RSX-11M/M-PLUS

I/O Drivers Reference Manual
Order No. AA-FDO9A-TC

TN
.

RSX-11M/M-PLUS

I/0O Drivers Reference Manual
Order No. AA-FD09A-TC

RSX-11M Version 4.2
RSX-11M-PLUS Version 3.0

digital equipment corporation - maynard, massachusetts

First Printing, May 1979
Revised, December 1981
Revised, July 1985

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright () 1979, 1981, 1985
by Digital Equipment Corporation
All Rights Reserved.

Printed in Australia

The following are trademarks of Digital Equipment Corporation:

DEC ‘ DIBOL PDT
DEC/CMS EduSystem RSTS
DEC/MMS IAS RSX
DECnet MASSBUS UNIBUS
DECsystem-10 MicroPDP-11 VAX

> DECSYSTEM-20 Micro/RSTS VMS
DECUS Micro/RSX

VT
DECwriter | PDP ﬂngnan ZK2645

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and.Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)

In New Hampshire, Alaska, and Hawalii call 603-884-6660 Digital Equipment of Canada Ltd.
100 Herzberg Road
In Canada call 613-234-7726 (Ottawa-Hull) Kanata, Ontario K2K 2A6
800-267-6215 (all other Canadian) Attn: Direct Order Desk

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.0O. Box CS2008 PSG Business Manager

Nashua, New Hampshire 03061 c/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

CONTENTS

Page
PREFACE ' xxiii

SUMMARY OF TECHNICAL CHANGES XXV

CHAPTER RSX-11M/M-PLUS INPUT/OUTPUT
OVERVIEW OF RSX-11M I1/0 . . .
PHYSICAL, LOGICAL, AND VIRTUAL
LOGICAL UNITS . « ¢ o o o &«
Logical Unit Number . . .
Logical Unit Table
Changing LUN Assignments .
ISSUING AN I/O REQUEST . . .
QIOS$ Macro Format . . .« .
Syntax Elements: Brackets

- e
~N
(o)X}
|

L]
HFH WM

.
=

e e o o o

e o o o o o o

e o o o o

e o o o o o o
o ° o o

e & o o o o o o
.

. .)] Y .
L] L] L) .) L]
il
OB BWNN N

Angle Brack

>aRBbWWwwwN -

t

—

® o & o 06 o ® o & o & o o ¢ e e o ¢ o o

-

<>, Braces {}
FNC Parameter

o o o Mo o o o o o
o e o N e o o o o o

LUN Parameter

EFN Parameter

[
HOWWVWWVWWYWWWONJAN

PRI Parameter .
ISB Parameter .
r

AST Parameter
Pl1,P2,...,P6 Parame
Significant Events .
Event Flags
System Traps
Asynchronous System Traps
DIRECTIVE PARAMETER BLOCKS .
I/0 PacketsS .« ¢ « o ¢ o o o«
Significant Event Declaration
I/0 RELATED MACROS . . « « « « & e o e
The QIO$ Macro: Issuing an I/0O Request . .
The QIOWS Macro: Issuing an I/0 Request and
Waiting for an Event Flag « « « « . o 1-15

OOV WN

m

.

il el el

.
.
.
ers
.
.

e o (e o o o o o o

e o o © o o o o
e & o o o o o o
e o o © o o o o
e o o o o o o o

(] . L] [] . L]
|
o

e & o © o o o 9 o s o o o

L]
NH NH OBWNHH

e © e © o o o o o o & o o o
* & o ® o o e & o . e o o

HJe e ° o o o e o s s e o o e s o
* e ® e o
e ® o o o

[=

|

[

w

HOWOUOVWONNNNdNNNYIJYIOaOa OO O Y OY OV Ut U1 UT b b b o ol i b i D i

1.6.3 The DIR$ Macro: Executing a Directive 1-15
1.6.4 The .MCALL Directive: Retrieving System Macros 1-16
1.6.5 The ALUN$ Macro: Assigning a LUN 1-16
1.6.5.1 Physical Device Names . . + « ¢ « o« o « o o 1-18
1.6.5.2 Pseudo-Device and Physical Device Names . . 1-20
1.6.6 The GLUNS$ Macro: Retrieving LUN Information . 1-21
1.6.7 The ASTX$S Macro: Terminating AST Service . . 1-24
1.6.8 " The WTSE$ Macro: Wait for Single Event Flag . 1-24
1. STANDARD I/O FUNCTIONS . . ¢ « « « « o « o « o« « 1=25
1.7.1 I/0 Subfunction Bits . ¢ ¢« ¢« ¢ ¢ ¢« ¢ & « o+ « o 1-26
1.7.2 QIOSC IO.ATT - Attaching to an I/0 Device . . 1-27
1.7.3 QIOS$C I0.DET - Detaching from an I/0 Device . 1-28
1.7.4 QIOSC IO.KIL - Canceling I/O Requests 1-29
1.7.5 QIOSC I0.RLB - Reading a Logical Block 1-30
1.7.6 QIOSC IO.RVB - Reading a Virtual Block 1-30
1.7.7 QIOS$C I0.WLB - Writing a Logical Block 1-31
1.7.8 QIOSC IO.WVB - Writing a Virtual Block 1-32
1. USER-MODE DIAGNOSTIC FUNCTIONS . . ¢« « « « &+ « o 1-34
1. I/O COMPLETION . « &« « o o o o o o o o« o o o o & 1=36
1.9.1 Return Codes . . + « & o o o o o o o o o o« o « 1-36
1.9.2 Directive Conditions « « . . . 1-37
1.9.3 I/0 Status Conditions . « ¢ & ¢ ¢ o o o & & 1-38
1.10 POWER-FAIL RECOVERY PROCEDURES FOR DISKS AND

DECTAPE . & v ¢ o « o s o o o o o o o o o o o« « 1-43
1.11 RSX-11M DEVICES . &« &« ¢ s o ¢ o o o o o o o o o 1-43

CONTENTS

CHAPTER 2 FULL-DUPLEX TERMINAL DRIVER
2.1 INTRODUCTION . ¢ & & o 2 o o o o o o s o o o o o o 2=-1
2.1.1 Full-Duplex Terminal Driver . . « . ¢ « o « « . 2-1
2.1.2 Terminals Supported by the Full-Duplex Terminal
DEIVEY & v & & ¢ ¢ o o o o o o o o o o o o o o o 2=2
2.1.2.1 ASR-33/35 Teletypewriters « ¢« ¢ « o . 2=3
2.1.2.2 KSR-33/35 Teletypewriters . . . ¢« ¢« o o o« o o 2-4
2.1.2.3 LAl2 Portable Terminal ¢« ¢« « « . . 2-4
2.1.2.4 LA10O DECPrinter . . ¢ o « o o o « o« o o« « o« o 2-4
2.1.2.5 LA30 DECWELiterS . ¢ o ¢ o o o o o o o o« o o o 2-4
2.1.2.6 LA36 DECWELItEr . . v o ¢ o o o o o o o o o o o 2-4
2.1.2.7 LA34/38 DECWEIiterS « v« o « o o o o o o o o o« o 2=-4
2.1.2.8 LAl20 DECWEiter . o ¢ ¢ ¢ o o o o o o o o o« o 2-4
2.1.2.9 LA180S DECPrinter . . o« o« o o o o o o o o o« o 2-4
2.1.2.10 LQP02 Letter-Quality Printer « « « . . 2-4
2.1.2.11 LA50 Personal Printer e o o o o o o 2=5
2.1.2.12 RT02 Alphanumeric Display Term1na1 and RT02-C
Badge Reader/Alphanumeric Display Terminal . . 2-5
2.1.2.13 VT05B Alphanumeric Display Terminal 2-5
2.1.2.14 VT50 Alphanumeric Display Terminal 2-5
2.1.2.15 VT50H Alphanumeric Display Terminal 2-5
2.1.2.16 VT52 Alphanumeric Display Terminal 2-5
2,1.2.17 VT55 Graphics Display Terminal 2-5
2.1.2.18 VT61 Alphanumeric Display Terminal 2-6
2.1.2.19 VT100 DECSCOPE &« « o o o o o o o o o o o o« o o 2=6
2.1.2.20 VT101 DECSCOPE &« o o o o o o o s o o o o o o o« 2=6
2.1.2.21 VT102 DECSCODPE &« « o o o o o o o o s o s o o o 2=6
2.1.2.22 VT105 DECSCOPE « « o o o o o a o o« o o o o o o 2=6
2.1.2.23 VT13]1 DECSCOPE &« o« o o o o o o o s o o o o s o 2=6
2.1.2.24 VT220 Terminal . o o ¢« o« o o ¢ o o o« o o« o o o 2=6
2.1.2.25 VT240 Terminal . . o o « o o o o o o o o« o o o« 2=6
2. 1. 2. 26 VT241 Terminal 3 . . 2"7
2.2 GET LUN INFORMATION MACRO . ¢ 2 ¢ ¢ o o o o o o o 2=7
2.3 QIO$ MACRO e o o o e o s o s s s o . 2-8
2.3.1 Format of QIO$C for Standard Functions 2-8
2.3.2 Format of QIOS$C for Device-Specific Functions . 2-8
2.3.3 Parameters . . o« « o o o o o o o o o o o o o o 2=-10
2.3.4 Subfunction Bits . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o 2-12
2.4 DEVICE-SPECIFIC QIOS$ FUNCTIONS . . « « « o « « «» 2=17
2.4.1 System Generation Options in the Full-Duplex
Terminal Driver e s s e s e o o o o 2=17
2.4.2 Functions and Allowed Subfunctlons e o o o o o 2-18
2.4.3 QIOSC IO.ATA - Attach a Terminal with ASTs . . 2-20
2.4.4 QIOSC IO.CCO - Cancel CTRL/O . « « « o o « « o 2=23
2.4.5 QIOSC I0.EIO - Extended I1/0 Functions 2-25
2.4.5.1 Item List 1 for IO.EIO!TF.RLB 2-30
2.4.5.2 Item List 2 for IO.EIO!TF.WLB . . . « « « o 2-32
2.4.6 QIOSC IO.GTS - Get Terminal Support 2-33
2.4.7 QIOSC IO.HNG - Disconnect a Terminal 2-35
2.4.8 QIOSC IO.RAL - Read All Characters Without
Interpretation . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o « o o o « o 2=36
2.4.9 QIOSC IO.RNE - Read Input Without Echoing . . 2-38
2.4.10 QIOSC IO.RPR - Send Prompt, Then Issue Read . 2-40
2.4.11 QIOSC IO.RST - Read Logical Block With Special
Terminators . . ¢ ¢ &« o o o o o o o o o & o o 2-43
2.4.12 QIO$ IO.RTT - Read With Terminator Table . . . 2-45
2.4.13 QIOSC IO.WAL - Write a Logical Block and Pass
All Characters e e e o @ 2-47
2.4.14 QIOSC IO.WBT - Break Through to erte a Log1cal
Block & ¢ ¢ ¢ 4 4 6 it 4 4 e e s e s e e o o 2-49
2.4.15 QIOSC SF.GMC - Get Multiple Characteristics . 2-51
2.4.15.1 Characteristic Bit Special Information . . . 2-56
2.4.16 QIOSC SF.SMC - Set Multiple Characteristics . 2-59
2.4.16.1 Processing for TC.MHU, TC.SSC, and TC.00B . 2-60
2.4.16.2 Side Effects of Setting Characteristics . . 2-62

iv

CHAPTER

o o
.

e o o o
¢ o o o .
Ul b i w N+ N -
« o o
wN -

H OO NNNNNYINNINYoooy»m

o

MDD DN N

N
=
o
[

2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.17.1
2.17.2
2.17.3
2.17.4
2.17.5
2.18
2.18.1
2.18.2
2.18.3
2.18.4

w

WWWWwwwWww w
o ° . L] o e .

N e el
. L[] . e . L)

NOUT W N

e e o o © o ¢ o o© o

o o o e o o o o s o

NN NDNDDNDND - HHEFFHRFWOWO®
S W HO

e o

WWWWWWWWWWN e
.

e o o e s .
~Novbe WN

WWWWWwwWwwwuwuwwwwwwww

e o o o o o

CONTENTS

STATUS RETURNS . & &« ¢ + o o« o o o o«
CONTROL CHARACTERS AND SPECIAL KEYS
Control Characters« « « « &
Special KeyS . v ¢ o« o o o o o o o
ESCAPE SEQUENCES . ¢ « « o o o o o o
Definition of Escape Sequence Forma
Prerequisites + + + « o .
Characteristics . ¢ o o o o o o« &
Escape Sequence Syntax Violations
DELETE or RUBOUT (177) « « o o
Control Characters (0-037) « « « « &
Full Buffer ¢ ¢ ¢« ¢ o« « « &
Exceptions to Escape Sequence Syntax .
VERTICAL FORMAT CONTROL . . ¢ o o« o o &
AUTOMATIC CARRIAGE RETURN . . .
FEATURES AVAILABLE BY RSX-11M SYSTEM GEN
OPTION o ¢« ¢ ¢ & o« & e« o o o o s
Hard Receive Error Detectlon e o e e
TASK BUFFERING OF RECEIVED CHARACTERS
TYPE-AHEAD BUFFERING .« « . ¢« ¢ o o o o
FULL-DUPLEX OPERATION . . ¢ ¢ « o o o
PRIVATE BUFFER POOL . ¢ ¢ 2 o o o o &
INTERMEDIATE INPUT AND OUTPUT BUFFERING . .
TERMINAL~INDEPENDENT CURSOR CONTROL
TERMINAL INTERFACES
DH11l Asynchronous Serial L1ne Multlplexer
DHV1l Asynchronous Serial Line Multiplexer
DJ11 Asynchronous Serial Line Multiplexer
DL11 Asynchronous Serial Line Interface .
DZ1l1l Asynchronous Serial Line Multiplexer
PROGRAMMING HINTS . ¢ ¢ o o o o o o o &
Checkpointing During Terminal Input .
RT02-C Control Function
Remote DL11-E, DH1ll, and DZ1ll Llnes .
Modem SUupport . ¢« ¢ ¢ ¢ o o o o o o o o

o o s o fe o o o

o s s e o s s e o
e o s o o s s e s
s e s o s o e o o

ER

e o o ® o @

e e o o
e e o o

HALF-DUPLEX TERMINAL DRIVER

INTRODUCTION . &« & o o o o o«
ASR-33/35 Teletypewriters
KSR-33/35 Teletypewriters
LA30 DECwriters
LA36 DECwriter
LA120 DECwriter
LA180S DECprinter . . . o« .
RT02 Alphanumeric Display Termlnal and RTO02
Badge Reader/Alphanumeric Display Terminal
VT05B Alphanumeric Display Terminal . . .
VT50 Alphanumeric Display Terminal .
VT50H Alphanumeric Display Terminal
VT52 Alphanumeric Display Terminal
VT55 Graphics Display Terminal . .
VT61 Alphanumeric Display Terminal
VT100 DECSCOPE « + « « o &

GET LUN INFORMATION MACRO .

QIOS MACRO . ¢ ¢ o« o « o o
Subfunction Bits

Details on Device-Specific

e 8 o © o o
o o o ° o
o © o o o o
e o ¢ o o o o
e 8 o o o o
e o © o o o o
e o e o o o
e ©o o © o o

QIO Function
IO.ATA . . . & .
IO.ATT!TF.ESQ .
I0.CCO .
SF.GMC .
I0.GTS .
I0O.RAL .
IO .RNE .

° . °

e & o o e o o © o e o o

S

e o o o e o
e o e & o o
e o o o o o
e o © o o o

o o © a o
e« o o s o
e o e o o
e o o o o
e e o o o
e o o o o
e o o o o

e 8 ® e o & o o o o

e o o o o o

(@]

e ® o & e o o e o @

e & o o o o

e ® e © o o6 o e o © e ° o o e o © o o o o

e o o o o

e o o o e e

e e o ® o o o o

2-63
2-68
2-68
2-71
2-72
2-72
2-73
2-74
2-74
2-74
2-74
2-74
2-75
2-75
2-76

2-77
2-77
2-78
2-78
2-79
2-79
2-80
2-80
2-81
2-81
2-81
2-81
2-81
2-82
2-82
2-82
2-82
2-83
2-83

, WWwWwwwwww
o LI L |
HHEHOOOAOAR DR BDEWWWW wwNhNoNDND -

WWWWWwWwwwwwwww
|

ww
1
el

CHAPTER

e o ¢ o o o o

e o o
DMNNONNDDNDNODN
e e ©® o & o o
WO
&> W o

o o o o o &

© o o o o o o . s s o o
UL i WN - N

o o o

[V S

.

WWWWWWwWwwWwwWwwwwwwwwwww
. (] . o .

WO Ao WWWWWWW
.

> wN - w» wN -

e e o o
.

HHRHEFRRHHEEEFEFERFWOOWOVOWY OV

000 0COOCOO0OOO00O
e © 8 © o o o * o o

HOYoOoNJoaUudWND -

o o & o o o

WWWWWWWwWwwWwwwwwuwwwwwww

e e o

0

3.10.11
3.10.12
3.10.13

-9

¢ o o o o o o o o o o
BWWwWWwWwwwwwwwwnNn +~
* o o o
« o o ®
o W -

AU B WN

R N A N N N

STATUS RETURNS . .
CONTROL CHARACTERS AN
S

ESCAPE SEQUENCES

INTRODUCTION . o« o« & o ¢ o o«
GET LUN INFORMATION MACRO
QIO$ MACRO ¢ « o « «

STATUS RETURNS

CONTENTS

IO.RPR ¢«
IO.RPR!TF.BIN
IO.RPR!TF.XOF
IO.RST . .
SF.SMC . .
IO.WAL . .

IO.WBT . .

Control Character
Special Keys . .

o o o o Te ¢ s o o o o

e o o o o [Ne o o o o o o
o

¢ o o o o [Te o o o o o o
Q

e o o ¢ o e o e o o o o
b

e © o o o [Me o o o o o o

Definition . . .
Prerequisites .
Characteristics . . « « « &

Escape Sequence Syntax violations

DEL or RUBOUT (177 (octal))

Y

* o o & & & Re o o o o & o
=

Control Characters (0- 37(octal))

Full Buffer . . « « ¢ ¢ &

. .

e ° o o e o

Exceptions to Escape Sequence Syntax

VERTICAL FORMAT CONTROL . . .
FEATURES AVAILABLE BY SYSTEM GENERATION

Automatic Carriage Return .
variable-Length Buffering .

Task Buffering of Received Characters

LA30-P Support . . « « « .« o

TERMINAL INTERFACES
DH1I' Asynchronous Serial Line Multiplexer
DJ11 Asynchronous Serial Line Multiplexer
DL11l Asynchronous Serial Line Interface

DZ11l Asynchronous Serial Line Multiplexer
PROGRAMMING HINTS . . o « o o

Terminal Line Truncation . .
Escape Code Conversion . . .
RT02-C Control Function . .

.
. .
. .
.

.

Checkpointing During Terminal Input

Time Required for IO.KIL . .
Use of IO.WVB . . o o .
Remote DH1ll and Dle L1nes .
High-Order Bit on Output . .

Side Effects of Setting Characteristics
Task

. °
. °
. .

Unsolicited-Input-Character ASTs

Attaching Several Terminals

Direct Cursor Control . . .
DL11 Receiver Interrupt Enable
Loadable Driver Restrictions

VIRTUAL TERMINAL DRIVER

Standard QIO Funct1ons
TOATT . o o o o o o
IO.DET . ¢ ¢ o o o &
IO.KIL . « ¢ o o ¢ o &

o o o o
e o o o ¢ o

e o & o ©° o
s e o e o o

I0.RLB, IO.RVB, IO.WLB, IO.WVB

Device-Specific QIO Function
SF.GMC
I0.GTS . « .« &
IO.RPR
SF.SMC

. e o o . .

e o o o
o o o o
e ° e o

e .

vi

(10

for

e UNe o o o o o o o

=

o o o o o (De o o o o & o

.

s & o ¢ o o o o

e © o o o © o © o & 6 ¢

l‘ﬂo..oo

e e o » o & e o o o o o

e« o o o o o

* ¢ o o

.

o o o s

e o © o o © © o 0 8 ® o s & o o & s o Zo o o o o

e © o o o o o & o o o s o

e & 8o 9 o © 0o o o o o o

e ® & © o © e @ e © s ® 8 o s © w O 8 O o ©°o o o

e o e o © o © o o e & o o

e 8 o o

3-14
3-15
3-15
3-15
3-15
3-16
3-16
3-17
3-17
3-21

3-23

3-23
3-23
3-25
3-25
3-25
3-25
3-26
3-26
3-27
3-27
3-28
3-29
3-29
3-30
3-30
3-30
3-31
3-31
3-31
3-31
3-31
3-31
3-32
3-32
3-32
3-32
3-32
3-33
3-33
3-33

3-34
3-34
3-34
3-35

P O N N e N O N N N N
1
NNNO AU SRR RN

CONTENTS

CHAPTER DISK DRIVERS

INTRODUCTION . . . « « o . o
RF11/RS11 Fixed-Head DlSk .
RS03 Fixed-Head Disk « . « &
RS04 Fixed-Head Disk
RP11/RP02 or RP03 Pack Disks
RM02/RM03/RM05/RM80 Pack Disk
RP04, RP05, RP06 Pack Disks . .
RK11/RK05 or RKOSF Cartridge Disk
RL11/RL0O1 or RL02 Cartridge Disk .
RK611/RK06 or RKO07 Cartridge DlSk
RX11/RX01 Flexible Disk
RX211/RX02 Flexible Disk
ML-11 Disk Emulator . . .
KDAS0, UDA50/RA60/RA80/RA81 Dlsks
RC25 Disk Subsystem . . .
RD51 Fixed 5.25 Disk/RX50 Flex1bl
RD52 Fixed 5.25 Disk « ¢« o« o & &

GET LUN INFORMATION MACRO

QIOS MACRO ¢ v o o o o o o o o o @
Standard QIO$ Functions
Device-Specific QIO$ Functions .
Device-Specific QIO$ Function for the D

STATUS RETURNS . .« &« ¢ ¢ o o o o &

PROGRAMMING HINTS . . .

1 UDA50 QIOSC IO.ATT Before GLUN$
2 RX02 QIOSC IO.SEC Before GLUNS .
.3 Bad Sector Track on Disks .
.4
.5

e o o s o

¢ o o o o o
e ® o o e o s o
e o o © ¢ ° o o
o o o o o o o o
e o o o o o o

e e o ® o o o o
e o o e & o o o

.
.
S

LI}
e o o o o o o

* o o o
HHEHEHFHFRHRMHOOIOAUIDd WD
and WO

e & o 0 Ne o e s o o o

v

=)

1]
e o o o K'e o o o o
e & o o o o o o o o

e o ¢ o o (De o o o o

5.
h

. e e
w N
<

e o o o MJe e o e o o o o o o

Stalling Input and Output (I/O)
Dismounting the RC25 . . &« « « .

V0OV BWWWWNONHRMHERFRFRNRFERFRERRFRRRFBRRFRRS B

e s o o o e s Cle o o s o
=]

CHAPTER DECTAPE DRIVER

INTRODUCTION . . . & « o o o

GET LUN INFORMATION MACRO o e

QIOS$ MACRO . . . « e e
Standard QIOS Functlons o .
Device-Specific QIO$ Function

STATUS RETURNS . « ¢ ¢ o o« o« o
DECtape Recovery Procedures
Select Recovery . . o« « « &

PROGRAMMING HINTS .« ¢ « o o o
DECtape Transfers
Reverse Reading and Writing .
Speed Considerations When Reversi
Aborting a Task .« ¢« « « ¢ « o

P ° o
e o o o o N o o o o
e © o o
® © o © o o e © o ¢
e & o © o © o ° s o
e o o o
e o o o
e o o o

> w N N - N~

g Direc

ion

oo bbb WLWWNDHE
® T e e o o o o 8 o s o o
oﬂ-n e & o o o o
000 e o o e o o

CHAPTER

~

DECTAPE II DRIVER

INTRODUCTION « « ¢ o o o
TU58 Hardware . « « «
TU58 Driver . . « « «

GET LUN INFORMATION MACRO

QIO MACRO . o &« o o o o
Standard QIO Functions . . .
Device-Specific QIO Functions

1 IO.WLC . . .
2 IO.RLC . . .
3 I0O.BLS . . .
4 .

* o o o &
«
N =
* o o o o
* o o o o
e ¢ ¢ o o o
* o o o o o
* o s o o »
« ° o s o o

. o o . .

MO

IO.DGN . .
STATUS RETURNS

NNNNNNNNONNS
e o o o o e o
BWLWWWwWWwwWwNhHRF
e o o o o

e o o o o ® o © o o o o
e © o o o © o o o o o o
e o o ° o ® o o & o s o
e o & o o ® o o o e o o
e e o o o o

e o & s o o

e & o & o o o o o o o »
o e o o o o

. .
. .
. .
. .
. .

e o o o
e o o o
e o o o
e ° o o
e °* o o

vii

NNV LVOOASOTULILILIE R BRWWWWLWWWHEFHF K

oo o v

1
o

e ® ° .
[Y O T N T N |
NN WD

AT

e o & o & o © o o

. L] . L] L] .
NNNNNNNNNY9Y
BB B W NN

CHAPTER

CHAPTER

CHAPTER

COOVVOLVWVLOVLYOWOVLVWWOVWOWY O

8

00 00 00 00 G0 00 00 0O OO 00 O
.

e o o o o o o

N oUW

e o & & ® o o e o o

WWWWWWwWWwNHHFEHEMFEFFEF -

e o o o o o
o o & o o &
¢« o o o

. [] . . * e . . L) o o
AU UT VT LTV BB WWw
L] L] L . o o
NMNNNONNN
. L)
N B WN

* e .

WoONAAU &»WN - w N

00 00 00 00 00 CO 00 0O GO CO 00 0O 00 00 00 0O 0O 00 00 0O Q0 0O 00 OO
° e o L] L

. L[] L] L] L] L] . . . L]
AU BB WWWN
L] . L] L] L]

= N

10

10.1

10.1.1
10.1.2
10.1.3
10.1.4
10.1.5

CONTENTS

MAGNETIC TAPE DRIVERS

INTRODUCTION . ¢ ¢ o o o o o =«
TE10/TUl0/TS03 Magnetic Tape
TE16/TUl6/TU45/TU77 Magnetic
TS11/TU80 Magnetic Tape . .
TSV05 Magnetic Tape . .
TK25 Magnetic Tape . . .
TK50 Magnetic Tape . . .
TU81 Magnetic Tape . . .

GET LUN INFORMATION MACRO

QIOS MACRO . « ¢ o o o .
Standard QIOS Functlons

IO.KIL . ¢ ¢ ¢ o o o o
Device-Specific QIO$ Func
IO.RLV . . .
IO.RWD .
IO.RWU .
IO.ERS .

. e o o

I0.DSE
I0.SEC
I0.SMO . .
STATUS RETURNS .
Select Recovery

e © o o o @
.oo.oonoﬁ'o..ooooc

e o ® o o o ¢ o
e o o o o o o
e o o o o o o

.

.
ion
.

.

.

.

.
.
.
.
.
.
.
.

e o o o o o o o Me o o o o o o * o FKle o

[
o)
(0]

.
.
.
°
)
.
.
.
.
.
.
.
.
.
.
.
°
.
.

@ ® © o o & o o o e ® e ° o * o o 0

e © o © o © o & e © o 0°o o o

e o o © o ® o o o © o &

e« o o o o o

e & & ® o o o * & o o o

e ® o ® o ® o ® o * o 0

PROGRAMMING HINTS . . .

