
UNIVERSITY OF QUEENSLAND 

COMPUTER CENTRE 

COMPUTER 

Volume 3, Number 11. 

2nd November, 1970. 

CENTRE 

Editor: 

S. J. Barry. 





OPERATIONS SCHEDULE BOARD 

The schedule board for PDP-IO operations has been in use for three weeks now. 
It is located in the clients' room and is intended to notify users of running 
times. While the Centre will attempt to maintain this schedule as much as 
possible, it cannot guarantee the proposed availability of the system. 
Times specified can only be regarded as approximate. 

It is anticipated that there will be an increased requirement for System 
Development testing time over the next few weeks. This is for preliminary 
testing of remote terminal developments. Users will be advised of changes to 
the normal schedule via the schedule board. 

CHRISTMAS SHUT DOWN 

The Computer Centre will shut down for the Christmas period at midnight on 
Wednesday 23 December 1970. There will be no processing of work on the 
24 December to allow the staff to finalise end-of-year operations and 
accounting. As usual, the Centre will be closed over the Christmas -
New Year period and will re-open for business at 9 a.m. on Monday 
4 January 1971. 

FORTRAN COMPILER ERROR 

The FORTRAN compiler does not create the correct code when both variable 
array dimensioning and an Arithmetic Statement Function are used in a 
subroutine, as illustrated in the following example: 

SUBROUTINE TEST (A,N,B) 

DIMENSION A(N,N) 

FN (X,Y) = X+Y 

84 



The compiler at present does not create the necessary jump instruction to 
skip the execution of the Arithmetic Statement Function on initial entry to 
the subroutine. The only solution at present is to reorganise the subroutine 
so that an Arithmetic Statement Function is not used. This fault is cured 
in a subsequent version of the compiler which will be released when it has 
been adequately tested. 

LIBRARY ACCESSIONS 

This is a list of those books accepted by the University of Queensland 
Libraries during August 1970 which may be of interest to readers of the 
Bulletin. 

DOLBY) J. L. 

GRAY, Max 

SALTON, Gerald 

RODGERS, William H. 

WHALAN, Douglas J. 

Computerized library catalogs 1969 (025,3 DOL Main) 

DocumentaUon standards 1969 (029.7 GRA Engin.) 

Automatic information organization and retrieval 
1968 (029.7 SAL Engin.) 

Think; a biography of the Watsons and IBM 1969 
(338.7616518 WAT 3 ROD Main) 

The law and computers 1970 (340 WHA Main) 

CONFERENCE ON APPLICATIONS OF ELECTRONIC DATA PROCESSING : STATE AND LOCAL 
GOVERNMENT, University of Georgia, 1965 

EDP systems in public management 1968 
(350.0018 CON Main) 

BELLMAN, Richard Ernest Methods of nonlinear analysis 1970 
(517.38 BEL Maths) 

BELLMAN, Richard Ernest Algorithms~ graph8~ and computers 
(519.92 BEL Maths) 

CONFERENCE ON THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS, Dundee, 1969 
Conference on the numericaZ. solutions of differential 
equations 1969 (517038 CON Maths) 

SEMINAR ON THE ROLE OF THE COMPUTER IN THE SECONDARY SCHOOL, Adelaide, 1969 
Proceedings of the week-end seminar 1969 
(510.78340712 SEM Main) 

SMITH, Barry Whitmore, 
compo 

Australian Computer Society membership survey~ 1968 
1969 (Qto 510.7834 SMI Engin.) 

85 



KLEINMUNTZ. Benjamin 

WHITEHEAD, T. P. 

Clinical information processing by computer 1969 
(610.28 KLE Main) 

Automation and data processing in pathology 1969 
(616.07 WHI Clin.) 

AUSTRALIAN COMPUTER CONFERENCE, 4th Adelaide, S.A., 1969 

BELL, Leonard W. 

HOESCHELE, David F, 

HOVANESSIAN, Shahen A. 

LOSSIEVSKII, V. L. 

MARTIN, James Thomas 

SALOMAA, Arto 

VAN VALKENBURG, 
Mac Elwyn 

ARNOLD, Robert R. 

BIRKLE, John 

CALDERBANK, 
Valerie Joyce 

CUJLEY, John Charles 

GEAR, Charles William 

GREENWOOD, William T. 

GRISWOLD, R. E. 

ILIFFE, J. K. 

Proceedings 1969 (Qto 612.38195 AUS Elect. Engin.) 

Digital concepts 1968 (621.3815 BEL Elect. Engin.) 

Analog-to-digital~ digital-to-analog conversion 
techniques 1968 (621.38195 HOE Engin.) 

Digital computer methods in engineering 1969 
(620.0018 HOV Engin.) 

Automation of continuous production processes 
1964 (629.8 LOS Elect. Engin.) 

Teleprocessing network organizations 1970 
(621.38953 MAR Engin.) 

Theory of automata 1969 (629.89 SAL Main) 

Network analysis 1964 (621.31921 VAN Elect, 
Engin. ) 

Modern data processing 1969 (651.8 ARN Engin.) 

Computer appl~ications in management 1969 
(658.0018 BIR Engin.) 

Business Management and Computers 1970 
(658.00184 BUS Main) 

A course on programming ~n FORTRAN IV 1969 
(651.8 CAL Chem.) 

Electronic computers 1967 (651.8 CLU Chem.) 

Computer organization and programming 1969 
(651.8 GEA Engin.) 

Decision theory and information systems 1969 
(658.4 GRE Main) 

The SNOBOL 4 programming language 1968 
(651.8 GRI Engin.) 

