
DROI SDJ) ARCHIVIlS 
1 have read and understOQd 

PageB _________ TO ______ .~.=.i#~. 

XEROX Rev1ewer _________ Date.1 --~--

BUSINESS SYSTEMS # ot Pages Bet •. ZiS AA -1!(3 

Systems Development Department 

To: Bob Metcalfe Date: September 14, 1978 

From: Roy Ogus and Victor Schwartz Org: SDD/SD System Architecture 

Subject: DO RS-232-C microcode status Filed: [Iris] < Ogus > memo) RS232Status.memo 

This memo discusses the current state of DO RS-232-C microcode. It describes what has been done 
up until now for the Oak project and what difficulties have been encountered. The additional 
functions still required to realize the full RS-232-C controller for Pilot/Star1 are mentioned, and 
some recommendations are made for their implementation. 

What has been done for Oak 

Background. As described in a previous memo ([Iris] < Ogus > memo) RS232.memo), the only 
hardware existing in the DO for RS-232-C transmission is a set of hardware timer modes which 
provide a mechanism for timing the bits received or transmitLed through the RS-232-C port. TI1e 
microcode must do all the serialization and deserialization of data, as well as control the other RS-
232-C signals directly. It is thus intended that the RS-232-C microcode be driven by the timer 
microcode task (which is also servicing other timers such as the memory refresh timer, etc.). 
Hard\vare wakeups are provided only at timer expirations. rThis means that the microcode driven 
by the timers cannot "TASK" (i.e offer the machine to other tasks) before it has completed the 
servicing of the particular timer. If it did, there would not be a subsequent wakeup to allow it to 
resume service. This limits the amount of processing per timer service to about 12 microinstructions 
to prevent hogging of the machine bandwidth. It was thus realized that it would not be feasible for 
the timer task to handle the large amount of work specified for the RS-232-C microcode in the Pilot 
Design Specification. A simpler byte interface between the software and the microcode was 
proposed. and an asynchronous mode of operation was planned as the first implementation of such 
an interface. 

Description of aSYllchronous mode. A detailed description of this interface can be found in another 
memo ([Iris] < Ogus > memo) RS232InLmemo), which is being updated continually to track the state 
of the microcode. rIlle microcode consists of three parts which all run under under the DO timer 
task. 11ley are the low-frequency poller. the receiver, and the lransmitter~ The poller nms at a 
frequency of about 100 polls per second. It provides the interf:\ce between the software ddver and 
the microcode, handling the RS-232-C control signals transmitled to or received from the port, as 
well as controlling the receiver and transmitler. '111e receiver and transmitter carry out the 
(de)seriaIi7.ation and timing of bits to and from the RS-232-C port. and perfonn the 
(de)cncapsulation of the characters (start. stop. and padty bits). An Intcrim Controller Status Block 
(lCSB) is maintained by the software fi)r communication between the driver and microcode. 
Associated with the ICSB arc two ring bufkrs which arc used for the hufferiJlg of characters 
between the software and microcode. 



DO RS·232-C microcode status 2 

Statistics. The above three pieces of microcode require about 200 microinstructions (excluding the 
SendBreak and BreakDctect functions, which are not yet implemented). 20 R-registers are needed, 
and the ICSB occupies 12 words. Currently. two 128-word ring buffers are used. The worst case 
timer service is 18 microinstructions for the transmitter and receiver, including the timer dispatch 
overhead; a typical data bit service will be 12 to 14 microinstructions, which amounts to about 2.4% 
of the processor cycles at 9600 bps (assuming a 95 ns cycle time). This does not include conditional 
branches (which extend an instruction time if the condition is true), and aborted instmctions due to 
memory conflicts. The actual usage of the bandwidth will be somewhat higher. 

Status. The microcode for the asynchronous mode has been completed except for the 
implementation of the SendBreak and BreakDetect functions. A test (micro)program has been 
written to test the code, which provides the same interface to the RS-232-C code as the Mesa 
software will. Using the test program, the RS-232-C code runs correctly for line speeds that use 
only a single DO timer (> 1200 bps), and has been tested in loopback mode through a loopback 
connector on the DO. Line speeds that use the double timer mode « 1200 bps) do not function 
correctly due to a bug ill the DO timer hardware. This bug has been fixed in one DO (EM 009) and 
the test program runs correctly on this machine for aU line speeds (110 bps through 9600 bps). The 
RS-232-C microcode has been integrated into the tolal Mesa microcode, and the RS-232-C Mesa 
software has correctly executed on Ole DO in loopback mode for line speeds in the range 2400 bps 
through 9600 bps. Its as expected, though not yet verified, that the software will execute correctly 
on EM 009 for allUne speeds. Current work involves making the necessary microcode changes to 
improve the overall software-microcode performance. 

