

COMPUTER

CENTRE BULLETIN

THIS EDITION

This month's Bulletin goes to press with a smile and a chuckle. As you flip over the pages, you will very soon see why!

As well as a little humour to lighten our day, we have the more serious items of information such as the recording of further FORTRAN errors on the PDP 10, and the availability, on request, of a recent publication to Computer Centre clients. More staff news has been gleaned from private resources, and an article on the image of the computer seen through younger eyes, is included. Our second article discussing PACE simulation, is a sequel to the February Bulletin's article Digital-Analogue Simulation, both being written by Mr. Leonard Mor. Copies of this Bulletin (Volume 2, Number 2) may be obtained from the Computer Centre.

STAFF OF THE COMPUTER CENTRE

OVERSEAS.....
John Hendry, post-graduate Diploma in Automatic Computing student and part-time Demonstrator, has been awarded one of the three Nicklin-Macgregor scholarships. They were established by Mr. Charles H. Dyson of New York, to honour the former Premier of Queensland, Sir Francis Nicklin, and his father-in-law, Mr. L.R. Macgregor, the first Director of the Queensland Council of Agriculture and former Australian Ambassador to Brazil. Mr. Macgregor was also the principal figure in the establishment of Queensland's first radio station, 4QG, which began transmission in 1919.

John leaves the Department this month to study for his Doctorate in Chemical Engineering at the University of Wisconsin, U.S.A.

NEW FACES....
Five students currently enrolled in the postgraduate courses offered by the Department of Computer Science, are working at the Computer Centre as part-time Assistant Systems Programmers. They are Colin Churchill, Don Kinnear, Geoff Lang, Julie Nicol, and David Seddon.

Under the direction of the Lecturer in Computing (Systems Programming), Chris de Voil, they will undertake general programming work including program conversion and development. With our extreme shortage of staff, their work will be very helpful.

Mrs. Nancy Findlater has been appointed Data Preparation Assistant to capably fill the place left by Angela Vidanovic's departure last month from the Computer Centre.

SCIENCE DISPLAY

Students from the Diplomas in Automatic Computing and Information Processing, post-graduate courses offered by the Department of Computer Science, produced a small demonstration of the capabilities of the PDP 10 at the University of Queensland's Science Display held on June 27th.

Two remote terminals were set up in lecture room B18, about 100 yards from the Centre proper. Mr. John McCray who looks after on-campus television services, set up a remotely-controlled television camera in the machine room, and a manually-operated camera in B18 to televise the proceedings. Pictures were displayed on television monitor screens positioned in B18.

The highlight of the session was the chess-playing competition held during the evening. Three spectators were invited to play chess against the computer continuously, while other demonstration programs were run concurrently for the audience. One contestant conceded defeat in chess, and no decision was gained in the other two matches.

Students also screened films that were lent for the display by the I.C.L.
and I.B.M. Publicity Departments. We wish to express our sincere thanks to these organizations.

RECENT PUBLICATIONS

The following publication is now available at the Computer Centre:

TECHNICAL MANUAL NO. I Supplement C
Converting from GE 225
to

PDP 10 FORTRAN IV
J.S. Williams

This supplement is a useful guide for clients who wish to convert programs originally written for the GE 225 for compilation and execution on the PDP 10.

PDP 10 FORTRAN IV ERRORS

If users feel they have discovered an error, please report it to the Administrative Officer (Mr. John Jauncey, extension 8471) with evidence such as card decks and listings. This will greatly aid members of staff.

1. If a variable in common is used in a subroutine calling sequence, and subsequently, in the subroutine, is defined as being in common, then a conflict of definition occurs. This does not cause a compiler diagnostic message, but may produce unexpected results.

