
A Large Object-Oriented Virtual Memory:
Grouping Strategies, Measurements,
and Performance

James William Stamos

A Large Object-Oriented Virtual Memory:
Grouping Strategies, Measu rements,
and Pe rfo rmance

by James William Stamos

SCG-82-2 May 1982

Corporate Accession P82-00053

© Copyright James William Stamos 1982. All Rights Reserved.

Abstract: See page 2.

This report is a slightly revised version of a thesis submitted to the Department of Electrical

Engineering and Computer Science at MIT in partial fulfillment of the requirements for the

degrees of Bachelor of Science and Master of Science.

CR Categories: 4.35, 4.6, 6.34.

Key words and phrases: virtual memory, paging, object-oriented system, program
restructuring, initial placement, static grouping, measurement, reference behavior, Smalltalk.

XEROX
PALO ALTO RESEARCH CENTERS
3333 Coyote Hill Road / Palo Alto / California 94304

2

Abstract

The Smalltalk-80 system is an object-oriented programming environment for which a novel virtual

memory is being constructed. This Large Object-Oriented Memory (LOOM) maintains two distinct

address spaces and compresses pointers when an object is swapped from disk to core. Although

objects are the logical unit of transfer between disk and core, LOOM swaps disk pages between the

disk and the in-core disk buffer. The grouping of objects on disk pages can be a critical factor in

the determination of speed of Smalltalk application programs.

An examination of the reference behavior of Smalltalk-80 provides useful insights for designing

grouping strategies and explaining virtual memory performance. After reviewing the experimental

methodology and the Large Object-Oriented Memory, this thesis describes nine static grouping

techniques and a reference stream compression algorithm. Performance measurements taken from

simulations of LOOM and a conventional page-swapping virtual memory are discussed and

compared. The effects on the page fault rate of modifying parameters and policies of LOOM are

described and an evaluation of LOOM-like virtual memories is offered.

In terms of the number of page faults, an object-oriented virtual memory generally outperforms a

page-swapping virtual memory for a range of small memory sizes that depends on the particular

grouping strategy. The existence and stability of good groupings also impact the choice of a virtual

memory design.

3

Acknowledgments

This thesis came into reality only with the guidance. support, and encouragement of numerous

friends. I must thank the XEROX Palo Alto Research Centers (PARe) for their extraordinary

facilities. [am deeply indebted to the entire Software Concepts Group at PARCo for both their

technical assistance and their pleasant working environment.

Special thanks go to Peter Deutsch and Dan Ingalls for asking probing questions. making invaluable

suggestions. and suffering through the first draft of this thesis.

My faculty supervisor, David Reed. provided key insights and helped me transform a jumble of

ideas into a coherent whole.

Finally, I must thank my friend and supervisor at PARCo Ted Kaehler. for his continued support.

assistance. and guidance throughout this endeavor.

4

Table of Contents

Abstract ... 2
Acknowledgments .. 3
Table of Contcnl<; ... _ .. 4
Ijst of f;'igurcs ... 6

I. Preliminaries .. 7
1.1 [n troduction 7
1.2 Background ... 8
1.3 Novel Extensions .. 9
1.4 Some Resull'i : ... 9
1.5 A H .. oad Map . 11

II. Swapping Strategies and Grouping ... 12
2.1 Logical versus Physical Swapping 12
2.2 Effectiveness of Grouping 12
2.3· A Hierarchy of Groupings 13
2.4 LOOM .. 15

2.4.1 Object Swapping ... 15
2.4.2 Pointer Compression 17
2.4.3 Storage Management 20
2.4.4 Relevant Smalltalk Tenninology 20

IlL Virtual Machine Emulation .. 23
3.1 Empirical Data versus Mathematical Models 23
3.2 Emulation of Smalltalk-80 24
3.3 Execution Trace Validity .. 24

[V. Detailed Reference Behavior ... 26
4.1 Definitions .. 26
4.2 'rrace Data .. 27
4.3 Object Size ... 28
4.4 Fractional Utilization .. 30

4.4.1 Discussion ... 31
4.4.2 Incremental Analysis 34
4.4.3 Effect of Object Size 36
4.4.4 Conclusions .. 38

4.5 Interreference Headway .. 39
4.6 Instance to Class Compression 42
4.7 Access Frequency ... 45

4.7.1 Discussion ... 45
4.7.2 Effect of Object Size 47
4.7.3 Implications for Caches 49

4.8 Reference Counts ... 49
4.9 Selectors as a Percentage of Literals 51
4.10 Summary and Conclusions 53

V. Static Grouping Algorithms .. 55
5.1 Nine Algorithms .. 55
5.2 Static Pointer Distance ... 57
5.3 Neighbor Relation .. 60

5.3.1 Effect of a Continuous Displacement 60
5.3.2 Discussion ... 61
5.3.3 Effect of Page Size 62

5.4 Conclusions and Predictions 64
V L Reference String Compression .. 66

6.1 Developing the Algorithm 66
6.1.1 A Simple Compression Scheme 66
6.1.2 A More Detailed Algorithm 68
6.1.3 Loom Requirements 69
6.1.4 Equivalence .. 70

5

6.2 Three Execution Sequences 70
6.3 Reference Spread 0 0 • 0 0 0 0 0 0 0 0 •••••••• 0 •••••••••••••• 71

VIl. Grouping and a Paged Virtual Memory 0 ••••••••••••••••••••••• 74
7.1 Simulating a Paged Virtual Memory 74
7.2 Results .. 74
7.3 Analysis of Predictions 0 •••••••••••••••••••••••••••••• 77

VIIL Grouping and LOOM 0 ••••• 0 •••••••••••••••••••••• 79
8.1 Simulating LOOM 0 •• 0 •••••••••••••••••••••••••••••• 79
8.2 Differences l1etween the Simulation and r ,OOM 81
8.3 Result~ 0 ••••••••••••••••••••••• 81

8.3.1 Results Independent of Grouping ... 0 ••••••••••••••••••••••••• 82
8.3.2 Paging Performance 0 ••• 0 •••••••••••••••• 0 ••••••••• 83
8.3.3 Page Utilization and Cleanliness. 0 ••• 0 •••••••••••• 0 ••••••••••• 85
8.3.4 Effect of Core Purging Policy. 0 •••• 0 ••••••••••••••••••••••••• 87
8.3.5 Variable Buffer Size 0 ••••••••••• 0 •••••••••• 90
8.3.6 Effect of Disk Buffer Purging Policy. 0 ••••••••••••••••••••••••• 94
8.3.7 In-Core Residence Times 0 •••••••••••••••••••• 0 ••••••••• 94

8.4 Analysis of Predictions 0 •••• 0 0 • 0 •••••••••••••••••••••••••••• 98
IX. LOOM versus a Paged Virtual Memory 0 ••• 0 ••••••••••••••••••••••••• 100

9.1 Equivalence and the Compression Algorithm. 0 • 0 •••••••••••••••••••• 101
9.2 A Naive Comparison 0 ••••••••••••••••••••••••••••• 103
9.3 LeafiNo-Leaf Comparisons 0 •••••••• 106
9.4 Warm-Start Comparisons 109
9.5 A Note Concerning Page Faults 0 • : ••••••• 0 •••• 112
9.6 Extending These Results 0 •••••••••••••••••••••••••••••••••• ll2
9.7 An Evaluation of LOOM 0 ••••••••••••••••••••••••••••••• ll5

X. Dynamic Characteristics and Degradation of Initial Placements 0 •••••••• 118
10.1 Introduction ... 0 ••••••• 0 •••••••••••••••••••••••••••••••••••• 118
10.2 Stack-like Allocation and Deallocation 0 •••••••••••••••••• 0 ••••••••• 119
10.3 Object Lifetime ... 0 •••••••• 0 • 0 0 •••• 0 •••••••••••••• 0 ••••••••• 120
10.4 Dynamic Pointer Distance 0 ••••••••••••••••••••••••• 120
10.5 Degradation of an Initial Placement 0 ••• 0 ••••••••••••••••••••• 122

XI. Conclusions 0 •••• 0 ••••••••••••••••••••••••••• 124
11.1 A Review 0 ••••••••••••••••••••• 0 ••••••••• 0 • • • • 124
11.2 Recommendations ~ . 125
11.3 Directions for Future Research 0 ••• 0 ••• 0 0 •••••••••••••••••••••••• 126

Bibliography 0 •••••••••••••• 0 ••••••• 0 •••••••• 0 •• 128
Appendix A: Detailed Reference Data 132
Appendix B: Data from the Static Analysis of the Initial Placements 0 0 ••••• 0 ••• 143
Appendix C: Dynamic Paging Performance Data 0 0 • 0 •••••••••••• 0 •••••••••••••• 146
Appendix D: Dynamic Characteristics and Degradation Data . 0 ••••••••••••••••• 0 •• 162

6

List of Figures

1- 1 A Road Map . lO

2-1 An Object Partitioned into Blocks 14

2-2 LOOM Virtual Memory .. 16

2-3 Pointer Compression .. 18

2-4 Inheritance Hierarchy Example ... 21

4-1 Object Size ... 29

4-2 Fractional Utilization .. 32

4-3 Incremental Fractional Utilization 35

4-4 Fractional Utilization versus Size 37

4-5 lnterreference Headway .. 40

4-6 Access Frequency ; 46

4-7 Importance Function .. 48

4-8 Selectors as a Percentage of I jterals 52

5-1 Static Pointer Distance ... 58

6-1 Thin Spread ... 72

7-1 Parachor Curves for a Paged Virtual Memory 75

8-1 Parachor Curves for LOOM ... 84

8-2 Mean Page Utilization ... 86

8-3 Effect of Core Purging Policy on Parachor Curves for LOOM 89

8-4 Effect of Disk Buffer Size on Parachor Curves for LOOM 91

8-5 Effect of Disk Buffer Purging Policy on Parachor Curves for I.OOM 93

8-6 In-Core Lifetimes ... 95

8-7 Object Entry and Exit Times ... 96

9-1 A Naive Comparison .. 104

9-2 A Leaf/No-Leaf Comparison ... 108

9-3 A Warm/Cold Comparison. '.' .. 111

10-1 Transient Object Lifetimes ... 121

10-2 Dynamic Positi ve Pointer Distance . 121

10-3 Dynamic Negative Pointer Distance 121

CHAPTER 1. PRELIMINARIES 7

1. Prelim inaries

1.1 Introduction

Because most computing systems are configured with a multilevel memory, a primary problem has

been to determine the distribution as well as the movement of information between levels of

memory. Early attempts at memory management were manual and became known as the overlay

solution. The programmer organized both code and data into blocks and explicitly moved these

blocks between memory devices. These techniques became automated when assemblers and

compilers analyzed the structure of programs, partitioned them into blocks. and automatically

moved the blocks between primary memory and the secondary memories [ACMj.

Virtual memories [COFF, DENN. PARMj soon replaced the overlay technique as the primary focus

of those researchers and programmers interested in memory management. Sayre claimed that

virtual memory techniques were competitive with and likely superior to overlay strategies [SA YR].

Empirical results demonstrated that with only a small bit of knowledge of the actual (not the

virtual) environment, programmers could create code with much better paging performance

[BRAW68, BRAW70]. Numerous suggestions for programming in a virtual memory environment

were proposed and compiled [OUER, KUEH, McKEL]. The key property that accounts for the

exceptional level of performance of virtual memories is called locality of reference [DENN].

Numerous program behavior studies [BELA66, FINE] have empirically supported the long-observed

locality property.

Increasing the locality of programs to realize better paging performance became the next goal.

Code was partitioned into blocks [BAER72. KERN, LOWE. RAMA, VERH] and related blocks

were assigned to the same virtual page in a process of pagination. Numerous researchers have

investigated this process of restructuring programs and then distributing code to maximize locality

[COME. FERR74. HATF, INFO, JOHN, TSAO].

With the advent of high level, object-oriented programming languages sllch as CLU [LISK]. recent

studies have examined object-oriented, virtual memory management policies. Such schemes manage

real memory in terms of objects rather than disk pages. Bishop [BISH] partitions the virtual

memory into a number of reasonably-sized areas to allow the efficient garbage-collection of very

large address spaces. His dissertation describes a mover that dynamically relocates objects in an

effort to increase the locality of reference. In a paper design of an object-based personal computer,

Luniewski [LUNI] builds upon Bishop's scheme of an object-oriented virtual memory and

dynamically relocates objects by the breadth-first traversal of the compacting garbage collector.

Snyder [SNYDa], on the other hand, obviates the need for organizing objects in the virtual memory

8 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

by assuming the future existence of fast-access secondary storage devices that are efficient enough to

swap even small object') instead of conventional pages.

1.2 Background

Smalltalk [XERO] is a high level, object-oriented, programming environment developed at Xerox

PARCo It runs on personal computers with powerful graphics capabilities, such as Altos and

Dorados, that arc normally attached to the local network called Ethernet [METC]. Smalltalk is a

collection of interlinked objects. Consider, for example, the set of instructions an object executes

when it receives a specific message. Both the source text and compiled code for. these instructions

are objects. User-defined types and primitive types are also represented as objects. All

instantiations of these types, including the frames of the run-time stack, are ordinary objects.

The current implementation of Smalltalk will eventually be supported by a 31-bit virtual memory

system called the Large Object-Oriented Memory (LOOM) [KAEH]. LOOM swaps objects between

memory levels on demand. To support this object-oriented view, memory pages are swapped

between core and disk (or between core, disk, and a remote file server, such as WFS [SWIN)) on

demand. The desired object is then copied to or from the disk page. Since many objects can fit on

a single page, one page fault typically transfers a set of objects to the in-core disk buffer. Until this

page is flushed from the disk buffer, swapping other objects on that page into primary memory may

be accomplished without incurring additional page faults. It is likely that intelligent groupings of

Small talk objects on disk pages will be a critical factor in the determination of the speed of

SmaUtalk application programs.

Of prime importance is the persistence of the programming environment. Many Smalltalk objects

have lifetimes that transcend single user sessions. It is therefore possible to consider the objects

comprising the system and their interactions. This infonnation can then be used to place related

objects on the same page. LOOM is not committed to any specific strategy for grouping objects on

pages and therefore places no constraints on the set of grouping schemes. Such an environment is

conducive to experimenting with various algorithms for grouping objects on pages in an attempt to

reduce the frequency of page faults.

A simulation of a conventional page-swapping virtual memory was employed to determine the

effects of such static grouping algorithms on that type of virtual memory. [n addition, a direct

comparison between object-oriented and page-oriented virtual memories under various grouping

strategies is reported. [n a paged virtual memory, whenever an object on a page is referenced, all

objects on that page are automatically transferred into primary memory. If not all of these objects

are required, memory will be underutilized. In the object-oriented case, memory will be fully

utilized. However, one drawback of such a scheme is that loading a page of objects into primary

memory may require as many page faults as there are objects on that page. In terms of paging

performance, the better type of virtual memory will depend upon the grouping strategy, execution

sequence, and primary memory size.

CHAPTER 1. PRELIMINARIES 9

1.3 Novel Extensions

The primary focus of this thesis will be an investigation into the perfonnance of a small but varied

collection of static grouping algorithms for object-oriented and page-swapping virtual memories.

Much of the work done to support this endeavor concerns realms that previously had been largely

unexplored. The object-oriented nature of Smalltalk provides some of the novelty; the remaining

investigations are interesting in their own right:

Memory accessing behavior for an interactive programming environment is analyzed on
two levels. [n addition to capturing detailed reference tendencies. efforts were directed at
studying the paging requirements of Smalltalk. ,Unlike most published studies. which
were concerned with physical attributes such as virtual memory addresses or page
references. the emphasis here is on logical structures. Definitions and results are
expressed in terms of programmer-chosen units (objects) rather than fixed-size pages.

At times a distinction is made between code and data references. This partitioning allows
their low-level behavior in an object-oriented environment to be analyzed in isolation.
The two memory accessing behaviors are compared and contrasted, and their individual
contributions to the composite picture are detennined.

Previous restructuring techniques tended to be concerned only with the code segments of
a single program. A few also considered the areas for temporary data structures that were
allocated at compile/assembly time. Smalltalk grouping schemes. on the other hand. are
designed to accommodate an entire programming environment composed of existing code.
data. and support structures.

Finally, empirical measurements of the dynamic paging performance of both object
swapping and page-swapping virtual memories under varieus grouping algorithms were
made. These results are then compared and contrasted.

L.4 Some Results

Grouping of code, data, and support structures can have a large impact on performance in an

object-oriented programming environment. The simple, efficient grouping techniques employed in

this study achieved substantial reductions in the number of page faults for both the page-swapping

virtual memory and for LOOM. More complicated schemes that considered reference count

information or knowledge derived from actual dynamic behavior did not provide additional

improvements.

[n the paged virtual memory, any reasonable grouping scheme substantially reduced the amount of

paging from the level caused by the random, ungrouped initial placement. Differences between

grouping schemes were not too significant. [n LOOM, on the other hand, the amount of

improvement in paging performance depended heavily on the type of grouping. Although LOOM

was more sensitive to the type of the grouping scheme, grouping had less of an effect on LOOM

than it did on the paged virtual memory. This result is due to the fact that LOOM selectively

swaps information between primary memory and the disk. It does not necessarily swap all the

information on a given page.

A direct comparison between the two types of virtual memories indicated that LOa M outperforms

a paged virtual memory for a range of small memory sizes. Such results were invariably obtained

10 A LARGE OBJECf-ORIENTED VIRTUAL MEMORY

Virtual 1Vlachine Emulation Ch.3

Reference
Stream

Smalltalk-80

/ ~ Objects
\If

Ref. String Analysis Ch. 4 Static Grouping Ch. 5

~ lnitial
Placements

Compression Ch. 6 lnitial
Placements

Compressed
Ref. Stream

\It y

Paged VM Simulation Ch.7 LOOM Simulation Ch. 8

Faulting Faulting
Rates Rates

v ,It

Direct Comparison Ch. 9

-7 Degradation of lnitial Placements Ch. 10

Figure 1-1 A Road Map

CHAPTER 1. PRELIMINARIES 11

for wann starts, cold starts. simulations that did reference counting, and those that did not. [n

addition to the particular computation, the initial placement computed by the grouping strategy

played an important role in detenning the memory size interval for which LOOM outperformed the

paged virtual memory. Since the length of this interval varied inversely with the quality of the

initial placement, the desirability of a (,OOM -like virtual memory will depend on the existence and

stability of quality initial placements.

t.5 A Road Map

The structure of this thesis closely parallels the work whose results are reported herein (Figure 1-1).

Chapter 1, the introduction, briefly surveys the history of virtual memories. motivates the problem,

and outlines the important research areas and results. Chapter 2 discusses issues relevant to

swapping strategies and introduces the LOOM virtual memory. A description of the virtual

machine emulator used to generate reference traces is presented in Chapter 3. while a thorough

analysis of the reference behavior of. the Smalltalk virtual machine is contained in Chapter 4.

Chapter 5 describes the grouping strategies and the static analysis performed on them. The next

chapter details the algorithm used to compress a full reference trace into one suitable for driving

virtual memory simulations. Chapters 7 and 8 discuss the simulated dynamic behavior of a paged

virtual memory and LOOM. [n Chapter 9, these two types of virtual memories are directly

compared. Chapter 10 makes a brief excursion into the areas of memory management schemes and

the stability of static groupings. The last chapter then surveys the accomplishments and failures of

this endeavor.

12 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

2. Swapping Strategies and Grouping

2.1 Logical versus Physical Swapping

Physical units of infOimation are swapped between memory levels if the amount of data transferred

at one time depends only upon the characteristics of the hardware, microcode, and software

implementing the virtual memory but not upon the data. [n other words, the swapping size is data

independent. Logical elements of information are swapped if computational entities are the units of

transfer. Examples of logical swapping include transferring files, sets of objects, single objects,

portions of objects, or individual fields. Physical units of swapping include bits, bytes, words, pages,

and disk sectors.

Some systems combine these two extremes. LOOM, for example, swaps entire disk pages from the

disk to an in-core disk buffer, but swaps Smalltalk objects between this buffer and the rest of core.

Conventional virtual memories swap fixed-size pages between core and disk. Predictive schemes,

which preload related pages in addition to the one causing a page fault, add a logical flavor to a

physical swapping strategy. Another combination is a segment-swapping virtual memory in which

each segment is an integral number of disk pages. The appropriate scheme depends on the

underlying machine, the position in the memory hierarchy, the expected nature of reference

patterns, and the computational overhead and complexity of the chosen algorithms.

2.2 Effectiveness of Grouping

As long as the interface to secondary memory dictates that fixed-size sets of bits are to be

transferred, it is only reasonable to endeavor to structure both code and data so that a large

percentage of the swapped information is used as quickly as possible. This statement holds for both

object-swapping and page-swapping virtual memories. [n both cases, most or all of the grouping

decisions should be automated.

Grouping can only affect performance if the physical units of swapping are larger than the size of

the logical elements. Differences between grouping strategies are likely to appear only when these

sizes are within an order of magnitude. Consider, for example, grouping Smalltalk objects on disk

pages. Because objects directly refer to a small set of other objects and are themselves typically

referenced by only one object, most grouping algorithms will tend to partition the system into sets

of related objects in a similar manner. One critical indicator of the feasibility of object grouping is

the ratio between the size of a disk page and the average size of an object. If this value is

extremely large, hundreds or thousands of objects would comprise a single unit of information

transferred between memory levels. Most pages would contain many of these sets of related objects

and different grouping strategies would have similar effects on performance. The particular

technique employed would be the simplest and fastest.

CHAPTER 2. SWAPPING STRATEGIES AND GROUPING 13

[f the length of an object were comparable with page size, some objects would span more than one

page, but the average number of objects on a single page would be close to unity. For such

systems, conventional page-swapping virtual memories are nearly equivalent to simple object

swapping schemes as far as the average amount of data transferred between object space and disk.

Pointer compression, unresolved pointers, and other enhancements found in LOOM (section 2.4),

however, are not directly applicable to such conventional systems.

At the other end of the spectrum lie systems in which the objects are far larger than the page size.

It is still possible to swap entire objects to and from secondary memory, but the gains realized from

such a scheme are highly dependent upon the normal types of reference patterns. Rearranging

fields within objects may make sense in a page-swapping environment.

Grouping strategies will have different effects if a small number of objects fit on each page. because

a set of related objects will span many pages. Hatfield suggests that the best results for a paged

environment occur when 3 to 10 objects fit on a page [HATF]. Similar conditions should also suit

object-swapping virtual memories.

2.3 A Hierarchy of Groupings

The size and nature of the units of information that are manipulated by grouping schemes depend

upon the memory component under consideration as well as the types of transfer between these

components. In a multi-level virtual memory configuration. there are numerous possibilities for

restructuring information in order to enhance performance.

Field swapping, in which single fields are swapped, is similar to object swapping 10 that the size

restrictions imposed by the hardware interface to secondary memory are hidden from the manager

of primary memory. This scheme is equivalent to a page-swapping strategy that has a tiny page size

and is typical of caches that do not prefetch information. Grouping, however, is not applicable at

this memory leveL

1\ more general approach is to partition the fields of each object into blocks such that each field is

in exactly one block and fields in the same block are physically adjacent (Figure 2-1). Call such

virtual memory schemes block-swapping. [f the block size is constant, the result is essentially a

page-swapping virtual memory when the blocks are the unit of swapping. Block size may differ

from object to object and even within an object. [f the blocking pattern is the same for all

instances of a single, fixed-length class, this information may be kept in the class object and shared

by all instances of the class. An interesting question for variable-length classes is the specification

of the blocking pattern and its placement. High level blocking information may be retained within

the class object but the particular parameters such as block size(s) may be held by each instance. [n

block-swapping virtual memories, the compiler can group information by reordering fields within

blocks and/ or blocks within an object

14 A LARGE OBJECT-OR [ENTED VIRTUAL MEMORY

Block Number: o 1 2 3

I I I II I I I /I I I I I I I I I I I
Field Number: 0 1 2 3 4 5 6 7 8 9 (etc.)

Figure 2-1 An Object Partitioned into Blocks

CHAPTER 2. SWAPPING STRATEGIES AND GROUPING 15

Hybrid schemes are also possible. For example, the virtual memory manager can group small

objects on pages and swap them individually . Very large objects, such as local or remote files, may

be partitioned into a number of blocks. Only the most recently used block(s) would remain in core.

Although this scheme can place an upper bound on the quantity of infOlmation transferred at one

time, one drawback is the overhead in time and space required to manage these "partial" objects.

A novel viewpoint is taken by the PIE [GOLD] personal information environment which is

implemented in Smalltalk-76 [INGA 78]. The smallest unit of information in PIE is an attribute of

an object. Changes to the system, called layers, are collections of new attribute values for objects.

For such a system, grouping, organizing, and! or swapping may be done on a layer basis rather than

on an object basis.

Depending on the possible amounts of data transferred between memory levels and the size of the

computational items and their substructures, a natural unit of swapping may be identified. [f this

unit is composed of finer stmctures which are themselves meaningful entities, these structures may

be grouped and/or swapped to enhance performance when data is transferred between a pair of

lower memory levels.

For example, if the expected number of objects on a page is ten, then it is feasible to group objects

and swap single objects or small collections of objects. [f the unit of swapping dictated by the

underlying cache hardware is only four words, then fields ought to be grouped and collections of

fields swapped.

Grouping at one memory level of the system neither requires nor precludes grouping at other levels.

Memory configurations usually consist of a number of physical devices with different transfer rates,

access times, error rates, capacities, and costs. Information is continuously shuffled from one layer

of memory to another, while the quantity of information transferred is highly dependent upon the

two memory levels involved. Therefore, the appropriate choice of entities to group or swap is

strongly correlated with the particular aspects of the virtual memory performance being tuned.

Once this choice has been made, however, most if not all of the actual grouping decisions ought to

be automated.

2.4 LOOM

2.4.1 . Object Swapping

[n order to avoid the complexities of analyzing a three-level memory system (the actual Smalltalk

implementation strategy), only two levels will be considered (Figure 2-2). The large, slow secondary

memory is a collection of disk pages which may be confined to the local disk, located on a remote

file server, or replicated and distributed across the local network. For purposes of simplicity, the

secondary memory will be modeled as a single repository containing all the pages required for any

computation. Call this memory disk.

16 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

Disk

(32-bit pointers)

Disk
Buffer

Core

(16-bit pointers)

o 00
00

00 o

Object

Figure 2-2 LOOM Virtual Memory

Disk
Page

CHAP1'ER 2. SWAPPING STRATEGIES AND GROUP[NG 17

Primary memory is composed of an in-core disk buffer and object space (core). The disk buffer is a

small, fixed-size collection of disk pages. Pages are swapped between the disk and this butTer on

demand. The buffer acts as a simple cache for disk pages.

Objects are the unit of swapping between the disk buffer and core. At most, one copy of an object

may be in core. Fields of an object may be read or written only if the object is in core. If the

Smalltalk interpreter needs to access an object that is not in core and is therefore inaccessible, an

object fault occurs. The required disk page is read into the disk buffer and the object is copied into

core.

If there is not enough free space in primary memory to swap in an old object or create a new

object, compaction is done. The memory manager collects all free words in primary memory into

one contiguous block. If this free block is large enough to accommodate the memory allocation

request, space for the new object is carved from the front of the block. Otherwise, some objects are

removed from core and purged to the disk. Each object has an in-use bit that is set if the object

has been touched by the virtual machine since the last time it was considered as a candidate for

purging. I f this bit is set, the virtual memory manager clears the bit and considers another object.

Otherwise, the bit is not set. The object was not Llsed in the recent past and is purged. If the

object is clean, it is simply discarded. Otherwise. an object fault occurs. The appropriate disk page

is read into the buffer and the current contents of the object are copied from core into the buffer.

One implication of object swapping is that the optimal object-fetching policy is not necessarily a

demand policy. Formal proof.'i of the demand nature of the optimal strategy for page-swapping

virtual memories exist [MAr[T]. However, since the cost is measured in page t:1ults rather than

object faults, all such proofs are not applicable to the object-swapping portion of such systems.

Note that the optimal page-fetching policy for· LOOM will always be a demand strategy.

2.4.2 Pointer Compression

Interesting naming considerations arise when a Smalltalk object is transferred from core to disk,

especially when the disk is a remote file server of a distributed database supported by the Ethernet.

All objects have two formats: their representations in core and on the disk. In-core pointers are l6-

bit indices into a table of in-core objects called the OT. Disk pointers are 32 bits long and arc

essentially disk addresses. Objects that change size are accommodated on the disk by using

forwarding markers.

Whenever an object is brought into core, all of its pointers must be converted from a 32-bit format

to a 16-bit format. The 0'1' is used as a hash table with the 32-bit address of an object as its key.

Since all in-core objects contain their 32-bit disk address, establishing the presence or absence of the

desired object is straightforward. [f such a 32-bit pointer references an in-core object, then the 16-

bit name of the object is used.

18 A LARGE OBJECT-ORlENTED VIRTUAL MEMORY

------- ---
Ob· --. A {-------} ~~~~. 32 bits ,-7 Object R _

CO ----- " --- ------,
fl_ e2bits
p --<~- -{ ()bjec~

32 bits ~~

_______________________ --a

32 bits Object B
----0= ----.

Initial Status of Disk Initial Status of Core

------------ --- --------,
/,. ----- -- - ------------------------ ------- --------------ii bits -- - - -- -- -- - '\

~/ __ _ Object A _3_2 b.i itl.SL) ~ JCOb>iect B ~ .'
~ ____ ""L J r" 32 bits Object B

-----' ";, ____ r-r-__ .:...-._~ 16 bits
___ -"'~2bits 'LL --.-J

~---; Object C t. .~ __ 3!_~i:S
'32 bit.s _.____ ~

LeafC

ObjettA

Final Status of Disk Final Status of Core

Figure 2-3 Pointer COlnpl~essiot1

CHAPTER 2. SWAPPING STRATEGIES AND GROUPING 19

Consider the example shown in Figure 2-3, in which objects A, B, C, and [) are all on the disk.

Solid lines indicate object references, while dashed lines represent the 32-bit disk address held by

each in-core object. These backpointers are the only type of disk reference allowed in primary

memory. Note that there are no references from disk to core. Assume object B only is initially in

main memory and that object A is needed for a computation. When A is swapped into core, all of

its 32-bit pointers must be converted to a l6-bit format. Since B already has a 16-bit name, this

name is placed in field m of the in-core version of A.

[f the referenced object is not present there are three alternatives. First. the referenced object may

itself be swapped into core. While some objects may be prefetched and thus swapped into core

before they are actually referenced, this scheme cannot always be used. The complete set of objects

may not fit into core or the desired object may not be immediately available.

A second alternative is to create a leaf for the object which is essentially the object without any of

its data fields. This alternative was chosen for the reference to C contained in object A. An object

may exist in core as an object or as a leaf. but not as both simultaneously. The small size of leaves

allows a representative for an object to be in core that docs not occupy the space needed by the full

object. Leaves provide a level of indirection and allow the existence of short pointers to

nonresident objects. For example. if an object being purged has a non-zero in-core reference count,

it is replaced by a leaf in a process called contraction.

Another alternative is to replace the pointer with a lambda. as was done for the reference in A to

object D. Lambdas are special references with a constant value used to indicate unresolved

pointers. Whenever the Smalltalk interpreter comes across such a reference, the virtual memory

manager refetches the disk representation of the object containing the lambda to determine the true

pointer value. Since this process of lambda resolution can generate many page fetches per "in-core"

object. its frequency of occurrence is a critical performance factor.

Dynamically created objects initially receive only a 16-bit name. Since these temporary objects tend

to have relatively short lifetimes and are rarely purged. 32-bit names and a home location on the

disk are not granted unless they are required. [n order to purge a temporary object that has no

counterpart on disk, disk space is first allocated. The disk address of the object becomes its external

name.

Whenever an object is transferred to or from the disk, all pointers must be converted to the

appropriate format. This name translation penalty trades off against increased pointer size and the

reduced number of objects in core. Another benefit provided by this two-level name space is the

lack of a fixed relationship between the name and location of an object in core and its location on

the disk.

20 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

2.4.3 Storage tvl anagement

Memory is reclaimed in LOOM by using reference counts. At times, three separate reference

counts may be maintained for a single object. The true reference count is actually the sum of the

individual counts. Disk objects contain the count of the holders of their 32-bit external name. In

core reference counts, which represent the number of holders of 16-bit internal names, are

maintained in the OT. Leaves arc also involved with LOOM's complex reference counting scheme

and their role is briefly described in section 8. L

2.4.4 Relevant Smalltalk Terminology

A small number of tenns with particular Smalltalk meanings need to be defined. Objects

communicate by sending rnessages. The name of a message is called the selector. Upon receipt of a

message, the receiver performs some set of actions, possibly sends other messages, and then returns

a value. This sequence of instructions perfonned by the receiver is called a method. Sending a

message in Smalltalk corresponds to calling a procedure in a conventional programming language.

The context is changed in both cases by pushing a new frame on the stack and updating the

program counter (PC) to point to the tirst instruction in the new method/procedure. The source

level representation for a method is a sequence of Smalltalk statements that may be compiled to

form object code intelligible to the virtual machine. This object code is represented as a sequence

of compile-time literals followed by a collection of 8-bit bytecodes and is a called a

CompiledMethod. A CompiledMethod may be decompiled to produce a close approximation of the

original source code. While the word "method" may refer to either the source-level statement') or

the object codc, the appropriate meaning will usually be clear from the context.

Every Smalltalk object belongs to exactly one class. This class detennines the internal

representation of the object as well as the set of messages such an object is prepared to accept. All

instances of each class share a collection of methods that arc located in a single object held by the

class object. This repository, called the message dictionary, maintains a mapping between selectors

and CompiledMethods. Under this naming convention, the receiver of a message determines the

context in which to resolve the specific selector. Therefore, a single selector appearing in a method

may refer to any number of CompiledMethods. The binding of the selector to a specific

CompiledMethod is not done until ntn time. Classes arc arranged in a superclass hierarchy for the

purpose of code inheritance. This arrangement further complicates the binding between selectors

and CompiledMcthods.

Consider the hypothetical number hierarchy depicted in Figure 2-4. Assume a Smallinteger receives

a message with selector M. The Smalltalk interpreter first determines the class of the receiver,

which in this case is SmalHnteger. Each class maintains the mapping from selectors to methods in

its own message dictionary. [f M is found in the message dictionary associated with the class

SmaUlnteger, the corresponding method is executed. Otherwise, the Smalltalk interpreter looks in

the superclass field of the object that is the class Smalllnteger and finds a reference to the Integer

class. The message dictionary of this class is then checked for M. This search process continues

a
selector

CHAPTER 2. S\VAPPING STRATEGIES AND GROUPING

sllp(~rdass

a
Compiled
~1cthod

a
Compiled
Method

supcrc1ass

Imaginary

rncssage
dictionary

message dictionary

supcrc1ass

Complex
Number

supcrdass

Rational

superc1ass

Smail
tnteg~r

Figure 2-4 Inheritance llierarchy Exanlple

11

Irrational

22 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

toward the root of the system (class Object) until either a method is found or the root is reached.

If the latter event occurs, an error message is sent and the execution is suspended. Since the user

may insert and delete message dictionary entries at nll1 time, the binding between a selector and a

method cannot be established before the particular message is sent.

CHAPTER 3. VIRTUAL MACHINE EMULATION 23

3. Virtual Machine Emulation

Precise empirical comparisons of the paging performance of an object-oriented and a page-oriented

virtual memory require a reproducible sequence of memory references. The inability to exactly

duplicate the timing and nature of user input derived from the keyboard and mouse prevent the

direct use of two Smalltalk implementations with different virtual memory configurations. Such a

testing environment would have required the construction of two virtual memories. Implementing a

paged virtual memory that dealt with 32-bit references would have necessitated a complete

restructuring of the existing Smalltalk-80 virtual machine which deals exclusively with 16-bit

poimers. For these reasons, a decision was made to use a fixed set of inputs and to simulate both

virtual memories. This option required substantially less implementation and debugging effort and

provided flexibility at the cost of the degradation in performance associated with simulations. Since

any set of memory references is independent of both the original layout of objects in the virtual

memory and the type of virtual memory, objects could be grouped by any static algorithm and

policies and parameters of the virtual memory could be modified without invalidating the input

trace.

3.1 Empirical Data versus Mathematical Models

Data to drive virtual memory simulations may be obtained from mathematical models of program

behavior or actual execution traces. Analytic techniques have compact, tlexible representations, low

construction and usage costs, and the ability to reproduce an output sequence. Such models also

tend to be mathematically tractable and convenient by making simplifying assumptions that in many

cases do not accurately reflect the true operation of the program [BATS76, SALT]. However,

without model calibration and validation, any results derived from such a model are only of

theoretic interest [SPIR].

Alternatively, an execution trace or event trace may be extracted from a running system and used to

drive a virtual memory simulation. This information is a time-ordered collection of events whose

occurrence is (or may be) relevant to a concurrent or future simulation. Advantages of an event

trace in.elude reproducibility and accuracy. Offsetting these benefits are the problems of excess

detail, lack of flexibility, and substantial difficulties in generating and employing the data.

Event traces were selected over mathematical models for three reasons:

There is no generally accepted procedure for validating program models. Ferrari
[FERR78] has summarized the current set of tools as ad hoc methods, partial tests, and
common sense.

No empirical measurements have been reported for a single-user. display-oriented, object
based. interactive programming environment such as Smalltalk. This lack of data would
have prohibited any serious attempts at model validation.

24 A LARGE OBJECr-OR[ENTED VIRTUAL MEMORY

Finally, the analysis of a detailed reference trace would yield statistical data for an object
oriented system that may be compared with similar infOimation derived from programs
written in other languages and executing in vastly different run-time environments.

3.2 F:mulation of Smalltalk-80

Two methods of obtaining event traces are to modify the existing microcoded virtual machine and

to construct an emulator that simulates the exact behavior of the virtual machine. Changing the

existing microcode has a number of benefits. Most of the design, implementation. and debugging is

already accomplished. The one remaining task, augmenting a running system, would cause only a

slight degradation in performance. Smalltalk would remain a useful programming environment.

Timing characteristics of an interactive session or a connection with a remote server would remain

well within the ranges established by previous releases of Smalltalk nll1ning on lower-performance,

personal computers. [n contrast, an emulator written in Smalltalk would execute instructions orders

of magnitude more slowly and thereby prevent normal patterns of usage from occurring.

Changing the virtual machine also has a number of unattractive features. Space limitations in the

microcode store would tend to restrict the class of data compression techniques available. while the

low level of the microcode language would inhibit program debugging, modification, and

maintenance. Smalltalk, on the other hand. would provide all the advantages of a high level

language. the simulation facilities found in an object-oriented programming environment, and more

computational power by essentially removing the restrictions on program size.

[chose neither extreme. I wrote the bytecode interpreter of the emulator in Smalltalk. but used the

virtual machine for it') storage management facilities and execution of the low-level messages called

primitives. This configuration supported the full genenllity of a program written in a high level

language, allowed the use of a good deal of existing Smalltalk code, and provided some of the

speed of the actual machine. Once constructed, the emulator was readily adapted to making

measurements quite different from those initially envisioned. The emulator has become a general

tool for obtaining statistics and has been integrated into a new display-oriented. interactive debugger

with a single-step capability. Except for the tremendous cost in speed, the emulator has been

invaluable for both its intended purpose and new applications.