Retry Procedures for Reads and Writes
powerfail Recovery for Magnetic Tapes

Issue Power-Fail QIOs for TMll Before GLUN$
Block Size« . e e o o o o o e o o
Importance of Resettlng Tape Characteristics
Aborting a Task =« « « ¢ o o o o o ¢ o o
Writing an Even-Parity Zero-NRZI
Density Selection . . .« . .
End-of-Volume Status (Unlabeled Tape) .
Resetting Tape Transport Status or VCK . .

Issuing QIOSS . « « ¢ o & &

BLOCK SIZE ON TAPES MOUNTED /NOLABEL

CASSETTE DRIVER

INTRODUCTION . . « « o o &
GET LUN INFORMATION MACRO
QIOS MACRO « « ¢ s o o o o
Standard QIO Functions . . .
Device-Specific QIO Functions
STATUS RETURNS . « « ¢ & « o«
Cassette Recovery Procedures
STRUCTURE OF CASSETTE TAPE . .
PROGRAMMING HINTS « &
Importance of Rewinding . .
End-of-File and IO.SPF . . .

e o s
e o o

The Space Functions I0.SPB and

Verifying of Write Operations
Block Length . « . « « « o« &
Logical End-of-Tape

LINE PRINTER DRIVER

INTRODUCTION . « ¢ « o o o o
KMC-11 Auxiliary Processor
LP1l1l Line Printer
LS11 Line Printer
LV11l Line Printer
LA180 DECprinter .

o o * e
. . . .
. . . .

viii

e ® o o o ®

s o o o

e o o o o o

.

e o o o o o

e © o o o o
-

e o e e ¢ o o

e o o o o o o o

e o 8 s o

e o o o o

* o o o o

e o o ® o o

o & o o o o

o o o ® o o

® o o o o o e o o

o o o o

e o @ o o

o o o o

e o o o

o o o o o

00 00 00 00 00 0O 00 00 OO0 00 00 00 00 00 CO OO0 O O 0O
I

1
= 1
PO OPOP®UNJANUVIVIUINNNNHH P

0 o
|

[Ve Ve WV PV V- IV RV RV RV AN RV JAV o JVe JRN N e]
T T T e O I L R L L L
COONNNNoaobdWNNDHE

10-1
10-2
10-2
10-2
10-2
10-3

CHAPTER

CHAPTER

10.1.6
10.2
10.3
10.4
10.4.1
10.5
10.6
10.6.1
10.6.2
10.6.3

11

11.1
11.2
11.3
11.3.1
11.3.2
11.4
11.4.1
11.4.2
11.4.3
11.5
11.5.1
11.6
11.6.1
11.6.2
11.7
11.7.1
11.7.2

12

12.1
12.1.1
12.1.2
12.1.3
12.1.4
12.1.5
12.1.6
12.1.7
12.2
12.3
12.3.1
12.3.2
12.3.2.

12.3.2.
12.4
12.5
12.5.1
12.5.2
12.5.3
12.5.4
12.5.5
12.5.6
12.5.7
12.6

CONTENTS

LNOl Laser Printer . . .
GET LUN INFORMATION MACRO
QIOS MACRO ©v ¢ &« o o o &
STATUS RETURNS

Ready Recovery . . .
VERTICAL FORMAT CONTROL
PROGRAMMING HINTS e e e

RUBOUT Character . . .

Print Line Truncation

Aborting a Task . . .

e o e o & 6 e o o°
o ¢ o o o o & o o

e ¢ & o o o
e 6 o o e o o o o o

CARD READER DRIVER

INTRODUCTION ¢« ¢ ¢« ¢ o o o o o
GET LUN INFORMATION MACRO . . .
QIOS$ MACRO . .
Standard QIO Functions . . .
Device-Specific QIO Functlons
STATUS RETURNS . ¢« ¢ ¢ o o o o &
Card Input Errors and Recovery
Ready and Card Reader Check Rec
I1/0 Status Conditions
FUNCTIONAL CAPABILITIES
Control Characters .
CARD READER DATA FORMATS
Alphanumeric Format (02
Binary Format
PROGRAMMING HINTS e« o o
Input Card Limitation
Aborting a Task . . .

. ° . . . e o . .

o....-.

o o o o Ne o o o
e o o o Q) e o o o
3
e o o o e o o o
e o 0 o Oe o o o
[\S)

e o 8 o e o o o

MESSAGE-~-ORIENTED COMMUNICATION

INTRODUCTION ¢ &« o« o o o o o o o o«
DAll-B Parallel Interface . . .

=

e o o o 0o o o o

(Doo

DL11-E Asynchronous Line Interface

DMC1ll Synchronous Line Interface
DP1ll Synchronous Line Interface
DQll Synchronous Line Interface
DUll Synchronous Line Interface
DUP1l1l Synchronous Line Interface
GET LUN INFORMATION MACRO . . .
QIOS MACRO « ¢ o &« o o o o o o &
Standard QIOS$ Functions . . .
Device-Specific QIO$ Functions
IO.FDX ¢ ¢ ¢ o o o o o o o &
IO.HDX =
I0.INL and IO. TRM
IO.RNS
IO.SYN
IO.WNS o o o e o .
STATUS RETURNS o« . .
PROGRAMMING HINTS o . o .
Transmission Valldatlon .
Redundancy Checking . .
Half-Duplex and Full- Duplex Co
Low-Traffic Sync Character Con
Vertical Parity Support . . .
Powerfail with DMC1ll1 . . .
Importance of IO.INL . . .
PROGRAMMING EXAMPLE e e o e

n 3
.o.a}—l(ﬂnoo.u

ix

© o & o o s 0 o o s ° o

e e e e D Qe e e e

® o o 0o 6 & o o o Kl e o o & o o

DRIVERS

o o o o QN e o o o o

e o o 0 o o & s o o

® o o o o o o o

o 6 o o o o © o o

o o o o et e © o o o

e o © o o o o e 6 s o o * e o o

o ¢ o o T3 O e o o o o o o e o6 o e ® & 8 o ° o e e o o

e o o o o o o

e e o o o ©° o o o o

e o e o o ©® o 0o e o o© o o e

10-3
10-3
10-4
10-4
10-6
10-6
10-7

10-7

10-7
10-7

11-1
11-1

- 11-2

11-2
11-3
11-3
11-3
11-4
11-7
11-8
11-8
11-9
11-9
11-9
11-9
11-9
11-10

12-1
12-2
12-2
12-3
12-3
12-3
12-3
12-4
12-4
12-5
12-5
12-5
12-7
12-7
12-7
12-7
12-8
12-8
12-8
12-11
12-11
12-11
12-11
12-12
12-12
12-12
12-12
12-13

CONTENTS

CHAPTER 13 RSX QIO DEUNA DRIVER
13.1 INTRODUCTION . . « . o« e o o o o s s s o e o e 13-1
13.1.1 Parameters That You Can Tailor . ¢ &« ¢ & o « o 13=2
13.1.2 Requirements for Tasks Using the RSX QIO DEUNA '
DEIVEE ¢ v o o o o 2 o o o o o o o o o o« o o« o« 13=2
13.1.3 Special Considerations for Ethernet User Tasks 13-2
13.1.4 Messages on Ethernet « . « ¢ ¢« ¢ & « o 13=2
13.1.5 Protocol and Address Pairs on Ethernet 13-3
13.1.6 Opening Ethernet for Transmit and Receive . . 13-3
13.1.7 Padding Messages on Ethernet « ¢« . . 13-3
13.1.8 Hardware Errors on Ethernet « ¢« « o « 13-3
13.2 DEUNA DRIVER QIOSS . « o o ¢ o o o o o o o o o o 13=3
13.2.1 Standards and Access to QIOS$ Macros 13-4
13.2.2 Programming Sequence . « « « + o« s « o« o« « o o 13-4
13.2.3 Driver Installation . . . ¢« ¢« ¢ ¢ ¢ o « o « o 13-5
13.2.4 RSX QIO DEUNA Status Returns . .« . « o « o o o 13-5
13.3 QIOS MACROS &+ &« o o o 2 s o o o o o o o s o o o 13-6
13.3.1 IO.XOP - Open a Line e o e o o o 13-6
13.3.2 I0.XSC - Set Characteristics (Ethernet) e o o 13-7
13.3.2.1 The Set Characteristics Buffer; General

Format . o o o« o o o o o o o o o o o o s o o 13=7
13.3.2.2 Set Characteristics -- Setting Up
Protocol/Address Pairs . . « o« « o « o« « « « 13-8

13.3.2.3 Set Characteristics -- Setting Up a Multicast

Address . . ¢ ¢ o & e o o o o o o e o o 13-9
13.3.3 IO.XIN - Initialize the L1ne e o o o s o o o o 13-10
13.3.3.1 Completion Status Codes for IO.XIN 13-11
13.3.4 IO.XTM - Transmit a Message on the Line . . . 13-11
13.3.4.1 Auxiliary Buffer to Set the Destination

Addl’.‘eSS 3 - ° [. . . e . e . e ‘o L3 13_12
13.3.4.2 Auxiliary Buffer to Set the Protocol Type . 13-12
13.3.4.3 Completion Status Codes.for I0O.XTM 13-13
13.3.5 I0O.XRC - Receive a Message on the Line 13-13
13.3.5.1 Buffer For Reading the Ethernet Address . . 13-14
13.3.5.2 . Buffer for Reading the Protocol Type 13-15
13.3.5.3 Buffer for Reading the Destination Ethernet

Address . . e e o e 13-16
13.3.5.4 Completion Status Codes for IO XRC e o s e 13-16
13.3.6 I0.XCL - Close the Line e o o o o 13-17
13.3.6.1 Completion Status Codes for IO XCL e o o o o 13-18
13.3.7 I0O.XTL - Control Function « « « « o o 13-18
13.3.7.1 Completion Status Codes for IO.XTL 13-18
13.4 DIAGNOSTIC FUNCTIONS FOR IO.XTM/IO.XRC 13-19
13.5 PROGRAMMING HINTS . . ¢« « « o o « o o o o o s » 13-20
13.5.1 Information on the DEUNA Device 13-20
13.5.2 DEUNA Read/Write Mode Function « . « . 13-20
13.5.3 DLX Incompatibility . « « « ¢ ¢ ¢ ¢ o « o o o 13=21
13.5.4 Asynchronous I/0 ¢ ¢ o ¢ o« o o« o o o o o o« o o« 13=21
13.5.5 Diagnostic Functions Without Data Transfer . . 13-21
13.5.6 Maximum and Minimum Buffer Size 13-21
13.5.7 Default MODE . . ¢ o 2 « o o o o o o o o o o » 13=21
13.5.8 Example of Connecting to a Remote Task 13-22
13.6 GLOSSARY . . ° ° ° ° ° . . . ° 13-23

CHAPTER 14 PCL11 PARALLEL COMMUNICATIONS LINK DRIVERS

14.1 INTRODUCTION . & o« &« o o o o o o o o s o o o o o 1l4-1
14.1.1 PCL11-B Hardware . . « « « o o o o o o o o o o 1l4-1
14.1.2 PCL1l Transmitter Driver . . . + « o« ¢« « « « o 1l4-1
14.1.3 PCL1l Receiver Driver . . . ¢ « ¢ ¢ o o o o » 1l4-1

14.2 GET LUN INFORMATION MACRO . ¢ &« ¢ ¢ o o o o o @ 14-2
14.3 QIO MACRO -- PCL11l TRANSMITTER DRIVER FUNCTIONS 14-3
14.3.1 Standard QIO Functions . « ¢ « ¢« « o« o o « o« o 14-3
14.3.2 Device-Specific QIO Functions 14-3

N

o~~~

CONTENTS

14.3.2.1 TOATX « ¢ o o o o o o o o o o s o o o o o o 1l4-5
14.3.2.2 IOSEC &« ¢ & ¢ o o o o o o o o o o o o o o & 1l4-5
14.3.2.3 IOSTC ¢ ¢ o o o o o o o o« o o o o o« o o o o« 1l4-5
14.4 PCL11 TRANSMITTER DRIVER STATUS RETURNS 14-6
14.5 QIO MACRO -- PCL1ll RECEIVER DRIVER FUNCTIONS . . 14-8
14.5.1 Standard QIO Functions . . . ¢ « ¢ ¢« &« o« « o« o« 14-8
14.5.2 Device-Specific QIO Functions . e e o o o o 14-9
14.5.2.1 TOCRX ¢« o o o o o o o o o o o o o o o« o « o« l4-10
14.5.2.2 IORTE & ¢ ¢ o o o o o o o o o o o « o« o o o« l4-10
14.5.2.3 TIOATF &« ¢ ¢ ¢ o o o o o o o o o o o o o o o« 14-10
140502 4 Io.DRX . ° ° 14_11
14.6 PCL11 RECEIVER DRIVER STATUS RETURNS 14-11
CHAPTER 15 ANALOG-TO-DIGITAL CONVERTER DRIVERS
15.1 INTRODUCTION o . e e o o o o o 15-1
15.1.1 AFC1ll Analog-to- Dlgltal Converter e o o o o o 15-1
15.1.2 ADOl-D Analog-to-Digital Converter 15-1
15.2 GET LUN INFORMATION MACRO . . &« &« o o & e o o 15-2
15.3 QIO$ MACRO ° 15-2
15.3.1 Standard QIO Function . . ¢« « « « &« ¢ « & o o 15=2
15.3.2 Device-Specific QIO Function « . « . 15-=2
15.4 FORTRAN INTERFACE . &« o o o o o s o o o o o o o« 15-3
15.4.1 Synchronous and Asynchronous Process Control '
I/0O ¢ « .« c o o o s o o o s o e o o o 15-3
15.4.2 The isb Status Array e o o o o & o o o o o o o 15-4
15.4.3 FORTRAN Subroutine Summary . . « « « o« « o o o 15-4
15.4.4 AIRD/AIRDW: Performing Input of Analog Data in

Random Sequence . « « o o « s o s o o o o o o« 15=5
15.4.5 AISQ/AISQW: Reading Sequential Analog Input

Channels . . « « . e 6. e o o6 o s w o . 15-6
15.4.6 ASADLN: Assigning a LUN to the ADOl-D 15-7
15.4.7 ASAFLN: Assigning a LUN to the AFC1l 15=7
15.5 STATUS RETURNS . . . e o o o o o o s e s s o 15-8
15.5.1 FORTRAN Interface Values e o o o o o o o o o o 15-9
15.6 FUNCTIONAL CAPABILITIES . « « o « s o o o« o« « o 15-10
15.6.1 Control and Data Buffers « ¢« ¢« « « o+ o 15-10
15.7 PROGRAMMING HINTS . & &« & o o o s o o o o o o o 15-10
15.7.1 Use of A/D Gain Ranges . « . « « o « o o « » .« 15-10
15.7.2 Identical Channel Numbers on the AFCl1ll1l 15-10
15.7.3 AFCll Sampling Rate . . . e o o o o o o o o 15-11
15.7.4 Restricting the Number of ADOl D Conversions . 15-11
CHAPTER 16 UNIVERSAL DIGITAL CONTROLLER DRIVER

16.1 INTRODUCTION . . « « o o e ¢ o o o o o o o o o 1l6-1
16.1.1 Creating the UDC11 Drlver e o o e e o o o o o 1l6-1
16.1.2 Accessing UDC1ll Modules . . « « « o o o o o« o 16-2
16.1.2.1 Driver Services .« . ¢ ¢ o« o« o o o o o o o o 16=2
16.1.2.2 Direct ACCESS .+ &+ 4 o o o s o o o o« o o « o+ 16-3
16.2 GET LUN INFORMATION MACRO . « + « o o o « o o o« 16-3
16.3 QIO MACRO . & « o o o o o o s o o o o o o o o o« 16-3
16.3.1 Standard QIO Function . . « « ¢« ¢ ¢« ¢« ¢« o« &« « 16-=3
16.3.2 Device-Specific QIO Functions . . . « « « « . 16-3
16.3.2.1 Contact Interrupt Digital Input (W733

Modules) ° °) . 16“'6
16.3.2.2 Timer (W734 I/0 Counter Modules) . . . « . . 16-=7
16.3.2.3 Latching Digital Output (M685, M803, and

M805 Modules) e o o o s o o o o o o e o o« o« 1l6-8
16.3.2.4 Analog-to-Digital Converter (ADUO1l Module) . 16-8
16.3.2.5 ICS11l Analog-to-Digital Converter (IAD-IA

Module) e o o o o o o o o s e o e o s s o o 1l6-8
16.4 DIRECT ACCESS . . . e« o o o o s o o o« 16-9
16.4.1 Defining the UDC1l1 Conflguratlon e e + + o « . 16-10

xi

CHAPTER

16.5.5

16.5.6
16.5.7
16.5.8
16.5.9
16.5.10
16.5.11
16.5.12
16.5.13

16.5.14
16.5.15
16.5.16

16.5.17
16.5.18
16.5.19

16.5.20
16.5.21
16.6
16.6.1
16.7
16.7.1
16.7.2

17

17.1
17.1.1
17.1.2
17.2
17.3
17.3.1
17.3.2
17.3.2.1
17.3.2.2
17.3.2.3

17.3.2.4

STATUS RETURNS . . ¢ ¢ ¢ ¢ ¢ o o o o

PROGRAMMING HINTS . ¢ ¢ o o o o o o

INTRODUCTION ¢ o ¢ o o o ¢ o o o o o o o o

GET LUN INFORMATION MACRO . . .« .« .
QIO MACRO . . . e e e e o e o o @

CONTENTS

Assembly Procedure for UDCOM.MAC

Symbols Defined by UDCOM.MAC
Including UDCll Symbolic Definitions in
SYSLIB.OLB &« ¢ ¢ ¢ ¢ o« o o s o o o o o o @

Referen01ng the UDC1ll through a Global Common

Block . . . ¢ o e e e o e .8
Creating a Global Common Block . « « « &
Making the Common Block Resident
Linking a Task to the UDCl1ll Common Block

FORTRAN INTERFACE . & ¢ ¢ ¢ o o o o o o o o

Synchronous ‘and Asynchronous Process Control
I/O e . ° L
The isb Status Array . « « « o « o o o o o« &
FORTRAN Subroutine Summary e o o o
AIRD/AIRDW: Performing Input of Analog
Random Sequence . . « o« o & . « o o o .
AISQ/AISQW: Reading Sequentlal Analog Input
Channels . . ¢ ¢ o o o o o o o o o o o o o o
AO/AOW: Performing Analog Output
ASUDLN: Assigning a LUN to the UDC1l1l . . .
CTDI: Connecting to Contact Interrupts .
CTTI: Connecting to Timer Interrupts . . .
DFDI: Disconnecting from Contact Interrupts
DFTI: Disconnecting from Timer Interrupts .
DI/DIW: Reading Several Contact Sense Fields
DOL/DOLW: Latching or Unlatching Several
FieldsS . ¢« ¢ ¢ ¢ ¢ o o o o o o ¢ o o o o o @
DOM/DOMW: Pulsing Several Fields &
RCIPT: Reading a Contact Interrupt Point . .
RDCS: Read Contact Interrupt Change-of-State
Data From Circular Buffer . . « ¢ ¢« o« o « «
RDDI: Reading Contact Interrupt Data from a
Circular Buffer . « « ¢« « o o o o o o o o &
RDTI: Reading Timer Interrupt Data from a
Circular Buffer . . .

RDWD:
From Circular Buffer
RSTI: Reading a Timer Module . . .
SCTI: Initializing a Timer Module

Numbering Conventions
Processing Circular Buffer Entries

e © o & o o o o
e e o o o e o o

FORTRAN Interface Values . . « « « &

LABORATORY PERIPHERAL SYSTEMS DRIVERS

AR11l Laboratory Peripheral System
LPS11l Laboratory Peripheral System

" o o o
e o o o

e o o o
e o © o o o

Standard QIO Functlon e o o o .

Device-Specific QIO Functions (Immedlate)
IO.LED - Display 16-bit Signed Integer .
I0O.REL - Open or Close Relays
1I0.SDI - Read Data from Digital Input
Register . . ¢« ¢« ¢ &« ¢ « + & o . . .
I0.SDO - Write Data into Dlgltal Output
Register

Device-Specific QIO Functions (Synchronous)

10.ADS - Read A/D Channels at Timed Intervals
I0.HIS - Measure Elapsed Time Between Events
IO.MDA - Write Data to D/A Converter at Timed

INtervals .« ¢ o o« ¢ o o o o o o o o o o o

xii

e ° o o o

Data in

Read Full Word of Contact Interrupt Data

16-10
16-10

16-12

16-12
16-12
16-13
16-14
16-14

16-15
16-15
16-16

16-17

16-18
16-19
16-20
16-20
16-21
16-22
16-23
16-23

16-24
16-25
16-25

16-26
16-27
16-28

16-29
16-30
16-30
16-31
16-33
16-34
16-34
16-34

17-1
17-2
17-2
17-2
17-2
17-2
17-3
17-4
17-4

17-4
17-4
17-4
17-6
17-7

17-8

CHAPTER

CHAPTER

17.3.3.4

17.3.3.5

17.3.4
17.3.4.1

17.4

17.4.1
17.4.2
17.4.3
17.4.4
17.4.5
17.4.6
17.4.7
17.4.8

17.4.9

17.4.10
17.4.11
17.4.12
17.4.13
17.4.14
17.4.15

17.4.16
17.4.17
17.4.18
17.4.19
17.4.20

17‘5

17.5.1
17.5.2
17.5.3
17.5.4

17.6

17.6.1
17.6.2
17.6.3
17.6.4

18

18.1
18.2
18.3
18.4

18.4.1
18.4.2

18.5

18.5.1
18.5.2

PROGRAMMING HINTS

INTRODUCTION . . « « o & e o o
GET LUN INFORMATION MACRO
QIO$ MACRO

STATUS RETURNS . ¢ ¢ & ¢ ¢ o o o o o o o o o @
Error Conditions . . « ¢ ¢ ¢ & o o o o o o &
Ready RECOVEIY &« « o o o o o o o o o o o o o

PROGRAMMING HINTS . . « « « o+ o e o o o o
Special Action Resulting from Attach and Det

INTRODUCTION . « ¢ o ¢ o o o o &

CONTENTS

I0.MDI - Read Data from Input Register at
Timed Intervals o o e

I0.MDO - Write Data into Output Reglster at

Timed Intervals . ¢« ¢ « « o o o o o o o =
Device-Specific QIO Function (IO.STP) . . .

I0.STP - Stop In-Progress Synchronous Request
FORTRAN INTERFACE

. . .

The isb Status Array
Synchronous Subroutines . .

FORTRAN Subroutine Summary . .

ADC: Read a Single A/D Channel .
ADJLPS: Adjust Buffer Pointers .
ASLSLN: Assign a LUN to LSO: . .
ASARLN: Assign a LUN to ARO: . e o o o
CVSWG: Convert a Switch Gain A/D Value to
Floating-Point . . . « & ¢« &« « .

DRS: Initiate Synchronous Digital Input
Sampling .« ¢ « « o o o o o o . .

HIST: Initiate Histogram Sampllng (LPSll only)

IDIR: Read Digital Input . « « ¢ o « o o &
IDOR: Write Digital Output . . e o e s e
IRDB: Read Data from an Input Buffer e . e
LED: Display in LED Lights (LPS1l1l only) .
LPSTP: Stop an In-Progress Synchronous
Function . « o ¢ ¢ o ¢ o o o o o o o o o o =
PUTD: Put Data into an Output Buffer . . .
RELAY: Latching an Output Relay (LPS1l1l only)
RTS: Initiating Synchronous A/D Sampling . .
SDAC: Initiating Synchronous D/A Output . .
SDO: Initiating Synchronous Digital Output .

e o o o

STATUS RETURNS . ¢« ¢ ¢ ¢ ¢ o o o o o o o o @

IE.RSU . . . e e o o o
Second 1I/0 Status Word e e o o
IO.ADS and ADC Errors . . « « o
FORTRAN Interface Values . . .

