8400A Digital Voltmeter

Instruction Manual

FLபKKヨ

8400A Digital Voltmeter

Instruction Manual

WARRANTY

Notwithstanding any provision of any agreement the following warranty is exclusive:

The JOHN FLUKE MFG. CO., INC., warrants each instrument it manufactures to be free from defects in material and workmanship under normal use and service for the period of 1 year from date of purchase. This warranty extends only to the original purchaser. This warranty shall not apply to fuses, disposable batteries (rechargeable type batteries are warranted for 90 days), or any product or parts which have been subject to misuse, neglect, accident, or abnormal conditions of operations.

In the event of failure of a product covered by this warranty, John Fluke Mfg. Co., Inc., will repair and calibrate an instrument returned to an authorized Service Facility within 1 year of the original purchase; provided the warrantor's examination discloses to its satisfaction that the product was defective. The warrantor may, at its option, replace the product in lieu of repair. With regard to any instrument returned within 1 year of the original purchase, said repairs or replacement will be made without charge. If the failure has been caused by misuse, neglect, accident, or abnormal conditions of operations, repairs will be billed at a nominal cost. In such case, an estimate will be submitted before work is started, if requested.

> THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS, OR ADEQUACY FOR ANY PARTICULAR PURPOSE OR USE. JOHN FLUKE MFG. CO., INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN CONTRACT, TORT, OR OTHERWISE.

If any failure occurs, the following steps should be taken:

1. Notify the JOHN FLUKE MFG. CO., INC., or nearest Service facility, giving full details of the difficulty, and include the model number, type number, and serial number. On receipt of this information, service data, or shipping instructions will be forwarded to you.
2. On receipt of the shipping instructions, forward the instrument, transportation prepaid. Repairs will be made at the Service Facility and the instrument returned, transportation prepaid.

SHIPPING TO MANUFACTURER FOR REPAIR OR ADJUSTMENT

All shipments of JOHN FLUKE MFG. CO., INC., instruments should be made via United Parcel Service or "Best Way"* prepaid. The instrument should be shipped in the original packing carton; or if it is not available, use any suitable container that is rigid and of adequate size. If a substitute container is used, the instrument should be wrapped in paper and surrounded with at least four inches of excelsior or similar shock-absorbing material.

CLAIM FOR DAMAGE IN SHIPMENT TO ORIGINAL PURCHASER

The instrument should be thoroughly inspected immediately upon original delivery to purchaser. All material in the container should be checked against the enclosed packing list. The manufacturer will not be responsible for shortages against the packing sheet unless notified immediately. If the instrument is damaged in any way, a claim should be filed with the carrier immediately. (To obtain a quotation to repair shipment damage, contact the nearest Fluke Technical Center.) Final claim and negotiations with the carrier must be completed by the customer.

The JOHN FLUKE MFG. CO., INC, will be happy to answer all applications or use questions, which will enhance your use of this instrument. Please address your requests or correspondence to: JOHN FLUKE MFG. CO., INC., P.O. BOX C9090, EVERETT, WASHINGTON 98206, ATTN: Sales Dept. For European Customers: Fluke (Holland) B.V., P.O. Box 5053, 5004 EB, Tilburg, The Netherlands.
*For European customers, Air Freight prepaid.
John Fluke Mfg. Co., Inc., P.O. Box C9090, Everett, Washington 98206
Rev. 6/81

Table of Contents

SECTION title PAGE
1 INTRODUCTION AND SPECIFICATIONS 1-1
1-1. Description 1-1
1-16. Specifications 1-2
1-19. Accessories 1-8
2 OPERATING INSTRUCTIONS 2-1
2-1. Introduction 2-1
2-3. Installation 2-1
2-5. Repackaging For Shipment 2-1
2-7. Options and Accessories 2-1
2-9. Input Power Requirements 2-1
2-11. Operating Features 2-2
2-13. Measurement Instructions 2-2
2-15. External Reference 2-4
2-22. Remote Control Unit 2-6
2-33. Data Output Unit 2-7
2-51. Operating Notes 2-11
3 THEORY OF OPERATION 3-1
3-1. Introduction 3-1
3-3. Block Diagram Analysis 3-1
3-25. Circuit Descriptions 3-4

TABLE OF CONTENTS, continued

SECTION titLe PAGE
4 MAINTENANCE 4-1
4-1. Introduction 4-1
4-5. Service Information 4-1
4-8. General Maintenance 4-1
4-30. Performance Test 4.7
4-36. Calibration Procedure 4-8
4-50. Compensating Component Selection 4-11
4-53. Troubleshooting 4-12
5 LIST OF REPLACEABLE PARTS 5-1
5-1. Introduction 5-1
5-4. Parts List Column Descriptions 5-1
5-5. Manufacturers' Cross Reference List Column Descriptions 5-2
5-6. How to Obtain Parts 5-2
5-9. Serial Number effectivity 5-3
6 OPTIONS AND ACCESSORIES 6-1
6-1. Introduction 6-1
6-3. Options 6-1
6-5. Accessories 6-1
AC Converter, Option -01 1
6-1. Introduction 1
6-3. Specifications 1
6-5. Installation 1
6-7. Operating Instructions 1
6-9. Theory of Operation 1
6-17. Maintenance 3
6.37. List of Replaceable Parts 6
6-39. Serial Number Effectivity 9
Ohms Converter, Option -02 1
6-1. Introduction 1
$6-3$. Specifications 1
6-5. Installation 1
6-7. Operating Instructions 1
6-9. Theory of Operation 1
6-20. Maintenance 2
6-42. List of Replaceable Parts 5
6-43. Serial Number Effectivity 5
6, continued Data Output Unit, Option -03 1
6-1. Introduction 1
6-3. Specifications 1
6-5. Installation 1
6-7. Operating Instructions 1
6-9. Theory of Operation 2
6-28. Maintenance 7
6-47. List of Replaceable Parts 14
6-49. Serial Number Effectivity 21
Remote Control Unit, Option -04 1
6-1. Introduction 1
6-3. Specifications 1
6-5. Installation 1
6-7. Operating Instructions 1
6-9. Theory of Operation 1
6-23. Maintenance 4
6-31. List of Replaceable Parts 7
6-35. Serial Number Effectivity 10
DC External Reference, Option -05 1
6-1. Introduction 1
6-3. Specifications 1
6-5. Installation 1
6-7. Operating Instructions 1
6-9. Theory of Operation 2
6-19. Maintenance 3
6-39. List of Replaceable Parts 5
6-41. Serial Number Effectivity 8
AC External Reference, Option -06 1
6-1. Introduction 1
6-3. Specifications 1
6-5. Installation 1
6-7. Operating Instructions 1
6-9. Theory of Operation 2
6-17. Maintenance 3
6-34. List of Replaceable Parts 5
6-36. Serial Number Effectivity 9
Rear Input, Option -07 1
6-1. Introduction 1
6-3. Installation 1
6-5. List of Replaceable Parts 1
6-7. Serial Number Effectivity 2
True RMS Converter, Option -09
6-1. Introduction 1
6-3. Specifications 1
6-4. Kit Installation 2
6-6. Operation 2
6-8. Theory of Operation 2
6-22. Maintenance 5
6-42. List of Replaceable Parts 10
6-43. Serial Number Effectivity 10
RACK MOUNTING FIXTURES
DOU, RCU MATING CONNECTOR
EXTERNAL REFERENCE MATING CONNECTOR
REAR INPUT MATING CONNECTOR
EXTENDER CARD
MODEL 80RF HIGH FREQUENCY PROBE
MODEL A90 CURRENT SHUNT
7 GENERALINFORMATION 7-1
8 SCHEMATIC DIAGRAMS 8-1

List of Illustrations

1-1. Model 8400A Outline Drawing $1-4$
2-1. Controls, Terminals, and Indicators (Sheet 1 of 3) 2-2
2-2. \quad Remote Control Unit Trigger Requirements (External Command Entry) 2-7
2-3. Data Output Unit Trigger Requirements 2-7
2-4. Sample Sync Signal Timing 2-10
2-5. Code Conversion 2-10
2-6. Wiring Example, Acquisition Format, and Truth Tables for Serial Character, Parallel Bit Acquisition. $2-12$
2-7. Minimum Lines Acquisition 2-13
2-8. Suggested Guard Connections for Reduction of Common Mode-To-Normal Mode Signal Conversion 2-14
2-9. \quad Proper Guard Connections for (A) 2-Terminal Ω Measurements When Signal Leads are Short and (B) 4-Terminal Ω Measurements on 10Ω through 10,000 Ω Ranges 2-14
3-1. Model 8400A Block Diagram 3-2
3-2. Ohms and K Ohms Range Configuration 3-4
3-3. Buffer Amplifier Block Diagram $3-5$
3-4. Active Filter 3-6
3-5. A-to-D Converter and Logic Block Diagram 3-7
3-6. Sample and Hold Switching 3-8
3-7. \quad Shift Register Outputs 3-9
3-8. \quad Sixteen-State Binary Counter Output 3-9
3-9. DVM Timing and Synchrony Diagram (Sheet 1) 3-10
3-10. Basic Sample Command Oscillator 3-13
4-1. Assembly Locations 4-2
4-2. Function Switch Assembly 4-4
4-3. Pushbutton Switch Disassembly 4-5
4-4. Range Switch Assembly 4-6
4-5. Pushbutton Switch Module Replacement 4-6
4-6. Ext. Ref. and Filt Switch Disassembly 4-7
4-7. Readout Check Equipment Connection 4-8
4-8. Adjustment and Test Point Locations 4-9
4-9. Equipment Connection for Calibration 4-10
4-10. Assembly and Test Point Locations 4-13
4-11. Troubleshooting DVM Digital Section 4-16
4-12. Troubleshooting DVM Display 4-17
4-13. A/D Converter Controls 4-18
4-14. Analog Storage Controls 4-18
4-15. Counter Operation 4-19
4-16. Shift Register Operation 4-19
4-17. A9TP2 4-20
4-18. A9TP2 4-20
4-19. A9TP2 4-21
5-1. Model 8400A Digital Voltmeter 5-6
5-2. Power Supply PCB Assembly 5-8
5-3. \quad Range Delay PCB Assembly 5-11
5-4. Logic PCB Assembly 5-15
5-5. A-to-D Converter PCB Assembly 5-19
5-6. Active Filter PCB Assembly 5-21
5-7. Buffer Amplifier PCB Assembly 5-25
5-8. Display PCB Assembly 5-29
AC Converter, Option - 01
6-1. Circuit Diagram AC Converter 2
6-2. Rectifier Output Waveforms 2
6-3. \quad AC Voltage Test Requirements 4
6-4. AC Converter Range Calibration 5
6-5. AC Converter Function Command Check 5
6-6. AC Converter Relay Truth Table 6
6-7. AC Converter PCB Assembly 10
Ohms Converter, Option -02
6-1. Simplified Diagram of Ohms Converter Showing Two Configurations 2
6-2. Equipment Connections for Ohms Test 3
6-3. Ohms Converter PCB Assembly 8
Data Output Unit, Option -03
6-1. Data Output Unit Block Diagram 2
6-2. Explanation of Logic Symbology Used in DOU 4
6-3. DOU Timing Diagram 5
6-4. Shift Register Load Sequence 6
6-5. Control Signal Timing During Autorange 7
6-6. Test and Calibration Equipment 8
6-7. Decisision Flow Chart DOU Troubleshooting 10
6-8. \quad Decision Aids (Sheet 1 of 4) 11
6-9. Example Waveforms for Troubleshooting 14
6-10. Data Output Unit No. 2 PCB Assembly 15
6-11. Data Output Unit No. 1 PCB Assembly 19

LIST OF ILLUSTRATIONS, continued

figure TITLE
Remote Control Unit, Option -04
6-1. 8400A Remote Control Unit Block Diagram 2
6-2. \quad Remote Control Sample Load Sequence 2
6-3. Remote Control Unit Test Requirements 5
6-4. Remote Control Unit Trouble Analysis (Flow Chart) 6
6-5. Function and Range Code 7
6-6. Remote Control Unit PCB Assembly 9
DC External Reference, Option - 05
6-1. DC External Reference Simplified Diagram 2
6-2. Voltage Distribution in MOSFET Q9 3
6-3. Gate Driver Voltages 3
6-4. Equipment Connections for DC External Reference Unit Calibration 4
6-5. DC External Reference Stylized Waveforms 5
6-6. DC External Reference PCB Assembly 6
AC External Reference, Option -06
6-1. Block Diagram AC External Reference Converter 2
6-2. Rectifier Output Waveforms 2
6-3. Equipment Connection for Testing 4
6-4. AC External Reference PCB Assembly 6
True RMS Converter, Option -09
6-1. Terminal Block 2
6-2. True RMS Converter Block Diagram 3
6-3. True RMS Converter Adjustments and Test Points 7
64. Equipment Connection for Crest Factor Adjust 9

List of Tables

TITLE
PAGE

2-1. Option and Accessories 2-1
2-2. 8400A Measurement Instructions 2-5
2-3. External Reference Ratio Ranges 2-5
24. Remote Control Unit Logic Interlocking 2-6

2-5. Remote Control Unit Pin Assignment 2-7
2-6. Data Output Unit Truth Tables and Logic Levels 2-8
2-7. Data Output Unit Functional Pin Connections 2-9
2-8. Overload Protection Characteristics 2-13
4-1. Required Test Equipment 4-1
4-2. DC Test Requirements (.01V to 1V) 4-8
4-3. DC Test Requirements $(10 \mathrm{~V}, 100 \mathrm{~V}$, and 1000 V$)$. 4-8
4-4. Ladder Calibration . 4-11
4-5. Comparator Level Adjustment 4-11
4-6. Buffer Calibration . 4-11
4-7. Offset Correction Resistor Selection 4-12
4-8. Power Supply Checks 4-12
Ohms Converter, Option -02
6-1. Current Output, Ω Configuration 2
6-2. Required Resistance Valves 3
6-3. Kilohms Test Requirements 3
64. Ohms Test Requirements 3

6-5. $K \Omega$ Range Calibration 4
6-6. Ohms Range Calibration 4

LIST OF TABLES, continued

TITLE
Remote Control Unit, Option 04
6-1. Function Codes 3
6-2. Range Codes 3
6-3. \quad Counter Sequence 3
6-4. Multiplexer Operation 4
AC External Reference, Option -06
6-1. \quad AC External Reference Check 4
6-2. \quad AC External Reference Converter Range Calibration 5
True RMS Converter, Option -09
6-1. Test Equipment 5
6-2. Calibration Adjustment/Check 6PAGE

Introduction \& Specifications

1-1. DESCRIPTION

1-2. The Model 8400A Digital Voltmeter is a versatile instrument with five full decades of digits plus a sixth digit for 20% overrange. Its mainframe accepts a family of ana\log and system options that may be installed in the field at any time, in any sequence, for expansion from a bench DVM into a full systems multimeter.

1-3. Fluke's Recirculating-Remainder* A/D conversion technique is used in the 8400A. This conversion circuitry periodically samples the input and serially digitizes the sample, providing a reliable DVM with high long-term accuracy and linearity plus superior environmental characteristics.

1-4. Basic DVM

1-5. DC voltages are measured on five ranges with up to 1 microvolt of resolution. 20% overranging with 1100 volt overload capability further characterizes these ranges. A non-blinking readout contains an in-line neon tube display showing polarity, overrange digit, and five full decades of digits followed by a lighted function annunciator. The speed at which the readout updates is controlled by a variable Sample Rate control, and the switched four-pole filter has true broad-band noise rejection that cannot integrate a constant offset error into the reading. The filter may be used with all analog options.

1-6. Pushbutton selection, 1000 volt guarding, full autoranging, instantaneous auto-polarity, and calibration of all standard and optional functions through the top guard cover are standard features of the 8400A.

1-7. Analog Options

1-8. $\quad \mathrm{AC}$ voltages to 1100 volts are measured on four ranges over a frequency domain of 10 Hz to 100 kHz with up to 10 microvolts resolution. A zero control is not needed to maintain the extremely low "percent of range" portions of the specifications.

1-9. True four-terminal resistance measurements on the 10 ohm through 10 K ohm ranges are made with very low power dissipation in the unknown resistor. The instrument autoranges through all resistance ranges, from 10 ohms to 12 megohms, with 100 microhm resolution.

1-10. Isolated four terminal $\mathrm{DC} / \mathrm{DC}$ ratios are measured in real time via the DC External Reference option. The Reference input LO terminal may be elevated by as much as $\pm 13 \mathrm{~V}$ from the input LO terminal without loss of ratio accuracy. Furthermore, the standard reference voltage span of +1 V to +10.5 V permits measurement of ratios from a wide number of sources. Special reference voltage ranges are available on request.

1-11. Three terminal AC/AC ratio measurements use the AC External Reference Option. Reference voltages from 0.1 V to 105 V may be applied on one of three internally selected ranges for highly accurate ratio determinations over a broad range of frequencies.

1-12. System Options

1-13. Isolated Data Output and Isolated Remote Control options use guarded toroids to transfer data and commands to and from the 8400A with no degradation of com-
mon-mode rejection specifications. These options are also DTL/'ILL compatible and are designed to permit muitiplexing of several 8400A's on common sets of control and data output lines. Moreover, they are buffered to prevent interaction between the DVM and the acquisition/control devices.

1-14. External Triggering of the 8400A is accomplished via its Data Output Unit, and resulting data may be acquired fully in parallel BCD format or serially by character in multiples of four-bits. A single control line enables automatic time delays that allow for full settling of the ana-
\log input prior to digitization of the data transferred. Five flags provide continuous measurement status information for the acquisition device.

1-15. Remote Control is exerted by contact closures or logic levels. The 8400A's Control Command Storage feature permits the 8400 A to latch on commands which may be later removed from inputs while the 8400A retains the commanded function and range in internal memory. Logical interlocks a!e a further important systems featüa of this option, because they prevent incompatiot calls.

1-16. SPECIFICATIONS

1-17. Mainframe

DC VOLTS

RANGES	$\pm 0.1 \mathrm{~V}, \pm 1 \mathrm{~V}, \pm 10 \mathrm{~V}, \pm 100 \mathrm{~V}, \pm 1000 \mathrm{~V}$ (automatic polarity selection)
Resolution	$\pm 0.001 \%$ of range, (1 uV maximum on $\pm 0.1 \mathrm{~V}$ range)
Overrange	20\%, $\pm 1100 \mathrm{~V}$ maximum input on $\pm 1000 \mathrm{~V}$ range
Overload	$\pm 1100 \mathrm{~V}$ DC or RMS ($\pm 1500 \mathrm{~V}$ peak) may be continuously applied to any range without damage.

ACCURACY (To 120% of range or $\pm 1100 \mathrm{~V}$ maximum input)

NOISE REJECTION

Normal Mode (filtered)		Greater than $65 \mathrm{db} @ 60 \mathrm{~Hz}(60 \mathrm{db} @ 50 \mathrm{~Hz})$
Maximum superimposed AC Voltage		50% of range peak $A C$, maximum
Common Mode (with up to 1 K unbalance in either lead)		
DC		Greater than 140 db
AC to 60 Hz ,	Filter "in"	Greater than 140 db
	Filter "out".	Greater than 100 db

NOTE: Common Mode Rejection specifications are maintained with any combination of options installed and are unaffected when grounded devices are used in conjunction with the remote control or data output options.
RESPONSE TIME (from an input step change to a completed reading within 0.005% of the change when externally triggered.)
Filter "out". Iess than 33 milliseconds
Filter "in". less than 500 milliseconds

GENERAL

Digitizing Time . 18 milliseconds
Sample Aperture . 3 milliseconds
Sample Rate . Smoothly variable from 13 per second to one per 4.5 seconds via SAMPLE RATE control
NOTE: A maximum sample rate of 30 readings rer second is obtained when Model 8400 A is externally triggered via Option $8400 \mathrm{~A}-03$.
Autorange Time Filter "out". 50 milliseconds per range change
Filter "in" 280 milliseconds per range change
Filter . 4-pole active filter for use with DC volts, AC volts, and Resistance measurements
Range Selection . Manual, Automatic Standard; Remote Optional
Function Selection. Manual Standard, Remote Optional, Autoranges from Ω to K Ω
Display . In-line neon-tube display of polarity, overrange digit and 5 full decades of digits. with automatic decimal placement plus an illuminated function annunciator.
Overload Limits (Maximum voltage that may be continuously applied without damage)
"Hi" to "Lo" . See individual functions under "range", \& "overload"
"Lo" to "Guard". $\pm 100 \mathrm{~V}$ DC or peak AC
"Guard" to "Chassis.". $\pm 1000 \mathrm{~V}$ DC or peak AC maximum Common Mode Voltage
Temperature Range, Operating $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

$+25^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Less than 70% relative humidity
Altitude Range, Operating. To 10,000 feet (3.048 kM)
Non-Operating. To 50,000 feet (15.25 kM)
Shock and Vibration. Meets requirements of MIL-T-21200H and MIL-E-16400F
Operating Power (including options). 115/230 VAC $\pm 10 \%, 50$ to 440 Hz , Less than 25W
Weight (including options) Less than 20 pounds (9.08 kg)
Size . $3^{1 ⁄ 2 \prime 2} H \times 17^{\prime \prime} \mathrm{W} \times 18^{\prime \prime} \mathrm{D}(88.1 \mathrm{~mm} \times 432 \mathrm{~mm} \times 457.4 \mathrm{~mm})$,
see Figure 1-1
Warm-up Time. 20 minutes to 1 year accuracy, 1 hour to full accuracy.

1-18. Options

AC VOLTS (Using Option 8400A-01)

RANGES . 1V, 10V, 100V, 1000V
Resolution . $\pm 0.001 \%$ of range, (10 uV maximum on 1 V range)
Overrange . 20\%, 1100V RMS maximum on 1000 V range

Figure 1-1. MODEL. 8400A OUTLINE DRAWING

Overload .	1100 V RMS may be continuously applied to any range without damage
Superimposed DC.	
$\pm 1100 \mathrm{~V}$ DC (Peak AC plus DC may not exceed $\pm 1500 \mathrm{~V}$)	

ACCURACY (To 120% of range or 1100 V maximum input)

0.001 V to 500V,	$50 \mathrm{~Hz}-10 \mathrm{kHz}$	$\pm(0.05 \%$ of input $+0.005 \%$ of range)
(90 days,	$10 \mathrm{kHz}-50 \mathrm{kHz}$	$\pm(0.1 \%$ of input $+0.005 \%$ of range)
$18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$)	$20 \mathrm{~Hz}-50 \mathrm{~Hz}$ and	
	$50 \mathrm{kHz}-100 \mathrm{kHz}$	$\pm(0.5 \%$ of input $+0.005 \%$ of rarige)*
	$10 \mathrm{~Hz}-20 \mathrm{~Hz}$	$\pm(1.0 \%$ of input $+0.01 \%$ of range)
500 V to 1100 V ,	$50 \mathrm{~Hz} \cdot 10 \mathrm{kHz}$	$\pm 0.1 \%$ of input
90 days	$10 \mathrm{kHz}-50 \mathrm{kHz}$	$\pm 0.15 \%$ of input*
$\left(18^{\circ} \mathrm{C}\right.$ to $28^{\circ} \mathrm{C}$)	$20 \mathrm{~Hz}-50 \mathrm{~Hz}$	\pm (0.5\% of input $+0.005 \%$ of range)
	$10 \mathrm{~Hz}-20 \mathrm{~Hz} . .$.	$\pm(1.0 \%$ of input $+0.01 \%$ of range)

*NOTE: Input Volt - Hertz product should not exceed 2×10^{7}
Temperature Coefficients $\left(0^{\circ} \mathrm{C}\right.$ to $18^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ to $\left.50^{\circ} \mathrm{C}\right)$

$$
\begin{aligned}
& 10 \mathrm{~Hz}-50 \mathrm{kHz} \ldots \pm\left(0.002 \% \text { of input }+0.0005 \% \text { of range) } /{ }^{\circ} \mathrm{C}\right. \\
& 50 \mathrm{kHz}-100 \mathrm{kHz} \ldots \pm\left(0.01 \% \text { of input }+0.0005 \% \text { of range) } /{ }^{\circ} \mathrm{C}\right.
\end{aligned}
$$

Input Impedance
$\pm(0.01 \%$ of input $+0.0005 \%$ of range) $/ \mathrm{C}$
1.11 megohm, $\pm 0.1 \%$, shunted by less than 100 pf.

NOISE REJECTION

Common Mode (with up to 100Ω unbalance in either lead)
DC to 60 Hz . Greater than 120 db
RESPONSE TIME (from an input step change to a completed reading within 0.05% of the change when externally triggered).
Filter "out".
100 milliseconds (input frequency greater than 400 Hz)
Filter "in" . 500 milliseconds (any input frequency)

AC VOLTS (Using option 8400A-09)

NOISE REJECTION

Common Mode (with up to 100Ω unbalance in either lead)
DC to 60 Hz
Greater than 120 db

RESPONSE TIME (to a reading within 0.1% of range when measuring step change inputs and using external trigger).
Filter "out"
Filter "in"
(For readings less than 10\% Range, double indicated times).
(3) Above 400 Hz for rated accuracies.

RESISTANCE (Using Option 8400A-02)
RANGES . $10 \Omega, 100 \Omega, 1000 \Omega, 10,000 \Omega, 100 \mathrm{~K} \Omega, 1000 \mathrm{~K} \Omega, 10,000 \mathrm{~K} \Omega$
NOTE: Model 8400 A will autorange through all resistance ranges.

Resolution		0.001\% of range, (100 u Ω maximum on 10Ω range)
Overrange.		20\%, 12 megohms maximum on $10,000 \mathrm{~K}$ range
Overload,	10 1 - 10,000 ${ }^{\text {ranges }}$	20V RMS (fused)
	$100 \mathrm{~K} \Omega \cdot 10,000 \mathrm{~K} \Omega$ ranges	Up to 250V RMS may be continuously applied without damage

Normal Mode120 db with $\mathrm{a}+10 \mathrm{~V}$ Reference

ISOLATED DATA OUTPUT TIMING DIAGRAMS
AUTOMATIC ADAPTIVE TIMEOUTS
ENABLED

No Call Volts DC and autorange calledFlag Remotely controlled Flag in Data Output Unit
NOTE: Further Details available on request
PARALLEL REAR INPUT (Using Option 8400A-07)
.UTE: Switchable Rear/Front Inputs available on special quote.
1-19. Accessories
A90 Current Shunt
80F-5 High Voltage Probe
80F-15 High Voltage Probe - M00-280-610 24-inch Rack Slide
80RF High Frequency Probe M03-203-601 Rack Ears- M00-260-610 18-inch Rack Slide

static awarencss A Message From John Fluke Mifg. Co., Inc.

Some semiconductors and custom IC's can be damaged by electrostatic discharge during handling. This notice explains how you can minimize the chances of destroying such devices by:

1. Knowing that there is a problem.
2. Learning the guidelines for handling them.
3. Using the procedures, and packaging and bench techniques that are recommended.

The Static Sensitive (S.S.) devices are identified in the Fluke technical manual parts list with the symbol " 0 "
The following practices should be followed to minimize damage to S.S. devices.

1. MINIMIZE HANDLING

2. KEEP PARTS IN ORIGINAL CONTAINERS UNTIL READY FOR USE.

3. DISCHARGE PERSONAL STATIC BEFORE HANDLING DEVICES. USE A HIGH RESISTANCE GROUNDING WRIST STRAP.

4. HANDLE S.S. DEVICES BY THE BODY

5. USE STATIC SHIELDING CONTAINERS FOR HANDLING AND TRANSPORT

6. DO NOT SLIDE S.S. DEVICES OVER ANY SURFACE

7. AVOID PLASTIC, VINYL AND STYROFOAM® IN WORK AREA

PORTIONS REPRINTED WITH PERMISSION FROM TEKTRONIX, INC. AND GENERAL DYNAMICS, POMONA DIV.

8. WHEN REMOVING PLUG-IN ASSEMBLIES, HANDLE ONLY BY NON-CONDUCTIVE EDGES AND NEVER TOUCH OPEN EDGE CONNECTOR EXCEPT AT STATIC-FREE WORK STATION. PLACING SHORTING STRIPS ON EDGE CONNECTOR HELPS TO PROTECT INSTALLED SS DEVICES.

9. HANDLE S.S. DEVICES ONLY AT A STATIC-FREE WORK STATION
10. ONLY ANTI-STATIC TYPE SOLDERSUCKERS SHOULD BE USED.
11. ONLY GROUNDED TIP SOLDERING IRONS SHOULD BE USED.

A complete line of static shielding bags and accessories is available from Fluke Parts Department, Telephone 800-526-4731 or write to:

JOHN FLUKE MFG. CO., INC.
PARTS DEPT. M/S 86 9028 EVERGREEN WAY EVERETT, WA 98204

Section 2

Operating Instructions

2-1. INTRODUCTION

2-2. This section contains operating instructions for the Model 8400A Digital Voltmeter. If any problem is encountered in operating the instrument, contact the nearest John Fluke Sales Representative or write directly to the John Fluke Mfg. Co., Inc. Please include the instrument serial number when writing.

2-3. INSTALLATION

2-4. The 8400A is supplied with non-marring feet and tilt-down bail for bench or field use. A rack-mounting kit and rack-slide kits for installation of the in. ument in a standard 19 -inch rack are available. These accessories are described in Section 6 of the manual.

2-5. REPACKAGING FOR SHIPMENT

2-6. This instrument was packed and shipped in a foam-packed cardboard carton. If reshipment is required, use the original container or request a new container from the John Fluke Mfg. Co., Inc. Please include instrument model number with your request.

2-7. OPTIONS AND ACCESSORIES

2-8. Model 8400A options and accessories are listed in Table 2-1. They are fully described in Sertion . of the manual.

2-9. INPUT POWER REQUIREMENTS

2-10. The 8400 A operates on 115 or 230 volt, 50 Hz to 440 Hz ac power. Before applying power to the instru-

Table 2-1. OPTIONS AND ACCESSORIES

Option No.	Name
8400A-01	AC Converter
8400A-02	Resistance Converter
8400A	Data Output
,400A-04	Remote Control
8400A-05	DC External Reference
8400A-06	AC Ev*ornal Reference
8400A-07	Rear nut
8400A-09	True RMS Converter
-01 required with -06 -01 and -09 cannot be Installed together -07 required with -05 or -06	
Accessory No.	Name
298265	Extender Assembly (Required for servicing pcb's)
M03-203-601	Rack Ears
M00-260-610	18-inch Rack Slides
M00-280-610	24-inch Rack Slides
A90	Current Shunts
80F-5	High Voltage Probe
80F-15	High Voltage Probe
80R 5	High Frequency Probe

ment, no the position of the $115 / 230$ volt slide switch at the rear , he instrument (Figure 2-1). ' witch does not indicate the desired operating voltage, . e it in the correct position.

WARNING!

Ensure that the instrument case is connected to a high quality earth ground, either through the polarized line plug or through a separately connected ground wire.

2-11. OPERATING FEATURES

2-12. The name and function of front and rear panel controls, terminals and indicators are shown in Figure 2-1.

2-13. MEASUREMENT INSTRUCTIONS

2-14. Measurement instructions for basic DVM functions are given in Table 2-2.

Figure 2-1. CONTROLS, TERMINALS, AND INDICATORS (Sheet 1 of 3)

$\begin{aligned} & \text { REF } \\ & \text { NO. } \end{aligned}$	NAME	FUNCTION
4	Function/Status Annunciator	Indicate instrument function and status as follows:
5	FUNCTION Switches	Select desired DVM operating mode:
6	INPUT Terminals	HI, LO input connections for dc and ac voltage measurement.
7	Ω SOURCE Terminals	Current source for all resistance measurements.
8	GD (Guard) Terminal	Connects to internal guard chassis. When properly connected externally, provides maximum common mode rejection.
9	DC ZERO Control	Adjusted for $.000000 \pm 1$ with VDC, Filter, and .1 Range called and INPUT terminals shorted.
10	AUTO RANGE Switch	Places DVM in autorange mode, providing automatic ranging for each function and its range complement.
11	Manual RANGE	Enable manual selection of DVM range. Not calling a range or incorrect range selection automatically places DVM in autorange mode.
12	Sample Rate Indicator	Visual indication of sample rate.
13	SAMPLE RATE Control	Permits variation of DVM sample rate from 13 readings per second to 1 reading per 4.5 seconds. In EXT position (fully counterclockwise), sample rate control is transferred to remote control point via the Data Output Unit. If the Data Output option is not installed and the control is turned to EXT, the DVM will read out and display from its internal storage circuitry indefinitely, with readout corresponding to value of last measurement sample.

Figure 2-1. CONTROLS, TERMINALS, AND INDICATORS (Sheet 2 of 3)

$\begin{aligned} & \text { REF } \\ & \text { NO. } \end{aligned}$	NAME	FUNCTION
14	Data Output Unit Connector (No. 1)	Provides connections for Data Output Unit (Option -03).
15	Data Output Unit Connector (No. 2)	
16	Remote Control Connector	Provides connections for Remote Control (Option -04).
17	AC External Reference Connector	Provides connections for AC External Reference Unit (Option -06).
18	Rear Input Connector	Provides connections for rear input to DVM (Option -07).
19	DC External Reference Connector	Provides connections for DC External Reference Unit (Option -05).
20	115/230 Volt Input Power Switch	Selects either 115 or 230 volt ac line operation.
21	Line FUSE	Protects DVM from overloads. Fuse rating is AGC $1 / 2$ ampere.
22	AC Line Voltage Connector	Mates with polarized 3-wire power cord for connection to $115 / 230$ volt, 50 Hz to 440 Hz , ac line.

Figure 2-1. CONTROLS, TERMINALS, AND INDICATORS (Sheet 3 of 3)

2-15. EXTERNAL REFERENCE

2-16. General

2-17. AC and DC External Reference options enable the user to substitute an external ac or dc voltage for the internal DVM reference voltage. The principal use of the instrument when operated in this manner is for voltage ratio measurements. Another important use is to allow substitution of a system voltage for the 8400A reference voltage. By this means, variables in systems measurements may be reduced.

2-18. The DC External Reference Unit makes 4-terminal voltage ratio measurements: $\pm \mathrm{dc}$ to dc and ac to dc. The AC External Reference Unit makes 3-terminal ac to ac voltage ratio measurements. Separate rear panel input connectors are provided for ac and dc reference voltage inputs.

The pin connection diagram for each connector is shown on a rear panel decal.

2-19. Operation

2-20. The following steps describe the basic operating procedure for ratio measurements using the External Reference options:
a. Select 8400 A voltage range as desired according to the ratio range and corresponding readout, as shown in Table 2-3. Reference input range for the AC External Reference Unit is controlled by an internal range switch located on the AC External Reference Unit pcb. The switch is accessible through the top guard cover after removing the DVM top dust cover. Switch positions are marked on the guard cover.

Table 2-2. 8400A MEASUREMENT INSTRUCTIONS

MEASUREMENT	8400A			REMARKS
	FUNCTION	RANGE	INPUT CONNECTIONS	
\pm DC Voltage	VDC	$\begin{aligned} & .1,1,10, \\ & 100,1000, \\ & \text { AUTO } \end{aligned}$	Front panel HI, LO terminals or rear input terminals if equipped with Rear Input option.	DVM autoranges automatically if range is not manually called or if a range is called that is not compatible with the selected function. Use 4-terminal ohms measurements, if desired, on 10Ω through $10,000 \Omega$ ranges. SOURCE terminals must be connected, either remotely or with shorting links at INPUT binding posts, for all resistance measurements.
AC Voltage	VAC	$\begin{aligned} & 1, \text { i0, 100, } \\ & 1000, \\ & \text { AUTO } \end{aligned}$		
Ohms	Ω	$\begin{aligned} & 10,100, \\ & 1000,10 K, \\ & \text { AUTO } \end{aligned}$		
Kilohms	$K \Omega$	$\begin{aligned} & \text { 100, 1000, } \\ & \text { 10K, AUTO } \end{aligned}$		
DVM Zero Adjustment	VDC, Filter	. 1	Short INPUT terminals together. Use a low-thermal shorting link.	Adjust front panel DC ZERO control for readout of $.000000 \pm 1$.

Table 2-3. EXTERNAL REFERENCE RATIO RANGES

MODE	RATIO RANGE $\frac{\mathrm{V}_{\text {INPUT }}}{\mathrm{V}_{\text {REF }}}$	READOUT	REFERENCE INPUT
DC/DC $\times 10$	$\begin{aligned} & 0 \text { to } \pm 0.0119999 \\ & 0 \text { to } \pm 0.119999 \\ & 0 \text { to } \pm 1.19999 \\ & 0 \text { to } \pm 11.9999 \\ & 0 \text { to } \pm 100.00 \end{aligned}$	$\begin{aligned} & 0 \text { to } \pm .119999 \\ & 0 \text { to } \pm 1.19999 \\ & 0 \text { to } \pm 11.9999 \\ & 0 \text { to } \pm 119.999 \\ & 0 \text { to } \pm 1000.00 \end{aligned}$	$\begin{aligned} & +1 \mathrm{~V} \text { to } \\ & +10.5 \mathrm{~V} \end{aligned}$
AC/DC $\times 10$	$\begin{aligned} & 0 \text { to } 0.119999 \\ & 0 \text { to } 1.19999 \\ & 0 \text { to } 11.9999 \\ & 0 \text { to } 100.000 \end{aligned}$	0 to 1.19999 0 to 11.9999 0 to 119.999 0 to 1000.00	
AC/AC	$\begin{aligned} & 0 \text { to } 1.19999 \\ & 0 \text { to } 11.9999 \\ & 0 \text { to } 119.999 \\ & 0 \text { to } 1000.00 \end{aligned}$	0 to 1.19999 0 to 11.9999 0 to 119.999 0 to 1000.00	1V Range: 0.1 V to 1.05 V 10V Range: * 1 V to 10.5 V 100V Range: 10 V to 105 V
* Table shows values for $1 V$ Reference Range only. For 10V and 100V Reference Ranges, readout equals 10X ratio and 100 X ratio, respectively.			

\(\left.$$
\begin{array}{cl}\text { external reference unit } & \begin{array}{l}\text { Reference voltage } \\
\text { injivit }\end{array}
$$

DC \& +1 \mathrm{v} to+10.5 \mathrm{v}\end{array}\right\}\)| $1 \mathrm{v}, 10 \mathrm{v}$ and 100 v |
| :--- |
| AC | | ranges. (Maximum in- |
| :--- |
| put: 130 v rms.) |

b. Connect reference voltage to rear input terminals.
c. Press EXT REF switch on the front panel.
d. Press VDC switch if dc-to-dc voltage ratios are to be measured or VAC switch if ac-to-dc/ac ratios are to be measured.

2-21. Installation, theory of operation, and maintenance instructions for the External Reference options are covered in Section 6 of the manual.

2-22. REMOTE CONTROL UNIT

2-23. General

2-24. The Remote Control Unit (RCU) enables the 8400A to be programmed or controlled remotely. RCU inputs are designed to interface directly with DTL/TTL logic. Control by discrete transistors or contact switches is also possible. Operating power for the RCU must be supplied from an external +5 volt source having a current capability of at least 150 milliamperes. Power may be obtained from the Data Output Unit option if the DVM is so equipped.

2-25. The RCU provides the capability of controlling all DVM functions and ranges, with logic interlocking provided so that incompatible functions or simultaneous
ranges cannot be called. Acceptable combinations are shown in Table 2-4.

2-26. RCU Command Triggering

2-27. The RCU has two operating modes which control entry of external commands into the unit: continuous command mode and triggered command mode.

2-28. In continuous command mode, the RCU requires no external triggering. The instrument always reflects present state of command inputs in continuous mode. To achieve this mode of operation, hold pin 35 (Auto Command Entry Defeat) and pin 33 (External Command Entry) at logical " 1 " $(+5 v)$ or open.

2-29. In triggered command mode, the RCU will only respond to programming inputs after application of an external trigger. It will memorize input commands within 10 microseconds of trigger application. Following the storage operation, programming inputs may be changed or removed without affecting stored information. To achieve this mode of operation, hold pin 35 (Auto Command Entry Defeat) low by application of logical " 0 " or contact closure and apply the external trigger to pin 33 (External Command Entry). RCU connector location is shown in Figure 2-1. Pin assignments are given in Table 2-5. Trigger requirements (External Command Entry) are given in Figure 2-2.

2-30. Operation

2-31. To place DVM in remote operation, proceed as follows:
a. Press REMOTE FUNCTION switch to transfer control of DVM function and range to the remote control point.

Table 2-4. REMOTE CONTROL UNIT LOGIC INTERLOCKING

FUNCTION CALLED	RANGE CALLED							FILTER	RATIO
	. 1	1	10	100	1000	10к	NONE		
VDC	. 1	1	10	100	1000	AUTO	AUTO	YES	YES
VAC	AUTO	1	10	100	1000	AUTO	AUTO	YES	YES
Ω	AUTO	AUTO	10	100	1000	10K	AUTO	YES	NO
$K \Omega$	AUTO	AUTO	AUTO	100	1000	10K	AUTO	YES	NO
NOTE:	If function and range are not called, DVM goes to VDC mode and autoranges (providing REMOTE button is pressed) When ranges are selected manually, DVM will autofunction between Ω and $K \Omega$ if the selected range does not agree with the called function.								

Table 2-6. REMOTE CONTROL UNIT PIN ASSIGNMENTS

FUNCTION	PIN NO.	FUNCTION	PIN NO.
Common Common Common 1 Range Common +5 V Input 1000 Range 10K Range 10 Range	$\begin{array}{r} { }^{*} 2 \\ { }^{*} 4 \\ { }^{*} 6 \\ 7 \\ 7 \\ { }^{*} 8 \\ * * 9 \\ 11 \\ 13 \\ 15 \end{array}$	$\overline{\overline{V A C}}$ $\overline{\mathrm{~K} \Omega}$ $\bar{\Omega}$ $\overline{1 \text { Range }}$ $\overline{100 \text { Range }}$ $\overline{\text { External Reference }}$ External Command Entry Auto Command Defeat	$\begin{aligned} & 17 \\ & 19 \\ & 23 \\ & 25 \\ & 27 \\ & 29 \\ & 31 \\ & * * * 33 \\ & * * * 35 \end{aligned}$

Logic Levels

LOGIC $1=+5$ V OR OPEN
(INPUT DEVICE MUST bE
ABLE TO SOURCE $40 \mu \mathrm{AMP}$
AT 2.6 V)
LOGIC $0=0 V$ OR CONTACT CLOSURE
(INPUT DEVICE MUST BE
ABLE TO SINK AT 1.6 MA AT OV)

TRUTH TABLE

1 - FUNCTION NOT CALLED
$0=$ FUNCTION CALLED
NOTES:

* Isolated from Input "LO" and chassis
** +5 V Input: Maximum current requirement $=150$ milliamperes. (Available from DOU)
*** Used only in Control Command Storage mode of operation. No connections are required when $R C U$ is controlled with continuously applied commands.
b. If remote control of DVM sample rate is desired, turn SAMPLE RATE control to its extreme CCW position (EXT). In EXT position, the internal sample rate oscillator is disabled and the DVM sample command is applied via the Data Output Unit. If the Data Output Unit is not installed and the control is turned to EXT, the DVM will readout and display from analog storage indefinitely. The readout will correspond to the value of the last measurement.

Figure 2-2. REMOTE CONTROL UNIT TRIGGER REQUIREMENTS (EXTERNAL COMMAND ENTRY)
c. Command a function or range via a contact closure or a zero volt logic level between the appropriate pin and common. For example, to program 10 k ohm, filtered operation, command pins 13 , 23 , and 31 via contact closure or zero volts to pin 2,4 , or 6 (commons).

2-32. Installation, theory of operation, and maintenance instructions for the Remote Control Unit are covered in Section 6 of the manual.

2-33. DATA OUTPUT UNIT

2-34. General

2-35. DOU access is by means of two card-edge connectors located at the rear of the instrument (Figure 2-1). Data may be acquired fully in parallel BCD format or serially by character in multiples of four-bits. The Programmed OneShot (POS) line enables automatic time delays that allow for full settling of analog input circuitry prior to data transfer.
$2-36$. The DOU is self powered and provides $+5 \mathrm{~V}(150$ mililiamperes maximum) output for operation of the Remote Control Unit (Option -04) or other logic circuitry. DOU truth tables and logic levels are given in Table 2-6. Functional pin connections for the DOU are given in Table 2-7.

2-37. Control Signals

2-38. DOU control inputs consist of External Trigger, External Trigger Inhibit, and Programmed One-Shot. The External Trigger may be a positive or negative going signal, as shown in Figure 2-3. The External Trigger Inhibit input must be a logical " 0 " to inhibit and a logical " 1 " to enable. The Programmed One-Shot input must be a logical " 1 " for fast operation (timeouts defeated) and a logical " 0 " for normal operation (programmed timeouts).

Figure 2.3. DATA OUTPUT UNIT TRIGGER REQUIREMENTS

2-39. The Sample Sync signal corresponds in timing to the DVM sample periods occurring in each measurement period, as shown in Figure 2-4. During the time the DVM is busy processing a request for data, the time of occurrence of the second or final sample period is subject to a number of delays, depending on DVM operating mode, autoranging delays, etc. The purpose of the Sample Sync signal is to inform the DVM input signal acquisition device (scanner) when the final sample is taken by the DVM. This information is useful when the DVM is used in a scanning system, where it is desirable that inputs be changed at the earliest possible time without altering the previous sample.

2-40. Programmed One-Shot

2-41. The response of the 8400A Data Output Unit to a data request consists of a function-dependent series of delays. When enabled, the Programmed One-Shot circuit in the DOU automatically sequences the delay series to provide data within specified accuracy in the minimum possi-

Figure 2-4. SAMPLE SYNC. SIGNAL TIMING (AUTOMATIC ADAPTIVE TIMEOUTS ENABLED).
ble time. If settling time is not a problem in specific applications, convenience is enhanced by provision for defeat of the POS, allowing sample rates as high as 30 per second. Application of +5 v logic level or open circuit to pin 2 defeats the POS (Fast Sample); application of logic zero or contact closure to pin 2 enables the POS (Normal Sample). Figure 2-5 illustrates the timing of the events that occur

Figure 2-5. 8400A MEASUREMENT CYCLE TIMING DIAGRAM.

Table 2-6. DATA OUTPUT UNIT FUNCTIONAL PIN CONNECTIONS

during the busy flag. The total busy flag time when the automatic adaptive timeouts are enabled, is given in Table 2-7.

2-42. Code Conversion

2-43. The 8-4-2-1 BCD code (standard) used in the 8400 A may be converted to some other code, using the convenient code conversion terminals provided at the output connector on DOU No. 2. To convert to another code remove the jumpers and connect the code conversion network, as shown in Figure 2-6. Usually only two integrated circuits are required in the network vs. about twelve for parallel conversion at the outputs, so a considerable saving may be realized. Detailed information regarding code conversion is available from the factory.

2-44. Figure 2-7 contains comprehensive timing diagrams for measuring both switched and continuously applied inputs when the D.O.U.'s automatic adaptive timeouts are not enabled.

2-45. OUTPUT FLAGS

2-46. Besides the Busy Flag (Data Not Ready), there is also a Sample Sync Flag. This flag goes to logic "1" when the DVM starts sampling the input signal (aperture window opening). By using the Sample Sync Flag (negative transisition - leading edge), plus an external 3 millisecond, one-

Table 2-7. TOTAL BUSY FLAG TIME OUT (Âutomatic Adapative Timeouits Enabled)

FUNCTION RANGE	TOTAL TIME	MS
VDC-10, 100, 1000	54 ± 3	523 ± 42
VDC-0.1, 1.0	123 ± 10	523 ± 42
VAC - all ranges	123 ± 10	523 ± 42
$\Omega-$ all ranges	123 ± 10	523 ± 42
k $\Omega-$ all ranges	73 ± 6	523 ± 42
Autorange - per range change	Add 50	Add 280

shot delay, total data acquisition time can be decreased when using input scanners or a changing input signal which require long settling times. This will take advantage of the fact that the aperture window is only open for 3 milliseconds allowing the input signal to be changed and to be settled before the next sample aperture occurs. When the Automatic Timeouts are enabled, the final sample sync flag must be used instead of the initial or intermediate sync flags. See Figure $2-4$ for timing of the sample sync flag.

2-47. The trigger flag indicates if the DVM is being triggered internally or externally. Other flags are the over-

Figure 2-6. CODE CONVERSION

1. WITH PROGRAMMED FUNCTION AND/ OR RANGE CHANGE - AUTORANGING NOT ALLOWED.

PROGRAM 8400A TO NEW FUNCTION CHANGE INPUT TRIGGER 8400A

BUSY FLAG
MILLISECONDS

B = BUFFER SETTLING TIME FROM TABLE D $25=$ TIME TO SWITCH 8400A INTERNAL RELAYS
a. SIMULTANEOUSLY CHANGE INPUT AND PROGRAM FROM A FORMER FUNCTION TO A NEW ONE WHEN FORMER INPUT DOES NOT CAUSE OVERLOAD CONDITION FOR NEW FUNCTION, OR NEW INPUT WOULD NOT CAUSE OVERLOAD CONDITION FOR OLD FUNCTION. (SEE SPECIFICATIONS ON DATA SHEET).

PROGRAM 8400A
TO AC/DC VOLTS
CHANGE INPUT TO VOLTS TRIGGER 8400A

BUSY FLAG
MILLISECONDS

$B=$ BUFFER SETTLING TIME FROM TABLE D
A = TIME TO SWITCH INPUT
25 = TIME TO SWITCH 8400A INTERNAL RELAYS
b. PROGRAM 8400A TO AC OR DC VOLTS FROM Ω OR K Ω, THEN APPLY A VOLTAGE input greater than specified Ω or $K \Omega$ "OVERLOAD" INPUT. (SEE SPECIFI CATIONS ON DATA SHEET)

B = bUFFER SETTLING TIME FROM TABLE D
A = TIME TO SWITCH INPUT
$25=$ TIME TO SWITCH 8400A INTERNAL RELAYS
c. PROGRAM 8400A TO Ω OR $K \Omega$ FROM AC OR DC VOLTS WHEN INPUT VOLTAGE IS GREATER THAN SPECIFIED OVERLOAD FOR Ω OR K Ω INPUTS. (SEE SPECIFICA. TIONS ON DATA SHEET).

2. WITH PROGRAMMED RANGE CHANGE

 BUT NO FUNCTION CHANGE.

B = BUFFER SETTLING TIME FROM TABLE D
25 = TIME TO SWITCH 8400A INTERNAL RELAYS
TABLE D
bUFFER SETTLING TIME TABLE

		BUFFER SETTLING TIME IN MILLISECONDS	
FUNCTION	RANGE	FILTER "OUT"	FILTER "IN"
DCV	.1 V	100	500
	$1,10,100$	33	500
	1000	33	500
ACV	ALL	33	500
Ω	10	100	500
	100,1000	33	500
	10,000	33	500
K Ω	100	33	500
	1000,1000	33	500

Figure 2-7. SINGLE READING TIMING REQUIREMENTS WHEN D.O.U.'S AUTOMATIC ADAPTIVE TIMEOUTS ARE NOT ENABLED.
load, Volts DC, Volts AC, Ohms, Kilohms, Polarity, Filter, External Reference and Remoie Flags which are selfexplanatory. Refer to Table 2-7 for pin connections and level information.

2-48. Completely Parallel Data Acquisition

2-49. For completely parallel data acquisition, perform the following steps:
a. Determine the BCD code to be used and wire accordingly (see paragraph 2-42 for code conversion information).

NOTE!

8-4-2-1 BCD is supplied in standard 8400A.
b. Acquire full digits data by connection to the decade outputs. Leave inhibit lines associated with each decade open.
c. Acquire function, range, overrange and polarity data as desired. Leave associated inhibit lines open.
d. If data output is to be applied to a printer, the foregoing data could be grouped for presentation in several printer columns, with each column weighted as desired.
e. Acquire busy, overload, and trigger flags for use as desired.

2-50. Serial Character, Parallel Bit Acquisition

2-51 For serial character, parallel bit acquisition, perform the following steps:
a. Determine the BCD code to be used and wire accordingly (see paragraph 2-42 for code conversion information).
b. Connect function, range, polarity, and digit outputs in parallel, as shown in Figure 2-8 or in groups of $8,12,16$ bits, etc., as desired.
c. User supplied clock controls inhibit lines to determine the sequence of character acquisition. Data is transferred to the output lines when the associated inhibit lines are high. Truth tables and acquisition format are also shown in Figure 2-8.

2-52. Minimum Lines Acquisition

2-53. Minimum lines acquisition is a practical application of serial character, parallel bit acquisition, in which a user-supplied clock is placed near the 8400A to sequentially control the inhibit lines. Proceed as follows:
a. Place a customer fabricated 9 -segment ring countor near the 84004 and interface as shown in Figure $2-9$.
b. Trigger the 8400A. (The Sample Time line may be programmed via interface or it may be hardwired).
c. When data is ready, transition of the 8400A BUSY signal will start the ring counter. A synchronizing pulse, sent from the ring counter's advance line, will allow the acquisition device to recognize the character being acquired on the four output lines.
d. An OVERLOAD line is available to serve as an alarm or priority interrupt.

2-54. Installation, theory of operation, and maintenance instructions for the Data Output Unit are covered in Section 6 of the manual.

2-55. OPERATING NOTES

2-56. Overload Protection

2-57. The 8400A is protected against overload in each function and on all ranges. Table 2-8 lists the maximum voltages that may safely be applied to the DVM on all ranges.

2-58. Guarded Measurements

2-59. The 8400A employs a system of shields and guards that function (when properly connected) to minimize common mode-to-normal mode signal conversion and induced noise, thereby providing the user with a versatile systems DVM capable of fully-floating measurements without significant degradation of accuracy.

2-60. Non-floating measurements will likely be the usual case. Under these conditions, it is satisfactory to strap the front panel guard (GD) terminal to the LO input terminal using the shorting link provided.

CAUTION!

If guarded measurement is not needed, the DVM guard terminal should be connected to the IN PUT LO terminal at the front panel to preclude possible damage to the instrument.

2-61. In general, guarded voltage and resistance measurements will be necessary under the following conditions:
a. When long signal leads are used and signal source impedance is high.

Figure 2-8. WIRING EXAMPLE, ACQUISITION FORMAT, AND TRUTH TABLES FOR SERIAL CHARACTER, PARALLEL BIT ACQUISITION

Figure 2-9. MINIMUM LINES ACQUISITION

Table 2-8. OVERLOAD PROTECTION CHARACTERISTICS

FUNCTION	MAXIMUM SAFE INPUT	FORM OF PROTECTION
VDC	(1100V dc or RMS ($\pm 1500 \mathrm{~V}$ peak) con- tinuously on any range.	Circuit Design
VAC	1100 V RMS continuously on any range.	

b. When floating measurements are made and the common mode voltage is a high potential, high frequency, or both.
c. When the DVM is operating in the presence of high-level radiated noise, of which the most com-
mon example is stray fields at the power line frequency.

2-58. Figure 2-10 shows two methods for making guarded voltage measurements where reduction of common mode-to-normal signal conversion is desired. Figure 2-11 shows two methods for connection of the guard terminal when making ohms measurements.

CONNECTIONS TO THE GUARD FROM THE COMMON-MODE SOURCE

USING AN EXTERNAL AMPLIFIER TO DRIVE THE GUARD WHERE COMMON MODE SIGNAL CANNOT BE CAPACITY LOADED

Figure 2-10. SUGGESTED GUARD CONNECTIONS FOR REDUCTION OF COMMON MODE-TO-NORMAL MODE SIGNAL CONVERSION

Figure 2-11. PROPER GUARD CONNECTIONS FOR (A) 2-TERMINAL Ω MEASUREMENTS WHEN SIGNAL LEADS ARE SHORT AND (B) 4-TERMINAL Ω MEASUREMENTS ON 10Ω THROUGH $10,000 \Omega$ RANGES

Section 3

Theory of Operation

3-1. INTRODUCTION

3-2. This section describes the theory of operation of the Model 8375 A . The information is arranged under headings of "BLOCK DIAGRAM ANALYSIS" and "CIRCUIT DESCRIPTIONS." Simplified block diagrams and circuits are included with the text information. Schematic diagrams are located at the rear of the manual.

3-3. BLOCK DIAGRAM ANALYSIS

3-4. Buffer (A11)

3-5. The Buffer (A11) receives the dc input voltage and scales it up or down so that a full-scale input produces a full-scale 10 V output to the active filter. (Refer to Figure 3-1.) When the 0.1 or $1 V$ range is selected, the Buffer is configured as an amplifier having a gain of 100 or 10 , respectively. In the 10,100 or 1000 V range, the A11 Buffer has a fixed unity gain and the input is scaled using a divider to provide the full-scale $\pm 10 \mathrm{~V}$ output.