For example:

```
            COMMON I
            I = 2
            J = l
            CALL TEST (I,J)
            TYPE 10,I,J
            •
                END Kl is in fact I, but is
                SUBROUTINE TEST (Kl,K2) called by value.
COMMON K K corresponds to I in the main program.
K2 = 3+Kl
\(\mathrm{K}=4\)
RETURN
END
Effectively, a call-by-value construction is set up for \(I\) in the call to subroutine TEST. Thus on return to the main program, the value of Kl last given in the subroutine, will be returned to I. In this example, since \(K l\) was unaltered in the subroutine, the value 2 will be returned, rather than the value of 4 set by the statement \(K=4\) in the
This is not an actual error, but we offer these examples to indicate the need to take care when using common.
``` subroutine.
2. Subroutine calls which pass many expressions as arguments, are not compiled correctly because the technique used in evaluation of the expression arguments can overwrite the temporary location used for storing the results of previous argument evaluations. Without extensive further testing, it cannot easily be determined whether this is a function of the number or complexity of sub-expressions, or both.

For example:
\[
\begin{aligned}
& \text { COMPLEX } A, B, C, D \\
& C A L L \operatorname{SUB}\left(A * B, A * C, A * D, B^{*} C, B * D, C * D\right)
\end{aligned}
\]

To overcome the problem, we recommend that you evaluate sub-expressions before making the subroutine call, as in the second example. Thus, compute the expression outside of the argument list:
\[
\begin{aligned}
& A_{1}=A * B \\
& A_{2}=A * C \\
& A_{3}=A * D \\
& A_{4}=B * C \\
& A_{5}=B * D \\
& A_{6}=C * D \\
& C A L L S U B\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}\right)
\end{aligned}
\]
3. Double-Precision to Single-Precision implicit conversion is not done properly when the number converted is almost a power of 2 .

For example:

DOUBLE PRECISION D
\(D=-1 \phi 73741821 D \varnothing \quad\left(2^{30}=1 \phi 73741824 D \varnothing\right)\)
\(A=D\)

This problem arises because of improper implicit conversion, and it is hoped that Digital Equipment Australia will have remedied this problem in their recently-announced software update.

\section*{LIBRARY ACCESSIONS}

This month's list details the books and theses that were added to the shelves of the University Libraries in April 1969.

McDaniel, Herman. An Introduction to Decision Logic Tables. 1968. (001. 539 MACD, Engin.Lib.)

Bakewell, Kenneth Graham Bartlett ed. Library and Information Services for Management. 1968. (027.69 BAK, Main Lib.)
Institution of Heating and Ventilating Engineers. Computation of Heat Transmittance Factors. 1965. (Q536.2 INS, Architecture Lib.)
Brazier, Mary Agnes Burniston, ed. Computer Technique in EEG Analysis. 1961. (612.82 BRA, Bancroft Lib.)

Lindberg, Donald A.B.

Paschkis, Victor.

Inman, Kenneth L.
The Computer and Medical Care. 1968. (610.18 LIN, Clinical Sciences Lib.)
Direct Analogue Computers. 1968. (621.381957 PAS, Engin.Lib.)

Fundomentals of Electronic Data Processing. 1965. (Q651.8 INM, Architecture Lib.)

\section*{Theses}

Pinel, D.B.

Roubin, B.C.

Stapinski, T.E.

Algorithm for Root Locus Analysis. 1968. PIN, Main Lib.

Special-purpose Digital Computers. 1968. ROU, Main Lib.
Error-Correcting Codes. 1968.
STA, Main Lib.

\section*{H.L. Smy the}

The post-war period has been characterized by the emergence of the computer as a vital force in almost every aspect of public life. The engineer calculating stresses and strains, the economist predicting patterns of future growth, the psychologist analysing social tension, are only a few of the numerous occupational groups who are finding the computer an invaluable tool in their work. The rise of the computer has been meteoric for it is only a generation old, a brawling, lusty, raucous babe making its presence heard and felt. Its very newness renders it suspect in the public eye, and its capacity for initiating far-reaching change indicates that a computer revolution is in progress.

