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INTRODUCTION 

This manual describes the KEII-E Extended Instruction Set (EIS) and KEII-F Floating Instruction Set (FIS) 
Options to the KDl1-A Programmed Data Processor for the PDP-11/40 System. These two options are described in 
one manual because of their interdependency, in that KEl1-F cannot be installed without the KEl1-E being first 
installed. The purpose of this manual is to: 

1. Provide an overall understanding of the functions of these options in a PDP-ll /40 System. 

2. Explain how the KEII-E and KEII-F can be used in software operating systems. 

3. Describe the options in sufficient detail to enable maintenance personnel to perform on-site 
troubleshooting and repair. 

In this manual each chapter is split in two with the first half of the chapter presenting information concerning the 
KEl1-E Option and the second half being devoted to comparable information for the KEl1-F Option. This 
organization is intended to facilitate greater ease in use by those customers who utilize only the EIS hardware. Note 
that due to the dependency of FIS hardware on the inclusion of EIS hardware, this split is not used in Chapter 4. 

Chapter 1 provides an introduction to the options and lists brief specifications. Chapter 2 contains programming 
information, listing instructions and illustrating their formats. Chapter 3 gives a discussion of the theoretical 
principles implemented by these options. Chapter 4 comprises a block diagram discussion, a flow diagram discussion, 
and detailed descriptions of the logic functions. Content and organization of this chapter are based on the block 
schematics contained in a separate Engineering Drawings volume. Chapter 5 references the installation and 
maintenance procedures provided in the PDP-ll/40 System Maintenance Manual. Specific procedures are given for 
modifications necessary to the processor, and for use of the Maintenance Module Overlay for these options. 

Detailed descriptions of processor, console, Unibus, and memory logic that interface with these options are provided 
in the following related documents: 

PDP-11/40 System Maintenance Manual 
KDIl-A Central Processor Unit Maintenance Manual 

DEC-II-H40SA-A-D 
EK-KD11A-MM-001 
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CHAPTER 1 

GENERAL DESCRIPTION 

This chapter contains a general description of both the KE11-E and KE 11-F Options. Mechanical descriptions are 
given together with engineering specifications for each option. The chapter is divided in half with the EIS 
information presented first, followed by comparable information for the FIS hardware. 

1.1 KEH-E EXTENDED INSTRUCTION SET 

The KE11-E Extended Instruction Set is a hardware option to the basic PDP-l1/40 Computer System. It is supplied 
as a pluggable option to the KDll-A Central Processor. 

1.1.1 Purpose 

The KE11cE Option expands the instruction set of the KD11-A Central Processor to provide extended manipulation 
of fixed-point numbers. When installed, it adds the capability of Arithmetic Shift, Arithmetic Shift Combined, 
Multiply, and Divide. With these additional instructions, the system cart multiply and divide signed 16-bit numbers, 
and can shift signed 16-bit or 32-bit numbers. Condition codes are set in the processor on the result of each 
instruction. 

1.1.2 Configuration 

The KEI1-E Option consists of one module. The single-hex X 8-1/2 in. M7238 module plugs directly into slot 2 
(A-F) of the processor system unit. This is a dedicated prewired slot such that no other modules need be moved to 
accommodate its installation. When installed, the module functions as an extension of the basic KDll-A data paths, 
branch control, and control ROM. Basic timing of the processor is not degraded by use of this module, nor is the 
NPR latency affected when its instructions are being executed. Interrupts are serviced at the end of each instruction 
in the standard manner. 

1.1.3 Specifications 

SpeCifications for the KE11-E Option are given in Table 1-1. 

Instructions 

Operations 

Table 1-1 
KEH-E (EIS) Specifications 

Arithmetic Shift (ASH) 
Arithmetic Shift Combined (ASHC) 
Multiply (MUL) 
Divide (DIY) 

Multiplication and division of signed 16-bit numbers 
Arithmetic shifting of signed 16-bit or 32-bit numbers 

1-1 



Addressable Registers 

Timing 

Size 

Power Required 

Table 1-1 (Cont) 
KEll-E (EIS) Specifications 

None in option. Operands fetched from core or processor general registers. 

Time = SRC Time + EF Time 

Instr 
MUL 
DIV 

SRCMode 
o 
1 
2 
3 
4 
5 
6 
7 

ASH (right) 
ASH (left) 
ASHC (no shift) 
ASHC ( shift) 

Single Hex module (M7238) 

+5V,2.3A 

SRCTime 
0.28 J.l.S 
0.78 J.l.S 
0.98 J.l.S 
1.74 J.l.s 
0.98 J.l.s 
1.74 J.l.S 
1.74 J.l.S 
2.64 J.l.S 

EF Time 
8.88 J.l.S 

Notes 

11.30 J.l.S 
2.58 J.l.s 
2.78 J.l.S 
2.78 J.l.S 
3.26 J.l.S 

+0.30 J.l.s/shift 
+0.30 J.l.s/shift 

+0.30 J.l.s/shift 

1.2 KEll-F FLOATING INSTRUCTION SET 

The KEII-F Floating Instruction Set is a hardware option to the basic PDP-l1/40 Computer System. It is supplied 
as a plllggable option to the KDll-A Central Processor and requires that the KEII-Edescribed above be installed as 
a prerequisite. 

1.2.1 Purpose 

The KEll-F Floating Instruction Set (FIS) enables direct operations on single-precision 32-bit words in 
floating-point arithmetic. Since the KEll-E is a prerequisite to the KEII-F, extended manipulation of fixed-point 
numbers is available as well. The KEll-F Option further extends the PDP-ll/40 instruction set to include Floating 
Add, Floating Subtract, Floating Multiply, and Floating Divide. As with the KEI1-E, condition codes in the 
Processor Status Register are set on the result of each instruction. The prime advantage of this option is increased 
speed without the necessity of writing complex floating-point software routines. 

1.2.2 Configuration 

The KEII-F Option consists of one single-quad X 8-1/2 in. M7239 module with the KEII-E Option described above 
being a prerequisite. This FIS module plugs directly into slot 1 (A-D) also a dedicated prewired slot in the basic 
KDII-A. No degradation of processor timing or NPR latency is effected by the use of this option. Floating 
instructions are aborted if a BR request is issued before the instruction is within approximately 8 J.l.S of completion, 
at which time the Program Counter (PC) is adjusted to point to the aborted floating instruction so that the 
instruction will be restarted upon return from the interrupt. 
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1.2.3 Specifications 

Specifications for the KE11-F Option are given in Table 1-2. 

Prerequisite 

Instructions 

Operations 

Addressable Registers 

Size 

Power Required 

Timing 

Table 1-2 
KEll-F (FIS) Specifications 

KE11-E Extended Instruction Set Option 

Floating-point Addition (FADD) 
Floating-point Subtraction (FSUB) 
Floating-point Multiply (FMUL) 
Floating-point Divide (FDIV) 

Single-precision floating-point addition, subtraction, multiplication, 
and division of 24-bit numbers 

None in option. Operands fetched from core. 

Single-quad module (M7239) 

+5V, 1.1 A (typical) 

Time = Basic Time + Binary Point Alignment Time + Normalization Time 

Instr Basic Binary Point Normalization Time 
Time* jJ.S Alignment Time Per Shift jJ.S 

Per Shift jJ.S 

FADD 18.78 0.30 0.34 
FSUB 19.08 0.30 0.34 
FMUL 29.00 0.34 
FDIV 46.27 0.34 

*Basic instruction times for FADD and FSUB assume exponents are equal or differ by one. 
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) 

) 

CHAPTER 2 

PROGRAMMING 

This chapter is devoted to general programming information for the KE11-E and KEll-F Options. It provides 
general descriptions of their operation, the formats and instructions for each. In addition, programming examples are 
supplied for each option. This chapter is intended merely as an introduction to the programming of this hardware. 
For more detailed information refer to the pertinent software documentation generated for these options. As with 
Chapter 1, information has been separated for each option. 

2.1 KEII-E EXTENDED INSTRUCTION SET 

There are no addressable registers in the KE11-E Option. EIS operands are fetched from either core memory or from 
the general processor registers. The result of each operation is stored in the general registers. 

2.1.1 Operation 

When the Arithmetic Shift (ASH) instruction is used, the contents of the selected register is shifted right or left the 
number of places specified by a count. This shift count is a 6-bit, 2's complement number which is the least 
significant 6 bits of the source operand. If the count is positive, the number is shifted left; if it is negative, the 
number is shifted right. This allows for shifts from 31 positions left to 32 positions right (+31 to - 32) although a 
shift of greater than 16 places loses all significance. A count of 0 causes no change in the number. 

When the ~rithmetic Shift £ombined (ASHC) instruction is used, the contents of the register (R) and the register 
ORed with 1 (RV1) are treated as a single 32-bit word. Register RV1 represents bits (15:00), register R represents 
bits (31: 16). This 32-bit word is shifted right or left the number of places specified by a count. This shift count is the 
same as that described for the ASH instruction and permits shifts from +31 to - 32. If the selected register (R) is an 
odd number, then Rand RV1 are the same. In this case, the right shift becomes a rotate and the 16-bit word is 
rotated right the number of bits specified by the count for up to 16 shifts. 

When the MULtiply (MUL) instruction is used, the contents of the Destination Register and the source are 
multiplied as 2's complement integers. The result is stored in the Destination Register R and the register ORed with 
1 (RV1). If the register is odd, only the low-order product is stored. This instruction multiplies full 16-bit numbers. 

When the DIVide (DIV) instruction is used, a 32-bit dividend in Rand RVI is divided by a 16-bit divisor to provide 
a 16-bit quotient and a 16-bit remainder. The sign of the remainder is always the same as the sign of the dividend 
unless the remainder is O. Overflow is indicated if more than 16 bits are required to express the quotient. In this 
case, the instruction is aborted. If the content of the Source Register is 0, indicating divide by 0, an overflow is 
indicated. 

2.1.2 Formats 

The number formats for the KE11-E Option are shown in Figure 2-1. A single word is 16-bits long and a double 
word is 32-bits long. In the single word, bit 15 is the sign of the number; and in the double word, the sign bit is bit 
15 of the high number part. The S bit is 0 for positive quantities and is 1 for negative quantities. 

2-1 



rDOUBLE WORD SIGN BIT 15 14 o 

IS I HIGH OPERAND PART LOW OPERAND PART 

15, )4 o 15 o 
11-1602 

Figure 2-1 EIS Number Formats 

2.1.3 Instructions 

The EIS instruction format is shown in Figure 2-2. It is a double operand instruction in which bits (15 :09) comprise 
the Op code, bits (08:06) designate the Destination Register field (RRR), bits (05:03) indicate the Source Address 
Mode (SSS), and bits (02:00) specify the Source Address Register (SSS). The octal coding is in the form 07XRSS. 
There are four EIS instructions, as follows: 

MUL 070RSS 

MUltiply 

Operation: 

Condition Codes: 

Description: 

R, RVI +- R X(SRC) 

N: set if product is < 0; cleared otherwise. 
Z: set if product is = 0; cleared otherwise. 
V: cleared 
C: set if the result is less than _215 or is greater than or equal to 215 -1; cleared 

otherwise. 

The contents of the Destination Register R and source taken as 2's complement integers 
are multiplied and stored in the Destination Register R and the succeeding register RV1 
(if R is even). If R is odd, only the low-order product is stored. Assembler syntax is: 

) 

) 

) 

MUL S, R. (Note that the actual destination is R, RV1 which reduces to just R when R is ) 

Example: 

odd.) 

16-bit product (R is odd) 

000241 
012701,400 
070127,10 
1034xx 

CLC 
MOV #400,R1 
MUL#1O, R1 
BCSERROR 

Before 
(Rl)=000400 

2-2 

;Clear carry condition code 

;Carry will beset if 
;product is less than 
;-215 Or greater than or 
;equal to 21 5 

;no significance lost 

After 
CRl )=004000 
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DIV 07lRSS 

DIVide 

Operation: 

) 
Condition Codes: 

Description: 

Example: 

ASH 072RSS 

Arithmetic SHift 

15 9 8 6 5 0 

10It t' tlX x xlR R Rls s sis S 51 
.. I , . I I . I I . I I . I I . . 

OP CODE C SOURCE } REGISTER FIELD 

L-____ SOURCE MODE FILED * 
DESTINATION 

L-_______ REGISTER FIELD 

11-1604 

*Note that for the EISinstructions the Source Register is 
considered the Destination since the answer is stored in that 
register. The Destination Mode and Register Field are 
considered to be the source. This is not consistent with other 
PDP-II family instruction formats but is used throughout the 
discussions of the EIS instructions in this manual. 

Figure 2-2 BIS Instruction Format 

R +- R, RVI -;- (SRCY RVI ~ Remainder 

N: set if quotient < 0; cleared othenyise. 
Z: set if quotient = 0; cleared otherwise. 
Y: set if source = 0 or if the absolute value of the register is larger than the absolute 

value of the source. (In this case, the instruction is aborted because the quotient 
would exceed 16 bits.) 

C: set if divide by 0 attempted; cleared otherwise. 

The 32-bit 2's complement integer in Rand RVI is divided by the source operand (SSS). 
The quotient is placed in R; the remainder is placed in RVI with the same sign of the 
dividend. R must be even. 

005000 
012701,20001 
071027,2 

Before 
(RO)=OOOOOO 
(Rl)=020001 

CLRRO 
MOY #20001 ,Rl 
DIY #2,RO 

After 
(RO)=010000 
(RI)=OOOOOI 

2-3 
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Remainder 



Operation: 

Condition Codes: 

Description: 

Exru;nple: 

ASHC 073RSS 

R 

R +- R shifted arithmetically NN places to right or left, where NN = low-order 6 bits of 
source. 

N: set if result < 0; cleared otherwise. 
Z: set if result = 0; cleared otherwise. 
V: set if sign of register changed during left shift; cleared otherwise. 
C: loaded from last bit shifted out of register. 

The contents of the register are shifted right or left the number of times speCified by the 
shift count. The shift count is taken as the low-order 6 bits of the source operand (SSS). 
This number ranges from -32 to +31. Negative is.a right shift and positive is a left shift 
(Figure 2-3). 

ASHRO,R3 

15 

Before 
(R3)=000003 
(RO)=OOI234 

After 
(R3)=000003 
(RO)=012340 

o 

Dnl-,-,-r--===+==, ,=+1=+--·TI ---', I .... ~ 
RIGHT SHIFT IF COUNT IS NEGATIVE 

15 o 

~""I II. I II ,-Ii I II I I "11.1 ..... 0 R 

LEFT SHIFT IF COUNT IS POSiTIVE 
11-1605 

Figure 2-3 ASH Operation 

Arithmetic SHift Combined 

Operation: 

Condition Codes: 

Description: 

R, RVI +- R, RV1. The double word is shifted NN places to the right orleft, whereNN = 
low-order six bits of source. 

N: set if result < 0; cleared otherwise. 
Z: set if result = 0; cleared otherwise. 
V: set if sign bit changes during the left shift; cleared otherwise. 
C: loaded with the last bit shifted out of the register. 

The contents of the register and the register ORed with 1 are treated as one 32-bit word. 
RVI (bits 15:00) and R (bits 31:16) are shifted right or left the number of times 
spec\fied by the shift count. The shift count is taken as the low-order 6 bits of the source 
operand. This number ranges from -32 to +31. Negative is a right shift and positive is a 
left shift (Figure 24). When the register chosen is an odd number, the register and the 
register ORed with 1 are the same. In this case, the right shift becomes a rotate. The 
16-bit word is rotated right the number of bits specified by the shift count for up to 16 
shifts. 

24 

) 

) 
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31 16 

R 

~I I • I 1 
I I 

15 0 

RVI 1 I I • I I-+EJ I I I I I I I 

RIGHT SHIFT IF COUNT is NEGATIVE 

31 16 

EJ+-I I • I I I R 
I I 

t 
I 

15 0 

I I • I 1+-0 RVI 
I I I I I I I 

LEFT SHIFT IF COUNT IS POSITIVE 

11-1606 

Figure 24 ASHe Operation· 

2.2 KEH-F FLOATING INSTRUCTION SET 

There are no addressable registers in the ,KEIl-F Option. PIS operands are fetched from core memory and the reslllt 
of each operation is stored in core memory. Operands are ordered on the stack in Polish Notation (Paragraph 3.2), 
thereby reducing the number of operations necessary to achieve a result. 

2.2.1 Operation 

For Floating ADD, the A argument from the stack is added to the B argument from the stack with the result stored 
in theA argument position on the stack. . ., 

For floating ~tract, the B argument from the stack is subtracted from the A argument on the stack with the 
result stored in the A argument position on the stack. 

) The gloating MULtiply instructio.n multiplies the A argument on the stack by the B argument on the stack and 
stores the result in the A argument position on the stack. 

The floating DIVide instruction divides the A argument on the stack by the B argument on the stack and stores the 
result in the A argument position on the stack. 

2.2.2 Formats 

The number format for the KElI-F Option is shown in Figure 2-5. The KEll·F word is 32 bits long with bit 15 of 
the high argument deSignating the sign of the fraction. Note that the 8-bit exponent separates the fraction from its 
associated sign. In floating point, representation of binary numbers is in three parts: a sign bit, an exponent, and a 
mantissa. The mantissa is a fractlon expressed in sign and magnitude format with the binary point positioned to the 
left of the most significant bit of the mantissa. The mantissa is assumed to be normalized. :rhe MSB of the mantissa 
is not stored in core because it is redundant. Leading Os are removed by shifting the mantissa left; however, each left 
shift of the mantissa inustbe followed by a decrement of the exponent value to maintain the true value of the 
number. The exponent value represents the power of 2 by which the mantissa is multiplied to obtain the value to be 
used. 
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FRACTION I 
SIGN BIT \ .. HIGH ARGUMEI\iT + LOW ARGUMENT 

EXPONENT S (EXCESS 2008) 

15 14 7 

BINARY POINT --' 23 . Il: 
FRACTION 

(HfGH PART! FRACTION (LOW PART) 

6 0 15 

I 
23-BIT ~RACTION 

• 

" • , , '0'" '" " b'" "'" ,,,.'" ... ,," o. 00 
• operands if exponent field ¢ all zeros. 

Figure 2-5' FIS Number Format 

~I 

0 

o 

11-1607 

The KEll-F Option stores the exponent in excess 200s (12810) notation. As a result, exponent values from -128 to 
+127 are represented by the binary equivalent oLO to 255 (octal 0-377). Mantissas are represented in sign 
magnitude form. 

The binary radix point is to the left. The results of the floating-point operations are always rounded away from 0, 
increasing the absolute value of the number. 

If theexp~nent is equal to 6, the number is assumed to be 0 regardless of the sign bit or fraction value. The 
hardware generates a clean 0 (32-bit word of all Os) in this case. 

2.2.3 Instructions 

The FIS instruction format is shown in Figure 2-6. It is a double operand instruction in which the low three bits 
(R,R,R) specify a register that is utilized as a stack pointer for the floating"point operands. The register, may be any 
one of the eight general registers, but some caution must be used if using the PC (R7). It is unlikely that the PC 
would be desirable as a pointer. 

15 14 3 2 0 

I 0 I' f 'I 1 'II "0 1 I 0 0 0 I X X X I R R R I 
~ . I I . ! ! . ! I . ! ~! . I ! • 

OP CODE STACK 
POINTER 

11-1603 

Figure 2-6 FIS Instruction Format 

The operands are loCated on the stack adollows: 

(R) = High B Argument EXP HIGH FRACTION 
14 6 0 

(R)+2 = Low B Argument 

(R)+4 = High A Argument LOW FRACTION 
0 

(R)+6 = Low A Argument 
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) The floating-point answers are stored as follows:· 

) 

) 

(R)+4 = High Answer 
(R)+6 = Low Answer 

The floating-point stack pointer is repositioned to point to (R)+4 (High Answer). 

The floating-point octal coding is in the form 0750XR. There are four FIS instructions, as follows: 

FADD 07500R 

Floating-ADD 

Operation: 

Condition Codes: 
(See Note Below) 

Description: 

FSUB 07501R 

Floating-SUBtract 

Operation: 

Condition Codes: 
(See Note Below) 

Description: 

FMUL 07502R 

Floating-MULtiply 

Operation: 

Condition Codes: 
(See Note Below) 

" .. 

