

PDP-B/I
DISK MONITOR SYSTEM

Programmer's Reference Manual

For additional copies specify Order No. DEC-DS-SDAA-D to Program

Library, Digital Equipment Corporation, Maynard, Mass. Price: $2.75

DIGITAL EQUIPMENT CORPORATION. MAYNARD, MASSACHUSETTS

Copyright 1968 by Digital Equipment Corporation

HOW TO OBTAIN REVISIONS AND CORRECTIONS

Notification of changes and revisions to currently available Digital software and
of new software manuals is available from the DEC Program Library for the PDP-5,
8, 8/S, 8/1, LINC-8, the PDP-4, 7, and 9 is currently published in DECUSCOPE,
the magazine of the Digital Equipment Computer User's Society (DECUS). This
information appears in a section of DECUSCOPE called "Digital Small Computer
News".

Revised software products and documents are shipped only after the Program Library
receives a specific request from a user.

DECUSCOPE is distributed periodically to both DECUS members and to non-members
who request it. If you are not now receiving this information, you are urged to
return the request form below so that your name will be placed on the mailing list.

To: Decus Office,
Digital Equipment Corporation,
Maynard, Mass. 01754

Please send DECUS installation membership information.

Please send DECUS individual membership information.

Please add my name to the DECUSCOPE non-member mailing list.

Name

Company -------------------------
Address

(Zip Code)

1.1

2. 1

2. 1 . 1

2.1.2

2.2

2.3

2.4

2.4.1

2.4 .2

2.5

2.5.1

2.5.2

2.6

2.6.1

2.6.2

2.7

2.8

3. 1

3. 1 . 1

3.1.2

3.1.3

3.2

3.2.1

3.2.2

3.2.3

3.3

CONTENTS

CHAPTER 1
INTRODUCTION

Equipment Requirements

CHAPTER 2
MON ITOR OPERATION

General Description

Monitor Residence

System Modes

Bootstrapping the Monitor

Starting the Monitor

Command Strings

Command String Format

Examples of Command Strings

Loading Programs - Binary Loader

Binary Loader Operating Procedures

Binary Loader Error Messages

Saving Programs (Save Command)

Save Command Format

Save Command Processing

Calling a Program (Call Command)

System Error Messages

CHAPTER 3

PIP

Loading and Saving

Operating Procedures

Examples

Editor

Loading and Saving

Operating Procedures

Example

SYSTEM PROGRAM LIBRARY

PAL-D Disk Assembler

iii

1 - 1

2-1

2-1

2-1

2-2

2-3

2-3

2-4

2-6

2-7

2-7

2-9

2-10

2-10

2-12

2-12

2-13

3-1

3-1

3-2

3-3

3-5

3-7

3-8

3-9

3-10

CONTENTS (Cont)

Page

3.3.1 Loading and Saving 3-10

3.3.2 Operating Procedures 3-11

3.3.3 Examples 3-13

3.4 FORTRAN-D 3-13

3.4.1 Compiler 3-16

3.4.2 Operating System 3-22

3.4.3 Examples 3-31

3.5 DDT-D 3-33

3.5.1 Loading and Saving 3-36

3.5.2 Operati ng Procedures 3-37

3.5.3 Examples 3-37

APPENDIX A
SYSTEM GENERATION A-1

APPENDIX B
SYSTEM FORMATS B-1

APPENDIX C
COMMAND DECODER C-1

APPENDIX D
BI NARY LOADER D-1

APPENDIX E
SYSTEM PROGRAMS E-1

TABLES

Page

2-1 System Error Messages 2-13

3-1 Special Key Functions 3-5

3-2 Summary of Editor Commands 3-6

3-3 PAL-D Pseudo-Operators 3-10

3-4 PAL-D Error Messages 3-12

3-5 Summary of FORTRAN Statements 3-14

3-6 Compiler Systems Diagnostics 3-19

3-7 Compiler Compilation Diagnostics 3-20

3-8 Operating System Diagnostics 3-25

3-9 DDT - D Comma nds 3-36

iv

ILLUSTRATIONS

B-1 Disk Storage Layout B-2

B-2 DECtape Storage Layout B-3

B-3 Directory Name (DN) Block Format B-4

B-4 Storage Allocation Map (SAM) Block Format B-6

B-5 Contiguous-Page Save Fi Ie Format B-8

B-6 Noncontiguous-Page Save Fi Ie Format B-9

B-7 Sample PI P Directory Listing B-10

B-8 Monitor-Time vs User-Time Core Usage B-11

B-9 Core Usage During SAVE Command Execution B-12

B-10 Core Usage During CALL Command Execution B-13

B-11 Monitor Flow Chart (Part 1) B-14

B-11 Monitor Flow Chart (Part 2) B-15

B-11 Monitor Flow Chart (Part 3) B-16

C-1 Output List Produced by Command Decoder C-3

C-2 Command Decoder Core Usage C-4

C-3 Command Decoder Flow Chart (Part 1) C-5

C-3 Command Decoder Flow Chart (Part 2) C-6

C-3 Command Decoder Flow Chart (Part 3) C-7

C-3 Command Decoder Flow Chart (Part 4) C-8

C-3 Command Decoder Flow Chart (Part 5) C-9

C-3 Command Decoder Flow Chart (Part 6) C-10

D-1 Binary Loader Flow Chart (Part 1) D-3

D-1 Binary Loader Flow Chart (Part 2) D-4

D-1 Binary Loader Flow Chart (Part 3) D-5

v

CHAPTER 1
I NTRODUCTI ON

The PDP-8 Disk/DECtape Monitor System is designed for any PDP-8 computer having at

least one DECdisk or one DECtape. This system consists of a keyboard -oriented Monitor, which en

abIes the user to efficiently control the flow of programs through his PDP-8, and a comprehensive soft

ware package, which includes a FORTRAN Compiler, Program Assembly Language (PAL-D), Edit pro

gram (Editor), Peripheral Interchange Program (PIP), and Dynamic Debugging Technique (DDT-D)

program. Also provided is a program (Builder) for generating a customized monitor according to the

user1s particular machine configuration (amount of core, number of disks or DECtapes, etc.).

The system is modular and open ended, permitting the user to construct the software required

in his environment, and allows the user full access to his disk (or DECtape) - referred to as the system

device - for storage and retrieval of his programs. By typing appropriate commands to the Monitor,

the user can load a program (construct it from one or more units of binary coding previously punched out

on paper tape or written on the diskby the Assembler, and assign it core), save it (write it out, with an

assigned starting address, on the system device), and later call it (read it back into core from the sys

tem device) for execution.

1.1 EQUIPMENT REQUIREMENTS

follows.

The minimum equipment requirements of the PDP-8 Disk/DECtape Monitor System are as

A basic PDP-8, PDP-8/S, or PDP-8/1

4K of core

Teletype

3-Cycle Data Break (Option required with PDP-8/S)

At least one DF32 Random Access DECdisk File or a TCOl Automatic Control
wi th a TU55 DECtape transport. The DECtape must have timing and mark
tracks written on it prior to use.

NOTE

The system will recognize up to 32K of core, up to
four disks (1 Type DF32 and 3 Type D532 1s} , up to
eight DECtapes (TCOlls only) and a high-speed paper
tape reader.

1-1

CHAPTER 2
MONITOR OPERATION

This chapter contains a discussion of the operation of the Monitor. Succeeding chapters

contain descriptions and operating procedures for the system programs.

2.1 GENERAL DESCRIPTION

The PDP-8 Disk/DECtape Monitor System permits the user to control the flow of programs

through his computer and takes full advantage of the extended memory capabilities of disk or DECtape.

In addition to the Monitor, the system also contains a library of system programs. Together, they pro

vide the user with the capabilities of compiling, assembling, editing, loading, saving, calling, and

debugging his own programs.

2.1.1 Mon i tor Residence

Monitor, as well as system and user programs, is stored on and retrieved from the user's

system device. To obtain a working Monitor, the user must first build his own customized version, via

the easy-to-use dialogue technique of the System Builder program and store this version on his system

device. Following this, the user then creates his System Program Library on the system device. Both

of these procedures are described in Appendix A.

In core, the resident part of Monitor (called head of monitor) resides in the top page (loca

tions 7600 through 7777) of field O. The starting address of Monitor is 7600; 7642 is entry address to

the system I/O routine, which performs all reading and writing on the system device. Nonresident

portions of Monitor, such as those routines which perform SAVEs and CALLs, are automatically called

in as needed, and in core, they share the area from location 7000 through 7577. (These portions

disappear after use, leaving this area for the user.)

Specific diagrams showing the allocation of the system, both on the system device and in

core, are given in Appendix B.

2.1.2 System Modes

At any point in time, the system is running in one of two modes: Monitor mode or user mode.

Monitor mode is entered (1) whenever the Monitor is started (see Paragraph 2.2) or (2) when

CTRL/C (tC) is typed while running any system program. Monitor mode is signalled by the Monitor

typeout of a dot (.). At both Monitor and system program time, Monitor is able to sense a tC typein,

causing the system to enter Monitor mode, return to Monitor at location 7600, and respond with a dot

(.) typeout. At this point, the user can issue any Monitor command via the Teletype keyboard.

User mode is present whenever the system is executing a system or user program. System pro

grams signal user mode by responding with an asterisk (*) typeout.

2-1

2.2 BOOTSTRAPPING THE MONITOR

The following discussion assumes that the user has built a customized Monitor and has stored

it on his system device, according to the procedure described in Appendix A.

The bootstrapping of Monitor into core is necessary only when the resident Monitor area

(locations 7600 through 7777) has been cleared or its contents otherwise destroyed. System Builder

leaves the resident portion of Monitor in core after building. Turning the computer off and subsequently

turning it on again does not normally destroy the contents of core.

The bootstrap procedure is as follows.

a. Toggle in one of the following bootstrap routines, depending upon the type of system

device.

Disk
Location Contents 51mbolic

0200 6603 DMAR

0201 6622 DFSC

0202 5201 JMP .-1

0203 5604 JMP I .+1

0204 7600 7600
-~--,,-~-

7750 7576

7751 7576

DECtape
Location Contents 51mbolic

*200

0200 7600 BEG, 7600

0201 1216 TAD MVB

0202 4210 JMS DO

0203 1217 TAD M201

0204 3620 DCA I CA

0205 1222 TAD RF

0206 4210 JMS DO

0207 5600 JMP I BEG

0210 0000 DO, 0000

0211 6766 DTXA DTCA

0212 3621 DCA I WC

0213 6771 DTSF

0214 5213 JMP .-1

0215 5610 JMP I DO

0216 0600 MVB, 0600

2-2

DECtape
Location Contents 51mbolic

0217 7577 M201, -201

0220 7755 CA, 7755

0221 7754 WC, 7754

0222 0220 RF, 0220

b. After toggling in one of the above bootstrap routines, set the switches to 200 and press
LOAD ADDress and START. Monitor should respond with a dot (.) after it has been brought into
core.

2.3 STARTING THE MONITOR

Monitor start is at location 7600. A jump to this location can be made by either (1) stop

ping the machine, setting the switches to 7600, and pressing LOAD ADDrf:;:s and START, or (2) typing

tC when in Monitor mode or when a system program (or any user program which includes coding to sense
C .) • • 1 at typem Isrunnmg.

Monitor start performs the following actions.

a. Saves the coding from location 7200 through 7577 in the first two scratch blocks on the
system device.

b. Reads blocks 1 and 2 (containing the rest of Monitor) from the system device into these
locations.

c. Transfers control to Monitor, which responds with a carriage return, line feed, and a
dot.

A monitor restart can be performed by typing RUBOUT to Monitor. A Monitor restart performs

the same actions as described above except for Subparagraph a. A common use for RUBOUT is to ter

minate a command string when the operator has di scovered that he has made a mistake. The command

string is ignored, and Monitor responds as described in Subparagraph c. The user core image on the

system device is not changed by RUBOUT (it is changed, however, by tC).

2.4 COMMAND STRINGS

The user types commands in the form of command strings to direct Monitor, or a system pro

gram, to perform some action. Command strings are simple in format and afford the user an easy means

of communicating with the system.

Monitor indicates its readiness to accept a command string by typing a dot, and at this point,

the user can type some Monitor command, such as CALL or SAVE.

1 A start instruction (ST=7600) is issued when running Loader causes a jump to 7600 after loading has
been performed. Certain errors also cause a jump to this location.

2-3

System programs indicate their readiness to receive information by typing either an asterisk

or a query. The most common queries are as follows.

*OUT-

*IN-

*OPT-

Requests that the user specify one output device name. In the case of
disk or DECtape thf filename to be assigned to the output data must
also be specified.

Requests that the user specify one or more input device names. For
disk and DECtape, filenames of input files must also be specified. 1

Requests that the user specify one option or switch, entered as a single
alphanumeric character; see Chapter 3 for options avai lable in each
system program.

This communication between the system and the user is handled by a portion of Monitor
2 known as the Command Decoder. Command Decoder is called into core by the system when needed

and occupies any four contiguous pages of core. A description of its core allocation and calling pro

cedure, plus a flow chart, is given in Appendix C. Error messages produced by Command Decoder are

listed in Paragraph 2.8. Messages unique to individual system programs are given in Chapter 3.

2.4.1 Command String Format

Command strings are composed of a few basic elements and follow certain rules of punctua

tion. Their basic elements are as follows.

a. Device names

b. Filenames

c. Punctuation

d. Special characters

Each of these elements is described in the following paragraphs.

2.4.1.1 Device Names - Device names permitted in command strings are as follows.

Dn:

S:
R:
T:

DECtape unit, if both disk and DECtape are present in the system
(n = unit number, 0 through 7)

System device (disk or DECtape unit 0)

High-speed paper tape equipment (reader or punch)

Low -speed paper tape equipment on the Teletype (reader or punch)

1 Device names and filenames are explained in Paragraph 2.4.1.

2 Command Decoder is a system program (.CD.) which is saved on the system device at build time.

2-4

2.4.1.2 Filenames - Filenames are limited to four characters in length and can be composed of any

combination of alphanumeric characters or special characters 1 with the following exceptions.

a. Imbedded spaces cannot appear in a filename (they are ignored}.2 However, trailing
spaces are perm i tted •

b. A filename cannot be one of the following words or symbols.

CALL SAVE

Extensions to the filenames specified by the user are automatically appended by the system.

They are used internally by the system and cannot be referred to or modified by the user. 3

SYS (n)

USER (n)

ASCII

BINARY

FTC BIN

Saved system program file in core bank n.

Saved user program fi lei n core bank n.

Source language program file (input to PAL-D Assembler or FORTRAN
Compiler) .

Binary program file (output from PAL-D Assembler).

Interpretive binary file (output from FORTRAN Compiler).

Filenames (and extensions) are meaningful only for file structured devices (disk and DECtape).

If they are specified for other devices, they are ignored. Both the filename and extension name appear

on directory listings produced by the list feature in PIP.4

Example: NAME TYPE BLK

8D
PIP • SYS (O) 0015
SRCl . ASCII 0007
BIN. BINARY 0001
SRC1.USER(0} 0001

2.4.1.3 Punctuation - Punctuation within command strings is as follows.

Used to separate device names, when more than one is given in a
command string. The apostrophe is also used to separate core references
in a SAVE command string, when more than one contiguous area of core
is speci fi ed •

Precedes the entry point specification in a SAVE command.

Terminates each device name. The colon is also used following the
fi I ename ina SAVE command to i ndi cate that the fi lei s to be saved as
a user program.

1 Although both printing and nonprinting keyboard characters are allowable, printing characters are
recommended.

2 Note that Monitor is given the filename EX Ci one reason for this unconventional use of an imbedded
blank is to protect Monitor from accidental destruction by the user (e.g., deletion via PIP).

3 The data structure of these fi I es is described in Appendix B under "Data Structure."

4118DII in example means VERSION 8, change D.

2-5

Separates the beginning and ending addresses of a contiguous core area
specification in a SAVE command.

Follows the filename in a SAVE command when a file is to be saved as
a system program.

2.4.1.4 Special Characters - Special characters are used as described below.

tC

tp

J

RUBOUT

1 f given while the system is in Monitor mode or a system program is running,
control is returned to Monitor start (location 7600). Monitor responds with a dot.

tC is typed by holding down the CTRL key and striking C. t C does
not echo (does not print).

Typed in response to a t typeout. Instructs the system to proceed with
the next operation. 1 t Pis typed by holdin~ down the CTRL key and
striking P. tp does not echo (does not print).

Carriage return terminates current command string input. When typed
alone, in response to a system query, it indicates that the user does
not desire to specify the item (e.g., device name) requested.

Causes the current command string to be ignored, and the system
returns to the beginning of the command string and is ready to receive
a new command. RUB OUT does not echo.

2.4.2 Examples of Command Strings

These examples illustrate the elements and rules explained above. Samples of both Monitor

commands and system program commands are given. 2

Monitor Commands:

• CALL PRG1 J

• SAVE PALO! 0-7577; 6200 J

System Program Commands:

*IN-S:PR02 J

*1 N - S: TS11 , R: ,)

*OUT -D5:SPEC J

Call the user program file, PRG1, from the system
device into core for execution.

Save a program, previously loaded by Loader into
locations 0 through 7577 of core, on the system
devi ce as a system program (!). Assi gn a starting
address of 6200 and a filename, PALD.

