
ALGOL PROGRAMMER'S GUIDE

ALGOL PROGRAMMER'S GUIDE

AA-0196C-TK

digital equipment corporation • maynard. massachusetts

First Printing:
Revised:

Second Printing:
Revised:

September 1971
September 1971

December 1971
May 1972

December 1972
July 1973
July 1974

May 1975
September 1975

March 1976
April 1977

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright © 1971, 1972, 1973, 1974, 1975, 1976, 1977 by
Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-lO
DEC tape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-IO
TYPESET-ll

CHAPTER 1

1.1
1.2
1.3
1. 3.1
1. 3. 2
1.4
1.5

CHAPTER 2

2.1
2.2
2.3
2.4

CHAPTER 3

3.1
3.2

CHAPTER 4

4.1
4.1.1
4.1. 2
4.1. 3
4.1.3.1

4.2
4.3
4.4

CHAPTER 5

5.1
5.1.1
5.1. 2
5.2
5.2.1
5.2.2
5.2.3
5.3

CHAPTER 6

6.1
6.2
6.3
6.4

CONTENTS

INTRODUCTION

GENERAL
DECSYSTEM-I0/20 ALGOL
THE ALGOL COMPILER

Compiler Extensions
Compiler Restrictions

THE ALGOL OPERATING ENVIRONMENT
TERMINOLOGY

PROGRAM STRUCTURE

BASIC SYMBOLS
COMPOUND SYMBOLS
DELIMITER WORDS
USE OF SPACING AND COMMENTARY

IDENTIFIERS AND DECLARATIONS

IDENTIFIERS
SCALAR DECLARATIONS

CONSTANTS

NUMERIC CONSTANTS
Integer Constants
Real Constants
Long Real Constants
Automatic Conversion of Real Constants
to Long Real Constants

OCTAL AND BOOLEAN CONSTANTS
ASCII CONSTANTS
STRING CONSTANTS

EXPRESSIONS

ARITHMETIC EXPRESSIONS
Identifiers and Constants
Special Functions

BOOLEAN EXPRESSIONS
Boolean Operators
Evaluation of Boolean Variables
Arithmetic Conditions

INTEGER AND BOOLEAN CONVERSIONS

STATEMENTS AND ASSIGNMENTS

STATEMEN'l'S
ASSIGNMENTS
MULTIPLE ASSIGNMENTS
EVALUATION OF EXPRESSIONS

iii

Page

1-1
1-1
1-1
1-2
1-2
1-3
1-3

2-1
2-2
2-2
2-4

3-1
3-2

4-1
4-1
4-1
4-2
4-2

4-3
4-3
4-3

5-1
5-2
5-2
5-3
5-3
5-4
5-4
5-6

6-1
6-1
6-2
6-2

6.5

CHAPTER 7

7.1
7.2
7.3

CHAPTER 8

8.1
8.1.1
8.1. 2
8.2
8.3

CHAPTER 9

9.1
9.2
9.3

CHAPTER 10

10.1
10.2

CHAPTER 11

11.1
11. 2
11. 3
11.4
11. 5
11. 6
11.6.1
11. 6.2
11.7
11.8
11.9
11.10
11.10.1
11.10.2

CHAPTER 12

12.1
12.2
12.3

CHAPTER 13

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.7.1
13.7.2
13.7.3
13.7.4

CONTENTS (Cont.)

COMPOUND STATEMENTS

CONTROL TRANSFERS, LABELS, AND
CONDITIONAL STATEMENTS

LABELS
UNCONDITIONAL CONTROL TRANSFERS
CONDITIONAL STATEMENTS

FOR AND WHILE STATEMENTS

FOR STA,!'EMENTS
STEP-UNTIL Element
WHILE Element

ViHILE STATEr-lEN'!'
GENERAL NOTES

ARRAYS

GENERAL
ARRAY DECLARATIONS
ARRAY ELEr.1ENTS

BLOCK STRUCTURE

GENERAL
ARRAYS WITH DYNAMIC BOUNDS

PROCEDURES

PARAMETERS CALLED BY "VALUE"
PARAr.'iE,!'ERS CALLED BY "NM1E"
PROCEDURE HEADINGS
PROCEDURE BODIES
PROCEDURE CALLS
ADVANCED USE OF PROCEDURES

Jensen's Device
Recursion

LAYOUT OF DECLARATIONS WITHIN BLOCKS
FORWARD REFERENCES
EXTERNAL PROCEDURES
ADDITIONAL METHODS OF COMMENTARY

Comment After END
Comments within Procedure Headings

SWITCHES

GENERAL
SWITCH DECLARATIONS
USE OF SWITCHES

STRINGS

GENERAL
STRING EXPRESSIONS AND ASSIGNMENTS
BYTE STRINGS
BYTE SUBSCRIPING
NULL STRINGS
STRING COMPARISONS
LIBRARY PROCEDURES

Concatenation
Length and Size
Copying
Newstring

iv

6-3

7-1
7-1
7-2

8-1
8-2
8-3
8-3
8-3

9-1
9-1
9-2

lU-l
lU-3

11-1
11-1
11-2
11-3
11-5
11-6
11-6
11-6
11-7
11-8
11-9
11-10
11-10
11-10

12-1
12-1
12-1

13-1
13-1
13-1
13-2
13-2
13-3
13-3
13-3
13-3
13-4
13-4

13.7.5

CHAPTER 14

14.1
14.2
14.3
14.4

CHAPTER 15

15.1
15.2

CHAPTER 16

16.1
16.2
16.2.1
16.2.2
16.2.3
16.3
16.4
16.4.1
16.5
16.6
16.6.1
16.6.2
16.6.3
16.6.4
16.6.4.1
16.6.4.2
16.6.4.3
16.7
16.B
16.9
16.10
16.11
16.12

CHAPTER 17

17.1
17.2
17.3
17.3.1
17.3.2
17.3.3
17.4
17.5
17.6
17.7
17.B
17.9
17.10
17.11

CHAPTER IB

IB.l
IB .1.1
1B.2
IB.3
1B.4

CONTENTS (Cent.)

Delete

CONDITIONAL EXPRESSIONS AND STATEMENTS

GENERAL
CONDITIONAL OPERANDS
CONDITIONAL STATEMENTS
DESIGNATIONAL EXPRESSIONS

OWN VARIABLES

GENERAL
OWN ARRAYS

DATA TRANSMISSION

GENERAL
ALLOCATION OF PERIPHERAL DEVICES

Device Hodes
Buffering
Error Returns

SELECTING INPUT/OUTPUT CHANNELS
FILE DEVICES

Error Returns
RELEASING DEVICES
BASIC INPUT/OUTPUT PROCEDURES

Byte Processing Procedures
String Output
Miscellaneous Symbol Procedures
Numeric and String Procedures
Numeric Input Data
Numeric Output Data
Octal Input/Output

DEFAULT INPUT/OUTPUT
LOGICAL INPUT/OUTPUT
SPECIAL OPERA'rIONS
I/O CHANNEL STATUS
TRANSFERRING FILES
CURRENTLY SELECTED CHANNEL NUMBERS

THE DECSYSTEM-I0/20 OPERATING ENVIRONMENT

MATHEMATICAL PROCEDURES
STRING PROCEDURE
UTILITY PROCEDURES

Array Dimension Procedures
Minima and Maxima Procedures
Field Manipulations

DATA TRANSMISSION PROCEDURES
FORTRAN INTERFACE PROCEDURES
GENERAL INFORMATION ROUTINE
DATE AND TIME IN ASCII FORMAT
RAND0fI1 NUMBER ROUTINES
ONTRACE AND OFFTRACE
PAUSE
DUMP

RUNNING AND DEBUGGING PROGRAMS

COMPILATION OF ALGOL PROGRAMS
Compilation of Free-Standing Procedures

LOADING ALGOL PROGRAMS
RUNNING ALGOL PROGRAMS
CONCISE COMMAND LANGUAGE

v

13-4

14-1
14-1
14-2
14-4

15-1
15-1

16-1
16-1
16-2
16-3
16-3
16-4
16-4
16-5
16-5
16-6
16-6
16-6
16-B
16-8
16-8
16-9
16-10
16-10
16-11
16-11
16-12
16-13
16-13

17-1
17-2
17-2
17-2
17-3
17-3
17-4
17-4
17-5
17-5
17-6
17-6
17-6
17-6

18-1
1B-4
1B-4
1B-5
1B-5

18.5
18.5.1
18.5.1.1
18.5.1.2
18.5.1.3
18.6
18.7
18.8
18.8.1
18.8.2
18.9
18.9.1
18.9.2

CHAPTER 19

CHAPTER 20

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8
20.9

CHAPTER 21

TABLE

21.1
21. 2
21.3
21. 4
21. 5
21. 6
21. 7

21. 8
21. 9
21. 9.1
21. 9.2
21. 9.2.1
21.9.2.2
21.9.2.3
21.9.2.4
21.9.2.5
21.9.2.6
21.9.2.7
21.9.2.8
21.9.2.9
21.9.2.10
21.9.2.11
21.10

2-1
2-2
2-3
5-1

CONTENTS (Cont.)

RUN-TIME DIAGNOSTICS AND DEBUGGING
Facilities to Aid in Program Debugging
Checking
Controlling Listing of the Source Program
Setting Line Numbers in Listings

CROSS REFERENCE LISTING
STACK ANALYSIS
TRACE

Dynamic Trace
Post-Mortem Trace

PERFORMANCE ANALYSIS
Heap Space
Code Utilization

TECHNICAL NOTES

THE ALGOL DYNAMIC DEBUGGING SYSTEM

SUMMARY OF FEATURES
GENERAL REMARKS
TYPEOUT COMMANDS
CHANGING ALGOL VARIABLES
PAUSES
EXECUTE COMMANDS
DUMP
MISCELLANEOUS COMMANDS
SUMMARY OF COMMANDS

THE DECSYSTEM-I0 MACRO SUBROUTINES

GENERAL
PROCEDURE HEADINGS
ACCESSING FORMAL PARAMETERS
RETURN OF RESULTS FROM TYPED PROCEDURES
PROCEDURE EXITS
FORMATS OF VARIABLES
PROCEDURES WITH A VARIABLE NUMBER

OF PARAMETERS
INCLUDING PROCEDURE IN THE LIBRARY
UTILITY ROUTINES

Getting Core
Input/Output
Device Open
File Open
File Close
Release Channel
Select Channel
Read Byte
Write Byte
Break Output
Read Number
Print Number
String Output to Terminal

GENERAL NOTES

TABLES

Symbols

18-5
18-7
18-7
18-7
18-8
18-8
18-8
18-9
18-9
18-11
18-11
18-11
18-12

20-1
20-1
20-2
20-6
20-7
20-12
20-13
20-14
20-17

21-1
21-1
21-3
21-5
21-6
21-6

21-7
21-8
21-8
21-8
21-8
21-8
21-9
21-9
21-9
21-9
21-9
21-9
21-9
~1-10
21-10
21-10
21-10

2-1 DECsystem-l0/20 ALGOL
Compound Symbols
Delimiter Words Used
Operator Precedence

2-2
in DECsystem-l0/20 ALGOL2-3

5-1

vi

5-2
5-3
11-1
16-1
17-1

CONTENTS (Cent.)

Function of Boolean Operators
Boolean Expressions
Parameters in a Procedure Call
Standard Device Names
FORTRAN Interface Procedures

vii

5-4
5-5
11-1
16-2
17-4

CHAPTER 1

INTRODUCTION

1.1 GENERAL

DECsystem-lO/20 ALGOL is an implementation of ALGOL-60; ALGOL is an
abbreviation of ALGOrithmic Language, and 1960 is the year it was
defined. The authoritative definition of ALGOL-60 is contained in the
"Revised Report on the Algorithmic Language ALGOL-60 H , (1) hereafter
referred to as the "Revised Report". This report leaves a number of
ALGOL-60 features undefined, notably input/output, and permits the
implementer of the language some latitude in interpreting other
features. Many of these features have been discussed extensively
since the publication of the Revised Report; some have been given
rigorous interpretations in various versions of ALGOL, particularly
the ALGOL-68 Language. (2)

Where there is need for interpretation in the Revised Report, such
interpretations as seem reasonable have been made in light of current
ALGOL opinion. Where no guidelines exist, ALGOL-68 is used as a
basis. These points are discussed in Chapter 19.

1.2 DECSYSTEM-IO/20 ALGOL

The purpose of this manual is to teach the use of DECsystem-lO/20
ALGOL. The manual is written both for the user who is familiar with
ALGOL implementations and for the user who has no knowledge of ALGOL
but is reasonably fluent in a high-level scientific programming
language such as FORTRAN IV. This manual is not a primer in
high-level languages. (3)

Readers not thoroughly familiar with
manual. Readers already familiar
chapters except Chapters 5, 6, 7, 8,
be referred to only briefly_

1.3 THE ALGOL COMPILER

ALGOL should read the entire
with ALGOL-60 should read all

9, 10, II, 12, and 14, which need

The DECsystem-lO/20 ALGOL Compiler is that part of the DECsystem-lO/20
ALGOL System that reads programs written in DECsystem-lO/20 ALGOL and
converts them into a form (relocatable binary) that is acceptable to
the DECsy~tem-lO or DECsytem-20 Linking Loader. The compiler is also
responsible for finding errors in the user's source program and
reporting them to the user.

Slight constraints are imposed on the way the user writes his program.
These constraints, made to gain the most desirable feature of a
single-pass compiler, concern the order in which the user declares the

1-1

INTRODUCTION

identifiers in the program and the use of forward declarations under
certain special circumstances.

Such a compiler can process ALGOL programs rapidly and does not
require the use of any backing store. The minor restrictions imposed
will not normally affect the user.

1.3.1 Compiler Extensions

The following ALGOL-60 extensions are allowed by the compiler:

1. A LONG REAL type, equivalent to FORTRAN's double precision,
is added that gives the user power to handle double-precision
real numbers.

2. An EXTERNAL procedure facility allows the user to compile
procedures separately from the main program.

3. A WHILE statement, and an abbreviated form of the FOR
statement, allow the user greater flexibility of iteration.

4. A new type STRING allows the user to manipulate
various size bytes. In addition, the user can
manipulate the bytes within a string by means
subscripting facility.

5. An integer remainder function REM, is provided.

6. Assignments are permitted within expressions.

strings of
individually
of a byte

7. Delimiter words may be represented in either reserved word
format or as non-reserved words enclosed in single quotes
(primes) .

8. Constants of type REAL may be expressed as an integer part
and a decimal part only as in FORTRAN.

The compiler accepts reserved word delimiters in normal mode, but can
also accept programs using non-reserved delimiter words enclosed in
primes. Refer to Chapter 18.

1.3.2 Compiler Restrictions

The compiler imposes the following restrictions on ALGOL-60:

1. Numeric labels are not permitted.

2. All formal parameters must be specified.

3. Identifiers are restricted to 64 characters in length.

4. Arrays and scalars must be declared before switches and
procedures.

5. Forward references for procedures and labels must be given
under certain circumstances.

For definitions of the terms used, refer to section 1.5 and to the
Revised Report.

1-2

INTRODUCTION

1.4 THE ALGOL OPERATING ENVIRONMENT

Programs compiled by the ALGOL compiler are run in a special operating
environment that provides special service~, including input/output
facilities for the object program.

The ALGOL operating environment consists of:

1. The ALGOL Library, known as ALGLIB - a set of routines, some
of which are incorporated into the user's program by the
linking loader.

2. The ALGOL Object Time System, known as ALGOTS responsible
for organizing the smooth running of the program and
providing services such as core management, peripheral device
allocation, and fault monitoring in case the program
encounters an error condition at run time.

Refer to Chapters 17 and 18 fo~ a descripion of ALGLIB and ALGOTS.

1.5 TERMINOLOGY

Some of the following words, used in this manual, may be new to the
reader. Many have a FORTRAN equivalent, and where such an equivalent
exists, this is enclosed in parentheses.

that is an
Such words

BEGIN IF

Delimiter Word - a single, English language word
inherent part of the structure of the ALGOL language.
cannot normally be used for other purposes. Examples:
ARRAY.

Identifier - a name, established by user declaration, that
represents some quantity within a program.

Label (Statement Number) - an identifier
statement in a program. Control of
transferred to the statement following
label which is similar to a FORTRAN
available in DECsystem-10/20 ALGOL.

used to mark a certain
program execution can be
the label. A numeric
statement number, is not

Procedure (Subroutine, Function) - part of a program, which may
be invoked by ~calling". In general, parameters are supplied as
arguments and a result may be returned.

Parameter (Formal Parameter -
Argument) See Procedure.
used within the procedure that
when the procedure is called.

Dummy Variable, Actual Parameter
Formal Parameter is an identifier

represents the argument supplied

1-3

CHAPTER 2

PROGRAM STRUCTURE

2.1 BASIC SYMBOLS

DECsystem-10/20 ALGOL programs consist of a sequence of symbols from
the DECsystem-10/20 ASCII character set. The meaning of individual
characters given in Table 2-1, is much the same as in other high-level
languages.

Symbol

A-Z

a-z

0-9

+

*
/

()

[1

Table 2-1
DECsystem-lO/20 ALGOL Symbols

Meaning or Use

Used to construct identifiers and delimiter words.

Lower case letters; are treated as upper case
letters except when they appear in string constants
and ASCII constants.

Decimal digits; used to construct numeric constants
and identifiers.

Arithmetic addition operator.

Arithmetic subtraction operator.

Arithmetic multiplication operator.

Arithmetic division operator.

Arithmetic exponentiation operator.

Parentheses; used in arithmetic expressions and to
enclose parameters in procedure specifications and
calls.

Square brackets; used to enclose subscript bounds in
array declarations, and array subscript lists.

Comma; general separator, placed
subscripts, procedure parameters,
lists, etc.

between array
items in switch

Decimal point;
subscripting.
identifiers.

used in numeric constants and byte
Also, used as a readability symbol in

2-1

Symbol

;

:

=

*
< >

& @

I

%

$

PROGRAM STRUCTURE

Table 2-1 (Cont.)
DECsystem-10/20 ALGOL Symbols

Meaning or Use

Semicolon; used to terminate statements.

Colon; used to indicate labels, and separate lower
and upper bounds in array declarations.

Equality; used in arithmetic and string comparisons.

Nonequality.

Less than, greater than.

Introduces exponent in floating-point numbers.

Prime, or single quote; used to enclose delimiter
words when the non-reserved word implementation is
used.

Opening and closing string quotes.

Comment.

Introduces an octal constant.

Introduces an ASCII constant.

Alternative to := (refer to Table 2-2).

2.2 COMPOUND SYMBOLS

Compound symbols consist of two adjacent basic symbols. Any
intervening spaces or tabs do not affect their use. The compound
symbols are shown in Table 2-2.

Symbol

:=

<=

>=

2.3 DELIMITER WORDS

Table 2-2
Compound Symbols

Usage

Assignment

Less than or

Greater than

equal to

or equal to

Certain letter combinations are reserved as part of the structure of
the language and may not be used as identifiers unless the compiler
option to accept delimiter words in single quotes is in use. Such an
option is selected by using a special switch option (refer to Chapter

2-2

PROGRAM STRUCTURE

18). The standard method of delimiter word representation, that is,
reserved words, is assumed throughout this manual. For example, the
delimi ter word

BEGIN

will always appear in the text of this manual as shown above and
cannot be used as an identifier in a program. If the alternative
method of representation is used, it would appear as

'BEGIN'

and

BEGIN

could be used as an identifier. Table 2-3 contains a list of all the
delimiter words used in the language.

Table 2-3
Delimiter Words Used in DECsystem-lO/20 ALGOL

Reserved Word Chapter Reference

AND 5.2.1
ARRAY 9
BEGIN 10
BOOLEAN 5.2
CHECKOFF 18
CHECKON 18
COMMENT 2.4
DIV 5.1
DO 8
ELSE 7.3
END 10
EQV 5.2.1
EXTERNAL 11. 9
FALSE 4.2
FOR 8
FORWARD 11. 8
GO 7.2
GOTO 7.2
IF 7.3
IMP 5.2.1
INTEGER 3.2
LABEL 11
LINE 18
LISTOFF 18
LISTON 18
LONG 3.2
NOT 5.2.1
OR 5.2.1
OWN 15
PROCEDURE 11
REAL 3.2
REM 5.1
STEP 8
STRING 13
SWITCH 12
THEN 7.3

2-3

PROGRAM STRUCTURE

Table 2-3 (Cant.)
Delimiter Words Used in DECsystem-lO/20 ALGOL

Reserved Word Chapter Reference

TRUE 4.2
UNTIL 8
VALUE 11
WHILE 8

2.4 USE OF SPACING AND COMMENTARY

The readability of ALGOL programs can be enhanced by the judicious use
of spacing, tab formatting, and commentary. Spaces, tabs, and form
feeds (page throws) may be used freely in a source program subject to
the following constraints:

1. Spaces, tabs, line feed, or form feed characters may not
appear within delimiter words.

2. Where two delimiter words are adjacent, or where an
identifier follows a delimiter word, these must be separated
by one or more spaces and/or tabs.

3. Spaces, tabs etc., are significant within string constants.

Comments are introduced by either the word COMMENT or the symbol !
(available in DECsystem-lO/20 ALGOL, but not necessarily in other
implementations of ALGOL). Such a comment may appear anywhere in a
program; the comment text is terminated by a semicolon. Refer to
Section 11.10 for additional means to add comments to a program.

2-4

CHAPTER 3

IDENTIFIERS AND DECLARATIONS

3.1 IDENTIFIERS

An identifier must begin with an upper-case letter and optionally be
followed by one or more upper-case letters and/or decimal digits. An
identifier may not contain more than 64 characters.

NOTE

1. Unlike FORTRAN, there is no implied type
attached to an identifier.

2. All identifiers in a program (except
labels) have to be "declared", that is,
the use to which identifiers are to be
put must be specified, prior to the
actual usage.

Examples:

The following are identifiers:

I

ALPHA

P43

J4K5

HOUSEHOLDERTRIDIAGONALIZATION

The following are not identifiers:

4P does not begin with letter

BOOLEAN unless the non-reserved word
representation is used

ONCE AGAIN space not allowed

delimiter

DECsystem-10/20 ALGOL also permits the use of a decimal point as a
"readability symbol" in the alphabetic portion of identifiers. These
readability symbols can appear between two alphabetic characters of an
identifier and are ignored by the compiler. Thus:

ONCE.AGAIN

3-1

IDENTIFIERS AND DECLARATIONS

and

PI.BY.TWO

have exactly the same effect as

ONCEAGAIN

and

PIBYTWO

respectively.

Note that

ALPHA3.5

and

BETA.22

are not identifiers, since the decimal point does not appear between
two alphabetic characters.

3.2 SCALAR DECLARATIONS

A declaration reserves an identifier to represent a particular
quantity used in a program. Such declarations are mandatory in ALGOL.
At any particular point during program execution, the form of the
variable or quantity associated with the identifier depends on the
type of variable. The type of variable is determined by the type of
identifier which represents it.

There are five types of scalar variables, that is, variables which
contain a single value:

Integer
"Real
Long Real
Boolean
String

Integer, real, and long real variables are capable of holding
numerical values of the appropriate type (and only of that type). The
range of values is as follows: integer: -34,359,738,368 through
34,359,738,367~ real and long real: approximately -1.7&38 through
1.7&38~ values less than approximately 1.4&-39 in magnitude are
represented by zero.

Boolean variables (similar to FORTRAN's Logical variables) can hold a
Boolean quantity, which is usually one of the states TRUE or FALSE
but, in general, can be any pattern of 36 bits.

String variables are somewhat more complicated. The user is referred
to Chapter 13 for a full description of the subject.

All of the above variables can be declared for use by preceding a list
of the identifiers to be used by the appropriate delimiter word for
their type. Throughout this manual, a "list of items" consists of
those items arranged sequentially and separated by commas.

3-2

IDENTIFIERS AND DECLARATIONS

Examples:

INTEGER I,J,K~

LONG REAL DOUBLE,P,Q,ELEPHANT~

BOOLEAN ISITREALLYTRUE~

STRING S,T~

3-3

CHAPTER 4

CONSTANTS

4.1 NUMERIC CONSTANTS

There are three forms of numeric constants:

1. Integer constants

2. Real constants

3. Long Real constants

4.1.1 Integer Constants

Integer constants consist of a number of adjacent decimal digits,
subject to the constraint that the number represented must be in the
range a through 34,359,738,367.

Examples:

3

24

9276541

NOTE

Any preceding sign that appears in the
program is not considered part of the
constant.