3.3 Execution Trace Validity

Primitive methods are written in microcode and serve two purposes. By providing the basic

arithmetic and logic functions, primitives end the infinite regress of message sending. Primitives

also enhance performance. since a number of heavily used methods are written in microcode and

thus execute rapidly.

Restricting emulation to the bytecode interpreter meant that the actions of the microcode when

performing primitives had to be integrated into the event trace. In order to avoid compromising the

validity of the statistics derived from the traces, a small subset of the primitives (about one-third)

CHAPTER 3. VIRTUAL MACHINE EMULAT[ON 25

were chosen according to usage frequency. For these primitives. the emulator recorded the memory

references made by the microcode.

When a primitive method is encountered. the emulator instructs the virtual machine to attempt to

perform the necessary actions. If the primitive succeeds. the microcode has perfonned the desired

actions. The corresponding method is not executed and there is no new stack frame. A primitive

fails when a situation occurs that the microcode is not prepared to handle. For example. one or

more of the arguments in the message may not be of the expected type or within the appropriate

value range. When a primitive fails. the corresponding method is executed by pushing another

frame on the stack and setting the program counter to the first bytccode in the new method. For

both successful and unsuccessful primitives. the emulator detennined and recorded the set of

references made by the microcode.

Logical functions, integer arithmetic. and comparison of two object identifiers are examples of

operations that only access the top element(s) of the stack. These heavily used primitives do not

contribute any references to object space. Determining the references made by the microcode is

straightforward for most of the remaining operations. For example. array and string subscripting.

object creation, and stream accessing are all characterized by a fixed set of references made to the

receiver of the message and the arguments. Only one primi~ive required an extensive algorithm to

compute the references made by the microcode. BitBlt, an acronym for bit boundary block transfer,

is the primitive that manipulates, clips, and transfers areas between bitmaps. A complete

description may be found in [INGA81]. Between 80% and 95% of all cal1s on primitive methods

were detected and compensated for in this manner. Since primitives are a fraction of all methods

and send instructions arc a subset of all bytccodes, the missing references are not substantial. The

event traces may be considered both representative and complete.

26 A LARGE OBJECT-ORIENTED VrRTUAL MEMORY

4. Detailed Reference Behavior

A number of measurements of a running Smalltalk system were taken and subsequently analyzed in

order to investigate the basic reference tendencies of an object-oriented system. Results of the

analysis were used to suggest. evaluate. and compare stalic grouping algorithms and had

implications for cache management. swapping granularity, and event trace compression. Dynamic

characteristics, such as the distribution of object lifetimes and the distribution of pointer distances

(where the measure is the difference in creation time), are discussed in Chapter 10.

Although data was obtained from a wide variety of computations. one important result was the high

degree of similarity between the measurements for different execution sequences. These statistics

report characteristics of the Smalltalk-80 system rather than the peculiarities of the particular

computations. Another conclusion drawn from the analysis is that the quiescent characteristics.

measured when the system is not active, are a valuable but not infallible predictor of their nm-time

counterparts.

Each distribution compiled from these measurements was characterized by seven numbers: the

median, mean, minimum, maximum, two quartiles, and the standard deviation. The entire

collection of statistics is presented in Appendix A.

4.1 [)(~finitions

Let an object reference be the reading or the writing of one field of any object except a stack frame

done strictly for computational purposes. [n this chapter only, all references made for storage

management purposes are neglected. For example, all operations concerning reference counts,

garbage collection, compaction, indirection through forwarding markers, contraction, expansion,

purging, and faulting are not considered. This detinition isolates the set of object references that

are essential to the computation and that would occur if core were unlimited and the storage

manager did not exist.

Define a reference string (stream. trace) to be a time-ordered collection of object references. In

most virtual memory studies, reference strings are sequences of virtual memory addresses or virtual

page references. Our object-oriented notion abstracts from the particular organization of objects in

memory and is a more fundamental characterization of the accessing tendencies of the virtual

machine. Batson [BATS76] and Ferrari [FERR76] have called such high-level information symbolic.

Even though a code fragment in Smalltalk is represented by an object that responds to messages as

does any data object, access patterns are different. Methods are referenced in a highly regular

manner (i.e., sequential bytecodes occasionally interrupted by jumps, returns. literals, and

method/block activations), while most data objects are not. Most memory systems and previous

CHAPTER 4. DETAILED REFERENCE BEHAVIOR 27

studies, however, do not make a distinction between data and code in reference strings and/or

working sets. Spirn and Denning [SPIR] have identified this partitioning as an important research

topic.

In the statistics presented in this chapter, a distinction is made between code and data in an attempt

to separate the accessing patterns of each and detennine the relative influence each exerts on the

total picture. 1\ somewhat arbitrary (but strictly enforced) decision was made partitioning objects

into the two sets: code and data. Code objects are CompiledMethods and message dictionaries.

Message dictionaries, which contain the mapping from message selectors to CompiledMethods, are

implemented as conventional hash tables in order to support efficient lookups when messages are

sent. While not actually executable code, these dictionaries are so closely associated with the

CompiledMethods that a decision was made to include them in the code set. Except when source

code is compiled or some CompiledMethods are discarded, the code set represents a static, read-

only structure. Objects not present in the code set are by definition in the data set.

Although the 32K -field bitmap that supports the display is an actual Smalltalk object. it is

considered to be a pennanent resident of primary memory as is any other interface to an I/O

device. For our purposes, the bitmap is not an entity that may be swapped in and out of core.

Unless the contrary is explicitly stated, the 32K bitmap will not be considered hereafter.

(n order to compare nm-time characteristics with those corresponding to a quiescent state, three

types of distributions were computed for most of the statistics: static, dynamic, and quasi-static. A

static distribution is the distribution of counts of objecls in existence whose attribute is a given

value. A dynamic distribution is associated with an event trace and is the distribution of counts of

references to objects in that trace whose attribute· is a given value. A quasi-stalic distribution is

associated with an event trace and is the distribution of counts of objects used in the trace whose

attribute is a given value. [chose the word "quasi-static" in order to avoid the confusing tenn

average used by Batson and Brundage [HA TS77].

[n a lengthy computation involving many cycles of purging and fetching, the dynamic weightings

may be indicative of the set of older objects in core that survive many purge attempts. One

shortcoming of this interpretation is the possibility that most or all accesses to an object were made

during a very short time span and were not unifonnly spread throughout the computation. The

total ordering defined by the number of times an object was accessed mayor may not be correlated

with the probability of avoiding being purged. Quasi-static distributions offer useful comparisons

with both the static and dynamic cases. If primary memory is initially empty at the start of the

computation and objects are swapped instead of pages, the quasi-static distributions reflect the

contents of core before any objects have been purged.

4.2 T race Data

Five radically different execution sequences provided a representative set of statistics that could be

used to investigate the (non)unifonnity of the reference patterns in an object-oriented programming

28 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

environment. These traces would either highlight the differences or underscore the similarities

between small windows on the reference stream generated by a typical user session. Compiling,

entering the debugger, browsing through source code, editing text, and displaying characters in a

window comprise the chosen operations.

In all graphs, charts, and text, the symbol K is used as an abbreviation for the integer 1024. All

traces were exactly 144K references in length. Except for one case in which only UK bytecodes

were executed, between 31 K and 39 K instructions were interpreted by the emulator for each trace.

The one exception represents the potential of the BitBlt primitive to require enormous quantities of

references in order to accomplish a single instruction. Discounting the presence of the bitmap

display object of size 32K, the span of the set of the objects touched ranged from 14K to 21K

fields. Between 422 and 1240 distinct objects were touched in each trace, of which 85 to 393 were

dynamically created.

4.3 Object Size

The distribution of object sizes is useful when deciding whether grouping is applicable and whether

different grouping strategies are likely to have different effects on paging performance. Both

questions were answered affirmatively.

Size is defined to be the number of fields of an. object. Each object contains two or more fields.

Lenglh and class fields are present in all objects and require one word each. The size and core

requirements are numerically equal for objects with word fields. For classes with byte fields, the

space in primary memory occupied by an instance of size n is rn/21+ 1.

Since the BitBlt operation has a potential to cause many thousands of references to a 32K bitmap,

the dynamic size results are presented twice. One set contains all references: the presence of the

bitmap is clear in all four traces in which it appears. A second data set ignores references to

bitmaps and instead concentrates on the remaining objects, each of which has a size of at most 2K

fields.

Object~ tend to be small, with data objects smaller than code objects. [n all three .object partitions,

dynamic size measurements are larger than both their static and quasi-static counterparts (Figure 4-

1). The quasi-static sizes roughly equal (and generally slightly exceed) the static figures. As far as

size is concerned, the computations involved typical objects. Substantially larger dynamic sizes

imply that the distribution of references is not uniform but correlated with size. A more thorough

analysis of the dependency is presented in section 4.7.2.

Of primary importance is the fact that objects tend to be much smaller than disk pages. A static

median (mean) of 10 (19) fields, coupled with a 2: 1 expansion of pointers for very large address

spaces and 512-byte pages, means that one can expect roughly 6-13 objects to be placed on the

same disk page. Since many of the byte fields will remain bytes, the factor of two is a strict upper

bound on the expansion of objects transferred from core to disk. Although most objects are

CHAPTER 4. DETAILED REFERENCE BEHAVIOR

Percent of
Objects

(Static)

Percent of
Object

References

(Trace # 3)

30

20

l1 ::;

2€1

H~

0

£1 :3

Figure 4-1

15 6"-:' 10_' 255 1~:: 4~~ lE;~~ 64~~

15 6'-' ,:. 255 1~:: 4~:: 16~;: 64K

Object Size (fields)

Object Size

29

30 A LARGE OBJECl'-ORIENTED VIRTUAL MEMORY

smaller than a page, hundreds of objects are not able to fit on a page. If this were the case, then

the distinction between any pair of reasonable grouping algorithms that traverse the directed graph

composed of objects and pointers would be blurred. Smalltalk-80's ratio of page length to object

size suggests that pages are the appropriate size for grouping objects.

In an empirical study of Algol programs, Batson and Brundage [BATS77] reported size distributions

of arrays, program segments, and contour data segments. Mean sizes were larger than median sizes

in both the Algol and Smalltalk size distributions. However, the dynamic statistics did not dominate

their quasi-static counterparts in Algol as they did in Smalltalk. In Tables 4.1 and 4.2, the Algol

measurements are expressed in words while the Smalltalk figures are in fields.

Dynamic Dynamic Quasi-Static Quasi-Static
Mean Median Mean Median

Program Segment Size 38.8 23 93.1 33
Array Segment Size 343.1 16 616.6 30
Contour Data Segment Size 17.9 9 13.2 6
Total Memory/Contour 28.1 9 724.8 7

Table 4.1 Segment Sizes in Algol Programs

Dynamic Dynamic Quasi-Static Quasi-Static Static Static
Mean Median Mean Median Mean Median

Code Objects 64-103 34-41 32-40 16-20 31 17
Data Objects 19-62 10-10 9-18 4-10 14 8
All Objects 51-80 27-30 16-26 9-13 19 10

Table 4.2 Object Sizes in Smalltalk Computations

Earlier empirical work by Batson et a1. [BA TS70) also found surprisingly large numbers of small

segments in a university computing environment. Sixty percent of the in-use segments were smaller

than 40 words. McKeeman [McKEE] measured a mean program segment size of 60 words in a

collection of compiled scientific programs. Snyder [SNYDa), on the other hand, reported 3 as the

average size of dynamically created objects in a small number of CLU programs.

One final remark is the visibility of well-known classes of objects in the size distributions. The

popularity of 10 for quartiles and means in the size statistics is due to class objects. Class objects

are. frequently accessed. since they are touched at least once every time a message is sent or a new

object is created. Message dictionaries. which have a capacity slightly larger than some integral

power of two, caused spikes just beyond 64, 128, and 256.

4.4 Fractional Utilization

Memory may be underutilized because of fragmentation, which is caused by filling memory with

unneeded information [KUCK]. Randell [RAND1 has partitioned this problem into internal and

external fragmentation ("checkerboarding"). Internal fragmentation corresponds to the storage

wasted by rounding up the size of each object to the nearest multiple of the smallest memory

allocation unit. Except for wasting one byte in the case of objects with an odd number of byte

CHAPTER 4. DETAILED REFERENCE BEHAVIOR 31

fields. LOOM avoids this problem by swapping objects instead of pages. External fragmentation

occurs when non-relocatable objects prevent a memory allocation request from being satisfied even

though the total amount of free storage can accommodate the request. LOOM attempts to avoid

this type of memory underutilization by compacting in-core objects when a memory allocation

request fails. If the size of the free block created by the compaction routine does not exceed some

threshold. then purging occurs before compaction is again attempted.

Memory may also be wasted by information that is potentially useful but happens not to be

reterenced while the object/page is in core. 'lbe presence of such information in core has been

called superjluity [KUCK] and temporal fragmentation [MORR]. From empirically derived functions

mapping page size to the minimum number of pages required to perfonn a given computation

[O'NEL BELA69], superfluity has been determined to be roughly proportional to the page size

[KUCKJ. However, the author knows of no published reports that examine superfluity in logical

objects as opposed to physical pages.

Define the Jractional utilization of an object used during a computation as the percentage of fields

of the object that were touched (read or written), neglecting any initialization for dynamically

created objects. All fields of objects are considered. even self-descriptive aspects such as the length

and class fields. This definition formalizes the density oj reference notion discussed by Morrison

[MORR].

4.4.1 Discussion

Fractional utilization distributions examine memory usage and may be used to evaluate proposed

units of memory allocation and information swapping. Even though the computations did not

reference all the fields in all objects touched at least once, the average usage was high enough to

dictate against pure field swapping or hybrid schemes that swap both fields and objects. No finn

conclusions could be drawn concerning the correlation between object size and fractional utilization.

An incremental analysis indicated the observed usage levels approximated equilibrium values and

were not highly dependent upon the length of the trace.

All objects used by the system. except for message dictionaries, were included in the following

analysis. Heavy use of hash tables in the form of message dictionaries, arbitrary load factors. and

ambiguity in defining appropriate fractional usage levels led to the exclusion of such hash tables

from the fractional utilization statistics.

Quasi-static measurements arc the natural choice for fractional utilization results, which were

initially tabulated for the entire length of each trace (144K references). Section 4.4.2 deals with

shorter window sizes. On the average, only 39% to 51% of the fields of an object were accessed

during the five computations. Data objects spanned the entire range from 0% to 100%. while the

code objects did not. ObjeCts with a zero percent value were newly created entities that had not yet

been accessed. No. code object showed a complete utilization. Three trailing bytes in each

CompiledMethod serve as hints for the location of the source code and play no part in the

32 A LARGE OBJECf-ORIENTED VIRTUAL MEMORY

Percent of
Referenced

Code Objects

(# 3)

5

~1

Percent of
llZt

Referenced

Data Objects
(#4)

Percent of
All Referenced

Objects
(#5)

0

2~j

1,!1

0

~1 V1

~1 lH

Figure 4-2

2~1 30 4~!1 50 ti'!1 70 al!1 ~3H l~!Hj

2!!1 3!j 4!!1 5~1 6~1 70 aH ~3~1 100
Percent of Fields Used

Fractional Utilization

CHAPTER 4. DETAILED REFERENCE BEHA VIOR 33

execution of the method. Since the length and class fields of CompilcdMethods are also

infrequently accessed, not all fields in a CompiledMethod are typically used.

Two interesting spikes in the fractional usage plots were values at 75% for data objects and 14% for

code objects (Figure 4-2). Instances of class Point, which have 4 fields, account for the bulk of the

first anomaly. Three fields, the x, y, and class fields, were heavily used. The length field of a

point, which is only needed for storage management purposes, was not explicitly used during the

computation. Quick methods, which have no bytecodes but instead contain the number of a field

in the receiver that is the returned value of the method, have only 7 fields. Only one of these seven

fields is touched by the microcode. These quick methods, which are not shared between classes,

contributed heavily to the large value that occurred at 14% for code objects.

Except for the spike at 14%, most methods had 40% to 90% of their fields touched. Conditional

branches, early returns, and iterators operating over empty sets of data prevented all bytecodes from

being executed and all literals from being needed.

Data objects, on the other hand, had a much larger spread in their fractional usage values. [n all

five cases the standard deviation for data objects exceeded the corresponding number for code

objects. There was a striking difference between code and data for the first quartile and median in

the first four reference traces. For example, the median fractional usage for data varied from 25%

to 33%, while for code it varied from 51% to 57%. Ranges for the first quartile were 5% to 20% and

15% to 40%, respectively. However, the intervals were nearly equivalent by the third quartile: 67%-

75% and 68%-73%. The fifth trace is anomalous because data fractions exceeded code fractions at

both quartiles as well as the median. The impact of the large quantity of point objects (at least 25%

of all data objects in the fifth trace) skewed the "last distribution and also significantly raised the

third quartile in the other four cases.

Fractional utilization is important since the apparent size of memory may be viewed as the product

of the physical size and the utilization rate. If the utilization of core is low, then alternate swapping

strategies based upon smaller structures, such as fields, may increase the apparent size of core by

increasing the fraction of core used. As the unit of swapping gets smaller, however, there is

typically more required overhead in time and/or space. This requirement is due to the larger

number of unit') of data in core at one instant. More time, "space, or hardware is required to

determine if a particular unit of information is immediately available or not.

Other problems are aggravated when the unit of swapping is increased. For example, as the

granularity of swapping gets coarser, the fractional usage tends to fall. Usually only a subset of the

objects on a page are touched during the time the page remains in core. The same also holds true

for the fields of an object. When the fields in a page are considered, the two effects are

multiplicative. Utilization can get no larger when coarser structures are swapped, since any

configuration in the coarser system may be duplicated in the finer system. Offsetting this

advantage, however. is the fact that finer systems require much more overhead to manage a larger

set of swapping units and may increase the likelihood of thrashing.

34 A LARGE OBJECI'-ORIENTED VIRTUAL MEMORY

4.4.2 Incremental Analysis

In the preceding analysis, a tixed window size of 144K references was employed. On the average,

only half of the infonnation in an object was used during this time span. Larger primary memories,

which increase the average residence time for objects, enlarge this window and should shift the

distribution of fractional usage to the right. Longer periods of time will increase the probability

that formerly unused fields will be touched. Narrower time slots correspond to smaller core sizes

and should tend to push the distribution to the left for the obvious reasons. In general, the

measured utilization level will be a function of the window size.

For very small windows, the distribution may shift in apparently the wrong direction. This anomaly

would be due to the influence of the relatively large number of (newly created) objects touched for

the first time in the computation. [nelusion of these objects by using larger time slots would shift

the distribution to the left. For smaller time slots, their absence would translate the function to the

right. A elose examination of the fractional utilization of objects as a function of window size

supports the original set of intuitive hypotheses.

Each trace was subsequently analyzed using only the tirst lK, 2K, 4K, 8K. 16K, 32K, or 64K
references. The quartiles, medians, and means of the fractional usage distribution rapidly converged

to the values corresponding to the full 144K trace (Figure 4-3). This convergence was nonnally

asymptotic from below, but small oscillations above and below the final value occurred. One

remarkable fact was the relative invariance of the general shape of the distribution. Spikes in the

graph appeared as the analyzed portion of the traces became longer, yet their only apparent effect

was a proportional reduction in the value of the function at all the other points of the domain.

While the complete data set may be found in Appendix A, the examples in Table 4.3 are indicative.

Trace Length lK 2K 4K 8K 16K 32K 64K 144K

All (Median # 5) 20 20 20 25 30 50 54 59
Code (Median # 5) 44 44 40 40 40 43 45 45
Data (Median #5) 10 10 20 25 25 67 67 75

All (Median #3) 25 25 25 30 37 39 40 29
Code (Median #3) 39 45 50 54 52 54 54 57
Data (Median # 3) 20 25 20 25 25 25 28 25

All (Mean # 5) 23 23 29 36 41 47 . 49 51
Code (Mean #5) 39 39 41 40 40 41 42 42
Data (Mean # 5) 15 16 22 33 41 51 53 56

All (Mean # 3) 31 33 36 39 42 43 44 39
Code (Mean #3) 37 37 44 48 47 49 51 53
Data (Mean # 3) 26 30 31 35 40 41 41 35

Table 4.3 Selected Fractional Utilization Values

The fractional utilization function for code objects may be closely approximated by examination of

a very short reference trace. Data from the 16K or 32K window sizes are remarkably close to their

values for a 144K window. Except for sending messages (subroutine calls), CompiledMethods are

Percent of
All Referenced

Objects

(#2)

CHAPTER 4. DETAILED REFERENCE BEHAVIOR 35

lKRef.~

.
I

I
r .. Ii . .

I
.1 i r

40 5l~1 60 70 :30 ~3l::) 1tH1

2K Refs

r L I r • I .I i . I I / I r
40 50 60 70 :30 90

4K Refs

40 50 60 70 :30 90

8K Refs

r

16K Refs

r

32K Refs

. r
lj ll1 2~1 3~j 4~1 511 6'1

64K Refs ~01 L~J . ~ L1 . r . r .
r ~

l1 10 2,!1 30 4~1 511 E; '!1 7l~1 t:ilj 911 1~H1

Percent of Fields Used

Figure 4-3 lncremental Fractional Utilization

36 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

heavily accessed during a short time period and not touched again until a later invocation. The

execution of a small number of methods yielded enough data to derive reasonable approximations.

Recently touched objects. on the other hand. usually receive a number of messages in a short period

of time. The span of time during which an object is used ranges from one to dozens of method

executions. Apparently the short time periods used were not long enough to allow a true

equilibrium to establish. Newly created objects and objects touched for the first time tended to

reduce the overall fradional utilization. However, the rate of change of the utilization value with

respect to the difference in trace length decreased with longer traces.

Comparisons of similar statistics for different traces having the same length indicate only a slight

predictive tendency for the final ordering. Results for the 1K windows cannot be used to accurately

predict the high to low ordering of the 144K windows. The motion of the spread of the values

corresponding to a particular fractional usage statistic was generally monotonically increasing. For

example, the endpoints for the band defined by the largest and smallest medians for a particular

trace length both grew as the trace length was increased. Although the size of this band fluctuated,

its midpoint never decreased. Table 4.4 illustrates this tendency.

Trace lK 4K 16K 64K 144K

1 (Code) 37 46 50 54 54
#2 (Code) 45 50 50 50 51
3 (Code) 39 50 52 54 57
#4 (Code) 38 45 54 54 54
#5 (Code) 44 40 40 45 45
Range 37-45 40-50 40-54 45-54 45-57
MidPoint 41 45 47 49.5 51

1 (Data) 20 25 25 30 33
#2 (Data) 20 25 25 25 33
#3 (Data) 20 20 25 28 25
#4 (Data) 20 25 30 30 30
5 (Data) 10 20 25 67 75
Range 10-20 20-25 25-30 28-67 25-75
MidPoint 15 22.5 27.5 47.5 50

Table 4.4 Median Fractional Utilization Values for Varying Window Sizes

4.4.3 Effect of Object S'ize

A second question raised by the initial analysis is the dependence of the fractional utilization value

on object size. If the fractional utilization of objects increases with size. object swapping has an

advantage over field swapping for most objects larger than some size. The success of an object

swapping scheme depends on the size distribution of objects swapped into primary memory.

A negative slope on the fractional utilization versus object size function implies the opposite. One

solution to the underutilization of core by large objects is to use a hybrid scheme. Objects smaller

than some threshold where average utilization falls off are swapped. while larger objects have their

CHAPTER 4. DETAILED REFERENCE BEHA VIOR 37

Averagc Fraction
of Fields Used E;~1

(Code # l)

~1 3~3 E;~~1 9~J 12~1 15~1 1til1 210 24l~1 27l~1 3~~1l~1

Object Size (ficlds)

Figure 4-4 Fractional Utilization versus Size

38 A LARGE OBJECT-OR [ENTED VIRTUAL MEMORY

fields swapped only. Performance of such hybrid schemes depends upon the variance of the

utilization function as well as the choice of the cutoff level. An alternate solution is to use a per

object indicator (hint) to decide whether to swap the entire object or just the desired field(s). Hints

could be static information derived from a number of typical execution sequences. This knowledge

could also be updated dynamically, depending on the number of fields accessed the previous time

the object or any of its tields were in core.

1\ tlat distribution implies that the fractional utilization is relatively independent of object size.

Depending on the actual fractional usage value, pure field swapping mayor may not be a better

memory management policy than pure object swapping.

For code objects smaller than thirty fields, there was a marked increase in the average utilization as

size increased. Much of this difference is directly attributable to the five infrequently used fields of

the CompiledMethod, since the remaining fields were heavily utilized. The importance of these

fields is inversely proportional to method size and is evident in Figure 4-4. Beyond this simple

observation, no firm conclusions may be drawn for large code objects because of the sparseness of

the fractional utilization distributions for large object sizes.

For data objects, there was a slight tendency for the fractional utilization to decrease with increasing

object size. However, the extremely high utilization of a small number of objects with sizes in the

30-70 range argues against using a hybrid scheme with a sharp division between swapping objects

and fields. The wide variation in usage for objects with size less than forty was also disturbing in

that pure object swapping or pure field swapping may fail miserably under certain circumstances.

4.4.4 Conclusions

Object swapping may be viewed as an attempt to increase the utilization of core memory by

releasing the constraints imposed by the static placement of objects on pages. Just as objects (or

code segments) can be grouped on pages to increase the fraction of the page actually utilized,

swapping fields or collections of fields on demand may increase the portion of the in-core pieces of

the object that are used while in primary memory. The best possible scenario from the standpoint

of the fractional utilization measure is a complete utilization of core coupled with the optimum (and

hence unrealizable) field-purging policy. Attempting to maximize the fractional usage value by

swapping fields on demand and using realizable purging algorithms may lead to extremely poor disk

cache perforrnance in addition to an unacceptable computational overhead for each reference.

Thrashing and much of this overhead may be reduced or even avoided for both the loading and

purging of data by the intelligent grouping of information in secondary memory and/or the

swapping of larger units of information.

When a primitive method is handled by the microcode, only two fields of the CompiledMethod are

actually accessed. Successful primitives and the five infrequently used fields biased the fractional

utilization of code objects. Interpreting the fractional utilization distributions in light of this

additional knowledge indicates that methods ought to be viewed as indivisible units and swapped in

CHAPTER 4. DETAILED REFERENCE BEHAVIOR 39

their entirety. Analysis of the results from progressively longer traces have shown that the fractional

statistics found for code objects represent equilibrium values.

Incremental analysis has indicated that more investigation needs to be done for data objects, since

they are accessed differently than code objects both intuitively and empirically. Longer execution

traces need to be analyzed in order to determine the plateau value and rise time of the utilization

function for the data objects. The low utilization values observed may indicate the existence of a

natural partitioning of large data objects. References occurring over a small period of time mayor

may not cluster about certain fields of an, object. If this clustering docs in fact occur, then an

effective memory management scheme is to break large objects into blocks and swap blocks instead

of fields or entire objects. A further consideration is the movement of the cluster as well as the

invariance of the partition it defines.

One critical insight was provided by the analysis of the progressively longer traces. Some sequences

of fractional usage values asymptotically approached their final (Le., 144K) value from belm .. ·. The

slope of the curve fitted to these points had a positive slope that decreased with increasing trace

length. Other sequences first rose and then oscillated before obtaining their final value for a 144K

window. Such behavior indicates the presence of a dynamic equilibrium and the inability of a small

window size to filter sho~t-term behavior. Rapidly decreasing slopes for the functions of the first

kind, fluctuations present in t.he functions of the second kind, and a general agreement between all

traces for 144K values are the key pieces of evidence that most of the transient behavior had been

overshadowed by an equilibrium state.

Many of the classical time-space analyses of algorithms and data structures lose their asymptotic

relevance for programming environments with small core sizes. Instead, nearness of data in time

and space and fractional utilization of memory' become the important criteria for purposes of

performance evaluation. The importance of fractional utilization decreases for smaller units of

swapping but cannot be eliminated completely with conventional mass storage devices. This ideal

can be attained only with a secondary memory that support'i the efficient transfer of arbitrarily

small units of data (fields). For example. if an in-core disk buffer is lIsed and complete pages are

swapped between this buffer and the disk, field swapping can substantially reduce but cannot

completely eliminate the importance of the fractional utilization of both code and data objects.

Fractional usage "is by no means the only measure for comparing virtual memory designs. Factors

such as pointer compression, computational overhead, paging performance, and implementation

requirements also affect the choice of a virtual memory design.

4.5 Intcrrcferencc Headway

Define the interreference headway distance of a reference to an object A as one plus the total

number of references occurring between that reference and the next reference to A. For example,

consecutive references to the same object yield a distance of one. When compiling statistics for data

only, code references are ignored and vice versa. When statistics are obtained for all objects, both

40 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

Percent of
All References

(#1)

Percent of 4~)

Code References

(#2) 2t1

Percent of ::it1

Data References
20

(#3)

:::

15 63 255 1K 4K 16K 64K

15 63 255 1K 4K 16K 64K

1 1=:
"_I 63 255 1K 4K 16K 64K

Interreference Headway Distance

Figure 4-5 lnterreference Headway

CHAPTER 4. DETAILED REFERENCE BEHA VIOR 41

k.inds of references are counted. This definition partitions references into data space and code space

and allows investigation into either area without interference from the other.

Distributions of data interreference head ways were remark.ably similar to those for code references.

Locality of reference was clearly present even in the composite reference traces and can be exploited

at different levels of the memory system. These results also indicate that simple techniques could

be used to substantially compress the reference stream without a great loss of information.

For all five traces, the median interreference headway for code objects was one (Figure 4-5).

Except for looking up message selectors in hash tables, returning to the calling/home context, or

interpreting a CompiledMethod in a new context, the next code reference was to the same

CompiledMethod. Average headways far exceeded the median and even the third quartile.

Distributions were skewed by a substantial number of large headways. These values arose from

message lookup, since any number of bytecodes may have been executed before another message to

an object of the same class (or subclass) was sent. Sending a message, performing the required

operations, and returning a result also widely separated two accesses to a CompiledMethod. The

portion of the distribution dealing with code headways greater than one is an approximate

indication of the distribution of the time in code references required to send a message.

Data headways were likewise characterized by small numbers and highly skewed distributions.

Medians ranged from one to eight, while the means were far larger than the third quartiles. The

third quartiles and mean values of the headway distribution were lower for data than for code

objects. One factor that contributed to this result is the inherent difference between the roles

played by messages and the receivers (senders) .of messages. Except for the case of (possibly

indirect) recursion, a CompiledMethod is not accessed after sending a message until the appropriate

computation completes. Normally, some of the objects local to the calling method are parameters

to portions of this computation and arc referenced before control returns to the original method.

Conversely, the remaining local objects are not accessed during this execution sequence and

contribute to the large headways.

Mean headways varied between 118 and 307. These figures are significantly larger than the average

number of distinct pages between two references to the same page reported by Lewis and Yue

[LEW I]. '[beir means. which varied from 1.2 to 2.2, were much smaller than the mean Smalltalk

distances because distillcl pages were counted instead of all intervening object references.

Composite headway distances are necessarily at least as large as the corresponding code or data

results. because all references were included in the composite case. While the first quartile of the

composite headway distribution was still only one, the median varied between one and seven.

Locality in time and space was evident even in the composite traces.

42 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

Perfonnance gains appear to be realizable over a rather large spectrum of memory configurations.

from a tiny hardware cache handling dozens of objects to a conventional core memory handling

thousands of objects. A large gain may be realized by caching a small number of objects. Since

objects tend to be small, swapping small. fixed-size blocks between the cache and core will realize

the gains secured from object swapping without most of the computational overhead. Fractional

utilization resuiL-; and the frequency of send instnlctions indicate that caching blocks of

CompiledMethods rather than caching individual tields or the entire object would result in larger

performance gains. I.ower fractional utilization values for data objects imply that caching tields (or

small groups of fields) would be better than caching entire data objects. Enlarging such a cache

beyond the capability of containing a small number of objects would yield only moderate

improvements in both hit rate and perfonnance. These empirical results also indicate that LRU

purging algorithms would be well-suited to the observed reference behavior.

Headways were calculated to explore the amount of locality present in the data-only, code-only. and

composite reference streams. Distributions for code, data, and composite headways are markedly

similar. exhibiting great locality and indicating that simple techniques can greatly compress the

reference stream. Similarities between code and data reference tendencies indicate that neither

cache management schemes, virtual memory managers, nor compression algorithms ought to

distinguish these two sets of objecl~.

4.6 [nstanee to Class Compression

Counting the classes of the objects touched during a given computation instead of the particular

instances referenced yields an estimate of the portion of the system that. played a role in the

execution sequence. Any static grouping algorithm that relies on infonnation garnered from such

traces will be extremely limited when it deals with instances of classes for which it has no

information. Since two of the grouping algorithms presented in Chapter 5 depend on dynamic

information, knowledge of the fraction of the system utilized by the monitored computations is

important when evaluating the perfonnance improvements realized by these two grouping schemes.

Call the fields owned by every instance of a class the fixed fields of that class. For each class, we

create a prototypical instance that contains an entry for each fixed field that maintains the number

of references made to the corresponding fixed field in all instances of the class. Sorting the

reference totals will produce an ordering of fields for each class that ranks the fields in terms of

usage. identifies the high traffic fields. and provides data to drive static grouping algorithms. The

only information input to the grouping schemes dependent upon dynamic data was the ordering of

the fixed fields in each class. This information guided the traversal of the system by the grouping

algorithms' by ordering the set of offspring referenced by the fixed fields of an object

CHAPTER 4. DEf AILED REFERENCE BEHA VIOR 43

Let the fixed fields extent of a computation be the percentage of fields in the prototypical objects

that would contain nonzero values at the end of the computation. Only a small percentage of all

fixed fields was actually touched during any of the monitored execution sequences. Of the roughly

200 classes found in the Smalltalk-80 system. only a small subset had at least 90% of their fixed

fields touched during a particular trace. Although there was some overlap between traces, these

subsets were largely disjoint. Table 4.5 reports the number of such classes for each trace, as well as

the accessed fraction of all fixed fields in all prototypical objects.

Trace

Number of Classes Above 90%

Percent of All Fixed Fields Touched

1

11
11

2

11

11

3

13
6

Table 4.5 Trace Extent as rvleasured by All Fixed Fields

4

7

8

5

9

9

The above infonnation is dynamic and highlights those fixed fields that were referenced most

frequently. A similar but unused technique for obtaining data to drive static grouping algorithms is

to record only quasi-static data by ordering the fields according to first-use statistics. For every

object involved in a computation, consider only the first reference to any fixed field of that object.

The prototypical object for each class could maintain the number of times that each fixed field was

referenced first Identification of such "quick-use" fields will allow grouping strategies to place

objects referenced by these fields extremely close to the object that references them.

Static grouping algorithms may use infonnation regarding the stability of fields containing object

references. A field is said to be clean at the end of a computation if its contenl<; were not written

by the computation. Otherwise. the field is dirty. One possibility is to order clean fields by some

rule and dirty fields by the same or some other rule. Because dirty fields were written at least once.

they are potentially unstable. Therefore, the corresponding descendant need not be initially placed

near the object in question, and the dirty fields can be placed after all the clean fields in the

composite ordering.

Since the monitored computations involved only a small number of classes. dynamic infonnation

derived from the traces can have a limited impact only on the initial placement of objects by static

grouping algorithms. [n most cases, the dynamic data supplies no infonnation for a class, so the

grouping algorithm uses the default identity permutation. For short periods of time, much of the

user's interaction with the programming environment is supported by a small number of classes.

Perhaps monitoring a few key classes for a short duration will yield enough infonnation to allow a

static grouping algorithm to enhance substantially virtual memory perfonnance.

Only the fixed portion of classes widl variable-length instances were monitored, because reference

statistics collected from relatively short computations would probably not be significant for the

variable-length portions. [n the static grouping algorithms. the fixed portion of an object was

considered before the variable part. The pennutation for the variable portion, which was always the

44 A LARGE OBJECT-ORIENTED VIRTUAL M EMORY

identity pennutation. matches best with a sequential traversaL On the other hand. this type of static

grouping is not particularly suited to nonsequential reference tendencies.

The success of fixed-field grouping schemes based upon dynamic information depends on the

validity of two assumptions. In order for sllch a technique to improve performance, the usage of a

field must be independent of the particular pointer present in the field as well as the particular

instance of the class. If the reference patterns are predictablc, repeatable, and independent of a

particular instance of the class, thcn such a static grouping scheme will perform well. However, if

the reference pattern is dependent upon both the specific instance of the class as well as the current

contents of the instance, then no static scheme will be highly successful. Completely random

inspection of fields is neither aided nor hindered by a fixed-field grouping strategy nor by any other

realizable scheme.

The appropriate meaning of "usage" cannot be adequately expressed by a quasi-static or dynamic

definition but instead depends on the virtual memory configuration. its policies, and the reference

behavior of the computation. Let f be a field in object A capable of referencing any other object.

Assume object A was fetched and purged s times and field f was touched at least once in t of these

s times in core. Define the usage of f to be lOO*t/s. This value is the probability that the field was

referenced at least once during one fetch-purge cycle for the object. Our original questions may

now be reformulated. Is the usage of a field a function of the contents of that field? If not, is the

usage of a field a function of the state of the object?

Field usage is independent of field contents as long as the information contained in this field cannot

be ascertained by inspecting other fields of the object. [f objects arc fetched on demand. an object

is swapped into core only when it is faulted upon. A reasonable assumption is that little or no

knowledge of the contents of the object exists in primary memory. [n order to determine the

contents of any field. the computation must explicitly touch that field. Except for contrived cases.

field usage is independent of the contents of the field. Dynamic usage, on the other hand. has the

potential to be extremely sensitive to the contents of the field.

The success of fixed-field grouping also depends on the independence of field usage with object

state. Information is lost by the data compression technique that discards the particular instance

referenced and records only its class. For many classes of objects, the state of the object is more

important than its class in predicting the usage of its fields. Consider two possible implementations

for a hash table. Instances of the first class are composed of an array of keys and a pointer to an

array of values. The second implementation is just an array of pointers to key-value pairs. Usage

of the fields in the key array in the first class and the only array in the second class is independent

of the particular class (implementation) of the hash table object. It is highly dependent upon the

nature of the add/delete/find requests and the current state of the hash table. The same

dependency is even more obvious for the usage of the field containing a reference to the value array

in the first implementation. Although the computation may not know the contents of the value

array. the absence of the particular key in the key array implies that the desired value is also not

CHAPTER 4. DETAILED KEFERENCt, Ot:,Mt\ ~ l\Jl'-

present. On the other hand. there are cases where the usage of a field is dependent only upon the

class. Consider a hypothetical subclass of Array called SpecialArray. Instances of this class act as

nannal arrays but may take special actions. For example. during a debugging session. a

programmer may wish to monitor the values stored into a specific field of a collection of arrays.

Each of these arrays could be instances of SpecialArray. [n addition to the usual fields of an array.

there would also be a reference to an ordered sequence of values stored into the special location.

Deciding whether to record a given store operation is independent of the state of the SpeciaiArray.

In summary. the usage of a fixed field is essentially independent of the content" of that field. The

same conclusion. however. does not apply to the other fields of the object. There are cases w'here

the state of the object is the dominant factor. Other examples indicate that the usage of a field is

more a function of the class of the object. Most classes span a portion of this spectrum. Where

individual instances lie depends upon their state. the current state of their class. and global values

and variables. as well as the particular virtual memory configuration. its policies. and the

computation in progress.

