
RSX-11 M/M-PLUS
I/O Drivers Reference Manual
Order No. AA-FD09A-TC

(~ I

(,

RSX-11 M/M-PLUS
I/O Drivers Reference Manual
Order No. AA-FD09A-Te

RSX-11 M Version 4.2
RSX-11 M-PLUS Version 3.0

digital equipment corporation· maynard, massachusetts

First Printing, May 1979
Revised, December 1981

Revised, July 1985

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright @ 1979, 1981, 1985
by Digital Equipment Corporation

All Rights Reserved.

Printed in Australia

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-lO
DECSYSTEM-20
DECUS
DECwriter

DISOL
EduSystem
lAS

PDT
RSTS
RSX
UNIBUS
VAX
VMS

MASSBUS
MicroPDP-ll
Micro/RSTS
Micro/RSX
PDP

VT

mD~DDmD

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and. Puerto Rico call 800-258-1710

In New Hampshire, Alaska, and HawaII call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6215 (all other Canadian)

DIRECT MAIL ORDERS (USA a PUERTO RICO)·

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

·Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada Ltd.
1 00 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation
PSG Business Manager
clo Digital's local subsidiary or
approved distributor

ZK2645

(

(

(

(

CONTENTS

Page

PREFACE xxiii

SUMMARY OF TECHNICAL CHANGES xxv

CHAPTER 1

1.1
1.2
1.3
1. 3.1
1. 3. 2
1. 3. 3
1.4
1. 4.1
1.4.1.1

1.4.1.2
1.4.1.3
1.4.1.4
1.4.1. 5
1.4.1.6
1.4.1.7
1.4.1.8
1. 4.2
1. 4. 3
1. 4.4
1. 4. 5
1.5
1. 5.1
1. 5. 2
1.6
1. 6.1
1. 6. 2

1. 6.3
1. 6. 4
1. 6. 5
1.6.5.1
1.6.5.2
1.6.6
1. 6. 7
1. 6. 8
1.7
1. 7.1
1. 7.2
1. 7.3
1. 7. 4
1. 7.5
1. 7. 6
1. 7.7
1. 7.8
1.8
1.9
1. 9.1
1. 9. 2
1. 9. 3
1.10

1.11

RSX-IIM/M-PLUS INPUT/OUTPUT

OVERVIEW OF RSX-llM I/O • • • • • • • • 1-1
PHYSICAL, LOGICAL, AND VIRTUAL I/O • • 1-2
LOGICAL UNITS •••••• • • • • • • • 1-2

Logical Unit Number • • • • • • • • • • 1-2
Logical Unit Table • • • • • ••••••• 1-3
Changing LUN Assignments • • 1-4

ISSUING AN I/O REQUEST • • 1-4
QIO$Macro Format • • • • • • • 1-6

Syntax Elements: Brackets [], Angle Brackets
<>, Braces {} •••••• • •••••• 1-6
FNCParameter • • • • • • • 1-6
LUN Parameter •••••• ••• 1-7
EFN Parameter •••• ••••• • • • • • 1-7
PR:i: 'Parameter ••••• • • 1-8
ISB Parameter • • 1-8
AST Parameter 1-9
Pl,P2, ••• ,P6 Parameters ••••••••• 1-9

Significant Events • • • • • 1-9
Event Flags • • • • • • • •• 1-9
System Traps • • • • • • • • • • • • • • • 1-10
Asynchronous System Traps '0 • • •• 1-11

DIRECTIVE PARAMETER BLOCKS • • 1-12
I/O Packets ••••••• • • • • •• 1-13
Significant Event Declaration 1-13

I/O RELATED MACROS • • • • • • • • • • • • • 1-13
The QIO$ Macro: Issuing an I/O Request 1-14
The QIOW$ Macro: Issuing an I/O Request and
Waiting for an. Event Flag •• • • • • • • • •
The DIR$ Macro: Executing a Directive ••••
The .MCALL Directive: Retrieving System Macros
The ALUN$ Macro: Assigning a LUN •••••••

Physical Device Names • • • • • • • • • • •
PseudO-Device and Physical Device Names

The GLUN$ Macro: Retrieving LUN Information
The ASTX$S Macro: Terminating AST Service
The WTSE$ Macro: Wait for Single Event Flag.

STANDARD I/O FUNCTIONS • • • • • • • •
I/O Subfunction Bits • • • • • • • • • • • • •
QIO$C IO.ATT - Attaching to an I/O Device
QIO$C IO.DET - Detaching from an I/O Device
QIO$C IO.KIL - Canceling I/O Requests ••••
QIO$C IO.RLB - Reading a Logical Block • •• •
QIO$C IO.RVB - Reading a Virtual Block ••
QIO$C IO.WLB - Writing a Logical Block.
QIO$C IO.WVB - Writing a Virtual Block

USER-MODE DIAGNOSTIC FUNCTIONS •
I/O COMPLETION • • • • •

Return Codes'. • • • •
Directive Conditions • • •• • • • • • • • • •
I/O Status Conditions

POWER-FAIL RECOVERY PROCEDURES FOR DISKS AND
DECTAPE • • • • • • • • •
RSX-IIM DEVICES • • • • •• •

iii

1-15
1-15
1-16
1-16
1-18
1-20
1-21
1-24
1-24
1-25
1-26
1-27
1-28
1-29
1-30
1-30
1-31
1-32
1-34
1-36
1-36
1-37
1-38

1-43
1-43

CHAPTER 2

2.1
2.1.1
2.1. 2

2.1.2.1
2.1.2.2
2.1.2.3
2.1.2.4
2.1.2.5
2.1.2.6
2.1.2.7
2.1.2.8
2.1.2.9
2.1.2.10
2.1.2.11
2.1.2.12

CONTENTS

FULL-DUPLEX TERMINAL DRIVER

INTRODUCTION • • • • • • • • • • • • • • • • • • • 2-1
Full-Duplex Terminal Driver •••••••••• 2-1
Terminals Supported by the Full-Duplex Terminal
Driver • • • • • • • • • • • • • • • • • •• 2-2

ASR-33/35 Teletypewriters •••• • 2-3
KSR-33/35 Teletypewriters • • 2-4
LA12 Portable Terminal • • • • • 2-4
tA100 DECprinter • • ••••••••• 2-4
LA30 DECwri ters. • • • • • • • • 2-4
LA36 DECwriter • • • • • • • • • • 2-4
LA34/38 DECwriters • • • • 2-4
LA120 DECwriter • • • • • • • 2-4
LA180S DECprinter •••••• 2-4
LQP02 Letter-Quality Printer • • • • • • • • • 2-4
LA50 Personal Printer • • • • • • • • • 2-5
RT02 Alphanumeric Display Terminal and RT02-C
Badge Reader/Alphanumeric Display Terminal •• 2-5

2.1.2.13 VT05B Alphanumeric Display Terminal 2-5
2.1.2.14 VT50 Alphanumeric Display Terminal. • • 2-5
2.1.2.15 VT50H Alphanumeric Display Terminal •• 2-5
2.1.2.16 VT52 Alphanumeric Display Terminal. • • • 2-5
2.1.2.17 VT55 Graphics Display Terminal. • • • 2-5
2.1.2.18 VT61 Alphanumeric Display Terminal.. • 2-6
2.1.2.19 VT100 DECscope • • •••••••• 2-6
2.1.2.20 VT101 DECscope • • • • • • ••••• 2-6
2.1.2.21 VT102 DEC scope • • • • • • • • • 2-6
2.1.2.22 VT105 DECscope • • ••••••••• 2-6
2.1. 2. 23 VT131 DECscope • • • • • •• 2-6
2.1.2.24 VT220 Terminal. • • • • • • 2-6
2.1.2.25 VT240 Terminal. • • • • • • 2-6
2.1.2.26 VT241 Terminal. • • • • • • • 2-7
2.2 GET LUN INFORMATION MACRO • • • •• 2-7
2.3 QIO$ MACRO. • • • • • • • • • • •• • • • •• 2-8
2.3.1 Format of QIO$C for Standard Functions. 2-8
2.3.2 Format of QIO$C for Device-Specific Functions • 2-8
2.3.3 Parameters • • • • • • • • • • • • • • •• 2-10
2.3.4 Subfunction Bits. • • • • • • • • • • •• 2-12
2.4 DEVICE-SPECIFIC QIO$ FUNCTIONS • • • • • • • •• 2-17
2.4.1 System Generation Options in the Full-Duplex

Terminal Driver ••••••••• ••••
2.4.2 Functions and Allowed Subfunctions ••••
2.4.3 QIO$C IO.ATA - Attach a Terminal with ASTs ••
2.4.4 QIO$C IO.CCO - Cancel CTRL/O ••••••
2.4.5 QIO$C IO.EIO - Extended I/O Functions ••••
2.4.5.1 Item List 1 for IO.EIO!TF.RLB ••••
2.4.5.2 Item List 2 for IO.EIO!TF.WLB •••••
2.4.6 QIO$C IO.GTS -Get.Termina1 Support
2.4.7 QIO$C IO.HNG - Disconnect a Terminal
2.4.8 QIO$C IO.RAL - Read All Characters Without

Interpretation • • • • • • • • • • • • • •
2.4.9 QIO$C IO.RNE - Read Input Without Echoing
2.4.10 QIO$C IO.RPR - Send Prompt, Then Issue Read
2.4.11 QIO$C IO.RST - Read Logical Block With Special

2-17
2-18
2-20
2-23
2-25
2-30
2-32
2-33
2-35

2-36
2-38
2...;40

Terminators •• • • • • • • • • • • • • 2-43
2.4.12
2.4.13

2.4.14

2.4.15
2.4.15.1
2.4.16
2.4.16.1
2.4.16.2

QIO$ IO.RTT - Read With Terminator Table • •• 2-45
QIO$C IO.WAL - Write a Logical Block and Pass
All Characters • • • • •• • • • • • • • • • • 2-47
QIO$C IO.WBT - Break Through to write a Logical
Block •• • • • • • • • • • • • • • • • • • •
QIO$C SF.GMC - Get Multiple Characteristics

Characteristic Bit Specia1.Information •••
QIO$C SF.SMC - Set Multiple Characteristics

Processing for TC.MHU, TC.SSC, and TC.OOB
Side Effects of Setting Characteristics

iv

2-49
2-51
2-56
2-59
2-60
2-62

(

(

(

(

(

2.5
2.6
2.6.1
2.6.2
2.7
2.7.1
2.7.2
2.7.3
2.7.4
2.7.4.1
2.7.4.2
2.7.4.3
2.7.5
2.8
2.9
2.10

2.10.1
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.17.1
2.17.2
2.17.3
2.17.4
2.17.5
2.18
2.18.1
2.18.2
2.18.3
2.18.4

CHAPTER 3

3.1
3.1.1
3.1. 2
3.1.3
3.1. 4
3.1. 5
3.1. 6
3.1. 7

3.1. 8
3.1. 9
3.1.10
3.1.11
3.1.12
3.1.13
3.1.14
3.2
3.3
3.3.1
3.3.2
3.3.2.1
3.3.2.2
3.3.2.3
3.3.2.4
3.3.2.5
3.3.2.6
3.3.2.7

CONTENTS

STATUS RETURNS • • • • • • • •
CONTROL CHARACTERS AND SPECIAL KEYS ••••

Control Characters • • • • • • • • • •
Special Keys • • • • • • • •

ESCAPE SEQUENCES • • • • • • • • • •
Definition of Escape Sequence Format.
Prerequisites ••••••••••
Characteristics • • • • • • • •
Escape Sequence Syntax Violations

DELETE or RUBOUT (177) • • • • • • • • •
Control Characters (0-037) • • • • • • • • •
Full Buffer •••••••••••

Exceptions to Escape Sequence Syntax • • • • •
VERTICAL FORMAT CONTROL • • • • • • • • • •
AUTOMATIC CARRIAGE RETURN • • • • •
FEATURES AVAILABLE BY RSX-llM SYSTEM GENERATION
OPTION • • • • .. • • • • • • • • • • •

Hard Receive Error Detection • • • •
TASK BUFFERING OF RECEIVED CHARACTERS
TYPE-AHEAD BUFFERING • • • • • • • • • •
FULL-DUPLEX OPERATION • • • • • • • • •
PRIVATE BUFFER POOL •• • • • • • • •
INTERMEDIATE INPUT AND OUTPUT BUFFERING • • • •
TERMINAL-INDEPENDENT CURSOR CONTROL
TERMINAL INTERFACES ••••••• • • • • •

DHll Asynchronous Serial Line Multiplexer
DHVll Asynchronous Serial Line Multiplexer
DJll Asynchronous Serial Line Multiplexer
DLll Asynchronous Serial Line Interface
DZll Asynchronous Serial Line Multiplexer

PROGRAMMING HINTS • • • • • • • • • • • • • • •
Checkpointing During Terminal Input
RT02-C Control Function •• • • • • • • • • •
Remote DLll-E, DHll, and DZll Lines
Modem Support • • • • • • •

HALF-DUPLEX TERMINAL DRIVER

2-63
2-68
2-68
2-71
2-72
2-72
2-73
2-74
2-74
2-74
2-74
2-74
2-75
2-75
2-76

2-77
2-77
2-78
2-78
2-79
2-79
2-80
2-80
2-81
2-81
2-81
2-81
2-81
2-82
2-82
2-82
2-82
2-83
2-83

INTRODUCTION • • • • • • • • • • • • 3-1
ASR-33/35 Teletypewriters • 3-2
KSR-33/35 Teletypewriters • • • • • • • • • 3-2
LA30 DECwriters • • • • •••• 3~2
LA36 DECwriter • • • • • • • • • 3-2
LA120' D·ECwr iter •••••••••••••••• 3-3
LA180S DECprinter •••••••••• • • 3-3
RT02 Alphanumeric Display Terminal and RT02-C
Badge Reader/Alphanumeric Display Terminal • 3-3
VT05B Alphanumeric Display Terminal •••••• 3-3
VT50 Alphanumeric Display Terminal • • • • 3-3
VT50H Alphanumeric Display Terminal •• 3-3
VT52 Alphanumeric Display Terminal ••••••• 3-4
VT55 Graphics Display Terminal • • • • • • • • • 3-4
VT61 Alphanumeric Display Terminal • 3-4
VT100 DECscope • • • • • • • • • • • • • 3-4

GET LUN INFORMATION MACRO • • • • • • • • • 3-4
QIO$ MACRO • • • • • • • • •• •• • • •• 3-6

Subfunction Bits • • • •• •• • • • • 3-8
Details on Device-Specific QIO Functions • • 3-9

IO.ATA • • • • • • • • • • • • • • • 3-9
IO.ATT!TF.ESQ • • • • • 3-11
IO.CCO • • • • • • 3-11
SF. GMC •••••• 3-11
10. GTS • • • • • • •• 3-13
IO.RAL •••••••••••••• 3-14
IO.RNE • • • • • • • • • • • • •• 3-14

v

CONTENTS

3.3.2.8 IO.RPR · · · · · · · · · · · · · · · · · 3-14

3.3.2.9 IO.RPR!TF.BIN · · · · · · 3-15 (
3.3.2.10 IO.RPR!TF.XOF · · · · · · · · · 3-15
3.3.2.11 IO.RST · 3-15
3.3.2.12 SF.SMC · · · · · · · · · · · 3"":15
3.3.2.13 IO.WAL · · · · · · · · · 3-16
3.3.2.14 IO.WBT · · · · · · 3-16
3.4 STATUS RETURNS · · 3-17
3.5 CONTROL CHARACTERS AND SPECIAL KEYS · · · · · · 3-17
3.5.1 Control Characters · 3-21
3.5.2 Special Keys · · · .. 3-23
3.6 ESCAPE SEQUENCES · · · · · · · · · · · · 3-23
3.6.1 Definition · · · · 3-23
3.6.2 prerequisites • · · 3-25
3.6.3 Characteristics · · · · · · · · · 3-25
3.6.4 Escape Sequence Syntax Violations 3-25
3.6.4.1 DEL or RUBOUT (177 (octal» · · · · · · · · · 3-25
3.6.4.2 Control Characters (0-37 (octal» 3-26
3.6.4.3 Full Buffer · · · · · · · · · .. · · · · 3-26
3.6.5 Exceptions to Escape Sequence Syntax 3-27
3.7 VERTICAL FORMAT CONTROL · · · · · · · · · · 3-27
3.8 FEATURES AVAILABLE BY SYSTEM GENERATION OPTION · 3-28
3.8.1 Automatic Carriage Return · · · · · · · · · · 3-29
3.8.2 Variable-Length Buffering · · · · · · · · · · 3-29
3.8.3 Task Buffering of Received Characters · · · · 3-30
3.8.4 LA30-P Support • · · · · · · · · · · · · · • · 3-30
3.9 TERMINAL INTERFACES · · · · · · · · 3-30
3.9.1 DHlr Asynchronous Serial Line Multiplexer 3-31
3.9.2 DJll Asynchronous Serial Line Multiplexer 3-31
3.9.3 DLll Asynchronous Serial Line Interface 3-31
3.9.4 DZll Asynchronous Serial Line Multiplexer 3-31
3.10 PROGRAMMING HINTS · · · · · 3-31 C 3.10.1 Terminal Line Truncation · · · · · · · · · · · 3-31
3.10.2 EscapE;! Code Conversion · · · · · · · 3-32
3.10.3 RT02-C Control Function · · · · · · 3-32
3.10.4 Checkpointing During Terminal Input 3-32
3.10.5 Time Required for IO.KIL · · · · · · 3-32
3.1Q.6 Use of IO.WVB · · · · · · · · · · · 3-32
3.10.7 Remote DHll and DZll Lines · · · · · 3-33
3.10.8 High-Order Bit on Output · · · · · · · · · 3-33
3.10.9 Side Effects of Setting Characteristics · · · 3-33
3.10.10 Unsolicited-Input-Character ASTs for Tasks

Attaching Several Terminals 3-34
3.10.11 Direct Cursor Control · · · · 3-34
3.10.12 DLll Receiver Interrupt Enable · · · · · 3-34
3.10.13 Loadable Driver Restrictions · · 3-35

CHAPTER 4 VIRTUAL TERMINAL DRIVER

4.1 INTRODUCTION · · · · · · · · · · · · · · 4-1

4.2 GET LUN INFORMATION MACRO · 4-1
4.3 QIO$ MACRO · · · · · · · · · · · 4-2
4.3.1 Standard QIO Functions · · · · · · 4-4
4.3.1.1 IO.ATT · · · · · · · · · · · 4-4
4.3.1.2 IO.DET · · · · · · · 4-4
4.3.1.3 IO.KIL · · · · · · · · · · · · · · · 4-4
4.3.1.4 IO.RLB, IO.RVB, IO.WLB, IO.WVB · · 4-4
4.3.2 Device-Specific QIO Function (IO.STC) · · · · · 4-5
4.3.3 SF.GMC · · · · · · 4-6
4.3.4 IO.GTS · · · · · · · · 4-6
4.3.5 IO.RPR · · · · · · · · · · · · · · · · 4-7 (4.3.6 SF.SMC · · · · · · · · · · · · · · · 4-7
4.4 STATUS RETURNS · · · · · · 4-7

vi

CONTENTS

(
CHAPTER 5 DISK DRIVERS

5.1 INTRODUCTION 5-1 · · · · · · · · · · · · · · 5.1.1 RF11/RS11 Fixed-Head Disk · · · · · · 5-1
5.1. 2 RS03 Fixed-Head Disk · · · · · .' · · · · · · 5-1
5.1. 3 RS04 Fixed-Head Disk · · · · · · · · · · · · 5-1
5.1. 4 RPll/RP02 or RP03 Pack·Disks · · · · 5-1
5.1. 5 RM02/RM03/RM05/RM80 Pack Disk · · · · · · · 5-3
5.1.6 RP04, RP05, RP06 Pack Disks · · · · · · · · · · 5-3
5.1. 7 RKll/RK05 or RK05F Cartridge Disks · · · · · 5-3
5.1. 8 RLll/RLOl or RL02 Cartridge Disk · · 5-3
5.1. 9 RK6ll/RK06 or RK07 Cartridge Disk · · · · · · · 5-3
5.1.10 RXll/RXOl Flexible Disk

I

5-3 · · · · · · · · · . · 5.1.11 RX2ll/RX02 Flexible Disk · · · · 5-4
5.1.12 ML-ll Disk Emulator · · · · · · 5-4
5.1.13 KDA50,UDA50/RA60/RA80/RA81 Disks · · · · · · · · 5-4
5.1.14 RC25 Disk Subsystem · · · · · · · · 5-4
5.1.15 RD51 Fixed 5.25 Disk/RX50 Flexible 5.25 Disk · · 5-5
5.1.16 RD52 Fixed 5.25 Disk · · · · · · · · · 5-5
5.2 GET LUN INFORMATION MACRO · · · · · · · · · · 5-5
5.3 QIO$ MACRO · · · · · · · · · · · · · · 5-6
5.3.1 Standard QIO$ Functions · · · · · · · · · · · · 5-6
5.3.2 Device-Specific QIO$ Functions · · · · • · · 5-8
5.3.3 Device-Specific QIO$ Function for the DUDRV 5-9
5.4 STATUS RETURNS · · · · · · · · · · · · · · · 5-9
5.5 PROGRAMMING HINTS · · · · · · · · 5-12
5.5.1 UDA50 QIO$C IO.ATT Before GLUN$ 5-12
5.5.2 RX02 QIO$C IO.SEC Before GLUN$ · · · · · · 5-12
5.5.3 Bad Sector Track on Disks. · · · · · 5-12
5.5.4 Stalling Input and Output (I/O) 5-12

(
5.5.5 Dismounting the RC25 · · • · · · · · · · · 5-14

CHAPTER 6 DECTAPE DRIVER

6.1 INTRODUCTION · · · · · · · · · · · · · 6-1
6.2 GET LUN INFORMATION MACRO · · · · · 6-1
6.3 QIO$ MACRO · · · · · · · · · · · · · 6-2
6.3.1 Standard QIO$ Functions · · · · · · 6-2
6.3.2 Device-Specific QIO$ Functions · 6-3
6.4 STATUS RETURNS · · · · · · · · · · · 6-4
6.4.1 DECtape Recovery Procedures · · · · · · · · · · 6-6
6.4.2 Select Recovery · · · · · · · · · 6-7
6.5 PROGRAMMING HINTS · · · · · · · · · .' · · · · 6-7
6.5.1. DEC tape Transfers · · · · · · · · · · · · · · · 6-7
6.5.2 Reverse Reading and Writing 6-7
6.5.3 Speed Considerations When Reversing Direction · 6-7
6.5.4 Aborting a Task · · · · · · · · · · · · · · · · 6-8

CHAPTER 7 DECTAPE II DRIVER

7.1 INTRODUCTION · · · · · · · · · · · · · 7-1
7.1.1 TU58 Hardware · · · · · · · · · · 7-1
7.1. 2 TU58 Driver · · · · · · · 7-1
7.2 GET LUN INFORMATION MACRO · · · · · · 7-1
7.3 QIO MACRO · · · · · · · · · · · · 7-2
7.3.1 Standard QIO Functions · · · · · · · 7-2
7.3.2 Device-Speci fic QIO Functions · · · · · · · · · 7-3
7.3.2.1 IO.WLC · · · · · · 7-4
7.3.2.2 IO.RLC · · · · · · · · · · · · · 7-4

(7.3.2.3 IO.BLS · · · · · · · · · · · · · 7-4
'- 7.3.2.4 IO.DGN · · · · · · · · · · · · · · · 7-4

7.4 STATUS RETURNS · · · · · · · 7-4

vii

CONTENTS

CHAPTER 8 MAGNETIC TAPE DRIVERS (
8.1 INTRODUCTION 8-1 · · · · · · · · · · · · · · · · ·
8.1.1 TEI0/TUI0/TS03 Magnetic Tape 8-1
8.1. 2 TE16/TU16/TU45/TU77 Magnetic Tape · · · · · 8-1
8.1. 3 TSll/TU80 Magnetic Tape · · · · · 8-1
8.1. 4 TSV05 Magnetic Tape · · · · · · · · · · · · 8-2
8.1. 5 TK25 Magnetic Tape · · · · · .. · · · · · · · 8-2
8.1. 6 TK50 Magnetic Tape · · · · · 8-2
8.1. 7 TU81 Magnetic Tape · · · · · · · · 8-2
8.2 GET LUN INFORMATION MACRO · · · · · 8-5
8.3 QIO$ MACRO · · · · · · · · · · 8-5
8.3.1 Standard QIO$ Functions · · · · · · · · · · 8-5
8.3.1.1 IO.KIL · · · · · · · · · · · · · · · · 8-6
8.3.2 Device-Specific QIO$ Functions · 8-6
8.3.2.1 IO.RLV · · · · · · · · 8-7
8.3.2.2 IO.RWD · · · 8-7
8.3.2.3 IO.RWU · · · · · · 8-7
8.3.2.4 IO.ERS · · · · · · · 8-8

8.3.2.5 IO.DSE · · · · · · · · 8-8
8.3.2.6 IO.SEC · · · · · · · · 8-8
8.3.2.7 IO.SMO · · 8-10
8.4 STATUS RETURNS · · · · · · · 8-10
8.4.1 Select Recovery 8-14
8.4.2 Retry Procedures for Reads and writes 8-14
8.4.3 Power fail Recovery for Magnetic Tapes 8-15
8.5 PROGRAMMING HINTS · · · · · · · · · · · · · 8-15
8.5.1 Issue Power-Fail QIOs for TMll Before GLUN$ 8-15

8.5.2 Block Size · · · · · · · · · · · · · · · · · . 8-15
8.5.3 Importance of Resetting Tape Characteristics . 8-15
8.5.4 Aborting a Task · · · · · · · · · 8-16

C 8.5.5 writing an Even-Parity Zero-NRZI · · · · 8-16
8.5.6 Density Selection · · · · · · · · · · 8-16
8.5.7 End-of-Volume Status (Unlabeled Tape) 8-16
8.5.8 Resetting Tape Transport Status or VCK · · 8-17
8.5.9 Issuing QIO$s · · · · · .. · · · · 8-17
8.6 BLOCK SIZE ON TAPES MOUNTED /NOLABEL 8-18

CHAPTER 9 CASSETTE DRIVER

9.1 INTRODUCTION · · · · · · · · · · · · 9-1

9.2 GET LUN INFORMATION MACRO · '. · · · . · . 9-1

9.3 QIO$ MACRO . · · · · · · · · · 9-2

9.3.1 Standard QIO Functions · · · · · · 9-2

9.3.2 Device-Specific QIO Functions · · . · · 9-3

9.4 STATUS RETURNS · · · · · · · · · · . · . . · 9-4
9.4.1 Cassette Recovery Procedures · · · 9-6
9.5 STRUCTURE OF CASSETTE TAPE · · · 9-6

9.6 PROGRAMMING HINTS · · · · · · · · · 9-7
9.6.1 Importance of Rewinding · 9-7

9.6.2 End-of-File and IO.SPF · · · 9-7
9.6.3 The Space Functions IO.SPB and IO.SPF · 9-7
9.6.4 Verifying of write Operations · 9-8

9.6.5 Block Length · · · · · · 9-8
9.6.6 Logical End-of-Tape · · · · · · 9-8

CHAPTER 10 LINE PRINTER DRIVER

10.1 INTRODUCTION · · · · · · · · 10-1

10.1.1 KMC-ll Auxiliary Processor · 10-2 (
10.1.2 LPll Line Printer . ' .. · 10-2

10.1.3 LSll Line Printer 10-2

10.1.4 LVll Line Printer 10-2
10.1.5 LA180 DECprinter · . . . · 10-3

viii

(

(

10.1.6
10.2
10.3
10.4
10.4.1
10.5
10.6
10.6.1
10.6.2
10.6.3

CHAPTER 11

11.1
11. 2
11. 3
11.3.1
11. 3.2
11.4
11. 4.1
11.4.2
11.4.3
11.5
11.5.1
11.6
11. 6.1
11.6.2
11. 7
11. 7.1
11. 7.2

CHAPTER 12

CONTENTS

LNOI Laser Printer •••
GET LUN INFORMATION MACRO
QIO$ MACRO • • . • • • • • •
STATUS RETURNS • • • • •

Ready Recovery • • • • •
VERTICAL FORMAT CONTROL
PROGRAMMING HINTS ••••

RUBOUT Character • • •
Print Line Truncation ••••
Aborting a Task ••••

CARD READER DRIVER

10-3
10-3
10-4
10-4
10-6
10-6
10-7
10-7
10-7
10-7

INTRODUCTION • • • 11-1
GET LUN INFORMATION MACRO • • •• 11-1
QIO$ MACRO • • • • • • • • • 11-2

Standard QIO Functions • 11-2
Device-Specific QIO Functions •••••••• 11-3

STATUS RETURNS • • • • • • • • • • 11-3
Card Input Errors and Recovery • • • •• 11-3
Ready and Card Reader Check Recovery • • • 11-4
I/O Status Conditions • • • • • • •• 11-7

FUNCTIONAL CAPABILITIES 11~8

Control Characters • • • • 11-8
CARD READER DATA FORMATS • 11-9

Alphanumeric Format (026 and 0211) 11-9
Binary Format • • •• •••••••••• 11-9

PROGRAMMING HINTS • • • • 11-9
Input Card Limi tation • • • • •• 11-9
Aborting a Task • • • • • • • 11-10

MESSAGE-ORIENTED COMMUNICATION DRIVERS

12.1 INTRODUCTION......... 12-1
12.1.1 DAII-B Parallel Interface • • • • • • • • 12-2
12.1.2 DLII-E Asynchronous Line Interface 12-2
12.1.3 DMCll Synchronous Line Interface •••• 12-3
12.1.4 DPll Synchronous Line Interface 12-3
12.1.5 DQll Synchronous Line Interface ••••• 12-3
12.1.6 DUll Synchronous Line Interface 12-3
12.1.7 DUPll Synchronous Line Interface • • •• 12-4
12.2 GET LUN INFORMATION MACRO • • • • • •• 12-4
12.3 QIO$ MACRO. • • • • • • • • •• • • • • 12-5
12.3.1 StandardQIO$ Functions • • • • • • 12-5
12.3.2 Device-Specific QIO$ Functions. • • • • • 12-5
12.3.2.1 IO.FDX ••••••••••••••• 12-7
12.3.2.2 IO.HDX ••••• • • • • 12-7
12.3.2.3 IO.INL and IO.TRM • • • • • • • • 12-7
12.3.2.4 IO.RNS • • • • • 12-7
12.3.2.5 IO.SYN • • • • • 12-8
12.3.2.6 IO.WNS.... • • • • • • • • 12-8
12.4 STATUS RETURNS. • • • • 12-8
12.5 PROGRAMMING HINTS •••••• • 12-11
12.5.1 Transmission Validation • • • • • 12-11
12.5.2 Redundancy Checking • • • • • 12-11
12.5.3 Half-Duplex and Full-Duplex Considerations •• 12-11
12.5.4 Low-Traffic Sync Character Considerations •• 12-12
12.5.5 Vertical Par i ty Support ••••• 12-12
12.5.6 Powerfail wi th DMCll • • • •• 12-12
12.5.7 Importance of IO.INL • • • 12-12
12.6 PROGRAMMING EXAMPLE • • • •• •• 12-13

ix

CONTENTS

CHAPTER 13 RSX QIO DEUNA DRIVER

13.1 INTRODUCTION · · · · · · · · · · · 13-1 (
13.1.1 Parameters That You Can Tailor · 13-2
13.1. 2 Requ i r.emen ts for Tasks Using the RSX QIO DEUNA

Driver . · · · · · · · · · 13-2
13.1. 3 Special Considerations for Ethernet User Tasks 13-2
13.1. 4 Messages on Ethernet · · · · · · · · · · · 13~2
13.1.5 Protocol and Address Pairs on Ethernet · · 13-3
13.1.6 Opening Ethernet for Transmit.and Receive 13-3
13.1.7 padding Messages on Ethernet · 13-3
13.1.8 Hardware Errors on Ethernet · · · · 13-3
13.2 DEUNA DRIVER QIO$S ~ · · · · · · · · · · · · · · 13-3
13.2.1 Standards and Access to QIO$ Macros · · · · · 13-4
13.2.2 Programming Sequence · · · · · · · · · · 13-4
13.2.3 Driver Installation · · · · · 13-5
13.2.4 RSX QIO DEUNA Status Returns · · · · · 13-5
13.3 QIO$ MACROS · · · · · · · · · · · · · · · • 13-6
13.3.1 IO.XOP - Open a Line · · · · · 13-6
13.3.2 IO.XSC - Set Characteristics (Ethernet) 13-7
13.3.2.1 The Set Characteristics Buffer; General

Format · · · · · · · · · · · · 13-7
13.3.2.2 Set Characteristics -- Setting Up

protocol/Address Pairs · · · · · · · · · 13-8
13.3.2.3 Set Characteristics -- Setting Up a Multicast

Address · · · · · · · · · · · · · · · 13-9
13.3.3 IO.XIN - Initialize the Line · · · · · · · · · 13-10
13.3.3.1 Completion Status Codes for IO.XIN · · · · · 13-11
13.3.4 IO.XTM - Transmit a Message on the Line · · · 13-11
13.3.4.1 Auxiliary Buffer to Set the Destination

Address · · · · · · · · · · · · · · · 13-12
·13.3.4.2 Auxiliary Buffer to Set the Protocol Type · 13-12 (13.3.4.3 Completion Status Codes_for IO.XTM · · · · · 13-13

"--13.3.5 IO.XRC - Receive a Message on the Line · · · 13-13
13.3.5.1. Buffer For Reading the Ethernet Address · · 13-,14
13.3.5.2 Buffer for Reading the Protocol Type · .. · · 13-15
13.3.5.3 Buffer far Reading the Destination Ethernet

Address · · · · · · · · · · · · · · · · 13-16
13.3.5.4 Completion Status Codes for IO.XRC · · 13-16
13.3.6 IO.XCL - Close the Line · · · · · · · · · · · 13-17
13.3.6.1 Completion Status Codes for IO.XCL · · 13-18
13.3.7 IO.XTL - Control Function · · · · · · · 13-18
13.3.7.1 Completion Status Codes for IO.XTL · · 13-18
13.4 DIAGNOSTIC FUNCTIONS FOR IO.XTM/IO.XRC · · 13-19
13.5 PROGRAMMING HINTS · · · · · · · · · 13-20
13.5.1 Informatiorion the DEUNA Device · · · 13-20
13.5.2 DEUNA Read/Write Mode Function · · · 13-20
13.5.3 DLX Incompatibility · · · · · · · · 13-21
13.5.4 Asynchronous I/O · · · · · · · · .. · 13-21
13.5.5 Diagnostic Functions without Data Transfer · · 13-21
13.5.6 Maximum and Minimum Buffer Size · 13-21
13.5.7 Default MODE · · · · · · · · · · · · · · · · · 13-21
13.5.8 Example of Connecting to a Remote Task · · 13-22
13.6 GLOSSARY . · · · · · · · · · · · · · 13-23

CHAPTER 14 PCL11 PARALLEL COMMUNICATIONS LIN.K DRIVERS

14.1 INTRODUCTION · · .' · · · · · 14-1
14.1.1 PCL11-B Hardware · · · · · · · · · · · · · 14-1
14.1. 2 PCLll Transmitter Driver · · · · · 14-1
14.1..3 PCLll Receiver Driver · · · · · 14-1 (. 14.2 GET LUN INFORMATION MACRO · · · · 14-2
14.3 QIO MACRO -- PCLll TRANSMITTER DRIVER FUNCTIONS 14-3
14.3.1 Standard QIO Functions · · · · · · · · · · · · 14-3
14.3.2 Device-Specific QIO Functions · · · · · · · · 14-3

x

(

C,HAPTER

(~

CHAPTER

(

CONTENTS

14.3.2.1 IO.ATX.. • • • • • 14-5
14 • 3 • 2 • 2 10. SEC • • • • • • 14 - 5
14.3.2.3 IO.STC. • •••• 14-5
14.4 PCL11 TRANSMITTER DRIVER STATUS RETURNS 14-6
14.5 QIO MACRO -- PCL11 RECEIVER DRIVER FUNCTIONS •• 14-8.
14.5.1 Standard QIO Functions • • • • • 14-8
14.5.2 Device-Specific QIO Functions 14-9
14.5.2.1 IO.CRX • • • • • • 14-10
14.5.2.2 IO.RTF.. •• • •• •••• • 14-10
14.5.2.3 IO.ATF......... 14-10
14.5.2.4 IO.DRX.. • • • • • • •••• 14-11
14.6 PCL11 RECEIVER DRIVER STATUS RETURNS • •• • 14-11

15 ANALOG-TO-DIGITAL CONVER'tER DRIVERS

15.1 INTRODUCTION · · · · · · · · · · · · · 15.1.1 AFC11 Ana1og-to-Digita1 Converter
15.1.2 AD01-D Ana1og-to-Digita1 Converter · · · 15.2 GET LUN INFORMATION MACRO · · · · · · · · · 15.3 QIO$ MACRO · · · · · · · · · · · · · · · 15.3.1 Standard QIO Function · · · · · · · · 15.3.2 Device-Specific QIO Function · · · · · 15.4 FORTRAN INTERFACE · · · · · · · · · · 15.4.1 Synchronous and Asynchronous Process Control

I/O . . · · · · · · · · · · · · · · · · · · ~

15.4.2 The isb Status Array · · · · · · · · · · · · · 15.4.3 FORTRAN Subroutine Summary · · · · · · · · · · 15.4.4 AIRD/AIRDW: performing Input of Analog Data in
Random Sequence · · · · · · · · · · · · · · · 15.4.5 AISQ/AISQW: Reading Sequential Analog Input
Channels · · · · · · · · · · · · · 15.4.6 ASADLN: Assigning a LUN to the AD01-D

15.4.7 ASAFLN: Assigning a LUN to the AFC11
15.5 STATUS RETURNS · · · · · · · · · · · · 15.5.1 FORTRAN Interface Values · · 15.6 FUNCTIONAL CAPABILITIES · · · · · · · 15.6.1 Control and Data Buffers · · · · · · 15.7 PROGRAMMING HINTS · · · · · · · · · · · 15.7.1 Use of A/D Gain Ranges · · · · 15.7.2 Identical Channel Numbers on the AFC11 · · · · 15.7.3 AFC11 Sampling Rate · · · · · · · · 15.7.4 Restricting the Number of AD01-D Conversions ·
16 UNIVERSAL DIGITAL CONTROLLER DRIVER

16.1 INTRODUCTION ••••••••
16.1.1 Creating the UDC11 Driver
16.1.2 Accessing UDC11 Modules
16.1.2.1 Driver Services ••••
16.1.2.2 Direct Access •• ~ •
16.2 GET LUN INFORMATION MACRO ••••
16.3 QIO MACRO •••••••••
16.3.1 Standard QIO Function
16.1.2 Device-Specific QIO Functions ••••
16.3.2.1 Contact Interrupt Digital Input (W733

Modules) • • • • • • • • • •
16.3.2.2 Timer (W734 I/O Counter Modules) • • • • • •
16.3.2.3 Latching Digital Output (M685, M803, and

M805 Modules) •••••••••••••••
16.3.2.4 Ana1og-to-Digita1 Converter (ADU01 Module) •
16.3.2.5 ICS11 Ana1og-to-Digita1 Converter (IAD-IA

Module) •••••••••••
16.4 DIRECT ACCESS ••••••••••••••
16.4.1 Defining the UDC11 Configuration •••

xi

15-1
15-1
15-1
15-2
15-2
15-2
15-2
15-3

15-3
15-4
15-4

15-5

15-6
15-7
15-7
15-8
15-9

15-10
15-10
15-10
15-10
15-10
15-11
15-11

16-1
16-1
16-2
16-2
16-3
16-3
16-3
16-3
16-3

16-6
16-7

16-8
16-8

16-8
16-9

16-10

16.4.1.1
16.4.1.2
16.4.2

16.4.3

16.4.3.1
16.4.3.2
16.4.3.3
16.5
16.5.1

16.5.2
16.5.3
16.5.4

16.5.5

16.5.6
16.5.7
16.5.8
16.5.9
16.5.10
16.5.11
16.5.12
16.5.13

16.5.14
16.5.15
16.5.16

16.5.17

16.5.18

16.5.19

16.5.20
16.5.21
16.6
16.6.1
16.7
16.7.1
16.7.2

CHAPTER 17

CONTENTS

Assembly Procedure for UDCOM.MAC •
Symbols Defined by UDCOM.MAC • • •

Including UDC11 Symbolic Definitions in

• 16-10
• • • 16-10

SYSLIB.OLB • • • • • • • • • • • • • • •• 16-12
Referencing the UDC11 through a Global Common
Block •••• • • • • • • • • • • • • • 16-12

Creating a Global Common Block • • • • • • • 16-12
Making the Common Block Resident • • •• 16-13
Linking a Task to the UDC11 Common Block • • 16-14

FORTRAN INTERFACE • • • • • • • • • • • • • • • 16-14
Synchronous and Asynchronous Process Control
I/O 16-15
The isb Status Array • • • • • • • • • • 16-15
FORTRAN Subroutine Summary • • • • • • • • • • 16-16
AIRD!AIRDW: Performing Input of Analog Data in
Random Sequence ••••••••••• • 16-17
AISQ/AISQW: Reading Sequential Analog Input
Channels • • • • • • • • • • • • • • • •• 16-18
AO/AOW: Performing Analog Output • • • • • 16-19
ASUDLN: Assigning aLUN to the UDC11 • • • 16-20
CTDI: Connecting to Contact Interrupts. • 16-20
CTTI: Connecting to Timer Interrupts. • 16-21
DFDI: Disconnecting from Contact Interrupts 16-22
DFTI: Disconnecting from Timer Interrupts •• 16-23
DI/DIW: Reading Several Contact Sense Fields • 16-23
DOL/DOLW: Latching or Unlatching Several
Fields • 16-24
DOM/DOMW: pulsing Several Fields • • • • • • • 16-25
RCIPT: Reading a Contact Interrupt Point • • • 16-25
RDCS: Read Contact Interrupt Change-of-State
Data From Circular Buffer •••••••••• 16-26
RDDI: Reading Contact Interrupt Data from a
Circular Buffer ••••••••••••••• 16-27
RDTI: Reading Timer Interrupt Data from a
Circular Buffer ••••••••••••••• 16-28
RDWD: Read Full Word of Contact Interrupt Data
From Circular Buffer • • • • • • • • 16-29
RSTI: Reading a Timer Module ••••••••• 16-30
SCTI: Initializing a Timer Module • 16-30

STATUS RETURNS • • • • • • 16-31
FORTRAN Interface values • • 16-33

PROGRAMMING HINTS • • • • • • • • • • • • 16-34
Numbering Conventions •••••••• 16-34
processing Circular Buffer Entries • 16-34

LABORATORY PERIPHERAL SYSTEMS DRIVERS

INTRODUCTION • • • • • • • • • • • • • • • •
AR11 Laboratory Peripheral System • • ••
LPS11 Laboratory Peripheral System •

17-1
17-2
17-2

17.1
17.1.1
17.1.2
17.2
17.3
17.3.1
17.3.2
17.3.2.1
17.3.2.2
17.3.2.3

GETLUN INFORMATION MACRO • • • • 17-2

17.3.2.4

17.3.3
17.3.3.1
17.3.3.2
17.3.3.3

QIO MACRO • • • • • • • • • • • • •
Standard QIO Function •• • • • •
Device-Specific QIO Functions (Immediate)

IO.LED - Display 16-bit Signed Integer.
IO.REL - Open or Close Relays •••••
IO.SDI - Read Data from Digital Input
Register • • • • • • • • • • • • • • • •
IO.SDO - Write Data into Digital Output
Register • • • • • • • • • • • • • • • •

Device-Specific QIO Functions (Synchronous) •
IO.ADS - Read A/D Channels at Timed Intervals
IO.HIS - Measure Elapsed Time Between Events
IO.MDA - Write Data to D/A Converter at Timed
Intervals • • • • • • • • • • • • • •

xii

17-2
17-2
17-3
17-4
17-4

17-4

17-4
17-4
17-6
17-7

17-8

(

(

C

(

(

(

CONTENTS

17.3.3.4 IO.MDI - Read Data from Input Register at
Timed Intervals •••••••••••••• 17-S

17.3.3.S IO.MDO - Write Data into Output Register at
Timed Intervals ••••• 0 • • • • • • • •

17.3.4 Device-Specific QIO Function (IO.STP) ••••
17-S
17-9
17-9
17-9

17.3.4.1 IO.STP - Stop In-Progress Synchronous Request
17.4 FORTRAN INTERFACE • • • • • ••••••
17.4.1 The isb Status Array ••••••••••• 17-9

•• 17-10 17.4.2 Synchronous Subroutines
17.4.3 FORTRAN Subroutine Summary. 0 • • •••••• 17-11
17.4.4 ADC: Read a Single A/D Channel. • • 0 17-12
17.4.S ADJLPS: Adjust Buffer Pointers 0 • •••••• 17-13

• ••••• 17-13 17.4.6 ASLSLN: Assign a LUN to LSO: •
17.4.7 ASARLN: Assign a LUN to ARO: •• • • • • 17-14
17.4.S CVSWG: Convert a Switch Gain A/D Value to

17.4.9

17.4.10
17.4.11
17.4.12
17.4.13
17.4.14
17.4.1S

17.4.16
17.4.17
17.4.1S
17.4.19
17.4.20
17. S
17.S.1
17.S.2
17.S.3
17.S.4
17.6
17.6.1
17.6.2
17.6.3
17.6.4

CHAPTER IS

lS.l
lS.2
lS.3
lS.4
lS.4.1
lS.4.2
lS.S
lS.S.l
lS.S.2

CHAPTER 19

19.1
19.1.1
19.1.1.1
19.1.1.2
19.1.1. 3
19.1.2
19.1.3
19.1.4
19.1. S

Floating-Point • • • • • • • • • • 17-lS
DRS: Initiate Synchronous Digital Input
Sampling • • • • • • • • • • • • • • • • 17-lS
HIST: Initiate Histogram Sampling (LPSII only) 17-17
IDIR: Read Digital Input • • • • • • •• • 17-19
IDOR: Write Digital Output • • • • • • • • • • 17-20
IRDB: Read Data from an Input Buffer ••••• 17-~0
LED: Display in LED Lights (LPSII only) • 17-21
LPSTP: Stop an In-Progress Synchronous _
Function ••••••••••••• 0 ••••• 17-22
PUTD: Put Data into an Output Buffer ••••• 17-22
RELAY: Latching an Output Relay (LPSII only) • 17-22
RTS: Initiating Synchronous A/D Sampling ••• 17-23
SDAC: Initiating Synchr.onous D/A Output ••• 17-2S
SDO: Initiating Synchronous Digital Output •• 17-27

STATUS RETURNS ••• 0 • • • 0 0 • • 17-29
IE.RSU • . • • • . • • • • . •••••.. 17-31
Second I/O Status Word • • •• 17-31
IO.ADS and ADC Errors • 17-32
FORTRAN Interface Values • • • 17-33

PROGRAMMING HINTS • • • • • •• • 0 • 17-33
The LPSII/ARII Clock and Sampling Rates • 17-33
Importance of the I/O Status Block • 17-34
Buffer Management •••••••• • 17-3S
Use of ADJLPS for Input and Output •••••• 17-36

PAPER TAPE READER/PUNCH DRIVERS

INTRODUCTION • • • • • • •
GET LUN INFORMATION MACRO
QIO$ MACRO • • • • • • • 0 •

STATUS RETURNS • • • • • •
Error Conditions ••••••
Ready Recovery • • • • •

PROGRAMMING HINTS • • • •
Special Action Resulting from Attach and Detach
Reading Past End-of-Tape

INDUSTRIAL CONTROL SUBSYSTEMS

INTRODUCTION • 0 •

Hardware Configuration • • •• • • • •
ICS/ICR Address Assignments ••••
DSS/DRS Address Assignments ••••••
Supported ICS/ICR I/O Modules • 0 • •

Alternate ICSll Support •••••
Software Support • • • • • • • • • • • • 0

UDCll Software Compatibility • • • •••
Module Addressing Conventions • • • •

xiii

lS-l
lS-l
lS-2
lS-3
lS-4
lS-4
lS-S
lS-S
lS-S

19-1
19-1
19-1
19-2
19-3
19-3
19-4
19-6
19-6

CONTENTS

19.2 LUN INFORMATION • • • • . • • .• • • 19-8
19.3 ASSEMBLY LANGUAGE INTERFACE • • • • • • • • 19-8
19.3.1 General Error Status Returns ••••••••• 19-12
19.3.1.1 Directive Conditions. • • • •••••• 19-12
19.3.1.2 I/O Conditions. • • • • • • • • • • • 19-13
19.3.2 A/D Input - Read Multiple A/D Channels. • 19-13
19.3.3 Analog Output ••••••••••••• • 19-15
19.3.4 Momentary Digital Output - Multi-Point •• 19-16
19.3.5 Bistable Digital Output - Multi-Point • 19-17
19.3.6 Unsolicited Interrupt processing. • • • • 19-17
19.3.6.1 Connect to Digital Interrupts • 19-19
19.3.6.2 Disconnect from Digital Interrupts. • • 19-20
19.3.6.3 Connect to Counter Module Interrupts. • 19-21
19.3.6.4 Set Counter Initial Value·· ••••• •••• 19-22
19.3.6.5 Disconnect from Counter Interrupts. • 19-22
19.3.6.6 Connect to Terminal Interrupts. • • • 19-23
19.3.6.7 Disconnect from Terminal Input ••••••• 19-24
19.3.7 Activating a Task by Unsolicited Interrupts • 19-24
19.3.7.1 Link a Task to Digital Interrupts ••••• 19-25
19.3.7.2 Link a Task to Counter Interrupts ••••• 19-26
19.3.7.3 Link a Task to Terminal Interrupts ~ •• 19-27
19.3.7.4 Link a Task to Error Interrupts • 19-27
19.3.7.5 Read Activating Data ••••••••••••• 19-28
19.3.8 Unlink a Task from Interrupts •••• • 19-29
19.3.8.1 Unlink a Task from All Interrupts ••••• 19-30
19.3.8.2 Unlink a Task from all Digital Interrupts • 19-30
19.3.8.3 Unlink a Task from Counter Interrupts • 19-30
19.3.8.4 Unlink a Task from Terminal Interrupts ••• 19-31
19.3.8.5 Unlink a Task from Error Interrupts • 19-31
19.3.9 Terminal Output • • • • • • 19-32
19.3.10 Maintenance Functions •••••••••••• 19-32
19.3.10.1 Disable Hardware Error Reporting. • 19-32
19.3.10.2 Enable Hardware Error Reporting •••••• 19-33
19.3.11 Special Functions . • • • •• 19-33
19.3.11.1 I/O Rundown ••••••• • 19-33
19.3.11.2 Kill I/O • • • • • • • • • • • • • • 19-33
19.4 FORTRAN INTERFACE •••••• • • • 19-34
19.4.1 Synchronous and Asynchronous Process Control

19.4.2
19.4.3
19.4.4

19.4.5
19.4.5.1

19.4.5.2

19.4.6
19.4.7

19.4.8
19.4.8.1

19.4.8.2

19.4.9

19.4.10
19.4.11

I/O . • • . • • . • • - • • . . . • . . . • • • 19-35
Return Status Reporting • • • • • • • •
Optional Arguments • • • • • • • • • • • • •
Assigning Default Logical and Physical Units
for Input and Output - ASICLN/ASUDLN (ICS/ICR)

• 19-35
• 19-37

and ASISLN (DSS/DRS) • • • • • • • • • • • • • 19-38
Analog Input • • • • • • • • • • • • • • • • • 19-39

AIRD/AIRDW: Analog Input - Specified
Channel Sequence • • • ~ • • • • • • •
AISQ/AISQW: Analog Input - Sequential

• 19-39

Channel Sequence • • • • • • • • • • • • • • 19-42
AO/AOW: Analog Output - Multichannel ••••• 19-44
DOL/DOLW: Digital Output - Bistable Multiple
Fields • • • • • • • • • • • • • • • • • • 19-45
Digital Input ••••••••••••••• • 19-47

DI/DIW: Digital Input - Digital Sense
Multiple Fields •••••••••••••• 19-47
RCIPT: Digital Input - Digital Interrupt
Single-Point •••• ' •••••••••••• 19-48

DOM/DOMW: Digital Output Momentary - Multiple
Fields • • • • • • • • • • • • • • • • • 19-49
RTO/RTOW: Remote Terminal Output • • • • • • • 19-50
Unsolicited Interrupt Data - Continual
Monitoring ••••••• ••••• •••••• 19-51

19.4.11.1 CTDI: Connect a Buffer for Receiving Digital

19.4.11.2
Interrupt Data • • • • • • • • • • 19-51
Reading Digital Interrupt Data ••••••• 19-52

xiv

(

(

(

(-~

CHAPTER

CHAPTER

C CHAPTER

19.4.11.3

19.4.11.4

19.4.11.5

19.4.11.6
19.4.11.7

19.4.11.8

19.4.11.9

19.4.11.10

19.4.11.11
19.4.12

19.4.12.1
19.4.12.2
19.4.12.3
19.4.13
19.4.13.1

19.4.13.2

CONTENTS

DFDI: Disconnect a Buffer from Digital
Interrupts • • • • • • • • • •• • • • • • • 19-56
CTTI: Connect a Buffer for Receiving
Counter Data • • • • • • • • • • • • •• 19-56
RDTI: Read Counter Data from the Circular
Buffer •••••••••••••• " ••••• 19-58
Miscellaneous Counter Routines • • • • • • • 19-58
DFTI: Disconnect a Buffer from Counter
Interrupts • • • • • • • • • • • • • • • • • 19-59
CTTY: Connect a Circular Buffer to Terminal
Interrupts • • • • • • • • • • • • • • • • • 19-60
RDTY: Read a Character from the Terminal
Buffer • • • • • • • • • • • • 19-61
DFTY:" Disconnect a Circular Buffer from
Terminal Input • • • • • • ". • • • • • • • • 19-62
Programming Example ••• • • 19-62

Unsolicited Interrupt processing - Task
Activation • • • • • • • • • • • • • • • • • • 19-64

LNK: Link a Task to Interrupts • 19-64
RDACT: Read Activation Data • • • •• 19-66
UNLNK: Remove Interrupt Linkage to a Task • 19-68

Maintenance Functions • • • • • • • • • • • • 19-69
OFLIN: Place Selected Unit in Offline
Status . . · · · · · · · · · · · · · · · " . · 19-70
ONLIN: Return a Device to On-line Status · 19-70

19.5 ERROR DETECTION AND RECOVERY · · · · · · · 19-70
19.5.1
19.5.2
19.5.3
19.5.4
19.5.5
19.6
19.6.1
19.6.2
19.6.2.1
19.6.2.2
19.6.2.3
19.7
19.7.1
19.7.2
19.7.2.1
19.7.2.2
19.7.2.3
19.7.2.4
19.7.2.5
19.7.2.6
19.7.2.7

20

21

21.1
21.1.1
21.1.2
21.2

Serial Line Errors · · · · · Power-Fail at a Remote Site
Power Recovery at the Processor · · · · · •
Unit in Off-line Status · · · · · · · Error Data - ICSR and ICAR Registers · · DIRECT ACCESS · · · · · · · · · · · · · · · Linking a Task to the ICS/ICR Common Block · Accessing the I/O page · · · · · · · · · · Mapping Table Format · · · · · · I/O Page Global Definitions · Sample Subroutine · · · · · · · · · · CONVERSION OF EXISTING SOFTWARE · · · · · Features . . · · · · · · · · · · · · · Module Support · · · · · · · IAD-IA A/D Converter and IMX-IA Multiplexer

16-Bit Binary Counter · · · · Bistable Digital Output · · · Momentary Digital Output
Noninterrupting Digital Input
Analog Output · · · · · Interrupting Digital Input · ·

NULL DEVICE DRIVER

GRAPHICS DISPLAY DRIVER

INTRODUCTION • • • • • • • • • • •
VTll Graphics Display Subsystem
VS60 Graphics Display Subsystem

· · · · · · · · · · · · · · ·

· · · · ·
·
· ·
· · ·
· · · · · ·

GET LUN INFORMATION MACRO • ". • • • • • • •
21. 3 QIO$ MACRO • • • • • • • • •
21.4 STATUS RETURNS • • • • • •
21. 5 PROGRAMMING HINTS

22 LABORATORY PERIPHERAL ACCELERATOR DRIVER

22.1 INTRODUCTION • • • • • • • • • • • • • •

xv

19-71
19-71
19-72
19-72
19-73
19-74
19-76
19':'76
19-77
19-77
19-78
19-80
19-80
19-80
19-80
19-81
19-81
19-81
19-82
19-82
19-82

21-1
21-1
21-1
21-1
21-2
21-3
21-3

22-1

CONTENTS

LPAII-K Dedicated Mode of Operation
LPAII-K Multirequest Mode of Operation.

22.1.1
22.1.2
22.2
22.3
22.3.1
22.3.1.1
22.3.1.2
22.3.1.3
22.3.1.4

GET LUN INFORMATION MACRO • • • •• • • • •

22-1
22-1
22-2
22-2
22-2
22-3
22-7
22-7

THE PROGRAM INTERFACE ••• • • • • • • •

22.3.1.5
22.3.1.6

22.3.1.7

22.3.1.8

22.3.1.9
22.3.1.10
22.3.1.H
22.3.1.12
22.3.1.13
22.3.1. 14
22.3.1.15
22.3.1.16
22.3.1.17
22.3.1.18
22.3.1.19
22.3.2
22.3.2.1
22.3.2.2

FORTRAN Interface •••••• • • • •
ADSWP: Initiate Synchronous A/D Sweep
CLOCKA: Set Clock A Rate ••••••••
CLOCKB: Control Clock B ••••••••
CVADF: Convert A/D Input to Floating
Po in t
DASWP: Initiate Synchronous D/A Sweep •
DISWP: Initiate Synchronous Digital Input

22-9
22-9

Sweep • • . 22-12
DOSWP: Initiate Synchronous Digital Output
Sweep • • • • • • • • • • • • • • • • 22-14
FLT16: Convert Unsigned Integer to a~ Real
Constant ••••••• ;... • • 22-17

IBFSTS: Get Buffer Status ••••••••• 22-17
IGTBUF: Return Buffer Number •• 22-17
INXTBF: Set Next Buffer • • • • 22-18
IWTBUF: Wait for Buffer • 22-19
LAMSKS: Set Masks Buffer • • 22-20
RLSBUF: Release Data Buffer ••••• • 22-21
RMVBUF: Remove Buffer from Device .Queue •• 22-22
SETADC: Set Channel Information • 22-22
SETIBF: Set Array for Buffered Sweep •• 22-23
STPSWP: Stop Sweep ~ • • • • • • • • • 22-24
XRATE: Compute Clock Rate and Preset •• 22-25

MACRO-ll Interface • • • • • • • • • • • • • • 22-26
Accessing Callable LPAII-K Support Routines 22-26
Standard Subroutine Linkage and CALL Op

Code • • • • • • • • • • • • • 22-27
Special-Purpose Macros • • • • • • • • • • • 22-27
Device-Specific QIO Functions ••••••• 22-28
IO.CLK • 22-29
IO.INI • • • • • • • 22-29
10. LOD • • • • • • 22-29
IO.STA • • • • • • • • • •• 22-30
IO.STP • • • • • • •••• 22-30

The I/O Status Block (IOSB) ••••••• 22-30

22.3.2.3
22.3.2.4
22.3.2.5
22.3.2.6
22.3.2.7
22.3.2.8
22.3.2.9
22.3.3
22.4
22.5
22.6
22.7
22.8
22.9

BUFFER MANAGEMENT • • • • • • 22-32
LOADING THE LPA-ll MICROCODE • • • • • • • 22-34
UNLOADING THE DRIVER • • • • • • 22-35
TIME-OUT OF THE LPAII-K • • • •• ••• 22-35
22-BIT ADDRESSING SUPPORT • • • • • • • 22-36
SAMPLE PROGRAMS • • • • • • • • • • • • •• 22-37

CHAPTER 23 K~SERIES PERIPHERAL SUPPORT ROUTINES

23.1 INTRODUCTION •••••••••••• • • • • •• 23-1
23.1.1 K-Series Laboratory Peripherals
23.1.1.1 AAII-K D/A Converter •••••
23.1.1.2 ADII-K A/D Converter •••••
23.1.1.3 AMII-K Multiple Gain Multiplexer.
23.1.1.4 DRII-K Digital I/O Interface ••••••
23.1.1.5 KWII-KDual programmable Real-Time Clock
23.1.2 Support Routine Features •••••••••
23.1.3 Generation and Use of K-Series Routines
23.1.3.1 Generation of K-series Support Routines
23.1.3.2 Program Use of K-series Routines ••
23.2 . THE PROGRAM INTERFACE • • • • • • • • • • •
23.2.1 FORTRAN Interface ••••••••••••
23.2.1.1 ADINP: Initiate Single Analog Input
23.2.1.2 ADSWP: Initiate Synchronous A/D Sweep
23.2.1.3 CLOCKA: Set Clock A Rate ••••••••

:levi

23-1
23-2
23-2
23-2
23-2
23-3
23-3
23-4
23-5
23-5
23-6
23-7
23-8
23-8

• • 23-11

c

(

(

(

23.2.1.4
23.2.1.5
23.2.1.6
23.2.1.7
23.2.1.8
23.2.1.9

23.2.1.10

23.2.1.11
23.2.1.12

23.2.1.13
23.2.1.14
23.2.1.15
23.2.1.16
23.2.1.17
23.2.1.18
23.2.1.19
23.2.1. 20
23.2.1.21,
23.2.1. 22
23.2.1.23
23.2.1.24
23.2.1.25
23.2.1. 26
23.2.2
23.2.2.1

CONTENTS

CLOCKB: Control Clock B • • • • • • • • • • 23-12
CVADF: Convert A/D Input to Floating Point • 23-13
DASWP: Initiate Synchronous D/A Sweep • 23-14
DIGO: Digital Start Event ••••••••• 23-16
DINP: Digital Input •••••••••••• 23-16
DISWP: Initiate Synchronous Digital Input
Sweep • • • • • • • • • • • ., • • • • • 23-17
DOSWP: Initiate Synchronous Digita~
Output Sweep ••••• • • • • • 23-19
DOUT: Digital Output • • • • • • • 23-20
FLT16: Convert Unsigned Integer to a Real
Constant • • • • • • • • • • • • • • • • 23-21
GTHIST: Gather Interevent Time Data • 23-21
IBFSTS: Get Buffer Status • • • • • • • • • 23-23
ICLOKB: Read 16-bi t Clock • •• • • 23-23
IGTBUF: Return Buffer Number •• • • • • • • 23-24
INXTBF: Set Next Buffer ••• 23-24
IWTBUF: Wait for Buffer •••••••• 23-25
RCLOKB: Read 16-bi t Clock • •• • • 23-25
RLSBUF: Release Data Buffer •••• •• 23-26
RMVBUF: Remove Buffer from Device Queue 23-26
SCOPE: Control Scope • • • • • • 23-27
SETADC: Set Channel Information • 23-28
SETIBF: Set Array for Buffered Sweep • • 23-28
STPSWP: Stop Sweep • • • • • • • • • • 23-29
XRATE: Compute Clock Rate and Preset • ; ••• 23-30

MACRO-II Interface • • • • • •• • • • • • 23-31
Standard Subroutine Linkage and CALL Op
Code • • • • • • • • • • • • • • • 23-31
Special-Purpose Macros • • • • • • • • 23-31 23.2.2.2

23.2.3
23.3
23.4
23.4.1
23.4.2

The I/O Status Block (IOSB) ••••••••• 23-32
BUFFER MANAGEMENT • • • • • • • • • • • • • • • 23-32
SAMPLE FORTRAN PROGRAMS • • • • • 23-33

Sample Program Using Event Flag ••••••• 23-34
Sample Program Using Completion Routine • 23-35

CHAPTER 24 UNIBUS SWITCH DRIVER

24.1 INTRODUCTION •••••••••••••••••• 24-1
24-1
24-1
24-2
24-2
24-2
24-3
24-3
24-3
24-4
24-4
24-5
24-5
24-6
24-6
24-6
24-6
24-6
24-7
24-8

24.1.1 DT07 UNIBUS Switches •••••
24.1.2 UNIBUS Switch Driver.
24.2 GET LUN INFORMATION MACRO •••••••
24.3 QIO$ MACRO •••••
24.3.1 Standard QIO Functions
24.3.1.1 IO.ATT •••••
24.3.1.2 IO.DET •••••
24.3.1.3 IO.KIL ••••••
24.3.2 Device-Specific QIO Functions •••••
24.3.2.1 IO.CON ••
24.3.2.2 IO.DIS
24.3.2.3 IO.DPT •••••
24.3.2.4 IO.SWI
24 .• 3.2.5 IO.CSR
24.4 POWER-FAIL RECOVERY
24.4.1 System Power-Fail Recovery
24.4.2 UNIBUS Power-Fail Recovery
24.5 STATUS RETURNS •••
24.6 FORTRAN USAGE •••••

APPENDIX A

A.l
A.2
A.3

SUMMARY OF I/O FUNCTIONS

ANALOG-TO-DIGITAL CONVERTER DRIVERS
CARD READER DRIVER • • • • •
CASSETTE DRIVER • • • • • • •

xvii

• • • A-I
• A-I

• • A-I

A.4
A.S
A.6
A.7
A.8
A.9
A.10
A.ll
A.12
A.13
A.14
A.1S
A.16
A.16.1
A.16.2
A.17
A.18
A.19
A.20

APPENDIX B

B.l
B.1.1
B.1. 2
B.2
B.2.1
B.2.2
B.3
B.3.1
B.3.2

B.3.3

B.3.4

B.3.S

B.3.6

B.3.7
B.3.8
B.3.9

B.3.10

B.3.ll

B.3.12

B.3.13
B.3.14

CONTENTS

COMMUNICATION DRIVERS (MESSAGE-ORIENTED) · · A-2
DEC TAPE DRIVER . · · · · · · · · A-2
DECTAPE II DRIVER · · · · · A-2
DEUNA DRIVER . . · · · · · · A-3
DISK DRIVER . · · · · · · · · · · · · · A-3
GRAPHICS DISPLAY DRIVER · · · · · · A-3
INDUSTRIAL CONTROL SUBSYSTEMS · · · · · · · · A-4
LABORATORY PERIPHERAL ACCELERATOR DRIVER · · A-S
LABORATORY PERIPHERAL SYSTEMS DRIVERS · · · · · · A-S
LINE PRINTER DRIVER · · · · · · · · · · · · · · · A-6
MAGNETIC TAPE DRIVER · · · · · · · · · · A-6
PAPER TAPE READER/PUNCH DRIVERS · · · · · · A-6
PARALLEL COMMUNICATION LINK DRIVERS · · A-7

Transmitter Driver Functions · · · · A-7
Receiver Driver Functions · · · · · · · A-7

TERMINAL DRIVER · . · · · · · · · · · · · · · A-7
UNIBUS SWITCH DRIVER · · · · · · · · · · A-9
UNIVERSAL DIGITAL CONTROLLER DRIVER · A-9
VIRTUAL TERMINAL DRIVER · · · · A-10

I/O FUNCTION AND STATUS CODES

I/O STATUS CODES • • • • • • • • • • • • • 8-1
I/O Error Status Codes • • • • • • • • B-1
I/O Status Success Codes • • • • • • • 8-S

DIRECTIVE CODES • • • • • • • • • • • • • • • • • B-S
Directive Error Codes • • • • • • • • B-5
Directive Success Codes •••• • • • • • • • • B-7

I/O FUNCTION CODES • • • • • • • • 0 0 0 0 0 0 B-7
Standard I/O Function Codes o. 0 0 0 0 0 0 B-7
Specific A/D Converter I/O Function Codes -
RSX-llM-PLUS Only • 0 0 0 • 0 • 0 0 • 0 0 0 0 • B-7
Specific Card Reader I/O Function Codes -
RSX-llM-PLUS Only • 0 • 0 0 • • 0 0 0 • 0 • 0 0 B-7
Specific Cassette I/O Function Codes -
RSX-llM..;PLUS Only 0 0 • 0 0 0 0 • • 0 0 • • 0 0 B-7
Specific Communication (Message-Oriented) I/O
Function Codes - RSX-llM-PLUS Only 0 0 •

Specific DECtape I/O Function Codes -
• B-8

• B-8
o • B-8

o B-9

RSX-llM-PLUS Only 0 0 00 • 0 0 0 0 0

SpecificDECtape II I/O Function Codes 0

Specific Disk I/O Function Codes 0 0 0 0

Specific Graphics Display I/O Function Codes -
RSX-llM-PLUS Only • • • • 0 • 0 0

Specific ICS/ICR, DSS/DR I/O Function Codes -
RSX-llM-PLUS Only 0 0 0 0 0 0 0 • • • 0

Specific LPAll-K I/O Function Codes -
RSX-llM-PLUS Only • 0 • 0« 0 • 0 0 0 0 0 0 0 •

SpecificLPS I/O Function Codes - RSX-llM-PLUS
Only • • • • • • • • • • • • • .
Specific Magnetic Tape I/O Function Codes
Specific Parallel Communications Link I/O
Function Codes - RSX-llM-PLUS Only 0 0

8-9

B-l0

B-ll

8-ll
B-12

B-12
B.3.14.1
B.3.14.2
B.3.1S
B.3.16

Transmitter Driver Functions 0 0 0 0 0 0

Receiver Driver Functions 0 0 ~ • 0 •• 0 0

Specific Terminal 1/0 Function Codes 0 0 0 0 0

Specific UDC I/O Function Codes - RSX-llM-PLUS

B-12
B-13
B-13

B.3.17

B.3.18

Only . . • • . . . • . • • • • • • . • •
Specific UNIBUS Switch I/O Function Codes -
RSX-llM-PLUS Only 0 0 0 0 • 0 • 0 0 • 0 0 0 0

Specific Virtual Terminal I/O Function Codes 0

xviii

B-1S

B-15
8-15

(

c

(-

(

(

(

APPENDIX C

INDEX

FIGURES

TABLES

C.l
C.l.l
C.l. 2
C.l.2.l
C.l.2.2
C.l.2.3
Col. 3
C.l. 4
C.l. S
C.2
C.3
C.4
C.S
C.6
C.6.l
C.6.2
C.6.3
C.6.4
C.6oS
Co7

1-1
1-2
2-1
2-2
2-3
2-4
2-S
9-1
l3-l
l3-2
l3-3
13-4
l3-S
l3-6
l3-7
l3-8

l3-9
19-1
19-2
20-1
C-l

1-1
1-2
1-3
1-4
2-1
2-2
2-3
2-4

2-S
2-6

CONTENTS

QIO$ INTERFACE TO THE ACPS

QIO$ PARAMETER LIST FORMAT • 0 C-2
File Identification Block •••••••• C-2
The Attribute List • • •••••• C-2

The Attr ibute Type • • • •• • • • C-3
Attr ibute Si ze • 0 • .' 0 • • • • • • C-4
Attribute Buffer Address •• • • 0 •••• C-S

Size and Extend Control • • • 0 • • • • • C-S
Window Size and Access Control • • • • •• • C-6
File Name Block Pointer • • • • C-6

PLACEMENT CONTROL •••• • 0 • • • • • C-7
BLOCK LOCKING • • • • • • • • • • • • • C-8
SUMMARY OF FllACP FUNCTIONS • • • • • • • • • C-8
SUMMARY OF MTAACP FUNCTIONS • • • • C-10
HOW TO USE THE ACP QIO$ FUNCTIONS • • • • C-12

Creating a File •••• C-12
Opening a File • • • • 0 • • C-13
Closing a File • • • • • • • • • • C-13
Extending a File • • • • • • • • • • • • • • • C-13
Deleting a File •••• ••• • • C-13

ERRORS RETURNED BY THE FILE PROCESSORS • • • 0 0 C-14

Logical Unit Table •••••••••••••••• 1-3
QIO$ Directive Parameter Block • • • 1-12
Structure of the Item List 1 Buffer • • •• 2-30
Structure of the Item List 2 Buffer •••• 2-32
Buffer Required for TC.MHU • • • • • • • 2-60
Buffer Required for TC.SSC • • • • •• 2-61
Buffer Required for TC.OOB • • • • • 2-62
Structure of Cassette Tape • • • • • • • •• • 9-6
General Form of Characteristics Buffer • • • •• 13-7
Buffer for Setting Up protocol/Address Pairs 13-8
Buffer for Setting Up A Multicast Address 13-9
Buffer for Setting the Ethernet Address • • 13-12
Buffer for Setting The Protocol Type • • • • • • 13-12
Buffer for Reading The Ethernet Address • 13-14
Buffer for Reading The Protocol Type • •• • l3-1S
Buffer for Reading The Destination Ethernet
Address ••••• ••••••••••••• 13-16
Diagnostic Request Block • • • • •• •• • • 13-19
Mapping Table Format • • • • • • • • • 19-77
Mapping Table Entry Format • • • 19-78
Indirect TKB Command File TESTBLD.CMD. • • • •• 20-1
File Identification Block • • • • • • • • • • • • C-2

Get LUN Information • • • • • • • •• 1-21
Directive Conditions • • • • •• • • • • 1-37
I/O Status Conditions ••••• • 1-40
Devices Supported by RSX-llM/M-PLUS 1-43
Supported Terminal Devices • • • • • • 2-2
Standard Terminal Interfaces • • • • • • 2-3
Word 2 of the Get LUN Macro Buffer • • • • • • • • 2-7
Standard and Device-Specific QIO Functions for
Terminals .•...•.•••.•. • . 2-9
Summary of Subfunction Bits •• • • 2-19
Information Returned by Get Terminal Support
(IO.GTS) QIO$ • • • • • • • • • • • • • • • 2-34

xix

2-7

2-8

2-9
2-10
2-11
2-12
3-1
3-2
3-3

3-4
3-5

3-6

3-7

3-8
3-9
3-10
3-11
4-1

4-2
4-3

4-4

.5-1
5-2
5-3

5-4

CONTENTS

Terminal Characteristics for SF.GMC and SF.SMC
Functions ..•...••••••••••••. 2-52
Bit TC.TTP (Terminal Type) Values Set by SF.SMC
and Returned by SF. GMt. • •• • • • • 2-56
Terminal Status Returns • • • • 2-63
Terminal Control Characters • • •• • • •• 2-68
Special Terminal Keys •• • • •• 2-71
Vertical Format Control Characters • • • • • •• 2-75
Supported Terminal Devices • • • 3-1
Standard Terminal Interfaces • • • • • • 3-2
Standard and Device-Specific QIO Functions for
Terminals • • • • • • • • • • • • • 3-6
Subfunction Bits . • • • • • • • • 3-10
Terminal Characteristics for SF.GMC and SF.SMC
Requests • • • • • • • • • • • •• 3-12
Bit TC.TTP (Terminal Type): Values Set by SF.SMC
and Returned by SF.GMC .••••••••••
Information Returned by Get Terminal Support
(IO.GTS) QIO • • • • • • • • • • ••••••
Terminal Status Returns • • • •
Terminal Control Characters
Special Terminal Keys
vertical Format Control Characters • • • • • • •
Standard and Device-Specific QIO Functions for

3-12

3-13
3-18
3-21
3-24
3-27

virtual Terminals •••••••••••• 4-2
Virtual Terminal Characteristics • • • •• •• 4-7
Virtual Terminal Status Returns for Offspring Task
Requests • • • • • • • • • • • • • • • • • • 4-8
Virtual Terminal Status Returns for Parent Task
Requests • • • • • • • • • • • • • • • 4-9
Standard Disk Devices ••• 0 0 • • 0 0 0 0 5-2
Standard QIO$ Functions for Disks 0 0 0 00 0 0 0 5-,7
Device-Specific Functions for the RXOl,RX02, RL01,
and RL02 Disk Drivers 0 0 0 0 0 0 •• 0 0 •

Device-Specific QIO$ Function for the DU: Device
5-8

Driver 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 5-9
5-5 Disk Status Returns 0... 0 • 0 0 0 0 0 0 • 0 0 5-9
6-1 Standard QIO$ Functions for DECtape 6-2
6-2 Device-Specific Functions for DECtape 0 0 0 • 6-3
6-3 DECtape Status Returns 0 0 0 0 • 0 0 0 0 6-4
7-1 Standard QIO Functions for the TU58 0... 0 0 0 7-3
7-2 Device-Specific QIO Functions for the TU58 • 0 7-3
7-3 TU58 Driver Status Returns 0 0 0 0 0 0 0 0 0 0 7-5
8-1 Standard Magnetic Tape Devices 0 0 0 0 0 o. 0 8-3
8-2 Standard QIO$ Functions for Magnetic Tape 8-6
8-3 Device-Specific QIO$ Functions for Magnetic Tape 0 8-7
8-4 Magnetic Tape Status Returns 0 0 0 • 0 0 • 0 •• 8-10
8-5 Information Contained in the Second I/O Status

9-1
9-2
9-3
10-1
10-2
10-3
10-4
11-1
11-2
11-3
11-4
11-5
11-6
12-1
12-2

Word • • • • • . • • • • • • • • . • • • • 8-13
Standard QIO Functions for Cassette 0.. 0 0 9-2
Device-Specific QIO Functions for Cassette 0 0 9-3
Cassette Status Returns 0.. 0 0 0 0 • 0 0 0 9-4
Standard Line Pr inter Devices 0 0 0 0 0 0 0 • 0 10-1
Standard QIO Functions for Line Printers 10-4
Line Printer Status Returns 0 0 0 0 • 0 0 10-5
Vertical Format Control Characters .0 0 10-6
Standard QIO Functions for the Card Reader • 11-2
Device-Specific QIO Function for the Card Reader 11-3
Card Reader Switches and Indicators 0 0 • 0 o. 11-5
Card Reader Status Returns 0 • 0 • • 0 0 0 0 11-7
Card Reader Control Characters 0 • 0 0 0 0 • 11-9
Translation from DEC026 or DEC029 to ASCII 0 11-10
Message-Oriented Communication Interfaces 12-2
Standard QIO$ Functions for Communication
Interfaces 0 • 0 • 0 • • 0 0 • 0 0 0 0 • 0 0 12-5

xx

(

c

(

c-

(

12-3

12-4
13-1

13-2
13-3
14-1
14-2

14-3
14-4
14-5
14-6
15-1
15"'-2
15-3

15-4
15-5
15-6

15-7
15-8
,16-1
16-2
16-3
16-4
16-5
16-6
16":7
17-1
17-2

17-3

17-4

17-5

17-6
17-7

17-8
17-9
17-10
18-1

18-2
19-1
19-2
19-3
19-4
19-5
19-6
19-7
19-8
19-9
21-1

21-2
22-1
22-2
22-3
23-1

CONTENTS

Device-Specific QIO$ Functions for Communication
Interfaces • • • • • • • • • • • • • • • •• 12-6
Communication Status Returns • •• • • • •• 12-8
RSX QIO DE UNA Driver Function Codes and Their
Meaning •• • • • • • • • • • • • • • 13-4
RSX QIO DEUNA Driver Status Returns •••••• 13-5
Diagnostic Functions for IO.XTM/IO.XRC ••••• 13-20
StandardQIO Functions for PCL11 Transmitters 14-3
Device-Specific QIO Functions for PCL11
Transmi tters • • • .'. • • • • • • • • • • 14-3
PCL11 Transmitter Driver Status Returns • 14-7
Standard QIO Functions for PCL11 Receivers • 14-9
Device-Specific QIO Functions for PCL11 Receivers 14-9
PCL11 Receiver Driver Status Returns •••••• 14-11
Standard Ana1og-to-Digita1 Converters 15-1
Standard QIO Function for the A/D Coriverters 15-2
Device-Specific QIO Function for the A/D
Converters • • • • • • • • • • • • • • • • • • • 15-2

15-3
15-4

A/D Conversion Control Word • • • •
Contents of First Word of isb • • • • •
FORTRAN Interface Subroutines for the AFC11 and
AD01-0 • • • • • • • • • • • ••• • • 15-5
A/D Converter Status Returns • • • • • • • • 15-8
FORTRAN Interface Values • • • • • • • • • • 15-9
Standard QIO Function for the UDC11 •••• 16-3
Device-Specific QIO Functions for the UDC11 16-4
A/D Conversion Control Word • • • • • • • • 16-5
Contents of First Word of isb • • • • • • • • • 16-15
FORTRAN Interface Subroutines for the UDC11 16-16
UDC11 Status Returns • • • • • • • • • • • • 16-31
FORTRAN Interface Values • .. • • • • • ••••• 16-33
Laboratory Peripheral Systems • • • • •• 17-1
Standard QIO Function for Laboratory Peripheral
Systems . . • • • 17-2
Device-Specific QIO Functions for the Laboratory
Peripheral Systems (Immediate) • • • • • • • •• 17-3
Device-Specific QIO Functions for the Laboratory
Peripheral Systems (Synchronous) • • • • •• 17-5
Device-Specific QIO Function for the Laboratory
Peripheral Systems (IO.STP) •••••••• 17-9
Contents of First Word of isb ••••••••• 17-10
FORTRAN Interface Subroutines for Laboratory
Peripheral Systems • • • • • • • • • • • • • •
Laboratory Peripheral Systems Status Returns •
Returns to Second Word of I/O Status Block •
FORTRAN Interface Values •
Standard QIO Functions for the Paper Tape

• 17-11
• 17-29

17-32
• 17-33

Reader/Punch • • • • • • • • • 18-2
Paper Tape Reader/punch Status Returns • • 18-3
ICS/ICR Address Assignments •• • • • • 19-2
Sample ICS/ICR Configuration • • • • • 19-7
Sample DSS/DRS Configuration • • • • • • 19-7
Summary of Industrial Control QIO Functions 19-8
A/D Conversion Control Word ' ••••• 19-15
FORTRAN Interface • • • • ••• 19-34
Return Status Summary • • • • • • • • 19-36
ICSR Contents •••••••• • • 19-73
ICAR Contents ••••••••••••• 19-74
Standard and Device-Specific QIO Functions for
Graphics Displays ••••• • • • •
Graphics Display Status Returns •• • • •
FORTRAN Subroutines for the LPA11-K
Device-Specific QIO Functions for the LPA11-K
Contents of First Word of IOSB • • • • • • • •
FORTRAN Subroutines for K-series Laboratory
Peripherals •••••••••••••

xxi

21-2
21-3
22-3

• 22-28
• 22-31

23-7

23-2
23-3
24-1
24-2
24-3
C-l
C-2

CONTENTS

Scope Control Word Values • • • • • • • • • 23-27
Contents of , First Word of IOSB ••••••••• 23-32
Standard QIO Functions for UNIBUS Switches • •• 24-2
Device-Specific QIO Functions for UNIBUS Switches 24-4
UNIBUS Switch Dr i ver Status Returns •••• 24-7
Maximum Size for Each File Attribute • • • •• C-4
File Processor Error Codes • • • • • • • • • • • C-14

xxii

(

(

(

(

PREFACE

MANUAL OBJECTIVES

This manual provides all the information needed to interface directly
with the I/O device drivers supplied as part of the Micro/RSX system.

INTENDED AUDIENCE

This manual is for experienced RSX-IIM/M-PLUS programmers who want to
take advantage of the time and/or space savings that result from
direct use of the I/O drivers. Readers should be familiar with the
information contained in the RSX-lIM/M-PLUS and Micro/RSX Executive
Reference Manual, have some experience using the Task Builder and
either MACRO~ll or FORTRAN programs, and be familiar with the manuals
describing their use.

STRUCTURE OF THE MANUAL

Chapter 1 provides an overview of RSX-llM/M-PLUS input/output
operations. It introduces you to logical unit numbers, directive
parameter blocks, event flags, macro calls, and so on; includes
discussions of the standard I/O functions common to a variety of
devices; and summarizes standard error and status conditions relating
to completion of I/O requests.

Chapters 2 through 24 describe the use of all device drivers supported
by RSX-llM/M-PLUS. Each of these chapters is structured in similar
fashion and focuses on the following basic elements:

• The Qevice, including information on physical characteristics
such as speed, capacity, access, and usage

• The standard functions that the devices
descriptions of device-specific functions

support and

• The special characters, carriage control codes, and functional
characteristics, if relevant

• The error and status conditions that the driver returns on
acceptance or rejection of I/O requests

• Programming hints

Appendixes A through C provide quick reference material on I/O
functions and status codes.

xxiii

PREFACE

ASSOCIATED MANUALS

The following Micro/RSX manuals may be useful:

• RSX-IIM/M-PLUS Information Directory and Master Index

• RSX-IIM/M-PLUS and Micro/RSX Executive Reference Manual

• RSX-IIM/M-PLUS and Micro/RSX Task Builder Manual

• PDP-II MACRO-II Language Reference Manual

• RSX-IIM/RSX-llS or RSX-IIM~PLUS Release Notes

In addition, documentation for programming in any of the MicroPDP-ll
languages may be helpful.

CONVENTIONS USED IN THIS MANUAL

The following conventions are observed in this manual.

Convention

{ }

, , ,

Meaning

Square brackets; enclose optional syntax

Braces; indicate that one of the enclosed items
must be selected.

Horizontal ellipsis; indicates that parameters
have been omitted. In QIO macro calls in this
manual, indicates that standard QIO parameters
have been omitted.

Consecutive commas; used in coding examples to
indicate null arguments. You may omit commas that
indicate null trailing optional arguments.

Note that while RSX-IIM/M-PLUS
they ignore them. These
compatibility with RSX-IID.

systems
parameters

require certain
are necessary

parameters,
to maintain

Furthermore, except in MACRO-II coding examples, all numbers are
assumed to be decimal unless otherwise specified. In MACRO-II coding
examples, the reverse is true: all numbers are considered to be octal
unless followed by a decimal point (which indicates a decimal number).

Finally, in FORTRAN subroutine models, parameters that begin with the
letters i through n indicate integer variables. In general, where a
call uses both i and n prefixes, the i form indicates the name of an
array and the n form specifies the size of the array.

All integer arrays and variables are assumed to
word per variable (that is, INTEGER*2) and
variables are assumed to occupy two storage words
is, REAL*4).

xxiv

occupy one storage
all real arrays and
per variable (that

(

(

(

(

(

SUMMARY OF TECHNICAL CHANGES

This reV1S10n of the RSX-lIM/M-PLUS I/O Drivers Reference Manual
reflects the following software technical changes and additions:

• A new I/O function, IO.EIO (Extended I/O), which contains new
subfunctions, has been added to the full-duplex terminal
driver.

• Support for the DZQll 4-line terminal
replacement, has been added to the
driver.

multiplexer,
full-duplex

a DZVll
terminal

• Support of the full-duplex terminal driver has been extended
to allow its use as a Network Command Terminal.

• Support for the RC25 and RD52 disks and the KDA50 controller
has been added to the disk drivers.

• Support for the TK25, TK50, and TU81 magnetic tape drives has
been added to the tape drivers.

• Support for the KMC-ll line printer interface has been added
to the line printer driver. -

• Support for the RSX QIO DEUNA driver has been added.

In addition to these changes, Chapters i and 2 have been reorganized
to make the information more easily accessible to the reader. Chapter
13, which describes the RSX QIO DEUNA driver, is completely new.
Appendixes A and B have been updated to reflect the new I/O functions,
subfunctions,and error codes that have been added.

xxv

(,

(I

()

(

(

(

CHAPTER I

RSX-11M/M-PLUS INPUT/OUTPUT

1.1 OVERVIEW OF RSX-11M I/O

The RSX-lIM/M-PLUS operating system supports a wide variety of input
and output devices, including disks, DECtapes, magnetic tapes, tape
cassettes, line printers, card readers, and such laboratory and
industrial devices as analog-to-digital converters, universal digitil
controllers, and laboratory peripheral systems.

Digital Equipment Corporation supplies the drivers for these devices
as part of the system software. This 'manual describes all the device
drivers that the RSX operating system supports - and the
characteristics, functions, error conditions, and programming hirits
associated with each. You can add devices that this manual' does not
describe to basic RSX system configurations, but you must develop ind
maintain your own drivers 'for these devices. (See the RSX-llM Guide
to Writing an I/O Driver, or the RSX-llM-PLUS Guide to -Writing an I/O
Driver, depending upon the system you are using.)

Input/output operations under RSX-11M are extremely flexible and are
as device- and function-independent as possible. Programs issue I/O
requests to logical units that you previously associated with
particular physical device units. Each program or task can establish
its own correspondence between physical device units and logical unit
numbers (LUNs). The Executive queues I/O requests as your task issues
them and subsequently processes them according to the relative
priority of the tasks that issued them. Your tasks can issue I/O
requests for appropriate devices through either the File Control
Services or Record Management Services, or your tasks can interface
directly to an I/O driver by the Queue I/O (QIO$) Executive directive
macro.

Your task requests all of the I/O services that this manual describes
by using QIO$ Executive directive macros. A function code that you
include in the QIO$ macro indicates the particular input or output
operation that the system and the driver is to perform. I/O functions
can request such operations as:

• Attaching or detaching a physical device unit for a task's
exclusive use

• Reading or writing a logical or virtual block of data

• Canceling a task's I/O requests

QIO macroS can also specify
input/output operations (for
rewinding cassette tape).

a w,ide
example,

1-1

variety
reading

of device-specific
DECtape in reverse,

RSX-IIM/M-PLUS INPUT/OUTPUT

1.2 PHYSICAL, LOGICAL, AND VIRTUAL I/O

An I/O transfer can take place in three possible modes:
logical, and virtual.

physical,

Physical I/O takes place by reading and writing data in the actual
physical units that the hardware accepts (for example, sectors on a
disk). For most devices, physical I/O is identical to logical I/O.
For example, the RK05 Cartridge Disk has sectors of 256 words, the
same size as RSX-IIM logical blocks for all disks: .Thus, for the
RK05, a logical block maps directly into a physical block. However,
the mapping is not one to one for other devices. The RFll Fixed Head
Disk, for example, is word addressable, but no physical I/O may be
done with the RFll. Data is always written in 256-word logical
blocks. The system records data for the RXOI Flexible Disk in
physical sectors of 64 words each. Therefore, logical blocks for the
RXOI are made up of four physical sectors.

Logical I/O takes place by reading and writing data in blocks
c~nve~i~~t for the operating system. For most devices logica~ blocks
map ~irectly into physical blocks. For block-structured devices (for
example, disks), logical blocks are numbered, beginning with O. For
non-black-structured devices (for example, terminals), logical blocks
are not addressable.

V;i.rtual I/O takes place by reading and writing data to open files. In
this case, the Executive maps virtual blocks into logical blocks. For
file-structured devices (disks or DECtapes), virtual blocks are the
same size as logical blocks, are numbered starting from one (1), and
are relative to the file rather than to the device. For
non-file~structured devices, the mapping from Yirtual block to logical
block is direct.

1.3 LOGICAL UNITS

This section describes the construction of. the logical unit table and
the use of logical unit numbers.

1.3.1 Logical Unit. Number

A logical unit number, or LUN, is a number that the system associates
with a physical device unit during RSX-llM/M-PLUS I/O operations. For
example, you might associate LUN 1 with one of the terminals in the
system, LUNs 2, 3, 4, and 5 with DECtape drives, and LUNs 6, 7, and 8
with di$k units. The association is a dynamic one; each task running
in the system can establish its own correspondence between LUNs and
physical device units, and can that association at almost any time.
This dynamic, flexible association is a major factor in the
device-independent programming of the system.

A logical unit number is simply a short name for the association
between. a logical unit and a physical device unit. Once the
association has been made, the LUN provides a direct and efficient
mapping to the physical device unit, thus eliminating the searching of
device tables whenever the system encounters a reference to a physical
device un;i.t.

1-2

(

c

(

(

(

RSX-llM/M-PLUS INPUT/OUTPUT

Remember that, although you or a task can change the association of . a
LUN to a physical device unit at any time, reassigning aLUN at run
time causes pending I/O requests for the previous LUN assignment to be
canceled. Therefore, you must verify that all outstanding I/O
requests for a LUN have been serviced before you associate that LUN
with another physical device unit.

1.3.2 Logical Unit Table

There is one Logical unit Table (LUT) for each task running in an
RSX-lIM/M-PLUS· operating system. The task header contains this table
as a variable-length block. Each LUT contains enough 2-word entries
for the number of logical units. You specify the number of logical
units in the Task Builder by the "UNITS=" option when you build your
task.

The first word of each 2-word entry contains a pointer to the Unit
Control Block that represents the physical device unit currently
associated with that LUN. This linkage may be indirect; that is, you
may force redirection of references from one unit to another unit with
the DCL command ASSIGN/REDIRECT. The second word of each 2-word entry
contains a pointer to the window block of the task that has a fite
open and mounted. The window block contains pointers to areas on the
file that are accessed by the task.

Each 2-word entry contains a pointer to the Unit Control Block that
represents the physical device unit currently associat~d with that
LUN. Whenever your task issues an I/O request, the system matches the
appropriate physical device unit (by using the Unit and Device Control
Blocks and other structures) to the LUN that the call specifies. The
system does this by indexing into the LUT by the LUN number. Thus, if
the call specifies 6 as the LUN, the system accesses the sixth 2-word
entry in the LUT. and associates the I/O request with the physical
device unit to which the entry points. The number of LUN assignments
valid for a task ranges from 0 to 255, but it cannot be greater than
the number of LUNs specified at task-build time.

Figure 1-1 illustrates a typical Logical Unit Table.

I Number of LUNs

Pointer to UCB of LUN 1 -- - - - --
Pointer to window block of LUN1

Pointer to UCB of LUN 2 --- -- - --
Pointer to window block of LUN 2

Pointer to UCB of LUN 3 -- - - -- --
Pointer to window block of LUN 3

Pointer to UCB of LUN 4 -- - - - --
Pointer to window block of LUN 4

ZK-4078-85

Figure 1-1 Logical Unit Table

1-3

RSX-IIM/M-PLUS INPUT/OUTPUT

1.3.3 Changing LUN Assignments

Logical unit numbers have no significance until you associate a LUN
with a physical device unit by using one of the following methods:

• At the time you build the task that is to do the I/O
operation, you can specify an ASG (Assign) keyword option to
the Task Builder. This option associates a physical device
unit with a logical unit number referenced by the task being
built.

• You or the system operator can issue a REASSIGN command to MeR
or a ASSIGN/REDIRECT command to DCL. This command reassigns a
LUN to another physical device unit and thus changes the
correspondence between the LUN and the physical device unit.
Note that this reassignment has no effect on the in-core image
of a task.

• At run time, a task can dynamically change aLUN assignment by
issuing the Assign LUN Executive directive macro (ALUN$).
This changes the association of a LUN with a physical device
unit during task execution.

1. 4 ISSUING AN I/O REQUEST

Your tasks perform I/O in the RSX-IIM/M-PLUS system by submitting
requests for I/O service as Queue I/O (QIO$) or Queue I/O and Wait
(QIOW$) Executive directive macros. See the RSX-IIM/M-PLUS and
Micro/RSX Executive Reference Manual for a complete description-ol
system directives.

The RSX-IIM/M-PLUS operating system has a set of system macros that
make issuingQIO$ macros easier. You must make these macros available
to the source program by placing the MACRO-II Assembler directive
• MCALL in the source program. The macros reside in the System Macro
Library (LB: [1, l]RSXMAC.SML). Section 1.6.4 descI:1bes the function of
.MCALL.

In RSX-IIM/M-PLUS, as in most multiprogramming systems, tasks do not
normally access physical device .units directly. Instead, they use I/O
services that the Executive provides, because it 'can effectively
~ultiplex the use of physical device units over many tasks. The
Executive routes I/O requests to the appropriate device driver and
queues them by the priority of the requesting task. I/O operations
proceed concurrently with other activities in an RSX-IIM/M-PLUS
system.

Before the Executive queues a QIO$ request to the driver, the QIO$
must pass a series of test~ executed by the Executive. If the request
fails, the Executive rejects it. The Executive signals this rejection
by setting the C-bit. As good programming practice, you should check
for directive rejection by following the QIO$ macro with a MACRO-II
BCS instruction or its equivalent.

After the Executive queues an I/O request, the system does not wait
for the operation to complete. Perhaps the task that issued the QIO$
request cannot proceed until the I/O operation completes. In this
case, the task should specify an event flag (see Section 1.4.1.4) in
the QIO$ request and should issue a Wait For Single Event Flag (WTSE$)
Executive macro specifying the same event flag at the point where
synchronization must occur. Your task then waits for the I/O to
complete by waiting for the Executive to set the specified event flag.

1-4

(

(

(

(

(

RSX-IIM/M-PLUS INPUT/OUTPUT

The QIO$ and Wait (QIOW$) macro is a more economical
this synchronization. QIOW$ waits until the system
before returning control to the task. Thus, the
macro is not necessary.

way to achieve
completes the I/O
additional WTSE$

Each QIO$ or QIOW$ macro must supply sufficient information to
identify and queue the I/O request. You may also want to include
locations in your task to receive error or status codes, and tD
specify the address of an asynchronous system trap service routine.
Certain types of I/O operations require the specification of
device-dependent information as well. Typical QIO$ parameters are the
fOllowing:

• I/O function to be performed

• Logical unit number associated with the physical device unit
to be accessed

• Optional event flag number for synchronizing I/O completion
processing (required for QIOW$)

• Optional address of the I/O status block to which the xp
Status block, I/O Executive returns information indicating
successful or unsuccessful completion

• Optional
routine
request

address of an asynchronous system trap service
in your task to be entered upon completion of the I/O

• Optional device- and function-dependent parameters specifying
such items as the starting address of a data buffer, the size
of the buffer, and a block number

Several of the first six parameters in the QIO$ macro are optional,
but you must reserve space for these parameters. During expansion of
a QIO$ macro,the Executive defaults to a value of 0 for all null
(omitted) parameters. Inclusion of the device- and function-dependent
parameters depends on the physical device unit and function that you
specify. If you want to specify only an I/O function code, a LUN, and
an address for an asynchronous system trap service routine, issue the
following:

QIO$ IO.ATT,6""ASTOX

where IO.ATT is the QIO$ function code and the following describes the
meaning of the parameters:

Parameter

IO.ATT

6

, , ,

ASTOX

Meaning

The I/O function code for attach.

The LUN or Logical Unit Number associated with the
device uni t.

Null arguments for
request priority,
status block.

the
and

event flag
the address

number, the
of the I/O

The AST address using the symbolic name ASTOX.

The system requires no additional
parameters for an attach function.
legal forms of the macro.

device- or function-dependent
Section 1.7 describes the three

1-5

RSX-IIM/M-PLUS INPUT/OUTPUT

For convenience, you may omit any comma if no parameters appear to the
right of it. Therefore, you could issue the command above as follows,
if you did not want the asynchronous system trap:

QIO$ 10.ATT,6

All extra commas have been dropped. However, if a parameter appears
to the right of any place-holding comma, that comma must be retained.

1.4.1 QIO$ Macro Format

The arguments for a specific QIO$ macro call may be different for each
I/O device your task accesses and for each I/O function it requests.
However, the general format of the call is common to all devices. It
appears as follows:

QIO$ fnc,lun, [efn], [pri], [isb], [ast], [<pl,p2, ••• ,p6>]

1.4.1.1 Syntax Elements: Brackets [l, Angle Brackets <>, Braces {} -

[] Brackets enclose optional parameters. You may use one or
more of the optional parameters.

<>

{}

Angle brackets must enclose function-dependent parameters if
the QIO$ requires the parameters <pl, ••• ,p6>. The angle
brackets are part of the syntax and must be used. The
parameters mayor may not be present in a given QIO$ macro
and, if present, some may be optional.

Braces indicate that you must make a choice among the
arguments enclosed within the braces.

The following paragraphs summarize the use of each QIO$ parameter.
Section 1.7 explains different forms of the QIO$ macro itself.

1.4.1.2 FNC Parameter - The fnc parameter is the symbolic name of the
I/O function that you want to request. This name is usually of the
form

10.xxx

where xxx identifies the particular I/O operation.

For example, a QIO$ request to attach the physical device unit
associated with a LUN specifies the function code 10.ATT with its
complete QIO$ form appearing as

QIO$ 10.ATT,lun

where lun is the number assigned to the physical device unit.

A QIO$ request to cancel (or kill) all I/O requests for a LUN that you
specified begins like this:

QIO$ 10.KIL, •••

1-6

(

(

(

(

(

RSX-IIM/M-PLUS INPUT/OUTPUT

The system internally stores the fnc parameter, which you specify in
the QIO$ request, as a function code in the high-order byte and as
modifier bits in the low-order byte of a single word. The function
code is in the range 0 through 31. (decimal) and is a binary value
that the system supplies to match the symbolic name specified in the
QIO$ request.

The system object module library defines the correspondence between
global symbolic names and function codes. The Task Builder searches
the library. You can obtain local symbolic definitions by the FILIO$
and SPCIO$ macros, which reside in the System Macro Library and are
summarized in Appendix A.

Several similar functions may have identical function codes, and you
may distinguish them only by their modifier bits. For example, the
DECtape read logical forward and read logical reverse functions have.
the same function code. Although the function codes are the same, the
system stores the modifier bits for these two operations.

1.4.1.3 LUN Parameter - The lun parameter represents the logical unit
number (LUN) of the associated physical device unit that the I/O
request is to access. The association between the physical devi~e
unit and the LUN is specific to the task that issues the I/O request,
and theLUN reference is usually device independent. You begin an
attach request to the physical device unit associated with LUN 14 like
this:

QIO$ IO.ATT,14. , •••

Because each task has its own LUT in which the correspondence between
the LUN and the physical device unit is established, the legality of a
LUN parameter is specific to the task that includes this parameter in
a QIO$ request. In general, the LUN must be in the following range:

o <LUN <number of LUTs in table(if nonzero)/4
;each LUT is 2 words, 4 bytes

The number of LUNs specified in the LUT of a particular task cannot
exceed 255.

1.4.1.4 EFN Parameter - The efn parameter is a number representing
the event flag to be associated with the I/O operation. It is an
optional parameter for inclusion in the QIO$ request. The specified
event flag is cleared when the I/O request is queued and is set when
the I/O operation has completed. If the task issued the QIOW$ macro,
the Executive suspends task execution until the I/O completes. If the
task issued the QIO$ macro (with no WTSE$ macro), task execution
proceeds in parallel with the I/O. When the task continues to
execute, it may test the event flag whenever it chooses by using the
Read All Event Flags (RDAF$) Executive directive macro (if
group-global event flags are not being used), the Read Extended Flags
(RDXF$) Executive directive (for all event flags, including
group-global event flags), or the Read Single Event Flag (RSEF$)
Executive directive.

If you specify an event flag number, it must be in the range 1 through
96. If you do not want to specify an event flag, you can omit efn or
supply it with a value of O. Event flags 1 through 32 are local
(specific to the issuing task); event flags 33 through 64 are global
(shared by all tasks in the system). Event flags 65 through 96 are
group-global event flags (shared by all tasks in the same user group).
Flags 25 through 32 and 57 through 64 are reserved for use by system

1-7

.RSX-llM/M-PLUS INPUT/OUTPUT

software. Within these bounds, you can specify event flags
to synchronize I/O completion and task execution. Sections
1.4.3 provide a more detailed explanation of event
significant events.

NOTE

as desjred
1. 4. 2 and
flags and

If an event
treats the
request.

flag is not
directive as

specified, the Executive
if it were a simple 010$

1.4.1.5 PRI Parameter - The optional pri parameter is supplied only
to make RSX-IIM/M-PLUS 010$ requests compatible with RSX-llD. An
RSX-IIM I/O request assumes the priority of the requesting task.
Thus, you should use a value of 0 (or a null) for this parameter.

1.4.1.6 ISB Parameter - The optional isb parameter identifies the
address of the I/O status block associated with the I/O request. This
block is a 2-word array in which a code is returned that represents
the final status of the I/O request on completion of the operation.
This code is a binary value corresponding to a symbolic name of the
form IS.xxx (for successful returns) or IE.xxx (for error returns).
The binary error code is returned to the low-order byte of the first
word of the status block. It can be ·tested symbolically, by name.
For example, the symbolic status IE.BAD is returned if a bad parameter
is encountered. The following illustrates the examination of the I/O
status block, IOSB, to determine whether a bad parameter has been
detected:

010$
BCS
WTSE$C

CMPB
BNE

IO.ATT,14.,2"IOSB
DIRERR
2

#IS.SUC,IOSB
ERROR

The system object module library "defines the correspondence between
~lobal symbolic names and I/O completion codes. The Task Builder
searches this library. The IOERR$macro, which resides in the System
Macro Library, obtains local symbolic definitions (summarized in
Appendix B) •

On completion of the I/O operation, the system returns certain
device-dependent information to the high-order byte of the first word
of isb. If a read or write operation is successful, the second word
is also significant. For example, in the case of a read function on a
terminal, the system returns in the second word of isb the number of
bytes that you typed preceding a carriage return. Ifa magnetic tape
unit is the device and you specified a write function, this number
represents the number of bytes actually written. The status block can
be omitted from a 010$ request if you do not intend to test for
successful completion of the request.

1-8

(

(

(

(

(

RSX-IIM/M-PLUS INPUT/OUTPUT

1.4.1.7 AST Parameter - The optional ast parameter specifies the
address of a service routine to be entered when an asynchronous system
trap occurs. If you want to interrupt your task to execute special
code on completion of an I/O request, you can specify an asynchronous
system trap routine in the QIO$ request. When the specified I/O
operation completes, control branches to this routine at the software
priority of the requesting task. The system then executes the
asynchronous code beginning at address ast, much like the way the
system executes an interrupt service routine. If you do not want to
perform asynchronous processing, you can omit the ast parameter or
specify a value of 0 in the QIO$ macro call.

Section 1. 4. 5 discusses the use of asynchronous system traps, and the
RSX-IIM/M-PLUS and Micro/RSX Executive Reference Manual describes
traps 1n detail.-·--

1.4.1.8 Pl,P2, ••• ,P6 Parameters - The additional QIO$ parameters
<pl,p2, ••• ,p6> depend on the particular function and device specified
in the I/O request. Typical parameters may include I/O buffer
address, I/O buffer length, and so on. You can include between zero
and six parameters depending on the particular I/O function.
Subsequent chapters of this manual describe rules for including these
parameters and legal values.

1.4.2 Significant Events

A significant event is a change in system status that causes the
Executive to reevaluate the eligibility of all active taskS to run.
(For some significant events, specifically those in which the current
task becomes ineligible to run, only those tasks of lower priority are
examined.) A significant event is usually caused (either directly or
indirectly) by an Executive directive issued from within a task. This
manual is concerned with the significant event caused by an I/O
completion.

Significant events are normally set by Executive directives by
completing a function that you specified. A task uses event flags to
recognize the occurrence of specific events.

1.4.3 Event Flags

Event flags are a means by which tasks
(Tasks also use Asynchronous System Traps
events.) In requesting a system operation
task may associate en event flag with the
When the event occurs, the Executive sets

recognize specific events.
(ASTs) to recognize specific
(such as an I/O transfer), a
completion of the operation.
the specified flag.

Ninety-six event flags are available to enable tasks to distinguish
one event from another. Each event flag has a corresponding unique
event flag number (efn). Numbers 1 through 32 form a group of flags
that are unique to each task and are set or cleared as a result of
that task's operation. Numbers 33 through 64 form a second group of
flags that are common to all tasks, hence their name "common flags."
Common flags may be set or cleared as a result of any task's
operation. The last eight flags in each group, local flags (25-32)
and common flags (57-64), are reserved for use by the system. Number~
65 through 96 form the third group of flags, known as "group global
event flags." You can use these flags in any application where common
event flags can be used; however, only tasks running under UICs
containing the group code specified when the group-global event flags

1-9

RSX-IIM/M-PLUS INPUT/OUTPUT

were created can use them. Eight Executive directives provide the
support for creating, setting, clearing, reading,
flags. See the RSX-IIM/M-PLUS and Micro/RSX
Manual for a description of these directives.

and testing event
Executive Reference

The following example illustrates the use of a common event flag to
synchronize task execution.

A task issues a QIO$ macro with an efn parameter specified. A WTSE$
macro follows the QIO$ and specifies the same event flag number as an
argument. The Executive clears the event flag when the Executive
queues the I/O request. Then, the Executive blocks the task when the
Executive executes the WTSE$ directive. The task remains blocked
until a significant event is declared at the completion of the I/O
request and the significant event sets the event flag. The task
resumes when the appropriate event flag is set, and execution resumes
at the instruction following the WTSE$ macro. Using these macros and
an event flag in this way ensures that the task does not manipulate
the data until all the I/O has completed.

Specifying an event flag does not mean that a WTSE$ macro must be
issued. Event flag testing can be performed at any time. The purpose
of a WTSE$ macro is to block the task execution until an indicated
event occurs. Hence, it is not necessary to issue a WTSE$ macro
immediately following a QIO$ macro, but a task that depends on a
specific I/O operation to complete must issue it before continuing.

A task can issue a Stop For Single Event Flag (STSE$) macro instead of
a WTSE$ macro. When this is done, an event flag condition not
satisfied results in the task's being stopped instead of being blocked
until the event flag is set. A blocked task still competes for memory
resources at its running priority. A stopped task competes for memory
resources at priority O.

1.4.4 System Traps

System traps can interrupt task execution and cause a transfer of
control to another memory location for special processing. The
Executive handles system traps. The traps are relevant only to the
task in which they occur. To use a system trap, a task must contain a
trap service routine, which is automatically entered when the trap
occurs.

There are two types of system traps: synchronous and asynchronous.
You can use both to handle error or event conditions, but they differ
in their relation to the task that is running when the traps are
detected. The traps differ as follows:

• Synchronous system traps (SSTs) signal error conditions within
the executing task. If the same instruction sequence were
repeated, the same synchronous trap would occur at the same
place in the task. Synchronous traps are fully described in
the RSX-IIM/M-PLUS and Micro/RSX Executive Reference Manual.

• Asynchronous system traps (ASTs) signal the completion of an
external event such as an I/O operation. An asynchronous
system trap (AST) usually occurs as the result of initiating
or completing an external event rather than as a program
condition.

1-10

(

c

(

(

(

(

RSX-llM/M-PLUS INPUT/OUTPUT

Although not able to distinguish execution of an SST routine from task
execution, the Executive is aware that a task is executing an AST
routine. An AST routine can be interrupted by an SST routine, but not
by another AST routine.

1.4.5 Asynchronous System Traps

The primary purpose of an AST is to inform the task that a certain
event has occurred -- for example, the completion of an I/O operation.
As soon as the task has serviced the event, it can return to the
interrupted code.

Some directives can specify both an event flag and an ASTi with these
directives, you can use ASTs as an alternative to event flags or you
can use the two together. Therefore, you can specify the same AST
routine for several directives, each with a different event flag.
Thus, when the Executive passes control to the AST routine, the event
flag can determine the action required. However, it is standard
programming practice to use the I/O Status Block (IOSB) rather than
the event flags to determine which I/O operation is completed. Thus,
when control is passed to an AST from a QIO$, the I/O Status Block
(IOSB) is on top of the stack. Use this IOSB to determine which 1/9
has completed.

The Executive queues ASTs in a first-in-first-out queue for each task
and monitors all asynchronous service routine operations. Because
asynchronous traps may be the end result of I/O-related activity, the
task cannot control the occurrence of the ASTs directly. An example
of an asynchronous trap condition is the completion of an I/O request.
The timing of such an operation clearly cannot be predicted by the
requesting task. If the task does not specify an AST service routine
in an I/O request, a trap does not occur and normal task execution
continues.

However, the task may, under certain circumstances, block recognition
of ASTs to prevent simultaneous access to a critical data region.
When access to the critical data region has been completed, the queued
ASTs may again be honored. The Disable AST Recognition (DSAR$S) and
Enable AST Recognition (ENAR$S) Executive directives provide the
mechanism for doing this.

Associating asynchronous system traps with I/O requests enables the
requesting task to be truly event driven. The system executes the AST
service routine contained in the initiating task as soon as possible,
consistent with the task's priority. Using the AST routine to service
I/O-related events provides a response time that is considerably
better than a polling mechanism, and provides for better overlap
processing than the simple QIO$ and WTSE$ macros. Asynchronous system
traps also provide an ideal mechanism for use in multiple buffering of
I/O operations.

The Executive inserts all ASTs in a first-in-first-out queue on a per
task basis as they occur (that is, the event that they are to signal
has expired). The Executive executes them one at a time whenever the
task does not have ASTs disabled and is not already in the process of
executing an AST service routine. Executing the AST includes storing
certain information on the task's stack, including the task's WTSE$
mask word and address, the Directive Status Word (DSW), the program
status eSP), the program counter (PC), and any trap-dependent
parameters. The task's general-purpose registers RO-R5 are not saved,
and thus AST service routines must save and restore all registers
used. If the registers are not restored after an AST has occurred,
the task's subsequent execution may be unpredictable.

1-11

RSX-llM/M-PLUS INPUT/OUTPUT

After an AST is processed, the trap-dependent parameters (if any) must
be removed from the task's stack and an AST Service Exit ASTX$S macro
executed. The ASTX$S macro, described in Section 1.6.7 of this
manual, issues the AST Service Exit directive. On AST service exit,
control returns to another queued AST, to the executing task, or to
another task waiting to run.

The RSX-llM/M-PLUS and Micro/RSX Executive Reference Manual describes
in detail the purpose of AST service routines and all Executive
directives that handle them.

1.5 DIRECTIVE PARAMETER BLOCKS

A Directive Parameter Block (DPB) is a fixed-length area of contiguous
memory that contains the arguments that you specify in an Executive
directive macro call. The DPB for a QIO$ directive has a length of 12
words. The Executive generates it as the result of expanding a QIO$
macro call. The first two bytes of the DPB contain the following:

• The first byte of the DPB contains the directive
identification code (DIC) -- always 1 for QIO$.

• The second byte contains the size
words -- always 12 for RSX-llM/M-PLUS.

of the DPB . in

During the assembly of your task containing QIO$ requests, the
MACRO-ll Assembler generates a DPB for each I/O request specified in a
QIO$ macro call. At run time, the Executive uses the arguments stored
in each DPB to create, for each request, an I/O packet in system
dynamic storage. Figure 1-2 illustrates the layout of a sample DPB.

Word 0 size of DPB -- 12 1

FNC Modifiers

2 ~((~((~/%
0~'j.~//- LUN

3 Priority -- PRI EFN

4 ISB

5 AST

6

• Device-dependent
parameters

•

•
11

o
__ DIC for 010

directive
2
--- 1/0 function
4
-- Logical unit number

6
-- Event flag number 8 ..

Address of 1/0 -- . 10 status block

Address of ---12
asynchronous trap
service routine

ZK-005-81

Figure 1-2 QIO$ Directive Parameter Block

1-12

(

(

(

(

(

RSX-IIM/M-PLUS INPUT/OUTPUT

1.5.1 I/O Packets

The Executive enters the I/O packet by priority into a queue of I/O
requests for the specified physical device unit. The Executive
creates and maintains this queue and orders it by the priority of the
tasks that issued the requests. The I/O drivers examine their
respective I/O packet queues for the I/O request with the highest
priority capable of being executed. The driver removes this packet
from the queue and performs the I/O operation. The process is then
repeated until the queue is empty of all requests.

1.5.2 Significant Event Declaration

After the I/O request has been completed, the Executive declares a
significant event and may do one or more of the following:

• Set an event flag.

• Cause a branch to an asynchronous system trap service routine.

• Return the I/O status.

Any of the above actions depend on the arguments specified in the
original QIO$ macro call.

1.6 I/O RELATED MACROS

The RSX-IIM/M-PLUS system supplies several system macros
return information about I/O requests. These macros
System Macro Library and must be made available during
including the MACRO-II Assembler directive .MCALL in the

to issue and
reside in the
assembly by

task's code.

The RSX-IIM/M-PLUS system also supplies FORTRAN-callable subroutines
that perform the same functions as the system macros. See the
RSX-IIM/M-PLUS and Micro/RSX Executive Reference Manual for details.

Most of the Executive directive macros described in this section have
three distinct forms. The following list summarizes the forms of
QIO$, but the characteristics of each form also apply to QIOW$, ALUN$,
GLUN$, and the other described Executive directive macros.

1. QIO$ (executed by using the DIR$ macro) generates a directive
parameter block for the I/O request at assembly time, but
does not provide the instructions necessary to execute the
request. The QIO$ form is useful under the following
conditions:

• The task uses the DPB in several different places in the
task.

• The task modifies the DPB at run time.

• The task references the DPB at run time.

2. QIO$S generates a directive parameter block for the I/O
request on the stack, and also generates code to execute the
request. This is a useful form for reentrant, shareable code
because QIO$S generates the DPB dynamically at execution
time.

1-13

RSX-llM/M-PLUSINPUT/OUTPUT.

3. QIO$C generates a directive parameter block for the I/O
request at assembly time as well as generating code to
execute the r~qu~st. QIO$Cgenerates the DPB in a separate
program section called $DPB$$. QIO$C incurs little system
overhead and it is useful when the task executes an I/O
request from only one location. This manual uses the C form
of the QIO$ macro in most of the examples in Chapter 1.

Parameters for both the QIO$ and QIO$C forms of the macro must be
valid expressions for the MACRO-1l .WORD and .BYTE statements.
Parameters for the QIO$S form must be valid source operand address
expressions for Assembler instructions such as MOV and MOVB. The
following example references the same parameters in the three distinct
forms of the macro call.

QIO.$

QIO$C

QIO$S

IO.RLB,6,2",AST01,<RDBUF,SO.>

IO.RLB,6,2",ASTOl,<RDBUF,SO.>

#I0.RLB,i6,i2"iiASTOl,<iRDBUF,iSO.>

Only the QIO$S form of the macro produces the DPB
other two forms generate the DPB at assembly time.
and Micro/RSX Executive Reference Manual describes
and use of .these different forms.

dynamically. The
The RSX-1lM/M-PLUS

the characteristIcs

The following section describes Executive directives and Assembler
macros:

1. QIO$, which requests an I/O operation and supplies parameters
for that request

2. .QIOW$, which is equivalent to QIO$ followed by WTSE$

3. DIR$, which specifies the address of a directive parameter
block as its argument, and generates code to execute the
directive

4. .MCALL, which makes all macros referenced during
assembly available from the System Macro Library

task

5. ALUN$, which associates a logical unit number with a-physical
device unit at run time

6. GLUN$, which requests that the information about a physical
device unit to LUN association be returned to a buffer that
you specify

7. ASTX$S, which terminates execution of an asynchronous system
trap (AST) service routine

S. WTSE$, which instructs the system to block execution of the
issuing task until a ·specified event flag is set

1.6.1 The 010$ Macro: Issuing an I/O Request

As previously. described, you may use three general forms of the QIO$
macro. They are reviewed as follows:

• QIO$ generates only the DPB for the I/O request. This form of
the macro call is used with DIR$ (see Section 1.6.3) to
execute an I/O request.

1-14

(

(

(

(

(

(

RSX-llM/M-PLUS INPUT/OUTPUT

• QIO$S generates a OPB for the I/O request on the stack as well
as generating code to execute the request.

• QIO$C generates a OPB and code, but the OPB is generated in a
separate program section.

1.6.2 The QIOW$ Macro: Issuing an I/O Request and Waiting for an
Event Flag

The QIOW$ macro is equivalent to a QIO$ followed by a WTSE$. It [Opis
more economical to issue a QIOW$ request than to use the two separate
macros. An everit flag (efn parameter) must be specified with QIOW$.

NOTE

Please note that tasks or applications that execute
many I/O operations will run much more efficiently
using QIOW$ rather than QIO$ followed by a WTSE$. The
reason efficiency increases is that system overhead is
reduced.

The QIOW$ macro has the following syntax:

QIOW$ function,lun,efn, [pri], [isb], [ast], [<pI, ••• ,p6>]
. .

See the RSX-llM/M-PLUS and Micro/RSX Executive Reference Manual for a
complete description of the QI~W$ macro.

1.6.3 The OIR$ Macro: Executing a Directive

The OIR$ (execute directive) macro allows a task to reference a
previously defined OPB. Issue it in the form:

OIR$ [addr] , [err]

The parameters have the following meanings:

Parameter Meaning

addr The address of a directive parameter block used in the
directive. If addr is not included, the bPB itself or the
address of the OPB is assumed to already be on the stack.
This parameter must be a valid source operand for a MOV
instruction generated by the OIR$ macro.

err An optional argument which specifies the address of an error
routine to ~hich control branches if the directive is
rejected. The branch occurs by means of a JSR PC,err if
the C-bit is set, indicating rejection of the QIO$
directive.

1-15

RSX-llM/M-PLUS INPUT/OUTPUT

In the following example, the DIR$ macro actually generates the code
to execute the QIO$ directive. It provides no QIO$ parameters of its
own, but references the QIO$ directive parameter block at address
QIOREF by supplying this label as an argument.

QIOREF: QIO$ IO.RLB,6,2",ASTOl,<BUFFER,80.) iCREATE QIO$ DPB

READl: DIR$ iQIOREF ISSUE I/O REQUEST

READ2: DIR$ #QIOREF ISSUE I/O REQUEST

1. 6. 4 The .MCALL Directive: Retrieving System Macros

.MCALL is a MACRO-II Assembler directive that retrieves macros from
the System Macro Library (LB: [l,l]RSXMAC.SML) for use during assembly.
You must include it in every task that invokes system macros. .MCALL
is usually placed at the beginning of your task source module and
specifies, as arguments in the call, all system macros that must· be
made available to your task from the library.

The following example illustrates the use of this directive:

• MCALL QIO$,QIO$S,DIR$,WTSE$S MAKE MACROS AVAILABLE

ATTACH: QIO$S #IO.ATT,#6", IOSB,#AST02 ATTACH DEVICE

QIOREF: QIO$ IO.RLB,6",IOSB,ASTOl, ••• CREATE ONLY QIO$ DPB

READl: DIR$ #QIOREF,DIRERR ISSUE I/O REQUEST

You can include as many macro references as can fit on a line
single • MCALL directive. You can specify any number of
directives.

1.6.5 The ALUN$ Macro: Assigning a LUN

in a
• MCALL

The Assign LUN macro associates a logical unit number with a physical
device unit at run time. All three forms of the macro call may be
used. Assign LUN does not request I/O for the physical device unit,
nor does it attach the unit for exclusive use by the issuing task. It
only establishes a LUN-physical device unit relationship, so that when
the task requests I/O for that particular LUN, the task can reference
the associated physical device unit. Issue the macro from a MACRO-II
program in the following way:

ALUN$ lun,dev,unt

1-16

(

c

(

(

(

(

Parameter

lun

RSX-llM/M-PLUS INPUT/OUTPUT

Meaning

The logical unit number to be associated with the specified
physical device unit. See Sections 1.3 and 1.4.1.3.

dev The device name of the physical device or a logical device
name assigned to a physical device (see the MCR ASN command
or the DCL ASSIGN command).

unt The unit number of that device specified above.

For example, to associate LUN 10. with terminal unit 2, a task could
issue the following macro call:

ALUN$C 10.,TT,2

A unit number of 0 represents unit 0 for multiunit devices such as
disk, DECtape, or terminals; it indicates the single available unit
for devices without multiple units, such as card readers and line
printers.

Logical devices are system generation options on RSX-IIM that allow
you to assign logical names to physical devices with the MCR command
ASN or the DCL command ASSIGN. Logical devices are included as part
of RSX-llM-PLUS.

See the RSX-IIM/M-PLUS MCR Operations Manual or the RSX-IIM/M-PLUS
Command Language Manual for a full description of the ASN command.

The following example illustrates the use of the three forms of the
ALUN$ macro.

;
; DATA DEFINITIONS

ASSIGN: ALUN$ 10.,TT,2

EXECUTABLE SECTION

DIR$ #ASSIGN

ALUN$C 10.,TT,2

ALUN$S #10.,#"TT,#2

1-17

GENERATE DPB

EXECUTE DIRECTIVE

GENERATE DPB IN SEPARATE PROGRAM
SECTION, THEN GENERATE CODE TO
EXECUTE THE DIRECTIVE

GENERATE DPBON STACK, THEN
EXECUTE DIRECTIVE

RSX-llM/M-PLUS INPUT/OUTPUT

1.6.S.l Physical Device Names - The following list contains physical
device names, listed alphabetically, that you may include as dev
parameters:

Name

AD

AF

AR

BS

CD

CP

CR

CT

DB

DO

OF

OK

DL

OM

DP

DR

OS

DT

DU

OX

DY

EM

GR

IC

Device

ADOI-D Analog-to-Digital Converter (not supported in
RSX-IIM-PLUS systems)

AFCII Analog-to-Digital Converter (not supported in
RSX-IIM-PLUS systems)

ARII Laboratory Peripheral System (not supported in
RSX-llM-PLUS systems)

DT03/DT07 UNIBUS Switch (supported in RSX-llM-PLUS
systems only)

CDl1 Card Reader

Central Processor unit (CPU) in a multiprocessor
system (supported in RSX-llM-PLUS systems only)

CRll/CMll Card Reader

TAll/TU60 Tape Cassette

RP04, RPOS, RP06 Pack Disk

TUS8 DECtape II

RFll/RSll Fixed-Head Disk

RKII/RKOS Cartridge Disk

RLll/RLOl/RL02 Cartridge Disk

RK6ll/RK06 and RK7ll/RK07 Cartridge Disk

RPll/RP02/RP03 Pack Disk

RM02/RM03/RMOS Pack Disk and RM80/RP07 Fixed-Media
Disk

RS03 and RS04 Fixed-Head Disks

TCll/TUS6 DECtape

RA80/RA8l Fixed-Media Disk, RA60 Pack Disk, RC2S Disk
Subsystem, RDSl Fixed-Media Disk, RDS2 Fixed-Media
Disk, RUXSO UNIBUS interface, and RXSO Flexible Disk

RXll/RXOl Flexible Disk

RX2ll/RX02 Flexible Disk

ML-ll Fast Electronic Mass Storage Device

VTll/VS60 Graphics Systems
RSX-llM-PLUS systems)

(not supported in

ICS/ICR Industrial Control Local and Remote Subsystems
(not supported in RSX-llM-PLUS systems)

1-18

(

(

Name

(IS

LA

LP

LR

LS

LT

MM

MS

MT

MU

NL

PP

PR

TT

(
UD

XB

XE

XL

XM

XP

XQ

XU

xw

JA-JZ

QA-QZ

(ZA-ZZ

RSX-llM/M-PLUS INPUT/OUTPUT

Device

DSS/DRS Digital Input and Output Subsystems (not
supported in RSX-llM-PLUS systems)

LPAll-K Laboratory Peripheral Accelerator

LA180/LPll/LSll/LVll Line Printers and LNOl/LN03 Laser
Printer, KMC-ll-A Auxiliary Processor

PCLll-A/PCLll-B Receiver Port

LPSll Laboratory Peripheral System (not supported in
RSX-llM-PLUS systems)

PCLll-A/PCLll-B Transmitter Port

TUl6/TEl6/TU45/TU77/TM02/TM03 Magnetic Tape

TSll,TU80, TSV05, or TK25 Magnetic Tape

TMll/TUlO/TUll or TS03 Magnetic Tape

TK50/TU81 Cartridge Tape

The Null Device

PCll Paper Tape Punch

PCll or PRII Paper Tape Reader

Terminals (regardless of interface)
(not Network Command Terminals)

UDCll Universal Digital Controller (not supported in
RSX-llM-PLUS systems)

DAII-B Parallel Unibus Link
RSX-IIM-PLUS systems)

QIO DEUNA Driver

(not supported in

DLII-E Asynchronous Communication Lin,e Interface (not
supported in RSX-IIM-PLUS systems)

DMCII Synchronous Communication Line Interface

DPII Synchronous Communication Line Interface (not
supported in RSX-IIM-PLUS systems)

DQll Synchronous Communication Line Interface (not
supported in RSX-IIM-PLUS systems)

DUll Synchronous Communication Line Interface (not
supported in RSX-IIM-PLUS systems)

DUPII Synchronous Communication Line Interface

Reserved for customer use (not used by DIGITAL)

Reserved for customer use (not used by DIGITAL)

Reserved for customer use (not used by DIGITAL)

1-19

RSX-llM/M-PLUS INPUT/OUTPUT

1.6.5.2 Pseudo-Device and Physical Device .Names - A pseudo-device
name is a logical device name that must be directed to a physical
device unit. A pseudo device name can be redirected, by the operator,
to another physical device at any time without requiring changes in
programs that reference the pseudo-device name. (The DV.PSE bit in
the LUN information buffer is set to one if a pseudo name references a
physical device.) Dynamic redirection of a physical device unit
affects all tasks MCRREDIRECT command affects only one task.

Nonphysical device names are not associated with a physical device but
with a driver that interfaces with data structures instead of a real
physical device.

The following list indicates the pseudo devices
RSX-llM/M-PLUS:

supported by

Nonphysical
Name

HT

NL

NS

NX

RD

RT

Physical
Name

CL (pseudo)

CO (pseudo)

LB (pseudo)

SP (pseudo)

SY (pseudo)

Driver

CODRV

HTDRV

NLDRV

RDDRV

RTDRV

1-20

Unit

Console listing, normally the
line printer.

Console output, normally the
main operator's console.

Network remote terminal.

System library device,
normally the device from which
the system was bootstrapped.
For example, tasks such as TKB
and MAC access the LB: device
for def~ult library files.

Null device.

Network pseudo device for NSP.

Network pseudo device for DLX.

On-line reconfiguration pseudo
device (RSX-llM-PLUS only).

Network Command Terminals.

Spooling scratch disk device
(RSX-llM-PLUS and Micro/RSX
only) •

Your system default device.
On nonmultiuser systems, SY:
is normally the disk from
which the system was
bootstrapped. On multiuser
systems, SY: is normally the
default login device.

(

(

(

(

(

RSX-l1M/M-PLUS INPUT/OUTPUT

Nonphysical
Name

VT

Physical
Name

TI (pseudo)

Driver

VTDRV

Unit

Pseudo input terminal; TIO:
is the terminal from which a
task was requested.

The pseudo device TI cannot be
redirected, because such
redirection would have to be
handled on a per-task rather
than a systemwide basis (that
is, you can change the TI
de~ice for one task without
affecting the TI assignments
for other tasks).

Virtual terminal. Used by
some RSX-llM-PLUS offspring
tasks as TI: for command and
data I/O (RSX-llM-PLUS and
Micro/RSX only).

1.6.6 The GLUN$ Macro: Retrieving LUN Information

The Get LUN Information macro requests the return of information about
association between a LUN and physical device unit in a 6-word buffer
specified by the issuing task. Upon successful completion of a QIO$
directive, the buffer contains the information listed in Table 1-1, as
appropriate .for the specific device. All three forms of the macro
call may be used. It is issued from a MACRO-l1 program in the
following way:

GLUN$ lun,buf

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number associated with the physical device
unit for which information is requested. See Sections 1.3
and 1.4.1.3.

buf The 6-word buffer to which information is returned.

For example, to request information on the disk unit associated with
LUN 8, issue the fOllowing call:

GLUN$C 8.,IOBUF

Numerical Offset.
Word Byte Bit

o

1 o

Table 1-1
Get LUN Information

Symbolic Offset
Word Byte Bit

G.LUNA

G.LUNU

1-21

Contents

Name of device
associated with LUN
(ASCI I bytes)

Unit number of
associated device

(continued on next page)

Numerical Offset
Word Byte Bit

1

2

o

1

2

3

4

5

6

7

8

RSX-IIM/M-PLUS INPUT/OUTPUT

Table 1-1 (Cont.)
Get LUN Information

Symbolic Offset
Word Byte Bit

G.LUFB

G.LUCW 1

(U .CWl) (DV. REC)

(DV.CCL)

(DV.TTY)

(DV.DIR)

(DV.SDI)

(DV.SQD)

(DV.MSD)

(DV. UMD)

(DV.EXT)

Contents

Driver flag value.
Returned as 128.
(decimal) or 200
(octal) if the driver
is resident, or as 0 if
a loadable driver is
not in the system

First device
characteristics word:

Unit record-oriented
device (for example,
card reader, line
printer) (1 = yes)

Carriage-control device
(for example, line
printer, terminal)
(1 = yes)

Terminal
(1 = yes)

device

Directory device (for
example, DECtape, disk)
(1 = yes)

Single directory device
(for example,
ANSI-standard magnetic
tape) (1 = yes)

Sequential device (for
example, ANSI-standard
magnetic tape)
(1 = yes)

Mass storage device
(for example, disks and
tapes) (1 = yes)

User-mode diagnostics
supported (1 = yes)

Device supports 22-bit
direct addressing

1. The following word and bit symbols shown in parentheses are used
in defining and referencing corresponding items in the device
UCB.

(continued on next page)

1-22

(

(

(

(

(

(

Numerical Offset
Word Byte Bit

9

10

11

12

13

14

15

3

4

5

RSX-llM/M-PLUS INPUT/OUTPUT

Table 1-1 (Cont.)
Get LUN Information

Symbolic Offset
Word Byte Bit

G.LUCW+02

(U.CW2)

G.LUCW+04

(U.CW3)

G.LUCW+06

(U.CW4)

(U2.xxx)

(U3. xxx)

(DV. SWL)

(DV.ISP)

(DV.OSP)

(DV. PSE)

(DV.COM)

(DV.Fll)

(DV.MNT)

Contents

Unit software
write-locked (1 = yes)

Input spooled device
(1 = yes)

Output spooled device
(1 = yes)

Pseudo device (1 = yes)

Device mountable as a
communications channel
for Digital network
support (for example,
DPll, DUll) (1 = yes)

Device mountable as a
Files-II device (fbr
example, disk or
DECtape) (1 = yes)

Device mountable
(logical OR of bits 13
and 14) (1 = yes)

Second device
characteristics word:

Device-specific
information

Third device
characteristics word:

Device-specific

information 2

Fourth device
characteristics word:

Default buffer
(for example,
disks, and line
for terminals).

size
for

length

2. For mass storage devices, such as disks, DECtape, and DECtape
II, this is the number of blocks (maximum logical block number
plus one). For the proper use of the RX2ll/RX02 flexible disk,
you must test G.LUCW+4to determine the media density.

1-23

RSX-llM/M-PLUS INPUT/OUTPUT

The following ex~mple illustrates the use of the three forms of the
GLUN$ macro.

DATA DEFINITIONS

GETLUN: GLUN$ 6,DSKBUF

EXECUTABLE SECTION

DIR$ #GETLUN

GLUN$C 6,DSKBUF

GLUN$S #6,#DSKBUF

GENERATE DPB

EXECUTE DIRECTIVE

GENERATE DPB IN SEPARATE PROGRAM
SECTION, THEN GENERATE CODE TO
EXECUTE THE DIRECTIVE

GENERATE DPB ON STACK, THEN
EXECUTE DIRECTIVE

1.6.7 The ASTX$S Macro: Terminating AST Service

The ASTX$S macro terminates execution of an AST service routine. The
Executive provides all forms of the macro. However, the S-form
requires less space and executes at least as fast as the ASTX$ or
ASTX$C form of the macro. Issue it as follows:

ASTX$S [err]

The parameter has the following meaning:

Parameter

err

Meaning

An optional argument specifying the
routine to which control branches
rejected.

address
if the·

of an error
directive is

After the Executive completes the operation specified in this macro
call, the Executive executes the next AST immediately if another AST
is queued and asynchronous system traps have not been disabled.
Otherwise, the Executive restores the task's state existing before the
AST was entered. (The AST service routine must save and restore the
registers it uses.)

1.6.8 The WTSE$ Macro: Wait for Single Event Flag

The WTSE$ macro suspends execution of the issuing task until the
Executive sets the event flag specified in the macro call. This macro
is extremely useful in synchronizing other activity with the
completion of I/Q operations. You may use all three forms of the
macro call. Issue it as follows:

WTSE$ efn

1-24

(

(

(

(

(

(

RSX-IIM/M-PLUS INPUT/OUTPUT

The parameter has the following meaning:

Parameter Meaning

efn The event flag number.

WTSE$ blocks the task from execution until the specified event flag is
set. Frequently, you may include an efn parameter in a QIO$ macro
call, and the Executive sets the event flag upon the completion of the
I/O operation specified in that call. The following example
illustrates task blocking until the specified event flag is set. This
example also shows using three forms of the macro call.

.MCALL

.MCALL
WTSE$, ALUN$S, QIOC, DIR
QIO$S, WTSE$S, WTSE$C

DATA DEFINITIONS

WAIT:
IOSB:

WTSE$
.BLKW

5
2

EXECUTABLE SECTION

ALUN$S

QIO$C
DIR$

#14.,#"MM

IO.ATT,14.,5
#WAIT

GENERATE DPB
I/O STATUS BLOCK

ASSIGN LUN 14 TO MAGNETIC
TAPE UNIT ZERO
ATTACH DEVICE,
EXECUTE WAIT FOR DIRECTIVE

QIO$S #IO.RLB,#14.,#2,,#IOSB,,<#BUF,#80.>
; READ RECORD, USE EFN2

WTSE$S #2 WAIT FOR READ TO COMPLETE

QIO$C IO.WLB,14.,3"IOSB,,<BUF,80.>
WRITE RECORD, USE EFN3

WTSE$C 3 WAIT FOR WRITE TO COMPLETE

QIO$C IO.DET,14. DETACH DEVICE

1.7 STANDARD I/O FUNCTIONS

You can specify a large number of input/output operations with the
QIO$ macro. You can request a particular operation by including the
appropriate function code as the first parameter of a QIO$ macro call.
Certain functions are standard. These functions are almost totally
device independent and thus you can request them for nearly every
device described in this manual. Other I/O functions are device

1-25

dependent and are
devices. This
characteristics
operations:

• Attaching

• Detaching

• Cancel.ing

• Reading a

RSX-llM/M-PLUS INPUT/OUTPUT

specific to the operation of only one or two
section summarizes the function codes

of the following standard device-independent

to an I/O device

from·an I/O device

I/O requests

logical block

• Reading a virtual block

• Writing a logical block

• Writing a virtual block

For certain physical device units, a standard I/O function may
described as being a NOP. This means that no operation occurs
result of specifying the function, and the Executive returns an
status code of IS.SUC in the I/O status block specified in the
macro call.

1.7.1 I/O Subfunction Bits

I/O
and
I/O

be
as a

I/O
QIO$

Most terminal QIO$ functions can be modified by using the symbolic
name of a subfunction bit in a Logical OR with the QIO$ function. The
symbolic names of subfunction bits take the form TF.xxx, where xxx is
the acronym of the subfunction to be performed. A standard QIO$
function called IO.ATT (attach a device) in a Logical in a Logical OR
with the TF.ESQ subfunction for terminals (recognize escape sequences)
would look like the following:

QIO$C IO.ATT!TF.ESQ,lun,[efn],[pri],[isb],[ast]

A subfunction bit modifies and extends the operation indicated by the
terminal QIO$ function. Note that the use of TF.ESQ with IO.ATT is a
terminal-specific function. Often, you may want to use more than one
subfunction bit when you use QIO$ requests to read or write to a
terminal. In this case, you may use several subfunction bits together
in a Logical OR. The standard QIO$ IO.ATT function may be extended to
both recognize escape sequences and allow special processing in the
task upon the occurrence of asynchronous system traps. To do this
requires that you combine in a Logical combine in a Logical OR two
subfunction bits with the IO.ATT function. If you do this, the QIO$
IO.ATT macro would look like the following:

QIO$C IO.ATT!TF.ESQ!TF.AST,lun,[efn],[pri],[isb],[ast]

Note that the use of TF.ESC or
terminal-specific function.

TF.AST with IO.ATT is a

If your task invokes a subfunction bit that is not supported on the
system, the subfunction bit may be ignored or an error may be issued
by the system and the QIO$ rejected.

The subfunction bits that apply to a specific QIO$ macro are described
with that QIO$ macro in 'the Chapter 2.

1-26

(

(

(

(

(

(

RSX-IIM/M-PLUS INPUT/OUTPUT

1.7.2 QIO$C 10.ATT - Attaching to an I/O Device

Use the 10.ATT function code when your task requires exclusive use of
an I/O device. The QIO$ IO.ATT macro has the fOllowing format:

QIO$C 10.ATT,lun,[efn],[pri],[isb],[ast]

Successful completion of an 10.ATT request exclusively dedicates the
specified physical device unit to the task that issues the 10.ATT.
This enables the task to process input or output in an unbroken stream
and is especially useful on sequential, non-file-oriented devices such
as terminals, card readers, and line printers. An attached physical
device unit remains under control of the task until that task
explicitly detaches it. To detach the device, the task issues the
QIO$C 10.DET macro .with the LUN previously assigned to the attached
device.

While a task attaches a physical device unit, the I/O driver for that
unit dequeuesonly I/O requests issued by the task that attaches the
unit. However, a privileged task can issue a write breakthrough
function (IO.WBT) to a terminal attached by another task. This is an
exception for terminals only. Thus, except ·for the case of 10. WBT,
the Executive does not process a request to attach a device unit
already attached by another task until the attachment by the fir$t
task-is broken and no higher-priority request exists for the attached
unit ..

A LUN that is associated with an attached physical device unit may not
be. reassigned by an Assign LUN (ALUN$) macro unless at least one LUN
is still assigned to the attached device. If the task that issued an
attach function exits or is aborted before it issues a corresponding
detach, the Executive detaches the physical device unit.

Ths parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Sections 1.3 and 1.4.1.3.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Section 1.4.1.4.

pri Makes RSX-IIM/M-PLUS
An RSX-IIM request
task. Thus, a value
this parameter.

QIO$ requests compatible with RSX-IID.
assumes the priority of the requesting

of 0 (or a null) should be used for

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Section 1.4.1.6.

ast For 10.ATT, ast specifies the address of a service routine
to be entered when the 10.ATT operation completes. If you
want to interrupt your task to execute special code upon
completion of this I/O request, you may specify ast. When
this I/O request completes, control branches to the address
specified by ast at the software priority of the requesting
task. Omit ast or specify 0 to omit AST processing. For
more information refer to Sections 1.4.4 and 1.4.5.

See the RSX-IIM/M-PLUS and Micro/RSX Executive Reference
Manual for further detai~on ASTs.

1-27

RSX-llM/M-PLUS INPUT/OUTPUT

1.7.3 QIO$C IO.DET - Detaching from an I/O Device

IO.DET detaches a
attached by an
follows:

physical device
IO.ATT request.

unit
Issue

that
the

has been previously
QIO$C IO.DET macro as

QIO$C 10. DET, lun, [efn] , [pri] , [isb] , fast]

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Sections 1.3 and 1.4.1.3.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Section 1.4.1.4.

pri Makes RSX-llM/M-PLUS
An RSX-llM request
task. Thus, a value
this parameter.

QIO$ requests compatible with RSX-llD.
assumes the priority of the requesting

of 0 (or a null) should be used for

isb The address of the I/O status block (I/O status double-w()rd)
associated with the I/O request. For more information refer
to Section 1.4.1.6.

ast Specifies the address of a service routine to be entered
when an asynchronous system trap occurs. If you want to
interrupt your task to execute special code upon completion
of this I/O request, you may specify ast. When this I/O
request completes, control branches to the address specified
by ast at the software priority of the r~questing task.
Omit ast or specify Oto omit AST processing. For more
information refer to Sections 1.4.4 and 1.4.5.

The LUN specifications of both IO.ATT and IO.DET must be the same, as
in the following example, which also illustrates using S-forms of
several macro calls.

LOOP:

.MCALL
ALUN$S

QIO$S

QIO$S

QIO$S

ALUNS,QIOS
#14.,#"LP

fl:IO.ATT,#l4.

fl:IO.RLB,#l4., •••

fl:IO.DET,#l4.

1-28

ASSOCIATE LINE PRINTER WITH LUN 14

ATTACH LINE PRINTER

PRINT

DETACH LINE PRINTER

(

(

(

(

(

RSX-llM/M-PLUS INPUT/OUTPUT

1.7.4 QIO$C 10.KIL - Canceling I/O Requests

10.KIL cancels the issuing task's I/O requests for a particular
physical device unit.

For I/O requests waiting for service (that is, in the I/O driver's
queue), the Executive returns a status code of IE.ABO in the I/O
status block. An event flag is set, if specified. But any AST
service routine that you may have specified is not executed.

For I/O requests being processed by any I/O driver, except the disk or
DECtape drivers, the Executive returns the IE.ABO status code. The
Executive also returns other status information (byte count, and so
on) in the I/O status block. An AST, if specified, is executed.

If your task issues an IO.KIL for disk, DECtape, or DECtape II I/O
requests being processed, the 10.KIL acts as a NOP. The I/O request
completes, except in the case in which a DECtape transfer is blocked
by a select error. Because disk and DECtape operate quickly, 10.KIL
causes the return of IS.SUC in the I/O status block.

10.KIL is useful in such special cases as canceling an I/O request on
a physical device unit from which a response is overdue (for example,
a read on a paper tape reader).

The QIO$C 10.KIL macro has the following syntax:

QIO$C 10.KIL,lun, [efn], [pri], [isb], [ast]

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Sections 1.3 and 1.4.1.3.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Section 1.4.1.4.

pri Makes RSX-IlM/M-PLUS
An RSX-I1M request
task. Thus, a value
this parameter.

QIO$ requests compatible with RSX-llD.
assumes the priority of the requesting

of 0 (or a null) should be used for

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more info.rmation refer
to Section 1.4.1.6.

ast Specifies the address of a service routine to be entered
when an asynchronous system trap occurs. If you want to
interrupt your task to execute special code upon completion
of this I/O. request, you may specify ast. When this I/O
request completes, control branches to the address specified
by ast at the software priority of the requesting task.
Omit ast or specify 0 to omit AST processing. For more
information refer to Sections 1.4.4 and 1.4.5.

1-29

RSX-IIM/M-PLUS INPUT/OUTPUT

1.7.5 QIO$C IO.RLB - Reading a Logical Block

Issue IO.RLB to read a block of data from the specified physical
device unit. The QIO$C IO.RLB macro has the following format:

QIO$C IO.RLB,lun, [ef?J ,<stadd,size,pn>
, prl
, isb
, ast

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Sections 1.3 and 1.4.1.3.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Section 1.4.1.4.

pri Makes RSX-IIM/M-PLUS
An RSX-IIM request
task. Thus, a value
this parameter.

QIO$ requests compatible with RSX-IID.
assumes the priority of the requesting

of 0 (or a null) should be used for

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Section 1.4.1.6.

ast

stadd

size

Specifies the address of a service routine to be entered
when an asynchronous system trap occurs. If you want to
interrupt your task to execute special code upon completion
of this I/O request, you may specify ast. When this I/O
request completes, control branches to the address specified
by ast at the software priority of the requesting task.
Omit ast or specify 0 to omit AST processing. For more
information refer to Sections 1.4.4 and 1.4.5.

The starting address of the data buffer. The address must
be word aligned for certain drivers~ otherwise, stadd may be
on a byte boundary.

The size of the stadd buffer in bytes. The buffer must be
within the task's address space.

pn One to four optional parameters that specify such additional
information as block numbers for certain devices.

1.7.6 QIO$CIO.RVB - Reading a Virtual Block

IO.RVB reads a virtual block of data from the specified physical
device unit. A "virtual" block indicates a relative block position
within a file and is identical to a logical block for such sequential,
record-oriented devices as terminals and card readers. For these
sequential, record-oriented devices, the Executive converts IO.RVB to
IO.RLB before it issues the QIO$.

NOTE

Any subfunction bits specified in the IO.RVB request
are stripped off in this conversion.

1-30

(

(

(

(

(

RSX-IIM/M-PLUS INPUT/OUTPUT

All tasks should use virtual rather than logical reads. However, if a
task issues a virtual read for a file-structured device (disk,
DECtape, or DECt:ape II), you must ensure that a file is open on the
specified physical device unit. Issue IO.RVB as follows:

QIO$C IO.RVB,lun, [ef?] ,<stadd,size,pn>
, prl
, isb
, ast

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Sections 1.3 and 1.4.1.3.

efn The number of the event flag to be associated with the QIO$
operation. For more inf6rmation refer to Section 1.4.1.4.

pri Makes RSX-IIM/M-PLUS
An RSX-IIM request
task. Thus, a value
this parameter.

QIO$ requests compatible with RSX-IID.
assumes the priority of the requesting

of 0 (or a null) should be used for

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Section 1.4.1.6.

ast

stadd

size

Specities the address of a service routine to be entered
when an asynchronous system trap occurs. If you want to
interrupt your task to execute special code upon completion
of this I/O request, you may. specify ast. When this I/O
request cOInpletes, control branches to the address specified
by ast at the software priority of the requesting task.
Omi t as.t or specify 0 to omit AS'l' processing. For more
information refer to Sections 1.4.4 and 1.4.5.

The starting address of the data buffer. The address must
be word aligned for certain drivers; otherwise, stadd may be
on a byte boundary.

The size of the stadd buffer in bytes. The buffer must be
within the task's address space.

pn One to four optional parameters that specify such additional
information as block numbers for certain devices.

L 7. 7 QIO$C IO.WLB - Writing a Logical Block

IO.WLB writes a block of data to the specified physical device unit.

If the write goes to a terminal, the Executive converts the IO.WVB to
an IO.WLB request.

Note that any subfunction bits specified in the IO.WVB request (for
example, TF.CCO, TF.WAL, or TF.WBT) are stripped when the IO.WVB is
converted to an IO.WLB.

1-31

RSX-11M/M-PLUS INPUT/OUTPUT

The QIO$C IO.WLB macro has the following format:

QIO$C IO.WLB,lun, [ef~J ,<stadd,size,pn>
, prl
, isb
, ast

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Sections 1.3 and 1.4.1.3.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Section 1.4.1.4.

pri Makes RSX-IIM/M-PLUS
An RSX-IIM request
task. Thus, a value
this parameter.

QIO$ requests compatible with RSX-IID.
assumes the priority of the requesting

of 0 (or a null) should be used for

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Section 1.4;1.6.

ast

stadd

size

Specifies the address of a service routine to be entered
when an asynchronous system trap occurs. If you want to
interrupt your task to execute special code upon completion
of this I/O request, you may specify ast. When this I/O
request completes, control branches to the address specified
by ast at the software priority of the requesting task.
Omit ast or specify 0 to omit AST processing. For more
information refer to Sections 1.4.4 and 1.4.5.

The starting address of the data buffer. The address must
be word aligned for certain drivers; otherwise, stadd may be
on a byte boundary.

The size of the stadd buffer in bytes. The buffer must be
within the task's address space.

pn One to four optional parameters that specify such additional
information as block numbers or format control characters
for certain devices.

1.7.8 QIO$C IO.WVB - Writing a Virtual Block

IO.WVB writes a virtual block of data to a physical device unit. A
virtual block indicates a block position relative to the start of a
file. For sequential, record-oriented devices such as terminals and
line printers, the Executive converts IO.WVB to IO.WLB.

NOTE

Any subfunction bits specified in the IO.WVB request
(see Sections 2.3.1 and 3.3.1) are stripped off in
this conversion.

1-32

(

c

(

(

RSX-11M/M-PLUS INPUT/OUTPUT

All tasks should use IO.WVB rather than IO.WLB to file-structured
devices. However, if you issue a virtual write for a file~structured
device (disk or DECtape II), you must ensure that a file is open on
the specified physical device unit. For record-oriented devices, you
should use IO.WLB.

Note that any subfunction bits specified in the IO.WVB request '(for
example, TF.CCO, TF.WAL, or TF.WBT) are stripped when the IO.WVB is
converted to an IO.WLB.

The QIO$C IO.WVB macro has the following format:

QIO$C 10.WVB,lun, [ef?] ,<stadd"size,pn>
, prl
, isb
, ast

The parameters have the following meanings:

Parameter Meaning

1un The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Sections 1.3 and 1.4.1.3.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Section 1.4.1.4.

pri

isb

ast

stadd

size

pn

Makes RSX-IIM/M-PLUS
An RSX-IIM request
task. Thus, a value
this parameter.

QIO$ requests compatible with RSX-IID.
assumes the priority of the requesting

of 0 (or a null) should be used for

The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Section 1.4.1.6.

Specifies the address of a service routine to be entered
when an asynchronous system trap occurs. If you want to
interrupt your task to execute Bpecial dode upon completion
of this I/O request you may specify ast. When this I/O
request completes, control branches to the address ,specified
by ast at the software priority of the requesting task.
Omit ast or specify 0 to omit AST processing.' For more
information refer to Sections 1.4.4 and 1.4.5.

The starting address of the data buffer. The address must
be word aligned for certain drivers; otherwise, stadd may be
on a byte boundary.

The size of the stadd buffer in bytes. The bu£fer must be
within the task's address space.

One to four optional parameters that specify such additional
information as block numbers or format control characters
for certain devices.

1-33

RSX-llM/M-PLUS INPUT/OUTPUT

1.8 USER-MODE DIAGNOSTIC FUNCTIONS

The I/O function code subfunction bit, IQ.UMD, provides support for
user-mode diagnostics. You can execute standard I/O functions such as
Read Logical Block, Write Logical Block, Attach to Device, and Detach
from Device as user-mode diagnostics. To perform a diagnostic
function, you must specify in the QIO$ directive parameter block the
Logical OR of IQ.UMD and the function you want to perform. For
example, to perform a diagnostic Read Logical Block operation, specify
QIO$C IO.RLB!IQ.UMD,lun, ••• as the QIO$ directive.

Support for user-mode diagnostics is always present for RSX-IIM-PLUS,
but not all drivers support user-mode diagnostic functions.
Unpredictable device and driver behavior results when you set the
IQ.UMD subfunction bit in QIO$s that are directed to the device if it
does not support user-mode diagnostics. You can avoid problems if you
issue a Get LUN (GLUN$) macro and check the user-mode diagnostics bit
before emitting the user-mode diagnostic QIO$.

For a device to support user-mode diagnostics, the DV.UMD bit in the
UCB must be set. DV.UMD is at offset U.CWl in the UCB.

In addition to standard I/O functions, RSX-IIM-PLUS provides the
following device-dependent, user-mode diagnostic functions:

1. Disk diagnostic functions

• IO.HMS Home seek or recalibrate

• IO.BLS Block seek (explicit seek)

• IO.OFF Offset position

• IO.RDH Read disk header

• IO.WDH Write disk header

• IO.WCK writecheck

2. DECtape diagnostic functions

• IO.RNF Read block number forward

• IO.RNR Read block number reverse

3. Magnetic tape diagnostic functions

• IO.LPC Read longitudinal parity character

• IO.ERS Erase tape

UMDIO$ is the macro that defines these functions.
To execute a user-mode diagnostic function, you must first attach a
device for diagnostics by using I/O function code IO.ATT!IQ.UMD.
Execute the diagnostic functions and then detach the device.

The parameter list in words 1 through 6 of the DPB should contain the
following information:

• I/O buffer address.

• I/O buffer size.

1-34

(

(

(

(

(

(

RSX-llM/M-PLUS INPUT/OUTPUT

• Offset factor for disks with offset recovery. To determine
the offset factor, refer to the offset register in the
hardware reference manual; this parameter is not used if the
device does not have offset recovery.

• Double-precIsion logical block number.

• Your task's register buffer address (the I/O driver copies its
hardware registers to this buffer in your program); see a
hardware reference manual for the length bf the address.

A typical DPB for a diagnostic function might lo-oklike this:
$DSKPB: :

$IOBUF::

$LBH: :
$LBL: :

• BYTE

.WORD

.WORD

.BYTE
• WORD
• WORD
.WORD
• WORD
.WORD
• WORD
.• WORD
.WORD

3,12 •

IO.WDH!IQ.UMD
THELUN
THEEFN,O
$IOSTS
o
o
o
o
o
o
$RGBUF

Size of the DPB, QIOW
directive code

I/O function code
Logical Unit Number
Event flag number
I/O status block address
AST address
Buffer address
Transfer. size in bytes
Device dependent
High-order logical block number
Low-order logical block number
Register buffer address

The user-mode diagnostic functions return either Success (IS.SUC) or
Device Not Ready (IE.DNR). No other error codes are returned. All
error recovery is completely up to you. Any errors that occur are not
logged in the error log.

A typical program fragment, using the user-mode diagnostic functions,
might look like the following:

UMDIO$
ALUN$S

QIO$S

QIO$S

· QIO$S

QIO$S

.MCALL OMDIO$,ALUN$S,QIO$S
; Define diagnostic functions

#14. ,#"DM,#O ; Associate DMO with lun 14,

#IO.ATT!IQ.UMD,#14. ; Attach DM for diagnostic I/O

#IO.RDH!IQ.UMD,#14."",<#$IOBUF,#5l2.,,#LBH,#LBL,#$RGBUF>
; Read disk header

#IO. RLB! IQ. UMD, #14. " , ,,<#$IOBUF ,.#512. , , #LBH, #LBL, #$RGBUF>
; Read logical block

#IO.DET!IQ.UMD,#14. Detach DM

1-35

RSX-IIM/M-PLUS INPUT/OUTPUT

1.9 I/O COMPLETION

When the system completes an I/O request, either successfully or
unsuccessfully, the Executive selects return conditions depending upon
the parameters included in the 010$ macro call. There are three major
returns:

• The Executive declares a significant event when an
operation completes execution. If you included an
parameter in the I/O request, the corresponding event flag
set.

I/O
efn
is

• If you included an isb parameter in the 010$ macro call,· the
Executive returns a code identifying the type of success or
failure. The code is in the low-order byte of the first word
of the I/O status block at the location represented by isb.

•

This status return code is of the form IS.xxx(success) or
IE.xxx (error). For example, if the device accessed by the
I/O request is not ready, a status code of IE.DNR is returned
in isb. The section named Return Codes summarizes general
codes returned by most of the drivers described in this
manual.

If the isb parameter was omitted, the requesting task cannot
determine whether the I/O request was successfully completed.
A carry clear return from the directive itself simply means
that the directive was accepted and the I/O request was
queued, not that the actual input/output operation was
successfully performed.

If you specified an ast parameter in
branch to the AST service routine
identified by ast occurs when the
execution.

the 010$ macro call, a
beginning at the loc.tion
I/O operation eompletes

1.9.1 Return Codes

The Executive recognizes and handles two kinds of status conditions
when they occur in I/O requests:

• Directive conditions, which indicate the
rejection of the 010$ directive itself

acceptance or

• I/O status conditions, which indicate the success or failure
of the I/O operation

Directive conditions relevant to I/O operations may indicate any of
the following:

• Directive acceptance

• Invalid buffer specification

• Inval id efn parameter

• Invalid lun parameter

• Invalid DIC number or DPB size

• Unassigned LUN

• Insufficient memory

1-36

c

(

(

(

(

(

The Executive
a directive
You can test
condition.

RSX-llM/M-PLUS INPUT/OUTPUT

returns a code indicating the acceptance or rejection of
to the Directive Status Word at symbolic location $DSW.
this location to determine the type of directive

I/O conditions indicate the sucCess or failure of the I/O operation
that you specified in the 010$ macro. I/O driver errors include such
conditions as device not ready, privilege violation, file already
open, or write-locked device. If you include anisb parameter in the
010$ directive, identifying the address of a two-word I/O status
block, the Executive returns an I/O status code in the low-order byte
of the first word of this block when an I/O operation completes
execution. This code is a binary value corresponding to a symbolic
name of the form IS.xxx or IE.xxx. You can test the low-order byte of
the word symbolically, by name, to determine the type of status
return. The system object module library defines the correspondence
between global symbolic names and directive and I/O completion status
codes. You may also obtain local symbolic definitions by the DRERR$
and IOERR$ macros, which reside in the System Macro Library and are
summarized in Appendix B.

Binary values of status codes always have the following meanings:

Code Meaning

Positive (greater than 0) Successful completion

o Operation still pending

Negative Unsuccessful completion

A pending operation means that the I/O request is still in the queue
of requests for the respective driver, or the driver has not yet
completely serviced the request.

1.9.2 Directive Conditions

Table 1-2 summarizes the directive conditions that your task may
encounter by issuing 010$ directives. The table lists acceptance
condition first, followed by error codes indicating various reasons
for rejection.

Code

IS.SUC

IE.ADP

Table 1-2
Directive Conditions

Reason

Directive accepted

The first six parameters of the 010$ directive were
valid, and sufficient dynamic memory was available
to allocate an I/O packet.

Invalid address

The I/O status block or the 010$ DPB was outside of
the issuing task's address space or was not aligned
on a word boundary.

(continued on next page)

1-37

Code

IE.IEF

IE.ILU

IE.SDP

IE.ULR

IE.UPR

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-2 (Cont.)
Directive Conditions

Reason

Invalid event flag number

The efn specification in a QIO$ directive was less
than 0 or greater than 96.

