
RSX-11 M
Guide to Writing an I/O Driver

Order No. AA-2600E-TC

~.--
~~--

c

c

RSX-11M
Guide to Writing an I/O Driver
Order No. AA-2600E-Te

RSX-11 M Version 4.0

digital equipment corporation · mayndrd,massachusetts

First Printing, April 1975
Revised, September 1975
Revised, November 1976
Revised, December 1977

Updated, May 1979
Revised, November 1981

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright 0 1975,1976,1977,1979,1981 Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DECnet
DECsystem-l0
DECSYSTEM-20
DECUS
DECwriter
DIBOL

EduSystem
lAS
MASSBUS
PDP
PDT
RSTS

RSX
UNIBUS
VAX
VMS
VT

~DmDDmD
ZK2048

c

(

c

c

(

c

CONTENTS

Page

PREFACE vii

SUMMARY OF TECHNICAL CHANGES ix

CHAPTER 1

1.1
1.2

CHAPTER 2

2.1
2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.1.3
2.2.2
2.2.2.1
2.2.2.2
2.2.2.3
2.2.2.4
2.2.2.5
2.2.2.6
2.3
2.3.1
2.3.2
2.3.3
2.3.3.1
2.3.4
2.3.5
2.3.6
2.3.7
2.4
2.4.1
2.4.2
2.4.2.1
2.4.2.2
2.4.2.3
2.4.2.4
2.5
2.5.1
2.5.2
2.5.3
2.5.3.1

2.5.3.2

INTRODUCTION TO I/O DRIVERS

RESIDENT AND LOADABLE DRIVERS • • • • • • • • •• 1-1
FUNCTION OF AN I/O DRIVER • • • • • • 1-2

THE RSX-llM I/O SYSTEM--PHILOSOPHY AND STRUCTURE

I/O PHILOSOPHY • • • • • • • • • • • • • • • • • • 2-1
STRUCTURE • • • • • • • • • • • • 2-1

I/O Hierarchy • • • • • • • • • • • • 2-1
FCS/RMS • • • . . • • • . • • . • . 2-2
QIO • • • • • • . • • • • • • 2-2
Executive I/O Processing • • • • • • • • • 2-3

Role of I/O Driver in RSX-llM ••••••• 2-3
Device Interrupt • • • • • • • • • • • •• 2-4
I/O Initiator ••••• • •••• 2-4
Device Time-out • • • • • 2-4
Cancel I/O • •• ••••••••• • 2-4
Power Failure •••••••••• 2-4
Summary--Role of an I/O Driver •• •• ~ • 2-5

DATA STRUCTURES • • • • •• • • • • • • • • • 2-5
The Device Control Block (DCB) • • • • 2-6
The Unit Control Block (UCB) • • • • • •• • 2-6
The Status Control Block (SCB) • 2-6

Interrelation of the I/O Control Blocks 2-6
The I/O Packet • • • • • • • .~. • • • •• 2-8
The I/O Queue • • • • • 2-9
The Fork List • • • • • • • • 2-9
The Device Interrupt Vector • • • • 2-10

EXECUTIVE SERVICES • • • • • • • • • •• 2-10
Pre-Driver Initiation Processing • • • • • •• 2-11
Post-Driver Initiation Services •••• 2-11

Interrupt Save ($INTSV) • • • • • • •• 2-12
Get Packet ($GTPKT) ••••• • • •• 2-12
Create Fork Process ($FORK) •••• 2-12
I/O Done ($IODON or $IOALT) •••••••• 2-13

PROGRAMMING STANDARDS • • • • • • • • 2-13
Process-Like Characteristics of a Driver • 2-13
Programming Conventions ••••• 2-13
Programming Protocol • • • • • • • • • • • 2-14

Processing at Priority 7 with Inte~rupts
Locked Out • • • • • • • •
Processing at the Priority of the
Interrupting Source

iii

2-14

2-14

2.5.3.3
2.5.3.4
2.6
2.7
2.7.1

CHAPTER 3

3.1
3.1.1

3.1. 2
3.1. 3
3.2
3.2.1

3.2.2
3.2.2.1

3.2.2.2

3.2.3
3.2.4

3.2.5

3.3
3.4
3.4.1
3.4.1.1

3.4.1.2
3.4.1.3
3.4.1.4

3.4.1.5

3.4.1.6
3.4.1.7
3.4.2
3.4.2.1
3.4.2.2
3.4.3
3.4.3.1

3.4.3.2

3.4.3.3
3.4.3.4
3.4.4
3.4.4.1

3.4.4.2

CHAPTER 4

4.1
4.1.1
4.1.1.1
4.1.1.2

CONTENTS

Processing at Fork Level • • • • • • • •
Programming Protocol Summary • • • • • •

FLOW OF AN I/O REQUEST • • • • • • • • • • • • •
DATA STRUCTURES AND THEIR INTERRELATIONSHIPS

Data Structures Summary . ~ ~

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-IIM

Page

2-15
2-16
2-16
2-18
2-20

OVERVIEW OF INCORPORATING USER-WRITTEN DRIVERS • • 3-1
System Generation Support for User-Written
Drivers • • • • • • • • • • • • • • • • • 3-1
Overview of User-Written Driver Code •••••• 3-4
Overview of User-Written Driver Data Bases ••• 3-5

USER-WRITTEN LOADABLE DRIVERS • • • • • • • • • • 3-8
Creating the Loadable Data Base and Driver
Modules • • • • • • • • • • • • • • ••• • 3-8
Task-Building a Loadable Driver 3-10

Task-Building a Loadable Driver on a
Mapped System • • • • • • • • • •
Task-Building a Loadable Driver on an
Unmapped System • • • • • • • • • • . .

Loading a User-Written Loadable Driver
Creating the Loadable Driver and Resident Data
Base Modules • • • • • • • • • • • • •
Building a Loadable Driver and Its Resident
Data Base •••••••••• • • • • •

USER-WRITTEN RESIDENT DRIVERS • • • •
DRIVER DEBUGGING • •

Debugging Aids • • • • • • • • • • • •
Executive Stack and Register Dump
Routine•••.
XDT - The Executive Debugging Tool • •
Panic Dump • • • • • • • • • • • • • • •
Using the Panic Dump Routine on Processors
with Console Switch Registers •••••••
Using the Panic Dump Routine on Processors
Without Console Switch Registers ••
Sample Output from Panic Dump
Crash Dump Analyzer Support Routine

Fault Isolation ••••••••
Immediate Servicing •••••••
Pertinent Fault Isolation Data •••

Fault Tracing •••• • ••••
Tracing Faults Using the Executive Stack
Register Dump ••••••••
Tracing Faults When the Processor Halts

and

3-10

3-11
3-12

3-12

3-12
3-13
3-15
3-16

3-16
3-17
3.1..19

3-19

3-19
3-20
3-21
3-21
3-21
3-23
3-23

3-25

Wi thout Display • • • • • 3-27
Tracing Faults After an Unintended Loop 3-28
Additional Hints for Tracing Faults •••• 3-28

Rebuilding and Reincorporating a Driver 3-29
Rebuilding and Reincorporating a
Resident Driver •••••••••• 3-29
Rebuilding and Reincorporating a Loadable
Driver • . . • . • . • • 3-30

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS

DATA STRUCTURES • • • • • • • • • •
The I/O Packet • • • • •

I/O Packet Details • •••••• •
The QIO Directive Parameter Block (DPB)

