
Vol. 4, No. 5~-r
5 July 1971

UNIVERSITY OF QUEENSLAND

COMPUTER CENTRE

COMPUTER

CENTRE

LL TIN

Editor:

Mrs Sarah Barry

COMPUTER CENTRE COURSES FOR 1971

The attached schedule details the courses which will be given by the Computer
Centre in the last six months of this year. Enrolments should be made on the
Computer Centre Course Nomination Form and be forwarded to the Computer Centre
before the closing date for that course.

If nominations for any course are insufficient, the course may be cancelled.
A brief description of each course is given below.

1. INTRODUCTORY FORTRAN PROGRAMMING

Two courses in the FORTRAN programming language will be given. These courses
are introductory courses and assume that the student has no prior knowledge of
computers or programming. Students will be taught elementary FORTRAN
programming and will run a number of exercises on the PDP-lO computer.

2. DDT - DYNAMIC DEBUGGING TECHNIQUES

DDT is a powerful means of debugging a program for use in interactive mode.
The one day seminar will introduce remote terminal users to the concepts and
basic use of DDT, and provide a limited amount of practical experience.

3. STATISTICAL PACKAGES

A course will be given on Statistical Computation by Mr I. Oliver. The course
will be based on the BMD series of packages, many of which will be made
available on the PDP-lOo Attendees will be expected to be familiar with
elementary statistical concepts including probability, significance testing,
means, variances, correlation and chi-square. It would be an advantage if
some prior contact was had with multiple linear regression, factor analysis
and analysis of variance.

4. INTRODUCTORY BASIC PROGRAMMING

The BASIC programming language is a simple, FORTRAN-like language, designed
specifically for interactive use via a remote terminal. This course
introduces users with some experience of FORTRAN programming to the BASIC
language and use of remote terminals.

5. INTRODUCTORY MACRO PROGRAMMING

MACRO is the assembler language for the PDP-lO. This course will describe
some aspects of the internal operation of the PDP-lO machine, introduce
assembly language programming, outline the MACRO instructions available and
consider the writing of macros and subroutines for use with FORTRAN mainline
programs. As the course is introductory, it will not treat Input/Output
operations in MACRO, or any of the more advanced features of the language.
Knowledge of FORTRAN for the PDP~lO isa prerequisite for this course.

87

00
00

Fee* Enrolment
Course Date Time Location (inc!. Closing machine time) Date

UNI GOVT EXT

Introductory FORTRAN 12-29 July 7 - 10 pm B18
Programming (Monday & (Monday & Main Engin. $20 $40 $50 5 July
(July course) Thursday Thursday) Building

evenings only)

Introductory FORTRAN 25-29 October 2 - 6 pm B18
Programming Main Engin. $20 $40 $50 18 October
(October course) Building

Use of Dynamic Debugging 16 August 9am - spm B18
Technique (DDT) Main Engin. $ 8 $16 $20 9 August

Building

Statistical Packages 23-27 August 9am - Ipm B18
(including BMD packages) daily Main Engin. $20 $40 $50 16 August

Building

Introductory BASIC 9&16 September 7 - 10 pm B18
Programming (2 Thursday Main Engin. $ 8 $16 $20 2Septembe

evenings) Building

Introductory MACRO 25-27 October 9am - Ipm B18
Programming 1- 3 Novemb er Main Engin. $24 $48 $60 18 October
(One course covering Building
6 mornings)

* In all cases, the course fee includes provision of machine time for exercises,
The three categories in the scale of fees are

UNI: University Departments
GOVT: Government Organizations
EXT: Non Government Organizations

Prerequisite
Knowledge

None

None

Use of FORTRAN
and remote
terminal on
PDP-I0

Elementary
Statistical
Concepts

Some FORTRAN
Experience

PDP-I0 FORTRAN

AUSTRALIAN COMPUTER SOCIETY (ACS) OVERSEAS VISITORS PROGRAMME

The second distinguished visitor to be brought to Australia under the ACS
Overseas Visitors Programme will be Professor Bernard A.Galler, Professor of
Computer and Communication Sciences and Mathematics and Associate Director of
the Computer Centre at the University of Michigano Professor Galler has a
wide background in computing as shown by the fact that he was President of the
Association for Computing Machinery (ACM) , 1968-1970, and a member, Board of
Governors, American Federation of Information Processing Societies (AFIPS).
1968-1970. His publications include 'The Language of Computers'. 'A View of
Programming Languages', and several articles on automatic programming and
linear programming.

