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THIS EDITION 

This issue of the Bulletin continues to "inform c:lients of the 

Computer Centre about.the discovery of further-PDF.lO.FORTRAN IV errors. 

Clients are asked to·report any suspected. errors to"the·Administrative 

Officer so that Digital Equipment Australia can be immediately notified. 

Readers should 'find our.main article, Some Thoughts on the Construation 

of Scientific Programs~ particularly intereeting and instructive. The 

Bulletin also lists the library accessions for March, 

Readers and external users are encouraged to submit articles on some 

aspect of computing relating to their works undertaken either as an individual 

or as a member of a group project. Articles up to 2.000 words may be 

published. If you are using the computer in a specialised field, be it 

commerce, administration, medicine, engineering, or even education, please 

write to the Editor about your work. 

Helping the Bulletin will help you! 

STAFF OF THE COMPUTER CENTRE 

RETURNED ...... . 

After an absence of two months, Systems Programmer John Row is once 

more immersed in work at the Computer Centre. As assistant navigator on the 

yacht "Kaleena", John took part in the Auckland to Suva race, sailing 1,140 

miles in 8~ days. The "Kaleena" had the distinction of being the only 

Australian yacht in the race. Now, it's work again as normal, enlivened only 

by the occasional sea shanty emitting from the Programmers' Room. 
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LIBRARY ACCESSIONS 

For the benefit of book enthusiasts, the Bulletin continues to 

publish the monthly accessions of books and periodicals on computing of 

the University Libraries. This month's list details the acquisitions of 

March 1969. 

Hays, David G. 

Allan, D.M. 

Introduction to Computational Linguistics. 

(410.18 HAY, Engin.Lib.) 

Computer Programmes for Distribution AnaZysis and 

Assignment in Transportation Studies. 1968. 

(Q519.92 ALL, Engin.Lib.) 

Cutler, Donald I. Introduction to Computer Programming. 1964. 

(519.92 CUT, Architecture Lib.) 

Introduction to ALGOL. 1964. (519.92 BAU, Engin.Lib.) 

Stuart, Fredric. 

Gschwind, Hans W. 

Jensen, Randall W. 

Harper, Goin Neil, ed. 

Smith, John U. 

Geck, Elisabeth. 

Leed, Jacob, ed. 

Engeler, Erwin. 

FORTRAN Programming. 1969. (519.92 STU, Pharmacy 

Lib. ) 

Design of Digital Computers. 1961. (621.381958 

GSC, Engin.Lib.) 

IBM Electronic Circuit Analysis Program. 1968. 

(621.381 JEN, Engin.Lib.) 

Computer Applications in Architecture and Engineering. 

1968. (651.8 HAR, Architecture Lib.) 

Computer Simulation Models. 1968. (658.505 SMI, 

Agriculture Lib.) 

Johannes Gutenberg: From Lead Letter to the Computer. 

1968. (655.1 GEC, Main Lib.) 

The Computer and Literary Style, 1966. (808 LEE, 

Main Lib.) 

FormaZ Languages; Automata and Structures. 1968. 

(510 ENG, Main Lib.) 
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( PDP 10 FORTRAN. IV ERRORS 

With any relatively new computer system, it is likely that software 

errors undetected by the manufacturer will occur in released programs. 

Unfortunately, this is the situation with the PDP lO,and we ask for your 

co-operation in detecting these errors. From problems discovered by users, 

several errors in the compiler and the FORTRAN Operating System have been 

isolated. These "bugs" have been referred to Digital Equipment Australia 

for correction, and, in addition, the Bulletin is publishing them each 

month to help Computer Centre clients avoid these trouble areas. In some 

cases, it is possible for corrections to be made locally, but very often, 

these errors ~nvolve basic functions of the compiler, and it is not feasible 

for local changes to be made. Please accept our apologies, and in the 

meantime, here are some more traps for unwary players. 

1. If a subroutine uses variable dimensioning of arrays in its calling 

sequence and also includes arithmetic statement functions, the code 

produced by the compiler wiZZ not work. 

2. It has been found that a program with a large number of subroutines, 

greater than ten in most case·s, may not load properly, and will 

probably lead to the message: 

ILLEGAL UUO AT LOCATION XXX 

This is a LOADER error which the Computer Centre has reported to DEA. 

