
(,

Vol. 4, No.5.

3 May 1971

UNIVERSITY OF QUEENSLAND

COMPUTER CENTRE

COMPUTER

CENTRE

BULLETIN

Editor:

Mrs Sarah Barry

.~--- ~--.-~--

NEW PDP-IO FACILITIES

1. NEW FACILITIES

On Tuesday 27 April 1971, a new version of the command decoder will be
implemented, together with supporting software. This gives an expanded command
capability, and makes available to the remote terminal user a number of new
facilities. Included in these are:

(a) Digital plotting

(b) Support for paper tape I/O on Teletypes

(c) Access to files within other projects

Cd) A COBOL compiler

(e) Availability of a number of system programs.

Some further details of these facilities are given below. A revision of the
Systems User's Guide and a new manual, giving full details of all the new
facilities, are currently in production.

2. DIGITAL PLOTTING

The plotter available on the PDP-10 system is a Model 565 CalComp plotter with
an eleven inch wide drum, and a step size of .01 inches. An example of the
plotter output is shown below.

53

GRAPH OF Y=EXP(-X/10.0)~SIN(X)

~~J-~--~4--+~~~~-n~~~~~~'-----~
X 48.00 <!: • (3

>-

PROJECT 16 20- APR- 71 1~5 : 25
.. Z?_

54

(

An initial write up, which gives details of the. plotter subroutines, plotter
operations and use of the plotter, is available from the Centre's Administrative
Officer. Full details of the plotter system are included in a new manual which
will be printed shortly.

Users are requested to note the following points with respect tocthe~plotter:

(a) To enable users to become familiar with the use of the piotter" and the
plotting subroutines, the first four weeks of plotter operation will be
free of charge.' Standard -charges for plotting will begin on 24 May 1971.

(b) All plotter output will be in black ink on plain white paper and will be
produced by a 0,2 mmrapidograph pen.

(c) Plotter output will be automatically identified by project number. It will
not be left in the output shelves, but should be collected from the Centre's
Administrative Officer.

(d) The use of the plotter will, for many users, be their first experience of a
symbiont (or spooling) operation. The operation is as follows:

When the command is given to PLOT a data file, that file is not plotted
immediately, but is placed in a queue of plot jobs on disk. Subsequently,
a symbiont program running under the control of a machine opera'tor runs
these plot jobs one at a time producing the graphical outpuLc, This mode
of operation makes efficient use of the plotter and saves' the" user time
(and money) by not requiring him-to wait at his terminal llntiithe plotter
is available for his use,' Plotted output will normally be available for
collection within two hours of termination of the user's job, Details of the
PLOT command can be found in section 6.1 (b).

3. EXTENDED COMMAND'FORMAT

The concept of a filename has been extended so that files' belonging 'to any
directory may be referenced. A directory is a file in its own right. The
directory name is separated from the filename by a period. For example:

directory.filename!processor-program-name

refers to filename/processor-program~name in the designated directory:

There are three types of files, each being referenced by a specific type of name,
as follows:

(a) User Files

User file names comprise up to 6 alphanumeric characters, the first being a
letter.

55

examples:

(i)

(ii)

(iii)

MYFILE

BMD02R

MYFILE/F4

(b) Project Directories

-------- - -------

Project directory names comprise up to 6 numeric characters. The name is
the same as the project number of a user and this file is his directory.

example:

124 This refers to the directory of project 124

(c) Special System Files

Special system file names comprise up to 6 alphanumeric characters preceded
by a dollar '$'. These filenames refer to input-output devices which can
be accessed by the user.

examples:

$ASR

$TTY

Refers to the paper tape reader and punch on.the
. ASR 33 Teletypes

A user's Teletype keyboard and printer

It is intended that any special system filename may be used in a command
but, for the moment, it may not be used as the verb in a command.

When users wish to refer to a file in another user's project area, that
project's directory name should precede the name of the file.

example:

271.TEST/F4

This refers to the FORTRAN IV file name TESTjF4 within project 271,

56

If the project directory name is omitted, the standard system files are first
searched for a file of the name given, and if this fails the uservs own
project area is assumed.

examples:

(i) FORTRAN

This references the standard system FORTRAN compiler.

(~i) TEST/F4

This referenc:es the file on the Dseris own project area.