Invalid logical unit number

The lun specification in a QIO$ directive was
invalid for the issuing task. For example, there
were only 5 logical unit numbers associated with
the task, and the value specified for lun was
greater than 5.

Invalid DIC number or DPB size

The directive identification code (DIC) or the size
of the Directive Parameter Block (DPB) was
incorrect; the legal range for a DIC is from 1
through 127, and all DIC values must be odd. Each
individual directive requires a DPB of a certaiu
size. If the size is not correct for the
particular directive, this code is returned. The
size of the QIO$ DPB is always 12 words.

Unassigned LUN

The logical unit number in the QIO$ directive was
not associated with a physical device unit. Your
task may recover from this error by issuing a valid
Assign LUN (ALUN$) directive and then reissuing the
rejected directive.

Insufficient dynamic memory

There was not enough dynamic memory to allocate an
I/O packet for the I/O request. You can try again
later by blocking the task with a WTSE$ macro.
Note that WTSE$ is the only effective way for the
issuing task to block its execution, because other
directives usable for this purpose require dynamic
memory for their execution (for example, Mark Time
(MRKT$».

1.9.3 I/O Status Conditions

I/O status is returned in a 2-word I/O status block upon completion of
the I/O operation. The status may show a successful completion or an
error. The contents of the 2-word I/O status block is explained next:

• The low-order byte of the first word receives a status code of
the form IS.xxx (success) or IE.xxx (error) when an I/O
operation completes execution.

• The high-order byte of the first word is usually device
dependent.

• The second word contains the number of bytes transferred or
processed if the operation is successful and involves reading
or writing.

1-38

(

c

(

(

(

(

RSX-llM/M-PLUSINPUT/OUTPUT

If the isb paramete~ of the QIO$ directive is omitted,
information is not returned.

The following illustrates an example 2-word I/O status block
completion of a terminal read operation:

1 0 Byte

Word 0 0 I -10

1 Number of bytes read

this

on

where -10 is the status code for IE~EOF (end of file). If this code
is returned, it indicates that input was.terminated by typing CTRL/Z,
which is the end-of-file termination sequence on a terminal.

To test for a particular error condition, your task generally should
compare the lpw-order byte of the first word of the I/O status block
with a symbolic value, as in the following:

CMPB UE.DNR,IOSB

However, to test for certain types of successful comple.tion of the I/O
operation, the entire word value must be compared. For example, if a
carriage return terminated a line of input from the terminal, 'a
successful completion code of IS.CR is returned in the I/O status
block. If an Escape (or Altmode) character was the terminator, a code
of IS.ESC is returned. To check for these codes, your task should
first test the low-order byte of the first word of the block for
IS.SUC and then test the full word for IS.CC, IS.CR, IS.ESC, or
IS.ESQ. (Other success codes that must be read in this manner are
listed in Appendix B, Section B.l.2.)

Note that both of the following comparisons test as equal because the
low-order byte in both cases is +1.

CMP US.CR,IOSB

CMPB US.SUC,IOSB

In the case of a successful completion where the carriage return is
the terminal indicator (IS.CR), the following illustrates the status
block:

1 o

Word 0 15 I +1

1 Number of bytes read
(excluding the CR)

Byte

where 15 is the octal code for carriage return and +1 is the status
code for successful 'completion. .

Table 1-3 summarizes status codes that may be returned in the I/O
status block specified in the QIO$ directive on completion of the I/O
request. The codes described in Table 1-3 are .general status codes
that apply to the majority of devices presented in subsequent
chapters. Error codes specific to only one or two drivers are
described only in relation to the devices for which they are returned.
Table 1-3 describes successful and pending codes first, then error
codes.

1-39

Code

IS.SUC

IS.PND

IE.ABO

IE.ALN

IE. BAD

IE.BBE

IE.BLK

RSX-llM/M-PLUS INPUT/OUTPUT

Table 1-3
I/O Status Conditions

Reason

Successful completion

The I/O operation specified in the QIO$ directive
was completed successfully. The second word of the
I/O status block can be examined to determine the
number of bytes proc'essed, if the operation
involved reading or writing.

I/O request pending

The I/O operation specified in the QIO$ directive
has not yet been executed. The I/O status block is
fi lled with Os.

Operation aborted

The specified I/O operation was canceled with
IO. KIL while in progress or while still in the I/O
queue.

File already open

The task attempted to open a file on the physical
device unit associated with the specified LUN, but
a file has already been opened by the issuing task
on that LUN.

Bad parameter

An invalid specification was
more of the device-dependent
6 - 11). For example, a bad
code was specified in
converter I/O operation.

supplied for one or
QIO$ parameters (words
channel number or gain

an ana10g-to-digita1

Bad block on device

One or more bad blocks were found. Data cannot be
written on or read from bad blocks.

Illegal block number

An invalid block number was
file-structured physical device
returned, for example, if block
for an RKOS disk, on which
extend from 0 through 4799.

specified for a
unit. This code is
4800 is specified
legal block numbers

(continued on next page)

1-40

c

(

(

(
Code

IE.BYT

IE.DAA

IE.DNA

IE.DNR

IE.EOF

IE.FHE

IE.IFC

(

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-3 (Cont.)
I/O Status Conditions

Reason

Byte-aligned buffer specified

Byte alignment was specified for a buffer, but only
word (or double-word) alignment is legal for the
physical device unit. For example, a disk function
requiring word alignment was requested, but the
buffer was. aligned on a byte boundary.
Alternatively, the length of a buffer was not an
appropriate multiple of bytes. For example, all
RP03 disk transfers must be an even multiple of
four bytes.

Device already attached

The physical device unit specified in an IO.ATT
fuhction was already attached to the issuing task.
This code indicates that the issuing task has
already attached the desired physical device unit,
not that the unit was attached by another task.

Device not attached

The physical device unit specified in an IO.DET
function was not attached to the issuing task.
This code has no bearing on the attachment status
of other tasks.

Device not ready

The physical device unit specified in the QIO$
directive was not ready to perform the desired I/O
operation. This code is often returned as the
result of an interrupt time-out; that is, a
reasonable amount of time has passed, and the
physical device unit has not responded.

End-of-fi1e encountered

An end-of-file mark, record, or control character
was recognized on the input device.

Fatal hardware error

Controller is physically unable to r~ach the
location where input/output is to be performed on
the device. The operation cannot be completed.

Illegal ·function

A function code that was invalid for the specified
physical device unit was specified in an I/O
request. This code is returned if the task
attempts to execute an invalid function or if, for
example, a read function is requested on an
output-only device, such ~s the line printer.

(continued on next page)

1-41

Code

IE.NLN

IE.NOD

IE.OFL

IE.OVR

IE.PRI

IE.SPC

RSX-llM/M-PLUS INPUT/OUTPUT

Table 1-3 (Cont.)
I/O Status Conditions

Reason

File not open

The task tried to close a file on the physical
device unit associated with the specified LUN, but
no file was currently open on that LUN.

Insufficient buffer space

Dynamic storage space has been depleted, and not
enough buffer space was available to allocate a
secondary control block. For example, if a task
attempts to open a file, buffer space for the
window and file control block must be supplied by
the Executive. This code is returned when there is.
not enough space for such an operation.

Device off line

The physical device
specified in the
When the system was
indicated that this
the configuration.

unit associated with the LUN
QIO$ directive was not on line.
bootstrapped, . a device check
physical device unit was not in

Illegal read overlay request

A read overlay was requested and the. physical
device unit specified in the QIO$ directive was not
the physical device unit from which the task was
installed. The read overlay function can be
executed only on the physical device unit from
which the task image contaiIling the overlays was
installed.

Privilege violation

The task that issued a request was not privileged
to execute that request. For example, for the
UDCll and LPSll devices, a checkpointable task
attempted to connect to interrupts or to execute a
synchronous sampling function.

Illegal address space The following conditions can
cause this error:

• The buffer that your task requested for a read
or write operation was partially or totally
outside the address space of your task.

• You specified a byte count of O.

• You specified TF.XCC and AST2 in the same QI0$
request.

(continued on next page)

1-42

(

(

(

(Code

IE.VER

IE.WCK

IE.WLK

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-3 (Cont.)
I/O Status Conditions

Reason

Unrecoverable error

After the system attempted its standard number of
retries after an error occurred, the operation
still could not be completed. This code is
returned in the case of parity, CRC, or similar
errors.

Write check error

An error was detected during the check (read)
following a write operation.

write-locked device

The task attempted to write on a write-locked
physical device unit.

1.10 POWER-FAIL RECOVERY PROCEDURES FOR DISKS AND DECTAPE

Power-fail recovery recommendations for various devices are included
in the following chapters. For disks .and DECtape, power recovery ASTs
should be used. Before returning for normal I/O operations, the AST
service routine should provide a sufficient time delay, for the disk
to attain normal operating speed before actually attempting read and
write operations.

If OIO$s are being used for disk or DECtape I/O operations during
power-fail recovery, an IE.DNR error status may be returned if the
device is not up to opera·ting speed when the request is issued. When
this error isre·turned, your task should wait for the device to attain
operating speed and attempt the I/O operation again prior to reporting
an error. For example, an RKOS disk may require approximately 1
minute to attain operating speed after a power failure.

1.11 RSX-11MDEVICES

Both RSX-llM and RSX-llM-PLUS support the devices listed in Table 1-4
e~cept as indicated. DEC supplies drivers for each of these devices.
Table 1-4 lists the physical name, the driver, and the device
descr iption.

Physical
Name

TT

TT

Table 1-4
Devices Supported by RSX-llM/M-PLUS

Driver

TTDRV

TTDRV

Description of Terminal

ASR/KSR-33 and ASR/KSR-3S Teletypewriters

All terminals supported by RSX-llM/M-PLUS,
including the LA-, LOP-, VTOS-, VTSO-,
VT61-, VT100-, VT200-, and RT02~series
terminals. See the Software Product
Description for your syste~.

(continued on next page)

1-43

Physical
Name

TT

TT

TT

TT

TT

TT

Physical
Name

DB

DF

DK

DL

DM

DP

DR

DR

DS

DU

DU

DU

DU

DU

DX

DY

EM

RSX-IIM/M-PLUS INPUT/OUTPUT

Table 1-4 (Cont.)
Devices Supported by RSX-lIM/M-PLUS

Driver

TTDRV

TTDRV

TTDRV

TTDRV

TTDRV

TTDRV

Driver

DBDRV

DFDRV

DKDRV

DLDRV

DMDRV

DPDRV

DRDRV

DRDRV

DSDRV

DUDRV

DUDRV

DUDRV

DUDRV

DUDRV

DXDRV

DYDRV

EMDRV

Description of Terminal
Line Interface

DHll and DHII-DMII-BB Asynchronous
Communication Line Interface Multiplexer

DHVll and DHUll Asynchronous Communication
Line Interface Multiplexer

DLlI-A, DLlI-B, DLII-C, DLII-D, DLlI-E and
DLII-W Asynchronous Communication Line
Interfaces

DLVIl-E, DLVII-F Asynchronous Communication
Line Interfaces

DZll and DZVll Asynchronous Communication
Line Interface Multiplexer

DZQll Q-Bus4-Line Terminal Multiplexer

Description of Disk Device

RP04, RP05, RP06 Pack Disk

RFll/RSll Fixed-Head Disk

RKll/RK05 or RK05F Cartridge Disk

RLV12/RL01/RL02Cartridge Disk

RK611/RK06 or RK07 Cartridge Disk

RPll/RP02 or RP03 Pack Disk

RM02, RM03, RM05 Pack Disk

RMBO, RP07 Fixed-Media Disk

RS03/RS04 Fixed-Head Disk

KDA50/UDA50/RABO/RABl Fixed-Media Disk

KDA50/UDA50/RA60 Pack Disk

RC25 Fixed-Media and Removable Cartridge
Disk Subsystem

RD51/RD52 Fixed-Media Disk

RX50 Flexible Disk

RXll/RXOl Flexible Disk

RX21l/RX02 Flexible Disk

ML-ll Fast Electronic Mass Storage Device

(continued on next page)

1-44

(

c

(

(

(

(

Physical
Name

DO

MS

MS

MS

MT

MM

MM

MU

MU

Physical
Name

CT

CT

Physical
Name

LP

LP

LP

LP

LP

RSX-IIM/M-PLUS INPUT/OUTPUT

Table 1-4 (Cont.)
Devices Supported by RSX-llM/M-PLUS

Driver

DDDRV

MSDRV

MSDRV

MSDRV

MTDRV

MMDRV

MMDRV

MUDRV

MUDRV

Driver

CTDRV

CTDRV

Driver

LPORV

LPDRV

LPDRV

LPDRV

LPDRV

Description of Tape Device

DLll/TU58 DECtape II

TU80 Magnetic Tape Subsystem

TSV05/TK25 Magnetic Tape .Subsystem

TSII Magnetic Tape Subsystem

TMII Magnetic Tape Controller with
TElO,TulO, or TS03 Drive (not supported in
Micro/RSX)

RHll/70 Controller with
and TE16, TU16, or
supported in Micro/RSX)

TM02/03 Formatter
TU45 Drive (not

RHll/70 Controller with TM03 Formatter and
TU77 Drive (not supported in Micro/RSX)

TK50 Cartridge Tape Drive

TU8l Tape Drive

Description of Cassette Device

TAll Tape Cassette

TU60 Tape Cassette

Description of Line Printer

LPII Controller with LP14, LPOl, LP02,
LP04, LP05, LP06, LP07, LP26, LP27 Line
Printers

LPVll/LP25/LP26 Line Printers, LNOl/LN03
Laser Printer

LSII Controller and Line Printer
supported in Micro/RSX)

(not

LVII Controller with LVOI Line Printer (not
supported in Micro/RSX-)

LA180 Controller and Line Printer (not
supported in Micro/RSX)

(continued on next page)

1-45

Physical
Name

CR

Physi,cal
Name

XB

XB

XL

XL

XC

XE

XP

XQ

XU

XW

Physical
Name

AF

AD

Physical
Name

UD

RSX-llM/M-PLUS INPUT/OUTPUT

Table 1-4 (Cont.)
Devices Supported by RSX-llM/M-PLUS

Driver

CRDRV

Driver

XBDRV

XBDRV

XLDRV

XLDRV

XMDRV

XEDRV

XPDRV

XQDRV

XUDRV

XWDRV

Driver

AFDRV

ADDRV

Driver

UDDRV

Description of Card Reader

CRll/CMll Card Reader (not supported in
Micro/RSX)

Description of Communication Line
Interface

DAll-B Asynchronous Communication
Interface (RSX-llM support only)

Line

DAll-B Parallel
support only)

Unibus· Link (RSX-llM

DLll-E Asynchronous Communication Line
Interface (not supported in Micro/RSX)

DLVll-E Asynchronous Communication Line
Interface (not supported in Micro/RSX)

DMCII Synchronous Communication Line
Interface (not supported in Micro/RSX)

RSX QIO DEUNA Driver

DPII Synchronous Communication Line
Interface (RSX-llM suppo~t only)

DQll Synchronous Communication Line
Interface (RSX-llM support only)

DUll Synchronous Communication Line
Interface (RSX-llM support only)

DUPII Synchronous Communication Line
Interface (no supported in Micro/RSX)

Description of Analog-to-Digital
Converter

AFCII Analog-to-Digital Converter (RSX-llM
support only)

ADOl-D Analog-to-Digital Converter (RSX-llM
support only)

Description of Digital Controller

UDCll Universal Digital Controller (RSX-llM
support only)

(continued on next page)

1-46

(

(

(

(

(

(

Physical
Name

AR

LS

LA

Physical
Name

PP

PR

Physical
Name

IC

is

Physical
Name

NL

Physical
Name

GR

GR

RSX-11H/H-PLUS INPUT/OUTPUT

Table 1-4 (Cont.)
Devices Supported by RSX-llM/M-PLUS

Driver

ARDRV

LSDRV

LADRV

Driver

PPDRV

PRDRV

Driver

ICDRV

ISDRV

Driver

NLDRV

Driver

GRDRV

GRDRV

Description of Laboratory
Peripheral System or Device

AR11 Laboratory Peripheral System (RSX-llM
support only)

LPSII Laboratory Peripheral System (RSX-llM
support only)

LPAll-K Laboratory Peripheral Accelerator
(not supported on Micro/RSX)

Description of Paper Tape Device

PCII Paper Tape Reader/Punch (not supported
on Micro/RSX)

PRII Paper Tape Reader (not supported on~
Micro/RSX)

Description of Industrial Control
Subsystem

ICS/ICR Local and Remote
(RSX-llM support only)

Subsystems

DSS/DRS Digital Input and Output Subsystems
(RSX-llM support only)

Description of Null Device

Null ~evice driver; a software construct to
eliminate unwanted output

Description of Graphic Subsystem

VTll Graphics Display
support only)

VS60 Graphics Display
support only)

System (RSX-llM

System (RSX-llM

(continued on next page)

1-47

Physical
Name

Physical
Name

LR/LT

LR/LT

Physical
Name

QA-QZ

JA-JZ

RSX-llM/M-PLUS INPUT/OUTPUT

Table 1-4 (Cont.)
Devices Supported by RSX-llM/M-PLUS

Driver

Driver

LRDRV

LRDRV

Driver

Any

Any

Description of K~Series
Laboratory Peripheral (Not Micro/RSX)

AA1I-K Digital-to-Analog Converter and
Display

ADI1-K Analog-to-Digital Converter

AMII-K Multiple-Gain Multiplexer

DRII-K Digital I/O In~erface

KW1I-K Programmable Real-Time Clock

Description of Communications Device

PCLll Parallel Communications Link
(RSX-llM-PLUS support only)

PCLll-A/PCLll-B Receiver Port (RSX-IIM-PLUS
support only)

Description of Device

A physical name reserved for customer use

A physicai name reserved for customer use

1-48

c

(

(

(

(
'.

(

CHAPTER 2

FULL-DUPLEX TERMINAL DRIVER

2.1 INTRODUCTION

This chapter describes the use of the full-duplex terminal driv.er
(TTDRV.TSK) supplied with the RSX-11M-PLUS system or available. as a
SYSGEN option for RSX-11M systems. This chapter contains d~scri~tidns
of all the QIO$·functions that you can use to read from or write to a
full-duplex terminal. Additionally, it contains a description of
terminal subfunctions that are specific to terminal drivers and that
modify the action of the QIO$ functions. You can combine th.e
subfunctions in a Logical OR with the QIO$ function. Specific
programming circumstances are combined with the description of the
QIO$ function where they apply. A compact, half-dup~ex terminal
driver is also available on RSX-1IM systems only. It is described in
Chapter 3.

Note that either terminal driver can be selected during RSX-11M system
generation. RSX-11M-PLUS systems use the full-duplex terminal driver
only.

Throughout the remainder of this chapter, references made to· MCR can
generally be a'pplied to other command line interpreters (for e:!Camp1e,
DCL). In addition, the prompt displayed on a terminal in respcmse to
invoking a command line interpreter is appropriate for' the specific
command line interpreter in use. For example, when MCR is invoked,
the MeR prompt is displayed as follows:

MCR>

2.1.1 Full-Duplex Terminal Driver

The full-duplex terminal driver described in this chapter works with a
wide variety of terminals. It contains the following features:

• Full-duplex operation

• Type-ahead buffering

• Eight:-bit characters

• Detection of hard receive errors

• Increased byte transfer length (8128 bytes)

• Additional terminal char.acter istics

• Additional terminal types

• Optional time-out on solicited input

2-1

FULL-DUPLEX TERMINAL DRIVER

• Device-independent cursor control

• Redisplay of prompt buffer when CTRL/R or CTRL/U is pressed

• Automatic XOFF character generation when a read is completed
while in half-duplex mode, if requested

• Autobaud speed detection

• Added hardware support

2.1.2 Terminals Supported by the Full-Duplex Terminal Driver

The full-duplex terminal driver supports a variety of terminal
devices, as listed in Table 2-1. Table 2-2 describes standard
terminal interfaces. Subsequent sections describe each device in
greater deta il .

Model

ASR-33/35
DTCOI
KSR-33/35
LA12
LAlOO
LA30-P
LA30-S
LA34
LA36
LA38
LA120
LA180S
LQP02
LA50
LN03
RT02
RT02-C
VT05B
VT50
VT50H
VT52
VT55
VT61
VT100
VTlOl
VTl02
VTl05
VT125

Table 2-1
Supported Terminal Devices

Columns Lines/ Character
Screen 1 Set

72

72
132
132

80
80

132
132
132
132
132

132/158
80/96/132

64 1
64 1
72 20
80 12
80 12
80 24
80 24
80 24
80-132 24
80-132 24
80-132 24
80-132 24
80-132 24

64

64
96
96
64
64
96

64-96
96
96
96

4
64
64
64
64
64
96
96
96
96
96
96
96
96

Baud
Range

Uppercase Lowercase
Send Receive

llO
9600

llO
50-9600 yes

llO-9600 yes
300

llO-300
110-300 yes
llO-300 yes
llO-300· yes

50-9600 yes
300-9600
110-9600
llO-4800
1200-19200
llO-1200
llO-1200
110'-2400 yes
llO-9600
110-9600
llO-9600 yes
110-9600 yes
llO-9600 yes

50-9600 yes
50-19200 yes

50-9600 yes
50-19200 yes

50-9600 yes

yes
yes

yes
yes 2
yes
yes
yes

yes

yes
yes
yes
yes
yes
yes
yes
yes

1. Applies only to video terminals.

2. Only for 96-character terminal. The terminal driver supports the
terminal interfaces summarized in Table 2-2. These interfaces are
described in greater detail in Section 2.17. programming is
identical for all interfaces.

4. Includes the DEC Multinational Character Set.

(continued on next page)

2-2

(

(

(

(

(

FULL-DUPLEX TERMINAL DRIVER

Table 2-1 (Cont.)
Supported Terminal Devices

Model Columns Lines/ Character Baud Uppercase Lowercase
Screen 1 Set Range Send Receive

VT131 80-132 24 96 50-19200 yes yes
VT132 80-132 24 96 3 50-19200 yes yes
VT220 80-132 24 94 3 50-19200 yes yes
VT240 80-132 24 94 3 50-19200 yes yes
VT241 80-132 24 94 50-19200 yes yes

1. Applies only to video terminals.

3. Five character sets of 94 characters each. Includes the DEC
Multinational Character Set.

Model

DHll

DHUll

DHVll

DHll-DMll-BB

DJll

DLll-A/B/C/D/E/W

DLVll-E/F

DZll

DZQll

Table 2-2
Standard Terminal Interfaces

Type

l6-line multiplexer 1

Unibus l6-line asynchronous multiplexer

8-line multiplexer 2

l6-line multiplexer with modem control

l6-line multiplexer

Single-line interfaces

Single-line interfaces 4

8-line multiplexer with modem control 4

Q-bus 4-line terminal multiplexer

1. Direct memory access (DMA) is supported in the full-duplex
terminal driver only.

2. Full duplex terminal driver only.

3. Full-duplex control only. For example, in the United States,
a Bell 103A-type modem provides full-duplex control only.

4. DLVII support with modem control is provided in the
full-duplex terminal driver only.

3

Terminal input lines can have a maximum length of 8128 (8K minus 64)
bytes. Extra characters of an input line that exceed the maximum line
length generally become an unsolicited input line if the terminal is
not attached with the type-ahead buffering feature enabled~ The
full-duplex terminal driver discards all unsolicited input from an
unattached, slave terminal.

2.1.2.1 ASR-33/35 Teletypewriters - The ASR-33
Teletypewriters are asynchronous, hardcopy terminals.
reader or punch capability is supported.

2-3

and ASR-35
No paper-tape

FULL-OUPLEX TERMINAL ORIVER

2.1.2.2 KSR-33/35 Teletypewriters - The KSR-33
Teletypewriters are asynchronous, hardcopy terminals.

and KSR-35

2.1.2.3 LA12 Portable Terminal - The LA12 is a personal, portable,
hardcopy terminal.

2.1.2.4 LAlOO OECprinter - The LAlOO is a desk-top, matrix, hardcopy
terminal.

2.1.2.5 LA30 OECwriters - The LA30 OECwriter is an asynchronous,
hardcopy terminal that is capctble of producing an original and one
copy. The LA30-P is connected by a parallel line and the LA30-S is
connected by a serial line.

2.1.2.6 LA36 OECwriter - The LA36 OECwriter is an asynchronous
terminal that produces hard copy and operates in serial mode. It has
an impact printer capable of generating multipart and special
preprinted forms. The LA36 can receive and transmit both uppercase
and lowercase characters.

2.1.2.7 LA34/38 OECwriters - The LA34 OECwriter
terminal that produces hard copy and uses
mechanism.

is an asynchronous
a platen paper-feed

The LA38 OECwriter includes a detachable tractor-feed mechanism for
use with continuous forms.

2.1.2.8 LA120 o ECwri ter - The LA120 OECwr iter is a hcudcopy,
uppercase and lowercase terminal. It can print multipart forms .at
speeds up to 180 characters per second. You can select serial
communications speed from 14 baud rates ranging from 50 to 9600 bps;
the terminal driver supports split transmit and receive baud rates.
Hardware features allow bidirectional printing for maximum printing
speed, and also allow you to select features, including- font size,
line spacing, tabs, margins, and forms control. Also, you can set up
these functions if you issue appropriate ANSI~standard escape
sequences.

2.1. 2.9 LAl80S DECprinter - The LA180S oECprinter is a serial version
of the LA180. It is a print-only device (it has no keyboard) that can
gener<;lte multipart forms. The LA180S can print uppercase and
lowercase letters.

2.1.2.10 LQP02 Letter-Quality Printer - The LQP02 Letter-quality
Printer is a formed-character, desktop printer incorporating
daisywheel technology. This letter-quality printer offers over 100
character sets and handles regular office stationery up to a maximum
of 15 inches (with a print capacity 13.5 inches). You can select
lines per inch and characters per inch: 10 or 12 characters per inch
and 2, 3, 4, 6, and 8 lines per inch. At 10 characters per inch you

2-4

(

(

(

(

(

(

FULL-DUPLEX TERMINAL DRIVER

get 132 columns, and at 12 characters per inch you get 158 columns.
The buffer capacity is 256(decimal) characters.

2.1.2.11 LA50 Personal Printer - The LA50 Personal Printer is a
desktop dot-matrix impact printer. It has two print modes: text mode
and enhanced print mode. In text mode, it prints 100 characters per
second. In enhanced print quality mode, it prints 50 characters per
second and creates a crisper, more uniform character than an ordinary
dot-matrix printer. You can choose 10, 12, or 16 characters per inch
that print up to 80, .96, or 132 columns respectively. There can be 6,
8, or 12 lines per inch. The buffer capacity is 255(decimal)
characters.

2.1.2.12 RT02 Alphanumeric Display Terminal and RT02-C Badge
Reader/Alphanumeric Display Terminal - The RT02 is an

alphanumeric display terminal for applications in which source data is
primarily numeric. A shift key permits the entry of 30 discrete
characters, including uppercase alphabetic characters. The RT02 can,
however, receive and display 64 characters.

The RT02-C model also contains a badge reader. This option provides a
reliable method of identifying and controlling access to the PDP-II
minicomputer or to a secure facility. Furthermore, data in a format
corresponding to that of a badge (22-column fixed data) can be entered
quickly.

2.1.2.13 VTOSB Alphanumeric Display Terminal - The VT05B is an
alphanumeric display terminal that consists of a CRT display and a
self-contained keyboard. The VT05Boffers direct cursor addressing.

2.1.2.14 VT50 Alphanumeric Display
alphanumeric display terminal that
keyboard. It is similar to the VT05B
direct cursor addressing.

Terminal - The VT50 is an
consists of ~ CRT display and a

in operation, but does not offer

2.1.2.15 VT50H Alphanumeric Display Terminal - The VT50H
alphanumeric display terminal with CRT display, keyboard, and
pad. It offers direct cursor addressing, but its direct
addressing is not compatible with that of the VT05B.

is an
numeric
cursor

2.1.2.16 VTS2 Alphanumeric Display Terminal - The VT52 is an
uppercase and lowercase alphanumeric terminal with CRT display. It
also has a numeric pad and direct cursor addressing. The VT52's
direct cursor addressing is compatible with that of the VT50H, but not
with that of the VT05B. The VT52 can be configured with a built-in
thermal printer.

2.1. 2.17 VTS5 Graphics Display Terminal - The VT55 is similar to the
VT52 in its operation as an alphanumeric terminal. The VT55 offers
graphics display features that are accessible by a task.

2-5

FULL-DUPLEX TERMINAL DRIVER

2.1.2.18 VT6l Alphanumeric Display Terminal - The VT6l
uppercase and lowercase alphanumeric terminal with an
microprocessor. It offers two l28-member character sets and
built-in functions for editing and forms preparation as
block-transfer mode.

is an
integral
numerous

well as a

2.1. 2.19 VT100 DECscope -The VT100 DECscope is an uppercase and
lowercase alphanumeric keyboard and video display terminal. It can
display 24 lines of 80 to 132 characters per line. You can select
serial communications speed from baud rates ranging from 50 to 9600
bps. Hardware features allow you to select display characteristics
and functions including smooth scroll, reverse video, and so forth.
The system also sets up these functions if you issue appropriate
ANSI-standard escape sequences.

2.1.2.20 VTlOl DEC scope - The VTlOl DECscope is functionally
identical to the VT100. However, it does not support the advanced
video features.

2.1.2.21 VTl02 DECscope - The VTl02 DECscope is functionally
identical to the VT100. However, it does not have any expansion
capability and does not support the advanced video features. It has
enhanced modem control, and it includes a port for a printer.

2.1.2.22 VTl05 DECscope - The VTl05 DECscope is an alphanumeric and
graphic display video terminal. The VTl05 can display two graphs, two
shaded graphs, or two strip charts. These graphs may have
alphanumeric labels.

2.1. 2. 23 VT13l DECscope - The VT131 is the same as the VTl02 with the
addition ~f built-in editing features.

2.1.2.24 VT220 Terminal - The VT220 Terminal is a general-purpose
video display terminal displaying 24 rows of 80 or 132 ~olumns. It
has ANSI compatible control functions; user-definable function keys;
video reverse, bold, underline, blink, double height/double width line
attributes; and can run in VT100, VT200 7-bit, VT200 8-bit, and VT52
mode. Setup state allows you to configure the terminal and examine
its status.

2.1.2.25 VT240 Terminal- The VT240 Terminal is a general-purpose
video display terminal displaying 24 rows of 80 or 132 columns. It
has: ANSI compatible control functions; user definable function keys;
vi'deo reverse, bold, underline, blink, double height/double width line
attribute; and can run in VT100, VT200 7-bit, VT200 8-bit, VT52 mode,
4014 mode (Tektronic (c) 4010/4014), and ReGIS graphics mode. Set-up
state allows you to configure the terminal and examine its status.
The VT240 has graphics capability to draw points, vectors, circles,
arcs, and curves.

2-6

c

(

(

(

(

FULL-DUPLEX TERMINAL DRIVER

2.1.2.26 VT241 Terminal - The VT241 Terminal is functionally
identical to the VT240 terminal except that the VT241 has a color
monitor.

2.2 GET LUN INFORMATION MACRO

The Get LUN information directive (GLUN$) instructs the system to fill
a 6-word buffer with information about the physical device unit to
which the LUN is assigned. For more information about this directive,
refer to Get LUN in the RSX-llM/M-PLUS and Micro/RSX Executive
Reference Manual. The following section describes the information
that Get LUN makes available for terminals in word 2 of the buffer.

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the terminal
information shown in Table 2-3. A setting of 1 indicates that the
described,characteristic is true for terminals.

Table 2-3
Word 2 of the Get LUN Macro Buffer

Bit Setting

0 1

1 1

2 1

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 0

15 0

Words 3 and 4 of the buffer
default buffer size (the
screen).

Meaning

Record-oriented device

. Carriage-control device

Terminal device

File-structured device

Single-directory device

Sequential device

Mass storage device

User-mode diagnostics supported

Device supports 22-bitdirect addressing

Unit software write-locked

Input spooled device

Output spooled device

Pseudo device

Device is mountable as a communications
channel

Device is mountable as a FILES-ll volume

Device is mountable

are undefined. Word 5 indicates the
width of the terminal carriage or display

2-7

FULL-DUPLEX TERMINAL DRIVER

2.3 QIO$ MACRO

Standard QIO$ functions may be used with any device, whereas
device-specific QIO$ functions apply only to specific devices or uses.

2.3.1 Format of QIO$C for Standard Functions

The QIO$ macros for standard functions take the following forms:

QIO$C

QIO$C

QIO$C

{
!IO •. ATT}
!IO.DET
!IO.KIL

, ... ,

{ 1I0. RLB} , ••• , < stadd, size, , [tmo] >
1I0.RVB

{ !~O.WLB} , ••• ,<stadd,size,vfc>
! IO.WVB

2.3.2 Format of QIO$C for Device-Specific Functions

The QIO$ macro for device-specific functions take the following forms:

QIO$C IO.ATA, ••• ,<ast, [parameter2], [ast2] >

QIO$C IO~CCO, ••• ,<stadd,size,vfc>

QIO$C IO.EIO, ••• ,<stadd,size>

QIO$C IO~HNG, ••• ,

QIO$C { IIO.RAL} , ••• ,<stadd,size,[tmo]>
!IO.RNE

QIO$C IO.RPR, ••• ,<stadd,size,[tmo] ,pradd,prsize,vfc>

QIO$C IO.RST, ••• ,<stadd,size,[tmo]>

QIO$C IO.RTT, ••• ,<stadd,size,[tmo] ,table>

QIO$C

QIO$C

{ !IO.WAL} , ••• ,<stadd,size;vfc>
! IO.WBT

{ ISF.GMC} , ••• ,<stadd,size>
!IO.GTS

QIO$C SF.SMC, ••• ,<stadd,size>

Table 2-4 lists the standard and device-specific functions of the QIO
macro that are valid for terminals. The 'standard functions are
described in Chapter 1. Some device-specific functions are options
that may be selected during system generation. Two device-specific
functions, SF.SMC and SF.GMC, have nonstandard function names.

2-8

(

(

(

(

(

FULL-DUPLEX TERMINAL DRIVER

Table 2-4
Standard and Device-Specific QIO Functions for Terminals

Format

STANDARD FUNCTIONS:

READ FUNCTIONS

QIO$C IO.RLB, ••• ,<stadd,size, [tmo] >

QIO$C IO.RVB, ••• ,<stadd,size,[tmo]>

WRITE FUNCTIONS

QIO$C IO.WLB, ••• ,<stadd,size,vfc>

QIO$C IO.WVB, ••• ,<stadd,size,vfc>

ATTACH, DETACH, AND CANCEL FUNCTIONS

QIO$C IO.ATT, •••

QIO$C IO.DET, •••

QIO$C IO.KIL, •••

DEVICE-SPECIFIC FUNCTIONS:

READ FUNCTIONS

QIO$C IO.RAL, ••• ,<stadd,size, [tmo]>

QIO$C IO.RNE, ••• ,<stadd,size,[tmo]>

QIO$C IO.RPR, ••• ,<stadd,size,[tmo],

pradd,prsize,vfc> 1

QIO$C IO.RST, ••• ,<stadd,size,[tmo]>

QIO$C IO.RTT, ••• ,<stadd,size,[tmo],
table>

1. System generation options in RSX-IIM.

2-9

Function

Read logical block (read
typed input into
buffer) •

Read virtual block (read
typed input into
buffer) •

Write logical block
(print buffer contents).

Write virtual block
(print buffer contents).

Attach device.

Detach device.

Cancel I/Oreque.ts.
(continued on next
page) Table 2-4
(Cont.) Standard QIO.
Functions for·
Terminals

Read logical block;
pass all charcters.

Read logical block; do
not echo.

Read logical block
after prompt.

Read logical block
ended by special
terminators.

Read logical block
ended by specified
special terminators.

(continued on next page)

FULL-DUPLEX TERMINAL QRIVER

Table 2-4 (Cont.)
Standard and Device-Specific QIO Functions for Terminals

Format

WRITE FUNCTIONS

QIO$C IO.WAL, ••• ,<stadd,size,vfc>

QIO$~ IO.WBT, ••• ,<stadd,size,vfc>

MISCELLANEOUS FUNCTIONS

QIO$C IO.ATA, ••• ,<ast,[parameter2]
,[ast2]>

QIO$C IO.CCO, ••• ,<stadd,size,vfc>

1

1

QIO$C 10 EIO {lTF.RLB} , ••• ,<stadd,size> 1
• !TF.WLB

QIO$C IO.GTS, ••• ,<stadd,size>

QIO$C IO.HNG, •••

QIO$CSF.GMC, ••• ,<stadd,size>

QIO$C SF.SMC, ••• ,<stadd,size>

1

1

1

1. System generation options in RSX-IIM.

2.3.3 Parameters

Function

Write logical block,;
pass all characters.

Write logical block;
break through any I/O
conditions at
terminal.

Attach device, specify
unsolicited input
character AST.

Cancel CTRL/O (if -in
effect), then write
logical block.

Extended I/O.

Get ,terminal support.

Hang up remote line.

Get multiple
characteristics.

Set multiple
characteristics.

The parameters for the various QIO$ macros have the following
meanings:

Parameter Meaning

ast The entry point for an unsolicited input-character AST.

ast2 The entry point for a CTRL/C AST.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1.

2-10

(

(

(

(

(

(

Parameter

lun

FULL-DUPLEX TERMINAL DRIVER

Meaning

The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

parameter2 A number that you can specify in your task to identify this
terminal as the input source when an unsolicited character
AST routine is entered.

pradd The starting address of the byte buffer where the prompt is
stored.

pri Makes this QIO$ macro compatible with RSX-llD. Use a value
of 0 or a null for this parameter.

prsize

size

stadd

table

tmo

vfc

The size of th~ pradd prompt buffer in bytes. The specified
size must be 'greater than 0 and less than or equal to 8128
bytes. The buffer must be within the task's address space.

The size of the stadd data buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128
bytes. The buffer must be within the task's address space.
For IO.EIO, SF.GMC, IO.GTS, and SF.SMC functions, sizemu~t
be an even value.

The starting address of the data buffer. The address must
be word-aligned for IO~EIO, SF.GMC, IO.GTS, and SF.SMC;
otherwise, stadd may be on a byte boundary.

The address of the l6-word user-defined terminator table.

An optional time-out count specified in 10-second intervals.
(For IO.EIO, the interval is specified in seconds.) Time-out
is the maximum time allowed between two input characters
before the read is aborted. The maximum time-out value is
255 (decimal) intervals.

If 0 is specified, the read times out immediately after
reading any data that may be in the type-ahead buffer. In
other words, if you enter a 0, no time is allowed for you to
enter characters, and all characters are read from the
type-ahead buffer.

If you need more than 255 (decimal) intervals
255 (decimal) seconds for IO.EIO), issue an asynchronous
request followed by a Mark Time directive (MRKT$) for
required interval. Specify different event flags in the
directives and, after issuing them, wait for the logical
of the two event flags.

The vfc parameter normally specifies cursor position.

(or
QIO$

the
two

OR

If the parameter defines cursor position, the high byte must
be a nonzero number. The low byte is interpreted as column
number (x-coordinate), and the high byte is interpreted as
line number (y-coordinate). Horne position, the upper left
corner of the display, is defined as (1,1) • The driver
outputs cursor-positioning commands appropriate for the
terminal in use that move the cursor to the specified
position. If the most significant bit of the line number is
set, the driver clears the display before positioning the
cursor.

2-11

Parameter

vfc
(Cont.)

FULL-DUPLEX TERMINAL DRIVER

Meaning

However, the param~ter is interpreted as a vertical. forms
control (vfc) parameter if its high byte is O. See Section
2.8 for more inform~tion about the chara6ters your task can
use for vertical format control on the terminal. Anyone of
these characters can be specified as the value of the vfc
parameter.

Terminal-independent cursor control capability is provided
at system generation time. The termina.l driver responds to
task I/O requests for cursor positioning without the task
tequiring information about the type o£ terminal in use.

2.3.4 Subfunction Bits

The terminal-specific functions described in this section are selected
by using subfunction bits. A subfunction bit further modifies the
action of an I/O function. A subfunction bit is specified by the name
TF.xxx, and an I/O function is. specified by the name 10.xxx, where xxx
in each case is an acronym that represents the specific kind of
function requested.

As an exa~ple, a QIO$ function to a terminal to request a read with no
echo (IO.RNE) can be modified to read all characters. The "read all
characters" subfunction bit is TF.RAL. To modi£y the function, you
perform a logical OR of the subfunctionbit with the QIO$function in
the QIO$ statement. To create the logical OR of the bit and the
function, in this example, the QIO$ statement would look like this:

QIO$ IO.RNE!TF.RAL, ••• , •••

See Section 2.4.2 for a listing of Q16$ functions and relative
subfunction bits that can be issued.

Each subfunction bit is listed with its symbolic name and meaning as
follows:

Subfunction Meaning

TF.AST Unsolicited-Input-Character AST - For 10.ATT or
10.ATTITF.ESQ, ast in the QIO$ macro specifies the
address of an AST service routine to be entered when an
unsolicited input character is entered. Control passes
to ast whenever an unsolicited character . (other than
CTRL!Q, CTRL/S, CTRL/X, or CT~L/O) is entered at the
terminal.

TF.BIN Binary Prompt (Send Prompt As Pass All) - The prompt is
sent to the terminal without interpretation by the
driver. This is similar, for the prompt, to a
write-pass-all operation.

TF.CCO

TF.ESQ

Cancel CTRL/O - The driver writes a logical block of
data to the terminal regardless of a CTRt/O condition
that may be in effect. If CTRL/O is in effect, it is
canceled before the write occurs.

Recognize Escape Sequences - Escape sequences from the
terminal are returned to the task. Otherwise, ESC is a
line terminator. The subfunction TF.ESQ is for use
with 10.ATA or 10.ATT!TF.AST.

2-12

(

(

(

(

(

(

Subfunction

TF.NOT

TF.RAL

FULL-DUPLEX TERMINAL DRIVER

Meaning

Notification Of Unsolicited Input - Unsolicited input
causes an A~T and entry into the AST service routine in
the task. - When the full-duplex terminal driver
receives unsolicited terminal input (except CTRL/C) and
you used the TF.NOT subfunction with IO.ATA, the
resulting AST serves only as notific~tion of
unsolicited terminal input~ the terminal driver does
not pass the character to the task. Upon entry to the
AST service routine, the high byte of the first word on
the stack identifies the terminal causing the AST
(parameter2 in the IO.ATA function).

Using the TF.NOT subfunction allows a task to monitor
more than one terminal for unsolicited input without
continuously reading each terminal for possible
unsolicited input. Note that the TF.NOT subfunction
cannot be used with the CTRL/C AST (ast2 in IO.ATA)~ an
unsolicited CTRL/C character flushes the type-ahead
buffer.

Read All Characters (Pass All) - This subfunction
allows the passage of all characters to the requesting
task. The driver does not intercept control
characters. The characteristic TC.8BC, when set,
allows the driver to pass 8 bits. For example, CTRL/C,
CTRL/Q, CTRL/S, CTRL/O, andCTRL/Z are passed to the
task and are not interpreted by the driver.

TF.RCU Restore Cursor Position - When defining cursor position
in .a function, you can use the TF.RCU subfunction to
save the current cursor position. TF.RCU causes the
driver first to save the current cursor position~ then
to position the cursor and output the specified buffer,
and, finally, to restore the cursor to the original
(saved) position once' the output transfer has been

TF.RDI

TF.RES

TF.RLB

TF.RLU

TF.RNE

'completed.

Read With Default Input - The
specified in the extended I/O
ari. input line at the start of
Yo'll may change this line
system. This subfunction is
I/O function (IO.EIO) only.

default input that you
item list is displayed as
the read on the terminal.
or use it as input to the

for use with the extended

Read With Escape Sequence Processing Enabled - This
subfunction enables escape sequence recognition for the
read operation in extended I/O~ it is effective for
only one read.

Read Logical Block - This subfunction causes the driver
to read a logical block from the specified terminal~ it
is for use with the extended I/O (IO.EIO) function
only.

Read With Lowercase to Uppercase Conversion - The task
that uses this subfunction gets input in the buffer in
upper case~ it is for use with the extended I/O
(IO.EIO) function only.

Read with No Echo - This subfunction reads terminal
input characters without echoing the characters back to
the terminal for immediate display. You can use this
feature when typing sensitive information. CTRL/R is
ignored while Read With No Echo is in progress.

2-13

Subfunction

TF.RNF

TF.RPR

TF.RPT

TF.RST

FULL-DUPLEX TERMINAL DRIVER

Meaning

Read With No Filter - This subfunction reads and passes
through CTRL/U, CTRL/R, and DELETE characters as normal
characters. It is for use with the extended I/O
(IO.EIO) function only.

Read After Prompt - This subfunction is for use with
the extended I/O only. The TF.RPR subfunction causes
the driver to send a prompt to the terminal, and the
driver immediately follows the prompt with a read
function at the terminal. The TF.RPR acts as an IO.WLB
(to write a prompt to the terminal) followed by IO.RLB.
However, TF.RPR differs from the combination of those
two functions as follows:

• System overhead is lower with the TF.RPR because
only one QIO$ is processed.

• When using the TF.RPR function, there is no
"window" during which a response to the prompt may
be ignored. Such a window occurs if the task uses
IO.WLB followed by an IO.RLB, because no read may
be posted at the time the response is received.

• If the isstiing task is checkpointable, it can be
checkpointed during both the prompt and the read
requested by the TF.RPR.

• A CTRL/O that may be in effect prior to issuing the
TF.RPR is canceled before the prompt is written.

NOTE

If a TF.RPR function is in progress when the
driver receives a CTRL/R or CTRL/U, the prompt
is redisplayed.

Read In Pass-Through Mode - This subfunction passes all
characters exceptXON/XOFF. It allows the passage of
all characters to the requesting task. The
characteristic TC.8BC, when set, allows the driver to
pass eight bits instead of seven. The driver
intercepts the control characters CTRL/S and CTRL/Q.
Other control characters, for example, CTRL/C, CTRL/O,
and CTRL/Z, are passed to the task and are not
interpreted by the driver. This subfunction is for use
with the extended I/O (IO.EIO) function only.

Read With Special Terminators - Special characters in
the ranges 0-037 and 175-177 terminate the read. The
driver does not interpret the terminating character.
For example, a DELETE or RUBOUT (177) does not erase,
and a CTRL/C does not produce a CLI prompt, or, if
CTRL/C abort is enabled, abort tasks. CTRL/U and
CTRL/R do not perform their usual functions either.
All control characters are terminators.

TF.RST sets TF.TNE by default, which means that
terminators are not echoed on the terminal screen.

If uppercase to lowercase conversion is disabled,
character~ 175 and 176 do not act as terminators.
CTRL/O, CTRL/Q, and CTRL/S (017, 021, and 023,
respectively) are not special terminators. The driver
interprets them as output control characters in a
normal manner.

2-14
,)

(

(

(

Subfunction

('l'F.R'l'T

TF.TMO

(

TF.TNE

TF.WAL

FULL-DUPLEX TERMINAL DRIVER

Meaning

Read with Terminator Table - This subfunction is for
use with the IO.EIO extended I/O function only.
Control characters function normally with TF.RTT.
Terminators echo by default. The additional use of
subfunction TF.TNE prevents the echoing of terminators
on the terminal screen. If you want to use special
control characters as terminators, their normal
function should be disabled with the subfunction TF.RNF
or TF.RAL, or the characteristic TC.PTH. The
terminator table (a bit mask table) length can be from
I through 32(decimal) bytes, where bit 0 is a null
character, bit I is a CTRL/A, and so forth~ The
terminator table address is in the item list of the
IO.EIO function. To use ASCII characters 128(decimal)
through 255 (decimal) , the characteristic TC.8BC must be
set.

Read With Time-Out - This subfunction allows the use of
the tmo parameter to require input from the terminal
within a specified time.

Specify the time-out count in 10-second interval~.
(For IO.EIO, the interval is specified in seconds.)
Time-out is the maximum time allowed between two input
characters before the read is aborted. The maximum
time-out value is 255(decimal) intervals.

If 0 is specified, the .read times out immediately after
reading any data that may be in the type-ahead buffer.
In other words, if you enter a 0, no time is allowed
for you to enter characters, and all characters are
read from the type-ahead. buffer. .

If you need more than 255 (decimal) intervals (or
255 (decimal) seconds for IO.ElO), issue an asynchronous
QIO$ request followed by a Mark Time directive (MRKT$)
for the required interval. Specify different event
flags in the two directives and, after issuing them,
wait for the logical OR of the two. event flags.

Read Terminators With No Echo - This subfunction allows
reading terminator characters from the terminal without
their being echoed on the terminal screen as they are
entered. It is for use with the extended I/O function
(IO.EIO) only.

Write All Characters - During a write-pass-all
operation (as in IO.WAL or IO.WLBITF.WAL), the terminal
driver outputs characters without interpretation. It
does not intercept control characters, and it does not
keep track of cursor position. Long lines are not
wrapped around if input/output wraparound has been
selected.

2-15

Subfunction

TF.WBT

TF.WIR

TF.WLB

TF.XCC

TF.XOF

FULL-DUPLEX TERMINAL DRIVER

Meaning

Break-through Write - This subfunction instructs the
driver to write the buffer regardless of the I/O status
of the receiving terminal. If another write function
is currently in progress, it finishes the current
request and the break-through write is the next write
issued. Therefore, the TF.WBT subfunction cannot break
through another break-through write that is in
progress. The effect of this is that a CTRL/S can stop
break-through write functions. Thus, it may be
desirable for tasks to time out on break-through
operations.

If a read is currently posted, the break-through write
proceeds, and an automatic CTRL/R redisplays any input
that was received before the break-through write was
effected (if the terminal is not in the full-duplex
mode) •

CTRL/O, if in effect, is canceled.

An escape sequence that was interrupted is rubbed out.

Break-through write may be issued by a privileged task
only. (The privileged MCR command BRO (broadcast) uses
IO.WBT.)

Write With Input Redisplayed - This subfunction
performs a write to the terminal. If a read is in
progress at the terminal and you have entered
characters in the input line, the prompt and the
characters are redisplayed at the end of the write.

Write Logical Block To The Specified Device
Unit - Write logical block to the specified terminal.
This subfunction is used with the extended I/O (IO.EIO)
function only.

Exclude CTRL/C or Abort Active Tasks - For use with the
IO.ATA function. When TF.XCC is included in the IO.ATA
function, all characters (except CTRL/C) are handled in
the manner previously described. CTRL/C marks the
beginning of a command line interpreter (CLI) line that
is processed by a CLI task, or, if CTRL/C abort is
enabled, aborts tasks active at the terminal •. None of
the characters, including the CTRL/C, are sent to the
task issuing the function.

Note that you can use either ast2 or TF.XCC, but not
both in the same QIO request. If both are specified in
the request, an IE.SPC error is returned.

Send XOFF - The driver sends an XOFF to the terminal
after its read. The XOFF (CTRL/S) may have the effect
of inhibiting input from the terminal, if the terminal
recognizes XOFF for this purpose. TF.XOF is ignored
when full-duplex I/O is in use.

See Section 2.4.2 for a list of bits that can be combined in a logical
OR with QIO$ functions. If a task invokes a subfunction bit that is
not supported on the system, the subfunction bit is ignored, and the
QIO$ request is not rejected. For example, if break-through write
(TF.WBT) is not supported, an IO.WBT or IO.WLB!TF.WBT function is
interpreted as an IO.WLB function.

2-16

(

(

(

(

FULL-DUPLEX TERMINAL DRIVER

In the following example, the QIO$ request uses more than one
subfunction bit: a nonechoed read (TF.RNE), terminated bi a special
terminator character (TF.RST), and preceded by a prompt.

QIO$C IO.RPR!TF.RNE!TF.RST, ••• ,(stadd,size"pradd,prsize,vfc>

2.4 DEVICE-SPECIFIC QIO$ FUNCTIONS

The following sections describe the device-specific functions for the
full~duplex terminal driver. Some full-duplex terminal driver
functions and features are system generation options. These options
are briefly described in the following section.

2.4.1 System Generation Options in the Full-Duplex "l'erminal Driver

Some device-specific functions described in this section are system
generation options. These optional functions and other system
generation options for the full-duplex terminal driver are. listed as
follows:

• Unsolicited Input Timeout - Discards unsolicited input when
the time-out value that you specified during system
generation expires.

• Unsolicited Input Character AST Specifies an AST entry
point for unsolicited input-character handling. This support
is automatically included if your Executive supports ASTs.

• Break-Through write - Instructs the driver to write the
buffer regardless of the I/O status of the receIvIng
terminal. If another write function is currently in
progress, it finishes the current request and the
break-through write is the next write issued. Therefore, the
TF.WBT subfunction cannot break through another break-through
write that is in progress. The effect of this is that a
CTRL/S can stop break-through write functions. Thus, it may
be desirable for tasks to time out on break-through
operations.

If a read is
proceeds, and
any input that
was effected
mode) •

currently posted,
an automatic CTRL/R

was received before
(if the terminal

CTRL/O, if in effect, is canceled.

the break-through write
is performed to redisplay
the break-through write

is not in the full-duplex

An escape sequence that was interrupted is rubbed out.

Break-through write may be issued by a privileged task only.
(The privileged MCR command BRO (broadcast) uses IO.WBT.)

• C"l'RL/R Retype - Sends a carriage return and line feed to the
terminal followed by the input buffer contents whenever you
type a CTRL/R at the terminal.

• Escape Sequence Handling Recognizes and treats escape
sequences as line terminators for all solicited input except
read-pass-all requests. See the QIO$ functions IO.RAL,
IO.RST, and IO.RTT in the following sections, and see Section
2.7 for a description of escape sequences.

2-17

FULL-DUPLEX TERMINAL DRIVER

• Extended I/O - Allows the use of IO.EIO with TF.WLB or TF.RLB
to increase the number of allowable I/O subfunctions.

• Extended Network Command Terminal (NCT) Support - Allows the
use of a terminal as a network command terminal.

• Get Multiple Characteristics A task can determine the

•

characteristics of individual terminals. See Section 2.4.15
for information about the OIO$ SF.GMC function.

Set Multiple Characteristics - A task can set the physical
characteristics of a terminal. See Section 2.4.16 for
information about the OIO$ SF.SMC function.

• Get Terminal Support - A task can determine which terminal
driver options were selected during system generation. See
Section 2.4.6 for information about the OIO$ IO.GTS function.

• Read After Prompt - writes a prompt to the terminal and
immediately follows it with a read. Reduces overhead and
allows a task exclusive access to the terminal for the write
and following read. See the OIO$ IO.RPR function in Section
2.4.10.

• CRT Rubout - Allows the DELETE (or RUBOUT) key to erase a
character from the CRT screen by echoing the characters to be
deleted as backspace-space-backspace. See Section 2.6.2.

• Hard Receive Error Detection - Known as Unrecoverable Input
Error Notification in system generation. The driver flags
framing errors, character parity errors, and data overruns
and then passes the input characters to the requesting task
with notification of an input error (including type). See
Section 2.10.2.

• Terminal-Independent Cursor Control - The driver outputs a
cursor-positioning command before it outputs the contents of
the buffer if you specify the vfc parameter for an output
buffer.

• Modem Control - The default answer speed for modems is set
during system generation time but can be changed on line with

- the SET command.

2.4.2 Functions and Allowed Subfunctions

Any given function except SF.GMC, SF.SMC, IO.EIO, and IO.GTS can be
issued by the logical OR of a particular subfunction bit with another
OIO$ function. Table 2-5 lists the functions with their allowed
subfunctions. The subfunction bits are specified in the following
OIO$C function descriptions; subfunction bits are described in general
in Section 2.3.4.

2-18

c

(
"'--

(

(

(

FULL-DUPLEX TERMINAL DRIVER

Table 2-5
Summary of Subfunction Bits

Equivalent Allowed
Function Subfunctions Subfunctions

STANDARD FUNCTIONS

IO.ATT None TF.AST, TF.ESQ
IO.DET None None
IO.KIL None None
IO.RLB None TF.RAL, TF.RNE, TF.RST, TF.TMO, TF.XOF
IO.RVB 1 None TF.RAL, TF.RNE, TF.RST, TF.TMO, TF.XOF
IO.WLB None TF.CCO, TF.RCU, TF.WBT, TF.WAL
IO.WVB 1 None TF.CCO, TF.RCU, TF.WAL, TF.WBT

DEVICE-SPECIFIC FUNCTIONS

IO.ATA IO.ATT!TF.AST TF.ESQ, TF.NOT, TF.XCC
IO.CCO IO.WLB!TF.CCO TF.WAL, TF.WBT
IO.EIO 2 TF.RLB, TF.WLB
SF.GMC
IO.GTS
IO.RAL IO.RLB!TF.RAL TF.RNE, TF.RST, TF.TMO, TF.XOF
IO.RNE IO.RLB!TF.RNE TF.RAL, TF.RST, TF.TMO, TF.XOF
IO.RPR TF.BIN, TF.RAL, TF.RNE, TF.RST, TF.TMO,

TF.XOF
IO.RST IO.RLB!TF.RST TF.RAL, TF.RNE, TF.TMO, TF.XOF
IO.RTT TF.RAL, TF.RCU, TF.RNE, TF.TMO
SF.SMC
IO.WAL IO.WLB!TF.WAL TF.CCO, TF.RCU, TF.WBT
IO.WBT IO.WLBITF.WBT TF.CCO, TF.RCU, TF.WAL

1. Sufunctions are stripped off if they are specified with
IO.RVB or IO.WVB.

2. You must use TF.RLB or TF.WLB with IO.EIO, but not both.

In addition to the device-specific QIO functions, the following
sections also describe the use of subfunction bits.

2-19

FULL-DUPLEX TERMINAL DRIVER

2.4.3 OIC$C IC.ATA - Attach a Terminal with ASTs

The OIC$ IC.ATA macro attaches the terminal and identifies ast and
ast2 as entry points for unsolicited input-character ASTs. With ast
and ast2, IC.ATA specifies asynchronous system traps. (ASTS) to process
unsolici ted input characters entered at the terminal. A minimum of.
one AST parameter (ast or ast2) is required.

IC.ATA is equivalent to the I.o.ATT attach function executed in a
logical .oR with the subfunction bit TF.AST.

The use of IC.ATA is enhanced by the addition of the TF.NCT and TF.XCC
subfunction bits, described later in this section. You may include
any or all the subfunctions described in this section with the IC.ATA
function.

Unless the TF.XCC subfunction is specified, CTRL/C is trapped by the
task and does not reach the command line interpreter. Thus, any task
that uses IO.ATA without the TF.XCC subfunction should recognize some
input sequence as a request to terminate; otherwise, the command line
interpreter cannot be invoked to abort the task in case of difficulty.

The format of the OIC$C IC.ATA macro is as follows:

OIC$C IC.ATA
[

!TF.ESOJ ,lun, [ef~] ,<[ast] ,[parameter2]J[~st2]>
!TF.NCT
!TF.XCC

, prl
, isb

Parameters:

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/C request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the QIC$
operation. For more information refer to Chapter 1.-

pri Makes this OIC$ macro compatible with RSX-tlD. Use a value
of 0 or a null for this parameter.

isb The address of the I/C status block (I/C status double-word)
associated with the I/C request. For more information refer
to Chapter 1.

ast The entry point for an unsolicited input-character AST.

Either ast or ast2 is required.

Control passes to ast whenever an unsolicited character
(other than CTRL/O, CTRL/S, CTRL/X, or CTRL/C) is entered at
the terminal. If ast2 is not specified, an unsolicited
CTRL/C results in entering the AST specified in the ast
parameter.

If TF.N.oT is specified, after the AST has been effected, the
AST becomes "disarmed" until a read request is issued by the
task. If multiple characters are received before the read
request is issued, they are stored in the type-ahead buffer.
.once the read request is received, the contents of the
type-ahead buffer; including the character causing the AST,

2-20

(

(

(

(

(

Parameter

ast
(Cont.)

FULL-DUPLEX TERMINAL DRIVER

Meaning

is returned to the task~ the AST is then "armed" again for
new unsolicited input characters. If TF.NOT is not
specified,every usolicited character causes an AST.

Upon entry to the AST
and paramet.er2 are in
ast2. That word must
exiting the AST.

routines, the unsolicited character
the top word on the stack, as shown in
be removed from the stack before

parameter2 Parameter2' is located in the high byte of· SP+OO. It is a
value that you can specify to identify individual terminals
in a mu1titermina1 environment.

ast2 The entry point for an unsolicited CTRL/C AST.

Either ast or ast2 is required.

If you specify the ast2 parameter, an unsolicited CTRL/C
character results in entering the AST specified in that
parameter. If ast2 is not specified, an unsolicited CTRL/C
results in entering the AST specified in the ast parameter.

Upon entry to the AST routines, the unsolicited character
and parameter2 are in the top word on the stack. That word
must be removed from the stack before exiting the AST. The
stack contents is shown next:

SP+lO Event flag mask word

SP+06 PS of task prior to AST

SP+04 PC of task prior to AST

SP+02 Task's directive status word

SP+OO Unsolicited character in low byte

After the AST has been effected, the AST becomes "disarmed"
until a read request is issued by the task. If multiple
characters are received before the read request is issued,
they are stored in the type~ahead buffer. Once the read
request is received, the contents of the type-ahead buffer,
including the character causing the AST, is ~eturned to the
task~ the AST is then "armed" again for new unsolicited
input characters. Thus, using the TF.NOT subfunction allows
a task to monitor more than one terminal for unsolicited
input without the need to read each terminal continuously
for possible unsolicited input. Note that the TF.NOT
subfunction cannot be used with the CTRL/C AST~ an
unsolicited CTRL/C character flushes the type-ahead buffer.

Either ast2 or TF.XCC can be used, but not both in the same
QIO$ request. If you specify both in the request, 'an IE.SPC
error is returned. .

See the RSX-llM/M-PLUS and Micro/RSX Executive Reference
Manual for further detailSon ASTs.

2-21

FULL-DUPLEX TERMINAL DRIVER

Subfunction Bits:

The subfunctions have the following meanings:

Subfunction Meaning

TF.ESQ

TF.NOT

TF.XCC

Recognize Escape Sequences - This subfunction issued with
IO.ATT or IO.ATA attaches a terminal and notifies the driver
that it-recognizes escape sequences entered at that
terminal. - Escape sequences are recognized only for
solicited input (if a read was issued to the terminal).
(See Section 2.7 for a discussion of escape sequences.)

If escape sequences are recognized, the sequence terminates
input and a status code IS. ESC is returned. In addition, if
uppercase to lowercase conversion is not enabled, the
character ALTmode (codes 175 or 176, octal) is also treated
as an escape character.

If the terminal has not been declared capable of generating
escape sequences, IO.ATA!TF.ESQ has no effect other than
attaching the terminal. No escape sequences are returned to
the task because any ESC sent by the terminal acts as a line
terminator. The QIO$C SF.SMC function, the MCR SET jESCSEQ
command, or the DCL SET /[NO]ESCAPE command declare the
terminal capable of generating escape sequences (see Table
2-7 in Section 2.4.15, and see also Section 2.7).

Notification of Unsolicited Input - Unsolicited input causes
an AST and entry into the AST service routine in the task.
When the full-duplex terminal driver receives unsolicited
terminal input (except CTRL/C) and you used the TF.NOT
subfunction with IO.ATA, the resulting AST serves only as
notification of unsolicited terminal input; the terminal
driver does not pass the character to the task. Upon entry
to the AST ~ervice routine, the high byte of the first word
on the stack identifies the terminal causing the AST
(parameter2 in the IO.ATA function).

If TF.NOT is specified, after the AST has been
AST becomes "disarmed" until a read request is
task. If TF.NOT is not specified, every
character causes an AST.

affected, the
issued by the

unsolicited

Using the TF.NOT subfunction allows a task to monitor more
than ~ne terminal for unsolicited input without the need to
read each te~minal continuously for possible unsolicited
input. Note that the TF.NOT subfunction cannot be used with
the CTRL/C AST (ast2 in IO.ATA); an unsolicited CTRL/C
character flushes the type-ahead buffer.

Exclude CTRL/C from AST Notification'" TF.XCC is for use
with the IO.ATA function. When TF.XCC is included in the
IO.ATA function, all characters (except CTRL/C) are handled
in the manner previously described. CTRL/C marks the

- beginning of a command line interpreter (CLI) line that is
processed by a CLI task, or, if CTRL/C abort is enabled,
aborts tasks active at the terminal. None of the characters
of CLI input, including the CTRL/C, are sent to the task
issuing the function.

Note that you can uSe either ast2 or TF.XCC, but not both in
the same QIO request. If both are specified in the request,
an IE.SPC error is returned.

2-22

(

(

(

(

(

(

FULL-DUPLEX TERMINAL DRIVER

2.4. 40IO$C IO~lCCO - Cancel CTRL/O

The 010$ 10.CCO macro directs the driver to write a logical block of
data to the t~rmina1 regardless of a CTRL/O condition that may be in
effect. If CTRL/O is in effect, it is canceled before the write
occurs.

IO.CCO is equivalent to IO.WLB!TF.CCO.

The format of the 010$ 10.CCO macro is as follows:

QIO$C IO.CCO
[!TF.WALJ ,1un, [ef~] ,<stadd,size,vfc>

! TF • WBT , pr 1

, isb
, ast

Parameters:

The parameters have the following meanings:

Parameter Meaning

1un The logical unit number of the associated physical device
unit to be accessed by the I/O request. For mor:e
information refer to Chapter 1.

efn

pri

isb

ast

stadd

size

vfc

The number of the event flag to be associated with the 010$
operation. For more information refer to Chapter 1.

Makes this 010$ macro compatible with RSX-llD. Use a value
of 0 ora null for this parameter.

The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1. .

If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When the I/O request completes, control branches to
address specified by ast at the software priority,of
requesting task. Omit ast or specify 0 to omit
processing.

code
ast.
the
the
AST

The starting address of the data buffer. Stadd may be on a
byte boundary.

The size of the stadd data buffer in bytes. The specified
size must be greater than 0 and less .than or. equal to 8128
bytes. The buffer must be within the task's address space.

The vfcparameter normally specifies cursor position.

If the parameter defines cursor position, the high byte must
be a nonzero number. The low byte is interpreted as column
number (x-coordinate), and the high byte is interpreted as
line number (y-coordinate). Home position, the upper left
corner of the display, is defined as (1,1). The driver
outputs cursor-positioning commands appropriate for the
terminal in use that move the cursor to the specified
position. If the most significant bit of the line number is
set, the driver clears the display before positioning the
cursor.

2-23

Parameter

vfc
(Cont.)

FULL-DUPLEX TERMINAL DRIVER

Meaning

However, the parameter is interpreted as a vertical forms
control (vfc) parameter if its high byte is o. See Section
2.8 for more information about the characters your task can
use for vertical format control on the terminal. Anyone of
these characters can be specified as the value of the vfc
parameter.

Terminal-independent cursor control capability is provided
at system generation time. The terminal driver responds to
task I/O requests for cursor positioning without the task
requiring information about the type of terminal in use.

Subfunction Bits:

The subfunctions have the following meanings:

Subfunction Meaning

TF.WAL

TF.WBT

Write All Characters - During the write-pass-all operation
specified by this subfunction (as in IO.WAL or
IO.WLB!TF.WAL), the terminal driver outputs characters
without interpretation. It does not intercept control
characters, and it does not keep track of cursor position.
Long lines are not wrapped around if input/output wraparound
has been selected. .

Break-Through Write - This subfunction instructs the driver
to write the buffer regardless of the I/O status of the
receiving terminal. If another write function is currently
in progress, it finishes the current request and the
break-through write is the next write issued. Therefore,
the TF.WBT subfunction cannot break through another
break-through write that is in progress. The effect of this
is that a CTRL/S can stop break-through write functions.
Thus, it may be desirable for tasks to time out on
break-through operations.

If a read is
proceeds, and
any input that
was effected
mode) •

currently posted,
an automatic CTRL/R
was received before
(if the terminal

CTRL/O, if in effect, is canceled.

the break-through write
is performed to redisplay
the break-through write
is not in the full-duplex

An escape sequence that was interrupted is rubbed out.

Break-through write may be issued by a privileged task only.
(The privileged MCR command BRO (broadcast) uses IO.WBT.)

2-24

(

(

(

(

(

(

FULL-DUPLEX TERMINAL DRIVER

2.4.5 QIO$C IO.EIO - Extended I/O Functions

The QIO$C IO.EIO macro allows the use of additional I/O subfunctions.
The design of the QIO$ macro, as used with the other QIO$ functions,
allows a limited number of I/O subfunctions to be implemented. with
IO.EIO, the address of an item list buffer (stadd) is contained in the
macro statement. The item list buffer contains IO.EIO modifiers
(recognizable as subfunctions) and it allows the use of a maximum of
two words of I/O subfunction bits. See Figure 2-1, which shows the
structure of the Item List 1 buffer for use with TF.RLB, and Figure
2-2, which shows the structure of the Item List 2 buffer for use with
TF .WLB.

The QIO$C IO.EIO reads from or writes to a terminal. The modifiers in
the item list allow you to modify the nature or operation of that read
or write. A read (TF.RLB) subfunction or write (TF.WLB) subfunction
must be issued with the IO.EIO function. But both of these
subfunctions cannot be executed as a Logical OR together.

NOTE

The IO.EIO function will not work if your terminal has
been set as a remote terminal (RT:) to another system.
That is, after entering

>SET HOST xxxxx

and logging into an RT:, the terminal driver will
reject a QIO issuing an extended I/O request from the
RT: •

The QIO$C IO.EIO macro has either one of the following formats:

QIO$C IO.EIO!TF.RLB,lun,

QIO$C IO.EIO!TF.WLB,lun,

[ef~J prl
isb
ast

,<stadd,size>

[ef~] ,<stadd,size>
prl .
isb
ast

The TF.WLB and TF.RLB subfunctions each ~llow specific modifiers,
which are located in the item list, to be used with them. They are
listed as follows:

Subfunction Modifiers

TF.RLB

TF.WLB

TF.BIN,
TF.RLU,
TF.RPT,
TF.TNE,

TF.CCO,
TF.WIR

TF.RAL,
TF.RNE,
TF.RST 1
TF.XOF

TF.RCU,

TF.RDI, TF.RES,
TF.RNF'l TF.RPR,

, TF.RTT , TF.TMO,

TF.WAL, TF.WBT,

1. If both the TF.RST and TF.RTT modifiers are included, TF.RST
supersedes the function of TF.RTT.

2-25

FULL-DUPLEX TERMINAL DRIVER

Parameters:

The parameters have the following meanings:

Parameter Meaning

1un The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

pri Makes this QIO$ macro compatible with RSX-llD. Use a value
of 0 or a null for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1.

ast

stadd

size

If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When the 1/0 request completes, control branches to
address specified by ast at the software priority of
requesting task. Omit ast or specify 0 to omit
processing.

code
ast.
the
the
AST

The starting address of the item list of the length
speCified in size. The address of the item list must be
word-aligned and in the task's address space.

The size of the item list in bytes. The specified size for
the IO.EIOITF.RLB function must be 24 decimal bytes. The
specified size for the IO.EIO!TF.WLB function· must be 10
decimal bytes. The item list must be within the task's
address space.

Subfunction Bits:

The subfunctions have the following meanings:

Subfunction Meaning

TF.BIN

TF.CCO

TF.RAL

Binary Prompt (send prompt as pass all) - The prompt is sent
to the terminal without interpretation by tlle driver. This
is .imilai, for the prompt, to a write-pass-a1l operation.

Cancel CTRL/O - The driver writes a logical block of data to
the terminal regardless of a CTRL/O condition that may be in
effect. If the CTRL/O is in effect, it is canceled before
the write occurs.

Read All Characters (Pass All) - This subfunction allows the
passage of all characters to the requesting task. The
driver does not intercept control characters. The
characteristic TC.8BC, when set, allows the driver to pass 8
bits. For example, CTRL/C, CTRL/Q, CTRL/S, CTRL/O, and
CTRL/Z are passed to the task and are not interpreted by the
driver.

2-26

(

(

(

(

(

(

FULL-DUPLEX TERMINAL DRIVER

Subfunction Meaning

TF.RCU

TF.RDI

TF.RES

TF.RLU

TF.RNE

TF.RNF

TF.RPR

Restore Cursor position - When defining cursor position in a
function, you can use the TF.RCU ,subfunction to save the
current cursor position. TF.,RCU causes the driver first to
save the current cursor position, then to position the
cursor and output the specified buffer, and, finally, to
restore the cursor to the original (saved) position once the
output transfer has been completed.

Read With Default Input - The default input that you
specified in the extended I/O item list is displayed as an
input line at the start of the read on the terminal. You
may change this line or use it as input to the system. This
subfunction is for use with the extended I/O function
(IO.EIO) only.

Read With Escape Sequence Processing Enabled - This
subfunction enables escape sequence recognition for the read
operation in extended I/O; it is effective for one read
only.

Read With Conversion From Lowercase To Uppercase - The task
tha,t uses this subfunction gets input 1n the buffer in
uppercase. This subfunction is used with the extended I/O
(IO.EIO) function only.

Read With No Echo - This subfunction reads terminal input
characters without echoing the characters back to the
terminal for immediate display. You can use this feature
when typing sensitive info·rmation. CTRL/R is ignored while
Read With No Echo is in progress.

Read With No Filter - This
through CTRL/U, CTRL/R,
characters. It is for use
function only.

subfunction reads and passes
and DELETE characters as normal
with the extended I/O (IO.EIO)

Read After Prompt - This subfunction is for use with the
extended I/O (IO.EIO) function only. The TF.RPR subfunction
causes a prompt to be sent to the terminal and immediately
follows it with a read function at the terminal. The TF.RPR
acts as an IO.WLB followed by IO.RLB. However, TF.RPR
differs from the combination of those two functions as
follows:

• System overhead is lower with the TF.RPR because only one
QIO$ is processed.

• When using the TF.RPR function, there is no "window"
during which a response to the prompt may be ignored.
Such a window occurs if the task uses IO~WLB followed by
an IO.RLB, because no read may be posted at the time the
response is received.

• If the issuing task is checkpointable, it can be
checkpointed during both the prompt and the read
requested by the TF.RPR.

• A CTRL/O that may be in effect prior to issuing the
TF.RPR is canceled before the prompt is written.

2-27

FULL-DUPLEX TERMINAL DRIVER

Subfunction Meaning

TF.RPT

TF.RST

TF.RTT

TF.TMO

NOTE

If a TF.RPR function is in progress when the driver
receives a CTRL/R or CTRL/U, the prompt is
redisplayed.

Read In Pass-Through Mode - This subfunction passes all
characters except XON/XOFF. It allows the passage of all
characters to·· the requesting task. The characteristic
TC.8BC, when set, allows the driver to pass eight bits
instead of seven. The driver intercepts the control
characters CTRL/S and CTRL/Q. Other control characters, for
example, CTRL/C, CTRL/O, and CTRL/Z, are passed to the task
and are not interpreted by the driver. This subfunction
modifier is for us.e with the IO.EIO!TF.RLB function only.

Read With Special Terminators - Special characters in the
ranges 0-037 and 175-177 terminate the read. The driver
does not interpret the terminating character. For example,
a DELETE or RUBOUT (177) does not erase, and a CTRL/C does
not produce a CLI prompt, or abort tasks active at the
terminal if CTRL/C abort is enabled. CTRL/U and CTRL/R do
not perform' their usual functions either. All control
characters are terminators.

TF.RST sets TF.TNEby default, which means that terminators
are not echoed on the terminal screen.

If uppercase to lowercase conversion is disabled, characters
175 and 176 do not act as terminators. CTRL/O, CTRL/Q, and
CTRL/S (017, 021, and 023, respectively) are not special
terminators. The driver interprets them as output control
characters in a normal manner.

Exercise great care when using IO.RAL and TF.RST together.
Obscure problems can result if you use them in this way.

Read With Specified Terminator Table - This subfunction is
for use with the IO.EIO extended I/O function only. Control
characters function normally with the TF.RTT subfunction.
Terminators echo by default. The additional use of
subfunction TF.TNE prevents the echoing of terminators on
the terminal screen. If you want to use special control
characters as terminators, their normal function should be
disabled with the TF.RNF subfunction or the TC.PTH
characteristic. The terminator table (a bit mask table)
length can be from 1 through 32(decimal) bytes where bit 0
is a null character, bit 1 is a CTRL/A, and so forth. The
terminator table address is in the item list of the IO.EIO
function. To use ASCII characters 128 (decimal) . through
255(decimal), the characteristic TC.8BC must be set.

Read With Time-Out - This subfunction allows the use of the
tmo parameter to require input from the terminal within a
specified time.

Specify the time-out count in seconds. Time-out is the
maximum time allowed between two input characters before the
.read is aborted. The maximum time-out value is 255 (decimal)
intervals.

2-28

c

(

(

(

(

FULL-DUPLEX TERMINAL DRIVER

Subfunction Meaning

'TF.TMO
(Cont.)

TF.TNE

TF.WAL

TF.WBT

TF.WIR

TF.XOF

If 0 is specified, the read times out immediately after
reading any data that may be in the type-ahead buffer. In
other words, if you enter a 0, no time is allowed for you to
enter characters, and all characters are read from the
type-ahead buffer.

If you need more than 255 (decimal) seconds, issue an
asynchronous QIO$ request followed by a Mark Time directive
(MRKT$) for the required interval. Specify different event
flags in the two directives and, after issuing them, wait
for the logical OR of the two event flags.

Read Terminators with No Echo - This subfunction allows
reading terminator characters from the terminal without
their being echoed on the terminal screen as they are
entered. It is for use with the extended I/O function
IO.EIO only.

Write All Characters - During the write-pass-all operation
specified by this subfunction (as in IO.WAL or
IO.WLB!TF.WAL), the terminal driver outputs characters
without interpretation. It does not intercept control
characters, and it does not keep track of cursor position.
Long lines are not wrapped around if input/output wraparound
has been selected.

Break-Through Write - Instructs the driver to write the
buffer regardless of the I/O status of the receiving
terminal. If another write function is currently in
progress, it finishes the current request and the
break-through write is the next write issued. Therefore,
the TF.WBT subfunction cannot break through another
break-through write that is in progress. The effect of this
is that a CTRL/S can stop break-through write functions.
Thus, it may be desirable for tasks to time out on
break-through operations.

If a read is
proceeds, and
any input that
was effected
mode) •

currently posted,
an automatic CTRL/R
was received before
(if the terminal

CTRL/O, if in effect, is canceled.

the break-through write
is performed to redisplay
the break-through write
is not in the full-duplex

An escape sequence that was interrupted is deleted.

Break-through write may be issued by a privileged task only.

Write with Input Redisplayed - This subfunction performs a
write to the terminal. If a read is in progress at the
terminal and you have entered characters in tpe input line,
the prompt and the characters are redisplayed at the end of
the write.

Send XOFF - This subfunction causes the driver to send an
XOFF to the terminal after its read. The XOFF (CTRL/S) may
have the effect of inhibiting input from the terminal, if
the terminal recognizes XOFF for this purpose. TF.XOF is
ignored when full-duplex I/O is in use.

2-29

FULL-DUPLEX TERMINAL DRIVER

2.4.5.1 Item List 1 for IO.EIOITF.RLB - Figure 2-1 shows the
structure of the Item List 1 buffer. You should use the Item List 1
buffer when you use the TF.RLB function with IO.EIO. Modifier word 2
is currently not used but must be O. All the other fields in the item
list must be present, but need not contain any specific information
except what is pertinent to the function being performed. Thus, if a
read with prompt (TF.RPR) is not being performed, words 10, 12, and 14
are not used.

•

Octal Decimal

o • Modifier word 1
3 2

• Modifier word 2
5 4

• 7
Address of read data buffer

6 • Length of read data buffer
11 8 • Timeout value in seconds
13 10 • Address of prompt buffer
15 12

• Length of prompt buffer
17 14

41 Prompt VFC
21 16 • Terminator table address
23 18

• Length of terminator table
25 20 • Default data buffer address
27 22 • Default data buffer length

ZK-4079-85

Figure 2~1 Structure of the Item List 1 Buffer

Modifiers (subfunctions) of the group of
modifiers allowed for any I/O read function~

additional

• Currently must be O.

• The starting address of the read data buffer. The read
data buffer may be on a byte boundary.

• The size of the read data buffer in bytes. The
specified size must be greater than 0 and less than or
equal to 8128 bytes. The buffer must be within the
task's address space.

• For use with TF.TMO. TF.TMO must be in modifier word 1.

• For use with TF.RPR and contains the starting address of
the prompt buffer. TF.RPR must be in modifier word 1.
The prompt buffer may be on a byte boundary.

• For use with TF. RPR.
bytes. The buffer
space. The specified
less than or equal to

The size of the prompt buffer in
must be within the task's address
size must be greater than 0 and
8128 bytes.

2-30

(

c

(

c

(

FULL-DUPLEX TERMINAL DRIVER

«D For use with TF.RPR. The vfc parameter
specifies cursor position.

normally

If the parameter defines cursor position, the high byte
must be a nonzero number. The low byte is interpreted
as column number (x-coordinate), and the high byte is
interpreted as line number (y-coordinate). Home
position, the upper left corner of the display, is
defined as (1,1). The driver outputs cursor-positioning
commands appropriate for the terminal in use that move
the cursor to the specified position. If the most
significant bit of the line number is set, the driver
clears the display before positioning the cursor.

However, the parameter is interpreted as a vertical
forms control (vfc) parameter if its high byte is O.
See Section 2.8 for more information about the
characters your task can use for vertical format control
on the terminal. Anyone of these characters can be
specified as the value of the vfc parameter.

Terminal-independent cursor control capability is
provided at system generation time. The terminal driver
responds to task I/O requests for cursor positioning
without the task requiring information about the type of
terminal in use.

tt For use with TF.RTT. TF.RTTmust be in modifier word 1.
The table (1 to 32(decimal) bytes) starts at the address
specified by the table address. The first word contains
bits that represent the first 16 ASCII character codes
(0-17); similarly, the second word contains bits that
represent the next. 16 character codes (20~37), and so
forth, through the sixteenth word, bit 15, which
represents character code 377. For example, to specify
the % symbol (code 045) as a read terminator character,
set bit 05 in the third word, because the third word of
the table contains bits representing character codes
40-57.

The terminal must be set for read-pass-all operation
(TC.BIN~l) or to read-pass 8-bits (TC.8BC) if you want
to use any of the following characters as terminator
characters:

• CTRL/S (023)

• CTRL/Q (021)

• Any characters whose codes are greater than 177

• Length of the terminator table specified in I •

• For use with TF.RDI. TF.RDI must be in modifier word l.
This buffer contains the default input that is to be
displayed on the terminal.

tt For use with TF.RDI. This word contains the length of
the buffer at the address specified in K.

2-31

FULL-DUPLEX TERMINAL DRIVER

2.4.5.2 Item List 2 for IO.EIO!TF.WLB - You should use the Item
2 buffer when you use the TF.WLB function with IO.EIO. Modifier
2 is currently not used but must be O. All the other fields in
item list must be present. Item list 2 is shown in Figure 2-2.

Octal Decimal

0

• Modifier word 1
3 2

• Modifier word 2
5 4 • Address of output buffer
7 6

6) Length of output buffer
11 8 • VFC cursor position

ZK-4080-85

Figure 2-2 Structure of the Item List 2 Buffer

• Modifiers (subfunctions) of the group of modifiers
allowed for I/O write functions.

• Currently must be O.

• The starting address of the write data buffer. The
address may be on a byte boundary.

6) The size of the stadd buffer in an even number of bytes.
The specified size must be greater than 0 and less than
or equal to 8128 bytes. The buffer must be within the
task's address space.

• The vfcparameter normally specifies cursor position.

tf the parameter defines cursor position, the high byte
must be a nonzero number. The low byte is interpreted
as column number (x-coordinate), and the high byte is
interpreted as line number (y-coordinate). Home
position, the upper left corner of the display, is
defined as (1,1). The driver outputs cursor-positioning
commands appropriate for the terminal in use that move
the cursor to the specified position. If the most
significant bit of the line number is set, the driver
clears the display before positioning the cursor.

However, the parameter is interpreted as a vertical
forms control (vfc) parameter if its high byte is O.
See Section 2.8 for more information about the
characters your task can use for vertical format control
on the terminal. Anyone of these characters can be
specified as the value of the vfc parameter.

Terminal-independent cursor control capability is
provided at system generation time. The terminal driver
responds to task I/O requests for cursor positioning
without the task requiring information about the type of
terminal in use.

2-32

List
word

the (

(

(

(

(

(

FULL-DUPLEX TERMINAL DRIVER

2.4.6 QIO$C 10.GTS - Get Terminal support

The QIO$C 10.GTS macro returns information to a four-word buffer that
specifies which system generation options are part of the terminal
driver. Only two of these words are currently defined. Table 2-6
gives details for these words. The 10.GTS function is a system
generation option. If 10.GTS is issued on a system without 10.GTS
support, IE.IFC is returned in the I/O status block.

The format of the QIO$C 10.GTS macro is as follows:

QIO$C 10.GTS,lun,[efn],[pri],[isb],[ast],<stadd,size>

Parameters:

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

pri Makes this QIO$ macro compatible with RSX-llD. Use a value
of 0 or a null for this parameter.

isb

ast

stadd

size

The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1.

If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When this I/O request completes, control branches to
address specified by ast at the software priority of
requesting task. Omit ast or specify 0 to omit
processing.

code
ast.

the
the
AST

The starting address of the data buffer. The address must
be word-aligned.

The size of the stadd data buffer in bytes. The specified
size must be four bytes. The buffer must be within the
task's address space. The size must be an even value.

The various symbols used by the 10.GTS, SF.GMC, and SF.SMC functions
are defined in a system module, TTSYM. These symbols include Fl.xxx
and F2.xxx (Table 2-6); T.xxxx (Table 2-8); TC.xxx (Table 2-7); and
the SE.xxx status returns described in Table 2-9, Section 2.5. These
symbols may be defined locally within a code module by using:

.MCALL TTSYM$

TTSYM$

Symbols that are not defined locally are automatically defined by the
Task Builder.

Octal values shown for the symbols are subject to change.
only the symbolic names should be used.

2-33

Therefore,

FULL-DUPLEX TERMINAL DRIVER

Table 2-6
Information Returned by Get Terminal Support (IO.GTS) 010$

Bit
Octal
Value Mnemonic

Word 0 of Buffer:

o
1
2
3
4
5

6
7
8
9

10
11
12
13
14

15

1
2
4

10
20
40

100
200
400

1000
2000
4000

10000
20000
40000

100000

Fl.ACR
FLBTW
FLBUF
Flo UIA
F1.CCO
F1.ESO

E'LHLD
FLLWC
FLRNE
FLRPR
FLRST
FLRUB
FLSYN
Flo TRW
FLUTB

Flo VBF

Word 1 of ~uffer:

o
1
2
3
4
5
6
7
8
9

1
2
4

10
20
40

100
200
400

1000

F2.SCH
F2.GCH
F2.DCH
F2.DKL
F2.ALT
F2.SFF
F2.CUP
F2.FDX
F2.EIO
F2.NCT

Meaning When Set to 1

Automatic CR/LF on long lines
Break-through write
Checkpointing during terminal input
Unsolicited input-character AST
Cancel CTRL/O before writing
Recognize escape sequences in solicited
input
Hold-screen mode
Lowercase to uppercase conversion
Read with no echo
Read after prompting
Read with special terminators
CRT rubout
CTRL/R terminal synchronization
Read all and write all
Input characters buffered in task's address
space
Variable-length terminal buffers

Set characteristics 010$ (SF.SMC)
Get characteristics 010$ (SF.GMC)
Dump/restore characteristics
Historical RSX-11D or lAS IO.KIL
ALTmode is echoed
Form .feed can be simulated
Cursor positioning
Full-duplex terminal driver
Extended I/O
Network command terminal support

2-34

c

c

(

(

(

FULL-DUPLEX TERMINAL DRIVER

2.4.7 OIO$C IO.HNG - Disconnect a Terminal

The OIO$C IO.HNG macro disconnects a terminal that is on a remote line
or on a DECNET link. This function has no parameters.

A nonprivileged task can issue an IO.HNG request for its own terminal
(TI:) only. A privileged task can issue IO.HNG to any terminal.

The format of the OIO$C IO.HNG macro is as follows:

OIO$C IO.HNG,lun, [efn] , [pri], [isb] , fast]

Parameters:

The parameters have the following meaning:

Parameter Meaning

lun The logical unit number of the associated physical device
unit . to be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the 010$
operation. For more information refer to Chapter 1.

pri Makes this 010$ macro compatible with RSX-IID. Use a value
of 0 or a null for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1.

ast If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When this I/O request completes, control branches to
address specified by ast at the software priority of
requesting task. Omit ast or specify 0 to omit
processing.

2-35

code
ast.
the
the
AST

FULL-DUPLEX TERMINAL DRIVER

2.4.8 OIO$C 10.RAL - Read All Characters without Interpretation

The OIO$C IO.RAL macro causes the driver to pass all characters that
were read to the requesting task. The driver does not intercept
control characters. For example, CTRL/C, CTRL/Q, CTRL/S, CTRL/O, and
CTRL/Z are passed to the program and are not interpreted by the
driver.

NOTE

IO.RAL echoes the characters that are read. To read
all characters without echoing, use IO.RAL!TF.RNE.

10.RAL is equivalent to IO.RLB used in a logical OR with the
subfunction bit TF.RAL. The 10.RAL function can be terminated only by
a full character'count (input buffer full).

The format of QIO$C 10.RAL is as follows:

10.RAL [ITF.RNE] ,lun, [ef~l ,<stadd,size,[tmo]>
lTF.RST ,prl
lTF.TMO ,isb
!TF.XOF ,astJ

QIO$C

Parameters:

The parameters have the following meanings:

Parameter

lun

Meaning

The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the 010$
operation. For more information refer to Chapter 1.

pri Makes this 010$ macro compatible with RSX-llD. Use a value
of a or a null for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1.

ast

stadd

size

tmo

If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When this I/O request completes, control branches to
address specified by ast at the software priority of
requesting task. Omit ast or specify a to omit
processing.

code
ast.
the
the
AST

The starting address of the data buffer. Stadd may be on a
byte boundary.

The size of the stadd data buffer in bytes. The specified
size must be greater thana and less than or equal to 8128
bytes. The buffer must be within the task's address space.

The optional time-out count for use with the
subfunction.

2-36

TF.TMO

(

(

(

(

(

(

FULL-DUPLEX TERMINAL DRIVER

Subfunction Bits:

The subfunctions have the following meanings:

Subfunction Meaning

TF.RNE

TF.RST

TF.TMO

TF.XOF

Read With No Echo - This subfunction reads terminal input
characters without echoing the characters back to the
terminal for immediate display. You can use this feature
when typing sensitive information. CTRL/R is ignored while
Read With No Echo is in progress.

Read With Special Terminators - Special characters in the
ranges 0-037 and 175-177 terminate the read. The driver
does not interpret the terminating character. For example,
a DELETE (or RUBOUT) does not erase, and aCTRL/Cdoes not
produce a CLI prompt or abort tasks active at the terminal
if CTRL/C abort is enabled. Also CTRL/U and CTRL/R do not
perform th~ir usual functions either. All control
characters are terminators.

TF.RST sets TF.TNE by default, which means that terminators
are not echoed on the terminal screen.

If uppercase to lowercase conversion is disabled, characters
175 and 176 do not act as terminators. CTRL/O, CTRL/Q, and
CTRL/S (Oa17, 021, and 023, respectively) are not special
terminators. The driver interprets them as output control
characters in a normal manner.

Exercise great care when using IO.RAL and TF.RST together.
Obscure problems can result if you use them in this way.

Read With Time-Out
tmo parameter to
specified time.

This subfunction allows the use of the
require input from the terminal within a

Specify the time-out count in 10-second intervals. Time-out
is the maximum time allowed between two input characters
before the read is aborted. The maximum time-out value is
255 (decimal) intervals.

If 0 is specified, the read times out immediately after
reading any data that may be in the type-ahead buffer. In
othet words, if you enter a 0, no time is allowed for you to
enter characters, and all characters are read from the
type-ahead buffer.

If you need more than 255 (decimal) intervals, issue an
asynchronous Q10$ request followed by a Mark Time directive
(MRKT$) for the required interval. Specifydifferent event
flags in the two directives and, after issuing them, wait
for the logical OR of the two event flags.

Send XOFF -
its read.
inhibiting
recognizes
full-duplex

The driver sends an XOFF to the
The XOFF (CTRL/S) may have

input from the terminal, if
XOFF for this purpose. TF.XOF
I/O is in use.

2-37

terminal after
the effect of

the terminal
is ignored when

FULL-DUPLEX TERMINAL DRIVER

2.4.9 QIO$C IO.RNE - Read Input Without Echoing

The IO.RNE function reads terminal input characters without echoing
the characters back to the terminal for display. You can use this
feature when typing sensitive information (for example, a password or
combination) or when reading a badge with the RT02-C terminal.

(Note that the no-echo mode can also be selected with the SF.SMC
function; see Table 2-7 in Section 2.4.15, bit TC.NEC.)

CTRL/R is ignored while an IO.RNE is in progress.

The IO.RNE function is equivalent to IO.RLB in a logical OR with the
subfunction bit TF.RNE.

The format of the QIO$C IO.RNE macro is as follows:

QIO$C IO.RNE

[
!TF.RALJ !TF.RST
!TF.TMO
!TF.XOF

,lun; [;;~J
' Isb
, ast

,<stadd,size,,[tmo]>

Parameters:

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

pri Makes this QIO$ macro compatible with RSX-llD. Use a value
of 0 or a null for this parameter.

isb The. address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1.

ast

stadd

size

tmo

If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When this I/O request completes, control branches to
address specified by ast at the software priority of
requesting· task. Omit ast or specify 0 to omit
processing.

code
ast.
the
the
AST

The starting address of the data buffer. Stadd may be on a
byte boundary.

The size of the stadd data buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128
bytes. The buffer must be within the task's address space.

The optional time-out count for use with the
subfunction.

2-38

TF.TMO

(

(

(

(

(

FULL-DUPLEX TERMINAL D~IVER

Subfunction Bits:

The subfunctions have the following meanings:

Subfunction Meaning

TF.RAL Read All Characters (Pass All) - This subfunction allows the
driver to pass all characters to the requesting task. The
characteristic TC.8BC, when set, allows the driver to pass
eight bits. For example, CTRL/C, CTRL/Q, CTRL/S, CTRL/O,
and. CTRL/Z are passed to the task and are not interpreted by
the driver.

Exercise great care when using TF.RAL (read all) and TF.RST
(read with special terminators) together. Obscure problems
can result if you use them in this way.

TF.RST· Read with Special Terminators - Special characters in the
ranges 0-037 and 175-177 terminate the read. The driver
does not interpret the terminating character. For example,
a DELETE (or RUBOUT) does not erase, and a CTRL/C does not
produce a CLI prompt or abort tasks active at the terminal
.if CTRL/C abort is enabled. Also CTRL/U and CTRL/R do not
perform their usual functions either. All control
characters are terminators.

TF.TMO

TF.XOF

TF.RST sets TF.TNE by default, which means that terminators
are not echoed on the terminal screen.

If uppercase to lowercase conversion is disabled, characters
175 and 176 do not act as terminators. CTRL/O, CTRL/Q, and
CTRL/S (017,021, and 023, respectively) are not special
terminators. The driver interprets them as output control
characters in a normal manner.

Exercise great care when using TF.RAL (read all) and TF.RST
(read with special terminators) together. Obscure problems
can result if you use them in this way.

Read with Time-Out - This subfunction allows the use of the
tmo parameter to require input from the terminal within a
specified time.

Specify the time-out count in 10-second intervals. Time-out
is the maximum time allowed between two input characters
before the read is aborted. The maximum time-out value is
255 (decimal) intetvals.

If 0 is specified, the read times out immediately after
reading any data that may be in the type-ahead buffer. In
other words, if you enter a 0, no time is allowed for you to
enter characters, and all characters are read from the
type-ahead buffer.

If you need more than 255 (decimal) intervals, issue an
asynchronous QIO$ request followed by a Mark Time directive
(MRKT$) for the required, interval. Specify different event
flags in the two directives and, after issuing them, wait
for the logical OR of the two event flags.

Send XOFF -
its read.
inhibiting
recognizes
full-duplex

The driver sends an XOFF to the
The XOFF (CTRL/S) may have

input from the terminal, if
XOFF for this purpose. TF.XOF
I/O is in use.

2-39

terminal after
the effect of

the terminal
is ignored when

FULL-DUPLEX TERMINAL DRIVER

2.4.10 QIO$C IO.RPR - Send Prompt, Then Issue Read

The QIO$C IO.RPR macro sends a prompt to the terminal and immediately
follows it with a read function at the terminal. The IO.RPR functions
as an IO.WLB (write a prompt to the terminal) followed by IO.RLB.
However, IO.RPR differs from the combination of those two functions as
follows:

• System overhead is lower with the IO.RPR because only oneQIO$
is processed.

• When using the IO.RPR function, there is no "window" during
which a response to the prompt may be ignored. Such a window
occurs if the task uses IO.WAL/IO.RLB, because no read may be
posted at the time the response is received.

• If the issuing task is checkpointable, it can be checkpointed
during both the prompt and the read requested by the IO.RPR.

• A CTRL/O that may be in effect prior to issuing the IO.RPR is
canceled before the prompt is written.

Subfunction bits may be excuted as a logical OR with IO.RPR to write
the prompt as a "write all" (TF.BIN) and to send XOFF after the read
(TF.XOF). In addition, your task can use TF.RAL, TF.RNE, and TF.RST
with IO.RPR. .

NOTE

If an IO.RPR function is in progress when
receiveS a CTRL/R_ or CTRL/U, the
redisplayed.

The format of the QIO$C IO.RPR macro is as follows:

the driver
prompt . is

QIO$C 10. RPR !TF.BIN
lTF.RAL
!TF.RNE
!TF.RST
!TF.TMO
!TF.XOF

,lun; [;~~] ,<stadd,size,[tmo],pradd,prsize,vfc>

Parameters:

, 1sb
, ast

The parameters have the following meanings:

Parameter Meaning

1un The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

pri Makes this QIO$ macro compatible with RSX-llD. Use a value
of 0 or a null for this parameter.

isb The address of the I/O status block (I/O Status double~word)
associated with the I/O request. For more information refer
to Chapter 1.

2-40

(

c

(

(

(

(

Parameter

ast

stadd

size

tmo

pradd

prsize

vfc

FULL-DUPLEX TERMINAL DRIVER

Meaning

If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When this I/O request completes, control branches to
address specified by ast at the softwar~ priority of
requesting task. Omit ast or specify 0 to omit
processing.

code
ast.
the
the
AST

The starting address of the data buffer. Stadd may be on a
byte boundary.

The size of the stadd data buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128
bytes. The buffer must be within the task's address space.

The optional time-out count for use with the
subfunction.

TF.TMO

The starting address of the byte buffer where the prompt is
stored.

The·size of the pradd prompt buffer in bytes. The specified
size must be greater than n and less than or equal to 8128
bytes. The buffer must be within the task's address space.

The vfc parameter normally specifies cursor position.

If the parameter defines cursor position, .the high byte must
be a nonzero number. The low byte is interpreted as column
number (x-coordinate), and the high byte is interpreted as
line number (y-coordinate). Home positipn, the upper left
corner of the display, is defined as (1,1). ~he driver
outputs cursor-positioning commands appropriate for the
terminal in use that move the cursor to the specified
position. If the most significant bit of the line number is
set, the driver clears the display before positioning the
cursor.

However, the parameter is interpreted as a vertical forms
control (vfc) parameter if its high byte is o. See Section
2.8 for more information about the characters your task can
use for vertical format control on the terminal. Anyone of
these characters can be specified as the value of the vfc
parameter.

Terminal-independent cursor control capability is provided
at system generation time. The terminal driver responds to
task I/O requests for cursor positioning without the task
requiring information about the type of terminal in use.

Subfunction Bits:

The subfunctions have the following meanings:

Subfunction Meaning

TF.BIN Binary Prompt (send prompt as pass all) - As used in IO.RPR,
results in a "binary" prompt; that is, a prompt is sent to
the terminal by the driver with no character interpretation
(as if it were issued as an IO.WAL). The read follows the

binary prompt. .

2-41

FULL-DUPLEX TERMINAL DRIVER

Subfunction Meaning

TF.RAL

TF.RNE

TF.RST

TF.RST

TF.TMO

TF.XOF

Read All Characters (Pass All) - The driver passes all
characters to the requesting task. The characteristic
TC.8BC, when set, allows the driver to pass eight bits. For
example, CTRL/C, CTRL/Q, CTRL/S, CTRL/O, and CTRL/Z are
passed to the task and not interpreted by the driver.

Exercise great care when using TF.RAL (read all) and TF.RST
(read with special terminators) together. Obscure problems
can result if you use them in this way.

Read With No Echo - This subfunction reads terminal input
characters without echoing the characters back to the
terminal for immediate display. You can use this feature
when typing sensitive information. CTRL/R is ignored while
Read With No Echo is in progress.

Read With Special Terminators - Special characters in the
ranges 0-037 and 175-177 terminate the read. The driver
does not interpret the terminating·character. For example,
a DELETE (or RUBOUT) does not erase, and a CTRL/C does not
produce a CLI prompt or abort tasks active at the terminal
if CTRL/C abort is enabled. Also CTRL!U and CTRL/R do not
perform their usual functions either. All control
characters are terminators.

TF.RST sets TF.TNE by default, which means that terminators
are not echoed on the terminal screen.

If uppercase to lowercase conversion is disabled, characters
175 and 176 do not act as terminators. CTRL/O, CTRL/Q, and
CTRL/S (017, 021, and 023, respectively) are not special
terminators. The driver interprets them as output control
characters in a normal manner.

Exercise great care when using TF.RAL and TF.RST together.
Obscure problems can result if you use them in this way.

Read With Time-Out - This subfunction allows the use of the
tmo parameter to require input from the terminal within a
specified time.

Specify the time-out count in 10-second intervals. Time-out
is the maximum time allowed between two input characters
before the read is aborted. The maximum time-out value is
255 (decimal) intervals.

If 0 is specified, the read times out immediately after
reading any data that may be in the type-ahead buffer. In
other words, if you enter a 0, no time is allowed for you to
enter characters, and all characters are read from the
type-ahead buffer.

If you need more than 255 (decimal) intervals, issue an
asynchronous QIO$ request followed by a Mark Time directive
(MRKT$) for the required interval. Specify different event
flags in the two directives and, after issuing them, wait
for the logical OR of the two event flags. .

Send XOFF - The driver sends an XOFF to the terminal after
its prompt-and-read. The XOFF (CTRL/S) may have the effect
of inhibiting input from the terminal, if the terminal
recognizes XQFF for this purpose. TF.XOF is ignored when
full-duplex I/O is in use.

2-42

(

(

(

(

c

(

FULL-DUPLEX TERMINAL DRIVER

2.4.11 QIO$C IO.RST - Read Logical Block With Special Terminators

A QIO$C IO.RST reads a block of data from the terminal. This function
is equivalent to an IO.RLB!TF.RST. Certain special characters in the
ranges 0-037 and 175-177 terminate the read. The driver does not
interpret the terminating character. For example, a DELETE or RUBOUT
(177) does not erase, and a CTRL/C does not produce a CLI prompt or
abort tasks active at the terminal if CTRL/C abort is enabled. Also
CTRL/Uand CTRL/R do not perform their usual functions. All control
characters are terminators.

IO.RST sets TF.TNE by default, which means that terminators are not
echoed on the terminal screen.

If uppercase to lowercase conversion is disabled, characters 175 and
176 do not act as terminators. CTRL/O, CTRL/Q, and CTRL/S (017, 021,
and 023, respectively) are not special terminators. The driver
interprets them as output control characters in a normal manner.

Upon successful completion of an IO.RST request that was not
terminated by filling the input buffer, the first word of the I/O
status block contains the terminating character in the high byte and
the IS.SUC status code in the low byte. The second word contains the
number of bytes contained in a buffer. The terminating character ls
not put in the buffer.

The formatot QIO$C IO.RST is as follows:

QIO$C IO.RST [!TF.RAL] ,lun, [pri], [isb], last]
ITF.RNE
!TF.TMO
ITF.XOF

Parameters:

The parameters have the following meanings:

Parameter Meaning·

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be.associated with the QIO$
operation. For more information refer to Chapter 1.

pri Makes this QIO$ macro compatible with RSX-llD. Use a value
of 0 or a null for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
t.o Chapter 1.

ast

stadd

If you want to interrupt your task ~o execute special
upon completion of· this I/O request, you may specify
When this I/O request completes, . control branches to
address specified by ast at the software priority of
requesting task. Omit ast or specify 0 to omit
processing.

code
ast.
the
the
AST

The starting address of the data buffer. Stadd may be on a
byte boundary.

2-43

Parameter

size

tmo

FULL-DUPLEX TERMINAL DRIVER

Meaning

The size of the stadd data buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128
bytes. The buffer must be within the task's address space.

The optional time-out count for use with the
subfunction.

TF.TMO

Subfunction Bits:

The subfunctions have the following meanings:

Subfunction Meaning

TF.RAL

TF.RNE

TF.TMO

TF.XOF

Read All Characters (Pass All) - The driver passes all
. characters to the requesting task. The characteristic
TC.8BC, when set, allows the driver to pass eight bits. For
example, CTRL/C, CTRL/Q, CTRL/S, CTRL/O, and CTRL/Z are
passed to the task and not interpreted by the driver.

Exercise great care when using TF.RAL (read all) and TF.RST
(read with special terminators) together. Obscure problems
can result if you use them in this way.

Read With No Echo - This subfunction reads terminal input
characters without echoing the characters back to the
terminal for immediate display. You can use this feature
when typing sensitive information. CTRL/R is ignored while
Read With No Echo is in progress.

Read with Time-Out - This subfunction allows the use of the
tmo parameter to requ,ire input from the terminal within a
specified time.

Specify the time-out count in 10-second intervals. Time-out
is the maximum time allowed between two input characters
before the read is aborted. The maximum time-out value is
255 (decimal) intervals.

If 0 is specified, the read times out immediately after
reading any data that may be in the type-ahead buffer. In
other words, if you enter a 0, no time is allowed for you to
enter characters, and all characters are read from.the
type-ahead buffer.

If you need more than 255 (decimal) intervals, issue an
asynchronousQIO$ request followed by a Mark Time directive
(MRKT$) for the required interval. Specify different event
flags in the two directives and, after issuing them, wait
for the logical OR of the two event flags.

Send XOFF -
its read.
inhibiting
recognizes
full-duplex

The driver sends an XOFF to the
The XOFF (CTRL/S) may hava

input from the terminal, if
XOFF for this purpose·. TF.XOF
I/O is in use. .

2-44

terminal after
the effect of

the terminal
is ignored when

(

(

(

(

(

(

FULL-DUPLEX TERMINAL DRIVER

2.4.12 QIO$ IO.RTT - Read with Terminator Table

The QIO$C IO.RTT macro reads characters like the QIO$C IO.RLB macro,
except that a character that you have previously specified terminates
the read operation. The specified character's code can range from 0
through 377 (octal) • You can specify it by setting a bit in a l6-word
table, which you specify, that corresponds to the desired character.
Multiple characters can be specified by setting their corresponding
value.

The l6-word table starts at the address specified by the table
parameter. The first word contains bits that represent the first 16
ASCII character codes (0-17)~ similarly, the second word contains bits
that represent the next 16 character codes (20-37), and so forth,
thro\1gh toe sixteenth word, bit 15, which represents character code
377. For example, to specify the % symbol (code 045) as a read
terminator character, set bit 05 in the thi~d word, because the third
word of the table contains bits representing character codes 40-57.

. If you want to
greater than
set to allow a
bits (TC.8BC),

use the CTRL/S (023), CTRL/Q(02l), or any characters
177 as the terminator characters, the terminal must be
read-pass-all operation (TC.BIN=l), or read-pass eight
as listed in "Table 2-7 in Section 2.4.15.

The optional time-out count parameter may be included as desired.

The format of QIO$C IO.RTT is as follows:

QIO$C IO.RTT [!TF.RAL] ,lun, [ef~] ,<stadd,size, [tmo] ,table>
ITF.RCU ,prl
ITF.RNE ,isb
ITF.TMO ,ast

Parameters:

The parameters have the following meanings:

Parameter Meaning

lun The logical unit nuinber of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

pri Makes this QI0$ macro compatible with RSX-llD. Use a value
of 0 or a null for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1.

ast

stadd

If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When this I/O-request completes, control branches to
address specified by ast at the software'priority of
requesting task. Omit ast o.r specify 0 to omit
processing.

code
ast.
the
the
AST

The starting address of the data buffer. Stadd may be on a
byte boundary.

2-45

Parameter

size

tmo

table

FULL-DUPLEX TERMINAL DRIVER

Meaning

The size of the stadd data buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128
bytes. The bQffer must be within the task's address space.

The optional time-out count for use with the
subfunction.

TF.TMO

The address of the 16-word user-specified terminator table
that you create in your task.

Subfunction Bits:

The subfunctions have the following meanings:

Subfunction Meaning

TI!'.RAL

TI!'.RCO

TI!'.RNE

.. TI!'.TMO

Read All Characters (Pass All) - The driver passes all
characters to the requesting task. The. characteristic
TC.8BC, when set, allows the driver to pass eight bits. For
example, CTRL/C, CTRL/Q, CTRL/S, CTRL/O, and CTRL/Z are
passed to the task and not. interpreted by the driver.

Exercise great care when using TF.RAL (read all) and TF.RST
(read with special terminators) together. Obscure problems
can result if you use them in this way.

Restore Cursor Position - When defining cursor position in a
function, you can use the TF.RCU subfunction to save the
current cursor position. TF.RCU causes the driver first to
save the current cursor position, then to position the
cursor and output the specified buffer, and, finally, to
restore the cursor to the original (saved) position once the
output transfer has been completed.

Read with No Echo - Reads terminal input characters without
echoing the characters back to the terminal for immediate
display. You can use this feature when typing sensitive
information. CTRL/R is ignored while~ead With No Echo is
in progress.

Read. With Timeout - This subfunction allows the use of the
tmo parameter to require input from the terminal within a
spec if i ed time.

Specify the time-out count in 10-second intervals. Time-out
is the maximum time allowed between two input characters
before the read is aborted. The maximum time-out value is
255 (decimal) intervals.

If 0 is specified, the read times out immediately after
reading any" data that may be in the type-ahead buffer. In
other words, if you enter a 0, no time is allowed for you to
enter characters, and all characters are read from the
type-ahead buffer.

If you need more than 255 (decimal) intervals, issue an
asynchronous QIO$ request followed by a Mark Time directive
(MRKT$) for the required interval. Specify different event
flags in the two directives and, after issuing them, wait
for the logical OR of the two event flags.

2-46

(

c

(

(

(

FULL-DUPLEX TERMINAL DRIVER

2.4.13 QIO$C IO.WAL - write a Logical Block and Pass All Characters

The QIO$C IO.WAL macro causes the driver to pass all output from the
buffer without interpretation. It does not intercept control
characters. Long lines are not wrapped around if input/output
wraparound has been selected.

IO.WAL is equivalent to the IO.WLB!TF.WALfunction.

The format of the QIO$C IO.WAL macro is as follows:

QIO$C IO.WAL
[

!TF.CCO]
!TF.RCU
!TF.WBT

,lun: [~;~]
, 1sb
, ast

,(stadd,size,vfc>

Parameters:

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
infotmation refer to Chapter 1.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

pri Makesthi~ QIO$ macro compatible with RSX-lID. Use a value
of 0 or a null for· this parameter.

isb

ast

stadd

size

vfc

The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1.

If yoti ~ant to interrupt y6ur task to e~ecute special
upon completion of this I/O request, you may specify
When this I/O request completes, control branches to
address specified by ast at the software priority of
requesting task. Omit ast or specify 0 tc> omit
processing.

code
ast.
the
the
AST

The starting address of the data buffer. Stadd may be on a
byte boundary.

The size of the stadd data buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128
bytes. The buffer must be within the task's address space.

The vfc parameter normally specifies cursor position.

If the parameter defines curSor position, the high byte must
be a nonzero number. The low byte is interpreted as column
number (x-coordinate), and the high byte is interpreted as
line number (y-coordinate). Home position, the upper left
corner of the display, is defined as (1,1). The driver
outputs cursor-positioning commands appropriate for the
terminal in use that move the cursor to the specified
position. If the most significant bit of the line number is
set, the driver clears the display before positioning the
cursor.

However, the parameter is interpreted as a vertical forms
control (vfc) parameter if its high byte is o. See Section
2.8 for more information about the characters your task can

2-47

Parameter

vfc
(Cont.)

FULL-DUPLEX TERMINAL DRIVER

Meaning

use for vertical format control on the terminal. Anyone of
these characters can be specified as the value of the vfc
parameter.

Terminal-independent cursor control capability is . provided
at system generation time. The terminal driver responds to
task I/O requests for cursor positioning without the task
requiring information about .the type of terminal in uSe.

Subfunction Bits:

The subfunctions have the following meanings:

Subfunction Meaning

TF.CCO

TF.RCU

TF.WBT

Cancel CTRL/O - The driver writes a logical block of.datato
the terminal regardless of a CTRL/O condition that may be in
effect. The CTRL/O, if in effect, is canceled before the
write occurs.

During a write-pass-all operation (IO.WAL or IO.WLBITF.WAL),
the terminal driver outputs characters without
interpretation~ it does not keep track of cursor. position.

Restore Cursor Position - When defining cursor position in a
function, you can use tpe TF.RCU subfunction to save the
current cursor position. TF.RCU causes the driver first to
save the current cursor position, then to position the
cursor and output the specified buffer, and, finally, to
restore the cursor to the original (saved) PQsition once the
output transfer has been completed. .

During a write-pass-all operation (IO.WAL or IO.WLB!TF.WAL),
the terminal driver outputs characters without
interpretation~ it does not keep track of cursor .posi tion.

Break-Through Write - This subfunctiQn instructs the driver
to wr i te the buffer regardless of the. I/O status of the
receiving terminal. If another write function is currently
in progress, it finishes the current request and the
break-thJ;:ough write is the next write issued. Therefore,
the TF.WBT subfunction cannot break through another
break-through write that is in progress. The effect of this
is that a CTRL/S can stop break-through write functions.
Thus, it may be desirable for tasks to time out on
b~eak-through write operations.

If a read is
proceeds, and
any input that
was effected
mode).

currently posted,
an automatic CTRL/R
was received before
(if the terminal

CTRL/O, if in effect, is canceled.

the break~through write
is performed to redisplay
the break-through write
is not in the full-duplex

An escape sequence that was interrupted is deleted.

Brea~-through write may be issued by a privileged task only.

During a write-pass-all operation, (IO.WAL or IO.WLB!TF.WAL)
the terminal driver outputs characters without
interpretation~ it does not keep track of cursor position.

2-48

(

(

(

(

(

(

FULL-DUPLEX TERMINAL DRIVER

2.4.14 QIO$C IO.WBT - Break Through to write a Logical Block

TheQIO$C IO.WBT macro instructs the driver to write the buffer
regardless of the I/O status of the receiving terminal. If an IO.WBT
function is issued on a system that does not support IO.WBT, it is
treated as an IO.WLB function.

• If another write function is currently in progress, it
finishes the current request and the IO.WBT is the next write
issued. The effect of this is that a CTRL/S can stop IO.WBT
functions. Therefore, it may be desirable for tasks to time
out on IO.WBT operations.

• If a read is currently posted, the IO.WBT proceeds, and an
automatic CTRL/R is performed to redisplay any input that was
received before the break-through write was effected (if the
terminal is not in the full-duplex mode) •

• If CTRL/O is in effect, it is canceled~

• An escape sequence that was interrupted is deleted.

An IO.WBT function cannot break through another IO.WBT that is in
progress.

Break-through write may be issued by a privileged task only. The
privileged MCR commandBRO (broadcast)·uses IO.WBT.

The format of the

QIO$C IO.WBT

Parameters:

QIO$C IO.WBT macro is

[
!TF.CCO]
!TF.RCU
!TF.WAL

,lun, [ef~] , prl.
, isb
,/ ast

as follows:

,<stadd,size,vfc)

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

pri Makes this QIO$macro compatible with RSX-IID. Use a value
of 0 or a null for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1.

ast If you want ~o interrupt your task to execute special
upon completion of this I/O request, you may specify
When this I/O request completes, control branches to
address specified by ast at the software priority of
requesting task. Omit ast or specify 0 to omit
processing.

code
ast.
the
the
AST

stadd The starting address of the data buffer. Stadd may be on a
byte boundary.

2-49

Parameter

size

FULL-DUPLEX TERMINAL DRIVER

Meaning

The size of the stadd data buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128
bytes. The buffer must be within the task's address space.

vfc The vfc parameter normally specifies cursor position.

If the parameter defines cursor position, the high byte must
be a nonzero number. The low byte is interpreted as column
number (x-coordinate), and the high byte is interpreted as
line number (y-coordinate). ijome position, the upper left
corner of the display, is defined as (1,1). The driver
outputs cursor-positioning commands appropriate for the
terminal in use that move the cursor to the specified
position. If the most significant bit of the line number is
set, the driver clears the display before positioning the
cursor.

However, the parameter is interpreted as a vertical forms
control. (vfc) parameter if its high byte is o. See Section
2.8 for more information about the characters your task can
use for vertical format control on the terminal. Anyone of
these characters can be specified as the value of the vfc
parameter.

Terminal-independent cursor control capability is provided
at system generation time. The terminal driver responds to
task I/O requests for cursor positioning without the task
requiring information about the type of terminal in use.

Subfunction !!!!:
The subfunctions have the following meanings:

Subfunction Meaning

Tl!'.CCO

Tl!'.RCO

Tl!'.WAL

Cancel CTRL/O - The driver writes a logical block of data to
the terminal regardless of a CTRL/O condition that may be in
effect. If the CTRL/O is in effect, it is canceled before
the write occurs. The IO.WBT function implies the
subfunction TF.CCO, therefore using IO.WBT!TF.CCO is
redundant.

Restore Cursor position - When defining cursor position in a
function, you can use the TF.RCU subfunction to save the
current cursor position. TF.RCU causes the driver first to
save the current cursor position, then to position the
cursor and output the specified buffer, and, finally, to
restore the cursor to the original (saved) position once the
output transfer has been completed.

write All Characters - During a write-pass-all operation (as
in IO.WAL or IO.WLB!TF.WAL), the terminal driver outputs
characters without interpretation. It does not intercept
control characters, and it does not keep tracik of cursor
position. Long lines are not wrapped around if input/output
wraparound has been selected.

2-50

(

(

(

(

(

FULL-DUPLEX TERMINAL DRIVER

2.4.15 QIO$C SF.GMC - Get M~ltiple Characteristics

The QIO$ SF.GMC macro returns terminal information into a specified
buffer. Table 2-7 in this section shows the terminal characteristics
that can be obtained with the QIO$ SF.GMC macro and set with the QIO$
SF.SMC macro.

The format of the QIO$C SF.GMC macro is as follows:

QIO$C SF.GMC,lun,[efn],[pri],[isb],[ast],<stadd,size)

Parameters:

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to· be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

pri Makes this QIO$ macro compatible with RSX-IID. Use a value
of 0 or a null for this parameter.

isb

ast

stadd

size

The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1, but consider the following exception.

For SF.GMC, the contents of the I/O Status Block (ISB) is
different from that descr ibed in Chapter 1. The first word
of the status block is. the same as that described in Chapter
1. However, the second word is not the same. For SF. GMC or
SF.SMC the second word contains the number of bytes in the
specified user buffer that were sucessfully processed. For
example, if you have a characteristic in the buffer that
caused an error, ISB+2 (the second word) will contain the
offset to the characteristic~

If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When the I/O request completes, control branches to
address specified by ast at the software priority of
requesting task. Omit ast or specify 0 to omit
processing.

code
ast.
the
the
AST

The starting address of a data buffer of length "size"
bytes. Each word in the buffer has the form

.BYTE characteristic-name

.BYTE 0

characteristic-name

One of the bit names that is given in Table 2-7.
value returned in the high byte of each byte-pair
if the characteristic is true for the terminal and
it is not true.

The
is 1
o if

The size of
size must
bytes. The
For SF.GMC,

the stadd data buffer in bytes. The specified
be greater than 0 and less than or equal to 8128
buffer must be within the task's address space.
size must be an even value.

2-51

FULL-DUPLEX TERMINAL DRIVER

For the TC.TTP characteristic (terminal type), one of the values shown
in Table 2-7 is returned in the high byte.

Table 2-7
Terminal Characteristics

for SF.GMC and SF.SMC Functions

Bit
Name

Octal Corresponding
Value Meaning (if asserted)

TC.ABD 77 Auto-baud detection

TC.ACD

TC.ACR 24

TC.ANI 122

TC.ASP 76

TC.AVO 123

TC.BIN 65

TC.BLK 42

TC.CTS 72

TC.DEC 124

TC.DLU 1 41

TC.EDT 125

Ancillary control driver.
Value determined by system
manager

Wraparound mode

ANSI CRT terminal

Remote line answer speed.
Initial speed over
dial";'up line.

VT100-family terminal
display

Binary input mode
(read-pass-all). No
characters are interpreted
as control characters.

Terminal is capable of
block mode transfers

Suspend output to terminal
Task can cancel an input
~S or get the current
state of the terminal
with regard to ~S or
~Q.

o = resume
1 = suspend

Digital CRT terminal

Dial-up line

Terminal performs editing
functions

MCR Command

SET !ABAUD=TTnn:

SET !WRAP=TTnn:

SET !ANSI=TTnn:

SET /REMOTE=TTnn:speed

SET /AVO=TTnn:

SET·/RPA=TTnn:

SET /BLKMOD=TTnn:

SET/DEC=~Tnn:

SET /REMOTE=TTnn:

SET /EDIT=TTnn:

1. A program can enable the auto-call feature of the DF03 modem
by setting TC.DLU to a value of two. Auto-call allows you to use
the terminal to dial out of the computer. (This is in addition
to receiving incoming calls.) While in this mode, read and write
requests are serviced even when a line is not in use.
Consequently, I/O requests do not fail when the line is hung...,up,
which is the case for remote lines (TC.DLU=l).

(continued on next page)

2-52

(

(

(

(

(

(

Bit
Name

TC.EPA

TC.ESQ

TC.FDX

TC.HFF

TC.HFL

TC.HHT

TC.HLD

TC.HSY

TC. ICS

TC.ISL

TC.LPP

TC.MHU

TC.NBR

Octal
Value

40

35

64

17

l3

21

44

137

141

6

2

145

102

FULL-DUPLEX TERMINAL DRIVER

Table 2-7 (Cont.)
Terminal Characteristics

for SF.GMC and SF.SMC Functions

Corresponding
Meaning (if asserted)

When TC.PAR is enabled:
o = odd parity
1 = even parity

Input escape sequence
recognition

Full-duplex mode

Hardware form-feed
capability (If 0,
form-feeds are simulated
using TC.LPP.)

Number of fill characters
to insert after a carriage
return (0-7=x) (Use a value
of 7 for the LA30-S.)

Horizontal tab capability
(if 0, horizontal tabs are
simulated using spaces.)

Hold screen mode.
Terminal has ability
to hold screen. Not
supported over net (NCT).

MCR Command

SET /ESCSEQ=TTnn:

SET /FDX=TTnn:

SET /FORMFEED=TTnn:

SET /HFILL=TTnn:x

SET /HHT=TTnn:

SJ;!T /HOLD=TTnn:

Host to terminal SET /HSYNC=TTnn:
synchronization. XOFF
sent when resources are
low. XON sent when
resources are high. XOFF
prevents terminal character
input.
o = No flow control
1 = Flow control exerted

Notify of change in
type-ahead buffer
(input count state)

Get MUX subline (=0-15)
on interface to which user is
connected (SF.GMC only).

Page length (1-255.=x)

Declare modem hangup AST.
Specify address of AST
activated by lost carrier.

Broadcast disabled

SET /LINES=TTnn:x

SET /NOBRO=TTnn:

(continued on next page)

2-53

Bit
Name

TC.NEC

TC.OOB

TC.PAR

TC.PPT

TC.PRI

TC.PTH

TC.RAT

TC.RGS·

TC.RSP

TC.SCP

TC.SFC

TC.SLV

TC.SMR

TC.SSC

TC.TBF

FULL-DUPLEX TERMINAL DRIVER

Table 2-7 (Cont.)
·Terminal Characteristics

for SF.GMC and SF.SMC Functions

Octal Corresponding
Value Meaning (if asserted)

47 Echo suppressed

140

37

147

51

146

Specify out-of-band
characters and whether
they are included in the
type-ahead buffer, and
whether they are to clear
the type-ahead buffer.

Generate and check parity

Terminal has printer port

Terminal is privileged
(SF. GMC only)

Pass through enable
Only CTRL/S and CTRL/Q are
honored.
1 = pass through
o = default; no pass

through

MCR Command

SET /NOECHO=TTnn:

SET /PARITY=TTnn:

SET /PRINTERPORT=TTnn:

SET /PRIV=TTnn:

SET /PASTHRU=TTnn:

7 Type-ahead buffer: SET /TYPEAHEAD=TTnn:

126

3

12

131

50

25

142

71

o = 1-character type-ahead
1 = 36-character type-ahead
(RSX-11M only)

Terminal supports ReGIS
instructions

Receiver speed
(bits-per-second)

Terminal is a scope (CRT)

Terminal supports soft
character set

No unsolicited input
is accepted

Uppercase conversion
disabled

Specify terminal management
switch characters. These
cause a switch from normal
mode to terminal management
mode.

Type-ahead buffer count
obtained by SF.GMC.
Cleared by SF.SMC.

SET /REGIS=TTnn.

SET /SPEED=TTnn:rcv:xmit

SET /CRT=TTnn:

SET /SOFT=TTnn:

SET /SLAVE=TTnn:

SET /LOWER=TTnn:

(continued on next page)

2-54

(

c

(

(

(

(

Bit
Name

TC.TBM

TC.TBS

TC.TLC

TC.TMM

TC.TSY

TC.TTP

TC.VFL

TC.WID 2

TC.XSP

TC.8BC

FULL-DUPLEX TERMINAL DRIVER

Table 2-7 (Cont.)
Terminal Characteristics

for SF.GMC and SF.SMC Functions

Octal Corresponding
Value Meaning (if asserted)

101 Type-ahead buffer mode
O=task type-ahead
l=CLI type-ahead

100 Type-ahead buffer size
(0-255=x) (RSX-IIM-PLUS
I/O systems only)

MCR Command

SET /SERIAL=TTnn:

SET /TYPEAHEAD=TTnn:x

130 CLI gets CTRL/C notification SET /CTRLC=TTnn:-

143

144

10

14

1

4

67

In terminal management mode.
Set when switch characters
have been detected and
terminal management mode is
active. Cleared by QIO$
SF.SMC.
1 = In terminal management

mode
o = Exit terminal management

mode

Output flow control.
Allows input XON or XOFF
to function. XOFF prevents
output from the terminal.
o = XON/XOFF ignored
1 = default; process

XON/XOFF

SET /TTSYNC=TTnn:

Terminal type (=0-255. =x) SET /X=TTnn:
SET /TERM=TTnn:x

Send four fill characters SET /VFILL=TTnn:
after line feed for vetica1
forms control.

Page width (=1-255.=x)

Transmitter speed
(bits-per-second)

Pass eight bits on input,
even if not binary input
mode (TC.BIN).

SET /BUF=TTnn:x

SET /SPEED=TTnn:rcv:xmit

SET /EBC=TTnn:

2. Unsolicited input that fills the buffer before a terminator
is received is possibly invalid. When this happens, the driver
discards the input by simulating a CTRL/U and echoing ~U.

In Table 2-8, the octal values 0-177 are reserved by DIGITAL. Values
200-377 are available for customer use to define non-DIGITAL terminals.
The implicit characteristics shown are set by the driver. Values not shown
are not automatically set by the driver. An "unknown" terminal type has no
implicit characteristics.

2-55

2.4.15.1 Characteristic Bit Special Information - The following bits
have special, additional information:

• TC.ASP, TC.HLD - Effective for VT5x and VT61 only.

• TC.RSP, TC.XSP, TC.ASP - The MCR SET /SPEED command requires
parameters for both receiver (rcv) and transmitter (xmit)
baud rates. (The valid combinations for each are in the
RSX-11M/M-PLUS MCR Operations Manual.) The MCR SET /SPEED
command format is as follows:

SET !SPEED=TTnn:rcv:xmit

2-56

(

(

(

(

•

FULL-DUPLEX TERMINAL DRIVER

The list of baud rates in bps and valid MCR SET /SPEED or SET
/REMOTE values that may be set is as follows:

TC.ASP
TC.RSP or
TC.XSP
Value

S.O
S.50

Baud Rate (in bps) and
Valid MCR SET Values

(disabled)
50 (Baudot codes are not

supported)
75

110
134
150
200
300
600

1200
1800
2000
2400
3600
4800
7200
9600

S.75
S.110
S.134
S.150
S.200
S.300
S.600
S.1200
S.1800
S.2000
S.2400
S.3600
S.4800
S.7200
S.9600
S.EXTA
S.EXTB
S.19.2

(DHll external speed A)
(DH11 external speed B)

19200 (Not available on DZQ11 or
DZVll)

Speed can be set only on DHll and DZII controllers. DZV11
and DZQ11 transmitter and receiver speeds must be equal (no
split baud rates permitted). Only one value may be specified
for the remote answer speed. This value applies to both the
transmitter and receiver.

TC.TTP - When the terminal driver reads this bit, the driver
sets implicit values for terminal characteristics TC.LPP,
TC.WID, TC.HFF, TC.HFL, TC.HHT, TC.VFL, and TC.SCP, as shown
in Table 2-7. You can change (override) these values by
subsequent IO.SMC requests. In addition, the terminal driver
uses TC.TTP to determine cursor positioning commands, as
appropriate.

• TC.CTS
(CTRL/Q) ,
function.

Returns the present suspend (CTRL/S), resume
or suppress (CTRL/O) state set via the SF.SMC
Values returned are as follows:

Value
Returned

o
1
2
3

State

Resume (CTRL/Q)
Suspend (CTRL/S)
Suppress (CTRL/O)
Both suppress and suspend

When a value of 0 is used with the SF.SMC function, the
suspend state is cleared; a value of 1 selects the suspend
state.

2-57

FULL-DUPLEX. TERMINAL DRIVER

• TC.TBF - Returns the number of unprocessed characters in the
type-ahead buffer for the specified terminal. This allows ' (
tasks to determine whether any characters were typed that did
not require AST processing. In addition, you can use the
value returned to read the exact number of characters typed,
rather than a typical value of 80(decimal) or l32(decimal)
characters for the terminal. Please note the following three
items when attempting to use the number returned by TC.TBF:

1. The tas~ must attach the terminal to receive characters
from the type-ahead buffer.

2. The maximum capacity of the type-ahead buffer is
36 (decimal) characters for RSX-llM systems and
255 (decimal) characters for RSX-llM-PLUS systems.

3. Using TC.TBF in an SF.SMC function flushes the type-ahead
buffer.

2-58

(

(

(

(

(

FULL-DUPLEX TERMINAL DRIVER

2.4.16 QIO$C SF.SMC - Set Multiple Characteristics

The QIO$C SF.SMC macro enables a task
characteristics of a terminal. SF.SMC
SF.GMC (Get Multiple Characteristics).

to set and reset the
is the inverse function of

Table 2-7 in Section 2.4.15 notes the terminal characteristics for
both the SF.SMC and the SF.GMC functions.

If the characteristic-name is TC.TTP (terminal type), the octal value
that corresponds to the terminal type can have anyone of the values
listed in Table 2-8.

A nonprivileged task can issue an SF.SMC request for its own terminal
(TI:) only. A privileged task can issue SF.SMC to any terminal.

Terminal output can be suspended or resumed (simulated CTRL/S and
CTRL/Q, respectively) by specifying an appropriate value for TC.CTS.
A value of 0 resumes output and a value of 1 suspends output.
Specifying any value for TC.TBF flushes (clears) the type~ahead buffer
(forces the type-ahead buffer count to 0).

For SF.SMC, the contents of the I/O Status Block (ISB) is different
from that described in Chapter 1. The first word of the status block
is the same as that in Chapter 1. However, the second word is not the
same. For SF.GMC or SF.SMC the second word contains the number of
bytes in the specified user buffer that were sucessfully processed.
For example, if you have a characteristic in the buffer that caused an
error, ISB+2 (the second word) will contain the offset to the
characteristic.

The format of QIO$C SF.SMC is as follows:

QIO$C SF.SMC,lun,[efn],[pri],[isb],[ast],<stadd,size)

Parameters:

The parameters have the following meanings:

Parameter Meaning

Iun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the QIO$
operation. For more 'information refer to Chapter 1.

pri Makes this QIO$ macro compatible with RSX-llD. Use a value
of 0 or a null for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1; however, the I/O status block used for SF.SMC
is different from that described in Chapter 1.

ast If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When this I/O request completes, control branches to
address specified by ast at the software priority of
requesting task. Omit ast or specify 0 to omit
processing.

2-59

code
ast.

the
the
AST

Parameter

stadd

size

FULL-DUPLEX TERMINAL DRIVER

Meaning

The starting address of a buffer of length "size" bytes.
The address must be word aligned.for SF.SMC. Except for the
characteristics TC.MHU, TC.SSC, and TC.OOB, each word in the
buffer has the form

.BYTE characteristic-name

.BYTEvalue

characteristic-name

One of the symbolic bit names given in Section 2.4.15
(Table 2-7).

value

Either 0 (to clear a given characteristic) or 1 (to set
a characteristic) •

The size of
size must
bytes. The
For SF.SMC,

the stadd data buffer in bytes. The specified
be greater than 0 and less than or equal to 8128
buffer must be within the task's address space.
size must be an even value.

2.4.16.1 Processing for TC.MHU, TC.SSC, and
characteristics, TC.MHU, TC.SSC, and TC.OOB,
processing and buffers. The buffers have the form

TC.OOB -Three
require. special

.BYTE characteristic name

.BYTE reserved
• WORD

TC.MHU

TC.SSC

This characteristic declares a modem hangup AST. The buffer
required for TC.MHU is shown in Figure 2-3. The buffer must
contain the address of an AST that is activated when the
terminal driver detects that the carrier has been lost. A
zero in word 2 (AST address) clears this characteristic.

The buffer has the
! •• tp6.nfl.b.nf.nj

format shown

TC.MHU

in

o

3
o reserved I

~----------~------------~ 2
AST address or 0

ZK-4081-85

Figure

Figure 2-3 Buffer Required for TC.MHU

2-3.

The characteristic TC.SSC defines or redefines terminal
switch characters. The buffer required for TC.SSC is shown
in Figure 2-4. The terminal must be attached (IO.ATT)
before you set this characteristic. However, the terminal
must not be attached for notification of unsolicited input
ASTs (IO.ATA).

2-60

(

(

(

(

(

(

TC.SSC
(Cont.)

TC.OOB

FULL-DUPLEX TERMINAL DRIVER

The buffer has the format shown in Figure 2-4.

o

3 I o reserved TC.SCC
2

AST address or 0
5 4

Switch characters

ZK-4082-85

Figure 2-4 Buffer Required for TC.SSC

When the AST address is 0, the switch characters are
disabled.

If the terminal is in terminal management mode, both CTRL/C
and switch characters are treated as normal data. If the
terminal is not currently in terminal management mode and
switch characters have been enabled, the terminal driver
compares the input characters against the specified switch
characters. If there is a match, it cancels any pending
read with a status of IS.TMM, flushes the type-ahead buffer,
executes the specified AST, and sets the terminal in
terminal management mode.

The characteristic TC.OOB defines the out-of-band (POB)
character set for the particular terminal. With this
characteristic you can specify certain control characters as
out-of-band. To use TC.OOB, the task must attach the
terminal and set up the TC.OOB characteristic. After, TC.OOB
is set, and you enter a specified OOB .character at the
terminal, the character causes an AST and the typed-in
character is on the stack. You specify the AST address when
you set up the OOB characteristic.

Additionally, you can declare any of the OOB characters as a
"clear OOB character." If the character is declared to be
"clear," it clears the type-ahead buffer and terminates a
pending read with a status of IS.OOB. Any character that is
not a "clear" can be specified as an "include character."
Such a character is included in the normal input stream.
"ClearoOOB" may not be declared as "include."

The buffer required for TC.OOB is shown in Figure 2-5. The
terminal must be attaqhed (IO.ATT) before you set this
characteristic. However, the terminal must not be attached
for notification of unsolicited input ASTs (IO.ATA).

Note the following items before using TC.OOB:

Because all OOB are either HELLO or CLEAR, one set of bit
masks may be used for both. A zero bit mask is a CLEAR.
A one bit mask is a HELLO.

Characters that are CLEAR OOB cannot also be used for
INCLUDE OOB.

To add a character to the OOB set all the characters must
be defined, not just the one to be added.

2-61

TC.OOB
(Cont.)

FULL-DUPLEX TERMINAL DRIVER

The buffer has the format shown in Figure 2-5.

Octal

3
o reserved I TC.OOB

OOB AST address or 0
5

OOB Bit Mask 1
7

OOB Bit Mask 2
11

HELLO/CLEAR Bit Mask 1
13

HELLO/CLEAR Bit Mask 2
15

INCLUDE Bit Mask 1
17

INCLUDE Bit Mask 2

Decimal

o

2

4

6

8

10

12

14

ZK-4084-85

Figure 2-5 Buffer Required for TC.OOB

2.4.16.2 Side Effects of Setting Characteristics - Certain terminal
characteristics that a task may set or that an operator may set using
MCR or DCL commands can have undesirable side effects. In particular,
the characteristics hold-screen (TC.HLD), disable
lowercase-to-uppercase conversion (TC.SMR), and set switch characters
(TC.SSC) can have some undesirable or unexpected side effects. Their
effects are described as follows.

TC.HLD

TC.SMR

TC.SSC

Unexpected behavior can result from a terminal in the
hold-screen mode if its reception rate is much greater than
its transmission rate. (The DHVll supports split baud
rates.) When it is in the hold-screen mode, the terminal
automatically sends a CTRL/S when an output stream is
received and the screen is nearly full. Output is
resumed -- another screenfull -- when you type SHIFT/SCROLL
(the terminal generates CTRL/Q). Thus, no output is lost as
a result of scrolling off the screen before you can read it.
However, if the terminal's transmission rate is far below
its reception rate, some unread output may scroll out of
sight before the CTRL/S can be transmitted.

Note that some terminals and interfaces are
hardware-buffered. This can cause obscure timing problems
for tasks that attempt to invoke the hold-screen mode.

If this characteristic is asserted (lowercase-to-uppercase
conversion is disabled), octal characters 175 and 176 are
interpreted as "right brace (})" and "tilde (-) ,"
respectively. If TC.SMR is not asserted, these characters
are interpreted as an ALTmode (that is, they function as
line terminators that do not advance the cursor to a new
1 ine) •

Setting switch characters disables the normal function of
CTRL/C in that it becomes a normal data character. After
typing switch characters and entering terminal management
mode, switch characters are normal data characters until the
terminal driver exits terminal management mode.

2-62

(

(

(

(

TC.SSC
(Cont.)

FULL-DUPLEX TERMINAL DRIVER

After you have entered the first switch character, the
terminal driver. must wait for the second one before entering
terminal management mode. If the second character is not
the second switch character, the terminal driver treats both
entered characters as normal data characters. Any character
or combination of characters entered after the two switch
characters are considered data characters.

It is advisable to specify nonordinary characters as switch
characters, for example, non-system-specific CTRL-key
combinations.

2.5 STATUS RETURNS

Most RSX-llM/M-PLUS error and status codes that are returned are byte
values in the status word. For example, the value for IS.SUC is 1,
which is in the low byte in the first status word. However, IS.CC,
IS.CR, IS. ESC,. and IS.ESQ are values in the first word of the status
block. When any of these codes are returned, the low byte indicates
successful completion, and the high byte shows what type of completion
occurred.

To test for one of these word-value return codes, first test the low
byte of the first word of the I/O status block for the value IS.SUC.
Then, test the full word for IS.CC, IS.CR, IS.ESC, or IS.ESQ. (If the
full word is equal to IS.SUC, then its high byte is 0, indicating
byte-count termination of the read.)

The "error" return IE.EOF may be considered a successful read, because
the characters returned to the task's buffer can be terminated by a
CTRL/Z character.

The SF.GMC and SF.SMC functions, as described in Sections 2.4.6 and
2.4.13, return the SE.xxx codes. When any of these codes are
returned, the low byte in the first word in the I/O status block
contains IE.ABO. The second word in the I/O status block word
contains an offset (starting from 0) to the byte in error in the QIO's
stadd buffer.

Table 2-9 lists error and status conditions that are returned by the
terminal driver to the I/O status block.

Code

IE.ABO

IE.BAD

Table 2-9
Terminal Status Returns

Reason

Operation aborted

The specified I/O operation was canceled by IO.KIL
while in progress or while in the I/O queue. The
second word of the I/O status block indicates the
number of bytes that were put in the buffer before
the kill was effected.

Bad parameter

The size of the buffer exceeds 8128 bytes.

(continued on next page)

2-63

Code

IE.BCC

IE.DAA

IE.DAO

IE.DNA

IE.DNR

FULL-DUPLEX TERMINAL DRIVER

Table 2-9 (Cont.)
Terminal Status Returns

Reason

Framing error

A framing error was hardware-detected and returned by
the controller. All characters up to (but not
including) the erroneous character are in the buffer.
This condition can occur if you press the BREAK key
on some terminals or if there are hardware problems.

Device already attached

The physical device unit specified in an IO.ATT
ftinction was already attached by the issuing task.
IE.DAA indicates that the issuing task has already
attached the desired physical device unit, not that
the unit was attached by another task. The
subfunction bits TF.AST or TF.ESQ haye no effect i£
IO.ATT specified them.

Data overrun error

A data overrun error was hardware-detected and
returned by the controller. All characters up to
(but. not including) the erroneous character are in
the buffer. This error occurs when a hardware
failure or incompatibility causes characters to be
received by the controller faster than they can be
processed (that is, when an incorrect serial I/O baud
rate or format exists). .

Device not attached

The physical device unit specified in an IO.DET
function was not attached by the issuing task. This
code has no bearing on the attachment status of other
tasks.

Device not ready

The physical device unit specified in. the QIO
directive was not ready to perform the desired I/O
operation. This code is returned to indicate one of
the following conditions:

• A time-out occurred ori the physical device unit.
(That is, an interrupt was lost.)

• An attempt was made to perform a
remote DHVll or DZVll line
present.

function on a
without carrier

(continued on next page)

2-64

(

(

(

(
Code

IE.EOF

IE.IES

IE.IFC

IE.HOD

(
IE.OFL

IE. PES

IE.PRI

(

FULL-DUPLEX TERMINAL DRIVER

Table 2-9 (Cont.)
Terminal Status Returns

Reason

Successful completion on a read with end-of-file

The line of input read from the terminal was
terminated with the end-of-file character CTRL/Z.
The second word of the I/O status block contains the
number of bytes read before CTRL/Z was seen. The
input buffer contains those bytes.

Invalid escape sequence

An escape sequence was started, but escape~sequence
syntax was violated before the sequence was completed
(see Section 2.7). The character causing the
violation is the last character in the buffer.

Illegal function

A function cod'e specified in an I/O request'· was
invalid for terminals, or the function code specified
was a system generation option not selected for this
system.

Buffer allocation failure

System dynamic storage has been depleted, resulting
in insufficient space available to allocate an
intermediate buffer for an input request or an AST
block for an attach request.

Device off line

.The physical device unit associated with the
specified in the QIO directive was not on line.
the system was booted, a device check indicated
this physical device unit was not in
configuration. The physical device unit could
been configured off line.

Partial escape sequence

lun
When
that
the

have

An escape sequence was started, but read-buffer space
was exhausted before the sequence was completed. See
Section 2.7.

privilege violation

A nonprivileged task issued an IO.WBT, directed an
SF.SMC to a terminal other than TI:, or attempted to
set its privilege bit.

(continued on next page)

2-65

Code

IE.SPC

IE.VER

IS.CC

IS.CR

IS. ESC

IS.ESO

IS.PND

FULL-DUPLEX TERMINAL DRIVER

Table 2-9 (Cont.)
Terminal Status Returns

Reason

Illegal address space

One or more of the following conditions may have
occurred:

• The buffer specified for a read or write request
was partially or totally outside the address
space of the issuing task.

• You specified a byte count of O.

• You specified an odd or 0 AST address.

• You specified TF.XCC and ast2 in the same 010$
request.

Character parity error

A parity error was hardware-detected and returned by
the controller. All characters up to (but not
including) the erroneous character are in the buffer.

Successful completion on a read

The line of
terminated by
the bytes read.

input read
a CTRL/C.

from the terminal was
The input buffer contains

Successful completion on a read

The line of input read from the terminal was
terminated by a carriage return. The input buffer
contains the bytes read.

Successful completion on a read

The line of input read from the terminal was
terminated by an ALTmode character. The input buffer
contains the bytes read.

Successful completiori on a read

The line of input read from the terminal was
terminated by an escape sequence. The input buffer
contains the bytes read and the escape sequence.

I/O request pending

The operation specified in the 010$ directive has not
yet been executed. The I/O status block is filled
with Os.

(continued on next page)

2-66

(

(

(

(

Code

IS.SUC

IS.THO

SE.ATA

SE.BIN

SE.FIX

SE.IAA

SE.NAT

SE.NIH

SE.NSC

SE.SPD

SE.UPN

SE.VAL

FULL-DUPLEX TERMINAL DRIVER

Table 2-9 (Cont.)
Terminal Status Returns

Reason

Successful completion

The operation specified in the QIO$ directive _~as
completed successfully. If the operation involved
reading or writing, you can examine the second word
of the I/O status block to determine the number of
bytes processed. The input buffer contains those
bytes •

.successful completion on a read

The line of
terminated by
specified time
buffer contains

input read from the terminal was
a time-out. (TF.TMO was set and the
interval was exceeded.) The input
the bytes read.

The terminal is attached with AST
enabled.

notification

An invalid value for a binary characteristic was used
in SF.SMC.

An attempt was made to change a fixed characteristic
in a SF.SMC subfunctionrequest. (For example, an
attempt was made to change the unit number.)

An invalid AST address was specified.

The terminal is not attached.

A terminal characteristic other than those listed in
Table 2-7 (in Sect 2.4.15) was named in an SF.GMC or
SF.SHC request, or a task attempted to assert TC.PRI.

An attempt was made to change a nonsettable
characteristic. This error can occur when an attempt
is made to make a local-only line a remote line when
the controller does not support remote lines.

The new speed specified in an SF.SMC subfunction
request was not valid,for the controller associated
with the spedfied terminaL

There is not enough' pool space for the terminal
,driver to allocate buffer space.

The new value specified in an SF.SMC request for the
TC.TTP terminal characteristic was not one of those
listed in Table 2-7 (in Section 2.4.15).

2-67

FULL-DUPLEX TERMINAL DRIVER

2.6 CONTROL CHARACTERS AND SPECIAL KEYS

This section describes the meanings of special terminal control
characters and keys for an RSX-IIM/M-PLUS system. Note that the
driver does not recognize control characters and special keys during a
Read All request (IO.RAL) or a Read with Special Terminators (IO.RST).

2.6.1 Control Characters

A control character is input from a terminal by holding the control
key (CTRL) down while typing one other key. Three of the control
characters described in Table 2-10, CTRL/R, CTRL/U, and CTRL/Z,are
echoed on the terminal as AR, AU, and AZ, respectively.

Character

CTRL/C

Table 2-10
Terminal Control Characters

Meaning

Typing CTRL/C causes unsolicited input on that
terminal to be directed to a command line
interpreter, such as MCR. If CTRL/C abort is
enabled, CTRL/C aborts tasks active at the terminal.
(A command line interpreter is invoked and displays a
prompt like MCR; therefore, for this text, the
assumption is that MCR is the command line
interpreter in use, although the terminal driver
responds to other command line interpreters in a
similar manner.) The "MCR)" prompt is echoed when the
terminal driver is ready to accept an unsolicited MCR
command line for input. When the unsolicited input
is terminated, the command line is passed to MCR.

If the last character typed on the terminal was a
CTRL/S(suspend output)" CTRL/C restarts suspended
output and directs subsequent input to MCR.

If the hold-screen mode system generation option has
been selected and the terminal is a VT5x or VT61 in
hold-screen mode, typing a CTRL/C removes the
.terminal from hold-screen mode.

CTRL/C characters can also be directed to a task if
the task has attached a terminal and has specified an
unsolicited input character AST(see Section 2.4.3).
CTRL/C characters' are also passed to a task if you
specify a TF.RPT, IO.RAL!TF.RPT or IO.RST function,
or if the task has set switch characters for the
terminal. .

NOTE

If the terminal driver receives a CTRL/C
character during a read operation (except
during a read-pass-all operation, during a
read with special terminators operation, or
when the pass-through terminal characteristic
(TC.PTH) has been set), the read operation is
terminated, the type-ahead buffer is cleared,
and an IS.CC status code is returned to the
task.

(continued on next page)

2-68

(

(

(

(
Character

CTRL/I

CTRL/J

CTRL/K

CTRL/L

(

CTRL/M

CTRL/O

(

FULL-DUPLEX TERMINAL DRIVER

Table 2-10 (Cont.)
Terminal Control Characters

Meaning

CTRL/I or TAB characters initiate a horizontal tab,
and the terminal spaces to the next tab stop. Tabs
at every eighth character position are simulated by
the terminal driver. CTRL/I or TAB have no special
function if IO.RAL, IO.RST, TF.RAL, TF.RST, or TF.RPT
is enabled. That is, the TAB behaves as an ordinary
character.

CTRL/J
CTRL/J
TF.RAL,
behaves

is equivalent to a LINE FEED character.
has no special function if IO.RAL, IO.RST,
TF.RST, or TF.RPT is enabled. That is, it
as an ordinary character.

CTRL/K initiates a vertical tab, and the terminal
tabs to the next vertical tab stop. For a CRT
terminal, four LINE FEEDs are output. CTRL/K has no
special function if IO.RAL, IO.RST, TF.RAL, TF.RST,
or TF.RPT are enabled. That is, it behaves as an
ordinary character.

CTRL/L initiates a form feed. If the terminal has
hardware form-feed support, the driver echoes A L•
Otherwise, the driver simulates the form fe.ed by
outputting enough line feed characters to advance the
next character position to the top of the next page.
If a CRT terminal is in use, four line feeds are
output. CTRL/L has no special function if IO.RAL,
IO.RST, TF.RAL, TF.RST, or TF.RPT are enabled. That
is, it behaves as an ordinary character.

CTRL/M is equivalent to a carriage RETURN character
(see Section 2.6.2). CTRL/M has no special function
if IO.RAL, IO.RST, TF.RAL, TF.RST, or TF.RPT are
enabled. That is, it behaves as an ordinary
character.

CTRL/O suppresses terminal output except if IO.RAL or
TF.RAL is enabled or the pass-through terminal
characteristic (TC.PTH) has been set. For attached
terminals, CTRL/O remains in effect (output is
suppressed) until one of the following occurs:

• The terminal is detached.

• Another CTRL/O character is typed.

• An IO.CCO or IO.WBT function is issued.

• Input is entered.

• IO.RPR is issued at the terminal~

For unattached terminals, CTRL/O suppresses output
for only the current output buffer (typically one
1 ine) •

(continued on next page)

2-69

Character

CTRL/Q

CTRL/R

CTRL/S·

CTRL/U

CTRL/X

CTRL/Z

FULL-DUPLEX TERMINAL DRIVER

Table 2-10 (Cont.)
Terminal Control Characters

Meaning

CTRL/Q resumes terminal output previously suspended
by CTRL/S except if IO.RAL or TF.RAL is enabled.
This applies only to terminals for which TC.TSY is
enabled (XON/XOFF are processed). You can enable
TTSYNC with the SET /TTSYNC=TTnn MCR command or by
setting the TC.TSY terminal characteristic bit.

CTRL/R response is a terminal driver feature that can
be selected during RSX-llM system generation. CTRL/R
functions as a normal character if TF.RNF, IO.RAL,
TF.RAL, IO.RST, TF.RST, or TF.RPT are enabled.
Otherwise, CTRL/R results in a carriage return and
line feed being echoed, followed by the incomplete
(unprocessed) input line. Any tabs that were input
are expanded and the effect of anything deleted is
shown. On hardcopy terminals, CTRL/R allows you to
verify the effect of a tab or a delete, or both, in
an input line. CTRL/R is also useful for CRT
terminals when the CRT delete system generation
option has been selected (see Section 2.6.2). For
example, after deleting the leftmost character on the
second displayed line of a wrapped input line, the
cursor does not move to the right of the first
displayed line. In this case, CTRL/R brings the
input line and the cursor back together again.

CTRL/S suspends terminal output except if IO.RAL or
TF.RAL is enabled. (Output can be resumed by typing
CTRL/Q or CTRL/C.) This applies only to terminals for
whichTTSYNC is enabled. You can enable TTSYNC with
the SET /TTSYNC=TTnn MCR command or . by setting the
TC.TSY terminal characteristic bit.

CTRL/U functions as a normal character if TF.RNF,
IO.RAL, TF.RAL, IO.RST, TF.RST, or TF.RPT are
enabled. Otherwise, typing CTRL/U before typing a
line terminator deletes previously typed characters
back to the beginning of the line. The system echoes
this character as AU followed by a carriage return
and a line feed.

CTRL/X is treated
TF.RAL, IO.RST,
Otherwise, this
buffer.

as a normal
TF.RST,

character

character
or TF.RPT
clears the

if IO.RAL,
is enabled.

type-ahead

CTRL/Z is treated as a normal character if IO.RAL,
TF.RAL, IO.RST, TF.RST, or TF.RPT are enabled.
Otherwise, CTRL/Z indicates an end-of-fi1e for the
current terminal input. It notifies MAC, PIP, TKB,
and other system tasks that terminal input is
complete, allowing the task to exit. The system
echoes this character as A Z, followed by a carriage
return and a line feed.

2-70

(

(.

(

(

(

(

FULL-DUPLEX TERMINAL DRIVER

2.6.2 Special Keys

The ESC, RETURN, and DELETE (or RUBOUT) keys have special significance
for terminal input. A line can be terminated by the ESC (or ALT) key,

. RETURN key, or the CTRL/Z characters, or by completely filling the
input buffer (that is, by exhausting the byte count before a line
terminator is typed). The standard buffer size for a terminal can be
determined for a task by issuing a Get LUN Information system
directive and examining Word 5 of the buffer. An operator can obtain
the same information with the MCR SET /BUF=TI: command.

Table 2-11 describes the special significance of the ESC, RETURN, and
DELETE (or RUBOUT) keys.

Key

ESC

RETURN

DELETE
(or RUBOUT)

Table 2-11
Special Terminal Keys

Meaning

ESC (the escc:ipe key) functions as a normal character
if IO.RAL, TF.RAL, or TF.RPT are enabled. Otherwise,
if escape sequences are not recognized, typing ESC or
ALT (the ALTmodekey on some terminals) notifies the
terminal driver that there is no further input on the
current line. This line terminator allows further
input on the same line, b~cause the carriage or
cursor is not returned to the first column position.

If escape sequences are recognized, ESC signals the
beginning of an escape sequence. (See Section 2.7.)

RETURN functions as a normal character if IO.RAL,
TF.RAL, or TF.RPT are enabled. Otherwise, typing
RETURN terminates the current line and causes the
carriage or cursor to return to the first column on
the next nne.

DELETE or RUBOUT functions as a normal character if
TF.RNF (read no filter) is enabled. Otherwise,
typing DELETE (or RUBOUT) delet~s the last character
typed on an input line. Only characters typed since
the last line terminator may be deleted. Several
characters can be deleted in sequence by typing
successive DELETEs or RUBOUTs.

For example, on a printing terminal, the first DELETE
(or RUBOUT) echoes a backslash (\) followed by the
character that has been deleted, even if the terminal
is in the no-echo mode. Subsequent DELETEs (or
RUBOUTs) cause only the deleted character to be
echoed. The next character typed that is not a
DELETE or RUBOUT causes another backs lash to be
printed, followed by the new character. The
non-RUBOUT character is not echoed if the terminal is
in the no-echo modei however, a backs lash is echoed
in res~onse to the first non-RUBOUT character. The
followIng example illustrates rubbing out ABC and
then typing CBA:

ABC\CBA\CBA

(continued on next page)

2-71

Key

DELETE
(or RUBOUT)

FULL-DUPLEX TERMINAL DRIVER

Table 2-11 (Cont.)
Special Terminal Keys

Meaning

The second backs lash is not displayed
terminator is typed after rubbing out the
on a line, as in the following example:

ABC\CBA

if a line
characters

At system generation time, the "CRT rubout" feature
can be selected. This feature applies to a terminal
only after a SET MCR directive has been issued:

SET /CRT=TI:

If the CRT DELETE (or RUBOUT) feature was selected,
DELETE (or RUBOUT) causes the last typed character
(if any) to be removed from the incomplete input line
and a backspace-space-backspace sequence of
characters for that terminal is echoed. If the last
typed character was a tab, enough backspaces are
issued to move the cursor to the character position
before the tab was typed. If a long input line was
split, or "wrapped," by the automatic-carriage-return
option, and a DELETE (or RUBOUT) erases the last
character of a previous line, the cursor is not moved
to the previous line. Your task must use CTRL/R to
resynchronize the current display with the contents
of the incomplete i~put line.

2.7 ESCAPE SEQUENCES

Escape sequences are strings of two or more characters beginning
with an escape character. In RSX-llM systems, escape sequence
support described in this section is an option during system
generation. Some terminals generate an escape sequence when a
special key is pressed (for example, the FCN key on the VT61). On
any terminal, an escape sequence may be generated manually by typing
ESC followed by the appropriate characters.

Escape sequences provide a way to
interpretation by the operating
number of read-all functions, but
read with IO.RLB requests.

pass input to a task without
system. This could be done with a
escape sequences allow input to be

2.7.1 Definition of Escape Sequence Format

The format of an escape sequence defined by American National
Standard X 3.41 (1974) and used in the VT100 is:

ESC F

2-72

(

(

(

(-

(

(

FULL-DUPLEX TERMINAL DRIVER

where:

ESC The introduced control character (033(octal» that is
named escape.

The intermediate bit combinations that mayor may not be
present. These characters are bit combination 40(8) to
57(8) inclusive in both 7- and 8-bitenvironments.

F The final character. F characters are bit combinations
60(8) to 176(8) inclusive in escape sequences in both 7-
and 8-bit environments.

The occurrence of a character in the inclusive ranges 0 to 37(octal)
is technically an error condition. However, the recovery from the
error occurs by immediately executing the function specified by the
character and then continuing to execute the escape sequence. The
exceptions to continuing the escape sequence execution are:

• The character ESC occurs, aborting the current escape
sequence. A new one, starting with the ESC just received,
begins •

• The character CTRL/X (30(octal» or the character CTRL/Z
(32(octal) occurs, aborting the current escape sequence.
This is the case with any control character.

There are five exceptions to this general syntax definition; these
exceptions are discussed in Section 2.7.5.

2.7.2 Prerequisites

There are prerequisites that must be satisfied before escape
sequences can be received by a task. First, the terminal must be
declared capable of generating escape sequences. This may be done
with the DCL SET command:

SET TERM/ESCAPE

After the preceding prerequisite is satisfied" one of the following
prerequisites must be met.

1. You must attach the terminal with IO.ATT!TF.ESQ.

2. You must use the TF.RES modifier with the IO.EIO!TF.RLB
function.

The second
recognition
function.

method
for

will
only

NOTE

enable escape
the duration of

character
the read

If these prerequisites are not satisfied, the ESC character is treated
as a line terminator. If these prerequisites are satisfied, your task
may use CTRL/SHIFT/O (017 octal) as an ALTmode character. However,
this character does not act as an ALTmode from a terminal that cannot
generate escape sequences.

2-73

FULL-DUPLEX TERMINAL DRIVER

An ALTrnode is a line terminator that does not cause the cursor to
advance to a new line. On terminals that cannot generate escape
sequences, the ESCape key acts as an ALTrnode. Characters 175 and 176
also function as ALTrnodes if the terminal has not been declared
lowercase (DCL command SET TERM/LOWERCASE).

