

Editor: Sarah Barry

BULLETIN

CENTRE

COMPUTER

ADDITIONAL CORE MEMORY FOR THE PDP-10

In its submission to the Australian Universities Commission for capital tunds for computing, the University nominated additional core storage as the item of highest priority.

In anticipation of support from the AUC, and to ensure the earliest possible installation should funds become available early in 1973, the centre has placed a Letter of Intent for the purchase of 64K words of 650 nsec core memory. Although confirmation or otherwise of this intention will be known by 30 September, we are advising clients of this intention now as the likely installation of significantly more core may affect clients' forware planning.

One outcome would be improved terminal response and batch turn around times. At the moment the PDP-10 is running at its limit of 24 active jobs for the greater part of its time. The main advantage of more core will be that more jobs will reside in core, thereby reducing swapping overheads.

It will also be possible to increase the user's core limit, but if this were increased substantially, the number of core resident jobs would decrease and swapping overheads would again increase. For this reason, should the memory be installed, the maximum likely increase in the user's core limit will only be to 32K.

DATA PREPARATION WORK

With the recent reorganization of the Computer Centre's Secretary's office, many users are confused as to where data preparation work is to be handed in or collected. All data preparation work should be collected from, or handed into, the Receipt/Dispatch window in the foyer of the Centre, not at the Enquiries window. Data preparation forms are available in the Clients' room. ±5-8 & 9 20Aug72

PDP-10 FORTRAN

[WN-95]

1 DEFINITION OF ARITHMETIC STATEMENT FUNCTIONS

The Computer Centre FORTRAN manual MNT-5 does not state that the definition of arithmetic statement functions should precede the first executable statement in the program. This omission will be corrected with the next revision of the manual.

[WN-96]

2 DO LOOPS

The present version of the compiler does not create proper code when a function is used as one of a DO loop's indices.

example:

DO 2830 J=1,MIN6(6,NN) --

No diagnostic message is produced during compilation but an improper relocatable binary file is produced, and during loading the message

PILL. FORMAT BLOCK TYPE NNN PROG.name1 FILE name2/REL

will be produced. This error has been remedied in a later version of the compiler but until this version is adopted, this construction should be avoided.

3 UNARY MINUSES

Use of the unary minuses in logical expressions or mixed logical and arithmetic expressions do not always produce the correct results, for example,

> $J = (J1.AND. 777) \cdot OR \cdot ((-(N+1)) \cdot AND. 777000)$ $J = (J1.AND. 777) + ((-(N+1)) \cdot AND. 777000)$

This has been corrected in a later version of the compiler which will be implemented in due course. Until it is available, it is suggested that this construction should not be used and that the expression be split into two as;

> JJ=-(N+1)J=(J1.AND."777).OR.(JJ.AND."777000)

PDPUN

[WN-99]

PDPUN may not correctly punch the identification code of other than the first of a series of Fortran files with supplied identification.

This problem will be corrected in the near future.

ALGOL V2

[WN-94]

Version 2 of the Algol system does not allow the use of external FORTRAN subprograms. This feature is discussed in various manuals, and information from Digital indicates that this facility will be available with version 3.

COBOL V3 ERROR

[WN-94]

In use of the sort features of Cobol, it appears that under some circumstances wrong code is created by a Return statement of the form

RETURN filename INTO identifier . .

This can be overcome by omitting the INTO option, but achieving the same effect by moving the data to the required destination after the Return.

OUTSTANDING PROBLEMS IN COBOL V3

[WN-96]

The following note, prepared on 3 July 1972, gives a summary of known problem areas with Cobol. The large majority of these are corrected by patches issued by Digital and these will be

incorporated as effort becomes available.