The LPS11/AR1l1l Clock and Sampllng Rates
Importance of the I/0 Status Block . . .
Buffer Management . . . ¢ ¢ o o ¢ ¢ o
Use of ADJLPS for Input and Output

PAPER TAPE READER/PUNCH DRIVERS

Reading Past End-of-Tape . . « « « « o o o «

INDUSTRIAL CONTROL SUBSYSTEMS

Hardware Configuration
ICS/ICR Address Assignments
DSS/DRS Address Assignments
Supported ICS/ICR I/0 Modules

Alternate ICS11l Support

Software Support . . .« . ¢« . . .

o o & o
o o o o
e ¢ o o
o o o o
e o o o
e« o o
e o o o

UDC1ll Software Compatibility .
Module Addressing Conventions

* e o o o
o o e o o
* o o o o
e o o o o
* o o o o
e o o o o

xiii

17-8

17-8
17-9
17-9
17-9
17-9
17-10
17-11
17-12
17-13
17-13
17-14

17-15

17-15
17-17
17-19
17-20
17-20
17-21

17-22
17-22
17-22
17-23
17-25
17-27
17-29
17-31
17-31
17-32
17-33
17-33
17-33
17-34
17-35
17-36

18-1
18-1
18-2
18-3
18-4
18-4
18-5
18-5
18-5

19-1
19-1
19-1
19-2
19-3
19-3
19-4
19-6
19-6

CONTENTS

19.2 LUN INFORMATION ¢ o« ¢ ©¢ o o o o o o o o o o o o
19.3 ASSEMBLY LANGUAGE INTERFACE . . ¢ ¢ « o o o o o
19.3.1 General Error Status Returns « « + .
19.3.1.1 Directive Conditions . . ¢« & ¢« ¢ ¢ « o o « =«
19.3.1.2 I/0 Conditions . . . c e e o o o
19.3.2 A/D Input - Read Multlple A/D Channels e e o o
19.3.3 Analog Output . . ¢ ¢ ¢ ¢ ¢ ¢ 4 4 4 e e o o
19.3.4 Momentary Digital Output - Multi-Point
19.3.5 Bistable Digital Output - Multi-Point
19.3.6 Unsolicited Interrupt Processing
19.3.6.1 Connect to Digital Interrupts . . « « « o &«
19.3.6.2 Disconnect from Digital Interrupts
19.3.6.3 Connect to Counter Module Interrupts
19.3.6.4 Set Counter Initial Value . . . ¢« ¢« & o & &
19.3.6.5 Disconnect from Counter Interrupts
19.3.6.6 Connect to Terminal Interrupts
19.3.6.7 Disconnect from Terminal Input
19.3.7 Activating a Task by Unsolicited Interrupts .
19.3.7.1 Link a Task to Digital Interrupts
19.3.7.2 Link a Task to Counter Interrupts
19.3.7.3 Link a Task to Terminal Interrupts
19.3.7.4 Link a Task to Error Interrupts
19.3.7.5 Read Activating Data . ¢ o« o « o o o o o s =«
19.3.8 Unlink a Task from Interrupts . . . « « o « o«
19.3.8.1 Unlink a Task from All Interrupts
19.3.8.2 Unlink a Task from all Digital Interrupts .
19.3.8.3 Unlink a Task from Counter Interrupts . . .
19.3.8.4 Unlink a Task from Terminal Interrupts . . .
19.3.8.5 Unlink a Task from Error Interrupts
19.3.9 Terminal Output . . ¢ & ¢ ¢ ¢ o o o o o o = o
19.3.10 Maintenance Functions . . . ¢ ¢ ¢ ¢« o ¢ o «
19.3.10.1 Disable Hardware Error Reporting
19.3.10.2 Enable Hardware Error Reporting
19.3.11 Special Functions . . ¢ ¢ o & o ¢ o o o o o
19.3.11.1 I/O RUNAOWN v o o o o o o o o o o o o o o
19.3.11.2 Kill I/0 @ o o o o o o o o o o o o o o o o &
19.4 FORTRAN INTERFACE . ¢ ¢ o o o o o o o o o o o« =
19.4.1 Synchronous and Asynchronous Process Control
I/O L] L] . L] L] . L] . L L] . L] L] . Ll ° L] . . L] L]
19.4.2 Return Status Reporting . « o o « o o « ¢ o o«
19.4.3 Optional Arguments . . . e o e e o e » .
19.4.4 Assigning Default Loglcal and Physical Unlts
for Input and Output - ASICLN/ASUDLN (ICS/ICR)
and ASISLN (DSS/DRS) « &« o o o o o o o o o o =
19.4.5 Analog INPUt « ¢ ¢ o o o o o o o o o o o o o o
19.4.5.1 AIRD/AIRDW: Analog Input - Specified
Channel Sequence« o o e
19.4.5.2 AISQ/AISQW: Analog Input - Sequentlal
Channel Sequence . « « « s« « « o o o o o o @
19.4.6 AO/AOW: Analog Output - Multichannel
19.4.7 DOL/DOLW: Digital Output - Bistable Multiple
FieldS o+ o o o o o o o o o o o o o o o o o o &
19.4.8 Digital Input . . o o o
19.4.8.1 DI/DIW: Digital Input - Dlgltal Sense
Multiple Fields . « o ¢ o & o & .« . . .
19.4.8.2 RCIPT: Dlgltal Input - Digital Interrupt
Single-Point ¢« o « ¢ ¢ o « o o «
19.4.9 DOM/DOMW: Digital Output Momentary - Multlple
Fields . . + « « e e & e o o o o
19.4.10 RTO/RTOW: Remote Terminal Output e s e e o &
19.4.11 Unsolicited Interrupt Data - Continual
Monitoring . . e o s s e
19.4.11.1 CTDI: Connect a Buffer for Rece1v1ng D1g1ta1
Interrupt Data .« ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o
19.4.11.2 Reading Digital Interrupt Data . . . « . . .

xiv

19-8

19-8
19-12
19-12
19-13
19-13
19-15
19-16
19-17
19-17
19-19
19-20
19-21
19-22
19-22
19-23
19-24
19-24
19-25
19-26
19-27
19-27
19-28
19-29
19-30
19-30
19-30
19-31
19-31
19-32
19-32
19-32
19-33
19-33
19-33
19-33
19-34

19-35

19-35
19-37

19-38
19-39
19-39

19-42
19-44

19-45
19-47

19-47
19-48

19-49
19-50

19-51

19-51
19-52

CHAPTER

CHAPTER

CHAPTER

19.4.11.3
19.4.11.4
19.4.11.5

19.4.11.6
19.4.11.7

19.4.11.8
19.4.11.9

19.4.11.10
19.4.11.11

DFDI:
Interr
CTTI:
Counte
RDTI:
Buffer
Miscel
DFTI:
Interr
CTTY:
Interr
RDTY:
Buffer
DFTY:
Termin

CONTENTS

Disconnect a Buffer from Digital

upts o e o o s e s o
Connect a Buffer for Rece1v1ng
r Data . « <« & e o e s e e e o o o o

Read Counter Data from the Circular
laneous Counter Routines . . . « . « o«
Disconnect a Buffer from Counter
upts
Connect a Circular Buffer to Terminal
UPES v ¢ o o o o o o o o o o o o o o o
Read a Character from the Terminal
Disconnect a C1rcu1ar Buffer from
al Input ¢« ¢« & ¢ ¢« ¢« ¢« ¢ o o o o o o

Programming Example . . ¢ ¢ ¢ o« o« o o o o &

19.4.12 Unsolicited Interrupt Processing - Task
Activation . . . ¢ ¢ ¢« ¢ ¢ ¢ 4 e e e o o o s @
19.4.12.1 LNK: Link a Task to Interrupts . . . « « &
19.4.12.2 RDACT: Read Activation Data o«
19.4.12.3 UNLNK: Remove Interrupt Linkage to a Task .
19.4.13 Maintenance Functions . . . ¢« ¢« ¢ ¢ ¢ o ¢ o .
19.4.13.1 OFLIN: Place Selected Unit in Offline
StatuUsS ¢ & ¢ ¢ ¢ ¢ o o ¢ o o o o o o o e e @
19.4.13.2 ONLIN: Return a Device to On-line Status .
19.5 ERROR DETECTION AND RECOVERY « ¢« & o ¢ ¢ o o o &
19.5.1 Serial Line EXYXOrS . o« o o « o o o o o o o o o
19.5.2 Power-Fail at a Remote Site . . . & ¢ o« « o .
19.5.3 Power Recovery at the Processor « .
19.5.4 Unit in Off-line Status . . . e o o e o e
19.5.5 Error Data - ICSR and ICAR Reglsters « o o o o
19.6 DIRECT ACCESS o o o e o o o o o @
19.6.1 Llnklng a Task to the ICS/ICR Common Block . .
19.6.2 Accessing the I/O Page . « « « o o o o o o o &
19.6.2.1 Mapping Table Format . . « « &« « o « o o o &
19.6.2.2 I/0 Page Global Definitions . . . « « « «
19.6.2.3 Sample Subroutine . . . e s o o e e s e
19.7 CONVERSION OF EXISTING SOFTWARE e o o e o o o o
19.7.1 Features . . o o o o o o o o o o o o o o o o =
19.7.2 Module Support .« « ¢« « o o & e e o o o o o
19.7.2.1 IAD-IA A/D Converter and IMX IA Multiplexer
19.7.2.2 16-Bit Binary Counter . . . ¢ o 4 o o o o &
19.7.2.3 Bistable Digital Output . . . « « ¢« « ¢ o &
19.7.2.4 Momentary Digital Output . . e e 6 e e e
19.7.2.5 Noninterrupting Digital Input e e o e o o
19.7.2.6 Analog Output e e e o o o o o
19.7.2.7 Interrupting Dlgltal Input e o o o o o o o o
20 NULL DEVICE DRIVER
21 GRAPHICS DISPLAY DRIVER
21.1 INTRODUCTION e o o o o o o o o o o
21.1.1 VT11l Graphlcs Dlsplay Subsystem e s o e o o
21.1.2 VS60 Graphics Display Subsystem . . «
21.2 GET LUN INFORMATION MACRO . & ¢ o o o o o o o &
21.3 QIO$ MACRO 3 . o
21.4 STATUS RETURNS . . ¢ ¢ ¢ o o o o o o o o o o o &
21.5 PROGRAMMING HINTS . «¢ ¢ o o o o o o o o o o o
22 LABORATORY PERIPHERAL ACCELERATOR DRIVER
22.1 INTRODUCTION &« « o o o o o o o o o o o o o o o s

XV

19-56
19-56

19-58
19-58

19-59
19-60
19-61

19-62
19-62

19-64
19-64
19-66
19-68
19-69

19-70
19-70
19-70
19-71
19-71
19-72
19-72
19-73
19-74
19-76
19-76
19-77
19-77
19-78
19-80
19-80
19-80
19-80
19-81
19-81
19-81
19-82
19-82
19-82

21-1
21-1
21-1
21-1
21-2
21-3
21-3

22-1

CHAPTER

CONTENTS

22.1.1 LPAl1l1-K Dedicated Mode of Operation
22.1.2 LPAll-K Multirequest Mode of Operation . . .
22.2 GET LUN INFORMATION MACRO . . ¢ « ¢ « &« o o .
22.3 THE PROGRAM INTERFACE . ¢ ¢ « o o o o o « o &
22.3.1 FORTRAN Interface e o o o o &
22.3.1.1 ADSWP: Initiate Synchronous A/D Sweep . .
22.3.1.2 CLOCKA: Set Clock A Rate « « ¢ ¢ o o o « &
22.3.1.3 CLOCKB: Control Clock B . . ¢« ¢ &« « &« o &
22.3.1.4 CVADF: Convert A/D Input to Floating
Point & v ¢ ¢ 4 4 o 4t e 6 e o o o o o o
22.3.1.5 DASWP: Initiate Synchronous D/A Sweep . .
22.3.1.6 DISWP: Initiate Synchronous Digital Input
SWEED ¢ ¢ ¢ ¢ o o o o o o o 4 o s o o & @
22.3.1.7 DOSWP: Initiate Synchronous Digital Output
SWEEPD ¢ o « o « o o o o s e s o o6 o o o o
22.3.1.8 FLT16: Convert Unsigned 1Integer to a Re
Constant . . . « . . s e s e o o e o
22.3.1.9 IBFSTS: Get Buffer Status e e e e e e e e
22.3.1.10 IGTBUF: Return Buffer Number
22.3.1.11 INXTBF: Set Next Buffer . . . ¢« « o ¢« « &
22.3.1.12 IWTBUF: Wait for Buffer
22.3.1.13 LAMSKS: Set Masks Buffer o . &
22.3.1.14 RLSBUF: Release Data Buffer
22.3.1.15 RMVBUF: Remove Buffer from Device Queue .
22.3.1.16 SETADC: Set Channel Information
22.3.1.17 SETIBF: Set Array for Buffered Sweep . . .
22.3.1.18 STPSWP: Stop Sweep « « ¢ « o « o o« o
22.3.1.19 XRATE: Compute Clock Rate and Preset .« o .
22.3.2 MACRO-11 Interface . . e e o o
22.3.2.1 Accessing Callable LPAll K Support Routine
22.3.2.2 Standard Subroutine Linkage and CALL
Code v v v 4 o o o 0 e o o 4 o e o o o
22.3.2.3 Special-Purpose Macros .« « « o « o« o o o o
22.3.2.4 Device-Specific QIO Functions
22.3.2.5 JO.CLK o ¢ o o o o o s o o o o s o o o o @
22.3.2.6 IOJINI o ¢ o o o o o s s o s o o o o o o«
22.3.2.7 JO.LOD &« ¢ o ¢ o o o o o o o o o s o o o =
22.3.2.8 TOLSTA & ¢ ¢ ¢ o o o o s o o o o o o o o
22.3.2.9 I0.STP e s e s s e o o s o o o o @
22.3.3 The I1/0 Status Block (I0SB) e e o o o o o @
22.4 BUFFER MANAGEMENT . . . e e o s o s e e o o
22.5 LOADING THE LPA-11 MICROCODE e o o o s s o o
22.6 UNLOADING THE DRIVER . ¢ o ©«¢ o o o o o s o o o
22.7 TIME-OUT OF THE LPAl1l1-K . . & ¢ « ¢ o o o o =«
22.8 22-BIT ADDRESSING SUPPORT . &+ &+ « o o o o o o«
22.9 SAMPLE PROGRAMS . . o ¢ o o o o s o s o o o =
23 K-SERIES PERIPHERAL SUPPORT ROUTINES
23.1 INTRODUCTION o o ¢ o o o o o o o s 2 o o o o o
23.1.1 K-Series Laboratory Peripherals
23.1.1.1 AAl1l-K D/A CONVErter . « « o o o o o o o
23.1.1.2 AD11-K A/D Converter e o o o o
23.1.1.3 AM11-K Multiple Gain Multlplexer e e e o e
23.1.1.4 DR11-K Digital I/O Interface . . . « + + .
23.1.1.5 KW1ll-K Dual Programmable Real-Time Clock .
23.1.2 Support Routine Features . . . « « o« « « o« &
23.1.3 Generation and Use of K-Series Routines . .
23.1.3.1 Generation of K-series Support Routines .
23.1.3.2 Program Use of K-series Routines
23.2 THE PROGRAM INTERFACE . . ¢ ¢ ¢ o o o o o o
23.2.1 FORTRAN Interface « e e e
23.2.1.1 ADINP: Initiate Single Analog Input . o e
23.2.1.2 ADSWP: Initiate Synchronous A/D Sweep . .
23.2.1.3 e

CLOCKA: Set Clock A Rate . ¢ « ¢ o o &

xvi

al

o
e o e o o o s e s s e e o e s U

e o o o @ o o o a o

e o o e o

22-1
22-1
22-2
22-2
22-2
22-3
22-7
22-7

22-9
22-9

22-12
22-14

22-17
22-17
22-17
22-18
22-19
22-20
22-21
22-22
22-22
22-23
22-24
22-25
22-26
22-26

22-27
22-27
22-28
22-29
22-29
22-29
22-30
22-30
22-30
22-32
22-34
22-35
22-35
22-36
22-37

23-1
23-1
23-2
23-2
23-2
23-2
23-3
23-3
23-4
23-5
23-5
23-6
23-7
23-8
23-8
23-11

CONTENTS

23.2.1.4 CLOCKB: Control Clock B . & & o o o« o o«
23.2.1.5 CVADF: Convert A/D Input to Floating Point
23.2.1.6 DASWP: Initiate Synchronous D/A Sweep . .
23.2.1.7 DIGO: Digital Start Event . . . « « o « &
23.2.1.8 DINP: Digital Input . .
23.2.1.9 DISWP: Initiate Synchronous Dlgltal Input
SWEEP & ¢ ¢ ¢ o o o o o o8 o e 0 e o e
23.2.1.10 DOSWP: Initiate Synchronous Digital
Output Sweep . . ¢ ¢ ¢ ¢ o ¢ o o o o o o
23.2.1.11 DOUT: Digital Output . ¢« « ¢ ¢ o &« ¢ o o &
23.2.1.12 FLT16: Convert Unsigned Integer to a
Constant . ¢ o ¢ ¢ o o o ¢ o o o o o o o o
23.2.1.13 GTHIST: Gather Interevent Time Data . . .
23.2.1.14 IBFSTS: Get Buffer Status
23.2.1.15 ICLOKB: Read 16-bit Clock . . ¢« o ¢ « « &
23.2.1.16 IGTBUF: Return Buffer Number
23.2.1.17 INXTBF: Set Next Buffer « . « . &
23.2.1.18 IWTBUF: Wait for Buffer ¢« ¢ o «
23.2.1.19 RCLOKB: Read 1l6-bit Clock . . ¢« o« ¢ « o &
23.2.1.20 RLSBUF: Release Data Buffer
23.2.1.21 RMVBUF: Remove Buffer from Device Que
23.2.1.22 SCOPE: Control SCOPe . o o « o o o o o o »
23.2.1.23 SETADC: Set Channel Information
23.2.1.24 SETIBF: Set Array for Buffered Sweep . . .
23.2.1.25 STPSWP: StOp SWEEeP &« o o o o o o o o o o =
23.2.1.26 XRATE: Compute Clock Rate and Preset . . .
23.2.2 MACRO-11 Interface e e e s e e e
23.2.2.1 Standard Subroutine Linkage and CALL O
. Code . L] ° L] L L] L] L] * . L] . L] L ° L] . L] L]
23.2.2.2 Special-Purpose MacCros . . « o « o o o o «
23.2.3 The I/0 Status Block (IOSB) .« ¢ ¢ o o o o
23.3 BUFFER MANAGEMENT . ¢ ¢ ¢ o o o o o o o o o o
23.4 SAMPLE FORTRAN PROGRAMS . . . s e 6 e o o @
23.4.1 Sample Program Using Event Flag « s e s e e
23.4.2 Sample Program Using Completion Routine . .
CHAPTER 24 UNIBUS SWITCH DRIVER
24,1 INTRODUCTION . <« « « o o o o o o o s o « o o
24.1.1 DT07 UNIBUS Switches . . « ¢ ¢ ¢ ¢ « ¢ o o &
24.1.2 UNIBUS Switch Driver . . . ¢« « v ¢ o « o & &
24,2 GET LUN INFORMATION MACRO . « ¢ o o o o o o o
24.3 QIOS MACRO . « &« o &« e« o s o o o o e o e o
24.3.1 Standard QIO Functlons e s e s s e & o s
24-3.1.1 Io ATT o L] L] o L] L] L] . . ° . L] . L] L L] L] Ll
24.3.1.2 IODET & o ¢ o o o o o o o o o o o o o o «
24.3.1.3 IO.KIL e o o o o o o o o o
24.3.2 Device-Specific QIO Functions e s e s o » e
24.3.2.1 IO CON L Ll L] . L] . L] * L] . Ll L]
24.3.2.2 IODIS v ¢ ¢ o o o o o o o o o s o o o o o
24.3.2.3 IODPT v «¢ ¢ & o o o o o a o o o o o o o o«
24.3.2.4 IOWSWI v o 4 ¢ o o o o o o o o o o s o o o
24.3.2.5 I0.CSR e o o e s s s s s 8 s o e s o o =
24.4 POWER-FAIL RECOVERY e o o o o o o o e e o o
24.4.1 System Power-Fail Recovery . . . « « « o o &
24.4.2 UNIBUS Power-Fail RECOVEXY . « o« o o o o o «
24.5 STATUS RETURNS . ¢ © o o o o o « o o o o s o =
24.6 FORTRAN USAGE . « & « o o o s o s o s o o o
APPENDIX A SUMMARY OF I/0 FUNCTIONS
A.l ANALOG-TO-DIGITAL CONVERTER DRIVERS
A.2 CARD READER DRIVER . &« « o« & o o o o o o o o «
A.3 CASSETTE DRIVER . . o &« « o o o o o o o o o »

xvii

e o o o o

Y
o
o
-

e o o o o o (De o o o o o o o o

o e o & o © o o o o e ¢ o o o o

e e o e o © o o o o

23-12
23-13
23-14
23-16
23-16

23-17

23-19
23-20

23-21
23-21
23-23
23-23
23-24
23-24
23-25
23-25
23-26
23-26
23-27
23-28
23-28
23-29
23-30
23-31

23-31
23-31
23-32
23-32
23-33
23-34
23-35

24-1
24-1

D'{:’B’
o

o o

[
HEHEWOVOI U

APPENDIX B

L] . L] L] .
WwwhhNhDNDHE- -
.

WWWWwowww W

TERMINAL DRIVER . ¢ ¢ ¢ ¢ o« ¢ ¢ o &
UNIBUS SWITCH DRIVER
UNIVERSAL DIGITAL CONTROLLER DRIVER e e o s e e
VIRTUAL TERMINAL DRIVER . ¢ ¢ & o o o o o o o o
I/0 STATUS CODES

DIRECTIVE CODES

I/0 FUNCTION CODES

CONTENTS

COMMUNICATION DRIVERS (MESSAGE-ORIENTED)
DECTAPE DRIVER
DECTAPE II DRIVER . o ¢ o o o o o o o o o o .
DEUNA DRIVER &

DISK DRIVER . . . e e s e e e s o e =
GRAPHICS DISPLAY DRIVER . e e e o o
INDUSTRIAL CONTROL SUBSYSTEMS . .
LABORATORY PERIPHERAL ACCELERATOR DRIVER
LABORATORY PERIPHERAL SYSTEMS DRIVERS. .
LINE PRINTER DRIVER . ¢ « ¢« ¢ o o =«
MAGNETIC TAPE DRIVER . ¢ o« « « o o &
PAPER TAPE READER/PUNCH DRIVERS . .
PARALLEL COMMUNICATION LINK DRIVERS

.
.
o o
.

. e o

e ° o © o o o o
e © e © o o o o
e © o © e & o @
e © o © o ° o o

Transmitter Driver Functions . . .
Receiver Driver Functions

o o o o o o o
e o o o
s e o o
e o o o
e ¢ o o
e © o o

.
.
.
.
.
®

I/0 FUNCTION AND STATUS CODES

.
.
.
o o
.
°

I/0 Error Status Codes . .
I/0 Status Success Codes .

Directive Error Codes .
Directive Success Codes .

e o o o »
® o O o o o o
e o o o o
* o * o o o o
o o o o o o
e o o o o
e o o o o
o o o o o o
s o o o o o
e o o e o

Standard I/0 Function Codeso e
Specific A/D Converter I/O Function Codes -
RSX-11IM=PLUS ONlYy « &« ¢ « & o o o o o « o o o
Specific Card Reader I/0 Functlon Codes -
RSX-11M-PLUS Only . . . e e e e e e
Specific Cassette 1/0 Functlon Codes -
RSX-11M=PLUS ONlY « « o« o o « o o o & . .
Specific Communication (Message—Orlented) I/o
Function Codes - RSX-11lM-PLUS Only . . « . .« .
Specific DECtape 1/0 Function Codes -
RSX-11M-PLUS Only e e s e e o s
Specific DECtape II I/O Functlon Codes « . . o«
Specific Disk I/0 Function Codes . . « « o« « o«
Specific Graphics Display I/0 Functlon Codes -
RSX-11M-PLUS Only . « o o o o o o o o o o o o
Specific I1ICS/ICR, DSS/DR I/0O Function Codes -
RSX-11M-PLUS Only . . . e o o o o o
Specific LPAll-K I/0 Functlon Codes -
RSX-11M-PLUS ONlY &« « « o o o o s s o « o« «
Specific LPS I/0 Function Codes - RSX-11lM- PLUS
Only . . e e e s o s e o o e e o o o o e s =
Specific Magnetic Tape I/0 Function Codes . .
Specific Parallel Communications Link I/O
Function Codes - RSX-11M-PLUS Only . .
Transmitter Driver Functions
Receiver Driver Functions
Specific Terminal I/0 Function Codes .
Specific UDC I/0 Function Codes - RSX- llM-PLUS
Only e e s e e e
Specific UNIBUS Sw1tch I/O Functlon Codes -
RSX-11M-PLUS ONly =+ « & « o « o o o o o o o =
Specific Virtual Terminal I/O Function Codes .

xviii

e & o o o e 0o o o o

W woww W W W w ?WWWNWWW

»ww»ww»w?w»wwwwwww
CVOVNNNNANAUTUTIEWW WNNN

[
I
=

|
[+ ~ ~ ~ NN =

1
¥e] O 0 o

w
i
]

o

B-11

B-11
B-12

B-12
B-12
B-13
B-13

B-15

B-15
B-15

CONTENTS

APPENDIX C QIOS INTERFACE TO THE ACPS
C.1l QIOS PARAMETER LIST FORMAT . «. ¢ « « o o« o« o « o« o C=2
c.l.1 File Identification Block . . « « « o « s « « o C-2
C.1l.2 The Attribute List . . . ¢ ¢ ¢ ¢ o ¢ o o o« o« « o C=2
c.l.2.1 The Attribute Type . . « o ¢ ¢« ¢« ¢« ¢ o« ¢ « « « C=3
C.1l.2.2 Attribute Size e o o s o s o s o & o C-4
C.1l.2.3 Attribute Buffer Address e & o o o o s o o« o « C=5
C.1l.3 Size and Extend Control . . . ¢« « ¢« o« « « « &« « C=5
C.1l.4 Window Size and Access Control « « « « « C-6
C.1l.5 File Name Block Pointer . . . ¢ « o « o o« &« « « C=6
C.2 PLACEMENT CONTROL . ¢ 2 « =« 2 o o o o o s o o o o C=7
C.3 BLOCK LOCKING . « « + & e o o s o s e« o o« o o C-8
C.4 SUMMARY OF Fl1lACP FUNCTIONS e e s e & o e« s e« s o C-8
C.5 SUMMARY OF MTAACP FUNCTIONS . « « « « « « « « « C=10
C.6 HOW TO USE THE ACP QIOS$ FUNCTIONS . . « « & '« o C-12
C.6.1 Creating @ File . ¢ o o o o o o o o o o« s o« o« C=12
C.6.2 Opening a File . o « ¢ o o o « o o o o «:a s o« C$6=13
C.6.3 Closing a File o« ¢ o o « o o o o o« o« o o o « « C$6=13
C.6.4 Extending a File . . & o ¢ o « o o o« s « o« « « C$6-13
C.6.5 Deleting a File . « ¢ o o o o o « o o« « a « « C$6-13
C.7 ERRORS RETURNED BY THE FILE PROCESSORS C-14

INDEX

FIGURES
1-1 Logical Unit Table . o « « o o « o o o« o « o o« o o 1=3
1-2 QIOS$ Directive Parameter Block . «. « ¢ « « o« o o 1-12
2-1 Structure of the Item List 1 Buffer 2-30
2-2 Structure of the Item List 2 Buffer 2-32
2-3 Buffer Required for TC.MHU . . . « ¢« « ¢« « « « « 2-60
2-4 Buffer Required for TC.SSC . . ¢ « « « o o« o &« o 2=-61
2-5 Buffer Required for TC.O0B . « ¢« « ¢« « « o « o« « 2-62
9-1 Structure of Cassette Tape . . . e e o o o o o 9-6
13-1 General Form of Characterlstlcs Buffer e e o o & 13-7
13-2 Buffer for Setting Up Protocol/Address Pairs . . 13-8
13-3 Buffer for Setting Up A Multicast Address . . . 13-9
13-4 Buffer for Setting the Ethernet Address 13-12
13-5 Buffer for Setting The Protocol Type 13-12
13-6 Buffer for Reading The Ethernet Address . . . 13-14
13-7 Buffer for Reading The Protocol Type 13-15
13-8 Buffer for Reading The Destination Ethernet

AAALEeSS o + o o o o o o o o o o o o o o o« o o o 13-16

13-9 Diagnostic Request Block . . « +« « « « « o« o o o 13-19
19-1 Mapping Table FOrmat . « o « « o « o o o o« o o « 19-77
19-2 Mapping Table Entry Format . « « « « o o « « o o 19-78
20-1 Indirect TKB Command File TESTBLD.CMD. 20-1
C-1 File Identification Block . ¢ . o « « o « &« +» « o C=2

TABLES
1-1 Get LUN Information . ¢« ¢ o« ¢ ¢ o o o o o o & 1-21
1-2 Directive Conditions . . ¢« ¢« & « ¢ « o o o « o« o 1-37
1-3 I/0 status Conditions . . . e o o o o o 1-40
1-4 Devices Supported by RSX- llM/M PLUS e s o o o o 1-43
2-1 Supported Terminal Devices . ¢« « ¢ « o o o« o o o o 2=2
2-2 Standard Terminal Interfaces . . c e o s s e o o 2=3
2-3 Word 2 of the Get LUN Macro Buffer e
2-4 Standard and Device-Specific QIO Functions for

TerminalsS o+ ¢ o o o o o o o o o o o o o o o o o« « 2=9

2-5 Summary of Subfunction Bits 2-19
2-6 Information Returned by Get Terminal Support

(I0O.GTS) QIOS ¢« ¢ « o ¢ o o o o o o o o o o o« « 2=34

Xix

N O

Wwwho NN N
| !