4.7 Access· Frequency

Each reference trace was analyzed in order to determine the frequency of access. The access

jreque!u}' function maps a number n into the fraction of objects that were referenced n times. This

distribution generalizes the notion of the average number of times that an object was accessed and

is important for the design and evaluation of data compression schemes. The following analysis

indicates the existence of a small set of key objects that are heavily utilized. However. there seems

to be no need to extend preferential treatment to members of this set. A naive. demand-driven

cache management scheme would suffice.

4.7.1 Discussion

The access frequency functions for data objects were for the most part decreasing. while the code

functions generally increased to a maximum and then fell with a similar slope (Figure 4-6). Code

objects on the average were touched more frequently than data objects. Unlike code objects. most

data objects were touched a small number of times in a computation. Except for quick methods

and primitives handled by the microcode. if a code object were touched once. there was a high

probability that it would be needed a large number of times. There is an inherent asymmetry

between code and data contained in (but not peculiar to) the Smalltalk-80 virtual machine. Each

bytccode executed requires at least one reference to the method. Extended bytecodes require two

or three such accesses. However. many bytecodes and primitives do not touch object space at all.

while a majority of the remaining operations touch one or two objects a small number of times. A

comparison of the ranges defined by the means and the medians of the access frequency

distribution highlights this difference between code and data. For code objects. the medians ranged

from 24 to 94 while the means fell into the interval from 181 to 355. Corresponding extrema for

data objects were 6 and 17 for the median and 61 to 183 for the mean. neglecting the 32K bitmap

in the fifth trace.

46 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

CHAPTER 4. DETAILED REFERENCE BEHA VIOR 47

Except for code objects in trace five, the average number of times an object was touched is far

larger than the corresponding value at the third quartile. A small number of objects accounted for

a large percentage of the accesses. This claim is supported by two other observations. In four of

the five traces. 25% of the data objects were touched at most three times. Moreover, more than

one-fourth of the data objects in the second trace were accessed at most once.

4.7.2 Effecl of Object Size

Consider a function that maps an object size into the average number of references made to objects

of that particular size (Figure 4-7). Call this function the imporlance curve, since it exhibits the

level of need for data in objects of a certain size. The component-wise multiplication of the

importance curve with the quasi-static size function for the same trace yields the dynamic size

distribution for that execution sequence. No new information' is being provided by the importance

function. It is simply a different view of the same data. However. this alternate view proved to be

beneficial by indicating the absence of-any consistent correlation between object size and access rate.

A flat importance function implies that the probability of accessing an object from a given set of

recently used objects does not depend on the size of the object If objects were not touched a

great deal. then this shape of the importance curve is plausible. Small objects would have their

fields touched many times .. Larger objectc; would have a number of accesses roughly equal to their

size in fields. Very large objects would essentially be repositories for data: only a small fraction of

their fields would be touched during a given computation. As the overall average number of

accesses increases. however. such an importance curve becomes less likely.

A decreasing importance function is counterintuitive and would result if the access frequency were

inversely related to object size. Data in larger objects would not be needed as much as data in

smaller objects. One explanation is that large objects are often used as data repositories. Although

circumstances exist where the mode of processing is to iterate over all members of a set, in many

cases only the knowledge concerning the membership or absence of a particular value is required.

If the average number of accesses increases with size. then a rising importance function would

appear. All data is equally important under .these conditions. regardless of where it is found. Since

the amount of data an object contains is typically proportional to its size, one expects the

.~ importance function to increase. The limiting case in which every field is equally likely to be

accessed results in a linear importance function with a normalized slope of one.

Analysis of the importance function for data objects yields some hypotheses. but more data points

are needed before they may be termed conclusions. Except for two data points, the curves for the

first and third traces linearly increase with object size with a nonnalized slope much less than unity.

The remaining three traces have a two-tier function. There are two approximate values. say hi and

10. that the importance curve attains. Define the 10 set to be the collection of points at which the

48 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

Normalized Average

Access Rate

(All #4)

Normalized Average 3 ~!1

Access Rate

(Code #3)
1~1

~!1

Normalized Average 4~1

Access Rate 3'1

(Data #2) 2~1

1~!1

~!1

~1

0 6~1 1211 1i3€1 240 3l1e 3Eil1 420 4:30 540 Ei011.

Figure 4-7 [mportance Function
(note the differences in trace number)

Object Size (fields)

CHAPTER 4. DETAILED REFERENCE BEHAVIOR 49

function takes on the 10 value. The hi set is defined similarly. Restriction of the importance

function to either one of these sets results in a flat or slightly increasing linear fit.

Code importance functions were also superpositions of 10 and hi functions. Rarely used message

dictionaries. quick methods. and microcoded primitives are all accessed a small number of times and

account for some of the 10 activity. Hi values only occurred for large objects with at least 60 fields.

In addition to size. hi values were caused by the repeated execution of methods and the frequent

evaluation of blocks of code that served as the body of loops. However. there are not enough data

points to warrant any conclusions regarding the overall slope of the importance function for code

objects.

4.7.3 Implications for Caches

The importance function effectively partitions objects into two sets. Objects in one set were. on the

average. accessed repeatedly during the computation. while elements of the other group were not.

Size is not a valuable predictor of membership in these sets. The 10 values may be clustered near

small (trace 5. code objects) or large (trace 4. code objects) sizes. Within either set. the importance

curve may be approximated by a linear function with a normalized slope varying between zero and

a positive value less than one. Given that an object is used during a computation, its importance

can not be predicted solely .from the knowledge of its size. However. size can be used to estimate

the relative importance of the object within either set.

The access frequency distributions and importance functions reveal that a small number of both

code and data objects are heavily referenced by the Smalltalk virtual machine. These two sets are at

times correlated in that the repeated evaluation of.a block context comprising a loop corresponds to

the processing of elements of an array, entries in a hash table. or bit sequences in a bitmap. Other

frequently used code objects correspond to class dictionaries and methods that are accessed to

perform messages sent to a large number of distinct. short-lived receivers.

Code-data distinctions and size observations cannot be profitably used to gauge the reference

importance of a given object. Instance to class compression has indicated that while computations

have some classes and objects in common, there will be little overlap on the size scale of small

hardware caches. Even if frequently used objects andlor classes of objects can be identified and

given preferential treatment. little gain would be realized beyond what may be achieved by a naive,

demand-fetching. cache management scheme.

4.8 Reference Counts

One important consideration in any grouping scheme is the distribution of the reference counts of

objects in the system. As long as a page is the physical unit of swapping from the disk to core. it is

important to maximize the weighted sum of pointers that are within a page.

Weighting factors may be gained from a static, quasi-static, or dynamic analysis. Section 4.6

discussed a number of quasi-static and dynamic weights. A static analysis. however, is the simplest

50 A LARGE O[UECT-ORIENTED V[RTUAL MEMORY

to obtain. Without requiring any knowledge of the system beyond indistinguishable objects and

pointers, static weighting schemes based only on reference counts can be employed. For example,

all incoming pointers to an object could be considered equivalent. Then the weight of a pointer

may be defined to be the multiplicative inverse of the tme reference count of the object to which it

refers. All weights would therefore lie in the half-open interval (0, 1). These weights could then be

input to a graph-theoretic algorithm that optimizes the intrapage pointers. Objects in interesting

topological regions, such as cliques, cycles, or strongly connected regions. could also be identified

and grouped together.

Roughly 75% of all objects in the Smalltalk-80 system had a reference count of one. The

distribution of reference counts then fell off rapidly, with a small number of objects having the

overflow value of l27. Even in the presence of high overflow counts, the static mean was still only

two.

Two lengthy. execution sequences were monitored in order to secure dynamic and quasi-static

reference count information. The reported values represent the reference counts of all touched

objects at the conclusion of the computation. Permanent objects and dynamically created objects

whose reference count dropped to zero during the computation were not included. Compared to

the static case, there was a slight decline in the fraction of objects with a reference count of one in

both computations. For reference counts larger than one, the dynamic and quasi-static curves were

similar in shape to the static distribution. Quasi-static reference counts were only slightly larger

than their static counterparts. Although the median was one in both cases, the third quartile had

risen to 4 and 5 while the mean had climbed to 9. Dynamic reference counts were comparable to

the quasi-static results.

Reference counts alone yield limited infonnation when ordering the fields of an object according to

the reference counts of the objects named in the fields. Three-fourths of all objects cannot be

distinguished on the basis of their reference counts. Most grouping permutations for objects

derived from reference counte; will default to the identity permutation. The initial placement for the

reference count grouping algorithm will therefore be similar to the arrangement derived from the

default grouping strategy. While reference counts do not provide enough information to distinguish

most objects, the high fraction of objects with a reference count of one substantially reduces the

number of decisions made by a grouping algorithm based on static connectivity.

One disturbing result from the standpoint of static grouping was the moderate use of objects with

reference counts substantially larger than one. The ability of any static grouping algorithm to

handle such an object depends on the nature of the references to that object. [f a single object

causes most of the dynamic accesses to this object, or if the set of objects that dynamically refer to

this object may be easily grouped on a single page with~ut adverse performance implications, the

presence of these types of objects does not pose serious problems. Oli. the other hand, if neither of

these two conditions are met, then regardless of the initial placement, there is a high probability that

a fault on this object will not be satisfied by the in-core buffer and hence will cause a page fault. [f

CHAPTER 4. DETAllED REFERENCE BEHA VlOR 51

the static importance of a high reference COllnt has a counterpart in the dynamic domain. then after

the first fault on this object, the object should tend to remain in corc. Subsequent references to this

object will probably not cause an object fault. since the object should be accessed often enough to

survive many purge attempts. I n this case. the initial placement of the object is not critical in an

object-swapping scheme. [n a page-swapping environment in which objects are not dynamically

moved, the location of such an object in the virtual memory can have a nontrivial impact upon

paging performance because the use of that object requires that the entire page be kept in core.

This example highlights one of the features expected to be present in an object-swapping system.

Different initial placements will tend to have less of an effect on perfonnance in object-swapping

systems than in paged virtual memories.

4.9 Selectors as a Percentage of' Literals

A literal is a compile-time, manifest constant. CompiledMethods may contain one or more of these

constants in what is called a literal frame. Some literals, known as selectors, are used to designate

the names ·of messages sent to objects and correspond to the names of procedures in conventional

programming languages. While the message name is known at compile time. the binding of this

name to the code that performs the appropriate actions is not accomplished until run time. This

binding. delayed because the true context in which the selector name is resolved is not available at

compile time, is dependent upon the class (and possibly the superclasses) of the receiver and the

contents of the message dictionaries for these classes.

This fonn of indirect linkage and delayed binding is not limited to selectors and CompiledMethods.

One common example out~ide of Smalltalk-80 is the resolution of file names ina multiprogramming

environment. A symbolic file name supplied by the user or a program is mapped into an actual file

according to the user, the directory to which he is connected, the search rules. and the contents of

the file directory.

A single selector may have a static and dynamic correspondence with any number of

CompiledMethods. The inability to easily map a selector into a unique CompiledMethod prevented

any serious efforts at grouping methods. However. all methods occur in exactly one message

dictionary. Methods within a particular dictionary belong to the same class and are certainly

related. Hence the system automatically partitions' the methods into related subsets in a manner

that may be utilized by grouping strategies.

The chief goal of the this analysis was to detennine the relative importance of selectors compared to

all literals. Static data was obtained by calculating the selector-literal ratio for all

CompiledMethods. Quasi-static and dynamic results considered only the accessed fields in the

literal frame of a method and neglected untouched literals. Each Compiled Method used during the

computation gave rise to a quasi-static and a dynamic fraction. Quasi-static counts of selectors and

literals distinguished between instances of the same literal appearing in distinct CompiledMcthods.

52 A LARGE OBJECf-ORIENTED VIRTUAL MEMORY

4~!1

Percent of :30

CompiledMethods 2€1
(Static) 10

~!1

~~ 1l!1 2~!1 3'1 4~!1 5~!1 6~!1 7~!1 i3 ~!1 B~1 1~!t0

40

Percent of :3~!1

CompiledMethods 20

(Quasi-static #2) 10

0

lj 10 2~) :::~:::t 4~:::t 50 Ei~1 7~1 a~:::1 ~~H) 1~H1

40

Percent of ::i0
Compiled Methods

2~1

(Dynamic #2)
1~!1

0

~) 111 2~1 :3~j 40 5l!1 Eil1 7l!1 a~!1 QC,1 l€nj
Percent of Literals which are Selectors

Figure 4-8 Selectors as a Percentage of Literals

CHAPTER 4. DETAILED REFERENCE BEHA V[OR 53

In any given method, the expected value for the selector-literal ratio was three-fourths. Given a

literal from any method's literal frame, however, the probability that it was a selector was about

two-thirds. This discrepancy arose because the fractions from all CompiledMethods were weighted

equally and were not assigned a value proportional to the length of the literal frame.

Most quasi-static and dynamic selector-literal figures slightly exceeded their static counterparts

(Figure 4-8). One exception was the dynamic median for the first execution sequcnce, which was

much larger than the static median. [f selectors and non-selectors wcre evenly distributed within a

method, then the presence of conditional jumps, early returns, and iteration statements would not

affect the selector-literal ratios. However, there was a pronounced tendency for this ratio to rise in

the quasi-static case and especially in the dynamic case.

Message selectors comprised the bulk of the literals in both the static and dynamic measurements.

[f literals are to be considered, static grouping algorithms ought to concentrate on selectors.

Although code relocation in conventional programming languages has proved to be an effective

technique in improving virtual memory performance, no serious attempt was made to group

CompiledMethods for the following reasons:

[n the spirit of blurring the code-data distinction, CompiledMethods were
considered to be ordinary objects and were treated as such, even· by static grouping
algorithms.

Motion of code segments had been previously researched and has shown its worth.
A similar investigation into grouping of data objects needed to be done.

Delayed binding of selectors to code and the lack of a type (-inference) mechanism
would have unduly hindered efforts to determine the important intermethod links.
Inferring the types of receivers of messages by monitoring lengthy computation
sequences would have provided only a probabilistic mapping from an instance of a
selector to a set of CompiledMethods and not a deterministic function.

Research needs to be done in the area of code motion in object-oriented systems containing type

inheritance. At the very least, its utility would derive from a simple comparison between the

improvements in paging performance due to code relocation and the gains realized by grouping

data. An investigation into the validity and ease of translating dynamic behavior into type

information may remove a tremendous documentation burden from the programmer or a static

type-inference mechanism. Such an effort could also determine the distribution for the number of

classes in the hierarchy searched before finding the appropriate CompiledMethod.

4.10 Summary and Conclusions

A number of important points may be drawn from the preceding set of analyses. First and

foremost is the high level of consistency between traces based upon radically different

computational sequences. A random comparison between any statistic from one trace and the same

statistic from another trace usually yields a close agreement. The measurements report inherent

properties of the Smalltalk-80 programming environment rather than the characteristics of the

monitored computations. Secondly, this close agreement lends support to the conclusion that the

traces were long enough to filter most of the transient behavior. Incremental measurements of

54 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

fractional usage, the statistic most susceptible to this type of problem, support this claim. Finally,

most of the abnormalities, unexpected data spikes, and overall trends in the distributions were easily

explained by a quick analysis of the portions of the reference trace that gave rise to these findings.

The importance of class objects (size ten) and message dictionaries (size roughly equal to a power of

two) was highlighted by the appearance of relevant numbers in the statistics and spikes in the bar

charts.

While the preceding analysis presents an in-depth picture of the reference behavior of Smal1talk-80,

the generality of the results must be questioned at this time. As was evident from the discussion in

section 4.6, the entire system was not analyzed. Only those portions needed to support the five

computations were thoroughly monitored and studied. The total number of objects touched in each

reference trace was very small. Since the measured system was designed, written, and implemented

by only a handful of researchers. the programming styles and techniques evident in Smalltalk

represent at most a few points in a wide spectrum. Compounding this problem is the fact that a

close collaboration between these individuals for extended periods has undoubtedly influenced and

merged their respective styles. A second important limitation is the nature of Smalltalk itself. This

programming environment was designed to be a system undergoing continous change, modification,

and evolution. All measurements, however, were made with a single snapshot That is, all traces

were taken from a single version that could be started from a particular state of the virtual machine

any number of times. On the other hand, this instantaneous snapshot prevented any time

dependent tendencies from corrupting the data. Finally, it must also be noted that only one

particular system was analyzed. Similar research needs to be undertaken on other object-oriented

systems before the generality and relevance of these results may be ascertained.

CHAPTER 5. STATIC GROUPING ALGORITHMS 55

5. Static Grouping Algorithms

Application of a particular grouping scheme to a running Smalltalk system produces an initial

placement that represents the position of all objects in the virtual memory. N inc different initial

placements were used in performance studies for the two types of virtual memories. Before any

dynamic tests were done. the initial placements were statically analyzed to determine their

similarities and differences. As Chapter 4 predicted, information derived from actual reference

traces or from static reference counts had only a limited impact on grouping schemes. Performance

predictions for both LOOM and a paged virtual memory were made using this knowledge. These

static measurements are evaluated in Chapters 7 and 8 as to their predictive or non-predictive

capabilities. Information regarding initial placements was also available after the fact and was used

to explain the behavior of the virtual memory simulators under various configurations and purging

policies. Numerical results cited in this chapter are presented in Appendix B.

5.1 Nine Algorithms

Consider a total ordering on all objects in a given Smalltalk environment. This ordering, together

with the disk size of the objects. yields a unique virtual memory position for each object. Define

the mapping from the set of objects to their disk addresses resulting from some grouping scheme G

as the initial placement generated by G. Hereafter, configuration. grouping, and arrangement will be

used as synonyms for initial placement.

Nine distinct grouping strategies were applied to the entire set of objects in the programming

environment. These nine algorithms and initial placements fell into five categories. Groupings

within a category produced similar measurements in both static and dynamic environments. [nitial

placements in different categories were not alike in a static sense. Their dynamic behavior.

however. was not consistently different.

Two groups of three algorithms are graph-theoretic and use the directed graph where Smalltalk

objects are represented by nodes and pointers are represented by directed arcs. One category of

grouping schemes is based upon a depth-first traversal of this graph and attempts to put high

probability paths on the same page. The second collection uses a breadth-first approach and

endeavors to locate all offspring of an object on a single page. When a new node is encountered in

either type of traversal. a decision must be made as to the order in which the descendants of the

node are to be investigated. This ordering may be succinctly described by a _ permutation. The

default case is the identity permutation. which corresponds to an examination of an object's fields in

the order assigned by the compiler when the class of that object was defined. Another permutation

arose from reference counts. Pointers referring to objects with the lowest reference counts are

followed first, while ties are resolved by defaulting to the ordering decreed by the identity

56 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

permutation. Finally, information garnered from traces of actual execution sequences similar to the

ones analyzed in the preceding chapter provided the third permutation. Under this grouping

strategy, fields accessed the most are investigated first. The identity permutation is again used when

the dynamic information cannot distinguish between two fields. Because of the inherent inefficiency

of the virtual machine emulator, only a limited amount of dynamic information could be obtained.

Nevertheless, the dynamic permutation differed from the identity permutation 23% of the time.

Each of the three permutations was llsed in hoth types of traversals. The foregoing discussion

defines six of the nine initial placements.

Since the Object-Oriented Zoned Environment (OOZE) virtual memory [KAEH8l] for Smalltalk-76

grouped objects by class, the initial placement derived by packing together all instances of a class

was called the OOZE configuration. A one-to-one hash function, which simply permutes the bits of

the unique identifier (UlD) of objects, was used to scramble the OOZE ordering and derive the

hash or random initial placement. This random arrangement was used to establish a benchmark

against which improvements in paging performance could be classified as trivial or substantial. Of

critical importance was the existence of an inverse of this hash function. This inverse function

simply applies the inverse permutation to the bits of a number in order to compute the UID of an

object. This inversion capability allowed the LOOM simulator to use a close approximation of the

purging policy found in the original OOZE virtual memory implementation.

The ordering of the objects in the ninth grouping was derived from the compressed traces that are

discussed in Chapter 6. For any reference trace T, consider the ordering on objects defined by the

first object reference to each object mentioned by T. Assume all objects not referenced by Tare

ordered in some fashion such that all unneeded objects are ordered after all referenced objects.

Call the initial placement defined by this ordering an oplimalgrouping with respect to T. For any

page-swapping virtual memory that can process T without purging, this arrangement is optimal in

the sense that the number of page faults is minimized. There may be many initial placements that

cause this number of page faults while processing T. However, there is in general no initial

placement for a given trace that is optimal across all types of virtual memory configurations, values

of parameters, and kinds of policies.

OPTl, OPT2, and OPT3 are the names of the groupings derived from the three compressed

reference traces. To distinguish between the optimal and the other initial placements, call the

strategies generating the remaining eight arrangements the realizable grouping algorithms. The

optimal and random groupings bound the region of reasonable static arrangements and act as

benchmarks from which the relative as well as the absolute improvements in paging performance

for a given initial placement can be ascertained.

Snyder [SNYDr] defines two levels of grouping, internal and external, and three techniques: a

priori, a posleriori, and dynamic. lnternal restructuring relocates fields within an object while

external restructuring rearranges atomic objects. All nine groupings are forms of external

restructuring. No groupings are dynamic because the placement of objects is always fixed in

CHAPTER 5. STATIC GROUPING ALGORITHMS 57

advance. The two initial placements derived from dynamic data, as well as the optimal groupings,

are a posteriori arrangements in that they utilized information gained from performing computations

in the programming environment. The six other initial placements were derived with a priori

techniques because only statically available information was utilized.

5.2 Static Pointer Distance

Define a pointer to be immediate if the particular object referenced by this pointer may be

identified from an examination of only the numeric value of the pointer. Nil, true, false, and

Small Integers are examples of immediate pointers. All references not having this special property

are defined to be non-immediate. Objects referenced by non-immediate pointers are true entities

requiring space in core, a home on the disk. or perhaps both. Let p be a non-immediate pointer

contained in object A that refers to object B. Assume dA (dB> is the disk address of the first word

of A (8). Then the static distance associated with p is IdA -dBI. Notice that the distance of p is not

a function of its relative position in A.

Figure 5-1 indicates that surprisingly few pointers had a static distance less than one disk page (256

16-bit words). Only 1 pointer in 7 for the depth-first initial placements satisfied this criterion. while

the fraction of close pointers for the optimal grouping varied between 1I7th and 11 10th.

Compounding this problem was the existence of page boundaries. Of all pointers with a distance of

less than one page, one may expect only half to lie on a single page. This on-page pointer ratio

dropped to 1 in 33 for the OOZE initial placement. 1 in 300 for the random initial placement. and

only 1 in 500 for the breadth-first cases.

On-page pointer ratios do not provide information upon which a valid judgment of a breadth-first

restructuring can be made. These grouping strategies depend on the fact that a single page fault for

anyone offspring of an object moves many of its siblings at least as far as the in-core disk buffer.

Distributions of pointer distances partitioned the set of initial placements into five categories. The

numbers for the three depth-first configurations were similar. So were the figures for the three

breadth-first initial placements. The OOZE. random, and optimal groupings. on the other hand.

were each markedly different from the others. Similarities within a category and striking differences

between categories appeared not only in this and other static analyses but at times in the dynamic

measurements reported in Chapters 7 and 8.

Except for noise, the distance function for the random initial placement was monotonically

decreasing and appeared to be a dying exponentiaL A truly "random" initial placement would have

a linear, decreasing distribution. Since the median. the mean. and first quartile of the theoretical

random configuration were larger than the measured values, the random initial placement was not

truly random. Because it was drastically different from all other initial placements according to the

neighbor relation (section 5.3.2). the random configuration was retained as a benchmark.

58 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

Fraction of
N on -immediate

Pointers

(Random)

Fraction of
Non-immediate

Pointers

5

(Breadth-first) ~~1

Fraction of
Non-immediate

Pointers

(Depth-first)

Fraction of
Non-immediate

Pointers

(Optimal # l)

2tj

10

o

l~1 2~10 40t~1 Eajt!1 B0tj 1000 1200140~j 1Ei001Bljlj 2l!100

Distance (pages)

Figure 5-1 Static Pointer Distance (note scale change)

CHAPTER 5. STATIC GROUP[NG ALGOR[THMS 59

There are many reasons why only a small percentage of pointers had short distances. First, every

object contains a reference to the class to which it belongs. While many classes had only a few

instances, other classes contained well over a hundred instances. A second cause of tile low on-page

pointer ratios is the size of objects. In LlSP systems, for example, list cells contain only two fields

and the CAR of such an clement is typically immediate. Hence the CDR will normally fall on the

same page, once a linearizing of the list structure has been accomplished. Clark [CLAR 76,

CLAR 77. CLAR 781 has reported that approximately 85% of all list pointers do not cross a page

boundary. After linearizing by a depth-first traversal in either the car or cdr direction, this

percentage was increased to over 90%. Most Small talk objects have more than two fields. Since

references may point to arbitrarily large structures, it is not possible to effect a similar linearizing of

the stnlcture. The third problem is the relatively high percentage of objects that have a reference

count of one. Placing such objects as' close as possible to their sale reference severely limited the

number of possible initial placements.

The selected static grouping strategies had their greatest impact on the fraction of short pointers:

medians, means, and quartiles of the distance distributions are comparable. From the standpoint of

paging performance in an object-swapping scheme, the fraction of intra-page pointers is of prime

importance. Less critical is the distribution of lengthy pointers. A pointer distance of 2 disk pages is

equivalent to a distance of. 2000 disk pages. unless secondary factors, such as disk arm movement,

are under consideration.

One shortcoming of this distance measure is its inability to capture the notion of a swapping set. [t

is often the case that when an object is brought into core, there is a high probability that a small

collection of other objects will subsequently be accessed. [f these objects arc not packed onto a

single page, then the number of page faults required to transfer this swapping set into core will tend

to decrease as the number of pages containing these objects is reduced. The distance of the inter

page pointers within a swapping set is inconsequential. Swapping set size in disk pages is what

affects performance.

In addition to the static notion of pointer distance, a dynamic, time-varying interpretation exists. A

pointer is followed by gaining an in-core reference to the object (or its leaf) specified by the pointer.

If the pointer is a lambda, then it must first be resolved. The dynamic distance of a pointer is

defined to be zero if the pointer can be followed without causing any page faults. Otherwise, that

pointer is said to have an infinite dynamic distance.

If the current grouping of objects on the disk is not considered, then at any given moment in an

object-oriented virtual memory, the only portion of the state of the environment due to the static

grouping algorithm is the set of objects residing in the in-core disk buffer. A static grouping

algorithm has only a limited effect on the dynamic distance, which is primarily a result of the

purging policy as well as the dynamic grouping strategy used by the virtual memory. However,

controlling this small portion of the state of the virtual memory can have a large cumulative effect

on dynamic performance.

60 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

5.3 Neighbor Relation

The following measure of the degree of similarity bctween two initial placements investigates local

grouping arrangements by examining the collections of objects on a single page. For any initial

placement [P, dcfine the neighbor relation for IP as the set of unordered pairs (A, B), such that

A:;r: B and A and B arc both on the same page under IP. This relation is the same as the

equivalence relation defined by the partitioning of the set of objects according to page boundaries

except that the neighbor relation is not reflexive. Including the pair (A, A) for all objects A would

significantly reduce the differences between distinct groupings. The neighbor relation is symmetric

but not quite transitive. However, if R is the set of pairs corresponding to the neighbor relation,

then

(A, B) E R " (B, C) E R " A:;r:C => (t\, C) E R.

Given two initial placements, IP land IP 2' and their corresponding neighbor relations, R land R2,

one measure of their similarity is the proportion of elements in R 1 found in R2 (and vice versa).
Define the size of a neighbor relation to be the number of unordered pairs in the relation and

denote the size operator by two vertical bars: IRll. Let R be Rl n R2, which is the set of pairs of

objects that are found together on the same page in both [PI and IP 2' The fraction of R1 retained

by R2 is then defined to be:

As an abbreviation, the value of the preceding formula will be referred to as the retained fraction or

retained value.

5.3.1 Effect of a Continuous Displacement

The following example attempts to establish an intuitive correlation between retained fraction values

and different initial placements. Consider any initial placement, IP l' and its corresponding neighbor

relation, R l' Let A be an object not found in IP 1 that has a disk size of As' where As is at most the

size of one disk page. If f is the fraction of a disk page occupied by A. then O(f(L Let IP 2 be the

initial placement created by placing A at the beginning of IP l' Then all objects in IP 2 will be offset

from their position in IPI by As' [f m is the expected number of objects on a page, the number of

unordered pairs in the neighbor relation derived from a typical page will be

= m*(m-l).
2

In [P2• the corresponding set of objects falls on two pages. The expected number of objects from

this set on the first page will be (1-t)*m, while the remaining f*m objects will be found on the

second page. The number of unordered pairs due to this set of objects that arc retained under IP2
is

p (fm)(fm - 1) +
2

«1 - Om)« 1 - Om - 1).
2

CHAPTER 5. STATIC GROUPING ALGORITHMS 61

Let r(m. f) be the ratio of preserved pairs to total pairs for this page, i.e. pit. After a few

arithmetic simplifications,

r(m, 0 1- 2f(1-0.
1- 11m

Assuming there are m objects on each page, the preceding analysis is valid for all pages in IP L'

Hence r(m, f) is the retained fraction. Note that r is an increasing function of m. For a tixed t: as

the average number of objects per page increases, the two initial placements become more similar.

When m is fixed. r attains a maximum value of 1 if f=O or f= l. Because of the symmetric nature

of this problem, r attains its minimum when f= 112. Since m=6 for a page size of 128 words, the

calculated minimum is 40%. This value is a bit smaller than the observed values of 49.6% for the

depth-first traversal with the identity permutation and 49.2% for the hash initial placement.

One surprising outcome of this simple example is that two initial placements identical except for a

half-page offset have a retained value of less than 50%. The maximum occurs only in the limit as

m goes to infinity. This characteristic is due to the quadratic nature of the neighbor relation, since

a page containing m objects contributes 0(m2) entries to the neighbor relation. An important

weakness of the retained fraction measure exposed by the preceding example is its inability to

effectively capture the intuitive notion of the degree of similarity between two initial placements.

The retained fraction measure sharply distinguishes between intra-page pointers and inter-page

pointers. Since the disk buffer is generally larger than a single page. it may be more appropriate to

define the page size for this measure to be the number of words occupied by some fraction of the

disk buffer. In this way, some pointers that are inter-page in the static sense are assumed to be

intra-page (actually intra-buffer) in the dynamic sense. One problem with this definition is inability

to statically predict the sequence of pages swapped between the disk and the disk buffer.

5.3.2 Discussion

The retained value of each initial placement with respect to all other initial placements was

calculated for three different page sizes. For a given page size, the aforementioned partitioning of

the initial placements was evident. When any two breadth-first arrangements were compared, the

retained value varied between 45% and 81 %. For any two depth- first initial placements. the

corresponding range was narrower, extending from 52% to 63%. On the other hand, when any

breadth-first initial placement was compared with any depth-first grouping, the retained fraction

ranged from only 17% to 24%. All retained values for the OOZE initial placement fell into the

interval from 16% to 24%, while the corresponding numbers for the random configuration were

between 0.2% and 3.3%. Retained fractions for the three optimal arrangements spanned a wide

spectrum from 0.2% to 40.1%. Comparisons bctween optimal initial placcments were not

meaningful because of the. limited overlap between any two. In light of the results of the preceding

example, these figures indicate a strong similarity within each category and a great difference

between categories.

62 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

5.3.3 Effect of Page Size

Some interesting tendencies of the neighbor relation were noticed as the page size was varied from

128 bytes to 256 bytes and finally to 512 bytes. The additional infonnation derived from the

following analysis also partitioned the grouping strategies into (he same five categories.

The linear dependence of the size of the neighbor relation on page size is easily explained. If there

are m objects on a page and p pages in the initial placement, there will be approximately

IRI = pm(m-l)
2

elements in the neighbor relation. Increasing the page size by a factor of s will mean there will be

s*m objects on an average page but only pis pages. Then the size of the relation will be

Hence,

IR'I (p/s)(sm)(sm-l) pm(sm-l) IRI(l + m(s-I) }.
2 2 m-l

lB1 =
IRI

1 + m(s-I),
m-1

which is LIs - 0.1 for m= 11. This formula yields close agreement with the empirical results for

s = 2 and s = 4. Actual values, however. were slightly smaller than the preceding analysis would

predict.

The retained fraction for the hash initial placement increased against all other configurations as the

page size was increased. This may be explained by considering a truly random initial placement

and a second, non-random inidal placement. Assume these initial placements each occupy p pages.

Given any two objects, the probability that both lie on the same page is lip, neglecting the portions

of the pages occupied by the objects. For a given page in the non-random configuration, the

expected fraction retained by the random initial placement will be

(1/p)(m(m-1)/2) 1.

m(m-l)/2) p

Assume the page size is increased by a factor of s. Then the expected fraction retained will be

(s/p)(sm(sm-1)/2) s.
sm(sm-l)/2) p

Both of these retained fractions scale from a page to the entire initial placement. Therefore, the

ratio of retained fractions for the random initial placement will roughly -be equal to the ratio of the

page sizes. A doubling occurred in the retained value of the hash initial placement with respect to

all three depth-first initial placements in the 128-to-256 case as well as in the 256-to-512 case.

Although the retained values of the random initial placement with respect to the three breadth~first

configurations approximately doubled when the page size was increased from 128 words to 256

words, only a 30% increase occurred when the page size was increased from 256 to 512. While the

OOZE-hash and optimal-hash retained fractions increased each time, the ratios were much less than

two. Most of these discrepancies arose from the fact that the hash initial placement was not truly

CHAPTER 5. STATIC GROUPING ALGORITHMS 63

random. A total of 1580 pages implies that the predicted retained value for the 256-word page size

would be 0.06%. Empirical results. however, were in the 0.3% to 2.9% range.

Except for the interactions with the hash configuration, the retained value of two initial placements

derived from different types of grouping schemes typically fell for larger page sizes. For example.

the retained fraction of the OOZE neighbor relation with respect to the other six realizable initial

placements fell as the page size was increased. In 34 of the 36 retained fractions between a depth

first initial placement and a breadth-first initial placement. the value fell. Very small increases

caused the two anomalies. An intuitive explanation for these observations is that as the page size

increases, larger and larger segments of the two initial placements are being compared. Differences

between the two configurations should become more evident as long as there are still a moderate

number of pages. (Note that if the entire initial placement ~ts onto a single page, then all initial

placements are equivalent under this measure.) A more formal explanation for this behavior is the

linear dependency between the size of the neighbor relation and the size of a disk page that arose

from the squared term in the number of pairs of objects per page. In effect, more and more

comparisons are being made. If the number of successful comparisons does not grow at least

linearly with the page size, then the retained fraction will fall.

Conflicting changes were seen when retained fractions for two arrangements produced by similar

grouping schemes were examined. For the three breadth-first arrangements, increasing the page size

increased the retained value in 10 of 12 cases. The breadth-first initial placements became more

alike as larger portions were compared. For the depth-first arrangements, only 5 of 12 retained

fraction values increased. These results are explained by an inherent difference between a depth

first and a breadth-first traversal of a graph. In a breadth-first strategy, reordering the offspring has

only a local effect as far as the offspring are concerned. These object') will be adjacent regardless of

the particular permutation used. As the page size is increased, more and more siblings will be on

the same page, differences in their order will become less significant, and the retained value will

increase. In a depth-first traversal, however. reordering the offspring can have a more substantial

impact on the resulting initial placement. Each offspring may be the root of an arbitrarily large

subtree of the tree defined by the traversaL Siblings may be placed arbitrarily distant from each

other and their common parent. The particular permutation employed can thus have a substantial

effect on the final placement of the offspring. While increasing the page size potentially increases

the number of siblings on the same page. the number of clements in the neighbor relation is also

increased. Depending on the relative importance of these two conflicting tendencies, a larger page

size may increase or decrease the retained fraction between any two. arrangements produced by

depth-first grouping strategies.

The value retained by [P1 with respect to IP2 is comparable with but usually not equal to the value

retained by lP2 with respect to [PL' Different numbers of elements in the respective neighbor

relations cause different neighbor relation sizes, prevent the retained fraction operator from being

commutative, and thus mar th~ symmetry of the retained value tables. Neighbor relation size again

differentiated between most initial placements but upheld the similarities within the breadth-first

64 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

and depth-first groupings. The OOZE configuration had by far the largest such relation. This may

be attributed to the packing together of objects of similar size. Pages containing only small objects

had a substantial impact on the size of the neighbor relation because of the quadratic effect The

obvious simple example indicates that the influence of the small objects is enough to overcome the

opposing tendency of the pages containing only large objects.

5.4 Conclusions and Predictions

The retained fraction measure, which only considers the intra-page adjacency of objects, was used to

compare and contrast the initial placements. One deficiency is the naivete of this measure. All

neighboring objects were assumed to be equally important. But this is simply not the case. Many

of the objects on a page were related: others were placed on the page only because the attention of

the grouping algorithm had turned to a new yet unrelated portion of the graph. A more

sophisticated measure might take these differences into account. For example, one could rank the

importance of the elements of the neighbor relation by assigning weights to each such element.

Such a weighting scheme may be based upon the number of direct pointers between the objects, the

presence or absence of a cycle involving the two objects. or a more complicated function that

depended on the number and nature of all "short" paths between the two objects. However, while

this type of measure may potentially be more useful in predicting the relative paging performance

of two groupings, it would not be as useful nor as quick as the neighbor relation for purposes of

comparing initial placements.

A static analysis of the nine initial placements has highlighted the differences and similarities of the

groupings. [nitial placements .derived from nearly similar grouping strategies were roughly the

same: great differences existed between those generated from distinct grouping algorithms. One

untested hypothesis suggested by the measurements is that all possible arrangements derived from

one kind of search strategy are very similar. Low static connectivity meant that minor modifications

to any grouping algorithm based primarily on connectivity would have only a limited effect on the

final placement of objects. The particular set of permutations used during the traversal would not

have a substantial impact on the final grouping as defined by the retained-fraction measure.

Traversal type, on the other hand. would be the dominant factor. This theory holds for the

breadth-first traversal of the Smalltalk environment, where in many cases all offspring may be

packed onto a small number of pages. Although the three depth-first arrangements were very

similar. this information does not constitute a proof that all possible depth-first traversals will yield

similar groupings. The permutations used in the three depth-first traversals were not appreciably

different in a sizable fraction of the cases. Other unexplored permutation sets may exist that yield

vastly different depth-first initial placements.

Information gained from monitored execution sequences and static reference counts had only a

slight effect on the groupings generated by a particular traversal strategy. For both the depth-first

and breadth-first schemes, the initial placement derived from the dynamic data surprisingly had a

higher on-page pointer ratio than did the other two arrangements. The difference between the

CHAPTER 5. STATIC GROUPING ALGORITHMS 65

ratios for all elements within each category was small enough to render this distinction of dubious

value. Since the dynamic information dealt with only a small number of classes and the reference

count data could not distinguish between three-fourths of the objects, it was only natural for the

initial placements generated by the same traversal type to be very similar.