The Australian Post Office and IBM Australia have very generously agreed to make
the arrangements for Professor Galler's Michigan Terminal System (MTS)
demonstrations in Brisbane. The demonstration will involve use of IBM's 360/67
in Canberra and A.P.O. lines and modems.

Professor Galler will deliver a public lecture and conduct a one-day seminar
this month.

LECTURE

SEMINAR

Wednesday 28 July 8.00 pom. The lecture will be entitled
'A view of programming languages' and will include a general review
of presently available languages and possible future developments.

Hawken Auditorium, The Institute of Engineers, 447 Upper Edward
Street.

Thursday 29 July 9.30 a.m. to 4.30 p.m.

Australian Institute of Management, Management House, Boundary and
Rosa Streets, SPRING HILL.

The general subject of this seminar will be 'A demonstration of the
Michigan Terminal System', Topics will include a discussion of
some desirable properties of a general purpose timesharing system
and of the operating characteristics of such a system. A feature
of the seminar will be the demonstration of the system using
IBM's 360/67 in Canberra.

There will be a fee of $1 for the lecture which includes supper and a nominal
contribution to assist the Programme's expenses. For the seminar, the fee will
be $11 for ACS members and $16 for others, including a buffet lunch and drinks
at the conclusion of the day. Persons wishing to attend the seminar are
requested to complete an application form available from the Hon. Secretary,
ACS (Qld Branch). G.P.O. Box 1484, BRISBANE, 4001.

89

LINE PRINTER AVAILABLE TO REMOTE TERMINAL USERS

Work on the first version of the line printer symbiont (spooling) system is now
complete. This system has been implemented and will be available to remote
terminal users from Tuesday 15 June. Users can transmit ASCII files to the
printer symbiont for later printing by means of a new command LIST.

LIST command

The general form of the command is:

LIST (F4) filename-I, ,.,' filename-n

The arguments, filename-I, ...• filename-no give the names of the ASCII files
to be printed.

The option F4 is used in the command to print ASCII files which have been output
by a user's FORTRAN IV program and which contain the standard line printer
carriage control characters used in FORTRAN (ref. FORTRAN IV Manual MNT-5,
page 6-17). The option can be associated with the command, to apply to all
files named in the argument list, or can be associated with individual files in
the argument list.

examples:

(i) To list two source files named PROG/F4 and TEST/MAC on the line printer

,LIST PROG/F4, TEST/MAC<cr>
-LISTING THESE FILES-

PROG/F4
TEST/MAC

EXIT
tC

(ii) To list an ASCII file named DOUT which has been produced by a FORTRAN
program and contains FORTRAN printer carriage control characters .

. LIST (F4) DOUT<cr>
-LISTING THESE FILES-

DOUT

EXIT
tC

90

(iii) The three files contained in examples (i) and (ii) above could be
listed with the one command as follows:

.LIST PROG/F4, TEST/MAC, DOUT (F4)<cr>
-LISTING THESE FILES-

PROG/F4
TEST/MAC
DOUT

EXIT
tC

Error Messages on Printed Output

The following error messages could appear on the printed output.

(a) *** PRINTING TERMINATED BY OPERATOR ***

There are two possible causes of this:

(i) The job was slewing an unreasonably large number of forms
without any printing. The printout will not be repeated.

(ii) The line printer damaged the output while printing.
This file will be repeated.

(b) *** ERROR READING DATA FILE ***

This results from an error on the disk file being printed. The
operator is informed of this error and action will be taken to
attempt to recover the file for later printing.

Administrative Arrangements

Output from the line printer is identified by name bands on the first and
last pages (in the same, way as batch output) and can be collected from the
PDP-I0 output shelves. ,It is anticipated that output will be available for
collection within a few hours of the user listing the file. All printing
tasks will be automatically charged at the published rates.

With the release of this facility, the temporary file listing service for
remote terminal users will be discontinued.

91

FORTRAN MANUAL

There is an error in the FORTRAN manual, MNT-5.

The first example on page 6-5 should read:

READ (KRD,11) «MASS (K,L), K=1,3),L=1, 5)

instead of

READ (KRD,ll) «MASS (K,L), K=1,3) L=1, 5)

UTILITY PROGRAMS MANUAL

The Utility Programs manual, MNT-12, is now available at the University
Bookshop. At present it contains details of Absolute Overlays and the
Plotter subroutines and these chapters are available for $1.20.

