
Volume 2, Number 1.

13th January, 1969.

UNIVERSITY OF QUEENSLAND

COMPUTER CENTRE

COMPUTER

CENTRE

BULLETIN

Editor:

H. L. Smythe.

'j ,~

I' , ,

EDITORIAL COMMENT

This Bulletin is the first issue of Volume 2 for 1969. I would

sincerely like to thank those who contributed articles and ideas towards

Volume l~ and those who have shown interest and enthusiasm in the

production of the BUlletin.

Last year~ there was a considerable number·of "teething" problems

that delayed publication~ and I apologise for th~se delays. Many of these

difficulties have now been remedied~ so that the production of the Bulletin

should function more smoothly this year.

The Bulletin is distributed according to two separate mailing lists~

one listing organisations and departments ~ the· other ~ individuals. Readers

will recall it was stated in the first edition of the Bulletin that the

individual mailing list would be maintained on an annual basis. Since

Volume 1 was so short~ however~ the existing individual mailing list will

continue throughout 1969. Hence~ it is not necessary to re-apply for

inclusion in the current mailing list. It would also be appreciated if any

persons not wishing to receive further copies would notify the Editor

as soon as possible. An application form for new subscribers can be found

on the last page of this issue.

Articles in this issue include an improved method of using variable

dimensions in FORTRAN IV~ discuss some problems in the use of the Permuted

Index Package~ and introduce the list processing language WISP. A further

article on the Computer Centre staff introduces the Programmers and the

Secretary.

STAFF OF THE COMPUTER CENTRE

INTRODUCING THE PROGRAMMERS

Currently~ the Computer Centre has on its staff~ three full-time

Programmers~ John Williams~ Bill Fulton~ and John Row. Their main task is

systems programming. This involves the writing of useful utility packages

and subroutines~ the correction of errors in compilers~ assemblers~ and

program packages ~ and ensures that clients are able to make effective use

of the available software. They are presently engage~ in the programming of

a new operating system for the PDP 10. This will enable the computer, which

is basically capable of handling only one job at a time, to give service to

a number of computing tasks. These may be from remote terminals or from the

batch input device, i.e. the card reader, so that all jobs appear to run

concurrently.

The Programmers also give programming courses to the undergraduate

students of some departments, to postgraduate students in the Diplomas of

Automatic Computing and Information Processing, and to computer users, both

internal and external. In addition, they assist in the supervision of

programming projects assigned to the Diploma students, and are available,

at specified times, for consultation with Computer Centre clients who are

experiencing programming difficulties.

Both John Williams and Bill Fulton majored in mathematics at this

University and hold postgraduate Diplomas in Automatic Computing. Their

current research interests centre around the processing of non-numerical

information on the computer. In this connection, they have jointly developed

a list-processing compiler for the GE 225. John Row, who holds a degree in

electrical engineering, completed the Diploma of Automatic Computing in 1968,

and is taking up duty from 20th January, 1969.

INTRODUCING THE SECRETARY

The Secretary of the Computer Centre, Miss Delphine Dare, performs

the combined secretarial duties of both the Computer Centre and of the

Department of Computer Science. The Secretary is responsible for typing

manuals and technical write-ups, and for organizing programming courses held

throughout the year. In addition, the Secretary reproduces material for

student use within the Department of Computer Science. General enquires and

queries on courses held by the Department of Computer Science can be directed

initially to the Secretary (ext. 688).

PROGRAMMING ADVICE

ANOTHER LOOK AT VARIABLE DIMENSIONS .

By studying the example given below, it is possible to observe three

2

simple rules which greatly facilitate the use of variably-dimensioned

arrays in FORTRAN.

Suppose there are three arrays A, B, and C, of sizes 4x5, 5x4, and

lOxlO, respectively. We wish to add together all those elements of A

contained in the "rectangle" of size 3x2 situated in the "top left-hand

corner" of A (see Figure 1). We treat similarly the 3x3 rectangle at the

corresponding corner of B and the 2x3 rectangle in C.