iv

• 4-1
• • • 4-2

• • 4-2
• 4-6

~~~----~-~~ ---

c 

C 

( 



c 

c 

c 

4.1. 2 
4.1.2.1 
4.1.2.2 
4.1. 3 
4.1.3.1 
4.1. 4 
4.1.4.1 
4.1. 5 
4.2 
4.3 
4.3.1 

CHAPTER 5 

5.1 
5.2 
5.3 

CHAPTER 6 

6.1 
6.2 
6.2.1 
6.2 •. 2 
6.3 

APPENDIX A 

A.l 
A.2 

APPENDIX B 

B.l 
B.1.1 
B.l. 2 
B.l. 3 
B.2 
B.3 

APPENDIX C 

APPENDIX D 

D.l 
D.2 
D.2.l 
D.2.2 

D.2.3 

D.3 
D.3.l 
D.3.2 
D.3.3 
D.3.4 

CONTENTS. 
Page 

The Device Control Block (DCB) • • • • 4-7 
DCB Details • • • • • • • • • • ••• 4-8 
Establishing I/O Function Masks 4-15 

The Status Control Block (SCB) • • • •• 4-19 
SCB Details • • • • • • • • • • • 4-20 

The Unit Control Block (UCB) • • • • 4-23 
UCB Details •••••••• 4-24 

The Device Interrupt Vector 4-33 
MULTICONTROLLER DRIVERS 4-33 
THE INTSV$ MACRO • • • • • • • 4-35 

Format • • • • • • • •• 4-35 

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

SYSTEM. STATE REGISTER CONVENTIONS 
CONDITIONAL ROUTINES • • • • • 
SERVICE CALLS • • • • • • • • • • 

• • • • • • • • 5-1 
• • • • 5-1 

INCLUDING A USER-WRITTEN DRIVER--TWO EXAMPLES 

DEVICE DESCRIPTION • 
DATA BASE AND DRIVER SOURCE 

• • 5-1 

. . . 6-+ 
• • • 6-2 

The Data Base • • • • . . . . . . . . 6-2 
Driver Code • • • • . . . . . . 6-4 

HANDLING SPECIAL USER BUFFERS . . . . . ... 6-9 

DEVELOPMENT OF THE ADDRESS DOUBLEWORD 

INTRODUCTION • •••• • A-I 
CREATING THE ADDRESS DOUBLEWORD • A-I 

DRIVERS FOR NPR DEVICES USING EXTENDED MEMORY 

CALLING $STMAP AND $MPUBM OR $STMPI AND $MPUBI • • B-1 
Allocating a Mapping Register Assignment Block • B-2 
Calling $STMAP or $STMPI • • • • • • • • •• B-2 
Calling $MPUBM or $MPUBI • • • • • • • • •• B-3 

CALLING $ASUMR AND $DEUMR • • • • • • • • B-3 
STATICALLY ALLOCATING UMRS DURING SYSTEM 
GENERATION • • • • • • • • • • • • • • • ••• B-4 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

USER-WRITTEN ANCILLARY CONTROL PROCESSORS 

OVERVIEW OF THE RSX-llM I/O SYSTEM • • • • 
TYPES OF ANCILLARY CONTROL PROCESSORS 

ACPs Which Manage Files Structures • • • 
ACPs Which Manage Intertask or Interprocessor 
Communication • • • • • • • • • • • 
ACPs Which Perform Privileged Operations for 

• D-l 
• D-2 
• D-3 

D-3 

Unprivileged Tasks • • • • • • • D-3 
THE ATTRIBUTES OF AN ACP • ••••• • • D-4 

ACP as a Task • • • • D-4 
Class of Devices • • •••• D-4 
Extension of Executive • • • • • • • • • • • • • D-5 
Enabling Capability and Disabling Capability •• D-5 

v 



INDEX 

D.3.5 
D.4 
D.5 
D.5.l 
D.5.2 
D.5.3 
D.6 

EXAMPLE D-l 

FIGURE 

TABLE 

2-1 
2-2 
2-3 
2-4 
2-5 
3-1 
3-2 
3-3 
3-4 
3-5 
4-1 
4-2 
4-3 
4-4 
4-5 
4-6 
B-1 
D-l 
D-2 

3-1 
3-2 
3-3 
4-1 
4-2 
4-3 
4-4 
4-5 
C-l 

CONTENTS 

Shareability •••••••• 
THE FLOW OF AN I/O REQUEST • • • • • • • • 
SYSTEM DATA STRUCTURES • • • • • • • • • •• 

Page 

• • • D-5 
• D-5 
• D-7 

The I/O Packet • • • • • • • • • • • • • D-7 
The DCB • • • • • 
The UCB • • • • 

AN EXAMPLE OF AN ACP-I/O DRIVER COMBINATION 

EXAMPLES 

An ACP-I/O Driver Combination 

FIGURES 

I/O Control Flow . · · · · · · · · · · DHll Terminal I/O Data Structure · · · RKll Disk I/O Data Structure · · · · · · · · · 

• • D-9 
• • D-9 

D-ll 

D-ll 

· · 2-2 

· · 2-7 

· 2-8 
I/O Data Structure for Two RKll Disk Controllers · 2-8 
I/O Data Structure · · · · · · · · · · · · · · · 2-19 
Task Header on an Unmapped System 3-24 
Task Header on a Mapped System · · · · · · · · · 3-25 
Stack Structure: Internal SST Fault 3-26 
Stack Structure: Abnormal SST Fault · 3-27 
Stack Structure: Data Items on Stack 3-28 
I/O Packet Format · · · · · · · · · · · · · · · · 4-3 
QIO Directive Parameter Block (DPB) · · · 4-6 
Device Control Block · · 4-8 
Status Control Block · · · · · · · · · · · · · · 4-19 
Unit Control Block · · · · · · · · · 4-26 
Conditional Code for a Multicontroller Driver 4-34 
Mapping Register Assignment Block · B-3 
The RSX-llM I/O System · · · · · · · · · D-2 
I/O Packet . . . . · · · · · · · · · · · · D-9 

TABLES 

Required DCB Fields •••••••••••• 3-6 
Required UCB Fields •••• • • • • • • 3-7 
Required SCB Fields •••••••••• • • 3-7 
D. PCB and D. DSP Bi t Definitions • • • • 4-14 
Mask Values for Standard I/O Functions • 4-15 
Mask Word Bit Settings for Disk Drives. • • •• 4-16 
Mask Word Bit Settings for Magnetic Tape Drives 4-17 
Mask Word Bit Settings for Unit Record Devices. 4-18 
Summary of System Data Structure Macros •• • • • C-2 

vi 

( 

c 

( 

(~ 



( 

( 

( 

( 

PREFACE 

MANUAL OBJECTIVES 

The goal of this manual is to provide information necessary to prepare 
a cpnventional I/O driver for RSX-IIM and subsequently incorporate it 
into an operational user-tailored system. A "conventional" driver is 
best explained by example. Disks and unit record devices are 
considered conventional; the LPS-ll, UDC-ll, and TMll are considered 
unconventional. Complexity of device servicing requirements sets the 
dividing lin~, which is not easily established in black-and-white 
terms. 

INTENDED AUDIENCE 

The manual assumes that you understand the device for which you are 
writing a driver, and that you are familiar with the PDP-II processor, 
its peripheral devices, and the software supplied with an RSX-IIM 
system. Although this manual is organized tutorially, the intended 
audience is assumed to be at a system programmer level of expertise; 
thus, the manual does not contain definitions of data processing terms 
and concepts familiar to senior-level professionals. 

STRUCTURE OF THIS DOCUMENT 

This document proceeds from chapter to chapter toward increasingly 
detailed levels of implementation. 

Chapter 1 is a general introduction to I/O drivers in the RSX-IIM 
system. 

Chapter 2 is a functional description of tfie RSX-IIM device-level I/C 
system. It discusses both data structure and code requirements. 

Chapter 3 details how to incorporate a user-written driver into the 
system. 

Together, Chapters 1, 2, and 3 provide a complete description of the 
requirements that must be met in creating a system that contains a 
user-written driver. 

Chapter 4 provides programming-level details on I/O data structures 
and on drivers that service several controllers. 

Chapter 5 discu~ses all the I/O-related Executive servic~s. 

Chapter 6 gives two examples of user-written drivers. 

Appendix A describes the address doubleword. 

vii 



Appendix B outlines special considerations for extended memory NPR 
device drivers. 

Appendix C lists system macros that supply symbolic offsets for system 
data structures. 

Appendix D is a guide for the user in developing an Ancillary Control 
Processor (ACP). 

ASSOCIATED DOCUMENTS 

Familiarity with the system implies an in-depth exposure to the 
following manuqls: 

• RSX-IIM System Generation and Installation Guide 

• RSX-llM/M-PLUS I/O Drivers Reference Manual 

• RSX-llM/M-PLUS Executive Reference Manual 

• RSX-llM/M-PLUS Util i ties Manual 

• IAS/RSX-ll I/O Operations Reference Manual 

As adjuncts to this manual, you are advised to study existing I/O 
drivers. The RL-ll disk driver is a good example of an NPR device and 
the TA-ll (cassette) is illustrative of a programmed I/O device. In 
addition, a perusal of Executive source code contained in the files 
IOSUB, SYSXT, DRQIO, BFCTL, and DRDSP (stored in UFD [11,10] on the 
Executive source disk) is recommended. 

Other manuals closely allied to the purposes of this document are 
described briefly in the RSX-IIM/RSX-llS Information Directory and 
Index. The Information Directory defines the intended readership of 
each manual in the RSX-IIM/RSX-llS set and provides a brief synopsis 
of each manual's contents. 

viii 

( 

~ 
"-

( 

( 

( 



( 

c 

c 

SUMMARY OF TECHNICAL CHANGES 

This reVISIon of the RSX-llM Guide to Writing an I/O 
incorporates the following technical changes and additIOns-:--

Driver 

1. Tables have been added to aid the user in establishing I/O 
function bit masks for disk drives, magtape drives, and unit 
record devices (see Tables 4-3, 4-4, and 4-5). 

2. Error logging offsets have been added to the SCB and UCB. 
See the descriptions of the SCB and the UCB in Chapter 4. 

3. Other additions have been made to various UCB offsets: 

• New symbolic name U.MUP has been added (redefinition of 
U.CLI; see Chapter 4). 

• Symbolic names for magtape density bit masks have been 
added to the description of U.CW3 (see Chapter 4). 

• The DV.MBC offset to U.CWI has been renamed to DV. EXT (see 
Chapter 4). 

4. Some Executive routines listed in Chapter 5 have been moved 
to new Executive modules. The. following is a 1 ist of the 
affected modules and subroutines: 

Routine Old Module New Module 

$ACHKB/$ACHCK IOSUB EXESB 
$ASUMR IOSUB MEMAP 
$DEUMR IOSUB MEMAP 
$DVMSG IOSUB EXESB 
$MPUBM IOSUB MEMAP 
$MPUBI IOSUB MEMAP 
$RELOC IOSUB MEMAP 
$STMAP IOSUB MEMAP 
$STMPI IOSUB MEMAp 

In addition, the inputs to $MPUBI have been modified (see 
Chapter 5). 

5. Three additional routines have been documented in Chapter 5: 

$EXRQP, $QRMVF, and $SWSTK. 

6. An appendix intended to aid the user in writing an Ancillary 
Control Processor (ACP) has been added (see Appendix D). 

ix 



( 

€= 

( 

( 

c 



( 

c 

( 

( 

CHAPTER 1 

INTRODUCTION TO I/O DRIVERS 

The software supplied by DIGITAL for an RSX-IIM system includes I/O 
drivers for a number of standard I/O devices. An I/O driver is a part 
of the RSX-IIM Executive that services one type of I/O device. A 
driver may handle one or several controllers, each with one or several 
device-units attached. 

1.1 RESID~NT AND LOADABLE DRIVERS 

A driver can be resident or loadable. A resident driver is a 
permanent part of the Executive, incorporated at system generation. A 
loadable driver ,while also part of the Executive, can be added to· or 
unloaded from a system almost at will by means of MCR or VMR commands. 
During the system generation dialog, you can specify that you want 
this facility. 

Making drivers loadable can result in less Executive code, and thus 
permits an increase in available dynamic storage region (pool) space 
or increased space for user tasks. You can unload from the system any 
driver that is not needed for a period of time. For example, assume 
your system has both a paper tape reader and a card reader. If only 
one of them is connected to the system at anyone time, you could load 
the driver for the on-line device and unload the other driver, thus 
reducing the size of the Executive. 

A loadable user-written driver is easier to incorporate into a system 
and easier to debug than a resident one. You can incorporate a 
resident driver into a system only during system generation; the 
Executive must be rebuilt and the system bootstrapped each time it is 
incorporated aft~r debugging. In contrast, you can incorporate a 
loadable driver into a system with a single MCR command. 
Incorporating and debugging user-written drivers are discussed in 
Chapter 3. 

1-1 



INTRODUCTION TO I/O DRIVERS 

1. 2 FUNCTION OF AN I/O DRIVER 

An I/O driver is an asynchronous process (not a task) that calls and 
is called by the Executive to service an external I/O device or 
devices. The role of an I/O driver in. the RSX-llM I/O structure is 
specific and limited. A driver performs the following functions: 

• Receives and services interrupts from its I/O device(s) 

• Initiates I/O operations when requested to do so by the 
Executive 

• Cancels in-progress I/O operations 

• Performs other (device-specific) functions upon power failure 
and device time-out 

As an integral part of the Executive, a driver possesses its own 
context, allows or disallows interrupts, and synchronizes its access 
to ,shared data bases with that of other Executive processes. It may 
also synchronize with itself: A driver can handle several device 
controllers (each with several device-units) all operating in 
parallel. A user-written driver must adhere to RSX-llM programming 
c-onventions in order to ensure the integrity of the Executive. 
Section 2.5 and Chapter 4 discuss these conventions. 

1-2 

( 

c 

c 

c 



( 

--------------------- ----------------

CHAPTER 2 

THE RSX-llM I/O SYSTEM--PHILOSOPHY AND STRUCTURE 

2.1 I/O PHILOSOPHY 

Memory constraints and compatibility requirements dominated the design 
philosophy and strategy used in creating RSX-llM. To meet its 
performance and space goals, the RSX-llM I/O system attempts to 
centralize common functions,' thus eliminating the inclusion of 
repetitive code in each and every driver in the system. To achieve 
this centralization, a substantial effort has been expended in 
designing the RSX-llM data structures, which are used to drive the 
centralized routines. The effect is to reduce substantially the size 
of individual I/O drivers. The table structures require space and 
must be considered with the total size of the I/O system. 
Nevertheless, the size reduction effected by centralizing functions, 
combined with table-driven design, enables RSX-llM to meet its 
intended memory and performance ,goals. 

2.2 STRUCTURE 

The following sections: 

1. Place an I/O driver in the context of the overall RSX-llM I/O 
system 

2. Establish the responsibilities of an I/O driver 

3. Functionally describe the driver's interface to the Executive 
subroutines and the I/O data structures 

2.2.1 I/O Hierarchy 

The RSX-llM I/O system is structured as a loose hierarchy. The term 
"loose" indicates that you can enter the hierarchy at any of its 
levels; this characteristic is contrasted to "tight" hierarchies that 
permit entry only from the top level. Tight hierarchies exist 
principally for security and protection, but consume equipment 
resources. Figure 2-1 shows the loose RSX-llM I/O system hierarchy. 

2-1 



THE RSX-llM I/O SYSTEM--PHILOSOPHY AND STRUCTURE 

2.2.1.1 FCS/RMS - At the top of the hierarchy are File Control 
Services (FCS) and Record Management Services (RMS) , which provide 
device-independent access to devices included in a given system 
configuration. The user task has two levels with which to interface 
with FCS or RMS: Get/Put and Read/Write. Get/Put facilitates the 
movement of data records, whereas Read/Write provides a more basic 
level of access affording more direct control over data movement 
between a task and peripheral devices. -

Privileged Non-privileged 

I I--
User I/O 

FCP I FCS request 

I 

1 I 1 Device-
independent 

I Device-

I dependen 
010 010 

directive I directive 

I 
I -1- User state 

- - - - - - - - - - - - - - - - - - - -
System state 

010 
directive 
service 

1 
Executive 

I/O subroutines 

! 
Device interrupt-

I/O 
driver 

ZK-21 0-81 

Figure 2-1 I/O Control Flow 

The discussion of FCS and RMS is brief because their existence is 
completely transparent to the driver and rarely concerns the writer of 
a conventional driver. FqS or RMS accepts a user request, interprets 
it, and translates it into a series of low-level system directives 
known as QI.Os. 

2.2.1.2 QIO - The QIO directive is the lowest level of task I/O. Any 
task can issue a QIO directive which allows direct control over 
devices that are connected to a system and that have an I/O driver. 
The QIO directive forces all I/O requests from user tasks to go 
through the Executive. The Executive works to prevent tasks from 
destructively interfering with each other and with the Executive 
itself • 

2-2 

( 

( 

c 



( 

( 

(-

( 

THE RSX-llM I/O SYSTEM--PHILOSOPHY AND STRUCTURE 

2.2.1.3 Executive I/O Processing - The 
requests using the following: 

Executive 

l~ An Ancillary Control Processor (ACP) 

processes 

2. A collection of Executive components consisting of: 

a. QIO directive processing 

b. I/O-related subroutines 

c. The I/O drivers 

I/O 

An ACP is responsible for maintaining the structure and integrity of 
data stored on file-structured volumes. It maps virtual I/O functions 
to logical I/O functions, and makes volume-protection checks. The 
driver converts a logical block number into a physical address on a 
file-structured device. No direct connection normally exists between 
the ACP and a driver. 

An ACP is a privileged task, and requires a 
execute. Drivers, on the other hand, 
processes, not tasks. 

partition in which to 
are specialized system 

The Executive provides QIO directive processing. It also provides a 
collection of subroutines that are used by drivers to obtain I/O 
requests, to facilitate interrupt handling, and to return directive 
status codes. Actual control of the device is performed by the 
driver. These subroutines are examined in detail in Chapter 5. 
Executive subroutine services and QIO directive processing are shown 
as distinct components but are, in fact, both part of the Executive. 
These subroutines centralize common driver functions, thus eliminating 
duplicate code sequences among drivers. 

2.2.2 Role of I/O Driver in RSX-IIM 

Every I/O driver in the RSX-IIM system has the . following five entry 
points: 

• Device interruptI 

• I/O initiator 

• Device time-out 

• Cancel I/O 

• Power fa il ure 

The first entry point is entered by a hardware interrupt; the other 
four are entered by calls from the Executive. Functional details 
regarding these entry points follow. 

1. A device may trigger more than one distinct interrupt entry. For 
example, a full-duplex device would have two. 

2-3 



THE RSX-IIM I/O SYSTEM--PHILOSOPHY AND STRUCTURE 

2.2.2.1 Device Interrupt - Control passes to this entry point when a 
device previously initiated by the driver completes an I/O operation 
anq causes an interrupt in the central processor. The connection 
beuween the device and the driver in this instance is direct; the 
Executive is not involved. 

2.2.2.2 I/O Initiator - The Executive calls this entry 
in~orm the d river that work for it is wai ting to be done. 
this is a wake-up signal for the driver. 

point to 
In effect, 

2.~.2.3 Device Time-out - When a driver initiates an I/O operation, 
it can establish a time-out count. If the function then fails to 
complete within the specified time interval, the Executive notes the 
time lapse and calls the driver at this entry point. 

2.21.2.4 Cancel I/O - A number of circumstances arise wi thin the 
system that require a driver to terminate an in-progress I/O 
operation. When such a termination becomes necessary, a task so 
infbrms the Executive, which then relays the request to the driver by 
caliing it at the cancel I/O entry point. 

2.2.2.5 Power Failure - The Executive calls the driver's 
failure entry point in three different circumstances: 

power-

• When power is restored after a failure 

• When the system is bootstrapped 

• When the driver is loaded (if it is a loadable, as opposed 
a resident, driver) 

to 

Power Restore - Two conditions can initiate a call to the driver when 
power is restored following a power failure. First, the Executive 
automatically calls the power-failure entry point when power is 
restored any time the controller is busy (that is, when I/O is in 
progress). Second, a driver has the option to be called regardless of 
the existence of an outstanding I/O operation at the time the power .is 
restored (See the description of the UC.PWF bit symbol in Section 
4.1. 4.'1). Frequently, a driver's response to a power failure or to an 
I/O fa,ilure is identical to that when its device times out; in such a 
case, the power-failure entry point may simply be a RETURN 
instruction, because the driver will recover eventually via the 
time-out entry point. 

Bootstrap - When the system is bootstrapped, a power-failure interrupt 
is simulated. This simulation gives driver~ the opportunity to carry 
out any appropriate preoperational initialization. 

Load - The MCR LOA command calls a loadable driver at its 
power-failure entry point if the device is on line and UC.PWF is set 
(see Section 4.1.4.1). 

2-4 

( 

(-



c 

c 

c 

THE RSX-I~M I/O SYSTEM--PHILOSOPHY AND STRUCTURE 

2.2.2.6 Summary--Role of a~ I/O Driver - Functionally, a driver in 
RSX-IIM is responsible for: 

• Servicing device interrupts 

• Initiating I/O operations 

• Cancelling in-progress I/O operations 

• Performing device-related functions whe .. ll a time-out or pOWli!J 
failure occurs 

A driver exists as an int~gral part of the Executiv~. it can ~all, 
and be called by, the Executive. The driver initiates devige I/O 
operations directly and receives device interrupts directly. All 
other entry points are entered by means of Executive calls. A driver 
never receives a QIO request d1.r;ectly, and ha.s no direct inter:a.ctiOcn 
with the ACP. 

2.3 DATA STRUCTURES 

An I/O driver interacts with the fol~owing data structures: 

• Device Control Blocks (DCBp) 

• Unit Control Blocks (UeBs) 

• Status Control Blocks (SCSs) 

• The I/O packet 

• The I/O queue 

• The fork list 

• Device interrupt vector 

The first four of these data structures are especially important to 
the driver, because it is by means of these data structures that all 
I/O operations are effected. They also serve as communication and 
coordination vehicles between the Executive and individual drlvers. 

The I/O queue and the fork list are actually Executive da·ta 
structures, but are discussed here to illustrate all facets of the 
interaction of an I/O driver with the Executive. The I/O queue is.a 
list of I/O packets built by the QIO. directive, principally from 
information in the caller's Directive Parameter Block (DPB). The fork 
list synchronizes access to shared Executive data structures. 

Entry to a driver following a device interrupt is accomplished through 
the appropriate hardware device interrupt vector. As will be seen, 
writers of resident drivers are responsible for properly initializi.ng 
this vector. It is discussed in conjunction with the data structures 
associated with a driver. 

2-5 



THE RSX-IIM I/O SYSTEM--PHILOSOPHY AND STRUCTURE 

2.3.1 The Device Control Block (DCB) 

At least one DCB exists for each type of device appearing in a system 
(device type should not be equated with device-unit). The function of 
the DCB is to describe the static characteristics (rather than 
execution-time information) of both the device controller and the 
units attached to the controller. All the DCBs in a system form a 
forward-linked list, with the last DCB having a link of zero. Most of 
the data in the DCB is established in the assembly source for the 
driver data structure. The DCB is used by the QIO directive 
processing code in the Executive and not by the driver. 

2.3.2 The Unit Control Block (UCB) 

One UCB exists for each device-unit attached to a system. Much of the 
information in the UCB is static, though a few dynamic parameters 
exist. l For example, the redirect pointer, which reflects the results 
of the MCR RED command is updated dynamically. As with the DCB, most 
of the UCB is established in the assembly source; however, its 
contents are used and modified by both the Executive and the driver. 
Usually, either the Executive or the driver -- but not both -- modify 
a datum. 

2.3.3 The Status Control Block (SCB) 

One SCB exists for each device controller in the system. This is true 
even if the controller handles more than one device-unit (like the 
RLII Controller). Line multiplexers such as the DHII and DJll are 
considered to have one controll~r for each line because all lines can 
transfer in parall~l. Most of the information in the SCB is dynamic. 
Both the Executive and the driver use the SCB. 

2.3.3.1 Interrelation of the I/O Control Blocks - This section 
discusses the interrelationship among the DCB, UCB, and SCB without 
entering into .the detailed contents of the control blocks, which are 
discussed in Chapter 4. . 

Figure 2-2 shows the data structure that would resul t for three LA36 
DECwriters interfaced by means of a DHl1 multiplexer. The structure 
requires one DCB, three UCBs, and three SCBs, because the activity on 
all three units can proceed in parallel. 

Figure 2-3 depicts the internal data structure for an RK11 disk 
controller with three units attached. Note that only one SCB exists, 
because only one of the three units can be active at any given time. 

1. From the UCB, however, it is possible to access most of the other 
structures in the I/O data base (see Figure 2-5). In this sense the 
UCB gives access to a large amount of dynamic data. 

2-6 

( 

c 

c 



c 

C 

THE RSX-IIM I/O SYSTEM--PHILOSOPHY AND STRUCTURE 

Figure 2-4 shows the data structure for two RKll disk controllers, 
each of which has two drives attached. Here there are two SCBs, 
because both of the disk controllers can operate in parallel. 

Taken together, Figures 2-2, 2-3, and 2-4 illustrate the strategy 
underlying the existence of three basic I/O control blocks. There 
need be only one DCB for each device type. There may be one or more 
SCBs, depending on the degree of parallelism that is desired or 
possible: one for each device-unit, or one for each controller 
servlclng several device-units. The number of UCBs and SCBs, and 
their interrelationships, are uniquely determined by the hardware 
these data structures describe. 

This data structure provides considerable flexibility in configuring 
I/O devices, and, because of the information density in the structures 
themselves, substantially reduces the code requirements of the 
associated drivers. 

DCB 

UCB UCB UCB 

SCB SCB SCB 

ZK-211-81 

Figure 2-2 DHll Terminal I/O Data Structure 

2-7 



THE RSX-llM I/O SYSTEM--PHILOSOPHY AND STRUCTURE 

DCB 

UCB UCB UCB 

SCB ," 

ZK-212-81 

Figure 2-3 RKll Disk I/O Data Structure 

DCB 

! ." 1 
UCB UCB UCB UCB 

1, j 
sca SCB 

ZK-213-81 

Figure 2-4 I/O Data Structure for Two RKll Disk Controllers 

2.3.4 The I/O ,packet 

An I/O packet contains information extracted from the QIO DPB, as well 
as other information needed to initiate and terminate I/O requests. 

2-8 

c 

c 

c 



c 

c 

c 

THE RSX-llM I/O SYSTEM--PHILOSOPHY AND STRUCTURE 

2.3.5 The I/O Queue 

Each time a task makes an I/O request, the Executive performs a series 
of validity checks on the DPB parameters. If these checks prove 
successful, the Executive generates a data structure called an I/O 
packet. The Executive then inserts the packet into a device-specific, 
priority-ordered list of packets called the I/O queue. Each I/O 
queue's listhead is located in the SCB to which the I/O requests 
apply. 

When a device driver needs work, it requests the Executive to dequeue 
the next I/O packet and deliver it to the requesting driver. 
Normally, the driver does not directly manipulate the I/O queue. l 

2.3.6 The Fork List 

The fork list is a mechanism by which RSX-IIM splits off processes 
that require access to shared data bases, oi that require more CPU 
time to process an interrupt than is compatible with fast, real-time 
response of the overall system. 

A process that calls $FORK requests the Executive to transform it into 
a "fork process" and place it on the fork list. What this means is 
that a dall to $FORK saves a "snapshot" of the process (registers R4, 
R5, and the PC) in a fork block. This fork block is queued on the 
fork list in first-in-first-out (FIFO) order. 

When a fork process has worked its way to the front of the fork list, 
R4 and R5 are restored and execution restarts at the statement after 
CALL $FORK. The process is unaware that a pause of indeterminate 
length has occurred. 

A fork process exists in a status intermediate between an interrupting 
routine and an ordinary task requesting system resources. Routine~ in 
the system stack--requests for interrupt processing--are run fi~st. 
They can be interrupted only by higher-priority requests. Routines in 
the fork list are run when the system stack is empty--that is, they 
are completely interruptable. Finally, other tasks are run only when 
both the system stack and the fork list are empty. 

Driver interrupts are processed at priority 7 and are thus 
noninterruptable. By system convention, no process should run in a 
noninterruptable mode for more than 100 microseconds. This convention 
ensures prompt attention to interrupting real-time events. 

In practice, drivers servicing interrupts drop from priority 7 to a 
lower priority (namely, that of the interrupting source) after issuing 
a few instructions. Another system convention states that processing 

1. An exception is the case in which a driver needs to examine an I/O 
packet before it is queued, or in place of having it queued. For the 
driver to accomplish this examination, you must set the bit UC.QUE in 
the control byte (U.CTL) of the UCB (described in Section 4.1.4). 

The most common reason for a driver to examine a packet before queuing 
is that the driver employs a special user buffer, other than the 
normal buffer used in a transfer request. Within the context of the. 
requesting task, the driver must address-check and relocate such a 
special buffer. See Section 6.~ for an example of a driver that does 
this. 

2-9 



THE RSX-IIM I/O SYSTEM--PHILOSOPHY AND STRUCTURE 

at this partially interruptable level should not exceed 500 
microseconds. Often, more time than this is required to process an 
interrupt. The fork list mechanism provides a secondary interrupt 
stack whose members are processed first-in-first-out whenever the 
system stack is empty. 

A process can also call $FORK to access a shared data base--a system 
table, for exampl~. You must strictly control ~uch access in order to 
avoid conflicts. Under RSX-llM, many drivers can run in parallel; a 
multicontroller driver can run in parallel with itself. In these 
circumstances access to common data bases must be controlled. 

Of the two available methods of controlling such access--interrupt 
lockout and priority queuing--RSX-llM uses priority queuing. The fork 
list is the queue of requests for such access. Fork processes are 
granted FIFO access to common data bases. Once granted such access, a 
process is guaranteed control of the data base until it exits. 

2.3.7 The Device Interrupt Vector 

The device interrupt vector consists of two, consecutive words giving 
the address of the interrupt-service routine and the priority at which 
it is to run (always set to PR7). The low four bits of the second 
word of the interrupt vector must contain the number of the controller 
that interrupts through the vector. This requirement enables a driver 
to service several controllers with few code changes (see Sections 4.2 
and 4.3 for an example and discussion of multicontroller driver 
coding). Generally, the~e bits are set to O. 

2.4 EXECUTIVE SERVICES 

The Executive provides services related to I/O drivers that can be 
categorized as pre- and post-driver initiation. The preinitiation 
services are those performed by the Executive during its processing of 
a QIO directive; these services are not available as Executive calls. 

The goal of pre-driver initiation processing is to extract from the 
QIO directive all I/O support functions not directly related to the 
actual issuance of a function request to a device. If the outcome of 
pre-driver initiation processing does not result in the queuing of an 
I/O packet to a driver, the driver is unaware that a QIO directive was 
issued. 'Many QIO directives do not result in the initiation of an I/O 
operation. 

The post initiation services are those available to the 
it has been given control, either by the Executive or as 
an interrupt. They are available as needed by means 
calls. 

driver after 
the result of 
of Executive 

An important concept used in this section and in Section 2.5 is the 
nstate" of a process. In RSX-llM, a process can run in one of two 
states: user or system. Drivers operate almost entirely in the 
system state; the programming standards described in Section 2.5 
apply to system-state processes. 

2-10 

( 

c 

( 



( 

( 

( 

THE RSX-IIM I/O SYSTEM--PHILOSOPHY AND STRUCTURE 

2.4.1 Pre-Driver Initiation Processing 

In processing a QIO directive, the Executive module DRQIO performs the 
following pre-driver initiation services: 

1. Checks to verify whether the supplied logical unit number 
(LUN) is legal. If not, the directive is rejected. 

2. If the LUN is valid, checks to verify whether 
pointer exists in the Logical Unit Table 
specified LUN. This test determines if the LUN 
If the test fails, the directive is rejected. 

a val id UCB 
(LUT) for the 
is assigned. 

3. If steps 1 and 2 are successful, traces down the redirect 
chain to locate the correct UCB to which the I/O operation 
will actually be directed. 

4. Checks the event flag number (EFN) and the address of the I/O 
Status Block (IOSB). If either is illegal, the directiv~ is 
rejected. Immediately following validation, the Executive 
resets the subject event flag and clears the IOSB. 

5. Obtains 18 words of dynamic storage and 
device-independent portion of an I/O packet. 

builds the 

If steps 1 through 5 succeed, the Executive sets the 
directive status to +1. 

Note that directive rejections in any of the above steps are 
completely transparent to the driver. Such rejections cause 
a return of carry bit set. 

6. Checks the validity of the function being requested and, if 
appropriate, checks the buffer address, byte count, and 
alignment requirements for the specified device. 

If any of these checks fails, the Executive calls the I/O 
Finish routine ($IOFIN). $IOFIN sets the I/O status and 
clears the QIO request from the system. 

7. If the requested function does not require a call to the 
driver, the Executive takes the appropriate actions and calls 
$IOFIN. 

8. If all I/O packet checks are positive, the Executive places 
the I/O packet in the driver queue according to the priority 
of the requesting task, or gives the packet to the driver (if 
bit UC.QUE is set--see Section 4.1.4.1). 

2.4.2 Post-Driver Initiation Services 

Once a driver is given control following an I/O interrupt or by the 
Executive itself, a number of Executive services are available to the 
driver. These services are discussed in detail in Chapter 5. 

2-11 



~-----~~.--------------

THE RSX-IIM I/O SYSTEM--PHILOSOPHY ANO STRUCTURE 

However, four Executive services merit special emphasis because 
virtually every driver in the system uses them: 

• Interrupt Save ($INTSV) 

• Get Packet ($GTPKT) 

• Create Fork Process ($FORK) 

'. I/O Done ($IODON or $IOALT) 

2.4.2.1 Interrupt Save ($INTSV)l - Interrupts from a device are 
fielded by the driver. Immediately following the interrupt, the 
driver operates at hardware priority level 7 and is, therefore, 
non interruptable. If the driver needs a lengthy processin~ cycle 
(greater than 100 microseconds) to process the interrupt, or if it 
requires the use of any general-purpose registers, it calls $INTSV. 
This call queues external interrupts, alters the hardware priority, 
and provides the calling routine with two free registers to use in 
processing the interrupt. $INTSV is discussed in more detail in 
Section 2'.5. 

2.4.2.2 Get Packet ($GTPKT) - The Executive, after it has queued an 
I/O packet, calls the appropriate driver at its I/O-initiato~ entry 
point. The driver then immediately calls the Executive routine $GTPKT 
to obtain work.2 If work is available, $GTPKT delivers to the driver 
the highest-priority, executable I/O packet in the driver's I/O qilieue, 
and sets the SCB status to "busy." If the driver's I/O queue is empty, 
$GTPKT returns a no-work indication. If the SCB related to the device 
is already busy, $GTPKT so informs the driver, and the driver 
immediately returns control to the Executive.-

Note that, from the driver's point 
between no-work and SCB busy, 
initiated in either case. 

of view, no distinction exists 
because an I/O operation cannot be 

2.4.2.3 Create Fork Process ($FORK) - You can synchronize access to 
shared data bases by creating a fork process. When a driver needs to 
access a shared data base, it must do so as a fork process; the 
driver becomes a fork process by calling $FORK. The SCB contains 
preallocated storage for a 4- or 5-word "fork block." See Section 
4.1.3.1 for a description of the fork block. Section 5.3 contains 
details on $FORK. 

1. A Idadable driver on a mapped system cannot call $INTSV directly. 
See Section 4.3. 

2. An exception is a driver that handles special user buffers. Such a 
driver must call certain other Executive routines before calling 
$GTPKT. See Section_ 6.3 for an example. 

2-12 

c 



c 

c 

THE RSX-IIM I/O SYSTEM--PHILOSOPHY AND STRUCTURE 

An interrupt routine cannot call $FORK directly; the routine must 
first switch to system state by using the INTSV$ macro or calling 
$INTSV (as described in Section 2.4.2.1). Furthermore, the 
interrupting routine's priority is lowered to that of the requesting 
source. 

After calling $FORK, a routine is fully interruptable (priority 0), 
and its access to shared system data bases is strictly linear. 

2.4.2.4 I/O Done ($IODON or $IOALT) - At the 
request, the subroutines $IODON or $IOALT 
centralized checks and additional functions: 

completion 
perform a 

• Store status if an IOSB address was specified 

• Set an event flag, if one was requested 

of an 
number 

• Determine if a checkpoint request can now be honored 

• Determine if an AST should be queued 

I/O 
of 

$IODON and $IOALT also declare a significant event, reset the SCB and 
device unit status to "idle," and release the dynamic storage used by 
the completed I/O operation. 

2.5 PROGRAMMING STANDARDS 

RSX-IIM I/O drivers function as integral components of the RSX-IIM 
Executive. They must follow the same conventions and protocol as the 
Executive itself if they are to avoid complete disruption of system 
service. This manual has been written to enable you to incorporate 
I/O drivers into your system. Failing to observe the internal 
conventions and protocol can result in poor service and a reduction in 
system efficiency. 

2.5.1 Process-Like Characteristics of a Driver 

A driver is an asynchronous Executive process. As a process, it 
possesses its own context, allows or disallows interrupts, and 
synchronizes functions within itself (all drivers can be parallel, 
multiunit, multicontroller) and with other Executive processes 
executing in parallel. 

Most RSX-IIM drivers are small. Their small size is made possible by 
a comprehensive complement of centralized services available by calls 
to the Executive, and by the availability of an information-dense, 
highly formalized I/O data structure. 

2.5.2 Programming Conventions 

Appendix E of the PDP-II MACRO-II Language Reference Manual describes 
program coding standards. DIGITAL recommends that users refer to 
these -standards to assist in preparing standards for their own 
installations. 

2-13 



THE RSX-llM I/O SYSTEM--PHILOSOPHY AND STRUCTURE 

2.5.3 Programming Protocol 

Because an I/O driver accepts interrupts directly from the devices it 
controls, the central Executive relies on the driver to follow strict 
programming protocol so that system performance is not degraded. 
Furthermore, the protocol ensures that the driver properly distributes 
shared resources according to user-specified priorities. The protocol 
is summarized in Section 2.5.3.4. 

When a device interrupts, an I/O driver is entered. The driver 
usually calls $INTSV or issues the INTSV$ macro l for common save and 
state-switching services. At the completion of the services provided 
by INTSV$ or $INTSV, the interrupt routine is again given control to 
complete the interrupt service. The exit routine $INTXT restores the 
state prior to switching to the system state, controls the unnesting 
of interrupts, and makes checks on the state of the system (for 
example, it checks to determine whether it is necessary to switch 
stacks). The fork processor causes access to shared system data bases 
to be linear. The details of all these routines are given in Chapter 
5. 

The interrupt vectors for each controller type in low memory contain a 
program counter (PC) unique to each interrupting source and a 
Processor Status Word (PSW) set with a priority of 7. It is a system 
software convention to use the low-order four bits of the PSW to 
encode the controller number for multicontroller drivers. When a 
device interrupt occurs, the hardware pushes the current PSW and PC 
onto the current stack and loads the new PC and PSW (set at priority 7 
with the controller number in the condition-code bits) from the 
appropriate interrupt vector. The driver then starts executing with 
interrupts locked out. A driver itself may be executing at one of 
three levels of interrupt sensitivity: 

1. At priority 7 with interrupts locked out. 

2. At the priority of the interrupting source; thus, interrupt 
levels greater than the priority of the interrupting source 
are permitted. 

3. At fork level, which is at priority O. 

2.5.3.1 Processing at Priority 7 with Interrupts Locked Out - By 
internal convention, processing at this level is limited to 100 
microseconds. 'If processing can be completed in this time, either 
without using ~eneral-purpose registers or by saving and restoring the 
registers used~ then the driver simply dismisses the interrupt by 
executing an RTI instruction. The interrupt is processed and 
dismissed with minimal overhead. 

2.5.3.2 Processing at the Priority of the Interrupting Source - If 
the driver requires additional processing time or requires the use of 
general-purpose registers, it calls the $INTSV routine. Loadable 
drivers on mapped systems must use the INTSV$ macro. All other 
drivers can use the INTSV$ macro or call the $INTSV routine directly. 
The priority at which the caller is to run is included in the call to 
the $INTSV routine. The driver sets this priority level to that of 
the interrupting source. 

1. The system macro INTSV$ simplifies the coding 
interrupt-entry processing (see Section 4.3). 

2-14 

of standard 

c 

c 

c 

( 



( 

( 

c 

c 

THE RSX-IlM I/O SYSTEM--PHILOSOPHY AND STRUCTURE 

The $INTSV routine sets up the interrupt routine so that it can 
interrupted by devices with priorities higher than that of 
interrupting source, and switches to system state if the processor 
not already in system state. 

be 
the 
is 

The $INTSV routine also saves registers R4 and R5 to free these 
registers for the driver. (A standard practice is for the driver to 
set R4 to the address of the interrupting device's SCB, and R5 to its 
UCB address.) An internal programming convention assumes that the 
driver will not require more than these two registers during interrupt 
processing. If it does, the driver must save 'and restore any 
additional registers it uses. Processing time following the return 
from the $INT~V routine should not exceed 500 microseconds. l 

NOTE 

In actual practice, every driver in the 
system calls the $INTSV routine on every 
interrupt, due to three factors: 

It is difficult 
interrupt without 
registers. 

to service an 
using one or two 

2. Most interrupt code can safely be 
executed at the priority of the 
interrupting source. Executing at 
that priority is more desirable in 
terms of system response than 
continuing to execute at the highest 
priority. 

3. The $INTSV routine is an integral 
part of the interrupt mechanism for 
loadable drivers. 

2.5.3.3 Processing at Fork Level - A driver calls $FORK to become 
fully interruptable (so that it conforms to the 500-microsecond time 
limit), or to access the shared system data base. The INTSV$ macro 
must be issued or the $INTSV routine must be called prior to calling 
$FORK. 

By calling $FORK, the routine becomes fully interruptable and its 
access to system data bases is strictly linear. At fork level, all 
registers are available to the process, and R4 and R5 retain the 
contents they had on entrance to $FORK. 

1. The 500-microsecond period is a guideline. The longer the period 
of time a real-tima executive spends at an elevated priority level, 
the less responsive is the system to devices of equal or lower 
priority. ,This guideline is especially important if the device being 
serviced is at the same or higher priority than a character-interrupt 
device such as the DUll, which is vulnerable to data loss due to 
interrupt lockout. 

2-15 



THE RSX-llM I/O SYSTEM--PHILOSOPHY AND STRUCTURE 

2.5.3.4 Programming Protocoi Summary - Drivers are required to adhere 
to the following internal conventions when processing device 
interrupts: 

1. No registers are available for use unless $INTSV has been 
called or the driver explicitly performs save and restore 
operations. If $INTSV is called, registers R4 and R5 are 
available; any other registers must be saved and restored. 

2. Noninterruptable processing must not exceed 
instructions, and processing at the priority 
interrupting source must not exceed 500 microseconds. 

twenty 
of the 

3. You must use a fork process for all modifications to system 
data bases. 

2.6 FLOW OF AN I/O REQUEST 

Following an I/O request through the system a~ the functional level 
(the level at which this chapter is directed) requires that limiting 
assumptions be made about the state of the system when a task issues a 
QIO directive. The following assumptions apply: 

• The system is up and ready to accept an I/O request. All 
required data structures for supporting devices attached to 
the system are intact. 

• The only I/O request in the system is the sample request 
under discussion. 

• The example progresses without encountering any errors that 
would prematurely terminate its data transfer; thus, no 
error paths are discussed. 

The I/O flow proceeds as follows: 

1. [Task issues QIO directive] 

All Executive directives are called by means of EMT 377. The 
EMT causes the processor to push the PSW and PC on the stack 
and to pass control to the Executive'S directive processor. 

a. First-level validity checks 

The QIO directive processor validates the LUN and UCB 
pointer. 

b. Redirect algorithm 

Because the UCB may have been dynamically redirected 
by an MCR Redirect command, QIO directive processing 
traces the redirect linkage until the target UCB is 
found. 

c. Additional validity checks 

The EFN and the address of the I/O status block 
(IOSB) are validated. The event flag is reset and 
the I/O status block is cleared. 

2-16 

( 

E-

C~ 

( 



( 

c 

c 

2. 

3. 

--------------------------------

THE RSX-IIM I/O SYSTEM--PHILOSOPHY AND STRUCTURE 

[Executive obtains storage for and creates an I/O packet] 

The QIO directive processor now acquires an IS-word block of 
dynamic storage for use as an I/O packet. It inserts ijnto 
the packet data items that are used subsequently by both the 
Executive and the driver in fulfilling the I/O request. Most 
items originate in the requesting task's Directive Parameter 
Block (DPB). 

[Executive validates the function requested] 

The function is one of four possible types: 

• Control 

• No-op 

• ACP 

• Transfer 

Control functions are queued to the driver. If the function 
is IO.KIL, the driver is called at its cancel I/O entry 
point. The IO.KIL request is then completed successfully. 

No-op functions do not result in data transfers. The 
Executive "performs" them without calling the driver. No-ops 
return a status of IS.SUC in the I/O status block. 

ACP functions may require processing by the file system. 
More typically, the request is a read· or write virtual 
function that is transformed into a read or write logical 
function without requiring file system intervention. When 
transformed into a read or write logical, the function 
becomes a transfer function (by definition). See Appendi~ D 
for more information on ACP functions. 

Transfer functions are address checked and queued to the 
proper driver. Then the driver is called at its initiator 
entry point. 

4. [Driver processing] 

a. Request work 

To obtain work, the driver calls the $GTPKT routine. 
$GTPKT either provides work, if it exists, or informs the 
driver that no work is available, or that the SCB is 
busy. If no work exists, the driver returns to its 
caller. If work is available, $GTPKT sets the device 
controller and unit to "busy," dequeues an I/O request 
packet, and returns to the driver. If the I/O request is 
IO.ATT or IO.DET, the request is processed by the 
Executive without returning the packet to the driver, 
unless UC.QUE is set. 

If UC.QUE is set, the packet is passed to the driver 
after the Ip.ATT or IO.DET processing is completed. If 
the request is to be processed by an ACP, the packet is 
queued to the ACP. In either case, $GTPKT will look" for 
another request for the driver. 

2-17 



THE RSX-llM I/O SYSTEM--PHILOSOPHY AND STRUCTURE 

b. Issue I/O 

From the available data structures, the driver initiates 
the required I/O operation and returns to its caller. A 
subsequent interrupt may inform the driver that the 
initiated function is complete, assuming the device is 
interrupt driven. 

5. [Interrupt processing] 

When a previously issued I/O operation interrupts, the 
interrupt causes a direct entry into the driver, which 
processes the interrupt according to the programming protocol 
described in Section 2.5. According to the protocol, the 
driver may process the interrupt at priority 7, at the 
priority of the interrupting device, or at fork level. If 
the processing of the I/O request associated with the 
interrupt is still incomplete, the driver initiates further 
I/O on the device (step 4b). When the processing of an I/O 
request is complete, the driver calls $IODON. 

6. [I/O Done processing] 

$IODON removes the "busy" status from the device unit and 
controller, queues an AST, if required, and determines if a 
checkpoint request pending for the issuing task can now be 
effected. The IOSB and event flag, if specified, are 
updated, and $IODON returns to the driver. The driver 
branches to its initiator entry point and looks for more work 
(step 4a). This procedure is followed until the driver finds 
the queue empty, whereupon the driver returns to its caller. 

Eventually, the processor is granted to another ready-to-run 
task that issues a QIO directive, starting the I/O flow anew. 

2.7 DATA STRUCTURES AND THEIR INTERRELATIONSHIPS 

This section introduces all the individual control blocks, as well as 
their linkages and use within the system. The following data 
structures comprise the complete set for I/O processing: 

1. Task header 

2. Window Block (WB) 

3. File Control Block (FCB) 

4. $DEVHD word, the Device Control Block (DCB) , and the Driver 
Dispatch Table (DDT) 

5. Unit Control Block (UCB) 

6. Status Control Block (SCB) 

7. Volume Control Block (VCB) 

Figure 2-5, which provides the structure for the following discussion, 
shows all the individual data structures and the important link fields 
within them. The numbers on the figure are keyed to the text to 
simplify the discussion and to guide the reader through the data 
structures. 

2-18 

( 

L 
~- -

( 

( 

( 



c 

( 

(0 

THE RSX-llM I/O SYSTEM--PHILOSOPHY AND STRUCTURE 

1. The task header is constructed during the task-build 
process. l (It is one of two independent entries in the I/O 
data structure, the other being $DEVHD.) The task header 
entry of interest, the Logical Unit Table (LUT), is allocated 
by the Task Builder and filled in at task installation. The 
number of LUT entries is established by the UNITS= keyword 
option; this number is an upper limit on the number of 
device units a task may have active simultaneously. Each LUT 
entry contains a pointer to an associated UCB, and a pointer 
to a Window Block if a file is accessed by that logical unit 
n urn be r ( L UN) • . 

SVSCM 

SDEVHD: 

Task 
Header 

L-..----J~, ~ DCB _·u DDT I/O Queue 

LUT1n 
~ m,"~ 

7c8 
VCB FeB (index) 

\ 
0/ 

~"~~ 
D 

volume . 

G " we (volume) 

§ 
FeB (task) 

D 

ZK-214-81 

Figure 2-5 I/O Data Structure 

2. A Window Block (WB) exists for each active access to files on 
a mounted volume. It contains the context for the virtual 
patch used for validating I/O requests and converting virtual 
functions to logical functions. For disks, the WB consists 
of pointers to contiguous areas on the device. 

3. An FCP is a data structure specific to the Files-II disk ACP 
(FllACP). It is used to control access to the file. 

1. In mapped systems, a copy of the task header (located in the task's 
partition) is made in the Executive's dynamic storage region. The 
Executive then uses this copy. To access the current information in 
this copy, a task must be privileged and have mapping to the 
Executive. 

2-19 



4. 

THE RSX-IIM I/O SYSTEM--PHILOSOPHY AND STRUCTURE 

$DEVHD is a word located in system common (SYSCM) and is the 
other independent entry in the I/O data structure. $DEVHD 
points to a singly 1 inked, unidirectional list of Device 
Control Blocks (DCBs) • Each device type in a system has at 
least one associated DCB. The DCB list is terminated by a 
zero in the link word. 

Linked to each DCB is a Driver Dispatch Table (DDT), which is 
part of the driver. The DDT contains the addresses of the 
driver's four entry points that the Executive can call. 

5. A key data structure is the Unit Control Block (UCB). All 
the UCBs associated with a DCB appear in consecutive memory 
locations. During internal processing of an I/O request, 
most drivers set R5 to the address of the relatedUCB. It is 
by means of pointers in the UCB that other control blocks in 
the data structure are accessed. In particular, the UCB 
contains po inters to the DCB, SCB, VCB, and to the UCB to 
which it may have been redirected. If a Redirect command has 
not been issued for the device-unit, the UCB redirect pointer 
points to the UCB itself. When servicing a request for one 
of its UCBs, the driver is unaware of whether I/O was issued 
directly to its own UCB or to a UCB that had been redirected 
to its UCB. 

6. One Status Control Block (SCB) exists for each controller in 
a system. A unique SCB must exist for each 
controller/device-unit capable of performing parallel I/O. 
The SCB contains the fork-block storage required when a 
driver calls $FORK to transfer itself to the fork-processing 
level. The I/O request queue 1 isthead is also contained in 
the SCB. Generally, register R4 contains the address of the 
SCB during processing of an I/O request. 

7. One Volume Control Block (VCB) exists for each mounted volume 
in a system. The VCB maintains volume-dependent control 
information. 

For Fil1es-ll disks, the VCB contains pointers to the File 
Control Definition Block (FCB) and Window Block (WB) , which 
control access to the volume's index file. (The index file 
is a file of file headers.) The WB for the index file serves 
the same function as the WB for a user file. (See the 
IAS/RSX-ll I/O Operations Reference Manual for more 
information on-the index file.) All unique FCBs for a volume 
form a linked list emanating from the index file FCB. This 
linkage aids in keeping file access time short. Further, 
since the window that contains the mapping pointers is 
variable in length, the user can increase file access speed 
by adding more access pointers (greater speed requires more 
