
VAX/VMS
Primer
Order No. AA-D030C-TE

(

(

(

(

VAX/VMS
Primer
Order No. AA-D030C-TE

May 1982

This tutorial document introduces the DIGITAL Command Language, the EDT editor,
file manipulation, program development, and basic operating system concepts.

REVISION/UPDATE INFORMATION: This revised document supersedes the
VAXIVMS Primer (Order No. AA-D030B-TE).

SOFTWARE VERSION: VAXIVMS Version 3.0

digital equipment corporation · maynard, massachusetts

First Printing, August 1978
Revised, March 1980

Revised, May 1982

The information in this document is subject to change without notice and should not be con
strued as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1978, 1980, 1982 by Digital Equipment Corporation.
All Rights Reserved.

Printed in U.S.A.

A postpaid READER'S COMMENTS form is included on the last page of this document. Your
comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS Edusystem UNIBUS
DECnet lAS VAX
DECsystem-10 MASSBUS VMS
DECSYSTEM-20 PDP VT
DECUS PDT

~DmDD~D DECwriter RSTS

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire, Alaska, and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6146 (all other Canadian)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada Ltd.
940 Belfast Road
Ottawa, Ontario K1 G 4C2
Attn: A&SG Business Manager

ZK2124

DIRECT MAIL ORDERS (USA & PUERTO RICO)"

Digital Equipment Corporation

DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

-Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

A&SG Business Manager
c/o Digital's local subsidiary or
approved distributor

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

10/82-14

(

c

(

(

(

Contents
Page

Preface vii

Chapter 1 Accessing the System and Typing Commands

1.1 Terminals. · 1-1

1.2 Keyboards. · 1-2

1.3 Logging In. · 1-2

1.3.1 Getting the Terminal Ready. · 1-3
1.3.2 Gaining Access to the System . · 1-4

(1.4 Entering Commands . · 1-4

1.4.1 Command Prompting. · 1-5
1.4.2 Abbreviating Commands · 1-6

1.4.3 Recovering from Errors · 1-6

1.5 System Responses . · 1-7

1.5.1 Defaults. · 1-7
1.5.2 Information Messages. · 1-7
1.5.3 Error Messages : · 1-8

(1.6 The HELP Command .1-8

1.7 Logging Out. · 1-9

1.8 For More Information · 1-9

Chapter 2 Using an Editor: EDT

2.1 Files · 2-1

2.1.1 File Names. · 2-1

2.1.2 File Types · 2-1

2.1.3 File Versions . .2-2

2.2 Editors · 2-2

2.3 Introduction to EDT. .2-3

Ul

2.4 Keypad Editing in EDT . .2-3

2.4.1 The Gold Key .2-4
(2.4.2 The HELP Command. .2-4

2.4.3 Creating a File . .2-4
2.4.4 Editing a File · 2-6
2.4.5 Manipulating the Cursor .2-6
2.4.6 Scanning a File. .2-7
2.4.7 Changing the Cursor's Direction. .2-8
2.4.8 Deleting and Restoring Text. .2-9
2.4.9 Locating Text 2-10
2.4.10 Moving Text . 2-11
2.4.11 Entering Line Comands in Keypad Mode 2-13
2.4.12 Changing From Keypad to Line Editing . 2-13
2.4.13 Subset of EDT Keypad-Editing Commands 2-13

2.5 Line Editing in EDT. 2-14

2.5.1 The HELP Command. 2-15
2.5.2 Creating a File. 2-15
2.5.3 Editing a File 2-16 (2.5.4 Specifying Ranges 2-16
2.5.5 Inserting and Deleting Text . 2-17
2.5.6 Locating Text 2-17
2.5.7 Substituting Text. 2-18
2.5.8 Copying and Moving Text. 2-18
2.5.9 Changing from Line to Keypad Editing 2-18
2.5.10 Subset of EDT Line-Editing Commands. 2-19

2.6 Special Features of EDT. 2-19

2.6.1 Multiple Buffers 2-19 (
2.6.2 Journal Files . 2-19
2.6.3 SET and SHOW Commands 2-20
2.6.4 Start-up Command Files 2-20
2.6.5 Defining Keys 2-20
2.6.6 Defining Macros 2-20

2.7 For More Information 2-21

Chapter 3 Commands to Manipulate Files /

(
3.1 Identifying Files. · 3-1

3.1.1 Nodes · 3-1
3.1.2 Devices .3-2
3.1.3 Directories and Subdirectories. .3-2
3.1.4 File Names, Types, and Versions · 3-3
3.1.5 Wild Card Characters. · 3-4

3.2 Creating Files . · 3-5
3.3 Deleting Files . · 3-5
3.4 Purging Files · 3-6
3.5 Displaying Files at Your Terminal .3-6
3.6 Printing Files · 3-7
3.7 Listing Files in a Directory. · 3-7
3.8 Creating Subdirectories · 3-8

(
\

w

3.9 Changing Your Default Directory. .3-8
3.10 Copying Files .3-9
3.11 Renaming Files 3-10
3.12 For More Information 3-10

Chapter 4 Program Development

4.1 Creating the Program . 4-1.
4.2 Compiling or Assembling the Program .4-2
4.3 Linking the Object Module. .4-3
4.4 Executing the Program. .4-3
4.5 A FORTRAN Program. .4-5

4.5.1 Creating the Source Program .4-5
4.5.2 The FORTRAN Command .4-6
4.5.3 Linking the Object Module .4-8
4.5.4 Running the Program . .4-8
4.5.5 Debugging the Program. .4-9

(4.6 A MACRO Program . 4-10

4.6.1 Creating the Source Program 4-11
4.6.2 The MACRO Command 4...:12
4.6.3 Linking the Object Module 4-13
4.6.4 Running the Program. 4-13
4.6.5 Debugging the Program. 4-14

4.7 For More Information 4-15

(
Chapter 5 Logical Names: Files for Program Input/Output

5.1 Logical Names in Commands. .5-2
5.2 System Default Logical Names. .5-3
5.3 FORTRAN Input/Output. .5-4

5.3.1 Changing Default Logical Names .5-4
5.3.2 Logical Names for Unit Numbers .5-5
5.3.3 Logical Names in OPEN Statements .5-6

5.4 MACRO Input/Output. .5-6
5.5 For More Information .5-7

Chapter 6 Tailoring the Command Language

6.1 Symbols. . 6-1
6.2 Command Procedures .6-2

6.2.1 Using Symbols in Command Procedures . .6-3
6.2.2 Redefining System Commands .6-4
6.2.3 A LOGIN.COM File .6-5

6.3 Batch Job Processing .6-6
6.4 Programming Command Procedures .6-6
6.5 For More Information .6-7

Glossary

(

\, Index
"

u

Tables

/
1 Sources of Information in VAX-ll Documentation. · Vlll \
2-1 Subset of EDT Keypad-Editing Commands. 2-14
2-2 Subset of EDT Line-Editing Range Specifications. 2-16
2-3 Subsef of EDT Line-Editing Commands 2-19

Figures

1-1 The LA120 Terminal. · 1-1
1-2 The VT100 Terminal. · 1-.:2
1-3 The LA120 and VT100 Keyboard Layouts. · 1-3
2-1 The VT52 and VT100 Keypads . · 2-3
4-1 Steps in Program Development.4-4
4-2 Commands for FORTRAN Program Development .4-5
4-3 Commands for MACRO Program Development 4-10
5-1 Using Logical Names. .5-2

(

(

(

(

VL

(
\

(

(

i
\

Preface

A primer is a book for beginners. The VAX/VMS Primer introduces new users
to the V AXNMS operating system. Depending upon your prior experience,
you may want to read this book carefully or just skim it for specific details.

Between you and the computer is V AXNMS, the operating system.
VAXNMS allows users to share the resources of the computer and its hard
ware devices, such as disks, tapes, terminals, and printers.

Communication with the operating system consists of commands that you
give it and messages that it gives in response. The set of commands that an
operating system recognizes constitutes its command language.

DIGITAL Command Language, or DCL, is the name of the command lan
guage you use to communicate with VAXNMS. One of the main objectives of
this primer is to introduce you to the DIGITAL Command Language.

Eventually, you will need to know more information about VAXNMS, its
command language, and its services than this primer presents. Sections en
titled "For More Information" conclude each of the following chapters; these
sections direct you to further sources of specific information about material
discussed in the preceding chapter. In addition, the VAX -11 Information
Directory and Index provides a guide to the entire VAXNMS software docu
ment set. See Table 1 for a 'list of VAX-ll documentation organized by
subject.

uu

Table 1: Sources of Information in V AX-11 Documentation

For information on:

V AXNMS Documentation

V AXNMS Installation,
Management, and Operations:

DIGITAL Command Language

Program Development,
Testing, and Control

File and Record Management

Programming Utilities and
Development Tools

Compatibility Mode
Programming

Look in these manuals:

VAX -11 Information Directory and Index

V AXNMS Release Notes
V AX-11/780 Software Installation Guide
VAX-11/750 Software Installation Guide
VAX -11/730 Software Installation Guide
VAX-11/782 User's Guide
V AXNMS System Management and Operations Guide
V AXNMS UETP User's Guide

V AXNMS Command Language User's Guide
V AXNMS Guide to Using Command Procedures

VAX-11 SOS Text Editing Reference Manual
EDT Editor Manual
VAXNMS DIGITAL Standard Runoff User's Guide
V AXNMS Magnetic Tape User's Guide
VAX-11 Linker Reference Manual
VAX-11 Symbolic Debugger Reference Manual
V AXNMS Real-Time User's Guide
V AXNMS Guide to Writing a Device Driver
V AXNMS System Messages and Recovery Procedures

Manual

Introduction to VAX -11 Record Management
Services

VAX -11 Record Management Services Reference
Manual

VAX-11 Record Management Services Utilities
Reference Manual

VAX -11 Record Management Services Tuning Guide

VAX -11 Utilities Reference Manual
VAX-11 PATCH Utility Reference Manual
VAX-11 SORT/MERGE User's Guide
V AXNMS System Services Reference Manual
V AXNMS VO User's Guide
VAX-11 Run-Time Library User's Guide
VAX-11 Run-Time Library Reference Manual
V AXNMS System Dump Analyzer Reference Manual
V AX-11 Guide to Creating Modular Library

Procedures

VAX-11/RSX-11M Programmer's Reference Manual
VAX-11/RSX-11M User's Guide

vm

(

(

(

(

(

I

(

Table 1: (Cont.) Sources of Information in VAX-ll Documentation

For information on:

Networking

V AX-11 Programming
Languages

Look in these manuals:

DECnet-VAX System Manager's Guide
DECnet-VAX User's Guide

VAX-11 BASIC Installation Guide and Release Notes
V AX-11 BASIC Language Reference Manual
V AX-11 BASIC User's Guide

BLISS Language Guide
BLISS Pocket Guide
VAX-11 BLISS-32 User's Guide
VAX-11 BLISS-16 User's Guide

Installing VAX -11 C
Programming in V AX-11 C

V AX-11 COBOL Installation Guide/Release Notes
VAX-11 COBOL Language Reference Manual
V AX-11 COBOL Pocket Guide
VAX-11 COBOL-74 Translator Utility
V AX-11 COBOL User's Guide
VAX-11 COBOL-74 Installation Guide/Release Notes
VAX-11 COBOL-74 Language Reference Manual
VAX-11 COBOL-74 User's Guide

CORAL 66 Language Reference Manual

VAX-11 FORTRAN Installation Guide/Release Notes
V AX-11 FORTRAN Language Reference Manual
VAX-11 FORTRAN User's Guide

VAX-11 MACRO Language Reference Manual
VAX-11 MACRO User's Guide

V AX-11 PASCAL Installation Guide/Release Notes
VAX-11 PASCAL Language Reference Manual
V AX-11 PASCAL Primer
VAX-11 PASCAL User's Guide

Introduction to VAX-11 PL/I
Programming in VAX -11 PL/I
VAX -11 PL/I Encyclopedia Reference
VAX-11 PL/I Guide to Program Debugging
VAX -11 PL/I Installation and System Management

Guide
VAX-11 PL/I Language Summary
V AX-11 PL/I User's Guide

LX

\

Graphic Conventions Used in this Primer

(CTRL/y)
(GTRL/R)

(GTRL/U)

(GTRL/C)

(GTRL/Z)

(GTRL/S)

(GTRL/O)

(GTRL/O)

,!; s h 0 1,.1 t i (11 e
05-- JUI\I -- I Df:32 :l:l. ::~i'5::~~2

1; t}' p e (II}' f i 1 e + d a t

All commands are

These sy mbols indica te t hat you press the ESCA PE,
RETURN, DELETE, or TAB key on the te rmina l.

These sy mbols indi ca te that you hold down the CTRL key
while you press a te rmina l key, fo r exa mple, Y. These sym
bols represent cont rol key seq uences . In some exa mples,
cont rol key sequences a re shown as a circu mflex (.) and a
letter, for exa mple ' Y, because that is how the sys tem d is
pl ays them.

In exa mples of co mm ands you ente r a nd syste m responses,
a ll t he lines you type a re shown in red letters. Eve ryt hing
t he syste m prin ts or displ ays is shown in b lack letters .

A vert ical ellipsis in a n exa mpl e mea ns that not a ll t he data
the syste m would display in response to the pa rt icula r co m
ma nd is shown ; or that not a ll t he data a user would ente r is
shown .

A word or phrase in bold indi cates a te rm defin ed in the
Glossa ry at t he end of this primer.

x

(

Chapter 1
Accessing the System and Typing Commands

To communicate with the VAX/VMS operating system you use a terminal
that is connected to the computer. You tell the operating system what to do
by typing a command or the terminal's keyboard. The system responds by
executing your command. If the system cannot interpret what you type, it
displays an error message at your terminal; when the command has been
successfully executed, you type another.

When you communicate with the system in this manner, you are an interac
tive user. A batch user, in contrast, communicates with the system by sub
mitting all commands at one time in a batch job. This primer emphasizes how
to use VAX/VMS interactively. Chapter 6 shows how any of the commands
described can be submitted in a batch job.

1.1 Terminals

The terminals you can use to communicate with the VAX/VMS operating
system fall into two general categories: hard-copy terminals and video display
terminals.

Hard-copy terminals print on continuous forms of paper. Figure 1-1 shows one
type of hard-copy terminal, the LA120.

Figure 1-1: The LA120 Terminal

1-1

Video display terminals display your typed input and system responses on a
screen similar to that of a television. Figure 1-2 shows an example of a video
display terminal, the VT100. (

Figure 1-2: The VT100 Terminal

1.2 Keyboards

Figure 1-3 shows the keyboard layouts of the LA120 and VT100 terminals. All
terminal keyboards have the same basic configuration as typewriter key
boards. However, a terminal has additional keys that provide special signals
to the operating system; to use the terminal effectively, you should become
familiar with these keys.

In Figure 1-3, arrows point to the most commonly used of the special keys.
The symbols in the figure are used throughout this text as a shorthand nota
tion to refer to pressing these special keys. For example, the symbol (5ITl in
text means that you press the key labeled RETURN. (CTRL/x) means that you
hold down the key labeled CTRL while you press another key. To issue a
(CTRL/Y), for instance, hold the CTRL key down and press the Y key.

1.3 Logging In

To begin a session at the terminal, you must log in. Logging in consists of
getting the system's attention and identifying yourself as an authorized user.

Before you can log in to the system, however, you must have an account.
Accounts are set up by the system manager, or whoever is responsible at your
installation for authorizing the use of the system. This person must provide
you with a user name and a password.

Your user name is a unique name that identifies you to the system and
distinguishes you from other users. In many cases, a user name is your first or
last name.

1-2 Accessing the System and Typing Commands

(

(

(

('

(

(

Your password, however, is for your protection. If you maintain its secrecy,
other users cannot use system resources under your user name or gain access
to files you wish to keep private.

When you log in, you must enter both your user name and your password
before V AXNMS allows you to begin typing commands.

LA120

VT100

Figure 1-3: The LA120 and VT100 Keyboard Layouts

1.3.1 Getting the Terminal Ready

Before you use the terminal, be sure that:

• The terminal is plugged in and the power is turned on .

ZK-761-82

• If the terminal has a LOCAL/REMOTE switch, the switch is set to
REMOTE. (If you are using a dial-up connection, check installation
instructions for special procedures.)

The terminal should then be ready to accept your login. If you have any
problems with the login procedure described in the next section, get help from
the system operator or system manager. The terminal may not be properly
connected to the computer, or the baud rate (the speed at which the terminal
transmits or receives characters) may not be correctly set.

Accessing the System and Typing Commands 1-3

\
\
\

1.3.2 Gaining Access to the System

Press ffiTI) or (CTRl/V) to signal t he system that you want to log in. The system
responds by prompting you 1'01' your user name. Enter your user name and
press ffiTI) . The system displays your user name as you type it. After you enter
your user name and press ffiTI), the system prompts you to enter your pass
word. When you type the password , the system does not display it; this
preserves the secrecy of your password.

The login sequence looks like t his :

@nJ
Us e rna III e : ~1 ALe 0 L M @nJ
Pa ss l .. .Iord : @nJ

WELCOME TO VA X/VM S VERS ION 3.0
$

The dollar sign is a symbol the system uses as a prompt. When VAX/VM S
displays this character in the left margin, it indicates that the login was
successful and that you can begin entering commands to the system. (

Note that if you type your user name or your password incorrectly , the system
displays an error message . When an error message appears, you must repeat
the login procedure.

1.4 Entering Commands

All commands to the system are words, generally verbs, that describe t he
functions they perform . You can type them in upper or lower case. For
example:

$ 5 h 0 IAI t i III e @nJ

The system responds to this command by displaying the current date and
time, as follows:

17- JUL - 18 82 11 :55:40
$

The commands are part of t he DIGITAL Command Language (DCL), which
has its own vocabulary of keywords and rules of grammar. The vocabulary
consists of commands, parameters, and qualifiers. The grammar consists of
rules for using these keywords .