USE OF PLOTTER AND OVERLAYS

Users are advised that both the overlay and plotter subroutines cannot be used
in the same program.

This is a temporary restriction which will be removed shortly.

FORTRAN ERRORS

(a) If a unit number in a FORTRAN READ or WRITE statement is subscripted with
a variable which is used also in the statement as a subscript, results
become unpredictable. During the code produced by the statement the
register containing the v&ue of the variable is destroyed and hence the
subscripted quantities will contain unpredictable numbers.

examples:

(i) READ (K) N,(IX(K), IN(J), IB(K), J = 2,N)

(ii) READ (IUNIT(L» N,(IN(J), IB(K), J = 2,N)

Both the above examples are correct. The following example is invalid.

(iii) READ (IUNIT(K» N,(IN(J), IB(K), J= 2,N)

92

(b) The FORTRAN compiler recognizes tabs in FORMAT statements and inserts
them as tab characters (not the equivalent number of spaces) into format
strings. The FORTRAN operating system, however, converts these tab
characters to single blanks on output, rather than 8 blanks per tab as
might be expected.

example:

FORMAT (' A<tab >A<tab

will produce an output

AAA

>A')

(c) The FORTRAN compiler does not keep track of jumps that might take it
outside the range of the current DO loop, In cases of the extended
range of a DO loop containing another DO loop, as in the following
example, certain registers are not restored from memory after returning
for the extension of the DO range.

example:

DO 50 I = 1,10
IF (1-5) 5~, 7, 5~

50 CONTINUE
STOP

7 DO 88 K = 1,10
KK = K*10

88 CONTINUE
GO TO 5~
END

(d) The compiler evolves coding that is only good for floated integers of
27 (or less) bits in the implied long-precision float operations:

A= N

For integers greater than 27 bits the compiler zeros the second word
of the double precision scalar

DOUBLE PRECISION B
B = N

(e) The error message

?FILENAME FORTR NOT ON DEVICE DISK

is caused when the FORTRAN operating system cannot find a file with the
name requested. Either the file does not exist at all, or more
particularly, users are using file names with 6 characters when the
operating system only recognizes the first five characters of the name.

93

(f) In some cases mixed mode arithmetic expressions do not compile
correctly. In particular, the following expression,

D=S*D/ (2*1-1)

where D and S are double precision and I is an integer, is known not to
create proper code.

It is worth noting that the U.S.A. Standard FORTRAN specifications do not
permit mixed mode expressions, and while several compilers do permit
them, it is neither desirable nor necessary to make use of this facility.

(g) Users are reminded that use of large arguments for the sin and cosine
functions may return values having appreciable errors in the sixth and
succeeding figures.

(h) The compiler will not produce an 1-5 error message (NAME ALREADY USED
AS NAMELIST NAME) for the following coding:

NAMELIST/FRED/F,G

FRED = 3.0

Instead it will accept the redefinition of FRED as a scalar variable.
Any attempt to use FRED as a name list name will result in an 1-4 error
message (NOT A VARIABLE FORMAT ARRAY).

(i) The compiler treats digits that fall in the continuation field as a
continuation indicator, regardless of the content preceding the
continuation field.

example:

In the following coding, the statement READ 10 was ignored since
the 1 was taken to be a continuation indicator. The number N was
taken to be 160, instead of simply 16. The compiler failed to
record any errors.

N=16
READ 1(/1
1~ FORMAT ()

94

(a)

(b)

COBOL ERRORS

A COMPUTE statement with 5 nested pairs ·of brackets causes the COBOL
compiler to get a Push Down List overflow.

The special data name TALLY is not always recognized as a defined
field. Statements such as

ADD n TO TALLY

SET TALLY UP BY n

MOVE n TO TALLY

will not compile. Use of TALLY should be avoided for the present.

(c) Negative comparisons do not work correctly. For example the following
coding

77 CONS PIC S99 VALUE -31.

COND3.
IF CONS GREATER THAN -40 GO TO XYF

ELSE GO TO NOK2.

will result in the program branching to NOK2 although -31 is greater
than -40.

Cd) In standard format, if the first character of a line is a tab, then
this character is assumed to be at the 7th position, and the next
character is assumed to be at the B-margin.

