
XEROX SDD ARCHIVES
I have read and understood

Pages _________ To ________ _

)(FRO)(Reviewer Date ___ _

HUSlNESS SYSTEMS
System Development Division

of Pages __ R.ef 0, 7g.sJJJ:J -1'-.3

To: Distribution Date: June 15, 1978

From: W. C. Lynch Location: Palo Alto

Subject: Scavenger, Copydisk,
In i tializeDisk

Organization: SDD/SD/SSW IPilot

~Filed on: [Iris] (Lynch >Scavenger,Memo

Copies: Archives Belleville Bergsteinsson Bewley Clark DeSantis
Harslem Heinrich Irby Kennedy LeCcsne Liddle
Lynch Mendelson Metcalfe Reilly, D. Reiiy, J. Schwartz
Sonderegger Szelong Thacker Townsend Wallace Weaver
Wick Wickham White

Copies: Lauer Redell McJones Purcell DClia! Hankins
Jarvis Horsley Murray Kierr Sandman Johnsson
Ogus Garner Bowering

Introduction

The situ2.tion regaidin; ::' .. Scavenger, Copydisk. and InitializeDisk for Oak has been unclear.
This EJemO is in:eIlded to report the current Slatus of those items and to propose a
resoi\.~:ion of lhe it;2ITiS.

D-efini~ions

lni:i<:liz<:Disk (Pilot) - A program which takes a Vlrgm disk f:'om the manufacturer and
formats it into a Valid Pilot Disk containing no Pilot files.

Valid Pilot Disk - a disk pack which has been formented with lh~ proper header, label, and
data blocks. In addition, bad spots have been identified, marKed ~lt1ct removed from service.

Valid Pilot Volume - A Valid Pilot Disk which additionally conLlins a proper Pilot Volume
as described in [Iris]<Purcell>PilotVo!umeFormaLmemo (attached).

Copydisk (Alto) - An existing Alto program which makes a bit-for-bit copy of one disk
pack on another.

Copydisk (Pilot) - A Pilot application client which makes copies of all of the files on the
source Pilot disk upon the target Pilot disk. This differs from a bit-far-bit copy in that
multiple Fl Ds for mutable Pilot files mllst be avoided.

Movedisk (Pilot) - A Pilot application client program which makes a bit-For-bit copy of
one Pilo~ disk pack on another. 1t differs frol11 the Alto Copyd:'~k in that the source pack
must be ~rased or otherwise made permenantly unavailable so [!s lu avoid duplicate FIOs for
the same J1lUl:lble Pilol fi Ie. This shollid be lIsed only when a pack contains only immutable

[Iris] <LiilCh)SCuvenger.Memo June 15, 1978 2

files or when the "physical integrity of the pack itself is suspect (and the user wishes to
discard the physical pack but not the information on it)

Sc~venger (Alto) - An existing, relatively ill defined (see bdo\-v) Alto program which takes a
"not-too-badly smashed Alto disk and makes it acceptable to a certain set of Alto subsysten~s.

Scavenger (Pilot File) - A Pilot client program which takes Valid Pilot Disk and leaves it
containing an undamaged Valid Pilot Volume.

Scavenger (Pilot Disk) - A program which produces a Valid Pilot Disk from a damaged
Pilot disk. It identifies and records bad spots and attempts to relocate the overlaid
information to other places on the disk.

Scavenger (Star) - A Pilot client program which repairs damaged Pilot client objects which
are stored in Pilot files.

Status

1) Bob Bowering has been in the hospital and unavailable for consultation. His continued
availability is uncertain.

2) Steve PurceH has written a memo (attached) capturing the information required to deal
with the Pilot disk and required to construct a Pilot file scavenger for it. (There are other
kinds of scavengers:. e.g. a Star document scavenger, which will not be discussed here. See
above.)

3) I have talked with Jim Morris (the resident Alto scavenger wizard) at some length about
the status and functions of the Alto scavenger.

4) I have determined that the current Alto Copydisk will function very well as the putative
Pilot MoveDisk.

5) Steve Purcell h2.5 al::eady constructed an IniIializeDisk routine which, with minor
pacbging, can be delivered with Oak to serve to initialize Pilot file disks. It doe5 not deal
with bad spots.