Command parameters define what the command will act upon , and command
qualifiers further define how that action will occur. For instance , the PRINT
command below requires an object, or parameter, to indicate what is to be
printed :

$ P r i n tIll \' f i 1 e • 1 i 5 @nJ

In this command , MYFILE.LIS is a parameter for the PRINT command,
indicating the name of the file to be printed . A space separates t he command
and its parameter.

1-4 Accessing the System and Typing Com mands

(

Command qualifiers restrict or modify the function the command is to per
form. For example:

$ print/coPies=2 111~'file.lis~

In this command, /COPIES=2 is a qualifier that indicates how many copies of
the file MYFILE.LIS you want printed. A slash character (/) precedes the
qualifier.

The entire command string, including the command and any parameters or
qualifiers it may have , is called the command line. The keywords (com
mands, qualifiers, and parameters) that make up the DIGITAL Command
Language have predefined meanings; therefore, you must use them exactly as
defined, in some cases supplying a value to complete them. For example, the
/C OPIES qualifier for the PRINT command requires a value: you supply the
number of copies you want printed.

The rules of grammar for the DIGITAL Command Language (that is, the
order of the words, the spacing, and the punctuation) are also strictly defined.
The VAX/VMS Co mmand Language User's Gu,ide contains a dictionary of
DCL commands and discusses the rules of grammar.

1.4.1 Command Prompting

When you enter a command at the terminal, you do not need to enter the
entire command on one line. If you enter a command without specifying
required parameters, the system prompts you for the additional data it re
quires, as shown below:

$ printtBru
$_ Fil e: 111~·file.datOOl

In this example, no parameter was entered, so the system prompted for the
name of the file to be printed.

If a command requires two or more parameters, it prompts for each paJ'ame
ter. In response to each prompt, you can enter just the prompted parameter or
all the remaining parameters. For example:

$ COpy~
$ _ Fr o III : f i 1 e 1 • d a t (BIf)
$_ To : file2.dat~

In this example, each file name is entered separately. You could, however,
enter both file names after the first prompt, as shown below:

$ COpy~
$ - F r o III : f i 1 e 1 • d a t f i 1 e 2 • d a t tBDJ

You could also enter the entire command line on one line.

$ copy filel.dat file2.dat~

Accessing the System and T yping Commands 1-5

1.4.2 Abbreviating Commands

When you type commands, qualifiers, or parameters you do not always need
to type the full word. In fact, you never have to type more than the first four
characters, and in many cases you can type only one or two characters. The
rule to follow is: you must type at least the minimum number of characters
necessary to make the command unique.

For example, the SET, SEARCH, and SHOW commands all begin with the
letter "S." To make the SHOW command unique, you must type at least two
characters, SH. To make the SET and SEARCH commands unique, you must
type three characters, SET and SEA respectively.

The examples in this primer show full commands so that you can become
familiar with the commands and what they do.

1.4.3 Recovering from Errors

Some of the keys noted on the keyboard in Figure 1-3 provide editing func
tions that you can use to correct mistakes you make while typing commands.
These keys are:

Backspaces over one character typed on the current line, then deletes the
character. Most video display terminals actually move the cursor (an under
line or block that marks your position) backward and erase the character
when you press (@). Otherwise, the terminal prints a backslash character (\),
then each deleted character, then another backslash before it prints the next
character you enter. On some terminals, the key that performs the delete
function is marked RUBOUT.

Ignores the current line and performs a return so you can reenter the entire
line. Use (CTRL/U) when a line contains a number of mistakes and it would be
tedious to use (@).

Performs a return and displays the current line , leaving the print element or
cursor at the end of the line so you can continue typing input. Use (CTRL/R) when
you have deleted a lot of characters on a line, and cannot read the line easily
because of the backslash characters. For example:

$ pro 1"1 \ 1"1 0 \ i 1"1 t ill IJ \ IJ \ }' (CTRL/R)

$ p [' i 1"1 t if I i'

(CTRL/C) and (CTRL/V)

Cancel an entire command, regardless of how many lines were used to enter it .

\-6 Accessing the System and Typing Commands

You can also use (CTRL/Y) or (CTRL/e) to interrupt the system while it is executing a
command. Such an interruption is useful in cases when you have entered a
command and you want to stop it. Press (CTRL/V) (or (cTRL/e)) and then issue the
STOP command, as shown below:

$ t,' p e 111 y f i 1 e • 1 i s ~

~
$ stoPlBD)
$

In this example, (CTRL/V) interrupted the typing of a long file and the STOP
command terminated the output.

(CTRL/S) and (CTRL/a)

To suspend and resume the upward movement, or scrolling, of the termina l
display , use (CTRL/S) and (cTRL/a) . To temporarily stop the display from scrolling,
press (CTRL/S) ; to continue the scrolling, press (cTRL/a) , (The NO SCROLL key on
VT100 terminals performs the same function.)

1.5 System Responses

The system can respond to your command in several ways. It can execute the
command, indicating successful completion with the dollar sign prompt. It
can execute t he command and inform you in a message of what it has done. It
can, if execution is not successful, inform you of errors you have made. It can
even act for you, supplying values that you have not supplied yourse lf.

1.5.1 Defaults

A default is the value supplied by the operating system when you do not
specify one yourself. For instance, if you do not specify the number of copies
as a qualifier for the PRINT command, the system uses the default value of 1.
By not exp licit ly stating a choice, you imply the default. VAX/VMS supplies
default va lues in several areas, including command qualifiers and parameters.
The defaults used with individual commands are specified with each com
mand 's description in the VAX/VMS Command LangLwge User's Guide.

1.5.2 Information Messages

The system responds to some commands by glvmg you information about
what it has done. For example, when you use the PRINT command, the
system displays the job identification number it assigned to the print job and
shows the print queue t he job has entered.

'$ print 1I1yfile.lis~
Job 210 entere d on 9ueue SYS$PRINT

Accessing the System and Typing Commands 1-7

Not all commands display informational messages; in fact , successful comple
tion of a command is most commonly indicated by a dollar sign prompt for
another command. Unsuccessful completion is always indicated by one or
more error messages.

1.5.3 Error Messages

If you enter a command incorrectly, the system displays an error message and
prompts for a command line as if no command had been entered:

$ capy~

%DCL- W- IVV ERB, u nrecognized command
\ CAPY\

$

The three-part code preceding the text of the message indicates that the
message is from DeL, the command interpreter; that it is a warning (W)
message; and that the mnemonic for this particular message is IVVERB.

You can also receive error messages during command execution if the system
cannot perform the function you have requested . For example, if you type a
PRINT command correctly, but the file that you specify does not exist, the
PRINT command informs you of the error:

$ print nofile.datOOl
%PRINT - W-O PENIN . err o r openi n g DBA1:[MALCOLMJNOFILE.DAT;
as in p u t
- RM S-E- FN Ft file n ot fou n d

The first message is from the PRINT command : it tells you it cannot open the
specified fi le. The second message indicates the reason for the first, that is,
the file cannot be found . "RMS" refers to the VAX/VMS file
handling faci li ty, Record Management Services; error messages related to file
handling are generally VAX-ll RMS messages.

1.6 The HELP Command

When you use the VAX/VMS operating system, you may not a lways have a
reference manual avai lab le at your terminal, and you may want to see the
format of a command before you enter it. The HELP command is designed to
provide you with this information.

For example, to display a list of commands for which HELP is avai lable, type:

$ help~

The system responds by displaying the list of commands and prompting for a
choice of topic.

1-8 Accessing the System and Typing Commands

(

If you want information about a particular command, type that command
after the prompt. For instance, if you want information about t he PRINT
command, type:

Topic? printiRff')

The information displayed includes a synopsis of what t he PRINT command
does, t he parameters it requires, and the qualifiers it can take.

If you want to know more about one of t he PRINT command's qualifiers,
respond to the prompt "PRINT subtopic?" with that qualifier. For example,
to display information about the /COPIES qualifier of the PRINT command,
type :

PRINT s ubt op i c? /copiesiBITJ

If you know the subtopic on which you need help to begin with, you can
simply type :

$ help print/copiesiBITJ

When you have finished using HELP, type (CTRUZ), The dollar sign prompt will
appear in the left margin, indicating that VAX/VMS is ready to receive a
command .

1.7 Logging Out

When you have finished using the computer, use the LOGOUT command to
end the terminal session:

$ loaout~

The system responds:

MALCOLM lo aSed out a t 17 - JUL - 1982 12: 4 3: 10.38

Note that neither shutting off your termina l, nor setting the REMOTE/
LOCAL switch to LOCAL, automatically causes you to log out. To ensure
that you have logged out, you should use the LOGOUT command to end a
termina l session. If you shut a terminal off without logging out properly,
another user may be able to turn the termina l on later and use your account.

1.8 For More Information

The VAX/VMS Command Language User 's Guide is the primary reference
manual for information about the DIGITAL Command Language. The man
ual contains complete descriptions of DCL commands, defines t he grammar
of the DCL command language, and illustrates command usage with many
examples.

Accessing the System and Typing Commands 1-9

(

(

(

Chapter 2
Using an Editor: EDT

2.1 Files

Before you use the VAX/VMS operating system, you need to know how to
identify and create files. This chapter briefly describes file identification and
editing with the EDT editor. If you are familiar with editors, you may want to
skip this chapter and go directly to Chapter 3, Commands to Manipulate
Files.

A file is the basic unit of storage for VAX/VMS. All user information is stored
in files, usually on auxiliary storage media such as magnetic tapes or disks. In
order to retrieve a file from storage or to create and store a new one, you must
be able to identify the file for the system.

VAX/VMS uses a unique file specification to identify each file. A complete
file specification includes the user's network node, the device on which the
file is stored, the directory in which the file is cataloged, and the name, type,
and version of the file. Only the file name, type, and version are discussed
here. For a more complete explanation of file specifications, see Chapter 3.

2.1.1 File Names

By taking advantage of defaults, you can identify a file by specifying only its
file name and file type in the format:

f i:l. enairlf!, typ;?

The file name can have up to nine characters selected from the letters A
through Z and the numbers 0 through 9. When you create files, you can give
them any names that are meaningful to you.

2.1.2 File Types

The file type can be from zero to three characters and must be preceded by a
period. Again, you can choose from the letters A through Z and the numbers 0

2-1

through 9 for the file type. However, t he file type usua lly describes spec ifica lly
the kind of data in the fil e, and the system recognizes severa l defau lt fi le types
used fo r special purposes. (See Sections 3.1. 4 and 4. 1 for tables of default file
types.)

2.1.3 File Versions

In addit ion to a file name and file type, every file a lso has a version number to
distinguish it from other copies of the file. The version number is t he last item
in the fil e spec ification and is connected to the file type by a semicolon (;) or a
period (.). The fo llowing example shows the format for version two of the fil e
MYFILE .DAT:

fTl i' fil e. d at.;2

The system supplies version numbers by default if you do not specify them
yourself. When you create a file , the syste m a lways assigns it a version num-
ber of 1. When you edit the file, its version number is automatica lly increased (
by 1. If you refer to an existing file without specifying a version number, t he
system a lways locates the most recent version (that is, t he fil e with the high-
est version number) .

You can override these defaul t version numbers by exp li cit ly specify ing a
version number:

This PRINT command requests that the third verSIOn of the fil e MY
FILE.DAT be printed.

2.2 Editors

To edit a file you use a program called an ed itor, which has its own set of
commands for modifying files . VAX/VMS supports four editors. (There may
be other editors in addition to these at your installation.) Two, SUM and
SUMSLP, are batch ed itors . To use a batch editor, you submit a list of t he
changes you want made to the file and the ed itor makes the changes as a
batch job.

VAX/VMS also supports the SOS and EDT editors. With both , you conduct
an interactive ed iting session: you give an edit ing command to which the
editor responds . This interaction continues un til you give the fina l command
to store or delete the edits you have made.

To invoke any of these editors type the EDIT command, specifying as a
qualifier t he name of the editor you want to use and , as a parameter, the name
and type of the file you want to edit. For example, to invoke SOS to edit the
fi le MYFILE.DAT type:

$ edit/50S Mi'file.dat

2-2 Using an Ed itor: EDT

(

Because /EDT is t he defau lt qua li fier for t he EDIT com mand, you invoke t he
EDT edi tor when you type :

$ edit Myfile.dat

2.3 Introduction to EDT

The DIGITAL Standard Edi tor, E DT, has a number of advanced fea tures
t hat allow you to ta ilor it to your own needs. Some of t hese features are
ment ioned in Section 2.6; however, most are beyond the scope of t his primer.
For other sources of information about EDT and other edi tors, see Section 2.7.

EDT prov ides two bas ic methods of edi t ing: line and keypad edi t ing. When
you use EDT's line editor, you specify both t he edi t ing command and the
line(s) of text yo u wa nt t he com mand to affect. T he EDT line editor is ava il
able on both hard -copy and video display te rmina ls.

T he EDT key pad edi tor is designed to be used on video termina ls t hat display
t he edi t ing as it takes p lace . When you use EDT's keypad edi tor, you move
the cursor directly to t he text yo u want to change and press eit her one or two
keys to perfo rm most of t he com mands.

If you use a video te rmina l, you can use both keypad and line edi t ing in EDT.
If you use a hard-copy termina l, you should skip Section 2.4 and go to Section
2.5, Line Edi t ing in EDT.

2.4 Keypad Editing in EDT

T he keypad is t he small group of keys to t he right of t he larger keyboard on
your te rmina l. Each key in the keypad performs at least one edi ting function ;
most of t he keys perform two.

As yo u can see in t he fi gure below, t he keypads of the VT100 and the VT52
di ffer slightly, so that t he keys perfo rm ing a partic ul ar com mand are not
a lways the same on both termina ls. T herefore, t he sample edi t ing sessions
t hat fo llow generally refer to t he command (WORD) and its function (moves
t he cursor fo rward or backward in word uni ts), rather t han to t he key itself
(key 1) . To learn which functions t he keys on your keypad perfo rm, refer to
t he d iagrams below or t he EDT Editor Referen ce Card .

11'10"11"' OHl BEJ' EJ' 17 GOI.O HH' nNO UNOl

VT52 VT 100

Figure 2-1: The VT52 and VT100 Keypads

Using an Ed itor: EDT 2-3

2.4.1 The Gold Key

As Figure 2- 1 illustrates, most of the keys perform two editing functions. To
use the alternate, or lower, function of a key, press the GOLD key before you
press the second key. For example, key 1 (on both the VT52 and the VT100)
performs two functions: WORD and CHNGCASE (Change Case) . To enter
the WORD command, press key 1; to enter the CHNGCASE command, press
the GOLD key first and then key l.

In the examples that follow, sma ll diagrams of the VT52 and VT100 keypads
highlight the keys that perform the command being described. The text to the
left of the diagrams displays the effect of the command. For example, the
CHNGCASE command is pictured as:

. 000
DODD
DODD
. 000
DOD

VT52

. 000
DODD
DODD .000
DO

VT100

Note that the GOLD key must be pressed before the second key in order to
invoke that key's alternate function.

2.4.2 The HELP Command

The EDT keypad editor provides a HELP key that displays a diagram of the
keypad and the various key functions:

0 . 00
DODD
DODD
DODD
DOD

VT52

0 . 00
DODD
DODD
DODD DO

VT100

If you want information about a specific key , press the HELP key and then
press the key in question. For example, if you want to know the function of the
WORD command, press the HELP key to find which key performs the WORD
function and then press key 1 for an explanation.

You can continue to get help on specific keys by pressing them. When yo u
want to return to your editing, type a space. EDT resumes the display of your
file, returning the cursor to its previous position.

2.4.3 Creating a File

To create a file with EDT, type the EDIT command, specifying the file's
name as a parameter:

$ e d i t rl) " f i 1 e • d a t ®TIl
Inpu t fi le d o e s not ex i st
[EO B J

*

2-4 Using an Editor: EDT

(

(

The first line that appears is the message "Input fil e does not exist " te lling
you that you have no existing fil e named MYFILE.DAT (s ince you are creat
ing t hat file). T he second line, " [EOB], " denotes the end of the buffer, the
te mporary storage area in which you edit text before it is stored in a fil e. The
third line, the asterisk, is the EDT line edi tor prompt.

To use EDT's keypad edi tor, type "c" (for the CHANGE command) after t he
asterisk prompt and press RETURN . The screen goes blank wi t h only [EOB]
in the upper left hand corner, indicat ing that there is nothing current ly stored
in the buffe r. (In keypad edi t ing, EDT always displays the [EOB] symbol on
the line after the last character in the buffer.)

Using the main keyboard , type the fo llowing text to create a new fil e:

Hey, diddle diddle. (BTIl
the cat played the fiddle. ~
the c 0 IAI j U iTI P e dOl) e r the ITI 0 0 n. ~
This is the fourth line. ru
Use CTRL/Z to change frolTl ~
keypad to line editing.
[EOB J

What you type is not recorded in a fil e unt il you instruct EDT to copy what
you have entered from the te mporary storage of a buffer to a file. You can then
retri eve the file at a later t ime and make changes to it, such as adding and
deleting text.

T o save, or store, your edi ts, enter the EXIT command. First, invoke the line
mode prompt by typing (CTRl/Zl. Then type E XIT after t he asterisk and press
RETURN :

Hey. didd le d i dd le,
t h e cat played the fi d dle,
t h e cow JU MPe d over t h e Moon.
Th is i s t h e fourt h li n e.
Use CTRL/Z to cha n ge f rO M
f, e y pa d t 0 l i n e e d i t in g • tTRL Z

[EOB J

When you enter t he EXIT command , the system saves the contents of the
buffe r in a file named MYFILE.DAT ;l , issues the message below, and returns
you to the DCL command level:

DB2:[MALCOL MJMYFILE.DA T ;1 Gli n es
$

If you do not want to save the edi ts you have just made, type QUIT after the
asterisk prompt . EDT will delete the contents of the buffer wi thout creat ing a
file and return you to the DCL command leve l.

Using an Edi tor: EDT 2-5

2.4.4 Editing a File

You invoke EDT to ed it an existing file t he same way yo u do to create one:
type the EDIT command, specifying t he fi le name as a parameter.