4, SUPPORT FOR PA-.PER TAPE I/O ON TELETYPES

All I/O using paper tape must use the COpy command. The paper tape reader and
punch are referenced by using the directory name $ASR,

example~:

(1) COPY TO"'NEvJFIL FROH=$ASR

Reads a file from the paper tape reader

(if) COpy FROK=OLDFIL TO=$ASR

PunC:les a file onto the paper tape punch

(a) Preparation of tapes

Tapes must: be punched on 8-channel paper tape using 7-bit ASCII code vJlth
even parit.y. All records must be terminated by both carriage return
(015 ASCII) and line feed (012 ASCII) 0 The tape must be terminated by a
c:ontrol-Z character (032 ASCII!. Tapes punched on the remote terminals
by the PDP-IO system conform to this standardc No more than one file
should be punched on one tape ..

(b) Operation of equipment

To feed blank tape on the tape punch:

Turn the Teletype on/off switch to I LOCAL ,
Press the tape punch 'ON' button
Press the keyboard 'HERE IS' button a number of times
Press the tape punch fOFF i button
Turn the Teletype on/off s>:.:ritch co YLINE'

If these instructions are not followed, spurious characters will be
punched.,

57

(c) Control settings on the reader and punch

The computer will automatically start and stop the reader and punch when
it is ready to perform I/O after a COpy command. The user must not
switch either reader or punch 'ON' with the Teletype in 'LINE' mode.

Thus, the reader on/off switch should be in the 'STOP'· position and the
punch 'OFF' button should be down.

5. ACCESS TO FILES WITHIN OTHER PROJECTS

To access a file within another project, quote the project number in the filename 0

examples:

(i)

(ii)

(iii)

COPY 362.HISFIL, MYFILE

This copies a file on project 362 to a file on the user's own area

FORTRAN (LIST) IN=llO.SRCFIL BIN=BINFIL LST=LSTFIL

The file SRCFIL obtained from project number 110 is compiled, producing
relocatable and list files on the user's own area

2l.AFILE/F4

This is an automatic compilation and execution of the FORTRAN file obtained
from project number 21

The file to be accessed on some other project's directory must have its
permission set so that at least READ access to it is allowed.

Permissions are set for two classes of users:

(i)

(ii)

The permissions

the owner of the project

all other users (the world)

are:

FREE the user can read,

vJRITE the user can read

READ the user can read

NONE the user cannot do

write and

and write

anything

58

change permission

For the world, all these permissions are distinct,
equivalent to FREE and NONE is equivalent to READ,
his own files and change their permission.

For the owner, WRITE is
The owner can always read

When a file is created, the perritlssion is automatically set to

OWNER~FREE WORLD~NONE

Permissions are set by the PERMIT command, There are now two options to the
PERMIT command with assignments OWNER and WORLD.

examples:

(i) PERMIT (OWNER=READ, WORLD""NONE) FILEA, FILEB (WORLD~READ),FILEC (OWNER=FREE

(li) PER(R,N) FILEA, FILEB(WORI,D""R), FILEC(F)

For FILEB, READ is assumed for the owner.

For FILEC, NONE is assumed for the world.

6. NEW AND EXTENDED COMMANDS

This version of the decoder provides a number of new commands; together with new
options and arguments for some existing commands. These are briefly outlined
below. Full details of all these will be included in revision 1 to the
System User's Guide 0

6,1 New Commands

(a) COBOL

A COBOL compiler is now available on the PDP-lO syst.em, The c.ommand to
use COBOL is

filename-I
filename-2
filename-3

COBOL(BIN LIST MACRO M"AP)
NOBIN'NOLIST' , ~~.

{IN= Hilename-l > {BIN= }filename.,-2, {LST= }£ilename-3

is the name of the source file
is the name of the resulting relocatable file
is the name of the list file

Automatic compilation "rill work using the processor program name CBL.,

(b) PLOT

This is used for transmitting plot output files to the plotter symbionto
The command is

PLOT filename-I, "'" filename-n

filename-I, 000, filename-n are the names of the data files output by the
plotter subroutines"

59

(c) MACRO

MACRO is the assembly language for the PDP-IO o The MACRO command is

MfACRO(BIN CREv LIST)
lti. NOBIN' ... 'NOLlST

{IN= }filename-I, {BIN= }filename-2, {LST:;: }filename-3

filename-l is the name of the source file
filename-2 is the name of the resulting relocatable file
filename-3 is the name of the list file