10

2

3

10

A B c

Figure 1

Preferring not to write out a piece of code three times when once is

adequate, we then consider how a subroutine might be constructed to reduce

our work. However, it is impossible to dimension the dummy array (p, say)

in the subroutine to any fixed size, since P will stand for arrays of

different sizes at different times. In FORTRAN IV, this difficulty can

be overcome by givine P a variable size such as M x N:

SUBROUTINE ADD (p, M, N, K, L, SUM)

DIMENSION P(M, N)

SUM = ¢.¢

DO l¢ I = 1, K

DO l¢ J = 1, L

l¢ SUM = SUM + P(I, J)

RETURN

END

3

A suitable main program would then be:
It< .. :;

DIMENSION A(r..;< ~), B(5, 4), C(l¢, l¢)

CALL ADD (A, 4, 5, 3, 2, ASUM)

CALL ADD (B, 5, 4, 3, 3, BSUM)

CALL ADD (C, l¢, l¢, 2, 3, CSUM)

END

Note that, in the main program, each array has been given its actual

fixed dimension. It is not possible to give variable dimensions to an array

in the main program,

Next, observe that the name (p) and size (M, N) of the dummy array in

the subroutine both appear in the subroutine's argument list. This is an

example of the general rule that the name and each dimension of any array

that is assigned variable dimensions in a subprogram must be included in the

argument list for the subroutine. *

Lastly, note that, in the example, the second and third arguments at

each call to the subroutine, have been selected so that M and N in the

subroutine stand for the actual physical size of the array declared in the
< ,-

main program, e.g .. ~ and ~ for A. It is very important to distinguish this

physical size from the size of the subarray which is referenced by the

subroutine. Thus, the following code would not give the desired result:

*

SUBROUTINE ADD (p, K, L, SUM)

DIMENSION P(K, L)

SUM = 0.0

END

In actual fact, because arrays are stored internally with the first

subscript varying most rapidly, the dimension corresponding to the

last subscript need not be included in the argument list.

4

This example illustrates a general rule:

In calls to a subprogram containing variably-dimensioned arrays~ each

actual argument corresponding to a dummy argument which occurs in the

subprogram's DIMENSION statement must have the value of the actual physical

dimension of the array as specified in the DIMENSION statement of the main

program.

By following the above three rules, one has complete freedom to

manipulate variably-dimensioned arrays in a main program as well as in

subprograms. Note, however, that a small number of older library subprograms

does not adhere to the third rule above. This can be seen by perusing their

argument lists. When these latter subroutines are used, it is possible to

refer to variably-dimensioned arrays only within subroutines in which the

arrays are variably-dimensioned, and never within a main program. An attempt

is being made to replace these unsatisfactory routines as ~uickly as possible.

DATA STATEMENT

The present version of the GE 225 FORTRAN IV Compiler will not accept

the combination of characters "/_" in the DATA statement i. e. do not use a

statement such as:

DATA X, Y, Z /-4.0, 1.3, 11.6/

It may be possible to overcome this problem by re-ordering the variables

so that the first is positive. In the above example, it is possible, e.g.

DATA Y, X, Z/I.3, -4.0, 11.6/

LOOP INDEX

The present version of the GE 225 FORTRAN IV Compiler will not allow

a variable that is in COMMON to be used as an index in an implied DO loop.

(see Example 1 (a)). The use of an argument of a subprogram as an index

within the subprogram is also illegal (see Example 1 (b)).

5

(a)

COMMON I SUBROUTINE SBR(A, N)

READ 10, (A(I), I = 1, 10) PRINT 20, (A(N), N 1, M)

Example 1. Illegal Loop Index

LIBRARY PROGRAMS

NEW PROGRAMS

DETERM - Matrix Determinant (D4.201)

This FORTRAN IV subroutine has been converted from CARD FORTRAN

(DETERMINANT - D4.200), but the calling sequence has been slightly

altered to conform with the variable dimensioning technique as

described previously. It calculates the determinant of an n by n

matrix.

RGENMT - Generate Real Symmetric Matrix (D4.271)

This subroutine is written in FORTRAN IV. It generates a real symmetric

matrix with known determinant, and providing a certain condition holds,

all elements of the inverse are integers. The values of the elements

of the inverse can be calculated independently of the inversion process.