1 THE COBOL COMPILER

- (a) This version does not allow qualification of condition names (to be corrected with version 3A).
- (b) "RETURN name! INTO name?" as part of a sort does not work (patch exists).
- (c) Comparison for equality of 6-character display-6 fields may not give correct results (patch exists).
- (d) Some external references from non-resident segments are not set up properly. The reported situations were SORT verb in resident code RETURN and/or RELEASE in non-resident TALLY in examine generator TODAY in the USING generator Size error and display of a COMP-1 variable (patches exist).
- (e) "MULTIPLY name1 BY fraction GIVING name2" where fraction is less than 1.0, e.g. 0.0125; will return the value zero to name2 in some circumstances, depending on the typing of name1 and name2 (patch exists).
- (f) A numeric literal in a "VALUE OF DATE WRITTEN" clause fails (patch exists).
- (g) The compiler allows a quoted literal for a PROGRAM-ID, but if the literal is less than 6 characters, the remainder of the name is random (patch exists).
- (h) The compiler does not successfully restart after a catastrophe dump if it was using a command file.
- (i) The compiler will not accept lower case for the first character of a reserved word, although lower case characters are satisfactory in all other positions (a patch to allow the first character to be lower case exists).
- (j) Under some circumstances, a spurious warning message "REDEFINITON NOT THE SAME SIZE AS REDEFINED ITEM" may be given. This can occur when the two fields occupy an integral number of words (patch exists).
- (k) Under some circumstances, Cobol compiler tables are not expanded correctly. This error may manifest itself as compilation or execution error for which no simple

explanation may be found. A patch exists for one situation such as this, but at least one other may exist.

- (1) "PARITY IS EVEN" does not compile properly (patch exists).
- (m) Improper line numbers are given for the procedure division map (patch exists).
- (n) Compilation using the /P switch will produce a catastrophe dump if "TRACE ON/OFF" is used (patch exists).
- (o) It appears as if the construction "OCCURS n! TO n2 TIMES DEPENDING ON name!" will not create an output record of the size specified by name! but rather the maximum size n2.

2 THE COBOL EXECUTION PACKAGE - LIBOL

- (a) When a random file is opened for output only, any attempt to write to it will terminate the run with an error message "IT IS ILLEGAL TO CHANGE THE RECORD SIZE WHEN THE ACCESS MODE IS RANDOM" (patch exists).
- (b) When a Cobol program attempts to open two files which share the same buffer area, the resultant error message is garbled (patch exists).
- (c) When an IO file encounters an EOF, a data location is not reset, with the result that the next sequential file input will fail (patch exists).
- (d) Multi-file magnetic tapes are not positioned properly (patch exists).
- (e) Some advisory messages do not conform to the specifications for Digital's 5 series monitors (patch exists).
- (f) IO access to an indexed sixbit file will fail at the first read (patch exists).
- (g) Code created for "USE AFTER ERROR" procedure is incorrect (patch exists).
- (h) File record areas are improperly cleared under some circumstances when adjacent files are opened.
- (i) Some improper checks are made when error situations arise, for example, when a file is not found (some patches exist).
- (j) Under some circumstances the wrong quantity is used to calculate record size when a blocking factor is specified.

This will cause an undeserved error message at execution (patch exists).

- (k) Open immediately after close on magnetic tape fails (patch exists).
- (1) Sort of an indexed file may fail (patch exists).
- (m) Some problems exist with indexed files, e.g. the size of an ASCII key is incorrectly computed and under some circumstances the channel used for the index file is not closed (patch exists).
- (n) Under some circumstances, there may be an interaction between sort and the use of indexed files which will cause the program to fail (patch exists).
- (o) "NEXT GROUP NEXT PAGE" may cause the output of a blank page (patch exists).
- (P) An EOF is found when attempting to read an indexed file sequentially (patch exists).
- (q) A sort which reads a file created by the same program may get an error (patch exists).
- (r) When a null record is found in a random file, subsequent inputs or outputs may fail (patch exists).

3 THE SORT PACKAGE

(a) Under some circumstances, a command file is not accepted (patch exists).

4 RERUN

Rerun has several problems, some of which are related to the version of the operating system currently being used and it is doubtful if satisfactory results will be achieved. A number of patches exist and when these have been incorporated consideration will be given to further testing.

5 ISAM

The Isam utility has some problems in handling ASCII input files and in conversion from ASCII to sixbit files (patches exist).

6 GENERAL

6.1 Supplement to Digital's Cobol Manual

Attention is drawn to a note in Volume XII no 5 of the DECSYSTEM10 Bulletin which states that a supplement to the Cobol manual is now available. This supplement describes ISAM, COBDDT, and COBOL table handling and is available on request from Digital.

