
Volume 3, Number 3. 

2nd March, 1970. 

UNIVERSITY OF QUEENSLAND 

COMPUTER CENTRE 

COMPUTER 

CENTRE 

BULLETIN 

Editor: 

H. L. Smythe. 





THIS ISSUE 

This month's Bulletin announces the first seminar in Computer Science for 1970, 
gives some useful hints for debugging a program, and presents a small ALGOL 
puzzle. Our chief article discusses the method and some of the factors 
affecting the assessment of University of Queensland student fees by computer, 
The division in functions·between the Department of Computer Science and the 
Computer Centre is explained, and members of the newly-created Professional 
Systems Development Group are introduced. 

SEMINARS IN COMPUTER SCIENCE 

As we mentioned in the February Bulletin (Volume 3, Number 2), the Department 
of Computer Science is sponsoring a series of seminars in computer science to 
introduce clients to new techniques in computing. 

The first seminar will be presented by Mr. Ian Oliver, Consultant and former 
Departmental Lecturer, who will discuss some aspects of Problem Solving by 
Simulation. This seminar will be held on Wednesday, 18th Marcb, in Room.Gl3 
of the Engineering Administration Building, from 2 to 4 p.m. The sec9nd 
seminar of the series Paging in the Management of Core Storage will be 
presented by Mr. Michael McLean, a Senior Demonstrator in the Department of 
Computer Science, on the 15th April, ~n Room G13 from 2-4 p.m. 

All interested clients, staff and students may attend the seminars, and 
enquiries should be directed to the Secretary of the Department of Computer 
Science (Mrs. Judith Greenhill, extension 688). Any suggestions or comments 
should be referred to the Seminar Convener, Mr. John Williams (extension 8288). 

20 



STAFF NEWS 

INTRODUCING THE PROFESSIONAL SYSTEMS DEVELOPMENT GROUP 

In the last few months, the Computer Centre and the Department of Computer 
Science have undergone an internal reorganization. Staff responsibilities and 
functions have been redefined and a Professional Systems Development Group has 
been created so that the Centre and the Department are now functioning as 
separate and individual entities. 

Prior to the division of responsibilities between the Centre and the 
Department, staff held both academic and service functions. The Professional 
Systems Development Group was therefore established to relieve academic staff 
of developmental, consultative and service activities within the Centre. The 
Department of Computer Science, like any other University Department, now 
performs purely teaching and research activities. The staff of the Computer 
Centre have been divided into the Professional Systems Development Group and 
an Operations Group, which provide, respectively, for both the development and 
operation of the computer installations, and day-to-day maintenance, 
scheduling, and data preparation duties. 

Mr. John Noad, who is Senior Systems Analyst, was formerly a Lecturer in the 
Department of Computer Science, responsible for several subjects in the 
postgraduate Diploma in Information Processing. Mr. Chris de VoiZ, also a 
former Lecturer in the Department of Computer Science, is Systems Analyst. 

Mr. Tim Kerridge, a Senior Systems Programmer, graduated with a Bachelor of 
Science degree from Liverpool University in 1962. In 1967, after working 
for the Royal Insurance Company in Liverpool, Tim came out to Australia to 
join the Bureau of Census and Statistics where he worked for three years. 
Mr. John Row is Systems Programmer. 

Mr. Robert Cook, who holds a Mathema.tics Bachelor of Arts degree and a Diploma 
in Computer Science from Cambridge University, and Mr. David Seddon, who is a 
Bachelor of Science graduate and holds a Diploma in Automatic Computing from 
the University of Queensland, have been appointed Assistant Systems 
Programmers. 