EIGN - Eigenvalues and Vectors of a Real Symmetric Matrix (D4.272)

This FORTRAN IV subroutine computes all the eigenvalues and eigenvectors

of a real symmetric matrix. The eigenvectors are orthogonal even when

the matrix is derogatory (has repeated eigenvalues). The matrix may be

reduced to triple diagonal form by Householder's method, after which the

QR transformation may be applied to reduce the matrix to diagonal form.

6

RECENT PUBLICATIONS

The following publications are available at the Computer Centre:

TECHNICAL MEMORANDUM NO.5: Digital-Analogue Simulation. Len Mor.

This memorandum outlines the specifications for a problem-oriented

language which is being implemented at the Computer Centre. The

language enables a user to simulate dynamic systems on a digital

computer using analogue computing techniques.

TECHNICAL MANUAL NO, 3: WISP. J. S. Williams.

This manual describes the use of the list processing language WISP,

on the GE 225 Computer at the Computer Centre.

PERMUTED INDEX PROGRAM

The GE 225 Manual describing the Permuted Index Program (K2.000)

has proved tO'be somewhat misleading on certain points, as well as containing

several errors (see Table 1). There are, however, two known methods of

simplifYing the program to improve its efficiency.

MISLEADING POINTS

(a) Throughout the manual, reference is made to "uniquely numbered" or

"uniquely identified" lines of text. In fact, the only test made is

a comparison of the line number on a card with that on the previous

card, in order to determine the continuation of a line of text from

one card to the next. If the numbers differ in any way, (i.e. leading

zeros, spaces or position of number in the first six columns) the

package assumes a new entry. No test is made to see if a new number

has been used previously, or if there are leading or trailing zeros

of blanks. Thus the following identification numbers are all

considered different:

1

000001

1

100000

7

The last three characters must not be all blanks as this condition is

used to signify the end of the list.

Great care must be taken in the preparation of data cards and in

the assembly of the final deck, for, if a card is mis-punched or

mis-placed, a new line of text will be entered rather than a continuation

of the current entry.

(b) The label written on the output tape is:

BTLOOlSWIC TAPEDATE

This is not the label listed in the manual.

The manual implies that "TAPEDATE" is the date of compilation of

the tape, but no facilities are available for placing a date on the tape.

The word "TAPEDATE" is written on the tape as part of the label, and

no other label can be written.

HELPFUL SUGGESTIONS

(a) Discard the sort package provided and compile a separate sort program

using the FORWARD Sort/Merge Generator. This makes the program more

flexible as the editing facility of the sort program can be used to

improve the output appearance. In addition, the supplied sort program

has not been run satisfactorily and therefore cannot be guaranteed.

(b) Unless Part III of the dictionary is absolutely necessary, it should be

modified or discarded. A test run will show those words required in the

dictionary and these may be included with Part II, which is produced by

the User .. Each entry in the exclusion dictionary must be scanned with

each output record, and thus there is an advantage in reducing the size

of the dictionary.

8

Table 1. Errors in Permuted Index Program Manual

Page Location Error

1 Paragraph 7 The word "uniquely" may be deleted

1 Paragraph 9 The word "uniquely" may be deleted

13 Paragraph B The word "different" in lines 5 and 6

should be deleted

15 Program Card Col. 31 - 39 should be "SWIC TAPEDATE"

15 Input Card Col. 31 - 45 should be "SWIC TAPEDATE"

15 Output Card Col. 31 - 45 should be "SWIC TAPEDATE"

19 Paragraph 2 The word "uniquely" in line 3 may be

deleted

20 Paragraph 1, The statement "all identifying Cols. 1 - 6
combinations are right-justified with

leading zeros" is not true

20 Paragraph 1, The words "and are not transmitted with Cols. 7 - 9
the line of text" may be added

C12 Fig. 9 Constant c140 OCT 61 should read

c140 OCT 140

CONCLUSION

A modified version of this program is being prepared at the Computer

Centre and shortly will be released.

WISP - A LIST PROCESSING LANGUAGE

APPLICATIONS OF LIST PROCESSING

by W.N. Fulton,

J. S. Williams

List processing languages provide a convenient means of manipulating

non-numeric data, the length and structure of which may vary greatly during

the solution of a problem.