main memory) to whatever extent the application requires. 

2.7.1 Data Structures Summary 

As the writer of a conventional driver, you do not manipulate the 
entire I/O data structure. In fact, you are usually involved only 
with the I/O packet, the UCB, and the SCB. The entire structure has 
been presented to add depth to your understanding of the I/O system, 
to emphasize the relationships among individual control blocks, and to 
clarify further the role a given driver fulfills in the processing of 
an I/O request. 

2-20 

( 

( 

( 



c 

( 

( 

( 

CHAPTER 3 

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-IIM 

If you want to support an I/O device for which DIGITAL has not 
supplied a driver, you can write your own driver. Although this 
manual has not yet presented explicit details for writing such a 
driver,· you now have enough conceptual information to consider 
incorporating one of your own drivers into your system. As will be 
seen, many considerations for writing a driver are best presented in a 
discussion of incorporating one. 

3.1 

NOTE 

An alternative approach to writing your 
own device driver may be the CINT$ 
(Connect to Interrupt Vector) directive. 
Refer to the description of the CINT$ 
directive in the RSX-IIM/M-PLUS 
Executive Reference Manual. For 
examples of the use of CINT$, examine 
the task-level support routines for 
K-series laboratory peripheral modules, 
as described in Chapter 22 of the 
RSX-IIM/M-PLUS I/O Drivers Reference 
Manual. 

OVERVIEW OF INCORPORATING USER-WRITTEN DRIVERS 

How you incorporate a user-written driver into the system depends 
mainly on whether you make your driver loadable or resident. If your 
driver is loadable, its data base can be either loadable or resident. 
If your driver is resident, both it~ data base and its code are 
resident. Thus, because you build the Executive image during system 
generation, you must include all resident driver elements in the 
Executive image during system generation. If your driver is loadable 
and has a loadable data base, you can incorporate it at any time after 
you build the Executive under which the driver runs. 

3.1.1 System Generation Support for User-Written Drivers 

During system generation, you answer questions concerning the types 
and quantity of peripheral devices on your system. Based on your 
answers, SYSGEN creates a single source file SYSTB.MAC that 
constitutes the data base definitions for DIGITAL-supplied devices on 
the system. Also created are the object modules of driver code to 
support the devices. Assembling SYSTB.MAC creates one module, 

3-1 



INCORPORATING USER-WRITTEN DRIVERS INTO RSX-llM 

SYSTB.OBJ, which becomes the system device tables for the Executive 
and the data base for the system drivers. This module is linked into 
and becomes a permanent part of the Executive. 

A privileged system task invoked with the MCR/VMR LOA command is 
responsible for loading into memory a driver that is not resident. 
The LOA function creates the necessary interrupt control blocks (ICB) 
for accessing a driver in a mapped system, and establishes the linkage 
between the data base structures in the system device tables and the 
driver code being loaded. Another privileged system task irvoked with 
the MCR/VMR UNL command can remove a loadable driver from memory. 
(Although the UNL function removes a loadable driver, it does not 
remove a loadable data base.) 

SYSGEN asks questions concerning the neces,sary driver support features 
in the Executive, to allow you to add user-written drivers. 

During the Target Configuration section of SYSGEN Phase I, answer the 
following question with the highest vector your system will use with 
the addition of your user-written driver: 

14. Highest interrupt vector [0 R:0-774 D:O]: 

SYSGEN uses the specified address or 400, whichever is greater, to 
allocate sufficient vector space in the Executive to avoid run-time 
destruction of the system stack and to avoid hardware trapping (which 
occurs when the SP goes below 4001. 

If any user-written driver is to be built loadable, SYSGEN must be 
notified of this fact. Loadable drivers require extra Executive 
features to support them (for example, the MCR/VMR LOA and UNL 
commands) • You can choose support for load able drivers by answering 
the following question in the Executive Options section of SYSGEN 
Phase I: 

15. Loadable device drivers? [YIN]: 

The answer to the following question determines whether SYSGEN allows 
you to include a user~written driver in the system: 

25. Do you intend to include a user-written driver? [YIN]: 

If you answer Yes, the next two questions are also asked (see Section 
5.3 of this manual): 

26. Include routine $GTWRD? [YIN]: 
27. Include routine $PTWRD? [YIN]: 

NOTE 

If an LPAll device (LA:) is included in 
your system, the $GTWRD routine is 
automatically included and Question 26 
is not asked. If an ADOl A/D controller 
device or an AFCll A/D controller device 
(AF:) is included in your system, the 
$PTWRD routine is automatically included 
and Question 27 is not asked. The 
$GTWRD and $PTWRD routines are described 
in Chapter 5 of this manual. 

To incorporate a. user-written driver into RSX-llM, you' first create 
two modules, one in which you define the data base and the other in 
which you include the driver code itself. You then must link your 

3-2 

( 

L 
C~ 

( 

(~ 



( 

c 

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-llM 

driver data base and driver code modules into the system de~ice 
tables in the Executive. The linkage that your data base module must 
satisfy is the link of the Device Control Block (DCB) list. The 
linkage for the driver code connects the DCB for the device that your 
driver supports to the Driver Dispatch Table (DDT). Moreover, if your 
driver is loadable, you must supply in your driver code symbols and 
labels that the LOA command needs. 

If your driver is loadable and has a loadable data base, you build (1) 
a loadable image containing the driver code module followed by the 
driver data base module, and (2) a symbol definition file on which the 
LOA command depends to find critical data base and driver locations. 
You build the driver image with the symbol defini tion file of the 
Executive under which the driver runs. However, the dr:iver image is 
separate from the Executive image. The LOA command is responsible for 
loading both your driver data base and driver code, for connecting the 
data base to the system device tables, and for connecting your driver 
code to the data base. . 

If your driver is loadable but has a resident data base, you must 
perform SYSGEN and ~uild the Executive under which the driver runs to 
link your driver data base module (s) into the system device tables. 
This operation makes your driver data base resident with the system 
device tables. You also build (1) a loadable- image containing the 
driver code, and (2) a symbol definition file which the LOA command 
uses to locate the driver dispatch table. The LOA command is 
responsible for loading your driver code and for connecting your 
driver code to the data base that is resident with the system device 
tables. 

If your driver is resident, you must perform a system generation and 
build the Executive to link the driver data base into the system 
device tables and to include the driver code in the Executive image. 

Because the LOA command provides consistency and validity checks on a 
data base being loaded, DIGITAL recommends that you make your driver 
and its data base loadable. Furthermore, with a loadable driver and 
loadable data base, you can more easily modify your driver and its 
data base. You need not rebuild your Executive and privileged tasks. 
To change the driver code, you need only build a new driver image, 
unload the current version, and reload the new version. To change the 
driver data base, you must build a new driver image (which 
incorporates the data base module), rebootstrap your system, and load 
the new driver to load the modified data base. (You must bootstrap 
your system to change the data base because the UNL command does not 
unload a data base, and because the LOA command does not load a data 
base for a driver if one is currently loaded for that driver.) 

NOTE 

If you use VMR to load the data base 
into the system image, rebooting the 
system will always load the data base. 

Using a loadable driver with a loadable data base may make more work 
in the short term but saves work in the long term. During debugging, 
data base inconsistencies are likely to be caught by the LOAD command. 
Thus, you prevent many such errors from later creating system 
problems. The procedure to make your driver operational is more 
complex because both the driver (and its data base) must be loaded 
each time the system starts up. 

3-3 



A resident 
easier to 
to modify. 
checks on 
available. 
Executive, 

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-llM 

driver or a loadable driver with a resident data base is 
incorporate into the system but more difficult to debug and 

The LOA command does not perform consistency and validity 
a resident data base. Thus, a debugging aid is not 
Moreover, to modify such drivers, you must rebuild the 

which generally implies rebuilding the privileged tasks. 

The capability to incorporate a user-written drive,r into your sys'tem 
is a supported feature of RSX-IIM. Because a user-written driver is 
considered a system modification, DIGITAL may not support the system 
that results after you incorporate your driver. Being a part of the 
Executive, your driver can subtly corrupt it. Therefore, DIGITAL 
cannot guarantee support which entails debugging user-written drivers. 

Fixing a problem in a system is largely a matter of being able to 
reproduce the, problem reliably. If a problem on your system can be 
shown to have no relation to your driver, and DIGITAL will reproduce 
the problem, SPR support can be provided. A good reason for using a 
loadable driver with a loadable data base is that you can more easily 
test an unmodified system by not loadirig your driver and its data 
base. You can then reproduce a suspected problem in an unmodified 
system and can submit an SPR that DIGITAL will answer. Therefore, 
attempting to re-create a suspected problem on your system without 
your driver and its data base saves both you and DIGITAL time in 
answering the SPR. 

3.1.2 O~erview of User-Written Driver Code 

To create the source code to drive a device, you must do the 
following: 

1. Thoroughly read and understand this manual. 

2. Familiarize yourself in detail with the physical device and 
its operational characteristics. 

3. Determine the level of support required for the device. 

4. Create the data base source code for the device. 

5. Determine actions to be taken at the five driver entry 
points: 

• Initiator 

• Cancel I/O 

• Time-out 

• Power fail 

• Interrupt 

3-4 

( 

c 

c 

c 



c 

c 

( 

6. 

INCORPORATING USER~R~TTEN DR~VERS I~TO RSX-llM 

Create the driver source code. This code will 
following global symbols (where xx is the 
alphabetic device mnemonic) : 

contain the 
2-character 

$xxTBL: : 

$xxINT:: 

$xxINP: : 
$xxOUT :,: 

Address of the driver dispatch table (see 
Section 4.1.2.1) 

Address of the driver interrupt entry point 

Addresses of input and output interrupt 
entry points (for full-duplex devices) 

If a loadable driver's loadable data base is to include the 
interrupt vector(s) for the case when the driver is resident, 
the conditional assembly symbol LD$xx must be included in the 
soufce code for the loadable data base. In addition, the 
code in the data base which includes the interrupt vector(s) 
must be enclosed in a conditional assembly block and defined 
as an ASECT. 

Loadable drivers have an additional requirement. Either 
'within the driver source code itself or in file RSXMC.MAC, 
the conditional assembly symbol LD$xx must be defined. The 
INTSV$ macro (see Section 4.3) uses this symbol (and others 
in RSXMC.MAC) to determine whether the call to $INTSV should 
be omitted from the driver. 

The symbols used to name interrupt entries are different for 
devices that employ error logging. See the RSX-llM/M-PLUS 
Error Logging Reference Manual for information on modifying 
device drivers for error logging. Note that the error logger 
must be modified to log errors for a device that uses a 
user-w~itten driver. 

The DIGITAL-supplied terminal driver (TTDRV) is treated as a 
special case by the LOA command in terms of the naming of i~s 
interrupt entries. 

3.1.3 Overview of User-Written Driver Data Bases 

Of the data structures associated with an I/O driver, four require 
assembly source code: 

• The DeB 

• The UCB (s) 

• The SCB (s) 

• The device interrupt vector (assembly source required for 
resident drivers only) 

3-5 



INCORPORATING USER-WRITTEN DRIVERS INTO RSX-IIM 

A single DeB can service multiple UCBs and SCBs. The existence of 
multiple UCBs and SCBs is determined by the actual device subsystem 
being supported by a given driver in your hardware configuration. 
Figures 2-2, 2-3, and 2-4 illustrate possible DeB, UeB, and SCB 
structural relationships. 

Within the DCB, UCBs, and SCBs, only those fields that are static or 
that need initialization must be supplied in your assembly source. 
Tables 3-1, 3-2, and 3-3 list these required fields. See Chapter 4 
for. detailed figures and descriptions of these and other data 
structures. 

Offset 

D. LNK 

D.UCB 

D.NAM 

D.UNIT 

D. UCBL 

D.DSP 

D.MSK 

D. PCB 

Table 3-1 
Required DeB Fields 

Description 

Link to next DeB. This field is zero if this is the 
last (or only) DCB. If you are incorporating more 
than one user-written driver at one time, then this 
field should point to another DeB in a DCB chain. 

Address of the first word (U.DCB) of the first UCB 
associated with this DCB. 

Two-character ASCII generic device name. 

Highest and lowest logical unit numbers controlled by 
this DeB. 

Length of the UCB (including prefix words, if any). 
If a given DCB has multiple UCBs, all UCBs must be of 
the same length. 

Address of the driver dispatch table. The dispatch 
table is located within the driver code. This field 
contains a global reference to the label associated 
with this table. The field is zero if the driver is 
loadable. 

I/O function masks. You must supply bit-by-bit 
mapping for these four I/O function masks. Note that 
the format of the mask words is split into two groups 
of four words. Functions 0-15. are covered by the 
first group, and furictions 16.-31. by the second. 

Address of 
This field 
support is 
initialized 

driver Partition Control Block (PCB). 
is required only if loadable driver 

included in the system. It must be 
to zero. 

3-6 

( 

~ ... 
~---

c 



c Offset 

U.DCB 

U.RED 

U.CTL 

U.STS 

U. UNIT 

U.ST2 

U.CWI 

U.CW2 

U.CW3 

U.CW4 

U.SCB 

U.ATT 

Offset 

(-
S. LHD 

S. PRI 

S. VCT 

S.ITM 

S.CON 

S.STS 

S.CSR 

S.FRK 

S.MPR 

/'~-

~ 

INCORPORATING USER~RITTEN DRIVERS INTO RSX-llM 

Table 3-2 
Required UCB Fields 

Description 

Backpointer to the associated DCB 

Redirect pointer--initially contains the address of 
this UCB 

Control bits that must be established by the driver 
w~iter with the UCB source 

Unit status byte 

Physical unit number serviced by this UCB 

Unit status byte extension 

Characteristics word 1; standard description (see 
Section 4.1.4.1) applies 

Driver-dependent 

Driver-dependent 

Default buffer size 

Address of the SCB for this UCB 

TCB address of attached task 

Table 3-3 
Required SCB Fields 

Description 

I/O queue listhead 

Priority of interrupting source 

Interrupt vector address divided by 4 

Initial timeout count 

Controller index 
mul tiplied by 2) 

Controller status 

(that is, controller 

Address of control and status register 

Fork block 

number 

.. 
Mapping register block; needed only by UNIBUS NPR 
devices running on a PDP-l.l processor that employs 
extended-addressing (22-bit) mode 

3-7 



INCORPORATING USER-WRITTEN DRIVERS INTO RSX-llM 

3.2 USER-WRITTEN LOADABLE DRIVERS 

In deciding whether the data base for your loadable driver should be 
resident or loadable, consider the following characteristics of 
loadable data bases: 

• When you load a driver, the MCR/VMR LOA command checks to see 
whether a data base is resident for the type of device whose 
driver is being loaded. If a data base is not resident, the 
LOA command reads the driver symbol definition file to find 
the start and end of the data base in the driver image. 
(Thus, if your driver data base is to be loadable, you must 
have defined its start and end in the data base source code.) 
Knowing the start and end, the LOA command reads the data base 
from the driver image. The LOA command places the data base 
in the system pool so that it resides in Executive address 
space, accordingly relocates pointers and links within the 
data base to be valid Executive addresses, and also connects 
DCB (:s) in the data base to the system device tables. 
Moreover, ·the LOA command performs many consistency and 
validity checks on the data base being loaded so as to prevent 
the system device tables from being corrupted by an incorrect 
data base. 

• A loadable data base is only loaded once; thereafter, 
resident until the system is bootstrapped again. 
command does not remove a data base from memory even 
the data base was loaded with the LOA command. 

it is 
The UNL 

though 

• The LOA command relocates certain known pointers within the 
control blocks.l If the data base requires relocation of 
additional address pointers beyond the standard ones, it 
cannot be loaded wi th the LOA command. It -must be 
incorporated into the system as a resident data base during 
system generation. 

During debugging of a loadable driver (with loadable data base), you 
can correct errors in the coding of the driver itself by unloading, 
modifying~ assembling, task-building, and reloading the driver. 
However, if the data base must be replaced, the system must be 
bootstrapped to remove it. You can then modify, assemble, and 
task-build the data base, and reload it along with the (corrected) 
driver. 

The subsections below describe the procedure for incorporating a 
user-written loadable driver. 

3.2.1 Creating the Loadable Data Base and Driver Modules 

The general procedure for incorporating a loadable driver with a 
load able data base is as follows: 

1. Complete SYSGEN Phase I and answer the appropr iate ques1j:ions 
that include the necessary driver support features in the 
Executive. Edit the assembly prefix file RSXMC.MAC and 
define a conditional symbol LD$xx for each loadable driver. 
see Section 3.1.1 for a discussion of system generation 
support. 

1. The pointers are: (DCB) D.LNK, D.UCB; (UCB) U.DCB, U.RED, U.SCB. 
(SCB) S.LHD+2. Chapter 4 gives details on these and other fields in 
the data base. 

3-8 

(: 

I~ 

c 

c 

(, 



c 
2. 

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-llM 

Complete SYSGEN Phase II'. During 
RSXBLD.CMD, the Executive build 
3.3), and add the following line: 

GB LDEF=$USRTB : 0 

Phase II you must edit 
command file (see Section 

(The symbol $USRTB in the file [ll,lO]SYSTB.MAC defines the 
link word to a user-written driver'S resident DCB. Adding 
this line forces toe link word to be zero.) If you do not add 
this line when you do not have a resident data base, the Task 
Builder generates an undefined symbol error when it builds 
the Executive. However,you can disregard that error because 
the Task Builder sets the contents of the link word to zero. 

3. After SYSGEN Phase II completes, you can manually build the 
driver. 

After completing these steps, you can assemble the driver and data 
base at any time. 

4. While both the loadable driver and its data base can be 
contained in the same source module, it is recommended that 
you create separate sources for your driver and its data base 
and place them in UFD [11,10]. If, however, you place both 
the data base and the driver in the same module, you must 
ensure that, when linked, the data base follows the driver 
code. You can do this by physically placing the data base 
code after the driver code or by using .PSECT names to force 
proper allocation. 

5. A useful convention is to name your data base source xxTAB 
and your driver source xxDRV, where xx is the 2-character 
(alphabetic) device mnemonic. 

6. You must place the DCB first in the assembly source code' df 
the driver data base module. In a multiuser protectidn 
system, the DCB must be followed first by the associated 
UCB(s) and then by the SCB(s). All UCB(s) associated with a 
particular DCB must be contiguous. DIGITAL-supplied drivers 
use this ordering scheme; see the file [ll,lO]SYSTB.MAC, 
created by Phase I of SYSGEN, for examples. Since you are 
creating a loadable data base for a single driver, your 
source code will contain a single DCB with associated UCB(s) 
and SCB (s) • 

7. The global label $xxDAT:: marks the start of your driver'S 
data base (the DCB). The global label $xxEND:: marks the 
end of the data base (that is, immediately following the 
final word of the data base). These labels are absolutely 
required. The letters xx represent the 2-character device 
mnemonic. 

To assemble your driver, set the default UIC to [11,2x] and run the 
assembler as follows (user input underlined): 

>SET /UIC=[11, 2x] ffi)' 
>MAC ffi) 
MAC>xxDRV,xxDRV=LB: [l,l]EXEMC/ML,LB: [ll,lO]RSXMC,xxDRV~ 

To assemble the data base, use the following input to MAC: 

MAC>xxTAB, xxTAB=LB: [1,1] EXEMC/ML, LB: [11,10] RSXMC 1, xxTAB ffi) 

3-9 



INCORPORATING USER-WRITTEN DRIVERS INTO RSX-llM 

Next, you use the following command to add both the d river and, its 
data base to the Executive object module library: 

LBR>LB: [1, 2x] RSXllM/RP= [11, 2x] xxDRV, xxTAB lBDl 

3.2.2 Task-Building a Loadable Driver 

In this section, two examples of task-building a loadable driver with 
a loadable data base are presented: one for a mapped system and one 
for an unmapped system. 

3.2.2.1 Task-Building a Loadable Driver on a Mapped System - The 
following seven requirements apply to task-building any loadable 
driver, whether user-written or DIGITAL-supplied. 

1. You must specify a task image file name and a symbol 
definition file name as TKB output. Both files must be 
placed in the UFD corresponding to the system UIC that will 
be in effect when the command is issued. The file names must 
both be xxDRV, where xx is the device mnemonic. The Task 
Builder produces output files named xxDRV.TSK and xxDRV.STB. 
For example, the beginning of input to TKB to build a 
paper-tape reader driver for a mapped system might appear as 
follows (user input underlined): 

>TKB lBDl 
TKB>[1,54]PRDRV/-HD/-MM,,[1,54]PRDRV=lBDl 

i 
Task image. 

i i 
Switches: see 
items 2 & 3 
below. 

i 
Symbol 
definition. 

2. You must not have a task header. Use the switch /-HD, as in 
the example above. A driver is not really a task but an 
extension of the Executive, and as such needs no task header. 

3. You must use the /-MM switch, whether in fact the driver is 
destined for a mapped or an unmapped system. 

You must link to the system symbol definition 
contains definitions of Executive global symbols. 
the paper-tape reader driver example referred 
further TKB input might look like this: 

TKB>LB: [1,24] RSXllM/LB: PRDRV: PRTAB lBDl 
TKB> [1, 54] RSXllM. STB/SS lBDl 

file that 
Continuing 
to above, 

The first line above specifies the libra~y file (/LB) in 
which the input driver object module and the object file for 
the loadable data base can be found. The object module 
specification for the driver must always precede the 
specification for the d?ta base in the TKB command line. 1 

You omit the data-base file specifier when task-building any 
DIGITAL-supplied driver or one of your own drivers if it has 
a resident data base. All DIGITAL-supplied drivers that are 
declared loadable at ,system generation use resident data 
bases. 

3-10 

( 

~ C-· 

c 

c 



( 
5. 

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-IlM 

The second line in item 4 above indicates that the symbol 
table file RSXllM.STB is to be searched selectively (ISS) for 
definitions of Executive global symbols. Note that the ISS 
switch must appear in this context. It cannot be omitted. 

You must link to the system library file that defines masks 
and offsets used in the Executive. Continuing the example: 

TKB>LB: [l,l]EXELIB/LBiBITl 
TKB>I iBITl 

The single slash begins the option phase of the Task Builder. 

6. The driver code will execute as a part of the Executive, and 
thus the driver will use the Executive stack. Therefore, you 
must direct the Task Builder not to allocate space for a 
stack within the driver, as follows: 

7. 

TKB>STACK=O iBITl 

You must specify a partition for 
specification differs for mapped and 
Continuing the mapped-system example: 

TKB>PAR=DRVPAR:120000:4000iBITl 
T KB > I I iBITl 
> -

the driver. The 
unmapped systems. 

On mapped systems,'the starting address of the partition must 
be 120000 octal. That is, the loadable driver must be mapped 
to kernel APR 5. 

On unmapped systems, the second parameter must be the 
physical starting address of the partition. 

On either mapped or unmapped systems, the length of the 
partition may not exceed 4K words (20000 octal bytes). 

The double slash terminates the Task Builder's input. 

3.2.2.2 Task-Building a Loadable Driver on an Unmapped System - In 
the example below, we build a magtape driver for an unmapped system. 
The only differences from the mapped-system example are the partition 
starting address and the UFD of some of the files ([1,50] and [1,20] 
instead of [1,54] and [1,24], respectively). 

>TKB iBITl 
TKB> [1, 50]MTDRV/-HD/-MM" [1, 50]MTDRV=iBITl 
TKB>LB: [1,20]RSXllM/LB:MTDRV:MTTABiBITl 
TKB> [1,50] RSXllM. STB/SS iBITl 
TKB>LB: [1, 1] EXELIB/LBiBITl 
TKB > I iBITl 
ENTER OPTIONS:iBITl 
TKB>STACK=O iBITl 
TKB>PAR=DRVPAR:34000:4000iBITl 
T KB > I I iBITl 
> -

3-11 



----------.-----

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-IIM 

3.2.3 Loading a Us~r-Written Loadable Driver 

Loading is done by using the privileged MCR command LOA. Its form is: 

LOA xx: [/PAR=partition] 

where xx is the 2-character device mnemonic. Specifying a partition 
is optional. If none is specified, the partition input to the Task 
Builder is used. 

The LOA command requilles that the two files xxDRV.TSK and xxDRV.STB 
reside under the system UFD (that is, the UFD established by the SET 
/SYSUIC command). Typically, this UFD is [1,50] for unmapped systems 
and [1,54] for mapped systems. 

LOA searches first for a resident data base for the driver being 
loaded. If none is found, LOA looks for the following global symbols 
in the symbol definition file xxDRV.STB: 

$xxDAT: : Address of the start of the data base (the DeB) 
associated with the driver 

$xxEND: : Address+2 of the last word of the data base 
associated with the driver 

3.2.4 Creating the Loadable Driver and Resident Data Base Modules 

If you decide upon a resident data base, 
object module during SYSGEN Phase I. 
that for a resident driver. 

you create the data base 
You use the same procedure as 

To create the resident data base, follow the procedure described in 
Section 3.3 with the exception of initializing the device interrupt 
vector. Since there is only one resident data base module (USRTB, 
which contains all the resident data bases), you assemble the resident 
data bases for loadable drivers with the resident data bases for 
resident drivers. 

To assemble the loadable driver, use the following command to MAC: 

MAC>xxDRV, xxDRV=LB: [1,1] EXEMC/ML, LB: [11,10] RSXMC ,xxDRV ~ 

3.2.5 Building a Loadable Driver and Its Resident Data Base 

You build all resident data bases into the Executive as described in 
Section 3.3. You build the loadable drivers after the Executive is 
built. When SYSGEN asks the following question during Phase II: 

5. Driver 2-cha%acter device mnemonic [S]: 

enter the characters xx, where xx is the driver name. 

After your system is built, you can load your driver as described in 
Section 3.2.3. 

( 

~ 



c 

c 

INCORPORATING USER~RITTEN DRIVERS INTO RSX-llM 

3.3 USER-WRITTEN RESIDENT DRIVERS 

This section describes specific details for user-written resident 
drivers. 

1. Create the assembly source file for the resident data base in 
UFD [11,10]. Use USRTB.MAC as the file specification. USRTB 
as the file name is not actually required. It is, however, a 
useful convention -- as reflected in the sampI'e dialogue 
described below. 

2. There is no mandatory ordering of the different control 
blocks in the data base. for your resident driver. It is 
suggested that you follow the convention of placing the DCB 
first, followed by the UCB(s), followed by the SCB(s). 
However, it is required that all UCB(s) associated with a 
particular DCB must be contiguous. DIGITAL-supplied RSX-IIM 
drivers use this ordering sche~e; see the file [11,10] 
SYSTB.MAC, created by Phase I of SYSGEN, for examples. If 
you are incorporating multiple r~sident drivers into your 
system, you will have more than one instance of a DCB with 
UCB (s) and SCB (s) • 

3. Initialize the device interrupt vector (refer to Section 
4.1.5 for a description of this process). 

4. Use the global label $USRTB:: as the address of your first 
(or only) DCB. This is absolutely required. 

During Phase I, SYSGEN asks: 

25. Do you intend to include a user-written driver? [YIN] 

If you answer Yes, then subsequent questions guide you through tbe 
process of adding the driver to the generated system. Refer to 
Section 3.1.1 for a discussion of system generation support and the 
questions asked. Operations performed include assembling the driver 
and its data structure, and editing the RSX-IIM task-build command 
file. 

The following sample dialogue illustrates the addition of a resident 
driver for a PK: device. All user responses are underlined. After 
SYSGEN assembles the DIGITAL-supplied drivers, it prints some 
instructions, then pauses to allow you to assemble your driver(s), as 
follows: 

>; Assemble user-written driver(s) 
>; 
>; 
>i 
>i 
>; 
>i 
>; 
>; 
>; 

The following instructions apply to resident drivers and 
loadable drivers with resident data bases. 

For load able drivers, you must ensure that a symbol definition 
of the fo rma t : 

LD$xx=O 
(where xx is the device name) appears in the assembly prefix 
file [ll,lO]RSXMC.MAC for each loadable driver xxDRV. 

3-13 



,------,-------- ------------

>; 
>; 
>; 
>; 
>; 
>; 
>; 
>; 
>; 
>; 
>; 

INCORPORATING USER-WRITTEN DRIVER'S INTO RSX-llM 

SYSGEN will now pause to allow you to assemble your drivers(s) 
and USRTB module. Using a driver name xxDRV (where xx is 
the device name; for example, DK), you can type commands 
in. the following format to assemble the driver and USRTB 
modul es.· 

MAC 
MAC>xxDRV=LB: [l,l]EXEMC/ML,SY: [ll,lO]RSXMC,xxDRV 
MAC>USRTB=LB: [1, l]EXEMC/ML,SY: [11, 10]RSXMC,USRTB 
MAC>AZ 

AT. PAUSING. TO CONTINUE TYPE "RES ••• AT." 

> 
>MAC ffi) 
MAC>PKDRV=LB: [1, 1] EXEMC/ML, SY: [ll,lO]RSXMC,PKDRV ffi) 
MAC>USRTB-LB :[1,1] EXEMC/ML, SY: [11,10] RSXMC, USRTB ffi) 
MAC>~ 

> 
>RES ••• AT.ffi) 

AT. -- CONTINUING 
> 

After you exit from MACRO-II and type the command to resume, SYSGEN 
finishes Phase I. 

When you start Phase II, SYSGEN asks a few questions, prints some 
instructions, and pauses for you to build the driver(s) as follows: 

( 

>; ( 
>; Build user-written driver(s) -
>; 
>; You must now edit the Executive build command file RSXBLD.CMD 
>; to include your user-written driver and data base in your system. 
>; 
>; If you are including a resident data base, locate the line 
>; in which the module SYSTB is referenced and add :USRTB 
>; immediately after it, for example: 
>; LB: [1, 24]RSXllM/LB:SYSTB:USRTB:SYTAB:INITL,LB: [1, 1] EXELIB/LB/SS 
>; If you are not including a resident data base, add the line (' 
>; GBLDEF=$USRTB:O 
>; to the file instead. 
>; 
>; For each resident driver, add a line of the form: 
>; LB: [1,24]RSXllM/LB:xxDRV 
>; where other drivers are referenced (where xx is the device name, 
>; for example DK). 
>; NOTE: For each loadable driver, do not add a corresponding 
>; line to the build command file 
>; 
>; SYSGEN will now pause to allow you to edit RSXBLD.CMD. 
>; After you exit from the editor and resume, SYSGEN builds the 
>; Executive and drivers. 

AT. PAUSING. TO CONTINUE TYPE "RES ••• AT." 

>EDI RSXBLD.CMDffi). 
[00028 LINES READ IN] 
[PAGE 1] 
*L SYSTBffi) 
LB: [1, 24]RSxilM/LB:SYSTB:SYTAB:INITL,LB: [l,l]EXELIB/LB/SS 
*c /SYSTB:/SYSTB:USRTB:/ffi) 

3-14 



( 

( 

( 

( 

INCORPORATI.NG USER-WRITTEN DRIVERS INTO RSX-llM 

LB: [1, 24jRSXllM/LB:SYSTB:USRTB:SYTAB:INITL,LB: [1, ljEXELIB/LB/SS 
*L DYDRV(8IT) 
[ *EOB*] 
*..1 (8IT) 
*L DYDRV~ 
LB: [1, 24]RSXllM/LB:DYDRV 
*1.(8IT) 
LB: [1,24]RSXllM/LB:PKDRV 

*EX (8IT) 
[EXIT] 

>RES ••• AT.~ 

AT. -- CONTINUING 

After you perform the indicated operations and type the command to 
continue with SYSGEN, the Executive is built and you are given a 
chance to build any loadable drivers as follows: 

>; Build Loadable drivers 
>; 
>* 4. Build all selected loadable drivers into DRVPAR? [Y/N]:Y 
>; 
>; You can now build your user-written driver (if it is a loadable 
>; driver). If you choose not to build it now, or it is not loadable 
>; strike carriage return in response to the next question. 
>; 
>; When all drivers are built, strike carriage return 
>; 
>* 5. Driver 2-character device mnemonic [S]: 

When Phase II completes, your resident driver is incorporated in the 
Executive and is ready to run. 

3.4 DRIVER DEBUGGING 

Because the protection checks provided for user programs are not 
available to system modules, driver errors are more difficult to 
isolate than user-program errors. But conventional drivers, because 
they are modular and short, probably can be easily debugged. This 
debugging process requires that you understand the following topics, 
each of which is discussed in a separate subsection: 

• Debugging aids and tools 

• Fault isolation 

• Faul t trac ing 

• Rebuilding and reincorporating a driver 

3-15 



--------------------

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M 

3.4.1 Debugging Aids 

Adding a user-written driver carries witp it the risk 
obscure bugs into an RSX-IIM system. Since the driver 
the Executive, special debugging tools are both 
necessary. RSX-IIM provides several such. aids, 
incorporated into your system during system generation: 

• Executive stack and register dump 

• XDT 

• Panic dump 

• Crash Dump Analyzer (CDA) support routine. 

of introduc ing 
runs as part of 
desirable and 

which can be 

You need not select any of this software during system generation. 
If, however, you do require the facilities they offer, you can select 
from one to three of them for incorporation in your system (panic dump 
and the CDA support routine are mutually exclusive). The following 
subsections describe the features and use of each debugging aid. 

3.4.1.1 Executive Stack and 
generation, you can indicate 
stack and the registers when a 
option, the system will perform 

Register Dump Routine - At system 
that you want a dump of the Executive 

crash occurs. If you choose tnis 
as follows: 

1. A system error, or the XDT X command (described in the next 
section), or operator manipulation of the switch register 
following a CPU halt, will cause processing to- resume at 
location 40(octal). 

2. Location 40(octal) contains a JMP instruction that causes the 
Executive to execute the code beginning at location $CRASH. 

3. $CRASH invokes the routine that dumps the Executive stack and 
registers as shown below: 

SYSTEM CRASH AT LOCATION 047622 

REGISTERS 

RO=000340 Rl=177753 R2=000353 R3=000000 

R4=000004 R5=046712 SP=000472 PS=000340 

SYSTEM STACK DUMP 

LOCATION CONTENTS 

000472 
000474 
000476 
000500 
000502 
000504 
000506 
000510 
000512 

000004 
000000 
001514 
000340 
177753 
000353 
000000 
000000 
057750 

3-16 

( 

c 

( 

(-



c 

c 

( 

c 

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-llM 

000514 
000516 
000520 
000522 
000524 
000526 
000530 
000532 
000534 
000536 
000540 
Q00542 

002504 
030011 
100340 
000340 
056446 
000000 
102144 
000000 
101376 
101372 
102022 
170000 

Following this display, either the CDA support routine or panic dumg 
is invoked, depending on which. (if either) is present in the system. 
Otherwise, the system halts. 

3.4.1.2 XDT - The Executive Debugging Tool - An interactive debugging 
tool has been developed for RSX-llM to aid in debugging Executive 
modules, I/O drivers, and interrupt service routines. This debugging 
aid, called XDT, is a version of the RSX-ll Octal Debugging Tool 
(DDT). XDT does not contain the following features and commands 
available on DDT: 

No $M - (Mask) register 

No $X - (Entry Flag) registers 

No $V - (SST vector) registers 

No $D - (I/O LUN) registers 

No $E - (SST data) registers 

No $W - (Directive Status Word) $DSW word 

No E - (Effective Address Search) command 

No F - (Fill Memory) command 

No N - (Not word search) command 

No V - (Restore SST vectors) command 

No W - (Memory word search) command 

In addition, the X (Exit) DDT command has been changed for XDT. The X 
command causes a jump to the crash-reporting routine. 

Except for the omitted features and the change in the X command, XDT 
is command-compatible with RSX-ll DDT; consequently, the IAS/RSX-ll 
DDT Reference Manual can be used as a guide to XDT operation. 

XDT may be included in a system during Phase I of SYSGEN. The 
following question is asked: 

*30. Executive Debugging Tool (XDT)? [YIN]: 

3-17 



INCORPORATING USER-WRITTEN DRIVERS INTO RSX-IIM 

If you answer Yes, then XDT is automatically included in the generated 
system. When the resultant system is bootstrapped, XDT takes control 
and types on the console terminal: 

XDT: <system version> 

followed by the prompting symbol 

XDT> 

You can set breakpoints at this time, and then type the G command, 
passing control to the RSX-llM Executive initialization code. 
Whenever control reaches a breakpoint, a printout similar to that 
produced by RSX-ll ODT occurs. 

You can initiate a forced entry to XDT at any time from a privileged 
terminal by means of the MCR BRK (breakpoint) command. Thus, the 
normal procedure is to type G when the system is bootstrapped without 
setting any breakpoints. When it becomes necessary to use XDT, the 
MCR BRK command is executed, causing a forced breakpoint. XDT then 
prints on the console terminal: 

BE:xxxxxx 

followed by the prompting symbol 

XDT> 

You can then set breakpoints and/or issue other XDT commands. 
Continue system operation by typing the P (proceed) command to XDT. 

Note that XDT runs entirely at priority level 7 and does not interfere 
with user-level RSX-ll ODT. In other words, user-level RSX-ll ODT can 
be in use with several tasks, while XDT is being used to debug 
Executive modules. 

All XDT command I/O goes to and from the console termin-al, and the L 
(List Memory) command can list on either the console or the line 
printer. 

Using XDT to debug a loadable driver on a mapped system has special 
pitfalls. One problem that can arise is a T-bit error: 

TE:xxxxxx 
XDT> 

This error results when control reaches a breakpoint that you have 
set, using XDT, in a loaded driver on a mapped system. The T-bit 
error, rather than the expected BE: error, occurs unless register 
APR5 is mapped to the driver at the time XDT sets the breakpoint. 

To avoid this T-bit error, assemble the driver with an embedded BPT 
instruc'tion, or use either the ZAP uti! i ty or the MCR OPE command to 
set the breakpoint by replacing a word of code with the BPT 
instruction. When control reaches a breakpoint set in this manner, 
XDT prints: 

BE:xxxxxx 
XDT> 

3-18 

( 

c 



( 

( ... -- ~ ,--
'-.. 

( 

( 

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-llM 

Recover as follows: Using XDT, replace the BPT instruction with the 
desired instruction. Decrement the PC by subtracting 2 from the 
contents of register R7. Then proceed by using the P or S commands. 

NOTE 

You should not set breakpoints in more 
than one module that maps into the 
Executive through APR 5 or APR 6. In 
particular, do not set breakpoints in 
more than one loadable driver at a time 
or XDT will overwrite words of main 
memory when it attempts to restore the 
contents of breakpoints. 

3.4.1.3 Panic Dump - The Panic Dump routine saves registers RO 
through R6 and then halts, awaiting dump limits to be entered. 

The procedure for entering dump limits 
processor has a console switch register. 
describe the procedure in each instance. 

depends on whether your 
The sUbsections that follow 

3.4.1.4 Using the 
Switch Registers
can obtain dumps of 
procedure: 

Panic Dump Routine on Processors with Console 
For processors with console switch registers, you 
selected blocks of memory by using the following 

1. Enter the low dump limit in the console switch register and 
press CONT. The processor will immediately halt again. 

2. Enter the high dump limit in the console switch register and 
press CONT. The dump will begin on the device whose CSR 
address is D$$BUG (usually 177514, which is the line 
printer) • The actual value of D$$BUG is determined during 
system generation when answering the panic dump question. At 
the end of the dump, the processor will again halt, awaiting 
the input of another set of dump limits. 

If your system does not have the Executive routine stack and 
register dump, enter the dump limits 0-520(octal) when the 
Panic Dump routine first halts. This causes dump of the 
system stack and the general registers. The limit 520(octal) 
changes if the highest interrupt vector is above 400(octal). 
The actual upper limit is always the value of the global 
symbol $STACK and can be obtained from the global symbol 
listing in the Executive memory allocation map. 

3.4.1.5 Using the Panic Dump Routine on Processors Without Console 
Switch Registers - A number of PDP-II processors are being delivered 
without a console switch register; they are configured with the M9301 
Console Emulator and Bootstrap. This presents no problem for the 
normal operation of RSX-IIM, because it does not require a switch 
register. However, the Panic Dump Routine usually reads its arguments 
from the switch register. In systems that have been generated for 
processors that have no switch register, the panic dump module has 

3-19 



INCORPORATING USER-WRITTEN DRIVERS INTO RSX-IIM 

been altered to read its arguments from location O. The following 
instructions are designed to allow you to enter the proper information 
to the Panic Dump Routine on processors equipped with the M9301 
Console Emulator. 

1. When the Panic Dump Routine hal ts, the RUN light will go out. 
At this time press and release the BOOT switch. 

The Console Emulator should display: 

xxxxxx XXXXXX XXXXXX nnnnnn 
$ 

where nnnnnn is the address+2 of the HALT instruction. 

2. You should enter the following: 

$L a ffil 
$o-!ow-address@] 
$L nnnnnn@] 
$~ @] 

3. The processor should again halt. Press and release the BOOT 
switch. 

The Console Emulator should display: 

XXXXXX XXXXXX XXXXXX mmmmmm 
$ 

4. You should then enter: 

$L a@] 
$o-high-address@] 
$L mmmmmm@] 
$~@] 

At this time the dump should commence. When it is finished, the 
processor will halt and wait for additional input. 

3.4.1.6 Sample Output from Panic Dump - A portion of the output from 
Panic Dump is shown below. Output is in 3-1ine groupings. In the 
left-hand column, two addresses are shown. The first address is the 
absolute address; the second address is the dump relative address. 
The first line in a 3-line group gives the octal word value; the 
second line gives the two octal byte values of the word; the third 
line contains the ASCII representation of the bytes. The ASCII 
representations in each word are reversed to improve readability. The 
first output grouping from Panic Dump shows, proceeding from left to 
right, the address/absolute address, PS, RO, Rl, R2, R3, R4, R5, and 
the SP. 

000544 000000 046076 000066 000000 000000 000000 000000 045316 
000000 000 000 114 076 000 066 000 000 000 000 000 000 000 000 112 316 

~@ ~@ > L 6 ~@ ~@ ~@ ~@ ~@ ~@ ~@ ~@ ~@ N J 

000000 022646 000340 045770 000340 045770 000340 045770 000340 
000000 045 246 000 340 113 370 000 340 113 370 000 340 113 370 000 340 

& % ~@ K ~@ K ~@ K ~@ 

3-20 

( 

( 

( 

/ 

C 



---- ---- -----

C 

c 

c 

c 

-------------

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-llM 

000020 045776 000340 011124 000340 045770 000340 050500 000340 
000020 113 376 000 340 022 124 000 340 113 370 000 340 121 100 000 340 

K A@ T AR A@ K A@ @ Q A@ 

000040 000167 000543 000001 000001 000000 000000 000000 000353 
000040 000 167 001 143 000 001 000 001 000 000 000 000 000 000 000 353 

A@ AA AA A@ AA A@ A@ A@ A@ A@ A@ A@ A@ 

000060 035444 000340 034034 000340 032776 000340 032402 000340 
000060 073 044 000 340 070 034 000 340 065 376 000 340 065 002 000 340 

$ A@ A\ 8 A@ 5 A@ AS 5 A@ 

3.4.1.7 Crash Dump Analyzer Support Routine - The Crash Dump Analyzer 
(CDA) support routine, when entered, prints the following message on a 
notification device specified at SYSGEN: 

CRASH - CaNT WITH SCRATCH MEDIA ON device mnemonic 

You can then put the secondary crash dump device on line and depress 
the CaNT swi tch on the operator's console. The Executive Crash Dump 
routine will dump memory to the crash dump device and halt the 
processor upon completion. 

The procedure for subsequently invoking the Crash Dump Analyzer, which 
reads and formats the memory dump, is fully documented in the RSX-IIM 
Crash Dump Analyzer Reference Manual. 

3.4.2 F.ult Isolation 

Four causes can be identified when the system faults: 

• A user-state task has faulted in such a way that it causes the 
system to faul t. 

• The user-written driver has faulted in such a way that it 
causes the system to fault. 

• The RSX-IIM system software itself has faulted. 

• The host hardware has faulted. 

When the system faults, you must immediately determine which of these 
four causes is responsible. This section presents some procedures 
that can help you isolate the source of the fault. Correcting the 
fault itself is your responsibility. 

3.4.2.1 Immediate Servicing - Faults manifest themselves in roughly 
four ways (they are listed here in order of increasing difficulty of 
isolation) : 

1. If XDT is included, an unintended trap to XDT occurs. 

2. The system displays text indicating a crash has occurred and 
halts. 

3-21 

~--~ -



INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M 

3. The system halts but displays nothing. 

4. The system is in an unintended loop. 

The immediate aim, regardless of the fault manifestation, is to get to 
a point where you can obtain pertinent fault isolation data. 

The following discusssions assume the existence of a system built with 
at least one of the debugging aids described in Section 3.4.1. (Note 
that the minimal system does not have space for these routines.) 

Case 1--The system has trapped to XDT.: 

The trap mayor may not be intended (for example, a previously set 
breakpoint). If it is not intended, typ~ the X command, causing XDT 
to exit to location 40(octal), from which the Executive stack and 
register dump routine (if present), followed by either Panic Dump or 
the CDA support routine (if present), will be invo,ked. If, however, 
you have some idea of the source of the problem (for example, a recent 
coding change), then you can use XDT to examine pertinent data 
structures and code. 

Case 2--The system has displayed text indicating a crash has occurred: 

If the text consists of output from the Executive stack and register 
dump routine (refer to Section 3.4.1.1), all the basic information 
describing the state of the system has been displayed. If the text 
has been produced by the CDA support routine, follow the procedure for 
obtaining and formatting a memory dump as outlined in the RSX-ll Crash 
Dump ~nalyzer Reference Manual. 

Case 3--The system has halted but displays no information: 

Before taking any action, preserve the current PS and PC and the 
pertinent device registers (that is, examine and record the 
information these registers contain). The procedure depends on the 
particular PDP-II processor. Consult the PDP-II Processor Handbook 
for details. 

After preserving the PS and PC, invoke your resident debugging aid: 
enter 40 (octal) in the swi tch reg ister, press LOAD ADDR, and then 
press START. The contents of 40(octal) cause the successive 
invocation of: 

1. The Executive stack and register dump routine (if present) 

2. Either Panic Dump or CDA support routine (if present) 

Case 4--The system is in an unintended loop: 

Proceed as follows: 

1. Halt the processor. 

2. Record the PC, the PS, and any pertinent device registers, as 
in case 3 above. 

You may then want to step through a number of instructions in an 
attempt to locate the loop. For this attempt to be meaningful ybu 
must first disable the system clock. Proceed as follows: Examine the 
contents of word 777546 (if your system has a line-frequency clock) or 
word 772540 (if it has a programmable clock). Clear bit 6 in this 
word and redeposit the word. 

3-22 

( 

( 

( 



( 

( 

( 

( 

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-llM 

NOTE 

The system will not run until you have 
reenabled the clock. 

After trying to locate the loop and reenabl ing the clock, transfer to 
location 40 (octal), as in case 3. 

3.4.2.2 Pertinent Fault Isolation Data - Before you attempt to locate 
the fault, you should dump system common (SYSCM). SYSCM contains a 
~umber of critical pointers and listheads. Find the appropriate 
limits for the module SYSCM by examining the Executive memory 
allocation map. Enter these limits to the Panic Dump routine or 
specify them in the command line used to invoke the Crash Dump 
Analyzer. 

In addition, you should 
tables. The dynamic 
additional space gained 
tables are in SYSTB. 

At this point, you have 

• Processor Status 

• Program counter 

• Stack 

• RO through R6 

• Pertinent device 

• Dynamic storage 

• Device tables 

• System common 

dump the dynamic storage region and the device 
storage region is the module INITL and any 
from the SET /POOL command and the device 

the following data: 

Word (PSW) 

(PC) 

registers 

region (poo I) 

These data are the minimum required for effectively tracing the fault. 

3.4.3 Fault Tracing 

Three pointers in SYSCM are critical in fault tracing. These pointers 
are described below: 

$STKDP - Stack Depth Indicator 

This data item indicates which stack was being used at the ti'me 
of the crash. $STKDP plays an important role in determining the 
origin of a fault. The following values apply: 

+l--User (task-state) stack 

o or less--System stack 

3-23 



-- -- ---- ------------------- ---- ------------------------------, 

INCORPORATING USER-tiRITTEN DRIVERS INTO RSX-llM 

If the stack depth is +1, then the user has crashed the system. 
In a system with nbrickwall" protection (for example, the mapped 
RSX-llM system), the nonprivileged user should not be able to 
crash the system. 

$TKTCB - Pointer to the current Task Control Block (TCB) 

This is the TCB of the user-level task in control of the cpu. 

$HEADR - Pointer to the current task header. 

The $HEADR word points to the header of the task currently 
running. The task header provides additional data to help 
isolate a fault. Figures 3-1 and 3-2 show the layout of'task 
headers for unmapped and mapped systems, respectively. 

The first word in the header is the userls stack pointer (SP) the 
last time it was saved. If the user branches wildly into the 
Executive, the Executive terminates the user task, but the system 
continues to function (possibly erroneously). Knowing the userls 
stack pointer provides one more link in the chain that may lead 
to the resolution of the fault. 

The header (as pointed to by $HEADR) also contains the last-saved 
register set, just before the header guard word (the last word in 
the header--pointed to by H.GARD). 

0 I-

RO 

Rl 

R2 

R3 

· · · 
H.NLUN N 

H.GARD r---

PS 

PC 

H.HDLN Length in bytes R5 

SP R4 

ZK-21S-81 

Figure 3-1 Task Header on an Unmapped System 

3-24 

c' 

c 

c 

l

I-



c-

( 

( 

( 

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-IIM 

0 --
RO 

· · · 

I 

R5 

I 
PC 

PS 

· · · 
H.NLUN N 

H.GARD I--

H.HDLN Length in bytes 

SP 

ZK-216-81 

Figure 3-2 Task Header on a Mapped System 

3.4.3.1 Tracing Faults Using the Executive Stack and Register Dump -
To trace a fault after a display of the Executive stack and register 
contents, first examine the system stack pointer. Usually an 
Executive failure is the result of an SST-type trap within the 
Executive. If an SST does occur within the Executive, then the origin 
of the calIon the crash-reporting routine is in the SST service 
module. (The crash call is initiated by issuing an lOT at a stack 
depth of zero or less.) 

A call to crash also occurs in the Directive Dispatcher when an EMT is 
issued at a stack depth of zero or less, or a trap instruction is 
executed at a stack depth of less than zero. The stack structure in 
the case of an internal SST fault is shown in Figure 3-3. 

3-25 



--- --------- --------, 

INCORPORATING USER-WRITTEN DRIVERS INTO RSX'-llM 

PS 

PC 

R5 

R4 

R3 

R2 

Rl 

RO 

Return to system exit 

Zero or more SST parameters 

SST fault code 

Number of bytes ~.~-----------SP 

ZK-217-81 

Figure 3-3 Stack Structure: Internal SST Fault 

The fault codes are: 

o 
2 
4 
6 
10 
12 
14 
16 
20 
22 
24 
26 
30 
32 
34 

iODD ADDRESS AND TRAPS TO 4 
iMEMORY PROTECT VIOLATION 
iBREAK POINT OR TRACE TRAP 
i lOT INSTRUCTION 
iILLEGAL OR RESERVED INSTRUCTION 
iNON RSX EMT INSTRUCTION 
iTRAP INSTRUCTION 
i11/40 FLOATING POINT EXCEPTION 
iSST ABORT-BAD STACK 
iAST ABORT-BAD STACK 
iABORT VIA DIRECTIVE 
iTASK LOAD READ FAILURE 
iTASK CHECKPOINT READ FAILURE 
iTASK EXIT WITH OUTSTANDING I/O 
iTASK MEMORY PARITY ERROR 

The PC points to the instruction following the one that 
failure. The number of bytes is the number normally 
the user stack when the particular type of SST occurs. 
is 4, then a non-normal SST fault occurred, and only 
are transferred. There are no SST parameters. 

caused the SST 
transferred to 
If the number 
the PSW and PC 

If the failure is detected in $DRDSP, the stack is the same as that 
shown in Figure 3-3, except that the number of bytes, the SST fault 
code (the fault codes are listed above), and the SST parameters are 
not present. The crash report message, however, will indicate that 
the failure occurred in $DRDSP. 

3-26 

( 

c 

c 

c 



c 

c 

( 