2.7.3 Characteristics

Escape sequences always act as line terminators. That is, an input
buffer may contain other characters that are not part of an escape
sequence, but an escape sequence always comprises the last characters
in the buffer.

Escape sequences are not echoed. However, if a non-CRT delete
sequence is in progress, it is closed with a backslash when an escape
sequence is begun.

Escape sequences are not recognized in unsolicited input streams, or
in a read all (subfunction bit TF.RAL).

2.7.4 Escape Sequence Syntax Violations

A violation of the syntax defined in Section 2.7.1 causes the driver
to abandon the escape sequence and to return an error (IE.IES).

2.7.4.1 DELETE or RUBOUT (177) - The character DELETE or RUBOUT is
not legal within an escape sequence. Typing it at any point within an
escape sequence causes the entire sequence to be abandoned and deleted
from the input buffer. Therefore, use DELETE or RUBOUT to abandon an
escape sequence, if desired, once you have begun it.

2.7.4.2 Control Characters (0-037) - The reception of any except four
characters in the range 0 to 037 (octal) is a syntax violation that
terminates the read with an error (IE.IES).

The four control characters that are allowed are: CTRL/Q, CTRL/S,
CTRL/X, and CTRL/O. These characters are handled normally by the
operating system even when an escape sequence is in progress. For
example, entering:

ESC CTRL/S A

I IS:ESQ I
gives:

IOSB

with the additional effect of turning off the output stream.

2.7.4.3 Full Buffer - When an escape sequence is terminated because
there is no more buffer space rather than by typing a final character,
the error IE. PES is returned. For example, after a task issues an
IO.RLB with a buffer length of 2, and you type:

ESC ! A

2-74

(

(

(

(

(

(

FULL-DUPLEX TERMINAL DRIVER

the buffer contains "ESC I", and the I/O status block contains:

IOSB I IE: ... I
The "A" is treated as unsolicited input.

2.7.5 Exceptions to Escape Sequence Syntax

Five "final characters" that normally terminate an escape sequence are
treated as special cases by the terminal driver for use with certain
terminals:

ESC ? ••
ESC o ...
ESC P •••
ESC Y •••
ESC [...

Refer to documentation supplied with the specific terminal(s)
for correct use of escape sequences.

in use

2.8 VERTICAL FORMAT CONTROL

Table 2-12 is a summary of all characters that your task can use for
vertical format control on the terminal. Anyone of these characters
can be specified as the value of the vfc parameter in the IO.WLB,
IO.WVB, IO.WBT, IO.CCO, or IO.RPR functions.

Octal
Value

040

060

061

Table 2-12
Vertical Format Control Characters

Character Meaning

blank Single Space - Outputs one line feed, prints the
contents of the buffer, and outputs a carriage
return. Normally, printing immediately follows
the previously printed line.

o

1

Double Space - Outputs two line
the contents of the buffer,
carriage return. Normally, the
are printed two lines below
printed line.

feeds, prints
and outputs a

buffer contents
the previously

Page eject - If the terminal supports FORM
FEEDs, outputs a form feed, prints the contents
of the buffer, and outputs a carriage return.
If the terminal does not support FORM FEEDs, the
driver simulates the form-feed character by
either outputting four line feeds to a CRT
terminal, or by outputting enough line feeds to
advance the paper to the top of the next page on
a printing terminal.

(continued on next page)

2-75

FULL-DUPLEX TERMINAL DRIVER

Table 2-12 (Cont.)
Vertical Format Control Characters

Octal
Value

053

044

000

Character

+

$

null

Meaning

Overprint - Prints the contents of the buffer
and outputs a carriage return, normally
overprinting the previous line.

Prompting Output Outputs one line feed and
prints the contents of the buffer. This mode of
output is used with a terminal on which a
prompting message is output and input is then
read on the same line.

Internal Vertical Format - Prints the buffer
contents without addition of vertical format
control characters. In this mode, more than one
line of guaranteed contiguous output can be
printed for each I/O request.

All other vertical format control characters are interpreted as blanks
(040).

2.9 AUTOMATIC CARRIAGE RETURN

You can set individual terminals for wraparound, as desired, using the
MCR SET command

>SET /WRAP=TTxx:

Once you select wraparound, you can select the column at which
wraparound occurs by using the MCR SET command

>SET /BUF=TI:n
>

Your task can also use the SET /BUF command without an argument to
display the current buffer width for a terminal:

>SET /BUF=TI:
BUF=TI: 00072.
>

A task can determine the buffer width by issuing a Get LUN Information
directive and examining word 5 returned in the buffer.

After the SET /BUF command has been entered, typing beyond the buffer
width results in a carriage return and line feed being output before
the next character is echoed. Although you may have typed only one
line, it is displayed on two terminal lines.

You can lose track of where you are in the input buffer if wraparound
is enabled for your terminal. For example, while deleting text on a
wrapped line, the cursor does not back up to the previous line. To
resynchronize the cursor with the contents of the incomplete input
buffer, type CTRL/R (if this option was selected during system
generation) •

2-76

(

(

(

(

(

FULL-DUPLEX TERMINAL DRIVER

2.10 FEATURES AVAILABLE BY RSX-IIM SYSTEM GENERATION OPTION

A number of terminal-driver features are available as options during
system generation. (See the RSX-IIM System Generation and
Installation Guide.) Features previously discussed· that are not
repeated 1n thrs-siction include:

• Some device-specific QIO functions (see Section 2.3.2)

• Special keys: CTRL/R (see Section 2.6.1)

DELETE (or RUBOUT) (see Section 2.6.2)

• Escape sequences (see Section 2.7)

The only remaining f.eature to be selected during system generation is
hardware-unrecov~rab1e input e~ror notification (hard r~ceive error
detection), which is described in the following section, .. arid
terminal-independent cursor control, which is described in Section
2.16.

2.10.1 Hard Receive Error Detection

All terminal interfaces supported by the full-dpp1extermina1 driver
are capable of detecting and flagging hard receive errors. Hard
receive errors include framing errors, enable character parity error,
and data overrun error.

If the hard receive error detection option (T$$RED) is selected during
system generation, the driver handles hard receive errors as follows:

1. If a read request is being processed and the cha~acter can be
processed immediately, the read request is t~rminated with
one of the following error codes returned in the status
block:

2.

Error
Code Hard Receive Error

IE.BCC
IE.DAO
IE.VER

Framing error
Data overrun
Character parity error

If a command lirie is
interpreter task and
immediately, a CTRL/U is
input is terminated. No

being input for a command line
the character can be processed

simulated, AU is echoed, and the
command line is sent to the task.

3. If the character would normally cause an AST if no error was
detected, the character is ignored and no AST occurs.

4. If the character cannot be proce$sed immediately, it is
stored in the type-ahead buffer. A flag is set for the line,
indicating that the last character in the type-ahead buffer
has an error, disabling further storage in the type-ahead
buffer. When the character is retrieved from the buffer, the
appropriate action is taken, and the flag is cleared. Any
characters received in the meantime are discarded, with a
bell echoed for each character.

If the T$$RED option is not selected, hard receive errors are ignored.

2-77

FULL-DUPLEX TERMINAL DRIVER

2.11 TASK BUFFERING OF RECEIVED CHARACTERS

When task-buffering received characters, characters read from the
terminal are sent directly to the task's buffer. Thus, there is no
need to allocate a terminal driver buffer.

Task buffering of received characters does not necessarily reduce
system overhead. For example, each character must be mapped to the
task's buffer. However, if terminal driver buffering was used, the
system does the mapping only once for all characters to be
transferred.

with the full-duplex terminal driver, output buffering is always
performed.

Task buffering is overridden during checkpointing. If a task is
checkpointable, a driver buffer is allocated and the task is made
eligible for checkpointing by any task, regardless of priority, while
the read operation is in progress. (Checkpointing occurs in this
situation only when there is another task that can be made active.)
Because checkpointability is controlled by the task, you retain
control over this operation.

2.12 TYPE-AHEAD BUFFERING

Characters received by the terminal driver are either processed
immediately or stored in the type-ahead buffer. The type-ahead buffer
allows characters to be temporarily stored and retrieved FIFO. The
terminal driver uses the type-ahead buffer as follows:

1. Store in buffer:

An input character is stored in the type-ahead buffer if one
or more of the following conditions are true:

• The driver is not ready to accept the character (fork
process pending or in progress).

• There is at least one character presently in the
type-ahead buffer.

• The character input requires echo, and the output line to
the terminal is presently busy outputting a character.

• No read request is in progress, no unsolicited input AST
is specified, and the terminal is either attached or
slaved ~nd attached.

NOTE

Depending on the terminal mode and the presence
of a read function, r~ad subfunctions, and an
unsolicited input AST, the CTRL/C, CTRL/O,
CTRL/Q, CTRL/S, and CTRL/X characters may be
processed immediately and not stored in the
type-ahead buffer.

A character is not echoed
Echoing a character is
the buffer, because
read-without-echo) is not

when it is stored in the buffer.
deferred until it is retrieved from
the read mode (for example,
known by the driver until then.

2-78

(

(

(

FULL-DUPLEX TERMINAL DRIVER

2. Retrieve from buffer:

(When the driver becomes ready to process input, or when a
task issues a read request, it attempts to retrieve a
character from the buffer. If the attempt is successful, the
character is processed and echoed, if required. The driver
then loops, retrieving and processing characters until either
the buffer is empty, the driver becomes unable to process
another character, or a read request is finished with the
terminal attached.

(

(

3. Flush the buffer:

The buffer is flushed (cleared) when:

• CTRL/C is received.

• CTRL/X is received.

• A clear out-of-band character is entered.

• Switch characters are detected.

• The terminal becomes detached.

• TC.TBF is written by SF.SMC.

• Exceptions: CTRL/C and CTRL/X do not flush the buffer if
read-pass-all or read-with-special-terminators is in
effect.

If the buffer becomes full, each character that cannot be
entered causes a BELL character to be echoed to the terminal.

If a character is input and echo is required, but the
transmitter section is busy with an output request, the input
character is held in the type-ahead buffer until output
(transmitter) completion occurs.

2.13 FULL-DUPLEX OPERATION

When a terminal line is in the full-duplex mode, the full-duplex
driver attempts to service one read request and one write request
simultaneously. The IO.ATA, IO.ATT, IO.DET, and SF.SMC functions are
performed with the line in an idle state only (not executing a read or
a write request).

2.14 PRIVATE BUFFER POOL

The driver has a private buffer pool for intermediate input and output
buffers. Whenever the driver needs dynamic memory, it first attempts
to allocate a buffer in the private pool. If this fails, it attempts
to allocate a buffer in the system pool. If the allocation in the
system pool fails during command line input, a CTRL/U .is simulated and
echoed.

2-79

FULL-DUPLEX TERMINAL DRIVER

Command line interpreter task buffers are handled in a special way.
When unsolicited input begins, a buffer is allocated, as previously
described, for the command line (a string of characters, ·followed by
an appropriate terminator character). When the input is completed,
the contents of the buffer is sent directly to the command line
interpreter task if the buffer was allocated in the system pool.
However, if the buffer was allocated in the driver's private pool, it
must first be moved into a buffer in the system pool to provide access
for the task.

2.15 INTERMEDIATE INPUT AND OUTPUT BUFFERING

Input buffering for checkpointable tasks with checkpointing enabled is
provided in the private pool. As each buffer becomes full, a new
buffer is automatically allocated and linked to the previous buffer.
The Executive then transfers characters from these buffers to the task
buffer, and the terminal driver deal locates the buffers once the
transfer has been completed.

If the driver fails to allocate the first input buff~r, the characters
are transferred directly into the task buffer. If the first buffer is
successfully allocated, but a subsequent buffer allocation fails, the
input request terminates with the error code IE. NOD. In this case,
the I/O status block contains the number of characters actually
transferred to the task buffer. The task may then update the buffer
pointer and byte count and reissue a read request to receive the rest
of the data. ·The type-ahead buffer ensures that no input data is
lost.

All terminal output is buffered. As many buffers as required are
allocated by the terminal driver and linked to a list. If not enough
buffers can be obtained for all output data, the transfer is done as a
number of partial transfers, using available buffers for each partial
transfer. This is transparent to the requesting task. If no buffers
can be allocated, the request terminates with the error code IE. NOD.

The unconditional output buffering serves three purposes:

1. It reduces time spent at interrupt level.

2. It enables long DMA transfers for DHII controllers.

3. It enables task checkpointing during the transfer to the
terminal (if all output fits in one buffer list).

2.16 TERMINAL-INDEPENDENT CURSOR CONTROL

Terminal-independent cursor control capability is provided during
system generation. The terminal driver resp?n~s to task I/O requests
for cursor positioning without the task requlrlng information about
the type of terminal in use. I/O functions associated with cursor
positioning ar~ described as follows.

Cursor position is specified in the vfc parameter of the IO.WLB or
IO.RPR function. The parameter is interpreted simply as a vfc
parameter if the high byte of the parameter is O. However, if the
parameter defines cursor position, the high byte must be nonzero, the
low byte is interpreted as column number (x-coordinate), and the high
byte is interpreted as line number (y-coordinate). Home position, the
upper left corner of the display, is defined as (1/1). Depending on
terminal type, the driver sends to the terminal cursor-positioning
commands appropriate for the terminal in use that move the cursor to

2-80

(

(

(

(

(

(

FULL-DUPLEX TERMINAL DRIVER

the specified position. If the most significant bit of the line
number is set, the driver clears the display before positioning the
cursor.

When defining cursor position in an IO.WLB function, you can use the
TF.RCU subfunction to save the current cursor position. When included
in this manner, TF.RCUcauses the driver first to save the current
cursor position, then to position the cursor and output the specified
buffer, and, finally, to restore the cursor to the original (saved)
position once the output transfer has been completed.

2.17 TERMINAL INTERFACES

This section summarizes the characteristics of the standard
communication-'line interfaces supported by RSX-11M. Refer to the
Digital Terminals and Printers Handbook for additional details.

2.17.1 DH11 Asynchronous Serial Line Multiplexer

The DH11 multiplexer interfaces up to 16 asynchronous serial
communications lines for terminal use. The DH11 supports programmable
baud rates. Input and output baud rates may differ; the input rate
may be set to 0 baud, thus effectively turning off the terminal. The
OM11-BB option may be included to provide modem control for dial-up
lines. These lines must be interfaced by a full duplex modem (for
example, in the Uriited States, a Bell" l03A or equivalent modem).

2~17.2 DHV1l Asynchronous Serial Line Multiplexer

The DHV11 multiplexer interfaces up to eight asynchronous serial
communications lines for terminal use. This multiplexer is the Q-BUS
version of the OHll UNIBUS multiplexer. The DHV1.1 supports
programmable baud rates with the option of selecting split speed
operation. (Split speed operation allows different transmit and
receive speeds.) Also provided is modem control for full-duplex
point-to-point operation.

2.17.3 OJ1l Asynchronous Serial Line Multiplexer

The DJ11 multiplexer interfaces as many as 16 asynchronous serial
lines to the PDP-11 for local terminal communications. The DJ11 does
not provide a dial-up capability. Baud rates are jumper selectable.

2.17.4 OL1l Asynchronous Serial Line Interface

The DL11 supports a single asynchronous serial line and handles
communication between the PDP-11 and a terminal. A number of standard
baud rates are available to DL11 users. However, because the DL11
does not have an input silo, baud rates greater than 1200 baud are not
recommended. Higher baud rates may cause input characters to be lost.

2-81

FULL-DUPLEX TERMINAL DRIVER

For hardware design reasons, a DLll is susceptible to losing
receiver-interrupt-enable in its Receiver Status Register. The
disabling of the receiver interrupt bit causes the terminal to print
output requests but not to respond to input (for example, the terminal
does not echo input characters). The terminal driver has no mechanism
for recognizing the disabling. Therefore, it cannot recover. The bit
must be reseb with an MCR command OPEN, the console switch register,
or a periodically rescheduled task.

2.17.5 DZll Asynchronous Serial Line Multiplexer

The DZll multiplexer interfaces up to eight asynchronous serial
communication lines for use with terminals. It supports programmable
baud rates; however, transmit and receive baud rates must be the same •
. The DZll can control a full-duplex modem in auto-answer mode.

2.1S PROGRAMMING HINTS

The following sections are supplied as additional general information
to enhance your use of the full-duplex terminal driver.

2.1S.l Checkpointing During ~erminal Input

If checkpointing during terminal input was selected as a system
generation option, a checkpointable task is stopped (and therefore.
eligible to be checkpointed) when trying to read. Therefore, a
stratagem such as issuing a read followed by a mark-time does not
work. The intent might be to time out the read if input is not
received in a reasonable length of time. But the mark-time is not
issued until the read completes.

You can circumvent this behavior by disabling checkpointing for the
read. This is not a desirable solution because it forces a task to
remain in memory during the entire read. This defeats the purpo~e of
selecting the checkpoint-during-terminal-input option.

2.1S.2 RT02-C Control Function

Because the screen of anRT02C Badge Reader and Data Entry Terminal
holds only one line of information, special care must be taken when
sending a control character (for example, vertical tab) to the RT02-C.
Use the IO.WAL (write all) function for this purpose.

It is recommended that your task use read without echoing when reading
a badge with the RT02-C. Use IO.RAL or IO.RNE functions, followed by
the IO.WAL function, to echo the information for display.

2-S2

(

(

(

(

(

(

-------- - ------ -----------------

FULL-DUPLEX TERMINAL DRIVER

2.18.3 Remote DL11-E, DHll, andDZll Lines

Before a remote line is answered, the driver clears certain terminal
characteristics (see Table 2-7) that may have been set by an MCR
command SET, or by an SF.SMC function. The characteristics cleared
are: TC.SCP, TC.ESQ, TC.HLD, TC.SMR, TC.NEC, TC.FDX, TC.HFF, TC.HHT,
TC.VFL, TC.HFL, TC.TTP, TC.8BC, and TC.BIN. (Clearing TC.TTP means
that a terminal type of "unknown" returns in an SF.GMC request.) The
TC.ACR characteristic (automatic wraparound) is set. Buffer size is
set to 72.

A DZll remote line must be declared to be remote before the terminal
driver can handle the modem.

2.18.4 Modem Support

The terminal driver supports the following modem control operations:

• Local or remote operation

• Answer speed

• Autobaud speed detection

The characteristics bit that controls local or remote operation is
TC.DLU. This bit can be set with the MCR command SET /REMOTE (or SET
/NOREMOTE for local operation). The DCL command SET TERMINAL REMOTE
(or SET TERMINAL LOCAL) can also be used.

When there is an incoming calIon a remote line, the TC.ASP
characteristic determines the baud rate for the answering modem.

Split baud rates (different transmit and receive speeds) are not
supported for answer speed.

The default answer speed is set during system generation. However,
the answer speed can be set on line using the MCR command SET
/REMOTE=TTnn:speed. VMR can also be used to set the answer speed.

The terminal driver can determine the speed of the incoming call by
sampling the first input character after dial-up for the following
speeds:

110 1800
150 2400,
300 4800
600 9600
1200

This is called autobaud speed detection. It is an option that you can
select for each line by using the SET /AUTOBAUD command. When you set
auto-baud speed detection for a given line, the terminal driver tries
to sense the baud speed of the caller when the caller's line is set to
remote and a call has been received. The terminal driver detects the
baud rate as you press the RETURN key (enter carriage returns) several
times when you first establish the remote connection from your
terminal to the remote computer. Press the RETURN key until the
default RSX prompt (» is displayed.

The SET /ABAUD command sets the TC.ABD terminal characteristic.

2-83

(

(

(

(--

(

(

CHAPTER 3

HALF-DUPLEX TERMINAL DRIVER

3.1 INTRODUCTION

The half-duplex terminal driver provides support for a variety of
terminal devices under RSX-IIM. (This terminal driver is not
supported on RSX-IIM-PLUS systems.) The half-duplex terminal driver
generally is used in RSX-IIM systems where' small driver size is
essential, and the additional functional capability provided by the

. larger full-duplex terminal driver (described in Chapter 2) is not
required. Table 3-1 summarizes the terminals supported, and
subsequent sections describe these devices in greater detail.

Model

ASR-33/35
KSR-33/35
LAl2
LAIOO
LA30-P
LA30-S
LA34
LA36
LA38
LA120
LA180S
RT02
RT02-C
VT05B
VT50
VT50H
VT52
VT55
VT61
VT100
VTIOI
VTI02
VTI05
VT125
VT131
VT132

Columns

72
72

132
132

80
80

132
80-132

132
132
132

64
64
72
80
80
80
80
80

80-132
80-132
80-132
80-132
80-132
80-132
80-132

Table 3-1
Supported Terminal Devices

Linesl
Screen 1

1
1
20
12
12
24
24
24
24

.24
24
24
24
24
24

Character
Set

64
64
96
96
64
64
96

64-96
96
96
96
64
64
64
64
64
96
96
96
96
96
96
96
96
96
96

Baud
Range

110
110

50-9600
110-9600

300
110-300
110-300
110-300
110-300

50-9600
300-9600
110-1200
110-1200
110-2400
110-9600
110-9600
110-9600
110-9600
110-9600

50-9600
50-19200

50-9600
50-9200
50-9600

50-19200
50-19200

1. Applies only to video terminals.

2. Only for 96-character terminal.

3-1

Upper- & Lowercase
Send Receive

yes
yes

yes
yes
yes
yes

yes

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes
yes

yes
yes 2
yes
yes
yes

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

HALF-DUPLEX TERMINAL DRIVER

The terminal driver supports the terminal interfaces summarized in
Table 3-2. These interfaces are described in greater detail in
Section 3.9. Programming is identical for all.

Table 3-2
Standard Terminal Interfaces

Model Type

DHll
DHll-DMll-BB
DJll
DLLI.-A/B/C/D/W
DLVll-F

16-line multiplexer 1
16-line multiplexer with modem control 2
16-line multiplexer
Single-line interfaces

DZll
Single-line interface
8-line multiplexer with modem control 2

1. Direct memory access (DMA) not supported.

2. Full-duplex control only. For example, in the USA, a
Bell l03A-type modem.

Terminal input lines can have a maximum length
maximum is set in the system generation dialog).
of an input line that exceeds the maximum length
unsolicited input line.

3.1.1 ASR-33/35 Teletypewriters

of 255 bytes (the
The extra characters

generally become an

The ASR-33 and ASR-35 teletypewriters are asynchronous, hard-copy
terminals. No paper tape reader or punch capability is supported.

3.l~2 KSR-33/35 Teletypewriters

The KSR-33 and KSR-35 teletypewriters are asynchronous, hard-copy
terminals.

3.1.3 LA30 DECwriters

The LA30 DECwriter is an asynchronous, hard-copy terminal that is
capable of producing an original and one copy. The LA30-P is a
parallel model and the LA30-S is a serial model.

3.1.4 LA36 DECwriter

The LA36 DECwriter is an asynchronous terminal that produces hard copy
and operates in serial mode. It has an impact printer capable of
generating multipart and special preprinted forms. The LA36 can
receive and transmit both uppercase and lowercase characters.

3-2

(

(

(

(

(

(

HALF-DUPLEX TERMINAL DRIVER

3.1.5 LA120 DECwriter

The LA120 DECwriter is a hard-copy, uppercase and lowercase terminal
capable of printing multipart forms at speeds up to ISO
characters-per-second. Serial communications speed is selected from
14 baud rates ranging from 50 to 9600 bps. Hardware features allow
bidirectional printing for maximum printing speed, and also allow
user-selected features, including font size, line spacing, tabs,
margins, and forms control. These functions can also be set up by
your tasks that issue appropriate ANSI-standard escape sequences.

3.1.6 LAl80S DECprinter

The LAlSOS DECprinter is a serial version of the LAlSO. It is a
print-only device (it has no keyboard) that can generate multipart
forms. The LAlSOS can print uppercase and lowercase letters.

3.1.7 RT02 Alphanumeric Display Terminal
Reader/Alphanumeric Display Terminal

and RT02-C Badge

The RT02is a compact, alphanumeric display terminal for applications
in which source data is primarily numeric. A shift key permits the
entry of 30 discrete characters, including uppercase alphabetic
characters. The RT02 can, however, receive and display 64
characters.

The RT02-C model also contains a badge reader. This option provides a
reliable method of identifying and controlling access to the PDP-II or
to a secure facility. Furthermore, data in a format corresponding to
that of a badge (22-column fixed data) can be entered quickly.

3.1.S VT05B Alphanumeric Display Terminal

The VT05B is an alphanumeric display terminal that consists of a CRT
display and a self-contained keyboard. From a programming point of
view, it is equivalent to other terminals, except that the VT05B
offers direct cursor addressing.

3.1. 9 VT50 Alphanumeric Display Terminal

The VT50 is an alphanumeric display terminal that consists of a CRT
display and a keyboard. It is similar to the VT05B in operation, but
does not offer direct cursor addressing.

3.1.10 VT50H Alphanumeric Display Terminal

The VT50H is an alphanumeric display terminal with CRT display,
keyboard, and numeric pad. It offers direct cursor addressing. (The
VT50H's direct cursor addressing is not compatible with that of the
VT05B.)

3-3

HALF-DUPLEX TERMINAL DRIVER

3.1.11 VT52 Alphanumeric Display Terminal

The VT52 is an uppercase
numeric pad and direct
addressing is compatible
the VT05B.) The VT52
printer.

and lowercase alphanumeric terminal with
cursor addressing. (The VT52' s direct cursor
with that of the VT50H, but not with that of
can be configured with a built-in thermal

3.1.12 VT55 Graphics Display Terminal

The VT55 is similar to the VT52 in its operation
terminal. The VT55 offers graphics display
supported by RSX-llM, although the system allows
to access the explicitly special features of the

3.1.13 VT6l Alphanumeric Display Terminal

as an alphanumeric
features that a're' not
a knowledgeable task
VT55.

The VT6l is an "intelligent" uppercase and lowercase alphanumeric
terminal with an integral microprocessor. It offers two128-member
character sets and numerous built-in functions for editing and
preparing forms, as well as a block-transfer mode. (None of these
special features is supported by RSX-IIM.)

3.1.14 VT100 DECscope

The VT100 DECscope is an uppercase and lowercase alphanumeric
keyboard/video display terminal. It is capable of displaying 24 lines
of 80 characters (each line). Serial communications speed is selected
from baud rates ranging from 50 to 9600 bps. Hardware features allow
you to select display characteristics and functions including smooth
scroll, reverse video, and so forth. These functions can also be set
up by your tasks that .issue appropriateANSI~standard escape
sequences.

3.2 GET LUN INFORMATION MACRO

Words 2 through 5 of the buffer filled by the Get LUN Information
(GLUN$) system directive (with the first, second, third, and forth
device characteristics words) contain the following ·information for
terminals. For characteristic word 1, a setting of 1 indicates that
the described characteristic is true for terminals. Words 3, 4, and 5
of the buffer are terminal specific.

Device Characteristics Word 1:

Bit Setting Meaning

0 1 Record-oriented device

1 1 Carriage-control device

2 1 Terminal device

3 0 File structured device

3-4

(--

(

(

(

Bit

4

5

6

7

8

9

10

11

12

13

14

15

HALF-DUPLEX TERMINAL DRIVER

Setting

o
o

o

o

o

o

o

o

o

o

o

o

Meaning

Single-directory device

Sequential device

Mass storage device

User-mode diagnostics supported

Device supports 22~bit direct addressing

Unit software write-locked

Input spooled device

Output spooled device

Pseudo device

Device mountable as a communications
channel

Device mountable as a FILES-II volume

Device mountable

Terminal Dependent Characteristics Word 2:

Bit Setting Meaning

0 1 Lowercase to uppercase conversion (l=yes)

1 1 Unit is a VT05B terminal (l=yes)

2 1 Unit is a LA30S terminal (l=yes)

3 1 Unit is a privileged terminal (l=yes)

4 1 MCR command AT. being processed (l=yes)

5 1 Terminal is in hold screen' mode (l=yes)

6 1 Unit is a DZII (l=yes)

7 1 Unit is a slave terminal (l=yes)

8 1 User logged on terminal (l=yes)

9 1 Unit generates escape sequences (l=yes)

10 1 Unit is a CRT (l=yes)

11 1 Don't echo solicited input (l=yes)

12 1 unit handles hardware form feeds (l=yes).

13 1 Unit is remote (.l=yes)

14 1 Unit is a DJ11 (l=yes)

15 1 Unit is a multiplexer (l=yes)

3-5

HALF-DUPLEX TERMINAL DRIVER

Terminal Dependent Characteristics Word 3:

Bit

13

14

13

Setting

1

1

1

Meaning

Uppercase output flag (l=yes)

Parity generation and checking (l=yes)

Parity sens.e (l=odd parity)

Terminal Dependent Characteristics Word 4:

Bit Setting Meaning

6 1 Look for carriage return (l=yes)

Terminal dependent characteristics Word 4 (word 5 of the buffer)
indicates the default buffer size (the width of the terminal carriage
or display screen).

Refer to the RSX-llM/M-PLUS and Micro/RSX Executive Reference Manual
for more information about the GLUN$ directive.

3.3 QI0$ MACRO

Table 3-3 lists the standard and device-specific functions of the QIO
macro that are valid for terminals. All device-specific functions are
options that may be selected at system generation.

Two device-specific functions, SF.SMC and SF.GMC, have nonstandard
function names. These names are for compatibility with lAS.

Table 3-3
Standard and Device-Specific QIO Functions for Terminals

Format

STANDARD FUNCTIONS:

QIO$C IO.ATT, •••

QIO$C IO.DET, •••

QIO$C IO.KIL, •••

Function

Attach device

Detach device

Cancel I/O requests

QIO$C IO.RLB, ••• ,<stadd,size.> READ logical block
(read typed input into buffer)

QIO$C IO.RVB, ••• ,<stadd,size> READ virtual b.lock
(read typed input into buffer)

QIO$C IO.WLB, ••• ,<stadd,size,vfc> WRITE logical block
(print buffer ~ontents)

QIO$C IO.WVB, ••• ,<stadd,size,vfc> WRITE virtual block

(continued on next page)

3-6

(

(

c-'-- -

(

HALF-DUPLEX TERMINAL DRIVER

Table 3-3 (Cont.)
Standard and Device-Specific QIO Functions for Terminals

Format Function

DEVICE-SPECIFIC FUNCTIONS
(ALL SYSTEM GENERATION OPTIONS):

QIO$C IO.ATA, ••• ,<ast) ATTACH device, specify
unsolicited- input-character
AST

QIO$C IO.CCO, ••• ,<stadd,size,vfc) CANCEL CTRL/O (if in effect),
then write logical block

QIO$C SF.GMC, ••• ,<stadd,size) GET multiple characteristics

GET terminal support QIO$C IO.GTS, ••• ,<stadd,size)

QIO$C IO.RAL, ••• ,<stadd,size) READ logical block, pass all
bits

QIO$C IO.RNE, ••• ,<stadd,size) READ logical block, do not echO

QIO$C IO.RPR~ ••• ,<stadd,size, READ logical block after prompt
[tmo],pradd,prsize,vfc)

QIO$C IO.RST, ••• ,<stadd,size) READ logical block ended by
special terminators

QIO$C SF.SMC, ••• ,<stadd,size) SET multiple characteristics

QIO$C IO.WAL, ••• ,<stadd,size) WRITE logical block, pass all
bits

QIO$C IO.WBT, ••• ,<stadd,size,vfc) WRITE logical block, break
through most I/O conditions at
terminal

ast

pradd

The entry point for an unsolicited-input-character AST.

The starting address of the byte buffer where the prompt is
stored. The buffer must be within the task's address space.

prsize

size

The size of the pradd prompt buffer in bytes. If the system
supports variable length reads, the buffer size must be greater
than 0 and less than or equal to 255. If the system does not
support variable length reads, the specified size must be greater
than 0 and less than or equal to 80.

The size of the stadd data buffer in bytes (must be greater than
0). If the function is a read and the system supports
variable-length reads, the size must be less than or equal to
255. Otherwise, the size must be less than or equal to 80. The
buffer must be within the task's address space. For SF.GMC,
IO.GTS, and SF.SMC, the size must be an even number less than
4065 (decimal). If the function is a write, size can be up to
32K bytes.

3-7

stadd

tmo

vfc

HALF-DUPLEX TERMINAL DRIVER

The starting address of the data buffer. The address must be
word aligned for SF.GMC, IO.GTS, and SF.SMC; otherwise, stadd may
be on a byte boundary.

An optional time-out count, included for lAS compatibility. If
supplied, it is· ignored~

A character for vertical format control from Table 3-11 (see
Section 3.7).

3.3.1 Subfunction Bits

Most of the device-specific functions supported by the terminal driver
are implemented by way of "subfunction bits." That is, these functions
can be invoked by ORing a named bit with some other function. Table
3-4 shows the relationship of the 10 subfunction bits to the standard
and device-specific function ••

The 10 subfunction bits, and their octal valdes, are:

TF.AST
TF.BIN
TF.CCO
TF.ESQ
TF.RAL
TF.RNE
TF.RST
TF.WAL
TF.WBT
TF.XOF

Unsolicited-input-character AST
Binary prompt
Cancel CTRL/O
Recognize escape sequences
Read all bits
Read with no echo
Read with special terminators
write all bits
Break-through write
Send XOFF

10
2

40
20
10
20

1
10

100
100

The subfunction bits are defined in the system module TTSYM (discussed
further in Section 3.3.2.5). The octal values of these entities are
subject to change; therefore, it is recommended that you always use
the symbolic names. As Table 3-4 shows, 7 of the 10 subfunction bits
can be ORed with standard QIO functions to invoke device-specific
functions. The remaining three subfunction bits (TF.BIN, TF.ESQ, and
TF.XOF) can be ORed with Attach and Read After Prompt QIOs to provide
added features, as described in Section 3.3.2.

Of the 10 subfunction bits, you can use 3 with Read QIO functions, 3
with Write fundtions, 2 with Attach functions, and 5 with Read After
Prompt. The breakdown is:

Read
Write
Attach
Read After Prompt

TF.RAL, TF.RNE, TF.RST
TF.CCO, TF.WAL, TF.WBT
TF.AST, TF.ESQ
TF.BIN, TF.XOF, TF.RAL, TF.RNE, TF.RST

3-8

(

(

(

(

HALF-DUPLEX TERMINAL DRIVER

If a task invokes a subfunction bit that is not supported on the
system, the subfunction bit is ignored, not rejected. For example, if
Read with Special Terminators is not selected, either IO.RST or
IO.RLB!TF.RST is interpreted as IO.RLB.

The following example shows a QIO request
subfunction bit: a nonechoed read, which
special terminator, after a prompt.

using more than one
may be concluded by a

QIO$C IO.RPR!TF.RNE!TF.RST, ••• ,<stadd,size"pradd,prsize,vfc>

3.3.2 Details on Device-Specific QIO Functions

All the device-specific functions described in this section are system
generation options. All except SF.GMC, IO.RPR, SF.SMC, and IO.GTS can
be issued by ORing a particular subfunction bit with another QIO
function. These subfunction bits are specified in the text;
subfunction bits are described in general in Section 3.3.1.

In addition to the 11 device-specific QIO functions, this section also
gives details on the features provided by the 3 subfunction bits
TF.ESQ, TF.BIN, and TF.XOF.

3.3.2.1 IO.ATA - IO.ATA is a variation of the IO.ATT function. It
specifies an asynchronous system trap (AST) to process an unsolicited
input character. When called as follows:

QIO$C IO.ATA, ••• ,<ast>

this function attaches the terminal and identifies Hast" as the entry
point for an unsolicited-input-character AST. Control passes to this
address whenever any unsolicited character (other than CTRL/Q, CTRL/S,
or CTRL/O) is input. No checking is done on the specific AST address.
A bad address is frequently detected only when the Executive tries to
transfer control to it and the task crashes.

In particular, CTRL/C is trapped by the task and does not reach MCR.
Thus, any task that uses IO.ATA should recognize some input sequence
as a request to terminate, because MCR can not be invoked to abort the
task in case of difficulty.

Note that this mechanism gets a single character into the system
not a series of characters. Because the driver must become a fork
process to declare an AST, a second character can arrive before the
driver can queue an AST for the first character. The buffer for
unsolicited input characters, however, is one byte long. Therefore,
the terminal driver ignores the second character. This circumstance
can occur because of fast input on a busy system or because output is
in progress when the characters are received. Thus, neither
type-ahead nor full-duplex operations can be simulated perfectly using
unsolicited character ASTs.

3-9

HALF-DUPLEX TERMINAL DRIVER

Table 3-4
Subfunction Bits

FUNCTION EQUIVALENT ALLOWED SUBFUNCTION BITS
FUNCTION

Standard Functions

IO.ATT TF.AST TF.ESQ

IO.DET

IO.KIL

. IO.RLB 1 TF.RAL TF.RNE TF.RST

IO.RVB .2 TF.RAL TF.RNE TF.RST

IO.WLB TF.CCO TF.WAL TF.WBT

IO.WVB 2 TF.CCO TF.WAL TF.WBT

Dev ice-Sl2ec if ic Functions

IO.ATA IO.ATT!TF.AST TF.ESQ

IO.CCO IO.WLBITF.CCO TF.WAL TF.WBT

SF.GMC

IO.GTS

IO.RAL 2 IO.RLBITF.RAL TF.RNE TF~RST

IO.RNE 2 IO.RLB!TF.RNE TF.RAL TF.RST

IO.RPR 2 TF.BIN TF.RAL TF.RNE TF.RST TF.XOF

IO.RST 2 IO.RLBITF.RST TF.RAL TF.RNE

SF.SMC

IO.WAL IO.WLB!TF.WAL TF.CCO TF.WBT

IO.WBT .10. WLBI TF. WBT TF.CCO TF.WAL

1. Exercise great care when using Read All (.RAL) and Read with
Special Terminators (.RST) together. Otherwise, obscure problems can
result.

2. These subfunction bits are allowed but are not effective. They
are stripped off when the read or write virtual is converted to a
read or write logical.

3-10

(--

(

(

c---\.

(

HALF-DUPLEX TERMINAL DRIVER

At entry, the unsolicited character is the low-order byte of the top
word on the stack. Before exiting the AST, be sure to pop that word
off the stack; otherwise, the task crashes. In all other respects the
AST environment is standard:

SP+lO Event flag mask word

SP+06 PS of task prior to AST

SP+04 PC of task prior to AST

SP+02 Task'sditective status word

SP+OO Unsolicited character in low byte

See the RSX-IIM/M-PLUS and Micro/RSX Executive Reference Manual for
further details onASTi: See Section 3.10.10 for hints on ASTs in a
multitermin~l environment.

IO.A~A is equivalent to IO.ATT ORed with the subfunction bit TF.AST.

3.3.2.2 IO.ATTITF.ESQ - IO.ATT causes the issuing task to
terminal and notify the driver that it recognizes escape
input from that terminal. Escape sequences are recognized
solicited input. See Section 3.6 for a discussion
sequences.

attach a
sequences
only for

of escape

If the, tei~inal has not been declared capable of generating escape
sequences, IO.ATTITF.ESQ has no effect beyond attaching the terminal.
No escape sequences are returned to the task, because any ESC sent by
the terminal acts as a line terminator. Use the SF.SMC QIO or the MCR
SET /ESCSEQ command to declare the terminal capable of generating
escape sequences (see Table 3-5 and Section 3.3.2.12).

3.3.2.3 IO.CCO - This write function directs the driver to write to
the terminal regardless of a CTRL/Ocondition that may be in effect.
If CTRL/O is in effect, it is canceled before the write is done.

IO.CCO is equivalent to IO.WLB!TF.CCO.

3.3.2.4 SF.GMC - SF.GMC
characteristics. Use Get
way:

returns information on terminal
Multiple Characteristics in the following

stadd

QIO$C SF.GMC, ••• ,<stadd,size)

The starting address of a data buffer of length "size" bytes.
Each word in the buffer has the form

.BYTE charact~ristic-name

.BYTE 0

characteristic-name

One of the eight bit names given in Table 3-5.

3-11

HALF-DUPLEX TERMINAL DRIVER

The QIO function returns a value in the. high-order byte of each
byte~pait: 1 if the characteristic is true for the terminal, 0 if not
true.

For the TC.TTP characteristic (terminal type), one of three values is
returned in the high-order byte, as shown in Table 3-6.

Bit
Name

TC.ASP
TC.ESQ
TC.HLD
TC.NEC
TC. PRI
TC.SCP
TC.SLV
TC.SMR

TC.TTP

TC.HFF
TC.RSP
TC.XSP

NOTE

The half-duplex terminal driver treats the terminal
type as a required characteristic for the type of
terminal specified. The terminal type (TC.TTP) does
not set any implicit terminal characteristics other
than those noted in Table 3-6.

Table 3-5
Terminal Characteristics for SF.GMC and SF.SMC Requests

Octal Meaning Corresponding
Value (If Asserted) MCR Command

3 76 Remote line answer speed SET /REMOTE=TI:speed

1 35 Can generate escape sequences SET /ESCSEQ =T I :
44 Is in hold-screen mode SET /HOLD=TI:

2 47 Is in no-echo mode SET /NOECHO=TI:
51 Is privileged SET /PRIV=TTnn:
12 Is a scope (CRT) SET /CRT=TI:
50 Is slaved SET /SLAVE";TTnn:
25 Uppercase conversion disabled SET /LOWER';"TI: .

on input
10 Terminal type SET /LA30S=TI:

SET /VT05B=TI:

3 17 Handle hardware form feeds SET /FORMFEED=TI:

3
3 Receiver speed SET /SPEED=TI:rcv:xmit
4 Transmitter speed (As above)

1. Effective for VT5x and VT61 only.

2. Cannot be changed by a task; must use MCR command.

3. Recognized only by the SF.SMC function.

Table 3-6
Bit TC.TTP (Terminal Type): Values Set by SF.SMC

and Returned by SF.GMC

Octal Value Symbolic Meaning

0 T.UNKO Terminal type is unknown
(resets all other types)

1 T.AS33 Terminal is an ASR
(sets uppercase conversion
output)

4 T.L30S Terminal is an LA30
(sets horizontal fill after
carriage return)

7 T.VT05 Terminal is a VT05B
(sets a vertical fill count

3-12

on

of 4)

(

(

(

HALF-DUPLEX TERMINAL DRIVER

3.3.2.5 IO~GTS - IO.GTS returns a 4-word buffer of information
specifying which optional system generation features are part of the
terminal driver. Of these four words, two are currently defined.
Table 3-7 gives details on these two words. The IO.GTS QIO is itself
a system generation option. If IO.GTS is issued on a mlnlmum system
(one with no terminal-driver system generation options), IE.IFC is
returned in the I/O status block.

Table 3-7
Information Returned by Get Terminal Support (IO.GTS) QIO

Bit Value Mnemonic

Word 0 of Buffer:

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14

15

'I
2
4

10
20
40

100
200
400

1000
2000
4000

10000
20000
40000

100000

FLACR
FloBTW
FloBUF
Fl. UIA
FloCCO
Flo ESQ
FloHLD·
FloLWC
Flo RNE
FloRPR
Flo RST
FloRUB
FloSYN
FloTRW
Flo UTB

Flo VBF

Word 1 of Buffer:

o
1

1
2

F2.SCH
F2.GCH

Meaning When Set to 1_

Automatic CR/LF on long lines
Break-through write
Checkpointing during terminal input
Unsolicited-input-character AST
Cancel CTRL/Q before writing
Recognize escape sequences in solicited input
Hold-screen mode
Lowercase to uppercase conversion
Read with no echo
Read after prompting
Read with special terminators
CRT rubout
CTRL/R terminal synchronization
Read all and write all
Input characters buffered in task's address
space
Variable-length terminal buffers

Set characteristics QIO (SF.SMC)
Get characteristics QIO (SF.GMC)

The system module, TTSYM, defines the various symbols used by the
IO.GTS, SF.GMC, and SF.SMC QIOs. These symbols include: Fl.xxx and
F2.xxx (Table 3-7); T.xxxx (Table 3-6); TC.xxx (Table 3-5); and the
SE.xxx error returns described in Table 3-8, Section 3.4. You may
define these symbols locally within a code moduI~ by using:

• MCALL TTSYM$

TTSYM$

If the symbols are not defined locally, they are automatically defined
by the ~ask Builder.

The octal values of these symbols are subject to change.
it is recommended that you always use the symbolic names.

3-13

Therefore,

HALF-DUPLEX TERMINAL DRIVER

3.3.2.6 IO.RAL - IO.RAL causes the driver to pass all bits to the
requesting task. The driver does not intercept control characters or
mask out the "parit;y" (high-order) bit. This means, for example, that
CTRL/C, CTRL/O, CTRL/S, CTRL/O, and CTRL/Z are passed to the program
and are not interpreted by the driver.

NOTE

IO.RAL echoes the characters that are read. To read
all bits without echoing, use IO.RAL!TF.RNE.

IO.RAL is equivalent to IO.RLB ORed with the subfunction bit TF.RAL.
The only way to terminate an IO.RAL function is by a character count
(that is, filling the input buffer) •

3.3.2.7 IO.RNE - IO.RNE cause's the driver to
terminal without echoing the characters that
is useful when typing sensitive information:
or combination. You can also use IO.RNE
RT02-C.

read a line from the
are input. This feature
for example, a' password
to read a badge with the

(Another way to suppress echoing of input is to set the terminal to
no-echo mode with the SF.SMC 010 or the MCR SET /NOECHO command. See
Table 3-5, bit TC.NEC.)

Note that the TC.NEC subfunction only suppresses echoing of solicited
input. Unsolicited input is still echoed.

CTRL/R, if selected as a system generation option, is ignored while an
IO.RNE is in progress.

IO.RNE is equivalent to IO.RLB ORed with the subfunction bit TF.RNE.

3.3.2.8 IO.RPR - IO.RPR (Read After Prompt) has the same
IO.WLB (to write a prompt to the terminal) followed
However, IO.RPR differs in four ways from this combination
With IO.RPR:

effect as
by IO.RLB.

of OIOs.

• System overhead is lower because only one 010 is processed.

• There is no "window" during which a response to the prompt may
be ignored. Such a window occurs if you use IO.WAL/IO.RLB,
because no read may be posted at the time the response, is
received.

• If the issuing task is checkpointable, it is checkpointed
during both the prompt and the read.

• A CTRL/O that may be in effect is canceled before the prompt
is written.

The third argument that you can specify to IO.RPR, tmo, is required
for compatibility with lAS. If supplied, it is ignored.

Subfunction bits may beORed with IO.RPR to write the prompt as a
Write All (TF.BIN) and to send XOFF aft~r the read (TF.XOF). See the
next two sections. In addition, you can use the three Read
subfunction bits (TF.RAL, TF.RNE, TF.RST) with IO.RPR.

3-14

(

(

(

HALF-DUPLEX TERMINAL DRIVER

3.3.2.~ IO.RPR!TF.BIN - IO.RPR!TF.BIN results in a read
"binary" prompt, that is, a prompt that is written by the
the terminal with no character interpretation (as if it were
an 10. WAL) •

after a
driver to
issued as

3.3.2.10 IO.RPR!TF.XOF - IO.RPR!TF.XOF causes the driver to send an
XOFF to the terminal after its prompt-and-read. The XOFF, or CTRL/S,
may have the effect of inhibiting input from the terminal, if the
terminal recognizes XOFF for this purpose.

3.3.2.11 IO.RST - IO.RST acts like IO.RLB, except that certain
special characters terminate the read. These characters are in the
ranges 0-37(octal) and 175-177 (octal) • The driver does not interpret
the terminating character, with certain exceptions. For example, a
horizontal TAB (11 octal) is not expanded, a RUB OUT (or DEL, 177
octal) does not erase, and a CTRL/C does not get MCR's attention.

If uppercase and lowercase conversion is disabled (see remarks in
Section 3.10.'), the character 175(octa1) echoes as right-br.ce and
176 (octal) as tilde, and these characters do not act as terminators.
The three characters CTRL/O, CTRL/Q, a.nd CTRL/S (17,21, and
23(octa1), respectively) are not special terminators •. The· driver
interprets them as output effectors.

Upon successful completion
terminated by filling the
like the following:

of an IO.RST request that was not
input buffer, the I/O status block looks

IOSB

Terminating
character

I

+

* of bytes

IS.SUC&377

in buffer

The terminating character is not in the buffer.

IO.RST is equivalent to IO.RLB!TF.RST.

3.3.2.12 SF.SMC - SF.SMC allows a task to set and reset the
characteristics of a terminal. Set Multiple Characteristics is the
inverse of SF.GMC. Like SF.GMC, it is called in the following way:

stadd

QIO$C SF.SMC, ••• ,<stadd,size>

The starting address of a buffer of length "size" bytes.

Each word in the buffer has the form

.BYTE characteristic-name

.BYTE value

3-15

HALF-DUPLEX TERMINAL DRIVER

characteristic-name

One of the symbolic bit names given in Table 3-5.

value

Either 0 (to clear a given characteristic) or 1 (to set a
characteristic) • Table 3-5 notes the restrictions that apply to
these characteristics.

If characteristic-name is TC.TTP (terminal type), then value can have
any of the values listed in Table 3-6.

A nonprivileged task can only issue an SF.SMC request
own terminal, TIO:. A privileged task can issue
terminal.

to affect its
SF.SMC to any

3.3.2.13 IO.WAL - IO.WAL causes the driver to pass all output from
the buffer without interpretation. It does not intercept control
characters. Lines are neither wrapped around (if input/output
wrap-around has been selected) nor truncated (if wrap-around is no.t
selected) •

IO.WAL is equivalent to IO.WLBITF.WAL.

3.3.2.14 IO.WBT - IO.WBT instructs the driver to write
regardless of the I/O status of the receiving terminal.
is issued on a system that does not support IO.WBT, it is
an IO.WLB.

the buffer
If an IO.WBT
treated as

• If another write is in progress, it finishes and the IO.WBT is
the next write issued. The effect of this is that IO.WBTs can
be stopped by a CTRL/S. Therefore, tasks may still want to
time out on IO.WBT.

• If a read is posted, the IO.WBT proceeds anyway, and an
automatic CTRL/R is performed to redisplay any input that was
received before the break-through write.

• CTRL/S or CTRL/O, or both, are canceled if they are in effect.

• Characters input during a break-through write are ignored.

An IO.WBT cannot break through another IO.WBT that is in progress or
if a prompt is being written by IO.RPR. In either case, the low-order
byte of the first word of the I/O status block contains IE.RSU&377.
The task receiving this error need only reissue the write.

Break-through write may only be issued by a privileged task. However,
the task does not have to be mapped to the Executive (Task Builder
options /PR:4 or /PR:5). A task can use IO.WBT if it is built with
the /PR:O switch specified. The privileged MCR command BRO
(broadcast) uses IO.WBT.

Break-through write cannot break through a multiecho. Instead, it
returns error code IE.RSU. When this occurs, the task should reissue
the write request.

3-16

(

(

(

(

HALF-DUPLEX TERMINAL DRIVER

3.4 STATUS RETURNS

Table 3-8 lists error and status conditions that are returned by the
terminal driver.

Upon successful completion of a read, the I/O status block contains
data of this sort:

1 0 Byte

Word 0 ret l +1

1 Number of bytes read

ret = 0 means read terminated by buffer full
(byte count satisfied);

ret = 15 means IS.CR: read terminated by carriage return.

ret = 33 means IS.ESC: read terminated by an Altmode.

ret = 233 means IS.ESQ: read terminated by an escape sequence.

+1 is IS.SUC: the return code for successful
completion.

Most RSX-llM return codes are byte values: for example, IS.SUC = 1 is
a byte value. By contrast, the three return codes IS.CR, IS. ESC, and
IS.ESQ are word values. The low-order byte indicates successful
completion, and the high-order byte is required to show what type of
completion occurred. .

To test for one of these word-value return codes, first test the
low-order byte of the first word of the IOSB for the value IS.SUC.
Then test the full word for IS.CR, IS.ESC, or IS.ESQ. (If the full
word tests equal to IS.SUC, then its high-order byte is 0, indicating
byte-count termination of the read.)

The "error" return IE.EOF may be considered to indicate a successful
read, because characters can be returned to the task's buffer.

The three errors in Table 3-8 witb SE.xxx codes are returned by the
SF.GMC and SF.SMC QIOs. They are characterized by IE.ABO&377 in the
low-order byte of the first IOSB word. The high-order byte contains
the error code. The second IOSB word contains an offset (starting
from 0) to th~ byte in error in the QIOs stadd buffer.

3.5 CONTROL CHARACTERS AND SPECIAL KEYS

This section describes the meanings of
characters and keys for RSX-llM. Note
recognize control characters and special
request (IO.RAL), and recognizes only some
Special Terminators (IO.RST).

special terminal control
that the driver does not

keys driring a Read All
of them during a Read with

3-17

Code

IE.EOF

IS.SUC

IS.CR.

IS. ESC

IS.ESQ

IS.PND

IE.ABO

IE.BAD

HALF-DUPLEX TERMINAL DRIVER

Table 3-8
Terminal status Returns

Reason

Successful completion on a read with end-of-file

The line of input read from the terminal was
terminated with the end-of-file character CTRL/Z.
The second word of the I/O status block contains
the number of bytes read before CTRL/Z was seen.
The input buffer contains those bytes.

Successful completion

The operation specified in the QIO directive was
completed successfully. If the operation involved
reading or writing, you can examine the second word
of the I/O status block to determine the number of
bytes processed. The input buffer contains those
bytes.

Successful completion on a read

The line of input read from
terminated by a carriage return.
contains the bytes read.

Successful completion on a read

the terminal was
The input buffer

The line of input read from the terminal was
terminated by an Altmode character. The input
buffer contains the bytes read.

Successful completion on a read

The line of input read from the terminal was
terminated by an escape sequence. The input buffer
contains the bytes read and the escape sequence.

I/O request pending

The operation specified in the QIO directive has
not yet been executed. The I/O status block is
filled with Os.

Operation aborted

The specified I/O operation was canceled by IO.KIL
while in progress or while in the I/O queue. The
second word of the IOSB shows how many bytes were
processed before the kill took effect. Note that
the SE.xxx error codes are characterized by IE.ABO&
377 in the low-order byte of the first·word of the
IOSB.

Bad parameter

The size
is too
systems
greater

of the prompt in a read-after-prompt QIO
big (that is, greater than 255 bytes on
supporting variable-length buffers or

than 80 on systems that do not).

(continued on next page)

3-18

(

(

Code

IE.DAA

IE.DNA

IE.DRR

(

IE.IES

IE.IFC

IE. ROD

HALF-DUPLEX TERMINAL DRIVER

Table 3-8 (Cont.)
Terminal Status Returns

Reason

Device already attached

The physical device unit specified in an IO.ATT
function was already attached by the issuing task.
This code indicates that the issuing task has
already attached the desired physical device unit,
not that the unit was attached by another task. If
the attach specified TF.AST or TF.ESQ, these
subfunction bits have no effect.

Device not attached

The physical device unit specified in an IO.DET
function was not attached by the issuing task.
This code has no bearing on the attachment status
of other tasks.

Device not ready

The physical device unit specified in the QIO
directive was not ready to perform the desired I/O
operation. This code is returned to indicate one
of the following conditions:

• A time out occurred on the physical device unit
(that is, an interrupt was lost).

• An attempt was made to perform a function on a
remote DHll or DZll line without carrier
present. ·(The line is hung up.)

Invalid escape sequence

An escape sequence was started but escape-sequence
syntax was violated before the sequence was
completed. See Section 3.6.4.

Illegal function

A function code specified
illegal for terminals;
specified was a system
selected for this system.

Buffer allocation failure

in an I/O request
or, the function
generation option

was
code
not

System dynamic storage has been depleted, and there
was insufficient space available to allocate an
intermediate buffer for an input request.

(continued on next page)

Code

IE.OFL

IE. PES

IE.PRI

IE.RSU

IE.SPC

SE.BIN

SE.NIH

SE.VAL

HALF-DUPLEX TERMINAL DRIVER

Table 3-8 (Cont.)
Terminal Status Returns

Reason

Device off line

The physical device unit associated with the LUN
specified in the QIO directive was not on line.
When the system was booted, a device check
indicated that this physical device unit was not in
the configuration.

Partial escape sequence

An escape sequence was started, but read-buffer
space was exhausted before the sequence was
completed. See Section 3.6.4.3.

privilege violation

In a multiuser system, a nonprivileged task
issued an IO.WBT or directed an SF.SMC
terminal other than its own TIO:.

Resource in use

The prompt of an IO.RPR, or a break-through
was in progress when an IO.WBT was issued.
the IO.WBT later.

Illegal address space

either
to a

write,
Reissue

The buffer specified for a read or write request
was partially or totally outside the address space
of the issuing task. Alternately, a byte count of
o was specified.

The new value
characteristic in
(Characteristics
3-5.)

specified for a terminal
an SF.SMC request was not 0 or 1.
other than TC.T'l'P -- see Table

A terminal characteristic other than those in Table
3-5 was named in an SF.GMC or SF.SMC request; or, a
task attempted to assert TC.PRI.

The new value specified in an SF.SMC request for
the TC.TTP terminal characteristic was not one of
those listed in Table 3-6, or the baud rate (speed)
specified is not valid.

3-20

(

(

(

(

(

HALF-DUPLEX TERMINAL DRIVER

3.5.1 Control Characters

You enter a control character from a terminal by holding the control
key (CTRL) down while typing one other key. Two of the control
characters described in Table 3-9, CTRL/U and CTRL/Z, are echoed on
the terminal as AU and AZ, respectively. Other control characters are
recognized by the terminal driver, but are not printing characters and
therefore are not echoed.

Character

CTRL/C

CTRL/I

CTRL/J

CTRL/K

CTRL/L

CTRL/M

Table 3-9
Terminal Control Characters

Meaning

Typing CTRL/Crepeatedly is the way to
terminal'.s attention. Normally, typing
cau~es unsolicited input on that terminal
directed to the Monitor Control Routine
"MCR>" echoes when the terminal is ready to
unsolicited input. When the unsolicited
completes; it is passed to MCR.

get a
CTRL/C
to be
(MCR) •
accept

input

If the last item typed on the terminal was CTRL/S
(suspend output), then CTRL/C restarts suspended
output and directs subsequent input to MCR.

If the hold-screen mode option has been selected at
system generation time, and if the terminal is a
VT5x or VT61 in hold-screen mode, then typing a
string of CTRL/Cs eventually removes the terminal
from hold-screen mode.

Not all CTRL/Cs act to get MCR's attention.
CTRL/Cs are directed to a task if the task has
attached a terminal and has specified an
unsolicited-input-character AST. See the discussion
onunsolicited-input-character ASTs, Section
3.3.2.1. CTRL/Cs also go to a task if an IO.RAL
(Read All) or IO.RST (Read with Special
Terminators) is posted.

Typing CTRL/I or TAB initiates a horizontal tab,
and the terminal spaces to the next tab stop. Tabs
at every eighth character position are simulated by
the terminal driver.

Typing CTRL/J is equivalent to typing the LINE FEED
key on the terminal.

Typing CTRL/K initiates a vertical tab, and the
terminal performs four line feeds.

Typing CTRL/L initiates a form feed, and the
terminal performs eight line feeds. Paging is not
performed.

Typing CTRL/M is equivalent to typing the carriage
RETURN" k.ey on the terminal (see Section 3.5.2).

(continued on next page)

3-21

Character

CTRL/O

CTRL/Q

CTRL/R

CTRL/S

CTRL/U

CTRL/Z

HALF-DUPLEX TERMINAL DRIVER

Table 3-9 (Cont.)
Terminal Control Characters

Meaning

Typing CTRL/O suppresses output being
terminal by the current I/O request.
terminals, CTRL/O remains in effect,
continues to be suppressed until
following occurs:

1. The terminal is detached.

2. Input is entered.

3. Another CTRL/O character 'is typed.

sent to a
For attached

and output
any of the

4. An IO.CCO, IO.WBT,or IO.RPR is processed.

For unattached terminals, CTRL/O suppresses output
for only the current output buffer {generally one
line) •

(system generation option.) Typing CTRL/Q resumes
terminal output previously suspended by means of
CTRL/S.

(system generation option.) Typing CTRL/R on a
terminal results in the echo of CR/LF followed by
the incomplete (unprocessed) input line. Any tabs
that were input are expanded and the effect of any
rubouts is shown. On hard-copy terminals, CTRL/R
allows you to verify the effect of a tab or rubout,
or both, in an input line. CTRL/R is also useful
for CRT terminals when the automatic-cariage-return
and CRT rubout system generation options have been
selected (see Section 3.8). For example, after
rubbing out the leftmost character on the second
displayed line of a wrapped input line, you then
find that the cursor does not move to the right of
the first displayed line. In this case, CTRL/R
brings the input line and the cursor back together
again.

(system generation option.) Typing CTRL/S causes
terminal output to be suspended. Output is resumed
by typing CTRL/Q or CTRL/C.

Typing CTRL/U before typing a line terminator
causes previously typed characters to be deleted
back to the beginning of the line. The system
echoes this character as AU followed by a carriage
return and a line feed. This allows you to retype
the line.

Typing CTRL/Z indicates
current terminal input.
and other system tasks
complete and the task
echoes this character as
return and a line feed.

3-22

an end-of-file for the
It signals MAC, PIP, TKB,
that terminal input is
should exit. The system

AZ followed by a carriage

(

(

(

HALF-DUPLEX TERMINAL DRIVER

3.5.2 Special Keys

The ESCape, carriage RETURN, and RUBOUT keys have special significance
for terminal input, as described in Table 3-10. A line can be
terminated by an ESCape (or Altmode) character, by a carriage RETURN,
by CTRL/Z, or by completely filling the input buffer (that is, by
exhausting the byte count before a line terminator is typed). The
standard buffer size for a terminal can be determined by issuing a GET
LUN INFORMATION system directive and examining Word 5 of the
information buffer. Ano.ther way is to type the MCR command "SET
/BUF=TI: ".

3.6 ESCAPE SEQUENCES

Escape sequences are strings of two or more characters beginning with
33 octal. Some terminals generate an escape sequence when a special
key is pressed (for example, the PFl key on the VT100). On any
terminal, art escape sequence may be generated manually by typing
ESCape and the appropriate following characters.

Escape sequences provide a way to· pass input to' a task without
interpretation by the operating system. This could be done with a
number of I-character Read Alls, but escape sequences allow a neater
way to .accomplish it (they can be read with ordinary IO.RLBs).

Most DIGITAL software currently does not employ escape sequences. The
specifics provided here are for your benefit if you want to take
advantage of escape sequences in your tasks.

3.6.1 Definiti~n

An escape sequence is defined as follows:

ESC

int

fin

ESC [int] ••• [int] fin

The result of pressing the ESCape key, a byte (character) of
33(octal) •

An "intermediate character" in the range 40 (octal) to 57 (octal) •
This range includes the character "space" and 15 punctuation
marks. An escape sequence may contain any number of intermediate
characters, or none.

A "final character" in the range 60(octal) to 176 (octal) • This
range includes uppercase and lowercase letters, numbers, and 13
punctuation marks.

There are four exceptions to this general definition discussed in
Section 3.6.5.

3-23

Key

ESCape

RETURN

RUBOUT

HALF-DUPLEX TERMINAL DRIVER

Table 3-10
Special Terminal Keys

Meaning

If escape sequences are not recognized, typing
ESCape or A1tmode signals the terminal driver that
there is no further input on the current line.
This line .terminator allows further input on the
same line, because the carriage or cursor is not
returned to the first column position.

If escape sequences are recognized, ESCape signals.
the beginning of an escape sequence. See Section
3.6.

Typing RETURN terminates
causes the carriage or
first column on the line.

the current line and
cursor to return to the

Typing RUBOUT deletes the last character typed on
an input line. Only characters typed since the
last line terminator may be deleted. Several
characters can be deleted in sequence. by. typing
successive RUBOUTs.

The first RUBOUT echoes as a backs lash (\) ,
followed by the character that has been deleted.
Subsequent RUBOUTs cause only the deleted character
to be echoed. The next character typed that is not
a RUBOUT causes another backs1ash, followed by the
new character, to be echoed. The following example
illustrates rubbing out ABC and then typing.CBA:

ABC\CBA\CBA

The second backs lash is not displayed if a
terminator is typed after rubbing out
characters on a line, as in the following:

ABC\CBA

line
the

At system generation time you may elect to support
a "CRT rubout" feature. This feature applies to a
terminal only after a SET MCR directive has been
issued:

SET /CRT=TI:

(Note: See Section 3.3.2.12 for another way this
SET can be accomplished, with the SF.SMC QIO
function.) When a RUBOUT is struck, the last typed
character (if any) is removed from the incomplete
input line and backspace-space-backspace is echoed.
If the last typed character was a tab, enough
backspaces are issued to move the cursor to the
character position before the tab was typed. If a
long input line was split, or "wrapped," by the
automatic-carriage-return option, and a RUBOUT
erases th~ last character of a previous line, the
cursor is not moved to the previous line. You must
use CTRL/R to resynchronize the display wIth the
contents of the incomplete input line.

3-24

~ ...

(

(

HALF-DUPLEX TERMINAL DRIVER

~.6.2 Prerequisites

Two prerequisites must be satisfied before escape sequences can be
received by a task.

First, the task must "ask" for them by issuing an IO.ATT and invoking
the subfunction bit TF.ESQ.

Second, the terminal must be declared capable of generating escape
sequences. This may be done with an MCR SET command:

SET /ESCSEQ=TI:

An alternative way to tell the driver that the terminal can generate
escape sequences is by issuing the Set Multiple Characteristics QIO.
See Section 3.3.2.13.

If either of these prerequisites is not satisfied, the
is treated as a line terminator. If both prerequisites
then an ~dditiona1 feature results. You may use
(37(octa1» a~ ~n A1tmode. This character does not act
from a terminal that cannot generate escape sequences.

ESC character
are satisfied,

CTRL/SHIFT/O
as an A1tmode

An A1tmode is a line terminator that does not cause the cursor to
advance to a new line. On terminals that cannot generate escape
sequences, the ESCape key acts as an A1tmode. So do the characters
l75(octa1) and 176 (octal) , if the terminal has not been declared
lowercase (MCR command SET /LOWER). If the terminal is .10wercase,
then these characters represent right-brace and tilde, respectively.

3.6.3 Characteristics

Escape sequences always act as line terminators. That is, an input
buffer may contain other characters that are not part of an escape
sequence, but an escape sequence always comprises the last characters
in the buffer.

Escape sequences are not echoed. However, if a non-CRT rubout
sequence is in progress, it is closed with a backs lash. when an escape
sequence is begun.

Escape sequences are not recognized in unsolicited input streams.
Neither are they· recognized in a Read with Special Terminators
(subfunction bit TF.RST) nor in a Read All (subfl.lnction bitTF.RAL).

3.6.4 Escape Sequence Syntax Violations

A violation of the syntax defined in Section 3.6.1 causes the driver
to abandon the escape sequence and to return an error (IE.IES)~

3.6.4.1 DEL or RUBOUT (177(octal» - The character DEL or RUBOUT is
not legal within an escape sequence. Typing it at any point within an
escape sequence causes the entire sequence to be abandoned and deleted
from the input buffer. Thus, use DEL or RUBOUT to abandon an escape
sequence, if desired, once you have begun it. For example, if you
enter:

AB ESC " DEL CR

3-25

HALF-DUPLEX TERMINAL DRIVER

the buffer contains "AB" and the
following:

IOSB

I/O status block looks like the

3.6.4.2 Control Characters (O-37(octal» - The reception of any
character in the range 0 to 37 (octal) (with four exceptions see
Note) is a syntax violation that terminates the read with an error
(IE.IES). For example, entering:

ESC! CTRL/SHIFT/O

results in a buffer that contains these three characters and an I/O
status block that is similar to the following:

10SB ~

NOTE

Four control characters are allowed: CTRL/Q, CTRL/S,
CTRL/C, and CTRL/O. These characters are handled
normally by the operating system even when an escape
sequence is in progress. For example, entering:

ESC CTRL/S A

gives:

IOSB ffi
with the side effect of turning off the output stream.

3.6~4~3 Full Buffer - A syntax error results when an escape sequence
is terminated by running out of read-buffer space, rather than by
reception of a final character. The error IE. PES is returned. For
example, after a task issues an 10.RLB QIO with a buffer length of 2,
and you type:

ESC! A

the buffer contains "ESC !", and

10SB

the I/O status block contains:

~
~

The "A" is treated as unsolicited input.

3-26

(--

(

(

(

(

HALF-DUPLEX TERMINAL DRIVER

3.6.5 Exceptions to Escape Sequence Syntax

Four "final characters" that normally would terminate an escape
sequence are treated as special cases by the terminal driver. These
specia~ cases exist for historical compatibility reasons. Three of
these characters are: ; (73(octal», ? (77(octal», and 0
(117(octal». The syntax for escape sequences that contain these four
characters as intermediates is:

ESC [int] [int] fin

ESC ? [int] [int] fin

ESC 0 [intl [int] finl

int = 40-57 (octal) •
fin = 60-176 (octal).
finl = 100-176 (octal) •

The fourth exception to the general syntax given in Section 3.6.1
involves the "final character" Y (13l(octal». Historically (for
example, in the VT52) , the use of ESC Y has been to signal·the curSOI;
position. It is followed by two numbers signifying column and row
positions:

ESC Y colpos rowpos

where colpos and rowpos are both characters in the range
colpos = 40 40-l76(octal). They represent bias-40 numbers:

corresponds to column 0, and so forth.

3.7 VERTICAL FORMAT CONTROL

Table 3-11 summarizes the meanings of all characters used for vertical
format control on the terminal. Anyone of these characters can be
specified as the value of the vfc parameter in the functions IO.WLB,
IO.WVB, IO.WBT, IO.CCO, or IO.RPR.

Octal
Value

40

60

61

Table 3-11
Vertical Format Control Characters

Character

blank

o

1

Meaning

SINGLE SPACE - Output a line feed, print the
contents of the buffer, and output a carriage
return. Normally, printing immediately
follows the previously printed line.

feeds, print
and output a

the buffer

DOUBLE SPACE - Output two line
the contents of the buffer,
carriage return. Normally,
contents are printed two lines
previously printed line.

below the

PAGE EJECT - Output eight line feeds (or, if.
the terminal is an LA180S, output a form
feed), print the contents of the buffer, and
output a carriage return.

(continued on next page)

3-27

HALF-DUPLEX TERMINAL DRIVER

Table 3-11 (Cont.)
Vertical Format Control Characters

Octal
Value Character Meaning

53 +

44 $

00 null

OVERPRINT - Print the contents of the buffer
and output a carriage return, normally
overprinting the previous line.

PROMPTING OUTPUT Output a line feed and
print the contents of the buffer. This mode
of output is for a terminal on which a
prompting message is output, and input is then
read on the same line.

INTERNAL VERTICAL FORMAT - Print the buffer
contents without addition of vertical format
control characters. In this mode, more than
one line of guaranteed contiguous output can
be printed for each I/O request.

All other vertical fO'rmat control characters are interpreted as blanks
(40(octal».

3.8 FEATURES AVAILABLE BY SYSTEM GENERATION OPTION

A number of terminal-driver features are available as options at the
time you generate an RSX-ll system. See the following manuals as
appropriate:

• RSX-llM System Generation and Installation Guide

• RSX-llS System Generation and Installation Guide

• RSX-llM-PLUS System Generation and' Installation Guide

Some of the features that were mentioned previously in the text are:

• All the device-specificQIO functions

• Special keys

Suspend output

Resume suspended output

CTRL/S

CTRL/Q

CTRL/R Write incomplete input buffer

CRT rubout

• Escape sequences

Other features that you may select at system generation time are
described in the following sections.

3-28

~--'

(

~-

(

HALF-DUPLEX TERMINAL DRIVER

3.8.1 Automatic Carriage Return

By system generation, all terminals in a system may be set to "wrap
around," on input and output, after a specified number of columns. If
this option is selected, the number of characters per line is
determined on a terminal-by-terminal basis. Use the MCR SET command
to specify the wrap-around column, n:

>SET /BUF=TI:n
>

(Note that n is an octal number by default. Type an explicit decimal
point to enter a decimal number.) After system generation and before
this SET has been done for a given terminal, the default columnwidtl1
is 72 (decimal).

Using the SET /BUF command without an argument causes an inquiry that
returns the current buffer width for a terminal:

>SET /BUF=TI:
BUF=TIO:00072.
>

A task can determine the buffer width by issuing a Get LUN Information
directive and examining word 5.

After the SET has been done, typing the n+lst character results in a
CR/LF being output before the n+lst character is echoed (at the
leftmost character position of the next line). There is stUl only
one input line, but it is displayed on two lines on the terminal,.

Output also wraps around after column n. This is undesirable for some
applications. TO disable wrap-around, set the buffer to some number
greater than the terminal's column width. Output -- and input
too -- beyond the column width then overprints at the right margih~
Wrap-around is also disabled when executing the IO.WAL function (see
Section 3.10.11), because the driver does not keep track of th~
cursor's position.

It is possible to lose tr~ck of where you are in the input buffer if
bcith the ~utomatic carriage return and the CRT rubout features have
been selected at system generation. If, while rubbing out text -on a
wrapped line, you rub out the first char~cter on'that line, the cursor
does not back up to the previous line. To resynchronize the cursor
with the contents of the incomplete input buffer, type CTRL/R (if this
option has been selected).

It is also possible to cause wrap-around to malfunction. This can
occur when more than 255 (decimal) characters are output without an
intervening carriage return. This condition is possible because the
driver maintains a byte location with the current curSor positioni
thus, .counts greater than 255(decimal) are truncated I and the cursor
count is invalid until the next carriage return is received.

3.8.2 Variable-Length Buffering

If this user-transparent system generation option is selected, up to
255 (decimal) characters may be read from a terminal. The terminal
driver allocates an Executive buffer the same size as the read
request.

3-29

HALF-DUPLEX TERMINAL DRIVER

If the variable-length option is not chosen, any number of characters
may be read from a terminal, but a maximum of SO(decimal) are
transferred to the task issuing the read request. An Executive buffer
of SO(decimal) characters is always allocated.

Note that, whether variable-length buffering is
maximum of SO (decimal) characters may be
unsolicited input.

selected or not, a
directed to MCR as

3.S.3 Task Buffering of Received Characters

This user-transparent system generation causes characters read from
the terminal to be sent directly to the reading task's buffer. With
this option, no Executive buffer need be allocated, and the completed
input line need not be transferred to the task's buffer. This option,
however, does not necessarily reduce system overhead. In a mapped
system, each character must be mapped to the task's buffer. If the
task uses Executive buffering, the mapping is done once and then all
the characters are transferred. For the half-duplex terminal driver,
the Executive buffers only input except for the prompt output on an
IO.RPR request.

Task buffering may be overridden by checkpointing. If a task is
checkpointable,an Executive buffer is allocated in the normal way and
the task is made eligible for checkpointing by any task, regardless of
priority, while the read proceeds. (Checkpointing only occurs when
there is another task that can be made active.) Because
checkpointability is a dynamic quality controlled by the task, you
retain control over the resource trade-off.

3.S.4 LA30-P support

This option provides a l-byte software buffer for terminal input from
an LA30-P. Because LA30-Ps communicate, with RSX-IIM by a
single-buffered hardware interface, the echoing of an input character
may block the reception of the next input character. This is because
a char~cter is normally discarded by the terminal driver if it is
received before the echo of the previous character completes. The
user-transparent system generation option for LA30-P support buffers
the second character in the software.

This option should not be chosen at system generation if there are no
LA30-Ps in the system.

3.9 TERMINAL INTERFACES

This section summarizes the characteristics of the four
standard communication-line interfaces supported by RSX-lIM.
interfaces support parity, but RSX-llM does not.

3-30

types of
All four

(

(

(

(

(

(

HALF-DUPLEX TERMINAL DRIVER

3.9.1 DHll Asynchronous Serial Line Multiplexer

The DHll multiplexer interfaces up to 16 asynchronous serial
communications lines for terminal use. The DHll supports programmable
baud rates. Input and output baud rates may differ; the input rate
may be set to 0 baud, thus effectively turning off the terminal. The
DMll-BB option may be included to provide modern control for dial-up
lines. These lines must be interfaced by means of a full duplex modern
(for example, in the United States, a Bell 103A or equivalent modern) •

The direct memory access (DMA) capability of the DHll is not supported
by the RSX-llM terminal driver.

3.9.2 DJll Asynchronous Serial Line Multiplexer

The DJll multiplexer interfaces as many as 16 asynchronous serial
lines to the PDP-ll for local terminal communications. The DJll does
not provide a dial-up capability, but supports jumper-selectable baud
rates.

3.9.3 DLll Asynchronous Serial Line Interface

The DLll supports a single asynchronous serial line and handles
communication between the PDP-ll and a terminal. A number of standard
baud rates are available to DLII users. Four versions of the DLII
interface are supported by RSX-llM for terminal use: DLll-A, DLll-B,
DLll-C, and DLll-D. The DLll-E is supported by the full-duplex
terminal driver described in Chapter 2, and by the message-oriented
communication drivers described in Chapter 11.

3.9.4 DZll Asynchronous Serial Line Multiplexer

The DZll multiplexer interfaces up to eight asynchronous serial
communication lines for use with terminals. It supports programmable
baud rates; however, input and output speeds must be the same. The
DZll can control a full duplex modern in auto-answer mode.

3.10 PROGRAMMING HINTS

This section contains information relevant to you if your task uses
the terminal driver.

3.10.1 Terminal Line Truncation

If automatic carriage return has not been selected at system
generation, and if the number of characters to be printed exceeds the
line length of the physical device unit, then the terminal driver
disCards the excess characters until it receives one that instructs it
to return to horizontal position 1. You can determine when this
happens by examining word 5 of the information buffer returned by the
Get LUN Information system directive, or by typing "SET /BUF=TI:".

3-31

HALF-DUPLEX TERMINAL DRIVER

3.10.2 Escape Code Conversion

If escape sequences are not recognized, an ESCape or Altmode character
code of 33, 175, or 176 is converted internally to 33 before it is
returned to your task on input.

3.10.3 RT02~C Control Function

Because the screen of an RT02C Ba~ge Reader and Data Entry Terminal
holds only one line of information, special care must be taken when
sending a control character (for example, vertical tab) to the RT02-C.
Use IO.WAL (Write All).

It is advisable to read without echoing when reading a badge with the
RT02-C. Use IO.RAL or IO.RNE; and then write the received
information.

3.10.4 Checkpointing During Terminal Input

If checkpointing during terminal input was selected as a system
generation option, a checkpointable task is stopped (and therefore
eligible to be checkpointed) when trying to read. Therefore, a
stratagem such as issuing a read followed by a mark-time does not
work •. The intent might be to .time out the read if input is not
received in a reasonable length of time. But the mark-time is.not
issued until the read completes.

You can circumvent this behavior by disabling checkpointing for the
read-. This is not a desirable solution because it forces a task to
remain in memory during the entire read. This defeats the purpose of
selecting the checkpoint-during-terminal-input option.

3.10.5 Time Required for IO.KIL
. ,

An IO.KIL request may take up to 1. second to succeed,. because an
internal mark-time mechanism generates a software interrupt to get
into a clean state. The I/O may reach a state in which the kill can
complete within this time (for instance, if a hardware interrupt is
received). If not, the request is killed after 1 second.

3.10.6 Use of IO.WVB

We recommend that you routinely use IO.WVB, instead of IO.WLB, when
writing to a terminal. If the write actually goes to a terminal, the
Executive converts your IO.WVB into IO.WLB. However, if the LUN has
been redirected to some inappropriate device -- a disk, for
example -- using an IO.WVB is rejected because a file is not open on
the LUN. This prevents privileged tasks from overwriting block zero
of the disk (the boot block) •

Note that any subfunction bits specified in the IO.WVB request (for
example, TF.CCO, TF.WAL, or TF.WBT) are strIpped off when the QIO is
converted to an IO.WLB.

3-32

(

(

(

(

HALF-DUPLEX TERMINAL DRIVER

3.10.7 Remote DH11 and DZll Lines

All remote OHll lines in a system are answered at the same baud rate.
All remote OZll lines are also answered at the same rate, which may
differ from the OHll rate. These rates are specified at system
generation.

Before a remote OHll or OZll line is answered, the driver clears
certain of the terminal characteristics (see Table 3-5) that may have
been set by an MCR SET command .or by an SF.SMC QIO. The
characteristics cleared are: TC.S~P, TC~ESQ, TC.HLO, TC.SMR, and
TC.TTP. (Clearing TC.TTP means that a terminal type of "unknown" is
returned to an SF.GMC request.) Also, buffer size is set to 73.

A OZll remote line must be declared to be remote before the terminal
driver can correctly handle the modem. You can do this with the MCR
command SET /REMOTE=TI:.

NOTE

Because of the few modem signals that the OZllhandles
and the lack of interrupt support provided for those
signals, the OZll may not adequately handle telephone
exchange requirements in all countries.

3.10.8 High-Order Bit on Output

Setting the high~order bit of an output byte causes it to be
transmitted but not interpreted by the driver.

3.10.9 Side Effect~ of Setting Characteristics

Some of the characteristics that a task may set, or that you may set
from a terminal, have side effects that should be noted •.

• TC.HLD -- Unexpected behavior can result from a terminal in
hold-screen mode if its reception rate is much greater than
its transmission rate. (The OHll supports spli t baud rates.)
In hold-screen mode the terminal sends a CTRL/S during
recepti0r:t of an output stream, when the screen is nearly full.
Output 1S resumed -- another screen-full -- when you type
SHIFT/SCROLL (the terminal generates CTRL/Q). Thus, no output
is lost as a result of scrolling off the screen before you can
read it. However, if the terminal's transmission rate is far
below its reception rate, some unread output may scroll out of
sight before the CTRL/S can be transmitted.

A related point to note is that some terminals and interfaces
are hardware buffere.d. This fact can cause obscure timing
problems for tasks that try to implement hold-screen mode.

• TC.SMR -.;. If this characteristic is asserted (that is, if
lowercase to uppercase conversion is disabled by, for example,
SET /LOWER=TI:), the two characters l75(octal) and l76l(octal)
are interpreted as [(right..;.brace) and -(tilde),
respectively. If TC.SMR is not asserted, these two characters
act as Altmodes. That is, they act as line terminators that
do not advance the cursor to a new line. Altmodes are not
echoed.

3-33

HALF-DUPLEX TERMINAL DRIVER

3.10.10 Unsolicited-Input-Character ASTs for Tasks Attaching Several
Terminals

For a task that attaches several terminals (for example, a reentrant
language processor), the handling of unsolicited input requires
special care. When the terminal driver passes an unsolicited input
character to a task, it does not pass any information about which of
several terminals generated the character. The task must ascertain
this for itself.

One solution is for the task to name uniquely the AST entry points for
each attached terminal. Each separate AST then identifies its
terminal before branching to . a common routine that processes the
unsolicited character. For example:

ATTl: QIO$C IO.ATA, ••• ,<UIC1>
BR CONT

ATT2: QIO$C IO.ATA, ••• ,<UIC2>
BR CONT

UIC"l:MOV il, - (SP)
BR UIC

UIC2: MOV #2,-(SP)
BR UIC

UIC: MOV (SP)+~INDEX

3.10.11 Direct Cursor Control

The terminal driver generally examines the output stream to keep track
of the cursor's horizontal position (so that output can be wrapped
around or discarded). Therefore, tasks that want to use direct cursor
control should use IO.WALs. This prevents the terminal driver from
inserting CR/LFs (that the task considers spurious) into the output
stream. FORTRAN WRITE statements become IO.WVBs, which are
interpreted by the driver. To prevent this, a FORTRAN task can use
the CALL QIO routine or can issue carriage returns at frequent
intervals (to make the driver think the cursor is always well to the
left of the rightmost column, and therefore noCR/LFS need be emitted
to keep the cursor on the screen).

3.10.12 DL11 Receiver Interrupt Enable

For hardware reasons, a DLll is susceptible to
interrupt enable in its Receiver Status Register.
the receiver interrupt bit causes .the terminal
requests but not to respond to input (for example,
not echo input characters). The terminal driver has
recognizing the disabling. Therefore, it cannot
must be reset with an MCR OPEN command, the console
or a periodically rescheduled task.

3-34

losing receiver
The disabling of

to print output
the terminal does
no mechanism for
recover. The bit
switch register,

(

(

~--

(

HALF-DUPLEX TERMINAL DRIVER

3.10.13 Loadable Driver Restrictions

Checkpointing during terminal input, variable-length terminal buffer
support, and escape sequence support require the presence of
conditionally assembled Executive support. If a loadable terminal
driver supports one of these features and the Executive does not (or
vice versa), the best that can happen is an undefined global when the
terminal driver is built. At worst, the system is corrupted.

3-35

(-

(

(

C-

(

(

CHAPTER 4

VIRTUAL TERMINAL DRIVER

4.1 INTRODUCTION

The virtual terminal driver supports offspring task use of virtual
terminals in RSX-llM-PLUS systems. Virtual terminals are not physical
hardware devices; they are actually implemented in software through
the use of data structures created by the RSX-l1M-PLUS Executive.
Virtual terminals are created by the Executive when requested by
parent tasks with the Create Virtual Terminal directive. Virtual
terminals are useful in batch processing and other processing
environments in providing noninteractive terminal I/O support for
offspring tasks, eliminating the need for operator intervention.

Offspring task(s) "spawned" by or "connected" to the parent task that
created the virtual terminal can perform terminal I/O operations with
the virtual terminal in the same manner as with physical terminals~
Virtual terminals differ from physical terminals in that they receive
input from or output to a program (the parent task), rather than from
a keyboard or to a display (or printer), respectively.

4.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information sys.tem
directive (the first characteristics word) contains the following
information for virtual terminals. A setting of 1 indicates that the
described characteristic is true for virtual terminals.

Bit

o

1

2

3

4

5

6

7

8

9

10

Setting

1

1

1

o

o

o

o

o

o

o

o

Meaning

Record-oriented device

Carriage-control device

Terminal device

File-structured device

Single-directory device

Sequential device

Reserved

User-mode diagnostics supported

Massbus device

Unit software write-locked

Input spooled device

4-1

VIRTUAL TERMINAL DRIVER

Bit Setting Meaning

11 0 Output spooled device

12 0 Pseudo device

13 0 Device mountable as a communications channel

14 0 Device mountable as a FILES-II volume

15 0 Device mountable

Words 3 and 4 are undefined. Word 5 specifies the maximum byte count
(that is, maximum buffer size) to which offspring requests will be
truncatedi this value is specified by the parent task in the Create
Virtual Terminal system directive, as described in the RSX-IIM/M-PLUS
and Micro/RSX Executive Reference Manual.

4.3 QIO$ MACRO

Table 4-1 lists the standard and device-specific functions of the 010
macro that are valid for virtual terminals.

Table 4-1
Stand~rd and Device-Specific 010 Functions for Virtual Terminals

>

Format

STANDARD FUNCTIONS:

OIO$C IO.ATT, •••

OIO$C IO.DET, •••

;QIO$C 10. KIL, •••

OIO$C IO.RLB, ••• ,<stadd,size>

OIO$C IO.RVB, ••• ,<stadd,size>

OIO$C IO.WLB, ••• ,<stadd,size,stat>

OIO$C IO.WVB, ••• ,<stadd,size,stat>

4-2

Function

Attach device

Detach device

Cancel I/O request

Read logical block

Read virtual block
(effects IO.RLB)

Write logical block

Write virtual block
(effects IO.WLB)

(continued on next page)

(-

(

(

(

(

(

VIRTUAL TERMINAL DRIVER

Table 4-1 (Cont.)
Standard and Device-Specific QIO Functions for Virtual Terminals

Format Function

DEVICE-SPECIFIC FUNCTIONS:

QIO$C IO.STC, ••• ,<cb,sw2,swl>

QIO$C SF.GMC, ••• ,<stadd,size>

QIO$C IO.GTS, ••• ,<stadd,size>

QIO$C IO.RPR, ••• ,<stadd,size,[tmo],
. pradd,prsize,vfc>

QIO$C SF.SMC, ••• ,<stadd,size>

Set terminal characteristics
(enable/disable intermediate
I/O buffering, or return I/O
completion status to
offspring task)

Get multiple characteristics

Get terminal support

Read logical block
after prompt

Set multiple characteristics

size

stadd

stat

cb

The size of the data buffer in bytes (must be greater than 0).
The buffer must be located within the addressing space of the
parent or offspring task issuing the I/O request.

The starting address of the data buffer. The address must be
word aligned for SF.GMC, IO.GTS, and SF.SMC; otherwise, it may be
aligned on a byte boundary.

The I/O completion status code, specified by the parent task,
that is issued by the virtual terminal driver in response to an
offspring task's read request upon successful completion.

Characteristic bits to become set, selecting the following
virtual terminal functions:

cb Value Bits Set

o none

1 o

2 1

3 o and 1

4-3

Function

Enable intermediate
buffering in the Executive
pool

Return
virtual
completion
requesting

Disable
buffering

the specified
terminal I/O
status to the
offspring task

intermediate

Return status for
offspring write request

sw1

tmo

vfc

pradd

VIRTUAL TERMINAL DRIVER

The I/O completion code for I/O completion status.

NOTE

The sw2 and swl parameters are valid in the IO.STC
function only when cb=l or cb=3.

An optional time-out count (see below).

A character for vertical format control. See Table 3-11.

The starting address of the prompt buffer.

prsize

The size of the prompt buffer in bytes. The buffer must be
located within the address space of the offspring task issuing
the I/O request.

4.3.1 Standard QIO Functions

4.3.1.1 IO.ATT - This I/O function can be issued by offspring task
tasks to attach the virtual terminal. (It is illegal for parent tasks
to issue IO.ATT). Attaching a virtual terminal prevents other
offspring tasks from executing I/O operations with the virtual
terminal. However, parent task I/O requests are always serviced when
issued.

4.3.1.2 IO.DET - This I/O function can be issued by offspring tasks
to detach the virtual terminal, making it available for use by other
offspring tasks connected to the same parent task. (It is illegal for
parent tasks to issue IO.DET.)

4.3.1.3 IO.KIL - Parent and offspring tasks can issue IO.KIL to
cancel I/O requests. An offspring task issuing IO.KIL can result in
IE.ABO being returned to the parent task.

4.3.1.4 IO.RLB, IO.RVB, IO.WLB,
functions execute requested I/O
except as follows:

IO.WVB - These read and write
operations described in Chapter 2,

1. The virtual terminal driver returns the tmo parameter of an
offspring task's IO.RLB or IO.RVB request, or the vfc
parameter of an offspring task's IO.WLB or IO.WVB request as
a stack parameter on entry to the appropriate AST for the
parent task.

4-4

(

(

(

(

(

VIRTUAL TERMINAL DRIVER

2. The virtual terminal driver returns I/O completion status to
the offspring task in response to successful completion of
the offspring task's IO.RLB or IO.RVB request; however, the
actual I/O completion status values returned are specified
for data transfers in the third parameter word of the parent
task's IO.WLB or IO.WVB response, or in the second and third
parameters of the parent task's IO.STC function response when
no data transfer is desired.

4.3.2 Device-Specific QIO Function (IO.STC)

The IO.STC function can be issued by parent tasks to enable/disable
offspring task I/O buffering in secondary pool, or to- force an
appropriate I/O completion status for an offspring task . read I/O

_request when .no data transfer is desired. Both of these applications
fortne IO.STC function are described as follo.ws.

Parent tasks can use IO.STC to enable (or disable) intermediate
buffering in secondary pool. Intermediate buffering, when enabled, is
performed on offspring task virtual terminal read and write requests
when the offspring task is checkpointable.

Thus, offspring tasks can be stopped for virtual terminal I/O and
checkpointed in a manner similar to that when you use physic.al
terminals. Whenever the virtual terminal driver determines that it
sho~ld not use intermediate buffering, offspring tasks that issue
terminal requests become locked in memory until I/O completion;

-transfers occur directly between parent task and offspring task
buffers without intermediate buffering in secondary pool. -

In addition to the conditions that permit intermediate buffering (when
specified) , one condition can <;Hsable intermediate buffering of the
parent task. If the buffer size specified in the Create Virtual
Terminal directive exceeds the maximum size specified-. at system
generation time (512 (10) maximum), intermediate buffering is disabled. -

The second application for 10. STC is to allow the·· virtual terminal
driver to return an appropriate I/O completion status in response to
an offspring task read request. I/O status returned . in this manner
allows successful completion of the offspring task's request when the
parent task determines that no data transfer is desired; this
condition Can occur, for example, when no data is available for input
to the offspring task by the virtual terminal driver. When you use
the IO.STC function in this manner, you must include the three
parameters, <cb,sw2,swl>, as follows:

cb

A value of 1 is specified to indicate that the I/O completion
status return to the offspring task is desired.

NOTE

If the virtual terminal is operating in full
duplex mode, a cb value of 1 returns status for
an offspring read request, and a cb value of 3
returns status for an offspring write request.

4-5

sw2

sw2

VIRTUAL TERMINAL DRIVER

This parameter is the second word returned in the I/O completion
status indicating the number of bytes read upon successful
completion, of an offspring task's read request. However, because
no data transfer actually occurs, the value specified is 0; the
byte count of 0 specified in this function is legal (and
desired), whereas a byte count of 0 in write operations is
illegal (and results in an error being returned to the parent
task).

This parameter specifies the status code to be returned to the
.offspring task by the virtual terminal driver in the first word
of the I/O completion status. This value is returned in the high.
byte and a value of +1 is returned in the low byte of the status
word. Typical values and the status that each represent are
listed as follows:

Code Value Completion Status Indicated

IS.SUC + 1 Successful completion

IS.CR 15 Read terminated by carriage
return

c/

IS. ESC 33 Read terminated by an Altmode

IS.ESQ 233 Read terminated by an escape
sequence

4.3.3 SF.GMC

The Get Multiple Characteristics function returns information on
terminal characteristics. This function can be issued by both the
parent and the offspring tasks •. The virtual terminal driver returns
the characteristics that were set by the previous corresponding SF.SMC
request. However, only the full duplex mode (TC.FDX) characteristic
affects the operation of the virtual terminal driver. The SF.GMC
function is provided only to maintain transparency to the offspring
task.

Valid virtual terminal characteristics are listed in Table 4-2.

4.3.4 IO.GTS

The Get Terminal Support function returns a 4-word buffer of
information specifying which features are a part of the virtual
terminal driver. The virtual terminal driver provides the IO.GTS
function only to maintain transparency to the offspring task. Table
2-7 lists the options returned by the full duplex terminal driver. Of
those listed, the virtual terminal driver returns the following:

Word 1 F1.BUF, F1.RPR, F1.UTB, and F1.VBF

Word 2 F2.SCH and F2.GCH

4-6

(---

(
-

(

(
~---

(

VIRTUAL TERMINAL DRIVER

4.3.5 IO.RPR

The Read After Prompt (IO.RPR) function can be issued only by the
offspring task. When the offspring task issues this function, the
function appears to the parent task as a separate write request
followed by a read request. This function is described in Chapter 3.

4.3.6 SF.SMC

The SF.SMC function allows .a task to set and reset the characteristics
of a terminal. Both the parent and the offspring tasks may issue this
function. The parent task may set virtual terminals to full duplex
operation by using the SF.SMC function with the characteristic;:s bit
TC.FDX. When in full duplex mode, the virtual terminal driver
attempts to process the offspring task's read and write requests
simultaneously. To ensure that these operations are overlapped, the
parent task. should minimize the amount of time it spends in AST state.

The virtual terminal driver defaults to half duplex mode.

Table 4-2 lists the characteristics that either the parent or the
offspring task may set.

Table 4-2
Virtual Terminal Characteristics

Bit Name Octal
Value

TC.FDX 64

TC.SCP 12

TC.SMR 25

TC.TTP 10

4.4 STATUS RETURNS

Meaning (If Asserted)

Full duplex mode

Terminal is.a scope

Uppercase conversion
disabled

Terminal type

Default Value

o

o

o

o

The error and status conditions listed in Tables 4-3 and 4-4 are
returned by the virtual terminal driver described in this chapter.
The SE.NIH error is returned by the SF.GMC and SF.SMCfunctions. For
this error, the low byte of the first word in the I/O status block
contains IE.ABO. The second word in the I/O status block contains an
offset (starting at 0) pointing to the erroneous byte in the stadd
buffer.

4-7

VIRTUAL TERMINAL DRIVER

Table 4-3
Virtual Terminal Status Returns for Offspring Task Requests

Code

IS.SOC

IE.IFC

IE.ABO

IE.SPC

IE.UPN

SE.NIH

Reason

Successful completion of an offspring task read
request results in an I/O completion status specified
in a parent task QIO parameter being returned.
Typically, the status information returned simulates
a subset of I/O returns normally produced by the
terminal drivers described in Chapter ,,2.

Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the I/O
status block indicates the number of bytes
transferred on a write operation.

Invalid function code

The offspring task attempted a read or a write
function and the-parent task did not specify an AST
address in its response to the requested I/O
function, or the offspring task issued an IO.STC or
other invalid function.

Request terminated

The offspring task issued IO.KIL or the parent task
eliminated the virtual terminal unit.

Illegal address space

Part or all of the buffer specified for a read or
write request was outside of the task's address
space, or a byte count of 0 was specified.

Insufficient dynamic storage

The driver could not allocate an AST block to notify
the parent task of an offspring task request, or the
driver could not allocate an intermediate buffer in
the Executive pool.

A terminal characteristic other than those in Table
4-2 was specified, or an offspring task attempted to
assert TC.FDX.

4-8

(

(

VIRTUAL. TERMINAL DRIVER

Table 4-4
~__ Virtual Terminal Status Returns for Parent Task Requests

(

Code Reason

IS.SUC

IE.EOF

IE.BAD

IE.DUN

IE.IFC

SE.NIH

Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the I/O
status block indicates the number of bytes
transferred on a read or write operation.

End of file encountered

The IO.STC function was completed successfully.

Bad parameters

The parent task specified a buffer size that exceeded
the system maximum ~pecified at system generation
time.

Device not attachable

An IO.ATT or IO.DET function was issued by the parent
task.

Invalid function code

A read, write, or IO.STCfunction was issued without
a pending offspring task request. This status can
occur if the offspring task cancels a pending read or
write request. This function code is also returned
when IO.STC is issued to enable intermediate
buffering on a virtual terminal unit whose buffer
size, specified in the Create Virtual Terminal
directive, exceeds the system maximum specified at
system generation time.

A terminal characteristic other than those in Table
4-2 was specified in an SF.GMC or SF.SMC request.

4-9

(

(

~-

(

(

CHAPTER 5

DISK DRIVERS

5.1 INTRODUCTION

The RSX-llM disk drivers support the disks summarized in Table 5-1.
Subsequent sections describe these devices in greater detail.

All of the disks described in this chapter are accessed in essenti~lly
the same manner. Up to eight disks of each type (except RX01, RX02,
RX50, RD5l, RD52,RC25, RL01, RL02, RA6.0, RABO, or RAB1) may be
connected . to their respective controllers. Disks and other
file-structtired media are divided logically into series of 256-word
blocks.

5.1.1 RFll/RSll Fixed-Head Disk

The RFll controller/RSll fixed-head disk provides random access bulk
storage. It features fast track-switching time and a redundant set of
timing tracks.

5.1.2 RS03 Fixed-Head Disk

The RS03 (RHll-RH70 controller/RS03 fixed-head disk) is a fixed-head
disk that offers speed and efficiency. With 64 tracks per platter and
recording on one surface, the RS03 has a capacity of 262,144 words.

5.1.3 RS04 Fixed-Head Disk

The RS04 (RHll-RH70 controller/RS04 fixed-head disk) is similar to the
RS03 disk and interfaces to the same controller, but provides twice
the number of words per track by recording on both surfaces of the
platter, and thus has twice the capacity.

5.1.4 RPll/RP02 or RP03 Pack Disks

The RPll control1e;r/RP02 or RP03 pack disk consists of 20 data
surfaces and a moving read/write head. The RP03 has twice as many
cylinders, and thus double the capacity of the RP02. Only an even
number of words can be transferred in a read/write operation •.

5-1

Drive

RSll

RS03

RS04

RPR02

RP03

RM02

RM03

RM05

RP04,RP05

RP06

RPM

1800

3600

3600

2400

2400

2400

3600

3600

3600

DISK DRIVERS

Table 5-1
Standard Disk Devices

Secs

64 1

64 1

10

10

Trks

1

.1

1

20

20

5

5

19

19

19

Cyls

128

64

.64

200

400

823

823

823

411

.815

Bytes/
Drive

524,288

524,288

1,048,576

20,480,000

40,960,000

67,420,160

.67,420,160

256,196,608

87,960,576

174,423,040

Decimal
Blocks

1024

1024

2048

40,000

80,000

131,680

131,680

500;384

171,798

340,670

RP07

3600

3600

32

32

32

22

22

50 32 630 2 516,096,000 1,008,000

RM80

RK05

RLOl

RL02

RK06·

RK07

RXOl

RX02

RA80

RA81

RA60

RC25

RD51

RD52

RX50

3600

1500

2400

2400

2400

2400

360

360

3600

3600

3600

2850

3600

31

12

40 3

40 3

22

22

26 4

26 4

31

51

42

31

16

14

2

2

2

3

3

1

1

14

14

4

2

4

Manufacturer dependent

300 10 1

559 2 124,214,272

200 2, ol57, 600

256

512

411

815

77

77

546

1248

2382

796

306

80

5,242,880

10,485,760

13,888,512

27,810,800

256,256

512,512

121,325,568

456,228,864

204,890,112

26,061,824

'10,027,008

30,9657,60

409,600

242,606

4800

. 10,240

20,480

2.7,126

53,790

494

988

236,964

891,072

400,176

50,902

19,58.4

60,480

800

1. The RS03 has 64 words per sector; the RS04 has 128 words/sector.

2. The RP07 and the RM80 each have two additional CE cylinders.

3. The RL01 and RL02 each have 128 words per sector.

4. The RX01 has 64 wqrds per sector; the RX02 has 128 words per
sector.

5-2

~--

(

~---

(

(

DISK DRIVERS

5.1.5 RM02/RM03/RM05/RMSO Pack Disk

The RM02/RH03, RMOS, and RMSO are MASSBUS disk drives and adapters
that use the existing MASSBUS controller. With a single head per
surface, they provide a 1. 2 megabyte-per-second data transfer rate.
PDP-U/70 systems use the RM03, RHOS, and RMSO with the RH70
controller on PDP-ll/70 systems. All other systems use the RM02 with
the RHII controller.

5.l~6 RP04, RP05, RP06 Pack Disks

The RP04 or RP05 (RHll-RH70 controller/RP04 or RP05 pack disk)
disks consist of 19 d~ta surfaces and a moving read/write head •.
offer large storage capacity with rapid access time. The RP06
disk has approxirtlately twice the capacity of the RP04 or RP05.
RP07 f.ixed-media disk has approximately 3 times the capacity of
RP06.

5.1.7 RKII/RKOS or RKOSF Cartridge Disks

pack
Both
pack

The
the

The RKII controller/RK05 DECpack cartridge disk is an economical
storage system for medium-volume, random access storage.' The
removable disk cartridge offers the flexibility of large off-line
capacity with rapid transfers of files between on- and off-line units
without necessitating copying operations. The RK05F has twice the
storage capacity of the RK05 and has a fixed (nonremovable) d.isk
cartridge.

5.l.S RLII/RLOI or RL02 Cartridg~ Disk

The RLOI is a low-cost, single-head per Surface disk with a burst data
transfer rate of 512 kilobytes per second. The storage capacity of
the RL02 is twice that of the RLOl.

5.1. 9 RK611/RK06 or RK07 Cartr idge Disk

The RK6ll controller/RK06 cartridge disk is a removable, random
access, bulk-storage system with three data surfaces. The storage
capacity is 6,944,256 words per pack. The system, expandable to eight
drives, is suitable for medium to large systems.

The RK6ll controller/RK07 cartridge disk is generally similar to the
RK6ll/RK06, except storage capacity is. increased to approximately
13,905,400 words per pack. Both RK06 and RK07 disks can use the same
RK6ll controller; mixing RK06 and RK07 disks on the same controller is
permitted.

5.1.10 RXll/RXOlFlexible Disk

The RXII controiler/RXOI flexible disk is an economical storage system
for low-volume, random access storage. Data. is stored in twenty-six
64-word sectors per track; there are 77 tracks per disk. Data may be
accessed by physical sector or logical block. If logical or virtual
block I/O is selected, the driver reads four physical sectors. These

5-3

DISK DRIVERS

sectors are interleaved to optimize data transfer. The next logical
sector that falls on a new track is skewed by six sectors to allow for
track-to-track switch time. Physical block I/O provides no
interleaving or skewing and provides access· to all 2002 sectors on the
disk. Logical or virtual I/O starts on track 1 and provides access to
494 logical blocks.

5.1.11 RX211/RX02 Flexible Disk

The RX211 controller/RX02 flexible disk is an economical storage
system for low-volume, random access storage. It is capable of
operating in either an industry-standard, single-density mode (as
stated for the RXll/RXOl flexible disk), or a double-density mode (not
industry standard). In the single-denSity mode, each drive can store
data exactly as stated in Section 5.1.10. Iri the double-density mode,
data is stored in twenty-six 128-word sectors per track; there are 77
tracks per disk. The RX211/RX02 operating in the single-density mode
can read disks written by an RXll/RXOl flexible disk system. In
addition, disks written by the RX211/RX02 operating in the
single-density mode can be read by the RXll/RXOl flexible disk system •.

5.1.12 ML-ll Disk Emulator

The ML-ll is a fast, random access, block-mode MOS memory system. The
RS.X-IIM . and RSX-llM-PLUS operating systems treat the ML-ll as a disk.
However, because it is not a disk, the statistics in Table 5-1 do not
apply. Unlike a disk, the number o~ bytes per drive varies. One
ML-Il provides from 512 blocks to 8192 blocks of storage.

5.1.13 KDA50,UDASO/RA60/RA80/RABl Disks

The KDASO orUDA50 controller is an intelligent disk controller that
contains a high-speed microprogrammed processor capable of performing
all. disk functions, including data handling, error detection and
correction, and optimization of disk drive activity and data
transfers. The ·controller optimizes disk activity by reordering
QIO$s. Therefore, QIO$ macros may not complete in the order in which
they were issued. The types of drives that can be connected to the
KDA50 or UDA50 controllers are the RA60 disk drive, which has a
removable pack, and the RA80 and RA81, both of which are fixed media
dri ves. (For datacapaci ties and rates, see Table 5-1.) Up to four of
these drives can be connected to a KDA/UDA, in any desired
combination.

The KDA/UDA controller can perform an extensive self-test on power-up
or initialization.

5.1.14 RC25 Disk Subsystem

The RC25 disk subsystem com~ists of afixed~media drive and a
removable-media drive, both of which revolve on the same spindle and
share the same head mechanics. Each drive is a logical unit, so each
RC25 disk subsystem consists of two logical units.

5-4

(

(

(

(

DISK DRIVERS

The RC25 Subsystem combines, in one package, a controller and a single
disk drive that has a removable disk and a fixed disk. These disks
reside in the drive as two separate logical units on a single spindle.
Their size is the same. Both are single eight-inch disks with two
surfaces, and both disks have the same data capacity. But
mechanically they are different: One is a removable front-loading
cartridge disk, while the other cannot be removed from the drive. The
drive contains loadable Winchester heads.

RC25 subsystems are available in two types: a master drive that
contains its own controller, and a slave drive, which must be
connected to an RC25 master drive. Each RC25 master drive can support
one RC25 slave drive. The added-on disk drive is a slave to the disk
subsystem that has the controller. A master-slave configuration would
contain four logical units.

5.1.15 RD51 Fixed 5.25 Disk/RX50 Flexible 5.25 Disk

This subsystem consists of a hard disk (RD51) and flexible disk (RX50)
combination, and a RQDXl/RQDX2 controller. In combination, they are a
mass storage medium for small systems. The basic configuration for
this subsystem is an RD5l fixed disk drive and an RX50 flexible dual
disk drive. In this configuration, the RD5l is the system device and
the RX50 is a data or a backup device, or both. The. RX50 dual disk is
addressed as two separate units resulting in a basic configuration of
three disk units. Also, you can add another RD5l to increase storage
capacity. Some of the characteristics of the RD/RX drives are given
in Table 5-1 and in the following paragraphs.

The RD5l disk drive is a 5.25 inch fixed disk with Winchester type
heads. It has two disks with four data surfaces. The RD5l is soft
sectored and field formattable. The headers for each sector contain
the sector's cylinder number, head number, and sector number. The
sector number is the logical sector number (0-15) that reflects the
sector interleave of the disk.

The RX50 dual diskette drive is a compact mass storage drive with two
access slots. Each slot can hold a single-sided 5.25 flexible disk.
These diskettes are firm sectored and are not field formattable.
Every track has sectors numbered from 1 to 10. The two diskettes
share the same head transport mechanism.

RSX-llM-PLUS also supports the RUX50 Unibus interface for the RX50
dual diskette drive and the RX180 IBM-compatible diskette drive.

5.1.16 RD52 Fixed 5.25 Disk

The RD52 disk drive is a 5.25 inch fixed disk with Winchester type
heads. The RD52 is soft sectored and field formattable. The maximum
capacity of the RD52 is 30.97 megabytes.

5.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for disks. A bit setting of 1 indicates that the
described characteristic is true for disks.

5-5

Bit

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Setting

o

o
o

1

o

o
1

x

x

o

o

o

o

o

1

1

DISK DRIVERS

Meaning

Record-oriented device

Carriage-control device

Terminal device

File structured device

Sirigle-directory device

Sequential device

Mass storage device

User-mode diagnostics supported (device
dependent)

Device supports 22-bit direct addressing

Unit software write-locked

Input spooled device

Output spooled device

Pseudo-device

Device mountable as a communicatiqn£l
channel

Device mountable as a FILES,..11 volume

Device mountable

Words 3 and 4 of the buffer contain the maximum logical block number.
Note that the high byte of U.CW2 is undefined. Your task should clear
the high byte in the buffer before using the block number. For DU:
type disks, these two words are undefined until the device has been
mounted at least once. Word 5 indicates the default buffer size;
which is 512 bytes for all disks.

5.3 OIO$ MACRO

This section summarizes the standard, and
functions for disk drivers.

5.3.1 Standard OIO$ Functions

device-specific OIO

Table 5-2 lists the standard functions of the OIO$ macro that are
valid for disks.

5-6

(

~---

(

- ---- - - -- - -----

DISK DRIVERS

Table 5-2
Standard QIO$ Functions for Disks

QIO$C IO.ATT, •••

QIO$C IO.DET, •••

QIO$C IO.KIL, •••

Format

QIO$C IO.RLB, ••• ,<stadd,size"blkh,blkl>

QIO$C IO.RVB, ••• ,<stadd,size"blkh,blkl>

QIO$C IO.WLB, ••• ,<stadd,size"blkh,blkl>

QIO$C IO.WLC, ••• ,<stadd,size"blkh,blkl>

QIO$C IO.WVB, ••• ,<stadd,size"blkh,blkl>

Function

Attach device I

Detach device

Kill I/O 2

READ logical block

READ virtual block

WRITE logical block

WRITE logical block
followed by write
check 3

WRITE virtual block

1. In RSX-IIM systems, only unmounted volumes may be attached; in
RSX-IIM-PLUS systems, only volumes mounted foreign ~ay be
attached. Any other attempt to attach a mounted volume
results in an IE.PRI status being returned in the I/O -status
doubleword.

2. In-progress disk operations are allowed to complete when
IO.KIL is received, because they take such a short time •. I/O
requests that are queued when IO.KIL is received are killed
immediately. An IE.ABO status is returned in the I/O status
dotibleword.

3. Not supported on RXOI or RX02 flexible disks~

stadd

size

The starting address of the data buffer (must be on a word
boundary).

The data buffer size in bytes (must be even, greater than 0, and,
for the RP02 and RP03, also a multiple of four bytes).

blkh/blkl

Block high and block low, combining to form a double-precision
number that indicates the actual logical/virtual block address on
the disk where the transfer starts; blkh represents the high 8.
bits of ~he address, andblkl the low ~6 bits.

5-7

DISK DRIVERS

IO.RVB and IO.WVB are associated with file operations (see the
RSX-IIM/M-PLUS and Micro/RSX I/O Operations Reference Manual). For
these functions to be executed, afi.le must be open on the specified
LUN if the volume associated with the LUN is mounted. Otherwise, the
virtual I/O request is converted to a logical I/O request using the
specified block numbers.

NOTE

When writing a new file using QIOs, the task must
explicitly issue .EXTND File Control System library
routine calls as necessary to reserve enough blocks
for the file,· or the file must be initially created
wi th enough blocks allocated for' the file. In
addition, the task must put an appropriate value in
the FOB for the end-of-file block number (F.EFB.K)
before closing the file. (Refer to the .EXTND routine
description in the RSX-llM/M-PLUS and Micro/RSX I/O
Operations Reference Manual.)

Each disk driver supports the subfunction bit IQ.X: inhibit retry
attempts for error recovery. You use this subfunction bit by using it
in a Logical OR with the desired QIO; for example:

QIO$C IO.WLB!IQ.X, ••• ,<stadd,size"blkh,blkl>

The IQ.X subfunction permits you to specify retry algorithms for
applications in which data reliability must be high.

The overlapped seek drivers for RSX-llM-PLUS support subfunction bit
IQ.Q, which queues the request immediately without doing a seek (that
is, uses implied seeks).

5.3.2. Device-Specific QIO$Functions

The device-specific functions of the QIO$ macro are valid for the
RXOl/RX02/RLOI/RL02 only; they are shown in Table 5-3.

Table 5-3
Device-Specific Functions for the

RXOl,RX02, RLOl, and RL02 Disk Drivers

Format Function

QIO$C IO.RPB, ••• ,<stadd,size",pbn> Read physical block

QIO$C IO.SEC, •••

QIO$C IO.SMD, ••• ,<density,,>

Sense diskette characteristics
(RX02 only)

SET media density (RX02 only)

QIO$C IO.WDD, ••• ,<stadd,size",pbn> Write physical block (with delEited
data mark) (RXOI and RX02 only)

QIO$C IO.WPB, ••• ,<stadd,size",pbn> Write physical block

stadd

The starting address of the data buffet (must be on a word
boundary).

5-8

(

(

(

size

pbn

DISK DRIVERS

The data buffer size in bytes must be even and greater than 0).

The physical blqck number where the transfer
validation will occur).

starts (no

density

The media density as follows:

o = single (RXOl-compatible) density
2 = double density

5.3.3 Device-Specific 010$ Function for the DUDRV

TheDU: device driver supports the device~specific 010$ function
shown in Table 5-4.

Table 5"';4
Device-Specific 010$ Function for the DU: Device Driver

Format Function

OIO$C IO.RLC,.~.,<stadd,size,blkh,blkl> Read Logical with Read Chec.k
modifier

The IO.RLC function is a read logical block followed by a read check.
The disk is read twice.

5.4 STATUS RETURNS

The errqr and status conditions listed in Table 5-5 are returned by
the disk drivers described in this chapter.

Code

IS.SUC

IS.PND

Table 5-5
Disk Status Returns

Reason

Successful completion

The operation specified in the 010$
completed successfully. The second
status block can be examined to
number of bytes processed, if
involved reading or writing.

I/O request pending

directive was
word of the I/O
determine the
the operation

The operation specified in the OiO$ directive has
not yet been executed. The I/O status block is
filled with Os.

(continued on next page)

5-9

Code

IS. ROD

IE.ABO

I-E.ALN

IE.BLK

IE.BBE

IE.BYT

IE.DNR

IE.FHE

DISK DRIVERS

Table 5-5 (Cont.)
Disk Status Returns

Reason

Deleted data mark read

A deleted record was encountered while executing an
IO.RPB function. The second word of the I/O status
block can be examined to determine the number of
bytes processed (RXOl and RX02 only).

Request aborted

An I/O request was queued (not yet acted upon by
the driver) when an IO.KIL was issued.

File already open

The. task attempted to open a file on the physical
device unit associated with specified LUN, but'a
file has already been opened by the issuing task on
that LUN. .

Illegal block number

An invalid logical block number was specified.
This code would be returned, for example, if block
4800 were specified for an RK05 disk, on which
legal block numbers extend from 0 through 4799.
IE.BLK would also be returned if an attempt was
made to write on the last track of an RK06 disk.
(See Section 5.5.)

Bad block error

The disk sector (block) being read was marked as a
bad block in the header word. Data cannot be
written on or read from a bad block.

Byte-aligned buffer specified

Byte alignment was specified for a buffer, but only
word alignment is legal for disk. Alternatively,
the length of a buffer is not an appropriate number
of bytes. For example, all RP03 and RP02 disk
transfers must be multiples of four bytes.

Device not ready

The physical device unit specified in the QIO$
directive was not ready to perform the desired I/O
operation.

Fatal hardware error

The controller is physically unable to reach the
location where input/output operation is to be
performed. The operation cannot be completed.

(continued on next page)

5-10

(

(

---_ ... __ ._- .--.-----~.-.---"~-.---~."----.. --.--- ------_._ .. _----_.- _ ... _-- ._- --"----.. -.- .. --~~- -~-·-·~~-,-~~-~-·~~c-·"- -=·.M ...

(---
Code

IE.IFC

IE.NLN

IE~NOD

IE.OFL

(IE.OVR

IE.PRI

IE.SPC

IE.VER

(

DISK DRIVERS

Table 5-5 (Cont.)
Disk Status Returns

Reason

Illegal function

A function code was specified in an I/O request
that is invalid for disks.

File not open

The task attempted to close a file on the physical
device unit associated with the specified LUN, but
no file was currently open on that LUN.

Insufficient buffer space

Dynamic storage space has been depleted, and there
was insufficient buffer space available to allocate
a secondary control block. For example, if a task
attempts to open a file, buffer space for the
window and file control block must be supplied by
the Executive. This code is returned when there is
not enough space for this operation.

Device off line

The physical device unit associated with the LUN
specified in the 010 directive was not on line.

Illegal read overlay request

A read overlay was requested, and the physical
device unit specified in the QIO$ directive was not
the physical device unit from which the task was
installed. The read overlay function can only be
executed on the physical device unit from which the
task image containing the overlays was installed.

Privilege violation

The task that issued the request was not privileged
to execute that request. For disk, this code is
returned if a nonprivileged task attempts to read
or write a mounted volume directly (that is, using
IO.RLB or IO.WLB). Also, this code is returned if
any task attempts to attach a mounted volume.

Illegal address space

The buffer specified for a read or write request
was partially or totally outside the address space
of the issuing task, or a byte count of 0 was
specified.

Unrecoverable error

After the system's standard numbe.r of
been attempted upon encountering an
operation still could not be completed.
unrecoverable errors are usually parity

retries has
error, the
For disk,

errors.

(continued on next page)

. -- -.-- _ .. __ .. - .. =-

Code

IE.WCK

IE.WLK

DISK DRIVERS

Table 5-5 (Cont.)
Disk Status Returns

Reason

Write check error

An error was detected during the write check
portion of an operation.

Write-locked device

The task attempted to write on a disk that was
write-locked.

When a disk I/O error condition is detected, an error is usually not
returned immediately. Instead, RSX-llM attempts to recover from most
errors by retrying the function as many as eight times. Unrecoverable
errors are generally parity, timing, or other errors caused by a
hardware malfunction.

5.5 PROGRAMMING HINTS

5.5.1 UDA50 QIO$e IO.ATT Before GLUN$

The UDA50 dynamically updates the system data base to reflect the
characteristics of the UDA50. Therefore,your task should issue a
QIO$ IO.ATT function before requesting the device's characteristics
with the GET LUN directive.

5.5.2 RX02 QIO$C IO.SEC Before GLUN$

The RX02 driver (DYDRV) dynamically updates the system data base to
reflect the characteristics of the media in the RX02 drive.
Therefore, your task should issue a QIO$C IO.SEC (sense
characteristics) function before requesting the device's media
characteristics with the GLUN$ directive.

5.5.3 Bad Sector Track on Disks

For the RK6ll controller/RK06 or RK07 disk, the RLll controller/RLOl
or RL02 disk, RM02 disk, RM03 disk, RM05 disk, RM80 disk, and RP07
disk, the driver write-protects the last track of the cartridge. This
track contains the factory-recorded bad-sector file.

5.5.4 Stalling Input and Output (I/O)

Because two RC25 disk units revolve on the same spindle and share the
same head mechanics, you must spin down both units of a subsystem in
order to spin down one unit. You cannot access either unit until the
subsystem is spun up again. Because you must spin down the drive any
time you want to insert or remove a disk from the removable-media
unit, the device driver (DUDRV) allows you to spin down the subsystem
and still retain context on the fixed-media unit, provided it is

5-12

(

(

(

(---

(

(

---- -------- --

DISK DRIVERS

mounted as a Fi1es-11 or foreign volume. It does this by postponing
input and output to the fixed-media unit until the subsystem is spun
up again and the heads are reloaded. This is called stalled I/O.

When the driver receives an I/O request that it cannot process because
the drive is spun down, it issues the following message to the
console:

<ddnn:) - I/O stalled

When the drive is spun up again and I/O to the device is resumed, the
driver issues the ~ollowing message to the console:

<ddnn:) - I/O resumed

Note that because the only reason you would want to spin down the disk
on a running system would be to replace the removable disk, and you
would never specifically need to spin down the fixed-media unit, I/O
is never stalled· to the removable-media unit. The removable-media
unit behaves like any other disk on an Micro/RSX system: if you spin
it down, context 1s lost.

Stalling I/O to an RC25 subsystem affects the system's performance.
If you initiate an operation requiring I/O to a stalled unit, you will
not receive a timely response to the request. Although the I/O
request is queued to the device driver, the driver ignores the request
until the drive is loaded and the unit is ready. The driver then
resumes processing requests. Note, however, that an operation C!an
continue as long as it does not require access to the unit whose I/O
is stalled.

Sometimes an operation that does not involve stalled-I/O units is
delayed as well. For example, assume that your system disk is in the
fixed-media unit and that you spin down a subsystem in order to change
the disk pack in the removable-media unit. If a user then initiates
an operation requiring a task to be loaded from the fixed unit, the
loader issues a queued I/O request to the fixed unit. However, the
device driver does not respond to this request immediately, since the
subsystem is spun down. Also, because the loader cannot service
additional tasks until it loads the current task from the disk, load
operations to other disks on the system remain in the loader's work
queue until the current load operation completes.

NOTE

Like the loader, the Fi1es-11 Ancillary Control
Processor (Fi1es-11 ACP or F11ACP) is another
single-threaded task that may delay response time when
I/O is stalled to the RC25. To avoid this delay, you
should always install a unique ACP for the RC25
fixed-media units (see the MOU command in the
RSX-11M/M-PLUS MCR Operations Manual or the MOUNT
command in the RSX-11M/M-PLUS Command Language
Manual) •

System users may find it difficult
qrashes and system delays due to
recommended that, before you spin down
all system users of your intentions.

5-13

to distinguish between system
stalled I/O. Therefore, it is
an RC25 subsystem, you inform

DISK DRIVERS

5.5.5 Dismounting the RC25

You dismount a unit on the RC25 in the same way as for other disk
devices, by using the DISMOUNT command. However, there are
restrictions on using the /UNLOAD qualifier to spin down the disk.
Since context may be lost on the removable disk if the subsystem is
spun down, all spin down requests are ignored for th. fixed unit of
the RC25. For the removable disk unit, you must be privileged in
order to spin down the device while dismounting it. The privileged
status of DISMOUNT/UNLOAD is a safety measure to control who is able
to spin down the system disk.

If you are a privileged user, DISMOUNT/UNLOAD issues the following
message when the command executes properly:

Warning -- All units of multiunit dtive will spin down <ddnn:>
, .

If you are a nonprivileged user, DISMOUNT/UNLOAD refuses your request
to spin down a unit and issues the following message:

Warning -- Volume will not spin down <ddnn:>

5-14

(

(

(

(

CHAPTER 6

DECTAPE DRIVER

6.1 INTRODUCTION

The RSX-IIM DECtape driver supports the TCll-~ dual DECtape controller
with up to three additional dual DECtape transports. The TCll-G is a
dual-uni t, bidirectional, magnetic-tape transpo.rt system for auxil iary
data storage. DECtape is formatted to store data at fixed positions
on the tape, rather than at unknown or variable positions as· on
conventional magnetic tape. The system uses. redundant recording of
the mark, timing, and data tracks to increase reliability. Each reel
contains 578 logical blocks. As with disk, each of these blocks can
be accessed separately, and each contains 256 words.

6.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Inform~tion system
directive (the first characteristics word) contains the following
information for DECtapes. A bit setting of 1 indicates that the
described characteristic is true for DECtapes.

Bit

o

1

2

3

4

5

6

7

8

9

Setting

o

o

o

1

o

o

1

o

o

o

Meaning

Record-oriented device

Carriage-control device

Terminal device

File structured device

Single-directory device

Sequential device

Mass storage device

User-mode diagnostics supported

Device supports 22-bit addressing

Unit software write-locked

6-1

DECTAPE DRIVER

Bit Setting Meaning

10 0

11 0

12 0

13 0

14 1

15 1

Input spooled device

Output spooled device

Pseudo device

Device mountable as a communications
channel

Device mountable as a FILES-II volume

Device mountable

Words 3 and 4 of the buffer contain the maximum LBN. Word 5 indicates
the default buffer size, 512 bytes, for DECtape.

6.3 010$ MACRO

This section summarizes standard and device-specific 010$ functions
for the DEC tape driver.

6.3.1 Standard 010$ Functions

Table 6-1 lists the standard functions of the 010$ macro that are
valid for DECtape.

Table 6-1
Standard 010$ Functions for DECtape

Format Function

OIO$C IO.ATT, ••• Attach device 1

OIO$C IO.DET, ••• Detach device

OIO$C IO.KIL, ••• Kill I/O 2

OIO$C IO.RLB, ••• ,<stadd,size",lbn) READ logical block (forward)

OIO$C IO.RVB, ••• ,<stadd,size",lbn) READ virtual block (forward)

OIO$C IO.WLB, ••• ,<stadd,size",lbn) WRITE logical block (forward)

OIO$C IO.WVB, ••• ,<stadd,size",lbn) WRITE virtual block (forward)

1. Only unmounted volumes may be attached. An attempt to attach a
mounted volume results in an IE.PRI status being returned in the
I/O status doubleword.

2. In-progress DECtape operations are allowed to complete when
IO.KIL is received, unless the unit is not ready, because they
take such a short time. I/O requests that are queued when
IO.KIL is received are killed. An IE.ABO status is returned in
the I/O status doubleword.

6-2

(

(

(

(

(

stadd

size

Ibn

DECTAPE DRIVER

The starting address of the data buffer (must be on a word
boundary).

The data buffer size in bytes (must be even and greater than 0).

The logical block number on the DECtape where the transfer starts
(must be in the range 0-577).

IO.RVB and IO.WVB are associated with file operations (see the
RSX-IIM/M-PLUS and Micro/RSX I/O Operations Reference Manual). For
these functions to be executed, atile must be open on the specified
LUN if the volume associated with the LUN is mounted. Otherwise, the
virtual I/O request is converted to a logical I/O request using the
specified block numbers.

6.3.2 Device-Specific QIO$ Functions

The device-specific functions of the QIO$ macro that are valid for
DECtape are shown in Table 6-2.

Table 6-2
Device-Specific Functions for DECtape

Format Function

QIO$C IO.RLV, ..• ,(stadd,size",lbn>

QIO$C IO.WLV, ••• ,(stadd,size",lbn>

READ logical block (reverse)

WRITE logical block (reverse)

stadd

size

Ibn

The starting address of the data buffer (must be on a word
boundary) •

The data buffer size in bytes (must be even and greater than 0).

The transfer starts (must be in the range 0-577).

6-3

DECTAPE DRIVER

6.4 STATUS RETURNS

The error and status conditions listed in Table 6-3 are returned by
the DECtape driver described in this chapter.

Code

IS.SUC

IS.PND

IE.ABO

IE.ALN

IE.BLK _

IE.BYT

IE.DNR

IE.IFC

Table 6-3
DECtape Status Returns

Reason

Successful completion

The operation specified in the QIO$ macro was
completed successfully. The second word of the I/O
status block can be examined to determine the
number of bytes processed, if the operation
involved reading or writing.

I/O request pending

The operation specified in the QIO$ macro has not
yet been executed. The I/O status block is filled
wi th Os.

Request aborted

An I/O request was queued (not yet acted upon by
the driver) when an IO.KIL was issued.

File already open

The task attempted to open a file on the physical
device unit associated with the specified LUN, but
a file has already been opened by the issuing task
on that LUN.

Illegal block number

An illegal logical block number was specified for
DECtape. The number exceeds 577 (1101 (8».

Byte-aligned buffer specified

Byte alignment was specified for a buffer, but only
word alignment is legal for DECtape. Alternately,
the length of the buffer is not an even number of
bytes •.

Device not ready

The physical device unit
macro was not ready to
operation.

Illegal function

specified in the QIO$
perform the desired I/O

A function code was specified in an I/O request
that is illegal for DECtape.

(continued on next page)

6-4

(

(

(

~---
Code

IE.IILN

IE.NOD

IE.OFL

(IE.OVR

IE.PRI

IE.SPC

DECTAPE DRIVER

File not open

Table 6-3 (Cant.)
DECtape Status Returns

Reason

_ __ _ __________________ • __ •• __ .~ _____ ._~_~_~ _______ O~

--------- - ~

The task attempted to close a file on the physical
d~vice unit associated with the specified LUN, but
no file was currently open on that LUN.

Insufficient buffer space

Dynamic storage space has been depleted, and there
was insufficient buffer space available to allocate
a secondary control block. For example, if a task
attempts to open a file, buffer space for the
window and file control block must be supplied by
the Executive. This code is returned when there is
not enough space for this operation.

Device off line

T~e physical device unit associated with the LUN
specified in the QIO$ macro was not on line. When
the system was booted, a device check indicated
that this physical device unit was not in the
configuration.

Illegal read overlay request

A read overlay was requested and the. physical
device unit specified iIi the QIO$ macro was not the
physical device unit from which the task was <

installed.T~e 'read overlay function cari only be
executed on the physical device unit from which the
task image containing the overlays was installed. .

Privilege violation

The task that issued the request was not privileged
to execute that request. For DECtape, this code is
returned when a nonprivileged task attempts to read
or write a mounted volume directly (that is,
IO.RLB, IO.RLV, IO.WLB, or IO.WLV). Also, this
code is returned if any task attempts to attach a
mounted volume. .

Illegal address space

The buffer specified for a read or write request
was partially or totally outside the address space
of the issuing task. Alternately, a byte count of
o was specified.

(continued on next page)

Code

IE.VER

IE.WLK

DECTAPE DRIVER

Table 6-3 (Cont.)
DEC tape Status Returns

Reason

Unrecoverable error

After the system's standard number of retries has
been attempted upon encountering an error, the
operation still could. not be completed. For
DECtape, this code is returned to indicate any of
the following conditions.

• A parity error was encountered.

• The task attempted a forward multiblock transfer
past block 577 (1101 (8».

• The task attempted a
transfer past block O.

Write~locked device

backward multiblock

The task attempted to write on a DECtape unit that
was physically write-locked.

6.4.1 DECtape Recovery Procedures

When a DECtape I/O error condition is detected, RSX-llM attempts to
recover from the condition by retrying the function as many as five
times. Unrecoverable errors are generally parity, mark track, or
other errors caused by a faulty recording medium or a hardware
malfunction. An unrecoverable error condition also occurs when the
system, permorms a read or write operation past the last block of the
DECtape on a forward operation, or the first block of the DECtape on a
reverse operation.

In addition to the standard error conditions, an unrecoverable error
is reported when the "rock count" exceeds 8. The rock count is the
number of times the DECtapedriver reverses the direction of the tape
while looking for a block number. Assume that the block numbers on a
portion of DECtape are 99, 96, and 101, where one bit was dropped from
block number 100, making it 96. If an I/O request is received for
block 100 and the tape is positioned at block 99, the driver starts
searching forward for block 100. The first block to be encountered is
96 and, because the driver is searching for block 100 in a forward
direction and 96 is less than 100, the search continues forward.
Block 101 is the next block and, because number 101 is greater than
100, the driver reverses the direction of the tape and starts to
search backward. The next block number in this direction is 96, and
the direction is reversed again because 100 is greater than 96. To
prevent the DECtape from being hung in this position, continually
rocking between ~lock numbers 96 and 100, a maximum rock count of 8
has been established.

6-6

(

,---

(

DECTAPE DRIVER

6.4.2 Select Recovery

If the DECtape unit is in an off-line condition when the driver
performs an I/O function, the message shown below is output on the
operator's console.

*** DTn: -- SELECT ERROR

where n is the unit number of the drive that is currently off line.
You should respond by placing the unit to REMOTE. The driver retries
the function, from the beginning, once every second. It displays the
message once every 15 seconds until the appropriate DECtape unit is
selected. A select error may also occur when there are two drives
with the same unit number or when no drive has the appropriate unit
number.

6 .• 5 PROGRAMMING HINTS

This section contains important information about programming the
DECtape driver described in this chapter.

6.5.1 DECtape Transfers

If the transfer length on a write is less than 256 words, a partial
block is transferred with zero fill for the rest of the physical
block. If the transfer length on a read is less than 256 words, only
the number of words specified is transferred. If the transfer length

. is greater than 256 words, more than one physical block is
transferred.

6.5.2 Reverse Reading and writing

The DECtape driver supports reverse reading and writing, because these
functions speed up data transfers in some cases. A block should
normally be read in the same direction in which it was written. If a
block is read from a DECtape into memory in the opposite direction
from that in which it was written, it is reversed in memory (for
example, word 255 becomes word 0, and 254 becomes word 1). If this
occurs, you must then reverSe the data within memory.

6.5.3 Speed Considerations When Reversing Direction

It is possible to reverse direction at any time while reading or
writing DECtape. However, you should understand that reversing
direction substantially slows down the movement of the tape. Because
DECtape must be moving at a certain minimum speed before reading or
writing can be performed, a tape block cannot be accessed immediately
after reversing direction. Two .blocks must be bypassed before a read
or write function can be executed, to give the tape unit time to build
up to normal access speed. Furthermore, when a request is issued to
read or write in a certain direction, the tape fitst begins to move in
that direction, then starts detecting block numbers. The following
examples illustrate these principles.

6-7

DECTAPEeDRlVER

If a DECtape is positioned at block number 12 and the driver receives
a request to read block 10 forward, the tape starts to move forward,
in the direction requested. When block number 14 is encountered, the
driver reverses the direction of the tape, because 14 is greater than
10. The search continues backward, and block numbers 11 and 10 are
encountered. Because the direction must be reversed and the driver
requires two blocks to build up sufficient speed for reading, block
number 9 and 8 are also bypassed in the backward direction. Then the
direction is reversed. and the driver encounters blocks 8 and 9 forwa:rd
before reaching block number 10 and executing the read request.

6.5.4 Aborting a Task

If a task is aborted while waiting for a unit to be selected, the
DECtape driver recognizes this fact within 1 second.

6-8

(

(

(

(

CHAPTER 7

DECTAPE II DRIVER

7.1 INTRODUCTION

The DECTAPE II (TUSS) driver supports TUSS system hardware, providing
low-cost, block-replaceable mass storage.

7.1.1 TOS8 Hardware

Each TUSS DECTAPE II system consists of one or two TUSS cartridge
drives, one tape drive controller, and one DLll-type serial line
interface. Each TUSS drive functions as a random access,
block-formatted mass storage device. Each tape cartridge is capable
of storing 512(10) blocks of 512(10) bytes each. Access time averages
10 seconds. All I/O transfers (commands and data) occur by means of
the serial line interface at serial transmission rates of 9600 bps.
All r~ad and write check operations are performed by the c6ntroller
hardware using a l6-bit checksum. The controller performs up to eight

. attempts to read a block, as necessary, before aborting the read
operation and returning a hard error; however, whenever more than one
read attempt is required for a successful read, the driver is notified
so that it can report a soft error message to the error logger.

7.1.2 TUS8 Driver

The TUSS driver communicates with the TUSS hardware by means of a
serial line interface (DLll); no other interface is required. All
data and command transfers between the PDP-II system and the TUSS are
done with programmed I/O and interrupt-driven routines; NPRs are not
supported.

7.2 GET-LUN INFORMATION. MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for the TUSS. A bit setting of 1 indicates that the
described characteristic is true for this device.

7-1

Bit

o

1

2

3

4

5

6

7

S

9

10

11

12

13

14

15

Setting

o

o

o
1

o

o

1

1

o
o

o

o

o

o

1

1

DECTAPE II DRIVER

Meaning

Record-oriented device

Carriage-control device

Terminal device

File-structured device

Single-directory device

Sequential device

Mass storage device

User-mode diagnostics supported

Device supports 22-bit direct addressing

Unit software write-locked

Input spooled device

Output spooled device

Pseudo device

Device mountable as a communications channel

Device mountable as a FILES-II volume

Device mountable

Words 3 and 4 of the buffer are a double-precision number specifying
the total numbetof blocks on the device; this value is 512(10)
blocks. Word 5 indicates the default buffer size, which is 512(10)
bytes.

7.3 OIO MACRO

This section summarizes standard and device-specific OIO functions for
the TU5S.

7.3.1 Standard OIO Functions

the. OIO macro that are valid for the TU5S.

7-2

(

(

--,-----_._----------- -- ------

(----

(

(

DECTAPE II DRIVER

Table 7-1
Standard QIO Functions for the TUS8

Format Function

QIO$C IO.ATT, ••• Attach device

QIO$C IO.DET, ••• Detach device

QIO$C IO.KIL, ••• Cancel I/O requests 1

QIO$C IO.RLB, ••• ,<stadd,size",lbn> READ logical block

QIO$C IO.WLB, ••• ,<stadd,size",lbn> WRITE logical block

1. In-progress operations are allowed to complete when IO.KIL is
received. I/O requests that are queued when IO.KIL is
received are killed.

stadd

size

Ibn

The starting address of the data buffer (must be on a word
boundary) •

The data buffer size in bytes (must be even and greater than 0).

The logical block number on the cartridge tape where the data
transfer starts (must be in the range of 0-777)'.

7.3.2 Device-Specific QIO Functions

The device-specific QIO system directive functions that are valid for
the TUS& are shown in Table 7-2.

Table 7-2
Device-Specific QIO Functions for the TUS8

Format

QIO$C IO.WLC, ••• ,<stadd,size" ,Ibn>

QIO$C IO.RLC, ••• ,<stadd,size",lbn>

QIO$C IO.BLS!IQ.UMD, ••• ,<lbn>

QIO$C IO.DGN!IQ.UMD, •••

7-3

Function

WRITE logical block with check

READ logical block with check

POSITION tape

Run internal diagnostics

stadd

size

Ibn

DECTAPE II DRIVER

The starting address of the . data buffer (must be on a word
boundary) •

The data buffer. size in bytes (must be even and greater than 0).

The logical block number on the cartridge tape where the data
transfer starts (must be in the range of 0-777).

Additional details for device-specific QIO functions are provided in
the following paragraphs.

7.3.2.1 IO.WLC - The 10.WLC function writes the specified data onto
the tape cartridge. A checksum verification is then performed by
reading the data just written; data is not returned to the task
issuing the function. An appropriate status, based on the checksum
verification, is returned to the issuing task.

7.3.2.2 IO.RLC - The 10.RLC function reads the tape with an increased
threshold in the TUS8 1 s data recovery circuit. This is done as a
check to insure data read reliability. '

7.3.2.3 IO.BLS - You can use the IO.BLS function fordiagn~stic
purposes to position the tape to the specified logical block number.
If you specify 10.BLS, you must use the IQ.UMD subfunction (see
Chapter 1).

7.3.2.4 IO.DGN - You can use the IO.DGN function for diagnostic
purposes to execute the TUS8 1 s internal (firmware) diagnostics.
Appropriate status information is returned to the issuing task by the
I/O status block. If you specify 10.DGN, you must use the IQ.UMD
subfunction (see Chapter 1).

7.4 STATUS RETURNS

Table 7-3 lists the error and status conditions that are returned by
the TUS8 driver.

(

(--

(

(

----- --- "------ -----"-----
---"""-- ----... ------------_.-_.

Code

IS.SUC

IE.DNR

IE.IFC

IE.FHE

IE. TKO

IE.VER

IE.WLK

DECTAPE II DRIVER

Table 7-3
TUS8 Driver Status Returns

Reason

Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the I/O
status block can be examined to determine the number of
bytes processed, if the operation involved reading or
wri ting.

Device not ready

The physical device unit specified in the QIO directive
was not ready to perform the desired I/O operation.

Illegal function

A function code was specified in an I/O request that is
illegal for the TUS8.

Fatal hardware error

Time-out error

The TUS8 failed to respond to a function within the
normal time specified by the driver.

Unrecoverable error

After the system's standard number of retries (8) h~s
been attempted upon encountering an error, the operation
still could not be successfully completed.

Cartridge write-locked

The task attempted to write on a tape cartridge that is
physically write-locked.

7-S

~---

(

(--

(

(

CHAPTER B

MAGNETIC TAPE DRIVERS

B.l -INTRODUCTION

RSX-llM and RSX-llM-PLUS support a variety of magnetic tape devices.
Table B-1 summarizes thes'e devices and subsequent sections describe
them in greater detail.

Programniing for magnetic tape is quite similar to programming for the
magnetic tape cassette (see Chapter 9). Unlike cassette, however,
magnetic tape can handle variable-length records •

. ,. ~ ;. - ,.

B.l.1 TEIO/TUlO/TS03 Magnetic Tape

The TElO/TUio/TS03 consists of a TMll controller with a TElO,TUlO, or
TS03 transport. It is a low-cost; high-performance system for serial
storage of large volumes of 'data' and programs in an
industry-compatible format. All recording is NRZI format.

B.l.2 TE16/TU16/TU45/TU77 Magnetic Tape

The TE16/TU16/TU45/TU77 consists of an RHll/RH70 controller, a TM02 or
TM03 formatter, and a TE16/TU16/TU45/TU77 transport. They are quite
similar to the TElO/TUlO but are Massbus devices, with a common
controller, a specialized formatter, and drives. Recording is either
BOO bpi NRZI or 1600 bpi phase-encoded (PE).

B.l.3 . TSll/TU80 Magnetic Tape

The TSll and TUBO are integrated subsystems. Each has a drive, a
controller, and a formatter. The hardware, is microprocessor
controlled for all operations, including I/O transfers, tape motion,
and has comprehensive (internal) diagnostic test execution. Recording
is 1600 bpi phase-encoded (PE).

The TSII operates iri conventional start and stop mode while the TUBO
operates at either low speed (start and stop mode) or high speed
(streaming mode). Tape speed is microprocessor controlled.

B-1

MAGNETIC TAPE DRIVERS

B.l.4 TSV05 Magnetic Tape

The TSV05 tape subsystem is a Q BUS device. It is an integrated
subsystem with a drive, a controller, and a formatter. The hardware
is microprocessor controlled for all operations, including I/O
transfers, tape motion, and has comprehensive (internal) diagnostic
test execution. Recording is 1600 bpi phase-encoded (PE). The TSV05
operates at 25 inches per second.

B.l.5 TK25 Magnetic Tape

The TK25 consists of a TKQ25 controller for the Q-bus and a TK25
streaming tape drive. The integrated subsystem consists of a tape
drive and controller/formatter. The TK25 uses a DC600Al/4 inch"tape
cartridge and stores data on serial data tracks in a serial serpentine
"recording method. The TK25 has storage capacity of 60 Mbytes for
BK-byte datarecords~Data recording is an BOOObpi, modified GCR
(group cyclical recording) method.

B.1.6 ~K50 Magnetic Tape

The TK50 is an integrated subsystem that consists of a controller for
the Q-bus and a TK50 streaming tape drive. The controller handles all
error recovery and correction, and internally buffers; multiple
outstanding commands. The tape drive reads and writes data on a
1/2-inch tape cartridge that is recorded at 6667 bpi on serial data
tracks in' a serial serpentine recording (Modified Frequency
Modulation) method. The tape speed is 75 inches per second in
streaming mode and the storage capacity is approximately 100 Mbytes
irrespective of record size.

B.l.7 '1'081 Magnetic Tape

The TUBI is a nine track streaming tape drive that reads and writes
data at either 6250 bpi (GCR) or 1600 bpi (PE) on half-inch tape. The
TUBI internally buffers multiple outstanding commands. The tape
trasnsport speed is 25 or 75 inches per second and is microprocessor
controlled. At 6250 bpi density, the drive can store up to 140 Mbytes
on a standard 2400-foot reel. The TUBI has its own UNIBUS controller
(one drive per controller).

B-2

(

(

(

Device
Driver

TE10
TU10
MTDRV

TE16,TU16
MMDRV

TU45
MMDRV

TU77
MMDRV

TS03
MTDRV

Channels

9
7 or 9

9

9

9

9

5. Phase encoding

"-."-".~-~-"~.~ --~.~~.--~~~.~.~~~~"- .. - -----~--.~"~-.-."~-~-~~~~- --"-_._.- -.=.- ~~"--~.---?-. ~---- _ .. -.-~- ~~~~-~~~".,...-:~~""--- --~.~

-- - - -- _.. -.- -,- . -- -- --~

MAGNETIC TAPE DRIVERS

Table 8-1
Standard Magnetic Tape Devices

Recording
Density
(Frames/
Inch)

7-channe1:
200, 556,
or 800

9-channel:
800

800 or 1600

800/1600

800/1600

800

8-3

Tape
Speed
(Inches/
Second)

45

45

75

125

15

Maximum
Data
Rate

36,000

800 bpi:
36,000

1600 bpi:
72,000

800 bpi:
60,000

1600 bpi:
120,000

800 bpi:
100,000

1600 bpi:
200,000

12,000

Recording
Tansfer
Method
(Bytes/
Second)

NRZI

NRZI or PE 5

NRZI or PE 5

NRZI or PE 5

NRZI

(contiriued on. next page)

MAGNETIC TAPE DRIVERS

Table 8-1 (Cont.)
Standard Magnetic Tape Devices

~--
Device Recording Maximum Recording Tape
Driver Channels Density Speed Data Tansfer

(Frames/ (Inches/ Rate Method
Inch) Second) (Bytes/·

Second)

TSll 9 1600 45 72,000 PE 5

MSDRV

TU80 9 1600 25 1 40,000(1) PE 5

MSDRV 100 2 160,000(2)

TU81 9 1600/6250 251 40,000 PE 5

MUDRV 75 2 120,000 PE 5
25 1 156,000 GCR
75 2 469,000 GCR

TSV05 9, 1600 25 40,000 PE 5
MSDRV

TK25 s.s. 3 8000 55 55,000 Modified
MSDRV bit-serial GCR

data tracks
recorded
serial
serpentine

TK50 s.s. 3 6667 75 4 45,000 Modified
MUDRV bit-serial FM (data tracks

recorded
serial
serpentine

1. Low speed
2. High Speed
3. Serial serpentine
4~ In streaming mode
5. Phase encoding

8-4

(---

(

(

MAGNETIC TAPE DRIVERS

8.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for magnetic tapes. A bit setting of L indicates that the
described characteristic is true for magnetic tapes.

Bit

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Setting

o or 1

o

o

o

o or 1

1

1

o or 1

o or 1

o

o

o

o

o

o or 1

o or 1

Meaning

Record-oriented device (0 if the tape is
mounted, 1 if it is not)

Carriage-control device

Terminal device

File-structured device

Single-directory device (0 if the tape is not
mounted, 1 if it is)

Sequential device

Mass storage device

User-mode diagnostics supported(l)

Massbus device (set only for TE16, TU16,
TU45, TU77 drives inte;r£aced by
means of an RH70controiler)1

Unit software write-locked

Input spooled device

Output spooled device

Pseudo device

Device mountable as a communications
channel

Device mountable as a FILES-II volume l

Device mountable 1

1. System generation and device-dependent characteristic.

Word 3 is used by Digital Equipment Corporation for tape density
information. Word 4 of the buffer is undefined~ word 5 indicates the
default buffer size~ for magnetic tapes it is 512 bytes.

8.3 OIO$ MACRO

This section summarizes standard and device-specific OIO$ functions
for the magnetic tape drive;rs.

8.3.1 Standard OIO$ Functions

Table 8-2 lists the standard functions of the OIO$ macro that are
valid for magnetic tape.

8-5

MAGNETIC TAPE DRIVERS

Table 8-2.
Standard QIO$ Functions for Magnetic Tape

Format Function

QIO$C IO.ATT, ••• Attach device

QIO$C IO.DET, ••• Detach device

QIO$C IO.KIL, ••• Cancel I/O requests

QIO$C IO.RLB, ••• ,<stadd,size) Read logical block
(read tape into buffer)

QIO$C IO.RVB, ••• ,<stadd,size) Read virtual block
(read tape into buffer)

QIO$C IO.WLB, ••• ,<stadd,size) Write logical block
(wri te buffer contents to tape)

QIO$C IO.WVB, ••• ,<stadd,size) Write virtual block
(write Duffer contents to tape)

stadd

The starting address 6f the data buffer. It may be on a byte
boundary for MSDRV devices. Ohterwise, it must be on a word
boundary.

size

The data buffer size in bytes. Size must be even,
0, and, - for a write, must be at least 14 bytes.
MUDRV devices, the data transfer size may be an
number of bytes~

greater than
For MSDRV or

odd or even

8.3.1.1 IO.KIL - IO.KIL causes I/O termination upon the occurrence
of:

• A select error (not applicable to ~KSO)

• Error recovery

• Interrupt servicing

• Driver timeout servicing

For the TKSO/TU8l, select errors do n~t occur but I/O in progress is
canceled by IO.KIL.

8.3.2 Device-Specific 010$ Functions

Table 8-3 lists the device-specific functions of the QIO$ macro that
are valid for magnetic tape. Additional details on certain functions
appear below.

8-6

(

(

(

(

(

MAGNETIC TAPE DRIVERS

8.3.2.1 IO.RLV - The data appears in the specified buffer in a
fashion identical with lO.RLB or lO.RVB, as long as the data block has
the same length as the buffer.

8.3.2.2 IO.RWD - Completion of IO.RWD means that the rewind has
initiated, but for MSDRV (MS:) devices that the rewind to BOT has
completed. Additional requests for operations on that controller
then be queued by the driver until load point (BOT) is reached.

been
been

may

8.3.2.3 IO.RWU - You normally use lO.RWU when operator intervention
is required (for example, to load a new tape). The operator must turn
the unit back on line manually before subsequent operations can
proceed.

Table 8-3
Device-Specific QlO$ Functions for Magnetic Tape

Format

QlO$C lO.DSE, •••

QlO$C lO.EOF, •••

QlO$C lO.ERS, •••

QlO$C lO.RLV, ••• ,(stadd,size>

Q I 0 $C lO • RWD, •••

QlO$C lO.RWU, •••

Q lO $C I 0 • SEC, • • •

QlO$C lO.SMO, ••• ,(cb>

QlO$C lO.SPB, ••• ,(nbs>

QlO$C lO.SPF, ••• ,(nes>

QlO$C lO.STC, ••• ,(cb>

Function

Data Security Erase (TK50/TU8l
only)

Write end-of-file mark (tape mark)

Erase (TEIO and TUIO not
supported)

Read logical block reverse (TEIO
and TUIO not supported.)

Rewind unit

Rewind and turn unit offline

Sense tape characteristics

Mount tape and set tape
characteristics (Unit must be
ready with tape at load point.)

Space blocks

Space files

Set tape characteristics

8-7

cb

nbs

nes

size

stadd

MAGNETIC TAPE DRIVERS

The characteristic bits to set.

The number of blocks to space past (positive if forward,
negative if reverse).

The number of EOF marks to space past (positive if forward,
negative if reverse).

The size of the stadd data buffer in bytes. The size must be
an even number of bytes greater than 0, and it must be at least
14 bytes for a write. For MSDRV or MUDRV devices, data
transfers may be an odd or even number of bytes.

The starting address of the data buffer. It may be on a byte
boundary for MSDRV devices, but otherwise it must be on a word
boundary.

8.3.2.4 IO.ERS - Causes an erase of 3 inches of (write blank) tape,
effectively providing an extended interrecord gap. (Not supported on
TUlO and TElO.)

8.3.2.5 IO.DSE - Causes the TK50 and TU8l to erase from the current
position to end-of-tape and then rewind the tape to beginning-of-tape.

8.3.2.6 IO.SEC - Causes a return of the tape characteristics in the
second I/O status word. The tape characteristic bits are defined as
follows:

Bit

o

1

Meaning When Set

For TUlO, 556 bpi
density (7-channel).
Reserved for TE16, TU16,
TU45, TU77, TU8l and
TSll, TK25, TK50.

For TUlO, 200 bpi
density (7-channel).

For TSll, TU80, and TSV05, TSU05,
TK25, swap byte mode (read/write).
Data buffer size should be in even
bytes.

Reserved for TE16, TU16,
TU45, TK50, TU77, TU8l.

8-8

Can Be Set by
IO.SHO and IO.STC

x

x

(

(

(

(-

(
"'~- -

(

MAGNETIC TAPE DRIVERS

Bit Meaning When Set

For TUlO, core-dump

Can Be Set by
IO.SMO and IO.STC

2

3

mode (7-channe1, see below).
Reserved for TE16, TU16,
TS11, TU45, TU77, TU80, TU81,
TSV05, TSU05, TK25, and TK50.

For TU10, even parity
(default is odd). For others,
odd parity. (Not selectable
for the TS11, TK50, TU80, TU81.)

4 Tape is past EOT.

5 Last tape command encountered
EOF in a forward tape direction.

6

7

Writing is prohibited.

Writing with extended inter
record gap is prohibited
(that is, no recovery is attempted
aftet write error).

8 Select error on unit (not
on TK50, TU81.)

9 Unit is rewinding.

10 Tape is physically write-locked.

11 For TE10, TU10, TK5Q and TS03, reserved.

For the TU81, default 6250 bpi.
If bit 11 is set, 1600 bpi •.

For all other tapes, default is 800 bpi.
If bit 1 is set, 1600 bpi density.

12 For TU10, drive is 7-channe1.
For all other tapes, reserved.

13 Tape is at load point (BOT).

14 Tape is at end-of-vo1ume (EOV).

15 Tape is past EOV (reserved for dri
ver; always o when read by your task).

x

x

x

x

x

In core-dump mode (TU10 only, 800 bpi density, and 7-channe1), each
8-bit byte is written on 2 tape frames, 4 bits per frame. Inother
modes on 7-channe1 tape, only 6 low-order bits per byte are written.

For the TSll/TU80/TSV05/TSU05 1600 bpi density is always selected (bit
11=1). Bit 11 cannot be modified by either the IO.SMO o~ IO.STC
functions. For drives that use the TM03 controller, this bit can be
either set or cleared; however, once the tape is moved from the load
(beginning of tape) position (BOT), the device driver modifies this
bit to reflect the actual density of the tape currently mounted. You
cannot change bit 11 once the tape is moved beyond BOT.

8-9

,.~~~.~._~_~"_",,"=_~ __ ~_~~_ ~~'~~=~~"",,~'=~~,._,,_ .. ~~~ __ ~ .. ~_~~_~ __ "<_,_, _'~_~~_=_·"~'_" __ '_"'~'~'_·.~rl~·,~ __ ·'· _~,_ .'-"_, _y.,~~~,_,,"_~_ ,~_~ ._~ _~'"~, ___ '"_~ __ ~~~"_ "~~_ ._. ~,~~· __ ""~~~""",,~""~~,~~.~~="_,=~~~~~_,,~~_~e"~ ___ ~~~~~~· ~~. __ ~
---- - -- -- ----- - -- - --- ------ --- -- - ---- - ---.---- --

MAGNETIC T.APE DRIVERS

8.3.2.7 IO.SMO - Use this function as a combination of the sense
(IO.SEC) and set· (IO.STC) tape characteristics functions. Unltke
10.STC, however, the IO.SMO function requires that the unit be ready
and the tape be at load point (BOT). If either of these conditions is
not met~ the function returns an error status code of IE.FHE (refer to
Table 8-4). .

You should use the 10.SMO function to set the characteristics of a
newly loaded tape. If the IE.FHE error code is returned, the tape
drive is not on line and is not at BOT.

8.4 STATUS RETURNS

The error and status conditions listed in Table 8-4 are returned by
the magnetic tape drivers described in this chapter.

Code

IS.SUC

IS.PND

IE.ABO

IE.BB~

IE.BYT

Table 8-4
Magnetic Tape Status Returns

Reason

Successful completion

The operation specified in the QIO$ directive was
completed successfully. The second word of the I/O
status block can be examined to determine the
number of bytes processed, if the operation
involved reading or writing. This code is also
returned if nbs equals 0 in an 10.SPB function or
if nes equals 0 in an IO.SPF function.

I/O request pending

Th~ operation specified in the QIO$ directive has
not yet been completed. The I/O status block is
filled with Os.

Operation aborted

The specified I/O operation was canceled by IO.KIt
while in progress or while still in the I/O queue.

Bad block

A bad block was encountered while reading or
writing and the error persists after nine retries.
For TMll, IE.BBE may also indicate that a bad tape
error (BTE) has been encountered. The status
return iE.BBE does not apply to MSDRV or MUDRV
devices.

Byte-aligned buffer specified

Byte alignment was specified for a buffer, while
only word alignment is legal for the QIO.
Alterriatively, the length of a buffer is not an
even number of bytes.

(continued on next page)

8-10

c--

(

(

,---
Code

IE.DAA

IE.CAO

IE. DNA

IE.DNR

(

IE.EOF

IE.EOT

MAGNETIC TAPE DRIVERS

Table 8-4 (Cont.)
Magnetic Tape Status Returns

Reason

Device already attached

The physical device unit specified in an IO.ATT
function was already attached by the issuing task.
This code indicates that the issuing task has
already attached the desired physical device unit,
not that the unit was attached by another task.

Data overrun

On a read, a record exceeded the stated buffer
size. The final portion of the buffer is checked
for parity, but is transfered into memory.

Device not attached

The phY$ical device unit specified in an IO.DET
function was not attached by the issuing task.
This code has no bearing on the attachment status
of other tasks. .

Device not ready

The physical device unit specified in the QIO$
directive was not ready to perform the desired I/O
operation. This code is returned ~o indicate one
of the following conditions:

o A time-out occurred on the physical device unit
(that is, an interrupt was lost).

o A vacuum failure occurred on the magnetic tape
drive.

o While trying to read or space, the driver
detected blank tape.

o The LOAD switch on the physical drive was
switched t.o the off position.

o The unit failed internal diagnostic tests (TS04
only)

End-of-file encountered

An end-of-file (tapemark) was encountered.

End-of-tape encountered

The end-of-tape (physical end-of-volume) was
encountered while the tape was moving in the
forward direction fo~ a write or a write tape mark
operation. The IE.EOT code is returned continually
in the I/O status block until the EOT marker is
passed in the reverse direction. IE.EOT is not
returned on a read operation.

(continued on next page)

8-11

Code

IE.EOT

IE.EOV

IE.FHE

IE.IFC

IE.OFL

IE.SPC

MAGNETIC TAPE DRIVERS

Table 8-4 (Cont.)
Magnetic Tape Status Returns

Reason

A ten foot length of tape extends past the EOT
marker, which is useful for writing data and
markers, such as volume trailer labels.

The physical end-of-tape for MUDRV (MU:) devices is
defined as the end of usable recorded area, which
is located in the tape trailer area. This area
begins at the EOT marker and extends through a
length that depends on the tape format. This
l.ngth must be long enough to to stor~ the
aggregate of the following records:

o Two device dependent "maximum recommended record
length" records

o Three 80-byte records

o Three tape marks

End-of-volume encountered (unlabeled tape)

On a forward space function, the logical
end-of-volume was encountered. An end-of-volume is
two consecutive end-of-file marks (EOF), or a
beginning-of-tape mark (BOT) followed by an EOF.
The tape is normally left positioned between the
two.marks.

Fatal hardware error

Nonrecoverable hardware error; for example, the
magnetic tape unit is not ready or the tape is not
at load point, or both, when IO.SMO is issued.

Illegal function

An invalid function (or subfunction bit) was
specified in a magnetic tape I/O request. Refer
also to Section 8.4.3.

Device off line

The physical device unit associated with the LUN
specified in the QIO$ directive was not on line.
When the system was booted, a device check
indicated that this physical device unit was not in
th~ configuration.

