
I I
I I • rii~5555555 I I I • •

VAX-11
Symbolic Debugger
Reference Manual

Order No. AA-D026A-TE

I • • I 5555555YJ • • I
• I

I

(

(

(

August 1978

This document describes the VAX-11 Symbolic Debugger, a program used in
locating errors in executable user images. The information in this document is
particularly pertinent to programmers using the VAX-11 MACRO assembly
language.

VAX-11
Symbolic Debugger
Reference Manual

Order No. AA-D026A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release.

OPERATING SYSTEM AND VERSION: VAX!VMS V01

SOFTWARE VERSION: VAX!VMS V01

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation -maynard, massachusetts

First Printing, August 1978

The information in this document is' subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-II
VAX
DECnet

DECsystem-lO
DEC tape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8
VMS
lAS

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-ll
TMS-ll
lTPS-IO
SBI

(

(

(

c

PREFACE

CHAPTER

CHAPTER

CHAPTER

1

1.1
1.2
1. 2.1
1. 2.2
1. 2.3
1. 2.4
1. 2. 5
1. 2. 6
1. 2. 7
1. 2.8
1.3
1. 3.1
1. 3. 2
1. 3. 3
1. 3. 4

2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.3

3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.3

C~'l':E:R 4

4.1
4.1.1
4.1. 2
4.1. 3
4.1. 4
4.1.5
4.1. 6
4.1. 7

CONTENTS

INTRODUCTION TO DEBUGGING

VAX-,ll SYMBOLIC DEBUGGER FACILITIES
USING THE VAX-II DEBUGGER

Breakpoints
Tracepoints and Opcode Tracing
Watchpoints
Examining and Modifying Locations
Evaluating Expressions
Program Control
Starting and Ending Debugging Sessions
Debugger Commands

SYMBOLIC REFERENCES
Debugger Symbol Table
Scope
Pathnames
Local Symbol Definition

BEGINNING AND ENDING A DEBUGGING SESSION

INITIATING THE DEBUGGER
STARTUP CONDITIONS

Startup Messages
Language Setting
Scope Setting
Setting Symbols
Entry and Display Modes

TERMINATING A DEBUGGING SESSION

CONTROLLING PROGRAM EXECUTION

INITIATING AND CON,TINUING EXECUTION WITH GO
STEPPING THROUGH YOUR PROGRAM

Step Types
Setting Step Types
Showing Step Types

INTERRUPTING EXECUTION

SPECIAL ·CHARACTERS
• ,'i>..{' "

EVALUATING ARITHMETIC EXPRESSIONS
Plus Sign (+)
Minus Sign (-)
Multiplication Operator (*)
Division Operator (I)
Shift Operator (@)
Precedence Operators « ••• »
Radix Operators

iii

Page

vii

1-1

1-1
1-2
1-2
1-2
1-2
1-2
1-2
1-3
1-3
1-3
1-4
1-4
1-5
1-5
1-5

2-1

2-1
2-2
2-2
2-3
2-3
2-3
2-3
2-4

3-1

3-1
3-2
3,...2
3-3
3;..3
3-3

4-1

4-1
4-2
4-2
4-3
4-3
4-3
4-3
4-4

4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
4.3.9
4.3.10

CHAPTER 5

5.1
5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.5
5.5.1
5.5.2
5.5.3
5.6
5.7
5.7.1
5.7.2

CHAPTER 6

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.3
6.3.1
6.3.2
6.3.3
6.4
6.5

CONTENTS (Cont.)

SPECIAL CHARACTERS IN ADDRESS EXPRESSIONS
Current Location Symbol (.)
Previous Location Symbol (A)
Last Value Displayed Symbol (\)
Contents Operator (@)
Range Operator (:)

SPECIAL DELIMITING CHARACTERS
Mode Keyword Delimiter (/)
DEPOSIT and DEFINE Command Delimiter (=)
Symbolic Pathnam:e Element Separator (\)
DO Command Sequence Delimiters
CALL Command Argument Delimiters ((•••)
Command Separator (;)
Argument Separator (,)
Input String Delimiters
Bit Field Delimiters
Line Continuation Operator (-)

ENTRY AND DISPLAY MODES

KEYWORD SUMMARY FOR ENTRY AND DISPLAY MODES
INITIALIZED MODES
CONTROL OF DEBUGGING MODES

Changing Modes
Reporting Current Modes
Restoring the Debugger's Initial Modes
Overriding Current Modes at Command Level

CONTEXT MODES
Effects of Context Modes
SYMBOLIC/NOSYMBOLIC Modes
INSTRUCTION/NO INSTRUCTION Modes
Evaluating VAX-II MACRO Literals
ASCII/NOASCII Modes

RADIX MODES
DECIMAL Mode
HEXADECIMAL Mode
OCTAL Mode

LENGTH MODES
PATHNAME SEARCH MODES

GLOBAL/NOGLOBAL Modes
SCOPE/NOS COPE Modes

SYMBOLS AND PATHNAMES

PATHNAMES
SYMBOL TYPES

Permanent Symbols
Defining Symbols During a Debugging Session
Local Symbols
Global SYmbols

THE DEBUGGER'S SYMBOL TABLE
Symbol Table Input (SET MODULE)
Symbol Table Status Report (SHOW MODULE)
Symbol Table Purging (CANCEL MODULE)

TRANSLATING SYMBOLS INTO VALUES
TRANSLATING VALUES INTO PATHNAMES

iv

Page

4-4
4-5
4-5
4-5
4-6
4-6
4-6
4-7
4-8
4-8
4-9
4-9
4-9
4-9
4-10
4-10
4-11

5-1

5-1
5-2
5-2
5-2
5-3
5-3
5-4
5-4
5-5
5-6
5-6
5-8
5-8
5-9
5-9
5-10
5-10
5-10
5-10
5-10
5-11

6-1

6-1
6-2
6-2
6-2
6-5
6-5
6-6
6-6
6-6
6-7
6-7
6-9

c

f-

(

c
CHAPTER

(
CHAPTER

(

CHAPTER

CHAPTER

7

7.1
7.1.1
7.1. 2
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.3
7.4
7.5
7.5.1
7.5.2
7.5~3

8

8.1
8.2
8.2.1
8.2.2
8.2.3
8.2.4

8.3
8.4
8.5
8.5.1
8.5.2
8.5.3

9

9.1
9.1.1
9.1. 2
9.2
9.3
9.4
9.5
9.5.1
9.5.2
9.5.3
9.6

10

10.1
10.1.1
10.1. 2
10.1. 3
10.2
10.2.1
10.2.2
10.2.3

CONTEN.TS (Con t.)

BREAKPOINTS

USE OF BREAKPOINTS
Breakpoint Reporting at Program Stop
Continuing From a Breakpoint

SETTING BREAKPOINTS
General Breakpoint Specification
DO Command Sequence at Breakpoint
Breakpoint "After" Option
Temporary Breakpoints

SHOWING BREAKPOINTS
CANCELING BREAKPOINTS
BREAKPOINT EXAMPLES

Examples of Setting Breakpoints
Examples of Showing Breakpoints
Examples of Canceling Breakpoints

TRACEPOINTS AND OPCODE TRACING

USING THE TRACE FACILITY
SETTING TRACEPOINTS

Individual Tracepoints
Tracing All Call-Type Instructions
Tracing All Branch-Type Instructions
Tracing All Call-Type and Branch-Type
Instructions

SHOWING. TRACING MODES
CANCELING TRACING
TRACING EXAMPLES

Examples of Setting Tracepoints
Examples of Showing Tracepoints
Examples of Canceling Tracepoints

WATCHPOINTS

USE OF WATCHPOINTS
Watchpoint Reporting
Continuing From a Watchpoint

SETTING WATCHPOINTS
SHOWING WATCHPOINTS
CANCELING WATCHPOINTS
WATCHPOINT EXAMPLES

Examples of Setting Watchpoints
Examples of Showing Watchpoints
Examples of Canceling Watchpoints

WATCHPOINT RESTRICTIONS

EXAMINE AND DEPOSIT COMMANDS.

EXAMINING MEMORY LOCATIONS AND REGISTERS
Examining Numeric Data
Examining Instructions
Displaying Locations As ASCII Characters

MODIFYING MEMORY LOCATIONS AND REGISTERS
Depositing Numeric Data
Depositing Instructions
Depositing ASCII Data

v

Page

7-1

7-1
7-1
7-2
7-2
7-2
7-3
7-4
7-4
7-4
7-4
7-5
7-5
7-5
7-6

8-1

8-1
8-2
8-2
8-2
8-3

8-3
8-3
8-3
8-4
8-4
8-4
8-4

9-1

9-1
9-1
9-2
9-2
9-2
9-3
9-3
9-3
9-3
9-4
9-4

10-1
10-2
10-3
10-3
10-3
10-4
10-4
10-5

CHAPTER 11

11.1
11. 2
11. 3
11.4

CHAPTER 12

12.1
12.2

CHAPTER 13

13.1
13.2

CHAPTER 14

14.1
14.2

CHAPTER 15

15.1
15.2
15.3
15.4

APPENDIX A

INDEX

FIGURE

TABLE

6-1

I-I
2-1
4-1
4-2
4-3
5-1
14-1

CONTENTS (Cont.)

USING THE EVALUATE COMMAND

USING EVALUATE
EXPRESSION EVALUATION
EVALUATING BIT FIELDS
EVALUATING VAX-II MACRO LITERALS

EXCEPTION CONDITIONS

PROCESSING EXCEPTION CONDITIONS
BREAK ON EXTERNAL EXCEPTION CONDITION

CALLING ROUTINES AND SHOWING CALLS

CALLING ROUTINES
SHOWING ACTIVE CALLS

PROCESSOR STATUS LONGWORD (PSL)

DISPLAYING THE PROCESSOR STATUS LONGWORD
ALTERING THE PROCESSOR STATUS LONGWORD

DEBUGGER MESSAGES

INFORMATIONAL MESSAGES (PREFIX:%DEBUG-I-)
WARNING MESSAGES (PREFIX:%DEBUG-W~)
ERROR MESSAGES (PREFIX:%DEBUG-E-)
FATAL ERROR MESSAGES (PREFIX:%DEBUG-F-)

COMMAND SUMMARY

FIGURES

Debugger Symbo1-to-Va1ue Search Algorithm

TABLES

Summary of VAX-II Symbolic Debugger Commands
Debugger Initiation Qualifiers
Arithnietic Special Characters
Address Representation Characters
Delimiting Characters '
Keyword Summary for Entry and Display Modes
PSL Alteration Values

vi

Page

11-1

11-1
11-1
11-1
11-2

12-1

12-1
12-2

13-1

13-1
13-1

14-1

14-1
14-1

15-1

15-2
15-3
15-8
15-8

A-I

Index-1

6-8

1-4
2-2
4-1
4-4
4-7
5-1
14-2

(

(

(

(

(

(

(

PREFACE

MANUAL OBJECTIVES

This manual describes the facilities supplied with the VAX-II Symbolic
Debugger. It is primarily an aid in debugging programs written in
VAX-II MACRO assembly language. For information on debugging programs
written in other languages, such as VAX-II FORTRAN IV-PLUS, refer to
the appropriate language user's guide.

INTENDED AUDIENCE

This manual is intended for programmers using VAX-II MACRO. To get
the most out of this manual, you should have a working knowledge of
VAX-II architecture and be familiar with the VAX/VMS operating system.
However, while not a tutorial, the manual can be used by relatively
inexperienced programmers.

STRUCTURE OF THIS DOCUMENT

This manual comprises 15 characters and 1 appendix. Chapter 1
provides a functional overview of the VAX-II Symbolic Debugger's
concepts and facilities, while each subsequent chapter discusses each
concept and facility individually. Finally, there is a summary of
debugging commands in Appendix A.

ASSOCIATED DOCUMENTS

To obtain supplemental information you may need, the following
documents are recommended:

• VAX~11/780 Architecture Handbook

• VAX/VMS Primer

• VAX-II Linker Reference Manual

For a complete list of VAX-II documents, see the VAX-II Information
Directory.

vii

CONVENTIONS USED IN THIS DOCUMENT

The following syntactic conventions are used in this manual:

• Uppercase words and letters used in command examples indicate
th~t you should type the word or letter as shown

• Lowercase words and letters used in format examples indicate
that you are to substitute a word or value of your choice

• Brackets ([]) indicate optional elements

• Braces ({}) are used to enclose lists from which one element
is to be chosen

• Ellipses (•••) indicate that the preceding item(s) can be
repeated one or more times

viii

(

(

(

(

(

(

(

c

(

CHAPTER 1

INTRODUCTION TO DEBUGGING

One of the most difficult stages in the program development process
involves locating and correcting errors, commonly called "debugging."
This stage is reached after you've written the source program and
compiled or assembled it successfully, but have received erroneous
output when you tried to run the executable program. This means
you've followed all the rules of. the source language and have not
violated any constraints of the compiler or assembler, but you've
probably. made at least one programming error that is producing
incorrect results.

To help you find such errors, VAX:-ll provides ~ special program: the
Symbolic Debugger (or, simply, the debugger) . The debugger lets you
control the execution of your program so you can monitor specific
locations; change the contents of locations; check the sequence of
program control; and otherwise locate and correct errors as they
occur. After you've. tracked down the mistakes~ you can edit your
source program, recompile or re-assemble, relink, an~ exe~ut~ the
·corrected version.

1.1 VAX-II SYMBOLIC DEBUGGER FACILITIES

The V~X-ll debugger includes many facilities to help you.

• It i~ interactive - You control your program and converse with
the debugger from your terminal.

• It is symbolic - You can refer to locations by using the
symbols you created in your source program. The debugger also
displays locations as symbolic expressions.

• It supports different languages The debugger lets you
converse ln the language of your source program (for example,
FORTRAN). You can change from one language to another in the
course of a debugging session by means of a command (see Table
1-1 for a summary of commands).

• It permits a variety of data forms - You can control the mode
in which the debugger accepts and displays addresses and data.
An address can be represented symbolically or as a virtual

. address, in decimal, octal, or hexadecimal. Data can be
represented by symbols, symbolic expressions (X+3) , VAX-II
MACRO instructions, ASCII character strings, or numeric
strings in decimal, octal, or. hexadecimal.

1-1

INTRODUCTION TO DEBUGGING

1.2 USING THE VAX-II DEBUGGER

This section comprises brief oescriptions of the functions of the
debug.ger, and how to use them. The remaining chapters of the manual
provide more detailed information on how these functions can be
utilized.

1.2.1 Breakpoints

A breakpoint is a place in your program where execution is suspended
so the debugger can get control and request a command. Program
execution is suspended before the instruction at this breakpoint
address is executed. Thus, by setting breakpoints, you are able to
examine the status of your program at key moments of its execution.
See Chapter 7.

L2.2 Tracepoints and Opcode Tracing

Tracepoints help you follow the sequence of program execution. When
you set a tracepoint in your program, the debugger will momentarily
suspend execution at that point, display a message indicating that the
tracepoint was reached, and continue execution from that point. Thus,
you can determine whether the program is being executed in the proper
sequence.

You can also trace the execution of branch and/or call-type
instructions, by specifying which set of instruction opcodes you want
traced. See Chapter 8.

1.2.3 Watchpoints

A watchpoint refers to a specific location, and causes the program to
stop whenever the location is modified. Thus, you can monitor
addresses to ensure that they are not being modified inadvertently, or
in an unspecified manner. See Chapter 9.

1.2.4 Examining and Modifying Locations

When execution of your program is suspended,
contents of locations and modify them as you
might examine a location to verify that it
value. You might then change the value to
subsequent execution. See Chapter 10.

1.2.5 Evaluating Expressions

you cah look at the
wish. For example, you
contains the expected
determine the effect on

You can use the debugger as a calculator, to compute the value of
expressions, perform radix conversions, compute an address value, etc.
See Chapter 11.

1-2

(

E

(

(

(

(

(

(

(

(

INTRODUCTION TO DEBUGGING

1.2.6 Program Control

You can initiate and suspend program execution in a number of ways.
For example, you can set breakpoints (see Section 1.2.1), and specify
the GO command to start or continue execution. You can also execute
the program on a one by one basis by means of the STEP command.. This
is slower than the GO-breakpoint method, but allows a closer
examination of the program, particularly in those areas that are
especially complex and prone to obscure errors.

1.2.7 Starting and Ending Debugging Sessions

There are several methods of passing control to the VAX-II debugger.
Generally, you specify a qualifier when you compile or assemble the
source program, to ensure that the symbols defined in the program are
included in the debugger's symbol table (see Section 6.3) . Then, when
you link the object program, you include a qualifier to make the
debugger available to the program. For example:

$ LINK/DEBUG file-spec

When you enter the RUN command to begin executing your program, the
debugger gets control, displays its identifying message, and prompts
for a command. The prompt has the form:

DBG>

You respond to the prompt with one of the commands recognized by the
debugger (see Section 1.2.8). To terminate the debugging session, use
the EXIT command.

1.2.8 Debugger Commands

You use a set of commands to tell the debugger what to do. The
general form of a debugger command is:

cmd[/qualifier] [keyword [param .•.]][00 command [;command ...]]

cmd
command name (SET, CANCEL, SHOW, etc.) indicating the general
function to be performed.

/qualifier
modifies the effect of the command.

keyword

param

indicates the specific function to be performed by the command
(MODULE, SCOPE, LANGUAGE, etc.).

qualifies the function in some way, such as specifying a range of
locations to be monitored.

DO command(s)
list of debugger commands to be performed. (Used only with SET
BREAK commands.) If more than one command is specified, you must
put a semicolon between them.

Table 1-1 summarizes the debugger commands.

1-3

INTRODUCTION TO DEBUGGING

Table 1-1
Summary of VAX-II Symbolic Debugger Commands l

Command

fALL

SET
SHOW
CANCEL

DEFINE,

QEPOSIT [jmode]

'EVALUATE [jmode]

~XAMINE [jmode]

EXIT

GO

STEP

Keyword,

routine name

§.REAK
EXCEPTION §.REAK
LANGUAGE
MODE
MODULE
SCOPE
STEP
TRACE
WATCHPOINT
ALL

Parameter

argument 'list

address expression
name list
~L
step type(s)
opcode class (es)

symbol=value

, address=data

expression

address[:address]

[address]

SYSTEM/NOSYSTEM [decimal integer]
INTO/OVER
LINE/INSTRUCTION

Appendix A covers the debugger commands in greater detail.

Function

Call a subroutine.

Initialize (SET), display
(SHOW), or delete (CANCEL)
the specified elements.
Not all combinations
can be used. For
example, SET ALL is
not a valid command.
See individual command
descriptions.

Equate a symbol and
a value.

Put data in a location.

Compute the value of
expressions.

Display contents of an address,
or range of' addresse,s.

Terminate debugger.

Start or continue program
execution.

Execute a portion of
the program, then
stop.

1 Underlines indicate the abbreviated form of a command or keyword.

1.3 SYMBOLIC REFERENCES

The debugger lets you refer to locations symbolically. Thus, if
you've defined'a symbol in your source program as MINIM, you can tell
the debugger to examine or modify the contents of MINIM, without
worrying about MINIM's location in the executable image. The debugger
resolves symbolic references by using a symbol table and scope.

1.3.1 Debugger Symbol Table

The debugger maintains a table that describes the symbols that may be
referenced during a debugg,ing session. The debugger can resolve
symbolic references only to symbols described in this table. When you
initiate a debugging session (assuming you've met the conditions

1-4

(-

(

(

(-

(

(

(

(

INTRODUCTION TO DEBUGGING

needed to supply symbol information), this table describes permanent
symbols (for example, general register definitions); global symbols;
and local symbols in the first module input to the linker. Use the
SHOW MODULE command to determine which modules' symbols are currently
in the symbol table. You can add or delete symbols by means of the
SET MODULE and CANCEL MODULE commands; or by using the DEFINE
command. See Chapter 6 for more information on the symbol table and
the commands used to control its contents.