I
vl > WNHERFFVO

CWww

B wWWwww
1
-0
o

UL I |
U WNHWNDHFEFWNDHEWOV

CONTENTS

Terminal Characteristics for SF.GMC and SF.SMC
Functions . . o o o . e o o o
Bit TC.TTP (Term1na1 Type) Values Set by SF.SMC
and Returned by SF.GMC . . ¢ « ¢ ¢ o « o o o o &
Terminal Status Returns
Terminal Control Characters . . .
Special Terminal Keys . « « « o .
Vertical Format Control Characters
Supported Terminal Devices
Standard Terminal Interfaces
Standard and Device-Specific QIO Functi
Terminals .« ¢« o ¢ ¢ o o o o o o o o
Subfunction Bits o o e
Terminal Characteristics for SF GMC and SF SMC
Requests o ¢ ¢ ¢ 4o ¢ o o o o o o o o o o o o o @
Bit TC.TTP (Terminal Type): Values Set by SF.SMC
and Returned by SF.GMC . . « ¢ ¢ &« o « o o o o« &
Information Returned by Get Terminal Support
(IO.GTS) QIO v o © o o o o o o o o o o o o @
Terminal Status Returns . . « « « o « o o«
Terminal Control Characters . . . « « o« o«
Special Terminal KeYS « « « o o o o o o &
Vertical Format Control Characters . e o o
Standard and Device-Specific QIO Funct1ons for
Virtual TerminalsS .« ¢ o ¢ ¢ « o o o o o o o o o
Virtual Terminal Characteristics . ¢« ¢« o o o o o &
Virtual Terminal Status Returns for Offspring Task
Requests . o ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o oo o o o o o
Virtual Terminal Status Returns for Parent Task
Requests . . . e +. s -6 o s e s o s o & se s o @
Standard Disk Dev1ces e o o o o o o o e e o e o
Standard QIOS Functions for Disks . ¢« « ¢ « o o
Device-Specific Functions for the RX01,RX02, RLO1,
and RLO2 Disk Drivers . « o « o o o o o o o o o o«
Device-Specific QIOS$ Function for the DU: Device
DEIVEL ¢ ¢ o« o o o o o o o o o o o o o =
Disk Status Returns . . « « « o« o o &
Standard QIOS$ Functions for DECtape .
Device-Specific Functions for DECtape
DECtape Status Returns « « « &
Standard QIO Functions for the TU58
Device-Specific QIO Functions for the TU58 .
TU58 Driver Status RetUrnsS . . « o o « o « « o« o @
Standard Magnetic Tape Devices . « « « ¢ o o o o &
Standard QIO$ Functions for Magnetic Tape . . .
Device-Specific QIOS$ Functions for Magnetic Tape .
Magnetic Tape Status Returns
Information Contained in the Second I/O Status

wo rd L] . . L] L] L] L] . . L] L] L] . . L] Ll
Standard QIO Functions for Cassette
Device-Specific QIO Functions for Cassette .
Cassette Status Returns . . . « ¢ ¢ ¢ o o &
Standard Line Printer Devices .« « « ¢ o o o &
Standard QIO Functions for Line Printers
Line Printer Status Returns . . . ¢ o o o o o o«
Vertical Format Control Characters . . . e o o
Standard QIO Functions for the Card Reader
Device-Specific QIO Function for the Card Reader
Card Reader Switches and Indicators . . . « « &
Card Reader Status Returns . . . « o o o o o o o
Card Reader Control Characters . . o o

ns

o N e o o o e o

e Fhe o o o o o
o]

o.Oo-o-no

e o o o
e o .o o

o o . .

e o o o
e o o o o
e o o o
e e o o
e o o o
e o o o

o« o o o
e o o o
e o o

2-52

2-56
2-63
2-68
2-71
2-75

3-1

3-2

3-6
3-10

3-12
3-12

3-13
3-18
3-21
3-24
3-27

> >
| I
o0 NN

U'I(iﬂib
NN O

(%)
| A
o]

[soRNe e < BES BEN IEN e) We) N WU, U,]
1
NAOAWUTWWeWNWYYO

2]
1

=

o

@©
|

=

w

\O\F\D
o wN

10-1
10-4
10-5
10-6
11-2
11-3
11-5
11-7
11-9

Translation from DEC026 or DECO029 to ASCII . o« o 11-10

Message-Oriented Communication Interfaces . . .
Standard QIO$ Functions for Communication
Interfaces . ¢« ¢ ¢ ¢« ¢ ¢ o o o o o o o o o o o

XX

12-2

12-5

7/

N

17-4
17-5

17-6
17-7

17-8
17-9
17-10

18-1

18-2
19-1
19-2
19-3
19-4
19-5
19-6
19-7
19-8
19-9
21-1

21-2
22-1
22-2
22-3
23-1

CONTENTS

Device-Specific QIO$ Functions for Communication
Interfaces . v o« ¢ o o o o o o o o o o o o o o
Communication Status Returns . . . ¢« « o« ¢ « o &
RSX QIO DEUNA Dr1ver Function Codes and Their
Meaning e o o s o s 5.8 8 sie e o
RSX QIO DEUNA Drlver Status Returns
Diagnostic Functions for I10.XTM/IO.XRC
Standard QIO Functions for PCL1ll Transmitters
Device-Specific QIO Functions for PCL1l

Transmitters .« o« o o o ¢ o o o o o o o o o o o =
PCL1l Transmitter Driver Status Returns
Standard QIO Functions for PCL1ll Receivers . . .

13-4
13-5
13-20
14-3

14-3
14-7
14-9

Device-Specific QIO Functions for PCL1ll Receivers 14-9

PCL1l Receiver Driver Status Returns
Standard Analog-to-Digital Converters
Standard QIO Function for the A/D Converters . .
Device-Specific QIO Function for the A/D
CONVErterS o o o o o o s o o o o o o o o o o o o
A/D Conversion Control Word . . « ¢ o ¢ « o o &
Contents of First Word of isb . . .

FORTRAN Interface Subroutines for the AFCll and
ADOl—D . 03 . ° 3
A/D Converter Status Returns
FORTRAN Interface Values . . . e o o o
Standard QIO Function for the UDCll . .
Device-Specifi¢ QIO Functions for the UDC1ll
A/D Conversion Control Word . . « « o« o o
Contents of First Word of isb . . .
FORTRAN Interface Subroutines for the UDCll
UDC1ll Status REtUXrNS .« « o o o ¢ o o o o o &
FORTRAN Interface Values . « . ¢ o ¢ o « o &
Laboratory Peripheral Systems . .

Standard QIO Function for Laboratory Per1phera1
Systems .« ¢ ¢ ¢ o o o o o e o o 4 e e e o o o .
Device-Specific QIO Functions for the Laboratory
Peripheral Systems (Immediate) e o o o
Device-Specific QIO Functions for the Laboratory
Peripheral Systems (Synchronous) . . « « « « + &
Device-Specific QIO Function for the Laboratory
Peripheral Systems (IO.STP) =« « ¢ « o o o o« o &
Contents of First Word of isb . . . e o e

e © o o o © o o o
e o © o o o o o o o o

. FORTRAN Interface Subroutines for Laboratory

Peripheral Systems . . ¢« ¢« « ¢ ¢ ¢ ¢ o o o &
Laboratory Peripheral Systems Status Returns
Returns to Second Word of I/0 Status Block .
FORTRAN Interface Values . « « « « o « o o »
Standard QIO Functions for the Paper Tape
Reader/Punch . ¢« o« ¢ o o o o « o o o o o o
Paper Tape Reader/Punch Status Returns . . .
ICS/ICR Address Assignments . . o« ¢« « o o« &«
Sample ICS/ICR Configuration
Sample DSS/DRS Configuration
Summary of Industrial Control QIO Functions
A/D Conversion Control Word
FORTRAN Interface
Return Status Summary . . .
ICSR Contents . . « « « . .

. . .

ICAR Contents . ¢« ¢« ¢« ¢« ¢ & o« &
Standard and Device-Specific QIO
Graphics Displays . « « o « o &
Graphics Display Status Returns
FORTRAN Subroutines for the LPA11-K o e .
Device-Specific QIO Functions for the LPAll-K .
Contents of First Word of IOSB . « ¢« o« « « « o
FORTRAN Subroutines for K-series Laboratory

PeripheralsS . . v o o o o o o o o o o o o o o

e ¢ Fhe o o o o
(o]

.
°
unc

F

o o o N e o o o o o o o o
°

L) °
tion
o L]

xxi

14-11
15-1
15-2

15-2
15-3
15-4

15-5
15-8
15~9
16-3
16-4
16-5
16-15
16-16
16-31
16-33
17-1

17-2
17-3
17-5

17-9
17-10

17-11
17-29
17-32
17-33

18-2
18-3
19-2
19-7
19-7
19-8
19-15
19-34
19-36
19-73
19-74

21-2
21-3
22-3
22-28
22-31

23-7

23-2
23-3
24-1
24-2
24-3
c-1

Cc-2

CONTENTS

Scope Control Word Values . . . « « o« o« o« o o o 23=27
Contents of First Word of IOSB . « « « o « « « o 23-32
Standard QIO Functions for UNIBUS Switches . . . 24-2
Device-Specific QIO Functions for UNIBUS Switches 24-4
UNIBUS Switch Driver Status Returns 24-7
Maximum Size for Each File Attribute C-4
File Processor Error CodesS . «. « « « o « o« « o« « C=14

xxii

PREFACE

MANUAL OBJECTIVES

This manual provides all the information needed to interface directly
with the I1/0 device drivers supplied as part of the Micro/RSX system.

INTENDED AUDIENCE

This manual is for experienced RSX-11M/M-PLUS programmers who want: -to
take advantage of the time and/or space savings that result from
direct use of the I/0 drivers. Readers should be familiar with .the
information contained in the RSX-11M/M-PLUS and Micro/RSX Executive

Reference Manual, have some experience using the Task Builder and
either MACRO-11 or FORTRAN programs, and be familiar with the manuals
describing their use.

STRUCTURE OF THE MANUAL

Chapter 1 provides an overview of RSX-11M/M-PLUS input/output
operations. It introduces you to 1logical unit numbers, directive
parameter blocks, event flags, macro <calls, and so on; includes
discussions of the standard 1I/0 functions common to a variety of
devices; and summarizes standard error and status conditions relating
to completion of I/0 requests.

Chapters 2 through 24 describe the use of all device drivers supported
by RSX-11M/M-PLUS. Each of these chapters is structured in similar
fashion and focuses on the following basic elements:

e The device, including information on physical characteristics
such as speed, capacity, access, and usage

® The standard functions that the devices support and
descriptions of device-specific functions

@ The special characters, carriage control codes, and functional
characteristics, if relevant

e The error and status conditions that the driver returns on
acceptance or rejection of I/0 requests

® Programming hints

Appendixes A through C provide quick reference material on 1I1/0
functions and status codes.

xxiii

PREFACE

ASSOCIATED MANUALS
The following Micro/RSX manuals may be useful:

® RSX-11M/M-PLUS Information Directory and Master Index

® RSX-11M/M-PLUS and Micro/RSX Executive Reference Manual

® RSX-11M/M-PLUS and Micro/RSX Task Builder Manual

e PDP-11 MACRO-1l1l Language Reference Manual

® RSX-11M/RSX-11lS or RSX-11M-PLUS Release Notes

In addition, documentation for programming in any of the MicroPDP-11
languages may be helpful.

CONVENTIONS USED IN THIS MANUAL

The following conventions are observed in this manual.

Convention Meaning
[] Square brackets; enclose optional syntax
{ } Braces; indicate that one of the enclosed items
must be selected.
cee Horizontal ellipsis; indicates that parameters
have been omitted. In QIO macro calls in this

manual, indicates that standard QIO parameters
have been omitted.

ree Consecutive commas; used in coding examples to
indicate null arguments. You may omit commas that
indicate null trailing optional arguments.

Note that while RSX-11M/M-PLUS systems require certain parameters,
they ignore them. These parameters are necessary to maintain
compatibility with RSX-11D.

Furthermore, except in MACRO-1l1 coding examples, all numbers are
assumed to be decimal unless otherwise specified. In MACRO-11 coding
examples, the reverse is true: all numbers are considered to be octal
unless followed by a decimal point (which indicates a decimal number).

Finally, in FORTRAN subroutine models, parameters that begin with the

letters i through n indicate integer variables. In general, where a
call uses both i and n prefixes, the i form indicates the name of an
array and the n form specifies the size of the array.

All integer arrays and variables are assumed to occupy one storage
word per variable (that 1is, INTEGER*2) and all real arrays and
variables are assumed to occupy two storage words per variable (that
is, REAL*4),.

xxiv

/"\

SUMMARY OF TECHNICAL CHANGES

This revision of the RSX-11M/M-PLUS 1I/0 Drivers Reference Manual
reflects the following software technical changes and additions:

A new I/0 function, IO.EIO (Extended 1/0), which contains new
subfunctions, has been added to the full-duplex terminal
driver.

Support for the DZQll 4-line terminal multiplexer, a D2ZV1l
replacement, has been added to the full-duplex terminal
driver.

Support of the full-duplex terminal driver has been extended
to allow its use as a Network Command Terminal.

Support for the RC25 and RD52 disks and the KDAS50 controller
has been added to the disk drivers.

Support for the TK25, TK50, and TU81 magnetic tape drives has
been added to the tape drivers.

Support for the KMC-11 line printer interface has been added
to the line printer driver. -

Support for the RSX QIO DEUNA driver has been added.

In addition to these changes, Chapters 1 and 2 have been reorganized
to make the information more easily accessible to the reader. Chapter
13, which describes the RSX QIO DEUNA driver, is completely new.
Appendixes A and B have been updated to reflect the new I/O functions,
subfunctions, and error codes that have been added.

X XV

CHAPTER 1

RSX-11M/M-PLUS INPUT/OUTPUT

1.1 OVERVIEW OF RSX-11M 1/0

The RSX-11M/M-PLUS operating system supports a wide variety of input
and output devices, including disks, DECtapes, magnetic tapes, tape
cassettes, line printers, card readers, and such laboratory ‘and
industrial devices as analog-to-digital converters, universal digital
controllers, and laboratory peripheral systems.

Digital Equipment Corporation supplies the drivers for these devices
as part of the system software. This manual describes all the device
drivers that the RSX = operating system supports - and the
characteristics, functions, error conditions, and programming hints
associated with each. You can add devices that this manual does not
describe to basic RSX system configurations, but you must develop and
maintain your own drivers for these devices. (Sée the RSX-11lM Guide
o Writing an I/0 Driver, or the RSX-11M-PLUS Guide to Writing an I/O
Driver, depending upon the system you are using.)

Input/output operations under RSX-11lM are extremely flexible and are
as device- and function-independent as possible. Programs issue I/0
requests to 1logical wunits that you previously associated with
particular physical device units. Each program or task can establish
its own correspondence between physical device units and logical unit
numbers (LUNs). The Executive queues I/0 requests as your task issues
them and subsequently processes them according to the relative
priority of the tasks that issued them. Your tasks can issue I/0
requests for appropriate devices through either the File Control
Services or Record Management Services, or your tasks can interface
directly to an I/0 driver by the Queue I/O (QIO$) Executive directive
macro.

Your task requests all of the I/0 services that this manual describes
by using QIO$ Executive directive macros. A function code that you
include in the QIOS$ macro indicates the particular input or output
operation that the system and the driver is to perform. 1I/0 functions
can request such operations as:

e Attaching or detaching a physical device wunit for a task's
exclusive use

® Reading or writing a logical or virtual block of data
® Canceling a task's I/O requests
QIO macros can also specify a wide variety of device-specific

input/output operations (for example, reading DECtape in reverse,
rewinding cassette tape).

RSX~11M/M-PLUS INPUT/OUTPUT

1.2 PHYSICAL, LOGICAL, AND VIRTUAL I/0

An I/0 transfer can take place in three possible modes: physical,
logical, and virtual.

Physical I/O takes place by reading and writing data in the actual
physical wunits that the hardware accepts (for example, sectors on a
disk). For most devices, physical I/0 is identical to 1logical 1I/0.
For example, the RKO05 Cartridge Disk has sectors of 256 words, the
same size as RSX-11M logical blocks for all disks. .Thus, for the
RKO5, a logical block maps directly into a physical block. However,
the mapping is not one to one for other devices. The RFll Fixed Head
Disk, for example, is word addressable, but no physical I/0O may be
done with the RF1l. Data 1is always written in 256-word logical
blocks. The system records data for the RX01l Flexible Disk in
physical sectors of 64 words each. Therefore, logical blocks for the
RX01 are made up of four physical sectors.

Logical I/O takes place by reading and writing data in blocks
convenient for the operating system. For most devices logical blocks
map directly into physical blocks. For block-structured devices (for
example, disks), 1logical blocks are numbered, beginning with 0. For
non-block-structured devices (for example, terminals), logical blocks
are not addressable.

Virtual I/0 takes place by reading and writing data to open files. In
this case, the Executive maps virtual blocks into logical blocks. For
file-structured devices (disks or DECtapes), virtual blocks are the
same size as logical blocks, are numbered starting from one (1), and
are relative to the file rather than to the device. For
non-file-structured devices, the mapping from virtual block to logical
block is direct.

1.3 LOGICAL UNITS

This section describes the construction of the logical unit table and
the use of logical unit numbers.

1l.3.1 Logical Unit Number

A logical unit number, or LUN, is a number that the system associates
with a physical device unit during RSX-11M/M-PLUS I/O operations. For
example, you might associate LUN 1 with one of the terminals in the
system, LUNs 2, 3, 4, and 5 with DECtape drives, and LUNs 6, 7, and 8
with disk units. The association is a dynamic one; each task running
in the system can establish its own correspondence between LUNs and
physical device units, and can that association at almost any time.
This dynamic, flexible association is a major factor in the
device-independent programming of the system.

A logical unit number is simply a short name for the association
between. a logical unit and a physical device unit. Once the
association has been made, the LUN provides a direct and efficient
mapping to the physical device unit, thus eliminating the searching of
device tables whenever the system encounters a reference to a physical
device unit.

RSX-11M/M-PLUS INPUT/OUTPUT

Remember that, although you or a task can change the association of - a
LUN to a physical device unit at any time, reassigning a LUN at run
time causes pending I/0 requests for the previous LUN assignment to be
canceled. Therefore, you must verify that all outstanding 1I/0
requests for a LUN have been serviced before you associate that LUN
with another physical device unit.

1.3.2 Logical Unit Table

There is one Logical Unit Table (LUT) for each task running in an
RSX-11M/M-PLUS operating system. The task header contains this table
as a variable-length block. Each LUT contains enough 2-word entries
for the number of logical units. You specify the number of logical
units in the Task Builder by the "UNITS=" option when you build your
task.

The first word of each 2-word entry contains a pointer to the Unit
Control Block that represents the physical device unit currently
associated with that LUN. This linkage may be indirect; that is, you
may force redirection of references from one unit to another unit with
the DCL command ASSIGN/REDIRECT. The second word of each 2-word entry
contains a pointer to the window block of the task that has a file
open and mounted. The window block contains pointers to areas on the
file that are accessed by the task.

Each 2-word entry contains a pointer to the Unit Control Block that
represents the physical device unit currently associated with that
LUN. Whenever your task issues an I/0 request, the system matches the
appropriate physical device unit (by using the Unit and Device Control
Blocks and other structures) to the LUN that the call specifies. The
system does this by indexing into the LUT by the LUN number. Thus, if
the call specifies 6 as the LUN, the system accesses the sixth 2-word
entry in the LUT and associates the I/0 request with the physical
device unit to which the entry points. The number of LUN assignments
valid for a task ranges from 0 to 255, but it cannot be greater than
the number of LUNs specified at task-build time.

Figure 1-1 illustrates a typical Logical Unit Table.

Number of LUNs

Pointer to UCB of LUN 1

Pointer to window block of LUN 1

Pointer to UCB of LUN 2

Pointer to window block of LUN 2

Pointer to UCB of LUN 3

Pointer to window block of LUN 3

Pointer to UCB of LUN 4

Pointer to window block of LUN 4

ZK-4078-85

Figure 1-1 Logical Unit Table

RSX-11M/M-PLUS INPUT/OUTPUT

1.3.3 Changing LUN Assignments

Logical unit numbers have no significance until you associate a LUN
with a physical device unit by using one of the following methods:

e At the time you build the task that 1is to do the 1/0
operation, you can specify an ASG (Assign) keyword option to
the Task Builder. This option associates a physical device
unit with a logical unit number referenced by the task being
built. i

® You or the system operator can issue a REASSIGN command to MCR
or a ASSIGN/REDIRECT command to DCL. This command reassigns a
LUN to another physical device unit and thus changes the
correspondence between the LUN and the physical device unit.
Note that this reassignment has no effect on the in-core image
of a task.

e At run time, a task can dynamically change a LUN assignment by
issuing the Assign LUN Executive directive macro (ALUNS).
This changes the association of a LUN with a physical device
unit during task execution.

1.4 'ISSUING AN I/O REQUEST

Your tasks perform I/O in the RSX-11M/M-PLUS system by submitting
requests for I/0 service as Queue I/0 (QIO$) or Queue I/0 and Wait
(QIOWS) Executive directive macros. See the RSX-11M/M-PLUS and
Micro/RSX Executive Reference Manual for a complete description of
system directives.

The RSX-11M/M-PLUS operating system has a set of system macros that
make issuing QIOS$ macros easier. You must make these macros available
to the source program by placing the MACRO-11 Assembler directive
.MCALL in the source program. The macros reside in the System Macro
Library (LB:[1,1]RSXMAC.SML). Section 1.6.4 describes the function of
.MCALL.

In RSX-11M/M-PLUS, as in most multiprogramming systems, tasks do not
normally access physical device units directly. Instead, they use I/0
services that the Executive provides, because it '‘can effectively
multiplex the use of physical device units over many tasks. The
Executive routes I/O requests to the appropriate device driver and
queues them by the priority of the requesting task. I/0 operations
proceed concurrently with other activities in an RSX-11M/M-PLUS
system.

Before the Executive queues a QIOS$ request to the driver, the QIO$
must pass a series of tests executed by the Executive. If the request
fails, the Executive rejects it. The Executive signals this rejection
by setting the C-bit. As good programming practice, you should check
for directive rejection by following the QIO$ macro with a MACRO-11
BCS instruction or its equivalent.

After the Executive queues an I/0 request, the system does not wait
for the operation to complete. Perhaps the task that issued the QIO$
request cannot proceed until the I/0 operation completes. In this
case, the task should specify an event flag (see Section 1.4.1.4) in
the QIO$ request and should issue a Wait For Single Event Flag (WTSES$)
Executive macro specifying the same event flag at the point where
synchronization must occur. Your task then waits for the 1I/0 to
complete by waiting for the Executive to set the specified event flag.

TN

RSX-11M/M-PLUS INPUT/OUTPUT

The QIO$ and Wait (QIOWS) macro is a more economical way to achieve
this synchronization. QIOWS waits until the system completes the I/0
before returning control to the task. Thus, the additional WTSES
macro is not necessary.

Each QIO$ or QIOWS macro must supply sufficient information to
identify and queue the 1I/0 request. You may also want to include
locations in your task to receive error or status codes, and to
specify the address of an asynchronous system trap service routine.
Certain types of I/0 operations require the specification of
device-dependent information as well. Typical QIOS$ parameters are the
following:

@ I/0 function to be performed

e Logical unit number associated with the physical device unit
to be accessed

® Optional event flag number for synchronizing I/0 completion
processing (required for QIOWS)

@ Optional address of the I/0 status block to which the xp
Status block, I/0 Executive returns information indicating
successful or unsuccessful completion

e Optional address of an asynchronous system trap service
routine in your task to be entered upon completion of the I/0
request)

® Optional device- and function-dependent parameters specifying
such items as the starting address of a data buffer, the size
of the buffer, and a block number

Several of the first six parameters in the QIO$ macro are optional,
but you must reserve space for these parameters. During expansion of
a QIOS$ macro, the Executive defaults to a value of 0 for all null
(omitted) parameters. Inclusion of the device- and function-dependent
parameters depends on the physical device unit and function that you
specify. If you want to specify only an I/0 function code, a LUN, and
an address for an asynchronous system trap service routine, issue the
following:

QIOS I0.ATT,6,,,,ASTOX

where IO.ATT is the QIO$ function code and the following describes the
meaning of the parameters:

Parameter Meaning
IO.ATT The 1/0 function code for attach.
6 The LUN or Logical Unit Number associated with the

device unit.

vee Null arguments for the event flag number, the
request priority, and the address of the I/O
status block.

ASTOX The AST address using the symbolic name ASTOX.
The system requires no additional device- or function-dependent

parameters for an attach function. Section 1.7 describes the three
legal forms of the macro.

RSX-11M/M-PLUS INPUT/OUTPUT

For convenience, you may omit any comma if no parameters appear to the
right of it. Therefore, you could issue the command above as follows,
if you did not want the asynchronous system trap:

QIOS I0.ATT,6

All extra commas have been dropped. However, if a parameter appears
to the right of any place-holding comma, that comma must be retained.

1.4.1 QIO$ Macro Format

The arguments for a specific QIO$ macro call may be different for each
I1/0 device your task accesses and for each I/O function it requests.
However, the general format of the call is common to all devices. It
appears as follows:

QIOS fnc,lun,[efn],[pri],[isb],[ast],[<pl,P2,...,P6>]

1.4.1.1 Syntax Elements: Brackets [], Angle Brackets <>, Braces {} -

[] Brackets enclose optional parameters. You may use one oOr
more of the optional parameters.

<> Angle brackets must enclose function-dependent parameters if
the QIO$ requires ‘the parameters <pl,...,p6>. The angle
brackets are part of the syntax and must be used. The
parameters may or may not be present in a given QIO$ macro
and, if present, some may be optional.

{} Braces indicate that you must make a choice among the
arguments enclosed within the braces.

The following paragraphs summarize the use of each QIO$ parameter.
Section 1.7 explains different forms of the QIOS macro itself.

1.4.1.2 FNC Parameter - The fnc parameter is the symbolic name of the
I1/0 function that you want to request. This name is usually of the
form

I0.xxXx
where xxx identifies the particular I1/0 operation.
For example, a QIO$ request to attach the physical device unit
associated with a LUN specifies the function code IO.ATT with its
complete QIO$ form appearing as

QI0S IO.ATT,lun

where lun is the number assigned to the physical device unit.

A QIOS$ request to cancel (or kill) all I/0 requests for a LUN that you
specified begins like this:

QIOS IO.KIL,...

RSX-11M/M-PLUS INPUT/OUTPUT

The system internally stores the fnc parameter, which you specify in
the QIOS$ request, as a function code in the high-order byte and as
modifier bits in the low-order byte of a single word. The function
code 1is in the range 0 through 31. (decimal) and is a binary value
that the system supplies to match the symbolic name specified in the
QIOS request.

The system object module library defines the correspondence between
global symbolic names and function codes. The Task Builder searches
the library. You can obtain local symbolic definitions by the FILIOS
and SPCIO$ macros, which reside in the System Macro Library and are
summarized in Appendix A.

Several similar functions may have identical function codes, and you
may -distinguish them only by their modifier bits. For example, the
DECtape read logical forward and read logical reverse functions have.
the same function code. Although the function codes are the same, the
system stores the modifier bits for these two operations.

1.4.1.3 LUN Parameter - The lun parameter represents the logical unit
number (LUN) of the associated physical device unit that the I1/0
request is to access. The association between the physical device
unit and the LUN is specific to the task that issues the I/0 request,
and the LUN reference is usually device independent. You begin an
attach request to the physical device unit associated with LUN 14 like
this:

QIOS I0.ATT,14.,...

Because each task has its own LUT in which the correspondence between
the LUN and the physical device unit is established, the legality of a
LUN parameter is specific to the task that includes this parameter in
a QIOS$ request. In general, the LUN must be in the following range:

0 <KLUN <number of LUTs in table(if nonzero)/4
;each LUT is 2 words, 4 bytes

The number of LUNs specified in the LUT of a particular task cannot
exceed 255.

l.4.1.4 EFN Parameter - The efn parameter is a number representing
‘the event flag to be associated with the I/O operation. It is an
optional parameter for inclusion in the QIO$ request. The specified
event flag is cleared when the I/0 request is queued and is set when
the I/0 operation has completed. If the task issued the QIOWS macro,
the Executive suspends task execution until the I/0 completes. If the
task issued the QIOS$ macro (with no WTSES macro), task execution
proceeds 1in parallel with the 1I/0. When the task continues to
execute, it may test the event flag whenever it chooses by using the
Read All Event Flags (RDAFS) Executive directive macro (if
group-global event flags are not being used), the Read Extended Flags
(RDXFS) Executive directive (for all event flags, including
group-global event flags), or the Read Single Event Flag (RSEFS)
Executive directive.