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-IIM 

0 .--

RO 

· · · 

I 

R5 

I 

PC 

PS 

· · · 
H.NLUN N 

H.GARD r--

H.HDLN Length in bytes 

SP 

ZK-216-81 

Figure 3-2 Task Header on a Mapped System 

3.4.3.1 Tracing Faults Using the Executive Stack and Register Dump -
To trace a fault after a display of the Executive stack and register 
contents, first examine the system stack pointer. Usually an 
Executive failure is the result of an SST-type trap within the 
Executive. If an SST does occur within the Executive, then the origin 
of the calIon the crash-reporting routine is in the SST service 
module. (The crash call is initiated by issuing an lOT at a stack 
depth of zero or less.) 

A call to crash also occurs in the Directive Dispatcher when an EMT is 
issued at a stack depth of zero or less, or a trap instruction is 
executed at a stack depth of less than zero. The stack structure in 
the case of an internal SST fault is shown in Figure 3-3. 

3-25 



INCORPORATING USER-WRITTEN DRIVERS INTO RSX'-llM 

PS 

PC 

RS 

R4 

R3 

R2 

Rl 

RO 

Return to system exit 

Zero or more SST parameters 

SST fault code 

Number of bytes ~.~-----------SP 

ZK-217-81 

Figure 3-3 Stack Structure: Internal SST Fault 

The fault codes are: 

o 
2 
4 
6 
10 
12 
14 
16 
20 
22 
24 
26 
30 
32 
34 

iODD ADDRESS AND TRAPS TO 4 
iMEMORY PROTECT VIOLATION 
iBREAK POINT OR TRACE TRAP 
i IOT INSTRUCTION 
i ILLEGAL OR RESERVED INSTRUCTION 
iNON RSX EMT INSTRUCTION 
iTRAP INSTRUCTION 
ill/40 FLOATING POINT EXCEPTION 
iSST ABORT-BAD STACK 
iAST ABORT-BAD STACK 
i ABORT VIA DIRECTIVE 
iTASK LOAD READ FAILURE 
iTASK CHECKPOINT READ FAILURE 
iTASK EXIT WITH OUTSTANDING I/O 
iTASK MEMORY PARITY ERROR 

The PC points to the instruction following the one that 
failure. The number of bytes is the number normally 
the user stack when the particular type of SST occurs. 
is 4, then a non-normal SST fault occurred, and only 
are transferred. There are no SST parameters. 

caused the SST 
transferred to 
If the number 
the PSW and PC 

If the failure is detected in $DRDSP, the stack is the same as that 
shown in Figure 3-3, except that the number of bytes, the SST fault 
code (the fault codes are listed above), and the SST parameters are 
not present. The crash report message, however, will indicate that 
the failure occurred in $DRDSP. 

3-26 

c 

( 

c 



( 
'\ 

( 

INCORPORATING USER~RITTEN DRIVERS INTO RSX-llM 

One SST-type failure, stack underflow, does not result in the stack 
structure of Figure 3-3. To determine where the crash occurred, first 
establish the stack structure; this can be deduced by the value of 
the SP and the contents of the top word on the stack. If the stack 
structure is that of Figure 3-3, then the failure occurred in $DRDSP, 
or was a normal SST crash. If the stack structure is that of Figure 
3-4, then an abnormal SST crash has occurred • 

... '41-------- SP 

PS 

PC 

ZK-218-81 

Figure 3-4 Stack Structure: Abnormal SST Fault 

Abnormal SST failures occur when it is not possible to push 
information onto the stack without forcing another SST fault. When 
this situation occurs, a direct jump to the crash-reporting routine is 
made, rather than an lOT crash. The PS and PC on the stack are those 
of the actual crash, and the address printed out by the 
crash-reporting routine is the address of the fault rather than the 
address of the lOT that crashes the system. Note that the 
crash-reporting routine removes the PC and PSW of the lOT instruction 
from the stack, which in this case is incorrect. Thus, the SP appears 
to be four bytes greater than it really is (as in Figure 3-4). 

You now have all the information needed to isolate the cause of the 
failure. From this point on, rely on personal experience and a 
knowledge of the interaction between the driver and the services 
provided by the Executive. 

3.4.3.2 Tracing Faults When the Processor Halts Without Display - To 
trace a fault when the processor halts but displays no information 
(case 3 in Section 3.4.2.1 above), first examine $STKDP, $TKTCB, and 
$HEADR. The difficulty in tracing failures in this case is that the 
system stack is not directly associated with the cause of a failure. 

By examining $STKDP, you can determine the system state at the time of 
failure. If it was in user state, the next step is to examine the 
user's stack. The examination focuses on scanning the stack for 
addresses that may be subroutine links that can ultimately lead to a 
thread of events isolating the fault. This is essentially the aim of 
looking at the system stack if $STKDP is zero or less. 

Frequently, a fault can occur that causes the SP to point to the top 
of the stack plus 4. This fault results from issuing an RTI 
instruction. The top two items on the stack are data. The result is 
a wild branch and then, most probably, a halt. Figure 3-5 shows a 
case in which two data items are on the stack when the program 
executes an RTI instruction. The top of the stack points to a word 
containing 40100(octal). If location 40100(octal) contains a HALT 
instruction, the original SP is four bytes below the final SP, and 
fault tracing should begin from the original SP. 

3-27 



INCORPORATING USER~RITTEN DRIVERS INTO RSX-llM 

I 

.. SP 

5 

40100 • SP 

ZK-219-81 

Figure 3-5 Stack Structure: Data Items on Stack 

This type of fault also occurs when an RTS instruction is executed 
with an inconsistent stack. However, in that case, SP points to 
TOS+2. 

A scan of the contents of the general registers may give some hint as 
to the neighborhood in which a fault (or the sequence of events 
leading up to the fault) occurred. 

If the fault occurred in a new driver, a frequent source of clues is 
the buffer address and count words in the UCB (U.BUF, U.BUF+2, U.CNT), 
as are the activity flags (US.BSY and S.STS). Other locations in both 
the UCB and SCB may also provide information that may help locate the 
source of the fault. 

3.4.3.3 Tracing Faults After an Unintended Loop - To trace a fault 
when an unintended loop has occurred, first halt the processor. 

After you halt the processor, the same state exists as was discussed 
in Section 3.4.3.2. Follow the same tracing procedure described 
there. A specific suggestion is to check for a stack overflow loop. 
Patterns of data successively duplicated on the stack indicate a stack 
looping failure. 

3.4.3.4 Additional Hints for Tracing Faults - Another item to check 
is the current (or last) I/O packet, the address of which is found in 
£.PKT of the SCB. The packet function (I.FCN) defines the last 
activity performed on the unit. 

If trouble occurred in terminating an I/O request, a scan of the 
system dynamic memory region may provide some insight. This region 
starts at the address contained in $CRAVL, a cell in SYSCM. Because 
all I/O packets are built in system dynamic memory, their memory is 
returned to the dynamic memory region when they are successfully 
terminated. Following the link pointers in this region may reveal 
whether I/O completion proceeded to that point. In systems with QIO 
optimization, $PKAVL (SYSCM) points to a list of I/O packet-sized 
blocks of dynamic memory that are not linked into the $CRAVL chain. 

A frequent error for an interrupt-driven device is to terminate an I/O 
packet twice when the device is not properly disabled on I/O 
completion and an unexpected interrupt occurs. This action ultimately 
produces a double deallocation of the same packet of dynamic memory. 
Double deallocation of a dynamic buffer in RSX-IIM causes a loop in 

3-28 

( 

c 

( 



c 

c 

INCORPORATING USER~RITTEN DRIVERS INTO RSX-IIM 

the module $DEACB on the next deallocation (of a block of higher 
address) after the second deal location of the same block. At that 
time, R2 and R3 both contain the address of the I/O packet memory that 
has been doubly deallocated. If XDT has been included in the system, 
the deal location routine checks for bad deallocation and crashes the 
system if it occurs. 

3.4.4 Rebuilding and Reincorporating a Driver 

The procedure for rebuilding and reincorporating a driver into your 
system depends on whether the driver is resident or loadable. The two 
subsections that follow describe the procedure for each kind of 
driver. 

3.4.4.1 Rebuilding and Reincorporating a Resident Driver - The 
procedure for rebuilding and reincorporating a resident driver 
involves four steps: 

NOTE 

In the examples that follow: 

• x (as in [11,2x] is equal to 0 
for unmapped systems and 4 for 
mapped systems 

• xxDRV is the name of the driver 
you are rebuilding or 
reincorporating 

1. Correct and assemble the 
liltructures. 

driver and/or device data 

2. 

Assuming that the object system has been bootstrapped, 
appropriate volumes have been mounted, and the source code 
for the user driver and/or device data base has been updated, 
then the following commands effect the reassembly of both the 
driver and the data base: 

>SET /UIC=tll,2x]~, 
> RUN $MACffi) 
MAC>xxDRV=LB: [1, l]EXEMC/ML,SY: [11, lO)RSXMC,xxDRVffi) 
MAC>USRTB=LB: [l,l]EXEMC/ML,SY: [ll,lO]RSXMC,USRTBffi) 
MAC >tCTRL/Z) . ' 

Update the Executive object module library. 

After reassembling the user driver and/or data base, you must 
update the Executive object module library. The following 
commands will accomplish this: 

>SET /UIC=[1,2x]ffi) 
>RUN $LBRffi) 
LBR>LB:RSXI1M/RP=[11,2XJxxDRV,USRTBffi) 
LBR>©IB@ 

3-29 



INCORPORATING USER~RITTEN DRIVERS INTO RSX-llM 

3. Do Phase II of SYSGEN to rebuild the driver with the 
Executive. 

4. Bootstrap the new system. 

The new system can now be bootstrapped with the MCR BOO 
command. If you are using the baseline system, first issue 
the following command: 

>INS BOO;-lruJ 

Then issue the following command: 

>BOO [1, 5x] RSXllM ffil 

3.4.4.2 Rebuilding and Reincorporating a Loadable Driver - A loadable 
driver is easier to reincorporate during debugging than a resident 
driver. After correcting and assembling the driver source, simply 
unload the old version, using the MCR UNL command, task-build the new 
one, and load it using the LOA command. 

The data structure, once loaded, 
Executive. It is not removed 
structure is in error and cannot 
reassemble, and task-build it. 
loading the corrected driver. 

becomes a permanent part of the 
by the U~L command. If the data 
be patched, correct its source, 

Then .bootstrap the system before 

3-30 

( 

c 

c 



( 
'-

~C--_· 

c 

, 

l 

c 

CHAPTER 4 

WRITING AN I/O DRlVER--PROGRAMMING SPECIFICS 

In Chapter 2, overviews were given for: 

• Data structures 

• Executive services 

• Programming protocol 

This chapt~r gives det~ils for the data structures, and in addition 
discusses specifics of multicontroller drivers and the INTSV$ macro. 
Executive services are covered in Chapter 5. The protocol coverage in 
the discussion ,of programming protocol in Chapter 2 is detailed enough 
to make further elaboration unnecess'ary. 

4.1 DATA STRUCTURES 

The following elements in the I/O data structure are of concern to the 
programmer writing a driver: 

• I/O packet 

• DCB 

• UCB 

• SCB 

• Device interrupt vector 

The I/O data structure, and the first four control blocks listed above 
in particular, contain an abundance of data pertaining to input/output 
operations. Drivers themselves are involved with only a subset of the 
data. 

In the detailed descriptions of the I/O packet, the DCB, the UCB, and 
the SCB that follow, most data fields (words or bytes) are classified 
by one of five descriptions. Two items in each descript-ion indicate: 

• Whether the field is initialized in the data structure source 

• What sort of access the driver has to the fi~ld during 
execution 

4-1 



WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS 

The five descriptions are: 

<initialized, not referenced> 
Field is supplied in the data structure source code, and is 
not referenced by the driver during execution. 

<initialized, read-only> 
Field is supplied in the data structure source code, and may 
be read by the driver. 

<not initialized, read-only> 
Either an agent other than the driver establishes this field, 
or the driver sets it up once and thereafter references it 
read-only. 

<not initialized, read-write> 
Either the driver or some other agent establishes this field, 
and the driver may read it or write over it. 

<not initialiied, not referenced> 
Field does not involve the driver in any way. 

These five descriptions dover most of the fields in the four control 
blocks described in tbis section. Exceptions are noted in the text. 

The final discussion in this section deals with the device interrupt 
vector. 

4.1.1 The I/OPacket 

Figure 4-1 shows the.layollt of the 18-word I/O packet, which is 
constructed and placed in the driver I/O queue by QIO directive 
processing, and is subsequently delivered to the driver by a call to 
$GTPKT. The DPB from which the I/O packet is generated is illustrated 
in Figure 4-2 (see Section 4.1.1. 2). 

4.1.1.1 I/O Packet Details - The I/O packet is built dynamically by 
QIO directive processtng. Thus, no static fields exist witb respect 
to a driver. I/O packets are created dynamically, and therefore the 
first two descriptions in Section 4.1 «initialized, not referenced> 
and <initialized, read-only» do not apply. Fields in the I/O packet 
(described below) are classified as not referenced, read-only, or 
read-write. 

I. LNK 

Driver access: 

Not referenced. 

De sc r i pt i on: 

Links I/O packets queued for a driver. A zero ends the 
chain. The listhead is in the SeB (S.LHD). 

4-2 

( 

( 

( 

( 



( 

E-

( 

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS 

I.EFN 

I.PRI 

Driver access: 

Not referenced. 

Description: 

Contains the event flag number as copied by QIO directive 
processing from the requester's DPB. 

LLNK Link to next I/O packet o 
LPRI } LEFN 

EFN I PRI 2 

LTCB TCB address of requester 4 

LLN2 Address of second LUT word 6 

LUCB Address of redirect UCB 10 

LFCN Function code I Modifier 12 

I.IOSB Virtual address of I/O status block 14 

Relocation bias of 10SB 16 

Real address of 10SB 20 

LAST Virtual address of AST service routine 22 

LPRM 24 

- -

- -
Device - -parameters 

- -
- -

ZK-220-81 

Figure 4-1 I/O Packet Format 

Driver access: 

Not referenced. 

Description: 

Priority copied from the TeB of the requesting task. 

4-3 



I.TCB 

1. LN2 

I.UCB 

I.FCN 

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS 

Driver access: 

Read-only. 

Description: 

TCB address of the requesting task. 

Driver access: 

Not referenced. 

Description: 

Contains the address of the second word of the LUT entry in 
the task header to which the I/O request is directed. For 
open files on file-structured devices, this word contains the 
address of the window block; otherwise, it is zero. 

Driver access: 

Read-only. 

Description: 

Contains the address of the unit to which I/O is to be 
directed. I.UCB is the address of the Redirect UCB if the 
starting UCB has been subject to an MCR RED command. Used in 
cancel I/O routine to determine if the I/O request is from 
the task that is issuing the $IOKIL routine. 

Driver access: 

Read-only. 

Description: 

Contains the function code (see Table 4-1, Section 4.1.2.2) 
for the I/O request. The modifier byte is one or more 
subfunction bits that may be set. 

I.IOSB 

Driver access: 

Not referenced. 

Description: 

I.IOSB contains the virtual address of the I/O Status Block 
(IOSB), if one is specified, or zero if one is not specified. 

I.IOSB+2 and I.IOSB+4 
IOSB (see Appendix 
address doubleword). 
is zero; the second 

contain the address doubleword for the 
A for a detailed description of the 
On an unmapped system, the first word 

word is the real address of the IOSB. 

4-4 

( 

( 



( 

I.AST 

( 

I.PRM 

( 

WRITING AN I/O DRlVER--PROGRAMMING SPECIFICS 

In a mapped system, the first word contains the relocation 
bias of the IOSB; the bias is, in effect, the number of the 
32-word block in which the IOSB starts. This block number is 
derived by viewing available real memory as a collection of 
32-word blocks numbered consecutively, starting with O. 
Thus, if the IOSB starts at physical location 3210{octal), 
its block number is 32{octal). 

The second word is formatted as follows: 

Bi ts O-S 
Bits 6-12 
Bi ts 13-lS 

Displacement in block 
All zeros 

6 

(DIB) 

The displacement in block is the offset from the block base. 
In the above example, in which the IOSB starts at 
3210(octal), the DIB is equal to 10(octal). 

The value 6 in bits 13-lS is constant. It is used to cause 
an address reference through Kernel Address Page Register 6 
(APR6). Again, see Appendix A for details. 

Discussion of the address doubleword is deferred to an 
appendix because you seldom have to be concerned with its 
contents or format in writing a conventional driver. Its 
construction and subsequent manipulation are normally 
external to the driver. Subroutines are provided as 
Executive services for programmed I/O to render the 
manipulations of I/O transfers transparent to the driver 
i tsel f. 

Driver access: 

Not referenced. 

Description: 

Contains the virtual address of the AST service routine to be 
executed at I/O completion. If no address is spacified, the 
field contains zero. 

Driver access: 

Not initialized, read-only. 

Description: 

Device-dependent parameters constructed from the last six 
words of the DPB. Note that if the I/O fUnction is a 
transfer (refer to the description of D.MSK in Section 
4.1.2.1), the buffer address (first DPB device-dependent 
parameter) is translated to an equivalent address doubleword. 
Therefore, device-dependent parameter n is copied to I.PRM 
+{2*(n-l»+2, where n is the number of the parameter and the 
first parameter is numbered Pl. 

4-S 



WRITING AN I/O DRlVER--PROGRAMMING SPECIFICS 

4.1.1.2 The QIO Directive Parameter Block (DPB) - The QIO 
constructed as shown in Figure 4-2. 

The parameters in the DPB have the following meanings. 

Length (required): 

DPB is 

The length of the DPB, which for the RSX-IIM QIO directive is 
always fixed at 12(decimal) words. 

DIC (required): 

Directive Identification Code. For the QIO directive, this value 
is!. Fo r QIOW i tis 3. 

Function Code (required): 

The code of the requested I/O function (0 through 31.). 

Length ole 0 

Function code Modifier 2 

Reserved LUN 4 

Priority EFN 6 

I/O status block address 10 

AST address 12 

14 
- -
- -

Device-

- dependent -
parameters 

- -

- -

ZK-221-81 

Figure 4-2 QIO Directive Parameter Block (DPB) 

Mod ifier: 

Device-dependent modifier bits. 

Reserved: 

Reserved byte; must not be used. 

LUN (requi red) : 

Logical Unit Number. 

Priority: 

Request priority. Ignored by RSX-IIM. 

4-6 

( 

€=. 

C 

( 

c 



( 

c 

(: 

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS 

EFN (optional): 

Event flag number. Zero indicates no event flag. If you sp~cify 
no event flag, QIOW$ directives are converted to QIO$ directlves. 

I/O Status Block Address (optional): 

This word contains a pointer to the I/O status block, which is a 
2-word, device-dependent, I/O-completion data packet formatted 
as: 

Byte 0 

I/O status byte. 

Byte 1 

Augmented data supplied by the driver. 

Bytes 2 and 3 

The contents of these bytes depend on the value of byte 
If byte 0 equals 1, then these bytes usually contain 
processed byte count. If byte 0 does not equal 0, then 
contents are device-dependent. 

AST Address (optional): 

Address of an AST service routine. 

Device Dependent Parameters: 

o. 
the 
the 

Up to six parameters specific to the device and I/O function to 
be performed. TypicallYf for data transfer functions, the 
following four are used: 

• Buffer address 

• Byte count 

• Carriage control type 

• Logical block number 

The fields for any optional parameters not specified will be filled 
with zeros. 

4.1.2 The Device Control Block (DCB) 

Figure 4-3 is a schematic layout of the DCB. The DCB describes the 
static characteristics of a device controller and the units attached 
to the controller. All fields must be specified except D.PCB, which 
is required only if you selected the load able-driver option. 

4-7 



WRITING AN I/O DRlVER--PROGRAMMING SPECIFICS 

4.1.2.1 DCB Details - The fields in the DCB are described below: 

D.LNK (link to next DCB)l 

Driver access: 

Initialized, not referenced. 

Description: 

Address link to the next DCB. A zero in this field indicates 
the last (or only) DCB in the chain. 

D.UCB (pointer to first UCB) 

Driver access: 

Initialized, not referenced. 

D.LNK Link to next DCB (O=last) 0 

D.UCB Link to first UCB 2 

D.NAM Generic device name 4 

D.UNIT Highest unit no. I Lowest unit no. 6 

D.UCBL Length of UCB 10 

D.DSP Address of driver dispatch table 12 

D.MSK Legal function mask bits 0 - 15. 14 

Control function mask bits 0 - 15. 16 

No-op function mask bits 0 - 15. 20 

ACP function mask bits 0 - 15. 22 

Legal function mask bits 16. - 31. 24 

Control function mask bits 16. - 31. 26 

No-op function mask bits 16. - 31. 30 

ACP function mask bits 16. - 31. 32 

D.PCB 
I 

I Address of partition control block I 34 L _______________________ J 

ZK-222-81 

Figure 4-3 Device Control Block 

1. Parenthesized phrases indicate value to be initialized in the data 
base source code. 

4-8 

( 

C-

,/ 

( 

( 

( 



( 

bc---

c 

(~ 

/ 

l_ 

W~ITING AN I/O DRlVER--PROGRAMMING SPECIFICS 

Description: 

Address link to the U.DCB field of the 
the only, UCB associated with the DCB. 
UCBs are in contiguous memory locations 
same length. 

D.NAM (ASCII device name) 

Driver access: 

Initialized, not referenced. 

Description: 

first, and possibly 
For a given DCB, all 

and must all have the 

Generic device name in ASCII by which device units are 
mnemonically referenced. 

D.UNIT (unit number range) 

Driver access: 

Initialized, not referenced. 

Description: 

Unit number range for the device. This range covers those 
logical units available to the user for device assignment. 
Typically, the lowest number is zero, and the highest is n-l, 
where n is the number of device-units described by the DeB. 

D.UCBL (UCB length) 

Driver access: 

Initialized, not referenced. 

Description: 

The UCB can have any length to meet the needs of the driver 
for variable storage. However, all UCBs for a given DCB must 
have the same length. The specified length must include the 
following prefix words if any or all are present: 

• U. IOC 

• U.ERHL 

• U. ERHC 

• U. ERSL 

• U.ERSC 

• U.LUIC 

• U.OWN 

• U.CLI 

• U.MUP 

4-9 



WRITING AN I/O DRlVER--PROGRAMMING SPECIFICS 

D.DSP (dispatch table pointer) 

Driver access: 

Initialized, not referenced. 

Description: 

Address of the driver dispatch table. 

When the Executive wishes to enter the driver at any of the 
four entry points contained in the driver dispatch table, it 
accesses D. DSP, lO'cates the appropr iate address in the table, 
and calls the driver at that address. A zero table address 
indicates that the (loadable) driver is not in memory. For a 
loadable driver, then, this field must be initialized to 
zero. If the driver does not process a given function, then 
this address points to a return instruction within the 
driver's code. ' 

You must provide a driver dispatch table in the driver 
source. The label on this table is of the form $xxTBL; it 
must be a global label. The designation xx is the 
2-character generic device name for the device. Thus, $TTTBL 
is the global label on the driver dispatch table for the 
generic device name TT. This table is an ordered, 4-word 
table containing the following entry points: 

• I/O initiator 

• Cancel I/O 

• Device timeout 

• Power failure 

When a driver is entered at one of these entry points, entry 
conditions are as follows: 

At initiator: 

If UC. QUE=l 
R5 UCB address 
R4 SCB address 
Rl Address of the I/O packet 

If UC. QUE=O 
R5 = UCB address 

Interrupts are allowed. (UC.QUE is a bit in U.CTL in the 
UCB. See Section 4.1.4.1.) 

At cancel I/O: 

R5 UCB address 
R4 SCB address 
R3 Controller index 
Rl Address of TCB of current task 
RO Address of active I/O packet 

Device interrupts at or below the priority of the 
requesting device are locked out. 

4-10 

c 

c 

( 

(, 



( 

c 

( 

WRITING AN I/O DRlVER--PROGRAMMING SPECIFICS 

At device time-out: 

UCB address RS 
R4 = 
Rj 
R2 
RO 

SCB address 
Controller. index 
Address of device CSR 
I/O status code IE.DNR (Device Not Ready) 

Device interrupts at or below the priority of the 
requesting device are locked out. 

At power failure: 

RS UCB address 
~4 SCB address 
R3 Controller index 

Interrupts are allowed. The power failure entry point of 
a loadable driver is called by LOA only for units that are 
on line and have UC.PWF set. 

D.MSK (function masks) 

Driver access: 

Initialized, not referenced. 

Description: 

There are eight words, beginning at D.MSK, that are critical 
to the proper functioning of a device driver. The Executive 
uses these words to validate and dispatch the I/O request 
specified by a QIO directive. Four masks, with two words per 
mask, are described by the bit configurations that you 
establish for these words: 

• Legal function mask 

• Control function mask 

• No-op function mask 

• ACP function mask 

The QIO directive allows for 32 possible I/O functions. The 
masks, as stated, are filters to determine validity and I/O 
requirements for the subject driver. 

The Executive filters the function code in the I/O request 
through the four masks. The I/O function code is the 
high-order byte of the function parameter issued with the QIO 
directive. The decimal representation of that high-order 
byte is equivalent to the decimal bit number of the mask. If 
you want the function to be true in one of the four masks, 
you must set the bit in that mask in the position that 
numerically corresponds to the function code. For example, 
the code for IO. RVB is 21 (octal) and its decimal 
representation is 17. If you want IO.RYB to be true for a 
mask, you must set bit number l7(decimal) in the mask. 

The masks are laid out in memory in two 4-word groups. Each 
4-word group covers 16 function codes. The first 4 words 
cover the function codes 0-15; the second 4. words cover 
codes 16-31. Below is the layout used for the driver example 
in Section 6.2.2. 

4-11 



WRITING AN I/O DRlVER--PROGRAMMING SPECIFICS 

.WORD 

.WORD 

.WORD 
• WORD 
• WORD 
.WORD 
.WORD 
• WORD 

140033 
30 
140000 
o 
5 
o 
1 
4 

;LEGAL FUNCTION MASK CODES 0-15. 
; CONTROL FUNCTION MASK CODES 0-15. 
;NO-OP FUNCTION MASK CODES 0-15 • 
;ACP FUNCTION MASK CODES 0-15 • 
; LEGAL FUNCTION MASK CODES 16. -3l. 
;CONTROL FUNCTION MASK CODES 16.-31. 
;NO-OP FUNCTION MASK CODES 16.-31. 
;ACP FUNCTION MASK CODES 16.-31 • 

The mask words filter sequentially as follows: 

Legal Function Mask: 

Legal function values have the corresponding bit position in 
this word set to 1. Function codes that are not legal are 
rejected by QIO directive processing, which returns IE.IFC in 
the I/O status block, provided an IOSB address was specified. 

Control Function Mask: 

If any device-dependent data exists in the DPB, and this data 
does not· require further checking by the QIO directive 
processor, the function is considered to be a control 
function. Such a function allows QIO directive processing to 
copy the DPB device-dependent data directly into the I/O 
Packet. 

No-op Function Mask: 

A no-op function is any function that is considered 
successful as soon as it is issued. If the fUnction is a 
no-op, QIO directive processing immediately marks the request 
successful; no additional filtering occurs. 

ACP Function Mask: 

If a function code is legal but specifies neither a control 
function nor a no-op, then it specifies either an ACP 
function or a transfer function. If a function code requires 
intervention of an Ancillary Control Processor (ACP), the 
corresponding bit in the ACP function mask must be set. ACP 
function codes must have a value greater than 7. 

In the specific case of read-write virtual functions, you 
have the option to set the corresponding mask bits. If the 
corresponding mask bits for a read-write virtual function are 
set, QIO directive processing recognizes that a file-oriented 
function is being requested to a non-file-structured device 
and converts the request to a read-write logical function. 

This conversion is particularly useful. Consider a 
read-write virtual function to a specific device: 

1. If the device is file structured and a file is open 
on the specified LUN, the block number specified is 
converted from a virtual block number in the file to 
a logical block number on the medium, and the request 
is queued to the driver as a read-write logical 
fUnction. 

4-12 

c 

( 

c 



( 

~ C-

c 

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS 

2. If the device is file structured and no file is open 
on the specified LUN,then an error is returned and 
no further action is taken. 

3. If the device is not file structured, then the 
request is simply transformed to a read-write logical 
function and is queued to the driver. (Specified 
block number is unchanged.) 

Transfer Function Processing: 

Finally, if the function is not an ACP function, then by 
default it is a transfer function. All transfer functions 
cause the QIO directive processor to check the specified 
buffer for legality (that is, inclusion within the address 
space of the requesting task) and proper alignment (word or 
byte). In addition, the processor checks the number of bytes 
being transferred for proper modulus (that is, nonzero and a 
proper multiple). 

Creating Mask Words: 

Creating function mask words involves five steps: 

1. Establish the I/O functions available on the device 
for which driver support is to be provided. 

2. Build the legal function mask: Check the standard 
RSX-IIM function mask values in Table 4-1 for 
equivalencies. Only the IO.KIL function is 
mandatory. IO.ATT and IO.DET functions, if used, 
must have the RSX-IIM system interpretation. DIGITAL 
suggests that functions having an RSX-IIM system 
counterpart use the RSX-IIM code, but this is 
required only when the device is to be used in 
conjunction with an ACP. From the supported function 
list in Table 4-1, you can build the two legal 
function mask words. 

3. Build the cont~ol function mask by asking: 

Does this function carry a 
and byte count in the 
parameter words? 

standard buffer address 
first two device-dependent 

If it does not, then either it qualifies as a control 
function, or the driver itself must effect the 
checking and conversion of any addresses to the 
format required by the driver. See Section 6.3 for 
an example of a driver that does this. (Buffer 
addresses in standard format are automatically 
converted to address doubleword format.) 

Control functions are essentially those functions 
whose DPBs do not contain buffer addresses or counts. 

4-13 



-~~-------.~--~~.---~~~~~~~-

WRITING AN I/O DRlVER--PROGRAMMING SPECIFICS 

4. Create the no-op function mask by deciding which 
legal functions are to be set as no-ops. Typically, 
for compatibility with File Control Services (FCS) or 
Record Management Services (RMS) on 
non-file-structured devices, the file access/deaccess 
functions are selected as legal functions, even 
though no specific action is required to access or 
deaccess a non-file-structured device; thus, the 
access/deaccess functions are set to be no-ops. 

5. Finally, include the ACP functions Write Virtual 
Block and Read Virtual Block for those drivers that 
support both read and write. (Include only one 
related ACP function if the driver supports only read 
or wr i te.) 

D.PCB (Partition Control Block) 

Driver access: 

Initialized, not referenced. 

Description: 

Address of the driver's Partition Control Block (PCB). This 
word is present in the DCB if and only if the loadable-driver 
SYSGEN option has been selected. It must be initialized to 
zero. You can extend the DCB by adding words after D.PCB. 

A PCB exists for every partition in a system. MCR creates a 
PCB when the SET /MAIN or SET /SUB commands are given. If a 
driver is loadable, its PCB describes the partition in which 
it resides. 

The Executive uses D.PCB together with D.DSP (the address of 
the driver dispatch table) to determine whether a driver is 
loadable or resident, and, if loadable, whether it is in 
memory. Zero and nonzero values for these two pointers have 
the meanings shown in Table 4-1. 

Table 4-1 
D.PCB and D.DSP Bit Definitions 

=0 010 

Loadable 

=0 driver. Resident 
not in driver 
memory 

(not Loadable 

"0 possible) driver. 
in memory 

ZK-223-81 

4-14 

C 



c 

( 

c 

WRITING All I/O DRlVER--PROGRAMMING SPECIFICS 

4.1.2.2 Establishing I/O Func~ion Masks - Table 4-2 is supplied to 
assist you in determining the proper values to set in the function 
masks. The mask values are given for each I/O function used by 
DIGITAL-supplied drivers. The bit number allows you to determine 
which mask group to use: for bits numbered 0 through 15, use the mask 
value for a word in the first 4-word group; for bits numbered 16 
through 31, use the mask value for a word in the second 4-word group. 

Table 4-2 
Mask Values for Standard I/O Functions 

Bit Mask Related I/O 
# Value Symbolic Function 

0 1 IO.KIL Cancel I/O 
1 2 IO.WLB Write Logical Block 
2 4 10. RLB Read Log ical Block 
3 10 IO.ATT Attach Device 
4 20 IO.DET Detach Device 
5 40 General Device Control 
6 100 General Device Control 
7 200 General Device Control 

! 

8 400 Diagnostics 
9 1000 IO.FNA Find File in Directory 

10 2000 IO.ULK Unlock Block 
11 4000 10. RNA Remove File from Di rectory 
12 10000 IO.ENA Enter File in Directory 
13 20000 IO.ACR Access File for Read 
14 40000 IO.ACW Access File for Read/Write 
15 100000 10. ACE Access File for Read/Write/Extend 

16 1 IO.DAC 
I 

Deaccess File 
17 2 IO.RVB Read Virtual Block 
18 4 IO.WVB Write Virtual Block 
19 10 IO.EXT Extend File 
20 20 IO.CRE Create File 
21 40 10. DEL Mark File for Delete 
22 100 IO.RAT Read File Attributes 
23 200 IO.WAT Write File Attributes 
24 400 10. APC ACP Control 
25 1000 Unused -

26 2000 Unused 
27 4000 Unused 
28 10000 Unused 
29 20000 Unused 
30 40000 Unused 
31 100000 Unused 

Of the function mask values listed in Table 4-2, only IO.KIL is 
mandatory and has a fixed interpretation. However, if IO.ATT and 
IO.DET are used, they must have the standard meaning. (Refer to the 
RSX-IIM/M-PLUS I/O Drivers Reference Manual for a description of 
standard I/O functions.) If QIO directive processing encounters a 
fUnction code of 3 or 4 and the code is not set to be a no-op, QIO$ 
assumes that these codes represent Attach Device and Detach Device, 
respectively. The other codes are suggested but not mandatory. You 
are free to establish all other function-code values on 
non-file-structured devices. The mask words must reflect the proper 
filtering process. 

4-15 



WRITING AN I/O DRlVER--PROGRAMMING SPECIFICS 

If a driver is being written for a file-structured device, the 
standard function mask values of Table 4-2 must be established. 

Tables 4-3, 4-4, and 4-5 are guides to determining the proper bit 
masks for disks, tapes, and unit record devices (such as terminals, 
card readers, line printers, and paper tape punches/readers). 

Bit 

* 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

t -

c -

n -
a -

sa -
sd -

Table 4-3 
Mask Word Bit Settings for Disk Drives 

transfer 

RSX-IIM 
ACP non-ACP 

c 
t 
t 
c 
c 

sa 
sd 
a 
a 
a 
a 
a 
a 
a 

a 
a 
a 
a 
a 
a 
a 
a 
a 

function, 

c 
t 
t 
c 
c 

n 
n 
n 

n 
a 
a 

bit 
function mask 
control function, bit 
control function masks 

set 

set 

Related 
Symbolic 

10. KIL 
IO.WLB 
IO. RLB 
IO.ATT 
IO. DET 
IO.STC 

IO.CLN 
Diagnostic 
IO.FNA 
IO.ULK 
IO.RNA 
IO.ENA 
IO.ACR 
IO.ACW 
10. ACE 

IO.DAC 
IO.RVS 
IO.WVS 
IO.EXT 
IO.CRE 
10. DEL 
10. RAT 
IO.WAT 
IO.APC 

only in legal 

in legal and 

no-op function, bit set in legal and no-op 
function masks 
ACP function, bit set in legal and ACP 
function masks 
special case, bit set only in ACP fun¢tion 
mask, but not legal 
special case, bit set only if diagnostic 
support in system and driver 

4-16 

( 

c 

c 

( 



WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS 

Table 4-4 
Mask Word Bit Settings for Magnetic Tape Drives 

( 
Bit RSX-IIM Related 

# ACP non-ACP Symbolic 

0 c c IO.KIL 
1 t t 10. WLB 
2 t t 10. RLB 
3 c c IO.ATT 
4 c c IO.DET 
5 c c IO.STC 
6 c c 
7 sa 10. CLN 
8 sd sd Diagnostic 
9 a IO.FNA 

10 IO.ULK 
11 ro. RNA 
12 n IO.ENA 
13 a n IO.ACR 
14 a n IO.ACW 
15 a n 10. ACE 

16 a n IO.DAC 
17 a a 10. RVB 
18 a a IO.WVB 
19 a 10. EXT 
20 a IO.CRE 
21 10. DEL 
22 a 10. RAT 
23 IO.WAT 
24 a IO.APC 
25 

( 
26 
27 
28 
29 
30 
31 

t - transfer function, bit set only in legal function 
mask 

c - control function, bit set in legal and control 
function masks 

( 
n - no-op function, bit set in legal and no-op 

function masks 
a - ACP function, bit set in legal and ACP function 

masks 
sa - special case, bit set only in ACP function mask, 

but not legal 
sd - special case, bit set only if diagnostic support 

in system and driver 

( 

4-17 



------------------~.-.-------.. -.-.--

WRITING AN I/O DRlVER--PROGRAMMING SPEcIFICS 

Table 4-5 
Mask Word Bit Settings for Unjt Record Devices 

Bit RSX-IIM Related 
( 

# ACP non-ACP Symbolic 

0 c c IO. KIL 
1 t t IO.WLB 
2 t t IO. RLB 
3 c c IO.ATT 
4 c c IO.DET 
5 IO.STC 
6 
7 sa IO.CLN 
8 sd Diagnostic 
9 a IO.FNA 

10 a IO.ULK 
11 a IO.RNA 
12 a IO.ENA 
13 a n IO.ACR 
14 a n IO.ACW 
15 a n IO. ACE 

16 a n IO.DAC 
17 a a IO.RVB 
18 a a IO.WVB 
19 a IO.EXT 
20 a IO.CRE 
21 a IO. DEL 
22 a IO.RAT 
23 a IO.WAT 
24 a IO. APC 
25 c 
26 
27 
28 
29 
30 
31 

t - transfer function, bit set only in legal function 
mask 

c - control function, bit set in legal and control 
function masks 

( 
n - no-op function, bit set in legal and no-op 

function masks 
a - ACP function, bit set in legal and ACP function 

masks 
sa - special case, bit set only in ACP function mask, 

but not legal 
sd - special case, bit set only if diagnostic support 

in system and driver 

( 

4-18 



( 

~ 

c 

c 

c 

WRITING AN I/O DRlVER--PROGRAMMING SPECIFICS 

4.1.3 The Status Control Block (SCB) 

Figure 4-4 is a layout of the SCB. The SCB describes the status of a 
control unit that can run in parallel with all other control units. 

S.RCNT1 } 
S.ROFF1 

S.BMSV1 

S.BMSK1 

S.LHD 

S.PRI } S.VCT 
S.CTM } S.ITM 
S.CON } S.STS 

S.CSR 

S.PKT 

S.FRK 

S.MPR 

r ---Off;et t;, 1st - - -j N;;rib;;rofr;giste;;-~ 
I device register I to copy on error I 
1--- - - - - - - - - - ...1-- - - '- - - - - - --I 
I Saved I/O active bit map I 

I pOinter to Error Message Block I 

~----------------~------I 
l Device I/O active bit mask : 

f--- Device I/O queue 
o 

-
listhead 2 

Vector address+4 Device priority 4 

Time-out count: 
Initial Current 

6 

Controller status Controller index 10 

Address of control status register 12 

-
Address of current I/O packet 14 

Fork link word 16 

Fork PC 20 

Fork R5 22 

Fork R4 24 

I 
I Relocation base of driver's partition 26 L _______________________ J 

I I 30 
I I 
I - - - Storage required for - - - I 
I NPR UNIBUS devices I 
L - - with 22·bit addressing - - --: 
I I : _______________________ J 

I I 
I I 
I-----------------------~ 
I I :--- --- -- -- -- --- --- -- -- --: 
I I L _______________________ J 

1. These offsets exist for mass storage devices only, and only in systems 
incorporating error logging. 

ZK-224-81 

Figure 4-4 Status Control Block 

4-19 



WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS 

4.1.3.1 SCB Details - The fields in the SCB are described below: 

S.RCNT (used for error logging) 

Driver Access: 

Not initialized, not referenced. 

Description: 

The number of registers to copy on error. This offset exists 
for mass storage devices only (that is, when DV.MSD is set), 
and only in systems incorporating error logging. 

S.ROFF (used for error logging) 

Driver Access: 

Not initialized, not referenced. 

Description: 

Offet to first device register. This offset exists for mass 
storage devices only (that is, when DV.MSD is set), and only 
in systems incorporating error logging. 

S.BMSV (used for error logging) 

Driver access: 

Not initialized, not referenced. 

Description: 

Saved I/O active bit 
This offset exists 
when DV.MSD is set), 
logg ing. 

map and pointer to Error Message Block. 
for mass storage devices only (that is, 

and only in systems incorporating error 

S.BMSK (used for error logging) 

Driver access: 

Not initialized, not referenced. 

Description: 

Device I/O active bit mask. This offset exists for mass 
storage devices only (that is, when DV.MSD is set), and only 
in systems incorporating error logging. 

S.LHD (first word equals zero; second word points to first) 1 

Driver access: 

Initialized, not referenced. 

'1. Parenthesized contents indicate values to be initialized in the 
data base source code. 

4-20 

( 

c-

c 

(~ 

c 



( 

c 

WRITING AN I/O DRlVER--PROGRAMMING SPECIFICS 

Description: 

Two words forming the I/O queue listhead. The first word 
points to the first I/O packet in the queue, and the second 
word points to the last I/O packet in the queue. If the 
queue is empty, the first word is zero, and the second word 
points to the first word. 

S.PRI (device priority) 

Driver access: 

Initialized, read-only. 

Descri ption: 

Contains the priority at which the device interrupts. Use 
symbolic values (for example, PR4) to initialize this field 
in your data base source. You define these symbolic values 
by issuing the HWDDF$ macro (refer to the sample data base in 
Section 6.2.1 and the listing of the HWDDF$ macro in Appendix 
C) • 

S.VCT (interrupt vector divided by 4) 

Driver access: 

Initialized, not referenced. 

Description: 

Interrupt vector address divided by 4. For loadable drivers, 
the MCR/VMR LOA function uses this field and the existence of 
driver symbol(s) $xxINT, $xxINP, and $xxOUT to initialize the 
device interrupt vector. 

S.CTM (initialize to zero) 

Driver access: 

Not initialized, read-write. 

Description: 

RSX-IIM supports device time-out, which enables a driver to 
limit the time that elapses between the issuing of an I/O 
operation and its termination. The current time-out count 
(in seconds) is initialized by moving S.ITM (initial time-out 
count) into S.CTM. The Executive clock service (in module 
TDSCH) examines active times, decrements them, and, if they 
reach zero, calls the driver at its device time-out entry 
point. 

The internal clock count is kept in I-second increments. 
Thus, a time count of 1 is not precise because the internal 
clocking mechanism is operating asynchronously with driver 
execution. The minimum meaningful clock interval is 2 if you 
intend to treat time-out as a consistently detectable error 
condition. Note, if the count is 0, that no time-out occurs; 
a zero value is, in fact, an indication that time-out is not 
operative. The maximum count is 255. You are responsible 
for setting this field. Resetting occurs at actual time-out 
or within $FORK. 

4-21 



WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS 

S.ITM (set to initial time-out count) 

Driver access: 

Initialized, read-only. 

Description: 

Contains the initial time-out value. 

S.CON (controller number times 2) 

Driver access: 

Initialized, read-only. 

Description: 

Controller number multiplied by 2. Drivers that are written 
to support more than one controller use this field. A driver 
may use S.CON to index into a controller table created and 
maintained internally by the driver itself. By indexing the 
controller table, the driver can service the correct 
controller when a device interrupts. See Section 4.2 for an 
example. 

S.STS (initialize to zero) 

Driver access: 

Initialized, not referenced. 

Description: 

Establishes the controller as busy/not busy (nonzero/zero). 
This byte is the interlock mechanism for marking a driver as 
busy for a specific controller. The byte is tested and set 
by $GTPKT and reset by $IODON. 

S.CSR (Control Status Register address) 

Driver access: 

Initialized, read-only. 

Description: 

Contains the address of the Control Status Register (CSR) for 
the device controller. The driver uses S.CSR to initiate I/O 
operations and to access, by indexing, other registers 
related to the device that are located in the I/O page. This 
address need not be a CSR; it need only be a member of the 
device's register set. It is accessed at system bootstrap 
time to determine if the interface exists on the system 
hosting the Executive. The Executive uses S.CSR to set the 
off-line bit at bootstrap so that system software can be 
interchanged between systems without an intervening system 
generation. The MCR LOA function also references S.CSR when 
it processes a loadable data base. Otherwise, only the 
driver itself accesses S.CSR. 

4-22 

( 

( 

( 



( 

c 

c 

c 

WRITING AN I/O DRlVE~--PROGRAMMING SPECIFICS 

S.PKT (reserve one word of storage) 

Driver access: 

Not initialized, read-only. 

Description: 

Address of the current I/O packet established by $GTPKT. The 
Executive uses this field to retrieve the I/O packet address 
upon the completion of an I/O request. S.PKT is not zeroed 
after the packet is completed. 

S.FRK (reserve four or five words of storage) 

Driver access: 

Not initialized, not referenced. 

Description: 

The four words starting at S. FRK are used for fork block 
storage if and when the driver deems it necessary to 
establish itself as a fork process. Fork block storage 
preserves the state of the driver, which is restored when the 
driver regains control at fork level. This area is 
automatically used if the driver calls $FORK. 

The fork block is five words long instead of four if two 
conditions are met: 

1. Loadable drivers have been selected as a SYSGEN 
option. 

2. The system is mapped. 

If these conditions are met, and the fork block is five words 
long, you must not use the fork block for any other purpose. 
In other words, you cannot share the space reserved for the 
fork block; if you attempt to do so, you will destroy the 
loadaole driver's relocation base. In addition, the 5-word 
fork block should always be part of the SCS if the two 
conditions above are met. 

S.MPR (reserve six words of storage) 

Driver access: 

Initialized, read-only. 

Description: 

Drivers use the six words starting at S.MPR for non-processor 
request (NPR) devices attached to a processor with 22-bit 
addressing. See Appendix S for details on initializing 
S.MPR. 

4.1.4 The Unit Control Block (UCS) 

Figure 4-5 is a layout of the UCS (a variable-length control 
One UCS exists for each physical device-unit generated into 
configuration. For user-added drivers, this control block is 
as part of the source code for the driver data structure. 

4-23 

block) • 
a system 
defined 



WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS 

4.1.4.1 UCB Details - The fields in the UCB are described below. 
Note that the fields drawn with dotted outlines are not present -in 
every UCB; their existence depends on physical device type, whether 
the system is generated with error logging, and whether you are 
running on a multiuser system. Refer to the individual descriptions 
of the offsets for details. 

U.IOC 

Driver access: 

Not initialized, not referenced. 

Description: 

For mass storage devices only (that is, when DV.MSD 
and only in systems incorporating error logging: 
number of QIOs issued to the device. (Initialized 
when device is mounted.) 

is set), 
the total 
to zero 

U. ERSL 

Device access: 

Not initialized, not referenced. 

Description: 

U.ERHL 

For mass storage devices only (that is, when DV.MSD is set), 
and only in systems incorporating error logging: the maximum 
number of soft errors that the error logger will log for the 
device. Note that error logging will stop if either of the 
limits specified (in U.ERHL or in U.ERSL) is exceeded. 

Driver access: 

Not initialized, not referenced. 

Description: 

U.ERSC 

For mass storage devices only (that is, when DV.MSD is set), 
and only in systems incorporating error logging: the maximum 
number of hard errors that the error logger will log for the 
device. Note that error logging will stop if either of the 
limits specified (in U.ERHL or in U.ERSL) is exceeded. 

Driver access: 

Not initialized, not referenced. 

Description: 

For mass storage devices only (that is, when DV.MSD is set), 
and only in systems incorporating error logging: the total 
number of soft errors logged on the device. (Initialized to 
zero when device is mounted.) 

4-24 

( 

( 

( 



c 

( 

WRITING AN I/O DRlVER--PROGRAMMING SPECIFICS 

U.ERHC 

U.MUP 

U .CLI 

Driver access: 

Not initialized, not referenced. 

Description: 

For mass storage devices only (that is, when DV.MSD is set), 
and only in systems incorporating error logging: the total 
number of hard errors logged on the device. (Initialized to 
zero when device is mounted.) 

NOTE 

The following two symbolic names, U.MUP 
and U.CLI, both refer to the same 
absolute offset; use of the offset is 
dependent on system software 
configuration. Details regarding the 
use of each symbolic name are contained 
in the descriptions of U.MUP and U.CLI. 

Driver access: 

Not initialized, not referenced. 

Description: 

For terminal UCBs only, and only in multiuser systems that 
include alternate CLI support: bits 1 to 4 contain an index 
to a table which contains the address of CLI Parser Block 
(CPB) for the current CLI; the remaining bits are used for 
other terminal-specific features, and defined as follows: 

UM.OVR 
UM. CLI 
UM. DSB 
UM.NBR 

Driver' access: 

Override CLI indicator 
CLI indicator 
Terminal disabled because CLI eliminated 
No broadcast 

Not initialized, not referenced. 

Description: 

For systems without 
include multiuser 
word. 

alternate 
protection: 

CLI support, but which do 
multiuser protection flag 

U.LUIC 

Driver access: 

Not initialized, not referenced. 

Description: 

For terminal UCBs only, and only in multiuser systems: 
login UIC of the user at the particular terminal. 

4-25 

the 



- ------- --------------------------

WRITING AN I/0 DRIVER--PROGRAMMING SPECIFICS 

r ., C-
U.lOC4 

I-
~ 

-l 
i 

1/0 count 

Hard error limit 
T 

Soft error limit U.ERSL4 } 

U.ERHL 4 r U.ERSC4 } 
-1 See note 5 - - - - - + - - - - -

U.ERHC4 

U.MUP3 

U.LUIC2 

U.OWN1 

U.DCB 

U.RED 

U.CTL } U.STS 
U.UNIT } U.ST2 

U.CW1 

U.CW2 

U.CW3 

U.CW4 

U.SCB 

U.ATT 

U.BUF 

U.BUF+2 

U.CNT 

Hard error count Soft error count 

1 
-1 

r 
~ 

- - - - ..1 - - - -
Multiuser flags and CLI painter 

Login UIC 
-- - - - - - - - - --

Owning terminal UCB address 

Back pointer to DCB 

Redirect UCB pointer 

Unit status Control flags 

Unit status Physical unit no. 

Characteristics word 1 

Characteristics word 2 

Characteristics word 3 

Characteristics word 4 

Pointer to SCB 

TCB address of attached task 

Buffer relocation bias 

Buffer address 

Byte count 

Device-r---
dependent -

'--- -

storage 

1. This offset appears only in multiuser systems. 

o 

2 

4 

6 

10 

12 

14 

16 

20 

22 

24 

26 

30 

32 

All 
devices 

2. These offsets appear only for terminal devices (that is, those devices that have DV.TTY 
set) in multiuser systems. 

3. This offset appears only for terminal devices in :\multiuser systems that include alternate 
CLI support. In multiuser systems without alternate CLI support, this offset hasoa symbolic 
name of U.CLI. See descriptions and note in text. 

4. These offsets appear only for mass storage devices (those devices that have DV.MSD set) 
in systems that employ error-logging. 

5. These offsets are device-dependent. 
ZK-22S-81 

Figure 4-5 Unit Control Block 

4-26 

( 

c 



( 
\ 

WRITING AN I/O DRlVER--PROGRAMMING SPECIFICS 

U.OWN (initialize to zero) 

Driver access: 

Initialized, not referenced. 

Descriptdon: 

In multiuser systems only.: the UCB address of the owning 
terminal for allocated devices. 

U.DCB (pointer to associated DCB) 

Driver access: 

Initialized, not referenced. 

Description: 

Backpo inter to the corresponding DCB. Because the UCB i sa 
key control block in the I/O data structure, access to qthec 
control blocks usually occurs by means of links implanted in 
the UCB. 

U.RED (redirect pointer--initialized to point toU.DCB of theUCB) 

Driver access: 

Initialized, not referenced. 

Description: 

Contains a pointer to the UCB to which this oevice-unit nas 
peen redirected. This field is updated as the result of an 
MCR Redirect command. The redirect chain ends when this word 
points to the beginning of the UCB itself (U.DCB of the UCB 
to be precise). 

U.CTL (set by you) 

Driver access: 

Initialized, not referenced. 

Description: 

U.CTL and the function mask words in the DCB drive QrO 
directive processing. You are responsible for setting up 
this bit pattern. Any inaccuracy in the bit setting of Uo>CTL 
produces erroneous I/O processing. Bit symbols and their 
meanings are as follows: . 

UC.ALG - Alignment bit. 

If this bit equals 0, then byte al ignment of data buff.ers 
is allowed. If UC.ALG equals 1, then buffers must be 
aligned on word boundaries. 

UC. ATT - Attach/Detach notification. 

If this bit is set, then the driver is called when $GTPKT 
processes an Attach/Detach I/O function. Typically, the 
driver does not need to ~btain control for Attach/Detach 
requests, and the Executive performs the entire function 
without any assistance from the driver. 

4-27 



WRITING AN I/O DRlVER--PROGRAMMING SPECIFICS 

UC.KIL - Unconditional Cancel I/O call bit. 

If set, the driver is called on a Cancel 
even if the unit specified is not busy. 
driver is called on Cancel I/O only if an 
is in progress. 

UC.QUE - Queue bypass bit. 

I/O request, 
Typically, the 
I/O operation 

If set, the QIO direct'ive processor calls the driver 
prior to queuing the I/O packet. After the processor 
makes this call, the driver is responsible for the 
disposition of the I/O packet. Typically, the processor 
queues an I/O packet prior to calling the driver, which 
later retrieves it by a call to $GTPKT. 

UC.PWF - Unconditional calIon power failure bit. 

If set and the unit is on line, the driver is always to 
be called when the system is bootstrapped or power is 
restored after a power failure occurs. Typically, the 
driver is called on power restoration only wben an I/O 
operation is in progresS. Additionally, for loadable 
drivers, the driver is called when loaded if the unit is 
on line and UC.PWF is set. 

UC • N PR - N PR d ev ice bit. 

Ifi set, the device is an NPR device. This bit determines 
tlie format of the 2-word address in U.BUF (details given 
in the discussion of U.BUF below). 

UC.LGH - Buffer size mask bits (2 bits). 