Problems encountered. Most of the difficulties experienced were related to the handling of the 
hardware timers. One problem concerned the computation of the values to be loaded into the 
timers. The word to be loaded into a timer contains three fields, viz. the timer slot. the timer state, 
and the data value. The first two can be fixed at assembly time for the various timers, but the data 
value is a function of the RS-232-C line speed, which is a variable, its value being determined at 
runtime. Since it takes at least 4 instructions to compute a timer value, and since we potentially 
need 6 timer values, it was decided to precompute all the possible timer words and have the 
software pass the appropriate precomputed constant(s} to the microcode through the ICSB. This 
results in 6 words in the ICSB, and 6 H.-registers being needed for timer values, since we need input 
bit-time values, input half-bit-time values, and an output bit-time value_ Slow line speeds require a 
double timer each, thus the 6 values. The alternative of passjng a single value of the line speed and 
computing the timer values dynamically is not feasible due to the amount of computation needed. 

A second problem was the fact that some line speeds require the loading of a double timer to time 
a bit (speeds :::; 1200 bps), whereas olhers (> 1200 bps) need only a single timer. This posed a 
problem as for the microcode, since different state and slot (and data) values are loaded into the 
timers depending on whether the timer is to be double or single. In addition, two slots need be 
loaded for a double timer. and there is a requirement that at least 4 instructions intervene between 
successive timer slot loads. The solution chosen to handle all the above constraints was to have the 
software set or clear a "slowLim.:" bit in Ole ICSn. indicating to the microcode whether a single 
timer is to be used. This increased the number of microinstructions since the bit bas to be tested 
each time a timer is to be loaded. In addition, there were cases where the only way to insure that 
there were 4 intermediate instructions was to insert NOPs, again adding to the number of 
microinstruclions. 

The RS-232-C hardware limer modes on the DO were largely unlested. and great deal of time was 
spent tracking down apparent microcode problems. only Lo filially conclude lhal the timers 
themselves had bugs. '111is indeed was the case, and afier the hardware problems were tixed, the 
remaining bugs in the microcode disappeared. 



DO RS-232-C microcode status 3 

Considerable time and effort was spent in reducing both the number of instructions required to 
service a timer wakeup, as well as the number of R -registers needed. In many cases it was found to 
be difficult to keep the timer service within the 12 instmction constraint, given the amount of work 
that had to be done. The entire state of the receiver and transmitter has to be stored in R-registers, 
and a great deal of register sharing was done to save R-registers. Nevertheless, 20 R-registers are 
sti11 needed - 6 of which are used to store the timer constants. 

To summarize, a significant amount of DO resources is required to implement the receiver and 
transmitter bit handlers. About 70% of the 200 instmctions are needed for these functions; 20 R
registers, and a 12-word ICSB in a dedicated portion of main memory (e.g. the I/O Page), are 
required as well. If it becomes apparent that 128-word ring buffers are too small to prevent input 
overrun or excessive wakeups of the Mesa driver, then larger buffers will have to be used, further 
increasing the main memory and R-register usage. There are additional functions which are either 
still needed in the microcode, or would inprove performance if implemented in microcode. The 
SendBreak and BreakDetect functions are examples of the former category. Other reasonable 
functions for microcode implementation include CRC computations, as well as naked notifies at 
appropriate times. Implementing these functions would, of course, increase the amount of 
processing required for timer services. 

What remains to be done for Pilot/Starl 

The microcode functions stilt required for the implementation of Pilot RS-232-C controllers can be 
divided into those functions essential for controller realization, and those which would be more 
desirably implemented in microcode than software from a performance point of view. 

To complete the functions for the asynchronous mode of operation, the SendBreak and BreakDetect 
functions need to be implemented. As mentioned above, incorporating the CRC computation and 
the naked notifies in the microcode would improve the overall performance. 

