24 27 
24 a 100 12 5 33 24 27 
28 0 100 12 5 34 24 28 
32 0 100 12 5 35 25 28 

Trace # 1 -- Page usage for DFSIO (20K core) 

BUFFER SIZE MIN MAX MED Ql Q3 MEAN ST. DEV. 
2 0 100 14 5 43 29 31 
4 0 100 14 5 41 28 31 
6 0 100 15 5 43 29 31 
8 0 100 16 5 45 30 32 

10 0 lOO 16 5 47 31 32 
12 0 100 16 5 50 31. 33 
16 0 100 16 6 52 32 34 
20 0 100 17 6 52 33 34 
24 0 100 18 6 52 33 35 
28 0 100 17 6 52 33 34 
32 0 100 16 6 52 33 34 

Trace # 1 -- Page ~sage for DFS[D (80K core) 

BUFFER SIZE MIN MAX MED Ql Q3 MEAN ST. DEY. 
2 0 100 0 0 0 2 10 
4 0 100 0 0 0 3 10 
6 a 100 0 0 0 3 12 
8 0 100 0 0 0 3 12 

10 0 100 0 0 0 3 12 
12 0 100 0 0 0 4 13 
16 0 100 0 0 0 4 13 
20 0 100 0 0 0 4 14 
24 0 100 0 0 0 4 14 
28 0 100 0 0 0 4 14 
32 0 100 0 0 0 3 14 

Trace # 1 -- Page dirt for DFSID (20K core) 
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C-6. Effect of Disk ButTer Purging Policy 

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT 
SIZE MISS HIT RATE RED. MISS HIT RATE RED. 

20K 6405 8932 58.2% 4.48% 8444 6825 44.7% 3.40% 
40K 4046 6401 61.3% 5.67% 5359 5047 48.5% 4.12% 
60K 3207 5955 65.0% 6.06% 4423 4718 51.6% 4.37% 
80K 2085 5362 72.0% 5.31% 3247 4176 56.3% 3.88% 

Trace # 1 -- DFSID Trace # 1 -- Hash 

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT 
SIZE MISS HIT RATE RED. MISS HIT RATE RED. 

20K 8645 13,525 61.0% 3.75% 13.143 8322 37.7% 2.50% 
40K 5877 9651 62.2% 4.96% 9123 6345 41.0% 3.47% 
60K 4830 8901 64.8% 4.26% 7881 5804 42.4% 3.16% 
80K 4237 8114 65.7% 4.23% 7019 5304 43.0% 3.07% 

lOOK 3874 7811 66.8% 4.98% 6555 5102 43.8% 3.97% 
120K 3190 7540 70.3% 4.20% 5832 4851 45.4% 3.28% 

Trace #2 -- DFSID Trace #2 -- Hash 

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT 
SIZE MISS HIT RATE RED. MISS HIT RATE RED. 

20K 15.430 20,830 57.4% 3.83% 21,798 14,458 39.9% 2.83% 
40K 9280 13,520 59.3% 4.18% 13,051 9760 42.8% 3.12% 
60K 7244 10,363 58.9% 4.32% 9858 7763 44.1% 3.49% 
80K 5926 9262 61.0% 4.91% 8055 7151 47.0% 3.95% 

lOOK 5145 8746 63.0% 4.99% 7169 6724 48.4% 4.20% 
l20K 3816 8082 67.9% 4.34% 5809 6081 51.1% 3.62% 

Trace #3 -- DFSIO Trace # 3 -- Hash 
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C-7. rn-Core Hesidence Times. 