6.2 Factors Affecting the Size of a Compilation

In response to a query regarding the size of the largest program that can be compiled within the present core limits, the following suggestions were offered by Digital.

- (a) Identifiers longer than 6 characters in length require additional storage.
- (b) Condition names (level 88) should be avoided
- (c) Keep paragraph names (number and size) to a minimum
- (d) Do not use values as data items
- (e) Keep literals as short as possible
- (f) Avoid ALTERS
- (g) Lo not use the report writer

It is not likely that great advantage can be taken of these suggestions, but it is worth noting that version 3 of Cobol has proved to be able to compile substantially longer source programs than any of its predecessors.

0.3 Recompilation of Existing Programs

A note in the DECSYSTEMIØ Bulleting on April 1 1972 indicates the next release of Cobol will retain the existing version of the execution time package for those programs that presently use it. Programs compiled with later versions of Cobol will compile a version of Libol identified by its version number. In this way, existing compiled programs will continue to run without recompilation. It is, however, recommended that programs previously compiled with versions earlier than version 3 be recompiled.

NEW COMMAND DECODER

[WN-95]

A new version of the command decoder (version 2E(36)-3) was implemented on the PDP-10 on Wednesday 12 July. A number of important changes were made with this decoder. The changes documented in section 1 and 2 below, foreshadow the implementation of a general program library and extended command capability.

1 Directories

Library directories on the PDP-10 were renamed and in some cases there was some reorganization of the actual files contained on these areas.

Library directories are referenced by name, e.g. PLOT, STATS, MATRIX. The names are not preceded by a dollar sign; a dollar sign is used to indicate a device or pseudo device, e.g. \$DSK, \$ASR.

User directories are referenced by the project number of the area belonging to that user, e.g. 279, 531.

Files from any directory can be obtained by referencing the directory name and the filename

For example:

- (i) RUN MYPROG PLOT.CALCMP(LIB) runs the file MYPROG (understood to be on the user's own directory) with the library file CALCMP from the PLOT directory.
- (ii) STATS.BMD22R executes the program BMD02R on the STATS directory.
- (iii) COPY TUTOR.MYPROG/F4 TO=374.MYPROG/F4 cories the FORTRAN rogram MYPROG from the TUTOR directory onto roject area 374.

On the 12 July, the old library directories (\$BMD, \$MATH, \$MATRIX, \$LEARN, \$PLOT, \$STATS) were removed and reorganized and the new directories are as follows:

Lirectory	Files	Contents
GAMES	CHESS/SAV DOTS/SAV	

	ELIZA/SAV LUNAR/BAS MOO/SAV NIM/SAV QED/SAV	These were all removed from the system directory to GAMES.
HELP	HELP/HLP MANUAL/HLP NEWS/HLP	explains how to use help gives details of current status of computer centre manuals current weekly newsletter
MAT1.	SSP/REL	a library file containing all the mathematical routines from the scientific subroutine package
MATRIX	MATINV/REL SSP/REL SMIS/SAV	matrix inversion a library file of matrix subroutines from the scientific subroutine package Symbolic Matrix Interpretive System
PLOT	DEC/REL CALCMP/REL DRIVR/SAV FLOCT/SAV FORGN/SAV	old Digital plotter routines basic CalComp software routines program to read cards for CRVPT Flowchart Generation Utility Program Forms Generation Program
STATS	BMDØ1D/SAV BMDØ2D/SAV BMDØ8D/SAV BMDØ1M/SAV BMDØ4M/SAV BMDØ7M/SAV BMDØ2R/SAV BMDØ1V/SAV BMDØ4V/SAV	Simple Data Description Correlation with Transgeneration Cross Tabulation with Variable Stacking Principal Component Analysis Discriminant Analysis for Two Groups Stepwise Discriminant Analysis Stepwise Regression Analysis of Variance for one way Design Analysis of covariance with Multiple Coordinates
	SSP/REL	[Note that these programs are now referenced by their complete names] statistical routines from the scientific subroutines package
TUTOR	MYPROG/F4 MYSUBR/F4	a program and subroutine used in teaching DDT to users

(

Initial documentation on the library routines will be available in the clients' room, for reference only.