21 



~~~ ~ ---~---

PROGRAMMING ADVICE 

A KEY TO FORTRAN DEBUGGING 

J.B. Williams 

Last year, the Computer Centre Bulletin (Volume 2, Number 4, pp.45-46) 
published a flowchart describing the systematic order in which a program 
should be produced. This article will concentrate on one portion of that 
flowchart, viz.: 

YES 

Program 
follow 
detail 
{:harts?/ 
" // 

NO 

Alter 
coding 

This debugging stage can often cause unnecessary difficulties. The 
following points are designed to help those who have mastered the fundamentals 
of the FORTRAN IV language, and are now writing more advanced and more 
complex programs. 

It is important that the programmer become familiar with the writing of 
subroutines and functions. As a large program written in one piece is 
unwieldy and difficult to debug, it should be divided, in some logical manner, 
into several subroutines. Each subroutine should then be debugged 
independently of the other routines that make up the program. It is always 
necessary to write a test main program for each subroutine. The test main 
program should read in data and Uset-upfi values to simulate the conditions 
that will exist when the subroutine is called in the final working program. 
The subroutine should then be called, and on return to the test main program, 

22 



the values calculated by the subroutine should be printed out. Great care must 
be taken in choosing the test data as it should test aZZ possible circumstances 
that may arise. A program manipulating large numbers, for example, should 
include a test for overflow as well as a PRINT statement that prints a suitable 
message, should overflow occur. 

Many programs involve a considerable amount of calculation before any part of 
the desired results is obtained. If a program is written to print only the 
results and no print-out,occurs during a run (i.e. the program loops ,or stops 
before reaching the first PRINT statement), then the programmer has very little 
information to indicate the cause of the problem. It is advisable, therefore, 
to include several additional PRINT statements throughout the program to print 
out some of the important intermediate results. If the program does not run 
correctly, the course taken can be traced, and the values of the variables that 
are printed, can be noted. When the program is completely debugged, the 
additional PRINT statements can be removed. It is always advisable to print the 
data immediately after it is used (provided the volume of data is not too 
large). In this way, mispunched or misread cards can be det~cted. 

A program should detect any abnormal conditions that may arise and, if no 
action can be taken, it should stop. Since there are usually several 
conditions that may arise, it is important to know the reason the program 
stopped. A message, therefore, should be printed, explaining the conditions 
existing immediately before the program stops. It is also possible that test 
data, apparently well-chosen, may lead to an abnormal condition. If no tests 
exist for abnormal conditions, the programmer will then wonder why the 
program appears correct but outputs incorrect results. However, if an error 
message is printed, the programmer can fairly readily check if it is caused by 
the data or yet another bug. 

In a large program, it is often difficult to remember the exact purpose of 
each section of coding. Time is wasted if the programmer must "work" through 
the coding merely to discover its function. In a routine, comment cards 
should precede each section of coding, describing its purpose. If coding is 
changed at a later date, it is necessary to alter another section of coding 
so that ,the program may continue to run satisfactorily. This situation can 
also be noted on a comment card. 

If the above points are followed, the programmer should find the debugging of 
large FORTRAN programs simplified. It is important that any abnormal 
condition that may arise as a result of the particular data used, is 
detected and the user is informed of the condition. It is also vital that 
all bugs are eliminated from the program. The user must be able to rely on 
the results he obtains. 

23 



BULLETIN BAFFLERS 

Can YOU remember ALGOL? 

begin integer a; 

procedure DOUBLA; a:=2*a; 

a:=3; 

begin integer a; 

a:=2; 

DOUBLA; 

output(a); 

end; 

output (a); 

end; 

Question: What values are output by the above code? 

Next month's Bulletin will provide the answer to this baffler. 

STUDENT FEE ASSESSMENT 

A.W. Robson-Petch 

The author of this article~ Mr. Allen Petch~ is a programmer employed by the 
University of Queensland~ Data Processing Section. Mr. Petch has been 
programming for over four years~ and has extensive knowledge of 
administrative procedures which has greatly helped in the design and 
implementation of programs. 

This article describes the assessment of student fees for the University of 
Queensland. The systems analysis and programming were carried out by the 
Data Processing Section; and the data was processed by the GE 225 computer 
installed at the Computer Centre~ University of Queensland. 

24 



BACKGROUND INFORMATION 

The University, at present, has over 16,200 enrolments of which 7,700 are 
full-time, 5,200 are part-time internal, 3,100 are part-time external, and 200 
are staff members. There are 200 different courses and 800 subjects are 
offered in twelve faculties. 

The fee structure is designed so that there are two rates for full-time courses 
and six rates for part-time studentsc Certain special cases exist which do not 
require assessment for each term of the course. These will be dealt with later 
in this article. 

Late enrolment fees are charged for all enrolments received after the due date, 