3-6. Active Filter (A10)

3-7. The A10 Active Filter suppresses ac noise present in the Buffer output. It consists of a voltage follower and a four-pole filter. Filtering is in effect when the FILTER switch on the front panel is pressed. If this switch is not pressed, the four-pole filter is bypassed and the circuit functions as a voltage follower. The resulting filtered or unfiltered output is applied to the A9 A/D Converter.

3-8. Logic (A8)

3-9. The A8 Logic produces the master timing signals from which the measurement periods in the instrument are established. It also produces the reference voltage upon
which the accuracy and stability is based. The circuitry consists of a master clock, a six-state shift register, a current controlled oscillator (CCO), a four-bit binary counter, and $a+7 \mathrm{~V}$ reference supply. The master clock produces gating signals that synchronize all timing circuitry in the instrument. The shift register is driven by the clock signals and produces digit cycle control signals for the A9 A/D Converter. Any output from the A / D amplifier produces an output from the analog comparator which enables the CCO to send output pulses to the binary counter. The binary counter selects the appropriate steps in the A9 A/D Converter ladder such that the CCO output is ultimately disabled. The resulting state of the binary counter is also applied to the A14 Display and decoded to indicate the measured value. The $\pm 7 \mathrm{~V}$ reference supply output is applied to the ladder in the A9 A/D Converter.

3-10. A/D Converter (A9)

3-11. The A9 A/D Converter receives the output from the Active Filter, determines the polarity, and serially digitizes the input voltage. The digitizing process is controlled through commands from the A8 Logic assembly. The circuitry consists of an inverting amplifier, polarity detector, sample and hold, A/D amplifier, ladder switches, and an analog comparator amplifier. The inverting amplifier receives the positive or negative outputs of the A10 Active Filter and inverts the positive output so that the input to the A / D amplifier is always negative. Polarity of this signal is sensed by the polarity detector and applied to the A14 Display section. Any output voltage from the A/D amplifier, greater than Vref, produces an output from the analog comparator which then enables the CCO to send output pulses to the binary counter. The binary counter pulses gate the appropriate ladder switches in the A/D converter to produce a voltage across the primary ladder resistors. The resulting voltage is equal in value, but opposite in polarity,

to that portion of the A / D amplifier input voltage that caused the amplifier output to be greater than Vref. As the degenerative affect of the primary ladder voltage causes the A/D amplifier output to fall below Vref, the analog amplifier will no longer enable the CCO to send output pulses to the ladder switches. At this point the digitizing process for the most significant digit of the unit input voltage is complete. The voltage level remaining at the output of the A/D amplifier, representing the 8400 A input voltage minus the most significant digit, is stored in the sample and hold circuit until the logic control gates it out to the input of the A/D amplifier. Each decade of the recirculated remainder is digitized in a simular fashion with one exception; the recirculated remainder voltage (now the A / D amplifier input voltage) and the primary ladder voltage are now the same polarity, because they are applied to opposite sides of the dual fet input transistor.

3-12. Display (A14)

3-13. The A14 Display decodes and digitally displays the input voltage magnitude and polarity. It also provides a variable sample rate for control of the measurement cycle. The circuitry consists of a sample rate oscillator, range counter, decoder, and display indicators. The sample rate oscillator frequency is controlled by a SAMPLE RATE control on the front panel and determines the rate at which the input to the instrument is sampled. The range counter receives auto-range commands from the A2 Range Delay and manual range commands from the front panel switches. The range counter applies range information to the decoder and all input signal conditioning circuitry. Range, polarity, and digit information is processed in the decoder, which then produces the correct display condition in the indicators.

3-14. Range Delay (A2)

3-15. The A2 Range Delay processes switching inputs from the front panel and produces control commands for the decoder in the A14 Display. It also produces up/down autorange commands for the range counter. The circuit consists of logic, range delay one-shot, and a pulse generator. The logic circuitry produces control signals for the pulse generator and the decoder in the A14 Display. A clock signal for the range counter in the A14 Display is produced by the pulse generator. This clock signal is required for the autorange feature. The range delay one-shot produces a programmed time delay after any range change to allow for settling time of analog signal conditioners which process the input.

3-16. Power Supply (A1)

3-17. Operating voltages for the instrument are produced in the A1 Power Supply. The voltages producedare +200 V , $\pm 18 \mathrm{~V}$ and +5 V . Each voltage is derived from the ac input using a series regulator.

3-18. Options

3-19. Optional features can be installed in the instrument. Each option is shown in Figure 3-1 and described in the following paragraphs.

3-20. AC CONVERTER. The A13 AC Converter is installed as the -01 Option. This circuitry allows ac measurements to 1000 V at frequencies from 10 Hz to 100 kHz . The circuitry consists of an operational rectifier, amplifier integrator, and range logic. AC inputs are amplified or attenuated and rectified in the operational rectifier. The resulting dc voltage is then filtered and amplified by the amplifier integrator. Range commands are processed in the range logic whose output then establishes a fixed gain or attenuation factor for the operational rectifier. The resulting full-scale -10 V dc output is applied to the A10 Active Filter. This voltage is then filtered, serially digitized and displayed in the same manner as previously described in the basic instrument paragraphs.

3-21. OHMS CONVERTER. The A12 Ohms Converter is installed as the -02 Option. This circuitry allows resistance measurements from $100 \mu \Omega$ to $12 \mathrm{M} \Omega$. Resistance measurements in ohms ranges are true, four-terminal. Measurements in K ohm ranges are conventional two-terminal. The circuitry consists of a constant current generator, a current source, switching circuitry, and logic. When the ohm function is selected, the constant current generator output is made available to the Ω SOURCE terminals. Since both the Ω SOURCE and SENSE terminals are connected to the unknown resistance, the A11 Buffer input voltage is directly proportional to the resistance value. The A11 Buffer output is then serially digitized and displayed as described previously to indicate the resistance value. In the K ohm ranges, the current source output is made available to the Ω SOURCE terminals. The resulting voltage input is then measured in the same manner; however, since the voltage drop in the lead resistance of the unknown also appears at the voltage measuring terminals, true four terminal measurement is not available. Simplified diagrams of the four terminal and conventional resistance configurations are shown in Figure 3-2.

Figure 3-2. OHMS AND K OHMS RANGE CONFIGURATION

3-22. DATA OUTPUT. The A6 and A7 Data Output

 Units are installed as the -03 Option. This circuitry provides parallel, isolated, coded outputs of digit, polarity, range, and function. It also provides a +5 V dc output for external equipment as well as input lines for external triggering and control of the measurement cycle. The circuitry is contained on two separate assemblies. Digit and range outputs are available from the Data Output Unit 1. Function indications, flag outputs, and +5 V dc outputs in addition to triggering and code conversion inputs are available in the Data Output Unit II.
3-23. REMOTE CONTROL. The A5 Remote Control

 Unit is installed as the -04 Option. This circuitry allows remote control of mode, instrument range, and functions. Input requirements are compatible with DTL or TTL logic levels. The circuitry consists of a clock generator, encoder, multiplexer, and decoder. The clock generator produces a clock signal which gates the multiplexer and decoder. Inputs are coded in the encoder and applied to the multiplexer. The multiplexer output is then serially transferred to the decoder at the clock rate. Serial to parallel conversion takes place in the decoder and the resulting commands used to control the range and function.3-24. DC EXTERNAL REFERENCE. The A3 DC External Reference is installed as the -05 Option. This circuitry allows $\mathrm{dc} / \mathrm{dc}$ and ac/dc ratio measurements using an external dc reference voltage. Input reference voltage can be from +1 to +10.5 V dc. The circuitry consists of a differ-
ential amplifier and a switching circuit. The external reference input is buffered by the differential amplifier. Appiication of internal or external reference voltage to the $\mathrm{V}_{\text {REF }}$ line is done through the switching circuit.

3-25. AC EXTERNAL REFERENCE. The A14 AC External Reference assembly is installed as the -06 Option. This circuitry allows ac/ac ratio measurements with an external ac reference voltage. Input reference voltage can be from 0.1 to 100 V ac at 10 Hz to 100 kHz . The circuitry consists of an operational rectifier and switching circuitry. The ac reference input is amplified or attenuated and rectified in the operational rectifier. The resulting dc reference is then applied to the $\mathrm{V}_{\mathrm{REF}}$ line by the switching circuitry.

3-26. REAR INPUT. The Rear Input terminals are installed as the -07 Option. These terminals are connected in parallel with the input terminals on the front panel.

3-27. CIRCUIT DESCRIPTIONS

3-28. The following paragraphs describe in detail the basic circuitry contained in the instrument. Circuit descriptions for options are located in the subsections of Section 6. Schematic diagrams are located at the rear of the manual.

3-29. A11 Buffer

3-30. The A11 Buffer (Drawing No. 8400A-1005) provides a full-scale dc voltage, isolated from the input under measurement, of 10 V dc . It consists of four basic elements: input and output voltage dividers, amplifiers, and control logic. The circuitry has two operating configurations or modes determined by the voltage range selected: a low volts mode and a high volts mode. In the low volts mode (0.1 and 1.0 volt range) some amplification of the input occurs. In the high volts mode (10,100 , and 1000 volts range) input attenuation occurs, except in the 10 volts range when the input is processed without attenuation or amplification. Both modes are shown in block form in Figure 3-3. The A portion of the figure depicts the low volts mode, and the B portion of the figure depicts the high volts mode.
3-31. The input to the A11 Buffer is derived from input jacks J25 and J26, both jacks being shown on the block and system wiring diagrams. Buffer input current limiting resistors 1R1 and 1R2 are also located on the system diagram, along with the high and low inputs to the A11 Buffer, at jacks J4TM and J1TR, respectively, of terminal block No. 1.

3-32. On the A11 Buffer schematic, the low volts input is applied across current limiting resistor R 2 , through the contacts of K1, to the high input impedance amplifier com-

Figure 3-3. BUFFER AMPLIFIER BLOCK DIAGRAM
posed of three separate amplifiers: dual differential amplifier Q5 and Q4, operational amplifier U1, and inverter U2.

3-33. The output of the amplifier is applied in parallel to the A10 Active Filter and to a gain determining, output voltage divider, R37 through R40, through contacts of relays K1 and K6. Inspection of the resistance ratios in the output divider shows that the final amplifier output must be 100 times the input in the 0.1 volt range, and 10 times the input in the 1 volt range. Thus, the A11 Buffer output is the required 10 volts for full-scale inputs.

3-34. In the high volts mode of operation, shown in Figure 3-3B, the buffer amplifier receives the input voltage directly (10 V range) or receives a scaled down voltage through an input voltage divider consisting of R5 through R10. Since the buffer is a unity gain inverter, its output is the inverse of the received input. For example, an input of
+1000 V would be scaled down to +10 V through the input divider. With +10 V at its input, the buffer output is -10 V .

3-35. In the low volts mode, voltage follower U3 is used to bootstrap the operational environment of the input dual differential pair Q4 and Q5, with the input voltage to increase its effective ratio of common mode rejection. Any differential amplifier offset voltage present that would cause buffer output with no input is compensated by use of two potentiometers; one, COARSE DC ZERO, which balances the base emitter voltages of the input differential amplifier Q5 by adjusting the collector current ratio, and two, or the second potentiometer, BUFFER ZERO, which affords a fine adjustment via the front panel by applying just that amount of nulling voltage to the base of differential amplifier Q5B that results in a buffer output voltage equal to zero when the input voltage is zero. This last potentiometer is labeled DC ZERO just over the front panel access hole.

3-36. Overload protection for dual differential amplifier Q5 is afforded by the combination of components R2, CR1, Q11, and the current limiting resistors previously defined as R1 and R2 shown on the system wiring diagram. Positive overvoltage protection is afforded by transistor Q11 which clamps amplifier output to 1.7 volts. Negative overvoltage protection is afforded by diode CR1 which clamps the input to -1.7 volts. The current drawn during an overload is limited by the total input resistance of 147 k ohms.

3-37. Compensation circuits are provided to reduce the temperature coefficients of the input offset voltage and offset current. Transistor Q2 and surrounding circuitry provides through R18 and R19 the temperature varying base current required by input transistor Q5. Transistor Q3 compensates the temperature variation of the baseemitter voltage in dual transistor Q4 to ensure that input transistor Q5 remains at substantially the same bias conditions irrespective of temperature.

3-38. A10 Active Filter

3-39. The A10 Active Filter (Drawing No. 8400A-1015) consists of a voltage follower preceded by four poles of low pass filtering. These four poles attenuate undesirable AC signals which may be present in the dc input signal. Filtering occurs after the FILT button on the front panel of the DVM is depressed. A block diagram of the active filter is shown in Figure 3-4. Also shown is the response curve of the active filter which plots attenuation in decibels against a log scale of frequency in Hertz.

3-40. A9 A-to-D Converter and A8 Logic

3-41. The A9 A-to-D Converter and A8 Logic circuits (respectively, drawings No. 8400A-1003 and -1004) are discussed together in the following paragraphs, since any discussion of the analog-to-digital (A-to-D) conversion process must include elements of both circuits. The basic conversion and logic circuitry involved in the conversion process is shown in Figure 3-5. Also shown is an arbitrary input voltage that is the equivalent to the inverted, unknown voltage applied across the input jacks of the DVM. The output of the converter is shown, applied to the following stage, the A14 Display, and consists of binary coded data bit groups that are serially emitted from the converter and applied to the display circuits for decoding and serial display. The basic purpose of the combined converter-logic circuitry is to convert the analog voltage input (given as +6.3524 dc volts in Figure 3-5) serially by decade to binary coded bit groups, one bit group per decade.

3-42. The inverting amplifier consists of input switch Q3, dual FET input amplifier Q4, operational amplifier U1, and associated circuitry. Once every 18 milliseconds, during the C sub-period the inverting amplifier switch Q 6 is switched on by the S5 Logic Signal, to zero the inverting amplifier. The automatic zero circuit consists of transistors Q5 and Q6 and capacitor C2. The drive circuit also supplies a turn-off signal to transistor Q3, thereby removing the input to the inverting amplifier during the C sub-period.

Figure 3-4. ACTIVE FILTER

3-43. The polarity detector consists of flip-flop Q10, Qi1, and associated circuitry. The fiip/fiop empioys base triggering, which is applied through diode CR6 to the base of Q10. The gate signal, gate 4 , is applied to the emitters of Q10 and Q11 and enables the detector during the A subperiod of the measure period. During the remainder of the measure period, the plus and minus gates (Q8 and Q7, respectively) are turned off and the polarity information is retained by the display circuitry.

3-44. The A/D amplifier consists of dual FET Q20, operational amplifier U 2 , and associated components. Switch Q24 is turned on during the ZERO (0) sub-period of the measurement period by a ZERO signal from the logic circuit. This signal also controls switches Q19 and Q31, which are turned on during the ZERO sub-period to zero the differential amplifier, and switch Q30, which is turned off during the ZERO sub-period to disconnect the amplifier output from the ladder. Transistor Q29 and resistor R54 constitute a clamp, which prevents amplifier U2 from saturating while its output is above 7 volts.

3-45. The analog comparator, consisting of transistors Q45, Q32, Q33, Q34, Q35 and associated components, is basically a voltage comparator. Differential amplifier stage Q35 compares the A/D amplifier output with the +7 volts reference, and differential stage Q33, Q34 outputs to the current controlled oscillator (CCO) anytime the A/D amplifier output voltage is greater than the +7 volts reference. Transistor Q32 operates as a second comparator, which responds quickly to high voltage levels, thereby allowing maximum time for resolution of the least significant digit.
346. The sample and hold circuit consists of transistors Q25 through Q28 and capacitors C9 and C10. The sequence of operation for the sample and hold circuit is shown in Figure 3-6.

MEASURE PERIOD SUBPERIODS	SWITCHES ON	VOLTAGES STORED ON SAMPLE AND HOLD CAPACITORS	
		C9	C10
A	Q26, Q22	3.524	0
B	Q25, 028	3.524	5.24
C	Q27, 026	2.4	5.24
D	Q25, Q28	2.4	4.0
E	Q27	0	4.0
ZERO (\emptyset)	Q19, Q31,	0	?
VOLTAGES SHOWN ARE ONLY PROPORTIONAL TO ACTUAL VOLTAGES.			

Figure 3-6. SAMPLE AND HOLD SWITCHING

3-47. The ladder switches of Q37 through Q44 are controiled by drivers Q19 through Q22 on the A 8 i logic board. The output of the ladder switches is applied to two ladders. Each ladder comprises a 4-bit, weighted-resistor, digital-toanalog converter. The primary ladder consists of resistors R44 through R50 and produces an output voltage that corresponds to the actual value of the most significant digit of the A / D amplifier input voltage. The secondary ladder, which drives only the display storage circuit through buffer amplifier U3, consists of resistors R40 through R43 and produces an output that closely approximates the actual value of the primary ladder output. A half-digit bias is produced by R38 and R39 in conjunction with the secondary ladder resistors and adds the voltage equivalent of a half-digit to the output of the secondary ladder. This ensures proper display storage readout by compensating for the effects of voltage decay in the storage circuit.

3-48. The display storage circuit consists of FET switches Q13 through Q17, capacitors C11 through C15, and FET switches Q12 and Q18. The buffered output of the secondary ladder is supplied to the appropriate storage capacitor through Q18, which is switched on during the second half (display time) of each sub-period. The first (most significant) digit is stored on C13, the second on C11, etc. When the cycle change circuitry switches to storage mode, Q12 is turned on and the analog voltages stored on the storage capacitors are serially applied to the input of the A / D amplifier. Thus, the same reading is continually digitized and displayed until a new sample of the input is taken.
349. The 333 Hz clock signal is produced by transistor Q1 on the A8 Logic board. The clock frequency is determined by the RC time constant of resistor R1 and capacitor C 1 . The output of Q 1 is applied to the trigger input of flip-flop U1B. The F output of U1B is inverted in Q4 and becomes the $\overline{\mathrm{H}}$ signal. The $\mathrm{F}, \overline{\mathrm{F}}$, and $\overline{\mathrm{H}}$ signals are used by the logic to generate control signals.

3-50. The six-state shift register consists of J-K flip-flops U3A, U3B, U4A, U4B, and U1A. Error correction gate U2B controls the input to flip-flop U3B to ensure proper operation of the shift register. At the end of a typical digitizing cycle, flip-flop U1A reverts to the ZERO condition upon receiving the $\overline{\mathrm{H}}$ clock pulse. Since all the flipflops are now in the ZERO condition, the output of U2B goes low, thereby defining the start of the ZERO subperiod as shown in the timing diagram of Figure 3-9. The ZERO sub-period is terminated by the next $\overline{\mathrm{H}}$ clock pulse, which sets flip-flop U3B high because its J input was high and its K input was low when the clock pulse was received. Subsequent clock pulses set the flip-flop outputs as shown in Figure 3-7.

SUBPERIOD	SHIFT REGISTER FLIP FLOP AND ZERO GATE OUTPUT STATES					
	U3B	U3A	U4A	U4B	U1A	U2B
ZERO	0	0	0	0	0	0
A	1	0	0	0	0	1
B	0	1	0	0	0	1
c	0	0	1	0	0	1
D	0	0	0	1	0	1
E	0	0	0	0	1	1

Figure 3-7. SHIFT REGISTER OUTPUTS

3-51. The sixteen-state binary counter consists of J-K flip-flop U5B, U5A, U6A, and U6B. The counter is set to ZERO at the beginning of each sub-period in the measurement period by the $\overline{\mathrm{H}}$ clock pulse. During each subperiod of the digitizing cycle, the output pulses from the CCO, which are applied to the clock input of flip-flop U5B, are counted. The truth table for the flip-flops in the binary counter is shown in Figure 3-8. The binary counter is disabled by gate U2A if the count of 11 is attained.

$\begin{gathered} \text { CCO } \\ \text { PULSE } \\ \text { COUNT } \end{gathered}$	SIXTEEN-STATE BINARY COUNTER			
	$\begin{gathered} \text { U5B } \\ z \end{gathered}$	$\begin{gathered} \text { U5A } \\ Y \end{gathered}$	$\begin{gathered} \hline \text { U6A } \\ x \end{gathered}$	U6B W
0	0	0	0	0
1	1	0	0	0
2	0	1	0	0
3	1	1	0	0
4	0	0	1	0
5	1	0	1	0
6	0	1	1	0
7	1	1	1	0
8	0	0	0	1
9	1	0	0	1
10	0	1	0	1
11	4	1	0	1

Figure 3-8. SIXTEEN-STATE BINARY COUNTER OUTPUT

3-52. The CCO consists of multivibrator Q 2 and Q 3 . The CCO has no output until it is supplied current by the analog comparator and is enabled by the F output of the J-K flip-flop U1B. The CCO output is applied to the clock input of the 16 -state binary counter. The 9's catcher gate U7A, disables the CCO at a count of nine, if the DVM is digitizing the second through fifth digits (sub-periods B through E).

3-53. The outputs of the six-state shift register, in conjunction with the $\overline{\mathrm{H}}$ pulses of the output of Q 4 , are applied to the display storage control circuit consisting of transistors Q6 through Q10 and related components. Outputs
from this circuitry control the display storage circuit located on the A9 A-to-D Converter board.

3-54. The analog cycle control circuit produces the gating and control signals which are used to control the synchronization of events in the analog portion of the BVM, principally in the A-to-D Converter circuits. These signals, together with other control signals are shown in the DVM Timing and Synchrony Diagram, Figure 3-9. The analog cycle control circuit consists of NAND gates U8A through D driving transistors Q11 through Q17 and associated circuit elements.

3-55. The ladder switch driver circuitry (Q19 through Q22 on A8 Logic board) receives 8-4-2-1 coded binary data from the sixteen-state binary counter and translates this to 4-4-2-1 coded binary data, which matches the weighting of the resistors in the ladder. Thus, the ladder output is proportional to the count in the binary counter. The count increases until the output of the ladder is sufficient to bring the A-to-D amplifier to the particular balanced position required by the input voltage.

3-56. The master +7 volts reference for the instrument is derived using reference amplifier U9 as a reference element. The reference voltage is produced using operational amplifier U10 and emitter follower Q25, which presents a low source impedance at the reference point. Transistor Q24 disables the +7 volts reference in the event the user wishes to employ an external reference and the required options are installed. Transistor Q23, coupled with the zener in the reference amplifier, produces a reference voltage for the +18 volts regulator in the A1 Power Supply.

$3-57$. A14 Display

3-58. The A14 Display circuits (Drawing No. 8400A1002) control the function/status indicators and the decimal indicators associated with the readout tubes. The $\mathrm{K} \Omega$, $\mathrm{AC}, \mathrm{DC}, \Omega, \mathrm{OVER}, \mathrm{FILT}$, and X REF indicators are controlled by the respective function control lines. They are illuminated when +5 volts dc is applied to the control line; however, the control lines are interlocked in the associated assembly so that the indicator remains extinguished unless the assembly is installed in the instrument. The OVER range indicator is operated by transistor Q5 in the OVER RANGE DRIVER circuit.

3-59. The polarity signs + and - of tube V 1 are controlled by a flip-flop consisting of transistors Q19, Q20, FET switches Q32, Q33, current source transistors Q9,

Figure 3-9. DVM TIMING AND SYNCHRONY DIAGRAM (SHEET 1)

Figure 3-9. DVM TIMING AND SYNCHRONY DIAGRAM (SHEET 2)

Figure 3-9. DVM TIMING AND SYNCHRONY DIAGRAM (SHEET 3)

Q10, and associated components. Inputs to this circuit are VDC, C, POL INFO A and B, and a. POL INFO A and B come from the polarity detector in the A-to-D Converter and determine which of the two polarity characters are illuminated. The range counter, via a, reverses the effects of POL INFO A and B as a function of range to account for the fact that the polarity detector receives the input to the instrument in its true sense on the 0.1 and 1 volt ranges, but in its inverted sense on all other ranges. The decimal point indicators in tubes V2 through V7 are controlled by transistor switches Q11 through Q16, which, in turn, are controlled by the range counter status.

3-60. The switches Q22 through Q26 are the main elements of the anode strobing control circuit. They are turned on sequentially by shift register signals A through E, beginning with signal A. The F signal ensures that the transistors are turned on only during the second half of each sub-period as defined in Figure 3-9. The output of these switches controls switches Q27 through Q31, which apply +200 volts dc to the anode of each readout tube.

3-61. The overrange indicator V2 is operated by transistors Q17 and Q18. These transistors are controlled by the 6 -state cycle control shift register, the 16 -state binary counter, and the range counter. The zero character in this tube is illuminated only when the range counter commands the 0.1 or 1 range, and when the count in the binary count er is less than 10 . The one character is illuminated when the count in the binary counter is 10 or 11 . The decoder driver U4 is a monolithic BCD to decimal decoder which accepts the 4 -bit BCD output of the 16 -state binary counter, decodes each digital word, and selects one of ten output drivers. The cathodes of readout tubes V3 through V7 are connected in parallel. These ten nodes are, in turn, connected to the ten available outputs of the decoder driver.

3-62. The sample command oscillator (SCO) consists of Programmable Unijunction Transistor (PUT) Q8 and surrounding circuitry shown in Figure 3-10 in its normal operating state. Resistors R12 and R14 provide a bias level for the gate of the PUT. When capacitor C3 charges to approximately 0.6 volt above the gate bias level, the PUT turns on and discharges C3 through R15. This generates an output pulse which commands the measure/storage cycle J-K flip-flop U3A to the measure period to take a sample, providing the end of a $\overline{\mathrm{ZERO}}$ pulse is coincident at the clocked input to the flip flop. If the sample results in a command to autorange, signal 3 from the A2 Range Delay one-shot turns off Q6 and disables the SCO to allow time for analog signal conditions to settle on the new range before another sample is taken. Capacitor C 3 begins
to recharge and the SCO cycle begins again. The oscillator frequency is dependent upon the time constant of R and C3, and the gate bias level. The frequency is varied by the adjustment of R through the front panel SAMPLE RATE control. Transistor Q7 and its base bias network (R11 and R13) ensures that PUT Q8 is turned off by forcing the gate and anode to the same potential after C3 discharges.

Figure 3-10. BASIC SAMPLE COMMAND OSCILLATOR
3-63. The remaining circuitry surrounding the SCO (See A14 Display schematic diagram) functions only when the SAMPLE RATE control is switched to the EXT position and samples are initiated through the external trigger input of the Data Output Unit (D.O.U) option. In this circumstance, the emitter of Q6 is normally high. Thus, the gate of PUT Q8 is near the supply voltage and the PUT is disabled. A trigger from the D.O.U., however, pulls the emitter of Q6 to ground. Its collector follows, causing the gate of Q8 to be more than 0.6 volt below the anode and the PUT fires once. If the corresponding sample results in a range change, the range delay one shot multivibrator will disable the SCO via Signal No. 3 and CR7. This means that no samples may be commanded until the range delay oneshot times out. At the end of this time delay, the SCO is automatically retriggered via CR8, by Signal No. 2 from the range delay one-shot. Diode CR9 and resistor R10 ensure that capacitor C3 is charged rapidly to ready the PUT for the next trigger pulse. Signal No. 8 interrupts the cycle control shift register on the A8 Logic board by forcing it directly to the E sub-period. This is done to minimize the time be tween the sample command (trigger) and actual sample.

3-64. The measure/storage cycle circuit is composed of J-K flip-flop U3A on the A14 Display board. The clocked input of U3A is connected to $\overline{\mathrm{ZERO}}$ through a bias and differentiating network composed of capacitor C 4 and resistors R18, R19. When the M output of U3A is high, the instrument is in the measurement period of the measurement/
storage cycle. When the M output from U3A is low, the storage period prevails. The clocked input is normally high as determined by the bias network, and since this is a master-slave type flip flop, the master is connected directly to the J and K inputs and isolated from the outputs. If the SCO outputs a pulse, the J input goes high and causes the master to assume the true state. At the start of the next ZERO (\emptyset) time, the clock pulses low causing the slave, and, hence, the outputs, to assume the state of the master. That is to say, the output goes true and initiates a measure cycle. At the same time, the master is updated as a function of the new J and K inputs. Thus, at the start of the next ZERO (\emptyset) time, the slave assumes the false state existing in the master, and the storage period is initiated. Not until the SCO pulses again will another measurement period be initiated. The idealized waveform output of the measure/storage cycle J-K flip-flop is seen by viewing waveform No. 8 and its two input generating waveforms 6 and 7 in Figure 3-9, Sheet 1.

3-65. The OVER RANGE DRIVER circuit is composed of programmable unijunction transistor (PUT) Q4, transistors Q3, Q5, and Q37, and associated circuitry. Transistor Q2, diode CR5, and resistors R2 and R4 are not part of the driver circuit but constitute a delay line in the speed at which the range delay one-shot multivibrator circuit on the A2 Range Delay board times out. The time-out delay is a function of the FILTer button being depressed on the front panel, applying a low at the base of PNP transistor Q2, turning it on, and effectively holding transistor Q1 in the range delay one-shot off (time-out status) for a longer time than would otherwise occur if transistor Q2 were not turned on by the filtering function being activated. The overrange driver PUT Q4 is turned on when its gate voltage is depressed about 0.6 volt relative to the anode voltage. The differential voltage developed across resistor R64 (tied between the gate and anode of the PUT) when the PUT conducts turns on PNP transistor Q5, and resultingly, turns on the OVER lamp in the function display annunciator. The gate to anode voltage relationship that turns on transistor Q5 and the OVER lamp is brought about by NPN transistor Q3 when it is turned on. Q3 is turned on by the 12th output pulse from the CCO being applied to its base. Twelve output pulses from the CCO indicate greater than twenty percent overvoltage is being applied at the input of the instrument for a given range. However, even though turned on, transistor Q3 is ineffective in gating the PUT unless an enabling signal $(\overline{\mathrm{UP}})$ is applied through Ro to its emitter. The source of the $\overline{\mathrm{UP}}$ signal is the output of NAND gate U2A located on the A8 Logic board. Signal No. 7 is the UP range signal that is applied to NAND gate U3B on the A2 Range Delay board. It is generated at the emitter of transistor Q37 when this transistor is turned on
by the PUT firing. After firing, the PUT is reset by the application of the positive-going edge of the M signal applied to its cathode through C 1 .

3-66. The RANGE COUNTER circuit is composed of J-K flip-flops U2A and U2B. The clocked input to the range counter is provided by J-K range flip-flop U3B, that has as its clocked input signal No. 6. This signal originates in the range oscillator on the A2 Range Delay board and is pulsed high everytime the range oscillator PUT fires. The J -K inputs to the range flip-flop U3B are tied together at the output of the measure/storage cycle J-K flip-flop U3A and go high every measurement period. The range counter is a divide-by- 6 counter that provides the 6 possible binary states for range counting, 5 pulses being considered an uprange command and 1 pulse being considered a downrange command. Signal No. 6 applied to the clocked input of the range flip-flop U3B alters the 6 states of the range counter. Transistor Q35 is provided to pull the range counter out of an unallowed state that may occur at turnon.

3-67. A2 Range Delay

3-68. The A2 Range Delay circuits (Drawing No. 8400A1006) consists of a series of gates, a range delay one-shot multivibrator, and a range oscillator. The gates allow the specified set of ranges to be attained, which is dependent upon the function called on the front panel. The range oscillator generates pulses which trigger the range delay one-shot while simultaneously causing the A14 range counter to change states. The range delay one-shot prevents further ranging for a specified time to allow the analog signal conditioners to settle in the new range.

3-69. The gates are U2A, U2B, U2C, U3A, and U3B. Gates U2C and U3A are up range stops which pull down on the range-up enable line. Gate U2C prevents autoranging above the 10,000 range, while gate U3A prevents autoranging above the 1000 range on the VDC function. Gates U 2 A and U 2 B are down range stops which pull down on the range-down enable line. Gate U2A prevents autoranging below the 10 range in the Ω function, while gate U 2 B prevents autoranging below the 0.1 range in any function. Gate U3B is the master up-range control. It enables the range oscillator only if an up range is to be expected.

3-70. The three inverters U1D, U1E, and U1F coupled with the range-up enable line provide one input for uprange control gate U3B. The result is that U3B is enabled for 1.5 milliseconds (the second half of the A sub-period of a measurement period) if an up-range is to be executed.

Signals applied to diodes CR6 through 8 and 10, coupled with the range-down enable line provide a negative going signal to the range oscillator at the end of the A subperiod of a measurement period if a down-range is to be executed. Thus, there are two ways which can enable the range oscillator.

3-71. The range oscillator is composed of capacitor C 4 , resistors R14 and R18, and Programmable Unijunction Transistor (PUT) Q4, with the output of this oscillator appearing at the cathode of PUT Q4. The PUT is fired, discharging capacitor C 4 through R15, when the gate is about -0.6 volt relative to the anode. Thus the PUT is fired to produce one output pulse by lowering gate voltage or by raising the anode voltage, such that the voltage difference between these elements is as indicated above. The firing of PUT Q4 discharges capacitor C 4 and reduces the anode and gate voltages. This causes Q3 to turn on and force the anode and gate of Q4 to the same potential. Q4 turns off and capacitor C4 charges through R14 and R18. If the firing potential between the gate and anode of Q 4 is established, Q4 again fires and the cycle is repeated to produce the second output pulse. The frequency of oscillations is set by the level of gate voltage applied and the charging time constant of R14, R18, and capacitor C4.

3-72. Control of the gate of PUT Q4 is effected by one of two mutually exclusive inputs. One of these is associated with ranging up and is identified on the A2 schematic as the output of gate U3B. The other of the two inputs is associated with ranging down and is identified as the range down enable line. In an up-range situation, the output of U3B pulls low for 1.5 milliseconds during which time the range oscillator outputs five pulses. In a downrange situation, the range-down enable line pulls low. This signal is capacitively coupled via C3 to the gate of PUT Q4 causing it to output one pulse. Five pulses counted by the A14 range counter commands a transition to the next higher range, while one pulse commands a transition to the next lower range. In either case, the first output pulse triggers the range delay one-shot to allow the analog signal conditioners to settle in the new range.

3-73. Transistors Q1, Q2, and associated components make up the range delay one-shot multivibrator. A range change pulse from the range oscillator applied to the base of transistor Q2 turns this transistor on and transistor Q1 off, thereby placing the one-shot multivibrator into its unstable state. The RC charge time of combined capacitors C 2 , C6, and resistor R5, and the current through R16 determine how long the one-shot remains in its unstable state. With the filter selected, no current flows through R16 and the timeout is about 220 milliseconds. Without
the filter selected, the timeout is decreased to about 25 milliseconds because some current flows through R16. Signal No. 3 disables the sample command oscillator during the range delay time. Signal No. 2 re-triggers the SCO at the end of the range delay time.

3-74. Transistor Q5 and associated components is a circuit that prevents the instrument remaining in a disallowed range, as in $10,000 \mathrm{VDC}$, when turned on. When Q5 is turned on by the inputs of VDC and $\bar{a} \cdot \bar{b} \cdot \bar{c}$. , the collector of Q5 pulls down on the set line of the counter and thereby forces the instrument out of the 10,000 range.

3-75. A1 Power Supply

3-76. The A1 Power Supply (Drawing No. 8400A-1001) consists of four regulators, $a+$ and -18 volts regulator, a 200 volts regulator, a 5 volts regulator. The purpose of the power supply is to furnish to the instrument all of its required operating power.

3-77. The +18 and -18 volts regulators obtain filtered dc voltage from the full-wave rectifiers consisting of diodes CR5 through CR8 and filter capacitors C2 and C5. The +18 volts regulator consists of operational amplifier U1 and series pass transistor Q3. The voltage reference for the +18 volts regulator is derived from reference amplifier U9 and temperature compensation transistor Q23 on the A8 Logic board. The -18 volts regulator consists of operational amplifier U 2 and series pass transistor Q 5 . The -18 volts regulator is referenced to the +18 volts.

3-78. The +200 volts regulator is operated from a fullwave bridge rectifier and filter consisting of diodes CR1 through CR4 and capacitor C 1 . The reference for the +200 volts regulator is the +18 volts. Voltage variations are amplified in transistor Q2 and applied to series pass transistor Q1.

3-79. The +5 volts regulator is operated from a full-wave rectifier and filter consisting of CR10 through CR13 and capacitor C 8 . The reference for the +5 volts regulator is -18 volts. The series pass element is a compound-emitter follower composed of transistor Q8 driving power transistor Q6 voltage variations which are detected by the sample string (R14, R15 and R17) are amplified by transistors Q7.

3-80. Miscellaneous Circuitry

3-81. Input power to the instrument and interconnection of various assemblies is shown in the Wiring and Interconnect Diagrams (Drawing No. 8400A-1000 and

8400A-1100). Line power is fused by F1 and applied through the contacts of POWER switch S1 and T1. The primary of T 1 consists of two windings which are parallel or series connected through slide switch S2 to allow operation from either a 115 or 230 V ac line. When S 2 is set to 115, the primary windings of T1 are connected in parallel.

The 230 position of S 2 connects the windings in series. Secondary windings of T 1 provide ac voltages to the A1 Power Supply and A6 Data Output Unit No. 2. Shielding between the primary and secondary windings prevents coupling of any undesired line signals to the internal sections of the instrument.

Section 4

Maintenance

4-1. INTRODUCTION

4-2. This section contains information and instructions concerning preventive and corrective maintenance for the Model 8400A Digital Voltmeter. The information and instructions are arranged under headings of "SERVICE INFORMATION, GENERAL MAINTENANCE, PERFORMANCE TEST, CALIBRATION PROCEDURE, COMPENSATING COMPONENT SELECTION, and TROUBLESHOOTING."

4-3. A calibration interval of 90 days is recommended to ensure instrument operation within the 90-day specifications as stated in Section 1.

4-4. Table 4-1 lists the required test equipment. If the recommended equipment is not available, other equipment having equivalent specifications may be used.

Table 4-1. REQUIRED TEST EQUIPMENT

EQUIPMENT NOMENCLATURE	RECOMMENDED EQUIPMENT	FUNCTION
DC Calibrator	Fluke Model 332D	Performance Test
	DC Calibrator	Calibration
		Troubleshooting
Kelvin Varley	Fluke Model 720A	Calibration
Divider		
Differential Voltmeter	Fluke Model 885AB	Performance Test
		Calibration
		Troubleshooting
Oscilloscope	Tektronix Model 504	Troubleshooting
Oscillator	Hewlitt Packard	Troubleshooting
	Model 745 and 746	

4-5. SERVICE INFORMATION

4-6. Each instrument that is manufactured by the John Fluke Mfg. Co., Inc. is warranted for a period of one year upon delivery to the original purchaser. The WARRANTY is located at the front of the manual.

4-7. Factory authorized calibration and service for each Fluke product is available at various world-wide locations. A complete list of these authorized service centers is located at the rear of the manual. Shipping information is given in Section 2, paragraph 2-5. If requested, an estimate will be provided to the customer before any repair work is begun on instruments that are beyond the warranty period.

4-8. GENERAL MAINTENANCE

4-9. Access/Disassembly

4-10. The following procedure is used to gain access to the interior of the Model 8400A.
a. Remove top dust cover to gain access to calibration adjustments and test points.
b. Remove top guard chassis by removing the four screws which hold it in place. Access is now provided to the plug-in assemblies shown in Figure 4-1.

Figure 4-1. ASSEMBLY LOCATIONS
c. Remove bottom dust cover. By removing single screw securing bottom guard cover access can be gained to the bottom section of the Model 8400A.

4-11. Cleaning

4-12. Clean the instrument periodically to remove dust, grease, and other contamination. Use the following procedure:
a. Clean the interior with clean, dry air at low pressure. When the printed circuit boards require cleaning, first spray them with Freon T.F. Degreaser (Miller Stephensen Company, Inc.) and then remove the dirt with clean, dry air at low pressure.

CAUTION

Do not spray Freon T.F. on the component side of any PCB since damage to certain components may result.

b. Clean the front panel and exterior surfaces with anhydrous ethyl alcohol or a soft cloth dampened in a mild solution of detergent and water.

CAUTION!

Do not use aromatic hydrocarbons or chlorinated solvents on the front panel, because they will react with the Lexan binding posts.

4-13. Fuse Replacement

4-14. One fuse is located in the rear panel fuseholder. When replacement is necessary, install Bussman, TYPE AGC $1 / 2 \mathrm{~A}$ as shown on Decal located on the rear panel.

4-15. Lamp and Tube Replacement

4-16. The readout tubes (V1 thru V7) and the Function Display Lamps are mounted behind the left portion of the front panel. These components are replaced without special tools using the following procedure:

4-17. FUNCTION DISPLAY LAMPS

a. Remove top and bottom dust covers and inner guard chassis covers.
b. To replace the function display lamps remove the function display assembly mounting screws. Access to these mounting screws is from the bottom of the instrument.
c. Remove the function display assembly from the top of the instrument. After removal of the plexi-
glass cover on the assembly, the defective lamp may be replaced by carefully unsoldering the old lamp, clearing the holes of solder, and soldering in the new lamp. Instruments below serial number 208 have an extra lamp in FUNCTION Display assembly in position marked MV. All instruments above serial 209 do not have a spare lamp.

CAUTION!

Use a desoldering tool and exercise extreme caution to avoid lifting land patterns.

4-18. READOUT TUBE REPLACEMENT

a. To replace the readout tubes desolder the base mounting pins and remove tube from the top of the instrument.

4-19. The SAMPLE RATE indicator (DS1) is located next to the SAMPLE RATE adjustment on front panel. Remove DS1 by desoldering both leads from A14 assembly, and pull lamp out from holder. Install and solder new lamp.

4-20. Switch Maintenance

4-21. The following procedure covers service and replacement of the push button switches. If switch contacts are deformed, or if switch module is defective, replacement parts can be obtained by ordering either the FUNCTION or RANGE switch assembly.
$4-22$. The procedure for servicing the FUNCTION and RANGE switch assembly is as follows:

4-23. GENERAL.

a. Remove the top and bottom dust covers and the top and bottom inner guard covers.
b. Set all switches to the nondepressed position.
c. Remove shorting links from INPUT terminals on front panel.
d. Remove knob from the SAMPLE RATE potentiometer.

4-24. REMOVAL OF DISPLAY PCB.

a. Unplug and remove all plug in circuit assemblies from instrument.
b. Remove decals from the side of handles.
c. Remove four (4) screws on side of each handle. Remove the front panel from the instrument.
d. Disconnect wires from terminal posts to terminal block at the terminal block, and pull SAMPLE RATE lamp out from its holder.
e. Remove four (4) screws which secure the front sub-panel to the inner chassis and three (3) screws which secure DISPLAY PCB (A14) to front subpanel. Remove front sub-panel.
f. Remove seven (7) mounting screws from the display PCB (A14).
g. Pull display PCB out from front of instrument.

4-25. DISASSEMBLY - FUNCTION SWITCHES (EXCEPT EXT REF, FILT).
a. Unplug P14 (flexible plug in circuit plug) from connector J14 on DISPLAY PCB.
b. Remove four (4) mounting screws which secure FUNCTION switches to switch assembly brackets.
c. Remove button on switch to be repaired by applying pressure to the rear of the button on pulling button away from switch. Note that on some instruments buttons are cemented on the switch shaft. When replacing buttons, use a small amount of contact cement. Apply cement to shaft only.
d. Pull FUNCTION switch assembly away from brackets.
e. Remove rear support bracket and lockouts by bending all locking tabs on rear support bracket, up. (Figure 4-2).
f. Remove retaining ring and spring from switch shaft.
g. Insert a tool between the latch bar and switch shaft on adjacent switch (Figure 4-3).
h. Slide latch bar to edge of opening in front switch support bracket.
i. Holding latch bar open, push defective switch shaft out rear of module. Switch contacts will fall out of their slots when shaft is pushed out of module.

CAUTION!

Under no circumstances MUST attempts be made to re-form or add tension to the switch contacts by bending them.
j. Inspect the switch contacts for contamination and, if necessary, clean them with a clean swab saturated in alcohol. After cleaning, the contacts must be re-coated with a thin coat of grease: Use RYKON 2EP grease (American Oil Co.) or equivalent.

Figure 4-2. FUNCTION SWITCH ASSEMBLY

Figure 4-3. PUSHBUTTON SWITCH DISASSEMBLY

4-26. DISASSEMBLY - RANGE SWITCHES.
a. Unplug P14 (flexible plug in circuit plug) from J14.
b. Remove U2 and U3, on Display PCB, from their sockets.
c. Remove four (4) mounting screws which secure RANGE switches to switch assembly brackets.
d. Pull FUNCTION switch assembly, with brackets, away from RANGE switch assembly.
e. Desolder and remove J14 connector from Display PCB.
f. Straighten all locking tabs on rear support bracket. (Figure 4-4.)

CAUTION!

When straightening locking tabs avoid damaging land patterns on PCB.
g. Remove rear support bracket by sliding bracket to the right to clear switch module alignment pins. Remove bracket and lockouts.
h. Remove button, retaining ring and spring.
i. Insert a tool between the latch bar and switch shaft on adjacent switch (Figure 4-4).

Figure 4-4. RANGE SWITCH ASSEMBLY
j. Slide latch bar to edge of opening in front switch support bracket.
k. Holding latch bar open, push defective switch shaft out rear of module. Switch contacts will fall out of their slots when shaft is pushed out of module.

CAUTION!

Under no circumstances MUST attempts be made to re-form or add tension to the switch contacts by bending them.

1. Inspect the switch contacts for contamination and, if necessary, clean them with a cotton swab saturated in alcohol. After cleaning, the contacts must be re-coated with a thin coat of grease: Use RYKON 2EP grease or equivalent.

4-27. SWITCH MODULE REPLACEMENT - FUNCTION ASSEMBLY (EXCEPT EXT REF, FILT)
a. Repeat paragraphs 4-21, 4-22, and 4-23a. thru f .
b. Desolder flexible printed circuit from all switches.

CAUTION!

Use a desoldering tool and exercise extreme caution to avoid lifting land patterns or otherwise damaging the flexible circuit assembly.
c. Unlock the locking tab on front switch support bracket and remove module (Figure 4-5).

1. BEND THE LOCKING TAB UP TO FREE THE SWITCH MODULE.

2. REMOVE THE MODULE BY PULLING IT OUT FROM THE BACK OF THE SWITCH SUPPORT. NOTE THAT THE MODULE ALIGNMENT PEG MUST BE DISENGAGED FROM THE NOTCH IN THE SUPPORT.

Figure 4-5. PUSHBUTTON SWITCH MODULE REPLACEMENT
d. Install new switch module by reversing the foregoing procedure.

CAUTION!

Under no circumstances MUST attempts be made to re-form or add tension to the switch contacts by bending them.

4-28. SWITCH MODULE REPLACEMENT - RANGE ASSEMBLY.

a.
b. Remove all buttons, retaining rings, springs and latch spring.
c. Unlock all locking tabs on front support bracket and remove front support bracket and latch bar.

Figure 4-6. EXT REF AND FILT SWITCH DISASSEMBLY
d. Desolder module that is to be replaced.

CAUTION!

Use a desoldering tool and exercise extreme caution to avoid lifting land patterns or otherwise damaging PCB.
e. Install new switch module by reversing foregoing procedure. Refer to Figure $4-4$ for assembly of RANGE SWITCH assembly.

4-29. DISASSEMBLY - EXT REF, FILT SWITCH.
a. Repeat paragraphs 4-21, 4-22, and 4-23a. thru f.
b. Desolder defective switch from flexible circuit.
c. Remove push-push pin and push-push clip (Figure 4-6).
d. Remove switch shaft per Figure 4-3 Detail B.

CAUTION!

Under no circumstances MUST attempts be made to re-form or add tension to the switch contacts by bending them.
e. Inspect the switch contacts for contamination and, if necessary, clean them with a cotton swab saturated in alcohol. After cleaning, the contacts must be re-coated with a thin coat of grease: Use RYKON 2EP grease or equivalent.
f. Assemble the switch by reversing the foregoing procedure. Exercise caution to ensure the contacts are not deformed during assembly.

4-30. PERFORMANCE TEST

4-31. The performance test in this section compares the basic instrument performance to the accuracy specifications in Section 1 of this manual to determine if the instrument is in calibration. Known dc voltages are applied to the instrument input terminals on each of five dc voltage ranges and proper operation of the manual range and autorange circuitry is verified. The performance test should be conducted prior to any instrument maintenance or calibration attempts. This test is also suited to receiving inspection of new instruments. The performance test should be conducted under the following conditions: Ambient Temperature $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, relative humidity less than 70%.
$4-32$. Should an instrument fail the performance test
corrective maintenance or calibration will be required. In
the case a trouble occurs, analysis of the test results, with
reference to the Troubleshooting Section, should help to
locate the trouble.

NOTE!

Tolerances for dc voltage measurements are derived from the 90-day instrument specifications contained in Section 1 of this manual.

4-33. In the following procedure dc voltages are applied to the instrument at 10% and 100% of full scale on the .1 , $1,10,100$ and 1000 volt ranges.

4-34. Preliminary Operation

a. Connect the Model 8400 A to the ac line and set the controls as follows:

POWER	ON
FUNCTION	VDC, FILT
RANGE	.1

4-35. Readout Checks

a. Short INPUT terminals.
b. Adjust the front panel ZERO control for a minimum reading on the Model 8400A display.
c. Connect equipment as shown in Figure 4-7.

Figure 4-7. READOUT CHECK EQUIPMENT CONNECTION
d. Set the calibrator to 10.0000 V output on 10 V range.
e. Refer to Table 4-2 for K-V divider settings and corresponding readout limits on Model 8400A.

Table 4-2. DC TEST REQUIREMENTS (.01V to 1 V)

K-V Divider SETTINGS	MODEL 8400A	
	RANGE	READOUT LIMITS
.0100000	.1	+.009994 to .010006
.0100000	1	+0.99990 to .100010
.1000000	1	+0.09997 to 0.10003
.1000000	10	+0.99993 to 1.00007

f. Reverse input leads to Model 8400A.
g. Repeat step e. The DVM readout must be the same as for positive inputs, except that the polarity indication will be negative $(-)$.
h. Disconnect equipment and connect calibrator to Model 8400A. .
i. Apply each of the input voltages shown in Table $4-3$ to the INPUT terminals of the Model 8400A. The readout must be as indicated.

Table 4-3. DC TEST REQUIREMENTS (10V, 100 V , AND 1000V)

INPUT (Volts DC)	MODEL 8400A		
	RANGE	READOUT LIMITS	READOUT TOLER- ANCES
+10.0000	10	+09.9995 to 10.0005	$\pm .0005$
+10.0000	100	+009.998 to 010.002	$\pm .002$
+100.000	100	+099.995 to 100.005	$\pm .005$
+100.000	1000	+0099.98 to 0100.02	$\pm .02$
+1000.00	1000	+0999.95 to 1000.05	$\pm .05$

j. Repeat step i. with negative input voltages. The DVM readout must be the same as for positive inputs, except that the polarity indication will be negative (-).
k. Apply zero volts to the INPUT terminals of the DVM and depress the AUTO RANGE switch. The readout must be $.000000 \pm .000005$.

1. Apply +1000.00 volts dc to the INPUT terminals. The DVM must range automatically and the readout must be $+1000.00 \pm .05$.

4-36. CALIBRATION PROCEDURE

4-37. Introduction

4-38. The basic Model 8400A should be calibrated every 90 days or 1 year in order to maintain rated accuracy or whenever repairs have been made. Calibration should be done under the following conditions: Ambient Temperature of $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$, relative humidity less than 70%. Refer to Table 4-1 for recommended test equipment. Adjustment
and test point locations are labeled on the top inner guard cover. Figure $4-8$ shows adjustment and test point locations with the top inner guard cover on. Option calibration appears in Section 6 of this manual.

Figure 4-8. ADJUSTMENT AND TEST POINT LOCATIONS

4-39. Preliminary Operations

a. Remove the upper dust cover screws, but leave top cover in place.
b. Set the $115 / 230$ volt switch on the rear panel to 115 and then connect line cord to the output of an autotransformer set to 115 V ac.
c. Turn on the Model 8400A and allow it to warm-up for one hour.

4-40. Buffer Zero Adjustment

a. Set the Model 8400A controls as follows:

FUNCTION	VDC, FILT
RANGE	.1

b. Short the INPUT terminals.
c. Adjust front panel ZERO control for minimum reading on the display.
d. Remove top dust cover.

4-41. Bias Current Adjustment

a. Remove short across input terminals and replace with 1 megohm resistor in parallel with a .22 uf capacitor.
b. Adjust BIAS (A11R17) for a zero ± 3 digit readout on the Model 8400A display.
c. Repeat steps $4-40 \mathrm{~b}$. and c.

4-42. Reference Voltage Adjustment

a. Connect a battery powered differential voltmeter LO SENSE to (A9TP7) and HI SENSE to (A9TP5).
b. Adjust REF (A8R57) for a reading of 7.00000 ± 25 uV on the differential voltmeter. Remove short from the INPUT terminals.

4-43. A-D Zero Adjustment

a. Connect the HI of the differential voltmeter to CAL OUT (A9TP3).
b. Set the differential voltmeter as follows:

RANGE	1 V
NULL SENSE	.1
READOUT	.550000

c. Set the Model 8400A as follows:

FUNCTION	VDC
	FILTER
SAMPLE RATE	FULL CW
RANGE	10

d. \quad Connect test equipment as shown in Figure 4-9.

Figure 4-9. EQUIPMENT CONNECTION FOR CALIBRATION
e. Set the calibrator to 10.0000 V output on 10 V range and dial .000052 on 720A.
f. Adjust A-D ZERO (A9R37) for a readout of +0.0005 V on the Model 8400A nixie display. Refine the adjustment for a null (zero) reading on the differential voltmeter. Reverse the input to the Model 8400 A and observe -0.0005 V on the display and that the reading on the differential voltmeter changes less than ± 4 major divisions.

4-44. + Cal Adjustment

a. Connect equipment as shown in Figure 4-9.
b. Adjust COMPARATOR LEVEL (A9R61) to full cw.
c. Dial 800052 on divider.
d. \quad Adjust + CAL (A9R17) for a readout of +8.0005 on Model 8400A display.
e. Refine the adjustment for a null (zero) on the differential voltmeter.

4-45. Ladder Cal

a. Connect equipment as shown in Figure 4-9.
b. Apply the input votlages given in Table 4-4 and perform the associated adjustments that produce the required readout on the Model 8400A and differential voltmeter.

Table 4-4. LADDER CALIBRATION

LADDER NO.	MODEL 8400A			DIFF. V/M READOUT
	K-V Divider	Adjustment	READOUT	
4	+.400052V	LADDER 4 (A9R45)	+4.0005V	NULL
2	+.200052V	LADDER 2 (A9R48)	+2.0005V	NULL
1	+.100052V	LADDER 1 (A9R50	+1.0005V	NULL

4-46. Negative Cal Adjustment

a. Set divider to 800052 .
b. Reverse input to the Model 8400A.
c. Adjust -CAL (A9R14) for a display readout of -8.0005.
d. Refine the adjustment for a null (zero) on the differential voltmeter.

4-47. Remainder Adjustment
a. Set COMPARATOR LEVEL (A9R61) full ccw.
b. Connect equipment as shown in Figure 4-9.
c. Apply the input voltages given in Table 4-5 and perform the associated adjustments that produce the required readout on the Model 8400A and differential voltmeter.

Table 4-5. COMPARATOR LEVEL ADJUSTMENT

DIGIT NO.	MODEL 8400A			
	K-V Divider SETTING	Adjustment	READOUT	DIFF. V/M READOUT
2	$+.090052 \mathrm{~V}$	2nd Digit Remainder (A9R58)	+0.9005	NULL
3	+.099052V	3rd Digit Remainder (A9R56)	+0.9905	NULL
4	+.099952V	-	+0.9995	± 2 Major Divisions

4-48. Comparator Level Adjustment
a. Connect equipment as in Fignre 4-9, but do not make the differential voltmeter connections.
b. Set divider to 099995 .
c. Adjust COMPARATOR LEVEL (A9R61) so display readout alternates between +0.9999 and +1.0000 .
d. Alternate a dc input to the Model 8400A between +1.9999 V and +2.0000 V dc and verify that the display readout corresponds.

4-49. Buffer DC Calibration

a. Apply the dc input voltages given in Table 4-6 and adjust the associated control for a corresponding readout.

Table 4-6. BUFFER CALIBRATION

DC INPUT VOLTAGE	MODEL 8400A		
	RANGE	ADJUSTMENT	READOUT
+100.000	100	100 V (A11R8)	+100.000
+1000.00	1000	1000 V (A11R9)	+1000.00
+1.00000	1	$1 V$ (A11R36)	+1.00000
+.100000	.1	$0.1 V$ (A11R38)	+.100000

b. Disconnect test equipment and replace top cover, Calibration of the basic Model 8400A is complete. Refer to Section 6 for calibration of the options.

4-50. COMPENSATING COMPONENT SELECTION

4-51. The replacement of components Q5, U1, and R22 thru R27 in the Buffer Assembly will cause a deteriation of the temperature coefficient specification. If one or all of
these components is found to be faulty the Buffer Assembly PCB must be returned to the factory for repair and recalibration.