$ edit Myfile.dat
1 Hey, diddle diddle,

*

The first line of t he latest version of t he fil e, as we ll as t he line editor prompt,
will appear on the sc reen. (Note t hat if you type t he wrong file name in the
EDIT command line, you can te rm inate EDT without a ltering t hat fi le by
using the QUIT command.)

Type "C" for the CHANGE com mand to switc h from line to keypad editing:
EDT disp lays t he first 22 lines of your file on your screen. (The EDT keypad
ed itor does not display line numbers.)

Hey, diddle diddle,
the cat played the fiddle,
the cow JUMPed over the Moon.
Thi s is the fourth line.
Use CTRL!Z to chan~e frOM
Keypad to line editin~.

[EDBJ

You can now begin ed iting your file.

2.4.5 Manipulating the Cursor

T he right and left arrow keys move the cursor one character in t he direction of
t he arrow on the key. (When the left arrow is at t he beginning of a line,
however, it moves vertica lly, and when t he right arrow is at t he end of a line of
text or the beginning of a blank line, it a lso moves vertica lly.) The location of
t he arrow keys on your term ina l depends on whether you have a VT52 or a
VT100:

2-6 Using a n Ed itor: EDT

DOD.
DOD.
DOD.
DOD.
DOD

V1'52

•••• DODD
DODD
DODD
DODD DO

VTiOO

(

(

Yo u can a lso move the cursor by larger uni ts of text, such as words, lines,
sections, and pages . For exa mple , give t he WORD command to move the
cursor to t he beginning of t he next word:

Hey, diddle diddle t

the cit playe d the fiddle,
the cow Ju mped over t h e moon.
Thi s is the fourth line.
Use CTRL/Z to chanse from
Keypad to line editins.
[EOBJ

DODD
DODD
DODD
. 000
DOD

V1'52

DODD
DODD
DODD

~BD
VT100

(If your cursor does not move as described , it may be set to move backward
rather than forward. See Section 2.4 .7 to change the cursor 's direction.)

T here are several ways to move through a file by line. To move the cursor to
t he end of the line, give the EOL (End Of Line) com mand:

He y, diddle diddle.
the cat played the fiddle,
the cow Jum ped over the moon.
T h is i s t h e fourth line.
Use CTRL/Z to chanse from
Keypad to line editins.
[EOBJ

DODD
DODD
DODD
0 . 00
DOD

VT52

DODD
DODD
DODD 0.00 DO

VT100

(The BACKSPACE key on t he main keyboard moves the cursor in the oppo
site direction - to t he left margin .) To move up or down a line you can use t he
up and down arrows, or you can use t he LINE command , which moves t he
cursor to the beginning of t he next line:

He,', diddl e diddle.
the cat played the fiddle.
the cow Jumped over the moon.
This is the fourth line.
Use CTRL/Z to chanSe from
Keypa d to line editins.
[EOBJ

2.4.6 Scanning a File

DODD
DODD
DODD
DODD
_ DO

V'I'52

DODD
DODD
DODD
DODD _ 0

VT1 00

In addition to moving the cursor by character, word , and line uni ts, you can
scan several lines of text at a time with the SECT (Section) and PAGE

Usi ng an Editor: EDT 2-7

commands. SECT moves the cursor across a 16- line section of text; PAGE
moves the cursor across a pagel of text.

Another way to move the cursor quickly through a large portion of text is to
move it directly to the beginning or end of the fi le. The BOTTOM command
moves the cursor to the line fo ll owing the last character:

Hey, diddle diddle.
t h e cat p l ayed the fiddl e,
t h e cow JUMPed over the Moon.
Th is i s t h e fourth line .
Use CTRL/Z to chan~e froM
Keypa d to line editin~.

[ED5 J

. 000
DODD
. 000
DODD
DOD

VT52

The TOP command moves it to the first character:

Hey, d iddle di d dle.
t h e cat played t h e fiddle.
the co w JUMPed over the Moon.
This is the fourth line.
Use CTR L/Z to chan~e froM
Keypad to line editin~.

[ED5J

2.4.7 Changing the Cursor's Direction

. 000
DODD
0 . 00
DODD
DOD

VT52

. 000
DODD
. 000
DODD DO

VT1 00

. 000
DODD
0 . 00
DODD DO

VT100

Many commands (includ ing the CHAR, WORD, LINE, EOL, SECT, and
PAGE commands) move the cursor forward or backward unit by unit , de
pending upon whether you last set t he direction of t he cursor with t he AD
VANCE or BACKUP command. Each of these commands contro ls t he cur
sor's direction until you set the cursor in the opposite direction with the other
command.

To illustrate: give the BACKUP command to set the cursor in the backward
direction . (The cursor does not move when you set its direction.)

Hey, d i ddl e d id dle.
t h e cat playe d the f iddle.
t h e cow J UMPed over the Moon.
Th is is t h e fourth line.
Use CTRL/Z to chan~e froM
Keypad to line editin~.

[ED5J

DODD
DODD
0 . 00
DODD
DOD

VT52

DODD
DODD
0 . 00
DODD DO

VT1 00

1. By defau lt a PAGE is defined as t he text between form feed cha ra cters (AS CII charac ters
that determine t he start of each line printer page).

2-8 Using an Editor: EDT

(

(

Now move the cursor one word (backward) with the WORD command :

Hey, diddle diddle I

t h e cat played the fiddle I

t h e co w J UMPed ouer the Moon .
T h is i s t h e fourth line.
Use CTRL /Z to chanSe froM
Keypad to l ine editinS.
[EOBJ

BacKup past top of b uffer

0000
0000
0000
1 000
DOD

VT52

0000
0000
0000
1 000 DO

VT100

You should hear a bell (or buzzer) and see a message indi cating t hat t he
command requests EDT to backup past t he top of the buffer. Now reset t he
cursor 's direction with the ADVANCE command. (Again , t he cursor does not
move .)

He}' I diddl e d iddle I

t h e cat played the fiddle,
t h e cow JUMPed over the Moon.
This is the fourth line.
Use CTRL/Z to chanSe froM
Keypad to line editinS.
[EOBJ

0000
0000
1 000
0000
DOD

VT~2

0000
0000
1000
0000 DO

VT100

Move t he cu rsor forward one word with t he WORD com mand:

Hey, didd le diddl e I

the cat played t h e fiddle I

the cow JU MP ed over t h e Moon.
Thi s is the fourth line.
Use CTRL/Z to c han Se froM
Keypad to lin e e ditin S.
[EOBJ

0000
0000
0000
1 000
DOD

VT52

0000
0000
0000
1 000 DO

VT100

T his t ime t he cursor moves forward to t he beginning of the next word. The
cursor will remain set in this direc t ion until you give t he BACKUP command;
you can change the cursor's direction whenever it is conven ient.

2.4.8 Deleting and Restoring Text

T he delete commands work in uni ts similar to t hose that manipulate t he
cu rsor: t here are commands to delete by character, by word , and by line. The
deleted text is stored in a buffer so that you can restore it with an undelete
command.

Using an Editor: EDT 2-9

The delete and undelete commands work in the same way: you can delete by
character (DEL C), word (DEL W), or line (DEL L); and you can restore that
character (UND C), word (UND W) , or line (UND L). For example , enter the
DEL L (Delete Line) command:

He y t the cat played t h e fiddle.
the c~w JUMPed over the Moon.
Thi s is the fourth line.
Use CTRL /Z to change froM
Keypad to line editing.
[EDB]

00- 0
DODD
DODD
DODD
DOD

VT52

DOD
DODD
DODD
DODD DO

VT100

The deleted line disappears and is replaced on the screen by the line following
it. Now give the UND L (Undelete Line) command to restore the line:

Hey t diddle diddle I

the cat played the fiddle I

the cow JUMPed over the Moon.
Thi s is the fourt h line.
Use CTRL/Z to change froM
Keypad to line editing.
[EDB]

- DO
DODD
DODD
DODD DO

VT1 00

The line reappears. The UND C (Undelete Character) and UND W (Undelete
Word) commands work in exactly the same way, allowing you to restore the
last character or word you deleted.

Note that the undelete commands restore only the corresponding units of text
that were most recently deleted. If you have deleted two lines of text with the
DEL L (Delete Line) command, for example, the UND L (Undelete Line)
command will restore only one line - the line most recently deleted.

2.4.9 Locating Text

In addition to scanning text, you can move the cursor to a specific location in
the file with the FIND and FNDNXT commands. The FIND command
sea rches for a particular character string between the current position of the
cursor and the beginning or end of the buffer, depending on whether the
ADVANCE or BACKUP command is in control. The FIND command is espe
cially useful with long files that would be tedious to scan with other com
mands.

For example, if you want to edit a particular string of text, specify that string
and EDT will search for it. If EDT finds the string, the cursor will move to the
beginning of the string . If EDT cannot find the string, the bell will ring and
the message "String was not found" will appear on the screen .

2-10 Using an Editor: EDT

Assume you want to locate the word MOON. You could instruct EDT to
search for the string by first giving the FIND command to invoke t he Search
for: prompt.

Hey I diddle didd le,
the ca t p l aye d the fiddle I

the co w JUMPed over t h e Moon.
Thi s is the fourth line.
Use CTRL !Z to chanSe froM
Keypa d to line editins.
[EOBJ

Search f or:

. 000
0 . 00
DODD
DODD
DOD

VT52 VT100

Type MOON in response to the prompt and then press ADVA CE (since you
want EDT to search in the forward direction).

Hey I diddle diddle I

t h e cat playe d the fiddle,
th e co w JU MPe d over the Moon.
Thi s is t h e fourth line.
Use CTRL !Z to c h anSe froM
Keypa d to line editins.
[EOBJ

Search fo r: MOON

DODD
DODD
. 000
DODD
DOD

DODD
DODD
. 000
DODD DO

VT100

When EDT finds t he string, it positions the cursor at the first character in t he
string . (In a long fil e the message "Working" may nash on t he sc reen while
EDT searches for t he string.)

To find the next occurrence of the same string, give t he FNDNXT (Find
Next) command. If t here is no other occurrence of t he string (as in t his
instance), EDT will issue the message "String was not found."

Note t hat t he directional setting of the cursor determines t he outcome of the
search. You can use either ADVANCE or BACKUP to enter the search string,
depending on t he direction in wh ich you want t he cursor to search. (You can
a lso use the E TER command, which app lies the current direction to the
search.)

2.4.10 Moving Text

Moving text from one place to another in a file is ca lled "cutting and pasting"
in EDT: you cut out the text you want to move and paste it in t he place where
you want it. The first step in this operation is to select t he range of text you
want to move .

Using an Editor: EDT 2- 11

For example, to move the first line of text to the end of the file, move the
cursor to the beginning of line one and press SELECT. This marks the begin
ning of the select range.

Hey, diddl e, diddl e,
the cat playe d the fiddl e,
the cow JUMPed over the Mo on.
Thi s is the fourth lin e.
Use CTRL/Z to change f rom
Keypa d to lin e e di ti n g.
[EOBJ

DDDD
DDDD
DDDD
DDDD
D . D

VT52

DDDD
DDDD
DDDD
DDDO D .

VT100

To mark the end of the select range , move the cursor to the end of line one. All
text between the select point and the cursor will be affected by the CUT
command. (A VT100 highlights the select range with reverse video.) Now
press CUT:

the played t h e f i d dIe,
DDDD DDDD

cat DDDD DDDD the c o "" j UIII P e d o '.! e r t h e iIi 00 n +

Thi s is the fourt h 1 in e • DDDD DD. D
Use CTRLI Z to change f [. 0 III DD. D DDDO f, e y pad to line e di ti n g, DDD DD
[EOBJ VT52 VT100

(

The select range (in this case, line one) disappears from the screen. EDT holds
the text you delete with the CUT command in the PASTE buffer. To restore
it, move the cursor to the location where you want to place the text and enter
the PASTE command. For this example, move the cursor to the end of the (
file. Now enter the PASTE command:

th e ca t playe d the fiddle,
the co w J UMP ed over t h e Moon.
This i s the fourth lin e.
Use CTRL /Z to change froM
Keypad t o l i n e editing,
Hey t diddl e diddl e,
[EOBJ

. DDD
DDDD
DDDD
DD. D
DDD

VT52

. DDD
DDDD
DD. D
DDDO DD

VT100

You can continue to use the PASTE command wherever you wish, since the
text remains in the paste buffer until it is replaced by another CUT operation.
The CUT and PASTE commands are especially useful in moving large pieces
of text from one place to another in a file .

Select ranges are also used with other commands, such as the APPEND,
FILL, and SUBSTITUTE commands. If you make a mistake during the pro
cess of marking the select range (or any keypad command requiring a
sequence of keys), use the RESET command to cancel the first part of the
command and start over.

2-12 Using an Editor: EDT

(

(

,
\

2.4.11 Entering Line Commands in Keypad Mode

Occasionally, you may want to use line editing commands without actually
changing from keypad to line mode. You can do so with the COMMAND
function .

For example, to give the SET QUIET line command (which suppresses the
ringing of the bell or buzzer when an EDT error occurs), first invoke the
Command: prompt. Then type the command after the prompt .

t h e cat played t h e fiddle I

t h e cow JUMPed over the Moon.
This is t h e fourth line.
Use CTRL/Z to c h anSe frOM
keypa d to li n e editins.
Hey, diddle d iddle t

[EOBJ

COMM a nd : SE T QUIET

• 000
. 000
DODD
DODD
DOD

VT52

. 000

. 000
DODD
DODD DO

VT100

Use ENTER to submit the command . (If you press RETURN by mistake , AM
wi ll appear. Delete the A M and press ENTER.)

the cat p l aye d the f iddl e,
the cow JUMPed over the Moon.
Thi s is the fo u rt h line.
Use CTRL/Z to chanse froM
k eypad to lin e e di ti n S.
Hey t diddle diddle t

[EOBJ

DODD
DODD
DODD
DODD
DO.

VT52

DODD
DODD
DODD
0001 DO

VT100

You can also enter the EXIT and QUIT commands with the COMMAND
function.

2.4.12 Changing From Keypad to Line Editing

If at some point during keypad editing you want to change to line editing,
type (CTRL/Zl. The line-editing prompt, an asterisk, will appear at the bottom of
the screen , indicating that EDT is ready to receive line-editing commands.

2.4.13 Subset of EDT Keypad-Editing Commands

Table 2-1 presents some of the most frequently used keypad commands and
the main function of each. For a complete list of EDT keypad commands, see
the EDT Editor MOnLwl .

Using an Editor: EDT 2- 13

Table 2-1: Subset of EDT Keypad-Editing Commands

Command

ADVANCE

BACKUP

BOTTOM

CHNGCASE

CUT

DELC

DEL EOL

DELL

DELW

EOL

FIND

FNDNXT

HELP

LINE

PAGE

PASTE

RESET

SECT

SUBS

TOP

UND C

UNDL

UNDW

WORD

~TRL!W

(CTRL/Z)

Function

Sets cursor movement in forward direction

Sets cursor movement in backward direction

Moves the cursor to the bottom of the buffer

Changes the case of specified characters

Deletes specified text from the main buffer and stores it in the paste buffer

Deletes the character at the cursor

Deletes text from the cursor to the end of the current line

Deletes text from the cursor through the end of the current line, moving
the following line up to the cursor

Deletes text up to the first character of the next word

Moves the cursor to the end of the current line

Locates specified text

Locates the next occurrence of specified text

Invokes EDT's keypad help facility

Moves the cursor to the beginning of the next line

Moves the cursor across one page of text

Inserts the contents of the paste buffer at the cursor's position

Cancels GOLD, SELECT, or any key sequence

Moves the cursor across 16 lines of text

Deletes specified text and inserts the contents of paste buffer

Moves the cursor to the top of the current buffer

Restores the character deleted by the last DEL C

Restores the line deleted by the last DEL L

Restores the word deleted by the last DEL W

Moves the cursor one word

Restores the video display

Changes from keypad editing to line editing

2.5 Line Editing in EDT

In line editing, you do not move the cursor directly to the character or word
you want to edit. Instead, you type the command and specify the line or range
of lines you want the command to affect. (Although most of the line-editing
commands can be abbreviated, this chapter presents the full commands so
that you will recognize their functions.)

2-14 Using an Editor: EDT

(

(

(
\

(
\

(

(

2.5.1 The HELP Command

The EDT line ed itor has a HELP command, which works much like the DeL
command HELP. If you need help with EDT line commands, type HELP
after the asterisk prompt, and EDT will display all the line-editing commands
availab le. To get help with a particular command, type HELP and the name
of the command (for example, HELP TYPE); EDT wi ll display information
about that command.

2.5.2 Creating a File

To create a file with EDT's line editor, give the EDIT command, specifying
the fi le's name as a parameter:

$ edit yourfile.dat
In p u t fil e d oes n ot exist
[EOB J

*

The first line is the message "Input file does not exist," indicating t hat you
have no fi le in your default directory with the name YOURFILE.DAT (since
you are creating that file) . The second line, " [EOB)," denotes the end of t he
buffer, t he temporary storage area in which you edit text before storing it in a
fi le. The third line, the asterisk , is the prompt for EDT's line editor.

To insert text in your file, type INSERT after the prompt and press RE
TURN: the cursor moves forward several spaces . EDT inserts what you type
after this command as text unti l you signal completion with (CTRL/Zl.

Type t he following lines from the main keyboard, using t he DELETE key and
(CTRL/U) , which deletes text between the cursor and t he left margin if you make a
mistake. (You cannot return to a preceding line to make an addition or correc
tion once you have pressed RETURN , unless you give additional commands.)

* INSERT~
He }', diddle diddle,~
the cat pla y ed the fiddle,~
the c 0 IAI j U (11 P e dOl) e r the (11 0 0 n • ~TRL z)

[EOBJ

*

Terminate the insertion of text by typing (CTRL/Z) . EDT displays the [EOB] sign
and asterisk prompt, indicating it is ready to receive another line-editing
command.