[(R) +4 0 (R) +6] +- [(R) +4 0 (R) +6] + [(R) 0 (R) +2], if result;;;' 2_ 128 ; 
else [(R) +4 0 (R) +6] +- 0 

N: set if result < 0; cleared otherwise. 
Z: set if result = 0; cleared otherwise. 
V: cleared 
C: cleared 

Adds the B argument to the A argument and stores the resUlt in the A argument position 
on the stack. A+- A+B 

[(R) +4 0 (R) +6] +- [(R) +4 0 (R) +6] - [(R) 0 (R) +2] , if result ;;;. 2_1 28; 
else [(R) +4 0 (R) +6] +() 

N: set if result < 0; cleared otherwise. 
Z: set if result = 0; cleared otherwise. 
V: cleared 
C: cleared 

Subtracts the B argument from the A argument and stores the result in the A argument 
position on the stack. A +- A-B 

[(R) +40 (R) +6] +- [(R) +4 0 (R) +6] * [(R) 0 (R) +2], if result;;;' 2_ 128 ; 
else [(R) +4, (R) +6] 

N: set if result < 0; cleared otherwIse. 
Z: set if result = 0; cleared otherwise. 
V: cleared 
C: cleared 
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Description: 

FDIV 07503R 

Flo&ting-DIVide 

Operation: 

Condition Codes: 
(See Note Below) 

Description: 

Multiplies the B argument by the A argqment and stores the result in the A argument 
position on the stack. A +- A *B. If the result is < 2- 1 2 8 , then underflow occurs and the 
destination address will contain the A argument. 

[(R) ~4 D(R) +6] +- [(R) +4 0 (~)+6] I [(R) 0 (R) ~2], if result> 2_128 ; 

else [(R) +4 0 (R) +6] 

N: set if result <0; cleared otherwise. 
Z: set if result = 0; cleared otherwise. 
V: cleared 
C: cleared 

Divides the A argument by the B argument and stores the result in the A argument 
position on the stack. If the B argument (divisor) is equal to 0, the stack is left 
untouched. A +- AlB. If the result is < 2- 128 , then the destination address will contain 
the A argument. 

NOTE 
If .a trap occurs asa function of a floating instrqction, the 
condition codes are reinterpreted as follows: 

N: set if underflow, cleared if overflow. 
Z: cleared 
V: set if underflow, overflow, divide by 0 (error 

conditions). 
C: set if divide by 0, otherwise cleared. 

Traps occur through the vector 244. (R) is reset to point to 
high . B argument on the stack. The arguments are left 
untouched. 

2.2.4 Programming Example 

A sample floating-point program is given below. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
U! 
11 
1~ 
13 
14 
15 
16 
17 
18 

fl)0f(JIC'JI2II1J' ,CSEeT 

; 

,T'JTLE FISEXM 

COPYR%GHT 1972 BY DIGITA~ EQU!PM~NT CORPORATION, 
MAYNARD, MASSACHUSETTSi 

EXAMP~E OF PDP·11/4~ rLOATING INSTRUCTION SET USAGE (PIS) 

COMPUTE LARGER ROOT Or QUADRACllC EQUATiON! 

J A*X-X + BOX + C ~ 0 
J 
I 'AI.GORITHM lSI 
J 
J ROOTl ~ (-B + SQRT(BoB • 4.A-C~)/C20A) 
J 
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19 
20 
21 
22 
23 
24 
25 
26. 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 'HHHli21 

40 i21eJ004 

41 121 0121 Hl 

42 00014 

43 00020 

44 00024 
45 12101:'126 
46 0012130 

47 121012134 

48 001214121 

49 00044 
50 1211212146 

51 00052 

52 013(2156 
53 00060 
54 .00062 
55 00064 
56 12113(2166 

57 00(2172 

58 1210076 

59 00102 
60 210104 
61 0011'16 

62 00112 

INITIA~ VA~UES or At a, AND CARE 
P~ACEO IN MEMORY L.OCATIONS A, B, AND C, 
RESULT IS COMPUTED AND STORED AT ROOT'. 

NORMAL. TERMINATIoN IS A HALT AT L.OCATION PoNE, 
lr DIsCRIMINANT IS NEGATIVE THEN HAL.T AT L.OCATrON 
IMAG. HA~T AT AcERO IP A , 0. 

I 
0121001210 RI2l 
121012101211 Rl 
00001212 R2 
2100et12l3 R~ 
012121004 R4 
1210001215 R5 
011'0006 SP 
1210001217 PC 

NORMAL. REGISTER DEC~ARATIONSI 
l!,,0 
="1 
:;"2 
l!,,3 
:;"" iii'" ="6 
='" 

PROGRAM STARTS HERE 
i 

12112706 START: 
000442' 
12116746 
000204 
016746 
rlJ0i21176 
016746 
000174 
016746 
01110166 
075026 
0e'5046 
12112746 
04061210 
016746 
000150 
12116746 
000142 
001457 
12116746 
000146 
016746 
000140 
075026 
075026 
075016 
12'0 4 46 
12112667 
121001313 
(2112667 
000126 
(2104567 
000000G 
rlII11 0 4 211 
12100222 
(21 Hl (21 67 
IZIQJ0114 
121 ie, 167 
eJQJ0112 

MOV 

MOV 

MOV 

MOV 

MOV 

F'MUI.. 
CI.R 
MOV 

MOV 

MOV 

BEQ 
MOV 

MOV 

F'MUI., 
F'MUL. 
r$UB 
BMI 
MOV 

MOV 

J$R 

BR 
,WORD 
MOV 

MOV 

#STACK I SP 

S.2, .. (SP) 

sp 
.(SP) 
#.F'4.0,"(SP) 

H2,w(SP) 

Ai!F;RO 
C"'2,,,(SP) 

c, .. (SP) 

SP 
SP 
SP 
IHAG 
(SP)+,TEMP1 

(SP)+,TEMP1+2 

, ... 4 
T~MP1 
R!/l,TEMP2 

Rl.,TEMP2.2 

'INITIAL-IcE; PROCESSOR STACK, 

I B TO STACK 

IAGAIN 

IrORM S*S 
14,0 TO STACK 

IA TO STACK 

,HA!.T IF' • " 0. 
I C TO STACK 

''''ORM .*C 
H'QRM 4,* •• C 
,rORM e*8-4.*.*C (OISCRIMINANT) 
'BRANC~ l' NEGATIV~ 
,STORE DISCRIMINANT 

ICA!.1.. rORTRAN SQUARE ROOT AOUT%NE 

'STORE RESUt..T 

63 ICOMPUTE ROOTl 
64 00116 016746 MOV S+Z,-CSP) 18 TO STACK 

210012172 
65 00122 12116746 MOV s,-esp) 

000064 
66 00126 12162716 ADO #100"0",@SP IN~GATE 8 ON STACK 

1000"" 



67 00132 016746 MOl! TEMP2.2,. (SP) ,SOU.RE ROOT TO STACK 
011l~fZl72 ) 

68 00136 016746 MOV TEMP2,.(SP) 
011l~12I64 

69 ~0142 121751211216 FADD SF' .FORM -S ... SQRT 
7121 1210144 12119746 MOV CONSH2, .. (SF') 12, ril TO STACK 

12It:lI2l!ll64 
71 00150 016746 MOV CONST,,,(SP) 

121 I1l 0fZ1 56 
72 00154 016746 MOV A+2,w(SP) J A TO STACK 

I2II1l~fZl3QJ 
73 1210160 016746 MOV A,,,(SP) 

12It:l0022 
74 00164 07512126 FMl)L SF' IFORM 2,*A 
75 121121166 075t:l36 rOlv SP 'F"ORM (8B.SQRT)/(2~*A) 
76 0017121 012667 MOV (SP)+,ROOTl ,SAVE RESUL.T 

I21121ril042 
77 1210174 12112667 MOV (SP)+,ROOT1+2 

011l12104fZ1 
78 121121200 1210121000 DONEI I-IA!.T 
79 1210202 00012100 IMAGI HA!.T 
8J2! 121121204 121121 0t:l 1210 Ai!ERO: 1-1 A\" T 1 
81 / 

82 
83 0121206 A; ,BL.KW 2 
84 J2!0212 B: ,sl.KW 2 
85 0121216 c; .6L.KW 2 
86 00222 TEMPi: ,6I..KW 2 
87 121121226 TEMP2; .9I.KW 2 
86 0121232 2140400 CONST; ,n.T2 2,0 

0121234 '1"1' 0 01210 
89 013236 ROOti ; ,B!.KW 2 
90 ,GL.OBI, SQRT 'EXTERNAL, SUBROUTINE 
91 ,B\.KW 102l ,ROOM POR STACK ) 
92 I2lril442 STACK; .BL.KW t J START OF' STACK IS ToP OF AREA 
93 12100001' ,END 

) 

2-10 



CHAPTER 3 
THEORY OF OPERATION 

This chapter describes KE11-E and KEII-F theory of operation with the EIS principles described first, followed by 
those principles applying to the FIS hardware. A review of the basic requirements for the operations is presented as 
well as the algorithms for those operations. Each algorithmic description is first given in basic terms, followed by a 

) more specific treatment of the operation involved. 

) 

3.1 KEll-E EXTENDED INSTRUCTION SET 

The KE11-E Option is used for fixed-point operations in the KD11-A Central Processor. The principles involved in 
these instructions are given in the following paragraphs. 

3.1.1 Binary 2's Complement Notation 

The KEll-E Option requires a numerical notation that expresses both the sign and the magnitude of each number in 
binary digits. The Simplest class of notation that meets this requirement is based on the following property: a 
number added to its own negative equals O. Thus, adding the negative of a number to another number is the same as 
subtracting the number. The 2's complement of a number is created by complementing and incrementing the 
number, i.e., replacing each 0 bit with a 1 and each 1 bit with aO, and then adding a 1 to the resultant number in the 
least Significant position. Adding a number and its negative in 2's complement notation always produces all Os (the 
only representation of the quantity 0 in 2's complement). 

It is important to remember that the representation of a number differs greatly from quantity represented. For 
example: the quantity -1 is represented in 2's complement notation by 11 111 111 (in eight bits). The quantity +1 
has a 2's complement representation of 00 000 001. 

Example 1 

Adding + 1 to -1 yields the following: 
00000001 = +1 

+11111111 =-1 
100 000 000 = a (The left-most (carry) bit is not a Significant bit and is ignored.) 

Example 2 

Adding +5 and -3 yields the following: 
00 000 101 = +5 

+11 111 101 = -3 
100 000 010 = +2 (Carry bit not significant.) 

A disadvantage of 2's complement notation is that the representation of numbers is not symmetrical. That is, one 
more negative number than positive number can be expressed. In n bits, the maximum positive number that can be 
expressed is 2n-l, but the maximum negative number is -2n- 1(because there is no negative 0). 
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3.1.2 Multiplication 

Multiplication is repeated addition. Multiplying 3 times 7 is simply adding 7 three times. However, 215 times a 
number requires 215 additions (the KEll-E uses a short-cut method that requires only 16 operations). 

In practice, the KEI1-E adds multiples of the multiplicand. The multiples are formed by shifting. Each time a binary 
number is shifted one bit to the left, it is multiplied by two; thus, if it is shifted 5 places to the left, it is multiplied 
by 25 (32). The multiplier is broken down into individual bits that determine which multiples of the multiplicand 
are added to form the product. 

The multiplication process is complicated by the representation of negative numbers used in the PDP-Ii Systems. 
Negative 2's complement numbers cannot be multiplied by the addition of mUltiples unless a correction step is 
added at the end. To avoid this step, the KE11-E uses a method that provides for negative numbers and produces the 
same results as the addition-of-parts method for positive numbers. This method is based on a different breakdown of 
a binary number into positive and negative parts. 

In binary numbers, 10-1=1. Representing each 1 bit of a binary number as the difference between that bit and the 

) 

next most Significant bit produces a string of alternating positive and negative powers of 2. ) 

For example: 

11010111=100000000-10000000+10000000-1000000+100000-10000 
+1000-100+100-10+10-1 
=100000000-1000000+100000-10000+1000-1 

Multiplying· a multiplicand by each of the numbers in the last string (preserving the signs) and then adding the 
products of the multiplications is eqUivalent to multiplying the chosen multiplicand by the original number 
(11010111). This can be done by shifting the multiplicand left and adding or subtracting at each position that ) 
corresponds to one of the numbers in the series. 

The series of alternating positive and negative powers of 2 is easily generated because: 

a. Each pair of powers of 2, one positive and a smaller negative, represents a string of Is. The positive 
number is one digit higher than the most significant 1 in the string, and the negative number is in the 
same position as the least Significant 1 in the string. 

For example, in the number 11010111: 

100000000-1000000=11000000 
100000- 10000=00010000 

10000- 1=00000111 
11010111 

b. Strings of Is are separated by strings of Os. Each string is one or more digits long. 

For example, in the number 11010111: 

-1000000+100000=OX25 

-10000+ 1000=OX23 

llQlQlll 
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c. Thus, each string of 1 s can be replaced by a string of Os with a -1 in the least significant place, and each 
string of Os can be replaced by Os with a + 1 in the least significant place. 

For example, the digits in the number 11010111 can be replaced as follows: 

Original digit: 
Replacement: o -1 

o 
+1 -1 

o 
+1 

1 
o o 

1 
-1 

d. Therefore, iffor any bit of the multiplier the previous (less significant) bit is the same, the multiplicand 
is not added to the partial product (or it is multiplied by 0 and 0 is added to the product). If the 
previous bit is a 1 and the current bit is a 0, the multiplicand is added; if the previous bit is 0 and the 
current bit is 1, the multiplicand is subtracted (negated and added). In each case the multiplicand is 
shifted (with respect to the product) before the addition, because the number added to the product is 
actually the multiplicand multiplied by some power of 2. 

For example, to multiply N by 11010111, the sum of the products of N times each replacement digit, 
times the appropriate power of 2, is the product as follows: 

3.1.3 Division 

Division is repeated subtraction. Division is more complicated than multiplication for two reasons: 

a. The product of two integers is always an integer; the quotient of two integers is rarely an integer. 
Division produces two results, a quotient and a remainder, that interact. The correct quotient is 
dependent on a correct remainder. 

b. The maximum value that results from the multiplication of two numbers can be no larger than the 
source of the maximum number. However, the maximum value that can result from a division is infinite, 
because the divisor can be much smaller than the dividend. Some quotients cannot be expressed in the 
number of bits available in the physical representation and are considered to have overflowed. 

The quotient in a division is the number of times that the divisor can be subtracted from the dividend without going 
beyond 0 (changing sign). The result can be determined by counting subtractions until the remainder does go 
beyond 0 (which produces a condition called underflow), then reducing the count by one. The remainder must also 
be corrected by restoring the value of one subtraction. 

Rather than do as many as 215 subtractions, the KEll-E uses a short-cut method similar to that used in 
multiplication. The results of dividing by multiples of the divisor, where each multiple is a power of 2 times the 
divisor, can be combined to form the quotient. 

This division procedure operates by subtracting a large multiple (2n- 1) of the divisor from the dividend. If the 
remainder does not go beyond 0 (there is no underflow), the next smaller power-of-2 multiple of the divisor is 
subtracted. For each successful subtraction, the quotient is increased by the same multiple (the same power of 2) as 
the multiple of the divisor used in the subtraction. 

If a subtraction causes underflow, however, the corresponding quotient bit is cleared (the corresponding power of 2 
is not added to the quotient). However, rather than restoring the previous value of the dividend, the KE11-E now 
approaches the correct remainder from the opposite direction. Successively smaller multiples of the divisor are added 
to the remainder (instead of subtracting) until the remainder again underflows, thus restoring the original sign. When 
the KE11-E is adding, instead of subtracting, the corresponding quotient bits are set only if the sign of the remainder 
returns to its original value; if the remainder does not change sign, the quotient bit is set to O. 
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For example, dividing 17 (218) by 5 yields a quotient of3 and a remainder of2 as follows: 

1. Subtract divisor X 23 from the dividend. 

00 010 001 = 218 
11 011 000=-5 X 23 =-508 
11 101001 (The partial remainder has the wrong sign, underflow occurred.) 

2. Add a X 23 to the quotient = O. 

3. Add divisor X 22 to the partial remainder. 

11101001 
00 010 100 = 5 X 22 = 248 
11 111 101 (The partial remainder has the wrong sign, no underflow.) 

4. Add a X 22 to the quotient = O. 

5. Add divisor X 21 to the partial remainder. 

11111101 
00 001010 = 5 X 21 = 128 
00 000 III (The partial remainder has the right sign, underflow occurred.) 

6. Add 1 X 21 to the quotient = 2. 

7. Subtract divisor X 2° from the partial remainder. 

00 000 111 
11111011 =-5 X 2° =-5 
00 000 010 (The remainder has the right sign and is 2, no underflow.) 

8. Add 1 X 2° to the quotient = 3. 

This procedure is valid for positive or negative numbers, provided that the dividend and divisor have the same sign. 
However, if the signs are originally different, subtracting multiples of the divisor drives the remainder away fromO. 
Therefore, the KE11-E adds multiples of the divisor until the remainder underflows (at which point, a quotient bit is 
set) and then subtracts until the remainder regains its original sign. 

NOTE 
In the KElt-E, if the dividend is negative, its 2's complement 
is taken before dividing. Adding the 2's complement is the 
same as subtracting. 

This procedure can handle any combination of binary numbers, regardless of sign. Implementation of the procedure 
is simplified by the following considerations: 

a. If the signs of the divisor and the dividend are originally the same, the KE11-E subtracts until they differ 
(because the sign of the remainder changes), then adds until they are the same. If the signs are originally 
different, the KE11-E adds until they are the same, then subtracts until they differ. 

34 
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) b.Therefore, for eachpperation, the KEll-E compares the signs of the remaind~r and'divisor. If they 
differ, the KE ll-E adds the divisor, shifted to form the proper multiple (power of 2 times the divisor); if 
the signs are the same, the KEll-E subtracts. ... . 

c. A quotient bit is set if the sign of the remainder remains the same after a subtraction or changes after an 
addition; the quotient bit is cleared if the sign changes after a subtraction or remains the same after an 
addition. 

d. A subtraction is done if the signs of the remainder and divisor are the same, and an addition is done if 
the signs are different. A changed sign after an addition means that the signs are now the same, while no 
change after a subtraction also means the signs are the same. 

e. . Therefore, after each operation, the corresponding bit of the quotient is set if the signs are the same or 
cleared if the signs differ. 

3.1.4 Basic Shift Operation 

) In the KEll-E, a basic shift operation is used as a primary operation in the sequences for all other operations. The 
register that is being shifted is treated as a sequence of bits, each shifted separately . The following descriptions 
illustrate the features of a basic shift: 

) 

a. In general, the bit at a particular location is replaced by another bit that is shifted into that location. No 
bit of information is moved more than one location. 

b. One bit is shifted out of the register and is lost. 

c. One bit is vacated. The original contents of that bit are shifted to the next bit, and a 0 replaces the 
previous bit if shifti~g left. 

d. The bit lost is at the end toward which the bits are shifted, and the bit vacated is at the end away from 
which the bits are shifted (bit positions are numbered in ascending order from right to left). 

3.1.5 Algorithms For KEH-E Operations 

Figures 3-1 through 3-4 illustrate the sequence of operations for multiplication, division, and shifting. These flow 
charts emphasize the conceptual organization of the device that does each calculation. Chapter 4 relates the KE ll-E 
logic to these algorithms and explains how the logic structure reduces the hardware and timing requirements. All 
KEll-E arithmetic operations are performed in the l6-bit ALU in the PDP-ll/40 Central Processor KDll-A. This 
ALU has two 16-bit inputs. The B input is supplied (for the sake of the following discussions) by the B Register. The 
A input is supplied by all of the following sources: 

a. The CPU general registers (178 - 008). 

b. The KEll-E registers BR, DR, and (BR (14:00), DRlS). 

The KEll-E also supplies a carry-in signal to bit 0 of the CPU ALU. The BR is simply a holding register whereas the 
DR is a left/right shift register. 

The ASH right operation is implemented by the right data port of the CPU DMUX. Similarly for ASHC the high half 
of the operand is shifted by the DMUX while the DR shifts the low half of the operand. 