4-52. Active Filter

4-53. If either Q 1 or U 2 are replaced in the Active Filter (A10), R11 or R12 may need to be selected in order to bring the required offset correction within the range of zero control R13. This is done as follows:
a. Depress VDC and 10 buttons on Model 8400A.
b. Short the INPUT terminals of the Model 8400A.
c. Short TP1 to TP2 on Active Filter PCB.
d. Install jumpers across R11 and R12 in positions W1 and W2.
e. Turn instrument on by depressing POWER button.
f. Observe the Model 8400A readout.
g. Select the proper offset resistor using Table 4-7.

Table 4-7. OFFSET CORRECTION RESISTOR SELECTION

8400A READOUT	RESISTANCE REQUIRED	JF PART NO.
$0-.0004$	NONE	--
$.0005-.0012$	6.81 k	268417
$.0013-.0020$	13.7 k	236752
$.0021-.0028$	21.0 k	229484
$.0029-.0036$	28.7 k	235176
$.0037-.0044$	35.7 k	288480
$.0045-.0052$	44.2 k	271676

h. Install resistor in location R11 if readout polarity is positive (+) or R12 if readout polarity is negative (-). Remove only the jumper wire for location used.

4-53. TROUBLESHOOTING

4-54. Introduction

4-55. The information in the following paragraphs is provided to assist in locating troubles in the basic Model 8400 A. Figure $4-10$ shows assembly location by reference
number and test point locations. Since this instrument is somewhat complex, it is recommended that the theory of operation in Section 3 be understood before any attempt at troubleshooting is undertaken.

4-56. Initial Troubleshooting

4-57. Troubleshooting of the Model 8400A starts by first inspecting the instrument for improperly seated plug-in assemblies, loose wires, physically damaged parts, or other obvious problems. The next step is then to ensure that it is being operated correctly, but still fails to meet specifications. Performance checks designed for this purpose are given in paragraphs 4-30 through 4-35.

4-58. Section Localization

4-59. To aid in troubleshooting the Model 8400A, the basic instrument can be broken down into three major sections, analog, digital, and power supply.

4-60. The analog section consists of the A11 Buffer and A10 Active Filter. These assemblies supply a dc voltage from +10 to -10 volts, dependent upon the polarity and value of the input, to the digital section.

4-61. The digital section is composed of the A9 A-to-D Converter, A8 Logic, A2 Range Delay, and A14 Display assemblies. The digital section converts the de input from the analog section to a digital signal, then processes this signal through timing, storage, and display circuits for proper readout.

4-62. The power supply section consists of an A1 Power Supply Assembly. This assembly supplies operating voltages to the internal circuits of both the analog and digital sections.

4-63. Power Supply

4-64. The A1 Power Supply can be checked for porper operation using a dc differential voltmeter and performing the voltage checks given in Table 4-8.

Table 4-8. POWER SUPPLY CHECKS

VOLTAGE TEST POINTS		DC VOLTS		
V/M Lo	V/M Hi	NOMINAL	LIMITS	ADJUSTMENT
A1TP4	A1TP2	+18 V	$\pm 10 \mathrm{mV}$	A1R11
A1TP4	A1TP3	-18 V	$\pm 375 \mathrm{mV}$	NONE
A1TP4	A1TP5	+5 V	+.15 V	Remove R17 to increase
				NONE
A1TP4	A1TP1	+200 V	$\pm 5 \mathrm{~V}$	NO

Figure 4-10. ASSEMBLY AND TEST POINT LOCATIONS

4-65. Analog Section

4-66. To determine if a trouble exists in the analog section, use the following checks:
a. Connect a battery powered differential voltmeter LO to A10TP4 and HI to A10TP3.
b. Depress VDC and 10 switches on Model 8400A.
c. Turn on the Model 8400 A and apply +10 V dc to INPUT terminals. The differential voltmeter should read -10 V .

NOTE!

The differential voltmeter should read -10 V for full scale inputs on the 10, 100, and 1000 volt ranges, and +10 V for full-scale inputs on the .1 and 1 volt ranges. For inputs less than full-scale on any range, the differential voltmeter should read proportionately less.
(Example: +10 V input on 100 V range, the differential voltmeter will read -1 V).

FAULT ANALYSIS

IF VOLTMETER READINGS DO NOT CORRESPOND TO INPUT VOLTAGES, THE TROUBLE EXISTS IN THE ANALOG SECTION. IF VOLTMETER READINGS DO CORRESPOND TO INPUT VOLTAGES, THE TROUBLE EXISTS IN THE DIGITAL SECTION.

4-67. BUFFER CHECKS.

4-68. Overload Check.

a. Connect differential voltmeter HI to K 1 pin 14 and LO to the Model 8400A HI (red) INPUT terminal.
b. Depress the 1, VDC, FILT buttons and set SAMPLE RATE full cw.
c. Apply $+3 \mathrm{~V} \pm 1 \%$ to INPUT terminals of 8400 A and observe readout of +1.19999 . The differential voltmeter should read $-.5 \mathrm{~V} \pm .25 \mathrm{~V}$.

IF READINGS DO NOT CORRESPOND, THE PROBABLE CAUSE IS IN THE OVERLOAD CIRCUITRY. THE AMPLIFIER SECTION MAY BE A SECONDARY CAUSE.

4-69. Zero Check.
a. Depress . 1 and VDC buttons on Model 8400A.
b. Short the INPUT terminals on front panel.
c. Readout Zero Volts on Readout display.
d. Adjust front panel DC Zero control so readout varies from +.000030 to -.000030 .

FAULT ANALYSIS

IF DC ZERO CONTROL WILL NOT SWING THROUGH ABSOLUTE ZERO, ADJUSTMENT OF COURSE DC ZERO (A11R28) IS INDICATED. IF THIS IS NECESSARY, THE AMPLIFIER SECTION OF THE BUFFER COULD BE FAULTY.

NOTE!

The BUFFER assembly must be returned to factory for replacement of faulty parts within the amplifier circuitry. Refer to paragraph 4-51 for critical components.

4-70. Gain Check.
a. Depress 10 button on Model 8400A.
b. Connect a battery powered differential voltmeter as follows:

HI to INPUT HI on Model 8400A.
LO to A11TP2
c. Apply $-12.5 \mathrm{~V} \pm .5 \mathrm{~V}$ to INPUT terminals of Model 8400A.
d. Readout on Model 8400A should be -11.9999 .
e. Adjust the differential voltmeter to obtain measured value (null).
f. Reverse the polarity of the input voltage and observe the following:

1. Model 8400A readout is +11.9999 .
2. Differential voltmeter reading changed less than $+25 \mu \mathrm{~V}$.

- FAULT ANALYSIS

IF BUFFER CHECKS ARE OK, ANALOG PROBLEM CAN EXISTS IN ACTIVE FILTER CIRCUITRY.

4-71. ACTIVE FILTER CHECKS.

4-72. Gain Checks.

NOTE!

Remove Remote Control Unit if Model 8400A is so equipped.
a. Depress REMOTE button on Model 8400A.
b. Connect battery powered differential voltmeter LO to A10TP5 and HI to A10TP3.
c. Adjust differential voltmeter to obtain measured value (null).
d. Apply +10 V dc $\pm 1 \mathrm{~V}$ between A10TP4 (common) and A10TP5. The differential voltmeter indication should not change more than $100 \mu \mathrm{~V}$.
e. Reverse polarity of input voltage and note that differential voltmeter indication should not change more than $100 \mu \mathrm{~V}$.

4-73. AC Rejection.
a. Depress VDC, FILT, 10 buttons.
b. Apply a $3 \mathrm{~V} \mathrm{rms} \pm 1 \%, 60 \mathrm{~Hz}$ signal to the INPUT terminals of Model 8400A.
c. Adjust SAMPLE RATE control so the readout changes about twice a second.
d. The Model 8400A readout should be less than 20 digits.

4-74. Digital Section

4-75. The digital section may be divided into a number of somewhat independent sections for trouble analysis.

These digital sections and their locations are as follows:

LOCATION
A14 - Display

A9 - A-to-D
Converter

A8 - Logic

DIGITAL SECTIONS

Range Counter Sample Command Oscillator Readout Tubes and Controls

A/D Amplifier
Sample and Hold
Analog Comparator
Ladder (Primary and Secondary)
Display Storage
Master Clock
CCO
Analog Cycle Control
Display Storage Control 6-State Shift Register 16-State Binary Counter

4-76. Generally troubleshooting the digital section is more difficult than the analog section; therefore, troubleshooting guides (Figure 4-11 and 4-12) are important aids for localizing troubles to sections.

NOTE!

The storage cycle can be bypassed if there is a suspicion that the storage circuitry is faulty. A FAULTY storage cycle is usually seen as flashing digits. By jumpering A1TP5 (+5 V) to A14TP2 (M), the Model 8400A is placed into a continuous measurement mode.

4-77. Figures 4-13 thru 4-16 are idealized waveforms from significant locations showing relationship of each waveform to the others and to the measure period. Analysis of these waveforms and a comparison to waveforms present at the same points will assist in localizing troubles. All waveforms are as shown when Model 8400A is placed in the continuous measurement condition.

FAULT ANALYSIS

> IF, AFTER PLACING THE MODEL 8400A INTO THE CONTINUOUS MEASUREMENT CONDITION, THE READOUT IS CORRECT, THE FAULT LIES IN THE STORAGE CIRCUITRY. IF READOUT IS STILL INCORRECT THE FAULT LIES ELSEWHERE.

4-78. Figures 4-17 thru 4-19 show waveforms that are present at A9TP2 with Model 8400A in continuous measurement condition. Analysis of these waveforms to those present under trouble conditions will assist in troubleshooting the digital section.

Figure 4-11. TROUBLESHOOTING DVM DIGITAL SECTION

Figure 4-13. A/D CONVERTER CONTROLS

Figure 4-14. ANALOG STORAGE CONTROL

Figure 4-15. COUNTER OPERATION

Figure 4-16. SHIFT REGISTER OPERATION

Figure 4-17. A9TP2 MEASUREMENT

Figure 4-18. A9TP2

Figure 4-19. A9TP2

List of Replaceable Parts

5-1. INTRODUCTION

5-2. This section contains an illustrated parts breakdown list of the instrument and a Cross Reference List of FLUKE stock numbers to original MANUFACTURERS' part numbers. It also lists recommended spare parts and contains part ordering information. The starting page number of each major listing is given in the Table of Contents.

5-3. The parts list shows the location of all assemblies and the replaceable components. Major assemblies are identified by a designation beginning with the letter A followed by a number (e.g., A1 etc). Subassemblies are identified in the same manner; however, the parent assembly designator precedes this designator (e.g., A1A1 etc.). Electrical components are identified by their schematic diagram designator and listed hardware parts are identified by the FLUKE stock number. All listed components are described, and the FLUKE stock number is given. The original MANUFACTURER'S part number for each listed item is given in the Cross Reference List at the rear of this section.

5-4. PARTS LIST COLUMN DESCRIPTIONS

a. The REF DESIG column indexes the item description to the associated illustration. In general the reference designations are listed under each assembly in alpha-numeric order. Subassemblies of minor proportions are sometimes listed with the assembly of which they are a part. In this case, the reference designations may appear out of order.
b. The DESCRIPTION column describes the salient characteristics of the component. Indention of the description indicates the relationship to other assemblies, components, etc. In many cases it is necessary to abbreviate in this column. For abbreviations and symbols used, refer to Appendix B located at the rear of the manual.
c. The six-digit part number, by which the item is identified at the John Fluke Mfg. Co., Inc. is listed in the STOCK NO. column. Use this number when ordering parts from the factory or authorized representatives. In the case where a flag note is used, special ordering is required. Flag note explanations are located as close as possible to the flag note.
d. The TOT QTY column lists the total quantity of the item used in each particular assembly. This quantity reflects only the latest Use Code. Second and subsequent listings of the same item are referenced to the first listing with the abbreviation REF.
e. Entries in the REC QTY column indicate the recommended number of spare parts necessary to support one to five instruments for a period of two years. This list presumes an availability of common electronic parts at the maintenance site. For maintenance for one year or more at an isolated site, it is recommended that at least one of each assembly in the instrument be stocked. In
the case of optional subassemblies, plug-ins, etc. that are not always part of the instrument, or are deviations from the basic instrument model, the REC QTY column lists the recommended quantity of the item in that particular assembly.
f. The USE CODE column identifies certain parts which have been added, deleted or modified during the production of the instrument. Each part for which a Use Code has been assigned may be identified with a particular instrument serial number by consulting the Serial Effectivity List, paragraph 5-9. Sometimes when a part is changed, the new part can and should be used as a replacement for the original part.

5-5. MANUFACTURERS' CROSS REFERENCE LIST COLUMN DESCRIPTIONS

a. The six-digit part number, by which the item is identified at the John Fluke Mfg. Co., Inc. is listed in the FLUKE STOCK NO. column. Use this number when ordering parts from the factory or authorized representatives.
b. The Federal Supply Code for the item manufacturer is listed in the MFG column. An abbreviated list of Federal Supply Codes is included in Appendix A.
c. The part number which uniquely identifies the item to the original manufacturer is listed in the MFG PART NO. column. If a component must be ordered by description, the type number is listed.

5-6. HOW TO OBTAIN PARTS

5-7. Standard components have been used whenever possible. Standard components may be ordered directly from the manufacturer by using the manufacturer's part number, or parts may be ordered from the John Fluke Mfg . Co., Inc. factory or authorized representative by using the FLUKE stock number. In the event the part you order has been replaced by a new or improved part, the replacement will be accompanied by an explanatory note and installation instructions, if necessary.

5-8. You can insure prompt and efficient handling of your order to the John Fluke Mfg. Co., Inc. if you include the following information:
a. Quantity.
b. FLUKE Stock Number.
c. Description.
d. Reference Designation.
e. Instrument model and serial number.

Example: 2 each, 215897, Transistor, 2N4126 A2A1Q1 \& Q2 for 645A, S/N 123.

If you must order structural parts not listed in the parts list, describe the part as completely as possible. A sketch of the part, showing its location to other parts of the instrument is helpful.

5-9. SERIAL NUMBER EFFECTIVITY

5-10. A Use Code column is provided to identify certain parts that have been added, deleted or modified during production of the Model 8400A. Each part for which a use code has been assigned may be identified with a particular instrument serial number by consulting the Use Code Effectivity List below. All parts with no code are used on all instruments with serial numbers above 123.

USE
CODE
SERIAL NUMBER EFFECTIVITY

A
B
C
D
E
F
G
H
I

123 thru 148.
149 and on.
187 and on.
198 and on.
123 thru 264.
265 and on.
123 thru 267.
268 and on.
123 thru 265.
266 and on.
378 and on.
330 and on.
123 thru 377.
123 thru 332.
333 and on.
123 thru 632.
633 and on.
123 thru 272.
273 and on.
554 and on.
123 thru 553.
76400 and on.

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	```MFG PART NO. OR TYPE```	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
	8400A DIGITAL VOLTMETER Figure 5-1						
A1	Power Supply (Figure 5-2)	288159			1		
A2	Range Delay (Figure 5-3)	288209			1		
A3	DC External Reference (See Section 6, 05 Option not supplied with standard 8400)	1			1		
A4	AC External Reference (See Section 6, -06 Option not supplied with standard 8400)	1			1		
A5	Remote Control (See Section 6, -04 Option not supplied with standard 8400)	1			1		
A6	Data Output No. 2 (See Section 6, -03 Option not supplied with standard 8400)	1			1		
A7	Data Output No. 1 (See Section 6, - 03 Option not supplied with standard 8400)	1			1		
A8	Logic (Figure 5-4)	2			1		
A9	AD Converter (Figure 5-5)	2			1		
A10	Active Filter (Figure 5-6)	2			1		
A11	Buffer (Figure 5-7)	288191			1		
A12	Ohms Converter (See Section 6,-02 Option not supplied with standard 8400)	1			1		
A13	AC Converter (See Section 6, -01 Option not supplied with standard 8400)	1			1		
A14	Display (Figure 5-8)	288167			1		
A22	True RMS converter (See Section 6, -09 Option not supplied with standard 8400)				1		
C1	Cap, cer, fixed $47 \mathrm{pf} \pm 10 \%$	282145			1		
$\begin{aligned} & \mathrm{J} 25, \\ & \mathrm{~J} 27 \end{aligned}$	Binding post, red, Hi	275552			2		
$\begin{aligned} & \text { J26, } \\ & \text { J28 } \end{aligned}$	Binding post, black, Lo	275560			2		
$\begin{aligned} & \text { J30, } \\ & \text { J31 } \end{aligned}$	Jack, teflon, ins (Mounted on T1)	295287			2		
J32	Binding post, blue, guard	275578			1		

$\begin{gathered} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{gathered}$	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	```MFG PART NO. OR TYPE```	$\left\lvert\, \begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}\right.$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
$\begin{aligned} & \mathrm{R} 1, \\ & \mathrm{R} 2 \end{aligned}$	Res, ww, 50K, $\pm 25 \%$	307298			2		
R3	Res, comp, $10 \mathrm{M} \pm 10 \%, 1 / 2 \mathrm{w}$	108142			1		C
S1	Switch, power (for push button, see below)	291526			1		
	Button, push, green	268862			1		
	Cover, top, outer	311746			1		
	Cover, top guard	346163			1		
	Cover, access	297713			1		
	Cover, bottom	298554			1		
	Foot	292870			4		
	Knob, black	190249			1		
	Lens	297903			1		
	Line, cord and plug	284174			1		
	Shorting Link	190728			3		
	Terminal, double	301382			4		
	Terminal, single	301390			5		
	Terminal strip, black	305136			4		
	Terminal strip, ins, light grey	297846			6		
	$\begin{aligned} & 1 \text { Order by model and option number } \\ & 2 \text { A8 and A9 must be purchased as a set } \\ & \text { Stock number } 303461 \end{aligned}$						
	Corner name Decals	296251					

Figure 5-1. MODEL 8400A DIGITAL VOLTMETER

$\begin{gathered} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{gathered}$	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	$\begin{gathered} \text { MFG } \\ \text { PART NO. } \\ \text { OR } \\ \text { TYPE } \end{gathered}$	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
A1	POWER SUPPLY Figure 5-2	288159			REF		
C1	Cap, elect, 8 uf $+50 /-10 \%, 350 \mathrm{~V}$	275792			1		
$\begin{aligned} & \mathrm{C} 2, \\ & \mathrm{C} 5 \end{aligned}$	Cap, elect, 250 uf $+50 /-10 \%, 40 \mathrm{~V}$	178616			2		
$\begin{aligned} & \text { C3, } \\ & \text { C7 } \end{aligned}$	Cap, mica, $33 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	160317			2		
$\begin{aligned} & \text { C4, } \\ & \text { C6 } \end{aligned}$	Cap, elect, 50 uf $+50 /-10 \%, 25 \mathrm{~V}$	168823			2		
C8	Cap, elect, 7100 uf $+75 /-10 \%, 10 \mathrm{~V}$	295196			1		
CR1 thru CR4	Diode, silicon, $1 \mathrm{amp}, 600 \mathrm{piv}$	112383			4		
CR5 thru CR8, CR10 thru CR13	Diode, silicon, $1 \mathrm{amp}, 100$ piv	116111			8		
CR9	Diode, zener, 12 V	249052			1		
$\begin{aligned} & \text { Q1, } \\ & \text { Q2 } \end{aligned}$	Tstr, silicon, NPN	218511			2		
$\begin{aligned} & \text { Q3, } \\ & \text { Q8 } \end{aligned}$	Tstr, silicon, NPN	150359			2		
Q4	Not used	150359			2		
Q5	Tstr, silicon, PNP	269076			-1		
Q6	Tstr, silicon, NPN	288381			1		
Q7	Tstr, silicon, NPN	218396			1		
R1	Res, comp, $510 \pm 5 \%, 1 / 2 \mathrm{w}$	108951			1		
R2	Res, comp, $68 \mathrm{k}+5 \%, 1 / 4 \mathrm{w}$	148171			1		
R3	Res, met flm, $383 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	288498			1		
$\mathrm{R} 4,$ R15	Res, met flm, $40.2 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	235333			2		
$\mathrm{R} 5,$ R8	Res, comp, $51 \pm 5 \%, 1 / 2 \mathrm{w}$	144717			2		

Figure 5-2. POWER SUPPLY PCB ASSEMBLY

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	$\begin{aligned} & \text { FLUKE } \\ & \text { STOCK } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { MFG } \\ & \text { FED } \\ & \text { SPLY } \\ & \text { CDE } \end{aligned}$	$\begin{aligned} & \text { MIFG } \\ & \text { P.ARTNO. } \\ & \text { OR } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
A2	RANGE DELAY Figure 5-3	288209			REF		
$\begin{aligned} & \mathrm{C} 1, \\ & \mathrm{C} 3 \end{aligned}$	Cap, cer, 0.025 uf $\pm 20 \%, 100 \mathrm{~V}$	168435			2		
$\begin{aligned} & \mathrm{C} 2, \\ & \mathrm{C} 6 \end{aligned}$	Cap, Ta, 3.3 uf $\pm 5 \%, 20 \mathrm{~V}$	271320			2		
C4	Cap, mica, 0.01 uf $\pm 1 \%, 300 \mathrm{~V}$	152470			1		
C5	Cap, elect, 200 uf $+50 /-10 \%$, 10V	236935			1		
C7	Cap, cer, 2200 pf, $\pm 10 \%$, 500 V	268425			1		Q
C8	Cap, cer, $.01 \mathrm{uf}, \pm 20 \%, 100 \mathrm{~V}$	149153			1		Q
CR1, CR3, CR9, CR11	Diode, silicon 150 mA	203323			4		E
$\begin{aligned} & \text { CR1, } \\ & \text { CR3, } \\ & \text { CR9, } \\ & \text { CR11 } \\ & \text { CR16 } \end{aligned}$	Diode, silicon, 150 mA	203323			5		F
$\begin{aligned} & \text { CR2, } \\ & \text { CR6, } \\ & \text { CR7, } \\ & \text { CR8, } \\ & \text { CR1d } \end{aligned}$	Diode, germanium, $80 \mathrm{~mA}, 100$ piv	149187			5		E
CR2, CR6, CR7, CR8, CR10 CR12 thru CR15	Diode, germanium, $80 \mathrm{~mA}, 100$ piv	149187			9		F
$\begin{aligned} & \text { CR4, } \\ & \text { CR5 } \end{aligned}$	Diode, fast switching germanium, 50 piv	180505			2		
$\begin{aligned} & \text { Q1, } \\ & \text { Q2 } \end{aligned}$	Tstr, silicon, NPN	168708			2		
Q3	Tstr, silicon, NPN	218396			1		E
0/18/74							5-11

$\begin{gathered} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{gathered}$	DESCRIPTION	$\begin{aligned} & \text { FLUKE } \\ & \text { STOCK } \\ & \text { NO. } \end{aligned}$	MFG FED SPLY CDE	MFG PART NO. OR TYPE	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
Q3, Q5	Tstr, silicon, NPN	218396			2		F
Q4	Tstr, silicon, unijunction	268110			1		
$\begin{aligned} & \mathrm{R} 1, \mathrm{R} 6, \\ & \mathrm{R} 15 \end{aligned}$	Res, comp, $220 \pm 5 \%, 1 / 4 \mathrm{~W}$	147959			3		
R2	Res, comp, $22 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148130			1		
R3, R7	Res, comp, 4.7k $\pm 5 \%, 1 / 4 \mathrm{w}$	148072			2		
R4,R17	Res, comp, $27 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148148			2		
R5	Res, comp, $51 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$	193334			1		
R8	Res, met flm, $27.4 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	241471			1		
R9	Res, met flm, $15.4 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	261651			1		
R10	Res, comp, $47 \mathrm{k}+5 \%, 1 / 4 \mathrm{w}$	148163			1		
R11	Res, comp, 10k $+5 \%, 1 / 4 \mathrm{w}$	148106			1		E
$\begin{aligned} & \text { R11, } \\ & \text { R19 } \end{aligned}$	Res, comp, 10k $\pm 5 \%, 1 / 4 \mathrm{w}$	148106			2		F
R12	Res, met flm, $10 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	168260			1		
R13	Res, met flm, $36.5 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	235309			1		
R14	Res, met flm, $21 \mathrm{k} \pm 0.5 \%, 1 / 8 \mathrm{w}$	229484			1		E
	Res, met flm, $16.9 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	267146			1		F
R16	Res, comp, $5.1 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	193342			1		
R18	Res, var, cer met, $10 \mathrm{k} \pm 10 \%$, $1 / 2 \mathrm{w}$	285171			1		F
U1	IC, DTL, Hex Inverter	268367			1		
U2	IC, DTL, Triple 3-Input Nand Gate	266312			1		
U3	IC, DTL, dual 4-Input Nand	268383			1		
	Socket, IC, 14 contact, U1, U2, U3	276527			3		

Figure 5-3. RANGE DELAY PCB ASSEMBLY

$\begin{gathered} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{gathered}$	DESCRIPTION	$\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$	MFG FED SPLY CDE	$\begin{gathered} \text { MFG } \\ \text { PART NO. } \\ \text { OR } \\ \text { TYPE } \end{gathered}$	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
Q2							
thru							
Q5							
Q19	Tstr, silicon, NPN	218396			10		K
thru	Tstr, silicon, NPN	21830			10		K
Q22,							
Q24,							
Q26							
Q6 thru							
Q17	Tstr, silicon PNP	195974			12		
Q18	Tstr, germanium, PNP	148619			1		
Q23	Tstr, silicon, NPN	168716			1		
Q25	Tstr, silicon, NPN	168708			1		
R1	Res, met flm, $750 \mathrm{k} \pm 1 \%, 1 / 2 \mathrm{~W}$	155192			1		
R2	Res, met flm, 110k $\pm 1 \%, 1 / 8 \mathrm{w}$	234708			1		
R3	Res, comp, $47 \pm 5 \%, 1 / 4 \mathrm{w}$	147892			1		
R4	Res, met flm, $46.4 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	188375			1		
R5,R19	Res, comp, $2.7 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$	170720			2		
R6,R21							
R28,							
R29,							
R31,	Res, comp, $1.5 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$	148031			7		
R32,							
R33							
R7	Res, comp, $820 \pm 5 \%, 1 / 4 \mathrm{w}$	148015			1		
R8,R59							
R60	Res, comp, $10 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$	148106			3		
R9	Res, comp, $27 \mathrm{k} \pm 5 \%$, 1/4w	148148			1		
R10	Res, comp, $1 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148023			1		
R11,							
R20,	Not Used						
R37							
$\begin{aligned} & \mathrm{R} 12, \\ & \mathrm{R} 40, \end{aligned}$	Res, comp, $4.7 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148072			3		
R41	(R40 Deleted)	148072			2		K
0/18/74							5-15

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	$\begin{aligned} & \text { FLUKE } \\ & \text { STOCK } \\ & \text { NO. } \end{aligned}$	MFG FED SPLY CDE	MFG PART NO. OR TYPE	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
R13,							
R25,							
R26,	Res, comp, $8.2 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	160796			4		
R27							
R14							
thru	Res, comp, $51 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	193334			5		
R18	(R17 Deleted)	193334			4		K
R22,							
R23	Res, comp, $2.2 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148049			2		
R24,		175042			2		
R64	Res, comp, $1.8 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	175042			2		
R30	Res, comp, $680 \pm 5 \%, 1 / 4 \mathrm{w}$	148007			1		
R34,							
R35,	Res, comp, $22 \mathrm{k}+5 \%, 1 / 4 \mathrm{w}$	148130			5		
R36,	Res, comp, $22 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$	148130			5		
R38,							
R39							
R42	Res, comp, $33 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148155			1		
R43	Res, comp, $47 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148163			1		M
R43,							
R66	Res, comp, $47 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148163			2		K
R43,							
R66,	Res, comp, $47 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148163			3		V
R67							
R44,							
R50,	Res, comp, $220 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	160937			3		
R52							
R45,							
R46,							
R48,							
R49,	Res, comp, $11 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$	221580			6		
R51,							
R65							
R47	Res, comp, $39 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$	188466			1		
R53	Res, met flm, $182 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	241091			1		
R54	Res, met flm, $3.74 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}, \mathrm{T} 9$	260547			1		
R57	Res, var, cer met, $20 \pm 20 \%$, $1 / 2 \mathrm{w}$	261180			1		
R58	Res, $\mathrm{ww}, 14 \mathrm{k} \pm 0.1 \%, 1 / 4 \mathrm{w}$	275321			1		

Figure 5-4. LOGIC PCB ASSEMBLY

REF DESIG OR ITEM NO.	DESCRIPTION	$\begin{aligned} & \text { FLUKE } \\ & \text { STOCK } \\ & \text { NO. } \end{aligned}$	MFG FED SPLY CDE	```MFG PART NO. OR TYPE```	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}\right.$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
A9	A/D CONVERTER Figure 5-5	288175			REF		
$\begin{aligned} & \mathrm{C} 1, \mathrm{C} 3, \\ & \mathrm{C} 4, \mathrm{C} 5 \end{aligned}$	Cap, mica, $390 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	148437			4		
C2, C7	Cap, plstc, 0.47 uf $\pm 10 \%, 250 \mathrm{~V}$	184366			2		
$\begin{aligned} & \text { C6,C16 } \\ & \text { C18, } \\ & \text { C19 } \end{aligned}$	Cap, mica, $33 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	160317			4		
C8	Cap, cer, $15 \mathrm{pf} \pm 10 \%, 500 \mathrm{~V}$	159947			1		
C9,C10	Cap, plstc, 0.047 uf $\pm 10 \%, 120 \mathrm{~V}$	260562			2		
$\begin{aligned} & \mathrm{C} 11 \\ & \text { thru } \end{aligned}$							
C15	Cap, cer, $0.01 \mathrm{uf} \pm 20 \%, 100 \mathrm{~V}$	149153			5		
C17	Cap, plstc, 0.047 uf $\pm 10 \%, 250 \mathrm{~V}$	162008			1		
C20	Cap, mica, $2 \mathrm{pf} \pm 10 \%, 500 \mathrm{~V}$	175208			1		L
C21	Cap, mica, $1000 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	148387			1		K
CR1, CR2, CR16	Diode, silicon, $150 \mathrm{~mA}, 125$ piv	272252			3		M
CR1, CR2, CR16, CR19	Diode, silicon, $150 \mathrm{~mA}, 125$ piv	272252			4		K
CR3, CR4, CR5, CR7 thru CR15	Diode, silicon, 150 mA	203323			12		
CR6	Diode, germanium, $80 \mathrm{~mA}, 100 \mathrm{piv}$	149187			1		M
$\begin{aligned} & \text { CR6, } \\ & \text { CR20 } \end{aligned}$	Diode, germanium, $80 \mathrm{~mA}, 100 \mathrm{piv}$	149187			2		K
CR17	Diode, silicon, $75 \mathrm{~mA}, 90$ piv	260554			1		
CR18	Diode, zener, 6.8V	187195			1		
P24	Connector, PCB to cable, 34 contact	295337					

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	$\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$	MFG FED SPLY CDE	```MFG PART NO. OR TYPE```	$\left\lvert\, \begin{aligned} & \text { TOT } \\ & \text { OTY } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}\right.$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
$\begin{aligned} & \text { Q1, } \\ & \text { Q21, } \\ & \text { Q45 } \end{aligned}$	Tstr, silicon, NPN	218396			3		
Q2, Q32	Tstr, silicon, PNP (Q2, Deleted)	$\begin{aligned} & 195974 \\ & 195974 \end{aligned}$			$\begin{aligned} & 2 \\ & 1 \end{aligned}$		$\begin{aligned} & \mathrm{M} \\ & \mathrm{~K} \end{aligned}$
$\begin{aligned} & \text { Q3, Q6 } \\ & \text { Q19, } \\ & \text { Q22, } \\ & \text { Q23, } \\ & \text { Q24 } \end{aligned}$	Tstr, FET, N-channel	271924			6		
Q4	Tstr, FET, dual, N-channel	257501			1		
$\begin{aligned} & \text { Q5,Q13 } \\ & \text { thru } \\ & \text { Q17, } \\ & \text { Q36 } \end{aligned}$	Tstr, FET, N-channel	288324			7		U
$\begin{array}{\|l\|} \text { Q5,Q13 } \\ \text { thru } \\ \text { Q17, } \\ \text { Q31, } \\ \text { Q36 } \end{array}$	Tstr, FET, N-channel	288324			8		T
$\begin{aligned} & \text { Q7,Q8, } \\ & \text { Q9 } \end{aligned}$	Tstr, FET, N-channel, Matched Set (must be replaced as a set)	274795			1		
$\begin{aligned} & \text { Q10, } \\ & \text { Q11, } \\ & \text { Q29, } \\ & \text { Q30, } \\ & \text { Q33, } \\ & \text { Q34 } \end{aligned}$	Tstr, silicon, PNP	288761			6		I
Q30	Tstr, silicon, PNP	321398			1		J
$\begin{aligned} & \text { Q10, } \\ & \text { Q11, } \\ & \text { Q29, } \\ & \text { Q33, } \\ & \text { Q34 } \end{aligned}$	Tstr, silicon, PNP	288761			5		J
Q12, Q18, Q25 thru Q28, Q31	Tstr, FET, N-channel	261388			7		U

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	$\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$	MFG FED SPLY CDE	$\begin{gathered} \text { MFG } \\ \text { PART NO. } \\ \text { OR } \\ \text { TYPE } \end{gathered}$	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
Q18,							
Q25	Tstr, FET, N-channel	261388			6		T
$\begin{array}{\|l\|l\|} \text { thru } \\ \text { Q28 } \end{array}$							
Q20	Tstr, FET, dual, N-channel	267963			1		
Q35	Tstr, silicon, NPN, dual, monolithic	295717			1		
Q37,							
Q39,		3061					
Q43							
Q38,							
Q40,	Tstr germanium PNP	306118			4		
R1, R4 Res, 148072							
R18	Res, comp, $4.7 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$	148072			3		M
R4	Res, comp, 4.7. $\mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148072			1		K
R2, R3	Res, comp, $47 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148163			2		
R5,							
R34,							
R53,	Res, comp, $100 \mathrm{k}+5 \%$, $1 / 4 \mathrm{w}$	148189			6		
R63,							
R80							
R6,							
R36,	Res, comp, 10k $+5 \%$, $1 / \mathrm{w}$	148106			4		
R59,	Res, comp, 10k $\pm 5 \%$, 1/4w	148106			4		
R64							
R7, Res, ww,							
R13	Res, ww, 10k, Matched Set	291690			1		
R8,R9,							
R31	Res, met flm, $45.3 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	234971			3		
R10	Res, met flm, $49.9 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	268821			1		
R11	Res, comp, 68k $+5 \%$, $1 / 4 \mathrm{w}$	148171			1		
R12	Res, comp, $220 \pm 5 \%, 1 / 4 \mathrm{w}$	147959			1		
R14,							
R17,	Res, var, cer met, $20 \pm 20 \%, 1 / 2 \mathrm{w}$	261180			3		
R45							

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	$\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$	MFG FED SPLY CDE	MFG PART NO. OR TYPE	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\text { REC } \begin{aligned} & \text { RET } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
R15, R16 R44, R46 R47 R49 R51 R19, R22 R19, R22 R20, R21 R20, R21 R23 R23, R18 R24, R25, R35 R26 R27 R28, R78 R29 R30 R32, R79 R33 R37 R38, R39 R40, R41 R42 R43 R48 R50	$\left.\begin{array}{l}\text { Res, ww, } 28.578 \mathrm{k} \\ \text { Res, } 22,50 \mathrm{k} \\ \text { Res, } w w, 100 \mathrm{k} \\ \text { Res, } w w, 200 \mathrm{k} \\ \text { Res, ww, } 199.98 \mathrm{k}\end{array}\right\}$ Matched Set Res, comp, $33 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$ Res, met flm $33.2 \mathrm{k} .0,-5 \%, 1 / 8 \mathrm{w}$ Res, comp, $22 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$ Res, met flm $22.1 \mathrm{k} \pm 5 \%, 1 / 8 \mathrm{w}$ Res, comp, $5.6 \mathrm{k}+5 \%, 1 / 4 \mathrm{w}$ Res, met flm, $4.99 \mathrm{k} 0.1 \%$. 1/8w Res, comp, $220 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$ Res, comp, $82 \pm 5 \%, 1 / 4 \mathrm{w}$ Res, met flm, $21.5 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$ Res, comp, $27 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$ Res, met flm, $22.1 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$ Res, comp, $820 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$ Res, comp, $15 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$ Res, comp, $1 \mathrm{k} \pm 5 \%$, $1 / 4 \mathrm{w}$ Res, var, cer met, $10 \mathrm{k} \pm 10 \%$, 1 w Res, comp, $6.2 \mathrm{M} \pm 5 \%, 1 / 4 \mathrm{w}$ Res, met flm, $750 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$ Res, met flm, $1.5 \mathrm{M} \pm 1 \%, 1 / 4 \mathrm{~W}$ Res, comp, $3 \mathrm{M} \pm 5 \%, 1 / 4 \mathrm{w}$ Res, var, cer met, $50 \pm 10 \%$, 1 w Res, var, cer met, $100 \pm 10 \%, 1 \mathrm{w}$	285239 148155 334102 148130 229476 148080 334110 160937 149484 168278 148148 235234 220541 148114 148023 285171 221960 271361 284976 221952 285122 285130			2 2 2 2 1 2 3 1 1 2 1 1 2 1 1 2 2 1 1 1 1		$\begin{gathered} \mathrm{M} \\ \mathrm{~K} \\ \mathrm{M} \\ \mathrm{~K} \\ \mathrm{M} \\ \mathrm{~K} \end{gathered}$

Figure 5-5. A TO D CONVERTOR PCB ASSEMBLY

$\begin{gathered} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{gathered}$	DESCRIPTION	$\begin{aligned} & \text { FLUKE } \\ & \text { STOCK } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { MFG } \\ & \text { FED } \\ & \text { SPLY } \\ & \text { CDE } \end{aligned}$	$\begin{gathered} \text { MFG } \\ \text { PART NO. } \\ \text { OR } \\ \text { TYPE } \end{gathered}$	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}\right.$
A10	ACTIVE FILTER Figure 5-6	290346			REF		
C1 thru C4	Cap, plstc, 0.47 uf $\pm 20 \%, 120 \mathrm{~V}$	190553			4		
C5, C8	Cap, mica, $33 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	160317			2		
C6, C7	Cap, mica, $150 \mathrm{pf}+5 \%, 500 \mathrm{~V}$	148478			2		
$\begin{aligned} & \text { CR1, } \\ & \text { CR2 } \end{aligned}$	Diode, silicon, $10 \mathrm{~mA}, 2$ piv	180554			2		
CR3	Diode, silicon, 150 mA	203323			1		D
K1	Relay, reed switch	219097			2		
	Coil, relay	272070			1		
Q1	Tstr, silicon, NPN, Super beta dual monolithic	284075			1		
Q2	Tstr, silicon, NPN	218396			1		
Q3	Tstr, silicon, PNP	195974			1		
$\begin{aligned} & \mathrm{R} 1, \mathrm{R} 2, \\ & \mathrm{R} 4, \mathrm{R} 5 \end{aligned}$	Res, met flm, $46.4 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	188375			4		
R3	Res, comp, 6.8k $\pm 5 \%, 1 / 4 \mathrm{w}$	148098			1		
R6	Res, met flm, $140 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	289439			1		
R7	Res, comp, $100 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$	148189			1		
R8	Res, met flm, $8.66 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	260364			1		
R9,R10	Res, met flm, $215 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	289470			2		
$\begin{aligned} & \mathrm{R} 11, \\ & \mathrm{R} 12 \end{aligned}$	Res, factory selected value						
R13	Res, var, cer met, $5 \mathrm{k} \pm 20 \%$, $1 / 2 \mathrm{w}$	267872			1		
R14	Res, met flm, $100 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	248807			1		
R15	Res, met flm, $2.49 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	226209			1		
R16	Res, met flm, $82.5 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	246223			1		
R17	Res, met flm, $2 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	235226			1		
R18	Res, met flm, $7.15 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	260356			1		
U1, U2	IC, operational amplifier	271502			2		

Figure 5-6. ACTIVE FILTER PCB ASSEMBLY

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	$\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$	MFG FED SPLY CDE	$\begin{gathered} \text { MFG } \\ \text { PART NO. } \\ \text { OR } \\ \text { TYPE } \end{gathered}$	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
A11	BUFFER Figure 5-7	288191			REF		
C1, C3	Cap, mica, $100 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	148494			2		
C2, C4	Cap, mica, $33 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	160317			2		
C5	Cap, mica, $270 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	148452			1		
C6, C7	Cap, cer, 0.05 uf $\pm 20 \%, 100 \mathrm{~V}$	149161			2		
C8	Cap, plstc, 0.1 uf $\pm 5 \%, 100 \mathrm{~V}$	167460			1		
C9,C10	Not Used						
C11	Cap, mica, $2200 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	148346			1		
CR1	Diode, silicon, $10 \mathrm{~mA}, 2$ piv	180554			1		
CR2	Not Used						
CR3	Diode, zener, 6.8 V	166199			1		
$\begin{aligned} & \text { CR4 } \\ & \text { thru } \\ & \text { CR8 } \end{aligned}$	Diode, silicon, $200 \mathrm{~mA}, 25 \mathrm{piv}$	190272			5		
CR9 thru CR17	Diode, germanium, $80 \mathrm{~mA}, 100 \mathrm{piv}$	149187			9		
$\begin{aligned} & \text { CR18 } \\ & \text { thru } \\ & \text { CR24 } \end{aligned}$	Diode, silicon, 150 mA	203323			7		
K1, K7	Relay, 4 PDT, 5V coil	- 272716			2		
K2	Relay, reed switch	284091			1		
	Coil, relay	272070			1		
K3	Relay, reed switch	284091			REF		
	Coil, relay	269019			4		
$\begin{aligned} & \mathrm{K} 4, \mathrm{~K} 5, \\ & \mathrm{~K} 6 \end{aligned}$	Relay, reed switch	289850			3		
	Coil, relay	269019			REF		
Q1, Q8	Tstr, silicon, PNP	195974			2		
Q2	Tstr, germanium, PNP	148643			1		
Q3	Tstr, silicon, NPN	168716			1		

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \\ & \text { OR } \\ & \text { ITEM } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$	MFG FED SPLY CDE	MFG PART NO. OR TYPE	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}\right.$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
Q4	Tstr, silicon, NPN, dual, monolithic	295717			1		
Q5	Tstr, silicon, NPN, Super beta dual monolithic	284075			1		
Q6, Q7	Tstr, silicon, PNP, selected	280198			2		
Q9, Q10	Not Used						
Q11	Tstr, selected	321638			1		
R1	Res, comp, $1 \mathrm{M} \pm 5 \%, 1 / 4 \mathrm{w}$	182204			1		
R2	Res, comp, $47 \mathrm{k} \pm 5 \%, 1 / 2 \mathrm{w}$	150219			1		
R4	Not Used						
R3	Res, comp, 910k $\pm 5 \%, 2 \mathrm{w}$	110171			1		
$\begin{aligned} & \text { R5, R6 } \\ & \text { R7 } \\ & \text { R10 } \end{aligned}$	$\left.\begin{array}{l}\text { Res, ww, } 4.45 \mathrm{M} \\ \text { Res, ww, } 899.55 \mathrm{k} \\ \text { Res, ww, } 99.95 \mathrm{k}\end{array}\right\}$ Matched Input Divider Set	284505			1		
R8	Res, var, cer met, $1 \mathrm{k} \pm 20 \%, 1 / 2 \mathrm{w}$	267856			1		
R9	Res, var, cer met, $100 \pm 20 \%, 1 / 2 \mathrm{w}$	267823			1		
R11	Res, met flm, $10 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	168260			1		
R12	Res, met flm, $13.7 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	236752			1		
R13	Res, met flm, $34 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	261602			1		
R14	Res, met flm, $2.61 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	289983			1		
R15	Res, met flm, $232 \pm 5 \%, 1 / 8 \mathrm{w}$	289975			1		
R16	Res, met flm, $84.5 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	229492			1		
R17	Res, var, cer met, $100 \mathrm{k} \pm 20 \%, 1 / 2 \mathrm{w}$	268581			1		
$\begin{aligned} & \text { R18, } \\ & \text { R19 } \end{aligned}$	Res, comp, $100 \mathrm{M} \pm 10 \%, 1 / 2 \mathrm{w}$	190520			2		
$\begin{aligned} & \text { R20, } \\ & \text { R33 } \end{aligned}$	Res, comp, 10k $\pm 5 \%, 1 / 4 \mathrm{w}$	148106			2		
R21	Res, comp, $270 \mathrm{k} \pm 5 \%$, $1 / 4 \mathrm{w}$	220061			1		
$\begin{aligned} & \mathrm{R} 22, \\ & \mathrm{R} 23, \\ & \mathrm{R} 25, \\ & \mathrm{R} 26 \end{aligned}$	Res, met flm, factory selected value (may not be installed)						

Figure 5-7. BUFFER AMPLIFIER PCB ASSEMBLY

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	$\begin{gathered} \text { MFG } \\ \text { PART NO. } \\ \text { OR } \\ \text { TYPE } \end{gathered}$	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\left\|\begin{array}{l} \text { REC } \\ \text { OTY } \end{array}\right\|$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
A14	DISPLAY	288167			REF		
	Figure 5-8						
C1	Cap, cer, 0.05 uf $\pm 20 \%, 50 \mathrm{~V}$	149161			1		
C 2	Cap, cer, $300 \mathrm{pf} \pm 10 \%, 500 \mathrm{~V}$	105734			1		P
$\begin{aligned} & \mathrm{C} 2, \\ & \mathrm{C} 100 \end{aligned}$	Cap, cer, $1200 \mathrm{pf} \pm 10 \%, 500 \mathrm{~V}$	106732			2		Q
C3	Cap, elect, 20 uf $+50 /-10 \%, 16 \mathrm{~V}$	241356			1		
C4	Cap, cer, 0.025 uf $\pm 20 \%, 50 \mathrm{~V}$	168435			1		
C5	Cap, cer, 0.005 uf $\pm 20 \%, 50 \mathrm{~V}$	175232			1		P
C5	Cap, cer, $2200 \mathrm{pf} \pm 10 \%, 500 \mathrm{~V}$	268425			1		Q
C6	Cap, cer, 0.01 uf $\pm 20 \%, 100 \mathrm{~V}$ (on bottom side of PCB)	149153			1		P
$\begin{aligned} & \mathrm{C} 6, \\ & \mathrm{C} 103 \end{aligned}$	Cap, cer, 0.01 uf $\pm 20 \%, 100 \mathrm{~V}$	149153			2		Q
C101	Cap, cer, 500 pf $\pm 10 \%, 500 \mathrm{~V}$	105692			1		Q
C102	Cap, cer, 0.025 uf $\pm 20 \%, 50 \mathrm{~V}$	175232			1		Q
$\begin{aligned} & \text { CR16, } \\ & \text { CR18, } \end{aligned}$	Diode, germanium, $80 \mathrm{~mA}, 100$ piv	149187			15		P
CR19, CR25 thru CR30, CR32							
CR1, CR2, CR7, CR10,							
$\begin{aligned} & \text { CR12, } \\ & \text { CR16, } \end{aligned}$	Diode, germanium, $80 \mathrm{~mA}, 100$ piv	149187			16		Q
CR18, CR19, CR25 thru CR30,							

$\begin{array}{\|c} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	$\begin{aligned} & \text { FLUKE } \\ & \text { STOCK } \\ & \text { NO. } \end{aligned}$	MFG FED SPLY CDE	$\begin{gathered} \text { MFG } \\ \text { PART NO. } \\ \text { OR } \\ \text { TYPE } \end{gathered}$	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	\|REC	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
$\begin{aligned} & \text { CR32, } \\ & \text { CR100 } \end{aligned}$							
CR3, CR4, CR17, CR20 thru CR24	Not used						
CR5, CR6, CR8, CR9, CR11, CR13, thru CR15, CR31, CR33	Diode, silicon, 150 mA	203323			10		P
CR5, CR6, CR8, CR9, CR11, CR13, thru CR15, CR31, CR33, CR34	Diode, silicon, 150 mA	203323			11		Q
DS1	Lamp, incandescent, 5 V	272476			1		
J1, J 10	Connector, femal, 12 contact	291898			2		
$\begin{aligned} & \text { J2, J5, } \\ & \text { J7, J8, } \\ & \text { J11, } \\ & \text { J12, } \\ & \text { J13 } \end{aligned}$	Connector, femal, 24 contact	295352			7		
$\begin{aligned} & \text { J3, J4, } \\ & \text { J9 } \end{aligned}$	Connector, femal, 24 contact with 6 removed	284240			3		
5-32							0/18/7

$\begin{gathered} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{gathered}$	DESCRIPTION	$\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$	MFG FED SPLY CDE	```MFG PART NO. OR TYPE```	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
R9	Res, comp, $1.2 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	190371			1		Q
R10	Res, comp, $1 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148023			1		P
R10	Res, comp, $510 \pm 5 \%, 1 / 4 \mathrm{w}$	218032			1		Q
R12	Res, comp, $75 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	220525			1		
$\begin{aligned} & \text { R13, } \\ & \text { R30 } \end{aligned}$	Res, comp, $2.2 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$	148049			2		
$\begin{aligned} & \text { R14, } \\ & \text { R57 } \end{aligned}$	Res, comp, 33k $\pm 5 \%, 1 / 4 \mathrm{w}$	148155			2		
R15	Res, comp, $27 \pm 5 \%, 1 / 4 \mathrm{w}$	160812			1		
R16	Res, var, comp, $150 \mathrm{k} \pm 20 \%, 1 / 2 \mathrm{w}$	256479			1		
R17	Res, comp, $1.8 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$	175042			1		
R19,							
R48 thru	Res, comp, 10k $\pm 5 \%, 1 / 4 \mathrm{w}$ (R64 on bottom side of PCB)	148106			9		P
R54, R64							
$\begin{aligned} & \text { R19, } \\ & \text { R48 } \end{aligned}$							
thru		148106			10		Q
R54, R64	Res, comp, 10k $\pm 5 \%, 1 / 4 \mathrm{~W}$	148106			10		Q
R65							
R26,							
$\begin{aligned} & \text { R27, } \\ & \text { R28 } \end{aligned}$	Res, comp, $1.2 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	190371			3		
R29,							
R34							
thru	Res, comp, $8.2 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	160796			7		
R38,							
R61							
R31	Res, comp, $430 \pm 5 \%, 1 / 4 \mathrm{w}$	` 33869			1		
R32	Res, comp, $330 \pm 5 \%, 1 / 4 \mathrm{w}$	147967			1		
R33	Res, comp, $470 \mathrm{k}+5 \%, 1 / 4 \mathrm{w}$	188441			1		
R39	Res, comp, $820 \pm 5 \%, 1 / 4 \mathrm{w}$	148015			1		N
R39	Res, comp, $430 \pm 5 \%, 1 / 4 \mathrm{w}$	203869			2		0
R40	Res, comp, $22 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148130			1		M

Figure 5-8. DISPLAY PCB ASSEMBLY

MANUFACTURERS' CROSS REFERENCE LIST

FLUKE STOCK NO.	MFR.	MFR. PART NO.	FLUKE STOCK NO.	MFR.	MFR. PART NO.
105668	56289	C023B501J103M	148114	01121	CB1535
105692	71590	2DDH60N501K	148122	01121	CB1835
105734	71590	BB60301KW7W	148130	01121	CB2235
105890	71590	BB60181KS3N	148148	01121	CB2735
106732	71590	CF122		148155	01121

MANUFACTURERS' CROSS REFERENCE LIST

FLUKE STOCK NO.	MFR.	MFR. PART NO.	FLUKE STOCK NO.	MFR.	MFR. PART NO.
160812	01121	CB2705	182790	56289	150D684X9035A2
160937	01121	CB2245	182873	14655	CD19F562G
161810	03877	SG5658	182956	91637	TYPE MFF $1 / 8$
161919	56289	196D105X0035	184366	73445	C280AE/A470K
161943	56289	196D475X0020	186296	73445	C426ARE125
161992	73445	C280AEA100K	187195	07910	CD36554
162008	73445	C280AEA47K	188375	91637	TYPE MFF $1 / 8$
166199	07910	1N754	188441	01121	CB4745
167460	84411	TYPE 863UW	188458	01121	CB8235
168195	91637	TYPE MFF $1 / 8$	188466	01121	CB3935
168229	91637	TYPE MFF $1 / 8$	190249	89536	190249
168252	91637	TYPE MFF $1 / 8$	190272	93332	1N456A
168260	91637	TYPE MFF $1 / 8$	190371	01121	CB1225
168278	91637	TYPE MFF $1 / 8$	190520	01121	EB1071
168435	56289	C128B101H253M	190553	84411	TYPE 863UW
168708	03508	2N3391	190728	24655	0938-9751
168716	07263	S19254	193318	01121	CB9125
168823	73445	C426ARF50	193334	01121	CB5135
170423	14655	CD15F221J	193342	01121	CB5125
170720 170738	01121 01121	$\begin{aligned} & \text { CB2725 } \\ & \text { CB5635 } \end{aligned}$	193391	01121	CB3905
175042 175208	01121 84171	CB1825 DM15020K	193441	01121	CB1845
175224	14655	CD15E120J	193458	01121	CB1245
175232 176644	56289 14655	C023B101E502M CD19F362G	194803	73445	C280AEA220K
177998	14655 1465	CD15E270J	194944	01121	CB1065
178616	73445	C437ARG250	195974	04713	2N3906
180406	07910	1N758	$\begin{aligned} & 198390 \\ & 200030 \end{aligned}$	$\begin{aligned} & 01121 \\ & 91637 \end{aligned}$	$\begin{aligned} & \text { CB2255 } \\ & \text { RN55D1820F } \end{aligned}$
180463	07910	1N968B	203323	03508	DHD1105
180505	18927	1N276	203869	01121	CB4315
180554	07910	CD12599	208975	14655	CD19F472J
			216986	14655	CD15C080K
182204	01121	CB1055	218081	04713	MPS6520
182212	01121	CB1545	218206 218396	72982 04713	530-000 2N3904

MANUFACTURERS' CROSS REFERENCE LIST

FLUKE STOCK NO.	MFR.	MFR. PART NO.	FLUKE STOCK NO.	MFR.	MFR. PART NO.
218511	95303	60994	$\begin{aligned} & 237297 \\ & 240937 \end{aligned}$	$\begin{aligned} & 91637 \\ & 89536 \end{aligned}$	$\begin{aligned} & \text { TYPE MFF } 1 / 8 \\ & 240937 \end{aligned}$
218693	01121	EB1065	241091	91637	TYPE MFF $1 / 8$
219097	15898	765972	241356	73445	C426ARE20
220061	01121	CB2735	241471	91637	TYPE MFF $1 / 8$
220525	01121	CB7535	241497	91637	TYPE MFF $1 / 8$
220541	01121	CB8245	245480	07263	S24496
221580	01121	CB1135	246066	04713	EL131
221606	01121	CB1635	246223	91637	TYPE MFF $1 / 8$
221614	01121	CB2035	246611	07910	1N961B
221903	01121	CB6215	248807	91637	TYPE MFF $1 / 8$
221911	01121	CB6225	248906	95303	CA3046
221937	01121	CB7545			
221952	01121	CB3055	249052	07910	1N963B
221960	01121	CB6255	249284	99536	249284
225599	07263	S22650	256479	71450	TYPE 45
226134	14655	CD15F151F500	257501	17856	DN423
$\begin{aligned} & 226209 \\ & 226274 \end{aligned}$	$\begin{aligned} & 91637 \\ & 82389 \end{aligned}$	TYPE MFF $1 / 8$ 46256LFE	260356	91637	TYPE MFF $1 / 8$
226316	00656	TYPE MFF C1-1	260364	91637	TYPE MFF $1 / 8$
229146	91637	TYPE MFF $1 / 8$	260547	91637	TYPE MFF $1 / 8$
229476	91637	TYPE MFF $1 / 8$			
229484	91637	TYPE MFF $1 / 8$	260554	07910	CD55105
229492	91637	TYPE MFF $1 / 8$	260562	84411	863UW47391
			260695	07910	1 N 754 A
229898	04713 91293	MPS6522	261180	71450	190PC200B
229930	91293 73445	JMC2951 ${ }_{\text {C280AEA2K }}$	261370	22767	S1330
234492	73445	C280AEA33K	261370	22767	S1330
234682	01121	CB3045	261388	04713	SPF179
234708	91637	TYPE MFF $1 / 8$			
234971	91637	TYPE MFF $1 / 8$	261602	91637	TYPE MFF $1 / 8$
235266	91637	TYPE MFF $1 / 8$	261651	91637	TYPE MFF $1 / 8$
235234	91637	TYPE MFF $1 / 8$	261842	01121	CB6205
235309	91637	TYPE MFF $1 / 8$	261883	91637	TYPE MFF $1 / 8$
235333	91637	TYPE MFF $1 / 8$	266312	04713	MC862P
236752	91637	TYPE MFF $1 / 8$	266619	07263	2N4888
236802	91637	TYPE MFF $1 / 8$			
236901	73445	C437ARF160	267120	73445	C280AE/A27K
236935	73445	C426ARD200	267153	04713	MC839P
237206	91637	TYPE MFF $1 / 8$	267211	89536	267211

MANUFACTURERS' CROSS REFERENCE LIST

FLUKE STOCK NO.	MFR.	MFR. PART NO.	FLUKE STOCK NO.	MFR.	MFR. PART NO.
267385	91637	TYPE MMF $1 / 8$			
267823	71450	190PC200B	272138	12040	DM8570
267856	71450	190PC102B	272252	07263	FD333
267872	71450	190PC502B	272476	71744	TYPE T1
267880	71450	190PC103B	272716	$\begin{aligned} & 77342 \\ & 72115 \end{aligned}$	TYPE R40 C437ARD1600
267963	17856	DN503	272922	83594	B585-6ST
268011	AMI	T-1483	273151	74970	273-1-2
268110	03508	2N6027	274795	89536	274795
268367	04713	MC836P	275321	89536	275321
268375	04713	MC846P	275362	89536	275362
268383	01295	SN15832N	275552	32767	820-65
268441	18324	C4312A	275560	32767	820-45
268540	18324	C4319A	275578	32767	820-55
268557	18324	C4321A	275792	56289	39D805G350GE4
268581	71450	190PC104B	276527	23880	TSA-2900-14W
268789	91637	TYPE MFF $1 / 8$	276535	23880	TSA-2900-16W
268797	91637	TYPE MMF $1 / 8$	276691	11236	360T105A
268813	91637	TYPE MFF $1 / 8$	277657	89536	277657
268821	91637	TYPE MFF $1 / 8$	277665	89536	277665
268904	84411	TYPE X663F	277905	89536	277905
269019	71707	U-6-P	277913	89536	277913
269076	95303	2N4037	278309	89536	278309
269092	89536	269092	280198	89536	280198
271320	56289	150D335X5020B2	281790	91637	TYPE MFF 1/8
271361	91637	TYPE MFF 1/8	281865	12615	SL-841-777
271403	54294	TYPE SP22	$\begin{aligned} & 282145 \\ & 283697 \end{aligned}$	$\begin{aligned} & 56289 \\ & 91637 \end{aligned}$	HVD3-47 TYPE MFF $1 / 8$
$\begin{aligned} & 271411 \\ & 271478 \end{aligned}$	$\begin{aligned} & 54294 \\ & 81741 \end{aligned}$	TYPE VA32 TYPE 23-021	284075	11726	QD200-78
271494	83594	B5853ST	284091	12617	TYPE MRR5
271502	12040	LM301A	284174	70903	KHS-7041
271908	91637	TYPE MFF $1 / 8$	284240	00779	TYPE 583650
271924	07910	CFE13041	284505	89536	284505
272070	71707	UD-6-P	284711	71450	190PC201B
272096	91637	TYPE MFF $1 / 8$	284760	12040	LM308H

MANUFACTURERS' CROSS REFERENCE LIST

FLUKE STOCK NO.	MFR.	MFR. PART NO.	FLUKE STOCK NO.	MFR.	MFR. PART NO.
284885	84411	863UW33351	288563	91637	TYPE MFF $1 / 8$
284968	75042	TYPE MEH	288597	04713	MC858P
284976	91637	TYPE MFF $1 / 4$	288605	01295	SN7416P
285031 285106	75915 07910	$\begin{aligned} & 279.015 \\ & \text { CRE3021 } \end{aligned}$	288639	91637	TYPE MFF $1 / 8$
285114	71450	360S-200B	288647	89536	288647
285122	71450	360S-500A	288654	89536	288654
285130	71450	360S-101A	288670	89536	288670
285148	71450	360S201A	288688	89536	288688
285155	71450	360S-102A	288761	49956	RS2048
285163	71450	360S-202A	$\begin{aligned} & 288803 \\ & 288811 \end{aligned}$	$\begin{aligned} & 01295 \\ & 01537 \end{aligned}$	$\begin{aligned} & \text { SN158097N } \\ & \text { MC856P } \end{aligned}$
285171	71450	360S-103A	288837	01295	SN74100N
285189	91637	TYPE MFF $1 / 8$	288845	01295	SN7402N
285213	71450	190PC253B	288852	04713	MC8312P
285239	89536	285239	288928	12040	LM308AH
285361	89536	285361	289066	91637	TYPE MFF $1 / 8$
288043	89536	288043	289439	91637	TYPE MFF $1 / 8$
288159	89536	288159	289470	91637	TYPE MFF 1/8
288167	89536	288167	289637	72982	$538-006 \mathrm{D}-9-35$
288175	89536	288175	289660	00327	TYPE M12
288183	89536	288183	289686	89536	289686
288191	89536	288191	289850	12617	TYPE MRR2
288209	89536	288209	289975	91637	TYPE MFF $1 / 8$
288217	89536	288217	289983	91637	TYPE MFF $1 / 8$
288225	89536	288225	290130	89536	290130
288233	89536	288233	290148	89536	290148
288308	71450	360S-104A	290155	89536	290155
288324	15818	U2412	290163	89536	290163
288365	12040	LM310H	290247	89536	290247
$\begin{aligned} & 288381 \\ & 288480 \end{aligned}$	$\begin{aligned} & 95303 \\ & 91637 \end{aligned}$	$\begin{aligned} & 40372 \\ & \text { TYPE MFF } 1 / 8 \end{aligned}$	290262	89536	290262
288498	91637	TYPE MFF $1 / 8$	290270	89536	290270
288555	91637	TYPE MFF $1 / 8$	290296	89536	290296

MANUFACTURERS' CROSS REFERENCE LIST

FLUKE STOCK NO.	MFR.	MFR. PART NO.	FLUKE STOCK NO.	MFR.	MFR. PART NO.
290304	89536	290304	298893	89536	298893
290312	89536	290312	298992	89536	298992
290320	89536	290320	299610	89536	299610
290346	89536	290346	301382	89536	301382
290650	89536	290650	301390	89536	301390
291120 291294	71450 91637	$\begin{aligned} & \text { 360S501A } \\ & \text { TYPE MFF } 1 / 8 \end{aligned}$	303412	89536	303412
291526	89536	291526	303461	89536	303461
291534	00779	583529	306118	01295	GA3938A
291542	00779	583527	306126	01295	GA3937A
291690	89536	291690	307298	89536	307298
291898	00779	583650-2	307504	89536	307504
291906	00779	583650-3	309633	77342	TYPE R40
292193	89536	292193	309849	72982	$\begin{aligned} & 8131-050- \\ & 651-224 \mathrm{M} \end{aligned}$
292201	89536	292201			
292888	89536	292888	311746	89536	311746
292896	89536	292896	321398	89536	321398
292904	89536	292904	329912	12040	LM318H
292946	71785 01537	$\begin{aligned} & 133-59-02-011 \\ & \text { MC } 7400 \mathrm{P} \end{aligned}$	334722	71450	360S105A
292979	01295	SN7404N	339309	89536	339309
295121	89536	295121	340133	91637	TYPE MFF $1 / 4$
295196	56289	39D718G010JP4	340158	91637	TYPE MFF $1 / 4$
295337	28213	SF3402	340166	91637	TYPE MFF 1/8
295352	00779	583650-9	340208	91637	TYPE MFF 1/8
295535	89536	295535	340216	91637	TYPE MFF 1/8
295717	11726	QD101-78E	340224	91637	TYPE MFF $1 / 8$
296582	75915	281005	340232	91637	TYPE MFF 1/8
297713	89536	297713	340240	91637	TYPE MFF 1/8
297762	89536	297762	340257	91637	TYPE MFF 1/8
297903	89536	297903			
298232	89536	298232	340265	03888	TYPE PME 75
298554	89536	298554	340273	95275	VY10CA2R2CA

Section 6

Option \& Accessory Information

6-1. INTRODUCTION

6-2. This section contains information describing the options and accessories usable with this instrument.