3. Real constants that have more significant digits than can be 

expressed in machine word length, will produce incorrect values when 

they are converted by the compiler. No error message is produced, and 

clients are recommended to use only nine significant digits for real 

constants. 



4 . Many users have reported that the use of a slash within a FORMAT 

statement, sometimes produces incorrect results. This has been 

traced to an error in BATCH, the program which runs the batch 

processing jobs, and is not a fault of the FORTRAN compiler. 

One main cause of this error has been. detected and corrected. 

Users, however, are asked to report any further occurrences of this 

problem. 

5. No check is made for overflow and underflow in complex arithmetic. 

Thus (1 + j 0) * (1 + j e:) where 0 and e:+0 will lead to an improper 

value of the real part of the product because of underflow in the 

evaluation of o*e: as part of the real component. 

It is recommended that, at this stage, a check should be made of 

the significance of both parts of complex numbers involved in complex 

arithmetic so that this situation may be avoided. 

The staff are planning to implement a general procedure for the 

overall handling of overflow and underflow conditions. However, 

progress is presently halted by lack of information on a parallel 

scheme currently proposed by DEA. 

6. Complex or Double Precision quantities raised to real powers, generate 

calls to CEXP.3 or DEXP.3 which pass the real exponent without a low 

order word. 

For example: 

DOUBLE PRECISION C,CC 

COMPLEX A 

CC = C**5.1 

AA = A**7.9 

Change the exponent type explicitly, thus: 

**DBLE(5.i) or 5.1D~ 

**CMPLX(7.9,~) or (7.9,~) 
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7. In last month's Bulletin, we reported that the function ATAN returns 

an incorrect value (0.0) for an argument of~. It has since been 

found that the error lies not in ATAN but in SINGL. The problem 

is being further investigated. 

Users are urged to report any errors they have discovered to the 

Administrative Officer (Mr. John Jauncey, ~xtension 8471), including 

evidence such as listings and card decks. This will greatly assist staff 

members in their investigation of the problem. 

SOME THOUGHTS ON THE CONSTRUCTION OF SCIENTIFIC PROGRAMS 

Dr. J. L. Meek 

This article describes some of the more common characteristics of 
scientific programs, and discusses the ways by which program organization 
can become more efficient. 

The author, Dr. J.L. Meek, B.E., B.Sc., M.S. (Cal.), Ph.D., was 
one of the original "Gap" programmers on the GE 225. He worked on 
Structural Dynamics and Finite Element Theory with Professor Clough at 
the University of California, Berkeley. At present, Dr. Meek holds the 
position of Reader in Civil Engineering at the UniVersity of Queensland. 
His research interests are in Finite Element Applications in Structural 
Mechanics. 

Scientific programs, at least those that we have encountered in the 

analysis of structures and the elasto-plastic continuum, have certain 

common characteristics. These are summarized as follows: 

(1) The input data can be arranged in a well-organ~zed, tabular form. 

(2) The basic core of the program consists of the solution of a large 

number of simultaneous equations. If the problem is non-linear 

in nature, the solution may involve many passes through the 

equation complex. 
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(3) Result output may be copious in extent, and yet, in the main, may be 

of little use except for a few salient values. 

(4) The complete program may be so long and complex that it consumes 

core storage and defies complete visualization as a coded whole. 

These features can lead to programs that are very demanding in cOre 

storage and difficult to code in an optimum way. They have led not only 

to a study of the nature of the equations involved, but also to an 

examination of the structure of the program. Thus, our first exercise was 

concerned with the nature of the simultaneous equations to be solved. A study 

of population density in the coefficient matrix showed that the iteration 

methods such as Gauss-Seidel could be useful to save storage, while a study 

of the structure of the equations has led to band width minimization and the 

use of efficient band solvers. A banded structure of equations is sho"Wll in 

Figure 1 in which non-zero terms are arranged along the forward diagonal of 

the matrix. In this case, each term shown is a (6x6) submatrix, this dimension 

(6) corresponding to the six equilibrium equations at each joint of a 

3-dimensional framed structure. 

• 
/each term=6x6 sub matrix 
~ . Istepsize= 6 

x x . ' x 
x x 

x • x I x 
all zeros 

.!. ~_~ x 
x x x • x 

x • x 
x • x 

x • x 
x • x x x 

all zeros x • x x 
x x • x 
x x x • 

L 4~ band width 

FIGURE 1 
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( To further reduce the use of the core store, it is necessary to 

segment the program into its basic functions, and to describe the desired 

outcome of each concisely. Each segment will then become a self-contained 

unit (overlay) that may be checked and coded independently of the remaining 

portions, except, of course, through connecting labelled common store. 