Automatic compilation will work using the. processor program name M..AC,

(d) COMPARE

COM1'ARE compares two ASCII files and outputs the differences bet\iJeen the
two,

COMPARE {;~LEl:; }filename-I, {;~LE2"" }filename-2, {LST::: Hilename-3

If the LST argument is omitted, the third file appears on the Teletype,

6"2 New Options in Existing Commands

Existing. commands

(a) COpy

COPY (ASCII COMPRESS)
BIN '

ASCII for copying files of ASCII characters

BIN for copying relocatable files

COl1PRESS removes sequence numbers and trailing blanks from ASCII records,
and converts multiple spaces to tabs 0

(b) PERMIT

These details have been given in section 50

(c) RUN
MAP

RUN(NOMAP ,DDT)
SYHBOL

This will run the named files with the debugging package DDTo

60

(
6.3 New Arguments in Existing Commands

(a) DIRECTORY

The DIRECTORY command can now have an argument string which specifies
selective listing of part of a directory,

example:

DIRECTORY ALL/F4

This will list all files with the processor program name of F4

(b) FORTRAN

Three arguments can now be used in the FORTRAN command.

BIN LIST
FORTRAN(NOBIN,CREF'NOLIST,MACRO)-

{IN=}filename-I,{BIN=}filename-2,{LST=}filename-3

filenarne-l is the name of the source file
filename-2 is the name of the resulting relocatable file
filename-3 is the name of the list file

7. AVAILABILITY OF SYSTEM PROGRAMS

In addition to the system facilities outlined above, the following DEC system
programs are now available,

BINCOM

CHESS

FUDGE2

LOADER

PIP

RUNOFF

SORT

TECO

These programs can be obtained simply by entering the program name. In most
cases the program will return an asterisk to the Teletype and wait for the
necessary DEC command string to be entered,

Users should not use any of the above names for their own files.

61

8. SOFTWARE CLASSIFICATION

A statement in the April issue of the Computer Cetnre Bulletin outlined four
categories or types under which it was intended to classify all the software
available on the PDP-IO system.

Briefly, the categories are as follows:

Type 1 System software that has been formally tested, is documented, and is
supported with educational and consulting services 0

Type 2 Application programs that have been formally tested, documented and
are supported with educational and consulting services.

Type 3 Programs of general interest that satisfy basic standards of testing
and documentation. These programs are given some support but this
support has low priority.

Type 4 Programs that are made available in the author's original form and
have not been tested. These programs attract no support.

The following system programs and facilities have now been classified as Type 1
programs-

(a) System programs and compilers

The monitor
LOGIN
FINISH
Command Decoder
Batch
Editor
FORTRAN
BASIC
FORTRAN library (including the plotter and overlay subroutines)
ACCOUNT
PASSWORD

(b) The facilities available via the following commands

COPY
DAYTIME
DELETE
DIRECTORY
KEEP
OVERLAY
PERMIT
PLOT
RENAME
TIME
TYPE
RUN (excluding the DDT option)

All other programs and facilities at present are classified as Type 4 programs,

62

LIBRARY ACCESSIONS

BARTON, Richard F. A primer on simulation and gam1--ng~· 1970 (00L424 BAR Main)

INTERNATIONAL CONFERENCE ON METHODOLOGIES OF PATTERN RECOGNITION
Honolulu 1968 Me&hodologies of pattern recognition 1969

VAUGHAN, James A.

JACOBSON, David H.

JOHN, Fritz

KUPPERMAN, Robert H.

MITCHELL, Andrew R.

WEYRICK, Robert C,

ROTHERY, Brian

(001.533 INT Maths)

Banking computer style 1969 (332.1018 VAU Engin)

Differential dynamic programm1--ng 1970
(519,92 JAC Maths)

Lectures on advanced numerical analysis 1967
(517.6 JOH Maths)

Mathematical foundations of systems analysis 1969
(517.5 KUP Main)

Computational methods in pal"tial differential equations
1969 (517.383 MIT Maths)

Fundamentals of analog computers 1969 (621.381957
WEYPhys)

The art of systems analysis 1969 (658.502 ROT Main)

SYMPOSIUM ON ON-LINE COMPUTING SYSTEMS, University of California,
Los Angeles, 1965 On-line computing systems 1965 (Qto 651. 8 SYM Engin)

TAVISS, Irene, compo The co~puter impact 1970 (651.8 TAV Main)

PDP-IO FORTRAN IV

Execution Error

To minimize confusion between the character sets of the 026 and 029 keypunches,
it was our intention that both punchings for certain special characters used by
FORTRAN should be accepted, Appendix D of MNT-5 FORTRAN IV FOR THE PDP-I0 lists
the character sets. In particular, the closing parenthesis character ') I was to
be represented by the punching 11-8-5 (029 punch) and 12-8-Lf (026 punch).
Because of an oversight, conversion is not done during execution for this
particular character and only the punching 11-8-5 is accepted.

