
Inter·Office Memorandum 

To David Liddle Date October 18, 1978 

From John Wick Location Palo Alto 

Subject DO Timing Simulation Organization SDD/SS/DE 

XEROX 

Filed on: [Iris] < Thistle> Doc> ThistleReport.bravo DRAFT 

This report describes a series of experiments conducted to evaluate the performance of a number of 
proposed display configurations running on a DO, the OIS processor. The primary objective of this 
study was to verify the expected performance of the processor with a single large format display, 
and to discover the effects of adding a second display. 

Because the eventual hardware, firmware; and software configurations are not presently available, a 
simulation approach was adopted. A program called Thistle was written to simulate the timing 
characteristics of the DO processor at the micro instruction level. Instruction traces of a number of 
real programs (such as Apex and DeskTop) running on Alto/Mesa 4.1 were used to drive the 
simulation. A dozen experiments were run simulating the current hardware/firmware configuration 
to verify correct operation. Six program samples were then run with five different display 
configurations to predict their expected performance. 

Simulator Input 

Thistle requires two inputs to perform a simulation. The first is a trace of Mesa byte codes to be 
executed. The second is a description of the microcode which implements those instructions; 
provision for describing the display and memory refresh microcode is also included. 

Instruction Traces 

To obtain the instruction traces, a modified version of the Alto/Mesa 4.1 microcode was written 
which traps to the RAM at the beginning of each Mesa instruction. The RAM microcode records 
the opcode and its parameters in a trace buffer, which is written to the disk periodically; normal 
execution is then resumed. In a number of cases, additional information about the machine state is 
also captured. For example, all control transfers (XFERS and jumps) record the destination PC, so 
that buffer refill can be properly simulated. The alignment of operands was also recorded for sOme 
opcodes. 'The details of the trace format are described in [JohnssonITf1. 

There was little attempt to compensate for the differences between the current Alto/Mesa 
instruction set and the set proposed in the PrincOps [1backerO[Sj. The data contained here is 
therefore mildly pessimistic. 

XEROX SDD ARCHIVES 
I have read and understood 

Pages To ----Reviewer ________ ~Date ----# of Pages Ref.,71<slJ/)-1'P7 



DO Timing Simulation 2 

Instruction Profiles 

Thistle also requires a description of the emulator and display microcode to be simulated. Because 
only timing charateristics of the processor are simulated, a rather terse description of the microcode 
is sufficient. It need only include processor and I/O memory references (and their alignment), 
memory interlocks and aborts, instruction buffer refill, and task switching. Microinstructions that 
are not otherwise interesting are grouped together into a count of execution cycles. 

To arrive at this microcode description, we expanded on the idea of instruction profiles described in 
[Gamer]. Instructions are divided into classes which exhibit the same memory and timing behavior. 
An instruction profile is then assigned to each class, as well as to the display and memory refresh 
tasks. Details of the instruction profile description can be found in [JohnssonTIP). 

(Although we considered the possiblity of a program which compiled actual microcode source files 
into their profiles, it became clear that this would be much too big a project given the time 
constraints. Therefore all instruction profiles were produced by hand, and are subject to 
transcription errors.) 

The important data dependicies were handled by including extra data in the instruction trace (for 
example, buffer refill depends heavily on alignment constraints; hence, the trace includes the PC 

value after each XFER and jump). Most other data dependencies result in very small differences in 
execution time (e.g., shifting right requires one more cycle than shifting left); these differences were 
ignored by the simulator. However, instructions like BL T and BITBL T required special casing. Their 
profiles were based on knowledge of the types of BITBL TS used in the test cases (as well as on an 
analysis of the microcode). For the display experiments, the profile for BL T assumed a four word 
block, and the profile for BITBL T assumed that a character was being painted. 

Simulator Operation 

'Ibe principle design objective of Thistle was to accurately simulate the interaction of the 
microprocessor and the memory. The instruction profiles for the Mesa emulator show the pattern 
of memory use that occurs while executing a given Mesa opcode. The main power of 'Ibistle is that 
the interactions between adjacent opcodes and interactions between the emulator and other tasks 
(such as the display) can also be simulated, not for some abstract instruction mix, but for actual 
typical code sequences. 

Automata 

In addition to the microprocessor, the DO contains two additional automata: the memory controllers 
MC1 and MC2. Thistle simulated tlle operation of MC1 and MC2 as described in [ThackerMT]; it also 
simulates the various kinds of aborts described in [ThackerDO]. Thus, if the profile calls for a 
PFETCH 1 while MC1 is still active, the processor will undergo an MC1 abort for as many cycles as 
MC1 remains aclive. Likewise, referencing tile data from a recent felch will abort until MC2 finishes. 
Thistle keeps track of which task most recently used the memory, so the right thing happens if a 
task switch occurs between a fetch and use of the data. 