If you specify an event flag number, it must be in the range 1 through
96. If you do not want to specify an event flag, you can omit efn or
supply it with a value of 0. Event flags 1 through 32 are 1local
(specific to the issuing task); event flags 33 through 64 are global
(shared by all tasks in the system). Event flags 65 through 96 are
group-global event flags (shared by all tasks in the same user group).
Flags 25 through 32 and 57 through 64 are reserved for use by system

1-7

RSX-11M/M-PLUS INPUT/OUTPUT

software. Within these bounds, you can specify event flags as desired
to synchronize I/O completion and task execution. Sections 1.4.2 and
1.4.3 provide a more detailed explanation of event flags and
significant events.

NOTE

If an event flag is not specified, the Executive
treats the directive as if it were a simple QIOS
request.

1.4.1.5 PRI Parameter - The optional pri parameter is supplied only
to make RSX-11M/M-PLUS QIOS$ requests compatible with RSX-11D. An
RSX-11M I/0 request assumes the priority of the requesting task.
Thus, you should use a value of 0 (or a null) for this parameter.

1.4.1.6 1ISB Parameter - The optional isb parameter identifies the
address of the I/0 status block associated with the I/0 request. This
block is a 2-word array in which a code is returned that represents
the final status of the I/0 request on completion of the operation.
This code is a binary value corresponding to a symbolic name of the
form IS.xxx (for successful returns) or IE.xxx (for error returns).
The binary error code is returned to the low-order byte of the first
word of the status block. It can be tested symbolically, by name.
For example, the symbolic status IE.BAD is returned if a bad parameter
is encountered. The following illustrates the examination of the I/0
status block, IOSB, to determine whether a bad parameter has been
detected: ‘

QIO0S 10.ATT,14.,2,,I0SB
BCS DIRERR

WTSESC 2

CMPB #IS.SUC,10SB

BNE ERROR

The system object module library defines the correspondence between
global symbolic names and I/0 completion codes. The Task Builder
searches this library. The IOERRS$ macro, which resides in the System
Macro Library, obtains 1local symbolic definitions (summarized in
Appendix B). :

On completion of the I/0 operation, the system returns certain
device-dependent ‘information to the high-order byte of the first word
of isb. If a read or write operation is successful, the second word
is also significant. For example, in the case of a read function on a
terminal, the system returns in the second word of isb the number of
bytes that you typed preceding a carriage return. If a magnetic tape
unit is the device and you specified a write function, this number
represents the number of bytes actually written. The status block can
be omitted from a QIO$ request if you do not intend to test for
successful completion of the request.

TN

RSX-11M/M-PLUS INPUT/OUTPUT

1.4.1.7 AST Parameter - The optional ast parameter specifies the
address of a service routine to be entered when an asynchronous system
trap occurs. If you want to interrupt your task to execute special
code on completion of an I/O request, you can specify an asynchronous
system trap routine in the QIO$ request. When the specified I/0
operation completes, control branches to this routine at the software
priority of the requesting task. The system then executes the
asynchronous code beginning at address ast, much like the way the
system executes an interrupt service routine. If you do not want to
perform asynchronous processing, you can omit the ast parameter or
specify a value of 0 in the QIO$ macro call.

Section 1.4.5 discusses the use of asynchronous system traps, and the
RSX-11M/M-PLUS and Micro/RSX Executive Reference Manual describes
traps 1n detail.’

l.4.1.8 P1,P2,...,P6 Parameters - The additional QIO$ parameters
<pl,p2,...,p6> depend on the particular function and device specified
in the I/0O request. Typical parameters may include 1I1I/0 buffer
address, I1/0 buffer length, and so on. You can include between zero
and six parameters depending on the particular I1/0 function.
Subsequent chapters of this manual describe rules for including these
parameters and legal values.

1.4.2 Significant Events

A significant event is a change in system status that causes the
Executive to reevaluate the eligibility of all active tasks to run.
(For some significant events, specifically those in which the current
task becomes ineligible to run, only those tasks of lower priority are
examined.) A significant event is usually caused (either directly or
indirectly) by an Executive directive issued from within a task. This
manual is concerned with the significant event caused by an 1I/0
completion.

Significant events are normally set by Executive directives by
completing a function that you specified. A task uses event flags to
recognize the occurrence of specific events.

1.4.3 Event Flags

Event flags are a means by which tasks recognize specific events.
(Tasks also use Asynchronous System Traps (ASTs) to recognize specific
events.) In requesting a system operation (such as an 1/0 transfer), a
task may associate en event flag with the completion of the operation.
When the event occurs, the Executive sets the specified flag.

Ninety-six event flags are available to enable tasks to distinguish
one event from another. Each event flag has a corresponding unique
event flag number (efn). Numbers 1 through 32 form a group of flags
that are wunique to each task and are set or cleared as a result of
that task's operation. Numbers 33 through 64 form a second group of
flags that are common to all tasks, hence their name "common flags."
Common flags may be set or cleared as a result of any task's
operation. The 1last eight flags in each group, local flags (25-32)
and common flags (57-64), are reserved for use by the system. Numberrs
65 through 96 form the third group of flags, known as "group glcbal
event flags." You can use these flags in any application where common
event flags can be wused; however, only tasks running under UICs
containing the group code specified when the group-global event flags

1-9

RSX-11M/M-PLUS INPUT/OUTPUT

were created can wuse them. Eight Executive directives provide the
support for creating, setting, clearing, reading, and testing event
flags. See the RSX-11M/M-PLUS and Micro/RSX Executive Reference
Manual for a description of these directives.

The following example illustrates the use of a common event flag to
synchronize task execution.

A task issues a QIOS$ macro with an efn parameter specified. A WTSES
macro follows the QIOS$ and specifies the same event flag number as an
argument. The Executive clears the event flag when the Executive
queues the I/0 request. Then, the Executive blocks the task when the
Executive executes the WTSE$ directive. The task remains blocked
until a significant event is declared at the completion of the I/O
request and the significant event sets the event flag. The task
resumes when the appropriate event flag is set, and execution resumes
at the instruction following the WTSES$ macro. Using these macros and
an event flag in this way ensures that the task does not manipulate
the data until all the I/0 has completed.

Specifying an event flag does not mean that a WTSE$S macro must be
issued. Event flag testing can be performed at any time. The purpose
of a WTSES$ macro is to block the task execution wuntil an indicated
event occurs. Hence, it 1is not necessary to issue a WTSES$ macro
immediately following a QIO$ macro, but a task that depends on a
specific I/0 operation to complete must issue it before continuing.

A task can issue a Stop For Single Event Flag (STSES$) macro instead of
a WTSE$ macro. When this is done, an event flag condition not
satisfied results in the task's being stopped instead of being blocked
until the event flag is set. A blocked task still competes for memory
resources at its running priority. A stopped task competes for memory
resources at priority 0.

1.4.4 System Traps

System traps can interrupt task execution and cause a transfer of
control to another memory location for special processing. The
Executive handles system traps. The traps are relevant only to the
task in which they occur. To use a system trap, a task must contain a
trap service routine, which is automatically entered when the trap
occurs.

There are two types of system traps: synchronous and asynchronous.
You can use both to handle error or event conditions, but they differ
in their relation to the task that is running when the traps are
detected. The traps differ as follows:

® Synchronous system traps (SSTs) signal error conditions within
the executing task. If the same instruction sequence were
repeated, the same synchronous trap would occur at the same
place 1in the task. Synchronous traps are fully described in
the RSX-11M/M-PLUS and Micro/RSX Executive Reference Manual.

e Asynchronous system traps (ASTs) signal the completion of an
external event such as an I/0 operation. An asynchronous
system trap (AST) usually occurs as the result of initiating
or completing an external event rather than as a program
condition.

Ve ~

RSX-11M/M-PLUS INPUT/OUTPUT

Although not able to distinguish execution of an SST routine from task
execution, the Executive 1is aware that a task is executing an AST
routine. An AST routine can be interrupted by an SST routine, but not
by another AST routine.

1.4.5 Asynchronous System Traps

The primary purpose of an AST is to inform the task that a certain
event has occurred -- for example, the completion of an I/0O operation.
As soon.as the task has serviced the event, it can return to the
interrupted code.

Some directives can specify both an event flag and an AST; with these
directives, you can use ASTs as an alternative to event flags or you
can use the two together. Therefore, you can specify the same AST
routine for several directives, each with a different event flag.
Thus, when the Executive passes control to the AST routine, the event
flag can determine the action required. However, it is standard
programming practice to use the I/0 Status Block (IOSB) rather than
the event flags to determine which I/0 operation is completed. Thus,
when control is passed to an AST from a QIOS$, the I/0O Status Block
(IOSB) is on top of the stack. Use this IOSB to determine which I/0
has completed.

The Executive queues ASTs in a first-in-first-out queue for each task
and monitors all asynchronous service routine operations. Because
asynchronous traps may be the end result of I/O-related activity, the
task cannot control the occurrence of the ASTs directly. An example
of an asynchronous trap condition is the completion of an I/O request.
The ' timing of such an operation clearly cannot be predicted by the
requesting task. If the task does not specify an AST service routine
in an I/0O request, a trap does not occur and normal task execution
continues.

However, the task may, under certain circumstances, block recognition
of ASTs to prevent simultaneous access to a critical data region.
When access to the critical data region has been completed, the queued
ASTs may again be honored. The Disable AST Recognition (DSARS$S) and
Enable AST Recognition (ENARSS) Executive directives provide the
mechanism for doing this.

Associating asynchronous system traps with I/0 requests enables the
requesting task to be truly event driven. The system executes the AST
service routine contained in the initiating task as soon as possible,
consistent with the task's priority. Using the AST routine to service
I/0-related events provides a response time that 1is considerably
better than a polling mechanism, and provides for better overlap
processing than the simple QIO$ and WTSES macros. Asynchronous system
traps also provide an ideal mechanism for use in multiple buffering of
I1/0 operations.

The Executive inserts all ASTs in a first-in-first-out queue on a per
task basis as they occur (that is, the event that they are to signal
has expired). The Executive executes them one at a time whenever the
task does not have ASTs disabled and is not already in the process of
executing an AST service routine. Executing the AST includes storing
certain information on the task's stack, including the task's WTSES
mask word and address, the Directive Status Word (DSW), the program
status (SP), the program counter (PC), and any trap-dependent
parameters. The task's general-purpose registers RO-R5 are not saved,
and thus AST service routines must save and restore all registers
used. If the registers are not restored after an AST has occurred,
the task's subsequent execution may be unpredictable.

RSX-11M/M-PLUS INPUT/OUTPUT

After an AST is processed, the trap-dependent parameters (if any) must
be removed from the task's stack and an AST Service Exit ASTX$S macro
executed. The ASTX$S macro, described in Section 1.6.7 of this
manual, issues the AST Service Exit directive. On AST service exit,
control returns to another queued AST, to the executing task, or to
another task waiting to run.

The RSX-11M/M-PLUS and Micro/RSX Executive Reference Manual describes
in detail the purpose of AST service routines and all Executive
directives that handle them.

1.5 DIRECTIVE PARAMETER BLOCKS

A Directive Parameter Block (DPB) is a fixed-length area of contiguous
memory that contains the arguments that you specify in an Executive
directive macro call. The DPB for a QIO$ directive has a length of 12
words. The Executive generates it as the result of expanding a QIOS$
macro call. The first two bytes of the DPB contain the following:

e The first byte of the DPB contains the directive
identification code (DIC) -- always 1 for QIOS. :

e The second byte contains the size of the - DPB -in
words -- always 12 for RSX-11M/M-PLUS.

During the assembly of your task containing QIO$ requests, the
MACRO-11 Assembler generates a DPB for each I/O request specified in a
QIOS$ macro call. At run time, the Executive uses the arguments stored
in each DPB to create, for each request, an I/0 packet in system
dynamic storage. Figure 1-2 illustrates the layout of a sample DPB.

. 0
Word 0 size of DPB —> 12 1 - pic for.QIO
2 directive
1 FNC Modifiers -=— |/0 function
777777777 4 :
2 Reserved LUN -<— | ogical unit number
LLLLLLLLLLA 6
3 Priority —_— PRI EFN -=— Event flag number
8 :
4 ISB Address of I1/0
10 status block
5 AST Address of
asynchronous trap
12 service routine
6
° Device-dependent

parameters

11

ZK-005-81

Figure 1-2 QIOS$ Directive Parameter Block

p /A\\.

RSX-11M/M-PLUS INPUT/OUTPUT

1.5.1 1I/0 Packets

The Executive enters the I/O packet by priority into a queue of 1I/0
requests for the specified physical device unit. The Executive
creates and maintains this queue and orders it by the priority of the
tasks that issued the requests. The I/0 drivers examine their
respective I/0 packet queues for the I/0 request with the highest
priority capable of being executed. The driver removes this packet
from the queue and performs the I/O operation. The process is then
repeated until the queue is empty of all requests.

1.5.2 sSignificant Event Declaration

After the I/0 request has been completed, the Executive declares a
significant event and may do one or more of the following:

@ Set an event flag.
@ Cause a branch to an asynchronous system trap service routine.
@ Return the I/O status.

Any of the above actions depend on the arguments specified in the
original QIO$ macro call.

1.6 I/0 RELATED MACROS

The RSX-11M/M-PLUS system supplies several system macros to issue and
return information about ' I/0O requests. These macros reside in the
System Macro Library and must be made available during assembly by
including the MACRO-11 Assembler directive .MCALL in the task's code.

The RSX-11M/M-PLUS system also supplies FORTRAN-callable subroutines
that perform the same functions as the system macros. See the
RSX-11M/M-PLUS and Micro/RSX Executive Reference Manual for details.

Most of the Executive directive macros described in this section have
three distinct forms. The following 1list summarizes the forms of
QIOS$, but the characteristics of each form also apply to QIOWS$, ALUNS,
GLUNS$, and the other described Executive directive macros.

1. QIOS$ (executed by using the DIRS$ macro) generates a directive
parameter block for the 1I/0 request at assembly time, but
does not provide the instructions necessary to execute the
request. The QIOS form is wuseful under the following
conditions:

® The task uses the DPB in several different places in the
task.

® The task modifies the DPB at run time.
@ The task references the DPB at run time.

2. QIOSS generates a directive parameter block for the 1I/0
request on the stack, and also generates code to execute the
request. This is a useful form for reentrant, shareable code
because QIOS$S generates the DPB dynamically at execution
time.

RSX-11M/M-PLUS INPUT/OUTPUT

3. QIOSC generates a directive parameter block for the 1I/0
request at assembly time as well as generating code to
execute the request. QIOSC generates the DPB in a separate
program section called $DPB$$S. QIOSC incurs little system
overhead and it is useful when the task executes an I1/0
request from only one location. This manual uses the C form
of the QIO$ macro in most of the examples in Chapter 1.

Parameters for both the QIO$ and QIOSC forms of the macro must be
valid expressions for the MACRO-11 .WORD and .BYTE statements.
Parameters for the QIOSS form must be valid source operand address
expressions for Assembler instructions such as MOV and MOVB. The
following example references the same parameters in the three distinct
forms of the macro call.

QIOS I0.RLB,6,2,,,ASTO1l,<RDBUF,80.>
QIOSC 10.RLB,6,2,,,ASTO01,<RDBUF,80.>
QIOSS #I0.RLB,#6,#2,,, #ASTO01, <#RDBUF, #80.>

Only the QIOSS form of the macro produces the DPB dynamically. The
other two forms generate the DPB at assembly time. The RSX-11M/M-PLUS
and Micro/RSX Executive Reference Manual describes the characteristics
and use of these different forms.

The following section describes Executive directives and Assembler
macros:]

1. QIO$, which requests an I/0 operation and supplies parameters
for that request

2. QIOWS$, which is equivalent to QIO$ followed by WTSES

3. DIRS$, which specifies the address of a directive parameter
block as its argument, and dgenerates code to execute the
directive

4. .MCALL, which makes all macros referenced during task
assembly available from the System Macro Library

5. ALUNS$, which associates a logical unit number with a physical
device unit at run time

6. GLUNS$, which requests that the information about a physical
device unit to LUN association be returned to a buffer that
you specify

7. ASTX$S, which terminates execution of an asynchronous system
trap (AST) service routine

8. WTSE$, which instructs the system to block execution of the
issuing task until a specified event flag is set

1.6.1 The QIO$ Macro: Issuing an 1/0 Request

As previously described, you may use three general forms of the QIO$
macro. They are reviewed as follows:

e QIOS$ generates only the DPB for the I/O request. This form of
the macro call 1is used with DIRS (see Section 1.6.3) to
execute an I/0 request.

TN

RSX-11M/M-PLUS INPUT/OUTPUT

® QIOSS generates a DPB for the I/0 request on the stack as well

as generating code to execute the request.

® QIOSC generates a DPB and code, but the DPB is generated in
separate program section.

1.6.2 The QIOW$ Macro: Issuing an I/O Request and Waiting for
Event Flag

a

an

The QIOWS macro is equivalent to a QIOS$ followed by a WTSES. It [Opis
more economical to issue a QIOWS request than to use the two separate

macros. An event flag (efn parameter) must be specified with QIOWS
NOTE

Please note that tasks or applications that execute
many I/O operations will run much more efficiently
using QIOWS rather than QIO$ followed by a WTSE$. The
reason efficiency increases is that system overhead is
reduced.

The QIOWS macro has the following syntax:
QIOWS function,lun,efn,[pril]l,[isb],[ast], [<pl,...,pP6>]

See the RSX-llM/M-PLUS and Micro/RSX Executive Reference Manual for
complete description of the QIOWS macro.

1.6.3 The DIRS$ Macro: Executing a Directive

The DIRS (execute directive) macro allows a task to reference
previously defined DPB. 1Issue it in the form:

DIRS [addr], [err]

The parameters have the following meanings:

Parameter Meaning
addr The address of a directive parameter block wused in
directive. If addr is not included, the DPB itself or

the
the

address of the DPB is assumed to already be on the stack.

This parameter must be a valid source operand for a
instruction generated by the DIR$ macro.
err An optional argument which specifies the address of an er

routine to which control branches if the directive
rejected. The branch occurs by means of a JSR PC, err

MOV

ror
is
if

the C-bit is set, indicating rejection of the QIO§

directive.

RSX-11M/M-PLUS INPUT/OUTPUT

In the following example, the DIRS macro actually generates the code
to execute the QIO$ directive. It provides no QIO$ parameters of its
own, but references the QIO$ directive parameter block at address
QIOREF by supplying this label as an argument.

QIOREF: QIOS$ I0.RLB,6,2,,,AST01,<BUFFER,80.> ;CREATE QIOS$ DPB

READ1: DIRS #QIOREF

ISSUE I/O REQUEST

-0

READ2: DIRS #QIOREF ; ISSUE I/0 REQUEST

1.6.4 The .MCALL Directive: Retrieving System Macros

.MCALL is a MACRO-11 Assembler directive that retrieves macros from
the System Macro Library (LB:[1,1]RSXMAC.SML) for use during assembly.
You must include it in every task that invokes system macros. .MCALL
is usually 'placed at the beginning of your task source module and
specifies, as arguments in the call, all system macros that must be
made available to your task from the library.

The following example illustrates the use of this directive:

.MCALL QIOS$,QIOS$S,DIRS,WTSESS ; MAKE MACROS AVAILABLE

ATTACH: QIOS$S #I10.ATT,#6,,, IOSB,#ASTO02

ATTACH DEVICE

-

QIOREF: QIOS$ I0.RLB,6,,,I0SB,AST0l,... ; CREATE ONLY QIOS$ DPB

READ1: DIRS #QIOREF,DIRERR

ISSUE I/0 REQUEST

-.

You can include as many macro references as can fit on a line in a

single .MCALL directive. You can specify any number of .MCALL
directives.

1.6.5 The ALUNS Macro: Assigning a LUN

The Assign LUN macro associates a logical unit number with a physical
device wunit at run time. All three forms of the macro call may be
used. Assign LUN does not request I/0 for the physical device unit,
nor does it attach the unit for exclusive use by the issuing task. It
-only establishes a LUN-physical device unit relationship, so that when
the task requests I/0 for that particular LUN, the task can reference
the associated physical device unit. Issue the macro from a MACRO-11
program in the following way:

ALUNS lun,dev,unt

RSX-11M/M-PLUS INPUT/OUTPUT

Parameter Meaning

lun The logical unit number to be associated with the specified
physical device unit. See Sections 1.3 and 1.4.1.3.

dev The device name of the physical device or a logical device
name assigned to a physical device (see the MCR ASN command
or the DCL ASSIGN command) .

unt The unit number of that device specified above.

For example, to associate LUN 10. with terminal unit 2, a task. could
issue the following macro call: ’

ALUNSC 10.,TT,2

A unit number of 0 represents unit 0 for multiunit devices such as
disk, DECtape, or terminals; it indicates the single available unit
for devices without multiple units, such as card readers and line
printers. ’

Logical devices are system generation options on RSX-11M that allow
you to assign logical names to physical devices with the MCR command
ASN or the DCL command ASSIGN. Logical devices are included as part
of RSX-11M-PLUS.

See the RSX-11M/M-PLUS MCR Operations Manual or the RSX-11M/M-PLUS
Command Language Manual for a full description of the ASN command.

The following example illustrates the use of the three forms of the
ALUNS macro.

DATA DEFINITIONS

~e we we

ASSIGN: ALUNS 10.,TT,2

GENERATE DPB

e

EXECUTABLE SECTION

“e %e we

EXECUTE DIRECTIVE

~e |

DIRS #ASSIGN

ALUNSC 10.,TT,2

GENERATE DPB IN SEPARATE PROGRAM
SECTION, THEN GENERATE CODE TO
EXECUTE THE DIRECTIVE

~e weo wo

ALUNSS #10.,4"TT,#2 GENERATE DPB ON STACK, THEN

EXECUTE DIRECTIVE

~eo we

RSX-11M/M-PLUS INPUT/OUTPUT

1.6.5.1 Physical Device Names - The following list contains physical
device names, 1listed alphabetically, that you may include as dev
parameters:

Name Device

AD ADO1-D Analog-to-Digital Converter (not supported in
RSX-11M-PLUS systems)

AF AFCll Analog-to-Digital Converter (not supported in
RSX-11M-PLUS systems)

AR AR1l Laboratory Peripheral System (not supported in
RSX-11M-PLUS systems)

BS DT03/DT07 UNIBUS Switch (supported in RSX-11M-PLUS
systems only)

CD CD1l1l Card Reader

CP Central Processor Unit (CPU) in a multiprocessor

system (supported in RSX-11M-PLUS systems only)

CR CR11/CM11 Card Reader

CT TAll/TU60 Tape Cassette

DB RP04, RP05, RP06 Pack Disk

DD TU58 DECtape II

DF RF11/RS11 Fixed-Head Disk.

DK RK11/RK05 Cartridge Disk

DL RL11/RLO1/RL02 Cartridge Disk

DM RK611/RK06 and RK711/RK07 Cartridge Disk

DP RP11/RP02/RP03 Pack Disk

DR RM02/RM03/RM05 Pack Disk and RM80/RPO7 Fixed-Media
Disk

DS RS03 and RS04 Fixed-Head Disks

DT TCll/TU56 DECtape

DU RA80/RA81 Fixed-Media Disk, RA60 Pack Disk, RC25 Disk

Subsystem, RD51 Fixed-Media Disk, RD52 Fixed-Media
Disk, RUX50 UNIBUS interface, and RX50 Flexible Disk

DX RX11/RX01 Flexible Disk

DY RX211/RX02 Flexible Disk

EM ML-11 Fast Electronic Mass Storage Device

GR VT11l/VS60 Graphics Systems (npt supported in

RSX-11M-PLUS systems)

I1C ICS/ICR Industrial Control Local and Remote Subsystems
(not supported in RSX-11M-PLUS systems)

Name

IS

LA

LP

LR

LS

LT
MM
MS
MT
MU
NL
PP
PR

- TT
UuD
XB

XE

XL

XM

XP
XQ

XU

JA-JZ

QA-QZ
ZA-77

RSX-11M/M-PLUS INPUT/OUTPUT

Device

DSS/DRS Digital 1Input and Output Subsystems (not
supported in RSX-11M-PLUS systems)

LPAl11-K Laboratory Peripheral Accelerator

LA180/LP11/LS11/LV11l Line Printers and LNOl1l/LNO3 Laser
Printer, KMC-11-A Auxiliary Processor

PCL11-A/PCL11-B Receiver Port

LPS11 Laboratory Peripheral System (not supported in
RSX-11M-PLUS systems)

PCL11-A/PCL11-B Transmitter Port
TUl6/TE16/TU45/TU77/TM02/TM03 Magnetic Tape
TS1l, TU80, TSV05, or TK25 Magnetic Tape
TMll/TUlO/TUll or TS03 Magnetic Tape
TK50/TU81 Cartridge Tape

The Null Device 4

PCll Paper Tape Punch

PCll or PR1l1l Paper Tape Reader

Terminals (regardless of interface)
(not Network Command Terminals)

UDC1ll Universal Digital Controller (not supported in
RSX-11M-PLUS systems)

DAll-B Parallel Unibus Link (not supported in
RSX-11M-PLUS systems)

QIO DEUNA Driver

DL11-E Asynchronous Communication Line Interface (not
supported in RSX-11M-PLUS systems)

DMC11 Synchronous Communication Line Interface

DP11l Synchronous Communication Line Interface (not
supported in RSX-11M-PLUS systems)

DQll Synchronous Communication Line Interface (not
supported in RSX-11M-PLUS systems)

DUll Synchronous Communication Line Interface (not
supported in RSX-11M-PLUS systems)

DUP1ll Synchronous Communication Line Interface
Reserved for customer use (not used by DIGITAL)
Reserved for customer use (not used by DIGITAL)

Reserved for customer use (not used by DIGITAL)

RSX-11M/M-PLUS INPUT/OUTPUT

1.6.5.2 Pseudo-Device and Physical Device Names - A pseudo-device
name is a logical device name that must be directed to a physical
device unit. A pseudo device name can be redirected, by the operator,
to another physical device at any time without requiring changes in
programs that reference the pseudo-device name. (The DV.PSE bit in
the LUN information buffer is set to one if a pseudo name references a
physical device.) Dynamic redirection of a physical device unit
affects all tasks MCR REDIRECT command affects only one task.

Nonphysical device names are not associated with a physical device but
with a driver that interfaces with data structures instead of a real
physical device.

The following 1list indicates the pseudo devices supported by
RSX-11M/M-PLUS:

Nonphysical Physical Driver Unit
Name Name '
CL (pseudo) Console listing, normally the
' line printer.

CO (pseudo) CODRV Console output, normally the

main operator's console.

HT HTDRV Network remote terminal.
LB (pseudo) System library ‘device,

normally the device from which
the system was bootstrapped.
For example, tasks such as TKB
and MAC access the LB: device
for default library files.

NL NLDRV Null device.
NS Network pseudo device for NSP.
NX _ Network pseudo device for DLX.
RD RDDRV On-line reconfiguration pseudo
device (RSX-11M-PLUS only).
RT : RTDRV Network Command Terminals.
SP (pseudo) Spooling scratch disk device
(RSX-11M-PLUS and Micro/RSX
only) .
SY (pseudo) Your system default device.

On nonmultiuser systems, SY:
is normally the disk from
which the system was
bootstrapped. On multiuser
systems, SY: 1is normally the
default login device.