1.3.2 Scope

If a symbol is unique, there can be no ambiguity when you refer to it.
However, if there are two or more symbols with the same name,
appearing in different modules, and these symbols are in the
debugger's symbol table, you must indicate which of them you mean when
you use the symbol's name in a debugger command. To do so, you
specify the scope of the symbol, either by prefixing a module name, or
by means of a SET SCOPE command (if the current scope or the default
scope is not appropriate). The default scope is initialized to the
first module input to the linker. See Chapter 6 for a discussion of
scope and related commands.

1.3.3 Pathnames

A pathname comprises the complete, unambiguous identity of a location
in your executable program. For unique symbols, the symbol name alone
is a pathname. For symbols that are not unique, a pathname comprises
the scope and the symbol name, in the form:

scope\symbol

1.3.4 Local Symbol Definition

To ensure that symbols local to your source program appear in the
debugger's symbol table, you must indicate to the assembler or
compiler that you want local symbol information to be available to the
debugger. You do this by specifying the appropriate qualifier in the
command line when you assemble or compile the program. For VAX-II
MACRO, the qualifier is /ENABLE=DBG. The qualifiers used for other
languages are described in the user's guides for those languages.

1-5

E--

(

(i

(

(

(

CHAPTER 2

BEGINNING AND ENDING A DEBUGGING SESSION

This chapter tells you how to initiate and terminate the debugger.

2.1 INITIATING THE DEBUGGER

The usual method of initiating the debugger is by specifying:

$ RUN [/DEBUG] file-spec

You need to express the qualifier, /DEBUG, only if you did not specify
/DEBUG at link time; "file-spec" is the file identification assigned
to your program at link time. You cannot initiate the debugger by
this method if you specified NOTRACE at link time (LINK/NOTRACE ...).

You can inhibit or defer the debugger by specifying:

$ RUN/NODEBUG file-spec

You need not express the qualifier, /NODEBUG, unless you specified the
/DEBUG qualifier when you linked your program. If you specify
$ RUN/NODEBUG, but later decide you want the debugger, interrupt your
program by typing CTRL/Y (echoed as ~Y) and respond to the command
interpreter's prompt with the command DEBUG. For example:

$ DEBUG

The debugger indicates its readiness to accept commands by displaying
its prompt, DBG>. To determine the location at which you interrupted
your program, enter the command

DBG>EXAMINE/INSTRUCTION @PC

The debugger reports the current contents of the program counter (PC),
plus the instruction to be executed if your program continues at the
indicated location, as shown below.

location: instruction

Note that typing CTRL/C has the same result, and echoes the same as
CTRL/Y if your program does not include an exception handler for this
condition.

Table 2-1 summarizes the command qualifiers that affect debugger
initiation.

2-1

BEGINNING AND ENDING A DEBUGGING SESSION

Table 2-1
Debugger Initiation Qualifiers

Command Sequence

LINK/NOTRACE'
RUN

LINK
RUN
LINK
RUN/DEBUG

LINK/DEBUG
RUN

LINK/DEBUG
RUN/NODEBUG

Effect

Inhibits both debugging and traceback

Inhibits debugging, allows traceback

Allows debugging, but full
debugging will not be possible

Allows full symbolic debugging

symbolic

Inhibits debugging but allows traceback

If you receive the RMS "file not found" message in response to a RUN
command, instead of the debugger's identification message, it may mean
that you mistyped the program's name, or that the corresponding
logical name for the Symbolic Debugger is not assigned to the system
directory that contains the debugger. In the latter case, you should
log out and then log in again.

2.2 STARTUP CONDITIONS

The following sections describe how to modify the conditions that
exist when the debugger is initialized.

2.2.1 Startup Messages

When the debugger first gets control, it displays messages in the
following form:

VAX/VMS DEBUG version number release date

%DEBUG-I-INITIAL, language is xxx, scope and module set to yyy

DBG)

The first message identifies the installed version of the debugger and
the release date. The second message indicates that the debugger
automatically has:

• Set its language to the source language of the first module in
your program.

• Set the name of the first module as the scope (area prefix for
symbolic pathnames; see Chapter 6).

• Read symbol information from the first module into its symbol
table for use in creating symbolic pathnames.

2-2

(

(

(

(

(

(

BEGINNING AND ENDING A DEBUGGING SESSION

If this message does not appear, the debugger has not performed these
initialization procedures. You must use the SET LANGUAGE, SET SCOPE,
and SET MODULE commands to initialize the appropriate settings.

The debugger's prompt, DBG>, indicates that it is now ready to process
your commands.

2.2.2 Language Setting

The debugger can interpret input
supported native-mode languages.
source language of the first
Thereafter, you can change to any

or display output in the
The language is initially
module linked in your
supported language by the

DBG>SET LANGUAGE language-name

syntax of
set to the

program.
command

where "language-name" is MACRO (for VAX-II MACRO) or FORTRAN (for
VAX-II FORTRAN IV-PLUS).

2.2.3 Scope Setting

When the debugger is invoked, the scope is set to the first module in
your program. To refer to symbols in this module, you need only
specify the symbol names. To refer to duplicate symbol names in other
modules, specifying only the symbol name, you must either give the
whole pathname, or change the scope. You must also ensure that the
symbol information is in the symbol table (see Section 2.2.4). To
change the scope, use the SET SCOPE command. For example:

DBG>SET SCOPE AJAX

Whatever previous scope existed is superseded by AJAX.
6.4 for more information on SCOPE commands.

2.2.4 Setting Symbols

See Section

The debugger initially reads into its symbol table the symbol
information associated with the first module in your program. If you
intend to make use of other modules' symbols in pathnames, you must
use the SET MODULE command to read in the symbol information from
specified modules. The commands, SET MODULE, SHOW MODULE, and CANCEL
MODULE let you read information into the table, display its status,
and purge its contents, respectively. See Section 6.3 for more
information.

2.2.5 Entry and Display Modes

The debugger's entry/display modes determine how it interprets your
command entries and displays output. The initial condition of these
modes is: SYMBOLIC, NOINSTRUCTION, NOASCII, NOGLOBAL, HEXADECIMAL,
LONG, and SCOPE.

Chapter 5 describes these modes, and use of the commands, SET MODE,
SHOW MODE, and CANCEL MODE.

2-3

BEGINNING AND ENDING A DEBUGGING SESSION

2.3 TERMINATING A DEBUGGING SESSION

You indicate that you are through by responding to the DBG> prompt
with the command:

EXIT

You can also terminate the debugger by typing CTRL/Z.

The VAX/VMS command interpreter gains control, and displays its prompt
character ($). After exiting from the debugger, you can not use the
DEBUG command to reinvoke the debugger.

2-4

c

(

(

(

c

(

CHAPTER 3

CONTROLLING PROGRAM EXECUTION

This chapter describes how you start
your program with STEP or GO.
interrupt your program, for example,
when your program is looping.

your program with GO and continue
The chapter also describes how to
to return control to the debugger

3.1 INITIATING AND CONTINUING EXECUTION WITH GO

The GO command tells the debugger to let your program run, beginning
either at the transfer address, at a starting address you specify, or
from a location at which the debugger stopped it. Program execution
continues until an exception condition (such as a breakpoint) causes
the debugger to stop execution, or the program runs to completion
(refer to Chapter 12 for information about exception conditions) •

The command format is:

DBG>GO [address-expression]

The first GO command without an address starts the program at its
transfer address. Note that the debugger responds with the message

[routine] start PC is mod\rtn.

If "routine" is included in the messag~, "mod\rtn" is 2 less than the
actual PC value. The PC was at the beginning of routine "rtn" in
module "mod".

If you enter a GO command subsequent to program
following a breakpoint) and do not specify
resumes. from the point at which it was suspended
instruction at the break~bint's address).

suspension (such as
an address, execution
(for example, at the

If you specify an address with GO, that address replaces the current
contents of the program counter (PC) and execution starts at or
continues from the new location. Your program's behavior can be
unpredictable if you initiate execution at any address other than its
transfer address, or if you attempt to restart your program at its
transfer address or any oth~r address.

3-1

CONTROLLING PROGRAM EXECUTION

3.2 STEPPING THROUGH YOUR PROGRAM

The STEP command lets you specify the number of instructions (VAX-II
MACRO) or statements (FORTRAN) that your program can execute before
the debugger regains control. The basic command format is:

DBG>STEP [decimal-integer]

If you do not include a decimal integer (2 through 32767), or you
specify a value of 1, the debugger executes the next instruction (or
statement) and stops the program. (A step value of zero will be
accepted, but no step will be performed.) Although you can specify
large step counts, the recommended practice is to set a breakpoint
(see Chapter 7) at the desired location and use GO to run to the
specified location.

If an exception condition stops your program before the· specified
number of instructions or statements are executed, the debugger resets
the step counter to zero, as though the specified number of steps had
been completed.

STEP also has modes that determine how the
step increment. The following sections
these modes and how you can express them at
as default conditions for stepping.

debugger interprets the
describe the functions of

command level or' set them

3.2.1 Step Types

The STEP types are:

LINE or INSTRUCTION
INTO or OVER
SYSTEM or NOSYSTEM

You can express these types at command level as follows:

DBG>STEP [/type [...]] [decimal-integer]

where a slash (/) must precede each step. type. A step type expressed
at command level overrides its counterpart at the default level (see
SET STEP, below).

The STEP types exert the following control over program stepping.

INSTRUCTION

LINE

INTO

OVER

Step in increments of instructions (the only valid
increment for VAX-II MACRO).

Step in increments of
(statement) languages,
for VAX-II MACRO).

lines
such

for line-oriented
as FORTRAN (ignored

Step into a routine called by a call-type
instruction (CALLS, CALLG, JSB, BSBB, BSBW).

Step over the next routine called by a call-type
instruction; that is, the instruction, all
routine instructions (or lines) , and the
corresponding RET instruction are treated as one
step.

3-2

(

(

(

(

(~

(

(

NOSYSTEM

SYSTEM

CONTROLLING PROGRAM EXECUTION

~ecrement the step count only for steps executed
1n nonsystem space; the debugger ignores
instruction/line steps executed in system space.

Decrement the step count for instructions (or
lines) that are executed in system space as well
as process space. (For a definition of system
space, see the VAX-II Software Handbook.)

For VAX-II MACRO, the initial STEP modes are:

INSTRUCTION, OVER, and NOSYSTEM.

3.2.2 Setting Step Types

You can change the default types for STEP at any time with the SET
STEP command.

DBG>SET STEP type[,type ••.]

Multiple type entries must be separated by commas.

3.2.3 Showing Step Types

The SHOW STEP command reports the current STEP types. For example:

DBG>SHOW STEP
step type: nosystem, by line, over routine calls

3.3 INTERRUPTING EXECUTION

You can interrupt execution of your program or the debugger by typing
CTRL/Y (echoed at the terminal as A y). VAX/VMS stops your program and
displays the command interpreter prompt. To return control to the
debugger, you must type the command DEBUG.

$ DEBUG

The debugger in turn displays its prompt, DBG>. You can also continue
execution of your program (or the debugger) from the location at which
you interrupted it by responding with the command CONTINUE rather than
DEBUG.

$ CONTINUE

Typing any VAX/VMS command other than DEBUG or CONTINUE will generally
cause your program to exit immediately.

3-3

c--- -

(

(

(l

(

(

(

(

CHAPTER 4

SPECIAL CHARACTERS

This chapter describes how th~ debugger interprets special characte~s
in arithmetic expressions, in address expressions, and as delimiters
with VAX-II MACRO as the current language. Tables 4-1,4-2, and 4-3
summarize the arithmetic, address, and delimiting functions,
respectively. Some characters (such as @) appear in more than one
table because of multiple uses, based on context.

4.1 EVALUATING ARITHMETIC EXPRESSIONS

The debugger performs integer arithmetic. All operations are
performed according to the length mode currently in effect (that is,
BYTE, WORD, or LONG) with arguments and results limited to the
corresponding value ranges. The debugger truncates values that exceed
the current length mode by discarding the most significant bit
positions. Note, however, that truncation does not occur on data that
is "typed," for example, FORTRAN double precision values.

Table 4-1 lists special characters used in arithmetic expressions.

Character

+

*

/

@

< ••• >

Table 4-1
Arithmetic Special Characters

Interpretation

Arithmetic addition (binary) operator, or unary plus
sign.

Arithmetic subtraction (binary) operator, or unary
minus sign.

Arithmetic multiplication operator.

Arithmetic division operator.

Arithmetic shift operator.

Precedence operators; do <enclosed> first.

Decimal radix operator.

Octal radix operator.

Hexadecimal radix operator.

4-1

SPECIAL CHARACTERS

An arithmetic expression is evaluated in the context of the current
language. For VAX-II MACRO, the debugger evaluates an expression from
left to right under the following rules of precedence:

1. Terms or expressions enclosed by angle brackets, < ••. >, are
evaluated first. You can nest expressions to many levels. For
example:

<BEGIN+<INDEX*lOO»

The debugger evaluates nested expressions in the order of
innermost to outermost.

2. Unary operators and radix operators have priority over
arithmetic (binary) operators; thus values are evaluated
according to their signs and radices, and indirect ".contents
of~ operations (see Section 4.2.4) are performed before the
remaining arguments and terms are evaluated. For example, in
the expression

A+-@B

the value addressed by the contents of B is first negated and
then added to the value represented by A. Thus, A+-@B is
equivalent to A+<-<@B».

3. The arithmetic operations (add, subtract, multiply, divide,
and shift) have equal precedence.

Thus, the following expression

results in the decimal value 10000

However,

ADlOOO + « ADl OOO I 2 > * AD~O >

results in the decimal value 6000

4.1.1 Plus Sign (+)

A plus sign, as a binary operator, adds the following argument to the
preceding argument (or interim result). As a unary operator, a plus
sign means take the following argument as having an unchanged value.
The debugger interprets an unsigned argument as having a positive
value by default.

Examples:

DBG>SET BREAK BEGIN + AXIO
DBG>EVALUATE AD2000 = AXlOOO + A07 77

4.1.2 Minus Sign (-)

A minus sign, as a binary operator, subtracts the following argument
from the preceding argument. As a unary operator, a minus sign means
negate the following argument.

4-2

(

E-

(

(

l

(

(

(

(

(

SPECIAL CHARACTERS

Examples:

DBG>CANCEL WATCH ~AME - OFFSET
DBG>EXAMINE INQUEUE - 1000 - INDEX

4.1. 3 Multiplication Operator (*)

An asterisk multiplies the preceding argument by the following
argument.

Examples:

DBG>EVALUATE AX50 * AD5l2
DBG>DEFINE PAGE = PAGE - 256 * 4

4.1.4 Division Operator (I)

A slash divides the preceding argument by the following argument. Any
remainder is discarded. The debugger rejects an attempt to divide by
zero.

Examples:

DBG>DEFINE MODULO = < INDEX + POINTER >1 QUEUE_SIZE
DBG>SET WATCH < PAGE I 2 > * GO TO ZEBRA

4.1.5 Shift Operator (@)

The shift operator is a unary "at" sign. It means shift the preceding
argument (or interim result) the number of bit positions specified by
the following argument. A positive value means shift left; a
negative value means shift right. The shift is arithmetic; that is,
no wraparound occurs as in a logical shift. Shifts to the left cause
loss of the contents of the sign bit. Shifts to the right cause the
contents of the sign bit to fill the vacated bit positions.

Examples:

DBG>EVALUATE OFOOOFFFO @ 4
OOOFFFOO
DBG>EVALUATE AXFOOOFFO~O @ - 4
OFFOOOFFO

4.1.6 Precedence Operators « ••• »

The debugger first evaluates terms or expressions enclosed by angle
brackets. An expression can contain up to 20 levelS of nesting, with
the debugger evaluating them in the order of innermost to outermost.
The left· and right angle brackets must match.

4-3

SPECIAL .. CHARACTERS

4.1.7 Radix Operators

The debugger interprets numeric arguments in the current radix mode
(see Entry and Display Modes, Chapter 5), unles.s you precede each
argument with .n explicit radix operator. A radix operator affects
only the entry that it accompanies; it has no control over the radix
in which the debugger displays a value.

The radix operators for VAX-II MACRO are:

AD - Decimal radix.

AX - Hexadecimal radix.

AO - Octal radix.

No spaces or tabs are permitted between the radix operator and its
operand.

Examples:

DBG>EV ADlO+AplO
00000014 (assumes hexadecimal display mode)
DBG>EV A0 77+AXFF
0000013E
DBG>EV 77+ AXFF
00000176

4.2 SPECIAL CHARACTERS IN ADDRESS EXPRESSIONS

This section describes the significance of special characters that can
be used to represent locations in address expressions. Table 4-2
lists the address representation characters.

Character

\

@

Table 4-2
Address Representation Characters

Interpretation

Represents the location last addressed by an EXAMINE,
DEPOSIT, SET BREAK, SET TRACE, or SET WATCH command.
This is called the "current" location.

Represents the location previous
addressed (as represented by
location less the current length
-2, or -4).

to the last location
.); (equal to last
mode; that is, .-1,

Represents the value last displayed by EXAMINE or
EVALUATE in NOrNSTRUCTION mode; in INSTRUCTION mode
for branch instructions onIy~ this character
represents the effective destination address of the
branch. (The backslash is also used in forming
pathnames. See Section 6.1.)

"Contents" operator.

Range operator (low address:high address) for the
EXAMINE command; bit field operator for EVALUATE
command (DBG>EVALUATE value<high bit:low bit».

4-4

(

c-

(

(

(

(

(

(

(

SPECIAL CHARACTERS

4.2.1 Current Location Symbol (.)

A dot represents the location last addressed by an EXAMINE, DEPOSIT,
SET BREAK, SET TRACE, or SET WATCH command. This value remains
unchanged until you use one of these commands to refer to a different
location.

Example:

DBG>EXAMINE /ASCII MSG 1
ERR MESSAGE\MSG 1: NEZT
DBG)DEPOSIT/ASCII/BYTE • + 2 = 'X'
DBG>EXAMINE/ASCII ERR MESSAGE\MSG 1
ERR_MESSAGE\MSG_l: NEXT -

The EXAMINE command assigns a dot to the value of the examined
address. You can then use this symbol in the DEPOSIT command's
address expression to represent that location.

4.2.2 Previous Location Symbol (A)

A circumflex represents the last location addressed (by EXAMINE,
DEPOSIT, SET BREAK, SET TRACE, or SET WATCH) less the current length
mode; that is .-1, -2, or -4. The use of this character in
INSTRUCTION mode is not recommended, because VAX-II MACRO instructions
vary in length.

Examples:

4.2.3

DBG>EXAMINE/ASCII TEXTl:TEXTl+4
TEXTl: AH T
TEXTl+4: WEET
DBG>DEPOSIT /ASCII/BYTE A = US"
DBG>EXAMINE/ASCII TEXTl:TEXTl+4
TEXTl: AH S
TEXTl+4: WEET

Last Value Displayed Symbol (\)

A backslash can be used to represent the value last displayed in
NOINSTRUCTION mode. In INSTRUCTION mode, a backslash represents the
effective operand of the last branch instruction displayed. The value
in either mode remains unchanged until the debugger displays a new
value or a new branch instruction.

Example:

DBG>EV/ADDR PI
1028
DBG>EXAMINE\
CIRCLE\PI: 3.141593

The EVALUATE command produces an address value for the location
symbolized by PI. The EXAMINE\ command produces the contents of that
location.

4-5

SPECIAL CHARACTERS

4.2.4 Contents Operator (@)

The unary "contents" operator (@) requests that the debugger evaluate
the expression following it and then extract the contents of the
location addressed by the expression value rather than use the
expression value itself.