The high half of the operand for ASHC left and the entire operand for ASH left are shifted by the ALU function A 
plus B, while the low half of the ASHC operand is shifted by the DR Register. 
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In MULtiplication, the DR holds the multiplicand and, therefore, controls the summation of partial products; as the 
multiplicand is shifted out, the low order word of the productis shifted in. In DIVision, the DR holds the low order 
dividend, and is used to assemble the quotient; as the dividend is beingishifted out, the quotient is being shifted in. 

3.1.5.1 Multiplication - As shown in Figure 3-1, as the flow is entered at MUL, the multiplicand is loaded, as is the 
Step Counter, and the C bit in the Extended Processor Status Register is cleared. 

DROOI1l. EPSICIIO} 

PARTIAL PRODUCT -
MULTIPLIER. SHIFT 
PARTIAL PRODUCT 

RIGHT. EPSIC} - DROO 
DECREMENT COUNT. 

NOTE, . EPSIC} : LOCAL C 
BIT. DRDO '" LSB OF 
MULTIPLICAND. 

YES 

DROOIO}. EPSIClIlI 

SHIFT PARTIAL PRODUCT + 
PARTIAL PRODUCT MULTIPLIER. SHIFT 

RIGHT. EPSlc} - DROO PARTIAL PRODUCT 

DECREMENT COUNT. RIGHT. EPSIC} - DROO 
DECREMENT COUNT. 

Figure 3-1 KEII-E MUL Algorithm 
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SPECIAL CASE 
GENERATE & STORE 
PRODUCT 
1040000.000000} 
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At this point, a test is made to determine if the multiplicand is equal to 100000 (the most negative number). If it is 
not, the multiplier is loaded and the multiply loop is entered; if it is equal to 100000, the multiplier and 
multiplicand are swapped and the multiplier is tested to see if it is the most negative number. If the multiplier proves 
to also be the most negative number, a special case exists in which the answer can be generated. The product is 
stored, local condition codes are set and transferred, and the operation is done. 

If the multiplier is not the most negative number, the multiply loop is entered as above. At this point, the hardware 
looks at the two least significant bits (DROO and EPS(C) to decide whether to either add or subtract and thtm shift, 
or to just shift. In all cases, DROO is sent to EPS(C) as the hardware executes the loop. This action continues, each 
time testing to see if the Step Counter is equal to O. When it is, the operation in the loop is complete. To conclude 
the operation, the loop is left, the product is stored, and local condition codes are set before being transferred to the 
CPU Status Register. 

In the KEll-E hardware, the multiplier (the contents of the calculated destination address) is in B and the 
multiplicand (from R(SF» is in DR. BR and EPS(C) are clear. 

If DROO (the LSB of the multiplicand) is (1), B is subtracted from BR. The result, shifted one place to the right, is 
loaded back into BR with the LSB of the result shifted into DR15. The DR is shifted right so a bit of the 
multiplicand is shifted into EPS(C). The sign of the result is loaded into BR15 and BR14. If DROO is (0), the BR and 
DR are shifted right one place, with BROO being shifted into DR15. The BR is shifted by the DMUX right data port. 

In each subsequent step, only the shift is performed if the bits in DROO and EPS(C) are the same. If they are 
different, addition or subtraction is performed along with the shift. If DROO = (0) and EPS(C) = (1), B is added to 
BR. IfDROO = (1) and EPS(C) = 0, B is subtracted from BR. 

Consequently the low order bits of the running sum of the partial products are shifted into DR as the multiplicand is 
shifted out. At each step, the effect of the multiplier in B on the partial sum in BR15 is binarilly one order of 
magnitude greater than in the preceding step because the partial sum was shifted right. B can consequently be 
combined directly with BR. The first arithmetic operation will always be subtraction. If DROO is initially (0), no 
subtraction will be performed until a (1) is shifted into it. Shifting will then continue until DROO is (0) and EPS(C) 
is (1). 

This process continues, subtracting when DROO is (1) and EPS(C) is (0), adding when DROO is (0) and EPS(C) is (1), 
and simply shifting when DROO is the same as EPS(C). 

After 16 steps, the DR holds the low half of the product and the BR holds the high half of the product. 

The following example shows that the above procedure produces the correct product. 

1 0 0 1 1 0 0 1 = Binary Integer 
7 6 5 4 3 2 1 0 = Powers of 2 for each position 

This number is equal to 
10000000 

+ 11000 
+ 

A string of Is whose ri~ht.most bit corresponds to 2k is equal to 2k+n_2k or equivalently 2k(2n-20), i.e., 2n_2° is a 
string of n Is and the 2 shifts the string left k places. Therefore, 
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In the last representation, each power of 2 that is subtracted corresponds to a transition from (0) to (1) (from right 
to left) whereas each po~eI of 2 that is added corresponds to Ii (1) to (0) transition. The largest term corresponds to 
the transition to, the sign bit, .which is{O) for a positive number. The multiplication algorithm interprets the 
mllltiplicand'in, the 'above manner,alte~~atively subtracting and adding the multiplier to the partial sum, in the 
order-of-magnitude positions corresponding to the transitions. ' 

3.1.5.2 Division - As shown in Figure 3-2, as the flow is entered at DIV,the divisor, diVidend, and step count are 
all loaded .. At this point, a test is made to determine if the divisor is equal to 0.1f it is, the local condition codes are 
set to inc;1icate the error: they are transferred to the,CP1J Status Register, and the flow end,S at that point. ' 

11-1609 

Figure 3·2 KEII-E DIY Algorithm 
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If the divisor is not equal to 0, a test is made to see if the dividend is negative. If it is not, the flow continues to test 
the sign of the divisor, but if it is a negative dividend, the 2's complement is taken of it to determine if it is the most 
negative number (=100000). If this condition exists, division is impossible and the DIV QUIT path is taken to set the 
local condition codes to indicate that the quotient would be too large. The codes are then transferred to the CPU 
and the flow is ended. 

If, however, after 2's complementing the dividend, it proves not to be the most negative number, the flow continues 
to test the sign of the divisor as above. This is the first division step; and, if the divisor is negative, it is necessary to 
add it to the dividend since adding a negative number is equivalent to subtracting a positive number. But if the 
divisor is positive, it is simply subtracted. Before either the add or subtract operation, however, the dividend is shifted 
left. 

At this point, the hardware is caused to look for the result of this initial add or subtract operation as indicated by 
the presence of or absence of a carry-out from the ALU. If a carry-out is not seen,this indicates that the scaling of 
the dividend vs the divisor will produce the proper number of bits in the quotient. Ifa ·carry-out is seen (underflow), 
however, it indicates that more than 16 bits are required to display the anSwer and the DIY QUIT path is taken to 
set local condition codes before they are transferred, and the flow is terminated. 

If the first division step does not produce an underflow, the division loop is entered and the operation continues. In 
the divide loop, two conditions are monitored for each pass through the loop. These conditions are DRaa (which 
represents the carry-out result of the last _ pass through the loop), and B 15 (the sign of the divisor). This test is made 
for each pass through the divide loop, up to the number set in the step count. Each pass; the two bits are sampled, 
and the appropriate action taken. If the divisor is indicated as being negative and a carry-out was detected for the 
last pass, the indication is that too much was either added or subtracted in that last step, causing the reverse action 
to take place in the currrent step. This continues until the step count reaches 0, at which ~ime the loop is left and 
the flow continues. -

At this point in the flow, a test is made to see if either the sign or value of the remainder is incorrect. This is the 
fix-up step in which the sign or value of the remainder is corrected. The sign of the remainder should match the sign 
of the dividend. Once done, the remainder is stored and the sign of the quotient is tested for correctness. If it is 
incorrect, the 2's complement of the quotient is taken and, il;1 either case, the quotient is stored. . . . " 

The flow ends in the usual manner with the local condition codes being setand transferred. 

In the-KE11.Ehardware, the divisor (the contents of the calculated destination address) is in the B Register. The BR 
and DR hold the high and low dividend, respectively. If the dividend is negative, the 2'scomplement is taken and 
loaded into BR and DR. 

Before the division process is initiated, a check fbr the divisor being a is made. If a a divisor is detected, the division 
is aborted with the condition codes (Z, Y, C) set to indicate the erior. 

The first step of division is performed so that a test for underflow may be made ~o determine if the quotient is too 
large to be expressed in 16 bits. If underflow does not occur, the instruction is aborted. If not, the remaining 15 
division steps are performed. 

Note that the dividend is shifted left one place before each addition or subtraction, dropping the current MSB of the 
dividend. As the dividend is shifted out, the quotient is shifted in. 

The test for underflow that determines whether the -- ALU should add or subtract is based on the following 
Considerations: 

a. If the divisor is negative and the dividend is positive, adding the divisor to the dividend should produce a 
result closer to a than the original dividend. If the result is negative, underflow has occurred and a a is 
shifted into the DR. 
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b. If the divisor is negative and the dividend is also negative, an underflow condition already exists. The 
divisor is subtracted from th~ dividend to return the dividend to a positive number. If the resl.l1t is still 
negative, a D is shifted into the DR; if the result is positive, the underflow has -been corrected and a 1 is. 
shifted in. 

c. For a positive divisor and dividend, a subtraction is performed. If the result is positive, a 1 is shifted into 
the DR, but if the result is negative; underflow has occurred and.aD is shifted in. 

d. _ If the divisor is positive and the dividend is' negative, an addition is performed to correct, an existing 
underflow. If the result is positive, the underflow has been corrected and a 1 is shifted into the DR, 
otherwise a D is shifted in. 

As a result of these considerations, if the divisor is positive (BIS is D) and there is no underflow (DRDD is 1), or if 
the divisor is negative (BIS is 1) and there is underflow (DRDD is D), the KEll·E performs asubtract operation and 
shifts· the carry·out of the ALU into DRDD. A carry·out of the .MSB of the ALU indicates that no underflow has 
occurred; if an uncorrected underflow existed, the carry indicates that it has been corrected. 

If the opposite conditions exist (divisor is positive and DRDD is D or divisor is negative and DRDD is 1), an addition is 
performed, followed by' a shift of thecarry-out of the ALU into DRDD. Note that the cases for which a carry·out ·of 
the MSB of the ALU exists are equivalent to the cases described above for which DRDD is set. 

If, after the last division step, the LSB of the quotient is a D, an underflow condition still exists. This conditioncaIi 
be corrected (unless an overflow condition also exists) by adding a positive divisor or subtracting-a negative divisor 
to correct the remainder. If no remainder correction is needed and the remainder has the wrong sign or has the 
wrong sign after correction, the remainder is complemented and stored. 

If EPS (N) is set, the original dividend was negative. The complemented remainder, which is n~gative because the 
corrected remainder is positive (if all underflow conditions are corrected), is stored as the final value of the 
remainder. If both the dividend and the divisor were positive, the quotient, which is also positive (the most 
Significant bit of the quotient must be positive or an immediate overflow condition aborts the division),iswritten 
into the appropriate general register. 

Similarly, if both dividend and divisor are negative, the quotient should be positive and is written in its. present form. 
If the original signs of the dividend and divisor were different, the quotient should. be negative. One special case in 
which the quotient is the most negative number is considered an error. 

3.1.5.3 Arithmetic Shift - As shown in Figure 3·3, as the flow is entered at ASH, the Shift Counter is loaded with 
the number of bit positions to be moved (if any). A test is then made to determine the direction of shift, or whether 
no shift will OCcur at all. 

If no shift is called for (no count set in the Shift Counter), the local condition codes are set and transferred to the 
CPU Status Register as the flow concludes. -.-

If a shift left is called for, the operand is shifted left one bit position, stored and the count incremented. This repeats 
until the shift count is exhausted, at which time the local condition codes are set and transferred. 
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Figure 3-3 KE11-E ASH Algorithm 

If a right shift is called for, the opposite occurs with the shift count being decremented on each pass through the 
loop. 

In the KEII-E hardware, the operand to be shifted is in R(SF) and is sent first to the D Register and from there to 
both the BR and to a predeared B Register. The contents of BR (05 :00) determines the direction of shift. If these 
contents are greater than 0, the shift will be to the left. If they are less than 0, a right shift is called for. If they are 0, 
no shifting will occur. Setting of condition codes for transferral is implemented identically to MUL and DIV. 

3.1.5.4 Arithmetic Shift Combined - As shown in Figure 34, as the flow is entered at ASHC it can be seen that 
the flow is similar to the ASH flow except that in this case the hardware is dealing with 32 bits instead of 16. The 
Shift Counter is loaded from the least significant 6 bits of the source operand, and the low shift operand is sent to 
the shift register. 

As in ASH, the value of the shift count with respect to 0 is tested to determine right or left shift. If a right shift is 
called for, the operand is shifted right one position and the partial high answer is stored while the count is 
decremented for each pass through the shift loop until the shift count is exhausted. For the left shift condition, the 
count is incremented; for the right shift, it is decremented for each pass through the loop. 

When the shift count is exhausted for either loop, the low answer is stored (the high answer is alre'ldy stored), the 
condition codes are set, transferred to the CPU Status, and the flow is terminated .. 
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Figure 34 KEll-E ASHCAlgorithm 

In the KEll-E hardware, the contents of the register designated by the source field (R(SF)) and that register ORed 
with one (R(SFVl)) are loaded into the BR and DR Registers concatenated such that the high operand is in theBR 
and the low operand is in the DR. These are then shifted until the count is exhausted, at which time the low answer 
is stored in the odd register and the high answer is already stored in R(SF) by the shifting action within the loop. 

Setting condition codes and transferral is identical to ASH . 

.. 

3.2 KEll-F FLOATING INSTRUCTION SET 

The KEll-F Option is used for floating-point operations in the KDll-A Centeral Processor. The principles involved 
in these instructions are given in.the following paragraphs. 

" 

3.2.1 Polish Mode 

In the KEll-F, floating operations take place on the top of a hardware stack by what is termed Polish Accumulator 
Technique." This technique is based on . a form of mathematical notation developed by the Polish logician 
Lukasiewicz. The procedure allows complex logical expressions to be stated in a nonambiguous manner without the 
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) necessity of relying on hierarchical delimiters such as parentheses. Its use in the KEI1-F greatly simplifies scanning 
mechanisms. By determining interrelationships between operands in various mathematical operations, Lukasiewicz's 
technique allowed rearrangement of terms so that ordering of operands on the stack minimized the number of 
operations required to achieve the desired mathematical result. Operations could then be performed in sequence 
with intermediate results being stored automatically by the stack, then used in the next sequential operation until 
calculation was complete. Without this scheme, each equation term would have to be calculated separately, stored, 
then called for use in sequential steps. 

Polish notation permits the writing of algebraic or logical expressions in a manner that eliminates the need for 
grouping symbols and conventions as to operator precedence. 

In the expression X(Y+Z), the parentheses are necessary so that the reader (or interpreting device) can understand 
the grouping intended, and the precedence of operations to be performed. 

Certain operators have precedence over others. For example in the expression X+Y/Z, the divide operator (/) is 
understood to have higher precedence than the add operator (+) so that it is understood that the operation is to be 

) interpreted as X+(Y/Z) rather than (X+Y)/Z. 

) 

) 

In right-hand Polish notation, the operators are ·located to the right of the operands. For example, the expression 
X+Y is written XY+.Sirnilarly the expression X+Y+Z can be written either as XY+Z+ or XYZ++. In this latter 
example, the first add operator adds Y and Z while the second adds X to that sum. 

In Polish notation, the following juxtapositions can be made to basic logical expressions: 

Basic Expression 

X(Y+Z) 
X+Y/Z 
Q=X(Y - Z)/(R+S) 

Polish Notation 

Either YZ+XX, or XYZ+X 
Either YZ/X+, or XYZ/+ 
XYZ-XRS+/Q= 

The last listing is an example of how Polish notation can be used to reorder many variables. 

3.2.2 Floating-Point Arithmetic 

Floating-point representation of a binary number consists of three parts; a sign bit, an exponent, and a mantissa. The 
mantissa is a fraction in magnitude format with the binary point positioned to the left of the most Significant bit of 
the mantissa. All mantissas are assumed to be normalized; therefore, all leading as are eliminated from the binary 
representation. The most Significant bit is thus a logical 1. Since all mantissas are assumed to be normalized, the 
MSB, which will always be aI, is not stored because it is redundant. Leading as are removed by shifting the mantissa 
left; however, each left shift of the mantissa must be followed by a decrement of the exponent value to maintain the 
true value of the number. The exponent value represents· the power of 2by which the mantissa is multiplied to 
obtain the value to be used. Figure 3-5 shows an unnormalized number in floating-point notation and then the same 
number after it has been normalized. 

3.2.2.1 Floating-Point Addition and Subtraction - For floating-point addition or subtraction operations, the 
exponents must be aligned or equal. If they are not aligned, the mantissa with the smaller exponent is shifted right 
until they are. Each shift to the right is accompanied by an incrementing of the exponent value. When the exponents 
are aligned or equal, the mantissas can be added or subtracted, whichever the case may be. The exponent value 
indicates the number of places the binary point is to be moved to obtain the actual representation of the number. 
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SIGN 

24 BITS OF UNNORMALIZED MANTISSA 

o 0 0 00 1 
! ! 

. 23 

o 1 1 1 1 0 0 1 
I 

EXPONE.NT=OO 100 011 

24 BITS OF ,NORMALIZED MANTISSA(SHIFTED 6 PLACES TO THE LEFT) 

o 

B.ECOMES---'1 0'1 1 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 " 
HIDDEN 1 ! I I I I' . I . 

23 EXPONENT= 00 011 101 O· 
(ORIGINAL EXPONENT DECREMENTED 6 TIMES) 

23 BITS OF NORMALIZED MANTISSA 

HIDDEN 1 ----l 0 1 1 1 0 0 1 1 0 0 0 0 0 0 j 
REMOVED -, I I 

22 
EXPONENT = 00 011101 

EXPONENT HIGH MANTISSA LOW MANTISSA 
r-------~·~----~~r------~·------~.Ir. ----------------~.----------------_, 

01 

15 

NOTE: 

1 0 1 0 1 

HIGH ARGUMENT 
AS STORED (16 BITS) 

1 0 0 1 1 0 000 0 0 1 000 0 0 0 

o 15 o 

LOW ARGUMENT 
AS STORED (16 BITS) 

Mantissa becomes 24 bits at'ter hidden 1 is inserted by the hardware. 
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Figure 3-5 Floating-Point Representation 

In the example below, the number 710 is added to the number 4010 , using floating-point representation in 
binary-octal notation. Note that the exponents are first aligned and then the mantissas are added; the exponent value 
dictates the final location of the binary point. 

4010 = 50s = 0.101000 X26 

+ 710 = 7s =0.111 000 X 23 

a. To align exponents, shift the mantissa with the smaller exponent three places to the right and increment 
the exponent by 3. 

4010 = 508 = 0.101 000 X26 

+ 710 = 78 =0.000 111 X26 

4710 = 578 = 0.101 111 X26 

. b. ~ove the binary pOint six places to the right. 

5 7 ........... ,...-.. 
0.101111. 
'---" 

3.2.2.2 Floating-Point Multiplication and Division -In floating-point multiplication, the mantissas are multiplied 
and the exponents are added. ~or floating-point division, the mantis~as are divided and the exponents are subtracted. 

There is no requirement to align the binary point in the floating-point multiplication or division. 
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In the following example, the number 710 is multiplied by the number 510 , An 8-bit register is assumed for 
simplicity. 

710 =78 =0.1110000X23 

X5 10 = 58 = 0.1010 000 X23 

00000000 
1110000 

o 
1110000 

0.10001100000000 X 26 

Move the binary point six places to the right. 

351(i = 438 = 0~0001 ~OOOOOOOO 

3.2.3 Algorithms for KEII-F Operations 

Figures 3-6 through 3-10 illustrate the sequences of operation for the floating-point operations. Note that to 
complete its function, the KEII-F hardware utilizes much of the KE11-E hardware. 
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Figure 3-6 Floating Entry Algorithm 
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When a floating instruction is executed, the flow is entered at FIS (Figure 3-6). The B argument is fetched from 
core, high B first and then low B. The high B argument consisting of sign, exponent, and high mantissa is then 
disassembled separating the sign, exponent and mantissa. The exponent is saved in the low byte of one of the 
Scratch Pad Registers. 

As previously stated, all mantissas are assumed to be normalized, meaning that the most significant bit of the 
mantissa is always a 1. Therefore, the MSB (referred to as the hidden 1) of the mantissais not stored in core. This 
hidden 1 is now reinserted into the mantissa. 