It is little wonder, then, that its public image is a chimera of doubt, suspicion, resentment and fear. The "social" position of the computer is extremely insecure: it needs to be strengthened by the passage of time, hallowed by the laws of usage and acceptance, and sanctified by entry into the shaded cloisters of tradition. The fact that so many people see the computer as a kind of Pandora's Box, ominous with Orweliian overtones of "Big Brother" and "Now Hear This", shows to what extent it is a social outcast! Every age, of course, tends to resist innovations that may radically change the fabric of life. When George Stephenson developed England's first public railway, almost 150 years ago, dire predictions were made that horses would become extinct, and the noise of this mechanical marvel would distract the hens from their serious business of egg-laying! In the same way today, people fear that the computer will displace the working man from his job, and society will be dehumanised and creativity stifled.

To what extent do these misconceptions and fears influence the attitude of the next generation of adults towards computers? Do high school students share the common myth that a computer is an electronic brain of almost magic properties? Or do they have a more realistic view of its powers and its limitations? To gauge the overall opinion of school students towards the computer, I conducted an unofficial survey during the annual Science Display
at the University held on the 27 th of June. As the role of the computer is rarely discussed in Queensland schools, I was pleasantly surprised to find that most students had a basic understanding and appreciation which was not derived from Scrooge McDuck comics! Far from accepting prevailing prejudices towards electronic wonders, they showed a strong desire to think for themselves and make independent assessments.

The first question raised - what is a computer - elicited the surprisingly thoughtful answer from one boy that it is a "collector, distributor and integrator of facts". Very few compared it to a brain (which was a welcome
 relief), and all students stressed that, as it was man-made and man-controlled, it was most unlikely to take over the world! It was interesting to note that many boys were familiar with the concept of programming a series of instructions into the computer, and seemed to realize that the machine does precisely what you tell it - and no more. The basic powers of the computer to add, subtract, multiply and divide were warmly praised by one lad who said that he would like it very much for his homework!

While the students appreciated the amazing rapidity of the computer and its almost unlimited field of applications, they still retained a fairly logical, balanced attitude towards the machine. The consensus of opinion was that the computer should be used as an invaluable aid and supplement to human effort. Suggestions that it could replace humans completely in all kinds of enterprise, were rejected quite vehemently. Students felt that the creativity and originality of human thought were qualities that no computer could ever duplicate. They showed a similar attitude towards the use of medical diagnostic programs. While considering them very useful as an extra aid for the harassed suburban G.P., they felt that the element of calculated guess-work and professional intuition
which is vital in many complicated diagnoses, would be lost. In other words, the human touch and human contact were not merely preferable but necessary.

The majority of the students did not consider the problem of legal control of access to magnetic tapes and memory dumps, urgent or acute. With the typical Australian approach of "she'll be right, mate", they said that the government would automatically legislate for the protection of individuals should the problem assume significant proportions in the future. The minority of students who did appreciate that there was cause for concern, strongly recommended flexibility of control. They felt that a straitjacket of legal rigidity would hinder scientific progress - it would leave no room to move. Control should prevent misuse, abuse, and generally aid effective use of facilities.

Most of the students said that the acceptance of the computer in industry and commerce would not create a wave of unemployment. They maintained that the creation of new jobs associated with the operation of the machine, would absorb many workers, and that employers, in numerous cases, would retrain their existing personnel. Visualizing life in a computer age, they anticipated a lower retiring age, more leisure, and less mundane work which the computer would process with much greater accuracy and infinitely more speed. Far from viewing the computer with suspicion and fear, they had confidence in its powers and optimism in the future developmentsof science. They agreed that older people had a poor image of the computer and its implications, but entertained no such apprehensions themselves.

