
--- WN-18
15·Jan71

UNIVERSITY OF QUEENSLAND

Computer Centre

WEEKLY NEWSLETTER

Date
Authorization

Week ended 14 January 1971
Director of Computer Centre

1. OPERATION

1.1 PDP-10 SYSTEM

Schedule this week

Friday

Tuesday
Wednesday
Thursday

8 January

12 January
13 January
14 January

Maintenance 0700-0930
Timesharing 1000-120.0, 1400-1600
Batch 1000-1630

Errors in reading data 0930-1000
Air-conditioning plant maintenance 1000-1030
System loading and disk refresh 0955-1200
Line Printer maintenance 1000-1030
Maintenance diagnostics 1410-1430

This week has been the first week running under the new system. It
has not always been possible to keep to the notified times but it
has been a fairly successful week .

1.2 GE-225 System

Normal schedule :

2. SECOND SHIFT

Maintenance 0700-0900
Operations 0900-2400

As from Monday 18 January computer operations at the Centre are
being extended to include a second shift . The proposed schedule
will be as follows:

Timesharing
Batch

1000- 1200, 1400-1600
1000-1200, 1400- 2300

l5Jan7l

Although major development testing is done during week ends, the
period 1200-1400 is usually reserved for short interval tests and
checks. On any day that this reserved time is not r equired it
will be made available for both Timesharing and Batch operation.
Users will be advised of the availability of this time via the
schedule board and messages through the terminals.

3. DATA FILES

3.1 General

All information within the PDP-IO system is kept in the form of
files.

These files can be classified into two very broad categories.
Many files contain programs in one form or another and as such are
files which can be placed into execution by means of some 'processor
program'. These comprise the first category.

The second category consists of files which are simply used for
holding information to be read or written by a program. The
information in these files is of such a nature that the file could
not be placed ihto execution. These are commonly called data
files.

3.2 IC~t a Filen4m8s

The gen-er al form of a filename is

name/proaeSBor program n~e
where the neilA; is thtj idt:nt:Lfti'c [',t'lon' ~i ven' t c t hE: file by
the user . and the processor pro~lam is the name of the routine
necessary to place the program file into execution.

As a data file cannot be placed into execution a data filename
has no 'processor program' part. It is simply an identification
of the form

examples:

(i)
(ii)
(iii)
(iv)

name

'DATA'
-'INPUT'
'OUT'
' SM¢l¢'

2.

3.3 Creation of Data Files

HN-18
15Jan71

Data files can exist in one of two forms; as ASCII character files
(which must be read and written under format control), or as binary
records (read and written without format control).

In general terms data files can, ' at present, becreatecl in one of
the following ways.

(a) By Editor

The edltorprdgram can be used' to create data files.
simply gives the command .

. CREATE filename<cr>

INf>UT:

The user

and then types in the required data records. These records are
ASCII character strings, each a maximum of 72 characters long t

and each terminated by a carriage return.

When ~he user's program reads this file the records must be read
under format control in an identical maimer to reading input data
cards.

example:

Suppose an input record to the data file "laS

1234<cr>
Reading this record with the instructions

READ(l¢, 2) M
2 FORMAT (14)

would give M the value of 1234
However the same record, readby

READ (1¢,4) I, G
4 FORMAT (Il, IX; ' Fl.l)

would give the result I = 1
G = 3.4

3.

(b) From Cards

I-lN-1S
15Jan7l

If a user has a deck of cards, he can transfer these to a disk
file which can then be processed as any other ASCII file.

Facilities will be available in a nevT version of Batch to enable
a user to create a disk file from cards by running a batch job.

As an temporary, interim service until the new Batch is
available, the Centre will transfer carj decks to disk files
for remote terminal users.

(c) ~ a program

A user's ovm program can output named data files to the disk. These
files can be binary Dr ASCII and can be kept on the disk for later
use by other programs.

3.4 Use of Data Files in FORTRAN

To be able to read or write data files with a FORTRAN program, it
is necessary to have some mechanism by means of which a specific
data file can be assigned to a FORTRAN logical unit number.

For example the user may wish to make the FORTFAN statement

READ (l~, 3) A, B, C, J

read its data records from the user's data file named DATIN. To
do this the user must specify that, in this program, the file
DATIN is assigned to the logical unit number 10.

In the PDP-10 system these assignments are made by means of the
subroutines IFILE and OFILE. File assignments can only be made
to the FORTRAN logical unit numbers la, 11, 12 and 13. The
assignment of a file to a logical unit number can be broken by
the RELEAS subroutine.

(a) Subroutine IFILE

The IFILE subroutine assigns a named file to a logical unit number
as an input file. This file can be read only on that unit number;
it cannot be written.

4.

WN-18
l5Jan1l

The calling seCluence for IF'ILE is as follows:

CALL IFILE (n , filename)

n is the FORTRAN logical unit number to vThich the file is being
assigned (la, 11, 12 or 13)

filename is a literal string or a variable containing the name of
the file to be assigned in ASCII.

examples:

CALL IFILE (1¢, 'DATIN')
This assigns the file DATIN to
FORTRJili logical unit number 10.
Each read on unit 10 'iill read the
next seCluential record from DATIN.

While this assignment holds unit 10
cannot appear in a WRITE statement.