Use the file PR02 on the system device as the
input file.

Use the file TS11 on the system device and one file
from the high-speed paper tape reader as the input
fi les.

Write the output file on DECtape unit No.5 and
assign it the filename SPEC.

1 t P can also be used to prematurely terminate certain operations while in progress (e.g., the typing
out of a file directory by the list option in PIP).

21 n all examples, system response (typeout) is underlined for clarity.

2-6

*OUT-T: J

*OPT-M

Punch the output on the Teletype paper tape punch.

Select option M. 1

Spaces in command strings are ignored. Thus, both examples below are equally correct and

perform the same function.

• SAVE PALD ! 0-7577; 6200 J
.SAVEPALD!0-7577; 6200.1

2.5 LOADING PROGRAMS - BINARY LOADER2

Binary Loader takes as input the binary coding produced by the PA L-D Assembler and loads

it into core in executable form. When loading is completed, Binary Loader "disappears" after first

entering the loaded program at the starting address typed by the user just prior to loading (see Para

graph 2.5.1). Loader accepts input from the system device or paper tape.

Loader requires one pass for any program which does not load above location 6777 (field 0).

Loader uses core from location 167 through 177 and 6000 through 7577, and the resident portion of

Monitor occupies the remainder of field O. One-pass loading reads input files only once.

Two passes are required for all other programs (i .e., programs loading above 6777). In

two-pass loading, programs can be loaded in all of field 0, except locations 7600 through 7777. 3

Two -pass loading requires that input paper tapes be read through the reader twice.

2.5.1 Binary Loader Operating Procedures

. LOAD J

*IN-

Examples

*IN-R: .)

*1 N - R:, R:, R: ,)

Direct Monitor to bring Binary Loader from the
system device into core for execution.

Loader requests source of input(s). Type one or
more device names, separated by commas. If an
input device is a file-structured device, include
fi lename(s).

Up to five files can be specified.4

5
Input one tape from the paper tape reader.

Input three tapes from the paper tape reader. 5

1 A " f n automatic carnage return occurs a ter user response to an OPT -request.

2 Binary Loader is a system program saved on the disk at build time. It is called by the user in the same
manner as any system program. It occupies locations 7000-7577 and has a starting address of 7000.

3
In 8K and larger systems, Loader sets up locations 7574 through 7577 to perform a start in fields other
than O. It is the user's responsibility to protect these locations if he wants to start in other than field O.

4 .
An E or I error message (see Table 2-1) may appear follOWing the entry of an I N command.

5
Regardless of whether R: or T: is used to specify paper tape input, the high-speed equipment is used
if it was indicated as present in the system at System Builder time, otherwise the Teletype equipment
is used. This convention is unique to Binary Loader.

2-7

*IN-S:INPT ,J

*IN-S:BIN2, R: J

*IN-S:BIN1, S:BIN2 ,J

*

*OPT-

Examples

*OPT -1

*OPT -2
(or anything else)

*ST=

Examples

*ST=,) }
*ST=7600 J
*ST=OJ

* ST =30225,)

*ST=lOOOO,)

Input the fi Ie I NPT from the system device.

Input the file BIN2 from the syster device and one
tape from the paper tape reader.

Input the files BI N 1 and BI N2 from the system
device.

If device{s) are valid and filenames (if any) are
actually found on the system device, loader re
sponds with one asterisk for each correct input.

loader requests mode desired (one-pass or two-pass).

One pass loading desired; no programs are loaded
above location 6777.

Two-pass loading desired; programs can be loaded
above location 6777.

loader requests the starting address to which control
is to be transferred when loading is completed. The
address is typed in the form

fnnnn

where

f = field number 2 (omitted if field 0),

and

nnnn location within field

load into field O.
Return to Monitor after loading.

load into field 3.
Jump to location 255, field 3, after loading.

load into field 1.
Return to Monitor after loading into field 1.

loader now types a series of up-arrows, one at a
time, as explained below.

Following each up-arrow typeout, the user is re
quired to perform one or more actions.

1 Regardless of whether R: or T: is used to specify paper tape input, the high -speed equipment is used
if it was indicated as present in the system at System Builder time, otherwise the Teletype equipment
is used. This convention is unique to Binary Loader.

2 The f-digit forces Loader to start loading into the specified field until a "field bit" is found in the
input.

2-8

tt tt First up-arrow: Loader is ready to load. If paper
tape inputf put the tape in the reader.
Type tP.

Second up-arrow: End of pass 1. If operating in
one-pass mode, type tP to jump to previously
specified starting address.

If operating in two-pass mode, type tP.

The next two up-arrows appear only if operating
in two - pass mode.

Third up-arrow: Reload paper tape input for pass 2.
Type t P.

Fourth up -arrow: End of pass 2 • Type t P to jump
to previously specified starting address.

Multiple Input Files

An up -arrow is typed out as the processing of each
input file is completed. If paper tape input,
insert the next fi Ie in the reader and type t P.

Repeat the above step until all files given in re
spon se to the *1 N - request have been processed.

If in two-pass mode, each tape must be entered
twice, in the order

Tl, 12, T3, •••• Tl, 12, T3, ••••

After all files have been entered the required num
ber of times, type t P to jump to the previously
specified starting address.

NOTE

After each input paper tape is read, the high -speed paper
tape version of Loader loops until the user types tP to continue.
However, the low -speed paper tape version hal ts. Thus, when
using the Teletype paper tape equipment for input, the user
need not type t P but press CO NT on the con sol e and start
the paper tape reader. - - --

At this point, Binary Loader disappears and control is transferred to the previously specified

starting address.

A flow chart of Binary Loader can be found in Appendix D.

2.5.2 Binary Loader Error Messages

An illegal checksum error condi tion causes Loader to type

?

and return to Iv\onitor after the user types t P or t C. Error messages for illegal filenames or devices are

as specified in Paragraph 2.8.

1 If Teletype paper tape equipment is used, type t P before turning on the reader.

2-9

2.6 SAVING PROGRAMS (SAVE COMMAND)

The SAVE command enables the user to write core images of system or user programs from

core onto his system device for subsequent call-in (CALL) and execution. For example, a program

which has been loaded by Binary Loader can be stored on the system device by the SAVE command.

Or, a previously sa~ed program which has been called in and modified by DDT can be stored in its up

dated version on the system device, overlaying the old version if desired.

Core images can be saved in units of one or more pages, each page occupying one block on

the system device. If a core specification (see below) addresses only a portion of a page, the entire

page is written out. For example, the core specification 45-150 is treated as though it were 0-177.

Core areas to be saved may be contiguous or noncontiguous as desired by the user. Up to 3210 core

specifications, in any combination of monotonically increasing single-page or multiple-page requests,

can be entered in a single SAVE command.

2.6.1 SA VE Command Format

• SAVE flI ename C} ca,e - sped fi ca'; ans, ••• ; en'", -po; n. J

SAVE Directs Monitor to call in the nonresident SAVE routine.

filename The filename (program name) to be assigned to the file on the
systems device. This name will be used to call the file later
when the user wants to read in and execute the program.
Restrictions on the formation of filenames can be found in
Paragraph 2.4.1.2. Any previously saved program with the
same "filename" and having the same extension will be auto
maticallyoverwritten.

or ! is typed immediately after the filename of a file if the user
desires to save it as a systbm program (e.g., PIP). A program
saved in this manner can e called in by simply typing its
name to Monitor (the word CALL is not required) •

core -specifications

• filename J

An extension name of • SYS is automatically appended to the
filename.

: is typed immediately after the filename of a file if the user
desires to save it as a ~ program. A program saved in this
manner can be called in and executed later via the CALL
command.

.CALL filename J

An extension name of • USER is automatically appended to the
filename.

Up to 32 core specifications can be entered in a single SAVE
command. Each core specification is separated from the follow
ing one by a comma. The last core specification in the series
is followed by a semicolon. Addresses are expressed in octal.

2-10

Single-page core specification

where

fnnnn

f = field number (can be omitted if field 0).

nnnn = any location within the page which the user
desires to save.

Examples o Saves page 0 (locations 0 th rough 177)
of field O.

3570

30100

Saves the 15th page (locations 3400
through 3577) of field O.

Saves page 0 (locations 0 through 177)
of field 3.

Multiple -page core specification

When a user wishes to save a core area of several contiguous
pages, he can type a multiple -page core specification in the
format

where

fnnnn 1-nnnn2

f = field number (can be omitted if field 0).

nnnn 1 = any location within the first page of the series
of conti guous pages to be saved.

any location within the last page of the series
of conti guo us pages to be saved.

The following rules apply.

a. The beginning address of a multiple -page request must be
smaller than the ending address (nnnn 1 must be smaller than
nnnn 2)·

b. Both addresses must be in the same field.

c. The field number (f) must be within the range of your
system; however, no check for the validity of this number is
performed at SAVE time.

Examples

0-7577 Saves all of field O.

10000-7777 Saves all of field 1. Note that this is
the same as typing

2-11

10000 - 17777

See below for explanation of how the
field number (5th significant digit to
the left of the decimal point) is
"remembered. "

2.6.2

entry-point

30425-745

NOTE

Saves locations 400 through 777
(pages 3 and 4) of field 3.

Only one field can be saved by each SAVE command.
If multiple fields are to be saved, a separate SAVE com
mand must be given for each.

The entry point of the saved program, in the format

Fnnnn (see explanation above)

An entry point of 0 causes a return to Monitor at CALL time,
regardless of the field into which the program was saved.

NOTE

The last nonzero field number encountered in a SAVE
command string is remembered and prefixed to all other
addresses in the command string. (Remember: only
one field can be referred to in each command string.)

Example: The following entries are identical in meaning.

SAVE PRGA: 1 0000-10m, 11400, 1600-17777; 10200
SAVE PRGA: 30000-777, 51400, 26000-m7; 10200
SAVE PRGA: 10000-m, 1400, 6000-7777; 200
SAVE PRGA: o-m, 1400, 6000-7777; 10200

I n each of these examples, all addresses are treated as
being in field 1, because the last five-digit entry seen
contained a most significant digit 1 •

SAVE Command Processing

A list of the required pages is constructed from the information typed by the user and a block

requirement count is kept. When the user types the terminating carriage return (J), allowing the

SAVE process to begin, a directory name search on the system device is initiated. If a file having the

same name as the filename in the SAVE command is found, it is replaced by the file now being saved.

If no such file is found, a new file is created. Next, a storage availability search finds a sufficient

number of available blocks on the system device to satisfy the block requirement count. (See above.)

These block numbers are stored in a corresponding block list; the blocks are then filled with the con

tents of the pages to be saved. When the SAVE process is completed, control returns to Monitor (7600).

2.7 CALLING A PROGRAM (CALL COMMAND)

Once a file has been loaded and saved, it can be called into core as desired. There are two

types of CALL command strings: one for system programs and the other for user programs.

The CALL command string format for system programs (programs saved by a SAVE command

string in which the filename was followed by a !) is

.filename J
where filename is the same as the one used in the SAVE command string which saved it.

2-12

The CALL command string format for user programs (programs saved by a SAVE command

string in which the filename was followed by a :) is

,:.CALL filename J

When a program is called, a directory name search is performed on the system device.

Associated with the directory entry is the entry point of the program and information concerning file

protection and memory extension. If the appropriate directory name entry is found and the file has the

proper extension (.SYS or .USER), calling proceeds. If not, the calling process is terminated, ? is

typed and control is returned to Monitor.

2.8 SYSTEM ERROR MESSAGES

As an input command string is being typed, Monitor recognizes any incorrect syntax and

remembers it. When the user types a carriage return, Monitor responds with a ? to indicate invalid

input.

Error messages output by Command Decoder are given in Table 2-1.

Message

?

D

E

I

S

Table 2-1
System Error Messoges

Meaning

Illegal syntax or miscellaneous error condition

Directory on the systems device is full

Too many inputs or outputs were entered

No such inputs

System I/O failure

Local errors in each system program are given in Chapter 3.

Monitor time read or write errors cause a halt to occur. Persistence of this condition indi

cates a hardware failure, as the system I/O routine attempts to read or write three times before halting.

2-13

CHAPTER 3
SYSTEM PROGRAM LIBRARY

The Monitor System's library of programs presently consists of the Peripheral Interchange

Program (PIP), Disk System Editor (Editor), PAL-D Disk Assembler (PAL-D), 4K Disk FORTRAN

(FORTRAN-D), and Dynamic Debugging Technique for Disk (DDT-D), and this I ist is destined to

lengthen with time. A section of this chapter is devoted to each program in the library.

To load a program using the Monitor System, the Loader makes certain queries to which the

user must type a reply. The queries are the same for all programs. The user's replies will vary, however,

depending on the particulars of the program being loaded.

When loading a program into core, the user should first check to see whether Monitor is in

core. This is done by typing tC (CTRL key and then the C key). The tC will not echo (not print on

the teleprinter). If Monitor is in core, it will respond by typing a period (•) at the left margin of the

teleprinter paper. If a period is not typed in response to tC, ".;'<>nitor is not in core. Therefore, the

user should refer to Chapter 2 of this manual for information on building Monitor and putting it into

core.

The library system includes the Binary Loader (LOAD) which is automatically saved on the

disk at build time. (For Loader operating procedures see Paragraph 2.5.)

The user may save any program on the disk by responding to the last period typed by Monitor

with the word SAVE, a four character name of the program, the type of program (user or system),

whether it's a one or more page save, and the location of its starting address, as is thoroughly de

scribed in Paragraph 2.6.

After each program is saved on the system device, it may be called (i .e., transferred from

the disk into core) merely by responding to Monitor (to a period) with the four characters designated as

the name of that program, as explained in Paragraph 2.7.

3.1 PI P

PIP (~eripheral ~nterchange ~rogram) performs general utility operations, such as listing the

contents of specified directories, deleting unwanted files from the system device, and transferring files

between devices, and copying specified files. PIP enables the user to do any of the above operations

merely by typing commands from the teleprinter keyboard.

3.1.1 Loading and Saving

PIP is loaded into core as indicated in Appendix E. Core requirements, starting address, and

number of passes through the Binary Loader (hereafter frequently referred to merely as Loader) are also

found in Appendix E.

To load PIP into core, the user calls LOAD, using Monitor, and replies to the system re

sponses as explained in Chapter 2.

3-1

When in core, PI P may be saved on the system device as a system device by Monitor, as in

dicated in Appendix E. (See Paragraph 2.6.1 for a detailed description of the SAVE format.)

When loading and saving PIP, the printout wi" take the following format. (See Appendix E

for precise core limits.)

3.1.2 Operating Procedures

• LOAD ,J
*IN-R: ,J

*
*OPT-1 J
*ST= ~

Jl
.:..SAVE PIP! 0-3177;1000 J

':"J

PIP has now been loaded into core and saved on the disk. To use PIP, the user must call PIP

via Monitor which can be done only in response to a period. If a period is not present as the last system

response, the user must type te, which should cause Monitor ;'0 type the needed period. The printout

should appear as follows:

• PIP J

which transfers PIP from the disk into core. PIP now responds with

*OPT-

and waits for the user to select and specify one of the following:

L
B
D
F
M
P
R
5
U
J or A

List entire system directory
Copy a binary file
Delete a file to be specified
Copy a FORTRAN binary file
Move directory to safe disk
Protect disk 1 (blocks 0-176)
Restore directory from safe disk
Copy a system fi Ie 1
Copy a use r fi Ie 1
Copy a USA SCII file

If the user selects an option using any character other than one of those listed above, the option is

recognized as i"egal; PIP ignores the request, types? (question mark), and asks for another option

character. The output appears as fo"ows~

*OPT -G ,J
~
*OPT-

1 User system files may not be copied onto paper tape.

3-2

Pages 3-1 through 3-4h, attached, replace pages 3-1

through 3-4 of the PDP-8/1 Disk Monitor System, DEC

D8-SDAA-D.

When in core, PIP may be saved on the system device as

a system program by Monitor, as indicated in Appendix E. (See

Paragraph 2.6.1 for a detailed description of the SAVE format.)

When loading and saving PIP, the printout will take approx-

imately the following format:

• LOADi
*IN-R:.1

*
*OPT-l
*ST=4i
.tl
.SAVE PIP!

3.1.2 Operating Procedures

(type CTRL/P)
0-5l77;lOOO~

PIP has now been loaded into core and saved on the disk.

To use PIP, the user must call PIP via Monitor which can be done

only in response to a period. If a period is not present as the

last system response, the user must typefC, which should cause

Monitor to type the needed period. The printout should appear

as follows:

which transfers PIP from the disk into core. PIP now responds

with

*OPT-

and waits for the user to select and specify one of the following

options.

3-2

L List entire directory of device to be
specified

D Delete a file to be specified

M Move copy of directory to write-locked area
of disk (See below)

P Protect blocks 0-176 of disk 0

R Restore the previously moved directory

A or ~ Copy ASCII file (destination and origin(s) to
be specified)

B Copy binary file (destination and origin to be
specified)

F Copy FORTRAN binary file (destination and
origin to be specified)

U Copy user file (file structure~ origin and
destination to be specified)

S Copy system file (file structured origin and
destination to be specified)l

The user types only the option character, to which Monitor immed-

iately responds with a carriage return and line feed. The user

does not terminate the line with the RETURN key, it is a meaningful

option.