VR

RSX-11M/M-PLUS INPUT/OUTPUT

Nonphysical Physical Driver Unit
Name Name
TI (pseudo) Pseudo input terminal; TIO:

is the terminal from which a
task was requested.

The pseudo device TI cannot be
redirected, because such
redirection would have to be
handled on a per-task rather
than a systemwide basis (that
is, you can change the TI
device for one task without
affecting the TI assignments
for other tasks).

VT VTDRV Virtual terminal. Used by
some RSX-11M-PLUS offspring
tasks as TI: for command and
data I/0 (RSX-11M-PLUS and
Micro/RSX only).

1.6.6 The GLUN§ Macro: Retrieving LUN Information

The Get LUN Information macro requests the return of information about
association between a LUN and physical device unit in a 6-word buffer
specified by the issuing task. Upon successful completion of a QIOS$
directive, the buffer contains the information listed in Table 1-1, as
appropriate for the specific device. All three forms of the macro
call may be used. It 1is 1issued from a MACRO-11l program in the
following way:

GLUNS lun,buf
The parameters have the following meanings:
Parameter Meaning
lun The logical unit number associated with the physical device
unit for which information is requested. See Sections 1.3
and 1.4.1.3.

buf The 6-word buffer to which information is returned.

For example, to request information on the disk unit associated with
LUN 8, issue the following call:

GLUNSC 8.,I0BUF

Table 1-1
Get LUN Information
Numerical Offset Symbolic Offset
Word Byte Bit Word Byte Bit Contents
0 G.LUNA Name of device
associated with LUN
(ASCII bytes)
1 0 G.LUNU Unit number of

associated device

(continued on next page)

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-1 (Cont.)
Get LUN Information

Numerical Offset Symbolic Offset

Word Byte Bit Word Byte Bit Contents

1 ~ G.LUFB Driver flag value.
Returned as 128.
(decimal) or 200
(octal) if the driver
is resident, or as 0 if
a loadable driver |is
not in the system

1 First device

characteristics word:

2 G.LUCW

0 (U.CW1) (DV.REC) Unit record-oriented
device (for example,
card reader, line
printer) (1 = yes)

1 (DV.CCL) Carriage-control device
(for example, line
printer, terminal)
(1 = yes)

2 (DV.TTY) Terminal device
: (1 = yes)

3 (DV.DIR) Directory device (for
example, DECtape, disk)
(1 = yes)

4 (DV.SDI) Single directory device
(for example,
ANSI-standard magnetic
tape) (1 = yes)

5 (DV.SQD) Sequential device (for
example, ANSI-standard
magnetic ~ tape)
(1 = yes)

6 (DV.MSD) Mass storage device
(for example, disks and
tapes) (1 = yes)

7 (DV.UMD) User-mode diagnostics
supported (1 = yes)

8 (DV.EXT) Device supports 22-bit
direct addressing

1. The following word and bit symbols shown in parentheses are used
in defining and referencing corresponding items in the device
UCB.

(continued on next page)

TN

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-1 (Cont.)
Get LUN Information

Numerical Offset Symbolic Offset
Word Byte Bit Word Byte Bit Contents
9 ’ (DV.SWL) Unit software
write-locked (1 = yes)
10 (DV.ISP) Input spooled device
(1 = yes)
11 (DV.OSP) Output spooled device
(1 = yes)
12 (DV.PSE) Pseudo device (1 = yes)
13 . {(DV.COM) Device mountable as a
communications channel
for Digital network
support (for example,
DP11l, DUll) (1 = yes)
14 : (DV.F11) Device mountable as a
Files-11 device (for
example, disk or
DECtape) (1 = yes)
15 (DV.MNT) Device mountable

G.LUCW+02

(U.CwW2) (U2.XxxX)

G.LUCW+04

(U.CW3) (U3.xxX)

G.LUCW+06

(U.CwW4)

(logical OR of bits 13
and 14) (1 = yes)

Second device
characteristics word:

Device-specific
information

Third device
characteristics word:

Device-specific

information 2

Fourth device
characteristics word:

Default buffer size
(for example, for
disks, and line 1length
for terminals).

For mass storage devices, such as disks,

DECtape, and DECtape

II, this 1is the number of blocks (maximum logical block number
plus one). For the proper use of the RX211/RX02 flexible disk,
you must test G.LUCW+4 to determine the media density.

RSX-11M/M-PLUS INPUT/OUTPUT

The following example illustrates the use of the three forms of the
GLUNS$ macro.

DATA DEFINITIONS

~e we we

GETLUN: GLUNS 6 ,DSKBUF ; GENERATE DPB

EXECUTABLE SECTION

~e wo wo

DIRS #GETLUN ; EXECUTE DIRECTIVE

GENERATE DPB IN SEPARATE PROGRAM
SECTION, THEN GENERATE CODE TO
EXECUTE THE DIRECTIVE

GLUNSC 6,DSKBUF

~e wo we

GLUNSS #6, #DSKBUF GENERATE DPB ON STACK, THEN

EXECUTE DIRECTIVE

~e o

1.6.7 The ASTX$S Macro: Terminating AST Service

The ASTX$S macro terminates execution of an AST service routine. The
Executive provides all forms of the macro. However, the S-form
requires less space and executes at least as fast as the ASTX$ or
ASTXSC form of the macro. 1Issue it as follows:

ASTXSS [err]

The parameter has the following meaning:

Parameter Meaning
err An optional argument specifying the address of an error
" routine to which control branches if the directive is
rejected. »

After the Executive completes the operation specified in this macro
call, the Executive executes the next AST immediately if another AST
is queued and asynchronous system traps have not been disabled.
Otherwise, the Executive restores the task's state existing before the
AST was entered. (The AST service routine must save and restore the
registers it uses.)

1.6.8 The WTSE$ Macro: Wait for Single Event Flag

The WTSES$ macro suspends execution of the issuing task until the
Executive sets the event flag specified in the macro call. This macro
is extremely useful in synchronizing other activity with the
completion of 1I/0 operations. You may use all three forms of the
macro call. Issue it as follows:

WTSES efn

- N,

RSX-11M/M-PLUS INPUT/OUTPUT

The parameter has the following meaning:
Parameter Meaning
efn The event flag number.

WTSES blocks the task from execution until the specified event flag is
set. Frequently, you may include an efn parameter in a QIO$ macro
call, and the Executive sets the event flag upon the completion of the
1/0 operation specified in that call. The following example
illustrates task blocking until the specified event flag is set. This
example also shows using three forms of the macro call.

i
-MCALL WTSES$, ALUNSS, QIOSC, DIRS
«MCALL QIO0$S, WTSESS, WTSESC

DATA DEFINITIONS

«e wo

WAIT: WTSES 5
IOSB: - BLKW 2

GENERATE DPB
I/0 STATUS BLOCK

~o we

EXECUTABLE SECTION

~e w8 we

ASSIGN LUN 14 TO MAGNETIC
TAPE UNIT ZERO
ATTACH DEVICE. -
EXECUTE WAIT FOR DIRECTIVE

ALUNSS #14.,#"MM

QIOSC I0.ATT,14.,5
DIRS #WAIT

we wo we “wo

QIOSS #I0O.RLB, #14.,#2, ,#4I0SB, ,<#BUF, #80.>
e ; READ RECORD, USE EFN2

WTSESS #2 ; WAIT FOR READ TO COMPLETE

QIOSC 10.wLB,14.,3,,10SB, ,<BUF,80.> ‘
. ; WRITE RECORD, USE EFN3

WTSESC 3 » ; WAIT FOR WRITE TO COMPLETE
QIOSC IO.DET, 14. ; DETACH DEVICE

°
.

1.7 STANDARD I/0 FUNCTIONS

You can specify a large number of input/output operations with the
QIOS macro. You can request a particular operation by including the
appropriate function code as the first parameter of a QIO$ macro call.
Certain functions are standard. These functions are almost totally
device independent and thus you can request them for nearly every
device described in this manual. Other 1/0 functions are device

1-25

RSX-11M/M-PLUS INPUT/OUTPUT

dependent and are specific to the operation of only one or two I/O
devices. This section summarizes the function codes and g
characteristics of the following standard device-independent 1I/0 (
operations:

e Attaching to an I/0 device

e Detaching from an I/0 device

e Canceling I/O requests

® Reading a logical block

® Reading a virtual block

@ Writing a logical block

® Writing a virtual block
For certain physical device units, a standard I/0 function may be
described as being a NOP. This means that no operation occurs as a
result of specifying the function, and the Executive returns an I/0
status code of 1IS.SUC in the I/0 status block specified in the QIO$
macro call,
1.7.1 I/0 Subfunction Bits
Most terminal QIO$ functions can be modified by using the symbolic
name of a subfunction bit in a Logical OR with the QIO$ function. The
symbolic names of subfunction bits take the form TF.xxx, where xxx is
the acronym of the subfunction to be performed. A standard QIOS$
function called IO.ATT (attach a device) in a Logical in a Logical OR

with the TF.ESQ subfunction for terminals (recognize escape sequences)

;would look like the following:
' QIO$C IO.ATT!TF.ESQ,lun,[efn],[pri],[isb],[ast]

A subfunction bit modifies and extends the operation indicated by

the

terminal

subfunction
terminal.
in a Logica

QI10$ function.
terminal-specific function.

Note that the use of TF.ESQ with IO.ATT is a
Often, you may want to use more than one

bit when you use QIOS requests to read or write to a
In this case, you may use several subfunction bits together

1 OR. The standard QIO$ IO.ATT function may be extended to

both recognize escape sequences and allow special processing in the
task upon the occurrence of asynchronous system traps. To do this
requires that you combine in a Logical combine in a Logical OR two

subfunction bits with the IO.ATT function.
IO.ATT macro would look like the following:

If you do this, the QIOS

QIOSC IO.ATT!TF.ESQ!TF.AST,lun,[efn],[pril,[isb],[ast]

Note that the use of TF.ESC or TF.AST with IO.ATT is a
terminal-specific function.
If your task invokes a subfunction bit that is not supported on the

system, the subfunction bit may be ignored or an error may be issued
by the system and the QIOS$ rejected.

The subfunction bits that apply to a specific QIO$ macro are described
with that QIO$ macro in the Chapter 2. (

RSX-11M/M-PLUS INPUT/OUTPUT

1.7.2 QIOSC IO.ATT - Attaching to an I/O Device

Use the IO.ATT function code when your task requires exclusive use of
an I/0 device. The QIOS$ IO.ATT macro has the following format:

QIOSC IO.ATT,lun,[efn],[pri],[isb]l,[ast]

Successful completion of an IO.ATT request exclusively dedicates the
specified physical device unit to the task that issues the IO.ATT.
This enables the task to process input or output in an unbroken stream
and is especially useful on sequential, non-file-oriented devices such
as terminals, card readers, and line printers. An attached physical
device wunit remains under control of the task until that task
explicitly detaches it. To detach the device, the task issues the
QIOSC I0O.DET macro with the LUN previously assigned to the attached
device.

While a:task attaches a physical device unit, the I1/0 driver for that
unit dequeues only I/O requests issued by the task that attaches the
unit. However, a privileged task can issue a write breakthrough
function (IO.WBT) to a terminal attached by another task. This is an
‘exception for terminals only. Thus, except for the case of I0.WBT,
the Executive does not process a request to attach a device unit
already attached by another task until the attachment by the first
task --is broken and no higher-priority request exists for the attached
unit.

A LUN that is associated with an attached physical device unit may not
be reassigned by an Assign LUN (ALUNS) macro unless at least one LUN
is still assigned to the attached device. 1If the task that issued an
attach function exits or is aborted before it issues a corresponding
detach, the Executive detaches the physical device unit.

The parametérs have the following meanings:
Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/0 request. For more
information refer to Sections 1.3 and 1.4.1.3.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Section 1.4.1.4.

pri Makes RSX-11M/M-PLUS QIO$ requests compatible with RSX-11D.
An RSX-11M request assumes the priority of the requesting
task. Thus, a value of 0 (or a null) should be used for
this parameter.

isb The address of the I/0 status block (I/0 status double-word)
associated with the 1/0 request. For more information refer
to Section 1.4.1.6.

ast For IO.ATT, ast specifies the address of a service routine
to be entered when the IO.ATT operation completes. If you
want to interrupt your task to execute special code upon
completion of this I/0 request, you may specify ast. When
this I/0 request completes, control branches to the address
specified by ast at the software priority of the requesting
task. Omit ast or specify 0 to omit AST processing. For
more information refer to Sections 1.4.4 and 1.4.5.

See the RSX-11M/M-PLUS and Micro/RSX Executive Reference
Manual for further details on ASTs.

RSX-11M/M-PLUS INPUT/OUTPUT

1.7.3 QIO$C IO.DET - Detaching from an I/0 Device

IO.DET detaches a physical device wunit that has been previously
attached by an IO.ATT request. Issue the QIOS$C IO.DET macro as
follows:

QIOSC I0.DET,lun,[efn],[pri],[isb],[ast]
The parameters have the following meanings:
Parameter Meaning

lun The logical unit number of the associated physical device
unit. to be accessed by the I/0 request. For more
information refer to Sections 1.3 and 1l.4.1.3.

efn The number of the event flag to be associated with the QIOS$
operation. For more information refer to Section 1.4.1.4.

pri Makes RSX-11M/M-PLUS QIO$ requests compatible with RSX-11D.
An RSX-11M request assumes the priority of the requesting
task. Thus, a value of 0 (or a null) should be used for
this parameter.

isb . The address of the 1/0 status block (I/0 status double-word)
associated with the I/0 request. For more information refer
to Section 1.4.1.6.

ast Specifies the address of a service routine to be entered
when an asynchronous system trap occurs. If you want to
interrupt your task to execute special code upon completion
of this 1I/0 request, you may specify ast. When this I/O
request completes, control branches to the address specified
by ast at the software priority of the requesting task.
Omit ast or specify 0 to omit AST processing. For more
information refer to Sections 1.4.4 and 1.4.5.

The LUN specifications of both IO.ATT and IO.DET must be the same, as
in the following example, which also illustrates using S-forms of
several macro calls.

.MCALL ALUNSS,QIOSS
ALUNSS #14.,#"LP ; ASSOCIATE LINE PRINTER WITH LUN 14

QIOSS #I0.ATT, #14. ; ATTACH LINE PRINTER
LOOP: QIOSS #I0.RLB,#14.,... ; PRINT

QIOSS #I0.DET, #14. ; DETACH LINE PRINTER

—

N

RSX-11M/M-PLUS INPUT/OUTPUT

1.7.4 QIOSC IO.KIL - Canceling I/0 Requests

I0.KIL cancels the issuing task's 1I/0O requests for a particular
physical device unit.

For I/0 requests waiting for service (that is, in the I/0 driver's
queue), the Executive returns a status code of IE.ABO in the I/0
status block. An event flag is set, 1if specified. But any AST
service routine that you may have specified is not executed.

For I/O requests being processed by any 1/0 driver, except the disk or
DECtape . drivers, the Executive returns the IE.ABO status code. The
Executive also returns other status information (byte count, and so
on) in the I/0 status block. An AST, if specified, is executed.

If your task issues an IO.KIL for disk, DECtape, or DECtape II I/0
requests being processed, the IO.KIL acts as a NOP. The I/0O request
completes, except in the case in which a DECtape transfer is blocked
by a select error. Because disk and DECtape operate quickly, IO.KIL
causes the return of IS.SUC in the I/0 status block.

I0O.KIL is useful in such special cases as canceling an I/0 request on
a physical device unit from which a response is overdue (for example,
a read on a paper tape reader).

The QIOS$C IO.KIL macro has the following syntax:
QIOSC I0.KIL,lun,[efn],[pri],[isb],[ast]

The parameters have the following meanings:

Pérameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/0 request. For more
information refer to Sections 1.3 and 1.4.1.3.

efn The number of the event flag to be associated with the QIOS
operation. For more information refer to Section 1l.4.1.4.

pri Makes RSX-11M/M-PLUS QIO$ requests compatible with RSX-11D.
An RSX-11M request assumes the priority of the requesting
task. Thus, a value of 0 (or a null) should be used for
this parameter.

isb The address of the I/0 status block (I/0 status double-word)
associated with the I/0 request. For more information refer
to Section 1.4.1.6.

ast Specifies the address of a service routine to be entered
when an asynchronous system trap occurs. If you want to
interrupt your task to execute special code upon ' completion
of this I/0 request, you may specify ast. When this I/0
request completes, control branches to the address specified
by ast at the software priority of the requesting task.
Omit ast or specify 0 to omit AST processing. For more
information refer to Sections 1.4.4 and 1.4.5.

RSX-11M/M-PLUS INPUT/OUTPUT

1.7.5 QIO$C IO.RLB - Reading a Logical Block

Issue IO.RLB to read a block of data from the specified physical
device unit. The QIO$C IO.RLB macro has the following format:

QI0SC I0.RLB,lun, [efn7] ,<stadd,size,pn>

¢ | pri
;| isb
s LLast

The parameters have the following meanings:
Parameter Meaning

lun The logical unit number of the associated physical device
‘ unit to be accessed by the I/0 request. For more
information refer to Sections 1.3 and 1.4.1.3.

efn The number of the event flag to be associated with the QIOS$
operation. For more information refer to Section 1.4.1.4.

pri Makes RSX-11M/M-PLUS QIO$ requests compatible with RSX-11D.
An RSX-11M request assumes the priority of the requesting
task. Thus, a value of 0 (or a-‘null) should be used for
this parameter.

isb - The address of the I/0 status block (I/0 status double-word)
associated with the 1/0 request. For more information refer
to Section 1l.4.1.6.

ast Specifies the address of a service routine to be entered
when an asynchronous system trap occurs. If you want to
interrupt your task to execute special code upon completion
of this 1I/0 request, you may specify ast. When this I/0
request completes, control branches to the address specified
by ast at the software priority of the requesting task.
Omit ast or specify 0 to omit AST processing. For more
information refer to Sections 1.4.4 and 1.4.5.

stadd The starting address of the data buffer. The address must
be word aligned for certain drivers; otherwise, stadd may be
on a byte boundary.

size The size of the stadd buffer in bytes. The buffer must be
within the task's address space.

pn One to four optional parameters that specify such additional
information as block numbers for certain devices.

1.7.6 QIOSC I0.RVB - Reading a Virtual Block

I0.RVB reads a virtual block of data from the specified physical
device wunit. A "virtual" block indicates a relative block position
within a file and is identical to a logical block for such sequential,
record-oriented devices as terminals and card readers. For these
sequential, record-oriented devices, the Executive converts IO.RVB to
IO.RLB before it issues the QIOS.

NOTE

Any subfunction bits specified in the IO.RVB request
are stripped off in this conversion.

I \‘

RSX-11M/M-PLUS INPUT/OUTPUT

All tasks should use virtual rather than logical reads. However, if a
task issues a virtual read for a file-structured device (disk,
DECtape, or DECtape II), you must ensure that a file is open on the
specified physical device unit. 1Issue IO.RVB as follows:

QI0SC I0.RVB,lun, [efn™] ,<stadd,size,pn>

s | pri
;| isb
s Last

The parameters have the following meanings:
Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/0 request. For more
information refer to Sections 1.3 and 1.4.1.3.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Section 1.4.1.4.

pri Makes RSX-11M/M-PLUS QIO$ requests compatible with RSX-11D.
An RSX-11M request assumes the priority of the requesting
task. - Thus, a value of 0 (or a null) should be wused for
this parameter.

isb The address of the I/0 status block (I/0O status double-word)
: associated with the I1/0 request. For more information refer
to Section 1.4.1.6.

ast Specifies the address of a service routine to be entered
when an asynchronous system trap occurs. If you want to
interrupt your task to execute special code upon completion
of this 1I/0 request, you may specify ast. When this I/0
request completes, control branches to the address specified
by ast at the software priority of the requesting task.
Omit ast or specify 0 to omit AST processing. For more
information refer to Sections 1.4.4 and 1.4.5.

stadd The starting address of the data buffer. The address must
. be word aligned for certain drivers; otherw1se, stadd may be
on a byte boundary.

size The size of the stadd buffer in bytes. The buffer must be
within the task's address space.

pn One to four optional parameters that specify such additional
information as block numbers for certain devices.

1.7.7 QIO$C IO.WLB - Writing a Logical Block
I0.WLB writes a block of data to the specified physical device unit.

If the write goes to a terminal, the Executive converts the IO.WVB to
an IO.WLB request.

Note that any subfunction bits specified in the IO.WVB request (for
example, TF.CCO, TF.WAL, or TF.WBT) are stripped when the IO.WVB is
converted to an IO.WLB.

RSX-11M/M-PLUS INPUT/OUTPUT

The QIOSC IO.WLB macro has the following format:

QIOSC I0.WLB,lun, [efn7] ,<stadd,size,pn>

¢ | pPri
;| isb
7 ast

The parameters have the following meanings:

Parameter Meaning

lun

efn

pri

~isb

ast

stadd

size

pn

1.7.8

The logical unit number of the associated physical device
unit to be accessed by the 1I/0 request. For more
information refer to Sections 1.3 and 1.4.1.3.

The number of the event flag to be associated with the QIOS
operation. For more information refer to Section 1l.4.1.4.

Makes RSX-11M/M-PLUS QIOS$ requests compatible with RSX-11D.
An RSX-11M request assumes the priority of the requesting

task. Thus, a value of 0 (or a null) should be used for
this parameter.

The address of the I/0 status block (I/O status double-word)
associated with the I/O request. For more information refer
to Section-1.4.1.6.

Specifies the address of a service routine to be entered
when an asynchronous system trap occurs. If you want to
interrupt your task to execute special code upon completion
of this I/0 request, you may specify ast. When this I/O
request completes, control branches to the address specified
by ast at the software priority of the requesting task.
Omit ast or specify 0 to omit AST processing. For more
information refer to Sections 1.4.4 and 1.4.5.

The starting address of the data buffer. The address must

be word aligned for certain drivers; otherwise, stadd may be
on a byte boundary.

The size of the stadd buffer in bytes. The buffer must be
within the task's address space.

One to four optional parameters that specify such additional
information as block numbers or format control characters
for certain devices.

QIOS$C IO.WVB - Writing a Virtual Block

I0.WVB writes a virtual block of data to a physical device = unit. A

virtual

file.

block indicates a block position relative to the start of a

For sequential, record-oriented devices such as terminals and

line printers, the Executive converts IO.WVB to IO.WLB.

NOTE

Any subfunction bits specified in the I0.WVB request
(see Sections 2.3.1 and 3.3.1) are stripped off in
this conversion.

TN

RSX-11M/M-PLUS INPUT/OUTPUT

All tasks should use IO.WVB rather than IO.WLB to file-structured
devices. However, if you issue a virtual write for a file-structured
device (disk or DECtape II), you must ensure that a file is open on
the specified physical device unit. For record-oriented devices, you
should use IO.WLB.

Note that any subfunction bits specified in the IO.WVB request (for
example, TF.CCO, TF.WAL, or TF.WBT) are stripped when the IO.WVB is
~converted to an IO.WLB.

The QiO$C IO.WVB macro has the following format:

QIOS$C IO.WVB,lun, [efn”],<stadd,size,pn>

, | pri
;| isb
, Last

The parameters have the following meanings:
Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/0 request. A For more
information refer to Sections 1.3 and 1l.4.1.3.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Section 1.4.1.4.

pri Makes RSX-11M/M-PLUS QIO$ requests compatible with RSX-11D.
An RSX-11M request assumes the priority of the requesting
task. Thus, a value of 0 (or a null) should be used for
this parameter. '

isb The address of the I/0 status block (I/0 status double-word)
associated with the I/O request. For more information refer
to Section 1.4.1.6. ’

ast Specifies the address of a service routine to be entered
when an asynchronous system trap occurs. If you want to
interrupt your task to execute special code upon completion
of this I/O request you may specify ast. When this I1/0
request completes, control branches to the address specified
by ast at the software priority of the requesting task.
Omit ast or specify 0 to omit AST processing. For more
information refer to Sections 1.4.4 and 1.4.5.

stadd The starting address of the data buffer. The address must
be word aligned for certain drivers; otherwise, stadd may be
on a byte boundary. '

size The size of the stadd buffer in bytes. The buffer must be
within the task's address space.

pn One to four optional parameters that specify such additional
information as block numbers or format control characters
for certain devices.

RSX-11M/M-PLUS INPUT/OUTPUT

1.8 USER-MODE DIAGNOSTIC FUNCTIONS

The I/0 function code subfunction bit, IQ.UMD, provides support for
user-mode diagnostics. You can execute standard I/0 functions such as
Read Logical Block, Write Logical Block, Attach to Device, and Detach
from Device as user-mode diagnostics. To perform a diagnostic
function, you must specify in the QIO$ directive parameter block the
Logical OR of 1IQ.UMD and the function you want to perform. For
example, to perform a diagnostic Read Logical Block operation, specify
QIOSC IO.RLB!IQ.UMD,lun,... as the QIOS$ directive.

Support for user-mode diagnostics is always present for RSX-11M-PLUS,
but not all drivers support user-mode diagnostic functions.
Unpredictable device and driver behavior results when you set the
IQ.UMD subfunction bit in QIOSs that are directed to the device if it
does not support user-mode diagnostics. You can avoid problems if you
issue a Get LUN (GLUNS$) macro and check the user-mode diagnostics bit
before emitting the user-mode diagnostic QIOS.

For a device to support user-mode diagnostics, the DV.UMD bit in the
UCB must be set. DV.UMD is at offset U.CWl in the UCB.

In addition to standard I1I/0 functions, RSX-11M-PLUS provides the
following device-dependent, user-mode diagnostic functions:

1. Disk diagnostic functions

e IO.HMS Home seek or recalibrate
e I0.BLS ‘ Block seek (explicit seek)
e IO.OFF Offset position

e IO.RDH Read disk header

e IO.WDH Write disk header

e IO.WCK Writecheck
2. DECtape diagnostic functions
e IO.RNF . Read block number forward
e IO.RNR Read block number reverse
3. Magnetic tape diagnostic functions
e IO.LPC Read longitudinal parity character
e IO.ERS Erase tape
UMDIOS$ is the macro that defines these functions.
To execute a user-mode diagnostic function, you must first attach a
device for diagnostics by wusing I/0 function code IO.ATT!IQ.UMD.

Execute the diagnostic functions and then detach the device.

The parameter list in words 1 through 6 of the DPB should contain the
following information:

e I/0 buffer address.

e I/0 buffer size.

7 DN
\

TN

RSX-11M/M-PLUS INPUT/OUTPUT

e Offset factor for disks with offset recovery. To determine

the offset factor, refer to
hardware reference manual; this

the offset register in the
parameter is not used if the

device does not have offset recovery.

e Double-precision logical block number.

® Your task's register buffer address (the I/0 driver copies its

hardware registers to this

buffer in your program); see a

hardware reference manual for the length of the address.