This error will be remedied as soon as practicable, but in the meantime it is
suggested that the 029 punching only be used.

63

Error in the Use of Scratch Files

Under some circumstances, it appears that creation of a binary record after
a formatted record can cause selective overwriting of the first formatted
record, Users are recommended to avoid the creation of scratch files
containing both formatted and binary records.

GE-225 FORTRAN IV

Execution Error

The intermittent error in FORTRAN IV execution which was reported in previous
editions appears to have been corrected. Our thanks to those who have
patiently cooperated with us in trying to locate this very troublesome problem,

E and F Output Conversion

E and F output conversion routines can give improper results for very small
quantities (less than about LOE~70), If no scaling factor is used~ then F
conversion will yield a zero result, but E conversion leads to an improper
but small result, If a scaling factor (Le, 2PF8,2) is used, then the output
routine can print a very large number, for example 55555,55.

PROGRAMMINGWHH DECISION TABLES

M, J, McLean

MY', McLean graduated from The City UniversitY3 London in 1968 with First Class
Honours in Civi l Engineer'Zng. He then went to the University of London
Institute of Computer Science where he was awarded an M,Sc, with Distinction
in Computer Science. He is currently a Lecturer in the Department of Computer
Science at the University of Queensland,

ABSTRACT

It has been found that when decision table facilities are used in programming
there is a reduction in the time required for writing and debugging the
programs, The use of decision tables has been most popular in the field of
commercial data processing and especially as an extension of COBOL 0

64

/

! This paper introduces the use of decision tables in programming and specifically
follows the development of the modern software which allows the use of decision
tables in COBOL. Finally, it predicts future developments in this fieldo

INTRODUCTION

Decision tables have been used in programming for over ten years. In that time,
they have been introduced into a variety of languages and used in a variety
of applications. In most of these cases, the conclusion was that decision tables
reduce the time required for writing and debugging programs. However, it is only
comparatively recently that they have become generally recognized as a
programming tool. One of the main objections to using decision tables in the
past was that there was no standard which meant that a company which used them
was tying itself to a particular machineo

Most modern decision· table software supports- an extension of COBOL based on
the language DETAB-65.This paper introduces decision tables as a programming
tool by outlining DETAB-65'o' It then discusses decision table translation and'
extended-entry decision'tables.·· Finally, it predicts future developments in
this field. It is assumed that the reader is already familiar with the use of
limited, extended and mixed entry decision tables outside the field of
programming.

OUTLINE OFDETAB-65

DETAB-65 was designed' and implemented as a practical foundation on which to
experiment with decision table languages. The original proposals were made by
the CODASYL Systems Group and the development and implementation was carried out
by a branch of the Special Interest Group on Programming Languages (SIGPLAN) of
the ACM.

The language was designed to be easy to implement and modifyo Also, it was
intended for wide distribution, so-it needed to be machine independent. For
this reason, a pre-processor was-written in COBOL to convert DETAB-65 source
code to COBOL< .. In'both cases Required·COBOL 6l was used so that DETAB-65 could
be run-with very little modification on any machine with a COBOL compiler.
Only limited entry decision tables were initially implemented, although
provision was made for later modification to include extended and mixed entry
tables.

DETAB-65 is exactly the same as ordinary COBOL except for the actual decision
tables which are placed at the end of the PROCEDURE DIVISION. The decision tables
are translated into COBOL sections which are also placed at the end of the·
PROCEDURE DIVISION. Thus, tables cannot be executed as part of the normal in-line
code. Instead, they must always be entered by means of a PERFORM or GO TO verb.

65

Table Header 0

Rules Header

Condition

Area

Action

Area

0

0

Card
Ident

1 0 0

1 0 0

0

0

o 1 0 1 0

0 1 0 1 0

0 1 0 1 0

0 1 0 1 0

0 1 0 1 0

0 1 0 1 0

0 1 0 1 0

0 1 0 1 0

0 1 0 1 0

0

1

1

2

3

4

5

6

7

8

9

Figure 1.