Next, a test to determine if the B exponent is equal to 0 is made. If it is 0, a clean 0 is generated as the B argument 
(sign, exponent, and mantissa). 

The A argument is now fetched from core and the same procedure described above is followed. A test is now made 
to determine which floating instruction is to be executed. 

3.2.3.1 Floating-Add and Floating-Subtract - As shown in Figure 3-7, the floating subtract flow enters at FSUB 
and immediately complements the sign of the subtrahend. From that point on, it proceeds as in floating-add. This is 
mathematically valid since adding the negative of a number is identical to subtracting it. 

The floating-add flow is entered at F ADD. A test is then made to see first if the B Addend is negative and then if the 
A Addend is negative. If either or both are, the 2's complement is taken of either or both. 

The A exponent is subtracted from the B exponent and a test is made to see if the B exponent is equal to or greater 
than the A exponent. If it is not, then the A and B Addends and exponents must swap positions. The swap is made 
so that the mantissa with the smaller exponent is in position to be shifted later to align the binary points. Since there 
are only 308 bits of mantissa, an attempt to align binary points by shifting the smaller mantissa right more than 308 

places would result in that mantissa being lost. Because of this, another test is made to see if the exponents are in 
range (difference ~308)' If they are not in range, theargument with the larger exponent is taken as the answer. 

If the exponents are in range (difference ~308)' a check is made to see if they are equal to each other. If so, A 
Addend is added to B Addend next. If the exponents are unequal, then the Addend with the smaller exponent is 
shifted right. This corresponds mathematically to lining up the decimal (binary) points. The larger exponent then 
becomes the initial exponent of the answer. The term "initial" exponent is used because normalization of the answer 
has not as yet taken place. 

At this point, the A Addend is added to the B Addend. The sign of the answer is checked, and the answer is 
complemented if the sign is negative. The answer is then normalized, rounded, and stored, as described in Paragraph 
3.2.3. 

As stated before, floating subtract is implemented by changing sign of the subtrahend and adding. 

It should be noted that there are two extra bit positions on the low end of the mantissa for rounding purposes. 
These bits hold the last two bits shifted out of the mantissa when aligning binary points. One of these bits is dropped 
before going to the normalize round and store flow. It will be seen in Paragraph 3.2.3.4 that the rounding bit is 
added to the remaining extra bit. The second extra bit was maintained in case the answer was negative. When the 
answer was complemented, the lower extra bit could affect the upper extra bit. 
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YES -

YES 

NO 

NO 

YES 

!*lIFT ADDEND WITH 

SMALLER EXPONENT 

_RIGHT. INCI;IEMENT 

EXPONENT. 

NORMALI~E 
ROUND & STOR E 

Figure 3-7 KEll-F FADD and FSUB Algorithm 

For example: 

Mantissa Extra Bits 
Negative Answer (uncomplemented) 0 1 1 1 -0 1 

(complemented) 1 0 0 0 1 1 

Rounding bit added to this position.-__ ---~, 

11-1614 

It can be seen from the above example that the second extra. bit can have an effect OJ! the mantissa when rounding 
takes place,i.e., cause a carry into the mantissa. 
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3.2.3,2 Floating-Multiply - As shown in Figure 3-8, the flow is entered at FMUL and a check is made to determine 
if either argument is equal to O. If so, there is no need to go any farther with the operation and a 0 answer is 
generated. The local condition codes are set and the flow proceeds to STORE on Figure 3-10. 

If neither argument is equal to 0, the XOR of the sign bits is saved and the exponents of theA and B arguments are 
added to produce the unnormalized exponent of the answer. 

At this point, the step counter is loaded with 308 and the multiply loop is entered. In this loop, the state of the least 
significant bit of the multiplier (MSROO) is monitored. In any pass through the loop, if this bit is a (0), both the 
multiplier and the partial product are shifted right one position and the step count is decremented. If, however, on 
any pass through the loop the LSB of the multiplit:r is seen to be a (1), both the multiplier and partial product are 
shifted right one position and then the multiplicand and partial product are added before decrementing the Step 
Counter. 

This process continues until the count is exhausted (each bit of the multiplier has been monitored), at which time 
the flow proceeds to the NORMALIZE, ROUND & STORE flow in Figure 3-10. 

It can be seen from the above description that multiplication of the mantissas is identical to the way in which it was 
taught in Grade School. The multiplicand is added to the partial product each time a 1 is encountered in the 
multiplier, followed by a right shift of the partial product. For each 0 encountered in the multiplier, the partial 
product is simply shifted right. 

3.2.3.3 Floating-Divide - As shown in Figure 3-9, the flow is entered at FDIV. At this point, a testis made to see if 
either the divisor or dividend are equal toO. If they are, there is no reason to continue the computation. 

If the divisor is equal to 0 (divide by 0), the local condition codes are set to indicate an underflow, then are 
transferred to the CPU Status Word. At this point the flow terminates. 

If the dividend is equal to 0, a 0 answer is generated, the local condition codes are set, and the flow proceeds to 
STORE on Figure 3-10. 

If, however, neither argument is equal to 0, the XOR of the signs of the arguments is saved, the exponents are 
subtracted to produce the initial exponent of the answer, and the Step Counter is loaded. The divisor is then 
subtracted from the dividend and the carry-out of the ALU is saved. Both the dividend and quotient are shifted left 
one bit position as the saved carry-out is shifted into MSROO, and as the LSB of the quotient and the Step Counter is 
decremented. 

At this point the divide loop is entered. In this loop, the state of the least significant bit of the quotient (MSROO) is 
monitored. In any pass through this loop, if this bit is a (1), the divisor is subtracted from the dividend and the 
carry-out of the ALU is saved. Both the dividend and quotient are shifted left, the carry-out of the quotient is sent 
to MSROO, and the Step Counter is decremented. If, however, upon entering this loop the LSB of the quotient 
(MSROO) is seen to be a (0), the divisor is added back into the dividend and the carry-out of the ALU is saved. Once 
again the dividend and quotient are shifted left, the saved carry-out of the ALU is sent to MSROO, and the Step 
Counter is decremented. 

This process continues until the step count is exhausted, at which time the flow proceeds to the NORMALIZE, 
ROUND & STORE operation described in Paragraph 3.2.3.4. 

Note that division of the mantissas is also identical to the method taught in Grade SchooL The divisor is subtracted 
from the high part of the dividend and, if the divisor was smaller than or equal to the portion of the dividend being 
subtracted from, a 1 is shifted into the answeL The quotient and dividend are then shifted left. If the divisor was 
larger than the dividend, a 0 is shifted into the quotient. Since the hardware cannot look ahead to determine how 
many places the dividend must be shifted left before the next subtraction will be successful, the divisor will be added 
back into the dividend until the dividend is larger than or equal to the divisor and then a 1 will be shifted into the 
answer. 
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Figure 3-8 KEII-F FMUL Algorithm 
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SET LOCAL CONDITION 

CODES TO INDICATE 

UNDERFLOW {DIVIDE BY 

ZEROI 

DONE 

DIVISOR- 0 

SAVE XOR OF SIGN BITS 

OF A AND B ARGUMENTS. 

EXPONENT OF DIVIDEND 

MINUS EXPONENT OF 

DIVISOR. LOAD STEP 

COUNTER. 

SHIFT DIVIDEND LEFT. 

SHIFT OUOTIENT LEFT. 

CARRY OUT TO LSB OF 

QUOTIENT {MSROOI. 

DECREMENT STEP CTR. 

DIVIDEND=O 

Figure 3-9 KEll-F FDIY Algorithm 
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STORE 

11-1617 

. I Flgure 3-lD KEI1-F Normalize, Round & Store Algorithm 
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3.2.3.4 Normalize, Round and Store - As shown in Figure 3-10, the flow can be entered either at NORMALIZE, ( 
ROUND & STORE, or at STORE. The STORE flow is entered from FDIV after determination that the dividend was 
equal to 0, or from FMUL after it has been determined that one of the arguments was equal to O. In these flows 
(FDIV & FMUL) , local condition codes were set and upon entering this flow the answer is stored, the local 
condition codes are transferred to the CPU Status Word, and the flow terminates. 

The NORMALIZE, ROUND & STORE entry is made from all other flows if no unusual conditions are detected in 
the process. The first test is made to see if the mantissa is normalized. This is indicated by the state of DR09, the 
MSB of the mantissa. If this bit is not set, the mantissa is not normalized and, as a result, is shifted left one bit 
position while decrementing the exponent. This is formed into a loop until DR09 becomes set, at which time the 
mantissa is normalized and ready to be rounded. 

As noted earlier, an extra bit position is carried on the low end of the mantissa. This bit is the position the rounding 
bit is added to. If the extra bit is a 1, then there will be a carry into the least significant bit of the mantissa, thus 
increasing the absolute value of the number. If the extra bit is a 0, there will be no carry-in. 

For example: 

Mantissa 
100 1 001 

+ 
100 1 0 1 0 

Extra Bit 
1 
1 
o 

Rounding Bit 

The extra bit position is dropped before the mantissa is stored. After rounding, a test is made to see if the mantissa is 
still normalized. It is possible for the mantissa to become unnormalized as a result of rounding, i.e., carries could 
propagate all the way through and beyond the most significant bit of the mantissa. 

For example: 

111111111 
+ 1 
10 0 0 0 0 0 0 0 0 

If this happens, the mantissa must be shifted right one place and the exponent incremented to renormalize the 
mantissa. 

( 

( 

The high answer (comprising the sign, the exponent, and the mantissa) is now assembled. Remember that the ( 
mantissa is always assumed to be normalized, which means that the most significant bit is always going to a (1). 
Because of this, there is no point in storing the most significant bit in core. This (1) in the MSB of the mantissa is 
termed the hidden 1 and is dropped when the high answer is assembled. 

Next a check for either overflow or underflow is made. If underflow is indicated, the local condition codes are set 
appropriately, transferred to the PSW, and the flow terminates. Likewise if overflow is indicated, the same action 
occurs. If, however, neither is indicated, the local condition codes are set and the answer is stored in core. The flow 
terminates after transfer of condition codes to the CPU Status Word. 
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4.1 SCOPE 

CHAPTER 4 

LOGIC DESCRIPTION 

This chapter describes the hardware associated with both the KEll-E and KEll-F. Because of their 
interdependence, these two options are not separated in this chapter as they are in other chapters but rather are 
described as one entity. The options are described at both a block diagram level and a logic level. In addition, the 
philosophy behind ROM programming is discussed together with a guide to reading the flows. Where necessary, 
interaction on a flow level with the KDII-A is also given. For convenience, logic descriptions are ordered as to their 
appearance in the Drawing Set. 

4.2 FUNCTIONAL BLOCK DIAGRAM DISCUSSION 

Figure 4-1 is a functional block diagram of theKEll-E and KEll-F showing the interconnections with the KDll-A 
Central Processor. Both options are shown. The dotted line separates the EIS on the left and the FIS on the right. 

The KEI1-E comprises one 16-bit input register (BR); a holding register that receives data from the KDI1-A; a 
16-bit left/right shift register (DR); an 8-bit up/down counter that receives data from the input register; a local 
condition code register that records the status of the KEll-E operations; a dual 4:1 multiplexer (RDMUX) that 
channels data via BUS RD drivers from the two KEll-E registers and status to the KDll-A; and a 256-word by 
68-bit ROM that is used to control both the KDlI-A and KE11-E during the execution of the EIS instruction. The 
two 16-bit registers (BR and DR) are simply an expansion of the basic KDII-A data path. 

The KEI1-F comprises all KEI1-E hardware plus two 16-bit left/right shift registers (HSR and MSR) that function 
also as holding registers; a dual 4: 1 multiplexer (FRD MUX) that assembles data for channeling from the KE 11-F 
registers to the KDI1-A via separate bus drivers; a constants generator that creates the offsets required in FIS 
computations; and a 256-word by 8-bit ROM used together with the EIS ROM to control both the KDlI-A and 
KEl1·F during the execution of an FIS instruction. 

The input to the BR Register (DMUX(15 :00» is one of the buses in the KDl1-A. All data to the KEH-E or KE11-F 
options is received over this bus. The BR Register is similar to the B Register in the processor in that it is clocked by 
the PI and P3 timing pulses from the basic machine. Normally, without the KE11-E/F installed, data in the KD11-A 
might be moved from the scratch pad, over the BUS RD through the bUffer and the ALU. From the ALU, it would 
move to the D Register, onto the DMUX, and into theB Register (this can be followed by referring to drawing 
KD11-A-BD). With theKE11-E/F installed, however, if one of the EIS or FIS instructions were issued, the data on 
the DMUX might not enter the B Register but might continue on and into theBR Register in the EIS option. The 
BRis merely a holding register and every register within the option is loaded from it. 
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The BR feeds the DR, theRD MUX concatenated with DRI5, and the RD MUX straight through. It feeds the 
counter with bits (07 :00) to keep track of the number of steps performed. When the FIS is installed, the BR is used 
to feedthe "assemble" input of the FRD MUX and to load both the HSR and MSR Registers. 

NOTE 
For the EIS option, only bits (05:00) are required for the 
counter even though bits (07:00) are loaded. Bits (07:00) are 
required for the FIS option. 

In multiply and divide operations, the counter keeps track of how many steps have been executed in the various 
loops. In arithmetic shift and arithmetic shift combined instructions, it holds the count or number of shifts that are 
to be made. 

The DR Register is clocked by PI +P2 and is fed directly from the BR Register. The mode selected determines 
whether it will shift right, shift left, or simply be loaded. At times it is used concatenated with theBR to hold the 
lower portion of the operand being shifted while the upper portion is shifted in the DMUX of the basic machine. 
The DR can feed either the RD MUX (EIS) or the FRD MUX (FIS), depending upon the mode of operation. The 
DR Register feeds the BUS RD via the RD MUX for transmission back to the basic machine. 

The RD MUX is a multiplexer with four input ports. From right to left, depending upon the combination present at 
its select input, it is fed with the following: 

1. Local status (EPS(N:C». This input records the condition codes of the instruction as to whether it is 
negative or equal to 0, or whether there is any carry bit, or if there is overflow. This information is 
assembled here and transferred back to the basic machine as the last event when an instruction is 
complete. From here, it is load~d into the basic machine's Status Register. 

2. The entire 16 bits of the DR Register are put on the RD BUS and fed either through the ALU or into 
the general registers, or any place in the basic machine accessible from BUS RD. 

3. The BR shifted left one place concatenated with DR15 (BR(14:00),DR15). As in the case of Arithmetic 
Shift Combined, the BR and DR are concatenated and shifted left through that port with the DR being 
the lower register. 

4. The entire 16 bits of the BR Register where it is fed, with no shifting, onto the BUS RD. 

The EIS ROM word is physically 68 bits wide (i.e., the ROM bits that are actively being used), but the KDll-A 
ROM contains 56 bits while the KEII-E ROM has 24 bits of its own. Since the KEII-E must control the KDI1-A 
d,ata path, most of the 56 ROM bits in the basic machine must be duplicated. Not all need be duplicated, however, 
just those that are to be used by the option. The others are driven low by hardware in the option, thereby effectively 
loading Os into those positions in the U Register, As a result the KEll-E effectively sends 56 ROM bits back to the 
basic. machine, not all of which are active, and generates 24 bits of its own which it feeds to its own U Register. 
These bits are used to control the EIS data path, to clock the BR and DR Registers, to control which way the DR 
Register will shift, to load the counte·r, and to cause the counter to count. They are used further to control ;what 
port on the RD MUX is active, and to clock the status bits (see ROM U word descriptions in Paragraph 4.6.2). 
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The option also contains. a branch micro test multiplexer (BUT MUX) which is used for testing ~onditions that 
determine selectable changes in microprogram flow. This BUT MUX is similar to the one in the KDll-A .and is 
duplicated here to control conditions peculiar to the option. Bits in the ROM are used to control inputs to . the 
multiplexer which, in turn, checks for the true or false state of some testable condition. The result of that test then 
is used to alter the "next address" residing in the present ROM word UPF field. The output of the BUT MUX goes 
back to the basic machine to an OR gate in front of the UPP Register where Is may be inserted in appropriate 
positions to alter that base address to as many different addresses as there are branches called for. 

In the KEll-F, the HSR and MSR Registers are both fed by the BR when an FIS instruction is called for. Their 
mode of operation is selected similarly to the DR in the EIS option except that here three bits are used to control 
two registers. In operation, normally the HSR can be loaded at any time unless conditions require that both the HSR 
and MSR be loaded. In this event, the MSR is loaded before the HSR. An examination of the mode selection for the 
HSR and MSR on print KF-2 illustrates why the latter statement is true. 

The FRD MUX is similar to the RD MUX in the EIS option. In this case, a constants generator is also mUltiplexed to 
the BUS RD. Select bits control the inputs from the HSR or MSR Registers, the constants generator, or the assemble 
input from BRand DR in which the high 7 bits of the mantissa are in the DR Register, the 8-bit exponent is held in 
the BR Register, and the sign is taken from the EPS(N) bit. 

The BUS RD drivers (74HOls) are identical to those used in the EIS option but are enabled orily when an Fis 
instruction is called for. 

The FIS ROM is a further horizontal extension of the microinstruction word. It supplies the extra control bits 
required for floating-point operation. It should be noted that the ROMs on the EIS board are also used to execute 
the FIS instructions. 

Additional control logic is provided in this option to allow branch control of bit I of the ROM address from this 
hardware rather than from the EIS option. Provision is also made to enable DATO operations on the bus so that 
answers may be stored back in core. This feature is"notneeded in the EIS option. 

4.3 DETAILED BLOCK DIAGRAM DISCUSSION 

The descriptions in this paragraph are intended to supplement those in Paragraph 4.2. The detailed block diagrams 
for the KEl1-E and KEII-F are shown on drawings KEI1-E-BD and KEI1-F-BD, respectively. These block diagrams 
have been arranged such that the inputs and outputs match the outputs and inputs of the KDII-A block diagram in 
drawing KDI1-A-BD. Note that each block contains the drawing number on which the logic may be found, e.g., the 
BR Register is found on drawin.g KE-2 of the EIS schematics. 

As shown on KEll-E-BD, the option is fed from the processor DMUX output. This is sent directly to the BR 
Register through which all data to both options is fed. 

The output of the BR Register f~eds the RD MUX and the DR Register. All 16 bits. of the BR go to· the DR while 
bits. (07:00) go to the cQunter. As explained earlier, BR(14:00) can be shifted left one position and fed to the RD 
MUX with bit 15 of the DR sent to the lowbit position. BR(1S :(0) is also sent off the page to the FIS block 
diagra~, as isDR{lS:OO). The RD MUX is selected by combinations of SRDMI and SRDMO, two bits in the EIS 
extension of the ROM word. Its output feeds a 74HOI driver which is in turn enabled by STRDM{l)H, the latter 
being the ERD field in the extension ROM word. When asserted, this data is enabled out onto BUS RD from the RD 
MUX. 
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The COUNT, fed by DR(07:00), is used in both the KEll-E and KEll-F. The counter is loaded by LD COUNT L 
and is clocked by CLK COUNT H. It is used to test whether Or not the count is equal to 0, thereby keeping track of 
where the operation is in a loop. 

The EPS(N,Z,V,C) block is used to compile the local condition codes (EPS means External Processor Status) for 
transmission back to the Processor Status Word via the RD MUX at the conclusion of each instruction. An inhibit 
signal (KE, '-5 INH PS CLK (1) L) is also generated at this time'that prevents clocking any other bits in the basic 

'. . , 

machine status. In the case of an aborted instruction, these bits are not transferred but rather are stored here for 
information after servicing the abort. This leaves the basic machine's condition codes untouched as further 
informl!.tiol'l in servicing the abort. 

The AUXILIARY ROM CONTROL block consists of some combinational logic that looks at a general purpose code 
(GPC=2) and the decoding of the MUL and DIV instructions to feed ESALU(3:0) back to the processor. These are 
select bits sent to the basic machine's ALU via a multiplexer into which the ROM bits are also sent. When selected, 
this auxiliary combinationall'ogic replaces ROM word control of the ALU, causing the add, subtract, or straight 
through operations to be controlled by special conditions during the multiply and divide instructions. 