Another hypothesis suggested by the data is that the static similarities would carryover into the

dynamic domain. Paging performance and other monitored statistics should be very similar for the

breadth-tirst as well as the depth-first arrangemenl~. No solid conclusions were made regarding

comparisons of ditferent categories. Common sense indicates that the random and optimal

arrangements should have the poorest and best performance, respectively. On-page pointer ratios

would rank the depth-first groupings as the best, followed by the OOZE initial placement. the

random configuration, and finally the breadth-first arrangemen~s. The sibling-packing tendencies of

(he breadth-first strategies would undoubtedly improve their performance. Low fractional utilization

values for data objects have indicated that many fields of an object are not touched during a

computation. Since three fourths of all objects have a reference count of one. all siblings are not

always needed. This information limits the performance improvement provided by sibling packing.

There was no firm evidence to support a general consensus as to the "best" static grouping

algorithm or even if there would be one. Rankings may depend upon the utility function used to

evaluate their performance7 Furthermore. this ranking m;.iy change when factors such as memory

size, buffer size. fetching policies. and purging techniques arc varied.

66 A LARGE OBJECl-ORIENTED VIRTUAL MEMORY

6. Reference String Compression

Actual reference traces provided the input data for the virtual memory simulators. Obtaining traces

lengthy enough to cause moderate virtual memory interaction from the Smalltalk emulator required

substantial computational power. lnvesting time and energy into data compression realized

substantial benefits in the form of relatively efficient simulations as well as compact data files.

Readers uninterested in the nature of the compression algorithm may skip immediately to section

6.2 without a loss of continuity. The only other portions of the thesis that require an understanding

of the compression scheme are sections 8.3.7 and 9.1.

6.1 Developing the Algorithm

Much of the difficulty in presenting the compression algorithm will be avoided by applying a

stepwise refinement approach to the main objective. The chief goal of the algorithm was to

transform a complete reference trace derived from an emulation of the Smalltalk virtual machine

into an equivalent, compact representation. Two reference traces are defined to be equivalent with

respect to a virtual memory if, and only if, they cause the same sequence of page and/or object

faults and the same sequence of page and/or object swaps.

Achieving this equivalence conflicted with an efficiency constraint. On the average, only a small

, amount of computation could be done for each reference generated by the emulator. Because of

this restriction, the compression algorithm endeavored to preserve a weaker fonn of equivalence.

lnstead of guaranteeing the same sequence of object swaps both to and from primary memory, the

compression algorithm concentrated on faulting at the expense of purging. Enough infonnation was

preserved to guarantee that the insertion of any reference deleted by the compression routine would

not cause an object fault. However, information regarding the last use of an object was not

explicitly included in the output of this algorithm. This lack of knowledge prevented an accurate

recreation of the in-usc bits on both pages and objects. Other minor difficulties arose from the fact

that the compression scheme is object-oriented while the virtual memory simulation described in

Chapter 7 is page-oriented.

6.1.1 A Simple Compression Scheme

In order to increase the efficiency of the virtual machine emulation without requiring huge amounts

of secondary storage, the compression scheme was designed to operate as a one-pass algorithm.

Generation of the complete reference stream by the emulator, manipulation of this stream by the

compression algorithm. and production of the final. compressed trace were done simultaneously.

The algorithm may be viewed as a FIFO compression scheme that cached the set of most recently

used objects filling a fixed size of primary memory. Define the size of such a cache to be the sum

of the sizes of the objects contained in the cache.

CHAPTER 6. REFERENCE STRING COMPRESSION 67

References to any objects contained in this cache were simply discarded. A reference to an object

not in the cache was appended to the output trace. This new object was then inserted in the cache.

If the new size of the cache exceeded its limit, then some objects were purged using a FIFO object

replacement policy. Since the cache was a window on the final segment of the output trace, the

output trace defined the FIFO ordering on cache clements. An index into the output file called the

purge index provided the infonnation necessary for purging.

Cache size is the key to equivalence. Clearly, the size of the cache must be less than the smallest

anticipated core size of any virtual memory simulation. Let this smallest memory size be M. Then

the maximum cache size may be expressed as f*M, where O(f(1.

Consider a clock associated with a virtual memory that advances whenever an object is swapped

into core or a new object is created. This clock advances one tick for each field in either type of

object. Assume a virtual memory configuration with a core of size M and a particular purging

policy can guarantee that an object will not be purged until at least f*M ticks have passed since it

had been accessed. Then the original and compressed traces are equivalent (in the weak sense) with

respect to this virtual memory.

This constraint guarantees that an object will remain in core for at least f*M ticks after the virtual

memory processes a refere~ce to it. All references deleted from the full trace by the compression

algorithm are automatically satisfied, since any object specified by a deleted reference is guaranteed

to have remained in core in the virtual memory simulation for at least f*M ticks.

Cache size. and therefore the efficiency of the compression algorithm, may be traded off against

either the minimum anticipated core size or the co.mplexity of the purging policies. Increasing f*M

will lead to shorter compressed traces. At the same time, however, either the smallest possible core

size will be increased or more constraints will be placed upon the purging schemes.

Unfortunately, there is no such f for some purging policies. Optimal. FIFO, random, and simple

clock-based purging schemes may purge an object/page on the first reference after its last access.

Although such occurrences are unlikely, since the guaranteed time before purging is zero. f must be

zero. However, this concept is not applicable to optimal purging schemes. [f an optimal scheme

purges an object/page. then it will not appear in the reference trace for at least M ticks. Although

no time guarantee exists for optimal replacement algorithms, the above compression scheme will

preserve equivalence for these unrealizable algorithms for all f less than or equal to one.

Any purging policy that maintains a total ordering on objects/pages according to last access, such as

LRU, can guarantee 'an f arbitrarily close to unity.. More complicated clock algorithms, which

monitor the ratio of the total size of all recently-touched objects to the total size of all untouched

objects, can also guarantee any f. Demand paging with an LRU replacement algorithm was used in

the simulation of the paged virtual memory. This simulation did not constrain the choice of f.

Since an unsophisticated clock algorithm was used in the LOOM simulation, a conservative value

68 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

for f was used. M was 20K and f was one-half. which meant that the maximum cache size was 10K

words. Section 9.1 will argue that this choice of f was valid.

6.1.2 A More Detailed Algorithm

Distinguishing between read and write operations allowed the cleanliness of pages flushed from the

LOOM disk buffer to be recorded and analyzed. A dirty bit in the cache entry for an object

recorded the type of reference to that object in the portion of the output trace windowed by the

cache. Read and write operations were distinguished in the compressed trace. A read reference was

added to the output trace when the virtual machine emulator read a field from an object not

contained in the cache. Whenever the emulator wrote on a clean object. a write reference was

appended to the compressed trace. This action was taken regardless of the contents of the cache.

All other references generated by the emulator were treated as before. An object may have

appeared twice in some portion of the compressed trace delineated by the cache. If this event

occurred, the first reference would necessarily be a read and the last reference would always be a

write. Writing onto a clean object moved that object to the top of the ordering defined for the

cache. Unless any other clean object in the cache was subsequently dirtied, this object would be

purged after all the other objects currently in the cache. This promotion of the object in the cache

ordering was effected by simply ignoring the read reference to the object in the compressed trace.

When the purge index passed the read reference. the object would not be purged from the cache.

The set dirty bit associated with the object's entry in the cache indicated that there would be an

upcoming write reference to that object. This write reference would cause the object to be removed

from the cache. In summary, dirty objects were purged only when the purge index swept across

their unique write reference in 'the output trace. Clean objects were purged when the purge index

swept cross their unique read reference. Because objects could appear more than once in f*M ticks

of the compressed trace, the effective value of M was actually less than the chosen value.

Dynamically created objects could trivialize the importance of the initial placements. Computations

that did not require many new objects could have been chosen. This approach was not taken

because it would have seriously constrained the set of possible execution sequences. Completely

neglecting new objects was another alternative. However. under that scenario, the LOOM

simulation would not benefit from its late binding of objects to disk addresses. An acceptable

compromise was the assumption that unique identifiers would not be reused. All objects with the

same UIn were assumed to have the same size. Therefore. at most one disk location was ever

assigned to any UfO. Garbage collection. reference counting, and/or compaction of secondary

memory were not considered. Because the simulations did not implement a changing mapping from

U [Ds to object size, references to nonexistent fields were assumed to be references to the last field

of the object.

The assumption concerning the invariance of the U ID-size mapping was confirmed. Between 94%

and 97% of all references agreed on the mapping from UlDs to in-core sizes. Much of the

discrepancy arose from the 'become:' operator and could not be easily accommodated by the

CHAPTER 6. REFERENCE STRING COMPRESSION 69

simulations. All in-core objects in Smalltalk are referenced indirectly through the object table (OT).

'Become:' simply modifies the starting address of an object by changing its entry in the OT. This

capability is important for variable-length objects that provide the illusion of an infinite capacity.

Two changes to the emulator reduced the amount of processing the compression algorithm was

forced to perform. All references to the 32K display bitmap were ignored. By definition, this

object would remain in core at all times in every simulation. The size of the display bitmap was

not included in the amount of core used in a virtual memory simulation. since core memory was

reserved for other objects. To translate the core size associated with a specific simulation to the

actual size of core simulated. 32K sixteen-bit words must be added.

A substantial fraction of the references to Compiled Methods was not passed along to the

compression routine. Code references were almost always consecutive, as section 4.5 has indicated.

To preserve weak equivalence, the virtual machine emulator explicitly generated the first and last

references to a Compiled Method. An additional reference to the CompiledMethod was generated

whenever a subcomputation terminated and control returned to the associated stack frame.

6.1.3 LOOA! Requirements

The preceding compression scheme is adequate for a paged virtual memory. However. the LOOM

simulation requires additional run-time information, because of the use of compressed pointers,

lambdas. and reference counts.

Let V be the contents of the field of an object. Define a value V to be short if, and only if, it is a

sequence of bits, an immediate pointer, or a non-immediate pointer that refers to an in-core object.

Whenever a field in an object is read in a LOOM -like system, its contents must be short in order

for the computation to proceed. Whenever a field in an object is updated, both the new and the

former values must be short. Since the new value was certainly used in the preceding. computation

and placed on the stack, it must be short In either case, the compressor must provide the LOOM

simulation with enough information to guarantee that the former contents of the field represent a

short value. Instead of a simple sequence of accessed objects. the reference stream was

implemented as a stream of ordered pairs of the form (A, B). The first element of the pair. referred

to as a left or object reference. represents the· accessed object, while the second clement. referred to

as a right or leaf reference, corresponds to the former value of the field. [n LOOM. the ordered

pair above would ensure that A was in core in itl) entirety: a leaf for B would be created only if the

second pointer were not short.

The compression algorithm maintained additional· information for each of its cached objects.

Specifically. for each object in the cache. there was a single bit that told whether the object had

appeared only on the right (as a leaO or at least once on the left (as an object) in the recent past.

For simplicity, the ordering of the leaves in the cache was defined to be the ranking of the set of

objects with which they first entered the cache. Object references were treated as before. except

that appearing as a leaf was equivalent to not appearing in the cache. If a leaf reference already

70 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

appeared in the cache as an object or as a leaf, then its status did not change when the ordered pair

was appended to the output stream. Remaining details of the compression algorithm and the exact

technique used to purge the cache are straightforward.

6.1.4 Equivalence

There are a number of minor problems with this compression algorithm. Equivalence may be lost

for a paged virtual memory because of two reasons. First. unless the static groupings arc extremely

successful and a large percentage of core is utilized. useful objects will not be tightly packed. The

cache measured the sum of the in-core sizes of the objects. This number will differ from the total

number of pages actually containing the objects because not all objects on these pages appeared in

the cache simultaneollsly. Compounding this problem is the fact that all pointers in the paged

virtual memory simulation occupied two words. Many objects required twice as much disk space as

core space. However. the cache size in the compression algorithm was computed assuming all

objects were in core.

Another drawback of the compression scheme is the fact that it was object-oriented instead of page

oriented. While this choice allowed the compressor to operate independently of any initial

placement, it may have provided a slight benefit to the paged virtual memory .. Consider an object

straddling a page boundary. Although the emulator may have accessed portions of the object lying

on different pages, the compressor would have discarded all but a couple of references to the object.

[n most cases, only one page would be required during a simulation of the paged virtual memory.

The LOOM simulator, however, would be forced to swap in both pages in order to transfer the

object into core. Two factors limited this advantage. First. there were cleven objects on an average

page and only one of these could straddle a page boundary. Secondly, grouping was done in an

attempt to concentrate references to a small set of pages. It may have been the case that the

required but unfetched page contained objects referenced at about the same time the straddling

object was accessed.

6.2 Three Execution Sequences

Three lengthy execution sequences were monitored to produce reference streams that were

compressed by the algorithm described in the preceding section. Between 960K and 2280K,

bytecodes were executed in each trace, causing the emulator ~o generate three to eight million

references. These traces were reduced to lengths between 40K and 80K reference pairs. The

compression ratio was roughly 100: 1.

Execution sequences were chosen by selecting actions the user or system would typically invoke~.

Many distinct types of computations were performed in a very short time span in order to produce~

a reference trace suitable for exercising a virtual memory.

The first trace involved the creation, initialization, and scheduling of a five-paned window called' a

Browser that was subsequently used to display the source code for a CompiledMethod. Messag~

CHAPTER 6. REFERENCE STRING COMPRESSION 71

dictionaries in various classes were queried in order to determine the presence or absence of a

particular Compiled Method. The entire display was cleared and all windows were cleared, framed,

and titled. Finally, the decompiler was run on a CompiledMethod in order to produce source code.

In the second execution trace, source code from a particular protocol within a class was "filed out."

This process entailed creating a new disk file, finding the source code for each CompiledMethod

defined by this class-protocol pair, and writing the resulting text stream into the new file. A unique

string was created and authenticated, the instance count of a class was calculated, and both the

compiler and decompiler were invoked. For one class, the set of CompUedMethods that sent a

particular selector was determined. Finally, an error message was sent to an object. The debugger

was then entered by expanding the window created by the preceding error message.

The third compressed trace was twice as long as the other two and involved heavy user interaction.

Operations for inserting, cutting, and pasting text were performed. Commands for undoing the last

operation, canceling all operations, evaluating an expression, and invoking the compiler were input

by selecting the appropriate sections of a pop-up menu. Scrolling and thumbing operations, which

modified the portion of the text visible in a window, were also accomplished. [n addition, a new

class was defined and installed, a global variable was declared, and an existing disk file was opened.

The contents of this file were read and compiled in an operation known as "filing in." Finally, the

set of classes that responded to a particular message selector was determined.

6.3 Reference Spread

Two measures of the spread of the references to each object were obtained in order to analyze the

compressed traces as well as to evaluate the compression algorithm. This algorithm successfully

removed unneeded references and yielded compressed reference traces suitable for driving virtual

memory simulations.

[n these measurements, only object references were examined; leaf references were neglected.

Consider an object A. Assume A was first referenced as an object on the ith reference pair and last

referenced as an object on the jth reference pair. Define the thin spread of A to be j-i. Notice that

if A were only referenced once, it would have a thin spread of zero. If A were referenced twice

and the two pairs were consecutive, then A would have a thin spread of one. [n the first two traces,

at least one-fourth of all objects appeared only once. The median thin spread for all three traces

was one. Leaf references caused many duplicate object references, which in turn gave rise to

nonzero medians. Mean thin spreads were at least three orders of magnitude larger than the

medians (Figure 6-1).

These facts indicate the size of the 10K cache for the compression scheme was adequate. The ratio

of cache size to mean object size was 539. [f the 10K cache size were too small, most objects would

appear quite often and most thin spreads would be approximately some mUltiple of 539. This did

not occur. Many objects were involved in only a particular portion of the entire computation and

~appearcd in the compressed trace a small number of times. Each reference pair in the compressed

72 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

Percent of
All Objects

(#1)

3~~

15 63 255 1K 4K 16K 64K 256K
Thin Spread

Figure 6-1 Thin Spread
(distance between first and last references)

CHAPTER 6. REFERENCE STRING COMPRESSION 73

traces would therefore be likely to cause faulting and possibly purging in a later virtual memory

simulation. The compression algorithm was effective at eliminating redundant references and on

,this level was a clear success.

Large thin spreads, which raised the mean well above the median in all three traces, were caused by

objects that spanned major portions of the execution sequence. Not all subcomputations were

disjoint. Therefore. in addition to performing major context shifts, the virtual memory simulators

were also compared as to their ability to predict and retain collections of objects used intermittently

during the computation.

A second measure, fat spread, was also obtained. Let sk be the disk size of the object portion of the

kth reference pair in the reference stream. Then the fat spread of the above object A would be

5i + 1 + si + 2 + ... 5j-l + sj-

Distances were rounded up to the nearest 256-word page. [n all three reference traces, the median

fat spread was one page. Average fat spreads were two to three orders of magnitude larger than the

medians. falling into the 350 to l400 page range. For the same reasons as above, low medians and

much larger means are again indicative of a successful compression technique.

74 A LARGE OBJECT-ORIENTEO VIRTUAL MEMORY

7. Grouping and a Paged Virtual Memory

This chapter begins with a concise description of the simulation of a paged virtual memory. The

effects of static grouping on the dynamic perfonnance of such a configuration are then presented

and discussed. Finally, the predictions of paging behavior hased upon the static analysis of the

initial placements are evaluated. Appendix C presents a subset of the numerical information used

in the following discussion.

7.1 Simulating a Paged Virtual Memory

In the simulation of a paged virtual memory, core was completely devoted to object space. No

,space was reserved for the table of in-core pages. purging information. or other memory

management data. This was done so as not to constrain the comparison of actual paged virtual

memories with LOOM. In Chapter 9, the requisite overhead as a function of core size is

determined. The mapping between equivalent amounts of object space for the paged virtual

memory and the object space for [,OOM is then established.

The paged virtual memory simulator was a two-leveL demand-paged hierarchy with no restrictions

on the placement of disk pages in core. Core was assumed to be empty initially. Given a reference

pair. the leaf reference was neglected while the object reference and a field offset were used to

calculate the accessed page. Space for dynamically created objects with new U IDs was carved from

the bottom of the free block at the high end of secondary memory. New objects with previously

used UIDs were assigned to the location previously granted to that UID. Contents of the fields of

objects were not maintained by the simulator. All that was necessary was a mapping from the set of

UIDs to starting disk addresses. A strict LRU purging policy was employed because of its multiple

simulation implications. Since LR U obeys the subset property [MA 1T], all core sizes could be

simultaneously simulated in a one-pass sweep of the compressed trace. The one statistic obtained

for this virtual memory was the mapping from core size to the number of page faults.

7.2 Results

The realizable grouping algorithms caused similar improvements in the performance of the paged

virtual memory. Each of these strategies substantially reduced the number of page faults that

occurred under the lI~grouped. random arrangement. The particular grouping scheme was not

critical; the fact that objects were grouped was the key factor in determining performance.

As previously noted in the static analysis of the groupings. initial placements generated from similar

grouping strategies were similar. Initial placements in distinct categories were substantially different.

A slight modification of this claim is applicable to their dynamic faulting behavior. Groupings

generated by similar schemes were indistinguishable with respect to faulting rates. While categories

CHAPTER 7. GROUPING AND A PAGED VIRTUAL MEMORY

Page Faults

(PI)

\
\ Random

t----;-- Breadth-first

T+---\--- Ooze

l-lr+---r---- Depth-first

75

l!1 301'=; Ea:::1~~ !:u:::lI';; 12ll~;; 150~~ 1::a:::1K 21~:::1~:; 240~~ 270~~ 30~1~~

Core Size (words)

Figure 7-1 Parachor Curves for a Paged Virtual Memory

76 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

had distinct perfonnance characteristics. their relative ordering and the degree to which they

differed depended on core size.

Optimal groupings consistently outperfonned all other initial placements (Figure 7-1). In all three

traces. the best-to-worst ordering for small core sizes (20K) was optimal. depth-first. OOZE.

breadth-first, and finally random. The seven middle groupings fonned a narrow band in a much

wider region bounded by the optimal and random initial placements. These groupings will

hereafter be referred to as the band groupings.

Grouping algorithms may be evaluated by how closely their arrangement approximates the optimal

initial placement. For a given core size. assume the optimal grouping causes fo fewer page faults

than a random grouping. Assume another grouping causes fa fewer page faults than the same

random initial placement. Define the page fault reduclioll ratio to be fa/fo. This number measures

the degree to which a grouping algorithm has succeeded. assuming the optimal and random

groupings are the best and worst possible arrangements. respectively. The page fault reduction ratio

is essentially independent of the number and nature of the dynamically created objects. An

unqualified version of this claim holds for tasks that do not cause the virtual memory to purge any

information: the qualification must be added to cover smaller core sizes that force purging to occur.

Minimum and maximum page fault reduction ratios for the band groupings are presented in Table

7.1. The success of the grouping schemes varied from moderate to good. Consistently coming

closer than 75% of the optimal, however. will probably be extremely difficult to achieve.

Core Size 20K 60K lOOK l40K

Trace # 1 -- Low 35.0% 65.9% 67.0% 56.0%
Trace # 2 -- Low 39.1% 63.5% 50.5% 45.6%
Trace # 3 -- Low 37.7% 61.9% 70.5% 61.4%

Trace # 1 -- High 54.6% 80.0% 79.3% 69.7%
Trace #2 -- High 57.7% 78.2% 77.8% 79.1%
Trace # 3 -- High 58.7% 75.8% 81.8% 74.4%

Table 7.1 Extrema for the Page Fault Reduction Ratios

Within the narrow paging perfonnance band. the ranking ()f the categories of grouping algorithms

depended on the particular trace as well as the size of core. For small core sizes. the best-to-worst

ordering was depth-first. OOZE. and then breadth-first. This advantage of the depth-first schemes

declined for larger core memory sizes. In the first trace. the depth-first and OOZE groupings had

similar faulting rates for core sizes above 90K. OOZE was actually better than any depth-first

grouping in the second and third traces for all core sizes above 60K. Even though the depth-first

arrangements outperfonned the breadth-first groupings in the first trace .. for large core sizes in the

second and third traces. their perfonnance was strikingly similar. These reversals precluded a

definitive evaluation of the grouping techniques that was independent of core size.

Let core utilization be the percent of core containing objects that were touched. An underlying
:t.{

assumption is that if an object were touched. than all its fields were touched. While this hypothesi~,

CHAPTER 7. GROUPING AND A PAGED VIRTUAL MEMORY 77

is not true, the actual core utilization may be estimated by multiplying the core utilization by the

mean fractional utilization of objects.

For large core sizes, core utilizJtion and not purging policy was the important factor in detennining

the number of page faults. Dynamically created objects, which utilize 100% of the disk pages they

occupy, can blur the utilization differences between initial placements. Since the total size of all

new objects is known, their effect could be removed from the average utilization. Table 7.2

presents core utilization ratios for very large core sizes.

BFS DFS OOZE Random BFS DFS OOZE Random

Trace 1 48.9% 55.6% 53.8% 37.7% 33.8% 40.0% 38.3% 24.4%
Trace 2 53.8% 53.2% 65.3% 47.0% 44.4% 43.8% 56.3% 37.8%
Trace 3 58.3% 53.2% 61.8% 46.8% 40.7% 35.8% 44.3% 30.2%

Table 7.2 Core Utilization [ncluding (left) and Discounting (right) New Objects

Assuming eleven objects per page and a trace that referenced only a small fraction of all old objects.

a tnlly random initial placement would utilize roughly one-eleventh (9.1%) of core. Observ'ed

values for the random grouping were higher because the grouping was not completely random and

the trace referenced a sizable fraction of the objects. A number of pages contained more than one

accessed object. Core utilization for the optimal initial placement~ was by definition 100%.

\Vhile a 100% utilization of core is theoretically possible, the maximum attainable value is probably

much less. Empirical measurements of the fractional utilization of all objects indicate that between

39% and 51% of the fields of objects are touched during a computation 144K references in length.

Since roughly three-fourths of all objects had a static reference count of one, any strategy that

groups objects solely on the basis of connectivity and does not distinguish between heavily used and

rarely used fields will have a utilization of core by old objects approximately equal to the fractional

utilization of objects. This limit has been approached by the nonrandom groupings. Although

these grouping schemes have had some effect, there may be room for improvement. Surpassing this

bound requires the a priori knowledge of heavily accessed fields and the invariance of high-access

tendencies. Even though utilization can be increased if this set of fields is on a per object basis, the

grouping algorithm is much simpler if the high-access fields depend primarily upon the class and

not the specific instance of the class. The dynamic statistics lIsed to influence one depth-first and

one breadth-first grouping were a first attempt in this direction. Further investigations into-this

area, however, are beyond the scope of this thesis.

7.3 Analysis of Predictions

The predictive capabilities of the static analysis of the initial placements may be evaluated in light

of the performance of a paged virtual memory. Certainly the similarity of the paging rates for

similar initial placements was upheld. However, except for the dismal performance of the random

initial placement. the distinctiveness of the band initial placements was not strongly evident.

Breadth-first groupings clearly outperformed the random initial placement and predictions limiting

thc;r degree of improvement were upheld. Low fractional utilization of object'i prevented the

78 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

breadth-first initial placements from becoming the best arrangements. The static analysis did not

predict reversals in the ordering of grouping schemes. These reversals were due to a perfonnance

degradation intrinsic to the depth-first groupings. Since the relative loss of performance of the'

depth-first algorithms for larger core sizes was evident in all three reference traces, this decline

seems to be related to the traversal type (depth-first) and the amount of purging but not to the

particular traces. However. the exact nature of this degradation was not investigated.

The retained fraction measure for the optimal groupings was able to accurately predict the paging

performance for the paged virtual memory simulations. OPT1 predicted a best-to-worst ordering of

depth-first, OOZE, breadth-first, and random, which in fact was the ordering for small core sizes in

the first reference trace. As the page size was increased to 256 and 512 words, the depth-first and,

OOZE initial placements swapped positions. For simulations of the first trace with large core sizes~'

this reversal in performance actually occurred. Retained fractions with respect to OPT2 and OPT3'

ordered the groupings as follows: OOZE, depth-first, breadth-first, and finally random. While the

first two grouping categories were swapped in the ordering defined by paging performance witli

small core sizes, this ranking was confinned for moderate and large core sizes for the second and

third reference traces. As the page size was increased to 256 and 512 words, the retained fractions

for the depth-first and breadth-tirst groupings became similar. This similarity caused the breadth

first groupings to catch and at times to outperform the depth-first initial placements with regard to

paging rates for moderate and large memory sizes.

One explanation for the correlation between retained fraction values for larger page sizes and paging

performance for larger primary memory sizes is the reduction in purging. When the size of core is

increased, fewer pages arc discarded. Individual pages and groups of pages tend to remain in core

longer. Inter-page pointers become as important as intra-page pointers because their dynamic

distances are not distinguishable. Enlarging the page size in the retained fraction measure has a

similar effect. Not only are intra-page pointers considered in the analysis: short inter-page

references also contribute to the final value.

CHAPTER 8. GROUPING AND LOOM 79

8. Grouping and LOOM

This portion of the thesis describes the LOOM simulator and contrasts it with the actual system.

The dynamic performance of the simulator under a number of policies and configurations is

presented. Finally, performance predictions based upon the static analysis of the initial placements

are examined in the light of actual results. Appendix C contains the collection of statistics and data

on which the following discussion is based.

As in the case of the paged virtual memory, the realizable grouping strategies improved the

performance of LOOM. However, there were two significant differences between the simulations of

LOOM and the paged virtual memory. These two features arose because of the object-swapping

characteristic of LOOM and the typically short stay of disk pages in the in-core buffer. First, the

performance differential between the random initial placement and any realizable arrangement was

not as great in LOOM as it was in the paged environment. LOOM was able to perform rather well

in the face of the adverse conditions caused by the random initial placement. Secondly, the

performance of LOOM w~s sensitive to the grouping strategy used. Different grouping strategies

realized different performance benefits.

Another result gleaned from these simulations is the importance of a grouping strategy to LOOM

like systems. Other virtual memory policies and parameters play a secondary role and are

essentially independent of the initial placement.

S.l Simulating LOOM

For the reference pair (A, B), the LOOM simulator first determined if the object A were in core. If

not, then an object fault would occur and the object A would be swapped into core. Any leaf for A

would be discarded, since the leaf would have been expanded and replaced by the complete object

A in the actual LOOM system. [f B were already in core, either as an object or as a leaf, then

nothing further would be done. Otherwise, a leaf for B would be created, since by definition the

referenced field in A is assumed to have been a lambda. Call the resolution of such a pointer a

lambda fault. Resolving such a pointer requires that the 32-bit pointer that references B be found

in the disk representation for the object A. Note that only object A need be accessed. LOOM does

not need to access an object in order to create a leaf for that object. While many lambda faults

cause page faults, the necessary page may already be in the disk buffer. Depending on the nature

of the reference and the previous state of the in-core object A, the clean-dirty bit for A would then

be set appropriately.

Core memory and the disk buffer were initially empty. Both objects and pages were fetched on

demand. The disk buffer employed a F[FO page replacement algorithm, while a clock purging

scheme was used for primary memory.

80 A LAROE OBJECr-ORIENTED VIRTUAL MEMORY

Continuolls compaction of core was assumed. If enough space existed for an object or a leaf, then

it would be placed into core without causing any further disk interactions. Whenever the remaining

free space could not accommodate a new object or leaf, the purging algorithm was invoked. A

clock scheme was used for purging, which was done incrementally as needed. An index: cycled

through the table of in-core objects. There were three possible cases: a touched object, an

untouched object, or a leaf. Touched objects were marked untouched, untouched objects were

contracted to leaves, and leaves were simply discarded, since by assumption they were clean. Clean

object contractions caused no disk references, but dirty contractions forced the object to be written

to the disk.

This cleanliness remark deserves clarification. The one important piece of information contained in

a leaf is the change in the disk reference count of the object that it represents. An assumption was

made that a realizable algorithm could be found and employed that makes this delta reftrence count

zero when the leaf is purged. When this number is zero, the actual reference count located on the

disk is correct and need not be updated. Since it contains only a disk address, the leaf is clean and

may be discarded without any disk interactions. One algorithm is very simple: always assume the

final disk reference count of an object will be one. When a dirty object is contracted, the disk

reference count may be set to one and the delta reference count adjusted appropriately. Since three

fourths of all static reference counts are one, this algorithm is likely to succeed. Another possibility

assumes that some constant fraction of all in-core references to the object eventually become disk

references to the object. Other bases for predictions surely exist. However, the analysis of such

algorithms is beyond the scope of this thesis. All these predictive schemes depend upon the

contraction of dirty objects in order to set the disk reference count to the best guess of its final

value, because the disk reference count of these objects may be set without incurring any further

paging penalties. Clean objects present a problem, since their disk reference count cannot normally

be adjusted when they are contracted without causing a page fault Many of the clean objects are

CompiledMethods, which typically have a stable reference count. These kinds of system objects do

not pose serious problems. For other clean objects, the best policy is probably not to tamper with

the disk reference count until the in-core reference count of the leaf changes to zero.

The LOOM simulator did not maintain the contents of the fields of all objects, nor did it maintain

the starting address of all in-core objccts. Instead, the simulator kept a table of in-core objects as

well as a list of pages in the disk buffer. Six statistics were maintained for each LOOM simulation.

Object faults. lambda faults, clean contractions. dirty contractions, disk buffer hits. and disk buffer

misses were all counted. [n addition, the simulator carefully monitored the utilization of pages in

the disk buffer. For the purposes of this measurement. if an object were dirty, then all its fields

were assumed to be dirty. If a portion of an object residing on a particular page were touched.

then all the fields of that object on that same page were assumed to be touched.

CHAPTER 8. GROUPING AND LOOM 81

8.2 Differences Between the Simulation and LOOM

The simulator was a fairly detailed model of the actual LOOM virtual memory. Pointers were

compressed, lambdas and leaves were used, and new objects were considered immature and hence

not immediately written to disk. On the other hand, a number of simplifications were made.

First, hints were not used to decide which pointers to resolve when an object was swapped into

core. Instead. a simple dynamic decision was made. [f the 32-bit pointer referenced an in-core

object or a leaf for that object, then the pointer was resolved. Otherwise, the pointer became a

lambda. In fact, the contents of all pointer fields were assumed to follow this pattern. A pointer

was a lambda if, and only if, neither the referenced object 'nor its leaf were in core. Creating or

destroying a leaf would automatically change all in-core references to this object. This effect was

not important, however, since roughly three-fourths of all objects had a total static reference count

of one. Moreover, not all objects were in core simultaneously. By definition, in-core reference

counts were less than the total reference count.

In-core as well as disk reference counts were not kept by either simulator. The compression

algorithm eliminated much of the information required to maintain these two sets of counts. Except

for the reuse of aUlD, neither simulation knew that an object had been destroyed. In the paged

virtual memory, an inaccessible object would continue to occupy some fixed number of disk fields.

[n the LOOM simulation, such an object would eventually contract, possibly mature, and occupy a

portion of the disk.' Since the net result was similar in both simulators and UIDs were frequently

rellsed, the inability to detect object destruction was not critical. Neglecting this aspect of memory

management allowed enonnous gains to be realized by a compression of the actual reference trace.

!\. complete analysis of different types of memory allocation and deallocation schemes is beyond the

scope of this thesis.

Another minor difference was the omission of forwarding markers in the LOOM simulator. An

implicit assumption was that the disk name of the object always mapped into its in-core name.

Since forwarding markers are used only when immature objects are forced to the disk. the' effect

arising from this omission may safely be neglected. Finally, contraction of objects referring to

immature objects was not prohibited. LOOM would either prevent the contraction or mature the

referenced object. Again, the effects of this simplification were not substantial.

8.3 Results

f--:ach compressed reference trace drove a LOOM simulator with a buffer size of 8 disk pages and a

fixed core size. The smal1e~t core size was 20K words. Simulations were repeated with larger core

sizes using increments of 20K words until no purging was required. Unlike the LRU policy utilized

in the paged virtual memory simulation, the LOOM purging scheme did not obey the subset

proper~y and simulations of different sizes could not be run simultaneously.

82 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

8.3.1 ResulLs Independent of Grouping

Four of the six event~ counted during each LOOM simulation were independent of the grouping

scheme used. For a given trace, the number of object and lambda faults, as well as the quantity of

clean and dirty object contractions, depended only upon the size of primary memory. All four

counts were monotonically nonincreasing for the set of core sizes simulated.

The number of object faults was always greater than the number of lambda t~lUlts. On the average,

less than one lambda was resolved for cach object that was swapped into corc. Although this

average is important, the general distribution of the number of resolved lambdas per object ought to

be examined. Predictive schemes for deciding which pointers to resolve when an object is

transferred into core can then take this information into account.

No such simple relation was evident between the numbers of clean and dirty contractions. For very

small core sizes, the ratio of clean to dirty objects that were purged varied from two to six. When

the size of core was large enough to cause only a small amount of purging, most of the contracted

objects were dirty. In these large-core simulations, no purging equilibrium was established. The

low clean-dirty purge ratio reflects a transient caused by the particular purging scheme since purged

objects were a random sample of all in-core objects. In simulations of moderate and small core

sizes, however, numerous purge cycles crcated a rcasonable balance bctween marked and unmarked

objects. The associated clean-dirty contraction ratios reflect not the clean-dirty ratio of in-core

objects but the characteristics of the set of objects that had not becn recently accessed.

Data supporting the success of the purging algorithm may be found by comparing the change in

object faults with the change in object contractions as the size of core is decreased. If these two

changes are comparable, then most object contractions later gave rise to an object fault. Such

results would indicate that the purging algorithm was not performing well. On the other hand, if

the number of new contractions is much larger than the change in the number of object faults, then

most of the object contractions did not cause a subsequent object fault. The purging algorithm.

would be selecting the appropriate objects to discard. For example, when the core size is

decremented by 20K from the smallest size for which no purging occurs, the ratio of the changes in

object faults and object contractions was less than one-tenth for all three traces. Most of the

contracted objects were not subsequently accessed. However, when the 40K to 20K transitions are

considered, this range shifts upward. These ratios. which fall into the interval from two-thirds to

six-sevenths, indicate the presence of thrashing. A majority of the contracted and purged objects

were later needed.

Two of the six event counts, the number of hits and misses for pages in the disk buffer, clearly·
. ;.: '.:: ~

depended upon the grouping. Intuitively, for a given reference trace, the sum of the hits and miss~s:

for the disk buffer ought to be independent of the initial placement. However, this sum was n()t;

constant. Objects straddling pages caused a slightly different number of pages to be accessedfo~
each arrangement.

CHAPTER 8. GROUPING AND LOOM 83

8.3.2 Paging Perfonnance

Whenever the LOOM simulation interacted with the disk, a page reference was generated. Page

references were caused by all object faults, lambda faults, and dirty contractions. Some of these

page references named pages in the disk buffer and caused a hit. If the specified page were not in

the buffer, then a miss, also called a page fault, occurred. Let the hit rate be the fraction of page

references satisfied by the disk buffer. While this rate for the most part increased for larger

primary sizes, a few minor anomalies occurred. Consider the third reference trace. (n all three 40K

to 60K transitions in the depth-first groupings, the hit rate and the number of page faults declined.

Substantial reductions in the number of object and lambda faults caused fewer page references and

allowed this set of conflicting events to occur.

One measurement obtained from the LOOM simulations was the number of page faults caused by

each grouping (Figure 8-1). As in the paged virtual memory simulations, paging performance

upheld the similarities between initial placements generated by grouping strategies of the same type.

However, there were no reversals between initial placements derived from different grouping

categories. The seven middle arrangements were again found in a band situated in the wide region

delineated by the optimal and random initial placements. Within this band, the depth-first

groupings were the best in two out of three traces, while the OOZE initial placement had the best

performance in the other ·simulation. Breadth-first arrangements did poorly in all three traces,

outperforming only the random initial placement.

rn order to detennine the relative effectiveness of the chosen grouping strategies in different types

of virtual memories, the LOOM page . fault reduction ratios were calculated. One caveat that must

be mentioned is the fact that the optimal initial 'placements may not be optimal for the LOOM

simulations. Contraction of dirty objects and resolution of lambdas may have caused the derived

initial placements to be non-optimal. Therefore, the faulting rates of our "optimal" grouping must

be considered to be close upper bounds on the paging rates for a true optimal arrangement. Table

8.1 presents the maximum and minimum value of the page fault reduction ratios for the seven band

groupings.

Core Size 20K 40K 60K 80K lOOK 120K

Trace # 1 -- I.ow 22.7% 22.2% 23.4% 21.9% * *
Trace #2 -- [.ow 40.6% 38.0% 39.5% 40.8% 40.4% 40.5%
Trace # 3 -- Low 24.8% 21.8% 19.1% 18.5% 19.0% 18.1%

Trace # 1 -- High 50.3% 48.2% 49.6% 48.1% * *
Trace # 2 -- High 62.7% 58.9% 61.3% 61.7% 62.7% 63.6%
Trace # 3 -- High 58.0% 55.7% 50.6% 46.9% 47.1% 46.0%

Table 8.1 Extrema for the Page Fault Reduction Ratios

Two differences stand out between the two types of virtual memories. Both the minima and

maxima of the LOOM band were smaller than the corresponding values for the paged virtual .

memory. Secondly, the relative width of the LOOM band was larger. In the paged virtual

84 A LARGE OBJECf-ORIENTED VIRTUAL MEMORY

24K

22Y-:

2~lK

18K

1Eif';;

Page Faults 14K

(#3) 12K

1~lK

8~~

6~~'

4~;:

21'=;

~1

~3

\\

\ ...
...................

'-~-
------------------.. -.... .. -.-.....