See also Section 4.3

4.1.2 Real Constants

Real constants consist of a decimal number (containing either an
integral part or a fractional part, or both) followed by an optional
exponent. If the value of a decimal number is unity, then this may be
omitted, and the real constant solely represented by the exponent (see
the last example in this section). The exponent consists of either
the & or @ symbol followed by an optionally signed integer. This has
the effect of multiplying the decimal number by the power of ten
specified in the exponent. If no decimal number appears, a value of
unity is assumed.

4-1

CONSTANTS

The range of real constants is approximately 1.4&-39 to 1.7&38;
numbers less than 1.4&-39 are represented by zero. Real numbers are
stored to a significance of approximately eight and one-half decimal
digits.

Examples:

Representation

3.141592653589793
.0001
4.37&5
5&-3
&-6

Value

3.14159265
0.0001
437000.0
0.005
0.000001

4.1.3 Long Real Constants

Long real constants are used to represent numeric quantities to
approximately twice the precision available with real numbers: about
seventeen decimal digits. Long real constants are formed by writing a
real constant in floating-point form, but replacing the & or @ by &&
or @@. The range of long real constants is the same as that of real
constants, except numbers below approximately 3.0&&-30 can only be
represented to single precision due to hardware considerations.

Examples:

Representation Value

3.14159265358979323846&&0 3.1415926535897932
12&&-3 0.012

4.1.3.1 Automatic Conversion of Constants to Long Real Constants
The compiler keeps all real constants internally to the precision
available with long real variables and determines the precision
required by the context in which the constant is used. This is to
avoid loss of precision in arithmetic expressions involving long real
variables and real constants, thus making easier the conversion of
programs to use long real variables. As a result of this, a long real
constant only needs to be specified explicitly if it is desired to
force a calculation to be done to long real precision irrespectively.

For example, if LR is a long real variable and X is a real variable,
the following two assignments would produce (slightly) different
results:

1. LR:=O.l+X

would perform the addition, then convert the result to long
real and assign this to LR.

2. LR:=O.l@@O+X

would take the value of X and convert to long real, then
perform the addition to long real precision and assign the
result to LR. If X was a long real variable, however, there
would be no difference, as the addition would be performed to
long real precision in both cases.

4-2

CONSTANTS

4.2 OCTAL AND BOOLEAN CONSTANTS

Octal constants consist of the symbol % followed by a number of octal
digits. Up to twelve significant digits may appear (leading zeros are
ignored); these digits are right justified.

Examples:

%777777777774

%0470

Octal constants may only be used in Boolean expressions.

Boolean constants consist of the words TRUE and FALSE. They are
equivalent to the octal constants %777777777777 and %000000000000,
respectively.

4.3 ASCII CONSTANTS

Up to five ASCII symbols can be packed right justified to give an
integer-type constant. The format is a dollar sign ($), followed by
up to five ASCII symbols enclosed within a delimiting symbol pair.
The leading delimiter symbol immediately follows the $, and may be a
readable character or an invisible one such as a space. Thus, the
user can generate a single ASCII character constant by placing one
space on each side of it, and preceding the triplet by a dollar sign.

Examples:

Text

$ A
$/01234/

4.4 STRING CONSTANTS

Octal Value

000000 000101
160713 516674

String constants allow the user to store any reasonable length string
of ASCII characters within a program. The length of such a constant
is restricted only by the amount of core storage available to the user
for the execution of the program. String constants may be used,
typically, to output a message during the execution of the program or
as values assigned to string variables.

The string of symbols is enclosed within quotes ("). There are
restrictions on the symbols that may appear within the string.

1. and U may not appear alone.

2. [and] may appear if they are properly paired.

3. Single occurrences of []
;; and "" respectively.

and II are represented by [[]]

4. Where a string has to be broken across two or more lines of
source, the carriage return and line feed characters can be
ignored by preceding them with a control-back arrow
character.

4-3

CONSTANTS

NOTE

[[and]] are stored as such in the byte
string generated by the compiler. ;;
and "" are stored as a single ; or ",
respectively. The restriction on the
representation of ; is made to protect
the user against quoting the whole
program by missing out a "

Square brackets are used to enclose
effect when the string is output.
16.6.2.

symbols that have a specific
These are discussed in Paragraph

Examples:

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

"REMEMBER THAT SPACES ETC. ARE SIGNIFICANT"

" [P5C] INPUT DATA: [5C] n

"'"'A[[I]] := 0.1;;"1111

4-4

CHAPTER 5

EXPRESSIONS

5.1 ARITHMETIC EXPRESSIONS

DECsystem-lO/20 ALGOL arithmetic expressions are written in a form
similar to that used in FORTRAN and many other high-level scientific
computer languages. The usual algebraic rules concerning precedence
of operators and brackets are followed (see Table 5-1).

Operator

parentheses
exponentiation
multiplication

Table 5-1
Operator Precedence

and division
addition and subtraction

Priority
(decreasing)

1
2
3
4

There are two additional operators, DIV and REM, that indicate integer
division and remainder, respectively, and these have the same
precedence as ordinary division. Within the precedence scheme, the
order of evaluation is always from left to right. For example:

X ft Y ft Z means (X ft Y) A Z

and

I DIV J REM K means (I DIV J) REM K

Unlike FORTRAN, when ordinary division of one integer by another is
performed, the real result is not rounded to an integer value.

The difference between the various types of division is clarified by
the following examples:

7/4 yields a result of 1.75, whereas

7 DIV 4 yields a result of 1, and

7 REM 4 yields a result of 3

5-1

EXPRESSIONS

The interpretation of integer division for negative integers follows:

Let M, N>O, then

-M DIV N = M DIV (-N) -(M DIV N)

-M DIV (-N) = M DIV N

The integer remainder operator, REM, is defined so that for all
integral M, N:

M REM N = M - N*(M DIV N)

5.1.1 Identifiers And Constants

Arithmetic expressions consist of operands, that is, identifiers and
constants, of the three types, integer, real and long real, together
with the arithmetic operands + - * / DIV REM and t and parentheses
where necessary.

Since automatic conversion takes place as necessary when an expression
is evaluated, the user may freely mix the three different types of
identifiers and constants, (refer to section 4.1.3.1 for the effect of
mixing real or long real constants and variables).

Integer quantities may have more precision than can be represented in
a real variable. The user must beware of possible loss of
significance in integral quantities used in mixed type expressions.

5.1.2 Special Functions

Three special functions are provided for use .in arithmetic
expressions. The first is the transfer function, ENTlER, which
converts a real or long real quantity into an integer quantity defined
as the largest integer value not exceeding the argument.

Thus

ENTIER(3.5) = 3

and

ENTIER(-3.5) = -4

The special function ABS yields the absolute value (also known as the
modulus) of its argument. The argument may be any integer, real, or
long real quantity; the result is always of the same type as the
argument.

Thus

ABS(-3.5) 3.5

and

ABS(-3) = 3

The special function SIGN is the signum function whose argument can be
integer, real, or long real. The result is always integral, being
minus one or zero or plus one, depending on whether the argument is
negative, zero, or greater than zero, respectively.

5-2

Thus

SIGN(-3.5) = -1

SIGN(O) = 0

SIGN(3.5) 1

EXPRESSIONS

NOTE

ENTlER, ABS, and SIGN are not
words. They may be used
purposes in a program.

delimi ter
for other

Examples of simple arithmetic expressions follow:

X

1+3

X*Y/Z

P+Q/R

X2 + Y

XJ-4

J + ENTlER (K-2)

SIGN(ENTIER(J/K) + 1)

(X + Y) * (-I)

5.2 BOOLEAN EXPRESSIONS

Boolean expressions involve Boolean identifiers, Boolean and octal
constants, arithmetic conditions, and Boolean operators interspersed
in an order similar to that of arithmetic expressions.

5.2.1 Boolean Operators

There are five Boolean operators listed here in decreasing order of
precedence.

l. NOT (unary operator)

2. AND

3. OR

4. HIP (implication)

5. EQV (equivalence)

NOT is a unary operator that complements a Boolean quantity in the
same way that a unary minus sign negates an arithmetic quantity in an
arithmetic expression. In this case, FALSE is changed to TRUE, or
vice versa.

5-3

EXPRESSIONS

Table 5-2 gives the result of A OP B where OP stands for one of the
Boolean operators AND, OR, IMP, or EQV, for all values of A and B.

Table 5-2
Function of Boolean Operators

A FALSE TRUE
B FALSE TRUE FALSE TRUE
A AND B FALSE FALSE FALSE TRUE
A OR B FALSE TRUE TRUE TRUE
A IMP B TRUE TRUE FALSE TRUE
A EQV B TRUE FALSE FALSE TRUE

In addition, the following theorems hold true:

A IMP B is equivalent to NOT A OR B,

A EQV B is equivalent to A AND B OR NOT A AND NOT B.

5.2.2 Evaluation Of Boolean Variables

Actually, Boolean
of bits, rather
logical operations
preceding rules.

variables may have a value consisting of any pattern
than be confined to the values TRUE and FALSE. The
operate on a bit-by-bit basis according to the

The actual test employed to determine the truth of a Boolean
expression such as

BAND C

is to evaluate it and regard it as true if the value is nonzero, that
is, at least one bit is set, otherwise regard as false.

This is particularly important when
Boolean expressions. For example,
particular bit in ~ Boolean variable,
can be used, for example:

BAND %1

octal constants are used in
if the user wishes to test a

an appropriate octal constant

is a Boolean expression that is true if and only if the bottom (least
significant) bit of B is a one.

5.2.3 Arithmetic Conditions

Arithmetic conditions are used as operands in Boolean expressions.
They consist of two arithmetic expressions coupled with a comparator.
The comparator, which decides the particular type of test to be
performed on the two expressions, is one of the following:

(less than

(= less than or equal to

5-4

EXPRESSIONS

equals

> greater than

>= greater than or equal to

not equal to

Such an arithmetic condition can be regarded as true or false
according to whether the condition specified by the comparator is met
when the arithmetic expressions on each side are evaluated. The
resulting condition may form part of a Boolean expression.

The following examples of Boolean expressions, shown in Table 5-3,
also involve arithmetic conditions.

Expression

NOT 8
B AND NOT C
A OR BAND C
B EQV X<Y
X+Y<Z AND B OR P=Q

Table 5-3
Boolean Expressions

Meaning

NOT B
BAND (NOT C)
A OR (B AND C)
B EQV (X<Y)
(((X+Y)<Z) AND

5.3 INTEGER AND BOOLEAN CONVERSIONS

B) OR (P=Q)

an integer quantity can be converted to a Boolean quantity by means of
the dummy function BOOL. Similarly, the dummy function INT converts a
Boolean quantity to an integer quantity.

The value passed by these functions is unchanged: the functions are
included for semantic correctness. Thus:

BOOL(I)

may be regarded as a Boolean operand, and

INT(B)

INT(%400000000000)

as integer operands.

BOOL and INT are not reserved words and can be used for other purposes
by "declaring" them as required. However, this practice should be
avoided to prevent confusion.

5-5

CHAPTER 6

STATEMENTS AND ASSIGNMENTS

6.1 STATEMENTS

The statement is the basic operational unit in ALGOL-60 and describes
an operation, such as an assignment, to be performed at run time.

6.2 ASSIGNMENTS

Assignments convey the value produced by the execution of an
expression to a destination variable of the appropriate type. This is
done by writing the destination identifier, followed first by the
symbols : and and then by the expression to be evaluated. Thus

X := Y + Z

causes the result of the addition of the values contained in the
variables Y and Z to be placed in the variable X.

When an assignment is made to a variable type differing from that of
the result of the expression, a type conversion is performed.
Integer, real and long real expressions may be assigned to variables
of any of these three types, but not to any other types. Boolean and
string expressions can only be assigned to a variable of the same
type.

If a real or long real value is assigned to an integer type variable,
a rounding process occurs.

I := X

results in an integral value equal to

ENTIER(X + 0.5)

being assigned to I.

When an integer expression is assigned to a real or long real
variable, a conversion to that type is performed. Real to long real
conversion simply consists of zeroing the low-order precision word of
the long real result after assignment of the real result to the
high-order part of the long real variable. Long real to real
assignments truncate the low-order part of the long real expression,
after appropriate rounding.

6-1

STATEMENTS AND ASSIGNMENTS

6.3 MULTIPLE ASSIGNMENTS

A value may be assigned simultaneously to several variables of the
same type by a multiple assignment. This takes a form such as

P := R := S := X + Y - Z ;

where the result of adding Y to X and subtracting Z is assigned to P,
R, and S simultaneously.

All identifiers on the left-hand side
of the same type. If the user wishes
different types of variables, the
(embedd~d assignment) feature must be

of a multiple assignment must be
to assign a value to two or more
~assignment within expression"
used, as below.

A parenthesized assignment may be substituted for any operand in an
expression. For example,

X := (Y := P+Q)/Z;

This causes the embedded assignment to be made after the inner
expression P+Q is evaluated. Where a type conversion is performed as
part of an embedded assignment, the operand type is the same as that
assigned to the variable in the embedded assignment. Thus

X := (I := 3.4) ;

sets I equal to 3 and X equal to 3.0.

6.4 EVALUATION OF EXPRESSIONS

All expressions in DECsystem-lO/20 ALGOL are evaluated observing the
normal algebraic rules of precedence, including bracketing.

Within the precedence structure, expressions are always evaluated from
left to right. For example, if X is a scalar, and F a function
procedure (see Chapter 11) that alters X,

X := X+F ;

may have a different effect than

X := F+X

This is known as a "side effect".

Consider also:

A[I] := (I := 1+1) ;

The subscript I is always evaluated before I is incremented, as it is
to the left of the embedded assignment, within the statement. Thus
the above expression is equivalent to

J := I; 1:= 1+1; A[J] := I The user can always predict the
order of evaluation of an expression and can count on such things as

X := (P := P+Q)/(P+R) ;

6-2

STATEMENTS AND ASSIGNMENTS

being evaluated correctly, thus giving the same result as

P := P+Q ;

X := P/(P+R);

6.5 COMPOUND STATEMENTS

A compound statement consists of a number of statements, preceded by
BEGIN, separated by semicolons, and terminated by END. ALGOL
statements, unlike those in FORTRAN, are terminated by a semicolon not
by the end of a line of text.

For example:

BEGIN

I := 3; J:= 4;

K := I + J;

X := K

END

is a compound statement.
BEGIN or before the END;

Semicolons do not have to appear after
BEGIN and END act as a type of bracket.

the

The usefulness of compound statements will become apparent in later
chapters.

6-3

CHAPTER 7

CONTROL TRANSFERS, LABELS, AND CONDITIONAL STATEMENTS

7.1 LABELS

A label is a method of marking a place in a program so that control
can be transferred to that point from elsewhere in the program.

DECsystem-10/20 ALGOL uses identifiers as labels. These identifiers
are placed before statements and are followed by a colon. Numeric
labels are permitted in the Revised Report, but are not implemented in
DECsystem-lO/20 ALGOL. Most implementations of ALGOL-60 do not allow
integer labels.

For example:

COMP: X:= X + Y

is a statement labeled by COMPo

More than one label can be attached to a statement if required; thus,

LABl: LAB2: Y:= 0 ;

7.2 UNCONDITIONAL CONTROL TRANSFERS

A transfer of control, or "jump", to a statement in a program is
effected by a GO TO statement. This statement consists of the word
GOTO followed by the name of the label attached to the relevant
statement. The two words GO TO can be used instead of the word GOTO
in any statement where GO TO can be used. Thus:

BEGIN INTEGER I,J,K;

LAB: I := J := 3;

K := I + J;

GOTO LAB

END

is an example of a somewhat tedious program. Clearly, to write any
reasonable program, it is necessary to be able to jump conditionally.

7-1

CONTROL TRANSFERS, LABELS, AND CONDITIONAL STATEMENTS

7.3 CONDITIONAL STATEMENT

Conditional statements provide a method to make the execution of
either a statement or a compound statement dependent on some condition
in the program, such as the value of a variable. The simplest form of
a conditional statement is

IF B THEN S

where B is some Boolean expression, and S is a statement. For
example:

IF X < 0 THEN I := I + 1

Here, X < 0 is the Boolean expression and I := I + 1 is the statement
w~ich is obeyed if and only if the Boolean condition is true, that is,
if X is negative.

A more general form of a conditional statement is

IF B THEN Sl ELSE S2

In this case, the statement Sl is obeyed if and only if the Boolean
expression B is true, and S2 is obeyed if and only if it is false. In
order to eliminate the "dangling ELSE ambiguity" (a construction in
which an ELSE could be paired with either of two THENs), Sl must not
be conditional, FOR, or WHILE statement which ends in an ELSE clause.
(Refer to Chapter 14 for more complete information.)

A control transfer, a type of statement, can appear in a conditional
statement. Thus:

BEGIN INTEGER I;

I := 0;

LAB: I := I + 1;

IF I < 100 THEN GOTO LAB

END

is a simple way of counting to one hundred.
methods are shown in Chapter 14.

7-2

More sophisticated

CHAPTER 8

FOR AND WHILE STATEMENTS

8.1 FOR STATEMENTS

The for statement enables the user to iterate a portion of the program
in a fashion similar, to but more sophisticated than, FORTRAN's DO
loop.

The general format is

FOR V := FORLIST DO S

where V is a variable and S is a statement (compound or otherwise).

FORLIST can consist of any number of FOR elements (separated by
commas). A FOR element takes one of the following forms:

1. An expression:

E

2. A STEP-UNTIL element taking the form:

El STEP E2 UNTIL E3

3. A WHILE element taking the form:

E WHILE B

where B is some Boolean expression.

Any number of FOR elements may appear in a FOR statement and executed
serially. Consider the following examples:

FOR I := 3,5,10 DO

FOR X := 2.5,5.0,10.0 DO

FOR J := 1,2,5 STEP 5 UNTIL 20 DO

8.1.1 STEP-UNTIL Element

This particular form deserves closer inspection. Consider

FOR I := 1 STEP I UNTIL N DO S

The statement S is obeyed with I taking an initial value of 1,
being incremented by I until the final value N is achieved.
question is , "Is the I after the STEP recalculated during each

8-1

and
The

turn

FOR AND WHILE STATEMENTS

around the loop, or does it have a constant value equal to the initial
value of 17"

The answer is slightly more complicated. Consider the general case

FOR V := EI STEP E2 UNTIL E3 DO S

This is defined to have exactly the same effect as

V := EI;

LI: IF (V - E3)*SIGN(E2) > 0 THEN GOTO L2;

S;

V := V + E2;

GOTO LI;

L2:

Clearly, the value of I following the STEP in the previous example is
evaluated, if necessary, twice during each turn around the loop, once
in the sign test at LI, and again to update V. ALGOL allows the user
to modify V, EI, E2, and E3 freely throughout the loop, and takes
account of all these changes in the evaluation of the loop.

NOTE

DECsystem-IO/20 ALGOL allows the user
the abbreviated form

FOR V := EI UNTIL E3 DO S

instead of

FOR V := EI STEP I UNTIL E3 DO S

8.1.2 WHILE Element

A FOR statement with a single WHILE element takes the form

FOR V := E WHILE B DO S

This is interpreted as follows:

Ll: V := E;

IF NOT B THEN GOTO L2;

S;

GO TO Ll;

L2:

Once again, the complexity of the loop may be affected by changing V
and E within the loop.

8-2

8.2 WHILE STATEMENT

The WHILE statement
DECsystem-lO/20 ALGOL.

WHILE B DO S

FOR AND WHILE STATEMENTS

is an enhancement of ALGOL-60 provided
The g~~eral form of the statement is

and is interpreted as follows:

Ll: IF NOT B THEN GOTO L2:

S;

GOTO Ll;

L2:

8.3 GENERAL NOTES

in

1. Within a FOR statement of any kind, the user can change the
controlling variable or any other variable appearing within
the action of the loop. Such changes predictably affect the
execution of the loop by the rules given above.

2. On exit from a FOR statement either by jumping out of the
loop or by exhausting the FOR elements, the controlling
variable has a well-defined value equal to the last assigned
value of the controlling variable. This may not be true of
other ALGOL-60 implementations. Section 4.6.4 of the Revised
Report should be studied carefully in this connection.

8-3

CHAPTER 9

ARRAYS

9.1 GENERAL

Arrays are essentially collections of variables of the same type,
allowing the user to address each variable individually by means of a
common name and a unique subscript or subscripts. In the simplest
case, an array is a vector and is known as a one-dimensional array. A
matrix is a two-dimensional array, etc.

There is no limit to the number of subscripts allowed, other than
those imposed by the ability of the computer to store the array.

9.2 ARRAY DECLARATIONS

Arrays may be of type integer, real, long real, Boolean, or string and
these are declared similarly to scalar variables, except the size of
the array must be stated. For each subscript that the array
possesses, a lower and an upper bound, called the "bound pair" for
that subscript, must be given.

For example, to declare two one-dimensional integer arrays A and B
with lower bound 1 and upper bound 5:

INTEGER ARRAY A,B[1:5]

NOTE

The lower and upper
enclosed in square
separated by a colon.

bounds must
brackets

be
and

When there are two or more subscripts, the declaration is similar, and
the bound pairs are separated by commas. Thus

LONG REAL ARRAY P,Q,R[-5:2,O:10]

declares three long real arrays, P, Q and R, with the first subscript
bounded by -5 and 2 and the second subscript bounded by 0 and 10.

Arrays of the same type but of different sizes may be declared in the
same statem€nt.

REAL ARRAY A[l:lO], B,C[1:10,1:12]

9-1

ARRAYS

NOTE

In the case of real arrays, the REAL may
be omitted in the declaration, and is
assumed by default, thus:

ARRAY A[l:lO], B,C[1:10,1:12]

The bounds in an array need not be static, as in the examples above,
but may be any arithmetic expressions, which are evaluated to give an
integral value for the individual bound pairs. The use of such
dynamic array declarations will become apparent later. No bound may
exceed 131,072 in magnitude.

9.3 ARRAY ELEMENTS

An individual element of an array can be referred to by
name of the array by a list of subscripts in square
number of subscripts must be identical to the number
declaration. Thus, a typical element of A used
declaration might be

A[5] or A[9] or generally, A[I]

following
brackets.
in the
in the

the
The

array
last

where I is some integer
whatsoever, with the
subscript and evaluated
the bounds of the array

expression or, in general,
limitation that its value
as an integer is in the range
A.

any expression
when used as a

1 through 10,

As an example of the use of arrays, consider the declaration

REAL ARRAY D,E,F [1:10,1:10]

and suppose the operation required, was to set F equal to the matrix
product of 0 and E:

FOR I := 1 UNTIL 10 DO

FOR J := 1 UNTIL 10 DO

BEGIN X := 0;

END

FOR K := 1 UNTIL 10 DO X := X + D[I,K]*E[K,J];

F[I,J] := X

NOTE

1. In the above example X is used to
accumulate the ~nner product of the
multiplication for all values of I and
J. The variable X was used instead of F
to facilitate the computation.

2. An element of an array of a particular
type may be used anywhere that a scalar
variable of the same type may be used,
even in such places as the controlling
variable in a FOR statement.

9-2

CHAPTER 10

BLOCK STRUCTURE

10.1 GENERAL

ALGOL program structure is somewhat more complicated than other
high-level languages, such as FORTRAN. An ALGOL program consists of a
number of "blocks" arranged hierarchically. A block consists of the
words BEGIN and END enclosing the declarations and (optionally)
statements.

Thus:

BEGIN

BEGIN

END

BEGIN

BEGIN

END

END

END

is an ALGOL program, assuming appropriate declarations and statements
in the blocks.

The block structure offers the user many interesting features not
available in non-block structured languages. For instance, the user
may declare an identifier that appears to conflict with another
identifier in an enclosing block. Thus:

BEGIN INTEGER Ii

BEGIN INTEGER Ii

END

END

In fact, there is no conflict as there are two different Is. The only
I that statements in the outer block can "see", is the one in the
outer block. Similarly, any statement in the inner block will always
use the I in that block. Such a declaration in an inner block is
known as a "loc~l" variable and takes precedence over declarations
occurring at an outer or more "global" level. In general, all
variables can be "seen" from any point in a program that is either in

10-1

BLOCK STRUCTURE

the same block as the declaration or in a block that is enclosed by
the block in which the declaration of the variable occurred. Note
that a more local variable is always taken in preference to a
relatively global variable. Consider the following example:

BEGIN INTEGER I,Ji

[1]

BEGIN INTEGER J,K

[2]

ENDi

BEGIN INTEGER I,K

[3]

END

END

Any statements occurring at point [1] can see the declarations of I
and J, which are local, but cannot see the declarations of J and K in
the first inner block, or the declarations of I and K in the second
inner block. At [2], the local variables J and K can be seen, as can
the global variable I in the outer block. The global variable J is
not seen because the local variable J takes precedence over iti the
variables I and K in the second inner block are not seen at all. A
similar situation occurs at [3]i here both local variables I and K,
as well as the global variable J, are seen.