9

List processing techniques have proved valuable in:

1. construction of compilers;

2. generation and verification of mathematical proofs;

3. pattern recognition;

4. algebraic manipulation;

5. information retrieval;

6. heuristic programming;

7. linguistic analysis.

THE WISP LANGUAGE

Data storage in WISP is accomplished by means of a Zist structure~ which

is made up of list elements. Each list element may be thought of as a box with

two compartments, the left one called the CAR and the right one called the CDR,

either of which may contain an atom or a pointer. An atom is any legal

character, and a pointer is the address of a list element. A linear Zist is a

set of list elements in which the CDR of the first contains a pointer to the

second, the CDR of the second points to the third, etc. (Figure 2). The CAR of

every element of a linear list must contain an atom. A branched list is a list

in which the CAR of some element contains a pointer, as in Figure 5.

--+---11 I I -151
Figure 2. A Linear List

ATOMS, LIST NAMES, AND PUNCTUATION

Each atom corresponds to a special list element, called a base register~

which occupies a fixed memory location. Each atom may be used as a list name, and

and the CDR of the atom's base register points to the first element of the list

named. In Figure 4, for example, lists A and P are the same (i.e. base

registers A and P point to the same element) and contain the characters "w 0 0 D".

Base register elements are not generally shown when the list is diagrammed, but

the list name is given to indicate the element to which the base register is

pointing. A special atom, NIL, is used to indicate an empty CAR or CDR, and

is represented diagramatically as ~ .

10

In the text of a WISP program, a quote (,) is used to distinguish

between the character standing for itself (i.e. an atom) and a character

standing for the corresponding list. Thus fA denotes the atom A, while A

denotes the list A. CAR A denotes the contents of the CAR of the element

pointed to by A and CDR A, the CDR of the same element.

ASSIGNMENT STATEMENTS

Initially, each base register points to a single, empty element,

i.e. one whose CAR and CDR both contain NIL. The remaining elements are

built into a linear list (called the free list) which is not directly

accessible to the programmer. Additional elements can be obtained from the

free list by the use of anyone of the following three statements:

* = CDR *
CAR * = CDR *
CDR * = CDR *

In this example, an asterisk is used as a generic form for any list

name. If anyone of these is executed when the reference CDR contains NIL,

a new element will be taken from the free list and its address placed in

the CDR before the contents of the CDR are copied (see Figure 3).

A-1 X ·1 y l/1 A

-I~ s-.1 ~~ B~ r I

Figure 3. A = CDR B

If the referenced CDR does not contain NIL, no element is added.

J As an example of the use of assignment statements, consider the basic

operat'ions of building and altering a list. The creation of a list, B, which

contains the word "COW" is shown in the following example:

11

A = B,

CAR A =
CAR A =
CAR A =

'c, A

'a, A

'W.

=
=

CDR A.

CDR A.

Example 2. Creating a List Containing the Characters C, 0, and W

This simple sequence illustrates two important concepts:

(a) the use of a traveZZing pointer~ and

(b) the obtaining of elements from the free list.

The word "COW" was to be stored on list B. Since the base register B

must always point to the first element of the list, a second base register is

used to point to elements further down the list. In this program, A was

chosen to be the travelling pointer. Assuming that list B was originally in

its initial state (i.e. with one empty element attached to the base register),

successive characters required the addition of elements from the free list.

This was accomplished by the use of "A = CDR A,".

A new element may be inserted to alter list B to contain the word

"CROW", as follows:

CDR C = CDR B, CDR B = C.

This element is then filled by:

CAR C = 'R

As a final example, suppose that we wish to transform the list "CROW"

into "ROW". This is done simply by:

B = CDR B.

Note that no element is obtained from the free list, because CDR B is not

empty.

It is significant to point out that the original first element of B

(i. e. that which contains the character "C") is now inaccessible to the

programmer. There is no way of "backing up" along a list.

CONTROL STATEMENTS

Any WISP statement may be given a name consisting of any string of

12

alphabetic or numeric characters followed by a delimiter. Control may be

transferred to a named statement by the use of the unconditional transfer

"TO ** If, where ** is a generic term for any name.

WISP also provides conditional transfers, of the form:

TO ** IF (condition)

Control continues in sequence except that a transfer of control to the

indicated statement will be made when the condition is true. Most

conditions resemble assignment statements, and should be self-explanatory.