6-3. OPTIONS

6-4. Each of the options usable with this instrument are described under headings that list the option name and number. The descriptions give detailed field installation, opera-
ting, and maintenance data for each option as well as a complete list of replaceable parts.

6-5. ACCESSORIES

6-6. Accessories usable with this instrument are described under headings that list the accessory name and number.

6-7. A listing of included options and accessories is given in the contents at the front of this manual.

Option-01 AC Converter

6-1. INTRODUCTION

6-2. The A13 AC Converter (Drawing No. 8400A-1007) when used in conjunction with the 8400A DVM provides an ac voltage measurement capability through four ranges of $1,10,100$, and 1000 . The converter rectifies ac input voltage to dc and applies the dc to the A9 A-to-D Converter for measurement in exactly the same manner as described in the Theory of Operation for measurement of dc voltage.

6-3. SPECIFICATIONS

6-4. AC Converter specifications are given in Section 1, Introduction and Specifications.

6-5. INSTALLATION

6-6. Use the following procedure to install the AC Converter Option in the 8400A DVM.
a. With the DVM disconnected from the power source, remove the top dust and chassis guard covers. On the A14 Display Motherboard in the instrument, determine that connector J13 is clear of obstructions and that alignment key is inserted between pin pairs J13-23, -24 and J13-21, -22. See Drawing No. 8400-1002, Sheet 1 of 2. Locate terminal block No. 1 terminals P2TF and P2TR and connect the red and black wires from the AC Converter board to these terminals, respectively.
b. Check that shield on AC Converter is securely attached to board and align board vertically with plastic guide slots on inner vertical faces of guard chassis. Align rubber grommet with slot in front
guard chassis and insert. Slide converter board downward to fully engage board card edge connector with J13 connector on Motherboard.
c. Attach guard and instrument dust cover, connect ac power, and perform receiving inspection test of converter as described in paragraph 6-22, Performance Test.

6-7. OPERATING INSTRUCTIONS

6-8. Operation of the DVM with the A13 AC Converter Option 8400-01 installed is covered in Section 2, Operating Instructions.

6-9. THEORY OF OPERATION

6-10. General

6-11. The A13 AC Converter consists of two basic parts as shown in Figure 6-1: an operational rectifier and a dc difference amplifier integrator. The operational rectifier consists of an inverting, trans-conductance amplifier and load resistor with negative feedback arranged to provide a loop gain of about 5×10^{3} at midband. The feedback is changed with reed switches for range purposes. The input resistor is 1.11 megohms and this value provides 1.11 megohm input impedance at the DVM input jacks. A symmetrical half-wave rectifier placed between the amplifier and load resistor develops equal positive and negative dc voltages proportional to the amplifier output current. At full scale, this current is near two milliamps. The two output waveforms are shown in Figure 6-2.

Figure 6-1. CIRCUIT DIAGRAM AC CONVERTER

Figure 6-2. RECTIFIER OUTPUT WAVEFORMS
6-12. The dc difference amplifier/integrator filters the output wave forms of Figure $6-2$ and amplifies the difference between them by a factor of 3.33333 etc. for measurement by the A-to-D Converter. A minimum three sections of filtering are provided at all times. Additional filtering is available by depressing the FILT button on the front panel to further reduce ripple for low frequency inputs.

NOTE!

Depressing the FILT button inserts the A10 Active Filter assembly into the signal ratio. This reduces ripple with a corresponding sacrifice in settling time. See Section 1 for detailed specifications.

6-13. Circuit Description

6-14. OPERATIONAL RECTIFIER. Input FET Q1 functions as a source follower, while transistor Q2 provides a low impedance guard voltage which is used to bootstrap most of the capacity that otherwise would appear between the FET gate and circuit common. The first two differential pairs are in dual in-line package U1. Together with Q4 and Q5, they develop the required gain. Transistors Q3 and Q6 function as current sources, with values such that clip-
ping due to overload is symmetrical. Changes in capacitor charges are small and amplifier recovery time is minimized. Transistor Q7 compensates for capacitance losses in the diodes.

6-15. DC-DIFFERENCE AMPLIFIER/INTEGRATOR . The filter network, which provides the input to the amplifier/integrator, consists of resistors R39, R40, R41, R43, R44, R45 and capacitors C19, C20, C21, C22, C25 and C26. Capacitors C19, C21, C23 and C26 form matched pairs with capacitors $\mathrm{C} 20, \mathrm{C} 22, \mathrm{C} 24$, and C 25 , respectively, to maintain good common-mode rejection. Gain for the dc amplifier is provided by monolithic operational amplifier U 2 , thereby providing a total loop gain at dc of about 5×10^{5}.

6-16. RANGE AND FUNCTION CONTROL. The converter input and output relays, K1 and K2, are operated from the VAC control line. The range relays, K4 through K6, are operated by driver circuitry consisting of NAND gates U4A, C, D and associated components. These range control gates accept the buffered outputs of the range counter on the A14 Display board. U3B and U4B deliver the up and down range stop commands, for VAC function, to A2 Range Delay board. The NAND gates U3A and U3C deliver the set and reset commands to the range counter, on A14 Display board, for prevention of a disallowed range in the VAC function.

6-17. MAINTENANCE

6-18. Introduction

6-19. This section contains maintenance information specifically intended for the AC Converter. Factory service information and general instructions regarding instrument access and cleaning are located in Section 4 of the Manual.

6-20. Test Equipment

6-21. The following equipment is recommended for testing, troubleshooting, and calibrating the AC Converter. If the recommended equipment is not available, equivalent or better instruments may be substituted.

EQUIPMENT NOMENCLATURE

AC Voltage Source

Multimeter

Oscilloscope

Oscilloscope Plug-In

RECOMMENDED EQUIPMENT

HP Model 745A
AC Calibrator with companion 1000 volt amplifier.

Fluke Model 8100A Digital Multimeter

Tektronix Model 547

Tektronix Model IA1

6-22. Performance Test

6-23. The performance test in this section compares the AC Converter performance to the accuracy specifications in Section 1 of the manual to determine if the converter is in calibration. Known ac voltages are applied to the DVM input terminals on each of the four ranges. The performance test should be conducted before any instrument maintenance or calibration is attempted. The test is also suited to receiving inspection of new converters. The performance test should be conducted under the following environmental conditions after 1 hour warm up: ambient temperature $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$, relative humidity less than 70%. An instrument that fails the performance test will require corrective maintenance or calibration. In case of difficulty, analysis of the test results with reference to the troubleshooting section, should help to locate the trouble.

NOTE!

> Permissible tolerances for ac voltage measurements are derived from the 90-day instrument specifications contained in Section 1 of the manual.

6-24. AC VOLTAGE TEST. In the following procedure, 10 kHz voltages are applied to the instrument at 100% of full-scale on the 1,10 , and 100 volt ranges and at 0.1% and 100% of full-scale on the 1000 volt range.
a. Set the DVM controls as follows:

FUNCTION VAC
RANGE Manually selected, as required.
b. Apply each of the 10 kHz test signals shown in Figure 6-3 to the INPUT terminals of the DVM. The readout should be as indicated.

INPUT (VAC)	RANGE	READOUT LIMITS
1	1	.99945 to 1.00055
10	10	9.9945 to 10.0055
100	100	99.945 to 100.055
1	1000	000.95 to 001.05
1000	1000	999.00 to 1001.00

Figure 6-3. AC VOLTAGE TEST REQUIREMENTS

6-25. Calibration

The AC Converter should be calibrated every 90 days, or whenever repairs have been made to circuitry. Calibration of the converter should be performed at an ambient room temperature of $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$. Relative humidity should be less than 70%. Consult paragraph 6-20 for recommended test equipment.

6-26. PRELIMINARY OPERATIONS

a. Remove the upper dust cover retaining screws, but leave the dust cover in place on the instrument.
b. Set the rear panel 115/230 volts slide switch to the 115 volt position and connect the line cord to an autotransformer set to 120 volts ac.
c. Turn on and allow the instrument to operate for one hour.

6-27. AC CONVERTER ALIGNMENT

a. Set the DVM controls as follows:

FUNCTION VAC
RANGE 1000
SAMPLE RATE Fully clockwise
b. Connect the GUARD terminal to the LO input terminal using the shorting link provided.
c. Connect a shorting jumper between the INPUT terminals.
d. Adjust AC zero for 000.00 on the readout.
e. Rotate the .001 V 50 kHz adjustment (A13 C18) slowly in a CW direction. Note that one digit will be displayed longer than the others. When this "long duration digit" changes to a new number STOP; back the adjustment off so that the "long duration digit" just remains steady on the readout.
f. Readjust AC zero for 000.00 on the readout.
g. Remove the short between the INPUT terminals.
h. Perform the checks and adjustments contained in Figure 6-4.

6-28. Calibration of the AC Converter is now complete.

6-29. Troubleshooting

6-30. This section contains information selected to aid in troubleshooting the AC Converter. Before attempting to troubleshoot the unit, however, it should be verified that the trouble is actually in the converter and is not caused by faulty external equipment or improper control settings. For this reason, the performance test (paragraph 6-22) is suggested as a first step in troubleshooting. The performance test may also help to localize trouble to a particular section of the instrument. If the performance test fails to localize the trouble, the following information may be helpful.

6-31. POWER SUPPLY VOLTAGE CHECK

6-32. In this test, each of the supply voltages for the AC Converter is checked at the pin connectors. This test verifies only presence of voltages; a detailed check of the DVM power supply voltages is given in Section 4.
a. Connect the oscilloscope common to TP2 of the converter. Use the internal dc oscilloscope trigger. Set the scope controls for dc voltage measurement, and check the following voltages:

Connector	Required
Pin No.	Voltage
21	-18 volts
19	+18 volts

6-33. COMMAND VOLTAGE CHECK

6-34. The presence of proper command voltages is checked in the following test:
a. Connect the oscilloscope common to the converter as indicated in the preceeding test.
b. Perform each of the connector pin voltage checks given in Figure 6-5. The voltages should be as indicated.

6-35. RELAY CHECKS

The truth table (Figure 6-6) will help locate defective relays or associated drive circuits. Assuming there are no errors in the command voltage check, if the voltage across the coil does not appear as indicated on the truth

STEP	INPUT		RANGE	ADJUSTMENT	TOLERANCE (\pm DIGITS)
	FREO	VOLTS			
1	500 Hz	. 001	1	Check Only	3
2	50 kHz	. 001	1	. 001 V 50 kHz (A13C18)	Same reading as Step :
3	500 Hz	500.00	1000	500 V 1 kHz (A13R47)	3
4	30 kHz	500.00	1000	500 V 30 kHz (A13C2)	3
5	500 Hz	1.0000	1	1 V 500 Hz (A13R3)	5
6	50 kHz	1.0000	1	1 V 50 kHz (A13C3)	5
7	100 kHz	1.0000	1	Check Only	200
8	20 kHz	1.0000	1	Check Only	20
9	50 Hz	1.0000	1	Check Only	30
10	500 Hz	10.0000	10	10 V 500 Hz (A13R5)	5
11	50 kHz	10.0000	10	10 V 50 kHz (A13C4)	5
12	100 kHz	10.0000	10	Check Only	200
13	1 kHz	100.000	100	100 V 500 Hz (A13R7)	5
14	50 kHz	100.000	100	100 V 50 kHz (A13C6)	5
15	20 kHz	100.000	100	Check Only	20
16	10 kHz	1000.00	1000	Check Only (wait 30 sec.$)$	50

Figure 6-4. AC CONVERTER RANGE CALIBRATION

Figure 6-5. AC CONVERTER FUNCTION COMMAND CHECK

CONVERTER RELAYS	FUNCTION					POSSIBLE TROUBLE	
	VAC	VAC	VAC	VAC	$\begin{gathered} \text { ANY EXCEPT } \\ \text { VAC } \\ \hline \end{gathered}$		
	RANGE						
	1 V	10V	100V	1000V	ANY		
K1	1	1	1	1	0	1. Improper voltages on connector pins,	
K2	1	1	1	1	0	18, 2, 8, 4, 3, 6, 16 as shown in Figure	
K3	1	1	1	1	0	6-5.	
K4	0	1	0	0	0	2. Defective relay.	
K5	0	0	1	0	0		
K6	0	0	0	1	0	3. Defective relay gate circuits.	
$\begin{aligned} \text { Legend: } & \text { Logical } 1=>4.0 \mathrm{~V} \\ & \text { Logical } 0=<0.6 \mathrm{~V} \end{aligned}$							

Figure 6-6. AC CONVERTER RELAY TRUTH TABLE.
table, the relay drive circuit is at fault. If the coil voltage is correct but the relay fails to respond, then the relay is defective. Neither side of $\mathrm{K} 4, \mathrm{~K} 5$, or K 6 is connected to the circuit common.

6-36. SEVERE CONVERTER MALFUNCTIONS

a. Symptom: Full-scale output with shorted input.

Procedure: If dc voltage at TP1 and ac voltage on TP2 are zero, then troubleshoot converter output difference amplifier/integrator, and associated circuits.

If the dc voltage on TP1 is greater than $\pm 1 \mathrm{~V}$ (normal is less than 10 mV) check for defective Q1 through Q6, U1, C11, C21 or associated circuits.

If ac voltage is present on TP2, check for open or shorted feedback circuit or defective component in amplifier causing oscillation.
b. Symptom: Zero output with input applied.

Procedure: If ac voltage on TP2 is zero, check for open or short in ac circuit between input and Q1.

If ac voltage does appear on TP2 (full scale is approximately 0.25 V rms) check K3 or troubleshoot output difference amplifier/integrator.
c. Symptom: Range of operation does not correspond to range selected.

Procedure: Make command voltage and relay checks, Figures 6-5 and 6-6.

6-37. LIST OF REPLACEABLE PARTS

6-38. For column entry explanations, part ordering information and basic instrument configuration Use Codes and Serial Number Effectivity, see Section 5, paragraphs 5-1 through 5-10. See paragraph 6-39, this option subsection, for additional Use Codes and Serial Number Effectivity List assigned to this printed circuit assembly option.

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
A13	AC CONVERTER - 01 Option Figure 6-7				REF		
C 1	Cap, plstc, 0.22 uf $\pm 20 \%, 1200 \mathrm{~V}$	268904			1		
C2	Cap, var, teflon, $0.25-1.5 \mathrm{pf}, 2 \mathrm{kV}$	273151			1		
C3, C4	Cap, var, air, $0.8-10 \mathrm{pf}, 250 \mathrm{~V}$	229930			2		
C5	Cap, mica, $12 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	175224			1		
C6,C18	Cap, var, cer $9-35 \mathrm{pf}, 350 \mathrm{~V}$	289637			2		
C7	Cap, mica, $150 \mathrm{pf} \pm 1 \%, 500 \mathrm{~V}$	226134			1		
C8	Cap, mica, $4700 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	208975			1		
C9	Cap, cer, $3 \mathrm{pf} \pm 10 \%, 500 \mathrm{~V}$	226316			1		
$\begin{aligned} & \text { C10, } \\ & \text { C14 } \end{aligned}$	Cap, Ta, 4.7 uf $\pm 20 \%, 20 \mathrm{~V}$	161943			2		
C11	Cap, elect, 150 uf $+50 /-10 \%, 16 \mathrm{~V}$	186296			1		
$\begin{aligned} & \mathrm{C} 12, \\ & \mathrm{C} 13 \end{aligned}$	Cap, cer, $500 \mathrm{pf} \pm 10 \%, 500 \mathrm{~V}$	105692			2		
C15	Cap, elect, 47 uf $+50 /-10 \%, 25 \mathrm{~V}$	168823			1		
$\begin{aligned} & \mathrm{C} 16, \\ & \text { C17 } \end{aligned}$, cer, 0.01 uf $+20 \%$	149153			2		
$\begin{aligned} & \text { C19, } \\ & \text { C20 } \end{aligned}$	Cap, plstc, 0.068 uf, Matched Set	290148			1		
$\begin{aligned} & \mathrm{C} 21, \\ & \mathrm{C} 22 \end{aligned}$	Cap, plstc, 0.12 uf, Matched Set	290130			1		
$\begin{aligned} & \mathrm{C} 23, \\ & \mathrm{C} 24 \end{aligned}$	Cap, plstc, 0.0047 uf, Matched Set	290163			1		
$\begin{aligned} & \mathrm{C} 25, \\ & \mathrm{C} 26 \end{aligned}$	Cap, plstc, 0.47 uf, Matched Set	288233			1		
C27	Cap, mica, $33 \mathrm{pf}+5 \%, 500 \mathrm{~V}$	160317			1		
$\begin{aligned} & \mathrm{C} 28 \\ & \text { thru } \\ & \text { C31 } \end{aligned}$	Not Used						
C32	Cap, mica, $56 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	148528			1		

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	$\begin{aligned} & \text { FLUKE } \\ & \text { STOCK } \\ & \text { NO. } \end{aligned}$	$\begin{array}{\|l} \text { MFG } \\ \text { FED } \\ \text { SPLY } \\ \text { CDE } \end{array}$	```MFG PART NO. OR TYPE```	$\left\lvert\, \begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}\right.$	$\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$	$\text { \| } \begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
CR1							
thru CR4, CR15	Diode, silicon, 100 mA at 1.5 V	261370			5		
$\begin{aligned} & \text { CR5, } \\ & \text { CR6 } \end{aligned}$	Diode, silicon, 100 mA at 1.5 V	161810			2		
CR7,							
CR8, CR9	Diode, silicon, 150 mA	203323			3		
CR10							
thru	Diode, germanium, $80 \mathrm{~mA}, 100 \mathrm{piv}$	149187			5		
CR14							
CR16	Diode, zener, 13V	110726			1		
K1	Relay reed switch	284091			1		
	Coil, relay	269019			3		
K2,K3							
K6	Relay, reed switch	219097			8		
	Coil, relay	272070			3		
K4, K5	Relay, reed switch	219097			REF		
	Coil, relay	269019			REF		
Q1	Tstr, FET, N-channel	246066			1		
Q2,Q6	Tstr, silicon, NPN	218081			2		
Q3, Q4,	Tstr, silicon, PNP	229898			4		
Q5, Q7	Tstr, silicon, PNP	229898			4		
R1	Res, met flm, 1.11 M (
R2	$\text { Res, met flm, 267k }\} \quad \text { Matched Set }$	269092			1		
R3	Res, var, cer met, $2 \mathrm{k} \pm 10 \%$, 1 w	285163			1		
R4	Res, ww, $29.53 \mathrm{k} \pm 0.1 \%, 1 / 2 \mathrm{w}$	277657			1		
R5,	Res, var, cer met, $200 \pm 10 \%, 1 \mathrm{w}$	285148			2		
R32	Res, var, cer met, $200 \pm 10 \%$, 1w	285148			2		
R6	Res, ww, $2.573 \mathrm{k} \pm 0.1 \%, 1 / 2 \mathrm{w}$	277665			1		
R7	Res, var, cer met, $20 \pm 20 \%$, 1 w	285114			1		
R8	Res, ww, $143.3 \pm 0.1 \%, 1 / 4 \mathrm{w}$	292193			1		
R9	Res, met flm, $49.9 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	268821			1		

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	$\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$	$\begin{aligned} & \text { MFG } \\ & \text { FED } \\ & \text { SPLY } \\ & \text { CDE } \end{aligned}$	```MFG PART NO. OR TYPE```	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\left\|\begin{array}{l} \text { REC } \\ \text { QTY } \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}\right.$
R10	Res, comp, $8.2 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$	160796			1		
$\begin{aligned} & \text { R11, } \\ & \text { R26 } \end{aligned}$	Res, met flm, $590 \pm 1 \%, 1 / 8 \mathrm{w}$	261883			2		
$\begin{aligned} & \text { R12, } \\ & \text { R33 } \end{aligned}$	Res, comp, 10k $\pm 5 \%, 1 / 4 \mathrm{w}$	148106			2		
R13	Res, comp, $15 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148114			1		
R14	Res, met flm, $84.5 \mathrm{k} \pm 0.5 \%, 1 / 8 \mathrm{w}$	229492			1		
$\begin{aligned} & \mathrm{R} 15, \\ & \mathrm{R} 18 \end{aligned}$	Res, comp, 120k $\pm 5 \%, 1 / 4 \mathrm{w}$	193458			2		
$\begin{aligned} & \mathrm{R} 16, \\ & \mathrm{R} 17 \end{aligned}$	Res, comp, 11k $\pm 5 \%, 1 / 4 \mathrm{w}$	221580			2		
$\begin{aligned} & \text { R19, } \\ & \text { R20 } \end{aligned}$	Res, comp, $47 \pm 5 \%, 1 / 4 \mathrm{w}$	147892			2		
$\begin{aligned} & \mathrm{R} 21, \\ & \mathrm{R} 22 \end{aligned}$	Res, met flm, $40.2 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	235333			2		
R23	Res, met flm, $82.5 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	246223			1		
$\begin{aligned} & \text { R24, } \\ & \text { R28 } \end{aligned}$	Res, met flm, $10 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	168260			2		
$\begin{aligned} & \text { R25, } \\ & \text { R27 } \end{aligned}$	Res, met flm, $21.5 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	168278			2		
R29	Res, met flm, $1.1 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	241497			1		
$\begin{aligned} & \mathrm{R} 30, \\ & \mathrm{R} 50 \end{aligned}$	Res, var, cer met, $100 \mathrm{k} \pm 10 \%$, 1 w	288308			2		
R31	Res, comp, $10 \mathrm{M} \pm 5 \%, 1 / 4 \mathrm{w}$	194944			1		
R34	Res, comp, $22 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$	148130			1		
R35	Res, comp, $2.2 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148049			1		
$\begin{aligned} & \mathrm{R} 36, \\ & \mathrm{R} 37 \end{aligned}$	Res, ww, $1.702 \mathrm{k} \pm 0.1 \%, 1 / 4 \mathrm{w}$	292201			2		
R38	Res, ww, $125 \pm 0.1 \%, 1 / 4 \mathrm{w}$	249284			1		
$\begin{aligned} & \text { R39, } \\ & \text { R40, } \\ & \text { R43, } \\ & \text { R44 } \end{aligned}$	Res, ww, 130k $\pm 0.1 \%$, $1 / 4 \mathrm{w}$	285361			4		
$\begin{aligned} & \mathrm{R} 41, \\ & \mathrm{R} 45 \end{aligned}$	Res, ww, 40k $\pm 0.1 \%$	271403			2		

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO	$\begin{array}{\|l} \text { MFG } \\ \text { FED } \\ \text { SPLY } \\ \text { CDE } \end{array}$	$\begin{gathered} \text { MFG } \\ \text { PARTNO. } \\ \text { OR } \\ \text { TYPE } \end{gathered}$	TOT	REC QTY	USE
R42,	Res, ww, $1 \mathrm{M} \pm 0.1 \%$	271411			2		
R47	Res, var, cer met, $10 \mathrm{k} \pm 10 \%$, 1w	285171			1		
R48	Res, met flm, $100 \pm 1 \%, 1 / 8 \mathrm{w}$	168195			1		
R49	Res, met flm, $487 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	237206			1		
R51	Res, comp, $9.1 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	193318			1		
R52	Res, comp, $1 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148023			1		
U1	IC, 5 transistor array	248906			1		
U2	IC, operation amplifier	288928			1		
U3	IC, DTL, triple 3-Input Nand Gate	266312			1		
U4	IC, DTL, Quad 2-Input Nand Power Gate	288597			1		
	Socket, IC, 14 contact, U1, U3, U4	276527			3		

6-39. SERIAL NUMBER EFFECTIVITY

A Use Code column is provided to identify certain parts that have been added, deleted, or modified during production of the Model 8400A. Each part in this option for which a use code has been assigned may be identified with a particular printed circuit board serial number by consulting the Use Code Effectivity List below. All parts with no code are used on all printed circuit boards with serial
numbers 123 and on. NOTE: These Use Codes and Serial Number Effectivity apply to this option printed circuit board assembly only. For the standard instrument configuration, see Section 5, paragraph 5-9, and for additional options, see the appropriate option subsection.

USE
SERIAL NUMBER EFFECTIVITY CODE

Figure 6-7. AC CONVERTER PCB ASSEMBLY

Option-02 Ohms Converter

6-1. INTRODUCTION

6-2. The Ohms Converter (Option -02) is used in conjunction with the basic DVM to provide resistance measuring capability in seven ranges: $10,100,1000$, and 10000 ohms, and 100,1000 , and 10000 kilohms.

6-3. SPECIFICATIONS

6-4. Specifications for the ohms converter are located in Section 1, Introduction and Specifications.

6-5. INSTALLATION

6-6. Ohms Converter installation procedures are as follows:
a. Disconnect the power cord from line power.
b. Remove the top dust and guard chassis covers. On the A14 Display motherboard in the instrument, determine that connector J12 is clear of obstructions and that the alignment spacer is inserted between pin pairs J12-8, -9 and J12-10, -11 (see Drawing No. 8400A-1002, Sheet 1 of 2). Locate terminal block No. 1, terminals P3TF and P3TR, and connect the yellow and brown wires from the Ohms Converter board to these terminals, respectively. Layout other cable attached to rear of A12 Ohms Converter along inside bottom of the DVM chassis, underneath the other circuit boards, and emerge adjacent to terminal block No. 2. Attach to terminal block No. 2 terminals as shown on the wiring diagram, Drawing No. 8400A-1000. Also see terminal block layout diagram on guard cover.
c. Align converter board vertically with plastic guide slots on inner vertical faces of guard chassis. Align rubber grommet with slot in front guard chassis and insert. Slide converter board downward to fully engage card-edge connector with J12 connector on motherboard.
d. Attach guard and instrument dust cover, connect ac power, and perform receiving inspection test of converter as described in paragraph 6-27, Performance Test.

6-7. OPERATING INSTRUCTIONS

6-8. Operation of the DVM with the A12 Ohms Converter Option 8400A-02 installed is covered in Section 2, Operating Instructions.

6-9. THEORY OF OPERATION

6-10. General

6-11. The Ohms Converter is operated in one of two configurations associated with the functions of Ohms and K ohms. In the Ω function, the ohms converter is a constant current source which is connected to the SOURCE Terminals on the front panel of the 8400A. In K Ω function the ohms converter is a precision scaling resistor, which, in conjunction with the Buffer amplifier located in the basic instrument, and the unknown resistor, produces a voltage proportional to the unknown resistor. Simplified diagrams are shown in Figure 6-1.

6-12. $\quad \Omega$ CONFIGURATION. A constant current is supplied to the HI and LO SOURCE Terminals of the

8400A
OPTION-02
8400A from a current source as shown in Figure 6-1. A regulated dc voltage supplies a fixed current to a reference zener diode. The zener reference voltage is impressed across a precision resistor causing a current to flow into the emitter of a transistor. Because this transistor is a high gain device, the majority of the emitter current flows out of the collector, hence, out of the HI SOURCE terminal. The LO SOURCE terminal provides a return path for the precision current.

6-13. The constant current generator produces one of three currents dependent upon the range selected. Table 6-1 shows the current generated for each range selected on the front panel of the 8400A.

Table 6-1. CURRENT OUTPUT, Ω CONFIGURATION

OHMS RANGE CALLED	CURRENT CALLED
10	10 ma
100	10 ma
1000	1 ma
10 K	$100 \mu \mathrm{a}$

6-14. True four-terminal resistance measurements can be made in the ohms function. The term true four-terminal is used because the current generator is completely isolated from the remaining circuitry in the instrument, and hence, no current will flow in the voltage sense terminals even in the presence of relatively large lead resistances.

6-15. $\mathrm{K} \Omega$ CONFIGURATION. In the $\mathrm{K} \Omega$ function, a range dependent scaling resistor is placed between the master +7 volt reference and the HI SOURCE terminal. A voltage proportional to the unknown resistance $\left(\mathrm{R}_{\mathrm{X}}\right)$ is available at the buffer output as shown in Figure 6-1.

6-16. Circuit Description

6-17. CONSTANT CURRENT GENERATOR. Regulated dc voltage is developed by resistors R2, R4, R5, zener diode CR3, transistor Q1 and operational amplifier U1. Divider string, R6, R7, and R8, scales the zener reference voltage and applies it to U2. Range resistors R10 through R16, in conjunction with zener CR3, the regulated dc voltage, and amplifier U2, apply a range dependent, constant current to the emitter of a Darlington pair composed of Q2 and Q3. Fuse F1, capacitor C6, and diodes CR2, CR4 are used as an overvoltage protection circuit for the current generator.

Figure 6-1. SIMPLIFIED DIAGRAM OF OHMS CONVERTER SHOWING TWO CONFIGURATIONS

6-18. RANGE SCALING NETWORK. Resistors R17 through R22, and relay contacts $\mathrm{K} 1-\mathrm{A}, \mathrm{K} 2-\mathrm{A}$ and K 4 are the range scaling network. The relay contacts K1-A and $\mathrm{K} 2-\mathrm{A}$ are actuated by range selection on front panel. Relay K 4 is actuated in the $\mathrm{K} \Omega$ function and connects one end of the scaling network to the HI SOURCE terminal on front panel.

6-19. RELAY DRIVE CIRCUIT. Range control relay K1 receives its call commands from the A11 BUFFER assembly, whereas relay K2 receives its call commands from the buffered A14 range counter. Function control relays K3 and K4 are controlled by transistors Q6 and Q5, respectively. A manual range condition is detected by Gate U5B which enables gates U5C and U5D to control Q5 and Q6. In an autorange condition, gates U5C and U5D are disabled and function control is transferred by gate U3B to RS flip-flop U3A and U3C. The mutually exclusive outputs of this flip-flop, in turn, control switches Q5 and Q6. Gates U4A and U4B operate on the set and reset lines of the RS flip-flop to enable an automatic change of functions in an autorange condition.

6-20. MAINTENANCE

6-21. Introduction

6-22. This section contains maintenance information for the Ohms Converter. Factory service information and general instructions regarding instrument access and cleaning are located in Section 4 of the manual.

6-23. Test Equipment

6-24. The resistance valves for performance testing, troubleshooting, and calibration of the Ohms Converter is listed in Table 6-2.

Table 6-2. REQUIRED RESISTANCE VALVES

STANDARD	
RESISTANCE	
VALVE	TOLERANCE
10Ω	$\pm 30 \mathrm{PPM}$
100Ω	$\pm 30 \mathrm{PPM}$
$1 \mathrm{~K} \Omega$	$\pm 20 \mathrm{PPM}$
$10 \mathrm{~K} \Omega$	$\pm 20 \mathrm{PPM}$
$100 \mathrm{~K} \Omega$	$\pm 20 \mathrm{PPM}$
$1 \mathrm{M} \Omega$	$\pm 20 \mathrm{PPM}$
$10 \mathrm{M} \Omega$	$\pm 100 \mathrm{PPM}$

6-25. Fuse Replacement

6-26. The Ohms Converter contains two fuses, one of which prevents damage in the event large ac or dc voltages are inadvertantly applied to the DVM input during ohms operation. The circuit will withstand a maximum applied voltage of 20 volts rms on 10Ω through $10,000 \Omega$ range before the fuse will blow. Up to 250 V rms may continuously be applied to the $100 \mathrm{k} \Omega$ through $10,000 \mathrm{k} \Omega$ ranges without damage. A spare fuse is located on the ohms converter pcb, next to the in-circuit fuse.

6-27. Performance Tests

6-28. The performance tests in this section compare the Ohms Converter performance to the accuracy specifications in Section 1 of the manual to determine if the converter is in calibration. Appropriate resistance standards are connected to the input on each ohms range. The performance tests should be conducted before any instrument maintenance or calibration is attempted. The tests are also suited to receiving inspection of new converters. Performance tests should be conducted under the following environmental conditions: Ambient Temperature $23^{\circ} \mathrm{C} \pm$ $5^{\circ} \mathrm{C}$, Relative Humidity less than 70%. An instrument that fails any of the performance tests will require corrective maintenance or calibration. In case of difficulty, analysis of the test results, with reference to the troubleshooting section, should help to locate the trouble.

NOTE!

Permissible tolerances for resistance measurements are derived from the 90-day instrument specifications tained in Section 1 of the manual.

6-29. KILOHMS TEST. The kilohms function is checked at full scale on each of three ranges of the DVM. Connect each of the standard resistors shown in Table 6-3, in turn, to the INPUT terminals of the Model 8400A. Use short, low-resistance connecting leads. Set the DVM controls as shown in the table. The readout should be as indicated.

Table 6-3. KILOHMS TEST REQUIREMENTS

STANDARD RESISTANCE	MODEL 8400A		
	FUNCTION	RANGE	READOUT LIMITS
$100 \mathrm{~K} \Omega$	$\mathrm{~K} \Omega$	100	99.988 to 100.012
$1000 \mathrm{~K} \Omega$	$\mathrm{~K} \Omega$	1000	999.88 to 1000.12
$10 \mathrm{M} \Omega$	$\mathrm{K} \Omega$	10 K	9994.8 to 1005.2

6-30. OHMS TEST. The ohms function is checked at full scale on each of four ranges on the DVM. Connect equipment as shown in Figure 6-2. Connect each of the standard resistors in Table 6-4, observing appropriate readout as indicated.

Figure 6-2. EQUIPMENT CONNECTIONS FOR OHMS TEST

Table 6-4. OHMS TEST REQUIREMENTS

STANDARD RESISTANCE	MODEL 8400A		
	FUNCTION	RANGE	READOUT LIMITS
10Ω	Ω	10	9.9980 to 10.0020
100Ω	Ω	100	99.987 to 100.013
$1 \mathrm{~K} \Omega$	Ω	1000	999.87 to 1000.13
$10 \mathrm{~K} \Omega$	Ω	10 K	9998.7 to 10001.3

6-31. Calibration

$6-32$. The Ohms Converter should be calibrated every 90 days to maintain specifications (see specifications, Section 1), or whenever repairs have been made to circuitry. Calibration of the converter should be performed at an ambient room temperature of $23 \pm 5^{\circ} \mathrm{C}$. Relative Humidity should be less than 70%. Consult Table 6-2 for recommended test equipment.

6-33. PRELIMINARY OPERATIONS

a. Remove the upper dust cover retaining screws, but leave the dust cover in place on the instrument.
b. Set the rear panel $115 / 230$ volt slide switch to the 115 volt position and connect the line cord to an autotransformer set to 120 volts ac.
c. Turn on the Model 8400A and allow the instrument to operate for one hour.
d. Remove the upper dust cover and set the Model 8400A controls as follows:

FUNCTION	VDC, FILT
RANGE	.1
SAMPLE RATE	full clockwise

e. Connect the GUARD terminal to the LO INPUT terminal and the HI SOURCE terminal to the HI INPUT terminal, and the LO SOURCE terminal to the LO INPUT terminal using the shorting links provided with the instrument.
f. Short the INPUT terminals together.
g. Adjust the DC ZERO control on the front panel for a zero ± 1 digit.

6-34. KILOHMS CALIBRATION

a. Depress 10 K and $\mathrm{K} \Omega$ buttons.
b. Remove the short between the INPUT terminals.
c. Connect the resistances indicated in Table 6-5 between the INPUT terminals and perform the corresponding adjustment.

Table 6-5. K Ω RANGE CALIBRATION

RESISTANCE	RANGE	ADJUSTMENT	READOUT
10 M	10 K	10000 K (A12R17)	10000.0
1 M	1000	1000 K (A12R19)	1000.00
100 K	100	100 K (A12R21)	100.000

NOTE!

The readout indicated in Table $6-5$ should match the exact value of the calibration resistor, not the nominal value.

6-35. OHMS CALIBRATION

a. Remove shorting links between the INPUT HI and SOURCE HI binding posts, and between INPUT LO and SOURCE LO binding posts.
b. Connect equipment as shown in Figure 6-2.
c. Depress Ω and 10 K buttons on Model 8400A.
d. Connect the resistance indicated in Table 6-6 as shown in Figure 6-2 and perform the corresponding adjustment.

Table 6-6. OHMS RANGE CALIBRATION

STANDARD	RANGE	ADJUSTMENT	READOUT
$10 K$	$10 K$	$10000 \Omega(A 12 R 7)$	10000.0
$1 K$	1000	$1000 \Omega(A 12 R 14)$	1000.00
100Ω	100	100Ω A12R10 $)$	100.000
10Ω	10	NONE	$10.000 \pm .006^{*}$
NOTE* IF MORE THAN $\pm .006$ RESET VDC ZERO AND			
RECALIBRATE OHMS RANGES			

e. Re-install shorting links.

6-36. Calibration of the Ohms Converter is now complete.

6-37. TROUBLESHOOTING

6-38. Introduction

6-39. This section contains information selected to aid in troubleshooting the Ohms Converter. Before any
attempt is made to troubleshoot the converter, however, it should be verified that the trouble is actually in the converter and not caused by faulty external equipments or improper control settings. For this reason, the performance tests (paragraph 6-27) are suggested as a first step in troubleshooting. The performance tests may also help to localize the trouble to a particular section of the converter. If the performance tests fail to localize the trouble, the following information may be helpful.

6-40. TROUBLESHOOTING

a. Depress $\mathrm{K} \Omega$, FILT and 1000 buttons on Model 8400A.
b. Place a $1 \mathrm{meg} \pm .01 \%$ resistor across the INPUT terminals and readout $1000.00 \pm .10$.

FAULT ANALYSIS

IF READOUT IS BAD, FAULT MAY BE THE REFERENCE VOLTAGE OR R17, R18, R19, R20 OR RELAY K1.

c. Depress 100 button.
d. Place a $100 \mathrm{k} \pm .01 \%$ resistor across INPUT terminals and readout $100.000 \pm .010$.

FAULT ANALYSIS

IF READOUT IN STEP d. IS BAD, FAULT MAY LIE IN RESISTORS R21 OR R22 OR RELAY K2

e. Depress Ω and 1000 buttons.
f. Measure a $1000 \pm .01 \%$ resistor using the fourterminal measurement technique (see Figure 6-2).
g. Readout $1000.00 \pm .10$.

FAULT ANALYSIS

IF READOUT IS BAD, RESISTOR NETWORK R10, R11, R12 OR REGULATED SUPPLY, OR K2 MAY BE FAULTY.
j. Readout $100.000 \pm .010$.

FAULT ANALYSIS

IF READOUT IS BAD, RELAY K1 OR RESISTORS R13, R14, R15, R16 OR REGULATED SUPPLY MAY BE FAULTY

6-41. LIST OF REPLACEABLE PARTS

6-42. For column entry explanations, part ordering information and basic instrument configuration Use Codes and Serial Number Effectivity List, see Section 5, paragraphs 5-1 through 5-10. See paragraph 6-43, this option subsection, for additional Use Codes and Serial Number Effectivity List assigned to this printed circuit assembly option.

6-43. SERIAL NUMBER EFFECTIVITY

6-44. A Use Code column is provided to identify certain parts that have been added, deleted, or modified during production of the Model 8400A. Each part in this option for which a use code has been assigned may be identified with a particular serial number by consulting the Use Code Effectivity List below. All parts with no code are used on all serial numbers 123 and on. NOTE: These Use Codes and Serial Number Effectivity apply to this option only. For the standard instrument configuration, see Section 5, paragraph 5-9, and for additional options, see the appropriate option subsection.

USE
CODE

A
B

SERIAL NUMBER EFFECTIVITY
123 thru 73399
73400 and on
h. Depress 100 button.
i. Using modified four-terminal technique measure $100 \pm .01 \%$ resistor.

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	FLUKE STOCK NO.	$\begin{aligned} & \text { MFG } \\ & \text { FED } \\ & \text { SPLY } \\ & \text { CDE } \end{aligned}$	$\begin{gathered} \text { MFG } \\ \text { PART NO. } \\ \text { OR } \\ \text { TYPE } \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}\right.$	$\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
A12	OHMS CONVERTER -02 Option Figure 6-3				REF		
C1	Cap, elect, 150 uf $+50 /-10 \%, 25 \mathrm{~V}$	236901			1		
C2, C7	Cap, cer, 0.01 uf $\pm 20 \%, 100 \mathrm{~V}$	149153			2		
C3, C4	Cap, mica, $33 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	160317			2		A
$\begin{aligned} & \mathrm{C} 3, \mathrm{C} 4, \\ & \mathrm{C} 8 \end{aligned}$	Cap, mica, $33 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	160317			3		B
C5	Cap, Ta, 1.0 uf $\pm 20 \%, 35 \mathrm{~V}$	161919			1		
C6	Cap, mica, $470 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	148429			1		
CR1	Diode, silicon, $1 \mathrm{amp}, 100 \mathrm{piv}$	116111			1		
CR2	Diode, zener, 20V	180463			1		
CR3	Diode, zener, 6.3V, selected \& tested	288043			1		
CR4	Diode, silicon, $150 \mathrm{~mA}, 125$ piv	272252			1		
CR5	Diode, zener, 10V	180406			1		
CR6 thru							
CR13, CR16 thru CR20	Diode, silicon, 150 mA	203323			13		
CR14	Diode, silicon, $1 \mathrm{amp}, 600 \mathrm{piv}$	112383			1		
CR15	Diode, germanium, $80 \mathrm{~mA}, 100$ piv	149187			1		
F1	Fuse, pigtail, $15 \mathrm{~mA}, 125 \mathrm{~V}$ (one fuse provided as a spare)	285031			2		
K1	Relay, reed switch	219097			2		
	Coil, relay	272070			1		
K2	Relay, armature, DPDT, 115V Coil	309633			1		
K3, K4	Relay, reed switch	284091			2		
	Coil, relay	269019			2		
Q1	Tstr, silicon, NPN	150359			1		
Q2,Q3	Tstr, silicon, PNP	225599			2		
Q4, Q7	Tstr, silicon, NPN	218396			2		

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	FLUKE STOCK NO.	$\begin{aligned} & \text { MFG } \\ & \text { FED } \\ & \text { SPLY } \\ & \text { CDE } \end{aligned}$	$\begin{gathered} \text { MFG } \\ \text { PART NO. } \\ \text { OR } \\ \text { TYPE } \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}\right.$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
Q5, Q6	Tstr, silicon, PNP, selected	280198			2		
Q8	Tstr, silicon, PNP	195974			1		
$\begin{aligned} & \mathrm{R} 1, \mathrm{R} 9 \\ & \mathrm{R} 29 \end{aligned}$	Res, comp, $10 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148106			3		
R2, R4	Res, met flm, $10 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	168260			2		
R3	Res, comp, $2.2 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148049			1		
R5	Res, met flm, $953 \pm 1 \%, 1 / 4 \mathrm{w}$	288555			1		
R6	Res, met flm, $619 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	288639			1		
R7, R19	var, cer met,	267856			2		
	,						
$\begin{aligned} & \mathrm{R} 8, \\ & \mathrm{R} 17 \end{aligned}$	Res, var, cer met, $25 \mathrm{k} \pm 20 \%, 1 / 2 \mathrm{w}$	285213			2		
R10	Res, var, cer met, $10 \mathrm{k} \pm 20 \%, 1 / 2 \mathrm{w}$	267880			1		
R11	Res, met flm, $46.4 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	188375			1		
R12	Res, ww, $634.13 \pm 0.05 \%, 1 / 4 \mathrm{w}$	292888			1		
R13	Res, met flm, $464 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	271908			1		
R14	Res, var, cer met, $100 \mathrm{k} \pm 20 \%$, $1 / 2 \mathrm{w}$	268581			1		
R15	Res, ww, $6.983 \mathrm{k} \pm 0.05 \%, 1 / 4 \mathrm{w}$	292896			1		
R16	Res, ww, $62 \mathrm{k} \pm 0.05 \%, 1 / 4 \mathrm{w}$	292904			1		
R18	Res, met flm, $6.99 \mathrm{M} \pm 0.1 \%, 2 \mathrm{w}$	284968			1		
R20	Res, ww, $777.15 \mathrm{k} \pm 0.05 \%, 3 / 4 \mathrm{w}$	277913			1		
R21	Res, var, cer met, $100 \pm 20 \%, 1 / 2 \mathrm{w}$	267823			1		
R22	Res, ww, $70.555 \mathrm{k} \pm 0.05 \%, 1 / 2 \mathrm{w}$	277905			1		
R23	Res, met flm, $100 \pm 1 \%, 1 / 8 \mathrm{w}$	168195			1		
$\begin{aligned} & \text { R24, } \\ & \text { R25 } \end{aligned}$	Res, comp, $390 \pm 5 \%, 1 / 4 \mathrm{w}$	147975			2		
R26	Res, comp, $8.2 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	160796			1		A
$\begin{aligned} & \mathrm{R} 26, \\ & \mathrm{R} 34 \end{aligned}$	Res, comp, $8.2 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	160796			2		B
R27	Res, comp, $4.7 \mathrm{k}+5 \%, 1 / 4 \mathrm{w}$	148072			1		
R28	REs, comp, $1 \mathrm{k}+5 \%, 1 / 4 \mathrm{~W}$	148023			1		A

Figure 6-3. OHMS CONVERTER PCB ASSEMBLY

Option-03

Data Output Unit

6-1. INTRODUCTION

6-2. The Data Output Unit (Option-03) provides data output that is completely isolated from the analog input and is available in 8-4-2-1 BCD logic level format. Data is transferred serially via guarded toroids from the Model 8400 A to the Data Output Unit. Single decade code conversion and serial-character, parallel-bit acquisitions are unique capabilities, in addition to standard full parallel output.

6-3. SPECIFICATIONS

6-4. Specifications for the Data Output Unit are located in Section 1 of the manual.

6-5. INSTALLATION

6-6. The following procedure should be used to install the Data Output Unit in the Model 8400A.
a. Disconnect the power cord from the instrument before installing the Data Output Unit option.
b. Remove the top dust and guard chassis covers.
c. Determine that connector J7, on A14 Display board, is clear of obstructions and that alignment spacer is inserted between pin pairs J7-1, -2 and J73, -4. A second alignment spacer must be inserted between pin pairs J7-21, -22 and J7-23, -24.
d. Determine that connector slots on rear panel for P20 and P21 on Data Output Unit boards are clear of any obstructions.
e. Attach spring to bottom portion of guard bar on A7 Data Output Unit No. 1.
f. Insert P21, on A7 Data Output Unit No. 1, into connector slot on rear panel while inserting P20 on A6 Data Output Unit No. 2 into rear panel connector slot. (Refer to Section 5, Figure 5-1 for physical location of A7 and A6)
g. Insert edge of both the Data Output Units (A6 \& A7) into card guides on the inner chassis bulkhead.
h. Observe that alignment spacers on J7 line up with slots on the Data Output Unit card-edge connector.
i. Slide both boards downward until the card-edge connector on A7 is fully engaged with J7 on A14 Display board, and A6 is seated into bracket.
j. Lay the twisted pair cable under the top position of the rear panel and route toward transformer.
j. Connect wires to jacks mounted on transformer so yellow mates to yellow and blue to blue.
k. Attach guard and dust covers, connect ac power, and perform receiving inspection test of the Data Output Units as described in paragraph 6-33, Performance Test.

6-7. OPERATING INSTRUCTIONS

6-8. Operating instructions and applications information for the Model 8400A with DOU installed are located in Section 2 of the manual.

6-9. THEORY OF OPERATION

6-10. General

6-11. The Data Output Unit (DOU) receives DVM measurement data through guarded pulse transformers and, by means of appropriate control circuitry, enters this data into a self-contained, random-access digital memory. Outputs are available in positive logic, BCD 8-4-2-1, full-parallel format. A strobing operation which produces a parallelbit serial-character format may be easily implemented by connecting outputs together in groups, as desired, and manipulating gate inputs (see DOU blovk diagram, Figure 6-1).

6-12. A system of output blanking is incorporated which has a threefold purpose. Firstly, it holds all outputs in an off state any time the DVM is performing a measurement or is in the digitizing process. It is during these periods that the DOU memory is being loaded; and if outputs were turned on, transient, meaningless data would be momentarily displayed. Secondly, signal conditioner settling time is automatically considered by a circuit called the programmed one-shot (POS). The POS ensures that the user obtains rated-accuracy data in the minimum possible time, regardless of function performed, by holding outputs off or blanked until valid data is obtainable. The advantages of this circuit are especially apparent when the instrument is commanded to sample

Figure 6-1. DATA OUTPUT UNIT BLOCK DIAGRAM.
upon simultaneous application of a transient signal or step change to the DVM input. The POS holds outputs off just long enough for the signal conditioner in use to settle to rated accuracy. When a different signal conditioner is called into operation by the user, the POS automatically adjusts timeout delay to the new conditions. At timeout, the POS triggers a new measurement before turning on the outputs 23 milliseconds later. Thirdly, automatic ranging is detected by the DOU, and data outputs are blanked during operations associated with that function. After the blanking process is complete, the outputs will remain on and unchanged until the DVM is again commanded to sample.

6-13. Following is an example of a typical sequence of internal events as initiated by a user-generated sample command.
a. An unknown input and a trigger (command to sample) are applied simultaneously to the DVM.
b. The POS reverts to its unstable state, thereby inhibiting all outputs.
c. The DVM makes a preliminary measurement, (requiring 6 milliseconds) to determine if ranging is necessary.
d. Autoranging takes place and the timeout is increased by 250 milliseconds for each range change.
e. The programmed one-shot begins to time out in accordance with the function delay data registered in the DOU memory.
f. At the end of the required settling time, the DVM is automatically commanded to sample again by the POS as it reverts to its stable state.
g. New data is registered in the DOU memory as a result of this final sample.
h. All the outputs are then turned on to provide function, range, polarity, and specified-accuracy numerical data. A ready flag indicates whether outputs are on or off.