Illegal address space

The buffer specified for a read or write request
was partially or totally outside the address space
of the issuing task. For magnetic tape, this code
is also returned if a byte count of 0 was specified
or if your task attempted to write a block that was
less than 14 bytes long.

(continued on next page)

8-12

~--

(

(

c--

(

Code

IE.VER

IE.WLK

---, -"-_.'<' --.,-- ..
-- ------------'-----'--

MAGNETIC TAPE DRIVERS

Table 8-4 (Contw)
Magnetic Tape Status Returns

Reason

Unrecoverable error

After the system's standard number of retries has
been attempted upon encountering an error, the
operation still could not be completed. For
magnetic tape, this code is returned in the case of
CRC or checksum errors or when a tape block could
not be read.

Write:-locked device

The task attempted to write on a magnetic tape unit
that was physically writ-e.;.locked. Alternatively,
tape characteristic bit 6 was set by the software
to write-lock the unit l-ogically.

After processing a QIO$ request, the magnetic tape driver returns two
status words. The first word contains one of the I/O status codes
listed in Table 8-4.

For successful
second I/O
opera-tions for
shown in Table

QIO$ ex~cution (IS.SUC) or read requests (IE.DAO),
status word may contain further information.
which this is true, and the information returned,
8-5. For all other cases this word is undefined.

the
The
are

Table 8-5
Information Contained in the Second I/O Status Word

I/O Function
Code

IO.RLB

IO.RLV

IO.RVB

IO.SEC

IO.SPB

IO.SPF

IO.WLB

IO.WVB

Information Returned
IS.SUC IE.DAO

Number of bytes
transferred

Number of bytes
transferred

Number of byt-es
transferred

Tape charac
teristics word

Number of records
spaced over

Number of files
spaced over

Number of bytes
transferred

Number of bytes
transferred

8-13

Number of bytes
in tape record

Number of bytes
in tape record

Number of bytes
in tape record

MAGNETIC TAPE DRIVERS

8.4.1 Select Recovery

If a request fails because the desired unit is off line, no drive has
the desired unit number, or has its power off, the following message
is output on the operator's console:

*** MTn: SELECT ERROR

or

*** MSn: -- SELECT ERROR

n

The unit number of the specified drive.

The driver checks the unit for readiness and repeats the message every
15 seconds until the requesting task is aborted or the unit is made
available. In the latter case, the driver then proceeds with the
request.

MUDRV devices (TK50) do not issue select errors. If the drive is
taken offline, the condition is treated as tape position lost.

8.4.2 Retry Procedures for Reads and Writes

If an error occurs during a read (for example, vertical parity. error),
the recovery procedure depends on the type of magnetic tape in use.
Read errors for MT: or MM: device are retried by backspacing one
record and then rereading the record in question. If the error
persists after nine r~tries, IE.VER is returned.

Read errors for the MSDRV (MS:) devices are retried by rereading the
block in error a predetermined number of times. For MS: devices,
except for TK25, on every eighth reread the block is passed by the
tape cleaner blade. If the error persists after a predetermined
number of retries, IE.VER is returned.

For MUDRV devices (TK50/TU81) the controller handles error correction
and recovery. Except for MU: devices, write recovery is the same for
all devices. When a write operation fails, the driver attempts· the
following error recovery procedure:

1. Repos i t ions the tape

2. Erases three inches of tape (resulting in an extended
inter record gap)

3. Retries the write operation

If the error persists after a predetermined number of retries, IE.VER
is returned. The requesting task can use IO.STC to prohibit writing
with an extended interrecord gap. In this case, the tape is
backspaced and the write is retried.

8-14

(--

(

(

(

(

MAGNETIC TAPE DRIVERS

8.4.3 Powerfail Recovery for Magnetic Tapes

If a power failure or loss of vacuum, or both, occurs on a magnetic
tape drive, tape position is lost. (Note that an initial system boot
simulates a recovery from a power failure.) Additionally, on auto-load
drives, the tape is positioned at BOT when the unit is turned on line.

To prevent accidental destruction of data currently on tape, the
driver maintains a power-fail status indicator. When this indicator
is set, the driver disallows any data transfer or tape motion commands
until a rewind (IO.RWD), rewind unload (IO.RWU), or mount and set
characteristics (IO.SMO) function is issued. These functions clear
the power-fail indicator and allow all tape functions to be issued.
It is also possible to issue the set and sense characteristics
functions (IO.STC and IO.SEC) while the power-fail indicator is set.
These functions, however, do not clear the bit.

All functions other than those just described are considered invalid
and cause the return of the IE.IFC (invalid function) error code to
the requesting task. In situations where a tape is currently, a
mounted volume, the tape should be dismounted and then remounted
before use. In doing this, the rewind command is issued, thereby
clearing the power-fail indicator.

8.5 PROGRAMMING HINTS

This section contains important information about programming the
magnetic tape drivers described in this ~hapter.

8.5.1 Issue Power-Fail OIOs for TMll Before GLUN$

The TMIIA/B device driver dynamically updates the system data base to
reflect the density characteristics of the TEIO/TUIO. You should
issue the QIO$ functions valid for powerfail before requesting the
device's density characteristics with the GLUN$ directive.

8.5.2 Block Size

Each block must contain an even number of bytes at least 14 for, a
write and at most 65,534. However, tape usage is more efficient with
a larger buffer.

8.5.3 Importance of Resetting Tape Characteristics

A task that uses magnetic tape should always set the tape
characteristics to the proper value before be~inning I/O operations.
The task cannot be certain in what state a prevlous task left these
characteristics. It is also possible that an operator might have
changed the magnetic tape unit selection. If the selection switch is
changed, the new physical device unit may not correspond to the
characteristics of the unit described by the respective unit control
block.

8-15

MAGNETIC TAPE DRIVERS

8.5.4 Aborting a Task

If you abort a task while it waits for a magnetic tape unit to be
selected, the magnetic tape driver recognizes the abort request within
1 second.

If you abort a task while it waits for a magnetic tape unit to
complete a space operation, the magnetic tape driver may allow spacing
to the next tape mark.

For the TK50, if you abort a task while it waits for a magnetic tape
unit to complete a space operation, the driver may have spaced some or
all of the requested number of spaces.

8.5.5 Writing an Even-Parity Zero-NRZI

If an even-parity 0 were written normally, it would. appear to the
drive as blank tape. It is therefore converted to 20 (octal). If
this conversion is undesirable, you must ensure that no even-parity Os
are output on the tape.

8.5.6 Density Selection

The TM03 controller imposes
restriction: . You cannot mix
associated with the controller.

the following density
recording densities on

selection
any volume

Density for write operations is selected when the tape is at the load
(BOT) position. Hardware selects the density for yead operations
during the first read (away from BOT); after the first read, you can
determine (sense) tape density by using the IO.SEC function.

8.5.7 End-of-Volume Status (Unlabeled Tape)

The magnetic tape driver detects end-of-volume when it spaces over the
second of two consecutive tape marks. The tape is left positioned
between the two tape marks.

The magnetic tape driver returns the IE.EOV status code only on space
operations. IE.EOV is never returned by read operations.

For the purpose of
beginning of tape
operation from BOT
IE.EOV.

checking for end-of-volume, the driver treats
(BOT) as a tape mark. Therefore, any forward space
that immediately encounters a tape mark returns

If a space operation stops between two tape marks but does not space
over the second one, the driver returns end of file rather than
end-of-volume. Any subsequent space operation from this point that
immediately spaces over the second tape mark returns.eIid-of-volume.
During IO.SPF operations, the driver considers all tape marks to be
files except for BOT and for the second tape mark spaced over at the
end of volume.

Note that both IO.SPF and IO.SPB operations leave the tape positioned
after the tape mark in the direction of travel.

8-16

~----

(

(

(

MAGNETIC TAPE DRIVERS

If you want to treat two consecutive tape marks' as end-of-volume on
read operations, your application must keep track of the tape marks.
The magnetic tape driver does not support two consecutive tape marks
asend-of-volume on read operations.

8.5.B Resetting Tape Transport Status or VCK

For an MS: device, if the tape transport status changes (goes on-line
ot off-line), further I/O operations are inhibited. A deliberate I/O
sequencing must occur to reset the hardware volume check (VCK)
indicator and allow physical I/O to proceed. This sequen~ing is done
bya sucessful IO.RWD or IO.SMO QIO$ or including /RW or/REW switches
to command requests (such as'· DMP).

Similarly~ for a TK50 or TUB1, if the tape transport status changes
(goes on-line or off-line), further I/O operations are inhibited. A
delibetate I/O sequencing must occur to allow physical I/O to proceed.
This sequencing is done by a successful IO.RWD or IO.SMO QIO$ or
including /RW or /REW switches to command requests (such as DMP).

B.5.9 Issuing QIO$S

Users issuing QIO$sdirectly to MSDRV/MUDRV must be aware of the
following:

• Completion of an IO.RWD request occurs when the MS:
reaches BOT.

• Completion of an IO.RWD request occurs when the MU:
starts the rewind.

device

device

• When the MS: or MU: device changes status from off-line to
on-line or vice versa, the MS: or MU: device inhibits
further physical f/O operations. After such a change, the
user must issue IO.RWD or IO.SMO requests that succeed before
I/O can proceed.

• For the MS: or MU: device, read/write data transfer features
are:

The data buffer starting address must be on a word
boundary.

The data transfer size may be an odd or even byte count.
The minimum must be 14 bytes.

For the MSDRV, you can swap odd and even data bytes by
using the tape characteristic bit 1 of IO.SMO or IO.STC
requests. When bi t 1 is set to 0, no byte' swap occurs;
when it is set to 1, byte swap does occur. If you use byte
swapping, it is recommended that the data buffer size be an
even byte count.

• For MU: devices, issuing an IO.KIL terminate the in-progress
I/O operations in reverse order.

B-17

MAGNETIC TAPE DRIVERS

• CAUTION The MU: device handles QIO$ requests in a
different manner than other devices do. Multiple requests are
queued in the controller itself and, therefore, the physical
end-of-tape may be reached before all requests are proce~sed.
Thus, with multiple QIO$s it is possible to pull tape off the
supply reel.

It is recommended that QIOW$ be used, or that the total size
of queued records to be written is not longer than the ANSI
standard for the tape trailer size.

The physical end-of-tape for MUDRV (MU:) devices is defined as
the end of usable recorded area, which is located in the tape
trailer area. This area begins at the EOT marker and extends
through a length that depends on the tape format. This length
must be long enough to to store the aggregate of the following
records:

Two device dependent "maximum recommended record length"
records

Three SO-byte records

Three tape marks

S.6 BLOCK SIZE ON TAPES MOUNTED /NOLABEL

Under certain conditions, if a file is written to a tape, its block
size will be even and one more than the value specified in the MOUNT
command. This conditions where this occurs are as follows:

• The tape is mounted /NOLABEL

• The MOUNT command specifies an odd record size

• The MOUNT command specifies an odd block size

FCS adds the padding character, an octal 136 (A) circumflex, to
odd-sized blocks due to a hardware restriction; some tape drives will
not allow an odd number of bytes to be transfered to or from tape.
Therefore, blocks of data are padded with the circumflex character so
that blocks of data can be written to tape on any tape drive.

8-lS

(

(

(

c

(

~ _ .. _ .. ""'~"""''''''"""'77''!..-''''''''''''~'~~~7"<'''''~~~~~~''-""~'''~"~~''''''''''''''''-'-''''''~,"",,,,,''"7""~ . ., ~-'·"~-""--~"'"~·.'~~,""-o·,,,,-~,.,~·.,.·~q ~·-_~f~",,"""""'_""""""""'"~~_-"'''''''''''.''''''''·'·''''<·'=''''"''''"'''''''--''''''''''''''~''7''''''·'' . ---- .-. ---- --.-------------

CHAPTER 9

CASSETTE DRIVER

9.1 INTRODUCTION

RSX-llMsupports the TAll magnetic tape cassette (a TAll controller
with a TU60 dual transport). Programming for cassette is quite
similar to programming for magnetic tape (see Chapter 8). The TAll
system is a dual-drive, reel~to-reel unit that replaces paper tape.
Its two drives run nonsimultaneously, using DIGITAL Propri~t~ry
Philips-type cassettes.

The maximum capacity of a cassette, in bytes, is 92,000 (minus 300 per
file gap and 46 per interrecord gap). It can transfer data at speeds
of up to 562 bytes per second. Recording density ranges from 350 to
700 bits per inch, depending on tape position.

9.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for cassettes. A bit setting of 1 indicates that the
described characteristic is true for cassettes.

Bit Setting Meaning

0 1 Record-oriented device

1 0 C~rriage-control device

2 0 Terminal device

3 0 File structured device

4 0 Single-directory device

5 1 Sequential device

6 1 Mass storage device

7 0 User-mode diagnostics supported

8 0 Device supports 22-bit direct addressing

9-1

CASSETTE DRIVER

Bit Setting Meaning

9 0 Unit software write-locked

10 0 Input spooled device

11 0 Output spooled device

12 0 Pseudo device

13 0 Device mountable as a communications channel

14 '0 Device mountable as a FILES-ll volume

15 0 Device mountable

Words 3 and 4 of the buffer are undefined; word 5 indicates the
default buffer size, for cassettes 128 bytes.

9.3 QIO$ MACRO

This section summarizes standard and device-specific QIO functions for
the cassette driver.

9.3.1 Standard QIO Functions

Table 9-1 lists the standard functions of the QIO macro that are valid
for cassette.

Table 9-1
Standard QIO Functions for Cassette

Format

QIO$C IO.ATT, •••

QIO$C IO.DET, •••

QIO$C IO.KIL, •••

QIO$C IO.RLB, ••• ,(stadd,size)

QIO$C IO.RVB, ••• ,<stadd,size)

QIO$C IO.WLB, ••• ,<stadd,size)

QIO$C IO.WVB, ••• ,(stadd,size)

9-2

Function

Attach device

Detach device

Cancel I/O requests

READ logical block
(read tape into buffer)

READ virtual block
(read tape into buffer)

WRITE logical block
(write buffer contents to
tape)

WRITE virtual block
(write buffer contents to
tape)

(

(

(

(

(
"

stadd

size

CASSETTE DRIVER

The starting address of the data buffer (may be on a byte
boundary) •

The data buffer size in bytes (must be greater than O).

IO.KIL does not affect in-progress requests.

9.3.2 Device-Specific QIO Functions

Table 9-2 lists the device-specific functions of the QIO macro that
are valid for cassette. The section on programming hints below
provides more detailed information about certain functions.

nbs

nes

Table 9-2
Device-Specific QIO Functions for Cassette

Format Function

QIO$C IO.EOF, ••• write end-of-f ile gap

QIO$C IO.RWD, ••• Rewind unit

QIO$C IO.SPB, ••• ,<nbs> SPACE blocks

QIO$C IO.SPF, ••• ,<nes> SPACE files

The number of blocks to space past (positive if forward, negative
if reverse).

The number of EOF gaps to space past (positive if forward,
negative if reverse).

9-3

CASSETTE DRIVER

9.4 STATUS RETURNS

The error and status conditions listed in Table 9-3 are returned by
the cassette driver described in this chapter.

Code

IS.SUC

IS.PND

IE.ABO

IE.DAA

IE.DAO

IE. DNA

IE.DNR

Table 9-3
Cassette Status Returns

Reason

Successful completion

The operation specified in the OIO directive was
completed successfully. The second word of the I/O
status block can be examined to determine the
number of bytes processed if the operation involved
reading or writing, or the number of blocks or
files spaced if the operation ,involved spacing
blocks or files.

I/O request pending

The operation specified in the OIO directive has
not yet been executed. The I/O status block is
filled with Os.

Operation aborted

The specified I/O operation was canceled by IO.KIL
while still in the I/O queue.

,Device already attached

The physical device unit specified in an IO.ATT
function was already attached by the issuing task.
This code indicates that the issuing task has
already attached the desired physical device unit,
not that the unit was attached by another task.

Data overrun

The driver was not able to sustain the data rate
required by the TAll controller.

Device not attached

The physical device unit specified by an IO.DET
function was not attached by the issuing task.
This code has no bearing on the attachment status
of other tasks.

Device not ready

The physical device unit specified in the OIO
directive was not ready to perform the desired I/O
operation. This code is returned to indicate one
of the following conditions:

• The cassette has not been physically inserted.

• The unit is off line.

• A time-out occurred on the physical device unit
(that is, an interrupt was lost).

(continued on next pag.e)
9-4

(

(

(

(

.~~~- - .~~-~~-~.~-.~.~--~~-----~ ------ ----- - -- ---_ .. _.

Code

IE.EOF

IE.EOT

IE.IFC

IE.OFL

IE.SPC

IE.VER

IE.WLK

CASSETTE DRIVER

Table 9-3 (Cont.)
Cassette Status Returns

Reason

End-of-file encountered

An end-of~file gap
tape. This code
encountered during
physically removed

was recognized
is returned

a read, or if
during an I/O

End-of-tape encountered

on the cassette
if an EOF gap is
the cassette is

operation.

While reading or writing, clear trailer at
end-of-tape (EOT) was encountered. qnlike magnetic
tape, writing beyond EOT is no.t permi tted on
cassettes. This condition is always sensed on a
write before it would be sensed on a read ·of the
same section of tape. If IE.EOT is returned during
a write, the cassette head has encountered EOT
before finishing the writing of the l~st block.
Your task must entirely rewrite the block on
another cas set te •.

Illegal function

A function code was specified in an I/O request
that is illegal for cassette.

Device off line

The physical device unit associated with the LUN
specified in the QIO directive was not on line.
When the system was booted, a device check
indicated that this physical d.evice unit was not in
the configuration.

Illegal address space

The buffer specified for a read or write request
was partially or totally outside the address space
of the issuing task. Alternatively, a byte count
of 0 was specified on a transfer.

Nonrecoverable error

This code is returned when a block check error
ocdurs (see Section 9.6.5). The cyclic redundancy
check (CRC) , a 2-byte value located at the end of
each block, is a checksum that is tested during all
read operations to ensure that data is read
correctly. This is returned if a read request did
not specify exactly the number of bytes of data in
the record on tape. If a nonrecoverable error is
returned, your task may attempt recovery by spacing
backward one block and retrying the read operation.

Write-locked device

The task attempted to write on a cassette unit that
was physically write-locked. This code may be
returned after an IO.WLB, IO.WVB, or IO.EOF
function.

9-5

CASSETTE DRIVER

9.4.1 Cassette Recovery Procedures

If an error occurs during a read or write operation, the operation
should be retried several times. The recommended maximum number of
retries is nine for a read .nd three for a write because each retry
involves backspacing, which does not always position the tape in the
same place. More than three retries of a write operation may destroy
previously written data. For example, to retry a write, it is best to
space two blocks in reverse, then space one block forward. This
insures the tape is in the proper position to rewrite the block that
encountered the error.

After read and write functions, the second I/O status word contains
the number of bytes actually processed by the functjon. After spacing
funqtions, it contains the number of. blocks or files actually spaced.

9.5 STRUCTURE OF CASSETTE .TAPE

Figure 9~1"illustrates a general structure for cassette tape. A
different structure can be employed if you want.

Here the tape consists of blocks of data interspersed with sections of
clear tape that serve as leader, trailer, inter record gaps (IRGs), and
end-of-file gaps.

The logical end-of-tape in this case consists of a sentinel label
record, rather than the conventional group of end-of-file gaps. Each
file must contain at least one block. The size of each block depends
upon the number of bytes your task specifies when writing the block.

- BOT

CL LPG LR

IRGS

~--------~----... ---...--.... EOT

REC REC ... REC EOF LR REC . .. REC EOF SLR

~-------~~~------ ~---
File 1 File 2 LEOT

CT

---------------------~-----------------~~ 150 feet
ZK-006-81

Figure 9-1 Structure of Cassette Tape

Abbreviation Meaning

CL

BOT

LPG

LR

REC

Clear leader

Physical beginning-of-tape

Load point gap (blank tape written by driver
before the first retrievable record)

File label record

Fixed-length record (data)

9-6

~--

(

c-- .

(

(

CASSETTE DRIVER

Abbreviation Meaning

EOF End-of-file gap

IRG Interrecord gap

SLR Sentinel label record

LEOT Logical end-of-tape

EOT Physical end-of-tape

CT Clear trailer

9.6 PROGRAMMING HINTS

This section contains important information about programming the
cassette driver described in this chapter.

9.6.1 Importance of Rewinding

The first cassette operation performed on a tape must always be C!.
rewind to ensure that the tape is positioned to a known place. When
it is positioned in clear tape, there is no way to determine whether
it is in leader at the beginning-of-tape (BOT) or in trailer at the
end-of-tape (EOT).

9.6.2 End-of-File and IO.SPF

The hardware senses end-of-file (EOF) as a time-out. When IO.SPF is
issued in the forward direction (nes is positive), the tape is
positioned two-thirds of the way from the beginning of the final file
gap. In effect, this is all the way through the file gap. When
IO.SPF is issued in the reverse direction (nes is negative), the tape.
is positioned one-third of the way from the beginning of the final
file gap (th'at is, two-thirds of the way from the beginning of the
last file spaced). Therefore, to correctly position the tape for a
read or write after issuing IO.SPF in reverse, your task should issue
IO.SPB forward for one block, followed by IO.SPB in reverse for one
block.

9.6.3 The Space Functions IO.SPB and IO.SPF

. IO.SPB always stops in an IRG gap, IO.SPF in an EOF gap. Neither
space function actually takes effect until data is encountered. For
example, suppose the tape is positioned in clear leader at BOT and
your task requests that one block be spaced forward. The drive passes
over the remaining leader until it reaches data, passes one block, and
stops in the IRG. Similarly, if the same command is issued when the
tape is at BOT on a blank tape or a tape containing only EOF gaps, the
function does not terminate until EOT.

9-7

CASSETTE DRIVER

9.6.4 Verifying of Write Operations

Certain errors,
but not write
recording, your
operation.

such as cyclic redundancy check, are detected on read
operations. Therefore, to ensure reliability of

task should perform a read .to verify every write

9.6.5 Block Length

You must specify the exact number of bytes per block when requesting
read or write operations. An attempt to read a block with an
incorrect byte count causes an unrecoverable error (see Section 9.4)
to occur.

9.6.6 Logical End-of-Tape

The conventional method of signaling logical end-of-tape by multiple
EOF gaps is inadequate for cassettes, because multiple EOF gaps are
not distinguishable from each other. For example, two sequential EOF
gaps would be read as three instead of two. Also spacing functions,
because they are triggered by encountering data, can not recognize
multiple EOF gaps. Consequently, the use of a sentinel or key,record
to. signal logical end-of-tape is recommended.

9-8

'---

(

(

(

CHAPTER 10

LINE PRINTER DRIVER

10.1 INTRODUCTION

The RSX-11M/M-PLUS line printer driver supports the line printers
summarized in Table 10-1. Subsequent sections of this chapter
describe these printers in greater detail.

Table 10-1
Standard Line Printer Devices

Controller Printer Column width Character Set Lines per Minute

KMC-11-A Auxiliary Processor

(LP11-C LP14-C 132 64 890

LP11-D LP14-D 132 96 650

LP11-F LP01-F 80 64 170-1110

LP11-H LP01-H 80 96 170-1110

LP11-J LP02-J 132 64 170-1110

LP11-K LP02-K 132 96 170-1110

LP11-R LP04-R 132 64 1110

LP11-S LP04-S 132 96 1110

LP11-V LP05-V 132 64 300

LP11-W LP05-W 132 96 300

LP11-Y LP06-Y 132 64 600

LP11-Z LP06-Z 132 96 460

LP11-GA LP07 132 96 1200

LPll-EA LP26 132 64 600

LPll-EB LP26 132 64/96 600/420

(LPll-UA LP27 132 64/96 1200/800

(continued on next page)