When you use EDT, what you type is not recorded in a file unt il you instruct
the editor to copy your text from the temporary storage of a buffer to a file ,
which you can later retrieve for ed it ing. When you enter the EXIT command,
EDT saves the contents of t he buffer in a file named YOURFILE.DAT; l ,

Using an Editor: EDT 2-15

issues the message below, and returns you to the DCL command level (signi
fied by the dollar sign prompt). Type EXIT after the asterisk prompt:

* E>(IT (BIT
DB2:[MALCOLMJYOURFILE.DAT;1 3 lines
$

If you do not want to save your edits, type QUIT after the prompt. EDT will
delete the contents of the buffer without creating a file and return you to the
DCL command level.

2.5.3 Editing a File

You enter and exit EDT to edit an existing file the same way you do to create
one. To invoke EDT, give the EDIT command and specify the fi le name as a
parameter. The first line of the latest version of the fi le, as well as the line
editor prompt will appeal'.

$ edit yourfile.dat
Hey I diddle diddle,

*

Note that if you type the wrong file name in the EDIT command line , you can
terminate EDT without altering that file by using the QUIT command.

2.5.4 Specifying Ranges

EDT initially assigns line numbers in increments of one to each line in the
buffer. You can use these numbers to spec ify the line 01' range of lines you
want the command to act upon. EDT also recognizes certain words in range
specifications; you can combine these words with line numbers in a range
specification. For example, if you want to delete the first two lines in the file,
you could type: "DELETE 1 THRU 2" 01' "DELETE BEGIN: 2."

Table 2-2 lists a small subset of range specifications possible in line editing to
help you begin using the line editor. Once you have begun , you can use the
line editor's HELP facility and the EDT Editor Manual for complete instruc- (
tions on specifying ranges.

Table 2-2: Subset of EDT Line-Editing Range Specifications

Specifica tion

n THRU n

n:n

BEGIN

EI D

BEFORE

REST

'vVHOLE

2-IG Using an Ed itor: EDT

Description

The current line

Line number n through line number n

Line number n through line number n

The first line of the buffer

The empty line after the last line of the buffer

All the lines before the current line

The lines including and after the current line

All the lines in the buffer

(

In addition to using range spec ifications, you can press (BIT) to move forward
one line:

Hey i didd l e did d le i

2 t h e cat played t h e f iddle I

3 t h e co w JU MPed o v er t h e Moon .

2.5.5 Inserting and Deleting Text

The INSERT and DELETE commands take similar parameters. When you
specify a range , EDT inserts the text before the first line of the specified
range. (If you do not specify a range, EDT inserts the text immediately before
the current line .) For example, to add text to the end of the buffer, you could
specify line four or END to indicate the end of the buffer:

* INSERT END RET

[EOB]

*

Thi s is the fourth lin ef ' ~T

Typp rHANGE to ~ wit c h~T

fro iTI lIn e t. D f: e }' P Cl d p oj 1 t 1 I Ii f CTRL ~

Terminate the insertion of text with (CTRLiz l. EDT assigns line numbers to the
new text and issues an asterisk prompt, indicating that it is ready to receive
another editing command.

The DELETE command works in much the same way, deleting those lines of
text specified in the range. If you do not specify a range, t he current line is
deleted by default. (There is no line-editing command equivalent to the
UNDELETE keypad commands.)

2.5.6 Locating Text

To display the entire contents of the buffer, use the TYPE command and
specify WHOLE as the parameter:

* TYPE l"jHOLE~'

1 He y I diddle diddle I

2 t h e cat played t h e fiddl e ,
3 t h e co w J UM Ped o v er the Moon.
a Thi s is t h e f ourth line.
S Type CHANGE to s witch
G f ro M l in e to Keypad editin~.

[E OB]

*

If you want to locate a text string in a long file without displaying the entire
buffer contents, you can use quotation marks . For example, to find the first
occurrence of the word FOURTH, type:

* "folJrth"(8ET
4 Thi s is t h e f o urt h line.

*

Using an Editor: EDT 2-17

EDT moves the cursor to the line containing the first occurrence of the string.
If you want to display all occurrences of the string, use the TYPE ALL com
mand, followed by the string in quotation marks.

2.5.7 Substituting Text

To replace one character string in the current line with another, use the
SUBSTITUTE command . To replace every occurrence of one string with
another throughout the file , use WHOLE as the parameter.

For example, to replace all occurrences of the string THE with the string A,
type SUBSTITUTE, the old string, and the new string , separating all three
with delimiters , such as slashes. (You must use the same delimiter through
out the command line.) Then specify WHOLE as the parameter :

*SUBST IT I UTE I the I a / WHOLEID
2
3
LI

a cat playe d a fiddle
a c ow J UMP e d o v er a Moon.
Thi s i s a f ourt h l ine.

5 s ub st itu tio n s

*

EDT displays the total number of substitutions made and issues the asterisk
prompt.

2.5.8 Copying and Moving Text

The MOVE command in line editing is similar to the CUT and PASTE
commands in keypad editing: the MOVE command deletes text in one loca
tion and inserts it in another. The COPY command, in contrast, duplicates a
range of text in another location, without a ltering the origina l text.

For example, with the COPY command you can duplicate the entire file: first
type the command, then the range of lines to be copied, and finally the range
of lines to which you want to copy the text.

* COPY 1:6 TO END
6 lin es copi e d

*

Lines 1 through 6 are duplicated in lines 7 through 12. (You can display the
change with TYPE WHOLE.)

When you have finished editing your file and are ready to store your changes,
enter the EXIT command (as described in Section 2.5.2) .

2.5.9 Changing from Line to Keypad Editing

If at some point you want to change from line editing to keypad editing, give
the CHANGE command by typing "c" after the asterisk prompt. The screen
wi ll display without line numbers the first 22 lines of the file, and you can
begin keypad editing immediately.

2-18 Using an Editor: EDT

(

(

(

(

(

\.

2.5.10 Subset of EDT Line-Editing Commands

Table 2-3 presents some of the more frequently used EDT line-editing com
mands and the main function of each. For a complete list of commands, see
the EDT Editor Manual.

Table 2-3: Subset of EDT Line-Editing Commands

Command Function

CHANGE Changes from line editing to keypad editing

COpy Duplicates text in specified location

DELETE Deletes specified range of lines

EXIT Ends an editing session by storing the buffer contents in a file
\

FIND Locates specified line

HELP Invokes EDT's line editing help facility

INCLUDE Copies specified file into text buffer

INSERT Inserts text in the buffer

MOVE Deletes text in one location and inserts it in another

QUIT Ends an editing session by deleting the contents of the buffer

RESEQUENCE

SUBSTITUTE

TYPE

WRITE

Assigns new line numbers in increments of one

Replaces one character string with another

Displays a specified range of lines

Copies a specified range from the buffer to the specified file

2.6 Special Features of EDT

EDT offers several special features, a few of which are mentioned here. For
more information about these and other features of EDT, see the EDT Editor
Manual.

2.6.1 Multiple Buffers

When you edit a file with EDT, you are working on a copy of the file in a
buffer called MAIN. There are other buffers in addition to this main buffer.
One buffer, called/PASTE, is maintained by EDT for its own use, but the
others are available for you to use as separate workspaces.

These additional buffers are useful in working with multiple pieces of text.
You can move part or all of a buffer into another buffer or several other
buffers. You can also copy a file into one of these buffers. To create a buffer for
additional workspace, you first name it, after which you can enter and exit
that buffer at any time.

2.6.2 Journal Files

When you edit a file with EDT, EDT keeps a journal file of all your edits. This
file has the same file name as the file you are working on and the file type of

Using an Editor: EDT 2-19

JOU. Should a, system failure or inadvertent (CTRL/Y) end your editing session,
the journal file has a record of all your edits, with the possible exception of
those made just prior to the interruption.

To recover your lost edits, you use the same EDIT command and the exact
qualifiers you used to begin the original editing session - plus the /RE
COVER qualifier. For instance, if you began a session with the command
EDIT YOURFILE.DAT, you would type EDIT/RECOVER YOURFILE.DAT
to recover your edits using the journal file. EDT will then reenact the editing
session, reading the commands from the journal file and executing them on
the screen.

If no interruption occurs, EDT deletes the journal file when you exit from the
editing session.

2.6.3 SET and SHOW Commands

The SET commands let you control certain characteristics of EDT's operation
by setting certain parameters. Among the characteristics that you can set are:
the length of line displayed on the screen (SET SCREEN width), the default
delimiters for textual units, such as words and sentences (SET ENTITY), and
the display of line numbers during line editing (SET[NO]NUMBERS). The
SHOW commands display most of the characteristics you can set with the
SET command.

2.6.4 Start-up Command Files

You can create an EDT start-up command file to specify the default charac
teristics for editing sessions. EDT looks for a start-up command file when you
begin an editing session; if you have one, it reads the commands and applies
the specifications to the current editing session. For example, if you place the
command SET MODE CHANGE in your start-up command file, you will
begin editing in keypad mode whenever you enter EDT.

2.6.5 Defining Keys

You can redefine the functions of the keys in the keypad and several of the
CONTROL and keyboard keys with the line command DEFINE KEY or the
keypad command (CTRL/K). You can redefine keys for the current editing session,
or you can put the new key definitions in your start-up command file.

2.6.6 Defining Macros

You can group several line-editing commands together and use them as one
unit, or macro. To do so, give the DEFINE MACRO command and enter the
commands in the proper sequence. Later, EDT will execute that series of
commands whenever you type the name of the buffer containing the macro.
You can define a macro for the current editing session only, or you can put it
in your start-up command file.

2-20 Using an Editor: EDT

(

(

(

(

(

(

(

(

(

2.7 For More Information

There are several sources of information about EDT. Both the line and keypad
HELP facilities provide a quick reference for EDT commands. EDTCAI, the
computer-aided course on EDT, is especially good for users unfamiliar with
text editors. The EDT Editor Reference Card provides a summary of EDT's
keypad editing features, and the EDT Editor Manual contains an extensive
description of how to use EDT, including a complete list of EDT commands,
their parameters, and qualifiers.

For information about SOS, see the VAX-ll SOS Text Editing Reference
Manual; for information about batch editors SUM and SUMSLP, see the
VAX-ll Utilities Reference Manual.

Using an Editor: EDT 2-21

(

(

(

(

(

Chapter 3
Commands to Manipulate Files

The previous chapter described how to create and edit files using the EDT
editor. This chapter explains how to use DCL commands to manipulate files:
how to identify,create, delete, and purge files; how to create and list direc
tories; and how to copy and rename files.

3.1 Identifying Files

A complete file specification contains all the information the system needs to
locate and identify a file. A complete file specification has the format:

node::device:[directory]filename,type;version

The punctuation marks (colons, brackets, period, semicolon) are required
syntax that separate the various components of the file specification.

3.1.1 Nodes

When computer systems are linked together to form a network, each system in
the network is called a node, and is identified within the network by a unique
node name. Your system mayor may not be part of a larger network. To find
out, type SHOW NETWORK. If your system is part of a network, you
will see a list of node names displayed on your screen. (The node labeled
"LOCAL" is your own system's node name.) If your system is not a part of a
network, a message indicating that no network is available will appear.

If your system is a network node, you may be able to gain access to a file
located at another node on the network by adding a node specification to the
first part of the file specification. (This specification will allow you access to
the file only if the user owning the file has permitted other users access to it.)
If you do not specify a node, the system assumes by default that the file
belongs to your own, or local, node. See the DECnet-VAX documentation for
an explanation of gaining access to files across a network.

3-1

3.1.2 Devices

The second part of a file specification, the device name, identifies the physical
device on which a fi le is stored . A device name has three parts:

• The device type, which identifies the hardware device (For example, an
RP06 disk is DB and a TE16 magnetic tape is MT.)

• A controller designator, which identifies the hardware contro ller to which
the device is attached

• T he unit number, which uniquely identifies a device on a particular con
troller

Some examples of device names are:

Name

DBA2

MTAO

TTB3

Device

RP06 disk on controller A, unit 2

TE16 magnetic tape on controller A, unit 0

Terminal on controller B, unit 3

If you omit a device name from a file specification, the system supplies the
default value; that is, it assumes the fi le is on the disk assigned you when the
syste m manager set up your account. This disk is your default disk.

3.1.3 Directories and Subdirectories

Since a disk can contain fi les belonging to many different users, each user of a
given disk has a directory that catalogs all the files belonging to him on that
device.

As with the default disk , if you do not specify another directory , or if you do
not specify any directory , the system applies the default; it assumes t hat the
files to which you refer are cata loged in your default directory. You can find
out what your current default disk and directory are by issuing a SHOW
DEFAULT command:

DBA2: [~'1ALCOU1 J

This response from the SHOW DEFAULT command indicates that the user's
default device is DBA2 and the default directory is [MALCOLM].

You can gain access to fi les in other directories (including directories that
cata log files belonging to other users) by specifying the directory name in a
file specification. For example, to display on your terminal the contents of a
file named CONTENTS .DAT belonging to a user whose directory is [JONES],
issue the TYPE command as shown below:

$ t,'pe [jonesJcontents.datffiIT)

3-2 Commands to Manipulate Fi les

(

Note that the file specification does not include a device name. For this
command to execute successfully, the directory [JONES] must be on your
default disk device. This is because the system always applies a default when
you omit a device name. If user JONES's directory is on the disk DBB2 you
would issue the TYPE command as:

$ type dbb2:[.jones]contents.dat(8D'

In both of these examples, it is assumed that the user Jones has given other
users access to files in the directory. You can explicitly allow or restrict access
to your own files , either generally or on a file-by-file basis, with the SET
PROTECTION command. See the VAX/VMS Command Language User's
Guide for information about directory and file protection and for a description
of the SET PROTECTION command .

Fi les can a lso be cataloged in subdirectories. A subdirectory is a file (cata
loged in a higher directory) that contains additional files. A subdirectory
name is formed by concatenating its name to the name of the directory that
lists it. For example :

$ t y p e [j 0 n e 5 • d a t a f i 1 e 5] ITI e ITI 0 • 5 U ITi tBD'

This TYPE command requests a display of the file MEMO.SUM that is
cataloged in the subdirectory [JONES.DATAFILES]. The subdirectory fil e
name is DATAFILES.DIR, and is cataloged in the directory [JONES].

Subdirectories are described in more detail in Section 3.8.

3.1.4 File Names, Types, and Versions

By taking advantage of your default node, disk, and directory, you can iden
tify a file uniquely by specifying only its file name and file type in the format:

f i 1 e n a ITI e • t y p e

The fi le name can have from one to nine characters chosen from the letters A
through Z and the numbers 0 through 9. When you create files , you can give
them any names that are meaningful to you.

The file type can be from zero to three characters, and must be preceded by a
period; again, you can choose any of the letters A through Z or the numbers 0
through 9 for the fi le type. However, the file type usually describes more
specifically the kind of data in the file, and the system recognizes several
default file types used for special purposes. For example, each high-level
language has a default file type for source programs. (See Section 4.1 for a
table of these file types.)

Commands to Manipulate Files 3-3

Among the other default file types are:

File
Type

DAT

EDT

EXE

JOU

LIS

MAl

OBJ

Use

Data file

Start-up command file for EDT editor

Executable program image file

Journal file used by the EDT editor

Output listing file

Mail message file

Object module file output from a compiler or assembler

In addition to a file name and type, every file has a version number that the
system assigns to a file when the file is created or revised. When you initially
create a file, the system assigns it a version number of 1. Subsequently , when
you edit a file or create additional versions of it, the version number is auto- (
matically increased by one.

You rarely need to specify the version number with a file specification. The
system assumes defaul t values for version numbers, as it does with devices,
directories, and file types . Version number defaults are determined as follows:

1. For an input file, the system uses the highest existing version number of
the file.

2. For an output file , t he syste m adds 1 to t he highest ex isting version (
number.

When you specify a version number in a file specification, you can precede the
version number with either a semicolon (;) or a period (.).

3.1.5 Wild Card Characters

A wild card character is a symbol that you can use with many DeL com-
mands to apply the command to several files at once, rather than specifying (
each file individually. Two wild card characters, t he asterisk (*) and the
percent sign (%) can be used in specifications of a directory, file name, and
file type. The asterisk can also be used to specify version numbers.

For example, you can spec ify all versions of a file by using an asterisk in place
of t he version number in the file specifi cation. If, for example, you want to
print all versions of the file TESTFILE.DAT without specifying each version
number separately, type:

$ print testfile,dat;*

3-4 Commands to Manipulate Files

(

(

If there were no wild card character in the above example, the PRINT com
mand by default would apply only to the most recent version of the file
TESTFILE.DAT. The following command prints all versions of all files in the
current directory with the file type of DAT:

$ print *.dati*

To print all versions of all files in the directory with the file name of TEST,
type:

$ print test.*i*

The percent sign allows you to specify all files containing any single character
in the position that the percent sign occupies in the file specification. For
example, to print the latest version of several files with a file type of TXT and
a file name that begins with CHAP but ends in a series of different numbers,
as in CHAP1.TXT, CHAP2.TXT, and CHAP3.TXT, type:

$ print chap%.txt

Note that in this example the percent sign specifies only one character. There
fore, the print command above would not affect a file named CHAP .TXT or
CHAPIX.TXT.

3.2 Creating Files

Chapter 2 explains how to create a file by using the EDIT command to invoke
an editor. You can also use the CREATE command to make a new file.
Specify the file name as a parameter. You can insert text immediately, termi
nating the insertion with (CTRL/Zl.

$ create Myfile.dat
T his i 5 the 0 n 1 y 1 in e. tTRL z.

Unlike the EDIT command, the CREATE command does not modify an
existing file.

3.3 Deleting Files

Quite often, as you develop and revise programs you end up with many ver
sions. Since these files take up space on your disk, you may want to delete
versions of files that you no longer need.