(ii) DATA INF/'INPUT'

(b) Subroutine OFILE

CALL INFILE (12, INF)
READ (12) ARRAY

Each execution of the READ statement \vill
read the next seCluential record from the
file INPUT into ARRAY. In this example
the file INPUT is a binary file.

The OFILE subroutine assigns a named fil e to a logical unit number
as an output file. This file can be written only on that unit
number.

The calling sequence for OFILE is similar to that for IFILE, namely

CALL OFILE (n, filename)

n is the FORTRAN logical unit number to which the fil e is being
assigned (la, 11, 12 or 13).
filename is a literal string or a variable containing the filename
in ASCII.

5.

examples :

(i) CALL OFILE (l~, 'DOUT')

WN~18

15Jan71

This assigns the file DOUT to the FORTRAN
logical unit number 10. Each write on unit
10 will write the next sequential record
onto DOUT .

wnile this assignment holds unit 10 cannot
appear in a READ statement.

(ii) DATA NIT, INFO / 13, ' DOUT' /
CALL OFILE (NIT, INFO)
WRITE (NIT, 7) ARRAY

Each execution of the WRITE statement will
output the contents of ARRAY, under format
statement 7, as the next sequential record
on the file DOUT.

(c) Subroutine RELEAS

The RELEAS subroutine breaks the assignment of a named fil e to a
logical unit number. That unit number can then be rc6.3signed by
another call to IFILE or OFILE.

The calling sequence for RELEAS is simply

CALL RELEAS (n)

where n is the logical unit number to be released.

example :

DA'rA K, L/lf/J, 11/
CALL IFILE (K, 'DIN')
CP~L OFILE (L, 'OUTPT')
DO 2 I = 1 , 50
READ (K, 1) M

I FORMAT (16)
2 WRITE (L) M

CALL RELEAS (L)
CALL IFILE (L, 'OUTPT')
DO 3 I = 1, 50
READ (L) M

3 WRITE (6, 4) M
4 FORMAT (lX ,16)

CALL EXIT
END

6.

WN-IB
l5Jan7l

This sample program reads 50 records from the ASCII file DIN and copies
them in binary form to the file OUTPT. The OUTPT file is then read
back and printed. -
3.5 Some Details on Data File Usage

There are a number of details to be remembered in the use of data
files via the IFILE and OFILE routines.

(a)

(b)

(c)

(d)

Files can only be read sequentially or written
sequentially. The first READ or WRITE after the file
assignment will proc ess the first reoord of the file.
Subsequent READ and WRITE statements process successive
records on a file.

Files can be in ASCII or binary. They should always
be read in the same form as they were written.

,
A REWIND statement on a logical unit number can be
given, but it will, at present, simply act as a

-c.aJ..J....to RELEAS and break the assignment of named
file to logical unit number.

Files cannot currently be Ea.okspaced.
statement is ignored.

The BACKSPACE

(e) Oce file can be used for both input and output by
assigning it to two different logical unit numbers.

For example suppose the following assignments had
been made.

CALL IFILE (1¢., 'DATA 1) .

CALL OFILE (11, 'DATA i)

Information could then be read from unit 10, processed, and
written to unit 11. As both input and output files have the same
name, this operation will cause the file assigned to unit 10 to
be superseded by that assigned to unit 11. At the completion of
this operation the file nroned DATA will contain only the
information output on unit 11. The original information on the
file DATA input on unit 10 will have been irretrivably destroyed.
This facility should therefore be used with care.

7.

WN-18
l5Jan7l

(f) FORTRAN logical units can be used either as input units
or as output units. However a given unit cannot be
assigned for both input and output simultaneously.

For example the two statements

CALL IFILE (l¢~ 'DATA')
CALL OFILE (l¢, 'DOUT')

are invalid unless separated by a call to
RELEAS.

3.6 Scratch Files

Output can be dOne to, (and input from) the logical unit numbers
10, 11, 12 and 13 without first assigning a named file to these units.

In this case the system will automatically assign the following
default filenames.

Unit • No . Filena.lle

10 FOR1¢
11 FORll _
l~) FOH12
13 FORB

If the first operation on a given unit number is a WRITE, a file,
named as above, will be vrritten onto the use:ts disk area. If the
first operation on a given unit is a READ an attempt will be made
to find the file, named as above, on the users disk area. If
none exists an error message,

?FILENAME FORTH NOT ON DEVICE DSK

will result.

Once files of these names have been produced the user can treat them
as ordinary files. Users should be careful not to keep files under
these names as they could easily be inadvertently destroyed.

Items (a) (b) (c) and (d) noted in section 3.5 above apply to these
scratch files.

3.7 A~ailability

These facilities have been implemented and can now be used from remote
terminals.

8.

WN-18
15Jan7l

Users are advised that whenever improved file or assignment facilities
become available, there may be changes in the operation of the
routines outlined above.

4. A SUGGESTION ON REMOTE TERMINAL 1/0 "nTH FORTRAN

1wo problems aris e with the use of FORTRAN on the present remote terminal
system:

(a) the entry of data to a program
(b) the output of a large volume of

results on the Teletype

Both these problems may be alleviated somewhat by the use of data files
on disk.

Input data fil e s can be created by use of the EDITOR and read by the
User's program.

Similarly for a large volume of output, the output can be ,rritten to
a disk fil e , instead of the Tel etype and the output file contents
inspected with the EDITOR . Note hOlvever that the EDITOR ,fill
trUlv.09.t e lines of more than 80 characters.

9.

• J

:" ;'