Alto Scavenger

I wish to record here some facts about the Alto Scavenger which T gleaned from my
conversation with Jim Morris. As the author of the Alto Scavenger he has been slibjected to
a wide variety of house calls for problems of one kind or another.

1) Jim confirmed our impression that far-and-away the most important thing is the
reconstruction of smached and invalid directories and allocation tables.

2) There was never a good definition of what the Scavenger would do, of where its duties
\vould leave off and a subsystems duties would begin. Ex post facto negotions between the
Scavenger and the major subsystems have left a lot of anomalies, rough edges, and an endless
wish list.

3) There are specific error modes which have accounted for the bulk of the problems. These
are:

[!riG] (Lynch>Scavenger.Merno June 15, 1978 3

a) Bad Spots - The current scavenger cannot deal with bad spots. Mike Overton is
slowly accumulating unusable disks that have bad spots on them. As a result I am
placing low priority on dealing with buct spot problems in Oak.

b) Disk Alignment - This is now tess visable as many more people have their own
Altos and packs are shifted less frequently. Jim had a scheme worked out (the
details of which he could not recall on the spot) which would detect incipient
misalignment before it became a real problum. It required co-operation' from the
drive manufacturer.

c) Power Supply run-away - Many problems could be attributed to.. misbehavior on
the part of the power supplies, causing bad writing on the disk. (I would catagorize
our problems with IFS during power failures here)

d) Processor Overload - The Alto has had problems with the microcode tasks not
reacting within real time constraints under unusual circumstances. (There is an
infamous bug which caused every sixth FTP page to be badly writen due to a
combination a microcode tasks collectively taking too much time.)

e) The generation of UIDs is poorly done (it's more like a bug) causing more than
one file to have- that same DID. This complicates life for the Alto Scavenger. Jim
agrees that Pilot has that problem designed out. The problem has never been
corrected orr the Alto simply because the system is not being maintained (the specific
problem seems easy to fix).

Proposal

1) Steve PurceH is to be directed to specify, document, package, and deliver to Oak alpha test
an InitializeDisk. In Oak it will not deal with bad spots.

2) Tne current Alto Copydisk be used as the Pilot Movedisk in Oak. This will be run on an
Aha. Removing the old pack from circulation will be accomplished by operational
procedures. No Pilot Copydisk will be provided with Oak.

3) That Steve Purcell be directed to specify, document, and deliver a Pilot File Scavenger
which is restricted to reconstruction of the vfm and yam. Neither a Pilot Disk Scavenger
nor a Star Scavenger will be delivered with Oak.

June 15, 1978 4

To Distribution Date June 13, 1978

From Stephen Purct:!ll Location Palo Alto

Subject Pilot Volumo;;l Format Organilation SDD/SD

" if . ,,!;r-ROX ('\L

Filed on: [Iris]<Purcell>PilotVolumeFormat.memo

This memo describes some aspects of Pilot Volumes. Since the design of Pilot and its
volumes is still in flux, only a snapshot of the current design and implementation can be
provided. There is no guarantee that what follows will not change. The general structure is
probably correct and will remain, but many details will change.

Pilot stores files in volumes which are physical disks with data conforming to certain
constraints. Pilot assumes the storage to consist of pages randomly accessed by volume
page-numbers which range continuously from zero to the size of the volume in pages. Bad
Pages will be hidden by the disk driver. A single disk Diablo 31 will have volume pages in
the range [0 .. 4872). As far as Pilot's volume manager is concerned, a page is an 8 word label
and 256 words of data. This memo ignores additional page fields such as the 2 word address
header used 'by the device drivers/controller.

Pilot partitions pages into a number of files, each with a unique identifier (UniversaIlD) and a
type. (The generation and registration of types is still fuzzy, but many files can have the
same type). (The file properties of immutable and temporary lllay be viewed as contained in
t:he type, althougll they are actually independent fields.) Pilot uses four types for system or
VO!Urr.e files, presem on every volume. Each page in a volume belongs to exactly one file
and has a label with Ihe file ID, the file type and the file-page-number. A client file has
pages vdth consecu:;\:; file-page-numbers from zero, while a system file is numbered by
YG!L:!Ue-page-numbers. which are not necessarily consecutive. Page labels and page data are
stcred together for safety. For efficiency and redundanq. label inform:.lt~n is also stored
in the system files, \"hich can be entirely discarded and reconstructed from labels if
damaged. The four system file types are root, vam, vfm and free. The root file is exactly
one page with a constant location on the volume, containing IDs (and sometimes page
numbers) of the other system files and of one client root file. The vam (volume allocation
map) is a bit map telling which pages are free. The vfm (\'olume file map) is a B-tree
which maps (file 10, file-page-number) keys into volume-rage-numbers for all client files.
The frce file has blank pages scattered over the volume that are not in use t:ither by clients
or by Pilot. Bad pages can be thought of as free pages but the Pilot volume manager is not
aware of them, since the disk driver ensures that there is a good page for every volume
page-number.