10-1


~~~~-"-,,-==~=~~-~-~-~ 

- --- .. --

LINE PRINTER DRIVER 

Table 10-1 (Cont.) 
Standard Line Printer Devices 

Controller Printer Column Width Character Set Lines per Minute 

KMC-II-A Auxiliary Processor 

LSll LSll 

LVll LVOI 

LA180 LA180 

LNOI LNOI 

132 

132 

132 

Variable 

62 

96 

96 

1 

, 1. Software selectable fonts not supported by RSX. 

10.1.1 KMC-ll Auxiliary Processor 

60-200 

500 

150 

600 

The KMC-ll controller is a microcode-controlled printer controller 
tha.t .supports up to 8 line printers. Multiple KMC-ll controllers are 
allowed. The KMC-ll provides higher performance printing than other 
controllers ana, at the same time, uses fewer CPU resources. The use 
of the KMC-ll controller is a system generation option. 

10.1.2 LPll Line Printer 

The LPll is a high-speed line printer available in a variety of' 
models. The LPll model line consists of band line printers and drum 
line printers. The drum printers are impact printers, that use one 

'hammer per column and a revolving drum with uppercase and optional 
lowercase characters. The LPl.I-R and LPII-S are fully buffered models 
that operate at a standard speed of 1110 lines per minute. The other 
LPII drum models have 20-character print buffers. These printers are 
therefore able to print at full speed if the printed line is no longer 
than 20 characters. Lines that exceed this maximum are printed at a 
slower rate. You may use forms with up to six parts. The band line 
printers are impact printers that have a flat steel belt ~ith raised 
metal characters on the face. The LP07, LP26, and LP27 offe~ speeds 
from 420 'to 1200 lines per minute. 

10.1.3 LSll Line Printer 

The LSll is a medium-speed line printer. It has a 20-character print 
buffer, and lines of 20 characters.or less are printed at a rate of 
200 lines per minute. Longer lines are printed at a slower rate~ 
RSX-llM does not support the LSII expanded character set feature. 

10.1.4 LVll Line Printer 

The LVII is a fully-buffered, electrostatic printer-plotter that 
operates 'at a standard rate of 500 lines per minute. RSX-IIMsupports 
only the LVII print capability, not the plotter mode. 

10-2 

( 

( 



( 

( 

( 

~~- ,e.~",'~ ___ ~_·_, -~. ____ ,~ •• __ ~ ~~'n'_~ __ """'_. ___ ~.~, _'r~ ._~_ •• ~_"'~_,~_~ -""'~'~---'c-'~- ,.-~ ._-- .. --:-.-_. _~'r ~---" .. ~~.~-c-~--__ ~.~~~~~_ ."---~-~. "_~_~_~,,~~r 'r-r'~'""",·-··"'"""",""--·~""""-=-~~~"~.~,""',,,,,"'~_~""::'~'~ "._""""""", 

LINE PRINTER DRIVER 

10.1.5 LA180 DECprinter 

The LA180 is a l80-character/sec, dot-matrix impact printer. 
accepts multipart forms and pages of various lengths and widths. 

10.1.6 LNOI Laser Printer 

It 

The LNOI is a non-impact page printer that uses laser imaging combined 
with xerographic printing. This technology provides letter quality 
printing at line printer speeds with no noise. Printing is done on 
standard 8 1/2 inch by 11 inch paper at 12 pages per minute, which 
equates to 600 lines per minute. Contributing to the high print 
quality is a printer resolution of 300 by 300 dots per inch. The LNOI 
offers the speed of a line printer with the advantages of a 
phototypeset device. 

10.2 GETLUN INFORMATION MACRO 

Word 2 of the buffer filled by the Get LUN Information system 
directive (the first characteristics word) contains the following 
information for line printers. A bit setting of 1 indicates that the 
described characteristic is true for line printers. 

Bit 

o 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Setting 

1 

1 

o 

o 

o 

o 

o 

o 

o 
o 

o 
o 

o 

o 

o 

o 

Meaning 

Record~oriented device 

Carriage-control device 

Terminal device 

File structured device 

Single-directory device 

Sequential device 

Mass storage device 

User-mode diagnostics supported 

Dev,ice supports 22-bi t direct addressing 

Unit software write-locked 

Input spooled device 

Output spooled device 

Pseudo device 

Device mountable as a communications channel 

Device mountable as a FILES-II volume 

Device mountable 

Words 3 and 4 of the buffer are undefined; word 5 indicates the 
default size for the device, for line printers the width of the 
printer carriage (that is, 80 or 132). 

10-3 

--" --



LINE PRINTER DRIVER 

10.3 QIO$ MACRO 

Table 10-2 lists the standard functions of the QIO macro that are 
valid for line printers. 

Table 10-2 
Standard QIO Functions for Line Printers 

Format 

QIO$C.IO.ATT, ••• 

QIO$C 10.DET, ••• 

QIO$C 10.KIL, ••• 

QIO$C 10.WLB, ••• ,(stadd,size,vfc> 

QIO$C 10.WVB, ••• ,(stadd,size ,vfc> 

stadd 

Function 

Attach device 

Detach device 

Cancel I/O requests··' . 

WRITE logical block 
(print buffer c.ontents) 

WRITE virtual block 
(print buffer contents) 

The starting address of the data buffer (may be on a . byte 
boundary). 

size 

The d~ta buffer size in bytes (must be greater than 0). 

vfc 

A vertical format control character from Table 10-4. 

10.KIL does not cancel an in-progress request unless the line printer 
is in an off-line condition because of a power failure or a paper jam, 
or because it. is out ·of paper. 

The lineprinter driver supports no device..,.specific functions. 

10.4 STATUS RETURNS 

Table 10-3 lists th. error and status conditions that are returned by 
the line printer driver described in this chapter. 

10-4 

,---

( 

( 



Code 

IS.SUC 

IS.PND 

IE.ABO 

IE.DAA 

( 
IE.DNA 

IE.IFC 

IE.OFL 

IE.SPC 

( 

LINE PRINTER DRIVER 

Table 10-3 
Line Printer Status R~turns 

Reason 

Successful completion 

The operation specified in the 010 directive was 
completed successfully. The second word of the 
I/O status block can be examined to determine the 
number of bytes processed t if. the operation 
involved writing. 

I/O request pending 

The operation specified in the 010 directive has 
not yet been executed. The I/O status block is 
fi lled with Os. 

Operation aborted 

The specitied I/O operation was canceled while in 
progress or while in the I/O queue. 

Device already attached 

The physical device unit specified in an IO.ATT 
function was already attached by the issuing task. 
This code indicates that the issuing task has 
already attached the desired physical device unit, 
not that the unit was attached by another task. 

Device not attached 

The physical device unit specified an IO.DET 
function was not attached by the issuing task. 
This code has no bearing on the attachment status 
of other tasks. 

Illegal function 

A function code was specified in an I/O request 
that is invalid for line printers. 

Device off line 

The physical device unit associated with the LUN 
specified in the 010 directive was not on line. 
When the system was booted, a device check 
indicated that this physical device unit was not 
in the configuration. 

Illegal address space 

The buffer specified for a write request was 
partially or totally outside the address space of 
the issuing task. Alternatively, a byte count of 
o was specified. 

10-5 



LINE PRINTER DRIVER 

10.4.1 Ready Recovery 

If any of the following conditions occur: 

• Paper jam 

• Printer out of paper 

• Printer turned off line 

•• Power failure 

the driver determines that the line printer is off line, and the 
following message is output on the operator's console: 

***LPn: -- NOT READY 

n 
The unit number of the line printer that is not ready. 

The driver retries the function that encountered the error condition 
from the beginning, once every second. It displays the message after 
m seconds. The value m is defined at system generation to be a value 
less than 256. The default is 15. The messages occur until you make 
the line printer ready. If a power failure occurs while printing a 
line, the entire line is reprinted from the beginning when power is 
restored. 

10.5 VERTICAL FORMAT CONTROL 

Table 10-4 summarizes the meaning of all characters that you can use 
for vertical format control on the line printer. Anyone of these 
characters can be specified as the vfc parameter in an IO.WLB or 
IO.WVB function. 

Octal 
Value 

040 

060 

061 

Table 10-4 
Vertical Format Control Characters 

Character 

Blank 

Zero 

One 

Meaning' 

SINGLE SPACE: Output a line feed, print the 
contents of the buffer, and output a carriage 
return. Normally, printing immediately 
follows the previously printed line. 

DOUBLE SPACE: Output two line feeds, print 
the contents of the buffer, and output a 
carriage return. Normally, the buffer 
contents are printed two lines below the 
previously printed line. 

PAGE EJECT: Output a form feed, print the 
contents of the buffer, and output a carriage 
return. Normally, the contents of the buffer 
are printed on the first line of the next 
page. 

(continued on next page) 

10-6 

(-

( 

( 



( 

( 

( 

LINE PRINTER DRIVER 

Table 10-4 (Cont.) 
Vertical Format Control Characters 

Octal 
Value 

053 

044 

000 

Character 

Plus 

Dollar 
sign 

Null 

Meaning 

OVERPRINT: Print the contents of the buffer 
and perform a carriage return, normally 
overprinting the previous line. 

PROMPTING OUTPUT: Output a line feed and 
then print the contents of the buffer. 

INTERNAL VERTICAL FORMAT: The buffer 
contents are printed without addition of 
vertical format control characters. In this 
mode, more than one line of guaranteed 
contiguous output can be printed per I/O 
request. 

All other vertical format control characters are interpreted as blanks 
(040(octal». 

10.6 PROGRAMMING HINTS 

This section contains important information about programming the line 
printer driver described in this chapter. 

10.6.1 RUBOUT Character 

The line printer driver discards the ASCII character code 177 during 
output, because a RUBOUT on the LSII printer causes a RUBOUT of the 
hardware print buffer. 

10.6.2 Print Line Truncation 

If the number of characters to be printed exceeds the width of the 
print carriage, the driver discards excess characters until it 
receives one that instructs it to empty the buffer and return to 
horizontal position 1. You can determine if truncation can occur by 
issuing a Get LUN Information system directive and examining word 5 of 
the information buffer. This word contains the width of the print 
carriage in bytes. 

10.6.3 Aborting a Task 

If a task is aborted while waiting for the line printer to be readi~d, 
the line printer driver recognizes this fact within 1 second. 

10-7 



( 

( 



(- -

c 

( 

CHAPTER 11 

CARD READER DRIVER 

ll~l INTRODUCTION 

The RSX-IIM card reader driver supports the CRll card reader. This 
reader is a virtually jam-proof device that reads EIA standard 
SO-column punched cards at the rate of 300 per minute. The hopper can 
hold 600 cards. This device uses a vacuum picker that provides 
extreme tolerance to damaged cards and makes card wear insignificant. 
Cards are riffled in the hopper to prevent sticking. The reader uses 
a strong vacuum to deliver the bottom card. Because it has avery 
short card ,track, only one card is in motion at a time. 

11.2 GET LUN INFORMATION MACRO 

Word 2 of the buffer filled by the Get LUN Information system 
directive (the first characteristics word) contains the following 
information for card readers. A bit setting of 1 indicates that the 
described characteristic is true for card readers. 

Bit Setting Meaning 

0 1 Record-oriented device 

1 0 Carriage-control device 

2 0 Terminal device 

3 0 File structured device 

4 0 Single-directory device 

5 0 Sequential device 

6 0 Mass storage device 

7 0 User-mode diagnostics supported 

S 0 Device supports 22-bit direct addressing 

9 0 Unit software write~locked 

11-1 



CARD READER DRIVER 

Bit Setting Meaning 

10 0 

11 0 

12 0 

13 0 

14 0 

15 0 

Input spooled device 

Output spooled device 

Pseudo device 

Device mountable as a communications 
channel 

Device mountable as a FILES-li volume 

Device mountable 

Words 3 and 4 of the buffer are undefined; word 5 indicates the 
default buffer size, which is 80 bytes for the card reader. 

11.3 QIO$ MACRO 

Thisse~tion summarizes standard and device-specific QIO functions for 
the card reader driver. 

11.3.1 Standard QIO Functions 

Table 11-1 lists the standard functions of the QIO macro that are 
valid for the card reader. 

Table 11-1 
Standard QI0 Functions for the Card Reader 

Format Function 

QIO$C IO.ATT, ••• Attach device 

QIO$C IO.DET, ••• Detach device 

QIO$C IO.KIL, ••• Cancel I/O requests 

QIO$C IO.RLB, ••• ,<stadd,size> READ logical block 
(alphanumeric) 

QIO$C IO.RVB, ••• ,<stadd,size> READ virtual block 
(alphanumeric) 

stadd 

size 

The starting address of the data buffer (may be on a byte 
boundary). 

The data buffer size in bytes (must be greater than 0). 

IO.KIL does not cancel an in-progress request unless the card reader 
is in an off-line condition because of a pick, read, stack, or hopper 
check, because of power failure, or because the RESET button has not 
been depressed. 

11-2 

( 

( 



( 

-----.---------. ----:~""~--:--~~-----~---~----~.'--~~-~---.. "'---- -----------~--~~~~-.~ .. ~~~. 

CARD READER DRIVER 

11.3.2 Devjce-Specific QIO Functions 

The device-specific functions of the QIO macro that are valid for the 
card reader are shown in Table 11-2. 

Table 11-2 
Device-Specific QIO Function for the Card Reader 

Format Function 

QIO$C IO.ATA, ••• ,<AST addr> Attach for unsolicited card AST 

QIO$C IO.RDB, ••• ,<stadd,size> Read logical block. (binary) 

stadd 

size 

The starting address of the data buffer (may be on a byte 
boundary). 

The data buffer size in bytes (must be greater than 0). 

11.4 STATUS RETURNS 

A wide variety o-f error conditions and recovery procedures relate to 
the use of the card reader. This section describes the three major 
ways in which the system reports error conditions. 

1. Lights and indicators on the card reader panel are turned on 
or off to indicate particular operational problems srich as 
read, pick, stack, or hopper checks. Switches are available 
to turn the reader power on and off and to allow you to reset 
the error condition after correcting it. 

2. A message is output on the operato~'s console if operational 
checks or power problems occur. 

3. An I/O completion code is returned in the low-order byte of 
the first word of the I/O status block specified in the QIO 
macro to indicate success or failure on completion of an I/O 
function. 

The following subSections describe each of these returns in detail. 

11. 4.1 Card Input Errors and Recovery 

The table included below describes all external lights and switches on 
the reader that indicate to you that a hardware problem has occurred 
and must be corrected. There are two classes of bardware errors: 

• Those requiring you to ready the reader and try the operation 
again 

• Those requiring you to remove the last card from the output 
stacker, to replace it in the input hopper, and to try the 
operation again 

11-3 



CARD READER DRIVER 

In the first case, the card reader was unable to read the current 
card. In the second, the card was read incorrectly and must be 
physically removed from the output stacker. The card reader driver 
restarts a read operation within 1 second after the cards have been 
replaced in the input hopper. 

Table 11-3 summarizes the functions of lights and indicators on the 
front panel of the card reader. It discusses common operational 
errors that might be encountered while reading cards and recovery 
procedures associated with these error conditions. 

11.4.2 Ready and Card Reader Check Recovery 

If any of the following conditions occur: 

• Power failure 

• Reset switch not pressed (reader off line) 

• Timing error (Two columns were read before the card reader 
driver input the first column from the card reader.) 

the driver determines that the card reader is not ready, and the 
following message is output on the operator's console: 

*** CRn: -- NOT READY 

When a timing error occurs, the operator can proceed with normal card 
reader operation by: 

If 

1. Placing the card reader off line by pressing the STOP switch 

2. Removing the last card read and inserting it where it is readc 

as the next card 

3. Placing the card reader on line by pressing the RESET switch 

any of the following conditions occurs: 

• Pick error (PICK CHECK) 

• Read error (READ CHECK) 

• Output stacker error (STACK CHECK) 

• Input hopper out of cards (HOPPER CHECK) 

• Output stacker full (HOPPER CHECK) 

the driver determines that a card reader check has occurred, and the 
following message is output on the operator's console: 

*** CRn: -- READ FAILURE. CHECK HARDWARE STATUS 

where n is the unit number of the card reader that is not ready. The 
operator should correct the· error and press RESET: The driver 
attempts the function from the beginning, once every second. It 
displays the message once every m seconds (m is defined at system 
generation as a value less than 256. The default is 15) until the 
card reader is readied. In all cases except pick error, the last card 
read should be reinserted in the input hopper, as described in Section 
11.4.1. 

11-4 

( 



( 

( 

( 

Indicator 

POWER 
Switch 

READ 
CHECK 
Indicator 

PICK 
CHECK 
Indicator 

CARD READER DRIVER 

Table 11-3 
Card Reader Switches and Indicators 

Description 

Pushbutton 
indicator 
switch 
(alternate 
action: 
pressed for 
both ON and 
OFF) 

White light 

Action 

Controls application 
of all pbwer to the 
card reader. 

When indicator is 
off, depressing switch 
applies power to 
reader and causes 
associated indica-
tor to light. 

When indicator is 
lit, depressing 
switch removes all 
power from reader and 
causes indicator to 
go out. 

When lit, this light 
indicates that the 
card just read may be 
torn on the leading or 
trailing edges, or 
that the card may 
have punches in 
column positions 0 
or 81. 

Because READ CHECK 
indicates an error 
condition, whenever 
this indicator is 
lit, it causes the 
card reader to stop 
operation and extin
guishes the RESET 
indicator. 

White light When lit, this light 
indicates that the 
card reader failed to 
move a card into the 
read station after 
it received a READ 
CO.MMAND from the 
controller. 

Stops card reader 
operation and extin
guishes RESET 
indicator. 

Recovery 

Card may have been 
read incorrectly; 
restore power if 
possible by depress
ing the POWER 
switch; insert the 
card again as the 
first card in the 
input hopper, and 
press the RESET 
swi tch; in some 
cases, it may be 
necessary to 
restart the program. 

Card was read incor
rectly; duplicate if 
necessary, insert 
the card again as 
the first card in the 
input hopper, and 
press the RESET 
switch. 

Card could not be 
read; press the 
RESET switch to try 
again or remove the 
cards from the input 
hopper, smooth the 
leading edges, re
place, and then 
press the RESET 
switch. 

(continued on next page) 

11-5 



Indicator 

STACK 
CHECK 
Indicator 

HOPPER 
CHECK 
Indicator 

STOP 
Switch 

RESET 
Switch 

CARD READER DRIVER 

Table 11-3 (Cont.) 
Card Reader Switches and Indicators 

Description 

Whi te light 

White light 

Momentary 
pushbutton/ 
indicator 
switch 
(red light) 

Momentary 
pushbutton/ 
indicator 
switch 
(green 
light) 

Action 

When lit, this light 
indicates that the 
previous card was not 
properly seated in 
the output stacker 
and therefore may be 
badly mutilated. 

Stops card reader 
operation and ex
tinguishes RESET 
indicator. 

When lit, this light 
indicates that either 
the input hopper is 
empty or that the out
put stacker is full. 

When depressed, 
immediately lights 
and drops the READY 
line, thereby extin
guishing the RESET 
indicator. Card 
reader operation then 
stops as soon as the 
card currently in the 
read station has been 
read. 

This switch has no 
effect on the system 
power; it only stops 
the current operation. 

When depressed and 
released, clears all 
error flip-flops and 
initializes card 
reader logic. Associ
ated RESET indicator 
lights to indicate 
that the READY signal 
is applied to the con
troller. 

The RESET indicator 
goes out whenever the 
STOP switch is de
pressed or whenever 
an error indicator 
lights (READ CHECK, 
PICK CHECK, STACK 
CHECK, or HOPPER 
CHECK) • 

11-6 

Recovery 

Card may have been 
read incorrectly and 
is not positioned 
properly in the out
put stacker; dupli
cate the card if it 
is damaged; insert 
the card again as 
the first card in 
the input hopper and 
press the RESET 
switch. 

Card may have been 
read incorrectly; 
empty the stacker or 
fill the hopper; in
sert the card again 
as the fist card in 
the input hopper and 
press the RESET 
switch. 

c 

( 

( 



'",======~~~', -- -------------------

( 

( 

CARD READER DRIVER 

11.4.3 I/O Status Conditions 

The error and status conditions listed in Table 11-4 are returned by 
the card reader driver described in this chapter. 

Code 

IS.SUC 

IS.PND 

IE.ABO 

IE.DAA 

IE. DNA 

IE.EOF 

IE.IFC 

IE. NOD 

Table 11-4 
Card Reader Status Returns 

Reason 

Successful completion 

The operation specified in the QIO directive was 
completed successfully. The second word of the 
I/O status block can be examined to determine the 
number of bytes processed, if the operation 
involved reading. 

I/O request pending 

The operation specified in the QIO directive has 
not yet been executed. The I/O status block is 
fi 11ed with Os. 

Operation aborted 

The specified I/O operation was canceled while in 
progress or while still in the I/O queue. 

Device already attached 

The physical device unit specified in an IO.ATT 
furiction was already attached by the issuing task. 

Device not attached 

The physical device unit specified in an IO.DET 
function was not attached by the issuing task. 
This code has no bearing on the attachment status 
of other tasks. 

End-of-file encountered 

An end-of-file control card was recognized. 

Illegal function 

A function code was specified in an I/O request 
that is illegal for card readers. 

Buffer allocation' failure 

Dynamic storage space has been depletred, and there 
was insufficient buffer space available to 
allocate a card buffer (that is, cards are read 
into a driver buffer, translated, and then moved 
to your task's buffer). 

(continued on next page) 

11-7 



Code 

IE.OFL 

IE.SPC 

CARD READER DRIVER 

Table 11-4 (Cont.) 
Card Reader Status Returns 

Reason 

Device off line 

The physical device unit associated with the LUN 
specified in the QIO directive was not on line. 
When the s¥stem was booted, a device check 
indicated that this physical device unit was not 
in the configuration. 

Illegal address space 

The buffer specified for a read request was 
partially or totally outside the address space of 
the issuing task. Alternatively, a byte count of 
o was specified. 

11.5 FUNCTIONAL CAPABILITIES 

The card reader driver can perform the following functions: 

1. Read cards in DEC026 format and translate to ASCII 

2. Read cards in DEC029 format and translate to ASCII 

3. Read cards in binary format 

If the QIO macro specifies the IO.RLB or IO.RVB function, the driver 
interprets all data as alphanumeric (026 or 029 format). As explained 
below, control characters indicate whether 026 or 029 is desired. If 
the QIO macro specifies IO.RDB, the driver interprets all data, 
including 026 and 029 control characters, as bin.ry. 

11.5.1 Control Characters 

Table 11-5 lists the multipunched cards that the card reader driver 
recognizes as control characters. They are never transferred to the 
buffer of your task or included in the count of transferred bytes in 
alphanumeric mode. In binary mode, the only control card recognized 
is binary EOF. 

DEC026 is the default translation mode when the system is 
bootstrapped. This mode remains in effect until explicitly changed by 
a control card indicating that DEC029 cards follow. After 
encountering a DEC029 control card, the driver translates all cards in 
DEC029 format unless another DEC026 control card is encountered. This 
card overrides the 029 mode specification and indicates that 
subsequent cards are to be translated in 026 format. Control 
characters are addressed to the card reader itself, and remain in 
effect even when the reader is attached and subsequently detached. 

11-8 

( 

( 

( 



( 

( 

CARD READ.ER DRIVER 

The default condition can easily be changed from DEC026 to DEC029 by 
reading a 029 control card, and then saving the system with the MCR 
SAV command. 

Table 11-5 
Card Reader Control Characters 

Punches Columns Meaning 

12-11-0-1-6,:",7-8-9 1 End-of-file (alphanumeric.) 

12-11-0-1-6-7-8-9 (All 8 punches in End-of-fi1e (binary) 
the first 8 columns) 

12-2-4-8 1 026-coded cards follow 

12-0-2-4-6-8 1 029-coded cards follow 

11.6 CARD READER DATA FORMATS 

The card reader reads data in either alphanumeric or binary format. 

11.6.1 Alphanumeric Format (026 and 0211) 

Table 11-6 summarizes the translation from DEC026 or DEC029 card codes 
to ASCII. 

11.6.2 Binary Format 

In RSX-llM binary format, the data are not packed, but are transferred 
exactly as read, one card column per word. Because each word has 16 
bits and each card column represents only 12, the data from the column 
are stored in the rightmost 12 bits of the word. The word's remaining 
four bits contain Os. 

11.7 PROGRAMMING HINTS 

This section contains important information about programming the card 
reader driver described in this chapter. Section 11.4 contains 
information on operational error-recovery procedures that may be 
important for programming. 

11.7.1 Input Card Limitation 

Only one card can be read with a single QIO macro call. A request to 
read more than 80 bytes or columns, the length of a single card, does 
not result in a multiple card transfer. Only 80 columns are 
processed. It is possible to read fewer than 80 columns of card input 
with a QIO read function. For example, you can specify that only the 
first 10 columns of each card are to be read. 

11-9 



CARD READER DRIVER 

11. 7.2 Aborting a Task 

If a task waiting for the card reader to be readied is aborted, the 
card reader driver recognizes this fact within 1 second. 

Table 11-6 
Translation from·DEC026 or DEC029 to ASCII 

Non- Non-
Parity Parity 

Character ASCII DEC029 DEC026 Character ASCII DEC029 DEC026 

173 12 0 12 0 054 0 8 3 0 8 3 
175 11 0 11 0 055 11 11 

SPACE 040 none none 056 12 8 3 12 8 3 
041 12 8 7 12 8 7 / 057 0 1 0 1 

II 042 8 7 o 8 5 0 060 0 0 
# 043 8 3 o 8 6 1 061 1 1 
$ 044 11 8 3 11 8 3 2 062 2 2 
% 045 o 8 4 o 8 7 3 063 3 3 
AND 046 12 11 8 7 4 064 4 4 , 047 8 5 8 6 5 065 5 5 
( 050 12 8 5 o 8 4 6 066 6 6 
) 051 11 8 5 12 8 4 7 067 7 7 
* 052 11 8 4 11 8 4 8 070 8 8 
+ 053 12 8 6 12 9 071 9 9 

072 8 2 11 8 2 M 115 11 4 11 4 
073 11 8 6 0 8 2 N 116 11 5 11 5 
074 12 8 4 12 8 6 0 117 11 6 11 6 

( = 075 8 6 8 3 P 120 11 7 11 7 
> 076 0 8 6 11 8 6 Q 121 11 8 11 8 
? 077 0 8 7 12 8 2 R 122 11 9 11 9 
@ 100 8 4 8 4 S 123 0 2 0 2 
A 101 12 1 12 1 T 124 0 3 0 3 
B 102 12 2 12 2 U 125 0 4 0 4 
C 103 12 3 12 3 V 126 0 5 0 5 
D 104 12 4 12 4 W 127 0 6 0 6 
E 105 12 5 12 5 X 130 0 7 0 7 
F 106 12 6 12 6 y 131 0 8 0 8 
G 107 12 7 12 7 Z 132 0 9 0 9 
H 110 12 8 12 8 [ 133 12 8 2 11 8 5 
I 111 12 9 12 9 \ 134 0 8 2 8 7 
J 112 11 1 11 1 ] 135 11 8 2 12 8 5 
K 113 11 2 11 2 A or 136 11 8 7 8 5 
L 114 11 3 11 3 or 137 0 8 5 8 2 

( 

11-10 



( 

( 

CHAPTER 12 

MESSAGE-ORIENTED COMMUNICATION DRIVERS 

12.1' INTRODUCTION 

RSX-I1M supports a variety of communication line interfaces: 
synchronous and asynchronous, single-line and multiplexers, 
character-oriented and message-oriented. These interfaces enable 
remote job entry, and terminal, multicomputer, laboratory and 
industrial control communications. Communications line interfaces can 
be roughly divided into two categories: 

• Terminal (character-oriented) communications devices 

• Multicomputer (message-oriented) communications devices 

Chapters 1, 2, and 3 describe the character-oriented asynchronous 
communications line interfaces used primarily for terminal 
communications. The Terminals and Communications Handbook contains 
more detail on these devices.~his chapter describes in some detail 
the RSX-IIM message-oriented synchronous and asynchronous 
communication line interfaces. These are used most frequently in 
muf ticomputer commuriic,ations. 

Character-otiented communications devices include the DH11, DHVl1, 
DHUl1, DZVll, DZQ11, D.111, DLll-A, DLII-B/C/D, and DZII interfaces. 
These are asynchronous multiplexers and single-line interfaces used 
almost exclusively for terminal communications. Transfers on all of 
these interfaces are performed one character at a time. None of the 
interfaces in this category has a driver of its own (that is, they are 
supported by the terminal driver), and none can be accessed directly 
as RSX-IIM devices. 

Message-oriented communications line interfaces usually link two 
separate but complementary computer systems. One system must serve as 
the transmitting device and the other as the receivIng device. 
Devices in this category include the synchronous and asynchronous 
single-line interfaces summarized in Table 12-1. 

The message-oriented communication 
transferring large blocks of data. 

line interfaces are for 

Whereas the character-oriented interfaces can only be accessed 
indirectly through the terminal driver. the DAII-B, DLII-E, DMCll, 
DPll, DQll, DUll, and DUPII allow I/O requests to be queued directly 
for them. These devices have drivers of their own and can be accessed 
by means of the logical device names listed in Table 12-1. You can 
use these names in assigning LUNs with the Assign LUN system 
directive, at task build, or with the REASSIGN MCR command. The 
following subsections briefly discuss the message-oriented interfaces 
supported for RSX-IIM. 

12-1 



- - -- .-.- _ ... -

MESSAGE-ORIENTED COMMUNICATION DRIVERS, 

Table 12-1 
Message-Oriented Communication Interfaces 

Model Type Rate Duplex Data block Synchronous 
(KBaud) Half/Full (words) Character 

DAll-B 1 Parallel 500 x 32K No 

DLll-E 2 Serial, asynchronous 0.05-9.6 x x 32K Programmable 

DMCll Serial, synchronous 19.2-1000 x x 8K No 

DPll l Serial, synchronous 2-19.2 x x 32K Programmable 

DQll l Serial, synchronous 2.4-1000 x x 32K Programmable 

DUll 1 Serial, synchronous 0.05-9.6 x x 32K Programmable 

DUPll Serial, synchronous 0.05-9.6 x x 32K Programmable 

1. Support is not provided on RSX-11M-PLUS systems. 

2. DL1l-E support is provided on RSX-llM-PLUS systems using the 
full-duplex terminal driver only. 

12.1.1 DAll-B Parallel Interface 

The DA1l-B provides a bit-parallel, direct memory access interface 
between two PDP-11 computer systems. Data transfers are performed a 
word at a time and are made directly between the memories of the two 
systems. The maximum transfer rate is 500,000 baud, and you can 
adjust it to mat'ch the system configuration requirements. Being' 'a' 
parallel device, the DA11-B does not use sync characters. The 
interface is half-duplex and transfers data in blocks of up to 32K 
words. 

The DA1l-B requires two cooperating computers to effect a data 
transfer. To control the physical link between the computers, the 
device driver contains its own simple line protoco1~ This profoco1 
requires one system to issue a receive 010$ and the other to issue a 
transmit 010$ be'fore any data is actually transferred. 

12~1.2 DL11-E Asynchronous Line Interface 

The DL1l-E is an asynchronous, serial-bit, single-line interface. It 
is a block-transfer device for remote terminal and multicomputer 
communications. Baud rates are selectable between 50 and 9600, and 
full data-set control is supported. Software support for data-set 
control consists of interlocking RTS and CTS for data transmission, 
and the setting of DTR (data terminal ready) to enable auto-answer 
modems to answer incoming calls. DTR is set when an IO.INL 010$ 
(initialize) is issued. 

12-2 

~ __ I 

( 

(~ 



( 

( 

MESSAGE-ORIENTED COMMUNICATION DRIVERS 

12.1.3 DMCII Synchronous Line Interface 

The DMCII provides a direct memory access interface between two PDP-II 
computer systems using the DDCMP line protocol, thus delivering high 
throughput and reliability while simplifying programming. The DMCII 
supports Non-Processor Request (NPR) data transfers of up to 8K words 
at rates of 1,000,000 baud for local operation (over coaxial cable) 
and 19,200 baud for remote operation (using modems). Both full- and 
half-duplex modes are supported. The DMCII also implements remote 
load detect, allowing it to reinitialize a halted computer system. 

12.1.4 DPII Synchronous Line Interface 

The DPII provides a program interrupt interface between a PDP-II and a 
serial synchronous line. This interface facilitates the use of the 
PDP-II in remote batch processing, remote data collection, and remote 
concentration applications. The modem control feature allows using 
the DPII in switched or dedicated configurations. 

On the DPll, baud rates are selectable between 2000 and 19,200. You 
can select a specific sync character to synchronize the transmitting 
and receiving systems. 

12.1.5 0011 Synchronous Line Interface 

The 0011 provides a direct memory access interface between a PDP-II 
and a serial synchronous line. The direct memory access 
characteristic of the 0011 a110ws the device to operate at speeds 
higher than those of program interrupt devices, and with a lower 
interrupt overhead. Modem control of the 0011 allows using the device 
in switched or dedicated configurations. 

The 0011 handles data rates from 2400 baud to 1,000,000 baud. The 
limiting rate is determined by the modem and data set interface level 
converters. 

The 0011 sync character is programmable in the same manner as the DPII 
and the DUll. The maximum data block length transmitted is 65,536 
characters. 

12.1.6 DUll Synchronous Line Interface 

The DUll synchronous line interface is a single-line communications 
device that provides a program-controlled interface between the PDP-II 
and a serial synchronous line. The PDP-II can be interfaced with a 
high-speed line to perform remote batch processing, remote data 
collection, and remote concentration applications. Modem control is a 
standard feature of the DUll and allows using the device in switched 
or dedicated configurations. The DUll transmits data ata maximum 
rate of 9600 baud; this rate is limited by modem and data set 
interface level converters. 

The DUll can be programmed to accept any sync character that you 
define. The use of the sync character is the same for the DUll and 
the DPll. 

12-3 



MESSAGE-ORIENTED COMMUNICATION DRIVERS 

12.1~7DUPll Synchronous Line Interface 

The DUPII is identical to the DUll, except that it incorporates 
hardware to perform cyclic redundancy checking. 

12.2 GET LUN INFORMATION MACRO 

Word 2 of the buffer filled by the Get LUN Information system 
directive (the first characteristics word) contains the following 
information for message-oriented communication interfaces. A bit 
setting of 1 indicates that the described characteristic is true for 
the interfaces described in this chaptet~ 

Bit 

o 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Setting 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

1 

o 
1 

Meaning 

Record-oriented device 

Carriage-control device 

Terminal device 

File~structured device 

Single-directory device 

Sequential device 

Mass storage device 

User-mode diagnostics supported 

Device supports 22-bit direct addressing 

Unit software write-locked 

Input spooled device 

Output spooled device 

Pseudo device 

Device mountable as a communications channel 

Device mountable as a FILES-II volume. 

Device mountable 

Words 3 and 4 are undefined, and word 5 has a special meaning for the 
DLII-E, DQll, DPll, and the DUll interfaces. Byte 0 of word 5 
contains the number of sync characters to be transmitted before a 
synching message (for example, after line turn-around in half-duplex 
operation), and byte 1 is a sync counter. 

12-4 

c 

( 



( 

( 

( 

-. .- _.- - ._- ~ - ._--- _. _._ .. _. -- - _._-
-------".-

MESSAGE-ORIENTED COMMUNICATION DRIVERS 

12.3 010$ MACRO 

This section summarizes the standard and device-specific functions of 
the 010$ macro that are valid for the communication interfaces 
described in this chapter. 

12.3.1 Standard 010$ Functions 

Table 12-2 lists the standard. function. of the QIO$ macro that are 
valid for the communication devices. 

Table 12-2 
Standard 010$ Functions for Communication Interfaces 

Format 

OIO$C IO.ATT, ••• 

OIO$C 10. DET., ••• 

OIO$C 10. KIL, ••• 

OIO$C IO.RLB, ••• ,<stadd,size) 

OlO$C IO.WLB, ••• ,<stadd,size) 

Function 

Attach device 1 

Detach device 

Cancel I/O requests 

READ logical .block (stripping 
sync) . 

WRITE logical block (preceded by 
syncs) 

1. Only unmounted channels may be attached. An attempt to attach a 
mounted channel results in an IE.PRI status return in the I/O 
status doubleword. 

stadd 

size 

The starting address of the data buffer (may be on a byte 
boundary) • 

The data buffer size in bytes (must be greater than 0). 

12.3.2 Device-Specific 010$ Functions 

The specific functions of the QIO$ macro that are valid for the 
communication line interfaces are shown in Table 12-3. 

12-5 



_~~,~""'~-""~~-:-o:-=--~'C""""-~_~~~,...."""""~..,.,,....,....''''''"'_"""'''''''~~ ---------~~ ______ ~_"_~~.,..=-,-~."........."-_""..,.,,...,___~':;__:___:C'O___=__,:-~=_____::~~_=_"'_~"".'_ _ . ~ ._ 

MESSAGE-ORIENTED COMMUNICATION DRIVERS 

Table 12-3 
Device-Specific QIO$ Functions for Communication Interfaces 

Format Function 

QIO$C IO.FDX Set device to full-duplex mode; Not 
applicable to DA11-B 

QIO$C IO.HDX, ••• ,(stat,mode> SET device to half-duplex mode; Not 
applicable to DA11-B 

QIO$C 10. INL, ••• Initialize device and set device 
characteristics 

QIO$C IO.RNS, ••• ,(stadd,size> READ logical block, without 
stripping sync characters 
(transparent mode); Not applicable 
to DQl1i for DAll-B and DMCll,· 
treated like IO.RLB. Not supported 
on DUl1 and DUP11. . 

QIO$C IO.SYN, ••• ,(syn> SPECIFY sync character; not 
applicable to DAl1-B or DMCll 

QIO$C IO.TRM,... Terminate communication, 
disconnecting from physical channel 

QIO$C IO.WNS, ••• ,(stadd,size> WRITE logical 
preceding sync 
(transparent mode); 
DMC11, treated like 

block without 

stadd 

size 

syn 

stat 

mode 

characters 
for DAl1-B and 
IO.WLB 

The starting addres.s of the data buffer (may be on a byte 
boundary). 

The data buffer size in bytes (must be greater than 0). 

The sync character, expressed as an octal value. 

The station assignment (primary or secondary). 

The transmission mode (normal or maintenance) • 

The device-specific functions listed in Table 12-3 are described in 
greater detail below. 

12-6 

--_ .. __ ._.----_ .. __ ._----

( 

( 



( 

( 

MESSAGE-ORIENTED COMMUNICATION DRIVERS 

12.3.2.1 IO.FDX - The IO.FOX QIO$ function sets the mode on a DLII-E, 
DPll, DQll, DUll, DUPll, or DMCII unit to full-duplex. The IO.FDX 
function code can be combined (ORed) with the IO.SYN function code, if 
desired, to set the operational characteristics of the physical device 
unit. 

12.3.2.2 IO.HDX - The IO.HDX QIO$ function sets the mode on a DLll-E, 
DPll, DQll, DUll, DUPll, or DMCII unit to half-duplex. The IO.HOX 
function code can be combined (ORed together) with the IO.SYN function 
code, if desired, to set the operational characteristics of the 
physical device unit. 

Setting half-duplex on the DMCII also involves setting the station 
assignment (primary/secondary) and may include selecting maintenance 
mode (MOP) as opposed to normal mode. The station assignment is 
included in optional QIO$ parameter pl. A 0 indicates primary station 
and a nonzero indicates secondary station. The DMCII works properly 
if both ends are primary stations or if there is one primary and one 
secondary station. rt does not work if both ends are secondary 
stations. Optional QIO$parameter p2 selects the mode. A 0 selects 
normal mode and a nonzero selects MOP mode. A DMCII in MOP mode 
cannot communicate with a DMCII in normal mode. 

12.3.2.3 IO.INL and IO.TRM - These two QIO$ functions have the same 
function code but different modifier bits. 

IO.INL initializes a physical device unit for use as a communications 
link. It turns the device on line, sets device characteristics, and 
ensures that the appropriate data terminal is ready. 

IO.TRM disconnects the device. If the device has a dial-up interface, 
it also hangs up the line. 

12.3.2.4 IO.RNS - The IO.RNS QIO$ function reads a logical block of 
data, without stripping the sync characters that may precede the data. 

IO.RLB is a similar function, which is nontransparent, 
causes the sync characters that precede the data 
stripped. Use IO.RLB at the start of a segmented data 
which the block might have the following layout: 

in that it 
message to be 
request, in 

I s I s I H I H I H I H I cs I cs I Data I cs I 
2345678 

ZK-007-81 

S 

A sync character. 

H 

A header character. 

CS 

A validity check character. 

12-7 

-- - - ,-;-;-.,-:,--,....,--::--:""'-~~--

- -------.' 



MESSAGE-ORIENTED COMMUNICATION DRIVERS 

You must strip sync characters from the beginning of a data block in 
this way. Stripping only at the beginning of a read allows a later 
character that happens to have the same binary value as a sync 
character .to be read without stripping. Use IO.RLB to read a logical 
block with leading sync characters stripped; use IO.RNS to read the 
block without stripping leading sync characters. Because the DAII-B 
is a parallel device and there are no sync characters, it treats the 
latter as if it were IO.RLB. Generally, you should use IO.RLB. 

12.3.2.5 IO.SYN - This 010$ function allows the programmer to specify 
the sync character to be recognized when an IO.RLB or IO.WLB function 
is performed. IO.SYN can be combined (ORed together) with IO.HDX or 
with IO.FDX to set the characteristics of the physical device unit. 

12.3.2.6 IO.WNS - This 010$ function causes a logical block to be 
wri tten .. wi th no preceding sync characters. To ensure that the two 
systems involved in a communication are synchronized, two or more sync 
charact~rs' are transmitted by one system and received by the other 
before any other message can be sent. 

Use IO.WLB to write a block of data, preceded by sync characters. 
Generally, you should use IO.WLB. 

Use IO.WNS to perform a block transfer without sending sync characters 
first. Because the DA11-B is a parallel device and there are no sync 
characters, it treats the latter as if it were IO.WLB. 

12.4 STATUS RETURNS 

The error and status conditions listed in Table 12-4 are returned by 
t~e communication drivers described in this chapter. 

Code 

IS.SUC 

IS.PND 

Table 12-4 
Communication Status Returns 

Reason 

Successful completion 

The operation specified in the 010$ directive was 
completed successfully. The second word of the I/O 
status block can be examined to determine the number 
of bytes processed, if the operation involved reading 
or writing. 

I/O request pending 

The operation specified in the 010$ directive has not 
yet been executed. The I/O status block is filled 
with Os. 

(continued on next page) 

12-8 

( 

( 



( 
Code 

IE.BCC 

IE.CNR 

IE.DAO 

( IE.DNR 

( 

MESSAGE-ORIENTED COMMUNICATION DRIVERS 

Table 12-4 (Cont.) 
Communication Status Returns 

Reason 

Block check error 

When the Cyclic Redundancy Check (CRC) option is 
present on the DQ1I, a check character is appended to 
each message transmitted. The receiver of the 
messages recalculates the check character and 
compares it with the one transmitted. This error 
code is returned when the two check characters do not 
match, and represents a transmission error. 

Connection rejected 

(DMCII only.) The DMCII has detected that the device 
on the other end of the line has restarted itself. 
Your task can recover by issuing IO.INL (initialize), 
and then reissuing the QIO$ in question. 

Data overrun 

Due to UNIBUS traffic or a modem problem, the DQll 
controller was unable to maintain the data rate 
required to prevent data loss (that is, the receipt 
of another byte before processing of a previous byte 
was completed). 

Device not ready 

The physical device unit specified in the QIO$ 
directive was not ready to perform the desired I/O 
operation. This code is returned to indicate one of 
the following conditions: 

• The physical device unit could not be initialized 
(that is, the circuit could not be completed). 

• The transmission of a character was not followed 
by an interrupt within the period of time selected 
as the device time-out period. This time-out 
occurs only when a transmission is in progress and 
the interrupt marking completion of a message does 
not occur. The appropriate response to this 
condition is to attemPt to resynchronize the 
device by initializing and accepting the next 
request. A time-out does not occur on a read. If 
the receiving device is not ready, the transfer is 

. not initiated by the transmitting device. Once 
the transfer is initiated, however, it completes 
its execution either by satisfying the requested 
byte count or by timing out. 

(continued on next page) 



Code 

IE.IFC 

IE.OFL 

/ 

IE.SPC 

IE. VER 

IE.ABO 

IE.RSU 

IE.THO 

MESSAGE-ORIENTED COMMUNICATION DRIVERS 

Table 12-4 (Cont. ) 
Communication Status Returns 

Reason 

Illegal function 

A function code was specified in an I/O request that 
is illegal for message-oriented communication 
devices. 

Device off line 

The physical device unit associated. with the LUN 
specified in the QIO$ directive was not on line. 
When the system was booted, a device check indicated 
that this physical device unit was not in the 
configuration. 

Illegal address space 

The buffer specified for a read or write request was 
partially or totally outside the address space of the 
issuing task. Alternatively, a byte count of 0 was 
specified. 

Nonrecoverable error (DAll-B only) 

The data transfer terminated before all of the data 
has been transmitted. The error code is returned on 
transmit when both systems attempt to transmit at the 
same time. This condition is detected by the device 
protocol. The error code is returned on receive when 
the transmit data count of the transmitting side does 
not equal the data count specified by the receive 
QIO$. 

Operation Aborted 

The~pecified I/O operation was canceled by IO.KIL 
while in progress or while still in the I/O queue. 

Shareable Resources in use 

The task attempted to allocate Unibus Mapping 
Registers. All UMRs were allocated to other tasks 
and were unable to complete the transfer. 

Timeout Error 

The physical device unit associated. with the LUN 
specified in the QIO$ directive timed out. This 
occurs during a data transfer operation when the task 
does not receive an interrupt within a specified 
amount of time. 

12-10 

( 

( 

( 



( 

( 

MESSAGE-ORIENTED COMMUNICATION DRIVERS 

12.5 PROGRAMMING HINTS 

This section contains important information about programming the 
message-oriented communication interfaces described in this chapter. 

12.5.1 Transmission Validation 

Because there is no way for the transmitting device to verify that the 
data block has successfully arrived at the receiving device unless the 
receiver responds, the transmitter assumes that any message that is 
clocked out on the line (without line or device outage) has been 
successfully transmitted. As soon as the receiver is able to satisfy 
a read request, it return~ a successful status code (IS.SUC) in the 
I/O status block. Of course, only the task receiving the message can 
determine whether the message has actually been transmitted 
accurately. 

The receiving device should be ready to receive data (with a read 
request) at the time the transmission is sent. 

12.5.2 Redundancy Checking 

By the nature of message-oriented communications, only the task that 
receives a communication can .determine whether the message was 
received successfully. The transmitter simply transfers data., without 
validation of any kind. It is therefore the responsibility of the 
communicating tasks that use the device to check the accuracy of the 
transmission. A simple validity check is a checksum-type longitudinal 
redundancy check. A better approach to validating data is the use of 
a cyclic redundancy check (CRC). A CRC can be computed in software or 
with a hardware device, such as the KG-II communications arithmetic 
option. 

Both DOll and DUPII incorporate hardware to compute a CRC. 
CRC hardware requires an extra system unit. 

12.5.3 Half-Duplex and Full-Duplex Considerations 

The DOll 

Because there is a single I/O request queue, only one OIO$ request can 
be performed at a time. It is therefore not possible, through OIO$s, 
for a device to send and receive data at the same "time. Also, because 
timeouts are not set for receive functions, a receive OIO$ is 
terminated only by receiving a message from the remote system, or by 
issuing an IO.KIL OIO$ for the device. Therefore, if no message is 
transmitted by the remote system, a receive does not terminate, and no 
further I/O can be performed on that device until the receive is 
killed by issuing an IO.KIL OIO$. 

You can use both half-duplex and full-duplex lines with the DL11-E, 
DMCl1, DPll, DOll, DUll, and DUPll. The mode issettable by using 
IO. FDX for full-duplex and IO. HDX for half-duplex. In half..,duplex 
mode, the modem signal RTS (Reque;;t To Send) is cleared after each 
"transmit message." In full-duplex, this signal is always left on. 
Using full-duplex mode eliminates modem delays in transmission, but 
requires full-duplex hardware and communication links. 

12-11 



MESSAGE-ORIENTED COMMUNICATION DRIVERS 

Only half-duplex mode is available with the DAII-B -because of the 
nature of the hardware. 

The DMCII Driver maintains both transmits and receives separately in 
its own internal queues. Thus, it is a full-duplex driver. There is 
no limit on the number of outstanding I/O requests that can be active 
at any given time. The DMCII hardware, however, allows a maximum of 
only seven transmits and seven receives to be active at any time. The 
driver gives the first seven transmits (or receives) directly to the 
DMCII and queues the eighth and subsequent transmits (or receives) 
internally until the _ DMCII acknowledges a successful I/O request. 
When running on an 11/70, the driver gives only two transmits (or 
receives) to the DMCII because each request requires a UNIBUS mapping 
register. The DMCII driver is assigned five UMRs: one for base 
table(s), two for active transmits, and two for active receives. 

12.5.4 Low-Traffic Sync Character Considerations 

If message traffic on a line is low, each message sent from a 
communications device should be preceded by a sync train. This 
enables the controller t6 resynchronize if a message is "broken" (that 
is, part or all of it is lost in transmission). Correspondingly, 
every message received by a communications device under low-traffic 
conditions, when messages are not contiguous (back-to-back), should be 
read with an IO.RLB (read, strip sync) function. This requires that 
the first character in the data message itself not have the binary 
value of the sync character. . 

12.5.5 vertical Parity Support 

Vertical parity is not supported by the DAII-B, DL1I-E, DPll, DQll, or 
DUll. Codes are assumed to be a-bit only. 

12.5.6 Powerfail with DMCll 

The DMCII currently cannot recover after a power failure because the 
RAM in its internal microprocessor is erased when power fails. Any 
I/O requests outstanding at the time of a power failure return the 
IE.ABO status. These requests must be reissued after initializing the 
DMCn (10. INL) • 

12.5.7 Importance of Io.INL 

After the type of communication line has been determined, and after 
IO.SYN has specified the sync character, it is extremely important 
that IO.INL be issued before any transfers qccur. This ensures that 
appropriate parameters are initialized and that the interface is 
properly conditioned. Note that IO.INL provides the only means of 
setting device characteristics, such as sync character. For this 
reason, you should always use IO.INL immediately prior to the first 
transfer over a newly activated link. 

12-12 

( 



c 

( 

MESSAGE-ORIENTED COMMUNICATION DRIVERS 

Tasks sending messages to the DMC11 should begin by terminating and 
reinitializing the device (IO.TRM,IO.INL). Note that this causes the 
error IE.CNR to be returned on any I/O outstanding on the other end of 
the line. IO.INL must be issued after each IO.KIL (which effectively 
kills the DMC11), after power-fail, and upon receipt of any error 
code. 

12.6 PROGRAMMING EXAMPLE 

The following example illustrates the initialization, setting of 
device parameters, and transmission of a block of data on a 
message-oriented communication device. 

TXAST: 

• MCALL 

. 
ALUN$S 
QIO$S 
QIO$S 
QIO$S 

CMPB 

BEQ 

ALUN$S,QIO$S 

t1,t"XP,to ; USE LUN1 FOR DP11 
tIO.HDX!IO.SYN,<t1"",t226> ; SET DEVICE PARAMETERS 
#10. INL, U ; PUT DEVICE ON LINE 
#lO.WLB, U" ,<tTXSTS, tTXAST, tTXBUF ,t100>; SEND A BLOCK 

#IS.SUC&377,@(SP)+ 

10$ 

12-13 

WAS DATA CLOCKED OUT 
SUCCESSFULLY? 
IF SO, SET UP FOR NEXT 
BLOCK 



( 

( 



( 

( 

( 

CHAPTER 13 

RSX QIO DEUNA DRIVER 

13.1 INTRODUCTION 

For systems without DECnet, the RSX QIO DEUNA driver allows messages 
to be sent by using the DEUNA device. The DEUNA driver provides 
direct control over a line, allowing you to send data over a line to 
another system. To use the DEUNA driver, you issue the QIO$ macro to 
the XE: device. The DEUNA driver is compatible with DECnet's Direct 
Line Access interface (DLX) , which permits easy migration to a DECnet 
system. 

Use of the DEUNA driver requires a thorough knowledge of MACRO-II 
Assembler and experience in writing real-time application programs. 
You must write tasks that synchronize with each other before 
transferring data. If tasks are not synchronized, the data can be 
lost during task-to-task communication. You must provide your own 
error-handling routines. The DEUNA driver software informs your task 
of any errors~ but your task must be written to process error 
recovery. In addition, you must provide your own flow control over 
incoming messages to avoid message loss. Furthermore, applications 
must be designed so that adjacent nodes contain like routines for 
handling communications. For example, the driver does not, by itself, 
handle communications with DECnet nodes. 

You can use QIO$s to communicate between your program and a program on 
an adjacent computer using the Ethernet. In task-to-task 
communication between adjacent computers, the RSX QIODEUNA driver is 
an efficient user of the CPU and communication lines. You can build 
your own protocol that best suits the application. 

NOTE 

All messages are transmitted from your task's buffer. 
However, the driver buffers messages that it receives 
in a limited number of driver receive buffers. 
Therefore, you should make sure that at least two or 
more receive requests are outstanding at any given 
time to prevent messages from being lost. Unwanted 
messages are discarded. 

NOTE 

A glossary of DEUNA terms is included at the end of 
this chapter. 

13-1 



RSX QIO DEUNA DRIVER 

13.1.1 Parameters That You Can Tailor 

The parameters that you can tailor are as follows: 

Parameter 

U$$NTS 

U$$NRS 

U$$NPC 

U$$NCT 

Meaning 

Number of transmit ring entries (suggested 3). On 
systems with UNIBUS Mapping Registers (UMRs) this 
parameter controls the number of UMRs the driver 
may use. For each transmission, the driver uses 
one UMR during the transfer. 

Number of receive ring entries (suggested 8). 

Number of ports per controller (suggested 8). 

Number of controllers. 

13.1. 2 Requirements for Tasks Using the RSX QI0 DEUNA Driver 

To run programs that use. the DEUNA driver, the following are required: 

• The DEUNA driver must be loaded. 

• The LUN must be assigned to the XE: device. 

13.1. 3 Special Con.siderations for Ethernet User Tasks 

. Externally, Ethernet devices appear to be single line point-to-point 
controllers (for example, UNA-O and UNA-I) •. Internally, they are 
implemented as multipoint devices with each station rep~esenting an 
available port onto the. Ethernet. Each driver supports eight ports. 
The limitation is due to the limited number of receive buffers 
available to the driver. 

13.1.4 Messages on Ethernet 

All messages on the Ethernet must include a destination address 
(48-bit) and a protocol type (16-bit). There are two modes that 
determine how messages are transmitted: physical address mode and 
multicast address mode. 

Physical address mode defines a unique address for a single system on 
any Ethernet. Multic~st address mode defines a multidestination 
address of one or more systems on a given Ethernet. With multicast 
addressing,· any number of systems can be assigned a group address, so 
that they are all able to receive the same data in. a single 
transmission. 

Before transmitting and receiving messages, y"ou must define a specific 
mode. You can do this by using the QIO$ IO.XSC macro, which sets 
characteristics. (See Section 13.3.2.) 

l3-2 

( 

( 



( 
\, 

( 

( 

RSX 010 DEUNA DRIVER 

13.1.5 Protocol and Address Pairs on Ethernet 

Because the Ethernet allows multiple user tasks to access the physical 
link simultaneously, some way must be used to deliver received 
messages to the correct user task. To do this, each user task must 
enable unique protocol/address pairs to define which messages the task 
should receive. For example, user task 1 may enable protocol A to 
addresses 1 and 2, while user task 2 may enable protocol B to 
addresses 3 and 4. It is possible for two or more user tasks to 
enable the same protocol ·or addresses providing that the 
protocol/address pairs are unique. 

l3.l~6 Opening Ethernet for Transmit and Receive 

The Ethernet may be opened in three different modes (defined in 
EPMDF$) : 

Protocol Mode Meaning 

LF$EXC Exclusive Your task has excluslv~ 
specific protocol LF$EXC 
user may transmit or receive 
protocol. (DECnet routing 
mode. ) 

use of 
and no 

using 
uses 

the 
other 
this 
this 

LF$DEF Default 

Specified Normal 

Your task should receive messages on the 
protocol LF$DEF, which would otherwise 
be discarded because there was no 
protocol/address pair set up. 

You must specify the protocol/address 
pairs that. are used for communications. 

13.1.7 Padding Messages on Ethernet 

Iti additi6n, you may select p~dding for an Ethernet message (LF$PAD) 
that prefixes the message with a two-byte length field. The UNA pads 
the message out to the minimum Ethernet size on transmit. On receive, 
the length field indicates the amount of data present. 

13.1.8 Hardware Errors on Ethernet 

When a hardware error is detected on the Ethernet controller, all 
proto~ol/address pa~rlngs and multicast addresses are lost. After 
issuing the IO.XIN call to reinitialize the channel, you must reenable 
all protocol/address pairs and the multicast addresses. 

13.2 DEUNA DRIVER 010$8 

Sections 13.2.1 through 13.2.4 describe some considerations for using 
010$ macros for the DEUNA driver. 

13-3 



RSX 010 DEUNA DRIVER 

13.2.1 Standards and Access to 010$ Hacros 

The DEUNA driver conforms to normal RSX-1l QIO$ standards. Standards 
for logical unit numbers (LUNs), event flags, I/O status blocks, 
asynchronous system traps (ASTs), and argument and parameter lists are 
observed. According to RSX-11 standards, you may use any one of the 
three QIO$ formats. You may also use the QIO$ and Wait macro (OIOW$) 
to suspend further execution of the program until the call completes. 

The macros are defined in the RSX macro library (EXEMC.MLB). This 
library is transferred to your system during system generation. The 
qefinitions and offsets that you use in the macros are contained in 
two definition macros, DLXDF$ and EPMDF$, in DEUNA.MLB. 

You must issue .MCALL statements and explicitly invoke the macro in 
your MACRO-II assembler program. An example follows: 

.MCALL DLXDF$,EPMDF$ 

DLXDF$ 
EPMDF$ 

Table 13-1 summarizes the 010 DEUNA driver function codes and their 
meaning. Sections 13.3.1 through 13.3.7 describe each call, with its 
arguments and completion status codes. 

13.2.2 Programming Sequence 

The following table is a list of the five steps required to transmit, 
receive, or read data on the Ethernet via the RSX QIO DEUNA driver. 

Table 13':"1 
RSX QIO DEUNA Driver Function Codes and Their Meaning 

Step Code Ethernet Operation 

1 

2 

3 

4 

5 

6 

IO.XOP Open the Ethernet device 

IO.XSC Set characteristics 

IO.XTM Transmit a message 

IO.XRC Receive a message 

IO.XCL Close the line 

IO.XIN Initialize the line after an 
unrecoverable hardware error. 

NOTE 

The IO.XTL control function loads DEUNA 
The driver support task, UML ••• , uses 
function you must not use. 

13-4 

microcode. 
10. XTL, a 

~-- _. 

( 

( 



( 

( 

( 

RSX 010 DEUNA DRIVER 

13.2.3 Driver Installation 

The system builds the driver at the time you perform a system 
generation. 

To load the driver, enter the following command in MCR: 

MCR)LOA XE: [/switches] 

For RSX-IIM-PLUS, you must perform the following additional steps to 
make the driver operational: 

MCR)CON SET XEA VEC=vvv CSR=xxxxxx 
MCR)CON ONLINE XEA 
MCR)CON ONLINE XEO: 
MCR)INS UML 

13.2.4 

NOTE 

UML... is the microcode loader support task to the 
DEUNA driver (XEORV). If you want the driver to 
bypass microcode loading, just remove the microcode 
support task (UML) from the system (RSX-llM-PLUS 
only). The microcode task must be present in RSX-llS 
and RSX-IIM systems. 

Make sure that the correct microcode file for the 
DEUNA is pre~enton device LB: in account [1,1]. 

On RSX-llS systems the microcode ECO file must be 
installed in .the UNAMC partition by VMR. The UML ••• 
task looks for the microcode in this partition. 

RSX 010 DEUNA Status Returns 

Table 13-2 lists the status returns ~rom 010$ macro~ issued to the 
DEUNA dri ver. 

Code 

IS.SUC 

IE.ALN 

IE.IFC 

IE.NSF 

Table 13-2 
RSX 010 DEUNA Driver Status Returns 

Value 
Decimal Octal 

1. 

-34. 177736 

-2. 177776 

-26. 177646 

Reason 

The line has been opened 
successfully. 

The specified lun is already in 
use. 

The specified lun is not assigned 
to XE:. for thos.e characteristics 
blocks processed, return (XEDRV) 

Either you have entered an invalid 
controller identification format or 
the specified controller is not in 
the system. 

13-5 



RSX 010 DEUNA DRIVER 

13.3 010$ MACROS 

This section summarizes standard and device-specific 010$ functions 
for the RSX 010 DEUNA Driver. 

13.3.1 IO.XOP - Open a Line 

You issue the 010$ IO.XOP macro to open a line for direct line access, 
message transfer, and reception. The IO.XOP functions associates the 
specified lun with the specified line. The line is then used when you 
issue further OIO$s for transmitting or receiving. The lun must have 
been assigned to XE:. To open the Ethernet device from the DEUNA 
driver, you issue this call using a device-id string such as "UNA-on. 
The address of this string should be in pl. The driver scans its port 
database for an available port and assigns it to your task. 

The OIO$ syntax is as follows: 

OIO$ IO.XOP,lun,.[efn],,[status],[ast],(pl,p2,p3) 

The parameters in the 010$ IO.XOP macro are: 

Parameters Meaning 

lun 

efn 

status 

ast 

pI 

p2 

p3 

Logical unit number associated with the line that 
you are opening. 

Optional event flag number set when the call 
completes. 

Address of an optional two-word status block that 
contains the completion status of the call in the 
low-order byte of tha first word. 

Entry point into an optional AST routine, 
you wrote, to be executed after this 
completes. 

wh,ich 
call 

Address of an ASCII string 
controller on which line 
syntax of this string is: 

DEV-ctl 

that identifies 
is to be opened. 

the 
The 

where DEV (UNA) is the device mnemonic and ctl is 
the decimal value for the controller number. 

Length of the line identification field. 

Time-out value for the call. The time-out value 
is the amount of time that the receiver waits for 
a message to be transmitted. The low-order byte 
of the word designates the receive time-out value 
as follows: 

time-out = 0 for no receive timer. 

time-out (n) where n is the timer value in 
seconds. The timer value n causes the 
timeout to have a range of n-l to n. ) 
The high-order byte of this word is 
ignored. 

13-6 

( 

( 

( 



c 

c 

_,..,.-",O~'- _ ._~._._"""'""","""""'","","""'.""'~=~'~.~·~~""';:>'"!"""""""""""""'''''''''''",,",,~,,,,-'~c:-.,,,,,,,,~~~.~r",,""""~~~""'!7"~'>-"",, .. ' ~ ____ " _ •• _________ . __ • __ ... 
--- -------------

RSX QIO DEUNA DRIVER 

13.3.2 IO.XSC - Set Characteristics (Ethernet) 

You use this Ethernet QIO$ to set up the protocol/address pairs and 
multicast addresses. This function supplies a single characteristics 
buffer in arguments pl and p2. This buffer may contain multiple 
characteristics blocks of the general format given in Section 
13.3.2.1. 

The QIO$ syntax is as follows: 

QIO$ 10.XSC,lun,[efn],,[status],[ast],<pl,p2> 

The parameters of the QIO$ 10.XSC macro are: 

Parameters 

lun 

efn 

status 

ast 

pl 

p2 

Meaning 

Logical unit number associated with the line that 
you are setting for a characteristics buffer. 

Optional event flag number set when the call 
completes. 

Quantity processed on completion. The second word 
of the I/O status block indicates how much of the 
characteristics buffer has been processed. 

Entry point into an optional AST routine, 
you wrote, to be executed after this 
completes. 

Address of the characteristics buffer. 

Length of the characterist~cs buffer. 

which 
call 

13.3.2.1 The Set Characteristics Buffer; General Format - The set 
characteristics buffer format may contain multiple characteristics 
blocks. Each characteristics block has the general format shown in 
Figure 13-1: 

Characteristics type C.TYP 

Size of data input C.DATI 

Reserved C.DATO 

[-
Characteristics status C.STAT 

Characteristics data 

· · · · 

C.CHRL } 

ZK-4086-85 

Figure 13-1 General Form of Characteristics Buffer 

13-7 



RSX QIO DEUNA DRIVER 

The fields in the general form of the characteristics block have the 
following meanings: 

Field 

C.TYP 

C.DATI 

C.DATO 

C.STAT 

Meaning 

Indicates the type of characteristics being set. 

Indicates the size of data input (the number of 
bytes of characteristic data being supplied). 

Unused for set characteristics. 

Set to indicate the success o~ 
characteristics function, 
characteristics blocks processed. 

failure 
for 

of the 
those 

Protocol flags are defined in EPMDF$ (LF$xxx). 

Common error codes that are returned in C.STAT are: 

Error 

CE.UDF 

CE.RTS 

CE.RTL 

CE.RES 

Meaning 

Undefined function. 

Request too small (not endugh data supplied). 

Request too large (too much data supplied). 

Resource allocation failure. 

NOTE 

The address field(s) should not be present if LF$EXC 
or LF$DEF is specified in the flags. 

13.3.2.2 Set Characteristics --Setting Up Protocol/Address Pairs-· 
Setting up protocol/address pairs allows transmission and reception of 
messages with the specified protocol to or from any of the addresses 
in the list. Figure 13-2 shows the characteristics buffer for this 
operation. . 

Characteristics type CoTYP 

Size of data input CoDATI 

Reserved CoDATO 

Characteristics status CoSTAT 

Protocol type CoCHRL 

Protocol flags 

Address 1 

· · · Address n 

Characteristics data 
(4 + 6n bytes) 

ZK-4087-85 

Figure 13-2 Buffer for Setting Up Protocol/Address Pairs 

13-8 

( 

( 



( 

( 

_"_-"",,,,,,,,,,,,,,,-_-,-_,,,,,~~=~.~,,,,,-~~,,,,,,,,,,,,,,,~,-;:~,,,,,._;-. _ __ ,",,-.. -_"_,._~=._'_"~>-"-r '.'C-O:-"'-~<""~-'<l'"~_"",,,·,-.,-,,-,,,,.,-,,,,,,,,,,.,,,,,"~.::c-~-,,·-,,, __ o;-~,-"~'~> "~":?"-_""":::",,,"'_"'O:-¥'!'"'''i'''~'''''''-''''''.'''''-''''"-=,'''''''''''''~--'''''''''''''~''''''''''''''-''''''''''''''''''~-'!':''-'''''''''''''""""","-~~"""","",''''~_ ~ - -- -- -

RSX QIO DEDNA DRIVER 

The fields in the characteristics buffer 
protocol/address pairs have the following meaning: 

for setting up 

Field 

C.TYP 

C.DATI 

C.DATO 

C.STAT 

Meaning 

Contains the characteristics type to set 
protocol/address pairs: CC.DST = 200. 

up 

Indicates the size of data input -- the number of 
bytes of characteristic data being supplied. 

Unused for set characteristics. 

Set, for those characteristic$ blocks processed, 
to indicate the success or failure of the 
characteristics function. 

Errors that are returned in C.STAT are shown in the following list: 

Error 

CE.PCN 

CE.IUM 

CE.ACN 

Meaning 

Protocol usage conflict: 

• Anothe~ user task has exclusive access to this 
protocol. 

• There is already a default task using this 
protocol, and this request is attempting to 
set up a new default user task. 

• The padding status of this protocol does not 
match what is requested. 

Invalid use of multicast address; one of the 
addresses specified is multicast. 

Address usage conflicts; the protocol/address pair 
is already in use. 

13.3.2.3 Set Characteristics -- Setting Up a Multicast Address
Setting up a multicast address allows reception of messages that are 
sent to the specified multicast address. The buffer for setting up a 
mUlticast address is shown in Figure 13-3. 

Characteristics type 

Size of data input 

Reserved-

Characteristics status 

Multicast address 

C.TYP 

C.DATI 

C.DATO 

C.STAT 

}
- Characteristics data 

(6 bytes) 

ZK-4088-85 

Figure 13-3 Buffer for Setting Up a Multicast Address 

13-9 



RSX 010 DEUNA DRIVER 

The fields in the characteristics buffer for setting up a multicast 
address have the following meaning: 

Field 

C.TYP 

C.DATI' 

C.DATO 

C.STAT 

Meaning 

Contains the characteri~tics type to set up a 
mUlticast address: CC.MCT =201. 

Indicates the size of data input (the number of 
bytes of characteristic data being supplied). 

Unused for set ~haracteristics. 

Set for those characteristics blocks processed to 
indicate the success or failure of the 
characteristics function. 

Errors returned in C~STAT are: 

Error Meaning. 

CE.NMA Not a multicast address. 

CE.MCE Multicast address already enabled. 

13.3.3 IO.XIN- Initialize the Line 

You issue the 010$ IO.XIN macro to reinitialize a line after a fatal 
device error has occurred. When you use this 010$, you must reset the 
mode and timer values. The syntax of the 010$ IO.XIN macro is as 
follows: 

010$ IO.XIN,lurt t [efn]6, [status],[ast],<p1> 

The parameters of the 010$ IO.XIN macro are: 

Parameters Meaning 

lun 

efn 

status 

ast 

pI 

Logical unit number associated with the line that 
you are initializing. 

Optional event flag number set when the call 
completes. 

Address of an optional two-word status 
contains the completion status of the 
low-order byte of the first word (see 
status in Section 13.3.3.1). 

block that 
call in the 
completion 

Entry point into an optional AST routine, 
you wrote, to be executed after this 
completes. 

which 
call 

Timer parameter. Use the same format as described 
for parameter p3 in IO.XOP. (See Section 13.3.1.) 

13-10 

( 

( 



( 

( 

( 

RSX QIO DEUNA DRIVER 

13.3.3.1 Completion Status Codes 
completion status codes as follows: 

for IO.XIN - IO.XIN returns 

Code 

IS.SUC 

IE.ABO 

IE.IFC 

IE.NLN 

Value 
Decimal Octal 

1 

-15. 177761 

-2. 177776 

-37. 177733 

Reason 

The line has been 
i nit i a li zed. 

successfully 

The initialization attempt has been 
aborted. A hardware device error 
or an attempt to initialize a line 
that did not require it couid cause 
this problem. 

The specified lun is not assigned 
to XE: • 

N'o line has been opened with the 
specified lun. 

13.3.4 IO.XTM - Transmit a Message on the Line 

When your task transmits a message on the Ethernet, it must specify 
the destination address or the multicast address of this message along 
with the protocol type. It does specify the address if you put the 
parameters for the optional auxiliary characteristics buffer in 
parameters p3 and p4 as shown in Figure 13-4. The syntax of the 
IO.XTM macro is as follows: 

QIO$ IO.XTM,lun,[efn]" [status] ,last] ,<pl,p2,p3,p4,[p5,p6]> 

The parameters of the QIO$ IO.XTM macro are: 

Parameters 

lun 

efn 

status 

ast 

pI 

p2 

p3 

p4 

Meaning 

Logical unit number for the line on which you are 
transmitting data. 

Optional event flag number set when the call 
completes. 

Address of an optional two-word status 
contains the completion status of the 
low-order byte of the first word (see 
status in Section 13.3.4.3). 

block that 
call in the 
completion 

Entry point into an optional AST routine, 
you wrote, to be executed after this 
completes. 

which 
call 

Address of the buffer in your task 
the message to be transmitted. 
specified in the DLXBUF macro call. 

that contains 
Use the label 

Length of the message you are sending to the 
remote computer. Maximum buffer size is 1498. 

Address of the auxiliary characteristics buffer 
destination addresses. 

Length of the auxiliary characteristics buffer. 

13-11 



Parameters 

p5 

p6 

RSX 010 DEUNA DRIVER 

Meaning 

Diagnostic buffer (see Section 13.4). 

Diagnostic buffer size (see Section 13.4). 

13.3.4.1 Auxiliary Buffer to Set the Destination Address - To 
transmit on a line, you must first set up the auxiliary 
characteristics buffer with the· Ethernet address. The auxiliary 
characteristics buffer has the same format as the set characteristics 
buffer described in Section 13.3.2.1. The buffer is shown in Figure 
13-4. 

Characteristics type 

Size of data Input 

Size of data output 

Characteristics status 

Ethernet address 

~------~----------~ 

C.TYP 

C.DATI 

C.DATO 

C.STAT 

}
. Characteristics data 

(6 bytes) . 

ZK-4089-85 

Figure 13-4 Buffer for Setting the Ethernet Address 

The fields in the auxiliary characteristics buffer for setting the 
Ethernet address have the following meaning: 

Field 

C.TYP 

C.DATI 

C.DATO 

C.STAT 

Meaning 

Contains the characteristics type to set the 
Ethernet address: CC.ADR = 100. 

Indicates the size of data input (the number of 
bytes of characteristic data being supplied). 

Unused for set characteristics. 

Set, for those characteristics blocks processed to 
indicate the success or failure of the 
characteristics function. 

13.3.4.2 Auxiliar·y Buffer to Set the Protocol Type - The protocol 
type must be transmitted along with the message. Use the auxiliary 
buffer shown in Figure 13-5 for this purpose. 

Characteristics type 

·Size of data input 

Size of data output 

Characteristics status 

Protocol type 

C.TYP 

C.DATI 

C.DATO 

C.STAT 

} Characteristics data 
(2 bytes) 

ZK-4090-85 

Figure 13-5 Buffer for Setting the Protocol Type 

13-12 

(-

( 

( 



( 

( 

RSX 010 DEONA DRIVER 

The fields in the auxiliary characteristics buffer 
protocol type are as follows: 

for setting the 

Field 

C.TYP 

C.DATI 

C.DATO 

C.STAT 

Meaning 

Contains the·· characteristics type to set the 
protocol type: CC.PRO = 101. 

Indicates the size of. data input (the number of 
bytes of characteristic data being supplied). 

Onused for set characteristics. 

Set, for those characteristics biocks processed to 
indicate the success or failure of the 
characteristics function. 

Transmit requests on Ethernet channels must include an auxiliary 
characteristics buffer including both the destination address and 
protocol type. Failure to do so causes the transmit message to be 
returned with an IE.BAD error .• 

13.3.4.3 Completion Status Codes for IO.XTM - 010$ IO.XTM returns the 
following completion status codes: 

Code 

IS.SOC 

IE.ABO 

IE.IFC 

IE.NLN 

IE.SPC 

Value 
Decimal Octal 

1. 

-15. 

-2. 

-37. 

-6. 

177761 

177776 

177733 

177772 

Reason 

The message was transmitted to the 
remote system successfully. 

The transmission was aborted 
because an unrecoverable error 
occurred in the hardware device. 
When a message transmission 
completes with an IE.ABO code, the 
line is hung up. You must either 
issue a 010$ IO.XIN to initialize 
the line (see Section 13.3.3) or 
close and reopen the line (see 
Sections 13.3.6 and 13.3.1, 
respectively) before you can use it 
again. 

The lun is not assigned to XE. 

No line has been opened with the 
specified lun. 

The transmit buffer is too large or 
too small. 

13.3.5 IO.XRC - Receive a Message on the Line 

The 010$ IO.XRC function receives a message on the Ethernet. When you 
receive a message on the Ethernet, you must find out the source 
address for this message along with the protocol type. You can do 
this by having an optional auxiliary characteristics buffer for 
receive messages in parameters p3 and p4. The syntax of the QIO$ 
IO.XRC macro is as follows: 

QIO$ IO.XRC,lun, [efn] ,,[st~tus] ,last] ,<pl,p2,p3,p4,[p5,p6]> 

13-13 



RSX QIO DEUNA DRIVER 

The parameters of the QIO$ IO.XRC function are as follows: 

Parameters 

lun 

efn 

status 

ast 

pI 

p2 

p3 

p4 

p5 

p6 

Meaning· 

Logical unit number associated with the line on 
which you receive the message. 

OPtional event flag number set when the call 
completes. 

Address of an optional two-word status 
contains the completion status of the 
low-order byte of the first word (see 
status in Section 13.3.5.4). 

block that 
call in the 

complt;!tion 

Entry point into an optional AST routine, 
you wrote, to be executed after this 
completes. 

which 
call 

Address of the buffer in your task that receives 
the message. 

Length in bytes that you are allocating for the 
receive buffer. Maximum buffer size is 1498. 

Address of the auxiliary characteristics buffer. 

Length of the auxiliary characteristics buffer. 

Diagnostic buffer (see Section 13.4). 

Diagnostic buffer size (see Section 13.4). 

13.3.5.1 Buffer For Reading the Ethernet Address - The auxiliary 
characteristics buffer has the same format as the set characteristics 
buffer described in Section 13.3.2.1. The buffer to provide for 
reading th~ Ethernet characteristics is shown in Figure 13-6. 

Characteristics type C.TYP 

Size of data Input C.DATI 

Size of data output C.DATO 

Characteristics status C.STAT 

Ethernet address l Characte. ristlcs d~ta f (6 bytes) 

ZK-4091-85 

Figure 13-6 Buffer for Reading the Ethernet Address 

13-14 

~---

( 

( 



( 
\ 

( 

( 

RSX QIO DEUNA DRIVER 

The fields in the auxiliary characteristics buffer for reading the 
Ethernet 

Field 

C.TYP 

C.DATI 

C.DATO 

C.STAT 

address are as follows: 

Meaning 

Contains the characteristics type to read the 
Ethernet address: CC.ADR = 100. 

Indicates the size of data input (the number of 
bytes of characteristic data being supplied). 

Unused for set characteristics. 

Set, for those characteristics blocks processed, 
to indicate the success or failure of the 
characteristics function. 

13.3.5.2 Buffer for Reading the 'Protocol Type - The buffer for 
reading the protocol type is shown in Figure 13-7 as follows: 

Characteristics type 

Size of data input 

Size of data output 

Characteristics status 

Protocol type 

C.TYP 

C.DATI 

C.DATO 

C.STAT 

} Characteristics· data 
(2 bytes) 

ZK-4092-85 

Figure 13-7 Buffer for Reading the Protocol Type 

The fields in the auxiliary characteristics buffer for reading the 
protocol type are as follows: 

Field 

C.TYP 

C.DATI 

C.DATO 

C.STAT 

Meaning 

Contains the characteristics type to read the 
protocol type: CC.PRO = 101. 

Indicates the size of data input (the number of 
bytes of characteristic data being supplied). 

Unused for set characteristics. 

Set, for those characteristics blocks processed, 
to indicate the success or failure of the 
characteristics function. 

13-15 



RSX 010 DEUNA DRIVER 

13.3.5.3 Buffer for Reading the Destination Ethernet Address - The 
buffer for reading the destination Ethernet address is showri in Figure 
13-8 as follows: 

Characteristics type 

Size of data input 

Size of data output 

Characteristics status 

Destinati.on 
Ethernet address 

C.TYP 

C.DATI 

C.DATO 

C.STAT 

I. 
Characteristics data 

(6 bytes) 

ZK-4093-85 

Figure 13-8 Buffer for Reading the Destination Ethernet Address 

The fields in the auxiliary characteristics buffer for reading the 
destination Ethernet address are as follows: 

Field 

C.TYP 

C.DATI 

C.DATO 

C.STAT 

Meaning 

Contains the characteristics 
destination Ethernet address: 

type to read 
CC.ADR = 102. 

the 

Indicates the size of data input (the number of 
bytes of characteristic data being supplied). 

UnQsed for set characteristics. 

Set for those characteristics blocks processed to 
indicate the success or failure of the 
characteristics function. 

13.3.5.4 Completion Status Codes for IO.XRC - 010$ IO.XRC returns the 
following completion status codes: 

Code 

IS.SUC 

IE.ABO 

Value 
Decimal Octal 

1. 

-15. 177761 

Reason 

You successfully received a message 
from the remote system. The second 
word of the I/O status blocK 
contains the number of bytes you 
actually received. 

The receive function was aborted 
because an unrecoverable error 
occurred in the hardware device. 
When a receive is aborted, the line 
is hung up. You must either issue 
010$ IO.XIN to initialize the line 
(see Section 13.3.3) or close and 
reopen the line (see Sections 
13.3.6 and 13.3.1, respectively) 
before you can use it again. 

13-16 

f---

( 

( 



( 

( 

( 

Code 

IE.CAO 

IE.IFC 

IE.NLN 

IE.TMO 

IE.SPC 

RSX QIO DEUNA DRIVER 

Value 
Decimal Octal 

-13. 177763 

.. 2. 177776 

-37. 177733 

-74. 177666 

-6. 177772 

Reason 

Either a message was received 
before a- receive QIO$ was issued 
and the data is lost (this applies 
only to normal mode operations), or 
your task's buffer was too small to 
receive all the data. In the 
latter case l the message is 
truncated, and some data is lost. 
(The length of your task's buffer 
is contained in the second word of 
the I/O status block.) 

The specified lun is not assigned 
to XE:. 

No line has 'been opened with the 
specified lun. 

A time-out condition has _occurred. 
No message was received within the 
timer interval specified when you 
opened or-initialized the line. 

The transmit buffer is too large or 
too small. 

13.3.6 IO.XCL - Close the Line 

You issue the QIO$ IO.XCL macro to close an open line and stop the 
protocol. The syntax of the QIO$, IO.XCL macro is as follows: 

QIO$ IO.XCL,lun,-[efn]" [status] , last] 

Parameters 

lun 

efn 

status 

ast 

Meaning 

Logical unit number associated with the line that 
you are closing. 

Optional event -flag number set when the call 
completes. 

Address of an optional two-word status 
contains the completion status of the 
low-order byte of the first word (see 
status in Section 13.3.6.1). 

block that 
call in the, 
completion 

Entry point into an optional AST routine to be 
executed after this call completes. 

13-17 



_.- "'~~~=~~ 
-----------,.-:-;----

RSX QIO DEUNA DRIVER 

13.3.6.1 Completion Status Codes for IO.XCL - QIO$ 10.XCL returns 
completion status codes as follows: 

Code 

IS.SUC 

IE.IFC 

IE.NLN 

Value 
Decimal Octal 

1. 

-2. 177776 

-37. 177733 

Reason 

The line has been 
closed. 

successfully 

The speicifed lun is not assigned 
to XE:;. 

No line has been opened with the 
specified lun. 

:1.3,.3.7 IO.XTL - Control Function 

The QIO$ IO.XTL macro loads the ECO microcode. IO.XTL is only valid 
when the driver is initializing the DEUNA controller. This function 
is a p~ivilegedfunction. U~ing it does not requize a line to be open 
on the DEUNA. The syntax of the QIO$ IO.XTL macro is as follows: 

QIO$ IO.XTL+subfunction,lun,[efn] ,,[status] ,[ast] 

SubfuDctioDs 

sub=O 

sub=l 

sub=2 

Parameters 

lun 

efn 

status 

ast 

Meaning 

Load microcode to DEUNA memory. 

End of load. 

Abort load. 

Meaning 

Logical unit number. 

Optional event flag number set when the call 
completes. 

Address of an, optional two-word status block that 
contains the completion .status of the call in the 
low-order byte of the first word (see completion 
status in Section 13.3.7.1) • The second wor.d is 
the count of the number of bytes loaded. 

Entry point into an optional ASTroutine, 
you wrote, to be executed after this 
completes. 

which 
call 

13.3.7.1 Completion Status Codes for IO.XTL - IO.XTL returns the 
following completion status codes: 

Code 

IS.SUC 

IE.IFC 

Value 
Decimal Octal 

l. 

-2. 177776 

Reason 

The load function was successful. 

Invalid function. 

13-18 

( 

( 

( 



c 
Code 

IE.ABO 

IE.SPC 

IE.PRI 

RSX QIO DEUNA DRIVER 

Value 
Decimal Octal 

-15. 177761 

-6. 177772 

-16. 177760 

Reason 

A hardware device error or an 
invalid buffer format could cause 
this error. 

The microcode ECO buffer is too 
large. 

Privilege violation. 

13.4 DIAGNOSTIC FUNCTIONS FOR IO.XTM/IO.XRC 

Your task may execute a number of the port control block functions of 
the DEUNA driver by using parameters p5' and p6. Parameter p5 is the 
address of the diagnostic buffer and parameter p6 is the size of- the 
diagnostic buffer. 

This buffer provides diagnostic hooks in the DEUNA driver. However, 
some of this buffer is needed for changing the DEUNA physical address, 
system ID, and so on. 

Diagnostic function requests are passed to the driver in the same 
buffer format as the characteristics functions (see Section 13.3.2). 

The diagnostic buffer format may contain 
blocks. Each diagnostic request block 
follows: 

multiple function request 
is shown in Figure 13-9 as 

Diagnostic function C.TYP 

Size of data input C.DATI 

Reserved C.DATO 

Function status C.STAT 

Diagnostic data 

· · · 

C.CHRL 

} 
ZK-4094-85 

Figure 13~9 Diagnostic Request Block 

NOTE 

The status returned for the call does not reflect the 
status of the diagnostic functions in the diagnostic 
buffer. You must test C.STAT word of each function 
request specified in the optional diagnostic buffer. 

13-19 



RSX QIO DEUNA DRIVER 

The valid function codes are noted in Table 13-3 as follows: 

Table 13-3 
Diagnostic Functions for IO.XTM/IO.XRC 

Function 
Code Meaning 

NOP Function 

Octal Buffer 
Size in Words 

o o 
2 
4 
5 
6 

Read Default Physical Address 
Read Physical Address 

3 
3 

12 1 
13 
14 
15 
16 1 
17 
22 1 
23 
24 
25 

write Physical Address 
Read Multicast List From UNA 
Read Counters 
Read and Clear Counters 
Read UNA Mode 
wri te UNA Mode 
Read Line Status 
Read and Clear Line Status 
Read System ID 
write System ID 
Read Load Server Address 
Write Load Server Address 

3 
36 
100 
100 
1 
1 
10 
10 
144 Max 
144 Max 
3 
3 

1. TheSe function codes must be issued by a privi leged task. 

NOTE 

The buffer sizes specified are 
four-word header, that is, 
size, output siz~, function 
buffer. 

13.5 PROGRAMMING HINTS 

in addition to the 
the function, input 
status, and data 

This section 
considerations 
chapter. 

. contains 
for tasks 

information 
using the 

on important programming 
DEUNA driver described in this 

13.5.1 Information on the DEUNA Device 

You should become familiar with the information contained in the DEUNA 
Userls Guide (Order No. EK-DEUNA-UG-001), especially Chapter 4 
entitled Programming. 

13.5.2 DEUNA Read/Write Mode Function 

To change the DEUNA mode, you should read the mode first and combine 
the change with the current mode by a logical OR function to prevent 
changing the other mode bits. 

You cannot change the Transmit Message Pad Enable bit. The driver 
relies on the UNA to pad short messages. The driver reenables this 
bit each time it performs a Write Mode function. 

13-20 

( 

( 



( 

( 

( 

RSX QIO DEONA DRIVER 

13.5.3 DLX Incompatibility 

The RSX DEUNA driver is not 100% compatible with DECnet's Direct Line 
Access (DLX) • Under DECnet's DLX, the system 10, physical address, 
and mode are set via Network Management. Therefore, you must set 
these three using the diagnostic functions (see Section 13.4). 

13.5.4 Asynchronous I/O 

The order of request completion is not preserved by the driver, 
because the driver has no way of knowing when a receive can be 
expected. Also, if you use diagnostic functions for a transmit or 
receive, those without diagnostic functions may complete out of order. 
Therefore, you should use event flags to identify the request being 
completed. 

13.5.5 Diagnostic Functions Without Data Transfer 

To do diagnostic functions without data transfer, specify all the 
parameters correctly except for the size of the auxiliary 
characteristics buffer~ which must be set to zero. This is an invalid 
buffer size and returns IE.SPC status for the call. However, the 
driver processes the diagnostic buffer, if present. 

13.5.6 Maximum and Minimum Buffer Size 

The maximum buffer size the DEUNA permits is 1500 decimal bytes. 
However, to provide the padding option described in Section 13.1.7, 
the maximum buffer size is two bytes less then the 1500 permitted by 
the DEUNA. The extra two bytes account for the byte count word in the 
transfer. 

The minimum buffer size is 64 bytes. However, the driver does not 
check for a buffer size of less than 64; it assumes that the DEONA 
always operates in padded mode. A small transmit buffer could result 
in transmitting 20 bytes and receiving 64 bytes, because the DEONA 
pads the buffer with zeros out to 64 bytes. Thus, the first 20 bytes 
will be data and the rest will be null bytes. 

13.5.7 Default MODE 

The driver initializes the DEUNA with the following mode bits set: 

• DEONA pads short transmit messages. 

• H4000 collision test is enabled. 

NOTE 

The "Enable Half Duplex" mode bit should be set where 
it is not desirable for the DEUNA to receive its own 
transmissions. 

13-21 



RSX QIO DEUNA DRIVER 

13.5.8 Example of Connecting to a Remote Task 

The following is a list of steps for a task to take to establish 
connection with a remote task using the RSX QIO DEUNA driver: 

• Open a line on the Ethernet device. 

• Set characteristics as specified in Section 13.3.2. Setting 
characteristics establishes the protocol address pairs that 
the system uses when it communicates with the remote systems 
on the network. For example, if your task communicates with 
multicast address 101,252,38 and DEUNA address 304,404,100 
using protocol 10000, the characteristics buffer would look 
like this: 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.BYTE 

.BYTE 

.BYTE 

201 
6 
0 
0 
101 

252 

38 

200 
10. 
0 
0 
10000 
0 
304,0 
1,1 
100,0 

C.TYP 
C.DATI 
C.DATO 
C.STAT 
C.CHRL 

C.TYP 
C.DATI 

C.STAT 
C.CHRL 

Set multicast address (CC.MCT) 
- 6 bytes of address in buffer 
- Output data size 0 (none) 
- Characteristics status 

1st word of multicast address 
buffer 

- 2nd word of multicast address 
buffer 

- 3rd word of multicast address 
buffer 

- Set protocol address pair 
- 10. bytes of characteristics data 
- Output data size 0 (none) 
- Characteristics status 
- Protocol type 
- Protocol flags (normal) 
- 1st word of address 
- 2nd word of address 
- 3rd word of address 

• Once the protocol/address pairs are set, you should issue two 
or more receive QIO$s in anticipation of receiving a message 
on the Ethernet. In this way you can ensure that one request 
may be completing and still have another request outstanding 
to the driver. Upon completion of a receive request, your 
task must immediately issue another request before any other 
action to prevent received messages from being lost. 

NOTE 

The driver discards unsolicited messages. 

• At this point, you may want to transmit a message to the 
participating systems, letting them know your presence on the 
network. The format of such a message exchange is 
application-dependent. Some sort of acknowledgment of the 
start-up message may complete the start-up sequence. 

• NOw, you are ready to transmit and receive messages. If you 
receive an abort notification (IE.ABO) for a request then, the 
line must be reinitialized via the QIO$ IO.XIN function before 
further activity can be resumed. Another way to reinitialize 
the line is to close it and reopen it. The auxiliary 
characteristics buffer for receives should have room for the 
address/protocol pair of the originating system: 

.WORD 100 

.WORD 6 

.WORD 0 

C.TYP 
C. DATI 
C.DATO 

Read Ethernet address (CC.ADR) 
- 6 bytes of address in buffer 
- Output data size (6) 

13-22 

( 

( 

( 



( 

( 

( 

.WORD 0 

.BYTE 

.BYTE 

.BYTE 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

0,0 
0,0 
0,0 
101 
2 
o 
o 
o 

RSX QIO DEUNA DRIVER 

C.STAT - Characteristics status 
C.CHRL 

C.TYP 
C.DATI 
C.DATO 
C.STAT 
C.CHRL 

- Driver returns a 
3-word address 
in these three words 

- Read protocol type (CC.PRO) 
- 2 bytes of protocol type 
- Output data size (2) 
- Characteristics status 
- Contains protocol type 

• The auxiliary characteristics buffer for transmits 
contain the destination address/protocol pair: 

.WORD 

.WORD 

.WORD 

.WORD 

.BYTE 

.BYTE 

.BYTE 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

100 
6 
o 
o 
304,0 
1,1 
100,0 
101 
2 
o 
o 
10000 

C.TYP 
C.DATI 
C.DATO 
C.STAT 
C.CHRL 

C.TYP 
C.DATI 
C.DATO 
C.STAT 
C.CHRL 

- Set Ethernet address (CC.ADR) 
- 6 bytes of address in buffer 
- Output data size 0 
- Characteristics status 
- Task must pass 

3-word address 
in these three words 

- Set protocol type (CC.PRO) 
- 2 bytes of protocol type 
- Output data size 0 
- Characteristics status 
- Must contain protocol type 

must 

• Upon completion of Ethernet I/O, issue a close (IO.XCL) to 
release the line. 

13.6 GLOSSARY 

CONTROLLER -- A single piece of peripheral equipment of the system bus 
that communicates with one or more external devices. A single DEUNA 
is a controller. 

CSR -- The control and status registers for a controller. These are 
the ports through which the driver communicates with the device. 

DEUNA -- DIGITAL Equipment UNIBUS Network Adapter. 

DLX -- Direct Line Access Controller. Enables programs to have a 
direct, high-level interface to a physical line on systems with DECnet 
support. 

DNA -- The DIGITAL Network Architecture. A network architecture of 
protocols, interfaces, and functions that enable DECnet network nodes 
to communicate. 

LINE -- A communication path to another system. For example, a port 
on the NI is a line. 

MULTI-ACCESS CHANNEL The Ethernet is unlike other data links 
supported by DIGITAL's communications software products in that more 
than one user task may use a single circuit simultaneously. 

NI -- Network Interconnect 
implement the XEROX, 
Specifications. 

is the 
INTEL, 

group of 
and DEC 

DECnet products that 
intercompany Ethernet 

PROTOCOL TYPE -- A unique l6-bit address that distinguishes each user 
task of the NI. 

13-23 



(---

c 

( 



( 

( 

( 

CHAPTER 14 

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS 

14.1 INTRODUCTION 

PCLII Parallel Communications Link hardware is supported on 
RSX-IIM/M-PLUS systems by two drivers. One driver supports the 
transmitter function and the other driver supports the receiver 
function. The PCLII-B is a hardware interface that fUnctions as a 
time division multiplexed (TDM) interface over which several PDP-II 
computers can transfer data to each other. Each PCLII-B consists of a 
transmitter, receiver, and master section. The transmitter section 
can transfer parallel 16-bit words along the TDM bus to a receiver 
section of a separate PCLII-B on a different PDP-II computer's UNIBUS. 
One of the. PCLII-B units attached to the TDM bus must have its master 
section enabled to effect the data transfer. 

14.1.1 PCLII-B Hardware 

Each PCLII-B transmitter and receiver section has a unique TDM bus 
address (hardware-configured). When a master section is enabled, it 
places a transmitter address on the TDM bus for a period of time, 
called a timeslice. During the timeslice, the addressed transmitter 
can address the desired receiver section and transmit one word; the 
transmitter waits for the receiver to acknowledge the word or an 
indication that the word was not accepted. If the word is not 
accepted, it normally retransmits the word on the next available 
timeslice. Thus, a message up to 32k words long can be transmitted to 
a receiver one word at a time during the time in which other similar 
TDM transactions are multiplexed for other PCLII-B devices. 

14.1.2 PCLI1 'l'ransmitter Driver 

The PCLII transmitter driver provides two basic functions. First, it 
must receive data sent by the attached task and store it in a silo 
buffer in the PCLII hardware. Then, the driver passes proper receiver 
address and command information to the PCLII transmitter hardware to 
effect the actual transfer over the TDM bus. 

14.1.3 PCLII Receiver Driver 

The PCLII receiver driver also performs two basic functions. First, 
it must remove data from the receiver silo and send it to the 
connected task. In addition, the receiver driver must acknowledge a 
transmitter when a data transmission is requested by that transmitter. 
Subsequent requests by other transmitters on the TDM bus are ignored 
until all message transactions with the current transmitter are 
completed. 

14-1 



PCL11 PARALLEL COMMUNICATIONS LINK DRIVERS 

14.2 GET LUN INFORMATION MACRO 

Word 2 of the buffer filled by the Get LUN Information system 
directive (the first characteristics word) contains the following 
information for the PCL11 transmitter and receiver drivers. A setting 
of 1 indicates that the described characteristics is true for PCLl1 
transmitter and receiver drivers. 

Bit 

o 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Setting 

1 

o 

o 

o 

o 

1 

o 

o 

o 

o 

o 

o 

o 

o 
o 

o 

Meaning 

Record-oriented device 

Carriage-control device 

Terminal device 

File-structured device 

Single-directory device 

Sequential device 

Mass storage device 

User-mode diagnostics supported 

Device supports 22-bit direct addressing 

Unit software write-locked 

Input spooled device 

Output spooled device 

Pseudo device 

Device mountable as a communications channel 

Device mountable as a FILES-11 volume 

Device mountable 

Word 3 contains device driver-specific information, as follows: 

Transmitter driver: 

The low byte of word 3 contains the number of transmit retries 
remalnlng after completing the current data transmit function if 
the current data transmit function attempt is not accepted by the 
addressed receiver. The high byte of word 3 is undefined •. 

Receiver driver: 

The low byte of word 3 contains the index of the current state of 
the receiver driver. Use these states primarily for diagnostic 
purposes as they are defined next: 

Index Value 

o 

+2 

+4 

Meaning 

No task is connected. 

Task connected but not triggered. 

Task triggered and waiting for IO.RTF or 
IO.ATF function. 

14-2 

( 

( 



~_"""""'!="':l:'''>l'!l!!!i'''~_~~~-'''''===:=C~~=_''=-==-~''''''''''''=''''''"=~~..c"""""""_"-......",',,,,,=:O.====--="-==-",,::,,,-,,",,,===o=_~==-=,~_~""""~~""","""_~"_'~~",,,'",,,,,"""'=_3",,,,,,.':- -~- - --~~o-_~~ __ =~.=::=""~~~""~"''''''.r_''''''''~'''''",,,''''''-'''''-~''''~'''''''-~='''''~~S--:~~_-",---=~_ ","=-",o-=--,",~"""""""""",,,,,~,,.,,,,!,,, •• ,!!,,,,,,,,,,,,,,,,,.,,,,,_~~,:=::==--===,,,,,,=~ 

( 

( 

- -~ -- -------~- ----------_.- -- - --

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS 

Index Value Meaning 

+6 Task triggered and timed out while waiting for 
TO. RTF or to.ATF function. 

-2 IO.ATF function is in progress. 

-4 Task connected, not triggered, and has an 
IO.ATF function in progress. 

-6 An IO.RTF function is in progress. 

The high byte of word 3 is undefined. 
the default buffer size in byt~s. 
bytes. 

Word 4 is undefined. Word 5 is 
For the PCLll, this value is 64 

14.3 QIO MACRO -- PCLll TRANSMITTER DRIVER FUNCTIONS 

14.3.1 Standard QIO Functions 

Table 14-1 lists the standard functions of the QIO macro that are 
valid for the PCL11 transmitter driver. 

Table 14-1 
Standard QIO Functions for PCL11 Transmitters 

-Format 

QIO$C IO.ATT, ••• 

QIO$C IO.DET, ••• 

QIO$C IO.KIL, ••• 

Function 

Attach device 

Detach device 

Cancel I/O request 

14.3.2 Device-Specific QIO Functions 

Table 14-2 lists the device-specific functions of the QIO macro that 
are valid for the PCL1! transmitter driver. 

Table 14-2 
Device-Specific QIO Functions for PCLll Transmitters 

Format 

QIO$C IO.A,TX, ••• ,(stadd,size, 
f1agwd,id,retries,retadd> 

QIO$C IO.SEC, ••• , 

QIO$C IO.STC, ••• ,(stadd,size, 
[state] ,[mode] "retadd> 

Function 

Attempt message transmission 

Sense master section status 

Set master section characteristics 

14-3 



stadd 

size 

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS 

The starting address of a ~ata buffer. (Its description and 
function is dependent upon the specific QIO function.) 

The data buffer size in bytes. (Its description and function is 
dependent upon the specific QIO function.) 

flagwd 

id 

The value of the flagword that is to precede the message being 
sent. The flags specify the desired receiver function as defined 
by your task's protocol. 

The identifier of the CPU to which the message is to be sent. 
This identifier is the desired receiver's TDM bus address. It 
appears in the high byte of the first word of the master section 
I/O status block. The identifier number is an octalvaltie 
contained in the high byte of the parameter word. For example, 
receiver number 1 is specified as 400, receiver number 2 is 
specified as 1000, and so forth. 

retries 

The number of retries that are attempted, 
attempt, before returning error status 
Retries occur because of these conditions: 

• The first attempt is unsuccessful 

• Transmission errors occurred 

• A master down condition occurred 

retadd 

following the first 
to the calling task. 

The starting address of a 7-word buffer into which the contents 
of the six transmitter registers and the transmitter 
master/maintenance register are moved prior to returning to the 
calling task. Information describing the contents of these 
registers can be obtained by referring to the hardware 
documentation supplied with the PCLII option. 

state 

The desired state setting for the transmitter, as follows: 

Parameter 
Specified 

SS.MAS 

5S.NEU 

State 

TDM bus master 

Neutral (default state) 

14-4 

( 

( 



( 

( 

mode 

PCLll ~ARALLEL COMMUNICATIONS LINK DRIVERS 

The desired mode setting for allocating transmitter timeslices on 
the TOM bus~ as follows: 

Parameter 
Entered 

MS.AUT 

MS.ADS 

Mode 

Auto addressing (default mode) 

Address silo 

14.3.2.1 IO.ATX -This I/O function requests an attempt to transmit a 
message to a specified CPU. The message to be transmitted is 
.contained in a data buffer starting at the address specified in the 
stadd parameter. This address must be on a word boundary. The data 
buffer size specified in the size parameter must be an even, positive 
value. Theflagword . parameter contains information, which you 
defined, that the receiving task uses to determine whether to accept 
or reject the message. The id parameter is the receiver TOM bus 
address. The task uses this address to direct a message to a specific 
CPU. Other parameters are as previously described. 

14.3.2.2 IO.SEC - This I/O function senses the master section status. 
Upon successful completion of this function, the I/O status block 
contains a typical I/O status code (IS.SUC) return in the low byte of 
the first word, and current Transmitter Master/Maintenance Register 
(TMMR) contents in the second word, as follows: 

I Status Code 

Current TMMR Contents 

NOTE 

The optional isb parameter (see 
1. 5.1) must be included in 
request. 

Section 
this QIO 

14.3.2.3 IO.STC - IO.STC sets the master section operational 
characteristics. IO.STC can only be issued by a privileged task. 
Correct use of the function depends upon the current (or specified) 
operating state of the master section and proper use of parameters. 
Use each parameter as described in the following paral;1raphs. Refer to 
all parameters in the sequence shown for a correct 1nterpretation of 
parameter usage. 

14-5 



PCLll PARALLEL COMMUNICATIONS LINK DRIVERS 

State -- The state parameter determines the overall function of this 
master section (and transmitter and receiver sections) in the PCLII 
communications 1 ink as it relates to the TDM bus. 'The neutral state 
(SS.NEU) places the master section in an inactive state where the unit 
sends and receives messages in a normal manner, but the master section 
cannot control transmitter timeslice allocation on the TDM bus. The 
master state (SS.MAS) designates this unit as TDM bus master, enabling 
control of transmitter unit timeslice allotments on the TDM bus; only 
one master section on the TDM bus can be designated TDM bus master. 

Mode -- The TDM bus master can allocate transmitter timeslices in one 
of two ways: auto address mode (MS.AUT) or address silo mode 
(MS.ADS). When operating in the auto address mode (MS.AUT), which is 
the default mode for the TDM bus master, equal timeslice allotments 
are given to each transmitter unit; transmitter unit addresses are 
sequentia~ly put on the TDM bus in descending order, one address for 
each timeslice. When operating in the address silo mode, transmitter 
unit ~ddresses are transmitted in a sequence, which you specified, 
.llowing up to 50% of the timeslices to be allocated to one 
transmitter unit, if desired. 

The actual sequence of transmitter timeslice allocations for the 
address silo mode is set up in your task data buffer referenced by the 
stadd parameter. Certain constraints must be observed when specifying 
this information, as follows: 

• Each entry in the buffer is a byte containing a transmitter 
unit address. 

• At least 20 entries, but.not more than 50 entries, must be 
specified. If less than 20 entries are specified, the driver 
r~peats the e~tire sequence, as specified, to attain the 
required minimum of 20 addresses. If more than 50 addresses 
are specified, no change in timeslice allocation is effected 
and an IE.VER error status is returned to the task. 

• Identical transmitter addresses in either adjacent bytes or in 
first and last bytes should be avoided. When identical 
addresses appear in adjacent bytes in this manner, the driver 
inserts invalid "pad" transmitter addresses between identical 
addresses, effectively resulting in no-operation timeslices. 

• Transmitter addresses are decimal values ranging from 1 to 32 
(inclusive) that correspond to addresses implemented on the 
actual transmitter unit hardware. 

• The size parameter must correctly specify the number of 
address bytes contained in the buffer referenced by the stadd 

'. parameter. 

14.4 PCL11 TRANSMITTER DRIVER STATUS RETURNS 

Table 14-3 lists PCL11 transmitter driver return status codes and 
probable reasons. 

14-6 

( 

( 



( 
. Code 

IS.SOC 

IS.TNC 

IE.BAD 

( 

IE.DNR 

PCLII PARALLEL COMMUNICATIONS LINK DRIVERS 

Table 14-3 
PCLll Transmitter Driver Status Returns 

Reason 

Successful completion 

The QIO function was successfully completed. If 
an IO.ATX function was completed, the second 
status word contains the number of bytes 
transferred; the message was not truncated. If an 
IO.SEC function was completed, the second status 
word contains the current contents of the master 
section's TMMR. 

Successful transfer but message truncated 

The IO.ATX function was completed, but the message 
was truncated by the receiver (the receiver buffer 
is too small). The transmitter unit cannot 
determine how many words were actually received by 
the receiver unit; the second word of the I/O 
status block contains the length of the requested 
transfer, rather than the actual count of words 
successfully received in the receiver1s buffer. 

Bad parameter specification 

A bad parameter specification was included in the 
IO.ATX function, or an invalid state parameter or 
TDM bus timeslice allocation addressing mode was 
specified in the IO.STC function. 

This error status is also returned when an IO.STC 
function, issued to a TDM bus master operating in 
the address silo mode, refers to a data buffer 
containing an illegal series of transmitter 
addresses. An illegal series of addresses occurs 
when the number of entries specified for the 
timeslice allocation, plus the required number of 
pad addresses, either exceeds 50 or is less than 
o. 

Device not ready 

This error status return occurs in response to an 
IO.ATX function when one of the following occurs: 

• Power failure in this CPU. 

• Device time-out (no response from the addressed 
receiver) • 

• Receiver was too slow in accepting or rejecting 
the transfer request. 

• The master section is inoperative. This error 
status is returned only after the number of 
retries specified in the IO.ATX function have 
been attempted without success. 

(continued on next page) 

14-7 



Code 

IE.VER 

IE.SPC 

IE.REJ 

IE.FLG 

IE.BBE 

IE.ABO 

IE.IFC 

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS 

Table 14-3 (Cont.) 
PCLll Transmitter Driver Status Returns 

Reason 

Unrecoverable error 

The IO.STC function state setting could not be 
achieved because the task is not privileged or 
another device is TOM bus master. 

Illegal user task buffer 

The buffer address specified in the IO.ATF 
function is outside of the issuing task's address 
space. 

Transfer rejected 

The data transfer request specified in the IO.ATX 
function was rejected by the addressed 
receiver--based on the source CPU identifier of 
the task issuing therequest--and flagword. 

Event flag already specified 

·An event flag was previously specified in an 
IO.STC function. 

Transmission error 

This error status is returned only after the 
number of retries specified in the IO.ATX function 
have been attempted without a successful 
transmission. (Cycle redundancy check errors or 
parity errors have been detected on each attempt.) 

Request terminated 

This status is returned when a pending I/O 
fUnction has been aborted in response to an IO.KIL 
function being issued by the task. 

Illegal function 

A function code was specified in an I/O request 
that: is illegal for PCLll transmitters. 

14.5 OIO MACRO -- PCLll RECEIVE.R DRIVER FUNCTIONS 

14.5.1 Standard OIO Functions 

Table 14-4 lists the standard function of the OIO macro that is valid 
for the PCLll receiver driver. 

14-8 

~--

( 



( , 

c 

PC!Lll PARALLEL COMMUNICATIONS LINK DRIVERS 

Table 14-4 
Standard 010 Functions for PCL11 Receivers 

Format Function 

OIO$C IO.KIL, ••• Cancel I/O request 

14.5.2 Device-Specific 010 Functions 

Table 14-5 lists the device-specific functions of the OI() macro· that: 
are valid for the PCL11 receiver driver. 

tef 

Table 14-5 
Device-Specific 010 Functions for PCL11 Receivers 

Format 

OIO$C IO.CRX, ••• ,<tef,bufadd> 

OIO$C IO.RTF, ••• 

OIO$C IO.ATF, ••• ,<stadd,size, 
retadd> 

OIO$C IO.DRX, ••• 

Function 

CONNECT for reception 

Reject transfer 

Accept transfer 

Disconnect from reception 

The number of a "trigger" event flag that is set whenever a 
f1agword is received over theTDM bus. 

bufadd 

stadd 

size 

The address of a 2-word buffer containing the transmitter id, 
trigger status, and the f1agword. 

The address of a data buffer to receive the message. 
address must occur on a word boundary (even address). 

This 

The data buffer size in bytes. The size specified must be an 
even, positive value. 

retadd 

The address of a 6-word buffer into which the contents of the six 
PCL11 receiver hardware registers ar.e returned upon successful 
completion of the function. Information describing the contents 
of these registers can be obtained by referring to the hardware 
documentation supplied with the PCLll option. 

14-9 



PCL11 PARALLEL COMMUNICATIONS LINK DRIVERS 

14.5.2.1 IO.CRX - This I/O function connects the issuing task to the 
receiver, if the receiver is not currently connected to another task. 
When connected, this task is the only task capable of receiving 
messages by means of the receiver on this cpu. The trigger event flag 
(a local, common, or group-global event flag) informs the task when a 
message is pending. It is set when a flagword is received over the 
TOM bus. When this happens, a significant event is declared and the 
connected task is considered "triggered." The flagword is the first 
word transmitted by a transmitter when attempting to send a message to 
the receiver unit. 

The bufadd parameter must be included in this I/O function to specify 
the address of a 2-word block, as follows: 

sts 

id 

id sts 

flagwd 

The current trigger status. 

The identification code of the transmitter attempting to send the 
message. 

flagwd 

The flagword transmitted to the connected receiver. 

Based on the information contained in the flagword and the 
identification code of the transmitter unit, the task can accept or 
reject the transfer. (Two I/O functions are provided for this 
purpose; see Sections 14.5.2.2 and 14.5.2.3.) The receiver must 
respond to the transmitter's request within approximately 1.5 seconds; 
otherwise, an IE.DNR error status is returned to the task attempting 
the transmission. 

14.5.2.2 IO.RTF - This function informs the transmitter device that 
the message is being rejected by the receiver. Any attempt to issue 
this I/O function when the trigger event flag is not set is ignored, 
and anIE.NTR error status is returned to the task. 

14.5.2.3 IO.ATF - This function informs the transmitter device that 
the message is being accepted. Parameters specify both the data 
buffer into which the received data is transferred, and the 6-word 
buffer that receives the contents of the receiver section hardware 
registers upon successfully completing the function. 

Unlike the IO.RTF function, the IO.ATF function can be issued before 
the task is triggered. When this is done, the IO.ATF function is 
queued for reception of any flagword. When the flagword is received, 
the receiver driver immediately executes the IO.ATF functi.on; the 
connected task is not triggered and the flagword is not made available 
to the task. This approach is useful when it is not necessary to 
examine flagwords or to accept messages based on the source. 

14-10 

( 

( 

( 



( 

( 

( 

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS 

14.5.2.4 IO.DRX - This function is issued by a task to disconnect the 
receiver for use by other tasks. 

14.6 PCLllRECEIVER DRIVER STATUS RETURNS 

Table 14-6 lists PCLll receiver driver return status codes and 
probable reasons. 

Code 

IS.SUC 

IS.TNC 

IE.BAD 

IE.DNR 

Table 14-6 
PCLll Receiver Driver Status Returns 

Reason· 

Successful completion 

The I/O function or triggering of the task was 
successfully completed. When this status is 
returned upon completion of the IO.ATF function, 
the high-order byte of the first word in the I/O 
status block contains the identification code of 
the transmitter device that sent the flagword. 
The second word of the I/O status block contains 
the number of bytes transferred over the TOM bus. 
When this status is returned as a result of an 
IO.CRX function, and the task being triggered, the 
I/O status block contains information that enables 
the task to accept or reject the message (see 
Section l4~5.2.l). 

Successful transfer but message truncated 

This I/O status is returned when the message is 
terminated because the receiver task message 
buffer specified in the IO.ATF function is too 
small to contain the message being received. The 
second word of the I/O status word contains the 
number of bytes successfully transferred. 

Bad parameter specification 

A bad parameter specification was included in the 
requested function. 

Device not ready 

This error status return occurs in response to an 
IO.RTF or IO.ATF function when one of the 
following occurs: 

• Power failure in this CPU. 

• Device time-out (no response from addressed 
receiver). 

• 

• 

Receiver was too slow in accepting or rejecting 
the transfer request. 

The master section is inoperative. 

(continued on next page) 

14-11 



Code 

IE.SPC 

IE.DNA 

IE.DAO 

IE.DAA 

IE.NTR 

IE.BBE 

IE.ABO 

IE.FHE 

IE.IFC 

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS 

Table 14-6 (Cont.) 
PCL11 Receiver Driver Status Returns 

Reason 

Illegal user task buffer 

The buffer address specified in the IO.ATF 
function is outside of the issuing task's address 
space. 

Task not connected for reception 

The requested function cannot be executed b~cause 
the task is not connected to the receiver. 

Data overrun 

This I/O status code is returned when the task is 
triggered, but the previous transfer request has 
neither been accepted nor rejected. When the task 
issues an IO.RTF or IO.ATF function, it applies to 
the new (most recent) flagword; the previous 
request is ignored. 

Device already connected for reception 

This I/O status code is' returned in response to 
the IO.CRX function when the receiver is already 
connected to this task or any other task. No 
operation is performed. 

Task not triggered 

This I/O status code is returned when a task 
attempts to issue an IO.RTF fUnction prior to the 
task being triggered. 

Transmission error 

This error status is returned when an IO.ATF 
function is in progress and a cycle redundancy 
check error or parity error has been detected. 

Request terminated 

This status is returned when a pending I/O 
function has been aborted in response to an IO.KIL 
function being issued by the task'. 

Fatal hardware error 

The requested function cannot be executed because 
of a hardware failure. 

Illegal function 

A function code was specified in an I/O request 
that is illegal for PCL11 transmitters. 

14-12 

( 

( 



( 

( 

CHAPTER 15 

ANALOG-TO-DIGITAL CONVERTER DRIVERS 

15.1 INTRODUCTION 

The AFCII and ADOl-D analog-to-digital (A/D) converters acquire 
industrial and laboratory analog data. (AFCII and ADOl-D driver 
support is not provided on RSX-llM-PLUS systems.) Although each has 
its own driver, programming for both is quite similar and both are 
multichannel, programmable gain devices. The ADOl-D should not be 
confused with the ADUOl, a UDC module, which is described in Chapter 
16. Table 15-1 compares the AFCII and the ADOl-D briefly, and 
subsequent sections describe these devices in greater detail. 

Table 15-1 
Standard Analog-to-Digital Converters 

Maximum Sampling Rate (Points 
per Second) 

Number of Bits 

Maximum Number of Analog Channels 
That Can Be Multiplexed 

AFCII 

200 (20 per single) 
channel 

13 or 14 

1024 

15.1.1 AFCII Analog-to-Digital Converter 

ADOl-D 

Approximately 
10,000 

10 or 11 

64 

The AFCII is a differential analog input subsystem for industrial 
data-acquisition and control systems. It multiplexes signals, selects 
gain, and performs a 13- or l4-bit A/D conversion under program 
control. With the use of appropriate signal-conditioning modules, the 
system can intermix and accept low-level, high-level, and current 
inputs, with a high degree of noise immunity. 

15.1.2 ADOI-D Analog-to-Digital Converter 

The ADOl-D is an extremely fast analog data-acquisition system. It 
multiplexes signals, selects gain, and performs a 10- or II-hit A/D 
conversion under program control. The ADOl-D is normally unipolar, 
but an optional sign-bit facilitates bipolar operation. 

15-1 



"'-- ---
----"-------

ANALOG-TO-DIGITAL CONVERTER DRIVERS 

15.2 GET LUN INFORMATION MACRO 

If a Get LUN Information system directive is issued for a LUN 
associated with an analog-to-digital converter, word 2 (the first 
characteristics word) contains alIOs, words 3 and 4 are undefined, 
and word 5 is not significant, because there is no concept of a 
default buffer size for analog-to-digital converters. 

15.3 010$ MACRO 

This section summarizes standard and device-specific QIO functions for 
analog-to~digital converter drivers. 

15.3.1 Standard 010 Function 

The standard function that is valid for analog-to-digital converters 
is sho~n in Table 15-2. 

Table 15-2 
Standard 010 Function for the A/D Converters 

Format Function 

OIO$C IO.KIL, ••• Cancel I/O requests 

Because all requests are processed within a small amount of time, no 
iri-progress request is ever canceled. This function simply cancels 
all queued requests. 

15.3.2 Device-Specific 010 Function 

The device-specific function of the 010 macro that is valid for 
analog-to-digital converters is shown in Table 15-3. 

Table 15-3 
Device-Specific 010 Function for the A/D Converters 

Format Function 

QIO$C IO.RBC, ••• ,<stadd,size,stcnta> INITIATE multiple A/D 
conversions 

stadd 

The starting address of the data buffer (must be on a word 
boundary) • 

15-2 

( __ i 

( 

( 



( 

( 

size 

ANALOG-TO-DIGITAL CONVERTER DRIVERS 

The control buffer size in bytes (must be even and greater than 
0); the data buffer is the same size. 

stcnta 

The starting address of the control buffer (must be on a word 
boundary); each control buffer word must be constructed as shown 
in Table 15-4. 

Table 15-4 
A/D Conversion Control Word 

Bits Meaning AFCll ADOI-D 

0-11 Channel number Range: 0-1023 Range: 0-63 

12-15 Gain value for this Gain: Gain: 
sample, expressed as 
a bit pattern as 
follows: 

15 14 13 12 

0 0 0 0 1 1 
0 0 0 1 2 2 
0 0 1 0 illegal 4 
0 0 1 1 illegal 8 
0 1 0 0 10 illegal 
0 1 0 1 20 illegal 
0 1 1 0 illegal illegal 
0 1 1 1 illegal illegal 
1 0 0 0 50 illegal 
1 0 0 1 100 illegal 
1 0 1 0 illegal illegal 
1 0 1 1 illegal illegal 
1 1 0 0 200 illegal 
1 1 0 1 1000 illegal 
1 1 1 0 illegal illegal 
1 1 1 1 illegal illegal 

15.4 FORTRAN INTERFACE 

A collection of FORTRAN-callable subroutines provide FORTRAN programs 
access to the AFCll and the AD01-D. These are described in this 
section. All are reentrant and may be placed irt a resident libr~ry. 

15.4.1 Synchronous and Asynchronous Process Control I/O 

The ISA standard provides for synchronous and asynchronous I/O. 
Synchronous I/O is indicated by appending a "w" to the name of the 
subroutine (for example, AISQ/AISQW). The synchronous call suspends 
task execution until the I/O operation is complete. If you use the 
asynchronous form, execution continues and the calling program must 
periodically test the status word for completion. 

15-3 



ANALCG-TC-DIGITAL CCNVERTER DRIVERS 

15.4.2 The isb Status Array 

The isb (I/O. status block) parameter is a 2~word integer array that 
contains the status of the FCRTRAN call, in accordance with ISA 
convention. This array serves two purposes: 

1. It is the 2-word I/O. status block to which the driver returns 
a status code on completion of an I/O. operation. 

2. The first word of isb receives a status code from the FCRTRAN 
interface in ISA-compatible format, with the exception of the 
I/O. pending condition, which is indicated by a status of O. 
The ISA standard code for this condition is +2. 

The meaning of the contents of isb varies, depending. on the FCRTRAN 
call that has been executed; but Table 15-5 lists certain general 
principles that apply. The section describing each subr~utine 
provides further details. 

Contents 

isb(l) = 0 

isb(l) - 1 

isb(l) = 3 

3 < isb(l) < 300 

isb (1) 300 

Table 15-5 
Contents of First Word of isb 

Meaning 

Cperation pending; I/O. in progress 

Successful completion 

Interface subroutine unable to 
generate QIC directive, or number of 
samples is 0 

QIC directive rejected and 
error code = -(isb(l) - 3) 

actual 

Driver rejected request and actual 
error code = -(isb(l) ~ 300) 

Unless otherwise specified, the value of isb(2) is the value returned 
by the driver to the second word of the I/O. status block. 

FORTRAN interface subroutines depend on asynchronous system traps to 
set their status. Thus, if the trap mechanism is disabled, proper 
status cannot be set. 

15.4.3 FCRTRAN Subroutine Summary 

Table 15-6 lists the FORTRAN interface subroutines supported for the 
AFC11 and AD01-D under RSX-11M. 

15-4 

c 

( 



( 

( 

( 

ANALOG-TO-DIGITAL CONVERTER DRIVERS 

Table 15-6 
FORTRAN Interface Subroutines for the AFCII and AD01-D 

Subroutine Furiction 

AIRD/AIRDW Perform input of analog data in random 
sequence 

AISQ/AISQW Read a series .of sequential analog 
input channels 

ASADLN Assign a LUN to the ADOI-D 

ASAFLN Assign a LUN to the AFCll 

The following sUbsections briefly describe the function and format of 
each FORTRAN subroutine call. Note the use of ASADLN and ASAFLN to 
assign a default logical unit number. 

15.4.4 AIRD/AIRDW: Performing Input of Analog Data in Random Sequence 

The ISA standard AIRD/AIRDW FORTRAN subroutines input analog data in 
random sequence. These calls are issued as follows: 

inm 

icont 

idata 

isb 

lun 

·IAIRD 1 CALL 
AIRDW 

(inm,icont,idata,[isb],lun) 

The number of analog input channels. 

An integer array containing terminal connection data-channel 
number (right-justified in bits 0-11) and gain (bits 12-15), as 
shown in Table 15-4. 

An integer array to receive the converted values. 

A 2-word integer array to which the subroutine status is 
returned. 

The logical unit number, which is a required parameter. 

15-5 



,... .• ~ __ "'_L,,,,,,,,,,,,,",,o_"''''",,,,_'l~''~~."''''''''''-'-='''>o=''_~',,,-u'~,,,,"_~''''''''''',",,,'''''''-''''.J,",,,- __ '"'~."~_~"""!'''''''''''''''''''''' """O""'''J='"';:''''." •• , .. ..,.,._''''''''''~''''''''''''''''''''''''''''=,.''''~_''''.'''''''''''''"''_~_~""._"""""""_""''''_'."""=""",=J,'''''=~~.'~"""""""''''''",",",,,-,,,,",,,,,,-'''~ ____ ~ 
- -- ----~ -- -----

ANALOG-TO-DIGITAL CONVERTER DRIVERS 

The isb array has the standard meaning defined in Section 15.4.2. If 
inm = 0, then isb(l) = 3. The contents of idata are undefined if an 
error occurs. 

15.4.5 AISQ/AISQW: Reading Sequential Analog Input Channels 

The ISA standard AISQ/AISQW FORTRAN subroutines read a series of 
sequential analog input channels. These calls are issued as follows: 

1 AISQ I 
CALL 

AISQW 
(inm,icont,idata,[isb],lun) 

inm 
~. -' "" 

icont 

idata 

isb 

lun 

The number of analog input channels. 

An integer array containing terminal connection data-channel 
number (right-justified in bits 0-11) and gain (bits 12-15), as 
shown in Table 15-4. 

An integer array to receive the converted values. 

A 2-word integer array to which the subroutine status is 
returned. 

The logical unit number, which is a requiredparamenter. 

For sequential analog input, channel number is computed in steps of 
one, beginning with the value specified in the first element of icont. 
The channel number field is ignored in all other elements of the 
array. 

The driver takes the gain it 
respective element in icont. 
ignored in all but the first 
specified for each conversion 

uses for .. each 
Thus, even though 

element of icont, 
to be performed. 

conversion from the 
the channel number is 

the gain must be 

The isb array has the standard meaning defined in Section 15.4.2. If 
inm =- 0, then isb(l) = 3. The contents of idata are undefined if an 
error occu.rs. 

15-6 

( 



( 

( 

( 

ANALOG-TO-DIGITAL CONVERTER DRIVERS 

15.4.6 ASADLN: Assigning a LUN to the ADOI-D 

The ASADLN FORTRAN subroutine assigns the specified LUN to the ADOI-D 
and defines it as the default logical unit number to use whenever you 
omit a LUN specification from an AIRD(W)/AISQ(W) subroutine call. 
Issue it as follows: 

Iun 

is.w 

iun 

CALL ASADLN (lun,[isw] ,[iun]) 

The logical unit number to be assigned to the ADOI-D and defined 
as the default unit. 

An integer variable to which the result of the ASSIGN LUN system 
directive is returned. 

The unit number to be assigned. If unspecified, a value of 0 is 
assumed. 

Only the LUN specified in the last call to ASADLN or ASAFLN is defined 
as the default unit. 

15.4.7 ASAFLN: Assigning a LUN to the AFCll 

The ASAFLN FORTRAN subroutine assigns the specified LUN to the AFCll 
and uses it as the default logical unit number whenever you omit a LUN 
specification from an AIRD(W)/AISQ(W) subroutine call. Issue it as 
follows: 

lun 

isw 

iun 

CALL ASAFLN (lun,[isw] ,[iun]) 

The logical unit number to be assigned to AFCll and defined as 
the default unit. 

An integer variable to which the status from the ASSIGN LUN 
system directive is returned. 

The unit number to be assigned. If unspecified, a value of 0 is 
assumed. 

Only the LUN specified in the last call to ASAFLN or ASADLN is defined 
as the default unit. 

15-7 



ANALOG-TO-DIGITAL CONVERTER DRIVERS 

15.5 STATUS RETURNS 

The error and status conditions listed in Table 15-7 are returned by 
the ana10g-to-digital converter drivers described in this cha~ter. 

Code 

IS.SUC 

IS.PND 

IE.ABO 

IE. BAD 

IE.BYT 

IE.DRR 

Table 15-7 
AID Converter Status Returns 

Reason 

Successful completion 

The operation specified in the QIO directive was 
completed successfully. The second word of the I/O 
status block ~an be examined to determine the number 
of A/D conversions performed. 

I/O request pending 

The operation specified in the QIO directive has not 
yet been executed. The I/O status block is filled 
with Os.' 

Operation .aborted 

The specified I/O operation was canceled with 10.KIL 
while still in the I/O queue. 

Bad parameter 

An illegal specification was supplied for on~or ~ore 
of the device-dependent QIO parameters (words 6-11). 
For the ana10g-to-digita1 converters, this, 'code 
indicates that a bad channel number or gain code was 
specified in the control buffer. 

Byte-aligned buffer specified 

Byte alignment was specified for a data or control 
buffer, but only word alignment is legal for 
ana10g-to-digita1 converters. Alternatively, the 
length of the data and control buffer is not an even 
number of bytes. 

Device not ready 

The physical device unit specified. in the QIO 
directive was not ready to perform the desired I/O 
operation. For the AFC11, this code is returned if 
an interrupt time-out occurred or the power failed. 
In the case of the AD01-D, which is not operated in 
interrupt mode, this code indicates a software 
time-out occurred (that is, a conversion did not 
complete within 30 microseconds). 

(continued on next page) 

15-8 

( 



( 

( 

( 

Code 

IE.IFC 

IE.OFL 

IE.SPC 

ANALOG-TO-DIGITAL CONVERTER DRIVERS 

Table 15-7 (Cont.) 
A/D Converter Status .Returns 

Reason 

Illegal function 

A function code was specified in an I/O request that 
is illegal for analog-to-digital converters. 

Device off line 

The physical device unit associated with the 
specified in the QIO directive was not online. 
the system was booted, a device check indicated 
this physical device unit was not in 
configuration. 

Illegal address space 

LUN 
When 
that 

the 

The data 
request 
space of 
of 0 was 

or control buffer specified for a conversion 
was partially or totally outside the address 
the issuing task. Alternately, a byte count 
specified. 

FORTRAN interface values for these subroutines are presented in 
Section 15.5.1. 

15.5.1 FORTRAN Interface Values 

The values listed in Table 15-8 are returned in FORTRAN subroutine 
calls. 

Table 15-8 
FORTRAN Interface Values 

Status Return 

IS.SUC 
IS.PND 
IE.ABO 
IE.ADP 
IE.BAD 
IE.BYT 
IE.DAO 
IE.DNR 
IE.IEF 
IE.IFC 
IE.ILU 
IE.NOD 
IE.ONP 
IE.PRI 
IE.RSU 
IE.SDP 
IE. SPC 
IE.ULN 
IE.UPN 

15-9 

FORTRAN Value 

+01 
+00 

+315 
+101 
+301 
+319 
+313 
+3·03 
+100 
+302 

+99 
+323 
+305 
+316 
+317 
+102 
+306 

+08 
+04 



ANALOG-TO-DIGITAL CONVERTER DRIVERS 

15.6 FUNCTIONAL CAPABILITIES 

The AFCII and ADOl-D operate only in multisample mode, because you can 
simulate single-sample mode by simply specifying one sample. 
Multisample mode permits many channels to be sampled at approximately 
the same time without requiring your task to queue multiple I/O 
requests. 

The maximum number of channels in the configuration is specified at 
system-generation time. This value is stored in the respective AFCII 
and ADOl-D unit control blocks. 

15.6.1 Control and Data Buffers 

Your task must define two buffers of equal size: the control buffer 
and the data buffer. The former contains the control words needed to 
perform one A/D conversion per channel specified. Each control word 
indicates the channel to be sampled and the gain to be applied (see 
Table 15-4). 

The data buffer receives the results of the conversions. Each result 
is placed in the data buffer location that corresponds to the control 
word that specified it. 

15.7 PROGRAMMING HINTS 

This section contains important information about programming the 
analog-to-digital converter drivers described in this chapter. 

15.7.1 Use of A/D Gain Ranges 

Note that the A/D gain ranges overlap. The key to successful use of 
the A/D converters is to change to a higher gain whenever a full-scale 
reading is imminent, and to change to a lower gain whenever the last 
A/D value recorded was less than half of full scale. This method 
maintains maximum resolution while avoiding saturation. 

15.7.2 Identical Channel Numbers on the AFell 

When requesting sampling of more than one channel, you should not 
specify multiple sampling of a single channel without 10 or more 
intervening samples on other channels. This ensures 50 milliseconds 
between samples on a single channel. If sampling occurs more often 
than this on a single channel, partial results are returned (see 
Section 15.7.3). 

15-10 

( 

( 

( 



( 

( 

( 

ANALOG-TO-DIGITAL CONVERTER DRIVERS 

15.7.3 AFCll Sampling Rate 

Although the AFCII can sample a maximum of 200 points per second, a 
single channel can only be sampled at 20 points per second. Because 
the channel capacitor needs 50 milliseconds to recharge after each 
conversion, more frequent sampling may result in partial readings. If 
this occurs, your task receives no indication that information is 
being lo~t. To ensure that information is not lost on anyone 
channel, your task should sample approximately 10 other channels 
before returning to the first one. 

15.7.4 Restricting the Number of ADOl-D Conversions 

The ADOI-D is an extremely fast device, providing a 25-microsecond 
conversion rate, and is driven by program to minimize system overhead. 
However, an excessive number of conversions in a single request 
essentially locks out the rest of the system, because the driver does 
not return control to the system until it has finished all the 
specified conversions. No other task can run, although interrupts can 
still occur and are processed. 

15-11 



( 

( 



( 

( 

( 

CHAPTER 16 

UNIVERSAL DIGITAL CONTROLLER DRIVER 

16.1 INTRODUCTION 

The UDCll is a digital input/output system for industrial and process 
control applications. It interrogates or drives, or both, up to 2~2 
directly addressable digital sense modules, control·- modules, or 
combinations thereof. The UDCll operates under ·program control as a 
high-level digital multiplexer, . interrogating digital inputs and 
driving digital outputs. (UDCll driver support is not provided on 
RSX-llM-PLUS systems.) 

The UDC driver supports either the UDCll or ICSll subsystem. The 
ICSll (Industrial Control Subsystem) operates as an input/output 
device that is functionally similar to the UDCll. A maximum of 16 1/0 
modules· can be placed in one ICSII subsystem; up to 12 ICSllscari be 
interfaced to one computer system. The ICSllsubsystem is also 
supported by the ICS/ICR-ll driver described in Chapter 19.The 
reader should consult that chapter for a comparison of driver 
features. 

While performing analog-to-digital conversions, the UDCll driver can 
handle other functions, such as contact or timer interrupts or 
latching output. These functions are performed iminediately, without 
~equiring any in-progress analog~to-digital conversions to first be 
completed. 

Unlike other RSX-IIM I/O device drivers, the UDCll driver is neither a 
multicontroller nor a multiunit driver •. 

16.1.1 Creating the UDCll Driver 

Each installation must assemble the driver source module with a prefix 
file that defines the particular hardware configuration. Theprefix 
file is created during system generation according to your re'sponse to 
9uestions relating to the UDCll. This file is named RSXMC.MAC and 
Includes symbolic definitions of the UDCll configuration. These 
definitions encode the relative module number and the number of 
modules for each generic type specified in the system generation 
dialog. The encoding has the following format: 

8 8 

number of modules starting module number 

16-1 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

One or more of the following symbols is generated: 

Symbol 

U$$ADM 
U$$AOM 
U$$CIM 
U$$CSM 
U$$LTM 
U$$SSM 
U$$TIM 

Module Type 

Analog input 
Analog output 
Contact interrupt 
Contact sense input 
Latching digital output 
Single-shot digital output 
Timer (I/O counter) 

Note that all modules of a given type must be installed together in 
sequential slots. 

16. L 2 Accessing Uoell Modules 

RSX-llM provides two methods of accessing the UDCll: 

1. A QIO macro call issued to the driver 

2. Restricted direct access by any task to I/O page registers 
dedicated to the UDCll 

The first method, access through the driver, is required to service 
interrupting modules and to set and record the state of latching 
digital output modules. 

The second method, direct access, is a high-speed, low-overhead way to 
service noninterrupting modules. The following functions may be 
performed in this manner: 

• Analog output 

• Contact sense input 

• Single-shot digital output 

• Read a contact interrupt mod~le 

• Read a timer module 

16.1.2.1 Driver Services - The driver services the following types of 
modules: 

• Contact interrupt 

• Timer (I/O counter) 

• Analog input 

• Latching digital output 

Contact and timer interrupts need not be serviced by a single task. 
One task may be connected to contact interrupts, and another to timer 
interrupts. A nonprivileged task can connect to either or both of 
these classes by providing a circular buffer to receive interrupt 
information and an event flag to allow triggering of the task whenever 
a buffer entry is made. 

16-2 

( 

( 

( 



( 

( 

( 

UNIVERSAL DIGITAL CONTROLLER DRIVER 

16.1.2.2 Direct Access - A global common block within the I/O page 
provides restricted direct access to the UDCll device registers. In a 
mapped system, the length of the block is set to prevent access to 
other device registers. In an unmapped system, the use of the common 
block is optional, unless you use ISA FORTRAN calls. The ISA routines 
refer symbolically to the UCDll registers, and thus require the use of 
global common. Section 16.4 explains direct access more fully. 

16.2 GET LUN INFORMATION MACRO 

If a Get Lun Information system directive is issued for a LUN 
associated with the UDCll, word 2 (the first characteristics word) 
contains all zeros, words 3 and 4 are undefined, and word 5 is not 
significant, because there is no concept of a default buffer size for 
universal digital controllers. 

16.3 OIOMACRO 

This section summarizes standard and device-specific 010 functions for 
the UOCll driver. In issuing them, note the numbering conventions 
described in 16.7.2. 

16.3.1 Standard 010 Function 

The standard function that is valid for the UDCll is shown in Table 
16-1. 

Table 16-1 
Standard 010 Function for the UDCll 

Format Function 

OIO$C IO.KIL , ••• Cancel I/O requests 

IO.KIL cancels all queued requests and disconnects all interrupt 
connections, but does not stop any I/O that is currently in progress. 

16.3.2 Device-Specific 010 Functions 

Table 16-2 summarizes device-specific 010 functions that are supported 
for the UDC12. 

16-3 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

Table 16-2 
Device-Specific QIO Functions for the UDCll 

Format Function 

QIO$C IO.CCI, •• ~,<stadd,sizb,tevf> CONNECT a buffer to contact 
interrupts 

QIO$C IO.CTI, ••• ,<stadq.,sizb,tevf,arv> CONNECT a buffer to timer 
interrupts 

QIO$C 10. DCI, •• • Disconnect a buffer from 
contact interrupts 

QIO$C 10. DTI, • • • Disconnect a buffer from timer 
interrupts 

QIO$C 10. ITI, ••• , <mn, ic> INITIALIZE a timer 

QIO$C IO.MLO, ••• ,<opn,pp,dp> OPEN or close latching digital 
output points 

QIO$C IO.RBC, ••• ,<stadd,size,stcnta> INITIATE multiple A/D 
conversions 

stadd 

sizb 

tevf 

arv 

mn 

ic 

opn 

The starting address ·of the data buffer (must be on a word 
boundary) • 

The data buffer size in bytes (must be even and large enough to. 
include a 2-word buffer header plus one data entry; the buffer 
may cross a 4K boundary) • 

The trigger event flag number. 

The starting address of the table of initial/reset values (must 
be on a word boundary). 

The module number. 

~he initial count. 

The first latching digital output point number, which must be on 
a module boundary (evenly divisible by 16). 

16-4 

( 

( 



( 

( 

( 

pp 

dp 

size 

UNIVERSAL DIGITAL CONTROLLER DRIVER 

The l6-bit mask. 

The data pattern. 

The control buffer size in bytes (must be even and greater than 
0); the data buffer is the same size. 

stcnta 

The starting address of the control buffer (must be on a word 
boundary); each control buffer word must be constructed as shown 
in Table 16-3. 

The following sections describe the functions listed in Table 16-2. 

Bits 

0-11 

12-15 

Table 16-3 
A/DConversion Control Word 

Meaning 

Channel number 

Gain value for this 
sample, expressed as 
a bit pattern as 
follows: 

15 14 13 12 

0 0 0 0 
0 0 0 1 
0 0 1 0 
0 0 1 1 
0 1 0 0 
0 1 0 1 
0 1 1 0 
0 1 1 1 
1 0 0 0 
1 0 0 1 
1 0 1 0 
1 0 1 1 
1 1 0 0 
1 1 0 1 
1 1 1 0 
1 1 1 1 

16-5 

ADUOI 

Range: 0-4095 

Gain: 

1 
2 

Illegal 
Illegal 

10 
20 

Illegal 
Illegal 

50 
100 

Illegal 
Illegal 

200 
1000 
Illegal 
Illegal 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

16.3.2.1 Contact Interrupt Digital Input (W733 Modules) - Digital 
input and change of state information from contact interrupt modules 
is reported in a requester-provided circular buffer. The buffer 
consists of a 2-word header, followed by a data area in the following 
format: 

1 
2 
3 
4 .. 

driver index 
user task index 
entry 
entry 

· · · 
Whenever a change of state occurs in one or more contact points, an 
interrupt is generated. The UDCll driver gains control, determines 
whether the change of state is of interest (that is, a contact closure 
and point closing (PCL) is set on the module), and then optionally 
Illakes an entry in the data area of the buffer, updates the index 
words, arid sets the trigger event flag of the connected task. 

Each entry consists of five words in the following format: 

Word 

o 

1 

2 

3 

4 

Contents 

Entry existence indicator 

. Change of state (COS) indicator 

Module data (current poiht values) 

Module number (ihterrupting module) 

Generic code ( interrupting module) 

The driver enters data in the location currently indicated by the 
driver index. This pointer can .be considered as .a FORTRAN index into 
the buffer; that is, the first location~f the buffer is associated 
with the index 1. The begi~nfng of the data area is the location of 
the first entry (inde* 3). Entries are made in a circular fashion, 
starting at the beginning of the data area, filling in order of 
increasing memory address to the end of the data area, and then 
wrapping around from the end to the beginning of the data area. 

The connectedtask.must maintairi it~ owh p6inter (the t~sk's index) tb 
the 10cati6n in the buffer where it is next to retrieve contact 
interrupt data. When a task is triggered by the driver, it should 
process data in the buffer st~rting at the lbcation indicated by its 
pointer and continuing in a circular fashion until the two pointers 
are equal or a zero entry existence indicator is encountered~ 
Equality of pointers means that the connected task has retrieved all 
the cbntact interrupt information that the driver has entered into the 
buffer. . 

The entry existEmc'e indicator is set to nonzero when a buffer entry is 
made. . When a requester has removed br processed an entry, he must 
clear the existence indicator to free the buffer entry position. 

16-6 

(-

( 

( 



( 

( 

( 

UNIVERSAL DIGITAL CONTROLLER DRIVER 

If data input occurs in a burst sufficient to overrun the buffer, data 
is discarded and a count of data overruns is incremented. The nonzero 
entry existence indicator also serves as an overrun indicator. A 
positive value (+1) indicates no overruns between entries; a negative 
value is the two's complement of the number of times data have been 
discarded between entries. 

The module number indicates a module on which a change of state in the 
direction of interest has been recognized for one or more discrete 
points. The direction of the change may be from 0 to 1 or 1 to 0, 
depending on the PCL (point closing) and POP (point opening) module 
jumpers. The change of state (COS) indicator specifies which point or 
points of the module have changed state. 

The bit position of an on-bit in the 
low-order bits (3-0) of a point number 
the high-order bits (15-4). The module 
value (polarity) of each point in 
interrupt. 

COS indicator provides the 
and the module number provides 
data indicates the logical 

the module at the time of the 

Contact interrupt data can be reported to only one task. The 
functions IO.CCI and IO.DCI in Table 16-2 are provided to enable a 
task to connect and disconnect from contact interrupts. If the 
connection is successful, the second word of the I/O status block 
contains the number of words passed per interrupt in the low-order 
byte and the initial FORTRAN index to the beginning of the data area 
in the high-order byte. 

NOTE 

The size of the data area must be a multiple' of the 
entry size. 

16.3.2.2 Timer (11734 I/O Counter Modules) - A timer (I/O counter) 
module is a c.lock that is inltialized (loaded), coupts up or down, and 
then causes an interrupt. The UDCl1 driver treats such modules in a 
way similar to that in which it handles contact interrupts. The 
requester provides a circular buffer similar to that for contact 
interrupts. Each entry consists of forir· words in the following 
format: 

Word Contents 

0 Entry existence indicator 

1 Module data (current value) 

2 Module number (interrupting module) 

3 Generic code (interrupting module) 

16-7 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

The IO.CTI function in Table 16-2 .enables a task to connect to timer 
interrupts. The driver uses the table of initial/reset values 
initially to load the timers and to reload them on interrupt 
(overflow) • The table contains one word for each timer module. The 
driver uses the contents of the first word to load the first module, 
and so forth. If a timer has a nonzero value when it interrupts, the 
driver does not reload it so that self-clocking modules and modules 
that interrupt on half count can continue counting from the initial 
value. 

The IO.DTI function in Table 
int:errupts, and the 10. ITI 
initializing a single timer. 
valid only if the issuing 
counter interrupts. 

16-2 disconnects a task from timer 
function provides the capability of 

Requests to initialize a counter are 
task has connected a buffer for receiving 

NOTE 

The size of the data area must be a multiple of the 
entry size. 

16.3.2.3 Latching Digital Output (M68S, M803, and M80S Modules) -
Each module has 16 latching digital output points. The IO.MLO 
function in Table 16-2 opens or closes a set of up to 16 points. Bit 
n of the mask and data pattern corresponds to the point opn + n. If a 
bit in the mask is set, the corresponding point is opened .or closed, 
depending on whether the corresponding bit in the data pattern is 
clear or set. If a bit in the mask is clear, the corresponding point 
remains unaltered. 

16.3.2.4 Analog~to-Digital Converter (ADUOl Module) - Each ADUOl 
module has eight analog input channels. The IO.RBC function in Table 
16-2 initiates A/D conversions on multiple ADUOl input channels. 
Restrictions on maximum sampling rates are the same as those defined 
for the AFCll in Chapter 15. 

The converted analog value is returned as 1'2 bits, left-justified, in 
a 16-bit word with the low-order 4 bits set to O. 

16.3.2.5 ICSll Analog-to-Digital Converter (IAD~IA Module) - Each 
IAD-IA Module has eight analog input channels. The channel capacity 
may be expanded to 120 by the addition of IMX-IA multiplexers. Each 
multiplexer adds 16 input channels to the converter. Restrictions on 
maximum sampling rates are the same as those defined for the AFCll in 
Chapter 15. The IAD-IA module preempts eight module slots regardless 
of the number of IMX-IA multiplexers installed. 

For addressing purposes, each converte~ occupies a block 9f 120 
channels. Thus, A/D converter 0 is addressed by referencing channels 
o through 119; A/D converter 1 is addressed by referencing channels 
120 through. 239, and so forth. When fewer than seven multiplexers are 
installed, not all addresses within the block are valid. 

The converted analog value is returned as 12 bits, left-justified, in 
a 16-bit word ~ith the low-order 4 bits set to O. 

16-8 

( 

( 



( 

( 

( 

UNIVERSAL DIGITAL CONTROLLER DRIVER 

16.4 DIRECT ACCESS. 

Section 16.1.2 describes UDCll functions that 
referencing a module through its physical 
Under RSX-~lM such access is accomplished by 
methods: 

may be performed by 
address in the I/O page. 

one of the following 

1. A privileged task or any task running in an unmapped system 
has unrestricted access to the I/O page, and may therefore 
access each module by absolute address. 

2. Using the Task Builder, a task may 
area whose physical address limits 
the I/O page. This method applies 
unmapped system. 

link to a global common 
span a set of locations in 

to either a mapped or 

The latter method allows a task to be transported to any other system 
simply by relinking. Furthermore, in a mapped system the memory 
management hardware aborts all references to device, registers outside 
the physical address limits of the common block. 

The operations required to implement each method may be summarized as. 
follows: 

1. Unrestricted access to the I/O page 

a. Create an object module that defines the UDCll 
configuration through a list of absolute global addresses 
and addressing limits for each module type. 

b. Include the object module in the system library file. 

c. Create a task containing the appropriate global 
references. Such references are resolved when the task 
builder searches the system library file. 

Steps a and b are executed once, during system generation . (seethe 
RSX-IIM System Generation and installation Guide). Step c 'is 
performed each time a task is created that references the UDC12. 

2. Access to the I/O page through a Global Common Block 

a. Create an object module that defines the UDCll 
configuration through a list of relocatable global 
addresses and addressing limits for each module type. 

b. Link the object module using the Task Build~r to create 
an image of the Global Common block on disk. 

c. Use the SET command to define a common block that resides 
on thE! I/O page. 

d. Use the INSTALL MCR command to make the Global Common 
Block resident in memory •.. 

e. Create' a task containing the appropriate global 
references. Such references are resolved by .directing 
the Task Builder to link the task to the common block. . 

Steps a through d are executed once, during system generation. Step e 
is performed each time you create a task that references the UDCll 
common block. The following paragraphs describe each step in detail. 

16-9 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

16.4.1 Defining the UDCll Configuration 

The source module, ODCOM.MAC, resides on the RK05 cartridge of the 
RSX-llM RK distribution kit labeled EXECUTIVE SOURCE. For RP 
distribution kits, it resides on the RP image. The file is located 
under UIC [11,10]. UDCOM.MAC, when assembled with the proper prefix 
file, provides global definitions for the following parameters: 

• The starting address of each module type 

• The highest point number within a given module type 

• The highest module number within a given module type 

The last two parameters are absolute quantities that you may use to 
prevent a task from referencing a module that is nonexistent or out of 
limits. 

By means of conditional assembly, the list of addresses may be created 
as absolute symbols defining locations in the I/O page, or as symbols 
within a relocatable program section that you may use when building 
and linking to the UDCll Global Common area. 

16.4.1.1 
with the 
RSXMC.MAC. 

Assembly Procedure for 
RSX-IIM configuration 

UDCOM.MAC - UDCOM.MAC 
parameters contained 

is 
in 

To create relocatable module addresses, either the parameter 
M$$MGE must be defined. M$$MGE is included in RSXMC.MAC 
management was specified when the system was generated. If 
should ~dit the file to include the following definition: 

U$$DCM=O 

The file may then be assemb~ed using the MCR command: 

>MAC UDCOM,UDLST=[ll,lO}RSXMC,UDCOM 

assembled 
the file 

U$$DCM or 
if memory 
not, you 

This command invokes the MACRO-II assembler, which processes the input 
files RSXMC.MAC and UDCOM.MAC to create UDCOM.OBJ and UDLST.LST. 

To create absolute module addresses, both U$$DCM and M$$MGE must be 
undefined. Edit RSXMC.MAC, if necessary, to remove definitions and 
then invoke the MACRO-llassembler with the following MCR command: 

>MAC UDCDF,UDLST=[ll,lO]RSXMC,UDCOM 

In this sequence the files UDCDF.OBJ and UDLST.LST are created from 
the specified source modules. UDCDF.OBJ contains the module addresses 
in absolute form. 

16.4.1. 2 Symbols Defined by UDCOM.MAC - This section lists the 
symbolic definitions created by UDCOM.MAC. 

16-10 

(~--

( 

( 



( 

( 

UNIVERSAL DIGITAL CONTROLLER DRIVER 

The following symbols define the absolute or relocatable address of 
the first module of a given type: 

Symbol 

$.ADM 
$.AOM 
$.CIM 
$.CSM 
$.LTM 
$.SSM 
$.TIM 

Module Type 

Analog input 
Analog output 
Contact interrupt 
Contact sense input 
Latching digital output 
Single-shot digital output 
Timer (I/O counter) 

The addresses in relocatable form are defined in a program section 
named UDCOM having the attributes: 

REL - relocatable 
OVR - overlaid 
D - data 
GBL - global scope 

Note that these attributes correspond to those attached to a named 
common block within a FORTRAN program. 

In either the absolute or relocatable case, 
referenced by the corresponding symbolic 
module index. 

individual modules are 
address plus a rel~tive 

The following symbols define the highest digital point within a module 
type: 

Symbol 

P$.CIM 
P$.CSM 
P$.LTM 
P$.SSM 

Module Type 

Contact interrupt 
Contact sense input 
Latching digital output 
Single-shot digital output 

The highest point number is defined relative to the first point on the 
first module of a specific type. For example, if two contact 
interrupt modules are installed, the symbol P$.CIM has octal value of 
37. 

The following symbols define the highest module number within a given 
module type. 

Symbol 

M$.ADM 
M$.AOM 
M$.CIM 
M$.CSM 
M$.LTM 
M$.SSM 
M$.TIM 

Module Type 

Analog input 
Analog output 
Contact interrupt 
Contact sense input 
Latching digital output 
Single-shot digital output 
Timer (I/O counter) 

The highest module number is defined relative to the first module of a 
given type. Thus, based on the previous example, M$.CIM has a value 
of 1. 

16-11 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

16.4.2 Including UDCll Symbolic Definitions in SYSLIB.OLB 

As described in Section 16.4, a task having unrestricted access to the 
I/O page may reference a UDCll module by absolute address. The object 
module UDCDF contains symbolic definitions of absolute module 
addresses and may be included in the System Object Module Library: 

SY: [l,l]SYSLIB.OLB 

The Task Builder searches this file to resolve any undefined gl~bals 

re~aining after all input files have been processed. 

The following example illustrates the procedure for including the file 
UDCDF.OBJ in the library: 

>SET /UIC=[l,l] 
>LBR SYSLIB/IN=[200,200]UDCDF 

The SET MCR command is issued to establish the current UIC as [1,1]. 
Next, the RSXIIM Librarian is invoked and instructed, through the use 
of the /IN switch, to include the object module UDCDF.OBJ in the file 
SYSLIB.OLB. 

16.4.3 Referencing the UDCII through a Global Common Block 

The following sections define the procedure for creating a global 
common block in the I/O PAGE, making the block resident in memory, and 
creating a task that references UDCll modules within the block. 
Examples are given for both mapped and unmapped systems. 

16.4.3.1 Creating a Global Common Block - The following sequence 
illustrat:es the use of the object file UDCOM.OBJ to create a disk 
image of the global common area in a mapped system: 

>SET /UIC=[l,l] 
>TKB 
TKB>UDCOM/MM,LP:,S~:UDCOM/PI/-HD=[200,200]UDCOM 
TKB>/ 
ENTER OPTIONS: 
TKB>PAR=UDCOM:. 0: 1000 
TKB>STACK=O 
TKB>/ 

In the above example, a current UIC of [1,1] is established and the 
Task Builder is initiated. The initial input line to the Task Builder 
specifies the following files: 

• A core image output file to be named UDCOM.TSK 

• A memory map output to the line printer 

• A symbol table file to be named UDCOM.STB 

All files reside on SY: under UIC 
UDCOM.OBJ, containing the UDCll 
values, constitutes the input. 

[1,1]. The single input file 
address definitions as relocatable 

16-12 

c 

( 



( 

( 

( 

UNIVERSAL DIGITAL CONTROLLER DRIVER 

" The switches specified for the output files. convey the _following 
information to the Task Builder: 

/MM indicates that the core image of the common block 
resides on a system with Memory Management. 

/PI indicates that the core image is position independent; 
that is, the virtual address of the common block may 
appear on any 4K boundary within a task's address 
space. 

/-HD indicates that the core image does not contain a 
header. A header is only required for a core image 
file that is to be installed and executed as a task. 

The names of t~e partition, task file, and symbol-table files must 
agree. 

You must use the STACK option to eliminate the stack space. 

The following sequence illustrates the corresponding procedure.for 
unmappeCi system: 

>SET /UIC=[l,l] 
>TKB 
TKB>UDCOM/-MM,LP:,SY:UDCOM/PI/-HD=[200,200]UDCOM 
TKB>/ 
ENTER OPTIONS: 
TKB>STACK=O 
TKB>PAR=UDCOM:17l000:l000 
TKB>/ 

an 

Again the task builder is requested to produce a core image and symbol 
table file under the UIC [1,1], and a map file on the line printer 
from the input file UDCOM.OBJ.· The output file swi tchesconvey the 
following information: 

/-MM indicates that the core image of the common block 
resides on an unmapped system. 

/PI Indicates that the core image is position independent. 

/-HD 

In an unmapped system, the core image is fixed in the 
same address· space for all tasks; however, the global 
symbols defined in the symbol table file retain the 
relocatable attiibtite. 

indicates that a core image without a header is to be 
created. 

The PAR option specifies the base and length of 
coincide with the standard UDCll addresses 
references to the common block by tasks are 
region. 

the common area 
in the I/O page. 

resolved within 

to 
All 

this 

16.4.3.2 
creates 
system: 

Making the Common Block Resident - The following SET command 
a UDCll common block residing in the I/O page for a mapped 

>SET /MAIN=UDCOM:77l0:l0:DEV 

16-13 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

The correspo~ding command in an unmapped system is: 

>SET /MAIN=UDCOM:1710:l0:DEV 

The preceding sequence specifies the allocation of a common block in 
the I/O page whose physical addrass limits correspond to the UDCll 
standard locations. Note that the address bounds and length are 
defined in units of 32 words. 

The command 

>INS [l,l]UDCOM 

declares the common block resident in the system. 

16.4.3.3 Linking a Task to the UDCll Common Block -A task may access 
UDCll modules by linking to the common block as follows: 

TKB>TASK,LP:=TASK.OBJ 
TKB>/ 
ENTER OPTIONS: 
TKB) COMMON=UDCOM:RW 
TKB>/ 

The above sequence is valid for either a mapped or unmapped system. 
In both cases the Task Builder links the task to the common block by 
resolving references to the Global symbol definitions contained in 
UDCOM.STB. If memory management is present, the Executive maps the 
appropriate physical locations into the task's virtual addressing 
space when the task is made active. 

16.5 FORTRAN INTERFACE 

A collection of FORTRAN-callable subroutines provide FORTRAN programs 
access to the UDC12. These are described in this section. All are 
reentrant and may be placed in a resident library. 

Instead of using the FORTRAN~callable subroutines deScribed in this 
section, a FORTRAN ,program may use the global common featl,lre described 
in Section 16.4 to reference UDCll modules directly in the I/O page, 
as shown in the following example: 

C 
C UDCll GLOBAL COMMON 
C 

COMMON /UDCOM/ ICSM(lO),IAO(lO) 
C 
C READ CONTACT SENSE MODULE 1 DIRECTLY 
C 

ICS=ICSM(l) 

Note that the position of each module type must correspond to the 
sequence in which storage is allocated in the common. statements. 

16-14 

( 

( 



( 

( 

( 

UNIVERSAL DIGITAL CONTROLLER DRIVER 

16.5.1 Synchronous and Asynchronous Process Control I/O 

The ISA standard provides for synchronous and asynchronous process 
I/O. Synchronous I/O is indicated by appending a "w" to the name of 
the subroutine (for example, AO/AOW). But due te> the fact that nearly 
all UDCll I/O operations are performed immediately, in most cases the 
"w" form "of the call is retained'only for compatibility and has no 
meaning under RSX-llM. In the case of A/D input, however, the "w" 
form is significant: The synchronous call suspends task execution 
until input is complete. You use the asynchronous form, execution 
continues and the calling program must periodically test the status 
word for completion. 

16.5.2 The isb Status Array 

The isb (I/O status block) parameter is a 2-word integer array that 
contains the status of the FORTRAN call~ in accordance with ISA 
(Instrument Society of America) convention. This array serves two 
purposes: 

1. It is the 2-word I/O status block to which the driver returns 
an I/O status code on completion of an I/O operation. 

2. The first word of isb receives a status code from the FORTRAN 
interface in ISA~compatible format, with the exception of the 
I/O pending condition,. which is indicated by a status of O. 
The ISA standard code for this condition is +2. 

The meaning of the contents .of isb varies, depending on the FORTRAN 
call that has been executed~ but Table 16-4 lists certain general 
principles that apply~ The section desQribing each subroutine gives 
more details." 

In some cases, the values or states of. points being read, pulsed, or 
latched are returned to isb word 2. 

FORTRAN interface subroutines for analog input depend on asynchronous 
system traps to set their status. Thus, if the trap mechanism is 
disabled, proper status cannot be set. 

Contents 

isb(l) o 

isb(l) = 1 

isb(l) = 3 

3 < isb(l) < 300 

isb(l) > 300 

Table 16-4 
Contents of First Word of isb 

Meaning 

Operation pending; I/O in progress 

Successful completion 

Interface subroutine unable to generate 
Q10 directive or number of points 
requested is zero 

QIO directive rejected and actual error 
code = -(isb(l) - 3) 

Driver. rejected request and 
error code ~ -(isb(l) - 300) 

16-15 

actual 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

For direct access calls (indicated in Table 16-5), errors are detected 
and returned by the FORTRAN interface subroutine itself, rather than 
by the driver. Although the use of a 2-word status block is therefore 
unnecessary, these errors are returned in standard format to retain 
compatibility with functions called through QIO directives and handled 
by other drivers. Errors of this type that may be returned are: 

isb(l) = 3 

isb(l) = +321 

Number of points requested is 
o 

Invalid UDCll module 

16.5.3 FORTRAN Subroutine Summary 

Table 16-5 lists the FORTRAN interface subroutines supported for the 
UDCll under RSX-IIM.· (D) indicates a direct access call, and the 
optional logical unit number for such a call may be specified to 
retain compatibility with RSX-llD; but this specification is ignored 
by RSX-llM. 

The following subsections briefly describe the function and format of 
each FORTRAN subroutine call.. Note the use of ASUDLN to specify a 
default logical unit number. Also consider the numbering conventions 
described in 16.7.2. 

The following FORTRAN functions do not perform I/O directly, but 
facilitate conversions between BCD and binary. 

Convert four BCD digits to a binary number: 

IBIN = KBCD2B(IBCD) 

Convert a binary number to four BCD digits: 

IBCD = KB2BCD(IBIN) 

Table 16-5 
FORTRAN Interface Subroutines for the UDCll 

Subroutine 

AIRD/AIRDW 

AISQ/AISQW 

AO/AOW 

ASUDLN 

CTDI 

Function 

Perform input of analog data in random 
sequence 

Read a series Qf sequential analog input 
channels 

Perform analog output on several channels 
(D) 

Assign a LUN to the UDCll 

Connect a circular buffer to receive 
contact interrupt data 

(continued on next page) 

16-16 

( 

( 

( 



( 

( 

Subroutine 

CTTI 

DFDI 

DFTI 

DI/DIW 

DOL/DOLW 

DOM/DOMW 

RCIPT 

RDCS 

RDDI 

RDTI 

RDWD 

RSTI 

SCTI 

UNIVERSAL DIGITAL CONTROLLER DRIVER 

Table 16-5 (Cont.) 
FORTRAN Interface Subroutines for the UDCll 

Function 

Connect a circular buffer to receive 
timer interrupt data 

Disconnect 
interrupts 

a buffer from contact 

Disconnect a buffer from timer interrupts 

Read several 16-point 
fields (D) 

contact sense 

Latch or unlatch several l6-point fields 

Pulse several 16-point fields (D) 

Read the state of a single 
interrupt point (D) 

contact 

Read the contents of a contact interrupt 
circular buffer, returning data on only 
those points that have changed state 

Read the contents 
circular buffer, 

'Read the contents 
circular buffer, 

Read the contents 
circular buffer, 
module data 
information 

of a contact interrupt 
one point for each t:all 

of a timer interrupt 
one entry for each call 

of a contact interrupt 
returning 16 bits of 

and change-of-state 

Read a single timer module (D) 

Set a timer module ~o an initial value 

16.5.4 AIRD/AIRDW: Performing Input of Analog Data in Random 
Sequence 

The ISA standard AIRD/AIRDW FORTRAN subroutines input analog data in 
random sequence. These calls are issued as follows: 

inm 

CALL lAIRD I (inm,icont,idata, [isb], [lun]) 
AIRDW 

The number of analog input channels. 

16-17 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

icont 

idata 

isb 

1un 

An integer array containing terminal connection data-channel 
number (right-justified in bits 0-11) and gain (bits 12-15), as 
shown in Table 16-3. 

An integer array to rec~ive the converted values. 

A 2-word integer array to which the subroutine status is 
returned. 

The optional logical unit number. 

The isb array has the standard meaning defined in Section 16~5~2. If 
inm = 0, then isb(l) = 3. The contents of idata are undefined if an 
error occurs. 

16.5.5 AISQ/AISQW: Reading Sequential Analog Input Channels 

The ISA standard AISQ/AISQW FORTRAN subroutines read a series of 
sequential analog input charme1s. These calls are issued as follows : . 

inm 

icont 

idata 

CALL lJAISQ I· (inm,icont,idata, [isb], [lun]) 
. AISQW 

The number of analog input channels. 

An iriteger array containing terminal connection data-ohanne1 
number (right-justified in bits 0-11)· and gain (bits 12~15), as 
shown in Table 16-3. 

An integer array to receive the converted values. 

16-18 

( 

( 



( 

c 

( 

UNIVERSAL DIGITAL CONTROLLER DRIVER 

isb 

A 2-word integer array to which the subroutine status is 
returned. 

lun 

The optional logical unit number. 

For sequential analog input, the routine computes the channel 
in steps of one, beginning with the value that you specified 
first element of icont. The routine ignores the channel number 
in all other elements of the array. 

number 
in the 
field 

The routine takes the gain that it us~s for each. conversion 
respective .. element in icont. Thus, even though the channel 
ignored in all but the first element of icont, the gain 
specified for each conversion to be performed. 

from the 
number is 
must be 

The isb array has the standard meaning defined in Section 16.5.2. If 
inm = 0, then isb(l) = 3. The contents of idata ~re unde£ined if an 
error occurs. 

16.5.6 AO/AOW: Performing Analog Output 

The ISA standard AO/AOW FORTRAN subroutines initiate analog output on 
several channels. These calls are issued as follows: 

CALL (inm, icont,idata, [isb] , [Iun] ) 

inm 

·The number of analog output· channels. 

icont 

idata 

An integer array containing the·channel numbers. 

An integer array containing .the output voltage settings, in the 
range 0-1023. 

16-19 



isb 

lun 

UNIVERSAL DIGITAL CONTROLLER DRIVER 

A 2-word integer array to which the subroutine status is 
returned. 

The logical unit number (ignored if present). 

Theisb array has the standard meaning defined in Section 16.5.2. 

16.5.7 ASUDLN: Assigning a LUN to the UDCll 

The ASUDLN FORTRAN subroutine assigns the specified LUNto the 
specified unit and uses it as the default logical unit number whenever 
a LUN specification is omitted from a UOCII subroutine call. It is 
issued as follows: 

lun 

isw 

iun 

CALL ASUDLN (lun,[isw] ,[iun]) 

The logical unit number to be assigned to the specified unit, and 
defined as the default. 

An integer variable to which the result of the ASSIGN LUN system 
directive is returned. 

An integer defining the UDCll unit number. 
specified, 0 is assumed. 

If no number is 

16.5.8 CTDI: Connecting to Contact Interrupts 

The CTDI FORTRAN subroutine connects a task to contact interrupts and 
specifies a circular buffer to receive contact interrupt data. The 
length of this buffer can be computed by considering the following: 

• Rate at which contact module interrupts occur 

• Number of modules that can interrupt simultaneously 

• Rate .at which the circular buffer is emptied 

16-20 

( 

( 

( 



( 

( 

( 

UNIVERSAL DIGITAL CONTROLLER DRIVER 

The UDCll driver. generates a 5-word entry for each contact interrupt 
and the interface subroutine itself requires 10 words of additional 
storage. Thus the isz parameter, described below, c.an be computed as 
follows: 

isz = (10 + 5 * n) 

where n is the number of entries in the buffer and isz is expressed in 
words. 

The call is issued as follows: 

ibuf 

isz 

iev 

isb 

lun 

CALL CTDI (ibuf,isz,iev,[isb],[lun» 

An integer array that is to receive contact interrupt data. 

The length of the array in words, with a minimum size of 15. 

The trigger event flag number. The specified event flag is set 
whenever the driver inserts an entry in the data buffer. 

A 2-word integer array to which the subroutine status is 
returned. 

The logical unit number. 

The isbarray has the standard meaning defined in Section 16.5.2. 

16.5.9 CTTI: Connecting to Timer Interrupts 

The CTTI FORTRAN subroutine connects a task to timer interrupts and 
specifies a circular buffer to receive timer interrupt data. The 
length of this buffer can be computed by considering the following: 

• Rate at which timer module interrupts occur 

• Number of modules that can interrupt simultaneously 

• Rate at which the circular buffer is emptied 

16-21 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

The UDCll driver generates a 4-word entry for each timer and the 
interface subroutine itself requires 8 words of additional storage. 
Thus the isz parameter, described below, can be computed as follow·s: 

isz = (8 + 4 * n) 

where n is the number of entries in the buffer and isz is expressed in 
words. 

When a timer module interrupt occurs, the driver resets the count to 
an initial value, normally that specified in iv. The initial value 
for a specific module can be modified by calling the SCTI subroutine 
(see Section 16.5.19). 

The call is issued as follows: 

ibuf 

,isz 

iev 

iv 

isb 

lun 

CALL CTTI (ibuf,isz,iev,iv,[isb],[lun]) 

An integer array that is to receive timer interrupt data. 

The length of the array in words, with a minimum size of 12. 

A trigger event flag number. The specified .event flag is set 
whenever the driver inserts an entry in the data buffer. 

An integer array that contains the initial timer module values, 
with one entry for each timer module, where entry n corresponds 
to timer module number n-l. . 

A 2-word integer array to which the subroutine status is 
returned. 

The logical unit number. 

The isb array has the standard meaning defined in Section 16.5.2. 

16.5.10 DFDI: Disconnecting from Contact Interrupts 

The DFDI FORTRAN subroutine disconnects a 
interrupts. It is issued as follows: 

.CALL DFDI ([ isb] , [lun] ) 

16-22 

task from contact 

( 



( 

( 

( 

"" 

isb 

lun 

UNIVERSAL DIGITAL CONTROLLER DRIVER 

A 2-word integer qrray to which the subroutine status is 
returned. 

The logical unit number. 

The isb array has the standard meaning defined in Section lEi. 5 .• 2. 

16.5.11 DFTI: Disconnecting from Timer Interrupts 

The DFTI FORTRAN subroutine disconnects a task from timer interrupts. 
It is issued as follows: 

isb 

lun 

CALL DFTI ([isb] ,[lun]) 

A 2-word int~ger array to which the subroutine status is 
returned. 

The logical unit number. 

the isb array has t&e standard meaning defined in Section16.5i2~ 

16.5.12 DI/DIW: Reading Several Contact Sense Fields 

The ISA standard DI/DIW FORTRAN subroutines read several l6-point 
contact sense fields. These calls are issued as follows: 

CALL (inm,icont,idata,isb, [lun]) 

inm 

The number of fields to be read. 

icont 

idata 

An integer array containing the initial point number of each 
field to be read. 

An integer array that is to receive the input data, 16 bits of 
contact data for each field read. 

16-23 



-_-:o.."---"",,....,._"~_==,_=-::-::~-=~-"'"="":''''o-::_=:~-=-:--_-''""''"--''''~----::"'''':'".,..._---:--''"'":·~: ___ ~_-_:_:_~_:=_o_==_,"__:"..""._'=_-~-_o:.::_~_-_.,._~..r_~_::.-"_-=_ _ _='""""~~"".-_=___--_ __:""~-c:-_=_~=~".-<~-"-.."...."._~~-"..._-:-_"!"~-=:-:-::-~-_-:-~_~ __ .:,...,~_~~="'~_~-~~~7"-::-=.~'"':'"-_,==-:=~, =~---::"'"""_.= .. "'_ . _- __ ~_~ . S'"~7"""" ~ 
- -

isb 

1un 

UNIVERSAL DIGITAL CONTROLLER DRIVER 

A 2-word integer array to which the subroutine status is 
returned. 

The logical unit number (ignored if present) • 

The isb array has the standard meaning defined in Section 16.5.2. 

16.5.13 DOL/DOLW: Latching or Unlatching Several Fields 

The ISA standard DOL/DOLW FORTRAN subroutines latch or unlatcl'1. one or 
more 16-point fields. These calls are issued as follows: 

CALL IDOL I (inm,icont,idata,imsk,[isb] ,[lun]) 

inm 

icont 

idata 

imsk 

isb 

1un 

DOLW 

The number of fields to be latched or unlatched. 

An integer array containing the initial point number of each 
16-point field. 

An integer array that specifies the points to be latched or 
unlatched; bit n of idata corresponds to point number icont + n; 
if the corresponding bit inimsk is set, the bit is changed; a 
bit value of 1 indicates latching, and 0 unlatching; each entry 
in the array specifies a string of 16 points. 

An lnteger array in which bits are set to indicate points whose 
state~ are to be changed in the corresponding idata bifs; each 
entry in the array specifies a 16-bit mask word. 

A 2-word integer array to which the subroutine status is 
returned. 

The logica119nit number. 

The isb array has the standard meaning defined in Section 16.5.2. 

16-24 

( 

( 



( 

( 

( 

UNIVERSAL DIGITAL CONTROLLER DRIVER 

16.5.14 DOM/DOMW: Pulsing Several Fields 

The ISA standard DOM/DOMW FORTRAN 
fields (I-shot digital output 
follows: 

subroutines pulse several 16-bit 
points). These calls are issued as 

CALL 100M I 
. DOMW 

(inm,icont, idata, [idx], [isb], [lun]) 

inm 

The number of fields to be pulsed. 

icont 

An integer array containing the initial point number of each 
16-point field. 

idata 

idx 

isb 

lun 

An integer array that specifies the points to be ~ulsed; bit n of 
idata corresponds to point number icont + n. 

A dummy argument 
Instrument Society 
calls. 

retained for compatibility with existing 
of America standard FORTRAN process control 

A 2-word integer array to which the subroutine status is 
returned. 

The logical unit number (ignored if present). 

The isb array h*s the standard meaning defined in Section 16.5.2. 

16.5.15 RCIPT: Reading a Contact Interrupt Point 

The RCIPT FORTRAN subroutine reads the state of a single contact 
interrupt point. It is issued as follow~: 

ipt 

CALL RCIPT (ipt,isb,[lun]) 

The number of the 
sequentially from 
interrupt module. 

point 
0, the 

to be 
first 

16-25 

read; 
point 

points 
on the 

are numbered 
first contact 



isb 

lun 

UNIVERSAL DIGITAL CONTROLLER DRIVER 

A2-word integer array to which the subroutine status is 
returned. 

The logical unit number (ignored if present). 

The isb array has the same basic meaning defined in Section 16.5.2. 
However, isb word 2 is set toone of the following values, 
representing the state of the point: 

Setting 

.FALSE. (0) 

.TRUE. (-1) 

Meaning 

Point is open 

Point is closed 

NOTE 

To increase throughput, the subroutines RDCS, 
ROOI, ROTI;, and RDWOdescribed in the following 
four sections do not issue~ the clea~ Event Flag 
directive until a buffer-empty condition is 
detected. The calling task, therefore, must 
avoid issuing a Wait-For directive until a 
buffer-empty is reported. 

16.5.16 RDCS: Read Contact Interrupt Change-of-State Data From 
Circular Buffer 

The ROCS FORTRAN subroutine reads contact interrupt data from ~a 
circular buffer that was specified in a CTOI call (see Section 
16.5.8). It does no actual input or output, but rather performs a 
point;"by-point scan of an interrupt entry in the buffer, returning the 
state of each point that has changed state as a logical value. The 
trigger event flag that was specified in the CTOI call is cleared when 
the "buffer empty" condition is detected. 

On the initial call to ROCS, the module number, module data, and 
change-of-state word of the next interrupt entry are read from the 
circular buffer and stored for subsequent reference. The subroutine 
then searches the entry change-of-state word until a nonzero point is 
encountered. The point number is computed and returned to the caller 
along with the state of the point. Scanning for points that have 
changed state resumes on the next call; all other points are bypassed. 
The next entry is automatically read when the caller has received all 
change-of~state information from the current entry. If a valid entry 
is not found, ipt is set negative and ict (if specified) is either 
assigned a ~value of Oor an overrun count maintained by the UOCII 
driver. Ifict is 0, no further entries remain. A nonzero value 
indicates that the driver received more data than could be stored in 
the buffer, and ict represents the number of entries that were 
discarded. 

16-26 

( 

( 



( 

( 

( 

.-. - - . -- ---~- -- -
-----------~ .. -.-

UNIVERSAL DIGITAL CONTROLLER DRIVER 

The RDCS call is issued as follows: 

ipt 

ivaI 

ict 

CALL RDCS (ipt, ivaI, [ict] ) 

A variable to which the digital input point number is returned; 
it may be set as follows: 

• ipt 0 if no valid entry is found (that is, no interrupt data 
currently in buffer, or overrun detected). One of the 
following values is returned to indicate the condition 
detected: 

-1 = Buffer empty 
-2 = Overrun detected 

• ipt =) 0 if the value indicated is a point number that has 
changed state; the state is returned to ivaI. 

A variable to which the state of the point is returned; it may be 
set as follows: 

• .FALSE. (0) if the point is open 

• .TRUE. (-1) if the point is closed 

. An integer variable for receIvIng the overrun count.. A nonzero 
positive count indicates that the driver was unable to store the 
number of interrupts indicated. 

16.5.17 RDDI: Reading Contact Interrupt Data from a Circular Buffer 