--.. Optimal (# 3)

90K 120K 150K
Core Size (words)

Figure 8-1 Parachor Curves for LOOM

CHAPTER 8. GROUPING AND LOOM 85

memory, any reasonable grouping scheme substantially reduced the amount of paging from the level

caused by the random initial placement Differences between grouping schemes were not too

significant. [n LOOM, the amount of improvement in paging performance depended heavily on the

type of grouping. Although LOOM was more sensitive to the type of the grouping scheme,

grouping had less of an effect on LOOM than it did on the paged virtual memory. [n the latter

case, pages tended to remain in core for long periods. The critical measure wac; core utilization.

Pages remained in the disk buffer in LOOM for only brief periods of time. The magnitude of the

effect of a grouping scheme depended upon the short-term reference behavior of the Smalltalk

virtual machine and the probability that the generated object and lambda faults would be

successfully handled by the disk buffer.

8.3.3 Page Utilization and Cleanliness

The LOOM simulation maintained the set of objects read from or written to a page 10 the disk

buffer. When a page was flushed, its usage and cleanliness were tabulated. These fractions gave

rise to the disk page utilization and cleanliness distributions.

A verage page utilization values ordered the initial placements in the exact ordering defined by

paging perfonnance. Means for the realizable grouping schemes were bunched in the 15% to 25%

range and increased only slightly for larger core sizes (Figure 8-2). Page utilization rose with

memory size for two reasons. First, static grouping algorithms attempted to place on a page the set

of objects that were likely to be needed at the same point of a computation. Little attention was

paid to the dual problem of sets of objects likely to be purged at the same time. Larger core sizes

increased the relative amount of faulting with respect to purging. Secondly, smaller amounts of

purging meant that each disk page on the average remained in the buffer for a longer period of

time. Longer residence times increased the probability that another object on the same page would

be accessed before the page was flushed.

A substantial number of page transfers actually transferred only a single object. [n the first

reference trace with a depth-first grouping, for example, the median number of referenced objects

per page was only one. The mean was slightly higher, reaching a maximum of three when no

purging occurred.

Set ~part from the realizable groupings was the performance of the optimal groupings, which

utilized 30% to 50% of the pages swapped into the buffer when purging occurred. Unlike the

realizable arrangements, the optimal initial placements drastically increased their mean utilization to

the 60% to 70% range when there was no purging. Resolution of lambdas prevented a full 100%

disk page utilization for these optimal initial placements. This low utilization value indicates that

many lambda faults were not satisfied by the disk buffer and hence caused a page fault. Since the

optimal arrangements had the highest mean page utilization values, a higher fraction of these

lambda faults would undoubtedly have caused page faults in non-optimal groupings. As far as page

utilization is concerned, lambda resolution was much more harmful than purging. Efficient

86 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

100

::aj
A vcrage Fraction

of Page Used

(#2)
40

. _.-.- Optimal (#2)
._/

.~

._---------------a-

---- Depth-first

.-------------------------- Random

Core Size (words)

Figure 8-2 Mean Page Utilization

CHAPTER 8. GROUPING AND LOOM 87

algorithms determining which pointers to resolve when an object is swapped into core can thus have

an important impact on paging performance. While purging had little effect on the page utilizations

achieved by realizable groupings. it had a substantial impact on the optimal utilizations. As better

grouping schemes that accommodate faulting are found. the effect of purging will become more

critical to the overall performance of the virtual memory.

These utilization figures indicate that page references caused by purging or lambda resolution ought

to be treated differently than page references caused by faulting. One possible distinction is to keep

any page used only for lambda resolution and purging at the lowest priority level in the disk buffer.

Instead of elevating such a page to the top of the FIFO/LRU ordering. the page would remain at

the bottom and would be the first to be discarded. The disk buffer working set would not be easily

clobbered, because at all times at most one page in the disk buffer would have been used for

purging or lambda resolution.

Between 60% and 85% of aU pages were clean when flushed from the disk buffer in simulations that

involved purging. These cleanliness fractions are much larger than the 10% to 60% interval reported

for page-swapping virtual memories [KUCK]. Differences are due to the fact that Smalltalk

permanent objects tend to be read-only. Dynamically created objects. which are by definition dirty,

usually perish before being purged to the disk. For the most part. dirty pages in LOOM contained

only a single dirty object. Exceptions occurred when dynamically created objects were matured and

simultaneously written to the disk. The cleanliness of disk pages did not significantly depend on

either the grouping involved or the size of core employed. This independence arose because both

the initial groupings and the purging algorithm made no attempt to increase the number of dirty

objects per flushed page.

Decreasing the number of dirty pages flushed from the disk buffer is important because it

eliminates many double page faults and increases the lifetime of a write-once secondary storage

medium. As long as a full disk page is the physical unit of transfer. these benefits arise in both

page-swapping and object-swapping virtual memories. Simple attempts at rectifying this situation

include grouping typically clean objects with similar objects, as well as grouping typically dirty

objects with other normally dirty objects. A straightforward modification to the purge routine

would be the determination of the in-core status of objects on a page in the disk buffer when a

dirty object is contracted onto that page. [f any of these objects are both unmarked and dirty, then

purging them immediately would tend to reduce the number of dirty pages flushed from the disk

buffer.

8.3.4 Effect of Core Purging Policy

Many LOOM simulations were repeated for one or two initial placements with different virtual

memory parameters and policies. These additional runs provided data that yielded the relative

importance of grouping as well as the effect of grouping on a particular parameter or policy change.

A complete factorial design was not attempted because of the prohibitive number of experiments it

requires.

88 A LARGE OBJEC[-ORIENTED VIRTUAL MEMORY

Since the grouping algorithms were geared towards faulting tendencies as opposed to purging

requirements, the purging policy was modified to take into account the initial placement. This

change caused mixed results in performance that were independent of the grouping strategy. Unless

grouping schemes sensitive to purging issues are employed, the result~ indicate that the purging

scheme may act independently of the initial placement without incurring a substantial performance

penalty.

This change in the purging policy was effected by modifying the ordering of UIDs through which

the purge index cycled. Since the randomizing function that produced the hash initial placement

was invertible, the ordering of objects in secondary memory in this grouping could be easily

determined at nm time. This ordering, instead of the linear sequence (1, 2, 3, . . .), was

consistently used when the purge status of objects was checked. Call this scheme the random purge

policy and the original scheme the lillear purge policy. The random policy was chosen in an attempt

to purge objects on the same page at the same time. In addition to repeating the hash simulations,

one depth-first grouping was also rerun for all three compressed reference traces. Since the depth

first grouping was strongly correlated with the linear U [1) ordering utilized by the original purge

policy, these additional simulations would determine if changing the purging policy had distinct

effects on different static arrangements. If the new purging policy worked as intended, the faulting

rates for the depth-first and random initial placements would increase and decrease, respectively.

Page utilization and dirtiness were expected to change in the direction opposite to that undergone

by the page fault total.

The random purging scheme was modeled after the policy utilized by the Object-Oriented Zoned

Environment (OOZE) virtual memory for Smalltalk-76~ OOZE also purged objects according to

their ordering on the disk. One shortcoming of the simulation policy is that immature objects

forced to the disk were appended to the set of objects already on on the disk without regard to their

U IDs. The random purge operating on the random initial placement thus reflected the ordering of

old objects but not the ordering of dynamically created objects.

The effect of the random purging policy was essentially independent of the initial placement and

the compressed reference trace (~igure 8-3). For small core sizes, which caused a substantial

amount of purging, there was a 3% to 10% increase in the number of page faults. This difference

decreased for larger. core sizes. (n fact for the second and third compressed reference traces, the

random purge outperformed the original policy by 1% to 5% for moderate to large core sizes. This

new policy had only negligible effects on page utilization and cleanliness for both initial placements.

Different numbers of dirty contractions, object faults, and lambda faults were the prime causes of

differing faulting rates. Contraction of roughly equal numbers of dirty objects had a similar effect

on the overall number of page faults for both initial placements. However, the particular sets of

objects discarded by the purge routine had a nontrivial impact on paging perforniance and served to

distinguish the linear purging policy from the random purging policy. The relative change in the

number of page faults was larger in magnitude for the depth-first arrangement than for the random

Page Faults

(#3)

CHAPTER 8. GROUPING AND LOOM

24K

22~::

2€H::

18~~

lEi~;:

14~;:

12~::

l€H::

8~::

6K

4K

2~;:

l::1

fl 90K 120K 150K
Core Size (words)

Figure 8-3 Effect of Core Purging Policy
on Parachor Curves for LOOM

89

90 A LARGE OBJECf-ORlENTED VIRTUAL MEMORY

initial placement. Absolute changes in faulting rates were roughly equivalent. One unconfirmed

hypothesis drawn from these results is that random initial placements are not as sensitive to changes

in the purging policy as are non-random initial placements. Because there was no true relationship

between objects located on a single page in the random arrangement, modification of the purging

policy tended to have a smaller relative effect.

The two implemented purging schemes arc similar to a simple bOlloming technique in which objects

are purged from core according to the time at which they tirst appeared in core. If all objects are

scanned in each purge cycle. then this technique differs from the previous two only in the

permutation followed by the purge index. Analysis of enhancements to this type of purging

algorithm, including special-casing new and old objects and partial instead of full core sweeps, is

beyond the scope of this thesis.

Since the single attempt at grouping-directed purging did not realize consistent gains. these resuits

do not rule out the possibility of such purging schemes. If more purging emphasis is placed on the

grouping algorithm, it may be possible to improve performance by having the purging algorithm

depend on the current mapping from objects to disk addresses. Otherwise, the purge algorithm

should be free to choose objects to discard. For example. a purging policy could distinguish

between clean and dirty objects. Contracting dirty objects could be delayed and perhaps entirely

avoided. The important consideration is to purge the optimal set of objects regardless of the

concomitant overhead. Flushing objects grouped on pages may reduce paging locally. but this

strategy can have disastrous global effects. Since the optimal purging policy is unrealizable. efforts

should be directed toward designing. simulating, implementing, and measuring realizable policies

that investigate the local-global performance tradeof(<;. Static groupings ought to be constructed to

accommodate the purging policy in addition to the anticipated reference tendencies of the virtual

machine.

8.3.5 Variable Buffer Size

A second variation in the LOOM simulator was the size of the disk buffer. As the disk buffer

increased in size. an equal amount of memory was removed from object space. Simulations for all

three reference traces and all core memory sizes were repeated for 10 additional disk buffer sizes

ranging from 2 to 32 disk pages (Figure 8-4). f-<:ach increase in buffer size corresponded to an equal

decrease in the amount of primary memory reserved for objects.

The expected improvement in paging performance occurred for a range of larger buffer sizes.

Performance declined when large buffers were coupled with small sizes of main memory. This

effect was also anticipated and is due to the reduction in main memory reserved for objects.

However, the computations were not lengthy enough to cause this phenomenon for any but the

smallest memory sizes. The relationship between the optimum buffer size and the amount of main

memory was not determined.

Page Faults

(DFS #1)

CHAfYfER 8. GROUPING AND LOOM

4f';:

\\
\, '.

~~:",\,

-----__ -.---_ -.-... ·4 pages
-..... -----=:::---.-~ 8 pages
32 pages ----::::; 16 pages

6tZ1~\ 90K

Core Size (words)

Figure 8-4 Effect of Disk Buffer Size
on Parachor Curves for LOOM

91

92 A LARGEOSJECf-ORIENTED VIRTUAL MEMORY

The number of page fault') dropped in most of these additional simulations. Paging perfonnance

typically improved as the buffer size increased. Larger buffcr sizes increased the average residence

time for pages in the buffer and transfonned many buffer misses into butTer hits. Smaller buffer

sizes naturally implied the opposite. For all simulations involving buffers smaller than the initial 8-

page buffer. paging perfonnance declined. In the first trace, for example, there were 4% to 52%

more page faults for buffers of size 2, 4, and 6. The magnitude of this decline increased slightly for

larger core sizes. When purging was occurring frequently, smaller buffers moderately impeded the

progress of the computation. However, for large memory sizes where purging was infrequent or

nonexistent, small buffers acted as a bottleneck that severely limited the throughput of objects.

Very large buffer sizes coupled with tiny core sizes were the second cause of paging perfonnance

reduction. By reducing the amount of core reserved for objects, larger bu ffers caused more object

purging, object faulting, and lambda resolution. All three actitivites in turn caused more page

references. Large buffers increased both the hit rate and the number of page references. The net

effect of these two conflicting tendencies depended upon the specific trace and the relative sizes of

core and buffer. Consider a fixed core size of 20K words. [n all three reference traces, the

minimum number of page faults was achieved at buffer sizes larger than the original value of eight

disk pages. As the buffer size increased, the number of page faults climbed and in two of the three

reference traces eventually surpassed the original level.

Varying the buffer size had only slight effects on both the utilization and cleanliness of pages. The

means, medians, and quartiles of these two distributions slowly climbed as the buffer size was

increased. Consider the simulations of the first refcrence trace that had a buffer size of two pages.

A verage page utilization varied· between 21% for a 20K. core and 29% for an 80 K core. When the

buffer was extended to 32 pages, the average utilizations ranged from 28% to 34%.

Although the emphasis in this analysis has heretofore been placed solely on paging, there are two

contributing factors that detennine the perfonnance characteristics of an object-swapping virtual

memory. There is the obviolls problem of page faults, which arise when a page reference is not

satisfied by the disk buffer. Object faults, dirty contractions, and lambda resolutions also contribute

to the total cost. At the very least, the computation at hand is momentarily suspended while the

request made by the virtual machine is satisfied. The disk buff~r is queried and data is eventually

swapped between the buffer and core. Many of these requests also cause one or more page faults~·

The weighted sum of the costs for the disk-buffer transactions and the buffer-core interactions must

be minimized subject to the constraint that the sum of the buffer and core sizes equals the available

amount of primary memory. Tiny butTers are not optimaL since the buffer hit rate rapidly declines

for small si~es. Choosing extremely large buffer sizes is also counterproductive, since it increases

the number of contractions and object faults and may cause thrashing on two levels.

The size of the disk buffer is characterized by decreasing returns to scale. Doubling the buffer size

from two to fOllr pages had a substantial impact on paging performance. A similar increment of

two pages from 10 to 12, or even a doubling from 16 to 32 pages, had a much smaller effect on the

Page Faults

(#2)

CHAPTER 8. GROUPING AND LOOM

1Ei~~

14K

12~~

l(H;;

:::~::

Ei~::

4t'::

2~:;

0

l1

Core Size (words)

Figure 8-5 Effect of Disk Buffer Purging Policy
on Parchor Curves for LOOM

93

94 A LARGE OBJECr-ORIENTED VIRTUAL MEMORY

number of page faults. Because the size of the disk buffer trades off against the amount of core

available for objects. larger buffers increase the number of object contractions. lambda resolutions.

and perhaps page faults. For any given core memory size. cost criteria, initial placement. and

expected set of reference tendencies, there is an optimum buffer size. The relationship between this

optimum buffer size and the amollnt of available primary memory cannot be gleaned from available

data, since the simulations represent only a handful of small core sizes. One expects the optimum

buffer size to increase for larger primary memories. Whether this growth rate is linear, sublinear,

nonexistent, or some combination of all three is currently an open question.

8.3.6 Effect of Disk Buffer Purging Policy

Another policy changed in the LOOM simulator was the purging scheme for the disk buffer.

Instead of a FIFO replacement scheme, an LRU purging algorithm was used. Simulations for the

random arrangement and one of the depth-first initial placements were repeated for all core sizes

and all three reference traces. The LRU scheme realized a small but consistent performance

improvement.

The LRU scheme outperformed the FIFO scheme for both initial placements and all core sizes

(Figure 8-5). For the depth-first grouping, this policy change realized a 3.8% to 6.1% reduction in

the number of page faults. Slightly smaller relative reductions, in the 2.5% to 4.4% range. were

realized when the random initial placement was used. Absolute reductions in the numb.er of page

faults were again comparable. with the depth-first reductions slightly smaller than those for the

random configuration. Modifying the buffer purging policy had only slight effects on the page

utilization and cleanliness distributions.

As in the simulations where the purging algorithm for object space was modified. the random initial

placement was less sensitive to this policy change than was the depth-first arrangement. These

result~ provide further evidence that as the grouping scheme becomes "better," the relative

beneficial effects of changes that involve grouping become larger.

8.3.7 In-Core Residence Times

Recall the clock associated with a virtual memory that was introduced during the presentation of the

reference trace compression algorithm in section 6.1.4. Time advances one tick for each field in

every object created dynamically or swapped into core. Define the in-core residence time (in-core

lifetime) of an object to be the number of ticks that occur from the time an object first appears in

core until it is purged. An object that is repeatedly faulted upon and subsequently flushed during a

computation has a number of in-core residence times. Distributions of in-core lifetimes were

graphed (Figure 8-6) in order to evaluate the validity of the purging assumptions made during the

design of the compression algorithm. Section 9.1 argues that such assumptions were justified.

Scatter diagrams plotting core entry and exit times for objects were created (Figure 8-7) in order to

determine the correlation between faulting and purging tendencies. These plots indicate the

presence of sets of objects that are· simultaneously faulted upon. While many of these sets are.

CHAPTER 8. GROUPING AND LOOM 95

20K Core

Percent of
In-Core Lifetimes

(#3)

60K Core

lOOK Core

30

5

o 40 80 120 160 200 240 280 320 360 400

5

o 4~1 80 12~1 160 2l~10 24~1 2::a~1 320 36~1· 4€H1
Lifetime Extent (lK ticks)

Figure 8-6 r n-Core Lifetimes

96

Exit Times

(In-core objects
at the end of
the computation)

A LARGE OBJECf-ORIENTED VIRTUAL MEMORY

Entry Times (20K core, trace # 2)

Figure 8-7 Object Entry and Exit Times

CHAPTER 8. GROUPING AND LOOM 97

purged at roughly the same time, there are sets whose members are purged at different times. For

these sets, static schemes cannot effectively group objects to accommodate both faulting and purging

tendencies.

The means, medians, and quartiles of the residence distributions generally increased as the size of

core grew larger. Residence data confirms the assumption that average objects remain in core for

longer periods of time in larger memories. [n almost all cases. the larger standard deviation value

for the residence distribution increased with core size. For small memories in which thrashing was

a problem, most residence times were similar because objects did not have a chance to distinguish

themselves. Larger core sizes provided enough time for frequently used objects to establish

themselves as such, which resulted in a spreading of the in-core residence time distribution. Less

purging and faulting occurred in larger memories, which in turn decreased the total number of ticks

that occurred during a given computation. With a smaller possible maximum, the observed

maximum of the residence distribution typically declined for larger core sizes.

Because the set of residence distributions was not weighted with respect to the core size of objects,

it was possible for the average residence time to exceed the size of primary memory. Such

anomalies were due to the fact that some small objects had large lifetimes and some large objects

had small lifetimes.

Scatter diagrams of object entry and exit times indicate that the faulting and purging tendencies

were not completely correlated. Part of this exit time differential may be attributed to the particular

purging scheme used. A substantial portion of the discrepancy is due to an inherent asymmetry

between faulting and purging (Le., between the first-use and last-use of objects). These results

indicate that objects may be statically grouped for either faulting or purging but not always for

both. Some swapping sets undoubtedly exist, in that many collections of objects are characterized

by similar times for first-use and last-use in most computations. On the other hand, there are sets

of objects that are simultaneously faulted upon yet have very different in-core residence time

profiles. Static grouping cannot achieve satisfactory paging performance for both faulting and

purging for these kinds of object collections. At most, one transfer direction may be effectively

accommodated in both object-swapping and page-swapping virtual memories. I f these first-use and

last-use relationships are not time invariant, then static groupings may not be able to efficiently

accommodate either direction of data transfer. One clear advantage LOOM has over a paged

virtual memory for these collections is that the static placement constraints are not necessarily the

dynamic constraints. Core utilization may be retained at an arbitrarily high level in LOOM. In a

paged virtual memory without copying, there are no dynamic choices to be made short of deciding

which full page to discard during a page fault. Another LOOM advantage is the delayed binding of

dynamically created objects to disk homes. [f most of the last-use discrepancy is due to the first

time new objects are purged, then LOOM has solved the problem by consecutively packing together

on the disk newly matured objects. Problems still remain if this packing is not suited for future

purging and/or faulting tendencies. While not proving the nonexistence of grouping techniques

98 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

that efficiently handle the bi-directional transfer of objects, the scatter diagrams of core entry and

exit times indicate that the search for such algorithms is likely to be difficult.

8.4 Analysis of Predictions

The paging performance predictions based on static analysis of the initial placements may now be

compared with the results for LOOM. Since the LOOM results were similar to the paged virtual

memory data, the same predictions were uphcld. Similar initial placements had similar paging

performance, while the random initial placement consistently underperformed all other static

arrangements. Retained fraction values for the optimal groupings predicted either the OOZE or the

depth-first initial placements to be the best realizable grouping strategy, depending on the reference

tracc. Breadth-first groupings were granted third place followed by the random initial placement.

These predictions were upheld in their entirety, except for the reversal of the first two categories of

grouping strategies in the third trace. The breadth-first groupings again improved their perfonnance

vis-a-vis the on-page pointer ratio predictions, but their upward performance climb was strongly

curtailed. Unlike the results for the paged virtual memory, there were no reversals in the LOOM

simulations. In a given trace, the distance between any two of the three band categories was

essentially independent· of the core size.

The location of the realizable groupings in the performance range defined by the optimal and

random initial placements indicate some success with static grouping. However, there is still room

for improvement. Unlike the paged virtual memory, in which the relative difference between band

groupings was dwarfed by the improvement over the random initial placement. the LOOM

simulation was much more sensitive to the particular grouping. Better groupings will have a much

larger performance impact on LOOM than on a paged virtual memory.

Since there was no body of empirical data for LOOM-like systems, a number of parameters and

policies were modified in order to determine the relative importance of grouping as well as its

effects on these changes. Page fault reduction ratios indicate that grouping reduced the number of

excess page faults by 18.1% to 63.6%, depending on the initial placement and the trace. Further

absolute reductions of up to 30% could be achieved by expanding the disk buffer at the expense of

having the buffer handle more page references. Changing the buffer purging policy netted about a

5% reduction in the number of page faults, while a modification of the core purging policy

produced mixed results.

Data from these simulations may be summarized by a few key points. First, a good grouping

algorithm can substantially affect the performance of any LOOM-like system. Other virtual

memory parameters and policies are of secondary importance. Secondly, modifications to these

parameters and policies will have larger relative improvements for better grouping strategies. Third.

these simulations have identified lambda resolution as a key problem deserving study. In order to

eliminate many page references and page faults. a good predictive algorithm needs to be found for

detennining the set of pointers to resolve immediately when an object is faulted upon. Finally.

these results have underscored the importance of endeavoring to establish a synergistic relationship

CHAPTER 8. GROUPING AND LOOM 99

between static grouping algorithms and the dynamic purging routine. (f no accommodating static

grouping can be found, then the purge algorithm ought to have the option of ignoring the initial

placement as it perfonns its task. Related to this interaction between purging and grouping is the

dynamic allocation and deallocation of new ohjects as well as their purging and placement. A brief

introduction to such topics in the context of initial placement stability is presented in Chapter 10.

100 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

9. LOOM Versus a Paged Virtual Memory

In addition to measuring the effect of static grouping in LOOM and a paged virtual memory, the

simulations and compression algorithm were designed to support a direct empirical comparison

between their paging perfonnances. Appendix C contains the relevant numerical details supporting

the following analysis.

Adjusunents to the core size of the LOOM simulation were made in order to account for the 2K

disk buffer and the object table (aT), which contains the starting addresses and other infonnation

of all in-core objects. The appropriate OT size was derived from the maximum number of in-core

objects when purging began in the LOOM simulations. A safety margin of 10% was added to the

table length, which ranged from 2.5K words (20K core) to 15.5K words (lOOK core). No

adjusunents were made for the paged virtual memory, since the memory requirements for page

tables and other associated information were small enough to be neglected.

A number of simplifications to the simulations avoided areas beyond the scope of this thesis and in

doing so may have given either type of virtual memory a slight advantage. For example, all

pointers in the paged virtual memory simulation were assumed to be direct, so that no indirection

table was required. However, the problem of handling the 'become:' operator was not solved. No

real management of secondary memory was done in either simulation. One disadvantage for the

paged virtual memory was the unavailability of dynamic copying schemes to compact working sets.

A fixed static allocation of new objects and the assumption of UIO reuse may have scattered the

working set over many pages. Leaf references, on the other hand, provided the LOOM simulation

with enough information to effectively manage primary memory. Since these right references were

at times neglected in the paged memory simulation, it gained a nontrivial advantage over LOOM.

Another s!mplification was the omission of the run-time stack. Because of pointer compression, the

LOOM simulation would have derived a small advantage from the inclusion of the stack. This

benefit would not have been significant. since it would have been proportional only to stack depth.

t\ direct comparison between the two types of virtual memories indicates that LOOM outperforms a

paged virtual memory for a range of small memory sizes. Such results were invariably obtained for

warm starts, cold starts, simulations that did reference counting, and those that did not [n addition

to the particular computation, the initial placement played an important role in detennining the

memory size interval for which LOOM outperformed the paged virtual memory. Since the length

of this interval varied inversely with the quality of the initial placement, the desirability of a

LOOM -like virtual memory will depend on the existence and stability of quality initial placements.

CHAPTER 9. LOOM VERSUS A PAGED VIRTUAL MEMORY 10l

The relative performance of LOOM is explained by examining its costs and benefits. LOOM

increases the apparent size of main memory by compressing pointers and swapping objects. Pointer

compression reduced memory requirements by one-third, while object swapping guaranteed a

complete utilization of primary memory. Since page fault curves typically contain a "knee," the

importance of this increase in the apparent size of memory decreases for core sizes large relative to

the computation.

LOOM's method of extending the apparent memory size incurs costs. Resolution of a lambda

requires an access to the disk representation of the object containing the lambda. Although lambda

resolution becomes less costly for larger core sizes (see section 9.3), it causes a small but not

insignificant fraction of the page faults. The other cost arises from the policy of swapping objects

instead of pages. When an object is faulted upon, the page containing the object is swapped into

the disk buffer if it is not already there. Only the required object is copied from the disk buffer

into core. References to objects on one page can therefore cause more than one LOOM page fault.

Purging objects on the same page can also cause more than one page fault. Page-swapping virtual

memories, on the other hand, prefetch information by bringing all objects on a page into core

whenever any object on that page is accessed. All objects on a single page are also purged

simultaneously. This advantage of page swapping is synergistic with good groupings of objects on

pages. Because the performance of LOOM is not as strongly dependent on the quality of the

grouping scheme, grouping schemes have a limited effect on the number of page faults in LOOM.

Although pages are physically swapped in both types of virtual memory, these two swapping

schemes are inherently different. LOOM's finite disk buffer size causes some page faults that are

not encountered by the paged virtual memory. If primary memory is large enough to accommodate

a computation without purging information, the paged virtual memory is optimal in that it causes

the smallest number of page faults. LOOM too can achieve this performance level for all disk

buffers larger than a certain size. Without a large enough buffer, however, the performance of

LOOM can be substantially worse, since references to objects on a single page can cause multiple

page faults.

[n >short, LOOM's benefits are important for primary memory sizes that are small relative to the size

of the computation. The overhead caused by· a finite buffer becomes criti.cal when the buffer is

small in absolute terms or in terms of the size of main memory. Since a small, fixed-size buffer was

employed in these experiment~, the overhead substantially degraded LOOM's performance for large

primary memory sizes.

9.1 Equivalence and the Compression Algorithm

[n order for the compression scheme to preserve weak equivalence between the full and compressed

reference traces, the virtual memory simulations had to guarantee that the minimum residence time

was lOK ticks. In the LOOM simulations for a 20K core, the first quartile for the in-core residence

time distributions varied between 10K and 12K ticks. For at least three-fourths of the times at

which an object appeared in core, this equivalence preservation criterion was met. In LOOM

102 A LARGE ORJECT-ORIENTED VIRTUAL MEMORY

simulations involving 40K core memories, the tirst quartile varied between 24K and 30K ticks,

which indicates that the number of violations was not significant for any memory size above 20K

words.

One insight that eliminates most of these possible violations is the fact that clocks for larger core

sizes nm slower than clocks corresponding to smaller core sizes. As long as no faulting anomalies

occur, larger core sizes purge and fault less often and thus their associated clocks tick slower. The

minimum requirement of 10K ticks referred to a clock associated with a 10K main memory.

However, the in-core residence times in question were obtained for a 20K core. For very small core

sizes in which a substantial amount of purging occurs, changing the core size has a nontrivial impact

on the virtual memory clock. Table 9.1 estimates the ratio of clock speeds by comparing maximum

in-core residence times. The top portion presents clock speed ratios for differences in core sizes of

20K, while the bottom half of the table presents ratios when the core size is halved. Conservative

extrapolations for the 20K to 10K clock rate ratio fall into the 1.3 to 1.5 range. Since the in-core

residence time distribution falls off rapidly as the abscissa approaches zero, even small clock rate

ratios will substantially reduce the number of possible violations. Most of the few remaining small

in-core residence times occurred during the first purge cycle.

Core sizes Trace # 1 Trace #2 Trace #3

120K v. lOOK * 1.00 1.01
lOOK v. 80K * 1.05 1.03
80K v. 60K 1.01 1.06 .1.08
60K v. 40K 1.04 1.17 1.15
40K v. 20K 1.30 1.36 1.39

l20K v. 60K * 1.11 1.13
80K v. 40K l.05 1.16 1.25
40K v. 20K 1.30 1.36 1.39

Table 9.1 Estimated Clock Speed Ratios

The paged virtual memory, which used an LRU purging scheme, guaranteed a minimum in-core

residence time equal to the size of core. However, the clock associated with a paged virtual

memory ran faster than a clock in an object-oriented virtual memory for two reasons. Exclusively

using 32-bit pointers caused a 50% expansion in the size of the computation. Secondly, every page

swapped into core contributed a number of ticks equal to the page size (256 words), regardless of

the size of the object that caused the page fault. Since core utilization ranged from 2/5· to 3/5,

there was another clock speed increase of 67% to 150%. In the worst case, the paged virtual

memory for a 10K core size ran nearly 4 times as fast as the corresponding clock in the compression

algorithm.

Page fault reductions for the 10K to 20K transitions for the paged virtual memory ranged from 9%

to 12% for the random initial placement and from 19% to 23% for the band arrangements. Optimal

groupings had changes in the interval from 37% to 45%. A clock slowdown factor of nearly two

occurred for the optimal arrangement in the 10K to 20K transition. Also offsetting the clock rate

increase was the fact that any reference to a page moved the page (and therefore all objects on that

CHAlyrER 9. LOOM VERSUS A P I\GFD VIRTUAL MEMOR Y 103

page) to the top of the LRU ordering. These actions, which would increase the duration of the in

core lifetime for all objcct~ on the page, made the core size a strict lower bound on all in-core

lifetimes.

Although equivalence may have been lost for simulations of very small core sizcs, comparisons

between all LOOM simulations and all paged virtual memory simulations are still valid. Each

computation was represcnted by a fixed, compressed reference trace. The only warning that must

be issued is that very small core sizes in both simulations may not accu rarely reflect the true

behavior of the Smalltalk-80 programming environment. However, since the quantity of possible

violations was low, the actual behavior was closely approximated by the simulations. Two

independent factors confirm this assumption. First, the paging behavior for small core sizes fits

naturally with the faulting rates for large core sizes, which' unquestionably represent the actual

behavior of Smalltalk-80. Secondly, most of the serious violations for LOOM occurred during the

first purge cycle, before an equilibrium between marked and unmarked objects had been achieved.

Wann-start simulations are described in section 9.4 and show that cold starts accurately described

paging behavior. Any violations that did occur had only a negligible impact on the overall level of

performance.

9.2 A Naive Comparison

The same partitioning of grouping strategies into distinct categories was seen 1I1 the paging

performance of both types of virtual memory. Except for the lack of reversals in LOOM and an

occasional swap of two adjacent categories, the performance rankings of static groupings were

independent of the virtual memory type. As was previously mentioned. the paged virtual memory

band was narrow, while the LOOM band was wider and closer to the performance of the random

initial placement.

. The virtual memory type with the better paging performance depended upon the reference trace,

the core size, and the specific grouping scheme (Figure 9-1). For all realizable grouping strategies,

LOOM dominated for some range of small core sizes. Pointer compression and a high utilization of

core allowed LOOM to perform rather well. while the low utilization of core and uncompressed

pointers caused the paging scheme to thrash. At a certain core size. depending on the reference

trace and the initial placement. the paging performances became similar. I.et the crossover point be

the core size at which the function representing the taulting rate for LOOM intersects from below

the corresponding function for the paged virtual memory. At all points less than the crossover. the

LOOM simulation had a better paging performance than the paged virtual memory. For all larger

core sizes, the paged virtual memory dominated as its faulting rate declined further. LOOM's

faulting rate decreased slowly and became constant at the relatively small core size for which no

purging occurred.

One cause of LOOM's poor performance for moderate and large core sizes was the fixed size of the

buffer. Many pages were faulted upon more than once in LOOM in order to satisfy faults on

different objects. In the paged virtual memory, when a page was brought into core for one object.

104 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

4f1K
38K
36K
34K
:32K
30K
2i:iK
261':;

Page Faults 241'::
221':;

(#3) 2~11'::

1 a 1'::
lE;K
141'::
121'::
1~1~:

:3~;:

6~;:

4K
2K

\'..
\.. ~andom

" .. (Paged)
... -.,.,'--....

\ \~~~~~~'-,,"'\
\~ -::... '. ..•. ~ .•.. \ \.

DF~~ '\.-._ \

(LOOM) \.\~ __ ~_~;;"-::::.~= _____
[) FS ---------___ ----------__ ~-----
(Paged) -------~ ___ ~-----

~:::1

l!1 60K

Core Size (words)

Figure 9-1 A Naive Comparison

CHAPTER 9. LOOM VERSUS A PAGED VlRTUAL MEMORY 105

all other objects on the page were automatically transferred into core. This set of objects remained

in core until the page was purged. LOOM also had to contend with the resolution of lambda

pointers, which caused additional references to the same page. The paged virtual memory naturally

outperformed LOOM when little or no purging occurred. Swapping a large working set into core

was a simple task for the paged virtual memory, since it was only a sequence of page transfers. In

dealing with object faults and lambda faults, however, the LOOM buffer became a bottleneck that

severely limited the throughput of needed objects and data.

Because the optimal initial placements caused little purging for even the smallest core sizes in the

paged virtual memory simulations, the LOOM simulation with the optimal grouping was

outperformed for all memory sizes. No crossover point existed. On the other hand, the LOOM

simulation with the random initial placement performed well for a wide spectrum of primary

memory sizes. The extremely low utilization of core by the paged virtual memory caused thrashing

for a large range of core sizes.

These uninterpreted faulting rates are potentially misleading for a number of reasons. First. the

simulations represent a cold start. Core memory is initially empty and is filled as the computation

proceeds. In the Smalltalk programming environment, there is never a cold start. The image of

core is loaded from a disk. file (by swapping pages!) when the user session begins. When the user

leaves the Smalltalk environment, the core image is saved by swapping pages to the disk. An
intervening user actions are supported by a warm system that is normally full of objects. Warm

start simulations were performed in order to determine the effect of cold and warm start<; in both

types of virtual memories. The analysis of these nms ~s presented in section 9.4.

Another note of caution in interpreting these paging results concerns storage management. Object

references in the compressed reference traces, which were inherently related to the computation,

were independent of the particular memory management scheme used. Leaf references, on the

other hand, represented the requirements of a reference counting policy used by any type of

memory. This factoring of requirements into computational needs and memory management needs

allowed comparisons to be made on simulations that included or neglected the leaf references. The

LOOM simulation was originally at a disadvantage, because it was required to process the leaf

references in order to perform the computation. Except for violations of the assumption concerning

clean leaves, storage management would have caused no additional page faults. By ignoring the leaf

references, the paged virtual memory simulation effectively did no memory management.

Additional simulations, in which the paged virtual memory treated leaf references as object

references or the LOOM simulation neglected leaves and leaf references, were performed. Section

9.3 contains the analysis of these runs.

Comparisons between LOOM and a paged virtual memory indicate that any type of grouping

scheme realized tremendous performance benefits for the latter. These gains were largely due to

the increase in core utilization. LOOM, which selectively allows objects into core, can perfonn

reasonably well in the face of a poor initial placement. If the quality of an initial placement is

106 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

time-variant and extremely volatile, then LOOM is successful. On the other hand, if initial

placements tend to behave consistently for all kinds of computations and do not decay after long

periods of usc and modification, then a definitive evaluation between the two types of virtual

memories requires a more extensive analysis and also depends on the existence or nonexistence of

better grouping schemes. Let the stability of an initial placement be the rate at which it deteriorates

and becomes obsolete. The relative success of a naive, paged virtual memory then depends on the

existence and stability of quality initial placements.

9.3 Leaf/No-Leaf Comparisons

[n order to determine the effect of leaf references on the two types of virtual memory, simulations

for two different initial placements, a random and a depth-first, were repeated for all three reference

traces. Call the two original simulations the initial simulations. The original LOOM simulation will

also be referred to as the leaf simulation, while the original paged virtual memory simulation will at

times be called the no-leaf simulation. For these extra runs, the no-leaf simulation for LOOM

neglected all leaf references, except for object contraction created no leaves, and never resolved any

lambdas. All pointers were assumed to be short and object fault~ were handled normally. On the

other hand, for these repeated runs, the leaf simulation for the paged virtual memory treated leaf

references as object references. This interpretation of the reference trace corresponds to a reference

counting scheme in which the reference count is kept with the object.

These additional sets of comparisons substantially improved the perfonnance of LOOM when

compared to the paged virtual memory. By equalizing the memory management duties, a more just

picture emerges. The main memory size intervals for which LOOM dominates were extended.

LOOM's relative improvements over the paged virtual memory for small core sizes also increased.

Requiring the paged virtual memory to treat leaf references as object references consistently led to

an increase in the number of page faults. For small core sizes (30K), the increases fell into the 22%

to 35% range. These increases peaked for moderate memory sizes and substantially declined for

larger core sizes. Maxima were attained for core sizes at the "knee" of the page fault function for

the no-leaf paged virtual memory. Larger core sizes handled the leaf references with only a small

perfonnance degradation. For very large core sizes in which purging did not occur, leaf references·

caused less than a 5% increase in the number of page faults. Most of the leaf references did not

cause additional page taults, because the objects to which they referred were already in core or

would soon be swapped into core.

Paging rates for the no-leaf LOOM simulation represent a lower bound on any lambda resolution

scheme that does not prefetch objects because this "policy" was better than the optimal lambda

resolution scheme. Page fault reductions of 20% to 34% and 15% to 32% occurred for the depth

first and random initial placements, respectively. Relative decreases in the number of page faults

were again larger for the depth-first initial placement, while absolute reductions were slightly larger

for the random initial placement.

CHAPTER 9. LOOM VERSUS A PAGED VIRTUAL MEMORY 107

Both relative and absolute page fault reductions typically decreased for larger core sizes. The

apparent size of core was larger because no leaves were created for leaf references. Because the

stope of the page fault function is not constant but decreasing, this apparent change in memory size

was more important for smaller core sizes in which thrashing occurred. Slightly larger memory sizes

caused substantially fewer page faults .