Note that the "scope" of a variable is the set of
program where it can be seen and therefore used.
used frequently throughout this text.

all places in a
This term will be

In aeneral, local variables are more efficient to use than global
ones. This statement is also true of most ALGOL-60 implementations.
Where a global variable is used frequently, a local variable should be
assigned as having the same value and used instead. For example:

BEGIN INTEGER Ii

I : = •••••

BEGIN INTEGER IIi

II := Ii

I I ••...

END

END

Here, in the inner block, a local variable II is used, and assigned
the value of the global variable I for use throughout the local block.

10-2

BLOCK STRUCTURE

10.2 ARRAYS WITH DYNAMIC BOUNDS

The concept of the scope of a variable can be applied most usefully to
arrays. In DECsystem-lO/20 ALGOL, all arrays are constructed at
execution time (that is, no fixed space is reserved during
compile-time), irrespective of whether their bounds are static or
dynamic. When a declaration of an array is encountered within a
block, the space required to construct it is obtained and the array is
laid out. When the end of the block enclosing the array is reached,
that is, the array variable is no longer within scope, the space
utilized by the array is recovered and can be used later for other
arrays.

Consider the case of a problem in which the size of an array to be
used in a calculation is dependent on the data to be processed. The
programmer has the choice of making the array large enough to cope
with the worst case, or constructing the array with dynamic bounds to
suit the size required by the particular data. The first method has
the disadvantage of wasting space on many occasions. The latter
method only has the minor disadvantage of the overhead needed to
construct the array. Such overhead is very small compared to the
running time of most programs, therefore, the second method is more
desirable.

Consider the following example:

BEGIN INTEGER N;

L: N : = •..••

BEGIN ARRAY A[l:N,l:N];

END;

GOTO L

END

A value for N is calculated in this example, possibly dependent on
some data read into the program, and used to declare the array A,
which is used to process the data in the inner block. When the end of
the inner block is reached, the space used by A is recovered and
control passes to L, where another value for N is calculated, and the
process repeated.

10-3

CHAPTER 11

PROCEDURES

Procedures are similar in concept to the FORTRAN subroutine, but with
more sophisticated and general applications.

A "procedure" is a portion of an ALGOL program that is given a name
for identification and can be "called~ from any part of a program
which is in the scope of the body of the procedure. A procedure can
execute a number of statements, and in the case of function procedures
can return a value to the procedure body. In addition, it mayor may
not have parameters.

In DECsystem-lO/20 ALGOL, a procedure can be one of the following
types: integer, real, long real, Boolean, string or typeless. The
formal parameters of a procedure (know as "dummy variables" in
FORTRAN), can be one of the following types: integer, real, long
real, Boolean or string, as scalars, arrays or procedures, or label.
There are eighteen different types of parameters. In addition, all of
these parameters may appear in two different modes and strings,
neither of which is the same as FORTRAN's method of handling
parameters.

11.0.1 PARAMETERS CALLED BY "VALUE"

Calling parameters by "value" is the most common and, with the
exception of arrays and strings, the most efficient way to pass a
parameter to a procedure. The value of the expression presented in a
procedure call, known as the actual parameter, is evaluated on entry
to the procedure and assigned to a formal parameter within the
procedure. This formal parameter acts as a local variable in the
procedure which is initialized, the initial value being that of the
actual parameter supplied in the call to the procedure.

Since, in the case of arrays or strings, a new copy of the array or
string is made, this type of parameter-passing for arrays and strings
should be avoided unless specifically required.

11.1 PARAMETERS CALLED BY "NAME"

Calling parameters by "name" is a useful method of passing a parameter
to an ALGOL procedure. Whenever the formal parameter associated with
the actual parameter in a procedure body appears in the body of the
procedure, the actual parameter is re-evaluated as if it appeared in
the procedure body at that point. For example, if the actual
parameter were an array element such as

A [I]

ll-l

PROCEDURES

the element would be re-evaluated using the value of I available each
time the formal parameter is used, not the value of I at the time the
procedure body is entered.

Table 11-1 shows the different types of formal parameters, with valid
actual parameters that can be substituted in a procedure call.

Table 11-1
Parameter in a Procedure Call

Formal Parameter
Type

Integer
Real
Long Real

Boolean

String

Label

Switch

Integer Array

Real Array (or Array)

Long Real Array

Boolean Array

String Array

Procedure

Integer Procedure
Real Procedure
Long Real Procedure

Boolean Procedure

String Procedure

Permissible Actual
Parameter

Any arithmetic expression

Any Boolean expression

Any string expression (refer to Chapter 13)

A label or switch element (refer to Chapter
12 and Paragraph 14.4)

A switch

An array of type integer*

An array of type real*

An array of type long real*

An array of type Boolean

An array of type string

A non-type procedure

A procedure of type integer, real, or long
real

A procedure of type Boolean

A procedure of type string

*In the case where the array parameter is called by value, any
arithmetic type (integer, real or long real) array is allowed as
an actual parameter. A type conversion takes place during the
copying process.

11.2 PROCEDURE HEADINGS

Procedure headings identify the type of procedure, the number and the
type of parameters.

11-2

PROCEDURES

A procedure heading consists of:

1. The type of procedure (omitted in the case of typeless
procedures).

2. The word PROCEDURE followed by the name of the procedure.

3. A semicolon if the procedure has no parameters, otherwise

4. A list of the formal parameters, enclosed in parentheses, and
followed by a semicolon.

5. Specifications of the formal parameters.

Omitting formal parameter specifications, this looks like

LONG REAL PROCEDURE LR;

BOOLEAN PROCEDURE BOOLEAN (I,J,K);

PROCEDURE CALC (THETA,X) ;

The formal parameter specification that follows consists of a list of
descriptions of the formal parameters, appearing in any order, and a
value specification if any of the parameters are to be called by
value. (If this is omitted, the parameters, by default, will be
called by name.) For example, the specification of the formal
parameters for the second example above might be:

VALUE I,J; INTEGER I,J,K;

meaning that all three formal parameters are of type integer
(scalars), and I and J are to be called by value, while K is to be
called by name. A typical formal parameter specification for the
third example might be:

REAL PROCEDURE THETA; ARRAY X;

NOTE

Procedure headings must precede the body
of the procedure.

11.3 PROCEDURE BODIES

The body of a procedure is that part which follows the procedure
heading, and consists of a single statement, a compound statement, or
a block. In the last-mentioned case, there may be declarations of
local variables within the block, and also other blocks or procedures.
Consider the following examples of realistic procedures:

1. A real procedure, SQUAREROOT, to calculate the square root of
a real quantity. The first parameter is the quantity, the
second is a label that is used as an escape if the quantity
is found to be negative. The result of the procedure is the
square root of the quantity. Note how the result of the
calculation is assigned to the procedure by placing the name
of the procedure on the left-hand side of an assignment.

11-3

PROCEDURES

REAL PROCEDURE SQUAREROOT(X,L) j

VALUE Xj REAL Xj LABEL Lj

BEGIN REAL Y,Zj

IF X < 0 THEN GOTO Lj

Y := (1 + X)/2j

IT: Z := (X/Y + Y)/2j

IF ABS(Z - Y) < 1&-6 THEN GO TO OKj

Y := Zj GOTO ITj

OK: SQUAREROOT := Z

END

The previous example uses the Newton-Rapheson method of
finding the square root of a number by taking an initial
approximation (1 + X)/2 and iterating until the difference
between successive approximations is less then 1&-6. The
procedure is again described below, with the aid of some
commentary. The DECsystem-10/20 ALGOL alternative method of
commentary (refer to Chapter 2) is used for brevity:

REAL PROCEDURE SQUAREROOT(X,L) j

VALUE Xj REAL Xj LABEL Lj

BEGIN CALCULATES THE VALUE OF SQRT(X)

USING THE NEWTON-RAPHESON METHOD.

L IS USED FOR AN ESCAPE IF X < OJ

REAL Y,Zj

IF X < 0 THEN GOTO Lj EXIT IF X < OJ

Y := (l+X)/2j FIRST APPROXIMATIONj

IT:

Z := (X/Y + Y)/2j ITERATEj

IF ABS(Z-Y) < 1&-6

THEN GO TO OKj TEST FOR CONVERGENCE;

Y .= Zj GOTO ITj OTHERWISE CONTINUEj

OK:

SQUAREROOT := Zj FINAL RESUL'!' j

END

2. This function evaluates the sum of the values of any real
procedure G over the integers 1 N (that is, iterating N
times) where N is also a parameter of the procedure.

11-4

PROCEDURES

REAL PROCEDURE SUM(G,N);

VALUE N; REAL PROCEDURE G; INTEGER N;

BEGIN INTEGER I; REAL X;

X : = 0;

FOR I := 1 UNTIL N DO X := X + G(N);

SUM := X

END

NOTE

In this example, the formal parameter G
is invoked so that the actual procedure
substituted for G is called.

11.4 PROCEDURE CALLS

In the preceding example, the procedure G was "called". Since G is a
function procedure, it is only necessary for its name to appear in an
expression for the procedure to be entered with the actual parameters
specified sUbstituted for the formal parameters.

The procedure SQUARE ROOT can be called in a similar way, for example:

P := SQUAREROOT(Z + O.S,ERR)

causes the square root of Z + 0.5 to be calculated.

An example of the use of the procedure SUM can be used to calculate
the sums of the square roots of the first J integers, with the result
squared, as follows:

X := SUM (SQUAREROOT,J) "2;

Here is a further example of a procedure and the calls:

PROCEDURE MATRIXMULT(A,B,C,N);

VALUE N; ARRAY A,B,C; INTEGER N;

BEGIN INTEGER I,J,K; REAL X;

COMMENT THIS PROCEDURE PERFORMS THE MATRIX

MULTIPLICATION OF BAND C AND STORES THE RESULT

IN A. THE ARRAYS ARE ASSUMED TO BE SQUARE

AND OF BOUNDS l:N,l:N;

FOR I := 1 UNTIL N DO

FOR J := 1 UNTIL N DO

BEGIN X := 0;

ll-S

PROCEDURES

FOR K := 1 UNTIL N DO X := X +

B [I , K] *C [K , J] ;

A[I,J] := X

END

END

A typical call for this procedure might be

MATRIXMULT(E,F,G,N) ;

or

MATRIXMULT(E,F,F,N) ;

Since the arrays
MATRIXMULT(E,E,F,N) ;

are called by name, a call such
would give rather interesting results.

as

This call could be made to work by calling Band C of MATRIXMULT (A,
B, C, N) by value. However, this would increase the overhead of the
procedure considerably.

11.5 ADVANCED USE OF PROCEDURES

11.5.1 Jensen's Device

This method of using a procedure exploits the power and flexibility of
the call-by-name concept. Consider the following example:

REAL PROCEDURE SUM(I,N,X); VALUE N; INTEGER I,N; REAL X;

BEGIN REAL Y;

Y := 0

FOR I := 1 UNTIL N DO Y := Y + X;

SUM := Y

END

On the surface, the procedure appears to calculate the value of N*X.
However, consider the call

Z := SUM(J,lO,A[J]);

and remember that J and A[J] are parameters called by name. Since I
and consequently J take new values, each X in the loop is evaluated as
a particular value of A[J], using the value of J just assigned. Hence
the above call calculates

A[l] + A[2] + ••..• + A[lO].

Similarly, the call

Z := SUM(K,M,A[I,K]*B[K,J]);

11-6

PROCEDURES

calculates the (I,J)th inner product of A and B.

11.5.2 Recursion

ALGOL procedures are recursive, that is, they may call
directly or indirectly, to any reasonable depth.
restriction is the amount of core storage available to
program.) An often-quoted and very inefficient method of
the factorial function of a small positive integer N is:

INTEGER PROCEDURE FACTORIAL(N) i VALUE Ni INTEGER Ni

IF N = 1 THEN FACTORIAL := 1

ELSE FACTORIAL := N*FACTORIAL(N-l) i

themselves,
(The only

the object
calculating

This procedure has only a single statement, but
and can therefore be written in a compact form.

no local variables,
A call such as

J := FACTORIAL (6) i

causes the procedure to be entered with N equal to 6. The call to
FACTORIAL inside FACTORIAL enters the procedure a second time with N
equal to 5, but this N is different from the one to the previous N,
which retains its value of 6, and is stored in a different space. In
this particular case, FACTORIAL is entered six times, the last time
with N equal to 1.

11.6 LAYOUT OF DECLARATIONS WITHIN BLOCKS

Declarations must always be made at the head of a block, before any
assignments, procedure calls, etc., in the following order:
1) scalars and arrays and 2) procedures and switches (see Chapter 12).

Procedure bodies that occur in a block should follow the declarations
at the head of the block, although this is only enforced when
necessary. Consider the following example:

BEGIN

PROCEDURE P(X) i VALUE Xi REAL Xi

BEGIN INTEGER Ji

J := Ii

ENDi

INTEGER Ii

The assignment of I to J within the body of P utilizes the I that is
declared following the body of P, rather than some global I. However,
the compiler has not yet "seen" this I and, therefore, cannot take any
rational action. In a case such as this, the user must declare I
before the body of P:

11-7

PROCEDURES

BEGIN INTEGER I;

PROCEDURE P(X); VALUE X; REAL X;

BEGIN INTEGER J;

J : = I;

END

If the user neglects to declare I before P, the compiler can easily
detect the condition, because either I is unknown at the time of the
assignment to J, or else there is a more global I available, whereupon
an error message will occur when the declaration of I is found
following the body of P.

11.7 FORWARD REFERENCES

Although most ALGOL-60 compilers operate in two or more
DECsystem-lO/20 ALGOL compiler operates in one pass.
some minor restrictions have to be made to ALGOL-60 in
restrict the user in other ways.

passes, the
Consequently,

order not to

A forward reference for a procedure has to be given when a procedure
is called (either directly, or indirectly, by passing the procedure
name as an actual parameter in a procedure call) before its body is
encountered by the compiler. In most cases the user can avoid this
situation by a minor re-ordering of the program. However, in rare
cases like the following, where procedure P calls procedure Q, and
vice versa, a forward reference, as shown, must be given.

BEGIN

FORWARD REAL PROCEDURE Q;

PROCEDURE P(X); VALUE X; REAL X;

BEGIN REAL Y;

Y := Q(X);

END;

REAL PROCEDURE Q(Z); VALUE Z; REAL Z;

BEGIN REAL F;

F := P(Z);

END;

11-8

PROCEDURES

In general, a forward reference consists of the word FORWARD, followed
by the type of the procedure (omitted if the procedure is typeless),
the word PROCEDURE, and the name of the procedure. For example:

or

FORWARD LONG REAL PROCEDURE INTEGRATE

FORWARD PROCEDURE PROBLEM

NOTE

The forward reference must occur in the
same block as the procedure body.

A forward reference has to be given for a label in either of the
following rare cases:

1. The label is used as an actual parameter in a procedure call,
and has not yet appeared in the program.

2. A variable of identical name has appeared in the program and
is in the scope of the procedure call.

For example:

BEGIN REAL L;

BEGIN FORWARD L;

P (L) ;

L;

END;

In this case, a forward reference for L must be given.

11.8 EXTERNAL PROCEDURES

If a procedure is to be compiled independently of a program (see
Paragraph 18.1.1), an EXTERNAL declaration must be made in the program
instead of the procedure. The form of this is the same as that of a
FORWARD declaration, but with the word FORWARD replaced by EXTERNAL.
For example:

EXTERNAL INTEGER PROCEDURE CALC

Such an EXTERNAL declaration can be made in any block within the
program, and has the same scope as if the procedure appeared at that
point.

11-9

PROCEDURES

At present all EXTERNAL procedure names referenced in a program or
scanned in a library must differ in their first six characters, as
only the first six characters are available to LINK.

11.9 ADDITIONAL METHODS OF COMMENTARY

Two further ways of writing commentary are available to the user in
addition to COMMENT and! described in Section 2.4.

11.9.1 Comment After END

Following the delimiter word END, the user may add commentary,
terminated by a semicolon, with the following restrictions:

1. The commentary may only contain letters and digits.

2. If the reserved delimiter word
employed, any words appearing
delimiter words.

For example:

END OF PROC INVERT;

11.9.2 Comments Within Procedure Headings

mode
in the

of compilation is
comment may not be

This method of commentary allows the user to comment formal parameters
in a procedure heading. This is done by enclosing the commentary,
which may consist of letters only, between the symbols) and : (and
omitting the comma on the left of the formal parameter. This cannot
apply to the first formal parameter.

The example in Section 11.6.1 which is:

REAL PROCEDURE SUM (1, N, X);

can thus be rewritten as

REAL PROCEDURE SUM (I) COUNT: (N) INCREMENT: (X) ;

In a similar fashion, a call to such a procedure can be commented.
The following example uses the call to SUM in Section 11.6.1:

Z : = SUM (K, M, A [I, K] *B [K, J]) ;

to be commented as:

Z:=SUM(K) COUNTER: (M) CROSS PRODUCT: (A[I,K]*B[K,J]) ;

11-10

CHAPTER 12

SWITCHES

12.1 GENERAL

Switches enable the user to
depending on the value of
provide automatic detection
for the switch.

jump to one of a number of labels,
an arithmetic expression, and in addition,
when such an expression is out of range

12.2 SWITCH DECLARATIONS

A switch declaration takes the form of the word
name of the switch, an assignment (:=), and a
are called switch elements, and must be in the
declaration. For example:

SWITCH SW := LAB,Ll,L2,OK,STOPi

SWITCH followed by the
list of labels. These
scope of the switch

A switch name must follow the usual rules of scope and, therefore,
must not conflict with any local variable of the same name.

In addition to the example above, a switch element may also be one of
the labels in the switch declaration.

12.3 USE OF SWITCHES

A jump to a particular label in a switch declaration is made by
following the word GO TO with the name of the switch and an arithmetic
expression in square brackets. Thus:

GOTO SW[I)

This causes control to pass to the I'th label in the switch
declaration, unless I is negative or zero, or is larger than the
number of switches in the switch declaration. In either case, there
is no transfer of control. If the expression in square brackets is
not integral, it is evaluated and rounded as usual. Consider the
following more complicated example:

SWITCH SW := LAB,Ll,L2,OK,STOPi

SWITCH TW := L3,SW[J) ,L4i

GOTO TW[I)i

12-1

SWITCHES

If I has the value 3, a jump to L4 occurs. If I has the value 2 and J
has the value 1, a jump to LAB occurs, via SW.

More sophisticated switch elements are described in Chapter 14.

12-2

CHAPTER 13

STRINGS

13.1 GENERAL

DECsystem-lO/20 ALGOL-60 includes a major extension to the string
features defined in the Revised Report. Users wishing to run their
programs on machines other than the DECsystem-lO should check whether
the compiler they will use offers similar facilities. Scalar, array
or procedure variables may be of type STRING, and are declared by the
delimiter word STRING. The byte size, length and contents of string
variables are defined via the various assignment statements described
below.

Typical string declarations might be:

STRING S,T; STRING ARRAY SA[l:lO];

STRING PROCEDURE B(X); VALUE X; REAL X;

13.2 STRING EXPRESSIONS AND ASSIGNMENTS

String expressions are limited to a single variable, a string
procedure call or a string constant. (For a full description of
string constants see Section 4.4.) The only string operators are the
comparison operators and the assignment operator. All other
operations are achieved via the string library procedures described in
Section 13.7.

String expressions can be assigned only to string variables. For
example:

S:=T;

SA [I] : =SA [3] ;

SA [2] : =B (Z) ;

T:="ANY ';"OLD"" IRON";

13.3 BYTE STRINGS

The value associated with a string variable is a byte string. A byte
string is a sequence of bytes of a uniform size between one and
thirty-six, which can be efficiently handled by the DECsystem-10/20
hardware. In some ways, byte strings can be thought of as arrays, but
the most important difference is that the size of a byte string can
vary continuously. Thus when a byte string is created by means of a

13-1

STRINGS

READ statement, the programmer need not know how long
be. The routine starts accepting characters after
open quotation marks and continues until the close
have been read.

When one string is assigned to another, e.g.,

S:=T;

the string will
encountering the
quotation marks

then a copy of T is made to which S will refer. Any previous value of
S is destroyed (and the memory space occupied is released).
Subsequent changes to the value of T will not affect S, or vice versa,
unless a further assignment is made from one to the other.

NOTE

This is an important
implementation of
Version 5.

13.4 BYTE SUBSCRIPTING

change
strings

from
prior

the
to

Byte strings can be modified by means of the byte subscripting
mechanism. Individual bytes in a string are referenced by following
the string variable name by a decimal point and then the subscript
number enclosed in square brackets. For example

S. [I 1

refers to the 1 ' th byte
arithmetic expression
array subscript.

of string S. The subscript may be any
and is evaluated in exactly the same way as an

Byte-subscripted string variables are regarded as being of type
integer, having an integer value equivalent to the byte to which they
refer. Therefore, to change the value of a particular byte in a
string, a byte-subscript must appear on the left-hand side of an
arithmetic statement with the appropriate new value on the right-hand
side. If the new value is too large to be held in the byte, this is
simply truncated. No warning is given.

13.5 NULL STRINGS

Until a value is assigned to a string by the program, the string takes
null value. That is, it is assumed to contain no bytes. Any attempt
to reference the string by a byte-subscript will result in a fatal
run-time error, though it can be used on the right-hand side of a
string assignment, in which case the variable to which it is assigned
similarly becomes null.

13.6 STRING COMPARISONS

Two byte strings can be compared with each other using the usual
comparison operators. For example

IF S < T THEN GO TO L;

13-2

STRINGS

where Sand T are string variables, string constants or string
procedures. The effect of the comparison is to compare the strings
byte-by-byte, the "lesser" string being that with the first lower
value byte, working from left to right. Thus "ABCD" is less than
",l\BCE" or "ABCDE". Where the strings to be compared are of different
byte sizes, then the smaller bytes are regarded as being extended on
the left by null bits.

In the special case of ASCII strings (strings of byte size 7, like
string constants), trailing nulls and trailing blanks, or any mixture
thereof, are treated as equal. Similarly ASCII strings of different
lengths will compare equally if the extra length comprises only spaces
and nulls. In all other cases strings of unequal length can only be
regarded as equal if the extra length consists entirely of null bytes.

13.7 LIBRARY PROCEDURES

Section 16.6 deals with the input and output procedures that are
applicable to strings.

The procedures LINK, LINKR and TAIL that were included in the library
until Version 38 have been dispensed with.

13.8 CONCATENATION

A string can be assigned the concatenated value of two strings with
the procedure CONCAT. For example

S:=CONCAT(T,U) ;

S:=CONCAT(S,T) ;

If, in the first example, T had a different byte size from U, then the
size of the first string encountered (T in this case), would be
adopted by S. The bytes copied from U would be truncated or filled
with null bits as appropriate.

13.8.1 Length And Size

The primary attributes of a string, that is, length in bytes and byte
size in bits, are returned by the integer procedures LENGTH and SIZE,
respectively.

Thus

I:=LENGTH(S); J:=SIZE(S);

would return the number of bytes in string S in I, and the number of
bits in each byte in J.

13.8.2 Copying

A new byte string can be generated from an existing one by means of
the string procedure COPY. This procedure can have one, two or three
parameters.

13-3

STRINGS

1. The effect of COpy with one parameter is precisely the same
as a simple string assignment, but this feature has been
retained for the sake of continuity.

2. Where there are two parameters, e.g.,

S:=COPY(T,M) ;

where M is an arithmetic expression, then S is assigned the
value of the first through M'th bytes of T.

3. If there are three parameters, e.g.,

S:=COPY(T,M,N);

where both M and N are arithmetic expressions, then S is
assigned the value of the M'th through N'th bytes of T.

13.8.3 Newstring

Although bytes in a null string may not be referred to (see Section
13.5 above), a string containing nulls of any appropriate byte sizes
can be created by using this string procedure. NEWSTRING takes two
parameters, the first being the number of null bytes to be assigned to
the string, and the second their size.

For example

S:=NEWSTRING(100,7);

causes a null string of 100 ASCII nulls to be assigned to S. Although
S is 100 bytes long at this point (and thus byte subscripts up to and
including S. [100] are valid), any subsequent assignment of another
string to S may vary both the length and byte-size of S.