6-14. Circuit Description

6-15. LOGIC NOTATION. A description of the logic symbology used in the DOU is given in Figure 6-2. A J-K flip flop that is in the " 1 " condition or is set "high" has a
"high" output from the "Q" terminal. The orientation of the flip flops in the schematics is the same as the flip flops shown in Figure 6-2. This method of notation enables input/output terminals of the flip flops to be identified without the necessity of redundant lettering of each device symbol. In the main, the routing of logic and control signal on the schematics is accomplished without connecting lines, which greatly reduces conjestion.

6-16. MULTIPLEXERS. The DVM function, range, and polarity inputs are applied to dual multiplexer circuitry consisting of NAND gates A7U27A through D, A7U28A through D, A7U29C and A7U29D, (see DOU schematic at rear of manual). The gates comprising each multiplexer are enabled sequentially by the 6 -state shift register signals. The multiplexer outputs are applied to inverter circuits consisting of NOR gates A7U31A, A7U31D, A7U31E, A7U31F, and transformers T1 and T2. The pulses produced by T 1 and T 2 secondaries are applied to RS flip flops composed of inverters A7U13A, A7U13B, A7U13D, A7U13E, which reconstruct the multiplexer inputs for application to the data gates. Examples of the RS flip flop outputs are shown in the timing diagram of Figure 6-3 (signals 13-8 and 13-4) and correspond to the following DVM functions and input conditions: VDC function with filter called, 1 range, negative voltage applied to input and remotely controlled. A complete list of waveforms appearing at the output of the RS flip flops is given in the troubleshooting section. (See Figure 6-9). Waveforms are labeled according to circuit location (e.g., 13-4 means I. C. U13 pin 4).

6-17. DIGITS COUNTER. The digits counter consists of J-K flip flops A6U26A, A6U26B, A6U25A and A6U25B. The input flip flop, A6U25A is toggled by positive pulses, which are transferred through the guard by A7U32C and transformer T3. The counter produces a 4-bit binary output that is entered into the memory via the data gates. The counter is reset at the beginning of each sub-period of the measurement cycle by the $\overline{\mathrm{F}}$ signal. The W, Y, and Z counter outputs are also applied to NAND gate A6U22A, which stops the counter at a count of " 11 " and generates a high at the input of flip flop A6U21B. If another pulse appears at the secondary of T 3 , it is indicative of " 12 " in the first decade (i.e., instrument overload). The 12 th pulse toggles flip flop A6U21B to produce an overload indication at the DOU output, A7P20-13.

6-18. DATA GATES. The data gates consist of NAND gates A7U22C, A7U23A through U23C, and A7U24A through U24D. The gates are controlled by the F, \bar{F}, S, and $\overline{\mathrm{S}}$ signals so that the 10 bits of function, range, and polarity data and 20 bits of numerical data are presented to

LOGIC SYMBOL	NAME	DESCRIPTION
	J-K Flip Flop	Operation of the J-K flip flop is shown by the following truth tables. Note that " S " and " R " inputs are dominant over " J " and " K " inputs. SYNCHRONOUS INPUTS ASYNCHRONOUS INPUTS
	NOR Gate NAND Gate Inverter	The following table shows gate and inverter operation. Although only two-input gates are shown, operation is identical for gates having additional inputs.
	Shift Register	Four 8-bit, serial-in parallel-out shift registers are used. A logical " 1 " at the input enters a logical " 1 " into the register.

Figure 6-2. EXPLANATION OF LOGIC SYMBOLOGY USED IN DOU
the shift register memory at the proper times. These data bits are loaded in accordance with the load sequence (see Figure 6-4) and are steered by the data gates.

6-19. RANDOM ACCESS MEMORY. The DOU memory is composed of shift registers A7U10, A7U12, A7U14 and A7U16. Data is loaded serially into the shift registers. The loading sequence is controlled by clock pulses which are produced by gates A7U15A through U15D, gate A7U19B and associated circuitry. Steering signals, S and \bar{S}, together with the loading signal, F , develop loading pulses as shown in Figure 6-3. NAND gate A7U19B, inverter A7U13C, and associated circuitry delay the F signal for approximately 10 microseconds so that all data present at the shift register inputs will be stabilized before clocking occurs.

6-20. CONTROL. F and $\overline{\mathrm{F}}$ signals are produced by an RS flip flop consisting of NOR gates A7U19A, A7U19C and associated circuitry. The trigger for the flip flop is developed by inverters A7U31B and C, A7U32A, B, and E, and transformer T 4 . The F and $\overline{\mathrm{F}}$ signals are conditioned by the \bar{F}, M, and $\overline{Z E R O}$ signals so that the F and \bar{F} signals occur only during periods A through $\overline{\mathrm{E}}$ of the DVM measurement cycle. The steering flip flop is triggered by the F signal and produces S and \bar{S} signals.

6-21. The $\overline{\mathrm{S}}$ output of the steering flip flop is applied to transistor A6Q9 and associated components, which comprise a rechargeable one-shot. This circuit is responsible for initializing control circuit conditions and providing for generation of the M signal. The sequence of operation of the
rechargeable one-shot and associated circuitry is as follows (control timing signals are shown in Figure 6-3):
a. Measurement cycle is initiated.
b. RS flip flop A7U19A, A7U19C is set to "1" condition (pin 2 of 19A high).
c. Flip flop A6U20B, C is reset by $\overline{\mathrm{F}}$.
d. Overload flip flop A6U21B is reset by a measurement inclusion signal generated at pin 8 of flip flop A6U20B, C.
e. Measure/store flip flop (A6U20A, D) is set by overload reset signal (signal No. 21-10).
f. Gate A6U17A is inhibited, thereby inhibiting all output buffer gates.
g. The steering flip flop is toggled (Middle of "A" period) and capacitor A6C14 begins to charge toward +5 V .
h. The steering flip flop is again toggled (Middle of " B " period) and capacitor A6C14 is quickly discharged to 0.9 V .
i. Steps (f) and (g) repeat for "C", "D", and "E" periods.
j. Following "E" period, A6C14 continues to charge until A6Q9 is turned on.

Figure 6-3. DOU TIMING DIAGRAM

Figure 6-4. SHIFT REGISTER LOAD SEQUENCE
k. A6Q8 then turns on and sets the overload reset flip flop A6U20B, C and the steering flip flop (A6U21A).

1. The measure/store flip flop is reset by a negative trigger developed in the circuit of A6Q7.
m. The output buffer gates are enabled and the data becomes available.

6-22. In addition to providing a pseudo measure/store signal, the circuit of flip flop A6U20A, D and transistor A6Q7 also function as an autorange detector. Control signal timing under autorange conditions is shown in Figure 6-5. If the decision to autorange is made (middle of " A " period), the DVM logic places the DOU in storage mode. This locks out the $\overline{\mathrm{F}}$ signal in the DOU control circuit and, consequently, no pulses are produced in T4 secondary, excepting the first. With no F signal to toggle flip flop A6U21B the rechargeable one-shot times out and sets the overload reset flip flop to the " 1 " condition. The resulting signal (signal 21-9) is applied as a reset pulse to A6Q7; however, because capacitor A6C15 has not had time to discharge sufficiently, the trigger threshold of flip flop A6U20A, D is not reached and the flip flop remains in its previous state. Thus, the output buffer gates are inhibited during the
autorange operation. If the instrument had not autoranged, A6C14 would have acquired sufficient charge during the measurement cycle to enable flip flop A6U20A, D to be triggered, as shown in the timing diagram of Figure 6-3.

6-23. The programmed one-shot consists of NOR gates A6U18A, C, transistors A6Q3 through A6Q6, capacitor A6C9, and associated programming resistors. In its stable state, gate A6U18C output is high and gate A6U18A output is low. Assume that an external trigger is applied to A6P203. The trigger enable gate A6U18B, thereby triggering the DVM to initiate a measurement cycle. The trigger also enables gate A6U18C, and the POS then switches to its unstable state. When the POS switches states, the output of gate A6U18D goes low, resulting in gates A6U17A being inhibited. Inhibiting gate A6U17A causes all of the output data gates to be inhibited.

6-24. The timeout of POS delay is initiated as soon as the circuit is triggered, i.e., when the POS is triggered, switch A6Q3 is turned off and A6C9 begins to charge through the programming network to zero volts. Delay time is controlled by the memory, which selects resistor A6R22, R42, R45, R46, R47, R48, R52, R53, R54, R56, R57, depending on the selected DVM function. When A6C9 has accumulated sufficient charge, transistors A6Q4

Figure 6-5. CONTROL SIGNAL TIMING DURING AUTORANGE
and A6Q5, connected to operate like an SCR, turn on, applying a positive pulse to the input of gate A6U18A through capacitor A6C24. The POS switches back to its stable state and retriggers the DVM for a final measurement.

6-25. The POS is automatically retriggered if the DVM autoranges as a result of the final measurement. For example, if a step voltage were applied to the DVM in MVDC mode, the DVM logic might not make an autorange decision before the measurement caused by POS timeout. If this occurs, NOR gate A6U18B goes high, retriggering the POS and initiating a second delay. All autorange operations that are to occur do so at this time. Termination of the second POS delay causes yet another measurement. All settling times having been considered at this time, this measurement is the last; and upon completion 30 milliseconds later, outputs are turned on and data becomes available.

6-26. In VDC mode without the FILTER function called, transistor A6Q13 is enabled. This programs the POS for fastest timeout and clamps pin 4 of gate A6U18B so that the DVM will not be retriggered by POS timeout.

6-27. +5 VOLT LOGIC SUPPLY. The +5 volt dc logic

supply is operated from a full-wave bridge rectifier and filter consisting of diodes A6CR19 through A6CR22 and capacitors A 6 C 25 through C 28 . The series regulator is comprised of zener reference A6CR23, voltage amplifier A6Q10, driver A6Q11, and series pass transistor A6Q12. This supply has sufficient reserve to power the Remote Control Unit (Option 8400A-03), if installed. The +5 volts is connected to A6P6-1 and returned to A6P6-4 for that purpose.

6-28. MAINTENANCE

6-29. Introduction

6-30. This section contains maintenance information for the DOU. Factory service information and general instructions regarding instrument access and cleaning are located in Section 4 of the manual.

6-31. Test Equipment

6-32. The equipment recommended for performance testing, troubleshooting, and calibration of the DOU is listed in Figure 6-6. If the recommended equipment is not available, equivalent or better instruments may be substituted.

OPTION-03

| EQUIPMENT |
| :--- | :--- |
| NOMENCLATURE |\(\left.\quad \begin{array}{l}RECOMMENDED

EQUIPMENT\end{array}\right]\)| OSCILLOSCOPE | |
| :--- | :--- |
| OSCILLOSCOPE | |
| PLUG-IN | TEKTRONIX MODEL 547 |
| OSCILLOSCOPE | TEKTRONIX MODEL 1A1 |
| PROBES | TEKTRONIX |
| DC VOLTAGE | MODEL P6010 |
| SOURCE | FLUKE MODEL 343A |
| DC DIFFERENTIAL | FALIBRATOR |
| VOLTMETER | |
| DOU OUTPUT | |
| READER/DISPLAY | |
| SYSTEM (CUSTOMER | |
| SUPPLIED) | |

Figure 6-6. TEST AND CALIBRATION EQUIPMENT.

6-33. Performance Tests

6-34. The following performance tests exercise the DOU to determine if the unit is working properly. The tests should be conducted before maintenance or calibration is attempted. The tests are also suited to receiving inspection of new units. Performance tests should be conducted under the following environmental conditions: ambient temperature $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, relative humidity less than 70%. In case of trouble, analysis of the test results, with reference to the troubleshooting, should help to locate the trouble.

6-35. LOGIC VOLTAGE CHECK

a. Connect a dc voltmeter between A6P6-1 (+) and A6P6-4 (-) of DOU NO: 2.
b. If necessary, adjust potentiometer A6R38 for 5.05 ± 0.05 volts dc indication on the voltmeter.

6-36. DIGITS REGISTRATION

a. Set Model 8400A controls as follows:

FUNCTION	VDC
RANGE	10
SAMPLE RATE	EXT
	(sample as required)

b. Connect a +1.1111 volt dc test signal to the INPUT terminals.
c. Command the DVM to take a reading. The DOU output and the front panel display should indicate DC +1.1111.
d. Repeat steps (b) and (c) for test signal inputs of $+2.2222,+4.4444$, and +8.8888 volts dc. The DOU output and front panel display should correspond.

6-37. OVERLOAD INDICATOR
a. \quad Set Model 8400A controls as follows:

FUNCTION VDC

RANGE 10

SAMPLE RATE EXT
(sample as required)
b. Connect a +20 volt dc test signal to the INPUT terminals.
c. Command the DVM to take a reading by applying one external sample pulse. The DOU outputs and front panel display should indicate $\mathrm{DC}+11.9999$ and OVERload.

6-38. FUNCTION REGISTRATION

a. Set Model 8400A controls as follows:

FUNCTION	VAC
RANGE	100
SAMPLE RATE	EXT

b. Short the INPUT terminals.
c. Apply one external sample pulse. The DOU outputs and front panel display should indicate VAC and a readout of 00.000 ± 2 digits.
d. Repeat steps (a) through (c) for each of the following DVM functions. The DOU output and front panel display should be as indicated.

FUNCTION	DOU OUTPUT/DVM DISPLAY
$\mathrm{K} \Omega$	$\mathrm{K} \Omega, 00.000$
10Ω	$\Omega, 0.0000$
VDC, FILT,	VDC, 00.000
EXT. REF.	FILT, EXT. REF.

6-39. OUTPUT GATES

a. Set Model 8400A controls as follows:

FUNCTION	VDC
RANGE	10
SAMPLE	EXT

b. Connect a -0.0010 volt dc test signal to the INPUT terminals.
c. Command the DVM to take a reading. The DOU output and DVM display should indicate DC 0.0010 ± 2 digits.
d. Short all of the following DOU output gate terminals to ground A6P6-4. The DOU output should be as indicated.

GATE TERMINALS (PIN AND CONNECTOR)	DOU OUTPUT
A6P20-26	DC, FILT, EXT.
A6P20-22	REF, AC, Ω, K Ω,
A6P20-17	REMOTE CONTROL,
A7P21-36	OVERLOAD, EXT.
A7P21-35	TRIG.
A7P21-19	and readout of 1555.55
A7P21-13	
A7P21-1	
A7P21-25	
A7P21-5	

6-40. PROGRAMMED ONE SHOT.

a. Set the Model 8400A controls as follows:

FUNCTION VDC, FILTERED
RANGE 100
SAMPLE RATE EXT (rate should be approximately 1 sample/5 seconds).
b. Connect oscilloscope to ready line, A6P20-8 of DOU output connector. Command instrument to sample. Delay length should be 523 ± 20 milliseconds.
c. Set the function and range controls as follows. The delay lengths should be as indicated.

POS Operative	Function Calls	Range Call	Observe Length (m5)
Yes	VDC, Filt	100	$523 \pm 20 \mathrm{~ms}$
$"$	VAC, Filt	$"$	523 ± 42
$"$	Ω, Filt	$"$	523 ± 42
$"$	K Ω, Filt	$"$	523 ± 42
No	K Ω, Filt	$"$	$31 \pm 2 \mathrm{~ms}$
Yes	VDC	1	$123 \pm 10 \mathrm{~ms}$
$"$	VDC	100	$54 \pm 3 \mathrm{~ms}$
$"$	VAC	$"$	$123 \pm 10 \mathrm{~ms}$
$"$	Ω	$"$	$123 \pm 10 \mathrm{~ms}$
$"$	K Ω	$"$	$73 \pm 6 \mathrm{~ms}$

6-41. Calibration

6-42. Calibration of the DOU consists only of adjustments of the +5 volt dc logic supply. The adjustment procedure is located in paragraph 6-35.

6-43. Troubleshooting

6-44. This section contains information selected to aid in troubleshooting the DOU. Before attempting to troubleshoot the unit, however, it should be verified that the trouble is actually in the DOU and is not caused by faulty external equipments or improper control settings. For this reason, the performance tests (paragraph 6-33) are suggested as a first step in troubleshooting. The performance tests may also help to localize the trouble to a particular section of the instrument. If the performance tests fail to localize the trouble, the following information may be helpful.

6-45. Trouble analysis of the Data Output Unit is most efficiently performed by a systematic sequence of checks through the unit beginning at the malfunctioning output or outputs and working progressively backwards. As familiarity with the unit increases the operator will discover he can truncate the process omitting obviously irrelevant steps.

6-46. In any analysis, certain decisions and/or conclusions must be made. Consult Figure 6-7 for the suggested decision sequence. Figure $6-8$ is a table of decision aids, which should help to determine how to make the decisions.

Figure 6-7. DECISION FLOW CHART DOU TROUBLE SHOOTING

1. DOU OUTPUTS OR READER FAULTY? This decision must be based upon a point-by-point measurement of DOU outputs at points of origin. Many short cuts are available, depending upon the nature of the reader.

EXAMPLE No. 1. Suppose all decades except the third are producing correct numbers. The third decade generates the following table:

	MODEL 8400A PANEL	READER PANEL	CONSIDER
All possible combinations shown for illustration	00000	00400	An open in the cable from
	11111	11511	DOU to reader (probably
	22222	22622	A7P21-17 DOU connector.)
	33333	33733	This is the " 4 " line of the 1 -
	44444	44444	2-4-8 four line BCD code.
	55555	55555	
	66666	66666	
	77777	77777	
	88888	88288	
	99999	99399	
EXAMPLE No. 2.	MODEL 8400A PANEL		
		READER PANEL	CONSIDER
Only these combinations	00000	08000	An open DOU-to-reader (probably A7P21-21 DOU output connector).
	11111	19111	
	22222	20222	
need to be considered for trouble analysis.	44444	42444	
	88888	88888	

EXAMPLE No. 3. Reader panel is $155555, \mathrm{DC}+\mathrm{AC}, \mathrm{K} \Omega, \Omega$, EXT. REF., FILT., REM., TRIG., OVER.

The above display remains regardless of Model 8400A PANEL.

CHECK: Pin 32B DOU connector. If not 0 to 0.5 Vdc , disconnect reader and measure again. If now 0 to 0.5 V , reader is at fault-if not, look for problem in DOU ready circuit.

NOTE: The above examples assume a reader with full overranging in each decade. Other overrange patterns will not defeat the analysis if the pattern is known.
2. DOU MEMORY CONTAIN CORRECT DATA? It is assumed here that data outputs were determined to be faulty. This is a static test. Set Model 8400A stimulous to produce the trouble analysis information desired. Command to sample once only. Using a vtvm, check data in shift register (DOU memory) 10, 12, 14, and 16. Use chart of Figure 6-5 for location of data. All data in this memory is inverted phase, (e.g., 6 would normally be represented as 0110 , but it is in the memory as 1001). The chart of Figure 6-5 will prove to be a valuable troubleshooting tool for several areas of the DOU circuitry. If data in the memory is correct, the problem must be in an output buffer gate or in the first decade binary-to-BCD converter, IC11. If not, it must be determined whether a shift register is faulty. This is proven by determination that serial data input signals are correct and that load signals are correct.

Figure 6-8. DECISION AIDS (Sheet 1 of 3)
3. DOU MEMORY INPUT DATA CORRECT? Unfortunately this must be a dynamic test and for the uninitiated user may require observation of a properly operating unit. Set stimulous equipment (Model 8400A and input source) for desired trouble analysis information. Set internal sample command potentiometer on Model 8400A panel to EXT position and externally trigger the instrument. The rate should be 25 pps for good oscilloscope displays. Ignore reader display as it is unimportant at this point. Sync the scope with F signal and observe shift register data inputs. Refer to waveshapes at points $13-8$ and $13-4$ and refer to the waveshape index, Figure 6-9. These waveforms are multiplexed with numerical data from the counter and inverted by registration gates IC22, IC23, and IC24 on A7 PCB. Study the schematic and Figures 6-4, 6-9 to visualize what appearance these signals should have for various combinations of data. A table is not given as there would be 256^{4} possible variations. It is much easier to determine what a particular combination should produce and will require only a few seconds for an experienced operator using Figure 6-5. Again, remember that all data in memory is inverted phase.

EXAMPLE: -. 026391 VDC, FILT, REM. CONT.

4. DOU LOAD COMMANDS CORRECT? Refer to the following load signals. Use the same setup as in part 3 of this figure. A dual-trace scope is useful.

If the load commands are correct, then something may be wrong with the operation of one of the shift registers. If replacement does not solve the problem, one of the shift register output may be shorted.
5. ARE MULTIPLEXER OUTPUTS CORRECT? Use the same setup as in part 3 of this figure. Figures 6-10 and 6-11 give tables which illustrate all possible waveforms at IC13 pin 4 and IC13 pin 8 of A7 Assembly respectively. If the waveforms are correct, registration gates A7IC23 and A7IC24 may be faulty.
6. ARE COUNTER JUMPERS INSTALLED? With reader connected, check continuity between the following points on Data Output Unit No. 2 (A6):
\(\left.\begin{array}{l}P20-9 \& P20-25

P20-5 \& P20-21

\begin{array}{l}P20-7 \& P20-23

\mathrm{P} 20-11 ~ \& ~ P 20-19 ~\end{array}\end{array}\right\}\)| A6 |
| :--- |
| DOU Output |
| Connector |

7. ARE COUNTER OUTPUTS CORRECT? Use the same setup as in part 3 of this figure. Consider counter outputs only during second half of each subperiod as follows:

EXAMPLE: . 67219 on Model 8400A panel.

Again, correct counter operation is indicative of a problem in registration gates IC22, IC23 and IC24.
8. IS COUNTER INPUT CORRECT? Use same setup as in part 3 of this figure. The same example as in part 7 is used.
EXAMPLE:

Correct input but incorrect outputs are indicative of counter malfunction.
9. ARE SIGNALS CORRECT AT ATIC31 pins $2 \& 8$? This DOU circuit is inside the guard. Therefore, the scope must be synced to a signal inside the guard. Use $\overline{\text { zero }}$ signal. If multiplexer outputs (test portion of part 5) are incorrect but observations of part 9 are normal, the transformer circuits of T1 or T2 may be faulty. Signals at pins 2 and 8 of A7U31 should have waveforms like Figure 6-9. If not, multiplexers may be at fault or wires may be broken between DOU input terminals and the connector inside the guard box.
10. DATA, READY OR OVERLOAD PROBLEM? This is a static test. Command Model 8400A to sample only once, with SAMPLE RATE control on front panel in external position, then observe. If numerals, range, polarity, or function data is faulty, it will be observable on the reader (monitor). If the reader is either blank of displaying 1555.55 VDC+, FILT, REM., AC, K Ω, Ω, or EX. REF., OVER, TRIG. then the ready line is probably high. The overload display should coincide with a numeral display of 119999 and will be visible on the reader.
11. M OR POS PROBLEM? Command to sample only once, with SAMPLE RATE control in external position. Check A6U18 pin 10 for 0 to 0.5 V (POS) and A 6 U 17 pin 2 for 3.5 to 4.5 V ($\overline{\mathrm{M}}$ signal). If M is low it is likely that POS will be high, but the cause will be \bar{M}, which comes from the control circuit. If \bar{M} is normal but POS is high, the programmed one-shot is faulty.
12. ARE POS BIAS JUMPERS INSTALLED? Visually check to insure that jumpers No. 1 and 2 are installed or jumpers No. 1 or No. 2 and A6R50 in accordance with delay length table. (This is a factory installation procedure and jumper installation need only be verified as indicated.)

Figure 6-8. DECISION AIDS (Sheet 3 of 3)

| REF | FILT | b | a | POL | TRANSFORMER T2 CHANNEL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRIG | γ | c | α | REM | TRANSFORMER TI CHANNEL |
| A | B | C | D | E | TIME PERIOD |

Figure 6-9. EXAMPLE WAVEFORMS FOR TROUBLESHOOTING

6-47. LIST OF REPLACEABLE PARTS

6-48. For column entry explanations, part ordering information and basic instrument configuration Use Codes
and Serial Number Effectivity List, see Section 5, paragraphs 5-1 through 5-10. See paragraph 6-50, this option subsection, for additional Use Codes and Serial Number Effectivity List assigned to this printed circuit assembly option.

Figure 6-10. DATA OUTPUT NO. 2 PRINTED CIRCUIT BOARD ASSEMBLY

REF DESIG OR ITEM NO.	DESCRIPTION	$\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$	MFG FED SPLY CDE	$\begin{gathered} \text { MFG } \\ \text { PART NO. } \\ \text { OR } \\ \text { TYPE } \end{gathered}$	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	REC	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
CR3,							
CR16,							
CR17,							
CR24							
thru							
CR30,	Diode, silicon, 150 mA	203323			18		
CR57,							
CR64,							
CR66,							
CR100							
CR19							
thru	Diode, silicon, $1 \mathrm{amp}, 100$ piv	116111			4		
CR22							
CR23	Diode, zener, 3.9V, 20 mA	113316			1		
CR23	Diode zener, 4.3V	180455			1		L
J1	Connector, PCB to cable, 34 contact	295337			1		
Q1,							
Q2,							
Q6,	Tstr, silicon, NPN	218396			5		
Q7,							
Q8							
Q3,							
Q9,	Tstr, silicon, PNP	195974			3		
Q4	Tstr, semicon, silicon NPN	218081			1		
Q5	Tstr, silicon, PNP Order by model and option no. (8400A 03 option)	229898			1		
Q10	Tstr, silicon, NPN	168708			1		
Q11	Tstr, silicon, NPN	150359			1		
Q12	Tstr, silicon, NPN	288381			1		
R4,							
R5,							
R30,							
R31, \quad Res, comp, 4.7k $\pm 5 \%, 1 / 4 \mathrm{w}$							
R61,							
R62,							

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	$\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$	MFG FED SPLY CDE	```MFG PART NO. OR TYPE```	$\left\lvert\, \begin{aligned} & \text { TOT } \\ & \text { OTY } \end{aligned}\right.$	$\left\|\begin{array}{l} \text { REC } \\ \text { OTY } \end{array}\right\|$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
R63, R64,							
$\begin{aligned} & \text { R14, } \\ & \text { R15 } \end{aligned}$	Res, comp, $2.7 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$	170720			2		
R16	Res, comp, $47 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148163			1		
R17	Res, comp, $6.8 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148098			1		
$\begin{aligned} & \text { R18, } \\ & \text { R59 } \end{aligned}$	Res, comp, $680 \pm 5 \%, 1 / 4 \mathrm{w}$	148007			2		
$\begin{aligned} & \text { R19, } \\ & \text { R20, } \\ & \text { R21, } \\ & \text { R25, } \\ & \text { R26, } \\ & \text { R27 } \end{aligned}$	Res, comp, 10k $\pm 5 \%, 1 / 4 \mathrm{w}$	148106			6		
R22	Res, fxd, met flm, $1.62 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	283697			1		
$\begin{aligned} & \text { R24, } \\ & \text { R55 } \end{aligned}$	Res, comp, $1 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148023			2		
R28	Res, comp, $220 \pm 5 \%, 1 / 4 \mathrm{w}$	147959			1		
R29	Res, comp, $1.8 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	175042			1		
R32	Res, comp, $2.2 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148049			1		
R33	Res, comp, $3.3 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148056			1		
R34	Res, comp, $27 \mathrm{k}+5 \%, 1 / 4 \mathrm{w}$	148114			1		
R35	Res, comp, 15k $\pm 5 \%, 1 / 4 \mathrm{~W}$	148148			1		
R36	Res, comp, $3.9 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148064			1		
R37	Res, comp, $5.6 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148080			1		
R38	Res, var, cer met, $500 \pm 10 \%$, 1w	291120			1		
R39	Res, met flm, $182 \pm 1 \%, 1 / 8 \mathrm{w}$	20020			1		
R42	Res, comp, 150k $\pm 5 \%$, $1 / 4 \mathrm{w}$	182212			1		
R45, R47, R53, R56	Res, fxd, met flm, $105 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	291294			4		
R46	Res, met flm, $20.5 \mathrm{k} \pm 1 \%, 1 / 4 \mathrm{w}$	261669			1		

Figure 6-11. DATA OUTPUT NO. 1 PRINTED CIRCUIT BOARD ASSEMBLY

$\left\lvert\, \begin{gathered} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{gathered}\right.$	DESCRIPTION	$\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$	MFG FED SPLY CDE	MFG PART NO. OR TYPE	TOT	$\left\lvert\, \begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}\right.$
CR1, CR4 thru CR13, CR33, CR34, CR36 thru CR41, CR50 thru CR56, CR58, CR59, CR65 thru CR70 CR2, CR3, CR14 thru CR32, CR35, CR42 thru CR49, CR57, CR60 thru CR64 P22 R1, R11 R2,R3 R72 R4,R5, R14 thru R39, R45 thru R54 R6,R7 R13	Diode, germanium, $80 \mathrm{~mA}, 100$ piv Not Used Connector, PCB to cable, 34 contact Res, comp, $100 \pm 5 \%, 1 / 4 \mathrm{w}$ Res, comp, $220 \pm 5 \%, 1 / 4 \mathrm{w}$ Not Used Res, comp, $3.9 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	149187 295337 147926 147959 148064			34 1 2 3 3		

6-49. SERIAL NUMBER EFFECTIVITY

6-50. A Use Code column is provided to identify certain parts that have been added, deleted, or modified during production of the Model 8400A. Each part in this option for which a use code has been assigned may be identified with a particular printed circuit board serial number by consulting the Use Code Effectivity List below. All parts with no code are used on all printed circuit boards with
serial numbers 123 and on. NOTE: These Use Codes and Serial Number Effectivity apply to this option printed circuit board assembly only. For the standard instrument configuration, see Section 5, paragraph 5-9, and for additional options, see the appropriate option subsection.

USE
CODE
A Serial number 123 through 148.
B \quad Serial number 149 and on.

Option-04 Remote Control Unit

6-1. INTRODUCTION

6-2. The A5 Remote Control Unit (Option-04) enables the Model 8400A to be programmed remotely. The RCU provides the capability of controlling all functions and ranges, with logic interlocking provided to make it impossible to call two or more incompatible functions simultaneously.

6-3. SPECIFICATIONS

6-4. Specifications for the Remote Control Unit are located in Section 1 of the manual.

6-5. INSTALLATION

6-6. The following procedure is to be used to install the Remote Control Unit in the Model 8400A (refer to Section 5, Figure 5-1).
a. Disconnect the power cord from the instrument.
b. Remove the top dust and guard chassis covers.
c. Determine that connector J5, on the A14 Display board, is clear of obstructions and that alignment spacers are inserted between pin pairs $\mathrm{J} 5-1,-2$; J5-3, -4 and J5-7, -8; J5-9, -10.
d. Determine that connector slot on rear panel for P19 on Remote Control Unit board is clear of any obstructions.
e. Attach spring to bottom portion of guard bar.
f. Insert P19 into connector slot on rear panel (refer to Section 5, Figure 5-1).
g. Insert edge of Remote Control Unit board into card guide on the inner chassis bulkhead.
h. Observe that alignment spacers on J5 line up with slots on the Remote Control Unit card-edge connector.
i. Slide pcb downward until the card-edge connector is fully engaged with J5 on A14 Display board.
j. Attach top guard and chassis covers, connect ac power, and perform receiving inspection test of the Remote Control Unit as described in paragraph 6-27, Performance Test.

6-7. OPERATING INSTRUCTIONS

6-8. Operation of the DVM with the A5 Remote Control Unit installed is covered in Section 2.

6-9. THEORY OF OPERATION

6-10. General

6-11. The RCU functional block diagram is given in Figure 6-1. The input function and range commands are applied to coders and then delivered to a multiplexer. The multiplexer receives sequential address information from a counter and, combined with the range and function codes, applies control information to two isolation pulse transformers. The serial output of these two pulse transformers
is applied to the shift register for conversion back to 8 time slots which is then buffered and decoded and presented for
use. For the following discussion refer to Schematic Diagram 8400A-1011, Figure 6-1 and Figure 6-2.

Figure 6-1. 8400A REMOTE CONTROL UNIT BLOCK DIAGRAM

Figure 6-2. REMOTE CONTROL SAMPLE LOAD SEQUENCE

6-12. Circuit Description

Table 6-1. FUNCTION CODES

6-13. FUNCTION AND RANGE CODERS. The purpose of the function and range coders is to compress the 12 input lines into 8 channels with function/range interlocking. Transistor Q15, inverters U15 A, C, F and diodes CR2, 3, 4, 5, 12,19 and 20 combined are the function/range interlocking feature which disallows incorrect function and range combinations. Gates U5A, U5B, U6A through U6D present encoded range and function information to the digital multiplexer. Table 6-1 shows Function codes and Table 6-2 shows Range codes.

Table 6-2. RANGE CODES

FUNCTION COMMANDS POSSIBLE WITH THESE RANGES	RCU INPUTS						RANGE INFORMATION CHANNEL				OUTPUTS						RESULTING RANGE
	10k	1k	100	10	1	0.1	F	G	H	J	Ra	Sa	Rb	Sb	Rc	Sc	
$\Omega, \mathrm{K} \Omega, \mathrm{AC}, \mathrm{DC}$	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	AUTO
$\Omega, \mathrm{K} \Omega$	0	1	1	1	1	1	0	0	0	1	0	1	0	1	0	1	10k
$\Omega, \mathrm{K} \Omega, \mathrm{AC}, \mathrm{DC}$	1	0	1	1	1	1	0	0	1	1	0	1	0	1	1	0	1 k
$\Omega, \mathrm{K} \Omega, \mathrm{AC}, \mathrm{DC}$	1	1	0	1	1	1	0	1	0	1	0	1	1	0	0	1	100
$\Omega, \mathrm{AC}, \mathrm{DC}$	1	1	1	0	1	1	0	1	1	1	0	1	1	0	1	0	10
AC, DC	1	1	1	1	0	1	1	0	0	1	1	0	0	1	0	1	1
DC ONLY	1	1	1	1	1	0	1	0	1	1	1	0	0	1	1	0	0.1

6-14. COUNTER AND GATED OSCILLATOR. The purpose of the counter and gated oscillator circuitry is to supply sequential address information to the multiplexer in response to the 8 bit set pulses from the Schmitt Trigger and Sample Oscillator Circuitry. The 8 bit set pulses reset the counter to an 8 state (i.e. 1000). The counter U2 then releases the gated oscillator and allows it to oscillate at 500 kHz . Gates UIC and UID, capacitors C1, C2 and resistors R1, R2 are the gated 500 kHz oscillator circuitry. The output of the gated oscillator is applied to the counter U2. When enabled, the oscillator causes the counter to cycle through eight states. (Refer to Table 6-3). As soon as state " 0 " (i.e. 000) is reached by the counter, the oscillator is disabled by the counter, which in turn stops the counter from further counting. This sequence will not start again until an 8 bit set pulse is received by the counter from the Schmitt Trigger circuitry.

6-15. SCHMITT TRIGGER AND SAMPLE OSCILLA-

 TOR. The purpose of the Schmitt Trigger and Sample Oscillator is to set the sample rate of the RCU. Gates U4A through U4D, capacitors C3 and C4, resistors R3, R4, R5 and diodes CR30 and CR31 comprise the Schmitt Trigger and Sample Oscillator circuitry. There are two possiblemodes of operation for this circuitry: continuous or triggered command mode.

6-16. CONTINUOUS COMMAND MODE. In this mode of operation, P19-33 (EXTERNAL COMMAND ENTRY) and P19-35 (AUTO COMMAND DEFEAT) must be at logic level " 1 " $(+5 \mathrm{~V}$ dc or open). A " 1 " command simultaneously present at pin 1 of gate U 4 A and pin 5 of gate U 4 B will cause gates U4A, B, C and D to oscillate. The frequency of

Table 6-3. COUNTER SEQUENCE

STATE	COMMENTS
0000	Oscillator is enabled at this point and count
1000	sequence begins.
1001	
1011	
1010	
1100	
1101	
1110	
1111	Oscillator is disabled at this point.

the oscillation is 2 kHz as determined by $\mathrm{R} 3, \mathrm{C} 4$. Each pulse in the 2 kHz pulse train at pin 8 of U4C acts as the 8 bit set pulse for counter U2. Thus, commands are updated at a 2 kHz rate. Since this rate is faster than the instrument can respond, command appears continuous.

6-17. TRIGGERED COMMAND MODE. In this mode of operation, P19-35 (AUTO COMMAND DEFEAT) is held at logic level " 0 " and an external trigger is applied to P1933 (EXTERNAL COMMAND ENTRY). With a logic level " 0 " at P19-35 gate U4A is disabled. The application of an external pulse to P19-33 will enable the schmitt trigger circuit, gates U4B, C and D, resulting in a negative pulse presented to the counter. As in the continuous command mode, this pulse initiates the command update cycle.

6-18. DIGITAL MULTIPLEXER. The Digital Multiplexer U3 is a medium scale integrated circuit constructed to connect various input signals, one at a time, to a single two-phase output in response to certain input addresses. Table 6-4 defines its operation. The output is serialized into eight time slots; each is $1 \mu \mathrm{~s}$ in length.

6-19. PULSE TRANSFORMER CIRCUITRY. The purpose of this circuitry is to couple the serialized information to the shift register and provide isolation. Gates U1A and U1B pass the serialized information to primaries of pulse transformers T1 and T2 through buffer Q1, Q2, Gate U1A passes logic " 1 " information, and gate U1B passes Logic " 0 " information. The secondaries of T1 and T2 impose their respective logic to buffers Q4 and Q5 and thereby to the shift register.

6-20. 8 BIT SHIFT REGISTER MEMORY. J-K flip flops U7A \& B, U8A \& B, U9A \& B and U10A \& B com-
prise the shift register. Diodes CR10, CR11, resistors R23, R24 comprise the clock network for the flip flops. The loading of the shift register occurs at pins 2 and 3 of U7A. The logic sequencially shifts through the flip flops until the last pulse of the loading cycle is loaded into U7A. At this time the shift register is fully loaded and will not change until another loading cycle occurs.

6-21. 8 BIT LATCH BUFFER MEMORY. U11 and latch clock network, transistor Q5, diodes CR6 and CR7 plus capacitor C5, comprise the 8 Bit Latch Buffer Memory circuit. During the loading cycle of the 8 bit shift register memory circuit, transistor Q5 is turned on, which disconnects the inputs of ICU11 to preclude undesirable pulsing of output lines during the loading cycle. After the shift register is fully loaded, transistor Q5 turns off, thereby allowing the outputs of U11 to assume the states of the present inputs.

6-22. DECODERS. Decoder-buffers U12, U13, U14 and transistors Q6-Q11 decode the U11 latch information to the same format as seen on the inputs. Diodes CR21, CR22 provide for external reference lockout in Ohms and $\mathrm{K} \Omega$ functions as is done by the front panel pushbuttons when the instrument is commanded locally.

6-23. MAINTENANCE

6-24. Introduction

6-25. This section contains maintenance information for the Remote Control Unit. Factory service information and general instructions regarding instrument access and cleaning are located in Section 4 of the manual.

Table 6-4. MULTIPLEXER OPERATION

IF THE INPUT ADDRESS IS:			THEN OUTPUT PIN 15 HAS THE SIGNIFICANCE	AND OUTPUT PIN 14 HAS THE SIGNIFICANCE	CHANNEL INFORMATION IS:
$\begin{aligned} & \text { PIN } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { PIN } \\ & 12 \end{aligned}$	$\begin{aligned} & \text { PIN } \\ & 11 \end{aligned}$			
0	0	0	R (pin 1)	$\overline{\mathrm{R}}$	FUNCTION BIT
0	0	1	$N(\operatorname{pin} 2)$	\bar{N}	FUNCTION BIT
0	1	0	$L(\operatorname{pin} 3)$	\bar{L}	FILTER
0	1	1	$K(\operatorname{pin} 4)$	K	EXTERNAL REFERENCE
1	0	0	$J(\operatorname{pin} 5)$	J	AUTORANGE
1	0	1	H (pin 6)	\bar{H}	RANGE LSB
1	1	0	G (pin 7)	$\overline{\mathrm{G}}$	RANGE BIT
1	1	1	F ($\operatorname{pin} 9)$	\bar{F}	RANGE MSB

6-26. Performance Test

6-27. The following performance test exercises each RCU input to determine if the unit is working properly. The performance test should be conducted before any instrument maintenance is attempted. The test should be conducted under the following environmental conditions: Ambient Temperature $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, Relative Humidity less than 70%. An instrument that fails the performance test will require corrective maintenance. In case of difficulty, analysis of the test results, with reference to the troubleshooting section, should help to locate the trouble.

6-28. To test the RCU, proceed as follows:
a. Supply +5 volts dc to the RCU, P19-9 (+5 V dc) and

P19-2 or 4 or 6 (common).
b. Press REMOTE FUNCTION switch on the Model 8400A front panel.
c. Activate each of the combination of functions and ranges shown in column 1 and 2 of Figure $6-3$ by contact closure between the appropriate pin and common of the RCU connector (refer to Table 2-5 of Section 2 for connector pin assignments). Observe the resulting front panel display and verify correct response for each call combination listed in Figure 6-3. Function annunciator will not show option functions if the pertinent option is not installed.

COMMANDED		DVM RESPONSE												
		FUNCTIONS							RANGES					
FUNCTIONS	RANGES	DC	AC	K Ω	Ω	$\underset{\text { REF }}{X}$	FILT	OVER	. 1	1	10	100	1000	10K
FILT, EXT REF*	. 1	0			0	0			0					
	1	0			0	0				0				
	10	0			0	0					0			
	100	0			0	0						0		
	1000	0			0	0							0	
	NONE	0			0	0			Down ranges from 1000 to . 1					
FILT, EXT REF,* Ω^{*}	10			0							0			
	100			0		0						0		
	1000			0		0							0	
	10K			0		0								0
FILT, EXT REF, ${ }^{*}$ K Ω	100		0			0						0		
	1000		0			0							0	
	10K		0			0								0
	NONE		0			0			Autoranges in the following order: 10,000K, 1000K, 100K, 10Ω and STOP					
EXT* REF, VAC*	1		0		0					0				
	10		0		0						0			
	100		0		0							0		
	1000		0		0								0	
	NONE		0		0				Downranges from 1000 to 1					
* Options Disregard DVM response for these functions if option is not installed.														

Figure 6-3. REMOTE CONTROL UNIT TEST REQUIREMENTS

6-29. Calibration

6-30. The RCU does not require calibration.

6-31. Troubleshooting

6-32. This section contains information designed to aid in troubleshooting the RCU. Before attempting to troubleshoot the RCU, however, it should be verified that the
trouble is actually in the instrument and is not caused by faulty external equipments or improper control settings. For this reason, the performance test (paragraph 6-26) is suggested as a first step in troubleshooting. The performance test may also help to localize the trouble to a particular section of the instrument. If the performance test fails to localize the trouble, the trouble analysis flow chart in Figure 6-4 and code information in Figure 6-5 may be helpful.

Figure 6-4. REMOTE CONTROL UNIT TROUBLE ANALYSIS (FLOW CHART)

RANGE CODES

G H J			RANGE
0 AUTO 0 0 0 1 10,000 0 0 1 1 1000 0 1 0 1 100 0 1 1 1 10 1 0 0 1 1 1 0 1 1 0.1			

FCT. CODES

N		FUNCTION
0	0	VDC
0	1	VAC
1	0	$\mathrm{~K} \Omega$
1	1	Ω

Figure 6-5. FUNCTION AND RANGE CODES

6-33. LIST OF REPLACEABLE PARTS

6-34. For column entry explanations, part ordering information and basic instrument configuration Use Codes and Serial Number Effectivity List, see Section 5, paragraphs 5-1 through 5-10. See paragraph 6-35, this option subsection, for additional Use Codes and Serial Number Effectivity List assigned to this printed circuit assembly option.

6-35. SERIAL NUMBER EFFECTIVITY

6-36. A Use Code column is provided to identify certain parts that have been added, deleted, or modified during
production of the Model 8400A. Each part in this option for which a use code has been assigned may be identified with a particular printed circuit board serial number by consulting the Use Code Effectivity List below. All parts with no code are used on all printed circuit boards with serial numbers 123 and on. NOTE: These Use Codes and Serial Number Effectivity apply to this option printed circuit board only. For the standard instrument configuration, see Section 5, paragraph 5-9, and for additional options, see the appropriate option subsection.

USE

 CODEA
B

SERIAL NUMBER EFFECTIVITY

Serial number 123 through 313
Serial number 314 and on

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \\ & \text { OR } \\ & \text { ITEM } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$	$\begin{gathered} \text { MFG } \\ \text { FED } \\ \text { SPLY } \\ \text { CDE } \end{gathered}$	$\begin{gathered} \text { MFG } \\ \text { PART NO. } \\ \text { OR } \\ \text { TYPE } \end{gathered}$	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}\right.$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
A5	REMOTE CONTROL -04 Option Figure 6-6				REF		
C1, C2	Cap, mica, $1500 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	148361			2		
C3	Cap, mylar, .01 uf $\pm 20 \%, 100 \mathrm{~V}$	149753			1		B
C3,C6	Cap, cer, 1200 pf $\pm 10 \%, 500 \mathrm{~V}$	106732			2		A
$\begin{aligned} & \text { C6, } \\ & \text { C15 } \end{aligned}$	Cap, cer, 1200 pf $\pm 10 \%, 500 \mathrm{~V}$	106732			2		B
C4	Cap, Ta, 0.68 uf $\pm 10 \%, 35 \mathrm{~V}$	182790			1		A
C4	Cap, Ta, 3.3 uf $\pm 10 \%, 35 \mathrm{~V}$	182808			1		B
C5	Cap, Ta, 1 uf $\pm 20 \%, 35 \mathrm{~V}$	161919			1		
C7	Cap, elect, 200 uf $+50 /-10 \%$, 1-V	236935			1		
C8	Cap, cer, 0.01 uf $+80 /-20 \%, 500 \mathrm{~V}$ (Deleted)	105668			1		A
C9	Cap, mica, $33 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	160317			1		B
C10, C11	Cap, cer, . 025 uf $\pm 20 \%, 50 \mathrm{~V}$	168435			2		B
$\begin{aligned} & \mathrm{C} 12, \\ & \text { C13 } \end{aligned}$	Cap, cer, .005 uf $\pm 20 \%$, 50 V	175232			2		B
C14	Cap, Tan, 39 uf $\pm 20 \%, 20 \mathrm{~V}$	163915			1		B
CR1 thru CR12, CR19 thru CR28	Diode, germanium, $80 \mathrm{~mA}, 100$ piv	149187			22		
CR13 thru CR18, CR29 thru CR36	Diode, silicon, 150 mA	203323			14		A
CR13 thru CR18, CR29 thru CR32, CR36	Diode, silicon, 150 mA	203323			11		B

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	$\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$	MFG FED SPLY CDE	```MFG PART NO. OR TYPE```	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}\right.$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
Q1, Q2,							
Q12	Tstr, silicon, NPN	218396			6		A
Q15							
Q1, Q2,							
Q12,	Tstr, silicon, NPN	218396			4		B
Q15							
Q3,Q4,							
Q5,Q8,	Tstr, silicon, PNP	195974			5		
Q9							
Q10,	Tstr, silicon, PNP, selected	280198			4		
Q11							
R1, R2	Res, comp, $820 \pm 5 \%, 1 / 4 \mathrm{w}$	148015			2		
R3	Res, comp, $47 \pm 5 \%, 1 / 4 \mathrm{w}$	147892			1		
R4,R5	Res, comp, $1 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148023			2		B
$\mathrm{R} 4, \mathrm{R} 5,$							
R20	Res, comp, 4.7k $\pm 5 \%, 1 / 4 \mathrm{w}$	148072			3		A
R6,R7	Res, comp, $100 \pm 5 \%, 1 / 4 \mathrm{w}$	147926			2		
R8,R9	Res, comp, $330 \pm 5 \%, 1 / 4 \mathrm{~W}$	147967			2		
R10,							
R19	Res, comp, $3.3 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$	148056			2		
R11	Res, comp, $2.2 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148049			1		
R12,	Res, comp, $10 \mathrm{k}+5 \%, 1 / 4 \mathrm{w}$	148106			2		
R25	Res, comp, $10 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$	148106			2		
R13,		160804			2		A
R18	Res, comp, $270 \pm 5 \%, 1 / 4 \mathrm{~W}$	160804			2		A
R13,							
R18,	Res, comp, $270 \pm 5 \%, 1 / 4 \mathrm{w}$	160804			3		B
R20							
R14 thru	Res, comp $390+5 \%, 1 / 4 \mathrm{w}$	147975			4		
R17	Res, comp, $390 \pm 5 \%, 1 / 4 \mathrm{~W}$	147975			4		
$\begin{aligned} & \text { R21, } \\ & \text { R22 } \end{aligned}$	Res, comp, $15 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148114			2		

$\begin{gathered} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{gathered}$	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	$\begin{gathered} \text { MFG } \\ \text { PART NO. } \\ \text { OR } \\ \text { TYPE } \end{gathered}$	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}\right.$	USE
$\begin{aligned} & \text { R23, } \\ & \text { R24 } \end{aligned}$	Res, comp, $1.2 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$	190371			2		
$\begin{aligned} & \text { R26, } \\ & \text { R27 } \end{aligned}$	Res, comp, $4.7 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$	148072			2		B
T1, T2	Transformer, pulse	275362			2		
U1	IC, TTL, Quad 2-Input Nor Gate	288845			1		
U2	IC, DTL, Binary Counter	267153			1		
U3	IC, TTL, Digital Multiplexer	288852			1		
U4	IC, TTL, Quad 2-Input Nand Gate	292953			1		B
U4,U6, U12, U13, U14	IC, DTL, Quad 2-Input Nand Gate	268375			5		A
U5	IC, DTL, dual 4-Input Nand	268383			1		
U6, U12, U13, U14	IC, DTL, Quad 2-Input Nand Gate	268375			4		B
U7	IC, TTL, dual J-K Flip-Flop	268441			1		
$\begin{aligned} & \text { U8,U9, } \\ & \text { U10 } \end{aligned}$	IC, DTL, dual J-K Flip-Flop	288803			3		
U11	IC, TTL, 8-Bit Latch	288837			1		
U15	IC, DTL, Hex Inverter	268367			1		
	Socket, IC, 14 contact, U1, U2, U4, U5, U6, U8, U9, U10 \& U12 thru U15	276527			12		
	Socket, IC, 16 contact, U3 \& U7	276535			2		
	Socket, IC, 24 contact, U11	292946			1		

Figure 6-6. REMOTE CONTROL UNIT PCB ASSEMBLY

Option-05
 DC External Reference

6-1. INTRODUCTION

6-2. The DC External Reference (Option -05) enables the user to substitute an external voltage for the internal reference of the Model 8400A. The principal use of the DVM when operated in this matter is for four-wire voltage ratio measurements: $\pm \mathrm{dc}$ to dc , and ac to dc.

6-3. SPECIFICATIONS

6-4. Specifications for the DC External Reference are located in Section 1 of the manual.

6-5. INSTALLATION

6-6. The following procedure should be used to install the DC External Reference option in the Model 8400A.

NOTE

The DC External Reference option is not field installable in 8400 A mainframes serial No. 634 and below.
a. Disconnect power cord from line power.
b. Remove the Model 8400A top dust cover and top inner guard chassis cover.
c. Determine that connector J3 on A14 Display board is clear of obstructions and that alignment keys are inserted between pin pairs J3-1, -2; J3-3, -4 and J3-13, -14; J3-15, -16.
d. Remove connector mounting bracket located on rear portion of inner chassis, next to power transformer.
e. Mount the DC External Reference connector to the connector bracket with orientation as shown on the rear panel decal. The lug attached to pin 1 of the connector is to be attached to the guard chassis through one of the mounting screws on the DC External Reference connector.
f. Reinstall connector mounting bracket on the inner chassis.
g. Align DC External Reference board with vertical card guides mounted on inner chassis bulkhead.
h. Align rubber grommet with slot in rear inner chassis and slide grommet into slot.
i. Slide DC External Reference board downward while observing that alignment keys on J3 are in proper alignment with the slots in the printed circuit board.
j. Engage printed circuit board fully in J3 connector.
k. Attach guard and top dust covers, connect power cord to line power, and perform receiving inspection test of DC External Reference assembly as described in paragraph 6-26, Performance Test.

6-7. OPERATING INSTRUCTIONS

6-8. Operating instructions for the Model 8400A with DC External Reference installed are located in Section 2 of the manual.

6-9. THEORY OF OPERATING

6-10. General

6-11. The DC External Reference unit consists basically of an input divider, an isolation circuit, and a buffer amplifier, as shown in Figure 6-1.

Figure 6-1. DC EXTERNAL REFERENCE
SIMPLIFIED DIAGRAM.
The input divider produces an output that is $7 / 10$ of the reference input voltage. The circuit is designed to operate with a reference input voltage between +1 and +10.5 volts dc. The isolation circuit provides a means of isolating the input common of the DC External Reference unit from the output common of the DC External Reference unit. This is necessary to provide 4 terminal ratio capability, and because the Model 8400A input common terminal (LO) and the instrument common are not equivalent. In fact, the LO instrument INPUT terminal is the actual input to the A/D Converter and can have a potential of ± 12 volts dc with respect to instrument common. Switches S1 and S 2 are arranged so that when one is closed, the other is open. S1 is closed during a non-critical portion of the measurement cycle (A / D zero time) and capacitor C is allowed to charge to voltage E_{R}. When S 2 is closed, the output of A_{1} must be E_{R}.

6-12. Circuit Description

6-13. INPUT DIVIDER. The input divider consists of resistors R3 through R5. The input divider is adjusted by resistor R4, (10V CAL control). Capacitor C1 together with the divider resistors form an RC filter which improves the signal to noise ratio.

6-14. ISOLATION CIRCUIT. Input dual MOSFET Q9

 functions as switch $S 1$ in the simplified diagram and JFETswitches Q4 and Q5 function as switch S2. Transistors Q1 and Q2 are gate drivers for switches Q4 and Q5. Using the reference voltage for the collector supply of Q2 assures that the gate signal of Q4 never goes positive with respect to its source and drain terminals. The gate of Q5 is clamped to within 0.2 volts of common by diode CR3. Resistor R11 limits the current through CR3 and capacitor C4 compensates for the capacity of CR3.
6-15. BUFFER AMPLIFIER. The buffer amplifier consists of super beta transistor Q8 followed by operational amplifier U1. Transistor Q7 and resistor R23 comprise a constant current source for amplifier Q8. Resistor R29 provides base current for the input terminal of transistor Q8. Transistor Q6 and associated circuitry provide a constant current source for the collectors of Q8. Transistor Q8 is bootstrapped by the output of amplifier U1, via resistors R15 and R16, to increase the SMRR of the buffer amplifier. Frequency compensation is provided by capacitors $\mathrm{C} 7, \mathrm{C} 8$. Capacitor C 6 holds the input voltage to the buffer amplifier during the time switches Q4 and Q5 are off. The reference voltage in the A / D Converter is sensed through resistor R28, thereby compensating for line drops. Low sense (reference common) also originates in the Logic and A/D assemblies. Diodes CR8 and CR9 provide feedback to the voltage follower input when reed relay K1 is open, thereby maintaining amplifier output within 0.5 volts of the voltage on C 2 and thus controlling the gate drive for Q4. Resistors R30 through R32, coupled with resistor R28, generate small corrections in the output reference voltage to compensate small errors proportional to the voltage difference between the input common and circuit common.
6-16. VOLTAGE DISTRIBUTION. Voltage distribution is shown in the simplified schematic Figure 6-2. Since Q9 is a P-channel enhancement mode device, a negative gate voltage of 2 volts or more is needed to ensure that the transistor is on. Zero volts or a positive gate voltage turns the transistor off. As shown in the figure, the upper switch needs a minimum of -7.25 volts to turn on and a maximum of ~ 20 volts to turn off under all possible operating circumstances.
6-17. The MOSFET gate driver is redrawn in Figure 6-3 to show the peak voltages. When Q3 is saturated, CR4 is back biased. When the transistor is cutoff, C 5 charges to 8 volts because of the 12 volt drop across the zener. This voltage subtracts from the collector voltage giving the voltage shown.

6-18. DISABLE AND PROTECTION CIRCUITS. When the external reference is called, relay K 1 is energized by Q10 and the internal reference disable line is pulled to +5 V . Input protection is provided by diodes CR1 and CR2 and fuse F1.

Figure 6-2. VOLTAGE DISTRIBUTION IN MOSFET 09.

Figure 6-3. GATE DRIVER VOLTAGES.

6-19. MAINTENANCE

6-20. Introduction

6-21. This section contains maintenance information for the DC External Reference. Factory service information and general instructions regarding instrument access and cleaning are located in Section 4 of the manual.