If the user selects an option using any character other

than one of those listed above, the option is illegal, and PIP

ignores the request, types? (question mark), and asks for another

option character. The output would appear as follows:

*OPT-G
?
*OPT-

1 User and system files may not be copied onto paper tape as

they are core images and have no defined paper tape format.

3-3

The L option lists the entire directory of the system

device or DECtape on which a directory exists. For example,

.PIP~
*OPT-L
*IN-S :12
~426

NAME TYPE
~--

PALD. SYS (0)
EDIT.SYS (0)
LOAD.SYS (0)
. CD .. SYS (0)
PIP .SYS (0)
DDT .ASCII
FOO .USER (0)
BAR .SYS (0)

BLK

0037
0015
0003
0006
0015
0062
0001
0037

User calls PIP
list option of the
system device directory
PIP types number of free (unused)
blocks remaining on specified
device

followed by filename and des
cription; e.g., PAL-D is a system
program in field 0 and occupies
378 blocks of storage

When the user specifies the D (delete a file) option, PIP

responds with

*FILE TYPE(A,B,F,U,S)-

where A, B, F, U, and S are the legal options from which the user

may choose; indicating ASCII, binary, FORTRAN binary (compiler

output), user (see Section 2.6.1), and system program (see Section

2.6.1), respectively.

If the user's reply is S ~, indicating a system file, PIP

asks

REALLY?

3-4

PIP will not delete a system file unless the user answers

by typing

YJ (meaning yes)

to the question. Any reply other than YJ causes PIP to repeat

the FILE TYPE request. When the user types YJ , PIP responds

with

*IN-

and waits for the user to specify the device and filename of the

system file to be deleted. The printout would appear as:

*OPT-D
*FILE TYPE(A,B,F,U,S)-S~
REALLY?N~
*FILE TYPE(A,B,F,U,S)-S~
REALLY?Y~
*IN-S :BA~
*OPT-

delete option speci
fying system file.
user must reply with Y.1

PIP repeats request.
user replied correctly.
PIP needs device & filename,
file is deleted and PIP asks
for the next option.

When the file has been properly identified and deleted PIP returns

to ask for another option. If filename BAR, in the example above,

had not been on the specified device, PIP would have ignored the

request and typed a ? before asking for another option. For example,

*IN-S:BAR.
-?--

*OPT-

3 -4a

BAR is not the name of a
file on the specified
device

The user should not try to delete the system files

.CD. or LOAD.

Opti~ns M, P, and R, ln conjunction with the hardware

write-lock switch, allow the user to protect the lower 16K of

his disk (l/2 of disk ~ for users with more than one disk)

while using the system software. The user may specify either

the system device or a DECtape unit numbered ~-7. Since only

input is requested, the action specified by the option is per-

formed solely on the device specified. For instance, it is

not possible to use the M option to move the system directory

to another device.

The M option will move a copy of the first directory block

(the first 25 10 filenames), block 177, of the device specified

to block 3 of the same device. It also moves a copy of the

first SAM (storage allocation map) block, block 200, of that

device to block 4 of that device. If the user were to move

a copy of the system file directory, the printout would appear

as follows:

*OPT-M
*IN-S:~
*6PT-

move option specifying the
the system device
PIP asks for another option

The P option searches the first Sfu~ block, block 200, for

free or unused blocks in the lower half of the first disk. All

unused blocks are marked as being used by Monitor, thus the

lower half of the disk appears to have no unused spaco--it is

protected. The user may now activate the write-lock switch on

3-4b

the disk control unit and Monitor will not attempt to write

on the protected portion. If all blocks in the lower half of the

first disk are already used, the P option does nothing. This

option will function independently of the M option. However,

unless the user has previously moved a copy of the true directory

which he can later restore, there is no way (short of rebuilding

the disk) to recover the space used by the P option. The printout

would look as follows:

*OPT-P
*IN-S:.l,
*OPT-

protect option specifying
the system device
PIP asks for another option

The R option restores the copy of the directory name block

(DN block 1) from block 3 back onto block 177 and the copy of

the SAM block from block 4 back onto block 200. It then zeros

all SAM blocks above the first one (if any) as well as directory

name blocks 2 and 3. The R option will do nothing until a Move

has been done on the specified device, so that a system may not

be destroyed by inadvertently requesting the R option. The

printout would look as follows:

*OPT-R
*IN-S:.
*OPT-

restore option specifying
the system device
PIP asks for another option

The directory which is Moved should be one which does not

contain files likely to be deleted from the working directory

after the move. Some typical uses for the M, P, and R options

are:

1. M to save a specific disk (or DECtape) status and

later R to effectively erase all scratch files created subsequent

to the M, thus restoring the device to its status prior to the M.

3-4c

2. M, P, set write-lock switch, and operate protected.

3. L to determine the number of unused blocks and for

a report pn the status of the system device.

Files .SYM and .DDT should not be in the protected area of

the disk. They are scratch files used by DDT-D and PAL-D during

their operation and require output to the disk. (See PAL-D DISK

ASSEMBLER, DEC-D8-ASAA-D, and Section 3.5.1 of this manual.)

Options A, B, F, U, and S are used to transfer files from

one device to another. When the user has requested any of these

five options PIP responds with

*OUT-

and waits for the user to specify the destination or output

file, and if the destination is disk or DEC tape , the name of

the file. For example,

*OPT-A
*OUT-S:ASCI.

copy an ASCII file option
specifying the destination and
filename

Only one destination is legal, and if the user specifies

more than one, PIP will ignore the response, type the error

message E, and return control to Monitor. For example,

*OPT-A
*OUT-S:ASCI, E

copy an ASCII file option
PIP recognizes the comma, which
is used to separate file and device
names; control returns to Monitor.

NOTE: The Land D options return to PIP's option request (*OPT-)

when the user responds illegally, and all other options

return control to Monitor.

3-4d

PIP indicates acceptance of the user's destination by

responding with *, carriage return/line feed, and *IN-, and

waits for the user to specify the input, that is, to state from

where the input is to originate. An attempt to specify more

than one input to any but the A option will cause PIP to ignore

the response, type the error message E, and return control to

Monitor. For example,

*OPT-F
*OUT-S:FORT~

* *IN-S:, E

copy a FORTRAN file option
specifying system device and filename
PIP accepts user's destination
input to system device, comma is
used to separate device names
control returns to Monitor

The A option will allow any combination of up to 1~ ASCII

input files to be merged into one output file in the order

specified by the input list. Therefore, the user may write

generalized subroutines as separate files to do his often re-

peated operations and then, by combining these with each special-

ized program before assembly, eliminate the need to rewrite such

operations for each program. PIP acknowledges each legal input

file by printing an * If, however, the input file specified to

any option is not found on the specified device, PIP prints I in

place of the * and returns to the., Moni"tor. For example,

*IN-S:FIL2.\.

!r

:IN-S:FIL3.),
I -

the file does exist; when the
user types CTRL/P, copying begins

the file does not exist

If the user requests the B option indicating he wishes

to copy a binary file but the filename he has specified appears

3-4e

as an ASCII file, it is not acceptable, therefore, PIP prints an I

control returns to Monitor. The user can ascertain file types

by usinq the L option and checking the file directory.

A summary of the copy features of PIP is presented in the

following table.

Option

ASCII A
Binary B
FORTRAN

Binary F
User U
System S

3.1. 3 Examples

.PIP;

*OPT-L
*IN-S :J
~426

NAME
so

TYPE

PALD • SYS
EDIT • SYS
LOAD . SYS
• CD. . SYS
PIP . SYS
DDT .ASCII

Number of
Input Files

11
1

1
1
1

BLK

(0) 0037
(0) 0015
(0) 0003
(0) 0006
(0) 0015

0062
FOO . USER (0) 0001
BAR .SYS (0) 0037
*OPT-D

Disk

Yes
Yes

Yes
Yes
Yes

*FILE TYPE(A,B,F,U,S)-U~
*IN-S:FOO~

*OPT-D
*FILE TYPE(A,B,F,U,S)-S~
REALLY?Y.}..

*IN-S:BAR~

High-Speed
DECtape Reader/Punch Teletype

Yes Yes Yes
Yes Yes Yes

Yes Yes Yes
Yes No No
Yes No No

User calls PIP
and requests the list option

of the system device directory
PIP types number of free (unused)
blocks remaining on specified
device

followed by filenam~ and des
cription; e.g., PAL-D is a
system program in field 0 and
occupies 378 blocks of storage

User requests the delete option
and specifies type of file,U(user)
and device and filename;file is
deleted
User requests the delete option
and specifies type of file, S
(system) (PIP double checks); Y
is the only meaningful answer
User specifies file and filename;
file is deleted

3-4f

*OPT-L
*IN-S:,
~466
NAME
an-

TYPE

PALD · SYS
EDIT · SYS
LOAD · SYS
.CD. · SYS
PIP · SYS
DDT · ASCII
*OPT-D

(0)
(0)
(0)
(0)
(0)

BLK

0037
0015
0003
0006
0015
0062

*FILE TYPE(A,B,F,U,S)-S.
REALLY?N.
*FILE TYPE(A,B,F,U,S)-S~
REALLY1Wt
*FILE TYPE(A,B,F,U,S)-S~
REALLY?Y~
*IN-S:EX C~
-?--

*OPT-D
*FILE TYPE(A,B,F,U,S)-U.
*IN-S:NONE~
?
*OPT-D
*FILE TYPE(A,B,F,U,S)-A~
*IN-S:EDIT.
?
*OPT-D
*FILE TYPE(A,B,F,U,S)-B~
*IN-S:EDIT~
-?--

*OPT-

User requests list option
and system device directory
Note increase of 40 8 free
blocks (see above)

Note removal of two deleted files

User requests delete option

Y is only response for deletion of
a system file; other responses
cause PIP to repeat the file type
request

Even if user responds to REALLY?
with Y, PIP will not delete the
Monitor file

PIP knows NONE is not an existing
user filename on the system device
and indicates by typing ?
User requests ASCII file option
PIP also knows when the filename
and file type don't match; EDIT is
a system program

Yrerge into an ASCII file on disk II]lSCI", one tape from the

reader, one tape from the Teletype, one file from disk called SRC,

and one file from DECtape 7 called SRC1.

*OPT-A
*OUT-S:ASCI~

*
*IN-R:,T:,S:SRC,D7:SRCl\
-*--

*
* * t ttf
*OPT-

(type CTRL/P after each file)

3-4g

Copy the system file PIP from disk to DECtape 3 using file-

name PIPX.

*OPT-S
*OUT-D3:PIPxl

*
*IN-S:PIP)

*1
*OPT-

(type CTRL/P)

Try to merge two binary files onto disk called BIN from

paper tape.

*OPT-B
*OUT-S : BIN~

*
WIN-R: ,~ (list exceeded)

Try to copy an ASCII paper tape from high-speed reader, a

non-existent file from DECtape 5, and a paper tape from Teletype

to high-speed punch.

*OPT-A
*OUT-R:~

*
*IN-R:,D5:FOO,T:)
-*--

~

3-4h

(R: accepted as legal)
(D5:FOO rejected, no such file
on D 5:)

3.2 EDITOR

Editor (Disk System Editor) enables the user to generate and edit symbolic programs on -line

from the teleprinter keyboard. The symbolic program may be either printed on the teleprinter, punched

on paper tape using the high-or low-speed punch, or saved on the system device as a user program.

Editor operates either in command or text mode. In command mode, all typed input is in

terpreted as a command instructing Editor to perform a certain operation or to allow the user to perform

an operation on the text stored in the buffer. In text mode, all typed input is interpreted as text to

replace, to be inserted into, or to be appended to the contents of the text buffer.

The command language of the Disk System Editor is identical to that of the PDP-8 Symbolic

Editor (DEC-08-ESAB-D) but with the following exceptions.

a. Special characters:

tP

tC

b. Commands:

P

nP

m,nP

F

E

During output, progress stops and control is returned to command
mode.

Always returns control to Monitor.

Proceed, and output entire contents of the buffer followed by a form
feed and return to command mode.

Output line n, foil owed by a form feed, return to command mode.

Output lines m through n, followed by a form feed, return to com
mand mode.

Illegal command

Process entire file (perform enough NEXT commands to fill the file)
and create an end -of -fi Ie indicator (legal only for output to the
system device).

Certain keys have special operating functions. These keys and their associated functions are

listed in Table 3-1.

Key

J (carri age return)

... (back arrow)

'" (rubout)

FORM FEED

Table 3-1
Special Key Functions

Functions

Text mode: Enter the I ine in the text buffer.
Command mode: Execute the command .

Text mode: Cancel the entire line of text and
continue typing on same line.

Command mode: cancel command.

Text mode: Delete from right to left one charac-
ter for each rubout typed (is not in effect during
a REA D command).

Command mode: Delete entire command.

Text mode: End of input, return to command mode.

3-5

Key

• (period)

/ (slash)

~ (line feed)

ALT MODE

ESCape

< (left angle bracket)

= (equal sign)

: (colon)

-.t (tabulation)

Table 3-1 (Cont)
Special Key Functions

Functions

Command mode: Current line counter used as
argument alone or in combination with + or -
and a number.

Command mode: Value equal to number of last
I ine in buffer and used as argument.

Text mode: Used in SEARCH command to insert a
carriage return/line feed combination into the line
being searched.

Command mode: List the next line.

Command mode: List the next line.

Command mode: List the next line.

Command mode: List the previous line.

Command mode: Used in coni unction with
to obtain their value (. = 27).

• and /

Command mode: Lower case character I same func
tion as = .

Text mode: a, output I is interpreted as spa ces
or a tab/rubout combination.

Table 3-2 is a summary of Editor commands.

Table 3-2
Summary of Editor Commands

Command Format(s} Meaning

READ RJ Read incom ing text and append to buffer unti I a
form feed is encountered.

APPEND AJ Append incoming text to any already in the buffer
until a form feed is encountered.

LIST L J List the entire buffer.
nL J List the line n.

m/nL J Li st lines m through n.

PROCEED PJ Proceed and output the entire contents of the
buffer and return to command mode.

nP J Output line n I foil owed by a form feed.
m/nP J Output lines m through n , followed by a form feed.

TRAI LER TJ Punch four inches of trailer.

NEXT NJ Punch the entire buffer and a form feed; kill the
buffer and read next page.

nN J Repeat the above sequence n times.

KILL KJ Ki II the buffer.

DELETE nD J Delete linen.
m,nD J Delete lines m through n.

3-6

Command

INSERT

CHANGE

MOVE

GET

SEARCH

END FI LE

Table 3-2 (Cont)
Summary of Editor Commands

Format(s) Meaning

IJ Insert before line one all text until a form feed is
encountered.

nl J Insert before line n unti I a form feed is encountered.

nC J Delete line n and replace it with any number of
lines from the keyboard until a form feed is en-
countered.

m,nC J Delete lines m through n, replace from keyboard
as above until form feed is encountered.

m,n$kM J Move and insert lines m through n before line k.

GJ Get and list the next line beginningwith a tag.
nG J Get and list the next line after line n which begins

with a tag.

S J Search the entire buffer for the character specified
(but not echoed) after the carriage return;
allow modification when found.

nS J Search line n, as above, allow modification.
m,nS J Search linesm through n, allow modification.

E J Process the entire file (perform enough NEXT
commands to pass over the entire file) and
create an end-of-file indication; legal only
for output to the system devi ce. If the low-
speed paper tape reader is used for input while
performing an E command, the paper tape reader
will eventually run out ot tape, and at this point
typing a form feed wi II allow the command to be
completed.

Editor will print an error message consisting of a question mark whenever the user requests

nonexistent information or uses an inconsistent or incorrect format in typing a command. The question

mark will be followed by a carriage return/line feed and the command will be ignored.

3.2.1 Loading and Saving

Editor is loaded into core from punched paper tape in one pass using the Loader. When in

core, it occupies locations shown in Appendix E.

To load Editor into core, the user calls LOAD, using Monitor, and replies to the system re

sponses as explained at the beginning of this chapter and in Paragraph 2.5.

When in core, Editor may be saved on the system device as a system program by Monitor when

the user types the command indicated in Appendix E.

(See Paragraph 2.6.1 for detained description of the SAVE format.)

3-7

3.2.2

When loading and saving Editor, the printout should appear approximately as follows •

• LOAD';
IN-R: ,; ---
*OPT -1,J
*ST -7600 J
tt

.=..SAVE EDITlO-3177; 2600 J

Operating Procedures

(See Appendix E.)

Editor is transferred from the system device into core by Monitor when the user types

EDIT J

Editor is now in core and responds by typing

*OUT-

The user selects one of the following output devices: (T:) for low-speed reader/punch; (R:) for high-speed

reader/punch; (S:name) for output to the systems device on a file called name and types his choice

immediately after OUT -. If the specified device is not valid, that is, not declared when building

Monitor, Editor will respond with an error message (see Paragraph 2.8) and return control to Monitor.

Thus the user must call EDIT and respond to *OUT- with a valid device.

When Editor recognizes a valid device, it responds with * J (asterisk, carriage return/line

feed) and *IN-, as shown below.

*
*IN-

The user now specifies the input device by typing T: J , R:,J , or S:nameJ orJ in the same manner as

when replying to *OUT-, above. 1

The Editor responds with

*OPT-

asking the user to specify one of the following options.