13.8.4 Delete

In Section 13.5 it was explained that if a null string is assigned to
another string, then that string also becomes null, and the value
previously held is lost. Any space that the previous value occupied
is returned to memory, as with any ordinary string assignment. The
typeless procedure DELETE has the same effect on the string passed to
it as a parameter, as the assignment of a null string would have.
Deleting a null string has no effect, beyond using computer time.

/

13-4

CHAPTER 14

CONDITIONAL EXPRESSIONS AND STATEMENTS

14.1 GENERAL

ALGOL-60 allows great flexibility in the construction of expressions
and conditions.

Consider, for example, a variable I which could be set equal to 0 or 1
according to the value of a Boolean variable B: this could be written
as:

I := 0;

IF B THEN I := 1;

Also, consider the case where a user wants to perform some action,
depending on the value of B:

IF B THEN Xl := Y; IF NOT B THEN X2 := Y;

14.2 CONDITIONAL OPERANDS

ALGOL-60 allows the user to substitute a conditional operand for any
operand in an expression by the use of a construction involving
IF THEN ELSE.

For instance, the first example above can be rewritten

I := IF B THEN 0 ELSE 1;

Clearly, this is more compact and of great use in cases such as:

J := J + (IF K < 1 THEN 1 -K ELSE K-l);

Note that the conditional operand must be bracketed, and may only be
unbracketed when it forms the complete expression itself.

In general, a conditional operand may replace an operand in any
arithmetic or Boolean expression. In addition, a conditional operand
may also replace a label and act as an element in a switch list, for
example:

SWITCH SW := Ll, IF B THEN L2 ELSE L3, L4;

It is also permitted, in an array subscript (and also in a byte
subscript), for example:

X := A[I, IF L = 0 THEN J ELSE J+l];

14-1

CONDITIONAL EXPRESSIONS AND STATEMENTS

Since a conditional operand may replace any operand in an expression,
operands may also be replaced in conditional expressions. Consider
the following example:

IF IF B THEN Bl ELSE B2 THEN I := I + 1;

This looks complicated but is really quite simple if brackets are
inserted for clarity. Thus:

IF (IF B THEN Bl ELSE B2) THEN I := I + 1;

14.3 CONDITIONAL STATEMENTS

The reader was introduced to conditional statements of the form

IF B THEN Sl ELSE S2

in Chapter 7. The full power of this type of statement can now be
demonstrated.

First, Sl and S2 can be compound statements or blocks. For example:

IF I < 0 THEN

BEGIN I := -I; B:= FALSE

END ELSE

BEGIN I := I + 1; GOTO L2

END

Second, the whole structure of the IF THEN ELSE statement
can be made more powerful by using conditional statements within
themselves. For example:

IF X < 0 THEN X := 0 ELSE IF B THEN GO TO L

This is equivalent to the following sequence of statements:

IF NOT X < 0 THEN GOTO Ll;

X := 0; GOTO L2;

Ll: IF NOT B THEN GO TO L2;

GOTO L;

L2:

Clearly the former method of expression is both briefer and more
elegant. Conditional statements take the general form

IF B THEN Sl ELSE S2

where Sl and S2 may both be conditional statements. However, if there
is any ambiguity, bracketing using BEGIN and END must be used to
clarify this. Consider the following example:

IF B THEN IF X = 0 THEN Y := Z ELSE P := Q;

14-2

CONDITIONAL EXPRESSIONS AND STATEMENTS

This could be interpreted as

IF B THEN

BEGIN

IF X 0 THEN Y : = Z

END

ELSE P := Q

or

IF B THEN

BEGIN

IF X 0 THEN Y := Z ELSE P := Q

END

The first case is interpreted as:

IF NOT B THEN GOTO Ll;

IF NOT X = 0 THEN GOTO L2;

Y := X; GOTO L2;

Ll: P := Q;

L2:

The second case is interpreted as:

IF NOT B THEN GOTO L2;

IF NOT X = 0 THEN GO TO Ll;

Y := Z; GO TO L2;

Ll: P := Q;

L2:

ALGOL-60 forbids such ambiguities by forbidding the sequence THEN
IF •.... THEN ELSE.

14.4 DESIGNATIONAL EXPRESSIONS

A designational expression is something that acts as an argument in a
GOTO statement, either directly, or indirectly via a formal procedure
parameter of type label. This may simply be a label or a switch
element. Thus the following are designational expressions:

L

IF B THEN Ll ELSE L2

IF X < 0 THEN SW[Ij ELSE IF X+Y >= Z THEN TW[Jj ELSE L

14-3

CONDITIONAL EXPRESSIONS AND STATEMENTS

These designational expressions would be used in the following manner:

GOTO L;
GO TO IF B THEN Ll ELSE L2;
GOTO IF X < 0 THEN SW[I] ELSE IF X+Y)= Z THEN TW[J] ELSE L;

14-4

CHAPTER 15

OWN VARIABLES

15.1 GENERAL

OWN variables are a special kind of ALGOL variable, and may be of type
integer, real, long real, Boolean or string, either scalar or array.
The variables have the following properties:

1. Although following the normal scope rules, the variables are
not recursive; the same copy of each variable being used in
all occurrences of a procedure or block.

2. When control passes out of a block, the values are retained
and are still available when the block is re-entered.

3. The initial value is set to zero before execution of the
program. (FALSE in the case of Boolean OWN variables.) OWN
STRINGS are initialized to possess no byte string.

OWN variables are declared by writing the usual declaration with the
word OWN preceding it. For example:

OWN INTEGER I,J,K;

OWN REAL ARRAY THETA[l:M];

15.2 OWN ARRAYS

OWN arrays are
DECsystem-10/20
following rules.

implemented
ALGOL. The

in a completely dynamic fashion in
declaration proceeds according to the

1.

2.

If this is the first time the array is
obtained and then the array laid out.
laid out before, proceed to Step 2.

The bounds are examined to ensure that
the ones of the previous construction
array is left unaltered if found to be
otherwise, proceed to Step 3.

declared, space is
If the array has been

these are identical to
of this array, and the
of the same dimension;

3. A new array is constructed and the common elements if any,
are copied from the old array; the remaining elements are
zeroed. The old array is then deleted and the allocated
space is recovered for future use.

For example, if an OWN array A is declared as follows:

OWN REAL ARRAY A[l:M,M:N];

15-1

OWN VARIABLES

where M = 2 and N = 5 the first time, and M = 1 and N = 4 the second
time, the elements [1,2], [1,3] and [1,4] are copied over, and the
remaining elements of the new array are zeroed.

15-2

CHAPTER 16

DATA TRANSMISSION

16.1 GENERAL

Data transmission encompasses the input and output of data between the
user's program and peripheral devices, such as disk, DECtape, magnetic
tape, card reader, card punch, and line printer. The DECsystem-lO/20
ALGOL object-time system, in conjunction with the ALGOL library,
provides the user with a set of basic procedures for handling data
from most DECsystem-lO or DECsystem-20 devices in a uniform fashion.
The user may also perform input/output operations with virtual
peripherals that appear as byte strings in the user's program.

All peripheral devices are under the user's control completely and can
be allocated or released at any time throughout the execution of the
program. The user can handle up to sixteen devices simultaneously
(seventeen, if one of them is the terminal attached to the job), any
number of which may be file devices (disk, DECtape) and have
independent files open.

16.2 ALLOCATION OF PERIPHERAL DEVICES

Peripheral devices are allocated to the user's program by calls to the
library procedures INPUT or OUTPUT. A call to one of these procedures
usually has two parameters. The first is the channel number, an
integer in the range 0 to 15, on which the device is to operate. Only
one device at a time may be operated on a channel. A channel provides
either input or output facilities, except in the case of a terminal,
where the input and output functions are performed simultaneously on
the same channel. The second parameter is either a string or a string
constant. The text contained in the string is the logical name of the
device to be allocated to this channel.

The DECsystem-lO or DECsystem-20 Users Handbook should be consulted,
as appropriate, for an explanation of what constitutes a logical
device name. In the simplest case, the name may be the actual name of
the peripheral device. Device names shown in Table 16-1 are
recognized as standard.

16-1

DATA TRANSMISSION

Table 16-1
Standard Device Names

Device Name Peripheral

DSK Disk
DTA DEC tape
MTA Magnetic tape
CDR Card reader
CDP Card punch
LPT Line printer
PTR Paper-tape reader
PTP Paper-tape punch
PLT Plotter
TTY Terminal

For example, to allocate the card reader for use as an input device on
channelS, the user would use the statement

INPUT(5,"CDR");

or, if S were a string possessing a byte string that had the
characters CDR in it,

INPUT (5 , S) ;

Similarly, if the disk were to be used an as output device on channel
9:

OUTPUT(9,"DSK") ;

NOTE

With the exception of terminals, all
devices are allocated to operate in one
direction only; thus, if the user wants
input and output from the disk, two
separate channels must be used.

Terminals are always allocated bi-directionally, irrespective of
whether the user uses INPUT or OUTPUT. For example,

INPUT(O,"TTyll);

allocates the user's terminal for input and output on channel O.

16.2.1 Device Modes

Normally, a device is allocated in ASCII mode, that is, when the user
reads a character from the device, the readable text, such as a stored
source program or data is represented by a 7-bit byte. To allocate
the device in a different mode, a third parameter is specified in the
call to the INPUT or OUTPUT procedure. Thus, to allocate a disk to
channel 9 in binary image mode (the mode used for the storage of
binary data on a disk), the user can use

OUTPUT(9,"DSK",11);

16-2

DATA TRANSMISSION

The DECsystem-lO or DECsystem-20 Assembly Language Handbook should be
consulted, as appropriate, for a full explanation of the different
modes used with peripheral devices. The INPUT and OUTPUT procedures
allow the user to allocate any standard peripheral device in any
buffered mode.

16.2.2 Buffering

The INPUT and OUTPUT procedures normally allocate two buffers for each
allocated device (terminals are allocated two buffers for input and
two for output). The user may desire to use either one or more than
one buffer for a device. For example, in a non-compute bound job that
uses a lot of disk transfers at odd intervals, four or even eight
buffers may be desirable to increase the speed of execution of the
program.

The number of buffers to be used can be controlled by adding a fourth
parameter to the procedure call. Thus, to allocate a disk on channel
14 in mode 0 with eight buffers, the call is

OUTPUT(14,"DSK",O,8) ~

NOTE

The mode must always be specified when
allocating buffer space, otherwise there
would be an ambiguity in the third
parameter.

16.2.3 Error Returns

Normally, if
in use by
terminated.
parameter to
in the event

the device allocation fails (for example if the device is
another job), a suitable message is typed and the program
The user can prevent this by providing, as the fifth
INPUT or OUTPUT, a label to which control is to be passed
of an error. For example:

OUTPUT (14, "MTA" ,0,0 ,ERROR. LABEL) :

If the actual label parameter is a switch whose subscript is out of
range, the procedures behave as though the label parameter were
absent.

NOTE

The third and fourth parameters must be
specified in this case to avoid
ambiguity. However, if zeros are
specified, then default values will be
taken. The default being ASCII mode and
2 buffers for the third and fourth
parameter respectively.

16-3

DATA TRANSMISSION

16.3 SELECTING INPUT/OUTPUT CHANNELS

Before a user uses a device to transfer data, assuming that the device
has already been allocated to some channel, the appropriate input or
output channel must be "selected" for use as the input or output
channel. All data input and output always occurs on the currently
selected input channel and output channel, respectively. The user may
change the selection of channels at any time, switching from one
channel to another without loss of data, irrespective of whether
complete lines (or records) of data have been read or not. In fact,
the DECsystem-lO/20 input/output system does not assume any structure
in the data: all input and output channels are regarded as pipelines
through which the user pulls or pushes data.

To select an input channel, a call to the procedure SELECTINPUT must
be made. This has one parameter, which is the channel number. Thus

SELECTINPUT(5) ~

causes input channel 5 to be selected.

Similarly, the procedure SELECTOUTPUT is used to select an output
channel.

16.4 FILE DEVICES

Some peripheral devices, such as disk and DECtape, require the opening
of a specifically named file before any input or output operations can
be performed. This optionally may be performed on spooled devices
(refer to the appropriate Operating System Commands manual for a
description of spooling). The opening of this file is performed by
means of the procedure OPENFILE, which is called after the device has
been allocated to a channel. The procedure call has two parameters:
the channel number on which the device has been allocated and a string
variable possessing a byte string or a string constant, the text of
which is the name of the file.

The user can also
number of a file
integer parameters.
on disk area [11,50]

specify a protection and/or project-programmer
by means of optional third and fourth Boolean or
For example, to open a file with protection 177
the user could write

OPENFILE (9,"TEST.DAT",%177,%000011000050) ~

When a user has finished with a file it should be closed. A file is
closed by using the procedure CLOSEFILE, with a parameter that is the
channel number on which the file is open. Thus,

CLOSEFILE(9) ~

closes the file that is open on channel 9.

The user may also rename or delete existing files: if a file is
already open, use of OPENFILE causes the file to be renamed with the
new name supplied. Thus the sequence

OPENFILE (5,"TESTl.DAT")~

OPENFILE (5,"TEST2.DAT") ~

causes the file with name TESTl.DAT to be renamed TEST2.DAT. If the
string containing the new name is null, the original file is deleted.

16-4

DATA TRANSMISSION

Thus,

OPENFILE (5,"TEST3.DAT"),

OPENFILE (5,""),

causes the file TEST3.DAT to be deleted.

16.4.1 Error Returns

Normally, if the operation requested fails (for example an input file
does not exist), a suitable message is typed and the program
terminated. The user can prevent this by providing a label and an
optional integer variable as the fifth and sixth parameters to
OPENFILE. In the event of an error, control will be passed to the
label, with an error-code set into the integer variable if present.
The error-codes are those returned by the ENTER and LOOKUP UUO'S
(refer to Appendix E of the DECsystem-lO Monitor Calls Manual or
Appendix A of the DECsystem-20 Monitor Calls Manual, as appropriate).

NOTE

The third and fourth parameters must be
present if the error return parameter is
specified. Defaults will be taken if
both parameters are specified as zero.

If the actual label parameter is a switch whose subscript is out of
range, the procedure behaves as though the label parameter were
absent. The integer error-code parameter is called by name.

16.5 RELEASING DEVICES

The procedure RELEASE is used to release a device from a channel.
Thus,

RELEASE (5) ;

releases the device allocated to channelS. If
device, and a file is still open on the
automatically closed. Releasing a device on
channel to become free; if this channel is
input or output operations, it is deselected.

the device is a file
device, this will be
a channel causes a

currently selected for

If an attempt is made to allocate a device to a channel that already
has a device allocated, the allocated device is first released and, if
a file is open on the device it is closed before the release.

If a user terminates his program without releasing devices on
channels, these are automatically released.

16-5

DATA TRANSMISSION

16.6 BASIC INPUT/OUTPUT PROCEDURES

16.6.1 Byte Processing Procedures

The following procedures may be used
of any standard size (1 to 36
normally used with devices supplying
are "symbol" oriented.

with any device to handle bytes
bits). However, because they are
or accepting ASCII bytes, they

1. INSYMBOL(S); - (where S is usually some integer variable)
causes the next byte to be read from the currently selected
input channel and stored in S.

2. OUTSYMBOL(J); - (where J is usually some integer expression)
causes the value of J to be output as a byte to the currently
selected output channel. If J is too large for the byte size
of the device in use, it is truncated to size.

3. NEXTSYMBOL(S); - acts in exactly the same way as INSYMBOL
except that the byte pointer for the input channel is not
advanced to the next available byte. This gives the user a
look-ahead facility of one byte.

4. SKIPSYMBOL; - causes the next byte from the selected input
channel to be read and ignored.

5. BREAKOUTPUT; - causes all bytes in the buffer of an output
device to be sent immediately to it. This procedure is
normally used to conduct a question-and-answer dialogue on a
terminal, with the question and answer on the same line.
Normally, a block of data is sent to a device only when the
buffer is full (the exception being the terminal, where a
break is sent ~t the end of each line).

16.6.2 String Output

A byte string may have its contents transferred to the currently
selected output channel by means of the procedure WRITE, whose single
parameter is either a str ing constant or a str in'g var iable that
possesses the string to be output. For example:

WRITE(S) ;

or

WRITE("THE MOON IS MADE OF GREEN CHEESE");

With exceptions explained in the following paragraphs,
bytes in the string are output literally, with the
course, of the quotes in a string constant, which are
stored in the bytes string at all.

NOTE

Unlike some other ALGOL implementations,
spaces and other non-printing symbols in
byte strings are meaningful in
DECsystem-lO/20 ALGOL.

16-6

all of the
exception, of
not in fact

DATA TRANSMISSION

Special editing characters are permitted within square brackets within
the text of a byte string. These have a special function:

P Page throw

C or N New line (C stands for carriage return, line feed)

T Tab

S Space

B Break output

Any combination of these characters, with optional preceding
repetition counts, can appear within square brackets in a byte string
and are output as their special interpretation demands. For example:

WRITE (IABCD[P2C5S]EFGH"),

causes the following to be output:

1. the symbols ABCD followed by a page throw

2. two new lines and five spaces

3. the symbols EFGH.

To output the symbols

II or,

these must appear in the form

[[]] 1111 or "

respectively. Thus

WRITE (" " "A [[I]] : = 3,,";'''),

causes the text

"A[I} := 3,"

to be output.

16.6.3 Miscellaneous Symbol Procedures

The procedures SPACE, TAB, PAGE, and NEWLINE cause the appropriate
number of spaces, tabs, page throws, or new lines to be output. This
number is specified by a single integer parameter. If the parameter
is omitted a value of one is assumed. Thus

SPACE (5) ,

causes five spaces to be output, whereas

SPACE,

or

SPACE(l) ,

cause one space to be output.

16-7

DATA TRANSMISSION

16.6.4 Numeric and String Procedures

Numeric procedures are used to read and print numeric quantities. The
procedures will normally be used with a device that is operating in
ASCII mode, and are capable of processing integer, real, or long real
quantities in fixed-point and floating-point representation.

16.6.4.1 Numeric Input Data - Numeric data for input
represented in any format that would be acceptable as
constant in a program, irrespective of the type of variable
When a number is read, an automatic type conversion is
giving a result of the same type as if an assignment of
represented as a constant in the program had been executed.

can be
a numeric
involved.

performed,
the data

There is a minor restriction in that no spaces, tabs, or other
non-printing symbols may appear in such numeric data except between
the exponent sign (& or @ for real, && or @@ for long real) and the
exponent. Otherwise, any symbol that is not a part of a numeric
quantity may act as a terminator for such a quantity. It is strongly
recommended that spaces, tabs, or new lines be used as separators.
For example:

3.4 -9.6 1.36 -52

o 14.9

NOTE

In reading
terminating
symbol that
is lost.

a numeric quantity, the
symbol, that is, the first

is not part of the number,

DECsystem-10/20 ALGOL also allows the user to
data written in FORTRAN format, that is, using E
&& or @@. However, no other special effects
formatting are introduced.

input floating-point
for & or @, and D for
inherent in FORTRAN

The procedure READ is used to input numeric data and also strings.
This procedure may have any number of parameters (up to an
installation-dependent maximum), of type integer, real, long real,
Boolean, or string.

The effect is as follows:

1. For integer, real and long real variables, a number is read
and converted to the type appropriate to the parameter and
then assigned to the variable.

2. For Boolean, a number is read as if for an integer variable,
and assigned to the variable.

3. For a string variable, the data text is scanned until a quote
(") is found, and the text following this up to but not
including the next free quote is read in and a byte string
generated, which is then possessed by the string variable.

If the sequence "" is found, a single ~ is stored, and reading of the
string continues.

16-8

DATA TRANSMISSION

16.6.4.2 Numeric Output Data - Numeric data is output by means of the
procedure PRINT. This procedure may have one, two, or three
parameters, the first of which is the variable to be printed. This
variable may be an integer, real, or long real. The second and third
parameters determine the format to be used and are integer
expressions. If omitted, both parameters are assumed to be zero. The
effect of the various combinations of the format integers, M and N, is
as follows:

M>O, N>O:

M>O, N=O:

M=O, N>O:

Fixed-point printing, M places before the decimal
point, N places after. A sign, space if positive,
- if negative appears before the number. Zeros
before the decimal point are replaced by spaces
and the sign moved up to the number.

This format always outputs M+N+2 symbols.

The same as the preceding except that (1) no
fractional part appears, and (2) the decimal point
is suppressed.

This format always outputs M+l symbols.

Floating-point format, consisting of a sign, a
decimal digit, a decimal point, N more decimal
digits, and an exponent consisting of & for real,
&& for long real followed by the exponent sign and
a two-digit exponent, zero suppressed from the
left.

This format outputs N+7 symbols for real and N+8
symbols for long real quantities.

If only two parameters appear, format M,O is assumed for integer
variables, and format O,N for real and long real quantities, where M
and N take, respectively, the value of the second parameter.

If only one parameter appears, the format is interpreted as 0,0 which
assumes standard printing modes of 11,0 for integer quantities, 0,9
for real quantities, and 0,17 for long real quantities.

If the user requests more digits to be printed than are significant in
real or long real numbers, the appropriate number of zeros follow a
properly rounded printing of the number to the maximum precision
available.

16.6.4.3 Octal Input/Output - The
PRINTOCTAL, respectively, allow
quantities in octal format.

procedures
the user to

READOCTAL
input and

and
output

On input, for single precision variables, up to 12 octal digits are
read, preceded by the symbol %, the terminator being any non-numeric
symbol. For long r~al variables, two such octal numbers must be
presented for input, each preceded by the symbol %.

On output, 12 octal digits, preceded by the symbol %, are printed for
single precision variables. For long real variables, two quantities
each with 12 octal digits are printed separated by a space.

The foregoing procedures have one scalar parameter which may be of
type integer, real, long real or Boolean.

16-9

DATA TRANSMISSION

16.7 DEFAULT INPUT/OUTPUT

If the user does not select any input or output channels, input and
output occur via an "invisible" channel from and to the user's
terminal. Thus, for simple programs where the user wishes to input a
few numbers and print a few results, he simply uses READ, types in the
data on line through his terminal, and gets back the results from
PRINT.

16.8 LOGICAL INPUT/OUTPUT

In addition to the 16 channels used to communicate with peripheral
devices, an additional 16 channels, numbered from 16 to 31, are
provided. These are input or output channels that use byte strings as
a means of storage.

By means of the procedures INPUT or OUTPUT, the user can attach a
channel to a byte string possessed by a string variable, and can read
and write bytes from and to this byte string, either to and from a
peripheral device, or to and from another byte string.

INPUT(20,S) ~

or

OUTPUT(20,S) ~

cause the byte string possessed by the string variable S to be used as
logical channel 20~ this channel may subsequently be selected for
input or output, as appropriate.

The user is still free, of course, to manipulate the individual bytes
within the byte string by means of the byte-subscripting facilities
available. Such facilities enable the user to read a file from a
peripheral device into a string, process it in any way whatsoever, and
output it again.

16.9 SPECIAL OPERATIONS

These procedures are used on channels assigned
perform operations of BACKSPACE, ENDFILE and
takes one parameter, that is, the channel
operation is to be performed.

to magnetic tapes, and
REWIND. Each procedure

number on which the

Since there is no implicit structure on a magnetic tape, these
procedures enable the user to build up formats in any way he chooses.

16.10 I/O CHANNEL STATUS

The status of any input or output channel can be determined at any
time by means of the Boolean procedure IOCHAN, which takes an integer
channel number as parameter. The status returned is bit coded as
follows:

16-10

Bit

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Value

%400000

%200000

%100000

%040000

%020000

%010000

%004000

%002000

%001000

%000400

%000200

%000100

%000040

%000020

%000010

%000004

%000002

%000001

DATA TRANSMISSION

Meaning if Set

Device is physical (i.e., not logical)

Directory device

Terminal device

ASCII mode

Magnetic tape

Plotter

Set for default TTY on channel -1

Device is spooled

Device can do input

Device is initialized for input

File is open for input

End of file encountered

Input status ok

Device can do output

Device is initialized for output

File is open for output

Device quota exceeded

Output status ok

Some of these bits are of little use to the user, but, for example, if
a device is allocated, and the user does not know whether or not the
device is file-structured, IOCHAN can be used to determine this. The
bits of particular use to the user are the input and output
end-of-file.