The box CLOCK ENABLE GATES is shown to indicate that PI, P2, and P3 from the basic machine are used to gate 
internal conditions when generating the clocking signals for the various registers in the option. 

The EUBF MUX box is a multiplexer that looks at 5 EUBF bits in the extended ROMword. These bits serve a 
similar function to the EUB bits in the basic machine ROM word. They are used for microbranch testing within the 
option. When just the EIS is installed, only 4 bits are llsed with the 5th bit pulled up. When the FIS option is 

) installed,a1l5 bits are used. Signals EUBC(4:1) are sent back to the basic machine for branch control. 

The box marked U WORD CONTROL ROM stands for the KEI1-E U Word Control ROM, comprising 256 words X 
80 bits. Its output feeds a KEH-E U WORD REGister, which is 24 bits wide, with the EIS ROM bits (bits 57 
through 88), The lower 56 bits are sent back to the KDl1-A U Word Register (K2) over BUSUxxL. This is actually 
44 bits since in the KEll-E U Word some of the bits are used to drive two bits back to the basic machine. The BUS 
U is a wired-OR of the CPU ROM output. Eight bits (BUS U(07 :00» are sent back to the Microprogram Pointer 
Register in the processor for feeding the KDII-A U Word Control ROM. 

) There are eight non-duplicated ROM bits that are hardware driven. They may be considered as wire-ORed with the 
ROM outputs. Note that they are not ROM bits but rather open-collector gates. 

The FIS block diagnim on drawing KEll-F ~BD contains all that was contained on the EIS block diagram plus the 
hardware representations for the FIS option. The EIS descriptions will not be repeated here. 

As shown, BR(15:00) are used to feed both the HSR Register and the MSR Register. Both are clocked by 
E(PI +P2)H. This clock comes from the EIS board and is always present at both registers. It is not effective,however, 
until a register is selected by select bits generated in the FIS ROM Register. The same is true of the MSR Register 
except that an additional select bit is required to enable this register. 

Both the HSR and MSR Registers feed the FRD MUX which is similar in operation to the RD MUX in the EIS. BUS 
RD is fed with either IlSR(15:00) straight-through; with the MSR(15:oo) straight-through; with the input from the 
9-bit constants generator; or it will assemble the EPS(N) bit (which is the sign bit) with the 8-bit exponent field 
(BR(07 :00» and with the high 7 bits of the mantissa (DR(06 :00», all of which constitute, the high answer from a 
floating operation. 
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The output from the FRD MUX is fed through an enabled driver similar to the drivers for the EIS option. In this 
case, a special enable is provided (STFRDM(1)H) that is called up for only floating instructions. The FUB MUX box 
is an 8: 1 branch multiplexer that controls EUBC 1 for the FIS operations, When enabled, it disables its counterpart 
in the EIS option and allows this multiplexer to control bit 1 of the ROM address. 

The KEII-F U Word Control ROM (256 words X 8 bits) provides the additional extension of the microinstruction 
word for the FIS option. It interfaces the processor data path and control in similar fashion to the ROM in the EIS 
option. This ROM is addressed by another buffered version of the Microprogram Pointer (BUPP(8:07)) rather than 
the (EUPP(8:0)) used for the EIS ROM. This ROM feeds an 8-bit wide U Word Register similar to the register used 
in the EIS. 

4.4 INTERFACE 

The KEII-E Option (M7238 module) and the KEII-F Option (M7239 module) both interface the KDII-A Central 
Processor via module slots in the KDll-A (A-F2 for the KEll-E and A-Dl for the KEll-F). In addition three (3) 
"over-the-back" cables from the M7238 module (EIS) connect the 40-pin Berg connectors on the M7232 (U Word) 
module at location A-D3. These cables wire-OR the outputs of the "main" KDII-A ROM with the "auxiliary" 
KEll-E and/or KEll-F ROMs. 

The KEll-E receives data from the KDll-A via DMUX(lS:00)H. The KEll-F, in turn, receives data from the 
KEll-E. Data is returned from both options over the wire-ORed bus BUS RD(lS:OO)L. 

When the KEll-E is installed, Jl on the processor module M7233 (IR DECODE) at location A-FS must be 
removed. When the KEH"F is installed,jumpers WI, W2, and W3 on the EIS option must also be removed. For more 
information on installation, reft':r to Paragraph S.1. 

When either the KEll-E or KEll-F are in operation, the KDll-A ROMs are disabled and both the KDll-A and the 
options are controlled by the auxiliary ROMs. The processor fetches instructions from core and decodes them. If the 
instruction contains a reserved code, the KDll-A ROM address bit UPP8 is set when BUT(INSTR I) in the basic 
PDP-l1/40 ROM flow is executed. The setting of UPP8 disables the ROMs in the U Word (M7232) module and 
enables the auxiliary ROMs on the EIS module (M7238). 

The KEII-E does another decode of the instruction, and if the instruction is in the EIS or FIS (if installed) group, it 
will branch to the specified address calculation. If the instruction does not fall within these groups, main ROM 
address UPP8 is cleared, thus disabling the option ROMs and re-enabling the KDII-A ROMs. The KD11-A will then 
execute a reserved instruction trap. This sequence of events can be followed by tracing words FET03, FET04, and 
FETOS on the KDI1-A flows and word EIO on the KE1I-E flows. This flow sequence is described in more detail in 
Paragraphs 4.7.2and 4.7.3. 

The interfacing signals between the KEll-E/F and the KDII-A are shown in Figure 4-2 and listed with their 
definitions in Table 4-1. 
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K2-3 EUBC 5 L KF-4 

K2"7 CLK D (1) H KF-4' KE11-F 

KI-7 . D (15'00)=0 H KE-4, KF-4 

K 1-2 ALU 00 H KE-2,6 

KI-5 B15 (1) H KE-4, 5, KE-4 

Ki-2,3,4,5 BUS RD (15'00) L KE-2, KF-2 

KI-5 COUT 15 L KE-2,6 

K3-8 DAD (3*2) KE-5, KF-4 

K1-5 D15 (1) H KE-4 

KI-2, 3,4,5 DMUX (15:00) =0 H KE-2 

K3 ECINOO H KE-5 

K4-2 ECLK U L KE-5 

) 
K2-2 BUS U (56:00) L KE-2,4 

K3 ECOMUXSI L KE-5 

K3 ECOMUXSO L KE-5 

K4 ENPRCLK L KE-5 
KE11-EI 

KD11-A K3 ESALU (3:0) L KE-5 KE11-F 

CENTRAL EIS/FIS 
PROCESSOR K2-2,3 EUBC (4:1) L KE-4 

OPTIONS 

K2-3 EUBC 8 L KE-4 

K2-2, 3 EUPP (8'0) H KE-7,8 

K5 EXT P CLR TRAP L KE-5 
) 

K5-2 INHPSCLKL KE-5 

K3-4 IR 15 L KE-4 

K3-6 IR (14'12)=7 H KE-4 

K3-3 IR (11'09)(1) H KE-4 

K3-3 IR (OS'03)(I)H KE-4, KF-4 

K4-2 (PI, P2, P3) H KE-5, KF-4 

K4-2 Pa,' PEND H KE-5 

K4-2 P CLK UPP8 H KE-5 

K4-2 PEND H KE- 5 

K3-6 RSVD INSTR L KE-5 

K2 -2, 3 BUPP (7:0) H KE-7, 8,9, KF-4 

K5-3 BUT 37 H KE-5 

11-1619 

Figure 4-2 KE II-ElF IKDII-A Interfacing Signals 
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Signal 

ALUOOH 

BI5 (1) H 

BUS RD(I5:00) L 

COUTI5 L 

DAD(3*2) L 

DIS (1) H 

D(15:00)=0 H 

DMUX(I5 :00) H 

ECINOOH 

ECLKUL 

BUS U(56:00) L 

ECOMUXSI 
ECOMUXSO 

ENPRCLK 

ESALU(3 :0) L 

Table 4-1 
KEI1-E/F/KDII-A Interface 

Definition 

Bit 0 output from the CPU ALU, used to shift into the BR Register. 

Bit 15 from the CPU B Register. 

Sixteen lines over which data is transferred from the KEll-E/F to the CPU. A 
. wire-O Red bus. 

The carry-out from bit 15 of the CPU ALU. 

Bits 3 and 2 of the CPU DAD code field. Allows option auXiliary control of the CPU 
ALU rather than direct (KDII-A) ROM control. ' 

Bit 15 from the CPU D Register. Used in the branch table. 

A signal from the CPU which indicates when the CPU D Register is equal to O. The 
resultant output from combinational logic (D(I5:00)=0) is used on the branch 
BUT(D=O). 

Sixteen lines from the CPU over which data is transferred to the KEII-E BR Register. 
From here, it is sent to theKEll-F, when installed.' 

An external carry-in from the option to bit 0 of the CPU ALU. This is the signal line 
from which the jumper is removed on the M7233 module when the EIS is installed. 

A clock pulse from the CPU that is gated with an enable to generate the U Register 
clock for the EIS and FIS. 

Fifty-six ROM output lines that wire~OR the option ROM outputs with theKDll-A 
ROM outputs over three 40-pin Berg connectors on theb!lck of the module. ~ote that 
the option ROM always controls the basic machine when activated. The basic machine 
ROM never controls the option. 

"External Carry-Out Mux Select" -Two signals to the CPU that allow the option to 
control the carry-out multiplexer of the CPU data path. 

"External NPR Clock" - A signal from the option that allows clocking of the CPU 
NPR flag and BR flag, and clears the CPU BBSY flag so that NPRs may occUr during 
the EIS and FIS instructions. 

"External Select ALU" - Four signals to the CPU that allow the KEll-E auxiliary 
ALUcontrol to specify what arithmetic function to perform. Used only in special 
situations such as loops during which external control is needed. Normally, the ALU is 
controlled by the CPU ROM word in which case the EIS feeds bits directly into the 
CPU U Register for ALU control. 
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Signal 

EUBC(4:1) L 

EUBCBL 

EUPP(7:0)H 

EXT P CLR TRAP L 

INHPS CLK(I) L 

IR 15 L 
IR(14:12)=7 H 
IR(11:09)(I) H 
IR(05:03)(I) H 

(PI ,P2,P3) H . 

Part PEND H 

PCLKUPPBH 

PENDH 

Table 4-1 (Cont) 
KEll.E/F/KDll·A Interface 

Definition 

Four signals to the CPU that may modify the base ROM address when a branch test is 
executed. When an address is brought out of the ROM, i.e., 100, the 6 lower bits of 
this address would be Os. The EIS would OR Is into any of bits 04:01 to modify that 
base address. Note, bits 04:01 are the only bits available for modificationby the EIS. 

A signal to the CPU that is essentially the reserved instruction gated back to the CPU. 
When true, it is used as data, causing the ROM address bit UPPB to be clocked set, 
thereby disabling the CPU ROM and enabling the KEH·E ROM. Whenever UPPB is 
clocked after that, it clears, reversing the conditions. 

Eight signals to the option which specify the ROM address currently in the tJpp 
Register. UPPB controls which ROM is enabled while bits 7:0 control whlch address is 
in the ROM. In the CPU, addresses range from 0 to 377; in the auxiliary, they range 
from 400 to 777. This is because of bit B. Address 400 is actually bit 0 inside the 
ROM, with bit B being the enable forthe ROM. 

A signal to the CPU that allows the option to clear the CPU trap flag on a reserved 
instruction that the option has decoded as being either an EIS or FIS instruction. 

A signal to the CPU that inhibits clocking of CPU status bits (07:04). This signal 
allows the modification oEthe N, Z, Y, and C bits in that word by comparable bits in 
the option EPSRegisterbut protects the priority bits already resident in the Processor 
Status Word~ If the KT11·D Memory Management Unit is also installed, this signal also 
inhibits clocking of bits (15: 12) in the CPU status as well. Permits clocking only of 
CPU status bits (03 :00); 

Selected bits and conditions of the IR Register that are used to decode whether or not 
the reserved instruction is really an EIS or FIS instruction. Bits 0, 1, and 2 are not 
essential for this decoding process. 

Three clock pulses from the CPU that are gated with enabling signals from the ROM 
word U Register to generate the various clocking signals for the registers and flip-flops 
in the options. 

A signal from the CPU generated as a function of the END pulse for cycle length 2 and 
cycle length 3. It is equal to P2 orP3. 

A signal from the option that clocks ROM address bit UPPB in the CPU; This signal 
results from P END (described below) gated with CLOCK UPPB, bit 64 of the EIS 
ROM word.· Once the option is active, by virtue of UPPB having been set, asserting 
CLOCK UPPB in the ROM will result in this signal which, in tutn, will disable the 
option ROM and enable the CPU ROM; 

A signal from the CPU that is equal to (Pl+P2+P3). This is the end pulse in each cycle 
length. In a cycle length I, it is PI ; in a cycle length 2, it is P2; in a cycle length 3, it is 
P3, even though a P2 exists. 
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Signal 

RSVDINSTRL 

BUT 37 H 

EUBCS L 

CLKD(l) H 

Table 4-1 (Cont) 
KEI1-E/F/KDI1-A Interface 

Definition 

A signal to the option that indicates that the CPU has fetched a reserved instruction 
code and that the instruction may be an EIS or FIS. This signal is used as data gated 
with EUPP8 H to yield EUBC8 L described above. 

A signal from the CPU which when gated with PART P END produces the signal P 
CLKUPP8H. 

A signal from FIS to CPU that is used to modify the base ROM address on branch 
tests. 

A signal from the CPU to FIS which is used to enable clocking the ARGA flip-flop. 

4.5 ROM PROGRAMMING PHILOSOPHY 

The PDP-l 1/40 System, and consequently the KEI1-E and KEI1-F Options, uses the principle of read-only-memory 
(ROM) microprogramming in their basic architecture. The use of this technique drastically reduces the requirements 
for discrete combinational logic and results in a system that is easier to understand and to maintain. 

In hitherto conventional processor design, each control signal was the output of a combinational network that 
detected all the machine states and conditions for which the signal should be asserted. The machine state represented 
the contents of a number of storage elements (e.g., flip-flops) that had been loaded from signals that were, in turn, 
the outputs of other combinational networks. These outputs were based on such conditions as current state, sensed 
internal conditions, and sensed external conditions. Although many times the number of logical elements could be 
reduced by sharing outputs of networks, thereby reducing the size of the processor, this often increased the 
complexity of the machine and the difficulty in maintaining if. 

In the PDP-l1/40 System, however, the principle of microprogrammed control has been implemented in which the 
various control signals are stored in a self-contained ROM at time of manufacture. This storage is separate from the 
data storage element. Since each control signal can be completely defined if its value is known for each machine 
state, the ROM becomes the function generator divided into words. There is a word for each machine state and for 
each functional step of all operations. Each word contains a bit for every control signal. During each machine state, 
the contents of the corresponding word in the ROM are transmitted on the control lines. For most control signals, 
the output of the ROM is the control signal and no additional logic is required. 

The two tasks of a sequence control section are to select the next machine state, and to provide information about 
the current machine state to the function generator. The only information that the function generator iil a 
microprogrammed processor requires is which word to use as control signals. The sequence control then merely 
supplies an address that selects the correct word. The sequence control must also select the address of the next word 
to determine the machine state sequence. 

Because the next machine state is determined in part by the current machine state, information is stored in the 
microprogram that aids in the selection of the next state. In a ROM programmed device, the microprogram word 
contains the control signal values and the address and sensing control information required by the microprogram 
address generation logic. Thus, this logic functions as the sequence control. 
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4.6 CONTROL ROM 

The KEll-E control ROM word consists of 256 X 80 bit words. The KEII-F control ROM comprises 256 X 8 bit 
words. In the EIS, 24 ROM bits are used to control the KEII-E itself while 44 bits actively control 47 of the 56 bits 
in the CPU ROM word. The remaining 9 bits of the CPU ROM word are not utilized by the KEII-E or KEII-F and 
are driven low when the options are enabled. The outputs of the ROM and driver that duplicate the CPU ROM bits 
are wire-ORed to the outputs of the CPU ROMs. 

The low eight bits of each ROM word specifies the next address of the microprogram. Occasionally there may be a 
desire to branch to one of several possible microroutines. Based upon certain conditions, the branch may be effected 
by executing a Branch Micro-Test (BUT) to test the desired condition. If a condition is met, the base address 
specified by the ROM will be modified by ORing a (1) into a (0) bit of the address and the microprogram will 
branch to the modified address. If the branch condition is not met, the next address will be the one specified by the 
control ROM. 

Certain conditions can cause the microprogram to jam to a specific ROM address, thus aborting the normal 
microflow. The jam may be caused by a bus data timeout or an odd address error occurring on a bus data cycle. A 
red zone stack overflow error will also cause the jam. 

4.6.1 KDl1·A ROM Word 

The KDII-A ROM microinstruction format is shown in Figure 4-3 and described in Table 4-2. Although much of 
this information is included in the KDll·A Maintenance Manual, it is repeated here for clarity and also to permit 
special reference as regards the KEII-E and KEll-F Options. Reference is also made to drawing KDll-A-BD, sheet 

) 2 of 2 for more information and tabular data not included in Figure 4-3. . 

4.6.2 . KEll-E/F ROM Word 

The KE11-E/F ROM microinstruction format is shown in Figure 44 and described in Table 4-3. Note that this is an 
extension of the basic KDII-A format shown in Figure 4-3 and described in Table 4-2. The option ROMs duplicate 
all bits shown for the basic ROM in addition to generating these bits. Reference is also made to drawing KEl1-E-BD, 
sheet 2 of 2 for more information and tabular data not included in Figure 44. 

In both the figure and the drawing, the bits are represented identically to the representation for the processor. Note 
that in the top box of the drawing, the mnemonic for the field is given while the mnemonics belowthat are the bits 
in that field. For example, the field EUB contains bitsEUBF(3:0). Their states represent an octal number appearing 
in the flow diagrams. Refer to word EIO on the EIS flows, drawing KE11-E-F, sheet 1 of 5. Note that for a branch 
microtest of Extended INSTRuctionL. EUB must equal 178 , 

A line printer printout showing all the octal values of each field of every ROM word in theflows has been made part 
of the print set. A portion of the first page of this printout is shown in Figures 4-5 and 4-6, with a legend to aid in 
their use. Arrangement is by U Word Address in numerical order. Note that the address is the basic address and does 
not include the 4008 offset, e.g., in Figure 4-5, NOM14 on F6lists the address as 140 but in the flow it is shown as 
540. This holds for all addresses in this printout, as they represent only the states of ROM bits during an EIS or FIS 
instruction. Figure 4-6 gives the EIS/FIS ROM words while Figure 4·5 lists the KDl1-A ROM words as generated by 
the EIS and FIS. Figure 4-6 is the extension left of Figure 4-5. 
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f" ..... 
N 

___ "'" __ ._, ___ """____ _ ___ , _______ ~,_~_______ _ _________ 1 

CLOCK LENGTH CONTROL-
,-----~------ ALLOWS MICROPROGRAM TO ALLOWS CLOCKING THE BUS 

ALLOWS CLOCKING THE UNIBUS DATA ALLOWS INITIATING DATA 

SELECT ONE OF THREE CLOCK LENGTHS i ADDRESS REGISTER 

C.LOCK OF.F-ALLOWS MICR. OPROGRAM TO TURN.. SPECIFIES TYPE OF DATA J::; OFF THE PROCESSOR CLOCK TRANSFER BUS TRANSACTION 

,--__ .L... __ 'I . ~ INTO THE INSTRUCTION REGISTER I I ~ TRANSFER BUS TRANSACTION 

56 55 54 53 

36 35 34 33 

SALU3 I SALU2 I SALU I I SALUO 

52 51 50 49 48 47 46 45 

CLKBA I Cl Busl COBUS IBGBUS 

L:=' L ALLOWS CLOCKING THE ALU 
OUTPUT INTO THE 0 REG. 

ALLOWS CLOCKI NG DMUX (15:00) 
INTO THE B REG. 

44 43 42 41 

DAD3 DAD2 DADI DADO 

1 
DAD (3:0) -DISCRETE ALTERATION 
OF DATA -ALLOWS MICROPROGRAM 
TO ALTER OPERATION OF THE 
OATA PATH (eg, MODIFY ALU 
OPERATION AS A FUNCTION OF[IR] 

ALLOWS WRITING DMUX (7:0) INTO THE GENERAL REG. 