2 Numeric Filenames

Filenames can consist of 6 alphanumeric characters. The restriction that the first character had to be alphabetic has been removed. The first character of the processor program name may also be numeric. The editor will presently not recognize all numeric filenames or all numeric processor program names.

3 The DIRECTORY Command

A DIRECTORY command in which no argument is specified assumes a default argument of ALL/ALL. That is DIR

and DIR ALL/ALL both list the user's complete directory.

With the implementation of the changes detailed in section 1 and 2 above, the default of ALL/ALL for filename where none is specified, continues to be assumed with the following results.

(<u>i</u>)	DIR PLOT	lists the directory entry for the fil	Le
		PLOT on the user's area	

- (ii) DIR PLOT.CALCMP lists the directory entry for the file CALCMP on the PLOT library
- (iii) DIR PLOT. assumes ALL/ALL for the filename and lists the complete directory of the PLOT library
- (iv) DIR 379 lists the directory entry of the file 379 on the user's area
- (v) DIR 379.TEST/F4 lists the directory entry of the file TEST/F4 on project 379
- (vi) DIR 379. assumes the default option for filename and lists the directory of project 379

4 IDENT Command

The decoder will now recognize the correct spelling of 'exercise' for the argument EXERCISE= exercise-number. EX is an allowable abbreviation for the assignment.

5 ALGOL Command

An ALGOL command, similar to the FORTRAN, COBOL and MACRO commands, has been implemented. The only options available are LIST and NOLIST, BIN and NOBIN.

ALGOL(LIST, BIN) {IN={filename-1 {BIN={filename-2 NOLIST NOBIN {LST={filename-3}

6 OVERLAY

An OVERLAY(\emptyset) command will now clear any files on the loadlist and commence a new list for the overlay command and those that follow.

7 Error Messages

Decode now gives the correct error messages in all situations.

SCIENTIFIC SUBROUTINE PACKAGE

[WN-98]

The Scientific Subroutine Package comprises a set of over 250 Fortran subroutines covering many areas of mathematics and statistics. The following pages list the name and a very brief description of each of the routines. As indicated, these routines are now available in a number of library files on the PDP-10 system in the tollowing directories.

(a) STATS directory

The library file SSP/REL contains all the statistical routines from the SSP package. Any of these can be loaded with a user's program by a command of the form

RUN prog-name STATS.SSP(LIB)

(b) MATRIX directory

Again, the library file SSP/REL on the MATRIX directory contains all the matrix routines of the SSP package. Any of these can be loaded with a user's program by a command of the form

RUN prog-name MATRIX.SSP(LIB)

(c) MATH directory

There are three library files of SSP routines on the MATH directory.

(i) SSPP/REL contains polynomial routines

(ii) SSPF/REL contains other mathematical functions

(iii) SSPM/REL contains miscellaneous routines.

The listing of the routines gives the particular library file in which any given routine is to be found.

The user can load a routine from any library with an appropriate RUN command. For example, if a program called routines from both the library files SSPP/REL and SSPM/REL the command would be

RUN rog-name MATH.SSPP(LIB) MATH.SSPM(LIB)

The scientific subroutine package is classified as type 4 software and is therefore made available on an 'as is' basis.

Interim documentation is now available in the clients' room at the Centre for reference only.

CATEGORIAL GUIDE TO SUBROUTINES AND SAMPLE PROGRAMS

(Subroutines added in Version III are marked with an asterisk)

STATISTICS

Data Screening in STATS.SSP(LIB) on PDP-10

- +
- 27TALLY--totals, means, standard deviations, minimums, and maximums 27BOUND--selection of observations within bounds 28SUBST--subset selection from observation matrix 28ABSNT--detection of missing data 29TAB1--tabulation of data (one variable) TAB2--tabulation of data (two variables) 30 SUBMX--building of subset matrix 31Correlation and Regression (See Smoothing, Factorization) in STATS.SSP(LIB) on PDP-10 CORRE--means, standard deviations, and 32correlations 33 *MISR--means, standard deviations, third and fourth moments, correlations, simple regression coefficients and their standard errors; considers that data may be missing
 - ORDER--rearrangement of intercorrelations

MULTR--multiple linear regression GDATA--data matrix generation for polynomial regression