. The second link between core size and perfonnance improvement arose from the hit rate of page

references caused by lambda resolution. Call these values the lambda hit rales. As an

approximation to this value, consider the e~cess number of hits and misses generated by the leaf

simulation of LOOM as compared to the no-leaf simulation of LOOM. Table 9.2 presents the hit

rate of these additional page references.

Core Size 20K 40K 60K SOK lOOK 120K

OFSID #1 64.8% 64.9% 70.4% 78.0% * *
DFSID #2 67.5% 67.4% 72.6% 71.4% 70.5% 76.4%
DFSID #3 67.8% 70.5% 71.0% 72.1% 72.3% 77.7%

Hash #1 57.6% 58.6% 62.5% 72.6% * *
Hash #2 60.9% 61.1% 65.6% 63.7% 62.1% 68.2%
Hash #3 57.3% 61.5% 59.1% 62.7% 62.3% 66.7%

Table 9.2 Lambda Hit Rates

Between half and three-fourths of all references caused by lambda resolution were satisfied by the

disk buffer and did not cause page faults. This lambda hit rate was much higher than the hit rate

for the no-leaf simulation or the composite hit rate for the initial simulation. Depth-first lambda hit

rates were larger than those for the random initial placement. A higher utilization of the disk

buffer, longer residence times for disk pages, and a larger on-page pointer ratio accounted for these

differences. Larger core sizes. which caused less purging and faulting, meant that fewer page

references were generated. This reduction caused pages to remain in the disk buffer longer and

increased the lambda hit rate. Hence the page fault reductions in the no-leaf simulations were

generally smaller for larger core sizes.

Neglecting leaf references had a small effect on both page utilization and page cleanliness in the

LOOM simulations. Because no lambdas were resolved, a higher fraction of page references were

due to the contraction of dirty objects. Page utilization declined in the no-leaf simulation for two

reasons. First, the page utilization was smaller for purging than for faulting, and the lack of lambda

resolutions increased the relative amount of purging versus faulting. Secondly, some resolved

lambdas in the initial simulation referenced an object on the same pagc. [f this page were missing

from the buffer, then resolving the lambda would have referenccd two objects on the same page.

[n the no-leaf simulation, however, only the referenced object, and not the object containing the

lambda pointer, would be accessed. Since for even the depth-first groupings the on-page pointer

ratio was exceedingly low, this effect was negligible.

Comparisons between the two leaf simulations or the two no-leaf simulati()ns, as opposed to the two

initial simulations, improved the performance of LOOM with respect to the paged virtual memory

108 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

2f1~~

1i3K

16t-::

14~;:

Page Faults 12K
(DFS #2)

10t-::

:::t-::

6K

4~;:

2t-::

~1

0 12~1t-:: 15~1~;:

Core Size (words)

Figure 9-2 A Leaf/No-LeafComparison

CHAPTER 9. LOOM VERSUS A PAGED VIRTUAL MEMORY 109

(Figure 9-2). In general. the leaf and no-leaf crossover points were closer to each other than either

was to the original crossover point. These results indicate that the original comparison severely

penalized LOOM by not requiring the paged virtual memory to reclaim free storagc. Substantial

shifts in the crossover point occurred when the reference counting policy was uniformly included or

neglected in the simulations.

9.4 \Varm-Start Comparisons

There are three extremes to consider in comparing virtual memory performance: an empty memory,

a memory full of irrelevant objects, and a memory full of useful objects. Except for purging. a

memory full of irrelevant objects is similar to an empty one. Cold starts provide information on the

first scenario, while warm starts with very large core sizes yiel~ data for the third. Warm starts with

tiny core sizes represent a mixture of both useful and useless objects.

Wann-start simulations were done for the random configuration and one depth-first initial

placement for all three reference traces. Memory was filled by running a cold-start simulation on

the last half the reference trace. All event counts were set to zero and the virtual memory

simulators then processed the entire reference trace in the normal direction.

Becausc our definition of page faults only counts the number of pages swapped from disk to core

and not vice versa. the wann starts for the paged virtual memory always outperformed the

corresponding cold starts. For extremely small core sizes, however, the LOOM warm starts caused

more page faults than the corresponding cold starts. Nevertheless, warm starts for LOOM

outperformed cold starts for moderate and large sizes of primary memory. Warm starts did not

shift the crossover point consistently in either' direction.

All wann-start simulations of the paged virtual memory outperformed the corresponding cold-start.

The definition of a page fault for the paged virtual memory guaranteed that the warm start would

I;>e no worse. Whenever a page reference was not satisfied by the set of in-core pages, the simulator

would discard the least recently used page and fetch the required page. There was exactly one page

'fault. regardless of whether the discarded page was clean, dirty, or unused. The set of in-core pages

remaining from the warm start could therefore be viewed as empty or valid, if a page needed to be

discarded or a reference needed to be satisfied. respectively. Typical page fault reduction ranges

were 3.4% to 6.9% (30K). 11.8% to 41.0% (120K), and 30.0% to 70.2% (240K). Relative perfonnance

improvements generally increased with core size for the obvious reasons. While the relative

performance improvements were typically larger for the depth-first initial placement. the absolute

improvements in paging perfonnance were larger for the random grouping. In fact. for very large

core sizes. the warm-start random configuration outperformed the warm-start depth-first

arrangement. This anomaly was due to the much larger set of pages of the random initial

placement that was accessed during the wanning phase. Many untouched objects located on these

pages were later used in the simulation of the full reference trace.

110 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

In the wann-start LOOM simulations, the change in paging performance depended on core size and

the particular reference trace. Consider the first and third compressed reference traces. For small

core sizes, wann starts caused more page faults than cold starts. This perfonnance degradation,

which was less than 6%, was due to additional purging. The contraction of dirty objects that were

swapped into primary memory during the wamling phase caused additional page references. In aU

three reference traces, the relative paging perf o ffila nce improved as the size of core was increased,

because a larger fraction of the in-core objects was not purged. For a core size of 60K, the

reduction in page faults was 4.1% to 15.9%. [f the core size were large enough to prevent purging.

then the interval of performance improvements jumped to 48.9% to 84.9%. Unlike the paged virtual

memory simulation, no warm start for the random initial placement ever outperformed the

corresponding depth-first warm start. Except for the disk buffer, the initial contents of primary

memory were independent of the particular grouping involved. Neither of the two groupings

dominated in the relative perfonnance improvement category, although the random initial

placement for the most part had the larger absolute reduction in the number of page faults. The

important factor in deciding the level of performance improvement was core size, which determined

the amount of useful data already in hand.

In three of the six comparisons between warm and cold crossover points, the warm start was

preferred by LOOM. Two of the remaining comparisons yielded close crossover points and

indicated that a cold start bettered the relative performance of LOOM. The wann-start simulation

of the second reference trace involving the depth-first initial placement had no crossover point.

This small data set indicates that the preferential start for LOOM is not known a priori. Instead,

the particular reference trace, range of core sizes, and initial contents of the two core memories

determine whether LOOM benefits more from a cold or warm start.

Warm-start faulting rates for the LOOM simulation declined so rapidly that a second crossover

point occurred in the graphs for the second and third reference traces for the depth-first initial

placement (Figure 9-3). Another such point nearly occurred for the first reference trace. These

crossover points are the duals of the points that correspond to small core sizes, because at these

points the page fault function for LOOM intcrsecl~ the other curve from above. There is a range of

smaller core sizes for which the paged virtual memory outperformed LOOM and a range of larger

core sizes for which the opposite occurred. LOOM was able to outperform the paged virtual

memory because of its roughly 100% utilization of core. No unneeded objects were ever swapped

into core by LOOM. U nlcss a perfect static grouping can be found that is not time-variant, the

paged virtual memory will always swap unnecessary objects into core. Let u be the apparent usage

of core by the paged virtual memory, where usage is defined to be the ratio of the total size of all

referenced, in-core objects to the size of primary memory. Then the actual utilization of core (as

measured by short pointers) will be ulc, where c is the average compression ratio of disk size to

core size. Therefore, for any grouping strategy, the utilization of core by LOOM will always be

greater than the corresponding utilization by the paged virtual memory.

CHAPTER 9. LOOM VERSUS A PAGED VIRTUAL MEMOR Y III

Page Faults

(DFS #1)

8K

2K

\,
\~\

P d·,,~

age \:---· ... yaged (cold)
(wann) ,\

...... : •......
-'. ,

.......• : .•.. , ..
::::;~~~...... LOOM (wann)

'~-1-:::::____ LOOM (cold)
' .. "- '.~. --------.......... ~

~-....-,=:,-.-.. ... ,,--=--..... -:: .. :::..., ... =~~;;;;:;:
o ~~H1f';: 120~::

Core Size (words)

Figure 9-3 A Warm/Cold Comparison

112 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

Between the two crossover points was a wide range of core sizes for which the benefits of a wann

start did not allow LOOM to overtake the performance of the paged virtual memory. However,

I,OOM was processing leaf references while the paged virtual memory was not.

Warm starts had opposite effects on the average page utilization and cleanliness values. Partially

full memories meant that either fewer objects were faulted on, more objects were purged. or both.

These tendencies increased the relative importance of purging over faulting and accounted for the

increase in dirty pages as well as the general decrease in disk page utilization. Page utilization

increases were seen, however. in 4 of the 6 simulations in which no purging occurred.

9.5 A Note Concerning Page Faults

Although a consistent definition of a page fault applied to both types of virtual memory simulations.

the LOOM scheme encountered an inherent penalty. A page fault was defined as the physical

swapping of a disk page from disk to core. Regardless of whether the displaced page was clean,

dirty, or empty, only one fault occurred. Therefore, every reference not satisfied by the contents of

core in the paged virtual memory caused exactly one page fault In LOOM, on the other hand, an

object fault may have caused more than one page fault. [f core were full, then purging had to

occur. Dirty object contractions caused page faults if the generated page references were not

satisfied by the disk buffer. After enough purging had been accomplished. if the page containing

the object were not in the disk buffer, then another page fault occurred.

9.6 Extending These Results

One shortcoming of the analysis between the two types of virtual memory is the restriction on

computation length and the size of the set of accessed objects enforced by a virtual machine

emulator that executed bytecodes 1000 times as slow as the actual Smalltalk-80 interpreter. The

important question is whether these results will scale to lengthy computations involving more objects

in larger systems.

Each crossover point may be associated with a measure relating the size of the computation to the

available amount of core memory. For a given computation c, let M be the smallest size of core

memory for which a LOOM system would never purge an object. Let m be the crossover point.

Define the crossover size ratio to be M/m. Tables 9.3 and 9.4 present the crossover size ratios for

selected simulations involving a depth-first grouping. assuming a linear interpolation between

empirically measured page fault rates for the LOOM virtual memory.

These ratios highlight the importance of uniformly processing or neglecting leaf references. For

example, when LOOM used leaf references but the paged virtual memory neglected them, the well

defined crossover ratios varied from 2.3 to 5.3. One such ratio did not exist. When the leaf

references were treated uniformly by both types of simulations, the crossover size ratios were all

de tined and fell into the 1.6 to 2.9 range.

CHAPTER 9. LOOM VERSUS A PAGED VIRTUAL MEMORY 113

Trace LOOM Paged Virtual Memory Initial Crossover
Number Leaf Watm Start Leaf Warm Start Placement Size Ratio

#1 Yes No Yes No DFSID 1.59
#2 Yes No Yes No DFSID 2.71
#3 Yes No Yes No DFS[O 2.11

#1 No No No No DFSIO 1.64
#2 No No No No OFSID 2.71
#3 No No No No DFSID l.99

#1 No Yes No Yes DFSIO 1.74
#2 No Yes No Yes DFSID 2.90
#3 No Yes No Yes DFSIO 2.16

Table 9.3 Leaf/N 0-Leaf Comparisons

Trace LOOM Paged Virtual Memory Initial Crossover
Number Leaf Warm Start Leaf Warm Start Placement Size Ratio

#1 Yes Yes No Yes DFSIO 2.57
#2 Yes Yes No Yes OFS[O none
#3 Yes Yes No Yes OFS[O 3.00

#1 Yes No No No DFSIO 2.31
#2 Yes No No No DFSIO 5.34
#3 Yes No No No DFSID 2.80

Table 9.4 Initial Comparisons

These crossover size ratios .correspond to one of the best realizable grouping schemes employed in

this study. For other less successful arrangements, such as the random initial placement, the ratios

would be much lower since the LOOM simulation outperformed the paged virtual memory for a

wider spectrum of core sizes. As the initial placement becomes worse, the crossover point shifts to

larger core sizes, the crossover size ratio falls, and LOOM becomes more attractive. This

degradation in the arrangement may also arise from the effects of normal usage. References are

copied and updated, new objects are created, and old objects eventually become inaccessible and

disappear. Unless efficient and effective dynamic grouping strategies can be found that place new

objects and move old objects, the attractiveness of any static grouping will decline. The rate of the

decline, the costs of dynamic grouping, and the type of virtual memory will determine the

appropriate average usage time before another static regrouping is necessary.

LOO M represents an object-oriented virtual memory with 16-bit in-core pointers. The simulation of

the conventional virtual memory swaps pages and uses 32-bit references. A virtual memory

containing aspects of both is an object-oriented virtual memory which does not compress pointers.

While this virtual memory was not explicitly simulated, we can estimate its performance by noting

that pointer compression reduced the total span of a computation by about one-third. This fact

may be obtained by finding the ratio of the smallest main memory sizes for which the paged virtual

memory with an optimal arrangement and the LOOM simulation with any arrangement did no

purging. The utilization of core is 100% in both cases. Neglecting the presence of leaves, this ratio

is the average compression of objects and was roughly 1.5 for all three compressed traces. Since all

pointers are always resolved, there no page faults due to lambda resolution. If the quantity of

114 A LARGEOBJECf-ORIENTED VIRTUAL MEMORY

leaves is negligible, results from the LOOM simulation may be transtormed into the results of a 32-

bit, object-oriented virtual memory by multiplying the core size by 1.5 and removing the number of

page faults due to lambda resolution. Comparison of the derived results for this hypothetical virtual

memory indicate that pointer compression does not substantially affect the paging performance for

LOOM. The validity of these results. which are based upon the estimate of the disk buffer hit rate

for resolving lambdas derived from the no-leaf simulations, depend on the accuracy of two

simplifications. First, the LOOM simulation did not explicitly maintain the contents of the fields of

objects. [t used a simple algorithm to decide whether a pointer was a lambda. The accuracy of this

model is not known. Second, a naive lambda resolution scheme was employed in the simulator.

Other algorithms that can substantially reduce the number of lambdas encountered by the virtual

machine may exist. While our judgment of pointer compression remains inconclusive, these results

indicate the need for serious study of the tradeoffs involved.

Let the span of a computation be the set of both existing and dynamically created objects used in a

computation. Two important factors concerning spans need to be addressed before these empirical

results can be applied to lengthy user sessions involving computations that use large portions of the

set of objects comprising the programming environment. First, the distributions of span size,

turnover rate, and degree of commonality must be determined. The effects of system evolution on

these distributions must also be considered.

Rough estimates of the span size may be obtained from the initial set of monitored computations

that provided data for the detailed analysis of reference behavior presented in Chapter 4.

Neglecting the display bitmap and the run-time stack, the computations involved sets of objects that

would fit into 20K words of object space. Rough estimates of similarities between computational

spans may be garnered from comparisons between warm and cold-start LOOM simulations. Very

small core sizes (20K) initially contained some or all of the span that was in core at the end of the

warming phase. During the actual simulation following the warming process, some of the in-core

objects were used before being purged. Other irrelevant objects were purged without being

referenced. The ratio of the sizes of these two sets of objects, as well as the relative costs of

fetching and purging objects, dctermined the differential in page faults between a wann and a cold

start. Since warm starts caused both increases and decreases in the number of page faults, one

immediate conclusion is that the degree of commonality between two spans depends upon the

corresponding computations. Some context shifts will cause little purging and faulting while others

will cause moderate amounts of both. Except for the compressed traces, which attempted to change

contexts with unnatural haste, no infonnation is currently available regarding span turnover rates in

such interactive, display-oriented programming environments. Work needs to be done in this area

before an informed evaluation of LOOM can be made.

Two modes of system evolution will also impact the reference behavior of such an object-oriented

environment. First of all. Smalltalk is a programming environment that has undergone substantial

modification since its inception as Smal1talk-72 [SHOe]. Changes will undoubtedly occur for the

forcseeable future, not only by the implementors. but also by the users. Except for the virtual

CHAPTER 9. LOOM VERSUS A PAGED VIRTUAL MEMORY 115

machine, the entire Smalltalk programming environment is under the immediate control of the user.

Both ofticial releases and private systems will evolve with time, meaning that typical user sessions

and computations will vary.

The reference behavior of any such system is also dictated by the performance constraints imposed

by the hardware, microcode, and software implementing the underlying virtual machine and the

top-level system. Perfonnance considerations typically affect the data structures and algorithms

chosen to implement a desired feature. Users of the system are constrained not only by the set of

existing and constructible tools and properties but also by the feasibility of implementing and

running new applications. While larger sizes of primary memory may initially favor a paging

scheme by moving the operating region to the right beyond the crossover point, span sizes may

drastically increase as larger and more ambitious subsystems evolve. Computations requiring a

profusion of intermediate data structures, heavily-accessed personal databases, and large-scale,

detailed simulations may become feasible and thus arise in such a memory-rich computing

environment. Such applications would shift the operating point to the left and favor a LOOM-like

system. Other computations, which were feasible in smaller memory configurations, will continue to

be used and will restrict this movement. What is important is the composite effect of system

evolution, new applications, and core memory enlargements. Knowledge concerning the

dependence of span size on total system size and/or core memory size is required before this net

effect can be estimated and the appropriate type of virtual memory ascertained.

9.7 An Evaluation of LOOM

Long-term changes in the size of the entire system and individual spans, as well as the short-term

fluctuations in computation size and span turnover, will tend to shift the crossover size ratio of the

programming environment. The "better" virtual memory depends upon the location and movement

of this ratio in addition to the particular cost function of the client.

There are costs to a LOOM system besides paging perfonnance that must be considered. LOOM is

a complex system that is much more difficult to fully design, implement, debug, maintain, and

modify than a conventional paging scheme. Secondly, much of the computational overhead of a

paged virtual memory can be eliminated via hardware assists and/or caching techniques that are

readily supported by current machine architectures. Many facets of l.OOM, such as lambda

resolution. the maintenance of up to three reference counts for each object, and the fact that

variable-length sequences of information instead of fixed-length blocks are the units of swapping,

require nontrivial algorithms. This complexity will be evident in the additional time, hardware,

and/or software required to satisfy requests made to the virtual memory manager. Finally, the

assumption that all leaves were clean is not true. Only experience with LOOM will provide the

pertinent statistics.

Balancing these cost<; are the obvious LOOM benefits of a high core utilization, pointer

compression, and a relative invariance to the degradation of spatial locality. There are also a

number of possible improvements to LOOM and the static grouping algorithm in usc.

116 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

Grouping strategies may be enhanced by treating code objects in a special manner. The current

grouping schemes did not special-case CompilcdMethods and were probably penalized. Once a

Smalltalk type system become~ reality. such grouping methods will be feasible and should yield

substantial improvements in paging performance for LOOM. Packing together code objects without

large literals intervening (as was naively done in the OOZE and breadth-first initial placements)

should realize gains. lntensive code-grouping efforts will also improve the performance of the

paged virtual memory. However. incomplete utilization of CompiledMethods, in addition to

primitives handled by the microcode, will limit the reduction in page faults for the paged virtual

memory. Open questions include the worth of cleanliness grouping as well as hybrid graph

theoretic schemes that traverse the subtree corresponding to a node in a manner depending on the

state of the node and its class.

There are a number of possible improvements to LOOM. For example, empirical results in section

8.3.6 have shown that an LRU ordering in the disk buffer outperformed a FIFO purging scheme.

Various lambda-resolution and even object-prefetching schemes need to be implemented and

evaluated. Purging policies. such as those that distinguish clean from dirty or young from old

objects. also require investigation. Finally, a virtual memory environment such as LOOM, which

maintains a strict disk-core separation, may also be used to explore dynamic grouping schemes that

place and purge objects related by creation time and/or connectivity.

There is no doubt that LOOM will be an excellent testbed for virtual memory research. Empirical

evidence has shown that LOOM will substantially outperform a conventional paged virtual memory

for poorly organized initial placements and for memory sizes well below the knee of the page fault

function. Small reference counts and similar object usage pa~terns in wildly different computations

have indicated that useful static groupings are efficiently constructed by simple algorithms. [n

addition, the possibility of dynamic grouping, either by real-time copying [BA KE) or swapping

mini-pages [BAER76], the relative ease of implementing a paged virtual memory, and the absence

of huge performance gains for moderate and large memory sizes dictate against LOOM.

In addition to primary memory sizes that are small relative to the expected computations and

unstable initial placement'), two other scenarios strongly favor LOOM. First, some machine

architectures "require" short pointers for acceptable performance. Memory and cache word size,

register length, and bus and data path widths all constrain the maximum pointer size that the virtual

machine can efficiently handle on every object reference. LOOM guarantees that all references seen

by the virtual machine are short regardless of the total number of objects in the system. The

problem of maintaining a compact representation for the set of name-location pairs for recently used

objects is solved by LOOM's two separate name spaces. Short of paging an object table (OT) that

encompasses the entire system, the corresponding requirement for the paged virtual memory has not

been adequately addressed nor analyzed. The time and space overhead of any such scheme will

enhance the relative performance of LOOM. This enhancement could be substantial if references to

the OT show little spatial locality. Secondly, in relational data base systems and other applications

where relationships are indirect and not by pointers, reference counts and pointers are meaningless

CHAPTER 9. LOOM VERSUS A PAGED VIRTUAL MEMORY 117

because objects can never become inaccessible and the boolean connectivity of the data docs not

constrain the motion of queries in data space. If high quality initial placements that are

independent of queries cannot be found, then any static arrangement will be comparable with the

random initial placement lIsed in the simulations and a LOOM-like system will be preferable.

l18 A LARGE OSJEC[-ORIENTED VIRTUAL MEMOR Y

10. Dynamic Characteristics and Degradation of Initial Placements

t 0.1 Introduction

A tinal set of measurements were made using the Smalltalk-80 emulator in order to determine the

relative amount of time computations spend updating the structure of objects grouped into some

initial placement. Besides indicating the level of degradation of the initial placement in a short

computation, this data may be used to evaluate and design memory management policies for

dynamically created objects, since temporary structures cause most of the memory management

workload. These studies concentrated on memory allocation and reclamation, object lifetimes, and

dynamic pointer distances. Data from which the following discussion draws may be found in

Appendix D.

Unlike all preceding monitored simulations, the nm-time stack was included in this analysis. The

contexts comprising the stack are ordinary Smalltalk objects whose behavior accounts for much of

the dynamic characteristics of the system. Requests for new objects were explicitly caught and

processed, while object destructions were noticed by checking the reference count of an object

whenever a pointer to it was clobbered. Except for initializing the pointer fields of a new object to

nil, all pointer field updates were tallied and processed. On the other hand, the act of reading and

following a pointer value was neglected by the statistical package.

Five distinct computations were monitored, including sending an error message, displaying text in a

window on the screen, determining the set of classes prepared to accept a specific message selector.

compiling a method, and opening a browser. Since opening a browser required an enormous

number of bytecodes, that sequence was arbitrarily halted. All other computations were run to

completion.

Simple counts of events indicate that most of the effects of the computation were transient and did

not substantially restructure the graph of existing objects. This fact highlights the futility of

investigating initial placement stability via detailed simulations. [n order to have even a small effect

on the set of objects in secondary storage, an actual running system or a high-level simulator must

be employed. Nevertheless, a number of interesting observations were made concerning detailed

aspects of object lifetimes and characteristics of new pointers.

The total number of store operations was slightly ·larger than the number of bytecodes executed~

On the average. one pointer was updated for every bytecode interpreted by the virtual machine.

Although thousands of object instances were created. few remained at the end of the computation.

A small number of old objects that had existed before the computation began also perished.

CHAPTER 10. DYNAM[C CHARACTERISTICS AND DEGRADAT[ON 119

10.2 Stack-like Allocation and Oeallocation

One view of the behavior of dynamically created objects is that their existence is stack-like.

According to this model. given a set of objects used by some computation, the object in that set that

is the most likely to perish is. the youngest. While this view was not entirely validated, the lifetime

behavior of most objects seemed to follow a stack-like discipline. !\ related question suggested by

the analysis is the correlation between the deallocation of a stack frame and the deallocation of

objects created in that stack frame.

!\ stack of existing dynamically created objects was maintained to determine the validity of this

model. Newly created objects were pushed onto this stack while freed objects were removed. If the

destroyed object was not at the top of the stack, then nothing else occurred. Otherwise. the stack

was repeatedly popped until its top again referred to an' existing object.

[n general, . the maximum stack length for a trace was only slightly longer than the stack size at the

end of the computation. Most of the stack was empty, since the number of existing objects was

much less than the stack length. A small number of objects violated the assumption of stack-like

lifetimes and caused these conditions. Without compaction, the stack size grew as the computation

proceeded and would tend to grow without bound for arbitrarily long computations.

To remedy this situation, compaction was assumed to be performed continuously. When an object

was deallocated, its distance from the top of the stack was recorded. Call this offset the long

deallocalion distance. This object was removed from the stack and all younger objects were moved

one slot to fill the gap. !\ perfect stack-like behavior would cause only zeros to be recorded and no

movement of younger objects. Although some empirical distances were nonzero, the third quartiles

and means of the long deallocation distance distribution were either zero or one. The durations of

most objects followed a stack discipline.

All objects involved in the computation that were not created dynamically were assumed to be

pennanent or old. Whenever a permanent object is given a reference to a new object, there is a

high probability that the death of the new object and all its descendants will seriously violate the

stack ordering. To account for this likelihood, whenever a reference to a new object was given to

an old object, the new object and any of its' descendants that were new were removed from the

stack and became old. Again, younger objects moved as many stack slots as necessary in 'order to

eliminate the resulting empty spaces. The obvious parallel in an actual implementation would be

the copying of the entire new structure from new space to old space. [n this scenario. the stack only

contains references to new objects that are not referenced directly nor indirectly by old objects.

Pointers are unconstrained in either space and pointers may go from new space to old space but not

vice versa. When an object in new space perishes. call Its offset from the top of the stack its short

deallocation distance. For each trace. the long and short deallocation distance distributions were

quite similar. Removing these objects from the stack had only a negligible effect on the quartiles.

means, and medians of the deallocation distance functions. In two cases, however, the maximum

deallocation distance was drastically reduced.

120 A LARGE OBJECr-ORIENTED VIRTUAL MEMORY

At the end of each computation, less than 2% of all dynamically created objects still existed.

However, at least 75% of the words copied from new space to old space still belonged to existing

objects. Most of the copying was not done in vain. Except for the fifth trace, which represented an

uncompleted computation, at least 90% of the remaining new objects were automatically transferred

to old space by the aforementioned algorithm. This simple predictive mechanism had a high degree

of accuracy and may thus be profitably used in memory management schemes that distinguish

between new space and old space.

10.3 Object Lifetime

Consider a clock associated with the Smalltalk virtual machine that ticks once for each (extended)

bytecode executed. Assume a new object A is created at time tc and becomes inaccessible at time

td' Define the lifetime of A to be td-tc If a computation c spans at least the period from tc to td'

then A is a transient object in computation c. Logging allocation requests and carefully monitoring

reference counts allowed lifetimes for all transient objects to be detennined. Lifetime distributions

for the computation sequences were highly skewed and had medians in the range from 13 to 30 and

means in the interval from 264 to 696 (Figure 10-1). tv1cans much larger than even the third

quartile were the result of both long-lived stack frames and objects, as well as local objects passed

by result up the can stack. These results are not surprising since a majority of objects had stack-like

lifetimes. Batson and Brundage [BATS77] reported similar findings of skewed lifetime distributions

for arrays and contours (stack frames) in an empirical study of Algol programs.

10.4 Dynamic Pointer Distance

Associated with each new object is its time of creation. Let the creation time for all pennanent

objects be minus infinity. For two objects A and B with respective creation times ta and tb' assume

A contains a non-immediate reference to B. Hence B is not a SmallInteger nor the "nil" object.

Let the dynamic distance of this pointer from A to B be ta -tb' Note that positive distances point

backward in time while negative distances point forward in time. If B is old and A is not, then the

distance is plus infinity. If A is old and 13 is not, the distance is minus infinity. If both are new,

the distance is detennined by ordinary subtraction. Otherwise, both objects are old and the distance

is undefined.

Based upon the nature of the CONS operation and the infrequent use of RPLACA and RPLACD

operators, researchers in Lisp systems have predicted that most dynamic pointer distances will be

positive [LlEB]. That is, most references will be from a list cell to an older list cell. These

assumptions are not directly applicable to Smalltalk because of the high use of primitives and

CompiledMethods that update old pointer fields and the fact that stack frames are ordinary objects.

The dynamic distance of the new reference in each store operation was recorded for the five

monitored computation sequences. Not surprisingly, the bulk of the store operations updated new

objects. However, slightly more than half of these pointers that were non-immediate referred to

permanent objects. Call these operations new-old stores. Every MethodContext frame on the stack

CHAPTER 10. DYNAMIC CHARACTERISTICS AND DEGRADATrON 121

Percent of
Transient Objecl<; V:l

(# 3)

'::,J 15 63 255 1K 4K 16K 64K
Bytecodes Executed

Figure 10-1 Transient Object, Lifetimes

Percent of
Finite Positive' 1l:1

Pointers

(#2)

1563 255 1K 4K 16K 64K
Bytecodes Executed

Figure 10-2 Dynamic Positive Pointer Distance

Percent of
Finite Negative

Pointers

(# 1)

2tt

1tt

-:: . . _' 15 E;3 255 1~;: 4K 1Ei~\ Ei4~::

Bytecodes Executed

Figure 10-3 Dynamic Negative Pointer Distance

122 A LARGE OBJECf-ORIENTED VIRTUAL MEMORY

referred to an existing CompiledMethod and hence code references contributed a substantial

number of new-old stores. All global variables, method literals. and classes were old and caused

additional new-old references. These pointers were primarily used in a read-only mode, since very

few old objects were ever updated or destroyed. The small number of store operations that created

links from permanent objects to new structures severely limited the required amount of copying

from new space to old space.

Self-reference, which arose when a pointer to the current stack frame was pushed on the stack.

caused a few references to have a dynamic distance of zero. Since stack frames were necessarily

created before local objects were defined, creating a new object and pushing it on the stack usually

resulted in a reference with a small but negative dynamic distance. On the other hand, all message

arguments were necessarily created before the corresponding stack frame was activated. Pushing an

argument onto the stack usually resulted in a small but positive dynamic distance. This positive

distance would tend to balance the small negative distance recorded when the same argument was

first pushed on the stack in the calling environment. Unlike a Lisp-like system, where one exper~~

almost all references to point backwards in time, references in new Smalltalk objects pointed

forward in time quite often. For example, the ratio of tinite positive pointers to finite negative

pointers ranged from l.59 to 6.85. Pointers from new space to old space have a positive infinite

distance. When these infinite pointers are also considered, the interval ranged from 4.40 to 17.47.

These ratios indicate that pointers forward in time may be common but in general are exceptions

rather than the rule.

While most statistics for negative pointer distances were smaller than their positive counterparts, all

pointer distance distributions were skewed (Figures 10-2. and 10-3). In 9 of 10 cases, for example.

the mean distance was far larger than the median. Mean positive pointer distances were in the

interval from 1832 to 10,417, while negative pointers had mean distances from -599 to -3897.

Median pointer distances were much smaller in magnitude and fell into the ranges from 8 to 375

and from -2 to -12.

10.5 Degradation of an Initial Placement

The preceding analysis indicates that efforts at improving algorithms that manage primary memory

ought to concentrate on the set of newly created objects and operations contained within this set. A:

simple transport rule, which copies objects from new space to old space, filters out a significant

portion of the long-lived objects. A conventional mark and sweep garbage collector in new space

would perform well at the end of a computation, because few accessible objects would remain in

new space. One penalty, however, is the initial requirement of enough free space to allow the."

computation to run to completion without reclaiming core. A second consideration is the overhead

of checking for old-new pointers.

White emphasizing the asymmetry in the update frequency of new and old objects, the speed

limitations of the Smalltalk emulator prohibited a full investigation into the rate at which an initia~,

placement degrades with usage. There are two key methods by which an initial placement will

CHAPTER 10. DYNAMIC CHARACTERISTICS AND DEGRADATION 123

evolve over time. First. old objects arc updated and destroyed at a relatively slow ratc. This

process corresponds to a gradual modification of the underlying graph structure and the elimination

of unconnectcd components. A second aspcct of this modification is the introduction of new

permanent objects that were dynamically created, matured, and f()rced to the disk.

Snapshots of an in-core version of Smalltalk were made once evcry four hours over a twelve-hour

usage span. Sessions involving the implementation, debugging, and usage of the software package

that tallied and processed the dynamic events reported in this chapter comprised the bulk of the

usage. A depth-first initial placement was computed for the objects of the first snapshot. This

placement was used to calculate static pointer distances and the fraction of these distances that were

less than 256 words in all four snapshots. The four distance distributions were quite similar, while

the on-page pointer ratio slowly declined from 16.9% to 16 . .1%. As measured by static pointer

distance distributions, this initial placement degraded only slightly after a moderate amount of use.

Needless to say, these measures only considered objects that occurred in both the initial placement

and the specific snapshot. Objects present in a snapshot but not in the initial placement were not

included in the analysis. This single sequence of snapshots is not indicative of a user modifying

more than a small collection of classes. Most of the computation was concentrated in a small part

of the system. which mayor may not be typical. Work is needed to detennine the net effect of

new objects matured to the disk and to design, implement, and test a variety of dynamic grouping

algorithms that handle the transfer. placement, and movement of ncw pClmanent objects. Only

then will the true degradation rates of initial placements and the need for periodic static rcgroupings

be known.

124 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

II. Conclusions

The key finding of this thesis arose from a direct empirical comparison between object-oriented and

page-swapping virtual memories. [n terms of the number of page fault';, LOOM outperformed a

conventional virtual memory for a range of small memory sizes that depended on the quality of the

initial placement generated by the grouping strategy. The better virtual memory design depends on

the existence of quality initial placements and the rate at which they become obsolete.

[n order to review the remaining major conclusions of this thesis. I have included a recapitulation of

each chapter as well as warnings for areas not addressed. After discussing LOOM, this chapter

provides suggestions for future research.

1l.1 A Review

Chapter 2 provided a quick introduction to the LOOM virtual memory and the Smalltalk system.

While LOOM logically swaps objects between memory levels, it always transfers physical pages

between core and disk. Under certain circumstances. objects are the appropriate entities to be

grouped when restructuring information in the secondary memory to enhance paging performance.

On the average. objects should be smaller than a single disk page but not much more than an order

of magnitude smaller.

The emulator for the Smalltalk~80 virtual machine that was constructed to produce actual execution

traces was described in Chapter 3. While the emulator did not generate all references made by the

virtual machine. the missing fraction was negligible. The traces discussed in this thesis are therefore

representative and complete.

Chapter 4 investigated the basic reference tendencies of Smalltalk by examining event traces for five

diverse operations that frequently occur in typical user sessions. Some statistics highlighted the

differences between the access patterns of code objects from those of data objects. However. these

distinctions did not warrant special treatment by cache management schemes. main memory

managers, or grouping strategies. Object size distributions supported the claim that objects are the

appropriate entity to group on disk pages. The observed locality of reference predicted a substanti~l

reduction in the size of event traces by simple compression schemes.

The next chapter presented nine static grouping schemes. A static analysis of the initial placements

generated by these grouping algorithms partitioned them into five categories. Under two static

measures of similarity. initial placements within a category were remarkably alike. while those in

different categories were not alike. This partitioning extended somewhat to the dynamic domain.

Initial placement<; in the same category had similar paging perfonnanc~s. The converse of this

statement. however, did not always hold.

CHAPTER 11. CONCLUSIONS 125

Chapter 6 described a one-pass compression algorithm that reduced the length of event traces

intended to be used as input to virtual memory simulations. If a few simple requirement') are met

by the simulation, this algorithm guarantees a weak equivalence between the initial and compressed

reference traces. A reduction ratio of 100: 1 was attained.

The effects of static grouping on the dynamic perfomlance of a page-swapping virtual memory were

presented in Chapter 7. Any of the realizable grouping strategies substantially reduced the number

of page faults caused by an ungrouped initial placement. Performance differences between the

grouping schemes were not relatively significant. The average utilization of main memory, as

opposed to the particular grouping strategy, was the dominant factor.

Chapter 8 described the effects of static grouping on the object-oriented virtual memory LOOM.

These grouping schemes realized limited performance gains,· since LOOM was able to perform

rather well in the face of an ungrouped initial placement. Other virtual memory policies and

parameters played a secondary role in determining the number of page faults and were essentially

independent of the initial placement.

The following chapter reported the direct empirical comparison between the object-oriented and

page-swapping virtual memories. In tenus of the number of page faults, LOOM outperformed the

conventional virtual memory for a range of small memory sizes. Similar intervals were obtained for

warm starts, cold starts, simulations that did reference counting, and those that did not. However,

the length of this interval varied inversely with the quality of the initial placement.

Chapter 10 briefly examined the memory management problems of Smalltalk and pointed out the

need to efficiently handle dynamically created objetts, since most have extremely short lifetimes.

Although most updated references in newly created objects pointed backwards in time, object

lifetimes were not governed by a strict stack discipline.

While the Smalltalk-80 emulator provided these novel results, its nature prohibited the investigation

of other related areas. Computation size, turnover rate, and composition could not be easily

measured. The empirical comparisons between the two types of virtual memories could not be

directly used to answer hard questions concerning real or imagined systems. Issues of initial

placement stability were not thoroughly addressed, and the entire domain of dynamic grouping was

avoided.

1l.2 Recommendations

Inherent difficulties in implementing an object-swapping scheme must be considered before the

choice of a virtual memory type is finalized. Potential performance benefits provided by LOOM

must be carefully weighed against the costs. Such an analysis considers the interactions between the

physical and virtual environments. Primary memory size is the one important physical parameter.

The size and nature of the current and future computations, the existence of good grouping

algorithms, and the stability of quality initial placements are the remaining inputs. These three

126 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

factors detennine the nominal position of the crossover point. the short term fluctuations about this

point. and the long-term trends that translate this point. A comparison between the distribution of

the crossover point locations and the physical memory size will indicate the relative paging

performance an object-oriented virtual memory would be expected to provide.

LOOM should not be viewed as a quick virtual memory implementation that will function as a

panacea. Instead, such a scheme must be considered as part of a long-tenn research project whose

success cannot be evaluated without a running prototype. An actual implementation of LOOM can

be used to validate or invalidate the results presented in this thesis and e,~plore the issues side

stepped by simplifications. Of critical importance to a page-swapping virtual memory are the

questions of initial placement stability and the existence of efficient dynamic grouping schemes. A

rapid degradation of the initial placement in the direction of a random grouping will substantially

shift the crossover point. A real system will not be burdened by the speed constraints encountered

in emulations and simulations and can measure this degradation rate. Experimentation can easily go

beyond the bounds established by this study in attempting to solve these problems. If good

arrangements are inherently stable or effective dynamic algorithms can be found. then the

advantages of LOOM will be more than offset by the costs for memory sizes comparable to the

expected span of computations.