The root file is created and accessed by

LogicalVolume,RootAccess: PROCEDURE[volume: Volume,ID, proc: PROCEDURE[Volume:
LogicalVolume,Handle]];

LogicalVolume,Hanc!le: TYPE:: POINTER TO LogicalVolume,Descriptor;

LogicaIVolume.Descriptor: TYPE:: RECORD[
version: CARDINAL,

[Iris] <Lynch)Sc~\vcnuor,Momo

volumeSize: Volume,PageCount,
vID: Volumc,ID,
yam: File,ID,
vfm: File,ID,
free: File.lD,
yam: File,ID
...];

June 15, 1078

LogicaIVolume.nuIIDescriptor: LogicaIVolume,Descriptor=

5

VolumeRootAccess is a stylized way to read and lock the root page, access and modify it by
a client procedure proc, and then write it back to the volume and unlock it. The proc can
use the handle (a pointer) to rt"lad and write the root page which will then be written back to
the volume.

The vam(volume allocation map, a bit map) is created and accessed by

VolAHocMapJnit: PROCEDURE[volume: Volume,ID];

VoIAllocMap,GetBusy: PROCEDURE[volumePage: LogicaIVolume,PageNumber] RETURNS
[busy: BOOLEAN];

VoIAl!ocMap.SetFree: PROCEDURE[vol umePage: LogicaIVolume,PageNurnber];

VoIAlIocMap.GetSetBusy: PROCEDURE[volumePage: LogicaIVolume,PageNumber] RETURNS
[busy: BOOLEAN];

--set a page- to busy and return its previous state

VOiAllocMap,GrabFfrstFree: PROCEDURE[volumePage: LogicaIVolume,PageNumber] RETURNS
[LogicaIVolume,PageNumber] ;

--find first free page and set busy (may signal Volume,/nsufficientSpace)

The vfm(volume file map, a B-tree) is created and accessed by

VoiFHeMap.ln it: ?RCGEDURE[Volume: Volume,ID];

V;:;Ir;'eMap.GetPageSro:;p: PROCEDURE[file: FilelU, filePage: File.PageNurnber] R~7URNS
[Flle:nt~maI.PageGraup]; ,

VOiFileMap,GetNext: PROCEDURE[file: File,ID, fi!ePage: File,PageNumber] RETURNS
[nextFile: File,ID, nextFilePage: File,PageNumber];

--starting and ending with null, enumerc:;tes the page group boundaries

VoIFileMap,lnsertPageGroup: PROCEDURE[file: File.rD, group: Fileinternal.PageGroup];

Yo!FileMap,DeletePageGroup: PROCEDURE[file: File,ID, group: Filelnlernal.PageGroup];

The vfm maps keys (file ID, file-page-number) into volume pages, and is abstractly a
collection of entries (file ID, file-pagc-nl1mber, vo]ume-p~:;e-number). The procedures for
accessing it use page groups to encode rllllS of entric:'> with file-page-numbers in J closed
open interval: [..). The null volume page resulting from initialization or deletion signifies
the absence of a file or a page of a file. Entries have unique keys. and insertions overwrite
existing entries. Therefore pages with duplicate It) and p~lge number cannol be pointed to
by the map. A scavenger would have to deal with such (illegal) p3ge pairs before updating
the vfm. The vfm does nct depend on consecutive file-p:lge-nul11bcrs so that as it is being
reconstructed, say by the scavenger, it can contain fragmcrns of files. Client files.with gaps,
hO\vcver, are not permitted in a legal Pilot volume. Insertions are most efficient \vhen
clustered by key (ordered by TD, page number). GetN8xt is It)cd as an enumerater. All
client file pages can be located on the volume in random aCCt:ss fashion by use of the vfm.