*STPRG--stepwise multiple linear regression *PROBT--probit analysis

CANOR--canonical correlation

B5-8 & 9 26Aug72

Design Analysis (See Smoothing, Regression, Factorization) in STATS.SSP	
(LIB) on PDP-10 AVDATdata storage allocation	49
AVCAL Σ and Δ operation	50
MEANQmean square operation	57
Discriminant Analysis in STATS.SSP(LIB) or PDP-10.	1
DMATXmeans and dispersion matrix	52
DISCRdiscriminant functions	53
Factor Analysis (See Eigenanalysis) in STATS. SSP(LIB) on PDP-10	
TRACEcumulative percentage of eigenvalues	55
LOADfactor loading	56
VARMXvarimax rotation	56
<u>Time Series</u> (See Smoothing) in STATS .SSP (LIB) on PDP-10.	
AUTOautocovariances	59
CROSScross covariances	60
SMOapplication of filter coefficients (weights)	61
EXSMOtriple exponential smoothing	62
Nonparametric Statistics in STATS.SSP(LIB) on PDP-10.	
*KOLMOKolmogorov-Smirnov one- sample test	63
*KOLM2Kolmogorov-Smirnov two- sample test	65
*SMIRNKolmogorov-Smirnov limiting distribution values	66
CHISQ χ^2 test for contingency tables	68
KRANKKendall rank correlation	69
*MPAIRWilcoxin's signed ranks test	70

+ THIS SUBROUTINE ALSO LOCATED IN MATRIX.SSP(LIB) ON PDP-10.

36

37

39

41

44

47

QTESTCochran Q-test	71	RCPY-
RANKrank observations	71	CCPY-
*SIGNTsign test	72	DCPY-
SRANKSpearman rank correlation	73	XCPY-
TIEcalculation of ties in ranked obser- vations	74	MSTR-
TWOAVFriedman two-way analysis of variance statistic	74	LOC
UTESTMann-Whitney U-test	75	CONV
WTESTKendall coefficient of concordance	76	ARRAY
Generation of Random Variates - in STATS. Distribution Functions SSP(LIB) on PDP-10		atrices:
RANDUuniform random deviates	77	GMAD
GAUSSnormal deviates	77	GMSU1
*NDTRnormal distribution function	78	GMPR GMTR
*BDTRbeta distribution function	78	GTPRI
*CDTRX 2 distribution function	81	GIFTU
*NDTRIinverse of normal distribution function	83	MADD
Elementary Statistics and Miscellany in STAT	S.SSP	MSUB.
	PDP-10. 85	MPRD
TTESTtest on population means	86	MTRA
*BISERbiserial correlation coefficient	87	T PRD-
*PHIphi coefficient	88	ΜΑΤΑ
*POINTpoint-biserial correlation coefficient	89	SADD-
*TETRAtetrachoric correlation	90	SSUB-
coefficient	90	SMPY
*SRATEsurvival rates	92	SDIV-
Matrices: Storage in MATRIX.SSP(LIB) or	L	SCLA
PDP-10. MCPYmatrix copy	94	DCLA

RCPYcopy row of matrix into vector	94
CCPYcopy column of matrix into vector	95
DCPYcopy diagonal of matrix into vector	95
XCPYcopy submatrix from given matrix	96
MSTRstorage conversion	96
LOClocation in compressed-stored matrix	97
CONVTsingle-precision/double-precision conversion	97
ARRAYvector storage/double-dimensioned storage conversion	98
	DII
PDP-10. GMADDadd two general matrices	98
GMSUBsubtract two general matrices	99
GMPRDproduct of two general matrices	99
GMTRAtranspose of a general matrix	100
GTPRDtranspose product of two general matrices	100
MADDadd two matrices	101
MSUBsubtract two matrices	101
MPRDmatrix product (row into column)	102
MTRAtranspose a matrix	102
TPRDtranspose product	103
MATAtranspose product of matrix by itself	103
SADDadd scalar to matrix	104
SSUBsubtract scalar from a matrix	104
SMPYmatrix multiplied by a scalar	105
SDIVmatrix divided by a scalar	105
SCLAmatrix clear and add scalar	106
DCLAreplace diagonal with scalar	106