Items which should commence at the A-margin and are entered as above
with a tab preceding them will not be recognized.

example:
<tab >IDENTIFICATION DIVISION.

will cause the error message

IDENTIFICATION EXPECTED

95

BAS I C ERRORS

(a) If an unquoted string containing an apostrophe is typed in response to
an INPUT statement~ only the part of the string up to the apostrophe is
accepted.

example:

?ilTEST APOSTROPHE I'M TESTING"
will produce the complete message, but

?TEST APOSTROPHE I'M TESTING
"Till produce only

TEST APOSTROPHE I

(b) If an altmode is typed anywhere in an INPUT string the entire string is
disregarded and the message DELETED appears.

example:

?TEST ALTMODE<altmode>DELETED

TELETYPE SUPPLIES

The following Teletype stationery items are available from the stationery store.

Code No Description Unit of
Issue

17590 Paper tape Iii B Channel 1

17604 Paper 7 rolls Teletype BT6 x 4~ 1

17612 Ribbons model 33/35 TTY 1

17620 Paper Fanfold Continuous 8~ x 11 box (3000 sheets)

96

MOO

MOO is an intelligent guessing game. MOO chooses
with all digits different and keeps the number to
find the number in the minimum number of guesses.
along by telling him how good his guess was after

a random 4 digit number
itself. The player has to

MOO will help the player
each guess.

After a guess, MOO responds with the number of 'bulls' and 'cows' scored.
A buZZ is a direct hit; a correct digit in the correct position in the number.
A cow is an indirect hit; a correct digit but in the wrong position in the
number. Four bulls is a win. The player continues guessing until he succeeds
or gives up.

The first move is complete pot-luck but subsequent moves can be calculated
statistically from the information gained by previous moves. A good MOO
player can average under 5 moves per game.

example:

.MOO<cr>

t
1234<cr>

BC

t
4567<cr>

NO BULLS OR COWS

t
3891<cr>

BBCC

t
9831<cr>

BBBB YOU TOOK 4 MOVES

EXIT
tC

MOO commands:

one bull and one cow

Any 4 digit number with all digits different is a move
Type 'R' to obtain the rules.
Type I?' to give up. MOO will reveal its number.

97

NEMES, Tihamer

TARRANT, John Rex

LIBRARY ACCESSIONS

Cybernetic machines (001.53028 NEM Main)

Computers in geography 1970 (016.91 TAR
Main Ref.)

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS

LOHNES, Paul R.

DANIEL, Coldwell

BUHLMANN, Hans

ZINN, Karl L.

OLSHEWSKY, Thomas M., ed.

DANIEL, James W.

FROBERG, Carl Erik

GHOSAL, A.

IEEE publications bulletin v.1 1970 and onwards
(016.6213 INS Elect.)

Introduction to statisticaL procedures 1968
(311.018 LOH Rem.Ed.)

MathematicaL modeLs in microeconomics 1970
(HB74.M3D294 Main)

MathematicaL methods in risk theory 1970
(368.00184 BUH Maths)

Comparative study of Languages for programming
interactive use of computers in instruction 1969
(Qto 371.3944 ZIN Engin.)

ProbLems in the phiLosophy of Language 1969
(P106.04 Main)

Computation and theory in ordinary differentiaL
equations 1970 (517.6 DAN Maths)

Introduction to numericaL anaLysis 1970
(517.6 FRO Elect.)

Some aspects of queueing and storage systems
1970 (519 GHO Maths)

INTERNATIONAL CONFERENCE ON COMPUTING METHODS IN OPTIMIZATION PROBLEMS
2d, San Remo, Italy 1968

McDANIEL, Herman, ed.

Computing methods in optimization probLems 1969
(517.6 INT Maths)

AppLications of decision tabLes 1970 (519 MACD
Engin.)

SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS

AHMED, F.R., ed.

SIAM journal on mathematical analysis 1970 and
onwards (QA300.S825 Maths)

CrystaLlographic computing 1970 (548.7 ARM Chern.)

98

BODDY, David E.

HOLDEN, T.S., compo

Engineering design computation manual 1969
(Qto 620 BOD Engin.)

DAD system reference manual 1970
(Qto 621.381958 HOL Engin.)

IFAC SYMPOSIUM ON PULSE-RATE AND PULSE-NUMBER SIGNALS IN AUTOMATIC CONTROL,

Budapest April 1968 Proceedings 1969 (Qto 629.8 IFA Elect.)