In order to realize the Pilot RS-232-C controlter, two synchronous modes of operation need to be 
implemented in the microcode. These modes are the synchronous byte-oriented mode, and the 
synchronous bit-oriented mode (e.g. HOLC). 'I11e former can be implemented as a byte-interface 
similar to the asynchronous interface. It would also be enhanced by the addition of the CRe 
computation and naked notify capability. The bit-oriented synchronous mode could also be realized 
as byte-interface, but would be greatly improved by incorporating a frame interface. Since the bit
oriented mode requires zero-bit insertion to be perfonned, and cannot allow intra-frame idling, a 
frame interface might be the only way to realize the full 9600 bps speed. 

To realize the full RS-232-C controller in microcode as specified in the Pilot Design Specification, 
the function of IOCB chaining should be implemented. 111is function is presently perfonned by 
software, but its incorporation i11to the microcode (if possible) would improve system performance. 

Approaches to completing the RS-232-C controller 

In order to realize the full RS-232-C controllcr, thrce basic approaches can bc followed. Each 
approach will implcmcnt a difkrcnt amount of the RS-232-C controller funclions in microcode. 



DO RS·232·C microcode status 4 

a) Timer task microcode only. 

The first approach is to follow the current strategy and attempt to implement as much as possible of 
the remaining functions using microcode which ntns under the timer task only. As mentioned 
above, the current implementation pushes the amount of processing per timer service to the limit. 
It is clear that not much more processing could be added using this approach. 

The SendBreak function for the asynchronous mode can be implemented by a simple extension to 
the current microcode; the BreakDetect can similarly be realized. 

It appears to be feasible to implement a byte-oriented synchronous mode interface in a similar 
fashion to the asynchronous mode. This would provide a byte interface to the software, and would 
have to incorporate the functions of character synchronization, and SYN character generation during 
output idling. It does not seem feasible to incorporate the CRe computations in the timer-task-only 
approach, since this would involve too much extra processing, and requires knowledge of the frame. 
Naked notifies could possibly be incorporated into the poller function. The synchronous modes do 
not need double timers, since the appropriate timer modes generate wakeups based on modem clock 
transitions ratiler than expiration of a time period. 

It may be possible to realize tile bit-oriented synchronous mode as a byte-interface to the software 
as well. This mode requires the added function of zero-bit-insertion/stripping and. in addition, 
cannot tolerate intra-frame idling. It might thus prove difficult to attain the full speed of 9600 bps 
using a byte interface. A frame interface is really needed. Such an interface has at least three 
advantages: first, the delineation of the logical unit of transfer between the software and microcode, 
eliminating Mesa polling; second, the simplification of CRC computation by microcode; and third, 
a solution to the intra-frame idling problem. 

One technique to increase the amount of processing per timer service is to set timer wakcups to 
occur twice (or 1'1 times) every bit. lbis would allow an extra processing cyc1e(s) to occur in 
between each bit. This scheme has the disadvantage of extra overhead due to two (or n) timer 
loads and wakeups per bit (4 or 2n, if slow speed, asynchronous), and in the synchronous mode the 
interbit timer loads will require different timer values from the normal timer loads, necessitating 
extra constants to be stored. 

b) Timer task plus other task microcode. 

In order to put substantially more processing into the microcode, execution by a task other than the 
timer task will be needed. Using some other task has the problem that no hardware wakeups exist 
to wake up the task after it has TASKed. Task O. which is used to run the Mesa emulator, always 
bas its wakeup request asserted. Thus, task 0 could be notified by the timer task at appropriate 
limes to continue with the RS-232-C processing. The notified microcode would first save the state 
of the emulator (the TPC and any emulator registers used). and later restore this state when the RS-
232-C processing has completed. This would be a way to use task 0 "behind the emulator's back" 
to obtain marc processing for the RS-232-C fbnctions. 'Illis scheme suffers from several 
disadvantages. The communication between the timer task and task 0 is cumbersome. To 
communicate through R-registers the stack would have to be used. otherwise the communication 
could take place through main memory, again increasing the amount of lixed memory needed. '111e 
number of R -registers available for RS-232-C processing at the task 0 level is minimal since most of 
them are used by the emulator. In addition. there are several instructions of overhead associated 
with the notify to task 0 which count as part of the timer task wakeup processing. 