The RDDI FORTRAN subroutine reads contact interrupt data from a 
circular buffer that. was specified in a CTDI call (see Section 
16.5.8). It does no actual input or output, but rather performs a 
point-by-point scan of an interrupt entry in the buffer, returning the 
state of each point as a logical value. The trigger event flag .that 
was specified in the CTDI call is also cleared. 

On the initial call to RDDI, the module number and data of the next 
interrupt. entry are read from the circular buffer and stored for 
subSequent reference. The subroutine then sets the current data bit 
number n to 0, examines the state of data bit n, and converts bit n to 
a point number by the following formula: 

ipt = module. number * 16 + n 

16-27 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

On each subsequent call, n is incremented by one and then data bit n 
is examined in the stored module data. When n reaches 16, it is reset 
to 0 and an attempt is made to read the next interrupt entry from the 
circular buffer. If a valid entry is not found, iptis set negative 
and ict (if specified) is either assigned a value of 0 or an overrun 
count maintained by the UDCIl driver. If ict is 0, no further entries 
remain. A nonzero value indicates that the driver received more data 
than could be stored in the buffer, and ict represents the number of 
entries that were discarded. 

The RDOI call is issued as follows: 

ipt 

ivaI 

iet 

CALL RDDI (ipt,ival, [ict]) 

A variable to which the digital input point number is returned; 
it may be set as follows: 

• ipt 0 if no valid entry is found (that is, no interrupt data 
currently in buffer, or buffer empty). One of the following 
values is returned to indicate the condition detected: 

-l=Buffer empty 
-2=Overrun detected 

• ipt = 0 if the value indicated is a point number; the state is 
returned to ivaI 

A variable to which the state of the point is returned; it may be 
set as follows: 

• .FALSE. (0) if the point is open 

• .TRUE. (-1) if the point is closed 

A variable to which the overrun count may be returned; a nonzero 
positive count indicates that the driver was ~nable to store the 
number of entries indicated. 

16.5.18 ROTI: Reading Timer Interrupt Data from a Circular Buffer 

The ROTI FORTRAN subroutine z:eads timer interrupt data from a circular 
buffer that was specified in ~ CTTI call (see Section 16.5.9). It 
does no actual input or o~tput, but rather performs a scan of each 
entry in the buffer, returning the timer value for each call. The 
trigger event flag that was specified in the CTTI call is also 
cleared. 

When a timer. module interrupt occurs, the UDCll driver resets the 
count to an initial value, usually that specified in the iv array on 
the CTTI call. The initial value can be modified for a specific 
module by calling the subroutine SCTI (see Section 16.5.19). 

16-28 

c 

( 



( 

( 

UNIVERSAL DIGITAL CONTROLLER DRIVER 

The ROTI call is issued as follows: 

imod 

ivrn 

CALL ROTI (imod, i tm, [i vrn] ) 

A variable to which the module number is returned; it may be set 
as follows: 

• imod 0 if no valid entry is found (that is, no interrupt data 
currently in buffer, or buffer empty). One of the following 
values is returned to indicate the condition detected: 

-l=Buffer empty 
-2=Overrun detected 

• imod > 0 if the entry is valid, indicating a module number; 
the value of the timer module is returned in itm 

A variable to which the timer value is returned. 

A variable to which the overrun count may be returned; a nonzero 
positive count indicates that the driver was unable to store the 
number of values indicated. 

16.5.19 ROWO: Read Full Word of Contact Interrupt Data From Circular Buffer 

The ROWO FORTRAN subroutine reads a full word of contact interrupt and 
change-of-state data from the circular buffer that was specified in a 
CTOI call (see Section 16.5.8). It does no actual input or output, 
but rather performs a scan of each entry, .returning the state of a 
module and, optionally, the change-of-state data for each call. The 
trigger event flag specified in the call to CTOI is cleared. 

The call to ROWO is issued as follows: 

imod 

CALL ROWO (imod,ist,[ivrn],[icos]) 

A variable to which the module number is returned; it may be set 
as· follows: 

• imod 0 if no valid entry is found (that is, no interrupt data 
currently in buffer or overrun detected). One of the 
following values is returned to indicate the condition 
detected: 

-l=Buffer empty 
-2=Overrun detected 

16-29 



, __ ~=_""""=~--'--_=~"""'--=-',=--"C=-="'-"':':=,====~=-"",,="=~,=::-=-===_=·,,-'._==_===,,"-,,=--=,,---=--,==~~=~~"-.~===--"-""""="""'~~_---=-~~~_~ ____ ~~_=~~=~ 

ist 

ivrn 

icos 

--- - - -- -

UNIVERSAL DIGITAL CONTROLLER DRIVER 

A variable to which the module data is returned. 

A variable to which the overrun count may be returned; a nonzero, 
positive count iridicates that the driver was unable to store the 
number of entries indicated. 

A variable to which the change-of-state data is 
bit is set for each point that has changed state 
indicated by the "point open" (POP) or "point 
jumpers on the module. 

returned. One 
in the direction 

closed" (PCL) 

16.5.20 RSTI: Reading a Timer Module 

The RSTI FORTRAN subroutine reads a single timer module. It is issued 
as follows: 

imod 

isb 

lun 

CALL RSTI (imod,isb,[lun]) 

The module number of the timer to be read. 

A 2-word integer array to which the subroutine status is 
returned. 

The logical uni t number (ignored if present.). 

The isb array has the standard meaning defined in Section 16.5.2. 

16~5.21 SCTI: Initializing a Timer Module 

The SCTI FORTRAN subroutine sets a timer module to an initial value. 
It is issued as follows: 

CALL SCTI (imod, ivai, [isb] , (lun] ) 

imod 

The module number of the timer to be set. 

16-30 

( 

( 

( 



~~_~~=_ - - -- ~"==-,:~~=,~",:"=--:--,,,:=,~=,,,,=,::-_"'O",,--=",-,:,.-'-·=o:::::-="===-=-:.-=~--:::""~=_""-===_-:o~::"_"'~_=~.;::.==.=~=c--=--==-.:~---.::.:::"""===-","::=;.~~...:.~,,---= .. ;:~_,,,,==--~,,~~~.~","=,=-,,-~~~,.;"_~.~_ 

( 

( 

( 

-~-------.~---~---------- ------ ---~-- --.---------~---,--------- - ---.------- ~-

UNIVERSAL DIGITAL CONTROLLER DRIVER 

ival 

The initial timer value. 

isb 

A 2-word integer array to which the subroutine status is 
returned. 

lun 

The logical unit number. 

The isb array has the standard meaning defined in Section 16.5.2. 

Calls to initialize a counter are valid only if the issuing task has 
connected a buffer for receiving counter interrupts by a call to CTTI. 

16.6 STATUS RETURNS 

Table 16-6 lists the error and status conditions that are returned by 
the UOCll driver described in this chapter: 

Code 

IS.SUC 

IS.PND 

IE. ABO 

IE.BAD 

Table 16-6 
UOCll Status Returns 

Reason 

Successful completion 

The oper*tion specified in the QIO directive w*s 
completed successfully. The second word of the I/O 
status block can be examined to determine the number 
of samples completed or converted. 

I/O request pending 

The operation specified in the QIO directive has not 
yet been executed. The I/O status block is fiiled 
wi th Os. 

Operation aborted 

The specified I/O operation was canceled with 10.KIL 
while still in the I/O queue. 

Bad parameter 

An illegal specification was supplied for one or more 
of the device-dependent QIO parameters (words 6-11). 
For the UDCll, this code indicates an illegal channel 

.. number or gain code for the ADU01. 

(continued on next page) 

16-31 



Code 

IE.BYT 

IE.CON 

IE.DNR 

IE.IEF 

IE.IFC 

IE.MOD 

IE.OFL 

UNIVERSAL DIGITAL CONTROLLER DRIVER 

Table 16-6 (Cont.) 
UDCll Status Returns 

Reason 

Byte-aligned buffer specified 

Byte alignment was specified for 
word alignment is legal for the 
the length of a buffer was not 
bytes. 

Connect error 

a buffer but only 
UDC12. Alternately, 
an even number of 

The task attempted to connect to contact or timer 
interrupts, but the interrupt was already connected 
to another task. Only one task can be connected to a 
timer or contact interrupt. Alternately a task that 
was not connected attempted to disconnect from 
cDntact or .timer interrupts. 

Device not ready 

The physical device unit specified in the QIO 
directive was not ready to perform the desired I/O 
operation. For the ADU01, this code is returned if 
an interrupt time out occurred or the power failed. 

Invalid event flag number 

An invalid trigger event flag number was specified in 
a connect function. 

Illegal function 

A function code was included in an I/O request that 
is illegal for the UDCll,. or a request to initialize 
a counter (IO.ITl) WaS issued by a task that was not 
connected to receive counter interrupts. The 
function may also refer to a UDCll feature that- was 
not specified at system generation. 

Invalid Doell module 

On latching output, your task specified a starting 
point number that was not legal (defined at system 
generation) or was not evenly divisible by 16.' 

Device off line 

The phy~ical device unit associated with the LUN 
specified in the QIO directive was not on line. When 
the system was booted, a device check indicated that 
this physical device unit was not in the 
configuration. 

(continued on next page) 

16-32 

( 

( 

( 



( 

( 

Code 

IE.PRI 

IE.SPC 

UNIVE~SAL DIGITAL CONTROLLER DRIVER 

Table 16-6 (Cont.) 
UDCll Status Returns 

Reason 

Privilege violation 

The task that issued the request was not privileged 
to execute that request. For the UDCll, this code 
indicates that a checkpointable task attempted to 
connect to timer or contact interrupts. 

Illegal address space 

The specified control, data, or interrupt buffer was 
~artially or totally outside the address space of th~ 
Issuing task. Alternately, .the interrupt buffer was 
too small for a single data entry (six words for 
timer interrupts and seven words for contact 
interrupts) ,or a byte count of 0 was specified. 

FORTRAN interface values for these status returns are presented in 
Section 16.6.1. 

16.6.1 FORTRAN Interface Values 

The values listed in Table 16-7 are returned in FORTRAN subroutine 
calls. 

Status Return 

IS.SUC 
IS. PND 
IE.ABO 
IE .ADP 
IE.BAD 
IE.BYT 
IE.DAO 
IE.DNR 
IE.IEF 
IE.IFC 
IE.ILU 
IE.MOD 
IE.ONP 
IE.PRI 
IE.RSU 
IE.SDP 
IE.SPC 
IE.ULN 
IE. UPN 

Table 16-7 
FORTRAN Interface Values 

16-33 

FORTRAN Value 

+01 
+00 

+315 
+101 
+301 
+319 
+313 
+303 
+100 
+302 

+99 
+321 
+305 
+316 
+317 
+102 
+306 

+08 
+04 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

16.7 PROGRAMMING HINTS 

This section contains important information about programming the 
UDCll driver described in this chapter. 

16.7.1 Numbering Conventions 

Numbering is relative. Module numbers start at 0, beginning with the 
first module of a given type. 

Channel numbers also star.t at 0, with channel 0 as the first channel 
on the first module of a given .type. For the ADUOl, channel 8 is the 
first channel on the second analog output .odrile. 

Each IAD-IA module installed in an ICSl1 subsystem occupies 120 
channels (regardless of the number of multiplexers installed). In 
this case ,channel 120 is the fi·rst channel 6n the second IAD-IA A/D 
converter. 

Point numbers start at 0, with point 0 as the 
module of a given type. For instance, point 
of the second contact sense module (that is, 
1) • 

16.7.2 Processing Circular Buffer Entries 

first point on the first 
20(8} is the first point 
relative module number 

Circular buffer entries should be processed in the £ollowing sequence. 

Execute a WAITFOR system directive using the 
flag specified in the subroutine called 
circular buffer (CTTI 6r CTDl). 

trigger eVEmt 
to connect the 

2. Repeatedly call the appropriate subroutine to read the 
circular buffer until all entries have been obtained and ipt 
indicates that the buffer is empty (-1). 

3. Perform any other processing and return to step 1. 

16-34 

( 

( 



( 

( 

( 

CHAPTER 17 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

17.1 INTRODUCTION 

The LPS11 and AR1l Laboratory Peripheral Systems are modular, 
real-time subsystems that acquire or output laboratory analog data. 
(Laboratory Peripheral Systems drivers are not supported on 
RSX-11M-PLUS systems.) Table 17-1 compares the LPS1l with the AR11. 

Table 17-1 
Laboratory Peripheral Systems 

Analog-to-Digital Conversion 
(wi th Sample and Hold 
Circuitry) 

Programmable Real-Time Clock 

Digital-to-Analog Output 

Display Control 

Digital I/O Option 

LPSll 

12 bits of precision 
l6-channel multiplexer 
with gain ranging 

Maximum of 64 channels 
without gain ranging 

Yes 

12 bits of precISIon 
10 channels (includ
ing display) 

4096 by 4096 dot matrix 

16 digital points 
and programmable 
relays 

ARll 

10 bits of precision 
l6-channel multiplexer 
without gain ranging 

Yes 

10 bits of precision 
2 channels (including 
display) 

1024 by 1024 dot matrix 

16 digital points 
(available wi th 
DRll-K option) 

At system generation, you can specify the following: 

• The number of A/D channels 

• The presence or absence of the gain-ranging option (LPSAM-SG) 
(LPS11 only) and the polarity of each channel (un i- or 
bipolar) 

• The presence or absence of the external D/A option (LPSVC and 
LPSDA), and if present, the number of D/A channels 

• The clock preset value 

17-1 



--- ---- ---
-. ------ --~-- ~~~- -'~-~-~~-----.-- ---. 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

17.1.1 AR11 Laboratory Peripheral System 

The ARll is a I-module, real-time analog subsystem that interfaces to 
the PDP-ll family of computers by a "hex" small peripheral controller 
slot. The system is a subset of the LPSll and, as such, enjoys the 
same degree of flexibility. The ARll includes a 16-channel, lO-bit 
A/D converter with sample-and-hold, a programmable real-time clock 
with one external input, and a display control with two lO-bit D/A 
converters. 

17.1.2 LPS11 Laboratory Peripheral System 

The LPSll is a high-performance, modular, real-time subsystem with the 
flexibility of serving a variety of applications, including biomedical 
research, analytical instrumentation, data collection and reduction, 
monitoring, data logging, industrial testing,engineeririg, and 
technical education. The basic subsystem has an .easy inte·rface with 
external instrumentation and includes a l3-bit A/D converter, a 
programmable real-time clock, with two Schmitt triggers, a display 
controller with two 12-bit D/A converters, and a 16-bit digital I/O 
option. Up to nine different option types may be added to the basic 
package. 

17.2 GET LUN INFORMATION MACRO 

If a Get Lun Information system directive is issued fora LUN 
associated with a Laboratory Peripheral System, word 2 (the first 
characteristics word) contains all Os words 3 and 4 are undefined,. and_ 
word 5 contains a 16~bit buffer preset value that controls the rate of 
the real-time clock interrupts, as explained in Section 17.6.1. 

17.3 010 MACRO 

This section summarizes standard and device-specific 010 functions for 
the Laboratory Peripheral System drivers. 

17.3.1 Standard 010 Function 

Table 17~2 lists the standard function of the 010 macro that i~ valid 
for the Laboratory Peripheral Systems. 

Table 17-2 
Standard 010 Function for 

Laboratory Peripheral Systems 

. Format Function 

OIO$C IO.KIL,.w. Cancel I/O requests 

IO.KIL cancels all queued and in-progress I/O requests. 

17-2 

( 

( 



( 

( 

( 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

17.3.2 Device-Specific QIO Functions (Immediate) 

Except for IO.STP (see Section 17.3.4), all device-specific functions 
of the QIO macro that are valid for the Laboratory Peripheral Systems 
are either immediate or synchronous. Each immediate function performs 
a complete operation, whereas each synchronous function simply 
initiates an operation synchronized to the real-time clock. Table 
17-3 lists the immediate functions. 

Table 17-3 
Device-Specific QIO Functions for the 

Laboratory Peripheral Systems (Immediate) 

Format Function 

QIO$C IO.LED, ••• ,<int,num> DISPLAY number in LED lights 
(LPSll only) 

QIO$C IO.REL, ••• ,<rel,pol> 

QIO$C IO.SDI, ••• ,<mask> 

LATCH output relay (LPSII only) 

READ digital input register 

QIO$C IO.SDO, ••• ,<mask,data> WRITE digital output register 

int 

The 16-bit signed binary integer to display. 

num 

The LED digit number where the decimal point is to be placed. 

reI 

The relay number (0 or 1). 

pol 

The polarity (0 for open, nonzero for closed). 

mask 

The mask word. 

data 

The data word. 

The following subsections describe the functions listed above. 

17-3 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

17.3.2.1 IO.LED - Display" l6-bit Signed Integer - This LPSll-only 
function displays a l6-bit signed binary integer in the light-emitting 
diode (LED) lights. The number is displayed with a leading blank 
(positive number) or minus sign (negative number), followed by five 
non-zero-suppressed decimal digits that represent the magnitude of the 
number. LED digits are numbered from right "to left, starting at 1. 

The number may be displayed with or without a decimal point. If the 
parameter num is a number from Ito 5, then the corresponding LED 
digit is displayed with a decimal point to the right of the digit. If 
the LED digit number is not a number from 1 to 5, then no decimal 
point is displayed. 

17.3.2.2 IO.REL - Open or Close Relays - This LPSll-only function 
opens ot: closes the programmable relays in the digital I/O status 
register. Approximately 300 milliseconds are required to open or 
close a relay. The driver imposes no delays when executing this 
function. Thus it is the responsibility of your task to ensure that 
adequate time has elapsed between the opening and closing of a relay. 

17.3.2.3 IO.SDI Read Data from Digital Input Register - This 
function reads data qualified by a mask word from the digital input 
register. The mask word contains a 1 in each bit position from which 
data is "to be read. All other bits are zero filled and the resulting 
value is returned in the s~cond I/O status word. 

The operation performed is: 

RETURN VALUE=MASK.AND.INPUT REGISTER 

17.3.2.4 IO.SDO - Write Data into Digital Output Register -. This 
function writes data qualified by a mask word into the digital output 
register. The mask word contains a 1 in each bit position that is to 
be written. The data word specifies the data to be written in 
corresponding bit positions. 

The operation performed is: 

NEW REGISTER=<MASK.AND.DATA).OR.«.NOT.MASK).AND.OLD REGISTER) 

17.3.3 Device-Specific QIO Functions (Synchronous) 

Table 17-4 lists the synchronous, device-specific functions of the QIO 
macro that are valid for the Laboratory Peripheral Systems. 

17-4 

(_ i 

c 

( 



( 

( 

( 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

Table 17-4 
Device-Specific QIO Functions for the 

Laboratory Peripheral Systems (Synchronous) 

Format 

QIO$C IO.ADS, ••• ,<stadd,size,pnt, 
ticks,bufs,chna> 

QIO$C IO.HIS, ••• ,<stadd,size,pnt, 
ticks,bufs> 

QIO$C IOAMCA, ••• ,~stadd,size,pnt, 
. ticks,bufs,chnd> 

QIO$C IO.MCI, ••• ,<stadd,size,pnt, 
ticks,bufs,mask> 

QIO$C IO.MDO, ••• ,<stadd,size,pnt, 
ticks,bufs,mask> 

stadd 

Function 

INITIATE A/D sampling 

INITIATE" histogram sampling 
(LPSll only.) 

INITIATE C/A output 

INITIATE digital input 
sampling 

INITIATE digital output 

The starting address of the data buffer (must be on a word 

size 

pnt 

ticks 

bufs 

boundary) • 

The data buffer size in bytes (must be greater than 0 and a· 
multiple of four bytes). 

The digital point numbers (byte 0 - starting 
number; byte 1 - input point number to 
Points are numbered from 0 to IS, allowing a 
to be specified. 

input/output point 
stop the function). 
maximum of 16 points 

The number of real-time clock ticks between samples or data 
transfers, as appropriate. 

The number of data buffers to transfer. 

17-5 



chna 

chnd 

mask 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

The analog-to-digital conversion specification. Byte 0 contains 
the starting channel number. For LPSll this must be in the range 
of 0-63; for ARll the range is 0-15. If the LPSll gain-ranging 
option is present, the channel number must be in the range of 
0-15, and bits 4 and 5 specify the gain code. 

Byte 1 contains the number of consecutive analog.,..to-digital 
channels to sample. For LPSll this must be in the range of 1-64; 
for ARll or the LPSII with gain-ranging, the range is 1-16. 

The digital-to-analog output channel specification. Byte 0 
contains the starting channel number. For LPSll this must be in 
the range of 0-9; for the ARll the range is 0-1. 

Byte 1 contains the number of consecutive channels to be output. 
For LPSll this must be in the range of 1-10; for ARllthe range 
is 1-2. 

The mask word. 

The following subsections describe the functions listed above. 

17.3.3.1 IO.ADS Read AID Channels at Timed Intervals - This 
function reads one or more AID channels at precisely timed intervals, 
with or without auto gain-ranging. If you specify two -or more 
channels, all are sampled at approximately the same time, once per 
interval. 

Sampling may be started when the request is dequeued or when a 
specified digital input point is set. A digital output point may 
optionally be set when sampling is started. Sampling may be 
terminated by a program request (IO.STP or IO.KIL), by the clearing of 
a digital input point, or by the collection of a specified number of 
buffers of data. 

All input is double buffered with respect to your task. Each time a 
half buffer of data has been collected, your task is notified (by the 
setting of an event flag) that data is available to be processed while 
the driver fills the other half of the buffer. If your task does not 
respond quickly enough, a data overrun may result. This occurs if the 
driver attempts to put another data item in the task's buffer when no 
space is available. 

The subfunction modifier bits are identical to those described in 
Section 17.3.3.2. In addition, setting bit 3 to a 1 means LPSll auto 
gain-ranging is requested. Bit 3 is ignored for the ARll. If bits 7 
and 6 are both set to 1, the digital input point and digital output 
point number are assumed to be the same. 

17-6 

( 

( 

(-



( 

( 

( 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

If your task uses LPSII auto gain-ranging, the LPSAM-SG hardware 
option must be present and specified at system generation. The auto 
gain-ranging algorithm causes a channel to be sampled at the highest 
gain at which saturation does not occur. If the gain-ranging option 
is present and auto gain-ranging is not specified in bit 3 of the 
subfunction code; then bits 4 and 5 of the starting channel number 
specify the gain at which samples are to be converted. Gain codes are 
as follows: 

Code 

00 
01 
10 
11 

Gain 

1 
4 

16 
64 

Data words written into your task's buffer contain the converted value 
in bits 0-11 and the gain code, as shown below, in bits 12-15: 

Code 

0000 
0001 
0010 
0011 

Gain 

1 
4 

16 
64 

If the LPSAM-SG option is preserit, then each channel must have been 
defined as uni- or bipolar at system generation. In addition, if 
bandwidth filtering is enabled (and so indicated at system generation 
time), a software delay is imposed by the driver when the multiplexer 
channel is changed. This delay must have been specified at system 
generation. See the LPSII Laboratory Peripheral System User's Guide. 

The ARII always returns data that is equivalent to an LPSII gain of 1. 
Channel polarity must always be specified for the ARII at system 
generation, because this operation is software selectable at the time 
sampling is initiated. 

17.3.3.2 IO.HIS Measure Elapsed Time Between Events - This 
LPSll-only fuhction measures the elapsed time between a series of 
events by means of Schmitt trigger 1. Each time a sample is to be 
taken, a counter is incremented and Schmitt trigger lis tested. If 
it has fired, the counter is written into your task's buffer and reset 
to O. Thus, the data item returned to your task is the number of 
sample intervals between Schmitt trigger firings. 

If the counter overflows before Schmitt trigger 1 fires, then a 0 
value is written into your task's buffer. Sampling may be started and 
stopped as described in Section 17.3.3.1. All input i~ double 
buffered with respect to your task. 

The subfunction .odifier bits appear below. A setting of 1 indicates 
the action listed in the right-hand column. 

17-7 



Bit 

0-3 

4 

5 

6 

7 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

Meaning 

Unused 

-Stop on number of buffers 

Stop on digital input point clear 

Set digital output point at start of operation 

Start on digital input point set (a 0 
specification means star_t immediately) • Points 
are numbered fr·om 0 to 15, allowing a maximum of 
16 points to be specified. 

17.3.3.3 IO.MDA - Write Data to D/A Converter at Timed Intervals
This function writes data into one or more external D/A converters at 
precisely timed intervals. If two or more channels are specified, all 
are written at approximately the same time, once per interval. Output 
may be start~d or stopped as described in Section 17.3.3.1. All 
output is double buffered with respect to your task. 

D/A converters 0 and 1 correspond to the X and Y registers of the 
display control. Note that there are no specific driver functions to 
set the display status register. This is reserved for your task. D/A 
converters 2 through 9 correspond to the LPSll, LPSDA external D/A 
option. 

The subfunction modifier bits are identical to those .described in 
Section 17.3.3.2. 

·17.3.3.4 IO.MDI - Read Data from Input Register at Timed Interva1s
This function provides the capability to read data quali.fied by a mask 
word from the digital input register at precisely timed intervals. 
Sampling may be started and stopped as described in Section 17.3.3.1. 
All input is double buffered with respect to your task. 

The. mask word contains a 1 in each bit position from which data is to 
be read. All other bits are O. 

The subfunction modifier bits are identical to those described in 
Section 17.3.3.2. 

17.3.3.5 IO.MDO - Write Data into Output Register at Timed Intervals 
- This function writes data qualified by a mask word into the digital 

output register at precisely timed intervals. Output may be started 
and stopped as described in Section 17.3.3.1. All output is double 
buffered with respect to your task. 

The subfunction modifier bits are identical to those described in 
Section 17.3.3.2. 

17-8 

( 

( 



( 

( 

( 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

17.3.4 Device-Specific QIO Function (IO.STP) 

Table 17-5 lists the device-specific function of the QIO macro, which 
is valid for the Laboratory Peripheral Systems. 

stadd 

Table 17-5 
Device-Specific QIO Function for the 

Laboratory Peripheral Systems (IO.STP) 

Format Function 

QIO$C IO.STP, ••• ,<STADD> STOP in-progress request 

The buffer address of the function to stop (must be the same as 
the address specified in the initiating request). 

17.3.4.1 IO.STP - Stop In-Progress Synchronous Request - IO.STP stops 
a single, in-progress synchronous request. It is unlike IO.KIL in 
that it cancels only the specified request, whereas IO.KIL cancels all 
requests. 

17.4 FORTRAN INTERFACE 

A collection of FORTRAN-callable subroutines provide FORTRAN programs 
access to the Laboratory Peripheral Systems. These routines are 
described in this section. 

Some of these routines may be called from FORTRAN as either 
subroutines or functions. All are reentrant and may be placed in a 
resident library. 

17.4.1 The isb Status Array 

The isb (I/O status block) parameter is a 2-word integer array that 
contains the status of the FORTRAN call, in accordance with ISA 
convention. This array serves two purposes: 

1. It is the 2-word I/O status block to which the driver returns 
an I/O status code on completion of an I/O operation. 

2. The first 
FORTRAN 
exception 
a status 
+2. 

word of the isb receives a status code from the 
interface in ISA-compatible format, with the 
of the I/O pending condition, which is indicated by 
of O. The ISA standard code for this condition is 

The meaning of its contents varies, depending on the FORTRAN call that 
has been executed, but Table 17-6 lists certain general principles 
that apply. The sections describing individual subroutines provide 
more details. 

17-9 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

Contents 

isb(l) = 0 

isb(l) 

isb (1) 

1 

3 

3 < = isb(l) < 300 

isb(l) > 300 

Table 17-6 
Contents of First Word of isb 

Meaning 

Operation pending; I/O in progress 

Successful completion 

Interface subroutine unable to generate QIO 
directive, or illegal time or buffer value 

QIO directive 
code = -(isb(l) 

rejected 
3) 

and actual error 

Driver rejected request and actual error 
code = -(isb(l) - 300) 

FORTRAN interface routines depend on asynchronous system traps to set 
their status. Thus, if the trap mechanism is disabled, proper status 
cannot be set. 

17.4.2 Synchronous Subroutines 

RTS, DRS, HIST (LPSll only), SDO, and SDAC are FORTRAN subroutines 
that initiate synchronous functions. When you use the appropriate 
Laboratory Peripheral System driver and the FORTRAN program, they 
communicate by means of a caller-specified data buffer of the 
following format: 

Buffer header Current buffer pointer 

Address of second I/O status word 

Address of end of buffer + 1 

Address of start of data 

Start of data 

Half buffer 

End of buffer 

ZK-008-81 

The buffer header is initialized when the synchronous function 
initiation routine is called. The length of the buffer must be even 
and greater than or equal to 6. An even length is required so that 
the buffer is exactly divisible into half buffers. 

The drivers perform double buffering within the half buffers. Each 
time a driver fills or empties a half buffer, it sets a event flag 
that you specified to notify your task that more data is available or 
needed. Your task responds by putting more data into the buffer or by 
removing the data now available. 

If your task does not respond quickly enough, a data overrun may 
result. This occurs if the driver attempts to put another data item 
in your task's buffer when no space is available (that is, the buffer 
is full of data), or if the driver attempts to obtain the next data 
item from your task's buffer when none is available (that is, the 
buffer is empty). 

17-10 

( 

( 

( 



( 

( 

( 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

All synchronous functions can be 
specified digital input point 
pushed) • 

initiated immediately or when a 
is set (that is, a start button is 

They can be terminated by any combination of a program request, the 
processing of the required number of full buffers of data, or the 
clearing of a specified digital input point (that is, a stop button is 
pushed) • A digital output point may also optionally be set at the 
start of a synchronous function. You could use this, for example, as 
a signal to start a test instrument. 

17.4.3 FORTRAN Subroutine Summary 

Table 17-7 lists the FORTRAN interface subroutines supported for the 
Laboratory Peripheral Systems under RSX-llM. Sand F indicate whether 
they can be called as subroutines or functions, respectively. 

Table 17-7 
FORTRAN Interface Subroutines for Laboratory Peripheral Systems 

Subroutine 

ADC 

ADJLPS 

ASARLN 

ASLSLN 

CVSWG 

DRS 

HIST 

IOIR 

IOOR 

IRDB 

LED 

LPSTP 

PUTD 

RELAY 

RTS 

SDAC 

SDO 

Function 

Read a single AID channel (F,S) 

Adjust buffer pointers (S) 

Assign a LUN to ARO: (S) 

Assign a LUN to LSO: (S) 

Convert a switch gain AID value to floating point (F) 

Initiate synchronous digital input sampling (S) 

Ini tiate histogram sampling (S) (LPSll only) 

Read digital input (F,S) 

Write digital output (F,S) 

Read data from a synchronous function input buffer 
(F, S) 

Display number in LED lights (S) (LPSll only) 

Stop an in-progress synchronous function (S) 

Put data into a synchronous function output buffer (S) 

Latch an output relay (S) (LPSll only) 

Initiate synchronous AID sampling (S) 

Initiate synchronous DIA output (S) 

Initiate synchronous digital output (S) 

The following subsections briefly describe the function and format of 
each FORTRAN subroutine call. 

17-11 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

17.4.4 ADC: Read a Single AID Channel 

The ADC FORTRAN subroutine or function reads a single converted value 
from an AID channel. If the gain-ranging option is present in the 
LPSII hardware, the channel may be converted at a specific gain or the 
driver can selec~ the best gain (the gain providing the most 
significance). The ~onverted value is returned as a normalized 
floating-point number. The call is issued as follows: 

ichan 

var 

CALL ADC (ichan, [var], [igain], [isb]) 

The AID channel to be converted. 

A floating-point variable that receives the converted value in 
floating-point format.· 

igain 

isb 

The gain at which the specified AID channel is to be converted. 
The default is L If specified, igain may have the following 
values: 

igain 

o 

1 

2 

3 

4 

Gain 

Auto gain-ranging. (driver 
provides most $ignificance) 

1 

4 

16 

64 

The ARII driver always uses a gain of 1. 

, 

selects gain that 

A 2-word integer array to which the subroutine status is 
returned. 

The isb array has the standard meaning described in Section 17.4.1. 

When your 
function 
negative, 
17.5.3). 
from the 

task uses the function form of the call, the value of the 
is the; same as that returned in var. If this value is 
an error has occurred during the AID conversion (see Section 
Otherwise, this value is a floating-point number calculated 

following formula: 

var = (64 * converted value) I conversion gain 

17-12 

( 

( 



( 

( 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

17.4.5 ADJLPS: Adjust Buffer Pointers 

The ADJLPS FORTRAN subroutine adjusts buffer pointers for a buffer 
that a laboratory peripheral system driver is either synchronously 
filling or emptying. Your task should call it when your task uses 
indexing for direct access to the data in a buffer. 

When data in a buffer is to be processed only once, your task may use 
the IRDB and PUTD routines. In some cases, however, it is useful to 
leave data in the buffer until processing is complete. Your task can 
process the data directly, and then call ADJLPS to free half the 
buffer. Using the routine for synchronous output functions is quite 
similar. When a half buffer of data is ready for output, ADJLPS is 
called to make the half buffer available. 

When your task uses ADJLPS for either input or output, care must be 
taken to insure that the program stays in sync with the driver. If 
the program loses its position with respect to the driver, the 
function must be stopped and restarted. An attempt to over-adjust 
causes a 3 to be returned in isb(l) and no adjustment to take place. 

The call is issued as follows: 

ibuf 

iadj 

isb 

CALL ADJLPS (ibuf,iadj,[isb]) 

An int~ger array that was previously specified in a synchronous 
input or output function. 

The adjustment to be applied to the buffer pointers. For an 
input function, this specifies the number of data values that 
have been removed from the data buffer. For an output function, 
this specifies the number of data values that have been put into 
the data buffer. 

A 2-word integer array to which the subroutine status is 
returned. 

The isb array has the standard meaning described in Section 17.4.1. 

17.4.6 ASLSLN: Assign a LON to LSO: 

The ASLSLN FORTRAN subroutine assigns a logical unit number (LUN) to 
the LPS11. It must be called prior to executing any other Laboratory 
Peripheral Systems FORTRAN function or subroutine. Subsequent calls 
to other interface routines then implicitly reference the LPS11 with 
the LUN assigned. 

17...,13 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

The call is issued as follows: 

lun 

iun 

CALL ASLSLN (lun,[isb],[iun]) 

The number of the LUN to be assigned to LSO: 

A .2-word integer array to which the subroutine status is 
returned. 

The unit number of the device to be assigned (defaults to O· if 
not specified) • 

The isb array has the standard meaning described in Section 17.4.1. 

17.4.7 ASARLN: Assign a LUN to ARO: 

The ASARLN FORTRAN subroutine a$signs a logical unit number (LUN) .to 
the ARl1. It must be called prior to executing any other laboratory 
peripheral system FORTRAN function or subroutine. Subsequent calls to 
other interface routines then implicitly reference the ARll with the 
LUN assigned. . 

The call is issued as follows: 

1un 

isb 

iun 

CALL ASARLN(lun, [isb], [iun]) 

The number of the LUN to be assigned to ARO:. 

A 2-word integer array to which the subroutine status is 
returned. 

The unit number of the device to.be assigned (defaultlll to 0 if 
not specified). 

The isp array has the standard meaning described in Section 17.4.1. 

17-14 

( 

( 



( 

( 

( 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

17.4.8 CVSWG: Convert a Switch Gain AID Value to Floating-point 

The CVSWG FORTRAN subroutine converts an AID value from a synchronous 
AID sampling function to a floating-point number. Each data item 
returned by a laboratory peripheral system driver consists of a gain 
code and converted value packed in a single word (see Section 
17.3.3.1). This form is not readily usable by FO.RTRAN, but is much 
more efficient than converting each value to floating point in the 
driver. This routine unpacks the gain code and value, and then 
converts the result to a floating-point number. Your task can use it 
with the IRDB routine (see Section 17.4.13). 

The call is issued as follows: 

ivaI 

CVSWG (ivaI) 

The value to be converted to floating point. Its format must be 
that returned by a synchronous AID sampling function. The 
conversion is performed according to the following formula: 

var = (64 * converted value)/conversion gain 

For the various gain codes, 

var = x * converted value 

as shown below: 

Gain 

1 

4 

16 

64 

x 

64 

16 

4 

1 

17.4.9 DRS: Initiate Synchronous Digital Input Sampling 

The DRS FORTRAN subroutine reads data qualified by a mask word from 
the digital input register. at precisely timed intervals. Sampling may 
be started or stopped as for RTS (see Section 17.4.18) and all input 
is double buffered with respect to your task. Data may be 
sequentially -retrieved from the data buffer by the IRDB routine (see 
Section 17.4.13), or the ADJLPS routine (see Section 17.4.5). You may 
use either for direct access to the input data. The call is issued as 
follows: 

CALL DRS (ibuf,ilen,imode,irate,iefn,imask,isb, [nbuf], 
[istart] , [istop] ) . 

17-15 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

ibuf 

An integer array that is to receive the input data values. 

ilen 

The length of ibuf (must be even and greater than or equal to 6). 

imode 

irate 

iefn 

The start, stop, andsainpling mode. Its value is encoded by 
adding together the appropriate function selection values shown. 
below. 

Function 
Selection 
Value 

128 

64 

32 

16 

Meaning 

Start on digital input point set 

Set digital output point at start 

Stop on digital input point clear 

Stop on number of buffers 

Thus, a value of 192 for imode specifies: 

• The sampling is to start when a specified digital input point 
is set. 

• A digital output point is to be set when sampling is started. 

• Sampling is stopped by a program request. 

A 2-word integer array that specifies the time interval between 
di~ital input samples. The first word specifies the interval 
unIts as follows: 

irate(l) Unit 

1 Real-time clock ticks 

2 Milliseconds 

3 Seconds 

4 Minutes 

The second word specifies the inter~al magnitude as a 16-bit 
unsigned integer. 

The number of the event flag that is to be set each time a half 
buffer of data has been collected. 

17-16 

( 

( 



( 

( 

( 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

imask 

isb 

nbuf 

The digital input points to be read. 

A 2-word integer array to which the subroutine status is 
returned. 

The number of buffers of data to be collected. It is needed only 
if a function selection value of 16 has been added into imode. 

istart 

The digital input pointer number to use to trigger sampling, or 
the digital output point number to set when sampling is started, 
or both. It is needed only if a function selection value of 128 
or 64 has been added into imode. 

istop 

The digital input point number to use to stop sampling. It is 
needed only if a function selection value of 32 has been added 
into imode. 

When sampling is in progress, the first word of the isb array is zero 
and the second word contains the number of data values currently in 
the buffer. 

17.4.10 HIST: Initiate Histogram Sampling (LPSll only) 

The HIST FORTRAN subroutine measures the elapsed time between a series 
of events with Schmitt trigger 1. 

Each time a sample is to be taken, a counter is incremented and 
Schmitt trigger 1 is tested. If it has fired, then the counter is 
written into your task's buffer and the counter is reset to O. Thus 
the data returned to your task is the number of sample intervals 
between Schmitt trigger firings. If the counter overflows before 
Schmitt trigger 1 fires, a 0 value is written into your task's buffer. 
Sampling may be started and stopped as for RTS (see Section 17.4.18) 
and all input is double buffered with respect to your task. The call 
is issued as follows: 

ibuf 

CALLHIST (ibuf,ilen,imode,irate,iefn,isb,[nbuf], 
[istart] , [istop] ) 

An integer array that is to receive the input data values. 

17-17 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

ilen 

The length of ibuf (must be even and greater than or equal to 6). 

imode 

The start, stop, and sampling mode. Its value is encoded by 
adding the appropriate function selection values shown below: 

Function 
Selection 
Value 

128 

64 

32 

16 

Meaning 

Start of digital input point set 

Set digital output point at start 

Stop on digital input point clear 

Stop on number of buffers 

irate 

iefn 

isb 

nbuf 

A 2-word integer array that specifies the time interval between 
samples. The first word specifies the interval units as follows: 

irate (1) 

1 

2 

3 

4 

Unit 

Real-time clock ticks 

Mill i seconds 

Seconds 

Minutes 

The second word specifies the interval 'magnitude asa 16-bit 
signed integer. 

The number of the event flag that is to be set eacht:ime a half 
buffer of data has been collected. 

A 2-word integer array to which the subroutine status is 
returned. 

The number of buffers of data to be collected. It is needed only 
if a function selection value of 16 has been added into imode~ 

17-18 

( 

( 



( 

( 

( 

- ~- _. ~ .. _. ,._-
--------_._ .. ------------ .'--'--'~~=--------. 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

istart 

istop 

The digital input point number to use to trigger sampling or the 
digital output point number to set when sampling is started, or 
both. It is needed only if a function selection value of 128 or 
64 has been added into imode. 

The digital input point number to use to stop sampling. It is 
needed only if a function selection value of 32 has been added 
into imode. 

The isb array has the standard meaning described in Section 17.4.1. 

When sampling is in progress, the first word of the isb array is 0 and 
the second word contains the number of data values currently in the 
buffer. 

17.4.11 IDIR: Read Digital Input 

The IDIR FORTRAN subroutine or function reads the digital input 
register as an unsigned binary integer, or as four binary-coded 
decimal (BCD) digits. In the latter case, the BCD digits are 
converted to a binary integer before the value is returned to the 
caller. The call is issued as follows: 

imode 

ivaI 

isb 

CALL IDIR (imode,[ival],[isb]) 

The mode in which the digital input register is to be read. If 
imode equals 0, then the digital input register is read as four 
BCD digits and converted to a binary integer. Otherwise, it is 
read as a l6-bit unsigned binary integer. 

A variable that receives the value read. 

A 2-word integer array to which the subroutine status is 
returned. 

The isb array has the standard meaning described in Section 17.4.1. 

When your task uses the function form of the call, the value of the 
function is the same as that returned in ivaI. 

17-19 



_-"'_"====-"P:"'-"""''''''C.'':''',,,"-''C=:''-='''--.. ~"-~"'=::"=-'">:="==~~_'''''='::="'''''''~",,'''''''''~___ -"",~-"==~.....\!!'",,,,,-=-....:o.=,,,,--,,,,,,-~-=-=,, =.=."'-""='=:===""-"'-"'~=:-='=-:::'-""_=~~~--= 
- .. ~--------.~.~-

LABORATORY PERIPHERAL-SYSTEMS ORIVERS 

17.4.12 IOOR: Write Digital Output 

The IOOR FORTRAN subroutine or function clears or sets bits in the 
digital. output register. Th~ callei provides a mask word and output 
mode. Bits in the digital output registers corresponding to the bits 
specified in the mask word are eithe~ set or cleared ~ccording to the 
specified mode. The call is issued a~ follows: 

CALL IOOR (imode,imask,[newval] ,[isb]) 

imode 

imask 

Whether the bits specified by imask are to be cleared or set in 
the digital output register. If imodeequals 0, then the bits 
are to be cleared. Otherwise, they are to be set. 

The bits to be cleared orse~ in the digital output registei. It 
may be conveniently specified as an octal constant. 

newval 

isb 

A variable that receives ,the uPdated (actual) value written into 
the digital output register. 

A 2-word integer array to which the subroutine status is 
returned. 

The isb array has the standard meaning described in Section 17.4.1. 

When your task uses the function form of the call, the value of the 
function is the same as that returned in newval. 

17.4.13 IRDB: Read Data from an Input Buffer 

The IROB FORTRAN subroutine or function retrieves data sequentially 
from a buffer that a laboratory peripheral system driver is 
synchronously filling. If no data is available when the call is 
executed, the contents of the next location in the data buffer are 
returned without updating the buffer pointers. The call is issued as 
follows: 

CALL IROB (ibuf,[ival]) 

17-20 

(-

( 

( 



( 

( 

( 

ibuf 

ivaI 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

An integer array that was previously specified in a synchronous 
input sampling request (that is, DRS, HIST, or RTS). 

A variable that receives the next value in the data buffer. 

When your task uses the function form of the call, the value of the 
function is the same as that returned in ivaI. 

17.4.14 LED: Display in LED Lights (LPSII only) 

The LED FORTRAN subroutine displays a 16-bit signed binary integer in 
the LED lights. The number is displayed with a leading blank 
(positive number) or minus (negative number), followed by five 
non-zero-suppressed decimal digits that represent the magnitude of the 
number. LED digits are numbered right to left starting at 1 and 
continuing to 5. The number may be displayed with or without a 
decimal point. The call is issued as follows: 

ivaI 

idec 

isb 

CALL LED (ival~[idecl,[isb]) 

The variable whose value is to be displayed. 

The position of the decimal point. A value of 1 to 5 specifies 
that a decimal point is to be displayed. All other values 
specify that no decimal point is to be displayed. 

A 2-word integer array to which the subroutine status is 
returned. 

The isb array has the standard meaning described in Section 17.4.1. 

For example, the following call: 

CALL LED (-55,2) 

would cause -0005.5 to be displayed in the LED lights. 

17-21 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

17.4.15 LPSTP: Stop an In-Progress Synchronous Function 

The LPSTP FORTRAN subroutine selectively stops a single synchronous 
request. The call is issued as follows: 

ibuf 

CALL LPSTP (ibuf) 

An integer array that specifies a buffer that was previously 
specified in a synchronous initiation request. 

17.4.16 PUTO: Put Data into an Output Buffer 

The PUTO FORTRAN subroutine puts data sequentially into a buffer that 
a laboratory peripheral system driver is synchronously emp1::ying. If 
no free space is available, no operation is performed. The' call is 
issued as follows: 

ibuf 

ivaI 

CALL PUTO (ibuf,ival) 

An integer array that was previously specified in a synchronous 
output request (SOO or SOAC). 

A variable whose value is to be placed in the next free location 
in the data buffer. 

17.4.17 RELAY: Latching an Output Relay (LPSll only) 

The RELAY FORTRAN subroutine opens or closes the LPSll relays. The 
call is issued as follows: 

irel 

CALL RELAY (irel,istate,[isb]) 

Which relay is to be opened or closed (0 for relay one, 1 for 
relay two). 

istate 

isb 

Whether the relay is to be opened or closed. If istate equals 0, 
the relay is to be opened. Otherwise, it is to be closed. 

A 2-word integer array to which the subroutine status is 
returned. 

The isb array has the standard meaning described in Section 17.4.1. 

17-22 

(-

( 



( 

( 

( 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

17.4.18 RTS: Initiating Synchronous AID Sampling 

The RTS FORTRAN subroutine reads one or more A/D channels at precisely 
timed intervals, _ with or without auto gain-ranging. The auto 
gain-ranging algorithm (LPSII only) causes the channels to be sampled 
at the highest gain at which saturation does not occur. 

Sampling can be started when the interface subroutine is called or 
when a specified digital input point is set. A digital output point 
can optionally be set when sampling is started. Sampling can be 
terminated by a program request (stop-in-progress request or kill 
I/O), the clearing of a digital input point, or the collection of a 
specified number of buffers of data. 

All input is double buffered with respect to your task. Each time a 
half buffer of data has been collected, your task is notified (by the 
setting of an event flag) that .data is available to be processed while 
the driver fills the other half of the buffer. Data can be 
sequentially retrieved from the data buffer with the IRDB routine (see 
Section 17.4.13), or the ADJLPS routine (see Section 17.4.5). Your 
task can use for direct access to the input data. The call is issued 
as. follows: 

ibuf 

ilen 

imode 

CALL RTS (ibuf,ilen,imode,irate,iefn,ichan,nchan,isb, 
[nbuf] ,[ istart] , [istop] ) 

An integer array that is to receive ·~he:converted data values. 

The length of ibuf (must be even and greater than or equal to 6). 

The start, stop, and sampling mode. 
adding together the appropriate 
shown below: 

Its value is encoded by 
function selection values as 

Function 
Selection 
Value 

128 

64 

32 

16 

8 

Meaning 

Start on digital input point set 

Set digital output point at start 

Stop on digital input point clear 

Stop on number of buffers 

Auto gain-ranging (LPSll only) 

17-23 



... -·~=""===O=~""",=""",""::::==-=~:""7~.~=~,"=-~=~i:o.= __ ._. ____ ,,,,===_. ____ =.=-=""--==.=.=.:~_====:::~'";'_..,-."'.'"';;__====___~__'= _._ -==:!IIE!!II 

irate 

iefn 

- . .. 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

A 2-word integer array that specifies the time interval bet.ween 
A/D samples. The first word specifies the interval unit as 
follows: 

irate(l) 

1 

2 

3 

4 

Unit 

Real-time clock ticks 

Milliseconds 

Seconds 

Minutes 

The second word specifies the interval magnitude as a 16-bit 
unsigned integer. 

The number of the event flag that is to be set each time a half 
buffer of data has been collected. 

ichan 

The starting AID channel of the block of channels to be sampled 
synchronously (must be between 0 and 63 for LPSl1 and between 0 
and 15 for AR11). 

nchan 

isb 

nbuf 

The number of AID channels to be sampled (must be between 1 and 
64 for LPSl1 and between 1 and 16 for ARll). 

A 2-word integer array to which the subroutine status is 
returned. 

The number of buffers of data that are to be collected. It is 
needed only if a function selection value of 16 has been added 
into imode. 

istart 

istop 

The digital input point number that triggers sampling or the 
digital output point number set when sampling is started. It is 
needed only if a function selection value of 128 or 64 has been 
added into imode. Points are numbered from 0 to 15, allowing a 
maximum of 16 points to be specified. 

The digital input point number that stops sampling. It is needed 
only if a function selection value of 32 has been added into 
imode. 

17-24 

(-

( 

( 



( 

( 

( 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

The values listed for ichan and nchan above are the maximum allowable 
for each of the devices. In practice, they are constrained by the 
number of channels available as specified during system generation. 

The isb parameter has the standard meaning described in Section 
17.4.1. 

When sampling is in progress, the first word of the isb array is 0 and 
the second word contains the number of data values currently in the 
buffer. 

17.4.19 SDAC: Initiating Synchronous D/A Output 

The SOAC FORTRAN subroutine writes data into one or more external O/A 
converters at precisely timed intervals. Output may be started and 
stopped as for RTS (see Section 17.4.18), and all input is double 
buffered with respect to your task. One full buffer of data must be 
available when synchronous output is initrated. 

After SOAC has initiated output and the specified event flag has been 
set to notify the task lhat free buffer space is available, your task 
can use the PUTO routine (see Section 17.4.16) to put data values 
sequentially into the output data buffer. Your task can use the 
ADJLPS routine (see Section 17.4.5) for direct access to the output 
data buffer. Your task issues the SOAC call as follows: 

ibuf 

ilen 

CALL SOAC (ibuf, ilen, imode, irate, iefn, ichan ,nchan, isb, 
' .. /'<;' [nbuf], [istart], [istop]) 

An integer array that contains the output data values. 

The length of ibuf (must be even and greater than or equal to 6). 

imode 

The start, stop, and sampling mode. 
adding together the appropriate 
shown below: 

Its value is encoded by 
function selection values as 

Function 
Selection 
Value 

12.8 

64 

32 

16 

Meaning 

Start on digital input point set 

Set digital output point at start 

Stop on digital input point clear 

Stop on number of buffers 

17-25 



irate 

iefn 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

A 2-word integer array that specifies the time interval between 
O/A outputs. The first word specifies the interval units as 
follows: 

irate(l) 

I 

2 

3 

4 

Unit 

Real-time clock ticks 

Milliseconds 

Seconds 

Minutes 

The second word specifies the interval magnitude as a l6~bit 
unsigned integer. 

The number of the event flag that is to be set each time a half 
buffer of data has been output. 

ichan 

The starting O/A channel of the block of channels to be written 
into synchronously (must be between 0 and 9 for LPSll, and be 0 
or 1 for ARll). 

( 

~n ( 

isb 

nbuf 

The number of O/A channels to be written into (must be between 1 
and 10 for LPSll, and be 1 or 2 for ARll) • 

A 2-word integer array to which the subroutine status is 
returned. 

The number of buffers of data to be output. It is needed only if 
a function selection value of 16 has been added into imode. 

istart 

The digital input point number that triggers sampling or the 
digital output point number that must be set when your task 
starts sampling. It is needed only if a function selection value 
of 128 or 64 has been added into imode. Points are numbered from 
o to 15, allowing you to specify a maximum of 16 points. 

17-26 

( 



( 

( 

( 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

istop 

The digital input point number that stops sampling. It is needed 
only if you added a function selection value of 32 into imode. 

The isb array has the standard meaning described in Section 17.4.1. 

When sampling is in progress, the first word of the isb array is 0 and 
the second word contains the number of free positions in the buffer. 

17.4.20 SDO: Initiating Synchronous Digital Output 

The SDO FORTRAN subroutine writes data qualified by a mask word into 
the digital output register at precisely timed interva~s. Sampling 
may be started and stopped as for RTS (see Section 17.4.1&)· and all 
input is double buffered with respect to your task. One full buffer 
of data must be available when output is initiated.-

After SDO initiated output, and your task set the specified event flag 
'to notify the task that free buffer space is available, yOu may use 
the PUTD routine (se~ Section ~7.4.16) to put data values sequentially 
into the output data buffer. You may use the ADJLPS routine (see 
Section 17.4.5) for dire·ct access to the output data buffer.· Issue 
the SDO call as follows: 

ibuf 

Hen 

,imode 

CALL SDO (ibuf,i1en,imode,irate,iefn,imask,isb,[nbuf], 
[istart],[istop]) 

An integer array that contains the digital output values. 

The length of ibuf (must be even and greater than or equal to 6). 

The start, stop, and sampling mode. 
together the appropriate function 
below: 

Encode its value by adding 
selection values as shown 

Function 
Selection 
Value 

128 

64 

32 

16 

Meaning 

Start on digital input point set 

Set digital output point at start 

Stop on digital input point clear 

Stop on number of buffers 

17-27 



-
-~-~~-----.---------~---.-

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

irate 

iefn 

imask 

isb 

nbuf 

A 2-word integer array that specifies the time interval between 
digital outputs. The first word specifies the interval units as 
follows: 

irate (1) 

1 

2 

3 

4 

Unit 

Real-time clock ticks 

Milliseconds 

Seconds 

Minutes 

The second word specifies the interval magnitude as a 16-bit 
unsigned integer. 

The number of the event flag that is to be set each time a half 
buffer of data has been output. 

The digital output points that are to be written. 
conveniently specified as an octal constant. 

It may be 

A 2-word integer array to which the subroutine status is 
returned. 

The number of buffers of data to be output. It is needed only if 
a function selection value of 16 has been added into imode. 

istart 

istop 

The digital input point number that triggers sampling or the 
digital output point number set to start sampling. You need it 
only if a fUnction selection value of 128 or 64 was added into 
imode. Points are numbered 0 through 15, allowing a maximum of 
16 points to be specified. . 

The digital input point number that stops sampling. You need it 
if a function selection value of 32 has been added into imode. 

The isb parameter has the standard meaning described in Section 
17.4.1. 

When sampling is in progress, the first word of the isb array is 0 and 
the second word contains the number of free positions in the buffer. 

17-28 

( 

( 



( 

( 

( 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

17.5 STATUS RETURNS 

The error and status conditions listed in Table 17-8 are returned by 
the Laboratory Peripheral System drivers described in this chapter. 

Code 

IS.SUC 

IS.PND 

IE.ABO 

IE. BAD 

IE.BYT 

IE.DAO 

IE.DNR 

Table 17-8 
Laboratory Peripheral Systems Status Returns 

Reason 

Successful completion 

The operation specified in the QIO directive was 
completed successfully. The second word of the 
I/O status block can be examined to determine the 
number of data values processed. 

I/O request pending 

The operation specified in the QIO directive has 
not yet been completed. 

Operation aborted 

The specified I/O operation was canceled (by 
IO.KIL or IO.STP) while in progress. 

Bad parameter 

An illegal speci£ication was supplied for one or 
more of the device-dependent QIO parameters (words 
6-11). The second I/O status word is filled with 
Os. 

Byte-aligned buffer specified 

Byte alignment was specified for a data buffer but 
only word alignment is legal for Laboratory 
Peripheral Systems. Alternatively, the length of 
a buffer is not an even number of bytes. 

Data overrun 

For Laboratory Peripheral Systems, the driver 
attempted to get a value from your task's buffer 
when none was available or attempted to put a 
value in your task's buffer when no space was 
available. 

Device not ready 

The physical device unit specified jn the QIO 
directive was not ready to perform the desired I/O 
operation. For Laboratory Peripheral Systems, 
this code is returned if a device time-out occurs 
while a function is in progress. The second I/O 
status word contains the number of free positions 
in the buffer, as appropriate. 

(continued on next page) 

17-29 



Code 

IE.IEF 

IE.IFC 

IE. NOD 

IE.OFL 

IE.ONP 

IE.PRI 

IE.RSU 

IE.SPC 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

Table 17-8 (Cont.) 
Laboratory Peripheral Systems Status Returns 

Reason 

Invalid event flag number 

An invalid event flag number was specified in a 
synchronous function. 

Illegal function 

A function code was included in an I/O request 
that is illegal for the LPSll or ARll. 

Insufficient buffer space 

Dynamic storage space has been depleted, and there 
is insufficient buffer sp~ce available to allocate 
a secondary control block for a synchronous 
function. 

Device off line 

The physical device unit associated with the LUN 
specified in the QIO directive was not on line. 
When the system was booted,· a device check 
indicated that this physical device unit was not 
in the configuration. 

Option not present 

An option dependent function or subfunction was 
requested, and the required feature was not 
specified at system generation. For example the 
gain-ranging option or D/A option is not present. 
The second I/O status word contains O. 

Privilege violation 

The task that issued the request was not 
privileged to execute that request. For 
Laboratory Peripheral Systems, a checkpointab1e 
task attempted to execute a synchronous sampling 
function. 

Resource in use 

A resource needed by the function requested in the 
QIO directive was being used (see Section 17.5.1). 

Illegal address space 

The buffer specified for a read or write request 
was partially or totally outside the address space 
of the issuing task. Alternately a byte count of 
o was specified. The second I/O status word 
contains O. 

FORTRAN interface values for these status returns are presented in 
section 17.5.4. 

17-30 

( 

( 



( 

( 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

17.5.1 IE.RSU 

IE.RSU is returned if a function requests a resource that is currently 
being used. Your task may repeat the request at a later time or take 
any alternative action required. 

Because certain functions do not need such resources, they never cause 
this code to be returned. Other functions return this code under the 
following conditions: 

Function 

IO.SDO 

IO.ADS 

IO.HIS 

IO.MDA 

IO.MDI 

IO.MDO 

When IE.RSU Is Returned 

One or more specified digital output bits are in 
use. 

Digital output point (if specified) is in use. 

Digital output point (i f specified) is in use. 

Digital output point (if specified) is in use. 

Digital output point (if specified) or digital 
input points to be sampled are in use. 

Digital output point (if specified) or output bits 
to be written are in use. 

The following components of the Laboratory Peripheral Systems are each 
considered a single resource: 

Resource 

The A/D Converter 
and clock 

Each bit in the 
digital output 
register 

Each bit in the 
digital input 
register 

When Shareable 

Always shareable 

Never shareable. 

Always shareable when used by IO.SDI 
or for start/stop conditions (specified 
in subfunction modifier bits), even when 
in use by another function; when 
specified by a synchronous digital input 
function, not shareable with another 
such function 

Each resource is allocated on a first-come-first-served basis. (That 
is, when a conflict arises, the most recent request is rejected with a 
status of IE.RSU). 

17.5.2 Second I/O Status Word 

On successful completion of a function specified in a QIO macro call, 
the IS.SUC code is returned to the first word of the I/O status block. 

Table 17-9 lists the contents of the second word of the status block, 
on successful completion for each function. 

17-31 



Successful 
Function 

10.KIL 

10.LED 

10.REL 

10.SDI 

10.SDO 

10.ADS 

10.HIS 

10.MDA 

10.MDI 

IO.MDO 

10.STP 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

Table 17-9 
Returns to Second Word of I/O Status Block 

Contents of Second Word 

Number of data values before I/O was canceled 

o 

o 

Masked value read from digital input register 

Updated value written into digital output register 

Number of data values remaining in buffer 

Number of data values remaining in buffer 

Number of free positions in buffer 

Number of data values remaining irt buffer 

Number of free positions in buffer 

o 

When IE.BAD is returned, the second I/O status word contains 0/ 
Laboratory Peripheral Systems drivers return the IE.BAD code under the 
following conditions: 

Function 

10.REL 

10.ADS 
10.MDA 

10.HIS 
10.MDI 
10.MDO 

When IE.BAD is Returned 

Relay number not 0 or 1 

No I/O status block, illegal digital I/O point 
number, or illegal channel number 

No I/O status block or illegal 
digital I/O point number 

17.5.3 10.ADS and ADC Errors 

While IO.ADS or the ADC FORTRAN subroutine is converting a sample, two 
error conditions may arise. Both of these conditions are reported to 
your task by placing illegal values in the data buffer. A-l 
(177777(octal) is placed in the buffer if an A/D conversion does not 
complete within 30 microseconds. A -2 (177776 (octal) is placed in the 
buffer if an error occurs during an A/D conversion (LPSll only). 

17-32 

( 

( 

( 



( 

( 

( 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

17.5.4 FORTRAN Interface Values 

The values listed in Table 17-10 are returned in FORTRAN subroutine 
calls~ 

Status Return 

IS.SUC 
IS.PND 
IE.ABO 
IE.ADP 
IE.ALN 
IE.BAD 
IE.BYT 
IE.DAO 
IE.DNR 
IE.IEF 
IE.IFC 
IE.ILU 
IE.NOD 
IE.OFL 
IE.ONP 
IE.PRI 
IE.RSU 
IE.SDP 
IE.SPC 
IE.ULN 
IE. UPN 

17.6 PROGRAMMING HINTS 

Table 17-10 
FORTRAN Interface Values 

FORTRAN Value 

+01 
+00 

+315 
+101 
+334 
+301 
+319 
+313 
+303 
+100 
+302 

+99 
+323 
+365 
+305 
+316 
+317 
+102 
+306 

+08 
+04 

This section contains important information about programming the 
Laboratory Peripheral Systems drivers described in this chapter. 

17.6.1 The LPSll/ARll Clock and Sampling Rates 

The basic real-time clock frequency (count rate) for all synchronous 
functions is always 10KHz. Device characteristics word 4 contains a 
16-bit buffer preset value -- set dynamically or at system generation, 
that controls the rate of "ticks" (that is, the rate at which the 
clock interrupts). The quotient that results when this value is 
divided into 10KHz is the rate of "ticks." For example, if thi.s value 
is 2, the "tick" rate is 5KHz. You can use a Get LUN Information 
system directive to examine the value and a SET /BUF MCR function to 
modify it while the system is running. 

17-33 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

The ticks parameter in a synchronous function specifies the number of 
"ticks" between samples or data transfers. The value of ticks is a 
l6-bit number. Thus 65,536 discrete sampling frequencies are possible 
for each of 65,536 different "tick" rates. This provides a maximum 
single-channel sample rate of 1 sample every 100 microseconds 
(possible in hardware but impractical in software) and a minimum of 1 
sample every 429,495 seconds. A single-channel rate greater than 2KHz 
is possible, but not recommended. 

The figures below represent initial timing tests run under RSX-llM. 
It should be noted that no computation was performed on the data other 
than continuously removing it from or inserting it into the data 
buffer. 

The following data is for the LPSII on a PDP-ll/40 with memory 
management, with no gain-ranging option, and with digital I/O option. 

Analog rates: 

1 request for 1 channel at 2.5KHz 

1 request for 2 channels at 2.0KHz (aggregate 4KHz) 

2 requests for 1 channel at 2.0KHz (aggregate 4KHz) 

Digital rates: 

1 request for 2 channels at 2.5KHz (aggregate 5KHz) 

The following data is for the ARII on a PDP-ll/40 with no 
management, no digital I/O option, and no unipolar sampling. 

Analog rates: 

1 request for 1 channel at 3.3KHz 

1 request for 2 channels at 2.5KHz (aggregate 5.0KHz) 

2 requests for 1 channel at 2.5KHz (aggregate 5.0KHz) 

Digital rate: 

2 requests for 2 channels at 3.3KHz (aggregate 6.6KHz) 

17.6.2 Importance of the I/O Status Block 

memory 

An I/O status block must be specified with every synchronous function. 
If the first I/O status word is nonzero, the request has been 
terminated and the value indicates the reason for termination. 
Otherwise, the request is in progress, and the second I/O status word 
contains the number of data values remaining in the buffer (or the 
number of free positions in the buffer for IO.MDA and IO.MDO). 

17-34 

(_ .. 

( 

( 



/ 

( 
" 

( 

( 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

17.6.3 Buffer Management 

The buffer unload 
described below. 
following: 

IOSB: .BLKW 
CURPT: .WORD 
LSTPT: • WORD 
FSTPT: .WORD 

protocol for 
You construct 

2 
BUFFER 
BUFFER+n 
BUFFER 

synchronous input functions is 
a 5-word block that contains the 

I/O STATUS DOUBLE-WORD 
ADDRESS OF BUFFER 
ADDRESS OF END OF BUFFER 
ADDRESS OF BUFFER 

Two of these words are required by the driver (I/O status block) and 
the remaInIng three by your task to unload datavaluesftom the 
buffer. 

Your task then -issues the I/O request with the appropriate parameters 
and the address of the above block as the I/O status block. The QIO 
directive Os both I/O status words to initialize them. 

If the driver accepts the request, it sets up a write pointer to the 
first word in your task's buffer. Thus, your task has a buffer read 
pointer and the driver has a buffer write pojnter. Your task and the 
driver share the second I/O status word; which is the number of data 
words in the buffer that contain data. 

Each time the driver attempts to put a sample value into the buffer, 
it increments the second I/O status word and compares the result with 
the size of the buffer. If the result is greater, buffer overrun has 
occur-red and the request is terminated. Otherwise, the value is 
stored in the buffer at the address specified by the' driver's write 
pointer and the write pointer is updated. 

If the value stored in your task's buffer fills half of· the buffer, 
the event flag specified in the I/O request is set to notify your task 
that a half buffer of data is available to be processed. Each time 
your task is awakened, it should execute the following code: 

5$: 
10$: 

20$: 

30$: 

40$: 

CLEF$S 
TST 
BEQ 
MOV 
DEC 
ADD 
CMP 
BLOS 
MOV 

#EFN iCLEAR EFN 
IOSB+2 iANYDATA IN BUFFER? 
30$ iIF EQ NO 
@CURPT,RO iGET NEXT VALUE FROM BUFFER 
IOSB+2 iREDUCE NUMBER OF ENTRIES 
#2,CURPT iUPDATE BUFFER READ POINTER 
CURPT,LSTPT iEND OF BUFFER? 
20$ iIF LOS NO 
FSTPT,CURPT iRESET BUFFER READ POINTER 

Process 
BR 

data value i 

TSTB 
BNE 
WTSE$S 
BR 
Determine 

10$ iTRY AGAIN 
IOSB iREQUEST TERMINATED? 
40$ iIF NE YES 
iEFN iWAIT FOR EFN 
5$ i 
reason for termination 

17-35 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

For IO.MDA and IO.MDO, this protocol differs slightly. Your task 
maintains a write pointer and the driver a read pointer. The entire 
buffer must be full when the request is executed. 

17.6.4 Use of ADJLPS for Input and Output 

The following FORTRAN example illustrates the proper protocol for 
using ADJLPS for synchronous input and output. 

Synchronous input: 

DIMENSION IBF(1004),IERR(2),INTVL(2) 
C 
C INITIATE SYNCHRONOUS A/D SAMPLING, 
C 

C 

INTVL(1)=2 
INTVL(2)=5 
CALL RTS (IBF, 1004,160 ,INTVL, IEFN, 6,6, IERR, 50,14,15) 

C INITIALIZE HALF BUFFER INDEX 
C 

INDX=4 
C 
CWAIT FOR HALF BUFFER OF DATA 
C 

10 CALLWAITFR(IEFN) 
C 
C CLEAR EVENT FLAG 
C 

15 CALL CLREF(IEFN) 
C 
C PROCESS HALF BUFFER OF DATA 
C 

C 

SUM=O 
DO 20 1=1,500 
SUM=SUM+CVSWG (IBF (I+INDX) ) 

20 CONTINUE 
AVERG=SUM/500 

C FREE HALF BUFFER FOR MORE DATA 
C 

CALL ADJLPS(IBF,500) 
C 
C ADJUST BUFFER INDEX 
C 

C 

INDX=INDX+500 
IF(INDX.GE.I004) INDX=4 

C CHECK IF ANOTHER HALF BUFFER OF DATA IS AVAILABLE 
C 

IF(IERR(2).GE.500 GO TO 15 
IF(IERR(l).NE.O) GO TO end of sampling 
GO TO 10 

17-36 

( 

( 



( 

( 

( 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

Synchronous output: 

C 
DIMENSION IBF(1004),IERR(2),INTVL(2) 

C FIRST BUFFER OF DATA MUST BE AVAILABLE AT START 
C 
C THIS EXAMPLE ASSUMES FIRST BUFFER IS FULL AT START 
C 
C START SYNCHRONOUS DIGITAL OUTPUT FUNCTION 
C 

C 

INTVL(1)=2 
INTVL(2)=5 
CALL SDO(IBF,1004,160,INTVL,IEFN,MASK,IERR,50,14,15) 

C INITIALIZE HALF BUFFER INDEX 
C 

INDX=4 
C 

. C WAITFOR ROOM IN BUFFER 
C 

C 
10 CALL WAITFR(IEFN) 

C CLEAR EVENT FLAG 
C 

15 CALL CLREF(IEFN) 
C 
C CALCULATE VALUES TO PUT IN BUFFER 
C 

C 

X= (Y+2) *Z 
DO 20 1=1,500 
IBF(I+INDX)=X**5/A 

20 CONTINUE 

C SIGNIFY ANOTHER HALF BUFFER IS FULL 
C 

CALL ADJLPS (IBF, 500) 
C 
C ADJUST BUFFER INDEX 
C 

C 

INDX=INDX+500 
IF(INDX~GE.1004) INDX=4 

C CHECK IF ANOTHER HALF BUFFER IS EMPTY 
C 

IF(IERR(2).GE.500) GO TO 15 
IF(iERR(l).NE.O) GO TO end of sampling 
GO TO 10 

NOTE 

In both of the examples above, care is taken to 
ensure that the program stay "in sync" with the 
driver. If the program "loses" its position with 
respect to the driver, the function must be 
stopped and restarted, because this is the only 
way to recover. Excercise caution to ensure that 
the program sequence above avoids a possible loss 
of data. 

17-37 



(! -

( 



( 

( 

CHAPTER IS 

PAPER TAPE READER/PUNCH DRIVERS 

lS.l INTRODUCTION 

The RSX-IIM/M-PLUS paper tape reader/punch drivers support the PCll 
paper tape reader/punch and the PRll paper tape reader. The PCll is a 
high-speed reader/punch capable of reading S-hole, unoiled, perforated 
paper tape at 300 characters per second, and punching tape at 50 
characters per second. The PRll has the same characteristics as those 
of the paper tape reader portion of the PCll. All transfers are image 
mode only, with no interpretation of data. 

lS.2 GET LUN INFORMATION MACRO 

Word 2 of the buffer filled by the GET LUN INFORMATION system 
directive (the first characteristics word) contains the following 
information for paper tape devices. A bit setting of 1 indicates that 
the described characteristic is true for these devices. 

Bit 

o 

1 

2 

3 

4 

5 

6 

7 

S 

9 

10 

11 

Setting 

1 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

Meaning 

Record-oriented device 

Carriage-control device 

Terminal device 

File-structured device 

Single-directory device 

Sequential device 

Mass storage device 

User-mode diagnostics supported 

Device supports 22-bit direct addressing 

Unit software write-locked 

Input spooled device 

Output spooled device 

lS-l 



PAPER TAPE READER/PUNCH DRIVERS 

Bit Setting Meaning 

Pseudo device 12 

13 

o 

o Device mountable as a communications channel 

14 o Device mountable as a FILES-II volume 

15 o Device mountable 

Words 3 and 4 of the buffer are undefined; word 5 indicates the 
default buffer size, which is 64 bytes for paper tape devices. 

18.3 QIO$.MACRO 

Table 18-1 lists the standard functions of the QIO macro that are 
valid for the paper tape reader/punch. 

Table 18-1 
Standard QIO Functions for the Paper Tape Reader/Punch 

Format Function 

QIO$C IO.ATT, ••• Attach device 

QIO$C IO.DET, ••• Detach device 

QIO$C IO.KIL, ••• Cancel I/O requests 

QIO$C IO.RLB, ••• ,<stadd,size> READ logical block (reader only) 

QIO$C IO.RVB, ••• ,<stadd,size> READ virtual block (reader only) 

QIO$C IO.WLB, ••• ,<stadd,size> WRITE logical block (punch only) 

QIO$C IO.WVB, ••• ,<stadd,size> WRITE virtual block (punch only) 

stadd 

The starting address of the data buffer (may be on a byte 
boundary) 

size 

The data buffer size in bytes (must be greater than 0) 

IO.KIL never cancels an in-progress read request. In-progress write 
requests are canceled only when the punch driver is waiting for the 
punch to become ready at the start of a transfer. 

The paper tape drivers support no device-specific functions. 

18-2 

(---

( 



( 

( 

( 

PAPER TAPE READER/PUNCH DRIVERS 

18.4 STATUS RETURNS 

Table 18-2 lists error and status conditions that are returned by the 
paper tape reader/punch drivers. 

Code 

IS.SUC 

IS.PND 

IE.ABO 

IE.DAA 

IE. DNA 

IE.DNR 

IE.EOF 

Table 18-2 
Paper Tape Reader/Punch Status Returns 

Reason 

Successful completion 

The operation specified in the 010 directive was 
completed successfully. The second word of the I/O 
status block can be examined to determine the number 
of bytes processed, if the operation involved reading 
or writing. 

I/O request pending 

The operation specified in the 010 directive has not 
yet been executed • The I/O status block is filled 
with Os.· 

OPeration aborted 

The I/O request was canceled while in progress or 
while still in the I/O queue. 

Device already attached 

The physical device unit specified in an IO.ATT 
function was already attached by the issuing task. 
This code indicates that the issuing task has already 
attached the desired physical device unit, not that 
the unit was attached by another task • 

. Device not attached 

The physical device unit specified in an IO.DET 
function was not attached by the issuing task. This 
code has no bearing on the attachment status of other 
tasks. 

Device not ready 

The reader and punch drivers return this code when a 
time-out occurs. The reader driver also returns this 
code when an error condition (see Section 18.4.1) is 
encountered before the initiation of the first 
transfer after an ATTACH command has been issued. 

End-of-file encountered 

The reader driver encountered an error condition (see 
Section 18.4.1) at a time other than the initiation 
of the first read after a valid ATTACH command. The 
second word of the I/O status block contains a count 
of bytes successfully read before the error condition 
was encountered. 

(continued on next page) 

18-3 



Code 

IE.IFC 

IE.OFL 

IE.SPC 

PAPER TAPE READER/PUNCH DRIVERS 

Table 18-2 (Cont.) 
Paper Tape Reader/Punch Status Returns 

Reason 

Illegal function 

An . illegal function code was specified in an I/O 
request that is not legal for the respective pape~ 
tape drivers. . 

Device off line 

The physical device unit associated with the 
specified in the QIO directive was not on line. 
the system was booted, a device check indicated 
this physical device unit was not in 
configuration. 

Illegal address space 

LUN 
When 
that 

the 

The buffer specified for a read or write request was 
partially or totally outside the address space of the 
issuing task. Alternatively, a byte count of 0 was 
specified. 

Unrecoverable hardware error (punch only) 

The punch driver encountered an error condition (see 
Section ~8.4.l) at a time other than the initiation 
of a transfer. Section 18.4.2 describes the action 
of the punch driver when an error condition is 
encountered upon the initiation of a transfer. 

18.4.1 Error Conditions 

There are four error conditions that are indistinguishable to the 
paper tape drivers. These. conditions are: 

• No tape 

• Reader off line 

• Power low 

• Hardware malfunction 

18.4.2 Ready Recovery 

When the punch driver encounters an error condition upon the 
initiation of a transfer, the following message is displayed: 

*** PPn:. -- NOT READY 

n 

The unit number of the paper tape punch that is not ready. 

18-4 

( 

( 

( 



( 

( 

( 

PAPER TAPE READER/PONCH DRIVERS 

This message is repeated every 15 seconds until the error condition is 
corrected, or until the I/O request is canceled. When the error 
condition has been corrected, the transfer begins within 1 second. 

lS.5 PROGRAMMING HINTS 

This section contains important information about programming the 
paper tape drivers described in this chapter. 

lS.5.1 Special Action Resulting from Attach and Detach 

When an Attach or Detach is issued to the punch, the punch driver 
initiates a transfer of 170 (decimal) nulls. Opon the first read 
after an attach to the reader, all nulls preceding the first non-null 
character on the tape are read and discarded by the reader driver. 

lS.5.2 Reading Past End-of~Tape 

When the reader driver reads past the physical end-of-tape, it 
normally. generates at least two incorrect data bytes. These bytes are 
included in the byte count returned by the driver. Those of your 
tasks that does not prevent reads past the physical end-of-tape should 
discard at least the last six characters in the buffer when IE.EOF is 
returned by the driver. 

lS-5 



(-

( 

( 



( 

( 

( 

CHAPTER 19 

INDUSTRIAL CONTROL SUBSYSTEMS 

19.1 INTRODUCTION 

This chapter describes RSX-11M drivers for two process I/O subsystems: 
the ICS/ICR11 and the DSS/DRS11. (Driver support for these I/O 
subsystems is not provided in RSX-11M-PLUS systems.) 

ICS11 and ICR11 are local and 
respectively. They operate under 
of interrogating digital and analog 
analog output. 

remote process I/O subsystems, 
program control as devices capable 
input, and driving digital and 

DSS11 and DRS11 are digital input and output subsystems, respecfive1y • 
. Under program control they drive digital output and interrogate 
digital input. 

19.1.1 Hardware Configuration 

A single ICS or ICR controller can handle up to 16 I/O modules in any 
configuration; a module contains 16 bits of input or output data, 
providing a total of 256 digital points. Up to 12 ICR or ICS units 
are supported. You tailor the ICS/ICR driver to your needs, 
interactively, through the system generation dialogue. The driver can 
handle any combination of ICR or ICS .controllers installed on a single 
system. 

The DSS11 provides 49 optically isolated inputs, including 48 
nonbuffered, sense-data inputs and one interrupt input. The DRS11 
provides 48 open-collector, buffered outputs plus one interrupt input. 
You shape the DSS/DRS driver to your system's configuration in the 
system generation dialog. The driver supports up to 16 DSS11 or DRS11 
modules, or combinations thereof. 

19.1.1.1 ICS/ICR Address Assignments - Each ICR11A Unibus interface 
or ICS11 file box must be configured at system generation time ,for 
individually addressable interrupt vectors, Control and Status 
Registers (ICSR), and module Address Registers (lCAR) , as shown in 
Table .19-1. 

19-1 



INDUSTRIAL CONTROL SUBSYSTEMS 

Table 19-1 
ICS/ICR Address Assignments 

ICS/ICR Unit No. Module Addresses ICSR/ICAR Addresses Interrupt Vectors 

0 

1 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

171000-171036 171770-171776 

171040-171076 171760-171766 

171100-171136 171750-171156 

171140-171176 171740-171746 

171200-171236. 171730-171736 

171240-171276 171720-171726 

171300-171336 171710-171716 

171340-171376 171700-171706 

171400-171436 171670-.171676 

171440-171476 171660-171666 

171500-171536 171650-171656 

171540-171576 171640-171646 

NOTES 

nnnnn6 = Control and Status Register 
nnnnn4 = Address Register 

234-236 

xxx-xxx+2 

xxx+4-xxx+6 

xxx+10-xxx+12 

xxx+14-xxx+16 

xxx+20-xxx+22 

xxx+24-xxx+26 

xxx+30-xxx+32 

xxx+34-xxx+36. 

xxx+40-xxx+42 

xxx+44-xxx+46 

xxx+50-xxx+52 

Additional controllers are assigned vector addresses above 
300. 

19.1.1.2 DSS/DRS Addr;ess Assignments - Unlike the ICS/ICR subsystem, 
DSS/DRS devices are not restricted to specified bus addresses. 
However, the following constraints apply: 

1. All DSSll modules must occupy a contiguous set of bus 
addresses. 

2. All DRSll modules must occupy a contiguous set of bus 
addresses. 

3. The total number of DSSII and DRSll modules may not exceed 
16. 

4. If both module types are installed in 
must occupy the lower set of bus 
addresses. 

5. Bus request priority is BR4. 

19-2 

a system, the DRSll 
and interrupt-vector 

c 

( 



( 

( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

19.1.1.3 Supported ICS/ICR I/O Modules - The following modules, all 
optional, are supported by the ICS/ICR driver: 

D/A Converters 

IDA-OA - 4-channel digital-to-analog converter 

A/D Converters 

IAD-IA - 8-channel wide-range differential analog-to-digital 
converter 

IMX-IA - l6-channel flying capacitor relay multiplexer 

Counters 

IDC-IC - l6-bit binary counter 

Bistable Digital Outputs 

IDC-OA -
IAC,...OA -
IRL-OA -
IRL-OB -

D/C flip-flop driver 
A/C flip-flop driver 
Bistable relay output 
Flip-flop relay output 

Momentary Digital Output 

IDC-OS -
IAC-OB -

D/C momentary driver 
A/C momentary driver 

Digital Inputs (Noninterrupting) 1 

IDC":'IA -
IDC-ID -
IAC-IA -

D/C voltage sense input 
D/C voltage input module 
A/C voltage input module 

Digital Inputs (Interrupting) 

IDC-IB - D/C voltage interrupt input 
IAC-IB - A/C voltage interrupt input 

Terminal Input/Output 

110 CPS Remote Terminal Interface to ICRII 

1. Note that noninterrupting input modules are accessed directly 
by a task.- Hence, while FORTRAN interface routines are available, 
no support for such modules is included in the driver. 

19.1.2 Alternate ICSII Support 

The ICSll Industrial Control Subsystem is supported either by the 
UDCll or ICS/ICRll device driver. If the system does not have an 
ICRII controller, and if a driver of minimum size is required, then 
UDCll support should be considered. The hardware requirements for 
such support are as follows: 

1. Each file box must be assigned to the same interrupt vector 
address (normally 234). 

2. The control and status register within each file box must 
appear at the same address within the I/O page (normally 
171776) • 

19-3 



INDUSTRIAL CONTROL SUBSYSTEMS 

If support of the IAD-IA A/D converter is required, the following 
module addressing and installation conventions are imposed: 

1. Each IAD-IA converter and associated IMX-IA relay 
multiplexers are assigned a fixed block of 120 logical 
channel numbers. No more than 32 IAD-IA converters may be 
installed in a single system. Based on this convention, 
A/D converter 0 occupies channels 0-119, A/D converter 1 
occupies 120-239, add so forth. 

2. Regardless of the actual number of 
installed, each converter preempts 
contiguous module slots. 

IMX-IA multiplexers 
a block of eight 

3. The slots reserved for all A/D converters and multiplexers 
must occupy a block of contiguous module slots. 

If necessary, Field 
address changes. 
you can implement 
the affirmative 

Service 
Assuming 

the desired 
all system 

UDCll. 

personnel can make the vector and 
the hardware configuration is correct, 
UDCll software support by answering in 
generation questions relating to the 

If the additional ICS/ICR-ll driver features are required (at a 
commensurate increase in the memory requirements), then each ICSll 
file box must be configured for individually addressable interrupt 
vectors and control status registers. This change can be performed 
by Field Service personnel. The necessary software support is 
incorporated by answering in the affirmative all system generation 
questions relating to the ICS/ICRll. 

The additional ICSll capabilities provided by the ICS/ICRll driver 
may be summarized as follows: 

1. Multicontroller, parallel operation 

2. Increased A/D conversion throughput 

3. Activation of tasks directly .from digital interrupts or 
counters 

4. No requirement to install modules of the same type in 
contiguous slots 

Section 19.7 summarizes the software differences between the UDC and 
ICS/ICR drivers in detail. 

19.1.3 Software Support 

Both ICS/ICR and DSS/DRSoperations are divided into two categories: 

1. Functions performed directly by any task 

2. Functions requiring driver services 

Direct functions are accomplished through memory references to the 
ICS/ICR or DSS/DRS registers on the I/O page. In a protected system 
any task may gain restricted access to the device registers by 
linking to a global common block that resides within the appropriate 
physical memory limits. Direct functions consist of: 

• Reading counter modules 
• Reading any digital input module (DSS) 

19-4 

(- ) 

( 

( 



( 

( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

NOTE 

All functions listed in this subsection apply to 
ICSIICR modules. Those that also apply to the DSS 
or DRS subsystems are so marked. 

Driver requests are divided into the following categories: 

• Noninterrupting output £unctions 

Bistable (flip-flop) digital output (DRS) 

Analog output 

Momentary (single-shot) digital output 

• Requests for interrupting functions 

Analog input 

Remote terminal output 

• Requests for unsolicited interrupts 

Digital interrupts (DSS/DRS) 

Counter interrupts 

Remote terminal input 

Remote unit or serial line errors 

With the exception of A/D input and remote terminal output, all 
functions are complete upon return to your task. 

Under RSX-IIM, noninterrupting output functions are immediately 
submitted to the controller through a circular buffer that is filled 
at driver level and emptied at interrupt level. A QIO is considered 
successfully completed when the request is inserted in the circular 
buffer. 

The following operations are in this category: 

1. Bistable digital outputs 

2. Analog outputs 

3. Momentary digital outputs 

Interrupting functions are those operations that generate an interrupt 
within some fixed time after initiation. The driver allows a list of 
multiple transactions to be specified in a single QIO. Each 
transac~ion is initiated in sequence without waiting for the preceding 
interrupt, until either the list is exhausted or all modules of the 
specified type are active. The following operations are in this 
catecJory: 

1. AID inputs 

2. Remote terminal output 

19-5 



INDUSTRIAL CONTROL SUBSYSTEMS 

Unsolicited interrupts may require no initiation by the processor and 
occur at indeterminate intervals. The following functions are in this 
category: 

1. Interrupting digital inputs (DSS/DRS) 

2. Counter modules 

3. Remote terminal input 

4. Error interrupts 

All unsolicited interrupt data, except for errors, may be placed in a 
task-provided circular buffer. On interrupt, an event flag specified 
by the task is set. Such data for each module type is supplied to 
only one task per controller. In addition, the driver activates 
selected tasks on the occurrence of digital or terminal input 
interruptions. 

Error interrupts are described later in this chapter. 

Terminal support is restricted to passing terminal data between the 
device and a task. The only special character is Control-C (003~, 
which may cause a task that you specify to be made active. There 1S 
no other special processing for terminal I/O except that the parity 
bit is removed. This is similar to the terminal driver function of 
IO.RAL. 

1. MCR is not invoked. 

2. Characters are not echoed. 

3. Carriage control is not performed. 

4. TABs, RUBOUTs, and so forth are not recognized. 

5. Line terminators are not recognized. 

6. Fill characters are not generated. 

19.1.4 UDCll Software Compatibility 

Many of the MACRO and FORTRAN interfaces described in the following 
paragraphs are fully compatible with existing UDCll applications 
software; however, you should consult Section 19.7 for a summary of 
differences that do exist between UDC and ICS/ICR software. 

19.1.5 Module Addressing Conventions 

Table 19-2 illustrates the relationship between physical slot numbers, 
bus addresses and relative addresses for a given ICS/ICR 
configuration. It is referred to in the following discussion. 

Each A/D converter is assigned a block of 120 channels. The number of 
channels in use within the block depends on the number of multiplexers 
installed. Specifically, each A/D converter has eight channels, and 
each associated multiplexer has 16. 

19-6 

( 

( 

( 



( 

( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

Table 19-2 
Sample ICS/ICR Configuration 

Unit: 0 

Module Slot 
Number Number Type Bus Address Relative Addresses 

o. 9. D/A converter 171000 0-3. 
I. 10. A/D converter 171002 0-119. 
2. II. A/D multiplexer ------
3. 12. Counter· 171006 0 
4. 13. Flip-flop driver 171010 0-15. 
5. 14. D/A converter 171012 4-7. 
6. 15. Flip-flop driver 171014 16.-31. 
7. 16. Counter 171016 I. 
8. 17. A./D converter l71Q20 120.-239. 

As noted, a block of 120 relative addresses is reserved for each A/D 
converter. The converter and multiplexer in slots 10 and 11 contain 
channels 0 through 23. The converter in slot 17 contains channels 120 
through 127. The driver rejects an attempt to access a nonexistent 
channel (for example, channel 30 or channel 129). 

You should observe that the bistable drivers in 
contain relative point numbers 0 through 15, 
although the modules are not physically adjacent. 
relationship between slot number, module type, 
relative address is as ~ollows: 

slots 
and 

In 
bus 

13 and 15 
16 through 29 
general, the 
address, and 

1. A set of contiguous relative addresses is defined for e~ch 
module of a given type that is installed. Each relative 
address, when qualified by type, uniquely identifies a 
digital poin~ or channel. 

2. A set of slot numbers and bus addresses, possibly not 
contiguous, is occupied by all modules of a givert type. Such 
addresses may be assigned solely on the basis of hardware and 
installation considerations. Increasing relative addresses 
correspond to increasing bus addresses. 

Table 19-3 is an example of the 
interrupt points, and point 
configuration. 

relationship 
numbers for 

Table 19-3 

among bus 
a sample 

Sample DSS/DRS Configuration 

Bus Addresses Module Type Points Interrupt 

160030-160036 DRS 11 0-47. 0 
160040-160046 DRS 11 48.-95. 1 

170010-170016 DSS1l 0-47. 2 
170020-170026 DSS11 48.-95. 3 

19-7 

addresses, 
DSS l1/DRS 11 

Point 



INDUSTRIAL CONTROL SUBSYSTEMS 

All addressing is by point number. Except for the interrupts, all 
points are numbered sequentially by type (DSS or DRS), starting with 
the first point on the lowest address assigned to a given module type. 
Interrupt points are defined by means of a 16-bit mask word. Each bit 
in the mask defines an interrupting module; high-order bits correspond 
to increasing bus addresses. 

19.2 LUN INFORMATION 

A request for logical unit information returns the 
device-dependent data in words 2 through 5 of the buffer: 

following 

WD 02 

WD 03 

WD 04 

WD 05 

o 

Undefined 

Undefined 

o 

19.3 ASSEMBLY LANGUAGE INTERFACE 

Table 19-4 summarizes standard and device-specific QIO functions 
supported by the ICS/ICR driver. Only the five functions indicated by 
a footnote are supported by the DSS/DRS driver. 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

Table 19-4 
Summary of Industrial Control QIO Functions 

Format 

IO.CCI, ••• ,<stadd,sizb,tevf> 

IO.CTI, ••• ,<stadd,sizb,tevf, 
arv> 

IO.CTY, ••• ,<stadd,sizb,tevf> 

IO.DCI, ••• 

IO.DTI, ••• 

IO.DTY, ••• 

IO.FLN, ••• 

IO.ITI, ••• ,<mn,ic> 

IO.LDI, ••• ,<tname,[,tevf], 
pn,csm> 1 

Function 

CONNECT a buffer to 
digital interrup~s 

CONNECT a buffer to 
counter interrupts 

CONNECT a buffer to 
terminal 'interrupts 

Disconnect a buffer from 
digital interrupts 

Disconnect a buffer from 
counter interrupts 

Disconnect a buffer from 
terminal interrupts 

Set controller off line 

INITIALIZE a counter 

LINK task to digital 
interrupts 

1. These functions are supported by the DSS/DRS driver. 

(continued on next page) 

19-8 

( 

( 



( 

c 

( 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

INDUSTRIAL CONTROL SUBSYSTEMS 

Table 19-4 (Cont.) 
Summary of Industrial Control QIO Functions 

Format 

IO.LKE, ••• ,<tname,[,tevf]> 

IO.LTI, ••• ,<tname,[,tevf] 
cn [,arv] > 

IO.LTY, ••• ,<tname,[,tevf]> 

IO.MLO, ••• ,<opn,pp,dp>1 

IO.MSO, ••• ,<opn,dp> 

IO.NLK, ••• ,<tname> 1 

IO.ONL,~ •• 

IO.RAD, ••• ,<stadd>l 

IO.RBC, ••• ,<stadd,size, 
stcnta> 

IO.SAO, ••• ,<chn,vout> 

IO.UDI, ••• ,<tname>l 

IO.UER, ••• ,<tname> 

IO.UTI, ••• ,<tname> 

IO.UTY, ••• ,<tname> 

IO.WLB, ••• ,<stadd,sizb> 

Function 

LINK task to error 
interrupts 

LINK task to counter 
interrupts 

LINK task to remote 
terminal interrupts 

OPEN or close bistable 
digital output points 

PULSE momentary digital 
output points 

UNLINK a task from all 
interrupts 

Place ICS/ICR controller 
online 

READ activating data 

INITIATE multiple A/D 
conversions 

PERFORM analog output 

UNLINK a task from 
digital interrupts 

UNLINK a task from error 
interrupts 

UNLINK a task from 
counter interrupts 

UNLINK a task from 
terminal interrupts. 

TRANSMIT data to the ICR 
remote terminal 

1. These functions are supported by the DSS/DRS driver. 

arv 

chn 

The starting address of a buffer containing initial or reset 
counter values. The buffer must be aligned on a word boundary. 

The D/A channel number. 

19-9 



cn 

csm 

dp 

ic 

mn 

opn 

pn 

pp 

sizb 

size 

INDUSTRIAL CONTROL SUBSYSTEMS 

The counter number. 

The change-of-state mask. 

The binary data pattern. 

The initial count. 

The module number. 

The first bistable 
This value must 
16) • 

(latching) digital output point number. 
be on a module boundary (evenly divisible by 

The point number (must be assigned on a module boundary). 

A l6-obi t mask. 

The data buffer size in bytes. For a circular buffer connected 
to unsolicited interrupts, this value must be even and large 
enough to include one entry plus the 2-word header. 

The data and control buffer size in bytes. This value must be 
an even number that is greater than O. 

stadd 

The starting address of the data buffer (must be on a word 
boundary) • 

staddb 

( 

( 

The starting address of the terminal output buffer (may be ( 
aligned on a byte boundary) • 

. 19-10 



( 

c 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

stcnta 

tevf 

The starting address of the control buffer (must be on a w.ord 
boundary); each control buffer word must be constructed as 
described in Table 19-5 (Section 19.3.2). 

An event flag number in the range 0 to 96, (if the group-global 
event flag system generation option was selected), or 0 to 64 
if group-global event flags are not supported. 

tname 

vout 

A task name composed of 1 to 6 alphanumeric characters in a 
2-word RADIX-50 format. Two arguments, each con~aining three 
characters, are required for this parameter. For example, the 
task name ICNAME is specified as: 

<~RICN,~RAME, ••• > 

If the task name is less than four characters, a null argument 
must be specified as follows for task ABC: 

<~RABC" ••• > 

A binary number between 0 and 1023. that is to be converted to 
an analog output. 

The following sections. contain 
function. In the. discussion 
following conventions apply. 

a detailed description of 
of QIO request parameters, 

each 
the 

All numbering is relative. 

Module numbers start at 0 beginning with the first module of a given 
type. Increasing module numbers correspond to increasing physical 
bus addresses. 

Channel numbers start at 0, with channel 0 as the first channel on 
the first module of a given type. . 

Point numbers start at 0 with point 0 as the· first point on the 
first module of a given type. Points within a module are numbered 
"from right to left" in increasing order. 

It should be remembered that there is no requirement for ICS/ICR 
modules of a given type to occupy contiguous slots; thus, for 
example, digital points 15 (decimal) and l6(decimal) need not reside 
on physically adjacent modules. This restriction does apply to 
DSS/DRS modules, however. 

19-11 



INDUSTRIAL CONTROL SUBSYSTEMS 

It is assumed that the number of points or channels per module is a 
constant for each generic type. Specifically, the following weights 
apply: 

l. Each ICS/ICR Digital I/O Module contains 16 points. 

2. Each DSS/DRS Digital I/O Module contains 48 points. 

3. Each Counter Module contains 1 channel. 

4. Each D/A Module contains 4 channels. 

5. Each A/D Converter contains 120 channels. 

As stated above, an A/D converter is assigned a block of 120 
channels. The number of channels in use within the block depends on 
the number of multiplexers installed. The driver rejects an attempt 
to address a nonexistent channel. 

19.3.1 General Error Status Returns 

The system recognizes and handles two kinds of status conditions 
when they occur in I/O requests: 

• Directive conditions, which indicate the acceptance or 
rejection of the QIO directive itself 

• I/O status conditions, which indicate the success or 
failure of the I/O operation 

( 

Table 19-7 lists numerical values of returns for both assembly ( 
language and FORTRAN interfaces. 

The following directive and I/O status returns apply uniformly to 
all requests. 

19.3.1.1 Directive Conditions -

IS.SUC - Directive accepted. 

The first six parameters of the QIO directive were valid, 
and sufficient dynamic memory was available to allocate an 
I/O packet. The directive is accepted. 

IE.ADP - Invalid address. 

The I/O status block or the QIO DPB was outside of the 
issuing task's address space or was not aligned on a word 
boundary. 

IE.IEF - Invalid event flag number. 

IE.ILU - Invalid logical unit number. 

The lun specification in a QIO directive was invalid for 
the issuing task. For example, there were only five 
logical unit numbers associated with the task, and the 
value specified for lun was greater than five. 

19-12 

( 



( 

( 

( 
" 

INDUSTRIAL CONTROL SUBSYSTEMS 

IE. NOD - Insufficient dynamic memory. 

There was not enough dynamic memory to allocate an I/O 
packet for the I/O request. Your task can try again later 
by blocking the task with a WAITFOR SIGNIFICANT EVENT 
directive. Note that WAITFOR SIGNIFICANT EVENT is the only 
effective way for the issuing task to block its execution, 
because other directives that accomplish this purpose 
themselves require dynamic memory for their execution (for 
example, MARK TIME). 

IE.SDP - Invalid DIC number or DPB size. 

The directive identification code (DIC) or the size of the 
directive parameter block (DPB) was incorrect; the legal 
range for a DIC is from 1 through 127, and all DIC values 
must be odd. Each individual directive requires a DPB of a 
certain size. If the size is not correct for the 
particular directive, this code is returned. 

IE.ULN - Unassigned LUN. 

The logical unit number in the QIO directive was not 
associated with a physical device unit. Your task may 
recover from this error by issuing a valid Assign LUN 
directive and then reissuing the rejected directive. 

19.3.1.2 I/O Conditions -

IE.ABO - Operation aborted. 

The specified operation was canceled by IO.KIL or the 
request timed out while the unit was off line. 

IE.OFL - Controller off line. 

The physical device unit associated with the LUN specified 
in the QIO directive was not on line. An ICS/ICR 
controller may be off line because a device check during 
bootstrap load has indicated that the controller is not in 
the configuration. 

IE.DNR - Controller not ready. 

A nonrecoverable controller error has been detected. 

IE.IFC - Illegal function. 

A function code was included in an I/O request that is 
illegal for the ICS/ICR. The function may also refer to an 
ICS/ICR module type or function that was not specified 
during system generation. 

19.3.2 A/D Input - Read Multiple A/D Channels 

This function provides the capability of reading several A/D 
channels at any permissible gain. The driver is capable of 
initiating parallel transfers when more than one A/D converter is 
installed in a file box; however, only one interrupt module request 
(remote terminal or A/D) may be in progress at a given time. 

19-13 



INDUSTRIAL CONTROL SUBSYSTEMS 

QIO DPB format: 

stadd 

size 

QIO$C IO.RBC, ••• ,<stadd,size,stcnta) 

The starting address of the data buffer (must be on a word 
boundary). 

The data buffer size in bytes (must be even and greater than 
0); the control buffer is the same size. 

stcnta 

The starting address of the control buffer (must be on a word 
boundary); each control buffer word must be constructed as 
shown in Table 19-5. 

Return Status: 

IS.SUC - Function successfully completed. 

IE.BAD - Illegal channel or gain code specified. 

IE.BYT - Data buffer is byte aligned. Alternatively, the 
length of the buffer is not an even number of bytes. 

IE.DNR - Device not ready. A/D converter interrupt time-out 
occurred. 

Note that the second I/O status word contains a count of the 
number of conversions successfully completed. 

One control word is paired with each data word. That is, the data 
appearing in a data array element is obtained using the gain and 
channel number specified in the corresponding element of the control 
array. Control words specify the gain and 'channel in the format 
shown in Table 19-5. 

Upon receiving and validating the parameters within the I/O packet, 
the driver initiates the following sampling procedure: 

1. The control word is fetched and tested for validity (that 
is, for legal gain and channel). 1£ an error is 
encountered or no further control words remain, processing 
is terminated as described in Step 4. 

2. Assuming the A/D converter board is idle, the driver starts 
the conversion, sets this resource busy, and returns to 
step 1. If the converter is busy, the driver returns 
control to the system after saving the data required to 
initiate the conversion when the channel becomes idle. 

3. On the occurrence of an A/D interrupt, the interrupt 
service routine initiates the appropriate processing at the 
non interrupt level that either sets the channel idle or 
initiates a previous request stored during step 2. The 
occurrence of the latter results in processing of 
additional control words as described in step 1. 

19-14 

( 

( 

( 



( 

( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

Table 19-5 
AID Conversion Control Word 

Bits Meaning 

O-ll Channel Number range: 0-1919 

12-15 Gain value for 
this sample. The 
binary value is 
as follows: 

15 14 13 

0 0 0 
0 0 0 
0 0 1 
0 0 1 
0 1 0 
0 1 0 
0 1 1 
0 1 1 
1 0 0 
1 0 0 
1 0 1 
1 0 1 
1 1 0 
1 1 0 
1 1 1 
1 1 1 

Gain 

12 

0 1 
1 2 
0 illegal 
1 illegal 
0 10 
1 20 
0 illegal 
1 illegal 
0 50 
1 100 
0 illegal 
1 illegal 
0 200 
1 1000 
0 illegal 
1 illegal 

4. The converted value is returned as 12 bits, left-justified, 
in a 16-bit word, with the low-order 4 bits set to O. 

5. AID requests are terminated under any of the following 
conditions: 

a. All control words have been processed. 

b. A hardware error has occurred. 

c. An error in a control word has been detected. 

Regardless of the cause, the driver cannot complete request processing 
until all pending AID transfers have gone to completion. 

Because of overlapped processing, multiple errors can occur (for 
example, a hardware error and an erroneous control word). The driver 
returns the status associated with the earliest transaction that 
caused an error condition. Thus, at the interface to your task, the 
driver appears to execute all conversions sequentially. 

19.3.3 Analog Output 

This function provides the capability of setting a single analog 
output channel to a specified voltage. 

19-15 



INDUSTRIAL CONTROL SUBSYSTEMS 

QIO DPB format: 

QIO$C IO~SAO, ••• ,<chn,vout> 

chn 

The output channel number. 

vout 

The output voltage representation. 

Output voltage varies linearly with the binary input to the channel, 
where 0 to plus 10 volts (+lOv.) is represented by integers from 0 to 
1023. 

Return Status: 

IS.SUC - Function submitted for output to controller. 

IE.MOD - Nonexistent D/A channel was specified. 

The second I/O status word is o. 

19.3.4 Momentary Digital Output - Multi-Point 

This function provides the capability of pulsing a field of up to 16 
momentary (single-shot) digital output points., Fields must be aligned 
on module boundaries. 

QIO DPB format: 

opn 

dp 

QIO$C IO.MSO, ••• ,<opn,dp> 

The starting digital output point number. Point number must be 
aligned on a module boundary (that is, must be a multiple of 16). 

The 16-bit mask. One point is pulsed corresponding to each bit 
set in the mask word. 

Return Status: 

IS.SUC - Function submitted for output to the controller. 

IE.MOD - Invalid starting point number specified. Point is 
nonexistent or not aligned on a module boundary. 

19-16 

( 

( 

( 



( 

( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

19.3.5 Bistable Digital Output - Multi-Point 

This function provides the capability of setting or resetting a field 
of up to 16 bistable digital output points. Fields must be aligned on 
a module boundary. 

QIO DPB format: 

opo 

pp 

dp 

QIO$C IO.MLO, ••• ,<opn,pp,dp> 

The starting digital output point number. Point number must be 
aligned on a module boundary (that is, must be a multiple of 16). 

The 16-bit mask. 

The data pattern. 

A bit is set in the mask word for each point that may change state. 
The state of points corresponding to reset mask bits is unaltered. 
When the mask bit is set, the output is "closed" if the data bit is 
set and "open" if the data bit is clear. 

Return Status: 

IS.SUC - Function submitted for output to the controller. 

IE.MOD - Invalid starting point number specified. Point does not 
exist or is not aligned on a module boundary. 

19.3.6 Unsolicited Interrupt Processing 

Unsolicited interrupts consist of the following: 

1. Digital interrupts 

2. Counter interrupts 

3. Remote terminal input 

4. Hardware errors 

Based on the type of interrupt, the driver may dispose of the 
interrupt data in one or more of the following ways: 

1. The data may be furnished to a task that has issued a request 
to monitor such information continually. This alternative is 
not available in the DSS/DRS driver. 

2. A task may be activated by a specific input. That is, a 
dormant task can be requested to run, or an event flag may be 
set if the task is currently active. 

19-17 



INDUSTRIAL CONTROL SUBSYSTEMS 

The driver allows continual monitoring for digital, counter, and
terminal inputs with the provision that, for each controller, only one 
task per module type may receive such inputs. 

Task activation is permitted for digital, terminal, and error 
interrupts. The processing related to hardware errors is discussed in 
Section 19.5. Activation of tasks by digital, counter, and terminal 
inputs is covered in Section 19.3.7. 

The driver functions described in the following paragraphs allow a 
task to continually receive interrupt data. T~ monitor such data, a 
task must provide: 

1. A buffer that is filled by the driver and emptied by the task 
in circular fashion 

2. An event flag that is set upon the occurrence of each 
interrupt 

The driver connects a single task per controller to receive interrupts 
from a specific module type. 

The buffer to be connected has the format shown below: 

FORTRAN 
Index Contents 

1 driver index 

2 your task's index 

3 word 0 of entry 

4 word 1 of entry 

The buffer consists of a 2-word header containing the driver and your 
task's index, as shown, followed by a data area that is subdivided 
into fixed-length entries. Each entry consists of a word containing 
the entry existence indicator followed by one or more words of 
device-dependent data. Such information usually consists of module 
data, relative module number, and.a code identifying a module type. 
On the occurrence of an interrupt, the driver enters data in the 
location currently indicated by the driver index. This index can be 
considered as a FORTRAN index into the buffer. That is, the first 
location in the buffer is associated with the index 1. The beginning 
of the data area is associated with the first entry, index 3. Entries 
are made in a circular fashion starting at the beginning of the data 
area, filling in order of increasing memory address, and wrapping 
around to the beginning of the data area when there is insufficient 
space for an entry at the end. Note that the size of the data area 
must be an integer multiple of the entry size. 

It is expected that the connected task maintains the index, ensuring 
that it indicate where, in the buffer, the task is to process 
interrupt data next. 

When the task is activated 
the buffer starting at 
continuing in circular 
encountered that is O. 

by the driver, it should process data in 
the location indicated by its poiriter, and 

fashion until an existence indicator is 

19-18 

( 

( 

( 



( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

The existence indicator is set to +1 when a buffer entry is made. 
Except to record a hardware error, the contents of an entry are not 
altered by the driver if the indicator is nonzero. Hence, when a 
requester has removed or processed the entry, he must clear the 
existence indicator to free the buffer entry position. If the driver 
detects a nonzero indicator, (that is, data input has occurred in a 
burst sufficient to overrun the buffer), the data is discarded and a 
count of data overruns is incremented. The count is maintained in the 
entry existence indicator, which, as noted above, is set to +1 to 
indicate no overruns between entries, +2 to indicate a hardware error 
entry, or a negative value recording the two's complement of the 
number of times data has been discarded between entries. The overrun 
count is never allowed to wrap around to a positive value. 

In the event of a nonrecoverable controller error (remote unit 
power-fail or hard data error) all connected tasks are activated with 
the following entry in the circular buffer: 

nn 

WD 00 

WD nn 
WD nn+l 
we nn+2 

Hardware error indicator (+2) 

Contents of ICSR register 
Physical unit number 
Generic code indicator 
set to l77770(octal) 

The offset to module data word. 

This entry is always placed in the buffer regardless of overflow 
status. 

The error flags are obtained from the controller ICSR word at the time 
the error was detected (see Table 19-7). 

19.3.6.1 Connect to Digital Interrupts - This function allows a 
single task to receive digital interrupt data. 

QIO DPB format: 

stadd 

sizb 

tevf 

QIO IO.CCI, ••• ,<stadd,sizb,tevf> 

The starting address of buffer to be connected (must be word 
aligned). 

The length of buffer in bytes (must be even). 
length is 14 bytes. 

The trigger event flag number. 

19-19 

Minimum buffer 



INDUSTRIAL CONTROL SUBSYSTEMS 

Return Status: 

IS.SUC - Function successfully completed. Second I/O status word 
contains the number of words passed per interrupt in the 
low byte, and the initial FORTRAN index in the high 
byte. 

IE.BYT - Buffer address is byte aligned or length is an odd 
number of bytes. 

IE.CON - Interrupt already connected to another task. 

IE.IEF - Invalid event flag number. 

IE.PRI - Task checkpointable and not fixed in memory. 

IE.SPC -

Entry Format: 

WD 00 -

Interrupt circular 
address space of 
was too small for 
minimum) • 

Existence Indicator 

buffer was 
the task. 

a single 

WD 01 - Change of state indicator 
WD 02 - Module data 
WD 03 - Relati v,e module number 

not wholly within the 
Alternatively, the buffer 

data entry (seven words 

WD 04 - Generic Code 1, 2, or 3, indicating a digital interrupt 

The contents of the existence indicator 
previously. 

have been described 

The change-of-state indicator records those bits for which a change of 
state in the direction of interest has been detected. The direction 
of the change may be from 0 to 1 (point closed (PCL» or 1 to 0 (point 
open (POP» depending upon the PCL or POP jumper connections on the 
digital interrupt module. The driver assumes that at least one of 
these signals is always asserted. 

The relative module number indicates the module on which the change of 
state was recognized. 

The module data word records data received at the time the interrupt 
was serviced. 

The generic code identifies the type of module that caused the 
interrupt. A digital interrupting module may have the value 1, 2, or 
3 as selected by jumpers that you install on the module. 

19.3.6.2 Disconnect from Digital Interrupts - This function allows a 
task to terminate the processing of digital interrupt data. 

QIO DPB format: 

QIO$C IO.DCI, ••• 

19-20 

( 

( 

( 



( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

Return Status: 

IS.SUC - Function successfully completed. Second I/O status word 
is o. 

IE.CON - Task was not connected. Second I/O status word is O. 

19.3.6.3 Connect to Counter Module Interrupts - This function allows 
a single task to receive counter interrupt data. 

QIO DPB format: 

stadd 

sizb 

tevf 

arv 

QIO$C 10.CTI, ••• ,<stadd,sizb,tevf,arv> 

The starting address of circular buffer (must be word aligned). 

The length of buffer in bytes (must be even). 
length is 12 bytes. 

The trigger event flag number. 

Minimum buffer 

The starting address of table of initial counter values (must be 
word aligned). 

Word 03 defines an array of initial counter values. One entry is 
required for each counter installed in a physical unit. Entries are 
paired with modules in logically ascending sequence. The counter is 
set to the initial value upon receipt of the connect function and 
whenever an overflow interrupt occurs (that is, when the count reaches 
0) • 

Return Status: 

IS.SUC - Function successfully completed. The second I/O status 
word contains the number of words passed per interrupt 
in the low byte, and the initial FORTRAN index in the 
high byte. 

IE.BYT - Buffer address is byte aligned or length is an odd 
number of bytes. 

IE.CON - Interrupt already connected to another task. 

19-21 



INDUSTRIAL CONTROL SUBSYSTEMS 

IE.IEF - Invalid event flag number. 

IE.PRI - Task checkpointable and not fixed in memory. 

IE.SPC - Interrupt circular buffer or table 
not wholly within the address 
Alternatively, the buffer was too 
data entry (six words minimum) • 

Entry Format: 

WD 00 - Existence indicator 

WD 01 - Module data 

WD 02 - Relative module number 

WD 03 - Generic code (4, 5, or 6) 

of initial values was 
space of the task. 
small for a single 

19.3.6.4 Set Counter Initial Value - This function allows a counter 
initial value to be established. A task need not be connected to 
counter interrupts to perform this function. 

QIO DPB format: 

QIO$C IO.ITI, ••• ,<mn,ic> 

mn. 

The relative module number. 

ic 

The new initial count. 

Return Status: 

IS.SUC - New value submitted for output to the controller. The 
second word of I/O status is set to O. 

IE.MOD - Nonexistent module number specified. 

Upon receipt of the 
queued for output 
with this value on 
interrupts. 

request, the new initial value is immediately 
to the controller. The counter is reinitialized 
overflow if a task is connected to counter 

19.3.6.5 Disconnect from Counter Interrupts - This function allows a 
task to terminate counter interrupt processing. 

QIO DPB format: 

QIO$C IO.DTI, ••• 

19-22 

c 

( 

( 



( 

( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

Return Status: 

IS.SUC - Function successfully completed. The second word of I/O 
status is ~et to o. 

IE.CON - Task was not connected to timer interrupts. 

After disconnect is complete, counters are not reset to the initial 
value at the time of the interrupt. 

19.3.6.6 Connect to Terminal Interrupts - This function allows a task 
to receive terminal inputs from the selected ICRll controller. 

OIO DPB format: 

"OIO$C IO.CTY, ••• ,<stadd,sizb,tevf> 

stadd 

sizb 

tevf 

The address of the circular buffer (must be word aligned). 

The length of buffer (must be even). The minimum buffer length 
is 12 bytes. 

The trigger event flag number. 

Return Status: 

IS.SUC - Function successfully completed. The second I/O status 
word contains the number of words passed per interrupt 
in the low byte, and the initial FORTRAN index in the 
high byte. 

IE.BYT - Buffer is byte aligned or length is an odd number of 
bytes 

IE.CON - Interrupt already connected to another task. 

IE.IEF - Invalid event flag number. 

IE.MOD - Nonexistent device. Controller is ICSll. 

IE.SPC - Interrupt circular buffer was not wholly within the 
address space of the. task. Alternatively, the buffer 
was too small for a single entry (six words minimum). 

Entry Format: 

WD 00 - Existence indicator 

WD 01 - High byte = 0, low byte = terminal input character 

WD 02 - Relative module number (normally 0) 

WD 03 - Generic code indicator (normally 0) 

19-23 



INDUSTRIAL CONTROL SUBSYSTEMS 

Note that words 2 and 3 are nonzero only when the entry was made as 
the result of a nonrecoverable controller error. 

All remote terminal data is conveyed to the requesting task as input, 
but with the parity bit removed. 

NOTE 

Remote.terminal input is not echoed by the driver. 

19.3.6.7 Disconnect from Terminal Input - This function allows a task 
to discontinue the processing of terminal input. 

QIO DPB format: 

QIO$C IO.OTt, ••• 

Return Status: 

IS.SUC - Function successfully completed. The second word of I/O 
status is set to O. 

IE.CON - Task was not connected to remote terminal interrupts. 

19.3.7 Activating a Task by Unsolicited Interrupts 

The functions described in the following paragraphs provide the 
capabil i ty of: 

1. Activating a task in response to unsolicited interrupts 

2. Interrogating the driver to determine the 
activation 

3. Removing a task from the activation list 

reason for 

The QIO DPB parameters specify the task name, an optional trigger 
event flag to be set if the task is active, and device-dependent 
parameters that identify the interrupt source. A task is linked to 
interrupts (that is, made eligible for activation) provided that: 

1. The resource exists. 

2. The task is installed. 

3. No other task is linked to the resource. 

If another task is linked to the resource, the driver rejects the 
request with a status of resource-in-use (IE.RSU). A resource is 
defined as a single interrupt point, remote terminal (Control-C input 
only), or counter module. 

19-24 

( 

( 

( 



( 

( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

On the occurrence of the appropriate interrupt, the task is made 
active if dormant; otherwise, a trigger event flag, if specified, is 
set. The task may interrogate the driver to determine the conditions 
that caused activation, and to signify interrupt recognition. The 
function of the event flag is to allow such a task to recognize an 
event that has occurred while the task was active. Recognition is 
ensured prior to the completion of task execution by issuing the Exit 
If system directive followed by the Clear Event Flag directive. 

The linkage between a task and a specific interrupt is removed by 
issuing the appropriate unlink request with the QIO directive. 

Only one task may be associated with each interrupt source (that is, 
one task per digital interrupt point, terminal input, or counter 
module. ) 

NOTE 

The MCR command REMOVE unlinks a task from all 
interrupts. 

19.3.7.1 Link a Task to Digital Interrupts - This function allows a 
task to be activated on the occurrence of digital interrupts. 

QIO DPB format: 

tname 

tevf 

pn 

csm 

QIO$C IO.LDI, ••• ,(tname,[,tevf] ,pn,csm>· 

A I-to 6-character alphanumeric task name in 2-word, Radix-50 
format. 

The trigger event flag (0 = none). 

The point number (must be aligned on a module boundary). 

The change-of-state mask. 

The change-of-state mask indicates those bits for which a change of 
state in the direction specified by the PCL and POP jumpers causes the 
task to be activated. Only one task may be linked to a given 
interrupt point. A 0 change-of-state mask is not permitted. 

19-25 



INDUSTRIAL CONTROL SUBSYSTEMS 

Return Status: 

IS.SUC - Function successfully completeci. The second word of I/O 
status is set to O. 

IE.BAD - Change-of-state mask set to o. 

IE.IEF - Invalid event flag number. 

IE.MOD - Nonexistent module or point not aligned on a module 
boundary. 

IE. NOD - Insufficient dynamic memory to 
control block. 

IE.NST - Task "tname" is not installed. 

allocate secondary 

IE.RSU - One or more of the specified points is in use by other 
tasks. 

19.3.7.2 Link a Task to Counter Interrupts - This function allows a 
task to be activated by means of an interrupt from a single count~r 
module. 

QIO DPB format: 

tname 

tevf 

cn 

ic 

QIO$C 10. LTI, ••• , < tname, [ , tevf] ,cn [ , ic] > 

A 1- to 6-character alphanumeric task name in 2-word Radix-50 
format. 

The trigger event flag (0 = none). 

The relative module number. 

The counter value (optional). 

The counter value, if nonzero, reinitializes the module in a manner 
similar to that described for the Set Counter function in Sect ian 
19.3.6.4. Initialization may be bypassed by setting this parameter to 
O. 

Return Status: 

IS.SUC - Function successfully completed. 
status is set to O. 

IE.IEF - Invalid event flag number. 

19-26 

The second word of I/O 

( 

( 

( 



( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

IE.MOD - Nonexistent module specified. 

IE. NOD - Insufficient dynamic memory to allocate a secondary 
control block. 

IE.RSU - Counter is linked to another task. 

19.3.7.3 Link a Task to Terminal Interrupts - This function allows a 
task to be activated by means of an interrupt from a remote terminal. 
The task is activated only in response to the Control-C character 
(octal 003). 

QIO DPB format: 

QIO$C IO.LTY, ••• ,(tname,[,tevf» 

tname 

tevf 

A 1- to 6-character alphanumeric task name in 2-word, Radix-50 
format. 

The trigger event flag (0 = none). 

Return Status: 

IS.SUC - Function successfully completed. The second word of I/O 
status is o. 

IE.IEF - Invalid event flag number. 

IE.MOD - Nonexistent module (unit is ICSll controller). 

IE. NOD - insufficient dynamic storage to allocate 
control block. 

secondary 

IE.NST - Task "tname" is not installed. 

IE.RSU - Remote terminal is linked to another task. 

19.3.7.4 Link a Task to Error Interrupts
single task to be activated whenever a 
nonrecoverable serial line error is detected 
units in a system. Only one task within 
error interrupts. Once linked, the selected 
reports from any ICR controller. 

QIO DPB format: 

QIO$C IO.LKE, ••• ,(tname,[,tevf» 

tname 

This function allows a 
remote unit power-fail or 
on any or all remote 

a system may be linked to 
task may receive error 

A 1- to 6-character alphanumeric task name in 2-word Radix-50 
format. 

19-27 



INDUSTRIAL CONTROL SUBSYSTEMS 

tevf 

The trigger event flag (0 = none) • 

Return Status: 

IS.SUC - Function succ.essfully completed. The second word of I/O 
status is O. 

IE.IEF - Invalid event flag number. 

IE.IFC - No ICRll subsystems are installed. 

IE.NOD - Insufficient dynamic storage to allocate 
control block. 

IE.NST - Task "tname" is not installed. 

IE.RSU - Another task is linked to error interrupts. 

secondary 

19.3.7.5 Read Activating Data - This function allows a task to 
determine the conditions that caused it to be activated. 

QIO OPB format: 

stadd 

QIO$CIO.RAO, ••• ,(stadd) 

The address of 6-word bu.ffer to receive activation data (must be 
word aligned). 

The buffer receives data in the following format: 

WO 00 - Activation indicator 

WD 01 - Physical unit number 

WO 02 - Generic code 

WO 03 - Relative module number 

WO 04 - Hardware dependent data 

WO 05 - Har~ware dependent data 

The activation indicator is similar in function to the existence 
indicator that the task uses when it reads circular buffer entries. 
The occurrence of an interrupt to which the requesting task is linked 
sets the indicator to +1, and the appropriate data is stored. The 
indicator is cleared when the .data is solicited by the task. If an 
interrupt linked to the task occurs and the parameter is nonzero then 
the previously stored data is not modified and the driver sets this 
element with the two's complement of the number of linked interrupts 
not recorded. 

The physical unit number specifies the controller that received the 
interrupt. 

19-28 

( 

( 

( 



( , 

( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

The generic code is identical to that specified 
entries, namely: 

o Terminal (Control-C) 

1,2,3 - Digital interrupt 

4,5,6 - Counter interrupt 

177770 - Fatal controller error 

for circular buffer 

Hardware-dependent data is associated with generic code and consists 
of the following: 

Terminal: 

we 04 - Terminal buffer contents (low byte) 

WD 05 - Undefined 

Digital Interrupts: 

WD 04 - Module data 

WD 05 - Change-of-state indicator 

Counter: 

WD 04 - Module data 

WD 05 - Undefined 

Fatal Controller Error: 

WD04 Cont~nts of ICSR register (see Table 19-7) 

WD05 Contents of ICARregister (see Table 19-8) 

Return Status: 

IS.SUC - Function successfully completed. The second word of I/O 
status is o. 

IE.BYT - Buffer address is aligned on an odd byte boundary. 

IE.NLK - Task "tname" was not linked to interrupts. 

IE.SPC - Buffer not totally within the task's address space. 

19.3.8 Unlink a Task from Interrupts 

The functions described in the following paragraphs provide the 
capability of: 

1. Unlinking a task from all interrupts on a controller 

2. Selectively unlinking a task from interrupts by module type 

19-29 



INDUSTRIAL CONTROL SUBSYSTEMS 

19.3.8.1 Unlink a Task from All Interrupts - This function unlinks a 
task from all interrupts on a given controller and from error 
interrupts. 

QIO DPB format: 

tname 

QIO$C IO.NLK, ••• ,<tname> 

A 1- to 6-character alphanumeric task name in 2-word Radix-50 
format. 

Return Status: 

IS.SUC - Function successfully completed. The second word of I/O 
status is o. 

IE.NLK - Task "tname" was not linked to interrupts. 

19.3.8.2 Unlink a Task from all Digital Interrupts - This function 
provides the capability of unlinking a task from all digital interrupt 
points on a controller. 

QIO DPB format: 

tname 

QIO$C IO.UDI, ••• ,<tname> 

a 1- to 6-character alphanumeric task name in 2-word Radix-50 
format. 

Return Status: 

IS.SUC - Function successfully completed. The second word of 1/0 
status is o. 

IE.NLK- Task "tname" was not linked to the specified class of 
interrupt. 

IE.NST - Task not installed. 

IE.MOD - Nonexistent module type specified. 

19.3.8.3 Unlink a Task 
provides the capability 
interrupts. 

from Counter Interrupts - This function 
of unlinking a task from all counter module 

QIO DPB format: 

tname 

QIO$C IO.UTI, ••• ,<tname> 

A 1- to 6-character alphanumeric task name in 2-word Radix-50 
format. 

19-30 

( 

( 

( 



( 

( 

--~~-~=~~~= ~ - ______ 0 ________________ _ 

INDUSTRIAL CONTROL SUBSYSTEMS 

Return Status: 

IS.SUC - Function successfully completed. The second word of I/O 
status is o. 

IE.NLK - Task "tname" was not linked to the specified interrupts. 

IE.NST - Task not installed. 

IE.MOD - Nonexistent module type specified. 

19.3.8.4 Unlink .a Task from Terminal Interrupts - This function 
provides the capability of unlinking a task from terminal interrupts. 

010 DPB format: 

OIO$C IO.UTY, ••• ,(tname> 

tname Tname parameter IO.UTY function (ICDRV/ISDRV) 

A 1- to 6-character alphanumeric task name in 2-word Radix-50 
format. 

Return Status: 

IS.SUC - Function successfully completed. The second word of I/O 
status is O. 

IE.NLK - Task "tname" was not linked to the specified interrupts. 

IE.NST - Task not installed. 

IE.MOD - Nonexistent module specified (that is, device is an 
ICSII controller). 

19.3.8.5 Unlink a Task from Error Interrupts - This function provides 
the capability of unlinking a task from all error interrupts. 

010 DPB format: 

OIO$C IO.UER, ••• ,(tname> 

tname 

A 1"- to 6-character alphanumeric task name in 2-word Radix-50 
format. 

Return Status: 

IS.SUC - Function successfully completed. The second word of I/O 
status is O. 

IE.IFC - No ICRII controllers exist in the system. 

IE.NLK - Task "tname" was not linked to error interrupts. 

IE.NST - Task not installed. 

19-31 



INDUSTRIAL CONTROL SUBSYSTEMS 

19.3.9 Terminal Output 

This function allows a task to perform output to the terminal device. 
Characters are output exactly as they appear in the buffer. The 
carriage control parameter is not recognized. It should be noted that 
only one interrupt module request per controller (terminal or A/D) may 
be in progress at a given time. Thus, the driver does not initiate an 
A/D operation on a given controller, until any terminal output in 
progress for that controller has been completed. 

QIO DPB format: 

QIO$C IO.WLB, ••• ,<staddb,sizb> 

staddb 

The buffer address (may be odd). 

sizb 

The byte count (may be odd). 

Return Status: 

IS.SUC - Function successfully completed. Second word of I/O 
status contains the number of bytes output. 

IE.MOD - Nonexistent hardware function. Request was issued for 
an ICSll controller. 

19.3.10 Maintenance Functions 

The functions described below allow a privileged task to enable and 
disable error reporting while troubleshooting or maintenance on a 
remote unit is in progress. 

19.3.10.1 Disable Hardware Error Reporting - This function allows a 
privileged task to disable error reporting and error interrupts, and 
restrict access to the controller while remote unit troubleshooting or 
module calibration is in progress (see Section 19.5.1). Upon receipt 
and validation of the request, error interrupts are disabled and 
subsequent controller time-outs are ignored. The occurrence of device 
time-out while A/D conversion or remote terminal input is in progress 
results in termination of the request with the error code IE.ABO. 
When error reporting is disabled in this manner, access to the 
controller for input or output to I/O modules is restricted to 
privileged tasks. All other requests not requiring the transmission 
of data to or from the device are permitted for all tasks. Such 
requests are as follows: 

1. Disconnect from digital, counter, 
interrupts 

2. Unlink from interrupts 

3. Read activating data 

19-32 

or remote terminal 

( 

( 

( 



( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

4. Link to digital, remote terminal, or error interrupts 

5. Connect a buffer to digital or remote terminal interrupts 

All other requests not issued by a privileged task are rejected with 
the error code IE.DNR. 

010 DPB format: 

OIO$C IO.FLN, ••• 

Return Status: 

IS.SUC - Function successfully completed 

IE.FLN - Unit already off line 

IE.PRI - Task not privileged 

19.3.10.2 Enable Hardware Error Reporting - This function allows a 
privileged task to enable error reporting and device error interrupts. 
Upon receipt and validation of the function, all device error 
interrupts are enabled and the unit is marked on line. Theseactions 
are performed regardless of the current state of the unit. 

010 DPB format: 

OIO$C IO.ONL, ••• 

Return Status: 

IS.SUC - Function successfully completed 

IE.PRI - Task not privileged 

19.3.11 Special Functions 

19.3.11.1 I/O Rundown - An I/O rundown request from the Executive 
causes the task to be disconnected from all interrupts. The rundown 
operati~n is not finished until any A/D input in progress for the task 
has been completed. 

19.3.11.2 Kill I/O - The kill I/O function allows a task to initiate 
I/O rundown processing for itself on any device. Request processing 
is identical to that described for I/O rundown. 

010 DPB format: 

OIO$C IO.KIL, ••• 

Return Status: 

IS.SUC - Function successfully completed 

19-33 



INDUSTRIAL CONTROL SUBSYSTEMS 

19.4 FORTRAN INTERFACE 

Table 19-6 lists the FORTRAN interface subroutines supported for the 
ICS/ICR subsystem. (D) indicates a direct access call. The six 
subroutines supported by the DSS/DRS driver are indicated by a 
footnote. 

Unless specifically noted, all subroutines 
necessarily position-independent) and may 
resident library. 

are reentrant (but not 
be placed in an absolute 

Subroutine 

AIRD/AIRDW 

AISQ/AISQW 

AO/AQW 

ASICLN/ 
ASUDLN 

ASISLN 1 

CTDI 

CTTI 

CTTY 

DFDI 

DFTI 

DFTY 

DI/DIW 1 

DOL/DOLW 1 

DOM/DOMW 

LNK 1 

OFLIN 

ONLIN 

RCIPT 

Table 19-6 
FORTRAN Inte.rface 

Function 

Input analog data from multiple channels in random 
sequence 

Read a series of sequential analog input channels 
at random gain 

Perform analog output on several channe~s 

Assign a LUN to an ICS/ICR controller 

Assign a LUN to a DSS/DRS controller 

Connect a circular buffer to receive digital 
interrupt data 

Connect a circular buffer to receive counter 
interrupt data 

Connect a circular buffer to receive ICRII remote 
terminal data 

Disconnect a buffer from digital interrupts 

Disconnect a buffer from counter interrupts 

Disconnect a buffer from remote ter~inal interrupts 

Read several 16-point digital sense fields (D) 

Latch or unlatch several 16-point bistable output 
fields 

Pulse multiple 16-point IPomentary digital output 
fields 

Link a task to unsolicited interrupts 

Suppress error reporting. Place unit in not ready 
status 

Enable error reporting. 
status 

Return . unit to ready 

Read a single digital interrupt point (D) 

1. These subroutines are supported by the DSS/DRS driver. 

(continued on next page) 

19-34 

c 

( 

( 



( 

( 

( 

Subroutine 

RDACT 1 

RDDI 

RDTI 

INDUSTRIAL CONTROL SUBSYSTEMS 

Table 19-6 (Cont.) 
FORTRAN Interface 

Function 

Read interrupt activation data 

Read the digital interrupt circular buffer 

Read the counter interrupt circular buffer 

RDCS Read digital interrupt circular buffer; return data 
on only those points for which a change of state 
has been recognized 

RDWD Read digital interrupt circular buffer; return a 
full data word 

RSTI Read a single counter module (0 ) 

RTO/RTOW Perform output to a remote ICRll terminal 

UNLNK 1 Unlink a task from unsolicited interrupts 

1. These subroutines are supported by the DSS/DRS driver. 

19.4.1 Synchronous and·Asynchronous Process Control I/O 

The Instrument Society of America (ISA) standard provides for 
synchronous and asynchronous I/O. Synchronous I/O is indicated by 
appending a W to the name of the subroutine (for example, AO/AOW). 
Except for analog input and terminal output, all QIOs issued by the 
process control subroutines are service immediately by the driver and 
are complete upon return to the issuing task. In such cases, there is 
no functional difference between the synchronous and asynchronous 
forms; however, both forms of the name are recognized. In the case of 
A/D input and terminal output, the subroutines are functionally 
distinct. if the task uses the asynchronous form, execution continues 
and the task must periodically test the status word for completion. 

19.4.2 Return Status Reporting 

The I/O status parameter is a 2-word integer array. The first element 
of the array receives the status of the FORTRAN call in accordance 
with ISA convention. 

This array serves two purposes: 

1. It is the 2-word I/O status block to which the driver returns 
an I/O status code on completion of an I/O request. 

2. The first word of the status block receives a status code 
from the FORTRAN interface subroutine in ISA-compatible 
format, with the exception of the _ Iio pending condition, 
which is indicated by a staius of O. The ISA standard code 
for tqis condition is +2. 

19-35 



INDUSTRIAL CONTROL SUBSYSTEMS 

For asynchronous analog input and terminal output, status is set by 
means of an asynchronous trap; therefore, the trap mechanism must be 
enabled while these functions are in progress. 

For compatibility, the 2-word status block is also required for status 
returned by the direct access calls. Errors of this type that may be 
returned are: 

Word 1 = 3 Number of points requested is o. 

Word 1 = +321 Invalid ICS/ICR module. 

The status code must be interpreted in the context of the function 
requested; however, the following general conditions apply: 

Contents of Status Word 1 Meaning 

o 

+1 

+3 

3<Word 1<300. 

Word 1 > 300 

Operation pending, I/O in progress 

Successful completion 

Error in a calling argument has been 
detected by the interface subroutine 

QIO directive rejected. Actual error 
code = -(WORD 1 - 3) 

Request rejected by . driver. 
error code = -(WORD 1 - 300) 

Actual 

Table 19-7 lists all possible status values: the FORTRAN value, 
assembly language mnemonic, actual value, and related definition. 

FORTRAN 
Interface 

Value 

+0 

+1 

+3 

+4 

+8 

-6 

+99 

+100 

Assembly 
Language 

Value 

+0 

+1 

none 

-1 

-5 

-6 

-96 

-97 

Table 19-7 
Return Status Summary 

Assembly 
Language 
Mnemonic 

IS.PND 

IS.SUC 

none 

IE. UPN 

IE.ULN 

IE.LNL 

IE.ILU 

IE.IEF 

19-36 

Defini tion 

Operation pending 

Successful completion 

Error detected in 
calling sequence 

FORTRAN 

Insufficient dynamic storage 
to allocate I/O packet 

Unassigned LUN 

LUN usage interlocked 

Invalid LUN 

Invalid event flag number 

(continued on next page) 

( 

( 

( 



( 

( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

FORTRAN 
Interface 

Value 

+101 

+102 

+301 

+302 

+303 

+306 

+315 

+316 

+317 

+319 

+321 

+322 

+323 

+379 

+380 

+381 

+397 

Assembly 
Language 

Value 

-98 

-99 

-1 

-2 

-3 

-6 

-15 

-16 

-17 

-19 

-21 

-22 

-23 

-79 

-80 

-81 

-97 

Table 19-7 (Cont.) 
Return Status Summary 

Assembly 
Language 
Mnemonic 

IE.ADP 

IE.SDP 

IE.BAD 

IE.IFC 

IE.DNR 

IE.SPC 

IE.ABO 

IE.PRI 

IE.RSU 

IE .BYT 

IE.MOD 

IE.CON 

IE. NOD 

IE.NLK 

IE.FLN 

IE.NST 

IE.IEF 

Definition 

Part of DPB out of your 
task's addressing space 

Invalid DIC or DPB size 

Bad parameters 

Invalid I/O function code 

Device not ready 

Illegal buffer 

Request aborted 

Privilege violation 

Resource in use 

Buffer address or length is 
odd 

Illegal module number 

Another task already 
connected to interrupts 

Insufficient dynamic memory 
to allocate secondary control 
block 

Task not linked to interrupts 

ICRII already off line 

Task is not installed 

Invalid event flag number 

19.4.3 Optional Arguments 

The calling sequences discussed in subsequent sections frequently 
contain optional arguments. These arguments are enclosed in square 
brackets within the calling sequence description. A statement 
containing such arguments may be written with these parameters deleted 
by truncating the. argument list if the optional parameters are at the 
end of the calling sequence, or by replacing them with commas if they 
are embedded elsewhere in the list. Consider the routine XYZ below 
having two optional arguments: 

CALL XYZ(ibuf [,ilen] [,ivaI]) 

If the argument ivaI is to be omitted, the calling sequence would be: 

CALL XYZ(IBUF,ILEN) 

19-37 



INDUSTRIAL CONTROL SUBSYSTEMS 

When your task is to omit an optional argument in the middle of the 
list, it is replaced with a comma. Consider the routine XYZ, above. 
Use the following statement to omit the parameter ilen: 

CALL XYZ(IBUF"IVAL) 

NOTE 

In some subroutines, lun -- the logical unit 
number -- is indicated to be an optional argument. It 
is optional only if one of the Assign LUN subroutines 
has been called (ASICLN, ASUDLN, ASISLN). Otherwise, 
the lun argument is mandatory. 

19.4.4 Assigning Default Logical and Physical units for Input and 
Output - ASICLN/ASUDLN (ICS/ICR) and ASISLN (DSS/DRS) 

The following subroutines must be called to assign and record a 
default LUN and physical unit if either parameter is to be unspecified 
in subsequent FORTRAN calls for which these parameters are optional. 

Calling Sequence: 

CALL ASICLN([lun] [,idsw] [,iunt]) 
CALL ASUDLN([lun] [,idsw] [,iunt]) 
CALL ASISLN(lun[,idsw] [,iunt]) 

Before a task can issue the call to ASUDLN, the ASN command must be 
issued through MCR to assign logical device UDnn to the appropriate 
physical ICS/ICR unit. 

Argument Description: 

IUD An integer variable whose value is the number of the LUN 
to be assigned to the physical unit specified by iunt or 
unit o. If you do not specify a LUN, none is assigned. 
The lun argument is mandatory for ASISLN (used for DRSII 
only) • 

idsw An optional integer variable to receive the result of 
the assign lun directive. 

iunt An optional integer variable that specifies the unit 
number to be assigned. Assumed to be 0 if omitted. 

Return Status: 

The following values are returned to idsw: 

+1 - Assignment or function successfully completed. 

-5 - LUN usage is interlocked because LUN is assigned to a 
device that is attached to another device, ora file is 
currently open on the LUN. 

-96 ~ Invalid LUN. 

The call to ASUDLN assigns a LUN to logical device UD: and is 
provided for compatibility with existing UDCll software. The call to 
ASICLN assigns a LUN to device IC:. The call to ASISLN assigns a LUN 
to device IS:. 

19-38 

( 

( 

( 



( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

Upon successful issuance of the Assign LUN directive, the subroutine 
executes a Get LUN Information directive to obtain the actual unit 
numbers to be saved. It is therefore possible to alter the default 
physical unit referenced in a direct access call, by means of the ASN 
MCR function, provided that such logical assignments are done before 
the task is made active. 

Examples: 

1. Assign LUN 5 to ICR unit 3. 

CALL ASICLN (5,IERR,3) 
IF(IERR) ~0,10,10 

10 --------------

2. Assign LUN 1 to logical device 00:, unit 0 

3. 

a. The following MCR command is issued to create logical 
device UDO:, and a~sign all refer·ences to physical device 
ICl: • 

)ASN ICl: = UD: 

b. The FORTRAN call 

CALL ASUDLN (1) 

assigns logical device UDO: to LUN 1. Because of the 
previous ASN· command, the Executive assigns this LUN to 
physical device ICl: and return a value of 1 for the 
unit number in response to the GET LUN Information 
directive. .This value is stored and later referenced 
whenever the physical unit number is unspecified in any 
of the FORTRAN calls .that reference the I/O page 
directly. 

Assign LUN 6 to logical device IS:, unit 2. 

CALL ASISLN(6,,2) 

19.4.5 Analog Input 

The foUowing routines provide the capability of performing A/D input: 

AIRD/AIRDW - ISA Standard call to read 
random order. This call 
control variables containing 
in the format shown in Table 

multiple channels in 
requires one or more 
A/D channel and gain 
19-5 (Section 19.3.2). 

AISQ/AISQW - ISA Standard call to read multiple channels in 
sequential or~er. 

19.4.5.lAIRD/AIRDW: Analog Input - Specified Channel Sequence - The 
ISA standard call provides the capability of reading multiple A/D 
channels in a specified sequence. 

19-39 



INDUSTRIAL CONTROL SUBSYSTEMS 

Calling Sequence: 

CALL AIRD(inm,icont,idata[,isb] ,[lun]) 

or 

CALL AIRDW(inm,icont, ••• etc.) 

Argument Descriptions: 

inm Integer variable specifying the number of channels to 
be read. 

icont 

idat 

isb 

An integer array of size inm containing control data in 
the format shown in Table 19-5 (Section 19.3.2). 

An integer array of dimension inm to receive the 
converted . values. Each element in the array is paired 
with a control element in icont that defines the 
channel and gain. 

An optional 2-word integer array to receive the results 
of the call as follows: 

+1 Conversion successfully completed. The 
second word contains the number of channels 
converted. 

+3 Number of channels requested was O. 

+4 Insufficient dynamic storage to allocate 
I/O packet. 

+8 LUN was not assigned. 

+99 Invalid LUN. 

+301 

+303 

+306 

+319 

At least one invalid 
specified. The second 
contains the number 
successfully converted. 

control word was 
I/O status word 

of channels 

Device not ready. Interrupt response was 
not received from an A/D channel within one 
second after initiation. The second word 
of I/O status contains the number of 
channels successfully converted. 

Control or data buffer not wholly within 
your task's addressing space. 

Control or data buffer is byte aligned. 

lun An integer variable specifying the ICS/ICR logical unit 
number. This parameter is optional. 

Example: 

The following example illustrates how A/D throughput can be increased 
when several IAD-IA A/D Converters are in a system. This is 
accomplished by means of interleaved samples that initiate parallel 
conversions on each module. Samples are to be obtained from 12 
channels on 3 IAD-IA A/D converter modules at a gain of 1. 

19-40 

( 

( 

( 



( 

( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

C 
C PROGRAM TO SAMPLE 12 A/D CHANNELS 
C IN RANDOM SEQUENCE FOR MAXIMUM 
C THRUPUT. 
C 
C CHANNELS TO BE SAMPLED: 
C 
C 0 
C 1 -A/D MODULE 0 
C 2 
C 3 
C 120 
C 121 -A/D MODULE 1 
C 122 
C 123 
C 240 
C 241 -A/D MODULE 2. 
C 242 
C 243 
C 
C INTERLEAVED SEQUENCE FOR MAXIMUM 
C THRUPUT. 
C 
C 0 
C 120 
C 240 
C 1 
C 121 
C 241 
C 2 
C 122 
C 242 
C 3 
C 123 
C 243 
C 
C THE FORTRAN CONVENTION FOR ARRAY 
C STORAGE CAN REPRESENT THE ABOVE SEQUENCE 
C IN AN N X I INTEGER 
C CONTROL ARRAY. WHERE: 
C 
C N = NUMBER OF MODULES TO BE SAMPLED 
C I = NUMBER OF SAMPLES PER/MODULE 
C 
C ALLOCATE STORAGE FOR CONTROL ARRAY 
C 

DIMENSION ICONT (3,4) 
C 
C INITIALIZE CONTROL ARRAY FOR IAD-IA MODULE 0 
C 

DATA ICONT(1,1),ICONT(1,2),ICONT(1,3),ICONT(1,4)/0,1,2,3/ 
C 
C INITIALIZE CONTROL ARRAY FOR IAD-IA MODULE 1 
C 

C 
DATA ICONT(2,1),ICONT(2,2),ICONT(2,3),ICONT(2,4)/120,121,122,123/ 

C INITIALIZE CONTROL ARRAY FOR IAD-IA MODULE 2 
C 

C 
DATA ICONT(3,1),ICONT(3,2),ICONT(3,3),ICONT(3,4)/240,241,242,243/ 

C ALLOCATE STORAGE FOR DATA ARRAY 
C IN SIMILAR FASHION TO FACILITATE 
C CHANNEL REFERENCES 

19-41 



C 

C 
C 
C 

C 

INDUSTRIAL CONTROL SUBSYSTEMS 

DIMENSION IDATA (3,4) 

BEGIN EXECUTABLE STATEMENTS 

C INITIATE AID SYNCHRONOUS CONVERSION ON LUN 3 
C 

CALL AIRDW(12,ICONT,IDATA,,3) 

19.4.5.2 AISO/AISQW: Analog Input - Sequential Channel Sequence
The ISA standard call described below pr6vide~ the capability of 
sampling multiple A/D channels in sequential order. Channels are 
sampled in increments of one, beginning with the channel specified in 
icont(l). . 

Calling Sequence: 

CALL AISQ(inm,icont,idata [,isb] ,[1un]) 

or 

CALL AISQW(inm,icont ••• etc.) 

Argument Descriptions: 

iom Integer variable specifying the number of elements to 
be read. 

icont 

idat 

An integer array of size inm containing initial channel 
in the first element only, and gain in the format shown 
in Table 19-5 in the remaining elements. 

An integer array of size inm to receive the converted 
values. Each element is paired with the corresponding 
control element in icont that defines the gain 
parameter. 

Channels are sampled sequentially starting with the 
first channel specified in element 1 of icont. 

isb An optional 2-word integer array to receive the results 
of the call as follows: 

+1 Conversion successfully completed. The 
second word contains the number of channels 
converted. 

+3 Number of channels requested was o. 

+4 Insufficient dynamic storage to allocate 
I/O packet. 

+8 LUN was not assigned. 

+99 Invalid LUN. 

19-42 

( 

( 

( 



( 

( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

+301 At least one invalid 
specified. The second 
contains the number 
successfully converted. 

control word was 
I/O status -word 

of channels 

+303 Device not ready. Interrupt response was 
not received from an A/D channel within one 
second after initiation. The second word 
of I/O status contains the number of 
channels successfully converted. 

+306 Control or data buffer is not wholly within 
your task's addressing space. 

+319 Control or data buffer is byte aligned. 

lun An integer variable containing the logical unit number. 
This parameter is optional. 

Example: 

The following example illustrates the procedure for sequential 
sampling~ Five channels are converted at gains of 1, 2, 20, 50, and 
1000, starting at channel 3. 

C 
C ALLOCATE SPACE FOR STATUS ARRAY 
C 

DIMENSION ISB (2) 
C 
C ALLOCATE SPACE FOR CONTROL ARRAY 
C AND ESTABLISH INITIAL VALUES 
C 

C 

DIMENSION ICONT(5) 
DATA ICONT(l) ,ICONT(2) ,ICONT(3)/0000003,0010000,0050000/ 
DATA ICONT(4),ICONT(5)/0100000,0150000/ 

C ALLOCATE SPACE FOR DATA ARRAY 
C 

DIMENSION IDAT (5) 

C 
C INITIATE SEQUENTIAL, ASYNCHRONOUS CONVERSION 
C VIA LUN 1 
C 

CALL AISQ(5,ICONT,IDAT,ISB,1) 
10 IF1ISB(1).NE.0) GO TO 20 

(continue processing) 

C 
C TEST CONVERSION STATUS 
C 

GO TO 10 
20 (test for errors or process converted data) 

END 

19-43 



INDUSTRIAL CONTROL SUBSYSTEMS 

19.4.6 AO/AOW: Analog Output - Multichannel 

This ISA standard routine is called to output voltage from multiple 
D/A channels. 

Calling Sequence: 

CALL AO(inm,icnt,idat[,isb] [,lun]) 

or 

CALL AOW(inm,icnt ••• and so fort:h) 

Argument Descriptions: 

inm Integer variable containing the number of channels to 
be output. 

icnt Integer array containing the channel numbers to receive 
output. 

idat Integer array containing the output voltage setting as 
a value between 0 and 1023 where: 

isb 

o = 0 volts dc and 

1023 = +9.99 volts (full scale). 

Optional 2-word integer array to receive status. 
of the following values is returned in isb(l). 
second element is always O. 

+1 Function successf.ullycompleted. 

+3 No channels requested. 

One 
The 

+4 Insufficient dynamic storage to allocate an 
I/O packet. 

+8 

+99 

+303 

+321 

LUN was not assigned. 

Invalid LUN. 

Controller not ready. 

Nonexistent channel sp~cified. 

lun Integer variable containing the logical unit number. 

Example: 

Output the variable voltages contained in IV(l) and IV(2) to D/A 
channels 2 and 3, respectively. 

19-44 

(I 

( 

( 



( 

( 

( 

INDOSTRIAL CONTROL SUBSYSTEMS 

C 
C ALLOCATE DATA ARRAY 
C 

DIMENSION IV(2) 
C 
C ALLOCATE CONTROL ARRAY 
C 

DIMENSION ICNT(2) 
C 
C ALLOCATE STATUS ARRAY 
C 

DIMENSION ISB(2) 
C 
C INITIALIZE CONTROL ARRAY 
C 

DATA ICNT(1),ICNT(2)/2,3/ 

C 
C PERFORM A/D OUTPUT VIA LUN 3 
C 

CALL AOW(2,ICNT,IV,ISB,3) 
IF (ISB(1).GE.3) go to error processor 

19.4.7 DOL/DOLW: Digital Output - Bistable Multiple Fields 

The following ISA standard call provides the capability of latching or. 
unlatching multiple 16-point bistable digital output fields. 

Calling Sequence: 

CALL DOL(inm,icnt,idat,imsk[,isb] [,lun]) 

or 

CALL DOLW(inm,icnt ••• and so forth) 

Argument Descriptions: 

inm Integer variable specifying the number of fields to be 
latched or unlatched. 

icnt Integer array containing the initial point within each 
field. 

idat Integer array containing binary data that defines 
points within the field to be latched or unlatched. 
The state of each bit is interpreted as follows: 

I = Latch point 

o = Unlatch point 

19-45 



INDDSTRIAL CONTROL SUBSYSTEMS 

imsk Integer array containing binary data that defines 
paints within the field for which a change of state is 
permitted. 

A bit set to 1 
state defined 
bi t specifies a 
permitted. 

defines a point that may assume 
by the corresponding bit in idat. 
point for which no change of state 

the 
A 0 
is 

isb Optional 2-word integer array to receive the results of 
the call. Status is returned in isb(l) as shown below. 
isb(2) is always O. 

+1 Function successfully completed. 

+3 No points specified. 

+4 Insufficient dynamic storage to allocate an 
I/O packet. 

+8 LUN was not assigned. 

+99 Invalid LUN. 

+303 Controller not ready. 

+321 Nonexistent point number specified. One or 
more points within the field do not exist. 

1un Integer specifying the Logical Unit Number. 

Example: 

Reset points 0,1,20 and 21 

DIMENSION ICNT(2),IDAT(2),IMSK(2) 
C 
C INITIALIZE THE CONTROL ARRAY 
C 

DATA ICNT(1),ICNT(2)/0,20/ 
C 
C INITIALIZE MASK ARRAY TO EFFECT A 
C CHANGE-OF-STATE ONLY ON THE SPECIFIED 
C POINTS. 
C 

DATA IMSK(1),IMSK(2)/0000003,0000003/ 

C 
C RESET THE SPECIFIED POINTS. ICR IS ASSIGNED 
C TO LUN 3. 
C 

CALL DOLW(2,ICNT,IDAT,IMSK,,3) 

19-46 

( 

( 

( 



( 

( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

19.4.8 Digital Input 

Both of the following subroutines perform their functions through 
direct access to the ICS/ICR hardware registers. Therefore, the 
physical unit number replaces LUN in the calling sequences described 
below. Note that any need for conversion of BCD encoded digital input 
into binary can be accomplished through the FORTRAN function 

IBIN=KBCD2B (IBCD). 

Binary data can be converted to BCD through the FORTRAN function. 

IBCD=KB2BCD (IBIN). 

The maximum input value for conversion is 9999. 

NOTE 

When the physical unit number is explicitly included 
in the calling sequence, it cannot be reassigned by 
the MCR command ASN. 

19.4.8.1 DI/DIW: Digital Input - Digital Sense Multiple Fields - This 
ISA standard subroutine provides the capability of reading multiple 
l6-point digital sense fields. 

Calling Sequence: 

CALL DI (inm,icnt,idat[,isb] [,iun]) 

or 

CALL DIW(inm,icnt ••• and so forth) 

Argument Descriptions: 

inm Integer variable specifying the number of fields to be 
read. 

icnt Integer array containing the initial point number of 
each field. 

idat Integer array to receive the input data. 

isb Optional, 2-word integer array to receive the results 
of the call. The status is returned in isb (1) as 
follows: 

+1 Function successfully completed. 

+3 No points requested. 

+321 Nonexistent point requested. One or more 
points ~ithin the l6~bit field does not 
exist. 

iun Optional integer variable specifying the physical unit 
number. 

19-47 



INDUSTRIAL CONTROL SUBSYSTEMS 

Example: 

Read two contact sense fields starting at points 3 and 27 on physical 
unit IC2:. 

DIMENSION ICNT(2), IDAT(2),ISB(2) 
DATA ICNT(1),ICNT(2)/3,27/ . 

CALL 01 (2, ICNT,IDAT,ISB,2) 
IF (ISB(1).GE.3) go to error procedure 

19.~.8.2 RCIPT: Digital Input - Digital Interrupt Single-Point - The 
following subroutine r~turns the state of a single digital interrupt 
point as a logical value. 

Calling Sequence: 

CALL RCIPT. (ipt,isb[,iun]) 

Argument Descriptions: 

, 

ipt Integer variable defining the point to be read. 

isb a 2-word integer array to receive status and data as 
follows. Status is returned to isb(l). 

+1 Functiop successfully completed. Data is 
returned to isb(2) as a logical value, 
where: 

.TRUE. (-1) = Point closed • 

• FALSE. (0) = Point open. 

+321 - Nonexistent point specified. 

iun Optional integer variable defining the physical unit 
number. 

Example: 

Read the state of, contact interrupt point 3 on unit o. 
DIMENSION ISB (2) 

CALL RC I PT (3 , I SB , 0) . 
IF (ISB(2).EQ •• FALSE.) go to point open routine. 

19-48 

( 

c 

( 



( 

( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

19.4.9 DOM/DOMN: Digital Output Momentary - Multiple Fields. 

This ISA standard call allows multiple l6-bit fields to be pulsed. 

Calling Sequence: 

CALL DOM (inm,icnt,idat[,idx] [,isb] [,lun]) 

or 

CALL DOMW (inm,icnt ••• and so forth) 

Argument Descriptions: 

inm Integer variable specifying the number of fields to be 
pulsed. 

icnt Integer array containing the initial point in each 
field. 

idat Integer array defining the points to be pulsed. A bit 
is set corresponding to each point that is to be 
triggered. 

idx Optional dummy integer variable retained 
compatibility with the standard form of the call. 

for 

isb Optional 2-word integer array to receive the results of 
the call as follows in isb(l), isb(2) is set to 0. 

+3 Number of fields to be output is 0. 

+4 

+8 

+99 

·+303 

In~ufficient dynamic storage to allocate on 
I/O packet. 

LUN not assigned. 

Invalid LUN. 

Controller not ready 

+321 Nonexistent point specified. One or more 
points within a field do not e~ist. 

lun Integer variable defining the logical unit number. 

Example: 

Pulse momentary digital output fields defined by points 20, 37, and ° 
on LUN 1. 

DIMENSION ICONT(3),IDAT(3) 

DATA ICONT(l) ,ICONT(2) ,ICONT(3)/20,37,0/ 

CALL DOM (3, ICONT, IDAT" 1) 

19-49 



INDUSTRIAL CONTROL SUBSYSTEMS 

19.4.10 RTO/RTOW: Remote Terminal Output 

The following function provides the capability 
character string to a remote ICRll terminal. 
asynchronous forms are supported. 

of transmitting a 
Both synchronous and 

Calling Sequence: 

CALL RTO (ibc,idat[,isb] [,lun]) 

or 

CALL RTOW (ibc,idat •••• etc.) 

~rgument Descriptions: 

ibc Integer variable specifying the number of bytes to 
output. 

idat Byte array (LOGICAL 
string to be output. 

* 1) containing the character 

isb Optional, 2-word integer array to receive the results 
of the call in isb(l) as follows. isb(2) is set to the 
number of bytes actually transferred to the device. 

o Operation pending. 

+1 Function successfully completed. 

+3 No bytes to be transmitted. 

+4 

+8 

+99 

+303 

+306 

Insufficient dynamic storage to allocate 
I/O packet. 

Unassigned LUN. 

Invalid LUN. 

Device not ready. Terminal failed to 
respond within 1 second after character was 
transmitted. 

Part or all of buffer is out of the issuing 
task's addressing space~ 

+321 Nonexistent module. Device is ICSll. 

lun Integer variable defining the logical unit number. 

Example: 

Output a character string to a remote terminal by the ICR unit 
assigned to LUN 3. 

CALL RTOW(32,'APPLY +5 VOLTS TO A/D CHANNEL 10',,3) 

19-50 

( 

( 

( 



( 

( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

19.4.11 Unsolicited Interrupt Data - Continual Monitoring 

Subroutines are provided that permit a FORTRAN program to continually 
monitor unsolicited interrupt data supplied to your task's circular 
buffer, as described in Section 19.3.6. Such routines allow the 
program to connect a buffer for input, disconnect the buffer upon 
completion, and read and return the buffer contents in a format 
suitable for FORTRAN processing. The calls summarized below perform 
these functions for interrupting digital input modules, counters, and 
remote terminal inputs: 

Interrupting Digital Inputs 

CTDI 

RDDI 

RDCS 

RDWD 

DFDI 

Counter Modules 

CTTI 

RDTI 

DFTI 

Connect a buffer to receive digital interrupts 

Read th"e state of a single interrupting point 

Read the state of a single interrupting point for which 
a change of state has been detected 

Read 16 bits of interrupt data from the circular buffer 

Disconnect a buffer from digital interrupts 

Connect a buffer to receive counter interrupts 

Read the counter circular buffer 

Disconnect a buffer from counter interrupts 

Remote Terminal Input 

CTTY Connect a buffer to receive remote terminal inputs 

RDTY Read remote· terminal data from the circular buffer 

DFTY Disconnect a buffer from remote terminal interrup~s 

19.4.11.1 CTDI: Connect a Buffer for Receiving Digital Interrupt Data 
- The following routine allows a task to provide a circular buffer 

that receives digital interrupt data, and to define an event flag that 
is set upon the occurrence of each interrupt. 

Calling Sequence: 

CALL CTDI (ibuf,isz,iev[,isb] [,lun]) 

Argument Descriptions: 

ibuf An integer array making up the circular buffer that is 
to receive interrupt data •. 

isz Integer variable specifying the length of the circular 
buffer in words. 

19-51 



iev 

INDUSTRIAL CONTROL SUBSYSTEMS 

Integer variable specifying the event flag that is to 
be set whenever the driver receives an interrupt from a 
digital input module. 

isb Optional, 2-word integer array to receive the results 
of the call. The status values specified below are 
returned to isb(l). 

lun 

+1 Function successfully completed. isb(2) 
receives the number of words passed per 
interrupt in the low byte. 

+4 Insufficient dynamic storage to allocate an 
I/O packet. 

+8 Unassigned LUN. 

+99 Invalid LUN. 

+306 

+316 

+319 

+322 

+397 

Part of buffer is out 
address space or buffer 
accommodate a single entry. 

of your task's 
is too small to 

Privilege violation - task is 
check-pointable and not fixed in memory. 

Buffer address or length is an odd number 
of bytes. 

Another task is already 
interrupts. 

Invalid event flag specified. 

connected to 

Integer variable specifying the logical unit number. 

The space allocated for the circular buffer must be large enough to 
accommodate at least one 5-word entry plus an additional 10 words of 
storage that are required by the subroutines that read circular buffer 
contents. Thus, the buffer allocation specified by the integer 
variable isz may be computed as 

isz = (10 + 5 * n) 

n 

The number of entries to be contained in the buffer. 

isz 

Expressed in words. 

19.4.11.2 Reading Digital Interrupt Data - Each of the following 
routines reads data that has been stored in the circular buffer and 
performs the following common processing: 

1. Detects, and optionally reports, the occurrence of an 
entry that has been placed in the buffer by the 
because of a nonrecoverable device fault (for example, 
serial line error or remote power-fail). 

19-52 

error 
driver 

fatal 

( 

( 

( 



( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

2. Clears the trigger event flag when no further entries remain 
to be processed. 

3. Clears and optionally reports any overrun conditions. 

Only one of the following three routines can be invoked by a single 
task: 

1. RDDI: Read Digital Interrupt Data from a Circular Buffer 

The RDDI FORTRAN subroutine reads contact interrupt data from 
a circular buffer that was specified in a CTDI call (see 
19.4wll.1). It does no actual input or output, but rather 
performs a point-by-point scan of an interrupt entry in the 
buffer, returning the state of each point as a logical value. 

On the initial call to RDDI, the module number and data of 
the next interrupt entry are read from the circular buffer 
and stored for subsequent reference. The subroutine then 
sets the current data bit number n to 0, examines the state 
of data bit n, and converts bit n to a point number by the 
following formula: 

ipt = module number * 16 + n 

On each subsequent call, n is incremented by Qne and then 
data-bit n is examined in the stored module data. When n 
reaches 16, it is reset to 0 and an attempt is made to read 
the next interrupt entry from the circular buffer. If a 
valid entry is not found, ipt is set negative and ict (if 
specified) is either assigned a value of 0 or an overrun 
count that is maintained by the ICS/ICR driver. If ict is 0, 
no further entries remain. A nonzero value indicates that 
the driver received more data than could be stored in the 
buffer, and ict represents the number of entries that were 
discarded. 

The variable ict receives the control register contents that 
are set by the driver -- as described in Se~tion 
19.3.6 -- whenever a nonrecoverable controller error occurs. 

Calling Sequence: 

CALL RDDI (ipt,ival[,ict]) 

Argument Descriptions: 

ipt A variable to which 
number is returned. 

the digital input point 
It may be set as follows: 

1. ipt 0 if no valid entry is found 

The specific value of ipt reflects the error 
that was detected as follows: 

-1 - no data (that is, no interrupt data 
currently in buffer) 

-2 - overrun 

-3 - hardware error 

2. ipt = 0 if the value indicated is a point 
number; the state is returned to ivaI. 

19-53 



ivaI 

ict 

INDUSTRIAL CONTROL SUBSYSTEMS 

A variable to which the state of the point is 
returned; it may be set as follows: 

l. .FALSE. (0) if the point is open 

2. .TRUE. (-1 ) if the point is closed 

Optional integer variable to 
count or the contents of the 
occurrence of a fatal 
Otherwise, set to O. 

receive the overrun 
CSR register on the 
controller error. 

NOTE 

A task reading the circular buffer 
should not issue a Wait-For directive 
until a buffer-empty condition is 
reported. See Section 19.4.11.11 for an 
example of how to read circular-buffer 
entries. 

2. RDCS: Read Digital Interrupt Points That Have Changed State 

The RDCS FORTRAN subroutine returns data in the format of 
subroutine RDDI as described above -- except that only 
points that have changed state are processed, resulting in 
significantly improved throughput and reduced processing 
overhead for the calling task. 

Processing specific to the routine is as follows: 

On the initial call, the module number, module data, and 
change of state information are read from the circular buffer 
and stored for later reference. The subroutine·. then sets the 
current data bit number n to 0 and begins scanning the 
change-of-state word until a nonzero bit is found. The point 
number and current stat~ are then reported as previously 
described. If no change of state is. found or when no further 
bits remain to be processed, the next entry is fetched as 
described above. 

The processing of error conditions is identical to subroutine 
ROD I. 

Calling Sequence: 

CALL RDCS (ipt,ival[,ict]) 

Argument Descriptions: 

ipt Integer variable to receive the digital input 
point number. It may be set as follows: 

1. iptO if 
overrun, 
specific 
that was 

no valid entry is found (that is, 
error, or no data in buffer). The 

va~ue of ipt reflects the error 
detected as follows: 

-1 - no data 
-2 - overrun 
-3 - hardware error 

19-54 

C-

( 



( 

( 

( 

ivaI 

INDUSTRIAL CONTROL SUBSYSTEMS 

2. ipt = 0 if the value indicated is a point 
number, the state is returned to ivaI. 

Integer variable to receive the state of the 
point as a logical value where: 

1. .FALSE. (0) = Point open 

2. .TRUE. (-1) = Point closed 

ict Optional integer variable. A nonzero value 
indicates that the variable has been set with an 
overrun count returned by the driver, or with 
the contents of the CSR register on the 
occurrence of a fatal controller error. 
Otherwise, set to O. 

NOTE 

A task reading the circular buffer 
should not issue a Wait-For directive 
until a buffer-empty condition is 
reported. See Section 19.4.11.11 for an 
example of how to read circular-buffer 
entries. 

3. RDWD: Read a Full Word of Digital Interrupt Data 

The following subroutine is called to return a full word of 
digital interrupt data from the circular buffer, and 
option~lly change of state information. A new entry is read 
for each call; hence, throughput is high when processing is 
contingent upon several possible conditions within a module. 

Calling Sequence: 

CALL RDWD (imod, ivaI [, ict] [, icos] ) 

Argument Descriptions: 

imod Integer variable to receive the module number or 
status as follows: 

ivaI 

1. imod 0 if no data is present or an overrun 
condition or error was detected 

The specific value of ipt reflects the error 
that was detected as follows: 

-1 - no data 
-2 - overrun 
-3 - hardware error 

2. imod = 0 Module number. Interrupt data is 
in ivaI 

Integer variable 
interrupt data. 

19-55 

to receive the digital 



ict 

INDUSTRIAL CONTROL SUBSYSTEMS 

Optional integer variable. A nonzero value 
indicates that the variable has been set with an 
overrun count returned by the driver, or with 
the contents of the CSR register on the 
occurrence of a fatal error. Otherwise, set to 
O. 

icos Optional integer variable to receive 
change-of-state information. Bits set to a 1 
correspond to points for which a change of state 
has been recorded. 

NOTE 

read~ng the circular buffer 
not Issue a wait-For directive 

buffer-empty condition is 
See Section 19.4.11.11 for an 
how to read circular-buffer 

A task 
should 
until a 
reported~ 
example of 
entr ies. 

19.4.11.3 DFDI: Disconnect a Buffer from Digital Interrupts - The 
following routine is called to connect a task's circular buffer from 
digital interrupts. 

Calling Sequence: 

CALL DFDI ([isb] [,lun]) 

· Argument Descriptions: 

isb Optional 2-word integer arra~ to receive the results of 
the call as follows. isb(2) is always O. 

+1 Function successfully completed 

+4 Insufficient dynamic storage to allocate 
I/O packet. 

+8 

+99 

+322 

Unassigned LUN. 

Invalid LUN. 

Task not connected to interrupts. 

lun Integer variable containing logical unit number. 

19.4.11.4 CTTI: Connect a Buffer for Receiving Counter Data - The 
following subroutine may be called to connect a circular buffer that 
is to receive counter data, and to define an event flag that is to be 
set upon occurrence of each interrupt. 

Calling Sequence: 

CALL CTTI (ibuf,isz,iev,iv[,isb] [,lun]) 

19-56 

c 



( 

c 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

Argument Descriptions: 

ibuf An integer array making up the circular buffer that is 
to receive interrupt data. 

isz Integer variable specifying the length of the circular 
buffer in words. 

iev Integer variable defining an event flag that is to be 
set whenever the driver receives an interrupt from a 
counter module. 

iv Integer array of initial counter values. Each counter 
in the physical unit requires one element. The value 
initializes and resets the counter when a value of 0 is 
reached. You may reset this parameter for a specific 
module through a call to SCTI. 

isb Optional 2-word integer array to receive the results of 
the call. The status values specified below are 
returned to isb(l). 

+1 Function successfully completed. isb(2) 
receives the number of words passed per 
interrupt in the low byte. 

+4 Insufficient dynamic storage to allocate aQ 
I/O packet. 

+8 Unassigned LUN. 

+99 Invalid LUN. 

+303 Controller not ready. 

+306 Part of buffer is out of your task's 
address space or buffer is too small to 
accommodate a single entry. 

+316 Pri vilege violation -- task is 
checkpointable and not fixed in memory. 

+319 Buffer address or length is an odd number 
of bytes. 

+322 Another task is already connected to 
interrupts. 

+397 Invalid event flag specified. 

lun Integer variable specifying the logical unit number. 

The space allocated for the circular buffer must be large enough to 
accommodate at least one 4-word entry plus an additional 8 words of 
storage required by the subroutine that reads buffer contents (ROTI). 
The buffer allocation specified by the va~iable isz may be computed as 

isz = (8 + 4 * n) 

n 

The number of entries to be contained in the buffer. 

19-57 



INDUSTRIAL CONTROL SUBSYSTEMS 

NOTE 

A task reading the circular buffer should 
Wait-For directive until a buffer-empty 
reported. See Section 19.4.11.11 for an 
how to read circular-buffer entries. 

not issue a 
condition is 

example of 

19.4.11.5 RDTI: Read Counter Data from the Circular 
following call return~ counter interrupt data from 
buffer. A new entry is read on each call. 

Buffer - The 
the circular 

Calling Sequence: 

CALL RDTI (imod,ival[,ict]) 

Argument Descriptions: 

imod 

ivaI 

Integer variable to receive module number and status as 
follows: 

1. imod 0 No data in buffer, data overrun or error 
condition detected The specific value of ipt 
reflects the error that was detected as follows: 

-1 - no data 
-2 - overrun 
-3 - hardware error 

2. imod = 0 Module number of counter. Interrupt data 
is in iva!. 

Integer variable to receive the counter data 
interrupt. 

at 

ict Optional integer variable to receive the overrun count, 
or the ICSR contents returned by the driver on the 
occurrence of a fatal hardware error. Otherwise, set 
to O. 

NOTE 

A task reading the circular buffer should not 
issue a Wait-For directive until a buffer-empty 
condition is reported. See Section 19.4.11.11 
for an example of how to read circular-buffer 
entries. 

19.4.11.6 MiscellaneQus Counter Routines 

1. RSTI: Read a Counter Module 

The following routine directly accesses a counter register to 
return its current value. 

19-58 

( 

( 

( 



( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

Calling Sequence: 

CALL RSTI (imod,isb[,iun]) 

Argument Descriptions: 

imod An integer variable containing the number of the 
counter to be read. 

isb A 2-word integer array to receive status and 
data as follows. Status is returned to isb(l). 

+1 

+321 

Function successfully completed. 
Data is returned to isb(2). 

Nonexistent module specified~ 

iun Optional integer variable specifying the ICS/ICR 
physical unit number. 

2. SCTI: Reset a Counter Initial Value 

The following routine may be called by any task to revise the 
initial value that activates a counter. 

Calling Sequence: 

CALL SCTI (imod,ival[,isb] [,lun]) 

Argument Descriptions: 

imod Integer variable specifying the'relative 
number of the counter to be reset. 

module 

ivaI Integer value specifying the new initIal value~ 

isb, Optional 2-word integer array to receive status 
as follows. isb(2) is always O. 

+1 Function successfully completed 

+4 Insufficient dynamic storage to 
allocate an I/O packet 

+8 Unassigned LUN 

+99 Invalid LUN 

+303 Controller not ready 

+321 Nonexistent module specified 

lun Integer specifying the logical unit number. 

19.4.11.7 DFTI: Disconnect a Buffer 
following subroutine is called to 
buffer from interrupts. 

from Counter Interrupts - The 
disconnect the task's circular 

Calling Sequence: 

CALL DFTI ([isb] [,lun]) 

19-59 



INDUSTRIAL CONTROL SUBSYSTEMS 

Argument Descriptions: 

isb Optional 2-word integer array to receive status as 
follows. isb(2) is always O. 

+1 

+4 

+8 

+99 

+322 

Function successfully completed. 

Insufficient dynamic storage to allocate an 
I/O packet. 

Unassigned LUN. 

Invalid LUN. 

Task was not connected to interrupts. 

lun Integer variable specifying the logical unit number. 

19.4.11.8 CTTY: Connect a Circular Buffer to Terminal Interrupts
The following routine allows a task to provide a circular buffer to 
receive remote terminal input data, and to define an event flag that 
is set on the occurrence of each interrupt. 

Calling Sequence: 

CALL CTTY (ibuf,isz,iev[,isb] [,lun» 

Argument Descriptions: 

The following arguments are identical in form and function to those 
described for subroutine CTDI (see Section 19.4.11.1): 

ibuf An integer array making up the circular buffer that 
receives interrupt data 

isz Length of the circular buffer in words 

iev Event flag to be set on each terminal interrupt 

Buffer size is computed as 

n 

isz = (8 + 4 * n) 

The number of entries that can be stored in the buffer. 

isb Optional 2-word integer array to receive the results of 
the call. The status values specified below are 
returned to isb(l). 

+1 Function successfully completed. isb(2) 
receives the number of words passed per 
interrupt in the low byte. 

+4 

+8 

Insufficient dynamic storage to allocate an 
I/O packet. 

Unassigned LUN. 

+99 Invalid LUN. 

19-60 

( 

( 

( 



( 

( 

( 

lun 

INDUSTRIAL CONTROL SUBSYSTEMS 

+306 

+316 

+319 

+321 

+322 

+397 

Logical unit 

Part of buffer is out 
address space or buffer 
accommodate a single entry. 

of your task's 
is too small to 

Privilege violation -- task is 
checkpointable and not fixed in memory. 

Buffer address not on a word boundary or 
length is an odd number of bytes. 

Nonexistent module specified. Unit is 
ICSll. 

Another task is already connected to 
interrupt. 

Invalid event flag spec if ied. 

number. 

19.4.11.9 RDTY: Read a Character from the Terminal Buffer - This 
subroutine retrieves a single character from the terminal circular 
buffer on each call~ 

Calling Sequence: 

CALL RDTY (ind,ichr[,ivr]) 

Argument Descr.iptions: 

ind 

ichr 

An integer variable to receive status as follows: 

1. =0 character retrieved from buffer is in ichr 

2. <0 no data in buffer, overrun, or hardware error 

The specific value of ind reflects the error that 
was detected as follows: 

-1 - no data 
-2 - overrun 
-3 - hardware error 

Logical * 1 or intege~ variable to receive the terminal 
data. If an integer is specified, only the low byte is 
set. 

ivr Optional integer variable to receive the overrun count, 
or the ICSR contents on the occurrence of a fatal 
hardware error. Otherwise, set toO. 

NOTE 

A task reading the circular buffer should not 
issue a Wait-For directive until a buffer-empty 
condition is reported. See Section 19.4.11.11 
for an example of how to read circular-buffer 
entries. 

19-61 



INDUSTRIAL CONTROL SUBSYSTEMS 

19.4.11.10 DFTY: Disconnect a Circular Buffer from Terminal Input
The following routine disconnects a task's cir'cular buffer from 
terminal inputs. 

Calling Sequence: 

CALL DFTY ([ isb] [, lun] ) 

Argument Descriptions: 

isb Optional, 2-word integer array to receive status in 