COLLINS, George O. A study of the remote use of computers 1967
(Qto 658.84 COL Engin.)

CONFERENCE ON DATA SYSTEMS LANGUAGES. Systems Committee.

GAUTHIER, Richard L.

A survey of generalized data base management
systems 1969 (Qto 651.84 CON Engin.)

File organisations 1969

Designing systems programs 1970 (651.8 GAU Engin.)

INTERNATIONAL BUSINESS MACHINES CORPORATION
Student text 1969 (Qto 651.8 INT Arch.)

INTERNATIONAL SEMINAR ON ADVANCED PROGRAMMING SYSTEMS Jerusalem 1968
Notes 1968 (Qto QA76.5.152 Main)

McKEEMAN, William M.

SLUTZ, Donald Ray

VAZSONYI, Andrew:

UYS, J .M., ed.

MONTANARI, G. Ugo

BOTVINNIK, Mikhail Moiseevich

ASHTON, P.

A compiler generator 1970 (651.8 MACK Engin.)

The flow graph schemata model of parallel
computation 1968 (651.8 SLU Engin.)

Problem solving by digital computers with PL/l
programming 1970 (651.8 VAZ Engin.)

Process simulation and control in iron and
steelmaking 1966 (669.10184 UYS Engin.)

Separable graphs~ planar graphs and web grammars
1969 (Qto 744.4 MON Engin.)

Computers chess and long-range planning
(794.1018 BOT Maths.)

Systems analysis and design 1970 (The 4166 Acc.)

COMPUTER AND INFORMATION SCIENCES SYMPOSIUM, 2d, Battelle Memorial Institute
Computer and. information sciences 1967
(001.53 COM Engin.)

OTTESTAD, Per. Statistical models and their experimental
application 1970 (001.424 OTT Biol.)

99

ABSTRACTS of the theses approved for D.Sc., Ph.D., M. Tech. and M.Sc. degrees
and postgraduate diplomas v.I. 1955-1966
(013.37854 ABS Main)

NIE, Norman

BARRETT, David Arthur

SPSS. statistioaZ paokage for the sooiaZ soienoes
1970 (Qto 029.7 NIE Engin.)

Automatio inventory oontroZ teohniques 1969
(HD55.B34 Main)

INTERNATIONAL MANAGEMENT CONGRESS, 15th, Tokyo
Prooeedings 1969

1969
(Qto HD29.165 Main)

MURPHY, Judith

AMERICAN LIBRARY ASSOCIATION

SohooZ soheduZing by oomputer 1964 (371.242 MUR
Arch.)

Science and Technology Reference Services Committee
A guide to a seZeotion of oomputer-based so~enoe
and teohnoZogy referenoe servioes in the U.S.A.
1969 (507.2073 AM~ Main)

UNITED STATES OF AMERICA STANDARDS INSTITUTE
U.S.A. standard oode of information interohange
1968 (Qto Q370.U5 Main)

BOOT, Johannes Cornelius Gerardus
Quadratio programming 1964 (519.92 BOO Maths.)

KUNZI. Hans Paul NonZinear programming 1966 (519.92 KUN Maths.)

MAL'TSEV, Anatolii Ivanovich AZgorithms and reoursive funotions 1970
(511.8 MAL Maths.)

MARTIN, James Thomas

MULLISH, Henry

The oomputerized sooiety 1970 (QA76.M36 Main)

An introduotion to oomputer programming 1966
(519.92 MUL Maths.)

ASSOCIATIOJ., }vK COMPUTING MACi:J.INERY
SpeoiaZ Interest Committee on SymboZio and
AZgebraio ManipuZation SICPLAN bulletin no 8
1965-1967 (QA76.A78 Engin.)

ASSOCIATION FOR CO}ITUTING MACHINERY

SCHOOL MATHEMATICS STUDY GROUP

SpeoiaZ Interest Group on SymboZio and AZgebraio
ManipuZation SIGSAM bulletin no 9 1968 and
onwards (QA76.A78 Engin.)

AZgorithms~ oomputation and mathematios.
Teaoher's oommentary 1966 (519.92 SCH Engin.)

100

(
COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANIZATION
Division of Computing Research 3200 System Group

CROWLEY, Thomas H.

DIEHL, Charles E.