L-__ ~-------..,._ ALLOWS WRITING DMUX (15,8) INTO THE GENERAL REG. 

32 31 30 29 28 27 26 25 24 23 22 21 

SBC3 SBC2 SBCl SBCO SBAM I UBF4 

40 39 38 37 

SPS2 SPSI SPSO 

20 

I IL,---J 
CONTROLS LOADING SELECTS 
AND CLOCKIN.G MODE OF 
OF THE PSW ALU OPER

ATION 
(ARITHMETIC 
OR LOGICAL) 

19 18 17 

UBFl UBFO 

I I I I 1'---.1----' I '~' I 
SELECTS INPUT SELECTS INPUT SELECTS SELECTS UBF(4:0)-MICROBRANCH FIELD-ALLOWS SELECTS OPERATION TO BE 

PERFORMED IN THE ALU ego 
( ADD,SUB,elc.) 

ALLOWS MICROPRGRAM TO 
SPECI FY CONSTANTS TO BE 
INSERTED IN BIN OF ALU 

TO HIGH SIDE TO LOW SIDE SOURCE SOURCE MICROBRANCH CONDITION TO BE TESTED (BUT) 
OF THE BMUX OF THE BMUX 

VI A BMUX (15:8) (7:0) 

.-------

ALLOWS MICROPROGRAM TO SPEC I FY UP;8 } DISABLES MAIN CONTROL STORE 
GENERAL REGISTER ADDRESS IF I ALLOWING AN AUX. CONTROL TO 
ENABLED BY SRI (BIT 13) SPECIFY MICRO INSTR , 

16 15 14 13 12 11 10 09 

OF INPUT OF INPUT 
TO DMUX TO BUS 

ADDRESS 
MUX 

03 02 01 00 
r-----r-----r-----r----, 

SRS SRD SRBA SRI RIF3 RIFI RIFO UPF7 UPF6 UPF5 UPF4 UPF3 I UPF2 I UPFI I UPFO 

1.· .T· .. 1 .. ~. ALLOWS BA(3:0)TO BEUSED ASA UPF (7:0)-8 BIT .NEXT.ADDRESS ~IELD. USED TO SPECIFY ADDRESS 
SOURCE OF GENERAL REGISTER ADDRESS OF NEXT MICROINSTRUCTION TO BE EXECUTED BUT MAY BE 

MODIFIED AS A RESULT OF A BRANCH TEST. 

'--------- ~6t~~i ~RF~2~~k~~~~E~~~~E~~~DRESS 

'--------------~~t~~i ~: ~~:~~:fLB:E~~i~E:~D~RESS 

Figure 4-3 KDll-A ROM Format 
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Bit No. 
(Uxx(l)H) 

(07:00) 

os 

(12:09) 

(16:13) 

(21 :17) 

22 

(24:23) 

Table 4-2 
KDII-A ROM Word 

Field 
Mnemonic 

Bit 
Mnemonic 

.. Definitiqn 

UPF 

RIF 

SRX 

UBF 

SBA 

SDM 

UPFx 

UPFS 

RIFx 

SRI 

SRBA 

SRD 

SRS 

Eight bits that yield the 256 basic locations: Note that they 
deSignate the next unmodified address of next 
microinstruction in the flow. Modified as a result of a branch 

, test. 

Note, this is hardware, not in ROM. When c1t:ar, enables basic 
machine ROM. When set, disables basic machine ROM and 
enables the option ROMs. Controls which ROM will control 
the basic machine. 

Register Immediate Field. Provides the address of the internal 
registers. In conjunction with a bit in the SRX field, these 4 
bits provide 16 possible addresses to select one of the general 
registers. 

Select Register Immediate. When set, designates the RIF bits 
as.the address of the scratch pad. 

Allows BA(03:00) to be used as source of general register 
address. 

Select Register Destination. Uses the destination field of the 
instruction IR(02:00) to select the Scratch Pad Register in a 
destination address calculation. 

Select Register Source. Uses the source field of the instruction 
IR(OS:06) to select the general register to be used. 

NOTE 
The RIF field is 4 bits wide and the SRBA enables 4 bits in the 
BA. Therefore, these functions can access all 16 registers. The 
SRD and SRS bits, h~wever, enable only 3 bits each; 
therefore, these functions can access only the lower 8 registers. 

UBFx The microbranch field. Allows microbranch conditions to be 
tested so next address can be modified. This field is not used 
by the EIS or FIS.See EUB field in Table 4-3. 

SBAM Select BA Mux. Selects source of input to Bus Address Mux, 
either via BUS RD or via the ALU. 

.' 

SDMx Select DMUX. Selects DMUX input whether D Register 
straight through, the RD bus, D Register shifted right, or the 
Unibus. This function is used primarily in the basic machine. 
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Bit No. 
(Uxx(l)H) 

(28:25) 

(32:29) 

(37:33) 

(40:38) 

(44:41) 

(47:45) 

48 

49 

50 

(52:51) 

Field 
Mnemonic 

SBM 

SBC 

ALU 

SPS 

DAD 

BUS 

CBA 

CD 

CB 

WR 

Bit 
Mnemonic 

SBMHx and 
SBMLx 

SBCx 

SALUM and 
SALUx 

SPSx 

DADx 

BCBUS 

ClBUS and 
COBUS 

CLK-BA 

CLKD 

CLKB 

WRLand 
WRH 

Table 4-2 (Cont) 
KDll-A ROM Word 

Definition 

Selects input to high side of BMUX. 
Selects· input to low side of BMUX. Controls the two 8-bit 
bytes of the BMUX independently. The BMUX can load the B 
Register straight through into the ALU, load a constant into 
the ALU, swap the two halves, or extend bit 7 of the B 
Register into the upper byte and load the lower byte with its 
sign extended into the upper byte. In addition, any 
combination of these can be used and are used by EIS and FIS 
operations. 

Select B Constant. Allows microprogram to specify one of 16 
constants to be loaded into B IN of the ALU via the BMUX. 

Select ALU mode (arithmetic or logical). 
Select ALU operation (add, subtract, OR, AND, etc). There 
are 16 operations for each mode. 

Select Processor Status. Controls loading and clocking of the 
PSW. Various combinations of these 3 bits perform separate 
operations on the PSW. See table on engineering drawing. 

Discrete Alteration of Data. Allows microprogram to alter 
operation of the data path, For example, allows checking for 
stack overflow during a data cycle, or allows execution of an 
odd address, or control of the ALU by an auxiliary function 
rather than directly, etc. 

Bus Control Bits. 
Begin Bus. When set, permits DATI, DATIP, DATO, or 
DATOB, depending upon setting of Cl BUS and CO BUS. 
When cleared, sets AWBBY (Await Bus Busy) or restart on 
peripheral release, depending upon setting ofCI or CO BUS. 

Unibus control bits which perform the standard PDP-II 
functions in conjunction with BGBUS bit. 

Clock Bus Address. Gated to clock the Bus Address. 

Clock D Register. Allows clocking ALU into D. 

Clock B Register. Allows clocking DMUX into B. 

Write enables for the general registers. 01 enables the low byte 
of the DMUX to be written, 10 enables the high byte to be 
written, and 11 enables both bytes to be written. 
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Bit No. Field Bit 
(Uxx(l)H) Mnemonic Mnemonic 

53 CIR CLKIR 

(56:54) CLK CLKOFF 

CLKI and 
CLKO 

I· FIS ROM 

88 87 86 85 84 83 82 

I I~~ I 
CONTROLS THE ALLOWS EXTENDS CONTROLS LEFT OR 

Table 4·2 (Cont) 
KDl1·A ROM Word 

Definition 

Clock the Instruction Register. Allows Unibus data to be 
clocked into the JR. 

Clock Off. When asserted, allows microprogram to shut off 
processor clock. 

Clock length control. 00 or 01 enables a cycle length 1.10 
enables a cycle length 2 and 11 a cycle length 3. 

·1 I· EIS ROM 

81 80 79 78 77 76 75 74 73 

I I I 
SELECTS ALLOWS THE 0 ALLOWS INPUT 

GENERATION OF A DATO EUBF IN RIGHT SHIFT OR INPUT TO REGISTER TO SELECTION FOR 
CONSTANTS 

72 71 

I 
AL.LOWS INPUT 
SELECTION 
FOR THE NZ 
MUX 

FORFIS EIS LOAD OF MSR S HSR 
REGISTERS 

70 69 68 

I 
CLOCK CONDITION CODES
CLK C ALLOWS CLOCKING 

OF EXPANSION C BIT 

CLK V ALLOWS CLOCKING 
OF EXPANSION V BIT 

CLK NZ ALLOWS CLOCKING 
OF EXPANSION N S 
Z BITS 

67 66 65 

I 
GENERAL PURPOSE 
CODE TO DECODE 
SELDOM PERFORMED 
FUNCTIONS 

EIS ROM 

64 

ALLOWS 
UPPB 
TO BE 
CLEARED 

BE GATED 
ONTO RD 
BUS 

63 62 

I 
ALLOWS 
ENABLING AND 
COUNTING OF 
THE COUNTER 

Figure 44 KEII-E/F ROM Format 
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SHIFT RIGHT OR THE CV MUX 
LEFT OR NOT AT 
ALL 

61 60 59 58 

I 
EUBF(3,0) EXTERNAL MICROBRANCH 
FIELD - ALLOWS MICROBRANCH 
CONDITION TO BE TESTED (BUT) 

·1 
57 

ALLOWS 
CLOCKING 
OF THE BR 
REGISTER 
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FI.OwS STHE 

1'1> NOM1~ 
iij /'IU~2b 
FII EXIO 
El /'IUI.U 

AOR C~K CIR 

140 b 0 

WR CB CD CBA BUS DAP SPa A~U SBC SBM SaM SBA USF SRX RIF UPF 

141 2 0 
I~i! 20 
143 40 

PI FPIC! 1~4 
lit ~STI2 145 
n FPIO - 14b 
EO DIvl4 lij7 

PI! "~1.5 
PI FPij 

Ell \Hvao 

I'll NO"'I 
FI FPo 
PI> NOMS 
E5 !lIV21 

150 
151 
1!>2 
1~3 

\5ij 
lS5 
ISo 
157 

FS FOVII 100 
FI> ~XI4 Ibl 
F, FDV!> 11>2 
"~ADOn lol 

o 
b 
o 
o 

II 
b 
o 
4 

1'2 AOD5 104 2 
~2 'OJb 11>5 4 
1'5 FOv} Ibb 4 
~j' MU~20 107 2 

E I as T 4 
~5 FOVII 
F4 FM~8 
1'5 fOVIl 

Fo N!lM'I 
F I FP7 
Pb NOMl 
P2. A6lil5 

170 
171 
172 
III 

174 
17~ 
1711 
177 

3 
2 
2 
o 

2 
4 
2 
I> 

o 
o 
o 
o 

o 
o 
o 
o 

o 
o 
o 
o 

o 
o 
o 
o 

o 
o 
o 
Q 

3 I 
3 0 
00 
o 0 

3 
3 
j 

o 
3 
3 
o 
o 

o 
1 
1 
o 

'0 
o 
o 
o 

3.. 0 
:s .1 
o 0 
o 0 

o 
o 
3 
o 

o 
1 
I 
o 

o I 
o 0 
o 0 
3 0 

3 
o 
o 

o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 

o 
I 
o 
o 

o 
'0 
o 
o 

o 
o 
o 
o 

o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 

00 
DO 
00 
00 

o 00 
o 00 
o 00 
o 00 

d 00 
o 00 
Q 00 
o 14 

o . 00 
o 00 
o 00 
o 00 

o 
o 
o 
o 

00 
00 
00 
10 

00 
00 
00 
00 

00 
00 
00 
lij 

00 
00 
Db 
00 

II 
00 
00 
20 

01 17 
00 00 
00 00 
0·0 .00 

00 00 00 
00 '·00 00' 
23 00 011 
00 00 00 

'0 Ob 0'0 00 
o 11 00 00 
o 00 00 00 
o 00 00 00 

o II 01 '17 
o II 00 00 
o II 01 17 
o 00 00 00 

II 00 00 
00 00 00 
23 00 00 
01> 00 00 

00 00 00 
Ob 00 00 
00 no 00 
00 00 00 

o 00 00 00 
o 00 00 00 
o 00 00 00 
o 00 00 00 

o 00 00 
o 32 00 
o 00 00 
7 00 00 

00 
1& 
00 
00 

2 
2 
o 
o 

2 
I 
2 
o 

2 
2 
o 
2 

o 00 01 
o 00 10 
o 00 00 
o 00 00 

00 01 
00 01 
00 01 
00 10 

00 01 
00 01 
00 00 
00 00 

IS 142 
00 177 
00 332 
00 005 

II 244 
\'2 27, 
13 2112 
00 062 

15 3bS 
Ij 135 
00 000 
00 153 

2 0 00 
2 0 00 
2 0 00 

01 IS 324 
01 11 ns 
00 00 I7q 
00 00 107 O' 0 00 

o 
o 
2 
o 

o 
o 
o 
2 

2 
o 
o 
2 

o 
o 
I 
o 

o 00 00 
o 00 00 
o 00 01 
o 00 00 

00 lqij 
00 2!)/) 
IS 111> 
00 lQO 

00 01 11 Ib5 
00 00 00 202 
00 00 00 350 
00 10 00 IH 

o 00 04 
o 00 01 
o 00 01 
o 00 00 

0000 
00 00 
00 Oq 
00 00 

00 c!71 
10 Oij2 
10 210 
00· HI 

00 271 
00 jb7 
00 Z20 
00 JZ3 

Figure 4-5 KDII-A ROM Words Generated by the Options (Samplf'i) 

FLO~S .ST.1E ADR CON FCI FUB MHH fRO EHO ~RO SOH CVM NtH etc GPt CEE tNT tU~ CBR 

Fb NO~lij 140 a 
~l MUL2/) Iql 0 
F~ EXIO '14~ ·0 
t3 MU~ll la3 0 

~ I .~ P 12 
tl uST!2 
~ I PI' I a 
Eij DIVlij 

·Iija 
la~ 
1.41> 
lui 

~q FHL~ I~O 

FI FI'4 151 
1<;2 

~q Dlvao 1~3 

~o NOMI 151 0 
FI FI'~' 15~ 0 
Fo NOMS 15b 0 
E5 OIV~I 1~7 a 

f5 FOVI> IhO 0 
FI> EX!ij 11>1 2 
~~ FDV~ 102 0 
F2 ADDll 11>3 0 

F2 ADDS loa a 
.2 ADQ/) Ib~ 0 
~5 ~DVj lOb 1 
t3 HUL20 11>7 0 

U D&la 110 
F3 rDVl1 171 
Fa F.iL8 172 
f!> FDvll 171 

o 0 .1 0 
o 000 
000 1 
o· 0 0 a 

o 
o 
o 
o 

1 0 
a 0 
o 0 
a 0 

o 0 
o 0 
o 0 
a 0 

o 
o 
o 
o 

o 
o 
o 
o 

a 
o 
I 
o 
o 
o 
o 
o 

FII NOl19 17ij· 0 0 0 
PI fl'7 17~ 0 0 0 

.I 0 
o 0 
3 0 
o 0 

fb NOMj 17/1 a I 0 
1'2 ASHIS 177 0 0 0 

o 0 
o 0 
o 2 
I j 

I a 0 0 
o I 3 ~ 
00 ·0 (} 
o 202 

o 
o 
o , 

o 
o 
o 
o 

o 
o 
o 

. (} 

o o· a 000 
I 0 0 
000 
O· 2 0 

o 
o 
o 
o 

o 
o 
o 
I 

o 0 a 
000 
220 

o 
o 
I 
3 

j 

3 

o 
o 
3 
3 

o 
o 
o 
o 

o 
o 
o 
o 

o 
o 
.! 
o 

o 
o 
I 
o 
o 
o 
o 
4 

o I 
o 4 
I 0 
o 0 

o 0 b 
1 b 0 
000 
2 a 0 

o 
4 
o 
o 

o 
o 
o 
2 

o 0 0 0 
o 0 0 0 
024 0 
o 0 0 0 

o 
o 
o 
o 

Figure 4-6 Comparable EIS/FIS ROM Words (Sample) 
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o 00 
o 00 
o 00 
o Oq 

00 
00 
00 
00 

Oli 
00 
00 
10 

o O~ 
o 10 
o 00 
o 12 

00 
00 
00 
00 

o 00 
o 00 
o 00 
o OS 

I/) 
00 
00 
05 

o 00 
o 10 
o 00 
o 00 

o 
o 
o 
o 
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Bit No. 
(Uxx(l)H) 

57 

(61:58) 

(63:62) 

64 

) 
(67:65) 

(70:68) 

) 
(72:71) 

(75:73) 

(77:76) , 

) 
(79:78) 

80 

81 

Field Bit 
Mnemonic Mnemonic 

CBR CLKBR 

'EUB EUBFx 

CNT LCNT and 
ECNT 

CEE CLKUPP8 

GPC GPCx 

CCC CLKNZ 

CLKV 

CLKC 

NZM SNZMx 

CVM SCVMx 

SDR SDRMx 

SRD SRDMx 

ERD STRDM 

Table 4-3 
KEll-E/F ROM Word 

Definition 

Enabling signal for the BR Register clock. 

External Microbranch Field - Allows extended microbranc h 
condition to be tested. 

Load Counter. 
Enable Counter - Allows loading and enabling of counter s o 
that it may count up or down. 

Clock Expansion Enable. Enables clocking of UPP8 to disabl e 
expansion ROM and enable basic ROM. 

General Purpose Code - Decodes seldom performed function s 
(see table on engineering drawing). 

Clock the N and Z bits in the External Processor Statu s 
Register. In the option, both. are clocked simultaneously. 

Clock the V bit in the EPS. 

Clock the C bit in the EPS. 

N Z Multiplexer Select - Control the source of data for these 
. two EPS bits (N;Z). 

C V Multiplexer Select - Control the source of data for these 
two EPS bits (C,y). 

Select DR Register - Control whether the DR Register will 
load, shift right, shift left,or do nothing. 

Select RD Multiplexer - Selects which source will be gated 
out onto the RD bus. 

Strobe RD Multiplexer - While the SRD determines what data 
will be put on BUS RD, this bit enables the drivers to that bus 
and actually gates the data to BUS RD. 

NOTE 
The following signals are available only when the KEll-F is 
installed. 

FRD STFRDM Strobe Floating RD Multiplexer - Performs the same function 
as the ERD does in the EIS option. 
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Bit No. Field Bit 
(Uxx(I)H) Mnemonic Mnemonic 

(84:82) MHR SMSRand 
SHSRx 

85 FUB EUBF4 

86 FCI FCI BUS 

(88:87) CON CONx 

4.7 FLOW DIAGRAM DISCUSSION 

Table 4-3 (Cont) 
KEll·E/F ROM Word 

Definition 

Select MSR Register - Is gated with the Shift HSR Register 
bits to enable the same function in the MSR Register as 
selected for the HSR Register. The x bits determine whether 
the HSR (and MSR when selected) will shift left, shift right, 
load, or no op. 

Extension of EUB field in EIS, providing the additional branch 
tests for FIS option. When asserted, it disables the low bit 
multiplexer in the EIS and enables a similar multiplexer in the 
FIS to control the low bit of ROM address modification. 
There are six tests with this function, see table on engineering 
drawing. 

This replaces the FCI bit of the basic machine. Note that in 
the EIS no DATOs are required since nothing is stored back 
into core. This enables the FIS to do a DATa for writing 
answers back into core. 

Constants decoding bits. See table on engineering drawing. 

. The flow diagram in conventional computer design has always played a major role in the understanding of the 
()peration of the equipment. It is in a sense a road map of operation guiding the reader from one event to the next 
based upon sets of intervening conditions. In the PDP· 1 1/40 System, however, the flow diagram plays a much more 
important role than before since it ties the operations to the major sequencing device in the machine, the ROM. 
Indeed, understanding the flow is a major prerequisite for the understanding of the KEll·E and KEll·F Options. 

Because of the added responsibility intrinsic to this portion of the documentation, some changes have been made to 
the conventional flow diagram symbology to accommodate the added functions it serves. In this paragraph, these 
new conventions are discussed and explained. In addition, representative operations are followed through the flows 
so· 'that, once familiar with the procedure, the reader Can follow any operation through from its initiation to 
completion. . 