RADDadd row of one matrix to row of another matrix	107
CADDadd column of one matrix to column of another matrix	107
SRMAscalar multiply row and add to another row	108
SCMAscalar multiply column and add to another column	108
RINTinterchange two rows	109
CINTinterchange two columns	109
RSUMsum the rows of a matrix	110
CSUMsum the columns of a matrix	110
RTABtabulate the rows of a matrix	111
CTABtabulate the columns of a matrix	112
RSRTsort matrix rows	112
CSRTsort matrix columns	113
RCUTpartition by row	113
CCUTpartition by column	114
RTIEadjoin two matrices by row	114
CTIEadjoin two matrices by column	115
*MPRC, DMPRCpermute rows or columns	115
MFUNmatrix transformation by a function	117
RECPreciprocal function for MFUN	117
Matrices: Inversion, Systems of Linear Equations and Related Topics in MATRIX.SSP(LIB) on PDP-10.	
+ MINVmatrix inversion	118
*SINV, DSINVinvert a symmetric positive definite matrix	119
SIMQsolution of simultaneous linear, algebraic equations	120
++ GELG, DGELGsystem of general simul- taneous linear equations by Gauss elimination	121
+ ALSO IN STATS.SSP(LIB) on PDP-10 ++ ALSO IN MATH.SSPM(LIB) on PDP-10	

++

*RSLMC--solution of simultaneous linear 124equations with iterative refinement *FACTR--triangular factorization of a 126nonsingular matrix 127MFGR, DMFGR--matrix factorization and rank determination GELS, DGELS--system of general simul-133taneous linear equations with symmetric coefficients GELB, DGELB--system of general simul-137taneous linear equations with band-structured coefficients *MTDS, DMTDS--divide a matrix by a 142triangular matrix *MLSS, DMLSS--solution of simultaneous 145linear equations with symmetric positive semidefinite matrix *MCHB, DMCHB--triangular factorization 148of a symmetric positive definite band matrix *MFSS, DMFSS--triangular factorization 152and rank determination of a symmetric positive semidefinite matrix *MFSD, DMFSD--triangular factorization 158of a symmetric positive definite matrix LLSQ, DLLSQ--solution of linear least-160squares problems Matrices: Eigenanalysis and Related Topics in MATRIX.SSP(LIB) on PDP-10. + EIGEN--eigenvalues and eigenvectors of a 164real, symmetric matrix + NROOT--eigenvalues and eigenvectors of a 166special nonsymmetric matrix *ATEIG--eigenvalues of a real almost triangular matrix 167*HSBG--reduction of a real matrix to 169almost triangular form

Polynomials: Operations in MATH. SSPP(LI on PDP-10.	B)		*PRBM, DPRBMroots of a real poly- nomial by Bairstow's	9
PADDadd two polynomials	171		algorithm	
PSUBsubtract one polynomial from another	171		*PQFB, DPQFBdetermine a quadratic 19 factor of a real poly- nomial)3
PMPYmultiply two polynomials	172	De lei	nomials: Special Types in MATH, SSPP(LIB)	1
PDIVdivide one polynomial by another	172	Poly	on PDP-10.	,
PCLAreplace one polynomial by another	173	++	CNP, DCNPvalue of N th Chebyshev 19 polynomial	}8
PADDMmultiply polynomial by constant and add to another polynomial	173	++	CNPS, DCNPSvalue of series expansion 19 in Chebyshev polynomials	99
PVALvalue of a polynomial	174		TCNP, DTCNPtransform series expansion 20)0
PVSUBsubstitute variable of polynomial by another polynomial	174		in Chebyshev polynomials to a polynomial	
PILDevaluate polynomial and its first derivative	175		CSP, DCSPvalue of N th shifted Chebyshev 20 polynomial)1
PDERderivative of a polymonial	175		CSPS, DCSPSvalue of series expansion in 20 shifted Chebyshev poly-)2
PINTintegral of a polynomial	176		nomials	
PQSDquadratic synthetic division of a polynomial	176		TCSP, DTCSPtransform series expansion 20 in shifted Chebyshev poly- nomials to a polynomial	13
PCLDcomplete linear synthetic division	177		HEP, DHEPvalue of Hermite polynomial 20	5
PGCDgreatest common divisor of two polynomials	177		HEPS, DHEPSvalue of series expansion in 20 Hermite polynomials	6
PNORMnormalize coefficient vector of	178			17
polynomial PECN, DPECNeconomization of a poly-	178		THEP, DTHEPtransform series expan- 20 sion in Hermite polynomials	''
nomial for symmetric	110		to a polynomial	
range	100		LAP, DLAPvalue of Laguerre polynomial 20	
PECS, DPECSeconomization of a poly- nomial for unsymmetric range	180		LAPS, DLAPSvalue of series expansion 20 in Laguerre polynomials	19
Polynomials: Roots in MATH, SSPM(LIB) on PDP-10			TLAP, DTLAPtransform series expan- 21 sion in Laguerre poly-	.0
+ POLRTreal and complex roots of a real polynomial	181		nomials to a polynomial	0
PRQD, DPRQDroots of a real polynomial	183		LEP, DLEPvalue of Legendre polynomial 21	.2
by QD algorithm with dis- placement			LEPS, DLEPSvalue of series expansion 21 in Legendre polynomials	3