Basic machine principles 1968 (651.8 ILl Engin.) 

86 



KIVIAT, Philip J. 

KRAUSS, Leonard I. 

LEV, Baruch 

MCKINSEY and COMPANY 

PHILLIPS, 
George McArtney 

PRITSKER, A. Alan B. 

The Simscript II programming language 1968 
(651.8 KIV Engin.) 

Administering and controlling the company data 
processing function 1969 (Qto 658.0018 KRA Engin.) 

Accounting and information theory 1969 
(657 LEV Main) 

Unlocking the computer's profit potential 1968 
(651.8 MACK Main) 

Computers 1969 (651.8 PHI Engin.) 

Simulation with GASP II 1969 (651.8 PRI Engin.) 

SYMPOSIUM ON CRITICAL FACTORS IN DATA MANAGEMENT, University of California, 
Los Angeles, 1968 

Critical factors in data managements 1969 
(658.0018 SYM Engin.) 

FEATURES OF ATLAS - HARDWARE AND SUPERVISOR 

M. J. McLean 

This is the second half of Mr McLean's seminar on the Atlas computer. 
Last month's Bulletin carried a description of the hardware features; 
this section outlines the structure of the Supervisor. 

The One-Level-Store consists of the sixty-four 512-word pages of core store 
and a hundred and ninety-two 512-word sectors on the drum. This gives a 
total effective store which can hold 256 blocks or 128K. The organization 
of the One-Level-Store is centred on certain directories which are 
maintained by the system. 

The Block Di'rectory contains one entry for each page and sector (ie. one 
entry for each block in the One-Level-Store). The directory is used to 
answer the question 'Where is block x of program p?'. Each entry indicates: 

(i) The number of the page or sector which is represented 

(ii) If the page is full or empty 

(iii) The number of the block occupying it if it is full. 

87 



[;L ~=-- _ ~_------------C-------"---I- -"-"-------r~] 

I \ I, 
I \ / 

! \ I 
. \ ;' I 
1 / 

O l" f lOn \ .I core, ll-bit 
1 if on drum ll-bit 

Block Number 
Sector 
or Page 
Number 

Figure 5. Format of Block Directory Entry 

1 if entry 
is in use 
o if empty 

The Block Directory is divided in areas, one for each program which is 
currently active. The number of entries in each area is the maximum number 
of blocks which that program is allowed to use (this number is specified by 
the User in the Job Control Information). The Block Directory is accessed 
via the Program Store Directory. This has 8 entries; one for each of the 
seven User Programs which can be active simultaneously, and one for the 
Supervisor. Each entry specifies the start of the corresponding Block 
Directory area relative to the start of that directory and the size of the 
area (Fig" 6). 

Block 

Figure 6. Entry of Program Store Directory 

When a non-equivalence interrupt occurs the interrupt routine has a look to 
see which job is currently running. It then consults the Program Store 
Directory to find the correct area in the Block Directory, and then 
searches these entries looking for the missing block number. The search 
will reveal one of three possible situations. 

88 



(i) If the block is on the drum then the job is halted and a drum transfer 
is initiated. The system always maintains one empty page in core so 
that there is room to bring in a new block. When the drum transfer is 
finished the drum service routine initiates the routine which will set 
up the Page Address Registers and release the job. 

(ii) If the block is in core, but locked out, it means that the block is 
currently in use as a buffer for Input/Output. In this case the job 
is simply halted. The tape or drum service routines will release the 
job when the transfer is complete. 

(iii) If the block is not listed in the Block Directory then a search is 
made for an entry which is not in use. If such an entry is found then 
it is set up as the new block occupying the vacant page in core and the 
program is released. If no empty entry is found then the program is 
attempting to use more blocks than it originally requested. In this 
case the program is terminated as requiring excess blocks. 

In order to maintain one empty page in core it is necessary to write blocks 
back to the drum when they are not being used. The choice of which block to 
write back is made by a Learning Program which works on statistics about the 
occupancy of each page. These statistics are gathered by the Instruction 
Counter Int~rrupt Routine. This routine is initiated by an interrupt every 
time 2048 user instructions have been executed. Associated with each page of 
core is a single bit flag called the Use Digit, which is automatically set 
whenever a page is accessed. The Instruction Counter Interrupt reads these 
flags, notes their status and clears them to zero. The drum Learning 
Program calculates for each block in core two parameters; t and T. t is the 
number of Instruction Counter Interrupts which have occurred since the block 
was last referenced. T is the number of Instruction Counter Interrupts for 
which the block was out of use last time it was selected for writing to the 
drum. These two parameters can be shown graphically (Fig. 7). 

Drum 

--'-'" --- .. --.- ... _._:;. 
Time 

l' 
I 
I 
I 

Present 
Time 

Figure 7. History of Usage of a Single Block 

89 



The parameter T is calculated as follows. When a block is written to the 
drum, the time on the Instruction Counter Clock, t, is recorded in a 
directory which is almost identical to the Block Directory and is called 
the Block Status Directory. When the block is read back T can be 
calculated. 

The learning algorithm is largely empirical and therefore no attempt will 
be made to justify it. The algorithm is as follows. 

1. If there is an empty page, do nothing. 

2. Choose the page for which t - T - 1 has a maximum positive value. 
(ie. a page which has now not been referenced for longer than it was 
out of use last time it was written to the drum). 

3. For all pages with t I 0 choose maximum value of T - t. 

4. If t = 0 for all pages, choose maximum T. 

90 