Examples:

DBG>EXAMINE PC
PC : 0 0 0 0 0 4 4 8
DBG>EXAMINE!INSTRUCTION @PC
00000448: MOVB #OFF,W A 0400(R7)

The first EXAMINE reports the PC's current contents; the second
EXAMINE· reports the current contents (in INSTRUCTION mode) of the
location (00000448) addressed by the PC's contents.

The command

DBG>DEPOSIT MASK = @MASK @ 4

shifts the current contents of the location MASK four bit positions to
the left. (Note that this example shows how the @ character is used
as both a shift and a "contents of" operator.)

The command

DBG>EXAMINE @R7 @R7 +10

displays the current contents of the 21 bytes beginning with the
location addressed by the current contents of general register R7.

4.2.5 Range Operator (:)

A colon is used in specifying an address range for an EXAMINE command.
The colon is also used as a range operator in bit field specifications
for an EVALUATE command (see Chapter 11).

Examples:

DBG>EXAMINE INBUFFER:INBUFFER + 6
DBG>EXAMINE .:. + A X200
DBG>EXAMINE!INSTRUCTION @PC: @PC+IO

4.3 SPECIAL DELIMITING CHARACTERS

This section desc.ribes the significance of special chara'cters that can
be used to delimit various debugger expressions. Table 4-3 lists the
delimiting characters.

4-6

(

c

(

(

Character

/

=

\

()

, (comma)

Apostrophes
or

Quote marks

< >

SPECIAL CHARACTERS

Table 4-3·
Delimiting Characters

Interpretation

Precedes mode keywords after commands that can
be used to override current modes.

Separates an address expression
entries in a DEPOSIT command:
symbol name from its definition
command.

from data
separates a

in a DEFINE

Separates elements of a symbolic pathname.

Enclose DO command specifications in a SET BREAK
command, or argument list in a CALL command.
Note that the debugger does not use parentheses
to control the order of evaluation of arithmetic
expressions (see Table 4-1).

Separates individual commands in a multiple
command line, or in a DO command sequence
associated with a SET BREAK command.

Separates multiple arguments for input.

Enclose ASCII string input or VAX-II MACRO
instruction input.

Enclose bit field specification for EVALUATE
command.

Hyphen as last printing character on line
signifies line continuatiori. The debugger
prompts with an underline as the first character
of each continued line, and defers command
execution until you enter a line that does not
end with .a hyphen.

4.3.1 Mode Keyword Delimiter (/)

A slash must precede each mode keyword entered after a command.

Example:

DBG>EXAMINE/ASCII/BYTE INBUF:INBUF+8

This command specifies that the contents of 9 bytes, beginning at
INBUF, are to be displayed as ASCII characters.

4-7

SPECIAL CHARACTERS

4.3.2 DEPOSIT and DEFINE Command Delimiter (=)

In a DEPOSIT command, an equal sign separates the address expression
from the data entries. In 9 DEFINE command, an equal sign separates a
symbol name from the definition.

Examples:

DBG)DEPOSIT X_RAY=OFI5,OFFFF5C

This command causes the values OF15 and OFFFF5C to be deposited in
successive longwords, starting at location X RAY.

DBG)DEFINE OFFSET=AX200

This command specifies that the symbol OFFSET is to be defined as the
hexadecimal value 200.

4.3.3 Symbolic Pathname Element Separator (\)

A backslash separates individual elements of a symbolic pathname.

Examples:

DBG)SET BREAK MAIN_CODE\BEGIN

In module MAIN CODE, set a breakpoint at the location identified by
the local symbol BEGIN.

break at pc = CODE2\LOOP3+10

The debugger reports the occurrence of a breakpoint in module CODE2,
at the location 10 bytes after the location identified by local symbol
LOOP3.

A pathname identifies the program elements needed to completely and
unambiguously identify a location. In VAX-II MACRO, a pathname can
be:

• A symbol (a global symbol, or one that you created with the
DEFINE command, or any symbol that is unique in the symbol
table) •

• A symbol in the module to which scope is currently set.

• A local symbol that is unique among the modules current set
(see SET MODULE, Section 6.3.1).

• A local symbol preceded by its module
name\symbol) . Program section names in
classified as local symbols.

name (module
VAX-II MACRO are

A -pathname- canoe used in-any expression; its value is - theaddre5s
value for the location it represents. This feature is useful when the
available symbolic information is not sufficient to identify a
required location.

4-8

c

(--

(

(

(

c

(

(

SPECIAL CHARACTERS

4.3.4 DO Command Sequence Delimiters

A SET BREAK command can include a list ·of commands, separated by
semicolons, that the debugger executes whenever your program stops
at the breakpoint or watchpoint. This command list, known as a DO

Icommand sequence, must be enclosed by parentheses.

Example:

DBG>SET BREAK ALPHA DO(EXAMINE COUNT_I:COUNT_7iGO)

After the debugger stops the program at location ALPHA, it displays
the current contents of the locatibns, COUNT I through COUNT_7, and
then resumes execution of the program.

4.3.5 CALL Command Argument Delimiters ((•••)

A CALL command can include a list of arguments, separated by commas.
Parentheses must enclose any supplied argument or arguments.

Examples:

DBG>CALL COMP(A)

DBG>CALL SORT(BASE,ITEMS)

DBG>CALL CALC

4.3.6 Command Separator (;)

A semicolon separate.s, individual commands in a multiple command- line,
or individual commands in a DO command sequence.

Examples:

DBG>SET WATCH RAIN BOWiSET BREAK LOOP3iGO
DBG>SET BREAK CLOSEUP DO(EXAMINE WHEREiGO)

If GO, STEP, or CALL is used in a DO command sequence, it
last command specified. If not, the debugger prints a
the GO, STEP, or CALL and any subsequent commands in the
are ignored.

4.3.7 Argument Separator (,)

must be the
message, and
DO sequence

A comma separates individual arguments in an argument list.

Examples:

DBG>SET MODULE X RAY,CLOSE UP,BAKE
DBG>DEFINE INDEX-= A X200,OPEN=AD512

4-9

SPECIAL CHARACTERS

4.3.B Input String Delimiters

The debugger requires that input strings in ASCII or INSTRUCTION modes
be enclosed by matching apostrophes or quotation marks. If you wish
to enter a literal apostrophe or quotation mark in a string, use the
other type to delimit the string. Otherwise, use either type. Refer
to ASCII mode and INSTRUCTION mode (Chapter 5) for mode use and input
restrictions.

Examples:

DBG>DE"POSIT/ASCII 2S0U=-":IT' S"
DBG>DE1;>OSIT/INSTRUCTION SHUT='MOVL #30,RO'

4.3.9 Bit Field Deli.iters

A colon within angle brackets sign~fies a bitl;;f'eld specification that
the EVALUATE command is to report On. The syntax is:

, : "-f

DBG>EVALUATE value<high bit:):6w bit>

The bit positions are numbered 0 (lowest bit) through 7 (for a byte),
o through 15 (for a word) an?O through 31 (fbr a longword) •

The following procedur~~{s reco~mended when yo~ want to evaluate a bit
field when you know th~V~orrespon~ing longword'value:

f- :~i ,," .::'. -'??c

DBG>EV 246BA<9:7>

00000005

The following command sequence is recommenGi'ed when you want to
evaluate a bit field for wh;ch you know only the address.

DBG >EXAMIN.E,:.add ress-expre ss ion
address: .. contentp

DBG>EVALUATE \<high bit:low blJ>
bit-field value' . -

The EXAMINE ,command' establishes the location's c(intents as the
r:epresented by the backslash, the.;;'''last value di.~;played" symbol.
sequence is useful when you want ~o extract a;~~it field from
contents of a location. .', ;~~:~?:

Examples:

DBG>EXAMINE LOOP3
WATCH\LOOP3: OFFFFBFDO
DBG>EVALUATE \<6:4>
00000005

}"

value
This

the

Use the EXAMINE command to display the contents of the location, then
use the backslash ("last value displayed" symbol) with the EVALQATE
command, indicating the bit positions to be evaluated.

To display other bit patterns of the same location, you can specify
the following:

DBG>EXAMINE
WATCH\LOOP3:
DBG>EVALUATE
00000007

OFFFFBFDO
\ <B:6>

4-10

(

f-

(

(

(

(

(

(

(

SPECIAL CHARACTERS

4.3.10 Line Continuation Operator (-)

A hyphen as the last printing character on a line requests
continuation of the command line. The debugger echoes an underline as
the prompt instead of DBG> for each continued line. You may continue
a command line up to approximately 500 characters, exclusive of space
and horizontal tab characters.

Example:

DBG>EXAMINE/ASCII/BYTE -
BUFFER:BUFFER+20

4-11

0-- -

(

(

(

(

l

CHAPTER 5

ENTRY AND DISPLAY MODES

The entry and display modes determine how the debugger interprets your
entries and displays solicited or unsolicited output. This chapter
describes the four classes of modes: context, length, radix, and
pathname search. It tells you how to use the SET MODE and SHOW MODE
commands to establish and report current modes, and how to use the
CANCEL MODE command (.or the CANCEL ALL command) to restore the
debugger's initial modes. The chapter also describes how you can
override current modes at .the command level for the EXAMINE, DEPOSIT,
and EVALUATE commands. The EXAMINE and DEPOSIT commands are described
in Chapter 10; the EVALUATE command is described in Chapter 11.

5.1 KEYWORD SUMMARY FOR ENTRY AND DISPLAY MODES

Table 5-1 summarizes the mode keywords. In the table, the following
letters are used to indicate mode class:

Mode
Class

C

L

R

P

R

C

C - Context
L. - Length
R - Radix
P - Pathname search

Table 5-1
Keyword Summary for Entry and Display Modes

Keyword

ASCII

BYTE

DECIMAL

GLOBAL

HEXADECIMAL

INSTRUCTION

Function

Interpret/display data as ASCII characters.

Interpret/display data in byte lengths.

Interpret/display data in decimal radix.

Use symbolic entry as first patl:lname in
search.

Interpret/display
radix.

data in hexadecimal

Interpret/display data as VAX-II
instructions.

MACRO

(continued on next page)

5-1

ENTRY AND DISPLAY MODES

Table 5-1 (Cont.)
Keyword Summary for Entry and Display Modes

Mode
Class Keyword Function

L LONG

C NOASCII

P NOGLOBAL

C NOINSTRUCTION

P NOSCOPE

C NOSYMBOLIC

R OCTAL

P SCOPE

C SYMBOLIC

L WORD

Interpret/display data in longword lengths.

Inhibit entry/display of ASCII characters.

Use symbolic entry as last pathname in
search.

Inhibit entry/display of
instructions.

VAX-ll MACRO

Inhibit SCOPE's contribution to pathname.

Inhibit display of symbolic addresses.

Interpret/display data in octal radix.

Prefix entry with SCOPE's contents to form
pathname.

Display symbolic addresses.

Interpret/display data in word lengths.

5.2 INITIALIZEDMODES

For VAX-II MACRO, the modes are initialized as follows: SYMBOLIC,
NOINSTRUCTION, NOASCII, NOGLOBAL, HEXADECIMAL, LONG, and SCOPE.

NOTE: In high-level languages, such as FORTRAN, these defaults
are overridden by the data typing of variables.

5.3 CONTROL OF DEBUGGING MODES

The SET MODE, SHOW MODE, and CANCEL
modes, report the current modes,
respectively.

5.3.1 Changing Modes

MODE commands let you change
or restore the initial modes,

You'can change one or more modes with the SET MODE command.

DBG>SET, MODE mode-keyword[,mode-keyword, •••]

5-2

(

(

(

(

c

(

(
'-..

ENTRY AND DISPLAY MODES

The following mode choices are available:

Context modes:

SYMBOLIC or NOSYMBOLIC
INSTRUCTION or NOINSTRUCTION
ASCII or NOASCII

NOTE: If both INSTRUCTION and ASCII modes are active at the same
time (or if you enter them both at command level), the
debugger defaults to INSTRUCTION mode.

Radix modes:

DECIMAL
HEXADECIMAL
OCTAL

Length modes:

LONG
WORD
BYTE

Pathname search modes:

GLOBAL or NOGLOBAL
SCOPE or NOSCOPE

5.3.2 Reporting Current Modes

You can determine~ the state of the entry an(j display modes by using
the SHOW MODE command.

DBG>SHOW MODE

The debugger reports the mode states by keyword (symbolic, ascii,
etc.). For example:

symbolic, instruction, noascii, scope, noglobal, decimal, long

Debugger messages are usually in lower case.

5.3.3 Restoring the Debugger's Initial Modes

To restore the debugger's initial entry and display modes, type

DBG)CANCEL MODE

Whatever mode changes you have made are canceled. and the debugger
re-initializes the mode state to:

symbolic, noinstruction, noascii, noglobal, hexadecimal, long, scope

You can also restore the debugger's initial modes by typing

DBG)CANCEL ALL

This command also cancels
watchpoints.

all breakpoints, tracepoints, and

ENTRY AND DISPLAY MODES

5.3.4 Overriding Current Modes at Command Level

The EXAMINE, DEPOSIT, and EVALUATE commands let you temporarily
override current modes by specifying mode keywords after the command
verb. For example, the command

DBG)EXAMINE/BYTE/ASCII BUFFER:BUFFER+ADIO

causes the debugger to report the current contents of eleven bytes
beginning with BUFFER as ASCII characters regardless of the modes
currently active.

This mode override feature lets you specify an EXAMINE, EVALUATE, or
DEPOSIT command without having to remember (or check) what modes are
current. Each mode keyword entered after the command verb must be
preceded by a slash.

With the exception of the INSTRUCTION and ASCII modes, mode keywords
entered at the command level simply override their counterpart modes.
The following summarizes the relationships between command level modes
and current modes.

• ASCII/INSTRUCTION modes: these modes are mutually exclusive.
The debugger defaults to INSTRUCTION mode if it finds both
ASCII and INSTRUCTION active or requested. You can avoid
getting unexpected results by leaving both modes in their
initialized NO ••• states and requesting the particular mode
only a t command level. .

• Radix mode: a radix mode specified at command level controls
the debugger's interpretation and display of all numeric
information for the command.

• Length mode: a length mode specified at command level
overrides the current length mode.

• Symbolic mode: you can set (SYMBOLIC) or inhibit (NOSYMBOLIC)
the symbolic mode as you require.

• Pathname search modes: as with symbolic mode, you can set or
inhibit the GLOBAL and SCOPE mode conditions at command level
as you require.

5.4 CONTEXT MODES

The context modes
various forms.
virtual address.
instrtictions, or
are:

allow the entry and display of addresses and data in
An address can be represented symbolically or as a
Data can be represented by symbols,· VAX-II· MACRO

ASCII character strings. The context mode keywords

SYMBOLIC and NOSYMBOLIC
INSTRUCTION and NO INSTRUCTION
ASCII and NOASCII

The above keyword pairs function as on-off switches to allow or
inhibit a condition.

The debugger initializes
NOINSTRUCTION, and NOASCII.

the context modes as: SYMBOLIC,

c

(

c

(

ENTRY AND DISPLAY MODES

5.4.1 Effects of Context Modes

The following summarizes the effect of the context modes on the entry
and display of addresses and data.

Address Entry:

The debugger is insensitive to the [NO]SYMBOLIC mode for address
entries. You can express an address either as a symbolic
pathname or as a virtual address.

Address Display:

In SYMBOLIC mode, the debugger displays all locations by
pathnames when possible. Offsets are expressed in the current
radix mode. When the pertinent symbolic information is
unavailable, SYMBOLIC mode is ignored.

In NOSYMBOLIC mode, the debugger displays locations as virtual
addresses in the current radix mode.

Data Entry:

In INSTRUCTION mode, the debugger interprets· a quoted string
entry as a VAX-II MACRO instruction, interprets numeric values in
the current radix mode, and ignores the current length mode. The
debugger rejects instructions not enclosed in quotes.

In ASCII mode, the debugger interprets a quoted string entry as
ASCII characters. The ~trin9 is deposited as entered (that is,
the curr~nt length mode is overridden if necessary).

Data Display:

In INSTRUCTION mode, the debugger displays the current contents
of - specified locations as VAX-II MACRO instructions. Most
numeric values are displayed in the current radix. The current
length mode is ignored and the debugger increments sequential
instruction locations 6n the basis of each instruction's
allocated storage~ The debugger tries to display instruction
operands in symbolic form if the addressing mode is PC-relative
or absolute.

In ASCII mode, the debugger displays the current contents of
specified locations as ASCII characters. The character count
associated with each requested location is limited by the current
length mode, to four characters (LONG), two characte.rs (WORD), or
one character (BYTE). The current radix mode is ignored.

When both NOASClland NO INSTRUCTION are in effect the debugger
displays the current contents of the specified locations in the
c~rrent radix mode. The debugger increments sequential locations
on the basis of the current length mode, if no data typing
information is ","vailable (such as in FORTRAN programs).

5-5

ENTRY AND DISPLAY MODES

5.4.2 SYMBOLIC/NOSYMBOLIC Modes

The SYMBOLIC/NOSYMBOLIC . modes
locatioris symbolically, that
pathname can be:

allow
is, by

or inhibit
pathname.

the reporting of
In VAX-II MACRO, a

• A symbol (a global symbol, or one that you defined with the
DEFINE command - see Section 6.2.2).

• A local symbol preceded· by
name\symbol) .

its module name (module

~n SYMBOLIC mode, the debugger reports all locations by pathnames. In
NOSYMBOLIC . mode, the debugger reports all locations as virtual
addtesses in th~ current radix mode.

You can enter locations symbolically regardless of which mode is set.

Refer to Chapter 6 for more infotmation on how the debugger builds
pathnames, and translates pathnames to values and values to symbolic
expressions.

5.4.3 INSTRUCTION/NOINSTRUCTION Modes

The INSTRUCTION/NO'INSTRUCTION modes allow or inhibit the entry and
display of data as VAX-II MACRO instructions. In INSTRUCTION mode,
the debugger interprets quoted data entties ~nd displays current data
only as VAX-II MACRO instructions. If the debugger cannot interpret
your entry as an instruction, .it reports that it cannot encode the
instruction. If it cannot translate the current contents of a
location as an instruction, the debugger reports that it cannot decode
the instruction.

NOINSTRUCTION inhibits the entry or display of data as instructions.

The storage requirements of VAX-II MACRO instructions vary according
to the instruction type and number of operands. The debugger ignores
the current length mode when it enters or displays instructions; the
debugger instead increments the ~u~rent address accotding to the
number of bytes required or occupied by an instruction.

An instruction string entry must be delimited by apostrophes or
quotation marks ..

DBG)DEPOSIT /INSTRUCTION PLUNK = 'ADDL3 #5,R3,R4'

When ent~ring an instruction, you must verify that the length of the
data str ing can be·· accommodated by the number of bytes you intend to
overwrite. The debugger neither guards against spillover into
subsequent bytesj hor pads memory left vacant when you replace an
instruction with another instruction that requires less storage.
While you cannot deposit more than can be accommodated, you can use
the NOP instruction to fill bytes that are unoccupied after you
complete the deposit of an instruction or instructions.

You should examine the location to be changed and those following it,
before and after the deposit to verify that the contents are correct

5-6

(

E-

(

(

(

(

(

(

ENTRY AND DISPLAY MODES

before you attempt to execute the new
example illustrates the change of
SORT\BEGIN+12 from an ADDL3 #10,R2,R4
occupies one less byte.

DBG>EXAMINE /INSTRUCTION BEGIN+12
SORT\BEGIN+12: ADDL3 #10,R2,R4
DBG>EXAMINE /INSTRUCTION

instruction. The fOllowing
the instruction in location
to an ADDL2 #10~R2, which

SORT\TEST_SEQ: CMPB (RO) [R2], (RO) [R4]

In INSTRUCTION mode, the debugger interprets an EXAMINE command with a
null address expression (carriage return typed directly after the verb
and mode keywords, if any) to mean display the instruction that
follows the location last displayed.

Make the change as follows.