The DELETE command deletes specific files. When you use the DELETE
command, you must spec ify a file name, file type, and version number (hav
ing to specify a version number provides some protection against accidental

Commands to Manipulate Files 3-5

deletion). However, any of these file components can be specified as a wild
card character. You can also enter more than one file specification on a com
mand line separating the file specifications with commas. Some examples of
the DELETE command are:

Command Result

Deletes the file named AVERAGE.OBJ;1

Deletes all files with file types of LIS
(thus, this command deletes all versions of
all program listings)

$ del e tea, d at; 1 I a , d at; 2 Deletes the first two versions of the same
data file

3.4 Purging Files

You may want to clean up your directory by getting rid of all early versions of
particular files. If you have many versions of a file, naming them all in the
DELETE command would be tedious.

The PURGE command allows you to delete all but the most recent version of
a file; therefore, no version number is required by the PURGE command. For
example:

This command deletes all files named AVERAGE.FOR except the file with
the highest version number.

The /KEEP qualifier of the PURGE command allows you to specify that you
want to keep more than one version of a file. For example:

This command deletes all but the two most recent versIOns of the file
TEST.DAT.

3.5 Displaying Files at Your Terminal

The TYPE command displays a file at your terminal. For example:

$ type test,datffiIT)

Thi s is th e f i rst li n e of
a fi le c r eate d wit h
t he EDT e di tor.

While a file is being displayed, you can interrupt the output by using any of
the following CTRL key combinations:

(CTRL/S) suspends the terminal display of the file and the processing of the
command. To resume display, press (CTRL/O) . The interrupted command dis
plays lines beginning at the point at which processing was interrupted.

3-6 Commands to Manipulate Files

(

\

(

(

(CTRL/C) or (CTRL/V) interrupts command processing. The system then prompts you
to enter another command.

3.6 Printing Files

When you use the PRINT command to obtain a printed copy of a file, the
system cannot always print the file immediately, since there may be only one
or two line printers for all users to share. The system enters the name of the
file you want to print in a queue, and prints the file at the first opportunity.

A printed file is preceded by a header page describing the file so you can
identify your own listing. For example, if you issue the following command,
the header page will show your user name and the file name, type , and version
number of the file .

$ p r i n t d b "/ [! 0 I I 0 J, " e r " i ell 'RET
Job 210 entere d on 9ue ue SYS$PR I NT

When you use the PRINT command, the system responds with a message
indicating the job number it assigned to the print job.

The PRINT command also has qualifiers that allow you to control the number
of copies of the file to print, the type of forms to print the file on, and so on.
More information on these qualifiers can be found in the VAX/VMS Com
mand Language User's Guide.

3.7 Listing Files in a Directory

The DIRECTORY command lists the names of files in a particular directory.
If you type the DIRECTORY command with no parameters or qualifiers, the
command displays the files listed in your default directory on the terminal.
For example:

$ 1 r p ~ t [0 r ' lilT

DIRE CTORY DBA2: [M ALCOLMJO

AVERAGE,EX E ;2 AVERAGE,EXE;1 AVERAGE,FOR;2 AVERAGE,FOR;1
AVERAGE, OBJ ;2 AVER AGE,OB J ;1 6

To t a l o f G f il es, ~

The following notes are keyed to this sample output of the DIRECTORY
command:

o The disk and directory name.

@ The file names, file types, and version numbers of each file in the direc-
tory.

6) The total number of files in the directory.

When you give the DIRECTORY command, you can provide one or more file
specifications to obtain a listing about only particular files. For example, to

Commands to Manipulate Files 3-7

find out how many versions of the file A VERAGE.FOR currently exist, issue
the DIRECTORY command as follows:

$ d 1 r e c tor Y a '.I era S e • for (RET)

DIRE CTORY DBA1 : [CRAM E RJ

A!)ERAGE . FOR ; 2 A!) E RAGE • FOR; 1

T o t a l of 2 f il es.

3.8 Creating Subdirectories

Normally, the system manager provides each system user with one directory
in which to maintain files. If you are a frequent user of the system and work on
several applications, you may find it convenient to create severa l subdirecto
ries, cataloging them in your main directory. You can create subdirectories in
any directory in which you can create files.

The CREATE/DIRECTORY command creates a subdirectory. For example: (

$ create/directorY [lllalcollll.testfilesJl!ID"

This command creates the subdirectory file TESTFILES.DIR in the directory
[MALCOLM]. You can specify the subdirectory name, [MALCOLM.TEST
FILES), in commands or programs.

3.9 Changing Your Default Directory

To establish another directory or subdirectory as your default directory, use
the SET DEFAULT command . For instance, you could create a new file in
the subdirectory [MALCOLM.TESTFILES) by changing your default direc
tory and then creating the fi le with the EDIT command:

$ set d e f a u I t [III a I col III • t E' 5 t f i I e s J @)
$ edit ne'Alfilp.t.xtlADl
In p u t f i l e does n ot exist
[EOB J

*

The new file will be cata loged In the subdirectory
[MALCOLM.TESTFILES]. (You could also do this by specifying the sub
directory as part of the file specification when you use the EDIT command.)

You can also use the SET DEFAULT command to change your default disk.
For example:

$ set d e f a u ltd to to 2 : (RET'

3-8 Comma nds to Manipu late Files

(

(

(

(

After you issue this command, t he system uses the disk DBB2 as the default
disk for all files that you access or create.

You can change your default disk and directory as often as is convenient. The
changes you make with the SET DEFAULT command remain in effect until
you either issue another SET DEFAULT command or log out.

3.10 Copying Files

T he COPY command makes copies of fi les. You can use it to make copies of
files in your defaul t directory , to copy files from one directory to another
directory, to copy fi les from other devices, or to create files consisting of more
than one input fi le .

When you issue the COPY command, you specify first t he name(s) of the
input fi le(s) you want to copy, t hen t he name of the output fi le. For example,
t he fo llowing COpy command copies the contents of the file PA YROLL.TST
to a fi le named PAYROLL.OLD .

$ GOP}' P a }' r 0 1 1 • t 5 t P a }' r 0 1 1 • 0 1 oj (j1ET)

If a file named PAYROLL. OLD exists, a new version of t hat file is created
with a higher version number.

You could copy a fi le from the directory [MALCOLM] to the subdirectory
[MALCOLM .TESTFILES], and give it t he new name , OLDFILE.DAT.

$ COP}' n e 1.,1 f i 1 e • oj a t [f11 ale 0 1 f11 • t est f lIe 5] 0 1 oj f i 1 e • oj a t (RET

When you copy fi les from devices other than your default disk, you must
specify t he device name in t he COPY command. For example, the following
COPY command copies a file from your default directory onto an RK06 disk.

$ cOP}' P a }' r 0 1 1 • t 5 t oj f11 a 1 : 00)

Note that the output fi le specification did not include a file name or file type;
the COPY command uses the same directory, file name, and file type as t he
inpu t file, by default.

Before you can copy any fi les to or from devices other than system disks, you
must gain access to these devices . You do this by:

• Mounting the volume, with the MOUNT command.

• Ensuring that t he volume has a directory for cata loging the file . If no direc-
tory exists, use the CREATE command to create one .

Note t hat the VAX/VMS operating system protects access to volumes tha t
individuals maintain for private purposes, as we ll as access to system vol
umes . For details on the commands and procedures necessary to prepare and
use disks and tapes , see the VAX/VMS Co mmand Language User 's Guide .

Commands to Manipu late Fi les 3-9

3.11 Renaming Files

The RENAME command changes the identification of one or more files. For
example, the following command changes the name of the most recent version
of the file PAYROLL.DAT to TEST.OLD.

$ renailie pa~.'roll.dat test.old(BIT'

You can use the RENAME command to move a file from one directory to
another. For example, the following command moves test.old from the direc
tory [MALCOLM] to the subdirectory [MALCOLM.TESTFILES]:

$ rename [malcolm]test.old [malcolm.testfiles]

You can use wild 'card characters if you want to change a number of files that
have either a common file name or file type. For example:

$ r e n a ill epa y r 0 1 1 , * ; * [iii a 1 C' 0 I iIi • t est f i] e s] * . * ; * 'RET)

This RENAME command changes the directory name for all versions of all
files that have file names of PAYROLL. The files are now cataloged in the
subdirectory [MALCOLM.TESTFILES].

3.12 For More Information

The VAX/VMS Command Language User's Guide describes in more detail
the commands presented here. Part II of that manual lists all the commands
in alphabetical order and includes descriptions of parameters and qualifiers,
as well as giving additional examples of each command.

Remember, too, that while you are using the terminal, you can use the HELP
command to receive on-the-spot assistance if you cannot remember a parame
ter or qualifier. Or, you can let the system prompt you for command parame
ters, if you cannot remember the order in which you have to enter them.

See the DECnet- VAX documentation for further explanation of networks and
node specifications.

3-\0 Commands to Manipulate Files

(

/
(
\

(

Chapter 4
Program Development

Four steps are required to develop a program:

• Creating the source program file

• Compiling or assembling the source program file to produce an object
module file

• Linking the object module file to produce an image

• Executing and debugging the program

4.1 Creating the Program

In order to run your program, you must first create a file of the program source
statements. The default file type corresponds to the language in which the
program is written. For instance, if your program is written in VAX-ll
BASIC, its file type default is BAS. The following are default file types for
source program files written in V AX-ll languages:

File
Type

BAS

B32

C

COB

COB

COR

FOR

MAR

PAS

PLI

Contents

Input source file for the V AX-ll BASIC compiler

Input source file for the V AX-ll BLISS-32 compiler

Input source file for the VAX-ll C compiler

Input source file for the V AX-ll COBOL compiler

Input source file for the VAX-ll COBOL-74 compiler

Input source file for the V AX-ll CORAL-66 compiler

Input source file for the V AX-ll FORTRAN compiler

Input source file for the VAX-ll MACRO assembler

Input source file for the VAX-ll PASCAL compiler

Input source file for the V AX-ll PL/I compiler

4-1

4.2 Compiling or Assembling the Program

To prepare your source program for execut ion by t he computer, a language
processor must t ranslate it in to a fo rmat that t he computer can read . That is,
your program must be either assembled or compiled, depending upon whether
it is written in assembly language or in one of t he high-level languages sup
ported by VAX/VMS.

Both compilers and assemblers are programs that translate source programs
into binary machine code t hat can be interpreted by the compu ter. An as
sembly language is usually designed for a specific computer, and it genera lly
assembles line fo r line into machine code . Most high-level languages, on t he
other hand , are designed to be universal, and usually compile one line of
source code into several lines of machine code. If your sou rce program is
written in assembly language (in t his case, VAX- 11 MACRO), you invoke the
VAX- 11 MACRO assembler to translate it. If it is written in a high-level
language (such as BASIC, C, COBOL, FORTRAN, PASCAL, or PL/l), you
invoke t he appropriate VAX- 11 language compilers to compi le t he program.

There is a DCL command to invoke each language processor:

Command Invokes

BASIC VAX- 11 BASIC compiler

BLISS VAX- 11 BLISS- 32 compiler

CC V AX - 11 C com pileI'

COBOL VAX- 11 COBOL compiler

COBOL/C74 VAX- 11 COBOL- 74 compiler

CORAL VAX- 11 CORAL-66 compiler

FORTRAN VAX- 11 FORTRAN compiler

MACRO VAX- 11 MACRO assembler

PASCAL VAX-11 PASCAL compiler

PLI VAX- 11 PLII compiler

Each of these commands invokes a compiler (or assembler) to t ranslate the
source program named in the file t hat fo llows the command. Although each
command differs slight ly in its parameters and qualifiers, t he command for
mat is essentia lly the same:

$ basic fTII'file

This command invokes t he BASIC compiler to translate t he file MYFILE into
machine code, writing it to an output file called an object module. Since no
file type is specified, t he compiler assumes t he default fi le type of BAS.

4-2 Program Development

(

(

(

4.3 Linking the Object Module

An object module is not, in itse lf, executable ; generally , it contains references
to other programs or routines that must be combined with the object module
before it can be executed . It is t he function of the linker to do the combining.

The LINK command invokes the VAX-ll Linker. The linker searches system
libraries to resolve references to routines or symbols that are not defined
within the object modules it is linking. You can request the linker to include
more than one object module as input, or specify your own libraries of object
modules for it to search. The format of the LINK command is :

$ 1 i n f; Ill}' f lIe

Since no file type is specified , the linker supplies a default file type of OBJ for
object modules.

The linker creates an image, which is a file containing your program in an
executable format.

4.4 Executing the Program

The RUN command executes an image, that is, it places the image created by
the linker into memory so that it can run. The format of the RUN command
IS :

$ run Ill y file

Since no file type is specified, the RUN command uses the default file type of
EXE for executable images .

The first time you run a program , it may not execute properly; if it has a bug,
or programming error, you may be able to determine the cause of the error by
examining the output from the program. When you have determined the
cause of the error, you can correct your source program and repeat the com
pile, link, and run steps to test the result. Figure 4-1 illustrates these steps in
program development.

The remaining sections of this chapter illustrate the steps of program develop
ment with two sa mple programs: a MACRO example for assembly language
users and a FORTRAN example for high-level language users. These sections
describe the input and output files used in each step and the naming conven
tions for the files. They also present optional command qualifiers you can use
to create additional output files, including program listings. If you have access
to a terminal, you can create the programs and issue the commands that are
described.

At the end of the chapter, Section 4.7 lists additional documentation with
further information about the tools VAX/VMS provides, for program develop
ment. For information about a particular V AX-ll language, see the docu
ment set for that language.

Program Deve lopment 4-3

Use the editor to create
a disk file containing your
source program statements.
Specify the name of this file
when you invoke the compiler
or assembler.

Commands invoke language
processors that check syntax,
create object modules, and
if requested, generate
program listings.

If a processor signals any
errors, use the editor to
correct the source program.

The linker searches the system
libraries to resolve references
in the object module and create
an executable image. Optionally,
you can specify private libraries
to search, and request the linker
to create a storage map of
your program.

The linker issues diagnostic
messages if, an object module
refers to subroutines or symbols
that are not available or
undefined. If the linker cannot
locate a subroutine, you must
reissue the LINK command
specifying the modules or
libraries to include. If a
symbol is undefined, you may
need to correct the source program.

The RUN command executes a
program image. While your
program is running, the system
may detect errors and issue
messages. To determine if your
program is error-free, check
its output.

If there is a bug in your
program, determine the cause
of the error and correct the
source program.

Source
pro!lram

Compiler
or

Assembler

no

Link the
object module

no

Run the
executable

image

no

SUCCESS

yes

----,

yes

yes

Figure 4-1: Steps in Program Development

4-4 Program Development

Correct the
source program

ZK-763-82

(

(

(

(

(

(
4.5 A FORTRAN Program

The steps required to prepare a VAX- ll FORTRAN I program to run on
VAX/ VMS are illustrated in Figure 4-2. Figure 4-2 a lso notes the default file
types used by the FORTRAN, LINK, and RUN commands . For any of these
commands, you can specify an explicit file type to override the defaults when
you name an input or output file.

COMMANDS INPUT/OUTPUT FILES

$ EDIT/EDT AVERAGE. FOR
Use the fil e type of FOR to

indicate the file contains a

VAX-" FORTRAN
program.

'---_c_re_a_te_a_-----' --------i .. ~ L J AVE RAGE. FOR
_ source program ~

$ FORTRAN AVERAGE
The FORTRAN command

assumes the fil e type of an

input fil e is FOR .

(I f you use the ILiST
qualifier, the compiler

creates a listing fi le.)

$ LINK AVERAGE
The LINK command assumes
the fil e type of an input fil e

is OB).

(If you use the IMAP qualifier,
the lin ker creates a map file.)

$ RUN AVERAGE
The RUN command assumes

the fil e type of an image is
EXE.

Compil e the

source program

'-----------'

Lin k the
object module

Run the

executabl e
image

~
~
"" ------ : AVERAGE .OBJ

(AVERAGE . LIS)

librari es

AVERAGE.EXE
(AVERAGE.MAP)

ZK-764-B2

Figure 4-2: Commands for FORTRAN Program Development

4.5.1 Creating the Source Program

Use the editor (described in Chapter 2) to create a source program interac
tively. For example, to create the FORTRAN program ca lled AVERAGE,
issue the EDIT command as follows:

$ e oj i t. d I.' e r- i1 ·i e + for- IRET

I n put. file does not. exist.
[EOBJ

*

l. The VAX- ll FORTRAN compiler is referred to simply as FORTRAN throughout this
manual.

Program Development 4-5

The asterisk prompt indicates that EDT is ready to accept a line-editing
command.

The program AVERAGE is shown below. When you type the inpu t state
ments, you can use the @ID key to align the statement and comments col
umns. Tabs are set at every eight character positions. The EDT line editor
assigns line numbers to help you locate text; the line numbers are not part of
the file, however. (To display the line numbers, give the TYPE WHOLE
command after the asterisk prompt.)

2
3
a
5
6
7
8
8

10
11
12
1 3
la
15
16
1 7
18
18
20
21
,.,,.,
23
2a
25
26
27
28
28

C
C

5

10

20

C
C

ao

50

PRO G R A t1 A 1,1 ERA G E

CO MPUTE S THE AVER AG E OF NUMBERS ENTERED AT TERMINAL
TO TERMIN ATE THE PROGRAM, ENTE R 8889

TOTAL
N = 0

o

N = N + 1
~lRITE (6tlO)

I INITIALIZE ACCUMULATOR
I INITIALIZE COUNTER

I PROMPT TO ENTER NUMBER

FORMAT (. ENTER NUMBER, END WITH 8 8 9 9 ')
READ (5,20) K

FoR~1AT 11 0
IF (K ,EQ, 8889) GoTo ao
TOTAL = TOTAL + K
GoTo 5

I READ NUMBER FROM TERMINAL

I 998 8 MEANS NO MORE INPUT
I COMPUTE TOT AL WITH NUMBER

NOW, COMPUTE AV ERA GE BY DIVIDING TOTAL BY THE NUMBER. OF
TIMES THROUGH THE LOOP

AVERAG = ToTAL / N
WRITE (6,50) A',IERAG I DI S PLA Y THE RE SULT

FORMAT (. A',IERAGE IS • ,F l (1, 2)

STOP
END

The program AVERAGE reads and writes lines to the current input and
output devices; it prompts the user to enter numbers and then computes the
average of the numbers entered. This program purpose ly has a syntax error
and a bug, so you can get an idea of how to use V AX/VMS to correct program
mll1g errors.