S1;ub Area Rules Area

(tab le name) (size of table)

ENROLMENT-SEARCH 004005005

001 002 003 004 ELS $

COURSE EQ COMP-SC-1 y y

COURSE EQ COMP-SC-E y y

SEX EQ MALE y N

ATTENDANCE EQ FT Y N

ADD 1 TO C-SC-1-CNT X X

ADD 1 TO C-SC-E-CNT X X

ADD 1 TO MALE-CNT X

ADD 1 TO FT-CNT X

ADD 1 TO TOTAL X X X X

A Decision Table in DETAB-65

The tables are organized in the conventional way with vertical rules (Fig. 1).
Each table consists of three areas:

(a) Header Area

(b) Condi don Area

(c) Action Area

(a) Header Area

This usually consists of two cards, the Table Header and the Rule Headero

The Table Header is the first card of the decision table and is recognized
by the pre-processor by '0000' in columns 4-7. In addition to marking
the start of the table, this card contains the table name and the number
of conditions, actions and rules which the table contains 0

66

The Rule Header is the second card of the decision table. It divides the
table vertically into Stub Area and Entry Area, and divides the Entry Area
into individual rules; Each rule has a three-digit number and the
numbers are sequential starting at 001, The rule numbers do not have any
bearing on the order in which the rules are tested. The Stub Area starts
at column 9 and can be any number of columns, the area being terminated
by the start of Rule OOL Each rule can occupy between 3 and 12 columns
(only 3 columns are needed for limited entry tables). The rules start in
the first column containing the rule number, and finish at the start of the
next rule.

The last rule does not have a number, It is always the ELSE rule (the rule
which is satisfied when none of the other rules is satisfied) and is
designated by 'ELS'. The ELSE rule is terminated by a '$'.

(b) Condition Area

Conditions are written in the conditions stub. A condition is any normal
COBOL condition with the IF implied, If the condition is too-long to fit
onto the line within the condition stub, then a continuation line maybe
used and the condition is continued in the condition stub of this line,
Up to 9 continuation lines may be used, these being recognized by a
special mark in one·of the·first 8 columns of the card.

Each condition entry must be placed in the second column of the rule, and
the rest of the rule must be left blank, 'y V and iN' are used to indicate
'YES' and 'NO' respectively, A hyphen or blank indicates the 'Don't Care'
condition.

(c) Action Area

This is similar to the Condition Area, The Action Stub contains actions
that are normal COBOL statements. These can be any length, subject to the
limit imposed by 9 continuation lines. The action entries contain 'X' in
the second column of the rule if the action is to be executed; hyphen or
blank if it is to be ignored,

The DETAB-65 language outlined above was very successful and has since
become the basis of the software support given by some manufacturers,

DECISION TABLE TRANSLATION

The condition area of each decision table is translated by the pre-processor into
a tree structured branching procedure 0 i~ A decision table can usually be

'1< There is a class of translation techniques. the Mask Techniques, which· do not
generate trees. The code produced by these techniques generally requires less
storage than tree structures. However, this code cannot be represented in
COBOL source code so these techniques cannot be used in pre-processor systems,

67

represented by several different but, equivalent trees. Algorithms have been
published [2 & 3] which select the tree with either minimum average execution
time or minimum storage requirement; However, these algorithms are not
normally used, Instead, algorithms are selected which are fairly fast in
execution and which produce reasonably efficient output.

The DETAB-65 pre-processor checks each decision table for logic errors. If
it finds a logic error, it outputs a diagnostic message and ceases to generate
source code, The two types of logic error which cause this to happen are
Redundancy and Contradiction. After the DETAB-65 had been released, King [4]
suggested that it is wrong to cease code generation due to either of these
conditions.

Redundancy occurs when two rules represent the same conditions and specify
the same actions, This is not a logic errore It does not matter which set
of actions is executed when the redundant' set of conditions occurs. In Figure 2,
rules land 2 contradict since they both represent the condition (Y,Y) and they
specify different actions to be performed when this condition occurs. The
DETAB-65 pre-processor would require one of the hyphens to be replaced by an
vN', thus removing the contradiction (Fig, 3). However, examination of the
conditions in Figure 2 shows that the condition (Y,Y) can never occur, Suppose
RI is the most frequent outcome in the context in which the program is to be
used, Then, if the table is translated as it is with the contradiction still
present, the tree in Figure 4 will be generated. This tree cannot be generated
from the table in Figure 3(a) which'requires'both'rules to be satisfied before
Rl holds. It is therefore possible for the unnecessary removal of contradictions
to result in the generation of inefficient code"

Figure 2.