DBG>DEPOSIT/INSTRUCTION BEGIN+12='ADDL2 #10,R2'
DBG>EXAMINE/INSTRUCTION
SORT\BEGIN+14: EMODF @(Rl)+,(RO) [R2], (RO) [R4] ,#0400C7FF,@W A D157(R6)

The debugger typically translates a leftover byte and subsequent bytes
as parts of some meaningless instruction. If you continue examining
locations as instructions, the debugger eventually reports that it
cannot decode the instruction, because it determines that the data in
the given bytes does not translate into a VAX-ll/780 instruction. To
suppress the effect of the leftover byte or bytes, you must enter one
NOP instruction per byte.

DBG>EXAMINE/INSTRUCTION BEGIN+12
SORT\BEGIN+12: ADDL2 #10, R2
DBG>EXAMINE/INSTRUCTION
SORT\BEGIN+l4: EMODF @(Rl)+,(RO) [R2], (RO) [R4] ,#0400C7FF,@W A D157(R6)
DBG>DEPOSIT/INSTRUCTION .='NOP'

Examination of the locations reveals that the desired instruction
sequence is intact:

DBG>EXAMINE/INSTRUC~ION BEGIN+12:TEST SEQ
SORT\BEGIN+12: ADDL2 #10,R2
SORT\BEGIN+l4 :NOP
SORT\TEST_SEQ: CMPB (RO) [R2] , (RO) [R4j

The DEPOSIT command can accept an instruction sequence for entry, but,
as for any other command, you usually must reenter the entire command
if you make an error. The following command sequence is a suggested
method that allows you to enter a series of instructions by
independent DEPOSITs without having to compute the actual address in
each case.

DBG>SET MODE INSTRUCTION

DBG>DEPOSIT address-expression='instruction n'

DBG>EXAMINE

DBG>DEPOSIT 'instruction n+l'

DBG>EXAMINE

DBG>DEPOSIT 'instruction n+2'

5-7

ENTRY AND DISPLAY MODES

Each EXAMINE command increments the previous address by the number of
bytes required for the entered instruction and thus sets up the
current address symbol (.) with the correct address for the next
DEPOSIT command. The deposit of the NOP instruction in the previous
example illustrates this method.

5.4.4 Evaluating VAX-II MACRO Literals

When the debugger displays data in symbolic mode, it does not
translate literal values into their symbolic equivalents. Thus, a
displayed instruction may not appear exactly as you entered it in the
source code. For example, the instruction

ADDL3 #literal-value, RO, RI

is displayed as

ADDL3 #3F4, RO, RI

if literal-value was previously assigned the value 3F4.

The EVALUATE command can help you quickly verify that the instructions
are the same. If you type

DBG>EVALUATE/LITERAL expression

The debugger displays all pathnames it finds that have the value of
the expression as their literal assignment. It is then a simple
matter to scan the pathname list for the literal symbol name you wish
to verify. .

5.4.5 ASCII/NOASCII Modes

The ASCII/NOASCII modes allow or inhibit the entry and display of data
as ASCII characters. ASCII mean~ interpret or display the data as
ASCII characters. NOASCII means do not interpret the input as ASCII
or do not display the current data as ASCII. The debugger is
initialized in NOASCII mode.

ASCII character input is usually by quoted string. You must enclose
each string with either apostrophes or quotation marks. This
provision lets you include literal apostrophes or quotation marks
within a string. For example,

DBG>DEPOSIT /ASCII WINK
DBG>DEPOSIT /ASCII THINK
DBG>DEPOSIT /ASCII PLINK

'ZZZZ'
"IT'S"
1111111

The delimiter at the string's end must match the beginning delimiter,
and must not appear within the string.

The current length mode (LONG, WORD, or BYTE) is overridden by the
length of the string.

Nonprinting ASCII characters (carriage return, line feed, horizontal
tab, etc.) must be entered as numeric equivalents. For example, you
can enter a carriage-return, line-feed combination between strings as
follows.

DBG>DEPOSIT/ASCII/HEXADECIMAL/WORD TEXT="IT'S",ODOA, "NEXT LINE"

5-8

(

(

(

(

(

(

(

(

ENTRY AND DISPLAY MODES

The debugger enters the value ODOA into memory following the string,
IT'S. By specifying /WORD, you ensure that the value ODOA is not
deposited as a longword value.

You can verify the presence of ~he nonprinting characters by
displaying the contents of the specific locations. Note that the
debugger displays numeric data in the order that it resides in memory
(that is, the contents of lower addresses appear in the least
significant digits) whereas it displays ASCII characters in a
left-to-right reversal of the actual character storage.

5.5 RADIX MODES

The radix mode keywords are:

DECIMAL
HEXADECIMAL
OCTAL

The baSe used in performing arithmetic operations depends on the radix
mode specified. The radix mode also determines how numeric values are
entered and displayed. You can use the SET MODE command to specify
the radix mode. For example:

DBG>SET MODE DECIMAL

Numeric values specified in subsequent commands will be interpreted as
decimal values, and numeric displays will also be in decimal F unless
you override the current radix mode by including a radix mode keyword
with the command. For example:

DBG>EVALUATE/HEX 15+15

0000002A

You can also specify that data be entered in a specific radix, by
using a radix operator. For example:

42

Note that the resulting value is displayed in the current radix mode
(in this example, decimal). See Section 4.1.7 for information on
radix operators.

5.5.1 DECIMAL Mode

In DECIMAL mode, the debugger interprets entries and displays
information in the decimal radix. A decimal entry can include the
characters 0 through 9. with the rlebugger set for VAX-II MACRO, you
can use the radix operator AD to identify individual entry arguments
as decimal when the current radix mode is set to another radix.

5.,.9

ENTRY AND DISPLAY MODES

5.5.2 HEXADECIMAL Mode

In HEXADECIMAL mode, the debugger interprets entries and displays
information in the hexadecimal radix. A hexadecimal entry can include
the characters 0 through 9 and A through F. You can use the radix
operator .A X to identify individual entry arguments as hexadecimal when
the current radix mode is set to another radix.

If an entry has an alphabetic as the leftmost character, you must
include a leading zero or use the hexadecimal radix operator to
differentiate hexadecimal constants from symbols.

5.5.3 OCTAL Mode

In OCTAL mode, the debugger interprets entries and displays
information in the octal radix. An octal entry can include the
characters 0 through 7. With the debugger set for VAX-II MACRO, you
can use the radix operator AO to identify individual entry arguments
as octal when the current radix mode is set to another radix.

5.6 LENGTH MODES

The length mode keywords are:

LONG (for longword)
WORD
BYTE

The current length mode specifies the value (4, 2, or 1) by which
debugger increments memory addresses for the entry or display of
forms other than VAX-II MACRO instructions. In INSTRUCTION mode,
debugger ignores the current length mode and increments memory
function of each instruction's storage requirements.

In NOINSTRUCTION mode, the results of all arithmetic operations
limited to value ranges corresponding to the current length mode.
debugger truncates values that exceed the current length mode
discarding most significant bit positions.

5.7 PATH NAME SEARCH MODES

The pathname search mode keywords are:

GLOBAL and NOGLOBAL
SCOPE and NOSCOPE

the
data

the
as a

are
The

by

The following sections summarize the use of these mode keywords. For
a complete description of their use and how such use relates to the
debugger's search rules for translating pathnames to values, refer to
Chapter 6.

5.7.1 GLOBAL/NOGLOBAL Modes

In GLOBAL mode, the debugger searches its symbol table for a symbolic
match to the pathname as you entered it (that is, it does not prefix a
scope to the entry). In NOGLOBAL mode, the debugger prefixes the

5-10

(

(-

(

(

(

(

l

ENTRY AND DISPLAY MODES

entry with the contents of scope, or a PC-implied scope, and searches
the symbol table. If it does not find a match, it then attempts to
find a match for the entry exactly as you entered it.

5.7.2 SCOPE/NOSCOPE Modes

In SCOPE mode, the debugger prefixes a pathname entry with the current
contents of SCOPE and searches the symbol table for a match. If the
SCOPE prefix fails or is not applied (NOSCOPE), the debugger prefixes
a pathname entry with the name of the module that the program counter
(PC) currently points to and searches for a match.

The debugger initializes SCOPE with the name of the first module read
into the symbol table. You can then use the SET SCOPE, SHOW SCOPE,
and CANCEL SCOPE commands to set, display, or delete the contents of
SCOPE.

See Figure 6-1 for a diagram of the algorithm followed by the debugger
in resolving references to symbols.

5-11

(

(

c

(

(

(

(

CHAPTER 6

SYMBOLS AND PATHNAMES

Pathnames. symbolically represent address values that refer to
locations in your program. This chapter describes how symbol
information is entered in the debugger's symbol table for your use in
specifying pathnames. The chapter also describes how you control both
the contents of the symbol table and the manner in which the debugger
translates a pathname into a value or a value into a symbolic
expression.

6.1 PATHNAMES

The debugger uses pathnames
avoid the possibility of
program. A pathname has two
of a pathname is:

scope\symbol

to symbolically identify locations to
ambiguous local symbols in a multimodule
components: scope and symbol. The form

Scope identifies the module in which the symbol is unique (the
backslash separates scope and symbol in a pathname).

If a symbol reference is unambiguous, you can ignore the scope of a
pathname and simply specify the symbol in the debugger command. The
search rules that govern the debugger's translation of a symbol into a
value guarantee that the specified location or data element will be
accessed. If, however, you specify ambiguous symbols, the debugger
must know (or default) the scope of a symbol so that it can access the
correct location or data.

The debugger's symbol-to-value algorithm defines how and when scope is
expressed explicitly or implicitly. See Section 6.4.

In VAX-II MACRO, the module name performs the scope function for local
symbols. Global symbols, symbols that you define at debugger run
time, and the debugger's permanent symbols do not require a regional
identity since they are, by definition, known throughout the program
(and to the debugger). They have a global scope and their pathnames
are simply their symbol names.

Since a pathname is equivalent to the address for the location it
represents, you can specify a pathname in any expression. For
example, appending a numeric offset to a pathname creates an address
expression that identifies an unlabeled location.

6-1

SYMBOLS AND PATHNAMES

6.2 SYMBOL TYPES

The symbol types you can use are:

• Permanent symbols

• Symbols you create with the DEFINE command

• Your program's local symbols

• Your program's global symbols

A symbol is usually regarded as a way to specify a value. For
example, symbolic labels point to locations in your program. However,
most data symbols represent a sequence of bytes, that is, a range of
values. A PSECT name, for example, refers to an entire program
section within a given module.

While the concept of a symbol representing an address pair is not
always pertinent (after all, you can't deposit a single value into an
entire program section with one command), it is a useful concept for
many cases, particularly when dealing with a language such as FORTRAN:
Both EXAMINE and DEPOSIT work with a range of bytes for all standard
FORTRAN data types. In VAX-II MACRO, SET WATCH and translation from a
value to a symbol also depend on this view of symbols.

6.2.1 Permanent Symbols

The debugger has the following VAX-II abbreviations as permanent
symbols. They cannot be redefined.

• RO - R11 General registers 0 - 11

• AP Argument pointer

• FP Frame pointer

• SP Stack pointer

• PC Program counter

• PSL Processor Status Longword

Refer to Chapter 14 for information on the Processor Status Longword.

6.2.2 Defining Symbols During a Debugging Session

The DEFINE command lets you define global-type symbols at any time
during a debugging session to supplement or override existing symbols
in your program. The command format is:

DBG>DEFINE symbol=expression[,symbol=expression ... J

Symbol is a name, and expression is any valid expression. Symbols
appearing in an expression must be resident in the debugger's symbol
table. You must separate multiple symbol-expression pairs with
commas.

You can, for example, create explicit symbols for unlabeled locations
and/or assign various data values to symbols for ease of reference

6-2

(

(-

(

(

(-

(

(

(

(

SYMBOLS AND PATHNAMES

during the session. The debugger always searches these symbol
definitions first when it translates· a symbolic entry into a value or
when it translates an address location into a symbolic equivalent in
SYMBOLIC mode. Because the debugger treats these defined symbols as
first priority global symbols, your defined symbols have precedence
over all other symbols in your program having identical names and/or
definitions. This priority l.ets you .createa symbolic shorthand.

For example, rather than request a breakpoint as

DBG)SET BREAK LOOP3\SILO_3

you could define the location to be BP7 with the command

DBG)DEFINE BP7=LOOP3\SILO_3

BP7 assumes the value of LOOP3\SILO_3.
breakpoint as follows:

DBG)SET BREAK BP7

You can now request the

When yo'ur program stops at the breakpoint, the debugger reports the
location by:

break at pc = BP7

You can disable the shorthand notation, or determine the symbolic
value of BP7, by redefining it, and then causing the breakpoint to be
displayed. For example:

DBG)SET BBP7 DO(DEF BP7=BP7-BP7)
DBG)GO
start pc is BP7
break at pc = BP7
DBG)GO
start pc is LOOP3\SILO 3 -

The debugger requires that the definition of a user-defined symbol
exactly match the address value if the debugger is to report that
symbol as the symbolic equivalent rather than a global or local
symbol. The section on translating output values into pathnames
describes the complete rules on translation priority. See Section
6.5.

Symbolic names follow the VAX/VMS conventions:

• No more than 15 characters.

• Include only characters from the character set: A - Z, 0 - 9,
dot (.), underline (), and dollar sign ($). The debugger
interprets lowercase alphabetics· to be uppercase. Thus,
"LOOP" .and "loop" are the same to the debugger.

• Begin with an alphabetic character, underline, or dollar sign.

The debugger truncates a symbol that exceeds 15 characters to the 15
leftmost characters and issues a message.

6-3

SYMBOLS AND PATHNAMES

The values that you assign to symbols must observe the following
limi ts.

An unsigned value must be within the following ranges:

• Decimal: 0 - 4294967295

• Hexadecimal: 0 - FFFFFFFF

• Octal: 0 - 37777777777

A signed value must be within the following ranges:

• Decimal: - 2147483648 <= value <= 2147483647

• Hexadecimal: . -80000000 <= value <= 7FFFFFFF

• Octal: -20000000000 <= value <= 17777777777

Additional restrictions for values are:

• Precede a hexadecimal value with either 0 or the radix
operator ~X if the first character is alphabetic, A - F
(otherwise, the debugger tries to interpret the character
string as a symbol).

• Do not include commas within the value (2024; not 2,024).

A symbol cannot be canceled once you have defined it, but you can
redefine it by specifying a different value with the DEFINE command.
For example, the previous definition of BP7 to represent the location
LOOP3\SILO_3 could be changed as follows.

DBG>DEFINE BP7=SORT\TEST_END

You can also redefine a symbol created by a DEFINE command, in terms
of its current definition. For example, you can redefine the symbol
LOOP to represent a value of 1000 plus its current definition.

DBG>DEFINE 100p=100p+lOOO

. NOTE

The DEFINE command can not, under any
circumstances, be used to redefine or
create a multi-element pathname.

With the EVALUATE command, you can determine the current definition of
any symbol and express it in any radix. For example:

DBG>EVALUATE [/radix-mode-keyword] symbol

You cannot, however, translate a numeric value to learn its symbolic
equivalent (s) •

Refer to the description of the EVALUATE command (Chapter 11) for more
information on its use. Refer also to Chapter 4 for information on
the use of the debugger's special characters in expressions to create
values for your defined symbols.

6-4

(

(

(

(

(

c

(

SYMBOLS AND PATHNAMES

6.2.3 Local Symbols

Local symbol information includes:

• Module names assigned by the VAX-II MACRO directive, .TITLE
. (they can be used only as the scope of pathnames, because they
have no values)

• Program section names assigned by the VAX-II MACRO directive,
.PSECT (program section names assigned by default are not
normally accessible)

• All symbols and associated definitions not identified as being
global, but not "n$" type symbols

For the debugger to have access to local symbol information, you must:

• Request that the assembler produce debugging records when it
assembles each module (/ENABLE=DEBUG)

• Use the /DEBUG qualifier at link time

• At run time, use SET MODULE to ensure that symbol information
for a particular module is present in the symbol table when
you intend to specify any local symbols from that module in
pathnames or you want the debugger to represent any of its
locations by local symbol pathnames

If you prefer to enter or have the debugger display locations as
program section names plus offsets (some programmers find this
con~enient when referring to assembly listings), you can request that
the image contain only traceback records. This request limits the
debugger's access to only module and program section names.

6.2.4 Global S~mbols

Global symbols include:

• Those symbols identified as labeling external definitions in a
module by the VAX-II MACRO directive, .GLOBL

• Those symbols delimited by the double colon (::) operator

• Those symbols that label global literals (that is, those
delimited by the double equal (==) operator)

The debugger references global literals only when translating a
pathname into a value. It ignores them in the translation of a value
into a pathname. You can, however, determine the correspondence of a
value to a global literal name by use of the EVALUATE command (see
Chapter 11).

You can access your program's global symbols only if you specified
/DEBUG when you linked your program. Refer to the VAX-II Linker
Reference Manual and the VAX-II MACRO User's Guide for information on
how to make global symbols available to the debugger.

6-5

SYMBOLS AND PATHNAMES

6.3 THE DEBUGGER'S SYMBOL TABLE

The debugger translates pathnames into values and values into symbolic
expressions on the basis of information in its symbol table. The
debugger has no knowledge of symbol information not present in this
table. After the debugger is initialized, this information consists
of permanent symbols, any symbols created by DEFINE commands, all
global symbols, and local symbol information for the first module in
your iinag.e, if you specified the appropriate qualifier when you
compiled or assembled the source program. For example, for a VAX-II
MACRO program, /ENABLE=DBG.

When you initiate the debugger, it establishes a data base for the
modules in your program and reads symbol information from the first
module into the symbol table.

The following sections describe how you control the symbol table
contents with the SET MODULE,' SHOW MODULE, and CANCEL MODULE commands.

6.3.1 Symbol Table Input (SET MODULE)

The command

DBG)SET MODULE module-name [~module-name, ••.]

tells the debugger to add local symbol information for the specified
module(s) to the symbol table. Rather than specify individual
modules, you can request that all symbol information for all modules
be entered in the symbol table by specifying:

c

DBG)SETMODULE/ALL C
If the debugger is not able to include some of the modules, it prints
a message indicating those modules that were not included.

6.3.2 Symbol Table Status Report (SHOW MODULE)

The command

DBG)SHOW MODULE

produces a status report on the symbol table. The report lists all
modules in the program and indicates by yes or no whether their
associated local symbol information is currently present in the symbol
table. The report also includes the following information:

• the approximate number of bytes (in
accommodate the entry of symbol
respective modules into the table

decimal) required to
information from the

• the total number of modules in your program

• the amount of free bytes (in'decimal) available in the table

• the name of the language in which the modules were written.
If the same language was used for all modules, the language
name appears only in the line that indicates the total number
of modules.

6-6

(

(\

(~

(

(

(

SYMBOLS AND PATHNAMES

6.3.3 Symbol Table Purging (CANCEL MODOLE)

The command

DBG)CANCEL MODULE module-name [,module-name, .•.]

purges symbol information associated with the specified module(s) from
the symbol table. Typically, it is used to make space available for
symbol information associated with other modules. The CANCEL MODULE
command does not affect global symbols or symbols that you defined
during this debugging session.

You can delete all local symbol information currently in .the symbol
table by the command

DBG)CANCEL MODULE/ALL

6.4 TRANSLATING SYMBOLS INTO VALUES

The debugger's translation of symbolic entries into values
by the GLOBAL/NOGLOBAL and SCOPE/NOSCOPE modes,which give
of the debugger's search rules. Figure 6-1 illustrates
algorithm.

is governed
you control
the search

The debugger evaluates an expression in which a symbolic entry appears
only if a definition was located for the entry under the search rules.
If it fails to locate a match for a pathname, the debugger reports the
search failure and the symbol name. The expression becomes undefined.