B ~

D ~

C J

Preserve blanks. Editor normally replaces
multiple blanks (spaces) with tabs, resulting
in considerable saving of space on the system
device.
Enter dynamic deletion mode if input is from the system
device. As the file is read, it is deleted from the system
device, thus allowing space for output if desired. (File
name remains on the directory but without any assigned blocks.)

Combine the functions of Band D options.

None of the above options; assume conversion of
two or more blanks to tabs, and not D.

1With a System Device output, the user must type E J to properly close the output file.

3-8

After the user has specified one of the options listed above, Editor responds with a carriage

return/line feed and asterisk. The entire printout might appear as follows •

• EDIT J
*OUT-R:J
*
IN-T: J ---
*OPT-BJ
*
*

The appearance of the last asterisk in the example above indicates that Editor is ready to

accept and operate on the user1s symbolic program.

The user may now load the symbolic program into core by using the procedures described in

Paragraph 2.5.

3.2.3 Example

• LOAD J

*IN-R: J

*
*OPT -1 J
*ST- J
tt

...:..SAVE EDIT 10-3177;2600 J

...:..EDIT- J

*OUT-S:SRC1 J
*
*IN-R: J

*
*OPT- J
*R J
~E J
.,:.EDIT J

*OUT- J

*
*IN-S:SRC1 J

JL

*OPT
!RJ
-!L J

Call Loader using Monitor

Input to be from high -speed reader

Input device valid
One-pass load
Return to Monitor after loading
Editor is loaded
and saved on the system device
Call Editor using Monitor

Output to be on system device, file named SRC1

Input to be from high -speed reader

Input device valid
No blanks, no dynamic deletion mode
Read incoming text
Process entire fi Ie

Call Editor using IVonitor

No output desired

Input from filename SRC1

Filename valid
No option desired
Read incoming text
List the entire buffer

!:7400
ODUM,

/STARTING ADDRESS OF PROGRAM

*/L
$

CLA
OW /GET LOWER LIMIT
DCA LOCK
HLT
OSR /GET UPPER LlMI T

CMA (t P was typed here, stopped listing of buffer)

(C was typed here)

3-9

3.3 PAL-D DISK ASSEMBLER

PAL-D, the acronym for ~rogram Assembly J:anguage for the Qisk system, is the symbolic

assembly program desi gned primarily for the 4K PD P-8 fami Iy of computers wi th di sk or DECtape.

The PAl-D Assembler performs many useful functions, making machine language program

ming easier, faster, and more efficient. Basically, the Assembler processes the user's source program

statements by translating mnemonic operation codes into the binary codes needed in machine instruc

tions' relating symbols to numeric values, assigning absolute core addresses for program instructions and

data, and preparing an output listing of the program which includes notification of any errors detected

during the assembly process.

The user may use pseudo -operators (pseudo -ops) to direct PA l-D to perform certain tasks or

to interpret subsequent coding in a certain manner. Instead of generating instructions or data, pseudo

ops direct the Assembler on how to proceed with the assembly. Pseudo-ops are maintained in the

Assembler's permanent symbol table.

The following is a summary of PAL-D's pseudo-ops.

Pseudo
Operator

PAGE

PAGE n

FIELD n

DECIMAL

OCTAL

XlIST

TEXT

$

PAUSE

EXPUNGE

FIXTAB

Table 3-3
PAl-D Pseudo-Operators

Explanation

Set current location counter to first location on next page.

Set current location counter to first location on page n.

load subsequent data in field n.

Interpret subsequent integers as decimal.

Interpret subsequent integers as octal.

Data enclosed is not to appear on third pass listing.

Input text strings in USA SCII code trimmed to six bits.

End of program, terminate current pass.

End of fi Ie, terminate processing, proceed to next fi Ie.

Erase symbol table, except pseudo-ops.

Append to symbol table.

The Assembler is thoroughly documented in PAl-D Disk Assembler Programming Manual

(Doc. No. DEC-D8-ASAA-D).

3.3.1 loading and Saving

PAl-D is loaded into core from punched paper tape in two passes using Loader. When in

core, it occupies locations, as shown in Appendix E.

To load PAl-D into core, the user calls lOAD using Monitor and replies to the system

responses as explained at the beginning of this chapter.

3-10

When in core, PAL-D may be saved on the system device as a system program by Monitor

as described in Appendix E. (See Paragraph 2.6.1 for a detailed description of the SAVE format.)

When loading and saving PAL-D, the printout should appear approximately as shown below.

(See Paragraph 2.5.)

3.3.2

typing

Operating Procedures

.LOADJ
IN-R:J ---
*OPT-2 J
~r6POJ
.!..SAVE PALO !0-7577; 6200.1

PAL-D is transferred from the system device to core using Monitor. The user begins by

• PALO J

PAL-D responds with a request for the output device by typing

*OUT-

The user selects the output device by specifying one of the following.

T: J

R: J

S:name J

PAL-D then responds with

for the low -speed punch

for the high -speed punch

for output to the system device as a file called name

*IN-

and waits for the user to select the input device(s). Up to five input devices may be specified (for

example, R:, T:, R:, R:, T:J), but in this example the user selected

R: J input from the high -speed reader

If the user had specified the devices in the parenthetical example above, PAL-D would have

typed an asterisk for each input device that it found valid.

When PA L-D is satisfied that the input device is valid (i .e., the device does exist or the

file is present on the file-structured device), it will request the third-pass listing option by typing

*OPT-

3-11

The user types one of the following.

T J
R ,)

J

meaning listing and symbols are to be produced on the teleprinter

meanin~ listing and symbols are to be produced on the high -speed
reader/punch

meaning no third pass desired

(any other character means no third pass desired)

The entire printout might appear as follows •

• PALD J
*OUT-T: J
*
IN-R:J ---
*OPT - T J

PAL-D is now ready to proceed with the assembly, pausing only when user intervention is

required (i.e., placing a new paper tape in the reader, turning off the punch, etc.). On these occa

sions, PAL-D will type an up-arrow (t) on the teleprinter and wait for the user to type tP, indicating

that the user is ready to continue with the assembly.

Assembly may be terminated and control may be returned to Monitor at any time by typing

tC. When assembly is complete, control is automatically returned to Monitor.

PAL-D makes many error checks as it processes source language statements. When an error

is detected the Assembler prints an error message. The format of the error messages is

ERROR CODE ADDRESS

where ERROR CODE is a two-letter code which specifies the type of error, and ADDRESS is either the

absol ute octal address where the error occurred or the address of the error relative to the last symbol ic

tag (if there was one) on the current page.

PAL-D's error messages are listed and explained below.

Error Code

BE

DE

DF

IC
ID

IE

II

PE

PH

SE

US

ZE

Table 3-4
PAL-D Error Messages

Explanation

Two PAL-D internal tables have overlapped.

System device error

System device full

II legal character

Illegal redefinition of a symbol

Illegal equal sign

Illegal indirect address

Current nonzero page exceeded

Phase error

Symbol table exceeded

Undefined symbol

Page zero exceeded

3-12

3.3.3 Examples

The following example shows the entire process covered in thi s section.

• LOAD J

*IN-R: J

*
*OPT-2 J
*ST- J
tt t t
.!.. SAVE PALO 10-7577; 6200 ,J

• PALO J
*OUT-S:BIN J

*
*IN-S:SRC1 ,J

*
*OPT-R J
.!..LOAD J
*IN-S:BIN J

*
*OPT-2 J

*ST= ,J
tttt

Call Loader

Input to be from high -speed reader

Loader found input device valid
Two-pass load
Return to Monitor after loading
PAL-D is loaded
PAL-D is saved on disk (see Appendix E)

Call PAL-D

Output to filename BIN on system device

filename and system device are valid
Input to filename SRC1 from system device

Filename and system device are valid
Output listing and symbols on high -speed reader/punch
Call Loader

Input to filename BIN from system device

Filename and system device are valid
PAL-D generates relocatable binary code from sources
program in two passes
Return to Monitor after assembly
Source program is translated into relocatable binary
code, followed by the output of the listing and symbols
on the high-speed punch

3.4 FORTRAN-D

FORTRAN-D (FORmula TRANslation for the Disk System), is an expanded version of standard

PDP-8 FORTRAN designed for PDP-8 computers with disk or DECtape units.

FORTRAN-D contains a compiler and an operating system. The FORTRAN compiler is used

to convert a source program into an object program. The FORTRAN operating system is used to execute

the obj ect program.

This version of FORTRAN is designed to facilitate user/system communication by typing

appropriate commands from the teleprinter keyboard, eliminating the need to toggle input using the

switch registers.

FORTRAN statements specify the computations required to carry out the processes of the

FORTRAN program. There are four types of statements provided for by the FORTRAN language:

a. Arithmetic statements define a numerical calculation.

b. Control statements determine the sequence of operation in the program.

c. Specification statements define the properties of variables, functions, and arrays ap

pearing in the source program. They also enable the user to control storage allocation.

d. Input-output statements are used to transmit information between the computer and re-

1ated input-output devices.

3-13

A summary of the FORTRAN statements is given in Table 3-5.

Statement and form

1. Arithmetic Statements

v = e

2. Control Statements

GO TOn

GO TO (n 1 ,n2 , ••• nn),i

CONTINUE

PAUSE

PAUSE n

STOP

END

3. Specification statements

DEFINE device

FORMAT (s1' s2'·· .sn)

COMMENT

4. Input-Output Statements

ACCEPT f, list

TYPE f,list

READ u,f,list

WRITE u,f,list

Table 3-5
Summary of FORTRAN Statements

Expl anation

v is a variable (possibly subscripted); e is
an expression.

n is a statement number.

n l' ... nn are statement numbers; i is a non

subscripted integer variable.

e is an expression; n 1,n2,n 3 are statement
numbers.

n is a statement number of a CONTINUE;
i is an integer variable; k1,k2 ,k3 are

integers or nonsubscripted integer variables.

Proceed

Temporarily suspend execution.

n is an address; subroutine execution will
commence at n.

Terminate execution.

Terminate compilation; last statement in
program.

v1, ••• vn are variable names; n1, ••• nn are

integers.

Device is DISK or TAPE, system I/O device.

s is a data field specification.

Designated by C as first character on line.

f is a FORMAT statement number; list is a
list of variables.

f is a FORMAT statement number; list is a
list of variables.

u is an integer, representing device from
wh ich data is to be read.

f is a FORMAT statement number; list is a
list of variables.

u is an integer, representing device onto
which data will be written.

f is a FORMAT statement number; list is a
list of variables.

3-14

The following functions are allowed:

SQTF(x) square root of x

SINF(x) sine of x

COSF(x) cosine of x

ATNF(x) arctangent of x (in radians)

EXPF(x) exponential of x

LOGF(x) logarithm of x

ABSF(x) absolute value of x

Certain input-output statements have special characteristics when used with disk or DECtape

un its.

a. The READ and WRITE statements disable the user from performing sequential input and
output either on paper tape or on the system device.

b. A DEFINE statement must precede the first executable statement in any program by using
the system device to input or output data.

c. When the operating system is called, the input or output filename must be specified by
using the S option if data is to be read from or written on the system device.

d. When a READ statement is used with the teleprinter, the statement differs from the
ACCEPT statement in that the data be ing read is not echoed on the printer.

e. A WRITE statement used with the teleprinter differs from a TYPE statement in that it
always terminates by typing a carrige return-line feed.

f. The READ and WRITE statements allow the user to input and output data on either the
teleprinter, the high-speed reader/punch, or the system device.

g. When the ACCEPT statement is used, the rubout character deletes the previous number as
shown in the following examples.

T tEed and Correc ted Read

Integer Numbers:

128 1028 +1028
128 -28 -128

-128 128 +128

Floating -Eoint numbers:

2 42 +42.0
+2. 42 +42.0

-2.0 2.0 +2.0
42 -42.2 -42.2

105 20E6 5 +2.0 x
2.0E-6 5 +2.0 x 105

h. When the READ statement is used, the rubout character is completely ignored.

The following examples show how the READ and WRITE statements might be used in a typical

FORTRAN program.

3-15

C EXAMPLE PROGRAM TO READ COORDINATE PAIRS
C FROM THE TELETYPE AND STORE THEM ON
C THE SYSTEM DEVICE

DEFINE DISK
TYPE 100

100 FORMAT ("ENTER THE NUMBER OF COORDINATE PAIRS'Y)
ACCEPT 10,N

10 FORMA T (1)
TYPE 102

102 FORMAT ("NOW ENTER THE COORDINATES'Y)
D020 l=l,N
ACCEPT 30,X, Y
WRITE 3,30,X, Y

20 CONTINUE
STOP

30 FORMA T (E, E)
END

Several READ and WRITE statements may occur within a single DO loop and may refer to dif

ferent devices. The data is written in USA SCII format regardless of the device used. The following

program demonstrates how information previously stored on the disk might be read, processed, and

punched using the high-speed punch.

C FORTRAN EXAMPLE PROGRAM
DEFINE DISK
DIMENSION X(100), Y(100)

C READ DATA FROM THE DISK DEVICE NR3
IDEV=3

6 SUMX=O
SUMY=O
DO 10 1=1,100
READ IDEV,20,X(1), Y(1)
WRITE 2,20,X(l), Y(1)
SUMX= SUMX + X(1)
SUMY= SUMY+Y(1)

10 CONTINUE
TYPE 30, SUMX, SUMY
ACCEPT 40,J
IF (J) 12,12,6

12 STOP
20 FORMAT (E,E)
30 FORMAT ("SUM OF X VALUES = ",E," SUM OF YVALUES = ",E,"

//"TYPE 0 TO STOP, 1 TO CONTINUE")
40 FORMA T (1)

END

3.4.1 Compiler

The compiler consists of a loader (FORT) and the main portion of the compiler (.FT.). This

version of the compiler differs from the standard PDP-8 4K FORTRAN compiler in the following ways.

a. It uses the disk or DECtape unit during its operation.

b. It will compile programs which have been stored on the system devices or programs
which have been prepared on punched paper tape.

c. It will generate a FORTRAN binary output file either on the system devices or on
punched paper tape.

d. Significant improvements have been employed with the READ and WRITE statements.

3-16

e. Input and output devices are determined using the Command Decoder

f. It is possible to terminate compilation at any time by typing tC, thus returning control
to Monitor.

g. Within certain restrictions, a program compiled on a system device may be executed
immediately when the user types t P after compilation of the program.

h. Statement numbers need not be delimited by a semicolon, unless the user wishes them to
be employed for appearance.

i. Statements without preceding numbers must be preceded by a space, a tab, or a semicolon.

3.4.1.1 Loading the FORTRAN Compiler -- To load the compiler, the following steps must be

performed.

a. Load the compiler loader (FORT) into core using Loader in one pass and save it on
the system device as shown in Appendix E. .

b. Load the compiler (.FT.) into core using Loader in two passes and save it on the sys
tem device as shown in Appendix E. The compiler is now loaded and saved on the system device and is
ready for use. The entire procedure will generate the following printout.

• LOAD J
*IN -R: ,)
*
*OPT -1 ,)
*ST=7600J rr-
..t,.SAVE FORTlO-1m; 200J (See Appendix E.)
..!,.LOAD ,J
IN -R: ,J ---
*OPT -2 J
*ST=7600,J
ITfT
..t,.SAVE .FT.1200-7377; J (See Appendix E.)
.!.

The loader occupies core locations 0-1777 with a starting address at 200. The compiler

occupies core locations 200-7377, its starting address is not specified since the loader (not the user)

call s • FT. when needed.

3.4.1.2 Operating Procedures -- The FORTRAN compiler is transferred from the system device into

core when the user responds to Monitor's period with FORT, as shown below •

• FORT J

Command Decoder then types

*OUT-

and waits for the user to specify one of the following:

T: ,J

R: J
S:name ,J

,J

Output on low -speed punch/printer

Output on high -speed punch

Output on system device and assign name

No output desi red

3-17

Command Decoder will respond with an * when it recognizes a valid output device, and then types

*IN-

and waits for the user to specify one of the following:

T:J
R: ,J

S:name ,J

Input to be from low - speed reader

Input to be from high -speed reader

Input to be from system device file named

Command Decoder will type an * when it recognizes a valid input device.

The compiler now assumes control, and if the program to be compiled is on paper tape, the

compiler types t when it is ready to receive the tape for compilation.

When the user is ready to read in his program he should type t P, which initiates compilation.

At the end of compilation the compiler wi II type any error diagnostics necessary, a carriage return/I ine

feed, and t.

The process described above would produce the fol lowing printout •

• FORT ,J
*OUT -R: ,J
*
*IN-R: J
~

T
t (tC typed here; compilation finished)

3.4.1.3 Compiler Diagnostics -- Certain errors can make it impossible for the compiler to proceed in

the normal manner. These are referred to as system errors. They may be caused by improperly loading

the compiler, by not having an END statement on a source file, by a machine malfunction, or for

various other reasons.

There are two types of system errors: those which occur before the compiler has been loaded

into core, and those which occur after the compiler has been loaded into core. In the first case, the

compiler will type a four-digit error code and return control to the Monitor. In the second case, the

compiler will type SYS followed by a four-digit error code. At this point the operator must type tC

to return control to the Monitor.

Table 3-6 lists the system error messages.