4.5.2 The FORTRAN Command

When you enter the FORTRAN command from the termina l, the FORTRAN
compiler, by default:

• Produces an object module that has the same file name as the source file
and a file type of OBJ

• Uses FORTRAN compiler defau lts when it creates the output files (quali
fiers on the FORTRAN command can override these defaults)

To compile the source program AVERAGE, issue the command:

$ TDrt.r~!n (1 r .1 <i e RET

4-6 Program Development

Since the FORTRAN command assumes a file type of FOR, you need not
specify t he file type when you name the file to be compiled.

If the compilation is successful - that is, if t he compiler did not detect any
errors - t he system displays a prompt for the next command:

$

If t here are any errors, t he FORTRAN compiler displays information on t he
terminal. If you entered the source program AVERAGE exactly as it appeared
above, then you received the message:

IFOR T- F - ERROR 33, Missin5 operator or delimiter symbol
[FORMAT IJ in mo du le AVERAGE at line 8

IFORT-F - ENDN005J, D52:[MALCOLMJAVERAGE .FOR;1,
co mpleted wit h 1 dia5no stic-
object d elete d

T his message indicates t hat t he FORMAT statement was incorrectly coded;
you must put paren theses around the format specification.

To correct the error, edi t t he source file. First, invoke EDT:

$ edit a'.lera5e.for!RET
Pro 5 r arn AI)ERAGE

*

Now, use edi tor commands to correct the error, as shown below:

* replace 15
line d e le te d

20 FORt1AT (I10)tTRLZ,

*

The REPLACE command deletes the line specified and inserts the line or
lines you type. If you had more than one error in your source file, correct t hese
errors, too.

When you are satisfied with the changes, use the EXIT command to write the
updated file onto disk:

* exitfRET'
DBA2 : [MAL CO LM JAVERAGE.FOR;2 28 lines
$

Notice that EDT has created a new version of the file AVERAGE.FOR.

Now you can recompile the program:

$ fortran a\.!erag'e~

The FORTRAN command always uses, by defaul t, the version of the file with
the highest version number . If t he program compiles successfully t his t ime,
you can go on to the next step . Otherwise, repeat the procedure of correcting
the source file and compiling it.

P rogram Develop ment 4-7

When you compile a source program , use the /LIST qualifier on the FOR
TRAN command to request the compiler to create a program listing. For
example:

$ f I] r t ran / 1 i 5 t a ' .. era 8 e fRET

The FORTRAN compiler creates , in addition to an object module , a file
named AVERAGE.LIS. To obtain a printed copy of the program, use the
PRINT command as shown below:

$ p r i n t a ,.) era 8 P (RET '

The PRINT command uses the default file type of LIS .

4.5.3 Linking the Object Module

To link the program AVERAGE, issue the LINK command as follows:

$ 1 i n fZ a '-' era EI e @

This LINK command creates a file named AVERAGE.EXE, which is an
executable program image. The linker automatically includes in the execut
able image any library routines that the compiler requested for input/output
handling, error routines, and so on .

4.5.4 Running the Program

To execute the program AVERAGE, use the RUN command. When you issue
the RUN command, you provide the name of an executable image. By de
fault, the RUN command assumes a file type of EXE. Thus, to run the
program AVERAGE, type the RUN command as follows:

A VERAGE is interactive: it prompts you to continue entering numbers and it
keeps a cumulative sum of the numbers you enter. When you enter 9999 , it
computes the average of all the numbers you entered. A typical run of this
program might appear as follows:

EtHER NUt'1BER , END l"J I TH 9:39tJ
33 (Rff)

EtH ER NUt'1BER ; END l·j I TH 999 ::)
G G (RET)

EtHER t···jUt'1 BER; Etm lH TH 9999
99 (RET)

ENTER NUt'1BER i END l"J I TH 9::)99
9999iAff
AI) ERAGE IS 49,50
FORTRAN STOP
$

4-8 Program Development

(

(

(

(

As you can see , the program is not computing the average correctly. By look
ing at the program listing , you can see that the error occurs because the loop
counter (N) is incremented a final time when you enter 9999 to terminate
entering numbers. The value N must be decremented by 1.

To correct the error, edit the source file again:

ProEira lli At.leraEle
* S,lbstitute\TOTHL N\Total (r'j 1)\ :;''lRET

23 40
AVERAG = T OTAL/IN-1)
1 Substitution
* F xi t (REf'
DBA2:[MALCOL MJ AVERAGE .F OR ;3 29 lin es
$

The SUBSTITUTE command deletes the first string, TOTAL/ N, and inserts
the second, TOTAL/(N-l), in the line specified. The EXIT command writes a
new version of the file onto disk.

Now, repeat the compile , link, and run steps:

$ fortran a " era EI e ;iiET

$ lin fz a'.IeraEle(RET)
$ rlln .] " e r 1 8 e fRET

EN T ER NU r'1BER I END ~,j I T H 9999
3 '3 'REi'

ENTER NUr'1BER, END ~HTH 99~J9

GGRH'
ENTER NUr'1BER; END ~,n TH ::J999
99 AfT)

ENTER NW'1BER , END ~,j ITH 9999
9999(iiH'
AVERAGE IS GG .OO
FORTRM~ STOP
$

In this example , the bug was easy to spot; this is not usually the case , how
ever, and you may need to investigate a program further to debug it.

4.5.5 Debugging the Program

The VAX/ VM S operating system has a debugger, a program that permits you
to debug your programs interactively. When you want to use the debugger,
you have to compile the source program with the /DEBUG and /NOOPTIM
IZE qualifiers, as follows:

$ for t ran / d e to 1.1. EI /.,., 0 [I P t 1 ITi 1 Z e a" p l' ;0 " p RET

These qualifiers make the later use of the debugger program possible with this
FORTRAN program. When the compilation completes, use the /DEBUG
qualifier when you link the object module:

$ 1 i n fz / deb 11!'i a '.! era .'Of e RET

Program Development 4-9

Now, when you use the RUN command to execute the program image AVER
AGE.EXE, the debugger takes control, and you can use debugging commands
to stop the execution of the program at a particular statement and examine or (
modify a variable.

For information on how to use the debugger, see the VAX-ll FORTRAN
User's Guide.

4.6 A MACRO Program

The steps required to prepare a VAX-ll MACR01program to run under
VAXNMS are illustrated in Figure 4-3. Figure 4-3 also notes the default file
types used by the MACRO, LINK, and RUN commands. For any of these
commands, you can specify an explicit file type to override the default when
you name an input or output file.

COMMANDS

$ EDIT IEDT NAME. MAR
Use the file type of MAR to
indicate the source file
contains a VAX-" MACRO
program.

$ MACRO NAME
The MACRO command
assumes the file type of an
input file is MAR.

If you use the ILIST
qualifier, the assembler
creates a listing file.

$ LINK NAME
The LINK command assumes
the file type of an input file
isOBJ.

If you use the IMAP qualifier,
the lin ker creates a map file.

$ RUN NAME
The RUN command assumes
the file type of an image is
EXE.

Create the
source program

Assemble the
source program

INPUT/OUTPUT FILES

~ ~ NAME.MAR --------~~~ ~

:::; libraries

~
.......

~
:::: -

i'-

NAME.OBJ
(NAME. LIS)

libraries
........ §.

-----/-Link the § NAME.EXE
. object module • ~ (NAME.MAP)

Run the
executable

image

::::-
~

ZK-765-82

Figure 4-3: Commands for MACRO Program Development

1. The VAX-ll MACRO assembler is referred to simply as MACRO throughout this manual.

4-10 Program Development

(

(

(

(

(

(

(

4.6.1 Creating the Source Program

Use the editor (described in Chapter 2) to create a source program interac
tively . For example, to create the MACRO program called NAME, issue the
EDIT command as follows:

$ e d 1 t n ,1 ill iii 1 r IRET

I n p u t file does not exist
[EOBJ
* I 1'1 e r t [RET)

EDT is now ready to accept inpu t lines .

The program NAME is shown below. When you type the input statements ,
you can use the (!AID key to align the operand and comments columns . Tabs are
set at every eight character posit ions . The EDT line editor assigns line num
bers to help you locate text; the line numbers are not part of the file , however.
(To see the line numbers, give the TYPE WHOLE command after the asterisk
prompt.)

The program uses VAX- ll RM S to read and write lines to the current termi
nal; it issues a prompting message asking for the user 's name and redisplays
whatever is entered in response. This program purposely has a syntax error
and a bug, so you get an idea of how to use V AX/VMS to correct programming
errors .

2
3
1I

. TI TLE NAME

. IDEN T lOll

.PSECT RWDATA,WRT,NoEXE

5 DEFINE CONTROL BLOCKS FOR TERMINAL INPUT AND OUTPUT
6
7
8
9

10
II
12
13
III
15
16
17
18
19
20
21

23
2ll
25
26
27
28
29
30
31
32
33

TRMFAB: $FAB

TRMRAB : $RAB

BUFFER : .BLKB
BUFSIZ= . -B UFFER

P~lSC I : . ASC I I
P I SIZ= .-PMSC I

oUT MSC: . ASCI I
oUTBUF : . BLKB
oUTLEN: . LoNC
l'lSCS I Z: . BLKL

. PSECT

.ENTRY

$oPEN
BLBC
$CoNNECT
BLBC

$CET
BLBC

FNM=SYS$ I NPUT,RAT=CR,FAC= (CET,PUT > ; FAB FOR TER MIN AL

FAB=TRMFAB,UBF=B UFFER,USZ=BUFSIZ, -
RoP=PMT, PBF=PMSCI, PSZ=PISIZ

132 INPUT READ BUFFER
BUFFER LENCTH

I ENTER YOUR NAME: PROI'lPT l'lESSACE
l'lESSACE SIZE

IHELLo, YOUR NAI'lE lS I OUTPUT l'lESSACE
30 1'10 I.' E NAI'lE HERE
oUTBUF -oUH1SC
I ADO LENCTHS HERE

NAI'lE ,U(E ,No~JRT
BECIN,O ENTRY l'lASK

FAB=TRMFAB OPEN TERI'l I NAL FILE
RO,ERRoR U (I T IF ERROR
RAB=TR MRAB ESTABLISH RAB
RO,ERRoR E}{ I T IF ERROR

RAB = TRI1RAB ISSUE PR0I1PT
RO , ERRoR E}{ I T IF ERROR

311 MOVE NAME ENTERED INTO OUTPUT MESSACE, AND FI X UP LENCTH
35
36
37
38
39

~101.'C3

1'10 I.' Z ~l L
ADoL

TRMRAB+RAB$W_RSZ,BUFFER,oUTBUF
TRMRAB+RAB$W_RSZ,MSCSIZ
l'lSCSIZ ,oUTLEN

Progra m Developm ent 4- 11

~o AFTER CONS TR UC TING OUTPUT ME SSAG E , OUTPUT IT
~ 1
~ 2

~3

~~

~5

~G

t10'.JAL
~lO'.'1.J

$PUT

OUTMSG,TRMRAB+RAB$L_RBF; UPDATE RAB: ADDRESS
MSGS IZ,TRMR AB+RAB$W_RSZ ; UPDATE RAB : SIZE
RAB=TRM RAB

BLBC RO,ERRO R E:-~ IT IF ERROR

~7

~8

ALL DONE, CLOSE THE FILE

~8

50
51 ERROR :
52
53
5~

$CLOSE FAB=T RM FAB

RET
.ENO BEG I N

4.6.2 The MACRO Command

When you enter the MACRO command, the MACRO assembler, by default :

1. Produces an object module that has the same file name as the source file
and a file type of OBJ

2. Uses MACRO assembler defaults when it creates output files (qualifiers (
on the command line can override these defaults)

3. Searches the system macro library for definitions for system macros, such
as the VAX-ll RMS macros $FAB and $RAB used in the sample program
NAME.MAR

To assemble the source program NAME, issue the command:

$ iIi a c r 0] / 1 i .~ t n a ili e (RET

Since the MACRO command assumes a file type of MAR, you need not
specify the file type when you name the file to be assembled. The ILIST
qualifier indicates that you want a listing of the program ; if there are any
errors in the assembly, you may need the listing to determine what the errors
are.

If the assembly is successful- that is, if the assembler did not detect any
errors - the system displays a prompt for the next command:

$

If errors occur, a message is displayed at the terminal. If you entered the
source program NAME exactly as it appeared above, then you received an
error message:

%MACRO -E- UNT ERMARG, Unterminat ed arSument
The r e 1",1 ere 1 err 0 r 7 0 I.~.I a r n i n Sf 5 ~ and 0 i n f I] r iii a tiD n iii e s ;:. a .:3 e S I] n
lines:
15 (1)

This message indicates that the ASCII string argument coded on line 15 is
incorrect; you must terminate the string with a slash (I) character .

4-12 Program Development

(

(

(

To correct t he error, ed it t he source fi le . First, invoke EDT:

$ e d i t n a iTI e • ill a rAET

, TITLE tjAt'1E

*"

Now, use edi tor commands to locate t he line and correct t he error, as shown
below:

* REPLACE 15
1 line deleted

Pt·1SG1:.ASCTI/FNTER YClIJR NM1E :/ iPRm'1PT t'1EC;C;?lGF CTAlZ

*'

T he REPLACE com mand deletes the line (15) that was in error, and inserts
t he line or lines you type in its place . If you had more than one error in your
source fi le, correct t hese errors, too .

When you are satisfied with the changes, use t he ex it command to wri te the
updated fi le onto disk:

* exit'RIT
DBAZ :[MALCOLMJNAME.MAP; Z 54 lines

Notice t hat EDT has created a new version of the fi le NAME.MAR.

ow, you can reasse mble the progra m:

$ iTI a c r 0 / 1 i s t n a iTI e m\

If t he program assembles successfully this t ime, you can go on to the next
step . Otherwise, repeat the procedure of looking at the listing, correcting the
source fi le, and assembling it .

4.6.3 Linking the Object Module

To link the progra m NAME, issue the LINK command as fo llows :

$ 1 i n f, n a iTI e !FIT'

T his LINK co mmand creates a file named NAME.EXE, which is an execut
ab le program image . T he linker auto matically includes in the executa ble
image any library procedu res requ ired by the VAX- ll RMS rout ines used .

4.6.4 Runn ing the Program

To execute the program NAME, use the RUN command. When you issue the
RUN command , you provide t he name of an executab le image. By defaul t,

P rogram Development 4-1 3

the RUN command assumes a file type of EXE. Thus, to run the program
NAME, type the RUN command as follows :

$ r It n n a III e rRET

NAME is interactive: it prompts you to enter your name, then it creates an
output string from the string you entered and outputs it. A typical run of this
program might appeal' as follows:

E NTER YOUR N AME: YOR I [;1\ 'RET

HELLO,
$

As you can see, the program is writing only the first 6 characters of the output
message. If you examine the listing, you can see that on line 43 t he MOVW
instruction places the wrong length in the buffer size fie ld of the RAB; it uses
the MSGSIZ fie ld (that is, the length of the string you entered) rather than
the sum of the string you entered and the OUTMSG string. (

To correct the errol', edit the source fi le again:

$ E' d i t n ,)ill e • ill :l r RET

.Title Nallle
* Repl'lce 4")

1 line deleted
t'l 0 1.1[·1 DUn EN, TR t'1R rIB fj,'AB't;l.l I;'L~7 i IJPP{\ TF

RAB· S I ZEfiRL Z

LjLj

* E>' I T
$PU T RAB = TRtWAB

DBA2:[MALCOLMJNAME.MARi3 54 lines
$

Now, repeat the assembling, linking, and running:

$ III a c ron a III e rjjET)
$ 1 i n f, n a III e 'Rff)

$ run n allle m
ENTER YOUR NM1E: " np I I~k '8ET
HE LLO, YOUR NAME IS YORICK
$

In this example, t he bug was easy to spot; t his is not always the case, however,
and you may need to investigate a program further to debug it.

4.6.5 Debugging the Program

The VAX/VMS operating system has a debugger, a program that permits you
to debug your programs interactively. When you want to use the debugger,
you can assemble the source program with the /ENABLE=DEBUG qualifier,
as follows:

$ III a c r 0 / e n a to 1 e = d e to u EI n a III e (BET

4-14 Program Development

(

(

(

This qualifier requests the assembler to include, in the object module , special
information t he debugger can use . When you link the object module you must
specify the /DEBUG qua lifier to link the debugger program with your pro
gram . For example:

$ linfUdebus' narTletBTIl

Now when you use t he RUN command to execute t he program image
NAME.EXE, the debugger takes control, and you can use debugging com
mands to stop the execution of the program at a particular instruction and
exa mine or modify a variab le.

For information on how to use the debugger, see the VAX - 11 Symbolic
Debugger Reference Manual.

4.7 For More Information

The two program examples presented in t his chapter show only t he simplest
cases, using defaults for getting a program to run. VAX/VMS provides many
capabilities beyond those presented in t hese examples. Some of the
VAX/VMS manuals you may find useful are described below.

• The VAX/VMS Command Language User 's GLlide contains reference infor
mation for all the commands that have been used in the examples in this
chapter.

• T he VAX- 11 Linher Reference Manual describes how to use the linker and
describes the options availab le to you when you link a program.

• The VAX-11 MACRO Language Reference Manua l describes the features
and syntax of the VAX-l1 MACRO language .

• The VAX- II MA CRO User's Guide provides details on how to use the
VAX- l1 MACRO assembler.

• The VAX- 11 Symbolic Debugger Reference Manual describes the features
of the VAX- l1 Symbolic Debugger.