My main conclusions from speaking to these students were as follows:
1. They had a fairly logical, practical and sensible attitude towards the "Big Black Box": they realized its limitations, appreciated its powers, and did not view it with superstitious distrust but with youthful optimism.
2. They recognised the need for a balance so that the computer would not duplicate human effort but rather act as an aid and supplement. They felt that human intelligence, inspiration, and creativity were intangible qualities that could not be reproduced electronically.
3. The question of legal control of computers was not deemed urgent. However, some restrictions were advised in the future. Characteristically, they shied away from any authoritarian kind of regulation.
4. Their attitudes in no way reflected the feelings of their parents, e.g. computers bring economic dislocation, or the sensationalism of the press. They have accepted the computer without reservations, naturally, simply, as yet another advancement of scịence.

PACE SIMULATION

\section*{Leonard Mor}

In this article, the second on digital simulation (see Volume 2 Number 2, Digital-Analogue Simulation), features which have been added to the PACE Simulation language are discussed, and a realistic simulation problem is described.

STUDY OF CHLORINE RECOVERY BY ELECTROLYSIS

In some organic processes involving chlorination, electrolysis is used to recover chlorine from spent hydrochloric acid. Brennan and Fahidyl show that for such a process, the system equations can be reduced to:
I. R.D. Brennan and T.Z. Fahidy. Digital Simulation. Instruments and Control Systems, pp. 133, March 1966.
\[
\begin{aligned}
& C^{\prime}=0.287-0.000134 \mathrm{I}-0.0287 \mathrm{C}-\mathrm{-} \text { - } 1.1 \\
& I=(U-E-N c-N a) / R \quad-\quad 1.2 \\
& \mathrm{E}=1.358-0.0513 \ln (\mathrm{a}) \quad---1.3 \\
& N c=0.363+0.0847 \ln (I) \quad---1.4 \\
& \mathrm{Na}=-0.72+0.127 \ln (\mathrm{I}) \quad---1.5 \\
& R=43.2 / \mathrm{C} / \mathrm{g} \text {---- } 1.6
\end{aligned}
\]
where
```

C = concentration of the acid in the cell (G.E.W./litre)
I = current drawn by the cell (amperes)
U = supply voltage (volts)
E = cell electromotive force (volts)
NC = cathode polarisation overpotential (volts)
Na = anode polarisation overpotential (volts)
R = internal resistance of the cell (ohms)
a = mean molal activity
g = equivalent conductance (mhos/GEW)

```

The equivalent conductances and mean molal activity are empirically related to the concentration as follows:
\begin{tabular}{|c|c|c|c|}
\hline \(\checkmark \mathrm{c}\) & g & c & a \\
\hline 0.0 & 426.2 & 0.275 & 0.210 \\
\hline 0.5 & 377.4 & 1.695 & 1.645 \\
\hline 1.0 & 332.3 & 3.475 & 5.980 \\
\hline 1.5 & 270.0 & 5.370 & 20.010 \\
\hline 2.0 & 200.1 & 7.370 & 62.75 \\
\hline 2.5 & 134.7 & 9.460 & 189.0 \\
\hline 3.0 & 83.5 & 11.62 & 570.0 \\
\hline 3.14 & 72.9 & & \\
\hline 3.46 & 52.7 & & \\
\hline
\end{tabular}

TABLE 1. Empirical Relationships of \(c, a, g\)

This study was concerned with optimising the profitability of the recovery process as a function of the supply voltage for an arbitrary cost of \(\$ 0.01 / k i l o w a t t\) hour for the electrical power, and a value of \(\$ 0.10 / 1 b\) for recovered chlorine.