3-18

Error
Code

0227

0231

0326

0330

1425

1521

1626

1726

3100

3417

4737

6141

6145

6207

6211

6223

6226

6257

6407

6416

6467

6724

6746

7114

7136

7150

7173

Table 3-6
Compiler Systems Diagnostics

Explanation

Could not find Command Decoder on system device

Same as above

Could not find. FT. on system device

Same as above

READ error during directory or SAM block search

Same as above

Same as above

WRITE error during SAM block search

II legal operator on compiler stack 1
1 Pre -precedence error

No input device or invalid input device specified

Attempt to execute a program not compiled onto the system device

Could not find FOSlon system device; if the error occurs, it may
be necessary to reload FORT and FOSl.

READ error while loading FOSL

Error while doing SAM block manipulation 1

Error while loading. FT.

Same as above

Same as above
1 Illegal overlay request

Same as above

System device READ error

No END statement on source device

Same as above

Same as above

READ error on system device source file

System device full

WRITE error on system device output file

1 Error may be due to a compiler error or a machine malfunction.

3-19

The example below illustrates the appearance of the error codes •

• FORT ,J
0227
• FORT ,J
*OUT- J
*
*1 N - S:name ,)
"'S"YS6141 < t C >

Command Decoder not on system device

No output file specified

Error messages for errors which occur during compilation of a program are typed out upon

completion of the compilation. These errors are referred to as compilation errors and take the form:

XXXX XX XX l L L The error code

The number of statements since the appearance
of last numbered statement (octal)

The statement number of the last numbered statement

For example, during compilation of the statements

.
10 A= I (J + 1)

B7A * (B+ SINF(THTA)

the error message

10 11 11

would be printed, indicating that an error exists in a statement which occurs 11 statements (octal) after

the appearance of statement 10. The message corresponding to error code 11 shows that the number of

left and right parentheses in the statement is not equal. The statement is examined and corrected, then

compilation is resumed.

Table 3-7 lists the compilation error

Table 3-7
Compiler Compilation Diagnostics

Error
Code Ex~lanation --

00 Mixed mode arithmetic expression

01 Missing variable or constant in arithmetic expression

03 Comma was found in an arithmetic expression

04 Too many operators in this expression

05 Function argument is in fixed -point mode

06 Floating-point variable used as a subscript

07 Too many variable names in this program

10 Program too large, core storage exceeded

3-20

Error
Code --

11

12

13

14

15

16

17

20

21

22

23

25

26

Table 3-7 (Cont)
Compiler Compilation Diagnostics

Explanation

Unbalanced right and left parentheses

1/ I ega I cha rac ter found in th i s sta tement

Compiler could not identify this statement

More than one statemen t wi th same statement number

Subscripted variable did not appear in a DIMENSION statement

Statement too long to process

Floating -point operand should have been fixed -point

Undefined statement number

Too many numbered statements in this program

Too many parentheses in this statement

Too many statements have been referenced before they appear in
the program

DEFINE statement was proceeded by some executable statement

Statement does not begin with a space, tab, C, or number

3.4.1.4 Debugging Aid (Symbolprint) -- Symbolprint is a program which may be used with the

FORTRAN compiler. Its purpose is to help the user create and debug his FORTRAN programs by pro

viding certain information about the compiler-generated interpretive code. Symbolprint may be used

only immediately after a program has been compiled by using the Disk/DECtape FORTRAN compiler.

Symbolprint provides the fol/owing information:

a. The limits of the interpretive code.

b. A list of variable names and their corresponding locations (the symbol table).

c. A list of statement numbers and their corresponding locations (the statement number table).

Symbol print is loaded into core from punched paper tape and may be saved on the system de-

vice approximately as shown below (see Paragraph 2.5) •

600.

• LOAD ,J
*IN-R:,J
*
*OPT -1 ,J
*ST - ,J
tt
.!..SAVE STBL!600-777;600,J (See Appendix E.)

When in core, Symbolprint occupies locations 600-m with its starting address at location

3-21

When symbolprint is called into core, it types the interpretive code limits, symbol table,

statement number table, carriage return/line feed, and t. At this point the user may execute his pro

gram by typing tP, or he may return to Monitor by typing tc.
In the following example, a program named SRC is compiled with no output specified. Sym

bolprint is then used as shown above •

• FORT ,;
*OUT- ,)
*
1 N- S: SRC ,; ---
I
..!.STBL,;

6154 7565

N 7576
I" 7515
X 7511
Y 7566

0100 6033
0010 6060
0102 6066
0020 6145
0030 6147

!<tC>

(C typed here)

(Symbol Table)

(Statement Number Table)

In the example above, location 6154 is the highest location used for interpretiv~code and location 7565
"tt-

is the lowest location used for data, indicating that the part of core between 6145 and 7565 is unused.

Interpretive code starts at location 600 if a DEFINE statement appears in the program; otherwise, the

code starts at location 5200.

3.4.2 Operating System

The FORTRAN operating system consists of a loader (FOSl) and the interpreter and arithmetic

subroutine package (. OS.). This version of FOSl differs from the paper tape FORTRAN operating sys

tem in the following ways.

a. It will load and execute programs which have been compiled and saved on the system
device or programs which have been compiled on paper tape.

b. FOSl may be called directly by the compiler when a program has been compiled and
saved on the system device. This is referred to as compile-and-go mode.

c. FOSl is able to recognize READ and WRITE statements which may read and write da.ta in
USA SCII format on either the low-speed paper tape reader/punch, the high-speed paper tape reader/
punch, or the system device.

d. The execution of a FORTRAN program may be interrupted by the user at any time by
typing fCj control will be returned to Monitor.

3-22

3.4.2.1 Loading the FORTRAN Operating System -- To load the operating system, the following

steps are performed.

a. Load the operating system loader (FOSL) using Loader in one pass and save it on the sys
tem device as shown in Appendix E.

b. Load the operating system interpretive and arithmetic package (.OS.) by using Loader
in one pass and save it on the system device as shown in Appendix E. The FORTRAN operating system
is now loaded and ready for use. The loading process wi II generate the following printout.

. LOAD ,)
*IN-R: ,)
*
*OPT -1 J
*ST= ,)
t-t-

:SAVE FOSLlO-1377;200 J
. LOAD J
*IN-R: J
-*--
*OPT -1 ,)
*ST= J
~ t t t

.!..SAVE .OS. 10-4777;0,)

(See Appendix E.)

(See Appendix E.)

The loader occupies core locations 0-1577 with its starting address at 200. The arithmetic

and subroutine package occupies core locations 0-5177; its starting address is not specified since the

loader (not the user) call s . OS. when needed.

3.4.2.2 Operating Procedures -- The FORTRAN operating system may be transferred from the system

device into core in one of two ways: by typing t P immediately after compiling a FORTRAN program

onto the system device, or by typing FOSL immediately after Monitor types a period.

If the operating system is called from Monitor, specify the desired input device by typing

T: J for low -speed reader, R: J for high -speed reader, or S: name,(for system dev ice input. F 0 SL will

type * when it recognizes a valid input device.

FOSL will type *OPT-. If input or output is to be to or from the system device, type S. Any

other character indicates that the system device is not to be used. However, if the S option is used,

FOSLwili type *OUT-. The user should now specify the desired output filename (if any) by typing

S:nameJ (name is the name of the file). FOSLwili ask for the input filename by typing *IN-. The

user should respond with S: and the name of the file, followed by a carriage return.

If the FORTRAN program is on paper tape, Loader will type t when it is ready to begin

loading. When the user is ready to load his program, he types t P and the tape will begin loading.

When the FORTRAN program or file is loaded, FOSL will type *READY, followed by a

carriage return/I ine feed and t. Place data tapes in the appropriate reader and type t P to begin exe

cuting the program. (If the low-speed reader is used, turn the reader ON after typing tP.)

When a STOP or END statement is executed, or when an end -of-file is read on the system

device, the operating system will type 1 and return control to the Monitor.

3-23

The following examples show how the FORTRAN operating system may be used.

Example 1

.FOSL J
IN -S:FBIN J ---
*OPT- ,)
*READY
t

Example 2

!

~FOSl J
*IN -R:, R:,)
*
* tt

ERROR 01
*READY
t

Example 3

.FORT J
*OUT - S: SMSQ J
*
*IN -S:SMSQ J
*
t
*READY J
1.

Example 4

.FOSL ,)
IN-S:BIN ,) ---
*OPT-S
'OUT - S:DA T2 J
*
*IN -S:DAT1 J
;r--

*READY
1.

(Program execution occurs here)

(t P typed here)

(Program execution begins here)

Compile
and
Go

(Program execution begins here)

(Program execution begins here)

In example 2 a checksum error was detected on the second input tape. In this case the operator de

cided to attempt to execute the program in spite of the checksum error.

3-24

3.4.2.3 Operating System Diagnostics -- When an error occurs during program execution, the opera-

ting system will type ERROR followed by a two-digit error code number which will indicate the cause

of the error. Depending on the nature of the error, it may be possible to continue program execution

by typing tP or it may be necessary to return to the Monitor by typing ,c.
The following is a list of the operating system error messages.

Error
Code

01

02

04

05

06

11

12

13

14

15

16

17

20

21

22

40

41

76

77

Table 3-8
Operating System Diagnostics

Explanation

Checksum error on FORTRAN binary input

Illegal origin or data address on FORTRAN binary input

System device input-output error 1

Hi gh - speed reader error

Illegal FORTRAN binary input device

Zero divide error

Floating-point input data conversion error

II I ega I op code

S d ·· 1 ystem eVlce Input-output error

Non - FORMA T statement used as a FORMAT

Illegal FORMAT specification

Floating-point number larger than 2048

Square root of a negative number

Exponential negative number

Logarithm of a number less than or equal to zero

Illegal device code used in READ or WRITE statement

System device full, could not complete a WRITE statement

Stack underflow error 2

Stack overflow error 2

1 May be caused by machine malfunction or operating system error.

2 May be caused by source program or loading error; to correct, do the following
in descending order.

a. Use Diagnose to determine where the error occurred.
b. Recompile the source program.
c. Examine source program (in particular the arithmetic statements and sub

scripted variables).

When an error occurs, execution wi II stop and the operating system wi II wait for the user to

type' P or tC.

3-25

3.4.2.4 Debugging Aid (Diagnose) -- Diagnose is a basic system program whose purpose is to help

the user debug his FORTRAN program. It is intended to be used in conjunction with the PDP-B 4K

FORTRAN Operating System and revised FORTRAN Symbolprint. Diagnose provides the following

information.

a. If stack overflow or underflow has occurred, it will type a message indicating which of
the five run -time stacks caused the error.

b. It will type a message indicating the contents of the current location counter (CLC).

c. If the counter stack is nonempty, it will type the contents of that stack.

d. If location zero is nonzero, it will type the contents of that location (minus one), indi
cating the point at wh ich some FORTRAN systems error occurred.

Diagnose is loaded into core from punched paper tape and may be saved on the system device

as shown in Appendix E •

• LOAD')
*IN -R:,)
*
*OPT -1,J
*ST- J
tt
..!,.SA VE DIAG !200-1177;200,J (See Appendix E.)
..!,.

When in core, Diagnose occupies locations 200-1177 with its starting address at location 200.

Diagnose is called by typing the letters DIAG to the Monitor. It may be used any time the

FORTRAN 4K Operating system is in core. (If it is called any other time, the information typed will be

meaningless.)

The use of Diagnose is demonstrated by the example of the following test program which con

tains a large amount of arithmetic calculations.

Program 1:

*L
C
C
C

FORTST
PDP-8 ADVANCED SOFTWARE
FORTRAN TEST 1/2/68
DIMENSION ADIFE(6),AFAC(3),API PE(6),IMRCD(3), PP(27)
,ACPRI(3)
TYPE 1
FORMAT(IJ PDP-8 4-K FORTRAN TEST'Y)
ASPVA=.60
APIPE(1)=12.09
APIPE(3)=6.66
APIPE(4)=5.
APIPE(5)=5.0
IMRCD(l)=30
IMRCD(2) =30
ADIFE(1)=47.
ADIFE(2)=47.
ADIFE(4)=508.
AD I FE (5) =3857048.
AF=37.96

3-26

199
200

25

472

471

100
110

991

120

130
16

110

991

120

130
16

SC=3.1416
AMEAS=9.02
FSUBB=10.0
ASUVA=100.98
DO 200 1=1,27
READ 2,199, PP{I}
FORMAT{E}
CONTINUE
AGAST=38
INORU=2
BSPVA=11./ASPVA}**.5
DO 550 JCB=l, INORU
AVEDE =IMRCD{JCB}
BE =API PE{JCB+3}/API PE{JCB}
IF{BE- .75}471 ,472,472
AK=.731
GO TO 16
AG=.075
DO 100 IE=l ,27
AG=AG+.025
IF{AG-BE} 100,100,110
CONTINUE
TOTA=PP(lE}
TOTB=PP(lE -1}
SC=.025 -(AG-BE)
WRITE 2,991, TOTA, TOTB, SC,AG, BE, IE
FORMATVII 111 E E E E/II II E I}

"'l " IF{TOTA- TOTB}120, 120, 130
AK=TOTA
GO TO 16
AK=TOTB+{SC *{TOTA- TOTB))/.025
FRO =830.-5000. *BE+9000. *BE**2 -4200. *BE**3+{530./APIPE{JCB}** .5}
BMEAS=AMEAS+14.4
FR=l. +«F RD/(l2835. *AK))/«BMEAS*AVEDE)** .5))
XSUB2 =AVEDE/(27 .7*BMEAS}
YTTA={XSUB2 +1. }**.5
YTTB=.35*BE**4~ +41.
YTTC=XSUB2/(l ~3*YTTA}
YSUB2 =YTTA-YTTB*YTTC
ACPRI{JCB}=YSUB2*FR*1.0177*FSUBB
TOTA +PP(lE}
TOTB=PP(lE -1}
SC=.025-{AG-BE}
WRITE 2,991, TOTA, TOTB, SC,AG,BE, IE
FORMATV" 111 ,E,E,E,E/1I II,E,I}
IF{TOTA=TOTB}120, 120, 130
AK=TOTA
GO TO 16
AK =TOTB+(SC*{TOTA-TOTB))/.025
FRO =830.-5000. *BE+9000. *BE**2 -4200. *BE**3+(530./APIPE{JCB}** .5}
BMEAS=AMEAS+14.4
FR=l. +«FRO/{12835. *AK))/«BMEAS*AVEDE)** .5}}
XSUB2 =AVEDE/f27 .7*BMEAS}
YTTA=O<SUB2+1 .1**.5
YTTB=.35*BE**4.+41.
YTTC=XSUB2/(l.3*YTTA}
YSUB2 =YTTA - YTTB*YTTC
ACPRI (JCB}=YSUB2 *FR*l .0177*FSUBB
AFAC(JCB)=ADIFE(JCB)*BSPVA

3-27

WRITE 2,992,AK,FRD ,AMEAS,BMEAS,FR,XSUB2, YTTA, YTTB, I

YTTC, YSUB2,ACPRI(JCB),JCB
992 FORMATV" 2",E,E,E,E)
550 CONTINUE

AFTF=(520./(460. +AGAST»**. 5
AFPV=(l. +(ASUVA *AMEAS)/((AGAST+460.)**3.825»**.5
FLOW=O
RATE=O
DO 38 1=1,INORU
AMWP=(ADIFE(1)*AMEAS)**. 5/1 000.
RA TE=RA TE +ACPRI(I)
FLOW=FLOW+AFTF*(AFAC(I)*AFPV*AMWP)

38 CONTINUE
WRITE 2, 993,AFTF,AFPV,AMWP, FLOW, RATE
TYPE 14, FLOW, RATE

14 FORMA T(E, E/)
STOP

993 FORMATVE,E,E,E)
END

• STBL

6360 6756

ADIF
AFAC
APIP
IMRC
PP
ACPR
ASPV
AF
SC
AMEA
FSUB
ASUV
I
AGAS
INOR
BSPV
JCB
AVED
BE
AK
AG
IE
TOTA
TOTB
FRD
BMEA
FR
XSUB
YTTA
YTTB
YTTC
YSUB
AFTF
AFPV
FLOW
RATE
AMWP

7555
7544
7522
7517
7376
7365
7362
7310
7302
7274
7266
7260
7254
7246
7244
7240
7231
7225
7222
7213
7205
7201
7171
7166
7153
7124
7116
7102
7074
7063
7047
7041
7032
7016
6m
6773
6766

3-28

0001 5203 I 0199 5411
0200 5414
0025 5426 Q)

0472 5507 ...c

0471 5515 ~
....

0100 5547 Q)
...c

0110 5550 E
0991 5615

:::I
Z

0120 5650 +-

0130 5656
c
Q)

0016 5676 E
Q)

0992 6147
+-
.E

0550 6162 VI

0038 6323 ! 0014 6342
0993 6350

Example 1 (a)

t
*READY
t
PDP-8 4- K FORTRAN TEST

0.255323E+1 -0. 825572E+1
!
.DIAG

CURRENT LOCATION COUNTER AT 6347

Example 1 (b)

.FOSL
*IN-S:BIN
*
*READY
t

PDP-8 4-K FORTRAN TEST

ERROR 05 (tC typed here)
.DIAG

CURRENT LOCATION COUNTER AT 5407

Example 1 (c)

.FOSL
*IN-S:BIN
*
*READY
t

PDP-8 4-K FORTRAN TEST

.DIAG

(tC typed here)

CURRENT LOCATION COUNTER AT 4404

COUNTER STACK •••
4733
4716
4673
6024

3-29

In example l(a), the program was run to completion after which Diagnose was called.