A typical DPB for a diagnostic function
SDSKPB: :
«BYTE 3,12,

.WORD IO.WDH!IQ.UMD
-WORD THELUN

.BYTE THEEFN, 0
«WORD $I10STS

.WORD O
SIOBUF:: .WORD 0
.WORD O
.WORD 0
SLBH: : .WORD 0
SLBL:: +WORD 0

|e WE N WE e Ve WO W We We wo wo WO

-WORD SRGBUF

might look 1like this:

Size of the DPB, QIOW
directive code

I/0 function code

Logical Unit Number

Event flag number

I1/0 status block address

AST address

Buffer address

Transfer. size in bytes

Device dependent

High-order logical block number

Low-order logical block number

Register buffer address

The user-mode diagnostic functions return either Success (IS.SUC) or

Device Not Ready (IE.DNR). No other
error recovery is completely up to you.
logged in the error log.

error codes are returned. All
Any errors that occur are not

A typical program fragment, using the user-mode diagnostic functions,

might look like the following:

.MCALL UMDIOS,ALUNSS,QIOSS
UMDIOS ;

Define diagnostic functions

r
ALUNSS #14.,#"DM,#0 ; Associate DMO with lun 14

QIOSS #I0.ATT!IQ.UMD, #14. ; Attach DM for diagnostic I/0

QIO$S #I0.RDH!IQ.UMD,#$14.,,,,,<#SIOBUF,4$512.,,4LBH, 4LBL, #SRGBUF>

; Read disk header

QIOSS #I0.RLB!IQ.UMD, #14.,,,,,<#SIOBUF,#512.,,#LBH, #LBL, #SRGBUF>

; Read logical block

QIOSS #I0.DET!IQ.UMD,#14. ; Detach DM

.

RSX-11M/M-PLUS INPUT/OUTPUT

1.9 I/0 COMPLETION

When the system completes an I/O request, either successfully or
unsuccessfully, the Executive selects return conditions depending upon
the parameters included in the QIO$ macro call. There are three major
returns:

¢ The Executive declares a significant event when an 1I/0

operation completes execution. If you included an efn
parameter in the I/0 request, the corresponding event flag is
set.

@ If you included an isb parameter in the QIO$ macro call, the
Executive returns a code identifying the type of success or
failure. The code is in the low-order byte of the first word
of the I/0 status block at the location represented by isb.

This status return code is of the form IS.xxx (success) or
IE.xxx (error). For example, if the device accessed by the
I1/0 request is not ready, a status code of IE.DNR is returned
in 1isb. The section named Return Codes summarizes general
codes returned by most of the drivers described in this
manual.

If the isb parameter was omitted, the requesting: task cannot
determine whether the I/0 request was successfully completed.
A carry clear return from the directive itself simply means
that the directive was accepted and the 1I/0 request was
queued, not that the actual input/output operation was
successfully performed.

e If you specified an ast parameter in the QIO$ macro call, a
branch to the AST service routine beginning at the location

identified by ast occurs when the I/0 operation completes
execution.

1.9.1 Return Codes

The Executive recognizes and handles two kinds of status conditions
when they occur in I/0 requests:

® Directive conditions, which indicate the acceptance or
rejection of the QIOS$ directive itself

@ I/0 status conditions, which indicate the success or failure
of the I/0 operation

Directive conditions relevant to I/O operations may indicate any of
the following:

® Directive acceptance

e Invalid buffer specification
e Invalid efn parameter

e Invalid lun parameter

e Invalid DIC number or DPB size
® Unassigned LUN

e Insufficient memory

RSX-11M/M-PLUS INPUT/OUTPUT

The Executive returns a code indicating the acceptance or rejection of
a directive to the Directive Status Word at symbolic location $DSW.
You can test this 1location to determine the type of directive
condition.

I1/0 conditions indicate the success or failure of the 1I1I/0 operation
that you specified in the QIOS$ macro. I/0 driver errors include such
conditions as device not ready, privilege violation, file already
open, or write-locked device. If you include an isb parameter in the
QIOS$ directive, identifying the address of a two-word I/0O status
block, the Executive returns an I/0 status code in the low-order byte
of the first word of this block when an I/0 operation completes
execution. This code 1is a binary value corresponding to a sSymbolic
name of the form IS.xxx or IE.xxx. You can test the low-order byte of
the word symbolically, by name, to determine the type of status
return. The system object module library defines the correspondence
between global symbolic names and directive and I/0 completion status
codes. You may also obtain local symbolic definitions by the DRERRS
and IOERRS$ macros, which reside in the System Macro Library and are
summarized in Appendix B.

Binary values of status codes always have the following meanings:

Code Meaning
Positive (greater than 0) Successful completion
0 Operation still pending
Negatiﬁe Unsuccessful completion

A pending operation means that the I/0 request is still in the queue
of requests for the respective driver, or the driver has not yet
completely serviced the request.

1.9.2 Directive Conditions

Table 1-2 summarizes the directive conditions that your task may
encounter by issuing QIOS directives. The table lists acceptance
condition first, followed by error codes indicating various reasons
for rejection.

Table 1-2
Directive Conditions
Code Reason
IS.s0C Directive accepted

The first six parameters of the QIO$ directive were
valid, and sufficient dynamic memory was available
to allocate an I/0 packet.

IE.ADP Invalid address

The I/0 status block or the QIO$ DPB was outside of
the issuing task's address space or was not aligned
on a word boundary.

(continued on next page)

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-2 (Cont.)
Directive Conditions

Code Reason

IE.IEF Invalid event flag number
The efn specification in a QIO$ directive was less
than 0 or greater than 96.

IE.ILU Invalid logical unit number
The lun specification in a QIO$ directive was
invalid for the issuing task. For example, there
were only 5 logical unit numbers associated with
the task, and the value specified for lun was
greater than 5.

1IE.SDP Invalid DIC number or DPB size
The directive identification code (DIC) or the size
of the Directive Parameter Block (DPB) .was
incorrect; the legal range for a DIC is from 1
through 127, and all DIC values must be odd. Each
individual directive requires a DPB of a certain
size. If the size 1is not «correct for the
particular directive, this code is returned. The
size of the QIO$ DPB is always 12 words.

IE.ULN Unassigned LUN
The logical unit number in the QIO$ directive was
not associated with a physical device unit. Your
task may recover from this error by issuing a valid
Assign LUN (ALUNS) directive and then reissuing the
rejected directive.

IE.UPN Insufficient dynamic memory
There was not enough dynamic memory to allocate an
1/0 packet for the I/0 request. You can try again
later by blocking the task with a WTSE$ macro.
Note that WTSES$ is the only effective way for the
issuing task to block its execution, because other
directives usable for this purpose require dynamic
memory for their execution (for example, Mark Time
(MRKTS)) .

1.9.3 1I/0 Status Conditions

I/0 status is returned in a 2-word I/0 status block upon completion of
1/0 operation. The status may show a successful completion or an

the
error

The contents of the 2-word I/O status block is explained next:

The low-order byte of the first word receives a status code of
the form 1IS.xxx (success) or IE.xxx (error) when an I1I/0
operation completes execution.

The high-order byte of the first word 1is usually device
dependent.

The second word contains the number of bytes transferred or

processed if the operation is successful and involves reading
or writing.

RSX—llM/H-PLUS INPUT/OUTPUT

If the 1isb parameter of the QIO0O$ directive 1is omitted, this
information is not returned.

The following illustrates an example 2-word 1I/0 status block on
completion of a terminal read operation:

1 0 Byte

Word O 0 -10

1 Number of bytes read

where -10 is the status code for IE.EOF (end of file). If this code
is returned, it indicates that input was terminated by typing CTRL/Z,
which is the end-of-file termination sequence on a terminal.

To test for a particular error condition, your task generally should
compare the low-order byte of the first word of the I/O status block
with a symbolic value, as in the following:

CMPB #IE.DNR, IOSB

However, to test for certain types of successful completion of the I/0
operation, the entire word value must be compared. For example, ifua
carriage return terminated a line of input from the terminal, a
successful completion code of IS.CR 1is returned in the I/O status
block. If an Escape (or Altmode) character was the terminator, a code
of IS.ESC 1is returned. To check for these codes, your task should
first test the low-order byte of the first word of the block for
IS.SUC and then test the full word for IS.CC, IS.CR, IS.ESC, or
IS.ESQ. (Other success codes that must be read in this manner are
listed in Appendix B, Section B.1l.2.)

Note that both of the following comparisons test as equal because the
low-order byte in both cases is +1.

CMP #IS.CR,IOSB
CMPB $1S5.SUC, 1I0SB
In the case of a successful completion where the 'carriage return Iis

the terminal indicator (IS.CR), the following illustrates the status
block:

1 0 Byte
Word O 15 +1
1 Number of bytes read
(excluding the CR)

where 15 is the octal code for carriage return and +1 is the status
code for successful completion.

Table 1-3 summarizes status codes that may be returned in the 1I/0
status block specified in the QIO$ directive on completion of the I/0
request. The codes described in Table 1-3 are .general status codes
that apply to the majority of devices presented in subsequent
chapters. Error codes specific to only one or two drivers are
described only in relation to the devices for which they are returned.
Table 1-3 describes successful and pending codes first, then error
codes.

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-3
I/0 Status Conditions

Code

Reason

Is.suC

IS.PND

IE.ABO

IE.ALN

IE.BAD

IE.BBE

IE.BLK

Successful completion

The I/O operation specified in the QIO$ directive
was completed successfully. The second word of the
I/0 status block can be examined to determine the
number of bytes processed, if the operation
involved reading or writing.

I/0 request pending

The I/0 operation specified in the QIO$ directive
has not yet been executed. The I/O status block is
filled with O0s.

Operation aborted

The specified I/0 operation was canceled with
I0.KIL while in progress or while still in the I/0
queue.

File already open

The task attempted to open a file on the physical

device unit associated with the specified LUN, but
a file has already been opened by the issuing task

on that LUN.
Bad parameter

An invalid specification was supplied for one or
more of the device-dependent QIO$ parameters (words
6 - 11). For example, a bad channel number or gain
code was specified in an analog-to-digital
converter I/0 operation.

Bad block on device

One or more bad blocks were found. Data cannot be
written on or read from bad blocks.

Illegal block number

An invalid block number was specified for a
file-structured physical device unit. This code is
returned, for example, if block 4800 1is specified
for an RKO5 disk, on which legal block numbers
extend from 0 through 4799. ’

(continued on. next page)

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-3 (Cont.)
I/0 Status Conditions

Code

Reason

IE.BYT

IE.DAA

IE.DNA

IE.DNR

IE.EOF

IE.FHE

IE.IFC

Byte-aligned buffer specified

Byte alignment was specified for a buffer, but only
word (or double-word) alignment is legal for the
physical device unit. For example, a disk function
requiring word alignment was requested, but the
buffer was aligned on a byte boundary.
Alternatively, the 1length of a buffer was not an
appropriate multiple of bytes. For example, all
RP03 disk transfers must be an even multiple of
four bytes.

Device already attached

The physical device unit specified in an IO.ATT
function was already attached to the issuing task.
This code indicates that the issuing task has
already attached the desired physical device unit,
not that the unit was attached by another task.

Device not attached

The physical device unit specified in an IO.DET
function was not attached to the issuing task.

" This code has no bearing on the attachment status

of other tasks.
Device not ready

The physical device unit specified in the QIO$
directive was not ready to perform the desired I/0
operation. This code 1is often returned as the
result of an interrupt time-out; that is, a
reasonable amount of time has passed, and the
physical device unit has not responded.

End-of-file encountered

An end-of-file mark, record, or control character
was recognized on the input device.

Fatal hardware error

Controller is physically wunable @ to reach the
location where input/output is to be performed on
the device. The operation cannot be completed.

Illegal function

A function code that was invalid for the specified
physical device unit was specified in an 1I/0
request. This code 1is returned if the task
attempts to execute an invalid function or if, for
example, a read function is requested on an
output-only device, such as the line printer.

(continued on next page)

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-3 (Cont.)
I/0 Status Conditions

Code

Reason

IE.NLN

IE.NOD

IE.OFL

IE.OVR

IE.PRI

IE.SPC

File not open

The task tried to close a file on the physical
device unit associated with the specified LUN, but
no file was currently open on that LUN.

Insufficient buffer space

Dynamic storage space has been depleted, and not
enough buffer space was available to allocate a
secondary control block. For example, if a task
attempts to open a file, buffer space for the
window and file control block must be supplied by
the Executive. This code is returned when there is
not enough space for such an operation.

Device off line

The physical device unit associated with the LUN
specified in the QIO$ directive was not on line.
When the system was bootstrapped, a device check
indicated that this physical device unit was not in
the configuration.

Illegal read overlay request

A read overlay was requested and the physical

device unit specified in the QIO$ directive was not
the physical device unit from which the task was
installed. The read overlay function can be
executed only on the physical device unit from
which the task image containing the overlays was
installed.

Privilege violation

The task that issued a request was not privileged
to execute that request. For example, for the
UDC1ll and LPS1l1l devices, a checkpointable task
attempted to connect to interrupts or to execute a
synchronous sampling function.

Illegal address space The following conditions can
cause this error: ‘

e The buffer that your task requested for a read
or write operation was partially or totally
outside the address space of your task.

e You specified a byte count of 0.

® You specified TF.XCC and AST2 in the same QIOS
request. '

(continued on next page)

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-3 (Cont.)
I/0 Status Conditions

Code Reason

IE.VER Unrecoverable error

After the system attempted its standard number of
retries after an error occurred, the operation
still could not be completed. This code is
returned in the case of parity, CRC, or similar
errors,

IE.WCK Write check error

An error was detected during the check (read)
following a write operation.

IE.WLK Write-locked device

The task attempted to write on a write-locked
physical device unit.

1.10 POWER-FAIL RECOVERY PROCEDURES FOR DISKS AND DECTAPE

Power-fail recovery recommendations for various devices are included
in the following chapters. For disks and DECtape, power recovery ASTs
should be used. Before returning for normal I/0 operations, the AST
service routine should provide a sufficient time delay, for the disk
to attain normal operating speed before actually attempting read and
write operations.

If QIO$s are being used for disk or DECtape I/0 operations during
power-fail recovery, an IE.DNR error status may be returned if the
device is not up to operating speed when the request is issued. When
this error is returned, your task should wait for the device to attain
operating speed and attempt the I/0 operation again prior to reporting
an error, For example, an RKO05 disk may require approximately 1
minute to attain operating speed after a power failure.

1.11 RSX-11M DEVICES

Both RSX-11M and RSX-11M-PLUS support the devices listed in Table 1-4
except as indicated. DEC supplies drivers for each of these devices.
Table 1-4 1lists the physical name, the driver, and the device
description.

Table 1-4
Devices Supported by RSX-11M/M-PLUS
Physical Driver Description of Terminal
- 'Name
TT TTDRV ASR/KSR-33 and ASR/KSR-35 Teletypewriters
TT TTDRV All terminals supported by RSX-11M/M-PLUS,

including the LA-, LQP-, VTO05-, VT50-,
Vvr6l-, VT100-, VT200-, and RT02-series
terminals. See the Software Product
Description for your system.

(continued on next page)

1-43

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-4 (Cont.)

Devices Supported by RSX-11M/M-PLUS

Physical Driver Description of Terminal
Name Line Interface
TT TTDRV DH11 and DH11-DM11-BB Asynchronous
Communication Line Interface Multiplexer
TT TTDRV DHV11l and DHUll Asynchronous Communication
Line Interface Multiplexer
TT TTDRV pLll-A, DL11-B, DL1l1-C, DL11-D, DL1l-E and
DL11-W Asynchronous Communication Line
Interfaces
TT TTDRV DLV11-E, DLV11-F Asynchronous Communication
Line Interfaces ‘
TT TTDRV DZ1l and DZV1l Asynchronous Communication
Line Interface Multiplexer
TT TTDRV DZQll Q-Bus 4-Line Terminal Multiplexer
Physical Driver Description of Disk Device
Name)
DB DBDRV RP04, RP05, RP06 Pack Disk
DF DFDRV RF11/RS11 Fixed-Head Disk
DK DKDRV RK11/RK05 or RKO5F Cartridge Disk
DL DLDRV RLV12/RL0O1/RL02 Cartridge Disk
DM DMDRV RK611/RK06 or RKO7 Cartridge Disk
DP DPDRV RP11/RP02 or RP03 Pack Disk
DR DRDRV RM02, RMO03, RMO5 Pack Disk
DR DRDRV RM80, RP07 Fixed-Media Disk
DS DSDRV RS03/RS04 Fixed-Head Disk
DU DUDRV KDA50/UDAS50/RA80/RA81 Fixed-Media Disk
DU DUDRV KDA50/UDA50/RA60 Pack Disk
DU DUDRV RC25 Fixed-Media and Removable Cartridge
Disk Subsystem
DU DUDRV RD51/RD52 Fixed-Media Disk
DU DUDRV RX50 Flexible Disk
DX DXDRV RX11/RX01 Flexible Disk
DY DYDRV RX211/RX02 Flexible Disk
EM EMDRV ML-11 Fast Electronic Mass Storage Device

(continued on next page)

TN

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-4 (Cont.)

Devices Supported by RSX-11M/M-PLUS

Physical Driver Description of Tape Device
Name

DD DDDRV DL11/TU58 DECtape II

MS MSDRV TU80 Magnetic Tape Subsystem

MS MSDRV TSV05/TK25 Magnetic Tape Subsystem

MS MSDRV TS11l Magnetic Tape Subsystem

MT MTDRV TM11 Magnetic Tape Controller with
TE10,TUl0, or TS03 Drive (not supported in
Micro/RSX)

MM MMDRV RH11/70 Controller with TM02/03 Formatter
and TEl6, TUl6, or TU45 Drive (not
supported in Micro/RSX)

MM MMDRV RH11/70 Controller with TM03 Formatter and
TU77 Drive (not supported in Micro/RSX)

MU MUDRV TK50 Cartridge Tape Drive

MU MUDRV TU81 Tape Drive

Physical Driver Description of Cassette Device
Name
CcT CTDRV TAll Tape Cassette
CcT CTDRV TU60 Tape Cassette

Physical Driver Description of Line Printer

Name

LP LPDRV LP1l Controller with LP1l4, " LPOl, LPO2,
LPO4, LPO5, LPO6, LPO7, LP26, LP27 Line
Printers

LP LPDRV LPV11/LP25/LP26 Line Printers, LNOl/LNO3
Laser Printer

LP LPDRV LS11 Controller and Line Printer (not
supported in Micro/RSX)

LP LPDRV LV1l Controller with LVOl Line Printer (not
supported in Micro/RSX)

LP LPDRV LA180 Controller and Line Printer (not

supported in Micro/RSX)

(continued on next page)

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-4 (Cont.)

Devices Supported by RSX-11M/M-PLUS

Physical Driver Description of Card Reader
Name
CR CRDRV CR11/CM1l1l Card Reader (not supported in
Micro/RSX)
Physical Driver Description of Communication Line
Name Interface
XB XBDRV DAll-B Asynchronous Communication Line
Interface (RSX-11M support only)
XB XBDRV DAll-B Parallel Unibus Link (RSX-11M
support only)
XL XLDRV DL11-E Asynchronous Communication Line
Interface (not supported in Micro/RSX)
XL XLDRV DLV11-E Asynchronous Communication Line
Interface (not supported in Micro/RSX)
XC XMDRV DMC11 Synchronous Communication Line
Interface (not supported in Micro/RSX)
XE XEDRV RSX QIO DEUNA Driver
XP XPDRV DP11 Synchronous Communication Line
Interface (RSX-11M support only)
XQ XQDRV DQ11 Synchronous Communication Line
Interface (RSX-11M support only)
XU XUDRV DU1l1l Synchronous Communication Line
Interface (RSX-11lM support only)
XW XWDRV DUP11 Synchronous Communication Line
Interface (no supported in Micro/RSX)
Physical Driver Description of Analog-to-Digital
Name Converter
_AF AFDRV AFCll Analog-to-Digital Converter (RSX-11M
support only)
AD ADDRV ADOl1-D Analog-to-Digital Converter (RSX-11M
support only)
Physical Driver Description of Digital Controller
Name
uD UDDRV UDC1ll Universal Digital Controller (RSX-11M

support only)

(continued on next page)

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-4 (Cont.)

Devices Supported by RSX-11M/M-PLUS

Physical Driver Description of Laboratory
Name Peripheral System or Device
AR ARDRV AR1l Laboratory Peripheral System (RSX-11M
support only)
LS LSDRV LPS11 Laboratory Peripheral System (RSX-11M
support only)
LA LADRV LPAl1l1-K Laboratory Peripheral Accelerator
(not supported on Micro/RSX)
Physical Driver Description of Paper Tape Device
Name
PP PPDRV PCll Paper Tape Reader/Punch (not supported
on Micro/RSX)
PR PRDRV PR11 Paper Tape Reader (not supported on.
Micro/RSX)
Physical Driver Description of Industrial Control
Name Subsystem
IC ICDRV ICS/ICR Local and Remote Subsystems
(RSX-11M support only)
IS ISDRV DSS/DRS Digital Input and Output Subsystems
(RSX-11M support only)
Physical Driver Description of Null Device
Name
NL NLDRV Null device driver; a software construct to
eliminate unwanted output
Physical Driver Description of Graphic Subsystem
Name
GR GRDRV VT1ll Graphics Display System (RSX-11M
support only)
GR GRDRV VS60 Graphics Display System (RSX-11M

support only)

(continued on next page)

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-4 (Cont.)

Devices Supported by RSX-11M/M-PLUS

Physical Driver Description of K-Series
Name Laboratory Peripheral (Not Micro/RSX)
AAl11-K Digital-to-Analog Converter and
Display
AD11-K Analog-to-Digital Converter
AM11-K Multiple-Gain Multiplexer
DR11-K Digital I/0 Interface
KW1l1l-K Programmable Real-Time Clock
Physical Driver Description of Communications Device
Name
LR/LT LRDRV PCL11 Parallel Communications Link
(RSX-11M-PLUS support only)
LR/LT LRDRV PCL11-A/PCL11-B Receiver Port (RSX-11M-PLUS
support only)
Physical Driver Description of Device
Name
QA-Q2Z Any A physical name reserved for customer use
JA-JZ Any A physical name reserved for customer use

rd S

CHAPTER 2

FULL~DUPLEX TERMINAL DRIVER

2.1 INTRODUCTION

This chapter describes the use of the full-duplex terminal driver
(TTDRV.TSK) supplied with the RSX-11M-PLUS system or available as a
SYSGEN option for RSX-11M systems. This chapter contains descriptions
of all the QIO$ functions that you can use to read from or write to a
full-duplex terminal. Additionally, it contains a description of
terminal subfunctions that are specific to terminal drivers and that
modify the action of the QIO$ functions. You can combine the
subfunctions in a Logical OR with the QI0O$ function. Specific
programming circumstances are combined with the description of the
QIO$ function where they apply. A compact, half-duplex terminal
driver is also available on RSX-11lM systems only. It is described in
Chapter 3. :

Note that either terminal driver can be selected during RSX-11lM system
ge?eration. RSX-11M-PLUS systems use the full-duplex terminal driver
only.

Throughout the remainder of this chapter, references made to MCR can
generally be applied to other command line interpreters (for example,
DCL). 1In addition, the prompt displayed on a terminal in response to
invoking a command line interpreter is appropriate for the specific
command line interpreter in use. For example, when MCR is invoked,
the MCR prompt is displayed as follows: :

MCR>

2.1.1 Full-Duplex Terminal Driver

The full-duplex terminal driver described in this chapter works‘with a
wide variety of terminals. It contains the following features:

® Full-duplex operation

e Type-ahead buffering

® Eight-bit characters

® Detection of hard receive errors

e Increased byte transfer length (8128 bytes)
e Additional terminal characteristics

@ Additional terminal types

e Optional time-out on solicited input

FULL-DUPLEX TERMINAL DRIVER

® Device-independent cursor control
® Redisplay of prompt buffer when CTRL/R or CTRL/U is pressed

e Automatic XOFF character generation when a read is completed
while in half-duplex mode, if requested

® Autobaud speed detection

¢ Added hardware support

2.1.2 Terminals Supported by the Full-Duplex Terminal Driver

The full-duplex terminal driver supports a variety of terminal
devices, as listed in Table 2-1. Table 2-2 describes standard
_terminal interfaces. Subsequent sections describe each device in
greater detail.

Table 2-1
Supported Terminal Devices

Model Columns ' Lines/ Character Baud Uppercase Lowercase

: Screen 1 Set Range Send Receive
ASR-33/35 72 64 110
DTCO1 9600
KSR-33/35 72 64 110 _
LAl2 132 96 50-9600 yes yes
LA100 132 96 110-9600 yes yes
LA30-P 80 64 300
LA30-S : 80 64 110-300
LA34 132) 96 110-300 yes yes
LA36 | 132 64-96 110-300 yes yes 2
LA38 132 96 110-300 yes yes
LA120 132 96 50-9600 yes yes
LA180S 132 96 300-9600 yes
LQPO2 132/158 110-9600 :
LAS50 80/96/132 110-4800
LNO3 -4 1200-19200 yes
RTO02 64 1 64 110-1200
RT02-C 64 1 64 110-1200
VTO5B 72 20 64 110-2400 yes
VTS50 80 12 64 110-9600
VT50H 80 12 64 110-9600
VT52 80 24 96 110-9600 yes yes
VT55 80 24 96 110-9600 yes yes
VT61 80 24 96 110-9600 yes yes
VT100 80-132 24 96 50-9600 yes yes
VT101 80-132 24 96 50-19200 yes yes
VT102 80-132 24 96 50-9600 yes yes
VT105 80-132 24 96 50-19200 yes yes
VT125 80-132 24 96 50-9600 yes yes

1l. Applies only to video terminals.

2. Only for 96-character terminal. The terminal driver supports the
terminal interfaces summarized in Table 2-2. These interfaces are
described in greater detail in Section 2.17. Programming 1is
identical for all interfaces.)

4, Includes the DEC Multinational Character Set.

(continued on next page)

N

FULL-DUPLEX TERMINAL DRIVER

Table 2-1 (Cont.)
Supported Terminal Devices

Model Columns Lines/ Character Baud Uppercase Lowercase
Screen 1 Set Range Send Receive

VT131 80-132 24 96 50-19200 yes yes

VT132 80-132 24 96 3 50-19200 yes yes

VT220 80-132 24 94 3 50-19200 yes yes

VT 240 80-132 24 94 3 50-19200 yes yes

VT241 80-132 24 94 50-19200 yes yes

l. Applies only to video terminals.

3. Five character sets of 94 characters each. Includes the DEC
Multinational Character Set.

Table 2-2

Standard Terminal Interfaces
Model o Type
DH11l : 16-1line multiplexer 1 .
DHU11 ' Unibus 16-line asynchronous multiplexer
DHV11 8-line multiplexer 2
DH11-DM11-BB 16-line multiplexer with modem control 3
DJ11 16-line multiplexer
pLll-A/B/C/D/E/W éingle—line interfaces
DLV11-E/F | Single-line interfaces 4
DzZ1l 8-line multiplexer with modem control 4
DZQ1l1l Q-bus 4-line terminal multiplexer

1. Direct memory access (DMA) is supported in the full-duplex
terminal driver only.

2. Full duplex terminal driver only..

3. Full-duplex control only. For example, in the United States,
a Bell 103A-type modem provides full-duplex control only.

4, DLV11 support with modem control 1is provided in the
full-duplex terminal driver only.

Terminal input lines can have a maximum length of 8128 (8K minus 64)
bytes. Extra characters of an input line that exceed the maximum line

‘length generally become an unsolicited input line if the ' terminal is

not attached with the type-ahead buffering feature enabled. The
full-duplex terminal driver discards all unsolicited input from an
unattached, slave terminal.

2.1.,2.1 ASR-33/35 Teletypewriters - The ASR-33 and ASR-35
Teletypewriters are asynchronous, hardcopy terminals. No paper-tape
reader or punch capability is supported.

FULL-DUPLEX TERMINAL DRIVER

2.1.2.2 KSR-33/35 Teletypewriters - The KSR-33 and KSR-35
Teletypewriters are asynchronous, hardcopy terminals.

2.1.2.3 LAl2 Portable Terminal - The LAl2 is a personal, portable,
hardcopy terminal.

2.1.2.4 LAl100 DECprinter - The LAl100 is a desk-top, matrix, hardcopy
terminal.

2.1.2.5 LA30 DECwriters - The LA30 DECwriter is an asynchronous,
hardcopy terminal that 1is capable of producing an original and one
copy. The LA30-P is connected by a parallel line and the LA30-S is
connected by a serial line.