DO RS-232-C microcode status 5 

Another scheme to alleviate the above R-register shortage is to use a third task in conjunction with 
task 0 as described above. Task 0 would continually notify the third task, which could carry out the 
needed RS-232-C processing and continually update its TPC appropriately. It would rely on task 0 
for its "wakeups". This scheme is even more complicated, and suffers from the same disadvantages 
as using task 0 alone, except that more R-registers are available. 

c) RS-232-C controller hardware. 

A third approach would be to add hardware to the DO which could handle the bit timing to and 
from the RS-232-C port and present a byte interface to the microcode. LSI chips exist on the 
market for these functions; in particular the Zitog Z80-SIO chip handles asynchronous. byte
synchronous, as well as bit-synchronous protocols. CRC computations are performed, zero insertion 
provided, and two full-duplex channels arc available, as well as numerous other functions. 
Hardware wakeups could be provided for the DO, so that the RS-232-C microcode could easily 
implement the full Pilot RS-232-C controller functions. It is understood that there is space on the 
floppy-disk controller board, and the amount of hardware required should be reasonably small. 

The hardware approach would have several advantages. The micro-instructions which are now 
needed for bit timing would be eliminated, thus freeing up space in the control store for other RS-
232-C functions. The hardware wakeups would remove the constraints imposed on the RS-232-C 
microcode by the timer task. It is expected that the overall performance could be improved. The 
full Pilot RS-232-C controller could be implemented in microcode in a straightforward manner. 

Discussion of approacbes 

An important parameter which should be used to evaluate the three approaches is performance. 
However, it is still too early to get an accurate feel for the performance of the current microcode 
implementation, and it might be too late to change anything once enough perfolmance data is 
collected. 

If approach (a) is chosen then what could realistically be implemented is a byte-interface for each 
mode, without CRC computations, and possibly with naked notifies. For the high speed bit
synchronous mode, large ring buffers would be needed to prevent output data underrun, since intra
frame idling does not exist in the protocol. The rest of the Pilot RS-232-C controller functions 
would have to be implemented in software. 

If approach (b) is followed, then more controller functions could be moved to the microcode. 
perhaps even to approach the full Pilot controller. This approach will. however. require a great deal 
of microcode (perhaps 2 pages per mode) and R-rcgislers. as well as being very complicated. The 
microcode development time would be significant. Of approaches (a) and (b), it would seem that 
(a) should be chosen and a byte interface implemented. unless. as a result thereof, it becomes 
impossible to achieve the 9600 bps data rate. If no extra hardware is provided in the DO then 
approach (b) will be the only viable onc which could implement more than a byte-interface between 
the microcode and software. 

The hardware approach would easily allow Ule full Pilot RS-232-C controller to be implemented 
with a reasonable amount of microcode. 



DO RS-232-C microcode status 6 

Reconullendation 

Approach (b) should be avoided. since it presents some very difficult interfaces which will almost 
certainly cause development and maintenance problems. 

Approach (a) may be workable. although it suffers in three major ways: first, the tricks which will 
be necessary to get the required features into the microcode will delay and complicate a successful 
implementation; second, the extra burden placed on the Mesa driver (e.g. for various polling 
functions, and for eRe computation) may result in excessive use of processor bandwidth, and/or 
failure to perform at the advertised speed of 9600 bps; and third. future expansion to handle post
Starl functions will be increasingly difficult to accommodate, and will. in all likelihood. lead us to 
approach (b) with the resulting. additional complexity. 

In summary. based on the experience gained by progressing to the current state of the microcode, it 
is clear that approach (a) will result in a relatively tedious and intricate development. and perhaps 
may not perform adequately when complete. For these reasons, we recommend approach (c). 
Future communication controller imp1ementation can re-assess the appropriate 
hardware/microcode/software tradeoffs. But for this implementation, the hardware cost involved 
appears to be worth the risk-reduction it will buy for the microcode and soft ware development. 

cc: Bob Belleville. Don Charnley. Ron Crane. Bill Danielson, Bob Garner, Carol Hankins. Pitts Jarvis. Rich Johnsson, 
Howard Kakita. Bill Kennedy. Robert Kierr. Brian Rosen, Dick Snow, Chuck Thacker, Jim White 