Diagnose indicated that the current location counter contained 6347. By referring to the statement

number table (top of page 3-29, we can see that the CLC was pointing to an address just above state

ment 993 (address 6350), verifying that the program terminated normally at that point.

In example 1 (b), program execution was attempted without paper tape in the high-speed

reader. After observing the error diagnostic 05, Diagnose was called, indicating that CLC=5407.

Again referring to the statement number table, we note that the address 5407 must refer to a statement

just before statement number 199 which is indeed the READ statement at which the error occurred.

In example l(c), program execution was arbitrarily stopped when the user typed tC. It

should be noted that in this case the CLC contained a 4404 which is outside the user's interpretive code

area. In such cases it is necessary to refer to the counter stack in order to determine where the pro

gram interruption occurred. The last address on the counter stack points to location 6024, and by

again referring to the statement number table we can determine that the program was interrupted at

some point between statements 16 and 992.

Program 2 is a FORTRAN program in which a missing operator appears on the 6th line. When

program execution is attempted a stack overflow (error 77) occurs. Diagnose indicates that the operand

stack has overflowed, which suggests some noncompiler detected error in the source program. By re

ferring to the statement number table, which is typed afterwards, we note that the CLC points just

before statement 10, which happens to be the source of the error. It should be pointed out, however,

that when stack overflow or underflow occurs the CLC will not always point to the source of the error.

It may be necessary to examine the entire program for errors of this type.

Program 2:

• EDIT
*OUT-S:SRC
*
*IN-
*
*OPT-B

*1
C FORTRAN TEST

B=l
C=2
D=3
DO 101=1,160
A=B(C+D)

10 CONTINUE
TYPE 20, A

20 FORMAT(E)
STOP
END

*E

.FORT
*OUT-S:BIN
*
*IN-S:SRC

3-30

*

*READY

ERROR 77
(t C typed here)

.DIAG
OPERAND STACK OVERFLOW

CURRENT LOCATION COUNTER AT 5231

.FORT
*OUT-
*
*IN-S:SRC
*

(tC typed here)
• STBL

5251 7555

B 7574
C 7570
D 7564
I 7562
A 7555

0010 5237
0020 5244

When Diagnose finishes typing the appropriate information control returns to the Monitor

since it is impossible to resume FORTRAN program execution.

3.4.3 Examples

• LOADJ
*IN-R:J
-*-
*OPT -1./
*ST= J
t t

:SAVE FORTlO-1777j200J

• LOAD J
*IN-R: ./
*
*OPT-2 J
*ST=J
t t t t
~SAVE .FT. 12oo-7377jOJ

..LLOAD J
IN-R:J --
*OPT -1 J
*ST=J
tt
~SAVE FOSLlO-1377j200./

Co" Loader
Input to be from high -speed reader
Input device is valid
One -pass load
Return to Monitor after loading
Loader-driver is loaded
and saved on the system device

Co" Loader
Input to be from high -speed reader
Input device is valid
Two-pass load
Return to Monitor after loading
Compiler is loaded
and saved on the system device

Call Loader
Input to be from high -speed reader
Input device is valid
One-pass load
Return to Monitor after loading
Operating system loader is loaded
and saved on the system device

3-31

• LOAD,J
IN-R:J ---
*OPT -1 J
"'ST= J
tt

.!.. SAVE • OS. 1O-4777;0,J

• LOADl
*IN-R: J
*
*OPT-1J
*.ST= J
tt
.!..SAVE STBU6oo-m;6oo J

• EDIT J
*OUT-S:FORT J
*
IN-R:J ---
*OPT-B J
*E

.FORT J
*OUT - S:FORT J
*
IN-S:FORT J --
I < tC>J

.!..STBL J

6177

M
A
B
ANS

0001
0002
0003
0004
0005
0006
0009
0100
0200
0300
0400
0500
1000
2000
3000
4000
1500
0008
0007

7565

7576
7573
7570
7565

5200
5257
5413
5570
5717
5754
5760
5763
5766
5771
5774
5m
6027
6040
6051
6062
6071
6077
6123

Call Loader
Input to be from high -speed reader
Input device is valid
One-pass load
Retum to Monitor after loading
Interpretive and arithmetic package is loaded
and saved on the system device

Call loader
Input to be from high -speed reader
Input device is valid
One-pass load
Retum to Monitor after loading
Symbol print is loaded
and saved on the system device

Ca" Editor
Output to be on system device
Output device is valid
Input to be from high -speed reader
Input device is valid
Leave blanks (spaces) unchanged
Write the program on the system device
then wri te an end -of -fi I e

Call FORTRAN compiler
FORTRAN binary output to be on system device
Output device is valid
USA ASCII input to be from system device
Input device is valid
Compilation is finished, retum to Monitor

Ca" FORTRAN Symbol print

Core between 6200 and 7564 is unused

Symbol table (typed by Symbolprint)

Statement number table (typed by Symbolprint)

3-32

i

*READY J
i

Symbolprint is finished, load operating system
and interpretive code

Operating system and interpretive code are loaded
Execute the program

THIS IS A DEMONSTRA TION OF PDP FORTRAN.
THIS PROGRAM WAS COMPILED IN ONE PASS (tC typed here)

• FOSL J Call operating system and loader
*IN-S:FORT J FORTRAN binary input is on system device
* Input device is valid
*OPT -,J No input or output to be done on system device

during program execution
*READY J Operating system and interpretive code have been

loaded
i Begin program execution

THIS IS A DEMONSTRA TION OF PDP FORT (tC typed here)

• FORT J Coli FORTRAN compiler
*OUT - S:FORT J Output to be on the system device
* Output device is valid
*1 N - S:FORT J Input to be from the system device
* Input device is valid
t Compilation is finished, loading operating system

and interpretive code
*READY J Operating system and interpretive code are loaded
1. Begin program execution

THIS IS A DEMONSTRA TION OF (tC typed here)

3.5 DDT -D

DDT -D (~ynamic Qebugging .,!echnique for the Qisk/DECtape System) is used for on -line

checking, testing, and altering object programs by typing from the teleprinter keyboard. When de

bugging on-line, the user checks his program at the computer, controlling its execution, and making

corrections or changes to his program while it is running on the computer.

When using DDT-D, the user should have a listing of his program and its symbols so that he

can update the program listing as corrections and changes are made to his program. The user may refer

to variables and tags by their symbolic names or by their octal values.

DDT -D operates as described in DDT Programming Nlanual, DDT -8 (Doc. No. DEC-OS

CDDA-D), except where that manual differs· from this one, in which case this manual has precedence.

DDT -D can be considered as being in three sections.

a. DD T Proper

b. Driver

Self-explanatory; occupies core locations 200-4577 and
the three breakpoint locations,

Resident in core with its origin set above DDT proper
(above 4577); it is a two-page program plus a one-page
once -only program, and it contains breakpoint insertion
and removal logic, overlay routines, continuation iteration
count and control, and breakpoint list.

3-33

c. User Core Image File Occupies same storage area as DDT proper and is used for
swapping DDT proper and the user program to and from the
system device.

DDT -D is an expanded version of DDT -8 with the following exceptions.

a. Three breakpoints (as opposed to only one in DDT -8)

b. No punching (program may be output on the system device)

c. No switch options (user direction is via keyboard)

d. No hal ts (continues when user types t P)

Variations in commands 1 follows.

a. [O,[S,[Y,[L,[M Are temporary modifications to their respective constants;
are reset at every entrance to DDT -D from a [G or [C

b. [P

c. [C

d. n[Bk

e. n [B, [T, a; b [P, [E

f. [R

Continue (Monitor types t to indicate that it is waiting
for t P) .' A !...

\ ,-...1-+., " Yt~ '- -- yj. J.-,. ,t
-RestoTe user eOFe ima9' aRa rettlll'l to MeAiter

Set breakpoint; where n is the address of the break, [B is
the breakpoint command, and k is 1, 2, or 3

NOTE

If user tries to set two breakpoints at the
same address, a ? is typed and no action
occurs.

Have been removed

Is switch independent

The following subroutines have been added.

a. ADDCHK

b. ADDMOD

c. DDTB

d. STOSYM

e. READS
and

SYMIO

Finds word to be examined and puts it in WORD 2; remembers if
last virtual word referenced was in same buffer as present virtual
word and reads only if required.

Updates real or virtual core.

Updates symbol table pointer, gets value of breakpoint and its
contents, types breakpoint number and a - (hyphen) if a breakpoint,
and goes to TRAP or types nothing and goes to START if breakpoint
number = O.

Updates DDT proper symbol area (DDT proper must be on unprotected
disk).

Input-output routines for disk; a failure in either types S and goes
to start of DDT.

1 The ALT MODE key precedes each command character and is echoed as [•

3-34

The following subroutines have been modified as indicated.

a. RED TAB

b. FINIS

c. CHANGE

d. TODDT

e. TRAP

Assumes user wants to add to existing symbol table; user must type
[X to clear the symbol table.

Does not halt, instead, it waits for the user to type fP.

Allows lookup of values to change limit of search and search mask.

Handles breakpoint insertion; transferred to DDT driver.

Breakpoint handler; transferred to DDT driver.

The following subroutines have been removed.

a. PUNWOR

b. FSTPUN

c. FUN

d. PUNCHK

e. PUNLDR

f. WHICH

g. CHKSUM

From the teleprinter keyboard, the user can automatically stop his program at up to three

strategic points by setting breakpoints, which may be set before the debugging run is started or during

another breakpoint stop. To set a breakpoint, the user types the absolute address or symbolic tag of the

location where he wants his program to stop, the ALT MODE key, the B key, and then the breakpoint

number. For example,

3400[B1
HERE[B2

(absolute address, ALT MODE, B, 1)

(symbolic tag, ALT MODE, B 2)

Locations 3, 4, and 5 on page zero are used as the breakpoint locations. The user may,

however, reset the breakpoint locations to any three contiguous locations on page zero by setting

BRKCEL=n, where n is the lowest of the three locations desired. When the user sets his breakpoints,

DDT-D remembers the locations set with BRKCEL=n.

The following symbols are the address tags of certain regi sters in DDT -D whose contents are

available to the user.

a. A
b. Y

c. M

d. L
e. U

Accumulator storage (at breakpoints)

Link storage (at breakpoints)

Mask used in search

Lower limit of search

Upper limit of search

Table 3-9 lists the DDT-D commands available to the user.

3-35

3.5.1

Character

(space)

+

/

J (carriage return)

t (line feed)

==

• (period)

... (left arrow)

[S

[0

n[W

k[Bn

[Bn

nrC

k[G

[R

Loading and Saving

Table 3-9
DDT -0 Commands

Separation character

Arithmetic plus

Arithmetic minus

Action

Location examination character; when it follows the
address of a location, it causes the contents of that
location to be printed

Make modifications, if any

Make modifi cations, if any, and print the contents of
the next sequential location

Type last quantity as an octal integer

Current location

Delete the line currently being typed

Sets DDT -0 to type out in symbolic mode

Sets DDT -0 to type out in octal mode

Word search for all occurrences masked with C([M) of
th e expressi on n

Insert breakpoint n at location k (n == 1, 2, or 3)

Remove breakpoint n (n ==1, 2, or 3)

Continue n times automatically; if n is absent, it is
assumed to be 1

Go to location k

Append symbol table into external symbol table or define
symbols on line

DDT -0 is loaded into core from punched paper tape. The tape is in two sections. The first

section contains DDT proper which loads in one pass, occupies core locations 200-4577 (Appendix E)

and uses locations 3, 4, and 5 (page 0) as the breakpoint locations. After loading DDT proper, the

user should reserve on the system device a user core image file name. SYM, which should also be

assigned to core locations 200-45n.1

The next section of DDT (the driver) loads in two passes and occupies two pages in core with

its origin anywhere above DDT proper, that is, anywhere above location 45n. The driver is resident

in core. For setup, it uses five more pages: one for once-only code plus four for Command Decoder.

Command Decoder expects two inputs to be assigled as files to be used by the driver. These files are

assigned only once unless the system is changed or destroyed, in which case the user must reassign these

two files.

1 • SYM is used also- by PAL-D to store additional symbol table entries.

3-36

The sections of DDT are loaded and saved as described below.

• LOADJ
IN-R: J ---
*OPT -1,J
*ST - ,J
tt
~AVE • DDT:2oo-4500;0 J
~SAVE • SYM:2oo-4577;OJ

• LOADJ
IN-R:J ---
*OPT-2 J
*ST=7000J
t tt t
*IN-S:< .DDT> ,S:< .SYM>J

*IN-S:.DDT,S:.SYM J

*
*
~SAVE DDT !72oo-7577;7200 J

Call loader using Monitor
Input to be from high -speed reader
Loader found input device valid
DDT proper loads in one pass
Retum to Monitor after loading
DDT proper is loaded
Saved as a user program
User core image file also
saved as a user program

Call loader using Monitor

(See Appendix E.)
(See Appendix E.)

Input to be from high -speed reader
Loader found input device valid
Driver loads in two passes
Transfer to once-only code after loading
Driver is loaded
Assign 2 input files for use by
driver (See Appendix E.)
Inputs to be from DDT proper and user
core image files
loader found input files valid (an
asterisk for each valid file (device)
Saved as a system program (See Appendix E.)

The error message DDT? is typed whenever an error is encountered while loading DDT -D.

Errors may be caused by the following.

a. User file too large

b. System devi ce read error

c. No Command Decoder

3.5.2 Operating Procedures

DDT -D is now saved on the system device. The user must now load into core the program to

be debugged. This is done as described in Paragraph 2.5.

When the program to be debugged is in core the user types DDTD in response to Monitor's

period as shown below.

.DDT

The user may now use DDT -D in debugging this program, directing execution and making

modifications to his program as described above and in the DDT -8 programming manual.

3.5.3

A brief example of using DDT -D is shown in Paragraph 3.5.3.

Example

• LOADJ
IN-R: ,J ---
*OPT -1,J
ST- J

Co II loader
Input to be from high -speed reader
Loader found input device valid
One -pass load
Retum to Monitor after loading

3-37

tt
-:SAVE .DDT:200-4577; 0 J
-:-SAVE .SYM:200-4577;0,J
-:-lOAD J
*IN-R: ,}
*
*OPT -2,}
ST -7000 J
t t t t
S:< .DDT>,S:< .SYM>,}
*IN - S:. DDT, S:. SYM ,}

*
.!..SAVE DDT !7200-7577;7200,}
.DDT';
3400/ AND 0007 lAC,}
3401/AND JMP 3400';
3400[B1';
3400 [G,;
1 - 3400)0000

[C '"
1 - 3400)000 1
700[C'}
1 - 3400)0701

DDT proper is loaded
DDT proper is saved on disk (See Appendix E.)
User code image file also saved
Call loader
Input to be from high -speed reader
loader found input device valid
Two-pass load
Transfer to once-only code after loading
Driver is loaded
loader expects 2 input fil es for use by driver
Inputs from DDT proper and user code image file

loader found both input files valid
Driver is saved on disk (See Appendix E.)
Call DDT using Monitor
Examine contents of location

3400 and 3401
Set breakpoint No. 1 at location 3400
Start execution at location 3400
location 3400 contains 0000
Continue
location 3400 now contains 0001
Pass through location 3400 700 times
location 3400 now contains 0701
t C was typed here

3-38

APPENDIX A
SYSTEM GENERATION

This appendix describes the creation of a Disk/DECtape System (Disk/DECtape Monitor and

system programs) on an empty disk or DECtape (if DECtape, it must have timing and mark tracks previously

written on it).

The steps involved in system generation are as follows.

a. Toggling in the Readin Mode (RIM) Loader.

b. Loading the Binary (BIN) loader

c. loading and executing Disk/DECtape System Builder to create Monitor.

d. loading and saving any system programs •.

A.1 TOGGLING IN THE READIN MODE (RIM) LOADER

The Readin Mode (RIM) loader is a short program which loads any program in RIM format on

paper tape into core. Although the RIM loader has various uses, its sole purpose in the System Building

process is to load the Binary loader.

There are two versions of the RIM loader, one for loading programs from the high -speed paper

tape reader and the other for loading from the Teletype paper tape reader.

Hi gh - Speed Reader Teletype Reader

location Instruction location Instruction

7756 6014 7756 6032

7757 6011 7757 6031

7760 5357 7760 5357

7761 6016 7761 6036

7762 7106 7762 7106

7763 7006 7763 7006

7764 7510 7764 7510

7765 5374 7765 5357

7766 7006 7766 7006

7767 6011 7767 6031

7770 5367 7770 5367

7771 6016 7771 6034

7772 7420 7772 7420

7773 3776 7773 3776

7774 3376 7774 3376

7775 5357 7775 5356

7776 0000 7776 0000

A-1

A detailed description of the toggling and checking procedures for the RIM Loader can be

found in the PDP-8 Console Manual (Doc. No. DEC-08-NGCA-D). Acomplete discussion of the

RIM Loader is contained in the PDP-8 Readin Mode Loader Program writeup (Doc. No. Digital-8-1-U).