These two bits are used to check whether the byte count 
specified in an I/O request is a legal buffer modulus. 
You select one of the values below by DRing into the byte 
a 0, 1, or 3. 

00 - Any buffer modulus valid 
01 - Must have word alignment modulus 
10 - Combination invalid 
11 - Must have doubleword alignment modulus 

UC.ALG and UC.LGH are independent settings. 

UC.ATT, UC.KIL, UC.QUE, and. UC.PWF are usually zero, 
especially for conventional drivers. Every driver, however, 
must be concerned with its particular va1lues for UC.A~G, 
UC.NPR, and UC.LGH. You are totally responsible for the 
values in these bit~, and erroneous values are likely to 
produce unpredictable results. 

U.STS (initialize to zero) 

Driver access: 

Initialized, not referenced. 

4-28 

( 

( 

c 



( 

( 

( 

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS 

Description: 

This byte contains device-independent status information. 
The bit meanings are as follows: 

US.BSY - If set, device-uni~ is busy. 

US.MNT - If set, volume is not mounted. 

US. FOR - If set, volume is foreign. 

US.MDM - If set, device is marked for dismount. 

The unused bits in U.STS are reserved for 
expansion. US.MDM, US.MNT, and US.FOR 
mountable devices. 

U.UNIT (unit number) 

Driver access: 

Initialized, read-only. 

Descri ption: 

system 
apply 

use 
only 

and 
to 

This byte contains the physical unit number of the 
device-unit (that is, the value required for the hardware to 
access the specified drive unit). If the controller for the 
device supports only a single unit, the unit number is always 
zero. 

U.ST2 (set by you) 

Driver access: 

Initialized, not referenced. 

Description: 

This byte contains additional device-independent 
information. The bit meanings are as follows: 

status 

US.OFL - If set, the device is off line (that is, not in 
the configuration) • 

US. RED - If set, the device cannot be redirected. 

US. PUB - If set, the device is a public device. 

US.UMD - If set, the device is attached for diagnostics. 

The remaining bits are reserved for system use and expansion. 

U.CWI (set by you) 

Driver access: 

Init~alized, not referenced. 

4-29 



-----------~-~---~-----~ 

WRITING AN I/O DRlVER--PRQGRAMMING SPECIFICS 

Description: 

The first of a 4-word contiguous cluster of device 
characteristics information. U.CWI and U.CW4 are device 
independent. U.CW2 and U.CW3 are device dependent. The four 
characteristics words are retrieved from the UCB and placed 
in the requester's buffer on issuance of a Get LUN 
information (GLUN$) Executive directive. It is your 
responsibility to supply the contents of these four words in 
the assembly source code of the driver's data structure. 

U.CWI is defined as follows (If a bit is set to 1, the 
corresponding characteristic is true for the device.): 

DV.REC 
DV. CCL 
DV. TTY 
DV.DIR 
DV. SDI 
DV. SQD 
DV.MSD 
DV. UMD 
DV.EXT 

DV. SWL 
DV.ISP 
DV. asp 
DV. PSE 
DV. COM 
DV. PH 
DV.MNT 

Bit 
Bit 
Bit 
Bit 
Bit 
Bit 
Bit 
Bit 
Bit 

Bit 
Bit 
Bit 
Bit 
Bit 
Bit 
Bit 

O--Record-oriented device 
l--Carriage-control device 
2--Terminal device 
3--Directory device 
4--Single directory device 
5--Sequential device 
6--Mass storage device 
7--Device supports user-mode diagnostics 
8--Device attached to a 22-bit direct addressing 

controller 
9--Unit is software write-locked 

lO--Input spooled device 
ll--Output spooled device 
l2--Pseudo device 
l3--Device mountable as a communications channel 
14--Device mountable as a Files~ll device 
l5--Device mountable 

U.CW2 (initialize to zero) 

Driver aCcess: 

Initialized, read-write. 

Descri ption: 

Specific to a given d~vice driver (available for working 
storage or constants).l 

U.CW3 (initialize to zero) 

Driver access: 

Initialized, read-write. 

Description: 

Spec ific to a given device d river (available for working 
storage or constants).l 

1. Exception: for block-structured devices, U. CW2 and U. CW3 cannot be 
used for working storage. In drivers for block-structured devices 
(disks and DECtape), these two words must be initialized to a 
double-precision number giving the total number of blocks on the 
device.~ Place the high-order bits itl the low-order byte of U.CW2 and 
the low-order bits in U.CW3. 

4-30 

c 

( 

( 

c 



c 

c 

c 

C~ 

WRITING AN I/O DRlVER--PROGRAMMING SPECIFICS 

For tape UCBs, the high and low bytes of this word specify 
the highest and lowest densities, respectively, supported by 
the device. Symbolic names for U.CW3 are defined as follows 
for tape UCBs: 

UN. UNS 
UD.200 
UD.556 
UD.800 
UD.160 
UD.625 

Unsupported/unspecified 
200 bits/in, 7-track 
556 bits/in, 7-track 
800 bits/in, 7- or 9-track 
1600 bits/in, 9-track 
6250 bits/in, 9-track 

For example, a TE16 tape drive supports densities of both 800 
and 1600 bits/in. For a TE16 drive, U.CW3 would be coded as 
follows: 

.BYTE UD.800,UD.160 

U.CW4 (set by you) 

Driver access: 

Initialized, read-only. 

!Description: 

Default buffer size. This word is changed by the MCR command 
SET /BUF. 

U.SCB (SCB pointer) 

Driver access: 

Initialized, read-only. 

Descriptibn: 

This field contains a pointer to the SCB for this UCB. In 
general, R4 contains the value in this word when the driver 
is entered by way of the driver dispatch table, because 
service routines frequently reference the SCB. 

U.ATT (initialize to zero) 

Driver access: 

Initialized, not referenced. 

Description: 

If a task has attached itself to the device-unit, this field 
contains its TCB address. 

U.BUF (reserve two words of storage) 

Driver access: 

Not initialized, read-write. 

Description: 

U.BUF labels two consecutive words that serve as a 
communication region between $GTPKT and the driver. U.BUF, 
U.BUF+2, and U.CNT receive the first three words from the I/O 
packet. 

4-31 



WRITING AN I/O DRlVER--PROGRAMMING SPECIFICS 

For transfer operations, the format of these two words 
depends on the setting of UC.NPR in U.CTL. The driver does 
not format the words; all formatting is completed before the 
driver receives control. For unmapped systems, the first 
word ~s zero, and the second word is the physical address of 
the buffer. For mapped systems, the format is determined by 
the UC.NPR bit, which is set for an NPR device and reset for 
a program transfer de,vice. 

The format for program transfer devices is identical to that 
for the second two words of I.IOSB in the I/O packet. See 
Section 4.1. 1. 1. 

In general, the driver does not manipulate these words when 
performing I/O to a program transfer device. Instead~it 
uses the Executive routines Get Byte, Get Word, Put Byte, and 
Put Word to effect data transfers between the device and the 
user's buffer. 

For NPR device drivers, the word layout is as follows: 

Word 1 

Bit 0 
Bits 1-3 
Bits 4,5 
Bits 6 
Bits 7-15 

Word 2 

Bits 0-15 

Go bit initially set to zero 
Function code--set to zeros 
Memory extension bits 
Interrupt enable--set to zero 
Zero 

Low-order 16-bits of physicai address 

It is your responsibility to set the function code, interrupt 
enable, and go bits. This action must be accomplished by a 
Bit Set (BIS) instruction so that the extension bits are not 
disturbed. The driver must move these words into the device 
con~rol registers to initiate the I/O operation. 

Note that when the system is unmapped, bits 4 and 5 are 
always zero, but this fact is transparent to the driver. 
Thus, NPR device drivers are not cognizant of the mapping 
state in the system. 

The construction of U.BUF, U.BUF+2, and U.CNT occurs only if 
the requested function is a transfer function; if it is not, 
these three words contain the first three words of the I/O 
packet. 

The details of the construction of the address doubleword 
appear in Appendix A. 

U.CNT (reserve 1 word of storage) 

Driver access: 

Not initialized, read-write. 

Descriptiofl : 

C6ntains the byte count of the buffer described by U.BUF. 
The driver uses this field in constructing the actual device 
request. 

4-32 

( 

( 

( 



( 

( 

WRITING AN I/O DRlVER--PROGRAMMING SPECIFICS 

U.BUF and U.CNT keep track of the current data item in the 
buffer for the current transfer (except for NPRtransfers). 
Because this field is being altered dynamically, the I/O 
packet may be needed to reissue an I/O operation, for 
instance, after a powerfail. or error retry. 

Device-Dependent Words: 

Driver access: 

Not initialized, read-write. 

Description: 

You establish this variable-length block of words to suit 
device-specific requirements. 

4.1.5 The Device Interrupt Vector 

For resident drivers only, the device interrupt vector must be 
initialized when defining data structures, and must not be altered 
dynamically. This practice makes the driver code independent of 
device register address assignments and of the actual location of the 
interrupt vector. The driver data structure must include a storage 
assignment and initialization for the interrupt vector with the 
priority set to PR7. See lines 81 through 85 in Section 6.2.1 
(Section 6.2.1 contains the source code for the data structure of a 
sample resident driver) • 

Writers of loadable drivers do not initialize the device interrupt 
vector. The vector is dYnamically established by the MCR LOA command 
when the driver is loaded. When a driver is unloaded, the MCR UNL 
command sets the vector to the system nonsense interrupt ehtry point. 

4.2 MULTICONTROLLER DRIVE~S 

This section 
entry point 
controllers. 
section of 
conditionals 

discusses the conditional code needed at the interrupt 
of a driver that may handle one or several device 
This discussion leads to a description in the next 

the sys~em macro INTSV$. INTSV$ contains multicontroller 
and other features to simplify interrupt entry coding. 

Figure 4-6 shows the interrupt entry coding from the paper-tape-punch 
driver. This is an earlier version of the driver presented in its 
entirety in Section 6.2.2. 

The coding is conditionalized on P$$Pll-l. The symbol 
represents the number of controllers and is 'set at SYSGEN. 

P$$Pll 

In a multicontroller device configuration, the controllers are 
numbered starting with o. The code for a multicontrbller driver 
contains a table (called CNTBL in the example in Figure 4-6) whose 
length in words is equal to the number of controllers. A number 
called the controller index--equal to the controller number times 
2--is stored in the SCB for each controller, in byte S.CON. 

When an I/O request occurs, and the driver is called at its initiator 
entry point, the driver first calls $GTPKT to obtain an I/O packet to 
process. Among the values returned by $GTPKT are the controller index 
(obtained from S.CON in the SCB) and the address of the UCB for the 
unit requesting I/O service. 

4-33 



----~.--------------------

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS 

The driver stores the rj'!questing unit's UCB address in the controller 
table (CNTBl) at an offset equal to the controller index. Thus, for 
the driver at its interrupt entry point to access the requesting UCB, 
it needs simply to obtain the controller index. 

The controller index is obtained from the controller number, which is 
encoded in the lowest four bits of the PS word in the device's 
interrupt vector. At its interrupt entry point the driver first saves 
the PS (line 9. in Figure 4,-6), which was set from the device's 
interrupt vector upon interrupt. The PS must be saved with the first 
instruction of interrupt code because its lower four bits are the 
processor condition code bits, which generally change after each 
instruction is issued. Later, after the call to $INTSV, the driver 
constructs the controller index from the saved PS (lines 17.-19.). It 
then uses this index to obtain the UCB address (line 20.). 

For single-controller devices, CNTBL is one word, TEMP is not needed 
to store the PS, and the UCB address is always the first (and only) 
entry in CNTBL. 

1 i + 

NOTE 

The code sequence used in the 
example is not valid for 
driver. 

following 
a loadable 

2 i **-$PPINT-PCll ~APER TAPE PUNCH CONTROLLER INTERRUPTS 
3 i-
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

$PPINT: : 

• IF GT P$$P 11-1 

MOV 

.IFTF 

CALL 

.IFT 

MOV 
BIC 
ASL 
MOV 

.IFF 

MOV 

• ENDC 

PS,TEMP 

$INTSV,PR4 

TEMP,R4 
#1 77760, R4 
R4 
CNTBL(R4),R5 

CNTBL, R5 

i i iREF LABEL 

iiiSAVE CONTROLLER NUMBER 

iiiSAVE REGISTERS AND SET PRIORITY 

iiiRETRIEVE CONTROLLER NUMBER 
i iiCLEAR ALL BUT CONTROLLER NUMBER 
iiiCONVERT TO CONTROLLER INDEX 
i i iRETRIEVE ADDRESS OF UCB 

i i ;RETRIEVE ADDRESS OF UCB 

Figure 4-6 Conditlional Code for a Multicontroller Driver 

4-34 

c 

c 

c 

c 



c 

c 

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS 

4.3 THE INTSV$ MACRO 

INTSV$ is a system macro that minimizes coding differences be~ween 
loadable and resident drivers. INTSV$ contains conditionally 
assembled code to handle: 

• Single or multiple controllers 

• Loadable or resident drivers 

• Mapped or unmapped systems 

You can replace all the code in Figure 4-6 between lines 7 and 26 with 
the INTSV$ macro (as is done in the sample driver illustrated in 
Section 6.2.2). This is required for loadable drivers on mapped 
systems, because interrupts from hardware devices must be processed in 
kernel address space. In particular, the decoding of the PS word and 
the call to $INTSV must be done before entering the driver. Thus, a 
call to the Executive routine $INTSV within a loadable driver is 
illegal, and the MCR LOA function returns an error if loading is 
attempted. 

When the INTSV$ macro is used for a loadable driver in a mapped 
system, the code from lines 9 to 19 inclusive (Figure 4-6) is not 
assembled as part of the driver. Instead, the LOA function allocates 
a block of dynamic memory in kernel address space to contain the 
interrupt coding. This block, called the Interrupt Control Block 
(ICB), also contains coding to perform the following: 

1. Save the kernel mapping (APR5) 

2. Load APR5 to map the driver 

3. Transfer to the driver 

4. Restore the mapping after return 

The LOA function also sets up the controller's interrupt vector so 
that hardware interrupts point to the ICB. 

Finally, using the INTSV$ macro in a loadable driver on a mapped 
system requires that the symbol LD$xx (where xx is the 2-character 
device mnemonic) be defined either in the driver source or the 
assembly prefix file RSXMC.MAC. 

4.3.1 Format 

The format of the INTSV$ macro is: 

xx 

pri 

INTSV$ xx,pri,nctlr[,pssave,ucbsave] 

The 2-characte.r device mnemonic. 

The priority of the device (the priority that would be used in a 
call to $INTSV). 

4-35 



WRITING AN I/O DRlVER--PROGRAMMING SPECIFICS 

nctlr 

The number of controllers the driver services. 

pssave 

An optional argument specifying a variable in which to save the 
PS word. If omitted, a variable named TEMP is used. 

ucbsave 

An optional argument specifying a block of contiguous words in 
which to retrieve the interrupting device's UCB address. If 
omitted, a block of contiguous words named CNTBL is used. 

Outputs: R4 is the controller index, only if nctlr is greater than 
1. 

RS is the UCB address. 

Example: 

INTSV$ PP,PR4,P$$Pll 

This usage of INTSV$ would effectively replace lines 7 through 26 in 
Figure 4-6. (P$$Pll is a symbol equated to the number of 
controllers.) 

4-36 

c 



( 

( 

CHAPTER 5 

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

This section contains the Executive routines typically used by I/O 
drivers. They are listed in alphabetical order. The descriptions are 
taken directly from the source code for the associated services. 

We describe only the most widely used subroutines. Many other 
Executive service subroutines are available in modules IOSUB.MAC, 
EXESB.MAC, MEMAP.MAC, SYSXT.MAC, QUEUE.MAC, CORAL. MAC, and REQSB.MAC 
in UFD [11,10]. 

5.1 SYSTEM STATE REGISTER CONVENTIONS 

In system state, R5 and R4 are, by convention, nonvolatile registers. 
This means that an internally called routine is required to save and 
restore these two registers if the routine destroys their contents. 
R3, R2, Rl, and RW are volatile registers and may be used by a called 
routine without sa~e and restore responsibilities. 

When a driver is entered directly from an interrupt, it is operating 
at interrupt level, not at system state. At interrupt level, any 
register the driver uses must be saved and restored. INTSV$ preserves 
R5 and R4 for the driver's use. 

A routine may violate these conventions as long as an explicit 
statement exists in the program preface detailing the departure from 
conventions. Such departures should generally be avoided; they 
should be employed only when you can demonstrate that a departure from 
convention can improve overall system performance. 

See D.DSP in Section 4.1.2.1 for the contents of registers when a 
driver is entered. 

5.2 CONDITIONAL ROUTINES 

Two of the routines ($GTWRD and $PTWRD) discussed in this chapter 
normally are assembled conditionally out of the Executive code. If a 
user-written driver requires either of these routines, the appropriate 
question must be answered affirmatively in the system generation 
dialog. See the descriptions of $GTWRD and $PTWRD below. 

5.3 SERVICE CALLS 

In the following descriptions, the file names mentioned are source 
modules found on the Executive source disk as [ll,lO]filnam.MAC. 

5-1 



EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$ACHKB/$ACHCK 

ADDRESS CHECK 

These routines are in the file EXESB. A driver may call either 
routine to address-check a task buffer while the task is the current 
task. The $ACHKB and $ACHCK routines are normally used only by 
drivers setting UC.QUE in U~CTL. See Section 6.3 for an example. 

Calling sequences: 

CALL $ACHKB 

or 

CALL $ACHCK 

Description: 

i+ 
**-$ACHKB-ADDRESS CHECK BYTE ALIGNED 
**-$ACHCK-ADDRESS CHECK WORD ALIGNED 

THIS ROUTINE IS CALLED TO ADDRESS CHECK A BLOCK OF MEMORY TO SEE 
WHETHER IT LIES WITHIN THE ADDRESS SPACE OF THE CURRENT TASK. 

"-, 

INPUTS: 

RO=STARTING ADDRESS OF THE BLOCK TO BE CHECKED. 
RI=LENGTH OF THE BLOCK TO' BE CHECKED IN BYTES. 

OUTPUTS: 

C=l IF ADDRESS CHECK FAILED. 
C=O IF ADDRESS CHECK SUCCEEDED. 

RO AND R3 ARE PRESERVED ACROSS CALL. 

5-2 

( 

c 

c 



( 

c 

c 

c 

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$ALQCB 

ALLOCATE CORE BUFFER 

This routine is in the file CORAL. 

Calling sequences: 

CALL $ALOCB 

or 

CALL $ALOCI 

i+ 
. **-$ALOCB-ALLOCATE CORE BUFFER 

**-$ALOCI-ALLOCATE CORE BUFFER (ALTERNATE ENTRY) 

i-

THIS ROUTINE IS CALLED TO ALLOCATE AN EXEC CORE BUFFER. THE 
ALLOCATION ALGORITHM IS FIRST FIT AND BLOCKS ARE ALLOCATED IN 
MULTIPLES OF FOUR BYTES. 

INPUTS: 

RO=ADDRESS OF CORE ALLOCATION LISTHEAD-2 IF ENTRY AT $ALOCI. 
Rl=SIZE OF THE CORE BUFFER TO ALLOCATE IN BYTES. 

OUTPUTS: 

C=l IF INSUFFICIENT CORE IS AVAILABLE TO ALLOCATE THE BLOCK. 
C=O IF THE BLOCK IS ALLOCATED. 

RO=ADDRESS OF THE ALLOCATED BLOCK. 
Rl=LENGTH OF BLOCK ALLOCATED. 

5-3 



EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$ASUMR 

ASSIGN UNIBUS MAPPING REGISTERS 

This routine is in the file MEMAP. It is used only for NPR devices 
requiring UNIBUS Mapping Registers, when 22-bit memory addressing is 
enabled. Normally, it is not called directly by an I/O driver. 
Rather, it is called from within the $STMAP routine. Refer to 
Appendix B for a discussion. 

Calling sequence: 

CALL $ASUMR 

Description: 

;+ 
**-$$ASUMR-ASSIGN UNIBUS MAPPING REGISTERS 

THIS ROUTINE IS CALLED TO ASSIGN A CONTIGUOUS SET OF UMR'S. NOTE THAT 
FOR THE SAKE OF SPEED, THE LINK WORD OF EACH MAPPING ASSIGNMENT BLOCK 
POINTS TO THE UMR ADDRESS (2ND) WORD OF THE BLOCK, NOT THE FIRST WORD. 
THE CURRENT STATE OF UMR ASSIGNMENT IS REPRESENTED BY A LINKED LIST OF 
MAPPING ASSIGNMENT BLOCKS, EACH BLOCK CONTAINING THE ADDRESS OF THE 
FIRST UMR ASSIGNED AND THE NUMBER OF UMR'S ASSIGNED TIMES 4. THE 
BLOCKS ARE LINKED IN THE ORDER OF INCREASING FIRST UMR ADDRESS. 

INPUTS: 

RO=POINTER TO A MAPPING REGISTER ASSIGNMENT BLOCK. 
M.UMRN(RO)=NUMBER OF UMR'S REQUIRED *4. 

; OUTPUTS: 

;-

ALL REGISTERS ARE PRESERVED. 

C=O IF THE UMR'S WERE SUCCESSFULLY ASSIGNED. 
ALL FIELDS OF THE MAPPING REGISTER ASSIGNMENT BLOCK 

ARE INITIALIZED AND THE BLOCK IS LINKED INTO 
THE ASSIGNMENT LIST. 

C=l IF THE UMR'S COULD NOT BE ASSIGNED. 

5-4 

c-

( 

c 



( 

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$CLINS 

CLOCK QUEUE INSERTION 

This routine is in the file QUEUE. 

Calling sequence: 

CALL $CLINS 

Description: 

;+ 

~-

**-$CLINS-CLOCK QUEUE INSERTION 

THIS ROUTINE IS CALLED TO MAKE AN ENTRY IN THE CLOCK QUEUE. THE ENTRY 
IS INSERTED SUCH THAT THE CLOCK QUEUE IS ORDERED IN ASCENDING TIME. 
THUS THE FRONT ENTRIES ARE MOST IMMINENT AND THE BACK LEAST. 

INPUTS: 

RO=ADDRESS OF THE CLOCK QUEUE ENTRY CORE BLOCK. 
Rl=HIGH ORDER HALF OF DELTA TIME. 
R2=LOW ORDER HALF OF DELTA TIME. 
R4=REQUEST TYPE. 
R5=ADDRESS OF REQUESTING TCB OR REQUEST IDENTIFIER. 

OUTPUTS: 

THE CLOCK QUEUE ENTRY IS INSERTED IN THE CLOCK QUEUE ACCORDING 
TO THE TIME THAT IT WILL COME DUE. 

5-5 



EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$DEACB 

DEALLOCATE CORE BUFFER 

Th{~ routine is in the file CORAL. 

C,all ing sequences: 

CALL $DEACB 

or 

CALL $DEACI 

i+ 
; **-$DEACB-DEALLOCATE CORE BUFFER 

**-$DEACI-DEALLOCATE CORE BUFFER (ALTERNATE ENTRY) 

THIS ROUTINE IS CALLED TO DEALLOCATE AN EXEC CORE BUFFER. THE BLOCK ~_ 
IS INSERTED INTO THE FREE .. BLOCK CHAIN BY CORE ADDRESS. IF AN "---_--

i-

ADJACENT BLOCK IS CURRENTLY FREE, THEN THE TWO BLOCKS ARE MERGED 
AND INSERTED IN THE FREE BLOCK CHAIN. 

INPUTS: 

RO=ADDRESS OF THE CORE BUFFER TO BE DEALLOCATED. 
Rl=SIZE OF THE CORE BUFFER TO DEALLOCATE IN BYTES. 
R3=ADDRESS OF CORE ALLOCATION LISTHEAD-2 IF ENTRY AT $DEACI. 

OUTPUTS: 

THE CORE BLOCK IS MERCED INTO THE FREE CORE CHAIN BY CORE 
ADDRESS AND IS MERGED' IF NECESSARY WITH ADJACENT BLOCKS. 

5-6 

( 

c 

c 



( 

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$DEUMR 

DEASqIGN UNIBUS MAPPING REGISTERS 

This routine is in the file MEMAP. It is used only for NPR devices 
requiring UNIBUS Mapping Registers, when, 22-bit memory addressing is 
enabled. Normally, it is not called directly by an I/O driver. 
Rather, it is called from within the $IODON routine. Refer to 
Appendix B for a discussion., 

Calling sequence: 

CALL $DEUMR 

Description: 

i+ 

i-

**-$DEUMR-DEASSIGN UNIBUS MAPPING REGISTERS 

THIS ROUTINE IS CALLED TO DEASSIGN A CONTIGUOUS BLOCK OF UMR'S. IF 
THE MAPPING ASSIGNMENT BLOCK IS NOT IN THE LIST, NO ACTION IS TAKEN. 
NOTE THAT FOR THE SAKE, OF ASSIGNMENT SPEED, THE LINK WORD POINTS TO 
THE UMR ADDRESS (2ND) WORD OF THE ASSIGNMENT BLOCK. 

INPUTS: 
R2=POINTER TO ASSIGNMENT BLOCK. 

OUTPUTS: 

RO AND Rl ARE PRESERVED. 

5-7 



EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$DVMSG 

DEVICE MESSAGE OUTPUT 

This routine is in file EXESB. 

Calling sequence: 

CALL $DVMSG 

Description: 

;+ 
**-$DVMSG-DEVICE MESSAGE OUTPUT 

; 
THIS ROUTINE IS CALLED TO SUBMIT A MESSAGE TO THE TASK TERMINATION 

; NOTIFICATION TASK. MESSAGES ARE EITHER DEVICE RELATED OR A 
CHECKPOINT WRITE FAILURE FROM THE LOADER. 

; 

; 

;-

INPUTS: 

RO=MESSAGE NUMBER. 
R5=ADDRESS OF THE UCB OR TCB THAT THE MESSAGE APPLIES TO. 

OUTPUTS: 

A FOUR WORD PACKET IS ALLOCATED, RO AND R5 ARE STORED IN THE 
SECOND AND THIRD WORDS, RESPECTIVELY, AND THE PACKET IS 
THREADED INTO THE TASK TERMINATION NOTIFICATION TASK MESSAGE 
QUEUE. 

NOTE: IF THE TASK TERMINATION NOTIFICATION TASK IS NOT 
INSTALLED OR NO STORAGE CAN BE OBTAINED, THEN THE 
MESSAGE REQUEST IS IGNORED. 

Note: 

Drivers use only two cod~s in calling $DVMSG: T.NDNR (device not 
ready), and T.NDSE (select error). $DVMSG can be set up and 
called as follows: 

MOV #T.NDNR,RO 

or 

MOV #T.NDSE,RO 
CALL $DVMSG 

5-8 

( 

( 

( 



( 

c 

( 

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$EXRQP 

EXECUTIVE REQUEST WITH QUEUE INSERT BY PRIORITY 

This routine is in the file REQSB. $EXRQP requests the execution of a 
task after inserting a packet into the receive list of the task. 

Calling sequence: 

CALL $EXRQP 

Description: 

i+ 

i-

**-$EXRQP-EXECUTlVE REQUEST WITH QUEUE INSERT BY PRIORITY 
**-$EXRQF-EXECUTlVE REQUEST WITH QUEUE INSERT FIFO 
**-$EXRQN-EXECUTlVE REQUEST WITH NO QUEUE INSERTION 
**-$EXRQU-EXECUTlVE UNSTOP AND REQUEST WITH NO QUEUE INSERTION 
**-$EXRQS-EXECUTlVE REQUEST WITH NO CONDITIONAL SCHEDULE REQUEST 

THESE ROUTINES PROVIDE A STANDARD INTfflRFACE TO ALL TASKS REQUESTED BY 
THE EXECUTIVE 

INPUTS: 

RO=TCB ADDRESS OF TASK TO REQUEST 
Rl=ADDR OF PACKET TO QUEUE TO TASK (IF ENTRY AT $EXRQP/$EXRQF) 

OUTPUTS: 

C=O IF THE REQUEST WAS SUCCESSFULLY COMPLETED. 
C=l IF THE TASK WAS NOT SUCCESSFULLY REQUESTED. 

Z=O IF PCB ALLOCATION FAILURE. 
Z=l IF TASK ACTIVE, BEING REMOVED, OR BEING FIXED. 

5-9 



EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$FORK 

FORK 

This routine is in the file SYSXT. A driver calls $FORK to switch 
from a partially interruptable level (its state following a c-all on 
$INTSV) to a fully interruptable level. 

Ca~ling sequence: 

CALL $FORK 

Description: 

i+ 
**-$FORK-FORK AND CREATE SYSTEM PROCESS 

(' 

THIS ROUTINE IS CALLED FROM AN I/O DRIVER TO CREATE A SYSTEM PROCESS THAT ~._ ... _ ... 
WILL RETURN TO THE DRIVER AT STACK DEPTH ZERO TO FINISH PROCESSING. ~_. 

;-

INPUTS: 

R5=ADDRESS OF THE UCB FOR THE UNIT BEING PROCESSED. 

OUTPUTS: 

REGISTERS R5 AND R4 ARE SAVED IN THE CONTROLLER FORK BLOCK AND 
A SYSTEM PROCESS IS CREATED. THE PROCESS IS LINKED TO THE FORK 
QUEUE AND A JUMP,TO $INTXT IS EXECUTED. 

Notes: 

1. $FORK cannot be called unless $INTSV has been previously 
called. The fork-processing routine assumes that $INTSV has 
set up entry conditions. 

2. A driver's current time-out count is cleared in calls to 
$FORK. This protects the driver from synchronization 
problems that can occur when an I/O request and the time-out 
for that request happen at the same time. After a return 
from a call to $FORK, a driver's time-out code will not be 
entered. 

If the clearing of the time-out count is not desired, a 
driver has two alternatives: 

a. Perform time-out operations by directly inserting 
elements in the clock queue (refer to the description of 
the $CLINS routine). 

b. Perform necessary initialization, including clearing 
S.STS in the SCB to zero (establishing the controller as 
not busy), and call the $FORKI routine rather than $FORK. 
Calling $FORKI bypasses the clearing of the current 
time-out count. 

3. The driver must not have any information on the stack when 
$FORK is called. 

5-10 

( 

c 

c 



c 

--~-----------------------------

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$FORK1 

FORKI 

This routine is in the file SYSXT. A driver calls $FORKI to bypass 
the 1 clearing of its time-out count when it switches from a partially 
interruptable level to a fully interruptable level (refer also to the 
description of the $FORK routine). 

Calling sequence: 

CALL $FORKI 

Description: 

i+ 

i-

**-$FORKI-FORK AND CREATE SYSTEM PROCESS 

THIS ROUTINE ~S AN ALTERNATE ENTRY TO CREATE A SYSTEM PROCESS AND 
SAVE REGISTER R5. 

INPUTS: 

R4=ADDRESS OF THE LAST WO~D OF A 3 WORD FORK BLOCK PLUS 2. 
R5=REGISTER TO BE SAVED IN THE FORK BLOCK. 

OUTPUTS: 

REGISTER R5 IS SAVED IN THE SPECIFIED FORK BLOCK AND A SYST'EM 
PROCESS IS CREATED. THE PROCESS IS LINKED TO THE FORK QUEUE 
AND A JUMP TO $INTXT IS EXECUTED. 

-Notes: 

1. For mapped systems with loadable driver support, a 5-word 
fork block is required for calls to $FORKI. 

2. When a 5-word fork block is used, the driver must initialize 
the fifth word with the base address (in 32-word blocks) of 
the driver partition. This address can be obtained from the 
fifth word of the standard fork block in the SCB. 

3. The driver must not have any information on the stack when 
$FORKI is called. 

5-11 



EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$GTBYT 

GET BYTE 

This routine is in the file BFCTL. $GTBYT manipulates words U.BUF and 
U.BUF+2 in the UCB. 

Calling sequence: 

CALL $GTBYT 

Description: 

i+ 

i-

**-$GTBYT-GET NEXT BYTE FROM USER BUFFER 

THIS ROUTINE IS CALLED TO GET THE NEXT BYTE FROM THE USER BUFFER 
AND RETURN IT TO THE CALLER ON THE STACK. AFTER THE BYTE HAS BEEN 
FETCHED, THE NEXT BYTE ADDRESS IS INCREMENTED. 

INPUTS: 

R5=ADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS. 

OUTPUTS: 

THE NEXT BYTE IS FETCHED FROM THE USER BUFFER AND RETURNED 
TO THE CALLER ON THE STACK. THE NEXT BYTE ADDRESS IS 
INCREMENTED. 

ALL REGISTERS ARE PRESERVED ACROSS CALL. 

5-12 

( 

( 

( 



( 

c 

( 

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$GTPKT 

GET PACKET 

This routine is in the file IOSUB. 

Calling sequence: 

CALL $GTPKT 

Description: 

;+ 

; 

; 

;-

**-$GTPKT-GET I/O PACKET FROM REQUEST QUEUE 

THIS ROUTINE IS CALLED BY D~VICE DRIVERS TO DEQUEUE THE NEXT I/O 
REQUEST TO PROCESS. IF THE DEVICE CONTROLLER IS BUSY, THEN A CARRY 
SET INDICATION IS RETURNED TO THE CALLER. ELSE AN ATTEMPT IS MADE TO 
DEQUEUE THE NEXT REQUEST FROM THE CONTROLLER QUEUE. IF NO REQUEST 
CAN BE DEQUEUED, THEN A CARRY SET INDICATION IS RETURNED TO THE 
CALLER. ELSE THE CONTROLLER IS SET BUSY AND A CARRY CLEAR 
INDICATION IS RETURNED TO THE CALLER. 

INPUTS: 

R5=ADDRESS OF THE UCB OF THE CONTROLLER TO GET A PACKET FOR. 

OUTPUTS: 

C=l IF CONTROLLER IS BUSY OR NO REQUEST CAN BE DEQUEUED. 
C=O IF A REQUEST WAS SUCCESSFULLY DEQUEUED. 

Rl=ADDRESS OF THE I/O PACKET. 
R2=PHYSICAL UNIT NUMBER. 
R3=CONTROLLER INDEX. 
R4=ADDRESS OF THE STATUS CONTROL BLOCK. 
R5=ADDRESS OF THE UNIT CONTROL BLOCK. 

NOTE: R4 AND R5 ARE DESTROYED BY THIS ROUTINE. 

5-13 



EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$GTWRD 

GET WORD 

This routine is in the file BFCTL. $GTWRD manipulates words 
U.BUF+2 in the UCB, and is conditionally assembled. 
user-written driver requires this routine, answer Yes during 
of SYSGEN when the following question is asked: 

*26. Include routine $GTWRD? [YIN]: 

U.BUF and 
If your 
Phase I 

If an LPAll device (LA:) is included in your system, the $GTWRD 
routine is automatically included and Question 26 is not asked. 

Calling sequence: 

CALL $GTWRD 

( 

Description: ~~ 
i+ 

i-

**-$GTWRD-GET NEXT WORD FROM USER BUFFER 

THIS ROUTINE IS CALLED TO GET THE NEXT WORD FROM THE USER BUFFER 
AND RETURN IT TO THE CALLER ON THE STACK. AFTER THE WORD HAS BEEN 
FETCHED, THE NEXT WORD ADDRESS IS CALCULATED. 

INPUTS: 

R5=ADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS. 

OUTPUTS: 

THE NEXT WORD IS FETCHED FROM THE USER BUFFER AND RETURNED 
TO THE CALLER ON THE STACK. THE NEXT WORD ADDRESS IS CALCULATED. 

ALL REGISTERS ARE PRESERVED ACROSS CALL. 

5-14 

( 

( 

( 



c 

( 

( 

( 

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$INTSV 

INTERRUPT SAVE 

This routine is in the file SYSXT. 

Calling sequence: 

CALL $INTSV,PRn 

n has a range of 0-7. 

Description: 

i+ 

i-

**-$INTSV-INTERRUPT SAVE 

THIS ROUTINE IS CALLED FROM AN INTERRUPT SERVICE ROUTINE WHEN AN 
INTERRUPT IS NOT GOING TO BE IMMEDIATELY DISMISSED. A SWITCH TO 
THE SYSTEM STACK IS EXECUTED IF THE CURRENT STACK DEPTH IS +1. WHEN 
THE INTERRUPT SERVICE ROUTINE FINISHES ITS PROCESSING, IT EITHER FORKS, 
JUMPS TO $INTXT, OR EXECUTES A RETURN. 

INPUTS: 

4(SP)=PS WORD PUSHED BY INTERRUPT. 
2(SP)=PC WORD PUSHED BY INTERRUPT. 
O(SP)=SAVED R5 PUSHED BY 'JSR R5,$INTSV'. 
O(R5)=NEW PROCESSOR PRIORITY. 

OUTPUTS: 

REGISTER R4 IS PUSHED ONTO THE CURRENT STACK AND THE CURRENT 
STACK DEPTH IS DECREMENTED. IF THE RESULT IS ZERO, THEN 
A SWITCH TO THE SYSTEM STACK IS EXECUTED. THE NEW PROCESSOR 
STATUS IS SET AND A CO-ROUTINE CALL TO THE CALLER IS EXECUTED. 

Note: 

A system macro, INTSV$, is provided to simplify the coding of 
standard interrupt entry processing. See Section 4.3. 

5-15 



- -----"~" -------------

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$INTXT 

INTERRUPT EXIT 

This routine is in the file SYSXT. 

Calling sequence: 

JMP $INTXT 

or 

RETURN (if a call to $INTSV has been executed) 

Description: 

i+ 

i-

**-$INTXT-INTERRUPT EXIT 

THIS ROUTINE IS CALLED VIA A RETURN TO EXIT FROM AN INTERRUPT. IF THE 
STACK DEPTH IS NOT EQUAL TO ZERO, THEN REGISTERS R4 AND R5 ARE 
RESTORED AND AN RTI IS EXECUTED. ELSE A CHECK IS MADE TO SEE 
IF THERE ARE ANY ENTRIES IN THE FORK QUEUE. IF NONE, THEN R4 AND 
R5 ARE RESTORED AND AN RTI IS EXECUTED. ELSE REGISTERS R3 THRU 
RO ARE SAVED ON THE CURRENT STACK AND A DIRECTIVE EXIT IS EXECUTED. 

INPUTS: (MAPPED SYSTEM) 

06(SP)=PS WORD PUSHED BY INTERRUPT. 
04 (SP)=PC WORD PUSHED BY INTERRUPT. 
02 (SP) =SAVED R5. 
00 (SP) =SAVED R4. 

INPUTS: (REAL MEMORY SYSTEM) 

NONE. 

5-16 

(: 

( 

( 

( 



( 

( 

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$IOAL T/$IODON 

I/O DONE ALTERNATE ENTRY and I/O DONE 

These routines are in the file IOSUB. 

Calling sequences: 

CALL 
CALL 

$IOALT 
$IODON 

Description: 

;+ 

;-

**-$IOALT-I/O DONE (ALTERNATE ENTRY) 
**-$IODON-I/O DONE 

THIS ROUTINE IS CALLED BY DEVICE DRIVERS AT THE COMPLETION OF AN I/O REQUEpT 
TO DO FINAL PROCESSING. THE UNIT AND CONTROLLER ARE SET IDLE AND $IOFIN IS 
ENTERED TO FINISH THE PROCESSING. 

INPUTS: 

RO=FIRST I/O STATUS WORD. 
Rl=SECOND I/O STATUS WORD. 
R2=STARTING AND FINAL ERROR RETRY COUNTS IF ERROR LOGGING DEVICE. 
R5=ADDRESS OF THE UNIT CONTROL BLOCK OF THE UNIT BEING COMPLETED. 

NOTE: IF ENTRY IS AT $IOALT, THEN Rl IS CLEARED TO SIGNIFY THAT THE 
SECOND STATUS WORD IS ZERO. 

OUTPUTS: 

THE UNIT AND CONTROLLER ARE SET IDLE. 

R3=ADDRESS OF THE CURRENT I/O PACKET. 

NOTE 

R4 is destroyed when either of these 
routines is called. The routines call 
$IOFIN, which destroys R4. 

These routines push the address of 
routine $DQUMR onto the ~tack before 
returning to the driver. This precludes 
the use of the stack for temporary data 
storage by drivers when calling these 
routines. 

5-17 



EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$IOFIN 

I/O FINISH 

This routine is in the file IOSUB. Most drivers do not call $IOFIN, 
but you should be aware that this routine is executed when a driver 
calls $IOALT or $IODON. A driver that references an I/O packet before 
it is queued (bit UC.QUE set--see Section 6.3 for an example) calls 
$IOFIN if the driver .finds an error while preprocessing the I/O 
packet. 

Calling sequence: 

CALL $IOFIN 

Description: 

i+ 

i. 

i-

**-$IOFIN-I/O FINISH 

THIS ROUTINE IS CALLED TO FINISH I/O PROCESSING IN CASES WHERE THE UNIT AND 
CONTROLLER ARE NOT TO BE DECLARED IDLE. 

INPUTS: 

RO=FIRST I/O STATUS WORD. 
Rl=SECOND I/O STATUS WORD. 
R3=ADDRESS OF THE I/O REQUEST PACKET. 
R5=ADDRESS OF THE UNIT CONTROL BLOCK. 

OUTPUTS: 

THE FOLLOWING ACTIONS ARE PERFORMED: 

I-THE FINAL I/O STATUS VALUES ARE STORED IN THE I/O STATUS BLOCK IF 
ONE WAS SPECIFIED. 

2-THE I/O REQUEST COUNT IS DECREMENTED. IF THE RESULTANT COUNT IS 
ZERO, THEN 'TS.RDN' IS CLEARED IN CASE THE TASK WAS 
STOPPED FOR I/O RUNDOWN. 

3-IF 'TS.CKR' IS SET; THEN IT IS CLEARED AND CHECKPOINTING OF THE 
TASK IS INITIATED. 

4-IF AN AST SERVICE ROUTINE WAS SPECIFIED, THEN AN AST IS QUEUED 
FOR THE TASK. ELSE THE I/O PACKET IS DEALLOCATED. 

5-A SIGNIFICANT EVENT OR EQUIVALENT IS DECLARED. 

NOTE: R4 IS DESTROYED BY THIS ROUTINE. 

5-18 

c 

c 

( 



( 

(\ 

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$MPUBM 

MAP UNIBUS TO MEMORY 

This routine is in the file MEMAP. $MPUBM is used only for NPR 
devices requiring UNIBUS Mapping Registers, when 22-bit memory 
addressing is enabled. See Appendix B for a discussion. 

Calling sequence: 

CALL $MPUBM 

Description: 

i+ 
**-$MPUBM-MAP UNIBUS TO MEMORY 

THIS ROUTINE IS CALLED BY UNIBUS NPR DEVICE DRIVERS TO LOAD THE 
NECESSARY UNIBUS MAP REGISTERS TO EFFECT A TRANSFER TO MAIN MEM
ORY ON PDP-II PROCESSORS WITH EXTENDED MEMORY. 

i-

INPUTS: 

R4=ADDRESS OF DEVICE SCB. 
R5=ADDRESS OF DEVICE UCB. 

OUTPUTS: 

THE UNIBUS MAP REGISTERS NECESSARY TO EFFECT THE TRANSFER 
ARE LOADED. 

NOTE: REGISTER R3 IS PRESERVED ACROSS CALL. 

5-19 



EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$MPUB1 

MAP UNIBUS TO MEMORY (ALTERNATE ENTRY) 

This routine is in file MEMAP. It is used only for NPR devices that 
require UNIBUS Mapping Registers, support parallel operations, and 
have 22-bit memory addressing enabled. See Appendix B for a 
discussion of using this routine. 

Calling sequence: 

CALL $MPUBI 

Description: 

i+ 
**-$MPUBI-MAP UNIBUS TO MEMORY (ALTERNATE ENTRY) 

THIS ROUTINE IS CALLED BY UNIBUS NPR DEVICE DRIVERS TO LOAD THE 
NECESSARY UNIBUS MAP REGISTERS TO EFFECT A TRANSFER TO MAIN 
MEMORY ON PDP-II PROCESSORS WITH EXTENDED MEMORY. THIS ALTERNATE 
ENTRY POINT ALLOWS THE DRIVER TO SPECIFY A NON-STANDARD UMR MAPPING 
ASSIGNMENT BLOCK. 

INPUTS: 
RO=ADDRESS OF A UMR MAPPING ASSIGNMENT BLOCK 
R4=ADDRESS OF DEVICE SCB 
R5=ADDRESS OF DEVICE UCB 

c 

OUTPUTS: C 
THE UNIBUS MAP REGISTERS NECESSARY TO EFFECT THE 
TRANSFER ARE LOADED 

NOTE : REGISTER R3 IS PRESERVED ACROSS CALL. 
i-

( 

5-20 



( 

( 
'" 

( 

( 

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$PTBYT 

PUT BYTE 

This routine is in the file BFCTL. $PTBYT manipulates words U.BUF and 
U.BUF+2 in the UCB. 

Calling sequence: 

CALL $PTBYT 

Description: 

i+ 

i-

**-$PTBYT-PUT NEXT BYTE IN USER BUFFER 

THIS ROUTINE IS CALLED TO PUT A BYTE IN THE NEXT LOCATION IN 
USER BUFFER. AFTER THE BYTE HAS BEEN STORED, THE NEXT BYTE ADDRESS 
IS INCREMENTED. 

INPUTS: 

R5=ADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS. 
2 (SP)=BYTE TO BE STORED IN THE NEXT LOCATION OF THE USER BUFFER~ 

OUTPUTS: 

THE BYTE IS STORED IN THE USER BUFFER AND REMOVED FROM 
THE STACK. THE NEXT BYTE ADDRESS IS INCREMENTED. 

ALL REGISTERS ARE PRESERVED ACROSS CALL. 

5-21 



EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$PTWRD 

PUT WORD 

This routine is in the file BFCTL. $PTWRD manipulates words U.BUF and 
U.BUF+2 in the UCB. $PTWRD is conditionally assembled. If your 
user-written driver requires this routine, answer Yes during Phase I 
of SYSGEN to the following question: 

*27. Include routine $PTWRD? [YIN]: 

If an ADOI A/D controller device (AF:) or an AFCll AID controller 
device (AF:) is included in your system, the $PTWRD routine is 
automatically included and Question 27 is not asked. 

Do you intend to include a user written driver? [Y IN] : 

Calling sequence: 

CALL $PTWRD 

Description: 

;+ 

;-

**-$PTWRD-PUT NEXT WORD IN USER BUFFER 

THIS ROUTINE IS CALLED TO PUT A WORD IN THE NEXT LOCATION IN 
USER BUFFER. AFTER THE WORD HAS BEEN STORED, THE NEXT WORD ADDRESS 
IS CALCULATED. 

INPUTS: 

R5=ADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS. 
2 (SP)=WORD TO BE STORED IN THE NEXT LOCATION OF THE BUFFER. 

OUTPUTS: 

THE WORD IS STORED IN THE USER BUFFER AND REMOVED FROM 
THE STACK. THE NEXT WORD ADDRESS IS CALCULATED. 

ALL REGISTERS ARE PRESERVED ACROSS CALL. 

5-22 

( 

c 

( 



( 

( 

( 

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$QINSP 

QUEUE INSERTION BY PRIORITY 

This routine is in the file QUEUE. A driver may call $QINSP to insert 
into the I/O queue an I/O packet that the Executive has not already 
placed in the queue. $QINSP is used only by drivers setting UC.QUE in 
U.CTL. See Section 6.3 for an example. 

Calling sequence: 

CALL $QINSP 

Description: 

;+ 

;-

**-$QINSP-QUEUE INSERTION BY PRIORITY 

THIS ROUTINE IS CALLED TO INSERT AN ENTRY IN A PRIORITY ORDERED 
LIST. THE LIST IS SEARCHED UNTIL AN ENTRY IS FOUND THAT HAS A 
LOWER PRIORITY OR THE.END OF THE LIST IS REACHED. THE NEW 
ENTRY IS THEN LINKED INTO THE LIST AT THE APPROPRIATE POINT. 

INPUTS: 

RO=ADDRESS OF THE TWO WORD LISTHEAD. 
RI=ADDRESS OF THE ENTRY TO BE INSERTED. 

bUTPUTS: 

THE ENTRY IS LINKED INTO THE LIST BY PRIORITY. 

RO AND RI ARE PRESERVED ACROSS CALL. 

5-23 



EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$QRMVF 

QUEUE REMOVAL FROM FRONT OF LIST 

This routine is in the file QUEUE. 

Calling sequence: 

CALL $QRMVF 

Description: 

i+ 

i-

**-$QRMVG-QUEUE REMOVAL FROM FRONT OF LIST 

THIS ROUTINE IS CALLED TO REMOVE THE NEXT (FRONT) ENTRY FROM A 
LIST. THE LIST ORGANIZATION MAY BE EITHER FIFO OR BY PRIORITY. 

INPUTS: 

RO=ADDRESS OF THE TWO WORD LISTHEAD. 

OUTPUTS: 

C=l IF THERE ARE NO ENTRIES IN THE LIST. 
C=O IF THE NEXT ENTRY IS REMOVED FROM THE LIST. 
Rl=ADDRESS OF THE ENTRY REMOVED. 

RO IS PRESERVED ACROSS CALL. 

5-24 

( 

c 

( 

( 

( 



( 

----~~---

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$RELOC 

RELOCATE 

Relocate is in the file MEMAP. A driver may call $RELOC to relocate a 
task virtual address while the task is the current task. Relocate is 
normally used only by drivers setting UC.QUE in U.CTL. See Section 
6.3 for an example. 

Calling Sequence: 

CALL $RELOC 

Description: 

i+ 

i-

**-$RELOC-RELOCATE USER VIRTUAL ADDRESS 

THIS ROUTINE IS CALLED TO TRANSFORM A 16 BIT USER VIRTUAL ADDRESS 
INTO A RELOCATION BIAS AND DISPLACEMENT IN BLOCK RELATIVE TO APR6. 

INPUTS: 

RO=USER VIRTUAL ADDRESS TO RELOCATE. 

OUTPUTS: 

Rl=RELOCATION BIAS TO BE LOADED INTO PAR6. 
R2=DISPLACEMENT IN BLOCK PLUS 140000 (PAR6 BIAS). 

RO AND R3 ARE PRESERVED ACROSS CALL. 

5-25 



---------~---~~.~--~-- ~~~~~~~~~-----:-~~~~~~------------.- ----------~~~~~-\ 

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$STMAP 

SET UP UNIBUS MAPPING ADDRESS 

This routine is in the file MEMAP. It is used only for NPR devices 
requiring UNIBUS Mapping Registers, when 22-bit memory addressing is 
enabled. See Appendix B for a discussion. 

Calling sequence: 

CALL $STMAP 

Description: 

i+ 

i-

**-$STMAP-SET UP UNIBUS MAPPING ADDRESS 

THIS ROUTINE IS CALLED BY UNIBUS NPR DEVICE DRIVERS TO SET UP THE 
UNIBUS MAPPING ADDRESS, FIRST ASSIGNING THE UMR'S. IF THE UMR'S 
CANNOT BE ALLOCATED, THE DRIVER'S MAPPING ASSIGNMENT BLOCK IS PLACED 
IN A WAIT QUEUE AND A RETURN TO THE DRIVER'S CALLER IS EXECUTED. THE 
ASSIGNMENT BLOCK WILL EVENTUALLY BE DEQUEUED WHEN THE UMR'S ARE 
AVAILABLE AND THE DRIVER WILL BE REMAPPED AND RETURNED TO WITH Rl-R5 
PRESERVED AND THE NORMAL OUTPUTS OF THIS ROUTINE. THE DRIVER'S 
CONTEXT IS STORED IN THE ASSIGNMENT BLOCK AND FORK BLOCK WHILE IT IS 
BLOCKED AND IN THE WAIT QUEUE. ONCE A DRIVER'S MAPPING ASSIGNMENT 
BLOCK IS PLACED IN THE UMR WAIT QUEUE, IT IS NOT REMOVED FROM THE 
QUEUE UNTIL THE UMR'S ARE SUCCESSFULLY ASSIGNED. THIS STRATEGY 
ASSURES THAT WAITING DRIVERS WILL BE SERVICED FIFO AND THAT DRIVER'S 
WITH LARGE REQUESTS FOR UMR'S WILL NOT WAIT INDEFINITELY. 

INPUTS: 

R4=ADDRESS OF DEVICE SCB. 
R5=ADDRESS OF DEVICE UCB. 
(SP)=RETURN TO DRIVER'S CALLER. 

OUTPUTS: 

UNIBUS MAP ADDRESSES ARE SET UP IN THE DEVICE UCB AND THE 
ACTUAL PHYS ICAL ADDRESS IS MOVED TO THE SCB. 

NOTE: REGISTERS Rl, R2, AND R3 ARE PRESERVED ACROSS CALL. 

NOTE 

This routine pushes the address of 
routine $DQUMR+2 onto the stack before 
returning to the caller. A driver, 
therefore, should not use the stack for 
temporary data 'storage when calling this 
routine. 

5-26 

( 

( 

c 



( 

( 

( 

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$.5TMP1 

SET UP UNIBUS MAPPING ADDRESS (ALTERNATE ENTRY) 

This routine is in file MEMAP. It is used only for NPR devices that 
require UNIBUS Mapping Registers, support parallel operations, and 
have enabled 22-bit memory addressing. See Appendix B for a 
discussion of using this routine. 

Calling sequence: 

CALL $STMPI 

Description: 

i+ 

;-

**-$STMPI-SET UP UNIBUS MAPPING ADDRESS (ALTERNATE ENTRY) 

THIS ENTRY CODE SETS UP AN ALTERNATE DATA STRUCTURE USED AS 
A UMR MAPPING ASSIGNMENT BLOCK AND CONTEXT STORAGE BLOCK, IN 
THE SAME MANNER AS $STMAP USES THE FORK BLOCK AND MAPPING 
BLOCK IN THE SCB. THE FORMAT OF THE STRUCTURE IS AS FOLLOWS: 

INPUTS: 

4 WORDS USED FOR SAVING 
DRIVER'S CONTEXT IN CASE 
UMR'S CAN'T BE MAPPED 
IMMEDIATELY. 

6 WORDS USED AS A UMR 
MAPPING ASSIGNMENT BLOCK. 

RO=ADDRESS OF THE DATA STRUCTURE DEPICTED ABOVE 
R4=ADDRESS OF DEVICE SCB 
R5=ADDRESS OF DEVICE UCB 

OUTPUTS: 

DATA STRUCTURE POINTERS SET UP FOR ENTRY TO $STMP2 IN $STMAP 

NOTE 

This routine pushes the address of 
routine $DQUMR+2 onto the stack before 
returning to the caller. A driver, 
therefore, should not use the stack for 
temporary data storage when calling this 
routine. 

5-27 



EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 

$SWSTK 

SWITCH STACKS 

This routine is in the file SYSXT. 

Calling sequence: 

SWSTK$ label 

The special macro in RSXMC.MAC must be used. 

Description: 

;+ 
**$SWSTK-SWITCH STACKS 

THIS ROUTINE IS CALLED FROM TASK LEVEL TO SWITCH TO THE SYSTEM 
STACK THUS INHIBITING TASK SWITCHING. THE CALLING TASK MUST BE 
PRIVILEGED IF RUNNING IN A MAPPED SYSTEM AND MAPPED TO THE EXEC. 

; CONTROL IS PASSED HERE FROM DRDSP AFTER THE TRAP HAS OCCURRED AND 
$DIRSV HAS BEEN CALLED. 

;. 

CALLING SEQUENCE: 

EMT 376 ;TRAP TO $EMSST IN DRDSP 
.WORD ADDR ;ADDRESS FOR RETURN TO USER STATE 

INPUTS AT THIS POINT: 

R3=ADDRESS OF PC WORD OF TRAP ON STACK + 2 

MAPPED SYSTEM: 

22(SP)=PS PUSHED BY TRAP 
20(SP)=PC PUSHED BY TRAP 
16(SP)=SAVED RS 
14 (SP) =SAVED R4 
12 (SP)=SAVED R3 
10(SP)=SAVED R2 
06 (SP)=SAVED Rl 
04 (SP)=SAVED RO 
02 (SP)=RETURN ADDRESS FOR SYSTEM EXIT 
00 (SP)=104376 

UNMAPPED SYSTEM: 

10 (SP)=SAVED R3 
06 (SP)=SAVED R2 
04 (SP)=SAVED Rl 
02 (SP) =SAVED RO 
00 (SP)=RETURN ADDRESS FOR SYSTEM EXIT 

OUTPUTS: 

THE USER IS CALLED BACK ON THE SYSTEM STACK WITH ALL REGISTERS 
PRESERVED. TO RETURN TO TASK LEVEL THE CALLER MERELY EXECUTES 
A RETURN. 

Note: Task registers are not modified. 

5-28 

( 

c 

( 



( 

c 

-----------------------------

CHAPTER 6 

-INCLUDING A USER-WRITTEN DRIVER--TWO EXAMPLES 

The first example that follows illustrates the procedures required to 
add a resident driver and resident data base to an RSX-IIM system so 
that they can run on a system without support for loadable drivers and 
without multiuser protection. The driver in the example supports the 
punch capability of the PCll Paper Tape Reader/Punch. 

Section 6.3 gives a coding example from a resident driver that 
inhibits the automatic packet queuing in QIO processing in order to 
address-check and relocate a special user buffer. 

In addition to the examples shown in this chapter, you should review 
the source code for one or more standard DIGITAL-supplied drivers. 
Also, examine file SYSTB.MAC, which contains data structures created 
by SYSGEN. 

6.1 DEVICE DESCRIPTION 

The PCll Paper Tape Reader/Punch is capable of reading 8-hole, 
unoiled, perforated paper tape at 300 char/s, and punching tape at 50 
char/so The system consists of a paper tape reader/punch and 
controller. A unit containing only a reader (PRll) is also available. 

In reading tape, a set of photodiodes translates the presence or 
absence of holes in the tape to logic levels representing ones and 
zeroes. In punching tape, a mechanism translates logic levels 
representing ones and zeroes to the presence or absence, respectively, 
of holes in the tape. Any information read or punched is 
parallel-transferred through the controller. When an address is 
placed on the UNIBUS, the controller decodes the address - and 
determines if the reader or punch has been selected. If one of the 
four ~evice register addresses has been selected, the controller 
determines whether an input or an output operation should be 
performed. An input operation from the reader is initiated when the 
processor! transmits a command to the paper tape reader status 
register. An output operation is initiated when the processor 
transfers a byte to the paper tape punch buffer register. 

The controller enables the PDP-II system to control the reading or 
punching of paper tape in a flexible manner. The reader can be 
operated independently of the punch; either device can be under 
direct program control or can operate without direct supervision 
(through the use of interrupts) so as to maintain continuous 
operation. 

6-1 



INCLUDING A USER-WRITTEN DRIVER--TWO EXAMPLES 

6. 2 DATA BASE AND DRIVE.R SOURCE 

The simplicity of writing a conventional driver for RSX-llM is 
obscured by the volume 'of explanation required to cover the universal 
case. As you will see· below, building a conventional driver is a 
straightforward and modest undertaking. 

6.2.1 The Data Base 

The resident data base source shown below is sel·f-explanatory. Take 
special f.'lote of the legal fun,ction mask words, starting at line 45. 
The standard function codes listed in Table 4'-1 were used in creating 
the mask. Thus, the punch driver accepts the following I/O functions: 

• Cancel I/O (CAN) 

• Write Logical Block (WLB) 

• Attach Device. (ATT) 

• Detach Device (DET) 

.,. Access File For Read/Write (ACW) 

• Access File For Read/Write/Extend (ACE) 

• Deaccess File (DAC) 

• Write Virtual Block (WVB) 

The CAN function is mandatory. The. WLB functio·n is the only transfer 
function actually supported. 

The ATT and DET functiQn~ are c6ntrol functions. Th~ three ATT/DET 
f,unctions are legal for FCS and RMS compatibility, but are set to be 
no-ops. The WVB function is legal but is converted to WLB by QIO 
directive prQces~ing. 

The bit mas,k for each function is as follows: 

Function Function CQde(octal) Mask(octal) Bit Range (decimal) 

CAN a 0.0.0.00.1 a-IS. 
WLB 1 0.0.0.0.0.2 a-IS. 
ATT 3. 0.0.00.10 a-IS. 
DET 4 0.0.0.020. 0-15. 
ACW 16 0.40.0.0.0 a-IS. 
ACE 17 1,0.00.0.0. a-IS. 
DAC 20 0.00.0.0.1 16 ..... 31. 
WVB 22 0.0.0.0.0.4 16.-31. 

The legal masks result from adding the a-15{decimal) bit-range words 
to form a mask and all the 16-31 (decimal) bit-range words to form the 
second mask. 

The control, no-op, and ACP masks are created in an analogous fashion, 
matching bit positions with legal function code meanings. 

The complete set of mask words appears on lines 45 through 52 in the 
data structure source. 

6-2 

( 

c 

( 



( 

c 

INCLUDING A US~R-WRITT'EN DRIVER--TWO EXAMPLES 

The function code selections for record-oriented devices are intended 
to match FCS and RMS requirements for file-structured devices. When 
FCS or RMS executes an Access For Write, it is simply marked as a 
no-ope This tends to minimize FCS and RMS device-dependent logic. 
Note also on line 84 that the controller number, which is encodecl in 
the low byte of the interrupt vector PS word in .RSX~llM., is set to 
zero. Finally, since the code represents a resident data basel note 
that lines 78 through 85 would be omitted for a loadable data base. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46. 

; 

• TITLE USRTB 
.IDENT lOll 

COPYRIGHT 1976, DIGITAL EQUIPMENT CORP., MAYNARD, MASS. 

THIS SOFTWARE IS FURNISHED TO PURCHASER UNDER A LICENSE FOR USE 
ON A SINGLE COMPUTER SYSTEM AND CAN BE COPIED (WITH INCLUSION 
OF DEC'S COPYRIGHT NOTICE) ONLY FOR USE IN SUCH SYSTEM, EXCEPT 
AS MAY OTHERWISE BE PROVIDED IN WRITING BY DEC. 

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT 
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL 
EQUIPMENT CORPORATION. 

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY 
OF ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC. 

VERSION 01 

T. J. PASCUSNIK 25-NOV-74 

CONTROL BLOCKS FOR PAPER TAPE PUNCH DRIVER 

MACRO LIBRARY CALLS 

.MCALL DCBDF$,HWDDF$ 
DCBDF$ 
HWDDF$ 

;DEFINE DEVICE CONTROL BLOCK OFFSETSl 
;DEFINE HARDWARE REGISTERS 

PA.PER TAPE PUNCH DEVICE DATA BASE 

PAPER TAPE PUNCH DEVICE CONTROL BLOCK 

$USRTB :: 
PPDCB: .WORD 

.WORD 
• ASCII 
• BYTE 

.WORD 

.WORD 
• WORD 
.WORD 

o 
• PPO 
IPPI 
0,0 

PPND-PPST 
$PPTBL 
140033 
30 

; LINK TO NEXT DeB 
;POINTER TO FIRST UCB 
;DEVICE NAME 
; LOWEST AND HIGHEST UNIT NUMBERS COVERED 
; BY THIS DeB 
;LENGTH OF EACH UCB IN BYTES 
.;POINTER TO DRIVER \.DISPATCH TABLE 
;LEGAL FUNCTION MASK CODES 0-15 • 
;CONTROL FUNCTION MASK CODES 0-15. 

1. Appendix C lists all macros that exist in RSX-llM to generate 
control block offsets. 

6-3 



47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 

INCLUDING A USER~RITTEN DRlVER--TWO EXAMPLES 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

140000 
o 
5 
o 
1 
4 

iNO-PIED FUNCTION MASK CODES 0-15. 
iACP FUNCTION MASK CODES 0-15. 
iLEGAL FUNCTION MASK CODES 16.-31. 
iCONTROL FUNCTION MASK CODES 16.-31. 
iNO-OPIED FUNCTION MASK CODES 16.-31. 
iACP FUNCTION MASK CODES 16.-31. 

PAPER TAPE PUNCH UNIT CONTROL BLOCK 
i 
• PPO: : 
PPST=. 

PPND=. 

.WORD 

.WORD 

.BYTE 

.BYTE 

.WORD 

.WORD 

.WORD 

• WORD 

.WORD 

.WORD 

.BLKW 

.BLKW 

.BLKW 

PPDCB 
• -2 
UC.ATT,O 

0,0 
DV. REC 

o 

o 

64 • 

PPSCB 
o 
1 

1 
1 

iBACK POINTER TO DCB 
iPOINTER TO REDIRECT UNIT UCB 
iCONTROL PROCESSING FLAG (PASS CONTROL 
i ON ATTACH/DETACH)" UNIT STATUS 
iPHYSICAL UNIT NUMBER, UNIT STATUS EXTENSION 
iFIRST DEVICE CHARACTERISTICS WORD 
i (RECORD-ORIENTED DEVICE) 
i SECOND DEVICE CHARACTERISTICS WORD 
i (FOR INTERNAL us,Fl BY DRIVER) 
i THIRD DEVICE CHARACTERISTICS WORD 
i (FOR INTERNAL USE BY DRIVER) E--
iFOURTH DEVICE CHARACTERISTICS WORD ~ •.. 
i (DEFAULT BUFFER SIZE IN BYTES) 
iPOINTER TO SCB 
iTCB ADDRESS OF ATTACHED TASK 
iRELOCATION BIAS OF BUFFER OF CURRENT 
i I/O REQUEST 
iADDRESS OF BUFFER OF CURRENT I/O REQUEST 
iBYTE COUNT OF CURRENT I/O REQUEST 

i PAPER TAPE PUNCH INTERRUPT VECTOR c 
• =74 

• ASECT 

.WORD 

.WORD 
• PSECT 

$PPINT 
PR7!0 

iADDRESS OF INTERRUPT ROUTINE 
iINTERRUPT AT PRIORITY 7 (CONTROLLER=O) 

PAPER TAPE PUNCH STATUS CONTROL BLOCK 
i 
PPSCB: .WORD 

.WORD 

.BYTE 

.BYTE 

.BYTE 

.WORD 

.BLKW 

.BLKW 

• END 

o 

• -2 
PR4,74/4 
0,4 
0,0 

177554 
1 
4 

iCONTROLLER I/O QUEUE LISTHEAD 
(POINTER TO FIRST ENTRY) C-

i (POINTER TO LAST ENTRY) 
iDEVICE PRI, INTERRUPT VECTOR ADDRESS/4 
iCURRENT AND INITIAL TIMEOUT COUNTS 
iCONTROLLER INDEX AND STATUS 
i (O=IDLE, l=BUSY) 
iADDRESS OF CONTROL STATUS REGISTER 
iADDRESS OF CURRENT I/O PACKET 
iFORK BLOCK ALLOCATION 

6.2.2 Driver Code 

The code shown below for the punch capability of the PCll is typical 
for a conventional driver. In fact, many of· the descriptive comments 
can be used as a template and easily tailored to a driver for another 
device. 

6-4 



c 

c 

l 

INCLUDING A USER~RITTEN DRlVER--TWO EXAMPLES 

The structure of the driver follows the standard RSX-llM form, being 
separated into processing code for the following: 

• Initiator 

• Power failure 

• Interrupt 

• Time-out 

• Cancel I/O 

The driver itself services only Write Logical, Attach,. and Detach I/O 
f~nctions. Attach and Detach result in the punching of 170. nulls 
each for header and trailer. 

Power failure and cancel I/O are handled by means of device time-out, 
as is the device-nat-ready condition. 

The driver uses the following Executive services: 

$INTXT 
$GTPKT 
$GTBYT 
$DVMSG 

$INTSV is used indirectly; it is called by INTSV$ (line 165). See 
Section 4.3. 

Comments beginning with I;;;' indicate that the instruction is being 
executed at a priority level greater than or equal to 4. 

The code contained in lines 139-141 is used to inhibit the punching of 
a trailer on ATT/DET if the task is being aborted. This is especially 
desirable when the device is not ready (for example, out of paper 