If you specify GLOBAL, the debugger first assumes the symbolic entry
represents the entire pathname, and tries to find a match for that
pathname. If the search is unsuccessful, or if NOGLOBAL is in effect,
the debugger then tries all the other search possibilities.

If you specify NOGLOBAL, the debugger assumes that the symbolic entry
represents the entire pathname only after first trying all other
search possibilities.

You might set the mode to GLOBAL if your program contained a global
symbol and a local symbol with the same names, and you wanted to set a
breakpoint (or execute any debugger command) at the global symbol
location.

Another use would be when you are working in one of your program's
modules and want to execute the debugger command in another module
without having to change the current contents of SCOPE. In this case,
you would enter the complete pathname, module name and local symbol,
in the command.

For example, this sequence

DBG)EVALUATE/GLOBAL SORT\SEQ_CHECK
00003AF2
DBG)SET BREAK \

makes the debugger determine the value of the given pathname and
display it. The display in turn assigns the value to the last value
displayed symbol (see Section 4.2.1) for use as the.oper.and in the SET
BREAK command.

6-7

SYMBOLS AND PATHNAMES

YES
SUCCESS

YES SEARCH SYMBOL TABLE
>-----.-.j FOR PATHNAME TO

YES

FORM NEW PATHNAME BY
PREFIXING SCOPE BASED
ON CURRENT PC CONTENTS.
SEARCH SYMBOL TABLE

MATCH THE ENTRY

FORM NEW PATHNAME
BY PREFIXING SCOPE.
SEARCH SYMBOL TABLE

YES

YES USE ENTRY AS COMPLETE

NO

>-___ ---1~ PATHNAME. SEARCH

SYMBOL TABLE

NO

PRINT ERROR
MESSAGE AND
PROMPT

YES

YES

Figure 6-1 Debugger Symbol-to-Value Search Algorithm

6-8

YES

c

(

(

(

c

(

SYMBOLS ANDPATHNAMES

NOSCOPE tells the ~ebugg~r that you do not want the current contents
of SCOPE to be prefixed to a pathname entry. The debugger then uses
the name of the module that the program counter (PC) is currently
pointing to as the scope, and searches the symbol table for a local
symbol from that module that matches your entry.

The sequence

DBG>EVALUATE/NOSCOPE SEQ_CHECK
00003AF2
DBG>SET BREAK \

directs the debugger to construct a pathname by prefixing the name of
the currently executing module to SEQ_CHECK, 'determine the value of
this pathname, and display it. The display, as before, assigns the
value to the last value displayed symbol for use as the address in the
SET BREAK command.

The command

DBG>SET SCOPE module-name

establishes the specified module name as the explicit scope to be used
under the search rules for the translation of local symbol and program
section name pathnames. The debugger also reads symbol information
associated with the specified module into the symbol table if the
necessary number of bytes are free in the table. If the table lacks
the number of bytes required to accommo¢iate the module's symbol
information, the debugger aborts the SET SCOPE command and prints a
message.

The command

DBG>SHOW SCOPE

requests that the debugger report the current contents of SCOPE. A
<null> report indicates that the SCOPE rule has no effect in looking
up symbols.

The command

DBG>CANCEL SCOPE

enters a null string in SCOPE. If you subsequently specify SET MODE
SCOPE, the previous contents of SCOPE are restored.

6.S TRANSLATING VALUES INTO PATHNAMES

In SYMBOLIC mode, the debugger translates an address value into a
pathname as follows.

1. The debugger first compares the value with its permanent
symbol definitions, then with the symbol definitions, if any,
that you created with the DEFINE command. If it locates an
exact match (no offs~t permitted), the debugger reports the
found symbol as the pathname.

2. If step 1 fails, the debugger compares the value· with the
global and local symbol definitions. A global symbol
definition is sought only if no local definition is found.
If an exact match is found, the debugger reports the symbol
as the pathname.

6-9

SYMBOLS AND PATHN~ES

3. If no exact match can be found~ the debugger searches all
symbol definitions for the one that is nearest t6, yet less
in value than, the value to be translated, and expresses the
initial value as that pathname plus the necessary offset.
The debugger rejects a global symbol definition as being t.he
nearest to the value unless the difference between .the symbol
and the value is less than 100 (hexadecimal).

4. If the debugger does not find a suitable definition by means
of steps 1, 2, and 3, it reports the address value as a
virtual address in the current radix mode~ The probable
cause of the virtual address display rather than a pathname
is that the respective module's symbo.l information is not
present in the debugger's symbol table.

6-10

(

(

(

(

c

l

CHAPTER 7

BREAKPOINTS

Breakpoints stop your program at selected locations to let you .observe
and change the context of your program while i ttssuspended·. This
chapter describes breakpoints, their options (command sequences to be
executed at the breakpoint, deferred breakpoints, and tempo~ary
breakpoints), and how you use the commands, SET BREAK, SHOW BREAK, and
C~NCEL BREAK, to establish, report the status of,and delete
breakpoints.

7.1 USE OF BREAKPOINTS

Without breakpoints, your program might run to completion, exit
prematurely, or enter an infinite loop, depending on the type of
ertors it contains. Your observations during testing would be limited
to. an analysis of data produced, if any, and possibly a general
register dump if your program exited prematurely because it violated
system restrictions.

A breakpoint can be specified with several options. They include:

• The option to specify a sequence of commands that the debugger
executes automatically each time your program stops at the
associated breakpoint.

• <The option to ignore a breakpoint until it
encountered a specified number of times.

has been

• The option to specify a temporary (or 6ne-time) breakpoint.
The debugger automatically cancels the breakpoint after your
program stops at the breakpoint location.

7.1.1 Breakpoint Reporting at Program Stop

When your program is suspended at a breakpoint, the debugger usually
reports the location by

break at pc = LOCATION

where the location is given symbolically (SYMBOLIC mode) or as a
virtual address in the current radix mode (NOSYMBPLIC mode). For
example, a breakpoint occurrence could be reported as

break at,pc = SORT\INSEQ

. whereSORT\INSEQ is the pathname that uniqu~ly identifies the location

7-1

BREAKPOINTS

labeled by local symbol INSEQ in the object module named SORT. In
NOSYMBOLIC mode, the location would be reported by

break at pc = 00000846

The debugger sometimes displays the report as

routine break at pc = LOCATION

Note that in this case the value shown is 2 less than the actual PC
contents. This is the case whenever symbolic information is available
indicating that a location or symbol. is an entry point or the
beginning of a routine.

7.1.2 Continuing From a Breakpoint

To continue your program from a breakpoint, you can enter a GO command
or a STEP command. After GO, program execution continues until either
a breakpoint or another condition causes the program to stop. After
STEP, program execution continues either through the number of steps
you specified (the default is one) or until some condition causes the
program to stop.

The debugger usually reports the resumption of program execution by

start pc is location

where "location" is again given as a pathname, or as a virtual
address. If the report is displayed as "routine start pc is
location", the value of "location" is actually 2 less than the
contents of the PC, and "location" is an entry point.

7.2 SETTING BREAKPOINTS

Breakpoints are set
breakpoint remains
debugging session.

at and identified by address. Once set, a
active until you cancel it or terminate the

No breakpoints are set when you begin the session.

The debugger~s breakpoint table stores the information relating to
each breakpoint. This table can accommodate many breakpoints. If the
debugger reports a full table, simply cancel one or more breakpoints
to clear sufficient table space for the new entry.

The debugger does not protect current breakpoints against overwriting
by a new request. The debugger simply replaces the previous
specification with the new command entry without warning. This
condition works to your advantage when you want to modify a breakpoint
specification. Instead of having to cancel a breakpoint and then
specify the new conditions for the breakpoint, you can just enter the
new specification for the same location.

7.2.1 General Breakpoint Specification

You set a breakpoint at the address of the first byt~ of an
instruction (your program stops at the breakpoint before executing the
instruction). The debugger accepts the address specification without
verifying that it represent~ the first byte of the instruction's
storage.

7-2

(

(

(

(

c

(

l

BREAKPOINTS

Warning: Run-time errors usually result if a breakpoint is set in the
middle of an instruction.

The general command format for specifying a breakpoint is:

DBG>SET BREAK address-expression [DO (command-list)]

To verify the breakpoint, you can use the "current location" symbol
(see Section 4.2.1) as follows:

DBG>EXAMINE/INSTRUCTION

The debugger displays the instruction on which the breakpoint is set.

7.2.2 DO Command Sequence at Breakpoint

When specifying a breakpoint, you can include a sequence of
that the debugger executes whenever your program stops
breakpoint. The command format is

DBG>SET BREAK address-expression DO(command[~command .••])

commands
at the

The command list can include any complete debug·ger command. If a GO,
STEP, or CALL command is included, it must be the last command in the
sequence. The parentheses are required regardless of the number of
commands specified. The semicolon is not necessary if you include one
command. For DO sequences that comprise more than one command, you
may want to use line. continuation (a hyphen as the last character
before carriage return) and/or abbreviated keywords.

The debugger does not evaluate a DO command sequence for proper syntax
or context until your program stops at the breakpoint.

Note that a symbol that
defined at the time
debugger defers binding
encountered. You can
time.

appears in a DO command sequence needn't be
you enter the SET BREAK command, because the
symbols and values until the breakpoint is
define the symbol at any point prior to that

You can nest SET BREAK commands within DO command sequences. For
example:

DBG>SET B LOOP DO (E/BYTE BUF:BUF+AXIO~SET B LOOP2 -
_DO (E/WORD BUFX+4»

The sequence above shows one level of SET BREAK DO nesting. You can
extend this nesting to any level, as long as you ehsure that the
initiating and terminating parentheses match.

All command sequences are executed in the context in effect when the
breakpoint occurs.

To cancel or alter the DO command sequence, enter a new SET BREAK
command with the desired content. If you cancel a breakpoint, any
associated DO command sequence is also canceled. .

7-3

BREAKPOIN"rS

7.2.3 Breakpoint "After" Option

If your program is to stop only after the nth pass through a
breakpoint location, as in an iteration or conditional program loop,
specify the breakpoint as follows:

OBG>SET BREAK/AFTER:n address-expression

where n is a decimal integer in the range 1 through 32767.

Once an "after" breakpoint has stopped your program, it will
to stop your program each time it is encountered until you
(that is, the breakpoint functions as if the count is 1).
include the "after" opt ian in any breakpoint specification.

continue
cancel it

You can

The SHOW BREAK command (see bedow) displays an "after" count for a
breakpoint only if it is other than 1; that is, the debugger must see
the location n more times before the breakpoint takes effect.

7.2.4 Temporary Breakpoints

A temporary (or one time) breakpoint stops your program once and then
is canceled automatically. You specify such a breakpoint by

OBG>SET BREAK/AFTER:O address-expression [00 (comm~nd)l

The breakpoint status report produced by SHOW BREAK (see below) lists
a temporary breakpoint (by displaying /AFTER:O) until the debugger
executes it.

7.3 SHOWING BREAKPOINTS

You can determine where current breakpoints are set, along with a
description of any breakpoint actions that were specified, by typing:

OBG>SHOW BREAK

The debugger responds with:

breakpoint/after:n at location etc.
breakpoint at location do-command-sequence, etc.

The debugger identifies the breakpoint locations
(SYMBOLIC mode) or by virtual address (NQSYMBOLIC mode)
radix mode (decimal, hexadecimal, or octal).

by pathnames
in the current

If the debugger does not find any breakpoints, . it displays the
appropriate message.

7.4 CANCELING BREAKPOINTS

You cancel a breakpoint when you no longer want it to stop your
program. All breakpoints are automatically canceled when you end the
current debugging session.

7-4

(

(

(

(,

(

(

BREAKPOINTS

To cancel a specific breakpoint, type:

DBG>CANCEL BREAK address-expression

When canceling a breakpoint, you can not identify DO command sequences
or options that were previously established for the breakpoint. An
address expression of the correct value is sufficient information.

If the debugger" cannot find a specified breakpoint, it prints a
message.

To cancel all breakpoints, type

DBG>CANCEL BREAK/ALL

7.5 BREAKPOINT EXAMPLES

The following examples illustrate use of the SET, SHOW, and CANCEL
BREAK commands.

7.5.1 Examples of Setting Breakpoints

DBG>SET BREAK TERMINAL_IO\BEGIN+30

Sets a breakpoint at the location 30 bytes after the
identified by the pathname TERMINAL IO\BEGIN (the
interprets the value 30 in the current radix mode) •

DBG>SET BREAK/AFTER:6S0RT\SEQCHK

location
debugger

Sets a breakpoint at the location identified by the pathname
SORT\SEQCHK. rhe debugger does not stop your program until the
sixth pass throbgh this location.

DBG>SET BREAK SORT\INSEQ DO (EXAMINE/ASCII/BYTE @R7:@R7+ A DlO)

Sets a breakpoint at the location identified by the pathname
SORT\INSEQ. The debugger executes the DO command sequence after
the program stops at this breakpoint. The sequence tells the
debugger to report as ASCII characters the contents of the eleven
bytes beginning with the location that is indirectly addressed by
the contents of general register R7.

DBG>SET BREAK A X7249

Sets a breakpoint at virtual address 7249 (hexadecimal).

7.5.2 Examples of Showing Breakpoints

1. In SYMBOLIC mode (the initialized condition):

DBG>SHOW BREAK
routine breakpoint at SORT\INSEQ do(set scope inseq)
breakpoint at SORT\SEQCHK do (examine BUF:BUF+6,R8,COUNT)

The debugger reports the "current breakpoint locations and
associated DO sequences.

7-5

BREAKPOINTS

2. In NOSYMBOLIC mode:

DBG>SHOW BREAK
breakpoint at 0000846
breakpoint at 000082A do (examine BUF:BUF+6,R8,COUNT)

The debugger reports
addresses in the
hexadecimal) .

the breakpoint
current radix

7.5.3 Examples of Canceling Breakpoints

DBG>CANCEL BREAK TERMINAL IO\BEGIN
DBG>CANCEL BREAK SORT\SEQCHK
DBG>CANCEL BREAK ~X7249

The debugger cancels the specified breakpoints.

DBG>CANCEL BREAK/ALL

The debugger cancels all breakpoints.

7-6

locations as virtual
mode (in this case

(

(

(

(

(

c

(

(

CHAPTER 8

TRACEPOINTS AND OPCODE TRACING

Tracing is the process of observing the sequence in which a program is
executed. By using the SET TRACE command, you can monitor the order
in which your program executes its instructions or statements. The
debugger can let you know whether unanticipated control transfers are
occurring as your program is running. There are two basic forms of
tracing: tracepoints, and tracing on opcodes.

A tracepoint is similar to a breakpoint. When your program reaches a
tracepoint, it momentarily suspends execution and reports the
tracepoint. It then automatically resumes execution. Thus you can
see if your prpgram is reaching specified locations in the correct
sequence.

Tracing on opcodes means requesting that the debugger report the
occurrence of each instruction of a specified type, such as call-type
instructions and branch-type instructions.

8.1 USING THE TRACE FACILITY

You can specify tracing as follows:

• At the first byte of specified instruction locations (that is,
set tracepoints).

• At all call-type instructions in your program (includes all
CALLG, CALLS, RET, JSB, BSBW, BSBB, and RSB instructions)~

• At all branch~type instructions in your program (includes all
branches and JMP; excludes subroutine-type instructions).

• At both call-type in~tructions and branch-type instructions.

Tracing degrades the performance of your program. If this concerns
you, enter breakpoints with DO command sequences that include GO as
the last (or only) command instead of using tracing (see SET BREAK
examples, Chapter 7).

At a tracepoint,the debugger reports the location and then allows
your program to proceed automatically. The report has the form:

trace at pc = location : instruction

where location is given symbolically or as a· virtual address, and

8-1

TRACEPOINTS AND OPCODE TRACING

instruction is the instruction at the location shown. For example, a
tracepoint occurrence could be reported as:

trace at pc = SORT\INSEQ: CMPB (RO) [R2] , (RO) [R4]

where SORT\INSEQ is the pathname that represents the location
addressed by the program counter and CMPB (RO) [R2],(RO) [R4] is the
instruction at that location. In NOSYMBOLIC mode, the location would
be reported by

trace at pc = 00000846 CMPB (RO) [R2] , eRO) [R4]

If the message is displayed as

routine trace at pc = location : instruction

the val~e of Ibcation is actually 2 less than the current PC, and
10catioQ is an entry point or the beginning of a routine.

8.2 SETTING TRACEPOINTS

Once set, a tracepoint remains until you either cancel it or terminate
the debugging session. No. tracepoints are set when you begin the
debugging session.

The debugger's tracepoint table stores the information relating to
each tracepoint. This table can accommodate a large number of
tracepoints. If the debugger reports a full table, simply cancel one
or more tracepoints to clear sufficient table space for the new entry.

8.2.1 Individual Tracepoints

You set a tracepoint by specifying a command in the form:

DBG>SET TRACE address-expression
,

You must be sure that address-expression is
instruction.· (The debugger does not
address~expression.)

the first
verify the

To verify a ttacepoint you can use the "current location"
follows:

DBG>EXAMINE/INSTRUCTION

byte of
validity

symbol,

an
of

as

The debugger displays the instruction on which the tracepoint is set.

8.2.2 Tracing All Call-Type Instructions

To trace all call-type instructionsj specify:

DBG>SET TRACE/CALL

8-2

(

c

(

(i

(

(

(

(

TRACEPOINTS AND OPCODE TRACING

8.2.3 Tracing All Branch-Type Instructions

To trace all branch-type instructions, specify:

DBG>SET TRACE/BRANCH

8.2.4 Tracing All Call-Type and Branch-Type Instructions

To trace both forms of control transfer instructions, simply enter
both forms of SET TRACE commands in either order. For example:

SET TRACE/BRANCH

SET TRACE/CALL

8.3 SHOWING TRACING MODES

You can determine where tracepoints are set, and the form of tracing
in effect by using the command

DBG>SHOW TRACE

The debugger responds with:

tracepoint at location
tracepoint at location
tracing /CALL instructions: list-of-opcodes
tracing /BRANCH instructions: list-of-opcodes

The debugger identifies the tracepoint locations by pathnames or by
numeric virtual address in the current radix mode (decimal,
hexadecimal, or octal).

If the debugger does not find tracepoints set, and no opcode tracing
is in effect, it prints a message.

8.4 CANCELING TRACING

You can cancel a tracepoint when you no longer
program location. You can also disable one or
tracing. All tracing is automatically canceled
current debugging session.

To cancel a specific tracepoint, type:

DBG>CANCEL TRACE address-expression

To cancel call-type instruction tracing, type:

DBG>CANCEL TRACE/CALL

To cancel branch-type instruction tracing, type:

DBG>CANCEL TRACE/BRANCH

want to monitor a
both forms of opcode

when you end the

To cancel all tracepoints and opcode tracing, type:

CANCEL TRACE/ALL

8-3

TRACEPOINTS AND OPCODE TRACING

8.5 TRACING EXAMPLES

The following examples illustrate the SET, SHOW, and CANCEL TRACE
commands.

8.5.1 Examples of Setting Tracepoints

DBG)SET TRACETERMINAL_IO\BEGIN+30

Sets a tracepoint at the location 30 bytes after the location
identified by the pathname TERMINAL IO\BEGIN (the debugger
interprets the value 30 in the current radix mode).

DBG)SET TRACE ~X7249

Sets a tracepoint at virtual address 7249 (hexadecimal).

8.5.2 Examples of Showing Tracepoints

1. In SYMBOLIC mode (the initialized condition) the debugger
reports the current tracepoint locations. For exam~le:

DBG)SHOW TRACE
tracepoint at SORT\INSEQ
tracepoint at SORT\SEQCHK

2. In NOSYMBOLIC mode the debugger reports the tr~cepoint
locations as virtuql addresses in the current radix mode (in
this case hexadecimal). For example:

DBG)SHOW TRACE
tracepoint at 0000846
tracepoint at 000082A

8.5.3 Examples of Canceling Tracepoints

DBG)cANCEL TRACE TERMINAL_IO\BEGIN

DBG)CANCEL TRACE SORT\SEQCHK

DBG)CANCEL TRACE ~X7249

The debugger cancels the specified tracepoints.