Tasks 

Most returns occurring within microinstructions will cause a task switch if another microtask of 
higher priority is ready to run. '111C display task is special in that it will also allow a lower priority 
task to run when it tasks. Thistle simulates this situation using coroutines. 



DO Timing Simulation 3 

Each task has a profile to execute. Every task except the emulator task has a "next wakeup" time 
associated with it. After every tasking return in a profile, control is passed to the coroutine 
executing the profile of the highest priority task wilting to run (the emulator is always willing to 
run). When a task is finished for a while, it updates its wakeup time. 

For the display experiments, the only tasks simulated were the emulator, the display, and memory 
refresh. Other tasks can be added to Thistle without much difficulty. 

Simulator Output 

While the primary use of Thistle in this study is for large batch runs, it also has an interactive mode 
for debugging purposes. (We expect Thistle to continue to be of use in fine tunning the microcode 
with very little overhead.) The current state of the processor and memory controller, as well as 
accumulated statistics on all of the tasks (emulator, display, and memory refresh) are displayed 
continuously if desired, and Thistle has various fomls of "single-stepping" at the micro and macro 
instruction level. Complete infoffilation on the operation of Thistle and its output fOffilat can be 
found in the Thistle User's Guide [JohnssonTUG]. 

For the purposes of this report, Thistle accumulates the number of cycles spent in each of the three 
tasks (emulator, display. and memory refresh). Cycles are assigned to tasks based on the value of 
the processor's current task register. The time in each task is broken down into running and 
waiting; the waiting time is further broken down into MC1, MC2, suspend, and (for the emulator 
task) NEWINST aborts. Details of these states can be found in the DO Functional Specification 
[ThackerDO]. 

Thistle also records the number of Mesa instructions executed as well as the total cycles expended 
(the sum of the run and wait times discussed above). These together with the processor clock speed 
(85ns) are used to calculate a Kip rate (kilo instructions per second). 

Benchmarks 

Our first step was to verify correct operation of the simulator. These were run under current 
conditions, and should be carefully distinguished from the experiments described in the next 
section. We chose eight benchmark tests to match against actual DO elapsed time. We also made 
several probes of a running DO with a digital voltmeter to verify the various wait times reported by 
Thistle. 

Integer and String Sorting 

Our primary benchmarks were the sort programs which have been in use for measuring Mesa 
perfoffilance since 1976; they were extended slightly to operate optionally with a full page display 
of random data (they perform no display related opera lions themselves). A total of eight tests were 
run: small and large integer and string sorts with the display on and off. A set of instruction 
profiles was derived from (the then current) microcode Version 1.5' (with the clock bug fixed -
PCR#20.53). All tests were run on EM0l6 after verifying its board revision levels. Note that these 
tests and their corresponding simulations were run with an IUTFP driving the 850 display and with 
old microcode which is known to have unacceptable diplay performance. 

The resulls of these benchmarks are described in [Wick]. They show accuracy of execution time 
well within 10%, with the simulator running slightly faster than a real DO. Some possible 
explanations for this discrepancy can be found in the reference. 



DO Timing Simulation 4 

Wait Times 

To verify proper modeling of the memory controller and its interaction with the processor, a set of 
four signals (MC1 active, MC2 active, suspend, and abort) were measured and compared with 
corresponding figures produced by Thistle. Four cases were compared using the benchmark 
programs: integer and string sort with the display on and off. 

The results of this benchmark are presented and discussed in [JohnssonTBV]. While comparisons 
with the actual voltages are not very meaningful (because the signals cannot be measured 
accurately), both the real DO and Thistle exhibited the same behavior with respect to these four 
signals as the display was turned on and off, and this behavior was consistent across an of the test 
cases. 

Experiments 

Several changes to the input were made before running the experimental data (the simulator itself 
was not changed after running the benchmark tests). New microcode was written for each display 
configuration; several hardware fixes were enabled, and key parts of the emulator microcode were 
rewritten. These modifications are described in more detail below. 

Display Configurations 

The hardware (UTVFC) is described in [Cameron]; [JarvisPDC] contains a functional specification 
for the device driver, including cursor, mouse, and keyboard support. 