The condition "CAR * = ATOM" is true when the referenced CAR either

contains a normal atom or is empty (i.e. contains NIL).

To illustrate the use of these operations, consider a routine to change

all of the commas on a linear list B to periods, as shown in Example 3.

Here the name "START" refers to the statement "A = B", while "LOOP"

refers to "TO FIN IF CAR A =I " and FIN refers to "TO OUT IF CDR A = NIL"

(i.e. end of list A). The routine is entered by transferring to "START"

and goes to "OUT" (not shown) when the entire list B has been scanned.

START, a = b.

LOOP, TO FIN IF CAR A =I

FIN.

" CAR A =

TO OUT IF CDR A = NIL, A = CDR A, TO LOOP.

Example 3. Changing Commas to Periods

TECHNIQUES OF LIST PROCESSING

Character Pattern Recognition

Suppose that the word "TIMBER" is to replace the word "WOOD" each

time it appears in some text. These strings of characters are stored in

lists B and A respectively (see Figure 4). The blank at the end of each

list is regarded as part of the character string to avoid changing a word

such as WOODEN into TIMBEREN.

13

I Dr I e I

84r ~aolI
l.--,i.-l-----D

Q

Figure 4. List B Characters to Replace List A Characters in Text

P and Q have been chosen to act as travelling pointers.

If text is in list C and a pointer R is used to scan the list, characters

can be compared by using a statement such as:

"TO EQUAL IF CAR P = CAR R."

where EQUAL is a statement label.

The end of a list is detected by testing for NIL in a CDR.

Tree Structure

The Tree Structure is very important in list processing and is the

basis for programs in such fields as information retrieval, language translation

and compiler writing. This structure applies to the situation where a large

number of character strings exists, each string possessing its own associated

information.

Suppose it is desired to be able to find some information (e.g. age and

sex) relating to a specific person from a large number of names. Conside~

Table 2

Table 2. Names and Associated Information

Associated Information
Name

Age Sex

SMITH 24 M

WALSH 41 M

WALTON 63 F

WILCCX 19 F

14

These names could be stored in a tree structure together with the associated

informatior. Such a tree is shown in Figure 5 where a period is used to

separate the name from the information.

Figure 5. Tree Structure

Figure 5 shows that all names start from a common point. By matching

characters with characters in the desired name and choosing the correct path

at a branch, the desired information can easily be found.

Symbol Manipulation

An example of symbol manipulation is the process of symbolic

differentiation. Suppose the following expression is to be differentiated.

15

y =
(x + 3) (x - 1)

xZ - 4

The human approach is to note that this is of the form £ and so
v

~ =
dx

Then it is seen that u is a product and the appropriate rule of

differentiating is used to obtain ~. The use of a list structure such as

that shown in Figure 6 allows these rules to be applied in a convenient

manner.

Figure 6. Convenient Symbol Manipulation

Network Structure

A list structure can be created to represent a network such as the

network in Figure 7. A sublist can be associated with each component of the

network (e.g. component A.) In this way, the first element in each sublist

has its CDR pointing to an element which contains the component to which the

sublist corresponds. Similarly, the CAR of the first element points to a

list consisting of elements that contain the components joined to this

particular component. (See Figure 8.) A heuristic approach, in a problem

such as circuit layout, can be used to manipulate the sublists and, in this

way, re-arrange the components to comply with pre-arranged rules.

16

8

A c

Figure 7. Simple Network

Figure 8. Network Structure List

17

---~ ----~----~

MAILING LIST

The Bulletin is distributed according to two mailing lists, one for

organizations and departments and the other for individuals. If you wish to

receive copies of the Bulletin, please complete the appropriate section of

the following form, sign and return it to:

The Editor,
Computer Centre Bulletin,
Computer Centre,
University of Queensland,
St. Lucia.
Queensland 4067.

Application for Individual Circulation Application for Organizational Circulation

NAME:•.••.........•.....•.•...•• POSITION:

POSITION: ORGANIZA'rION:

ADDRESS: ADDRESS:

NUMBER OF COPIES:

SIGNED: DATE:

18