6-22. Fuse Replacement

6-23. There are two fuses located on the DC External Reference board. F1 is the active fuse and is to be replaced with the SPARE FUSE when necessary. Both fuses are 15 ma , pigtail fuses.

6-24. Test Equipment

6-25. The following equipment is recommended for performance testing, troubleshooting, and calibration of the DC External Reference. If the recommended equipment is not available, equivalent or better instruments may be substituted.

EQUIPMENT NOMENCLATURE	RECOMMENDED EQUIPMENT
DC Voltage Source	Fluke Model 343A DC Voltage Calibrator
Kelvin Varley Divider	Fluke Model 720A
Oscilloscope	Tektronix Model 547
Oscilloscope Plug-IN	Tektronix Model 1A1

6-26. Performance Test

6-27. The performance test in this section compares the DC External Reference performance to the accuracy specifications in Section 1 of the manual to determine if the unit is in calibration. To test the unit, a reference voltage is applied to the DC External Reference input terminals, a dc voltage is applied to the DVM INPUT terminals, and proper DVM readout is verified. The performance test should be conducted before any instrument maintenance or calibrating is attempted. The test is also suited to receiving inspection of new units. Performance test should be conducted under the following environmental conditions: ambient temperature $23^{\circ} \mathrm{C} \pm 5 \mathrm{C}$, relative humidity less than 70%. An instrument that fails the performance test will require corrective maintenance or calibration. In case of difficulty, analysis of the test results, with reference to the troubleshooting section, should help to locate the trouble.

NOTE!

Permissible tolerances for voltage and resistance measurements are derived from the 90-day instrument specifications contained in Section I of the manual.

6-28. To test the DC External Reference unit, proceed as follows:
a. Connect the dc voltage source to the Model 8400A as shown in Figure 6-4.
b. Set the Model 8400A controls as follows:

POWER	ON
FUNCTION	EXT REF, VDC
RANGE	10

c. Set the dc voltage source controls for 10 volt dc output.
d. The Model 8400A readout should be +10.0000 ± 0.0007.

6-29. Calibration

6-30. The DC External Reference Unit should be calibrated every 90 days or whenever repairs have been made to circuitry which may affect the calibration accuracy. Calibration of the unit should be performed at an ambient temperature of $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. Relative humidity should be less than 70%. Consult paragraph $6-4$ for recommended test equipment.

6-31. PRELIMINARY OPERATIONS

a. Remove the top dust cover retaining screws but leave the dust cover in place on the instrument.
b. Set the rear panel 115/230 volt slide switch to the 115 volt position and connect the line cord to an autotransformer set to 120 volts ac.
c. Connect equipment as shown in Figure 6-4.
d. Turn on the Model 8400A and allow the instrument to operate for one hour.

6-32. ALIGNMENT

a. Set Model 8400A controls as follows:

FUNCTION	EXT REF, VDC
RANGE	10
SAMPLE RATE	as desired

b. Set the 720A dials to 8005000 .
c. Set the 343 A output to 10 volts.
d. Adjust DC EXT REF 10V CAL (A3R4) in the DC External Reference Unit for a readout of 8.0050 . ± 1 digit.
e. \quad Set the 343 A output to 2 volts.
f. Adjust DC EXT REF 2V CAL (A3R20) in the DC External Reference Unit for a readout of 8.0050 ± 1 digit.
g. Repeat steps (b) through (f), as required, until no more adjustment is necessary.
h. Set the 343 A output to 10.000 volts.
i. Record DVM reading.
j. Reverse the input to the DVM only. DVM reading should be within 2 digits of value recorded in step (i).
k. Reverse the input to the DVM only, and set calibrator to 5.0 volts.

1. DVM readout should be 8.0050 ± 3 digits.
m. Disconnect calibration equipment from Model 8400A.

Figure 6-4. EQUIPMENT CONNECTIONS FOR DC EXTERNAL REFERENCE UNIT CALIBRATION.

6-33. Troubleshooting

6-34. This section contains information designed to aid in troubleshooting the DC External Reference Unit. Before attempting to troubleshoot the unit, however, it should be verified that the trouble is actually in the unit and is not caused by faulty external equipments or improper control settings. For this reason, the performance test (paragraph $6-26$) is suggested as a first step in troubleshooting. The performance test may also help to localize the trouble to a particular section of the instrument. If the performance test fails to localize the trouble, the following information may be helpful.

6-35. OSCILLOSCOPE CONNECTIONS. To observe waveforms on the DC External Reference Unit, it will be necessary to synchronize the oscilloscope with the $\overline{\text { ZERO }}$ signal. Connect a lead from the scope external trigger input to A8TP3, with scope common connected to A8TP1. Connect the scope input probe also to A8TP3 and adjust the scope trigger controls so that it triggers on the negative going edge of the $\overline{\text { ZERO }}$ pulse.
6-36. VOLTAGE AND WAVEFORM CHECKS. If the reference voltage stays at about 7 volts no matter what the input reference voltage is, check transistor Q10, diode CR13, or transistor A8Q24.

6-37. If the reference output voltage is zero or negative, check the gate drives of $\mathrm{Q} 9, \mathrm{Q} 4$, and Q 5 . If either of the waveforms of Q9 are not correct (stylized waveforms are shown in Figure 6-5), check to see if the same defective waveform appears at other than the gate terminals of Q9; if it does, Q 9 is defective and should be replaced. If Q 9 does not check bad, gate driver Q 3 is probably defective.

6-38. If the waveforms are correct, connect the external reference input LO terminal to instrument common and apply 10 ± 0.1 volts to the external reference input HI terminal. The resulting voltage across capacitor C 1 should be 7 ± 0.1 volts. The voltage across C 2 should be equal to the voltage across C 1 less the amount drained by the measurement instrument. The voltage across both C 1 and C 2 will be pulled high if the output of U1 is higher than 8 volts. No voltage or extremely low voltage across C 2 indicates Q9 is bad. Check integrated circuit U 1 to see if pin 2 is low or high with respect to pin 3. If it is low, the output at pin 6 of U1 should be +18 volts; if it is high, the output should be -18 volts. The combined voltage developed across R17, R18, R21 and R22 should be about 9.2 volts. If not, check the following components in the order given: U1, Q7, or Q8. If the unit operates normally with the LO reference input terminal connected to DVM common but does not operate properly with the LO terminal high or low with respect to DVM common, suspect Q9, Q5, CR4, or CR5.

Figure 4-24. DC External Reference Stylized Waveforms

6-39. LIST OF REPLACEABLE PARTS

6-40. For column entry explanations, part ordering information and basic instrument configuration Use Codes and Serial Number Effectivity List, see Section 5, paragraphs 5-1 through 5-10. See paragraph 6-41, this option subsection, for additional Use Codes and Serial Number Effectivity List assigned to this printed circuit assembly option.

Figure 6-6. DC EXTERNAL REFERENCE

REF DESIG	DESCRIPTION	STOCK NO	$\begin{aligned} & \text { TOT } \\ & \text { OTY } \end{aligned}$	REC QTY	USE
A3	DC EXTERNAL REFERENCE Figure 6-6	2	REF		
C1	Cap, plstc, 0.1 uf $\pm 20 \%, 120 \mathrm{~V}$	167460	1		
C2	Cap, plstc, 0.47 uf $\pm 20 \%, 120 \mathrm{~V}$	190553	1		
C3	Cap, mica, $100 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	148494	1		
C4	Cap, mica, $47 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	148536	1		
C5, C7, C8	Cap, mica, $220 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	170423	3		
C6	Cap, plstc, 0.047 uf $\pm 10 \%$, 120V	260562	1		
C9	Cap, mica, $33 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	160317	1		
$\begin{aligned} & \text { CR1, CR2, } \\ & \text { CR4, CR6, } \\ & \text { CR7, CR8, } \\ & \text { CR9 } \end{aligned}$	Diode, silicon, $150 \mathrm{~mA}, 125 \mathrm{piv}$	272252	7		
CR3	Diode, fast switching, germanium, $40 \mathrm{~mA}, 50$ piv	180505	1		
CR5	Diode, zener, 5.1V	159780	1		
CR10, CR13	Diode, germanium, $80 \mathrm{~mA}, 100 \mathrm{piv}$	149187	2		
CR11, CR12	Diode, silicon, 150 mA	203323	2		
F1, F2	Fuse, pigtail, $15 \mathrm{~mA}, 125 \mathrm{~V}$ (F 2 fuse is a spare)	285031	2		
K1	Relay, Reed switch	219097	1		
	Coil, relay	269019	1		
Q1, Q6, Q10	Tstr, silicon, PNP	195974	3		
Q2, Q3, Q7	Tstr, silicon, NPN	218396	3		
Q4, Q5	Tstr, J-FET, N-channel	271924	2		
Q8	Tstr, silicon, NPN, Super beta dual monolithic	284075	1		
Q9	Tstr, FET, dual, P-channel	268011	1		
R1	Res, comp, $4.7 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148072	1		
R2	Res, comp, $33 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148155	1		
R3, R5	Res, set, ext ref, divider	278309	1		
R.4, R20	Res, var, cer met $5 \mathrm{k} \pm 20 \%, 1 / 2 \mathrm{w}$	267872	2		
R6	Not used				
R7, R8, R13	Res, comp, 22k $\pm 5 \%, 1 / 4 \mathrm{w}$	148130	3		
R9	Res, comp, $6.8 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148098	1		
R10, R28	Res, comp, 12k $\pm 5 \%, 1 / 4 \mathrm{w}$	159731	2		

REF DESIG	DESCRIPTION	STOCK NO	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	REC OTY	$\begin{gathered} \text { USE } \\ \text { CODE } \end{gathered}$
R11	Res, comp, 120k $\pm 5 \%, 1 / 4 \mathrm{w}$	193458	1		
R12	Res, comp, $2.2 \mathrm{M} \pm 5 \%, 1 / 4 \mathrm{w}$	198390	1		
R14	Res, comp, $180 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	193441	1		
R15	Res, var, cer met, $1 \mathrm{k} \pm 10 \%, 1 \mathrm{w}$	285155	1		
R16	Res, met flm, $1.54 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	289066	1		
R17, R21	Res, selected in test (R17 not shown on art)	1	2		
R18, R22	Res, met flm, $215 \mathrm{k} \pm 1 \%$, 1/8w	289470	2		
R19	Res, met flm, $2 \mathrm{k} \pm 1 \%$, 1/8w	235226	1		
R23	Res, met flm, 140k $\pm 1 \%$, 1/8w	289439	1		
R24	Res, met flm, $7.15 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	260356	1		
R25	Res, met flm, $82.5 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	246223	1		
R26	Res, met flm, $8.66 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	260364	1		
R27	Res, comp, $1 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148023	1		
$\begin{aligned} & \text { R29, R30, } \\ & \text { R32 } \end{aligned}$	Res, comp, $100 \mathrm{M} \pm 10 \%, 1 / 2 \mathrm{w}$	190520	3		
R31	Res, comp, $4.7 \mathrm{M} \pm 10 \%$, 1/2w	108308	1		
U1	IC, operational amplifier	271502	1		
XF1	Fuse holder	296582	2		
	Cable, Ref, input	304030	1		
	Terminal, teflon, feed thru, 4 lead	281865	4		
	R17 and R21 factory selected at time of test. This option is not field installable in main- frame S/N 634 and below.				

6-41. SERIAL NUMBER EFFECTIVITY

6-42. A Use Code column is provided to identify certain parts that have been added, deleted, or modified during production of the Model 8400A. Each part in this option for which a use code has been assigned may be identified with a particular printed circuit board serial number by consulting the Use Code Effectivity List below. All parts with no code are used on all printed circuit boards with
serial numbers 123 and on. NOTE: These Use Codes and Serial Number Effectivity apply to this option printed circuit board assembly only. For the standard instrument configuration, see Section 5, paragraph 5-9, and for additional options, see the appropriate option subsection.

USE

CODE SERIAL NUMBER EFFECTIVITY

Option-06 AC External Reference

6-1. INTRODUCTION

6-2. The A4 AC External Reference Converter (Drawing No. 8400A-1008) when used in conjunction with the A13 AC Converter and the 8400A DVM provides three terminal ac to ac voltage ratio measurement capability through three ranges of 1,10 , and 100. The AC External Reference Converter rectifies the ac input voltage to a dc voltage which becomes the instrument reference voltage.

6-3. SPECIFICATIONS

6-4. Specifications for the AC External Reference Converter are located in Section 1 of the manual.

6-5. INSTALLATION

6-6. The following procedure should be used to install the AC External Reference Converter option in the Model 8400A.

NOTE

The AC External Reference option is not field installable in 8400 A mainframes serial No. 634 and below.
a. Disconnect power cord from line power.
b. Remove the Model 8400A top dust cover and inner guard chassis cover.
c. Determine that connector J4 on A14 Display board is clear of obstructions and that alignment keys are inserted between pin pairs J4-1, -2; J4-3, -4 and J4-15, -16; J4-17, -18.
d. Remove connector mounting bracket located on rear portion of inner chassis, next to power transformer.
e. Mount the AC External Reference Converter connector to the connector bracket with orientation as shown on the rear panel decal. The lug attached to pin 1 of connector is to be mounted to the guard chassis through one of the mounting screws on the DC External Reference Connector.
f. Remount connector bracket back to the inner chassis.
g. Align AC External Reference Converter board with vertical card guides mounted on inner chassis bulkhead.
h. Align rubber grommet with slot in rear inner chassis and slide grommet into slot.
i. Slide AC External Reference Converter board downward while observing that alignment keys in J4 are in proper alignment with the slots in the printed circuit board.
j. Engage printed circuit board fully in J4 connector.
k. Attach guard and top dust covers, connect power cord to line power, and perform receiving inspection test of DC External Reference assembly as described in paragraph 6-22, Performance Test.

6-7. OPERATING INSTRUCTIONS

6-8. Operation of the DVM with the A4 AC External Reference Converter Option 8400-06 installed is covered in Section 2, Operating Instructions.

Figure 6-1. BLOCK DIAGRAM AC EXTERNAL REFERENCE CONVERTER.

6-9. THEORY OF OPERATION

6-10. General

6-11. The A4 AC External Reference Converter consists of two basic parts as shown in Figure 6-1: an operational rectifier and a dc difference amplifier integrator. The operational rectifier consists of an inverting trans-conductance amplifier and load resistor with negative feedback arranged to provide a loop gain of about 5×10^{3} at midband. The feedback is changed with switch S1 for range purposes. The input resistor is 1.11 megohms and provides 1.11 megohm input impedance at the AC Ext. Ref. input jacks. A symmetrical half-wave rectifier placed between the amplifier and load resistor develops equal positive and negative dc voltages proportional to the amplifier output current. At full scale, this current is near two milliamps. The two output waveforms are shown in Figure 6-2.

Figure 6-2. RECTIFIER OUTPUT WAVEFORMS

6-12. The dc difference amplifier/integrator filters the output waveforms of Figure 6-2 and amplifies the difference between them by a factor of 3.33 , providing a buffered voltage which becomes the instrument reference voltage. A minimum three sections of filtering are provided at all times.

6-13. Circuit Description

6-14. OPERATIONAL RECTIFIER. Input FET Q1 functions as a source follower, while transistor Q2 provides a low impedance guard voltage which is used to bootstrap most of the capacity that otherwise would appear between the FET gate and circuit common. The first two differential pairs are in dual in-line package U1. Together with Q4 and Q5, they develop the required gain. Transistors Q3 and Q6 function as current sources, with values such that clipping due to overload is symmetrical. Changes in capacitor charges are small and amplifier recovery time is minimized. Transistor Q7 compensates for capacitance losses in the diodes.

6-15. DC-DIFFERENCE AMPLIFIER/INTEGRATOR. The filter network, which provides the input to the amplifier/integrator, consists of resistors R39, R40, R41, R43, R44, R45 and capacitors C19, C20, C21, C22. Capacitors C19, C21, and C23 form matched pairs with capacitors C20, C 22 , and C 24 , respectively, to maintain good common-mode rejection. Gain for the dc amplifier is provided by monolithic operational amplifier U2, thereby providing a total loop gain at dc of about 5×10^{5}.

6-16. RANGE AND FUNCTION CONTROL. The A4 AC External Reference Converter input and output relays, K1 and K2, are driven by the combination of front panel pushbuttons and Q8. The range control of the External Reference Converter is controlled by switch S1A, B, and C for selection of ranges $1,10,100$. Transistor Q10 provides an interlocking feature which prevents the AC External Reference Converter from operating on any function but VAC. Switch S1 has a fourth position (DC ONLY) which prevents the AC External Reference from operating under any circumstances. This feature allows $\mathrm{AC} / \mathrm{DC}$ ratios to be measured without removing the AC Ext. Ref. option from the mainframe, and the DC External Reference option is present.

6-17. MAINTENANCE

6-18. Introduction

6-19. This section contains maintenance information specifically intended for the AC External Reference Converter. Factory service information and general instructions regarding instrument access and cleaning are located in Section 4 of the Manual.

6-20. Test Equipment

6-21. The following equipment is recommended for testing, troubleshooting, and calibrating the AC External Reference Converter. If the recommended equipment is not available, equivalent or better instruments may be substituted.

\left.| EQUIPMENT | RECOMMENDED |
| :--- | :--- |
| NOMENCLATURE | EQUIPMENT |\(\right\left.\left.] \begin{array}{l}HP Model 745A

AC Calibrator with

companion 1000 volt

amplifier.\end{array}\right] \begin{array}{l}Fluke Model 8100A

Digital Multimeter\end{array}\right\}\)| Tektronix Model 547 |
| :--- |
| Oscilloscope |
| Oscilloscope |
| Plug-In |

6-22. Performance Test

6-23. The performance test in this section compares the AC External Reference Converter performance to the accuracy specifications in Section 1 of the manual to determine if the converter is in calibration. To test the unit, a reference voltage is applied to the AC External Reference input terminals, an ac voltage is applied to the DVM INPUT Terminals, and proper DVM readout is verified. The performance test should be conducted before any instrument maintenance or calibration is attempted. The test is also suited to receiving inspection of new units. The performance test should be conducted under the following environmental conditions after 1 hour warm up: ambient temperature $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, relative humidity less than 70%. An instrument that fails the performance test will require corrective maintenance or calibration. In case of difficulty, analysis of the test results with reference to the troubleshooting section, should help to locate the trouble.

NOTE!

Permissible tolerances for ac voltage measurements are derived from the 90-day instrument specifications contained in Section 1 of the manual.

6-24. To test the AC External Reference Converter unit, proceed as follows:
a. Connect the ac voltage source to the Model 8400A as shown in Figure 6-3.
b. Set the DVM controls as follows:

FUNCTION VAC, EXT REF, FILT
RANGE Manually selected, as required.
c. Apply each of the test signals shown in Table 6-1 to the INPUT terminals of the DVM. The readout should be as indicated.

Table 6-1. AC EXTERNAL REFERENCE CHECK

STEP	INPUT		RANGE		READOUT
	FREO	VOLTS	$8400 A$	A4S1	
1	10 kHz	1	1	1	.99945 to 1.00055
	10 kHz	10	10	10	9.9945 to 10.0055
3	10 kHz	100	100	100	99.945 to 100.055
4	10 kHz	10	100	100	99.900 to 100.100

Figure 6-3. EQUIPMENT CONNECTION FOR TESTING.

6-25. Calibration

The AC External Reference Converter should be calibrated every 90 days or whenever repairs have been made to circuitry. Calibration of the converter should be performed at an ambient room temperature of $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$. Relative humidity should be less than 70%. Consult paragraph 6-20 for recommended test equipment.

NOTE!

Since calibration matches the AC External Reference to the AC Converter option - 01, the
alignment of the latter should be verified before attempting to align the former. Refer to this section, Section 6, of this manual for the $A C$ Converter (-01) option information.

6-26. PRELIMINARY OPERATIONS

a. Remove the upper dust cover retaining screws, but leave the dust cover in place on the instrument.
b. Set the rear panel $115 / 230$ volts slide switch to the 115 volt position and connect the line cord to an autotransformer set to 120 volts ac.
c. Turn on and allow the instrument to operate for one hour.

6-27. AC CONVERTER ALIGNMENT

a. Set the DVM controls as follows:

FUNCTION VAC
INPUT RANGE 100
EXT REF RANGE 100
SAMPLE RATE Fully clockwise
b. Connect the GUARD terminal to the LO input terminal using the shorting link provided.
c. Connect a shorting jumper between the input terminals.
d. Adjust AC ZERO (A13R50) for 000.00 on the readout.
e. Remove the short between the INPUT terminals.
f. Select the 100 range on the front panel. Connect AC Ext. Ref. INPUT and front panel INPUT together and apply 100 V 1 kHz to the input. Turn external reference on from front panel. Readout should be near full scale (uncalibrated). While changing input between 100 Vac and 20 Vac , adjust the Ext. Ref. linearity, A4R32, for the same reading, ± 1 digit, with either voltage.
g. Perform the checks and adjustments contained in Table 6-2.

6-28. Calibration of the AC Ext. Ref. Converter is now complete.

Table 6-2. AC EXTERNAL REFERENCE CONVERTER RANGE CALIBRATION

STEP	INPUT		RANGE		ADJUSTMENT	READING TOLERANCE
	FREQ	VOLTS	8400A	S1		
1	1 kHz	100.000	100	100	100 V 1 kHz (A4R47)	99.995 to 100.005
2	50 kHz	100.000	100	100	$100 \mathrm{~V} 50 \mathrm{kHz}(\mathrm{A} 4 \mathrm{C} 2)$	99.995 to 100.005
3	20 kHz	100.000	100	100	Check Only	99.995 to 100.005
4	1 kHz	10.0000	10	10	10 V 1 kHz (A4R5)	9.9995 to 10.0005
5	50 kHz	10.0000	10	10	10 V 50 kHz (A4C4)	9.9995 to 10.0005
6	100 kHz	10.0000	10	10	Check Only	9.9800 to 10.0200
7	1 kHz	1.0000	1	1	1 V 1 kHz (A4R3)	. 99995 to 1.00005
8	50 kHz	1.0000	1	1	1 V 50 kHz (A4C3)	. 99995 to 1.00005
9	100 kHz	1.0000	1	1	Check Only	. 99800 to 1.00200
10	20 kHz	1.0000	1	1	Check Only	. 99995 to 1.00005

6-29. Troubleshooting

6-30. This section contains information selected to aid in troubleshooting the AC External Reference Converter. Before attempting to troubleshoot the unit, however, it should be verified that the trouble is actually in the converter and is not caused by faulty external equipment or improper control settings. For this reason, the performance test (paragraph 6-22) is suggested as a first step in troubleshooting. The performance test may also help to localize trouble to a particular section of the instrument. If the performance test fails to localize the trouble, the following information may be helpful.

6-31. POWER SUPPLY VOLTAGE CHECK

6-32. In this test, each of the supply voltages for the AC External Reference Converter is checked at the pin connectors. This test verifies only presence of voltages; a detailed check of the DVM power supply voltages is given in Section 4.
a. Connect the oscilloscope common to TP2 of the converter. Use the internal dc oscilloscope trigger. Set the scope controls for dc voltage measurement, and check the following voltages:

Connector	Required
Pin No.	Voltage
3	-18 volts
1	+18 volts

6-33. SEVERE CONVERTER MALFUNCTIONS

a. Symptom: Full-scale output with shorted input.
Procedure: If dc voltage at TP3 and ac voltage on TP2 are zero, then troubleshoot converter output difference amplifier/integrator, and associated circuits.

If the dc voltage on TP3 is greater than $\pm 1 \mathrm{~V}$ (normal is less than 10 mV) check for defective Q1 through Q6, U1, C11, C21 or associated circuits.

If ac voltage is present on TP2, check for open or shorted feedback circuit or defective component in amplifier causing oscillation.
b. Symptom: Zero output with input applied. Procedure: If ac voltage on TP2 is zero, check for open or short in ac circuit between input and Q1.
If ac voltage does appear on TP2 (full scale is approximately 0.25 V rms) check S1 or troubleshoot output difference amplifier/integrator.
c. Symptom: Range of operation does not correspond to range selected.
Procedure: Check S1 for proper range selection.

6-34. LIST OF REPLACEABLE PARTS

6-35. For column entry explanations, part ordering information and basic instrument configuration Use Codes and Serial Number Effectivity, see Section 5, paragraphs 5-1 through 5-10. See paragraph 6-36, this option subsection, for additional Use Codes and Serial Number Effectivity List assigned to this printed circuit assembly option.

Figure 6-4. AC EXTERNAL REFERENCE PCB ASSEMBLY

REF DESIG	DESCRIPTION	STOCK NO	$\begin{aligned} & \text { TOT } \\ & \text { OTY } \end{aligned}$		$\begin{gathered} \text { USE } \\ \text { CODE } \end{gathered}$
A4	AC EXTERNAL REFERENCE -06 Option Figure 6-4	$\xrightarrow{ }$	REF		
C1	Cap, plstc, 0.22 uf $\pm 10 \%, 250 \mathrm{~V}$	194803	1		
C2	Cap, var, teflon, $0.25-1.5 \mathrm{pf}, 2 \mathrm{kV}$	273151	1		
C3, C4	Cap, var, air, $0.8-10 \mathrm{pf}, 250 \mathrm{~V}$	229930	2		
C5	Cap, mica, $12 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	175224	1		
C6, C8	Not Used				
C7	Cap, mica, $220 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	170423	1		
C9	Cap, cer, $3 \mathrm{pf} \pm 10 \%$, 500 V	226316	1		
C10, C14	Cap, Ta, 4.7 uf $\pm 20 \%$, 20V	161943	2		
C11	Cap, elect, 125 uf $+50 /-10 \%, 16 \mathrm{~V}$	186296	1		
C12, C13	Cap, cer, $500 \mathrm{pf} \pm 10 \%, 1 \mathrm{kV}$	105692	2		
C15	Cap, elect, 50 uf $+50 /-10 \%, 25 \mathrm{~V}$	168823	1		
C16, C17	Cap, cer, 0.01 uf $\pm 20 \%, 100 \mathrm{~V}$	149153	2		
C18	Cap, mica, $27 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	177998	1		
$\begin{aligned} & \mathrm{C} 19 / \mathrm{C} 20, \mathrm{C} 21 / \\ & \mathrm{C} 22 \end{aligned}$	Cap, plstc, 1 uf, Matched pairs (Replace in pairs)	288225	2		
C23, C24	Cap, plstc, 0.033 uf, Matched pair	290155	1		
C 25	Cap, mica, $33 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	160317	1		
CR1 thru CR4	Diode, silicon, 100 mA at 1.5 V	261370	4		
CR5, CR6	Diode, silicon, 100 mA at 1.5 V	161810	2		
CR7 thru CR10, CR14	Diode, germanium, $80 \mathrm{~mA}, 100$ piv	149187	5		
CR11 thru CR13	Diode, silicon, 150 mA	203323	3		
K1	Relay, reed switch	219097	2		
	Coil, relay	272070	2		
K2	Relay, reed switch	284091	2		
	Coil, relay	272070	REF		
Q1	Tstr, FET, N-channel	246066	1		
Q2, Q6	Tstr, silicon, NPN	218081	2		

REF DESIG	DESCRIPTION	STOCK NO	$\left.\begin{array}{\|l\|} \mathrm{TOT} \\ \mathrm{QTY} \end{array} \right\rvert\,$	$\begin{aligned} & \text { REC } \\ & \mathrm{OTY} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { USE } \\ \text { CODE } \end{array}$
$\begin{aligned} & \text { Q3, Q4, Q5, } \\ & \text { Q7 } \end{aligned}$	Tstr, silicon, PNP	229898	4		
Q8	Tstr, silicon, PNP, selected	280198	1		
Q9, Q10	Tstr, silicon, NPN	218396	2		A
Q9, Q10	Tstr, silicon, NPN	168708	2		B
R1	Res, met flm, 1.11M Matched Set	269092	1		
R2	Res, met flm, 276k				
R3	Res, var, cer met, $2 \mathrm{k} \pm 10 \%$, 1 w	285163	1		
R4	Res, ww, $29.53 \mathrm{k} \pm 0.1 \%$, 12/w	277657	1		
R5	Res, var, cer met, $200 \Omega \pm 10 \%$, 1w	285148	1		
R6	Res, ww, $2.573 \mathrm{k} \pm 0.1 \%$, 12/w	277665	1		
R7	Res, met flm, $10 \Omega \pm 1 \%, 1 / 8 \mathrm{w}$	268789	1		
R8	Res, comp, $620 \Omega \pm 5 \%, 1 / 4 \mathrm{w}$	221903	1		
R9	Res, met flm, $49.9 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	268821	1		
R10	Res, comp, $8.2 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	160796	1		
R11, R26	Res, met flm, $590 \Omega \pm 1 \%, 1 / 8 \mathrm{w}$	261883	2		
R12, R33, R52	Res, comp, $10 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148106	3		
R13	Res, comp, $15 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148114	1		
R14	Res, met flm, $84.5 \mathrm{k} \pm 0.5 \%, 1 / 8 \mathrm{w}$	229492	1		
R15, R18	Res, comp, $120 \mathrm{k} \pm 5 \%$, $1 / 4 \mathrm{w}$	193458	2		
R16, R17	Res, comp, 11k $\pm 5 \%$, $1 / 4 \mathrm{w}$	221580	2		
R19, R20	Res, comp, $47 \Omega \pm 5 \%, 1 / 4 \mathrm{w}$	147892	2		
R21, R22	Res, met flm, $40.2 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	235333	2		
R23	Res, met flm, $82.5 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	246223	1		
R24, R28	Res, met flm, $10 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	168260	2		
R25, R27	Res, met flm, $21.5 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	168278	2		
R29	Res, met flm, $1.21 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	229146	1		
R30, R32	Res, var, cer met 100k $\pm 10 \%$, 1w	288308	2		
R31	Res, comp, 10M $\pm 5 \%$, $1 / 4 \mathrm{w}$	194944	1		
R34	Res, comp, $22 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148130	1		

REF DESIG	DESCRIPTION	STOCK NO	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$	USE
R35	Res, comp, $2.2 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148049	1		
R36, R37	Res, ww, 1.196k $\pm 0.1 \%$, 1/4w	299610	2		
R38	Res, ww, $125 \Omega \pm 0.1 \%$, $1 / 4 \mathrm{w}$	249284	1		
$\begin{aligned} & \text { R39, R40, } \\ & \text { R43, R44 } \end{aligned}$	Res, ww, 130k $\pm 0.1 \%$, 1/4w	285361	4		
R41, R45	Res, ww, 40k $\pm 0.1 \%$	271403	2		
R42, R46	Res, $\mathrm{ww}, 1 \mathrm{M} \pm 0.1 \%$	271411	2		
R47	Res, var, cer met, $10 \mathrm{k} \pm 10 \%, 1 \mathrm{w}$	285171	1		
R48	Res, met flm, $100 \Omega \pm 1 \%, 1 / 8 \mathrm{w}$	168195	1		
R49	Res, met flm, $487 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	237206	1		
R50	Res, comp, $430 \Omega \pm 5 \%, 1 / 4 \mathrm{~W}$	203869	1		
R51	Res, comp, $6.2 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$	221911	1		
R53	Res, comp, $120 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$	193458	R^{2}		
R54	Res, comp, 120k $\pm 5 \%, 1 / 4 \mathrm{~W}$	193458	Ref		D
S1	Switch, rotary	295535	1		C
U1	IC, 5-Transistor Array	248906	1		
U2	IC, operational amplifier	288928	1		
	Socket, IC, 14 contact, U1 1 This option is not field installable in mainframes S/N 634 and below.	276527	1		

6-36. SERIAL NUMBER EFFECTIVITY

A Use Code column is provided to identify certain parts that have been added, deleted, or modified during production of the Model 8400A. Each part in this option for which a use code has been assigned may be identified with a particular printed circuit board serial number by consulting the Use Code Effectivity List below. All parts with
no code are used on all printed circuit boards with serial numbers 123 and on. NOTE: These Use Codes and Serial Number Effectivity apply to this option printed circuit board assembly only. For the standard instrument configuration, see Section 5, paragraph 5-9, and for additional options, see the appropriate option subsection.

USE
CODE
A Serial number 123 thru 132.
B Serial number 133 and on.
C Serial number 123, 125, 128, 131, 133 and on.

D Serial number 148 and on.

Option-07 Rear Input

6-1. INTRODUCTION

6-2. The Rear Input Option provides INPUT HI, INPUT LO, Ω SENSE, Ω SOURCE and GUARD terminals at the rear of the instrument, in parallel with the front panel terminals.

6-3. INSTALLATION

6-4. The following procedure should be used to install the Rear Input Option:
a. Remove the instrument top dust and chassis guard covers.
b. Remove A13 AC CONVERTER from instrument if instrument is so optioned.
c. Remove connector bracket on inner chassis, right rear portion.
d. Mount Rear Input Connector onto the connector bracket top slot. Ensure that the lug which is attached to connector pin 2 is affixed to the inner guard chassis with one of the connector mounting screws.
e. Remount connector bracket to inner chassis.
f. Lay the Rear Input harness along side the Right side of the inner chassis and between the A14 Display PCB and TB1. Clamp harness to inner chassis.
g. Connect Rear Input harness to terminals on rear of the front panel binding posts as follows:

```
RED - INPUT HI
BLACK - INPUT LO
YELLOW-HI \Omega SOURCE
BROWN - LO \Omega SOURCE
```

h. Install the A13 AC Converter if instrument is so optioned.
i. Attach guard and instrument dust cover.

6-5. LIST OF REPLACEABLE PARTS

6-6. For column entry explanations, part ordering information and basic instrument configuration Use Codes and Serial Number Effectivity List, see Section 5, paragraphs $5-1$ through 5-10. See paragraph 6-7, this option subsection for additional Use Codes and Serial Number Effectivity List assigned to this option.

REF DESIG	DESCRIPTION	STOCK NO	$\begin{aligned} & \text { TOT } \\ & \text { OTY } \end{aligned}$	$\begin{aligned} & \text { REC } \\ & \text { OTY } \end{aligned}$	$\begin{gathered} \text { USE } \\ \text { CODE } \end{gathered}$
	REAR INPUT - 07 Option Cable, rear input Hardware kit, option Cable clamps	$\begin{aligned} & 311639 \\ & 321661 \\ & 165951 \end{aligned}$	REF 1 1 2		

6-7. SERIAL NUMBER EFFECTIVITY

6-8. A Use Code column is provided to identify certain parts that have been added, deleted, or modified during production of the Model 8400A. Each part in this option for which a use code has been assigned may be identified with a particular printed circuit board serial number by consulting the Use Code Effectivity List below. All parts
with no code are used on all Rear Input Options with serial numbers 123 and on. NOTE: These Use Codes and Serial Number Effectivity apply to this option assembly only. For the standard instrument configuration, see Section 5, paragraph 5-9, and for additional options, see the appropriate option subsection.

USE
SERIAL NUMBER EFFECTIVITY

True RMS Converter

6-1. INTRODUCTION

6-2. Equipped with Option -09, the Model 8400A provides true rms measurement capabilities through the four

AC ranges. A choice of input coupling for the True RMS Converter is available to the operator. Choosing ac coupling allows measurement of the ac component of the input voltage. Choosing direct coupling provides measurement of the ac plus dc components.

6-3. SPECIFICATIONS

ACCURACY

	D.C.	$\pm(0.1 \%$ of input $+0.03 \%$ of range)
	$50 \mathrm{~Hz}-10 \mathrm{kHz}$	$\pm(0.1 \%$ of input $+0.03 \%$ of range)
90 days,	$10 \mathrm{kHz-30kHz}{ }^{(2)}$	$\pm(0.2 \%$ of input $+0.06 \%$ of range)
$\left(18^{\circ} \mathrm{C}\right.$ to $28^{\circ} \mathrm{C}$)	$30 \mathrm{kHz-50kHz}{ }^{(2)}$	$\pm(0.3 \%$ of input $+0.12 \%$ of range)
(0.001V-1100V ${ }^{(1)}$)	$20 \mathrm{~Hz}-50 \mathrm{~Hz}$	$\pm(0.5 \%$ of input $+0.03 \%$ of range)
	$10 \mathrm{~Hz}-20 \mathrm{~Hz}$.	$\pm(1.0 \%$ of input $+0.06 \%$ of range)
	$50 \mathrm{kHz-100kHz}{ }^{(2)}$	$\pm(1.0 \%$ of input $+0.3 \%$ of range)
	$100 \mathrm{kHz}-300 \mathrm{kHz}{ }^{(2)}$	$\pm(2.0 \%$ of input $+0.5 \%$ of range)

AC ONLY

$$
\begin{aligned}
& \pm(0.1 \% \text { of input }+0.012 \% \text { of range }) \\
& \pm(0.2 \% \text { of input }+0.04 \% \text { of range }) \\
& \pm(0.3 \% \text { of input }+0.1 \% \text { of range }) \\
& \pm(0.5 \% \text { of input }+0.012 \% \text { of range }) \\
& \pm(1.0 \% \text { of input }+0.04 \% \text { of range }) \\
& \pm(1.0 \% \text { of input }+0.3 \% \text { of range }) \\
& \pm(2.0 \% \text { of input }+0.5 \% \text { of range })
\end{aligned}
$$

(1) With inputs above 500 V multiply accuracy by $\left[\frac{2000 \mathrm{~V}+\mathrm{V} \text { input }}{2000 \mathrm{~V}}\right]$
(2) Input volt x hertz, product should not exceed 2×10^{7}.

Temperature Coefficients $\left(0^{\circ} \mathrm{C}\right.$ to $18^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ to $\left.50^{\circ} \mathrm{C}\right)$

$$
D C \text { and } 10 \mathrm{~Hz}-10 \mathrm{kHz}(A C+D C) \text {. . . } \pm(0.004 \% \text { Inp. }+0.004 \% \text { Range })
$$

$$
10 \mathrm{~Hz}-10 \mathrm{kHz}(\mathrm{AC} \text { only) } \pm(0.004 \% \text { Inp. }+0.001 \% \text { Range) }
$$

Input Impedance
1 Megohm, shunted by less than 150 p.f.

NOISE REJECTION

Common Mode (with up to 100Ω unbalance in either lead) DC to 60 Hz Greater than 120 db

RESPONSE TIME (to a reading withing 0.1% of range when measuring step change inputs and using external trigger)

Filter "out"
Filter "in"
(For readings less than 10\% Range, double indicated times).
(4) Above 400 Hz for rated accuracies.

6-4. KIT INSTALLATION

6-5. Use the following procedure for installing True RMS Converters received as kits:
a. With DVM disconnected from power source, remove top dust cover and inner guard cover.
b. Locate AC Converter position on right side of instrument, as viewed from front panel.
c. Insert True RMS Converter Assembly into AC converter position, fully engaging board edge connector into mating connector.
d. Route red and black wires through rubber grommet above front card guide.
e. Connect red and black wires to grey terminal block mounted under grommets on front of bulkhead (see Figure 6-1).

Figure 6-1. TERMINAL BLOCK
f. Install new guard cover and set INPUT COUPLING switch on converter to either AC or DC. Install dust cover.

6-6. OPERATION

6-7. True rms measurements are performed with the 8400A DVM by pressing the VAC FUNCTION pushbutton and the desired RANGE pushbuttons ($1,10,100,1000$ or AUTO). Input coupling selection is accomplished by removing the top dust cover and setting the INPUT COUPLING switch to either AC (ac component only) or DC (ac plus dc components).

6-8. THEORY OF OPERATION

6-9. General Description

6-10. The True RMS Converter provides a dc voltage, proportional to the rms value of the applied INPUT voltage, to the A/D Converter for digitizing and subsequent display on the front panel readout. A simplified diagram of the circuits involved in the rms conversion process is illustrated in Figure 6-2. As shown in the diagram, the RMS Converter consists, basically, of a Range Amplifier and RMS Detector. Output voltage from the Range Amplifier is 1 volt rms ac, maximum, for a full scale INPUT voltage. A scaled output voltage from the Range Amplifier is applied to the RMS Detector's Balance Amplifier where any negative going signals are inverted. The output of the Balance Amplifier is summed with the output of the Range Amplifier at the summing junction of the Squaring Amplifier. This provides a rectified version of the Range Amplifier output. The rectified signal is processed by the Squaring Amplifier, Integrating Amplifier, and Square Root Amplifier, respectively. These three amplifiers perform squaring, integrating, and square rooting functions which result in a dc voltage proportional to the rms value of the INPUT voltage.

$60-\mathrm{NOILdO}$

6-11. Circuit Description

6-12. RANGE AMPLIFIER

6-13. The Range Amplifier scales the applied input voltage to the Converter to 1 volt rms ac for a full scale input. Basically, the Range Amplifier is an inverting operational amplifier whose gain changes as the range changes. Voltage gains of $-1,-10,-100$, and -1000 correspond with the 1 through 1000 volt ranges, respectively. Active elements of the Range Amplifiers are Q1, Q2, Q5 and U3 with protection diodes CR6, CR7, CR18, CR20, CR21, and CR22. Transistor Q2 drives the guard at the summing point of the operational amplifier, and Q5 switches C5 into feedback path in the 10,100 , and 1000 volt ranges. Diodes CR6, CR7, CR21, and CR22 provide clipping for input overload protection to Q1. Diodes CR18 and CR20 provide overload clipping at the output of the Range Amplifier for protection of the following circuitry.

6-14. BALANCE AMPLIFIER

6-15. The Balance Amplifier is a rectifying amplifier with a gain of -1 that changes all negative going signals from the Range Amplifier output to positive voltages prior to summing with the Range Amplifier output from R33. Balance Gain adjustment (R32) controls the input to the Balance Amplifier, such that positive and negative signals at the summing junction of R31, R33 and U5 will be equal in magnitude. Active components of the Balance Amplifier are CR15, Q6, Q9, Q10, and U4. Balance Zero Adjustment, R42, is an adjustment for zeroing the input of U4. Primary or low frequency signal path is through U4 followed by CR15 and final output stage Q10. At frequencies above a few hundred kilohertz, amplification takes place through Q6 followed by Q10. The final output stage, Q10, has a current source load, CL1, which maintains a high amplifier output impedance for driving CR14 and CR16. Any stray capacitance in CR14 and CR16 is compensated by Q9. Transistor Q9 samples the waveform driving CR14 and CR16 and feeds back a capacitive charge through C17 to the input of the Balance Amplifier.

6-16. SQUARING AMPLIFIER

6-17. The Squaring Amplifier is an inverting operational amplifier with non-linear feedback through matched transistors Q8A and Q12A. These transistors transform the input current into an output voltage that is the logarithim of the input current. Since this operation is performed twice (by Q8A and Q12A), the output voltage is twice the log of
the input current. Therefore, the amplifier essentially accomplishes a squaring operation $\left(2 \log X=\log X^{2}\right.$). U5 is an integrated operational amplifier which is paraileled by Q7 at high frequencies in a manner similar to Q6 in the Balance Amplifier. AC Zero Adjustment, R45, provides for zeroing of U5, and has the greatest effect, of all other zero adjusts, for overall converter zero. Both amplifying paths, U5 and Q7, share the common final output stage, Q11. Output voltage from Q11 is sampled by Q12B which provides a current to the summing point of the Integrator Amplifier. Potentiometer R38 provides an adjustment for crest factor gain.

6-18. INTEGRATOR AMPLIFIER

6-19. The Integrator Amplifier consists primarily of U7 and U8, and is a complex multipole integrator which acts as a three pole filter. Voltage at terminal 2 of $U 7$ is held at zero, and all of the current applied is passed through the feedback elements R56, R65, and whichever feedback capacitors are switched into the circuit. Switchable capacitors are connected through FET's Q13, Q14, Q16 and Q17 by operation of the FILT switch on the instrument front panel. If the FILT/RMS DC switch is depressed, the FET's are turned on, and the capacitors are a part of the feedback circuitry. Since each switchable capacitor is paralleled by a non-switchable capacitor, some filtering action takes place in the Integrator Amplifier whether the FILT/RMS DC switch is depressed or not. Amplifier U7 and associated multipole feedback circuitry provides the integration for the Integrator Amplifier. Amplifier U8 is a unity gain, high input impedance, low output impedance amplifier. Three poles of feedback for U7 consist of C30, R68 and C32, and R69 and C33. Capacitor C29 can be switched in parallel with C30, C34 with C32, C35 with C33, and C28 with C27. Output from U8 is the output of the total Integrator Amplifier which is then applied to the A-to-D Converter and to the Square Root Amplifier.

6-20. SQUARE ROOT AMPLIFIER

6-21. The Square Root Amplifier consists of the input resistor R 57 , the trimming and selection resistors R61, R62, R63, and R64, the feedback transistor Q8B, protection diode CR19, and amplifier U6. Diode CR19 acts as a feedback path to prevent saturation of U6 should input polarity to the amplifier reverse. The Square Root Amplifier uses logarithmetric feedback to produce a square root of the input in a manner similar to that used by the Squaring Amplifier. The square root process is accomplished by matched transistors Q8B and Q12B. Resistors R48, R79, and R80 are factory selected for overall converter temperature coef-
ficient and linearity. Some or none of these resistors may be installed.

6-22. MAINTENANCE

6-23. Introduction

6-24. Maintenance information, described in the following paragraphs, is specifically intended for the True RMS Converter Assembly. Service information and general instructions regarding instrument access and cleaning are described in Section 4 of the Instruction Manual. Test equipment for calibrating and troubleshooting the True RMS Converter is listed in Table 6-1. If the recommended equipment is not available, equipment having, at least, equivalent specifications may be used.

6-25. Calibration

6-26. The True RMS Converter should be calibrated every 90 days, or whenever repairs have been made to circuitry. Calibration of the converter should be performed at an ambient temperature of $28^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$. Relative humidity should be less than 70%.

6-27. PRELIMINARY OPERATIONS

a. Remove top dust cover screws, but leave the cover in place.
b. Set rear panel $115 / 230$ volt switch to 115 volt position. Connect line cord to autotransformer set to 120 volts ac.
c. Turn instrument on and allow one hour for warmup.

6-28. RANGE AMPLIFIER ZERO

a. Short the HI and LO INPUT terminals. Select VAC, FILT, and 10 RANGE pushbuttons. Place AC-DC switch on RMS converter to DC. This switch is accessible through the top guard cover.

NOTE!

For Option -09's without dc coupling, connect jumper wire across input coupling capacitor C1.
b. Connect high lead of external dc voltmeter to body of $\mathrm{C} 11(10 \mathrm{~V} 50 \mathrm{kHz}$ adjustment) via a 10 k isolation resistor.Connect low lead to the 8400A LO INPUT terminal.
c. Adjust R12 (Range Zero Adjust) for external voltmeter indication of $0 \pm 30 \mu \mathrm{~V}$.
d. Remove external voltmeter and INPUT short.

6-29. BALANCE AMPLIFIER ZERO
a. Apply -0.1 V dc to INPUT terminals from dc voltage source. Note 8400 A reading.
b. Reverse input voltage polarity to +0.1 Vdc .
c. Adjust R42 (Balance Zero Adjust) for reading noted in step a.
d. Repeat steps a and b until difference between readings for each polarity is within 10 digits.

Table 6-1. TEST EQUIPMENT

NOMENCLATURE	REQUIRED SPECIFICATIONS	RECOMMENDED EQUIPMENT
AC Voltage Source	1 mV and $1000 \mathrm{~V} @ 500 \mathrm{~Hz}$ $1 \mathrm{~V}, 10 \mathrm{~V}, 1000 \mathrm{~V}$ @ 500 Hz and 50 kHz \qquad $\pm 0.03 \%$ 1000V @ 50kHz \qquad $\pm 0.3 \%$	Fluke Model 5200A AC Calibrator and 5205A power Amplifier
DC Voltage Source	10 C	Fluke Model 341A DVM Calibrator
DC Differential Voltmeter	$100 \mu \mathrm{~V}$ Range $\quad \pm 0.005 \%$	Fluke Model 895A Differential Voltmeter
RMS Differential Voltmeter	$\text { 100Hz @ } \pm 0.05 \%$ Crest Factor of 10	Fluke Model 931A True RMS Differtial Voltmeter
Oscilloscope	General Purpose	Tektronix 544 W/Type L Plug-In and Low Capacitance Probe
Pulse Generator	50Ω Source Impedance, 5 V max. across 50Ω, (+) and (-) pulse polarity, Rise and Fall Time $<50 \mathrm{~ns}$	HP 8003A Pulse Generator

6-30. BALANCE GAIN

a. Apply -10 V dc to INPUT terminals. Note 8400A reading.
b. Reverse input voltage polarity to +10 V dc.
c. Adjust R32 (Balance Gain Adjust) for 8400A reading equivalent to step a.
d. Repeat steps a through c until difference between readings for each polarity is within 10 digits.
e. Remove dc voltage source.

6-31. AC ZERO
a. Select 1 RANGE and AC INPUT COUPLING. Apply 0.001 volts at 500 Hz to INPUT terminals.
b. Adjust R45 (AC Zero Adjust) for reading of $.00100 \pm 3$ digits.
c. Remove ac input voltage.

6-32. CALIBRATION ADJUSTMENT/CHECK

6-33. Before performing calibration, allow one hour "warm-up" with outer covers installed. Refer to Table 6-2; apply each of the rms voltages at the specified frequencies to the INPUT terminals and, if necessary, perform the indicated adjustments to complete the calibration. If R64 $(1000 \mathrm{~V}, 500 \mathrm{~Hz}$ adjustment) is not within adjustment range, refer to paragraph titled "Course Calibration."

6-34. COURSE CALIBRATION

6-35. Use the following procedure only when R64 is out of adjustment range.
a. Connect any opened shorting links (1, 2, or 4) across course calibration resistors R61, R62 or R63.
b. Select the 1000 volt range and apply 500V @ 500 Hz to the INPUT terminals.
c. Adjust the " $1000 \mathrm{~V}, 500 \mathrm{~Hz}$ " control (R64) for a minimum reading.
d. Cut open the appropriate link or links as indicated below depending upon the 8400 A reading.

READING

$465.7-470.1$	$1,2,4$
$470.1-474.3$	2,4
$474.3-478.7$	1,4
$478.7-482.5$	4
$482.5-486.9$	1,2
$486.9-491.1$	2
$491.1-495.5$	1
$495.5-500$	NONE

e. Repeat the "Calibration Adjustment/Check" paragraph to complete calibration.

6-36. Troubleshooting

6-37. The troubleshooting procedure presents a technique for isolating a malfunction to one of the five amplifier circuits within the RMS Converter. Troubleshooting procedures for the power supply, command voltages, and relays are located in Option -01 troubleshooting section of the Instruction Manual. Before using any of these procedures, ensure that the malfunction is within the RMS Converter and not due to operator error, faulty test leads, etc. Refer to Figure 6-3 for location of adjustments and test points.

Table 6-2. CALIBRATION ADJUSTMENT/CHECK

INPUT		RANGE	ADJUSTMENT		TOLERANCE
VOLTAGE (RMS VOLTS)	FREQUENCY		NAME	REF DESIG.	
500.0 500.0 1.0000 1.0000 10.000 10.000 100.00 100.00	500 Hz 50 kHz 500 Hz 50 kHz 500 Hz 50 kHz 500 Hz 50 kHz	$\begin{aligned} & 1000 \\ & 1000 \\ & 1 \\ & 1 \\ & 10 \\ & 10 \\ & 100 \\ & 100 \end{aligned}$	1000 V 500 Hz 1 kV 50 kHz 1V 500 Hz 1 V 50 kHz 10 V 500 Hz 10 V 50 kHz 100 V 500 Hz 100 V 50 kHz	R64 C4 R14 C9 R16 C11 R18 C14	

Figure 6-3. RMS CONVERTER ADJUSTMENTS AND TEST POINTS

6-38. TROUBLESHOOTING PROCEDURE

a
Turn instrument on and allow to operate for at least 10 minutes. Erroneous indications may be observed if instrument does not have sufficient "warm-up" time.
b. Depress VAC and any range button.
c. Connect DC voltmeter between TP4 and common (shield).
d. Short HI to LO INPUT terminals. DC voltmeter should indicate within 100 millivolts of zero.

FAULT ANALYSIS

If indication is incorrect, go to step f.
e. Remove input terminal short and apply full range voltage at 500 Hz . The dc voltmeter should indicate within 9.95 to 10.05 volts.

FAULT ANALYSIS

If indication is incorrect, go to step j .
f. Remove any INPUT voltage or short. Short TP1 to common (shield).

FAULT ANALYSIS

If dc voltmeter indication changes to within 100 millivolts of zero, go to step j.
g. Short TP1 and TP2 to TP5.
h. Connect dc voltmeter high lead to TP4. DC voltmeter should indicate within 100 microvolts of zero and adjustable with R66 (Integrator Amplifier Zero Adjust).

FAULT ANALYSIS

If indication is incorrect, troubleshoot Integrator Amplifier circuit.
i. Remove short at TP2 (maintain short between TP1 and common) and connect high lead of dc voltmeter to TP2. DC voltmeter should indicate within 200 millivolts of zero and be adjustable with R55 (Square Root Amplifier Zero Adjust).

If indication is incorrect, troubleshoot Square Root Amplifier circuit.
j Remove any input voltage, disconnect dc voltmeter and all shorts.
k. Connect a dc coupled scope with low capacitance probe to the threaded body of $\mathrm{C} 11(10 \mathrm{~V} 50 \mathrm{kHz}$ adjust) and common.

1. With no input voltage applied to 8400 A , scope should indicate zero volts. With full range voltage at 500 Hz applied to 8400 A , scope should indicate a clean sinewave of 2.8 volts peak-to-peak.

FAULT ANALYSIS

If scope indication is incorrect, troubleshoot Range Amplifier circuit.
m . Move scope probe to cathode of CR16 or anode of CR14.
n. With no input voltage applied to 8400A, scope should indicate within 100 millivolts of zero. With full range voltage at 500 Hz applied to 8400 A scope should indicate a clean halfwave rectified sinewave of 1.4 volts peak.

FAULT ANALYSIS

If scope indication is incorrect, troubleshoot Balance Amplifier Circuit.
o. Move scope probe to TP1.
p. With no input voltage applied to 8400 A , scope should indicate within 100 millivolts of zero. With full range voltage at 500 Hz applied to 8400 A , scope should indicate approximately -1.2 volts dc with a clean ac "scallop" superimposed.

FAULT ANALYSIS

If scope indication is incorrect, troubleshoot Squaring Amplifier.

6-39. PRE-CALIBRATION ADJUSTMENTS

6-40. Three adjustments within the RMS Converter are not readjusted during routine calibration. These adjustments are the Square Root Zero, Integrator Zero, and Crest Factor. It is recommended that these three adjustments be attempted only if previously moved or if components are replaced within the converter. Procedure for performing these adjustments is as follows:
a. With power off, extend the RMS Converter from the 8400 A mainframe and remove shield from converter. Turn on power and allow instrument 10 minutes to stabilize.
b. Short INPUT terminals. Short TP1 and TP2 to common (shield). Connect dc voltmeter (Table 6-1) between TP4 (+) and TP5 (-).
c. Adjust R66, Integrator Zero Adjust, for 0 volts ± 100 microvolts.
d. Remove short from TP2 and connect dc voltmeter (+) lead to TP2.
e. Adjust R55, Square Root Zero, for 0 volts ± 200 millivolts.
f. Remove short from TP1 and disconnect dc voltmeter.
g. Complete Preliminary Operations of calibration procedure starting with paragraph 6-27 thru 6-31.
h. Connect equipment as diagramed in Figure 6-4. Set Model 8400A to ac coupling and auto range.

NOTE!

The following adjustment procedure is for crest factor. Crest factor (cf) is the relationship between the peak and rms value, such that $c f=V_{\text {Peak }} / V_{R M S}$.
i. Adjust generator repetition rate for 100 pulses per second (10 msec) and pulse width for a maximum indication on Model 931. (This will be a symmetrical waveform.)
j. Adjust generator negative output amplitude control for 1 volt rms indication on 931. This establishes a waveform with crest factor of 1 . Note Model 8400A reading.
k. Adjust generator amplitude control for 4 volts peak to peak indication on scope and pulse width con-

Figure 6-4. EQUIPMENT CONNECTIONS FOR CREST FACTOR ADJUST
trol for 1 volt RMS indication on Model 931. This establishes a waveform with crest factor of 4.

1. Adjust R38 (Crest Factor Adjust) for Model 8400A indication noted in step \mathbf{j}.
m . Repeat steps b through e until difference between readings for crest factors of 1 and 4 is less than 10 digits.
n. Check positive polarity pulse with crest factor of 4 by connecting equipment to pulse generator positive output and make adjustments described in step k .
o. 8400A indication should be within 30 digits of finalized value noted in step j .
p. Turn power off. Disconnect all test equipment from 8400A. Re-install shield on RMS Converter and install the converter in 8400 A mainframe. Install top guard and dust cover. Turn on instrument and allow to "warm-up" for one hour before performing Calibration Adjustment/Check, paragraph 6-30.