4.7.1 Symbology of the Flows 

Figure 4·7 illustrates the common drawing conventions used in both the KDll·A and KEll·E/F flow diagrams. 
General flow is from top to bottom unless further continuation is required, in which case it is carried to the top of 
the page before continuing. 

Horizontal flow is indicated and limited by the direction of the arrow on the line. Branching flow is dictated by the 
prevailing conditions that result from the branch test. The conditions for the branch are indicated to the right of 
each branch flow. For the most part, to the degree possible, the branches have a priority with the highest priority to 
the. left and the lowest to the right. A double squiggley line in any flow line indicates that a time delay is 
experienced before. continuing. 
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Figure 4-7 Flow Diagram Conventions 

Entry into the flow is indicated by a lozenge (ellipse) containing the name of the operation to be performed in the 
flow. A decimal number in parentheses above this indicator refers to the number of the page from which the flow 
enters. In some instances, this is accompanied by a deSCription of the· flows if they are for a different piece of 
equipment than that described by the flow page. 

Each step of the sequence is designated by the Flow Step Block, which contains either two or three divisions. The 
top division contains a general description of the action taken by the step, with a description of what is displayed on 
the console within a further subdivision of that area. This data is visible only in maintenance clock mode. 

The second division of the Flow Step Block contains a deSCription of the actions taken by that step in ISP notation. 
This is preceded by the cycle length for the action expressed by either PI, P2, or P3. 

The third division of the block does not always appear. It is set aside to indicate that a branch test is to be made and 
expresses that test in mnemonic form. This block occurs in all cases two·words prior to the branching point. 

The octal number at the upper right-hand cqrner of the block indicates the Micro-Word Address of that word in the 
ROM. 

The number at the lower right-hand corner of the block is given only when branch tests are made. It indicates the 
base ROM address for the branch before modification by the branching conditions. 
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Exit from the flow is indicated by a diamond containing the mnemonic used in the entry point of the destination. A 
decimal number within parentheses below the diamond indicates the page number of that continuation. An octal 
number appearing below this page number designates the address of the microprogram continuation. 

References to notes on the flow sheet are either given within the general description subdivision of the Step Block or 
are located to the right of the block opposite the subdivision that they illuminate. 

The symbology used in the operator division of each block follows the convention of ISP notation as defined in the 
Appendix of the PDP"1l/40 Processor Handbook, 1972. To supplement this information, a few examples of the 
more complex statements are given and described here. From these sources, the reader can decipher any statement in 
the flows. 

The use of the back arrow (+-), or data transmission operator, is shown at word EI2 on page 1 of the EIS flow 
diagram. 

UPP8-+-O 

Basically, this means that the UPP8 bit in the basic machine is cleared. There are several ways of stating this such as 
"UPP8 gets 0" or "0 is sent to UPP8." -

Brackets are used to further define a quantity in the statement. For example, at word ADD20 on page 2 of the FIS 
flows, the following statement is used: 

P2:D+-R[14] 

This means that at time P2, the contents of register 14 are sent to the DRegister. 

The definition, however, may be indirect as shown in the following example at word DST2 on page 1 of the EIS 
flows: 

P2:BA+-R[DF] 

In this case, DF means "!2,estination .field." This statement then is saying, "The contents of the register designated 
by the destination field of the IR is sent to the BA Register." The P2 preceding that statement means that the BA 
Register will be loaded upon the occurrence of P2. During the cycle length of that word, the data path is steering the 
data to the BA Register. Once it is set up, the pulse does the loading.' 

The bracket can be used on the left-hand side of the transmission operator. This is illustrated in word DSTl on page 
1 of the EIS flows. The following statement appears: 

PI :BR,B,R[DEST] +-D 

This statement means that at PI, the contents of register D are sent to three registers: 1) the BR, 2) the B, and 3) 
the register specified by the contents of the destination field of the IR. 

In some instances, the use of the bracket can produce confusion on the part of the reader, if the specific use is not 
clearly defmed. An example of this is shown at word DST2 on sheet 1 of the BIS flows. That statement reads as 
follows: 

D+-R[DF] PLUS 2 

In this instance, the bracket pertains to "the contents of." This statement says that the contents of a register 
designated by the destination field of the lR will be incremented by two then sent to the D Register. Note that it 
does not say that the D Register will receive the contents of a register two locations away from the register 
designated by DF. 
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An example of the use of two types of brackets is seen at word MUL9 on sheet 3 of the ElSflows. This also 
illustrates that conditional transfer can be a function of more than one variable. 

P2:~f(DROO & EPS(C) BR & B ; 

This statement says that the BR and B Registers are to be sent to the D Register in a cycle length 2; but they will be 
acted upon in that transfer as a function of bit DROO and bit EPS(C). On that same sheet, off to the right, a table is 
given for the four possible sets of conditions for these two function bits. From this, it can be seen that for two 
conditions of these bits, the contents of BR will be put into D; but for the other two sets, B will be either added to 
BR or subtracted from BR and that result will be put into D. 

The semicolon is used to designate separate action(s) to occur at the same time pulse: 

P2:D,BA+-R[DF] MINUS 2;DATI 
P3:CLKOFF 

This is shown at DST9 of sheet I of the EIS flows. DATI follows the semicolon for P2, indicating that a DATI will 
be performed also on P2. In that same word, the clock will be turned off (CLKOFF) at pulse P3. 

Note also at DST9 the notation SBC= I in the lower right-hand corner of the block. This refers to the SBC (or Set B 
Constant), indicated by ROM bits U(32:29) in the basic machine (see table on KD1I-A-BD). Although this refers to 
the basic machine, it should be remembered that these bits are being driven by the duplicating bits of the ROM in 
the option. In this case, it brings in a constant for the MINUS 2 condition. The ALU is performing the operation 
A-B-l. This brings in aI, causing the ALU to perform an A-I-lor A-2. 

A comma to the left of the back arrow separates the blocks that receive data simultaneously. A comma to the right 
of the back arrow separates the sets of data to be transferred. 

At word EI2 on sheet I of the EIS flows, the following statement is made: 

D+-f(SBC=OO(STPM)) 

STPM refers to what the signal is eventually called in the hardware. SBC=OO is sent to the D Register and becomes 
signal STPM. The SBC=OO looks at discrete logic in the processor and could get anyone of several values. The 
SBC=OO does not always select the same value to be sent to the D Register. This word is actually forming a trap 
vector, with the error that is set at the time determining what that vector shall be. 

In many places in the flows, a general statement is often made before a branch and then is further defined after the 
proper branch is entered. An example is shown in ASHI on sheet 2 of the EIS flows. 

; CLOCK COUNT 

Note that this indicates that the clock will be caused to count, but that it does not indicate which way. If the flow 
enters ASH3, the following notation is given: 

PI :COUNT+-PLUS 1 

This indicates an incrementing count. If the flow enters ASH5, the following notation is given: 

PI :COUNT+-MINUSI 

This indicates a decrementing count. 
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At ASH4 on that sheet there is an example of a number of things occurring at the same time, yet not necessarily as a 
result of each other, stated as follows: 

P2:D*-R [SF] ;D(C)*-ALU15 ;EPS(C)*-ALUOO 

These are separated by semicolons, and a transmission operator is given for each. This says: at P2, the contents of 
the register specified by the source field of the IR is sent to D; at the same time, ALU bit 15 is sent to the D(C) flop; 
and Simultaneously, ALU bit 00 is sent to the EPS(C) bit. 

The comma indicates inclusion as illustrated by the P3 operation of that same word: 

P3 :BF ,B,R[SF] *-D(C),D[15:01] 

In this case, all the information on the right-hand side of the arrow is being sent to all the destinations on the 
left-hand side of the arrow. Only bits D(l5:00) are being sent from the D Register. The 16th bit is the D(C) bit. By 
referring to the ROM output, it can be seen that the right data port of the DMUX is being selected and that data is 
being shifted right. Bit 1 of the D Register becomes the new bit 00, and everything else is shifted right. 

In ASH7 of this page, the following notation is given which indicates another use of the bracket in specifying a 
register. 

BR*-R[SFV1] 

This states that the BR receives the contents of the register specified by the source field of the IR ORed with 1. This 
is of course the odd register being specified. 

Many times in the flow, it is not always obvious what is contained in a specified register unless the flow is traced 
back a few steps to see what was last put into that register. A case in point is at word ASH17 of this same page. 

P2 :D*-R [SF] PLUS B 

This says: at P2, the contents of the register specified by the IR source field plus the contents ofB are sent to D. 
This means little unless the contents of B at that moment are known. Looking back in the flow to word ASH8 will 
show that at P2, R[SF] went to D, and at P3 of the same word, it went from D to B. This means that in ASH17 
what is really happening is that the contents of R[SF] are being added to itself. This is equivalent to shifting it left 
one place. 

This same word (ASH17) also illustrates the use of the "IF" statement in the next line. 

This means that EPS(V), the overflow bit in the status word, will be set if a difference in BRI5: 14 is noticed, thus 
sensing an impending transition in the bit stream. 

The next line in that word's statement deserves mention also: 

DR*-DR[14:00] ,0 

This indicates that the DR is being shifted left and (0) is being shifted into the low bit. 

In contrast to this, the notation at word MUL24 on sheet 3 of the EIS flows is as follows: 

DR*-O,DR(l5:01) 
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In this notation, the DR Register is being shifted right with a (0) being shifted into the high bit. 

A functional condition can be implied without the use of the "r' operator. A case in point is shown in ASH20. 

EPS(Z)+-D=O 

Back in ASHI9, both the BR and R[SF] were ORed on the RD BUS to determine the zeroness of the answer. 
(P2:D+-R[SF] ,BR). In this word then the condition set in the Z bit is determined by the result of that test. If the D 
Register was 0, then the Z bit is set. If it was not 0, the Z bit remains cleared. 

An example of the role played by the arrows on flow lines, to reduce confusion as to which direction to take, is 
illustrated on sheet 3 of the EIS flows at the output of word MUL3. The horizontal flow line entering the output of 
MUL8 shows that the MUL8 flow cannot go to MUL4 whereas the output of MUL3 can go to either MUL4 or 
MULI9. IJkewise the decision notes on these lines pertain to the output conditions of MUL3 and not of MUL8. 
This is further indicated by the fact that the Dl5 BUT was made back in MUL2. 

In word MULl I , the following notation is made: 

P2:D+--BR 

The use of - BR indicates that the I's complement of the contents of BR is sent to D. To indicate 2's complement, 0 
MINUS I is used as illustrated on sheet 4 of the EIS flows at word DIV6: 

P2:D+-O MINUS B 

An instance of multiple branches in sequence is given also on sheet 3 of the EIS flows at MUL20. In this word, a 
BUT. for DR15 is made, and in the next word MULl 1-, a BUT for D=O is made. This results in four branches: two 
for DRI5 and two each for D=O. The BUT(D=O) in MULll tests for the branch at MUL16 while the BUT(D=O) in 
MUL12 tests for the branch at MUL13. 

For customers with the FIS option as well, certain terminology in those flows is illuminating to the understanding of 
the flows. These examples are separated here to avoid confusion on the part of those customers with only the EIS 
option. 

The bracket can be used to designate a choice of registers, based upon other variable conditions defined by the 
symbol "r' which means "as a function of." This is illustrated at word FPlO on page I of the FIS flows. 

P3:BR,B,fARGA(R[12+13])+-D 

In this case, the contents of register D are sent to the BR Register, to the B Register, and to either register 12 or 
register 13 as determined by the condition of the ARGA flip-flop. Th~ ROM will always select the odd register in the 
floating hardware if the ARGA flip-flop is clear. If it is set, the even register will be selected. 

The XOR function is illustrated in word FP15 on page I of the FIS flows. The statement is as follows: 

P2:D+-BVMSR 

In floating multiply or floating divide, the XOR of the sign is used to give a negative sign to the answer if the signs of 
the two operands are unlike. 

An example of a parenthetical statement used as a description is seen in word FP7: 

P2:D(15 :08)+-fSBCOO; (ZERO) 
D(07 :00)+-B(15 :08) 
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This says: at P2, bits D(15 :08) will get Os as a function of SBCOO while bits D(07 :00) get B(15 :08). In effect the 
hlgh bits of the constant called for by SHCOO are 0, thereby putting Os into the upper byte of the D Register; while 
loading the low byte of the D Register with the high byte of the B Register. 

The insertion of the hidden I is illustrated in word FP9. 

P2 :D~OO PLUS(000,B(07 :00)) 

This means the high byte on the 'B leg of the ALU is equal to 0 and the low byte will be B(07 :00). The constant 400 
is added to insert the hidden 1. 

Concatenation is illustrated in word FML12 on sheet 4 of the FIS flows. The statement is as follows: 

PI :MSR+-HSROO,MSR(15 :01) 
HSR+-DROO,HSR(15 :01) 
DR+-BROO,DR(15:01) 
BR+-D(C),D(15:0 I) 

From this it can be seen how the four registers are concatenated with MSR the LSB and BR the MSB. This is a 
SHIFT EVERYTHING RIGHT operation. A comparison can be made with the notations listed in FDVl6 on sheet 5 
of the FIS flows for a SHIFT EVERYTHING LEFT operation .. 

4.7.2 KOH-A Flow Discussion 

A complete discussion of the KDi I-A is contained in both the PDP-1l140, PDP-llI35 System Manual (21" Chassis) 
(EK-ll040-TM-002) and in the KDJ1~A Maintenance Manual (EK~KDllA-MM-OOI). The discussion here is general, 
containing merely that information necessary for an understanding of the KEII-E/F Options and the ways that they 
interact with the processor. 

Referring to the KDll~A block diagram on drawing KDll-A-BD, the Unibus is showncJU the left with its 16 data 
lines received and driven, and its 18 address lines that are driven onto the Unibus. In addition, the Unibus isdriven 
by the Switch Register KYII-D (which can oftentimes be addressed to retrieve data, e.g., in diagnostics) and by 
processor status from the PS Register (K5.5). 

The heart of the processor data path is the arithmetic logic unit (ALV). This unit has two inputs: the AIN fed by 
BUS RD(15 :00) through a buffer and the BIN fed by the BMUX. Note that the BUS RD is also the bus on which 
data from the EIS and FIS options are fed back into the processor. 

The BMUX is fed by 1} the B Register straight through, 2) the B Register with bit 7 extended into the high byte (a 
sign extension), 3) the B Register with the two bytes swapped, and 4) the B constants of which there are many 
including address increments, switch register address, and masks. 

There are five ALU control bits originating in the control ROM. The SALUM determines the mode (arithmetic or 
logical). The other four (SALUx) select one of 32 functions that the ALU can perform (16 in idle mode). These 
include (among others) carry-in logic from the EIS (only if the ALU is in arithmetic mode) and carry·out 
multiplexing of four inputs to the D(C) flip·flop. The latter is used in ASH right in which the data is loaded into the 
D Register through the ALU and the D(C) gets bit 15 of the D Register so that the sign can be extended down 
through the DMUX during shifting. 

NOTE 
This is used on word op('!rations.ln byte operations, carry-out 
7 is used for this purpose. 
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The COUT MUX also receives the C bit of the processor status for use in rotates. 

During any of these operations, the B Register, which feeds the BMUX, functions as a storage register. Note that this 
is the only holding register on the BIN side of the ALU. The general registers are on the AIN side via the BUS RD, 
although they can feed the BIN side through the BMUXand B Register by virtue of a feed back through the DMUX. 
Note also that the DMUX can also feed the options. The DMUX is not wire-ORed, it is TTL and is used to feed data 
to the EIS and FIS. 

BUS RD also feeds the bus address multiplexer (BA MUX). An address can be brought out of the general purpose 
registers and fed directly into the BA through the BA MUX, or can be fed through the AIN of the ALU, added to, 
subtracted from, or operated on in the many ways pOSSible, and then fed to the BA via the BA MUX. 

The processor status is also fed to the BUS RD for internal use, e.g., for a condition code instruction, and does not 
have to be fed out onto the Unibus. It can be operated on in similar fashion as above without interrupting the 
Unibus. 

The BA Register contains logic on its output for decoding processor status address, stack limit register address (an 
option), register address (internal registers are being addressed), and switch register address. There is also logic on the 
D Register output to determine whether or not the D Register is equal to o. The latter is used in the EIS option as 
described later. 

The instruction register feeds logic to decode all the discrete instruction Op codes. These 16 bits are converted into 
many signals which are then encoded back down into the U Branch Control which is 6 bits wide. The IRD code then 
is used in the first FETCH branch so that the proper U Word can be accessed to perform the proper instruction. 

The ALU control blockis actually an auxiliary ALU control fed by the ALU field in the ROM and by some discrete 
logiC. This is functionally a multiplexer used in common routines in which the discrete logic is used to control the 
ALU rather than a separate ROM word for each instruction. In this case, a common ROM word is used to'point to 
auxiliary control. . 

The U Word Control ROM contains 256 words, 56 bits wide, 8 bits of which comprise an address which doubles 
back to a NOT OR into a pointer register (UPP). This register functions as a PC for the ROM with these 8 bits 
specifying the next ROM address to be looked up. The rest of the ROM bits (48) control the internal machine and 
the data paths, clock the BA and D Registers, and determine which multiplexer port will be active. Some bits are 
gated with the basic clock pulses to control cycle length, others enable different registers to be clocked such as 
CLKD which is gated with P2 to clock the D Register. 

) The JAMUPP logic is used to jam the UPP Register to specific addresses for specific error conditions. 

The PUPP Register holds the previous microprogram pointer or the address of the word that is in the U Register. 
This. is used to feed the maintenance console display. 

The condition codes input block is used to set up the condition code bits in the PS Register to indicate the results of 
the last operation or instruction. 

The Data Display on the console is fed by the DMUX. Since the DMUX can contain either Unibus data, the' D 
Register straight through, the D Register shifted right, or the contents of the BUS RD, there are basically four 
sources for display; and since the BUS RD can have many things on it such as the general registers, status, or option 
data, the range of data displayed is very wide. In single instruction mode, processor status is displayed at the end of 
the instruction. 

NOTE 
On a HALT instruction, the contents of RO are displayed and 
not PS, even if in single instruction mode. 
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By referring to ~heet 1 of the KDII·A flows (drawing KDII·A·F), the_ way in which the EIS/FIS options are enabled 
can be followed. Entry is at FETCH A and proceeds to word 013 (FETOO). This is the "Fetch Next Instruction" ) 
word in which, during a cycle length PI, the contents of the program counter (R[PC]) are loaded intb the BA, a 
DATI is performed,the clock is turned off (CLKOFF), and the R[PC] is displayed. 

NOTE 
FETCH OVERLAP does not apply to EIS or FIS instructions. 

A wait is indicated in the flow followed by entry into word 001 (FET03) to "store the instruction." Here, in PI, the 
Unibus data is sent to the B Register, to the general register, to R(IR) which holds a copy of what is to be loaded 
into the IR, and to the instruction register. BUs data (Instruction Word) is displayed. 

NOTE 
The R[IR] copy provides a convenient way to access this 
information when the IR is not accessible. 

In the next word (FET04), the PC is incremented (R[PC] +2) and put into theBA and D Registers. In addition a 
branch test is made (BUT(INSTR I», numerically BUT 37, to determine which flow exit indicator to take. Once 
again the R[PC] is displayed. 

The flow then goes to FETOS to store the modified R [PC] . This is done by transferring the R [PC] +2, which was 
put in D in FET04, from D back into R[PC] in FETOS. 

Normally, without the options installed, an EIS or FIS instruction would not be recognized by the processor. The 
machine would branch off to address 100, the base U Word address for the branch, and take the TRAP B exit. But 
when the options are installed, the BUT(INSTR I) signal (BUT 37) is sent to the option where it is gated with a pulse 
and sent back to the KD Il·A to UPP bit 8 as the clock for bit 8 of the ROM address. The signal RSVD INSTR, 
gated with EUPP8, is sent back to the KDII·A as the data for UPP8., Setting bit 8 modifies the next address to be 
looked up from 100 to 500. Note that now the flow exits through the expansion diamond and enters the EIS flows 
at word EID (location 500). Bit 8 remains set to enable the option ROM and disable the basic ROM. 

If the, option is installed and a reserved instruction is issued, the flow still follows this path and exits to TRAP D. 