• The VAX/ VMS System Services Reference Manu,al presents additional pro
gramming capabilities through the VAX/VMS system servi ces ,

• The IntrodLlction to VAX - 11 Record Managem ent Services describes t he
fi le formats used in VAX/VMS, and the VAX-11 Record Managem ent Ser
vices Reference Manua l describes the macros that can be used to create,
read , and update files, The VAX - 11 Record Managem ent Services Uti lities
Reference Manual describes the VAX-l1 RMS utilities that can be used to
design, create, load, and analyze fil es . The VAX-11 Record Managem ent
Services Tu,ning Guide describes the concepts behind designing efficient
fi les and provides tutoria l explanations of the ut ili ties,

• The VAX- l1 Com mon Run-Time Procedure Library conta ins procedures
that do such tasks as : perform common mathematical functions, manipu
late character string data for input and output routines, and convert data

Program Development 4- 15

from one type to another (e.g., changing a numeric ASCII string to a binary
value or a floating-point number to scientific notation). The VAX-ll Run-
Time Library Reference Manual contains descriptions of all general purpose (
procedures in the Run-Time Library.

• The VAX-ll Guide to Creating Modular Library Procedures describes
methods for designing and coding procedures for insertion in an object mod
ule library or a shareable image.

Each of the VAX-ll languages is documented in a separate set of manuals
that generally includes a language reference manual and a user's guide for
that particular language. For further information about a high-level language,
see the document set for that language.

Separate documentation exists- for the following VAX-ll languages:

VAX-ll BASIC
VAX-ll BLISS
VAX-ll C
VAX-ll COBOL
VAX-UCORAL
VAX-ll FORTRAN
VAX-ll PASCAL
VAX-ll PL/I

See the VAX-II Information Directory and Index for a list of the individual
manuals in the document sets for the VAX-ll languages.

4-16 Program Development

(

(

(

(

(
\

(

(

(

(

Chapter 5
Logical Names: Files for Program Input/Output

When you design programs to read and write data, you can code the programs
to read or write different files each time you run them. This is called device
and file independence.

In the VAX/VMS operating system, device independence is accomplished
through the use of logical names. When y~u code a program, you refer to an
input or output file according to the syntax requirements of the language you
are using. After the program is compiled a~d linked, but before you run it, you
can make the connection between the logical names you used in the program
and the actual files or devices you want to use when you run the program.

The ASSIGN command makes this connection: it establishes the correspond
ence between a logical name (that is, the name you use in the program) and
an equivalence name (that is, the actual file or device to use).

Figure 5-1 shows how logical names are used. The program FICA contains
OPEN, READ, and WRITE statements in a general form; the program reads
from a file referred to by the logical name INFILE, and writes to a file referred
to by the logical name OUTFILE.

For different runs of the program, the ASSIGN command establishes different
equivalence names for INFILE and OUTFILE. In the first example, the pro
gram reads the file JANUARY.DAT from the device DBA1 and writes to the
file JANUARY.OUT on .. the same disk device. In the second example, it reads
the file FEBRUARYDAT from the device DBA2 and writes the file FEBRU
ARY.OUT to that device.

5-1

Terminal Display Disk I nput/Output Files

$ SHOW DEFAULT
DBA 1: [WELLADA Y]

$ ASSIGN JANUARY.DAT IN FILE-------
$ ASSIGN JANUARY.OUT OUTFILE-------.~
$ RUN FICA

The program, FICA. EXE contains 1/0
statements to open , read, and write
files referred to by the logical names
IN FILE and OUTFILE:

•
OPEN 'INFI LE', 'OUTFI LE '

READ IN FILE
WRITE OUTFILE

$ ASSIGN DBA2:FEBRUARY.DAT IN FILE t----

$ ASSIGN DBA2:FEBRUARY.OUT OUTFILE------1.~

$ RUN FICA

Figure 5-1 : Using Logical Names

5.1 Logical Names in Commands

DBA1

DBA2

ZK-766-82

The use of logical names is not restricted to application programs. Commands
that read or write files, such as COPY and TYPE, also accept logical names
for a file specification. For example:

$ ass i 9 n [c h IJ C f,] per son n e 1 • r e C III ~.' f i 1 e ~
$ type fTl"fileillIT!

The ASSIGN command equates the logical name MYFILE to the file
PERSONNEL.REC listed in the directory CHUCK. The TYPE command
requests the system to display this file on the terminal.

5-2 Logical Names: Files for Program Input/Output

(

(

(

(

A logica l name can a lso define only t he first portion of a file spec ification . For
exa mple:

$ assisn dba2:[(TlalcolfTl.testfilesJ te5t~
$ run test:fTlefTloOOl
$ print test:fTlefTlo.lis~

T he ASSIGN co mmand equates the logica l name T EST to the disk device
and directory DBA2 : [MALCOLM.TESTFILES). Subsequent ly, t he RUN
command executes the program image MEM O.EXE cata loged in this sub
directory and t he PRINT com mand prints another fi le. T he system always
examines file specifications to see if t he port ion of the file specification that
precedes the colon (:) is a logical name; if it is (as in this example), t he system
su bstit utes the equiva lence name.

5.2 System Default Logical Names

When you log in to the system or sub mit a batch job, t he system prov ides
severa l defa ul t logica l na mes. T hese na mes are used by the command inter
preter to read your commands and to prin t responses or errol' messages .
Among these logical names are:

Logical
Name Use

S YS $ INPUT T he defaul t in put stream from which t he system reads com
mands and your programs read data

Defaul t interactive assignment : your terminal

Defaul t batch assignment : t he command procedure or
batch strea m

S Y S$ OUT PUT T he defaul t output stream to which the system wri tes re
sponses to com mands and your programs wri te data

S YS$ERROR

S YS '$ D I Sf<

Default interactive assignment : your terminal

Defaul t batch assignment: batch job log fil e

T he default device to which t he system wri tes a ll errol' and
informational messages

Defaul t interactive assignment : your terminal

Default batch assignment : batch job log fi le

Your defa ult disk device

Default ass ignment: set in User Authorization File

You can use these logical names in programs. For example, if you code a
program to write a file to a device named SYS$OUTPUT, the outp ut file goes
to your terminal if you execute t he program interactively, or to t he batch job
log file if you execute the program in a batch job .

Logica l Names: Files fo r Progra m In put/O utput 5-3

You can a lso ass ign a logica l na me to another logica l na me. For exa mple, to
test t he progra m FICA shown in Figure 5- 1, you coul d ass ign t he logica l na me
OUTFILE to t he logica l name SYS$OUTPUT , as fo llows:

$ assign S,'S$Olltp llt nlltfl]P~

T hen, when FICA wri tes to t he logica l dev ice OUTFILE, t he outp ut is d i
rected to your termina l.

T h e r e m a inin g sect io n s of t hi s c hapte r co n ta in a ddi t io n a l
language-spec ific exa mples of how logica l na mes are ll sed fo r progra m inpu t.
and outpu t.

5.3 FORTRAN Input/Output

T he VAX/VMS system suppli es several defaul t logica l na mes for use wit h
FORTRAN progra ms. T hese logica l na mes prov ide defa ul t dev ices fo r the
in put/out put statements ind icated.

Logica l
Name Use

FIJR$READ

FOR$PRINT

Defaul t input device read by READ statements t hat do not
spec ify a logica l uni t nu m ber

Defaul t ass ignment: S','S$It')PtIT

Defaul t out pu t dev ice wri tten by PRI T statements

Defaul t ass ignment: SYS$IJUT Pi IT

FIJR$ACCEPT Defaul t in put dev ice read by ACCEPT statements

Defaul t ass ignment: SYS$ I t~ PUT

FOR$TYPE Defaul t out pu t dev ice written by TYPE statements

Defaul t ass ignment : SYS$IJUT PUT

You do not need to ta ke any specia l action to direct in put or output when you
use t hese statements : t he system t ranslates t he logica l name SYS$INP UT or

(

(

SYS$OUTPUT and locates t he current equiva lence for t hat logica l name. (

However, when you want to have a progra m read or wri te data from or to a
device or file other t han a defaul t, or when you spec ify a logica l uni t number
on an inpu t/out pu t statement, you can take spec ia l action: you can ass ign an
equiva lence name fo r t he logica l name.

5.3 .1 Changing Default Logical Names

T he ASSIGN command changes t he equivalence for a logica l na me. For ex
ample, suppose you have a F ORTRAN program named STAT t hat uses both
TYPE and PRINT statements, as fo llows :

TYPE 30tAtBtC

PRINT 100tDtEtF

5-4 Logica l Na mes : Files fo r Program Inp ut/Ou tput

(

(

(

(

To execute t his p rogra m so t hat outp ut from t he PRI NT sta tement goes to a
disk fil e rather t han to t he te rmina l, en te r an ASSIGN comma nd before
runnin g the progra m :

$ ass i g n s tat d a t <' • 0 II t f I] f $ P . f 1 il t ~!J
$ rl)n s tat~

When STAT fini shes execu t ion , a ll out pu t lines wri tte n by t he PRI NT state
men t are con ta ined in t he fil e STATDAT A.O UT . The system uses your de
fa ul t disk dev ice and directory to cata log t he fil e.

5.3.2 Log ical Names for Unit Numbers

The concept of logica l na mes and defaul t log ica l na me ass ignments a pplies to
spec ifying inpu t/out pu t fil es by logica l uni t numbers. Each logica l unit num
ber has an assoc iated defaul t logica l na me, and each logica l na me has a
defa ul t equiva lence na me. These logica l na mes and equiva lence na mes are as
follows :

Log ical Defa ult
Unit Name Equivalence

1 FOROOI FOROOl.DAT
2 FOROO2 F OROO2.DAT
3 F OROO3 F OROO3.DAT
4 FOROO4 FOROO4.DAT
5 F OROO5 SYS$INPUT
G FOROOG SYS$OUTPUT

n FOROnn F OROnn .DAT

For example, a progra m na med BALA CE may conta in t he lines :

READ (23,8 0)A,B ,C

80 FORMAT (3Fl0 . 4)

In t he a bove example, 23 is a logica l unit number. Before execu t ing this
program , you can ass ign an equi va lence na me to t he logica l na me FOR023 so
t hat t he READ statemen ts read from a specifi c fil e, as follows :

$ assign libra.tst for023~
$ run balance(RE'!;

If you do not ass ign FOR023, t he system uses t he defaul t eq uiva lence na me
F OR023 .DAT. In eit her case, the system uses your curren t defaul t disk and
directory .

Logica l a mes : F il es for P rogra m In put/Ou t put 5- 5

5.3.3 Logical Names in OPEN Statements

If you code a program that uses an OPE statement to define an input or
output file , you can specify the AME parameter to give the file spec ification
for the file. In this case, the system does not use the defa ult equiva lence name
to locate a file for input or output, but uses the name specified .

A typica l OPEN statement may look like the fo llowing:

OP EN (UN I T=lS, NAME='WEATHER.STS')

When the program uses a READ statement to read the logical unit 19 , it reads
the file WEATHER.STS. ote that the system supplies your current disk and
directory defaul ts to locate the file.

You can a lso specify a logical name with the NAME parameter. For example:

OP EN (UNI T=20, NAM E='O UTF I LE')

Before you execute the program containing this OPE statement, yo u can
assign an equiva lence !1ame to the logical name OUTFILE, as follows:

$ assign drTlal:[scratchJtest3.out outfile~Il

Now, when an input/output statement in the program refers to logica l unit
20, the system uses the equiva lence name estab lished for OUTFILE. Thus,
the followin g statement re s ult s 111 a read from the fi le
DMA1:[SCRATCH]TEST 3. 0UT:

REA D (20.S0)A ,B, C

If there is no equivalence name for the logical name OUTFILE when you run
this program, the system assumes that OUTFILE is a file spec ification. It uses
your current disk and directory defaults and the default file type of DAT to
complete the file specification for the output file.

You can find additional details on how to spec ify input and output files for
FORTRAN programs in the VAX-ll FORTRAN User 's Guide.

5.4 MACRO Input/Output

VAX-ll Record Management Services (RMS) provide macros for device- and
file-independent input/output operations.

VAX- ll RMS uses control blocks to obtain information about the file or
device you want to access (the File Access Block, or F AB) and the way you
want to access records in the file (the Record Access Block, or RAB) .

The $FAB macro constructs a FAB. When you code the $FAB macro, spec ify
the fi le name (FNM) parameter to give the file spec ification of the file or
device to which input/output is directed. For example:

OUT FAB : $ FAB FNM =(WEATHE R.STS)
OUTRAB : $RAB FAB=O UT FAB

5-6 Logical Names: Files for Program Input/Output

(

(

The $RAB macro constructs a contro l block for record process ing informat ion.

The $OPEN and $CONNECT macros open the file for p rocess ing, and estab
lish the connection between the FAB and t he RAB. For exa mple:

$OPE N FAB =OUTFAB
$CONNECT RAB =OUTRAB

When t he program uses a $PUT macro to write to the output file defined by
t his FAB and RAB, it writes to t he file WEATHER. STS. Note that the
system supplies your current default disk and directory name to ident ity the
fil e.

You can also specify a logica l name wit h t he FNM parameter in t he $FAB
macro . For example:

OUTFAB: $FAB FNM =(OUTFILE)
OUTRAB: $ RAB FAB =OUTFAB

Before yo u execute t he program to write this outp ut file, yo u can assign an
equi valence name to the logica l name OUTFILE, as follows:

'$. ass i an drTlal: [sc ratch] test3, out Qutf i 1 effiD)

Now, when a $PUT macro refers to t he RAB estab lished for OUTFILE, the
syste m uses the equivalence na me. For exa mple , t he foll owing line in a pro
gra m resul ts in a wri te to t he file DMA1:[SCRATCH]TEST 3.0UT:

$ PUT ,",'AB = OUTRAB

If t here is no equivalence name for t he logica l name OUTFILE when you run
this program , the system assumes that OUTFILE is a file spec ificat ion. It uses
yo ur curren t disk and directory defaul ts to complete t he file specification ,
bu t does not sur-ply a default file ty pe. The output fil e would be na med
OUTFILE.

5.5 For More Information

For more information abou t logica l names see t he VAX/VMS Command Lan
guage User 's Guide and the VAX/ VMS Sys tem Serv ices Referen ce Manual.

For details about using VAX- ll RMS macros, see t he VAX- l I Record Man
agem en t Services Reference Manu.al . Additional information on using logical
names in MACRO progra ms is contained in the VAX- ll MACRO User 's
Guide.

Logica l Names: Files for Program In put/ Output 5-7

(

(

Chapter 6
Tailoring the Command Language

As you cont inue to use t he com mand language, you will discover t hat it is a
powerful and fl exible progra mming and applications developm ent tool. You
can simpli fy t he com mand language to save yo urself t ime during in teractive
termina l sessions and to estab lish your own defaul t commands and command
qualifi ers. You can create command procedure fil es to execute batch jobs,
eit her in teractively or from a card reader. You can construct command proce
dures to perform deve lopment and app lications programming tasks.

This chapter provides some elementary information on techniques you can
use to ta ilor t he command language to your individua l needs. For exa mple,
you can :

• Establish synonyms to use in place of command names and ent ire command
strings, as we ll as to establish defaul t qua lifiers fo r commands.

• Create command procedures to perform a specialized set of commands.

• Submit command procedures for process ing as batch jobs .

• Use command procedures to perfo rm progra mming func t ions, usmg the
command language as a high-level programming language .

6.1 Symbols

You can equate symbols to character strings or arit hmetic va lues by definin g
t hem in assignment statements. In addi t ion to t heir use in command proce
dures (see Section 6.2), symbols are useful as synonyms for long, frequ ently
used com mand strings. For example, you can equate the symbol ST to t he
command SHO W TIME:

$ st = "ShOIAI tifTle"@j

and subsequent ly use t he symbol ST in place of SHOW TIME:

$ st~
9-JUL-1982 10 :45:19

6- 1

Sy mbols can be defined for co mmand lines containing qualifiers as well as
the command itself. For example, if you want to define a synonym for the
DIRECTORY command that automatically includes the /FULL qualifier,
you can define the symbol LIST as follows:

$ list = " director}'/full"1BDJ

Then, if you issue the followin g command line , the system substitutes the
name DIRECTORY/FULL for the symbol LIST:

$ list ftl}'file .datlBDJ

The syste m exec utes the command string DIRECTORY/ FULL
MYFILE.DAT.

Symbols can be concatenated with other symbols 01' items on a command line.
In th is case, the symbol must be enclosed in apostrophes (!) to indicate to t he
syste m that it must perform symbol substitution. For example, you can assign (
the symbol PQUALS to the following qualifiers for the PRINT command:

"$ P 9 U a 1 s = II leo pie s = 2 / for hi 5 = 4 I n 0 to u r 5 t II IBDJ

Then, to use the symbol with the PRINT command, you must enclose it in
apostrophes:

$ print report.dat'P9uals'lBDJ

The system recognizes the apostrophes and substitutes the appropriate value
(in this case a string of qualifiers) for the symbol PQUALS: PRINT
REPORT.DAT/COPIES=2/FORMS=4/NOBURST

(Information about the effect of these qualifiers on the PRINT command can
be found in the VAX/VMS Co mmand LangLwge User 's Guide.)

6.2 Command Procedures

A command procedure is a file containing a sequence of commands to be
executed by the operating system. You submit a command procedure with one
command: the Execute Procedure (@) character for interactive processing 01'

the SUBMIT command for batch processing.

For instance , you cou ld create a command procedure to compile, link , and run
the program AVERAGE mentioned in Chapter 4. First, create a file contain
ing the commands below. (The default file type for a command procedure file
is COM.)

$ FORTRAN AVERAGE
$ L I NI< Al,lERAGE
$ ASSIGN/USER _ MODE TTB3 : SYSSINPUT
S RUN Al)ERAGE

6-2 Tailoring the Command Language

(

The dollar signs before the commands of a command procedure are required
syntax , indicating that the subsequent line is a command to be executed by
the operating system. (They should be placed in column one of each command
line.)

To execute this command procedure, use the Execute Procedure command
(a) as shown below:

When this command is executed, the system searches for the file A VER
AGE.COM. When it locates the file, the system reads and executes, in turn,
each command line in the file.