NOTE

An end-of-file on output is a logical
status indicating that, for example, a
disk quota is exceeded or a DEC tape is
full, or in the case of a logical
device, the byte string is full.

When IOCHAN is used, the end-of-file flags are always cleared, if set,
so that the user may proceed to read a magnetic tape after an
end-of-file marker is found.

The following example shows how the user would handle an unknown
device whose name is given to the program via the user's terminal:

16-11

DATA TRANSMISSION

BEGIN

END

STRING DEVICE, FILE; INTEGER CHANNEL;

WRITE ("CHANNEL NO: "); BREAK.OUTPUT;

READ (CHANNEL);

WRITE ("[C]DEVICE NAME: "); BREAK.OUTPUT;

READ (DEVICE);

OUTPUT (CHANNEL, DEVICE);

IF IOCHAN (CHANNEL) AND %200000 THEN

BEGIN

WRITE ("[C]FILE NAME: "); BREAK.OUTPUT;

READ (FILE);

OPENFILE (CHANNEL, FILE)

END;

NOTE

When using Boolean expressions involving
IOCHAN, the rules for evaluation in this
implementation should be borne in mind.
See Section 5.2.1.

16.11 TRANSFERRING FILES

Once devices have been allocated to an input and an output channel, a
complete file of information may be transferred between them
automatically by calling the parameter-less procedure TRANSFILE. This
procedure copies bytes from one device to another from the currently
selected input channel to the currently selected output channel, until
an end-of-file status is raised on either the input or output channel.

16.12 CURRENTLY SELECTED CHANNEL NUMBERS

The number of the channel currently selected for input or output may
be obtained by use of the integer procedures INCHAN or OUTCHAN.

16-12

CHAPTER 17

THE DECSYSTEM-lO/20 OPERATING ENVIRONMENT

The operating environment of DECsystem-lO/20 ALGOL programs consists
of those procedures in the DECsystem-lO/20 ALGOL Library required by
the user's program, and the DECsystem-lO/20 ALGOL Object Time System.

The former are
together with
of as existing
therefore, are
however, are in

those procedures detailed in Chapters 13 and 16,
those described below. These procedures can be thought
in a block surrounding the user's program, and,
available when called. The names of these procedures,
no sense reserved as are words such as BEGIN.

Note that these procedures are only present in the user's program when
required. They are loaded by the DECsystem-lO or DECsystem-20 Linking
Loader when so directed by the DECsystem-lO/20 ALGOL Compiler. The
user is not required to take any action to include these procedures,
other than make a call to them. A complete list of library procedures
is given below.

17.1 MATHEMATICAL PROCEDURES

The following procedures expect one argument, of real type, and yield
a real type result.

Procedure Name Function

SIN Sine

COS Cosine

ARCTAN Arctangent

SQRT Square root

EXP Exponential

LN Logarithm (to base e)

TAN Tangent

ARCSIN Arcsine

ARCCOS Arccosine

SINH Sinh

COSH Cosh

TANH Tanh

17-1

THE DECSYSTEM-lO/20 OPERATING ENVIRONMENT

The following procedures expect one argument, of long real type, and
yield a long real type result. Note that they are formed by adding an
L before the equivalent single precision procedure.

Procedure Name Function

LSIN Sine

LCOS Cosine

LARCTAN Arctangent

LSQRT Square root

LEXP Exponential

LLN Logarithm (to base e)

The functions ENTlER, ABS and SIGN are also available, as described in
Section 5.1.2.

NOTE

If arguments of type integer or
real are given in an ALGOL call to
procedures, the compiler plants
appropriate conversion code.

17.2 STRING PROCEDURES

long
these

the

For details of the procedures CONCAT, LENGTH, SIZE, COPY, NEWSTRING
and DELETE, see Paragraph 13.7.

17.3 UTILITY PROCEDURES

17.3.1 Array Dimension Procedures

The integer procedure DIM, which takes as parameter the name of an
array of any type, yields a result that is the number of dimensions of
the array. This is most useful when the user passes an array as a
parameter and wishes to check if it is, for example, a matrix.

The integer procedures LB and UB also take as first parameters the
name of an array; the second parameter is the subscript number. The
result is the lower or upper bound, respectively, of the subscript
specified by the second parameter. The following procedure uses these
to clear real matrices.

17-2

THE DECSYSTEM-IO/20 OPERATING ENVIRONMENT

PROCEDURE ZERO(A); ARRAY A;

BEGIN

INTEGER I,J;

IF DIM(A) = 2 THEN

BEGIN

INTEGER Ll,L2,Ul,U2;

Ll := LB (A, 1) ; Ul := UB (A, 1) ;

L2 := LB (A, 2) ; U2 := UB(A,2) ;

FOR I := Ll UNTIL Ul DO

FOR J := L2 UNTIL U2 DO A[I,J]

END

END

17.3.2 Minima and Maxima Procedures

:= 0

The integer procedures IMIN and IMAX, the real procedures RMIN and
RMAX, and the long real procedures LMIN and LMAX are used,
respectively, to determine the minimum or maximum of a number of
arguments of the appropriate type. These procedures normally accept
up to ten parameters (this figure may be changed by re-assembling the
ALGOL library with a different parameter).

For example:

I := IMIN(J,K);

X := RMAX(Y+Z,RMIN(Y-Z,Q»;

17.3.3 Field Manipulations

The procedures GFIELD and SFIELD enable the user to manipulate a field
within any integer, real, long real, Boolean or string variable. The
integer parameters I and J specify a byte of length J bits whose
leftmost bit is the 1 ' th bit (counting from zero at the left-hand
side). The byte specified may be from 1 to 36 in length and may be at
any position in the variable.

For single word variables (integer, real, Boolean), I may range from 0
to 35, with the constraint I + J <=36. For double word variables
(long real and string), I may range from 0 to 71, with the constraint
I + J <=72.

The integer procedure GFIELD uses I and J as .the second and third
parameters; the first parameter is the variable. The result is the
value of the byte (right justified) specified by I, J.

Thus

K := GFIELD(A,3,5);

gives the value of the byte consisting of bits 3 through 7 of A.
17-3

THE DECSYSTEM-lO/20 OPERATING ENVIRONMENT

The procedure SFIELD sets a byte specified by the second and third
parameters I, J to the value specified by the fourth parameter, of
type integer. Thus

SFIELD(A,3,5,O) ;

zeros the byte specified in the first example.

17.4 DATA TRANSMISSION PROCEDURES

For details of these procedures refer to Chapter 16.

17.5 FORTRAN INTERFACE PROCEDURES

F-10 or F-40 FORTRAN subroutines may be incorporated in ALGOL object
programs by loading these subroutines with the ALGOL main program (and
any other separate ALGOL procedures).

Such FORTRAN subroutines should be specified by' an EXTERNAL
declaration in the ALGOL program and, depending on the FORTRAN
compiler used, the appropriate procedures should be called.

Table 17-1
FORTRAN Interface Procedures

TYPE NONTYPE INTEGER REAL LONG REAL BOOLEAN

FORTRAN (DOUBLE PR.) (LOGICAL)

F-IO FIOCALL FIOICALL FIORCALL FIODCALL FIOLCALL

F-40 CALL ICALL RCALL DCALL LCALL

The first parameter in these procedure calls must be the name of the
FORTRAN subroutine, which must be declared as an external procedure of
the appropriate type (or non-type). Subsequent parameters are taken
as the arguments to the procedures.

CALL and FIOCALL are used as single statements, for example:

CALL (FORT,X,Y)

is equivalent to

CALL FORT (X,Y)

in a FORTRAN program.

ICALL etc. must appear in the appropriate context in an expression,
thus

P := Q + ICALL(Z)

The parameter
maybe of any
any dimension,
string.

NOTE

of CALL, ICALL, etc.,
type, including arrays of
with the exception of

17-4

THE DECSYSTEM-10/20 OPERATING ENVIRONMENT

17.6 GENERAL INFORMATION ROUTINE

The integer procedure INFO depending on the
specified, provides information about
environment.

value of the parameter
various aspects of the

Parameter Returns integer value of

For example

o

1

2

3

4

5

6

7

core size in words

date (IS-bit format)

time (ticks since midnight)

time (milliseconds since midnight)

runtime (milliseconds)

processor type (l=KA, 2=KI, 3=KL)

number of stack shifts so far

compiler version word

PRINT(INFO(4» ~

might produce

1134600

the job's runtime up to now in milliseconds.

17.7 DATE AND TIME IN ASCII FORMAT

Three routines
string format
date routines,
three-character
variable-length
both cases the
eight-character

For example

are provided for returning the current time and date in
suitable for printing without modification. The two
FDATE and VDATE, give the option of a standard

abbreviation for the month (FDATE) , or a
string with the name of the month in full (VDATE). In
year is given in full. String procedure TIME gives an
string with the current time as HH:MM:SS.

WRITE (VDATE) ~ NEWLINE~ WRITE(TIME)~

might produce

27-JANUARY-1975
12:16:55

17-5

THE DECSYSTEM-10/20 OPERATING ENVIRONMENT

17.8 RANDOM NUMBER ROUTINE

Three routines have been included to provide a random number
capability. The number generator is similar to that used in the
FORTRAN library, which is documented in the Science Library manual.
The ALGOL version is, however, initialized randomly. If a repeatable
sequence of pseudo-random numbers is required then procedure SETRAN
should be called before the first call to RAND, with the required
initial value. For example, to generate the same sequence as a
FORTRAN program using the default starting value currently used by
FORTRAN, SETRAN(-l); should be included in the ALGOL program. The
third procedure is SAVRAN which returns the value of the last random
number without invoking the number generator.

RAND and SAVRAN are INTEGER procedures; SETRAN is non-type.

17.9 ONTRACE AND OFFTRACE

These two typeless parameterless procedures turn the dynamic tracing
of procedure entry and labels on and off respectively. Neither the
entry of trace items into the trace buffer (which is printed by use of
the TRACE command to the REENTER dialogue) or the Dynamic Debugging
System is affected by the procedures.

17.10 PAUSE

This typeless parameterless procedure merely exits to the Monitor, in
such a way as to allow execution to be continued by typing the Monitor
command CONTINUE. This is provided to allow, for example, a device to
be assigned.

17.11 DUMP

This typeless procedure has one integer parameter: the number of
block-levels containing the present one to be dumped. DUMP is
identical to the Debugging System command DUMP (see section 20.7),
with the following exceptions:

l. Output is directed to the currently selected output channel
(ignores Debugging System REDIRECT commands)

2. Arrays are always dumped

3. A history trace (similar to the one produced when a run-time
error is found) always precedes the dump.

The integer parameter performs the
argument to the DUMP command: a
"ALL" .

same function as the numeric
value of zero has the effect of

17-6

CHAPTER 18

RUNNING AND DEBUGGING PROGRAMS

18.1 COMPILATION OF ALGOL PROGRAMS

DECsystem-lO/20 ALGOL programs are compiled by the ALGOL compiler
under the standard DECsystem-lO or DECsystem-20 timesharing monitor.
The compiler is called by typing

R ALGOL

or (for the DECsystem-20)

ALGOL

at monitor command level.

The DECsystem-lO/20 ALGOL Compiler responds by typing an asterisk on
the user's terminal. The user then types a command string to the
compiler, specifying the source filets) from which the program is to
be compiled, and the output files for listing and output of
relocatable binary. The command string takes the form:

OUTPUT-FILE,LISTING-FILE=SOURCE-FILES

followed by a carriage-return (ALTMODE cannot be used to terminate a
command string).

A file takes one of the forms

DEVICE:FILE-NAME.FILE-EXTENSION

or

DEVICE:FILE.NAME

for directory devices (disk and DECtape)

or

FILE-NAME.FILE-EXTENSION

or

FILE-NAME

where DSK is assumed to be a default device.

In the case of non-directory devices, the format is simply

DEVICE:

18-1

RUNNING AND DEBUGGING PROGRAMS

In cases where no FILE-EXTENSIONS are specified, the standard defaults
REL for the relocatable binary output file, LST for the listing file,
and ALG for the source file are assumed.

SOURCE-FILES

consist of one file or a list of files separated by commas. If a
DEVICE is specified for the first file, and not for succeeding files,
the second and following files are taken from the same device as the
first.

Example:

EULER,TTY:=EULER

[read source from DSK:EULER.ALG, write relocatable
DSK:EULER.REL and listing on the user's terminal].

binary on

MTAO:,DSK:SIM26=SIM26,PARAM.TST

[read source from DSK:SIM26.ALG, DSK.PARAM.TST, write relocatable
binary on device MTAO, and listing file on DSK:SIM26.LST].

Certain switches may be set by the user in the command string.
are:

These

BUFFERS:n

CHECKON

CHECKOFF

HEAP:n

HELP

KAIO

KIlO

KLIO

LIST

NOERRORS

NOLIST

NONUMBERS

NOQUOTES

Set number of buffers
buffer-ring to n.

in

Compile run-time
18.5.1.1).

array-bound

compiler's I/O

checking (see

Do not compile
regardless of
source.

run-time array-bound checking,
any CHECKON statements in the

Set the initial size of the dynamic core area
(which is used for I/O buffers, strings and OWN
arrays) to n words. This area is dynamically
expanded at run-time if necessary; its final size
is typed out at the end of execution if the object
program is loaded with DDT.

*Type helpful text.

Produce code to run on the KAIO processor.

Produce code to run on the KIlO processor.

Produce code to run on the KLIO processor.

*List the source program (default
listing-device is specified in
command-string).

Do not type error-messages on the terminal.

Do not list the source program.

if a
the

The source program does not have line sequence
numbers in columns 73 to 80 (default).

Delimiter words are not in quotes (default).

18-2

NOSYMBOL

NUMBERS

RUNNING AND DEBUGGING PROGRAMS

Suppress output of expanded symbol table to the
.REL file.

The source program has line sequence numbers in
columns 73 to 80.

PRODUCTION Do not compile trace information or
expanded symbol-table to the .REL file.

output

QUOTED *Delimiter words are in quotes.

SYMBOL Include symbol table information in .REL file.

TEMPCODE:n Set length of TEMPCODE area in compiler to n
words: this is only necessary if the compiler
produces a message to that effect, which may
happen for some very complicated statement
constructs.

TRACE Control tracing.

NOTE

Since only one processor type, the KA20
is available for the DECsystem-20, no
switch options are therefore available
(unlike the DECsystem-lO which can run
on one of the three processors, KAIO,
KIlO and KLIO, and therefore has three
options) .

Switches may be shortened to a unique abbreviation: those marked with
an asterisk (*) in the above list may also be given asa single
character. Values (n) are in decimal.

Switches after a file-specification are 'set by a preceding /.

For example:

PROD,PROD=PRODl/L,PROD2/NOL/HEAP:2000

causes file PRODI to be compiled with a listing, PROD2 to be compiled
without listing, and the initial size of the run-time dynamic core
area to be set to 2000 words (the default size is 521 words).

The ALGOL compiler reports all source program errors both on the
user's terminal and in the listing device if it is other than the
terminal. After compiling a program, the compiler returns with
another asterisk, whereupon the user may compile another program, or
type ~C to return to monitor level.

18.1.1 Compilation of Free-Standing Procedures

DECsystem-lO/20 ALGOL allows the user to compile procedures
independent of programs that call them. Such procedures may either
follow the main program in the source file or may be in an independent
source file either singly or together. The user uses exactly the same
process to compile such files.

18-3

RUNNING AND DEBUGGING PROGRAMS

NOTE

Free-standing procedures must not appear
before the ma1n program. If the user
requires to call those procedures from
the main ALGOL program, the appropriate
EXTERNAL declarations must be made
(refer to Paragraph 11.9).

18.2 LOADING ALGOL PROGRAMS

ALGOL programs are loaded by means of the DECsystem-lO/20 or
DECsystem-20 Linking Loader in exactly the same way as programs
generated by MACRO-IO/20 and FORTRAN are loaded (for details, refer to
the DECsystem-lO/20 Assembly Language Handbook).

LINK-IO or LINK-20 automatically causes all procedures required from
the ALGOL Library (ALGLIB) to be incorporated into the user's program.

For example, consider the source file MAIN.ALG which contains the
ALGOL main program and the files SUBl.ALG and SUB2.ALG which contain
free-standing procedures.

The user may compile these files to give one relocatable binary file
by typing the following command string to the ALGOL compiler,

MAIN,MAIN=MAIN,SUBl,SUB2

and loading the resulting program by giving the command string

MAIN/GO

to LINK-IO or LINK-20.
compiled independently
compiler, for example:

MAIN,MAIN=MAIN

SUBl,SUBI=SUBI

SUB2,SUB2=SUB2

Alternatively, the three source files can be
by typing three command strings to the ALGOL

and giving LINK-IO or LINK-20 the command string.

MAIN,SUBI,SUB2/GO

After a program has been loaded, it may be executed.

18.3 RUNNING ALGOL PROGRAMS

ALGOL programs are executed by typing the console command

START

or any of its valid abbreviations. If the program executes
successfully, a message will be printed on the user's terminal, and
the program will return to monitor command level.

18-4

RUNNING AND DEBUGGING PROGRAMS

18.4 CONCISE COMMAND LANGUAGE

The Concise Command Language (CCL) features in the DECsystem-lO or
DECsystem-20 monitor may be used to facilitate the compilation and
execution of ALGOL programs. These features are used in exactly the
same way as for programs written in DECsystem-lO or DECsystem-20
FORTRAN. For details, refer to the DECsystem-lO or DECsystem-20 Users
Handbook.

Switches to the ALGOL
separated by slashes.

compiler are
For example:

EXECUTE FOO (QUOTED/HEAP: 2000/KI)

18.5 RUN-TIME DIAGNOSTICS AND DEBUGGING

enclosed in parentheses and

If a run-time error occurs during the execution of an ALGOL object
program, an error message is produced, detailing the type of error,
and its address within the user's program. Such errors fall into two
categories - fatal and non-fatal.

A mechanism has been provided by which DECsystem-]0 users can trap
non-fatal errors, and when they occur, transfer control to a label
within the user's program. Each such error has a unique number, and a
table of these appears below. The Library procedure TRAP, used to
trap non-fatal errors has the following specification:

PROCEDURE TRAP (N,L); VALUE N,L;

INTEGER N; LABEL L;

Where N is the number of the error to be trapped, and L is a label to
which control is required to be passed when the error occurs.

Once such a trap is set up by a call to TRAP, it remains in force
until another call to TRAP sets a trap to a different label, or until
the trap is turned off by

TRAP (N)

that is, omitting the label parameter in a trap call.

NOTE

1. TRAP is available only on DECsystem-lO.

2. The trap label is a formal parameter by
value. The number of the trap that
caused the jump to the label may be
obtained by calling the integer
procedure TRAPNO.

18-5

TRAP NO.

18

19

32

33

34

35

37

38

39

40

41

42

43

44

48

49

50

51

52

RUNNING AND DEBUGGING PROGRAMS

Table 18-1
Error Trap Numbers

ERROR

FLOATING POINT OVERFLOW

FIXED POINT OVERFLOW

INPUT OR OUTPUT DEVICE UNAVAILABLE

ILLEGAL MODE FOR INPUT OR OUTPUT DEVICE

INPUT OR OUTPUT ON UNDEFINED CHANNEL

ATTEMPT TO READ OR WRITE ON DIRECTORY DEVICE
WITHOUT FILE OPEN

FILE NOT AVAILABLE OR RENAME FAILURE

ATTEMPT TO READ OR WRITE OVER END-OF-FILE

ERROR CONDITION ON INPUT OR OUTPUT

ILLEGAL CHARACTER IN NUMERIC DATA

OVERFLOW IN NUMERIC DATA

ERROR CONDITION ON CLOSING FILE

ILLEGAL INPUT/OUTPUT OPERATION

I/O CHANNEL NUMBER OUT OF RANGE

SQRT ARGUMENT NEGATIVE

LN ARGUMENT ZERO OR NEGATIVE

EXP ARGUMENT TOO LARGE

INVERSE MATHS FUNCTION ARGUMENT OUT OF RANGE

TAN ARGUMENT TOO LARGE

18.5.1 Facilities to Aid in Program Debugging

18.5.1.1 Array Bound Checking - The directive

CHECKON

when placed anywhere in a user's program causes all array subscripts
from this point onward in the program to be checked at run-time for
being in range. The directive

CHECKOFF

nullifies this action.

18-6

RUNNING AND DEBUGGING PROGRAMS

The compiler switches /CHECKON and /CHECKOFF may also be used: they
override any CHECKON or CHECKOFF statements in the source program.

NOTE

1. The CHECKON, CHECKOFF facility causes
the generated program to be slightly
larger, and to run slower.

2. Most inexplicable errors arising during
the execution of an ALGOL program are
caused by an array subscript being out
of range. Whenever such errors occur,
the program should be recompiled with
the array bound check feature on, and
re-run.

18.5.1.2 Controlling Listing of the Source Program - Normally, a
listing of the source program is output with the object program during
compilation. The user can suppress this listing entirely by means of
the /NOLIST compiler switch. However, if the user wishes to suppress
only part of the listing and then continue listing, he can control the
listing from within his program by means of the statements

LISTOFF
LISTON

The LISTOFF statement causes listing to be suppressed from the point
in the program where LISTOFF was encountered to either the end of the
program or until a LISTON statement is encountered. The LISTON
statement causes listing to continue after it had been suppressed by a
LISTOFF statement. The LISTON and LISTOFF statements have no effect
if the /NOLIST switch is included in the compiler command string.

18.5.1.3 Setting Line Numbers in Listings - Ordinarily, the lines in
the listing file are numbered sequentially starting at 1 and
incrementing by 1. The user can, however, change the line numbers by
placing sequence numbers in columns 73 through 80 of the source
program and compiling with the /NUMBERS switch. Another way in which
the user can change the line numbers is by means of the LINE
statement. The statement

LINE n

causes the next line number to be
integer. The line numbers that
either another LINE statement is
terminates.

18.6 CROSS REFERENCE LISTING

set to n, which is a decimal
follow are incremented by 1 until
encountered or the program

The /CREF switch has been implemented, causing ALGOL to generate
output for CREF. Output takes the following formats.

18-7

RUNNING AND DEBUGGING PROGRAMS

Variables and Labels:

Blocks:

18.7 STACK ANALYSIS

Each occurrence of a variable or label name
is recorded, with a # whenever a defining
reference is made. In the case of labels the
line reference is to the line which causes
code for the label to be generated. This may
follow the line where the label appears. No
distinction is made amongst different
incarnations of a variable at various block
levels.

The messages "START OF BLOCK n" and "END OF
BLOCK n" are suppressed in the CREF listing.
However, there is a separate CREF of blocks
on the first page following the program. As
with labels, the line-numbers refer to those
causing code to be generated, not necessarily
those on which BEGIN or END appear in the
source.

The stack analysis takes two forms - if a program stops with an error,
the stack is scanned to give the names of the active procedures. Thus
a typical error message now reads:

?RUN-TIME ERROR AT ADDRESS 000162

In procedure OPENFILE
Called from procedure PQRSTUVWXYZ
Called from procedure THISPROCEDUREISNEXTTOINNERMOST
Called from procedure THISONEISNEARLYTHEOUTERMOST
Called from procedure THISISTHEOUTERMOSTPROCEDURE
Called from MAIN PROGRAM
File DSK:NOSUCH.FLE not available or rename failure on channel # 1

The above type of analysis is automatic whenever an error is detected.
The second type is invoked by the Debugging System command PROFILE.
This causes a list of all the procedures, labels and library
procedures referenced in the program to be printed, together with a
count of the actual number of times each was referenced (or passed
through in the case of labels). As with the trace print, labels can
be distinguished by a trailing colon (:) and library procedures by a
trailing asterisk (*), but different procedures with the same name
must be identified from the order in which they appear, which is the
same as the loading order.

In the special case of overlaid programs only the root segment is
scanned, for example:

»PROF

PROFILE PRINT.

COUNT NAME

1 PQRSTUVWXYZ

1 THISPROCEDUREISNEXTTOINNERMOST

18-8

RUNNING AND DEBUGGING PROGRAMS

1 THISONEISNEARLYTHEOUTERMOST

1 THISISTHEOUTERMOSTPROCEDURE

o READ*

1 INPUT*

o OUTPUT*

1 OPENFILE*

18.8 TRACE

18.8.1 Dynamic Trace

Two types of Trace are available: dynamic and post-mortem.

The user who is at a terminal and wishes to see a full dynamic trace
of his program should type the following command sequence:

.LOAD TRTST

ALGOL:
LINK:

EXIT

.REE

TRTST
LOADING

ALGOL DIAGNOSTIC SYSTEM

FACILITIES (H FOR HELP)?