One such suitable breakdown is as follows: 

(1) Input Function 

Basic data for a particular problem is read into store, and checked 

as far as possible for accuracy. Error messages are printed, 

together with an echo print-out of data. The detection of an error 

will activate a flag that terminates the program at the end of this 

segment. Such an input program may be quite complex, and include 

checking of data for incorrect character and format punching in 

addition to simple numeric accuracy. 

(2) Setup Function 

At this stage, the coefficient matrix for the linear equations is 

generated, and further checks-are applied to the data. Again, an 

error will cause a flag to be set that terminates the program at the 

end of the segment. 

(3) Decomposition Function 

This includes .the formation of the right-hand sides to the equations 

(load vectors), and the modification of the whole system for 

boundary conditions, such as prescribed displacements. Finally, 

the decomposition of the band matrix ready for back-substitution, is 

performed. 

(4) Solution Function 

Here, the back-substitution is carried out. For large scale systems, 

it is important that iteration on residuals be included as an option, 

since many problems are not well-conditioned and need this 
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refinement. The iteration on residuals requires some double precision 

arithmetic in the calculation of the residuals. Our experience shows 

that 2 or 3 iterations are generally sufficient. 

If the problem is non-linear, this segment may contain many other 

features. The analysis may then be contained here, or may have to 

return to (2) after passing this overlay, depending on the method of 

analysis employed, (i.e. incremental or iterative, or both). 

(5) Result Interpretation Function 

A primitive scheme will produce a blanket print-out of all results. 

A refinement may include a search for maxima or minima. The most 

suitable form for result presentation will generally be graphical; 

for example, contour plots for stress values in the analysis of the 

stressed continuum, or bending moment and shear force envelopes for 

members of framed structures. 

If several load cases are incorporated, this feature may select 

prescribed load combinations and also plot influence functions. 

In the programs we have produced, not all these features have been 

written in, but we have sufficient experience to know that most of them will 

be of great benefit to the ultimate program user. A feature of such a scheme 

is that once input-output overlays have been written for one class of problem, 

they may be easily modified for similar problems. 

In the program organization, efficient use should be made of function 

subprograms, subroutines and data statements. In fact, a study should be 

made as to the coding efficiency (in machine language) of commonly occurring 

operations (particularly in matrix algebra work). 

For example, clearing the array A(50,50) requires the coding: 

DQ 100 1=1,50 

DQ 100 J=1,50 

100 A(I,J)=O.O 
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whereas the subroutine for the same operation may be: 

SUBR9UTINE CLEAR(A,N) 

DIMENSI9N A(l) 

D9 100 I=l~N 

100 A(I)=O.O 

RETURN 

END 

Note that the use of the one-dimensional array A(l) in the subroutine allows 

its use for arrays of one or more dimensions. The call then would be: 

CALL CLEAR (A,2500) 

When such an operation is repeated many ti~es, it is significant to note 

that not only is the absolute coding shortened, but also the FORTRAN 

source program. Similar use can be made of matrix operations using 

subroutines with variable dimension statements. Subroutines common to all 

segments can be then stored permanently along with the main calling program. 

Preset data should be organized in data statements, (written in the 

main program if used in more than one segment). 

For example, if A(2,2) is used as IT·O 1,00 
1 0 2 0 it is generated as: 
.' , ' 

DATA A/2.0, 1.0, 1.0, 2.0/ 

The data statement may be used also in the presetting of a sequence of 

operations on the rows and columns of a matrix. For example, suppose that 

A(12,12) is to have rows interchanged and columns interchanged to give the 

rearranged sequence (1~7,2,8,3,9,4,10,5,11,6,12). The coding is as follows: 
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DIMENSIQN A(12,12), B(12,12),ICH(12) 

DATA ICH/l,7,2,8,3,9,4,10,5,11,6,12/ 

DQ 100 J=1,12 

L=ICH(J) 

DQ 100 1=1,12 

100 B(J,I)=A(L,I) 

DQ 110 J=1,12 

L=ICH(J) 

DQ 110 1=1,12 

110 A(I,J)=B(I,L) 

Finally, care should be taken to avoid elaborate recurrence relationships 

when generating locations in arrays when a simple 1=1+1, type of statement in a 

loop will suffice. 