Here, we are more concerned with the steady-state behaviour of the plant, and an average stand down time of 200 hours was selected. Hence, assuming a chemical conversion rate of 1.05 lbs. of chlorine per amph-hr., the expression for the profit after 200 hours of operation is given by:
\[
\text { PROFIT }=U * T I * 0.00001-T I * 0.0105 \ldots . . .1
\]
where
```

U = supply voltage
TI = total current used in 200 hours of operation since
start-up

```

A flow chart for the above system equations is given in Figure 1 . Although it is not immediately obvious from the equations, an implicit functional relationship exists for the variable \(I(i . e . I=f(I)\)) and there is, therefore, no explicit solution of \(I\). This can be shown more clearly in the flow chart since an (algebraic) loop exists in the upper left hand section of the diagram not containing an integrator. The PREDICTOR element was developed for the solution of such problems, and is indicated as element Pl. This element causes an iteration of the solution process until the difference between two successive inputs is less than a (specified) value.

Additional special elements are shown. ALOG and SORT are the logarithmic and square-root function elements available as standard FORTRAN library routines. The curve fitting elements FITl and FIT2 use linear interpolation to provide the empirical relations given in Table l, and are supplied as FORTRAN programs. The above elements are all defined as FUNCTION elements.

It would have been possible to use the REPETITION facility in PACE to find the profit for a number of supply voltages. However, it is now possible to use a form of optimisation control by defining a special 'element' called a SUBROUTINE,

Figure 1. Flowchart for Recovery of Chlorine
and this is demonstrated in the program listing, although not shown on the simulation flow chart.

The control subroutine named CONTROL is also written in FORTRAN IV, and although it is a simple program, requires a deeper understanding of the form of the generated FORTRAN program. In this particular case, the CONTROL routine allows the solution process to continue for 200 'hours', saves this value of profit, resets the value of elements patched to it, increments the supply voltage by a fixed step-size (l0 volts), and allows the process to proceed until the profit decreases over two successive sums. At this point, the analogue value TIME is set equal to the solution RUN time and the process is terminated.

Of course, the routine could have been written to modify automatically the supply voltage step-size, and thereby produce an exact solution.

The example illustrates the following points of the user-oriented PACE simulation language:
1. Relatively complex elements can be developed quickly and cheaply as FORTRAN function subroutines - and remember, there is no restriction of the number of a particular type of element.
2. There is no restriction on the number of inputs to an element, although, for elements like the DIVIDER, the order of the patching of input is important.
3. Large systems can be simulated at a very reasonable cost. While this particular problem contained only 36 elements, approximately 400 elements can be accommodated in the version (3).
```

DEFINITION SECTION
DEFINE CONSTANTS SUPPLY, STEP, VALUE, C1, C2, C3, C4, C5, C6, C7.
OEFINE POTENTIOMETERS K1, K2, K3, K4, K5, K6, K7,
DEFINE INIEGRATORS TI, CONC.
EFFINE ADDERS NC, NA, E
DEFINE ADDERS NC, NA, E.
DEFINE FUNCTIONS ALOG LOGI, LOGA.
DEFINE FUNCTION SQRT SORTC.
DEFINE FUNCTION SQRT SQRT
DEFINE FUNCTION FITI G
DEFINE FINCTION FIT2 A,
DEFINE SUBTRACTORS PROFIIT(\$), VOLTAGE, S1
DEFINE DIVIDERS R, I
DEFINE DIVIDERS R,I,
PATCHING SECIION.
PATCH SUPPLY, VOLTAGE, P1, I, LOGI, K1, NC, VOLTAGE,
PATCH LOGI, K2. NA, VOLTAGE.
PATCH C1 10 NC.
PATCH C2 TO NA.
PATCH C4, R, I.
PATCH I, K5, CONC, A, LOGA, K7, E, VOLTAGE.
PATCH C5 1O E.
PATCH CONC, SORTC, G, R.
PATCH C3, CONC, K6, CONC. R
PATCH I, TI, K4, PROFIT, CONTROL
PATCH TI, POWER, K3, PROFIT.
PATCH SUPPLYY TO POWER.
PATCH C6 TO S1.
PATCH CONC, S1, RECOVERY.
PATCH C7 TO RECOVERY,
PATCH SUPPLY io CONTROL.
PATCH SUPPLY IO CONTROL
PATCH CUNO TO CONTROL
PATCH TI TO CONTROL
PATCH I TO CONTROL.
PATCH KG iO CONTROL.
PATCH STEP TO CONTROL
patch value ;o control.
DESCRIPTION SECTION.
LECTROLYSIS 00430
HEAD MAXIMISATION OF PROFIT AS A FUNCTION OF SUPPLY VOLTAGE