*PRBM, DPRBMroots of a real poly- nomial by Bairstow's algorithm	189
*PQFB, DPQFBdetermine a quadratic factor of a real poly- nomial	193
ynomials: Special Types in MATH. SSPP(LI on PDP-10.	B)
CNP, DCNPvalue of N th Chebyshev polynomial	198
CNPS, DCNPSvalue of series expansion in Chebyshev polynomials	199
TCNP, DTCNPtransform series expansion in Chebyshev polynomials to a polynomial	200
CSP, DCSPvalue of N th shifted Chebyshev polynomial	201
CSPS, DCSPSvalue of series expansion in shifted Chebyshev poly- nomials	202
TCSP, DTCSPtransform series expansion in shifted Chebyshev poly- nomials to a polynomial	203
HEP, DHEPvalue of Hermite polynomial	205
HEPS, DHEPSvalue of series expansion in Hermite polynomials	206
THEP, DTHEPtransform series expan- sion in Hermite polynomials to a polynomial	20 7
LAP, DLAPvalue of Laguerre polynomial	208
LAPS, DLAPSvalue of series expansion in Laguerre polynomials	209
TLAP, DTLAPtransform series expan- sion in Laguerre poly- nomials to a polynomial	210

+ ALSO IN STATS.SSP(LIB) on PDP-10

++ THIS SUBROUTINE in MATH, SSPM(LIB) on PDP-10.

ATSE, DAT SEtable selection out of an equidistant table	251
*SG13, DSG13local least-squares smoothing of tabulated functions	253
*SE13, DSE13 *SE15, DSE15 *SE35, DSE35local least-squares smoothing of equidistantly tabulated functions	255
*APFS, DAPFSsolve normal equations for least-squares fit	260
*APCH, DAPCHleast-squares polynomial approximation	263
*ARAT, DARAT *FRAT, DFRATrational least-squares approximation	265
*APLL, DAPLLlinear least-squares approximation	271
FORIFFourier analysis of a given function	274
FORITFourier analysis of a tabulated function	275
HARM, DHARMcomplex three-dimensional Fourier analysis	276
RHARM, DRHARMreal one-dimensional Fourier analysis	281
*APMM,linear Chebyshev approximation over a discrete range	283
Numerical Quadrature in MATH. SSPF(LIB)	
PDP-10. QTFG, DQTFGintegration of monotonically tabulated function by trapezoidal rule	289
QTFE, DQTFEintegration of equidistantly tabulated function by trapezoidal rule	290
QSF, DQSF→-integration of equidistantly tabulated function by Simpson's rule	291
QHFG, DQHFGintegration of monotonically tabulated function with first derivative by Hermitian formula of first order	293

TLEP, DTLEP--transform a series expan- 214 sion in Legendre polynomials to a polynomial