DBG)CANCEL TRACE/ALL

The debugger cancels.all tracepoints .and opcode tracing.

8-4

(

~ ..

(

(

(

(

c

(

(

CHAPTER 9

WATCHPOINTS

Watchpoints are selected program locations you monitor to identify
instructions that modify these locations. This chapter describes
watchpoints and the use of the commands, SET WATCH, SHOW WATCH, and
CANCEL WATCH, to establish, report the' status of, and delete
wcitchpoints.

9.1 USE OF WATCHPOINTS

If an instruction modifies a watchpoint location, the debugger stops
your program after the instruction completes execution. The debugger
then reports the watchpoint location, the location of the instruction,
and both the previous and the current contents o£ the location being
monitored.

The number of bytes monitored at a watchpoint depends on whether the
location has a data type. For example, if the location is a double
precision FORTRAN variable, eight bytes are monitored. However, if no
data type is associated with the location (as in VAX-II MACRO), four
bytes are monitored. The current LENGTH mode is ignored.

9.1.1 Watchpoint Reporting

When your program writes into a watchpoint location, the debugger
stops the program and reports the following:

write to location at pc = location
old value value
new value = value

The "write to location" indicates the location that was modified. The
"at pc = location" indicates the location of the instruction that did
the writing.

The debugger reports the locations either symbolically or as virtual
addresses; it reports the old (previous) value and the new (current)
value in hexadecimal.

For example, a watchpoint modification could be reported as

write to TERMINAL IO\OUTLENGTH at pc = TERMINAL_IO\MAIN_CODE+51
old value =-000008A2
new val~e = 00000000

where TERMINAL IO\OUTLENGTH is
location labeled OUTLENGTH

the" pathname
in module

9-1

that ident~fies
TERMINAL_TO,

the
and

WATCHPOINTS

TERMINAL IO\MAIN CODE+51 is the pathname plus offset that identifies
the location of the trapped instruction.

In NOSYMBOLIC mode, the locations are displayed as virtual addresses.
For example:

write to 00000432 at pc = 000006A2
old value = 000008A2
new value 00000000

Note that values are displayed .in hexadecimal.

9.1.2 Continuing From a Watchpoint

To continue your program from a watchpoint, enter a GO command or a
STEP command. After GO, program execution continues until a
watchpoint or another condition causes the program to stop. After
STEP, program execution continues either through the number of
instructions you specified (the default is one instruction) or until
some condition causes the program to stop.

The debugger reports the resumption of program execution by

start pc is location

where location is given either as a pathname or as a virtual address.

9.2 SETTING WATCHPOINTS

You specify a watchpoint request by,

DBG>SET WATCH address-expression

Once set, a watchpoint remains active until you either cancel it or
terminate the debugging session. No watchpoints are set when you
initialize the debugging session.

The debugger's watchpoint table stores the information relating to
each watchpoint. The space allocation can accommodate a large number
of watchpoints.

9.3 SHOWING WATCBPOINTS

You can determine where current watchpoints are set by typing

DBG>SHOW WATCH

The debugger responds with:

watchpoint at location for nnn bytes
watchpoint at location for nnn bytes

The debugger identifies the watchpoint iocations by pathnames
(SYMBOLIC mode on) or by numeric virtual address (NOSYMBOLIC mode on)
in the current radix mode (decimal, hexadecimal, or octal). The value
nnn, in decimal, indicates how many bytes are monitored by the
associated watchpoin~.

9-2

(

c

(

(

(

(

l

WATCHPOINTS

9.4 CANCELING WATCHPOINTS

You can cancel a watchpoint when you rio longer want to monitor the
specified location(s). All watchpoints are automatically canceled
when you end the current debugging session.

To cancel a specific watchpoint, type:

DBG>CANCEL WATCH address-expression

If you specify CANCEL WATCH/ALL, all watchpoints are canceled.

If the debugger cannot find· the specified watchpoint, it displays a
message.

9.5 WATCHPOINT EXAMPLES

The following examples illustrate the SET, SHOW, and C~NCEL WATCH
commands.

9.5.1 Examples of Setting Watchpoints

DBG>SET WATCH TERMINAL_IO\BEGIN

The debugger watches the location identified by the pathname,
TERMINAL_IO\BEGIN.

DBG>SET WATCH AX7249

The debugger watches virtual address 7249 (hexadecimal).

9.5.2 Examples of Showing Watchpoints

1. with SYMBOLIC MODE pn (the initialized condition):

DBG>SHOW WATCH
watchpoint at SORT\INSEQ for 4.
watchpoint at SORT\SEQCHK for 2.

bytes
bytes

The debugger reports the current watchpoint locations by
pathnames.

2. with NOSYMBOLIC mode on:

DBG>SHOW WATCH
watchpoint at 0000846 for 4.
watchpointat 000082A for 2.

bytes
bytes

The debugger reports the watchpoint locations as numeric
virtual addresses. ~he addresses are displayed according to
the current radix mode.

9-3

WATCBPOIRTS

9.5.3 Examples of Canceling Watchpoints

DBG>CANCEL WATCH/TERMINAL_IO\BEGIN

DBG>CANCEL WATCH SORT\SEQCHK

DBG>CANCEL WATCH A X7249

The debugger cancel~ the specified watchpoints.

9.6 WATCHPOINT RESTRICTIONS

When you set a watchpoint, the entire page containing the watchpoint
location is protected. When an instruction attempts to write to any
location on that page, at user mode level, the modification is made
and execution continues unless the modification was to the watchpoint
location. In this case, the debugger suspends execution and reports
the old and new contents, and the location of the instruction that
caused the change. .

If a system service needs to write to a location on a protected page,
it will return failure status. Therefore, you should not set
watchpoints on pages that, contain locations that may be modified by
system software~ for example, I/O status blocks subject to
modification by Record Management Services.

9-4

(

c

(

(~

(

(

CHAPTER 10

EXAMINE AND DEPOSIT COMMANDS

This chapter describes how to use the EXAMINE and DEPOSIT commands to
display and change the contents of sele~ted memory locations.

10.1 EXAMINING MEMORY LOCATIONS AND REGISTERS

The EXAMINE command displays the contents of selected memory locations
and registers.

The command format is:

DBG>EXAMINE [/mode] address [: address] [, address [: address]]

You can specify a value for /mode, to override the current modes, as
described in Section 5.3.4.

You can use EXAMINE to display any combination of the following:

• A single location

• Multiple locations

• A range of contiguous locations

• Multiple ranges of locations

If you specify more than one address, and separate them with commas,
the contents of the locations specified are displayed. However, if
you use a colon to separate a pair of addresses, then all addresses
within that range are displayed. For example

DBG>EXAMINE/WORD 1028,1040

00001028: 046b
00001040: OEF40

DBG>EXAMINE/WORD 1028:1040

00001028:
0000102A:
0000102C:
0000102E:
00001032:
00001034:
00001036:
00001038:
0000103A:
0000103C:
0000103E:
00001040:

046B
0000
08C2
OD7EF
OFFF3
OAEFF
OD004
04AE
9850
22AO
OD450
OEF40

10-1

EXAMINE AND DEPOSIT COMMANDS

To specify multiple ranges, use a command such as:

DBG>EXAMINE/WORD 1028:102E,103A:I040

The results are:

00001028:
0000102A:
0000102C:
OOOOl02E:
0000103A:
0000103C:
0000103E:
00001040:

046B
0000
08C2
0005E
9850
22M
OD450
OEF40

When you specify a range, you must specify the low address first.
When you specify more than one individual location, you can use any
order.

If you wish to display the next location, you needn't specify an
address. Thus, after you've examined a location by specifying an
address, you don't have to specify the next contiguous location. For
example:

DBG>SET MODE WORD

DBG>EXAMINE 1028

1028: 046B

DBG>EXAMINE

102A: 0000

10.1.1 Examining Numeric Data

The following examples illustrate the use of EXAMINE to display the
contents of a range of locations as hexadecimal data in the length
modes, LONG, WORD, and BYTE, respectively.

DBG>SET MODE HEXADECIMAL, LONG , NO INSTRUCTION , NOSYMBOLIC
DBG>EXAMINE 4000:4004

00004000: OD0500ADO
00004004: 01D05000

DBG>EXAMINE/WORD 4000:4006

00004000:
00004002:
00004004:
00004006:

OADO
OD050
5.000
OlDO

DBG>EXAMINE/BYTE 4000:4007

00004000:
00004001:
00004002:
00004003:
00004004:
00004005:
00004006:
00004007:

ODO
OA
50
ODO
00
50
ODO
01

10-2

(

(

(

(

(

(

(

EXAMINE AND DEPOSIT COMMANDS

The current contents of these locations could be displayed as
instructions by

DBG>EXAMINE/INSTRUCTION 40.0.0.:40.0.4

40.0.0.:
400.3 :

MOVL
MOVL

#DA, RD
#0.0., RD

The example above illustrates that the current length mode does not
affect how the debugger increments memory to display the instructions.

10..1.2 Examining Instructions

The following example illustrates how EXAMINE displays the contents of
several locations as VAX-II MACRO instructions. For complete
information on examining data as instructions, refer to Section 5.4.3.

DBG>EXAMINE/INSTRUCTION SORT\BEGIN+12: TEST_SEQ
SORT\BEGIN+12: ADDL3 #lD,R2,R4
SORT\TEST_SEQ: CMPB (RD) [R2j , (RD) [R4]

In INSTRUCTION mode, the debugger ignores the current length mode and
displays whatever storage the instruction occupies. With the
exception of PC relative displacements, literals and displacements in
instructions are displayed in the current radix mode. PC relative
displacements are evaluated and displayed symbolically (SYMBOLIC mode)
or as virtual addresses (NOSYMBOLIC mode) .

10..1.3 Displaying Locations As ASCII Characters

The following example illustrates how EXAMINE displays the contents of
a range of locations as ASCII characters. For complete information on
examining data as ASCII characters, refer to Section 5.4.5.

DBG>EXAMINE/ASCII/LONG CHARS:CHARS+ A X13
CHARS: IT'S
CHARS+4: A"
CHARS+8: SMAL
CHARS+DC: L" W
CHARS+ID: ORLD

10..2 MODIFYING MEMORY LOCATIONS AND REGISTERS

The DEPOSIT command lets you alter the contents of memory locations
and registers. The command format is:

DBG>DEPOSIT[/mode, ...] address-expression=data[,data, .•.]

with DEPOSIT, you can enter data in one location or in several
sequential locations beginning with a specified location.

10.-3

EXAMINE AND DEPOSIT COMMANDS

10.2.1 Depositing Numeric Data

The following examples illustrate the entry of a hexadecimal value in
a byte, a word, and a longword, respectively.

The suggested method is to first display the current contents of the
location. For example:

DBG>EXAMINE 4000
00004000: OD0500ADO

The byte of data is deposited and verified by,

DBG>DEPOSIT/BYTE 4000 = A XFF
DBG>EXAMINE
00004000: OD0500AFF

The word of data is deposited and verified by,

DBG>DEPOSIT/WORD 4000 = AXFFFF
DBG>EXAMINE •
00004000: OD050FFFF

.The longword of data is deposited and verified by,

DBG>DEPOSIT 4000 = AXFFFFFFFF
DBG>EXAMINE
00004000: OFFFFFFFF

The following example illustrates the entry and verification of data
in an intermediate byte of a longword that initially contains
77777777.

DBG>SET MODE LONG, HEXADECIMAL
DBG>EXAMINE 4000
00004000: 77777777
DBG>DEPOSIT/BYTE 4002 = OFF
DBG>EXAMINE 4000
00004000: 77FF7777

Note that a 0 must be used to prefix a hexadecimal number that starts
with an alphabetic character.

10.2.2 Depositing Instructions

This section describes how
instructions. For complete
refer to Section 5.4.3.

to use DEPOSIT to enter data as
information on depositing instructions,

The storage requirements of VAX-II MACRO instructions vary according
to the instruction type, and number and complexity (addressing mode)
of operands. The debugger ignores the current length mode when it
enters instructions: instead the current address is incremented
according to the number of bytes required by the instruction.

An instruction string entry must be enclosed with quotation marks or
apostrophes.

DBG>DEPOSIT/INSTRUCTION INCRS = 'ADDL3 #5,R3,R4'

The debugger interprets numeric values in the current radix mode.

10-4

(-

(

(

(

(

(

(

EXAMINE AND DEPOSIT COMMANDS

When entering an instruction, you must verify that the length of the
data string can be accommodated by the number of bytes you intend to
overwrite. While you cannot deposit more than there is space for, you
can use the NOP instruction to fill bytes that are unoccupied after
you complete the deposit of an instruction or instructions.

You must also enter aBA, WA, or LA when you specify a value offset
from a register. For example:

Leading zeros must be specified for hexadecimal constants that begin
with alphabetic characters, to differentiate them from symbols. For
example:

Symbols can be included in instructions being deposited. However,
symbolic expressions must not contain the backslash character.

10.2.3 Depositing ASCII Data

ASCII character input is by quoted string. You must enclose each
string with quotation marks or apostrophes. This provision lets you
include literal quotation marks within a string. For example,

DBG)DEPOSIT/ASCII WINK = 'ZZZZ'
DBG)DEPOSIT/ASCII THINK "IT'S"
DBG)DEPOSIT/ASCII PLINK = 'lilli'

The ending delimiter must match the begi~ning delimiter.

The current length mode has no effect on the string being deposited.
The string is deposited as specified, with no truncation or padding.

10-5

(

(

(,

(

c

(

(

CHAPTER. 11

USING THE EVALUATE COMMAND

The EVALUATE command lets you use the debugger as a calculator,
expression analyzer, radix converter, bit field examiner~ and literal
verifier.

11.1 USING EVALUATE

EVALUATE interprets an input expression in terms of the current modes,
reduces the expression to a value, and displays the value in the
current modes. The command format is:

DBG>EVALUATE [/mode] [•..] expression [, .••]

The evaluations of multiple input expressions are displayed in a list,
which is ordered to match the input order.

11.2 EXPRESSION EVALUATION

EVALUATE performs integ.er ar i thmetic with all operations performed
according ·to .the current length mode (that is, BYTE, WORD, or LONG)
with arguments and results limited to the corresponding value ranges.
The debugger truncates values that exceed the current length mode by
discarding most-significant-bit positions, and prints aniessage.

EVALUATE analyzes an expression in
language. The rules of precedence
described in Section 4.1.

11.3- EVALUATING BIT FIELDS

the context of the current
applicable to VAX-II MACRO are

You can use EVALUATE to display the current contents of specified bits
in a location. The syntax is:

DBG>EVALUATE value <high bit:low bit>

You specify the bounds of a bit field by decimal integers, regardless
of the current radix mode. Bit positions are from 0 (least
significant) through 31 (most significant). The debugger extracts the
contents of the bit positions, right justifies them in a longword, and
reports the contents in the current radix mode. The current length
mode is ignored.

11-1

USING THE EVALUATE COMMAND

The following method is recommended for evaluating bit fields of a
location.

DBG>EXAMINE address-expression
address: contents
DBG>EVALUATE \ <high bit:low bit>
bit-field value

The EXAMINE command establishes the location's contents as the value
represented by the backslash (\), which is the "last value displayed"
symbol. This sequence is necessary because EVALUATE simply reduces an
input expression to a value, but EXAMINE reduces an expression to an
address and displays the contents of that address.

Examples:

DBG>EXAMINE LOOP3
WATCH\LOOP3: OFFFF8FDO
DBG>EVALUATE \ <6:4>
00000005

To display other bit patterns of the same location, you can make use
of the fact that the "current location" symbol retains the address
that you last examined. For example:

DBG>EXAMINE •
WATCH\LOOP3 :
DBG>EVALUATE
00000007

OFFFF8FDO
\ <8:6>

11.4 EVALUATING VAX-II MACRO LITERALS

When SYMBOLIC mode is in effect, the debug.ger does not translate
literal values into their symbolic equivalents for purposes of
displaying these values. Thus, a displayed instruction may not appear
exactly as you entered it in the source code. For example, the
instruction

MOVL #6,OFFSET(FP)

would be displayed as

MOVL #6,W A OFFDC(FP)

where OFFSET represents the literal -24.

The EVALUATE command can help you verify that instructions are the
same. If you type

DBG>EVALUATE!LITERAL expression

The debugger displays every literal pathname that has the value of the
expression as its literal assignment. It is then a simple matter to
scan the pathname list for the literal symbol name you wish to verify.

11-2

(

c

(

(

(

(

(

CHAPTER 12

EXCEPTION CONDITIONS

Exception conditions are conditions that interrupt execution of your
program. In the context of the debugger, an exception condition is
either forced by the debugger, or external to the debugger. Forced
exception conditions include: the occurrence of a breakpoint,
tracepoint, or watchpoint~ or the completion of a requested program
step or debugger command.

This chapter describes the debugger's response to both forced
exception conditions and external exceptions. It does not describe
the cause and effect of external exception conditions, nor does it
describe how to write handler routines for them. Refer to the VAX/VMS
System Services Reference Manual, the VAX-II MACRO User's Guide, and
the VAX-ll/780 Architecture Handbook for appropriate information.

12.1 PROCESSING EXCEPTION CONDITIONS

Exception conditions are processed in the following manner. An
exception condition interrupts your program and causes VAX/VMS to pass
control to the debugger. The debugger must first determine if the
exception was forced. If it was, the debugger reports the condition
by printing the appropriate message. For example:

Breakpoint exception: [routine] break at pc LOCATION

Tracepoint exception: [routine] trace at pc LOCATION: INSTRUCTION

WATCHPOINT EXCEPTION: WRITE TO LOCATION at pc = LOCATION
old value value
new value = value

Step exception: [routine] stepped to pc = LOCATION

If the debugger determines that the exception condition is external,
it returns control to VAX/VMS unless you previously specified SET
EXCEPTION BREAK (described in Section 12.2). This causes the debugger
to react as if you had specified a breakpoint at the exception
location. Generally, you will have to exit from the debugger when an
exception break occurs.

If you did not specify this option, VAX/VMS gets control. What
happens next depends on whether you provided a condition handler for
the exception condition. If VAX/VMS finds such a handler, it allows
the handler to decide the future of your program. If a handler is not
found, or if all handlers resignaled the condition, the debugger again
acquires control, reports the type of exception condition, and waits
for your command.

12-1

EXCEPTION CONDITIONS

12.2 BREAK ON EXTERNAL EXCEPTION CONDITION

Rather than have the debugger return control to VAX/VMS for an
external exception condition, you can request that the debugger treat
all such exceptions as breakpoints. The command is

DBG>SET EXCEPTION BREAK

The debugger
printing the
following:

reports the occurrence of exception conditions by
error message for the exception, and then printing the

exception break at pc = LOCATION

Where LOCATION indicates where the error occurred in your program.
The debugger then .prints its prompt message.

To cancel this option, enter the command

DBG>CANCEL EXCEPTION BREAK

12-2

c

(

(

(

(

CHAPTER .13

CALLING ROUTINES AND'SHOWING CALLS

, . -') .

The debugger's CALL command lets ,you call procedures or subroutines in
your program directly from command level. This chapter tells you how
to use the CALL command,and how to use the SHOW CALLS command to
report all currently active call frames for your program.

13. 1 CALLING ROUTINES

The debugger's CALL command executes a call directly to any routine in
your program's address space, whether or not your program actually
includes a call to that routine.