HELLERMAN, Herbert

ARTHUR YOUNG & COMPANY

COMPUTER science

COMPUTER science

User's manual for the 3200/3600 CSIRO computors
1969 (Qto 621.38 1958 COM Engin.)

Understanding computers 1967 (621.38195 CRO
Engin.)

Survey of current practice in the use of automated
techniques for specifications and detailing
practices 1967 (Qto 624.177 DIE Arch.)

Digital computer system principles 1967
(621.38 1958 HEL Engin.)

Computer auditing in the seventies 1970
(Qto 657 ART Ace.)

1969 (651.8 COM Engin.)

FORTRAN language 1970 (651.8 COM Engin.)

CONFERENCE ON DATA SYSTEMS LANGUAGES Programming Language Committee
Data Base Task Group

DAVIS, Gordon Bitter

GREEN, Richard ELLIOT, ed.

Report 1969 (651.84 CON Engin.)

Computer data processing 1969 (651.8 DAV
Engin.)

Computer graphics in management 1970
(651.8 GRE Engin.)

NATIONAL ASSOCIATION OF AUSTRALIAN STATE ROAD AUTHORITIES

ROSS, Joel E.

STERLING, Theodor D.

WALKER, Terry M.

ARDEN, Elizabeth

BRAES, John Ratcliff

LEES, M.J.

Glossary of computer terms 1970 (651.8 NAT
Engin.)

Management by info~ation system 1970
(658.501 ROS Ace.)

Computing and computer. science 1970 (651.8 STE
Engin.)

An introduction to computer science and
algorithmic processes 1970 (651.8 WAL Engin.)

Systems analysis and design 1970 (The 4167
Ace.)

A digital computer simulation of the flotation
process and investigation of some possible control
variables 1970 (The 4187 Main)

Simulation techniques applied to industrial
Comminution circuits 1970 (The 4181 Main)

101

MATRIX INVERSION AND SOLUTION OF SIMULTANEOUS EQUATIONS

Ian Oliver

Many GE-22S and PDP-IO users are including highly unsatisfactory matrix
inversion subroutines in their FORTruLN programs. One example is the subroutine
published in Veldman [IJ. When given the 2 x 2 matrix

0.6 0.2

1.8 0.6

this subroutine produces the 'inverse'

0.13E9

-0.40E9

-0.4SES

o .13E9

On inverting this 'inverse' the original matrix should be obtained. Instead the
subroutine gives the result

0.3 0.1

1.0 0.3

The original matrix is singular and in fact has no inverse at all. The
subroutine should have detected this condition. However, there is no error
indicator in the calling sequence of Veldman's subroutine which could be used to
return any information about the success or otherwise of the inversion. iihat is
particularly worrying is that the results from such a subroutine can sometimes
look 'reasonable' even though they are completely wrong.

The reason for the erroneous calculation above is that the elements of the
matrix are stored in binary floating point format which cannot represent those
decimal values exactly. They will be correct only to about eight digits. Thus,
although the matrix is exactly singular it does not appear so to the computer.

In practice matrices from experimental data are rarely precisely singular. On
the other hand it is very common for them to be 'nearly' singular. This means
that, in some sense, the determinant is very small. In the case of the 2 x 2
matrix A the determinant is given by

IAI a 11 a22 - a 12a 21

If this value is small relative to the size of the elements of A it is clear
that the subtraction had operated on two very nearly equal quantities. Very few
(if any) significant digits would be left and the result would be quite
meaningless. Subroutines such as Veldman's give no indication of trouble. This
is precisely what happened in the above example. The determinant of the matrix
is exactly zero but was computed as about 0.7E-9.

102

We recommend the library subroutine MATINV (classification number D4.20S for the
GE-22S, and D4.S0S for the PDP-10). This subroutine checks the result of every
subtraction to ensure that the results will be correct within a tolerance value
supplied by the user, It correctly determines that the matrix in the example
above is singular.