»ONTRACE

»START

This produces (at least) one line for each trace reference, as
follows:

******SECTION
****S6:
********PHASE
************WRITE* PHASE
************PRINT* 6
************WRITE* BEGIN
********PHASE
************WRITE* END

******SECTION
****S7:
********PHASE
************WRITE* PHASE
************PRINT* 7
************WRITE* BEGIN
********PARFOR
********PHASE
************WRITE* END

18-9

RUNNING AND DEBUGGING PROGRAMS

Dynamic trace output always clears the terminal output buffer and
begins a new line. The current dynamic block level is represented by
two asterisks for each level, printed along the line. Note that a
notional block surrounds the main program and each procedure. A
maximum of sixty asterisks are printed before the line is folded:
folding is shown by a number in the first two columns representing
multiples of thirty dynamic block levels.

The name of the procedure or label appears at the end of the line of
asterisks. As with the profile, library procedures are distinguished
by a trailing asterisk, and labels by a trailing colon.

Procedures are traced at entry but not exit;
exit can be inferred from the block levels.

NOTE

however, a procedure

Ordinary TTY output in Dynamic Trace
mode may be interspersed amongst Trace
output (as in the example above) .
Dynamic trace may also be turned on and
off dynamically by use of the library
procedures ONTRACE and OFFTRACE.

18.8.2 Post-Mortem Trace

A post-mortem trace will be printed automatically if a batch job gives
a run-time error. Under timesharing, after typing out the location
and type of error, and the stack analysis, the Debugging System offers
the user various options. The TRACE command produces a trace similar
to the one described under Dynamic Trace above, but with spaces
instead of asterisks to represent block levels, and without, any other
TTY output. The post-mortem trace entries are maintained in a
circular buffer in the Heap. The default length of the buffer is 100
(decimal) but this can be altered by using the /TRACE s.witch to the
compiler, with an appropriate value. Tracing is the default option:
users can compile their programs without trace information by using
the /PRODUCTION switch to the compiler. However, the Trace entry
mechanism is quite efficient, and users are urged not to exclude it,
as this also has the effect of making the stack analysis less useful.
Library procedures are always traced.

18.9 PERFORMANCE ANALYSIS

various features are provided which are designed to help users wishing
to evaluate the performance of their programs.

18.9.1 Heap Space

DECsystem-lO/20 ALGOL is very flexible in its use of memory: space
for arrays, strings, I/O buffers and so on is allocated in an area
called the Heap, which lies between the program code and the stack.
The default initial Heap size is 521 (decimal) words. If a program
needs more Heap than is currently available, the object-time system
moves the stack up in memory to make more room, obtaining more core
from the Monitor as necessary (subject to over-riding constraints
applied by the system).

18-10

RUNNING AND DEBUGGING PROGRAMS

For most programs this provides a reasonable balance between core use
and computation. However, the stack shifting mechanism can be very
expensive if used often and for small expansions. The user can find
out how the Heap is being used by typing the STATISTICS command (see
Chapter 20, section 20.8.6) to the Debugging System after the program
has executed (or simply typing CONTINUE immediately after the End of
execution message). This produces output of the following format:

EXECUTION TIME:
ELAPSED TIME:
MAXIMUM HEAP SIZE: ,# OF STACK SHIFTS:
MAXIMUM # OF USED WORDS IN THE HEAP TABLE:

(The last item is a measure of the fragmentation of the free space in
the heap and is only produced if the optional Heap Integrity Checker
is present in the object-time system, i.e., when assembly switch
FTGETCHK is turned on.)

If the number of stack shifts is larger than, say, ten, an improvement
in performance could be expected from re-compiling the program with
the /HEAP switch value set to the maximum heap size given by the
Statistics type-out.

18.9.2 Code utilization

By judicious placement of labels and subsequent printing
program's profile, the frequency with which a program
particular sections of code can be monitored. The library
INFO can be used to obtain more detailed timing information.

18-11

of the
executes

procedure

CHAPTER 19

TECHNICAL NOTES

These notes concern the authors' particular interpretation
"Revised Report on the Algorithmic Language ALGOL-60"
implementation.

of
and

the
its

1. At all times, strict left-to-right evaluation of statements is
employed. Section 3.4.6 of the Revised Report has been
construed by some experts to mean that left-to-right evaluation
of expressions is not required. However, there are undoubtedly
many ALGOL-60 programs in existence that rely on this feature.

2. Section 4.3.5 of the Revised Report requires that a GOTO
Statement with a designational expression which is a switch
with a subscript out of range be regarded as a dummy statement.
Neither DECsystem-lO/20 ALGOL nor any other ALGOL-60
implementations, to the knowledge of the authors, follow this
rule; there is a side-effect involved in the evaluation of the
subscript.

19-1

CHAPTER 20

THE ALGOL DYNAMIC DEBUGGING SYSTEM

20.1 SUMMARY OF FEATURES

In ALGDDT, the ALGOL programmer has facilities to

1. Interrupt program execution

2. Set pauses and clear them

3. Examine and alter ALGOL variables in scope

4. Examine various system parameters

5. Automatically type ALGOL variables after a pause

6. Continue program execution from where it halted

7. Continue program execution from an appropriate label

20.2 GENERAL REMARKS

20.2.1 Symbol (.SYM) File

ALGDDT requires access at runtime to a file
that is produced by LINK. If it cannot
because it has another name, or resides
opportunity is given to supply its name,
free I/O channel: if there is none, it will
one for it to release and use.

20.2.2 Entering ALGDDT

called Programname.SYM
access the file (perhaps
under another PPN) an

etc. ALGDDT also needs a
ask the user to nominate

To enter ALGDDT from a terminal running a ALGOL program, type -C.
When this is detected, the ALGOL Dynamic Debugger will attempt to
complete executing the current ALGOL statement before passing control
to ALGDDT. Program execution will be halted and, unless ALGDDT was
unable to find a .SYM file, the following message will be typed:

"Stopped at line nnn [,statement n]"

After a run-time error, ALGDDT will be entered (except in a batch
job) .

However, there are cases where the current statement never completes.

20-1

THE ALGOL DYNAMIC DEBUGGING SYSTEM

For example, if ~C is typed during the execution of a statement which
reads data from the terminal, no data will be forthcoming as the user
will be waiting at the other end for the system to enter ALGDDT mode.
To overcome this, a second ~C is required.

ALGDDT may also be entered before execution of a program by use of the
REEnter facility. The program can then be started with the START
command. In this case, the effective "current statement", for
determining scope of identifiers, is immediately before the first
BEGIN of the main program.

20.2.3 ALGDDT Command Format

The syntax of the ALGDDT commands has been designed to resemble ALGOL
commands; all of which are terminated by a semicolon (or
carriage-return), and the lists associated with AUTO commands are
bracketed by a BEGIN-END pair. However the resemblance is
superficial, and for the most part only simple commands can be given
in a single "statement". When the debugger is ready to accept a
command, "»" is prompted. All commands and options may be shortened
to a unique abbreviation (except where noted). Blanks and tabs are
ignored between elements of a command, as are ~readability symbols"
(periods) in ALGOL identifiers. A command may be continued on another
line by typing a control-backarrow or control-underline. Comments may
be introduced by a preceding and the rest of the line will be
ignored.

20.2.4 Line Numbers

Several ALGDDT commands require line numbers. The compiler only puts
line numbers into the symbol table accessed by ALGDDT for those lines
where code is generated (including BEGIN and END statements of a
block, but not for blank lines, declarations, etc.). If the user
gives an "unknown" line number, ALGDDT will scan forward to the next
known line number and use that; this usually has the desired effect.

In a program LINKed from more than one .REL file (~module"), the user
can qualify a line number with a module-name preceded by "IN":

» PAUSE 27 IN Faa

The module-name is the name of the external procedure (truncated to
six characters), or the main program-name (.REL-file name) for the
main program. If the module-name is not specified, the default is the
current module (that in which execution was stopped by PAUSE, ~C or an
error, or the main program before execution is started). Although, a
program can have more than one module with the same name, ALGDDT will
use the one that is also the main program, if any; otherwise an error
message will be typed.

Additionally, in the OBJECT command, an octal address may be specified
by a preceding number-sign (#).

20-2

THE ALGOL DYNAMIC DEBUGGING SYSTEM

20.3 TYPEOUT COMMANDS

The command TYPE is used to display the value of an ALGOL variable or
array element on the terminal. The keyword is followed by a list of
one or more variable names, separated by commas. The whole list is
terminated by a semicolon. If more than one name is given, then all
the names are repeated by the debugger.

Examples:

» TYPE REAL.VARIABLEi 1.2345
» TYPE REAL. VARIABLE, INTEGER.VARIABLEi
REAL. VARIABLE = 1.2345
INTEGER. VARIABLE = 12345
»

20.3.1 String Typeout

When string typeout is requested, the length and decimal byte size of
the string are output first, in parentheses, then

1. In the case of ASCII or SIXBIT strings, the character
representation of the string is typed in quotes,

example:

» TYPE STRING.VARi
» TYPE SIXBIT.VARi

(10,7) "A string<CR><LF>"
(15,6) "A SIXBIT STRING"

2. For strings with a byte size other than six or seven, an
octal representation of the byte values, each separated by a
comma, is typed.

example:

» TYPE NONASCIISTRINGi (8,5)
10,37,17,17,22,1,10,0

Extra bits at the ends of words are ignored.

20.3.2 Array Typeout

If the TYPE command is used with an array name, then the entire
contents of an array is typed. The format of the typeout will
correspond to the structure of the array:

» TYPE ARRAYNAMEi

[0,0]
[1,0]
[2,0]

1.7
2.3
5.4

2.3
1.7

5.4 1.32
5.4 8.1
ETC.

The contents of a single location may be typed by specifying the
location of the element:

» TYPE ELEMENT[1,3,5,200]i 0.0

20-3

THE ALGOL DYNAMIC DEBUGGING SYSTEM

NOTE

ALGOL variables may not be used as
subscripts. All subscripts must be
-simple constants. Array bound checking
is imposed on ALGDDT commands where
appropriate.

Rectangular portions of arrays may be selectively typed by specifying
the relevant ranges:

» TYPE ARRAYNAME [0:1,2:3];

[0,2]
[1,2]

5.4
6.8

1.32
8.1

The whole of a particular dimension can be represented by an asterisk,
e.g., A[1:20,*,1:5].

NOTE

There must be a specification for every
dimension of a multi-dimensional array.

20.3.3 Displaying Current Array Dimensions

The current dimensions of an array can be displayed by using the
DIMENSION command:

»DIM A; [0:17,1:5]

20.3.4 Typeout of Boolean Variables

Boolean variables (or arrays) can be typed using the above commands.
Since FALSE is represented by zero, zero elements or variables will be
displayed as 'FALSE'; non-zero variables having values of -1 (the
value used in directly generated assignments), are either typed as
'TRUE' or octal for other values.

For example:

» TYPE 81,82;
81= False
82= 012345671234(True)

20.3.5 General Points On Typeout

All ALGOL variables in scope will be available for typeout, including
formals, but the possibility of side-effects should be borne in mind.
The only exception is a variable that is declared but never referenced
in the program. For internal reasons, the debugger cannot access such
variables.

Long, unwanted type-outs (of arrays, etc.) may be aborted by typing
two ~Cs. Occasionally this may return control to the monitor, in
which case CONTINUE or REENTER may be typed to return to ALGDDT.

20-4

THE ALGOL DYNAMIC DEBUGGING SYSTEM

20.3.6 Typeout of Object Code

The user may request a typeout of the Macro code for the current ALGOL
statement, using the command

» OBJECT

After a PAUSE this types out the code for the statement that will be
executed next. After a run-time error, the code generated for the
current statement is typed out instead and the instruction where the
error occurred is marked with an asterisk. The user can examine other
statements by using the OBJECT command with the relevant line number
(and statement number if necessary). For example:

» OBJECT 22;

or an octal address:

» OBJECT #275;

In this case if no "IN module" is specified, the address is absolute;
thus the following would dump the accumulators:

» OBJECT (16) #0;

the decimal number of ALGOL statements (words if an octal address
rather than a line number) to be output may be specified by typing a
number in parentheses:

» OBJECT (17) 22;

or

» OBJECT (13);

the typeout is normally in octal, and symbolic instructions.
formats may be specified by using the MODES option:

» OBJECT line-number MODES a,a,a •.• ;

where the a's are chosen from:

7 or A ASCII

6 SIXBIT

S Symbolic Instructions

I or D Decimal Integer

0 Octal

F or R Real Number

L Long Real (each word and the next).

Other

Line-number may be qualified by IN module-name if the program has
external procedures. A complete example is therefore:

» OBJECT (IS) 27,3 IN EXTPRG MODES A,6,S;

This will dump 18 ALGOL statements starting at the fourth statement
on line 27 in the external procedure EXTPRG. The dump will be in
ASCII and SIXBIT characters, and symbolic instructions.

20-5

THE ALGOL DYNAMIC DEBUGGING SYSTEM

20.3.7 System Parameters

ALGDDT maintains a table of certain symbolic variables used in the
system. The contents of these system variables distinguished by a
preceding % can be displayed in the usual way. Most of the system
variables, as defined in ALGPRM, will be available. A few are listed
below as examples.

%DB current data-base register

%SP stack pointer

%CONDL context "DL"

%DL pointer to current display

%VERSHN version # word of compiler used

ALGDDT does not permit alteration of system parameters.

20.4 CHANGING ALGOL VARIABLES

The values of an ALGOL variable may be altered by using a simple
assignment statement:

» INTVARIABLE:= 1235;

Type conversion will take place, but only a single constant is
permitted on the right-hand side of the assignment:

» BaOL :=TRUE;
» BaaL := 003007;
» INT:=l;
» INT :=1.0;
» REAL:=1.2345&7;
» A[1,3] :=18.4;
»S[1,7].[3] := 64;

Note, however, that the following are not legal:

» A:=B;
» C[I,J]:= 20
» D[1,6]. [I] := 66;

Since strings are essentially dynamic in nature, some extra rules
apply. Unless a new byte size and/or length are specified in the
type-in, then the current values are used. Type-in consists of octal
bytes separated by commas. If the numbers typed are too large for the
byte-size in force, then they are truncated, and a warning message is
issued. A string enclosed by single or double quotes is also allowed
if the byte-size is six or seven respectively. A quote may be entered
by typing two quotes. All characters, including carriage returns,
ALT-modes, semicolons, Is, and so on, are entered exactly as typed.
The only exceptions are control-backarrow, which acts as usual; and a
quote, which terminates the string. If more bytes than the specified
length are typed,' then the length is extended. If fewer, then the
extra bytes are zeroed. The string may be continued on another line
by typing control-underline.

20-6

THE ALGOL DYNAMIC DEBUGGING SYSTEM

NOTE

Square brackets have a special meaning
in strings that are to be output (see
Section 16.6.2).

20.5 PAUSES

By setting PAUSES, the user may cause program execution to be
interrupted automatically when specific points are reached.

20.5.1 Setting PAUSEs

Pauses may be applied before any executable ALGOL statement by the
ALGDDT command:

» PAUSE line no [,statement no] [IN module-name];

or

» PAUSE label: [IN module-name];

or

» PAUSE PROCEDURE name [IN module-name];

When this point is reached the message

"Pause at line nnnn [,statement n] in module name"

is typed.

The pause remains in effect, so that subsequent activations of this
piece of code will also cause this message to be printed. Note that
the portions of the command in brackets are optional. If the
statement number is absent, then the first (or only) statement
beginning on that line is assumed. If module name is absent, the
current module is assumed; the main program is the current module
before program execution starts. If the statement specified does not
exist, or has no generated code, the PAUSE is placed on the next
suitable statement, if any. Labels and procedures must, like all
other identifiers, be in scope.

There is no restriction on the number of pauses a user can establish.

If a number (n) is typed in parentheses after a PAUSE instruction,
then the resultant pause will be bypassed n-l times before program
execution is halted.

An upper limit may also be specified for a PAUSE in the form of

» PAUSE (n:m);

This will
including
location.
PAUSE will

cause the break to be taken from the n'th time up to and
the m'th time that the program reaches the breakpoint
On completion of the break action after the m'th pass,
be killed automatically.

PAUSE; with no line number or label specified, sets a PAUSE at the
current statement (after a ~C has been typed).

20-7

THE ALGOL DYNAMIC DEBUGGING SYSTEM

20.5.2 Resetting Of PAUSE Proceed Count

When a pause is established using the ALGDDT command:

» PAUSE (n);

or

» PAUSE (n:nl);

This pause will occur on the n'th time after the program
breakpoint location. Once the break has occurred, it will
time the program reaches this point. To stop subsequent
pauses, the count can be reset by specifying the command

» CONTINUE m;

reaches the
repeat each
unnecessary

This will result in the pause to be taken only on the m'th subsequent
pass and the m'th subsequent pass after that and so on until the PAUSE
is KILLed.

NOTE

This command may be given as a direct
ALGDDT command, or in an AUTO-list.

20.5.3 Clearing PAUSEs

A KILL command is provided for clearing pauses.
varieties are available. After a Pause,

» KILL;

kills the current pause.

Three possible

» KILL line-number [,statement-number] [IN module];

or

or

» KILL label:;

» KILL PROCEDURE procname;
(at least PR must be typed)

kills the specific pause referred to, or results in the message "Pause
specified does not exist."

» KILL ALL; ALL must be typed in full;

kills all currently set pauses.

NOTE

If there are PAUSEs set on two or more
labels or procedures with the same name
in the same module, a block-number (the
one given in listings in the START OF
BLOCK n messages, or in the block CREF)
must be given, thus:

20-8

THE ALGOL DYNAMIC DEBUGGING SYSTEM

» KILL LABEL: 3 [IN module]; 3 is block-number;

thereby resolving the ambiguity.

» KILL A; ! kills AUTO-list A;

20.5.4 Listing PAUSEs

The currently set PAUSEs, and their AUTO-lists, may be listed by use
of the LIST command, which has the following formats:

» LIST;

lists all PAUSEs and the names of all DEFINEd AUTO-lists.

» LIST line-number[,statement-number];

or

» LIST label:; etc. ;

lists the PAUSE specified together with its AUTO-list, if any.

» LIST A;

lists AUTO-list A.

» LIST ALL;! ALL must be typed in full;

lists all PAUSEs and all DEFINEd AUTO-lists.

For example:

» LIST
Proceed-count
19
o
o
88

Autolist
Private
A

Where
27,3 in FOO
LABELl: in MUMBLE
293 in FOO
PROCI in FOO

Defined Autolists: A,C-E,J,L,S-Q

» LIST 27,3;
Proceed count 19, private Autolist:
DIM A: !Type the dimensions of array A;
TYPE I,J,K;
CONTINUE;
»

See note in Section 20.5.2 about ambiguous labels and procedure-names.

20-9

THE ALGOL DYNAMIC DEBUGGING SYSTEM

20.5.5 Automatic Execution of Commands After PAUSE

Any pause can have an associated AUTO-list, that is a list of commands
that are executed whenever the pause is reached. AUTO-lists can
contain almost any ALGDDT commands. These may either be typed in
immediately after declaring a PAUSE, or they may be identified by a
single letter and referred to indirectly. The following two examples
would have the same effect:

(direct)
» PAUSE 17 BEGIN;
» TYPE I, J, K;
» END;

(indirect)
» DEFINE B;
» TYPE I, J, K;
» END;
» PAUSE 17 AUTO B;

NOTE

The prompt is followed by a Tab when
reading an AUTO-list in either mode.

The advantage of the indirect method is that the same list can be
referred to from different pauses. If the direct method is used, the
AUTO-list is destroyed when the controlling pause is KILLed. ALGDDT
does not check AUTO-lists for consistency, thus

» PAUSE 17 BEGIN; TYPE A; KILL; END

would only be obeyed once, since the KILL instruction would kill both
pause and list. AUTO-lists are, however, checked for syntax (legality
of commands, etc.), but not for semantics (scope of identifiers, etc.)
as this depends on the context of the PAUSE from which they are
invoked. AUTO-lists are terminated by an END and elements in the list
are separated by semicolons or carriage returns.

The action on detecting an error during execution of an AUTO-list can
be controlled by means of a switch on the AUTO or BEGIN keyword.
However, this switch only controls the action for invocation of this
AUTO-list from the PAUSE.

IGNORE

CONTINUE

KILL

STOP

No error message, continue to next element of
AUTO-list.

Type error message, continue to next element of
AUTO-list.

Type error message, KILL reference to this
AUTO-list from this PAUSE. If this is a "private"
AUTO-list (defined by BEGIN) it itself is KILLed.

Type error message, go to debugger command level
(default) .

It is sometimes useful to suppress the "Pause at ••• " message when a
PAUSE is reached (especially if the associatied AUTO-list ends with a
CONTINUE command); this may be done by using the /SILENT switch on
the AUTO or BEGIN keyword. Note, however, that error messages will
still be typed unless /IGNORE is also used. For example, suppose that

20-10

THE ALGOL DYNAMIC DEBUGGING SYSTEM

a program was failing because a variable (I) was not initialized at
the start of a loop (on line 25); the following would be a temporary
(and inefficient!) cure:

» PAUSE 25 BEGIN/SILENT;
» 1:=0;
» CONTINUE;
» END;
» START;

20.5.6 DEFINE Command

This command is provided to enable the user to define an AUTO-list for
use in a subsequent PAUSE or AUTO command. The format is:

» DEFINE A lOr any valid AUTO-list name;
» (ALGDDT commands)
» END;
»

20.5.7 EXTEND Command

EXTEND enables additional commands to be appended to a previously
DEFINEd AUTO-list. The format is:

» EXTEND A;
» (ALGDDT commands)
» END;
»

This command can also be used to define an AUTO-list, and can
therefore be used instead of the DEFINE command.

NOTE

If an AUTO-list ending with a CONTINUE
command is EXTENDed, the new commands
will not be executed. No error will be
printed.

20.5.8 AUTO Command

A command is provided to invoke a DEFINEd AUTO-list directly. The
format is, for example:

» AUTO A;

NOTE

AUTO may appear within another
AUTO-list. Up to 26 (decimal) levels of
nesting of this kind are permitted.

20-11

THE ALGOL DYNAMIC DEBUGGING SYSTEM

20.6 EXECUTE COMMANDS

20.6.1 CONTINUE

The simplest execute command is CONTINUE. This continues normal
execution of the program until it terminates, meets a pause, or the
user types ~C.

20.6.2 GOTO

GOTO (or GO TO) can take two forms,

» GO TO LABEL:;

or

» GO TO line number [,statement number];

In either case, the command is only valid if the destination is within
scope, otherwise the message

"Identifier does not exist, or is out of scope"

is printed. No ALGOL code is executed, and the status of the program
is unchanged. Unless a break-point has been set to the destination,
program execution will proceed as if CONTINUE had been specified.

Formals may be specified as labels.

20.6.3 START

If the debugging system was entered by way of the initial REEnter
sequence, program execution may be started by using the START command.

20.6.4 RETRY Command

This command enables an ALGOL program to be entered and executed from
the beginning of the statement in which an error has occurred.

20.6.5 NEXT

NOTE

RETRY differs from CONTINUE as the
latter continues program execution from
the point within the statement where the
error has occurred.

The NEXT command allows the user to step through a program statement
by statement. Typing NEXT has the same effect as setting a PAUSE on
the "next" statement and then typing CONTINUE (except that the PAUSE
kills itself when reached). Even in cases where the current statement
transfers control to any point other than the next sequential
statement (either explicitly by a GO TO or implicitly as part of a
conditional IF or iterative FOR/WHILE statement), NEXT remains in
operation until the KILL command is issued.

20-12

20.7 DUMP

THE ALGOL DYNAMIC UESUGGING SYSTEM

NOTE

If an ALGOL statement includes embedded
assignments, extra line numbers may be
generated. This will cause NEXT to stop
after completing the assignment rather
than at the end of the statement. A
second NEXT command will rectify this
and enable pauses to be taken between
all subsequent statements.

The DUMP command may be used to output the values of all currently
active variables. The output of arrays may be suppressed by using the
SCALARS keyword. This command has an optional parameter. If this is
absent, then only the variables declared in the current block will be
dumped. If a numeric parameter, n, is specified, then all variables
declared in the n enclosing blocks will also be dumped. If "DUMP ALL"
is specified, then the variables declared in all the currently active
blocks will be dumped.

NOTE

DUMP is static in nature, that is, any
variables enclosed in blocks in
recursively-activated procedures will
only have the value of the "latest"
occurrence dumped.