CORE SIZE MIN MAX MEl) Ql Q3 MEAN ST. DEY. 
20K 3 148 IS 11 19 18 13 
40K 7 110 3~ 30 48 39 15 
60K 5 l22 67 50 80 65 22 
80K * * * * * * * 

Trace # 1 -- Purged objects only 

CORE SIZE MIN MAX MED Q1 Q3 MEAN ST. DEV. 
20K 0 186 15 11 19 19 19 
40K 0 143 36 25 48 42 30 
60K 0 137 64 30 84 61 36 
80K 0 136 70 32 101 67 39 

Trace # 1 -- All objects 

CORES[ZE M[N MAX MEl) Ql Q3 MEAN ST. DEY. 
20K 2 143 16 12 20 17 9 
40K 2 116 38 28 46 38 15 
60K 16 150 55 40 66 54 19 
80K 2 153 68 50 90 69 26 

lOOK 8 142 83 34 110 74 39 
l20K * * * * * * * 

Trace #2 -- Purged objects only 

CORES[ZE MIN MAX MED Ql Q3 MEAN ST. DEY. 
20K 0 254 16 11 20 17 12 
40K 0 187 35 24 46 36 20 
60K 0 170 48 31 63 49 27 
80K 0 161 60 36 90 64 38 

lOOK 0 153 76 43 100 75 40 
120K 0 153 76 45 102 76 40 

Trace # 2 -- All objects 

CORES[ZE MIN MAX MED 01 Q3 MEAN ST. DEV. 
20K 1 357 13 10 18 17 17 
40K 3 248 35 28 44 41 26 
60K 5 219 55 42 82 66 36 
80K 6 199 78 58 116 85 33 

lOOK 3 190 89 51 146 96 48 
120K * * * * * * * 

Trace # 3 -- Purged objects only 

CORE SIZE MIN MAX MEl) Ql Q3 MEAN ST. DEY. 
20K 0 368 l3 1O 18 17 21 
40K 0 265 35 27 44 41 33 
60K 0 230 52 38 81 65 45 
80K 0 212 72 46 115 85 53 

lOOK 0 205 89 42 148 94 57 
120K 0 203 91 44 152 99 58 

Trace # 3 -- A 1l objects 

1 All values are expressed in terms of ~K ticks. 
*No objects were purged. 
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e-s. Leaf/No-Leaf Page Faulting Rates 

CORE BUFFER BUFFER Hl'l' FAULT BUFFER BUFFER HIT FAULT 
S(ZE MlSS HIT RATE RED. MISS HIT RATE RED. 

20K 4577 4708 50.7% 31.7% 6176 3033 32.9% 29.3% 
40K 2997 3762 55.6% 30.1% 4064 2654 39.5% 27.2% 
60K 2488 3536 58.6% 27.1% 3448 2552 42.5% 25.4% 
80K 1631 3218 66.3% 25.9% 2615 2210 45.8% 22.5% 

DFSID -- Trace # 1 Hash -- Trace # 1 

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT 
SIZE MISS HIT RATE RED. MISS HIT RATE RED. 

20K 6817 8678 56.0% 24.1% 11.491 3908 25.3% 18.4% 
40K 4626 6113 56.9% 25.1% 7591 3090 28.9% 19.6% 
60K 3944 5764 59.3% 21.8% 6756 2907 30.0% 16.9% 
80K 3460 5511 61.4% 21.7% 6016 2930 32.7% 16.9% 

lOOK 3102 5274 62.9% 23.9% 5572 2768 33.1% 18.3% 
120K 2656 5215 66.2% 20.2% 5122 2703 34.5% 15.0% 

DFSID -- Trace #2 Hash -- Trace # 2 

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT 
SIZE MISS HIT RATE RED. MISS HIT RATE RED. 

20K 10,581 8703 45.1% 34.0% 15,202 4109 21.2% 32.2% 
40K 7075 6848 49.1% 26.9% 10,094 3937 28.0% 25.0% 
60K 5753 5571 49.1% 24.0% 7643 3688 32.5% 25.1% 
80K 4771 5178 52.0% 23.4% 6425 3523 35.4% 23.3% 

lOOK 4054 4920 54.8% 25.1% 5637 3356 37.3% 24.6% 
120K 3031 4552 60.0% 24.0% 4590 2984 39.3% 23.8% 