11.3 Directions for Future Research

Simulations of LOOM have identified a number of important considerations that can substantially

affect the paging perfOlmance of object-swapping virtual memories. I,ambda resolution schemes.

object-prefetching policies, and. purging algorithms need to be closely examined in isolation. with

respect to each·" other, and in conjunction with different types of initial placements.

The static grouping algorithms employed in this study emphasized the object-fetching behavior of

the virtual machine using either a priori or a posteriori knowledge. Just as important is the

minimization of disk accesses for purging policies and lambda resolution schemes. New

restructuring techniques that are cognizant of these characteristics should be designed. evaluated,

and compared with the set of simple algorithms used here.

The nature and extent of dynamic modification to the initial placement needs to be investigated.

New objects are constantly matured and added to the set of permanent objects. Fields are

continuously updated and old objects eventually perish. Dynamic grouping [BAER76]. copying

[BAKE, SVOB]. and maturing techniques deserve an examination for both object-oriented and

page-swapping virtual memories.

The effects of memory reclamation algorithms, such as reference counting, [rcal-time] garbage

collection, and hybrid schemes. will certainly depend on the initial placement and virtual memory

type. [t may be the case that both static and dynamic grouping schemes should be tuned to the

anticipated memory management policies.

CHAPTER 11. CONCLUS[ONS l27

Finally, the experiments and measurements performed on Smalltalk-80 ought to be duplicated on

other object-oriented, interactive programming environments in order to determine whether the

reported results apply to only one system or characterize general computational tendencies.

128

[ACM]

[BAER72]

[BAER76]

[BAKE]

[13ATS70]

[BATS76]

[BATS77]

[BELA66]

[BELA69)

[BISH]

[BRAW681

[BRAW70]

[CLAR76]

[CLAR77]

[CLAR78]

A LARGE OBJECT-ORIENTED VlRTUAL MEMORY

Bihliography

"CM. Proceedings of a Symposium on Storage Allocation. Communications of the
ACIH. 4(10): L96L October.

Baer. 1. L.: Caughy, R. Segmentation and Optimization of Programs from Cyclic
Stnlcture Analysis. AFIPS Proceedings, Spring Joint Computer Conference.
40: 23-36; 1972.

Baer. J. L.; Sager, G. R. Dynamic Improvement of Locality in Virtual Memory
Systems. IEEE Transactions on Software Engineering. SE-2(1): 54-62: 1976
March.

Baker, H. G. List-Processing in Real Time on a Serial Computer. Communications
of the ACAf. 21(4): 280-294; 1978 April.

Bal<;on, A. P.: Ju. S.-M.: Wood, D. C. Measurements of Segment Size.
Communications of the AC/vl. 13(3): 155-159; 1970 March.

Batson, A. P. Program Behavior at the Symbolic Level. Computer. 9(11): 21-26:
1976 November.

Batson, A. P.: Bnmdage, R. E. Segment Sizes and Lifetimes in Algol 60 Programs.
Communications of the ACM. 20(1): 36-44; 1977 January.

Belady, L. A. A Study of Replacement Algorithms for a Virtual Storage Computer.
I BA-1 Systems J. 5(2): 78-101; 1966.

Belady, L. A.: Kuehner, C. J. Space Sharing in Computer Systems.
Communications of the ACNf. 12(5): 282-288; 1969 May.

Bishop, P. B. Compuler Systems with a Very Large Address Space and Garbage
Collection. Cambridge, MA: M.LT. Laboratory for Computer Science: 1977
May. MIT/LCS/TR-178.

Brawn, B. S.; Gustavson, F. G. Program Behavior in a Paging Environment.
AFIP."; Proceedings, Fall Joint Computer Conference. 33(2): 10l9-1032: 1968.

Brawn, B. S.: Gustavson, F. G.: Mankin, E. S. Sorting in a Paging Environment.
Communications of the ACM. 13(8): 483-494; 1970 August.

Clark, D. W. Lisl Structure: Ateasu rem en ts, Algorithms. and Encodings. Pittsburgh,
PA: Carnegie-Mellon University, Dept. of Computer Science: 1976 August.

Clark, D. W.: Green, C. C. An Empirical Study of List Structure in Lisp.
Communications of 'he ACNf. 20(2): 78-86: 1977 February.

Clark. D. W.; Green, C. C. A Note on Shared List Structure in Lisp. lnjonnation
Processing Letters. 7(6): 312-314: 1978 October, 1978.

[COPP]

[COME)

[OENN]

[FERR74]

[FERR76]

[FERR78)

[FINE]

[GOLD]

[GUER]

[HATF)

[INFO)

[INGA78)

[INGA81]

[JOHN]

[KAEH81)

[KAEH)

[KERN]

BIBLIOGRAPHY 129

Coffman, E. G., lr.: Denning, P. 1. Operating ...)'ystems Theory. Englewood Cliffs,
NJ: Prentice-Hall; 1973.

Comeau, L. W. A Study of the Effect of User Program Optimization in a Paging
System. ACA-f Proceedings, Symposium 011 Operating Systems Principles.
Gatlinberg, Tenn. 1967.

Denning, P. J. Virtual Memory. Computing .<;urveys. 2(3): 153-189: 1970
September.

Ferrari, D. Improving Locality by Critical Working Sets. Communications of the
ACM. 17(11): 614-620: 1974 November.

Ferrari, D. The Improvement of Program Behavior. Computer. 9(11): 39-47: 1976
November.

Ferrari, D. Computer Systems Performance Evaluation. Englewood Cliffs, NJ:
Prentice-Hall: 1978.

Fine, G. H.: Jackson, C. W.: McIsaac, P. V. Dynamic Program Behavior under
Paging. Proceedings of the 21st National ACAI Conference. P-66: 223-228:
1966.

Goldstein, l. P.; Bobrow, D. G. A Layered Approach to .\'oJiware Design. Palo Alto,
CA: Xerox PARC, Computer Science Laboratory: 1980 December. CSL-80-5.

Guertin, R. L. Programming in a Paging Environment. Datamation. 18(2): 48-55:
1972 February. .

Hatfield. D. 1.: Gerald J. Program Restmcturing for Virtual Memory. IBM
,Systems J. 10(3): 168-192: 1971.

Infonnatics, Inc. Experiments in Automatic Paging. Griffiss AFB, NY: Rome Air
Development Center. Air Force Systems Command: 1971 November. RADC
TR-71-231.

Ingalls, O. H. H. The Smalltalk-76 Programming System: Design and
Implementation. Conference Record, Fifth Annual AC!vf 5;ymposiwn on
Principles of Programming Languages: 9-16: 1978 January.

Ingalls, D. H. H. The Smalltalk Graphics Kernel. Byte. 6(8): 168-194; 1981 August.

Johnson, J. W. Program Restructuring for Virtual tvfemory Systems. Cambridge,
MA: M.LT. Laboratory for Computer Science: 1975 March. MIT/LCS/TR-
148.

Kaehler. T. Virtual Memory for an Object-Oriented Language. Byte 6(8): 378-387:
1981 August.

Kaehler, '1'. Working paper on the Smalltalk-80 virtual memory system. To
appear.

Kernighan, B. W. Optimal Sequential Partitions of Graphs. Journal of the ACM.
18(1): 34-40; 1971 January.

130

[KUCK)

[KUEH)

[LEWI]

[LIEB)

[LISK)

[LOWE]

[LUNI]

[MATT)

[McKEE]

[McKELl

[METe]

[MORR]

[O'NEIl

[PARM]

[RAMA1

[RAND)

A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

Kuck, D. J.: Lawrie. D. H. The Use and Performance of Memory Hierarchies: A
Survey. Tou, J. T., ed. Conference Proceedings. Computer and Infonnation
Sciences 1I1. New York: Academic Press; 1970: 45-77.

Kuehner, C. J.: Randell, B. Demand Paging in Perspective. AFIPS Proceedings.
Fall Joint Computer Conference. 33(2): lOll-1018; 1968.

Lewis, P. A. W.: Yue. P. C. Statistical Analysis of Program Reference Patterns in a
Paging Environment. Conference Digest of the 511, Ih'I~'F [ntemational
Cumputer Society Conference. 71C41-C: 133-134: 1971 September.

Lieberman, H.: Hewitt, C. A Real Time Garbage Collector That Can Recover
Temporary S'torage Quickly. Cambridge, MA: M.LT. Artificial Intelligence
Laboratory: 1980 April. Memo 569.

Liskov, B. et al. CLV Reference lv/anual. Cambridge, MA: M.I.T. Laboratory for
Computer Science: 1979 October. MIT/LCS/TR-225.

Lowe, T. C. Automatic Segmentation of Cyclic Program Structures Based on
Connectivity and Processor Timing. Communications of the ACM. 13(1): 3-9:
1970 January.

Lunicwski. A. W. The Architecture of an Object Rased Personal Cumputer.
Cambridge, fvlA: M.LT. I.aboratory for Computer Science: 1979 Decemher.
MIT II.CS/TR -232.

Mattson, R. L. et al. Evaluation Techniques for Storage Hierarchies. I nl~l S'yslems
J. 9(2): 78-117: 1970.

McKeeman, W. M. Language Directed Computer Design. AFI PS Proceedings. Fall
Joint CompUler Conference. 31: 413-417: 1967.

McKellar. A. C.: Coffman, E. G .. Jr. Organizing Matrices and Matrix Operations
for Paged Memory Systems. Communications of the ACM. 12(3): 153-164:
1969 March.

Metcalfe, R. M.: Boggs, D. R. Ethernet: Distributed Packct Switching for Local
Computer Networks. Communications of the ACll4. 19(7): 395-404: 1976 July.

Morrison, J. E. User Program Performance in Virtual Storage Systems. IBlt,!
~»'stems J. 12(3): 216-237: 1973.

O'Neill, R. W. Experience Using a Timc-Shared Multi-Programming Systcm with
I)ynamic Address Rclocation Hardware. A FI PS Proceedings. Spring Joint
Computer Conference. 30: 6ll-621: 1967.

Parmelee, R. P. et a1. Virtual Storage and Virtual Machine Concepts. I Blv! Systems
J. 11(2): 99-130: 1972.

Ramamoorthy, C. V. The Analytic Design of a Dynamic Look Ahead and Program
Segmentation System for Multiprogrammed Computers. Proceedings of the
21st National AC1\l Conference. P-66: 229-239: 1966.

Randell, B. A Note on Storage Fragmentation and Program Segmentation.
Communications of the ACM. 12(7): 365-372: 1969 July.

[SALT]

[SA YR)

[SHOC]

[SNYDa]

[SNYDr]

[SP[R]

[SYOB]

[SWINJ

[TSAO]

[VERH]

[XERO]

BlBLIOGRAPHY l31

Saltzer. 1. H. On the Modeling of Paging Algorithms. Communications of the
AC!'vI. 19(5): 307-308: 1976 May.

Sayre. D. [s Automatic "Folding" of Programs Efficient Enough to Displace
Manual? Communications of the AC A:I. 12(12) 656-660: 1969 December.

Shoch. J. An Overview of the Programming Language Smalltalk-72. StGPLAN
Notices. 14(9): 64-73: 1979 September.

Snyder. A. A .~.Iachine Architecture to Support an ()l~iecl-Oriellted Language.
Cambridge. MA: M.LT. Laboratory for Computer Science: 1979 March.
MIT/LCS/TR-209.

Snyder. R. On A Priori Program Restructuring for Virtual Memory Systems.
Lanciaux. D .. ed. Operating Systems: Theory and Practice. New York: North
Holland: 1979: 207-224.

Spirn, J. R.: Denning. P. 1. Experiments with Program Locality. AFtPS
Proceedings. Spring Joint Computer Conference. 40: 611-621; 1972.

Svobodova, L Afanagement of Object Histories in the 5,' ~VArf.() W Repository.
Cambridge. MA: M.LT. Laboratory for Computer Science: 1980 July.
M [Til .CS/TR -243.

Swinehart D.: McDaniel, G.: Boggs. O. R. ~Vl':\': A Simple File System for a
Distributed f-'nvironmenl. Palo Alto, CA: Xerox PARCo Computer Science
Laboratory: 1979 October. CSL-79-l3.

Tsao, R. F.: Comeau, L. W.: Margolin, B. H. A Multi-Factor Paging Experiment:
L The Experiment and the Conclusions. Freiberger, W.o ed. Stalistical
Computer Performance RvaluaLion. New York: Academic Press: 1972: 103-
134.

Ver Hoef, E. W. Automatic Program Segmentation Based on Boolean Connectivity.
AFtPS Proceedings. Spring Joint Computer Conference. 38: 491-495: 1971.

Xerox Learning Research Group. The Smalltalk-80 System. Byte. 6(8): 36-48~ 1981
August.

132 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

Appendix A

A-O. Basic Data

Trace All Code Data All Primitives Primitive
Number References References References Primitives Caught Percentage

#1 144K 81,157 66,299 7543 6327 83.9%
#2 144K 93,358 54,098 6242 5829 93.4%
#3 144K t02,161 45,295 6791 5688 83.8%
#4 144K 95,256 52,200 8446 7544 89.3%
#5 144K 36,456 111,000 2139 1883 88.0%

Trace ByteCodes All Size of All New Size of New
Number Executed Objects Objects Objects Objects

#1 39,527 705 49,214* 89 1442
#2 32,556 1240 52,427* 393 2381
#3 37,042 878 18,079 186 1542
#4 40,000 723 51,099* 85 2625
#5 14,044 422 46,761 * 100 899

*Includes the 32K bitmap

APPENUIX A ljj

A-I. Size Distribution

MIN MAX MED Ql Q3 MEAN ST. DEV.

All 2 32K 10 5 17 25 354
All <2K 2 1593 lO 5 17 19 48
All Code 4 1201 17 12 34 31 47
All Code <2 K 4 1201 17 12 34 31 47
All Data 2 32K 8 4 14 22 414
All Data <2K 2 1593 8 4 13 14 47

Static Size Distribution

MIN MAX MED Ql Q3 MEAN ST. DEV.

All<2K 2 502 10 4 20 24 50
All Code (2K 4 502 18 10 36 34 53
All Data <2K 2 485 5 4 10 14 45

Quasi-Static Size Distribution # 1

MIN MAX MED Ql Q3 MEAN ST. DEV.

All <2K 2 502 9 4 17 16 30
All C.-de <2 K 4 502 18 10 36 32 47
All Data <2K 2 258 5 4 10 9 15

Quasi-Static Size Distribution #2

MIN MAX MED Ql Q3 MEAN ST. DEV.

All (2K 2 515 13 5 20 21 36
All Code (2K 4 260 20 11 36 33 40
All Data <2K 2 515 10 5 20 15 33

Quasi-Static Size Distribution # 3

MIN MAX MED Ql Q3 MEAN ST. DEV.

All (2K 2 530 12 -5 24 26 52
All Code (2K 4 473 19 12 36 33 43
All Data (2K 2 530 5 4 10 18 59

Quasi-Static Size Distribution #4

MIN MAX MED Ql Q3 MEAN ST. DEV.

All (2K 2 502 10 4 21 25 48
All Code (2K 4 502 16 7 36 40 63
All Data <2K 2 258 4 4 10 11 21

Quasi-Static Size Distribution # 5

134 A LARGE OrUECT-ORIENTED V[RTUAL MEMORY

MIN MAX MEl) Ql Q3 MEAN ST. DEV.

All 2 32K 41 14 182 5864 12,370
All (2K 2 502 27 II 68 67 98
All Code 4 502 41 25 116 74 89
All Code (2K 4 502 41 25 116 74 89
All Data 2 32K 41 10 32K 12,953 15,780
All Data (2K 2 485 LO 5 34 52 113

Dynamic Size Distribution # 1

MIN MAX MED Ql Q3 MEAN ST. DEV.

All 2 32K 34 10 68 2615 8711
All(2K 2 502 27 10 43 54 80
All Code 4 502 36 22 68 66 85
All Code (2K 4 502 36 22 68 66 85
All Data 2 32K 10 10 258 7013 13,277
A 11 Data (2 K 2 260 10 10 10 29 60

Dynamic Size Distribution #2

MIN MAX MED Ql Q3 MEAN ST. DEV.

All 2 515 27 to 65 51 66
All (2K 2 515 27 10 65 51 66
All Code 4 260 36 25 68 65 68
All Code (2K 4 260 36 25 68 65 68
All Data 2 515 10 10 10 19 46
All Data (2K 2 515 10 10 10 19 46

Dynamic Size Distribution # 3

MIN MAX MED Ql Q3 MEAN ST. DEV.

All 2 32K 33 14 70 3175 9513
All (2K 2 530 27 12 68 64 99
All Code 4 473 34 25 68 64 80
All Code (2K 4 473 34 25 68 64 80
All Data 2 32K 10 10 32K 8852 14,343
All Data (2K 2 530 10 10 34 62 134

Dynamic Size Distribution # 4

MIN MAX MED Ql Q3 MEAN ST. DEV.

All 2 32K 32K 68 32K 21,204 15,278
All (2K 2 502 30 to 68 80 127
All Code 4 502 40 20 116 103 141
All Code (2K 4 502 40 20 116 103 141
All Data 2 32K 32K 32K 32K 28,134 10,761
All Data (2K 2 258 10 10 20 19 32

Dynamic Size Distribution # 5

ApPEND[xA 135

A-2. Fractional Utilization

M[N MAX MEl) Ql Q3 MEAN ST. DEV.

All 0 lOO 50 20 68 45 28
All Code 3 92 54 25 68 48 24
All Data 0 lOO 33 20 71 43 30

Fractional Utilization # 1

MIN MAX MED Q1 Q3 MEAN ST. DEV.

All 2 100 50 10 75 45 33
All Code 3 93 51 15 68 48 25
All Data 2 100 33 10 75 45 34

Fractional Utilization #2

MIN MAX MED Q1 Q3 MEAN ST. DEV.

All 0 100 29 7 70 39 32
All Code 3 91 57 40 73 53 25
All Data 0 100 25 5 67 35 32

Fractional Utilization # 3

MIN MAX MED Ql Q3 MEAN ST.DEV.

All 0 100 40 20 74 44 29
All Code 3 89 54 35 67 49 23
All Data 0 100 30 10 75 41 32

Fractional Utilization #4

MIN MAX MED Q1 Q3 MEAN ST. DEV.

All 1 100 59 20 75 51 30
All Code 3 94 45 14 60 42 26
All Data 1 100 75 25 75 56 31

Fractional Utilization # 5

136 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

T race Length MIN MAX MED Ql Q3 MEAN ST. DEY.

IK 5 77 24 14 57 33 24
2K 5 100 25 13 57 36 26
4K 5 1O0 37 15 68 40 26
8K 5 100 37 15 68 40 26
16K 5 100 40 20 74 42 27
32K 0 100 40 20 75 44 27
64K 0 100 47 20 75 45 28
144K 0 100 50 20 68 45 28

Incremental Fractional Utilization # 1 (All)

Trace Length MIN MAX MED Q1 Q3 MEAN ST. DEV.

lK 0 100 20 14 45 31 23
2K 0 100 25 20 55 34 24
4K 0 100 30 20 64 38 25
8K 0 100 30 20 73 41 27
16K 0 100 40 17 73 42 27
32K 2 100 44 20 75 45 28
64K 2 100 40 13 75 45 33
144K 2 100 50 10 75 45 33

Incremental Fractional Utilization #2 (All)

Trace Length MIN MAX MED Ql Q3 MEAN ST. DEV.

1K 0 80 25 14 45 31 20
2K 2 80 25 14 50 33 21
4K 2 86 25 14 60 36 25
8K 3 100 30 14 67 39 28
16K 0 100 37 14 68 42 31
32K 0 100 39 14 76 43 32
64K 0 100 40 13 75 44 31
144K 0 100 29 7 70 39 32

Incremental Fractional Utilization # 3 (All)

Trace Length MIN MAX MEl) Q1 Q3 MEAN ST. DEY.

lK 0 75 20 14 43 29 20
2K 5 77 30 15 60 37 24
4K 5 86 30 15 65 38 25
8K 5 89 33 15 68 41 26
16K 5 95 46 20 7S 44 27
32K 3 100 50 20 7S 45 27
64K 0 100 48 20 75 46 30
144K 0 100 40 20 74 44 29

Incremental Fractional Utilization #4 (All)

Trace Length MIN MAX MED QI Q3 MEAN ST. DEV.

IK 0 77 20 10 29 23 20
2K 1 77 20 10 29 23 20
4K 1 86 20 10 40 29 22
8K 1 100 25 14 57 36 26
16K 1 100 30 14 74 41 29
32K 1 100 50 17 75 47 30
64K 1 100 54 20 75 49 30
144K 1 100 59 20 7S 51 30

Incremental Fractional Utilization #5 (All)

ApPENDIX A 137

Trace Length M.IN . MAX MEl) Q1 Q3 MEAN ST. DEY .

1K 5 77 37 14 57 35 23
2K 5 77 37 14 57 35 23
4K 5 85 46 14 60 42 25
8K 5 85 46 14 60 42 25
16K 5 89 50 15 67 46 25
32K 2 89 54 33 65 47 24
64K 2 92 54 36 67 50 23
144K 3 92 54 25 68 48 24

Incremental Fractional Utilization # 1 (Code)

Trace Length MIN MAX MED Q1 Q3 MEAN ST. DEV.

1K 3 85 45 14 59 39 25
2K 3 85 45 14 60 42 24
4K 3 85 50 14 65 43 25
8K 3 85 50 14 65 45 25
16K 3 88 50 14 65 46 25
32K 3 89 51 14 68 47 25
64K 3 89 50 15 68 47 25
144K 3 93 51 15 68 48 25

Incremental Fractional Utilization #2 (Code)

Trace Length MIN MAX MED Ql Q3 MEAN ST. DEY.

lK 5 71 39 14 57 37 21
2K 5 71 45 14 56 37 21
4K 5 86 50 14 64 44 24
8K 3 91 54 14 68 48 26
16K 3 91 52 19 65 47 26
32K 3 91 54 25 70 49 26
64K 3 91 54 39 73 51 25
144K 3 91 57 40 73 53 25

Incremental Fractional Utilization #3 (Code)

Trace Length MIN MAX MED QI Q3 MEAN ST. DEY.

IK 5 68 38 14 57 33 22
2K 5 77 46 15 60 40 23
4K 5 79 45 14 62 40 24
8K 5 89 50 . 14 63 43 25
16K 5 89 54 15 66 47 25
32K 3 89 53 15 63 46 24
64K 3 89 54 35 67 49 23
144K 3 89 54 35 67 49 23

Incremcntal Fractional Utilization #4 (Code)

Trace I.cngth MIN MAX MEl) Ql Q3 MEAN ST. DEY.

lK 11 77 44 13 56 39 22
2K 11 77 44 13 56 39 22
4K 5 86 40 14 63 41 25
8K 3 88 40 14 59 40 25
16K 3 88 40 14 59 40 25
32K 3 89 43 14 60 41 26
64K 3 94 45 14 63 42 26
144K 3 94 45 14 60 42 26

Incremental Fractional Utilization # 5 (Code)

U8 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

Trace Length MIN MAX MEO Q1 Q3 MEAN ST.OEV.

lK 5 75 20 13 50 32 25
2K 5 100 25 13 75 36 27
4K 5 100 25 20 75 39 27
8K 5 100 25 20 75 39 27
16K 5 100 25 20 75 40 28
32K 0 100 30 20 75 41 29
64K 0 100 30 20 75 42 31
144K 0 100 33 20 71 43 30

Incremental Fractional Utilization # 1 (Data)

Trace Length MIN MAX MED Ql Q3 MEAN ST. DEV.

lK 0 100 20 20 25 26 20
2K 0 100 25 20 30 30 22
4K 0 100 25 20 64 35 25
8K 0 100 25 20 75 38 28
16K 0 100 25 20 75 39 29
32K 2 100 29 20 75 42 30
64K 2 100 25 10 75 43 35
144K 2 100 33 10 75 45 34

Incremental Fractional Utilization #2 (Data)

Trace Length M[N MAX MEO Q1 Q3 MEAN ST.DEV.

lK 0 80 20 11 30 26 19
2K 2 80 25 20 33 30 21
4K 2 86 20 11 40 31 "24
8K 4 100 25 11 67 35 28
16K 0 100 25 10 80 40 33
32K 0 100 25 10 80 41 34
64K 0 100 28 10 80 41 33
144K 0 100 25 5 67 35 32

Incremental Fractional Utilization # 3 (Data)

Trace Length M[N MAX MED Ql Q3 MEAN ST. DEV.

lK 0 75 20 20 30 27 19
2K 5 75 25 20 75 35 25
4K 5 86 25 20 75 38 26
8K 5 86 30 20 75 40 27
16K 5 95 30 20 75 43 28
32K 5 100 30 20 75 44 29
64K 0 100 30 10 75 44 34
144K 0 100 30 10 75 41 32

Incremental Fractional Utilization #4 (Data)

Trace Length MIN MAX MEl) Ql Q3 MEAN ST. DEV.

lK 0 67 10 8 20 15 14
2K 1 67 10 8 20 16 14
4K 1 83 20 10 25 22 17
8K 1 100 25 10 50 33 27
16K 1 100 25 20 75 41 31
32K 1 100 67 20 75 51 31
64K 1 100 67 20 75 53 31
144K 1 100 75 25 75 56 31

Incremental Fractional Utilization # 5 (Data)

ApPENDIX A 139

1\-3. Access Frequency

MIN MAX MED Ql Q3 MEAN ST. DEV.

All 1 26K 16 5 59 209 1221
All Code 1 8K 31 8 116 236 915
A\1 I)ata 1 26K lO 3 24 183 1454

Access Frequency # 1

MIN MAX MED Ql Q3 MEAN ST. DEV.

All 1 12K 6 1 24 118 554
All Code 1 7K 34 10 152 256 665
All Data 1 12K 6 1 7 61 473

Access Frequency #2

MIN MAX MED Ql Q3 MEAN ST. DEV.

All 1 6K 16 4 70 167 538
All Code 1 6K 74 18 246 355 758
All Data 1 4978 9 2 28 76 355

Access Frequency # 3

MIN MAX MED Ql Q3 MEAN ST. DEY.

All 1 14K 14 5 64 203 839
All Code 1 9K 24 8 125 250 832
All Data 1 14K 10 3 25 150 842

Access Frequency #4

MIN MAX MED Q1 Q3 MEAN ST. DEV.

All 1 95K 32 13 140 349 4706
All Code 1 3370 94 30 246 181 321
All Data 1 95K 17 .8 64 502 6491

Access Frequency # 5

140 A LARGE OBJECT-OR[ENTED VIRTUAL MEMORY

1\-4. lntcrrcfercncc Headway

MIN MAX MEl) Ql Q3 MEAN ST. DEV.

All 108K 2 1 23 180 2643
All Code 74K 1 1 18 t34 1960
An Data 34K 1 1 6 50 778

Interrefcrcnce Headway # 1

MIN MAX MEl) Q1 Q3 MEAN ST. DEV.

All 1 128K 2 1 56 307 4234
All Code 1 86K 1 1 41 233 3115
All Data 1 31K 2 1 16 78 1149

Interreference Headway #2

MIN MAX MED Ql Q3 MEAN ST. DEV.

All 1 97K 7 1 51 239 1876
All Code 1 65K 1 1 32 139 1055
All Data 1 30K 8 1 21 100 767

Interreference Headway # 3

MIN MAX MED Ql Q3 MEAN ST. DEV.

All 1 93K 1 1 60 118 1513
All Code 1 67K 1 1 45 74 1095
All Data 1 25K 2 1 18 44 520

lnterreference Headway # 4

MIN MAX MED Q1 Q3 -MEAN ST. DEV.

All 1 108K 1 1 1 176 1518
AU Code 1 20K 1 1 24 128 491
All Data 1 91K 1 1 1 57 950

Interreference Headway # 5

ApPENDIX A

A-S. lnstance to Class Compression

Trace

N umber of Classes Above 90%
Percent of A II Fixed Fields Touched

1

II
11

2

11
11

3

13
6

A-6. Reference Counts

MIN MAX MED Q1 Q3

All 1 127 1 1 2
All < 127 1 llO 1 1 1
1 < All < 127 2 110 5 3 7

Static Reference Count

MIN MAX MED Ql Q3

All 1 127 1 1 4
All < 127 1 112 1 1 4
1 < All < 127 2 112 5 3 9

Quasi-Static Reference Count # 1

MIN MAX MED Ql Q3

All 1 127 1 1 8
All < 127 1 112 1 1 6
1 < All < 127 2 112 7 4 19

Dynamic Reference Count # 1

MIN MAX MED Ql Q3

All 1 127 1 1 5
All < 127 1 104 1 1 5
1 < All < 127 2 104 6 4 10

. Quasi-Static Reference Count #2

MIN MAX MEl) Ql Q3

All 1 127 1 1 7
All < 127 1 104 1 1 5
1 <All < 127 2 104 7 3 10

Dynamic Reference Count #2

4

7
8

MEAN

3
2
7

MEAN

9
5

10

MEAN

18
9

22

MEAN

9
5

12

MEAN

16
6

15

5

9
9

ST. DEV.

8
5
9

ST. DEV.

24
11
16

ST. DEV.

38
21
30

ST. DEV.

24
11
15

ST. DEV.

36
16
23

141

142 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

A -7. Selectors as a Percentage of Literals

Type MIN MAX MED Ql Q3 MEAN ST. DEV.

Static 0 100 78 50 100 73
Quasi-Static # 1 0 100 75 58 100 73
Dynamic # 1 0 100 95 60 100 78
Quasi-Static #2 0 100 80 50 100 75
Dynamic #2 0 100 87 50 100 77

SELECTORS NON - SELECTORS FRACTION

Static
Quasi-Static # 1
Dynamic #1
Qua~i-Static #2
Dynamic #2

ByteCodes executed:

10,737
470

8077
523

7454

96,256 in Trace # 1
95,901 in Trace #2

5357
218

2048
202

2976

66.7%
68.3%
79.8%
72.1%
71.5%

29
28
28
27
28

ApPENDIX B 143

Appendix B

H-O. Abbreviations

DFS -- depth-first search
BFS -- breadth-first search
10 -- using identity permutations
Dyn -- permutations arising from dynamic information
Refct -- permutations arising from reference counts
Ooze -- based on the grouping for the Object-Oriented Zoned Environment virtual memory
Hash -- a random grouping based on permuting the bits in the unique identifier of the object
OPTi -- the optimal grouping based on the iLh compressed trace

B-1. Static Pointer Distance*

CLOSE** MIN MAX MED Q1 Q3 MEAN ST. DEV.
BFSID 0.19% 0 1538 386 155 854 508 409
BFSRefct 0.14% . 0 1535 408 149 879 520 424
BFSDyn 0.20% 0 1539 386 155 854 507 409
DFSIO 14.8% 0 1541 296 7 864 478 506
DFSRefct 14.8% 0 1537 298 6 825 472 500
DFSDyn 15.0% 0 1536 311 7 860 476 501
Ooze 3.32% 0 1559 569 128 1199 630 513
Hash 0.35% 0 1576 353 85 840 488 443
OPT1 13.1% 0 244 69 17 134 80 67
OPT2 12.4% 1 475 191 36 340 192 155
OPT3 10.0% 1 352 81 35 167 103 84

For the realizable groupings:
Number of Objects: 17,268
Space requirements: 404,384 (1580 pages)
Total Pointers: 88,729
Immediate Pointers: 31,027
Non- Immediate Pointers: 57.702

*All distances were rounded up to the nearest 256-word page. Smalllntegers and "nil" were defined to
be immediate pointers. Only non-immediate pointers were considered in this analysis.

**CLOSE is the percentage of non-immediate pointers which are within one page of their referent.

144 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

11-2. Neighbor Relation

BFSID I3FSRefct BFSDyn DFSID DFSRefct DPSDyn Ooze Hash

BFSID * 46.3% 73.L% 22.4% 23.1% 22.5% 18.9% 0.5%
BFSRefct 46.7% * 45.5% 23.3% 23.0% 22.8% 19.0% 0.6%
BFSDyn 73.5% 45.4% * 21.9% 22.7% 22.5% 19.3% 0.6%
DFSIO 20.8% 21.5% 20.2% * 60.8% 59.4% 22.7% 0.2%
DFSRefct 21.5% 21.1% 20.9% 60.8% * 58.9% 21.2% 0.3%
DFSDyn 21.1% 21.1% 21.0% 59.8% 59.4% * 21.6% 0.3%
Ooze 20.3% 20.2% 20.7% 26.3% 24.5% 24.8% * 2.2%
Hash 0.5% 0.6% 0.5% 0.2% 0.3% 0.3% 1.9% *
OPT1 4.6% 3.5% 4.6% 9.1% 8.6% 8.9% 8.1% 0.2%
OPT2 14.5% 13.4% 14.4% 21.2% 20.1% 20.3% 36.1% 1.4%
OPT3 6.3% 3.6% 6.6% 9.3% 8.4% 8.9% 10.5% 0.4%

BFSfO * 46.2% 75.0% 21.7% 22.7% 21.9% 17.7% 1.0%
BFSRefct 46.3% * 47.2% 23.7% 22.4% 22.3% 18.1% 1.0%
BFSDyn 75.1% 47.2% * 22.0% 22.5% 21.9% 18.4% 1.0%
OFSIO 19.5% 21.2% 19.7% * 59.9% 61.2% 21.5% 0.7%
DFSRefct 20.5% 20.3% 20.4% 60.4% * 59.1% 20.2% 0.7%
DFSDyn 19.9% 20.2% 19.9% 62.3% 59.2% * 20.0% 0.7%
Ooze 19.2% 19.5% 19.9% 25.9% 24.2% 23.8% * 2.9%
Hash 0.9% 0~9% 0.9% 0.7% 0.7% 0.7% 2.4% *
OPTl 4.4% 3.8% 4.6% 8.3% 8.0% 8.0% 8.3% 0.3%
OPT2 11.6% 11.5% 11.8% 18.5% 17.3% 17.6% 40.1% 1.7%
OPT3 6.9% 4.3% 6.9% 7.9% 7.3% 7.3% 9.6% 0.4%

BFSID * 46.9% 80.4% 21.3% 21.4% 19.8% 16.7% 1.3%
BFSRefct 47.3% * 47.6% 21.3% 21.3% 21.1% 16.0% 1.3%
BFSDyn 80.7% 47.3% * 20.9% 20.8% 20.3% 16.4% 1.3%
OFSID 19.0% 18.8% 18.6% * 58.4% 52.7% 19.9% 1.4%
DFSRefct 19.1% 18.9% 18.6% 58.5% * 59.7% 18.0% 1.4%
OFSDyn 17.7% 18.7% 18.1% 53.1%' 60.0% * 17.9% 1.4%
Ooze 18.1% 17.5% 18.0% 24.6% 22.3% 22.0% * 3.3%
Hash 1.1% 1.1% 1.1% 1.4% 1.3% 1.3% 2.6% *
OPT1 4.1% 4.0% 4.3% 7.6% 7.9% 7.3% 8.3% 0.4%
OPT2 9.3% 9.3% 9.4% 15.4% 13.9% 14.6% 37.2% 1.8%
OPT3 6.9% 4.4% 6.8% 6.9% 6.6% 6.6% 9.3% 0.6%

Retained fraction of unordered pairs with page sizes of128, 256, and 512 words

OPTI OPT2 OPT3 OPT1 OPT2 OPT3 OPT1 OPT2 OPT3
(Page Size) 128 128 128 256 256 256 512 512- 512

OPTI * 5.66% 8.40% * 5.06% 7.41% * 4.83% 6.52%
OPT2 14.0% * 7.50% 13.8% * 6.17% 14.2% * 5.66%
OPT3 17.4% 6.28% * 16.8% 5.23% * 15.0% 4.56% *

Retained fraction of unordered pairs between optimal initial placements

Page Sizc Ll(.;'SID

128 72,970
256 145,359
512 283.048

ApPENDIX B

BFSRcfct BFSDyn DFS1D DFSRcfct DFSDyn Ooze

73,582 73,360 67,795 67,765 68J26 78,429
145,799 1-+5,651 130,596 Ul,809 13 2,153 157,686
285,659 283,840 252,167 252,751 253,868 311,895

Pagc Size OPTi OPT2 OPT]

128 7386 19,513 15,580
256 14,304 38,547 30,754
512 27,123 74,612 59,878

Number of unordered pairs in the specified neighbor relation

R-3. Neighbor Relation under Continuous Displacement

OFFSFl'*
o
4
8

12
16
20
24
28
32 .
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96

100
104
108
i12
116
120
124

DFSlO
100%
94.2%
88.4%
83.3%
78.3%
73.6%
69.5%
65.8%
62.6%
59.6%
56.8%
54.8%
53.0%
51.6%
50.5%
49.9%
49.6%
49.8%
50.3%
51.3%
52.5%
54.3%
56.4%
58.9%
61.8%
65.1%
68.9%
73.2%
77.8%
82.6%
8~LO%
93.6%

HASH
100%
94.1%
88.1%
82.4%
77.4%
72.7%
68.8%
64.9%
61.7%
58.7%
56.3%
54.2%
52.4%
51.0%
50.0%
49.4%
49.2%
49.4%
50.0%
51.0%
52.4%
54.1%
56.2%
58.8%
61.6%
64.9%
68.4%
72.7%
77.3%
82.2%
87.8%
93.6%

*In 16-bit words with a page size of l28 words

145

Hash.

67.225
129,983
241030

146 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

Appendix C

CoO. Abbreviations and Trace Data

DFS -- depth-first search
BFS -- breadth-first search
10 -- using identity permutations
Oyn -- pennutations arising from dynamic infonnation
Refet -- permutations arising from reference counts
Ooze -- based on the grouping for the Object-Oriented Zoned Environment -virtual memory
Hash -- a random grouping based on pClmuting the bits in the unique identifier of the object
OPTi -- the optimal grouping based on the ilh comprcssed trace

TRACE
NUMBER

#1
#2
#3

TRACE
NUMBER

*
#1
#2
#3

#1
#2
#3

TRACE

#1
#2
#3

TRACE

#1
#2
#3

COMPRESSED
REFERENCES

41,580
43,049
80,443

BYTECODES
(ESTIMATE)

lllOK
960K

2280K

STATISTIC NON-POINTER COMPILED
TYPE OBJECTS METHODS

static 47.9% 19.6%

quasi -static 23.1% 33.9%
quasi -static 12.3% 16.4%
quasi -static 35.3% 20.9%

dynamic 3.9% 34.7%
dynamic 3.7% 28.2%
dynamic 6.3% 29.3%

MIN MAX MED Q1 Q3

0 41K 0 4
0 43K 0 2579
0 79K 1 14

Thin Spread

MlN MAX MEl) Ql Q3

1 4887 1 I 1
1 ·-6145 1 1. 191
1 13,313 1 I 2

TOTAL REFERENCES
(ESTIMATE)

3885K
3360K
7980K

POINTER
OBJECTS

32.5%

43.0%
71.3%
43.8%

61.4%
68.1%
64.4%

MEAN ST. DEV.

2938 9369
4170 10,127
7865 18,676

MEAN ST. DEV.