It must also be mentioned that these programs require efficient 

organization of backing stores (tape and/or disc) .. For example, in the 

program setup, data may be generated for members in sequential form and stored 

on disc. If the coefficient matrix is generated in block form (rather than all 

being in core at once), this data will have to be obtained in random access 

fashion. Again, partial information calculated and stored at (2) will 

generally be needed for recall in the result function (5). 

EXAMPLES 

(1) In this example, the effect of ill-conditioning of equations is 

demonstrated and the result given of the iteration on the residuals. The 

cantilever beam of uniform EI=~, shown in Figure 2, is loaded with a force at 

the free end. For a length 'of beam 100 units, the theoretical value of the 

deflection (v) at the free end for unit load is: 

v = 6.6 x 105 (1) 
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FIGURE 2 

Development of Stiffness Matrix for Cantilever Beam 

If the beam is subdivided (as shown in Figure 2) into the segments 

(1) to (4) with nodes 1 to 4, the calculation in finite form requires the 

deflection and rotation at each node so that 8 equations must be solved. 

In this case, the deflection at the end will be still substantially that 

given in Example 1. However, when a large number of subdivisions is made 

(100 for example), the value for the end deflection is in considerable error. 

This is because a rotation term near the left hand end has a big (or 

magnified) influence on the deflection at the free end. That is, a 

round-off error in a rotation term there will cause a much greater error in 

t4e end deflection. The analysis of the beam was carried out using 50 and 

100 intervals of subdivision. The successive values of the end deflection 

for the 100 intervals are given below as the iteration is carried out on 

residuals. 
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6.433 x 10 5 Initial Solution 

6.55877 x 10 5 1 
6.66629 x 10 5 2 
6.666557 x 10 5 3 
6.66656700 x 105 4 
6.66656731 x 10 5 5 
6.66656732 x 10 5 6 

It is seen that all significant improvement has been reached on the 

3rd iteration. This is shown pictorially in Figure 3 in which plots have 

been given for the sum of squaresof residuals against number of cycles of 

iteration for both 50 and 100 segments. 
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(2) In this example, the solution is given to an elasticity problem 

using the finite element method of analysis. The problem is to calculate 

the stresses in, and displacement of, a semi-infinite continuum subjected 

to a free P=lOOOO kips perpendicular to the free surface (see Figure 4). 

P - -10,000 Kips 

ELEMENT LAYOUT 
BOUSSINESQ PROBLEM. LINEAR STRAIN TRIANGLE. 

FIGURE 4 

In Figure 4, the setup tor the prep$if'ation of <lata. hshown. Each 

node represented by a "dot" at the apices And mid-points of sides of the 

triangles, will havedi!!lpla.cements (u, v). and hence to Jolve the systew, 

the number of linear simultaneous equations will be tviee the n'1.Ullher of 

nodes. It should be evident that the problem will require a coordinate 
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array (only values at apices need be input since the remainder may be 

calculated), and an element array giving the node numbers of each element. 

If (NUM) is the total number of nodes, and the node numbers for the 

triangles are contained in the array NQDES(200,6), it is clear that a check 

of data should be made such that no node number is less than zero nor 

greater than (NUM). That is, if (NUMEL) is the number of elements, the 

check is as follows: 

IFLAG=O 

DQ 100 I=l,NUMEL 

DQ 100 J=1,6 

IF(NQDES(I,J).GT.O.AND.LE.NUMEL) GQ TQ 100 

PRINT 20,1 

20 FQRMAT(17H ERRQR ELEMENT NQ!I5) 

IFLAG=l 

100 CQNTINUE 

A graphical presentation of output is shown in Figure 5. In this 

figure, the left-hand drawing is the output produced by the computer plotter, 

whereas the right-hand drawing is the result of smoothing these curves. 

The contour lines have been drawn from the stress values at the apices and 

mid-points of sides of the triangles in Figure 4, assuming linear variation 

between nodes. To do this, each main triangle in Figure 4 is subdivided 

into 4 subtriangles, and each of these treated separately. The blocked-out 

portions in the figures show how contour spacing may be altered in zones of 

high stress gradient. 
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