OFSIO -- Trace # 3 Hash -- Trace # 3 

30K 60K 90K l20K 150K 180K 210K 240K 

OFSID #1 30.1% 47.1% 29.9% 11.8% 8.6% 6.2% 4.6% 4.6% 
DFSID #2 22.5% 26.0% 10.9% 5.6% 28.1% 3.7% 4.7% 2.6% 
DFSID #3 22.9% 31.0% 15.9% 9.6% 5.8% 4.6% 5.4% 4.2% 
Hash # 1 35.3% 38.7% 110.5% 62.8% 38.7% 8.1% 6.2% 3.1% 
Hash #2 27.8% 31.2% 71.2% 33.8% 22.5% 22.1% 15.1% 13.8% 
Hash #3 30.0% 29.6% 74.2% 48.8% 35.6% 22.7% 10.5% 6.0% 

Page fault increases due to leaf references for the Paged Virtual Memory 
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C-9. Warm-Start Page Faulting Rates 

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HlT FAULT 
SIZE MlSS HIT RATE RED. MISS HIT RATE RED. 

20K 6875 8015 53.8% - 2.5% 8949 5902 39.7% - 2.3% 
40K 3975 4893 55.1% 7.3% 5079 3773 42.6% 9.1% 
60K 3154 3535 52.8% 7.6% 3934 2753 41.1% 14.9% 
80K 741 2205 74.8% 66.3% 1290 1639 55.9% 61.8% 

OFS[D -- Trace # 1 Hash -- Trace # 1 

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT 
SIZE MISS HIT RATE RED. MISS HIT RATE RED. 

20K 8878 12.351 58.1% 1.1% 13.993 7145 33.8% 0.7% 
40K 5882 8122 57.9% 4.8% 9117 4857 34.7% 3.5% 
60K 4834 7146 59.6% 4.1% 7490 4436 37.1% 7.9% 
80K 4182 5954 58.7% 5.4% 6757 3370 33.2% 6.6% 

lOOK 3009 4918 62.0% 26.1% 5022 2891 36.5% 26.4% 
120K 1311 3488 72.6% 60.6% 3079 1706 35.6% 48.9% 

OFSID -- Trace #2 Hash -- Trace # 2 

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT 
SIZE MISS HIT RATE RED. MISS HIT RATE RED. 

20K 16,954 20,061 54.1% - 5.6% 23,593 13,450 36.3% - 5.1% 
40K 10,047 11,724 53.8% - 3.7% 13,725 8065 37.0% - 1.8% 
60K 7282 7985 52.3% 3.8% 9519 5768 37.7% 6.8% 
80K 5698 5919 50.9% 8.5% 7164 4465 38.3% 14.5% 

lOOK 3718 3465 48.2% 31.3% 4309 2854 39.8% 42.4% 
120K 691 1813 72.4% 82.6% 907 1640 64.3% 84.9% 

OFSID -- Trace #3 Hash -- Trace # 3 

30K 60K 90K 120K 150K 180K 210K 240K 

DFSIO #1 6.9% 15.9% 34.3% 41.0% 42.6% 54.0% 70.2% 70.2% 
DFSID #2 6.9% 15.5% 17.2% 17.1% 25.6% 25.8% 26.3% 30.0% 
OFSIO #3 5.4% 9.0% 19.2% 26.7% 31.4% 42.4% 47.5% 47.8% 
Hash #1 5.9% 6.3% 14.3% 25.3% 39.4% 43.7% 43.1% 50.9% 
Hash #2 5.7% 7.0% 13.2% 15.5% 21.2% 24.3% 33.1% 38.2% 
Hash #3 3.4% 4.0% 4.9% 11.8% 18.4% 26.1% 30.6% 43.8% 