Age < 18

Age ::> 65

GO TO

Y

1

Y

2

N

N

3

A Decision Table Which Contains a Contradiction

68

Age

Age

GO TO

18

65

(a)

y

N

1

y

2

N

N

3

Age

Age

GO TO

18

65

y

1

(b)

Figure 3. The Contradiction in Figure 2 Has Been Removed

y N

y N

Figure 4. The 'tree' Generated From Figure 2

N

Y

2

N

N

3

King proposes that all redundancies should be ignored. Contradictions should
be reported as 'possible errors'. but these should not interrupt the
translation process. The errors should be reported by printing the numbers of
the rules which contradict and the combination of entries which is common to
both rules. It is up to the programmer to check this printout for real errors,

69

EXTENDED ENTRY DECISION TABLES

Extended entry decision tables are normally more convenient to program than
the corresponding limited entry tables as they are more compact and more
easily readable 0 However, software support for this type of decision table
has lagged behind the support for limited entry tables because of the problems
of implementation. It is normal for the extended entry table to be translated
into a limited entry table which is, in turn, translated in COBOL. The'main
problem to be resolved is that of finding the correct balance between the ease
of programming, the speed of translation and the efficiency of the code which
is produced.

At one extreme there is the extended entry decision table which allows all
conditions which make sense (and those which don't make sense) to be used. Each
condition is simply composed of the contents of the condition stub concatenated
with the contents of a condition entry. This combination is simply copied into
the generated code without being checked by the pre-processor. Similarly,
actions are composed by the concatentation of the contents of the action stub
with the contents of an action entry.

This method allows maximum programming flexibility together with high speed
translation. Unfortunately, the code produced is extremely inefficient since
there has to be a separate condition in the limited entry decision table for
every condition entry in the extended entry table.

In order to produce more efficient code, it is necessary for the pre-processor
to analyze the conditions and so recognize relations between conditions in the
same row of the table. This requires the pre-processor to duplicate some of
the. work of the compiler and this considerably increases the processing time.

The solution seems to be to allow the use of mixed entry decision tables and
to restrict the extended entries to the few most commonly required formats.
Four conditions formats and two action formats satisfy most requirements
(Fig. 5). In these examples operand means an identifier, a literal or an
arithmetic expression.

Stub Entry

1e Operand Relation Operand '0
'<-,

Operand Relation Operand +-,
'<-' (blank) Condition-name '\j

A EQ B
A EQ B

PROGRAMMER
~ (blank) NOT Condition-name tS NOT ANALYST

i@
Procedure-name <J PERFORM

'<-'
Procedure-name ~ GO TO

PERFORM TABEL-I
GO TO LOOP

(a) Formats (b) Examples

Figure 5. The Most Commonly Required Extended Entry Formats

70

FUTURE DEVELOPMENTS

Decision tables are becoming increasingly popular as more computer manufacturers
offer software support. Most of this support is based on the facilities offered
in the DETAB~65 pre~processor. It seems likely that before long this limited
entry. decision table feature will be included in CODASYL COBOL and USA Standard
COBOL (the two COBOL standards). Then COBOL compilers can be expected to appear
with decision table features built in. This will increase efficiency and permit
space saving Mask methods to be used in the object code.

Later developments are likely to be. the introduction of highly flexible mixed
entry decision table facilities. These facilities will not then be an extra
cost to translare since the translator and compiler will be one program.

REFERENCES

[1] POLLACK, S.L Decision Tables DirecUy into Programs, Applications
of Decision Tables, ed. McDaniel. Brandon/Systems
Press Inc. 1970.

[2] REINWALD. D. T. and SOLAND, R. M. Conversion of Decision Tab les to
Optimal Computer Programs I : Minimum Average
Processing Time. JACM VoL13,p.339.

[3] REINWALD, D,T. and SOLAND. R.M. Conversion of Decision Tables to
Optimal Computer Programs II·: Minimum Storage
Requirement. JACM Vol. 14, p. 742.

[4] Ambiguity in Limited Entry Decision Tables. CACM
VoLll, p.680.

71