Reference

I. Veldman, Donald J., Fortran Programming for the Behavioural Sciences,
Holt, Rinehart and Winston, 1967.

USE OF DATA FILES BY FORTRAN PROGRAMS

Rob Cook

1. NAMING OF FORTRAN DATA FILES - ACTUAL AND DEFAULT

(a) Writing of Files

FORTRAN has 4 logical units available for disk I/O, namely 10~11,12 and 13.
The data sent to anyone of these unit numbers is written onto disk as a
named file. The user can give this file any valid 5 character names he
wishes by use of the OFILE Subroutine (ref. Bulletin Vol.4 No 2). However,
if the program just WRITES to one of the above logical unit numbers without
first calling the OFILE subroutine then the FORTRAN System will give the
file the default name of FORn, when n is the logical unit number on which
the WRITE was executed.

example~

Execution of the statement

WRITE (12) ARRAY

where there has been no earlier call to OFILE will create a file name

FOR12

(b) Reading of Files

Files can be read via the logical unit numbers. The user can access any
named data file by first assigning the file name to the logical unit
number with a call to the IFILE Subroutine (ref. Bulletin Vol.4 No 2).
If no prior assignment is made, or if the named file does not exist, a READ
is given on a logical unit number 'n', the FORTRAN system will attempt to
find a file named FORn on the users area. If there is no file of this name
the FORTRAN system makes a final attempt to find a file called FORTR. If
this also fails the error message

?NO FILE FORTR ON DEVICE DSK

is produced.

103

(c) File Names

All file names for data files being accessed by FORTRAN programs must
contain 5 characters or less, and have no processor program name. The
5 character restriction is imposed because the file name is held in the
computer in ASCII in one machine word. All attempts to access a file where
the name has six characters will therefore result in the above error
message.

2. SIZE OF FILES

Any program running on the system may use up to 128K words of disk storage.
The 128K words of disk storage may be allocated among the unit numbers in any
way. The files that are accessed through each of the unit numbers are entirely
independent of one another.

3. PHYSICAL AND LOGICAL RECORDS

A disk file is physically divided into records. Each physical record, called a
block, contains 128 words. Thus a program's 128K words is subdivided into
1000 blocks.

A FORTRAN data file is logically divided into records. Each unformatted logical
record contains the data referred to by an I/O statement. Each formatted
logical record contains the data between a <cr> pair. A logical record is of
variable length and may be longer or shorter than a block. It is important to
understand the relationship between logical and physical records in order to
pack data efficiently on the disk.

(a) Formatted Data

FORTRAN programs can read and write data files in two data modes. All
formatted I/O statements use ASCII mode.

ASCII data is transferred character by character. ASCII logical records
are packed into blocks, but are not split across blocks. Logical records
must not be more than 128 words long. ASCII mode packs the maximum amount
of data into a block.

Since formatted data is turned into ASCII characters before it is output,
numbers are truncated to the numbers of digits allowed by the format field.

example:

Suppose A 3.14159264 (single precision)

and is written to disk using the statement

WRITE (10,5~1) A
5~1 FORMAT (lH , F8.4)

and read back using a similar format; it would return as

A = 3.1416

104

(
(b) Unformatted Data

All unformatted I/O statements are binary mode. Binary data is
transferred word by word. In binary mode FORTRAN reserves the first word
of each block for its own use. This word is used to keep counts of

(i) the number of words used per block
(ii) the number of blocks per logical record.

Thus when writing in binary mode only .127 words per block are available.
Since words are transferred direct in binary mode, no possible change in
accuracy can occur.

Binary logical records are not packed into blocks, but they may continue
over several blocks.

example:

Suppose A is a 100 x 100 array.

(i) WRITE (11) A(l,l)

is very inefficient. It wastes 126 words in a block.

(ii) WRITE (11) (A(I,l), I = 1,1~~)
is fairly efficient. It only wastes 26 words.

(iii) WRITE (11) A
10,000

is very efficient. It uses 127 blocks, and every word, in all but
the last block, is used.

4. FILE PROCESSING

Under the current version of the FORTRAN operating system all access to disk
files is sequential and in effect a disk file looks just like a magnetic tape
file.

Most of the special FORTRAN statements that are designed for magnetic tapes,
also work on disk files, for example

REWIND n
ENDFILE n

BACKSPACE n currently works via Batch but not from Remote Terminals.

These statements are implemented for compatibility with magnetic tapes rather
than to be of great use specifically for disk files. As with most attempts at
compatibility in the computer world, this one does not really succeed. Owing
to the differences in the characteristics of files on disk and magnetic tape,
there are several combinations of I/O statement and special tape statements
that cause errors.

105

example:

The sequence

READ (l~) A
WRITE (l~) B
READ (l~) C

will cause the job to crash.

The safest way to use disk files on the current operating system is to use a

CALL IFILE (unit, name)

before a series of READS, or a

CALL OFILE (unit, name)

before a series of WRITES,

106