2.1.2.6 LA36 DECwriter - The LA36 DECwriter is an asynchronous
terminal that produces hard copy and operates in serial mode. It has
an impact printer capable of generating multipart and special
preprinted forms. The LA36 can receive and transmit both uppercase
and lowercase characters.

2.1.2.7 LA34/38 DECwriters - The LA34 DECwriter is an asynchronous

terminal that produces hard copy and uses a platen paper-feed
mechanism.

The LA38 DECwriter includes a detachable tractof—feed mechanism for
use with continuous forms.

2.1.2.8 LAl120 DECwriter - The LAl20 DECwriter is a hardcopy,
uppercase and lowercase terminal, It can print multipart forms at
speeds up to 180 characters per second. You can select serial
communications speed from 14 baud rates ranging from 50 to 9600 bps;
the terminal driver supports split transmit and receive baud rates.
Hardware features allow bidirectional printing for maximum printing
speed, and also allow you to select features, including font size,
line spacing, tabs, margins, and forms control. Also, you can set up
these functions if you 1issue appropriate ANSI-standard escape
sequences.

2.1.2.9 LAl180S DECprinter - The LA180S DECprinter is a serial version
of the LA180. It is a print-only device (it has no keyboard) that can
generate multipart forms. The LAl1l80S can print uppercase and
lowercase letters.

2.1.2.10 LQP02 Letter-Quality Printer - The LQP02 Letter-quality
Printer is a formed-character, desktop printer incorporating
daisywheel technology. This letter-quality printer offers over 100
character sets and handles reqgular office stationery up to a maximum
of 15 inches (with a print capacity 13.5 inches). You can select
lines per inch and characters per inch: 10 or 12 characters per inch
and 2, 3, 4, 6, and 8 lines per inch. At 10 characters per inch you

2-4

7 s,

FULL-DUPLEX TERMINAL DRIVER

get 132 columns, and at 12 characters per inch you get 158 columns.
The buffer capacity is 256 (decimal) characters.

2.1.2.11 LAS0 Personal Printer - The LA50 Personal Printer is a

- desktop dot-matrix impact printer. It has two print modes: text mode

and enhanced print mode. 1In text mode, it prints 100 characters per
second. In enhanced print quality mode, it prints 50 characters per
second and creates a crisper, more uniform character than an ordinary
dot-matrix printer. You can choose 10, 12, or 16 characters per inch
that print up to 80, 96, or 132 columns respectively. There can be 6,
8, or 12 1lines per inch. The buffer capacity is 255(decimal)
characters. :

2.1.2.12 RTO02 Alphanumeric Display Terminal and RT02-C Badge

Reader/Alphanumeric Display Terminal - The RT02 is an
alphanumeric display terminal for applications in which source data is
primarily numeric. A shift key permits the entry of 30 discrete
characters, including uppercase alphabetic characters. The RT02 can,
however, receive and display 64 characters.

The RT02-C model also contains a badge reader. This option provides a
reliable method of identifying and controlling access to the PDP-11
minicomputer or to a secure facility. Furthermore, data in a format
corresponding to that of a badge (22-column fixed data) can be entered
quickly.

2.1.2.13 VTOS5B Alphanumeric Display Terminal - The VTO5B is an
alphanumeric display terminal that consists of a CRT display and a
self-contained keyboard. The VTO05B offers direct cursor addressing.

2,1.2.14 VTS50 Alphanumeric Display Terminal - The VT50 is an
alphanumeric display terminal that consists of a CRT display and a
keyboard. It is similar to the VTO5B in operation, but does not offer
direct cursor addressing.

2.1.2.15 VT50H Alphanumeric Display Terminal - The VT50H is an
alphanumeric display terminal with CRT display, keyboard, and numeric
pad. It offers direct cursor addressing, but 1its direct cursor
addressing is not compatible with that of the VTOS5B.

2.1.2.16 VT52 Alphanumeric Display Terminal - The VT52 is an
uppercase and lowercase alphanumeric terminal with CRT display. It
also has a numeric pad and direct cursor addressing. The VT52's
direct cursor addressing is compatible with that of the VT50H, but not
with that of the VT05B. The VT52 can be configured with a built-in
thermal printer.

2,1.2.17 VT55 Graphics Display Terminal - The VT55 is similar to the
VT52 1in 1its operation as an alphanumeric terminal. The VT55 offers
graphics display features that are accessible by a task.

FULL-DUPLEX TERMINAL DRIVER

2.1.2.18 VT61 Alphanumeric Display Terminal - The VT61 is an
uppercase and lowercase alphanumeric terminal with an integral
microprocessor. It offers two 128-member character sets and numerous
built-in functions for editing and forms preparation as well as a
block-transfer mode.

2.1.2.19 VT100 DECscope - The VT100 DECscope is an uppercase and
lowercase alphanumeric keyboard and video display terminal. It can
display 24 lines of 80 to 132 characters per line. You can select
serial communications speed from baud rates ranging from 50 to 9600
bps. Hardware features allow you to select display characteristics
and functions including smooth scroll, reverse video, and so forth.
The system also sets up these functions if you issue appropriate
ANSI-standard escape sequences.

2.1.2.20 VT101 DECscope - The VT101 DECscope is functionally
identical to the VT100. However, it does not support the advanced
video features.

2.1.2.21 VT102 DECscope - The VT102 DECscope is functionally
identical to the VT100. However, it does not have any expansion
capability and does not support the advanced video features. It has
enhanced modem control, and it includes a port for a printer.

2.1.2.22 VT105 DECscope - The VT105 DECscope is an alphanumeric and
graphic display video terminal. The VT105 can display two graphs, two
shaded graphs, or two strip charts. These graphs may have
alphanumeric labels.

2.1.2.23 VT131l DECscope - The VT131l is the same as the VT102 with the
addition of built-in editing features.

2.1.2.24 VT220 Terminal - The VT220 Terminal 1is a general-purpose
video display terminal displaying 24 rows of 80 or 132 columns. It
has ANSI compatible control functions; user-definable function keys;
video reverse, bold, underline, blink, double height/double width line
attributes; and can run in VT100, VT200 7-bit, VT200 8-bit, and VT52
mode. Setup state allows you to configure the terminal and examine
its status.

2,1.2.25 VT240 Terminal - The VT240 Terminal 1is a general-purpose
video display terminal displaying 24 rows of 80 or 132 columns. It
has: ANSI compatible control functions; user definable function keys;
video reverse, bold, underline, blink, double height/double width line
attribute; and can run in VT100, VT200 7-bit, VT200 8-bit, VT52 mode,
4014 mode (Tektronic (c) 4010/4014), and ReGIS graphics mode. Set-up
state allows you to configure the terminal and examine its status.
The VT240 has graphics capability to draw points, vectors, circles,
arcs, and curves.

FULL-DUPLEX TERMINAL DRIVER

2.1.2.26 VT241 Terminal - The VT241 Terminal is functionally

identical to the VT240 terminal except that the VT241 has a color
monitor.

2.2 GET LUN INFORMATION MACRO

The Get LUN information directive (GLUNS) instructs the system to fill
a 6-word buffer with information about the physical device unit to
which the LUN is assigned. For more information about this directive,
refer to Get LUN in the RSX-11M/M-PLUS and Micro/RSX Executive
Reference Manual. The following section describes the information
that Get LUN makes available for terminals in word 2 of the buffer.

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the terminal
information shown in Table 2-3. A setting of 1 indicates that the
described characteristic is true for terminals. ‘

Table 2-3
Word 2 of the Get LUN Macro Buffer
Bit Setting Meaning B
0 1 Record-oriented device
1 1 | Carriage-control device
2 1 Terminal device
3 0 File-structured device
4 0 Single-directory device
5 0 Sequential device
6 0 Mass storage device
7 0 User-mode diagnostics supported
0 Device supports 22-bit direct addressing
0 Unit software write-locked
10 0 Input spooled device
11 0 Output spooled device
12 0 Pseudo device
13 0 Device is mountable as a communications
channel
14 0 Device is mountable as a FILES-11 volume
15 0 Device is mountable

Words 3 and 4 of the buffer are undefined. Word 5 indicates the

default buffer size (the width of the terminal carriage or display
screen) .

FULL-DUPLEX TERMINAL DRIVER

2.3 QIOS$ MACRO

Standard QIO$ functions may be used with any device, whereas
device-specific QIO$ functions apply only to specific devices or uses.

2.3.1 Format of QIO$SC for Standard Functions
The QIO$ macros for standard functions take the following forms:
!IO.ATT} Ry

QIOSC {!IO.DET
1I0.KIL

- f1I0.RLB eesy<stadd,size,,[tmo]>
QIO$C { } ’ [14 e
1I0.RVB
I1IO.WLB) ,...,<stadd,size,vfc>
QIOSC {, }
1I0O.WVB

2.3.2 Format of QIOSC for Device-Specific Functions
The QIOS$ macro for device-specific functions take the following forms:
QIOSC IO.ATA,...,<ast,[parameter2],[ast2]>
QIOSC IO.CCO,...,<stadd,sizé,vfc>
QIOSC I1I0.EIO,...,<stadd,size>
QIOSC IO.HNG,...,

v !IO.RAL} ,...,<stadd,size,ttmo]>
Q10%¢C {!IO.RNE

QIOSC IO.RPR,...,<stadd,size,[tmo],pradd,prsize,vfc>
QIOS$C IO.RST,...,<stadd,size,[tmo]>

QIOSC IO.RTT,...,<stadd,size,[tmo] ,table>

'TO.WAL\ ,...,<stadd,size,vfc>
QIO$C | 110.WBT

I1SF.GMC eeoy<stadd,size>
Qrosc {!IO.GTS} et ’

QIOSC SF.SMC,...,<stadd,size>

Table 2-4 lists the standard and device-specific functions of the QIO
macro that are valid for terminals. The ‘standard functions are
described in Chapter 1. Some device-specific functions are options
that may be selected during system generation. Two device-specific
functions, SF.SMC and SF.GMC, have nonstandard function names.

FULL-DUPLEX TERMINAL DRIVER

Table 2-4

Standard and Device-Specific QIO Functions for Terminals

Format

Function

STANDARD FUNCTIONS:

READ FUNCTIONS

QIOSC I0.RLB,...,<stadd,size,[tmo]>

QIOS$C IO0.RVB,...,<stadd,size,[tmo]>

WRITE FUNCTIONS

QIOSC IO.WLB,...,<stadd,size,vfc>

QIOSC I0.WVB,...,<stadd,size,vfc>

ATTACH, DETACH, AND CANCEL FUNCTIONS

QIOS$C IO.ATT,...
QIOS$C IO.DET,...

QIO$C I0.KIL,...

DEVICE-SPECIFIC FUNCTIONS:

READ FUNCTIONS

QIOSC IO.RAL,...,<stadd,size,[tmo]>
QIOSC IO.RNE,...,<stadd,size,[tmo]>

QIOSC IO.RPR,...,<stadd,size,[tmo],
pradd,prsize,vfc> 1

QIOSC I1I0.RST,...,<stadd,size,[tmo]>

QIOS$C IO.RTT,...,<stadd,size,[tmo],
table>

Read logical block (read
typed input into
buffer).

Read virtual block (read
typed input into
buffer).

Write logical block
(print buffer contents).

Write virtual block
(print buffer contents).

Attach device.
Detach device.

Cancel I/0 requests.
(continued on next
page) Table 2-4
(Cont.) Standard QIO
Functions for
Terminals

Read logical block;
pass all charcters.

Read logical block; do
not echo.

Read logical block
after prompt.

Read logical block
ended by special
terminators.

Read logical block
ended by specified
special terminators.

1. System generation options in RSX-11M.

2-9

(continued on next page)

FULL-DUPLEX TERMINAL DRIVER

Table 2-4 (Cont.)

Standard and Device-Specific QIO Functions for Terminals

Format

Function

WRITE FUNCTIONS

QI0S$C IO.WAL,...,<stadd,size,vfc>

QIO$C IO.WBT,...,<stadd,size,vfc> 1

MISCELLANEOUS FUNCTIONS

QIOSC IO.ATA,...,<ast,[parameter2]

QI08C

QIOSC IO.EIO {

QIOSC

QIOSC IO.HNG,...

, [ast2]>

10.CCO,...,<stadd,size,vfc>

!TF.RLB}) oee,<stadd,size> 1
ITF .WLB

I0.GTS,...,<stadd,size> 1

QIOS$C SF.GMC,...,<stadd,size> 1

QIOS$C SF.SMC,...,<stadd,size> 1

Write logical block;
pass all characters.

Write logical block;
break through any I/0

conditions at
terminal.

Attach device, specify
unsolicited input-
character AST,

Cancel CTRL/O (if ‘in
effect), then write
logical block.

Extended I/0.

Get .terminal support.
Hang up remote line.

Get multiple
characteristics.

Set multiple

characteristics.
1. System generation options in RSX-11lM.
2.3.3 Parameters
The parameters for the various QIO$ macros have the following

meanings:
Parameter
ast

ast2

efn

isb

Meaning

The entry point for a CTRL/C AST.

The number of the event flag to be associated with the
operation.

The entry point for an unsolicited input-character AST.

QIOS

For more information refer to Chapter 1.

to Chapter 1.

The address of the I/0 status block (I/0O status double-word)

associated with the I/O request. For more information refer

Parameter

lun

FULL-DUPLEX TERMINAL DRIVER

Meaning

The logical unit number of the associated physical device
unit to be accessed by the 1I/0 request. For more
information refer to Chapter 1.

parameter2 A number that you can specify in your task to identify this

pradd
pri

prsize

size

stadd

table

vfc

terminal as the input source when an unsolicited character
AST routine is entered.

The starting address of the byte buffer where the prompt is
stored.

Makes this QIO$ macro compatible with RSX-11D. Use a value
of 0 or a null for this parameter.

The size of the pradd prompt buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128
bytes. The buffer must be within the task's address space.

The size of the stadd data buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128
bytes. The buffer must be within the task's address space.
For 1I0.EIO, SF.GMC, IO0.GTS, and SF.SMC functions, size must
be an even value.

The starting address of the data buffer. The address must
be word-aligned for I0.EIO, SF.GMC, 1I0.GTS, and SF.SMC;
otherwise, stadd may be on a byte boundary.

The address of the 1l6-word user-defined terminator table.

An optional time-out count specified in 1l0-second intervals.
(For IO.EIO, the interval is specified in seconds.) Time-out
is the maximum time allowed between two input characters
before the read is aborted. The maximum time-out value is
255 (decimal) intervals.

If 0 is specified, the read times out immediately after
reading any data that may be in the type-ahead buffer. In
other words, if you enter a 0, no time is allowed for you to
enter characters, and all characters are read from the
type-ahead buffer.

If you need more than 255 (decimal) intervals (or
255 (decimal) seconds for IO.EIO), issue an asynchronous QIOS$
request followed by a Mark Time directive (MRKTS) for the
required interval. Specify different event flags in the two
directives and, after issuing them, wait for the logical OR
of the two event flags.

The vfc parameter normally specifies cursor position.

If the parameter defines cursor position, the high byte must
be a nonzero number. The low byte is interpreted as column
number (x-coordinate), and the high byte is interpreted as
line number (y-coordinate). Home position, the upper left
corner of the display, is defined as (1,1). The driver
outputs cursor-positioning commands appropriate for the
terminal in use that move the cursor to the specified
position. If the most significant bit of the line number is
set, the driver clears the display before positioning the
cursor.

FULL-DUPLEX TERMINAL DRIVER

Parameter Meaning
vfic However, the parameter is interpreted as a vertical forms
(Cont.) control (vfc) parameter if its high byte is 0. See Section

2.8 for more information about the characters your task can
use for vertical format control on the terminal. Any one of
these characters can be specified as the value of the vfc
parameter.

Terminal-independent cursor control capability is provided
at system generation time. The terminal driver responds to
task I/0 requests for cursor positioning without the task
requiring information about the type of terminal in use.

2.3.4 Subfunction Bits

The terminal-specific functions described in this section are selected
by wusing subfunction bits. A subfunction bit further modifies the
action of an I/O function. A subfunction bit is specified by the name
TF.xxx, and an I/0 function is specified by the name IO0.xxx, where xxx
in each case is an. acronym that represents the specific kind of
function requested.

As an example, a QIO$ function to a terminal to request a read with no
echo (IO.RNE) can be modified to read all characters. The "read all
characters" subfunction bit is TF.RAL. To modify the function, you
perform a logical OR of the subfunction bit with the QIO$ function in
the QIO$ statement. To create the logical OR of the bit and the
function, in this example, the QIOS$ statement would look like this:

QIOS$ IO.RNE!TF.RAL,.cee e

See Section 2.4.2 for a 1listing of QIO$ functions and relative
subfunction bits that can be issued. :

Each subfunction bit is listed with its symbolic name and meaning as
follows: :

Subfunction Meaning

TF.AST Unsolicited-Input-Character AST - For I0.ATT or
IO.ATT!TF.ESQ, ast in the QIO$ macro specifies the
address of an AST service routine to be entered when an
unsolicited input character is entered. Control passes
to ast whenever an unsolicited character (other than
CTRL/Q, CTRL/S, CTRL/X, or CTRL/O) is entered at the
terminal.

TF.BIN Binary Prompt (Send Prompt As Pass All) - The prompt is
sent to the terminal without interpretation by the
driver. This is similar, for the prompt, to a
write-pass-all operation.

TF.CCO Cancel CTRL/0O - The driver writes a logical block of
data to the terminal regardless of a CTRL/O condition
that may be in effect. 1If CTRL/O is in effect, it is
canceled before the write occurs.

TF.ESQ Recognize Escape Sequences - Escape sequences from the
terminal are returned to the task. Otherwise, ESC is a
line terminator. The subfunction TF.ESQ is for use
with IO.ATA or IO.ATT!TF.AST.

Subfunction

TF.NOT

TF.RAL

TF.RCU

TF.RDI

TF .RES

TF.RLB

TF.RLU

TF.RNE

FULL-DUPLEX TERMINAL DRIVER

Meaning

Notification Of Unsolicited Input - Unsolicited input
causes an AST and entry into the AST service routine in
the task. = When the full-duplex terminal driver
receives unsolicited terminal input (except CTRL/C) and
you used the TF.NOT subfunction with I0.ATA, the
resulting AST serves only as notification of
unsolicited terminal input; the terminal driver does
not pass the character to the task. Upon entry to the
AST service routine, the high byte of the first word on
the stack 1identifies the terminal causing the AST
(parameter2 in the IO0.ATA function).

Using the TF.NOT subfunction allows a task to monitor
more than one terminal for unsolicited input without
continuously reading each terminal for possible
unsolicited input. Note that the TF.NOT subfunction
cannot be used with the CTRL/C AST (ast2 in IO.ATA); an
unsolicited CTRL/C character flushes the type-ahead
buffer.

Read BAll Characters (Pass All) - This subfunction
allows the passage of all characters to the requesting
task. The driver does not intercept control
characters. The characteristic TC.8BC, when set,
allows the driver to pass 8 bits. For example, CTRL/C,
CTRL/Q, CTRL/S, CTRL/0, and CTRL/Z are passed to the
task and are not interpreted by the driver.

Restore Cursor Position - When defining cursor position
in a function, you can use the TF.RCU subfunction to
save the current cursor position. TF.RCU causes the
driver - first to save the current cursor position, then
to position the cursor and output the specified buffer,
and, finally, to restore the cursor to the original
(saved) position once the output transfer has been

“completed.

Read With Default Input - The default input that you
specified in the extended I1/0 item list is displayed as
an input line at the start of the read on the terminal.
You may change this 1line or use it as input to the
system. This subfunction is for use with the extended
I1/0 function (IO.EIO) only.

Read With Escape Sequence Processing Enabled - This
subfunction enables escape sequence recognition for the
read operation in extended 1/0; it 1is effective for
only one read.

Read Logical Block - This subfunction causes the driver
to read a logical block from the specified terminal; it
is for use with the extended 1I/0 (I0.EIO) function
only.

Read With Lowercase to Uppercase Conversion - The task
that uses this subfunction gets input in the buffer in
upper case; it 1is for wuse with the extended 1I/0
(I0O.EI0) function only. '

Read With No Echo - This subfunction reads terminal
input characters without echoing the characters back to
the terminal for immediate display. You can -use this
feature when typing sensitive information. CTRL/R. is
ignored while Read With No Echo is in progress.

2-13

Subfunction

TF .RNF

TF.RPR

TF.RPT

TF.RST

FULL-DUPLEX TERMINAL DRIVER

Meaning

Read With No Filter - This subfunction reads and passes
through CTRL/U, CTRL/R, and DELETE characters as normal
characters. It 1is for wuse with the extended 1I/0
(I0.EIO) function only.

Read After Prompt - This subfunction is for wuse with
the extended 1/0 only. The TF.RPR subfunction causes
the driver to send a prompt to the terminal, and the
driver immediately follows the prompt with a read
function at the terminal. The TF.RPR acts as an IO.WLB
(to write a prompt to the terminal) followed by IO.RLB.
However, TF.RPR differs from the combination of those
two functions as follows:

® System overhead is lower with the TF.RPR because
only one QIO$ is processed.

e When using the TF.RPR function, there is no
"window" during which a response to the prompt may
be ignored. Such a window occurs if the task uses
I0.WLB followed by an IO.RLB, because no read may
be posted at the time the response is received.

e If the issuing task is checkpointable, it can be
checkpointed during both the prompt and the read
requested by the TF.RPR.

e A CTRL/O that may be in effect prior to issuing the
TF.RPR is canceled before the prompt is written.

NOTE

If a TF.RPR function is in progress when the
driver receives a CTRL/R or CTRL/U, the prompt
is redisplayed.

Read In Pass-Through Mode - This subfunction passes all
characters except XON/XOFF. It allows the passage of

all characters to the requesting task. The
characteristic TC.8BC, when set, allows the driver to
pass eight bits instead of seven. The driver

intercepts the control characters CTRL/S and CTRL/Q.
Other control characters, for example, CTRL/C, CTRL/O,
and CTRL/Z, are passed to the task and are not
interpreted by the driver. This subfunction is for use
with the extended 1/0 (I0.EIO) function only.

Read With Special Terminators - Special characters in
the ranges 0-037 and 175-177 terminate the read. The
driver does not interpret the terminating character.
For example, a DELETE or RUBOUT (177) does not erase,
and a CTRL/C does not produce a CLI prompt, or, if
CTRL/C abort is enabled, abort tasks. CTRL/U and
CTRL/R do not perform their wusual functions either.
All control characters are terminators.

TF.RST sets TF.TNE by default, which means that
terminators are not echoed on the terminal screen.

If wuppercase to lowercase conversion 1is disabled,
characters 175 and 176 do not act as terminators.
CTRL/O, CTRL/Q, and CTRL/S (017, 021, and 023,
respectively) are not special terminators. The driver
interprets them as output control characters in a
normal manner.

2-14

VRN

Subfunction

TF.RTT

TF.TMO

FULL-DUPLEX TERMINAL DRIVER

Meaning

Read With Terminator Table - This 'subfunction is for
use with the I0.EIO extended 1/0 function only.
Control characters function normally with TF.RTT.
Terminators echo by default. The additional use of

“subfunction TF.TNE prevents the echoing of terminators

on the terminal screen. If you want to use special
control characters as terminators, their normal
function should be disabled with the subfunction TF.RNF
or TF.RAL, or the characteristic TC.PTH. The
terminator table (a bit mask table) length can be from
1 through 32(decimal) bytes, where bit 0 is a null

. character, bit 1 is a CTRL/A, and so forth. The

terminator table address is in the item 1list of the
IO.EIO function. To use ASCII characters 128 (decimal)

through 255(decimal), the characteristic TC.8BC must be
set.

Read With Time-Out - This subfunction allows the use of
the tmo parameter to require input from the terminal
within a specified time.

Specify the time-out count in 1l0-second intervals.
(For I0.EIO, the interval 1is specified in seconds.)
Time-out is the maximum time allowed between two input
characters before the read is aborted. The maximum
time-out value is 255 (decimal) intervals.

If 0 is specified, the read times out immediately after
reading any data that may be in the type-ahead buffer.
In other words, if you enter a 0, no time is allowed

- for you to enter characters, and all characters are

TF.TNE

TF .WAL

read from the type-ahead buffer.

If you need more than 255(decimal) intervals (or
255 (decimal) seconds for I0.EIO), issue an asynchronous
QIOS$ request followed by a Mark Time directive (MRKTS)
for the required interval. Specify different event
flags in the two directives and, after 1issuing then,
wait for the logical OR of the two event flags.

Read Terminators With No Echo - This subfunction allows
reading terminator characters from the terminal without
their being echoed on the terminal screen as they are
entered. It is for use with the extended I/0 function
(I0O.EIO) only.

Write All Characters - During a write-pass-all
operation (as in IO.WAL or IO.WLB!TF.WAL), the terminal
driver outputs characters without interpretation. It

does not intercept control characters, and it does not
keep track of cursor position, Long lines are not
wrapped around if input/output wraparound has been
selected.

FULL-DUPLEX TERMINAL DRIVER

Subfunction) Meaning

TF .WBT Break-through Write - This subfunction instructs the
driver to write the buffer regardless of the I/0 status
of the receiving terminal. If another write function
is currently in progress, it finishes the current
request and the break-through write is the next write
issued. Therefore, the TF.WBT subfunction cannot break
through another break-through write that is in
progress. The effect of this is that a CTRL/S can stop
break-through write functions. Thus, it may be
desirable for tasks to time out on break-through
operations.

If a read is currently posted, the break-through write
proceeds, and an automatic CTRL/R redisplays any input
that was received before the break-through write was
effected (if the terminal 1is not in the full-duplex
mode) .

CTRL/O, if in effect, is canceled.
An escape sequence that was interrupted is rubbed out.

Break-through write may be issued by a privileged task
only. (The privileged MCR command BRO (broadcast) uses
I0O.WBT.)

TF.WIR Write With Input Redisplayed - This subfunction
performs a write to the terminal. 1If a read is in
progress at the terminal and you have entered
characters in the input 1line, the prompt and the
characters are redisplayed at the end of the write.

TF .WLB Write Logical Block To The Specified Device
Unit - Write 1logical block to the specified terminal.
This subfunction is used with the extended 1/0 (I0.EIO)
function only.

TF .XCC Exclude CTRL/C or Abort Active Tasks - For use with the
I0.ATA function. When TF.XCC is included in the IO.ATA
function, all characters (except CTRL/C) are handled in
the manner previously described. CTRL/C marks the
beginning of a command line interpreter (CLI) line that
is processed by a CLI task, or, if CTRL/C abort is
enabled, aborts tasks active at the terminal. None of
the characters, including the CTRL/C, are sent to the
task issuing the function.

Note that you can use either ast2 or TF.XCC, but not
both in the same QIO request. If both are specified in
the request, an IE.SPC error is returned.

TF . XOF Send XOFF - The driver sends an XOFF to the terminal
after its read. The XOFF (CTRL/S) may have the effect
of inhibiting input from the terminal, if the terminal
recognizes XOFF for this purpose. TF.XOF is ignored
when full-duplex I/0 is in use.

See Section 2.4.2 for a list of bits that can be combined in a logical
OR with QIO$ functions. If a task invokes a subfunction bit that is
not supported on the system, the subfunction bit is <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>