isb(l) as follows. isb(2) is always set to O. 

+1 Function successfully completed. 

+4 Insufficient dynamic storage to allocate an 
I/O packet. 

+8 Unassigned LUN. 

+99 Invalid LUN. 

+322 Task was not connected to interrupts. 

lun An integer specifying the logical unit number. 

19.4.11.11 Progr.amming Example - The following are excerpts from a 
FORTRAN program that is to monitor a remote terminal for input and 
echo the received characters when a carriage return is detected. 

C 
C SPECIFY BYTE FORMAT FOR TERMINAL DATA 
C 

LOGICAL*l TCHR 
C 
C ALLOCATE STORAGE FOR THE TERMINAL 
C BUFFER 
C 

DIMENSION IBUF(32) 
C 
C ALLOCATE STORAGE FOR THE PACKED 
C INPUT DATA SO THAT IT IS ALIGNED 
C ON A WORD BOUNDARY 
C 

C 

DIMENSION ICHR(40) 
DIMENSION TCHR(80) 
EQUIVALENCE (TCHR,ICHR) 

C ALLOCATE STORAGE FOR A 
C 2-WORD STATUS BLOCK 
C 

DIMENSION ISB(2) 
C 
C INITIALIZE ICRII LOGICALUNIT(7) AND 
C TRIGGER EVENT FLAG NUMBER(2) 
C 

DATA lEV, LUN/2, 7/ 

19-62 

( 

( 

( 



( 

( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

C 
C 
C 
C 

CONNECT THE TASK TO TERMINAL 
INPUTS. IF CONNECT FAILS--STOP 1 

CALL CTTY (IBUF,32,IEV,ISB,LUN) 
IF (ISB(1).GE.3) STOP 1 

C 
C 10--POLL THE CIRCULAR BUFFER 
C FOR DATA. ECHQ THE LINE WHEN 
C 80 CHARACTERS ARE RECEIVED 
C OR A CARRIAGE RETURN IS 
C DETECTED. 
C 

10 DO 70 I = 1,80 
C 
C 20--WAIT FOR TRIGGER EVENT FLAG 
C 
20 CALL WAITFR (lEV) 
C 
C 30--PACK THE CIRCULAR BUFFER DATA 
C INTO THE BYTE ARRAY 
C 
30 CALL RDTY (ISB,TCHR(I), IVR) 
C 
C DISPATCH ON ERROR CONDITION 
C 

C 

GO TO (20,50,40)-ISB 
GO TO 60 

C 40--REPORT HARDWARE FAULT 
C 
40 CALL ALARM (IVR) 

GO TO 30 
C 
C 50--REPORT OVERRUN CONDITION 
C 
50 CALL LOST (IVR) 

. 
GO TO 30 

C 
C 60--CHECK FOR CARRIAGE RETURN, 
C EXIT TO ECHO ROUTINE IF 
C PRESENT 
C 
60 IF (TCHR(I).EQ."15) GO TO 80 

70 CONTINUE 
C 
C 80--FALL THROUGH TO ECHO A LINE 
C 

C 
C 
C 

CALL RTOW (I,TCHR"LUN) 

DISCONNECT TERMINAL BUFFER, EXIT 

CALL DFTY (, LUN) 
CALL EXIT 
END 

19-63 



INDUSTRIAL CONTROL SUBSYSTEMS 

The procedure for reading the buffer in the example above may be 
summarized as follows: 

1. Wait for the trigger event flag specified in the call to 
connect the buffer. 

2. Upon regaining control, call the appropriate routine to read 
the buffer until one of the following terminal conditions is 
detected: 

a. All data has been read. 

b. An overrun count is detected. 

c. A fatal error is encountered. 

3. On the occurrence of 2a or 2b, perform any appropriate 
proceasing~ then return to scan for additional data. 

4. If a hardware 
contents for 
appropriate. 
is not set 
resumed. 

error is detected, use the ICSR register 
further fault analysis and warning as 

In the event of such an error, the event flag 
by the driver again unless normal service is 

5. A calling task should not execute the Wait-For directive 
until a buffer-empty condition is detected. This is because 
your task's buffer pointer is advanced after detecting and 
clearing an overrun condition, and the trigger-event flag is 
cleared only when a buffer-empty condition is detected. 

19.4.12 Unsolicited Interrupt Processing - Task Activation 

The following routines provide the capability of linking a task to an 
interrupti soliciting information from the driver concerning how the 
task was activated, and unlinking a task from all interrupts. 

19.4.12.1 LNK: Link a Task to Interrupts - This 
any installed task to be activated on the 
unsolicited interrupt. 

Calling Sequence: 

CALL LNK (tnam,iprm[,isb] [,lun]) 

19-64 

subroutine allows 
occurrence of any 

( 

c 

( 



( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

Argument Descriptions: 

tnam 

iprm 

iprm(l) 

iprm(2) 

iprm(3) 

iprm(4) 
iprm(5) 

isb 

Real variable containing task name in RADIX-50 
format. 

A 5-word integer array containing the following 
data: 

Interrupt class. May be one of the following: 

o - Digital interrupts 

1 - Counters 

2 Remote terminal (CTRL/C only) 

3 - Error interrupts 

Reserved. 

Optional event flag set if task to be activated is 
not dormant when the interrupt occurs. 

Hardware-dependent parameters as follows: 

Interrupt Class Parameter Contents 

Digital iprm(4) Point number 
iprm(5) = Change-of-state mask 

Counter iprm(4) = Module number 
iprm (5) = Counter initial value 

Remote Terminal iprm (4) = not used 
iprm(5) = not used 

Error iprm(4) = not used 
iprm (5) = not used 

Optional 2-word integer array to receive status in 
isb(l) as follows. isb(2) is always set to O. 

+1 Function successfully completed. 

+3 Unrecognized 
specified. 

interrupt 

+4 Insufficient dynamic 
allocate I/O packet. 

+8 Unassigned LUN. 

+99 Invalid LUN. 

+301 Task tnam not installed. 

19-65 

storage 

class 

to 



INDUSTRIAL CONTROL SUBSYSTEMS 

+303 Controller not ready. 

+317 Resource in use. Other task already 
linked to interrupt. 

+323 Insufficient dynamic memory to 
allocate secondary control block. 

+380 Task tnam not installed. 

+397 Invalid event flag number specified. 

lun 

Example: 

Optional integer specifying the logical 
. number. 

unit 

Link task ALARM to report fatal hardware errors arising from a 
malfunction on any ICRll physical unit. 

DIMENSION IPRM(5) 
C 
C 
C 
C 
C 
C 

INITIALIZE PARAMETER ARRAY WITH: 
1. INTERRUPT CLASS 
2. RESERVED .ELEMENT CLEARED 
3. GLOBAL EVENT FLAG 

DATA IPRM(l), IPRM(2), IPRM(3)/3,O,64/ 

DATA ALARM/6RALARM / 

CALL LNK (ALARM,IPRM,,7) 

19.4.12.2 RDACT: Read Activation Data - The following call allows a 
task to determine the interrupt conditions that caused it to become 
active. 

Calling Sequence: 

CALL RDACT (iprm [, isb] [, lun] ) 

Argument Descriptions: 

iprm 

iprm(l) 

iprm(2) 

A 6-word integer array to receive activation data 
in the following format. 

Activation indicator (see Section 19.3.7.5). 

Physical unit number of ICR. 

19-66 

( 

( 

( 



( 

( 

iprm (3) 

iprm(4) 

iprm(5) 
iprm (6) 

INDUSTRIAL CONTROL SUBSYSTEMS 

Generic code. Set to one of the following values: 

o - Remote terminal 

1,2,3 - Digital interrupt 

4,5,6 - Counter interrupt 

177770 - Fatal hardware error 

Relative module number. 

Hardware-dependent data. 

isb Optional 2-word integer array to receive status in 
isb(l) as follows. isb(2) is set to O. 

+1 Function successfully completed. 

+4 Insufficient dynamic storage to allocate 
I/O packet. 

+8 Unassigned LUN. 

+99 Invalid LUN. 

+306 iprm arrpy not fully within the task's 
addressing space. 

+319 Address of iprm is odd. 

+379 Task not linked to ICS/ICR interrupts. 

1un Integer variable specifying the logical unit number. 

19-67 



INDUSTRIAL CONTROL SUBSYSTEMS 

Example: 

The following is an excerpt from a program that reads activating data 
into array IACT and conditionally exits if the event flag (IEFN) 
specified in a previous link request, issued by another task, is not 
set. 

C 
C ALLOCATE SPACE FOR DATA ARRAY 
C 

DIMENSION IACT(6) 

10 CALL RDACT (IACT,,7) 

C 
C CLOSE ALL FILES 
C 

C 

CALL CLOSE(l) 
CALL CLOSE(2) 

C EXIT IF TRIGGER EVENT FLAG IS NOT SET 
C ELSE CLEAR EVENT FLAG AND RESTART. 
C 

C 
C 
C 
C 

CALL EXITIF (IEFN) 

FLAG WAS SET. CLEAR IT AND 
CONTINUE. 

CALL CLREF (IEFN) 
GO TO 10 
STOP 
END 

The foregoing e'xample illustrates' the following considerations when a 
task is made active by ICS/ICR interrupts: 

1. To avoid race conditions, use the Exit-If directive 
the state of the event flag and conditionally exit. 
a Test Event Flag directive followed by an Exit would 
flag set condition occurring after the test 
unrecognized. 

to test 
Issuing 
cause a 

to go 

2. Use of the Exit-If directive bypasses the closure of all 
files that is normally done by the FORTRAN object time system 
when the program executes a STOP or CALL EXIT statement. 
Thus, to exit cleanly, the program must explicitly close all 
files before invoking the directive. 

19.4.12.3 UNLNK: Remove Interrupt Linkage to a Task - The following 
call removes all linkage between a task and ICS/ICR interrupts. 

19~68 

( 

(-

( 



( 

( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

Calling Sequence: 

CALL UNLNK (tnam,iprm[,isb] [,lun]) 

Argument Descriptions: 

tnam Real variable containing task name in Radix-50 format. 

iprm Integer variable containing the interrupt class. 
be one of the following: 

o - Digital interrupts 

1 - Counters 

2 - Remote terminal 

3 - Error interrupts 

4 - All interrupts 

May 

isb Optional, 2-word intege"r array to receive the results 
of the call in isb(l) as follows. isb(2) is set to O. 

+1 Function successfully completed. 

+4 Insufficient dynamic storage to allocate an 
I/O packet. 

+8 Unassigned LUN. 

+99 Invalid LUN. 

+379 Task not linked to ICS/ICR interrupts. 

+380 Task not installed. 

1un Integer variable specifying the logical unit number. 

Example: 

Remove the linkage between task ALARM and all ICS/ICR interrupts. 

DATA ALARM/6RALARM / 

CALL UNLNK (ALARM",7) 

19.4.13 Maintenance Functions 

The following functions cause the ICS/ICR driver to suppress or enable 
hardware error reporting while on-line maintenance and troubleshooting 
is in progress, as described in Section 19.3.9_ 

OFLIN Place selected unit off line. 

ONLIN Return selected unit to on-line status. 

These calls may be issued only by a privileged task. 

19-69 



INDUSTRIAL CONTROL SUBSYSTEMS 

19.4.13.1 OFtIN: Place Selected Unit in Offline Status - The 
following call is executed to set a controller off line: 

CALL OFLIN ([isb] [,lun]) 

Argument Descriptions: 

isb Optional 2-word integer array to receive the results of 
the call in isb(l) as follows. isb(2) is always O. 

+1 

+4 

+8 

+99 

+316 

+380 

Function successfully completed. 

Insufficient dynamic storage to allocate an 
I/O packet. 

LUN not assigned. 

Invalid LUN. 

Issuing task not privileged. 

Device already off line. 

lun Integer variable specifying the ICS/ICR logical unit 
number. 

19.4.13.2 ONLIN: Return a Device to On-line Status - The following 
call returns the selected unit to on-line status. 

CALLONLIN ([isb] [,lun]) 

Argument Descriptions: 

isb Optional 2-word integer array to receive the results of 
the call in isb(l) as ~ollows. isb(2) is always O. 

+1 

+4 

+8 

+99 

+316 

Function su~£~~sfully completed. 

Ins·ufficient dynamic stor-age--to _allocate an 
I/O packet. 

LUN not assigned. 

Invalid LUN. 

Issuing task not privileged. 

lun Integer variable specifying the logical unit number. 

19.5 ERROR DETECTION AND RECOVERY 

Error detection and recovery procedures encompass the following 
contingencies. 

1. Nonrecoverable serial line errors 

2. Power-fail at the remote station 

19-70 

( 

( 

( 



( 

( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

3. Power recovery at the processor 

4. No response from an interrupting module 

The first two conditions are dealt with in a manner similar to that of 
other types of unsolicited interrupts. Specifically, such occurrences 
may cause a task to be activated, and are reported to all tasks that 
are connected to digital, counter, o~ terminal input. The following 
paragraphs discuss specific driver activity relating to each error 
condition. 

19.5.1 Serial Line Errors 

The driver detects nonrecoverable serial line errors. A 
nonrecoverable error condition is defined as the occurrence of a 
predetermined number of error interrupts in an interval of 1 second, 
or no response from the controller upon initiation of an output data 
transfer by means of the serial line. The occurrence of such a 
condition causes the driver to perform as follows: 

1. Place the controller in a "not ready" status. 

2. Disable further error interrupts. 

3. Report the condition to the task that is linked to errors, 
and to any tasks connected to receive unsolicited interrupt 
data from the faulty unit. Subsequent QIO requests that 
transfer data to or from the unit are rejected with a status 
of IE.DNR. 

Requests for interrupting modules that are pending (AID converters and 
terminal output) are allowed to time out with the error code IE.DNR. 
You may specify the serial line error rate required to consider the 
link inoperative at the time of system generation. 

After reporting the error as described above, the driver removes the 
"not ready" status when the error condition is not detected at the end 
of any 1-second interval. If requested during system generation, the 
state of the following remote modules is restored as described. 

1. Bistable outputs - set to last recorded state 

2. Counters - reinitia1ized to last initial value 

3. Analog outputs - restored to last output value 

19.5.2 Power-Fail at a Remote Site 

The detection of AC-10w from the remote site immediately triggers the 
processing described in Section 19.5.1. The absence of AC-10w returns 
the unit to the "ready" status. 

19-71 



INDUSTRIAL CONTROL SUBSYSTEMS 

If specified, the state of the following remote modules is then 
restored as described: 

1. Bistable outputs - set to last recorded state 

2. Counters - reinitialized to last initial value 

3. Analog outputs - restored to last output value 

19.5.3 Power Recovery at the Processor 

Power recovery by the processor initiates the activity described in 
Section 19.5.2 for both local and remote file boxes. However, power 
r,ecovery processing at the processor is not reported to a task that is 
linked to error interrupts or connected to receive unsolicited 
interrupt data. 

19.5.4 Unit in Off-line Status 

A unit that is off line (see Section 19.3.9.1) is considered t~ be 
under manual control for purposes of diagnosis and maintenance. Under 
these conditions, error reporting as described in Section 19.5.1 is 
unnecessary. and frequently undesirable, because fault indications are 
generally a by-product of these activities (that is, a remote unit is 
shut down to install an I/O module), not the result of a genuine 
controller fault. 

Furthermore, to permit the operation of diagnostic software, it is 
advisable to attempt to service all QIOrequests regardless of the 
controller status. Consequently, under these circumstances, error 
reporting and detection are modified as follows when the controller is 
off line: 

1. Access to the controller with the intention of transmitting 
data to or from the device is restricted to privileged tasks. 

2. The task linked to error interrupts and any tasks receiving 
interrupt data are not notified of remote power-fail or fatal 
serial line errors. 

3. All device error interrupts become disabled. 

4. An attempt is made to service all QIO requests if b~sued by a 
privileged task. If such requests time out (that is, A/D 
converter or remote terminal output), they are terminated 
with the error code IE.ABO rather than with IE.DNR. No 
hardware errors are reported for I/O requests that are 
normally completed immediately (for example, bistable digital 
out~ut). 

19-72 

( 

( 



( \ 

( ~ 
'\ 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

19.5.5 Error Data - ICSR and ICAR Registers 

Whenever a reportable error occurs, the driver returns the contents of 
the appropriate control and status register (ICSR) and, in some cases" 
the contents of the address register (ICAR), to assist in fault 
diagnosis. Tables 19-8 and 19-9 describe the contents ,of these 
registers. 

Bit Name 

15 OUTPUT BUSY 

14 MAINT 

13 NOT USED 

12 ERROR 

11 MAINT 

10 PWR FAIL 

9 TBMT INT EN 

8 MAINT 

7 MOD INT 

6 RESET 

5 

4 

3 

2 

1 

o 

TTY ENABLE 

PWR FAIL INT 
ENABLE 

BMT'INT ENABLE 

MOD INT ENABLE 

ERROR INT ENABLE 

RIF 

Table 19-8 
ICSR Contents 

Read/ 
Write 

R 

R/W 

R 

R 

R/W 

R 

R/W 

R/W 

R 

W 

R/W 

R/W 

R/W 

R/W 

R/W 

R/W 

Description 

Indicates output 
accept new data. 

Maintenance. 

Always set to 1. 

buffer cannot 

Indicates occurrence of 
communication serial line error. 
Reset when ICAR is read. 

Maintenance. 

Remote Power Supply AC LO indicator. 

Enables bit 15 of ICAR to interrupt. 

Maintenance. 

Indicates I/O Module requires 
interrupt servicing. 

Resets all I/O modules. Always read 
as O. 

Activates TTY mode, disables I/O 
mode. 

Enables bit 10 to interrupt. 

Enables complement, of bit 
interrupt. 

Enables Bit 7 to interrupt. 

Enables Bit 12 to interrupt. 

15 to 

Resets the 
flag when 
addressed. 
also resets 

interrupting module's 
set and the module is 

This clearing action 
the RIF bit. 

19-73 



INDUSTRIAL CONTROL SUBSYSTEMS 

Table 19-9 
ICAR Contents 

Bit Name Description 

15 TBMT 

14 PCL 

13 POP 

12 DA 

Indicates TTY o.utput buffer 
a.ccept new da ta • 

can 

Pulse closed. This bit is set by a 
jumper on a digital interrupt 
module. This jumper is removed if 
contact closures are not of interest 
to your task. 

Pulse Opened. This bit is set by a 
jumper on a digital interrupt 
module. This jumper is removed if 
contacts opening are not of interest 
to your task. 

Indicates terminal character has 
been received. Cleared by reading 
terminal character. 

1l-08 Generic Code A 4-bit binary code that identifies 
the type of module requesting the 
interrupt. 

07-00 Module Address 8-bit address of the module 
requesting the interrupt. 

19.6 DIRECT ACCESS 

Section 19.1.3 notes those ICS/ICRII functions that may be performed 
by referencing a module through its physical address in the I/O 
page. Under RSX-llM such access is accomplished by one of the 
following methods: 

1. A privileged task or any task running in an unmapped system 
has unrestricted access to the I/O page and may therefore 
access each module by absolute address. 

2. Using the Task Builder, a task may link to a global common 
area whose physical address limits span a set of locations 
in the I/O page. This method applies to either a mapped or 
unmapped system. 

The latter method allows a task to be transported to 
system simply by relinking. Moreover, in a mapped system 
management hardware aborts all references to device 
outside the physical address limits of the. common block. 

any other 
the memory 
registers 

Because the software allows arbitrary module placement, direct 
reference, in either case, must be accomplished by translating a 
relative module number to a physical or virtual register address 
within the I/O page. This translation or mapping is performed by 
means of a table (ICTAB.MAC) that is created during system 
generation, and inserted in the system object module library. 

19-74 

( 

( 

( 



( 

( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

The operations required to implement each method may be summarized 
as follows: 

1. Unrestricted access to the I/O page 

2. 

a. Based upon your response to the ICS/ICR system 
generation queries, the system creates the MACRO source 
file ICTAB.MAC under UIC [11,10] on the source disk. 
This file contains tables that describe the physical 
location of each counter, digital interrupt, and 
digital sense module in the target system. 

b. ICTAB.MAC is assembled for eventual inclusion in the 
system object module library. 

c. The MACRO source file ICOM.MAC, under UIC [11,10] on 
the source disk, is assembled to generate global 
definitions for the first ICS/ICR address on the I/O 
page and the number of ICS/ICR controllers in the 
target system. The resulting object file is 
incorporated in the system library file. 

d. A task is built containing the appropriate global 
references. Such references are resolved when the Task 
Builder searches the system library. 

Steps a, b, and c are executed once. Step d is performed 
each time a task that references the ICS/ICRII is created. 

NOTE 

ICS/ICR inputs are not valid until 3ms after power 
recovery at the processor. Tasks that are 
referencing inputs directly may establish a power 
recovery AST entry point that suspends task 
execution for the necessary time interval. 

Access to the I/O page through a Global Common Block: 

a. Steps a and b are performed. 

b. File ICOM.MAC under UIC [11,10] is assembled to define 
the first ICS/ICR module address as a relocatable 
value, the number of I/O page locations required, and 
the number of controllers present on the target system. 

c. File ICOM.OBJ, created in step b, is linked using the 
Task Builder to create an image of the device common 
block on disk. 

d. The SET and INSTALL MeR or VMR commands allocate space 
for the common block and declare the block resident in 
the target system. 

e. A task is created containing the appropriate global 
references to the COmmon block and mapping table. 
Common block references are resolved by directing the 
Task Builder to link the task to the device common 
block (ICOM). The mapping table reference is resolved 
from the system library module ICTAB. 

19-75 



INDUSTRIAL CONTROL SUBSYSTEMS 

The detailed procedure for creating the necessary object files and 
device common block is performed as part of the system generation 
process, and is described fully in the RSX-llM System Generation and 
Installation Guide. Therefore, the discussion in the following 
paragraphs is limited to procedures for linking to the device common 
block, and using the file ICTAB.MAC to determine module addresses 
within the I/O page. 

19.6.1 Linking a Task to the ICS/ICR Common Block 

Once the devic~ common block has been created, a task may access 
ICS/ICR modules by linking to the common block. This can be done by 
using the Task Builder commands shown in the following example: 

TKB)TASK,LP:=TASK.OBJ 
TKB>/ 
ENTER OPTIONS: 
TKB> COMMON=ICOM:RO 
TKB>/ 

The illustration is vali~ for either a mapped or unmapped system. 
In both cases, the Task Builder links the task to the common block 
by relocating the global symbol definitions contained in the common 
block symbol table file ICOM.STB located under UIC [1,1]. If memory 
management is present, the Executive maps the appropriate physical 
locations into the task's virtual addressing space when the task is 
made active. 

19.6.2 Accessing the I/O Page 

After the task has been linked to the I/O page, either directly or 
through reference to the device common block, access to a specific 
ICS/ICR counter, or digital input modules during task execution, is 
a 3-step process: 

1.· The task generates a request for module data by specifying 
module type, relative module number, and physical unit 
number. 

2. The data contained in module ICTAB is accessed to translate 
the arguments of step 1 to a physical offset from the 
ICS/ICR base address on the I/O page. 

3. The ICS/ICR base address, defined in the common block or 
system library module that was created from file ICOM.MAC, 
is added to the offset to compute a physical or virtual 
address and the module data is read. 

The next few paragraphs describe the format of the system library 
module ICTAB, and common block module ICOM in detail. A sample 
MACRO subroutine that references these modules is then presented. 

19-76 

( 

( 

( 



( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

19.6.2.1 Mapping Table Format - The mapping table created by system 
generation (file ICTAB.MAC) translates module type, relative module 
number, and physical unit number for counter, digital interrupt, and 
digital sense modules, to the physical or virtual address of the 
module on the I/O page. This module must be assembl.ed and inserted 
in the system object module library before the standard FORTRAN 
callable routines can read digital input and counter modules. The 
table contains one set of entries for each physical unit. The entry 
sets are arranged in ascending unit number order (Figure 19-1). 
Entries within each unit are in sequence by module type, as shown in 
this figure. 

Increasing 
memory 
addresses 

Digital sense 

Dig ital i nterru pt 

Counter modules 

• • • 
Digital sense 

Digital Interrupt 

Counter modules 

Unit 0 
mapping table 

U,nit n 
mapping table 

ZK-009-81 

Figure 19-1 Mapping Table Format 

The structure of each entry is depicted in Figure 19-2. Entries are 
18 bytes long. Byte 0 contains the highest number of modules of a 
given type that can be. referenced for the controller. Bytes 2 
through 17, when indexed by relative module numbers, yield a value 
1:;>etween 0 and 255 representing the physical location of the module 
within the set of external page addresses allocated to the 
ICS/ICRll. 

The following global symbols are defined by this module: 

.ICTAB = Location of mapping tables 

I.CTBL = Length in bytes of one set of entries 

19.6.2.2 I/O Page Global Definitions - As previously mentioned, 
module ICOM contains symbolic definitions for I/O page references 
that are resolved either through unrestricted access or by means of 
a device common block that is resident on the I/O page. The 
procedures for implementing either method are carried out during 
system generation. Upon completion, the following global symbols 
are defined and later referenced by the FORTRAN callable 
subroutines: 

.ICMD = First ICS/ICR virtual or physical address within the 
I/O page. 

I$$Cll = Number of ICS/ICR controllers 

19-77 



INDUSTRIAL CONTROL SUBSYSTEMS 

If the global common block was built, the definitions above are 
contained in the symbol table file that was created by the Task 
Builder~ otherwise, they are includ~d in the system object module 
library. The definitions are included in module ICOM in the system 
library or in the STB file ICOM.STB under UIC [1,1] on the system 
disk. The STB file is referenced by the Task Builder in response to 
the use of the LIBR keyword. 

Increasing 
memory 
address 

Reserved 

Physical module no. 

" " 

" " 

" . 
" " 

" n 

" n 

" " 

Maximum module no. 

Physical module no. 

" " 

" " 

" n 

. " 

" n 

" " 

" " 

Figure 19-2 Mapping Table Entry Format 

Byte 

o 

2 

4 

6 

8 

10 

12 

14 

16 

ZK-010·81 

19.6.2.3 Sample Subroutine - The following subroutine, residing in 
the system library, uses the modules previously described to read 
ICS/ICRmodule data. 

READ ICS/ICR-ll DIRECT ACCESS INPUTS 

LOCAL DATA 

ADDRESS OF ICS/ICR-ll MAPPING TABLES 

.ENABL LSB 
N=O 
ICMAP: 

• REPT 12 • 

.WORD • ICTAB+I .CTBL*N 
N=N+l 

.ENDR 

~+ 

19-78 

( 

( 

( 



c 

( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

**-.RDIC-READ ICS/ICR-11 DIRECT ACCESS INPUTS 

THIS SUBROUTINE IS CALLED TO TRANSLATE RELATIVE MODULE NUMBER 
TO PHYSICAL EXT.ERNAL PAGE ADDRESS AND READ THE MODULE DATA. 

INPUTS: 

RO = RELATIVE MODULE NUMBER 
R1 = MODULE CODE 

; WHERE: 
; 0 = CONTACT SENSE 
; 1 = CONTACT INTERRUPT.S 

2 = COUNTERS 

; STACK SETUP IS AS FOLLOWS: 
; (SP)+OO = RETURN TO CALLER 
; (SP)+02= I/O STATUS BLOCK ADDRESS (NOT 

"REFERENCED) • 
; (SP)+04 = PHYSICAL UNIT NUMBER 

OUTPUTS: 

C/CLEAR. 

RO = MODULE DATA 

C/SET: 
; 
; NONEXISTENT PHYSICAL UNIT NUMBER OR MODULE 
SPECIFIED 

;-

.RDIC: : 
MOV 4(SP),R2 ; GET PHYSICAL UNIT NUMBER 
CMP #!$$Cll-1,R2 ; LEGAL UNIT NUMBER? 
BLO 10$ IF LO NO 
ASL R2 CONVERT PHYSICAL UNIT NUMBER 

TO WORD 
OFFSET 

MOV ICMAP(R2),R2 GET ADDRESS OF MAPPING TABLE 
ENTRIES FOR THIS UNIT 

ASL R1 CONVERT CODE TO WORD OFFSET 
ADD R1,R2 MULTIPLY OFFSET BY 9 AND ADD 

TO TABLE ADDRESS 
ASL R1 
ASL R1 ; 
ASL R1 
ADD R1,R2 COMPUTE OFFSET TO TABLE 
TSTB (R2) MODULE EXIST? 
SEC ASSUME NO 
BEQ 10$ IF EQ NO 
INCB RO ; CONVERT TO NUMBER OF MODULES 
CMPB (R2)+,RO LEGAL MODULE NUMBER? 
BLO 10$ IF LO NO 
INC R2 POINT TO TABLE ENTRIES 
ADD RO,R2 OFFSET TO MODULE NUMBER 
CLR RO SET FOR MOVB WITHOUT SIGN 

EXTEND 
BISB (R2) ,RO GET INDEX TO MODULE 
ASL RO CONVERT TO WORD OFFSET 
MOV .ICMD(RO),RO GET MODULE DATA 

10$: ; 
RETURN 

.END 

19-79 



INDUSTRIAL CONTROL SUBSYSTEMS 

19.7 CONVERSION OF EXISTING SOFTWARE 

The following paragraphs are a guidance in converting existing UDC 
or ICS software to run under the ICS/ICR-ll driver and associated 
FORTRAN support routines. The differences described here are 
restricted to module support and features that would affect existing 
software. New features, unsupported in previous systems, are not 
discussed. 

19.7.1 Features 

Principal features affecting existing software are: 

1. Support for the ICS/ICRll as a multiunit, multicontroller 
device 

2. Removal of software restrictions on the placement of 
functionally similar modules 

Multiunit support affects any software 
outside the range of a single file box. 
must be modified at the source level. 

that addresses modules 
In general, such software 

Unrestricted module placement affects MACRO-ll programs that 
directly access digital input and counter modules. Such programs 
may use the library routine described in Section 19.3 to read data 
from these modules. 

19.7.2 Module Support 

19.7.2.1 IAD-IA A/D Converter and IMX-IA Multiplexer 

MACRO Interface: 

Identical to UDCll driver 

FORTRAN Interface: 

Same as UDCll 

Functional Differences: 

The ICS/ICR driver can initiate parallel conversions on each 
IAD-IA in a file box that is referenced by a single QIO 
request. The UDCll driver performs all conversions serially. 

The ICS/ICR driver supports any permissible configuration of 
IAD-IA A/D converters and IMX-IA multiplexers. The UDCll 
driver requires that eight module slots be reserved for each 
IAD-IA in the system regardless of the actual number of 
multiplexers installed. 

19-80 

( 

( 

{ 



( 

( 

INDUSTRIAL CONTROL SUBSYSTEMS 

19.7.2.2 16-Bit Binary Counter 

MACRO Interface: 

Identical to UDCll driver 

FORTRAN Interface: 

Same as UDCll; however, if the counter is read through a call 
to RDTI, then the task must be relinked to incorporate the 
revised FORTRAN Interface routine. 

Functional Differences: 

The ICS/ICR driver permits any task to reset an initial counter 
value (with FORTRAN call SCTI or through the IO.ITI QIO 
function). The UDCll driver restricts this operation to a task 
that has connected to counter interrupts. 

19.7.2.3 Bistable Digital Output 

MACRO Interface: 

Identical to UDCll 

FORTRAN Interface: 

Identical to UDCII 

Functional Differences: 

None 

19.7.2.4 Momentary Digital Output 

MACRO Interface: 

Your task communicates with the ICS/ICR-Il driver with. the QI0 
IO.MSO. The UDCll driver does not support this function 
because the module may be accessed directly through .the UDC 
device common block. 

FORTRAN Interface: 

Identical to UDCll; however, existing FORTRAN tasks must be 
r~linked to include ICS/ICRll FORTRAN interface routines. 

Functional Differences: 

Momentary output operations are now processed by the ICS/ICR 
driver, rather than through direct access to the I/O page. 

19-81 



INDUSTRIAL CONTROL SUBSYSTEMS 

19.7.2.5 Noninterrupting Digital Input 

MACRO Interface: 

MACRO Interface is by means of the ICS/ICRl-l device 
block and mapping table described in Section 19.6. 

FORTRAN Interface: 

common 

Identical to UDClll however, existing tasks must be relinked to 
include revised ICS/ICRII FORTRAN interface routines. -

Functional Differences: 

None 

19.7.2.6 Analog Output 

MACRO Interface: 

Your task communicates with the ICS/ICR driver with the QIO 
IO.SAO. The UOCII driver does not support this function 
because the module may be accessed directly through the UDC 
device common block. 

FORTRAN Interface: 

Identical to UDCll; however, existing FORTRAN tasks must be 
relinked to include ICS/ICRII FORTRAN interface subroutines. 

Functional Differences: 

Analog output operations are now processed by the ICS/ICR 
driver rather than through direct access to the I/O page. 

19.7.2.7 Interrupting Digital Input 

MACRO Interface: 

Identical to UDCll driver 

FORTRAN Interface: 

Identical to UDCll driver; however, if digital inputs are read 
through the call to RCIPT, then the task must be relinked to 
incorporate the revised IGS/ICRll FORTRAN interface routines. 

Functional Differences: 

None 

19-82 

( 

( 

( 



( 

( 

( 

CH~PTER 20 

NULL DEVICE DRIVER 

RSX-11M provides a driver for a software construct 
device." The mnemonic for the null device 
characteristics are as follows: 

called the "null 
is NL:, and its 

• A read from NL: returns an end-of-fi1e error (IE.EOF) • 

• A write to NL: immediately returns success (IS.SUC). 

The null device functions as a "black hole" to which your task can 
direct output, and from which the data so directed never returns. It 
is. particularly useful when you use it with an indirect command f.ile 
and MCR ASN commands, as in the example below. 

Figure 20-1 shows the contents of a Task Builder command file called 
TESTBLD.CMD. This command file uses symbolic device names for the 
output file, map file, and input file. These names may be reassigned 
at task-build time. In particular, the example below assigns the map 
file to the null device and thus the map file is thrown away. 

)ASN SY:=OU: 

)ASN NL:=MP: 

)ASN DK1:=IN: 

)TKB @TESTBLD 

OU:TEST,MP:TEST=IN: [200,220]TEST 
I 
ASG=TI:2 
II 

Figure 20-1 Indirect TKB Command File TESTBLD.CMD. 

20-1 



( 

( 

(! 



c 

( 

( 

CHAPTER 21 

GRAPHICS DISPLAY DRIVER 

21.1 INTRODUCTION 

RSX-llM provides support for two graphics display peripherals: the 
VTll and the VS60. Graphics display drivers are not supported in 
RSX-llM-PLUS systems. Each consists of a CRT display, light pen, and 
display processing unit (DPU). Either may be purchased separately or 
as part of a complete system. For example, the GT46 is a "starter 
system" consisting of a VTll and a PDP-llT/34 with 32K words of memory 
and disk storage. 

21.1.1 VTII Graphics Display Subsystem 

The VTll is .a low-cost, line-drawing graphics display subsystem. It 
steals cycles asynchronously from the CPU whose UNIBUS it shares. Its 
DPU instruction set supports the following features: 

• Relative and absolute vectors -- solid, long dash, short dash, 
or dotted 

• Point plotting 

• Character generation 

• Blinking display 

• Eight levels of intensity 

• Light-pen interaction 

21. 1. 2 VS60 Graphics Display Subsystem 

The VS60 supports all these features at a higher rate of performance 
than the VTll. In addition, the VS60 supports hardware subroutining, 
scaling, and windowing. A second CRT may be added to theVS60. 

21.2 GET LUN INFORMATION MACRO 

Word 2 of the buffer filled by the GET LUN INFORMATION system 
directive (the first characteristics word) contains Os in all bits for 
graphics display devices. Words 3, 4, and 5 are undefined. 

21-1 



GRAPHICS DISPLAY DRIVER 

21.3 QIO$ MACRO 

Table 21-1 lists the standard and device-specific functions of the QIO 
macro that are valid for graphics display devices. 

The standard QIO functions IO.ATT and IO.DET have little use in the 
graphics display driver, because the specific functions IO.CON and 
IO.DIS are available. 

Table 21-1 
Standard and Device-Specific QIO Functions for Graphics DispJays 

Format 

STANDARD FUNCTIONS 

QIO$C IO.ATT, ••• 

QIO$C IO. DET, ••• 

QIO$C IO.KIL, ••• 

DEVICE-SPECIFIC FUNCTIONS 

QIO$C IO.CON, ••• ,(stadd,size 
[,lpef] [,lpast]> 

QIO$C IO.CNT, ••• 

QIO$C IO.DIS, ••• 

QIO$C IO.STP, ••• 

stadd 

Function 

Attach device 

Detach device 

Cancel I/O requests 

CONNECT to graphics 
device (start DPU) 

Continue (restart DPU) 

Disconnect from graphics 
device (halt DPU) 

Stop (halt DPU) 

The starting address of a display file (must be word aligned). 
The display file must be within the lowest 28K of physical memory 
for the VTll. 

size 

Ipef 

Ipast 

The size of the display buffer in bytes. 

The optional number of an event flag to be set upon light-pen 
hit; in the range 1-64 (10). 

The optional address of an asynchronous system trap (AST) entry 
point to use upon light-pen hit. 

21-2 

( 

c 

( 



( 

( 

( 

GRAPHICS DISPLAY DRIVER 

21.4 STATUS RETURNS 

Table 21-2 lists error and status conditions that are returned by the 
graphics display driver in the first word of the I/O status block. 
The second I/O status word always contains O. 

Code 

IS.SUC 

IE.ABO 

IE.CNR 

IE.DNA 

IE.IEF 

IE.IFC 

IE.SPC 

Table 21-2 
Graphics Display Status Returns 

Reason 

Successful completion 

The operation specified in the QIO directive was 
completed successfully. 

Operation aborted 

The I/O ope.ration was canceled by 10. KIL while in 
progress or in the I/O queue. 

Connection rejected 

The graphics device specified in an IO.CON function was 
already connected to another task. 

Device not attached 

The graphics device specified in an IO.DET function was 
not attached to the issuing task. 

Illegal event flag 

An event flag number specified in an IO.CON function 
(lpef argument) was not in the range 1-64 (decimal). 

Illegal function code 

A function code was specified in an I/O request that is 
illegal for graphics display devices. 

Illegal address space 

The display buffer specified in 
(stadd argument) was not word 
only) was not completely within 
memory. 

an IO.CON function 
aligned, or (for VTll 
the lowest 28K of 

21.5 PROGRAMMING HINTS 

The graphics display driver does not determine what appears on the 
screen o·f the V~ll or VS60. The key to what is drawn is the 
collection of DPU instructions in the display buffer. 

21-3 



GRAPHICS DISPLAY DRIVER 

Under normal circumstances, the display buffer is generated by calls 
to a set of FORTRAN graphics subroutines. These subroutines provide a 
more convenient access to the graphics features of the hardware than 
do the raw DPU instructions. The subroutines are described in the 
DECgraphic-ll FORTRAN Reference Manual, order number DEC-ll-GFRMA-A-D. 

Aborting a VTll task may cause an RSX-llM system to hang up 
indefinitely, requiring a bootstrap. The VTll DPU has no Halt 
instruction, but the I/O driver must halt the DPU before it can return 
a success status in response to an 10. KIL request. (10. KIL is 
generated when a task is aborted.) This hang situation cannot arise 
with a VS60. 

21-4 

c 

( 

( 



( 

( 

( 

CHAPTER 22 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

22.1 INTRODUCTION 

The Laboratory Peripheral Accelerator (LPAII-K) is an intelligent, 
direct memory access (DMA) controller for DIGITALis laboratory data 
acquisition I/O devices. It is a fast, flexible, and easy-to-use 
microprocessor subsystem that allows analog data acquisition rates up 
to 150,000 samples per second. The LPAII-K is for applications 
requiring concurrent data .acquisition and data reduction at high 
rates. 

a device driver and a set of 
device driver supports multiple 

as resident or loadable. The 
are linked with your task at 
highly modular. Therefore, a 

The LPAII-K is supported through 
program-callable routines. The 
controllers and can be configured 
program~callable support routines 
task-build time. These routines are 
particular task need only contain 
facilities that it actually uses. 

that code necessary for the 

The LPAII-K operates in two distinct modes: dedicated and 
multirequest. The subsections that follow summarize each mode. 

22.1.1 LPAII-K Dedicated Mode of Operation 

In dedicated mode, 
at a time and only 
analog converters 
initiated by an 
supplied signal. 

only one task (that is, one request) can be ac~ive 
analog I/O data transfers are supported. Up to two 
can be controlled simultaneously. Sampling is 
overflow of the real-time clock or by an externally 

22.1. 2 LPAll-K Multirequest Mode of Operation 

In multirequest mode, sampling from all device types is supported. Up 
to eight user tasks can be simultaneously active. The sampling rate 
for each user task is a multiple of the common real-time clock rate. 
Independent rates can be maintained for each task. Both the sampling 
rate and the device type are specified as part of each data transfer 
request. 

22-1 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

22.2 GET LUN INFORMATION MACRO 

If a Get LUN Information system directive is issued for a LUN 
associated with an LPAII-K, word 2 (the first characteristics word) 
contains all zeros, words 3 and 4 are undefined, and word 5 contains a 
l6-bit buffer preset value that controls the rate of the real-time 
clock interrupts. 

22.3 THE PROGRAM INTERFACE 

A collection of program-callable subroutines provides access to the 
LPAll-K. The formats of these calls are fully documented here for 
FORTRAN programs. MACRO-II programmers access these same subroutines 
either through the standard subroutine linkage or through the use of 
two special-purpose macros. Optionally, MACRO-II users can control an 
LPAll-K directly by using device-specific QIO functions. Both FORTRAN 
and MACRO programs must contain at least one I/O Status Block (IOSB) 
for retrieval of status information. The following subsections, 
therefore, describe: 

• The FORTRAN interface 

• The MACRO-II interface 

• The I/O status block 

NOTE 

The subroutines documented in this chapter represent 
the high-level interface to the LPAll-K. Using these 
subroutines requires an understanding·· of hardware 
capabilities, configuration details, and hardware 
status codes as described in the LPAll-K Laboratory 
Peripheral Accelerato~ User's Guide. 

22.3.1 FORTRAN Interface 

Table 22-1 lists the FORTRAN interface subroutines for accessing the 
LPAll-K. 

The calling sequences of the routines listed in Table 22-1 are 
compatible with the K-series support routines, described in Chapter 
23, except as noted. The following subsections briefly describe the 
function and format of each FORTRAN subroutine call. 

22-2 

( 

( 

( 



( 

( 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

Subroutine 

ADSWP 

CLOCKA 

CLOCKS 

CVADF 

DASWP 

DISWP 

DOSWP 

FLT16 

IBFSTS 

IGTBUF 

INXTBF 

IWTBUF 

LAMSKS 

RLSBUF 

RMVBUF 

SETADC 

SETIBF 

STPSWP 

XRATE 

Table 22-1 
FORTRAN Subroutines for the LPAII-K 

Function 

Initiate synchronous A/D sweep 

Set Clock A rate 

Control Clock B 

Convert AID input to floating point 

Initiate synchronous D/A sweep 

Initiate synchronous digital input sweep 

Initiate synchronous digital output sweep 

Convert unsigned integer to.a real constant 

Get buffer status 

Return buffer number 

Set next buffer 

Wait for buffer 

set masks buffer 

Release data buffer 

Remove buffer from device queue 

Set channel information 

Set array for buffered sweep 

Stop sweep 

Compute clock rate and preset 

22.3.1.1 ADSWP: Initiate Synchronous A/D Sweep - The ADSWP routine 
initiates a synchronous A/D input sweep through an LPS-ll or an ADII-K 
(and, if present, the AMII-K). 

If differential input is desired for the ADIl-K/AMll-:K, the channel 
increment must be set to 2 by calling the SETADC routine. The default 
channel increment is 1 (single-ended input). 

22-3 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

The ADSWP call is as follows: 

ibuf 

Ibuf 

nbu 

mode 

CALL ADSWP (ibuf,lbuf, [nbuf], [mode], [idwell], [iefn], [ldelay], 
[ichn], [nchn] , [ind]) 

A 40-word array initialized by the SETIBF routine. The first two 
words of the array are the I/O status block (IOSB). 

The size in words of each data buffer. All data buffers must be 
equal in size and lbuf must be greater than 5. In dedicated 
mode, lbuf must be at least 257 words. 

The number of buffers to be filled. 
equal to 0, indefinite sampling 
terminates indefinite sampling. 

If nbuf is omitted or set 
occurs. The STPSWP routine 

The sampling options. The default is O. The mode bit values 
listed below that are preceded by a plus sign (+) are independent 
and can be added or ORed together (assuming that the sampling 
options are applicable to the mode of operation). Those values 
not preceded by a plus sign are mutually exclusive and the task 
can use only one such value at a time. All bit values not listed 
below are reserved. 

The following values can be specified: 

o Absolute channel addressing (default). This mode 
allows your task to directly access all 64 channels of 
an A/D converter. 

+32 Dual A/Dconversion 
applies to dedicated 
multirequest mode. 

serial/parallel. 
mode only. It 

This option 
is ignored in 

+64 Multirequest mode. If this value is not specified, the 
request is for dedicated mode. If the request mode 
does not match the mode of the hardware (that is, 
different microcode in the master microprocessor), the 
LPAll-K rejects the request with an appropriate error 
code. 

+512 External trigger (STl). Use this mode when you want to 
use your own external sweep trigger. The external 
trigger is supplied by a jumper connecting the ADll-K 
External Start input to the KWll-K Schmitt Trigger 1 
output. You can use this external trigger connection 
only in Dedicated Mode. If you select mode 512, your 
task must specify a Clock A rate of -1 for proper A/D 
sampling. This is nonclock-driven sampling. 

22-4 

c 

( 

( 



( 

( 

( 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

+1024 Time stamp with Clock B (Multirequest mode only). 

+2048 Event marking (Multirequest mode only). LAMSKS must be 
called to specify an event mark channel and event mark 
mask. . 

+4096 Start method. If set, digital input start. If clear, 
immediate start. LAMSKS must be called to specify a 
digital start channel and digital start mask 
(multirequest mode only). 

+8192 Dual A/D converter (dedicated mode only). 

+16384 Data overrun NON-FATAL/FATAL. If selected, data 
overrun is considered nonfatal. The LPAll-K defaults 
to fill buffer O. (See Section 22.4 for a discussion 
of buffer management.) 

idwell 

iefn 

The number of clock overflows (pulses) between data sample 
sequences. As an example, if idwell is 20 and nchn is 3, the 
following ~ccurs: after 20 pulses, one channel is sampled on 
each of the next three pulses. Then, no sampling takes place for 
the next 20 pulses. In multirequest mode, this facility permits 
different sample rates for the same hardware clock rate and 
preset. In dedicated mode, the clock hardware rate controls 
sampling and this idwell argument is ignored. 

If compatibility with K-series support routines is desired, your 
task must first establish the clock preset by calling the CLOCKA 
routine. The sweep start command uses the default idwell value 
of 1. For the K-series, this procedure sets the rate as desired. 

NOTE 

This parameter is called iprset in the K-series 
support routines described in Chapter 23. Its 
function is different from the idwell parameter 
described here. 

The event flag (1 to 28,30 to 96), the name of a completion 
routine, or O. If you use 0 or default this value, the driver 
uses event flag 30 for internal synchronization. If you select 
an event flag with iefn, the driver sets the selected event flag 
as each buffer ~s filled. Note that the LPAll-K support routines 
reserve event flag 29 for internal synchronization. If iefn is 
greater than 96, the driver considers it to be a completion 
routine that is called with a JSRPC. Such routines must return 
with an RTS PC (or a FORTRAN RETURN statement). 

22-5 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

FORTRAN completion routines must not contain any 
following: 

• Any I/O through the FORTRAN run-time system 

• Any use of virtual arrays 

• Any use of floating-point operations 

of the 

• Any errors, because error reporting is done through the 
FORTRAN run-time system 

• Anything else that may change the FORTRAN impure area 

Any of the above may result in fatal task errors or unpredictable 
results. 

If multiple sweeps are 
different event flags. 
enforced by the software. 

initiated, your task should specify 
Adherence to this limitation cannot be 

Ide lay 

ichn 

nchn 

ind 

The delay from the start event (DRll-K) until the first sample in 
IRATE units. This feature is supported in mUltiiequest mode 
only. Default or 0 indicates no delay~ 

The number of the first channel to be sampled. The default of 0 
applies only if ichn was not established in a prior call to the 
SETADC routine. 

The number. of channels to sample. The defaul tis 1. nchn may be 
set up with the SETADC routine. The number of channels specified 
are sampled at a rate of 1 per clock interrupt. If nchn equals 
1, the single channel bit is set in the mode word of the start 
RDA. 

Receives a success or failure code as follows: 

1 indicates that the sweep was successfully initialized. 

o indicates an illegal argument list, or SETIBF was not 
called prior to this call. 

-1 indicates a QIO directive failure. 
code is placed in IOSB(l) in IBUF. 

NOTE 

The directive error 

The ind parameter is not supported by the K-series 
support routines. If compatibility with K-series 
support routines is desired, this parameter must be 
ignored. 

22-6 

( 

( 

( 



( 

( 

( 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

22.3.1. 2 CLOCKA: Set Clock A Rate - The CLOCKA routine sets the rate 
for Clock A. This routine is called as follows: 

CALL CLOCKA (irate,iprset, rind] ,[lun]) 

irate 

The clock rate. One of the following must be specified: 

-1 Direct-coupled Schmitt Trigger 1 (used only for A/D 
in Dedicated Mode +512; not supported by K-series 
routines) 

o Clock B overflow or no rate 
1 1 MHz 
2 100 KHz 
3 10 Kijz 
4 1 I<:Hz 
5 100 Hz 
6 Schmitt Trigger 1 
7 Line frequency 

sweeps 
support 

iprset 

ind 

lun 

The two's complement value for clock preset. The clock rate 
divided by the negative clock preset value yields the clock 
overflow rate. For example, to obtain a clock overflow rate of 
10 Khz with a clock rate of lMhz, iprset = -100 (minus 100 
decimal). You can use the XRATE routine to calculate a clock 
preset value. 

Receives a success or failure code as follows: 

o indicates an illegal argument list or I/O error. possible 
causes are: microcode not loaded; driver not loaded; 
device off line or not in system. 

1 indicates Clock A set to start when sweep requested. 

The logical unit number. The default is 7. 

22.3.1.3 CLOCKB: Control Clock B - The CLOCKB routine gives your 
task control over the KWll-K Clock B. 

The CLOCKB call is as follows: 

CALL CLOCKB ([irate] ,iprset,mode, [ind], [lun]) 

22-7 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

irate 

The clock rate. When irate is nonzero, the clock is set running 
at the selected rate after the preset value specified by iprset 
is loaded. A 0 irate stops the clock. When irate is 0 or 
default, the iprset and mode parameters are ignored. 

The following values are acceptable for irate: 

o Stop clock B 
1 lMHz 
2 100 KHz 
3 10 KHz 
41KHz 
5 100 Hz 
6 Schmitt Trigger 3 
7 Line frequency 

iprset 

mode 

ind 

lun 

The count by which to divide clock rate to yield overflow rate. 
You can use overflow events to drive clock A. The preset 
parameter must be specified as 0 or as a negative number in the 
range -1 to -255. The value in iprset can be established by use 
of the XRATE routine. 

The options. The mode bit values listed below that are preceded 
by a plus sign (+) are independent and can be added or ORed 
together. Those values not preceded by a plus sign are mutually 
exclusive and you can use only one such value at a time. All bit 
values not listed below are reserved. 

1 indicates Clock B operates in noninterrupt mode. The 
l6-bit clock is not incremented or altered. This allows n 
greater than 10KHz pulse to be sent to Clock A. 

+2 indicates that the feed B to A bit is set in the Clock B 
status register. 

Receives a success or failure code as follows: 

o indicates an illegal argument list or I/O error. possible 
causes are: microcode not loaded; driver not loaded; 
device off line or not in system. 

1 indicates Clock B started. 

The logical unit number (LUN). The default LUN is 7. 

22-8 

( \ 

( 
'"'-

( 



( 

( 

( 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

22.3.1.4 CVADF: Convert A/D Input to Floating Point - The CVADF 
routine converts an A/D input value to a floating-point number. The 
routine can be invoked as a subroutine or a function as follows: 

or 

iyal 

val 

CALL CVADF (ival,val) 

val = CVADF(ival) 

A value obtained from A/D input. Bits 12-15 are O. 
represent the value. 

Bits 0-11 

(REAL*4) receives the converted value. The converted value is 
calculated with the following formula: 

val = (64*ival)/gain 

22.3.1.5 DASWP: Initiate Synchronous D/A Sweep - The DASWP routine 
initiates synchronous D/A output to an AAll-K. 

The DASWP call is as follows: 

ibuf 

Ibuf 

nbuf 

mode 

CALL DASWP (ibuf,lbuf,[nbuf] ,[mode] , [idwell] ,[iefn] ,ldelay, 
[ichn], [nchn] , [ind]) , 

A 40-word array initialized by the SETIBF routine. The first two 
words of the array are the I/O status block (IOSB). 

The size in words of each d.ata buffer. All data buffers must be 
equal in size and lbuf must be greater than 5. In dedicated 
mode, lbuf mus.t beat least 257 words. 

The number of buffers to be emptied. 
equal to 0, indefinite sweeping 
terminates indefinite sweeping. 

If nbuf is omitted or set 
occurs. The STPSWP routine 

The start criteria. Except where noted, the plus sign (+) 
preceding mode bit values listed below indicates that they are 
independent and can be added or ORed together. All bit values 
not listed below are reserved. 

22-9 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

The following values can be specified: 

o indicates immediate start. This is the default. 

+64 Multirequest mode. If this value is not specified, the 
request is for dedicated mode. If the request mode 
does not match the mode of the hardware (that is, 
different microcode in master microprocessor), the 
LPAll~K rejects the request with an appropriate error 
code. 

+4096 Start method. If set, digital input start. If clear, 
immediate start. LAMSKS must be called to specify a 
digital start channel and a digital start mask 
(multirequest mode only). 

+16384 Data overrun NON-FATAL/FATAL. If selected, data 
overrun is considered nonfatal. The LPAll-K empties 
buffer O. (See Section 22.4 for a discussion of buffer 
management. ) 

idwell 

iefn 

The number of clock overflows (pulses) between data sample 
sequences. For example, if idwell is 20 and nchn is 3, the 
following occurs: After 20 pulses, one channel is emptied on 
each of the next three pulses. Then, no emptying takes place for 
the next 20 pulses. In ~ultirequest mode, this facility permits 
different rates for the same hardware clock rate and preset. In 
dedicated mode, the clock hardware rate controls sampling and 
idwell in the sweep start command is ignored. 

If compatibility with K-series support routines is desired, your 
task must first establish the clock preset by calling the CLOCKA 
routine. You must use the default value (1) for the idwell 
parameter in the sweep start command. For the K-series, this 
procedure sets the rate as desired. For the LPAll-K, this 
procedure results in idwell in the sweep call defaulting to 1, 
thus yielding the same clock rate. 

NOTE 

This parameter is called iprset in the K-series 
support routines described in Chapter 23. Its 
function is different from the idwell parameter 
described here. 

An event flag number (1 to 28, 30 to 96), or the name of a 
completion routine, or O. If you use 0 or default iefn, the 
driver uses event flag 30 for internal synchronization. If you 
specify iefn as an event flag, the driver sets the event flag as 
each buffer is filled. Note that the LpAll-K support routines 
reserve event flag 29 for internal synchronization. If iefn is 
greater than 96, it is considered to be a completion routine that 
is called with a JSR PC. Such routines must return with an RTS 
PC instruction (or a FORTRAN RETURN statement). 

22-10 

( 

( 

( 



( 

( 

( 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

FORTRAN completion routines must not contain any 
following: 

• Any I/O through the FORTRAN run-time system 

• Any use of virtual arrays 

• Any use of floating-point operations 

of the 

• Any errors, because error reporting is done through the 
FORTRAN run-ti~e system 

• Anything else that may change the FORTRAN impure area 

Any of the above may result in fatal task errors or unpredictable 
results. 

If multiple sweeps are initiated, your task should specify 
different event flags. This limitation cannot be enforced by the 
LPAll driver. 

ldelay 

icbn 

ncbn 

ind 

The delay from start event 
irate units. A mInImum 
(not verified by the LPAll 
multirequest mode only. 

(DRll-K) until th~ first sample in 
delay of 150 microseconds is requi~ed 

driver). This feature is supported in 

The first channel number. Default is channel number O. 

The number of 9hannels. Default is one channel. 

Receives a success or failure code as follows: 

1 indicates that the swee~ was successfully initialized. 

o indicates an illegal argument list, or SETIBF was not 
called prior to this call. 

-1 indicates a Q10 directive failure. 
code is placed in 10SB(l) in 1BUF. 

NOTE 

The directive error 

The ind parameter is not supported by the K-series 
support routines. If compatibility withK-series 
routines is desired, this parameter must be 
ignored. 

22-11 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

22.3.1.6 DISWP: Initiate Synchronous Digital Input Sweep - The DISWP 
routine initiates a synchronous digital input sweep through a DR11-K. 
It can be called in mu1tirequest mode only. 

The DISWP call is as follows: 

ibuf 

1buf 

nbuf 

mode 

CALL DISWP (ibuf,lbuf,[nbuf] ,[mode],[idwell] ,[iefn] , [lde1ay] , 
[iunit], [nchn], [ind]) 

A 40-word array initialized by the SETIBF routine •. The first two 
words of the array are the I/O status block (IOSB). 

The size in words of each data buffer. All data buffers must be 
equal in size and Ibuf must be greater than 5. 

The number of buffers to be filled. 
indefinite sampling occurs. The 
indefinite sampling. 

If nbuf is 0 or 
STPSWP routine 

defaulted, 
terminates 

The sampling options. The default is O. The plus signs (+) 
preceding the mode bit values listed below indicate that they are 
independent and can be added or ORed together. All bit values 
not listed below are reserved. 

The following values can be specified: 

o Immediate start. This is the default mode. 

+512 

+1024 

External trigger. The input sampling is triggered by 
interrupts generated by the DRI1-K's external control 
lines, or its input bits if they are interrupt enabled. 

Time stamped 
consists of 
16-bi t clock 
contains the 

sampling with Clock B.The double word 
one data word followed by the value of the 
at the time of the sample. 10SB (2) 

number of 2-word samples in the buffer. 

+2048 Event marking. LAMSKS must be called to specify an 
event mark word and an event mark mask. 

+4096 Start method. If specified, digital input start. If 
clear, immediate start. LAMSKS must be called to 
specify a digital start channel and a digital start 
mask. The digital start channel need not differ from 
the input channel (iunit). 

+16384 Data overrun NON-FATAL/FATAL. If selected, data 
overrun is considered nonfatal. The LPAII-K fills 
buffer O. (See Section 22.4 for a discussion of buffer 
management.) 

22-12 

c 

( 

( 



( 

( 

( 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

idwell 

iefn 

The number of clock overflows (pulses) between data sample 
sequences. As an example, if idwell is 20 and nchn is 3, the 
following occurs: After 20 pulses, one channel is sampled on 
each of the next three pulses. Then, no sampling takes place for 
the next 20 pulses. In multirequest mode, this facility permits 
different sample rates for the same hardware clock rate and 
preset. 

If compatibility with K-series support routines is desired, your 
task must first establish the clock preset by calling the CLOCKA 
routine. You must use the default value (1) for the idwell 
parameter in the sweep start command. For the K-series, this 
procedure sets the rate as desired. For the LPAII-K, this 
procedure results in idwell in the sweep call defaulting to 1, 
thus yielding the same clock rate. 

NOTE 

This parameter is called iprset in the K-series 
support routines described in Chapter 23. Its 
function is different from the idwell parameter 
described here. 

An event flag number (1 to 28, 30 to 96), or the name of a 
completion routine, or O. If you specify 0 or default this 
value, the driver . uses event' flag 30 for internal 
synchronization. If iefn is a valid event flag, the driver sets 
the selected event flag as each buffer is filled. Note that the 
LPAII-K support routines reserve event flag 29 for for internal 
synchronization. If iefn is greater than 96, it is considered to 
be a completion routine that is called with a JSR PC. Such 
routines must return with an RTS PC instruction (or a FORTRAN 
RETURN statement). 

FORTRAN completion routines must not contain any 
following: 

• Any I/O through the FORTRAN run-time system 

• Any use of virtual arrays 

• Any use of floating-point operations 

of the 

• Any errors, because error reporting is done through the 
FORTRAN run-time system 

• Anything else tha.t may change the FORTRAN impure area 

Any of the above may result in fatal task errors or unpredictable 
results. 

If· multiple sweeps are initiated, your task should specify 
different event flags. This limitation cannot be enforced by the 
LPAll dr i ver • 

Idelay 

The delay from start event (DRII-K) until the first sample in 
. irate units. Default or 0 indicates no delay. 

22-13 



iunit 

nchn 

ind 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

The DRll-K unit number. Default is unit number O. 
are valid. 

Values 0-4 

The number of channels. The LPAII-K treats each DRll-K in its 
configuration as one channel. Default is 1 channel~ 

Receives a success or failure code as follows: 

1 indicates that the sweep was successfully initialized. 

o indicates an illegal argument list, or SETIBF was not 
called prior to this call. 

-1 indicates a QIO directive failure. 
code is placed in 10SB(1) in IBUF. 

NOTE 

The directive error 

The nchn and ind parameters are not supported by. 
the K-series support routines. If compatibility 
with K-series support routines is desired, these 
last two parameters must be ignored. 

22.3.1.7 DOSWP: Initiate Synchronous Digital Output Sweep - The 
DOSWP routine initiates a synchronous digital output sweep through a 
DRlI-K. It can be called in multi request mode only. 

The DOSWP call is as follows: 

ibnf 

lbuf 

nbnf 

CALL DOSWP (ibuf,lbuf,[nbuf] ,[mode] ,[idwell] ,[iefn] ,ldelay, 
[il.init], [nchn], [ind]) 

A40-word array initialized by the SETIBF routine. The first two 
words of the array are the I/O status block (IOSB). 

The size in words of each data buffer. All data buffers must be 
equal in size and Ibuf must be greater than 5. 

The number of buffers to be emptied. 
indefinite emptying occurs. The 
indefinite emptying. 

22-14 

If nbuf is 0 or default, 
STPSWP routine terminates 

( 

( 

( 



c 

( 

mode 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

The start criteria. 

The following values can be specified in the high-order byte of 
mode: 

o Immediate start. This is the default mode. 

+512 External trigger. The output sampling is triggered by 
interrupts generated by the DRII-K's external control 
lines or its input bits if they are interrupt enabled. 

+4096 Start method. If set, digital input start. If clear, 
immediate start. LAMSKS must be called to specify a 
digital start channel and a digital start mask. The 
digital start channel need not differ from the output 
channel (iunit). 

+16384 Data overrun NON-FATAL/FATAL. If selected, data 
overrun is considered nonfatal. The LPAll-K fills 
buffer O. (See Section 22.4 for a discussion of buffer 
management.) 

idwell 

iefn 

The number of clock overflows (pulses) between data sample 
sequences. For example, if idwell is 20 and ncon is 3, the 
following occurs: After 20 pulses, one channel is activated on 
each of the next three pulses. Then, no output takes place for 
the next 20 pulses. In multirequest mode, this fa~ility permits 
different output rates for the same hardware clock rate and 
preset. 

If compatibility with K-series support routines is desired, your 
task must first establish the clock preset by calling the CLOCKA 
routine. You must use the default value (1) for the idwell 
parameter in the sweep start command. For the K-series, this 
procedure sets the rate as desired. For the LPAII-K, this 
procedure results inidwell in toe sweep call defaulting to 1, 
thus yielding the same clock rate. 

NOTE 

This parameter is called iprset in the K-series 
support routines described in Chapter 23. Its 
function is different from the idwell parameter 
described here. 

An event flag number (1 to 28, 30 to 96), or the name of a 
completion routine, or O. If you specify 0 or default thi.s 
value, the driver . uses event flag 30 for internal 
synchronization. If iefn is a valid event fl~g, the driver sets 
the selected event flag as each buffer is emptied. Note that the 
LPAII-K support routines reserve . event flag 29 for internal 
synchronization. If iefn is greater than 96, it is considered to 
be a completion routine that is called with a JSR PC. Such 
routines must return with an RTS PC instruction (or a FORTRAN 
RETURN statement). 

22-15 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

FORTRAN completion routines must not contain any 
following: 

• Any I/O through the FORTRAN run-time system 

• Any use of virtual arrays 

• Any use of floating-point operations 

of the 

• Any errors, because error reporting is done through the 
FORTRAN run-time system 

• Anything else that may change the FORTRAN impure area 

Any of the above may result in fatal task errors or unpredictable 
results. 

If multiple sweeps are initiated, your task should specify 
different event flags. This limitation cannot be enforced by the 
LPAll driver. 

1de1ay 

iunit 

nchn 

ind 

The delay from start event (DRII-K) until the first sample in 
irate units. A mInImum delay of 150 microseconds is required 
(not verified by the LPAll driver). 

The DRII-K unit number. Default is unit number O. 
are valid. 

Values 0-4 

The number of channels. The LPAII-K treats each DRII-K in its 
configuration as one channel. Default is one channel. 

Receives a success or failure code as follows: 

1 indicates that the sweep was successfully initiated. 

o indicates an illegal argument list, or SETIBF was not 
called prior to this call. 

-1 indicates a QIO directive failure. 
code is placed in IOSB(l) in IBUF. 

NOTE 

The directive error 

The nchn and ind parameters are not supported by 
the K-series support routines. If compa'tibil i ty 
with K-series support routines is desired, these 
last two parameters must be ignored. 

22-16 

( 

( 

( 



( 

( 

( 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

22.3.1.8 FLT16: Convert Unsigned Integer to a Real Constant
The FLT16 routine converts an unsigned l6-bit integer to a real 
constant (REAL*4). It can be invoked as a subroutine or a function as 
follows: 

CALL FLT16 (ival,val) 

or 

val=FLT16(ival[,val]) 

ivaI 

An unsigned l6-bit integer. 

val 

The converted (REAL*4) value. 

22.3.1.9 IBFSTS: Get Buffer Status - The IBFSTS routine returns 
information On buffers being used in a sweep. 

The IBFSTS call is as follows: 

CALL IBFSTS (ibuf,istat) 

ibuf 

The 40-word array specified in the call that initiated a sweep. 

istat 

An array with as many elements as there are buffers involved in 
the sweep. The maximum is 8. IBFSTS fills each element in the 
array with the status of the corresponding buffer. The possible 
status codes are as follows: 

+2 indicates that the buffer is in the device queue. That 
is, RLSBUF has been called for this buffer. 

+1 indicates that the buffer is in the task queue. That 
is, it is full of data (for input sweeps) or is 
available to be filled (for output sweeps). 

o indicates that the status of the buffer is unknown. 
That is, it is not the current buffer nor is it in 
either the device or the user task queue. 

-1 indicates that the buffer is currently in use. 

22.3.1.10 IGTBUF: Return Buffer Number - The IGTBUF routine returns 
the number of the next buffer to use. This routine should be called 
by your task's completion routines to determine which is the next 
buffer to access. Do not use it if an event flag was specified in the 
sweep-ini tiating call; if an event. flag was specified, use the IWTBUF 
routine. 

22-17 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

IGTBUF clm be invoked as a subroutine or a function as follows: 

CALL IGTBUF (ibuf,ibufno) 

or 

ibufno=IGTBUF(ibuf[,ibufno) 

ibuf 

The 40-word array specified in the call that initiated a sweep. 

ibufno 

Receives the number of the next buffer to access. If there is no 
buffer in the queue, ibufno contains -1. 

On the return from a call to IGTBUF, the following are the possible 
combinations of ibufno and IOSB contents: 

ibufno IOSB (1) 10SB(2) 

n 400(octal) (Word count) 

n 1 (Word count) 

-1 0 0 

-1 1 0 

-1 RSX-IIM LPAII-K 
error code(decimal) 

Explanation 

Normal buffer complete. 

Buffer complete. Sweep 
terminated. There may be 
additional buffers in the 
queue filled and ready for 
processing. 

. No buffers in queue. 
Request still active. 

No buffers in queue. Sweep 
terminated. 

No buffers in queue. 
error code(octal) Sweep 
terminated· due to error 
co~dition. (Refer to 
Section 22.3.3 for error 
code summary.) Note that 
the error is not returned 
until there are no more 
buffers in the task queue. 

22.3.1.11 INXTBF: Set Next Buffer - The INXTBF routine alters the 
normal buffer selection algorithm. It allows your. task to specify the 
number of the next buffer to be filled or emptied. 

INXTBF can be invoked as a subroutine or a function as follows: 

CALL INXTBF (ibuf,ibufno[,ind]) 

or 

ind=INXTBF(ibuf,ibufno[,ind]) 

22-18 

c 

( 

( 



( 

( 

( 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

ibuf 

The 40-word array specified in the call that initiated a sweep. 

ibufno 

ind 

The number of the next buffer your task wants filled or emptied. 
The buffer must already be in the device queue. 

Receives an indication of the result of the operation: 

o indicates that the specified buffer was not in the device 
queue. 

1 indicates that the next buffer was successfully set. 

22.3.1.12 IWTBOF: wait for Buffer - The IWTBUF routine allows your 
task to wait for the next buffer to fill or empty. Use IWTBUF with 
the specification of an event flag in the swef;!p-ini tiating call. Do 
not use this routine if a completion routine was specified in the call 
to initiate a sweep; when event flags are specified, use the IGTBUF 
routine. 

IWTBUF can be invoked as a subroutine or a function as follows: 

or 

ibuf 

iefn 

CALL IWTBUF (ibuf, [iefn] , ibufno) 

ibufno=IWTBUF(ibuf.[iefn] , [ibufno]) 

The 40-word array specified in the call that initiated a sweep. 

The event flag on which the task waits. This should be the same 
event flag as that specified in the sweep-initiating call. If 
you specify iefn. as 0 or default this value, event flag 30 is 
used. 

ibufno 

Receives the number of the next buffer to be filled or emptied by 
your task. 

22-19 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

On the return from a call to IWTBUF, the following are the possible 
combinations of ibufno and IOSB contents: 

ibufno 

n 

n 

-1 

-1 

10SB (1) 

400 (octal) 

1 

1 

IOSB(2) 

(word count) 

(word count) 

o 

RSX-llM LPAll-K 
error code(decimal) 

Explanation 

Normal buffer complete. 

Buffer complete. Sweep 
terminated. There may be 
additional buffers in the 
queue filled and ready for 
processing. 

No buffers in 
Sweep terminated. 

queue. 

No buffers in queue. 
error code(octal) Sweep 
terminated due to error 
condition. (Refer to 
Section 22.3.3 for error 
code summary.) Note that 
the error is not returned 
until there are no more 
buffers in the task queue. 

22.3.1.13 LAMSKS: Set Masks Buffer - The LAMSKS routine initializes 
a task buffer containing a LUN, a digital start mask and event mark 
mask, and channel numbers for the two masks. The routine then assigns 
the LUN. Each DRll-K is considered to be one channel. Each channel 
has both input arid output capabilities. 

LAMSKS must be called if digital input starting or event marking is to 
be used, or if a LUN other than the default LUN 7 is assigned to LAO. 
LAMSKS must also be called if your task uses multiple LPAll-Ks. If 
LAMSKS is to be called, it must be called prior to calling SETIBF. 
Unlike SETIBF, LAMSKS does not have to be called before each sweep 
initiation unless one or more parameters are to be changed. 

The LAMSKS call is as follows: 

CALL LAMSKS (lamskb,[lun] ,[iunit] ,[idsc] , [iemc] , [idsw] , 
[iemw] , [ind] ) 

lamskb 

A 4-word array. 

lun 

A logical unit number. Default LUN is 7. 

22-20 

( 

( 

( 



( 

( 

( 

iunit 

idsc 

iemc 

idsw 

iemw 

ind 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

The physical unit number of the LPAll-K. Default physical unit 
number is LAO. 

The digital start word channel. Default is channel O. 

The event mark word channel. Default is channel O. 

The digital start word mask • Default is 0 (disable digital input 
starting). 

The event mark word mask. Default is 0 (disable event marking). 

Receives a success or failure code as follows: 

1 indicates successful initialization~ 

o indicates an illegal argument list. 

-n indicates a LUN assignment failure. 
error code. 

NOTE 

n is the directive 

If compatibility with K-series support routines is 
desired, ignore this parameter. 

For a discussion of event marking and digital starting, see the 
LPAll-K Laboratory Peripheral Accelerator User's Guide. 

22.3.1.14 RLSBUF: Release Data Buffer - The RLSBUF routine declares 
one or more buffers free for use by the interrupt service routine. 

The RLSBUF routine must be called to releasebuffer(s) to the device 
queue before the sweep is initiated. The device queue must always 
contain at least one buffer to maintain continuous sampling. 
Otherwise, buffer overrun occurs (see Section 22.4 for a discussion of 
buffer management). Note that RLSBUF does not verify whether the 
specified buffers are already in a queue. 

22-21 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

The RLSBUF call is as follows: 

ibuf 

ind 

CALL RLSBUF (ibuf, [ind] ,nO[,nl ••• ,n7]) 

The 40-word array specified in the call that initiated a sweep. 

Receives a success or failure code as follows: 

o indicates illegal buffer number specified, illegal number 
of buffers specified, or a double buffer overrun has been 
detected. 

1 indicates buffer(s) successfully released. 

nO,nl,etc. 

The numbers (0-7) of the buffers to be released. 
eight can be specified. 

A maximum of 

22.3.1.15 RMVBOF: Remove Buffer from Device Queue - The RMVBOF 
routine removes a buffer from the device queue. 

The RMVBOF call is as follows: 

ibuf 

n 

ind 

CALL RMVBOF (ibuf,n[,ind]) 

The 40-word array specified in the call that initiated a sweep. 

The number of the buffer to remove. 

Receives a success or failure code as follows: 

o indicates that the specified buffer was not in the device 
queue. 

1 indicates that the specified buffer .was removed from the 
queue. 

22.3.1.16 SETADC: Set Channel Information - The SETADC routine 
establishes channel start and increment information for all sweeps. 
The SETIBF routine must be called to initialize the 40-word array 
(ibuf) before SETADC is called. . 

22-22 

( 

( 

( 



( 

( 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

If, in the call to SETADC, nchn is I or inc is 0, the single channel 
bit is set in the mode word of the start RDA when the sweep start 
routine is called. 

SETADC can be invoked as a subroutine or a function as follows: 

CALL SETADC (ibuf,[iflag] ,[ichn],[nchn],[inc] ,rind]) 

or 

ind = ISTADC(ibuf,[iflag] ,[ichn] ,[nchn],[inc] ,rind]) 

A 40-word array initialized by the SETIBF routine. 

iflag 

ichn 

nchn 

inc 

ind 

Ignored. It is included for compatibility with K-series support 
routines. 

The first channel number. Default is o. If inc equals 0 (or 
<iefault), ichn is the address of a random channel list. A random 
channel list is an array of n elements, where each element is a 
channel number. The final element must have bit 15 set to 
indicate the end of the list. 

The number of samples to be taken per sequence. Default is one 
sample. 

The channel increment. Default is 1. You should specify an 
increment of 2 for differential AID input. If inc equals 0, ichn 
is an array of random channels to receive input. 

Receives a success or failure code as follows: 

o indicates an illegal channel number or SETIBF was not 
called prior to the SETADC call. 

1 indicates successful recording of channel information for 
the sweep call. 

22.3.1.17 SETIBF: Set Array for Buffered Sweep - The SETIBF routine 
initializes an array required by buffered sweep routines. The SETIBF 
routine must be called before every call to a buffered sweep routine. 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

The SETIBF call is as follows: 

CALL SETIBF (ibuf, lind] , [lamskb] ,bufO[,bufl ••• buf7]) 

ibuf 

A 40-word array. 

ind 

Receives a success or failure code as follows: 

o indicates a parameter or buffer error. 

1 indicates the array was successfully initialized. 

lamskb 

The name of a 4-word array. This array allows the use of 
multiple LPAll-Ks within the same program, because the LUN is 
specified in the first word of the array. Refer to the 
description of the LAMSKS routine. 

If you want compatibility with K-series software, use the default 
(LUN 7) lamskb parameter, and LUN 7 is assigned to LAO: in the 
task-build command file for your task. 

bufO, etc. 

The name of 
specified. 
least two 
sampling. 

a buffer. A maximum of eight buffers can be 
Any buffer names in excess of eight are ignored. At 

buffers must be specified to maintain continuous 

Each buffer specified in the call to SETIBF is assigned a number 
ranging from 0 to 7. 

The assignment of these numbers is based on the order in which buffer 
names appear in the argument list. The first .buffer whose name 
appears in the list is assigned number 0, the second is assigned 
number 1, and so forth. In all subsequent calls to other routines 
involving the set of buffers specified in a call to SETIBF, these 
numbers, rather than names, refer to particular buffers. 

22.3.1.18 STPSWP: Stop Sweep - The STPSWP routine stops a sweep that 
is in progress. 

The STPSWP call is as follows: 

CALL STPSWP (ibuf[,iwhen],[ind]) 

22-24 

( 

( 



( 

( 

( 

ibuf 

iwhen 

ind 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

The 40-word array specified in the call that initiated a sweep. 

Specifies when to stop the sweep: 

o stops the sweep, immediately aborting the sweep. This is 
the default stop method. The sweep is stopped 
asynchronously by the LPAIl-K hardware. When IOSB(l) 
equals 1, the sweep has been stopped. Call IWTBUF 
continuously after calling STPSWP until the sweep has 
actually been stopped. When stopping (aborting) a sweep in 
this manner, the data contents of the current data buffer 
cannot be guaranteed. 

+n (any positive value) stops the sweep at the end of the 
current buffer. This is considered to be the normal means 
for stopping a sweep. 

-n (any negative value) is reserved. (Do not use.) 

Receives a success or failure code as follows: 

1 indicates that the sweep is stopped (at the time indicated 
by iwhen) • 

0 indicates an illegal argument list. 

-n is a directive error code indicating that the stop sweep 
QIO failed. 

22.3.1.19 XRATE: Compute Clock Rate and Preset - The XRATE routine 
allows your task to compute a clock rate and preset. The clock rate 
divided by the clock preset yields the desired dwell (intersample 
interval). 

NOTE 

You can use the XRATE routine only on systems that 
have a FORTRAN or BASIC-PLUS-2 compiler. This module 
is not included with the other LPAII-K support 
routines in· object module format. Rather, it is 
included in source code format with the K-series 
source modules in [45,10] on the system disk. 

22-25 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

XRATE can be invoked as a subroutine or a function as follows: 

or 

dwell 

CALL XRATE(dwell,irate,iprset,iflag) 

adwell = XRATE(dwell,irate,iprset,iflag) 

The intersampl.e time desired by your task. The time is expressed 
in decimal seconds (REAL*4). 

irate 

Receives the computed clock rate as a value from 1 to 5. 

iprset 

Receives the clock preset. 

iflag 

Specifies whether the computation is for Clock A or Clock B: 

o indicates the computation is for Clock A. 

nonzero indicates the computation is for Clock B. 

adwell 

The actual dwell rate for the clock based on the irate and iprset 
parameters. 

22.3.2 "MACRO-II Interface 

The MACRO-II interface to the LPAll-K consists of either the callable 
routines described in Section 22.3.1 or a set of device-specific QIO 
functions. . . 

22.3.2.1 Accessing Callable LPAII-K Support Routines - MACRO-II 
programmers access the LPAll-K support routines through either of two 
techniques: 

1. The standard subroutine linkage mechanism and the CALL op 
code 

2. Special-purpose macros that generate an argument list and 
invoke a subroutine 

These techniques are described in the following subsections. 

22-26 

c 

( 

( 



( 

( 

( 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

22.3~2.2 Standard Subroutine. Linkage and CALL Op Code - LPAIl-K 
routines can be accessed through use of the standard subroutine 
linkage mechanism and the CALL op code. The format of this procedure 
is: 

.PSECT 
MOV 
C~LL 

code 
#arglist,R5 
Isubr 

.PSECT data 
I arglist: .BYTE 

• WORD 

• WORD 

narg,O 
addrl 

addrn 

iARGUMENT ADDRESS TO R5 
iCALL LPAIl-K ROUTINE 

iNUMBER OF ARGUMENTS 
iFIRST ARGUMENT ADDRESS 

iLAST ARGUMENT ADDRESS 

In this sample, the two PSECT directives are shown only 
the noncontiguity of the code and data portions of 
mechanism. Within the argument list, any argument that 
defaulted must be represented by a -1 address 
177777 (octal» • 

to indicate 
the linkage 
is to be 
(that is, 

22.3.2.3 Special-Purpose Macros - To facilitate the calling of 
LPAll-K support routines from a MACRO-II program, two macros are 
provided in file [45,lO]LABMAC.MAC. These macros are: 

1. INITS 

2. CALLS 

INITS is an initialization macro. It must be invoked at the beginning 
of the MACRO-II source module. 

CALLS invokes an LPAll-K support routine. The format of this macro 
call is as follows: 

CALLS Isubr,(argl, ••• ,argn) 

lsubr 

The name of an LPAIl-K support routine. 

argl, and so forth 

Arguments to be formatted into an argument list and passed to the 
routine. Each argument can be either a symbolic name or a 
constant (interpreted as a positive decimal number) or can be 
defaulted. 

22-27 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

An example showing the use of these macros is as follows: 

IBUF: 
ISTAT: 

START: 

.TITLE 
• IDENT 
• BLKW 
.BLKW 
INITS 

EXAMPLE 
/01. 00/ 
40 • 
5 

INITIALIZATION 

FIND STATUS OF 5 SWEEP BUFFERS 
USED IN THE CURRENT SWEEP 

CALLS IBFSTS(IBUF,lSTAT) 

.END START 

22.3.2.4 Device-Specific 010 Functions - Table 22-2 lists the 
device-specific functions of the 010 system directive macro that are 
available for the LPAII-K. Programmers using these functions are 
entirely responsible for buffer management (refer to Section 22.4) as 
well as all other interfaces (for, example, the request descriptor 
array) • Little (if any) performance improvement over the use of 
FORTRAN support routines can be expected by using OIOs. Therefore, 
you should use the routines desc~ibed in Section 22.3.1. 

Table 22-2 
Device-Specific QIO Functions for the LPAII-K 

QIO Function Purpose 

IO.CLK Start clock 

IO.INI Initialize LPAII-K 

IO.LOD Load microcode 

IO.STA Start data transfer 

IO.STP Stop request 

22-28 

( 

( 

( 



c 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

The MACRO-II programmer must set up the appropriate Request Descriptor 
Array (RDA) before the corresponding QIO request is issued. In the 
case of the 10.STA function (start data transfer), the RDA is set up 
with buffer virtual addresses. The LPAll-K driver address checks and 
relocates these buffers, changing them from single-word to double-word 
addresses. The RDA is fully described in the source code of the 
driver. 

22.3.2.5 
LPAll-K 
command. 

IO.CLK ~ The 10.CLK function writes an image into the 
real~time clock control register and issues a clock start 
The format of the QIO request is: 

QIO$C 10.CLK, •• :,<mode,ckcsr,preset) 

mode 

The mode. 

··ckcsr 

The image to be written into the clock control register. To 
achieve the function of clock rate -1 (see Section 22.3.1.2) for 
Clock A only, set a clock rate of 0 and set the Schmitt Trigger 1 
Interrupt Enable bit in the Clock A Status Register. 

preset 

The clock preset. 

22.3.2.6 10. IN! - The 10.INI function initializes the LPAll-K. The 
task issuing the QIO request must be privileged. The format of the 
request is as follows: 

irbuf 

QIO$C 10.INI, ••• ,<irbuf,278.) 

A buffer containing an LPAll-K initialize RDA. The buffer size 
must be at least 278(decimal) bytes. 

22.3.2.7 IO.LOD - The 10.LOD function loads a buffer of LPAll-K 
microcode. The issuing task must be privileged. The function 
verifies that there are n6 active tasks for the LPAll-K and resets the 
hardware. It then loads and verifies the microcode, starts the 
LPAll-K, and enables interrupts. The function returns to the issuing 
task when the Ready Interrupt is posted. 

22-29 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

The format of the QIO request for the IO.LOD function is as follows: 

mbuf 

QIO$C IO.LOD, ••• ,<mbuf,2048.> 

A buffer containing microcode to be loaded. The buffer size must 
be 2048(decimal) bytes. 

22.3.2.8 IO.STA - The IO.STA function issues an LPAII-K data transfer 
start command. The format of the QIO request is: 

QIO$C IO.STA, ••• ,<bufptr,40.> 

bufptr 

A pointer to a buffer containing an LPAII-K sample start RDA. 
The buffer size mu~t be at least 40(decimal) bytes. 

The subfunction codes defined for the IO.STA function are: 

Bit 0 = 0 

Bit 0 = I 

indicates that an AST is to be generated for every 
buffer (if an ASTis specified). 

indicates that an AST is to be generated only for 
exception conditions. 

22.3.2.9 IO.STP - The IO.STP function stops a data transfer request. 
The issuing task must be the same task that initiated the data 
transfer. The format of the QIO request is as follows: 

QIO$C IO.STP, ••• ,<userid> 

userid 

The index number associated with the task whose request is to be 
stopped. 

22.3.3 The I/O Status Block (IOSB) 

Each active sweep must have its own I/O status block. The I/O status 
block (IOSB) is a 2-word array alloc~ted in your task. Use it .to 
-receive the status of a call to an LPAII-K support routine. When your 
task calls a data sweep routine, the 10SB is always the first two 
words of the 40-word array specified as the first argument of the 
call. The first word of the 10SB contains the status code, and the 
second word contains the buffer size in words. . 

22-30 

c 

c 

( 



( 

( 

( 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

NOTE 

The LPAll-K driver does not directly use the 2-word 
10SB. Instead, the driver uses a 4-word 10SB for 
internal communications with support routines; this 
4-word 10SB is completely transparent to those tasks 
that use FORTRAN support routines. However, when 
issuing QIOs, it is the 4-word 10SB that must be 
referenced. 

The first two words of the 4-word 10SB function as a 
2-word overall 10SB fo.r returning QIO completion 
status. The driver returns status such as sweep done, 
system errors, and LPAll-K hardware errors with this 
2-word portion of the 10SB. 

The remaining two words function as an intermediate 
10SB for passing status information during the data 
sweeps. MACRO-II programs using QIO calls always 
receive the correct 2-word portion of the 10SB in the 
AST generated by the LPAll-K driver. 

The codes chat can 
in ISA-compatible 
condition). Table 
Section 22.5). 

appear in the first word of an I/O status block are 
format (with the exception of the I/O pending 

22-3 lists all return codes (except 351; see 

10SB(1) 

FORTRAN MACRO 

o 

1 

301 

302 

303 

304 

305 

10.PND 

IS.SUC 

IE.BAD 

lE.IFC 

IE.DNR 

IE.VER 

IE.ULN 

Table 22-3 
Contents of First Word of 10SB 

Meaning 

Operation pending; I/O in progress 

Successful completion 

Invalid arguments 

Invalid function code 

Device not ready (See Section 22.7) 

Unrecoverable 
power-fail 

hardware 

LUN not assigned to LPAll-K 

error caused by 

(continued on next page) 

22-31 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

IOSB(l) 

FORTRAN MACRO 

306 IE.SPC 

309 IE.DUN 

313 1 IE.DAO 

315 1 IE.ABO 

316 IE. P1U 

317 1 IE.RSU 

320 IE.BLK 

323 IE.NOD 

359 1 IE.FHE 

366 IE.BCC 

397 IE.IEF 

Table 22-3 (Cont.) 
Contents of First Word of IOSB 

Meaning 

Illegal buffer specification 

Insufficient UMRs available for request 

Data overrun 

Request terminated; LPAll-K status code in 
IOSB(2) 

Privilege violation 

Resource in use (load microcode only) 

Executive blocked driver waiting for UMRs 

System dynamic memory exhausted 

Fatal hardware error on device 

LPAll-K load microcode error 

Invalid event flag specified 

1. IOSB(2) contains an LPAll-K status code. Refer to the LPAll-K 
User's Manual for explanation of status code • 

. 22.4 BUFFER MA~AGEMENT 

The management of buffers for data transfers by LPAll-K support 
routines involves the use of two FIFO (First-In, First-Out) queues: ' 

1. The device queue (DVQ) 

2. The user task queue (USQ) 

The device queue (DVQ) contains the numbers of all buffers that your 
task has released to the support routines ih a call to RLSBUF. The 
buffers represented by these numbers are ready to be filled with data 
(input sweeps) or to be emptied of data (output sweeps). Any buffer 
specified in a call to INXTBF must already be in DVQ. 

Your task queue (USQ) contains the numbers of buffers available to 
your task. For output sweeps, this queue contains the numbers-of 
buffers that have already been emptied by the driver. For input 
sweeps, the buffers represented by USQ are those which are filled with 
data. In both instances, your task determines the next buffer to use 
(that is, it extracts the first element of USQ) by calling IGTBUF or 
IWTBUF. 

22-32 

( 

( 

( 



( 

( 

( 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

Both the DVQ and USQ are initialized to -1 -- indicating no 
buffers -- when your task calls the SETIBF routine. Your task must 
call RLSBUF before initiating any sweep, because at least one buffer 
must be present in DVQ for the first input or output to occur. 

For input sweeps, your task should call RLSBUF, specifying the numbers 
associated with all the buffers to be used in the sweep. 

For output sweeps, your task can specify two buffers (for continuous 
sweeps) in the call to RLSBUF. The first action then taken either in 
a completion routine or after a call to IWTBUF is to release the next 
buffer. However, note that this approach does not represent true 
multiple buffering because data overrun occurs if the second buffer is 
not released in time. 

If a buffer overrun occurs, the LPAI1-K normally aborts the affected 
sweep and returns an appropriate errOr code. However, the option of 
having buffer overruns treated as nonfatal error conditions can be 
selected by specifying the appropriate mode argument in any of the 
sweep calls. Then, when a buffer overrun occurs, the LPAI1-K defaults 
to buffer 0 for its next data buffer. In this case, the following 
special considerations regarding buffer management must be observed. 

Call RLSBUF before calling any of the sweep control calls. However, 
if buffer overruns are to be treated as nonfatal conditions, the task 
should not specify buffer 0 in the initial call to RLSBUF. (It is 
assumed at the outset that buffer 0 is available for use in this 
manner and, therefore, should not be released.) 

Once a buffer overrun has occurred, the LPAI1-K uses buffer 0 and 
places it on the task's queue just like any other data buffer. At 
this point, buffer 0 is no longer available for buffer overruns. The 
task then removes buffer 0 from the task queue by IWTBUF or IGTBUF for 
possible processing. It is the task's responsibility to release 
buffer 0 for future buffer overruns by specifying buffer 0 in a call 
to RUSBUF. Note that the task cannot determine that buffer overrun 
occurred until it receives buffer 0 from IWTBUF or IGTBUF. 

The LPAll-K always uses buffer 0 following a buffer overrun if that 
condition was specified as nonfatal. Thus, when a second buffer 
overrun occurS before buffer 0 has been processed and made available 
for that purpose, a condition called "double buffer overrun" occurs. 
In this case, buffer 0 is not put on the task queue because the actu~l 
contents of buffer 0 cannot be determined at this time, and buffer 0 
may actually still be on that queue. The double buffer overrun 
condition is. detected when the task attempts to make buffer 0 
available for future buffer overruns with the call to RLSBUF. Note 
that this is the first time that the task is notified. of the 
condition. If a double buffer overrun condition is detected during 
the call to RLSBUF, the task must be notified of the condition 
indicating that the previous processing of buffer 0 contents may have 
been of no value (the LPAll-K probably changed the buffer's contents 
while it was being processed). 

22-33 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

22.5 LOADING THE LPA-ll MICROCODE 

LAINIT is a privileged task that loads all versions of LPAIl-K 
microcode. When called, LAINIT issues an IO.LOD function in a QIO 
request, followed by IO.INI and IO.CLK function requests. The IO.CLK 
function starts the clock with a default clock rate of 1 MHz. 

During system generation, Phase 1, a command file is generated with 
LPAll-K support selected through operator response to system 
generation questions. During system generation, Phase 2, the command 
file builds LAINIT using additional information obtained through 
operator response to system generation questions. This information 
further defines the LPAll-Ks system environment and characteristics 
for your specific application. 

Separate tasks are built during system generation that invoke LAINIT 
to load appropriate LPAll-K microcode. These tasks are named LAINn, 
where n corresponds to unit number (starting with unit number 0) for 
each LPAII-K unit in the system. Thus, you never directly invoke 
LAINIT. . 

System generation generates command lines in SYSVMR.CMD that install 
LAINIT and LAINO; LAINI and subsequent LPAll-K unit-numbered tasks are 
not included in the command file. Thus, you must install these tasks 
(if they are required) with VMR or MCR. 

Once LAINIT and LAINn tasks have been installed, a particular version 
of LPAIl-K microcode for a specific unit can be loaded by running the 
corresponding LAINn task. For example: 

>RUN LAIN2 

executes LAIN2, loading microcode for LPAll-K unit 2. 

When a power-fail recovery occurs, the LPAll-K driver terminates all 
outstanding activity and requests execution of initiating task(s) 
(LAINn) for each unit. This piovides power-fail recovery for the 
LPAll-K microprocessor, provided the LAINIT and LAINn tasks are 
installed. Note that when either the RSX-llM system is bootstrapped 
or the LPAll-K driver i~ loaded, a simulated power-fail (resulting in 
driver power-fail recovery) occurs, loading microcode for each LpAII-K 
unit. In addition, when the LPAll-K is brought online on an 
RSX-llM-PLUS system, a simulated power-fail occurs. 

If the request for the initiating task (LAINn) fails or the loader 
fails to load the driver, the LPAll-K unit does ,not become 
initialized. Any further attempt to use the LPAll-K fails, with the 
device not ready (IE.DNR) code returned to the requesting task. 

If there is no LPA-llK present at the default address, LAINx returns 
error code 351 in IOSB(l). This failure occurs if there is more than 
one LPA-llK and the one at the default address is removed. There must 
always be an LPA-llK at the default address. 

22-34 

( 

( 

( 



( 

( 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

All versions of LAINn set the real-time clock frequency to IMHz by 
default. The UCB device characteristics word 4 (U.CW4) contains a 
16-bit buffer preset value that controls the rate of ticks (that is, 
the rate at which the clock interrupts). This value can be set 
dynamically or during system generation. The quotient resulting when 
this value is divided into I MHz is the rate of ticks. For example, 
if U.CW4 contains 2, the tick rate is 500kHZ. Your task can issue a 
Get LUN Information system directive to examine the preset value and 
the MCR SET /BUF command can modify it while the system is running. 
This modification takes effect the next time the LPAII-K is reloaded 
with micro-code by LAINx. 

22.6 UNLOADING THE DRIVER 

To .attain maximum LPAII-K performance, the LPAII-K driver appears not 
busy to the RSX-IIM/M-PLUS Executive. As a result, the potential 
problem exists that any privileged user can unload the driver while 
the LPAII-K is servicing other users. Therefore, the privileged user 
must first determine that the LPAII-K is not being used .before he or 
she unloads the driver. 

22.7 TIME-OUT OF THE LPAII-K 

The error code IO.DNR means 
processing your task request. 
have special meaning. 

th~t the LPAII-K timed out while 
In dedicated mode, this condition can 

The. LPAll-K driver (LADRV) disables the time-out countdown following 
LPAII-Kacknowledgment of your task request. In all cases in 
multirequestmode, and in most cases in dedicated mode, this 
acknowledgment is received almost immediately after your task request 
is passed to the LPAII-K. The only case when this is not true is when 
your task requests that a data sweep be started while in dedicated 
mode. In this case, the LPAII-K waits to transfer the first 256 words 
of data before acknowledging the sweep request. 

If a task is sampling at extremely slow data rates in dedicated mode, 
the time to transfer that first 256 words may exceed the time-out 
count for the device. This can be avoided by using the multirequest 
mode. 

If a task must use dedicated mode for high sampling rates, 
start of the sweep is delayed for an extended period of 
time-out count for the LPAII-K must be disabled. (Refer to 
in LADRV describing this time-out problem and showing 
time-out can be safely disabled for sweep calls.) 

NOTE 

and the 
time, the 
the note 
where the 

This procedure disables the. detection of real 
time-outs for sweep calls in dedicated mode. 

22-35 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

22.8 22-BIT ADDRESSING SUPPORT 

The LPAll-K driver supports 22-bit addressing on systems having that 
capability. When the system employs 22-bit addressing, certain 
restrictions are imposed. As a result, tasks written for use with 
earlier LPAll-K driver versions may not run without modifying your 
task. These restrictions are discussed in the remainder of this 
section. 

When the LPAll-K driver is executed on 22-bit systems, a certain 
contiguity of your task's data structures must be established. The 
task data transfer buffers and the IBUF array must be contiguous. In 
addition, the task random channel list (if present) and the last data 
transfer buffer must be contiguous. Thus, the correct sequence for 
your task data is the IBUF array, followed by the task data transfer 
buffers, followed by the task random channel list. Failure to 
structure your tas.x's data in this manner can result in illegal buffer 
specification errors (IE.SPC) being returned or possible corruption of 
task address space by data sweeps. 

Because the LPAll-K driver can potentially request more buffer space 
than there is UMR mapping space, a limit must be specified on the 
total number of UMRs that the LPAll-K driver can use at any time. You 
specify this li~it during system generation, part 1, along with the 
interrupt vector and CSR address for the LPAll-K. 

If a task's UMR requirements cause the total number of UMRs currently 
in use by the LPAll-K to exceed the limit specified during system 
generation, the task receives an Insufficient UMRs Available For 
Request (IE.DUN) error code in IOSB(l) of the IBUF array. 

This condition can be avoided by setting the UMR limit to the expected 
minimum number required for smooth LPAll-K operation for all expected 
tasks. Because each OMR maps SK bytes, each task's requirements can 
be calculated as follows:· 

• Each IBUF array requires 76(decimal) bytes of OMR mapping. 

• Add this result to the byte length of all the contiguous 
transfer buffers to be used in the sweep. 

• Add this result to the byte length of the random channel list 
(if it exists). 

• The number of UMRs your task needs is the total byte count 
divided by 8192 (8K) and rounded up to the next8K(if not an 
exact multiple of 8192). 

Because there are only 31 OMRs available for the entire system, it is 
not desirable to allow the LPAll-K driver (through the limit specified 
during system generation) to have access to all or nearly all UMRs at 
any given time. Because other device drivers may also require UMR 
mapping, the total alloc6tion of UMRs by LADRV can slowly choke a 
system, and for that reason allocation of UMRs must be carefully 
considered. 

The OMR allocation limit for the LPAll-K can be changed by directly 
modifying the value in the LPAll-K's UCB word U.LAOB; it is not 
necessary to do another system generation. Use the OPEN command to 
access and change the limit to the new value. possible values can 
range from 0-31. Then, make the required change, UNLOAD, and then 
LOAD the LPAll-K driver. If the LPAll-K driver is resident, the value 
in U.LAUB+2 must also be changed to the new value. 

22-36 

( 

( 

( 



( 

( 

( 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

NOTE 

Be sure the LPAll-K is idle before attempting to 
access the UCB. 

It is possible for a condition to exist where there may not be enough 
UMRs available for the Executive to allocate to the driver at the time 
the request is made, even if the number of UMRs necessary to map your 
task's request are within the limit specified during system 
generation. When this happens, the Executive blocks the driver until 
its UMR request can be granted. Because this condition can introduce 
sweep timing errors, the current sweep is unconditionally aborted and 
an appropriate error code (IE.BLK) is returned to the .task in IOSB (1). 

22.9 SAMPLE PROGRAMS 

C 
C 

LPAll-K SAMPLE PROGRAM 

C SAMPLE SHOWS THE BASIC FLOW FOR PROGRAMMING THE LPAll-K IN A HIGHER 
C LEVEL LANGUAGE. IT IS EXPECTED THAT YOUR TASK TESTS IOSB RETURNS AND 
C ERROR INDICATORS (IND) AS NECESSARY. SYNCHRONOUS PROGRAM TERMINATION 
C IS SUGGESTED. NOTE: THIS SAMPLE PROGRAM DOES NOT EXECUTE CORRECTLY IN 
C 22-BIT MODE 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

2 

C 
5 

DIA DEDICATED MODE WITH CONTINUOUS SAMPLING 

PROGRAM RUNS 3 LOOPS (BASED ON NCNT). ON FIRST LOOP, 
STOPS SYNCHRONOUSLY AT END OF PRESENT BUFFER WHICH HAPPENS 
TO BE BUFFER #3 BEING FILLED FOR THE 2ND TIME. 
THE 2ND .LOOP TERMINATES ASYNCHRONOUSLY (IWHEN=O). 
THE 3RD LOOP TERMINATES ASYNCHRONOUSLY ALSO. 

DIMENSION IBUF('40) ,IOSB(2) ,NB(1024,S) 
EQUIVALENCE (IBUF(l),IOSB(l» 
EQUIVALENCE (NO, NB (1,1) ) , (Nl, NB (1,2) ) , (N2, NB (1,3) ) , (N 3, NB (1,4) ) 
EQUIVALENCE (N4,NB(1,5», (N5,NB(1,6», (N6,NB(1,7», (N7,NB(1,S» 
CALLCLOCKA (4, -1) 
IWHEN=l 
NCNT=O 
ICNT=l 
CALL SETIBF(IBUF,IND"NO,Nl,N2,N3) 

C INITIALIZE BUFFERS TO ALL -2'S 
C 

20 

40 

300 

10 

DO 10 J=l,S 
DO 10 K=1,1024 
NB(K,J)=-2 
CALL RLSBUF(IBUF,IND,1,2,3) 
CALL DASWP(IBUF,1024",,20) 
CALL IWTBUF(IBUF,20,IBUFNO) 
CALL RLSBUF (IBUF,IND,IBUFNO) 
WRITE (1,300) IBUFNO,IOSB(1),IOSB(2),ICNT 
IF (NCNT.EQ.3) GOTO 40 
IF (ICNT.EQ.6) GOTO 2 
ICNT=ICNT+l 
IF (ICNT.NE.4) GOTO 20 
CALL STPSWP (IBUF,IBUFNO) 
IWHEN=O 
NCNT=NCNT+l 
GOTO 20 
CALL IGTBUF(IBUF,IBUFNO). 
WRITE (1,300) IBUFNO,IOSB(1),IOSB(2),ICNT 
FORMAT (3X,IlO,20S,IlO) 

22-37 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

STOP 
END 

The following sample program tests the digital I/O interface of the 
LPAll-K. It will execute correctly in 22-bit mode. 

C 
C PROGRAM TO TEST DIGITAL INPUT AND OUTPUT FOR LPAll-K 
C DIGITAL EQUIPMENT CORPORATION 
C 
C 
C 
C 
C 
C 
C 
C 

THIS PROGRAM OUTPUTS A DATA BUFFER TO THE LPAll-K 
DIGITAL I/O INTERFACE AND AT THE SAME INSTANT, FOR EACH SAMPLE 
WORD, READ THE RESULTS BACK. THE DATA BUFFERS ARE COMPARED TO 
MAKE SURE THE TRANSFER IS COMPLETED SUCCESSFULLY. 

****** NOTE! ****** 

C 
CABLE 
C 

THIS PROGRAM WORKS IF AND ONLY IF THE DIGITAL I/O MODULE 
UNIT SPECIFIED HAS THE MAINTENANCE JUMPER "WRAP-AROUND" 

INSTALLED ! ! ! ! 
C 
C 
C RESERVE STORAGE FOR LPAll-K ROUTINES 
C 
C THIS PROGRAM WORKS IN 22-BIT MODE 
C 
C DATA BUFFERS 
C 

INTEGER*2 IBUFI(40),INBUF(300,4) 
INTEGER*2 COMMI(1240) 
EQUIVALENCE (IBUFI (1) ,COMMI (1» 
EQUIVAL.ENCE (INBUF (1,1) ,COMMI (41» 

INTEGER*2 IBUFO(40),OUTBUF(300,4) 
INTEGER*2 COMMO(1240) 
EQUIVALENCE(IBUFO(l) ,COMMO(l» 
EQUIVALENCE(OUTBUF(l,l),COMMO(41» 

C RESERVE STORAGE AND EQUIVALENCE FOR RSX I/O STATUS BLOCKS 
LOGICAL*l INIOS(4),OUTIOS(4) . 
EQUIVALENCE (IBUFO(l) ,0UTIOS(1»,(IBUFI(1),INIOS(1» 

C 
C SET BUFFER SIZE TO USE FOR THIS REQUEST - MAXIMUM OF 300 
WITHOUT 
C CHANGING THE DIMENSION STATEMENTS. MUST BE EVEN! 

ISIZE=300 
C 
C INITIALIZE THE PASS COUNTER FOR THE LOOP 

IPASS=l 
C 
C SET LPAll-K LOGICAL UNIT NUMBER AND ASSIGN IT TO. LAO: 

C 

ILUN=7 
CALL ASSIGN(ILUN,'LA:',O,ISTAT) 
IF(ISTAT .LT. O)GO TO 100 

C INITIALIZE THE OUTPUT DATA 
DO 2 J=1,4 

BUFFER 

2 
C 

DO 2 I=1,ISIZE,2 
OUTBUF(I,J)="125252 
OUTBUF(I+l,J)="052525 
CONTINUE 

C STOP LPAll-K REAL TIME CLOCK "A" THIS ENSURES THAT 
C NOTHING HAPPENS WHEN WE INITIALIZE THE TWO SWEEPS. 
5 CALL CLOCKA(O,O,ISTAT,ILUN) 

IF(ISTAT .NE. l)GO TO 110 

22-38 

( 

( 

( 



( 

( 

( 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

C 
C INITIALIZE THE INPUT DATA BUFFER. ASSUME THE LPAII-K DIGITAL 
C I/O INTERFACE IS CONFIGURED IN THE DATA LATCH MODE (AS OPPOSED 
C TO SENSE). THUS THE OUTPUT DATA BUFFER MUST CONTAIN A BIT 
CHANGE 
C FOR EVERY BIT POSITION IN SUCCEEDING DATA WORDS. 

DO 10 J=1,4 
DO 10 I=l,ISIZE 
INBUF(I,J)=O 

10 CONTINUE 
C 
C INITIALIZE DIGITAL OUTPUT SWEEP. THIS MUST BE DONE BEFORE INIT 
C OF DIGITAL INPUT SWEEPl THE LPAll-K PROCESSES THE TRANSFER OF 
C DATA IN THE ORDER OF THE SPECIFICATION OF THE SWEEPS. THUS WE 
C WANT TO OUTPUT BEFORE WE INPUT. 

CALL 
SETIBF(IBUFO,ISTAT"OUTBUF(1,1),OUTBUF(1,2),OUTBUF(1,3), 

1 OUTBUF(1,4» 
IF(ISTAT .NE. l)GO TO 120 

C 
C RELEASE BUFFER FOR OUTPUT SWEEP 
C ALL FOUR BUFFERS -- INDEXES 0,1,2,3 ARE RELEASED 

CALL RLSBUF(IBUFO,ISTAT,0,1,2,3) 
IF(ISTAT .NE. l)GO TO 130 

C 
C "START" DIGITAL OUTPUT SWEEP. REMEMBER NOTHING HAPPENS UNTIL 
C THE REAL TIME CLOCKK STARTS. THE LPAII-K PROCESSES THE REQUEST 
C AND BE ALREADY TO TRANSFER DATA WHEN WE RESUME THE CLOCK. 
C EVENT FLAG 14 IS SPECIFIED. A DIFFERENT EVENT FLAG MUST BE 
C SPE~IFIED FOR THE DIGITAL INPUT SWEEP SO THE FORTRAN PROGRAM 
C CAN SYNCHRONIZE WITH TWO INDEPENDENT, ASYNCHRONOUS PROCESSES. 

C 
C 

CALL DOSWP(IBUFO,ISIZE,4,0,1,14,30,0) 

C NOW INITIALIZE FOR DIGITAL INPUT SWEEP. THE SAMPLING 
PARAMETERS 
C MUST BE THE SAME FOR BOTH THE INPUT AND OUTPUT SWEEP. WE WANT 
C TO WRITE AND READ THE SAME DATA WORD AT THE SAME TIME. 

CALL 
SETIBF(IBUFI,ISTAT"INBUF(l,l) ,INBUF(1,2) ,INBUF(1,3), 

1 INBUF(1,4» 
IF(ISTAT .NE. l)GO TO 140 

C 
C RELEASE THE INPUT BUFFERS 

C 

CALL RLSBUF(IBUFI,ISTAT,0,1,2,3) 
IF(ISTAT .NE. l)GO TO 150 

C "START DIGITAL OUTPUT SWEEP. AGAIN, NOTHING HAPPENS UNTIL 
C WE RESUME THE LPAII-K REAL TIME CLOCK. 
C EVENT FLAG 15 IS SPECIFIED TO SEPARATE THE INPUT AND OUTPUT 
SWEEPS. 

CALL DISWP(IBUFI,ISIZE,4,0,1,15,30,0) 
C 
C NOW FOR THE BIG EVENT! WE START THE CLOCK AND S.EE WHAT HAPPENS. 

C 
C 

CALL CLOCKA(1,-150,ISTAT,ILUN) 
IF(ISTAT .NE. l)GO TO 150 

C THE LPAII-K SHOULD NOW BEGIN TO TRANSFER DATA 
C FIRST WE WAIT FOR THE DIGITAL OUTPUT SWEEP TO FINISH. IT WAS 
C STARTED FIRST AND SHOULD FINISH FIRST. WE VERIFY THAT IT 
C FINISHES CORRECTLY OR CHECK FOR ERRORS. 
15 CALL IWTBUF(IBUFO,14,IBUFNO) 
C 
C IF BUFFER NUMBER IS -1, THEN ERROR 
C IF BUFFER NUMBER IS 0,1, OR 2, THEN CONTINUE 

22-39 



- -_ .. -- --- _. __ ._-
- - -- -~~-~~--- .~--

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

C IF BUFFER NUMBER IS 3, THEN FINISHED 
IF(IBUFNO .LT. 0) GO TO 160 

C 
C NOW WAIT FOR THE DIGITAL INPUT SWEEP TO FINISH. THE SAME ERROR 
C CONDITIONS APPLY. 

C 

CALL IWTBUF(IBUFI,15,IBUFNO) 
IF(IBUFNO .LT. O)GO TO 170 
IF(IBUFNO.LE. 2)GO TO 15 

C THE FACT THAT WE HAVE GOTTEN HERE SAYS THE LPAII-K HAS DONE ITS 
C THING. 
C CHECK THE INPUT DATA BUFFERS AGAINST THE OUTPUT DATA BUFFERS 

20 
C 

DO 20 J=1,4 
DO 20 I=l,ISIZE 
IF(INBUF(I,J) .NE. OUTBUF(I,J»GO TO 180 
CONTINUE 

C SUCCESSFUL COMPLETION, LET EVERYONE KNOW. THEN GO BACK AND DO 
IT 
C AGAIN. 

1000 

C 

WRITE(5,1000)IPASS 
FORMAT (., REQUEST COMPLETE!', 2X, 16) 
IPASS=IPASS+l 
GO TO 5 

C REPORT ANY ERRORS THAT HAVE BEEN UNCOVERED IN THE EXAMPLE. 
C 
100 
1010 

llO 
1020 

120 
1030 

130 
1040 

140 
1050 

150 
1060 

160 
1070 
C 

WRITE(5,1010)ISTAT 
FORMAT (/ /,' ERROR .ASSIGNING LUN TO LPAll-K 
CALL EXIT 
WRITE(5,1020)ISTAT 
FORMAT(//,' ERROR STOPPING LPAII-K CLOCKA 
CALL EXIT 
WRITE(5,1030)ISTAT 
FORMAT(//,' ERROR FROM SETIBF - OUTPUT BUFFER 
CALL EXIT 
WRITE(5,1040)ISTAT 
FORMAT (//,, ERROR FROM RLSBUF - OUTPUT BUFFER 
CALL EXIT 
WRITE(5,1050)ISTAT 
FORMAT (//,, ERROR FROM SETIBF ~ INPUT BUFFER 
C.ALL EXIT 
WRITE(5,1060)ISTAT 
FORMAT(//,' ERROR FROM RLSBUF - INPUT BUFFER 
CALL EXIT 
WRITE(5,1070)IBUFNO,(OUTIOS(I),I=1,4) 
FORMAT (//,, ERROR FROM DOSWP ',I2,4(3X,04» 

, ,16) 

, ,16) 

, ,16) 

, ,16) 

, , 16) 

, ,16) 

C *** WARNING *** DISWP MIGHT STILL BE ACTIVE WHEN YOU EXIT 
C 

CALL EXIT 
170 WRITE(5,1080)IBUFNO, (lNIOS(I) ,1=1,4) 
1080 FORMAT(//,' ERROR FROM DISWP ',I2,4(3X,04» 
C 
C *** WARNING *** DOSWP MIGHT STILL BE ACTIVE WHEN YOU EXIT 
C 

CALL EXIT 
180 WRITE(5,1090)I,J,OUTBUF(I,J),INBUF(I,J) 
1090 FORMAT(//,' *DATA ERROR* - WORD #',I4,2X,I4,4X,06,2X,06) 

CALL EXIT 
END 

22-40 

( 

( 

( 



( 

( 

CHAPTER 23 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

23.1 INTRODUCTION 

K-series laboratory peripheral modules are supported through a set of 
program-callable routines that are linked with your task at task-build 
time. These routines are highly modular. Therefore, a particular 
task contains only that code . necessary for the facilities that it 
actually uses. Additionally, the support routines perform input and 
output operations through the Connect to Interrupt Vector (CINT$) 
Executive directive. This directive allows your task to bypass normal 
QIOprocessing and perform I/O nearly independent of the Executive. 

The following subsections briefly describe the K-series laboratory 
peripherals, the features provided by the K-series support routines, 
and the generation and use of these routines. 

23.1.1 K-Series Laboratory Peripherals' 

The K-series peripheral support routines provide single-user, 
task-level support for the following laboratory peripheral modules: 

• AAll-K 

• ADll-K 

.. AMll-K 

• DRll-K 

• KWll-K 

• AAVll-A 

• ADVll-A 

• DRVll 

• KWVll-A 

D/A converter 

A/D converter 

multiple gain multiplexer 

digital I/O interface 

dual programmable real-time clock 

D/A converter (LSI-ll-bus-compatible) 

A/D converter (LSI-ll-bus-compatible) 

parallel line unit (LSI-ll-bus-compatible) 

programmable real-time clock (LSI-ll-bus-compatible) 

23-1 



K-SERIES PERIPHERAL SUPPORT ROUTINES 

The maximum supported hardware configuration consists of one KWll-K 
and sixteen of each of the AAll-K, ADll-K (with optional AMll-K), and 
DRll-K modules. The minimum configuration, if synchronous sweeps are 
desired, would be one KWll-K and anyone of the three other modules. 
A single DRll-K supports nonclocked, interrupt-driven I/O sweeps or 
single digital input or output. A single ADll-K supports single-word 
A/D input and nonclocked, overflow-driven sampling (provided that the 
A/D conversion is started with the EXT start input on the ADll-K). An 
AAll-K supports burst mode output and scope control. 

23.1.1.1 AAIl-K D/A Converter - The AAll-K includes four l2-bit 
digital-to-analog converters .(DACs) and an associated display control. 
The display control permits your task to display data in the form of a 
4096 x 4096 dot array. Under program control, a dot may bep~oduced 
at any point in this array, and a series of these dots may be 
programmed sequentially to produce graphical output. The display 
control may output to chart or X/Y recorder or CRT display unit. 

The AAVll-A is an LSI-ll-bus-compatible ·D/A 
characteristics similar to those of the AAll-K. 

converter with 

23.1.1.2 ADll-K A/D Converter - The ADll-K is a l2-bit successive 
app~oximation converter that enables your task to sample analog data 
at specified rates and to store the equivalent digital value for 
subsequent processing. The basic subsystem consist~ of an input 
multiplexer (switch-selectable between l6-channel single-ended or 
8-channel diff~rential), sample-and-hold circuitry, and a l2-bit A/D 
converter. By changing jumpers, the analog inputs can be made bipolar 
or unipolar. 

The ADVll-A is an LSI~ll-bus-compatible D/A 
characteristics similar to those of the ADll-K. 

converter with 

23.1.1.3 AMll-K Multiple Gain Multiplexer - The AMll-K is a 
multiplexer expander that supplements the 16-channel single-end (8 
differential) analog input multiplexer in the ADll-K. The expansion 
is done in three independent groups on the AMll-K. Each group can be 
set to 16 ~in~le-ended or pseudo-differential or 8 differential input 
channels; each group can have a gain of 1, 4, 16, or 64 assigned to it 
by a switch iri the amplifier. 

23.1.1.4 DRll-K Digital I/O Interface - The DRII-K is a 
general-purpose digital input/output interface capable of the parallel 
transfer of up to 16 bits of data, under program control, between a 
PDP-II UNIBUS computer and an external device (or another DRll-K). 

The DRVI~ is an LSI-ll-bus-compatible, general-purpose input/output 
interface with characteristics similar to those of the DRll-K. 

23-2 

( 

( 

( 



( 

( 

( 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

23.1.1.5 KWII-K Dual Programmable Real-Time Clock - The KWII-K is a 
dual programmable real-time clock option that PDP-II UNIBUS computers 
use. Features include: 

Clock A 

• 16-bit counter 

• 16-bit programmable preset/buffer register 

• Four modes of operation 

• Two external inputs (Schmitt triggers) 

• Eight clock rates, program selectable 

• Five clock frequencies, crystal controlled for accuracy 

• Processor actions synchronized to external events 

Clock B 

• 8-bit counter 

• 8-bit programmable preset register 

• Repeated interval mode of operation 

• One external input (Schmitt trigger) 

• Seven clock rates, program selectable 

• Five clock frequencies, crystal controlled for accuracy 

The KWVII-A is an LSI-ll-bus-compatible real-time 
characteristics similar to those of the KWII-K. 

23.1. 2 Support Routine Features 

clock with 

The RSX-IIM program-callable K-series support routines provide the 
following features: 

• Clock overflow o.r trigger-driven AID sweep 

• Clock overflow or interrupt-driven digital input sweep 

• Clock overflow or interrupt-driven digital output sweep 

• Clock overflow or burst mode DIA sweep 

• Single digital input 

• Single digital output 

• Single AID inpu.t 

23-3 



K-SERIES PERIPHERAL SUPPORT ROUTINES 

• Scope control 

• Histogram sampling 

• Schmitt Trigger simulation 

• Clock control 

• 16-bit software clock 

• AID input to real number conversion 

• Buffer control 

Immediate digital input or output 
Multiple clock-driven sweeps can be 
was ~elected during the K-series 
23.1.3.1). Such sweeps, however, 
restrictions: 

can be performed at any time. 
initiated if this optional feature 
generation dialog (see Section 
are subject to the following 

1. Regardless of the number of controllers present, there can be 
only one active AID sweep at any point in time. The same 
restriction holds true for DIA sweeps. It is possible, 
however, to perform digital input and digital output sweeps 
simultaneously, using the same DRII-K, so long as this 
feature is selected during the generation dialog. 

2. There can be no conflict in clock rates among the sweeps. 

3. Only the first sweep can use the delay from start event. 

4. The interevent time data-gathering routine cannot run in 
parallel with any other clock-driven sweeps. 

23.1.3 Generation and Use of K-Series Routines 

To use K-seriessupport routines, you must do the following three 
things during system generation: 

• Reserve necessary vector space. 

• Specify that the CINT$ Executive directive is to be included 
in the system. 

• . Specify that AST support is required. 

After system generation, you must follow particular procedures for the 
following: 

1. Generation of K-series support routines 

2. Program use of K-series routines 

These two procedures are detailed in the following subsections. 

23-4 

c 

( 

( 



( 

( 

( 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

23.1.3.1 Generation of K-series Support Routines - An indirect 
command file, similar to those that system generation uses, generates 
the K-series support routine library and other necessary facilities. 
You invoke this command file by typing the following: 

>@[200,200]SGNKLAB 

The dialog initiated by this command determines: 

• The device configuration of the subsystem 

• The maximum number of buffers that are used on a per-sweep 
basis 

• The inclusion or omission of optional features such as 
multiple clock-driven sweeps and duplex digital I/O sweeps • 

. After this information is obtained, the command file creates the 
following: 

1. A prefix file, [45, 10] KPRE.MAC, for use during assembly of 
K-series support routines. 

2. A data base file, [45,10]KIODT.MAC, containing control blocks 
needed to support the devices. 

3. A common block file, [45,10]KCOM.MAC, that allows your tasks 
to access the I/O page. Use this file only on mapped 
systems. 

4. On mapped systems only, two indirect command files: 

a. [45,24]KCOMBLD.CMD, which is a TKB build file for the 
common block 

b. [1,54]INSKCOM.CMD that iristalls the common block 

At your option, the K-series routines themselves can then be assembled 
and an object library created. You can specify the name of this 
library or accept the following default file specification: 

LB: [l,l]KLABLIB.OLB 

23.1.3.2 Program Use of K-series Routines - The steps required for 
routine program use of K-series support routines are as follows: 

1. Compile or assemble the program. If the task is overlaid, 
you must ensure that both the buffers used by the K-series 
support routines and the support routines themselves reside 
in the root section of the overlay structure. 

23-5 



K-SERIES PERIPHERAL SUPPORT ROUTINES 

2. Invoke TKB: 

a. On mapped systems only, use the /PR:O switch to indicate 
that the task is privileged. 

b. Include the following indirect 
responses to the TKB prompt: 

TKB>@[1,5x]LNK2KLAB 

command among the 

where x is 0 for unmapped systems and 4 for mapped 
systems. 

c. On mapped systems only, enter the following indirect 
command in response to the prompt for options: 

ENTER OPTIONS 
@[1,54]LNK2KCOM 

// 

3. On mapped systems only, enter the following indirect command 
from a privileged terminal before executing the program: 

>@[1,54]INSKCOM 

The following is a complete example of the steps previously described: 

>F4P KTEST,KTEST/-SP=KTEST 
>TKB 
TKB>KTEST/PR:O,KTEST/-SP=KTEST,[1,1]F4POTS/LB 
TKB>@[1,54]LNK2KLAB 
TKB>/ 
ENTER OPTIONS 
TKB>@[1,54]LNK2KCOM 

. 
TKB>// 

23.2 THE PROGRAM INTERFACE 

A collection of program-callable subroutines provides access to the 
K-series laboratory peripherals. The formats of these calls are fully 
documented here for FORTRAN programs. MACRO-II programmers access 
these same subroutines either through the standard subroutine linkage 
or through the use of two special-purpose macros. Both techniques are 
described in Section 23.2.2. Both FORTRAN and MACRO programs must 
contain at least one I/O Status Block (IOSB), described in Section 
23.2.3, for retrieval of status information. 

23-6 

c 

( 

( 



( 

c 

( 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

23.2.1 FORTRAN Interface 

Table 23-1 lists the FORTRAN interface subroutines for accessing 
K-series laboratory peripherals. 

Table 23-1 
FORTRAN Subroutines for K-series Laboratory Peripherals 

Subroutine 

ADINP 

ADSWP 

CLOCKA 

CLOCKB 

CVADF 

DASWP 

DIGO 

DINP 

nISWP 

DOSWP 

DOUT 

FLTl6 

GTHIST 

IBFSTS 

ICLOKB 

IGTBUF 

I NXTBF 

IWTBUF 

RCLOKB 

RLSBUF 

RMVBUF 

SCOPE 

SETADC 

SETIBF 

STPSWP 

XRATE 

Function 

Initiate single analog input 

Initiate synchronous A/D sweep 

Set Clock A rate 

Control Clock B 

Convert A/D input to floating point 

Initiate synchronous D/A sweep 

Digital start event 

Digital input 

Initiate synchronous digital input sweep 

Initiate synchronous digital output sweep 

Digital output 

Convert unsigned integer to a real constant 

Gather interevent time data 

Get buffer status 

Rea~ l6-bit clock 

Return buffer number 

Set next buffer 

Wait for buffer 

Read l6-bit clock 

Release data buffer 

Remove buffer from device queue 

Control scope 

Set channel information 

Set array for buffered sweep 

Stop sweep 

Compute clock rate and preset 

23-7 



K-SERIES PERIPHERAL SUPPORT ROUTINES 

The calling sequences of the routines listed in Table 23-1 are 
compatible with the routines for the LPA-ll, described in Chapter 22. 
The following sUbsections briefly describe the function and format of 
each FORTRAN subroutine call. 

23.2.1.1 ADINP: Initiate Single Analog Input - The ADINP routine 
obtains a single word as input from the AID converter. 

ADINP can be invoked as a subroutine or a function as follows: 

CALL ADINP ([iflag],[ichan],ival) 

or 

ival=IADINP ([iflag] , [ichan] , [ivaI]) 

iflag 

ichan 

ivaI 

The gain options: 

o Absolute channel addressing (default). This is the only 
mode supported on the ADVII (Q-bus). 

1 Sample at a gain of 1. In modes 1, 2, 3, 4, and 5 each 
ADll-K/AMll-K is treated as 16 channels with channels 
l7~63 strapped to gains 4, 16, and 64. The 48 
multiplexer channels are selected by the software 
~ccording to the gain specification. Mode values 1, 2, 
3, 4, and 5 are not supported on the ADVII (Q-bus 
version) • 

2 Sample at a gain of 4. 

3 Sample at a gain of 16. 

4 Sample at a gain of 64. 

5 Perform auto gain ranging. 

Selects the channel to be sampled. The default is o. 

Receives the sample. The gain bits are inserted if iflag is 
nonzero. 

23.2.1.2 ADSWP: Initiate Synchronous AID Sweep - The ADSWP routine 
ini tiates a synchronous AID input sweep .through an ADll-K (and, if 
present, the AMIl-K). The analog input word placed in your task's 
buffer consists of the 12 bits read from the AID converter and (except 
when the mode parameter equals 0) the 2 gain bits read from the AID 
status register. A value of I77776(octal) is returned for A/D 
time-out. A value of 177777 (octal) is returned on an AID conversion 
error. Such errors are typically caused by conversions occurring too 
fast. 

23-8 

( 

( 

( 



( 

( 

... -_.- .-------------==----

K-SERIES PERIPHERAL SUPPORT ROUTINES 

If differential input_ is desired, the channel increment must be set to 
2 by calling the SETADC routine. The default channel increment is 1 
(single-ended input). 

NOTE 

This routine expects to have the STI OUT from the 
KWII-K or similar trigger jumpered to EXT START on the 
ADII-K if mode 512 is desired. This also requires the 
A EVENT OUT from the KWII-K clock trigger jumpered to 
the KW overflow on the ADII-K if clock driven sweeps 
are desired. 

The format of the ADSWP call is as follows: 

ibuf 

Ibuf 

nbuf 

mode 

CALL ADSWP (ibuf,lbuf, [nbuf], [mode], [iprset], [iefn], [Ide-lay], 
[ichn],[nchn]) 

A 40-word array initialized by the SETIBF routine. The first two 
words of the array are the I/O status block (IOSB). 

The size in words of each data buffer. All data buffers must be 
equal in size and Ibuf must be greater than O. 

The number of buffers to be filled. 
equal to 0, indefinite sampling 
terminates indefinite sampling. 

If nbuf- is ~mitted or set 
occurs. The STPSWP routine 

Sampling options. The default is O. The mode bit values listed 
below that are preceded by a plus sign (+) are independent and 
can be ADDed or ORed together. Those values not preceded by a 
plus - sign are mutually exclusive and you can use only one-such 
value at_ a time. All bit values not listed below are reserved. 

The following values can be specified: 

o Absolute channel addressing (default). This mode allows 
your task to directly access all 63 channels of an 
ADII-K/AMII-K combination. This is the only mode that 
is LPA-ll compatible. 

23-9 



1 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

Sample with a gain of 1. In modes 1, 2, 3, 4, and 5 
each ADll-K/AMll-K is treated as 16 channels with 
channels 17-63 strapped to gains 4, 16, and 64. The 48 
multiplexer channels are selected by the software 
according to the gain specification. Mode values 1, 2, 
3, 4, and 5 are not supported on the ADVll (Q-bus 
version) • 

2 Gain of 4. See also mode value 1. 

3 Gain of 16. See also mode value 1. 

4 Gain of 64. See also mode value 1. 

5 The driver executes auto-gain ranging to return the 
result with the most significance. Note that using 
auto-gain ranging may require dual sampling and this 
impacts performance. See also mode value 1. 

7 The driver uses an interrupt routine that you supply. 
The routine must be named .ADINU and must follow the 
interrupt service routine coding conventions that this 
subsystem uses. Refer to the source module KADIN5.MAC 
for an example of an A/D interrupt routine. 

+256 External start (ST1). 

+512 Nonclock overflow sampling triggered by ST1. 

iprset 

iefn 

The clock preset. The clock rate divided by the clock preset 
value yields the clock overflow rate. You can use the XRATE 
subroutine to calculate a clock preset value. If you omit the 
iprset argument from the ADSWP call, you must specify a mode 
value of +512. Otherwise, the driver returns an error status 
code of 301 (invalid arguments) into the IOSB. 

The event flag (1-96), a completion routine, or O. If 0 or 
defaulted, event flag 30 is used for internal synchronization. 
If iefn is an event flag (1-96), the selected event flag is set 
as each buffer is filled. If iefn is greater than 96, it is 
considered to be a completion routine that is called with a 
JSR#PC. Such routines must return with an RTS PC (or a FORTRAN 
RETURN statement). Furthermore, FORTRAN completion routines must 
not do any I/O through the FORTRAN runtime system, because this 
may cause unpredictable results or fatal task errors. 

If multiple sweeps are initiated, you should specify different 
event flags. Adherence to this limitation cannot be enforced by 
the software. 

Ide lay 

The delay from the start event (STl) until the first sample in 
IRATE units. Default or 0 indicates no delay. 

23-10 

c 

c 



( 

(-

( 

---------------"--------~.-------------------.--------.-----==--~--=-=----.~-:-::.---.---.. -----~===---=::... 

ichn 

nchn 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

The number of the first channel to be sampled. The default of 0 
applies only if ichn was not established in a prior call to the 
SETADC routine. 

The number of channels to sample. The default is 1. nchn may be 
set up with the SETADC rgutine. All nchn channels are sampled on 
one clock interrupt. . 

23.2.1.3 CLOCKA: Set Clock A Rate - The CLOCKA routine sets the rate 
for Clock A. The format .of the call to this routine is as follows: 

CALL CLOCKA (irate,iprset# lind] ,[lun]) 

irate 

The clock rate. One of the following must be specified: 

o Clock ~ overflow (not on Q-bus version) or no rate 

1 1 MHz 

2 100 KHz 

3 

4 

10 KHz 

1 KHz 

5 100 Hz 

6 Schmitt Trigger 1 

7 Line frequency 

iprset 

ind 

lun 

The clock preset. The clock rate divided 
value yields the clock overflow rate. 
routine to calculate a clock preset value. 
this value is the one that you must supply. 

by the clock preset 
You can use the XRATE 
The 2s complement of 

Receives a success or failure code as follows: 

o indicates illegal arguments. 

1 indicates Clock A set to start when sweep requested. 

The logical unit number. Present for LPA-ll compatibility. 
Ignored by K-series software. 

23-11 



K-SERIES PERIPHERAL SUPPORT ROOTINES 

23.2.1.4 CLOCKB: Control Clock B - The CLOCKB routine gives you 
control over the KWll-K Clock B, which maintains a l6-bit software 
clock. This feature is not available on LSI-II-bus versions. The 
l6-bit clock is incremented once per Clock B interrupt. The maximum 
value of the clock is 65535. 

The format of the call to CLOCKB is as follows: 

irate 

CALL CLOCKB ([irate],[iprset] ,[mode] ,rind] ,[lun]) 

The clock rate. When irate is nonzero, the clock is set running 
at the selected rate after the preset value specified by iprset 
is loaded. The 16-bit software clock is not altered by starting 
the clock. The initial value of the 16-bit clock is 0 when the 
program is loaded. 

When irate is 0, clock B is stopped but the l6-bit software clock 
is unaltered. 

When irate is defaulted, the 16-bit software clock is zeroed but 
clock B continues to run. 

The following are the acceptable values for irate: 

0 Stop Clock B 

1 IMHz 

2 100 KHz 

3 10 KHz 

4 1 KHz 

5 100 Hz 

6 Schmitt Trigger 3 

7 Line. frequency 

iprset 

The count by which to divide.clock rate to yield overflow rate. 
lou can use overflow events to maintain the 16-bit software clock 
or drive clock A, or both. The default value is 1. The maximum 
practical overflow rate in interrupt mode is 10 KHz. The range 
of iprset is 1-255. The value in iprset can be established by 
use of the XRATE routine. 

23-12 

( 

( 

( 



( 

( 

( 

mode 

ind 

lun 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

The options. Either of the following can be specified: 

o indicates normal operations. This is the default. The 
l6-bit software clock is updated on Clock B overflow. 
The overflow rate should not exceed 10KHz. The software 
does not check the overflow rate. 

1 indicates Clock B operates in noninterrupt mode. The 
l6-bit clock is not incremented or altered. This allows 
a greater than 10KHz pulse to be sent to clock A. 

Receives a success or failure code as follows: 

o indicates a failure. to start Clock B. 

1 indicates Clock B started. 

The logical unit 
K-series routines. 

number. This argument is ign9red by 
It is present for LPA-ll compatibility. 

the 

23.2.1.5 CVADF: Convert AID Input to Floating Point - The CVADF 
routine converts an A/D input value to a floating;"point number. The 
routine can be invoked as a subroutine or a function as follows: 

or 

ivaI 

val 

CALL CVADF (ival,val) 

val = CVADF(ival) 

A value obtained from AID input. Bits 12-15 are the gain. 
0-11 represent the value. 

(REAL*4) receives the converted value. 

23-13 

Bits 



K-SERIES PERIPHERAL SUPPORT ROUTINES 

23.2.1.6 DASWP: Initiate Synchronous D/A Sweep - The DASWP routine 
initiates synchronous D/A output to an AAII-K. 

The format of the DASWP call is as follows: 

ibuf 

Ibuf 

nbuf 

mode 

CALL DASWP (ibuf,lbuf,[nbuf] ,[mode] , [iprset] ,[iefn] ,[ldelay], 
[ichn] , [nchn]) 

A 40-word array initialized by the SETIBF routine. The first two 
words of the array are the I/O status block (IOSB). 

The size in words of each data buffer. All data buffers must be 
equal in size and lbuf must be greater than·O. 

The number of buffers to be emptied. 
equal to 0, indefinite emptying 
terminates indefinite emptying. 

If nbuf is omitted or set 
occurs. The STPSWP routine 

The start criteria. Except where noted, the plus sign (+) 
preceding mode bit values listed below indicates that they are 
independent and can be added or ORed together. All bit values 
not listed below are reserved. 

The following values can be specified: 

o indicates immediate start. This is the default. 

1 indicates that a group of data words, whose number is 
specified by nchn, is preceded by a scope control word 
(refer to Section 23.2.1.22 for a description of scope 
control words). This bit setting is ignored if +512 is 
also specified. This feature is not included in the 
Q-bus (AAVll) version. 

The buffer size specified by Ibuf must be a multiple of 
nchn+l words. The DASWP routine, however, does not 
enforce this restriction. 

2 sets the intensify bit after each pair of channels (nchn 
must be 2) have been output. This feature is supported 
on the Q-bus version only. It assumes that bit 0 of 
DAC3 on the AAVll is connected to the intensify input on 
the oscilloscope. 

+256 indicates external start (ST1). 

23-14 

c 

( 

( 



( 

( 

( 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

+512 indicates non-clock-overflow, non-interrupt-driven 
output (burst mode). This value cannot be specified 
with either external start (+256) or . a nonzero ldelay 
value. A completion routine must be specified if nbuf 
is greater than the number of buffers supplied or if 
continuous burst output is desired. If nbuf equals -1, 
burst mode must be stopped by calling STPSWP from the 
completion routine. . 

iprset 

iefn 

The clock preset. The clock rate divided by the clock preset 
value yields the clock overflow rate. You can use the XRATE 
subroutine to calculate a clock preset value. 

If the iprset argument is omitted, you must specify a mode value 
of +512. Otherwise, an error status code of 301 (invalid. 
arguments) is returned into the IOSB. 

An event flag number (from 1 to 96), or a completion routine, or 
O. If you use 0 or default this value, the driver uses event 
flag 30 for internal synchronization. If iefn is an .event flag 
from 1 to 96, the driver sets the selected event flag as each 
buffer is emptied. If iefn is greater than 96, the driver 
considers it a completion routine and calls it with a JSR pc. 
Such routines must return with an RTS pc instruction (or a 
FORTRAN RETURN statement) • Furthermore, FORTRAN completion 
routines must not perform I/O through the FORTRAN run~time system 
because this may cause unpredictable results or fatal task 
errors. 

If multiple sweeps are initiated, you should specify different 
event flags. This limitation cannot be enforced by the'software. 

Ide lay 

ichn 

nchn 

The delay from start event (STl) until the first sample in irate 
units. Default or 0 indicates no delay. 

The first channel number. The default is O. 

The number of channels. The default is 1. When nchn equals 2 
and mode does not contain +1, the size of data buffers specified 
in lbuf must be an even number. The software does not check this 
requirement. 

23-15 



K-SERIES PERIPHERAL SUPPORT ROUTINES 

23.2.1.7 DIGO: Digital Start Event - The DIGO routine allows you to 
specify the, digital input bits that, when set, causes the simulation 
of an external start event and the start of a pending sweep. 

The format of the call to DIGO is: 

CALL DIGO([iunit],[mask] ,[kount]) 

iunit 

mask 

The DRll-K unit number. The default is o. 

A logical mask that specifies one or more start bits. If zerot a 
pending digital'start event request is immediately canceled. If 
defaulted, an STI event is immediately simulated and the current 
value of the l6-bit ~oftware clock is returned in kount, if 
specified. 

tount 

Receives the current value of the l6-bit software clock when the 
defaulting of mask causes the simulation of an STI event. 

23.2.1.8 DINP: Digital Input - The DINP routine inputs a single 
l6-bit word from a DRll-K. Bits read as a 1, can be masked with a 1, 
causing the clearing of the bit in the DRll-Kinput buffer. 

During the K-series routines generation dialog, it is possible to 
select one of two versions of the DINP routine: 

1. A slow version containing all functions described below 

2. A fast version that omits the functions provided by the mask, 
iosb, and input arguments 

The fast version of DINP can be invoked as a function (IDINP) only. 
The slow version of DINP can be invoked as a subroutine or a function. 
The formats of the invocations are as follows: 

or 

iunit 

CALL DINP ([iunit],[mask],iosb,inpbt) 

ind=IDINP(iunit, [mask] ,iosb,[input]) 

The DRll-K unit number. This argument is required for the fast 
version of DINP. For the slow version, the default is O. 

23-16 

c 

( 

( 



( 

( 

( 

mask 

iosb 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

The bit mask that specifies which input bits are cleared in the 
digital input register. The default is l77777(octal) indicating 
all bits are cleared. 

A 2-word I/O status block array (see Section 23.2.3). 

input 

ind 

Receives the data input from the DRll-K. 

Receives the data input from the DRll-K if DINP is invoked as a 
function. 

23.2.1. 9 DISWP: Initiate Synchronous Digital Input Sweep - The DISWP 
routine initiates a synchronous digital input sweep through a DRII-K. 

The format of the call to DISWP is: 

ibuf 

lbuf 

nbuf 

mode 

CALL DISWP (ibuf,lbuf,[nbuf] ,[mode],[iprset] ,[iefn] , [ldelay] , 
[iunit]) 

A 40-word array initialized by the SETIBF routine. The first two 
words of the array are the I/O status block (IOSB). 

The size in words of each data buffer. All data buffers must be 
equal in size and lbuf must be greater than O. 

The number of buffers to be filled. 
indefinite sampling occurs. The 
indefinite sampling. 

If nbuf is 0 or 
STPSWP routine 

defaulted, 
terminates 

The sampling options. The default is O. The plus signs (+) 
preceding the mode bit values listed below indicate that they are 
independent and can be added or ORed together. 

23-17 



K-SERIES PERIPHERAL SUPPORT ROUTINES 

The following values can be specified: 

o Single-word sample, immediate start. 
default mode. 

This is the 

+256 External start (STl). 

+512 Nonclock overflow interrupt-driven input. 
start arid delay are illegal. 

External 

+1024 Time-stamped sampling. The double word consists of one 
data word followed by the value of the l6-bit software 
clock at the time of the sample. This option is not 
available if you are not using the KWll-K clock (for 
example, on the Q-bus). 

·iprset 

iefn 

The clock preset. The clock rate divided by the clock preset 
value yields the clock overflow rate. You can use the XRATE 
subroutine to calculate a clock preset value. 

If the iprse.t argument is omitted, you must specify a mode value 
of +512. Otherwise, an error status code of 301 (invalid 
arguments) is returned into the IOSB. 

An event flag number (from 1 to 96), or a completion routine, or 
O. If you use 0 or default this value, the driver uses event 
flag 30 for internal synchronization. If you use iefn as an 
event flag from 1 to 96, the driver sets the selected event flag 
as each buffer is filled. If iefn is greater than 96, the driver 
considers it a completion routine and calls it with a JSR PC. 
Such routines must return with an RTS PC instruction (or a 
FORTRAN RETURN statement). Furthermore, FORTRAN completion 
routines must not perform I/O through the FORTRAN run-time system 
because this may cause unpredictable results or fatal task 
errors. 

If multiple sweeps ~re initiated, you should specify different 
event flags. This limitation cannot be enforced by the software. 

Ide lay 

iunit 

The delay from start event (STl) until the first sample in irate 
units. Default or 0 indicates no delay. 

The DRll-K unit number. The default is O. 

23-18 

( 

( 

( 



( 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

23.2.1.10 DOSWP: Initiate Synchronous Digital Output Sweep
The DOSWP routine initiates a synchronous digital output sweep through 
a DRll-K. 

The format of the call to DOSWP is as follows: 

ibuf 

Ibaf 

nbaf 

mode 

CALL DOSWP (ibuf,lbuf,[nbuf],[mode],[iprset],[iefn],[ldelay], 
[iunit] ) 

A 40-word array initialized by the SETIBF routine. The first two 
words of the array are the I/O status block (IOSB). 

The size in words of each data buffer. All data buffers must be 
equal in size, and lbuf must be greater than o. 

The number of buffers to be emptied. 
indefinite emptying occurs. The 
indefinite emptying., 

The start criteria. The default is O. 

If nbuf is 0 or 
STPSWP routine 

defaulted, 
terminates 

The following values can be specified in the high-order byte of 
mode: 

o Immediate start. This is the default. 

+256 External event start (STl). 

+512 Nonclock overflow, interrupt-driven output. 
start and delay are illegal. 

External 

iprset 

The clock preset. The clock rate divided by the clock preset 
value yields the clock overflow rate. You can use the XRATE 
subroutine to calculate a clock preset value. 

If the iprset argument is omitted, you must specify a mode value 
of +512. Otherwise, an error status code of 301 (invalid 
arguments) is returned into the IOSB. 

23-19 



iefn 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

An event flag number (from I to 96), or a completion routine, or 
O. If you use 0 or default this value, the driver uses event 
flag 30 for internal synchronization. If iefn is an event flag 
from I to 96, the driver sets the selected event flag as each 
buffer is emptied. If iefn is greater than 96, the driver 
considers it a completion routine and calls it with a JSR pc. 
Such routines must return with an RTS pc instruction (or a 
FORTRAN RETURN statement). Furthermore, FORTRAN completion 
routines must not perform I/O through the FORTRAN run-time sys~em 
because this may cause unpredictable results or fatal task 
error,s. 

If multiple sweeps are initiated, you should specify different 
event flags. This limitation cannot be enforced by the software. 

ldelay 

The delay from start event (STI) until the first sample in irate 
units. Default or 0 indicates no delay. 

iunit 

The DRII-K unit number. The default is o. 

23.2.1.11 DOUT: Digital Output - The DOUT routine outputs a single 
16-bit word to a DRII-K. Only those bits in the output word specified 
by corresponding ones in a mask field are altered. 

During the K-series routines generation dialog, it is possible to 
select one of two versions of the DOUT routine: 

1. A slow version containing all functions described below 

2. A fast version that omits the functions provided by the mask 
and iosb arguments 

The slow version of DOUT can be invoked as a subroutine or a function. 
The fast version of DOUT can be invoked as a subroutine only. The 
formats of the invocations are as follows: 

or 

iunit 

mask 

CALL DOUT ([iunit],[mask],iosb,idata) 

iout=IDOUT ([iunit], [mask] ,iosb,idata) 

The DRII-K unit number. The default is O. 

Selects which bits can be altered. The default is 177777(octal), 
indicating all bits. 

23-20 

( 

c 

( 



( 

( 

( 

iosb 

idata 

iout 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

A 2-word I/O status block (see Section 23.2.3). 

The 16-bit output value for the DRII-K. A 1 sets a corresponding 
bit. A 0 clears the corresponding bit. 

Receives a copy of the DRII-K output register after it has been 
altered. 

23.2.1.12 FLTI6: Convert Unsigned Integer to a Real Constant ~ 
converts an tinsigned 16-bit integer to a real 

It can be invoked as a subroutine or a function as 
The FLT16 routine 
constant (REAL*4). 
follows: 

CALL FLT16 (ival,val) 

or 

val=FLT16(ival[,val].) 

ivaI 

An unsigned 16.-bit integer. 

val 

The converted (REAL*4) value. 

23.2.1.13 GTHIST: Gather Interevent Time Data - The GTHIST routine 
initiates sampling to measure the elapsed time between events. The 
value of the Clock A buffer/preset register at the time of ST2 firing 
is stored in a task buffer that you provide. 

GTHIST is an optional facility that must be explicitly selected during 
the K-series generation dialog prior to its use in any program. The 
format of the call toGTHIST is as follows: 

ibuf 

Ibuf 

CALL GTHIST (ibuf,lbuf,[nbuf],[mode],[iprset],[iefn],[kourit]) 

A 40-word array initialized by the SETIBF routine. The first two 
words of the array are the I/O status block (IOSB). 

The size in wo~d. of each dat. buffer. All data buffers must be 
equal in size and Ibuf must be greater than O. 

23-21 



nbuf 

mode 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

The number of buffers to be filled. 
indefinite sampling occurs. The 
indefinite sampling. 

The sampling options as follows: 

If nbuf 
STPSWP 

is 0 or 
routine 

defaulted, 
terminates 

o indicates external ~vent timing without Zero Base. This 
is the default. 

I indicates external event timing with Zero Base. This is 
the only mode supported for theKWVI1. 

iprset 

iefn 

A null argument. It is present only to maintain compatibil i ty 
with other sweep routine calling sequences. 

An event flag number (from I to 96), or a completion routine, or 
O. If you use 0 or default this value, the driv~r uses event 
flag 30 for internal synchronization. If iefn is an event flag 
from I to 96, the driver sets the selected event flag as each 
buffer is filled. Ifiefn is greater than 96, the driver 
considers it a completion routine and calls it with a JSR PC. 
Such routines must return with an RTS PC instruction (or a 
FORTRAN RETURN statement). Furthermore, FORTRAN completion 
routines must not perform I/O through the FORTRAN run-time system 
because this may cause unpredictable results or fatal task 
errors. 

If mUltiple sweeps are initiated, you should specify different 
event flags. This limitation cannot be enforced by the software. 

tount 

A counter used by GTHIST, as described below. 

To take Post-Stimulus Time data, set mode to O. STI signals the 
occurrence of a stimulus and starts th~ clock (that is, no data is 
taken until the first STI occurs). Each response is signaled by ST2, 
and the buffer/preset register contents are placed in your task's 
buffer. Each STI resets the counter register to 0, and increments 
kount by 1. Thus, kount keeps track of the number of stimuli (STI 
events). Clock overflow stops the clock. The clock waits for the 
next STI event before restarting. The maximum stimulus-response 
interval is a function of the clock rate. 

To obtain Inter-Stimulus-Interval data, set mode to 1. ,The time 
between successive events, as signaled by ST2, is recorded. The 
maximum interevent time is a function of the clock rate. When clock 
overflow occurs, the value returned on the next ST2 firing is 
177777(octal) and KOUNT is incremented. Thus, kount represents the 
number of times the maximum interevent time was exceeded. In general, 
the user should ignore values of 177777(8). 

23-22 

c 

( 

( 



( 

( 

( 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

23.2.1.14 IBFSTS: Get Buffer Status - The IBFSTS routine returns 
information on buffers that the driver is using in a sweep. 

The format of the call to IBFSTS is as follows: 

CALL IBFSTS (ibuf,istat) 

ibuf 

The 40-word array specified in the call that initiated a ~weep. 

istat 

An array with as many elements as there are buffers involved 'in 
the sweep. The maximum is 8. IBFSTS'fills each element in the 
array with the status of the corresponding buffer. The possible 
status codes are as follows: 

+2 indicates that the buffer is in the device queue. 
is, it is waiting to be filled or emptied. 

That 

+! indicates that the buffer is in the task queue. That 
is, it is full of data (for inptit sweeps) or is ~aiting 
to' be filJ,.ed (for output sweeps). 

o indicates that the status of the buffer is unkn,own. 

-1 

That is, it is not the current buffer nor is it in 
either the device or the user task queue. 

indicates that a service routine is ctirrently using the 
buffer. 

23.2.1.15 ICLOKB: Read 16-bi t Clock - The ICLOKB function returns 
the contents of the 16-bit software clock as an integer value to your 
task. 

The format of the ICLOKB function call is as follows: 

itim 

itim=ICLOKB(O) 

Receives the current value of the 16-bit software clock as an 
unsigned integer. 

NOTE 

MACRO-II programmers need not establish an argument 
block for the ICLOKB function. The current value of 
the software clock is returned in RO. 

23-23 



K~SERIES PERIPHERAL SUPPORT ROUTINES 

23.2.1.16 IGTBUF: Return Buffer Number - The IGTBUF routine returns 
the number of the next buffer to use. This routine should be called 
by your task's completion routines to determine the next buffer to 
access. Do not use it if an event flag was specified in the 
sweep-initiating call. Rather, use the IWTBUF routine with event 
flags. 

IGTBUF can be invoked as a subroutine or a function. The formats of 
the invocations are: 

CALL IGTBUF (ibuf,ibufno) 

ot. 

ibufno=IGTBUF(ibuf[,ibufno]) 

ibuf 

The 40-word array specified in the call that initiated a sweep. 

ibufno 

Receives the number of the next buffer to access. If there is no 
bu'ffer in the queue, ibufn'o contains -1. 

23.2.1.17 INXTBF: Set Next Buffer - The INXTBF routine alters the 
normal buffer selection algorithm. It allows your task to specify the 
number of the next buffer to be filled or emptied. 

INXTBF can be invoked as a subroutine or a function. The formats of 
the invocations are: 

. CALL INXTBF (ibuf,ibufno[,ind]) 

or 

ind=INXTBF(ibuf,ibufno[,ind]) 

ibuf 

The 40-word array specified in the call that initiated a sweep., 

ibufno 

ind 

The number of the next buffer task wants filled or emptied. The 
buffer must already be in the device queue. 

Receives an indication of the result of the operation: 

o indicates that the specified buffer was already active 
or was not in the device queue. 

I indicates that the next buffer was successfully set. 

23-24 

( 

( 



( 

( 

( 

K-SERIES PERIPHERAl; SUPPORT ROUTINES 

·23.2.1.18 IWTBUF: Wait for Buffer - The IWTBUF routine allows your 
task to wait for the next buffer to fill or empty. Use it with an 
event flag specified in in the sweep-initiating call. Do not use this 
routine if you specified a completion routine in the call to initiate 
a sweep. Rather, use the IGTBUF routine with completion routines. 

IWTBUF can be invoked as a subroutine or a function. The formats of 
the invocations are as follows: 

or 

ibuf 

iefn 

CALL IWTBUF (ibuf,[iefn],ibufno) 

ibufno=IWTBUF (ibuf, [iefn] , [ibufno] ) 

The 40-word array specified in the call that initiated a sweep. 

The event flag for which the task waits. This should be the same 
event flag as that specified in the sweep-initiating .call. If 
iefn equals 0 or is defaulted, the driver uses eyent flag 30. 

ibufno 

Receives the number of the next buffer to be filled or emptied by 
your task. 

23.2.1.19 RCLOKB:Read l6-bi t Clock - The RCLOKB routine returns to 
your task the contents o£ the l6-bit software clock as a real 
constant. 

RCLOKB can be invoked as a subroutine or a function as follows: 

or 

tilDe 

CALL RCLOKB (rlast,time) 

time=RCLOKB(rlast,time) 

Receives the current value of the l6-bit software clock as a real 
constant (REAL*4). 

rlast 

A value (REAL*4) to be subtracted from the current l6-bit 
software clock before it is returned into the time field. 

23-25 



K-SERIES PERIPHERAL SUPPORT ROUTINES 

23.2.1.20 RLSBUF: Release Data Buffer - The RLSBUF ~outine declares 
one or more buffers free for use by the interrupt service routine. 

The RLSBUF routine must be called to release buffer(s) to the device 
queue before the sweep is initiated. The device queue must always 
contain at least one buffer to maintain continuous sampling. 
Otherwise, buffer overrun occurs (see Section 23.3 for a discussion of 
buffer management). Note that RLSBUF does not verify whether the 
specified buffers are already in a queue. 

The format of the call to RLSBUF is as follows: 

CALL RLSBUF (ibuf,ind,nO[,nl ••• ,n7]) 

ibuf 

The 40-word array specified in the call that initiated a sweep. 

ind 

Receives a success or failure code as follows: 

o indicates illegal buffer number specified. 

1 indicates buffer(s) successfully released. 

nO,nl,and so forth 

The numbers of buffers to be released. A maximum of eight can be 
specified. 

23.2.1.21 RMVBUF: R~move Buffer from Device Queue - The RMVBUF 
routine removes a buffer from the device queue. 

The format of the call to RMVBUF is as follows: 

ibuf 

n 

ind 

CALL RMVBUF (ibuf,n[,ind]) 

The 40-word array specified in the ca11 that initiated a sweep. 

The number of the buffer to remove. 

Receives a success or failure code as follows: 

o indicates that the specified buffer was not in the 
device queue. 

1 indicates that the specified buffer was removed from the 
queue. 

23-26 

( 

( 

( 



( 

( 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

23.2.1.22 SCOPE: Control Bcope - The SCOPE routine allows you to 
control the status register of an AAII-K. 

The format of the call to SCOPE is as follows: 

CALL SCOPE (iunit,icntrl,iosb) 

ionit 

The AAII-K unit number. 

icntrl 

A-combination of bit values as shown in Table 23-2. Any bits not 
listed in this table are cleared before output to the AAII-K 
status register 

iosb 

A 2-word I/O status block (see Section 23.2.3). 

Decimal Value 

4096 

2048 

1024 

512 

12 

8 

4 

2 

1 

'Table 23-2 
Scope Control Word Values 

Octal Value Function 

10000 Erase storage CRT 

4000 Set write-through mode 

2000 Set store mode 

1000 A digital signal available 
the AAll-K. 

,14 Intensify on X or Y 

10 Intensify on Y 

4 Intensify on X 

2 Fast intensify enable 

1 Intensify pulse 

in 

The values in Table 23-2 also create scope control words for calls to 
the DASWP routine with a mode value of 1. 

23-27 



K-SERIES PERIPHERAL SDPPORT RODTINES 

23.2.1.23 SETADC: Set Channel Information - The SETADC routine 
establishes channel start and increment information for an AID sweep. 

~ETADC can be invoked as a subroutine or ~ function as follows: 

or 

ibuf 

iflag 

ichn 

nchn 

inc 

ind 

CALL SETADC (ibuf,[iflag],[ichn],[nchn],[inc],[ind]) 

ind = ISTADC (ibuf, [iflag] , [ichn] , [nchn] , [inc] , [ind] ) 

A 40-word array ini tialized by the SETIBF routine. 

Equals zero if you want absolute addressing and nonzero for 
programmable gain addressing. The default is O. 

The first channel number. The default is o. 

The number of samples to be taken per interrupt. The default is 
1. 

The channel increment. The default is 1. You should specify an 
increment of 2 for differential AID input. 

Receives a success or failure code as follows: 

o indicates an illegal channel number. 

1 indicates successful recording of channel 'information 
for an AID sweep. 

23.2.1. 24 SETIBF: Set Array for Buffered Sweep - The SETIBF routine 
initializes an array required by buffered sweep routines. 

The format of the call to SETIBF is as follows: 

CALL SETIBF (ibuf,[ind],[lamskb],bufO[,bufl ••• buf7]) 

ibuf 

A 40-word array. 

23-28 

( 

( 

( 



( 

( 

( 

ind 

K-SERIES PERIPHERAL SOPPORT ROOTINES 

Receives a success or failure code as follows: 

o indicates an illegal number of buffers was specified. 
SETIBF initializes the array according to the maximum 
number of buffers allowed. You specify this maximum 
number of buffers during the K-series system generation 
dialog. 

1 indicates the array was successfully initialized. 

lamskb 

Present for compatibility with LPA-l1 routines. It is ignored by 
K-series software. 

bufO, etc. 

The name of 
specified. 
least two 
sampling. 

a buffer. A maximum of eight buffers can be 
Any buffer names in excess of eight are ignored. At 

buffers must be specified to maintain continuous 

Each buffer specified in the call to SETIBF is assigned a number from 
o to 7. 

The assignment of these numbers is based on the order in which buffer 
nam~s appear in the argument list. The first buffer whose name 
appears in the list is assigned number 0, the ,second is assigned 
number 1, and so forth. In all subsequent calls to o,ther K-series 
routines involving the set of buffers specified in a call to SETIBF, 
these numbers, rather than names, refer to particular buffers. 

23.2.1.25 STPSWP: Stop Sweep - The STPSWP routine allows your. task 
to stop a sweep that is in progress. 

The format of the call to STPSWP is as follows: 

CALL STPSWP (ibuf[,iwhen],[ind]) 

ibuf 

iwhen 

The 40-word array specified in the call that initiated a sweep. 

Specifies when to stop the sweep: 

o indicates at the next sample. This is the default. 

+n (any positive value) indicates at the end of the ~urrent 
buffer. 

-n (any negative value) is reserved. 

23-29 



- -- -- - - ---
- -- -_._---_ .. _ .. -- - ----.-~. --.~---.---~--.--------------~----

ind 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

Receives a success or failure code as follows: 

o indicates that the sweep was not active or no sweep 
could be found that was associated with the specified 
ibuf. 

1 indicates that the sweep is stopped (at the time 
indicated by iwhen). 

23.2.1.26 XRATE: Compute Clock Rate and Preset - The XRATE routine 
computes an appropriate clock rate and preset that achieves a desired 
dwell (intersample intervai). 

NOTE 

You can use the XRATE routine only on systems that 
have a FORTRAN or BASIC-PLUS-2 compiler. 

XRATE can be invoked as a subroutine or a function as follows: 

CALL XRATE (dwell,irate,iprset,iflag) 

or 

adwel1 = XRATE(dwe11,irate,iprset,if1ag) 

dwell 

The intersamp1e time that you want. The time is expressed in 
decimal,seconds (REAL*4). 

irate 

Receives the computed clock rate as a value from 1 to 5. 

iprset 

Receives the clock preset. 

iflag 

Specifies whether the computation is for Clock A or Clock B: 

o indicates the computation is for Clock A. 

nonzero indicates the computation is for Clock B. 

adwell 

The actual dwell rate for the clock based on the irate and iprset 
parameters. 

23-30 

c 

( 

( 



( 

c 

( 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

23.2.2 MACRO-II Interface 

MACRO-II programmers access the K-series support routines described in 
Section 23.2.1 through either of two techniques: 

1. The standard subroutine linkage mechanism and the CALL op 
code 

2. Special-purpose macros that generate an argument list and 
invoke a subroutine 

These techniques are described in the following subsections. 

23.2.2.1 Standard Subroutine Linkage and CALL OJ? Code..;. K-series 
routines can be accessed through use of the standard subroutine 
linkage mechanism and the CALL op code. The format of this procedure 
is: 

.PSECT code MOV #arglist,R5 iARGUMENT ADDRESS TO R5 
CALL ksubr iCALL K-SERIESROUTINE .PSECT data 

arglist: .BYTE narg,O iNUMBER OF ARGUMENTS .WORD addrl iFIRST 
ARGUMENT ADDRESS 

.WORD addrn iLAST ARGUMENT ADDRESS 

In this sample, the two PSECT directives are shown only to indicate 
the noncontiguity of the code and data portions of the linkage 
mechanism. Within the argument list, any argument. that is to be 
defaulted must be represented by a -1 (that is, l77777(octal». 

23.2.2.2 Special-Purpose Mac~os - To facilitate the calling of 
K-series support routines from a MACRO-II program, two macros are 
provided in file [45,lO]LABMAC.MAC. These macros are: 

1. INITS 

2. CALLS 

INITS is an initialization macro. It should be invoked at the 
beginning of the MACRO-II source module. 

CALLS invokes a K-series support routine. The format of this macro 
call is as follows: 

CALLS ksubr,ARGl, ••• ,ARGN 

ksubr 

The name of a K-series support routine. 

argI,etc. 

Arguments to be formatted into an argument list and passed to the 
routine. Each argument can be either a symbolic name or a 
constant (interpreted as a positive decimal number) or can be 
defaulted. 

23-31 



K-SERIES PERIPHERAL SUPPORT ROUTINES 

23.2.3 The I/O Status Block (IOSB) 

Each active sweep must have its own I/O status block. The I/O status 
block (IOSB) is a 2-word array allocated in your task. It receives 
the status of a call to a K-series support routine. When a data sweep 
routine is called, the IOSB is always the first two words of the 
40-word array specified as the first argument of the call. The first 
word of the IOSB contains the status code. The second word contains 
the buffer size in words. 

The codes that can appear in the first word of an I/O status block are 
in ISA-compatible format (with the exception of the I/O pending 
condition). Table 23-3 lists all return codes. 

Table 23-3 
Contents of First Wo~d of IOSB 

IOSB word 1 

o 

1 

301 

305 

306 

313 

315 

317 

397 

23.3 BUFFER MANAGEMENT 

Meaning 

Operation pending; I/O in progress 

Successful completion 

Invalid arguments 

Hardware or software option not present 

Illegal buffer specification 

Data overrun 

Request terminated 

Resource in use 

Invalid event flag 

The management of buffers for data sweeps by K-series support routines 
involves the use of two FIFO (First~In, First-Out) queues: 

1. The device queue (DVQ) 

2. The user task queue (USQ) 

The device queue (DVQ) contains the numbers of all buffers that your 
ta.sk has released to the support routines in a call to RLSBUF. The 
buffers represented by these numbers are ready to be filled with data 
(input . sweeps) or to be emptied of data (output s.weeps). Any buffer 
specified in a call to INXTBF must already be in DVQ. 

23-32 

c 

( 

( 



( 

( 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

The user task queue (USQ) contains the numbers of buffers available to 
your task. For output sweeps, this queue contains the numbers of 
buffers that have already been emptied by the driver. For input 
sweeps, the buffers represented by QSQ are those that are filled with 
data. In both instances, your task determines the next buffer to use 
(that is, extracts the first element of USQ) by calling IGTBUF or 
IWTBUF. . 

Both the DVQ and USQ are initialized to -1, indicating no buffers, 
when your task calls the SETIBF routine. The task must call RLSBUF 
before initiating any sweep, because at least one buffer must be 
present in DVQfor the first input or output to occur. 

For input sweeps, the best strategy is to call RLSBUF, specifying the 
numbers associated with all the buffers to be used in the sweep. 

For output sweeps, one approach is to 
continuous sweeps) in the call to RLSBUF. 
either in a completion routine or after a 
release the next buffer. Note, however, 
represent true multiple buffering, because 
second buffer is not released in time. 

23.4 SAMPLE FORTRAN PROGRAMS 

specify two buffers (for 
The first action then taken 

call to IWTBUF would be to 
that this approach does not 
data overrun occurs if the 

TwO sample FORTRAN programs showing th.e use of K-series support 
routines are presented in this section. The first program uses event 
flags for internal synchronization. The second program demonstrates 
the use of a completion routine that you supply for synchronization. 

NOTE 

FORTRAN completion routines must not contain any of 
the following: 

• Any I/O through the FORTRAN run-time system 

• Any use of virtual arrays 

• Any use of floating-point operations 

• Any errors, because error reporting is done through 
the FORTRAN run-time system 

• Anything else that may change the FORTRAN impure 
area 

Any of the above may result in fatal task errors or unpredictable 
results. 

23-33 



K-SERIES PERIPHERAL SUPPORT ROUTINES 

23.4.1 Sample Program Using Event Flag 

C 
C 
C 

C 
C 
C 

C 
C 
C 
C 

C 
C 
C 
C 

C 
C 
C 
C 

C 

IMPLICIT INTEGER (A-Z) 

DIMENSION BUF(1024,8), IBUF (40), IOSB(2) 
EQUIVALENCE (IBUF(l),IOSB(l» 

INITIALIZE THE IBUF ARRAY FOR THE A/DSWEEP 

CALL SETIBF (IBUF,IND, , BUF(l,l), BUF(1,2), BUF(1,3), 
* BUF(1,4), BUF(1,5), BUF(1,6), BUF(1,7), BUF(1,8» 

WRITE (1, 900) 
READ (1, 910) IRATE, IPRSET 

SET THE CLOCK RATE AND PRESET FOR THE SWEEP 

CALL CLOCKA (IRATE, IPRSET,IND) 

THIS IS INPUT, SO RELEASE ALL BUFFERS TO SERVICE 
ROUTINE 

CALL RLSBUF (IBUF,IND, 0,1,2,3,4,5,6,7) 

START THE SWEEP. USE 1024 WORD BUFFERS, SAMPLE 
FOREVER, EXTERNAL START, EVENT FLAG 30, .. 1 CHANNEL (0). 

CALLADSWP (IBUF, .1024, -1, 256, IPRSET, 
* 30, 0, 0, 1) 

HERE WE COULD CHECK THE I/O STATUS BLOCK TO ENSURE 
THAT THE SWEEP IS ACTUALLY RUNNING. 

IBFCNT=O 

C THIS IS THE TOP OF THE DATA PROCESSING LOOP. WE 
C WAIT FOR A BUFFER TO BE COMPLETED, AND THEN DUMP 
C THE FIRST 100 WORDS OF THE BUFFER TO LUN. l. 
C 

10 IBUFNO = IWTBUF(IBUF, 30)+1 
C 
C IWTBUF RETURNS A POSITIVE BUFFER NUMBER 
C AS LONG AS THERE ,IS A BUFFER OF DATA AVAILABLE. 
C IF IND IS -1, WE PROBABLY HAD DATA OVERRUN, SO STOP. 
C 

C 

IF (IBUFNO .EQ. 0) STOP 
IBFCNT=IBFCNT+1 
WRITE (1,920) IBFCNT 
WR,TE (1,930) (BUF(I,IBUFNO), I=1,100) 

C RELEASE BUFFER FOR SERVICE ROUTINE TO REFILL 
C 

CALL RLSBUF(IBUF,IND,IBUFNO-1) 
GOTO 10 

900 FORMAT (' ENTER IRATE, IPRSET:', $) 
910 FORMAT (I, 0) 
920 FORMAT (' DUMP OF BUFFER NUMBER ',I5,/) 
930 FORMAT (lX,1007) 

END 

23-34 

( 

( 

( 



( 

( 

" 

( 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

23.4.2 Sample Program Using Completion Routine 

C 
C 
C 

C 
C 
C 

C 
C 
C 
C 

C 
C 
C 
(0) • 
C 

C 
C 
C 
C 

10 
C 
C 
C 
C 

900 
910 

C 
C 
C 
C 
C 
C 
C 
C 

IMPLICIT INTEGER (A-Z) 
EXTERNAL AST 

DIMENSION BUF(1024,8), IBUF (40), IOSB(2) 
COMMON /KDATA/ BUF, IBUF, IBFCNT 
EQUIVALENCE (IBUF(l),IOSB(l» 

INITIALIZE THE IBUF ARRAY FOR THE A/D SWEEP 

CALL SETIBF (IBUF,IND, , BUF(l,l); BUF(1,2), BUF(1,3), 
* B UF ( 1,4), B UF ( 1, 5), B UF ( 1, 6), B UF ( 1, 7), B UF ( 1, 8) ) 

WRITE (1, 900) 
READ (1, 910) IRATE, IPRSET 

SET THE CLOCK RATE AND PRESET FOR THE SWEEP 

CALL CLOCKA (IRATE, IPRSET,IND) 

THIS IS INPUT, SO RELEASE ALL BUFFERS TO SERVICE 
ROUTINE 

CALL RLSBUF (IBUF,IND, 0, 1, 2, 3, 4, 5, 6, 7) 

START THE SWEEP. USE 1024 WORD BUFFERS, SAMPLE 
FOREVER, EXTERNAL START, EVENT FLAG 30, 1 CHANNEL 

IBFCNT = 0 
CALL ADSWP (IBUF, 1024, 0, 256, IPRSET 
* AST, 0, 0, 1) 

HERE WE COULD CHECK THE I/O STATUS BLOCK TO ENSURE 
THAT THE SWEEP IS ACTUALLY RUNNING. 

CALL WAITFR (23) 

STOP 

WHEN EVENT FLAG 23 IS SET THE SWEEP IS COMPLETED. 
WE MAY EXIT NOW. 

FORMAT (' ENTER IRATE, IPRSET:', $) 
FORMAT (I, 0) 
END 
SUBROUTINE AST 

THIS SUBROUTINE IS CALLED AT AST LEVEL WHENEVER 
A BUFFER IS COMPLETED. THIS ROUTINE PROCESSES 
THE CONTENTS OF THE BUFFER AND THEN RELEASES 
IT FOR THE SERVICE ROUTINE. IF THE SWEEP IS TO 
TERMINATE (IOSB NON~ZERO) THEN EVENT FLAG 23. IS 
SET TO INDICATE TO THE MAINLINE CODE THAT WE ARE 
DONE. 

IMPLICIT INTEGER (A-Z) 
DIMENSION BUF(1024,8), IBUF(40), IOSB(2) 
COMMON /KDATA/ BUF, IBUF, IBFCNT 
EQUIVALENCE (IBUF(l),IOSB(l» 

IBUFNO = IGTBUF (IBUF) +l 

IF (IBUFNO-l) ~GE. 0 GOTO 20 

23-35 



20 
C 
C 
C 
C 
C 
C 

K-SERIES PERIPHERAL SOPPORT ROOTINES 

IF (IOSB(l) .EQ. 0) PAUSE 'INCONSISTENT STATE I 

CALL SETEF (23) 
RETURN 

IBFCNT = IBFCNT + 1 

HERE WE WOULD PROCESS THE DATA 

, RELEASE BUFFER FOR SERVICE ROUTINE 

CALL RLSBUF (IBUF, IND, IBUFNO-1) 
RETURN 

END 

23-36 

c 

( 



( 

( 

( 

CHAPTER 24 

UNIBUS SWITCH DRIVER 

24.1 INTRODUCTION 

The UNIBUS switch driver supports DT07 UNIBUS switch hardware on 
RSX-llM-PLUS systems. UNIBUS switches are electronic devices that 
allow peripherals to be switched from one CPU to another, enabling 
CPUs to· share peripheral devices. UNIBUS switches also facilitate 
ori-linesystem backup and allow dynamic reconfiguration of systems in 
which high availability of certain peripherals is required. 

24.1.1 DT07 UNIBUS Switches 

UT07 UNIBUS switches can provide two, three, or four ports for 
connecting an external UNIBUS run to one of two, three, or four CPUs. 

Any CPU can request connection to a UNIBUS run and receive the 
connection immediately if the requested UNIBUS run is in the neutral 
state (it is not connected to another CPU's UNIBUS). If the request 
is received when the UNIBUS run is connected to another CPU, an 
interrupt is generated, informing the connected CPU of the pending 
request, and a watchdog timer is started. The connected CPU normally 
acknowledges th~ request, indicating the UNIBUS is still in use. In 
this case, the UNIBUS remains connected .to the CPU. However, if the 
CPU does not respond to the interrupt within the time limit imposed by 
the DT07's watchdog timer, the UNIBUS is switched to the requesting 
CPU. Thus, a CPU that is not operating remains connected to the 
UNIBUS only until another CPU requests the UNIBUS. 

Each DT07 UNIBUS switch port functions as an isolation circuit. 
its power is off, it does not affect any CPU operation. 

24.1. 2 UNIBUS Switch Driver 

When 

The UNIBUS switch driver allows you to use the UNIBUS switch in one of 
two ways: 

1. A CPU retains the UNIBUS until the task issuing the 
directives that connected the UNIBUS to this CPU exits. This 
is normally accomplished when the task attaches the UNIBUS 
switch (IO.ATT function) and issues the connect function 
(IO.CON). When the task exits (for any reason), the system 
detaches the UNIBUS switch (IO.OET) and performs an implicit 
disconnect function (IO.OIS), releasing the UNIBUS switch for 
use by any other task. 

24-1 



UNIBUS SWITCH DRIVER 

The task that attaches the UNIBUS switch can 
the manager of the UNIBUS switch until the 
task can receive ASTs for certain conditions 
switching (see Section 24.3.1.1). 

be considered 
task exits. The 
involving UNIBUS 

2. A CPU retains the UNIBUS until a task is executed that 
explicitly disconnects the UNIBUS. This is normally 
accomplished when a task issues the IO.CON function and no 
previous IO.ATT was issued. Once the UNIBUS is connected, 
the task exits. The UNIBUS then remains connected until 
either the CPU fails to respond to other CPU requests for the 
UNIBUS, or a task is executed that explicitly disconnects the 
UNIBUS. Note that when operating in this manner, no active 
task is required to retain the UNIBUS. 

24.2 GET LUN INFORMATION MACRO 

Word 2 of the buffer filled by the Get LUN Information ,sy~tE~m" 
directive ,(the first characteristics word) contains alIOs •. Words 3, .. 
4, and 5 are undefined. 

24.3 010$ MACRO 

This section summarizes standard and device-specific 010 functions for 
UNIBUS switches. 

24.3.1 Standard 010 Functions 

Table 24-1 lists the standard functions of the 010 macro tha~ are 
valid for UNIBUS switches. 

ast 

Table 24-1 
Standard 010 Functions for UNIBUS Switches 

OIO$C 

OIO$C 

OIO$C 

Format 

IO.ATT, ••• ,<[ast]> 

IO.DET, ••• 

IO.KIL, ••• 

Function 

ATTACH device 

Detach device 

Cancel I/O requests 

The address of an optional AST routine that is entered if certain 
conditions are detected (see Section 24.3.1.1) 

IO.ATT does not connect the UNIBUS switch (see device-specific 
function IO.CON). 

IO.DET detaches the UNIBUS switch from the task. If the UNIBUS switch 
was previously attached by the IO.CON function, an implied disconnect 
(IO.DIS) function is performed. 

24-2 

( 

( 

( 



c 

c 

UNIBUS SWITCH DRIVER 

The only I/O requests that can be affected by the IO~KIL function are 
IO.CON and IO.OPT. When IO.KIL is issued during an IO.CON function, 
further retries are canceled. When IO.KIL is issued during an IO.OPT 
function, the time-out count is changed, forcing time-out (IE.TMO) to 
occur. 

24.3.1.1 IO.ATT - The IO.ATT 010 function attaches the UNIBUS switch 
to the task issuing the 010 directive. An optional AST address 
parameter can be specified. However, if it is specified, it must 
remain valid while the UNIBUS switch remains attached to the task. 

The AST service routine for the UNIBUS switch is entered when one of 
the following conditions occur: 

• The UNIBUS switch has become connected to another CPU because: 

1. The operator manually switched the UNIBUS to another CPU, 
or 

2. This CPU failed to respond to another CPU's request for 
the UNIBUS within the specified time (the CPU must 
acknowledge the request by servicing an interrupt, as 
described in Section 24.1.l). 

UNIBUS switch condition code 1 is passed to the AST routine by 
the stack, indicating the cause of the AST. 

• The UNIBUS switch has disconnected from the CPU because: 

1. A power failure 
failure) anq the 
reconnect the bus 

occurred 
UNIBUS 

in this CPU 
switch driver 

(system power 
was unable to 

2. A power failure occurred on the connected UNIBUS, causing 
the driver to disconnect the UNIBUS 

UNIBUS switch condition code 2 (for.a system power failure) or 
condition code 3 (for a UNIBUS power failure) is passed to the 
AST routine by the stack indicating the cause of the AST. 

24.3.1.2 IO.OET - The IO.OET function detaches the issuing task from 
the UNIBUS switch, and in addition, performs an implied disconnect for 
the issuing task if that task had connected the UNIBUS. switch. A 
detach function is generated by the Executive on behalf of an attached 
task if that task exits (.normally or abnormally) without explicitly 
detaching the device •. For a switched UNIBUS, this causes it to be 
disconnected if ~n attached, connected task faults in such a way as to 
cause it to exit. 

24.3.1.3 IO.KIL - The IO.KIL function cancels any outstanding IO.CON 
function that has a nOnzero retry count and any outstanding IO.OPT 
function that has not yet timed out. Other 010 functions in progress 
are not affected by IO.KIL, and are completed. 

24:-3 



UNIBUS SWITCH DRIVER 

24.3.2 Device-Specific QIO Functions 

The device-specific functions of the QIO macro that are valid for 
UNIBUS switches are shown in Table 24-2. 

Table 24-2 
Device-Specific QIO Functions for UNIBUS Switches 

Format Function 

QIO$C 

QIO$C 

QIO$C 

IO.CON, ••• ,< [rcnt] , [cpu] > 

IO.DIS, ••• ,< [tout] , [port] > 

IO.DPT, ••• ,<[tout] ,[port]> 

Connect UNIBUS switch 

Disconnect UNIBUS switch 

Disconnect UNIBUS switch 
from specified CPU port 

QIO$C IO.SWI, ••• ,<cpu> Switch the UNIBUS from 
current CPU to specified CPU 

QIO$C IO.CSR,~ •• Read UNIBUS switch CSR 

rcnt 

cpu 

port 

tout 

The number of additional times the connect is attempted if the 
IO.CON fails to complete. 

The ASCII letter designating the CPU to receive the UNIBUS 
switch. 

The port number, ranging from 0 through ,3, .of the target CPU that 
must request the bus prior to the CPU that is currently connected 
to the UNIBUS actually completing the disconnect. The port 
number corresponds to the four MANUAL CONNECT switch positions 
(PORT 0 through PORT 3) marked on the DT07 control panel. 

The maximum time (in seconds) allowed (253. maximum) for the 
function to be completed before an error condition is reported. 

Parameter details are included in the following sections. 

24.3.2.1 IO.CON - The IO.CON (connect) function requests connection 
of a UNIBUS presently not connected to a specified CPU. It can be 
issued either by a task previously attached with the IO.ATT function 
or by a task· that is not attached. The IO.CON function has four 
optional parameters. The use of each parameter is described as 
follows. 

Retry Count -- The retry count specifies the number of additional 
times the connect function is attempted if the IO.CON fails to 
complete within the time-out period of the UNIBUS switch. Retry count 
parameters used in this manner are always nonzero positive values. 

24-4 

c 

( 



( 

( 

( 

UNIBUS SWITCH DRIVER 

The IO.CON function is not completed until either the retry count 
expires or the UNIBUS switch is successfully connected. Thus, the 
issuing task having a nonzero retry count is not checkpointed until 
the IO.CON function is completed. 

When a retry count of 0 is specified, the connect function attempts to 
connect the UNIBUS switch once (no retries) and immediately reports 
the directive status to the issuing task. 

When a retry count of 177777 (-1) is specified, the connect function 
continues to retry the connection until a successful connection is 
made or an IO.KIL function is issued. 

CPU -- You can use the CPU parameter only with loosely coupled 
multiprocessor systems to specify the CPU to which the UNIBUS switch 
should be connected. A loosely coupled system is one in which memory 
resources are not shared by more than one CPU. Use this function only 
when the UNIBUS switch is presently not connected (you should use the 
IO.SWI function to disconnect the UNIBUS switch from a connected 
closely coupled CPU and connect it to a specified closely coupled 
CPU). Specify the CPU by a single ASCII letter (A, B, C, or D) • 

24.3.2.2 IO.DIS - The IO.DIS function disconnects the switched UNIBUS 
from the currently connected CPU. 

NOTE 

If your task issues the IO.DIS or IO.DPT function, it 
must determine that all devices on the switched UNIBUS 
are inactive when it issues the function. The UNIBUS 
switch driver does not check for active devices on the 
UNIBUS before completing either the IO.DIS or IO.DPT 
function. 

24.3.2.3 IO.DPT - Use the IO.DPT function in a loosely coupled 
multiprocessor system to allow the UNIBUS to be connected to another 
CPU on a specified port if the CPU requests connection within a 
specified time interval. A loosely coupled system is one in which 
memory resources are not shared by more than one CPU. (Refer to the 
note at the end of Section 24.3.2.2.) 

Time-out -- The time-out parameter specifies the maximum time allowed 
for the function to complete before an error is reported. Time-out 
specifications are positive, nonzero values ranging from 1 to 254 
seconds. The default time-out value is 2 seconds. If the CPU 
parameter is included in the IO.DPT function, the driver waits for the 
specified CPU to request the UNIBUS up to the specified time-out 
value. If the CPU does not request the UNIBUS during this time, the 
UNIBUS remains connected and the IE.TMO status is returned to the 
issuing task. 

24-5 



UNIBUS SWITCH DRIVER 

If a time-out value of 0 is specified, the IO.DIS function does not 
complete until either the successful disconnect occurs, or an IO.KIL 
function is issued. 

Port -- You can use the port parameter only with loosely coupled 
multiprocessor systems to specify the port through which the UNIBUS 
switch should be connected to a CPU. Specify the port by a number 
ranging from 0 through 3. 

24.3.2.4 IO.SWI - The IO.SWI function disconnects the UNIBUS switch 
from the currently connected CPU and connects it to the specified CPU 
in a closely coupled system. The CPU parameter is required. 

IO.SWI is executed without the possibility of a third CPU taking 
control of the UNIBUS during the switching process. 

Us~ the CPU parameter in closely coupled multiprocessor systems to 
specify the CPU to which the UNIBUS switch should be connected. 
Specify the CPU by a single ASCII letter (A, B, C, or D). 

24.3.2.5 IO.CSR - The IO.CSR function reads maintenance information 
contained in the device CSR and returns it in the second word of the 
I/O status block. Information returned is valid only if the UNIBUS 
switch is connected. Limit the use of this function to diagnostic 
applications. 

24.4 POWER-FAIL RECOVERY 

24.4.1 System Power-Fail Recovery 

During power-fail recovery, the driver attempts to restore the state 
of the system prior to the actual power failure. If the UNIBUS switch 
is found to be disconnected during power-fail recovery, the driver 
attempts to reconnect the switched· UNIBUS. If the first attempt to 
reconnect the UNIBUS is not successful, an entry is made in the error 
log and the attached task is notified of the UNIBUS switch state by 
the AST spe6ified in the IO.ATT function (if pr~vious1y issued). 

If an IO.CON function was in progress when the power failure occurred 
and a retry count was pending; the UNIBUS switch driver attempts to 
successfully connect the UNIBUS switch until the retry count expires. 

If an IO.DIS or IO.DPT function waS in progress when the power failure 
occurred, .the UNIBUS switch driver attempts to complete the operation. 

24.4.2 UNIBUS Power-Fail Recovery 

If an interrupt is received from the UNIBUS switch indicating a power 
failure has occurred on the switched UNIBUS, the driver issues an 
immediate disconnect (IO.DIS). The attached task (if any) is notified 
by the AST. Note that the system may be corrupted if some of the I/O 
devices on the switched UNIBUS were active when the power failure 
occurred, because the drivers for those I/O devices may attempt to 
access the device registers after the switched UNIBUS (and I/O 