20.7.1 REDIRECT Device:filename.ext [proj,prog]

This command causes all ALGDDT output from DUMP commands to be
directed to the device designated. If the device is a disk and the
filename is specified, then the resultant output is appended to that
file.

The command REDIRECT with no arguments causes DUMP output to be
directed to the TTY.

NOTE

The FINISH command should be
instead of ~C to exit from ALGDDT
REDIRECT is in force, else the
file will not be closed.

20.8 MISCELLANEOUS COMMANDS

20-13

used
when a
output

THE ALGOL DYNAMIC DEBUGGING SYSTEM

20.8.1 Accessing "hidden" Variables - UNWIND and BACK

In many cases, there are variables that cannot be accessed because
they are "hidden" in the current context, either because there is a
variable of the same name in an inner block or in cases of recursion.
The UNWIND command is provided to allow access (for display or change)
to these variables. It refers to the dynamic block levels that are
typed in the history trace (produced on error or A C , or by the WHERE
command). It has three formats:

» UNWIND n;

moves ALGDDT's context for variable accessing to level n;

» UNWIND -n;

moves the context n levels "out" from the true context (that at which
program execution was stopped);

» UNWIND 0;

moves the context out to the outermost block.

Also, the command

» UNWIND;

or

» BACK;

returns the context to the true context.

20.8.2 EXPERT and NOVICE

All error messages have a full and an abbreviated form. Normally the
full form is typed, but the EXPERT command causes the short form to be
used. The NOVICE command causes ALGDDT to revert to the full form.
In addition, the user may type a? after a short message, and the
full message will be typed.

The EXPERT mode also prevents ALGDDT from typing the procedure history
(after AC or error) which can be obtained by using the WHERE command.

If a line

ALGDDT/EXPERT

appears in the file SWITCH.INI the user's area, ALGDDT will be entered
with EXPERT mode in force (until changed by a NOVICE command).

20.8.3 WHERE

The WHERE command causes the system to retype the stack trace that was
produced when the error (if any) occurred. This is intended to be of
particular use for users of visual display terminals:

» Where
On line 5 in module 8
In procedure PROCI (level 2)

20-14

THE ALGOL DYNAMIC DEBUGGING SYSTEM

Called from line 12 in procedure PROX (level 1)
Called from line 16 in main program
»

(The "levels" are for use in the UNWIND command, see section 20.8.1.)

20.8.4 TRACE

The TRACE command causes ALGDDT to type the contents of the trace
buffer. This consists of the names of the most recent labels and
procedures encountered, with the most recent first. (The typeout may
as usual be aborted by typing two R CS , or a -0.) The number of entries
in the buffer is 100 (decimal) by default. This value may be changed
by giving the /TRACE switch to the compiler. Labels are distinguished
by a : and library procedures by a * The indentation of the names
gives the dynamic block level (two spaces per level and each procedure
is enclosed by an extra notational level):

» TRACE

!ALGOL postmortem trace (latest first)

PRINT*
LABELl:
LABEL2:
LABELl:

FOO

LABELl:
OPENFILE*

MAIN. PROGRAM

»

20.8.5 PROFILE

This command types the history of the program in terms of the number
of times each label and procedure has been encountered; typeout is in
the same order as the occurrence of the objects in the program. As
for TRACE, labels are marked by a : and library procedures by a *

For example:

» PROFILE

Profile print

Count

3
1
o
1
o
1
1
o

»

name

LABELl:
LABEL2:
LABEL3:
FOO
BAR
PRINT*
OPENFILE*
SELECTOUTPUT*

20-15

THE ALGOL DYNAMIC DEBUGGING SYSTEM

20.8.6 STATISTICS

This command types the execution time, elapsed time, and core size of
the program.

20.8.7 FINISH

This command causes the system to exit to the Monitor, first closing
all files and releasing all devices.

NOTE

This must be used, rather than ~C, if a
REDIRECT is in force to avoid losing the
output from DUMP commands.

20.8.8 ONTRACE and OFFTRACE

These two commands are provided to control the dynamic trace facility
(see Chapter 18). Note in this connection that tracing is suppressed
while executing ALGDDT commands (this is significant as accessing a
formal by name may cause execution of pieces of code that would
otherwise be traced).

20.8.9 HELP

A HELP command is provided which types the contents of file
SYS:ALGDDT.HLP or HLP:ALGDDT.HLP.

20.8.10 SOURCE

This command types any ASCII file. The format is:

» SOURCE device:filename.ext[proj,prog];

The defaults are: DSK:ALGDDT.ALG; PROJ, PROG, or both may be omitted
when those of the'user will be used. S.F.D.s are not accepted.

20.8.11 Indirect Command Files

In response to a prompt from ALGDDT, the user may use an indirect
command file by specifying the filename with a preceding @. This will
enable commands to be read from that file. If no filename is
specified then DSK:ALGDDT.CMD will be taken as default. This feature
is particularly useful for inputting frequently used AUTO-lists.

20-16

THE ALGOL DYNAMIC DEBUGGING SYSTEM

20.9 SUMMARY OF ALGDDT COMMANDS

AUTO *
BACK
BREAK *
CONTINUE *
DEFINE *
DIMENSION
DUMP
END *
EXPERT
FINISH *
GOTO *

(OR GO TO)
HELP *
KILL *
LIST *
NEXT *
NOVICE
OBJECT
OFFTRACE
ONTRACE
PAUSE *
PROFILE
REDIRECT *
SOURCE
START *
STATISTICS
TRACE
TYPE *
UNWIND *
WHERE *
The commands marked with an asterisk (*) in the above list may also be
abbreviated to a single character, thus S means START, not STATISTICS.

20-17

CHAPTER 21

MACRO SUBROUTINES

21.1 GENERAL

The subroutines which may be called from an ALGOL program must have
one of the following attributes:

1. The routine must obey the FORTRAN calling interface
specification, and be called by way of the FORTRAN interface
procedures, for example, FIOCALL, FIOICALL and so on.
Further information can be found in Chapter 17, section 17.5.

2. True ALGOL-like routines must begin with instructions: to
call the OTS routine PARAM; to set up the environment and
obtain any parameters; to provide an exit for PARAM to
return any results (in the case of a TYPE procedure).

This chapter deals with specific details of
Reference should be made to files ALGSYS
etc., and to ALGLIB for examples of
subroutines.

21.2 THE PROCEDURE HEADING

SEARCH ALGPRM,ALGSYS

the ALGOL implementation.
and ALGPRM for definitions

correctly written MACRO

must be included at the beginning of a MACRO procedure if the rest of
the material uses symbolic names.

The first executable instruction in the procedure should be a call to
the OTS routine PARAM. This is followed by a set of descriptor words
which describe the type of the procedure and the type of each of the
formal parameters.

Example:

INTEGER PROCEDURE P(A,B,C); VALUE A; INTEGER A;
REAL B; STRING C;

would have a header similar to the following:

.EXIT==l

.A==3

.B==4

.C==7
JSP
EXP
XWD
XWD

AX,PARAM
PMB
0,11
$PRO!$I!$SIM 4

21-1

XWD
XWD
XWD

MACRO SUBROUTINES

$VAR!$I!$FOV,.A
$VAR!$R!$FON,.B
$VAR!$S!$FON,.C

An explanation follows:

1. The first word must normally be JSP AX,PARAM (AX is
accumulator l6~ PARAM is a macro defined in ALGSYS, by the
ALGDIR macro, and which expands to @%ALGDR+l, i.e. @4000ll
which contains the address of the OTS routine PARAM.)

2. The second word is the address of the post-mortem block (or
zero if none). The post mortem block is used by the TRACE
features, and is laid out as follows, in the low segment:

PMB: o
XWD WORDS,CHARS

THE PROFILE WORD
IN THE NAME

SIXBIT/NAME/ PRINTED BY TRACE ETC.

NOTE

The OTS expects the name to be
terminated by a zero byte ("SIXBITZ d).

If the name is a multiple of six
characters in length, an extra word of
zeroes may have to be supplied.

3. The third word is the length of the fixed stack required.
There must be enough space for the exit formal and the
parameters, see below. More space can be requested, and may
be used for any purpose as local storage by the procedure.

Length of fixed stack needed:

For the exit instruction (always needed)

For a typed procedure with I-word result
(Integer, Real, Boolean)

For a typed procedure with 2-word result
(Long Real, String)

For each parameter called by name
(Any type)

For each parameter called by value:
Integer,Real,Boolean,Label,Procedure
Array,String,Long Real

1 word

1 word

2 words

3 words

1 word
2 words

4. The fourth word describes the procedure in the left half, and
the number of parameters +1 in the right half. The left half
must always be

"$PRO!$SIM!TYPE"

where "type" is one of:

$N NON-TYPE
$1 INTEGER
$R REAL
$LR LONG REAL
$S STRING
$B BOOLEAN

21-2

MACRO SUBROUTINES

5. The remaining words describe the formal parameters, and tell
PARAM where to put them. The left half is a bit pattern,
giving the kind, type and status of the parameter:

Kind is one of:

$VAR Variable
$ARR Array
$PRO Procedure

Type is one of $I, $R, $LR, $S or $B as described above,
or one of:

$L Label
$WV Any type
$AB Arithmetic or Boolean
$IB Integer Or Boolean
$WF Real or Long Real
$WA Arithmetic (Integer, Real or Long Real)

Status must be one of:

$FON Formal by nname"
$FOV formal by "value"

NOTE

All three fields must be included.

The right half of each descriptor word is the offset in the
fixed stack where PARAM is to store the elaborated parameter.
Conventionally, these are in ascending order of parameter
position, but this is not necessary, and gaps may be left if
desired. PARAM obeys these offsets implicitly (to check them
would be inefficient). If insufficient words are allocated,
or insufficient fixed stack is requested for each parameter,
parameters will overwrite each other and be lost, or worse.
The space required for each parameter is as described above.

It is conventional to use symbolic names for the offsets, as
in the example above.

NOTE

Word 1 is always the exit instruction,
and word 2 (I-word result) or words 2
and 3 (2-word result) must be reserved
for the result of a typed procedure.

21.3 ACCESSING FORMAL PARAMETERS

Parameters may be called by "name" or by "value". In the by "value"
case, PARAM places the actual value on the fixed stack in the location
specified by the right half of the descriptor words: thus to load
parameter A in the example into A3,

MOVE A3,.A(DL)

will suffice. Obviously, two word parameters occupy two words of
stack. DL (accumulator 15) is always the base of the fixed stack.

21-3

MACRO SUBROUTINES

Accessing formal parameters by "name" is more complicated.
Essentially, PARAM stores instructions on the fixed stack, which the
procedure XCT's. The three locations are known as F[O], F[l] and
F [2] •

F[O] contains an instruction which, when executed, will fetch the
parameter into accumulator 0 (and 1 for a two word value). So, to
load parameter B's value into accumulator 0, in the example, write:

XCT .B(DL)

NOTE

The instruction in F[O] (.B(DL) in this
case) may be anything from a "MOVEI
AO,value" for a constant actual
parameter, to a PUSHJ to a complicated
OTS routine which may in turn call other
parts of the user program ("thunks").
All accumulators except DL, DB and SP
may be destroyed, and the stack may be
shifted.

The various name parameters must be evaluated exactly once each, and
in order left to right, to obey the Algol rules. Therefore storing
into a formal by name is a two-step process. At the correct point in
the evaluation of parameters in the left to right sequence, an
XCTA (XCT 1) of F[O] is written. This elaborates the address of the
parameter into A2, which must now be saved. When it is required to
store a value (from AO and perhaps AI) into the parameter, XCT F[l] is
written, with A2 set up as it was after the F[O]. (In very simple
cases of actual parameters, A2 has no meaning and F[l] contains an
instruction to store the value directly, e.g. a MOVEM.) Thus, to
store the contents of A3 into parameter B in the example, write:

PUSH SP,A3 THE XCTA MAY CLOBBER ANY AC!!
XCTA .B(DL) SET UP A2
POP SP,AO
XCT .B+l(DL) STORE AO INTO B.

NOTE

The XCTA must be in the proper place in
the left to right sequence but the XCT
F [1] need not be.

F[2] is never referenced directly by the procedure as it is used by
PARAM to store information needed to evaluate the parameters. A
simple case would be: suppose the example procedure P were called by

1:= P(I,123456789,"ABC");

Then the three words for B on the fixed stack would be:

.B(DL)
• B+l (DL)
.B+2(DL)

F [0]
F [1]
F[2]

MOVE
SYSERI
~D123456789

21-4

AO, .B+2 (DL)
11,

MACRO SUBROUTINES

(The SYSERI UUO produces an error-message, because a formal cannot be
used as a store when the actual is a constant.)

In more complicated cases, F[2] is used to store the context (in the
left half, = delocated DL), and address (right half) of a thunk.

Special considerations apply for formal arrays, labels, procedures and
strings.

The code to go to a formal label is:

XCT
JUMPN

.L(DL)
A2, (A2)

F [0]

A2 will be zero if the actual is a switch whose subscript is out of
bounds.

For formal arrays, the header word pair (see section 21.6) is stored
in F[O] and F[l] (as arrays are always static): XCT's should not be
used for arrays.

For strings, XCT F[O] will return with AO and Al containing the string
header and A2 containing the address: XCTA and XCT F[l] are used to
store a new string header, but not to store a byte into an existing
string. In some circumstances A2 will point to AO, that is, the
string header will be in AO and AI, and nowhere else. This only
happens when the actual parameter is a dynamic expression, i.e. a
call of a string procedure.

To obey a formal procedure, an XCT of F[O] is coded, followed by
actual parameter descriptor words, just as though a normal procedure
were being called, with the PUSHJ replaced by the XCT F[O]. The first
desriptor is XWD type of procedure wanted, number of actuals+l. The
remaining words, one for each actual, are coded with bits 1 to 11 as
described above for formals. Bit 0 is set if dynamic, that is, a
formal actual, or a thunk. Bits 18-35 are the value for an immediate
constant (simple static expression), the address for a non-immediate
constant (regular static expression) or a static (e.g. own) variable,
or the Q address for dynamic variables. The Q address is the offset
in the fixed stack of the actual variable, and bits 12-17, the P
address, are the appropriate procedure level, that is, the offset in
the current display of the context DL of the variable. For a thunk (a
dynamic expression), the right half is the address of the thunk.
Before using dynamic variables and expressions as actual parameters to
formal procedures, the reader is advised to inspect some generated
code (with ALGDDT) similar to the case in question, as there are
complications.

21.4 RETURNING RESULTS FROM TYPED PROCEDURES

The procedure stores the value into the second word (and third word in
the case of a two-word result) of the fixed stack, thus:

MOVEM A7, .EXIT+l (DL) iwhere . EXI'r 1

in the example.

21-5

MACRO SUBROUTINES

21.5 PROCEDURE EXITS

The first word in the fixed stack contains an appropriate jump to
return to the call-site (via PARAM: the stack must be "unwound", and
the result may need its type converted), so the procedure exits by use
of:

JRST .EXIT(DL) ;Where .EXIT 1

21.6 FORMATS OF VARIABLES

Integer and Real variables are obvious. Long real variables
the format appropriate to the CPU type in use (KA or KI/KL).
variables are zero for "false", and non-zero (including
values) for "true".

are in
Boolean

negative

String variables are passed as a two word header. The format is:

o 5 6 11 12 17 18 35
------+-------+-------------+--------------------------------
! 44 B 0 address
------+-------+-------------+--------------------------------

flags length in bytes
------+-------+--
b is the byte-size.

The first word is a byte pointer to the string (such that an ILDB will
get the first byte). This word is zero for a null string.

The second word is mostly taken up by the length in bytes (odd bytes
in the last word may be rubbish). The flags are:

bit 1 = dynamic (not a constant)
bit 2 = result of a string-type procedure

When a new value is assigned to
deleted. The safest way to do
(string assign), which takes
constants and so on, thus:

a string, any old string must first be
this is to call the OTS routine STRASS
the necessary care not to delete

PUSH
PUSH
PUSH
PUSH
PUSHJ
; Result

SP,word-O-of-new-string's-header
SP,word-l-of-new-string's-header
SP,word-O-of-old-string's-header
SP,word-l-of-old-string's-header
SP,STRASS

in AU ,AI

NOTE

STRASS will cop~ the string unless bit 2
is set in the new string's header.

Arrays are also passed as a two word header, thus:

21-6

MACRO SUBROUTINES

o 17 18 35
-----------------------+----------------------

type or~g~n

-----------------------+----------------------
- # subscripts DV address

-----------------------+----------------------

where:

1. "type" is integer etc. (coded as in descriptor words, see
above).

2. "origin" is the address of the (possibly imaginary) zero'th
element in the array (if one-dimensional), or in the N-l'th
Iliffe vector (if N-dimensional); see below.

3. "DV address" is the address of the Dope Vector, which is used
for subscript checking (and by the Debugging System): two
words per dimension, containing the low and high bound of
each.

This applies to a vector. However, for a matrix (two dimensional),
the right half of word 0 is the address of the zero'th element of the
Iliffe vector, which is as follows:

----------------------------------- (dimension a:b)
origin of row a

origin of row a+l

etc.

origin of row b

where the origins are addresses of the (possibly imaginary) zero'th
elements. For more than two dimensions, a hierarchy of Iliffe vectors
exists. (The purpose of this is to allow addresses of elements to be
calculated without multiplications). Arrays and strings (except for
constant strings) are allocated in the Heap, and occurences local to a
block are deleted at block exit. Strings are initialised to "null H

(the first word of the header is zero) at block entry.

21.7 PROCEDURES WITH A VARIABLE NUMBER OF PARAMETERS

This facility is not provided by the Algol-60 language but is
available in the DECsystem-lO/20 ALGOL run-time system. It is needed
for some library procedures (IMAX etc., READ, PRINT, etc.)

The procedure must have a special heading, viz:

PROC:
XWD
JSP
etc.

DL,offset
AX,PARO

where "offset" is a location on the fixed stack where PARO (an
offshoot of PARAM) stores the number of actuals. The maximum number
of actuals allowed is determined by the number of formal descriptors.
If wild types were used in the formal descriptors, the actual types

21-7

can only be obtained by
(PRGLNK(DL) contains
actuals.)

MACRO SUBROUTINES

picking up the actuals' descriptor
the call-site address, advanced over

21.8 INCLUDING THE PROCEDURE IN THE LIBRARY

words
the

The procedure may simply be added to the library (ALGLIB.REL) with
FUDGE2 or MAKLIB.

If the procedure has a different version for KA and KI/KL processors,
the LIBENT macro should be used (refer to file ALGSYS.MAC). An entry
must also be made in a table in ALGSTB (in the compiler), to associate
the name with the alias: this is done by using the LIB macro, which
is described in comments in ALGSTB.MAC.

21.9 UTILITY ROUTINES AVAILABLE

A number of the routines in the OTS are available for use by Macro
procedures.

21.9.1 Getting Core

Core may be obtained in the Heap by calling GETOWNi any amount may be
had, and GETOWN will expand the program, shift the stack etc. as
necessary. Calls are:

To get core:

MOVE I AO,amount wanted
PUSHJ SP,GETOWN i or GETCLR if wanted zero'd

on return, Al = address of core.

To return core:

AO,O MOVEI
MOVE
PUSHJ

Al,address of piece
SP,GETOWN i not GETCLR!

21.9.2 Input/Output

Buffered mode input/output may not be done directly, because the
monitor will allocate the buffers above the stack, which may later
have to expand or be shifted to allow the heap to expand. Direct
access to the OTS routines is however allowed, as follows.

21.9.3 Device Open

MOVE
HRLI
HRRI
MOVEI
PUSHJ

AO,[SIXBIT/device/]
Al,i-buffers-required
Al,channel-number
A2,mode
SP,INPT

21-8

o will give default

o is ASCII
or OUTPT

MACRO SUBROUTINES

On return, Al is zero if successful. If unsuccessful, Al contains an
instruction which if XCT'd will give the standard failure message,
etc.

TO obtain a free channel number, scan the I/O directory (16 words
starting at %IODR(DB)) for a zero word.

21.9.2.2 File Open

Al,channel number MOVEI
MOVE
MOVE
MOVE
MOVE
PUSHJ

A2, [SIXBIT/Filename/]
A3, [SIXBIT/Extension/]
A4, [<protection>B9]
AS, [project"programmer]
SP,OPFILE

On return, AD is zero if successful. If not, it contains the monitor.
error code (as returned from LOOKUP or ENTER) plus 100 octal. The
channel number is still in AI, and the standard error message and
action may be obtained by obeying:

IOERR 5, (AI)

21.9.2.3 File Close

AI,channel number MOVEI
PUSHJ SP,CLFILE May give error messages.

21.9.2.4 Channel Release

MOVEI AI,channel number
PUSHJ SP,RELESE
;non-skip if error (channel not in use)
;skip return if OK

21.9.2.5 Channel Select

For Input:

MOVEI
HRLM

A?,channel-#
A?,%CHAN(DB)

For Output:

MOVEI A?,channel-#
HRRM A?,%CHAN(DB)

21.9.2.6 Read Byte

PUSHJ SP,INBYTE USES AIO-A13
;non-skip if end of file
;here with byte in A13

21-9

MACRO SUBROUTINES

21.9.2.7 Write Byte

MOVE A13,byte
PUSHJ SP,OUBYTE ; USES AIO - A13
;non-skip if end of file
;skip if OK.

21.9.2.8 Break Output

PUSHJ SP,BRKBYT ; USES AIO - A13
;non-skip if end of file
; skip if OK

21.9.2.9 Read Number

MOVEI A2,type 0 for integer
1 for real
2 for long real
4 for any type

PUSHJ SP,READ. note the period
uses almost all AC's.

here, number is in AO (and Al if Long Real)
type is in A2 if "any" was used.

21.9.2.10 Print Number

MOVEI A2,type; as above (0,1, or 2)
; number in AO (and Al if Long Real)
; A3 = # digits before decimal point
; A4 = # digits after decimal point
; A3 = A4 = 0 for "standard mode"
PUSHJ SP,PRINT. ; note the period.

; uses most AC's
on return, A3 = # characters output.

To print an integer in standard mode,

integer in AO
PUSHJ SP,IPRINT

21.9.2.11 String Terminal Output

(regardless of current channel settings)

MOVEI
PUSHJ

or PUSHJ

Al,address of
SP,MONIT

MONITO
MONSIX

string (0 byte ends)

SP,CRLF

if no break required, or
if break required, or
if string is sixbit (no break)

to type a newline

NOTE

Due to the buffering action of the OTS
using OUTSTR (TTCALL 3,) UUO's may cause
output to appear in the wrong order.

21-10

MACRO SUBROUTINES

21.10 GENERAL NOTES

1. any register may be destroyed by a procedure, except for:

DB=14
DL=15
SP=17

Pointer to database
Pointer to current display
Stack pointer

NOTE

These three registers must
correct, since many OTS
(parameter fetching, stack
handler, error handler, etc.)
them.

always be
routines
overflow

depend on

2. No register is safe over XCT's to access formals by ~nameu.

3. The stack may be shifted by any OTS routine, including XCT's
to access formals by "name". Therefore any stack addresses
must be "delocated" (use SUBI An, (DB» before, and
"relocated h (use ADDI An, (DB» after every such call. This
also applies to string header addresses (returned in A2 by
XCT F[O] - see above.)

4. Any amount of stack and heap may
(subject to external constraints).
areas as needed.

be used by a procedure
The OTS will extend these

5. The OTS will trap all arithmetic errors including overflows.

6. The OTS will intercept ~C (this causes entry to the Dynamic
Debugging System (ALGDDT) in version 10).

7. All formals by nname" must always be accessed, and in strict
left to right order, and once each only. "Access" here means
XCT or XCTA on F[O]. Even formals by name which are not
wanted in certain cases must still be accessed, if the Algol
side-effects rules are to be obeyed. (For more detail on
these requirements consult the revised report).