A.2 LOADING THE BINARY (BIN) LOADER

The Binary (BIN) Loader loads any program in binary format on paper tape into core. Its pur

pose in the System Building process is to load the Disk/DECtape System Builder. The procedure for

loading BIN is as follows.

a. Check that the RIM Loader is in core.

b. Place the paper tape containing BIN in the paper tape reader (high-speed or Teletype,
according to version of RIM).

c. If Teletype reader is to be used, turn it on.

d. Place the address 7756 into the SWITCH REGISTER and press LOAD ADD.

e. Press START. Tape should begin reading (if it does not, check that the SING INST and
SING STEP switches are down and that the reader is on line). (Note: The Teletype reader is always
on line.) If the Teletype begins to print, flip Teletype switch from LOCAL to LINE and back up the
tape to the leader/trailer.

f. After paper tape reads in, wait until only bit 0 of the accumulator is on. Press STOP
on console. If the high-speed reader is used, a 7402 (HLT) appears in the accumulator, and the tape
stops over the leader/trailer (200 code).

A detailed description of BIN and its use can be found in the PDP-8 Console Manual and PDP-8
Binary loader Program writeup (Doc. No. Digital-8-2-U). --

A.3 LOADING AND EXECUTING DISK/DECTAPE SYSTEM BUILDER

Next, the Disk/DECtape System Builder program, in binary format on paper tape, is loaded

by the Binary Loader. Loading procedures are as follows.

a. Place the address 7777 (starting address of BIN) into the SWITCH REGISTER. Press
LOAD ADD.

b. If the high-speed paper tape reader is to be used, put down (or set to 0) bit 0 of the
SWITCH REGISTER, place the System Builder tape in the reader, and turn the reader on.

If the Teletype reader is to be used, leave up bit 0 of the SWITCH REGISTER, place the

System Builder tape in the reader, put the reader on line, and press reader START.

c. Press START on the console. Tape should read in.

d. When tape has been read, the accumulator should contain all zeroes (if not, the pro
gram has loaded incorrectly; begin the loading procedure from the beginning).

e. Turn off WRITE PROTECT on the disk (if present). Otherwise, mount a DECtape reel on
one of your DECtape units, set the unit selector to 8, and set the WRITE switch to WRITE.

f. To begin System Builder execution, place the address 0200 into the SWITCH REGISTER,
press LOAD ADD, and then START.

g. As the following questions are typed out, answer them according to your machine
configuration.

A-2

*YES J
*TYPE SIZE OF CORE (IN K)
*8J

*HIGH SPEED PAPER TAPE?
*YESJ
*PSP-8/S?
*NOJ
*DISC?
*YESJ
*TYPE NUMBER OF DISC UNITS
*1 J
*TAPE?
*YES J

User enters core size of his machine (4,8, 12, 16,
20,24,28, or 32).

User answers YES or NO.

User answers YES or NO.

User answers YES or NO.

User types number of disk units on his machine.

User types YES if he has DECtape, NO if he does
not

A maximum delay of one minute occurs here while
Monitor creation is being completed, the resident
portion is moved to the appropriate core area
(7600 through 7777), and the nonresident portions
are written on the system device.

NOTE

If specified as present, the disk is
automatically selected as the system
device; if not, DECtape unit 8 is
selected.

Monitor is loaded and ready.
If the response

WRITE ERROR

occurs:

a. If disk, start over at Step (a); there may be
a hardware problem.

b. If DECtape, try a new DECtape and start at
Step (e). Or, rewrite the timing and mark
tracks and start at Step (e).

A.4 LOADING AND SAVING SYSTEM PROGRAMS

Binary Loader is one of the nonresident portions of Monitor and is used to load system and

user programs into core. It is fully described in Chapter 2. An example follows.

• LOADJ
*IN-R:J

*
*OPT -1
ST=7600 ~

• SAVE PIP! 0-3177; 1000J

Calls Binary Loader from the system device •
Input device is paper tape reader (high -speed reader
if specified as present at System Builder time;
otherwise Teletype reader).

Device is valid.
One -pass loading mode selected.
Return to Monitor after loading.

After each up -arrow typeout, user types t P to
continue (also must press CONTinue on console
if Teletype reader is being used).

Saves program (in this case, PIP) on system device •
Note that a ! must follow name of system program.
The SAVE command is explained in Chapter 2. The
SAVE command program is given in Appendix E.

Repeat the procedure above for each system program to be saved.

A-3

APPENDIX B
SYSTEM FORMA TS

This appendix contains the following information.

a. System Device Layouts

Di sk Storage Layout

DECtape Storage Layout

Directory Name (DN) Block Format

Storage Allocation Map (SAM) Block Format

Table of System Device and Core Capacities

b. Da ta Struc tu re

Source File (ASCII)

Binary File (BINARY, FTC BIN)

Saved Files (SYS, USER)

c. PIP Listing of System Device Map (for Disk)

d. Monitor Core Usage Diagrams

B.1 SYSTEM DEVICE LAYOUTS

Figures B-1 and B-2 illustrate the layout of the system device for both disk and DECtape.

Note that, although the layouts differ in arrangement, they are logically equivalent.

A relatively sophisticated file structure is used for all automatic retrieval of storage by the

system. Two special types of blocks are required: Directory Name (DN) Blocks, and Storage Alloca

tion Map (SAM) Blocks.

B.1 .1 Directory Name (DN) Blocks

The format of a Directory Name Block is illustrated in Figure B-3. Each file has an entry

in one of the three DN blocks on the system device.

DN1 - Contains entries for internal file numbers 01 through 318 (2510) and a link to DN2 •

DN2 - Contains entries for internal file numbers 32 through 628 (5010) and a link to DN3 •

DN3 - Contains entries for internal file numbers 63 through 778 (6310) and an end-of-chain
~ink of 0.

Thus, the system device can contain up to 63 files. Each file entry contains the filename, start address,

entry point address, file type, and an internal file number (1 through 778), When a file is to be added

on the system device, an entry for the file is created in the first open entry slot found in the DN blocks.

When a file is deleted, its DN entry is cleared and the slot is made available for some other file.

B-1

BLOCK

0

2

3

4

5

6

7

10

11

12

13

14

15

16

17

20

21

22

176

177

200

201

202

373

374

375

376

377

MONITOR (1 ST PAGE OF SAVE)

MONITOR (START)

DN (BACKUP - SEE PI P

SAM (BACKUP - SEE PI P)

MONITOR (2ND PAGE OF CALL)

MONITOR (3RD PAGE OF SAVE)

MONITOR (2ND PAGE OF SAVE)

MONITOR (l ST PAGE OF CA LL)

MONITOR (4TH PAGE OF SAVE)

LOADER

LOADER

LOADER

COMMAND DECODER

COMMAND DECODER

COMMAND DECODER

COMMAND DECODER

COMMAND DECODER

DNl (USER)

SAMl (USER)

DN2 (USER)

DN3 (USER)

SCRA TCH BLOCK

SCRA TCH BLOCK

SCRA TCH BLOCK

FIRST DISK

OWER
HALF

UPPER
LF

BLOCK

401

SECOND DISK (OPTIONAL)

1001

THIRD DISK (OPTIONAL)

1401 SAM4 (USER)

FOURTH DISK (OPTIONAL)

DN = Directory Name Block
SAM = Storage Allocation Map Block

AREA AVAILABLE FOR
SAVING CORE IMAGES

Fi gure B-1 Di sk Storage Layout

B-2

BLOCK

0

2

3

4

5

6

7

10

11

12

13

14

15

16

17

20

21

22

23

24

25

177

200

201

202

203

204

205

206

207

2701 8

MONITOR HEAD

MONITOR (l ST PAGE OF SAVE)

MONITOR (START)

DN

SAM

SCRA TCH BLOCK

SCRA TCH BLOCK

SCRA TCH BLOCK

MONITOR (2ND PAGE OF CALL)

MONITOR (3RD PAGE OF SAVE)

MONITOR (2ND PAGE OF SAVE)

MONITOR (1 ST PAGE OF CALL)

MONITOR (4TH PAGE OF SAVE)

LOADER

LOADER

R

COMMAND DECODER

COMMAND DECODER

COMMAND DECODER

COMMAND DECODER

COMMAND DECODER

COMMAND DECODER

DN2 (USER)

SAM2 (US

SAM3 (USER)

SAM5 (USER)

SAM6 (USER)

DN (USER)

DN = Directory Name Block
SAM = Storage Allocation Map Block

AREA AVAI LABLE
FOR SAVING CORE
IMAGES

Figure B-2 DECtape Storage Layout

B-3

2510

ENTRIES
PER DN

BLOCK NUMBER OF FIRST SCRATCH BLOCK
(DISK = 0373; DECTAPE = 0005)

2-DIGIT VERSION NUMBER

BLOCK NUMBER OF FIRST SAM BLOCK (0200)

DN ENTRY FOR FIRST FILE
(INTERNAL FILE NUMBER = 01)

DN ENTRY FOR SECOND FILE
(INTERNAL FILE NUMBER = 02)

DN ENTRY FOR THIRD FILE
(INTERNAL FILE NUMBER = 03)

DN ENTRY FOR TWENTY-FIFTH FILE
(INTERNAL FILE NUMBER = 31 8)

1 ST DN BLOCK ONLY; OTHER
BLOCKS CONTAIN ZEROES IN
THESE WORDS

L ____ ~L~IN~K _______ ~;t_/:...--(Link to DN2 (files 32 l through 628)

FIRST DIRECTORY NAME (DN) BLOCK

DN
ENTRY
FORMAT

N

N

START

ENTRY

I I

N

N

ADDRESS

POINT

INTERNAL FILE

I NUMBER

}
N = 4-CHARACTER

FILENAME

J.. J.. ~J

/ EXTENDED MEMORY BITS '"1 = SYSTEM PROGRAM

PROGRAM TYPE

00 = ASCII 10 = FTC BIN
01 = BINARY 11 = SYS OR USER SAVE FILE

Figure B-3 Directory Name (DN) Block Format

B-4

B. 1 .2 Storage Allocation Map (SAM) Blocks

SAM blocks contain a record of which files are occupying which blocks on the system device.

Each SAM block contains a record of a 377 a-block area. (See Figure B-4.)

SAM1 contains the map for blocks 0 through 377 a and a link to SAM2 •

SAM2 contains the map for blocks 400 through 777 a and a link to SAM3 •

SAM3 contains the map for blocks 1000 through 1377a and a link to SAM4 •

SAM4 contains the map for blocks 1400 through 1777a and either an end-of-chain link of

o (if disk) or a link to SAM5 (if DECtape).

The next two SAM blocks are present only if a DECtape is the system device.

SAM5 contains the map for blocks 2000 th rough 2377 a and a link to SAM6 •

SAM6 contains the map for blocks 2400 through 2701 a and an end -of -chain link of O.

On disk, one SAM block is present for each disk unit (up to four allowed) and each SAM

block resides on the disk which it maps (SAM 1 on the first disk, SAM2 on the second disk, etc.).

When a file is to be added, a search is made through the SAM blocks for an entry containing 0 (block

is unoccupied), the internal file number of the file is placed in that entry (and in as many other unoc

cupied entries as are needed for the file), and the storage block linking is adjusted. When a file is

deleted, all SAM block entries containing the file's intemal file number are set to O. The block num

ber of the beginning block of the SAM chain (200) is stored in the third word of the first DN block.

B-5

SPECIAL INTERNAL FILE NUMBERS: 01 = ALL MONITOR, DN, SAM,

WORD 0

WORD 1

WORD 2

WORD 3

WORD 4

WORD 5

WORD6

WORD 7

WORD 8

WORD 122

WORD 123

WORD 124

WORD 125

WORD 126

WORD 127

WORD 12810

f200

f201

f202

f203

f204

f205

f206

f207

f210

~ V
f370

f371

f372

f373

f374

f375

f376

f377

r--.

LINK

AND SCRATCH BLOCKS
04 = LOADER BLOCKS
05 = COMMAND DECODER BLOCKS

fOOO

fOOl

f002

f003

fOO4

f005

f006

f007
f010

.:;::::::-
f167

f 170

f 171

f172

f173

f174

f175

f176

f177

-

1-

f
nnn

internal file
number of fi Ie
occupying block
nnn (0 =
unoccupied)

{
LINK TO SAM2

(BLOCKS 400-777)

EXAMPLE
STORAGE ALLOCATION MAP (SAM)

FILE #1 - BLOCKS 0, 1, 2

FILE #3 - BLOCKS 5, 6, 11

FILE #4 - BLOCK 10

FILE #13 - BLOCKS 201,
202, 206, 207

FILE #15 - BLOCKS 200,
203, 205, 210

UNUSED - BLOCKS 3, 4, 7,
204, 211

15

13

13

15

00

15

13

13

15

00

01 o
01

01 2

00

00 4

03

03 6

00

04 10

03
12

Figure B-4 Storage Allocation Map (SAM) Block Format

B-6

Table B-1
System Device and Core Capacities

Unit Words
Highest Page (Block)

Number (1 st Page = 0)

1 DISK 32,768 25510 (3758)

2 DISKS 65,536 51110 (7738)

3 DISKS 98,304 76710 (1377 8)

4 DISKS 131,072 102310 (17778)

1 DECTAPE 667,520 521510 (2701 8)

4K CORE 4,096 31 10 (378)

8K CORE 8, 192 6310 (77 8)

12K CORE 12,288 9510
(1378)

16K CORE 16,384 12710 (1778)

20K CORE 20,480 15910 (2378)

24K CORE 24,576 191 10 (277 8)

28K CORE 28,672 23310 (3378)

32K CORE 32,768 25510 (377 8)

B.2 DATA STRUCTURE

The data structure of each type of program file is described in the following paragraphs.

B.2.1 Source File (ASCII) Data Structure

All characters are stored in 6-bit ASCII code, two words per three paper tape frames as

described below. All nonprinting characters (200 through 237 and 340 through 377) have their two

most significant bits dropped and a 77 prefixed to them. (The one exception to this rule is RUBOUT,

377, which is nonexistent.) All printing characters are trimmed to six bits, except for? (277), which

is packed as 7777.

B.2.2 Binary File (BINARY, FTC BIN) Data Structure

All binary (BINARY) and FORTRAN binary (FTC BIN) files are stored as two words per three

paper tape frames. Frame 1 contains the rightmost eight bits of word 1, frame 2 contains the rightmost

eight bits of word 2, and frame 3 contains the leftmost four bits of words 1 and 2 (the most significant

bits of frame 3 are those of word 2).

B-7

Example:

Paper tape

200
102
033

Meaning

Leader
ORG
Second half
of ORG word

Disk(Octal)

5600
0502

This procedure is repeated until a trailer code is found.

B.2.3 Saved File (SYS, USER) Data Structure

Disk (B i nary)

1011 10000000
0001 01 00001 0

Saved fi les are stored on the system device as an integra I number of pages and each page

occupies one disk or DECtape block. Storage conventions differ between saved files of contiguous pages

of core and those of noncontiguous pages.

Contiguous Pages

All system device blocks contain core images (Figure B-5). The Start Address word in the

Directory Name (DN) entry for the file is set to the starting page address.

Block 1

Block 2

Block 3

Contains core
image of locations
200 through 377

SAVE F I LC:200-600;433

F I

L C

0 2 0

0 4 3

6 0 2

}
0

3

5

Filename

Start Address

Entry Point

File Type/File Number

Conta i ns core
image of locations
400 through 577

DIRECTORY NAME ENTRY

Contains core
image of locations
600 through 777

SYSTEM DEVICE BLOCKS

Figure B-5 Contiguous-Page Save File Format

B-8

Noncontiguous Pages

The first system device block of a saved file composed of noncontiguous pages of core con

tains a list of core page assignments and the core images sotred in subsequent blocks. The last entry in

this list is set to 7777 (Figure B-6). The Start Address word in the Directory Name entry for the file is

set to 7777 to indicate that the first block does not contain a core image but a page assignment listing.

Block 1

Block 2

Block 3

Block 4

SAVE FILN: 0,400,1000;433

0000 list of
0400 page
1000 assign-
7777 ments

Contains core
image of locations
o through 177

Contains core
image of locations
400 through 577

Contains cor-e
image of locations
1000 through 1177

SYSTEM DEVICE BLOCKS

F I

L N

7 7 7 7

0 4 3 3

6 0 2 6

DIRECTORY NAME ENTRY

Figure B-6 Noncontiguous-Page Save File Format

B-9

Filename

Start Address

Entry Point

File Type/File Number

B.3 PIP DIRECTORY LISTING

A directory listing of the system device can be obtained by running PIP (Figure B-7). A

sample output is given below .