Three display devices were involved in the experiments, in a total of five different configurations. 
They are identified as follows: 

LF One and two 17" Large Format displays 
FP One and two 850 Full Page displays 
QP Four Quarter Page displays 

Detailed characteristics of these devices are described in [JarvisDC], which also contains a 
description of the microcode used to support each device and the assumptions made about it 
(particularly regarding scanline alignment). 

Hardware 

We assumed the presence of a number of fixes to the hardware which have not yet been installed 
(although most have been tested on Thacker's DO). 

NEWINST aborts will be reduced from the end of MC1 (six to seventeen cycles) to completion 
of the mapping operation (four to six cycles) [Memory control board revision K]. 

A change to NEXTINST INEXTDATA will result in tasking between Mesa instructions and 
eliminate the need for the "time to task" counter [Control board revision I]. 

A change in the Misc board will allow the test for pending interrupts to be moved from the 
buffer refill code to NOOP [Mise board revision G] 

LONGJUMP will be added to allow changing the current page and perfonning a jump in the 
same instruction [Control board revision I]. 



DO Timing Simulation 5 

These changes are described in the documentation on DO board revision levels maintained by ED. 

Firmware 

The current DO microcode (version 1.5) was rewritten (on paper) to take advantage of the hardware 
changes and to include a number of known but as yet unimplemented improvements suggested by 
Chuck Thacker. The rewrite concentrated on three areas: XFER, jumps, and buffer refill. 
Quadword code alignment and proper code byte ordering were assumed, as was a hardware stack 
error check, and numerous TASKS were added throughout the microcode. We incorporated as many 
changes as we could track from the 2.0 microcode, which is stiU under development. 

Due to time constraints, we were not able to implement the PrincOps microcode. The simulations 
were run with the Alto/Mesa instruction set as it currently exists (version 4.1), with process 
bytecodes implemented in Nova code, and an Alto compatible BITBl T. . 

Experimental Data 

Six sample instruction traces were taken from three Alto/Mesa application programs; all samples 
involved display manipulation. One sample of each program focused on the inner loop containing 
the code to paint characters on the display. 

DTest: a test program for the Alto/Mesa system display package. It writes characters on 
the display as if it were a Teletype, while also maintaining a typescript file. 

DeskTop: Advanced Design/User Prototype's experimental Star like environment. Two 
traces involving opening a document and painting the screen were taken. 

Apex: Product Software's applications executive. The three samples obtained involved 
moving a document into a folder, opening a document, and painting characters in a 
window. 

The samples ranged from 0.48 to 2.86 seconds of simulated execution time; they varied from 121k 
to 468k Mesa instructions. More details on the samples can be found. in [Sandman]. 

Results 

The thirty test cases .. six instruction traces and five display configurations .. were run in about 56 
hours of elapsed Alto time (about 36 seconds of simulated time). The raw data is summarized in 
Table 1; it shows the percentage of time running and waiting in the display and emulator tasks, 
followed by the sum of running and waiting for each task. (The memory refresh task accounts for a 
constand 2% of the cycles in all test cases.) The table also shows the instruction rate in Kips. 

One display configuration was eliminated from the rest of the analysis. While running two Full 
Page displays, the simulator reported a large number (about 45%) of "misses", in which the display 
had missed a wakeup for a new scan line because it had not finished processing the previous one 
(this would show up as screen tearing). This explains why the Kip rates for the two FP case are 
only slightly smaller than with a single Full Page display. 

Figures 1·4 summarize the run and run plus wait time (as a percentage of total cycles) for the 
display and emulator tasks. Figure 5 summarizes the Kip rates for all display configurations .. 

As we expected, one LF display consumes about 20% of the cycles, and two LF displays need just 
under 40%. One FP falls inbetween, at just under 30%, and four QP displays require a bit more 



DO Timing Simulation 6 

Gust· over 30%). The simulation indicates that two Full Page displays cannot be supported. 

References 

[Cameron] Cameron, J., Thacker, C., Tseng, C. User Terminal Variable Format Controller 
(UTVFC) Specification. Revision 5.0. September 28, 1978. 

[Gamer] Gamer, B. Mesa Opcode Timing. June 21, 1978. 

[JarvisPDC] Jarvis, J. P. Functional Specification for the Prototype Display Controller. 
October 13, 1978. 

[JarvisDC] Jarvis, J. P. Display Characteristics. October 12, 1978. 

[JohnssonITF] Johnsson, R., Sandman, J., Wick, J. Instruction Trace Fomlat. October 11, 1978. 

[JohnssonTUG] Johnsson, R., Sweet, R., Wick, J. Thistle User's Guide. October 11, 1978. 