tape) and the system has generated the DET function for the aborting 
process. 

I. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
II. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 

• TITL:E PPDRV 
.IDENT /02/ 

COPYRIGHT 1976, DIGITAL EQUIPMENT CORP., MAYNARD, MASS. 

THIS SOFTWARE IS FURNISHED Tq PURCHASER UNDER A LICENSE FOR USE 
ON A SINGLE COMPUTER SYSTEM AND CAN BE COPIED (WITH INCLUSION 
OF DEC'S COPYRIGHT NOTICE) ONLY FOR USE IN SUCH SYSTEM, EXCEPT 
AS MAY OTHERWISE BE PROVIDED IN WRITING BY DEC. 

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT 
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL 
EQUIPMENT CORPORATION. 

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY 
OF ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC. 

VERSION 02 

T. J. PASCUSNIK 25-NOV-74 

MODIFIED BY: 

6-5 



25. 
26. 
27. 
2S. 
29. 
3 O. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
3S. 
39. ' 
40. 
4l. 
42. 
43. 
44. 
45. 
46. 
47. 
4S. 
49. 
50. 
5l. 
52. 
53. 
54. 
55. 
56. 
57. 
5S. 
59. 
60. 
61. 
62. 
63. 
64. 
65. 
66. 
67. 
6S. 
69. 
70. 
71. 
72. 
73. 
74. 
75. 
76. 
77. 
7S. 
79. 
SO. 
8l. 
82. 
83. 
84. 
85. 
86. 
87. 
88. 

INCLUDING A USER-WRITTEN DRIVER--TWQ EXAMPLES 

C. A. ANDERS l5-MAR-76 

CAOOl -- ADDITION OF LOADABLE DRIVER SUPPORT. 

T. J. PASCUSNIK 4-APR-76 

TP03l -- EXECUTIVE DATA STRUCTURE CHANGES. 

PCll PAPER TAPE PUNCH DRIVER 

MACRO LIBRARY CALLS 

.MCALL 
ABODF$ 
HWDDF$ 
PKTDF$ 
TCBDF$ 

ABODF$,HWDDF$,PKTDF$,TCBDF$ 

EQUATED SYMBOLS 

iDEFINE TASK ABORT CODES 
iDEFINE HARDWARE REGISTER SYMBOLS 
iDEFINE I/O PACKET OFFSETS 
iDEFINE TASK CONTROL BLOCK OFFSETS 

PAPER TAPE PUNCH STATUS WORD BIT DEFINITIONS (U.CW2) 

WAIT=lOOOOO 
ABORT=40000 
TRAIL=200 

LOCAL DATA 

iWAITING FOR DEVICE TO COME ON-LINE (l=YES) 
iABORT CURRENT I/O REQUEST (l=YES) 
iCURRENTLY PUNCHING TRAILER (l=YES) 

CONTROLLER IMPURE DATA TABLES (INDEXED BY CONTROLLER NUMBER) 

CNTBL: • BLKW 

.IF GT 

TEMP: · BLKW 

• ENDC 

DRIVER DISPATCH 

$PPTBL: : .WORD 
.WORD 
.WORD 
.WORD 

i+ 

P$$Pll 

P$$Pll-l 

1 

TABLE 

PPINI 
PPCAN 
PPOUT 
PPPWF 

iADDRESS OF UNIT CONTROL BLOCK 

iTEMPORARY STORAGE FOR CONTROLLER NUMBER 

CAOO] 
CAOOI 

iDEVICE INITIATOR ENTRY POINT 
iCANCEL I/O OPERATION ENTRY POINT 
iDEVICE TIMEOUT ENTRY POINT 
iPOWERFAIL ENTRY POINT 

**-PPINI-PCll PAPER TAPE PUNCH CONTROLLER INITIATOR 

THIS ROUTINE IS ENTERED FROM THE QUEUE I/O DIRECTIVE WHEN AN I/O REQUEST 
IS QUEUED AND AT THE END OF A PREVIOUS I/O OPERATION TO PROPAGATE THE EXECU
TION OF THE DRIVER. IF THE SPECIFIED CONTROLLER IS NOT BUSY, THEN AN ATTEMPT 
IS MADE TO DEQUEUE THE NEXT I/O REQUEST. ELSE A RETURN TO THE CALLER IS 
EXECUTED. IF THE DEQUEUE ATTEMPT IS SUCCESSFUL, THEN THE NEXT I/O OPER
ATION IS INITIATED. A RETURN TO THE CALLER IS THEN EXECUTED. 

6-6 

( 

(-

( 

c 

( 



( 

c 

( 

( 

( 

89. 
90. 
9l. 
92. 
93. 
94. 
95. 
96. 
97. 
98. 
99. i-

100. 
10l. 
102. 
103. 
104. 
105. 
106. 
107. 
108. 
109. 
1l0. 
lll. 
ll2. 
1l3. 
ll4. 
llS. 
ll6. 
ll7. 
ll8. 
ll9. 

INCLUDING A USER-WRITTEN DRIVER--TWO EXAMPLES 

INPUTS: 

RS=ADDRESS OF THE UCB OF THE CONTROLLER TO BE INITIATED. 

OUTPUTS: 

IF THE SPECIFIED CONTROLLER IS NOT BUSY AND AN I/O REQUEST IS WAIT
ING TO BE PROCESSED, THEN THE REQUEST IS DEQUEUED AND THE I/O OPER
ATION IS INITIATED. 

PPINI: 
• ENABL 
CALL 
BCS 

LSB 
$GTPKT 
PPPWF 

iGET AN I/O PACKET TO PROCESS 
iIF CS CONTROLLER BUSY OR NO REQUEST 

THE FOLLOWING ARGUMENTS ARE RETURNED BY $GTPKT: 

Rl=ADDRESS OF THE I/O REQUEST PACKET. 
R2=PHYSICAL UNIT NUMBER OF THE REQUEST UCB. 
R3=CONTROLLER INDEX. 
R4=ADDRESS OF THE STATUS CONTROL BLOCK. 
RS=ADDRESS OF THE UCB OF THE CONTROLLER TO BE INITIATED. 

PAPER TAPE PUNCH I/O REQUEST PACKET FORMAT: 

WD. 00 
WD. 01 
WD. 02 
WD. 03 
WD. 04 
WD. 05 
WD. 06 
WD. 07 
WD. 10 
WD. II 
WD. 12 
WD. 13 
WD. 14 
WD. 15 
WD. 16 
WD. 17 
WD. 20 

MOV 
CLR 
CMPB 
BEQ 
MOV 
BIT 
BNE 
BIS 

MOV 

I/O QUEUE THREAD WORD. 
REQUEST PRIORITY, EVENT FLAG NUMBER. 
ADDRESS OF THE TCB OF THE REQUESTER TASK. 
POINTER TO SECOND LUN WORD IN REQUESTER TASK HEADER. 
CONTENTS OF THE FIRST LUN WORD IN REQUESTER TASK HEADER (UCB). 
I/O FUNCTION CODE (IO.WLB, IO.ATT OR IO.DET). 
VIRTUAL ADDRESS OF I/O STATUS BLOCK. 
RELOCATION BIAS OF I/O STATUS BLOCK. 
I/O STATUS BLOCK ADDRESS (REAL OR PISPLACEMENT + 140000). 
VIRTUAL ADDRESS OF AST SERVICE ROUTINE. 
RELOCATION BIAS OF I/O BUFFER. 
BUFFER ADDRESS OF I/O TRANSFER. 
NUMBER OF BYTES TO BE TRANSFERED. 
NOT USED. 
NOT USED. 
NOT USED. 
NOT USED. 

RS, CNTBL (R3) i SAVE UCB POINTER FOR INTERRUPT ROUTINE 
U.CW2(RS) iCLEAR ALL SWITCHES 
I.FCN+l(Rl),iIO.WLB/2S6. iWRITE LOGICAL BLOCK FUNCTION? 
10$ iIF EQ YES 
I.TCB(Rl),RO iGET REQUESTOR TCB ADDRESS 
iT2.ABO,T.ST2(RO) iTASK BEING ABORTED? i TP031 
65$ iIF NE YES - DON'T PUNCH TRAILER 
iTRAIL,U.CW2(RS) iOTHERWISE FUNCTION IS ATTACH OR DETACH 

12 O. 
12l. 
122. 
123. 
124. 
125. 
126. 
127. 
128. 
129. 
130. 
13l. 
132. 
133. 
134. 
135. 
136. 
137. 
138. 
139. 
140. 
14l. 
142. 
143. 
144. 
145. 
146. 
147. 
148. 
149. 
150. 
151. 

10 $: BIS 

i SET FLAG TO PUNCH TRAILER 
i170.,U.CNT(RS) iSET COUNT FOR 170 NULLS 
iWAIT,U.CW2(RS) iASSUME WAIT FOR DEVICE OFF LINE 

TST 
8MI 

20$: BIC 
MOVB 
MOV 

@S.CSR(R4) iDEVICE OFF LINE? 
80$ iIF MI YES 
iWAIT,U.CW2(RS) iDEVICE ON LINE, CLEAR WAIT CONDITION 
S.ITM(R4),S.CTM(R4) iSET TIMEOUT COUNT 
il00,@S.CSR(R4) iENABLE INTERRUPTS 

6-7 



152. 
153. 
154. 
15-5. 
156. 
157. 
158. 
159. 

- ---,---- -----------------------------

INCLUDING A USER~RITTEN DRIVER--TWO EXAMPLES 

POWERFAIL IS HANDLED VIA THE DEVICE TIMEOUT FACILITY AND THEREFORE CAUSES 
NO IMMEDIATE ACTION ON THE DEVICE. THIS IS DONE TO AVOID A RACE CONDITION 
THAT COULD EXIST IN RESTARTING THE I/O OPERATION 

PPPWF: RETURN 

160. ;+ 
161. ; **-$PPINT-PC11 PAPER TAPE PUNCH CONTROLLER INTERUPTS 
162. ;-
163. 
164. 
165. 
166. 
167. 
168. 
169. 
170. 
171. 
172. 
173. 
174. 
175. 
176. 
177. 
178. 
179. 
180. 
18l. 
182. 
183. 
184. 
185. 
[86. 
187. 
188. 
189. 
190. 
19l. 
192. 
193. 
194. 
195. 
196. 
197. 
198. 
199. 
200. 
201. 
202. 
203. 
204. 
205. 
206. 
207. 
208. 
209. 
210. 
211. 
212. 
2l3. 
214. 
215. 

$PPINT: : 

30$: 

40$: 
50$: 
60$: 

65$: 
70$: 

INTSV$ 
MOV 
MOVB 
MOV 
MOV 
BMI 
SUB 
BCS 
TSTB 

- BPL 
CLRB 
BR 
CALL 
MOVB 
.;rMP 
INC 
CLR 
CALL 
MOV 
MOV 
MOV 
SUB 
MOV 
TST 
BPL 
MOV 
CALL 
BR 

;;;REF LABEL 
PP,PR4,P$$P11 ;;;GENERATE INTERRUPT SAVE CODE ; CA001 

BLOCK U.SCB(Rs),R4 ;;;GET ADDRESS OF STATUS CONTROL 
S.ITM(R4),S.CTM(R4) ;;;RESET TIMEOUT COUNT 
S.CSR(R4),R4 
(R4)+, U.CW3 (Rs) 
60$ 
U, U.CNT (Rs) 
50$ 
U.CW2 (Rs) 
30$ 
(R4) 
40$ 
$GTBYT 
(SP)+, (R4) 
$INTXT 
U. CNT (Rs) 
-(R4) 
$FORK 
U.SCB(Rs) ,R4 
S.PKT(R4),R1 
I. PRM+4 (R1) , R1 
U. CNT (Rs) , R1 
tIS.SUC&377,RO 
U.CW3 (Rs) 
70$ 
tIE. VER&377,RO 
$IODON 
PPINI 

; ; ;POINT R4 TO CONTROL STATUS REGISTER 
; ; ; SAVE STATUS 
;; ;IF MI, ERROR 
;;;DECREMENT CHARACTER COUNT 
;;;IF CS, THEN DONE 
;;;CURRENTLY, PUNCHING TRAILER? 
;;;IF PL NO 
; ;;LOAD NULL INTO OUTPUT REGISTER 
; ; ;BRANCH TO LOAD IT 
;;;GET NEXT BYTE FROM USER BUFFER 
;;;LOAD BYTE INTO OUTPUT REGISTER 
;;;EXIT FROM INTERRUPT 
;;;RESET BYTE COUNT 
;;;DISABLE PUNCH INTERRUPTS 
;;;CREATE SYSTEM PROCESS 
;POINT R4 TO SCB 
;POINT R1 TO I/O PACKET 
; AND PICK UP CHARACTER COUNT 
;CALCULATE CHARACTERS TRANSFERRED 
;ASSUME SUCCESSFUL TRANSFER 
; DEVICE ERROR? 
;IF PL NO 
;UNRECOVERABLE HARDWARE ERROR CODE 
;INITIATE I/O COMPLETION 
;BRANCH BACK FOR NEXT REQUEST 

DEVICE TIMEOUT RESULTS IN A NOT READY MESSAGE BEING PUT OUT 4 TIMES A 
MINUTE. TIMEOUTS ARE CAUSED BY POWERFAILURE AND PUNCH FAULT CONDITIONS. 

PPOUT: 

80$: 

CLRB 
CLRB 
MOV 
MOV 
BPL 
MOV 
ASL 
BMI 
TST 
BPL 
MOV 
MOVB 
DECB 
BNE 
MOVB 
CALLR 
• DSABL 

@S.CSR(R4) 
PS 
tIE.DNR&377,RO 
U.CW2(RS) ,R1 
70$ 
tIE.ABO&377,RO 
R1 
70$ 
@S.CSR(R4) 
20$ 
#T.NDNR,RO 
U,S.CTM(R4) 
S.STS(R4) 
PPPWF 
US. , S. STS (R 4 ) 
$DVMSG 
LSB 

;;;DISABLE PUNCH INTERRUPT 
;;;ALLOW INTERRUPTS 
;ASSUME DEVICE NOT READY ERROR 
;ARE WE WAITING FOR DEVICE READY? 
;IF PL NO, TERMINATE I/O REQUEST 
;ASSUME REQUEST IS TO BE ABORTED 
;ABORT REQUEST? 
;IF MI YES 
; PUNCH READY? 
; IF PL YES 
;SET FOR NOT READY MESSAGE 
;SET TIMEOUT FOR 1 SECOND 
;TIME TO OUTPUT MESSAGE? 
;IF NE NO 

;SET TO OUTPUT NEXT MESSAGE IN 15. SECONDS 
;OUTPUT MESSAGE AND RETURN 

6-8 

( 

c 

c 

(i 



( 

( 

216. 
217. 
218. 
219. 
220. 
221. 
222. 
223. 
224. 
225. 
226. 

INCLUDING A USER~RITTEN DRIVER--TWO EXAMPLES 

CANCEL I/O OPERATION-FORCE I/O TO COMPLETE IF DEVICE IS NOT READY 

PPCAN: 

10$: 

CMP 
BNE 
BIS 
RETURN 

• END 

R1, 1. TCB (RO) U ;REQUEST FOR CURRENT TASK? 
10$ ;;;IF NE NO 
tABORT,U.CW2(R5) ;;;SET FOR ABORT IF DEVICE NOT READY 

; ; ; 

6.3 HANDLING SPECIAL USER BUFFERS 

Some drivers need to handle user buffers in addition to the buffer 
that the Executive address-checks and relocates in a normal transf~r 
request. Address checking and relocation operations must take place 
in the context of the task issuing the I/O request, because the 
mapping registers are set for the issuing task. However, in the 
normal driver interface, the task context after the call to $GTPKT is 
not, in general, that of the issuing task. 

Thus, drivers that need to handle special buffers must be able to 
reference the I/O packet before it is queued, while the context of the 
issuing task is still intact. 

The following coding excerpts from a standard RSX-IIM driver (the 
AFCll driver) illustrate the handling of a special user buffer. The 
key points are: 

• The UC.QUE bit has been set in the control byte (U.CTL) of the 
UCB for each device/unit. (This is not shown in the coding 
excerpts below.) 

• The routine that is referenced as the initiator entry point in 
the driver dispatch table performs the following actions: 

1. Picks up the user virtual address and conditionally 
address-checks it. 

2. Relocates the virtual address, storing the result ba~k 
into the packet. 

3. Inserts the packet into the I/O queue and falls through 
to the entry point AFINI, which calls $GTPKT. 

• The driver propagates its own execution by branching back to 
AFINI. to call $GTPKT. 

DRIVER DISPATCH TABLE 

$AFTBL:: .WORD 
.WORD 
.WORD 
.WORD 

AFCHK 
AFCAN 
AFOUT 
AFPWF 

;DEVICE INITIATOR ENTRY POINT 
;CANCEL I/O OPERATION ENTRY POINT 
;DEVICE TIMEOUT ENTRY POINT 
;POWERFAIL ENTRY POINT 

6-9 



INCLUDING A USER~RITTEN DRlVER--TWO EXAMPLES 

;+ 
**-AFCHK~AFCll ANALOG TO DIGITAL CONVERTER CONTROLLER PARAMETER CHECKING 

,THIS ROUTINE IS ENTERED FRa-t THE QUEUE I/O DIRECTIVE WHEN AN I/O REQUEST ( 
IS RECEIVED FOR THE AFCll ANALOG TO DIGITAL CONVERTOR. AFCll I/O REQUESTS , 
CONTAIN DEVICE DEPENDENT INFORMATION THAT MUST BE CHECKED IN THE CONTEXT 

; OF THE ISSUING TASK. THEREFORE THE I/O REQUEST IS NOT QUEUED BEFORE CALLING 
THE DRIVER. 

; 

; 

;-

INPUTS: 

Rl=ADDRESS OF THE I/O REQUEST PACKET. 
R4=ADDRESS OF THE STATUS CONTROL BLOCK. 
R5=ADDRESS OF THE UCB OF THE CONTROLER TO BE INITIATED. 

OUTPUTS: 

THE CONTROL BUFFER IS ADDRESS CHECKED TO DETERMINE WHETHER IT LIES 
WITHIN THE ISSUING TASK'S ADDRESS SPACE. IF THE ADDRESS CHECK 
SUCCEEDS, THEN THE CONTROL BUFFER ADDRESS IS RELOCATED AND STORED 
IN THE I/O PACKET, THE I/O PACKET IS INSERTED IN THE CONTROLLER 
QUEUE, AND THE DEVICE INITIATOR IS ENTERED TO START THE CONTROLLER. 
ELSE AN ILLEGAL BUFFER STATUS IS RETURNED AS THE FINAL I/O STATUS 
OF THE REQUEST. ' 

AFCHK: MOV 
MOV 

Rl, R3 ;COPY ADDRESS OF I/O PACKET 
I.PRM+6(R3),RO ;GET VIRTUAL ADDRESS OF CONTROL BUFFER 

10$: 

.IF OF A$$CHK!M$$MGE 

MOV 
CALL 
BCC 
MOV 
CALLR 

.ENDC 

CALL 
MOV 
MOV 
MOV 
MOV 
CALL 

I. PRM +4 (R 3) , Rl 
$ACHCK 
10.$ 
UE.SPC&377,RO 
$IOFIN 

$RELOC 
Rl, I. PRM+6 (R3) 
R2,I.PRM+l0(R3) 
R3, Rl 
R4,RO 
$QINSP 

;SET LENGTH OF BUFFER TO CHECK 
;ADDRESS CHECK CONTRO~ BUFFER 
;IF CC ADDRESS OKAY 
;SET ILLEGAL BUFFER STATUS 
;FINISH I/O OPERATION 

;RELOCATE CONTROL BUFFER ADDRESS 
;SET RELOCATION BIAS OF CONTROL BUFFER 
;SET ADDRESS OF CONTROL BUFFER 
;SET ADDRESS OF I/O PACKET 
;SET ADDRESS OF I/O'QUEUE LISTHEAD 
;INSERT I/O PACKET IN REQUEST QUEUE 

6-10 

( 

c 



C 

( 

c 

--- -------- -----------~---.--- ----------

INCLUDING A USER~RItTEN DRIVER--TWO EXAMPLES 

;+ 
; **-AFINI-AFCll ANALOG TO DIGITAL CONVERTOR CONTROLLER INITIATOR 
· , 
; 
; 
; 
; 

· , 

THIS ROUTINE IS ENTERED FROM THE QUEUE I/O DIRECTIVE WHEN AN I/O REQUEST 
IS QUEUED AND AT THE END OF A PREVIOUS I/O OPERATION TO PROPAGATE THE EXECU
TION OF THE DRIVER. IF THE SPECIFIED CONTROLLER IS NOT BUSY, THEN AN ATTEMPT 
IS MADE TO DEQUE THE NEXT I/O REQUEST. ELSE A RETURN TO THE CALLER IS 
EXECUTED. IF THE DEQUEUE ATTEMPT IS SUCCESSFUL, THEN THE NEXT I/O OPER
ATION IS INITIATED. A RETURN TO THE CALLER IS THEN EXECUTED. 

; INPUTS: 
· , 
;i R5=ADDRESS OF THE UCB OF THE CONTROLLER TO BE INITIATED. 
; 

OUTPUTS: 
; 
; IF THE SPECIFIED CONTROLLER IS NOT BUSY AND AN I/O REQUEST IS WAIT 
; ING TO BE PROCESSED, THEN THE REQUEST IS DEQUEUED AND THE I/O OPER

ATION IS INITIATED. 
;-

• ENABL 
AFINI: CALL 

BCS 

; 
; 

CALL 
BR 

LSB 
$GTPKT 
AFCAN 

$IODON 
AFINI 

;GET AN I/O PACKET TO PROCESS 
; IF CS CONTROLLER BUSY OR NO REQUEST 
;1/0 CANCEL (AFCAN) IS A NO-OP FOR AFCll 

;FINISH I/O OPERATION 
- ;GO AGAIN 

6-11 



-------~- ------ -------- ------------------------- --- -------~~--------- ~~----~---------------- ----~ 

c 

( 

/-

~ 



( 

(~ 

( 

APPENDIX A 

DEVELOPMENT OF THE ADDRESS DOUBLEWORD 

A.l INTRODUCTION 

You can generate an RSX-IIM system as a mapped or an unmapped system. 
Mapped systems can accommodate configurations whose maximum physical 
memory is 4096K bytes. Individual tasks, however, are limited to 64K 
bytes. The addressing in a mapped system uses virtual addresflles and 
memory mapping hardware. I/O transfers, however, use physical 
addresses 18 bits in length. Since the PDP-II word size is 16 bits, 
some scheme is necessary to represent an address internally until it 
is actually used in an I/O operation. The choice was made to encode 
two words as the internal representation of a physical address, and to 
transform virtual addresses for I/O operations into the internal 
doubleword format. 

A.2 CREATING THE ADDRESS DOUBLEWORD 

For unmapped systems, the doubleword is simply a word of zeros 
followed by a word containing the real address. 

On receipt of a QIO directive for mapped sys~ems, the buffer address 
in the DPB, which contains a task virtual address, is converted to 
addressdoubleword format. 

The virtual address in the DPB is structured as follows: 

Bi ts 0-5 Displacement in terms of 32-word blocks 

Bits 6-12. Block number 

Bits 13.-15. Page Address Register (PAR) number 

A-I 



DEVELOPMENT OF THE ADDRESS DOUBLEWORD 

The internal RSX-llM translation restructures this virtual address 
into an address doubleword as follows: 

1. The relocation base contained in the PAR specified by the PAR 
number in the virtual address in the DPB is added to the 
block number in the virtual address. The result becomes the 
first word of the address doubleword. It represents the nth 
32-word block in a memory viewed as a collection of 32-word 
blocks. Note that at the time the address doubleword is 
computed, the user issuing the QIO directive is mapped into 
the processor's memory management registers. 

2. The second word is formed by placing the 
dispiacement-in-block (bits 0-5 of virtual address) into bits 
0-5. The block number field was accommodated' in the first 
word and bits 6-12. are cleared. Finally, a 6 is placed in 
bits 13.-15. to enable use of PAR #6, which the Executive 
uses to service I/O for program transfer devices. 

For non-processor request (NPR) devices, 
requirements for manipulating the address 
direct and are discussed with the description 
Section 4.1.4.1. 

A-2 

the driver 
doubleword are 
of U.BUF in 

( 

c 

( 

c 



c 

(~ 

APPENDIX B 

DRIVERS FOR NPR DEVICES USING EXTENDED MEMORY 

You must build special features into drivers for 
NPR devices attached to a PDP-ll processor 
support (22-bit addressing). 

nonextended memory 
with extended-memory 

Nonextended memory NPR devices on the PDP-II processor must perform 
I/O transfers by means of UNIBUS Mapping Registers (UMRs), as 
described in the PDP-II Processor Handbook. One UMR is required for 
each 4K words involved in the transfer--as specified by the contents 
of U.CNT in the UCB. When multiple'UMRs are required for a transfer, 
they must be contiguous. 

A driver can be assigned UMRs through one of three procedures. 
procedures involve the following: 

These 

B.l 

1. Dynamically allocating UMRs for the duration of the data 
transfer 

2. Dynamically allocating UMRs for longer periods of time 

3. Statically allocating UMRs during system generation 

NOTE 

In large systems, using the second and 
third procedures above to hold UMRs for 
longer periods than necessary can result 
in the blocking of other drivers and a 
reduction in system throughput. 

CALLING $STMAP AND $MPUBM OR $STMPI AND $MPUBI 

To obtain UMRs through use of the $STMAP and $MPUBM or $STMPI and 
$MPUBI routines, a driver must: 

1. If it uses $STMAP and$MPUBM or $STMPI and $MPUBl, allocate 
six additional words for a mapping register assignment block 
at the end of the device's SCB (at S.MPR). If it uses $STMPI 
and $MPUBl, also provide a,IO-word block. 

2. Call the routine $STMAP or $STMPI (set up UNIBUS mapping 
address) after getting the I/O packet. 

3. Call the routine $MPUBM or $MPUBI (map UNIBUS to memory) 
before initiating a transfer. 

B-1 



DRIVERS FOR NPR DEVICIES USING EXTENDED MEMORY 

These requirements are detailed in the following three subsections. 

Note that these routines are only required when the driver is 
performing a data transfer. 

B.l.l Allocating a Mapping Register Assignment Block 

The status control block (SCB) of an NPR device requires an additional 
six words. This6-word mapping register assignment block is located 
at S.MPR, at the end of the SCB. It does not have to be initialized. 
Any initial contents are simply overwritten. 

The following example shows the allocation of a mapping register 
assignment block. The code is conditional on. the result of an AND 
operation on the two symbols M$$EXT and M$$MGE (representing extended 
memory support and memory management unit support, respectively). 

.IF DF 

.BLKW 
• ENDC 

M$$EXT&M$$MGE 
6 ; UMR WORK AREA 

If the driver does not support parallel NPR operations requiring UMR 
mapping, it calls $STMAP and $MPUBM. If the driver supports parallel 
NPR operations requiring UMR mapping, it must call $STMPI and $MPUBI. 
In the latter situation, the six additional words starting at S.MPR in 
the SCB are not used but must still be present. In addition, the 
driver must provide a lO-word mappin~ register assignment block for 
each data transfer to be mapped, as specified in the description of 
$STMPI in Chapter 5. 

B.l.2 Calling $STMAP or $STMPI 

In the coding at the initiator entry point, after the call to $GTPKT, 
the NPR device driver must call the routine $STMAP or $STMPI. These 
routines dynamically allocate required UMRs. If UMRs are not 
available immediately, the driver is blocked. Such blocking, if it 
occurs,is completely transparent to the driver. The driver resumes 
processing at fork level when the UMRs have been allocated. The 
register returns are absolutely identical whether or not blocking has 
occurred. 

$STMAP or $STMPI stores into U.BUF and U.BUF+2 (in the UCB) a UNIBUS 
address that causes the appropriate UMR to be selected for mapping the 
transfer. The call to $STMAP or $STMPI must be conditional on M$$EXT 
and M$$MGE. 

Because $STMAP and $STMPI push the address of routine $DQUMR+2 onto 
the stack before returning to the caller, the driver should not use 
the stack for temporary data storage when it calls $STMAP or $STMPI. 

B-2 

c 

c 

( 



( 

( 

( 

DRIVERS FOR NPR DEVICES USING EXTENDED MEMORY 

B.l.3 Calling $MPUBM or $MPUBI 

Before 
These 
UNIBUS 
task's 
M$$EXT 

executing the transfer, the driver must call $MPUBM or $MPUBI. 
routines get the buffer's 22-bit physical address, and load the 
mapping registers so that transfers are mapped directly to the 

space. The call to $MPUBM or $MPUBI must be conditional on 
and M$$MGE. 

If the driver calls $STMAP and $MPUBM, 
deallocated during the call to $IODON 
$STMPI and $MPUBl, it must call $DEUMR 
UMRs before calling $IODON or $IOALT. 

the UMRs allocated to it are 
or $IOALT. If the driver calls 

to deallocate any allocated 

B.2 CALLING $ASUMR AND $DEUMR 

Some drivers may not require UMRs to be allocated all of the time, and 
yet require UMRs for periods of time longer than the normal time frame 
between $GTPKT and $IODON (or $IOALT). In such cases, there is a 
second procedure for allocating UMRs. 

By using the Executive routines 
dynamically allocate, retain over 
UMRs. Refer to Section 5.3 for a 
routines. 

$ASUMR and $DEUMR, a driver can 
a desired time frame, and deallocate 
description of the $ASUMR and $DEUMR 

Similar to the $STMAP/$MPUBM procedure, using $ASUMR and $DEUMR also 
requires the allocation of a 6-word mapping register assignment block. 
In this instance, however, the block must not be located at offset 
S.MPR in the SeB. $IODON or $IOALT, when called, will attempt to 
deallocate the UMRs of a block found at location S.MPR. To avoid 
this, the mapping register assignment block could, for convenience, be 
located at S.MPR+2. Alternatively, it could be dynamically allocated 
from the pool. Figure B-1 details the format of the 6-word block. 

M.LNK Link Word 

M.UMRA Address of first assigned UMR 
I 

M.UMRN Number of assigned UMRs *4 

M.UMVL Low 16 bits mapped by first assigned UMR 

M.UMVH 
M.BFVH 

High 6 bits of I High 2 bits mapped by 
physical buffer address UMR (in bits 4 and 5) 

M.BFVL Low 16 bits of physical buffer address 

ZK-226-81 

Figu~e B-1 Mapping Register Assignment Block 

B-3 



DRIVERS FOR NPR DEVICES USING EXTENDED MEMORY 

B.3 STATICALLY ALLOCATING UMRS DUR~G SYSTEM GENERATION 

You can statically assign UMRs during system gen~ration. For systems 
with extended memory support and memory manage~ent unit support, the 
system generation procedure defines the symbol N$$UMR equal to a fixed 
number of UMRs, mul tipl ied by 4, that are statiically assigned to the 
system. Before assembling the Executive, you c~n cause. the static 
allocation of an additional number of UMRs by editing file RSXMC.MAC. 
The value of the symbol N$$UMR can then be increased to represent the 
additional number of desired UMRs multiplied by 4. 

RSXMC.MAC further defines the following three symbols, which describe 
the first UMR statically allocated during system generation: 

U$$MRN 

U$$MLO 

U$$MHI 

is the I/O page address of the first UMR register 
available for allocation to the user. 

represents the low-order 16 bits of the IS-bit UNIBUS 
address mapped by this UMR. 

represents the high-order two bits of the IS-bit UNIBUS 
address. These two bits are in bit positions 4 and 5. 

These three symbols are not used by the system itself. 
available for the user's information. 

They are 

B-4 

( 

( 
"-. 

( 

( 



--------------------------------------

( 

c 

(~ 

c 

APPENDIX C 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

This appendix describes the system data structures listed in Table 
C-l. 

The data structures are defined by macros in the Executive macro 
libraty. To reference any of the data structure offsets from your 
code, include the.macro name in an .MCALL directive and invoke the 
macro. For example: 

.IMCALL DCBDF$ 
DCBDF$ ;Define DCB offsets 

NOTE 

All physical offsets and bit definitions 
are subject to change in future releases 
of the operating system. Code that 
accesses system data structures should 
always use the symbolic offsets rather 
than the physical offsets. 

The fLrst two arguments, <: > and <=>, make all definitions global. If 
they 'are left blank, the definitions will be local. The SYSDEF 
argument causes the variable part of a data structure to be defined. 

All of these macros are in the Executive 
LB: [1,I]EXEMC.MLB. All except ITBDF$ and MTADF$ 
Executive definition library LB: [1~I]EXELIB.OLB. 

C-I 

macro library 
are also in the 



Macro 

ABODF$ 

CLKDF$ 

DCBDF$ 

EPKDF$ 

FllDF$ 

HDRDF$ 

HWDDF$ 

ITBDF$ 

LCBDF$ 

MTADF$ 

PCBIDF$ 

PKTDF$ 

SCBDF$ 

UCBDF$ 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

Table C-I 
Summary of System Data Structure Macros 

Arguments 

<:>,<=> 

<:' >, <=> 

<:>,<=> 

<:>,<=> 

<:>,<=>,SYSDEF 

<:>,<=> 

<:>,<=> 

<:>,<=>,SYSDEF 

<:>,<=> 

<:>,<=> 

<: > ,'<=>, SYSDEF 

<:>,<=> 

<:>,<=>,SYSDEF 

<:>,<=>,TTDEF,SYSDEF 

Data Structures 

Task abort and termination 
notification message codes 

Clock queue control block 

Device Control Block 

Error message block 

Files-II data structures (volume 
control block, mount list entry, 
file control block, file window 
block, locked block list node) 

Task header and window block 

Hardware register addresses and 
feature mask definitions 

Interrupt transfer block 

Logical assignment control block 

ANSI magtape data structures 
(volume set control block) 

Partition control block 
attachment descriptor 

I/O packet, AST control 
offspring control block, 
global event flag control 
and CLI parser block 

Task Control Block 

Unit Control Block 

C-2 

and 

block, 
group 

block, 

( 

( 



( 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

ABODF$ 

ABODF$ 

TASK ABORT CODES 

NOTE: S.COAD-S.CFLT ARE ALSO SST VECTOR OFFSETS 
i 
S.CACT=-4. 
S. CEXT=-2. 
S. COAD=O. 
S.CSGF=2. 
S. CBPT=4. 
S.CIOT=6. 
S. CILI=B. 
S.CEMT=lO. 
S.CTRP=12. 
S.CFLT=14. 
S. CSST=16. 
S.CAST=lB. 
S. CABO=20. 
S.CLRF=22. 
S.CCRF=24. 
S.IOMG=26. 
S.PRTY=2B. 
S. CPMD=30. 
S.CINS=32. 

iTASK STILL ACTIVE 
iTASK EXITTED NORMALLY 
iODD ADDRESS AND TRAPS TO 4 
iSEGMENT FAULT 
iBREAK POINT OR TRACE TRAP 
iIOT INSTRUCTION 
iILLEGAL OR RESERVED INSTRUCTION 
iNON RSX EMT INSTRUCTION 
iTRAP INSTRUCTION 
i11/40 FLOATING POINT EXCEPTION 
iSST ABORT-BAD STACK 
iAST ABORT-BAD STACK 
iABORT VIA DIRECTIVE 
iTASK LOAD REQUEST FAILURE 
iTASK CHECKPOINT READ FAILURE 
iTASK EXIT WITH OUTSTANDING I/O 
iTASK MEMORY PARITY ERROR 
iTASK ABORTED WITH PMD REQUEST 
iTASK INSTALLED IN TWO SYSTEMS 

TASK TERMINATION NOTIFICATION MESSAGE CODES 
i 
T.NDNR=O 
T.NDSE=2 
T. NCWF=4 
T.NCRE=6 
T. NDMO=B. 
T. NUER=l O. 
T.NLDN=12. 
T.NLUP=14. 
T.NCFI=16. 
T.NUDE=lB .• 
T. NMPE=20. 
T.NKLF=22. 
T.NDEB=24. 
T.NRCT=26. 
T.NWBL=2B. 

iDEVICE NOT READY 
iDEVICE SELECT ERROR 
iCHECKPOINT WRITE FAILURE 
iCARD READER HARDWARE ERROR 
iDISMOUNT COMPLETE 
iUNRECOVERABLE ERROR 
iLINK DOWN (NETWORKS) 
iLINK UP (NETWORKS) 
iCHECKPOINT FILE INACTIVE 
iUNRECOVERABLE DEVICE ERROR 
iMEMORY PARITY ERROR 
iUCODE LOADER NOT INSTALLED 
iTASK HAS NO DEBUGGING AID 
iREPLACEMENT CONTROL TASK NOT 
iWRITE BACK CACHING DATA LOST 
iUNIT WRITE LOCKED 

C-3 

INSTALLED 



----- --------

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

CLKDF$ 

000000 
000002 
000003 
000004 
000006 

000012 
000014 
000016 

000012 
000016 

CLKDF$ 

CLOCK QUEUE CONTROL BLOCK OFFSET DEFINITIONS 

CLOCK QUEUE CONTROL BLOCK 

THERE ARE SIX TYPES OF CLOCK QUEUE CONTROL BLOCKS. EACH CONTROL 
BLOCK HAS THE SAME FORMAT IN THE FIRST FIVE WORDS AND DIFFERS IN 
THE REMAINING THREE. 

THE FOLLOWING CONTROL BLOCK TYPES ARE DEF-INED: 
i 
C.MRKT=O 
C. SCHD=2 
C. SSHT=4 
C.SYST=6 
C. SYTK=8. 
C.CSTP=10. 

iMARK TIME REQUEST 
iTASK REQUEST WITH PERIODIC RESCHEDULING 
iSINGLE SHOT TASK REQUEST 
;SINGLE SHOT INTERNAL SYSTEM SUBROUTINE (IDENT) 
iSINGLE SHOT INTERNAL SYSTEM SUBROUTINE (TASK) 
iCLEAR STOP BIT (CONDITIONALIZED ON SHUFFLING) 

CLOCK QUEUE CONTROL BLOCK TYPE INDEPENDENT OFFSET DEFINITIONS 

• ASECT 
• =0 
C. LNK: .BLKW 1 
C. RQT: .• BLKB 1 
C. EFN: .BLKB 1 
C.TCB: .BLKW 1 
C. TIM: .BLKW 2 

CLOCK QUEUE CONTROL 
i 
• =C. TIM+4 
C.AST: .BLKW 1 
C.SRC: .BLKW 1 
C. DST: .BLKW 1 

CLOCK QUEUE CONTROL 
DEFINITIONS 

i 
• =C. TIM+4 
C. RSI: .BLKW 2 
C.UIC: .BLKW 1 

iCLOCK QUEUE THREAD WORD 
iREQUEST TYPE 
iEVENT FLAG NUMBER (MARK TIME ONLY) 
iTCB ADDR OR SYSTEM SUBROUTINE IDENTIFICATION 
iABSOLUTE TIME WHEN REQUEST COMES DUE 

BLOCK-MARK TIME DEPENDENT OFFSET DEFINITIONS 

iSTART OF DEPENDENT AREA 
iAST ADDRESS 
iFLAG MASK WORD FOR 'BIS' SOURCE 
iADDRESS OF 'BIS' DESTINATION 

BLOCK-PERIODIC RESCHEDULING DEPENDENT OFFSET 

iSTART OF DEPENDENT AREA 
iRESCHEDULE INTERVAL IN CLOCK TICKS 
iSCHEDULING UIC 

CLOCK QUEUE CONTROL BLOCK-SINGLE SHOT DEPENDENT OFFSET DEFINITIONS 
i 
• =C. TIM+4 

000012 .BLKW 2 
1 

iSTART OF DEPENDENT AREA 
iTWO UNUSED WORDS 
iSCHEDULING UIC 000016 • BLKW 

C-4 

c 

(\ 

C 

() 



c 

c 

(' 

000012 
000014 
000016 

; 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

CLOCK QUEUE CONTROL BLOCK-SINGLE SHOT INTERNAL SUBROUTINE OFFSET 
DEFINITIONS 

THERE ARE TWO TYPE CODES FOR THIS TYPE OF REQUEST: 

TYPE 6 = SINGLE SHOT INTERNAL SUBROUTINE WITH A 16 BIT VALUE 
AS AN IDENTIFIER. 

TYPE 8 = SINGLE SHOT INTERNAL SUBROUTINE WITH A TeB ADDRESS 
AS AN IDENTIFIER. 

• =C .TIM+4 
C.SUB: .BLKW 
C.ARS: .. BLKW 

1 
1 
1 

;START OF DEPENDENT AREA 
;SUBROUTINE ADDRESS 
;RELOCATION BASE (FOR LOADABLE DRIVERS) 
;ONE UNUSED WORD .BLKW 

000020 C.LGTH=. ;LENGTH OF CLOCK QUEUE CONTROL BLOCK 

• PSECT 

C-S 



- - ------- .---~~~~~~-

SYSTEM DATA S~RUCTURES AND SYMBOLIC OFFSETS 

DCBDF$ 

000000 
000002 
000004 
000006 
000007 
000010 
000012 
000014 
000016 
000020 
000022 
000024 
000026 
000030 
000032 
000034 

DCBDF$ 

DEVICE CONTROL BLOCK 

THE DEVICE CONTROL BLOCK (DCB) DEFINES GENERIC INFORMATION ABOUT 
A DEVICE TYPE AND THE LOWEST AND HIGHEST UNIT NUMBERS. THERE IS 
AT LEAST ONE DCB FOR EACH DEVICE TYPE IN A SYSTEM. FOR EXAMPLE, 
IF THERE ARE TELETYPES IN A SYSTEM, THEN THERE IS AT LEAST ONE 
DCB WITH THE DEVICE NAME 'TT'. IF PART OF THE TELETYPES WERE 
INTERFACED VIA DLll-A'S AND THE REST VIA A DHll, THEN THERE 
WOULD BE TWO DCB'S. ONE FOR ALL DLII-A INTERFACED TELETYPES, 
AND ONE FOR ALL DHll INTERFACED TELETYPES • 

• =0 
D. LNK: 
D. UCB: 
D.NAM: 
D.UNIT: 

D. UCBL: 
D. DSP: 
D.MSK: 

D. PCB: 

• ASECT 

.BLKW 

.BLKW 

.BLKW 

.BLKB 

.BLKB 

.BLKW 

.BLKW 
• BLKW 
.BLKW 
• BLKW 
• BLKW 
.BLKW 
• BLKW 
.BLKW 
.BLKW 
.BLKW 

• PSECT 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

iLINK TO NEXT DCB 
iPO,INTER TO FIRST UNIT CONTROL BLOCK 
iGENERIC DEVICE NAME 
iLOWEST UNIT NUMBER COVERED BY THIS DCB 
iHIGHEST UNIT NUMBER COVERED BY THIS DCB 
iLENGTH OF EACH UNIT CONTROL BLOCK IN BYTES 
iPOINTER TO DRIVER DISPATCH TABLE 

. iLEGAL FUNCTION MASK. CODES 0-15 • 
iCONTROL FUNCTION MASK CODES 0-15. 
iNOP'ED FUNCTION MASK CODES 0-15 • 
iACP FUNCTION MASK CODES 0-15 • 
iLEGAL FUNCTION MASK CODES 16.-31. 
iCONTROL FUNCTION MASK CODES 16.-31 • 
iNOP'ED FUNCTION MASK CODES 16.-31. 
iACP FUNCTION MASK CODES 16.-31. 
iLOADABLE DRIVER PCB ADDRESS 

DRIVER DISPATCH TABLE OFFSET DEFINITIONS 
i 
D. VDEB=l 77776 
D. VINI=O 
D. VCAN=2 
D. VOUT=4 
D. VPWF=6 

iDEALLOCATE INTERNAL BUFFERS (FD TTDRV) 
iDEVICE INITIATOR 
iCANCEL CURRENT I/O FUNCTION 
iDEVICE TIMEOUT 
iPOWERFAIL RECOVERY 

C-6 

c 

( 

c 



SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

EPKDF$ 

c EPKDF$ 

ERROR MESSAGE BLOCK DEFINITIONS 

• ASECT 

HEADER SUB PACKET 

+-----------------------------------------------+ 
I SUBPACKET LENGTH IN BYTES I 
+-----------------------------------------------+ 
I S UBPACKET FLAGS I 
+-----------------------+-----------------------+ 
I FORMAT IDENTIFICATION I OPERATING SYSTEM CODE I 
+-----------------------+-----------------------+ 
I OPERATING SYSTEM IDENTIFICATION I 
I I 
+-----------------------+-----------------------+ 
I FLAGS I CONTEXT CODE I 
+-----------------------+-----------------------+ 
I ENTRY SEQUENCE I 
+-----------------------------------------------+ 
I ERROR SEQUENCE I 
+-----------------------+-----------------------+ 
I ENTRY TYPE SUBCODE I ENTRY TYPE CODE I 
+-----------------------+-----------------------+ 
I TIME STAMP I 
I I 
I I 
+-----------------------+-----------------------+ 
I RESERVED I PROCESSOR TYPE I 
+-----------------------+-----------------------+ 
I PROCESSOR IDENTIFICATION (URM) I 
+-----------------------------------------------+ 

C-7 



SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

SUBPACKET FLAGS FOR E$HSBF 

SM. ERR 
SM. HDR 
SM.TSK 
SM. DID 
SM. DOP 
SM.DAC 
SM. DAT 
SM.MBC 
SM.CMD 
SM. ZER 

1 
1 
2 
4 

= 10 
20 
40 

20000 
40000 

=100000 

CODES FOR FIELD E$HIDN 

ERROR PACKET 
HEADER SUB PACKET 
TASK SUBPACKET 
DEVICE IDENTIFICATION SUBPACKET 
DEVICE OPERATION SUB PACKET 
DEVICE ACTIVITY S UBPACKET 
DATA SUBPACKET 
22-BIT MASSBUS CONTROLLER PRESENT 
ERROR LOG COMMAND PACKET 
ZERO I/O COUNTS 

EH$FOR 1 ; CURRENT PACKET FORMAT 

FLAGS FOR THE ERROR LOG FLAGS BYTE ($ERFLA) IN THE EXEC 

ES.INI 
ES. DAT 
ES. LIM 
ES.LOG 

1 
2 
4 

10 

ERROR LOG INITIALIZED 
ERROR LOG RECEIVING DATA PACKETS 
ERROR LIMITING ENABLED 
ERROR LOGGING ENABLED 

TYPE AND SUBTYPE CODES FOR FIELDS E$HTYC AND E$HTYS 

SYMBOLS WITH NAMES E$CXXX ARE TYPE CODES FOR FIELD E$HTYC, 
SYMBOLS WITH NAMES E$SXXX ARE SUBTYPE CODES FOR FIELD E$HTYS. 

E$CCMD 
E$SSTA 
E$SSWI 
E$SAPP 
E$SBAC 
E$SSHO 
E$SCHL 

E$CERR 
E$SDVH 
E$SDVS 
E$STMO 
E$SUNS 

E$CDVI 
E$SDVI 

E$CDCI 
E$SMOU 
E$SDMO 
E$SRES 
E$SRCT 

E$CCPU 
E$SMEM 
E$S INT 

E$CSYS 
E$SPWR = 

1 
1 
2 
3 
4 
5 
6 

2 
1 
2 
3 
4 

3 
1 

4 
1 
2 
3 
4 

5 
1 
2 

6 
1 

ERROR LOG CONTROL 
ERROR LOG STATUS CHANGE 
SWITCH LOGGING FILES 
APPEND FILE 
DECLARE BACKUP FILE 
SHOW 
CHANGE LIMITS 

DEVICE ERRORS 
DEVICE HARD ERROR 
DEVICE SOFT ERROR 
DEVICE INTERRUPT TIMEOUT 
DEVICE UNSOLICITED INTERRUPT 

DEVICE INFORMATION 
DEVICE INFORMATION MESSAGE 

DEVICE CONTROL INFORMATION 
DEVICE MOUNT 
DEVICE DISMOUNT 
DEVICE COUNT RESET 
BLOCK REPLACEMENT 

CPU DETECTED ERRORS 
MEMORY ERROR 
UNEXPECTED INTERRUPT 

SYSTEM CONTROL INFORMATION 
POWER RECOVERY 

C-8 

( 

( 



( 

E "---.. -

c 

C 

c 

000000 
000002 
000006 
000010 
000012 
000013 

000014 

.. - -- _ .. --_. __ ._---------, 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

E$CCTL = 7 CONTROL INFORMATION 
E$STIM 1 TIME CHANGE 
E$SCRS = 2 SYSTEM CRASH 
E$SLOA = 3 DEVICE DRIVER LOAD 
E$SUNL = 4 DEVICE DRIVER UNLOAD 
E$SHRC = 5 RECONFIGURATION STATUS CHANGE 
E$SMES 6 MESSAGE 

E$CSDE = 10 SOF'IWARE DETECTED EVENTS 
E$SABO 1 TASK ABOwr 

CODES FOR CONTEXT CODE ENTRY E$HCTX 

EH$NOR 
EH$STA 
EH$CRS 

1 
2 
:3 

NORMAL ENTRY 
START ENTRY 
CRASH ENTRY 

CODES FOR FLAGS ENTRY E$HFLG 

EH$VIR = 
EH$EXT 
EH$COU = 

1 
2 
4 

ADDRESSES ARE VIRTUAL 
ADDRESSES AREE~TENDE D 
ERROR <::OUNTS SUPPLIED 

TASK SUBPACKET 

; 
• =0 
E$TLGH: 
E$TTSK: 
,E $TUIC: 
E$TTID: 
E$TTIU.: 
E $TFLG: 

E$TLEN: 

FLAGS 

+--------..,.-------------~--~--."..--.,...-.----.--",.."...------+ 
·1 TASK SUBPACKET LENGTH 1 
+-----------------------------------------------+ 
1 TASK NAME IN RAD50 1 
1 1 
+--------------------~--------------~-----------+ 
1 TASK ur.c 1 
+.,...--------------------------~-------------------+ 
1 TASK TI: DEVI<::E .NAME 1 
+-----------------------+-----------~-----------+ 
1 FLAGS 1 TASK TI: UNIT NUf>iBER 1 
+----------..,.-----..,.------+-----------------------+ 

.BLKW 1 

.BLKW 2 

.BLKW 1 

.BLKB 2 

.BLKB 1 

.BLKB 1 
• EVEN 

FOR ENTRY 

ET$PRV 
ET$PRI 

E $TFLG 

1 
2 

TASK SUBPACKET LENGTH 
TASK NAME .INRJ\D50 
TASK UIC 
TASK TI: DEVICE NAME 
TASKTI: UNIT 
FLAGS 

TASK IS PRIVI~EGED 
TERMINAL IS PRIVILEGED 

C-9 



000000 
000002 
000004 
000005 
000006 
000007 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

DEVICE IDENTIFICATION SUB PACKET 

; 
• =0 
E$I LGH: 
E$I LDV: 
E$ILUN: 
E$IPCO: 
E $I PUN: 
E$IPSU: 

E $I PDV: 

+-----------------------------------------------+ 
I DEVICE IDENTIFICATION SUBPACKET LENGTH I 
+-----------------------------------------------+ 
I DEVICE MNEMONIC NAME I 
+-----------------------+-----------------------+ 
I CONTROLLER NUMBER I DEVICE UNIT NUMBER I 
+-----------------------+-----------------------+ 
I PHYSICAL SUBUNIT # I PHYSICAL UNIT # I 
+-----------------------+-----------------------+ 
I PHYSICAL DEVICE MNEMONIC (RSX-IIM-PLUS ONLY) I 
+-----------------------+-----------------------+ 
I RESERVED I FLAGS I 
+-----------------------+-----------------------+ 
I VOLUME NAME OF MOUNTED VOLUME I 
I I 
I I 
I I 
I I 
I I 
+-----------------------------------------------+ 
I PACK IDENTIFICATION I 
I I 
+-----------------------------------------------+ 
I DEVICE TYPE CLASS I 
+-----------------------------------------------+ 
I DEVICE TYPE I 
I I 
+-----------------------------------------------+ 
I I/O OPERATION COUNT LONGWORD I 
I I 
+-----------------------+-----------------------+ 
I HARD ERROR COUNT I SOFT ERROR COUNT I 
+-----------------------+-----------------------+ 
I BLOCKS TRANSFERRED COUNT (RSX-IIM-PLUS ONLY) I 
I I 
+-----------------------------------------------+ 
I CYLINDERS CROSSED COUNT (RSX-IIM-PLUS ONLY) I 
I I 
+--------------------------~--------------------+ 

.BLKW 1 

.BLKW 1 
• BLKB 1 
.BLKB 1 
.BLKB 1 
.BLKB 1 

• IF DF R$$MPL 

.BLKW 1 

.ENDC R$$MPL 

DEVICE IDENTIFICATION SUBPACKET LENGTH 
DEVICE MNEMONIC NAME 
DEVICE UNIT NUMBER 
CONTROLLER NUMBER 
PHYSICAL UNIT NUMBER 
PHYSICAL SUBUNIT NUMBER 

PHYSICAL DEVICE MNEMONIC 

C-IO 

c 

( 

( 



- ------~~--- -

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

000010 E$IFLG: .BLKB 1 FLAGS 
000011 .BLKS 1 RESERVED 

C 
000012 E$IVOL: .BLKS 12. VOLUME NAME 
000026 E$IPAK: .BLKS 4 PACK IDENTIFICATION 
000032 E$IDEV: DEVIC'E TYPE 
000032 E$IDCL: .BLKW 1 DEVIC·E TYPE CLASS 
000034 E$IDTY: .BLKW 2 DEVICE TYPE 
000040 E$IOPR: .BLKW 2 I/O OPERATION COUNT LONGWORD 
000044 E$IERS: .BLKB 1 SOFT ERROR COUNT 
000045 E$IERH: .BLKS 1 HARD ERROR COUNT 

• IF DF R$$MPL 

E$IBLK: .BLKW 2 BLOCKS TRANSFERRED COUNT 
E$ICYL: .BLKW 2 CYLINDERS CROSSED COUNT 

• ENDC R$$MPL 

• EVEN 
000046 E$ILEN: SUBPACKET LENGTH 

eo FLAGS FOR FIELD E$IFLG 

EI$S UB 1 ; SUBCONTROLLER DEVICE 

DEVICE OPERATION SUBPACKET 

+-----------------------------------------------+ 
I DEVICE OPERATION SUBPACKET LENGTH I 
+-----------------------------------------------+ 
I TASK NAME IN RAD50 I 
I I 
+----------------------------------------7------+ 
I TASK UIC I 
+-----------------------------------------------+ 
I TASK TI: LOGICAL DEVICE MNEMONIC I 
+-----------------------+-----------------------+ 
I RESERVED I TASK TI: DEVICE UNIT I + _________________ a _____ + _______________________ + 
I I/O FUNCTION CODE I 

c +-----------------------+-----------------------+ 
I RESERVED I OPERATION FLAGS I 
+-----------------------+-----------------------+ 
I TRANSFER OPERATION ADDRESS I 
I I 
+-----------------------------------------------+ 
I TRANSFER OPERATION BYTE COUNT I 
+-----------------------------------------------+ 
I CURRENT OPERATION RETRY COUNT I 
+-----------------------------------------------+ 

; 
• =0 

000000 E$OLGN: .BLKW 1 SUBPACKET LENGTH 
000002 E$OTSK: .BLKW 2 TASK NAME IN RAD50 
000006 E $OUIC: .BLKW 1 TASK UIC 
000010 E $OTID: .BLKB 2 TASK TI: LOGICAL DEVICE MNEMONIC 
000012 E$OTIU: .BLKB 1 TASK TI: LOGICAL DEVICE UNIT 
000013 .BLKB 1 RESERVED 
000014 E $OFNC: .BLKW 1 I/O FUNCTION CODE 

C 
000016 E$OFLG: .BLKB 1 OPERATION FLAGS 
000017 .BLKB 1 RESERVED 

C-11 



000020 
000024 
000026 

000030 

E$OADD: 
E $OSIZ: 
E$ORTY: 

E$OLEN: 

tLAGS 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

.BLKW 2 

.BLKW 1 

.BLKW 1 
• EVEN 

FOR FIELD 

EO$TRA = 
EO$DMA 
EO$EXT = 
EO$PI P 

E$OFLG 

1 
2 
4 

10 

TRANSFER OPERATION ADDRESS 
TRANSFER OPERATION BYTE COUNT 
CURRENT OPERATION RETRY COUNT 

DEVICE OPERATION SUBPACKET LENGTH 

TRANSFER OPERATION 
DMA DEVICE 
EXTENDED ADDRESSING DEVICE 
DEVICE IS POSITIONING 

I/O ACTIVITY SUBPACKET 

+--------~--------------------------------------+ 
I I/O ACTIVITY SUBPACKET LENGTH I 
+-----------------------------------------------+ 

; 
• =0 

000000 E$ALGH: .BLKW 1 SUBPACKET LENGTH 

I/O ACTIVITY SUBPACKET ENTRY 
i 

+-----------------------------------------------+ 
I LOGICAL DEVICE NAME MNEMONIC , 

+-----------------------+-----------------------+ 
I CONTROLLER NUMBER , LOGICAL DEVICE UNIT , 

+-----------------------+-----------------------+ 
, PHYS ICAL SUBUNIT * I PH¥S ICAL UNIT NUMBER I 
+-----------------------+-----~-----------------+ 
I PHYSICAL DEVICE MNEMONIC (RSX-IIM-PLUS ONLY) , 

+-----------------------+----------~------------+ 
I TASK TI: LOGICAL UNIT , DEVICE FLAGS " 

+-----------------------+-----~-----------------+ 
, REQUESTING TASK NAME IN RADSO , , r· , 
+-----------------------------------------------+ 
, REQUESTING TASK liIC , 

+-----------------------------------------------+ 
, TASK TI: LOGICAL DEvICE NAME , 

+----------------------------~------------------+ 
, I/O FUNCTION CODE , 

: +------------------------+--~- .. -------------------+ 
, RESERVED I FLAGS , 

+---~-------------------+----~------------------+ 
, TRANSFER OPERATiON ADDRESS , , , 
+-------------------------------~---------------+ 
, TRANSFER OPERATION BYTE COUNT , 

+----------~------------------------------------+ 

C-12 

C
~ 

,- -

c 

c 

(~ 



SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

• =0 
000000 E$ALDV: .BLKW 1 LOGICAL DEVICE NAME MNEMONIC 

(' 000002 E$ALUN: .BLKS 1 LOGICAL D~VICE UNIT 
000Q03 E$APCO: .BLKS 1 CONTROLLER NUMBER 
000004 E$APUN: .BLKS 1 PHYSICAL UNIT NUMBER 
000005 E $APS U: .BLKS 1 PHYSICAL SUBUNIT NUMBER 

• IF DF R$$MPL 

E$APDV: .BLKW 1 PHYS ICAL DEVICE MNEMONIC 

• ENDC R$$MPL 

000006 E$ADFG: .BLKB 1 DEVICE FLAGS 
000007 E$ATIU: .BLKB 1 TASK TI: LOGICAL UNIT 
000010 E$ATSK: .BLKW 2 REQUESTING TASK NAME IN RAD50 
000014 E,$AUIC: .BLKW 1 REQUESTING TASK UIC 
000016 E $ATID: .BLKW 1 TASK TI: LOGICAL DEVICE NAME 
000020 E$AFNC: .BLKW 1 I/O FUNCTION CODE 
000022 E$AFLG: .BLKB 1 FLAGS 
000023 .BLKB 1 RESERVED 

e 000024 E$AADD: .BLKW 2 TRANSFER OPERATION ADDRESS 
000030 E$ASIZ: .BLKW 1 TRANSFER OPERATION BYTE COUNT 

• EVEN 
000032 E$ALEN: SUBPACKET ENTRY LENGTH 

FLAGS FOR FIELD E $ADFG 

EA$SUB = 1 ; SUBCONTROLLER DEVICE 

C FLAGS FOR FIELD E $AFLG 

EA$TRA 1 TRANSFER OPERATION 
EA$DMA 2 DMA DEVICE 
EA$EXT = 4 DEVICE HAS EXTENDED ADDRESSING 
EA$PIP = 10 DEVICE IS POSITIONING 

• PSECT 

( 



SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

F11DF$ 

FllDF$ "SYSDEF 

VOLUME CONTROL BLOCK 

• ASECT 
• =0 

000000 V.TRCT: .BLKW 1 

.IF DF R$$IIM 

000002 V.TYPE: .BLKB 
VT. SLl= 1 
VT. ANS= 10 
VT. UNL= 11 

000003 V. VCHA: • BLKB 
VC. SLK= 1 
VC.HLK= 2 
VC.DEA= 4 
VC. PUB= 10 

000004 V.LABL: .BLKB 
000020 V.PKSR: .BLKW 

000024 V. SLEN: 

1 

1 

14 
2 

• ENDC ;R$$11M 

000024 V.IFWI: .BLKW 1 

000026 
000032 
000033 
000034 
000036 
000040 

000041 
000042 
000044 
000045 
000046 

V. STD: 

V.FCB: 
V. IBLB: 
V.IBSZ: 

V. FMAX: 
V.WISZ: 

V. SBCL: 
V. SBSZ : 
V. SBLB: 
V.FIEX: 

• IF DF R$$IID 

• BLKW 1 

.ENDC ;R$$llD 

• BLKW 
.BLKB 
.BLKB 
.BLKW 
.BLKW 
• BLKB 

.BLKB 
• BLKW 
• BLKB 
• BLKB 
.BLKW 

2 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 

.IF DF R$$IIM 

000050 V.VOWN: .BLKW 
000052 V.VPRO: .BLKW 

1 
1 

000054 
Od0056 
000057 
000060 
000062 

V. FPRO: 
V. FRBK: 
V. LRUC: 

V.STS: 
VS.IFW= 
VS.BMW= 

• ENDC ;R$$IIM 

• BLKW 
• BLKB 
.BLKB 
• BLKW 
• BLKB 
1 
2 

1 
1 
1 
1 
1 

TRANSACTION COUNT 

VOLUME TYPE DESCRIPTOR 
FILES-II STRUCTURE LEVEL 1 
ANSI LABELED TAPE 
UNLABELED TAPE 
VOLUME CHARACTERISTICS 
CLEAR VOLUME VALID ON DISMOUNT 
UNLOAD THE VOLUME ON DISMOUNT 
DEALLOCATE THE VOLUME ON DISMOUNT 
SET (CLEAR) US. PUB ON DISMOUNT 
VOLUME LABEL (ASCII) 
PACK SERIAL NUMBER FOR ERROR LOGGING 

LENGTH OF SHORT VCB 

INDEX FILE WINDOW 

STD OF TASK CHARGED WITH NODE 

FILE CONTROL BLOCK LIST HEAD 
INDEX BIT MAP 1ST LBN HIGH BYTE 
INDEX BIT MAP SIZE IN BLOCKS 
INDEX BITMAP 1ST LBN LOW BITS 
MAX NO. OF FILES ON VOLUME 
DEFAULT SIZE OF WINDOW IN RTRV PTRS 
VA LUE IS < 128. 
STORAGE BIT MAP CLUSTER FACTOR 
STORAGE BIT MAP SIZE IN BLOCKS 
STORAGE BIT MAP 1ST LBN HIGH BYTE 
DEFAULT FILE EXTEND SIZE 
STORAGE BIT MAP 1ST LBN LOW BITS 

VOLUME OWNER'S UIC 
VOLUME PROTECTION 

VOLUME DEFAULT FILE PROTECTION 
NUMBER OF FREE BLOCKS ON VOLUME HIGH BYTE 
COUNT OF AVAILABLE LRU SLOTS IN FCB LIST 
NUMBER OF FREE BLOCKS ON VOLUME LOW BITS 
VOLUME STATUS BYTE, CONTAINING THE FOLLOWING 
INDEX FILE IS WRITE ACCESSED 
STORAGE BITMAP FILE IS WRITE ACCESSED 

C-14 

( 

( 

( 

( 



--------~--.-------,,--- --------_., - - ,----------

( 

c 

( 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

000063 V.FFNU: .BLKB 
000064 V. EXT: .'BLKW 

000066 V. LGTH: 

1 
1 

MOUNT LIST ENTRY 

FIRST FREE INDEX FILE BITMAP BLOCK 
POINTER TO VCB EXTENSION 

SIZE IN BYTES OF VCB 

EACH ENTRY ALLOWS ACCESS TO A SPECIFIED USER FOR A NON-PUBLIC DEVICE 

TO ALLOW EXPANSION, ONLY THE ONLY TYPE CODE DEFINED IS "1" FOR 
DEVICE ACCESS BLOCKS 

000000 
000002 

000003 
000004 
000006 

• =0 
M. LNK: 
M.TYPE: 
MT.MLS= 
M.ACC: 
M.DEV: 
M.TI: 

• ASECT 

.BLKW 

.BLKS 
1 
• BLKB 
.BLKW 
.BLKW 

1 
1 

1 
1 
1 

000010 M.LEN: 

FILE CONTROL BLOCK 

• ASECT 
• =0 

000000 F.LINK: .BLKW 1 

000002 
000004 
000006 
000007 
000010 
000012 
000014 
000015 
000016 

000022 

000026 
000032 
000033 

• IF DF R$$llD 

F.FEXT: .BLKW 
F. STD: • BLKW 

1 
1 

• ENDC ;R$$llD 

F.FNUM: .BLKW 
F.FSEQ: .BLKW 

.BLKB 
F.FSQN: .BLKB 
F. FOWN: • BLKW 
F.FPRO: .BLKW 
F.UCHA: .BLKS 
F. SCHA: • BLKS 
F. HDLB: • B LKW 

F. LBN: • BLKW 

F.SIZE: .!3LKW 
F.NACS: .BLKB 
F.NLCK: .BLKB 

1 
1 
1 
1 
1 
1 
1 
1 
2 

2 

2 
1 
1 

LINK WORD 
TYPE OF ENTRY 
MOUNTED VOLUME USER ACCESS LIST 
NUMBER OF ACCESSES 
DEVICE UCB 
ACCESSOR TI: UCB 

LENGTH OF ENTRY 

FCB CHAIN POINTER 

POINTER TO EXTENSION FCB 
STD OF TASK CHARGED WITH NODE 

FILE NUMBER 
FILE SEQUENCE NUMBER 
NOT USED 
FILE SEGMENT NUMBER 
FILE OWNER'S UIC 
FILE PROTECTION CODE 
USER CONTROLLED CHARACTERISTICS 
SYSTEM CONTROLLED CHARACTERISTICS 
FILE HEADER LOGICAL BLOCK NUMBER 

BEGINNING OF STATISTICS BLOCK 
LBN OF VIRTUAL BLOCK 1 IF CONTIGUOUS 
o IF NON CONTIGUOUS 
S IZ E OF FILE IN BLOC KS 
NO. OF ACCESSES 

;. NO. OF LOCKS 

C-15 



000012 

000034 
000034 
000035 

000036 
000040 

000042 

000044 
000050 
000052 

000054 

000000 

000000 

000000 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

S.STBK=.-F.LBN 

F. STAT: 
F. NWAC: .BLKB 1 

.BLKB 1 
FC.WAC= 100000 
FC.DIR= 40000 
FC. CEF= 20000 
FC.FCO= 10000 
F.DREF: .BLKW 1 
F. DRNM: .BLKW 1 

• IF DF R$$llM 

F. FEXT: .BLKW 1 

• ENDC ;R$$llM 

F. FVBN: .BLKW 2 
F. LKL: .BLKW 1 
F.WIN: .BLKW 1 

F. LGTH: 

WINDOW 
; 

.ASECT 
• =0 
W.ACT: 

W.BLKS: 

W. CTL: .BLKW 1 

WI. RDV= 400 
WI.WRV= 1000 
WI. EXT = 2000 
WI. LCK= 4000 
WI.DLK= 10000 

.IF DF R$$llM 

WI. PND= 20000 

• ENDC ;R$$llM 

WI. EXL= 40000 
WI.WCK= 100000 

.IF NDF R$$llM 

W.FCB: .BLKW 1 
W. STD: .BLKW 1 
W. VBN: .BLKB 1 
W.WISZ: .BLKB 1 

.BLKW 1 
W. LKL: .BLKW 1 
W.WIN: .BLKW 1 
W. RTRV: 

SIZE OF STATISTICS BLOCK 

FCB STATUS WORD 
NUMBER OF WRITE ACCESSORS 
STATUS BITS FOR FCB CONSISTING OF 
SET IF FILE ACCESSED FOR WRITE 
SET IF FCB IS IN DIRECTORY LRU 
SET IF DIRECTORY EOF NEEDS UPDATING 
SET IF TRYING TO FORCE DIRECTORY CONTIG 
DIRECTORY EOF BLOCK NUMBER 
1ST WORD OF DIRECTORY NAME 

POINTER TO EXTENSION FCB 

STARTING VBN OF THIS FILE SEGMENT 
POINTER TO LOCKED BLOCK LIST FOR FILE 
WINDOW BLOCK LIST FOR THIS FILE 

SIZE IN BYTES OF FCB 

~UMBER OF ACTIVE MAPPING POINTERS 
'WHEN NO SEC ONDARY POOL 

BLOCK SIZE OF SECONDARY POOL SEGMENT 
WHEN SECONDARY POOL 

LOW BYTE = *' OF MAP ENTRIES ACTIVE 
HIGH BYTE CONSISTS OF CONTROL BITS 
READ VIRTUAL BLOCK ALLOWED IF SET 
WRITE VIRTUAL BLOCK ALLOWED IF SET 
EXTEND ALLOWED IF SET 
SET IF LOCKED AGAINST SHARED ACCESS 
SET IF DEACCESS LOCK ENABLED 

WINDOW TURN PENDING BIT 

SET IF MANUAL UNLOCK DESIRED 
DATA CHECK ALL WRITES TO FILE 

IF NOT RSX-ll 

FILE CONTROL BLOCK ADDRESS 
STD OF TASK CHARGED WITH WIDOW NODE 
HIGH BYTE OF 1ST VBN MAPPED BY WINDOW 
SIZE IN RTRV PTRS OF WINDOW (7 BITS) 
LOW ORDER WORD OF 1ST VBN MAPPED 
POINTER TO LIST OF USERS LOCKED BLOCKS 
WINDOW BLOCK LIST LINK WORD 
OFFSET TO 1ST RETRIEVAL POINTER IN WINDOW 

C-16 

C 

( 

(--



( 

e: 

c 

C 

000002 
000003 
0-00004 
000006 
000010 

000012 
000013 
000013 
000014 
000016 

. - ----------

SYSTEM DATA STRUCTURES AND SYMBOLIC OFF.SETS 

.IFF IF RSX-ll 

W. IDC: .BLKB 1 CDUNT DF I/O. THRDUGH THIS WINDDW 
.BLKB 1 RESERVED 

W.FCB: .BLKW 1 FILE CDNTRDL BLDCK ADDRESS 
W. LKL: .BLKW 1 PDINTER TO. LIST DF USERS LDCKED BLDCKS 
W.WIN: .BLKW 1 WINDDW BLDCK LIST LINK WDRD 

.IF NB SYSDEF IF SYSDEF SPECIFIED IN CALL 

.IF NDF P$$WND IF SECDNDARY PDDL WINDDWS NDT ALLDWED 

NDN-SECDNDARY PDDL WINDDW BLDCK 

; 
W. VBN: 
W.MAP: 
W .WISZ: 

W. RTRV: 

IF SECDNDARY PDDL WINDDWS ARE NDT ENABLED, THE WINDDW BLDCK 
CDNTAINS THE CDNTRDL INFDRMATIDN AND RETRIEVAL POINTERS. 

.BLKB 1 

.BLKB 1 

.BLKW 1 

.IFF 

HIGH BYTE DF 1ST VBN MAPPED BY WINDDW 
DEFINE LABEL WITH DDD ADDR TO. CATCH BAD REFS 
SIZE IN RTRVPTRS DF WINDDW (7 BITS) 
LDW DRDER WDRD DF 1ST VBN MAPPED 
DFFSET TO. 1ST RETRIEVAL POINTER IN WINDDW 

IF WINDDWS IN SECDNDARY PODL 

SECDNDARY PDDL WINDDW CDNTRDL AND MAPPING BLDCK 

; 

IF SECDNDARY PDDLWINDDW BLDCKS ARE ENABLED, LUTN2 PDINTS 
TO. A CDNTRDL BLDCK IN SYSTEM PDDL WHICH CDNTAINS'THE 
FDLLDWING CDNTRDL FIELDS AND THE MAPPING INFDRMATIDN 
FDR THE SECDNDARY PDDL WINDDW. 

W.MAP: .BLKW 1 ; ADDR TO. THE MAPPING PTRS IN SECDNDARY PDDL 

SECDNDARY PDDL WINDDW 

; 
• =0 

W. USE: 
W. VBN: 
W.WISZ: 

W. RTRV: 

IF SECDNDARY PDDL WINDDW BLDCKS ARE ENABLED, THE RETRIEVAL 
PDINTERS ARE MAINTAINED IN SECDNDARY PDDL IN THE FDLLDWING 
FDRMAT. 

ASSUME W.CTL,O 
.BLKB 1 NUMBER DF ACTIVE MAPPING PDINTERS 
.BLKB 1 STATUS DF BLDCK 
.BLKB 1 HIGH BYTE DF 1ST VBN MAPPED BY WINDDW 
• BLKB 1 SIZE IN RTRV PTRS DF WINDDW (7 BITS) 
.BLKW 1 ., LOW DRDER WDRD DF 1ST VBN MAPPED 

DFFSET TO. 1ST RETRIEVAL PDINTER IN WINDDW 

• ENDC ;P$$WND ;- END SECDNDARY PDDL WINDDW CDNDIT IDNAL 

• ENDC ;SYSDEF END SYSDEF CDNDITIDNAL 

• ENDC ;R$$llM END RSX-IIM CDNDITIDNAL 

LDCKED BLDCK LIST NDDE 

• ASECT 
• =0 

000000 L.LNK: .BLKW 
000002 L.Wll: .BLKW 

1 
1 

LINK TO. NEXT NDDE IN LIST 
PDINTER TO. WINDDW FDR FIRST ENTRY 

C-17 



L. STD: 
L.VBl: 
L. VB2: 
L.CNT: 

000004 L. VBl: 
000005 L.CNT: 
000006 

1000010 L. LKSZ: 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

• IF DF R$$llD 

.BLKW 

.BLKW 

.BLKW 

.BLKB 

.BLKB 

.IFF 

.BLKB 

.BLKB 

.BLKW 

1 
2 
2 
1 
1 

1 
1 
1 

• ENDC iR$$llD 

• PSECT 

POINTER TO STD OF TASK NODE CHARGED TO 
STARTING VBN OF FIRST ENTRY 
STARTING VBN OF SECOND ENTRY 
COUNT FOR FIRST ENTRY 
COUNT FOR SECOND ENTRY 

HIGH ORDER VBN BYTE 
COUNT FOR ENTRY 
LOW ORDER VBN 

C-lS 

( 

( 

c 



SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

HDRDF$ 

( 
HDRDF$ 

TASK HEADER OFFSET DEF IN IT IONS 

• ASECT 
• =0 

000000 H.CSP: .BLKW 1 iCURRENT STACK POINTER 
000002 H.HDLN: .BLKW 1 iHEADER LENGTH IN BYTES 
000004 H.EFLM: .BLKW 2 iEVENT FLAG MASK WORD AND ADDRESS 
000010 H. CUIC: .BLKW 1 iCURRENT TASK UIC 
000012 H.DUIC: .BLKW 1 iDEFAULT TASK UIC 
000014 H.IPS: .BLKW 1 i INITIAL PROCESSOR STATUS WORD (PS) 
000016 H.IPC: .BLKW 1 iINITIAL PROGRAM COUNTER (PC) 
000020 H. ISP: .BLKW 1 iINITIAL STACK POINTER (SP) 
000022 H.ODVA: .BLKW 1 iODT SST VECTOR ADDRESS 
000024 H.ODVL: .BLKW 1 iODT SST VECTOR LENGTH 
000026 H.TKVA: .BLKW 1 iTASK SST VECTOR ADDRESS 

C 
000030 H.TKVL: .BLKW 1 iTASK SST VECTOR LENGTH 
000032 H. PFVA: .BLKW 1 iPOWER FAIL AST CONTROL BLOCK ADDRESS 
000034 H.FPVA: .BLKW 1 iFLOATING POINT AST CONTROL BLOCK ADDRESS 
000036 H. RCVA: .BLKW 1 iRECIEVE AST CONTROL BLOCK ADDRESS 
000040 H. EFSV: .BLKW 1 iEVENT FLAG ADDRESS SAVE ADDRESS 
000042 H.FPSA: .BLKW 1 iPOINTER TO FLOATING POINT/EAE SAVE AREA 
000044 H.WND: .BLKW 1 iPOINTER TO NUMBER OF WINDOW BLOCKS 
000046 H.DSW: .BLKW 1 iTASK DIRECTIVE STATUS WORD 
000050 H.FCS: .BLKW 1 i FCS IMPURE POINTER 
000052 H.FORT: .BLKW 1 iFORTRAN IMPURE POINTER 
000054 H.OVLY: .BLKW 1 iOVERLAY IMPURE POINTER 
000056 H. VEXT: .BLKW 1 iWORK AREA EXTENSION VECTOR POINTER 

C 000060 H. SPRI: .BLKB 1 iPRIORITY DIFFERENCE FOR SWAPPING 
000061 H.NML: • BLKB 1 iNETWORK MAILBOX LUN 
000062 H.RRVA: .BLKW 1 iRECEIVE BY REFERENCE AST CONTROL BLOCK ADDRESS 
000064 H.X25: .BLKB 1 iFOR USE BY X.25 SOFTWARE 
000065 • BLKB 1 iFlVE RESERVED BYTES 
000066 .BLKW 2 i 
000072 H.GARD: .BLKW 1 i'POINTER TO HEADER GUARD WORD 
000074 H.NLUN: .BLKW 1 iNUMBER OF LUN 'S 
000076 H.LUN: • BLKW 2 iSTART OF LOGICAL UNIT TABLE 

( 

c 
C-19 



000000 
000002 
000004 
000006 
000010 
000012 
000014 
000015 
000016 

SYSTEM DATA STRUCTURES ABD SYMBOLIC OFFSETS 

LENGTH OF FLOATING POINT SAVE AREA 
i 
H. FPSL=25. *2 

WINDOW BLOCK OFFSETS 
i 
• =0 
W.BPCB: .BLKW 
W.BLVR: .BLKW 
W.BHVR: .BLKW 
W. BA TT : • B L KW 
W.BSIZ: .BLKW 
W.BOFF: .BLKW 
W.BF'PD: .BLKB 
W. BNPD: • BLKB 
W. BLPD: • BLKW 

1 
1 
1 
1 
1 
1 
1 
1 
1 

iPARTITION CONTROL BLOCK ADDRESS 
iLOW VIRTUAL ADDRESS LIMIT 
iHIGH VIRTUAL ADDRESS LIMIT 
iADDRESS OF ATTACHMENT DESCRIPTOR 
iSIZE OF WINDOW IN 32W BLOCKS 
iPHYSICAL MEMORY OFFSET IN 32W BLOCKS 
iFIRST PDR ADDRESS 
iNUMBER OF PDR'S TO MAP 
iCONTENTS OF LAST PDR 

000020 W. BLGH: iLENGTH OF WINDOW DESCRIPTOR 

• PSECT 

C-20 

c" 

- ----( -------

c 

( 

c 



( 

C 

------ -----------

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

HWDDF$ 

HWDDF$ 

HARDWARE REGISTER ADDRESSES AND STATUS CODES 
i 
MPCSR=I77746 
MPAR=I72100 
PIRQ=177772 
PRO=O 
PRl=40 
PR4=200 
PR5=240 
PR6=300 
PR7=340 
PS=I77776 
SWR=I77570 
TPS=I77564 

iADDRESS OF PDP-ll/70 MEMORY PARITY REGISTER 
iADDRESS OF FIRST MEMORY PARITY REGISTER 
iPROGRAMMED INTERRUPT REQUfST REGISTER 
iPROCESSOR PRIORITY 0 
iPROCESSOR PRIORITY 1 
iPROCESSOR PRIORITY 4 
iPROCESSOR PRIORITY 5 
i PROCESSOR PRIORITY 6 
iPROCESSOR PRIORITY 7 
i PROCESSOR STATUS WORD 
iCONSOLE SWITCH AND DISPLAY REGISTER 
iCONSOLE TERMINAL PRINTER STATUS REGISTER 

EXTENDED ARITHMETIC ELEMENT REGISTERS 

• IF DF E$$EAE 

AC=I77302 
MQ=I77304 
SC=I77310 

• ENDC i E $$EAE 

iACCUMULATOR 
iMULTIPLIER-QUOTIENT 
i SHIFT COUNT 

MEMORY MANAGEMENT HARDWARE REGISTERS AND STATUS CODES 

.IF DF M$$MGE 

KDSARO=l 72 360 i KERNEL D PAR 0 
KDS DR 0=1 72 320 i KERNEL D PDR 0 
KISARO=1 72 340 i KERNEL I PAR 0 
KINARO=KISARO i KERNEL I PAR 0_ 
KISAR5=172352 iKERNEL I PAR 5 
KINAR5=KISAR5 i KERNEL I PAR 5 
KISAR6=1 72 354 i KERN~L I PAR 6 
KINAR6=KISAR6 i KERN L I PAR 6 
KISAR7=1 72 356 i KERNEL I PAR 7 
KtNAR7=KISAR7 i KERNEL I PAR 7 
KISDRO=I72 300' i KERNEL I PDR 0 
KISDR6=1 72 314 i KERNEL I PDR 6 
KISDR7=172316 i KERNEL I PAR 7 
SISDRO=I72200 iSUPERVISOR I PDR 0 
UDSARO=I77660 i USER D PAR 0 
UDSDRO=I77620 iUSER D PDR 0 
UISARO=I77640 iUSER I PAR 0 
UISAR4=177650 iUSER I PAR 4 
UISAR5=177652 i USER I PAR 5 
UISAR6=177654 iUSER I PAR 6 
UISAR7=177656 iUSER I PAR 7 
UISDRO=I77600 iUSER I PDR 0 

C-21 



-----------~~~-

SYSTEM DATA ~TRUCTURES AND SYMBOLIC OFFSETS 

UISDR4=177610 
UISDR5=177612 
UISDR6=177614 
UISDR 7=177616 
UBMPR=170200 
CMODE=140000 
PMODE=30000 
SRO=177572 
SR3=172516 

• ENDC iM$$MGE 

iUSER I PDR 4 
iUSER I PDR 5 
iUSER I PDR 6 
iUSER I PDR 7 
iUNIBUS MAPPING REGISTER 0 
iCURRENT MODE FIELD OF PS WORD 
iPREVIOUS MODE FIELD OF PS WORD 
iSEGMENT STATUS REGISTER 0 
i SEGMENT STATUS REGISTER 3 

FEATURE SYMBOL DEFINITIONS 
i 
FE. EXT=l 
FE.MUP=2 
FE. EXV=4 
FE. DRV=10 
FE. PLA=20 
FE.CAL=40 