6-40. MATCHED COMPONENTS

6-41. A few components within the RMS Converter are matched at the factory. Two transistors, Q8 and Q9, are matched to each other. Resistors R56, R76, and R77 are factory selected for overall converter temperature coefficient and linearity which also affects Q8 and Q9. Should any of these components require replacement, a complete matched set will have to be ordered. In the case of replacement, the total set must be installed. Depending upon the
matched set received, some or none of the three resistors may be included. Therefore, in positions where there is no resistor to install, a bus wire must be installed. Refer to List of Replaceable Parts for ordering information.

6-42. LIST OF REPLACEABLE PARTS

6-43. For column entry explanations, part ordering information and basic instrument configuration Use Codes and Serial Number Effectivity List, see Section 5, paragraphs 5-1 through 5-10. See paragraph 6-44, this option subsection, for additional Use Codes and Serial Number Effectivity List assigned to this printed circuit assembly option.

6-44. SERIAL NUMBER EFFECTIVITY

6-45. A Use Code column is provided to identify certain parts that have been added, deleted, or modified during production of the Model 8400A. Each part in this option for which a use code has been assigned may be identified with a particular printed circuit board serial number by consulting the Use Code Effectivity List below. All parts with no code are used on all printed circuit boards with serial numbers 123 and on. NOTE: These Use Codes and Serial Number Effectivity apply to this option printed circuit board only. For the standard instrument configuration, see Section 5, paragraph 5-9, and for additional options, see the appropriate option subsection.

USE

CODE SERIAL NUMBER EFFECTIVITY

A
123 thru 54300

B
54400 and on.

REF DESIG	DESCRIPTION	STOCK NO	$\begin{array}{\|l\|} \text { TOT } \\ \text { QTY } \end{array}$	$\begin{aligned} & \text { REC } \\ & \text { OTY } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { USE } \\ \text { CODE } \end{array}$
A22	RMS CONVERTER (-09 Option) Figure 6-	339309	REF		
C1	Cap, plstc, 0.22 uf $\pm 20 \%, 1200 \mathrm{~V}$	268904	1		
C2	Cap, porc, $2.7 \mathrm{pf} \pm 0.25 \mathrm{pf}, 1700 \mathrm{~V}$	340745	1		
C3	Cap, mica, $220 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	170423	1		
C4,C9	Cap, var, teflon, $0.25-1.5 \mathrm{pf}, 2 \mathrm{kV}$	218206	2		
C5	Cap, mica, $22 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	148551	1		
C6	Cap, mica, $8 \mathrm{pf} \pm 10 \%, 500 \mathrm{~V}$	216986	1	A	
C67,C34	Cap, mica, $4 \mathrm{pf} \pm 10 \%, 500 \mathrm{~V}$ Cap, plstc, 0.1 uf $\pm 10 \%, 250 \mathrm{~V}$	190397 161992	2	B	
C8	Cap, porc, $2.2 \mathrm{pf} \pm 0.25 \mathrm{pf}, 1700 \mathrm{~V}$	340273	1		
C10	Cap, porc, $27 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	344283	1		
C11	Cap, var, air, $0.8-10 \mathrm{pf}, 250 \mathrm{~V}$	229930	1		
$\begin{aligned} & \text { C12,C16, } \\ & \text { C41,C42 } \end{aligned}$	Cap, plstc, 0.047 uf $\pm 10 \%, 250 \mathrm{~V}$	162008	4		
C13	Cap, mica, $330 \mathrm{pf} \pm 1 \%, 500 \mathrm{~V}$	226142	1		
C14	Cap, var, cer, $9-35 \mathrm{pf}, 350 \mathrm{~V}$	289637	1		
C15	Cap, mica, $3600 \mathrm{pf} \pm 2 \%, 500 \mathrm{~V}$	176644	1		
C17	Cap, mica, $15 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	148569	1		
C18,C20	Cap, mica, $27 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	177998	2		
C19,C22	Cap, mica, $1000 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	178387	2		
C21,C40	Cap, mica, $2 \mathrm{pf} \pm 0.5 \mathrm{pf}, 500 \mathrm{~V}$	175208	2		
$\begin{aligned} & \mathrm{C} 23, \mathrm{C} 36, \\ & \mathrm{C} 37 \end{aligned}$	Cap, Ta, 15 uf $\pm 10 \%, 20 \mathrm{~V}$	153056	3		
C24	Not Used				
C25	Cap, mica, $390 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	148437	1		
$\begin{aligned} & \text { C26,C31, } \\ & \text { C38 } \end{aligned}$	Cap, mica, $33 \mathrm{pf} \pm 5 \%, 500 \mathrm{~V}$	160317	3		
C27,C30	Cap, plstc, $6800 \mathrm{pf} \pm 10 \%, 250 \mathrm{~V}$	342881	2		
C28,C29	Cap, plstc, 0.022 uf $\pm 10 \%, 250 \mathrm{~V}$	234484	2		
C32,C35	Cap, plstc, 0.033 uf $\pm 10 \%, 250 \mathrm{~V}$	234492	2		
C33	Cap, plstc, $4700 \mathrm{pf} \pm 10 \%, 250 \mathrm{~V}$	342873	1		

REF DESIG	DESCRIPTION	STOCK NO	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$	$\begin{gathered} \text { USE } \\ \text { CODE } \end{gathered}$
C39	Cap, plstc, $0.1 \mu \mathrm{f} \pm 10 \%, 250 \mathrm{~V}$	161992			B
CL1	Current regulator FET	285106	1		
CR1 thru CR5	Diode, germanium, $80 \mathrm{~mA}, 100 \mathrm{piv}$	149187	5		
$\begin{aligned} & \text { CR6,CR7, } \\ & \text { CR20 } \end{aligned}$	Diode, silicon, 100 mA at 1.5 V	261370	3		
$\begin{aligned} & \text { CR8,CR9, } \\ & \text { CR10,CR11, } \\ & \text { CR17,CR23 } \end{aligned}$	Diode, silicon, 150 mA	203323	6		
CR12,CR13	Not Used				
CR14,CR16	Diode, silicon, 100 mA at 1.5 V	161810	2		
CR15,CR18	Diode, zener, 10V	246611	2		
CR19	Diode, silicon, $10 \mathrm{~mA}, 2 \mathrm{piv}$	180554	1		
CR21,CR22	Diode, zener, 6.8 V	260695	2		
K1,K3	Relay, reed switch Coil, relay Foil wrap	$\begin{aligned} & 284091 \\ & 269019 \\ & 313833 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \\ & 2 \end{aligned}$		
K2A,K2B,	Relay reed switch	289850	5		
K4,K5,K6	Coil, relay (K2)	272070	1		
	Coil, relay (K4,K5,K6)	269019	REF		
	Foil wrap (K4,K5,K6)	280008	3		
Q1	Tstr, FET, dual, N-channel	267963	1		
Q2,Q6,Q7	Tstr, FET, N-channel	343103	3		
Q3,Q101, Q18	Tstr, silicon, NPN	218396	3		
Q9	Tstr, sil, NPN	218081	1		B
Q4,Q11,Q15	Tstr, silicon, PNP	195974	3		
$\begin{aligned} & \text { Q5,Q13,Q14 } \\ & \text { Q16,Q17 } \end{aligned}$	Tstr, FET, N-channel	288324	5		
Q8,Q12	Part of matched set	1	1		
R1	Res, met flm, $1 \mathrm{M} \pm 0.1 \%, 1 \mathrm{w}$	340265	1		
R2,R11	Res, comp, $12 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	159731	2		
$\begin{aligned} & \text { R3,R4,R5, } \\ & \text { R47 } \end{aligned}$	Res, comp, $51 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$	193334	4		
R6,R7,R31	Res, met flm, $50 \mathrm{k} \pm 0.1 \%, 1 / 8 \mathrm{w}$	340257	3		

REF DESIG	DESCRIPTION	STOCK NO	$\begin{aligned} & \text { TOT } \\ & \text { OTY } \end{aligned}$	$\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { USE } \\ & \text { CODE } \end{aligned}$
R8	Res, met flm, $48.7 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	267385	1		
$\begin{aligned} & \text { R9,R20, } \\ & \text { R35,R53, } \\ & \text { R59,R67, } \\ & \text { R70 } \end{aligned}$	Res, comp, $1 \mathrm{M} \pm 5 \%, 1 / 4 \mathrm{w}$	182204	7		
R10	Res, comp, $390 \Omega \pm 5 \%$, 1/4w	147975	1		
$\begin{aligned} & \text { R12,R42, } \\ & \text { R45 } \end{aligned}$	Res, var, cermet, $1 \mathrm{M} \pm 10 \%, 1 / 2 \mathrm{w}$	334722	3		
R13	Res, met flm, $995 \mathrm{k} \pm 0.1 \%, 1 / 2 \mathrm{w}$	340158	1		
R14,R64	Res, var, cermet, $10 \mathrm{k} \pm 10 \%$, $1 / 2 \mathrm{w}$	385171	2		
R15	Res, met flm, $110.6 \mathrm{k} \pm 0.1 \%, 1 / 8 \mathrm{w}$	340224	1		
R16	Res, var, cermet, $1 \mathrm{k} \pm 10 \%, 1 / 2 \mathrm{w}$	285155	1		
R17	Res, met flm, $10.05 \mathrm{k} \pm 0.1 \%, 1 / 8 \mathrm{w}$	340216	1		
R18	Res, var, cermet, $100 \Omega \pm 10 \%, 1 / 2 \mathrm{w}$	285130	1		
R19	Res, met flm, $1.001 \mathrm{k} \pm 0.1 \%, 1 / 8 \mathrm{w}$	340208	1		
$\begin{aligned} & \text { R21,R72, } \\ & \text { R75 } \end{aligned}$	Res, comp, $22 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148130	3		
R22	Res, comp, $300 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	234682	1		
R23	Res, met flm, $4.975 \mathrm{k} \pm 0.1 \%, 1 / 8 \mathrm{w}$	340232	1		
R24	Res, comp, $5.1 \mathrm{k} \pm 5 \%$, $1 / 4 \mathrm{w}$	193342	1		
R25	Not Used				
R26	Res, comp, $3.9 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148064	1		
R27	Res, met flm, $1 \mathrm{M} \pm 1 \%, 1 / 8 \mathrm{w}$	268797	1		
R28	Res, met flm, $100 \Omega \pm 1 \%, 1 / 8 \mathrm{w}$	168195	1		
R29	Res, met flm, $5 \mathrm{k} \pm 0.1 \%, 1 / 8 \mathrm{w}$	340240	1		
R30,R37	Res, comp, $6.8 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148098	2		
R32	Res, var, cermet, $50 \Omega \pm 10 \%$, $1 / 2 \mathrm{w}$	285122	1		
R33	Res, met flm, $100 \mathrm{k} \pm 0.1 \%, 1 / 8 \mathrm{w}$	340166	1		
R34	Res, met flm, $35.7 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	288480	1		
R36	Res, comp, $68 \Omega \pm 5 \%, 1 / 4 \mathrm{w}$	247918	1		
R38	Res, var, cermet, $3 \Omega \pm 25 \% 1 / 2 \mathrm{w}$	347963	1		
R39	Not Used				

REF DESIG	DESCRIPTION	STOCK NO	$\begin{aligned} & \text { TOT } \\ & \text { QTy } \end{aligned}$	$\begin{aligned} & \text { REC } \\ & \text { مTY } \end{aligned}$	$\begin{array}{\|c} \text { USE } \\ \text { CODE } \end{array}$
R40	Res, comp, $5.6 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148080	1		
R41	Res, comp, $56 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	170738	1		
R43,R82	Res, comp, $1 \mathrm{k} \pm 5 \%$, $1 / 4 \mathrm{w}$	148023	2		
R44	Res, comp. $9.1 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	193318	1		
R46	Res, comp, $560 \Omega \pm 5 \%$, 1/4w	147991	1		
R48	Part of matched set, may not be installed	1	1		
R49,R83	Res, comp, $330 \Omega \pm 5 \%, 1 / 4 \mathrm{w}$	147967	2		
R50	Res, comp, $100 \Omega \pm 5 \%, 1 / 4 \mathrm{w}$	147926	1		
R51,R77	Res, comp, $82 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	188458	2		
R52	Res, met flm, $2 \mathrm{M} \pm 1 \%$, $1 / 4 \mathrm{w}$	340323	1		
R54,R60	Res, comp, $470 \Omega \pm 5 \%$; $1 / 4 \mathrm{w}$	147983	2		
R55,R66	Res, var, cermet, $1 \mathrm{M} \pm 10 \%, 1 / 2 \mathrm{w}$	276691	2		
R56,R65	Res, met flm, $1 \mathrm{M} \pm 0.25 \%, 1 / 4 \mathrm{w}$	340133	2		
R57	Res, met flm, $465 \mathrm{k} \pm 0.25 \%, 1 / 8 \mathrm{w}$	340315	1		
R58	Res, met flm, $499 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	268813	1		
R61	Res, met flm, $8.87 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	294967	1		
R62	Res, met flm, $17 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	236802	1		
R63	Res, met flm, $34 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{w}$	261602	1		
R68	Res, comp, $200 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	248781	1		
R69	Res, comp, $750 \mathrm{k} \pm 5 \%$, $1 / 4 \mathrm{w}$	221937	1		
R71	Res, comp, $470 \mathrm{k} \pm 5 \%$, $1 / 4 \mathrm{w}$	188441	1		
R73	Res, comp, $47 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	148163	1		
R74	Res, comp, $20 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{w}$	221614	1		
R76	Res, comp, $180 \mathrm{k} \pm 5 \%$, $1 / 4 \mathrm{w}$	193441	1		
R78	Res, met flm, $10 \Omega \pm 1 \%, 1 / 8 \mathrm{w}$	268789	1		
R79,R80	Part of matched set, one or none may be installed	1			
R81	Not Used				
S1	Switch, slide SPDT	271478	1		
U1	IC, DTL, triple 3-Input Nand Gate	266312	1		
U2	IC, DTL, Quad 2-Input Nand Gate	288597	1		

Rack Mounting Fixtures

6-1. INTRODUCTION

6-2. The Model 8400A can be mounted in a standard 18 -inch or 24 -inch deep equipment rack. The rack mounting kits are as follows:

KIT NAME	RACK KIT NO.
18-inch Rack Slide	M00-260-610
24-inch Rack Slide	M00-280-610
Rack Ears	M03-203-601

6-3. INSTALLATION

6-4. Procedures for installation of rack mounting kits are given in the following illustrations. Each illustration is identified with a form number in the lower lefthand corner. This form number is related to the kit number as follows:

FORM NO.	RACK KIT
A404a	M03-203-601
A405	M00-260-610, M00-280-610

RACK MOUNTING PROCEDURE FOR MODULAR BERIES INETRUMENTE

[^0]A404-2/71

1. REMOVE SIDE TRIM DECAL AND BOTTOM FEET FROM INSTRUMENT.
2. ATTACH CHASSIS SECTION (B) OF SLIDE TO INSTRUMENT WITH \# 8-32 $\times 1 / \mathbf{2}^{\prime \prime}$ PHP SCREWS (A) (ENCLOSED) AS FOLLOWS:
A. FOR 3-1/2", $\mathbf{7}^{\prime \prime}$ AND $10-1 / \mathbf{2}^{\prime \prime}$ HIGH INSTRUMENTS UTILIZE THE CENTER ROW MOUNTING HOLES.
B. FOR 5-1/4" AND 8-3/4" HIGH INSTRUMENTS UTILIZE EITHER THE UPPER OR LOWER ROW OF MOUNTING HOLES.
3. INSTALL CABINET SECTION (D) AND CENTER SECTION (C) OF SLIDE INTO RACK (EXTENSION ANGLE BRACKET AND HARDWARE ENCLOSED).
4. EXTEND CENTER SECTION (C) OF SLIDE TOWARD OPERATOR UNTIL IT LOCKS IN EXTENDED POSITION.
5. DEPRESS SPRING LOCK ON CHASSIS SECTION (B) AND INSERT instrument between extended slide sections.

Accessory
 DOU, RCU Mating Connector

6-1. INTRODUCTION

6-2. The mating connector shown in Figure 6-1 is required for interface between the Remote Control Unit and the programming equipment. It also provides interface between Data Output Unit No. 1 \& 2 and external equipment. This connector is obtained when either option is ordered, or can be obtained by ordering from the factory, referencing FLUKE PART NO. 321687.

6-3. ASSEMBLY INSTRUCTIONS

6-4. Wiring and assembly of the mating connector is done as follows:
a. Solder the wiring to the appropriate terminals of the connector. Refer to Figure 6-1, detail I for terminal locations. Functional pin assignments for
the Remote Control Unit and the Data Output Unit No. $1 \& 2$ can be found in Section 2.
b. Mount alignment spacers (F) between proper pins on Connector (B). Spacer positions are given in Figure 6-2.
c. Mount Connector (B) into Backshell half (C). Refer to detail II of Figure 6-1.
d. Mount Backshell half (A) onto Backshell half (C). When correctly mounted together, the Backshell halves snap in place.
e. Secure Backshell halfs (A) and (C) together with 4 screws (D), supplied.
f. Secure Connector (B) to Backshell halfs (A) and (C) with two screws (E), supplied.

Figure 6-1. DOU, RCU MATING CONNECTOR
(2)

Figure 6-2. ALIGNMENT SPACER POSITIONS

Accessory

Rear Input Mating Connector

6-1. INTRODUCTION

6-2. The mating connector shown in Figure 6-1 is required for interface between the rear panel INPUT connector and external equipment. This connector is obtained when the Rear Input Option (-07) is ordered, or can be obtained from the factory by referencing FLUKE PART NO. 321661.

6-3. ASSEMBLY INSTRUCTIONS

6-4. Wiring and assembly of the mating connector is done as follows:
a. \quad Solder wiring to connector pins (B).
b. Insert connector pins (B) into Connector (A). Refer to Figure 6-1 for terminal locations. Refer to the rear panel decal for functional pin assignments.
c. Mount and secure Cable Clamps (C) onto Connector (A) with proper hardware (D).
d. \quad Secure Cable Clamps (C) together with screws (E).

Figure 6-1. REAR INPUT MATING CONNECTOR

External Reference Mating Connector

6-1. INTRODUCTION

6-2. The mating connector shown in Figure 6-1 is required for interface between the DC and AC External Reference connector and the external equipment. This connector is obtained when either option is ordered, or can be obtained by ordering from the factory by referencing FLUKE PART NO. 321679.

6-3. ASSEMBLY INSTRUCTIONS

6-4. Wiring and assembly of the mating connector is done as follows:
a. \quad Solder the wiring to Terminals (B).
b. Insert Terminals (B) in Connector (A). Refer to Figure 6-1 for terminal locations. Rear panel decal on instrument shows pin connections from External Reference Assembly to Connector.
c. Mount Cable Clamps (C) onto Connector (A) and secure with hardware (D) to Connector (A).
d. Secure both halfs of Cable Clamp (C) together with screws (E).

Figure 6-1. EXTERNAL REFERENCE MATING CONNECTOR

Accessory

Extender Card

6-1. INTRODUCTION

6-2. The Extender Card shown in Figure 6-1 is available as an Accessory for the FLUKE 8400A digital voltmeter. This accessory permits the printed circuit boards in the Model 8400A to be extended for servicing. The Extender Card can be obtained by ordering it under FLUKE PART NO. 298265.

6-3. INSTALLATION

6-4. To install a printed circuit board on the Extender Card proceed as follows:
a. Disconnect 8400 A from line power.
b. Remove top dust and guard covers from instrument.
c. Locate the printed circuit board to be serviced and remove it from the instrument.
d. Install the Extender Card into the connector vacated by the removal of the printed circuit board.
e. Install the printed circuit board into the connector on the Extender Card. The printed circuit board must face the same direction as it did when installed into the instrument.
f. Connect 8400A to line power and turn on instrument. The printed circuit board can now be serviced.

Figure 6-1. EXTENDER CARD

ACCESSORY INFORMATION

MODEL A90 CURRENT SHUNT

6-1. INTRODUCTION

6-2. The Model A90 Current Shunt is designed for use with any high-impedance ac or dc voltmeter capable of accurately measuring 100 millivolts. Six Fluke precision wire wound and strip resistors provide a 100 millivolt fullscale output for each of six pushbutton current ranges: $0.1,1,10,100$, and 1000 milliamperes and 10 amperes
(ac or dc). Basic accuracy is specified over a frequency range of dc to 4 kHz for the 10 ampere range and dc to 10 kHz for the milliampere ranges.

6-3. The instrument is supplied in half-rack case so that it may be conveniently mounted side-by-side with other half-rack instruments in a standard 19-inch rack. A carrying handle detents into custom non-marring feet and serves as a tilt-up bail for bench use.

Figure 6-1. MODEL A90 CURRENT SHUNT

Table 6-1. ACCURACY OF A90 (1 year, $15^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$)

RATED CURRENT RANGE	E BURDEN (APPROX.)	SHUNT R	"OUTPUT" AT RATED CURRENT	"OUTPUT" ACCURACY AS \% OF CURRENT INPUT	
				DC ONLY	DC TO 10 KHZ AC
0.1 ma	100 mv	$1 \mathrm{k} \Omega$	100 mv	$\pm 0.1 \%$	$\pm 0.1 \%$
* 0.1 ma	100 mv	$1 \mathrm{k} \Omega$	100 mv	$\begin{aligned} & +0.0 \% \\ & -0.2 \% \end{aligned}$	$\begin{aligned} & +0.0 \% \\ & -0.2 \% \end{aligned}$
1.0 ma	100 mv	100Ω	100 mv	$\pm 0.1 \%$	$\pm 0.1 \%$
10 ma	100 mv	10Ω	100 mv	$\pm 0.1 \%$	$\pm 0.1 \%$
100 ma	102 mv	1Ω	100 mv	$\pm 0.1 \%$	$\pm 0.1 \%$
1 A	120 mv	0.1Ω	100 mv	土0.1\%	$\pm 0.2 \%$
10A	300 mv	0.01Ω	100 mv	$\pm 0.2 \%$	$\pm 0.3 \%$ (to 4 kHz)

* With $1 \mathrm{M} \Omega$ Input R Voltmeter.

When Input R is $\geqslant 10 \mathrm{M} \Omega$, use non-asterisked 0.1 ma specification.

6-4. SPECIFICATIONS

6-5. Electrical

RANGE
$0.1,1,10,100$, and 1000 milliamps and 10 amperes.

ACCURACY

Table 6-1 gives accuracy specifications for the Model A90 only. Total current measurement accuracy is also dependent on the accuracy and input impedance of the voltmeter being used.

SENSITIVITY

100 millivolts full scale.

OVERLOAD

Model A90 will not be damaged by 100% overload on each range below 10 amperes or by 50% overload on the 10 ampere range.

6-6. Mechanical

CURRENT SELECTION

Pushbutton, each range.

CONNECTORS

Positive (+) and negative (-) INPUT and OUTPUT binding posts with separate input posts for 10 ampere range.

DIMENSIONS

The Model A90 outline drawing is shown in Figure 6-2.

RACK MOUNTING KITS (OPTIONAL)

MEE-7014: Side-by-side Half-rack Mounting Kit
MEE-7006: Center Rack Mounting Kit
MEE-7013: Left or right of center Mounting Kit.

6-7. AUXILIARY ELECTRICAL SPECIFICATIONS

6-8. Tables 6-2 through 6-6 provide accuracy specifications for the Model A90 when used with Fluke Models

Figure 6-2. MODEL A90 OUTLINE DRAWING

Table 6-2. A90/8100A ACCURACY. 30 days, @ $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.

Table 6-3. A90/8300A ACCURACY

DC CURRENT ACCURACY

MEASUREMENTS WITHOUT MV/OHMS OPTION INSTALLED

CURRENT RANGE	$24 \mathrm{hr} @ 23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$	90 days $@ 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
0.1 ma	$\pm(0.1 \%$ of current input $+0.1 \mathrm{ua})$	$\pm(0.11 \%$ of current input $+0.3 \mathrm{ua})$
1.0 ma	$\pm(0.1 \%$ of current input $+1.0 \mathrm{ua})$	$\pm(0.11 \%$ of current input $+3.0 \mathrm{ua})$
10 ma	$\pm(0.1 \%$ of current input $+10 \mathrm{ua})$	$\pm(0.11 \%$ of current input $+30 \mathrm{ua})$
100 ma	$\pm(0.1 \%$ of current input $+0.1 \mathrm{ma})$	$\pm(0.11 \%$ of current input $+0.3 \mathrm{ma})$
1 A	$\pm(0.1 \%$ of current input $+1.0 \mathrm{ma})$	$\pm(0.11 \%$ of current input $+3.0 \mathrm{ma})$
10 A	$\pm(0.2 \%$ of current input $+10 \mathrm{ma})$	$\pm(0.21 \%$ of current input $+30 \mathrm{ma})$

MEASUREMENTS WITH MV/OHMS OPTION (8300A-02) INSTALLED

CURRENT RANGE	90 days @ $23{ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	
0.1 ma 1.0 ma 10 ma 100 ma 1A 10A	$\begin{aligned} & \pm(0.11 \% \text { of current input }+0.01 \text { ua }) \\ & \pm(0.11 \% \text { of current input }+0.1 \text { ua) } \\ & \pm(0.11 \% \text { of current input }+1.0 \text { ua }) \\ & \pm(0.11 \% \text { of current input }+10 \text { ua }) \\ & \pm(0.11 \% \text { of current input }+0.1 \mathrm{ma}) \\ & \pm(0.21 \% \text { of current input }+1.0 \mathrm{ma}) \end{aligned}$	
$\begin{array}{ll} \mathrm{V}_{\mathrm{r}}= & 100 \mathrm{MV}(0.1 \mathrm{v}) \\ \mathrm{V}_{\mathrm{dfs}}= & 100.000 \text { (Readout will also display MV DC }+ \text { or MV DC- }) \end{array}$		
AC CURRENT ACCURACY MEASUREMENTS WITH AC OPTION 8300A-01 INSTALLED 90 days @ $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ using AC Zero control periodically.		
CURRENT RANGE	$30 \mathrm{~Hz}-50 \mathrm{~Hz}$	$50 \mathrm{~Hz}-10 \mathrm{kHz}$
$\begin{aligned} & 0.1 \mathrm{ma} \\ & 1.0 \mathrm{ma} \\ & 10 \mathrm{ma} \\ & 100 \mathrm{ma} \\ & 1 \mathrm{~A} \\ & 10 \mathrm{~A} \end{aligned}$	$+(0.5 \%$ of current input +0.05 ua) $-(0.7 \%$ of current input +0.05 ua) $\pm(0.6 \%$ of current input +0.5 ua) $\pm(0.6 \%$ of current input +5.0 ua) $\pm(0.6 \%$ of current input +50 ua) $\pm(0.7 \%$ of current input $+0.5 \mathrm{ma})$ $\pm(0.8 \%$ of current input $+5.0 \mathrm{ma})$	$\begin{aligned} & +(0.1 \% \text { of current input }+0.05 \text { ua }) \\ & -(0.3 \% \text { of current input }+0.05 \text { ua }) \\ & \pm(0.2 \% \text { of current input }+0.5 \text { ua }) \\ & \pm(0.2 \% \text { of current input }+5.0 \text { ua }) \\ & \pm(0.2 \% \text { of current input }+50 \mathrm{ua}) \\ & \pm(0.3 \% \text { of current input }+0.5 \mathrm{ma}) \\ & \pm(0.4 \% \text { of current input }+5.0 \mathrm{ma})^{*} \end{aligned}$
$\begin{aligned} \mathrm{V}_{\mathrm{r}}= & 1 \mathrm{VAC} \\ \mathrm{~V}_{\mathrm{dfs}}= & .10000 \text { (Readout will also display " } A C \text { ") } \\ & { }^{*} 10 \mathrm{~A} \text { specified to } 4 \mathrm{kHz} \text { only. } \end{aligned}$		

Table 6-4. A90/9500A SPECIFICATIONS

ACCURACY WHEN UNKNOWN CURRENT IS 20\% OR MORE OF A90 CURRENT RANGE. $\left(23^{\circ} \mathbf{C} \pm \mathbf{1 0}^{\mathbf{0}} \mathbf{C}\right)$		
CURRENT RANGE	$20 \mathrm{~Hz}-50 \mathrm{~Hz}$	$50 \mathrm{~Hz}-10 \mathrm{kHz}$
0.1 ma	$+(0.3 \%$ of current input $+0.02 \mathrm{ua})$	$+(0.05 \%$ of current input $+0.015 \mathrm{ua})$
	$-(0.5 \%$ of current input $+0.02 \mathrm{ua})$	$-(0.25 \%$ of current input $+0.015 \mathrm{ua})$
1.0 ma	$\pm(0.4 \%$ of current input $+0.2 \mathrm{ua})$	$\pm(0.15 \%$ of current input $+0.15 \mathrm{ua})$
10 ma	$\pm(0.4 \%$ of current input $+2.0 \mathrm{ua})$	$\pm(0.15 \%$ of current input $+1.5 \mathrm{ua})$
100 ma	$\pm(0.4 \%$ of current input $+20 \mathrm{ua})$	$\pm(0.15 \%$ of current input $+15 \mathrm{ua})$
1 A	$\pm(0.5 \%$ of current input $+0.2 \mathrm{ma})$	$\pm(0.25 \%$ of current input $+0.15 \mathrm{ma})$
10 A	$\pm(0.6 \%$ of current input $+2.0 \mathrm{ma})$	$\pm(0.35 \% \text { of current input }+1.5 \mathrm{ma})^{*}$

ACCURACY WHEN UNKNOWN CURRENT IS BETWEEN 10\% AND 20\% OF A90 CURRENT RANGE.

A90 INPUT (\% OF CURRENT RANGE)	$\%$ OF INPUT ABSOLUTE ACCURACY $20 \mathrm{~Hz}-50 \mathrm{~Hz} @ 23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$ FOR A90 CURRENT RANGE							
	0.1 ma		1 ma - 100 ma	1A	10A			
	+	-						
10-11\%	0.53\%	0.73\%	$\pm 0.63 \%$	$\pm 0.73 \%$	$\pm 0.83 \%$			
12-14\%	0.50\%	0.70\%	$\pm 0.60 \%$	$\pm 0.70 \%$	$\pm 0.80 \%$			
15-17\%	0.47\%	0.67\%	$\pm 0.57 \%$	$\pm 0.67 \%$	$\pm 0.77 \%$			
18-20\%	0.44\%	0.64\%	$\pm 0.54 \%$	$\pm 0.64 \%$	$\pm 0.74 \%$			
A90 INPUT (\% OF	\% OF INPUT ABSOLUTE ACCURACY $50 \mathrm{~Hz}-10 \mathrm{kHz} @ 23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$ FOR A90 CURRENT RANGE							
CURRENT RANGE)	0.1 ma		1 ma - 100 ma	1A	10A*			
	+	-						
10-11\%	0.23\%	0.43\%	$\pm 0.33 \%$	$\pm 0.43 \%$	$\pm 0.53 \%$			
12-14\%	0.20\%	0.40\%	$\pm 0.30 \%$	$\pm 0.40 \%$	$\pm 0.50 \%$			
15-17\%	0.17\%	0.37\%	$\pm 0.27 \%$	$\pm 0.37 \%$	$\pm 0.47 \%$			
18-20\%	0.13\%	0.33\%	$\pm 0.23 \%$	$\pm 0.33 \%$	$\pm 0.43 \%$			
$\begin{array}{ll} \mathrm{V}_{\mathrm{dfs}}= & .10000 \\ \mathrm{TC}= & 0.005 \% \text { of current input } /{ }^{\circ} \mathrm{C} 20 \\ & 0.004 \% \text { of current input } /{ }^{\circ} \mathrm{C} 50 \end{array}$ *10A is specified to 4 kHz only.								

8100A, 8300A, 9500A, $891 \mathrm{~A}, 893 \mathrm{~A}$, and 931B. Table 6-7 gives V_{r} and $\mathrm{V}_{\mathrm{dfs}}$ for each of the voltmeters listed in the tables in addition to various other Fluke voltmeters, where

$$
\begin{aligned}
\mathrm{V}_{\mathrm{r}}= & \text { Voltage range to be used on the voltmeter } \\
\text { and } \quad \mathrm{V}_{\mathrm{dfs}}= & \text { Nominal voltmeter reading with full-scale } \\
& \text { current in A90 shunt. }
\end{aligned}
$$

6-9. INSTALLATION

6-10. There are three rack-mount kits available, at additional cost, for use with the Model A90. Kit MEE-7014 allows the Model A90 to be mounted side-by-side with another half-rack instrument in a standard 19 -inch rack. Kit MEE-7006 supplies hardware necessary to mount the

Table 6-5. A90/891A AND 893A ACCURACY (Sheet 1 of 2)

WITH 891A AND 893A - DC ACCURACY		
CURRENT RANGE	@ $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	@ $15^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$
0.1 ma 1.0 ma 10 ma 100 ma 1A 10A	$\begin{aligned} & \pm(0.11 \% \text { of current input }+0.02 \text { ua }) \\ & \pm(0.11 \% \text { of current input }+0.2 \text { ua }) \\ & \pm(0.11 \% \text { of current input }+2.0 \text { ua }) \\ & \pm(0.11 \% \text { of current input }+20 \text { ua }) \\ & \pm(0.11 \% \text { of current input }+0.2 \mathrm{ma}) \\ & \pm(0.21 \% \text { of current input }+2.0 \mathrm{ma}) \end{aligned}$	$\begin{aligned} & \pm(0.12 \% \text { of current input }+0.02 \text { ua) } \\ & \pm(0.12 \% \text { of current input }+0.2 \text { ua) } \\ & \pm(0.12 \% \text { of current input }+2.0 \text { ua) } \\ & \pm(0.12 \% \text { of current input }+20 \text { ua }) \\ & \pm(0.12 \% \text { of current input }+0.2 \mathrm{ma}) \\ & \pm(0.22 \% \text { of current input }+2.0 \mathrm{ma}) \end{aligned}$
$\begin{aligned} & V_{r}=1 v \\ & V_{\mathrm{dfs}}=0.10000 \end{aligned}$		
WITH 893A - AC ACCURACY @ $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$		
CURRENT RANGE		$50 \mathrm{~Hz}-10 \mathrm{kHz}$
		$\begin{aligned} & \mathrm{f} \text { current input }+0.025 \text { ua) } \\ & \mathrm{f} \text { current input }+0.025 \text { ua) } \\ & \mathrm{f} \text { current input }+0.25 \text { ua) } \\ & \mathrm{f} \text { current input }+2.5 \text { ua) } \\ & \mathrm{f} \text { current input }+25 \text { ua) } \\ & \mathrm{f} \text { current input }+0.25 \mathrm{ma}) \\ & \mathrm{f} \text { current input }+2.5 \mathrm{ma})^{*} \end{aligned}$
WITH 893A - AC ACCURACY @ $15^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$		
CURRENT RANGE	$5 \mathrm{~Hz}-10 \mathrm{~Hz}$	$10 \mathrm{~Hz}-20 \mathrm{~Hz}$
0.1 ma 1.0 ma 10 ma 100 ma 1A 10A	$\begin{aligned} & +(1.0 \% \text { of current input }+0.25 \text { ua }) \\ & -(1.2 \% \text { of current input }+0.25 \text { ua }) \\ & \pm(1.1 \% \text { of current input }+2.5 \text { ua }) \\ & \pm(1.1 \% \text { of current input }+25 \mathrm{ua}) \\ & \pm(1.1 \% \text { of current input }+0.25 \mathrm{ua}) \\ & \pm(1.2 \% \text { of current input }+2.5 \mathrm{ma}) \\ & \pm(1.3 \% \text { of current input }+25 \mathrm{ma}) \end{aligned}$	$+(0.5 \%$ of current input +0.1 ua) $-(0.7 \%$ of current input +0.1 ua) $\pm(0.6 \%$ of current input +1.0 ua) $\pm(0.6 \%$ of current input +10 ua) $+(0.6 \%$ of current input $+0.1 \mathrm{ma})$ $\pm(0.7 \%$ of current input $+1.0 \mathrm{ma})$ $\pm(0.8 \%$ of current input +10 ma)
893A - AC ACCURACY @ $15^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$.		
CURRENT RANGE	$20 \mathrm{~Hz}-50 \mathrm{~Hz}$	$50 \mathrm{~Hz}-10 \mathrm{kHz}$
0.1 ma 1.0 ma 10 ma 100 ma 1A 10A	$\begin{aligned} & +(0.15 \% \text { of current input }+0.025 \text { ua }) \\ & -(0.35 \% \text { of current input }+0.025 \text { ua }) \\ & \pm(0.25 \% \text { of current input }+0.25 \text { ua }) \\ & \pm(0.25 \% \text { of current input }+2.5 \mathrm{ua}) \\ & \pm(0.25 \% \text { of current input }+25 \mathrm{ua}) \\ & \pm(0.35 \% \text { of current input }+0.25 \mathrm{ma}) \\ & \pm(0.45 \% \text { of current input }+2.5 \mathrm{ma}) \end{aligned}$	$\begin{aligned} & +(0.1 \% \text { of current input }+0.025 \text { ua) } \\ & -(0.3 \% \text { of current input }+0.025 \mathrm{ua}) \\ & \pm(0.2 \% \text { of current input }+0.25 \mathrm{ua}) \\ & \pm(0.2 \% \text { of current input }+2.5 \mathrm{ua}) \\ & \pm(0.2 \% \text { of current input }+25 \mathrm{ua}) \\ & \pm(0.3 \% \text { of current input }+0.25 \mathrm{ma}) \\ & \pm(0.4 \% \text { of current input }+2.5 \mathrm{ma})^{*} \end{aligned}$

Table 6-5. A90/891A AND 893A ACCURACY (Sheet 2 of 2)

$$
\begin{aligned}
& V_{r}=1 v(A C \text { or } D C) \\
& V_{d f s}=0.10000
\end{aligned}
$$

* 10A is specified to 4 kHz only.

Table 6-6. A90/931B SPECIFICATIONS

ACCURACY WHEN UNKNOWN CURRENT IS 10\% OR MORE OF A90 CURRENT RANGE				
CURRENT RANGE	$\begin{gathered} \% \text { OF II } \\ 2 \mathrm{~Hz}-3 \mathrm{~Hz} \end{gathered}$	UT ABSOLUTE $3 \mathrm{~Hz}-5 \mathrm{~Hz}$	$\begin{aligned} & \text { CCURACY } \\ & 5 \mathrm{~Hz}-30 \mathrm{~Hz} \end{aligned}$	SPECIFICATIONS $30 \mathrm{~Hz}-10 \mathrm{kHz}$
0.1 ma 1.0 ma 10 ma 100 ma 1A 10A TC=	$\begin{aligned} & +1.0 \% \\ & -1.2 \% \\ & \pm 1.1 \% \\ & \pm 1.1 \% \\ & \pm 1.1 \% \\ & \pm 1.2 \% \\ & \pm 1.3 \% \\ & \pm 0.1 \% /{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +0.5 \% \\ & -0.7 \% \\ & \pm 0.6 \% \\ & \pm 0.6 \% \\ & \pm 0.6 \% \\ & \pm 0.7 \% \\ & \pm 0.8 \% \\ & \pm 0.05 \% /{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +0.2 \% \\ & -0.4 \% \\ & \pm 0.3 \% \\ & \pm 0.3 \% \\ & \pm 0.3 \% \\ & \pm 0.4 \% \\ & \pm 0.5 \% \\ & \pm 0.025 \% /{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +(0.05 \% \text { of current input }+5 \mathrm{na}) \\ & -(0.25 \% \text { of current input }+5 \mathrm{na}) \\ & \pm(0.15 \% \text { of current input }+50 \mathrm{na}) \\ & \pm(0.15 \% \text { of current input }+0.5 \mathrm{ua}) \\ & \pm(0.15 \% \text { of current input }+5 \mathrm{ua}) \\ & \pm(0.25 \% \text { of current input }+50 \text { ua }) \\ & \pm(0.35 \% \text { of current input }+0.5 \mathrm{ma})^{*} \\ & \pm 0.0025 \% /{ }^{\circ} \mathrm{C} \end{aligned}$
$\begin{aligned} & V_{r}=100 \mathrm{MV} \\ & V_{d f s}=100.000 \end{aligned}$				

Table 6-7. " V_{r} " AND " $\mathrm{V}_{\mathrm{dfs}}$ " FOR VOLTMETERS OF TABLES 6-2 THROUGH 6-6

VOLTMETER	${ }^{\prime} V_{r}{ }^{\prime \prime}$	" $\mathrm{V}_{\text {dfs }}$ "
8300A (Without MV/Ohms)	10 v	. 010
8100A, 871A, 873A, 881A, 883A, 885A, 887A, 891A, 893A	1 v	. 100
801, 803, 801B, 803B, 803D, 821A, 823A, 825A	0.5 v	. 100
9500A, 910A	0.1 v	. 100
8300A (With MV/Ohms), 931A, 931B	100 MV	100.0
$\begin{aligned} & \mathrm{V}_{\mathrm{r}}=\quad \text { Voltage range to be used on the voltmeter. } \\ & \mathrm{V}_{\mathrm{dfs}}=\quad \text { Nominal voltmeter reading with full-scale current in A90 shunt. } \end{aligned}$		

instrument in the center of the rack. Kit MEE-7013 supplies two different sized rack ears so that the instrument can be mounted to the left or to the right of rack center.

6-11. OPERATING INSTRUCTIONS

6-12. A description of Model A90 controls and terminals is given in Figure 6-3.

6-13. Equipment Connections

6-14. It is recommended that the Model A90 always be used in the "LO" lead as shown in Figure 6-4A. When used in the "HI" lead, as shown in Figure 6-4B, the distributed capacitance, CDIST, loads the source. When connected in the "HI" lead, the voltmeter guard should either be connected as shown or else the voltmeter should be battery operated.

Figure 6-3. MODEL A90 CONTROLS AND TERMINALS.

6-15. At high ac currents, performance of the A90 may depend upon the manner in which the current leads are connected to the input binding posts. Optimum performance is obtained when the input current leads are twisted.

6-16. Voltmeter Impedance

6-17. The input impedance of the voltmeter which is used with the Model A90 is significant with regard to total measurement accuracy. As indicated in the specifications, Model A90 measurement accuracy is derated for voltmeters having finite input impedance. As the voltmeter input capacity increases, the Model A90 response rolls off at the high end; and as the voltmeter input resistance decreases, the response shifts downward, resulting in negative measurement errors.

6-18. Combining Model A90 And Voltmeter Specifications

6-19. Combined specifications for the A90 when used with various Fluke voltmeters is given in Tables 6-2 through $6-6$. When the A90 is used with other voltmeters, the following information may be used to combine specifications.

6-20. Equation 1 (Figure 6-5) is used to combine A90 and voltmeter specifications for overall accuracy. The "W" term is taken from Table 6-1, and the " X ", " Y " and " Z " terms are taken from voltmeter specifications (data sheets). All Fluke voltmeter specifications, except the Model 910A, contain the " X " term; they usually list the " Y " term and occasionally the "Z" term. Model 910A accuracy specifi-

Figure 6-4. EQUIPMENT CONNECTIONS FOR CURRENT MEASUREMENT.

EQUATION 1. COMBINING A-90 SPECIFICATION WITH VOLTMETER SPECIFICATION.
A-90 Specification
(from Table 6-1)
Voltmeter Specification
(from Voltmeter Data Sheet)

EXAMPLE 1: Accuracy using 10 ma DC A-90 range with 891A.

Figure 6-5. EQUATION 1 - COMBINING A90 AND VOLTMETER SPECIFICATIONS (Sheet 1 of 2)

EXAMPLE 2: Accuracy using 0.1 ma AC A-90 range with 873 A at 1 kHz .
Model 873A has 1 megohm input impedance in its AC mode so separate accuracy statements are required for positive and negative limits of error for measurements made on the A-90's 0.1 ma range.

Positive Limit of Error

A-90 Specification
873A Specification

Negative Limit of Error
$=-[(0.2+0.2) \quad \%$ of current input $+0.025 \%$ of current range $]$
$=-[0.4 \%$ of current input $+0.025 \%$ of current range. $]$

Figure 6-5. EQUATION 1 - COMBINING A90 AND VOLTMETER SPECIFICATIONS (Sheet 2 of 2)
cation consists of " Y " term only. If "X", "Y", or "Z" do not appear in a voltmeter accuracy specification, it should be treated as a zero in Equation 1. The voltmeter must be used on the lowest range that can measure 100 millivolts. This range is assigned the symbol " V_{r} " in Equation 1. V_{r} is always stated as volts, i.e., 100 millivolt range equals 0.1 volts for V_{r}.

6-21. Equation 2 (Figure 6-6) may be used to convert the voltmeter voltage reading to current.

6-22. THEORY OF OPERATION

6-23. The schematic diagram of the Model A90 is located at the back of the manual. In the milliampere ranges, current is directed through the appropriate shunt resistor by switches S1A through S5A, and the corresponding output voltage is connected to the output terminals through switches S1 through S5, decks B and C. In 10 ampere range, the input current is applied directly to the shunt resistor, and the output voltage is connected to the output terminals through switch S6.

6-24. All shunt resistors are four-terminal shunts or are connected in a four-terminal switching arrangement so that lead resistance does not affect measurement accuracy.

6-25. MAINTENANCE

6-26. The following paragraphs contain instructions for cleaning and calibrating the Model A90.

6-27. Cleaning

6-28. The instrument should be cleaned periodically to remove dust, grease, and other contamination. The following procedure should be adhered to when cleaning the instrument:
a. Remove loose contamination with low-pressure, clean, dry air.
b. Clean front panel and exterior surfaces with anhydrous ethyl alcohol or a soft cloth dampened in a mild solution of detergent and water.

CAUTION!

Do not use aromatic hydrocarbons or chlorinated solvents on the front panel, because they will react with the Lexan binding posts.

Figure 6-6. Equation 2 - CONVERTING VOLTAGE READINGS TO CURRENT

6-29. Test Equipment

6-30. Test equipment required for calibration and testing of the Model A90 is shown in Table 6-8. If the recommended equipment is not available, other equivalent equipment may be used.

Table 6-8. LIST OF TEST EQUIPMENT

NAME	RECOMMENDED EQUIPMENT
Constant Current Source	Fluke Model 382A
DC Differential	
Voltmeter	
Low-Thermal	
Leads	
4-Terminal	
Ohmmeter	Fluke Model 895A or 885A

6-31. Calibration

6-32. PRELIMINARY CHECKS. Make the resistance checks shown in Table 6-9. Values are approximate since check is intended to show only gross errors, such as defective or open resistors.

6-33. . 1 MA AND 1 MA RANGE CHECKS. Connect the ohmmeter and A90, as shown in Figure 6-7, for 4 terminal resistance measurements, and perform the following steps:
a. Set the A90 to the . 1 MA range. The ohmmeter should indicate between 1.00050 and 0.99950 kilohms. If the measured resistance is not within these limits, the .1 MA shunt, R6, is defective and must be replaced.
b. Set the A90 to the 1 MA range. The ohmmeter should indicate between 100.07 and 99.93 ohms. If the measured resistance is not within these limits, the 1 MA shunt, R5, is defective and must be replaced.

6-34. $10 \mathrm{MA}, 100 \mathrm{MA}$, AND 1000 MA RANGE CHECKS. Connect the constant current generator, differential voltmeter, and A90 as shown in Figure 6-8 and perform the following steps:
a. Set the A90 to the 10 MA range.
b. Set the differential voltmeter controls as follows:

RANGE	1 Volt
NULL Sensitivity	$100 \mu \mathrm{~V}$

Readout Dials 0.100000

Table 6-9. RESISTANCE CHECKS

OHMMETER CONNECTIONS	MODEL A90		
	RANGE	APPROXIMATE RESISTANCE (OHMS)	
	. 1 MA	n	1000
	1 MA		100
INPUT	10 MA		10
Terminals	100 MA		1
	1000 MA		0.1
	10A		∞
INPUT (10A Terminals)	10 A		0.01
	10A		0.01
	1000 MA		0.1
OUTPUT	100 MAA		1
Terminals	10 MA		10
	1 MA		100
	. 1 MA		1000

MODEL 8300A

Figure 6-7. EQUIPMENT CONNECTIONS - . 1 MA AND 1 MA RANGE CHECKS

Figure 6-8. EQUIPMENT CONNECTIONS - 10 MA, 100 MA, AND 1000 MA RANGE CHECKS
c. Set the constant current generator for 10.0000 milliamperes output. The differential voltmeter should indicate null within ± 80 micorvolts. If the voltmeter does not indicate within these limits, the 10 MA shunt, R4, is defective and must be replaced.
d. Change the A90 range to 100 MA and the constant current generator output to 100 milliamperes. The differential voltmeter should indicate null within ± 80 microvolts. If the voltmeter does not indicate within these limits, the 100 MA shunt, R3, is defective and must be replaced.
e. Change the A90 range to 1000 MA and the constant current generator output to 1000 milliamperes. The differential voltmeter should indicate null within ± 80 microvolts. If the +80 microvolt limit is not met, the 1000 MA shunt, R 2 , should be replaced. If the -80 microvolt limit is
not met, R2 is low in ohmic value and can be trimmed to its desired value by carefully removing a small amount of material from the edge of the shunt using a whetstone.

6-35. 10 AMPERE RANGE CHECK. Connect equipment as shown in Figure 6-8, leaving the constant current generator temporarily disconnected from the A90, and perform the following steps:
a. Set the differnetial voltmeter controls as follows:

RANGE	1 Volt
NULL Sensitivity	$100 \mu \mathrm{~V}$
Readout Dials	0.00000

The voltmeter should indicate less than ± 4 microvolts of thermal offset. If more than ± 4 microvolts of offset is observed, check for cold solder joints or possible thermal generators in the test
setup. When thermal offset has been reduced to within ± 4 microvolts, proceed to step (b).
b. Connect the constant current generator to the 10 AMP binding posts of the A90 and set the A90 to the 10 A range.
c. Set the differential voltmeter controls as follows:

RANGE	1 Volt
NULL Sensitivity	$100 \mu \mathrm{~V}$

Readout Dials . 020000
d. Set the constant current generator output to 2 amperes. The voltmeter should indicate null within ± 80 microvolts. If the +80 microvolt limit is not met, the 10 ampere shunt, $R 1$, should be replaced. If the -80 microvolt limit is not met, R1 is low in ohmic value and can be trimmed to its desired value by carefully removing a small amount of material from the edge of the shunt using a whetstone.

6-36. LIST OF REPLACEABLE PARTS

REF DESIG	INDEX NO	DESCRIPTION	$\begin{gathered} \text { STOCK } \\ \text { NO } \end{gathered}$	MFR	MFPR PART NO	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	REC aTY	$\begin{gathered} \text { USE } \\ \text { CODE } \end{gathered}$
$\begin{gathered} \mathrm{J} 1, \mathrm{~J} 2, \\ \mathrm{~J} 5 \\ \mathrm{~J} 3, \mathrm{~J} 4, \\ \mathrm{~J} 6 \end{gathered}$		CURRENT SHUNT - Figure 6-9 Shunt PCB Assembly (See Figure 6-9) Binding post, red, + Binding post, black - Cover, bottom Cover, top Foot Handle, carrying Panel, front Panel, rear	A90 *490-403 275552 275560 224360 224352 230037 231423 A90-208 A90-209	89536 89536 89536 89536 89536 89536 89536 89536 89536	A90-403 275552 275560 224360 224352 230337 231423 A90-208 A90-209	1 3 3 1 1 4 1 1 1		
				A90-208				

Figure 6-9. MODEL A90 CURRENT SHUNT (Sheet 1 of 2)

Figure 6-9. MODEL A90 CURRENT SHUNT (Sheet 2 of 2)

ACCESSORY INFORMATION

MODEL 80-RF HIGH FREQUENCY PROBE

6-1. INTRODUCTION

62. The Model $80-\mathrm{RF}$ High Frequency Probe allows measurements over a frequency range of 100 kHz to 500 MHz from 0.25 to 30 volts when using FLUKE voltmeters having an input impedance of 10 megohms $\pm 10 \%$. The accuracy of measurement is $\pm 5 \%$ from 100 kHz to 100 MHz and $+7 \%$ to 500 MHz . The probe operates into any dc voltmeter having an input impedance of 10 megohms $\pm 10 \%$. A shielded dual-banana plug on the probe permits direct connection to the voltmeter input.

6-3. SPECIFICATIONS

6-4. Electrical

VOLTAGE	0.25 V to 30 V
RESPONSE:	Responds to peak value of input. Calibrated to read rms value of a sine wave input.

AC TO DC TRANSFER ACCURACY:
Loaded with 10 megohms $\pm 10 \%$.

	$100 \mathrm{KHz}-100 \mathrm{MHz}$	$100 \mathrm{MHz}-500 \mathrm{MHz}$
$+10^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$	$\pm 5 \%$	$\pm 7 \%$
$-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$	$\pm 7 \%$	$\pm 15 \%$

$< \pm 3 \mathrm{db}$ at 10 kHz and 700 MHz .

INPUT IMPEDANCE: 4 megohms shunted by $2 \pm 0.5 \mathrm{pf}$.

MAXIMUM INPUT: 30 volts rms AC, 200 volts DC.

6-5. General	
CABLE CONNECTIONS:	Shielded dual banana plug Fits all standard $3 / 4$-inch dual banana connectors.
CABLE LENGTH:	$4 \mathrm{ft}(121.9 \mathrm{~cm})$ minimum..
WEIGHT:	$3-1 / 2 \mathrm{oz}$. net.
ACCESSORIES	Ground Lead SUPPLIED
	Straight Tip Hook Tip High Frequency Adapter

6-6. OPERATING INSTRUCTIONS

6-7. Connect the shielded dual banana plug directly to the voltmeter input terminals, GND to COMMON or LO. Affix the appropriate probe tip to the probe body, then connect the probe to the high frequency circuit under test. When using the Straight or Hook Tip the ground clip must be connected to the test circuit. When using the high frequency adaptor with appropriate 50 ohm connectors, the ground clip is not required.

6-8. The Straight Tip or Hook Tip supplied with the probe can be used for measurements up to 100 MHz . For measurements above 100 MHz the High Frequency Adapter allows connections to 50 ohm terminations. Ensure that the probe is used in conjunction with dc voltmeters having $10 \mathrm{M} \Omega \pm 10 \%$ input impedance to meet its specifications.

6-9. The maximum input to the probe is 30 volts rms ac, or 200 volts dc. These factors may be used in combination so that an ac signal may be measured riding on a dc voltage of up to 200 volts. However, it must be noted that if ac superimposed on dc is being measured, the dc level must not be changed by more than 200 volts or the resulting transient is apt to damage the diodes inside the probe.

6-10. THEORY OF OPERATION

6-11. Figure 6-1 contains a schematic diagram of the probe. C1 is a dc blocking capacitor, CR1 is used as a detector, and R1, R3, CR2, R2, and Rin form a divider network. C1, charging through CR1 during the negative half cycle of the input produces a positive dc voltage at the CR1-R1 junction which equals the negative peak value of the input signal. The divider network reduces this to the rms value of the input. It can be seen that the probe must be operated into a $10 \mathrm{M} \Omega$ load in order to maintain the proper division ratio.

6-12. CR2 provides compensation for the non-linearity of the detector. R3 is a selected part having a value of $50 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$, as required for proper divider action.

Figure 6-1. SCHEMATIC

6-13. MAINTENANCE

6-14. Performance Checks

6-15. The following checks verify the probe $A C$ to $D C$ Transfer accuracy.

6-16. LOW FREQUENCY RESPONSE. Connect equipment as shown in Figure 6-2, and perform the following steps.
a. With equipment as shown in connection " A " adjust the ac signal source for an output of 3.000 volts rms at 100 kHz as measured on the DVM.
b. In connection "B" with the DVM set to measure dc, observe a probe output of 3.15 to 2.85 volts.
c. Placing cables back in connection "A", decrease the ac signal source by $10 \mathrm{db}(0.95$ volts).
d. Moving back to connection " B ", observe a voltmeter indication of between 1.00 and 0.90 volts (10 db down from 3 volts).

Figure 6-2. LOW FREQUENCY RESPONSE CHECK

Figure 6-3. HIGH FREQUENCY RESPONSE CHECK
e. In connection " A ", decrease the ac signal source an additional 10 db (to 0.3 volts) as indicated by the voltmeter in its ac function.
f. Back to " B ", observe a voltmeter reading of .315 to .285 vdc .
g. Return the ac signal source back to 3.000 vrms.
h. Repeat steps a through g with frequencies of $500 \mathrm{kHz}, 1 \mathrm{MHz}$, and 10 MHz .

6-17. HIGH FREQUENCY RESPONSE. Connect equipment to the $80-$ RF probe as shown in Figure 6-3, and perform the following steps:
a. Set the ac signal source ot 100 MHz with an output level of 10 milliwatts as indicated on the power meter. Ensure that the ac signal source has stabilized at 10 millivolts output.
b. Observe that the voltmeter indication is between 0.757 and 0.657 volts. (0.707 volts corresponds to 10 milliwatts in 50 ohms).
c. Repeat the above for frequencies of 200 $\mathrm{MHz}, 300 \mathrm{MHz}, 400 \mathrm{MHz}$, and 480 MHz .