```

```

    PRINT TIME, SUPPLY, VOLTAGE, CONC, RECOVER`, PROFIT. 00460
    SPECIFICATION SECTION.
SET C1= 0.363, C2=-0.72,C3= 0.287, C4=43.2,C5= 1.358,C6= 10.0,
C7= 100.0, K1=0.0847, K2= 0.127, K3= 1.E-5, K4= 0.0105, K5= - 1.34E-4,
K6= -0.0287, -0.287, K7= -0.0513, CONCE 10.0, SUPPLY= 50.0,
VOLTAGE= 50.\emptyset, STEPZ 10.\emptyset, VALUEE 2Ø0.\emptyset. IN OUTPUT EVERY 2ø0.0.
END
DE!NE SUBTRACTORS PROFIT(\$), VOLTAGE, S1.
0110
00130
0130
00140
0170
00180
0190
02ø0
0210
00220
00230
PATCH I, TI, KA, PROFIT, CONTROL.
PATCH TI, POWER, KJ, PROFIT
AICH C6 1O S1. pECOVERY.
PATCH C7 TO RECOVERY.
PATCH SUPPLY IO CONTROL.
PATCH CONO TO CONTROL.
PATCH I TO CONTROL.
PATCH KG 10 CONTROL.
patch value to control.
OESCRIPTION SECTION.
HEAD MAMINSIRATION OF PROFIT AS A FUNCTION OF SUPPLY VOLTAGE ELECTROLYSIS
PRINT TIM
00460
09480
$K 6=-0.0287,-0.287, K 7=-0.0513, \operatorname{CONC}=10.0, \operatorname{SUPPLY}=50.0, \quad 00510$
RUN FOR 2ヵ5.ס HOURS, INCREMENT BY 1.0 AND OUTPUT EVERY $2 \varnothing 0.0$.
ERRORS DETECTED

- FORTRAN

F4D VOOT 5-J!L-69 18:35 PAGE 1

SUBROUIINE CONTROL(LCNT, PROFIT,VOLTAG,SUPPLY,CONC,TI,I,K5,KG,STEP,

## 00010 $0002 \pi$

00040
C optimisation control element
c optimisation control element
20050
00060
REAL PROFIT(2),VOLTAG(2),SUPPLY,CONC(2),TI(2),I(2),K5(2),K6(2), INTEGER LCNT,MCNT
LOGICAL FLAG,FLAG1,FLAG2
00070
001090
REAL SAVE1, SAVE2, SAVE3,SAVE4, SAVE5, SAVE6, SAVE7, SAVE8
HEAL TIME,RUN, INCREM, OUTPUT, ERROR,TCNT
CDMMON TIME,RUN, INCREM, OUTPUT, ERROR, TCNT,FLAG1, FLAG2
C
00100
00110
00120
00130
00140
DATA SAVE1,FLAG/0.0.01
00140
20160
IF(FLAG.EQ..TRUE.)GO TO 10
FLAG =, TRUE.
SAVE2=SUPPL.Y
SAVE3=CONC(LCNT)
SAVE4= (I (LCNT)
SAVE5=I(LCNT)
SAVE6=K5(LCNT)
SAVE7=K6(LCNT)
SAVEB=4.D\#INCREM
TETURN
C
IF (TINE,LE.VALUE)RETURN
IF (PROFIT(MCNT).GE.SAVE1)GO TO 20
C
SAVE1=PROFIT(MCNT)
HROFIT(MCNT) = 0.0
SUFHLY = SAVE2 + STEP
VOLTAG(LCNT) = SUPPLY
ONC (HCNT) = SAVE
TI(MCNT) $=$ SAVE4
$I(M C N T)=S A V E 5$
$K 5(M C N T)=$ SAVE6
$K G(M C N T)=$ SAVE7
Ko(MCNT) =SAVET
-NCREM=SAVEO
$C N T=V A L U$
$I M E=\varnothing . \emptyset$
$F I A G=, F A L S E$.
FLAG1 = FALSE
$F L A G 2=. F A L S E$
RETIRN
00170
00190
Qロ20』
ge212
00220
00232
0.0240

00250
0.260

40270
00280
00290
00300
00310
00328
0.8330

20340
00350
00360
00380
00380
00390
00390
20400
00410
00420
00430
00440
06450
00460
00470
00480
00490
global dummies

		F40	V007	5-JUL-69	18:35	PAGE 2
	PROFIT	202				
	VOLTAG	203				
	SUPPLY	204				
	CONC	205				
	TI	206				
	1	207				
	K5	210				
	K6	211				
	STEP	212				
	value	213				
	COMMON					
	time	1.COMM. 1		0		
	RUN	1.COMM. 1		1		
	INCREM	/.comm. ${ }^{\text {/ }}$		2		
	output	1.comm. 1		3		
	ERRQR	1.comm. $/$		4		
	TCNT	/.COMM. ${ }^{\text {c }}$		5		
	FLAGI	/.CDiFM. $/$		6		
	FLAG2	/.COMM.		7		
	SUBPROG	ams				
$\stackrel{ }{5}$	EXIT					
	SCALARS					
	CONTRO	214				
	SAVE1	215				
	FLAG	216				
	MCNT	217				
	LCNT	201				
	SAVE2	220				
	SUPPLY	204				
	SAVE3	221				
	SAVE4	222				
	SAVE5	223				
	SAVE6	224				
	SAVE 7	225				
	SAVE8	226				
	INCREM	2				
	TIME	0				
	value	213				
50	STEP	212				
$\cdots$	TCNT	5				
$\cdots$	FLAGI	6				
$\cdots$	FLAG2	7				
$\Omega$	RUN	1				
	OUTPUT	3				
	ERROR	4				
	ARRAYS					
	PROFIT	202				


	$F 40$	VDD7	$5-J U L-69$	$18: 35$	PAGE 3
VOLTAG	203				
CONC	205				
TI	206				
$I$	207				
K5	210				
K6	211				
CONTRO	ERRORS DETECTED: $\varnothing$				