The command format is:

DBG)CALL name [(argument-list)]

where name is the rout,ine's symbolic name or
Arguments in the optional argument list must
these arguments are actual arguments to be
routine . The debugg.er assumes that the called
VAX~ll procedure calling standard (refer
Architecture Handbook for details) .

its virtual address.
be separated by commas~
passed to the called
routine conforms to the

to the VAX-ll/780

You can thus easily access any routine in your program for debugging
purposes. You can also debug unrelated routines by linking them with
a dummy main module. The dummy module need only provide a transfer
address for the image. You need not be concerned with coding call
statements and argument lists. You can express them with the CALL
command.

The debugger creates a complete set of pseudo-register locations for
interim use by the called routine. When control returns from the
called routine to the point at which it was called, the debugger
discards the interim registers, restores the previous register
context, and displays the value returned by the called routine.

13.2 SHOWING ACTIVE CALLS

The SHOW CALLS command reports various
current level of nested procedure calls.

DBG)SHOW CALLS [decimal-integer]

information concerning
The command format is:

the

where you have the option of requesting that all call levels be
reported (the default) or requesting that the debugger report on a
specified number of call levels. The call count can be any decimal

13-1

CALLING ROUTINES AND SHOWING CALLS

integer in the range 0 through 32767. If the call count exceeds the
number of calls currently active, it is ignored. If you specify 0,
the command is accepted, but no output results.

Normally, the debugger responds with the following report:

MODULE NAME ROUTINE NAME LINE ABSOLUTE PC RELATIVE PC

The first line in the report refers to the current call level. The
remaining lines report all (or the requested number) of call levels in
the order of most recent call through first call. For VAX-II MACRO,
the report presents the following informatlon.

MODULE NAME

ROUTINE NAME

LINE

RELATIVE PC

ABSOLUTE PC

Reports the
debugger's
information
the module
the routine

module in which the call occurred. If the
symbol table does not include symbol

for the module in which the call occurred,
name remains blank and the debugger reports
name by the appropriate global symbol.

Reports the routine or program section name in which
the call occurred.

Left blank for VAX-II MACRO (that is,
meaning) • Used only for line-oriented
languages (such as FORTRAN) to identify the
of the call.

it has no
(statement)
line number

Reports the address of the call relative' to the symbol
expressed under ROUTINE NAME. The debugger displays
the relative address in hexadecimal, regardless of the
current radix mode.

Reports the virtual address of the call in hexadecimal,
regardless of the currertt radix mode.

If there are no active call frames, the debugger responds to SHOW
CALLS with an error message. This indicates that the stack has been
corrupted, or that the user program has terminated.

13-2

(

c

(

(

(

(

(

CHAPTER 14

PROCESSOR STATUS LONGWORD (PSL)

This chapter describes how to display the current contents of the
Processor Status Longword (PSL), and how to alter its contents to
support your program debugging. For a detailed description of the
PSL, see the VAX-ll/780 Architecture Handbook.

14.1 DISPLAYING THE PROCESSOR STATUS LONGWORD

To display the current contents of the Processor Status Longword
(PSL), type:

DBG>EXAMINE/SYMBOLIC PSL

The debugger responds with:

PSL: CMP TP FPD IS CURMOD PREMOD IPL DV FU IV T N Z V C
n n n n mode mode Iv n n n n n n n n

where "n" is 0 or 1. The interrupt priority level, lv, is displayed
as a hexadecimal value, 0 through IF. Mode is expressed as: KERN,
EXEC, SUPR, or USER.

You can display the current contents of the PSL as a hexadecimal value
by specifying:

DBG>EXAMINE/NOSYMBOLIC/HEXADECIMAL PSL

14.2 ALTERING THE PROCESSOR STATUS LONGWORD

You can alter the PSL's low-order word, which is the processor status
word (PSW), regardless of the privileges allocated to your account.
However, you cannot alter the following conditions, regardless of the
privileges allocated to your account.

• CMP - compatibility mode
• IS - interrupt stack
• CURMOD - current mode
• PREMOD - previous mode

You can compute the value to be entered in the PSL by

DBG>EVALUATE/HEXADECIMAL expression

where "expression" is the sum of key numbers selected from Table 14-1
according to the conditions that must be maintained (that is,
reentered as they were displayed) and the conditions that you wish to
change.

14-1

PROCESSOR STATUS LONGWORD (PSL)

To replace the current PSL contents, type:

Bit

31

30

29

28

27

26

25
24

23
22

21

20

19

18

17

16

15

13

12

11

10

9

8

7

DBG)DEPOSIT/HEXADECIMAL PSL = value

Key

CMP

TP

MBZ

FPD

IS

CUR
MOD

PRE
MOD

MBZ

IPL

Table 14-1
PSL Alteration Values

Key Number
(Hex)

80000000

40000000

o

2000000
1000000

800000
400000

o

100000

80000

40000

20000

10000-+

o

o

o

o

o

o

o

o

80

Description

Compatibility mode

Trace Pending

(Must'Be Zero)

First Part Done

Interrupt Stack

Current mode: 3000000=user,
2aOOOOO=supr, 1000000=exec, O=kern

Previous mode: OCOOOOO=user
800000=supr, 400000=exec, O=kern

(Must Be Zero)

Interrupt priority level: 0 - IF.
Enter the displayed or desired
priority level in hexadecimal
and append 0000 to the value.

Remember to precede the leftmost
character, if an alphabetic, '
with a zero.

EXAMPLE: OCOOOO for level 12.

(must be zero)

(must be zero)

(must be zero)

(must be zero)

(must be zero)

(must be zero)

(must be zero)

(must, be zero)

Decimal overflow trap enable

(continued on n~xt p~ge)

14-2

(

Bit Key

6

5

4

3

2

1

0
,

(

(

PROCESSOR STATUS LONGWORD (PSL)

Table 14-1 (Cont.)
PSL Alteration Values

Key Number Description
(Hex)

40 Floating underflow trap enable

20 Integer overflow trap enable

10 Trace trap enable

8 Negative condition code

4 Zero condition code

2 Overflow condition code

1 Carry condition code

14-3

(

c

(!

(

(

(

CHAPTER 15

DEBUGGER MESSAGES

The debugger provides four classes of messages:

• Informational - informational messages are provided to let you
know the status of the debugger or your program. While not,
strictly speaking, error messages, they may indicate erroneous
command input. For example, the message

%DEBUG-I-NOSUCHBPT, no such breakpoint

means you have specified a breakpoint
Informational messages are prefixed:

%DEBUG-I-

incorrectly.

• Warning - warning messages are displayed for the least severe
level of errors detected. Your debugging session continues
unaffected after a warning message, providing you a chance to
respecify the erroneous command or operand. Warning messages
are prefixed:

•

•

%DEBUG-W-

Error - error messages indicate that the debugger has detected
a condition that prevents it from continuing the session. You
should submit a Software Performance Report (SPR) if you
receive a severe error message from the debugger. Severe
errors are prefixed:

%DEBUG-E-

Fatal - fatal errors are errors that directly affect the
debugger. Following a fatal error, the debugger prints the
appropriate message and returns control to the VAX/VMS Command
Interpreter.

You should submit an SPR if you receive a fatal error message
from the debugger. Fatal error messages are prefixed:

%DEBUG-F-

Each message is listed in the following subsections, alphabetically
within subsection.

15-1

DEBUGGER MESSAGES

15.1 INFORMATIONAL MESSAGES (PREFIX:%DEBUG-I-)

DBGBUG, DEBUG coding error, please report no. 'number'

If you receive this message, please submit an SPR stating the
conditions that existed when the message appeared, including the
number specified in the message.

EXITSTATUS, is 'xxx'

This message is displayed to indicate that the user image has
exited, with the status specified by xxx. The string xxx is
produced by the system's error message facility.

INITIAL, language is 'aaa', scope and module set to 'name'

You usually receive this message when you initiate the debugger,
to inform you of the debugger's settings for language, scope, and
initial symbol table contents (for local symbols).

LONDST, too many modules - some ignored

This message indicates that when the debugger was initialized, it
found more modules in the image than it could accommodate; to
determine which modules were included, use the SHOW MODULE
command. If crucial modules were omitted, relink the image,
specifying those modules before modules not needed for debugging
purposes.

MODNOTADD, no space to add module 'name'

A SET MODULE command has failed because of insufficient symbol
table space. To make room, use CANCEL MODULE to remove modules
with symbols that are no longer needed, then retry the SET MODULE
command. You can use SHOW MODULE to see how much space is needed
and available.

NOBREAKS, no breakpoints are set

This is the response to SHOW BREAK when no-breakpoints are set.

NOGLOBALS, some or all global symbols not accessible

This message indicates an error or overflow- in the global symbol
table of the image. Reduce the number of global symbols.

NOLOCALS, image does not contain local symbols

This message indicates that when the debugger was' initiated there
were no local symbols to be put into its symbol table. Recompile
or reassemble~ specifying DEBUG or TRACEBACK, and then reI ink the
image.

NOSUCHBPT, no such breakpoint

This is the response to CANCEL BREAK address-expression when no
breakpoint is set at the specified address.

NOSUCHTPT,no such tracepoint

This is the response to CANCEL TRACE address-expression when no
tracepoint is set at the specified address.

15-2

(

(

(

l

(

(

(

(

DEBUGGER MESSAGES

NOSUCHWPT, no such watchpoint

This is the response to CANCEL WATCH address-expression when no
watchpoint is set at the specified address.

NOTALLSYM, cannot initialize symbols for default modules

The debugger could not put symbol information into the symbol
table for the first module in the image (the default module) .
Use SET MODULE to initialize the symbol table.

NOTRACES, no tracepoints are set, no opcode tracing

This is the response to SHOW TRACE when no tracepoints are set,
and no opcode tracing is in effect.

NOWATCHES, no watchpoints are set

This is the response to SHOW WATCH when no watchpoints are set.

NUMTRUNC, number truncated

The debugger truncated a numeric entry that exceeded the current
length mode, or could not be accommodated in the specified
context.

STEPINTO, cannot step over PC = 'xxx'

The debugger was forced to ignore the OVER mode when it reached
the location indicated. An INTO step will be performed.

STGTRUNC, string truncated

The debugger truncated an ASCII string entry that exceeded the
current length mode, or was otherwise inappropriate for the
context in which it was specified.

15.2 WARNING MESSAGES (PREFIX:%DEBUG-W-)

BADOPCODE, opcode 'xxx' is unknown

You specified an unrecognized opcode to the debugger.

BADSCP, scope must end with module or routine

You have specified the SET SCOPE command, but the symbol type of the
pathname is not module or routine. A SCOPE entry must end with a
module name (VAX-II MACRO) or routine name (VAX-II FORTRAN IV-PLUS).

BADSTARTPC, cannot access start PC = 'xxx'

The PC indicated is not a readable address, therefore it can not be
executed. Specify a valid start PC location.

BADSTEP, cannot decode instruction at address 'xxx'

A STEP command reached an instruction that is not recognized by the
debugger. Check to be sure that your image has not been overwritten.

15-3

DEBUGGER MESSAGES

BADWATCH, cannot watch protected addre.ss 'xxx'

You have requested a watchpoint for a protected location.

BITRANGE, bit range out of limits

You have specified a bit range in an EVALUATE command that exceeds the
range of bits that can be evaluated. The valid range is <31:0>,
decimal. Only numeric characters are valid in a bit range.

BRTOOFAR, destination 'xxx' is too far for branch operand

You deposited a branch instruction that contained an unreachable
target location.

DIVBYZERO, attempted to divide by zero

An expression can not be evaluated because it contains an attempt to
use a divisor equal to zero.

ENDWITHGO, cannot imbed GO, STEP, or CALL in command sequence

A command sequence contained a GO, STEP, or CALL that was not the last
command in the sequence. Commands up to, but not including, the GO,
STEP, or CALL are executed. The rest of the sequence is ignored.

EXARANGE, invalid range of addresses

You specified the address range in the wrong order. The correct order
is: low bound:high bound.

EXPSTKOVR, expression exceeds maximum nesting level

An expression containing more than 20 nesting levels was encountered.

INTEGER, this operation only valid on integers

You attempted to perform a computation that accepts only integer
values.

INVARRDSC, invalid array descriptor

The debugger detected an invalid array descriptor. If this message
occurs for any reason other than an incorrect specification in a
command you entered to the debugger, please submit an SPR.

INVCHAR, invalid character

A character you entered in a command is not acceptable in the current
context.

INVDIM, subscript error, was declared DIMENSION 'xx'

A subscript was specified incorrectly, according to the DIMENSION
statement in the FORTRAN program.

INVNUMBER, invalid numeric string 'nn'

The number specified as 'nn' is invalid in the current context.

INVOPR, unrecognized operator in expression

An expression contained a character that the debugger did not
recognize, in place of a valid operator.

15-4

(

E -

(

(

(

c

(

(

(

DEBUGGER MESSAGES

INVPATH, improperly terminated pathname beginning with 'xxx'

An improperly-formatted pathname has
followed by \ must begin a pathname.
not constitute a valid symbol.

been encountered: "symbol"
The characters following \ do

LASTCHANCE, stack exception handlers lost, re-initializing stack

A user-program error has caused the VAX/VMS condition handling
mechanism to fail. The probable cause is an overwritten stack.

MAXDIMSN, maximum number of subscripts is 'nn'

This is a FORTRAN-only message produced when an array reference is
used in a debugger expression. The array was declared to have the
indicated number of dimensions (nn), but the reference was made with
either too few or too many subscripts.

MULTOPR, multiple successive operators in expression

You entered an expression that contains two or more
characterp in succession.

operator

NEEDMORE, unexpected end of command line

The command line was terminated before it contained a complete
command. It was valid to the point of termination.

NOACCESSR, no read access to virtual address 'loc'

The debugger does not have read access privileges to the address
specified as 'loc'. The value of 'loc' is always hexadecimal.

NOACCESSW, no write access to virtual address 'loc'

The debugger does not have write access privileges to the address
specified as 'loc'.

NOANGLE, unmatched angle brackets in expression

An expression you entered contains a left angle bracket that has no
matching right angle bracket.

NOBRANCH, instruction requires branch-type operand

A branch-type instruction was given which
operand for the destination field.
DEPosit/Instruction addr='BNEQ RO'.

NOCALLS, no active call frames

did not contain a
For example, you

valid
cannot

Response to a SHOW CALLS command when the debugger locates no active
call frames. Your image may have exited, or the stack may have been
corrupted.

NODECODE, cannot decode instruction

This message is produced
instruction mode, and
VAX-II instruction.

when you specify
the indicated byte

15-5

an EXAMINE command in
sequence is not a valid

DEBUGGER MESSAGES

NODELIMTR, missing or invalid instruction operand delimiter

An instruction has been given that contains a syntax error at the
point where one operand has been terminated and another is supposed to
begin. For example, MOVL RO Rl (you forgot the',' as in RO,Rl).

NOEND, string beginning with 'xxx' is missing end delimiter x

An ASCII or INSTRUCTION string mu~t begin and end with either
apostrophes or quotes. If the ending delimiter is not encountered
before the string ends, this message is produced. The message gives
the ending delimiter the debugger expected to find (stidwn as x,
above), and the first 10 characters of the string you entered.

NOINSTRAN, cannot translate opcode at location 'loc'

The contents of the location indicated as 'loc' are not a recognizable
opcode. The value of 'loc' is always hexadecimal.

NOLABEL, routine 'name' has no %label 'label'

You attempted to refer to a label that does not exist in .the indicated
routine.

NOLINE, routine 'name' has no %line 'line'

The indicated line number does not exist in the subroutine specified
as 'name'. Consult the compiler listing. This message is also
produced when the indicated line number exists, but does not
correspond to executable code. An example of this is the line number
of a FORMAT statement.

NOLITERAL, no literal translation exists for 'xxx'

The value indicated as 'xxx' has not been assigned to a symbolic
equivalent of type literal (absolute).

NOOPRND, missing operand in expression

One or more operands have been omitted from an expression.

NOSUCHLAB, no scope exists to look up %label 'label'

You referenced the indicated label without an implicit or explicit
associated pathname. If you specifically indicated that the scope was
to be ignored, Or scope was <null>, and a PC-implied scope cannot be
derived, this message is produced.

NOSUCHLAN, language 'name' is unknown

The debugger does not recognize the language specified.

NOSUCHLIN, no scope exist$ to look up %line 'line'

You referenced the indicated line without an associated pathname. If
you specifically indicated that the scope was to be ignored, or scope
was <null>, and a PC-implied scope cannot be derived, this message is
produced.

NOSUCHMODU, module 'name' does not exist

The specified module is not part of the image.

15-6

(

E -

(

(

(

(

(

(

DEBUGGER MESSAGES

NOSYMBOL, symbol 'name' does not exist

The specified symbol cannot be located in the debugger's symbol table.

NOTDONE, 'xxx' not yet a supported fe~ture

You attempted to use a. d.ebugger feature that is not yet implemented.
The message indicates which feature was requested.

NOTIMPLAN, 'xxx' is not implemented at command level

You tried to SET the indicated LANGUAGE, which the debugger knows
about, but does not yet implement as a fully-supported language.

OPSYNTAX, instruction operand syntax error

You have specified invalid syntax in an operand within an instruction.
For example, MOVL (ROJ ,Rl.

PARSEERR, internal parsing error

If you receive this message, please submit an SPR.

PARSTKOVR, parse stack overflow, simplify expression

The expression you entered contains too many levels of angle brackets
< ••• >. Reenter the expression, reducing the number of angle bracket
levels. If this message recurs frequently, submit an SPR.

PATHTLONG, too many qualifiers on name

You entered a pathname that comprised more than 15 elements.

REDEFREG, register name already defined

You attempted to use a register name as a symbol to be defined in the
DEFINE command.

RESOPCODE, opcode 'xxx' is reserved

The operand you specified is reserved for DIGITAL's use only.

SUBSTRING, invalid substring (a:b), was declared CHARACTER* NN

You specified a substring that is not entirely within a character
string declared in a FORTRAN CHARACTER declaration.

SYNTAX, command syntax error at or near 'xxx'

Your command contains incorrect syntax at a point in the line
indicated by 'xxx'.

DEBUGGER MESSAGES

15.3 ERROR MESSAGES (PREFIX:%DEBUG-E-)

The following error messages indicate that the debugger is unable to
continue execution of your program. The image exits, and control
returns to the VAX/VMS Command Interpreter.

If you receive any of these messages, please submit an SPR.

DBGERR, internal DEBUG coding error

DEBUGBUG, internal DEBUG coding error, please report no. 'number'

FRERANGE, storage package range error

FRESIZE, storage package size error

INVDSTREC, invalid DST record

NOFREE, no free storage available

NORSTBLD, cannot build symbol table

RSTERR, error in symbol table

15.4 FATAL ERROR MESSAGES (PREFIX:%DEBUG-F-)

The following messages indicate errors fatal to execution
debugger. Control returns to the VAX/VMS Command Interpreter.
receive any of these messages, please submit an SPR.

NOWBPT, cannot insert breakpoint

NOWOPCO, cannot replace breakpoint with opcode

NOWPROT, cannot set protection

15-8

of the
.If you

(

c

(

c

(

(

(

APPENDIX A

COMMAND SUMMARY

This appendix summarizes the commands that can be used in debugging
VAX-II MACRO programs. Refer to the appropriate language user's guide
for information regarding the use of the debugger for programs written
in other languages.

The summary presents the commands in alphabetical order.

Brackets ([...]), where shown, enclose optional command elements:
they are not part of the syntax.

See SET MODE for entry/display mode keywords.

With the exception of ASCII character input, the debugger
automatically converts lowercase input to uppercase (that is, the
debugger is not sensitive to the case of an input character) .

"Address-expression" in the command syntax representations can be the
pathname (see SET SCOPE) of a local or global symbol in your program,
a numeric value, a symbol that you defined during this debugging
session, a debugger special character, or an expression that combines
any of these elements.

The term "program" means an executable image (refer to the VAX-II
Linker Reference Manual for additional information).