and airmail fees are imposed if external students require their class notes to 
be forwarded by airmail. 

GENERAL DESCRIPTION 

Enrolment information has been maintained on the computer for statistical and 
records purposes for a number of years. It was decided to extend the 
information contained on magnetic tape to allow for automatic assessment of 
fees. This tape is constantly updated with enrolment changes and hence was the 
automatic choice for the source information for assessment of fees. 

The enrolment, fees and statistics system consists of 60 programs varying from 
simple cards to tape runs to the most complex update runs. The system uses 
exclusively the GECOM compiler and the Forward Sort Generator. It has been 
found that these languages are the best suited for Administrative processing 
under the present environment. 

One of the most involved programs in the system produces each student's fee 
from the information contained in the updated enrolment master tape. This 
program runs for approximately 35 minutes and is discussed in this paper. 

ASSESSMENT PROGRAM 

It was found desirable to make this program as flexible as possible so that 
changes to course and subject codes and rates could be made without the 
necessity for recompilation. As compiling time for this program is about 
45 minutes, it is clearly uneconomical to write fees etc. into the program. 

Flexibility was achieved by using punched cards for all changeable data. A 
deck of 500 cards in seventeen separate layouts was necessary to contain the 
required input. Another method employed to reduce compiler and debugging 
time is to break the program into many small sections, each section dealing 

25 



with one part of the entire program. If alterations of fee rules make it 
necessary to change the program, it is a simple task to alter the relevant 
section so that the remainder of the program is not affected. The data cards 
are stored into memory in tables as the first action performed in the program. 

Normal tape label checking is done to ensure that the correct tapes are being 
used. If tape labels do not agree, the run is terminated. When tapes are 
found correct, processing commences. 

Initially, enrolments are checked for cancellations. Cancelled courses are 
indicated on the enrolment by a special symbol, and the date of cancellation 
also appears. If this date is prior to the one specified in a table in 
memory, then a zero assessment record is produced. If not, processing 
continues. 

One or other of two Late Enrolment Fee rates is charged 
is later than either of the two dates stored in memory. 
exempt from this fee and are located by comparison with 

if the enrolment date 
Certain courses are 

an exemption table. 

A number of courses are assessed in certain terms of the year. If one of 
these is discovered by a table, look-up processing continues only if the 
course is to be assessed in the current term. Otherwise, a zero assessment 
is produced. Post-graduate courses are determined and assessed according to 
attendance codes. 

A table, containing every course with an appropriate full-time rate code and 
a part-time table code, is used to identify the course for subsequent 
processing. When a match is made, processing continues in either of two 
directions. 

If a full-time course is encountered, the full-time rate code is used to find 
the actual rate to be charged for that course. If a part-time course is 
encountered, the part-time table code is used to determine which table is to 
be used. The table of part-time set courses contains course codes and the 
amount to be charged for that course. 

Part-time unit courses vary greatly in concept. For example, with Arts, it 
is necessary only to sum the number of subjects taken and multiply by the 
cost per subject. With Science, it is necessary to find the unit value of 
each subject and accumulate total units which is multiplied by the cost per 
unit. With Engineering, however, each subject has an associated cost, and 
these costs must be summed to obtain the terminal fee. Ten part-time tables 
exist, each requiring different means of processing. The course fees 
derived by one of these methods are held in a storage area for later 
processing. 

The final stage of the run is to determine whether the fee is charged to the 
actual student, or to the granting body, should the student hold a 

26 



scholarship. This information in coded form is contained on the enrolment tape. 
Separate areas are allowed on the assessment record and the fee is moved to the 
appropriate area prior to writing the output data. 

At any stage of processing, it is possible to overrule the computer decision for 
assessment. An authorization to do this is shown on the enrolment record by a 
special indicator, and remains until deleted by a further authorization. 

Automatic assessment is achieved for about 99% of all cases. When assessment is 
found· to be impossible, whether through mispunching of relevant information or 
variations from the normal enrolments, a zero assessment record is produced 
which contains an indicator to show that this enrolment must be checked, and if 
necessary, a clerical assessment made. 

CONCLUSION 

Because of the reduction in time taken to assess students fees, assessment is 
now carried out four times a term, providing current figures on a regular 
basis. 

Changes of enrolment affecting fee assessment are no longer a problem as these 
are dealt with automatically each time an update of the enrolment master is 
made. 

The fees system has been operating successfully for the past three years, and 
only slight refinements have been necessary each academic year. 

27 