Wann-start page fault reductions for the Paged Virtual Memory 



162 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY 

Appendix 0 

D-O. Trace Data 

TRACE STORE BYTECODES NEW NEW OBJECTS OLD OBJECT 
NUMBER OPERATIONS EXECUTED OBJECTS REMAINING DEATHS 

#1 
#2 
#3 
#4 
#5 

98,031 
41,779 

126,402 
150,532 
129,235 

87,998 
39,659 

118,236 
145.197 
130,140 

6757 
2393 
9014 
8342 
4795 

90 
26 

5 
159 
82 

18 
23 
o 

78 
57 

TRACE MAX STACK LASTSTACK MAX OBJECT LASTOBJECT WORDS WORDS 
NUMBER POINTER POINTER COUNT COUNT COPIED KEPT 

#1 
#2 
#3 
#4 
#5 

1227 
314 
149 

1506 
484 

1208 
262 
42 

1504 
482 

48 
44 
62 

181 
58 

TRACE MAX WORDS LAST WORDS OLD-NEW 
NUMBER NEW CORE NEW CORE STORES 

#1 
#2 
#3 
#4 
#5 

861 
604 

1117 
2174 
1250 

158 
4 
o 

56 
1134 

7 
22 
2 
6 
2 

TRACE SMALL POS SMALL NEG ALL POS 
NUMBER STORES STORES STORES 

#1 
#2 
#3 
#4 
#5 

12,597 
4153 

15,827 
13,627 

9448 

7159 
1002 
5672 
3654 
2195 

14,687 
5218 

18,074 
21,076 
16,310 

8 
2 

° 11 
54 

970 
452 
75 

1253 
227 

NEW-OLD OLD-OLD 
STORES STORES 

26,067, 
6862 

32,195 
31,394 
25,327 

ALL NEG 
STORES 

9253 
1099 
6168 
4265 
2382 

55 
132 

6 
129 
203 

608 
348 
75 

1083 
227 
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[)-l. Transient Object Lifetimes 

rtRACE MIN MAX MEl) Ql Q3 MEAN ST. DEV. 

#1 1 55K 13 4 53 269 1849 
#2 1 39K 13 5 35 436 2869 
#3 1 116K 30 8 103 333 4452 
#4 1 142K 14 6 51 696 7041 
#5 1 51K 13 6 25 264 1763 

0-2. Stack-like Memory Management 

TRACE MIN MAX MED Q1 Q3 MEAN ST. DEV. 

#1 0 86 1 0 1 1 3 
#2 0 37 0 0 0 1 3 
#3 0 5 0 0 1 0 1 
#4 0 176 0 0 0 1 10 
#5 0 33 0 0 0 0 2 

Long Deallocation Distance 

TRACE MIN MAX MED Ql Q3 MEAN ST. DEV. 

#1 0 29 1 0 1 1 1 
#2 0 6 0 0 0 0 1 
#3 0 5 0 0 1 0 1 
#4 0 154 -0 0 0 1 5 
#5 0 33 0 0 0 0 2 

Short Dcallocation Distance 
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0-3. Dynamic Pointer Distance 

TRACE MIN MAX MED Q1 Q3 MEAN ST. DEV. 

#1 0 75K l3 4 157 1832 6046 
#2 0 38K 25 5 542 2286 5988 
#3 0 115K 8 3 77 6063 21,034 
#4 0 90K 187 7 4K 10,167 21,125 
#5 0 67K 375 6 17K 10,417 16,479 

Positive Pointer Distance 

TRACE MIN MAX MED Q1 Q3 MEAN ST. DEV. 

#1 2 32K 6 2 672 1294 2851 
#2 2 22K 12 2 68 599 2182 
#3 2 113K 12 7 91 3897 16,882 
#4 2 91K 7 3 211 3367 13,065 
#5 2 53K 2 2 23 1108 4907 

Negative Pointer Distance 

D-4. Degradation of an Initial Placement 

HOURS USED MIN MAX MED Q1 Q3 MEAN ST. DEV. 

0 0 1563 419 11 956 521 501 
4 0 1563 427 16 956 525 499 
8 0 1563 434 18 959 528 499 

12 0 1565 423 17 976 524 502 

Static Pointer Distance 

Hours of Use: 0 4 8 12 
Close Pointers: 16.9% 16.2% 16.2% 16.1% 

On-page (512-word) pointer ratio 