In VAX-II MACRO, the radix indicators for
entries are: ~X (for hexadecimal), AD
octal) .

numeric address or data
(for decimal), and AO (for

The debugger supports command line continuation. A command line can
contain up to approximately 500 characters, including nonprinting
characters. You indicate ~ontinuation with the hyphen (-) as the last
character prior to the carriage return. The debugger indicates a
continued line by displaying an underline character as the first
character on the line rather than the DBG> prompt.

CTRL/"x" refers to the simultaneous typing of the CTRL key and the
respective character key, that is, C, Y, or Z (refer to the VAX/VMS
Command Language User's Guide £or information on the complete list of
CTRL functions). CTRL/"x" echoes at the terminal as AX.

With the exception of the CTRL functions, you must end all command
lines with a carriage return.

>CALL name [(argument, ...)]

Call routine by i~s sy~bolic name or by its virtual address
(address expressIon IS not valid) with optional argument list.
An argument list must be enclosed by parentheses.

A-I

COMMAND SUMMARY

>CANCEL ALL

Cancel all breakpoints, tracepoints, watchpoints, and use.r-set
entry/display modes. Restore initial entry/display modes. This
command does not change the current contents of the debugger's
symbol table (that is, those symbols acquired from program
modules at debugger initialization or through use of the SET
MODULE command, or any symbols that you defined during this
debugging session). The current language is not changed.

>CANCEL BREAK address-expression

>CANCEL BREAK/ALL

Cancel breakpoint set at specified address, or cancel all
breakpoints.

>CANCEL EXCEPTION BREAK

Cancel the request that your program stop, as
for any exception condition.

>CANCEL MODE

at a breakpoint,

Restore initial entry/display modes.
SCOPE or current language.

Command does not change

>CANCEL MODULE module-name-list

>CANCEL MODULE/ALL

Purge symbolic information associated with the named modules from
the debugger's symbol table, or purge all module related
information from the symbol table. The typical use is to make
space available for local symbols associated with another module
or modules (see SET MODULE). Global symbols and any symbols
defined during this debugging session are not affected.

>CANCEL SCOPE

Enter null contents in SCOPE (that is, delete the previously set
scope) .

>CANCEL TRACE address-expression

>CANCEL TRACE/CALL

>CANCEL TRACE/BRANCH

>CANCEL TRACE/ALL

Cancel tracepoint set at specified address, cancel all opcode
tracing at call-type instructions, cancel all opcode tracing at
branch-type instructions, or cancel all tracepoints and opcode
tracing.

>CANCEL WATCH address-expression

>CANCEL WATCH/ALL

Cancel watchpoint set at specified address, or cancel all
watchpoints.

A-2

(

,

c

(

(

(

(

COMMAND SUMMARY

CTRL/C

Has same effect, and echoes at terminal, as CTRL/Y (see below) if
your program does not include an exception condition handler for
CTRL/C.

CTRL/Y

Interrupt the debugger or executing program and transfer control
to the VAX/VMS command interpreter (signaled by the system prompt
$). Type

DEBUG

after the system prompt to return control to the debugger. Typ~

CONTINUE

after the system prompt to return. ~ontrol to .theinterrupted
program. Typing any VAX/VMS command other than DEBUG or CONTINUE
will probably force the premature exit of your program. You can
use CTRL/Y to. interrupt a looping program. To determine the
point at which you interrupted your program, type

DBG>EXAMINE/INSTRUCTION @PC

CTRL/Z

Same result as EXIT~ that is, terminate the debugging session
and transfer control to the VAX/VMS command interpreter~

>DEFINE symbol-name=value[,symbol-name=value ...]

Equate name(s) of name=value list with associated value(s) for
use during this debugging session •. The debugger searches these
symbols first whenever it requires a definition for a symbolic
entry, and whenever it requires a symbolic name to report a
location.

>DEPOSIT [/mode [•.•]] address-expression=data [,data, •..]

Enter data specified in data list in sequence of locations
beginning with the specified address.

>EVALUATE[/mode[•••]] expression[, .••]

transform input (which can be arithmetic expression, ASCII
string, VAX-II MACRO instruction, symbol, or numeric value) to
associated value(s) and display result(s). Can be used as desk
calculator, radix converter, symbol verifier, etc. The debugger
displays result(s) in the order in which you specified the input.

>EXAMINE [/mode [•.•]] address [: address] [, address [: address] •••]

>EXIT

Display current contents of specified address(es). ~he colon
signifies range~ that is, display contents of addresses from low
address through high address.

Terminate ·debugging session and transfer control to the VAX/VMS
command interpreter.

A-3

COMMAND SUMMARY

>GO[address~expression]

Start or continue program execution. First GO command without an
address starts the program at its transfer address. GO commands
thereafter continue execution from a stopped point (as at a
br-eakpoint or watchpoint, or because of an exception condition).

An address entry replaces the current program counter (PC)
contents; execution starts or continues from the new location.

Once you have started a program, you should not to attempt a
restart at the transfer address or any other address. Program
behavior is unpredictable when restarted.

>SET BREAK address-expression [DO (command list)]

Establish breakpoint at specified address (the
your program before the instruction
"address-expression" is executed) .

breakpoint
beginning

stops
with

The debugger executes commands in DO sequence command format
whenever your program stops because of the specified breakpoint.
Parentheses are required as command list delimiters. Multiple
commands must be separated by semicolons. Any complete debugger
command can be used in this context, including GO, STEP, or CALL.
If GO, STEP, or CALL is specified, it must be the last command in
the sequence.

You can specify the "after" option to defer a breakpoint.

SET BREAK/AFTER:decimal-integer address-expression

Your program does not stop because of the breakpoint (that is,
the breakpoint is ignored) until the "n"th pass through the
specified location, as in a~ interation, where Un" is within the
range 1 through 32767. Thereafter, the breakpoint takes effect
each time the debugger encounters it.

You can specify a temporary (or one time) breakpoint by:

SET BREAK/AFTER:O address-expression

The debugger automatically cancels the breakpoint after it stops
your program the first time the breakpoint is encountered.

>SET EXCEPTION BREAK

Stop the program and report the current program counter contents
if an exception condition occurs that was not initiated by a
debugger command.

>SET LANGUAGE language-name

Let the debugger interpret input and display output in the syntax
of the specified language. The debugger rejects commands that
are not valid in the specified syntax. The debugger initially
recognizes the language of the first module in your program that
contains symbol information.

A-4

c

(-

(

(

(

(

(

(

COMMAND SUMMARY

>SET MODE mode-keyword[,mode-keyword .•.]

Allow or inhibit the entry and display of data in specified
formats.

The following list describes the function of each keyword (refer
to SET SCOPE for additional information regarding the use of the
symbol search control keywords, [NO]GLOBAL and [NO] SCOPE) :

ASCII

BYTE

DECIMAL

GLOBAL

HEXADECIMAL

INSTRUCTION

LONG

NOASCII

NOGLOBAL

Interpret/display data as ASCII characters.

Interpret/display data in byte lengths.

Interpret/display data in decimal radix.

Use symbolic entry as first pathname in search.

Interpret/display data in hexadecimal radix.

Interpret/display VAX-II MACRO instructions.

Interpret/display data in longword lengths.

Inhibit entry/display of ASCII characters.

Use symbolic entry as last pathname in search.

NOINSTRUCTION Inhibit entry/display of VAX-ll MACRO

NOSCOPE

NOSYMBOLIC

OCTAL

SCOPE

SYMBOLIC

WORD

instructions.

Inhibit SCOPE's contribution to pathname.

Inhibit display of symbolic addresses.

Interpret/dlsplay data in octal radix.

Add SCOPE's contents to entry to form pathname.

Display symbolic addresses.

Interpret/display data in word lengths.

The debugger's initial modes are: SYMBOLIC, NOINSTRUCTION,
NOASCII, NOGLOBAL, HEXADECIMAL, and LONG. SCOPE is initialized
to contain the name of the first module in your program.

You can also enter the mode keywords with the commands DEPOSIT,
EVALUATE, and EXAMINE to override the current associated mode
(radix, data length, symbol search, or type). A slash must
precede each mode keyword entered after these command verbs.

command-verb/keyword/keyword

>SET MODULE module-name-list

>SET MODULE/ALL

Enter local symbols and program section names associated with the
program-module list in the debugger's symbol table, or enter
information from all modules in the symbol table. The debugger
cannot interpret local symbols unless their associated module
names appear in the status report produced by the SHOW MODULE
command with a "yes" indication.

A-S

COMMAND SUMMARY

>SET SCOPE module-name

Retain module-name entry as SCOPE's contribution to creation of a
pathname under control of the debugger's symbol search rules. A
pathname completely and unambiguously identifies a symbol and
points to that symbol~s definition (that is, itstianslation
value) . For VAX-II MACRO, a pathname is symbol-name or
module-name\symbol-name.

The debugger evaluates an expression in which a symbolic entry
appears only if a definition was located for the entry. If it
fails to locate a match for a pathname, the debugger reports the
search failure and the symbol name.

>SET STEP keyword [,keyword ..•]

Establish default conditions for the STEP command.
keywords are:

INSTRUCTION - step increment in VAX-II MACRO instruction.

LINE - step increment is line (for line-oriented languages).

INTO -allow stepping through called routine.

OVER - step over called routine (make call transparent).

SYSTEM - allow stepping into system space.

NOSYSTEM - inhibit stepping into system space.

Valid

The initialization conditions for VAX-II MACRO are: INSTRUCTION,
NOSYSTEM, and OVER.

>SET TRACE address-expression

>SET TRACE/CALL

>SET TRACE/BRANCH

Set tracepoint at specified address, or specify tracing of all
call-type instructions, or all branch-type instructions. At a
tracepoint, the debugger reports the current program counter
contents and then continues program ~xecution automatically.

>SET WATCH address-expression

Report if the contents of the specified location(s) are modified.

The locations watched can be individual addresses
number of bytes specified by the length mode in
watchpoint was set), or an entire program section
name) .

(including the
effect when the
·(specified by

The debugger stops the program (as at a breakpoint) and reports
both the previous contents and the current contents of the
location.

A-6

(---

(

(

(

(

(

(

(

>SHOW BREAK

Report the lotations of
information associated
and "after" options.

>SHOW CALLS [n]

COMMAND SUMMARY

current breakpoints and any relevant
with them, such as DO command sequences

Report current call level and the hierarchy of call leve1s that
preceded it (that is, trace your program's call history). If Un"
(a decimal integer) is expressed, the debugger reports Un" call
levels back fiom the current level ("n" has the range 0 through
32767). If Un" is omitted, all preceding call levels are
reported.

>SHOW MODE

Report the current entry/display modes (see SET MODE).

>SHOW MODULE

List program modules by name, indicate whether or not their
associated local symbol data exists in the debugger's symbol
table (by yes or no), and indicate the approximate space required
for the entry of each module's symbol data. List also the amount
of space currently unused. The debugger has no knowledge of any
program module not reported in this status report.

>SHOW SCOPE

Report the current contents of SCOPE. A null string «null»
indicates that SCOPE makes no effective contribution to the
creation of a pathname.

>SHOW STEP

Report current default conditions for STEP (see SET STEP).

>SHOW TRACE

Report the locations of current tracepoints, or that opcode
tracing is in effect.

>SHOW WATCH

Report the locations of current watchpoints and the number of
bytes monitored by each watchpoint.

>STEP [jkeyword] [decimal-integer]

Stop the program after executing the next instruction only (the
default condition if you do not specify an instruction count), or
after executing the next Un" instructions, where Un" is a decimal
integer from 2 through 32767.

The following keywords can either be used after the STEP command
verb (STEP/keyword) or be set with the SET STEP command to
establish the default conditions for STEP. The SHOW STEP command
displays the current defaults.

A-7

COMMAND SUMMARY

The keywords have the following relationships:

SYSTEM/NOSYSTEM - allow or inhibit steps into system space.

INTO/OVER - step into or over a called routine.

LINE/INSTRUCTION - step by lines or by instructions.

The initialized defaults for VAX-II MACRO are:

INSTRUCTION, NOSYSTEM, OVER.

c

(

(

(

(

c

(

A

Address expressions, 4-4
AFTER:n option, 7-4
Angle brackets, 4-3
Apostrophes, 4-10
Arithmetic expressions, 4-1
Arithmetic operators, 4-1
ASCII, 10-3, 10-5
ASCII mode, 5-4, 5-5, 5-8
Asterisk, 4-3
At sign, 4-3, 4-6

B
Backslash, 4-5, 4-8
Bit fields, 4~10
Bit fields, evaluating, 11-1
Break on exception, 12-2
Breakpoints, 7-1

CANCEL, 7-4
SET, 7-3
SHOW, 7-4
temporary, 7-4

c
CALL command, 4-9, 13-1
Calling routines, 13-1
Calls, showing, 13-1
Changing mamorYi 10-1
Changing modes, 5-2
Characters,

delimiting, 4-6
special, 4-1

Circumflex, 4-5
Colon, 4-6, 4-10
Comma, 4-9
Commands, 1-3, A-I

CALL, 13-1
CANCEL, A-2
CTRL/C, A-3
CTRL/Y, A-3
CTRL!Z, A-3
DEFINE, 4-8, 6-2, A-3
DEPOSIT, 4-8, 10-1, A-3
EVALUATE, 4-10, 11-1, A-3
EXAMINE, 4-10, 10-1, A-3
EXIT, 2-4, A-3
GO, 3-1, 7-2, 9-2, A-4
SET, A-4
SHOW, A-7
STEP, 3-2, 7-2, 9-2, A-7

Contents operator, 4-4, 4-6

INDEX

Context modes, 5-4
Continuation, line, 4-11
Controlling execution, 3-1
Control of program execution, 1-3
Current location, 4-4, 4-5

o
Data display, 5-1
Data entry, 5-1
DECIMAL mode, 5-9
DEFINE command, 4-8, 6-2
Defining symbols, 6-2
Delimiting characters, 4-6
DEPOSIT command, 4-8, 10-1
Deppsiting,

ASCII data, 10-5
instructions, 10-4
numeric data, 10-4

Display, data, 5-1
Displaying memory, 10-1

as ASCII, 10-3
Display modes, 2-3
Division operator, 4-3
DO command sequence, 4-9, 7-3
Dot, 4-5

E

Ending a debugging session, 1-3,
2-1, 2-4

Entry, data, 5-1
Entry modes, 2-3
Equal sign, 4-8
EVALUATE command, 4-10, 11-1
Evaluating arithmetic expressions,

4-1
Evaluating,

bit fields, 11-1
expressions, 1-3, 11-1
literals, 5-8, 11-2

EXAMINE command, 4-10, 10-1
Examining,

instructions, 10-3
locations, 1-2, 10-1
numeric data, 10-2
registers, 10-1

Exception conditions, 12-1
break on, 12-2

Execution, controlling, 3-1
Expressions,

address, 4-4
arithmetic, 4-1
evaluating, 1-2, 11-1

Index-l

INDEX (Cont.)

G
GLOBAL mode, 5-10
GO command, 3-1, 7-2, 9-2

H
HEXADECIMAL mode, 5-10
Hyphen, 4-11

I
Initiating the debugger, 2-1
Input strings, 4-10
INSTRUCTION mode, 5-4, 5-6
Instructions,

depositing, 10-4
examining, 10-3

K
Keywords, mode, 5-1

·L
Language setting, 2-3
Last value displayed, 4-5
Length mode, 4-1
LENGTH mode, 5-10
Line continuation, 4-11
Literals, evaluating, 5-8, 11-2
Local symbols, 1-5, 6-5
Location,

current, 4-4
last addressed, 4-4
last displayed,4-4
previous, 4.-5

M
MACRO literals, evaluating, '·5-8
Messages, 15-1

error, 15-8
fatal, 15-8
informational, 15-2
warning, 15-3

Minus sign, 4-2
MODE commands,

CANCEL, 5-3
SET, 5-2
SHOW, 5-3

Modes, 5-1
ASCII, 5-4, 5-8
changing, 5-2
context, 5-4

Modes (Cont.),
DECIMAL, 5-9
display, 2-3
entry, 2-3
GLOBAL, 5-10
HEXADECIMAL, 5-10
INSTRUCTION, 5-4, 5 ... 6
keywords, 4-7, 5-1
length, 4-1, 5-10
OCTAL, 5-10
radix, 5-9
reporting, 5-3
restoring, 5-3
SCOPE, 5-11
SYMBOLIC, 5-4, 5-6

Modifying locations, 1-2, 10-3
MODULE commands,

CANCEL, 6-7
SET, 6-6
SHOW, 6-6

Multiplication operat;or, 4-3

N
Numeric data,

depositing, 10-4
examining, 10-2

o
OCTAL mode, 5-10
Opcode tracing, 1-2, 8-1
Operators, ,

arithmetic, . 4-1
contents, 4-4,4-6'
division, 4-3
precedence, 4-3
radix, 4-4
range, 4-6
shift, 4-3

p

Pathname, 1-5, 4-8, 5-10, 6-1, 6-9
Permanent symbols, 6-2
Plus sign, 4-2
Precedence operators,4.-3
Previous location., 4-5 .
Processor Status Longword, 14-1
Program control, 1-3 ..
PSL, 14-1 . .
Purging the. symbol table, 6~7

Q

Qualifiers, 2-2
Quotation marks, 4-10

Index-2

(

(

(

c

l

INDEX (Cont.)

R
Radix modes, 5-9
Radix operators, 4-4
Range, 10-2
Range operator, 4-6
References, symbolic, 1-4
Restrictions, watchpoint, 9-4

Scope, 1-5
SCOPE commands,

CANCEL, 6-9
SET, 6-9
SHOW, 6-9

s

SCOPE mode, 5-11
Scope setting, 2-3, 6-9
Search modes, pathname, 5-10
Search rules, 6-7
Semicolon, 4-9
Shift operator, 4-3
Sign,

equal, 4-8
minus, 4-2
plus, 4-2

Slash, 4-3,4-7
Special characters, 4-1

Symbol (Cont.),
into values, 6-7
local, 6-5
permanent, 6-2
purging, 6-7
setting, 2-3
table, 1-4, 6-6

SYMBOLIC mode, 5-4, 5-6
Symbolic references, 1-4

T
Table, symbol, 1-4, 6-6
Temporary breakpoints, 7-4
Terminating a debugging session,

2-4
Tracepoints, 1-2, 8-1

CANCEL, 8-3
SET, 8-2
SHOW, 8-3

Tracing opcodes, 8-1
branch-type, 8-3
call-type, 8-2

Typed data, 4-1

v
Starting a debugging session, 1-3, Value displayed, last, 4-5

Values into pathnames, 6-9
2-1

Startup, 2-2
STEP command, 3-2, 7-2, 9-2
Stepping, 3-2
Step types, 3-2

setting, 3-3
showing, 3-3

Strings, input, 4-10
Symbol, 6-1

defined, 6-2
global, 6-5

w
Watchpoints, 1-2, 9-1

CANCEL, 9-3
restrictions, 9-4
SET, 9-2
SHOW, 9-2

Index-3

(

(/

(I

VAX-ll
Symbolic Debugger
Reference Manual
AA-D026A-TE

(" READER'$ COMMENTS

J
I
I
I ,
I , , ,
lC

,(
1\

(
I
I ,
I
I
I
I
I ,
I ,

.
~
c

.~
~
~

m c
0
~

~
~

c
~

D-

~
I
I
I ,
I
I ,
I
I
I
I
I
I
I

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Other (please specify)-------------------------------------

Name __ Date ____ ~-------------------

Organization ____________________________________ ~ __ ~ __________________ ___

Street __ ~ ____________________ __

City __________________ ~ _______ State _____________ Zip Code ____________ _

or
Country

(

---JFold lIere-------~------~---

L.-.-
~--

c

------------------:;,----------------------------- Do Not Tear - JFold Here and Staple --- C-

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN TIlE UNITED STATES

Postage will be paid by:

Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

__ --l