21-11

ABS, absolute value, 5-2, 5-3,
17-2

Actual parameter, 11-1, 11-2,
11-9

Addition, 2-1
Addition, operator precedence,

5-1
ALGDDT, 20-1
ALGDIR, 21-2
ALGLIB, 1-3, 17-1, 17-3, 18-4,

21-1, 21-8
ALGOL-60, 1-1, 6-1, 7-1
ALGOL-68, 1-1
ALGOL sy~bo1s, 2-1
ALGOTS, 1-3, 16-1, 17-1, 18-10,

21-1, 21-8, 21-11
ALGPID1, 20-6, 21-1
ALGSTB, 21-8
ALGSYS, 21-1, 21-2, 21-8
ALL, 17-6
ALT-modes, 20-6
ru~D, Boolean operator, 5-3, 5-4
AND, delimiter word, 2-3
ARCCOS, 17-1
ARCSIN, 17-1
ARCTAN, 17-1
Arithmetic conditions, 5-4, 5-5
Arithmetic expressions, 5-3
Array bound checking, 18-6,

18-7, 20-4
Array declarations, 2-1, 2-2,

9-1
ARRAY, delimiter word, 2-3
Array elements, 9-2
Array subscript, 14-1
Array typeout, 20-3
Arrays, 9-1, 18-10
Arrays, compiler restrictions,

1-2
Arrays, OWN, 15-1
ASCII, 2-1, 16-2, 16-3, 16-8,

16-11, 17-5, 20-5, 20-16
ASCII constants, 2-2, 4-3
ASCII strings, 13-3, 20-3
Assembly switch FTGETCHK, 18-11
Assignment statement, 20-6
Assignments, 1-2, 4-2, 6-1
AUTO, commands, 20-2, 20-11,

20-17
AUTO-lists, 20-8, 20-9, 20-10,

20-16
Automatic conversion, 5-2
Automatic conversion of

constants, 4-2
Automatic type conversion, 16-8

INDEX

BACK, 20-14, 20-17
BACKSPACE, 16-10
Batch, 18-10
BEGIN, 6-3, 10-1, 20-2, 20-10
BEGIN, delimiter word, 2-3
BEGIN-END, 20-2
Binary image mode, 16-2
Blanks, 20-2
Blocks, 18-8
Block structure, 10-1
BOOL, dummy function, 5-5
Boolean (and octal) constants,

4-3
BOOLEAN, delimiter word, 2-3
Boolean, expressions, 4-3, 5-3,

7-2
Boolean, scalar variables, 3-2,

3-3
Boolean variables, 20-4
Bound, array dimension

procedures, 17-2
Bounds, 9-2
Bounds, OWN arrays, 15-1
Brackets, 4-3, 4-4, 9-1
BREAK, 20-17
BREAKOUTPUT, 16-6
Break output, special editing

character, 16-7, 16-12,
21-10

Buffering, 16-3
Buffers, I/O, 18-10
BUFFERS:n, 18-2
Byte manipulations, 17-3
Byte, read, 21-9
Byte size, string, 20-3
Byte strings, 13-1, 16-6
Byte subscripting, 2-1, 13-2,

14-1, 16-10

~C (Control C), 20-2, 20-4,
20-7, 20-13, 20-14, 20-15,
20-16

CALL, 17-4
CALL BY NAME, 11-1, 11-6, 21-3
CALL BY VALUE, 11-1, 11-2, 21-3
Card punch, 16-1, 16-2
Card reader, 16-1, 16-2
Carriage return, 4-3, 20-6
CDP, device name, 16-2
CDR, device name, 16-2
Channel, release, 21-9
Channel number, 16-1, 16-4
Channels, 16-2, 16-3, 16-10

Index-1

INDEX (CONT .)

Channels, undefined, 18-6
Character constant; ASCII, 4-3
CHECKOFF, 18-2
/CHECKOFF, compiler switch, 18-7
CHECKOFF, delimiter word, 2-3
CHECKOFF, directive, 18-6
CHECKON, 18-2
/CHECKON, compiler switch, 18-7
CHECKON, delimiter word, 2-3
CHECKON, directive, 18-6
CLOSEFILE, 16-4
COMMENT, 2-4
Comments, 2-2, 2-4, 20-2
Comment after END, 11-10
COMMENT, delimiter word, 2-3
Commentary, 11-10
Comparison operators, 13-1
Compilation, independent, 18-3
Compilation, programs, 18-1
Compiler extensions, 1-2
Compiler restrictions, 1-2
Compiler switches, 18-2
Compiler version words, 17-5
Compound statements, 6-3, 14-2
Compound symbols, 2-2
CONCAT, 17-2
Concatenation, 13-3
Conditional operands, 14-1
Conditional statements, 7-2,

14-2
%CONDL, 20-6
Constants, 4-1, 4-2, 4-3, 5-2
Constants, REAL, compiler

extension, 1-2
Constraints, compiler, 1-1
CONTINUE, 18-11, 20-4, 20-10,

20-12, 20-17
Control-backarrow, 20-2, 20-6
Control C, ("C), 20-2, 20-4,

20-7, 20-13, 20-14, 20-15,
20-16

Control transfers, 7-1, 7-2
Control-underline, 20-2, 20-6
Control-back arrow, 4-3
Controlling listing of the

source program, 18-7
Conversion type, 17-2
COPY, 13-3, 13-4, 17-2
Core size, 17-5
COS, 17-1
COSH, 17-1
CREF, 18-8, 20-8
/CREF, 18-7
Current data-base register, 20-6

Dangling ELSE ambiguity, 7-2
Data, numeric output, 16-9
Data transmission, 16-1

Date, 17-5
%DB, 20-6
DCALL, 17-4
Debugging programs, 18-1, 18-5
Debugging, system, dynamic,

17-6, 20-1
Declaration of an array, 10-3
Declarations, 3-2, 10-1
DECtape, 16-1, 16-2, 18-1
Default Input/Output, 16-10
DEFINE, 20-11, 20-17
Delete, files, 16-4
DELETE, typeless procedure,

13-4, 17-2
Delimiter words, 1-2, 1-3, 2-2,

2-3, 5-3, 18-2
Designational expressions, 14-3
Device allocation, 16-1
Device modes, 16-2
Devices, 16-1
DIM, 17-2
Disk, 16-1, 16-2, 18-1
DHlENSION, 20-4
DIMENSION, 20-17
DIV, 5-1, 5-2
DIV, delimiter word, 2-3
Division, 2-1
Division, operator precedence,

5-1
%DL, 20-6
DO, 8-1
DO, delimiter word, 2-3
DSK, device name, 16-2
DTA, device name, 16-2
Dummy functions, BOOL and INT,

5-5
Dummy variables, 11-1
DUMP, 17-6, 20-13, 20-17
Dynamic bounds, 10-3
Dynamic Debugging System, 17-6,

20-1
Dynamic Trace, 17-6, 18-9, 20-16

Elapsed time program, 20-16
ELSE, 7-2, 14-2
ELSE, delimiter word, 2-3
Embedded assignments, 6-2, 20-13
END, 6-3, 10-1, 20-2, 20-17
END, delimiter word, 2-3, 11-10
End-of-file, 16-11, 16-12
ENDFILE, 16-10
ENTlER, transfer function, 5-2,

5-3, 6-1, 17-2
EQV, Boolean operator, 5-3, 5-4
EQV, delimiter word, 2-3
Error returns, 16-3, 16-5
Error trap numbers, 18-6
Evaluation, of statements, 19-1

Index-2

INDEX (CONT •)

Execution time program, 20-16
EXP, 17-1, 18-6
EXPERT, 20-14, 20-17
Exponent, optional (real con-

stants), 4-1
Exponentiation, 2-1
Exponentiation, operator pre-

cedence, 5-1
Exponents, 2-2, 16-8
Expressions, evaluation of, 6-2
EXTEND, 20-11
EXTERNAL, compiler extension,

1-2
EXTERNAL, declaration, 11-9,

17-4, 18-4
EXTERNAL, delimiter word, 2-3
External procedures, 11-9, 11-10,

20-2

F-I0, FORTRAN subroutine, 17-4,
21-1

FIOCALL, 17-4
FIODCALL, 17-4
FIOLCALL, 17-4
FI0RCALL, 17-4
FI0ICALL, 17-4, 21-1
F-40, FORTRAN subroutine, 17-4
FALSE, 3-2, 5-3, 5-4, 20-4
False, Boolean constant, 4-3
FALSE, Boolean OWN variable,

15-1
FALSE, delimiter word, 2-3
FDATE, 17-5
Field manipulations, 17-3
File devices, 16-1, 16-4
Files, 16-4, 16-11, 18-1, 18-6,

21-9
FINISH, 20-13, 20-16, 20-17
Fixed-point, printing, 16-9
Floating-point data, 16-8
Floating-point, format, 16-9
FOR, 7-2, 8-1, 8-2, 8-3, 9-2
FOR, delimiter word, 2-3
Form feeds, 2-4
Formal parameters, 1-3, 11-1,

11-2, 11-3, 11-5, 11-10,
21-3

Formal parameters, compiler
restrictions, 1-2

FORTRAN, 3-1, 5-1, 16-8, 17-6,
21-1

FORTRAN double precision,
compiler extension, 1-2

FORTRAN, interface procedures,
17-4

FORTRAN logical variables, 3-2
FORTRAN, terminology equivalents

to ALGOL, 1-3

FORWARD, 11-9
Forward declarations, compiler,

1-2
FORWARD, delimiter word, 2-3
Forward references, 11-8
Forward references, compiler

restrictions, 1-2
FTGETCHK, assembly switch, 18-11
FUDGE2, 21-8
Function procedures, 11-1

GETOWN, 21-8
GFIELD, 17-3
Global variables, 10-2
GO, delimiter word, 2-3
GO TO, 7-1, 20-12, 20-17
GOTO, 7-1, 12-1, 14-3, 19-1,

20-12, 20-17
GOTO, delimiter word, 2-3

HEAP, 18-10, 18-11, 21-8, 21-11
HEAP:n, 18-2
HELP, 18-2, 20-16, 20-17
HLP:ALGDDT.HLP, 20-16

ICALL, 17-4
Identifiers, 1-3, 2-1, 3-1, 5-2
Identifiers, compiler restric-

tions, 1-2
IF, 7-2, 14-2
IF, delimiter word, 2-3
/IGNORE, 20-10
IMAX, 17-3
IMIN, 17-3
IMP, Boolean operator, 5-3, 5-4
IMP, delimiter word, 2-3
INCHAN, 16-12
Independent compilation, 18-3
Indirect command files, 20-16
INFO, 17-5, 18-11
Input, 16-1, 16-2, 16-3, 16-6,

16-10
Input channel, 16-4
INPUT, library procedure, 16-1
INPUT, statement, 16-2
Input/Output, 21-8
INSYMBOL,.16-6
INT, dummy function, 5-5
INTEGER, delimiter word, 2-3
Integer constants, 4-1
Integer conversions, 5-5
Integer remainder, 5-5
Integer, scalar variables, 3-2
INV, 18-6

Index-3

INDEX (CONT.)

I/O channel status, 16-10
I/O directory, 21-9
IOCHAN, 16-10, 16-11, 16-12
%IODR, 21-8

Jensen's Device, 11-6

KA10, 18-2
Kl1.0, 18-2
KILL, 20-8, 20-10, 20-17
KL10, 18-2

Labels, 1-3, 2-2, 7-1, 11-1,
11-2, 11-9, 12-1, 14-3,
16-3, 16-5, 18-8, 20-7

Labels, compiler restrictions,
1-2

LABEL, delimiter word, 2-3
LARCTAN, 17-2
Layout of declarations, 11-7
LB, 17-2
LCALL, 17-4
LCOS, 17-2
LENGTH, 13-3, 17-2
Length, string, 20-3
LEXP, 17-2
LIBENT, 21-8
Library procedures, 13-3, 18-10
LINE, 18-5, 18-7
LINE, delimiter word, 2-3
Line feed, 4-3
Line numbers, 18-7, 20-5
Line printer, 16-1, 16-2
LINK, 11-10, 13-3, 18-4, 20-1,

20-2
Linking loader, 1-3, 18-4
LINKR, 13-3
LIST, 18-2, 20-9, 20-17
Listing of the source program,

18-7
LISTOFF, 18-7
LISTOFF, delimiter word, 2-3
LISTON, 18-7
LISTON, delimiter word, 2-3
LLN, 17-2
LN, 17-1, 18-6
Loading programs, 18-4
Local variables, 10-2
Logical device name, 16-1
Logical I/O, 16-10
LONG, delimiter word, 2-3
LONG REAL, compiler extension,

1-2
Long real constants, 4-1, 4-2

Long real, scalar variables, 3-2
Long real variables, 4-2
LPT, device name, 16-2
LSIN, 17-2
LSQRT, 17-2

MACRO, 18-4, 20-5, 21-1
Magnetic tape, 16-1, 16-2, 16-11
MAKLIB, 21-8
Mathematical procedures, 17-1
Matrix, 9-1
Modes, device, 16-2, 16-3, 18-6
MODES, 20-5
MTA, device name, 16-2
MULTIPLE ASSIGNMENTS, 6-2
Multiplication, 2-1
Multiplication, operator pre-

cedence, 5-1

Name, calling parameters by, 11-1
New line, special editing

character, 16-7
NEWLINE, symbol procedure, 16-7
NEWSTRING, string procedure,

13-4, 17-2
Newton-Rapheson Method, 11-4
NEXT, 20-12, 20-17
NEXTSYMBOL, 16-6
NOERRORS, 18-2
NOLIST, 18-2
/NOLIST, compiler switch, 18-7
NONUMBERS, 18-2
NOQUOTES, 18-2
NOSYMBOL, 18-3
NOT, Boolean operator, 5-3
NOT, delimiter word, 2-3
NOVICE, 20-14, 20-17
Null strings, 13-2
/NUMBERS, 18-7
Numeric constants, 2-1, 4-1
Numeric data, 16-9
Numeric labels, 1-3, 7-1
Numeric labels, compiler restric

tions, 1-2
Numeric procedures, 16-8

OBJECT, 20-2, 20-5, 20-17
Object code, 20-5
Object Time System, 17-1
Octal addresses, 20-2, 20-5
Octal (and Boolean) constants,

2-2, 4-3
Octal input/output, 16-9
Octal representation of strings,

20-3

Index-4

INDEX (CONT.)

OFFTRACE, 17-6, 18-10, 20-16,
20-17

ONTRACE, 17-6, 18-10, 20-16,
20-17

OPENFILE, 16-4, 16-5, 16-12
Operating environment, 1-3
Operator precedence, 5-1
OR, Boolean operator, 5-3, 5-4
OR, delimiter word, 2-3
Order of evaluation, 5-1
Output, 16-1, 16-2, 16-3,

16-6, 16-9, 16-10
Output channel, 16-4
OUTPUT, library procedure, 16-1
OUTPUT, statement, 16-2
OUTSYMBOL, 16-6
OWN arrays, 15-1
OWN, delimiter word, 2-3
OWN variables, 15-1
Overflow, 18-6

PAGE, symbol procedure, 16-7
Page throw, special editing

character, 16-7
PARAM, 21-1, 21-2, 21-3, 21-4,

21-6
Parameters, 1-3, 2-1, 11-1, 21-7
Paper-tape punch, 16-2
Paper-tape reader, 16-2
Parameter, 1-3, 11-1
PAUSE, 17-6, 20-2, 20-5, 20-7,

20-8, 20-9, 20-17
Peripheral devices, 16-1
Plotter, 16-2, 16-11
PLT, device name, 16-2
Post-mortem trace, 18-10
Precedence, 5-1, 6-2
Precedence, Boolean operators,

5-3
Precision, 4-2, 5-2
PRINT, 16-9, 16-10
PRINT, number, 21-10
PRINT OCTAL, 16-9
Procedures, 1-3, 11-1, 11-6
Procedure bodies, 11-3
Procedure calls, 11-5
Procedures, compiler restric-

tions, 1-2
PROCEDURE, delimiter word, 2-3
Procedure headings, 11-2, 11-3
Processor type, 17-5
/PRODUCTION, switch, 18-10
Program structure, 10-1
PROFILE, 18-8, 20-15, 20-17
Project-programmer number,

file, 16-4
Protection, file, 16-4
PTP, device name, 16-2
PTR, device name, 16-2

Quota, 16-11
Quotes, 4-3

RAND, 17-6
Random number, 17-6
Range, real constants, 4-2
RCALL, 17-4
READ, 16-8, 16-10, 16-12
Read, number, 21-10
Readability symbol, 2-1, 3-1,

20-2
READOCTAL, 16-9
Real constants, 4-1
REAL, constants, compiler exten-

sion, 1-2
REAL, delimiter word, 2-3
Real, scalar variables, 3-2
Recursion, 11-7, 20-14
Recursive, variables, 15-1
REDIRECT, 17-6, 20-13, 20-16,

20-17
REENTER, 17-6, 20-2, 20-4
RELEASE, 16-5
Relocatable binary, 1-1
REM, 5-1, 5-2
REM, compiler extension, 1-2
REM, delimiter word, 2-3
Rename, files, 16-4
Reserved words, 2-3, 2-4
Reserved word mode, 11-10
Reserved word quotes, compiler

extension, 1-2
Restrictions, 11-8, 11-10, 16-8
Restrictions, compiler, 1-2
RETRY, 20-12
Revised report (IIRevised Report

on the Algorithmic Language
ALGOL-60"), 1-1, 1-2, 13-1,
19-1

REWIND, 16-10
RMAX, 17-3
RMIN, 17-3
Rounding, 6-1
Run-time diagnostics, 18-5
Run-time error, 18-10
Run-time general information,

17-5
Running programs, 18-1

SCALARS, 20-13
Scalars, compiler restrictions,

1-2
Scalar variables, 3-2
Scope, lb-2, 11-9, 20-4, 20-7
Scope, switch declarations, 12-1
SELECTINPUT, 16-4
SELECTOUTPUT, 16-4

Index-5

INDEX (CO NT.)

Semi-colons, 20-6
Setting line numbers in list-

ings, 18-7
SETRAN, 17-6
SFIELD, 17-3, 17-4
Side-effects, evaluation of

expressions, 6-2
Side-effects, evaluation of

subscripts, 19-1
Side-effects, typeout, 20-4
SIGN, signum function, 5-2, 5-3,

17-2
Significance, precision, 5-2
Significance, real numbers, 4-2
/SILENT, 20-10
SIN, 17-1
Single-pass compiler, 1-1
SINH, 17-1
SIXBIT, 20-5
SIXBIT, strings, 20-3
SIZE, 17-2
SKIPSYMBOL, 16-6
SOURCE, 20-16, 20-17
%SP, 20-6
Spaces, 2-2, 2-4, 4-3, 16-6,

16-8
Space, special editing charac-

ter, 16-7
SPACE, symbol procedure, 16-7
SQRT, 17-1, 18-6
Stack, 18-10, 21-2, 21-11
Stack analysis, 18-8
Stack pointer, 20-6
Stack shifts, 17-5
Stack trace, 20-14
START, 20-2, 20-12, 20-17
Statements, 6-1
STATISTICS, 20-16, 20-17
STEP, delimiter word, 2-3
STEP-UNTIL, 8-1
STOP, 20-10
String assignments, expressions,

13-1
String comparisons, 2-2, 13-2,

13-3
STRING, compiler extension, 1-2
String constants, 2-1, 2-4, 4-3,

13-1, 13-3, 16-1, 16-6
String declarations, 13-1
STRING, delimiter word, 2-3
String expressions, assignments,

13-1
String, length and byte size,

20-3
String operators, 13-1
String output, 16-6
String procedures, 13-3, 16-8,

17-2
String scalar variables, 3-2
String variables, 3-2, 21-6
String typeout, 20-3

String variables, 13-3, 16-8
Strings, 1-2, 13-1, 13-2, 18-10,

16-6, 16-8, 20-6
Strings, concatenated, 13-3
Subroutine, FORTRAN, 11-1
Subscripting, byte, 2-1, 13-2
Subscripts, 2-1, 9-1
Subtraction, 2-1
Subtraction, operator precedence,

5-1
Switch declarations, 12-1
SWITCH, delimiter word, 2-3
Switch element, 14-3
Switch option, 2-2
Switches, 1-2, 12-1, 14-1, 16-3,

16-5, 18-2, 18-3, 18-5,
18-10, 19-1

SWITCH.INI, 20-14
.SYM file, 20-1
Symbol file, 20-1
Symbol procedures, 16-7
Symbol table, 18-3
Symbols, compound, 2-2
SYS:ALGDDT.HLP, 20-16
SYSER1 UUO, 21-5
System parameters, 20-6

Tab, special editing character,
16-7

Tabs, 2-2, 2-4, 16-8, 20-2
TAIL, 13-3
TAN, 17-1, 18-6
TANH, 17-1
Terminal output buffer, 18-10
Terminals, 16-2, 16-3
Terminology, 1-3
THEN, 7-2, 14-2
THEN, delimiter word, 2-3
TIME, 17-5
TRACE, 17-6, 18-8, 18-9, 18-10,

20-15, 20-17, 21-2
/TRACE, switch, 18-10
TRANSFILE, 16-12
TRAP, 18-5
TRAPNO, 18-5
TRUE, 3-2, 5-3, 5-4, 20-4
TRUE, Boolean constant, 4-3
TRUE, delimiter word, 2-4
TTY, device name, 16-2
TYPE command, 20-3, 20-17
Type conversion, 6-1, 11-2, 20-6
Type1ess procedures, 11-3, 13-4

UB, 17-2
UNTIL, 8-1, 8-2
UNTIL, delimiter word, 2-4
UNWIND, 20-14, 20-17

Index-6

VALUE, 11-1
VALUE, delimiter word, 2-4
Variables, labels, 18-8
VDATE, 17-5
%VERSHN, 20-6
Virtual peripherals, 16-1

INDEX (CONT .)

WHERE, 20-14, 20-17
WHILE, 7-2, 8-1, 8-2, 8-3
WHILE, compiler extension, 1-2
WHILE, delimiter word, 2-4
WRITE, 16-7, 16-12, 17-5

XCTA, 21-4

Index-7

READER'S COMMENTS

DECsystem-lO/20 ALGOL
Programmer's Guide
AA-0196C-TK

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Non-programmer interested in computer concepts and capabilities

Name Date ________________________ __

Organization __ _

Street __ _

City ___________________________ State _____________ Zip Code ____________ __

or
Country

--Fold lIere---.

. -- Do Not Tear - Fold lIere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

mama om a
Software Documentation
146 Main Street ML5-5/E39
Maynard. Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

	decsystem 10-20 Front Cover.tif
	Blank 'Letter' page (600dpi).tif
	A002.tif
	A003.tif
	A004.tif
	A005.tif
	A006.tif
	A007.tif
	A008.tif
	A009.tif
	A010.tif
	A011.tif
	A012.tif
	A013.tif
	A014.tif
	A015.tif
	A016.tif
	A017.tif
	A018.tif
	A019.tif
	A020.tif
	A021.tif
	A022.tif
	A023.tif
	A024.tif
	A025.tif
	A026.tif
	A027.tif
	A028.tif
	A029.tif
	A030.tif
	A031.tif
	A032.tif
	A033.tif
	A034.tif
	A035.tif
	A036.tif
	A037.tif
	A038.tif
	A039.tif
	A040.tif
	A041.tif
	A042.tif
	A043.tif
	A044.tif
	A045.tif
	A046.tif
	A047.tif
	A048.tif
	A049.tif
	A050.tif
	A051.tif
	A052.tif
	A053.tif
	A054.tif
	A055.tif
	A056.tif
	A057.tif
	A058.tif
	A059.tif
	A060.tif
	A061.tif
	A062.tif
	A063.tif
	A064.tif
	A065.tif
	A066.tif
	A067.tif
	A068.tif
	A069.tif
	A070.tif
	A071.tif
	A072.tif
	A073.tif
	A074.tif
	A075.tif
	A076.tif
	A077.tif
	A078.tif
	A079.tif
	A080.tif
	A081.tif
	A082.tif
	A083.tif
	A084.tif
	A085.tif
	A086.tif
	A087.tif
	A088.tif
	A089.tif
	A090.tif
	A091.tif
	A092.tif
	A093.tif
	A094.tif
	A095.tif
	A096.tif
	A097.tif
	A098.tif
	A099.tif
	A100.tif
	A101.tif
	A102.tif
	A103.tif
	A104.tif
	A105.tif
	A106.tif
	A107.tif
	A108.tif
	A109.tif
	A110.tif
	A111.tif
	A112.tif
	A113.tif
	A114.tif
	A115.tif
	A116.tif
	A117.tif
	A118.tif
	A119.tif
	A120.tif
	A121.tif
	A122.tif
	A123.tif
	A124.tif
	A125.tif
	A126.tif
	A127.tif
	A128.tif
	A129.tif
	A130.tif
	A131.tif
	A132.tif
	A133.tif
	A134.tif
	A135.tif
	A136.tif
	A137.tif
	A138.tif
	A139.tif
	A140.tif
	A141.tif
	A142A.tif
	A143.tif
	Blank 'Letter' page (600dpi).tif
	Blank 'Letter' page (600dpi).tif