- Roots of Nonlinear Equations in MATH. SSPM(LIB) on PDP-10.
 - RTWI, DRTWI--refine estimate of root by 215 Wegstein's iteration
 - RTMI, DRTMI--determine root within a 217 range by Mueller's iteration
 - RTNI, DRTNI--refine estimate of root by 220 Newton's iteration
- Extremum of Functions in MATH- SSPM(LIB) on PDP-10
 - FMFP, DFMFP--unconstrained minimum 221 of a function of several variables--Davidon method
 - FMCG, DFMCG--unconstrained minimum 225 of a function of several variables -- conjugate gradiant method
- Permutations in MATH. SSPM(LIB) on PDP-10.
 - *PPRCN--composition of permutations 231
 - *PERM--operations with permutations 232 and transpositions
- Sequences: Sums and Limits in MATH. SSPM(LIB) on PDP-10.
 - TEAS, DTEAS--limit of a given sequence 234
 - TEUL, DTEUL--sum of a given function 238 sequence

Interpolation, Approximation, and Smoothing in MATH. SSPM(LIB) on PDP-10.

- ALI, DALI--Aitken-Lagrange interpolation 241
- AHI, DAHI--Aitken-Hermite interpolation 243
- ACFI, DACFI--continued fraction inter- 245 polation
- ATSG, DATSG--table selection out of a 248 general table
- ATSM, DATSM--table selection out of a 250 monotonic table

B5-8 & 9

∠6Aug72

- QHFE, DQHFE--integration of equidistantly 294 tabulated function with first derivative by Hermitian formula of first order
- QHSG, DQHSG--integration of monotonically 295 tabulated function with first and second derivatives by Hermitian formula of first order
- QHSE, DQHSE--integration of equidistantly 296 tabulated function with first and second derivatives by Hermitian formula of second order
- QATR, DQATR--integration of a given 297 function by trapezoidal rule together with Romberg's extrapolation method
- QG2-QG10, DQG4-DQG32--integration of a 299 given function by Gaussian quadrature formulas
- QL2-QL10, DQL4-DQL32--integration of a 303 given function by Gaussian-Laguerre quadrature formulas
- QH2-QH10, DQH8-DQH64--integration of a 308 given function by Gaussian-Hermite quadrature formulas
- QA2-QA10, DQA4-DQA32--integration of a 314 given function by associated Gaussian-Laguerre quadrature formulas
- Numerical Differentiation in MATH. SSPF(LIB) on PDP-10 *DGT3, DDGT3--differentiation of a tabulated function by parabolic interpolation

*DET3, DDET3 *DET5 DDET5--differen

*DET5, DDET5--differentiation of an 320 equidistantly tabulated function

- *DCAR, DDCAR--derivative of a function 324 at the center of an interval
- *DBAR, DDBAR--derivative of a function 327 at the border of an interval
- Ordinary Differential Equations in MATH. SSPF(LIB) on PDP-10.
 - RK1--solution of first-order differential 331 equation by Runge-Kutta method
 - RK2--tabulated solution of first-order 332 differential equation by Runge-Kutta method
 - RKGS, DRKGS--solution of system of first- 333 order ordinary differential equations with given initial values by the Runge-Kutta method
- HPCG, DHPCG--solution of general system 337 of first-order ordinary differential equations with given initial values by Hamming's modified predictor-corrector method
- HPCL, DHPCL--solution of linear system 343 of first-order ordinary differential equations with given initial values by Hamming's modified predictor-corrector method
- LBVP, DLBVP--solution of system of 350 linear first-order ordinary differential equations with linear boundary conditions by method of adjoint equations

Special Functions in MATH. SSPF(LIB) on PDP-10.

GMMMA--gamma function 361 ++ *DLGAM--log of gamma function 362 BESJ--J Bessel function 363

104

+ LEVP ALSO IN MATH. SSPM(LIB) on PDP-10. ++ THIS SUBROUTINE IN STATS.SSP(LIB) on PDP-10.

EATI-CAPONEINIAL INCELAL 000	EXPIexponential	integral	368
------------------------------	-----------------	----------	-----

SICI--sine cosine integral 370

CS--Fresnel integrals 372

- CEL1, DCEL1--complete elliptic integral of 374 the first kind
- CEL2, DCEL2--complete elliptic integral of 376 the second kind
- ELI1, DELI1--generalized elliptic integral 378 of the first kind
- ELI2, DELI2--generalized elliptic integral 380 of the second kind
- JELF, DJELF--Jacobian elliptic functions 382

B5-8 & 9 26Aug72

.