350 1109
469 1203

1391 3221

Fat Spread (rounded up to next 256-word pagc)

APPENDIX C 147

Col. Paged Virtual Memory

20K 30K 40K 50K 60K 70K 80K 90K

BFS[D 10,489 8574 7100 5213 3734 2702 2101 1747
BFSRefct 10,537 8702 7278 5404 3894 2740 2144 1782
BFSDyn 10,519 8644 7118 5257 3756 2721 2132 1776
DFSID 8367 6780 5101 3629 2519 1946 1542 1261
DFSRefct 8208 6794 5131 3749 2584 1997 1591 1299
DFSDyn 8308 6774 5113 3752 2610 2003 1582 1293
Ooze 9805 7954 6224 4458 2982 2209 1657 1367
OPT1 2812 1506 935 694 572 534 492 459
Hash 14,690 13,379 12,300 11,371 10,305 8363 6439 4518

lOOK 110K 120K 130K 140K 150K 160K 170K

BFSID 1461 1258 1195 1148 1102 1066 1022 998
BFSRefct 1503 1289 1211 1170 1102 1078 1040 1010
BFSDyn 1494 1278 1216 1166 1114 1084 1040 998
DFS[D 1106 1039 976 945 903 868 853 811
DFSRefct 1136 1054 995 960 922 891 873 836
DFSDyn 1146 1069 1009 974 934 896 879 854
Ooze 1152 1068 1009 966 917 884 865 831
OPTI 437 428 * * * * * *
Hash 3669 3012 2579 2336 1974 1772 1625 1550

180K 190K 200K 210K 220K 230K 240K 250K

BFSID 967 931 915 875 * * * *
BFSRefct 987 968 931 893 887 * * *
BFSDyn 975 940 921 881 * * * *
DFS[D 796 770 * * * * * *
DFSRefct 821 788 * * * * * *
DFSDyn 820 789 * * * * * *
Ooze 817 796 * * * * * *
OPTI * * * * * * * *
Hash 1501 1438 1378 1333 1289 1256 1232 1202

260K 270K 280K 290K 300K 310K 320K 330K

Hash 1178 1154 1134 * * * * *

Page faults as a function of core size (trace # 1)

148 A LARGE OHJECT-ORlENTED VIRTUAL M EMOR Y

20K 30K 40K 50K 60K 70K 80K 90K

l3FSID 12,407 LO,203 8503 6653 5137 3857 3391 3135
BFSRcfct 12,4 78 LO,381 8690 6791 5194 3857 3409 3154
BFSDyn 12,427 LO,257 8560 6668 5220 3842 3378 3164
DFSID 9877 8059 6263 4952 3648 3254 3083 2907
DFSRcfct 9984 8256 6457 5185 3770 3325 3153 2979
DFSDyn 9920 8073 6257 4933 3716 3338 3166 2988
Ooze 10,960 8755 6780 5189 3651 2672 2175 1979
OPT2 4130 2508 1677 1448 1307 1189 896 835
Hash 17,830 16A25 14,940 13,399 12,034 9962 8515 6276

lOOK 1l0K 120K 130K 140K 150K 160K 170K

BFSID 2928 2650 2440 2320 2182 1760 1701 1623
BFSRefct 2931 2677 2461 2355 2236 1779 1700 1630
BFSDyn 2945 2671 2472 2374 2231 1783 1715 1635
DFS[D 2732 2602 2494 2414 2340 1793 1725 1684
DFSRcfct 2789 2643 2509 2433 2356 2277 1723 1680
DFSDyn 2802 2663 2550 2453 2393 2314 1750 1702
Ooze 1749 1581 1436 1372 1339 1289 1260 1219
OPT2 773 737 716 703 680 662 658 656
Hash 5162 4666 4374 4126 3827 3566 3247 3000

180K 190K 200K 210K 220K 230K 240K 250K

BFSID 1584 1515 1463 1427 1411 1389 1374 1359
BFSRefct 1577 1528 1453 1425 1406 1382 1362 1344
BFSDyn 1593 1532 1472 1434 1416 1393 1373 1356
DFS[D 1661 1618 1576 1523 1462 1430 1410 1387
DFSRefct 1656 1626 1574 1539 1466 1425 1408 1379
DFSDyn 1666 1641 1592 1556 1486 1427 1404 1383
Ooze 1200 1178 1156 1123 1091 1055 1007 1005
OPT2 * * * * * * * * Hash 2695 2252 2130 2027 . 1928 1849 1767 1709

260K 270K 280K 290K 300K 310K 320K 330K

BFS[D 1323 1277 1248 1241 1221 * * * BFSRefct 1320 1278 1249 1243 1220 * * * BFSDyn 1315 1277 1250 1246 1224 * * * OFS[D 1369 1341 1303 1274 1244 * * * DFSRefct 1352 l325 1286 1243 1233 * * * DFSDyn 1361 1335 1293 1271 1245 1243 * * Ooze * * * * * * * * OPT2 * * * * * * * * Hash 1669 1627 1592 1567 1532 1492 1471 1409

340K 350K 360K 370K 380K 390K 400K 410K

Hash 1396 * * * * * * *

Page faults as a function of core size (trace #2)

ApPENDIXC 149

20K 30K 40K 50K 60K 70K SOK 90K

BFSID 22,585 18,642 15.794 12,934 9157 6992 5565 4451
BFSRefct 22,874 18,967 15,978 13,192 9562 7228 5862 4617
BFSDyn 22,570 18,7 31 15.7 38 12,938 9142 6968 5565 4441
OFSID 17,917 14,955 12.501 9511 7238 5855 4801 4075
DFSRefcl 18,040 15,253 12,935 9980 7525 6160 5096 4346
DFSDyn 18,100 15,218 12,802 9754 7538 6266 5224 4440
Ooze 20,759 16,613 13,390 10,291 6663 4774 3862 3313
OPT3 8176 5105 3112 2168 1615 1389 1200 1063
Hash 31,763 28,776 26,412 24,407 22,491 20,466 17,012 12.881

lOOK 110K 120K 130K 140K 150K 160K 170K

BFSID 3656 3138 2782 2568 2405 2228 2120 1987
BFSRefct 3796 3220 2853 2649 2471 2277 2164 2017
BFSDyn 3680 3190 2769 2564 2409 2250 2137 2009
DFSID 3462 2990 2773 2600 2450 2355 2229 2141
DFSRctct 3688 3079 2880 2647 2487 2370 2251 2148
DFSDyn 3889 3323 2952 2699 2527 2418 2295 2211
Ooze 2774 2452 2222 2091 1913 1839 1757 1639
OPT3 974 864 790 726 696 671 659 656
Hash 10,855 9004 7564 6432 5442 4864 4241 3741

180K 190K 200K. 210K 220K 230K 240K 250K

BFSID 1904 1813 1721 1604 1454 1313 1227 1159
BFSRefct 1941 1853 1758 1638 1515 l339 1250 1185
BFSDyn 1923 1832 1751 1627 1480 l348 1261 1203
DFSID 2061 1967 1842 1718 1596 1518 1440 1374
DFSRefct 2061 1965 1842 1727 1597 1516 1448 1392
DFSDyn 2109 2011 1922 1809 1704 1586 1497 1437
Ooze 1525 1445 1301 1236 1162 1100 1078 1069
OPT3 * * * * * * * *
Hash 3454 3168 2959 2800 2636 2463 2327 2189

260K 270K 280K 290K 300K 310K 320K. .130K

BFSID 1141 1131 1126 * * * * *
BFSRefct 1152 1139 1133 * * * * *
BFSDyn 1164 1151 1142 * * * * *
DFSID 1328 1293 1252 1242 1232 * * *
DFSRefct 1332 1290 1256 1243 1234 * * *
DFSDyn 1360 1318 1275 1258 1249 1244 * *
Ooze 1061 * * * * * * *
OPT3 * * * * * * * *
Hash 2069 1927 1802 1659 1547 1488 1440 1418

340K. 350K. 3{)0K. 370K 38UK. 390K. 400K 410K

Hash 1406 1401 * * * * * *

Page f~1ults as a function of core size (trace # 3)

150 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

C-2. Loom Simulation

CORE OBJECT LAMBI)A CLEAN DIRTY Cr.EAN-I)IRTY
SIZE FAULT FAULT CONTRACT CONTRACT RATIO

20K 6626 5669 4070 2112 l.93
40K 4836 3466 1742 1575 l.tl
60K 4504 2975 594 1173 0.51
80K 4432 2598 0 0 *

Trace # 1 -- Data Invariant of Initial Placement

BUFFER BUFFER HIT BUFFER BUFFER HIT
MISS HIT RATE MISS HIT RATE

BFSID 7724 7597 49.6% 4890 5552 53.2%
13FSRcfct 7820 7515 49.1% 4989 5452 52.2%
BFSDyn 7668 7554 49.6% 4926 5495 52.7%
DFSID 6705 8632 56.3% 4289 6158 58.9%
DFSRefct 6711 8605 56.2% 4285 6178 59.0%
DFSDyn 6735 8574 56.0% 4295 6131 58.8%
Ooze 7405 7881 51.6% 4687 5731 55.0%
OPTl 4691 10,714 69.5% 2884 7640 72.6%
Hash 8741 6528 42.8% 5589 4817 46.3%

Trace # 1 -- Core Size 20K Trace # 1-- Core Size 40K

BUFFER BUFFER HIT BUFFER BUFFER HIT
MISS HIT RATE MISS HIT RATE

BFSID 3991 5168 56.4% 2780 4661 62.6%
BFSRefct 4054 5112 55.8% 2842 4602 61.8%
BFSDyn 3983 5153 56.4% 2766 4646 62.7%
DFSID 3414 5748 62.7% 2202 5245 70.4%
DFSRefct 3444 5734 62.5% 2212 5238 70.3%
DFSDyn 3418 5722 62.6% 2206 5216 70.3%
Ooze 3757 5380 58.9% 2540 4883 65.8%
OPTl 2185 7067 76.4% 934 6599 87.6%
Hash 4625 4516 49.4% 3378 4045 54.5%

Trace # 1 ---Core Size 60K Trace # 1 -- Core Size 80K

ApPENDIX C 151

CORE OBJECT LAMBDA CLEAN DIRTY C[.EAN-{)LR'l'y
SIZE FAULT FAULT CONTRACT CONTRACT RATIO

20K 12,356 6587 9998 1724 5.80
40K 8626 4520 5594 1357 4.12
60K 8198 3999 4662 693 6.73
80K 7582 3337 3402 667 5.10
lOOK 7195 3152 391 628 0.62
120K 7195 2859 0 0 *

Trace # 2 -- Data Invariant of Initial Placement

BUFFER BUFFER HIT BUFFER BUFFER HIT
MISS HIT RATE MISS HIT RATE

BFSID 10,522 11,594 52.4% 7182 8296 53.6%
BFSRefct 10,538 11,579 52.4% 7196 8286 53.5%
BFSDyn 10,347 11,672 53.0% 7120 8302 53.8%
DFSID 8982 13.188 59.5% 6184 9344 60.2%
DFSRefct 8934 13.149 59.5% 6171 9297 60.1%
DFSDyn 8959 13.111 59.4% 6177 9285 60.1%
Ooze 8598 13,420 61.0% 5953 9481 61.4%
OPT2 5326 16,892 76.0% 3514 12,060 77.4%
Hash 14.096 7969 36.1% 9451 6017 38.9%

Trace #2 -- Core Size 20K Trace # 2 -- Core Size 40K

BUFFER BUFFER HIT BUFFER BUFFER HIT
MISS HIT RATE MISS HIT RATE

BFSID 5941 7745 56.6% 5214 7100 57.7%
BFSRefct 5911 7779 56.8% 5196 7134 57.9%
BFSDyn 5860 7790 57.1% 5140 7148 58.2%
DFSID 5045 8686 63.3%. 4424 7927 64.2%
DFSRefct 5052 8634 63.1% 4439 7883 64.0%
DFSDyn 5057 8609 63.0% 4444 7862 63.9%
Ooze 4726 8925 65.4% 4178 8113 66.0%
OPT2 2574 11,211 81.3% 2275 10,145 81.7%
Hash 8138 5547 40.5% 7241 5082 41.2%

Trace #2 -- Core Size 60K Trace #2 -- Core Size 80K

BUFFER BUFFER HIT BUFFER BUFFER HIT
MISS HIT RATE MISS HIT RATE

BFSID 4891 6763 58.0% 4113 6565 61.5%
BFSRetct 4873 6802 58.3% 4092 6612 61.8%
BFSDyn 4831 6813 58.5% 4038 6623 62.1%
DFSID 4077 7608 65.1% 3330 7400 69.0%
nFSRefct 4111 7557 64.8% 3327 7366 68.9%
DFSDyn 4lt2 7529 64.7% 3340 7334 68.7%
Ooze 3822 7807 67.l% 3022 7632 71.6%
OPT2 2032 9724 82.7% 1302 9480 87.9%
Hash 6826 4831 41.4% 6030 4653 43.6%

Trace #2 -- Core Size lOOK Trace #2 -- Core Size 120K

152 A LARGE O(UECT-ORIENTED VIRTUAL MEMORY

CORE OBJECT LAMBDA CLEAN DIRTY CLEAN-DIRTY
SIZE FAULT FAULT CONTRAC'[' CONTRACT RATIO

20K 16,273 15,012 13,115 3056 4.29
40K 10,471 8513 6782 2593 2.62
60K 8455 5759 3841 2401 1.60
80K 7378 5003 1317 1958 0.67
lOOK 7012 4638 406 1472 0.28
120K 6957 4315 0 0 *

Trace # 3 -- Data Invariant of Initial Placement

BUFFER BUFFER HIT BUFFER BUFFER HIT
MISS HIT RATE MISS HIT RATE

BFSID 19,011 17,160 47.4% 11,512 11,263 49.5%
BFSRefct 19,697 16,465 45.5% 11,985 10,812 47.4%
BFSDyn 18,980 17,188 47.5% 11,492 11,280 49.5%
DFSID 16,045 20,215 55.8% 9685 13,115 57.5%
DFSRefct 16,033 20,254 55.8% 9728 13,110 57.4%
DFSDyn 16,288 20,054 55.2% 9801 13,007 57.0%
Ooze 18,467 17,719 49.0% 10,979 11,800 51.8%
OPT3 11,397 24,985 68.7% 6669 16,268 70.9%
Hash 22,434 13,822 38.1% 13,471 9340 41.0%

Trace # 3 -- Core Size 20K Trace # 3 -- Core Size 40K

BUFFER BUFFER HIT BUFFER BUFFER HIT
MISS HIT RATE MISS HIT RATE

BFSID 8839 8768 49.8% 7135 8057 53.0%
BFSRefct 9216 8426 47.8% 7534 7695 50.5%
BFSDyn 8831 8770 49.8% 7175 8031 52.8%
DFSID 7571 10,036 57.0% 6232 8956 59.0%
DFSRefct 7595 10,057 57.0% 6285 8950 58.7%
DFSDyn 7657 9956 56.5% 6336 8867 58.3%
Ooze 8321 9267 52.7% 6680 8509 56.0%
OPT3 4994 12,762 71.9% 3792 11,560 75.3%
Hash 10,214 7407 42.0% 8386 6820 44.9%

Trace # 3 -- Core Size 60K Trace # 3 -- Core Size 80K

BUFFER BUFFER H[T BUFFER BUFFER HIT
MISS HIT RATE MISS HIT RATE

BFS[D 6236 7656 55.1% 4844 7050 59.3%
BFSRefct 6649 7293 52.3% 5226 6704 56.2%
BFSDyn 6269 7631 54.9% 4834 7061 59.4%
DFSID 5415 8476 61.0% 3989 7909 66.5%
DI":"SRefct 5446 8483 60.9% 4032 7899 66.2%
DFSDyn 5514 8404 60.4% 4067 7850 65.9%
Ooze 5837 8051 58.0% 4436 7460 62.7%
OPT3 3093 10,949 78.0% 1596 10,438 86.7%
Hash 7483 6410 46.1% 6027 5863 49.3%

Trace # 3 -- Core Size100K Trace # 3 -- Core Size 120K

ApPENDIXC 153

C-3. Selected Page Utilization and Cleanliness Rates

CORE SIZE MIN MAX MED Ql Q3 MEAN ST. DEY.
20K 0 100 10 4 30 22 26
40K 0 100 9 4 29 22 27
60K 0 100 11 4 32 24 28
80K 0 100 16 5 45 30 32

Trace # 1 -- Page usage for DFSID

CORE SIZE MIN MAX MED Ql Q3 MEAN ST.DEV.
20K 0 100 0 0 0 3 12
40K 0 100 0 0 2 3 9
60K 0 100 0 0 0 3 9
80K 0 0 0 0 0 0 0

Trace # 1 -- Page dirt for DFS[D

CORE SIZE MIN MAX MED Ql Q3 MEAN ST.DEV.
20K 0 100 14 5 33 24 26
40K 0 100 13 5 33 24 27
60K 0 100 14 5 34 24 26
80K 0 100 14 5 34 25 28

lOOK 0 100 14 5 36 26 28
120K 0 100 17 6 38 28 29

Trace #2 -- Page usage for DFSID

CORE SIZE MIN MAX MED Ql Q3 MEAN ST. DEV.
20K 0 100 0 0 0 2 10
40K 0 100 0 0 0 2 11
60K 0 100 0 0 0 1 7
80K 0 100 0 0 0 1 8

lOOK 0 100 0 0 0 1 7
120K 0 0 0 .0 0 0 0

Trace #2 -- Page dirt for DFSID

CORE SIZE MIN MAX MED Q1 Q3 MEAN ST. DEV.
20K 0 100 11 4 28 21 25
40K 0 100 10 4 27 22 26
60K 0 100 9 4 27 20 26
80K 0 100 9 4 27 21 26

lOOK 0 100 9 4 27 22 27
120K 0 100 12 5 31 25 30

Trace #3 -- Page usage for DFSID

CORE SrZE MIN MAX MED Q1 Q3 MEAN ST. DEY.
20K 0 100 0 0 0 2 10
40K 0 100 0 0 0 3 11
60K 0 100 0 0 0 3 12
80K 0 100 0 0 0 3 12

lOOK 0 100 0 0 0 3 11
120K 0 0 0 0 0 0 0

Trace # 3 -- Page dirt for DFS 10

154 A LARGE OBJECT-ORIENTED VlRTUAL MEMORY

CORE SIZE MIN MAX MED Ql Q3 MEAN ST. DEV.
20K 1 31 1 1 2 2 2
40K 1 31 1 1 2 2 3
60K 1 31 1 1 2 2 3
80K 1 31 1 1 3 3 4

Trace # 1 -- Page usage (in terms ofobject<;) for DFSlD

TRACE MIN MAX MED Q1 Q3 MEAN ST. DEV.
BFSID 0 100 9 4 27 20 25
BFSRefct 0 100 9 4 27 19 23
BFSDyn 0 100 8 4 27 20 25
DFSID 0 100 10 4 30 22 26
DFSRefct 0 100 11 4 32 22 25
DFSDyn 0 100 11 4 30 22 26
Ooze 0 100 9 5 27 21 26
OPT1 0 100 17 5 49 31 31
Hash 0 100 7 4 24 18 23

Trace # 1 -- Page usage for core = 20 K

TRACE MIN MAX MED Ql Q3 MEAN ST. DEV.
BfSID 0 100 9 5 32 25 30
BFSRefct 0 100 9 4 30 24 29
BFSDyn 0 100 10 5 33 25 30
DFSID 0 100 16 5 45 30 32
DfSRefct 0 100 16 5 46 30 31
DFSDyn 0 100 15 5 44 32 32
Ooze 0 100 12 5 37 27 31
OPTI 0 100 88 27 100 65 38
Hash 0 100 8 4 27 21 28

Trace # 1 -- Page usage for core = 8DK

ApPENDIXC l))

C-4. Effect of Core Purging Policy

CORE BUFfER BUFFER HIT FAULT BUFFER BUFFER HIT FAUlT
S[ZE MISS HrI' RATE RED. MISS HIT RATE RED.

20K 7385 8166 52.5% -10.14% 9413 6090 39.3% - 7.69%
40K 4665 5858 55.7% - 8.77% 5990 4495 42.9% - 7.17%
60K 3454 5460 61.3% - 1.17% 4686 4207 47.3% - 1.32%
80K 2202 5245 70.4% 0.00% 3378 4045 54.5% 0.00%

DFSIO -- Trace # 1 Hash -- Trace # 1

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT
SIZE MISS HIT RATE RED. MISS HIT RATE RED.

20K 9554 12,712 57.1% - 6.37% 14,679 7534 33.9% - 4.14%
40K 6703 9428 58.4% - 8.39% 10,178 5897 36.7% - 7.69%
60K 5343 8488 61.4% - 5.91% 8498 5295 38.4% - 4.42%
80K 4432 7582 63.1% - 0.18% 7159 4815 40.2% +1.13%

lOOK 3857 7521 66.1% +5.40% 6545 4790 42.3% +4.12%
l20K 3330 7400 69.0% 0.00% 6030 4653 43.6% 0.00%

DFSID -- '[race #2 Hash -- Trace # 2

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER H[T FAULT
SIZE MISS HIT RATE RED. MISS HIT RATE RED.

20K 16,836 19,555 53.7% - 4.93% 23.172 13,228 36.3% - 3.29%
40K 10,575 12,314 53.8% - 9.19% 14,272 8648 37.7% - 5.95%
60K 8228 9369 53.2% - 8.68% 10,720 6895 39.1% - 4.95%
80K 6810 8753 56.2% - 9.23% 9151 6426 41.3% - 9.12%

lOOK 5139 8144 61.3% +5.10% 7224 6065 45.6% +3.46%
120K 3989 7909 66.5% 0.00% 6027 5863 49.3% 0.00%

DFSID -- Trace #3 Hash -- Trace # 3

156 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

c-s. Effect of Buffer Size

CORE nu FFER BU FFER HIT FAULT BUFFER BUFFER HIT FAULT
SIZE MISS HIT RATE RED. MISS HIT RATE RED.

20K 8949 5654 38.7% -33.5% 7722 7122 48.0% -15.2%
40K 5704 4438 43.8% -33.0% 4859 5312 52.2% -13.3%
60K 4973 4114 45.3% -45.7% 4047 5054 55.5% -18.5%
80K 3337 4110 55.2% -51.5% 2659 4788 64.3% -20.8%

Buffer Size =2 (DFSID # 1) Buffer Size =4 (DFSID # 1)

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT
SIZE MISS HIT RATE RED. MISS HIT RATE RED.

20K 7127 8013 52.9% -6.3% 6630 9109 57.9% 1.1%
40K 4466 5801 56.5% -4.1% 4067 6509 61.5% 5.2%
60K 3658 5458 59.9% -7.1% 3238 5957 64.8% 5.2%
80K 2383 5064 68.0% -8.2% 2083 5364 72.0% 5.4%

Buffer Size =6 (DFSID # 1) Buffer Size = 10 (DFSID # 1)

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT
SIZE MISS HIT RATE RED. MISS HIT RATE RED.

20K 6443 9810 60.4% 3.9% 6378 10,636 62.5% 4.9%
40K 3888 6734 63.4% 9.3% 3586 6986 66.1% 16.4%
60K 3133 6091 66.0% 8.2% 2914 6264 68.3% 14.6%
80K 1977 5470 73.5% 10.2% 1855 5592 75.1% 15.8%

Buffer Size = 12 (DFSID # 1) Buffer Size = 16 (DFSID # 1)

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT
SIZE MISS HIT RATE RED. MISS H[T RATE RED.

20K 6452 11,563 64.2% 3.8% 6661 12,377 65.0% 0.7%
40K 3413 7238 68.0% 20.4% 3204 7370 69.7% 25.3%
60K 2710 6453 70.4% 20.6% 2597 6556 71.6% 23.9%
80K 1753 5694 76.5% 20.4% 1731 5780 77.0% 21.4%

Buffer Size =20 (DFSID # 1) Buffer Size =24(DFSID #1)

CORE BUFFER BUFFER HIT FAULT BUFFER RUFFER H[T FAULT
SrZE MISS HIT RATE RED. MISS HIT RATE RED.

20K 7004 13,350 65.6% - 4.5% 7692 14,439 65.2% -14.7%
40K 3221 7630 70.3% 24.9% 3117 7891 71.7% 27.3%
60K 2470 6620 72.8% 27.7% 2389 6688 73.7% 30.0%
80K 1750 5883 77.1% 20.5% 1774 5973 77.1% 19.4%

Buffer Size = 28 (DFSID # 1) Buffer Size = 32 (DFSID # 1)

ApPENDIXC 157

BUFFER SIZE MIN MAX MED Ql Q3 MEAN ST. DEY.
2 0 100 9 4 27 21 25
4 0 100 9 4 27 21 25
6 0 100 10 4 29 21 25
8 0 100 10 4 30 22 26

10 0 100 10 4 30 22 26
12 0 100 II 4 31 23 26
16 0 100 II 5 32 23 27
20 0 100 12 5 33 24 27
24 a 100 12 5 33 24 27
28 0 100 12 5 34 24 28
32 0 100 12 5 35 25 28

Trace # 1 -- Page usage for DFSIO (20K core)

BUFFER SIZE MIN MAX MED Ql Q3 MEAN ST. DEV.
2 0 100 14 5 43 29 31
4 0 100 14 5 41 28 31
6 0 100 15 5 43 29 31
8 0 100 16 5 45 30 32

10 0 lOO 16 5 47 31 32
12 0 100 16 5 50 31. 33
16 0 100 16 6 52 32 34
20 0 100 17 6 52 33 34
24 0 100 18 6 52 33 35
28 0 100 17 6 52 33 34
32 0 100 16 6 52 33 34

Trace # 1 -- Page ~sage for DFS[D (80K core)

BUFFER SIZE MIN MAX MED Ql Q3 MEAN ST. DEY.
2 0 100 0 0 0 2 10
4 0 100 0 0 0 3 10
6 a 100 0 0 0 3 12
8 0 100 0 0 0 3 12

10 0 100 0 0 0 3 12
12 0 100 0 0 0 4 13
16 0 100 0 0 0 4 13
20 0 100 0 0 0 4 14
24 0 100 0 0 0 4 14
28 0 100 0 0 0 4 14
32 0 100 0 0 0 3 14

Trace # 1 -- Page dirt for DFSID (20K core)

158 A LARGE OBJECT-OR IENTED VIRTUAL MEMORY

C-6. Effect of Disk ButTer Purging Policy

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT
SIZE MISS HIT RATE RED. MISS HIT RATE RED.

20K 6405 8932 58.2% 4.48% 8444 6825 44.7% 3.40%
40K 4046 6401 61.3% 5.67% 5359 5047 48.5% 4.12%
60K 3207 5955 65.0% 6.06% 4423 4718 51.6% 4.37%
80K 2085 5362 72.0% 5.31% 3247 4176 56.3% 3.88%

Trace # 1 -- DFSID Trace # 1 -- Hash

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT
SIZE MISS HIT RATE RED. MISS HIT RATE RED.

20K 8645 13,525 61.0% 3.75% 13.143 8322 37.7% 2.50%
40K 5877 9651 62.2% 4.96% 9123 6345 41.0% 3.47%
60K 4830 8901 64.8% 4.26% 7881 5804 42.4% 3.16%
80K 4237 8114 65.7% 4.23% 7019 5304 43.0% 3.07%

lOOK 3874 7811 66.8% 4.98% 6555 5102 43.8% 3.97%
120K 3190 7540 70.3% 4.20% 5832 4851 45.4% 3.28%

Trace #2 -- DFSID Trace #2 -- Hash

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT
SIZE MISS HIT RATE RED. MISS HIT RATE RED.

20K 15.430 20,830 57.4% 3.83% 21,798 14,458 39.9% 2.83%
40K 9280 13,520 59.3% 4.18% 13,051 9760 42.8% 3.12%
60K 7244 10,363 58.9% 4.32% 9858 7763 44.1% 3.49%
80K 5926 9262 61.0% 4.91% 8055 7151 47.0% 3.95%

lOOK 5145 8746 63.0% 4.99% 7169 6724 48.4% 4.20%
l20K 3816 8082 67.9% 4.34% 5809 6081 51.1% 3.62%

Trace #3 -- DFSIO Trace # 3 -- Hash

APPENDIXC 159

C-7. rn-Core Hesidence Times.

CORE SIZE MIN MAX MEl) Ql Q3 MEAN ST. DEY.
20K 3 148 IS 11 19 18 13
40K 7 110 3~ 30 48 39 15
60K 5 l22 67 50 80 65 22
80K * * * * * * *

Trace # 1 -- Purged objects only

CORE SIZE MIN MAX MED Q1 Q3 MEAN ST. DEV.
20K 0 186 15 11 19 19 19
40K 0 143 36 25 48 42 30
60K 0 137 64 30 84 61 36
80K 0 136 70 32 101 67 39

Trace # 1 -- All objects

CORES[ZE M[N MAX MEl) Ql Q3 MEAN ST. DEY.
20K 2 143 16 12 20 17 9
40K 2 116 38 28 46 38 15
60K 16 150 55 40 66 54 19
80K 2 153 68 50 90 69 26

lOOK 8 142 83 34 110 74 39
l20K * * * * * * *

Trace #2 -- Purged objects only

CORES[ZE MIN MAX MED Ql Q3 MEAN ST. DEY.
20K 0 254 16 11 20 17 12
40K 0 187 35 24 46 36 20
60K 0 170 48 31 63 49 27
80K 0 161 60 36 90 64 38

lOOK 0 153 76 43 100 75 40
120K 0 153 76 45 102 76 40

Trace # 2 -- All objects

CORES[ZE MIN MAX MED 01 Q3 MEAN ST. DEV.
20K 1 357 13 10 18 17 17
40K 3 248 35 28 44 41 26
60K 5 219 55 42 82 66 36
80K 6 199 78 58 116 85 33

lOOK 3 190 89 51 146 96 48
120K * * * * * * *

Trace # 3 -- Purged objects only

CORE SIZE MIN MAX MEl) Ql Q3 MEAN ST. DEY.
20K 0 368 l3 1O 18 17 21
40K 0 265 35 27 44 41 33
60K 0 230 52 38 81 65 45
80K 0 212 72 46 115 85 53

lOOK 0 205 89 42 148 94 57
120K 0 203 91 44 152 99 58

Trace # 3 -- A 1l objects

1 All values are expressed in terms of ~K ticks.
*No objects were purged.

160 A LARGE OBJECT-ORIENTED VlRTUAL MEMORY

e-s. Leaf/No-Leaf Page Faulting Rates

CORE BUFFER BUFFER Hl'l' FAULT BUFFER BUFFER HIT FAULT
S(ZE MlSS HIT RATE RED. MISS HIT RATE RED.

20K 4577 4708 50.7% 31.7% 6176 3033 32.9% 29.3%
40K 2997 3762 55.6% 30.1% 4064 2654 39.5% 27.2%
60K 2488 3536 58.6% 27.1% 3448 2552 42.5% 25.4%
80K 1631 3218 66.3% 25.9% 2615 2210 45.8% 22.5%

DFSID -- Trace # 1 Hash -- Trace # 1

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT
SIZE MISS HIT RATE RED. MISS HIT RATE RED.

20K 6817 8678 56.0% 24.1% 11.491 3908 25.3% 18.4%
40K 4626 6113 56.9% 25.1% 7591 3090 28.9% 19.6%
60K 3944 5764 59.3% 21.8% 6756 2907 30.0% 16.9%
80K 3460 5511 61.4% 21.7% 6016 2930 32.7% 16.9%

lOOK 3102 5274 62.9% 23.9% 5572 2768 33.1% 18.3%
120K 2656 5215 66.2% 20.2% 5122 2703 34.5% 15.0%

DFSID -- Trace #2 Hash -- Trace # 2

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT
SIZE MISS HIT RATE RED. MISS HIT RATE RED.

20K 10,581 8703 45.1% 34.0% 15,202 4109 21.2% 32.2%
40K 7075 6848 49.1% 26.9% 10,094 3937 28.0% 25.0%
60K 5753 5571 49.1% 24.0% 7643 3688 32.5% 25.1%
80K 4771 5178 52.0% 23.4% 6425 3523 35.4% 23.3%

lOOK 4054 4920 54.8% 25.1% 5637 3356 37.3% 24.6%
120K 3031 4552 60.0% 24.0% 4590 2984 39.3% 23.8%

OFSIO -- Trace # 3 Hash -- Trace # 3

30K 60K 90K l20K 150K 180K 210K 240K

OFSID #1 30.1% 47.1% 29.9% 11.8% 8.6% 6.2% 4.6% 4.6%
DFSID #2 22.5% 26.0% 10.9% 5.6% 28.1% 3.7% 4.7% 2.6%
DFSID #3 22.9% 31.0% 15.9% 9.6% 5.8% 4.6% 5.4% 4.2%
Hash # 1 35.3% 38.7% 110.5% 62.8% 38.7% 8.1% 6.2% 3.1%
Hash #2 27.8% 31.2% 71.2% 33.8% 22.5% 22.1% 15.1% 13.8%
Hash #3 30.0% 29.6% 74.2% 48.8% 35.6% 22.7% 10.5% 6.0%

Page fault increases due to leaf references for the Paged Virtual Memory

APPENDIXC 161

C-9. Warm-Start Page Faulting Rates

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HlT FAULT
SIZE MlSS HIT RATE RED. MISS HIT RATE RED.

20K 6875 8015 53.8% - 2.5% 8949 5902 39.7% - 2.3%
40K 3975 4893 55.1% 7.3% 5079 3773 42.6% 9.1%
60K 3154 3535 52.8% 7.6% 3934 2753 41.1% 14.9%
80K 741 2205 74.8% 66.3% 1290 1639 55.9% 61.8%

OFS[D -- Trace # 1 Hash -- Trace # 1

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT
SIZE MISS HIT RATE RED. MISS HIT RATE RED.

20K 8878 12.351 58.1% 1.1% 13.993 7145 33.8% 0.7%
40K 5882 8122 57.9% 4.8% 9117 4857 34.7% 3.5%
60K 4834 7146 59.6% 4.1% 7490 4436 37.1% 7.9%
80K 4182 5954 58.7% 5.4% 6757 3370 33.2% 6.6%

lOOK 3009 4918 62.0% 26.1% 5022 2891 36.5% 26.4%
120K 1311 3488 72.6% 60.6% 3079 1706 35.6% 48.9%

OFSID -- Trace #2 Hash -- Trace # 2

CORE BUFFER BUFFER HIT FAULT BUFFER BUFFER HIT FAULT
SIZE MISS HIT RATE RED. MISS HIT RATE RED.

20K 16,954 20,061 54.1% - 5.6% 23,593 13,450 36.3% - 5.1%
40K 10,047 11,724 53.8% - 3.7% 13,725 8065 37.0% - 1.8%
60K 7282 7985 52.3% 3.8% 9519 5768 37.7% 6.8%
80K 5698 5919 50.9% 8.5% 7164 4465 38.3% 14.5%

lOOK 3718 3465 48.2% 31.3% 4309 2854 39.8% 42.4%
120K 691 1813 72.4% 82.6% 907 1640 64.3% 84.9%

OFSID -- Trace #3 Hash -- Trace # 3

30K 60K 90K 120K 150K 180K 210K 240K

DFSIO #1 6.9% 15.9% 34.3% 41.0% 42.6% 54.0% 70.2% 70.2%
DFSID #2 6.9% 15.5% 17.2% 17.1% 25.6% 25.8% 26.3% 30.0%
OFSIO #3 5.4% 9.0% 19.2% 26.7% 31.4% 42.4% 47.5% 47.8%
Hash #1 5.9% 6.3% 14.3% 25.3% 39.4% 43.7% 43.1% 50.9%
Hash #2 5.7% 7.0% 13.2% 15.5% 21.2% 24.3% 33.1% 38.2%
Hash #3 3.4% 4.0% 4.9% 11.8% 18.4% 26.1% 30.6% 43.8%

Wann-start page fault reductions for the Paged Virtual Memory

162 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

Appendix 0

D-O. Trace Data

TRACE STORE BYTECODES NEW NEW OBJECTS OLD OBJECT
NUMBER OPERATIONS EXECUTED OBJECTS REMAINING DEATHS

#1
#2
#3
#4
#5

98,031
41,779

126,402
150,532
129,235

87,998
39,659

118,236
145.197
130,140

6757
2393
9014
8342
4795

90
26

5
159
82

18
23
o

78
57

TRACE MAX STACK LASTSTACK MAX OBJECT LASTOBJECT WORDS WORDS
NUMBER POINTER POINTER COUNT COUNT COPIED KEPT

#1
#2
#3
#4
#5

1227
314
149

1506
484

1208
262
42

1504
482

48
44
62

181
58

TRACE MAX WORDS LAST WORDS OLD-NEW
NUMBER NEW CORE NEW CORE STORES

#1
#2
#3
#4
#5

861
604

1117
2174
1250

158
4
o

56
1134

7
22
2
6
2

TRACE SMALL POS SMALL NEG ALL POS
NUMBER STORES STORES STORES

#1
#2
#3
#4
#5

12,597
4153

15,827
13,627

9448

7159
1002
5672
3654
2195

14,687
5218

18,074
21,076
16,310

8
2

° 11
54

970
452
75

1253
227

NEW-OLD OLD-OLD
STORES STORES

26,067,
6862

32,195
31,394
25,327

ALL NEG
STORES

9253
1099
6168
4265
2382

55
132

6
129
203

608
348
75

1083
227

ApPENDIX D 163

[)-l. Transient Object Lifetimes

rtRACE MIN MAX MEl) Ql Q3 MEAN ST. DEV.

#1 1 55K 13 4 53 269 1849
#2 1 39K 13 5 35 436 2869
#3 1 116K 30 8 103 333 4452
#4 1 142K 14 6 51 696 7041
#5 1 51K 13 6 25 264 1763

0-2. Stack-like Memory Management

TRACE MIN MAX MED Q1 Q3 MEAN ST. DEV.

#1 0 86 1 0 1 1 3
#2 0 37 0 0 0 1 3
#3 0 5 0 0 1 0 1
#4 0 176 0 0 0 1 10
#5 0 33 0 0 0 0 2

Long Deallocation Distance

TRACE MIN MAX MED Ql Q3 MEAN ST. DEV.

#1 0 29 1 0 1 1 1
#2 0 6 0 0 0 0 1
#3 0 5 0 0 1 0 1
#4 0 154 -0 0 0 1 5
#5 0 33 0 0 0 0 2

Short Dcallocation Distance

164 A LARGE OBJECT-ORIENTED VIRTUAL MEMORY

0-3. Dynamic Pointer Distance

TRACE MIN MAX MED Q1 Q3 MEAN ST. DEV.

#1 0 75K l3 4 157 1832 6046
#2 0 38K 25 5 542 2286 5988
#3 0 115K 8 3 77 6063 21,034
#4 0 90K 187 7 4K 10,167 21,125
#5 0 67K 375 6 17K 10,417 16,479

Positive Pointer Distance

TRACE MIN MAX MED Q1 Q3 MEAN ST. DEV.

#1 2 32K 6 2 672 1294 2851
#2 2 22K 12 2 68 599 2182
#3 2 113K 12 7 91 3897 16,882
#4 2 91K 7 3 211 3367 13,065
#5 2 53K 2 2 23 1108 4907

Negative Pointer Distance

D-4. Degradation of an Initial Placement

HOURS USED MIN MAX MED Q1 Q3 MEAN ST. DEV.

0 0 1563 419 11 956 521 501
4 0 1563 427 16 956 525 499
8 0 1563 434 18 959 528 499

12 0 1565 423 17 976 524 502

Static Pointer Distance

Hours of Use: 0 4 8 12
Close Pointers: 16.9% 16.2% 16.2% 16.1%

On-page (512-word) pointer ratio