6-18. Calibration

6-19. Should the $80-\mathrm{RF}$ require recalibration, perform the following steps:
a. Perform steps a and b in paragraph 6-16, with a frequency of 1 MHz .
b. Observe the dc voltmeter indication; a reading below 3 volts calls for a decrease in the value of R3, a reading above 3 volts calls for an increase in R3. Resistor R3 should be a $1 / 8 \mathrm{~W}$ metal film type. In a probe that is working properly, a $30 \mathrm{k} \Omega$ change in R3 will produce about a 1% reading deviation.

6-20. Cleaning

6-21. The Model 80-RF requires a minimum amount of cleaning. Accumulation of dust or dirt particles between the output terminals of the Model 80-RF can be removed using clean dry pressurized air. Stubborn particles can be removed following an application of isopropyl alcohol.

General Information

7-1. This section of the manual contains generalized user information as well as supplemental information to the List of Replaceable Parts contained in Section 5.

Federal Supply Codes for Manufacturers

D9816	01101	02697	04423
Westermann Wilhelm Augusta-Anlage	Wabash Inc	Parker-Hannifin Corp.	Telonic Berkley Inc.
Mannheim-Nackarau Germany	(Formerly Wabash Magnetics)	O-Ring Div	Laguna Beach, CA
	Wabash, IN	Lexington, KY	
S0482			04713
Sony Corp.	01121	02735	Motorola Inc.
Tokyo, Japan	Allen Bradley Co.	RCA-Solid State Div.	Semiconductor Group
	Milwaukee, WI	Somerville, NJ	Phoenix, AZ
S3774			
Oshino Electric Lamp Works	01281		04946
Tokoyo, Japan	TRW Electronics \& Defense Sector	02768	Standard Wire and Cable
	R F Devices	ITW (IL Tool Works)	Rancho Dominquez, CA
0AD86	Lawndale, CA	Fastex Division	
IN General		Des Plaines, IL	05173
El Paso, TX	01295		General Radio
	TX Instruments Inc.	02799	NY,NY.
0AE89	Semiconductor Group	Arco Electronics Inc.	Replaced by:
Autosplice Inc.	Dallas, TX	Chatsworth, CA	
Woodside, NY			
	01526	03296	24655
0BW21	Genicom	Nylon Molding Corp.	Gerrad, INC.
Noritake Co. Inc.	Waynesboro, VA	Monrovia, CA	Concord, MA
Burlington, MA			
	01537	03445	05236
0ANF0	Motorola Communications \&	Lercon Electronics Inc	Jonathan Mfg. Co.
Topaz Semiconductor Inc	Electronics Inc.	Burbank, CA	Fullerton, CA
San Jose, CA	Franklin Park, IL		
		03508	05245
0DSM7	01686	General Electric Co.	Corcom Inc.
Conductive (Pkg) Containers Inc.	RCL Electronics/Shallcross Inc.	Semiconductor Products	Libertyville, IL
Brookfield, WI	Electro Components Div.	\& Batteries	
	Manchester, NH	Aubum, NY	
OCLN7			05276
Emhart Fastening Group	01884	03797	ITT Pomona
Shelton, CT	Sprague Electric Co. (Now 56289)	Genisco Technology Corp. Eltronics Div.	Electronics Div. Pomona, CA
		Eltronics Div. Rancho Dominquez, CA	Pomona, CA
0FB81	01961		05277
S-Mos Systems Inc.	Varian Associates Inc.	03877	Westinghouse Elec. Corp.
San Jose, CA	Pulse Engineering Div.	Gilbert Engineering Co.Inc	Semiconductor Div.
	Convoy, CT	Incon Sub of Transitron	Youngwood, PA
0FFP1		Electronic Corp.	
Everready LTD	01963	Glendale, AZ	05347
Ever Ready Special Battery Div.	Cherry Electrical Products Corp		Ultronix Inc
Dawley Telford Salop UK	Waukegan, IL	03888	Grand Junction, CO
		KDI Electronics Inc.	
00199	02111	Pyrofilm Div.	05397
Marcon Electronics Corp	Spectrol Electronics Corp.	Whippany, NJ	Union Carbide Corp.
Keamy, NJ	City of Industry, CA		Materials Systems Div.
		03911	Cleveland. OH
00213	02114	Clairex Corp.	
Nytronics Comp. Group Inc.	Amperex Electronic Corp.	Clairex Electronics Div.	05571
Darrlingon, NC	Ferrox Cube Div. Saugerties, NY	Mount Vemon, NY	Sprague Electric Co. (Now 56289)
00327		03980	
Welwyn Intemational Inc.	02131	Muirhead Inc.	05574
Westake, OH	General Instrument Corp.	Mountainside, NJ	Viking Connectors Inc
	Govemment Systems Div.		Sub of Criton Corp.
00656	Westwood, MA	04009	Chatsworth, CA
Aerovox Corp.		Cooper Industries, Inc.	
New Bedford, MA	02395	Arrow Hart Div.	05791
	Sonar Radio Corp.	Hanford, CT	LYN-TRON
00686	Hollywood, FL		Burbank, CA
Film Capacitors Inc.		04217	
Passaic, NJ	02533	Essex Intemational Inc.	
	Leigh Instruments Ltd.	Wire \& Cable Div.	05820
00779	Frequency Control Div.	Anahcim, CA	EG \& G Wakefield Engineering
AMP, Inc.	Don Mills, Ontario, Canada		Wakefield, MA
Harrisburg, Pennsylvania		04221	
	02606	Midland-Ross Corp.	05839
00853	Fenwal Labs	Midtex Div.	Advance Electrical
Sangamo Weston Inc	Division of Travenal Labs	N. Mankato, MN	Chicago, IL
Components Div	Morton Grove, IL		
Pickens, NC		04222	
	02660	AVX Corp.	05972
01091	Bunker Ramo-Eltra Corp.	AVX Ceramics Div.	Loctite Corp.
Allied Plastics Co.	Amphenol NA Div.	Myrule Beach, SC	Newington, CT
Los Angeles, CA	Broadview, IL		

Federal Supply Codes for Manufacturers (cont)

06001	07047	08111	18715
General Electric Co.	Ross Milton Co., The	MF Electronics	(United Shoc \& Nylock Corp)
Electric Capacitor Product	Southampton, PA	New Rochelle, NY	-Nylock Fastener Corp.-
Section			Paramus, NJ
Columbia, SC	07138	08235	
	Westinghouse Electric Corp.	Industro Transistor Corp.	10059
06141	Industrial \& Govemment	Long Island City, NY	Barker Engineering Corp.
Fairchild Weston Systems Inc.	Tube Div.		Kenilworh, NJ
Data Systems Div.	Horseheads, NY	08261	
Sarasota, FL		Spectra-Strip	10389
	07233	An Eltra Co.	IL Tool Works Inc.
06192	Benchmark Technology Inc.	Garden Grove, CA	Licon Div.
La Deau Mfg. Co.	City of Industry, CA		Chicago, IL
Glendale, CA		08445	
	07239	Electri-Cord Mfg., Inc	11236
06229	Biddle Instruments	Westrield, PA	CTS Corp.
Electrovert Inc.	Blue Bell, PA		Resistor Products Div.
Elmsford, NY		08530	Beme, IN
	07256	Reliance Mica Corp.	
06383	Silicon Transistor Corp.	Brooklyn, NY	11237
Panduit Corp.	Sub of BBF Inc.		CTS Corp of CA
Tinley Park, IL	Chelmsford, MA	08718	Electro Mechanical Div.
		ITT Cannon Electric	Paso Robles, CA
06473	07261	Phoenix Div.	
Bunker Ramo Corp.	Avnet Corp.	Phoenix, AZ	11295
Amphenol NA Div.	Culver City, CA		ECM Motor Co.
SAMS Operation		08806	Schaumburg, IL
Chatsworth, CA	07263	General Electric Co.	
	Fairchild Semiconductor	Minature Lamp Products	11358
06540	North American Sales	Cleveland, OII	Columbia Broadcasting System
Mite Corp	Ridgeview, CT		CBS Electronic Div.
Amatom-Electrical Div		08863	Newburypor, MA
	07344	Nylomatic	
06555	Bircher Co. Inc., The	Fallsington, PA	11403
Beede Electrical Instrument	Rochester, NY		Vacuum Can Co.
Penacook, NH		08988	Best Coffee Maker Div.
	07374	Skotuie Electronics Inc.	Chicago, IL
06665	Optron Corp	Archbald, PA	
Precision Monolithics	Woodbridge, CT		11502 (can also use 35009)
Sub of Boums Inc.		09021	TRW Inc.
Santa Clara, CA	07557	Airco Inc.	TRW Resistive Products Div.
	Campion Co. Inc.	Airco Electronics	Boone, NC
06666	Philadelphia, PA	Bradford, PA	
General Devices Co. Inc.			11503
INpolis, IN	07597	09023	Keystone Columbia Inc.
	Bumdy Corp.	Cornell-Dublicr Electronics	Freemont, IN
06739	Tape/Cable Div.	Fuquay-Varina, NC	
Electron Corp.	Rochester, NY		11532
Lituleton, CO		09214	Teledyne Relays Teledyne
	07716	General Electric Co.	Industries Inc.
06743	TRW Inc. (Can use 11502)	Scmiconductor Products Dept.	Hawthorne, CA
Gould Inc.	IRC Fixed Resistors/	Aubum, NY	
Foil Div.	Burlington		11711
Eastlake, OH	Burlington, VT	09353	General Instrument Corp.
		C and K Components Inc.	Rectifier Div.
06751	07792	Newton, MA	Hicksville, NY
Components Inc.	Lerma Engincering Corp.		
Semcor Div.	Norhampton, MA	09423	11726
Phoenix, AZ		Scientific Components Inc.	Qualidyne Corp.
	07810	Santa Barbara, CA	Santa Clara, CA
06776	Bock Corp.		
Robinson Nugent Inc.	Madison, WI	09922	12014
New Albany, ${ }^{\text {IN }}$		Bumdy Corp.	Chicago Rivet \& Machine Co.
	07910	Norwalk, CT	Naperville, IL
	Teledyne Semiconductor		
06915	Min. View, CA	09969	12020
Richeo Plastic Co.		Dale Electronics Inc.	Ovenaire
Chicago, IL	07933	Yankton, SD	Div. of Electronic Technologies
	Raytheon Co.		Charlottesville, VA
06961	Semiconductor Div.	09975	
Vernitron Corp.	Mountain View, CA	Burroughs Corp.	12038
Piezo Electric Div.		Electronics Components	Simco
Bedford, OH	08FG6	Detroit, MI	(Div of Ransburg Corp)
	Calmos Systems Inc.		Hatfield, PA
06980	Kanata, Ont. Canada	1A791	
EIMAC		LFE Electronics	12040
(See Varian)	080A9	Danvers, MA	National Semiconductor Corp.
San Carlos, CA	Dallas Semiconductor Dallas, TX		Danbury, CT

12060	13050	14704	16473
Diodes Inc.	Potter Co.	Crydom Controls	Cambridge Scientific Industries
Northridge, CA	Wesson, MS	(Division of Int Rectifier) El Segundo, CA	Div. of Chemed Corp. Cambridge, MD
12136	13103		
PHC Industries Inc.	Thermalloy Co., Inc.	14752	16733
Formerly Philadelphia Handle Co. Camden, NJ	Dallas, TX	Electro Cube Inc. San Gabriel, CA	Cablewave Systems Inc. North Haven, CT
	13327		
12300	Solitron Devices Inc.	14936	
AMF Canada Ltd.	Tappan, NY	General Instrument Corp.	16742
Potter-Brumfield		Discrete Semi Conductor Div.	Paramount Plastics
Guelph, Ontario, Canada	13511	Hicksville, NY	Fabricators Inc.
	Bunker-Ramo Corp.		Downey, CA
12323	Amphenol Cadre Div.	14949	
Practical Automation Inc.	Los Gatos, CA	Trompeter Electronics	16758
Shelton, CT		Chatsworth, CA	General Motors Corp. Delco Electronics Div.
12327	13606	15412	Kokomo, IN
Freeway Corp.	Sprague Electric Co.	Amtron	
Cleveland, OH	(Use 56289)	Midlothian, IL	17069
			Circuit Structures Lab
12406	13689	15542	Burbank, CA
Elpac Electronics Inc.	SPS Technologies Inc.	Scientific Components Corp.	
Santa Ana, CA	Hatficld, NJ	Mini-Circuits Laboratory Div.	17117
		Brooklyn, NY	Electronic Molding Corp.
	13764		Woonsocket, RI
12443	Micro Plastics	15636	
Budd Co.,The	Flippin, AZ	Elec-Trol Inc.	17338
Plastics Products Div.		Saugus, CA	High Pressure Eng. Co. Inc.
Phoenixville, PA	13919		OK City, OK
	Burr-Brown Research Corp.	15782	
12581	Tucson, AZ	Bausch \& Lomb Inc.	17504
Hitachi Metals Inernational Lid.		Graphics \& Control Div.	Aluminum Filter Co.
Hitachi Magna-Lock Div.	14099	Austin, TX	Carpinteria, CA
Big Rapids, MO	Semtech Corp.		
	Newbury Park, CA	15801	17545
12615		Fenwal Eletronics Inc.	Atlantic Semiconductors Inc.
US Terminals Inc.	14140	Div. of Kidde Inc.	Asbury Park, NJ
Cincinnati, OH	McGray-Edison Co.	Framingham, MA	
	Commercial Development Div.		17745
12617	Manchester, NH	15818	Angstrohm Precision, Inc.
Hamlin Inc.		Teledyne Inc. Co.	Hagerstown, MD
LaKe Mills, WI	14189	Teledyne Semiconductor Div.	
	Ortronics, Inc.	Mountain View, CA	17856
12673	Orlando, FL		Siliconix Inc.
Wesco Electrical		15849	Santa Clara, CA
Greenfield, MA	14193	Useco Inc.	
	Cal-R-Inc.	(Now 88245)	18178
	Santa Monica, CA		E G \& Gvactee Inc.
12697		15898	St. Louis, MO
Clarostat Mfg. Co. Inc.	14301	International Business	
Dover, NH	Anderson Electronics	Machines Corp.	18235
	Hollidaysburg, PA	Essex Junction, VT	KRL/Bantry Components Inc.
12749			Manchester, NH
James Electronic Inc.	14329	16068	
Chicago, IL	Wells Electronics Inc.	Intemational Diode Div.	18310
	South Bend, IN	Harrison, NJ	Concord Electronics
12856			New York, NY
MicroMetals Inc.	14482	16162	
Anaheim, CA	Watkins-Johnson Co.	MMI	18324
	Palo Alto, CA	Southfield, MI	Signetics Corp.
12881			Sacramento, CA
Metex Corp.	14552	16245	
Edison, NJ	Microsemi Corp.	Conap Inc.	
	(Formerly Micro-Semiconductor)	Olean, NY	18377
12895	Santa Ana, CA		Parlex Corp.
Cleveland Electric Motor Co.		16258	Methuen, MA
Cleveland, OH	14604	Space-Lok Inc.	
	Elmwood Sensors, Inc	Burbank, CA	18520
12954	Pawtucket, RI		Sharp Electronics Corp.
Microsemi Corp.		16352	Paramus, NJ
Components Group	14655	Codi Corp.	
Scotsdale, AZ	Cornell-Dublier Electronics	Linden, NJ	18542
	Div. of Federal Pacific		Wabash Inc.
12969	Electric Co. Govt Cont Dept.	16469	Wabash Relay \& Electronics Div.
Unitrode Corp.	Newark, NJ	MCL Inc.	Wabash, IN
Lexington, MA		LaGrange, IL	

Federal Supply Codes for Manufacturers (cont)

18565	2Y384	23732	26402
Chomerics Inc.	North American Philips Lighting Corp.	Tracor Applied Sciences Inc.	Lumex,Inc.
Woburn, MA	Van Wert, OII	Rockville, MD	Bayshore, NY
18612	20584	23880	26629
Vishay Intertechnology Inc.	Enochs Mfg. Inc.	Stanford Applied Engineering	Frequency Sources Inc.
Vishay Resistor Products Group	INpolis, IN	Santa Clara, CA	Sources Div.
Malvem, PA			Chelmsford, MA
	20891	23936	
18632	Cosar Corp.	William J. Purdy Co.	26806
Norton-Chemplast	Dallas, TX	Pamotor Div.	American Zeuler Inc.
Santa Monica, CA		Burlingame, CA	Irvine, CA
	21317		
18677	Electronics Applications Co.		27014
Scanbe Mfg. Co.	El Monte, CA	24347	National Semiconductor Corp.
Div. of Zero Corp.		Penn Engineering Co.	Santa Clara, CA
El Monte, CA	21604	S. El Monte, CA	
	Buckeye Stamping Co.		27167
18736	Columbus, OH	24355	Corming Glass Works Coming
Voltronics Corp.		Analog Devices Inc.	Electronics
East Hanover, NJ	21845	Norwood, MA	Wilmington, NC
	Solitron Devices Inc.		
	Semiconductor Group	24444	27264
18786	Rivera Beach, FL	General Semiconductor	Molex Inc.
Micro-Power		Industries, Inc.	Lisle, IL
Long Island City, NY	21847	Tempe, AZ	
	Aertech		27440
18927	Now TRW Microwave Inc.	24546	Industrial Screw Products
GTE Products Corp.	Sunnyvale, CA	Bradford Electronics	Los Angeles, CA
Precision Material Products		Bradford, PA	
Business Pars Div.	21962		27494
Titusville,PA	Vectron Corp.	24618	Staffall, Inc.
	Replaced by: S.W. Electronics	Transcon Mfg.	Providence, RI
19080		Now: D.J. Associates Inc.	
Robinson Electronics Inc.	22526		
San Luis Obispo, CA	DuPont, EI DeNemours \& Co. Inc.	24655	27745
	DuPont Connector Systems	Genrad Inc.	Associated Spring Bames Group Inc.
19112	Advanced Products Div.	(Replaced General Radio 05173)	Syracuse, NY
Garry Corp.	New Cumberland, PA	Concord, MA	
Langhome, PA			27918
	22626	24759	Component Parts Corp.
19315	Micro Semiconductor	Lenox-Fugle Electronics Inc.	Bellmore, NY
Bendix Corp., The	(Now 14552)	South Plainfield, NJ	
Navigation \& Control Group			27956
Terboro, NJ	22670	24796	Relcom (Now 14482)
	GM Nameplate	AMF Inc.	
19451	Seatle, WA	Potter \& Brumfield Div.	28175
Perine Machine Tool Corp. Kent, WA		San Juan Capistrano, CA	Alpha Metals
	22767		Chicago, IL
	ITT Semiconductors	24931	
19482	Palo Alto, CA	Specialty Connector Co.	28198
Delta Electronics		Greenwood, \mathbb{N}	Positronic Industries
Alcxandria, VA			Springfield, MO
	22784	24995	
19613	Palmer Inc.	ECS	28213
MN Mining \& Mfg. Co.	Cleveland, OH	Grants Pass, OR	MN Mining \& Mfg. Co.
Textool Products Dept.			Consumer Products Div.
Electronic Product Div.	23050	25088	3M Center
Irving, TX	Product Comp. Corp. Mount Vernon, NY	Siemen Corp. Isilen, NJ	Saint Paul, MN
19647			28309
Caddock Electronics Inc.	23223	25099	Kaiser
Riverside, CA	CTS Microelectronics Lafayette, NY	Cascade Gasket Kent, WA	Minette,AL.
19701			28425
Mepco/Centralab Inc.	23237	25403	Serv-O-Link
A N. American Philips Co.	I.R.C., Inc.	Amperex Electronic Corp.	Euless, TX
Mineral Wells, TX	Microcircuits Divison	Semiconductor \& Micro-Circuit Div.	
	Philadelphia, PA	Slatersville, RI	28478
			Deltrol Corporation
2B178	23302	25435	Deltrol Controls Div.
Wire Products	S.W. Electronics \& Mfg. Corp.	Moldtronics, Inc	Milwaukee, WI
Cleveland, OH	Cherry Hill, NJ	Downers Grove, IL	
			28480
2K262	23730	25706	Hewlett Packard Co.
Boyd Corporation	Mark Eyelet and Stamping Inc.	Dabum Electronic \& Cable Corp.	Corporate HQ
Portland, OR	Wolcott, CT	Norwood, NJ	Palo Alto, CA

Federal Supply Codes for Manufacturers (cont)

28484	31433	33246	36701
Emerson Electric Co.	Kemet Electonics Corp.	Epoxy Technology Inc.	Van Waters \& Rogers
Gearmaster Div.	Simpsonville, NC	Billerica, MA	Valley Field, Quebec, Canada
McHenry, IL			
	31448	33292	37942
28520	Army Safeguard Logistics Command	Pioneer Sterilized Wiping Cloth Co.	Mallory Capacitor Corp.
Heyco Molded Products	Huntsville, AL	Portland, OR	Sub of Emhart Industries
Kenilworth, NJ			INpolis, $\mathbf{I N}$
	31471	33297	
28932	Gould Inc	NEC Electronics USA Inc.	39003
Lumax Industrials, Inc	Semiconductor Div	Electronic Arrays Inc. Div.	Maxim Industries
Altoona, PA	Santa Clara, CA	Mountain View, CA	Middleboro, MA
29083	31522	33919	4F434
Monsanto Co.	Metal Masters Inc.	Nortek Inc.	Plastic Sales
Santa Clara, CA	Baldwin, MS	Cranston, RI	Los Angeles, CA
29604	31746		40402
Stackpole Components Co.	Cannon Electric	34114	Roderstein Electronics Inc.
Raleith, NC	Woodbury, TN	Oak Industries Rancho Bemardo, CA	Statesville, NC
29907	31827		42498
Omega Engineering Inc.	Budwig	34263	National Radio
Stamford, CT	Ramona, CA	CTS Electronics Corp. Brownsville,TX	Melrose, MA
3D536	31918		43543
Aimsco Inc.	ITT-Schadow	34333	Nytronics Inc.(Now 53342)
Seatle, WA	Eden Prairie, MN	Silicon General Inc. Garden Grove, CA	43744
30035	32293		Panasonic Industrial Co.
Jolo Industries Inc.	Intersil	34335	San Antonio, TX
Garden Grove, CA	Cuperino, CA	Advanced Micro Devices (AMD)	
		Sunnyvale, CA	43791
30045	32539		Datron Systems
Solid Power Corp.	Mura Corp.	34359	Wilkes Barre, PA
Farmingdale, NY	Westbury, Long Island, N.Y.	MN Mining \& Mfg. Co. Commercial Office Supply Div.	44655
30146	32559	Saint Paul, MN	Ohmite Mfg. Co.
Symbex Corp.	Bivar		Skokie, IL
Painesville, OH	Santa Ana, CA	34371	
		Harris Corp.	47001
30148	32719	Harris Semiconductor	Lumberg Inc.
AB Enterprise Inc.	Siltronics	Products Group	Richmond, VA
Ahoskie, NC	Santa Ana, CA	Melboume, FL	
			47379
30161	32767	34576	ISOCOM
Aavid Engineering Inc.	Griffith Plastics Corp.	Rockwell International Corp.	Campbell, CA
Laconia, NH	Burlingame, CA	Newport Beach, CA	
			49569
30315	32879	34641	IDT (International Development \& Trade)
	Advanced Mechanical Components	Instrument Specialties	Dallas, TX
San Diego, CA	Northridge, CA	Euless, TX	
			49671
30323	32897	34649	RCA Corp.
	Murata Erie North America Inc.	Intel Corp.	New York, NY
Chicago, IL	Carlisle Operations	Santa Clara, CA	
	Carlisle, Pennsylvania		49956
30800		34802	Raytheon Company
General Instrument Corp.	32997	Electromotive Inc.	Executive Offices
Capacitor Div.	Bourns Inc.	Kenilworth, NJ	Lexington, MA
Hicksville, NY	Trimpot Div.		
	Riverside, CA	34848	5D590
30838		Hartwell Special Products	Mostek Corp.
	33025 -	Placentia, CA	Replaced by: SGS Thompson Microelec
Chicago,ILL	M/A ComOmni Spectra, Inc. (Replacing Omni Spectra)	35009	tronics
31019	Microwave Subsystems Div.	Renfrew Electric Co. Led.	5F520
Solid State Scientific Inc.	Tempe, AZ	IRC Div.	Panel Components Corp.
Willow Grove, PA		Toronto, Ontario, Canada	Santa Rosa, CA
31091	33096	35986	5P575
Alpha Industries Inc.	CO Crystal Corp.	Amrad	Nobel Electronics
Microelectronics Div.	Loveland, CO	Melrose Park, IL	Suffem, NY
Hatfield, PA			
	33173	36665	5W664
31323	General Electric Co.	Mitel Corp.	NDK
Metro Supply Company Sacramento, CA	Owensboro, KY	Kanata, Ontario, Canada	Div. of Nihon Dempa Kogyo LTD Lynchburg, VA

Federal Supply Codes for Manufacturers (cont)

SU802	51499	52840	54937
Dennison Mfg. Co.	Amtron Corp.	Westem Digital Corp.	DeYoung Mfg.
Framingham, MA	Boston, MA	Costa Mcsa, CA	Bellevue, WA
50088	51506	5302	54590
SGS - Thomson Microclectronics Inc. Carrollton, TX	Accurate Screw Machine Co. (ASMCO) Nulley, NJ	Sangamo Weston Inc. (See 06141)	RCA Corp. Electronic Components Div.
			Cherry Hill, NJ
50120	51605	53036	
Eagle-Picher Industrics Inc.	CODI Semiconductor Inc.	Textool Co.	55026
Electronics Div. CO Springs, CO	Kenilworth, NJ	Houston, TX	American Gage \& Machine Co.
			Simpson Electric Co. Div.
	51642	53184	Elgin, IL
50157	Centre Engineering Inc.	Xciton Corp.	
Midwest Components Inc.	State College, PA	Lathan, NY	55112
Muskegon, MS			Plessey Capacitors Inc.
	51705	53217	(Now 60935)
50356	ICORRally	Technical Wire Products Inc.	
Teac Corp. of America	Palo alto, CA	Santa Barbara, CA	55261
Industrial Products Div			LSI Computer Systems Inc.
Montebello, CA	51791	53342	Melville, NY
	Statek Corp.	Opt Industries Inc.	
50364	Orange, CA	Phillipsburg, NJ	55285
MMI, Inc.(Monolithic Memorics Inc)			Bercquist Co .
Military Products Div.	51984	53673	Minneapolis, MN
Santa Clara, CA	NEC America Inc.	Thompson CSF Components Corp.	
	Falls Church, VA	(Semiconductor Div)	55322
		Conaga Park, CA	Samtech inc.
City of Industry, CA			New Albany, N
	Exar Integrated Systems	53718	
	Sunnyvale, CA	Airmold/W. R. Grese \& Co. Roanoke Rapids, NC	${ }^{55408}$ STI-CO Industries Co
Hypertronics Corp.	52072		Buffalo, NY
Hudson, MA	Circuit Assembly Corp.	53848	
	Irvine, CA	Standard Microsystems	55464
50558		Hauppauge, NY	Central Semiconductor Corp.
Electronic Concepts, Inc.	52152		Hauppauge, NY
Eatonwow, NJ	MN Mining \& Mfg.	53894	
	Saint Paul, MN	AHAM Inc.	55557
50579		Ranchoca, CA	Microwave Diode Corp.
Litronix Inc.	52333		W.Stewarstown, NH
Cupertino, CA	API Electronics	53944	
	Haugpauge,Long Island, NY	Glow-Lite	55566
50891		Pauls Valley, OK	R A F Electronic Hardware Inc.
Scmiconductor Technology	52361		Seymour, CT
Stuart, FL	Communication Systems	54178	
	Piscataway, NJ	Plasmetex Industries Inc.	55576
50934		San Marcos, CA	Symertek
Columbus, NE	52500		Santa Clara, CA
	Amphenol, RF Operations	54294	
	Burlington, MA	Shallcross Inc.	55680
		Smithfield, NC	Nichicon/America/Corp.
51167	52525		Schaumburg, IL
Aries Elcctronics Inc.	Space-Lok Inc.	54453	
Frenchtown, NJ	Leroo Div.	Sullins Electronic Corp.	55943
	Burbank, CA	San Marcos, CA	D J Associates, Inc
51284			(Rcplaced Transcon Mfg.24618)
Mos Technology	52531	54473	Fort Smith, AZ
Norristown, PA	Hitachi Magnetics	Maisushita Electric Corp.	
	Edmore, MO	(Panasonic)	56282
51249		Sccaucus, NJ	Utek Systems Inc.
Heyman Mfg. Co.	52745		Olathe, KS
Cleveland, OH	Timco	54492	
	Los Angeles, CA	Cinch Clamp Co., Inc.	56289
51372		Santa Rosa, CA	Sprague Electric Co.
Verbatim Corp.	52763		North Adams, MA
Sunnyvale, CA	Stettner-Electronics Inc.	54583	
	Chatanooga, TN	TDK	56365
51398		Garden City, NY	Square D Co.
MUPAC Corp.	52769		Corporate Offices
Brockton, MA	Sprague-Goodman Electronics Inc.	54590	Palatine, IL
	Garden City Park, NY	RCA Corp	
51406		Distribution \& Special Products	56375
Murata Erie, No. America Inc.	52771	Cherry Hill, NY	WESCORP
(Also see 72982)	Moniterm Corp.		Div. Dal Industries Inc
Marietta, GA	Amatrom Div.	54869	Mountain View, CA
	Santa Clara, CA	Piher Intemational Corp.	
		Arlington Heights, IL	

Federal Supply Codes for Manufacturers (cont)

56481	59610	60911	64537
Shugart Associates	Souriau Inc	Inmos Corp.	KDI Electronics
Sub of Xerox Corp.	Valencia, CA	CO Springs, CO	Whippany, NJ
Sunnyvale, CA			
	59635	60935	64782
56637	HV Component Associates	Westlake Capacitor Inc.	Precision Control Mfg. Inc.
RCD Components Inc.	Howell, NJ	Tantalum Div.	Bellevue, WA
Manchester, NH		Greencastle, IN	
	59640		64834
56708	Supertex Inc.	60958	West M G Co.
Zilog Inc.	Sunnyvale, CA	ACIC	San Francisco, CA
Campbell, CA		Intercomp Wire \& Cable Div.	
	59660	Hayesville, NC	
56856	Tusonix Inc.		64961
Vamistor Corp. of TN	Tucson, AZ	61271	Electronic Hardware LTD
Sevierville, TN		Fujitsu Microelectronics Inc	North Hollywood, CA
	59730	San Jose, CA	
	Thomas and Betts Corp.		65092
56880	IA City, IA	61394	Sangamo Weston Inc.
Magnetics Inc.		SEEQ Technology Inc.	Weston Instruments Div.
Baltimore, MD	59831	San Jose, CA	Newark, NJ
	Semtronics Corp.		
57026	Watchung, NJ	61429	65786
Endicott Coil Co. Inc.		Fox Electronics	Cypress Semi
Binghamton, NY	611053:	Cape Coral, FL	San Jose, CA
	American Components Inc. an Insilco Co. RPC Div.	61529	65940
Gates Energy Products	Hayesville, NC	Aromat Corp.	Rohm Corp \& Whatney
Denver, CO	Maysulle,	New Providence, NJ	Irvine, CA
	61.611		
57170	Allen, Robert G. Inc.	61752	65964
Cambridge Thermionic	Van Nuys, CA	IR-ONICS Inc	Evox Inc.
Cambridge, MA		Warwick, RI	Bannockbum, IL
Replaced by:	6U850		
71279	Burgess Switch Co., Inc	61772	66150
Interconnection Products Inc.	Northbrook, IL	Integrated Device Technology Santa Clara, CA	Entron Inc. Winslow Teltronics Div.
57668	60095		Glendale, NY
R-ohm Corp	AMD Enterprises, Inc.	61802	
Irvine, CA	Roswell, GA	Toshiba	
		Houston, TX	66302
57962	6X403		VLSI Technology Inc.
SGS - Thomson Microelectronics Inc	SGS/ATES Semiconductor Corp.	61857	San Jose, CA
Montgomeryville, PA	INpolis, IN	SAN-O Industrial Corp. Bohemia, Long Island, NY	66419
58014	$6 Y 440$		Exel
Hitachi Magnalock Corp.	Micron Technology Inc.	61935	San Jose, CA
(Now 12581)	Boise, ID	Schurter Inc. Petaluma, CA	66450
58104	60046		Dyna-Tech Electronics, Inc
Simco	Power Dynamics Inc	62351	Walled Lake, MI
Atlanta, GA	West Orange, NJ	Apple Rubber	
		Lancaster, NY	66608
58364	60197		Bering Industries
	Precicontact Inc.	62643	Freemont, CA
Chicago, IL	Langhome, PA	United Chemicon	
		Rosemont, IL	66891
58451	60386		BKC Intermational Electronics
Precision Lamp	Squires Electronics Inc	62712	Lawrence, MA
Cotat, CA	Cornelius, OR	Seiko Instruments	
		Torrance, CA	66958
	60395		SGS Semiconductor Corp.
58474	Xicor Inc.	62793	Phoenix, AZ
Superior Electric Co. Bristol, CT	Milpitas, CA	Lear Siegler Inc.	
		Energy Products Div.	
	60399	Santa Ana, CA	66967
58614	Torin Engincered Blowers		Powerex Inc
Communications Instruments Inc.	Div. of Clevepak Corp.	63743	Aubum, NY
Fairview, NC	Torrington, CT	Ward Leonard Electric Co.Inc. Mount Vemon, NY	67183
59124	60496		Altera
KOA-Speer Electronics Inc.	Micrel Inc.	64154	Santa Clara, CA
Bradford, PA	Sunnyvale, CA	Lamb Industries	
		Portland, OR	68919
59422	60705		WIMA
Holmberg Electronics	Cera-Mite Corp.	64155	\% Harry Levinson Co.
Irvine, CA	(formerly Sprague)	Linear Technology	Seatle, WA
	Grafton, WI	Milpitas, CA	

Federal Supply Codes for Manufacturers (cont)

7F361	71468	73138	75042
Richmond-Division of Dixico	ITT Cannon Div. of ITT	Beckman Industrial corp.	TRW Inc.
\% Zellerbach Paper Co.	Fountain Valley, CA	Helipot Div.	IRC Fixed Resistors
Seatte, WA		Fullerton, CA	Philadelphia, PA
	71482		
7F844	General Instrument Corp.	73168	75297
Moore Business Forms, Inc	Clare Div.	Fenwal Inc.	Kester Solder Div.
Seatue, WA	Chicago, IL	Ashland, MA	Litton Systems, Inc Des Plaines, IL
7G902	71590	73293	
Textron Inc.	Mepco/Centralab	Hughes Aircraft Co.	75376
Carncar Div.	A North American Philips Co.	Electron Dymamics Div.	Kurz-Kasch Inc.
Rockford, IL	Fort Dodge, IA	Torrance, CA	Dayton, OH
7 J 395		73445	75378
Universal Plastics	71707	Amperex Electronic Corp.	CTS Knights Inc.
Welshpool, WA	Coto Corp. Providence, RI	Hicksville, NY	Sandwich, IL
7 J 696		73559	75382
AMD Plastics	71744	Carlingswitch Inc.	Kulka Electric Corp.
East Lake, OH	General Instrument Corp.	Harford, CT	(Now 83330)
	Lamp Div/Worldwide		Mount Vernon, NY
7K354	Chicago, IL	73586	
Omni Spectra Inc		Circle F Industries	75569
Los Altos, CA	71785	Trenton, NJ	Performance Semiconductor Corp.
	TRW Inc.		Sunnyvale, CA
	Cinch Connector Div.	73734	
7Z884	Elk Grove Village, IL	Federal Screw Products Inc.	75915
ALPS		Chicago, IL	Littelfuse Tracor
Seatue, WA	71984		(Formerly: Tracor-Littelfuse)
	Dow Coming Corp.	73743	Des Plaines, IL
7X634	Midland, MI	Fischer Special Mfg. Co.	
Duracell USA		Cold Spring, KY	76854
Div. of Dart \& Kraft Inc.	72005		Oak Switch Systems Inc.
Valdese, NC	AMAX Specialty Metals Corp.	73893	Crystal Lake, IL
	Newark, NJ	Microdot	
70290		Mt. Clemens, MS	77122
Almetal Universal Joint Co.	72136		TRW Assemblies \& Fasteners Group
Cleveland, OH	Electro Motive Mfg. Corp.	73899	Fastener Div.
	Florence, NC	JFD Electronic Components	Moutainside, NJ
70485		Div. of Murata Erie	
Atlantic India Rubber Works Inc.	72228	Oceanside, NY	77342
Chicago, IL	AMCA International Corp.		AMF Inc.
	Continental Screw Div.	73905	Potter \& Brumfield Div.
70563	New Bedford, MA	FL Industries Inc.	Princeton, IN
Amperite Company		San Jose, CA	
Union City, NJ	72259		77542
	Nytronics Inc.	73949	Ray-O-Vac Corp
70903	New York, NY	Guardian Electric Mfg. Co.	Madison, WI
Cooper-Belden Corp.		Chicago, IL	
Geneva, IL			77638
	72619	74199	General Instrument Corp.
71002	Amperex Electronic Corp.	Quam Nichols Co.	Rectifier Div.
Bimbach Co. Inc.	Dialight Div.	Chicago, IL	Brooklyn, NY
Farmingdale, NY	Brooklyn, NY		
		74217	77900
71034	72653	Radio Switch Co.	Shakeproof Lock Washer Co.
Bliley Electric Co.	G C Electronics Co.	Marlboro, NJ	(Now 78189)
Erie, PA	Div. of Hydrometals Inc.		
	Rockford, IL	74306	77969
		Piezo Crystal Co.	Rubbercraft Corp. of CA Ltd.
71183	72794	Div. of PPA Industries Inc.	Torrance, CA
Westinghouse Electric Corp.	Dzus Fastner Co. Inc.	Carlisle, PA	
Bryant Div.	West Islip, NY		78189
Bridgeport, CT		74445	IIL Tool Works Inc.
	72928	Holo-Krome Co.	Shakeproof Div.
71279	Gulton Industries Inc.	Elmwood, CT	Elgin, IL
Interconnection Products Inc.	Gudeman Div.		
Formerly Midland-Ross Cambion Div.	Chicago, IL	74542	78277
Santa Ana, CA		Hoyt Elect.Instr. Works Inc.	Sigma Instruments Inc.
	72962	Penacook, NH	South Braintree, MA
71400	Elastic Stop Nut		
Bussman Manufacturing	Div. of Harrard Industries	74840	78290
Div. McGraw-Edison Co.	Union, NJ	Il Capacitor Inc.	Struthers Dunn Inc.
St. Louis, MO		Lincolnwood, IL	Pitman, NJ
	72982		
71450	Erie Specialty Products, Inc	74970	78553
CTS Corp.	Formerly: Murata Erie	Johnson EF Co.	Eaton Corp.
Elkhart, IN	Erie, PA	Waseca, MN	Engineered Fastener Div. Cleveland, OH

78592	81439	83315	87034
Stoeger Industries	Therm-O-Dise Inc.	Hubbell Corp.	Illuminated Products Inc.
South Hackensack, NJ	Mansfield, OH	Mundelein, IL	(Now 76854)
79497	81483	83330	87516
Western Rubber Co.	Intermational Rectifier Corp.	Kulka Smith Inc.	Standard Crystal
Goshen, IN	Los Angeles, CA	A North American Philips Co. Manasquan, NJ	KS City, KS
79727	81590		88044
C - W Industries	Korry Electronics Inc.	83478	Aeronautical Standards Group
Southampton, PA	Seatue, WA	Rubbercraft Corp. of America West Haven, CT	Dept. of Navy \& Air Force
79963	81741		88219
Zierick Mfg. Corp.	Chicago Lock Co.		GNB Inc.
Mount Kisco, NY	Chicago, IL	83553	Industrial Battery Div.
		Associated Spring Bames Group	Langhorne, PA
$8 \mathrm{C798}$	82227	Gardena, CA	
Ken-Tronics, Inc.	Airpax Corp.		88245
Milan, IL	Cheshire Div.	83740	Winchester Electronics
	Cheshire, CT	Union Carbide Corp.	Litton Systems-Useco Div.
8D528		Battery Products Div.	Van Nuys, CA
Baumgartens	82240	Danbury, CT	
Atlanta, GA	Simmons Fastner Corp.		88486
	Albany, NY	84171	Triangle PWC Inc.
8F330		Arco Electronics	Jewitt City, CT
Eaton Corp.	82305	Commack, NY	
Cutler Hammer Product Sales Office	Palmer Electronics Corp.		
Mountain View, CA	South Gate, CA	84411	88690
		American Shizuki	Essex Group Inc.
8T100	82389	TRW Capacitors Div.	Wire Assembly Div.
Tellabs Inc.	Switchcraft Inc.	Ogallala, NE	Dearbom, MI
Naperville, Il	Sub of Raytheon Co.		
	Chicago, IL	84613	88786
80009		FIC Corp.	Atlantic India Rubber Co.
Tektronix	82415	Rockville, MD	Goshen, IN
Beaverton, OR	Aipax Corp		
	Frederick Div.	84682	88978
80031	Frederick, MD	Essex Group Inc.	Philips (Now Fluke)
Mepco/Electra Inc.		Peabody, MA	Mahwah, NJ
Morristown, NJ	82872		
	Roanwell Corp.		89020
80032	New York, NY	84830	Amerace Corp.
Ford Aerospace \&		Lee Spring Co. Inc	Buchanan Crimptool Products Div.
Communications Corp.	82877	Brooklyn, NY	Union, NJ
Western Development	Rotron Inc.		
Laboratories Div.	Custom Div.	85367	89265
Palo Alto, CA	Woodstock, NY	Bearing Distributing Co. San Fransisco, CA	Poter-Brumfield (See 77342)
80145	82879		
LFE Corp.	IIT	85372	89462
Process Control Div.	Royal Electric Div.	Bearing Sales Co.	Waldes Truarc, Inc.
Clinton, OH	Pawtucket, RI	Los Angeles, CA	Long Island, NY
80183	83003	85480	
Sprague Products	Varo Inc.	W. H. Brady Co.	89536
(Now 56289)	Garland, TX	Industrial Product	John Fluke Mfg. Co., Inc.
		Milwaukee, WI	Evereth, WA
80294	83014		
Boums Instruments Inc.	Hartwell Corp.	85840	89597
Riverside, CA	Placentia, CA	Brady WH Co	Fredericks Co.
		Industrial Products Div	Huntingdon Valley, PA
80583	83055	Milwaukee, WI	
Hammerlund Mfg. Co. Inc.	Signalite Fuse Co.		89709
Paramus, NJ	(Now 71744)	85932	Bunker Ramo-Eltra Corp.
		Electro Film Inc.	Amphenol Div.
80640	83058	Valencia, CA	Broadview, IL
Computer Products Inc.	TRW Assemblies \& Fasteners Group		
Stevens-Arnold Div.	Fasteners Div.		89730
South Boston, MA	Cambridge, MA	86577	General Electric
		Precision Metal Products Co.	Lamp Div.
81073	83259 -	Pcabody, MA	Newark, NJ
Grayhill Inc.	Parker-Hannifin Corp.		
La Grange, IL	O-Seal Div.	86684	9R216
	Culver City, CA	Radio Corp. of America (Now 54590)	Data Composition Svc, Inc Laurel, MD
Litton Systems Inc.	83298		
Winchester Electronics Div.	Bendix Corp.	86928	9 S 171
Watertown, CT	Electric \& Fluid Power Div.	Seastrom Mfg. Co. Inc.	Port Plastics
	Eatonville, NJ	Glendale, CA	Tukwila, WA

Federal Supply Codes for Manufacturers (cont)

U.S. Service Locations

California

Fluke Technical Center
16969 Von Karman Avenue
Suite 100
Irvine, CA 92714
Tel: (714) 863-9031
Fluke Technical Center
46610 Landing Parkway
Fremont, CA 94538
Tel: (415) $651-5112$

Colorado

Fluke Technical Center
14180 East Evans Avenue
Aurora, CO 80014
Tel: (303) 695-1171

Florida

Fluke Technical Center
940 N. Fern Creek Avenue
Orlando, FL 32803
Tel: (407) 896-4881

Illinois

Fluke Technical Center
1150 W. Euclid Ave.
Palatine, IL 60067
Tel: (312) 705-0500

Maryland

Fluke Technical Center
5640 Fishers Lane
Rockville, MD 20852
Tel: (301) 770-1576
New Jersey
Fluke Technical Center
East 66 Midland Avenue
Paramus, NJ 07652-0930
Tel: (201) 599-9500

Texas

Fluke Technical Center
1801 Royal Lane, Suite 307
Dallas, TX 75229
Tel: (214) 869-2848

Washington

Fluke Technical Center
John Fluke Mig. Co., Inc.
1420 75th St. S.W.
MS 6-30
Everett, WA 98203
Tel: (206) 356-5560
International

Argentina
Coasin S.A.
Virrey del Pino 4071 DPTO E-65
1430 CAP FED
Buenos Aires
Tel: 541 522-5248

Australia

Philips Customer Support
Scientific and Industrial
23 Lakeside Drive
Tally Ho Technology Park
East Burwood
Victoria 3151

Australia
Philips Customer Support
Scientific \& Industrial
25-27 Paul St. North
North Ryde N.S.W. 2113
Tel: 61028888222

Austria

Oesterreichische Philips Industrie
Unternehmensbereich Prof. Systeme
Triesterstrasse 66
Postfach 217
A-1101 Wein
Tel: 43 222-60101, x1388

Belgium

Philips \& MBLE Associated S.A.
Scientific \& Industrial Equip. Div
Service Department.
80 Rue des deux Gares B-1070
Brussels
Tel: 3225256111

Brazil

Hi-Tek Electronica Lida.
Al. Amazonas 422, Alphaville
CEP 06400 Barueri
Sao Paulo
Tel: 55 11 421-5477

Canada

Fluke Electronics Canada Inc. 400 Britannia Rd. East, Unit \#1
Mississauga
Ontario L4Z 1X9
Tel: 416-890-7600

Chile

Intronica Chile Ltda.
Casilla 16228
Santiago 9
Tel: 562 2321886, 2324308
China
Fluke International Corp.
P.O. Box 9085

Beijing
Tel: 8601 512-3436
Colombia
Sistemas E Instrumentacion, Ltda.
Carrera 13, No. 37-43, Of. 401
Ap. Aereo 29583
Bogota DE
Tel: 57 232-4532

Denmark

Philips A/S
Technical Service I \& E
Strandlodsveij 1 A
PO Box 1919
DK-2300
Copenhagen S
Tel: 451572222

Ecuador

Proteco Coasin Cia., Ltda.
P.O. Box 228-A

Ave. 12 de Octubre
2285 y Orellana
Quito
Tel: 5932529684

Egypt
Philips Egypt
10, Abdel Rahman el Rafei st.
el. Mohandessin
P.O. Box 242

Dokki Cairo
Tel: 20-2-490922
England
Philips Scientific
Test \& Measuring Division
Colonial Way
Watford
Hertforshire WD2 4TT
Tel: 44 923-40511

Finland
Oy Philips AB
Central Service
Sinikalliontie 1-3
P.O. Box 11

SF-02630 ESPOO
Tel: 358-0-52572

France
S.A. Philips Industrielle
et Comerciale,
Science et Industry
105 Rue de Paris Bp 62
93002 Bobigny, Cedex
Tel: 33-1-4942-8040

Germany (F.R.G.)
Philips GmbH
Service fuer FLUKE - Produkte
Department VSF
Oskar-Messter-Strasse 18
D-8045 Ismaning/Munich,
West Germany
Tel: 49089 9605-239

Greece

Philips S.A. Hellenique
15, 25th March Street
17778 Tavros
10210 Athens
Tel: 3014894911

Hong Kong
Schmidt \& Co (H.K.) Ltd.
18/FL., Great Eagle Centre
23 Harbour Road
Wanchai
Tel: 85258330222

India
Hinditron Services Pvt. Ltd
1st Floor, 17-B,
Mahal Industrial Estate
Mahakali Road, Andheri East
Bombay 400093
Tel: 91226300043

Hinditron Services Pvt. Inc.
33/44A Raj Mahal Villas Extn.
8th Main Road
Bangalore 560080
Tel: 91812363139

Hinditron Services Pvt. Ltd.
Field Service Center
Emerald Complex 1-7-264
5th Floor
114 Sarojini Devi Road
Secunderabad 500003
Tel: 08 42-821117
Hindtron Services Pvt. Ltd.
15 Community Centre
Panchshila Park
New Delhi 110017
Tel: 011-6433675

Indonesia

P.T. Lamda Triguna
P.O. Box 6/JATJG

Jakarta 13001
Tel: (021) 8195365

Israel

R.D.T. Electronics Engineering, Ltd.
P.O. Box 43137

Tel Aviv 61430
Tel: 9723483211

Italy
Philips S.p.A.
Sezione I\&E / T\&M
Viale Elvezia 2
2005 Monza
Tel: 39393635342

Japan

John Fluke Mig. Co., Inc.
Japan Branch
Sumitomo Higashi Shinbashi Bldg.
1-1-11 Hamamatsucho
Minato-ku
Tokyo 105
Tel: 813 434-0181

Korea

Myoung Corporation
Yeo Eui Do P.O. Box 14
Seoul 150
Tel: 822 784-9942

Malaysia
Mecomb Malaysia Sdn. Bhd.
P.O. Box 24

46700 Petaling Jaya
Selangor
Tel: 603 774-3422

Mexico

Mexel Servicios en Computacion
Instrumentacion y Perifericos
Blvd. Adolfo Lopez Mateos No. 163
Col. Mixcoac
Mexico D.F.
Tel: 52-5-563-5411
Netl эrlands
Philips Nederland
Test \& Meetapparaten Div.
Postbus 115
5000 AC Tilburg
Tel: 31-13-352445

Now Zealand	Singapore
Philips Customer Support	Rank O'Connor's Singapore (PTE) Lid.
Scientific \& Industrial Division	98 Pasir Panjang Road
2 Wagener Place	Singapore 0511
Mt. Albert	Tel: 654737944
Auckland	
Tel: 649 894-160	
	South Africa
Norway	South African Philips (Pty) Ltd.
Morgenstierne \& Co. AS	Service Department
Konghellegate 3	195 Main Rd
P.O. Box 6688, Rodelokka	Martindale, Johannesburg, 2092
Oslo 5	Tel: 27 11 470-5255
Tel: 472356110	
	Spain
Pakistan	Philips Iberica S.A.E.
International Operations (PAK) Ltd.	Depto. Tecnico Instrumentacion
505 Muhammadi House	c/Martinez Villergas 2
I.I. Chundrigar Road	28027 Madrid
P.O. Box 5323	Tel: 3414042200
Karachi	
Tel: 9221 221127, 239052	Sweden
	Philips Kistaindustrier AB
Peru	Customer Support
Importaciones \& Representaciones	Borgarfjordsgatan 16
Electronicas S.A.	S-16493 Kista
Avad Franklin D. Roosevelt 105	
Lima 1	
Tel: 5114288650	Switzerland
	Philips A.G.
Philippines	Technischer Kundendienst
Spark Radio \& ElectronicS Inc.	Postfach 670
Greenhills, P.O. Box 610	Allmendstrasse 140
San Juan, Metro-Manila Zip 3113	CH-8027 Zurich
Tel: 63-2-775192	Tel: 411482211
Portugal	Taiwan
Decada Espectral	Schmidt Electronics Corp.
Equipmentos de Elec. e Cientificos	5th Floor, Cathay Min Sheng
Av. Bomberios Voluntarios	Commercial Building,
Lote 102B, Miraflores/Alges	344 Min Sheng East Road
1495 Lisboa	Taipei
Tel: 3511 410-3420	Tel: 886 2501-3468

New Zealand
Philips Customer Support
Scientific \& Industrial Division
2 Wagener Place
Mt. Albert
Tel: 649 894-160

Morgenstierne \& Co. AS
Konghellegate 3
P.O. Box 6688, Rodelokka

Tel: 472356110

Pakistan

AK) Lid
li. Muhammadi House
P.

Karachi
Tel: 9221 221127, 239052
Peru
aciones
Avad Franklin D. Roosevelt 105
Lima 1
hilippines
Radio \& ElectronicS Inc.
San Juan, Metro-Manila Zip 3113
Tel: 63-2-775192
Portugal
Decada Espectral
entos de Elec. e Cientificos
Av. Bomberios Voluntarios 1495 Lisboa
Tel: 351 1 410-3420

Singapore
Rank O'Connor's Singapore (PTE) Ltd.
Rasir Panjang Road
1.: 654737944

South Africa
South African Philips (Pty) Ltd.
Department
Martindale, Johannesburg, 2092
Tel: 2711 470-5255
Spain
Philips Iberica S.A.E
Depto. Tecnico Instrumentacion
artinez Villergas 2
28027 Madrid

Sweden
Philips Kistaindustrier AB
Customer Support
Borgarfjordsgatan 16
S-16493 Kista

Switzerland
Philips A.G.
Postfach 670
Almendstrasse 140
CH-8027 Zurich

Taiwan
Schmidt Electronics Corp.
5th Floor, Cathay Min Sheng
mercial Building
Comin Rheng East Road
Tel: 886 2501-3468

Thailand
Measuretronix Ltd.
2102/63 Ramkamhaeng Rd.
Bangkok 10240
Tel: 662 374-2516, 374-1632
Turkey
Turk Philips Ticaret A.S.
Inonu Caddesi 78/80
Posta Kutusu 504-Beyoglu
Istanbul
Tel: 9011435891
Uruguay
Coasin Uruguaya S.A
Casilla de Correo 1400
Libertad 2525
Montevideo
Tel: 598-2-789015
Venezuela
Coasin C.A.
Calle 9 Con Calle 4, Edif. Edinurbi
Apartado de Correos Nr-70-136
Los Ruices
Caracas 1070-A
Tel: 582 241-0309, 241-1248

West Germany

Philips GmbH
Department VSF
Service fuer FLUKE - Produkte
Oskar - Messter - Strasse 18
D-8045 Ismaning / Munich
Tel: 49089 9605-260

Section 8

Schematic Diagrams

FIGURE NO.
NAME
DRAWING NO. PAGE
8-1 Model 8400A Interconnect Diagram 8400A-1100 8-3
8-2 Model 8400A Wiring Diagram 8400A-1000 8-4
8-3 A1 Power Supply PCB Assembly 8400A-1001 8-5
8-4 A2 Range Delay PCB Assembly 8400A-1006 8-6
8-5
A3 DC External Reference Converter PCB Assembly 8400A-1009 8-7
8-6 A4 AC External Reference Converter PCB Assembly 8400A-1008 8-8
8-7 A5 Remote Control Unit PCB Assembly 8400A-1011 8-9
8-8
A6 Data Output Unit No. 2 PCB Assembly 8400A-1013 8-108-98-108-118-128-138-148-158-168-17
8-18
A22 True RMS Converter PCB Assembly
A22 True RMS Converter PCB Assembly 8400A-1022 8400A-1022 8-20 8-20
A7 Data Output Unit No. 1 PCB Assembly 8400A-1012 8-11
A8 Logic PCB Assembly 8400A-1004 8-12
A9 A-to-D Converter PCB Assembly 8400A-1003 8-13
A10 Active Filter PCB Assembly 8400A-1013 8-14
A11 Buffer PCB Assembly 8-15
A12 Ohms Converter PCB Assembly 8-16
A13 AC Converter PCB Assembly 8-17
A14 Display PCB Assembly Sheet 1 of 2 8400A-1002 8-18A14 Display PCB Assembly Sheet 2 of 28400A-10028-19

changes.
(1) sefial no. 19 and betion.
(2) serial no 198 anv above.
(c) serial no. 28 anv above.

FIGURE 8-2 MODEL 8400A WIRING DIAGRAM
(8400A-1000)

ALL RESISTANLES IN OMMS AND ALL CAPACITANCES
in MICROFARADS ULESS OTHERNLSE SPECIFIED.

- oenotes logic common

NOTES:
ALL RESISTANCES IN OHMS AND ALL CAPACITANCES
IN MICROARAOS UNLESS OTHERWISE SPEIFIED
∇ denotes signal common
∇ denates logic common
4 io denots internal adjustment

FIGURE 8-16 A14 DISPLAY PCB ASSEMBLY
SHEET 1 of 2 (8400A

[^0]: 1. REMOVE THE FOUR MOLDED FEET AND BAIL FROM BOTTOM COVER.
 2. REMOVE THE NAMEPLATE DECALS FROM THE FAONT CURNERS
 3. REMOVE THE SCREWS FFOM CORNERS WHICH MATLH HOLE PATTERNS IN RACK MOUNTING EARS
 4. ATTACH RACK MOUNTING EARS WITH PAN HEAD SCHEWS (ENCLOSED).