```
F40 VOO7 5-JUL-69 18:35 PAGE5
```

C D0010
FUNCTION FIT2(INPUT) 00020
$\begin{array}{ll}C & 00030\end{array}$
C CURVE FITTING ELEMENT 2
10 CONTINUE 10
C
STOP
C
20 FIT2=TABLE2(I-1)+(TABLE2(I)-TABLE2(I-1)) (INPUT-TABLE1(I-1))/
\$(TABLEI(I)-TABLE1(I-1))
RETURN
00040
00050
80060
00070
00080
00090
00100
01110
00120

0010 00020

08040
00050
B0060
01070
00080
00000
00100

00120
00130
00140
00150
00160
0170
00180
00190

```
 F40 VD07 5-JUL-69 18:35 PAGE6
 END
GLOBAL DUMMIES
INPUT 60
SUBPROGRAMS
EXIT
SCALARS
FIT2 61
I 62
INPUT 60
ARRAYS
TABLE1 63
TABLE2 }7
FIT2 ERRORS DETECTED: D
 11K CORE USED
*
END OF THIS TASK
 .LDR SYS:PACLIB (LIB)
```


## EMONSTRATION PRUBLEM - STUDY OF CHLORINE RECOVERY BY ELECTROLYSIS MAXIMISATION OF PROFIT AS A FUNCTION OF SUPPLY VOLTAGE