FE. PKT=100 
FE. EXP=200 
FE. LS I=4 00 
FE.OFF=1000 
FE. FDT=2000 
FE.X25=4000 
FE.DYM=10000 
FE. CEX=20000 
FE.MXT=40000 
FE. NLG=l 00000 

i22-BIT EXTENDED MEMORY SUPPORT 
iMULTI-USER PROTECTION SUPPORT 
iEXECUTlVE IS SUPPORTED TO 20K 
i LOADABLE DRIVER SUPPORT 
iPLAS SUPPORT 
iDYNAMIC CHECKPOINT SPACE ALLOCATION 
i PREALLOCATION OF I/O PACKETS 
i EXTEND TASK DIRECTIVE SUPPORTED 
i PROC ESSOR IS AN LS I-ll 
iPARENT OFFSPRING TASKING SUPPORTED 
iFULL DUPLEX TERMINAL DRIVER 
i X. 25 COM EXECUTIVE LOADED (l=YES) 
iDYNAMIC MEMORY ALLOCATION SUPPORTED 
iCOM EXEC IS LOADED 
iMCR EXIT AFTER EACH COMMAND MODE 
iLOGINS DISABLED - MULTI-USER SUPPORT 

SECOND FEATURE MASK SYMBOL DEFINITIONS 
i 
F2. DAS=l 
F2. LIB=2 
F2.MP=4 
F2. EVT=10 
F2. ACN=20 
F2.SDW=40 
F2.POL=100 
F2. WND=200 
F2. DPR=400 
F2. IRR=1000 
F 2. GGF=2000 
F 2. RAS=4 000 
F2.AHR=10000 
F2. RBN=20000 
F2. SWP=40000 
F2. STP=100000 

iKERNEL DATA SPACE (M-PLUS ONLY) 
iSUPERVISOR MODE LIBRARIES 
iMULTIPROCESSING SUPPORT 
iEVENT TRACE SUPPORT 
i CPU ACCOUNTING 
i SHADOW RECORDING 
i SECONDARY POOLS 
iSECONDARY POOL FILE WINDOWS 
iDIRECTlVE PARTITION SUPPORT 
i INSTALL, REQUEST AND REMOVE SUPPORT 
iGROUP GLOBAL EVENT FLAG SUPPORT 
iRECEIVE/SEND DATA PACKET SUPPORT 
iALT. HEADER REFRESH AREAS SUPPORTED 
iROUND ROBIN SCHEDULING SUPPORT 
iEXECUTlVE LEVEL DISK SWAPPING SUPPORT 
iEVENT FLAG MASK IS IN THE TCB (l=YES) 

C-22 

( 

(--

c-

( 

c 



( 

( 

c 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

THIRD FEATURE MASK SYMBOL DEFINITIONS 
i 
F3. CRA=l 
F3. NWK=2 
F 3. EIS=4 
F 3. STM=l 0 
F 3. UDS=20 
F3. PRO=40 
F3.XHR=100 
F3.AST=200 
F3.11S=400 
F3.CLI=1000 
F 3. TCM=2000 
F3. PMN=4000 
F3.WAT=10000 
F3.RLK=20000 

iSPONTANEOUS CRASH (l=YES) 
iSYSTEM HAS NETWORK SUPPORT 
iSYSTEM REQUIRES THE EXTENDED INST. SET 
iSYSTEM HAS SET SYSTEM TIME DIRECTIVE 
iUSER DATA SPACE (M-PLUS ONLY) 
i PROTO TCBS OUT OF POOL " 
i EXTERNAL HEADER SUPPORT " 
iSYSTEM HAS AST SUPPORT 
iSYSTEM IS RSX-IIS 
iSYSTEM HAS MULTIPLE CLI SUPPORT 
iTERMINAL COMMON (M-PLUS ONLY) 
iPOOL MONITORING SUPPORT 
iWATCHDOG TIMER SUPPORT 
i'RMS' RECORD LOCKING SUPPORT 

HARDWARE FEATURE MASK SYMBOL DEFINITIONS 
i 
HF. UBM=l 
HF.EIS=2 
HF. CIS=200 
HF.FPP=lOOOOO 

iSYSTEM HAS A UNIBUS MAP (l=YES) 
iSYSTEM HAS EXTENDED INSTRUCTION SET 
iSYSTEM HAS COMMERCIAL INSTRUCTION SET 
iSYSTEM SUPPORTS FLOATING POINT (l=NO) 

C-23 



000000 
000002 
000006 
000007 
000010 
000012 
0000'12 
000014 
000016 
000020 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

ITBDF$ "SYSDEF 

; INTERRUPT TRANSFER BLOCK (ITB) OFFSET DEFINITIONS 

• IF DF A$$TRP 

• MCALL PKTDF$ 
PKTDF$ 

• ENDC iA$$TRP 

.ASECT 
• =0 
X. tNK: .BLRW 1 
X.JSR: JSR RS,@#O 
X. PSW: .BLKB 1 

.BLKB 1 
X.ISR: .BLRW 1 
X. FORK: 

.BLRW 1 

.BLRW 1 

.BLRW 1 

.BLRW 1 

.IF DF M$$MGE 

X. REL: .BLRW 1 

• ENDC iM$$MGE 

X. DS I: .BLRW 1 
X. TeB: .BLRW 1 

• IF NB SYSDEF 

• IF DF A$$TRP 

.BLRW 1 
X.AST: .BLKB A.PRM 

• ENDC iA$$TRP. 

X. VEC: .BLRW 1 

X. VPC: .BLRW 1 
X. LEN: 

.ENDC iSYSDEF 

• PSECT 

DEFINE AST BLOCK OFFSETS 

LINK WORD FOR ITB LIST STARTING IN TCB 
CALL $INTSC 
LOW BYTE OF PSW FOR ISR 
UNUSED 
ISR ENTRY POINT (APRS MAPPING) 
FORK BLOCK 
THREAD WORD 
FORK PC 
SAVED RS 
SAVED R4 

RELOCATION BASE FOR ARRS 

ADDRESS OF DIS. INT. ROUTINE 
TCB ADDRESS OF OWNING TASK 

A.DQSR FOR AST BLOCK 
AST BLOCK 

i VECTOR ADDRESS (IF AST SUPPORT, 
THIS IS FIRST AND ONLY AST PARAMETER) 
SAVED VECTOR PC 
LENGTH IN BYTES OF ITB 

C-24 

c 

( 

c 



c 

000000 
000002 
000004 
000005 
000006 
000010 

L O 

000012 

c 

c 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

LCBDF$ 

LCBDF$ 

LOGICAL ASSIGNMENT CONTROL BLOCK 

THE LOGICAL ASSIGNMENT CONTROL BLOCK (LCB) IS USED TO ASSOCIATE A 
LOGICAL NAME WITH A PHYS ICAL DEVICE UNIT. LCB I S ARE LINKED TOGETHER 
TO FORM THE LOGICAL ASSIGNMENTS OF A SYSTEM. ASSIGNMENTS MAY BE ON 
A SYSTEM WIDE OR LOCAL (TERMINAL) BASIS • 

• ASECT 
• =0 
L. LNK: .BLKW 1 iLINK TO NEXT LCB 
L.NAM: .BLKW 1 iLOGICAL NAME OF DEVICE 
L. UNIT: .BLKB 1 iLOGICAL UNIT NUMBER 
L.TYPE: .BLKB 1 i TYPE OF ENTRY (O=SYSTEM WIDE) 
L.UCB: .BLKW 1 iTI UCB ADDRESS 
L.ASG: .BLKW 1 iASSIGNMENT UCB ADDRESS 

L. LGTH=. -L. LNK iLENGTH OF LCB 

• PSECT 

C-2S 



SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

MTADF$ 

MTADF$ 

ANSI MAGTAPE SPECIFIC DATA STRUCTURES 

VOLUME SET CONTROL BLOCK OFFSET DEFININTIONS (VSCB) 

VOLUME SET AND PROCESS CONTROL SECTION 

• ASECT 
• =0 

000000 V. TeNT: .BLKW 1 ;TRANSACTION COUNT 
000002 V.TYPE: .BLKB 1 ;VOLUME TYPE DESCRIPTOR 
000003 V.VCHA.: .BLKS 1 ;VOLUME CHARACTERISTICS 
000004 V. LABL: .BLKS 12. ;FILE SET ID(FIRST SIX BYTES) 
000020 V.NXT: .BLKW 1 ;PTR TO NEXT VSCB NODE 
000022 V.MVL: .BLKW 1 ;PTR TO MOUNTED VOL LIST 
000024 V.UVL: .BLKW 1 ;PTR TO UNMOUNTED VOL LIST 
000026 V.ATL: .BLKW 1 ;ATL ADDR OF ACCESSING TASKTCB IN RSX11M 

(~ 000030 V.UCB: .BLKW 1 ;ADDR OF CURRENT UCB OR PUD 
000032 V. RVOL: .BLKS 1 ;CURRENT RELATIVE VOL # 
000033 V.MOU: .BLKS 1 ;MOUNT MODE BYTE 
000034 V. TeHR: .BLKW 1 ;UINT CHAR. FOR ALL UNITS USED FOR VOL SET 
000036 V.SEQN: .BLKW 1 ;CURRENT FILE SEQUENCE # 
000040 V.SECN: .BLKW 1 ;CURRENT FILE SECTION # 
000042 V.TPOS: .BLKS 1 ;POSITION OF TAPE IN TM'S TO NXT HDR1 
000043 V.PSTA: .BLKB 1 ;PROCESS STATUS BYTE 
000044 V. TIMO: .BLKW 1 ;BLOCKED PROCESS TIMEOUT COUNTER 
000046 V. STAT: .BLKW 3 ; STATUS WORDS USED BY COMMAND EXECUTION MODULES 
000054 V.TRTB: .BLKS 1 ;TRANSLATION CONTROL BYTE 
000055 V. EFTV: .BLKS 1 ;FOR MAG TO RETURN IE.EOF, EOT, EOV 

( 
LABEL DATA SECTION 

; 
000056 V.BLKL: .BLKW 1 ;BLOCK LENGTH 
000060 V. RECL: .BLKW 1 ;RECORD LENGTH 
000062 V.FNAM: .BLKW 3 ; FILE NAME 
000070 V.FTYP: .BLKW 1 ;FILE TYPE 
000072 V.FVER: .BLKW 1 ;FILE VERSION # 
000074 V. CDAT: .BLKW 2 ;CREATION DATE 
000100 V. EDAT: .BLKW 2 ;EXPRIATION DATE ( 000104 V.BLKC: .BLKW 2 ;BLOCK COUNT FOR FILE SECTION 
000110 V. RTYP: .BLKB 1 ;RECORD TYPE 
000111 V.FATT: • BLKB 1 ;FILE ATTRIBUTES FOR CARRIAGE CONTROL 
000112 .BLKB 30. ;REMAINDER OF FILE ATTRIBUTES 

c 
C-26 



( 

( 

c 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

NULL WINDOW SECTION 

000150 
000160 
000162 
000163 
000164 
000205 
000206 
000207 
000210 
000212 

i 
V. WIND: • BLKW 
V.MST2: .BLKW 
V. FABY: • BLKS 

.BLKB 
V. ANSN: • BLKS 
V. B OF F : • B L KS 
V.DENS: .BLKB 
V. DRAT: • BLKB 
V.DBLK: .BLKW 
V. DREC : • B LKW 

000214 S.VSCB=. 

• PSECT 

4. 
1 
1 
1 
17. 
1. 
1. 
1. 
1. 
1. 

iNULL WINDOW 
iMAGTAPE STATUS BITS 
iFILE ACCESSIBILITY BYTE (HDR1) 
iSPARE 
;ANSI 17 CHARACTER FILE NAME 
iBUFFER OFFSET 
iREQUESTED UNIT DENSITY 
iDEFAULT RECORD ATTRIBUTES 
iDEFAULT BLOCK SIZE 
iDEFAULT RECORD SIZE 

is IZ E OF VSCB 

DEFINE OFFSETS INTO NULL WINDOW SECTION 

• ASECT 
• =0 

000000 W.CTL: .BLKW 1 
V.WINC=V.WIND+W.CTL 

• PSECT 

iCONTROL WORD IN WINDOW 
iCNTRL WORD IN NULL WINDOW 
iRELATlVE TO THE VSCB 

MOUNTED VOLUME LIST OFFSET DEFININTIONS (MVL) 

.ASECT 
• =0 

.IF DF R$$llM 

000000 M.NXT: .BLKW 1 

000002 
000004 
000006 

000010 
000011 
000012 
000014 

• ENDC iR$$llM 

M.UIC: .BLKW 1 
M.CH: .BLKW 1 
M.PROT: .BLKW 1 

.IF NDF R$$llM 

.BLKW 
M.NXT: .BLKW 

2 
1 

• ENDC iR$$l1M 

M. RVOL: • BLKS 
M.STAT: .BLKB 
M.VIDP: .BLKW 
M. UCB : • B LKW 

1 
1 
1 
1 

000016 S.MVL=. 

• PSECT 

iPTR TO NXT MVL NODE (11M) 

iOWNER UIC FROM RVOL *1 
i U • C H/U. VP (110) 
iPROTECTION U.AR IN lID 

iACP WORDS lID 
iPTR TO NEXT MVL NODE (lID) 

iRELATlVE VOL * OF MOUNTED VOLUME 
iVOLUME STATUS 
iVOLUME ID POINTER 
iADDR OF ASSOC UCB OR PUD 

iSIZE OF MVL NODE 

C-27 



000000 
000002 
000003 
000004 
000012 

000020 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

UNMOUNTED VOLUME AND VOLUME LIST OFFSET DEFINITIONS (UVL) 

.ASECT 
• =0 
L.NXT: .BLKW 1 ;PTR TO NXT UVL NODE 
L. VOLl: .BLKS 1 ;REL VOL :jf: OF l'ST VOL IN NODE 
L. VOL2: .BLKS 1 ;REL VOL :jf: OF 2'ND VOL IN NODE 
L.VIDl: .BLKS 6 ;VOL ID OF l'ST VOL IN NODE 
L. VID2: .BLKS 6 ;VOL ID OF 2'ND VOL IN NODE 

S. UVL=. ;SIZE OF UVL NODE 

• PSECT 

SYSTEM DATA STRUCTURE CONTENT VALUES 

VSCB VALUES 

V.MOU VALUES 
; 
VM.OLD = 200 
VM.BYP 100 
VM.ULB = 40 
VM.FSC 20 
VM. EXC 10 

V. MST2 VALUES 
; 
V2.INI 1 
V2.XH2 = 2 
V2.XH3 = 4 
V2.NH3 10 
V2.0AC 20 

;OLD .FL300 VOLUME -- VM.BYP WILL ALSO BE SET 
;BYPASS LABEL PROCESSING 
; UNLABELED TAPE 
;OVERRIDE FILE SET ID CHECK 
;OVERRIDE EXPRIATION DATE CHECK 

;MAG WANTS US TO INITIALIZE NEXT OUTPUT 
;THIS FILE HAS NO HDR2, DON'T WRITE EOF2 
;THIS FILE HAS NO HDR3, DON'T WRITE EOF3 
;DON'T WRITE HDR3/EOX3 LABELS 
;OVERRIDE FILE/VOLUME ACCESSIBILITY 

V.PSTA VALUES - UNBLOCKED TRANS~TION STATE 
; 
VP.RM = 2 ;READ DATA MODE 
VP.WM = 4 ;WRITE DATA MODE 
VP.UCM = 6 ;UNLABELLED CREATE POSITIONING MODE 
VP.SM 10 ; SEARCH MODE 
VP.MOU 20 ;MOUNT MODE 
VP.RWD = 40 ; REWIND OR VOL VERIFICATION WAIT 
VP.VFY VP. RWD 
VP. POS 100 ; PROCESS IN POSITIONING MODE 

; (MULTI-SECTION FILE) 

BLOCKED STATE = -(UNBLOCKED TRANSITION STATE VALUES) 

PROCESS TIMED OUT BIT 0 = 1 
; 
VP.TO=l 

C-28 

( 

.. c····· 

(, 

( 

c 



--- ----------------~--- ~~~~~~-----~-----------

( 

e~ 

c 

( 

SystEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

NULL WINDOW CONTROL BIT DEFINITIONS 
; 
WI. RDV 400 ;ACCESSED FOR READ 
WI.WRV = 1000 ;ACCESSED FOR WRITE 
WI. EXT 2000 ;ACCESSED FOR EXTEND 
WI. LCK = 4000 ; LOCKED 

MVL VALUES IN THE M.STAT FIELD 
; 
MS. VER 
MS. RID 
MS. NMO = 
MS. TMO 
MS. EXP 

MISC BITS 
; 
MO.OVR 
MO. UIC 
MO. PRO 
MO.160 

200 
1 
2 
4 
10 

USED IN 

1 
2 
4 
10 

;VOL ID NOT VERIFIED 
;VOL ID TO BE READ NOT CHECKED 
;MOUNT MESSAGE NOT GIVEN YET 
;ONE TIMEOUT ALREADY EXPRIED 
;EXPIRATION DATE MESSAGE GIVEN 

MOUNT (STORED IN V.STS) 

;OVER RIDE VOL NAME SWITCH 
;EXPLICIT UIC GIVEN 
;EXPLICIT PROTECTION GIVEN 
;1600 BPI SPECIFIED 

C-29 



SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

PCBDF$ 

PCBDF$ "SYSDEF 
(, 

PARTITION CONTROL BLOCK OFFSET DEFINITIONS 

.ASECT 
• =0 

000000 P. LNK: .BLKW 1 iLINK TO NEXT PARTITION PCB 
000002 P. PRI: .BLKB 1 iPRIORITY OF PARTITION 
000003 P. IOC: .BLKB 1 i I/O + I/O STATUS BLOCK COUNT 
000004 P.NAM: .BLKW 2 iPARTITION NAME I~ RAD50 
000010 P. SUB: .BLKW 1 iPOINTER TO NEXT SUBPARTITION 
000012 P.MAIN: .BLKW 1 iPOINTER TO MAIN PARTITION 

• IF NB SYSDEF 

• IF NDF M$$MGE 

P.HDR: iPOINTER TO HEADER CONTROL BLOCK C-~ 

• ENDC iM$$MGE 

.IFTF 

000014 P. REL: .BLKW 1 iSTARTING PHYSICAL ADDRESS OF PARTITION 
000016 ( P.BLKS: 
000016 P.SIZE: .BLKW 1 iSIZE OF PARTITION IN: 

UNMAPPED SYSTEMS - BYTES 
i MAPPED SYSTEMS - 32 WORD BLOCKS 

C 000020 P.WAIT: .BLKW 1 iPARTITION WAIT QUEUE LISTHEAD (2 WORDS) 
000022 P. SWSZ: .BLKW 1 iPARTITION SWAP SIZE (SYSTEM ONLY) 
000024 P. BUSY: .BLKB 2 iPARTITION BUSY FLAGS 
000026 P. OWN: 
000026 P.TCB: .BLKW 1 iTCB ADDRESS OF OWNER TASK· 
000030 . P. STAT: .BLKW 1 iPARTITION STATUS FLAGS 

.IFT 

• IF DF M$$MGE 

P.HDR: .BLKW 1 iPOINTER TO HEADER CONTROL BLOCK ( 
• ENDC iM$$MGE 

P. PRO: • BLKW 1 iPROTECTION WORD [DEWR,DEWR,DEWR,DEWR] 
P.ATT: .BLKW 2 iATTACHMENT DESCRIPTOR LISTHEAD 

• IF NDF P$$LAS 

P. LGTH=P. PRO iLENGTH OF PARTITION CONTROL BLOCK 

c 
C-30 



( 

C 000000 
000002 
000003 
000004 
000006 
000010 
000011 
000012 

000014 

(~ 

c 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

.IFF 

P.LGTH=. iLENGTH OF PARTITION CONTROL BLOCK 

• ENDC iP$$LAS 

.IFF 

• PSECT 

PARTITION STATUS WORD BIT DEFINITIONS 
i 
PS. OUT=1 00000 
PS. CKP=4 0000 
PS.CKR=20000 
PS.CHK=10000 
PS. FXD=4000 
PS. PER=2000 
PS. LIO=1 000 
PS. NSF=400 
PS.COM=200 
PS.PIC=100 
PS.SYS=40 
PS.DRV=20 
PS. DEL=10 

PS.APR=7 

iPARTITION IS OUT OF MEMORY(I=YES) 
iPARTITION CHECKPOINT IN PROGRESS (I=YES) 
iPARTITION CHECKPOINT IS REQUESTED (I=YES) 
i PARTITION IS NOT CHECKPOINTABLE (I=YES) 
iPARTITION IS FIXED (I=YES) 
i PARITY ERROR IN PARTIT ION (1 =YES) 
iMARKED BY SHUFFLER FOR LONG I/O (I=YES) 
iPARTITION IS NOT SHUFFLEABLE (I=YES) 
iLIBRARY OR COMMON BLOCK (I=YES) 
iPOSITION INDEPENDENT LIBRARY OR COMMON (I=YES) 
iSYSTEM CONTROLLED PARTITION (I=YES) 
iDRlVER IS LOADED IN PARTITION (I=YES) 
iPARTITION SHOULD BE DELETED WHEN NOT ATTACHED 
i (I=YES) 
iSTARTING APR NUMBER MASK 

ATTACHMENT DESCRIPTOR OFFSETS 

• ASECT 
• =0 
A. PCBL: .BLKW 1 iPCB ATTACHMENT QUEUE THREAD WORD 
A. PRI: • BLKB 1 iPRIORITY OF ATTACHED TASK 
A.IOC: .BLKB 1 i I/O COUNT THROUGH THIS DESCRIPTOR 
A. TeB: .BLKW 1 iTCB ADDRESS OF ATTACHED TASK 
A. TCBL: .BLKW 1 iTCB ATTACHMENT QUEUE THREAD WORD 
A. STAT: • BLKB 1 iSTATUS BYTE 
A.MPCT: .BLKB 1 iMAPPING COUNT OF TASK THRU THIS DESCRIPTOR 
A. PCB: .BLKW 1 iPCB ADDRESS OF ATTACHED TASK 

A. LGTH=. iLENGTH OF ATTACHMENT DESCRIPTOR 

ATTACHMENT DESCRIPTOR STATUS BYTE BIT DEFINITIONS 

• PSECT 
AS. DEL=10 
AS. EXT=4 
AS.WRT=2 
AS.RED=1 

• ENDC iSYSDEF 

iTASK HAS DELETE ACCESS (I=YES) 
iTASK HAS EXTEND ACCESS (I=YES) 
iTASK HAS WRITE ACCESS (I=YES) 
iTASK HAS READ ACCESS (I=YES) 

C-31 



SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

PKTDF$ 

177774 
177776 
000000 
000002 

000004 
000006 
000010 
000012 

PKTDF$ 

i 
i ASYNCHRONOUS SYSTEM TRAP CONTROL BLOCK OFFSET DEFINITIONS 

SOME POSITIONAL DEPENDENCIES BETWEEN THE OCB AND THE AST CONTROL 
BLOCK ARE RELIED UPON IN THE ROUTINE $FINXT IN THE MODULE SYSXT • 

• ASECT 
• =177774 
A. KSR5: • BLKW 
A.DQSR: .BLKW 

.BLKW 
A. CBL: • BLKW 

A.BYT: 
A.AST: 
A. NPR: 
A. PRM: 

.BLKW 

.BLKW 

.BLKW 

.BLKW 

1 
1 
1 
1 

1 
1 
1 
1 

iSUBROUTINE KISAR5 BIAS (A.CBL=O) 
iDE QUEUE SUBROUT INE ADDRESS (A. CBL=O) 
iAST QUEUE THREAD WORD 
iLENGTH OF CONTROL BLOCK IN BYTES 
i IF A.CBL = 0, THE ASr CONTROL BLOCK IS 
iTO BE DEALLOCATED BY THE DEQUEUE SUBROUTINE 
;POINTED TO BY A.DQSR MAPPED VIA APR 5 
iVALUE A. KSR5. THIS IS CURRENTLY USED ONLY 
iBY THE FULL DUPLEX TERMINAL DRIVER FOR 
iUNSOLICITED CHARACTER ASTS. 
jIF THE LOW BYTE OF A.CBL = 0, AND THE 
iHIGH BYTE IS NOT = 0, THE AST CONTROL BLOCK 
iIS A SPECIFIABLE AST, WITH LENGTH, C.LGTH. 
jIF THE HIGH BYTE OF A.CBL = 0 AND THE LOW 
jBYTE > 0, THEN THE LOW BYTE IS THE LENGTH 
jOF THE AST CONTROL BLOCK. IF THE HIGH BYTE 
jOF A.CBL = 0 AND THE LOW BYTE IS NEGATIVE, 
jTHIS IS A KERNEL AST. SEE BELOW FOR 
jA DESCRIPTION OF A.CBL FOR KERNEL ASTS. 
jNUMBER OF BYTES TO ALLOCATE ON TASK STACK 
iAST TRAP ADDRESS 
iNUMBER OF AST PARAMETERS 
iFIRST AST PARAMETER 

THE SPECIFIABLE AST CODES MUST NOT BE O. 
; 
AS. FPA=l 
AS. RCA=2 
AS.RRA=3 
AS. PFA=4 
AS. REA=5 
AS.CAA=6 

i 

iCODE FOR FLOATING POINT AST 
iCODE FOR RECEIVE DATA AST 
;CODE FOR RECEIVE BY REFERENCE AST 
;CODE FOR POWERFAIL AST 
iCODE FOR REQUESTED EXIT (ABORT) AST 
iCODE FOR COMMAND ARRIVAL AST FOR CLIS 

ABORTER SUBCODES FOR ABORT AST (AS. REA) TO BE RETURNED ON USER'S 
STACK 

; 
AB.NPV=l 
AB.TYP=2 

jABORTER IS NONPRIVILEGED (l=YES) 
iABORT FROM DIRECTIVE (O=YES) 
iABORT FROM CLI COMMAND (l=YES) 

C-32 

( 

(--

c 

( 



SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

KERNEL AST CONTROL BLOCK DEFINITIONS 

C THE LOW BYTE OF A. CBL FOR A KERNEL AST HAS THE FOLLOWING FORMAT: 

c 

c 

l 

000000 
000002 
000004 
000006 
000010 
000012 
000014 

BIT *200 ALWAYS EQUALS 1 
BIT tIOO IS ZERO IF $SGFIN MUST BE CALLED DURING AST PROCESSING 

; THE REMAINING SIX BITS ARE USED AS THE KERNEL AST TYPE FIELD 

BECAUSE THERE ARE ONLY 6 BITS AVAILABLE TO THE KERNEL AST 
INDEX FIELD, ONLY (2**6)-1 KERNEL AST TYPES ARE POSSIBLE. 

i 
AK. BUF=200 
AK. OCB=201 
AK.GBI=202 
AK.TBT=203 
AK. DIO=204 

iBUFFERED I/O COMPLETION AST 
iOFFSPRING EXIT 
iGENERAL BUFFERED I/O AST 
iTASK FORCED T-BIT TRAP AST 
iDELAYED I/O (M-PLUS COMPATIBLE) 

OFFSPRING CONTROL BLOCK DEFINITIONS 

SOME POSITIONAL DEPENDENCIES EXIST BETWEEN THE OCB AND THE AST 
CONTROL BLOCK IN ROUTINE $FINXT IN MODULE SYSXT 

i 
• =0 
O.LNK: 
O.MCRL: 
O.PTCB: 
O.AST: 
O. EFN: 
O. ESB: 
O.STAT: 

.BLKW 

.BLKW 

.BLKW 

.BLKW 

.BLKW 

.BLKW 
• BLKW 

1 
1 
1 
1 
1 
1 
8 • 

i OCB LINK WORD 
iADDRESS OF MCR COMMAND LINE 
iPARENT TCB ADDRESS 
iEXIT AST ADDRESS 
iEXIT EVENT FLAG 
iEXIT STATUS BLOCK VIRTUAL ADDRESS 
;EXIT STATUS BUFFER 

000034 O. LGT,H=. i LENGTH OF OCB 

I/O PACKET OFFSET DEFINITIONS 

000000 
000002 
000003 
000004 
000006 
000010 
000012 
000014 
000016 
000020 
000022 
000024 
000026 
000042 

• =0 
I. LNK: 
r. PRI: 
I. EFN: 
I. TCB: 
r. LN 2: 
I. UCB: 
I.FCN: 
I.IOSB: 

I.AST: 
I. PRM: 

000044 r. ATTL=. 

000044 r. LGTH=. 

.ASECT 

.BLKW 

.BLKB 

.BLKB 

.BLKW 
• BLKW 
• BLKW 
.BLKW 
.BLKW 
.BLKW 
.BLKW 
.BLKW 
• BLKW 
.BLKW 
.BLKW 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
6 
1 

;I/O QUEUE THREAD WORD 
;REQUEST PRIORITY 
;EVENT FLAG NUMBER 
;TCB ADDRESS OF REQUESTOR 
;POINTER TO SECOND LUN WORD 
iPOINTER TO UNIT CONTROL BLOCK 
i I/O FUNCTION CODE 
;VIRTUAL ADDRESS OF I/O STATUS BLOCK 
;I/O STATUS BLOCK RELOCATON BIAS 
; I/O STATUS BLOCK ADDRESS 
;AST SERVICE ROUTINE ADDRESS 
;RESERVED FOR MAPPING PARAMETER *1 
; PARAMETERS 1 TO 6 
;USER MODE DIAGNOSTIC PARAMETER WORD 

;MINIMUM LENGTH OF I/O PACKET (USED BY 
;FILE SYSTEM TO CALCULATE MAXIMUM 
;NUMBER OF ATTRIBUTES) 
;LENGTH OF I/O REQUEST CONTROL BLOCK 

C-33 



000000 
000002 
000003 
000004 
000006 

000012 

000000 
000002 
000006 
000010 
000011 
000012 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

GROUP GLOBAL EVENT FLAG CONTROL BLOCK OFFSETS 
i 
• =0 
G. LNK: .BLKW 1 iLINK WORD 
G .GRP: .BLKB 1 iGROUP NUMBER 
G. STAT: • BLKB 1 iSTATUS BYTE 
G.CNT: .BLKW 1 iACCESS COUNT 
G. EFLG: .BLKW 2 i EVENT FLAGS 

G. LGTH=. iLENGTH OF GROUP GLOBAL CONTROL BLOCK 

STATUS BYTE DEFINITIONS 
i 
GS,. DEL=l iGROUP MARKED FOR DELETE 

EXECUTIVE POOL MONITOR CONTROL FLAGS 

$POLST IS THE SYNCHRONIZATION WORD BETWEEN THE EXEC AND POOL MONITOR 
, 
PC.HIH=l 
PC. LOW=2 
PC. ALF=4 
PC.NRM=PC.HIH*400 
PC.ALM=PC.LOW*400 

i 

iHIGH POOL LIMIT CROSSED (l=YES) 
iLOW POOL LIMIT CROSSED (l=YES) 
iPOOL ALLOCATION FAILURE (l=YES) 
iPOOL TASK INHIBIT BIT FOR HIGH POOL 
iPOOL TASK INHIBIT BIT FOR LOW POOL 

i $POLFL IS THE POOL USAGE CONTROL WORD 
i 
PF.INS=40 
PF.LOG=100 
PF. REQ=200 
PF. ALL=l 77777 

i 

iREJECT NONPRIVILEGED INS/RUN/REM 
iLOGINS ARE DISABLED 
iSTALL REQUEST OF NONPRIV. TASKS 
iTAKE ALL POSSIBLE ACTIONS TO SAVE POOL 

CLI PARSER BLOCK (CPB) DEFINITIONS 
i 
• =0 
C. PTCB: .BLKW 
C. PNAM: .BLKW 
C. PSTS: .BLKW 
C. PDPL: .BLKB 
C. PCPL: • BLKB 
C. PRMT: 

1 
2 
1 
1 
1 

iADDRESS OF CLI'S TCB 
iCLI NAME 
iSTATUS MASK 
i LENGTH OF DEFAULT PROMPT 
iLENGTH OF CNTRL/C PROMPT 
iSTART OF ASCII PROMPT STRINGS 
iTHE DEFAULT STRING IS CONCANTENATED 
iWITH THE ~C STRING 

C-34 

C 

.. -C--·.-.~ 

c 

( 

(, 



( 

000000 
000002 
000004 
000006 
000007 
000010 

( 000012 
000013 

000014 

000010 
000012 
000014 
000016 
000020 
000022 
000024 
000030 

000032 

( 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

STATUS BIT DEFINITIONS 
i 
CPo NUL=l 
CP.MSG=2 
CPo LGO=4 
CP.DSB=10 
CPo PRV=20 
CP.SGL=40 
CP.NIO=100 

CP.RST=200 

CPo EXT=400 

iPASS EMPTY COMMAND LINES TO CLI 
iCLI DESIRES SYSTEM MESSAGES 
iCLI WANTS COMMANDS FROM LOGGED OFF TTYS 
iCLI IS DISABLED 
iUSER MUST BE PRIV TO SET TTY TO THIS CLI 
iDON'T HANDLE CONTINUATIONS (M-PLUS ONLY) 
iMCR ••• , HEL, BYE DO NO I/O TO TTY 
iHEL, BYE ALSO DO NOT SET CLI E,TC. 
iABILITY TO SET TO THIS CLI IS RESTRICTED 
iTO THE CLI ITSELF 
i PASS TASK EXIT PROMPT REQUESTS TO CLI 

IDENTIFIER CODES FOR SYSTEM TO CLI MESSAGES. 

CODES 0 - 127. ARE RESERVED FOR USE BY DIGITAL, 
CODES 128. - 255. ARE RESERVED FOR USE BY CUSTOMERS 

i 
CM.INE=l 
CM.IND=2 
CM.CEN=3 
CM.CDS=4 
CM. ELM=5 
CM. EXT=6 
CM. LKT=7 
CM. RMT=8. 
CM .MSG=9. 

iCLI INITIALIZ ED ENABLED 
iCLI INITIALIZED DISABLED 
iCLI ENABLED 
iCLI DISABLED 
iCLI BEING ELIMINATED 
iCLI MUST EXIT IMMEDIATELY 
iNEW TERMINAL LINKED TO CLI 
iTERMINAL REMOVED FROM CLI 
liGENERAL MESSAGE TO CLI 

ANCILLARY CONTROL BLOCK (ACB) DEFINITIONS 
i 
• =0 
A. REL: .BLKW 1 iACD RELOCATION BIAS 
A.DIS: .BLKW 1 iACD DISPATCH TABLE POINTER 
A.MAS: .BLKW 1 iACD FUNCTION MASK 
A.NUM: .BLKB 1 iACD IDENTIFICATION NUMBER 

.BLKB 1 iRESERVED 
A.LIN: .BLKW 1 iACD LINK WORD 
A. ACC: .BLKB 1 iACD ACCESS COUNT 
A.STA: .BLKB 1 iACD STATUS BYTE 

A. LEN1=. iLENGTH OF PROTOTYPE ACB 

• =A. LIN iFULL ACB OVERLAPS PROTOTYPE ACB 
A.IMAP: .BLKW 1 iACD INTERRUPT BUFFER RELOCATION 
A. IBUF: .BLKW 1 iACD INTERRUPT BUFFER ADDRESS 
A.ILEN: .BLKW 1 iACD INTERRUPT BUFFER LENGTH 

BIAS 

A. SMAP: .BLKW 1 iACD SYSTEM STATE BUFFER RELOCATION BIAS 
A. SBUF: .BLKW 1 iACD SYSTEM STATE BUFFER ADDRESS 
A. SLEN: .BLKW 1 iACD SYSTEM STATE BUFFER LENGTH 
A.IOS: .BLKW 2 iACD I/O STATUS 
A.RES: .BLKW 1 iRESERVEDFOR USE BY THE ACD 

A. LEN2=. iLENGTH OF FULL ACB 

C-35 



0.0.0.0.0.0. 
0.0.0.0.0.2 
0.0.0.0.0.4 
0.0.0.0.0.6 
0.0.0.0.10. 
0.0.0.0.12 
0.0.0.0.14 
0.0.0.0.16 
0.0.0.0.20. 
0.0.0.0.22 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

DEFINE THE FLAG VALUES IN THE OFFSET U.AFLG 
i 
UA.ACC=1 
UA. PRO=2 
UA. ECH=4 
UA.TYP=1o. 
UA. SPE=20 
UA. PUT=40 
UA. CAL=1o.o. 
UA. COM=2o.o. 
UA.ALL=4o.o. 
UA. TRA=1o.o.o. 

iACCEPT THIS CHARACTER 
iPROCESS THIS CHARACTER 
iECHO THIS CHARACTER 
iFORCE THIS CHARACTER INTO TYPEAHEAD 
iTHIS CHARACTER HAS A SPECIAL ECHO 
iPUT THIS CHARACTER IN THE INPUT BUFFER 
iCALL THE ACD BACK AFTER THE TRANSFER 
i COMPLETE THE INPUT REQUEST 
iALLOW PROCESSING OF THIS I/O REQUEST 
iTRANSFER CHARS. WHEN I/O COMPLETES 

DEFINE THE ACD ENTRY POINTS (OFFSETS INTO THE DISPATCH TABLE) 
i 
• =0. 
A.ACCE: .BLKW 
A. DEQU: • BLKW 
A. POWE: • BLKW 
A.INPU: .BLKW 
A.OUTP: .BLKW 
A.CONN: .BLKW 
A. DISC: • BLKW 
A. REC E : • B L KW 
A. PROC: • BLKW 
A.CALL: .BLKW 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

iI/O REQUEST ACCEPTANCE ENTRY POINT 
iI/O REQUEST DEQUEUE ENTRY POINT 
iPOWER FAILURE ENTRY POINT ' 
iINPUT COMPLETION ENTRY POINT 
iOUTPUT COMPLETION'ENTRY POINT 
iCONNECTION ENTRY POINT 
iDISCONNECTION ENTRY POINT 
iINPUT CHARACTER RECEPTION ENTRY POINT 
iINPUT CHARACTER PROCESSING ENTRY POINT 
iCALL ACD BACK AFTER TRANSFER ENTRY POINT 

DEFINE THE STATUS BITS IN A.STA OF THE PROTOTYPE ACB 
i 
AS.DEL=1 
AS.DIS=2 

• PSECT 

iACD IS MARKED FOR DELETE 
iACD IS DISABLED 

C-36 

c 



( 

c 

c 

177772 
177773 
177774 
177776 
000000 
000004 
000005 
000006 
000007 
000010 
000011 
000012 
000014 
000016 
000020 
000020 
000022 
000024 

~-~---~-~-~-- ------------------------ ~--~--

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

SCBDF$ 

SCBDF$ "SYSDEF 

STATUS CONTROL BLOCK 

THE STATUS CONTROL BLOCK (SCB) DEFINES THE STATUS OF A DEVICE 
CONTROLLER. THERE IS ONE SCB FOR EACH CONTROLLER IN A SYSTEM. 
THE SCB IS POINTE.D TO BY UNIT CONTROL BLOCKS. TO EXPAND ON THE 
TELETYPE EXAMPLE ABOVE, EACH TELETYPE INTERFACED VIA A DLII-A 
WOULD HAVE A SCB SINCE EACH DLII-A IS AN INDEPENDENT INTERrACE 
UNIT. THE TELETYPES INTERFACED VIA THE DHll WOULD ALSO EACH HAVE 
AN SCB SINCE THE DH11 ISA SINGLE CONTROLLER BUT MULTIPLEXES MANY 
UNITS IN PARALLE L. 

• ASECT 
• =177772 
S. RCNT: • BLKB 
S.ROFF: .BLKB 
S.BMSV: .BLKW 
S.BMSK: .BLKW 
S. LHD: • BLKW 
S.PRI: .BLKB 
S. VCT: • BLKB 
S.CTM: .BLKB 
S. ITM : • B LKB 
S.CON: .BLKB 
S.STS: .BLKB 
S.CSR: .BLKW 
S. PKT: • BLKW 
S.FRK: .BLKW 
S. DMCS: 

.BLKW 

.BLKW 

.BLKW 

1 
1 
1 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 

iNUMBER OF REGISTERS TO COpy ON ERROR 
iOFFSET TO FIRST DEVICE REGISTER 
iSAVED I/O ACTIVE BITMAP AND POINTER TO EMB 
iDEVICE I/O ACTIVE BIT MASK 
iCONTROLLER I/O QUEUE LISTHEAD 
iDEVICE PRIORITY 
iINTERRUPT VECTOR ADDRESS /4 
iCURRENT TIMEOUT COUNT 
iINITIAL TIMEOUT COUNT 
iCONTROLLER INDEX 
iCONTROLLER STATUS (O=IDLE,l=BUSY) 
iADDRESS OF CONTROL STATUS REGISTER 
iADDRESS OF CURRENT I/O PACKET 
iFORK BLOCK LINK WORD 
iDMII-BB CSR FOR FDX TTDRV 
iFORK-PC 
i FORK-R5 
iFORK-R4 

• IF NB SYSDEF 

.IF DF L$$DRV & M$$MGE 

.BLKW 

• ENDC 

S.CCB: 
S.MPR: .BLKW 

.BLKW 
S. UMHD: • BLKW 
S. UMCT: .BLKW 

.IFF 

• PSECT 

1 iFORK-DRlVER RELOCATION BASE 

iL$$DRV & M$$MGE 

6 
1 
2 
1 

iMIXED MASSBUS CHANNEL CONTROL BLOCK 
i 11/70 EXTENDED MEMORY UNIBUS DEVICE C-BLOCK 
i BUFF ER WORD 
i LIST HEAD FOR UMR ASS IGNMENT BLOCK (S) 
iCOUNT OF AVAILABLE UMR ASSIGNMENT BLOCK(S) 

C-37 



000000 
000002 
000004 
000006 
000010 
000011 
000012 

000014 

~-~---~~~~~-~-~~~-~ ~---------

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

STATUS CONTROL BLOCK PRIORITY BYTE CONDITION CODE STATUS BIT 
DEFINITIONS 

i 
SP. EIP=l 
SP. ENB=2 
SP. LOG=4 
SPARE=10 

iERROR IN PROGRESS (l=YES) 
iERROR r,.OGGING ENABLED (O=YES) 
iERROR LOGGING AVAILABLE (l=YES) 
i SPARE BIT 

MAPPING ASSIGNMENT BLOCK (FOR UNIBUS MAPPING REGISTER ASSIGNMENT) 

• =0 
M. LNK: 
M. UMRA: 
M. UMRN: 
M. UMVL: 
M.UMVH: 
M. BFVH: 
M.BFVL: 

M. LGTH=. 

• ASECT 

.BLKW i 

.BLKW 1 

.BLKW 1 

.BLKW 1 

.BLKB 1 

.BLKB 1 

.BLKW 1 

• ENDC iSYSDEF 

• PSECT 

iLINK WORD 
iADDRESS OF FIRST ASSIGNED UMR 
iNUMBER OF UMR'S ASSIGNED * 4 
iLOW 16 BITS MAPPED BY 1ST ASSIGNED UMR 
iHIGH 2 BITS MAPPED IN BITS 4 AND 5 
iHIGH 6 BITS OF PHYSICAL BUFFER ADDRESS 
iLOW 16 BITS OF PHYSICAL BUFFER ADDRESS 

iLENGTH OF MAPPING ASSIGNMENT BLOCK 

C-38 

( 

(-

( 



( 

c 

( 

( 

000000 
000002 
000003 
000004 
{J00006 
000012 
000016 
000022 
000026 
000030 
000032 
000034 
000036 
000040 
000041 
000044 
000046 
000050 
000052 
000054 
000056 
000057 
000060 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

TCBDF$ 

TCBDF$ "SYSDEF 

TASK CONTROL BLOCK OFFSET AND STATUS DEFINITIONS 

TASK CONTROL BLOCK 

• =0 
T. LNK: 
T. PRI: 
T.IOC: 
T.CPCB: 
T.NAM: 
T. RCVL: 
T. ASTL: 
T. EFLG: 
T. UCB : 
T. TCBL: 
T.STAT: 
T.ST2: 
T. ST3: 
T. DPRI: 
T. LBN: 
T. LDV: 
T. PCB: 
T. MXSZ : 
T.ACTL: 
T.SAST: 

T.TIO: 
T.TKSZ: 

$$$=. 

• ASECT 

• BLKW 
.BLKB 
• BLKB 
.BLKW 
.BLKW 
• BLKW 
.~BLKW 

.BLKW 

.BLKW 

.BLKW 

.BLKW 

.BLKW 
• BLKW 
• BLKB 
.BLKB 
• BLKW 
.BLKW 
.BLKW 
• BLKW 
• BLKW 
.BLKB 
• BLKB 
.BLKW 

T.ATT: .BLKW 
T. OFF: • BLKW 

.BLKB 
T.SRCT: .BLKB 
T. RRFL: • BLKW 

1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 
3 
1 
1 
1 
1 
1 
1 
1 
1 

2 
1 

1 
1 
2 

.IF NDF P$$LAS 

;UTILITY LINK WORD 
;TASK PRIORITY 
; I/O PENDING COUNT 
;POINTER TO CHECKPOINT PCB 
;TASK NAME IN RAD50 
;RECEIVE QUEUE LISTHEAD 
;AST QUEUE LISTHEAD 
;TASK LOCAL EVENT FLAGS 1-32 
;UCB ADDRESS FOR PSEUDO DEVICE 'TI' 
;TASK LIST THREAD WORD 
;FIRST STATUS WORD (BLOCKING BITS) 
;SECOND STATUS WORD (STATE BITS) 
;THIRD STATUS WORD (ATTRIBUTE BITS) 
;TASK'S DEFAULT PRIORITY 
;LBN OF TASK LOAD IMAGE 
;UCB ADDRESS OF LOAD DEVICE 
;PCB ADDRESS OF TASK PARTITION 
;MAXIMUM SIZE OF TASK IMAGE (MAPPED ONLY) 
;ADDRESS OF NEXT TASK IN ACTIVE LIST 
;SPECIFIED AST LISTHEAD 
;UNUSED BYTE 
;BUFFERED I/O COUNT 
;TASK SIZE (FROM L$BLDZ IN LABEL BLK) IN: 

UNMAPPED SYSTEMS - BYTES 
; MAPPED SYSTEMS - 32 WORD BLOCKS 
;TASK SIZ E (FROM L$BMXZ IN LABEL BLK) 
;FOR RSX11S SYSTEMS ONLY 

MAPPED SYSTEMS - 32 WORD BLOCKS 
UNMAPPED SYSTEMS - BYTES 

;MARK START OF PLAS AREA 
;ATTACHMENT DESCRIPTOR LISTHEAD 
;OFFSET TO TASK IMAGE IN PARTITION 
;IF A$$HDR IS DEFINED, THIS WORD ALSO 
;INCLUDES THE LENGTH OF THE ALTERNATE 
;HEADER REFRESH AREA STORED IN T.HDLN 
;RESERVED 
;SREF WITH EFN COUNT IN ALL RECEIVE QUEUES 
;RECEIVE BY REFERENCE LISTHEAD 

.=$$$ ;POINT TO START OF PLAS AREA 
.ENDC ;P$$LAS 

C-39 



SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

$$$=. 
T.OCBH: 
T. RDCT: 

• =$$$ 

$$$=. 
T. EFLM: 

.=$$$ 

$$$=. 
T.HDLN: 

• =$$$ 

$$$=. 
T.GGF: 

.=$$$ 

T. LGTH=. 
T. EXT=O 

.IF NB 

.BLKW 

.BLKW 

.IF NDF 

• ENDC 

.BLKW 

.IF NDF 

• EN DC 

.BLKB 

.IF NDF 

.ENDC 

.BLKB 

.IF NDF 

• ENDC 

• EVEN 

.IFF 

SYSDEF 

2 
! 

P$$OFF 

iP$$OFF 

2 

S$$TOP 

iS$$TOP 

! 

A$$HDR 

iA$$HDR 

! 

G$$EFN 

iG$$EFN 

iMARK START OF PARENT OFFSPRING TASKING 
iOFFSPRING CONTROL BLOCK LISTHEAD 
iOUTSTANDING OFFSPRING COUNT 

iPOINT TO START OF PARENT OFFSPRING AREA 

iMARK START OF EVENT FLAG MASK AREA 
iEVENT FLAG MASK WORD 
iEVENT FLAG MASK ADDRESS 

& T$$BUF 
iPOINT TO START OF EVENT FLAG MASK AREA 

& T$$BUF 

iTASK HEADER LENGTH IN 32-WORD BLOCKS 

iNOT SUPPORTED IF NDF 

iGROUP GLOBAL USE COUNT FOR TASK 

R$$SND 

R$$SND 

iLENGTH OF TASK CONTROL BLOCK 
iLENGTH OF TCB EXTENSION 

AREA 

TASK STATUS DEFINITIONS 

FIRST STATUS WORD (BLOCKING BITS) 
i 
TS.EXE=!OOOOO 
TS. RDN=40000 
TS.MSG=20000 
TS.NRP=!OOOO 
TS. RUN=4000 
TS. HLD=~OOO 
TS.STP=!OOO 
TS.OUT=400 
TS.CKP=200 
TS.CKR=!OO 

iTASK NOT IN EXECUTION (!=YES) 
iI/O RUN DOWN IN PROGRESS (!=YES) 
iABORT MESSAGE BEING OUTPUT (!=YES) 
iTASK MAPPED TO NONRESIDENT PARTITION (!=YES) 
iTASK IS RUNNING ON ANOTHER PROCESSOR (!=YES) 
iTASK HAtF-LOADED BY TASK LOADER 
iTASK EXTERNALLY BLOCKED VIA CLI COMMAND 
iTASK IS OUT OF MEMORY (!=YES) 
iTASK IS BEING CHECKPOINTED (!=YES) 
iTASK CHECKPOINT REQUESTED (!=YES) 

C-40 

c 

E.·-~ C---

(, 

c 

c 



c 

c 

c 

SYSTEM DATA ST~UCTURES AND SYMBOLIC OFFSETS 

TASK BLOCKING STATUS MASK 
; 
TS.BLK=TS.CKP!TS.CKR!TS.EXE!TS.MSG!TS.NRP!TS.OUTITS.RDN!TS.STP 

SECOND STATUS WORD (STATE BITS) 
; 
T2.AST=100000 
T2. DST=4 0000 
T2.CHK=20000 
T2.CKD=10000 
T2. SEF=4000 
T2. FXD=2000 
T2. REX=1000 
T2.CAF=400 
T2.HLT=200 
T2. ABO=100 
T2. STP=40 
T2. STP=20 
T2. SPN=10 
T2. SPN=4 
T2. WFR=2 
T2.WFR=1 

;AST IN PROGRESS (l=YES) 
;AST RECOGNITION DISABLED (l=YES) 
;TASK NOT CHECKPOINT~BLE (l=YES) 
;CHECKPOINTING DISABLED (l=YES) 
;TASK STOPPED FOR EVENT FLAGS (l=YES) 
;TASK FIXED IN MEMORY (l=YES) 
;ABORT AST EFFECTED OR IN PROGRESS (l=YES) 
;DYN CHECKPOINT SPACE ALLOCATION FAILURE 
;TASK IS BEING HALTED (l=YES) 
;TASK MARKED FOR ABORT (l=YES) 
; SAVED T2. STP ON AST .IN PROGRESS 
;TASK STOPPED (l=YES) 
; SAVED T2.SPN ON AST IN PROGRESS 
;TASK SUSPENDED (l=YES) 
;SAVED T2.WFR ON AST IN PROGRESS 
;TASK IN WAITFOR STATE (l=YES) 

THIRD STATUS WORD (ATTRIBUTE BITS) 
; 
T3.ACP=100000 
T3. PMD=40000 
T 3. REM=20000 
T3.PRV=10000 
T 3. MCR=4 000 
T3.SLV=2000 
T3.CLI=1000 
T3. RST=400 
T3. NSD=200 
T3.CAL=100 
T3.ROV=40 
T3.NET=20 
T3.GFL=10 
; =4 
T3. SWS=2 

=1 

• ENDC ;SYSDEF 

• PSECT 

;ANCILLARY CONTROL PROCESSOR (l=YES) 
;DUMP TASK ON SYNCHRONOUS ABORT (O=YES) 
;REMOVE TASK ON EXIT (l=YES) 
;TASK IS PRIVILEGED (l=YES) 
;TASK REQUESTED AS EXTERNAL MCR FUNCTION(l=YES) 
;TASK IS A SLAVE TASK (l=YES) 
;TASK IS A COMMAND LINE INTERPRETER (l=YES) 
;TASK IS RESTRICTED (l=YES) 
;TASK DOES NOT ALLOW SEND DATA 
;TASK HAS CHECKPOINT SPACE IN TASK IMAGE 
; TASK HAS RES IDENT OVER LA YS 
;NETWORK PROTOCOL LEVEL 
;TASK HAS ITS GRP GBL EVENT FLAGS LOCKED 
; RESERVED FOR FUTURE USE 
;RESERVED FOR USE BY SOFTWARE SERVICES 
;RESERVED FOR FUTURE USE 

C-41 



~~-~-----------

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

UCBDF$ 

177772 
177772 
177774 
177776 
000000 
000002 
000004 
000005 
000006 
000007 
000010 
000012 
000014 
000016 
000020 
000022 
000024 
000026 
000030 

UCBDF$ "TTDEF,SYSDEF 

UNIT CONTROL BLOCK 

THE UNIT CONTROL BLOCK (UCB) DEFINES THE STATUS OF AN INDIVIDUAL 
DEVICE UNIT AND IS THE CONTROL BLOCK THAT IS POINTED TO BY THE 
FIRST WORD OF AN ASSIGNED LUN. THERE IS ONE UCB FOR EACH DEVICE 
UNIT OF EACH DCB. THE UCB'S ASSOCIATED WITH A PARTICULAR DCB ARE 
CONTIGUOUS IN MEMORY AND ARE POINTED TO BY THE DCB. UCB'S ARE 
VARIABLE LENGTH BETWEEN DCB'S BUT ARE OF THE SAME LENGTH FOR A 
SPECIFIC DCB. TO FINISH THE TELETYPE EXAMPLE ABOVE, EACH UNIT ON 
BOTH INTERFACES WOULD HAVE A UCB • 

• ASECT 

• IF NB SYSDEF 

• IF DF E$$DVC C--
.IF DF M$$MUP iIS U.OWN THERE? 

.=177766 
.IFF 

• =177770 

U.IOC: 
U. ERSL: 
U.ERHL: 
U.ERSC: 
U. ERHC: 

• =177772 
U.MUP: 
U. CLI : 
U.LUIC: 
U. OWN: 
U.DCB: 
U. RED: 
U. CTL: 
U.STS: 
U.UNIT: 
U. ST'2: 
U.CW1: 
U.CW2: 
U.CW3: 
U.CW4: 
U.SCB: 
U.ATT: 
U. BUF: 

U.CNT: 

• ENDC iM$$MUP 

.BLKW 
• BLKB 
• BLKB 
• BLKB 
• BLKB 

2 
1 
1 
1 
1 

• ENDC iE$$DVC 

• ENDC iSYSDEF 

.BLKW 

.BLKW 

.BLKW 

.BLKW 
• BLKW 
.BLKB 
.BLKB 
.BLKB 
.BLKB 
.BLKW 
.BLKW 
.BLKW 
.BLKW 
.BLKW 
• BLKW 
.BLKW 
.BLKW 
.BLKW 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

i I/O COUNT SINCE MOUNT 
i SOFT ERROR LIMIT 
iHARD ERROR LIMIT 
iSOFT ERROR COUNT 
iHARD ERROR COUNT 

(ERROR LOG DEVS ONLY)_ 

iMULTIUSER PROTECTION FLAG WORD 
iTCB OF COMMAND LINE INTERPRETER 
iLOGIN UIC - MULTI USER SYSTEMS ONLY 
iQWNING TERMINAL - MULTI USER SYSTEMS ONLY 
iBACK POINTER TO DCB 
iPOINTER TO REDIRECT UNIT UCB 
iCONTROL PROCESSING FLAGS 
iUNIT STATUS 
iWHYSICAL UNIT NUMBER 
iUNIT STATUS EXTENSION 
iFIRST DEVICE CHARACTERISTICS WORD 
iSECOND DEVICE CHARACTERISTICS WORD 
iTHIRD DEVICE CHARACTERISTICS WORD 
iFOURTH DEVICE CHARACTERISTICS WORD 
iPOINTER TO SCB 
iTCB ADDRESS OF ATTACHED TASK 
iRELOCATION BIAS OF CURRENT I/O REQUEST 
iBUFFER ADDRESS OF CURRENT I/O REQUEST 
iBYTE COUNT OF CURRENT I/O REQUEST 

C-42 

c 

( 

c 



c 

c 

000032 
000034 
000032 
000032 
000034 

000036 
000036 
000040 
000042 

000036 
000040 
000044 

000050 
000052 
000054 
000060 
000070 
000074 
000076 
000100 
000102 
000104 
000110 
000112 
000113 

000114 
000120 

000024 
000026 
000034 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

U. ACP=U. CNT+2 
U. VCB=U. CNT+4 
U. CBF=U. CNT+2 
U. KCSR=U .CNT+2 
U. KCS6=U. KCSR+2 

iADDRESS OF TCB OF MOUNTED ACP 
iADDRESS OF VOLUME CONTROL BLOCK 
iCONTROL BUFFER RELOCATION AND ADDRESS 
iCSR ADDRESS OF KMC-ll 
iCSR+6 OF KMC-ll 

MAGTAPE DRIVER DEFINITIONS 
i 
U. SPC=U .CNT+6 
U. SUB=U. CNT+6 
U. FNUM=U .CNT+lO 
U. FCDE =U. CNT+l2 

i SPACING COUNT 
;SUBCONTROLLER, PHYSICAL UNIT t. 
iFORMATTER NUMBER 
iFUNCTION CODE AND INDEX 

MSCP DISK DRIVER UCB OFFSETS 
i 
U. UTMO=U. VCB+2 
U. LHD=U. VCB+4 
U. BPKT=U. VCB+l 0 

iUNIT COMMAND TIME OUT 
iUNIT OUTSTANDING I/O PACKET LISTHEAD 
iUNIT BAD BLOCK PACKET WAITING LIST 

CHARACTERISTICS OBTAINED FROM "GET UNIT STATUS" END PACKETS 
i 
U.MLUN=U. VCB+l4 
U. UNFL=U. VCB+l6 
U. HSTI=U. VCB+20 
U. UNTI=U. VCB+24 
U .MEDl=U. VCB+34 
U. SHUN=U. VCB+40 
U. SHST=U. VCB+4 2 
U.TRCK=U. VCB+44 
U. GRP=U. VCB+46 
U. CYL=U. VCB+5 0 
U. RCTS=U. VCB+54 
U. RBNS=U. VCB+56 
U. RCTC=U. VCB+5 7 

iMULTI-UNIT CODE 
iUNIT FLAGS 
iHOST IDENTIFIER 
iUNIT IDENTIFIER 
iMEDIA IDENTIFIER 
i SHADOW UNIT 
iSHADOW UNIT STATUS 
iUNIT TRACK SIZE 
iUNIT GROUP SIZE 
iUNIT CYLINDER SIZE 
iUNIT RCT TABLE SIZE 
iUNIT RBN 'S / TRACK 
i UNIT RCT COPIES 

CHARACTERISTICS OBTAINED FROM "ONLINE" OR "SET UNIT CHARACTERISTICS" 
END PACKETS 

i 
U. UNSZ =U. VCB+6 0 
U. VSER=U. VCB+64 

iUNIT SIZE 
iVOLUME SERIAL NUMBER 

TERMINAL DRIVER DEFINITIONS 
i 
• =U .BUF 
U. TUX: .BLKW 
U.TSTA: .BLKW 
U.TTAB: .BLKW 

1 
3 
1 

;POINTER TO UCB EXTENSION (UCBX) 
iSTATUS TRIPLE-WORD 
iIF 0: U.TTAB+l IS SINGLE-CHARACTER TYPE-AHEAD 
i BUFFER, CURRENTLY EMPTY 
iIF ODD: U.TTAB+l IS SINGLE-CHARACTER 

TYPE-AHEAD BUFFER AND HOLDS A 
i CHARACTER 
iIF NON-O AND EVEN: POINTER TO MULTI-CHARACTER 

TYPE-AHEAD BUFFER 

C-43 



000036 
000037 
000040 
000042 
000043 
000044 
000046 
000047 
000050 
000052 
000054 
000056 

000030 
000032 
000036 

SYST~M DATA STRUCTURES AND SYMBOLIC OFFSETS 

U. TLPP: .BLKS 1 iLINES PER PAGE 
U. TFRQ: .BLKS 1 iFORK REQUEST BYTE 
U. TFLK: .BLKW 1 iFORK LIST LINK WORD 
U. TCHP: .BLKS 1 iCURRENT HORIZONTAL POSITION 
U.TCVP: .BLKS 1 iCURRENT VERTICAL POSITION 
U.UIC: .BLKW 1 iTERMINAL UIC 
U. TTYP: .BLKS 1 iTERMINAL TYPE 
U. TMTI: .BLKS 1 iMODEM TIMER 
U.CTYP: .BLKW 1 iCONTROLLER TYPE 
U.ACB: • BLKW 1 iANCILLARY CONTROL DRIVER BLOCK ADDR 
U.AFLG: .BLKW 1 iANCILLARY CONTROL DRIVER FLAGS WORD 
U.ADMA: .BLKW 1 iANCILLARY CONTROL DRIVER DMA BUFFER 

CONSOLE DRIVER DEFINITIONS 
i 
• =U .CNT 
U.CTCB: 
U. COTQ: 
U.RED2: 

.BLKW 

.BLKW 

.BLKW 

1 
2 
1 

iADDRESS OF CONSOLE LOGGER TCB 
iI/O PACKET LIST QUEUE 
iREDIRECT UCB ADDRESS 

DEFINE BITS IN STATUS WORD 1 (U.TSTA) 
i 
S1. RST=1 
S1. RUB =2 
SI.ESC=4 
SI. RAL=10 
SI. RNE=20 
SI. CTO=40 
SI.0BY=100 
SI. IBYi200 
S1. BEL=400 
S1.DPR=1000 
S1.DEC=2000 
S 1. DS I =4 000 
S1.CTS=10000 
S1. USI=20000 

S1. OBF=4 0000 
S1. IBF=100000 

iREAD WITH SPECIAL TERMINATORS IN PROGRESS 
iRUBOUT SEQUENCE IN PROGRESS (NON-SCOPE) 
iESCAPE SEQUENCE IN PROGRESS 
iREAD ALL IN PROGRESS 
iECHO SUPPRESSED 
i OUTPUT STOPPED BY CTRL-O 
i 0 UT PUT BUS Y 
i INPUT BUSY 
i BELL PENDING 
iDEFER PROCESSING OF CHAR. IN U.TECB 
iDEFER ECHO OF CHAR. IN U.TECB 
i INPUT PROCESSING DISABLED 
i OUTPUT STOPPED BY CTRL-S 
iUNSOLICITED INPUT IN PROGRESS 
iBIT 14 RESERVED FOR NON-BUFFERED OUTPUT 
i BUFFERED OUTPUT IN PROGRESS 
i BUFFERED INPUT IN PROGRESS 

DEFINE BITS IN STATUS WORD 2 (U.TSTA+2) 
i 
S2.ACR=1 
S2.WRA=6 
S2.WRB=2 
S2.CR=10 
S2.BRQ=20 
S2. SRQ=40 

S2.0RQ=100 
S2. IRQ=200 
S2. HFL=3400 
S2. VFL=4000 
S2. HHT=10000 
S2.HFF=20000 
S2. FLF=40000 
S2.FDX=100000 

iWRAP-AROUND (AUTOMATICI CR-LF) REQUIREb 
iCONTEXT FOR WRAP-AROUND 
iLOW BIT IN S2.WRA BIT PATTERN 
iTRAILING CR REQUIRED ON OUTPUT 
i BREAK-THROUGH-WRITE REQUEST IN QUE UE 
iSPECIAL REQUEST IN QUEUE 
i (IO.ATT, IO.DET, SF.SMC) 
i OUTPUT REQUEST IN QUEUE (MUST = S1. OBY) 
iINPUT REQUEST IN QUEUE (MUST = S1.IBY) 
iHORIZONTAL FILL REQUltEMENT 
iVERTICAL FILL REQUIREMENT 
iHARDWARE HORIZONTAL TAB PRESENT 
iHARDWARE FORM-FEED PRESENT 
iFORCE LINE FEED BEFORE NEXT ECHO 
;LINE IS IN FULL DUPLEX MODE 

C-44 

C 

( 

(, 



---------------------~~--~~-"""~-""""--" 

c:=-

c 

( 

c 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

DEFINE BITS IN STATUS WORD 3 (U.TSTA+4) 
i 
S3. RAL=10 

S3. RPO=20 
S3.WES=40 
S3. TAB=100 
S3.8BC=200 
S3. RCU=4 00 
S3.ABD=1000 
S 3. ABP=2000 
S3.WAL=4000 
S3. VER=10000 

S3.BCC=20000 

S3. DAO=4 0000 

S3. PCU=100000 

• PSECT 

;TERMINAL IS IN READ-PASS-ALL MODE 
i (S3.RAL MUST = SI.RAL) 
iREAD W/PROMPT OUTPUT IN PROGRESS 
;TASK WANTS ESCAPE SEQUENCES 
iTYPE-AHEAD BUFFER ALLOCATION REQUESTED 
;PASS 8 BITS ON INPUT 
;RESTORE CURSOR (MUST = TF.RCU*4~0) 
;AUTO-BAUD SPEED DETECTION ENABLED 
iAUTO-BAUD SPEED DETECTION IN PROGRESS 
;WRITE-PASS-ALL (MUST = TF.WAL*400) 
i LAST CHAR. IN TYPE-AHEAD BUFFER 
iHAS PARITY ERROR 
i LAST CHAR. IN TYPE-AHEAD BUFFER 
;HAS FRAMING ERROR 
;LAST CHAR. IN TYPE-AHEAD BUFFER 
;HAS DATA OVERRUN ERROR 
iNOTE - THE 3 BITS ABOVE MUST CORRESPOND 
iTO THE RESPECTIVE ERROR FLAGS IN THE 
;HARDWARE RECEIVE BUFFER 
;POSITION CURSOR (MUST = TF.PCU*400) 

DEVICE TABLE STATUS DEFINITIONS 

DEVICE CHARACTERISTICS WORD 1 (U.CWl) DEVICE TYPE DEFINITION BITS. 
i 
DV. REC=1 
DV. CCL=2 
DV. TTY=4 
DV. DIR=10 
DV. SDI=20 
DV. SQD=40 
DV.MSD=100 
DV. UMD=200 
DV.MBC=400 
DV. EXT=400 
DV.SWL=1000 
DV.ISP=2000 
DV. OSP=4 000 
DV. PSE=10000 
DV. COM=20000 
DV. F 11=40000 
DV.MNT=100000 

;RECORD ORIENTED DEVICE (I=YES) 
iCARRIAGE CONTROL DEVICE (I=YES) 
;TERMINAL DEVICE (I=YES) 
;FILE ST.RUCTURED DEVICE (I=YES) 
iSINGLE DIRECTORY DEVICE (I=YES) 
;SEQUENTIAL DEVICE (I=YES) 
iMASS STORAGE DEVICE (l=YES) 
i USER MODE DIAGNOSTICS SUPPORTED (I=YES) 
iDEVICE IS ON MASSBUS CONTROLLER (I=YES) 
i DEVICE ON EXTENDED ADDRESSING CONTROLLER 
iUNIT SOFTWARE WRITE LOCKED (I=YES) 
i INPUT SPOOLED DEVICE (I=YES) 
iOUTPUT SPOOLED DEVICE (l=YES) 
iPSEUDO DEVICE (I=YES) 
iDEVICE IS MOUNTABLE AS COM CHANNEL (I=YES) 
iDEVICE IS MOUNTABLE AS FIl DEVICE (I=YES) 
iDEVICE IS MOUNTABLE (I=YES) 

TERMINAL DEPENDENT CHARACTERISTICS WORD 2 (U.CW2) BIT DEFINITIONS 
i 
U 2. DHl=1 00000 
U 2. DJ 1 =40000 
U 2. RMT=20000 
U2.HFF=10000 
U2. L8S=10000 
U2. NEC=4 000 
U2.CRT=2000 
U2. ESC=1000 
U 2. LOG=4 00 
U2.SLV=200 
U2.DZl=100 

iUNIT IS A MULTIPLEXER (I=YES) 
;UNIT IS A DJll (I=YES) 
iUNIT IS REMOTE (I=YES) 
iUNIT HANDLES HARDWARE FORM FEEDS (I=YES) 
iOLD NAME FOR U2.HFF 
iDON'T ECHO SOLICITED INPUT (I=YES) 
iUNIT IS A CRT (I=YES) 
iUNIT GENERATES ESCAPE SEQUENCES (I=YES) 
iUSER LOGGED ON TERMINAL (O=YES) 
iUNIT IS A SLAVE TERMINAL (I=YES) 
;UNIT IS A DZll (I=YES) 

C-4S 



SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

U2.HLD=40 
U2.AT.=20 
U2.PRV=10 
U2. L3S=4 
U 2. SCS=4 
U,2. VTS=2 
U2. LWC=l 

i 

iTERMINAL IS IN HOLD SCREEN MODE (l=YES) 
iMCR COMMAND AT. BEING PROCESSED (l=YES) 
iUNIT IS A PRIVILEGED TERMINAL (l=YES) 
ilUNIT IS A LA30S TERMINAL (l=YES) 
iSCS-IICOMMAND TERMINAL (l=YES) 
iUNIT IS A VTOSB TERMINAL (l=YES) 
iLOWER CASE TO UPPER CASE CONVERSION (O=YES) 

BIT DEFINITIONS FOR U.MUP (SYSTEMS WITH ALTERNATE CLI SUPPORT ONLY) 
i 
UM.OVR=l 
UM.CLI=36 
UM. DSB=200 
UM.NBR=400 

iOVERRIDE CLI INDICATOR 
iCLI INDICATOR BITS 
i TERMINAL DISABLED SINCE CLI ELIMINATED 
i NO BROADCAST 

RHII-RS03/RS04 CHARACTERISTICS WORD 2 (U.CW2) BIT DEFINITIONS 
i 
U 2. R04=1 00000 iUNIT IS A RS04 (l=YES) 

RHII-TU16 CHARACTERISTICS WORD 2 (U.CW2) BIT DEFINITIONS 
i 
U 2. 7CH=10000 iUNIT IS A 7 CHANNEL DRIVE (l=YES) 

TERMINAL DEPENDENT CHARACTERISTICS WORD 3 (U.CW3) BIT DEFINITIONS 
i 
U 3. UPC=20000 iUPCASE OUTPUT FLAG 

UNIT CONTROL PROCESSING FLAG DEFINITIONS 
i 
UC.ALG=200 
UC. NPR=l 00 
UC. QUE=40 
UC.PWF=20 
UC.ATT=lO 
UC. KIL=4 
UC. LGH=3 

iBYTE ALIGNMENT ALLOWED (l=NO) 
i DEVICE IS AN NPR DEVICE (l=YES) 
iCALL DRIVER BEFORE QUEUING (l=YES) 
iCALL DRIVER AT POWERFAIL ALWAYS (l=YES) 
iCALL DRIVER ON ATTACH/DETACH (l=YES) 
iCALL DRIVER AT I/O KILL ALWAYS (l=YES) 
iTRANSFER LENGTH MASK BITS 

UNIT STATUS BIT DEFINITIONS 
i 
US.BSY=200 
US.MNT=lOO 
US. FOR=4 0 
US .MDM=20 
US. PWF=lO 

iUNIT IS BUSY (l=YES) 
iUNIT IS MOUNTED (O=YES) 
iUNIT IS MOUNTED AS FOREIGN VOLUME (l=YES) 
iUNIT IS MARKED FOR DISMOUNT (l=YES) 
iPOWERFAIL OCCURRED (l=YES) 

CARD READER DEPENDENT UNIT STATUS BIT DEFINITIONS 
i 
US.ABO=l 
US.MDE=2 

iUNIT IS MARKED FOR ABORT IF NOT READY (l=YES) 
iUNIT IS IN 029 TRANSLATION NODE (l=YES) 

C-46 

E-.o 
~---

c 

c 



c 

( 

SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

FILES-II DEPENDENT UNIT STATUS BITS 
i 
US.WCK=10 
US. SPU=2 
US. W=1 

iWRITE CHECK ENABLED (I=YES) 
iUNIT IS SPINNING UP (I=YES) 
iVOLUME VALID IS SET (I=YES) 

KMC-II-LP DEPDENDENT UNIT STATUS BITS 
i 
US. KPF=1 iKMC-ll POWERFAIL INTERLOCK 

TERMINAL DEPENDENT UNIT STATUS BIT DEFINITIONS, 

US.CRW=4 
US. DSB=2 
US.OIU=1 

• IF NB TTDEF 

• IF DF T$$CPW 

• IFF iT$$CPW 

US. DSB=10 
US. CRW=4 
US. ECH=2 
US.OUT=1 

• ENDC iT$$CPW 

• ENDC i'rTDEF 

iUNIT IS WAITING FOR CARRIER (I=YES) 
iUNIT IS DISABLED (I=YES) 
iOUTPUT INTERRUPT IS UNEXPECTED ON UNIT (I=YES) 

iUNIT IS DISABLED (I=YES) 
iUNIT IS WAITING FOR CARRIER (I=YES) 
iUNIT HAS ECHO IN PROGRESS (I=YES) 
iUNIT IS EXPECTING OUTPUT INTERRUPT (I=YES) 

LPSll DEPENDENT UNIT STATUS BIT DEFINITIONS 
i 
US.FRK=2 
US.SHR=1 

iFORK IN PROGRESS (I=YES) 
iSHAREABLE FUNCTION IN PROGRESS (O=YES) 

MAGTAPE DEPENDANT UNIT STATUS BITS 
i 
US. LAB=4 
US.BSP=2 

iUNIT HAS LABELED TAPE ON IT (I=YES) 
iINTERNAL BACKSPACE IN PROGRESS (I=YES) 

C-47 



SYSTEM DATA STRUCTURES AND SYMBOLIC OFFSETS 

UNIT STATUS EXTENSION (U.ST2) BIT DEFINITIONS 
i 
US.OFL=l 
US. RED=2 
US.PUB=4 
US. UMD=10 

iUNIT OFFLINE (l=YES) 
iUNIT REDIRECTABLE (O=YES) 
iUNIT IS PUBLIC DEVICE (l=YES) 
;UNIT ATTACHED FOR DIAGNOSTICS (l=YES) 

MAG TAPE DENS SUPPORT !DENT IN CaAR WORD 3 (:U.CW3) DEFENITION 
ASSIGNMENTS PER NUMERICAL SEQUENCE 0 - 255. 

;, 
UD. UNS=O 
UD.200=1 
UD.556=2 
UD.8.00=3 
UD.160=4 
UD.625=5 

iUNSUPPORTE,D 
; 200BPI, 7 TRACK 
i 556BPI, 7 TRACK 
; 8aoBFI, l' OR 9 TRACK 
; 1600BPI, 9 TRACK 
; 6250BPI, 9. TRACK 

C-48 

c 

( 

c 



c 

c 

c 

c 

APPENDIX D 

USER-WRITTEN ANCILLARY CONTROL PROCESSORS 

This chapter is intended as a guide for the user in developing an 
Ancillary Control Processor (ACP) • It is not a tutorial and it is not 
a description of the logic of any DIGITAL-supplied ACP. You should be 
thoroughly familiar with the RSX-llM Guide to Writing an I/O Driver. 

This chapter provides the following information: 

• An overview of the RSX-IIM I/O system 

• Descriptions of the types of ACPs 

• The attributes of an ACP 

• A description of the flow of an Input/output 
emphasizing the role of the ACP 

• System data structures used by the ACPs 

• Examples of an ACP and an I/O driver 

D.l OVERVIEW OF THE RSX-llM I/O SYSTEM 

request, 

An Ancillary Control Processor (ACP) is one component of the RSX I/O 
system. The other major components are 

• File Control Services (FCS) or Record Management Services 
(RMS) 

• QIO$ directive processing in the Executive 

• Devide drivers 

Figure D-l shows how an ACP fits into the overall structure. 

The philosophy and structure of the RSX-llM I/O system are described 
in detail in Chapter 2 of this manual. QIO$ directive processing is 
described in the RSX-lIM/M-PLUS Executive Reference Manual. 

D-l 



USER~RITTEN ANCILLARY CONTROL PROCESSORS 

r
I 

I 
·1 

L 

User Task 

· -t --
FCS 

- - Executive 

r 
1 

-1 
1 

ACP 

I 

L - ....J 

- Device Driver 

/ Device / 
ZK-227-B1 

Figure D-l The RSX-llM I/O System 

D.2 TYPES OF ANCILLARY CONTROL PROCESSORS 

An Ancillary Control processor (ACP) is a task that provides extended 
functions (complex operations requiring either multiple I/O requests 
or special privileged operations) for a class of I/O devices. 

ACPs may be divided into three types: 

• Those that manage file structures, such as FllACP and MTAACP 

• Those that manage intertask or interprocessor communication, 
such as the network ACP (NETACP) 

• Those that perform special privileged operations on behalf ,of 
nonprivileged user tasks. 

D-2 



(~ 

( 

c 

----- ~~-~------~~---~--~~~-~~~-~-~~--~-~ ~---------- ~ ~---------~~~ -- ~ - - ~ -- ~ --~- ~-~-~---~-~---~-~~~ .. ---~~--.- ~--

USER~RITTEN ANCILLARY CONTROL PROCESSORS 

Some of the purposes of a user-written ACP are: 

• To implement a foreign file system 

• To extend the capabilities of a DIGITAL-supplied device driver 

• To extend the services of the operating system 

• To implement a communications protocol 

User-written ACPs extend functionality, not performance. If your 
application is performance-oriented, you should consider writing a 
special driver rather than an ACP. 

D.2.l ACPs Which Manage Files Structures 

DIGITAL suppl ies FllACP for Files-II disk structure and MTAACP for 
ANSI magnetic tapes. You may'write an ACP to implement a foreign file 
system or tape format. Changes to the Executive, the I/O driver, or 
the data structures are not necessary it there are DIGITAL-supplied 
I/O operations that correspond to operations for the fo~eign format. 
The user-written ACP can use the built-in Executive Services (such as 
QIO$ directive processing) without change. 

Note that a user-written ACP is necessary only to support a file 
structure other than Files-II. To use the Files-II sttucture with a 
foreign device, you need to write a device driver, and yo,u may need to 
modify or extend disk initialization, management, or backup utilities.' 

I 

D.2.2 ACPs Which Manage Intertask or Interprocessor Communication 

DECnet/M and DECnet/M-PLUS both contain an example of an ACP that 
manages interprocessor communications: NETACP, used for management of 
the Digital Network Architecture Communications protocol. You may 
~rite an ACP to manage a foreign communications protocol. 

D. 2. 3 ACPs ,Which Perform Privileged Operations for Unprivileged Tasks 

You may write an ACP to support extended capabilities for a class of 
devices (such as line printer spooling or associative name searching 
for data base devices). This requires special support in the 
Executive I/O processing, in the I/O driver, and in the associated 
data structures. This type of ACP requires a user-written I/O driver 
that conta~ns special code to support the ACP. 

An ACP may use the I/O driver interface to extend the services of the 
operating system (as in the case of a data base management system), 
rather than to extend the services of an I/O device. 

RSX-llM. contains no DIGITAL-supplied examples of the, types just 
described. Both RSX-llM and RSX-llM-PLUS, however, contain COT and 
CODRV, which are used to perform console logging. The COT task 
behaves in the fashion of an ACP, in that it receives I/O packets in 
its queue from user tasks. COT is not declared to the system as an 
ACP, though; it has no VCB or MOU interface. COT is enabled and 
disabled using MCR commands. 

D-3 



USER-WRITTEN ANCILLARY CONTROL PROCESSORS 

D.3 THE ATTRIBUTES OF AN ACP 

The classes of ACPs described above have the following 
common, which further define an ACP: 

• An ACP is an asynchronous privileged task. 
RSX-IIM/M-PLUS Task Builder Manual for a 
privileged task mapping and Executive access. 

attributes in 

Refer to the 
discussion of 

• An ACP implements a protocol (or set of services) for a class 
of devices (for example, file-structured devices or sequential 
devices) • 

• An ACP functions as an extension of the Executive and 
frequently operates with Executive privilege. 

• An ACP can be enabled or disabled for a particular device. 

• An ACP is shareable among several device drivers and units. 

D.3.1 ACP as a Task 

An ACP is a task. It has all the attributes of a task, including: 

• A stack 

• A task name 

• Pr iori ty 

• Scheduling by the Executive 

An ACP, in contrast to a driver, operates as a task. While a driver 
handles interrupts, manipulates CSRs, and performs other 
device-specific operations, an ACP is not device bound and can take 
advantage of the services and control mechanisms available to tasks. 
ACPs can also use overlays, and can therefore be larger and have 
greater functionality than drivers. 

Because the ACP task is privileged, it has access to the Executive 
data structures and can use Executive facil.ities. 

Unlike other privileged tasks, an ACP has the capacity to receive I/O 
packets from other tasks by means of the QIO$ directive. This permits 
the ACP to act as an I/O handler, which can compete with user tasks 
for system resources more equitably than an I/O driver could. Also, 
unlike an I/O driver, an ACP can perform I/O to other devices during 
the processing of an I/O request. 

D.3.2 Class of Devices 

An ACP can easily implement functions for a class of d~vices because 
it communicates via the QIO$ directive, which is relatively 
device-independent. (Drivers, in contrast, are written to suit the 
minute peculiarities of particular devices.) FllACP, for example, 
implements the Files-II structure for all types of disks and DECtapes. 
MTAACP implements ANSI magnetic tape format for all DIGITAL-supported 
9-track magnetic tape drives. 

D-4 

( 

( 

( 

( 



e=.-

c 

c 

c 

--- -------- ----

USER~RITTEN ANCILLARY CONTROL PROCESSORS 

D.3.3 Extension of Executive 

An ACP extends the functionality of both the Executive and the device 
drivers in several ways: 

• By removing the burden of device managment (assigning space on 
a volume, locating the desired data area, and so on) from the 
programmer. 

• By handling the manipulation of device- and protocol-related 
data. 

• By permitting a device to be treated as a logical rather than 
a physical entity. 

• By allowing a device 
Each process that 
processes by the 
synchronizes access 

to be shared for simultaneous access. 
accesses a device is protected from other 

ACP and its protocol. The ACP also 
to the physical device. 

D.3.4 Enabling Capability and Disabling Capability 

An ACP can be enabled or disabled for a given device. When enabled, 
the device is available for use 1n the context of the protocol 
provided by the ACP. 

D.3.5 Shareability 

An ACP is shareable among several device drivers and units. 

D.4 THE FLOW OF AN I/O REQUEST 

This section describes the system interactions of an ACP during the 
flow of an I/O request. On the assumption that you have read Section 
2.6 of this manual, only those items relevant to ACPs are treated in 
detail. - The structure of this section is similar to that of Section 
2.6. 

The I/O flow proceeds as described below: 

1. [Task issues a QIO$ directive] 

The Executive performs the following: 

a. First-level validity checks 

b. Redirect algorithm 

c. Additional validity checks 

2. [Executive obtains storage for and creates I/O packet] 

3. [Executive val idates the function requested] 

If the function is an ACP function, the type of function 
validation depends on the type of ACP. 

D-5 



USER-WRITTEN ANCILLARY CONTROL PROCESSORS 

a. Standard DIGITAL-supplied ACP 

If the device is mounted with an ACP, the function 
code is validated to determine that it is an ACP 
function. The parameters are verified by code in the 
QIO processing module. The request is checked for 
proper order (for example, OPEN before CLOSE) and for 
valid buffers. The task that issues the I/O request 
must validate any additional parameter block required 
by the ACP. For some functions, an additional 
parameter buffer is allocated and filled in. 

Sometimes the I/O request can be transformed into a 
transfer function and queued to the proper driver. 
If the request cannot be queued to the driver or 
cannot be completed immediately, it is queued to the 
ACP. The request packet is inserted in the ACP's 
receive data queue and the ACP is unstopped or 
requested to run (depending on whether it was 
active) • 

b. Nonstandard ACPs and ACPs requiring special Executive 
or driver support 

The QIO$ directive processing cannot validate the ACP 
function request parameters •. The I/O driver must do 
the validation. The UC.QUE bit in the driver must be 
set so that the QIO processing routine calls the 
driver directly, without queuing the I/O packet to 
the driver or to the ACP. 

The driver must perform the same functions for the 
ACP as the QIO processing code does for standard and 
replacement ACPs. 

4. [Driver processing] 

If the driver calls $GTPKT and the next request in the queue 
is an ACP function request, $GTPKT will queue the request to 
the ACP and activate the ACP. 

5. [ACP processing] 

Obtain Work 

As soon as the ACP is activated, it attempts to remove an I/O 
request packet from its receive data queue. To do this, the 
ACP switches to system state and calls $QRMVF to obtain the 
address of the I/O packet. (Note that the ACP does not use 
the RCVD$ directive to remove the packet from its receive 
queue.) When the ACP has obtained the address of the I/O 
packet, it returns to task state. 

Process I/O Request 

The ACP either completes the I/O request or translates it 
into a standard I/O driver request. The decision is based 
on: 

• Information in the data structures 

• Computation 

• Additional I/O 

D-6 

( 

( 

( 

( 



( 

( 

USER-WRITTEN ANCILLARY CONTROL PROCESSORS 

The ACP may do its own QIO requests to the driver; the ACP then 
calls $IOFIN with the I/O packet and the I/O status. 
Alternatively, when the I/O request is translated into a driver 
request, the ACP modifies the I/O packet to put it into the 
correct form for a driver request and passes it to the driver by 
calling $DRQRQ. If the I/O request has been completed, the ACP 
calls $IOFIN with the I/O packet and the I/O status. 

For example, MTAACP always deals with the driver through QIO 
requests, and,finishes I/O itself by calling $IOFIN. 

The ACP then attempts to remove another request from its queue. 
If there are no more requests in the queue, the ACP stops itself 
by calling $STPCT. 

D.S SYSTEM DATA STRUCTURES 

An ACP interfaces to the system through use of system data structures 
and through calls to Executive routines. This section describes 
ACP-specific information for the various data structures. Detailed 
information on the data structures and their iriterrelationships is 
contained in Section 2.7 and Chapter 4 of this manual. 

The following data structures comprise the complete set for I/O 
processing: 

• Task header 

• Window Block (WB) 

• File Control Block (FCB) 

• $DEVHD word, the Device Control Block (DCB), and the Driver 
Dispatch Table (DDT) 

• Unit Control Block (UCB) 

• Status Control Block (SCB) 

• Vol ume Control Block (VCB) 