Note that to execute this command procedure for the AVERAGE.FOR pro
gram created in Chapter 4, you must substitute the device name of your own
terminal for TTB3: in the AS SIGN command (line 3) of the procedure.

6.2.1 Using Symbols in Command Procedures

The sa mple command procedure shown in the preceding section is not very
flexible : it can be used to compile , link, and execute only the FORTRAN
program named AVERAGE. Command procedures can be made more general
by using undefined symbols in the procedure and defining the symbols when
the procedure is executed.

The following exa mples show two ways to write a generalized procedure to
compile, link , and run any FORTRAN program.

• Using global symbols in commflnd procedures

If you use the symbol PROGRAM ra t her than the file name AVERAGE in
the command procedure DOFOR.COM below, you can later assign different
file names to the symbol PROGRAM, making the command procedure in
dependent of a particular source program file.

$ FORTRA N 'PROGRAM'
$ L I Nr; I PROGRAt'l'
$ RUN 'PROGRAt'l'

Before you execute this command procedure you must define the symbol
PROGRAM. Use the assignment statement as shown below:

$ prOaralTl == "al)eraae"Q!ffi

In this assignment statement, t he two equal signs are required to make the
symbol PROGRAM a global symbol. Global symbols are recognized and
substituted in any command procedure you execute. (Local symbols , on
the other hand , are restricted by the command level at which they were
assigned; thus, a local symbol assigned in one command procedure cannot
be used outside that command procedure . Loca l symbols are assigned with
one equal sign .)

Tailoring t he Co mm and Language 6- 3

Now when you enter the following command line, the system substitutes the
value AVERAGE for the symbol PROGRAM in each line of the command
procedure:

$ @doforiBTI)

If you subsequently redefine the va lue of PROGRAM to a different file
name and execute DOFOR COM again, a different source program will be
compiled, linked, and run.

• Passing parameters to command procedures

An alternate way to code the procedure DOFORCOM is to take advantage
of special sy mbols that the syste m defines automatica lly when you execute
a command procedure. These symbols, ca lled parameters, are named PI,
P2 , P3, and so on up to P8, and are defined on the @ command line.

For example, assume that DOFORCOM has the lines:

$ F ORT RA N ; Pi;
$ LINK ' P i;
$ RUN ' Pi;

To define a value - in this example , the file name - for the symbol PI,
enter the file name when you give the @ command to execute t he command
procedure DOFORCOM , as fo llows:

$ @dofor al.JeraseiBTI)

The syste m automatically equates t he name AVERAGE to the symbol PI ,
the first (and, in this example, the only) parameter passed to t he command
procedure. P2 through P8 are equated to null strings. When the command
procedure executes, the va lue AVERAGE is substituted for the sy mbol PI.

6.2.2 Redefining System Commands

You can use command procedures and symbol assignment state ments to
gether to redefine and expand system commands.

For example, suppose that during your terminal sessions you frequent ly com
pile and recompile programs, creating many list ing files (with a file type of
LIS). To keep your directory uncluttered, you may want to purge t hese list
ings regularly. To do this housekeeping, you cou ld create a command proce
dure named LOG.COM that contains the lines:

$ PUR GE *. LI S
$ L OGO UT

You can use this command procedure in place of t he LOGOUT command
when yo u want to end your terminal session , as fo llows:

$ @ los (RET)

Ii - II Tailoring the Co mma nd Language

(

(

(

The P URGE command line is auto matica lly executed before yo u log out.

Moreover, you could defin e a symbol named LO t hat is equated to the follow
ing command string:

$ 10 == "@log"~

Then, when you type t he command line

$ 1 0 ffiIT)

t he system substit utes t he symbol LO wit h t he @LO G command string, and
executes your comma nd procedure.

6.2.3 A LOGIN .COM File

If you beco me a frequent user of t he VAX/VMS system , yo u may find t hat yo u
are entering t he same sequence of commands or ass ignment state ments eve ry
t ime you log in . To avo id such repetition , you can p lace t hese commands and
state ments in a specia l command procedure .

The command procedure fil e must be na med LOGIN.COM , and it must be in
your defa ul t disk directory. When you log in to t he syste m , t he syste m a uto
matica lly searches for a fil e wit h t his file na me. If t he syste m locates t he
LO GIN .COM fi le, t he syste m au tomatically executes t he commands wi t hin
t ha t fil e.

For example, a LOGIN .COM file might conta in:

$ S T = = " S H m·j T H 1 E "
$ L IST == " DIRECTORY "
$ LO == " @L OG "
$ ASSIG N [MALCOLM.TESTFILESJ TEST
$ TEST == "SET DEFAULT [t'1ALCOU1 .TESTFILESJ"

Note tha t a ll t he symbols defin ed a bove are globa l symbols, assigned wit h two
equa l signs . If t hese symbols were loca l (assigned wi t h one equa l sign) they
would be recognized only wit hin t he LO GIN .COM fil e, and would t herefore be
useless to you .

Co mmand procedures can be executed from wi t hin other command proce
dures . You may want to place the globa l ass ignmen t state ments you use for
comma nd synonyms in a separate file, and execute t his procedure in t he
LOGIN.C OM file. For exa mple, suppose t he file SYN ONYM.COM conta ins
t he lines :

$ S T = = " S H m·j T I t·1 E "
$ LIST == "DIRECTOR-,'''
$ LO == "@LOG"

Yo ur LOGIN .COM fil e would conta in t he line:

$ @Sy t--jO t'-lYt'1

Ta ilor ing th e Co mma nd La nguage (j -:)

When this command IS executed, the definit ions 111 t he synonym file are
established.

6.3 Batch Job Processing

If you use the Execute Procedure command (a) interactively, you cannot
enter other commands to do other work while the procedure is executing. If
you want to execute a command procedure that requires a great deal of pro
cessing time, you can submit the command procedure as a batch job. When
you submit it , the batch job is queued by the operating system ; your terminal
is then free for you to continue working interactively.

Use the SUBMIT command to request the operating system to place the
command procedure in the batch job queue. The SUBMIT command assumes
your current disk and directory defaults, as well as t he default file type of
COM. For example:

$ SUBMIT DOFOR@]
Job 3 12 e n te r e d on 9 u e u e SYS$ BATCH

In this command, DOFOR is t he file name of a command procedure. The
system responds to the SUBMIT command with a message indicating that
the job was successfully queued to the SYS$BATCH queue and has the job
identification number of 312. As soon as the batch job is queued, you can
continue interactive use of the terminal; the system will process the batch job.

6.4 Programming Command Procedures

The examples of assignment statements and command procedures in this
chapter show only a few things you can do with command procedures . There is
a special set of commands that you can use in command procedures to per
form functions similar to those available in high-level programming lan
guages . Some brief examples of these commands are shown below to illustrate
the versatility of VAX/VMS command procedures . You can:

(

• Assign arithmetic values to symbol names, and use these symbols in assign-
ment statements with arithmetic expressions. For example: (

$ courn == 1

$ COUNT == COUNT + 1

• Transfer control to a command line in a procedure that is not t he next line
in t he file. For example:

$ LO OP :

$ GOTO LOOP

6- 6 Tailoring t he Command Language

(

(

(

(

(

• Conditionally execute a command based on a comparison of values, strings,
or symbols. For example:

$ IF COUNT.LT.IO THEN GOTO LOOP

• Interactively define a value for a symbol by displaying a prompting message'
on the terminal. For example:

$ INOUIRE NUMBER
$ IF NUMBER.EO.1 THEN GOTO NEXT

• Establish a default course of action should an error occur during processing
of any command or program. For example:

$ ON ERROR THEN EXIT

6.5 For More Information
For additional examples of developing command procedures, see the
VAX/VMS Guide to Using Command Procedures.

Tailoring the Command Language 6-7

(

(

l.

(

(

Glossary

assembler

Language processor that translates a source program containing assembly language
directives and machine instructions into an object module.

assembly language

Machine oriented programming language. V AX-ll MACRO IS the assembly lan
guage for the VAX-ll computer.

assignment statement

batch

buffer

Definition of a symbol name to use in place of a character string or numeric value.
Symbols can define synonyms for system commands or can be used for variables in
command procedures.

Mode of processing in which all commands to be executed by the operating system
and, optionally, data to be used as input to the commands are placed in a file or
punched onto cards and submitted to the system for execution.

A temporary storage area.

command

An instruction or request for the system to perform a particular action. An entire
command can consist of the command name, parameters, and qualifiers.

Glossary-l

command interpreter

The operating system component responsible for reading and translating interactive (
and batch commands. The default command interpreter for the VAX/VMS operating
system interprets the DIGITAL Command Language (DCL).

command line

The entire command string, including the command and any parameters or qualifiers
it may have.

command procedure

File containing a predefined sequence of commands to be executed by the operating
system. The command procedure can be submitted for execution at the terminal or as
a batch job ..

compiler

Language processor that translates a source program containing high-level language
statements (for example, FORTRAN) into an object module.

concatenate

To link together in a series.

cursor

A line or block indicator used in a video display terminal to indicate position.

debugger

Interactive program that allows you to display and modify program variables during
execution and to step through a program to locate and detect programming errors.

default

Value supplied by the system when a user does not specify a required command
parameter or qualifier.

default disk

The disk from which the system reads and to which the system writes, by default, all
files that you create. The default is used whenever a file specification in a command
does not explicitly name a device.

delimiter

Character that marks the beginning or end of a string.

2-Glossary

(

(

(

(

(

(

(

(

device name

Identification of a physical device (for example, DBA2) or a logical name (for exam
ple, SYS$OUTPUT) that is equated to a physical device name.

directory

editor

File cataloging a user's files on a particular device for a user.

Program that creates or modifies files. In VAX/VMS, the default system editor is
interactive.

equivalence name

file

Character string equated to a logical name, such that when a command or program
refers to a file or device by its logical name, the system translates the logical name to
its predefined equivalence name.

Collection of data treated as a unit; generally used to refer to data stored on magnetic
tapes or disks.

file name

The name component of a file specification, consisting of from one to nine characters.

file specification

Unique identification of a file. A file specification describes the physical location of
the file, as well as file name and file type identifiers that describe the file and its
contents.

file type

The type component of a file specification, consisting of from one to nine characters.
A file type generally describes the nature of a file, or how it is used. For example,
FOR indicates a FORTRAN source program.

global symbol

A symbol defined with an assignment statement that is recognized in any command
procedure that is executed.

header page

Printed page at the beginning of a listing that identifies the printed file.

Glossary-3

image

Output from the linker, created from processing one or more object modules. An (
image is the executable version of a program.

input file

File containing data to be transferred into the computer.

interactive

job

Mode of communication with the operating system in which a user enters a com
mand, and the system executes it and responds.

(1) The accounting unit equivalent to a process; jobs are classified as batch or in
teractive. (2) A print job.

keypad

The small set of keys next to the main keyboard on a terminal. . ,

keyword

A command name, qualifier, or option. Keywords must be typed verbatim or trun-

(

cated according to the rules of DCL. (

line editor

linker

Program that allows you to make additions and deletions to a file on a line by line
basis.

Program that creates an executable program, called an image, from one or more (
object modules produced by a language compiler or assembler. Programs must be
linked before they can be executed.

local symbol

A symbol defined witq an assignment statement that is recognized only within the
command procedure in which it is defined.

logical name

Character string used to refer to files or devices by other than their specific names. A
command or program can refer to a file by a logical name; the logical name can be
equated to an equivalence name at any time; when the command or program refers to
the logical name, the system translates the logical name to its defined equivalence
name.

4-Glossary

(

(

(

log in

To perform a sequence of actions at a terminal that establishes a user's communica
tion with the operating system and sets up default characteristics for the user's
terminal session.

log out

To terminate interactive communication with the operating system. The LOGOUT
command executes the procedure and ends a terminal session.

machine code

A sequence of binary machine instructions in a form executable by the computer.

network

A collection of interconnected computer systems.

node specification

The component of a file specification which identifies the location of a computer
system in a network of computer systems.

object module

Output from a language compiler or assembler that can be linked with other object
modules to produce an executable image.

operating system

The system software that controls the operations of the computer.

output file

File to which the computer transfers data.

parameter

Object of a command. A parameter can be a file specification, a symbol value passed
to a command procedure, or a word defined by the DIGITAL Command Language.

password

Protective word associated with a user name. A user logging in to the system must
supply the correct password before the system will permit access.

prompt

Word(s) used by the system as cues to assist a user's response.

Glossary-5

qualifier

queue

Command modifier that describes the operation of a command. A qualifier is always
preceded by a slash character (/).

A line of items waiting to be processed.

range specification

Used with EDT line editor to define the line(s) to be affected by the editing com
mand.

reverse video

A feature of the VT100 terminal that reverses the default video contrast. If black

(

figures upon a white background is the default, reverse video displays white upon (
black. Used with some EDT keypad commands to highlight a range of text.

scrolling

A feature of a video terminal that allows the display of more than one screenful of
text by vertical movement.

source program

A program written in a language other than machine code that must be compiled or
assembled to be used.

subdirectory

Directory file cataloged in a higher-level directory that lists additional files belonging
to the owner of the directory.

terminal

Hardware communication device, with a typewriter-like keyboard that receives and
transmits information between users and the system.

user name

Name by which the system identifies a particular user. To gain access to the system,
a user specifies a user name followed by a password.

version number

Numeric component of a file specification. When a file is edited, its version number is
increased by one.

6~Glossary

(

(

(

(

/

~.

(

wild card character

A symbol used with many DeL commands in place of all or part of a file specification
to refer to several files rather than specifying them individually.

Glossary-7

(

(

(

Index

A

Assembler, 4-2
Assembly language, 4-2
Assignment statement, 6-1 to 6-2

Batch
editor, 2-2
job, 1-1, 6-6
user, 1-1

Command, 1-4
. abbreviation, 1-6

B

c

EDT subset of, 2-14, 2-19
format, 1-4
HELP, 1-8 to 1-9
language, 1-4
line; 1-5
parameter, 1-4
prompt, 1-5
qualifier, 1-4

Command procedure, 6-2
LOGIN.COM file, 6-5
parameters in, 6-4
symbols in, 6-3

Compile commands, 4-2
Compiler, 4-2
Control key, 1-6 to 1-7

Cursor, 1-6, 2-6, 2-8

D

DCL,I-5
Default, 1-7

file specification, 3-1
logical names, 5-3

Device name, 3-2
DIGITAL Command Language, 1-5
Directory, 3-2 to 3-3

change of default, 3-8
Documentation, V AX-ll, viii

Editor, 2-1, 2-2
batch, 2-2
default, 2-3
EDT

See EDT
interactive, 2-2
SOS, 2-2
SUM,2-2
SUMSLP, 2-2

EDT,2-1
HELP, 2-4, 2-15
invoking, 2-4, 2-15

E

keypad command subset, 2-14
keypad editor, 2-3 to 2-13
line command subset, 2-19
line editor, 2-14 to 2-19

Index-l

EDT (Cont.) K
range specification, 2-16

(termination of, 2-5, 2-16 Keypad,2-3
Equivalence name, 5-1 diagram of, 2-3
Error message, 1-8 editor, 2-3 to 2-13

F
Keypad commands

subset of, 2-14
Keypad editor

File, 2-1 cursor manipulation, 2-6, 2-8
COpy command, 3-9 Keys
creation of, 3-5 control, 1-6 to 1-7
default specification, 2-1 Keyword, 1-4
deletion of, 3-5, 3-6
display of, 3-6 L
identification of, 3-1
list of in directory, 3-7 to 3-8 Language
name, 2-1, 3-3 assembly, 4-2
PRINT command, 3-7 high level, 4-2
PURGE command, 3-6 Line commands (RENAME command, 3-10 subset of, 2-19
specification Line editor, 2-14 to 2-19

See File specification Linker, 4-3
type, 2-1 3-3, 3-4 Local symbol, 6-3
version, 2-1, 3-4 Logical name, 5-1

Fife name, 2-1, 3-3 ASSIGN command, 5-1
File specification, 3-1 equivalence name, 5-1

device name, 2-1 in commands, 5-2
directory, 2-1 system default, 5-3 (file name, 2-1 Login, 1-2 to 1-4
file type, 2-1 LOGIN.COM file, 6-5
node name, 2-1 Logout, 1-9
version number, 2-2

File type, 2-1 3-3, 3-4 M
default, 3-4, 4-1

File version, 2-1, 3-4 Message
error, 1-8

G
(N

Gt-@.bal symbol, 6-3
Network, 2-1
Node, 2-1-

H Node name, 2-1, 3-1

HELP command, 1-8 to 1-9 0
DCL, 1-8 to 1-9
EDT, 2-4, 2--15 Object module, 4-3

Operating system, 1-1

I P

Image, 4-3 Parameter, 1-4
Interactive Password, 1-2 to 1-3

editor, 2-2 Program, 4-1
user, 1-1 assembly of, 4-2 (

Index-2

(

(

Program (Cont.)
compiling, 4-2
creation of, 4-1
execution of, 4-3

Program development
FORTRAN example, 4-5 to 4-9
MACRO example, 4-10 to 4-14

Q

Qualifier, 1-4

R

Range specification, 2-16

s
Subdirectory, 3-3

creation of, 3-8
Symbol, 6-1, 6-3

assignment statement, 6-1

Symbol (Cont.)
global, 6-3
local, 6-3

Terminal
hardcopy, 1-1
keyboard, 1-3
video, 1-2

User name, 1-2

T

u

v
VAX-ll documentation, viii
Version number, 2-2

w
Wild card character, 3-4 to 3-5

Index-3

(

(

(

(

(

READER'S COMMENTS

V AX!VMS Primer
AA-D030C-TE

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)

Name _________________________ Date

Organization

Street

City _______________________________________ __ State ___________ Zip Code _____ _

or Country

- - Do Not Tear - Fold Here and Tape - - - - - - - - -

IIIIII

BUSINESSREPL V MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03061

No Postage
Necessary

if Mailed in the
United States

- - Do Not Tear - Fold Here -

(

(

(

Printed in U.S.A.