. PIP

*OPT -L

*IN-S:

FB=0110

80
PALO. SYS (0) 0030
EDIT.SYS (0) 0015
LOAD. SYS (0) 0003
.CD •• SYS (0) 0006
PIP • SYS (0) 0020
FORT. SYS (0) 0010
· FT •• SYS (0) 0035
.OS .• SYS (0) 0024
FOSL. SYS (0) 0006
STBL. SYS (0) 0001
• DDT. USER (0) 0022
• USR. USER (0) 0023

110 free blocks remain

~~~ 

I 
I ·L--------Number of blocks used 

L.. --------Field number 

L..-------Extension name 

'---F i lename 

Figure B-7 Sample PIP Directory Listing 

B-10 



B.4 MONITOR CORE USAGE DIAGRAMS 

The following illustrations show Monitor usage of locations 7000 through 7777 at 

a. Monitor Time and User Time (F igure B-8) 

b. SAVE Command Processing (Figure B-9) 

c. CALL Command Processing (F igure B-10) 

7777 7777 
SYSTEMS I/O ROUTINE 

MONITOR HEAD 

7600 7600 
MONITOR 

TELETYPE SERVICE 

7400 7400 
SAVE COMMAND DECODER 

AND 
PAGE STACK BUILDER 

7200 7200 

7000 X 7000 

SYSTEMS I/O ROUT INE 
MONITOR HEAD 

USER AREA 

USER AREA 

USER AREA 

(a) Monitor-Time Core Usage (b) User-Time Core Usage 

Figure B-8 Monitor-Time vs User-Time Core Usage 

B-11 



7777 

7600 

7400 

7200 

7000 

7777 

7600 

7500 

7400 

7200 

7000 

. SAVE filename:core-specifications, ... ;entry-point 

SYSTEMS I/O 

MONITOR HEAD 

PAGE STACK BUILT HERE ------------------------------------
TTY SERVICE ROUTINE ------------------------------------

DIRECTORY NAME ENTRY BUILT HERE 

SAVE COMMAND DECODER 
AND 

PAGE STACK BUILDER 

X 

(a) "SAVE filename:" Processing 

SYSTEMS I/O 

MONITOR HEAD 

BLOCK STACK 

SYSTEMS I/O 

MONITOR HEAD 

MONITOR AND TTY SERVICE ROUTINES 
ARE NOW DESTROYED; VARIOUS STATUS 
REGISTERS ARE HELD HERE. 

PAGE STACK MOVED HERE 

BUFFER FOR DN SEARCH 

CODE HERE IS SWAPPED OUT TO 
SYSTEM DEVICE SCRATCH BLOCK; 

DN BLOCK SEARCH AND UPDATE 
ROUTINE LOADED HERE 

(b) "Core-specifications, •. ;entry-point" 
Processing 

SYSTEMS I/O 

MON ITOR HEAD 

BLOCK STACK 
----------------------------------- ~--------------------------------------

------------------------------------ --------------------------------------
PAGE STACK PAGE STACK 

SAM BLOCK SEARCH AND UPDATE ACTUAL SAVE ROUTINE LOADED HERE 
ROUTINES LOADED HERE (RETURNS TO MON ITOR START -
(CREATE BLOCK STACK) 7600-WHEN FINISHED) 

SAM BUFFER SWAPPED-OUT CODE BROUGHT BACK 

(c) SAM Search (d) Actual Save Time 

Figure B-9 Core Usage During SAVE Command Execution 

B-12 



. CALL filename' or .filenameJ 

7777 
SYSTEMS I/O 

MONITOR HEAD 

7600 
BUFFER FOR DN AND SAM BLOCKS 

7400 
CALL: DN AND SAM SEARCH 

ROUTINES 

7200 
(LOCATE FILE AND DEFINE RANGE OF CALL) 

X 
7000 

(a) "CALL filename" Processing 

7777 

SYSTEMS I/O 
MONITOR HEAD 

7600 
READ ROUTINE 

(PERFORMS ACTUAL CALLING IN OF FILE; 
CAN DISAPPEAR AT USER TIME) 

7400 

CONTIGUOUS-PAGE PROGRAM: 
THIS AREA IS NOT TOUCHED. 

NONCONTIGUOUS-PAGE PROGRAM: 
SCATTER-GET READS CORE 

7200 
ALLOCATION (BLK 1) INTO HERE 

X 

7000 

(b) Actual CALL Time 

Figure B-10 Core Usage During CALL Command Execution 

B-13 



MONITOR START 

READ SAM 
BLOCK 

Figure B-11 

CONSTRUCT 
PAGE LIST 

Monitor Flow Chart (Part 1) 

B-14 

SET ENTRY 
POINT TO 200 



JUMP TO ENTRY 
POINT ADDRESS 

Figure B-11 

TYPE ·FUL~ 

Monitor Flow Chart (Part 2) 

B-15 

AN OLO VERSION 
OF THE FILE 
EXISTS AND IS 
BEING OVER
WRITTEN BY 
A NEW VERSION 



IF AN OLD FILE IS 
BEING OVERWRITTEN 
CONTINUE SEARCHING 
SAMS FOR OLD FILE 

NUMBER AND CHANGE 
TO 0 

Figure B-11 Monitor Flow Chart (Part 3) 

B-16 



APPENDIX C 
COMMAND DECODER 

Command Decoder is a general-purpose program used by all system programs to read in and 

interpret command strings entered by the user via his Teletype keyboard. Command Decoder is gener

ated and stored on the system device by System Builder. 

Command Decoder uses four pages of core (see Figure C-2) and is called in by a system pro

gram in the following way. 

a. The internal file number of Command Decoder (filename = . CD.) is obtained. 

b. The starting block of the Command Decoder file is obtained. 

c. This block is then read into the second of the four pages to be used by Command 
Decoder. Command Decoder is position-independent and can be read into any four contiguous pages 
of core between locations 200 and 7577 inclusive. 

d. Command Decoder is then entered by jumping to the second location of page 2 (the 
first location is an error return) . 

C.1 LOCATIONS USED BY COMMAND DECODER 

Locations 167 through 177, poge 0, are used as follows. 

Table C-1 
Page 0 Locations Used by Command Decoder 

Locotion Pur~se 

167 Preloaded with 7777 if input and output filenames and extension names 
are different. 

170 Scratch location. 

171 Scratch location. 

172 Points to the first block of Command Decoder. 

173 Scratch location. 

174 Points to the output list. Information concerning each device request 
is placed in this list by Command Decoder. 

175 Contains the option bits. This location is not left in its original state 
upon exit from Command Decoder 

176 Scratch location. 

177 Conta ins the address of the return from Command Decoder. 

C-1 



C.2 INPUT AND OUTPUT REQUIREMENTS FOR COMMAND DECODER 

Location 174 (CDPTRP), the output list pointer, must point to a block of code, the length of 

which must be 3*n+1, where n is the total number of device requests expected. For example, a program 

with one output file plus three input files requires 13 locations. (See Figure C-1.) 

The option bit location (175) is constructed as follows. 

Bits 0 and 1 

Bits 2 and 3 

Bit 4 

Bit 5 

Bit 6 

Bit 7 

Bits 8-11 

Contain output file extension code (or input, if no output is 
requested) ,1 

Contain the input file extension code. 1 

::;: Output file is expected (Command Decoder will type 
*OUT - query (in addition to * IN-) ). 

::;: Saved output file is a system program (bit 5 of word 4 in 
DN entry is set to 1). 

::;: Option is available (Command Decoder will type *OPT-). 

::;: Saved input file is a system program (bit 5 of word 4 in 
DN entry is checked for a 1). 

(Total number of input files allowed) -1 . 

1\J9SJ4 5 6 7 I 8 11 
c:::::::;:::::: L L I (Number of input files)-l 

System/user input2 

OPT - option 

2 
'----System/user output 

'----Output option 

I • 1 .1------- nput extension 

L----------O . 1 - utput extension 

This option word must be set up by the system program before calling Command Decoder. 

1 Extension codes: 00 - ASCII 
01 ::;: BINARY 
10 ::;: FTC BIN 
11 ::;: Saved file (USER, SYS) 

21 ::;: System, 0::;: User 

C-2 



OUTPUT { 
(OR INPUT 1 
IF NO OUTPUT) 

INPUT 1 { 
(OR INPUT 2 
IF NO OUTPUT) 

WORD A 

WORD B 

WORD A 

WORD B 

7777 

OPTION 

END OF LIST 
ASCII 
CHARACTER 

FOR DISK OR DECTAPE: 

DEVICE UNIT INTERNAL FILE 
CODE NUMBER NUMBER 

L 1-' ------0-7 

{ 6 = System Dev i ce 
4 = Not System Device 

FOR TELETYPE OR H IG H SPEED READER: 

o o 

1 = Teletype 

o DEVICE 
CODE 

2 = High Speed Reader 
0= Null Device 

DISK OR DECTAPE (INPUT): 

START BLOCK NUMBER 

DISK OR DECTAPE (OUTPUT): 

o 

PAPER TAPE: 

o 

Figure C-1 Output List Produced by Command Decoder 

C-3 



TIME 1 

TIME 2 

TIME 3 

PAGE 1 

"IN - ,"OUT
TYPEOUTS -------

TYPE 
ROUTINE -- - - - ---

CHARACTER 
FETCH AND 
DISPATCH 

1--------
ROTATE 

BLOCK 2 

BUFFER 

BUFFER 

PAGE 2 

COMMAND 
DECODER INIT. 

1-- ------
READ ROUTINE 
FOR PAGES " 

3, AND 4 --------
COMMA ,CARR IAGE 
RETURN HANDLER 

BLOCK 1 

ON SEARCH 
ROUTI NE --------

01 RECTORY 
UPDATE 

BLOCK 5 

SAM BLOCK 
SEARCH ROUTINE 

(INPUT ONLY) --------
READ IN BLOCK 
I I NTO PAGE 2 
(OUTPUT ONLY) --------
OPT- READ IN 
OPTION CHAR. --------

EX IT TO USER 

BLOCK 6 

PAGE 3 

DEVICE LOOKUP 
AND VALIDITY CHK. 
1--------

TYPE OUT * 
IF VALID --------

READ BLOCK 5 
INTO PAGE 2 -------

ON CHECK --------
READ BLOCK 6 --------

ERROR DISPATCH 

BLOCK 3 

Figure C-2 Command Decoder Core Usage 

C-4 

PAGE 4 

ERROR ROUTINE -------
TYPE-OUT RTE 

I- -liO DEVICE
CHECK ROUTINE 

1-------

DECTAPE lID 

BLOCK 4 



PAGE 2 (BLOCK 1) 

PAG E 1 (BLOCK 2) 

PAGE 2 (BLOCK 1) 

(COMMA FOUND IN 
INPUT STRING) 

PLACE "E" IN AC 

PAGE 1 (BLOCK 2) 

Figure C-3 Command Decoder Flow Chart (Part 1) 

C-5 

TYPE "*OUT-II 



(READ A CHARACTER FROM THE TELETYPE KEYBOARDl 

TYPE 

"?" 
PAGE 1 
(BLOCK 21 

PAGE 1 
(BLOCK 21 

PAGE 2 
(BLOCK 1) 

Figure C-3 Command Decoder Flow Chart (Part 2) 

C-6 



PAGE 3 
(BLOCK 3) 

READ BLOCK 5 
INTO PAGE 

2 

PLACE II?" 
IN AC 

ATTEMPT TO MAKE 
NEW DN ENTRY 

(PAGE 2, BLOCK 5) 

YES 

Figure C-3 Command Decoder Flow Chart (Part 3) 

C-7 



LINK' 0 
7 

SEARCH) 

SET INTERN FILE 
NUMBER IN AC 

NO (READ NEXT DN BLOCK) 

CHAIN) 

Figure C-3 Command Decoder Flow Chart (Part 4) 

C-8 



CLEAR OUTPUT 
BIT IN 

LOCATION 175 

PUT START 
BLOCK NUMBER 

IN AC 

TYPE 
.? 

NO 

Figure C-3 Command Decoder Flow Chart (Part 5) 

C-9 



PAGE 4 {BLOCK 41 

PAGE 4 {BLOCK 41 

OECTAPE 

DEVICE 

SIMULATE JMS 
DEC TAPE 110 

PAGE 2 {BLOCK 51 

IF 

NO {DIRECTORY FULL! 

Figure C-3 Command Decoder Flow Chart (Part 6) 

C-10 



APPENDIX D 
BINARY LOADER 

Binary Loader loads binary output from Assembler into one or more fields in core in executa

ble form. It operates in either 1-pass or 2-pass mode {all input files must be read in once for each pass}. 

A field bit indicator, which determines the field into which loading occurs, is initially set equal to the 

field bit of the address typed in response to the ST= typeout. This indicator can be changed during 

loading by the occurrence, in any input file, of a FIELD word {generated by the PAL-D pseudo-op 

FIELD} • 

In 1-pass mode, Binary loader can load core from locations 0 through 6777 in field 0 and 

all of fields 1 through 7. In 2-pass mode, it can load core from 0 through 7577 in field 0 and all of 

fields 1 through 7. Two-pass loading, then, is required when any of the input files require that coding 

be loaded into locations 7000 through 7577 in field 0; the reason for this is that Loader occupies these 

positions and cannot load the information over itself. To handle this situation, 2-pass loading operates 

as described in the following paragraphs. 

PASS 1 

All input files are read to find those portions of coding residing in the area from 7000 through 

7577. Such coding is loaded into locations 6000 through 6577 instead. All other coding is bypassed. 

At the end of Pass 1, the contents of locations 6000 through 6577 are written into three scratch blocks 

on the system device. 

PASS 2 

Normal loading is performed, just as in the single pass of 1-pass loading, except that coding 

to be loaded in the 7000-7577 area is ignored. At the end of Pass 2, the contents of the three scratch 

blocks writ.ten during Pass 1 are read into locations 7000 through 7577. A jUITlP is then made to the 

ST= address. 

The ST= address has a double significance. 

a. It initially sets the field bit indicator for loading 1 . 

b. It specifies the address {either in the loaded program or Monitor} to which control is to 
be transferred after loading. 

lIn 8 through 32K systems it is the user's responsibility to specify existing bank settings. In 4K systems, 
a 5-digit specification is illegal. 

D-1 



Examples 

5T=10000 

5T=31015 

5T=27600 

Begin loading in field 1 and jump to Monitor start (7600) after 
loading. 

Begin loading in field 3 and jump·to location 1015, field 3, 
after loading. 

Begin loading in field 2 and jump to location 7600, field 2, 
after loading. 

D-2 



SET UP TO INPUT 
FROM SYSTEM 

DEVICE 

Figure D-l Binary Loader Flow Chart (Part 1) 

D-3 



EXECUTE FIELD 
INSTRUCTION 

PASS-I 
OF 2-PASS 

? 

NO 
~-----l--~~UPDATE CHECKSUM '--_____ ...J 

Figure D-1 Binary Loader Flow Chart (Part 2) 

D-4 



W RITE OUT 
6000-6577 
ONTO SYS. 

DEVI CE 

Figure D-1 

PASS 2 
(OR I-PASS) 

SET UP FIELD 
INSTRUCTION 

Binary Loader Flow Chart (Part 3) 

D-5 





APPENDIX E 
SYSTEM PROGRAMS 

E.1 lOADING STATISTICS 

Name Core Limits 

PIP 0-177, 1000-3177 

EDIT 0-3177 

PAlD 0-3377, 3600-4377, 
4600, 5200, 
6200-6577, 7000-7577 

FORT 0-1777 

.FT. 200-7377 

STBl 600-777 

FOSl 0-1577 

.OS. 0-5177 

DIAG 200-1177 

.DDT 200-4577 

.SYM 200-4577 

DDT 7200-7577 

E.2 SAVE STATISTICS 

PIP SAVE PIP!O, 1000-4777;1000 

EDIT SAVE EDIT!0-3177;2600 

Entry Point 

1000 

2600 

6200 

200 

--
600 

200 

--
200 

--
--

7200 

PAlD SAVE PAlD!0-3377, 3600-4377 ,4600,5200,6200-6577, 
7000-7577 ;6200 

FORT SAVE FORTlO-1777;200 

. FT . SAVE . FT . ! 200-7377;0 

STBl SAVE STBL!600;600 

FOSl SAVE FOSL!0-1577;200 

.OS. SAVE .OS. !0-5177;0 

DIAG SAVE DIAG !200-1177;200 

E-1 

Pass 

1 

1 

2 

1 

2 

1 

1 

1 

1 

1 

-
2 



. DDT SAVE .DDT!200-4577;O 

.SYM SAVE .SYM!200-4577;O 

DDT SAVE DDT!7200-7577;O 

E-2 

(User may assemble anywhere above 
location 4577) 



READER'S COMMENTS 

PDP-Sil DI SK MONITOR SYSTEM 

PROGRAMMER'S REFERENCE MANUAL 

DEC-DS-SDAA-D 

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its publications. 
To do this effectively, we need user feedback: your critical evaluation of this manual and the DEC products described. 

Please comment on this publication. For example, in your judgment, is it complete, accurate, wt:!l-or/:,aOlzed, weIl-

written, usable, etc? ______________________________________ _ 

Did you find this manual easy to use? ___________________ _ 

What is the most serious fault in this manual? ____________________________ _ 

What single feature did you like best in this manual? _____________________ . ___ _ 

-------------------------------------------------- ------------------

Did you find errors in this manual? Please describe. ____ _ 

Please describe your position. ______________________________________ _ 

Name: ______________________ OrganizationL..... _____________ _ 

Stree:t..t ______________________ State _______________ Zip, _____ _ 



....••••••••.•.•..••.•.••...•...........•...•..•...........••......•......•.•...•........• Do Not Tear - Fold Here and Staple ..•••••.••••.•....•••.•....••...•••.•..•..•.••....•.•••.•••.••••.•..•.••.•••••.•••••••••••• 

BUSINESS REPLY MAIL 

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: mamaama 
Digital Equipment Corporation 
Software Quality Control 
Building 12 
146 Main Street 
Maynard, Mass.OI7S4 

FIRST CLASS 

PERMIT NO. 33 

MAYNARD. MASS. 