[JohnssonTIP] Johnsson, R., Sweet, R., Wick, J. Thistle Instmction Profiles. October 11, 1978. 

[JohnssonTBV] Johnsson, R., Wick, 1. Thistle Benchmark: Voltages. October 12, 1978. 

[Sandman] Sandman, J. Thistle Trace Data. October 13, 1978. 

[ThackerOIS] Thacker, C. OIS Processor Principles of Operation. Version 2.0. April 9, 1977. 

[ThackerDO] Thacker, C. DO Processor Functional Specification. January 16, 1978. 

[ThackerMT) Thacker, C. M em Tim ing. sil. July 14, 1978. 

[Wick] Wick, 1. Thistle Benchmark: Elapsed Time. October 12, 1978. 

Distribution: 
Jarvis 
Lampson 
Lynch 
Metcalfe 
Thacker 
Weaver 
Mesa Group 

I 



DO Timing 

ApexA 

ApexB 

ApexC 

DeskTopA 

DeskTopB 

DTestA 

Simulation 

lLF 2LF 

56.4 14.4 43.8 27.4 
22.5 4.5 16.5 10.1 
78.9 18.9 60.3 37.5 

271. 2 210.5 

54.7 14.4 42.4 27.4 
23.9 4.8 17.3 10.6 
78.6 19.2 59.7 38.0 

275.4 213.6 

50.7 14.4 39.0 27.4 
27.3 5.3 19.3 11.9 
78.0 19.7 58.3 39.3 

324.6 249.7 

58.7 14.4 45.7 '27.4 
20.0 4.6 14.2 10.4 
78.7 19.0 59.9 37.8 

265.3 206.5 

60.5 14.4 47.3 27.4 
18.4 4.4 13.0 9.9 
78.9 18.8 60.3 37.3 

253.3 198.1 

52.2 14.4 40.7 27.4 
25.9 5.2 18.4 11.1 
78.1 19.6 59.1 38.5 

210.5 164.0 

Display 
Configuration 

Emulator Display 

running running 

waiting waiting 

total total 

Kips 

7 

lFP 2FP 4QP 

51.5 18.7 50.5 19.3 50.9 21. 2 
18.8 8.8 18.2 9.8 16.8 8.9 
70.3 27.5 68.7 29.1 67.7 30.1 

247.7 243.0 244.9 

49.9 18.7 48.9 19.4 49.3 21. 2 
19.9 9.3 19.2 10.4 17.8 ~ 
69.8 28.0 68.1 29.8 67.1 30.7 

251.6 246.3 248.5 

46.2 18.7 44.3 20.6 45.7 21. 2 
22.4 10.5 20.9 11.9 20.1 10.8 
68.6 29.2 65.2 32.5 65.8 32.0 

295.4 283.7 292.4 

53.5 18.7 52.3 19.5 52.8 21. 2 
16.7 9.0 15.8 10.1 14.8 9.0 
70.2 27.7 68.1 29.6 67.6 30.2 

241. 5 236.4 238.6 

55.1 18.7 53.9 19.5 54.4 21. 3 
15.4 8.6 14.6 9.7 13.7 8.5 
70.5 27.3 68.5 29.2 68.1 29.8 

231. 0 225.9 227.9 

47.8 18.7 46.9 19.4 47.3 21. 2 
21.5 9.8 20.5 10.9 19.1 10.2 
69.3 28.5 67.4 30.3 66.4 31. 4 

192.6 189.3 190.6 

Displays 

lLF: one large format (17") display 
2 L F: two large format (17") displays 
lFP: one full page (850) display 
2FP: two full page (850) displays 
lQP: four quarter page displays 



% Display Task (run) 

30 

25 

20 

15 

1LF 2LF 1FP 4QP 



% Display Task (run + wait) 

40 

35 

High 

30 Low 

25 

20 

1LF 2LF 1FP 4QP 



65 
% EmulatorTask (run) 

60 

55 
DeskTopS 

DeskTopA 

ApexA 

50 
ApexS 

DTestA 

ApexC 
45 

40 

1LF 2LF 1FP 4QP 



% Emulator Task (run + wait) 

80 

75 

70 

High 

Low 

65 

60 

1LF 2LF 1FP 4QP 



Mesa Instruction Rate (KIPS> 

300 

,-------. ApexC 

250 ,. ____ --=:: ApexS 
ApexA 

DeskTopA 

DeskTopS 

200 

r-----.. DTestA 

1LF 2LF 1FP 4QP 