devices) has become disconnected. 

24-6 

( 

( 

( 



( 

c 

( 

UNIBUS SWITCH DRIVER 

24.5 STATUS RETURNS 

Table 24-3 lists the error and status conditions that are returned by 
the UNIBUS switch driver. 

Code 

IS.SUC 

IS.PND 

IE.ABO 

IE.BAD 

IE.CNR 

IE.DAA 

IE.DNA 

IE.IFC 

Table 24-3 
UNIBUS Switch Driver Status Returns 

Reason 

Successful completion 

The operation specified in the QIO directive was 
completed successfully. 

I/O request pending 

The operation specified in the QIO directive has not 
yet been executed. The I/O status block is filled 
wi th Os. 

Request aborted 

An I/O request was queued (not yet acted upon by the 
driver) when an IO.KIL was issued. 

Bad parameters 

The parameters specified in the QIO macro were in 
error. 

Connect rejected 

The connect function did not successfully connect the 
switched UNIBUS to the specified CPU, and the retry 
count, if specified, has expired. 

Device already attached 

The device specified in an IO.ATT function was 
already attached by the issuing task. This code 
indicates that the issuing task has already attached 
the desired physical device unit, not that the unit 
was attached by another task. 

Device not attached 

The physical device unit specified in an IO.DET 
function was not attached by the issuing task. This 
code has no bearing on the attachment status of other 
tasks. 

Illegal function 

A function code was specified in an I/O request that 
is illegal for the UNIBUS switch driver. 

(continued on next page) 

24-7 



Code 

IE.NOD 

IE.OFL 

IE.SPC 

IE.TMO 

UNIBUS SWITCH DRIVER 

Table 24-3 (Cont.) 
UNIBUS Switch Driver Status Returns 

Reason 

Insufficient buffer space 

Dynamic storage space has been depleted, resulting in 
insufficient buffer space available to allocate 
either the I/O packet or the device list buffer. 

Device off line 

The physical device unit associated with the LUN 
specified in the QIO directive (the UNIBUS switch) 
was not on line, or the CPU specified in the IO.CON 
or IO.SWI was not on line. 

Illegal address space 

The buffer specified in the IO.CON function was 
partially or totally outside the address space of the 
issuing task. 

Time-out error 

The time-out count expired during an IO.DPT operation 
before the target CPU requested the UNIBUS. This 
error code is also returned when the DT03/DT07 
hardware fails to respond to a request due to a 
hardware failure. 

24.6 FORTRAN USAGE 

FORTRAN tasks can use all of the QIO functions described for the 
UNIBUS switch driver, except AST support is not provided (IO.ATT 
function with an AST address specified). You can write a macro 
subroutine, which the FORTRAN task can call, that specifies the AST 
address. 

24-8 

( 



( 

( 

( 

APPENDIX A 

SUMMARY OF I/O FUNCTIONS 

This appendix summarizes valid I/O functions for all device drivers 
described in this manual. Both devices and functions are listed 
alp:tlabetically. The meanings of the five parameters represented by 
the ellipsis ( ••• ) are described in Section 1.5.1. The meanings of 
the function-specific parameters shown below are discussed· in the 
appropriate driver chapters. The user may reference these functions 
symbolically by invoking the sys.tem macros FILIO$ (standard I/O 
functions) andSPCIO$ (special I/O functions), or by allowing them to 
be defined at task-build time from the system object library. 

A.l ANALOG-TO-DIGITAL CONVERTER DRIVERS 

IO.KIL, ••• Cancel I/O requests 

IO.RBC, ••• ,<stadd,size,stcnta> Initiate an A/D conversion 

A.2 CARD READER DRIVER 

IO.ATT, ••• 

IO.DET, ••• 

IO.KIL, ••• 

IO.RDB, ••• ,<stadd,size> 

IO.RLB, ••• ,<stadd,size> 

IO.RVB~ ••• ,<stadd,size> 

A.3 CASSETTE DRIVER 

IO.ATT, ••• 

IO.DET, ••• 

IO.EOF, ••• 

IO.KIL, ••• 

IO.RLB, ••• ,<stadd,size> 

Attach device 

Detach device 

Cancel I/O requests 

Read logical block (binary) 

Read logical block (alphanumeric) 

Read virtual block (alphanumeric) 

Attach device 

Detach device 

write end-of-file gap 

Cancel I/O requests 

Read logical block 

A-l 



SUMMARY OF I/O FUNCTIONS 

IO.RVB, ••• ,<stadd,size> 

IO.RWD, ••• 

IO.SPB, ••• ,<nbs> 

IO.SPF, ••• ,<nes> 

IO.WLB,.;.,<stadd,size> 

IO.WVB, ••• ,<stadd,size> 

Read virtual 

Rewind tape 

Space blocks 

Space files 

Write logical 

write virtual 

block 

block 

block 

A.4 COMMUNICATION DRIVERS (MESSAGE-ORIENTED) 

IO.ATT, ••• 

IO.DET, ••• 

IO.FDX, ••• 

IO.HDX, ••• 

IO.INL, ••• 

IO.KIL, ••• 

IO.RLB, ••• ,<stadd,size> 

IO.RNS, ••• ,<stadd,size> 

IO.SYN, ••• ,<syn> 

IO.TRM, ••• 

IO.WLB, ••• ,<stadd,size> 

IO.WNS, ••• ;<stadd,size> 

A.S DECTAPE DRIVER 

IO.RLB, ••• ,<stadd,size",lbn> 

IO.RLV, ••• ,<stadd,size",lbn> 

IO.RVB, ••• ,<stadd,size",lbn> 

IO.WLB, ••• ,<stadd,size",lbn> 

IO.WLV, ••• ,<stadd,size",lbn> 

IO.WVB, ••• ,<stadd,size",lbn> 

A.6 DECTAPE II DRIVER 

IO.ATT ••• 

IO.DET, ••• 

Attach device 

Detach device 

Set device to full-duplex mode 

Set device to half-duplex mode 

Initialize device and set device 
characteristics 

Cancel I/O requests 

Read logical block, stripping 
sync characters 

Read logical block, transparent mode 

Specify sync character 

Terminate communication, disconnecting 
from physical channel 

Write logical block with sync leader 

Write logical block, no sync leader 

Read logical block (forward) 

Read logical block (reverse) 

Read virtual block (forward) 

Write logical block (forward) 

Write logical block (reverse) 

Write virtual block (forward) 

Attach device 

Detach device 

A-2 

( 

( 

c 



( 

( 

( 

----.=-----=--==-

SUMMARY OF I/O FUNCTIONS 

IO.KIL, ••• 

IO.RLB, ••• ,<stadd,size",lbn> 

IO.WLB, ••• ,<stadd,size",lbn> 

IO.WLC, ••• ,<stadd,size",lbn> 

IO.RLC, ••• ,<stadd,size",lbn> 

IO.BLS, ••• ,<lbn> 

IO.DGN, ••• 

A. 7 DEUNA DRIVER 

IO.XOP, ••• ,<pl,p2,p3> 

IO.XSC, ••• ,<pl,p2> 

IO.XIN, ••• ,<pl> 

Cancel I/O requests 

Read logical block 

Write logical block. 

write logical block with check 

Read logical block with check 

position tape 

Run internal diagnostics 

Open a Line 

Set Characteristics (Ethernet) 

Initialize The Line 

IO.XRC, ••• ,<pl,p2,p3,p4,[p5,p6]> Receive a Message on The Line 

IO.XTM, ••• ,<pl,p2,p3,p4,[p5,p6]> Transmit a Message on The Line 

10. XCL, ••• Close The Line 

IO.XTL+subfunction, ••• Control function 

A.8 DISK DRIVER 

IO.RLB, ••• ,<stadd,size"blkh,blkl> Read logical block 

Read physical block 

Read virtual block 

IO.RPB, ••• ,<stadd,size",pbn> 

IO.RVB, ••• ,<stadd,size"blkh,blkl> 

----------

IO.SEC, ••• ,<stadd,size,pbn> 

IO.SMD, ••• ,<density,,> 

Sense characteristics (RX02) only 

IO.WDD, ••• ,<stadd,size",pbn> 

IO.WLB, ••• ,<stadd,size"blkh,blkl> 

IO.WLC, ••• ,<stadd,size"blkh,blkl> 

IO.WPB, ••• ,<stadd,size",pbn> 

IO.WVB, ••• ,<stadd,size"blkh,blkl> 

A.9 GRAPHICS DISPLAY DRIVER 

IO.ATT, ••• 

IO.CON, ••• ,<stadd,size,lpef,lpast> 

A-3 

Set media density (RX02 only) 

Write physical block (with 
deleted data mark) 

write logical block 

write logical block followed 
by write check 

Write physical block 

write virtQal block 

Attach device 

Connect to graphics device 



SUMMARY OF I/O FUNCTIONS 

IO.CNT, ••• 

IO.DET, ••• 

IO.DIS, ••• 

IO.KIL, ••• 

IO.STP, ••• 

A.IO INDUSTRIAL CONTROL SUBSYSTEMS 

Continue (restart display-
proces.sing uni t) 

Detach device 

Disconnect from graphics device 

Cancel I/O requests 

Stop (halt 
unit) 

display-processing 

All I/O functions listed below apply to the ICS/ICR subsystem. The 
five functions supported by the DSS/DRSII subsystem driver are marked 
by (D). 

IO.CCI, ••• ,<stadd,sizb,tevf> 

IO.CTI, ••• ,<stadd,sizb,tevf,arv> 

IO.CTY, ••• ,<stadd,sizb,tevf> 

IO.DCI, ••• 

IO.DTI, ••• 

IO.DTY, ••• 

IO.FLN, ••• 

IO.ITI, ••• ,<mn,ic> 

IO.LDI, ••• ,<tname,,[tevf),pn,csm> 

Connect a buffer to digital 
interrupts 

Connect a buffer to counter 
interrupts 

Connect -a buffer- to terminal 
interrupts 

Disconnect a buffer from digital 
interrupts 

Disconnect a buffer from counter 
interrupts 

Disconnect a buffer from terminal 
interrupts 

Set controller off line 

Initialize a counter 

Link task to digital interrupts 
(D) 

IO.LKE, ••• ,<tname" [tevf) > Link task to error interrupts 

IO.LTI, ••• ,<tname,,[tevf) ,cn,[arv» Link task to counter interrupts 

IO.LTY, ••• ,<tname,,[tevf» 

IO.MLO, ••• ,<opn,pp,dp> 

IO.MSO, ••• ,<opn,dp> 

IO.NLK, ••• ,<tname> 

IO.NLN, ••• 

IO.RAD, ••• ,<stadd> 

A-4 

Link task to remote 
interrupts 

terminal 

Open or close bistable digital 
output points (D) 

Pulse single-shot digital output 
points 

Unlink a task from all interrupts 
(D) 

Place ICR controller on line-

Read activating data (D) 

( 

( 



( 

( 

( 

SUMMARY OF I/O FUNCTIONS 

IO.RBC, ••• ,<stadd,size,stcnta) Initiate multiple A/D conversions 

IO.SAO, ••• ,<chn,vout) 

IO.UDI, ••• ,<tname) 

Perform analog output 

Unlink a task 
interrupts (D) 

from digital 

IO.UER, ••• ,<tname) Unlink a task from error 

IO.UTI, •• ~,<tname) 

IO.UTY, ••• ,<tname) 

IO.WLB, ••• ,<staddb,sizb) 

interrupts 

Unlink a task from counter 
interrupts 

Unlink a task from terminal 
interrupts 

Transmit data to the ICR remote 
terminal 

A.ll LABORATORY PERIPHERAL ACCELERATOR DRIVER 

IO.CLK, ••• ,<mode,ckcsr,preset) 

IO.INI, ••• ,<irbuf,278.) 

IO.LOD, ••• ,<mbuf,2048.'> 

IO.STA, ••• ,<bufptr,40.> 

IO.STP, ••• ,<userid) 

A.l2 LABORATORY PERIPHERAL SYSTEMS DRIVERS 

IO.ADS, ••• ,<stadd,size,pnt, Perform A/D sampling 
ticks,bufs,chna> 

IO.HIS, ••• ,<stadd,size,pnt, Perform histogram sampling 
ticks,bufs) 

IO.KIL,... Cancel I/O requests 

IO.LED, ••• ,<int,num)· Display number in LED lights 

IO.MDA, ••• ,<stadd,size,pnt, Perform D/A output 
ticks,bufs,chnd) 

IO.MDI, ••• ,<stadd,size,pnt, Perform digital input sampling 
ticks,bufs,mask) 

IO.MDO, ••• ,<stadd,size,pnt, Perform digital output 
ticks,bufs,mask) 

IO.REL, ••• ,<rel,pol) Latch output relay 

IO.SDI, ••• ,<mask) Read digital input register 

IO.SDO, ••• ,<mask,data) write digital output register 

IO.STP, ••• ,<stadd) stop in-progress request 

A-5 



SUMMARY OF I/O FUNCTIONS 

A.13 LINE PRINTER DRIVER 

IO.ATT, ••• 

IO.DET, ••• 

IO.KIL, ••• 

IO.WLB, ••• ,(stadd,size,vfc> 

IO.WVB, ••• ,(stadd,size,vfc> 

A.14 MAGNETIC TAPE DRIVER 

IO.ATT, ••• 

IO.DET, ••• 

IO.DSE, ••• 

IO.EOF, ••• 

IO.ERS, ••• 

IO.KIL, ••• 

IO.RLB, ••• ,(stadd,size> 

IO.RLV, ••• ,(stadd,size> 

IO.RVB, ••• ,<stadd,size> 

IO.RWD, ••• 

IO.RWU, ••• 

IO.SEC, ••• 

IO.SMO, ••• ,(cb> 

IO.SPB, ••• ,(nbs> 

IO.SPF, ••• ,(nes> 

IO.STC, ••• ,(cb> 

IO.WLB, ••• ,(stadd,size> 

IO.WVB, ••• ,(stadd,size> 

Attach device 

Detach device 

Cancel I/O requests 

write logical 

Write virtual 

Attach device 

Detach device 

block 

block 

Data security erase (TKSO/TU8l only) 

Write end-of-file (tape mark) 

Er.ase (TEIO and TUlO not supported) 

Cancel I/O requests 

Read logical block 

Read logical block reverse 

Read virtual block 

Rewind tape 

Rewind and tur.n unit off line 

Read tape characteristics 

Mount tape and set tape characteristics 

Space blocks 

Space files 

Set tape characteristics 

Write logical block 

Write virtual block 

A.lS PAPER TAPE READER/PONCH DRIVERS 

IO.ATT, ••• Attach device 

IO.DET, ••• Detach device 

IO.KIL, ••• Cancel I/O Requests 

IO.RLB, ••• ,(stadd,size> Read logical block (reader only) 

IO.RVB, ••• ,(stadd,size>. Read virtual block (reader only) 

A-6 

( 

( 

( 



( 

( 

( 

... ~ __ ~_______ --------------==--:-=-~-:::::O~--=~ 

SUMMARY OF I/O FUNCTIONS 

IO.WLB, ••• ,<stadd,size> 

IO.WVB, ••• ,<stadd,size> 

write logical block (punch only) 

write virtual block (punch only) 

A.l6 PARALLEL COMMUNICATION LINK DRIVERS 

A.16.l Transmitter Driver Functions 

IO.ATX, ••• ,<stadd,size,flagwd, Attempt message transmission 
id,retries,retadd> 

IO.STC,.~.,<stadd,size,[state]~ Set master section characteristics 
[mode] , , retadd> 

IO.SEC, ••• , Sense master section status 

A.16.2 Receiver Driver Functions 

IO.CRX, ••• ,<tef> Correct for reception 

IO.ATF, ••• ,<stadd,size,retadd> Accept transfer 

10. RTF,. • • Reject transfer 

IO.DRX,... Disconnect from reception 

A.17 TERMINAL DRIVER 

IO.ATA, ••• ,<ast,[parameter2] Attach device, specify unsolicited-

,[ast2]> characterAST 1 

IO.ATT,... Attach device 

IO.CCO, ••• ,<stadd,size,vfc> write logical block, cancel CTRL/O 

IO.DET,... Detach device 

IO.EIO!TF.RLB, ••• ,<stadd,size> Extended I/O Read Functions 2 

IO.EIO!TF.WLB, ••• ,<stadd,size> Extended I/O Write Functions 2 

IO.GTS, ••• ,<stadd,size> Get terminal support 

IO.HNG, ••• Hangup remote line 

IO.KIL, ••• Cancel I/O requests 

IO.RAL, ••• ,<stadd,size,[tmo]> Read logical 

characters 1 

block· 

IO.RLB, ••• ,<stadd,size,[tmo]> Read logical block 1 

and pass all 

1. "ast2", "parameter2", and "tmo" parameters are available for 
full-duplex driver functions only. 

2. Full-duplex driver only. 

A-7 



SUMMARY OF I/O FUNCTIONS 

IO.RNE, ••• ,(stadd,size,[tmo]> Read logical block and do not echo 1 

IO.RPR, ••• ,(stadd,size,[tmo], Read after pr~mpt 1 
pradd,prsize,vfc> 

IO.RST, ••• ,(stadd,size,[tmo]> Read with special terminators 

IO.RTT, ••• ,(stadd,size,[tmo], Read logical block ended by specified 
table> special terminator 2 

IO.RVB, ••• ,(stadd,size,[tmo]> Read virtual block 1 

IO.WAL, ••• ,(stadd,size,vfc> Write logica~ block and pass 
characters 

all 

IO.WBT, ••• ,(stadd,size,vfc> Write logical block and break through 
any ongoing I/O 

IO.WLB, ••• ,(stadd,size,vfc> write logical block 

IO.WVB, ••• ,(stadd,size,vfc> Write virtual block 

SF.GMC, ••• ,(stadd,size> Get multiple characteristics 

SF.SMC, ••• ,(stadd,size> Set multiple characteristics 

Subfunction bits for terminal-driver functions: 

TF.AST 

TF.BIN 

TF.CCO 

TF.ESQ 

TF.NOT 

TF.RAL 

TF.RCU 

TF.RDI 

Unsolicited-input-character AST 

Binary prompt 

Cancel CTRL/O 

Recognize escape sequences 

Unsolicited input AST notification 1 

Read, pass all characters 

Restore cursor position 1 

Read with default input (IO.EIO function only) 2 

TF.RES Read with escape sequence processsing enabled (IO.EIO 

function only) 2 

TF.RLB 

TF.RLU 

TF.RNE 

TF.RNF 

TF.RPR 

TF.RPT 

Read logical block (IO.EIO function only) 2 

Read and convert from lower- to upper-case (IO.EIO 
function only) 2 

Read with no echo 

Read with no filter (IO.EIO function only) 2 

Read after prompt (IO.EIO function only) 2 

Read in pass-through mode (10. EIO function only) 2 

1. "ast2", "parameter2", and "tmo ,i pat:ameters are available for 
full-duplex driver functions only. 

2. Full-duplex driver only. 

A-8 

c 

( 

( 



c 

( 

( 

SUMMARY OF I/O FUNCTIONS 

TF.RST Read ,with special terminators 

TF.RTT Read with specified special terminator table (IO.EIO 
function only) 2 

TF.TMO Read with time-out 1 

TF .. WAL Write, pass all bits 

TF.WBT Break-through write 

TF.WIR Write with input redisplayed 

TF.XCC CTRL/C starts a command line interpreter 1 

TF.XOF Send XOFF 

1. "ast2", "parameter2", and "tmo" parameters are available for 
full-duplex driver functions only. 

2. Full-duplex driver only. 

A.lS UNIBUS SWITCH DRIVER 

IO.ATT, ••• ,<[ast]) 

IO.DET, ••• 

IO.KIL, ••• 

IO.CON, ••• ,<[rcnt],[cpu]> 

QIO$C IO.DIS, ••• , 

IO.DPT, ••• ,<[tout],[port]> 

IO.SWI, ••• ,<cpu> 

IO.CSR, ••• 

Attach device 

Detach device 

Cancel I/O requests 

UNIBUS switch 

Disconnect UNIBUS switch 

Disconnect UNIBUS switch and connect 
to specified CPU port 

Switch UNIBUS from current CPU to 
specified CPU 

Read UNIBUS switch CSR 

A.19 UNIVERSAL DIGITAL CONTROLLER DRIVER 

IO.CCI, ••• ,<stadd,sizb,tevf> 

IO.CTI, ••• ,<stadd,sizb,tevf,arv> 

IO.DCI, ••• 

IO.DTI, ••• 

IO.ITI, ••• ,<mn,ic> 

Connect a buffer to contact 
interrupts 

Connect a buffer to timer 
interrupts' 

Disconnect a buffer from contact 
interrupt 

Disconnect a buffer from tImer 
interrupts 

Initialize a timer 

A-9 



SUMMARY OF I/O FUNCTIONS 

IO.KIL, ••• 

IO.MLO, ••• ,<opn~pp,dp> 

IO.RBC, ••• ,<$tadd,size,stcnta> 

A.20 VIRTUAL TERMINAL DRIVER 

IO.ATT, ••• 

IO.DET, ••• 

IO.KIL, ••• 

IO.RLB, ••• ,<stadd,size> 

IQ.RVB, ••• ,<stadd,size> 

IO.WLB, ••• ,<stadd,size,stat> 

IO.WVB, ••• ,<stadd,size,stat> 

IO.STC, ••• ,-<cb,sw2,swl> 

Caricel I/O requests 

Open or close latching digital 
output points 

Initiate multiple A/D conversions 

Attach device 

Detach device 

Cancel I/O request 

Read logic;:al block 

Read virtual block 

Write logical block 

write virtual block 

Set terminal characteristics (enabl~/ 
disable intermediate buffering, or 
return I/O completion status) 

A-lO 

c 

( 

( 



( 

( 

( 

APP.ENDIXB 

I/O FUNCTION AND STATUS CODES 

This appendix lists the numeric codes for all I/O functions, directive 
status returns, and I/O completion status returns. Lists are 
organized in the following sequence: 

• I/O completion status codes 

• Directive status codes 

• Device-independent I/O function codes 

• Device-dependent I/O function codes 

Device-dependent function codes are listed by device. 
and codes are organized in alphabetical order. 

Both devices 

For each code, the symbolic name is listed in form IO .• xxx, IE.xxx, or 
IS.xxx. A brief description of the error or function is also 
included. Both decimal and octal values are provided for all codes. 

B.l I/O STATUS CODES 

This section lists error and success codes which can be returned in 
the I/O status block on completion of an I/O function. The codes 
below may be referenced symbolically by invoking the system macro 
IOERR$. 

B.1.l I/O Error Status Codes. 

Name Decimal Octal Meaning 

IE.2DV -48 177720 Rename--two different devices 

IE.ABO -15 177761 Operation aborted 

IE.ALC -84 177654 Allocation failure 

IE.ALN -34 177736 File already open 

IE.BAD -01 177777 Bad parameter 

IE.BBE -56 177710 Bad block on device 

IE.BCC -66 177676 Block check error or framing error 

IE.BDI -52 177714 Bad directory syntax 

B-1 



Name 

IE.BDR 

IE.BDV 

IE BHD 

IE.BLB 

IE.BLK 

IE.BNM 

IE.BTF 

IE.BTP 

IE.BVR 

IE.BYT 

IE.CKS 

IE.CLO 

IE.CNR 

IE.CON 

IE.DAA 

IE.DAO 

IE.DFU 

IE.DIS 

IE. DNA 

IE.DNR 

IE.DSQ 

IE. DUN 

IE.DUP 

IE.EOF 

IE.EOT 

IE.EOV 

IE.EXP 

IE.FEX 

IE.FHE 

IE.FLG 

Decimal 

-50 

-55 

-64 

-70 

-20 

-54 

-76 

-43 

-63 

-19 

-30 

-38 

-96 

-22 

-08 

-13 

-24 

-69 

-07 

-03 

-90 

-09 

-57 

-10 

-62 

-11 

-75 

-49 

-59 

-89 

I/O FUNCTION AND STATUS CODES 

Octal 

177716 

177711 

177700 

177672 

177754 

177712 

177664 

177725 

177701 

177755 

177742 

177732 

177640 

177752 

177770 

177763 

177750 

177673 

177771 

177775 

177646 

177767 

177707 

177766 

177702 

177765 

177665 

177717 

177705 

177647 

Meaning 

Bad directory file 

Bad device name 

Bad file header 

Bad logical buffer 

Invalid block number 
Logical block number too large 

Bad 'file name 

Bad tape format 

Bad record type 

Bad version number 

Odd byte count (or virtual address) 
Byte-aligned buffer specified 

File header. checksum failure 

File was not properly closed 

Connection rejected 

UDC connect error 

Device already attached 

Data overrun 

Device full 

Path lost to partner 

Device not attached 

Device not ready 

Disk quota exceeded 

Device not attachable 

Enter--duplicate entry in 
directory 

End-of':"fi1e encountered 

End-of-tape encountered 

End-of-volume encountered 

File expiration date not reached 

Rename--a new file name already 
in use 

Fatal hardware error 

Event flag already specified 

B-2 

( 

c 

(\ 



( 

( 

( 

Hame 

IE.FLN 

IE. FOP 

IE.HFU 

IE. ICE 

IE.IES 

IE.IFC 

IE.IFU 

IE. ILL 

IE.IQU 

IE.ISQ 

IE.LCK 

IE.MIl 

IE.MOD 

IE.NBF 

IE.NBK 

IE.NDA 

IE. NOR 

IE.NFI 

IE.NFW 

IE.NLK 

IE.NLN 

IE.NNC 

IE.NNN 

IE.NNT 

IE. NOD 

IE. NSF 

IE.NST 

IE.NRJ 

IE.NTR 

IE.OFL 

Decimal 

-81 

-53 

-28 

-47 

-82 

-02 

-25 

-42 

-91 

-61 

-27 

-99 

-21 

-39 

-41 

-78 

-72 

-60 

-69 

-79 

-37 

-77 

-68 

-94 

-23 

-26 

-80 

-74 

-87 

-65 

I/O FUNCTION AND STATUS CODES 

Octal 

177657 

177713 

177728 

177721 

177656 

177776 

177747 

177726 

177645 

177703 

177745 

177635 

. 177753 

177731 

177727 

177662 

177670 

177704 

177673 

177661 

177733 

177663 

177674 

177642 

177751 

177746 

177660 

177666 

177651 

177677 

Meaning 

Device already offline 

File already open 

File header full 

Internal consistency error 

Invalid escape sequence 

Invalid function code 

Index file full 

Invalid operation on file 
descriptor block 

Inconsistent qualifier usage 

Invalid sequential operation 

Locked from read/write access 

Media inserted incorrectly 

Invalid UDC or ICS/ICR module 

No buffer space available for file 

File exceeds space allocated, 
no blocks 

No data available 

No dynamic space available 

File 10 was not specified 

Path lost to partner 

Task not linked to specified 
ICS/ICR interrupts 

No file accessed on LUN 

Not ANSI "0" format byte count 

No such node 

Not a network task 

Caller's nodes exhausted 
No dynamic memory available 

No such file 

Specified task not installed 

Network connection reject 

Task not triggered 

Device off line 

B-3 



Name 

IE.ONL 

IE.ONP 

IE.OVR 

IE.PES 

IE.PRI 

IE.RAC 

IE.RAT 

IE.RBG 

IE.RCN 

IE.REJ 

IE.RER 

IE.RES 

IE.RNM 

IE.RSU 

IE.SNC 

IE.SPC 

IE.SPI 

IE.SQC 

IE.SRE 

IE.STK 

IE.SZE 

IE.TML 

IE.TMO 

IE.UKN 

IE.ULK 

IE.URJ 

IE.VER 

IE.WAC 

IE.WAT 

Decimal 

-67 

-05 

-18 

-83 

... 16 

-44 

-45 

-40 

-46 

-88 

-32 

....,92 

-51 

-17 

-35 

-06 

-100 

-36 

-14 

-58 

-98 

-93 

-95 

-97 

-85 

-73 

-04 

-29 

-31 

I/O FUNCTION AND STATUS CODES 

Octal 

177675 

177773 

177756 

177655 

177760 

177724 

177723 

177730 

177722 

177650 

177740 

1'77644 

177715 

177757 

177735 

177772 

177634 

177734 

177762 

177706 

177636 

177643 

077641 

177637 

177653 

177667 

177774 

177743 

177741 

Meaning 

Device on line 

Hardware option not present 

Invalid read overlay request 

Partial escape sequence 

Privilege violation 

Invalid record access bits set 

Invalid record attribute bits set 

Invalid record size 

Invalid record number--too large 

Transfer rejected by receiving CPU 

File processor device read error 

Circuit reset during operation 

Cannot rename old file system 

Shareable resource in use 

File 10, file number check 

Inva1iq user buffer 

Spindown ignored 

File 10, sequence number check 

Send/receive failure 

Not enough stack space 
(FCS or FCP) 

Unable to size device 

Too many links to task 

Time-out on request 

Unknown name 

Unlock error 

Connection rejected by user 

Parity error on device 

Accessed for write 

Attribute control list format 
error 

B-4 

( 

( 



( 

( 

( 
---

I/O FUNCTION AND STATUS CODES 

Name Decimal Octal Meaning 

IE.WCK -86 177652 Write check error 

IE.WER -33 177737 File processor device write error 

IE.WLK -12 177764 write-locked device 

B.l. 2 I/O Status Success Codes 

Decimal Octal 
Name Bytes Word Meaning 

IS.CR Byte 0: 1 006401 Successful completion with 
Byte 1: 15 carriage return 

IS.CC Byte 0: 1 001401 Successful completion og 
Byte 1: 3 read terminated by CTRL/C 

IS. ESC Byte 0: 1 015401 Successful completion 
Byte 1: 33 with ESCape 

IS.ESQ Byte 0: 1 115401 Successful completion with 
Byte 1: 233 an escape sequence 

IS.PND +00 000000 I/O request pending 

IS.RDD +02 000002 Deleted data mark read 

IS.SUC +01 000001 Successful completion 

IS.TMO +02 000002 Successful completion on 
read terminated by time-out 

IS.TNC +02 000002 Successful transfer but 
message truncated (receiver 
buffer too small) 

B.2 DIRECTIVE CODES 

This section lists error and success codes that can be returned in the 
directive status word at symbolic location $DSW when a QIOdirective 
is issued. 

B.2.1 Directive Error Codes 

Name Decimal Octal Meaning 

IE.ACT -07 177771 Task not active 

IE.ADP -98 177636 Invalid address 

IE.ALG -84 177654 Alignment error 

IE.AST -80 177660 Directive issued/not issued 
from AST 

IE.CKP -10 177766 Issuing task not checkpointable 

B-5 



Name Decimal 

IE.FIX -09 

IE.HWR -06 

IE.IBS -89 

IE. IOU -92 

IE.IEF -97 

IE.ILU -96 

IE.ILV -19 

IE. INS -02 

IE. lOP -83 

IE.IPR -95 

IE.ITI -93 

IE.ITP -88 

IE. ITS -08 

IE. IUI -91 

IE.LNL -90 

IE.MAP -81 

IE.NSW -18 

IE.NVR -86 

IE.NVW -87 

IE.PNS -94 

IE.PTS -03 

IE.PRI -16 

.IE.RBS -15 

IE.RSU -17 

IE.SDP -99 

IE.TCH -11 

IE.ULN -05 

IE •. UNS -04 

IE. UPN. -01 

IE.WOV -85 

I/O FUNCTION AND STATUS CODES 

Octal 

177767 

177772 

177647 

177644 

177637 

177640 

177755 

177776 

177655 

177641 

177643 

177650 

177770 

177645 

177646 

177657 

177756 

177652 

177651 

177642 

177775 

177760 

177761 

177757 

177635 

177765 

177773 

177774 

177777 

177653 

B-6 

Meaning 

Task already fixed/unfixed 

Device handler not resident 

Invalid send 
(.GT. 255.) 

buffer 

Invalid device or unit 

size 

Invalid event flag (.GT. 64.) 

Invalid logical unit number 

Invaild vector specified 

Specified task not installed 

Window has I/O in progress 

Invalid priority (.GT. 250.) 

Invalid time parameters 

Invalid TI parameter 

Directive inconsistent 
task state 

Invalid UIC 

LUN locked in use 

Invalid mapping specified 

No swap space available 

Invalid region ID 

Invalid address window ID 

with 

Partition/region not in system 

Partition too small for task 

Privileged violation 

Receive buffer is too small 

Resource in use 

Invalid DIC number or DPB size 

Task is checkpointable 

Unassigned LUN 

Insufficient dynamic 
for send 

storage 

Insufficient dynamic storage 

Address 
overflow 

window allocation 

( 

( 



( 

c 

( 

I/O FUNCTION AND STATUS CODES 

B.2.2 Directive Success Codes 

Name Decimal Octal Heaning 

IS.SUC +01 000001 Directive accepted 

B.3 I/O FUNCTION CODES 

This section lists octal codes for all standard and device-dependent 
I/O functions. 

B.3.l Standard I/O Function Codes 

Symbolic Code Subcode 
Name Word Equivalent (High Byte) (Low Byte) 

IO.ATT 

IO.DET 

IO.KIL 

IO.RLB 

IO.RVB 

IO.WLB 

IO.WVB 

001400 

002000· 

000012 

001000 

010400 

000400 

011000 

3 

4 

o 

2 

21 

1 

22 

o 

o 

12 

o 

o 

o 

o 

Meaning 

Attach device 

Detach device 

Cancel I/O requests 

Read logical block 

Read virtual block 

Write logical block 

write virtual block 

B .• 3. 2 SpecificA/D Converter I/O Function Codes - RSX-llM-PLUS Only 

Symbolic Code Subcode 
Name Word Equivalent (High Byte) (Low Byte) 

IO.RBC 003000 6 o 

Heaning 

Ini tiate an A/D 
conversion 

B.3.3 Specific Card Reader I/O Function Codes - RSX-llM-PLUS Only 

Symbolic 
Name 

IO.RDB 

Code Subcode 
Word Equivalent (High Byte) (Low Byte) 

001200 2 200 

Heaning 

Read logical block 
(binary) 

B.3.4 Specific Cassette I/O Function Codes - RSX-llM-PLUS Only 

Symbolic Code Subcode 
Name Word Equivalent (High Byt~) (Low Byte) Heaning 

IO.EOF 003000 6 0 Write end-of-file 
gap 

IO.RWD 002400 5 0 Rewind tape 

B-7 



I/O FUNCTION AND STATUS CODES 

Symbolic Code Subcode 
Name Word Equivalent (High Byte) (Low Byte) Meaning 

IO.SPB 002420 5 20 Space blocks 

IO.SPF 002440 5 40 Space files 

B. 3. 5 Specific Communication (Message-Oriented) I/O Function Codes 
, RSX-IIM-PLU$ Only 

Symbolic Code Subcode 
Name Word Equivalent (High Byte) (Low Byte) Meaning 

IO.FOX 003020 6 20 Set device to 
full-duplex mode 

IO.HOX 003010 6 10 Set device to 
half-duplex mode 

IO.INL 002400 5 0 Initialize device 
and set device 
characteristics 

IO.RNS 001020 2 20 Read logical block, 
transparent mode 

IO.SYN 003040 6 40 Specify sync 
character 

IO.TRM 002410 5 10 Terminate 
,communication, . 
disconnecting from 
physical channel 

IO.WNS 0004~0 1 20 write logical block 
with no sync leader 

B. 3. 6 Specific OECtape I/O Function Codes - RSX-IIM-PLUS Only 

Symbolic Code Subcode 
Hame Word Equivalent (High Byte) (Low Byte) 

IO.RLV 001100 2 100 

IO.WLV 000500 1 100 

B.3.7 Specific DEC tape II I/O Function Codes 

Symbolic Code Subcode 
Name Word Equivalent (High Byte) (Low Byte) 

IO.WLC 000420 1 20 

IO.RLC 001020 2 20 

5-8 

Meaning 

Read logical block 
(reverse) 

Write logical block 
(reverse) 

Meaning 

Write logical block 
with check 

Read logical block 
with check 

( 

( 

( 



I/O FUNCTION AND STATUS CODES 

Symbolic Code Subcode 

( 
Name Word Equivalent (High Byte) (Low Byte) Meaning 

10.BLS 004010 10 10 Position tape 

10.DGN 004150 10 150 Run internal 
diagnostics 

B.3.8 Specific Disk I/O Function Codes 

Symbolic Code Subcode 
Name Word Equivalent (High Byte) (Low Byte) Meaning 

10.RPB 001040 2 40 Read physical block 
(RXOl, RLOl, RL02 
only) 

10.SEC Sense 
characteristics 
(RX02 only) 

000000 0 0 Single Density 

040000 100 0 Double Density 

10.SMD 002510 5 110 Set media density 
(RX02 only) 

10.WOD 001140 1 140 Write physical block 
with deleted data 

( mark (RX02 only) 

10.WLC 001020 1 20 Write logical block 
followed by write 
check (all except 
RXOl, RX02) 

10.WPB 000440 1 40 Write physical block 
(RXOl, RX02, RLOl, 
RL02 only) 

B.3.9 Specific Graphics 
Only 

Display I/O Function Codes RSX-llM-PLUS 

Symbolic Code Subcode 
lIame Word Equivalent (High Byte) (Low Byte) Meaning 

10.CON 015400 33 00 Connect to graphics 
. device 

10.CNT 017000 36 00 Continue DPU 

10.DIS 016000 34 00 Disconnect from 
graphics device 

10.STP 016400 35 00 Stop DPU 

( 

B-9 



-
-------~~-------. ---- --- ------- ----- --

I/O FUNCTION AND STATUS CODES 

B.3.l0 Specific ICS/ICR, DSS/DR I/O Function Codes RSX-1lM-PLUS 
Only 

Symbolic Code Subcode 
Harne Word Equivalent (High Byte) (Low Byte) Meaning 

IO.CCI 

IO.CTI 

IO.CTY 

IO.DCI 

IO.DTI 

IO.DTY 

IO.FLN 

IO.ITI 

IO.LDI 

IO.LKE 

IO.LTI 

IO.LTY 

IO.MLO 

IO.MSO 

IO.NLK 

IO.ONL 

IO.RAD 

IO.RBC 

014000 

015400 

003400 

014400 

016000 

006400 

012400 

017000 

007000 

012000 

007400 

010000 . 

006000 

005000 

011400 

017400 

010400 

003000 

30 

33 

7 

31 

34 

15 

25 

36 

16 

24 

17 

20 

14 

12 

23 

37 

21 

6 

B-lO 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

Connect a buffer to 
digital interrupt 
input . 

Connect a counter 

Connect a remote 
terminal 

Disconnect a buffer 
from digital 
interrupt input 

Disconnect a buffer 
from counter input 

Disconnect a buffer 
from terminal input 

Place selected unit 
off line 

Initialize a counter 

Link a task to 
digital interrupts 

Link a task to error 
interrupts 

Link a task to 
counter interrupts 

Link a task to 
terminal interrupts 

Open or close 
bistable digital 
output points 

Pulse single-shot 
digital output 
points 

Unlink a task from 
all unsolicited 
interrupts 

Place selected unit 
on line 

Read task activation 
data 

Initiate multiple 
A/D conversions 

c 

( 

( 



I/O FUNCTION AND STATUS 'CODES 

Symbolic Code Subcode 

( 
--- Name Word Equivalent (High Byte) (Low Byte) Meaning 

IO.SAO 004000 10 0 Perform analog 
output to specified 
channel 

IO.UDI 011410 23 10 Unlink a task from 
digital interrupts 

IO.UER 011440 23 40 Unlink a task from 
error interrupts 

IO.UTI 011420 23 20 Unlink a task from 
counter interrupts 

IO.UTY 011430 23 30 Unlink a task from 
terminal interrupts 

IO.WLB 000400 1 0 Output to remote 
terminal 

B.3.11 Specific LPA11-K I/O Function Codes - RSX-11M-PLUS Only 

Symbolic Code Subcode 
Harne Word Equivalent (High Byte) (Low Byte) Meaning 

IO.CLK 015000 32 0 Start clock 

IO.INI 014400 31 0 Initialize LPA11-K 

( IO.LOD 014000 30 0 Load microcode 

IO.STA 015400 33 1 Start transfer 

IO.STP 016400 35 0 Stop request 

B.3.12 Specific LPS I/O Function Codes - RSX-1lM-PLUS Only 

Symbolic Code Subcode 
Name Word Equivalent (High Byte) (Low Byte) Meaning 

IO.ADS 014000 30 0 Initialize A/D 
sampling 

IO.HIS 015000 32 0 Ini tialize histogram 
sampling 

IO.LED 012000 24 0 Display number in 
LED lights 

IO.MDA 016000 34 0 Initialize D/A 
outpu.t 

IO.MOI 014400 31 0 Initialize digital 
input sampling 

IO.MOO 015400 33 0 Initialize digital 

( output 

IO.REL 013400 27 0 Latch output relay 

B-11 



I/O FUNCTION AND STATUS CODES 

Symbolic Code Subcode 
Name Word Equivalent (High Byte) (Low Byte) Meaning 

IO.SOI 013000 26 0 Read digital input 
register 

IO.SOO 012400 25 0 write digital output 
register 

IO.STP 016400 35 0 Stop in-progress 
request 

B.3.13 Specific Magnetic Tape I/O Function Codes 

Symbolic Code Subcode 
Name Word Equivalent (High Byte) (Low Byte) Meaning 

IO.OSE 003040 6 40 Data security erase 
(TK50 only) 

IO.EOF ,003000 6 0 Write end-of-file 
gap 

IO.RLV 001100 2 100 Read logical block 
(reverse) 

IO.RWD 002400 5 0 Rewind tape 

IO.RWU 002540 5 140 Rewind and unload 

IO.SEC 002520 5 120 Sense 
characteristics 

IO.SMO 002560 5 160 Mount and set 
characteristics 

IO.SPB 002420 5 20 Space blocks 

IO.SPF 002440 5 40 Space files 

IO.STC 002500 5 100 Set characteristics 

B.3.14 Specific Parallel Communications Link I/O Function Codes 
RSX-llM-PLUS Only 

B.3.l4.l Transmitter Driver Functions -

Symbolic Code Subcode 
Name Word Equivalent (High Byte) (Low Byte) Meaning 

IO.ATX 000400 1 0 Attempt message 
transmission 

IO.STC 002500 5 100 Set master section 
characteristics 

IO.SEC 002520 5 120 Sense master section 
status 

B-12 

( 

( 

C 



I/O FUNCTION AND STATUS CODES 

B.3.l4.2 Receiver Driver Functions -

(~ Symbolic Code Subcode 
Name Word Equivalent (High Byte) (Low Byte) Meaning 

IO.CRX 014400 31 0 Connect for 
reception 

IO.ATF 001000 2 0 Accept transfer 

IO.RTF 015400 33 0 Reject transfer 

IO.DRX 001500 32 0 Disconnect from 
reception 

B.3.l5 Specific Terminal I/O Function Codes 

Symbolic Code Subcode 
Name Word Equivalent (High Byte) (Low Byte) Meaning 

IO.ATA 001410 3 10 Attach device, 
specify 
unsolicited-input-
character AST 

IO.CCO 000440 1 40 Write logical block 
and cancel CTRL/O 

IO.EIO 017400 37 0 Extended I/O 

( IO.GTS 002400 5 00 Get terminal support 

IO.HNG 003000 6 0 HANGUP remote line 

IO.RAL 001010 2 10 Read logical block 
and pass all bits 

IO.RNE 001020 2 20 Read with no echo 

IO.RPR 004400 11 00 Read after prompt 

IO.RST 001001 2 1 Read with special 
terminators 

IO.RTT 005001 12 1 Read logical block 
ended by specified 
special terminator 
(Full-duplex driver 
only) 

IO.WAL 000410 1 10 Write logical block 
and pass all bits 

IO.WBT 00()500 1 100 Write logical b16ck 
and bre.ak through 
on-going I/O 

SF.GMC 002560 5 160 Get m\lltiple 
characteristics 

( 

B-l3 



I/O FUNCTION AND STATUS CODES 

Code Subcode Symbolic 
Name Word Equivalent (High Byte) (Low Byte) Meaning 

Set multiple 
characteristics 

SF.SMC 002440 

Subfunction Bits: 

with IO.RLB, IO.RPR: 

TF.RST 
TF.BIN 
TF.RAL 
TF.RNE 
TF.XOF 
TF.TMO 

With IO.WLB: 

TF.RCU 
TF.WAL 
TF.CCO 
TF.WBT 
TF.WIR 

with IO.ATT: 

TF.XCC 
TF.NOT 
TF.AST 
TF.ESQ 

With IO.EIO: 

TF.WLB 
TF.RCU(l) 
TF.CCO(l) 
TF.WAL(l) 
TF.WBT(l) 
TF.WIR(l) 

000001 
000001 
000040 
000010 
000100 
000200 

5 

000001 
000002 
000010 
000020 
000100 
000200 

000001 
000010 
000040 
000100 
000200 

000001 
000002 
000010 
000020 

TF.RLB 
TF.RLU(2) 
TF.RTT(2) 
TF.RST(2) 
TF.BIN(2) 
TF.RAL(2) 
TF.RNE(2) 
TF.XOF(2) 
TF.TMO(2) 
TF.RES(2) 
TF.RPR(2) 
TF.RPT(2) 
TF.RNF(2) 
TF.TNE(2) 
TF.RDI(2) 

40 

000002 
000010 
000400 
000001 
000002 
000010 
000020 
000100 
000200 
010000 
002000 
004000 
020000 
040000 
100000 

1. Modifiers of the IO.EIO!TF.WLB subfunction. These are 
specified by you in the item-list buffer. 

2. Modifiers of the IO.EIOITF.~LB subfunction. These are 
specified by you in the item-list buffer. 

B-14 

c 

( 

,( 



( 

C 

( 

----------------
---------

I/O FUNCTION AND STATUS CODES 

B.3.l6 Specific UDC I/O Function Codes - RSX-llM-PLUS Only 

Symbolic 
Name 

IO.CCI 

IO.CTI 

IO.DCI 

IO.DTI 

IO.ITI 

IO.MLO 

IO.RBC 

Code Subcode 
Word Equivalent (High Byte) (Low Byte) 

014000 

015400 

014400 

016000 

017000 

006000 

003000 

30 

33 

31 

34 

36 

14 

6 

o 

o 

o 

o 

o 

o 

o 

Meaning 

Connect a buffer to 
contact interrupt 
digital input 

Connect a timer 

Disconnect a buffer 
from contact 
interrupt digital 
input 

Disconnect a timer 

Initialize a timer 

Open or close 
latching digital 
output points 

Initiate multiple 
A/D conversions 

B.3.l7 Specific UNIBUS Switch I/O Function Codes - RSX-llM-PLUS Only 

Symbolic Code Subcode 
Name Word Equivalent (High Byte) (Low Byte) Meaning 

IO.CON 15400 33 0 Connect UNIBUS 
switch 

IO.DIS 16000 34 0 Disconnect UNIBUS 
switch 

IO.DPT 16010 34 10 Disconnect UNIBUS 
switch and connect 
to specified CPU 
port 

IO.SWI 16400 35 0 Switch UNIBUS from 
current CPU to 
specified CPU 

IO.CSR 15000 32 0 Read UNIBUS switch 
CSR 

B.3.l8 Specific Virtual Terminal I/O Function Codes 

Symbolic 
Name 

IO.STC 

Code Subcode 
Word Equivalent (High Byte) (Low Byte) 

002500 5 100 

B-15 

Meaning 

Set terminal 
characteristics 



( 



( 

( 

c 

APPENDIX C 

QIO$ INTERFACE TO THE. ACPS 

This appendix describes the QIO$ level interface to the file 
processors (ACPS). These include FllACP for Files-ll disks and MTAACP 
for ANSI magnetic tape. 

FllACP supports the following functions: 

IO.CRE 
IO.DEL 
IO.ACR 
IO.ACW 
IO.ACE 
IO.DAC 
IO.EXT 
IO.RAT 
IO.WAT 
IO.FNA 
IO.RNA 
IO.ENA 
IO.ULK 

Create file 
Delete file 
Access file for read only 
Access file for read/write 
Access file for read/write/extend 
Deaccess file 
Extend file 
Read file attributes 
Write file attributes 
Find file name in directory 
Remove file name from directory 
Enter file name in directory 
Unlock block . 

MTAACP supports the following fu~ctions: 

IO.FNA 
IO.ENA 
IO.ACR 
IO.ACW 
IO.ACE 
IO.DAC 
IO.RVB 
IO.WVB 
IO.EXT 
IO.CRE 
IO.RAT 
IO.APC 
IO.APV 

Find file by name 
Enter name in directory (a no-op) 
Access for read only 
Access for read/write 
Access for read/write/extend 
Deaccess file 
Read virtual block 
write virtual block 
Extend file 
Create file 
Read attributes 
ACP control 
Privileged ACP control 

C-l 



QIO$ INTERFACE TO THE ACPS 

C.l QIO$ PARAMETER LIST FORMAT 

The device-independent part of a file process'ing 010$ parameter list 
is identical to all other 010$ parameter lists. The general 010 
parameter list is described in detail in Section 1.6 of this manual. 
The file processor OIO$s require the following six additional words in 
the parameter lists: 

Parameter Word 1 Address of a 3-word block containing the 
file identifier 

Parameter Word 2 Address of the attribute list· 

Parameter Words 3 & 4 Size and extend control information 

Parameter Word 5 

Parameter word 6 

Window size information 
control 

and 

Address of the file name .block 

NOTE 

The Micro/RSX Executive treats File Identifier Blocks, 
filename blocks, and attribute list entries as 
read/write data. For this reason, they may not be· 
used in read-only code segments or libraries. 

C.l.l File Identification Block 

The File Identification Block is a 3-word block 
number and the file sequence number. The 
Identification Block is shown in Figure C-l. 

File number 

File sequence number 

Reserved 

ZK-4095-85 

containing 
format of 

Figure C-l File Identification Block 

the 
the 

access 

file 
File 

FllACP uses the file number as an index to the file header in the 
index file. Each time a header block is used for a new file, the file 
sequence number is incremented. This insures that the file header is 
always unique. The third word is not currently used but is reserved 
for the future. 

C.l.2 The Attribute List 

The file attribute list controls FllACP reads or writes. File 
attributes are fields in the file header. These fields are described 
in detail in the RSX-llM/M-PLUS and Micro/RSX I/O Operations Reference 
Manual. 

C-2 

c 

( 

( 



( 

( 

010$ INTERFACE TO THE ACPS 

The attribute list contains a variable number of entries terminated by 
an all-O byte. The maximum number of entries in the attribute list is 
six. 

An entry in the attribute list has the following format: 

.BYTE 
• WORD 

<Attribute type>, Attribute size 
Pointer to the attribute buffer 

C.1.2.1 The Attribute Type - This field identifies the individual 
att~ibute to be read or written. The sign of the attribtite type code 
determines whether the transfer is a read or write operation. If the 
type code is negative, the ACP reads the attribute into the buffer. 
If the type code is positive, the ACP writes the attribute to the file 
header. Note that the sign of the type code must agree with the 
direction implied by the operation. For example, if the type code is 
positive, the operation must be an IO.WAT or IO.DAC. 

The attribute type is one of the following: 

• File owner (H.FOWN) 

The file owner UIC is a binary word. The low byte is the 
owner number and the high byte is the group number. 

• File protection (H.FPRO) 

The file protection word is a bit mask with the following 
format: 

Each of.the fields contains four bits, as follows: 

Bit 1 
Bit 2 
Bit 3 
Bit 4 

Read Access 
write Access 
Extend Access 
Delete Access 

• File characteristics (H.UCHA) 

The following user characteristics are currently contained in 
the 1-byte H.UCHA field: 

UC.CON = 200 
UC.DLK = 100 

Logically contiguous file 
File improperly closed 

• Record I/O Area (U.UFAT) 

This field contains a copy of the first seven words of the 
file descriptor block. (RMS uses 32 bytes. The first seven 
are compatible with FCS for sequential files.) See the 
RSX~llM/M-PLUS and Micro/RSX I/O Operations Reference Manual 
for a description of the FDB. ---

• File name (I.FNAM) 

The file name is stored as nine Radix-50 characters. the 
fourth word of this block contains the file type and the 
fifth word contains the version number. 

• File type (I.FTYP) 

( The file type is stored as three Radix-50 characters. 

',,-.. 

C-3 



QIO$ INTERFACE TO THE ACPS 

• Version number (I.FVER) 

The version number is stored as a binary number. 

• Expiration date (I.EXDT) 

Creation date (I.CRDT) 
Revision date (I.RVDT) 

The expiration date is currently unused. When the file is 
created, the ACP initializes the creation date to the current 
date and time. It initializes the expiration and reVISIon 
dates to O. The ACP sets the revision date to the current 
date and time each time the file is deaccessed. 

• Statistics block 

This block is described in the RSX-llM/M-PLUS and Micro/RSX 
I/O Operations Reference Manual. 

• Read entire file header 

This buffer is assumed to be 1000 blocks long. 
write this attribute. 

You cannot 

• Revision number (I.RVNO) 

The ACP sets the revision number to 0, and increments it 
every time the file is deaccessed. 

• Placement Control 

C.l. 2. 2 Attribute Size - This byte specifies the number of bytes of 
the attribute to be transferred. Legal values are from 1 to the 
maximum size of the particular attribute. Table C-l shows the maximum 
size for each attribute type. 

Attribute 
Type Code 

1 

2 

3 

4 

5 

6 

7 

10 

Table C-l 
Maximum Size for Each File Attribute 

Attribute 
Type 

File owner 

Protection 

File characteristics 

Record I/O area 

File name,type,version number 

File type 

Version number 

Expiration date 

C-4 

Maximum 
Attribute Size 
in Octal Bytes 

6 

4 

2 

40 

12 

4 

2 

7 

(Continued on next page) 

( 

( 

( 



/ 

( 

( 

QIO$ INTERFACE TO THE ACPS 

Table C-l (Cont. ) 
Maximum Size for Each File Attribute 

Maximum 
Attribute Attribute Attribute Size 
Type Code Type in Octal Bytes 

11 Statistics block 12 

12 Entire file header 0 

13 Block size (magtape only) 

15 Revision number and 
creation/revision/expiration dates 43 

16 Placement control 16 

C.l.2.3 Attribute Suffer Address - The attribute buffer address field 
contains the address of the buffer in the user's task space to or from 
which the attribute is to be transferred. 

C.l.3 Size and Extend Control 

These two parameters specify how many blocks the 
allocates to a new file or adds to an existing file. 
also control the type of block allocation. 

The format is as follows: 

.BYTE <High 8 bits of size>, <extend control> 

.WORD <Low 16 bits of size> 

file processor 
These parameters 

The size field specifies the number of blocks to be allocated to a 
file on IO.CRE and IO.EXT operations, and the final file size on 
IO.DEL operations. 

The extend control field 
operation is to be done. 

controls the manner in which an 
The following bits are defined: 

extend 

EX.AC1=1 

EX.AC2=2 

EX. FCO=4 

EX.ADF=lO 

EX.ALL=20 

EX.ENA=200 

The extend size is to be added as a contiguous 
block. 

Extend by the largest available contiguous piece up 
to the specified size. 

The file must end up contiguous. 

Use the default rather than the specified size. The 
default extend size is the size that was specified 
when the volume was mounted. 

Placement control (see Section C.2). 

Enable extend. 

C-5 



---
- -,---- -- - "-~-- ,,----- --~~.- _.". -._-_.----

QIO$ INTERFACE TO THE ACPS 

C.l.4 Window Size and Access Control 

This parameter specifies the window size 
information in the following format: 

and access control 

.BYTE <window size>, <access control> 

This word is only processed if the high bit of the access control byte 
(AC.ENB) is set. 

Window size is the number of mapping entries. Specifying a negative 
window size mlnlmizes window turns. If this byte is zero, the file 
processor uses the volume default. The size of the window allocated 
in the dynamic storage region is 6 times the number of mapping entries 
(each mapping entry is 3 words), plus 10 bytes for the window control 
block. 

On Micro/RSX systems with secondary pool support, the mapping entries 
are allocated in secondary pool. The window control block and a 
pointer to secondary pool are located in primary pool. 

The following access control bits are defined: 

Bit 

AC.LCK=l 

AC.DLK=2 

AC.LKL=4 

AC.EXL=lO 

AC.ENB=200 

AC.RWD=lO 

AC.UPD=lOO 

AC.POS=20 

AC.WCK=40 

Definition 

Lockout further accesses for Write or Extend 

Enable deaccess lock 

The deaccess lock sets the lock bit in the file header 
if the file is deaccessed as the result of a task 
exit without explicitly deaccessing the file. The 
lock bit is set by the executive. The lock bit is not 
set when the system crashes. 

Enable block locking 

Enable explicit block unlocking 

Enable access 

Rewind the volume (labeled and unlabeled magtape only) 

update mode (labeled magtape only) 

Do not position to end-of-volume (labeled magtape 
only) 

Initiate driver write-checking 

NOTE 

Both AC.LKL and AC.EXL must be set if you want 
block locking. If you do not want block 
locking, both bits must be clear. Any other 
combination is an error. 

C.l. 5 File Name Block Pointer 

This word contains the address of a 15-word block in the 
task's space. This block is called the file name block. 
name block is described in detail in the RSX-llM/M-PLUSand 
I/O Operations Reference Manual. 

C-6 

issuing 
The file 

Micro/RSX 

( 

c 

( 



( 

( 

( 

QIO$ INTERFACE TO THE ACPS 

The fields of the file name block that are particularly important in 
file-processing operations are: 

• Directory identification (N.DID) 

This field is required for all disk operations. 
the directory to which the operation applies. 
not used for tape operations. 

• File identification (N.FID) 

It specifies 
This field is 

This field is required as input for enter operations. This 
field is returned as output by find and remove operations. 

• File name (N.FNAM), type (N.FTYP), and version number (N.FVER) 

These fields are required as input to enter, find, and remove 
operations. For find and remove operations, the file 
processor locates the appropriate entry by matching the 
information in these fields with the directory entries. 

• Status word (N.STAT) 

• Wildcard context (N.NEXT) 

This field is required as input for wildcard operations. It 
specifies the point at which to resume processing. It is 
updated for the next operation. It must initially be set to 
O. 

C.2 PLACEMENT CONTROL 

The placement control attribute list entry controls the placement of a 
file in a particular place on the disk. You can specify either exact 
or approximate placement on IO.CRE and IO.EXT operations. 

The placement control entry must be the first entry in the attribute 
list. 

The format of the placement control attribute list entry is as 
follows: 

.BYTE placement control,O 

.WORD high-order bits of VBN or LBN 

.WORK low-order bits of VBN or LBN 

.BLKW 4 Buffer to receive starting and ending LBN if 
AL.LBN is set. 

The following bits are defined for the placement control field: 

Bit 

AL.VBN=1 

AL.APX=2 

AL.LBN=4 

Definition 

Set if block specified is a VBN; otherwise, the 
block is the LBN 

Set if you want approximate placement; 
otherwise, placement is exact 

Set if you want starting and ending LBN information 

C-7 



QIO$ INTERFACE TO THE ACPS 

C.3 BLOCK LOCKING 

Block locking only occurs when the user accesses a file with AC.LKL 
and AC.EXL set in the access control byte of the parameter list. Any 
read or write operation causes a check to see if the block is locked. 

A write access locks a block for exclusive access. A write operation 
can only access a block that is not locked by any accessor. The only 
exception to this is an exact match with a previous lock owned by the 
same accessor. 

A read access locks a block for shared access. A read operation can 
access any block locked for shared access. 

The user must unlock a block with an explicit unlock request, IO.ULK. 
IO.ULK may be used to unlock one or all blocks. 

If all accessors to a file have not requested block locking, the 
F11ACP returns an error (see Table C-2). 

When the file is deaccessed, all locks owned by the accessor are 
released. 

Each active lock requires eight bytes from the dynamic storage region. 
~his storage is deallocated when the file is deaccessed. 

C.4 SUMMARY OF FllACP FUNCTIONS 

The following is a summary of the functions implemented in F11ACP. A 
list of accepted parameters follows each function. All parameters are 
required unless specified as optional. Parameters other than those 
listed are illegal for that function and must be O. 

IO.CRE 

#2 

Create file 

The file identifier block is filled in with the file 
identifier and sequence number of the created file. 

Write attribute and/or 
(optional) 

placement control list 

#3 & #4 Extend control (optional) 

The ~mount allocated to the file is returned in the 
high byte of IOST(l) plus IOST(2). 

#5 May be nonzero but must be disabled 

IO.DEL Delete or truncate file 

#1 Optional if the file is accessed 

#3 & #4 Size to truncate the file to. If not enabled, the 
file is deleted. If enabled, the remaining 31 bits 
specify the size the file is to be after truncation. 
The change in file allocation is returned in the high 
byte of IOST(l) plus IOST(2). This amount will be 
zero or negative. 

IO.ACR Access file for read only 

IO.ACW Access file for read/write 

C-8 

( 

( 

( 



IO.ACE 

( 

IO.CAC 

IO.EXT 

IO.RAT 

( IO.FNA 

IO.RNA 

IO.ENA 

IO.ULK 

IO.RVB 

IO.WVB 

( 

#l 

#2 

#5 

#l 

#2 

#5 

#l 

#2 

___ •• __ •. ___ ._.~ ___ .0----'---=-__ . -,--'--_ .. _._._ ... 

QIO$ INTERFACE T.O THE ACPS 

Access file for read/write/extend 

File identifier pointer 

Read attributes control (optional) 

Access control must be enabled 

Ceaccess file 

File identifier pointer (optional) 

Write attributes control list 

May be nonzero but must be disabled 

Extend file 

Optional if file is accessed 

Placement control attribute list (optional) 

#3 & #4 Extend control 

#l 

#2 

#5 

#6 

#2 

The amount allocated to the file is returned in the 
high byte of IOST(I) plus IOST(2). 

Read 'attributes 

Optional if file is accessed 

Read attributes control list 

Find name in directory 

Remove name from directory 

Enter name in directory 

May be nonzero but must be disabled 

File name block pointer 

Unlock block 

o or count of blocks to unlock 

#4 & #5 Starting VBN to unlock or 0 to unlock all blocks. 

#l 

#2 

Read virtual block 

write virtual block 

User buffer 

Buffer length 

:fI:4 & # 5 VBN 

C-9 



QIO$ INTERFACE TO THE ACPS 

C.5 SUMMARY OF MTAACP FUNCTIONS 

The following is a summary of the functions implemented in MTAACP. A 
list of accepted parameters follows each function. All parameters are 
required unless specified as optional. Parameters other than those 
listed are illegal for that function and must be O. 

IO.FNA Find file by name 

#5 AC.RWD set in the access control byte indicates 
that the volume is to be rewound prior to the 
search. 

#6 Pointer to file name block. 
The following fields are used as input: 

N.FNAM 
N.FTYP 
N.FVER 
N.STAT 

The following fields are returned by MTAACP: 

N.FID 
N.FNAM 
N.FTYP 
N.FVER 
N.STAT 

IO.ENA Enter name in dire~tory -- a no-op for magnetic tape 

IO.ACR Access for read only 

#1 File identifier pointer. Used to position a 
tape by file identifier. 

#2 Read attribute list (optional) 

#5 Ignored 

IO.ACW Access for read/write 

This function will be rejected with the error 
code IE.PRI. (Extend access is required.) 

IO.ACE Access for read/write/extend 

#1 File identifier pointer. Used to position tape 
by file identifier. 

#2 Read attribute list (optional) 

#5 AC.UPD (update mode). If AC.UPD is set, the 
tape will be positioned to overwrite the file 
and all files beyond the current file will be 
lost. If AC.UPD is not set, the tape will be 
positioned for append. If the file is not the 
last file, MTAACP returns the error code 
IE.ISQ. 

IO.DAC Deaccess file 

#1 File identifier pointer is ignored. 

#5 AC.RWD set indicates that the volume is to be 
rewound after the file is closed. 

C-I0 

( " . 

( 

( 



( 

( 

QIO$ INTERFACE TO THE ACPS 

IO.RVB Read virtual block 

u Buffer address 

#2 Buffer size. The buffer size must be greater 
than 18 bytes and less than the declared block 
length for the entire file. 

#4 High VBN 

#5 LowVBN 

The virtual block number must be either zero or exactly one 
greater than the previous block number. 

IO.CRE Create File 

#1 File identifier pointer. The file sequence and 
section number will be returned to the user's 
file identifier block. 

#2 Attribute list pointer. Used to write the 
attributes for the newly created file. 
Attribute type code must be positive. 

#5 If AC.RWD is set, the volume will be positioned 
at the beginning and ~il1 overwrite the ~irst 
file. This effectively reinitializesthe 
volume. 

If AC.RWD is not set and AC.POS is set, the 
volume set will be positioned to the next file 
position beyond the current file and will 
overwrite that file. All files beyond that on 
the volume will be destroyed. 

If neither AC.RWD nor AC.POS is set, the volume 
set will be positioned at its end and the new 
file will be appended to the set. 

For unlabeled tapes, MTAACP only checks AC.RWD. 

#6 Filename block pointer. 

IO.RAT Read Attributes 

#1 File identifier pointer. Used to position the 
tape by the file identifier. 

#2 Attribute list pointer (see Section C.l.2) 

The following attribute list 
meaningful for magnetic tape: 

entries 

1,2 
1,4 
1;5 
2,2 
2.3 
3,1 
4,32 
5,6 
5,8 
5,10 
6,2 

UIC 
UIC and protection 
UIC, protection, and characteristics 
Protection 
Protection ~nd characteristids 
Characteristics 
User file attributes 
File name 
File name and type 
File name and type 
File type 

C-ll 

are 



QIO$ INTERFAGE TO THE ACPS 

6,4 
7,2 
8,7 
-9,10 
-10,0 
11,2 

File type and version number 
Version number 
Expiration date 
Statistics block (read only) 
Entire header (read only) 
Block size 

IO.APC ACP Control 

#3 One of the following user control function 
codes: 

1 Rewind volume set. 
2 position to end .of volume set. 
3 Close current volume and continue 

processing the next section 6f the same 
file on the next volume of the volume 
set. 

4 Space physical records in currently 
accessed file. 

S Get ACP characteristics. 
6 Rewind current file. 

IO.APV Privileged ACP Control 

This function is 
commands. This 
therefore, will 
release. 

used only by the MOUNT and DISMOUNT 
interface is subject to change and, 

not be documented until a future 

C.6 HOW TO USE THE ACP QIO$ FUNCTIONS 

Although the operations described in this appendix are normally 
performed by the file-access methods (RMS and FCS), your application 
may issue the ACP QIO$s. The required parameters for each QIO$ are 
described 1n the preceding section. The necessary steps for common 
operations are described in the following section: 

NOTE 

The file identifier is the only way to refer to a 
file. 

C.6.1 Creating a File 

To create a file: 

• Use IO.CRE to create it. 

• Enter it in the Master File Directory (MFD) or a user 
directory with IO.ENA. 

C-12 

( 

( 

c 



( 

( 

( 

QIO$ INTERFACE TO THE ACPS 

C.6.2 Opening a File 

To open a file: 

• Use IO.FNA to find the File Identifier of the directory in the 
MFD. 

• Use IO.FNA to find the File Identifier of the file in the 
directory. 

• Access the file with IO.ACR, IO.ACW; or IO.ACE. 

C. 6. 3 Closing a File 

To close a file: 

• Deaccess the file with IO.DAC. 

C.6.4 Extending a File 

To extend a file: 

• Use IO.FNA to find the file identifier if the file is not 
accessed. 

• Use IO.EXT to extend the file. 

C.6.S Deleting a File 

To delete a file: 

• Use IO.FNA to find the file identifier. 

• Use IO.RNA to remove the directory name. 

• Use IO.DEL to delete the file. 

C-l3 



QIO$ INTERFACE TO THE ACPS 

C.7 ERRORS RETURNED BY THE FILE PROCESSORS 

The error codes returned by FIIACP and MTAACP are shown in Table C-2. 

Table C-2 
File Processor Error Codes 

Error 
Code· Operatiolls 

IE.ABO IO.RVB/IO.WVB 

IE.ALC Extend or create operation 

IE.ALN An attempt to access a file 

IE.BAD Any function 

IE.BDR Directory operations 

IE.BHD Any operation 

C-14 

Explanation 

Indicates that not all 
requested data was 
transferred by the 
device. 

Indicates th~t the 
operation failed to 
allocate the file because 
of placement control or 
because of other related 
problems. 

Indicates that a file is 
already accessed on that 
LUN. 

Indicates that a required 
parameter is missing, 
that a parameter that 
should not be present is 
present, that a parameter 
that must be disabled is 
enabled, or that a 
parameter value is 
invalid. 

Indicates that you 
attempted a directory 
operation on a file that 
is not a directory, or 
that the specified 
directory is corrupted. 
This is usually caused by 
a o version number field. 

Indicates that a corrupt 
file header was 
encountered, or that the 
operation required a 
feature not supported by 
the FCP (such as 
multiheader support or 
support for unimplemented 
features) • 

(Continued on next page) 

( ) 

( 

(1 



( ) 

( 

QIO$ INTERFACE TO THE ACPS 

Table C-2 (Cont.) 
File Processor Error Codes 

Error 
Code Operations 

IE.BVR Directory operations 

IE~BYT Any function 

IE.BTP Unlabeled Magtape Create 

IE.CKS Any operation 

IE.CLO File access operations 

IE.DFU An allocation request 

IE.DUPAn enter name operation 

IE.EOF IO.RVB/IO.WVB/IO.DEL 

C-lS 

Explanation 

Indicates that you 
attempted to enter a name 
in a directory with a 
negative or 0 version 
number. 

This error is returned if 
toe buffer specified is 
on an odd byte boundary 
or is not a multiple of 
four bytes. 

An attempt was made to 
create an unlabeled tape 
file with a .record type 
other than fixed. 

Indicates that the 
checksum of a file header 
is incorrect. 

Indicates that the file 
was locked against access 
by the "de access lock 
bit." 

Indicates that there is 
itisufficient free disk 
space for the requested 
allocation. 

Indicates that the name 
and version already 
exist. 

On read operations, this 
indicates an attempt to 
read beyond end of file. 
On truncate operations, 
it indicates an attempt 
to truncate a file to a 
length longer than that 
allocated or that the 
file was already at EOF~ 

(Continued on next page) 



QIO$ INTERFACE TO THE ACPS 

Table C-2 (Cont.) 
File Processor Error Codes 

Error 
Code Operations 

IE.HFU An extended operation 

IE.IFC Returned by exec 

IE.IFU Create or extend operation 

IE.LCK Returned on file access, 
directory operations, and 
on truncate 

IE;LUN Any op~ration requiring 
a file 10 

IE. NOD All file operations 
that require DSR 

IE.NSF All file operations 

IE.OFL Returned by exec 

C-16 

Explanation 

Indicates that the file 
header is full and cannot 
contain any more 
retrieval pointers and 
that adding an extension 
header is not allowed. 
When this error code is 
returned on a create 
operation, it indicates 
that the index file could 
not be extended to allow 
a file header to be 
allocated. 

Illegal function code. 

Indicates that there are 
no file headers available 
based on the parameters 
specified when the volume 
was initialized. 

Indicates that the file 
is already accessed by a 
writer and that shared 
write has not been 
requested or is not 
allowed. 

Indicates that file ID 
has not been supplied and 
that the file is not 
accessed on the LUN. 

Indicates that an I/O 
request failed because of 
IE.UPN, and that the FCP 
was unable to allocate 
required space from DSR 
or from secondary pool 
for data structures. 

Indicates that the 
specified directory entry 
does not exist, that a 
file corresponding to the 
file ID does not exist, 
or that the file is 
marked for delete. 

The device is off line. 

(Continued on next page) 

( 

( 

( 



( 

( 

( 

QIO$ INTERFACE TO THE ACPS 

Table C-2 (Cont.) 
File Processor Error Codes 

Error 
. Code Operations 

IE.PRI Any operation 

IE.RER Any operation 

IE.SHC Any operation 

IE.SPC Returned by exec 

IE.SQC Any operation 

IE.WAC File access operations 

IE.WAT write attributes 
and deaccess 

C-l7 

Explanation 

Indicates that the user 
does not have the 
required privilege for 
the requested operation, 
or that the user has not 
requested the proper 
access to the file if the 
file is already accessed 
(for example, in an 
attempt to write to a ' 
file that is accessed for 
read). This error code 
also indicates an attempt 
to do file I/O to a 
device that is not 

. mounted. 

Indicates that theFCP 
encountered a fatal 
device read error during 
an operation; the 
operation has been 
aborted. 

Indicates that the file 
number and the value 
contained in the header 
do not agree. This 
generally means that the 
h~ader has gone bad 
because of a crash or a 
hardware error. 

Indicates an illegal 
buffer. 

Indicates that the file 
sequence number does not 
agree with the file 
header; usually indicates 
that the file has been 
deleted and the header 
has been reused. 

Indicates that the file 
is already write accessed 
and lock against writers 
is requested. 

Indicates that the FCP 
encountered an invalid 
attribute. 

(Continued on next page) 



QIO$ INTERFACE TO THE ACPS 

Table C-2 (Cont.) 
File Processor Error Codes 

Error 
Code Operations 

IE.WER Any operation 

IE.WLK Any operation 
requiring write access 

C-lS 

Explanation 

Indicates that the FCP 
encountered a fatal 
device write error during 
an operation. The 
operation has been 
aborted, but the disk 
structure may have been 
corrupted. 

Indicates that the volume 
is software write-locked. 

( 

( 



( 

( 

INDEX 

A/D channel 
read (ICDRV/ISDRV), 19-13 

A/D conversion 
control word (UDDRV), 16-5 
control word processing 

(ICDRV/ISDRV), 19-15 
A/D converter 

function code list, B-7 
UDDRV, 16-8 

A/D input (ICDRV/ISDRV), 19-13 
AAII-K D/A converter, 23-2 
AAVII-A D/A converter, 23-2 
Abort 

CTRL/C (TTDRV), 2-68 
task 

CRDRV, 11-10 
DTDRV, 6-8 
LPDRV, 10-7 
tape driver, 8-16 
VT11/GRDRV, 21-4 

Accepting message (LRDRV), 14-10 
Access control paramter (FIIACP), 

C-6 
ACP 

erro~ return, C-14 
IE.ABO, C-14 
IE.ALC, C-14 
IE.ALN, C-14 
IE.BAD, C-14 
IE.BDR, C-14 
IE.BTP, C-15 
IE.BVR, C-15 
IE.BYT, C-15 
IE.CKS, C-15 
IE.CLO, C-15 
IE.DFU, C-15 
IE.DUP, C-15 
IE.EOF, C-15 
IE.HFU, C-16 
IE.IFC, C-16 
IE.IFU, C-16 

-IE.LCK, C-16 
IE.LUN, C-16 
IE. NOD, C-16 
IE. NSF, C-16 
IE.OFL, C-16 
IE.PRI, C-17 
IE.RER, C-17 
IE.SNC, C-17 
IE.SPC, C-17 
IE.SQC, C-17 

ACP 
error return (Cont.) 

IE.WAC, C-17 
IE.WAT,C-17 
IE.WER, C-18 
IE.WLK, C-18 

QIO$ function 
closing a file, C-13 
creating a file, C-12 
deleting a file, C-13 
extending a file, C-13 
opening a file, C-13 
using, C-12 

QIO$ interface,C-l 
ADOI A/D converter, 15-1 

See also AFC11/ADOI _ 
conversion number restriction, 

15-11 
ADII-K converter, 23-2 
ADC: subroutine 

read single A/D channel (LSDRV), 
17-12 

Addr parameter 
DIR$ macro, 1-15 

Address 
assignment 

DRSll, 19-2 
DSS11, 19-2 
ICR11 , 19-1 
ICS11, 19-1 

constraint 
DRS 11 , 19-2 
DSS11, 19-2 

convention 
IAD-IA A/D converter, 19-4 

multicast mode (XEDRV), 13-2 
pairs Ethernet XEDRV, 13-3 
physical mode (XEDRV), 13-2 
relationship (ICDRV/ISDRV), 

19-7 
ADINP: subroutine 

initiate single analog output 
(K-series), 23-8 

ADJLPS: subroutine 
adjust buffer pointer (LSDRV), 

17-13 
use in input/output (LSDRV), 

17-36 
ADS: subroutine error, t7-32 

Index-l 



INDEX 

ADSWP: subroutine 
initiate synchronous A/D sweep 

(K-ser ies) , 23-8 
synchronous A/D sweep (LADRV), 

22-3 
ADVll-A D/A converter, 23-2 
Adwell parameter 

XRATE: subroutine 
K-series, 23-30 
LADRV, 22-26 

AFCll 
channel number, identical, 

15-10 
sampling rate, 15-11 

AFCII A/D converter, 15-1 
See also AFCII/ADOI 

AFCll/ADOl 
AIRD/AIRDW subroutine, 15-5 
AISQ/AISQW subroutine, 15-5, 

15-6 
ASADLN subroutine, 15-5, 15-7 
ASAFLN subroutine, 15-5, 15-7 
assign LUN to ADOl, 15-5 
assign LUN to AFCll, 15-5 
asynchronous process control, 

15-3 
control buffer, 15-10 
converter programming hint, 

15-10 
data buffer~ 15-10 
FORTRAN interface, 15-3 

values, 15-9 
FORTRAN subroutine summary, 

15-4 
functional capacity, 15-10 
gain range, 15-10 
I/O status block, 15-4 
input analog data, 15-5, 15-7 
input random analog data, 15-5 
multi-sample mode, 15-10 
read sequential analog input, 

15-6 
read sequential input, 15-5 
single-sample mode, 15-10 
standard QIO$, 15-2 
synchronous process control, 

15-3 
AIRD/AIRDW 

AFCll/ADOl converter, 15-5 
analog input (ICDRV/ISDRV), 

19-39 
random input analog data 

(UDDRV), 16-17 

AISQ/AISQW 
AFCII/ADOI converter, 15-5, 

15-6 
analog input (ICDRV/ISDRV), 

19-43 
sequential channel, 19-42 
specified channel sequence, 

19-43 
read sequential analog input 

channel (UDDRV), 16~18 
Alternate support (ICSll), 19-3 
Altmode line terminator 

(half-duplex), 3-25 
ALUN$ directive 

example, 1-17 
LUN assignment, 1-4 

ALUN$ macro, 1-14, 1-16 
AMII-K multiple gain multiplexer, 

23-2 
Analog input (ICDRV/ISDRV), 19-39 

example, 19-40 
sequential channel, 19-42 
specified channell 19-39, 19-43 

Analog output (ICDRV/ISDRV), 
19-15 

multichannel, 19-44 
Ancillary control processor 

See ACP 
Answer speed (TTDRV) 

determine, modem, 2-83 
AO/AOW (ICDRV/ISDRV) 

analog output 
multichannel, 19-44 

AO/AOW (UDDRV) 
analog output, 16-19 

AO/AOW routine 
analog output 

multichannel (ICDRV/ISDRV), 
19-44 

ARll, 17-2 
See LSDRV 

ARll clock sampling rate (LSDRV), 
17-33 

Argl parameter 
CALLS calling macro (LADRV), 

22~27 

CALLS macro (K~series), 23-31 
Array 

set for buffered sweep 
(K-series), 23-28 

Arv parameter 
device-specific function 

(UDDRV), 16-4 
ICDRV /ISDRV, 19-9 

Index"'" 2 

c 

( 

( 



( 

( 

( 

Arv parameter (Cont.) 
IO.CTI function (ICDRV/ISDRV), 

19-21 
ASADLN (AFCII/ADOI converter), 

15-5, 15-7 
ASAFLN (AFCII/ADOI converter), 

15-5, 15-7 
ASARLN: subroutine 

assign LUN to ARO: (LSDRV), 
17-14 

ASG TKB option 
LUN assignment, 1-4 

ASLSLN: subroutine 
assign LUN to LSO: (LSDRV), 

17-13 
ASR-33, 2-3 
ASR-33/35 Teletypewriter, 3-2 
ASR-35, 2-3 
Assembly language interface 

,ICDRV/ISDRV), 19-8 
ASSIGN command 

LUN assignment, 1-4 
LUN redirection, 1-3 

AssignLUN 
to ARO: (LSDRV), 17-14 
to LSO: (LSDRV), 17-13 

AST, 1:"9 
blocking, 1-11 
event flag, using, 1-11 
interrupt routine, 1-11 
IO.ATA function (TTDRV), 2-20 
operation (half-duplex), 3-9 
processing, 1-11 
queue, 1-11 
recognition 

disable, 1-11 
enable, 1-11 

service 
exit routine, 1-12 
termination, 1-24 

unsolicited input 
half-duplex, 3-9, 3-34 
TTDRV, 2-12, 2-17 

Ast parameter 
device-specific (half-duplex), 

3-7 
general (TTDRV), 2-10 
I/O completion, 1-36 
IO.ATA function (TTDRV), 2-20 
IO.ATT function, 1-27 
IO.CCO function (TTDRV), 2-23 
IO.DET function, 1-28 
IO.EIO function (TTDRV), 2-26 
IO.GTS function (TTDRV), 2-33 
IO.HNG function (TTDRV), 2-35 

INDEX 

Ast parameter (Cont.) 
IO.KIL, 1-29 
IO.RAL function (TTDRV), 2-36 
IO.RLB function, 1-30 
IO.RNE function (TTDRV), 2-38 
IO.RPR function (TTDRV), 2-41 
IO.RST function (TTDRV), 2-43 
IO.RTT function (TTDRV), 2-45 
IO.RVB function, 1-31 
IO.SMC function (TTDRV), 2-59 
IO.WAL function (TTDRV), 2-47 
IO.WBT function (TTDRV), 2-49 
IO.WLB function, 1-32 
IO.WVB function, 1-33 
IO.XCL function (XEDRV), 13-17 
IO.XIN function (XEDRV), 13-10 
IO.XOP function (XEDRV), 13-6 
IO.XRC function (XEDRV), 13-14 
IO.XSC function (XEDRV), 13-7 
IO.XTL function (XEDRV), 13-18 
IO.XTM function (XEDRV),· 13-11 
QIO$ basic syntax, 1-5, 1-9 
SF.GMC function (TTDRV), 2-51 
standard function (UNIBUS 

switch driver), 24-2 
Ast2 parameter (.TTDRV) 

general, 2-10 
IO.ATA function, 2-21' 

ASTX$S directive, 1-12 
ASTX$S macro, 1-14, 1-24 
ASUDLN: subroutine 

assign LUN (UDDRV); 16-20 
Asynchornous multiplexer 

(communication driver), 12-1 
Asynchronous I/O (XEDRV),· 13-21 
Asynchronous process control 

ICDRV/ISDRV, 19-35 
UDDRV, 16-15 

Asynchronous trap, 1-10, 1-11 
. Attach 

device, 1-27 
PPDRV, .18-5 
terminal (half-duplex), 3-11 
terminal (VTDRV),4-4 
terminal function (TTDRV), 2-20 
unmounted channel 

(communication driver) , 
12-5 

unmounted volume (DTDRV), 6-2 
Attribute buffer (FllACP) 

address, C-5 
Attribute list (FllACP), C-2 
Attribute size, C-4 
Attribute type (FllACP), C-3 

file characteristic, C-3 

Index-3 



INDEX 

Attribute type (FllACP) (Cont.) 
file name, C-3 
file owner, C-3 
file protection, C-3 
file type, C-3 
placement control, C-4 
read file header, C-4 
record I/O area, C-3 
revision number, C-4" 
statistics block, C-4 
version number, C-4 

Auto-call 
enabling for modem (TTDRV), 

2-52 
Autobaud speed detection (TTDRV), 

2-83 

Bad sector, track (disk driver), 
5-12 

Badge Reader hint (TTDRV), 2-82 
Baud rate 

list (TTDRV), 2-57 
split, modem support (TTDRV), 

2-83 
Binary prompt (TTDRV), 2~12, 2-26, 

2-41 
22-bit addressing (LADRV), 22-36 
Blkh parameter 

standard function (disk driver) , 
5-7 

Blkl parameter 
standard function (disk driver) , 

5-7 
Block 

length (CTDRV), 9-8 
locking (FllACP), C-6, C-8 
size (tape driver), 8-15 

nolabel tape, 8-18 
Breakthrough write 

half-duplex, 3-16 
multi-echo (half-duplex), 3-16 
privileged task (TTDRV), 2-17 
TTDRV, 2-16,2-17, 2-48, 2-49 

Buf parameter 
GLUN$ macro, 1-21 

BufO parameter 
SETIBF: subroutine 

K-series, 23-29 
LADRV, 22-24 

Bufadd parameter 
device-specific function 

receive (LRDRV), 14-9 
Buffer 

attribute, address, C-5 

Buffer (Cont.) 
auxilliary characteristic, zero 

size, 13-21 
circular 

processing (UDDRV), 16-34 
read counter data 

(ICDRV/ISDRV), 19-58 
read interrupt data 

(ICDRV/ISDRV), 19-53 
terminal input (ICDRV/ISDRV), 

19-62 
connect 

receive counter data 
(ICDRV/ISDRV), 19-56 

receive interrupt data 
(ICDRV/ISDRV) ,19-51 

terminal interrupt 
(ICDRV/ISDRV), 19-60 

control (AFCII/ADOI converter), 
15-10 

data (AFCII/ADOI converter) , 
15-10 

diagnostic (XEDRV), 13-19 
disconnect from counter 

interrupt (ICDRV/ISDRV), 
19,..59 

disconnect from digital 
interrupt (ICDRV/ISDRV), 
19-56 

display (GRDRV), 21-4 
full 

escape sequence (TTDRV), 2-74 
half-duplex, 3-26 

intermediate (TTDRV), 2-80 
item list 1 

structure (TTDRV), 2-30 
TTDRV, 2-30 

item list 2 
IO.EIO function (TTDRV), 2-32 
structure (TTDRV), 2-32 

load microcode 
IO.LOD function LADRV, 22-29 

management 
call RLSBUF (LADRV), 22-33 
device queue (LADRV), 22-32 
input sweep (LADRV), 22-33 
K-series, 23-32 
LADRV, 22-32 
LSDRV, 17-35 
output sweep (LADRV), 22-33 
overrun (LADRV), 22-33 
task queue (LADRV), 22-32" 

maximum size (XEDRV), 13-21 
minimum size (XEDRV), 13-21 

Index-4 

( 

( 

( 



( 

( 

( 

INDEX 

Buffer 
output 

putting data into (LSDRV), 
17-22 

override checkpoint 
(half-duplex), 3-30 

pointer, adjusting (LSDRV), 
17-13 

pool, private (TTDRV), 2-79 
position, losing (half-duplex), 

3-29 
protocol/address pair (XEDRV), 

13-8 
read 

destination address (XEDRV), 
13-16 

Ethernet address (XEDRV), 
13-14 

protocol type (XEDRV), 13-15 
read character from terminal 

(ICDRV/ISDRV), 19-61 
received character (TTDRV), 

2-78 
remove from device queue 

(K-series), 23-26 
set 

characteristic (XEDRV), 13-7 
destination address (XEDRV), 

13-12 
multicast address (XEDRV), 

13-9 
protocol type (XEDRV), 13-12 

size, remote line (TTDRV), 2-83 
task, checkpointing (TTDRV), 

2-78 
type-ahead (TTDRV) , 2-78 
variable length (half-duplex), 

3-29 
width (half-duplex), 3-29 

Buffering 
received character 

(half-duplex), 3-30 
Bufptr parameter 

10.STA function (LADRV), 22-30 
Bufs parameter 

synchronous QIO$ function 
(LSDRV), 17-5 

C.DATI (XEDRV) 
destination address, 13-12 
multicast address, 13-10 
protocol type, 13-13 
protocol/address buffer, 13-9 
read 

destination address, 13-16 

C.DATI (XEDRV) 
read (Cont.) 

Ethernet address, 13-15 
protocol type, 13-15 

set characteristic buffer, 13-8 
C.DATO (XEDRV) 

destination address, 13-12 
multicast address, 13-10 
protocol type, 13-13 
protocol/address buffer, 13-9 
read 

Ethernet address, 13-15 
protocol type, 13-15 

set characteristic buffer, 13-8 
C.STAT (XEDRV) 

destination address, 13-12 
multicast address, 13-10 
protocol type, 13-13 
protocol/address buffer, 13-9 
read 

destination address, 13-16 
Ethernet address, 13-15 
protocol type, 13-15 

set characteristic buffer, 13-8 
C.TYP (XEDRV) 

multicast address, 13-10 
protocol type, 13-13 
protocol/address buffer, 13-9 
read 

destination address, 13-16 
Ethernet address, 13-15 
protocol type, 13-15 

set characteristic buffer, 13-8 
set destination address, 13-12 

CALL macro, special purpose 
(K-series), 23-31 

CALLop code, standard (K-series), 
23-31 

CALLS 
calling macro example (LADRV), 

22-28 
special calling macro (LADRV), 

22-27 
Cancel CTRL/O (TTDRV), 2-12 
Cancel I/O, 1-29 

VTDRV, 4-4 
Card reader 

function code list, B-7 
Card reader (CRDRV), 11-1 

check 
pick, 11-5 
read, 11-5 
recovery, 11-4 
stack, 11-6 

console message, 11-4 

Index-5 



INDEX 

Card reader (CRDRV) (Cont.) 
control character, 11-8, 11-9 
format 

alphameric, 11-9 
binary, 11-9 
data, 11-9 

function, 11-8 
indicator, 11-5 
input card limitation, 11-9 
input error, 11-3 
programming hint, 11-9 
ready, 11-4 
switch, 11-5 

power, 11-5 
reset, 11-6 
stop, 11-6 

Carriage return 
automatic 

half-duplex, 3-29, 3-31 
TTDRV, 2-76 

CTRL/R (TTDRV), 2-70 
TTDRV, 2-69 

Case conversion (half-duplex), 
3-15 

Cassette 
capacity (CTDRV), 9-1 
function code list, B-7 

Cb parameter 
device-specific function 

tape driver, 8-8 
VTDRV, 4-3 

IO.STC function (VTDRV), 4-5 
CE.ACN address protocol/pair 

(XEDRV), 13-9 
CE.IUM address protocol/pair 

(XEDRV), 13-9 
CE.MCE multicast error (XEDRV), 

13-10 
CE.NMA multicast error (XEDRV), 

13-10 
CE.PCN protocol usage conflict 

(XEDRV), 13-9 
CE.RES error code (XEDRV), 13-8 
C&.RTL error code (XEDRV), 13-8 
CE.RTS error code (XEDRV), 13-8 
Channel 

assignment (ICDRV/ISDRV), 19-6 
defini tion 

multi-access (XEDRV), 13-23 
ICDRV/ISDRV, 19-7 
identical number (AFCll), 15-10 
read A/D (ICDRV/ISDRV), 19-13 
set information (K-series), 

23-28 

Character 
control 

CRDRV, 11-8, 11-9 
half-duplex, 3-21, 3-26 
TTDRV, 2-68 

echo 
half-durlex, 3-14 
IO.RAL function (half-duplex), 

3-14 
padding (tape driver), 8-18 
receive buffer (TTDRV), 2-78 
unprocessed (TTDRV), 2-58 
unsolicited 

input (half-duplex), 3-34 
programming use (half-duplex), 

3-11 
stack operation (half~duplex), 

3-11 
Character-oriented interface 

(communication driver), 12-1 
Characteristic 

buffer 
XEDRV, 13-7 
zero size, 13-21 

clearing on remote (TTDRV), 
2-83 

mul tiple (VTDRV), 4-6 
name 

SF.GMC function (half-duplex), 
3-11 

SF.SMC function (half-du,plex), 
3-16 

obtaining (tape driver), 8-8 
physical (disk driver), 5-2 
resetting, importance of (tape 

driver), 8-15 
return (half-duplex), 3-11 
set 

Ethernet, 13-7 
multiple (TTDRV), 2-59 
protocol/address (XEDRV), 

13-8 
tape driver, 8-10 
terminal (VTDRV), 4-7 
XEDRV multicast address, 13-9 

setting, side-effect 
half-duplex, 3-33 
TTDRV, 2-62 

table 
terminal (half-duplex), 3-12 
VTDRV, 4-7 

terminal 
get multiple (TTDRV), 2-18, 

2-51 
set multiple (TTDRV), 2-18 

Index-6 

( 

c 

( 



( 

( 

( 

INDEX 

Characteristic (Cont.) 
terminal-dependent 

(half-duplex), 3-5 
word (half-duplex), 3-4 

Check recovery (CRDRV), 11-4 
Checkpointing 

buffer override (half-duplex), 
3-30 

during prompt (TTDRV), 2-14, 
2-27, 2-40 

during read (TTDRV), 2-27 
task 

half-duplex, 3-14 
VTDRV, 4-5 

task buffer (TTDRV), 2-78 
terminal input 

half-duplex, 3-32, 3-35 
TTDRV, 2-82 

Chn parameter (ICDRV/ISDRV), 19-9 
IO.SAO function, 19-16 

Chna parameter 
synchronous QIO$ function 

(LSDRV), 17-6 
Chnd parameter 

synchronous QIO$ function 
(LSDRV), 17-6 

Ckcsr parameter 
IO.CLK function (LADRV), 22-29 

Clear OOB (TTDRV), 2-61 
Clock B, control (K-series), 

23-12 
Clock start command (LADRV), 

22-29 
Clock, compute rate and preset 

(K-series), 23-30 
CLOCKA: subroutine 

set clock A rate 
K-series, 23-11 
LADRV, 22-7 

CLOCKS: subroutine 
control clock B 

K-series, 23-12 
LADRV, 22-7 

Close 
line (XEDRV), 13-17 
relay (LSDRV), 17-4 

Cn parameter (ICDRV/ISDRV), 19-9 
IO.LTI function, 19-26 

Common (UDDRV) 
creating global, 16-12 
linking task, 16-14 
referencing global, 16-12 

Communication 
driver, 12-1 

example, 12-13 

Communication 
driver (Cont.) 

programming hint, 12-11 
function code list, B-8 
link 

function code list, B-12 
mode 

setting full-duplex 
(communication driver) , 
12-7 

set operation 
IO.SYN function 

(communication driver) , 
12-7 

CON, 13-5 
Configuration (UDDRV), 16-10 

UDCOM.MAC, 16-10 
UDCOM.MAC symbol, 16-10 

Connect 
function (UNIBUS switch driver) , 

24-4 
task (LRDRV), 14-10 
UNIBUS to another CPU (UNIBUS 

switch driver), 24-5 
Contact interrupt 

digital input (UDDRV), 16-6 
Control character 

half-duplex, 3-17, 3-21, 3-26 
TTDRV 

escape sequence, 2-74 
Controller 

access restriction 
(ICDRV/ISDRV), 19-32 

definition (XEDRV), 13-23 
universal digital, 16-1 

Conversion 
A/D control word 

AFC11/AD01 converter, 15-3 
UDDRV, 16-5 

A/D input to floating point 
(K-series), 23-13 

case (half-duplex), 3-15 
software (ICDRV/ISDRV), 19-80 

affected feature, 19-80 
module support, 19-80 

swi tch gain A/D 
to floating-point (LSDRV), 

17-15 
unsigned integer (K-series), 

23-21 
Converter 

A/D (UDDRV), 16-8 
A/D terminal output 

(ICDRV/ISDRV), 19-32 
ICS11 A/D (UDDRV), 16-8 

Index-7 



- - --
----------,~-- -~- -_. 

Counter 
discohnect interrupt 

(ICDRV/ISDRV), 19-22 
routine (ICDRV/ISDRV), 19-58 

Counter module, W734 (UDDRV), 
16-7 

Cpu parameter (UNIBUS switch 
driver) 

device-specific, 24-4 
IO.CON function, 24-5 

CRll, 11-1 
CRT rubout (TTDRV), 2-18 
Csm parameter (ICDRV/ISDRV), 

19-10 
IO.LDI function, 19-25 

CSR defintion (XEDRV), 13-23 
CTDI: routine 

connect buffer to receive 
interrupt data 
(ICDRV/ISDRV), 19-51 

CTDI: subroutine 
connect contact interrupt 

(UDDRV), l6-20 
CTDRV, 9-1 

error recovery, 9-6 
programming hint, 9-7 
tape structure, 9-6 

CTRL character (half-duplex), 
3-17 . 

C~RL character, allowed 
escape sequence (half-duplex), 

3-26 
CTRL/C character 

half~duplex, 3-21 
ignored, 3-15 
MCR, 3-9 
read all, 3-14 

TTDRV, 2-68 
abort, 2-68 
abort task, 2-16 
directed to task, 2-68 
excluding, 2-16 
hold screen mode, 2-68 
pass to task,2-L3 
terminate read~ 2-'68 
TF. RPT, 2-14 
TF.RST, 2-14 
unsolicited input, 2-13 

CTRL/I character 
half-duplex, 3-21 
TTDRV, 2-69 

CTRL/J character 
half-duplex, 3-21 
TTDRV, 2-69 

INDEX 

CTRL/K character 
half-duplex, 3-21 
TTDRV, 2-69 

CTRL/L character 
half-duplex, 3-21 
TTDRV, 2-69 

CTRL/M character 
half-duplex, 3-21 
TTDRV, 2-69 

CTRL/O character 
half-duplex, 3-22 

AST, 3-9 
cancel, 3-14, 3-16 
read all, 3-14 
unattached terminal, 3-22 

TTDRV, 2..,.69 
cancel, 2-12, 2-16, 2-17, 

2-23, 2-26, 2-48, 2-50 
cancel on write breakthrough, 

2-24 
cancel prior to TF.RPR, 2-27 
IO.RPR, 2-40 
pass to task, 2-13 
prompt, 2-14 
state, 2-57 
TF.RPR, 2-14 
TF.RPT, 2-14 
TF.RST, 2-14 

CTRL/Q character 
half-duplex, 3-22 

AST, 3-9 
read all, 3-14 

TTDRV 
pass to task, 2-13 
resume output, 2-70 
state, 2-57 
TF.RPT, 2-14 
TF.RST, 2-14 

CTRL/R character 
half-duplex, 3-22 

IO.RNE function, 3-14 
TTDRV, 2-70 

automatic redisplay, 2-16 
carriage return, 2-70 
input redisplay, 2-17 
line feed, 2-70 
prompt, 2-14 
read no echo, 2-13 
read no filter, 2-14 
redisplay 

write breakthrough, 2~24 
retype, 2-17 
TF.RPR, 2-14, 2-28 
TF.RST, 2-14 

Index-8 

c 

( 

( 



( 

() 

( 

INDEX 

CTRL/S character 
half-duplex, 3-22 

AST, 3-9 
cancel, 3-16 
CTRL/C restart output, 3-21 
read all, 3-14 

TTDRV, 2-70 
break-through write, 2-17 
pass to task, 2-13 
state, 2-57 
suspend output, 2-70 
TF.RPT (TTDRV), 2-14 
TF. RST, 2.-14 

CTRL/U character 
half-duplex, 3-22 
TTDRV, 2-70 

delete start of line, 2-70 
prompt, 2-14 
read no filter, 2-14 
TF.RPR, 2-14, 2-28 
TF.RST,.2-14 

CTRL/X character 
TTDRV, 2-70, 2-73 

clear typeahead, 2-70 
CTRL/Z character 

half-duplex, 3-22 
read all, 3-14 

TTDRV, 2-70, 2-73 
exit task, 2-70 
pass to task, 2~13 
TF.RPT,·2..,.14 

CTTI: subroutine 
connect timer interrupt (UDDRV), 

16-21 
CTTI:, connect buffer 

receive counter data 
(ICDRV/ISDRV), 19-56 

CTTY:, connect buffer 
terminal interrupt 

(ICDRV/ISDRV), 19-60 
Cursor control 

direct (half-duplex), 3-34 
terminal-independent (TTDRV), 

2-18, 2-80 
Cursor position (TTDRV) 

restore, 2-13, 2-27, 2-46, 2..,.48 
save, 2-13, 2~27, .2-46, 2-48 

CVADF: subroutine 
convert A/D input to floating 

point 
K-series, 23-13 
LADRV, 22-9 

CVSWG: subroutine 
convert switch gain A/D(LSDRV), 

17-15 

DAl1-B parallel interface 
(communication driver), 12-2 

DASWP: subroutine 
initiate synchronous D/A sweep 

K-series, 23-14 
LADRV, 22-9 

Data parameter 
immediate device-specific 

function (LSDRV), 17-3 
DDDRV, 7-1 
Deaccess lock (F11ACP), C-6 
DECtape 

f~nction code list, B-8 
GLUN$ macro, 6-1 
I/O function, 6-2, 6-3 
I/O status return, 6-4 
programming hint, 6-7 
recovery, 6-6 
reverse read, 6-7 
reverse speed, 6-7 
reverse write, 6-7 
select recovery, 6-7 
task aborting, 6-8 
transfer length, 6-7 

Dedicated mode (LADRV), 22..,.1 
Default LUN (ICDRV/ISDRV), 19-38 
Delete 

character (half-duplex), 3-15 
escape sequence, 3-25 

key (TTDRV), 2-71 
read no filter (TTDRV), 2-14 
TF.RST (TTDRV), 2-14 

Density 
bit 11 characteristic (tape 

driver), 8-9 
parameter, device-specific 

(disk driver), 5-9 
selection (tape driver), 8-16 

DEUNA driver 
See XEDRV 

Dev parameter 
ALUN$ macro, 1-17 

DEV-ctl parameter 
IO.XOP function (XEDRV), 13-6 

Device 
atttaching, 1-27 
characteristic (tape driver), 

8-3 
detaching, 1-28 
disconnecting (communication 

driver), 12-7 
ini tiali zing (communication 

driver), 12-7 
list of supported, 1-43 

. Index-9 



INDEX 

Device (Cont.) 
name 

nonphysical, 1-20 
physical, 1-18, 1-20 
pseudo, 1-20 

REASSIGN command, 1-20 
REDIRECT command, 1-20 
TI: 

pseudo, 1-21 
virtual, 1-21 

time out (half-duplex), 3-19 
Device-specific QIO$ (LADRV), 

22-28 
DFDI: routine 

disconnect buffer from. digital 
interrupt (ICDRV/ISDRV), 
19-56 

DFDI: subroutine 
. ~isconnect contact interrupt 

(UDDRV), 16-22 
DFTI: routine 

disconnect buffer from counter 
interrupt, 19-59 

DFTI: subroutine 
disconnect timer interrupt 

(UDDRV), 16 .... 23 
DFTY: circular buffer 

terminal input (ICDRV/ISDRV), 
19-62 

DH11, 3-31 
remot.e (hal f-dup1ex), 3-33 
remote line (TTDRV), 2-83 
TTDRV, 2-81 

DHVll (TTDRV), 2-81 
DI/DIW input routine 

digital sense multiple field 
(ICDRV/ISDRV), 19-47, 19-48 

DI/DIW: subroutine 
read contact sense fields 

(UDDRV), 16-23 
Diagnostic 

buffer 
p5 address, 13-19 
p6 size, 13-19 
X~DRV, 13-19 

function 
IO.DGN (DDDRV), 7-4 
10. XRC, 13-19, 13-20 
IO.XTM, 13-19, 13-20 

no data transfer (XEDRV), 13-21 
request block (XEDRV), 13-19 
user-mode function, 1-34, 1-35 

Digital controller, universal, 
16-1 

Digital input (K-series), 23-16 

Digital output (K-series), 23-20 
Digital start event (K-series), 

23-16 
DIGO: subroutine 

digital start event (K-series), 
23~16 

DINP: subroutine 
digital input (K-series), 23-16 

DIR$ macro, 1-14, 1-15 
example, 1-16 
format, 1-15 

Direct access 
error (UDDRV), 16-16 
I/O page (UDDRV), 16-3 
physical address (ICDRV/ISDRV), 

19-74 
Directi ve cond i tion, 1-37 
Directive Parameter Block 

See DPB 
Directive status, 1-37 
Directory identification 

FNB (F11ACP), C-7 
Disconnect 

digital interrupt (ICDRV/ISDRV), 
19-20 

UNIBUS switch driver, 24-5 
Disk 

function code list, B-9 
power fail, 1-43 

Disk driver, 5-1 
phYsical characteristic, 5-2 
programming hint, 5-12 
QIO$ macro, 5-6 

Dismount (RC25), 5-14 
Display 

graphic driver, 21-1 
in LED lights (LSDRV), 17-21 
signed integer (LSDRV), 17-4 

DISWP: subroutine 
initiating synchronous digital 

input sweep 
K-series, 23-17 
LADRV, 22-12 

DJ11, 3-31 
TTDRV, 2-81 

DLll, 3-31 
interrupt enable (half-duplex), 

3-34 . 
TTDRV, 2-81 

DL11-E 
asynchronous interface 

(communication driver) , 
12-2 

remote line (TTDRV), 2-83 

Index-l0 

( 

( 

( 



( 

( 

INDEX 

DLll-E (Cont.) 
serial asynchronous interface 

(communication driver) , 
12-2 

DLX (XEDRV) 
definition, 13-23 
incompatibility, 13-21 

DLXDF$ macro (XEDRV), 13-4 
DMll-BB, 3-31 
DMCll (communication dr'iver) 

message send, 12-13 
powerfail, 12-12 
serial synchronous interface, 

12-2 
synchronous line interface, 

12-3 
DNA (XEDRV), 13-23 
DOL/DOLW routine 

multiple bistable digital 
output field (ICDRV/ISDRV), 
19-45, 19-46 

DOL/DOLW: subroutine 
latch or unlatch fields (UDDRV), 

16-24 
DOM/DOMW 

momentary digital output 
multiple field 
(ICDRV/ISDRV), 19-49 

DOM/DOMW: subroutine 
pulse fields (UDDRV), 16-25 

DOSWP: subroutine 
initiating synchronous digital 

output sweep 
K-series, 23-19 
LADRV, 22-14 

Double space 
TTDRV, 2-75 
VFC (half-duplex), 3-27 
VFC (LPDRV), 10-6 

DOUT: subroutine 
digital output (K-series), 

23.-20 
Dp parameter 

device-specific function 
(UDDRV), 16-5 

ICDRV/ISDRV, 19-10 
IO.MLO function, 19-17 
IO.MSO function, 19-16 

DPII (communication driver) 
baud rate, 12-3 
serial synchronous interface, 

12-2 
synchronous line interface, 

12-3 

DPB, 1-12, 1-14, 1-15 
diagnostic, 1-35 
diagnostic word data, 1-34 
dynamic creation, 1-14 
example, 1-12 

DQll (communication driver) 
baud rate, 12-3 
serial synchronous interface, 

12-2 
sync character, 12-3 
synchronous line interface, 

12-3 
DRll-K digital I/O interface, 

23-2 
DRERR$ macro 

I/O completion code, 1-37 
DRSll, 19-1 

addressing, 19-8 
sample configuration, 19-7 

DRS: subroutine 
synchronous digital input sweep 

(LSDRV), 17-15 
DRVII digital I/O interface, 23-2 
DSAR$S directive, 1-11 
DSSll, 19-1 

addressing, 19-8 
configuration 

hardware, 19-1 
sample, 19-7 

DSW$ status code return, 1-37 
DT07 UNIBUS switch, 24-1 
DUll (communication driver) 

serial synchronous interface, 
12-2 

sync character, 12-3 
synchronous line interface, 

12-3 
DUPII (communication driver) 

serial synchronous interface, 
12-2 

synchronous line interface, 
12-4 

DV.UMD bit 
UCB, set for diagnostic, 1-34 

Dwell parameter 
XRATE: subroutine 

K-series, 23-30 
LADRV, 22-26 

DZll 
half-duplex 

remote line, 3-33 
serial line multiplexer, 3-31 
with modem, 3-33 

TTDRV 
remote serial line, 2-83 

Index-II 



INDEX 

DZll 
TTDRV (Cont.) 

serial line multiplexer, 2-82 
ser ial 1 ine wi th modem, 2-83 

Echo, multiple (half-duplex), 
3-16 

Efn parameter 
general (TTDRV), 2-10 
IO.ATA function (TTDRV), 2-20 
IO.ATT function, 1-27 
IO.CCO function (TTDRV), 2-23 
IO.DET function, 1-28 
IO.EIO function (TTDRV), 2-26 
IO.GTS function (TTDRV), 2-33 
IO.HNG function (TTDRV), 2-35 
IO.KIL function, 1-29 
IO.RAL function (TTDRV), 2-36 
IO.RLB function, 1-30 
IO.RNE function (TTDRV), 2-38 
IO.RPR function (TTDRV), 2-40 
IO.RST function (TTDRV), 2-43 
IO.RTT function (TTDRV)~ 2~45 
IO.RVB function, 1-31 
IO.SMC function (TTDRV), 2-59 
IO.WAL function (TTDRV), 2-47 
IO.WBT function (TTDRV), 2-49 
IO.WLB function, 1-32 
IO.WVB function, 1-33 
IO.XCL function (XEDRV), 13-17 
IO.XIN function (XEDRV), 13.-10 
IO.XOP function (XEDRV), 13-6 
IO.XRC function (XEDRV), 13-14 
IO.XSC function (XEDRV), 13-7 
IO.XTL function (XEDRV), 13-18 
IO.XTM function (XEDRV), 13-11 
QIO$ basic syntax, 1-7 
SF.GMC function (TTDRV), 2-51 

.WTSE$ macro, 1-25 
Elapsed time 

between events (LSDRV), 17-7 
ENAR$S directive, 1-11 
End-of-file 

See EOF 
End-of-tape 

See EOT 
EOF 

IO.SPF function (CTDRV), 9-7 
EOT 

logical (CTDRV), 9~6, 9-8 
read (PRDRV), 18-5 

EPMDF$ macro (XEDRV), 13-4 
Erase (tape driver), 8-8 

data security, 8-8 

Err parameter 
ASTX$ macro, 1-24 
DIR$ macro, 1-15 

Error 
ADS: subroutine, 17-32 
condition (PPDRV/PRDRV), 18-4 
data 

ICAR register, 19-73 
ICSR register, 19-73 

detection 
hard receive (TTDRV), 2-18, 

2-77 
ICDRV/ISDRV, 19-70 

hardware, Ethernet, 13-3 
interrupt disable (ICDRV/ISDRV), 

19-32 
recovery 

CTDRV, 9-6 
ICDRV/ISDRV, 19-70 

reporting 
disable (ICDRV/ISDRV), 19-32 
hardware enable (ICDRV/ISDRV), 

19-33 
retry (tape driver), 8-14 
select (tape driver), 8-14 
serial line (ICDRV/ISDRV), 

19-71 
Error return 

ACP, C-14 . 
communication driver, 12-8 
CRDRV, 11-3, 11-7 
CTDRV, 9-4 
GRDRV, 21-3 
ICDRV/ISDRV, 19-12 
LPDRV, 10-4 
LSDRV, 17-29 
PPDRV/PRDRV, 18-3 
receiver (LRDRV), 14-11 
tape driver, 8-10 
transmitter (LRDRV), 14-6 
UDDRV, 16-31 
UNIBUS switch driver, 24~7 
XEDRV, 13-5 

IO.XCL function, 13-18 
IO.XIN function, 13-11 
IO.XRC function, 13-16 
IO.XTL function, 13-18 
IO.XTM function, 13-13 

ESC key 
half-duplex, 3-23, 3-24 
TTDRV, 2-71 

Escape character 
line terminator (ha1f;"dup1ex), 

3-25 

Index-12 

( 

( 

( 



c 

( 

INDEX 

Escape sequence 
half-duplex, 3-23 

allowed control character, 
3-26 

characteristic, 3~25 
definition, 3-23 
echo, 3-25 
exception, 3-27 
full buffer, 3-26 
prerequisite, 3-25 
recognitiont 3-11, 3-32 
syntax violation, 3-25 
unsolicited input, 3-25 

syntax exception (TTDRV) , 2-75 
TTDRV, 2-72 

characteristic, 2-74 
control character, 2-74 
control character error, 2-74 
DELETE character, 2-74 
format, 2-72 
full buffer, 2-74 
handling, 2-17 
interrupt, 2-17 
prerequisite, 2-73 
recognition, 2-12 
RUBOUT character, 2-74 
syntax violation, 2-74 

Ethernet (XEDRV) 
address 

atixilliary buffer, 13-12 
device consideration, 13-2 
hardware error, 13-3 
LF$DEF protocol, 13-3 
LF$EXC protocol, 13-3 
message, 13-2 
message padding, 13-3 
protocol 

LF$DEF, 13-3 
LF$EXC, 13-3 

receive, 13-3 
transmit, 13-3 

Event 
significant, 1-9, 1-36 

Event declaration, significant, 
1-13 

Event flag, 1-9 
ast, 1-11 
common, 1-9, 1-10 
group global, 1-9 
none, 1-8 
number, 1-9 
task, 1-9 
wait after I/O, 1-15 
wait for single, 1-24 

Existence indicator (ICDRV/ISDRV), 
19-18 

Extend control parameter (FllACP), 
C-5 

.EXTEND routine (disk driver) , 
5-8 

Extended I/O (TTDRV), 2-18, 2-25 

Fl.xxx bit, 2-34, 3-13 
FllACP stall I/O performance 

(disk driver), 5-13 
F2.xxx bit, 2-34, 3-13 
File 

attribute size (FIlACP), C-4 
identification in FNB (FllACP), 

C-7 
name block 

See FNB 
name block pointer, C-6 
name in FNB (FIIACP) ,C-7 
type FNB (FllACP), C-7 
version number in FNB (FIIACP), 

C-7 
File Identification Block 

(FllACP), C-2 
Flagwd parameter 

device-specific function 
transmit (LRDRV), 14-4 

FLT16: subroutine 
convert unsigned integer to 

real constant 
K-series, 23-21 
LADRV, 22-17 

FNB (FllACP), C-6 
directory identification, C-7 
file identification, C-7 
file name, C-7 
file type ,C-7 
file version number, C-7 
pointer, C-6 
status word, C-7 
wildcard ~ontext, C-7 

Fnc parameter 
QIO$ basic syntax, 1-6 

Form feed (TTDRV), 2-69 
FORTRAN 

ICDRV/ISDRV 
I/O status return, 19-35 
optional argument, 19-37 

interface 
AFCll/ADOl converter, 15-3 
K-series, 23-7 
LADRV, 22-2 
LSDRV, 17-9 
routine (ICDRV/ISDRV), 19-34 

Index-13 



INDEX 

FORTRAN 
interface (Cont.) 

routine list (K-series), 23-7 
status return value list 

(UDDRV), 16-33 
status value (LSDRV), 17-33 
UDDRV, 16-14 
values 

AFCll/ADOl converter, 15-9 
UDDRV, 16-33 

sample program (K-series), 
23-33 

completion routine, 23-35 
with event flag, 23-34 

subroutine 
LADRV, 22-3 
LSDRV, 17-11 
UDDRV, 16-16 

Full-duplex 
considerations (communication 

driver), 12-11 
mode 

setting (communication 
driver), 12-7 

operation (TTDRV), 2-79 

Gain range (AFCII/ADOI converter), 
15-10 

Gather interevent time data 
(K-series), 23-21 

Get buffer status (K-series), 
23-23 

Get terminal support, 3-13 
Global common (UDDRV) 

creating, '16-12 
referencing, 16-12 

GLUN$ macro, 1-14, 1-21 
buffer (TTDRV), 2-7 
example, 1-21, 1-24 
get information 

AFCll/ADOl converter, 15-2 
communication driver, 12-4 
CRDRV, 11-1 
CTDRV, 9-1 
DDDRV, 7-1 
disk driver, 5-5 
DTDRV, 6-1 
GRDRV, 21-1 
half-duplex, 3-4 
ICDRV/ISDRV, 19-8 
LADRV, 22-2 
LPDRV, 10-3 
LRDRV, 14-2 
LSDRV, 17-2 
PPDRV/PRDRV, 18-1 

GLUN$ macro 
get information (Cont.) 

tape driver, 8-5 
TTDRV, 2-7 
UDDRV, 16-3 
UNIBUS switch driver, 24-2 
VTDRV, 4-1 

information returned, 1-21 
information table (TTDRV), 2-7 

GRDRV, 21-1 
function code list, B-9 
programming hint, 21-3 

GTHIST: subroutine 
gather inter event time data 

(K-series), 23-21 

Half-duplex 
considerations (communication 

driver), 12-11 
hold-screen mode, 3-21 
programming hint, 3-31 
set mode (communication driver) , 

12-7 
Hardware configuration 

ICRll, 19-1 
ICSll, 19-1 
K-series, 23-2 

Hello OOB (TTDRV), 2-61 
HIST: subroutine 

histogram sampling (LSDRV), 
17-17 

Histogram sampling (LSDRV), 17-17 
Hold-screen mode (half~duplex), 

3-21 

I/O 
asynchronous (XEDRV), 13-21 
asynchronous proc~ss control 

(AFCll/ADOl converter), 
15-3 

attach device, 1-27 
buffer 

disable .(VTDRV), 4-5 
enable (VTDRV), 4-5 

cancel, 1-29 
VTDRV, 4-4 

completion, 1-8, 1-9, 1-11, 
1-36 

completion status (VTDRV), 4-5, 
4-6 

detach device, 1-28 
device-dependent, 1-1 
directive 

condition; 1-37 
status, 1-37 

Index-14 

( 

( 

c 



( 

( 

( 

INDEX 

I/O (Cont.) 
error 

DTDRV, 6-6 
status list, B-1 

extended 
subfunction modifier (TTDRV), 

2-2S 
TTDRV, 2-18, 2-2S 

failure, 1-37 
function support 

FIIACP, C-l 
MTAACP, C-l 

in progress 
disk driver, S-7 
DTDRV, 6-2 

issuing, 1-4 
kill I/O, 1-29 
macro 

QIO$ form, 1-13 
QIO$C form, 1-14 
QIO$S form, 1-13 

outstanding, before LUN 
reassignment, 1-3 

overlapped (disk driver), S-8 
overview, 1-1 
packet, 1-13 
read logical block, 1-30 
read virtual block, 1-30 
related macro, 1-13 

form, 1-13 
request, issuing, 1-14 
return code, 1-36 
rundown (ICDRV/ISDRV), 19-33 
second status word (tape 

driver), 8-13 
stall (RC2S), S-12 
standard function, 1-2S 

as a NOP, 1-26 
code list, B-7 

subsystem, industrial control 
See ICDRV 
See ISDRV 

success, 1-37 
status list, B-S 

synchronous process control 
(AFCll/AD01 converter), 
lS-3 

terminating (tape driver), 8-6 
tran.fer length, write block 

(DTDRV), 6-7 
unrecoverable error (DTDRV), 

6-6 
write logical block, 1-31, 1-32 

I/O function 
code, basic syntax, 1-6 

I/O function (Cont.) 
code, identical, 1-7 
code, list, B-7 
introduction, 1-1 
summary, A-I 

analog-to-digital, A-I 
card reader, A-1 
cassette, A-I 
communication driver, A-2 
DECtape, A-2 
DECtape II, A-2 
DEUNA, A-3 
disk, A-3 
FllACP, C-8 
graphics, A-3 
iridustrial control, A-4 
lab peripheral accelerator, 

A':'S 
lab peripheral system, A-S 
line printer, A-6 
magnetic tape, A-6 
MTAACP, C-10 
paper tape, A-6 
parallel communication, A-7 
terminal, A-7 
UNIBUS switch, A-9 
universal digital controller, 

A-9 
virtual terminal, A-10 

I/O page 
access (ICDRV/ISDRV), 19-76 
direct access (UDDRV), 16-3 
direct access procedure (UDDRV), 

16-9 
global definition (ICDRV/ISDRV), 

19-77 
I/O parameter 

basic, l-S 
I/O status, 1-36 

block, 1-8, 1-11, 1-36, 1-38 
AFCll/AD01 converter, lS-4, 

lS-8 
communication driver, 12-8 
CRDRV, 11-3 
different content (TTDRV), 

2-S1, 2-S9 
error test, 1-39 
example, 1-39 
first word (LSDRV), 17-10 
first word content 

K-series, 23-32 
LADRV, 22-31 
UDDRV, 16~lS 

FORTRAN (ICDRV/ISDRV), 19-3S; 
19-36 

Index-IS 



I/O status 
block (Cont.) 

GRDRV, 21-3 

INDEX 

IBFSTS: subroutine 
get buffer status (Cont.) 

LADRV, 22-17 
half-duplex, 3-13, 3-15, 3-16, Ibuf parameter 

3-17, 3-18, 3-26 
importance lLSDRV), 17~34 
K-series, 23-6, 23-32 
LADRV, 22-2, 22-30 
LPDRV, 10-5 
LRDRV, 14-4, 14-5, 14-11 
LSDRV, 17-9, 17-31, 17-34 
PPDRV/PRDRV, 18-3 
return 

status (TTDRV), 2-63 
second word (LSDRV), 17-31 
SF.GMC different (TTDRV), 

2-51, 2-59 
UDDRV, 16-7, 16-15, 16-16, 

16-31 
UNIBUS switch driver~ 24-6, 

24-7 
VTDRV, 4-7 
4-word (LADRV), 22-31 
XEDRV, 13-18 

code, 1-37 
binary value, 1-37 

code list, B-1 
condition, 1-38 

table, 1-40 
CRDRV, 11-7 
return 

completion, 1-36 
DDDRV, 7-4 
disk driver, 5-9 
DTDRV, 6-4 
summary (ICDRV/ISDRV), 19-36 
TTDRV, 2-63 

VTDRV, 4-5 
word 

CTDRV, 9-6 
tape driver, 8-13 

word 1 (ICDRV/ISDRV), 19-36 
I/O subfunction 

bit, 1-26 
example, 1-26 
unsupported, 1~26 

summary, terminal, A-8 
IAD-IA A/D converter 

address convention, 19-4 
Iadj parameter 

ADJLPS: subroutine (LSDRV), 
17-13 

IBFSTS: subroutine 
get buffer status 

K-series, 23-23 

ADJLPS: subroutine (LSDRV), 
17-13 

ADSWP: subroutine 
K-series, 23-9 
LADRV, 22-4 

CTDI: subroutine (UDDRV), 16-21 
CTTI: subroutine (UDDRV), 16-22 
DASWP: subroutine 

K-series, 23-14 
LADRV, 22-9 

DISWP: subroutine 
K-series, 23-17 
LADRV, 22-12 

DOSWP: subroutine 
K-series, 23-19 
LADRV, 22-14 

DRS: subroutine (LSDRV), 17-16 
GTHIST: subroutine (K-series), 

23-21 
HIST: subroutine (LSDRV), 17-17 
IBFSTS: subroutine 

K-series, 23-23 
LADRV, 22-17 

IGTBUF: subroutine 
K-series, 23 ... 24 
LADRV, 22-18 

INXTBF: subroutine 
K-series, 23-24 
LADRV, 22-19 

IRDB: subroutine (LSDRV)., 17-21 
ISTADC: subroutine (K-series), 

23-28 
IWTBUF: subroutine 

K-series, 23-25 
LADRV, 22-19 

LPSTP: subroutine (LSDRV) i 

17-22 
PUTD: subroutine (LSDRV), 17-22 
RLSBUF: subroutine 

K-series, 23-26 
LADRV, 22-22 

RMVBUF: subroutine 
K-series, 23:..26 
LADRV, 22-22 

RTS: subroutine (LSDRVh 17-23 
SDAC: subroutine (LSDRV), 17-25 
SDO: subroutine (LSDRV), 17 .... 27 
SETADC: subroutine (LADRV), 

22-23 
SETIBF: subroutine 

K-series, 23-28 

·Index-16 

( 

( 

( 



( 

c 

( 

INDEX 

Ibuf parameter 
SETIBF: subroutine (Cont.) 

LADRV, 22-24 
STPSWP: subroutine 

K-series, 23-29 
LADRV, 22-25 

Ibufno parameter 
IGTBUF: subroutine 

K-series, 23-24 
LADRV, 22-18 

INXTBF: subroutine 
K-series, 23-24 
LADRV, 22-19 

IWTBUF: subroutine 
K-series, 23-25 
LADRV, 22-19 

IWTBUF: subroutine (K-series), 
23-25 

Ic parameter 
device~specific function 

(UDDRV), 16-4 
ICDRV/ISDRV, 19-10 

IO.ITI function, 19-22 
IO.LTI function, 19-26 

leAR register 
content, 19-74 
error data, 19-73 

ICDRV/ISDRV 
driver functions, 19-4 
task functions, 19-4 

Ichan parameter 
ADC: subroutine (LSDRV), 17-12 
ADINP: subroutine (K-series), 

23-8 . 
RTS: subroutine (LSDRV),17-24 
SDAC: subroutine (LSDRV), 17-26 

Ichn parameter 
ADSWP: subroutine 

K-series, 23-11 
LADRV, 22-6 

DASWP: subroutine 
K-series, 23-15 
LADRV, 22-11 

ISTADC: subroutine (K-series), 
23-28 

SETADC: subroutine (LADRV), 
22-23 

ICLOKB: subroutine 
read 16-bit clock (K-series), 

23-23 
Icntrl parameter 

SCOPE: subroutine (K-series), 
23-27 

Icont parameter 
AIRD/AIRDW subroutine (UDDRV), 

16-18 
AISQ/AISQW subroutine (UDDRV), 

16-18 
AO/AOW subroutine (UDDRV), 

16-19 
DI/DIW: subroutine (UDDRV), 

16-23 
DOL/DOLW: subroutine (UDDRV), 

16-24 
DOM/DOMW: subroutine (UDDRV), 

16-25 
Icos parameter 

RDWD: subroutine (UDDRV), 16-30 
ICR common block 

linking task, 19-76 
ICR register 

read direct access sample· 
subroutine, 19-78 

ICRll, 19-1 
ICS common block 

linking task, 19-76 
ICS register 

read direct access sample. 
subroutine, 19-78 

ICS/ICR-DSS/DR 
function code list, B-I0 

ICSll, 16-1, 19-1 
ICSll A/D converter (UDDRV), 16-8 
ICSR register 

content, 19-73 
error data, 19-73 

Ict parameter (UDDRV) 
RDCS: subroutine, 16-27 
RDDI: subroutine, 16-28 

Id parameter 
device-specific function 

transmit (LRDRV), 14-4 
Idata parameter 

AIRD/AIRDW subroutine (UDDRV), 
16-18 

AISQ/AISQW subroutine (UDDRV), 
16-18 

AO/AOW subroutine (UDDRV), 
16-19 

DI/DIW: subroutine (UDDRV), 
16-23 

DOL/DOLW: subroutine (UDDRV), 
16-24 

DOM/DOMW: subroutine (UDDRV), 
16-25 

DOUT: subroutine (K-series), 
23-21 

Index-17 



INDEX 

Idee parameter 
LED: subroutine (LSDRV), 17-21 

Idir parameter 
IDIR: subroutine (LSDRV), 17-19 

IDIR: subroutine 
read digital input (LSDRV), 

17-19 
IDOR: subroutine 

write digital output (LSDRV), 
17-20 

Idsc parameter 
LAMSKS: subroutine (LADRV), 

22-21 
Idsw parameter 

LA}Io1SKS: subroutine (LADRV), 
22-21 

Idwell parameter 
ADSWP: subroutine (LADRV), 22-5 
DASWP: subroutine (LADRV), 

22-10 
DISWP: subroutine (LADRV), 

22-13 
DOSWP: subroutine (LADRV), 

22-15 
Idx parameter 

DOM/DOMW: subroutine (UDDRV), 
16-25 

IE.ABO error return, 1-40 
ACP, C-14 
AFC11/ADOl converter, 15-8 
communication driver, 12-10 
CRDRV, 11-7 
CTDRV, 9-4 
disk driver, 5-10 
DTDRV, 6-4 
FORTRAN interface value 

(AFCll/AD01 converter), 
15-9 

GRDRV, 21-3 
half-duplex, 3-18 
ICDRV/ISDRV, 19-13 
LPDRV, 10-5 
LSDRV, 17-29 
PPDRV/PRDRV, 18-3 
receiver (LRDRV), 14-12 
tape driver, 8-10 
transmitter (LRDRV), 14-8 
TTDRV, 2-63 
UDDRV, 16-31 
UNIBUS switch driver, 24-7 
VTDRV, 4-8 
XEDRV, 13-16, 13-19 

initialize line error 
IO.XIN function, 13-11 

transmit line error, 13-13 

IE.ADP error return, 1-37 
FORTRAN interface value 

(AFCII/ADOI converter), 
15-9 

ICDRV/ISDRV, 19-12 
IE.ALC error return, ACP, C-14 
IE.ALN error return, 1-40 

disk driver, 5-10 
DTDRV, 6-4 
XEDRV, 13-5 

IE.ALN error return, ACP, C-14 
IE.BAD error return, 1-40 

AFCII/ADOI converter, 15-8 
FORTRAN interface value 

(AFCII/ADOI converter), 
15-9 

half-duplex, 3-18 
ICDRV/ISDRV 

IO.LDI function, 19-26 
IO.RBC function, 19-14 

LSDRV, 17-29 
receiver (LRDRV), 14-11· 
transmitter (LRDRV), 14-7 
TTDRV, 2-63 
UDDRV, 16-31 
UNIBUS switch driver, 24-7 
VTDRV, 4-9 

IE.BAD error return, ACP, C-14 
IE.BBE error return, 1-40 

disk driver, 5-10 
receiver (LRDRV), 14-12 
tape drtver, 8-10 
transmitter .(LRDRV), 14-8 

IE.BCC ~rror return . 
communication driver, 12-9 
TTDRV, 2-64 

IE.BDR error return, ACP, C-14 
IE.BLK error return, 1-40 

disk driver, 5-10 
DTDRV, 6-4 

IE.BTP error return, ACP, C-15 
IE.BVR error return, ACP, C-15 
IE.BYT error return, 1-41 

AFC11/AD01 converter, 15-8 
disk driver, 5-10 
DTDRV, 6-4· 
FORTRAN interface value 

(AFC11/AD01 converter), 
15-9 

ICDRV/ISDRV 
IO.CCI function, 19-20 
IO.CTI function, 19-21 
IO.CTY function, 19-23 
IO.RAD function, 19-29 
IO.RBC function, 19-14 

Index-18 

c 

( 

( 



( 

( 

( 

IE.BYT error return (Cont.) 
LSDRV, 17-29 
tape driver, 8-10 
UDDRV, 16-32 

IE.BYT error return, ACP, C-15 
IE.CKS error return, ACP, C-15 
IE.CLO error return, ACP, C-15 
IE.CNR error return 

connnunicationdriver, 12-9 
GRDRV, 21-3 . 
UNIBUS switch driver, 24-7 

IE.CON error return 
ICDRV/ISDRV 

IO.CCI function, 19-20 
IO.CTI function, 19-21 
IO.CTY function, 19-23 
IO.DCI function, 19-21 
~O.DTI function, 19-23 
IO.DTY function, 19-24 

UDDRV, 16-32 
IE.DAA error return, 1-41 

CRDRV, 11-7 
CTDRV, 9-4 
half-duplex, 3-19 
LPDRV, 10-5 
PPDRV/PRDRV, 18-3 
receiver (LRDRV), 14-12 
tape driver, 8-11 
TTDRV, 2-64 
UNIBUS switch driver, 24-7 

IE.DAO error return 
communication .driver, 12-9 
CTDRV, 9-4 
FORTRAN interface value 

(AFC11/AD01 converter), 
15-9 

LSDRV, 17-29 
tape driver, 8-11 
TTDRV, 2-64 
XEDRV, 13-17 

IE.DFU error return, ACP, C-15 
IE. DNA error return, 1-41 

CRDRV, 11-7 
CTDRV, 9-4 
GRDRV, 21-3 
half-duplex, 3-19 
LPDRV, 10-5 
PPDRV/PRDRV, 18-3 
receiver (LRDRV), 14-12 
tape driver, 8-11 
TTDRV, 2-64 
UNIBUS switch driver, 24-7 

IE.DNR error return, 1-41 
AFC11/AD01 converter, 15-8 
connnunication driver, 12-9 

INDEX 

IE.DNR error return (Cont.) 
CTDRV, 9-4 
DDDRV, 7-5 
diagnostic, device not ready, 

1-35 
disk driver, 5-10 
DTDRV,6-4 
FORTRAN interface value 

(AFC11/AD01 converter), 
15-9 

half-duplex, 3-19 
ICDRV/ISDRV, 19-13 

IO.RBC function, 19-14 
LSDRV, 17-29 
power fail, 1-43 
PPDRV/PRDRV, 18-3 
receiver (LRDRV), 14-11 
tape driver, 8-11 
transmitter (LRDRV), 14-7 
TTDRV, 2-64 
UDDRV, 16-32 

IE.DOA error return 
receiver (LRDRV), 14-12 

IE. DUN error return (VTDRV), 4-9 
IE.DUP error return, ACP, C-15 
IE.EOF error return, 1-41 

CRDRV, 11-7 
CTDRV, 9-5 
half-duplex, 3-18 
PPDRV/PRDRV, 18-3 
tape driver, 8-11 
TTDRV, 2-65 
VTDRV, 4-9 

IE.EOF error return, ACP, C-15 
IE.EOT error return 

CTDRV, 9-5 
tape driver, 8-11 

IE.EOV error return 
tape driver, 8-12 

IE.FHE error return, 1-41 
DDDRV, 7-5 
disk driver, 5-10 
receiver (LRDRV);14-12 
tape driver, 8-12 

IE.FLG error return 
transmitter (LRDRV), 14-8 

IE.FLN erroi return 
IO.FLN function (ICDRV/ISDRV), 

-19-33 
IE.HFU error return, ACP, C-16 
IE.IEF error return, 1-3W 

FORTRAN interface value 
(AFC11/AD01 converter), 
15-9 

GRDRV, 21-3 

Index-19 



IE.IEF error return (Cont.) 
ICDRV/ISDRV, 19-12 

IO.CCI function, 19-20 
IO.CTI function, 19-22 
IO.CTY function, 19-23 
IO.LDI function, 19-26 
IO.LKE function, 19-28 
IO.LTI function, 19-26 
IO.LTY function, 19-27 

LSDRV, 17-30 
UDDRV, 16-32 

IE.IES error return 
half-duplex, 3-19 
TTDRV, 2-65 

IE.IFC error return, 1-41 
AFCll/ADOl converter, 15-9 
communication driver, 12-10 
CRDRV, 11-7 
CTDRV, 9-5 
DDDRV, 7-5 
disk driver, 5-11 
DTDRV, 6-4 
FORTRAN interface value 

(AFCll/ADOl converter), 
15-9 

GRDRV, 21-3 
half-duplex, 3-19 
ICDRV/ISDRV, 19-13 

IO.LKE function, 19-28 
IO.UER function, 19-31 

LPDRV, 10-5 
LSDRV, 17-30 
PPDRY/PRDRV, 18-4 
receiver (LRDRV), 14-12 
tape driver, 8-12 
transmitter (LRDRV), 14-8 
TTDRV, 2-65 
UDDRV, 16-32 
UNIBUS switch driver, 24-7 
VTDRV, 4-8, 4-9 
XEDRV, 13-5, 13-13, 13-17, 

13-18 
IO.XIN function, 13-11 

IE.IFC error return, ACP, C-16 
IE.IFU error return, ACP, C-16 
IE.ILU error return, 1-38 

FORTRAN interface value 
(AFCll/ADOl converter), 
15-9 

ICDRV/ISDRV, 19-12 
IE.LCK error return, ACP, C-16 
IE.LUN error return, ACP, C-16 
IE.MOD error return 

ICDRV/ISDRV 
IO.CTY function, 19-23 

INDEX 

IE.MOD error return 
ICDRV/ISDRV (Cont.) 

IO.ITI function, 19-22 
IO.LDI function, 19-26 
IO.LTI function, 19-27 
IO.LTY function, 19-27 
IO.MLO function, 19-17 
IO.MSO function, 19-16 
IO.SAO function, 19-16 
IO.UDI function, 19-30 
IO.UTI function, 1,9-31 
IO.UTY function, 19-31 
IO.WLB function, 19-32 

UDDRV, 16-32 
IE.NLK error return 

ICDRV/ISDRV 
IO.NLK function, 19-30 

'IO.RAD function, 19-29 
IO.UDI function, 19-30 
IO.UER function, 19-31 
IO.UTI function, 19~31 
IO.UTY function, 19-31 

,IE.NLN error return, 1-42 
disk driver, 5-11 
DTDRV, 6-5 
XEDRV, 13-13, 13-17, 13-18 

IO.XIN function, 13-11 
IE. NOD error return, 1-42 

CRDRV, 11-7 
disk driver, 5-11 
DTDRV, 6-5 
FORTRAN interface value 

(AFCll/ADOl converter), 
15-9 

half-duplex, 3-19 
ICDRV/ISDRV, 19-13 

IO.LDI function, 19-26 
IO.LKE function, 19-28 
IO.LTI function, 19-27 
IO.LTY function, 19-27 

LSDRV, 17-30 
TTDRV, 2-65 
UNIBUS switch driver, 24-8 

IE. NOD error return, ACP, C-16 
IE. NSF error return 

XEDRV, 13-5 
IE. NSF error return, ACP, C ... 16 
IE.NST error return 

ICDRV/ISDRV 

Index-20 

IO.LDI function, 19-26' 
IO.LKE function, 19-28 
IO.LTY function, 19-27 
IO.UDI function, 19-30 
IO.UER function, 19-31 
IO.UTI function, 19-31 

( 

c 

( 



( 

( 

( 

IE.NST error return 
ICDRV/ISDRV (Cont.) 

IO.UTY function, 19-31 
IE.NTR error return 

receiver (LRDRV), 14-12 
IE.OFL error return, 1-42 

AFC11/AD01 converter, 15-9 
communication driver, 12-10 
CRDRV, 11-8 
CTDRV, 9-5 
disk driver, 5-11 
DTDRV, 6-5 
half-duplex, 3-20 
ICDRV/ISDRV, 19-13 
LPDRV, 10-5 
LSDRV, 17-30 
PPDRV/PRDRV, 18-4 
tape d~iver, 8-12 
TTDRV, 2-65 
UDDRV, 16-32 
UNIBUS switch driver, 24-8 

IE.OFL error return, ACP, C-16 
IE.ONP error return 

FORTRAN interface value 
(AFC11/AD01 converter), 
15-9 . 

LSDRV, 17-30 
IE.OVRerror return, 1-42 

disk driver, 5-11 
DTDRV, 6-5 

IE. PES error return 
half-duplex, 3-20 
TTDRV, 2-65 

IE.PRI error return, 1-42 
disk driver, 5-11 
DTDRV, 6-5 
FORTRAN interface value 

(AFC11/AD01 converter), 
15-9 

half-duplex, 3-20 
ICDRV/ISDRV 

IO.CCI function, 19-20 
IO.CTI function, 19-22 
IO.FLN function, 19-33 
IO.ONL function, 19-33 

LSDRV, 17-30 
TTDRV, 2-65 
UDDRV, 16-33 
XEDRV, 13-19 

IE.PRI error return, ACP, C-17 
IE.REJ error return 

transmitter (LRDRV), 14-8 
IE.RER error return, ACP, C-17 
IE.RSU error return 

communication dr iver, 12-.10 

INDEX 

IE.RSU error return (Cont.) 
FORTRAN interface value 

(AFC11/AD01 converter), 
15-9 

half-duplex, 3-20 
ICDRV/ISDRV 

IO.LDI function, 19-26 
IO.LKE function, 19-28 
IO.LTI function, 19-27 
IO.LTY function, 19-27 

LSDRV, 17-30, 17-31 
IO.ADS function, 17-31 
IO.HIS function, 17-31 
IO.MDA function, 17-31 
IO.MDI function, 17-31 
IO.MDO function, 17-31 
IO.SDO function, 17-31 

IE.SDP error return, 1-38 
FORTRAN interface value 

(AFC11/AD01 converter), 
15-9 

ICDRV/ISDRV, 19 ... 13 
IE.SNC error return, ACP, C-17 
IE.SPC error return, 1-42 

AFC11/AD01 converter, 15-9 
communication driver, 12-10 
CRDRV, 11-8 
CTDRV, 9-5 
disk driver, 5-11 
DTDRV, 6-5 
FORTRAN interface value 

(AFC11/AD01 converter), 
15-9 

GRDRV, 21-3 
half-duplex, 3-20 
ICDRV/ISDRV . 

IO.CCI function, 19-20 
IO.CTI function, 19-22 
IO.CTY function, 19-23 
IO.RAD function, 19-29 

LPDRV, 10-5 
LSDRV, 17-30 
PPDRV/PRDRV, 18-4 
receiver (LRDRV), 14-12 
tape driver, 8-12 
transmitter (LRDRV), 14-8 
TTDRV, 2-66 

IO.ATA function, 2-21 
UDDRV, 16-33 
UNIBUS switch driver, 24-8 
VTDRV, 4-8 
XEDRV, 13-13, 13-17, 13-19 

IE.SPC error return, ACP, C-17 
IE.SQC error return, ACP, C-17 

Index-21 



INDEX 

IE.TMO error return 
communication driver, 12-10 
DDDRV, 7-5 
UNIBUS switch driver, 24-8 
XEDRV, 13-17 

IE.ULN error return, 1-38 
FORTRAN interface value 

(AFCll/ADOl converter), 
15-9 

ICDRV/ISDRV, 19-13 
IE.UPN error return, 1-38 

FORTRAN interface value 
(AFCll/ADOl converter), 
15-9 . 

VTDRV, 4-8 
IE.VER error return, 1-43 

communication driver, 12-10 
CTDRV, 9-5 
DDDRV, 7-5 
disk driver, 5-11 
DTDRV, 6-6 
PPDRV/PRDRV, 18-4 
tape driver, 8-13 
transmitter (LRDRV), 14-8 
TTDRV, 2-66 

IE.WAC error return, ACP, C-17 
IE.WAT error return, ACP, C-17 
IE.WCK error return, 1-43 

disk driver, 5-12 
IE.WER error return, ACP, C-18 
IE.WLK error return, 1-43 

CTDRV, 9-5 
DDDRV, 7-5 
disk driver, 5-12 
tape driver, 8-13 

lE.WLK error return, ACP, C-18 
Iefn parameter 

ADSWP: subroutine 
K-series, 23-10 
LADRV, 22-5 

DASWP: subroutine 
K-series, 23-15 
LADRV, 22-10 

DISWP: subroutine 
K-series, 23-18 
LADRV, 22-13 

DOSWP: subroutine 
K-series, 23-20 
LADRV, 22-15 

DRS: subroutine (LSDRV), 17-16 
GTHIST: subroutine (K-series), 

23-22 
HIST: subroutine (LSDRV), 17-18 
IWTBUF: subroutine 

K-series, 23-25 

Iefn parameter 
IWTBUF: subroutine (Cont.) 

LADRV, 22-19 
RTS: subroutine (LSDRV), 17-24 
SDAC: subroutine (LSDRV), 17-26. 
SDO: subroutine (LSDRV), 17-28 

Iemc parameter 
LAMSKS: subroutine (LADRV), 

22-21 
Iemw parameter 

LAMSKS: subroutine (LADRV), 
22-21 

lev parameter (UDDRV) 
CTDI:subroutine, 16-21 
CTTI: subroutine, 16-22 

Iflag parameter 
ADINP:subroutine (K-series), 

23-8 
ISTADC: subroutine (K-series), 

23-28 
SETADC: subroutine· (LADRV) , 

22-23 
XRATE: subroutine 

K-series, 23-30 
LADRV, 22-26 

Igain parameter 
ADC: subroutine (LSDRV), 17-12 

IGTBUF: subroutine 
return buffer number 

K-series, 23-24 
LADRV, 22-17 

!len parameter (LSDRV) 
DRS: subroutine, 17-16 
HIST: subroutine, 17~18 
RT~: subroutine, 17-23 
SDAC: subroutine, 17-25 
SDO: subroutine, 17-27 

Imask parameter (LSDRV) 
DRS: subroutine, 17-17 
IDOR: subroutine, 17-20 
SDO: subroutine, 17-28 

Imod parameter (UDDRV) 
RDTI: subroutine, 16-29 
RDWD: subroutine, 16-29 
RSTI: subroutine, 16-30 
SCTI: subroutine, 16-30 

Imode parameter 
DRS: subroutine (LSDRV), 17-16 
HIST: subroutine (LSDRV), 17-18 
IDOR: subroutine (LSDRV), 17-20 
RTS: subroutine (LSDRV), 17-23 
SDAC: subroutine (LSDRV), 17-25 
SDO: subroutine (LSDRV), 17-27 

Index-22 

( 

( 

( 



( 

( 

( 

INDEX 

Imsk parameter 
DOL/DOLW: subroutine (UDDRV), 

16-24 
Inc parameter 

ISTADC: subroutine (K-series), 
23-28 

SETADC: subroutine (LADRV), 
22-23 

Include OOB (TTDRV), 2-61 
Ind parameter 

ADSWP: subroutine (LADRV), 22-6 
CLOCKA: subroutine 

K-series, 23-11 
LADRV, 22-7 

CLOCKB: subroutine 
K-series, 23-13 
LADRV, 22-8 

DA.SWP: subroutine (LADRV), 
22-11 

DINP: subroutine (K-series), 
23-17 

OISWP: subroritine (LADRV), 
22-14 

DOSWP: subroutine (LADRV), 
22-16 

INXTBF: subroutine 
K-series, 23-24 
LADRV, 22-19 

ISTADC: subroutine (K-series), 
23-28 

LAMSKS: subroutine (LADRV), 
22-21 

RLSBUF: subroutine 
K-seriesn, 23-26 
LADRV, 22-22 

RMVBUF: subroutine 
K-series, 23-26 
LADRV, 22-22 

SETADC: subroutine (LADRV), 
22-23 

SETIBF: subroutine 
K-series, 23-29 
LADRV, 22-24 

STPSWP: subroutine 
K-series, 23-30 
LADRV, 22-25 

Industrial control subsystem 
See ICDRV 
See ISDRV 

Ini tialize 
MACRO-ll source module 

(K-series), 23-31 
timer module 

SCTI: subroutine (UODRV), 
16-30 

Initialize LPA11 
IO.INI function (LADRV), 22-29 

INITS macro 
calling example (LADRV), 22-28 
special calling (LADRV), 22-27 
special purpose (K-series), 

23-31 
Inm parameter (UDDRV) 

AIRD/AIRDW subroutine, 16-17 
AISQ/AISQW subroutine, 16-18 
AO/AOW subroutine, 16-19 
DI/DIW: subroutine, 16-23 
DOL/DOLW: subroutine, 16-24 
DOM/DOMW: subroutine, 16-25 

Input 
ADJLPS: subroutine, use of, 

17-36 
analog (ICDRV/ISDRV), 19-39, 

19-40 . 
sequential channel, 19-42 
specified channel, 19-39 

buffer, intermediate (TTDRV), 
2-80 

checkpoint, terminal (TTDRV), 
2-82 

default read (TTDRV), 2-13 
digital (ICDRV/ISDRV), 19-47 

interrupt single_point, 19-48 
sense multiple field, 19-47, 

19-48 
line, delete start (TTDRV), 

2-70 
parameter 

DINP: subroutine (K-series), 
23-17 

random analog data (UDDRV), 
16-17 

unsolicited (TTDRV), 2-55, 2-68 
notification, 2-13 

INS, 13-5 
Int parameter 

immediate device_specific 
function (LSDRV), 17-3 

Interface 
character-oriented 

(communication driver) , 
12-1 

line driver, 12-1 
message-oriented (communication 

driver), 12-1 . 
status value, FORTRAN (LSDRV), 

17-33 
terminal (TTDRV), 2-81 

Internal vertical format (TTDRV), 
2-76 

Index"-23 



INDEX 

Interrupt 
connect contact 

CTDI: subroutine (UDDRV), 
16-20 

conn.ect digital (ICDRV/ISDRV), 
19-19 

connect terminal (ICDRV/ISDRV), 
19-23 

connect timer 
CTTI: subroutine (UDDRV), 

16-21 
contact 

digital input (UDbRV), 16-6 
counter 

disconnect buffer 
(ICDRV/ISDRV), 19-59 

link task (ICDRV/ISDRV) , 
19-26 . 

counter disconnect 
(ICDRV/ISDRV), 19-22 

counter module 
connect (ICDRV/ISDRV), 19-21 

digital 
disconnect buffer 

(ICDRV/ISDRV), 19-56 
link task (ICDRV/ISDRV), 

19-25 
unlink task (ICDRV/ISDRV), 

19-30 
digital changed state point 

read (ICDRV/ISDRV), 19-54 
digital data 

read (ICDRV/ISDRV), 19-52, 
19-53 

read full word (ICDRV/ISDRV), 
19-55 

digital single-point 
(ICDRV/ISDRV), 19-48 

disable error (ICDRV/ISDRV), 
19-32 

disconnect contact 
DRDI: subroutine (UDDRV), 

16-22 
disconnect digital 

(ICDRV/ISDRV) ~ 19-20 
disconnect timer 

DRTI: subroutine (UDDRV), 
16-23 

link task (ICDRV)/ISDRV, 19-27 
link task (ICDRV/ISDRV), 19-64, 

19-66 
read contact change data 

RDCS: subroutine (UDDRV), 
16-26 

Interrupt (Cont.) 
read contact data 

RDDI: subroutine (UDDRV), 
16-27 

read contact point 
RCIPT: subroutine (UDDRV), 

16-25 
read timer da ta 

RDTI: subroutine (UDDRV), 
16-28 

read word contact data 
RDWD: subroutine (UDDRV), 

16-29 
task 

remove link (ICDRV/ISDRV), 
19-68 

remove link example 
(ICDRV/ISDRV), 19-69 

unlink error (ICDRV/ISDRV), 
19-31 

terminal 
connect buffer (ICDRV/ISDRV) , 

19-'60 
unlink task (ICDRV !ISDRV) , 

19-31 
unlink (ICDRV/ISDRV), 19-30 
unlink counter (ICDRV/ISDRV), 

19-30 
unlink task (ICDRV/ISDRV), 

19-29 
unsolicited 

processing (ICDRV/ISDRV), 
19-64 

task activate (ICDRV/ISDRV), 
19-24 

unsolicited data 
continual monitoring 

(ICDRV /ISDRV), 19-51 
unsolicited processing 

(ICDRV/ISDRV), 19-'17 
Interrupting function 

(ICDRV/ISDRV), 19-5 
INXTBF: subroutine 

set next buffer 
K-ser ies, 23-24 
LADRV, 22-18 

IO.ACE function 
FllACP, C-9 
MTAACP, C-10 

IO.ACP function (MTAACP), C-12 
IO.ACRfunction 

F11ACP, C-8 
MTAACP, C-10 

IO.ACW function 
FllACP, C-8 

Index-24 

( 

c 

( 



( 

( 

( 

INDEX 

IO.ACW function (Cont.) 
MTAACP, C-10 

IO.ADS function 
ADC: subroutine error (LSDRV), 

17-32 
IO.RSU return (LSDRV), 17-31 
synchronous (LSDRV), 17-6 

IO.APV function (MTAACP), C-12 
IO.ATA function 

half-duplex, 3-9 
TTDRV, 2-20 

IO.ATF function, receive (LRDRV), 
14-10 

IO.ATT function 
GLUN$, before (RX02), 5-12 
(GRDRV), 21-2 
standard function, 1-27 
TF.ESQ, with (half-duplex), 

3-11 
UNIBUS switch driver, 24-2, 

24-3 
VTDRV, 4-4 

IO.ATX function, transmitter 
(LRDRV), 14-5 

IO.BLS function (DDDRV) ,7-4 
IO.CCI function (ICDRV/ISDRV), 

19-19 
IO.CCO function 

half-duplex, 3-11 
TTDRV, 2-23 
VFC (TTDRV), 2-75 

IO.CLK function (LADRV), 22-29 
10.CNT function (GRDRV), 21-2 
IO.CON function 

device-specific (UNIBUS switch 
driver), 24-4 

GRDRV, 21-2 
IO.CRE function 

F11ACP, C-8 
MTAACP, C-11 

IO.CRX function, receive (LRDRV), 
14-10 

IO.CSR function 
device-specific (UNIBUS switch 

driver), 24-6 
IO.CTI function 

ICDRV/ISDRV, 19-21 
UDDRV, 16-8 

IO.CTY function (ICDRV/ISDRV), 
19-23 

IO.DAC function 
F11ACP, C-9 
MTAACP, C-10 

IO.DCI function (ICDRV/ISDRV), 
19-20 

IO.DEL function (FllACP), C-8 
IO.DET function 

GRDRV, 21-2 
standard function, 1-28 
UNIBUS switch driver, 24-2, 

24-3 
VTDRV, 4-4 

IO.DGN function 
diagnostic (DDDRV), 7-4 

IO.DIS function 
device-specific (UNIBUS switch 

dri ver), 24-5 
GRDRV, 21-2 

IO.DPT function 
device-specific (UNIBUS switch 

driver), 24-5 
IO.DRX function, receive (LRDRV), 

14-11 
IO.DSE function (tape driver) , 

8-8 
IO.DTI function 

ICDRV/ISDRV, 19-22 
UDDRV, 16-8 

IO.DTY function (ICDRV/ISDRV), 
19-24 

IO.EIO function (TTDRV), 2-25 
item list 1 buffer, 2-30 
item list 2 buffer, 2-32 
remote terminal, 2-25 

IO.ENA function 
FllACP, C-9 
MTAACP, C-10 

IO.ERS function (tape driver) , 
8-8 

IO.EXT function (FllACP), C-9 
IO.FDX function (communication 

driver), 12-7 
IO.FLN function (ICDRV/ISDRV), 

19-32 
IO.FNA function 

F11ACP, C-9 
MTAACP, C-10 

IO.GTS function 
half-duplex, 3-13 
support returned (TTDRV), 2-34 
TTDRV, 2-18, 2-33 
VTDRV, 4-6 

IO.HDX function, set mode 
(communication driver), 12-7 

IO.HIS function (LSDRV) 
IO.RSU return, 17-31 
synchronous, 17-7 

IO.HNG function (TTDRV), 2-35 
IO.INI function (LADRV), 22-29 

Index-25 



IO.INL function 
communication driver, 12-7 

after sync, 12-12 
IO.ITI function (ICDRV/ISDRV), 

19-22 
IO.KIL function 

CRDRV, 11-2 
DTDRV, 6-2 
GRDRV, 21-2 
I/O in progress (CTDRV), 9-3 
ICDRV/ISDRV, 19-33 
LPDRV, 10-4 
standard function, 1-29 
tape driver, 8-6 
time required (half-duplex), 

3-32 
UDDRV, 16-3 
UNIBUS switch driver, 24-3 
VTDRV, 4-4 

IO.KIL function (PPDRV/PRDRV), 
18-2 

IO.LDI function (ICDRV/ISDRV), 
19-25 

IO.LED function, immediate 
(LSDRV), 17-4 

IO.LKE function (ICDRV/ISDRV), 
19-27 

IO~LOD function (LADRV), 22-29 
IO.LTI function (ICDRV/ISDRV), 

19-26 
IO.LTY function (ICDRV/ISDRV), 

19-27 
IO.MDAfunction (LSDRV) 

IO.RSUreturn, 17-31 
synchronous, 17-8 

IO.MDI £unction (LSDRV) 
IE.RSU return, 17-31 
synchronous, 17-8 

IO.MDO function (LSDRV) 
IO.RSU return, 17-31 
synchronous, 17-8 

IO.MLO function (ICDRV/ISDRV), 
19-17 

IO.MSO function (ICDRV/ISDRV), 
19-16 

IO.NLK function (ICDRV/ISDRV), 
19-30 

IO.ONL function (ICDRV/ISDRV), 
19-33 

IO.RAD function (ICDRV/ISDRV), 
19-28 

IO.RAL function 
Badge Reader (TTDRV), 2~82 
character echo (half-duplex), 

3-14 

INDEX 

IO.RAL function (Cont.) 
half-duplex, 3-14 
TTDRV, 2-36 

IO.RAT function 
F11ACP, C-9 
MTAACP, C-ll 

IO.RBC function (ICDRV/ISDRV) , 
19-13 

IO.REL function, immediate 
(LSDRV), 17-4 

IO.RLB function 
communication driver, 12-7 
ignore prompt (TTDRV), 2-27 
standard function, 1-30 
tape driver, 8-7 
VTDRV, 4-4 

IO.RLC function (DDDRV), 7-4 
IO.RNA function (FIIACP), C-9 
IO.RNE function 

Badge Reader (TTDRV), 2-82 
half-duplex, 3-14 
TTDRV, 2-38 

IO.RNSfunction (communication 
driver), 12-7 

IO.RPR function 
allowed subfunction bit 

(half-duplex),3-14 
half-duplex, 3-14, 3-15 
TTDRV, 2-40 
VFC (TTDRV), 2-75 
VTDRV, 4-7 . 

IO.RPRITF.XOFfunction 
(half-dupl.x)~ 3-15 

IO.RST function 
half-duplex, 3-15 
TTDRV, 2-43 

successful completion, 2-43 
IO.RTF function, receive (LRDRV), 

14-10 
IO.RTTfunction (TTDRV), 2-45 
IO.RVB function 

F11ACP, C-9 
MTAACP, C-11 
open file (DTDRV), 6-3 
operation (disk driver), 5-8 
standard function, 1-30 
VTDRV, 4-4 

IO.RWD function (tape driver), 
8-7 

IO.RWU function (tape driver) , 
8-7 

IO.SAO function (ICDRV/ISDRV), 
19-15 

IO.SDI function, immediate 
(LSDRV), 17-4 

Index..,;, 26 

( 

( 

( 



( 

( 

IO.SDO function {LSDRV) 
IE.RSU return, 17-31 
immediate, 17-4 

IO.SEC function 
GLUN$, before (RX02), 5~12 
tape driver, 8--8 
transmitter (LRDRV), 14-5 

IO.SMC function (TTDRV), 2-59 
IO.SMO tunction (tape d~iver), 

8-10 . 
IO.SPB function, space (CTDRV), 

9-7 
IO.SPF function 

EOF (CTDRV), 9-7 
space (CTDRV), 9-7 

IO.STA function, data transfer 
start (LADRV), 22-30 

IO.STC function 
LRDRV 

transmitter; 14-5 
mode parameter, 14-6 
state parameter, 14-6 

VTDRV, 4"-5 
IO.STP function 

data transfer stop (LADRV), 
22-30 

device-specific (LSDRV), 17-9 
GRDRV, 21-2 

IO.SWI function 
device-specific (UNIBUS switch 

driver), 24-6 
IO.SYN function (communication 

driver), 12-8 
set operation, 12-7 
with IO.INL, 12-12 

IO.TRM function (communication 
driver), 12-7 

10. UDI function (ICDRV/ISDRV), 
19-30 . 

IO.UER function (ICDRV/ISDRV), 
19-31 

10. ULK function (F11ACP), C-9 
IO.UTI function (ICDRV/ISDRV) , 

19-30 
IO.UTY function (ICDRV/ISDRV), 

19-31 
IO.WAL function 

half-duplex, 3-16 
TTDRV, 2-47 

IO.WBT function 
half-duplex, 3-16 
TTDRV,2-49 
VFC(TTDRV), 2~75 

IO.WLB fUnction 
ICDRV/ISDRV, 19-32 

INDEX 

IO.WLB function (Cont.) 
ignore prompt (TTDRV), 2-27 
standard function, 1-31, 1-32 
VFC (TTDRV), 2-75 
VTDRV, 4-4 

IO.WLC function (DDDRV), 7-4 
IO.WNS function (communication 

driver), 12-8 
IO.WVB function 

FllACP, C-9 
open file (DTDRV), 6-3 
operation (disk driver), 5-8 
use (half-duplex), 3-32 
VFC (TTDRV), 2-75 
VTDRV, 4-4 

IO.XCL function (XEDRV), 13-4, 
13-17 

error return, 13-18 
status return, 13-18 
syntax, 13-17 

IO.XIN function (XEDRV), 13-4, 
13-10 

errOr return, 13-11 
status return, 13-11 
syntax, 13-10 

IO.XOP function (XEDRV), 13-4, 
13-6 

syntax, 13-6 
IO.XRC function (XEDRV), 13-4, 

13-13 
diagnostic, 13-19 
error return, 13-16 
status return, 13-16 
syntax, 13-13 

10. XSC function (XEDRV), 13-4, 
13-7 

syntax, 13-7 
IO.XTL function (XEDRV), 13-18 

error return, 13-18 
status return, 13-18 
syntax, 13-18 . 

IO.XTM function (XEDRV), 13-4, 
13-11 

diagnostic, 13-19. 
error return, 13-13 
status return, 13-13 
syntax, 13-11 

IOERR$ macro, 1-8 
I/O completion code, 1-37 

Iosb parameter (K-series) 
DINP: subroutine, 23-17 
DOUT: subroutine, 23-21 
SCOPE: subroutine, 23-27 

Index-27 



lout parameter 
DOUT: subroutine (K-series), 

23-21 
Iprset parameter 

ADSWP: subroutine (K-series), 
23-10 

CLOCKA:. subroutine 
K-series, 23-11' 
LADRV, 22-7 

CLOCKB: subroutine 
K-series, 23-12 
LADRV, 22-8 

DASWP: subroutine (K-series), 
23-15 

DISWP: subroutine (K-series), 
23-18 

DOSWP: subroutine (K-series), 
23-19 

GTHIST: subroutine (K-series), 
23-22 

XRATE: subroutine 
K-series, 23-30 
LADRV, 22-26 

Ipt parameter (UDDRV) 
RCIPT: subroutine, 16-25 
RDCS: subroutine, 16-27 
RDDI: subroutine, 16~28 

IQ~Q function (disk driver), 5-8 
IQ.UMD bit 

diagnostic function, 1-34 
IQ.X function (disk driver), 5-8 
Irate parameter 

CLOCKA: subroutine 
K-series, 23-11 
LADRV, 22-7 

CLOCKB: subroutine 
K-series, 23-12 
LADRV, 22-8 

DRS: subroutine (LSDRV), 17-16 
HIST: subroutine (LSDRV), 17-18 
RTS: subroutine (LSDRV), 17-24 
SDAC: subroutine (LSDRV), 17-26 
SDO: subroutine (LSDRV), 17-28 
XRATE: subroutine 

K-series, 23-30 
LADRV, 22-26 

Irbuf parameter 
IO.INI function (LADRV), 22-29 

IRDB: subroutine 
read data from input buffer 

(LSDRV), 17-20 
Ire1 parameter 

RELAY: subroutine (LSDRV), 
17-22 

IS.CC status return (TTDRV), 2-66 

INDEX 

IS.CR status return, 1-39 
half-duplex, 3-18 
TTDRV, 2-66 
VTDRV, 4-6 

IS. ESC status return, 1-39 
half-duplex, 3-18 
VTDRV, 4-6 

IS.ESQ status return 
half-duplex, 3-18 
TTDRV, 2-66 
VTDRV, 4-6 

IS.PND status return, 1-40 
AFC11/AD01 converter, 15-8 
communication driver, 12~8 
CRDRV, 11-7 
CTDRV, 9-,4 
disk driver, 5-9 
DTDRV, 6-4 
FORTRAN interface value 

(AFC11/ADOlconverter) , 
15-9 ' 

half-duplex, 3-18 
LPDRV, 10-5 
LSDRV, 17-29 
PPDRV/PRDRV, 18-3 
tape driver, 8-10 
TTDRV, 2-66 
UDDRV, 16-31 
UNIBUS switch driver, 24-7 

IS.RDD status return (disk 
driver), 5-10 

IS.SEC status return (TTDRV), 
2-66 ' 

IS.SUC status return 
UNIBUS switch driver, 24~7 

IS.SUC success return, 1-37, 1-40 
AFC11/AD01 converter, 15-8 
communication driver, 12-8 
CRDRV, 11-7 
CTDRV, 9-4 
DDDRV, 7-5 
diagnostic success, 1-35 
disk driver, 5~9 
DTDRV, 6-4 
FORTRAN interface value 

(AFC11/AD01 converter), 
15-9 

GRDRV, 21-3 
half-duplex, 3-18 
ICDRV/ISDRV-, 19-12 

IO.CCI function, 19-20 
IO.CTI function, 19-21 
IO.CTY function, 19-23 
IO.DCI function, 19-21 
IO.DTI function, 19~23 

Index-28 

c 

( 



c 

( 

( 

INDEX 

IS.SUC success return 
ICDRV/ISDRV (Cont.) 

IO.DTY funciion, 19-24 
IO.FLN function, 19-33 
IO.ITI function, 19-22 
IO.KIL functioni 19-33 
IO.LDI £unction, 19-26 
IO.LKE function, 19-28 
IO.LTI function, 19-26 
IO.LTY function, 19-27 
IO.MLO function, 19-17 
IO.MSO function, 19-16 
IO.NLK function, 19-30 
IO.ONL function, 19-33 
IO.RAD function, 19-29 
IO.RBC function, 19-14 
IO.SAO function, 19-16 
IO.UDI function, 19-30 
IO.UER function, 19-31 
IO.UTI function, 19-31 
IO.UTY function, 19-31 
IO.WLBfunction, 19-32 

ini tialize line 
IO.XIN function, 13-11 

load microcode (XEDRV), 13-18 
LPDRV, 10-5 
LSDRV, 17-29 
PPDRV/PRDRV, 18-3 
receive message .status (XEDRV), 

13-16 
receiver (LRDRV), 14-11 
tape driver, 8-10 
transmit. line message status 

(XEDRV), 13-13 
transmi tter (LRDRV), 14 .... 7 
TTDRV, 2-67 
UDDRV, 16-31 
VTDRV, 4-6, 4-8, 4-9 
XEDRV, 13-5, 13-18 

IS.TMO status return (TTDRV), 
2-67 

IS.TNC status return (LRDRV) 
receiver, 14-11 
transmitter, 14-7 

Isb parameter 
ADC:. subroutine (LSDRV), 17-12 
ADJLPS: subroutine (LSDRV), 

17-13 
AIRD/AIRDW subroutine (UDDRV), 

16-18 
AISQ/AISQW subroutine (UDDRV), 

16-19 
AO/AOW subroutine (UDDRV), 

l6-20 

Isb parameter (Cont.) 
ASARLN: subroutine (LSDRV), 

17-14 
ASLSLN: subroutine (LSDRV), 

17-14 
CTDI: subroutine (UDDRV), 16-21 
CTTI: subroutine (UDDRV), 16-22 
DFTI: subroutine (UDDRV), 16-23 
DI/DIW: subroutine (UDDRV), 

16-24 
DOL/DOLW: subroutine (UDDRV), 

16-24 
DOM/DOMW: subroutine (UDDRV), 

16-25 
DRS: subroutine (LSDRV), 17-17 
DSDI: subroutine (UDDRV), 16-23 
general (TTDRV), 2-10 
HIST: subroutine (LSDRV),17-18 
I/O completion, 1-36 
IDIR: subroutine (LSDRV), 17-19 
IDOR: subroutine (LSDRV), 17-20 
IO.ATA function (TTDRV), 2-20 
IO.ATT function, 1-27 
IO.CCO function (TTDRV), 2-23 
IO.DET function, 1-28 
IO.EIO function (TTDRV), 2-26 
IO.GTS function (TTDRV), 2-33 
IO.HNG function (TTDRV), 2-35 
IO.KIL function, 1-29 
IO.RAL function (TTDRV), 2-36 
IO.RLB function, 1-30 
IO.RNE function (TTDRV), 2-38 
IO.RPR function (TTDRV), 2-40 
IO.RST function (TTDRV), 2-43 
IO.RTT £unction (TTDRV), 2-45 
IO.RVB function, 1-31 
IO.SMC function (TTDRV), 2-59 
IO.WALfunction (TTDRV), 2-47 
IO.WBT function (TTDRV), 2-49 
IO.WLB function, 1-32 
IO.WVB function, 1-33 
LED: subroutine (LSDRV), 17-21 
omi tted, 1-39 
QIO$ basic syntax, 1-8 
RCIPT: subroutine (UDDRV), 

16-26 
RELAY: subroutine (LSDRV), 

17-22 
RSTI: subroutine (UDDRV), .16-30 
RTS: subroutine (LSDRV), 17-24 
SCTI: subroutine (UDDRV), 16-31 
SDAC: subroutine (LSDRV), 17-26 
SDO: subroutine (LSDRV), 17-28 
SF.GMC function (TTDRV), 2-51 

Index-29 



INDEX 

Ist parameter 
RDWD: subroutine (UDDRV), 16-30 

Istart parameter (LSDRV) 
DRS: subroutine, 17-17 
HIST: subroutine, 17-19 
RTS: subroutine, 17-24 
SDAC: subroutine, 17-26 
SDO: subroutine, 17-28 

Istat parameter 
IBFSTS: subroutine 

K-series, 23-23 
LADRV, 22-17 

Istate parameter 
RELAY: subroutine (LSDRV), 

17-22 
Istop parameter (LSDRV) 

DRS: subroutine, 17-17 
HIST: subroutine,17~19 
RTS: subroutine, 17-24 
SDAC: subroutine, 17-27 
SDO: subroutine, 17-28 

Isw parameter 
ASUDLN: subroutine (UDDRV), 

l6-20 
Isz parameter (UDDRV) 

CTDI: subroutine, 16-21 
CTTI: subroutine, 16-2'2 

Itim parameter 
ICLOKB: subroutine (K-series), 

23-23 
Itm parameter 

RDTI: subroutine (UDDRV), 16-29 
Iun parameter 

ASARLN: subroutine (LSDRV), 
17-14 

ASLSLN: subroutine (LSDRV), 
17-14 

ASUDLN: subroutine (UDDRV), 
l6-20 

Iunit parameter 
DIGO: subroutine (K-series), 

23-16 
DINP: subroutine (K-series), 

23-16 
DISWP: subroutine 

K-series, 23-18 
LADRV, 22-14 

DOSWP: subroutine 
K-series, 23-20 
LADRV, 22-16 

DOUT: subroutine (K-series), 
23-20 

LAMSKS: subroutine (LADRV), 
22-21 

Iunit parameter (Cont.) 
SCOPE: subroutine (K-series), 

23-27 
Iv parameter 

CTTI: subroutine (UDDRV), 16-22 
IvaI parameter 

ADINP: subroutine (K-series), 
23-8 

CVADF: subroutine 
K-series, 23-13 
LADRV, 22-9 

CVSWG: subroutine (LSDRV), 
17-15 

FLT16: subroutine 
K-series, 23-21 
LADRV, 22-17 

IDIR: subroutine (LSDRV), 17-19 
IRDB: subroutine (LSDRV), 17-21 
LED: subroutine (LSDRV) ,17-21 
PUTD: subroutine (LSDRV), 17-22 
RDCS: subroutine (UDDRV), 16-27 
RDDI: subroutine (UDDRV), 16-28 
SCTI: subroutine (UDDRV); 16.;..31 

Ivrn parameter (QDDRV) 
RDTI: subroutine, 16-29 
RDWD: subroutine, 16-30 

Iwhen parameter 
STPSWP: subroutine 

K-series, 23-29 
LADRV, 22-25 

IWTBUF: subroutine 
wait for buffer 

K-series,23-25 
LADRV, 22-19 

K-series supported hardware, 23-1 
KDA50 disk controller, 5~4 
Key 

special 
table (TTDRV), 2-71 

special (TTDRV), 2-68 
KMC-l1 auxiliary processor, 10-2 
Kount parameter 

DIGO: subroutine (K-series), 
23-16 ' 

GTHIST: subroutine (K~series), 
23-22 

KSR-33/35 Teletypewriter, 3-2 
Ksubr parameter 

CALLS macro (K-series), 23-31 
KW11-'K dual programmable 

real-time clock, 23-3 

LA100 DECprinter, 2~4 
LA12 portable terminal, 2-4 

Index-30 

( 

( 

( 



c 

(~ 

( 

INDEX 

LA12 teletypewriter, 2-4 
LA120 DECwriter,2-4, 3-3 
LA180DECprinter, 10-3 
LA180S DECprinter, 2-4, 3-3 
LA30 DECwriter, 2-4, 3-2 
LA30-P, 3-30 
LA34 DECwriter, 2-4 
LA36 DECwriter, 2-4, 3-2 
LA38 DECwriter, 2-4 
LA50 personal printer, 2-5 
Laboratory peripheral (K-series), 

23-1 
Laboratory peripheral accelerator 

driver (LADRV), 22-1 
Laboratory peripheral system 

(LPSll) 
See LSDRV 

LAINIT 
microcode loader (LADRV), 22-34 

Lamskbparameter 
LAMSKS: subroutine (LADRV), 

22-20 
SETIBF : subroutine 

K-series, 23-29 
LADRV, 22-24 

LAMSKS: subroutine 
set masks buffer (LADRV), 22-20 

Latch 
unlatch fields 

DOL/DOLW: subroutine (UDDRV), 
16-24 

Latching digital output (UDDRV), 
16-8 

Lbn parameter 
device-specific function 

DDDRV, 7-4 
DTDRV, 6-3 

standard function 
DDDRV, 7-3 
DTDRV, 6-3 

Lbuf parameter 
ADSWP: subroutine 

K-series, 23-9 
LADRV, 22-4 

DASWP: subroutine 
K-series, 23-14 
LADRV, 22-9 

DISWP: subroutine 
K-series, 23-17 
LADRV, 22-12 

DOSWP: subroutine 
K-series, 23-19 
LADRV, 22-14 

GTHIST: subroutine (K-series), 
23-21 

Ldelay parameter 
ADSWP: subroutine 

K-series, 23-10 
LADRV, 22-6 

DASWP: subroutine 
K-series, 23-15 
LADRV, 22-11 

DISWP: subroutine 
K-series, 23-18 

DISWP: subroutine (LADRV), 
22-13 

DOSWP: subroutine 
K-series, 23-20 
LADRV, 22-16 

LED: subroutine 
display in LED lights (LSDRV), 

17-21 
Line definition (XEDRV), 13-23 
Line feed 

CTRL/R (TTDRV), 2-70 
Line pr inter . 

physical feature list, 10-1 
Line printer driver 

See LPDRV 
LNOI laser printer, 10-3 
LNK:, link task to interrupt 

(ICDRV/ISDRV), 19-64, 19-66 
LOA, 13-5 
Load buffer LPA-ll microcode 

(LADRV),22-29 
Load microcode (XEDRV), 13-18 
Loadable driver restriction 

(half-duplex), 3-35 
Logical block . 

read (TTDRV), 2-43 
Logical I/O, 1-2 
Logical OR 

changing mode (XEDRV), 13-20 
Logical unit, 1-2 
Logical unit number 

See I.UN 
Logical unit table 

See LUT 
Logical/physical association, 1-2 
Low-traffic sync (cOmmunication 

driver), 12-12 
Lowercase conversion 

(half-duplex), 3-15 
LPll line-printer, 10-2 
LPAll 

22-bit addressingi 22-36 
data transfer start (LADRV), 

22-30 
data transfer stop (LADRV), 

22""30 

Index-31 



INDEX 

LPA11 (Cont.) 
initialize, 22-29 
IO.STA function (LADRV), 22-30 
IO.STP function (LADRV), 22~30 
sample program, 22-37 

LPA11K 
function code list, B-ll 

Lpast parameter 
device-specific function 

(GRDRV), 21-2 
LPDRV, 10-1 

programming hint, 10-7 
Lpef parameter 

device-specific function 
(GRDRV), 21-2 

LPS function code list, B-ll 
LPS11, 17-2 

See LSDRV 
LPS11 clock 

sampling rate (LSDRV), 17-33 
LPSll/AR11 comparison, 17-1 
LPSTP: subroutine 

stop synchronous function 
(LSDRV), 17-22 

LQP02, 2-4 
LRDRV 

transmit, device-specific QIO$, 
14-3 

LSll line printer, 10-2 
LSDRV 

measuring elapsed time, 17-7 
programming hint, 17-33 
return data, 17-7 
SYSGEN option, 17-1 

Lsubr parameter 
CALLS calling macro (LADRV), 

22-27 
LUN, 1-2 

assign, 1-16 
ASUDLN: subroutine (UDDRV), 

16-20 
assigning default 

ICDRV/ISDSV, 19-38 
assigning to ARO: (LSDRV), 

17-14 
assigning to LSO: (LSDRV), 

17-13 
assignment 

ALUN$ directive, 1-4 
ASSIGN command, 1-4 
change, 1-4 
dynamic changli!, 1-4 
REASSIGN command, 1~4 

get information, 1-21 
AFCll/ADOl converter, 15-2 

LUN 
get information (Cont.) 

communication driver, 12-4 
CRDRV, 11-1 
CTDRV,9-1 
DDDRV, 7-1 
disk driver, 5-5 
DTDRV, 6-1 
GRDRV, 21-1 
half-duplex, 3-4 
ICDRV/ISDRV, 19-8 
LADRV, 22-2 
LPDRV, 10-3 
LRDRV, 14-2 

receive, 14-2 
transmi t, 14-2 

LSDRV, 17-2 
PPDRV/PRDRV, 18-1 
tape driver, 8-5 
TTDRV, 2-7 
UDDRV, 16-3· 
UNIBUS switch driver, 24-2 
VTDRV, 4-1 

identical 
IO.DET/IO.ATT, 1-28 

information table, 1-21 
logical/physical association, 

1;,..16 
number, 1-7 
physical 

logical, 1-21 
QIO$ basic syntax, 1-5 
reassigning, 1-3 
redirection 

ASSIGN command, 1-3 
table, 1-3 
valid number, 1-3 

Lun parameter 
AIRD/AIRDW subroutine (UDDRV), 

16-18 
AISQ/AISQW subroutine (UDDRV), 

16-19 
ALUN$, 1-17 
AO/AOW subroutine (UDDRV), 

16-20 
ASARLN: subroutine (LSDRV), 

17-14 
ASLSLN: subroutine (LSDRV), 

17-14 
ASUDLN: subroutine (UDDRV), 

16-20 
CLOCKA: subroutine 

K~series, 23-11 
LADRV, 22-7 

Index-32 

( 

( 

( 



( 

( 

( 

INDEX 

Lun parameter (Cont.) 
CLOCKB: subroutine 

K-series, 23-13 
LADRV, 22-8 

CTDI: subroutine (UDDRV), 16-21 
CTTI: subroutine (UDDRV), 16-22 
DFTI: subroutine (UDDRV), 16-23 
DI/DIW: subroutine (UDDRV), 

16-24 
DOL/DOLW: subroutine (UDDRV), 

16-24 
DOM/DOMW: subroutine (UDDRV), 

16-25 
DSDI: subroutine (UDDRV), 16-23 
general (TTDRV), 2-11 
GLUN$ macro, 1-21 
IO.ATA function (TTDRV), 2-20 
IO.ATT function, 1-27 
IO.CCO function (TTDRV), 2-23 
IO.DET function, 1-28 
IO.EIO function (TTDRV), 2-26 
IO.GTS function (TTDRV), 2-33 
IO.HNG function (TTDRV), 2-35 
IO.KIL function, 1-29 
IO.RAL function (TTDRV), 2-36 
IO.RLB function, 1-30 
IO.RNE function (TTDRV), 2-38 
IO.RPR function (TTDRV), 2-40 
IO.RST function (TTDRV), 2-43 
IO.RTT function (TTDRV), 2-45 
IO.RVB function, 1-31 
IO.SMC function (TTDRV), 2-59 
IO.WAL function (TTDRV), 2-47 
ID.WBT function (TTDRV) , 2-49 
IO.WLB function, 1-32 
IO.WVB function, 1-33 
IO.XCL function (XEDRV), 13-17 
IO.XIN function (XEDRV), 13-10 
IO.XOP function (XEDRV), 13-6 
IO.XRC function (XEDRV), 13-14 
IO.XSC function (XEDRV), 13-7 
IO.XTL function (XEDRV), 13-18 
10. XTM function (XEDRV), 13-11 
LAMSKS: subroutine (LADRV), 

22-20 
QIO$ basic syntax, 1-7 
RCIPT: subroutine (UDDRV), 

16-26 
RSTI: subroutine (UDDRV), 16-30 
SCTI: subroutine (UDDRV), 16-31 
SF.GMC function (TTDRV), 2-51 

LUT, 1-7 
contents, 1-3 
defined, 1-3 
specifying, 1-3 

LVII line printer, 10-2 

Macro, CALL (K-ser ies), 23-31 
Macro, CALLS (LADRV), 22-27 
Macro, INITS 

K-series, 23-31 
LADRV, 22-27 

MACRO-ll 
support routine (LADRV), 22-26 

MACRO-II interface 
K-series, 23-31 
LADRV, 22-26 

Magnetic tape 
driver, 8-1 
function code list, B-12 

Maintenance function 
(ICDRV/ISDRV), 19-32, 19-69 

Mapping table form~t 
(ICDRV/ISDRV), 19-77 

Mask parameter 
DIGO: subroutine (K-series), 

23-16 
DINP: subroutine (K-series), 

23-17 
DOUT: subroutine (K-series), 

23-20 
immediate device-specific 

function (LSDRV), 17~3 
synchronous QIO$ function 

(LSDRV), 17-6 
Mbuf parameter 

IO.LOD function (LADRV), 22-30 
• MCALL 

for QIO, 1-4 
.MCALL directive, 1~16 
.MCALL macro, 1~14 

example, 1-16 
Message-oriented driver, 12-1 
Message-oriented interface 

(communication driver), 12-1 
Microcode loading 

LADRV, 22-34 
LPAll (LADRV), 22-34 
XEDRV, 13-18 

ML-ll, 5-4 
Mn parameter 

device-specific function 
(UDDRV), 16-4 

ICDRV/ISDRV, 19-10 
IO.ITI function, 19-22 

Mode 
change (XEDRV), 13-20 
default bit (XEDRV), 13-21 
maintenance (communication 

driver), 12-7 

Index-33 



INDEX 

Mode (Cont.) 
set (communication driver) , 

12-7 
Mode parameter 

ADSWP: subroutine 
K-series, 23-9 
LADRV, 22-4 

CLOCKS: subroutine 
K-series, 23-13 
LADRV, 22-8 

DASWP: subroutine 
K-series, 23-14 
LADRV, 22-9 

device-specific (communication 
driver), 12-6 

device-specific function 
transmit (LRDRV), 14-5 

DISWP: subroutine 
K-series, 23-17 
LADRV, 22-12 

DOSWP: subroutine 
K-series, 23-19 
LADRV, 22-15 

GTHIST: subroutine (K-series), 
23-22 

IO.CLK function (LADRV), 22-29 
IO.STCfunction 

transmitter (LRDRV), 14-6 
Modem 

TTDRV, 2-83 
auto-call enable, 2-52 
autobaud, 2-83 
default answer speed, 2-18, 

2-83 
DZII remote line, 2-83 
set answer speed, 2-83 

with DZII (half-duplex), 3-33 
Module 

accessing (UDDRV), 16-2 
addressing (ICDRV/ISDRV), 19-6 
interrupt connect (ICDRV/ISDRV), 

19-21 
serviced (UDDRV), 16-2 
supported (ICDRV/ISDRV), 19-3 

MS. ADS address silo, tran,smi tter 
(LRDRV), 14-5 

MS.AUT auto addressing, 
transmitter (LRDRV), 14-5 

Multiplexer, asynchronous 
(communication driver), 12-1 

Mul tirequest mode (LADRV), 22-,1 

N parameter 
RMVBUF: subroutine 

K-series, 23-26 

N parameter 
RMVBUF: subroutine (Cont.) 

LADRV, 22-22 
NO parameter 

RLSBUF: subroutine 
K-series, 23-26 
LADRV, 22-22 

Nbs parameter 
device-specific function (tape 

driver), 8-8 
Nbu parameter 

ADSWP: subroutine (LADRV), 22-4 
Nbuf parameter 

ADSWP: subroutine (K-series), 
23-9 

DASWP: subroutine 
K-ser ies, 23-14 
LADRV, 22-9 

DISWP: subroutine 
K""series, 23-17 
LADRV, 22-12 

DOSWP: subroutine 
K-series, 23-19 
LADRV, 22-14 

DRS: subroutine (LSDRV), 17-17 
GTHIST: subroutine (K-series), 

23-22 
HIST: subroutine (LSDRV), 17-18 
RTS: subroutine (LSDRV), 17-24 
SDAC: subroutine (LSDRV) , 17-26 
SDO: subroutine (LSDRV), '1,7-28 

Nchan parameter (LSDRV) 
RTS: subroutine, 17-24 
SDAC: subroutine, 17-26 

Nchn parameter 
ADSWP: subroutine 

K-series, 23-11 
LADRV, 22-6 

DASWP: subroutine 
K-series, 23-15 
LADRV, 22-11 

DISWP: subroutine (LADRV), 
22-14, 

DOSWP: subroutine (LADRV), 
22-16 

ISTADC: subroutine (K-series), 
23-28 

SETADC: subroutine (LADRV), 
22-23 

NCT (TTDRV), 2-18 
Nes parameter ' 

device-specific, function (tape 
driver), 8-8 

Network Command Terminal 
See NCT 

Index-34 

( 

( 

( 



( 

( 

( 

INDEX 

Newval parameter 
IDOR: subroutine (LSDRV), 17-20 

NI definition (XEDRV), 13-23 
NLDRV, 20-1 

example, 20-1 
function, 20-1 

No echo (half-duplex), 3~14 
Nolabel tape block size (tape 

driver), 8-18 
NRZI even parity (tape driver) , 

8-16 
Null device driver 

See NLDRV 
Num parameter 

immediate device-specific 
function (LSDRV), 17-3 

Object module library, 1-7 
Offline, place unit (ICDRV/ISDRV), 

19-70 . 
Offspring task 

enable (VTDRV), 4-5 
VTD.RV, 4-1 

OFLIN: place unit offline 
(ICDRV/ISDRV), 19-70 

ONLIN: place unit online 
(ICDRV/ISDRV), 19-70 

Online, place unit (ICDRV/ISDRV), 
19-70 

OOB (TTDRV) 
clear, 2-61 
hello, 2-61 
include, 2-61 

Open line (XEDRV), 13-6 
Open relay (LSDRV), 17-4 
Opn parameter 

device-specific function 
(UDDRV), 16-4 

ICDRV/ISDRV, 19-10 
IO.MLO function, 19-17 
IO.MSO function, 19-16 

Output 
ADJLPS: subroutine, use of, 

17-36 
analog (UDDRV), 16-19 
analog multichannel 

(ICDRV/ISDRV), 19-44 
buffer, intermediate (TTDRV), 

2-80 
byte, high-order bit 

(half-duplex), 3-33 
digital 

bistable multiple field 
(ICDRV/ISDRV), 19-45, 
19-46 

Output 
digital (Cont.) 

bistable multipoint 
(ICDRV/ISDRV), 19-17 

multipoint momentary 
(ICDRV/ISDRV), 19-16 

ini tiating 
single analog (K-series), 

23-8 
synchronous A/D (LSDRV), 

17-25 
synchronous digital (LSDRV), 

17-27 
latching digital (UDDRV), 16-8 
momentary 

multiple field (ICDRV/ISDRV), 
19-49 

prompting, VFC (half-duplex), 
3-28 

remote terminal (ICDRV/ISDRV), 
19-50. 

resuming by CTRL/Q (TTDRV), 
2-70 

suppressing (TTDRV), 2-69 
suspending by CTRL/S (TTDRV), 

2-70 . . 
terminal (ICDRV/ISDRV), 19-32 

Overhead, system 
half-duplex, 3-14 
TF.RPR (TTDRV), 2-14 

Overlapped I/O (disk driv~r), 5-8 
Overprint 

TTDRV, 2-76 
VFC (half-duplex), 3-28 
VFC (LPDRV), 10-7 

PI parameter (XEDRV) 
IO.XIN function, 13-10 
10. XOP function, 13.-6 
10. XRC funct ion, 13-14 
IO.XSC function, 13-7 
IO.XTM function, 13-11 

P2 parameter (XEDRV) 
IO.XOP function, 13-6 
IO.XRC function, 13~14 
IO.XSC function, 13-7 
IO.XTM function, 13-11 

P3 parameter (XEDRV) 
IO.XOP function, 13-6 
IO.XRC function, 13-14 
IO.XTM function, 13-11 

P4 parameter (XEDRV) 
IO.XRC function, 13-14 
IO.XTM function, 13-11 

Index-35 



- ---- -~-----~~,~---.--------- "--- .. --~----
----~-- ----

INDEX 

P5 parameter (XEDRV) 
IO.XRC function, 13-14 
IO.XTM function, 13-12 

P6 parameter (XEDRV) 
IO.XRCfunction, 13-14 
IO.XTM function, 13-12 

Padding 
. character (tape driver), 8-18 

Ethernet message (XEDRV), 13-3 
Page eject 

TTDRV, 2-75 
VFC (half-duplex) ,3-27 
VFC (LPDRV), 10-6 

Parallel communication link 
driver 

See PCLll 
Parameter 

010$ basic syntax 
function-dependent, 1-6' 
optional, 1-6 
required argument, 1-6 

Parameter2 parameter (TTDRV) 
general, 2-11 
IO.ATA function, 2-21 

Parent task (VTDRV), 4-1 
Parity, vertical (communication 

driver), 12-12 
Pbn parameter 

device-specific (disk driver), 
5-9 

PCLll 
hardware, 14-1 
receiver driver, 14-1 
transmitter driver, 14-1 

PCLll, parallel communication 
link driver, 14-.1 

See also LRDRV 
Per formance 

stall 'I/O (disk driver), 5-13 
Peripheral support routine 

(K-ser ies), 23-1 
Physical I/O, 1-2 
Physical/logical aSElociatiori, 1-2 
Placement control (FIIACP), C-7 
Pn parameter 

ICDRV/ISDRV, 19-10 
IO.LDI function, 19-25 

IO.RLB function, 1~30 
IO.RVB function, 1-31 
IO.WLB function, 1-32 
IO.WVB function, 1-33 

Pnt parameter 
synchronous 010$ function 

(LSDRV), 17-5 

Pol parameter 
immediate device-specific 

function (LSDRV), 17-3 
Pool, buffer, private (TTDRV), 

2-79 
Port parameter 

UNIBUS switch driver 
device-specific, 24-4 
IO.DPT function, 24-6 

position tape (DDDRV), 7-4 
Power recovery . (ICDRV /ISDRV), 

19-72 
Power switch (CRDRV), 11-5 
Powerfail 

disk, 1-43 
DMCll (communication driver) , 

12-12 
010$, valid (TMll), 8-15 
recovery 

tape driver, 8-15 
UNIBUS switch driver, 24-6 

tape, 1-43 
Pp parameter 

device-specific function 
(UDDRV), 16-5 

ICDRV/ISDRV, 19-10 
IO.MLO function, 19-17 

PPDRV, 18-1 
PPDRV/PRDRV, prqgramming hint, 

18-5 
Pradd parameter 

device-specific 
half-duplex, 3-7 
VTDRV, 4-4 

TTDRV 
general, 2-11 
IO.RPR function, 2-41 

PRDRV, 18-1 
Preset parameter 

IO.CLK function (LADRV), 22-29 
Pri parameter 

IO.ATT function, 1-27 
IO.DET function, 1-28 
IO.KIL function, 1-29 
IO.RLB function, 1-30 
IO.RVB function, 1-31 
IO.WLB function, 1-32 
IO.WVB functio.n, 1-33 
010$ basic syntax, 1-8 
TTDRV 

general, 2-11 
IO.ATA function, 2-20 
IO.CCO function, 2-23 
IO.EIO function, 2-26 
IO.GTS function, 2-33 

Index-36 

( 

( 

( 



( 

( 

( 

Pri parameter 
TTDRV (Cont.) 

IO.HNG function, 2-35 
IO.RAL function, 2~36 

IO.RNE function, 2-38 
IO.RPR function, 2-40 
IO.RST function, 2-43 
IO.RTT function, 2-45 
IO.SMC function, 2-59 
IO.WAL function, 2-47 
IO.WBT function, 2-49 
SF.GMC function, 2-51 

Process control 
asynchronous 

AFCII/ADOI converter, 15~3 
ICDRV/ISDRV, 19-35 
UDDRV, 16-15 

synchronous 
AFCII/ADOI converter, 15-3 
ICDRV/ISDRV, 19-35 
UDDRV, 16-15 

Program interface subroutine 
(LADRV), 22-2 

Programming hint 
AFC11/ADOl converter, 15-10 
communication driver, 12-11 
CRDRV, 11-9 
CTDRV, 9-7 
disk driver, 5-12 
DTDRV, 6-7 
GRDRV, 21-3 
half-duplex, 3-31 
LPDRV, 10-7 
LSDRV, 17-33 
PPDRV/PRDRV, 18-5 
tape driver, 8-15 
TTDRV, 2-82 
UDDRV, 16-34 
XEDRV, 13-20 

Programming sequence (XEDRV), 
13-4 

Prompt 
binary (TTDRV), 2-41 
checkpointing (TTDRV), 2-14, 

2-40 
CTRL/O (TTDRV), 2-14 
ignoring 

response (half-duplex) , 3-14 
TTDRV, 2-14, 2-40 

pass all (TTDRV), 2-26 
read with (TTDRV) , 2-18 
redisplay (TTDRV), 2-28 
se.nd and read (TTDRV), 2-40 
send pass all (TTDRV), 2-12 

INDEX 

Prompting output 
TTDRV, 2-76 
VFC (half-duplex), 3-28 
VFC (LPDRV), 10-7 

Protocol 
Ethernet 

LF$DEF, 13-3 
LF$EXC, 13-3 

type definition (XEDRV), 13-23 
Prsize parameter 

device-specific 
half-duplex, 3-7 
VTDRV, 4-4 

TTDRV 
general, 2-11 
IO.RPR function, 2-41 

Pulse fields 
DOM/DOMW: subroutine (UDDRV), 

16-25 
PUTD: subroutine 

put data into output buffer 
(LSDRV), 17-22 

010 DE UNA driver 
See XEDRV 

010$ 
ACP interface, C-l 
device-specific (TTDRV), 2-17 
directive error status list, 

B-5 
directive success status list, 

B-7 
parameter list (FIIACP), C~2 

010$ function . 
ACP 

closing a file, C-13 
creating a file, C-12 
deleting a file, C-13 
extending a file, C-13 
opening a file, C-13 
using, C-12 

device-specific 
half-duplex, 3-9 
UNIBUS switch driver, 24-4 

st~ndard (UNIBUS switch driver), 
24-2 

summary (ICDRV/ISDRV) ,19-8 
TTDRV, 2-18 

010$ macro, 1-14 
communication driver, 12-5 
CRDRV, 11-2 
CTDRV, 9-2 
DDDRV, 7-2 
device~speci£ic function 

AFC11/ADOl converter, 15-2 

Index-37 



QIO$ macro 
device-specific function 

(Cont. ) 
communication driver, 12-5 
CRDRV, 11-3 
CTDRV, 9-3 
DDDRV, 7-3 
disk driver, 5-8 
DTDRV, 6-3 
DUDRV, 5-9 
GRDRV, 21-2 
half-duplex, 3-7 
immediate (LSDRV), 17-3 
LADRV, 22-28 
list TTDRV, 2-19 
receive (LRDRV), 14-9 
synchronous (LSDRV), 17-4 
tape driver, 8-6, 8-7 
transmit (LRDRV), 14-3 
TTDRV, 2-8, 2-9, 2-17 
UDDRV, 16-3 
VTDRV, 4-3, 4-5 
XEDRV, 13-4, 13-6 

disk driver, 5-6 
DTDRV, 6-2 
event flag, 1-4 
Executive function, 1-4 
format, basic, 1-5, 1-6 
general (XEDRV), 13-4 
GRDRV, 21-2 
half-duplex, 3-6 
introduction, 1-1 
IO.ATT function, 1-27 
IO.DET function, 1-28 
IO.KIL function, 1-29 
IO.RLB function, 1-30 
IO.RVB function, 1-30 
IO.WLB function, 1-31 
IO.WVB function, 1-32 
issuing hint (tape driver) , 

8-17 
library (XEDRV), 13-4 
LPDRV,10-4 

. LSDRV, 17-2 
null argument, 1-5 
omitting comma in syntax, 1-6 
power fail, 1-43 
PPDRV/PRDRV, 18-2 
standard function 

AFC11/AD01 converter, 15-2. 
communication driver, 12-5 
CRDRV, 11-2 
CTDRV, 9-2 
DDDRV, 7-2 
disk driver, 5-6 

INDEX 

QI0$ macro 
standard function (Cont.) 

DTDRV, 6-2 
GRDRV, 21-2 
half-duplex, 3-6 
LPDRV, 10-4 
LSDRV, 17-2 
receive (LRDRV), 14-8 
tape driver, 8-5 
transmi t (LRDRV), 14-3' 
TTDRV, 2-8, 2-9 
UDDRV, 16-3 
VTDRV, 4-2, 4-4 
XEDRV, 13-6 

standard I/O format (TTDRV), 
2-8 

subfunction use (half-duplex), 
3-9 

syntax element, 1-6 
tape driver, 8-5 
TTDRV, 2-8 . 
UDDRV, 16-3 
UNIBUS switch, 24-2 
val id powerfail (TM11), 8-15 
VTDRV, 4-2 
XEDRV, 13-3, 13-6 

QIO$ syntax 
P1,P2, ••• ,P6 parameter, 1-9 

QIO$C macro, 1-15 
QIO$S macro, 1-15 
QIOW$ macro, 1-14, 1-15 

format, 1-15 
task synchronization, 1-5 

RA60 disk, 5-4 
RA80 disk, 5-4 
RA81 disk, 5-4 
RC25 disk, 5-4 
RCIPT: routine 

digital input interrupt 
single-point (ICDRV/ISDRV), 
19-48 

RCIPT: subroutine 
read contact interrupt point 

(UDDRV), 16-25 
RCLOKB: subroutine 

read 16-bit clock (K-series), 
23-25 

Rcnt parameter 
device-specific (UNIBUS switch 

driver), 24-4 
RD51 disk, 5-5 
RD52 disk, 5-5 

Index-38 

( 

( 

( 



( 

( 

INDEX 

RDACT: routine 
ICDRV/ISDRV 

Read (Cont.) 

read activation data, 19-66 
read activation data example, 

19-68 
RDAF$ directive, 1-7 
RDCS: changed state 

read interrupt point 
(ICDRV/ISDRV), 19-54 

RDCS: subroutine 
read contact interrupt change 

data (UDDRV), 16-26 
RDDI: circular buffer 

read interrupt data 
(ICDRV/ISDRV), 19-53 

RDDI: subroutine 
read contact interrupt data 

(UDDRV), 16-27 
RDTI: circular buffer 

read counter data (ICDRV/ISDRV), 
19-58 

RDTI: subroutine 
read timer interrupt data 

(UDDRV), 16-28 
RDTY: terminal buffer 

read character (ICDRV/ISDRV), 
19-61 

RDWD: digital interrupt data 
read full word (ICDRV/ISDRV), 

19-55 
RDWD: subroutine 

read word contact interrupt 
data (UDDRV), 16-29 

RDXF$ directive, 1-7 
Read 

A/D channel, timed interval 
(LSDRV), 17-6 

activation data (ICDRV/ISDRV), 
19-66 

example, 19-68 
after prompt 

TTDRV, 2-14, 2-18, 2-27, 2-40 
VTDRV, 4-7 

all characters (TTDRV), 2-13, 
2-26, 2-36, 2-39, 2-42, 
2-44, 2-46 

check (CRDRV), 11-5 
checkpointing (TTDRV), 2-14 
contact interrupt change data 

RDCS: subroutine (UDDRV), 
16-26 

contact interrupt data 
RDDI: subroutine (UDDRV), 

16-27 

contact interrupt point 
RCIPT: subroutine (UDDRV), 

16-25 
contact sense fields 

DI/DIW: subroutine (UDDRV), 
16-23 

converting lowercase (TTDRV), 
2-13, 2-27 

DDDRV, 7-4 
default input (TTDRV), 2-13, 

2-27 
destination address (XEDRV), 

13-16 
digital interrupt data 

(ICDRV/ISDRV), 19-52 
direct access sample subroutine 

ICS/ICR register, 19-78 
end-of-tape (PRDRV), 18-5 
error (tape driver), 8-14 
Ethernet address (XEDRV), 13-14 
full word 

digital interrupt data 
(ICDRV/ISDRV),19-55 

logical block, 1-30 
special terminator (TTDRV), 

2-43 
TTDRV, 2-13 

logical block (communication 
driver), 12-7 

multiple AID channel 
(ICDRV/ISDRV), 19-13 

no echo 
TF.RNE (TTDRV), 2-37 
TTDRV, 2-13, 2-27, 2-29, 2-38, 

2-42, 2-44, 2-46 
no filter (TTDRV), 2-14, 2-27 
pass through (TTDRV), 2-14, 

2-28 
process escape sequence (TTDRV), 

2-13, 2-27 
protocol type (XEDRV), 13-15 
reverse (DTDRV), 6-7 
RSTI: counter module 

(ICDRV/ISDRV), 19-58 
sequential analog input channel 

(UDDRV), 16-18 
single A/D channel (LSDRV), 

17-12 
special terminator (TTDRV), 

2-14, 2-28, 2-42 
TF.RNE, 2-37 

sync character (communication 
driver), 12-7 

tape driver, 8-7 

Index-39 



INDEX 

Read (Cont.) 
terminator (TTDRV) 

CTRL/C, ·2-68 
no echo, 2-15 
table, 2-15, 2-45 

time out 
TF.TMO (TTDRV), 2-37 
TTDRV,2-15, 2-28, 2-42, 2-44, 

2-46 
timer interrupt data 

RDTI: subroutine (UDDRV), 
16-28 

timer module 
RSTI: subroutine (UDDRV), 

16-30 
virtual block, 1-30 
word contact interrupt data 

RDWD: subroutine (UDDRV), 
16-29 

Read 16-bit clock (K-series), 
23'-23, 23-25. 

Read access (F11ACP), C-8 
Read counter data 

circular buffer (ICDRV/ISDRV), 
19-58 

Read data (LSDRV) 
from input buffer, 17-20 
from input register, 17-4. 

timed intervals, 17-8 
Read digital input (LSDRV), 17-19 
Read interrupt data 

circular buffer (ICDRV/ISDRV), 
19-53 

Read interrupt point 
changed state (ICDRV/ISDRV), 

19-54 
Ready recovery 

LPDRV, 10-6 
PPDRV, 18-4 

REASSIGN command 
device, 1-20 
LUN assignment, 1-4 

Receive 
error detection, hard (TTDRV), 

2-77 
message (XEDRV), 13-13 
standard QIO$ (LRDRV), 14-8 
XEDRV 

Ethernet, 13-3 
Receive counter data 

connect buffer (ICDRV/ISDRV) , 
19-56 

Receive interrupt data 
connect buffer (ICDRV/ISDRV), 

19-51 

Receive speed (TTDRV), 2-56 
Receiver disconnect (LRDRV), 

14-11 
Recovery 

check (CRDRV), 11-4 
DTDRV, 6-6 

select, 6-7 
REDIRECT command 

device, 1-20 
Redundancy checking 

(communication driver) ,12-11 
Register access (ICDRV/ISDRV), 

19-4 
direct function, 19-4 

Rejecting ~essage (LRDRV), 14-10 
Re1 parameter 

immediate device-specific 
functibn (LSDRV), 17-3 

Relay, latch output (LSDRV), 
17-22 

RELAY: subroutine 
latch output relay (LSDRV), 

17-22 
Release data buffer (K-series), 

23-26 
Remote line 

clearing characteristic (TTDRV), 
2-83 

Remote site powerfail 
(ICDRV/ISDRV), 19-71 

Remote terminal 
IO.EIO (TTDRV), 2-25 
monitor example (ICDRV/ISDRV), 

19-62 
Reset counter initial value 

SCTI: (ICDRV/ISDRV), 19-59 
Reset switch (CRDRV), 11-6 
Retadd parameter 

device-specific function 
receive (LRDRV), 14-9 
transmit (LRDRV), 14-4 

Retries parameter. 
device-specific function 

transmit (LRDRV), 14-4 
Retry count parameter (UNIBUS 

switch driver) 
IO.CON function, 24-4 

Retry procedure (tape driver) , 
8-14 

Return buffer number (K-series), 
23-24 

Return character (TTDRV), 2-69 
RETURN key 

half-duplex, 3-23, 3-24 
TTDRV, 2-71 

Index-40 

( 

( 

( 

\ 
) 



( 

( 

( 

INDEX 

Return, automatic carrIage 
(half-duplex), 3-31 

Reverse 
operation (DTDRV), 6-8 
speed 

DTDRV, 6-7 
Rewind 

importance (CTDRV), 9-7 
tape driver, 8-7 

RFll disk controller, 5-1 
RK05 disk, 5-3 
RK05F disk, 5-3 
RK06 disk, 5-3 
RK07 disk, 5-3 
RKII disk controller, 5-3 
RK611 disk controller, 5-3 
RLOI disk, 5-3 
RL02 disk, 5-3 
RLII disk controller, 5-3 
Rlast parameter 

RCLOKB: subroutine (K-series), 
23-25 

RLSBUF: subroutine 
release data buffer (K-series), 

23-26 
release data buffer (LADRV), 

22-21 
RM02 disk, 5-3 
RM03 disk, 5-3 
RM05 disk, 5-3 
RM80 disk, 5-3 
RMVBUF: subroutine 

remove buffer from device queue 
K-series, 23-26 
LADRV, 22-22 

RP02 disk, 5-1 
RP03 disk, 5-1 
RP04 disk, 5-3 
RP05 disk, 5-3 
RP06 disk, 5-3 
RPII disk controller, 5-1 
RS03 disk, 5-1 
RS04 disk, 5-1 
RSll disk, 5-1 
RSEF$ directive, 1-7 
RSTI: read counter module 

(ICDRV/ISDRV), 19-58 
RSTI: subroutine 

read timer module (UDDRV), 
16-30 

RTOI Alphanumeric Display 
Terminal, 3-3 

RT02, 2-82 
RT02 Alphanumeric Display 

Terminal, 2-5 

RT02-C Badge Reader, 3-32 
RTO/RTOW routine 

remote terminal output 
(ICDRV/ISDRV), 19-50 

RTS: subroutine 
initiate synchronous A/D sample 

(LSDRV), 17-23 
RUBOUT character 

CRT (TTDRV), 2-18 
Rubout character 

escape sequence (half-duplex), 
3-25 

LPDRV, 10-7 
RUBOUT key 

half-duplex, 3-23, 3-24 
TTDRV, . 2-71 

RUX50 unibus interface, 5-5 
RXOI disk, 5-3 
RX02 disk, 5-4 
RXII disk controller, 5-3 
RX180 disk drive, 5-5 
RX211 disk controller, 5-4 
RX50 disk, 5-5 

Sample 
initiate synchronous A/D 

(LSDRV), 17-23 
Sampling rate (AFCll), 15-11 
SCOPE: subroutine -

control scope (K-series) ,23-27 
SCTI: routine 

resetting counter intial value 
(ICDRV/ISDRV), 19-59 

SCTI: subroutine 
ini tiali zing timer module 

(UDDRV), 16-30 
SDAC: subroutine 

initiating synchronous A/D 
output (LSDRV), l7~25 

SDO: subroutine 
initiating synchronous digital 

output (LSDRV), 17-27 
SE.ATA error return (TTDRV) i 2-67 
SE.BIN error return 

half-duplex, 3-20 
TTDRV, 2-67 

SE.FIX error return (TTDRV), 2-67 
SE.IAA error return (TTDRV), 2~67 
SE.NAT error return (TTDRV), 2-67 
SE.NIH error return 

half-duplex, 3-20 
TTDRV, 2-67 
VTDRV, 4-8, 4-9 

SE.NSC error return (TTDRV), 2-67 
SE.SPD error return (TTDRV), 2-67 

Index-41 



INDEX 

SE.UPN error return (TTDRV), 2-67 
SE.VAL error return 

half-duplex, 3-20 
TTDRV, 2-67 

Select error (tape driver), 8-14 
Select. recovery (tape driver) , 

8-14 
Send XOFF (TTDRV), 2-16,2-29, 

2-37, 2-42, 2-44 
Sense status (LRDRV), 14-5 
Serial line error (ICDRV/ISDRV), 

19-71 
Serviced modules (UDDRV), 16-2 
Set clock A rate (K-series), 

23-11 
Set counter 

initial value (ICDRV/ISDRV), 
19-22 

Set mode 
half-duplex (communication 

driver), 12-7 
IO.HDX function (communication 

driver), 12-7 
Set next buffer (K-series), 23-24 
Set operational characteristic 

(LRDRV), 14-5 
SETADC: subroutine 

set channel information 
K-series, 23-28 
LADRV, 22-22 

SETIBF: subroutine 
set array for buffered sweep 

K-series, 23-28 
LADRV, 22-23 

SF.GMC function 
half-duplex, 3-11 
TTDRV, 2-18, 2-51 
VTDRV, 4-6 

SF.SMC function 
half-duplex, 3-15 
TTDRV, 2-18, 2-59 
VTDRV, 4-7 

Single space 
TTDRV, 2-75 
VFC . 

half~duplex, 3-27 
LPDRV, 10-6 

Sizb parameter 
device-specific function 

(UDDRV), 16-4 
ICDRV/ISDRV, 19-10 

IO.CCI function, 19-19 
IO.CTI function, 19-21 
IO.CTY function, 19-23 
IO.WLB function, 19-32 

Size parameter 
device-specific 

AFCll/ADOl converter, 15-3 
communication driver, 12-6 
CRDRV, 11-3 
DDDRV, 7-4 
disk driver, 5-9 
DTDRV, 6-3 
GRDRVj. 21-2 
half-duplex, 3-7 
receiving (LRDRV), 14-9 
tape driver, 8-8 
transmitting (LRDRV), 14-4 
UDDRV, 16-5 
VTDRV, 4~3 

F11ACP, C-5 
general (TTDRV), 2-11 
ICDRV/ISDRV, 19-10 
IO.CCO function (TTDRV), 2-23 
IO.EIO function (TTDRV), 2-26 
IO.GTS function (TTDRV), 2-33 
IO.RAL function (TTDRV), 2-36 
10. RBC function (ICDRV /ISDRV) , 

19-14 
IO.RLB function, 1-30 
IO.RNE function (TTORV), 2-38 
IO.RPR function (TTDRV), 2~4l 
IO.RST function (TTDRV), 2-44 
IO.RTT function (TTDRV), 2-46 
IO.RVB function, 1-31 
IO.SMC function (TTDRV), 2-60 
IO.WAL function (TTDRV), 2-47 
IO.WBT function (TTDRV), 2-50 
IO.WLB function, 1-32 
IO.WVB function, 1-33 
SF.GMC function (TTDRV), 2-51 
standard function 

communication driver, 12-5 
CRDRV, 11-2 
CTDRV, 9-3 
DDDRV, 7-3 
disk driver, 5-7 
DTDRV, 6-3 
LPDRV, 10-4 
PPDRV/PRDRV, 18-2 
tape driver, 8-6 

synchronous QIO$ function 
(LSDRV), 17-5 

Space function (CTDRV), 9-7 
Spacing 

abort 
tape driver, 8-16 
TK50, 8-16 

end-of-volume (tape driver) , 
8-16 

Index-42 

( 

( 

( ) 



( 

( 

( 

INDEX 

Special key 
table (TTDRV), 2-71 

SS.MAS state setting, transmitter 
(LRDRV), 14-4 

SS.NEU state setting, transmitter 
(LRDRV), 14-4 

SST routine 
interrupt, 1-11 

Stack check, card reader (CRDRV), 
11-6 

Stadd parameter 
device-specific 

AFCII/ADOI converter, 15~2 
communication driver, 12-6 
CRDRV, 11-3 
DDDRV, 7-4 
disk driver, 5-8 
DTDRV, 6-3 
GRDRV, 21-2 
half-duplex, 3-8 
receive (LRDRV), 14-9 
tape driver, 8-8 
transmit (LRDRV), 14-4 
UDDRV, 16-4 
VTDRV, 4-3 

general (TTDRV)~ 2-11 
ICDRV/ISDRV, 19-10 
10.CCI function (ICDRV!JSDRV), 

19-19 
10.CCO function (TTDRV), 2-2~ 
10.CTI function (ICDRV/ISDRV), 

19-21 
10.CTY function (ICDRV/ISDRV) , 

19-23 
10.EIO function (TTDRV), 2-26 
10.GTS function (TTDRV), 2-33 
10. RAD function (ICDRV /ISDRV) , 

19-28 
10.RAL function (TTDRV), 2-36 
10.RBC function (ICDRV/ISDRV), 

19-14 
10.RLB function, 1-30 
10.RNE function (TTDRV), 2-38 
10.RPR function (TTDRV), 2-41 
10.RST function (TTDRV), 2~43 
10.RTT function (TTDRV), 2-45 
10.RVB function, 1-31 
10.SMC function .(TTDRV), 2-60 
10.SPT function 

(LSDRV), 17-9 
10.WAL function (TTDRV), 2-47 
10.WBT function (TTDRV), 2-49 
I~.WLB function, 1-32 
10.WVB, 1-33 . 

Stadd parameter (Cont.) 
SF.GMC function (half-duplex), 

3-11 
SF.GMC function (TTDRV), 2-51 
standard function 

communication driver, 12-5 
CRDRV, 11-2 
CTDRV, 9-3 
DDDRV, 7-3 
disk driver, 5-7 
DTDRV, 6-3 
LPDRV, 10-4 
.PPDRV /PRDRV, 18-2 
tape driver, 8-6 

synchronous QIO$ function 
(LSDRV), 17-5 

Staddbparameter 
ICDRV/ISDRV, 19-10 

10.WLB function, 19-32 
Stall I/O 

FIIACP performance (disk 
driver), 5.,.13 

RC25, 5-12· 
system performance (disk 

driver), 5-13 
Standard function list (TTDRV), 

2-19 
Stat parameter 

device-specific (communication 
driver), 12-6 

device-specific function 
(VTDRV), 4-3 

State change 
read interrupt point 

(ICDRV/ISDRV), 19;..54 
State parameter 

device-specific function 
transmit (LRDRV), 14-4 

10.STC function 
transmitter (LRDRV) ,14-6 

State setting, transmitter 
(LRDRV), 14-4 

Status 
completion (VTDRV), 4-6 
end-of-volume 

unlabeled tape (tape driver), 
8-16 

I/O, 1-36 
I/O (CRDRV), 11-7 
I/O completion (VTDRV), 4-5 
I/O conditi.on, 1-38 
I/O directive, 1-37 
10.XOP function (XEDRV), 13-6 
resetting transport (tape 

driver), 8-17 

Index-43 



INDEX 

status block, I/O, 1-5, 1-8, 1-11, 
1-26, 1-29, 1-36, 1-37, 1-38, 
1-39 

AFC11/AD01 converter, 15~4,-
15-8 

communication driver, 12-8 
CRDRV, 11-3, 11-7 
CTDRV, 9-4 
DDDRV, 7-5 
disk driver, 5-9, 5~10 
DTDRV, 6-4 
first word content 

K-series, 23-32 
LADRV, 22-31 
UDDRV, 16-15 

FORTRAN (ICDRV/ISDRV), 19-35, 
19-36 

GRDRV, 21-3 
half-duplex, 3-13~ 3-15, 3-16, 

3-17, 3-18, 3-26 
K-series, 23-6, 23-32 
LADRV, 22-2, 22-30 
LPDRV, 10-5 
LRDRV, 14-4, 14-5, 14-7, 14-11 
LSDRV, 17-9, 17-10, 17-31, 

17-34 
PPDRV/PRDRV, 18-3 
tape driver, 8-10, 8-11 
TTDRV, 2-10, 2-43, 2-51, 2-59, 

2-63, 2-75, 2-77, 2-80 
UDDRV, 16-7, 16-15, 16-16, 

16-31 
UNIBUS switch driver, 24-6, 

24-7 
VTDRV, 4-7, 4-8, 4-9 
4-word (LADRV), 22-31 
XEDRV, 13-6, 13-7, 13-10, 13-11, 

13-14, 13-16, 13-17, 13-18 
Status code, binary value, 1-37 
Status parameter (XEDRV) 

IO.XCL function, 13-17 
IO.XIN function, 13-10 
IO.XRC function, 13-14 
IO.XSC function, 13-7 
IO.XTL function, 13-18 
IO.XTM function, 13-11 

Status return 
communication driver, 12-8 
CRDRV, 11-3, 11-7 
CTDRV, 9-4 
DDDRV, 7-4 
disk driver, 5-9 
DTDRV, 6-4 
FORTRAN (ICDRV/ISDRV), 19-35 

Status return (Cont.) 
FORTRAN, interface value list 

(UDDRV), 16-33 
GRDRV, 21-3 
half-duplex, 3-17 
ICDRV/ISDRV, 19-12 
IO.XCL function (XEDRV), 13-18 
IO.XIN function (XEDRV), 13-11 
IO.XRC function (XEDRV), 13-16 
IO.XTL function (XEDRV), 13-18 
IO.XTM function (XEDRV), 13-13 
LPDRV, 10-4 
LSDRV, 17-29 
PPDRV/PRDRV, 18-3 
receiver (LRDRV), 14-11 
summary (ICDRV/ISDRV), 19-36 
tape driver, 8-10 
transmitter (LRDRV), 14-6 
TTDRV, 2-63 
UDDRV, 16-31 
UNIBUS switch driver, 24-7 
VTDRV, 4-7 
word 1 (ICORV/ISDRV), 19-36 
XEDRV, 13-5 

Status word (F11ACP) 
FNB, C-7 

Stcnta parameter 
device-specific 

AFC11/AD01 converter, 15-3 
device-specific function 

(UDDRV), 16-5 
ICDRV/ISDRV, 19-11 

IO.RBC function, 19-14 
Stop I/O 

in-progress request (LSDRV), 
17-9 

Stop switch 
card reader (CRDRV)J 11-6 

Stop synchronous function (LSDRV), 
17-22 

STPSWP: subroutine 
stop sweep 

K-series, 23-29 
LADRV, 22-24 

STSE$ directive, 1-10 
Subfunction (TTDRV) 

allowed, 2-18 
list 

device-specific, 2-19 
standard, 2-19 

modifier, extended I/O, 2-25 
Subfunction bit 

half-duplex, 3-8, 3-9, 3-10 
TTDRV, 2"':'12 

Index-44 

( ) 

( 

( 



c 

( 

INDEX 

Subroutine linkage 
standard (K-ser ies), 23-31 
standard MACRO-II (LADRV), 

22-27 
Subroutine linkage (K-series), 

23-31 
Subroutine, synchronous (LSDRV), 

1.7-10 
Success return 

LSDRV, 17-29 
UDDRV, 16-31 

Support 
of ICSll by ICDRV, 19-3 
of ICSll by UDDRV, 19-3 

Support routine 
feature list (K-series), 23-3 
generation (K-series), 23-4, 

23-5 
interface (K-series), 23-6 
invoking (K-series), 23-31 
MACRO-II (LADRV), 22-26 
program use (K-series), 23-5 
use (K-series), 23-4 

SWI parameter 
device-specific function 

(VTDRV), 4-4 
Sw2 parameter 

IO.STC function (VTDRV), 4-6 
Sweep 

initiate A/D synchronous 
(K-series), 23-8 

stop (K-series), 23-29 
Symbol 

definition 
including in SYSLIB.OLB 

(UDDRV), 16-12 
local (half-duplex), 3-13 

local 
defining (TTDRV), 2-33 
obtaining, 1-7 

Syn parameter 
device-specific (communication 

driver), 12-6 
Sync character (communication 

driver), 12-8 
specifying, 12-8 

Synchronous 
D/A sweep (K-series), 23-14 
digital input sweep 

K-series, 23-17 
LSDRV, 1.7-15 

digital output sweep (K-series), 
23~19 

process control 
ICDRV/ISDRV, 19-35 

Synchronous 
process control (Cont.) 

UDDRV, 16-15 
subroutine (LSDRV), 17-10 
trap, 1-10 

System 
object library, 1~37 
object module library, 1-8 
overhead (TTDRV) 

IO.RPR, 2-40 
TF.RPR, 2-14, 2-27 

performance 
stall I/O (disk driver), 5-13 

powerfail 
recovery (UNIBUS switch 

driver), 24-6 
System generation 

feature (half-duplex), 3-28 
option (TTDRV), 2-17, 2-77 

System Macro Library, 1-4 

TAll tape cassette, 9-1 
Tab character 

half-duplex, 3-15 
TTDRV, 2-69 

. vertical, 2-69 
Table parameter (TTDRV) 

general, 2-11 
IO~RTT function, 2-46 

Tape 
density, 8-9 
logical EOT (CTDRV), 9-8 
nolabel, block size (tape 

driver), 8-18 
position (DDDRV), 7-4 
power fail, 1-43 
structure (CTDRV), 9-6 

Tape driver, 8-1 
consecutive tape mark, 8-17 
device characteristic, 8-3 
programming hint, 8-15 
resetting transport status, 

8-17 
Task 

aborting 
CRDRV, 11-10 
DTDRV, 6-8 
LPDRV, 10-7 
tape driver, 8-16 
VTll/GRDRV, 21-4 

activating, unsolicited 
interrupt (ICDRV/ISDRV), 
19-24 

blocked, 1-10 
checkpoint (VTDRV), 4-5 

Index':"45 



INDEX 

Task (Cont.) 
disable offspring (VTDRV), 4-5 
event driven, 1-11 . 
exiting, CTRL/Z (TTDRV), 2-70 
linking 

counter interrupt 
(ICDRV/ISDRV), 19-26 

digital interrupt 
(ICDRV/ISDRV),19-25 

error interrupt (ICDRV/ISDRV), 
19-27 

ICS/ICR common block, 19-76 
terminal interrupt 

(ICDRV/ISDRV), 19-27 
to interrupt (ICDRV/ISDRV), 

19-64, 19-66 
offspring (VTDRV), 4-1 
parent (VTDRV), 4-1 
pr ivileged 

break through (TTDRV), 2-16 
break-through write (TTDRV), 

2-17 
read activating data 

(ICDRV/ISDRV), 19-28 
remove interrupt link 

(ICDRV/ISDRV), 19-68 
example, 19-69 

unl inking (ICDRV /ISDRV) 
from all digital interr,upt, 

19-30 
from all interrupt, 19~30 
from counter interrupt, 19-30 
from error interrupt, 19-31 
from interrupt, 19-29 
from terminal.interrupt, 

19-31 
XEDRV conne~tion, 13-22 

TC.8BC characteristic (TTDRV), 
2-55 

TC.ABD characteristic (TTDRV), 
2-52 

TC.ACD characteristic, (TTDRV), 
2-52 

TC.ACR characteristic (TTDRV), 
2-52 

TC.ANI characteristic (TTDRV), 
2-52 

TC.ASP characteristic (TTDRV), 
2-52~ 2-56 

baud rate, modem support, 2-83 
TC.AVO characteristic (TTDRV), 

2-52 
TC.BIN characteristic (TTDRV), 

2-52 

TC.BLK characteristic (TTDRV), 
2-52 

TC.CTS characteristic (TTDRV), 
2-52, 2-57 

TC.DEC characteristic (TTDRV), 
2-52 

TC.DLU characteristic (TTDRV), 
2~52 

modem support, 2-83 
TC.EDT characteristic (TTDRV), 

2-52 
TC.EPA characteristic (TTDRV), 

2-53 
TC.ESQ characteristic (TTDRV), 

2-53 
TC.FDX characteristic 

TTDRV, 2-53 
VTDRV, 4-7 

TC.HFF characteristic (TTDRV), 
2-53 

TC.HFL characteristic (TTORV), 
2-53 

TC.HHT characteristic (TTDRV), 
2-53 

TC.HLD characteristic 
half-duplex, 3-33 
TTDRV, 2-53, 2~56 

side effect, 2-62 
TC.HSY characteristic (TTDRV), 

2-53 
TC.ICS characteristic (TTDRV), 

2-53 
TC.ISL characteristic (TTDRV), 

2-53 
TC.LPP characteristic (TTDRV), 

2-53 
TC.MHU characteristic (TTDRV), 

2-53 
buffer, 2-60 
processing, 2-60 

TC.J!ffiR characteristic (TTDRV), 
2-53 

TC.NEC characteristic 
half-duplex . 

echo, solicited input, 3-14 
TTDRV, 2-54 

TC.OOB characteristic (TTDRV), 
2-54 . 

buffer, 2-62 
processing, 2-60; 2-61 

TC.PAR characteristic (TTDRV), 
2-54 

TC.PPT characteristic (TTDRV), 
2-54 

Index-46 

( ) 

C') 

() 



( \ 

( " 

( 
~, 

TC.PRI characteristic (TTDRV), 
2-54 

TC.PTH characteristic (TTDRV). , 
2-54 

TC.RAT characteristic (TTDRV), 
2-54 

TC.RGS characteristic (TTDRV) , 
2-54 

TC.RSPcharacteristic (TTDRV) , 
2-54, 2:"'56 

TC.SCP characteristic 
.TTDRV, 2-54 
VTDRV, 4-7 

TC.SFC characteristic (TTDRV) , 
2-54 

TC.SLV characteristic (TTDRV) , 
·2-54 

TC.SMR characteristic 
TTDRV, 2-54 

side effect, 2-62 
VTDRV, 4-7 

TC.SMR characteristic 
(half-duplex) , 3-33 

TC.SSC characteristic (TTDRV), 
2-54 

buffer, 2-61 
processing, 2-60 
side effect, 2-62 

TC.TBF characteristic (TTDRV) , 
2-54, 2-58 

TC.TBM characteristic (TTDRV) , 
2-55 

TC.TBS charact~ristic (TTDRV) , 
2-55 

TC.TLC characteristic (TTDRV), 
2-55 

TC.TMM characteristic (TTDRV), 
2-55 

TC.TPP characteristic 
terminal type value (TTDRV), 

2-56 
TC. TSY characteristic (TTDRV), 

2-55 
TC.TTP char~cteristic 

half-duplex, 3-12, 3-16 
TTDRV, 2~55, 2-57 
VTDRV, 4-7 

TC.VFLcharacteristic (TTDRV), 
2-55 

TC.WID characteri~tic (TTDRV), 
2-55 

TC.XSP characteristic (TTDRV), 
2-55,. 2-56 

TCII magnetic tape unit, 6-1 
TElO magnetic tape unit, 8-1 

INDEX 

TE16 magnetic tape unit, 8-1 
Tef parameter 

device-specific function 
receive (LRDRV), 14-9 

Teletypewriter, 2-3 
Terminal 

attach 
half-duplex, 3-11 
several (half-duplex), 3-34 
VTDRV, 4-4 

buffer 
read character (ICDRV/ISDRV), 

19-61 
characteristic 

get mul tiple 
TTDRV, 2-51 
V'l'DRV, 4-6 

implicit (TTDRV), 2-57 
return (half-duplex), 3-11 
set 

TTDRV, 2-59 
VTDRV, 4-7 

VTDRV, 4-6 
characteristic table 

half-duplex, 3-12 
TTDRV, 2-52 
VTDRV, 4-7 

cursor control (TTDRV), 2-80 
detach (VTDRV), 4-4 
disconnect (TTDRV), 2-35 
disconnect input (ICDRV/ISDRV), 

19-24 
full~duplex operation (TTDRV), 

2-79 
function code list, B-13 
get support 

half~duplex, 3~13 

TTDRV, 2-18, 2-33 
. return, 2';'34 
input 

checkpointing 
half-duplex, 3;"32, 3-35 
TTDRV, 2-82 

line length (half-dupl~x), 
3-2 

interface 
half-duplex, 3-30 
support, 2-3 
TTDRV, 2-81 

line truncation (half-duplex), 
3;..31 

monitoring many (TTDRV), 2-13 
output (ICDRV/ISDRV), 19-32 

A/D controller restriction, 
19-32 

Index-47 



Terminal (Cont.) 
programming hint (TTDRV), 2-82 
remote (ICDRV/ISDRV) 

monitor example, 19-62 
output, 19-50 

status return (TTDRV), 2-63 
support, 3-13 

ICDRV/ISDRV, 19-6 
TTDRV, 2-2 
VTDRV, 4-6 

suppressing outp~t lTTDRV), 
2-69 

system generation feature 
(half-duplex), 3-28 

type value (TTDRV), 2~56 

virtual,4-1 
function code list, B-15 

write (half-duplex), 3-11 
Terminal driver, 3-1 

full-duplex 
See TTDRV 

half-duplex 
supported devices, 3-1 
supported interface, 3-2 

virtual, 4-1 
Tevf parameter 

device-specific function 
(UDDRV), 16-4 

ICDRV/ISDRV, 19-11 
IO.CCI function, 19-19 
IO.CTI function, 19-21 
IO.CTY function, 19-23 
IO.LDI function, 19-25 
IO.LKE function, 19-28 
IO.LTI function, 19-26 
IO.LTY function, 19-27 

TF.AST supfunction (TTDRV), 2-12 
TF.BIN subfunction (~TDRV), 2-12 

IO.EIO function, 2-26 
IO.RPR function, 2-41 

TF.CCO ~ubfunction (TTDRV), 2-12 
IO.EIO function, 2-26 
IO.WAL function, 2-48 
IO.WBT function, 2-50 

TF.ESQ subfunction (TTDRV), 2-12 
IO.ATA function, 2-22 

TF.NOT subfunction (TTDRV), 2-13 
IO.ATA function, 2-20, 2-22 

TF.RAL subfunction (TTDRV), 2-13 
IO.EIO function, 2-26 
IO.RNE function, 2-39 
IO.RPR function, 2-42 
IO.RST function, 2-44 
IO.RTT function, 2-46 

INDEX 

TF.RCU subfunction (TTDRV), 2-13 
IO.EIO function, 2-27 
IO.RTT function, 2-46 
IO.WAL function, 2-48 
IO.WBT function, 2-50 

TF.RDI subfunction (TTDRV), 2-13 
IO.EIO function, 2-27 

TF.RESsubfunction (TTDRV), 2-13 
IO.EIO function, 2-27 

TF.RLB subfunction (TTDRV), 2-13 
TF.RLU subfunction (TTDRV), 2-13 

to.EIO function, 2~27 
TF.RNE subfunction (TTDRV), 2-13 

IO.EIO function, 2-27. 
IO.RAL function, 2-37 
IO.RPR function, 2-42 
IO.RST function, 2-44 
IO.RTT function, 2-46 

TF.RNF subfunction (TTDRV), 2-14 
IO.EIO function, 2-27 

TF.RPR subfunction (TTDRV), 2-14 
ignore prompt, 2-27 
IO.EIO function, 2-27 

TF.RPT subfunction (TTDRV), 2-14 
IO.EIO function, 2-28 

TF.RST subfunction (TTDRV), 2';"14 
IO.EIO function, 2-28 
IO.RAL function, 2-37 
IO.RNE function, 2-39 
IO.RPR function, 2-42 
set TF.RNE subfunction, 2-14 

TF.RTT subfunction (TTDRV), 2-15 
IO.EIO function, 2-28 
with TF.RAL subfunction, 2-15 
with TF.RNFsubfunction, 2-15 
with TF.TNE subfunction, 2-15 

TF.TMO subfunction (TTDRV), 2-15 
IO.EIO function, 2-28 
IO.RAL function, 2-37 
IO.RNE function, 2-37, 2-39 
IO.RPR function, 2-42 
IO.RST function, 2-44 
IO.RTT function, 2-46 

TF.TNE subfunction (TTDRV), 2-15 
IO.EIO function, 2-29 

TF.WAL subfunction (TTDRV), 2-15 
IO.CCO function, 2-24 
IO.EIO function, 2-29 
IO.WBT function, 2-50 

TF.WBT subfunction (TTDRV), 2-16 
break-through write, 2-17, 2-24 
IO.CCO function, 2-24 
IO.EIO function, 2-29 
IO.WAL function, 2-48 

Index-48 

( 

( 

( 



( 

( 

( 

INDEX 

TF.WIR subfunction (TTDRV), 2-16 
IO.EIO function, 2-29 

TF.WLB subfunction (TTDRV), 2-16 
TF.XCC subfunction (TTDRV), 2-16 

IO.ATA function, 2-20, 2-22 
TF.XOF subfunctio.n (TTDRV), 2-16 

IO.EIO function, 2-29 
IO.RNE function, 2-39 
IO.RPR function, 2-42 
IO.RST function, 2-44 

Tiqks parameter 
synchronous QIO$ function 

(LSDRV), 17-5 
Time out 

count (TTDRV), 2-15 
LADRV, 22-35 
parameter (UNIBUS switch 

driver) 
IO.DPT function, 24-5 

read (TTDRV), 2-28 
unsolicited input (TTDRV), 2-17 

Time parameter 
RCLOKB: subroutine (K-series)., 

23-25 
TK25 magnetic tape unit, 8-2 
TK50 magnetic tape unit, 8-2 
TM02 formatter, 8-1 
TM03 formatter, 8~1 
Tmo parameter 

device-specific function 
half-duplex, 3-8 
VTDRV, 4-4 

TTDRV, 2-11 
IO.RAL function, 2-36 
IO.RNE function, 2~38 
IO.RPR.function, 2-41 
IO.RST function, 2-44 
IO.RTT function, 2-46 

VTDRV, 4-4 
Tname parameter (ICDRV/ISDRV) , 

19-11 
IO.LDI function, 19-25 
IO.LKE function, 19-27 
IO.LTI function, 19-26 
IO.LTY function, 19-27 
IO.NLK funct{on, 19-30 
IO.UDI function, 19-30 
IO.UER function, 19-31 
IO.UTI function, 19-30 

Tout parameter 
device-specific (UNIBUS switch 

driver), 24-4 
Track, bad sector (disk driver) , 

5-12 . 

Transmission, validation 
(communication driver), 12-11 

Transmi t 
auxilliary buffer (XEDRV), 

13-12 
line message (XEDRV), 13-11 
message (LRDRV), 14-5 
pad enable bit (XEDRV), 13-20 
requirement (XEDRV)., 13-13 
set protocol type (XEDRV), 

13-12 
speed (TTDRV), 2-56 
standard function (LRDRV), 14-3 
timeslice constraints (LRDRV), 

14-6 
XEDRV, Ethernet, 13-3 

Trap 
system, 1-10 

asynchronous, 1-10, 1-11 
synchronous; 1-10 

Truncation 
print line (LPDRV), 10-7 
terminal line (half-duplex), 

3-31 
TS03 magnetic tape unit, 8-1 
TS11 magnetic tape unit, 8-1 
TSV05 magnetic tape unit, 8-2 
TTDRV, 2-1 

features, 2-1 
input line length, 2-3 
interface support, 2-3 
programming hint, 2-82 
subfunction bit, 2-12 
terminal support, 2-2 

TTSYM 
half-duplex, 3-8, 3-13 
system module (TTDRV), 2-33 

TTSYNC (TTDRV), 2-70 
TUIO magnetic tape unit, 8-1 
TU16 magnetic tape unit, 8-1 
TU45 magnetic tape unit, 8-1 
TU58 DECTAPE II, 7-1 
TU60 dual cassette transport, 9-1 
TU77 magnetic tape unit, 8-1 
TU80 magnetic tape unit, 8-1 
TU81 magnetic tape unit, 8-2 
Typeahead buffer (TTDRV), 2-78 

U$$NCT parameter (XEDRV), 13-2 
U$$NPC parameter (XEDRV), 13-2 
U$$NRS parameter (XEDRV), 13-2 
U$$NTS parameter (XEDRV); 13-2 
UDA50 disk controller, 5-4 
UDC 

function code list, B-15 

Index-49 



INDEX 

UDCll, 16-1 
compatibility (ICDRV/ISDRV), 

19-6 
creating driver, 16-1 
defining configuration (UDDRV), 

16-10 
UDCOM.MAC 

defining configuration (UDDRV), 
16-10 

UDDRV, 16-1 
numbering convention, 16-34 
progr~ing hint, 16-34 

UMDIO$ diagnostic function, 1-34 
UNIBUS switch driver, 24-1 

AST 
CPU disconnect, 24-3 
failed CPU response, 24-3 
other CPU connect; 24-3 
power failure, 24-3 
switched to other CPU, 24-3 

attaching task, 24-2 
error return, 24-7 
FORTRAN usage, 24-8 
function code list, B-15 
power-fail recovery, 24-6 
standard functions, 24-2 
status return, 24-7 
system power-fail recovery, 

24-6 
use, 24-1 

Unit off-line (ICDRV/ISDRV), 
19-72 

Unlabeled tape, end-of-volume 
(tape driver), 8-16 . 

UNLNK: 
remove task interrupt link 

(ICDRV/ISDRV), 19-68 
example, 19-69 

Unloading 
LADRV, 22-35 
tape driver, 8-7 

Unsolicited interrupt 
(ICDRV/ISDRV), 19-6 

data, continual monitoring, 
19-51 

processing, 19-17, 19-18, 19-64 
Unt parameter 

ALUN$ macro, 1-17 
Uppercase conversion 

(half-duplex), 3~15 
Userid parameter 

IO.STP function (LADRV), 22~30 

Val parameter 
CVADF: subroutine 

K-series, 23-13 
LADRV, 22-9 

FLT16: subroutine 
K-series, 23-21 
LADRV, 22-17 

Value parameter 
IO.SMC function (TTDRV), 2-60 

Var parameter 
ADC: subroutine (LSDRV), 17-12 

Vertical format control 
See VFC 
See Vfc parameter 

VFC 
half-duplex, 3-27 

double space, 3-27 
format 

internal vertical, 3-28 
overprint, 3-28 
page eject, 3-27 
prompting output, 3-28 
single-space, 3-27 

tPDRV, 10-6 
character, 10-6 
double space, 10-6 
format, internal vertical, 

10-7 
internal, 10-7 
overprint, 10-7 
page eject, 10-6 
prompting output, 10-7 
single space, 10-6 

TTDRV, 2-75 
character table, 2-75 

Vfc parameter 
device-specific (half-duplex), 

3-8 
QIO$ macro (VTDRV), 4-4 
standard function (LPDRV), 10-4 
TTDRV 

general, 2-11 
IO.CCO function, 2-23 
IO.RPR function, 2-41 
IO.WAL function, 2-47 
IO.WBT function, 2-50 

Virtual I/O, 1-2 
Volume 

unmounted attach (DTDRV), 6-2 
Vout parameter (ICDRV/ISDRV), 

19-11 . 
IO.SAO function, 19~16 

VS60 graphic display, 21-1 
VS60 Graphics Display 

See GRDRV 

Index-50 

( 

( 

) 

\ 
;' 

( \ 



( 

( 

INDEX 

VT05B terminal, 2-5, 3-3 
VT100 DECscope, 2-6, 3-4 
VTlOl DECscope, 2-6 
VTl02 DECscope, 2-6 
VTl05 DECscope, 2-6 
VTll graphic display, 21-1 
VTl1 Graphics Display 

See GRDRV 
VT13l DECscope, 2-6 
VT220 terminal, 2-6 
VT240 terminal, 2-6 
VT241 terminal, 2-7 
VT50 terminal, 2-5, 3.-3 
VT50H terminal, 2-5, 3-3 
VT52 terminal, 2-5, 3-4 
VT55 terminal, 2-5, 3-4 
VT6l terminal, 2-6, 3-4 
VTDRV, 4-1 

Wait for buffer (K-series); 23-25 
Wildcard context (F1lACP) 

FNB, C-7 
Window size parameter (F11ACP), 

C-6 
Wraparound 

automatic, remote line (TTDRV), 
2-83 

half-duplex, 3-29 
output line, 3-29 

Write 
all character 

half-duplex, 3-16 
TTDRV, 2-15, 2-24, 2-29, 2-50 

block transfer length (DTDRV), 
6-7 

break-through 
half-duplex, 3-16 
multi-echo (half-duplex), 

3-16 
privileged (TTDRV), 2-16 
TF.WBT (TTDRV), 2-24, 2-29 
TTDRV, 2-16, 2-17, 2-24,2-48, 

2-49 
DDDRV, 7-4 
error (tape driver), 8-14 
logical block, 1-31, 1-32 

TTDRV, 2-16, 2-47 
no sync (communication driver) , 

12-8 
NRZI (tape driver), 8~16 
pass all (TTDRV), 2-29, 2-47 
redisplay input (TTDRV), 2-16, 

2-29 
reverse (DTDRV), 6-7 
verify (CTDRV), 9-8 

Write access (FllACP), C-8 
Write data 

into output register (LSDRV), 
17-4 

timed intervals, 17-8 
to D/A converter 

timed intervals (LSDRV), 17-8 
Write digital output (LSDRV), 

17-20 
Write image 

clock control register (LADRV), 
22-29 

WTSEfdirective, 1~4, 1-10 
WTSE$ macro, 1~14, 1-~5, 1-24 

example, 1-25 

XEDRV 
address pairs, Ethernet, 13-3 
asynchronous I/O, 13~2l 
buffer 

diagnostic, 13-19 
maximum size, 13-21 
minimum size, 13-21 
protocol address pair, 13-8 
read destination address, 

13-16 
read Ethernet address, 13-14 
read protocol type, 13-15 
set characteristic, 13-7 
set destination address, 

13-12 
set multicast address, 13-9 
set protocol type, 13-12 

change mode, 13-20 
connecting to task, 13-22 
default mode bit, 13-21 
definition, 13-1 
definition macro 

DLXDF$, 13-4 
EPMDF$, 13-4 

diagnostic 
buffer, 13-19 
no data transfer, 13-21 

DLX incompatibility, 13-21 
driver installation, 13-5 
error return 

IO.XIN function, 13-11 
IO.XRC function, 13-16 
10. XTM function, 13-13 

Ethernet 
address pairs, 13-3 
device consideration, 13-2 
LF$DEF protocol, l3~3 
LF$EXC protocol, 13-3 
message, 13-2 

Index-51 



INDEX 

XEDRV 
Ethernet (Cont.) 

message padding, 13-3 
protocol, 13-3 
receive, 13'-3 
set characteristic, 13-7 
transmit, 13-3 

function code, 13-4 
glossary, 13-23 
10.XCL function, 13~4 
10.XIN functiori, 13-4 
10.XOP function, 13-4, 13-6 
10.XRC function, 13-4, 13-13 
10. XSC function, 13-4 
10.XTL function, 13-18 

microcode, 13-4 
10.XTM function, 13-4 
load, 13-5 
macro library 

DEUNA.MLB, 13-4 
microcode loader 

UML ••• , 13-5 
mUlticast address mode, 13-2 
open line, 13-6 
pad enable bit, transmit, 13-20 
physical adddress mode, 13-2 
programming hint, 13-20 
programming sequence, 13-4 
protocol address pair 

buffer, 13-8 
protocol, Ethernet, 13-3 
protocol/address pair 

buffer, 13-8 
QIO$ macro, 13-3 

general, 13-4 
QIO$ macro libary 

EXEMC.MLB, 13-4 

XEDRV (Cont.) 
read destination address 

buffer, 13-16 
read Ethernet address 

buffer, 13-14 
read protocol type 

buffer, 13-15 
receive message, 13-13 
receive"Ethernet, 13-3 
set characteristic 

buffer, 13-7 
Ethernet, 13-7 

set destination address 
buffer, 13-12 

set multicast address 
buffer, 13-9 

set protocol type 
buffer, 13-12 

status return, 13-5 
10.XIN function, 13-11 
10. XRC .function, 13-16 
10.XTM function, 13-13 

task requirement, 13-2 
transmit line message 

10.XTM function, 13-11 
transmit, Ethernet, 13~3 
U$$NCT parameter, 13-2 
U$$NPC parameter, 13-2 
U$$NRS parameter, 13-2 
U$$NTS parameter, 13-2 
use, 13-1 

XOFF, 3-15 
send (TTDRV), 2-16, 2-29, 2-37, 

2-42, 2-44 
XOFF bit (TTDRV), 2-70 
XON bit (TTDRV), 2-70 
XRATE: subroutine 

compute clock rate and preset 
K-series, 23-30 
LADRV, 22-'25 

Index-52 

( 

( 