• I/O packet 

When you write an ACP, you are usually concerned only with the I/O 
packet, the DCB, the UCB, and the SCB. There are ACP-specific 
additions to and variations in the I/O packet, the DCB, and the UCB. 
The SCB is the same as that for an I/O driver. 

D.S.l The I/O Packet 

Figure D-2 shows the layout of the l8-word I/O packet, which is 
constructed by QIO$ directive processing. The fields in the I/O 
packet are described in detail in Section 4.1.1 of this manual. The 
following additions and variations exist for ACPs: 

I.FCN 

Contains the function code for the I/O request. The function 
code and modifier comprise a l6-bit field. Bits 13,14, and 15 
are reserved for ACP interface use. You must not assume that 
these bits are zero. 

D-7 



USER-WRITTEN ANCILLARY CONTROL PROCESSORS 

If the function code field is referenced, the value should be 
masked with 160000(8) for example: 

MOV 
BIC 

I.FCN(Rl) ,RO 
#l60000,RO 

GET FUNCTION CODE FIELD 
CLEAR OFF EXTRANEOUS BITS 

Although these bits are not currently in use, they should not be 
assumed to be zero in order to ensure future compatibility. If 
an I/O packet is requeued to the device driver, these bits must 
be cleared. 

I.PRM 

Conta ins the device-dependent parameters constructe,d from the 
last six words in the DPB. 

The following fields are defined for Files-II 
operations: 

nontransfer 

.ASECT 
• =I. PRM 
I. FIDP: • BLKW 

I. RWAT: .BLKW 

I. EXTD: .BLKW 
I. RTRV: • BLKB 
I. ACTL: • BLKB 
I. FNBP: • BLKW 

The following 

.ASECT 
• =I. PRM 
I. RWAD: .BLKW 
I. RWCT: .BLKW 

.BLKW 
I. RWVB .BLKW 

.BLKW 
I. LCKB: .BLKW 

2 

1 

2 
1 
1 
2 

fields 

2 
1 
1 
1 
1 
1 

are 

File ID address (Add1ress double 
word format) 
Attribute block pointer (This field 
points to a buffer containing the 
attribute list and associated address 
doublewords) 
Extend control from parameter list 
Retrieval pointers desired 
Access control 
File name block pointer 

defined for Files-ll transfer operations: 

Transfer address doubleword 
Transfer count 
Unused 
Virtual block number 
Unused 
Address of lock block 

The above fields are set up by routines in the Executive. 

Only I.LCKB is referenced by $IOFIN; it must be either 0 or 
greater than 140000. 

D-8 

(I 

.(!2',. 

C 



c 

c 

c 

USER-WRITTEN ANCILLARY CONTROL PROCESSORS 

LLNK 

LEFN,I.PRI 

I.TCB 

LLN2 

WCB 

LFCN 

I.IOSB 

LAST 

I.PRM 

Link to next 1/0 packet 

EFN I PRI 

TCB address of requestor 

Address of second LUT word 

Address of redirect UCB 

Function code I Modifier 

Virtual address of 1/0 status block 

Relocation bias of I/O status block 

Real address of 1/0 status block 

Virtual address of AST service routine 

Device 
parameters 

ZK-228-81 

Figure D-2 I/O Packet 

o 

2 

4 

6 

10 

12 

14 

16 

20 

22 

24 

D.5.2 The DCB 

The DCB is described in detail in Section 4.1.2 of this manual. 
following additional information applies to ACPs: 

The 

D.MSK 

In general, I/O requests marked as ACP functions are passed to 
the ACPi all others are passed to the device driver when it 
call s $GTPKT. 

D. 5. 3 The UCB 

The UCB is described in detail in Section 4.1.4 of this manual. The 
following additional information applies to ACPs: 

U.CTL 

UC.QUE - Queue bypass bit 

If UC.QUE is set, all I/O requests are passed to the 
driver without being queued first, regardless of any 
ACP-related processing in DRQIO. A driver that makes 
use of this option may alter the behavior of the file 
system, since some functions are normally passed 
directly to the ACP, bypassing the driver queue. 

D-9 



U.STS 

U.CWI 

USER-WRITTEN ANCILLARY CONTROL PROCESSORS 

If UC.QUE and US. FOR are set, all DIGITAL-specific ACP 
processing is bypassed. In this case, the driver must 
do all address checking and relocation. 

The UC.QUE option allows user-written ACPs to validate 
the ACP function parameters. Each I/O driver supported 
by the user-written ACP must contain code to do the 
validation. The! validation must be done at this point 
in the I/O processing, because the routines that do 
address checking and relocation assume that the memory 
management registers are in use by the tasks issuing the 
I/O. (Refer to the DRQIO module for examples of the 
techniques used to validate and save parameters.) 

UC.KIL - Unconditional cancel I/O call bit 

US.MNT 

US. FOR 

US.MDM 

If UC.KIL is set, the I/O driver is called on a cancel 
I/O request even if the unit specified is not busy. 

Since ACP functions are dependent on sequencing, this 
function is normally turned into a no-ope 

An IO.KIL request has no effect on a mounted unit since 
the I/O queue is not flushed on the IO.KIL request when 
the DV.MNT (mountable) and US.MNT (mounted) bits are set 
for the unit. 

If US.MNT is set, the unit is not mounted. 
cl"eared when the volume is mounted. 

US.MNT is 

If US. FOR is set, the volume is mounted as foreign. 
US.FOR is set when the volume is mounted. 

If US.MDM is set, the volume is marked for dismount. 

An ACP normally checks the US.MDM bit when it processes 
a new I/O request. The ACP refuses operations that 
create a channel for processing (such as OPEN) when 
US.MDM is set. After operations that terminate a 
channel (such as CLOSE), the ACP checks the current 
count of active channels to see if all ACP-related 
processing has been completed. If it is, the ACP 
completes the dismount. 

US.MDM is set when the volume is to be dismounted. 

This characteristics word is returned to the user task by the 
GLUN$ directive. U.CWI is checked during validation of IIO 
request. The following bits are important to ACPs: 

DV.MNT 

If DV.MNT is set, the device is mountable. If a device 

c 

(-

( 

( 

is mountable, ACP functions can only be performed when ( 
it is mounted. 

D-IO 



DV. Fll 

c 
DV. COM 

DV.SQD 

DV. SDI 

USER~RITTEN ANCILLARY CONTROL PROCESSORS 

If DV.Fll is set, the device 
DV.Fll is set for both disks 
is Files-II, the DV.SQD bit 
device is random or sequential. 

is a Files-II device. 
and tapes. If the device 
determines whether the 

If DV.COM is set, the device is mountable as a 
communications channel. This is used for DECnet. 

If DV.SQD is set, the device is sequential. 
is reset, the device i~ random access. 

If DV. SQD 

If DV.SDI is set, the device supports only a single 
directory. 

C-" DV.DIR 

c 

If DV.DIR is set, the device is a directory device. 

D.6 AN EXAMPLE OF AN ACP-I/O DRIVER COMBINATION 

The following is an example of an ACP, including a special driver used 
by the ACP. This ACP, supplied for demonstration purposes only, 
counts the number of QIOs to a terminal. 

The modules supplied and their respective functions are: 

QDPRE.MAC 
QDDAT.MAC 
QDDRV.MAC 
QDACP.MAC 
QDCON.MAC 

• TITLE 
• IDENT 

• ENABL 

- Prefix file for assembly 
- Driver database 
- Driver for ACP 
- The ACP itself 
- The task for enabling and disabling the ACP 

Example D-l An ACP-I/O Driver Combination 

QDPRE 
lOll 

) 

LC 

This structure is purely for purposes of example. It is not intended to 
be useful nor is it supported in any way. It is, however, 
functional, complete, and representative of a valid interface. 

D-ll 



.L 

USER~RITTEN ANCILLARY CONTROL PROCESSORS 

**-QDPRE-QD: driver prefix file 

EXECUTIVE DEPENDENCIES 

The following is a list of the recognized Executive dependencies for the 
the QD: driver. If the implementation or functionality of the following 
features change, this driver and ACP may not function properly. 

1. The Executive I/O processing as described in RSX-llM Guide to Writing ~ I/O 
Driver remains unchanged. ----- --

2. The following Executive routines remain unchanged: 
$SWSTK (SWSTK$) 
$BLXIO 
$EXRQP 

~ll of the routines documented in the RSX-llM Guide to Writing an I/O Driver 

System Macro Calls 

• MCALL UCBDF$ 
UCBDF$ 

QD driver-specific offsets 

.ASECT 
• =U. VCB+2 End of UCB 

U. QACP,: : • BLKW 
U.QCTL: :.BLKW 
U. QLUN:: .BLKW 
U. QTRN: : • B LKW 

UQ.STP==lOOOOO 
UQ.ONL==40000 

Q$$Dll=3 
LD$QD=O 

• PSECT 

1 
1 
1 
1 

.TITLE QDDAT 
• IDENT /01/ 

• ENABL LC 

Address of QD ACP TCB 
ACP control and status word 
LUN used by ACP when doing I/O for this unit 
Count of transactions outstanding to ACP 

Stop requested for ACP on this unit 
This unit onlne 

Number of units 
Driver loadable 

D-12 

c 

c 

( 



( 

c:--

( 
"'-----

~~ 

/ 

\, 

( 

USER-WRITTEN ANCILLARY CONTROL PROCESSORS 

This structure is purely for purposes of example. It is not intended to 
be useful nor is it supported in any way. It is, ~owever, 
functional, complete, and representative of a valid interface. 

**-QDDAT-QD: driver device tables 

The following data structure is designed with two things in mind: 

$QDDAT: : 

QDDCB: 

1. Providing the minimum structures to look like a disk 
2. Providing the minimum structures to satisfy the Executive 

and the MCR LOA commands. 

.WORD 

.WORD 

.ASCII 

.BYTE 

.WORD 

.WORD 

a 
• QDO 
/QD/ 
0, Q$$D11-l 
QDND-QDST 
a 

Start of QDDRV device tables 

Link to next DCB 
Pointer to first UCB I 

Device name 
Lowest and highest unit number 
Length 0 f UCB 
Pointer to driver dispatch table, set by LOA 

The following table defines the initial processing of I/O functions in the 
Executive QIO directive processing. The legal functions selected are those 
of the standard disk drivers. 

.WORD 

.WORD 

.WORD 
• WORD 
.WORD 
• WORD 
• WORD 
.WORD 
.WORD 

$$$=0 

• NLIST 
• LIST 

• REPT 

.IRP 

QDST=. 

• IF DF 

.WORD 

.WORD 

• ENDC 

177037 
000030 
000000 
177000 
000777 
000000 
000000 
000777 
a 

MD 
ME 

Q$$D11 

XX,\<$$$> 

M$$MUP 

a 
a 

Legal functions 0.-15. 
Control functions 0.-15. 
No-op functions 0.-15. 
ACP functions 0.-15 • 
Legal functions 16.-31. 
Control functions 16.-31 • 
No-op funQtions 16.-31 • 
ACP functions 16.-31. 
PCB address of driver partition 

Start of UCB 

Login UIC, mUlti-user protection system 
Owning terminal UCB address 

D-l3 



• QD 'XX' : • WORD 
.WORD 
.BYTE 

QDND=. 

.BYTE 

.BYTE 

.BYTE 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.BLKW 

.BLKW 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.ENDR 

$$$=$$$+1 

• ENDR 

• NLIST 
• LIST 

$QDO: : .WORD 
.BYTE 
.BYTE 
.BYTE 
.WORD 
.WORD 
.BLKW 

$QDEND: : 

.END 

USER~RITTEN ANCILLARY CONTROL PROCESSORS 

QDDCB 
• QD 'XX 
UC. PWF! UC • ALG! 3 

Back pointer to DCB 
Redirect pointer 
Control flags byte, calIon power fail 
to allow proper setting of on-line/off-line bit 

US.MNT Status byte 
a Physical unit number, does not apply 
a ; Second status word 
DV.MNT!DV.FllJDV.SDI!DV.DIR ; Characteristic word 1 
a Characteristic word 2, size of device 
a Characteristic word 3 
512. Characteristic word 4, buf~er size 
$QDO Pointer to SCB 
a Attached task TCB address 
2 User buffer pointer 
1 and byte count 
a Address of file system ACP TCB 
a Address of VCB for file system 
a U.QACP-QDACP TCB address 
a U.QCTL-QDACP Control word 
'XX'+l U.QLUN-QDACP LUN for I/O 

ME 
MD 

0,.-2 
0,0 
0,0 
0,0 
a 
a 
5 

End of UCB 

Device I/O queue 
Device priority and vector 
Current and initial device timeout count 
Controller index and device status 
CSR address 
Address of I/O packet 
Fork block 

End of QDDRV device tables 

• TITLE QDDRV 
• IDENT /01/ 

.ENABL LC 

This driver is purely for purposes of example. It is not intended to 
be a useful driver nor is it supported in any way. It is, however, 
functional, complete, and representative of a valid interface. 

**-QDDRV-QD: driver 

D-14 

( 

(~ 

( 

( 



-------------

c 

( 

USER~RITTEN ANCILLARY CONTROL PROCESSORS 

MACRO LIBRARY CALLS 

DRIVER DISPATCH TABLE 

$QDTB L: :. WORD 
.WORD 
.WORD 
.WORD 

LOCAL DATA 

QDINI 
QDCAN 
QDOUT 
QDPWF 

Initiator entry point 
~ancel I/O entry point 
Device timeout entry point 
Power fail entry point 

• IF DF AUTOST 

ACPTNM: .RAD50 /QDACP / Default ACP task name 

• ENDC 

**-QDINI - "Disk" Driver 

This driver, in conjunction with its Ancillary Control Processor (ACP) 
appears to be a disk, but its operational characteristics are 
unusual. The actual storage medium may be any of a number of devices 
including memory, disk, or DECnet link. No driver queue is maintained; 
all I/O packets are queued directly to the ACP. The cancel I/O, device 
timeout, and powerfail entry points are all set to be no-ops. The actual 
processing of the request is left to the ACP. 

Remember, this driver is an example and demonstrates multiple features 
of the driver/ACP/Executive interface. 

Inputs: 
R5=UCB address 

The buffer address and count for IO.RLB and IO.WLB have been validated 
by DRQIO processing code. IO.KIL, IO.ATT, and IO.DET are processed by 
the Executive's standard I/O processing routines. IO.CTL is queued directly 
to QDACP. 

QDINI: 

.ENABL 

CALL 
BCS 
CLRB 
MOV 
BIT 
BEQ 
MOVB 
CMPB 
BEQ 
CMPB 
BNE 

LSB 

Driver initiation entry point 

$GTPKT Get I/O packet 
EXIT If CS none to get 
S.STS(R4) Unbusy controller since ACP does all work 
RI,R3 ; Copy I/O packet address 
#UQ.ONL,U.QCTL(R5) ; Unit online? 
20$ If EQ no 
I.FCN+I(R3),RO Get function code 
#IO.RLB/400,RO Read logical block? 
QPRLB If EQ yes 
#IO.WLB/400,RO Write logical block? 
ERRIFC If NE no 

D-15 



USER-WRITTEN ANCILLARY CONTROL PROCESSORS 

Function specific validation routines. The checks here could 
be made later in the ACP, but they are easily made here and have 
the added benefit of saving of two context switches (to and from 
the ACP) to return an error. 

QPWLB: MOV 
BIT 
BNE 

QPRLB: CALL 

10$: 

20$: 

ERRIFC: 

IOFIN: 

MOV 

MOV 

BNE 

• IF OF 

MOV 
CALL 
BCp 
Blir 
BEQ 
MOV 

• ENOC 

INC 
JMP 

MOV 
BR 

MOV 

CLR 
JMP 

.OSABL 

UE.WLK&377,RO 
#OV. SWL, U.CWl (RS) 
IOFIN 

$BLKCK 

R3,Rl 

U. QACP (RS) , RO 

10$ 

AUTOST 

#ACPTNM, R3 
$SRSTO 
20$ 
#T3.ACP,T.ST3(RO) 
20$ 
RO, U. QACP (RS) 

U. QTRN (RS) 
$EXRQP 

UE. OFL&3 77, RO 
IOFIN 

UE. IFC&3 77, RO 

Rl 
$IOFIN 

LSB 

; 

Assume write locked 
; Unit software wr.ite locked? 
If NE yes 
Join common code 

Check for valid logical blocks 

Restore the I/O packet address to Rl 

Get address of ACP's TCB. The offset U.ACP 
can NOT be used since file system ACP uses 
that location. The UCB is uS,ed for TCB 
because it is easy for the ACP to access 
(as opposed to some location within the 
driver) • 

If NE the ACP has been started. 

The next few lines of code may be used as 
an alternate method of starting the ACP. 
They allow the ACP to be started 
automatically if it is installed. 
They can't be used in this application 
since ACP needs some initi~lization info 

If defined, auto start ACP 

Get address of ACP task name 
See if our ACP is installed 
If CS no 
; Built as an ACP? 
If EQ no 
Save address of ACP 

Increment count of transactions in ACP queue 
Queue to the ACP by priority and activate 
it. This request will unstop the ACP if 
is stopped or run it if its not active. 

Reference label 
I/O status of device not ready 
Finish I/O request 

I/O status of illegal function code 
Finish I/O request 

Second I/O status word 
Finish I/O request 

0-16 

c 

c 

c 

c 



c 

~-- -~-~-~~~~-~------~~~--~-------------------------

USER~RITTEN ANCILLARY CONTROL PROCESSORS 

**-QDPWF-Powerfail, Mark offline units offline 

QDPWF: 

10$: 

BIT 
BNE 
BISB 

#UQ.ONL,U.QCTL(RS) ; Unit offline? 
10$ ; If NE no 
#US.OFL,U.ST2(RS) ; Set offline 

Reference label 

**-QDCAN-Cancel I/O in progress, ignored 
**-QDOUT-Device timeout, does not ~pply 

QDCAN: 
QDOUT: 
EXIT: RETURN 

• END 

• TITLE 
.IDENT 

• ENABL 

QDACP 
/01/ 

LC 

These functions are no-ops 

This ACP is purely for purposes of example. It is not intended to 
be a useful ACP nor is it supported in any way. It is, however, 
functional, complete, and representative of a valid interface. 

**-QDACP-QD: driver ACP 

MACRO LIBRARY CALLS 

.MCALL ALUN$S,DIR$,QlO$,WTSE$,WSIG$S 

LOCAL DATA 

• QIO:: QIO$ 

.IOST:: .BLKW 
• 10 PKT: : • B LKW 
• ACTUN: : • WORD 

WTSE: WTSE$ 

IOSB: .BLKW 

FlD: .BLKW 

,1,1"IOSB"(",,,) ; My own QIO DPB 

2 
1 
o 

1 

2 

3 

I/O status to return to user 
Address of current I/O packet 
Count of active units 

Wait for I/O completion 

I/O status block for my I/O 

File ID of work file 

D-17 



USER-WRITTEN ANCILLARY CONTROL PROCESSORS 

**-.START-ACP starting entry point 

.START::CALL .INIT Do one-time initialization 

**-.GTPKT-Get the next I/O packet from ACP queue and dispatch function 

.GTPKT: :CLR 
SWSTK$ 

MOV 

ADD 
CALL 
BCC 
TST 
BNE 
MOV 
JMP 

10$: JMP 

20$: MOV 

RETURN 

30$: MOV 
BEQ 

MOV 

• IOPKT 
30$ 

$TKTCB,RO 

""T. RCVL, RO 
$QRMVF 
20$ 
• ACTUN 
10$ 
$TKTCB,RS 
$DREXT 

$STPCT 

Rl,.IOPKT 

.IOPKT,R3 

.GTPKT 

I.UCB(R3},RS 

Process I/O request 

Do any initialization required 

MOV US. SUC , • lOST 
CLR • IOST+2 
MOV "".QIO+Q.IOPL,RO 
MOV ""6,Rl 

40$: CLR (RO)+ 
DEC Rl 
BNE 40$ 

i No I/O packet yet 
II Switch to system state to synchronize with 
ii Executive. This prevents context switching 
ii and makes Executive routines accessable. 
lIOn return from system state, execution will 
II resume at 30$. This call also saves all 
II registers. 
II Address of my TCB (must be my TCB since 
ii can't execute in context of any other task 
ii Point to receive queue listhead 
ii Attempt to dequeue I/O packet from queue 
II If CC I/O packet removed from queue 
ii Is this ACP still active for any units? 
II If NE yes 
i i RS must be our TCB address 
II No I/O requests in our queue and no active 
ii units, perform a task exit without any 
ii possibility of a race between QDCON 
II inserting an I/O request in our queue 
ii and our task exit. 
II Stop current task (us) and return to task 
II state. Once back in task state the PC will 
ii be at 30$, since once we are unstopped we will 
II resume execution at 30$, not the next line. 
ii Save I/O packet address. (Return to task 
ii state restores all registers.) 
ii Return to task state. Complementary to 
I' SWSTK$. 

i 

i 

Get I/O packet address 
If EQ none found in queue, try again since 
someone unstopped us. 
Get UCB address for request 

Initial status of success 

Point to parameter list are of our QIO DPB 
Number of words to clear 
Clear them 
Done? 
If NE no 

MOV U.QLUN(RS} ,.QIO+Q.IOLU i Setup LUN in DPB 

D-18 

c 

c 

( 

c 



( 

c 

( 

/ 

C 

l 

USER-WRITTEN ANCILLARY CONTROL PROCESSORS 

Dispatch function 

I/O function is dispatched with the following registers 

RS=UCB Address 
R3=I/0 Packet 

And • QIO has the correct LUN pI ugged into the DPB 

100$: 

110$: 

MOVB 
CMPB 
BNE 
JMP 
CMPB 
BNE 
JMP 
CMPB 
BEQ 

I. FCN+l (R3) ,RO 
#l0. RLB/4 00, RO 
100$ 
FCRLB 
#l0.WLB/400, RO 
110$ 
FCWLB 
#l0.CTL/400,RO 
FCCTL 

Illegal function code 

Get I/O function code 
Read logical block? 
If NE no 
Process read 
Write logical block? 
If NE no 
Process write 
ACP control function? 
If EQ yes 

IEIFC: MOV #IE.IFC&377,.IOST I/O status of illegal function code 

**-.IOFIN-Finish I/O request returning status to user. 

INPUTS: 

.IOFIN: 

.IOST=I/O status of current request 

.IOPKT=Address of I/O packet 

MOV .IOST,RO Get I/O status 
MOV .IOST+2,Rl. 
MOV . IOPKT, R3 Get address of 
MOV I.UCB(R3),RS Get UCB address 

I/O packet 

SWSTK$ 20$ ; ; Switch to system state 
CLR • IOPKT i ; No I/O packet anymore 
DEC U. QTRN (RS) ; ; Decrement count of outstanding I/O queued 

; ; to ACP 
BNE 10$ ; ; If NE more requests in queue 
BIT #UQ.STP,U.QCTL(RS) ; ; Has a request to stop processing on 

; ; this unit been received? 
BEQ 10$ ; ; If EQ no 
BITB #US.MNT,U.STS(RS) ; ; Unit still mounted? 
BEQ 10$ , , If EQ yes 
TST U.ATT (RS) ; ; Unit attached? 
BNE 10$ ii If NE yes 
BIC #UQ.STP!UQ.ONL,U.QCTL(RS) i Clear our on-line bit and stop 

; ; request flag 
BISB #US.OFL,U.ST2(RS) ; i Mark unit offl ine 
CLR U. QACP (RS) , , No ACP active on unit 
INC .IOPKT ii.Flag to indicate unit went to off-line state 

10$ : JMP $IOFIN ; ; Finish I/O request and return to task state 

20$: ASR • IOPKT Unit go to offl ine state? 
BCC 30$ If CC no 
CALL .CLOSE Close up shop on this unit 
DEC • ACTUN Decrement c 0 un t 0 f act i v e units 

30$: JMP • GTPKT Get next I/O request 

D-l9 



USER-WRITTEN ANCILLARY CONTROL PROCESSORS 

**-.DOIO-Do I/O for user to real device 

This routine maps to the users buffer(s) and issues an I/O request that 
will use the requesting task's buffers. This occurs because the OIO 
processing uses the logical mapping, not the virtual mapping, to determine 
where buffers are located. By logical mapping, I mean the physical mapping 
contained in the memory management registers. Because we are privileged, 
no validity checking is made on the buffers, so it is possible to do I/O 
to buffers larger than the windows through which they are mapped, that is, greater 
than about 4KB. This routine will function properly if the ACP overmaps 
the I/O page because it switches to the system stack, hence to kernel mode. 
Therefore, this routine must not be mapped by APR 7. 

INPUTS: 
RO=Buffer I mapping for user APR 1 
R1=Buffer 2 mapping for user APR 2 

OUTPUTS: 

.DOIO: 

I 0$: 

I/O issued and completed 
If CC then IOSB is I/O status 
If CS then $DSW is directive error 

SWSTK$ 
MOV 
MOV 
MOV 
MOV 
INCB 
RETURN 

10$ 
UISARO+2, 2 (SP) 
UiSARO+4, 4 (SP) 
RO,UISARO+2 
R1, UISARO+4 
$CXDBL 

Switch to system state 
Save user APR 1 value in saved RO 
And user APR 2 value in saved RI 
Map to user's first buffer 
Map to user's second buffer 
Disable context switching 
Return to task state 
Reference label 

Issue the OIO directive, context switching is disabled so we don't have 
to worry about user APRs 1 and 2 being modified. However, we can't wait 
for the I/O to complete at this point. 

DIR$ 
ROR 

it.OIO 
- (SP) 

Issue I/O request 
Save carry state 

Buffers have been "validated" and relocated so we can restore original 
mapping and enable context switching. 

20$: 

SWSTK$ 
MOV 
MOV 
DECB 
RETURN 

20$ 
RO, UISARO+2 
R1,UISARO+4 
$CXDBL 

Switch to system state 
Restore user APR 1 
Restore user APR 2 
Enable context switching 
Return to user state 
Reference label 

Context switching is now enabled, check directive status and if successful 
wait for completion 

30$ : 

ROL 
BCS 
DIR$ 
RETURN 

(SP)+ 
30$ 
itWTSE 

Restore carry, was directive successful? 
If CS no 
Wait for IIO to complete 
Return to caller 

D-20 

( 

( 

( 



( 

(-

( 

c 

USER-WRITTEN ANCILLARY CONTROL PROCESSORS 

**-.BLXI-Transfer data into our buffer 

INPUTS: 
RO=Byte count to transfer 
Rl=Address mapping base 
R2=APR 6 displacement 
R3=Address of our buffer 

OUTPUTS: 
Data in our buffer 

• ENABL LSB 

• B LXI: SWSTK$ 20$ 
MOV RO, RS 
MOV Rl,-(SP) 
MOV R2,-(SP) 

Switch to 
Save RS 
Save Rl 
And R2 

system ::;tate 

MOV R3, RO Set virtual address of our buffer 
CALL $RELOC Convert to address double word 
MOV Rl,R3 Copy Rl and 
MOV R2, R4 R2 to proper place for $BLXIO 
MOV (SP)+,R2 Restore R2 
MOV (SP)+,Rl and Rl 
BR 10$ Join common code 

**-.BLXO-Transfer out of our buffer into user's buffer 

INPUTS: 
RO=Byte count to transfer 
Rl=Address mapping base 
R2=APR 6 displacement 
R3=Address of our buffer 

OUTPUTS: 
Data in user buffer 

• BLXO: SWSTKS 20$ 
MOV RO, RS 
MOV R3,RO 
MOV Rl,R3 
MOV R2, R4 
CALL $RELOC 

10$: MOV RS,RO 
ADD #120000-140000,R2 
JMP $BLXIO 

20$: RETURN 

.DSABL LSB 

Swi tch to system state 
Save RO 
Set RO to address of our buffer 
Copy Rl and 
R2 into proper place for $BLXIO 
Convert to address doubleword 
Restore byte count 
; Convert to APR 5 displacement 
Transfer data and return to task 
Return to caller 

D-21 

for $RELOC 

state 



USER-WRITTEN ANCILLARY CONTROL PROCESSORS 

**-FCCTL-ACP control functions 

Two control functions are supported, start-up and shut-down. 

We check the request for validity and then set up various fields in the 
drivers UCB. 

FCCTL: MOV 
BIT 
BEQ 
CMPB 
BEQ 
CMPB 
BEQ 
BR 

I. TCB (R3) , RO 
#T3.PRV,T.ST3(RO) 
IEIFC 
U, I. FCN (R3) 
10$ 
#2,I.FCN(R3) 
30$, 
IEIFC 

Get TCB address of issuing task 
; Task privileged? 
If EQ no 
Startup request? 
If EQ yes 
Stop request? 
If EQ yes 
Illegal function 

Process start request 

10$: 

20$: 

TST 
BNE 
CALL 
BCS 
INC 
MOV 
BIS 
BICB 
BR 
MOV 
BR 

U.QACP(R5) Already got an ACP? 
20$ If NE yes 
.OPEN Open up shop for unit 
100$ If CS failed to open channel to "device" 
• ACTUN Increment count of units active 
$TKTCB,U.QACP(R5) ; Set ACP TCB address in UCB 
#UQ.ONL,U.QCTL(R5) ; Set unit online 
tUS.OFL,U.ST2(R5) ; And for the operating system 
100$ ; Join common code 
#IE.RSU&377,.IOST ; ACP already started for unit error 
100$ Join common code 

Process stop request 

30$: 

40$: 

50$: 

60$: 

100$: 

CMP 
BNE 
BIT 
BNE 
CALL 
BITB 
BEQ 
TST 
BNE 
CMP 
BNE 
BISB 
BIS 
RETURN 
MOV 
RETURN 

MOV 
BR 

MOV 

JMP 

$TKTCB,U.QACP(R5) ; Unit online with correct ACP? 
50$ ; If NE no 
#UQ.STP,U.QCTL(R5) ; Stop requested? 
60$ ; If NE yes 
$SWSTK,lOO$ ;; Go to system state to prevent a race problem 
#US.MNT,U.STS(R5) ;; Unit still mounted? 
40$ ;; If EQ yes 
U.ATT(R5) ;; Unit attached? 
40$ ;; If NE yes 
#1,U.QTRN(R5) ;; Is this this the only transaction queued? 
40$ II If NE no 
#US.OFL,U.ST2(R5) ;; Mark unit off line to prevent further I/O 
#UQ.STP,U.QCTL(R5) ;; Request unit be stopped 

;; Return to task state at statement 100$ 
#IE.NFW&377,.IOST ;; Unit busy, attached, or mounted 

;; Return to task state at statement 100$ 

#IE.OFL&377,.IOST ; Unit offline 
100$ Join common code 

#IE.FLN&377 , .IOST ; Already being stopped; error 

• IOFIN Finish I/O request 

D-22 

( 

c-

c 

( 



c= 

c 

( 

c 

USER~RITTEN ANCILLARY CONTROL PROCESSORS 

WAR N I N G 

The above code must be in the first 8K of the ACP because 
a switch to system state uses the kernel mode mapping which 
allows only 8K for task mapping. (The I/O page is mapped in 
thru APR 7 in system state, but may be overlaid by the task 
in task state.) 

**-FCRLB-Read logical block function 

• ENABL LSB 

FCRLB: CALL • READ Data in memory already? 
BCS 10$ If CS no 
MOV I.PRM+4 (R3) ,RO Get byte count 
MOV RO, .IOST+2 Set return status byte count 
MOV I.PRM(R3),Rl APR mapping 
MOV I.PRM+2 (R3) ,R2 APR6 displacement 
MOV R4,R3 Address of our buffer 
CALL .BLXO Transfer to user buffer 
BR 30$ Join common exit code 

**-FCWLB-Write logical block function 

FCWLB: CALL 
BCS 
MOV 
MOV 
MOV 
MOV 
CALL 
MOV 

.WRITE 
10$ 
I.PRM+4(R3),RO 
I. PRM (R3) ,Rl 
I. PRM+2 (R3) , R2 
R4, R3 

Transfer data to our buffer first? 
If CS no 

• BLXI 
• IOPKT, R3 

Get byte count 
APR mapping 
APR6 displacement 
Address of our buffer 
Transfer to our buffer 
Restore I/O packet address 

Do 1/0 from user buffer 

10$: 

20$: 

30$: 

MOV 
MOV 
SUB 
MOV 

CALL 
BCC 
MOV 
BR 
MOV 

.MOV 
JMP 

I.PRM(R3),RO ; Get mapping value for APR 1 
I.PRM+2(R3),Rl ; Get displacement biased for APR6 
i140000-20000,Rl ; Adjust to an APRI bias 
Rl,.QIO+Q.IOPL ; Insert virtual address of buffer 

; 'via APR 1 
.DOIO 
20$ ; 
iIE.ABO&377,.IOST 
30$ 

Issue I/O request 
If CC successful 
; Return error to user 
Join common code 
Return status to user 

when mapped 

IOSB,.IOST 
IOSB+2, .IOST+2 
.IOFIN Finish I/O request and dispatch next request 

.DSABL LSB 

D-23 



USER-WRITTEN ANCILLARY CONTROL PROCESSORS 

**-.INIT~One time initializations on startup 
; 

.INIT: None 
RETURN 

**-.OPEN-Open up I/O path for unit 

Inputs: 
R5=UCB address 
R3=I/0 packet address 

• OPEN: ALUN$S 
BCS 
MOV 
MOV 
MOV 
MOV 
CALL 
MOVB 
BMI 
CLR 
CLR 
MOV 
MOV 
CALL 
MOVB 
BMI 
CLR 
MOV 
CALL 
MOV 
RETURN 
SEC 
RETURN 

U.QLUN(R5),i"SY,iO ; Assign LUN to work file device 

10$: 

20$: CRASH 

20$ ; If CS error 
iIO.CRE,.QIO+Q.IOFN ; Setup for create file 
iFID,.QIO+Q.IOPL ; Insert address to receive file ID 
ilOOOOO,.QIO+Q.IOPL+4 ; Enable extend 
I.PRM(R3),.QIO+Q.IOPL+6 ; Allocate file of size requested 
XIO Create and extend file 
IOSB,.IOST Copy I/O status 
10$ If MI error 
.QIO+Q.IOPL+4 Reset parameter 
.QIO+Q.IOPL+6 Ditto 
UO.ACW,. QIO+Q. IOFN ; Set up to access the file 
ilOOOOO,.QIO+Q.IOPL+10 ; Enable access 
XIO ; Access file 
IOSB,.IOST ; Copy I/O status 
10$ ; If MI error 
.QIO+Q.IOPL+10 ; Reset parameter 
iIO.DEL,.QIO+Q.IOFN ; Set up to mark file for delete 
XIO ; Mark file for delete 
I.PRM(R3),U.CW3(R5) ; Set up device size 

Successful exit with carry clear 
Error exit with carry set 

Internal error 

**-.CLOSE-Close channel to device 
; 

.CLOSE: MOV 
MOV 

10$: CLR 
DEC 
BNE 
MOV 
JMP 

i6,RO Number of parameters to clear 
i.QIO+Q.IOPL,Rl Address of parameter list 
(Rl)+ Reset parameters 

RO Done? 
10$ If NE no 
iIO.DAC,.QIO+Q.IOFN ; Set to deaccess file 
XIO ; Deaccess file 

**-.READ-Determine method of performing read 

Inputs: 
R5=UCB Addtess 
R3=I/0 Packet 

D-24 

( 

c' 

c 

c 



c 

c 

c 

USER~RITTEN ANCILLARY CONTROL PROCESSORS 

Outputs: 
If CS then do I/O directly into user buffer 

.QIO DPB setup with I/O function code 
If CC then do I/O to our buffer, then copy to user buffer 

R4=Address of buffer 

.READ: MOV 
MOV 
MOV 
MOV 
ADD 
ADC 
CMP 
BNE 
MOV 
MOV 
CALL 
TSTB 
BMI 
CLC 
RETURN 
SEC 
RETURN 

tIO.RVB,.QIO+Q.IOFN ; Set up to read 
I.PRM+4(R3),.QIO+Q.IOPL+2 ; Insert byte count into OPB 
I.PRM+IO(R3),.QIO+Q.IOPL+6 ; And block number to start transfer 
I.PRM+12(R3),.QIO+Q.IOPL+IO ; 
tl,.QIO+Q.IOPL+lO ; Convert from "logical" to "virtual" 
.QIO+Q.IOPL+6 ; 
tlOOO,I.PRM+4(R3) 
10$ 
t.BUF,R4 
R4, .QIO+Q. IOPL 
XIO 
IOSB 
10$ 

; Do I/O to our buffer first? 
If NE no 
Set address of buffer 
Set up buffer address 
Read data into our buffer 
On error go directly to user buffer; error? 
If MI yes 
Copy to user buffer 

Do I/O directly to user buffer 

**-.WRITE-Determine method of performing write 

Inputs: 
R5=UCB Address 
R3=I/0 Packet 

Outputs: 
If CS then do I/O directly from user buffer 

.QIO DPB setup with I/O function code 
If CC then copy data to our buffer, then do I/O from user buffer 

R4=Address of buffer 

.WRITE: MOV 
MOV 
MOV 
MOV 
ADD 
ADC 
CMP 
BNE 
MOV 
CLC 
RETURN 

10$: SEC 
RETURN 

tIO.WVB,.QIO+Q.IOFN ; Set up to write 
I.PRM+4(R3),.QIO+Q.IOPL+2 ; Insert byte count into DPB 
I. PRM+IO(R3) ,. QIO+Q. IOPL+6 ; And block number on device 
I.PRM+12(R3),.QIO+Q.IOPL+IO ; 
tl,.QIO+Q.IOPL+lO ; Convert from "logical" to "virtual" 
.QIO+Q.IOPL+6 ; 
tlOOO,I.PRM+4(R3) 
10$ 
t.BUF,R4 

; Copy to our buffer first? 
If NE no 
Address of buffer for data 
Copy from user buffer 

Do I/O directly from user buffer 

D-25 



USER~RITTEN ANCILLARY CONTROL PROCESSORS 

**-XIO-Execute QIO request 

XIO: 

10$: 

20$: 

I/O 

.BUF: 

DIR$ #. QIO 
BCC 10$ 
CMP #IE. UPN, $DSW 
BNE 20$ 
WSIG$S 
BR XIO 
DIR$ #WTSE 
BCS '20$ 
RETURN 

CRASH 

buffer 

.BLKB 1000 

• END • START 

• TITLE QDCON 
.IDENT /01/ 

• ENABL LC 

Issue I/O request. 
If CC successfully issued 
No dynamic storage available? 
If NE no 
Hope 
••• hope 
Wait for I/O to complete 
If CS error 

Internal error 

One block long 

This ,control task is purely for purposes of example. It is not intended to 
be a useful task nor is it supported in any way. It is, however, 
functional, complete, and representative of a valid interface. 

**-QDCON-QD: driver and ACP control task 

MACRO LIBRARY CALLS 

• MCALL ALUN$,GLUN$,DIR$,GMCR$,WTSE$S,QIOW$S,EXST$S 
• MCALL ISTAT$,STATE$,TRAN$ 

DEFINE PARSER STATE TABLE 

The following commands are supported: 

>QDC START QDn:/SIZE:n 
where 

START is the subcommand to startup the ACP specifying the "disk size" 

>QDC STOP QDn: 
where 

STOP is the subcommand to stop the ACP at the earliest opportunity 

D-26 

( \, 
I 

e 

( 

( 

c 



c 

C~ 

c 

USER~RITTEN ANCILLARY CONTROL PROCESSORS 

ISTAT$ QDCSTB,QDCKTB 

Skip command name 

STATE $ INITL 
TRAN$ $STRNG 

Determine subcommand 

STATE $ 
TRAN$ 
TRAN$ 

"START" ,START" $START, $DISPT 
"STOP",STOP,,$STOP,$DISPT 

Process START command, get device name 

STATE $ START 
TRAN$ !DEVICE 

STATE$ OPTION 
TRAN$ '/, SWITCH 
TRAN$ $EOS,$EXIT 

STATE$ SWITCH 
TRAN$ "SIZE" ,SIZE 

STATE$ SIZE 
TRAN$ '= 

STATE$ 
TRAN$ $NUMBR, OPTION, SETSIZ 

Process STOP command 

STATE $ STOP 
TRAN$ !DEVICE 

STATE$ 
TRAN$ $EOS,$EXIT 

Process device name 

STATE $ 
TRAN$ 

STATE$ 

DEVICE 
$ALPHA, , SETDVI 

TRAN$ $ALPHA"SETDV2 

STATE$ 
TRAN$ 
TRAN$ 

STATE $ 
TRAN$ 

$NUMBR,DEVl,SETUNT 
$LAMDA 

DEVI 
': ,$EXIT 

Terminate state table 

STATE $ 

D-27 



USER-WRITTEN ANCILLARY CONTROL PROCESSORS 

PARSER ACTION ROUTINES 

Set first character of device name 

SETDV1: MOVB • PCHAR, $DEV Save first character of device name 
RETURN 

; Set second character of device name 

SETDV2: MOVB .PCHAR,$DEV+l 
RETURN 

; Set device unit number 

SETUNT: MOV .PNUMB,$UNIT 
RETURN 

; Set device size 

SETSIZ: MOV • PNUMB, $S'IZ E 
RETURN 

LOCAL DATA 

ALUN: ALUN$ 1, ; 
$DEV= ALUN+A. LUNA 
$UNIT= ALUN+A. LUNU 

GLUN: GLUN$ 1,GLUBUF 

GLUBUF: .BLKW 6 
$PDEV= GIJUBUF+G. LUNA 
$PUNIT= GLUBUF+G. LUNU 
$CHAR= GLUBUF+G. LUCW 

GMCR: GMCR$ 

$SIZE: .WORD 0 

$DISPT: .WORD 0 

ACPNAM: .RADSO /QDACP / 

I?RMLST: • BLKW 8 • 

$IOST: .BLKW 2 

Error messages 

.MACRO ERM ERN,STS,TEXT 
• PSECT $$ERMG 

$$$1=. 
• ASCII <lS>"TEXT" 

$$$2=. 
• PSECT 

ERN: .WORD STS 

Save second character 

Save converted unit number 

Save converted size 

Assign LUN to QDn: 
Address of device name 
Address of device unit number 

Get LUN information for QD: device 

LUN information buffer 
Actual device name 
Actual device unit 
Device characteristics word 

Get MCR command line 

Device size to create 

Address of service routine 

Name of ACP 

Parameter list for I/O packet 

I/O status 

.WORD $$$1,$$$2-$$$1 
.ENDM 

D-28 

C··· 
- ---

( 

C \ )' 



C 

• MACRO 

• ENDM 

ERRX 
MOV 
JMP 

USER-WRITTEN ANCILLARY CONTROL PROCESSORS 

ERN 
#ERN, RO 
$ERRXT 

.MACRO FTLX ERN 
#ERN,RO 
$SUCXT 

.ENDM 

MOV 
JMP 

.MACRO SUCX ERN 
#ERN,RO 
$SUCXT 

.ENDM 

ERM 
ERM 
ERM 
ERM 
ERM 
ERM 
ERM 
ERM 
ERM 
ERM 
ERM 
ERM 
ERM 
ERM 
ERM 
ERM 

MOV 
JMP 

ERRCML,14,<%QDC-F-GETCOMFAIcL, Failed to .get ~ommand line> 
ERRSYN, 24, <%QDC-F-SYNERR, Synta~ error .in command,> 
ERRNQD,34,<%QDC-F-NOQDDEV; Failed to assign LUN to QD:> 
ERRBDV,44,<%QDC-F-BADDEVICE, InvaHd device specified> 
ERRNOD, 54, <%QDC,-F-NOPOOL, No dynamic, memory for I/O request> 
ERRNAC, 64, <%QDC-F-NOACP,'QDACP aot in$talled i,n system> 
ERRREQ,74,<%QDC-F-REQFAI~, Failed to request QDACP> 
ERRUSE,104,<%QDC-F-DEVINUSE, Specified unit already in use> 
ERRINT,114,<%QDC-F-INTERNAL, Internal error> 
ERRFLN, 124,'<%QDC-F~OFFLINREQ, Unital ready r~.quested to ,off! in.e> 
ERRNOL,134,<%QDC-,F-NOTONLINE, Unit not onl inEr> 
ERRNDS,144,<%QDC-F-NODISSPAC, Failed to allocate disk space') 
ERRBSY, 154, <%QDC . ..-:F-DEVICEBUSY, Device busy, mounted, or atta(rhed.> 
ERRFTL,O,<-QDC~F-ONLFAIL, Failed to bring unit online> 
SUCCOM, 161, <%QDC-S-ONLINE, Spec ified unit brought onl ine> 
REQOFF,l71,<%QDC-S-:REQOFFLINE, Unit requested to of:fline> 

**-.QDCON-QD device control program 

$QDCON: CLR $DISPT Reset service routine dispatc;:h address 
CLR $UNIT Clean out unit number 
DIR$ #GMCR Get the command line 
BCC 10$ If CC successful 
FTLX ERRCML 

10$: CLR Rl Suppress blanks 
MOV #QDCKTB,R2 Get keyword table address 
MOV $DSW,R3 Get length of command line 
MOV #GMCR+G. MCRB, R4 Get address of cOmmand line 
MOV UNITL, R5 Get address of initial parser st.ate 
CALL • TPARS Parse command line 
BCC 20$ If CC good command line 
FTLX ERRSYN 

20$: DIR$ #ALUN Assign LUN to QD: 
BCC 30$ ; IfCC good device 
FTLX ERRNQD 

30$: DIR$ #GLUN Get device information 

JMP @$DISPT Dispatch to START or STOP service 

D-29 



USER-WRITTEN ANCILLARY CONTROL PROCESSORS 

**-$START-Start up ACP and specify size 

$START: CMP 
BEQ 
FTLX 

10$: 

20$: 

30$: 
40$: 

100$: 

110$: 

120$: 

130$: 

MOV 
MOV 
MOV 
MOV 

CALL 
BCC 
CMP 
BNE 
ERRX 
CMP 
BEQ 
CMP 
BNE 
ERRX 
ERRX 

CMPB 
BNE 
SUCX 

CMPB 
BNE 
ERRX 
CMPB 
BNE 
ERRX 
FTLX 

:f/:"QD,$PDEV 
10$ 
ERRBDV 

$SIZE, PRMLST 
:f/:PRMLST, R4 
:f/:ACPNAM,R3 
:f/:IO.CTL!1,R2 

• QUE IO 
100$ 
:f/:I E. UPN , $DSW 
20$ 
ERRNOD 
:f/:IE. INS, $DSW 
30$ 
:f/:IE. PRI, $DSW 
40$ 
ERRNAC 
ERRREQ 

:f/:IS.SUC,$IOST 
110$ 
SUCCOM 

:f/:IE. RSU, $IOST 
120$ 
ERRUSE 
:f/:IE.DFU,$IOST 
130$ 
ERRNDS 
ERRINT 

**-$STOP-Stop ACP operation 

$STOP: CMP 
BEQ 
FTLX 

10$: MOV 

100$: 

110$: 

MOV 
MOV 

CALL 
BCC 
CMP 
BNE 
FTLX 

CMPB 
BNE 
SUCX 

CMPB 
BNE 
FTLX 

:f/:"QD,$PDEV 
10$ 
ERRBDV 

:f/:PRMLST,R4 
:f/:ACPNAM,R3 
:f/:IO.CTL!2,R2 

• QUEIO 
100$ 
:f/:IE. UPN, $DSW 
140$ 
ERRNOD 

:f/:IS. SUC, $IOST 
110$ 
REQOFF 

:f/:IE. FLN, $IOST 
120$ 
ERRFLN 

Really QD:? 
If EQ yes 

Address of parameter 
Get address of parameter list 
Get address of ACP task name 
Set function code of ACP control 

and subfunction of START (1) 
Queue an I/O request to the ACP 
If CC successfully queued 
No pool? 
If NE no 

ACP not installed? 
If EQ yes 
Not an ACP? 
If NE no 

Catchall error message 

Success? 
If NE no 
Successful completion 

Already got an ACP or already started? 
If NE no 

Device full? 
If NE no 

Catchall error message 

Really QD:? 
If EQ yes 

Get address of parameter list 
Get address of ACP task name 
Set function code for ACP control 

and subfunction of STOP (2) 
Queue an I/O request to the ACP 
If CC successfully queued 
No pool? 
If NE no 

Success? 
If NE no 
Successful completion 

.; Already being off-lined? 
If NE no 

D-30 

( 

( 

c 



C 

c 

---~-----.-----------------------------------

USER-WRITTEN ANCILLARY CONTROL PROCESSORS 

120$: CMPB :/tIE. NFW, $IOST Unit busy? 
BNE l30$ If NE no 
FTLX ERRBSY 

:l30$: CMPB :/tIE.OFL,$IOST Device not on line? 
BEQ 140$ If EQ yes 
FTLX ERRINT Catchall error message 

140$: FTLX ERRNOL Not on line 

**-.QUEIO-Create and queue an I/O packet directly to an ACP 

This routine builds an I/O packet and queues it directly to an 
ACP bypassing the Executive QIO directive processing. The primary 
reason for doing this is the fact that under some circumstances 
the ACP cannot be reached by going through the driver, such as when the 
ACP has not been started. The parameter list is copied into the I/O packet 
without modification. Consequently, a buffer address cannot be passed 
as a parameter; it must first be relocated and the address double word 
placed in the parameter list; this routine is not designed to do that. 

INPUTS: 
R4=Parameter list address 
R3=Address of ACP task name 
R2=I/0 function code 
LUN 1 assigned to device associated wi th ACP 

OUTPUTS: 
If CC ACP requested and I/O complete 

$IOST is I/O status block containing return from ACP 
If CS ACP not requested 

$DSW is error status 
IE.UPN - No dynamic memory for I/O packet 
IE. INS -ACP not installed 
IE.PRI - Task not an ACP 

If entry at .QUEIO, all registers preserved 

• ENABL LSB 

.QUEIO: SWSTK$ 
CLR 
CLR 
MOV 
MOV 
MOV 
CALL 
BCS 
MOV 
BIT 
BEQ 
MOV 
MOV 
MOV 
MOV 
CALL 
BCS 
MOV 
MOV 
ASR 

10$: CLR 
DEC 
BNE 
MOV 

40$ ;; Switch to system state 
$IOST ;; Clear I/O status block 
$IOST+2 ;; Indicating I/O pending 
$HEADR,R5 ;; Get address of our task header 
H.LUN(R5),R5 ;; Get device UCB address 
#IE.INS,$DSW ;; Assume task not found 
$SRSTD ;; Search for task 
30$ ;; If CS failure 
#IE.PRI,$DSW II Assume task not an ACP 
#T3.ACP,T.ST3(RO) ;; Task an ACP? 
30$ ;; If EQ no 
RO,-(SP) ;; Save TCB address 
R2,-(SP) ;; Save I/O function code 
#IE.UPN,$DSW ;; Assume buffer allocation failure 
#I.LGTH,Rl ;; Length of I/O packet 
$ALOCB ;; Allocate buffer from pool 
30$ ;; If CS failure 
(SP)+,R3 ;; Restore R3 
RO,-(SP) ;; Save address of I/O packet 
Rl ;; Convert size in bytes to words 
(RO)+ ;; Zero I/O packet 
Rl ;; Done? 
10$ ;; If NE no 
#$IOST,RO ;; Get I/O status block address 

D-3l 



20$: 

30$: 
40$: 

50$: 

CALL 
MOV 
MOV 
MOV 
MOV 
MOV 
MOVB 
MOVB 
MOV 
MOV 
MOV 
ADD 
MOV 
MOV 
DEC 
BNE 
MOV 
INC 
CALL 

MOV 
INCB 
CLR 
MOV 
RETURN 
TST 
SEC 
BLE 
WTSE$S 
RETURN 

USER-WRITTEN ANCILLARY CONTROL PROCESSORS 

$RELOC ;; Relocate it 
(SP)+,RO ;; Restore packet address 
t$IOST,I.IOSB(RO) ;; Insert virtual address of status block 
Rl,I.IOSB+2(RO) ;; Insert relocation bias and 
R2,I.IOSB+4(RO) ;; Offset of I/O status block 
$TKTCB,I.TCB(RO) ;; Insert our TCB 
tl,I.EFN(RO) ;; Insert event flag number 
t251.,LPRI(RO) ;; Insert priority 
R5,I.UCB(RO) ;; Insert device UCB 
R3,I.FCN(RO) ;; Insert function code 
RO,Rl ;; Copy address of packet 
t~.PRM,RO ;; Point to parameter area 
tS.,R2 ;; Set parameter count 
(R4)+,(RO)+ ;; Copy parameter list into packet 
R2 ;; Done? 
20$ ;; If NE no 
(SP)+,RO ;; Get ACP TCB address 
U.QTRN(R5) ;; Bump count of transactions queued to unit 
$EXRQP ;; 'Queue I/O packet to ACP by priority and 

$TKTCB,RO 
T. roc (RO) 
T. EFLG (RO) 
#IS. SUC, $DSW 

$DSW 

50$ 
#1 

;; ensUre ACP is active 
;; Get our TCB address 
;; Bump our I/O count 
;; Clear event flag 1 
;; Indicate success 
ff Return to task stat~ 
: QIO successful? 

Assume error 
If LE no 
Wait for I/O to finish 
Return to caller 

.DSABL LSB 

**-$ERRXT-Error exit 
**-$SUCXT-Success exit 

Inputs: 
RO=Error table entry 

Outputs: 

$ERRXT: 

10$: 

$SUeXT: 
20$: 

30$: 

Message and task exit 

• ENABL LSB 

MOV 
MOV 
MOV 
QIOW$S 
BCe 
lOT 
MOV 
BR 
MOV 
MOV 
MOV 
QIOW$S 
BCe 
lOT 
EXST$S 

(RO)+,R5 ~ Get exit status 
(RO)+,Rl ; Get address of error text 
(RO)+,R2 ; Get size of text 
tIO.WVB,t5,t5",,(Rl,R2, 40> ; Write message 
10$ . 

#ERRFTL+2,RO Get address of fatal error message 
20$ Join Common code 
(RO)+,R5 Get exit status 
(RO}+,Rl Get address of final messag~ 
(RO)+,R2 ; Get size of message 
tIO.WVB,t5,t5",,<Rl,R2, 40> ; Write message 
30$ 

R5 ; Exit with status 

.DSASL LSB 

• END $QDCON 

D-32 

c--

c 

c 

( 



( 

c 

$ACHCK routine, 5-2 
$ACHKB routine, 5-2 
ACP, 

See Ancillary Control 
Processor 

ACP I/O function mask, 4-12 
Address doubleword, A-I 
$ALOCB routine, 5-3 
Alternate CLI support, 

UCB field, 4-25 
Ancillary Control Processor 

(ACP), D-l 
as extension of Executive, 

D-5 
as task, D-4 
attributes, D-4 
enabling and disabling 

capacity, D-5 
example, D-ll 
for class of devices, D-4 
I/O request flow, D-5 
processing, D-6 
role of, in I/O processing, 

2-3 
shareability, D-5 
type, D-2 to D-3 

$ASUMR routine, 5-4, B-3 

Buffer, 
special, 6-9 

Cancel I/O entry point, 2-4 
DDT conditions, 4-10 

CDA, 
See Crash Dump Analyzer 

CINT$ directive, 3-1 
CLI Parser Block (CPB) , 

address in UCB, 4-25 
$CLINS routine, 5-5 
Conditional assembly symbol, 

LD$xx, 3-5 
Conditional routine, 5-1 
Control and status register 

(CSR) '" 
address in SCB, 4-22 

Control I/O function mask, 
4-12 

Controller number, 2-14 
CPB, 

See CLI Parser Block 
Crash Dump Analyzer (CDA) , 

debugging driver code, 3-20 

INDEX 

Index-l 

$CRAVL symbol, 
use of, in fault tracing, 

3-28 
CSR, 

See Control and status 
register 

Data base, driver, 
accessing shared, 2-9 
changing, 3-3 
controlling access to 

shared, 2-10 
example, 6-2 to 6-4 
loadable, 

See Loadable data base 
overview, 3-5 
resident, 

See Resident data base 
Data structure, 2-7 

See also System data 
structure macro 
definition 

ACP interface, D-7 
DHll terminal multiplexer, 

2-7 
figure, 2-19 
interaction with driver, 2-5 
interrelationship, 2-18 
macro definition, 
overview, 4-1 
RLll disk, 2-8 
summary, 2-20 

D$$BUG label, 3-19 
DCB, 

See Device Control Block 
DDT, 

See Driver Dispatch Table 
$DEACB routine, 5-6 
Debugg ing, 

CDA, 3-20 
Executive stack and register 

dump routine, 3-16 
faul t code, 3-26 
fault isolation, 

3-20 to 3-23 
fault tracing, 3-23 to 3-28 
Panic Dump routine, 

3-19 to 3-20 
XDT, 3-15, 3-17 to 3-18 

Debugging aid, 3-16 
$DEUMR routine, 5-7, B-3 
$DEVHD word, 2-19 

role of, in I/O data 
structure, 2-20 



INDEX 

Device Control Block (DCB) , 
description, 4-7 
relationship of, with I/O 

control blocks, 2-6 
required field, 3-6 
role of, in I/O data 

structure, 2-20 
with ACP, 0-9 

Device Control Block (DCB) 
field, 

D.DSP, 3-6, 4-10, 4-14 
D.LNK, 3-6, 3-8, 4-8 
D.MSK, 3-6, 4-11 
D.NAM, 3-6, 4-9 
D.PCB, 3-6, 4-14 
D.UCB, 3-6, 3-8, 4-8 
D.UCBL, 3-6, 4-9 
D.UNIT, 3-6, 4-9 

Device interrupt entry point, 
2-4 

Device interrupt vector, 4-33 
definition, 2-10 

Device time-out entry point, 
2-4 

DDT conditions, 4-11 
Directive Parameter Block 

(DPB) , 2-5 
description, 4-6 
source of I/O packet 

information, 2-9 
DPB, 

See Directive Parameter Block 
Driver, 

changing code, 
debugging, 

See Debugging 
function, 1-2 
loadable, 

See Loadable driver 
multicontroller, 2-10 
Non-MASSBUS NPR, B-1 
postinitiation service, 2-11 
preinitiation processing of, 

2-11 
process-like characteristic, 

2-13 
property, 1-2 
rebuilding and 

reincorporating, after 
debugging, 3-29 to 3-30 

resident, 
See Resident driver 

role of, in RSX-IlM, 2-5 
Software Performance Report 

(SPR) support, 3-4 
SYSGEN support, 3-1 
type, 1-1 

Driver code, 
changing, 3-3 
example, 6-4 to 6-9 
overview, 3-4 

Driver data base, 
See Data base, driver 

Driver Dispatch Table (DDT), 
address, 3-5 
role of, in I/O data 

structure, 2-20 
Driver entry point, 

cancel I/O, 2-4, 4-10 
device interrupt;2-4 
device time-out,2-4, 

4-11 
I/O initiator, 2-4, 2-12, 

4-10 
power failure, 2-4, 4-11 

Driver global symbol, 
$xxINP, 3-5 
$xxINT, 3-5 
$xxOUT, 3-5 
$xxTBL, 3-5 

DRQIO module, 
service performed in 

processing QIO, 2-11 
$DVMSG routine, 5-8 

Error logging, 
modifying driver to 

incorporate, 3-5 
SCB field, 4-20 
UCB field, 4-24 to 4-25 

Executive Crash Dump routine, 
3-20 

Executive Debugging Tool 
(XDT) , 

debugging driver code, 
3-17 to 3-18 

ODT features and commands 
not included, 3-17 

Executive service, 
driver processing, 2-10 
postinitiation, 2-11 
preinitiation, 2-11 

Executive service calls, 
5-1 to 5-28 

Executive stack and register 
dump routine, 3-17 

debugging driver code, 
3-16 

use of, in fault tracing, 
3-25 

$EXRQP routine, 5-9 

Index-2 

( 

( 



c 

( 

c 

FllACP, 
role of, in I/O data 

structure, 2-19 
Fault code, 3-26 
Fault isolation, 3-20 to 3-23 
Fault tracing, 3-23 to 3-24 

INDEX 

after unintended loop, 3-28 
Executive stack and register 

dump, 3-25 to 3-27 
hints, 3-28 to 3-29 
in new driver, 3-28 
when processor halts without 

display, 3-27 
FCP, 

See File Control Processor 
FCS, 

See File Control Services 
File Control Block (FCB) , 

role of, in I/O data 
structure, 2-20 

File Control Processor (FCP) , 
role of, in I/O data 

structure, 2-19 
File Control Services (FCS) , 

positidn of, in I/O 
hierarchy, 2-2 

Fork block, 
storage words in SCB, 4-23 

Fork level processing, 2-15 
Fo rk list, 2-9 
Fork process, 2-9 

creating with $FORK, 2-12 
$FORK routine, 5-10 

accessing shared driver data 
base, 2-10 

initiating fork process, 2-9 
$FORKI routine, 5-11 
Function mask word, 

See I/O function mask 

Global label, 
$USRTB ,3-l3 
$xxDAT, 3-9 
$xxEND, 3-9 
$xxTBL, 4-10 

$GTBYT routine, 5-12 
$GTPKT routine, 2-12, 5-13 

in driver processing, 2-17 
use of, with ACP, D-6 

$GTWRD routine, 5-14 
conditional assembly, 5-1 
inclusion of, by SYSGEN, 3-2 

$HEADR pointer, 
use of, in fault tracing, 

$HEADR pointer (Cont.) 
3-24 

ICB, 
See Interrupt Control Block 

Interrupt Control Block (ICB), 
3-2, 4-35 

Interrupt entry point, 
address, 3-5 

Interrupt processing, 
fork level, 2-9, 2-15 
priori ty 7, 2-14 
priority of interrupting 

source, 2-14 
INTSV$ macro, 

description; 4-35 
format, 4-35 

$INTSV routine, 2-12, 5-15 
calling with INTSV$ macro, 

4-35 
processing at priority of 

interrupting source, 
2-15 

$INTXT routine, 5-16 
I/O control blocks, 

interrelationship, 2-6 
I/O data structure, 

See also System data 
structure macro 
definition 

See Data structure 
I/O driver, 

See Driver 
I/O function mask, 

ACP, 4-12 
control, 4-12 
creating, 4-13 
legal, 4-12 
no-op, 4-12 
values for disk drive, 4-16 
values for magtape drive, 

4-17 
values for standard 

functions, 4-15 
values for unit record 

device, 4-18 
I/O hierarchy, 2-1 
I/O initiator entry point, 

2-4, 2-12 
DDT conditions, 4-10 

I/O packet, 2-8 
description, 4-2 
format, 4-3 
pointer in SCB, 4-21 
with ACP, D-7 

I/O packet field, 
LAST, 4-5 

Index-3 



1/0 packet field (Cont.) 
I.EFN, 4-3 
I. FCN, 4-4 
I.IOSB, 4-4 
1.LNK, 4-2 
I. PRI, 4-3 
I. PRM, 4-5 
I. TCB, 4-4 
I. UCB, 4-4 

I/O philosophy, 2-1 
1/0 processing, 

ACP, 2-3 
QIO directive, 2-3 

I/O queue, 2-9 
I/O request, 

flow, 2-16 to 2-17 
$IOALT routine, 2-13, 5-17 
$IODON routine, 2-13, 5-17 
$IOFIN routine, 5-18 

use of, by ACP, D-7 

LD$xx symbol, 3-5 
required by INTSV$ macro, 

4-35 
Legal I/O function mask, 4-12 
LOA command, 4-35 

action if UC.PWF set, 2-4 
effect of, when loading 

driver, 3-8 
loading driver, 3-2, 3-12 

Loadable data base, 
advantage, 3-8 
assembling, 3-9 
characteristics, 3-8 

Loadable driver, 
assembling, 3-9 
benefit, 1-1 
combination with data base, 

3-1 
debugg ing, 3-8 
definition, 1-1 
incorporating, with data 

base, 3-81 

linking, with loadable data 
base, 3-3 

linking, with resident data 
base, 3-3 

loading, into memory, 3-2, 
3-12 

rebuild ing and 
reincorporating, after 
debugging, 3-30 

removing, from memory, 3-2 
task-building, 

mapped system, 3-10 
unmapped system, 3-11 

INDEX 

Loadable driver (Cont.) 
task-building, with resident 

data base, 3-12 
Logical unit number (LUN), 

2-19 
preinitiation processing of, 

2-11 
Logical Unit Table (LUT) , 2-19 
LUN, 

See Log ical unit number 
LUT, 

See Logical Unit Table 

Mapping register assignment 
block, 

allocating, B-2 
figure, B-3 

$MPUBI routine, 5-20, B-3 
use of, to obtain UMRs, 8-1 

$MPUBM routine, 5-19, B-3 
use of, to obtain UMRs, B-1 

Multicontroller driver, 2-10 
conditional code 

description, 4-33 
conditional code example, 

4-34 

No-op I/O function mask, 4-12 
NPR device driver, B-1 

use of SCB field S.MPR, 4-23 
N$$UMR symbol, B-4 

Panic Dump routine, 3-19 
sample output, 3-20 

Partition Control Block (PCB), 
addres~ in DCB, 4-14 

$PKAVL symbol, 
use of, in fault tracing, 

3-28 
Power failure entry point, 2-4 

DDT c~ditions, 4-11 
Process, 

state, 2-10 
Programming convention, 2-13 
Programming protocol, 2-14 

summary, 2-16 
$PTBYT routine, 5-21 
$PTWRD routine, 5-22 

conditional assembly, 5-1 
inclusion of, by SYSGEN, 3-2 

Index-4 

( 

( 

( 

( 



(\ 

c 

INDEX 

$QINSP routine, 5-23 
QIO directive, 

position of, in I/O 
hierarchy, 2-2 

preinitiation processing of, 
2-11 

role of, in I/O processing, 
2-3 

QIO Directive Parameter Block, 
4-6 

$QRMVF routine, 5-24 
use of, with ACP, D-6 

Record Management Services 
(RMS) , 

position of, in I/O 
hierarchy, 2-2 

RED command, 2-6 
$RELOC routine, 5-25 
Resident data base, 

assembling, 3-12 
example, 6-1 

Resident driver, 
assembling, 3-13 
combination with data base, 

3-1 
defini tion, 1-1 
example, 6-1 
incorporating, 3-13 
linking data base, 3-3 
rebuilding and 

reincorporating, after 
debugg ing, 3-29 

task-building, 3-14 
RMS, 

See Record Management 
Services 

SCB, 
See Status Control Block 

Special buffer handling, 6-9 
example, 6-9 to 6-11 

SST fault, 
abnormal, 3-27 
internal, 3-26 

Stack structure, 
abnormal SST fault, 3-27 
data items on stack, 3-28 
internal SST fault, 3-26 

Status Control Block (SCB), 
description, 4-19 
relationship of, with I/O 

control blocks, 2-6 
required field, 3-7 
role of, in I/O data 

~ - -~-~-~-------~-- --------

Status Control Block (SCB) 
(Cont. ) 

structure, 2-20 
Status Control Block (SCB) 

field, 
S.BMSK, 4-20 
S.BMSV, 4-20 
S.CON, 3-7, 4-22 
S.CSR, 3-7, 4-22 
S.CTM, 4-21 
S.FRK, 3-7, 4-23 
S.ITM, 3-7, 4-21 to 4-22 
S.LHD, 3-7 to 3-8, 4-2, 4-20 
S.MPR, 3-7, 4-23, 8-1 to B-2 
S.PKT, 4-23 
S.PRI, 3-7, 4-21 
S.RCNT, 4-20 
S.ROFF, 4-20 
S.STS, 3-7, 4-22 
S.VCT, 3-7, 4-21 

$STKDP pointer, 
use of, in fault tracing, 

3-23 
$STMAP routine, 5-26, 

B-2 to B-3 
use of, to obtain UMRs, B-1 

$STMPI routine, 5-27, 
B-2 to B-3 

use of, to obtain UMRs, B-1 
$STPCT routine, 

use of, by ACP, D-7 
$SWSTK routine, 5-28 
Symbolic offsets, 

for system data structures, 
C-l 

SYSCM, 
See System common 

SYSTB file, 
creation of, by SYSGEN, 3-1 

System common (SYSCM), 
use of, in fault isolation, 

3-23 
System common (SYSCM) pointer, 

$CRAVL, 3-28 
$HEADR, 3-24, 3-27 
$PKAVL, 3-28 
$STKDP, 3-23, 3-27 
$TKTCB, 3-24, 3-27 

System data structure macro 
definition, C-l 

ABODF$, C-3 
CLKDF$, C-4 
DCBDF$, C-6 
EPKDF$, C-7 
F11DF$, C-14 
HDRDF$, C-19 
HWDDF$, C-2l 
ITBDF$, C-24 
LCBDF$, C-25 

Index-5 



System data structure macro 
(Cont. ) 

MTADF$, C-26 
PCBDF$, C-30 
PKTDF$, C-32 
SCBDF$, C-37 
TCBDF$, C-39 
UCBDF$, C-42 

System generation, 
incorporating driver, 3-1 

System state register 
convention, 5-1 

Task header, 
mapped system, 3-25 
role of, in I/O data 

structure, 2-19 
unmapped system, 3-24 

$TKTCB pointer, 
use of, in fault tracing, 

3-24 
Transfer function, 

processing, 4-13 
TTDRV, 

LOA special case, 3-5 

UCB, 

INDEX 

See Unit Control Block 
UNIBUS Mapping Register, 

static allocation of, during 
system generation, B-4 

Unit Control Block (UCB), 
description, 4-23 
figure, 4-26 
negative offset, 4-9 
relationship of, with I/O 

control blocks, 2-6 
required field, 3-7 
role of, in I/O data 

structure, 2-20 
with ACP, D-9 

Unit Control Block (UCB) field, 
U.ATT, 3-7, 4-31 
U.BUF, 4-31 
U.CLI, 4-25 
U.CNT, 4-32, B-1 

U.CTL, 2-9, 3-7, 4-10, 4-27 
U.CWl, 3-7, 4-29 
U.CW2, 3-7, 4-30 
U.CW3, 3-7, 4-30 
U.CW4, 3-7, 4-31 
U.DCB, 3-6 to 3-8, 4-9, 4-27 
U.ERHC, 4-25 
U.ERHL, 4-24 
U.ERSC, 4-24 
U.ERSL, 4-24 
U.IOC, 4-24 
U.LUIC,4:f-25 
U.MUP, 4-25 
U.OWN,4-27 
U.RED, 3-7 to 3-8, 4-27 
U.SCB, 3-7 to 3-8, 4-31 
U.ST2, 3-7, 4-29 
U.STS, 3-7, 4-28 
U.UNIT, 3-7, 4-29 

UNL command, 
unloading driver, 3-2 

USRTB file, 
content, 3-12 

$USRTB label, 3-13 

Volume Control Block' (VCB), 
role of, in I/O data 

structure, 2-20 

Window Block (WB), 
role of, in I/O data 

structure, 2-19 to 2-20 

XDT, 
See Executive Debugging Tool 

$xxDAT label, 3-9 
$xxEND label, 3-9 
$xxINP symbol, 3-5 
$xxINT symbol, 3-5 
$xxOUT symbol, 3-5 
$xxTBL label, 

on driver dispatch table 
(DDT), 4-10 

$xxTBL symbol, 3-5 

Index-6 

c-

( 

c 



c 

c 

READER'S COMMENTS 

RSX-llM 
Guide to Writing 

an I/O Driver 
Order No. AA-2600E-TC 

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the 
company's discretion. If you require a written reply and I:/.re eligible to receive one under Software 
Performance Report (SPR) service, submit your comments on an SPR form. 

Did you find this manual understandable, usable, a:nd well-organized7 Please make suggestions for improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of user/reader that you most nearly represent. 

o Assembly language programmer 
o Higher-level language programmer 
o Occasional programmer (experienced) 
o User with little programming experience 
o Student programmer 
o Other (please specify) 

Name __________________________________________________ Date ________________________________ __ 

Organization 

Street 

City _____________________ _ State ______ Zip Code _____ _ 

or Country 



- - Do Not Tear - Fold Here and Tape 

IIIIII 

BUSINESS REPLY MAIL 
FI RST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

BSSG PUBLICATIONS ZK1-3/J35 
DIGITAL EQUIPMENT CORPORATION 
110 SPIT BROOK ROAD 
NASHUA, NEW HAMPSHIRE 03061 

No Postage 
Necessary 

if Mailed in the 
United States 

- - - - DoNotTear-FoldHere - - - - - - - - - - - - - - - - - - - - -

c) 

c- ) 

-I 

1 

I 
I 

C 

c) 





Printed in U.S.A. 