4.7.3 J(El1·E Flow Diagram Discussion 

The KEH·E flows are shown on drawing KEll·E·FD, sheets 1 through 5. The format of these flows is identical to 
that of the KD lI·A and the conventions follow those described in preceding paragraphs. 

As described in Paragraph 4.7.2, entry into the expansion flows is at EID after the CPU has stored the EIS/FIS or 
Reserved Instruction in the IR, decoded the IR, made a branch microtest, set ROM bit UPP8, modified the address 
to 500s , and set the CPU Trap flag. 

At this point the KEll.E ROMs are enabled and EIS ROM word EID is present on the wire·ORedBUS U(S6:00) 
lines at the input of the CPU U Register, as are the outputs of the KEll·E Control ROMs U(80:S7) at the input of 
the EIS U Register. The KEll·E performs another decode of the CPU IR and does a branch microtest 
(BUT(EINSTR I» to determine what address calculation flow to enter. The CPU Trap flag is cleared. 

NOTE 
If the instruction was not one of the EIS instructions, the CPU 
Trap flag would not be cleared here in order that a RSVD 
INSTR trap would occur upon exit back into the CPU Trap 
flow. 
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The above sequence occurs for each ElS instruction. Upon completion of the ElS instruction, the microflow returns 
to the basic KDll·A microprogram at microword SERo2 at ROM address 178 , 

Note that if it had been a reserved instruction and not an ElS/FIS instruction, the flow would be from Ell to 
address 640 (EI2) to form the vector 10 and clear the UPP8 bit. Then at EI3, the Special Trap Pointer Marker 
(STPM) previously sent to D is stored by transfer to Scratch Pad Register R[VECT] and B. Exit is to TRAP D at 
microprogram address 7-on sheet 6 of the KD II·A flows. The entry point of TRAP D into traps differs from that of 
the TRAP B, used by the basic machine. TRAP B forms the vector and stores it, whereas at TRAP D this has already 
been done in the option. 

There is an overlap in this transition back to the basic machine that is similar to the transition from the basic 
machine to the option. At the end of El2, UPP8 was cleared and at that instant the expansion ROM was disabled 
and the basic ROM enabled. IIi word EI3, while the data path is setting up to store the vector, a new ROM word is 
being looked up. That new word comes from the basic ROM so that the last expansion word is being executed at the 
same time that the basic ROM word is being fetched. The same thing happened when the CPU vectored for the 
expansion. Bit UPP8 was set at the end of FET04 and the contents of FET05 were loaded into the U Word Register. 
While the FET05 was being executed in the data path, the next word being looked up was in the expansion ROM. 

4.7.3.1 Destination Calculation - Sheet 1 of the ElS flows describes the destination calculation operations 
required to perform the four fixed·point instructions. 

NOTE 
The FIS exit is directly from word Ell. 

The BUT(EINSTR I):EUB=17 in EIO tests the path to be taken in terms of destination mode of addressing (DMO 
through DM7) as determined from the destination mode bits in the instruction. Each path performs the functions 
necessary to calculate the destinations as a function of these modes. In all paths, two words prior to the instruction 
exit, the branch test BUT(EINSTR II):EUB=16 is made to determine which instruction is called for. This is 
determined from the Op code of the instruction. 

The operation of this flow is almost identical to the basic DEST flow for the processor as described in the KDll·A 
Maintenance Manual (EK-KDI1A-MM-001). One exception is word DST8, through which all other paths flow 
before branching. In this word, the Unibus data (which is the data from the final destination address) is sent to 
R[DEST] (the register speCified by the destination field of the instruction). It is also sent to Band BR. The 
exception is word DSTl which does not go through DST8. Note that both words accomplish the same operation 
except that DST8 gets data from the Unibus and DSTl gets it from an internal register. In DMO, there is no need to 
go to the bus for data since the register contains the operand. 

At the conclusion of this flow, the data retrieved from the calculated destination resides in BR, B, and R(DEST). 

4.7.3.2 Arithmetic Shift and Arithmetic Shift Combined - The shift flows are shown on sheet 2 of the EIS flows 
and in Figure 4-8. In this operation, the data fetched from the calculated destination is a shift count that also 
indicates the direction in which to shift. The bits to be shifted are in a register designated by the source field of the 
instruction. If the instruction is ASH, 16 bits are to be shifted and the result will be stored in BR, B, and R(SF). If 
the instruction is ASHC, 32 bits are to be shifted, with the high 16 bits taken from an even register specified by the 
source field and the low 16 bits from that register ORed with 1. The results are stored in BR, B, and R(SF) (high 
answer); and in R(SFV1) (low answer). 
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NOTE 
In ASHC, if an odd register is specified by the source field. of 
the IR. the ORingprocess in the hardware will result in two 
duplicate operands being fetched; If an odd Source Register is 
specified, the low ·16 bits of the answer will overlay the high 
16 bits ofthe answer. 

ASH is entered at wordASHO at location 605. At PI, the 8 bits of data in the BR(07:00) are loaded into the 
counter and the BR is cleared. Prior to that pulse, however, bits(05:00) of the BR are tested (EUB=13) to determine 
the branch after ASH!. 

ASH 

LOCATION 
OF OPERAND 

BR, B, R [SF] 

OPERAND 

LOCATION 
OF ANSWER 

BR, B, R [SF] 
ANSWER 

ASHC 

LOCATIONS OF OPERANDS 

BR, B, R [SF] DR (R [SFVI]) 

HIGH OPERAND LOW OPERAND 

LOCATIONS OF ANSWERS 

B R, B, R [S F] 0 R (R [S F V I] ) 
HIGH ANSWER 
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Figure 4-8 . ASH and ASHC Locations of Operands and Answers 

In ASH! at P2, the register specified by the source field (R[SF]) is sent to the D Register, the V bit in the local 
status is cleared, and .the count is clocked one time. At P3, the contents of the D Register (R[SF]) are loaded into 
the BR and B Registers. This is the data to be shifted. 

lf, back in· ASHO, the result of that BUT indicated that bit. 05 of the BR was set,a shift right operation was 
indicated, causing the flow to proceed now to ASH3 where the count is mcremented and the branch microtest 
(EUB=lO) is set up for the shift loop m ASH4. The count is clocked at this point so that the shift loop in ASH4 will 
not be executed more than the specified amount. Note that in one word loops, the word is always executed onetime 
more than the count on mitial entry would indicate. This is because of the overlap of executing the present word 
while looking up the next word, and by the fact that branch tests are made two words ahead of the actual branch 
point. 

In ASH4, the right shift is implemented by putting the general register specified by the source field through a buffer 
and through the AIN of the ALU into the D Register. At the same time, ALU bit 15 is sent to theD(C) flop via the 
COUT MUX and ALU bit 00 is sent to EPS(C). This occurs at P2 of a cycle length 3. At P3 of that word, D(C) and 
D(15:01) are fed through the DMUXright shift data port back mto the general register R(SF). Remember, in this 
operation D(C) is equal to DIS. In addition to this, data is sent to the B andBR Registers and the count is 
incremented. This operation continues, shifting right one. bit position for each pass through the loop, extending the 
sign down and putting the low bit of the ALU into the EPS(C) bit until the count is equal to O. At this point, the 
answer is m three places: R(SF), B, and D. Note that the counter is disabled from counting when count bits 5 
through 0 are equal to O. 
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In ASH14, the contents of B are sent to D for the zeroness test at P2, and the flow progresses to ASH20 where 
BR15 (the sign of the answet) is sent to the N bit of the EPS and the result of the zeroness is sent to EPS(Z). If the 
contents of D were 0, EPS(Z) will be set. 

This word continues on to ASH15 in which the status bits EPS(N) through EPS(C) are transferred to the processor 
status in the basic machine. Note that in AS H20 there is no need to set either the V bit (set in ASH1) or the C bit 
(set in ASH4). In ASH15, the UPP8 bit is also cleared to transfer ROM control back to the basic machine. 

ASH21 is a No-Op word that loads Os into the upper 24 bits of the ROM Register. This is done for housekeeping 
reasons so that upon reentry to the option, no extraneous bits will be left in that register. 

From here the flow exits to SERVICE C (location 178 ) on sheet 10 of the KD ll-A flows. Every time the option is 
exited, the flow is through this route to test if an interrupt or trap is pending. Ifone is pending, it is serviced before 
continuing to the next instruction. 

If, back in ASHO, bit 05 of the BRwasdeared and BR(04:00)=FO, a shift left operation was indicated, causing the 
flow to proceed from ASHl to ASH5 where the count is decremented instead of being incremented as in ASH3. The 
same BUT is made (EVB=10) and ASH6 is entered for a shift left operation. 

In this case, shifting does not take place in the DMUX but rather in the ALU by the function A PLUS A. In this 
case, BR15 goes to C rather than ALUOO. The statement EPS(V) gets 1 if BR15*BR14 refers to the sensing for sign 
change. If when shifting, these bits are different, an impending change in sign is indicated and the EPS(V) bit will be 
set. This bit will then remain set even if more shifting is necessary so that at the end of shifting the programmer has 
an indication of sign change. This shifting continues with the count being decremented for each pass until the count 
is exhausted. The sequence from that point on is identical toa right shift. 

In the instance of no shift (BR(05 :00)=0), the EPS(V) and EPS(C) bits are both cleared, BR15 is sent to the EPS(N) 
bit, and the EPS(Z) bit is conditioned by the zero ness test of D. This progresses to ASH15 for transfer, ASH21 for 
cleanup, and out to SERVICE C. 

The ASHC flow is similar to the ASH flows except that now 32 bits are involved instead of 16. Entry is at ASHC to 
word ASH7 at location 607. At PI, the low 8 bits of the BR are loaded into the counter and the low operand 
(R [SFV1]) is put in the BR. At the same time the EPS(V) bit is cleared. Prior to that, before the count has been 
transferred out of the BR, a BUT is made to determine what branch to take (shift right, shift left, or no shift). 

In ASH8, the low 16 bits that are now in theBR are sent to the DR Register and the high operand is taken from the 
even register (R[SFD and put into the D Register. These operations occur on P2. On P3 of that word, the high 16 
bits, now in D, are transferred to the BR and B Registers. At the same time the count is clocked. At this point, the 
data to be shifted comprises 16 bits of low operand in the DR and 16 bits of high operand in the BR and B 
Registers. Note that the low operand went through the BR and was moved out to the DR before the high operand 
was put. into it. 

If the result of the BUT indicates no shift, the flow is to ASH9 where the R(SFV1) and BR are simultaneously sent 
to D, effectively ORing the high and low operand on the BUS RD to determine zeroness of the full 32-bit operand. 
In ASH2, the local status is set and moved to the processor in ASH15 as before. 

If a right shift is indicated, the count is tested for zeroness in ASH10, the BUT is set up for the loop and the right 
shift loop is entered (ASH 11 ). Here the lower 16 bits are shifted in the DR Register while the high 16 bits are sent 
through the ALU and shifted in the right data port of the DMUX. This operation is identical to that in ASH. Since 
the BR and DR are concatenated, BROO goes into the high bit position of the DR while the low bit of the DR is put 
into the EPS(C) bit. All this occurs on P2. At P3,the right data port of the DMUX is fed back into the source 
(R[SF]), the B, and the BR Registers, and the count is incremented. This loop continues until the count equals 0 
(EUB=lO) at which time the loop is left and the flow continues to ASH12. 
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The lowansweriri the DR is sent to D in ASHU arid stored into the odd Source Register in: ASH13. In ASHI9, the 
high answer (BR) and the low answer (R(SFV1» are sent to D so that the zeroness test of the 32-bit answer can be 
made by ORing on the BUS RD; and in ASH20, the EPS(N) and EPS(Z) bits are loaded prior to transfer in ASHI5. 

Operation of ASHC left is similar to ASHC right except that the count is decremented and the operation of the shift 
loop differs in the same way that it did in the ASH instruction. In shift left ASHC, the low half is shifted in place in 
the DR Register, with 0 being put in the low bit (DROO). The high half is shifted by the A PLUS A function of the 
ALU. At P3 of ASH17, the D is put back in the BR, B, and Source Registers. In ASHI8, the low answer is put into 
D (same as ASHI2) and the flow continues as'inASHCright. 

Note that in ASHe operation, the high part of the answer does not have to be stored as that was accomplished in the 
loop. 

4.7.3.3 Multiply ~ The multiply flow is shown on sheet 3 of the EIS flows and in Figure 4-9. Inthis operation, the 
data fetched from the calculated destination is the multiplier, and the data from the register specified by the source 
field (R(SF» of the instruction is the mUltiplicand. The two 16-bit numbers are multiplied and the 32-bit result is 
stored in R(SF) (high product) and in R(SFVl) (low product). , 

NOTE 
In' MUL, . if an oddR(SF) is Specified in the instruction, the 
low product will overlay the high product. 

Entry is at MUL to MULOaf location 60 1. The multiplier from the destination address had been loaded into the BR, 
B, and R(DEST) Registers during DSTl or DST8. The count (178 ) is generated and put into D at P2 and intoBR 
from D at P3. A BUT is set up for the sign of the multiplier (EUB=3). 

B 
(MULTIPLIER) 

DR 

MULTIPLICAND 

LOW' PRODUCT 

Figure 4 .. 9 MUL Flow, Block Diagram 
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In MULl, the 2's complement of the multiplier is taken. This is done at this point in case the negative multiplier 
branch is cailed for. In this word, the EPS(C) bitIs cleared and the count is transferred from theBR to the counter. 

If BRl'S was set on the BUT ; the next word isMUL2 in which the multiplicand is put into the BR from the source 
field deSignated register and aBUT is maddor the state 0[,DI5 (EUB=1). 
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In MUL3, the multiplicand is put into the DR and the contents of the Source Field Register is put into D. If as a 
result of the BUT in MUL2 DIS was I (note, this was what was in D at that time or the 2's complement of the 
multiplier), then the multiplier is determined as being the most negative number since that is the only number that 
can be 2's complemented and remain negative. In this event, the flow goes to MUL4 where the copy of the 
multiplier in R [DEST] is now sent to the BR. 

NOTE 
This is the uncomplemented multiplier. The complementation 
done in MULl was for testing purposes. 

Another test for D1S is made in this word, and in MULS the multiplier (in BR) is sent to DR and BR is cleared. 

NOTE 
Normally the multiplier would be put in B when the loop was 
started, but the most negative multiplier must be put in the 
normal position of the multiplicand to produce the correct 
result. 

If the multiplier had proven to be positive in MULO, flow would have gone to MUL 7 where the Source Register 
would have been loaded into the BR Register, and from BR into DR in MUL8, and then the count would have been 
decremented in MUL19 to take care of the one-word loop discrepancy described in ASH. 

In MULS, returning once again to the flow for the most negative multiplier, the flow branches again as to the sign of 
the multiplicand. This is indicated by the state of DIS since the multiplicand (R [SF]) was loaded into D back in 
MUL3. In this flow, the sign of the multiplicand must be tested also since a most negative number can never be 
placed in the B Register. Since one operand has been determined to be most negative, the other operand must be 
tested for that characteristic as well. 

If DIS is clear at MULS, no problem exists and the multiplicand is put into B as the count is decremented. If DIS is 
set, however, the flow goes to MUL21 where it (the multiplicand) is tested for being the most negative number. This 
time the 2's complement is taken by subtracting the Source Field Register from the B Register (already established 
as being the most negative number). 

NOTE 
BUT(COUNT=O):EUB=10 is done here to clock the NPR and 
Bus Request flags and to clear the Bus Busy flag in the 
KDll-A (see Note 2 on sheet 3 of EIS flows). 

If the result of the comparison just done in MUL21 is 0, the indication is that the multiplicand is also the most 
negative number and the answer can be generated at this point in the flow without continuing with the 
multiplication. 

Mter zeroing the low answer in MUL23, the flow branches to MUL24 and the high product is shifted right one 
place. 

NOTE 
The most negative number times the most negative number is 
equal to that number shifted right one place as the high 
product and with 0 as the low product. 
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In MUL25, the answer in DR is put into D and stored in the Source Field Register in MUL26. The local condition 
codes are set and the flow exits to the MOVE EPS point in the ASH/ASHe flows. Thisis ASH15, the common 
transfer point to the Processor Status Word before returning to the service routine. 

If, back in MUL23, the multiplicand proved not to be the most negative number (-D=O), it is put into the B Register 
at MUL27 and the count is decremented. 

This brings the flow to the common point of all flows described for multiply so far. This is the entry point to the 
mUltiply loop at MUL9. 

The multiply operation is essentially a right shift operation through the right data port of the DMUX. It is a 
functional operation of the ALU, determined by the instantaneous conditions of bit 00 of the DR Register and the 
EPS(C) bit. (See the table to the right of this block.) The contents of BR and B will be either subtracted or added in 
the ALU before being shifted one bit postion to the right through the DMUX, or the ALU will put the data straight 
through before it is shifted. 

) 

One of these operations will occur prior to each shift for each pass through the loop, depending upon the states of ) 
the two conditioning bits for the ALU. At P3 of each pass, the high product is being assembled in the BR and the 
count is decremented. This continues for 16 passes, at which time the count equals ° and the loop is left. 

NOTE 
The notation GPC=2; DAD=14 at P3 of MUL9 pertains to 
generation of auxiliary ROM control. The DAD code is for the 
basic machine auxiliary ROM control enable and the GPC code 
is for the option auxiliary ROM control enable. 

In MULlO, the high product that has been assembled in BR is sent to D; in MUL20, it is stored in the even Source 
Field Register. At this word, a test is made of the sign of the low product (BUT(DR15) :EUB=5) in preparation for 
setting the C bit in the EPS. If the result is less than -21 5 or is greater than or equal to 215 -1, this bit must be set, 
otherwise it is cleared. The result is represented in BR (high product) concatenated with DR (low product); and to 
determine the proper setting of the EPS(C) bit, the high bit of the DR (bit 15) must be compared with the entire 
contents of the BR. IF BR contains all 1 sand DR15 is also aI, the answer can be represented by just the low 16 
bits. Similarly, if DR15 is ° and the BR is all Os, the high 16 bits are still an extension of the MSB of the low 16 bits 
and the answer can still be expressed in one word. 

In MULl 1 , the high product is complemented and sent to D. The EPS(V) bit in the local status is cleared, and the 
BUT for D equal to ° (EUB=4) is made. This is done because if D is equal to ° after complementing, then it was all 
Is. 

Coming out of MULl!, the branch is made. If DR15 was 0, the low product was positive and the flow proceeds to 
MULl6 where the EPS(C) bit is set and the DR is put into D. At the branch coming out of MULl 6, the result of the 
test for the state of Din MUL11 determines the flow. If it had not been 0, the EPS(C) bit is left set, the other status 
bits are set, and the low product now in D is sent to the odd Source Field Register. This occurs in MULl8 from 
which the flow exits to MOVE EPS on sheet 2 of these flows. 

If D, in MUL11, had been 0, the flow is to MUL17 where the EPS(C) bit is cleared once again, the other status bits 
are set, and the low product is sent to R(SFV1) as in MULl8. 

If, back in MUL20, DR15 was seen to be 1, similar actions take place in MUL12, MULl 3 , and MULl 4 or 15. The 
status bits are set accordingly with the EPS(N) bit set if the product is less than ° or cleared if it is more than 0. The 
EPS(Z) bit is set if the product is equal to ° and is cleared otherwise. The EPS(V) bit is cleared and the EPS(C) bit is 
set or cleared according to the already stated criteria. 
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From all of these flows, the resultant status is transferred to the Processor Status Word (MOVE EPS), the high 
) product was stored in the even register in MUL20, and the low product in the odd register in the steps just described. 

) 

) 

\ 

The flow then proceeds to SERVICE as in other operations. 

4.7.3.4 Divide - The divide flow is shown on sheets 4 and S of the BIS flows and in Figure 4-10. In this operation, 
the data fetched from the calculated destination is the divisor, and the data from both the register specified by the 
source field of the instruction and that register ORed with 1 is the dividend. The high dividend is taken from the 
even register and the low dividend from the odd register. The 32·bit dividend is divided by the 16-bit divisor and the 
results are stored in R(SFVl) (remainder) and R(SF) (quotient). 

NOTE 
In DIV, an even R(SF) must be specified. 

Entry is at DIV to DIVO at location 603. In this word, the count is generated from the SBC code of12. This 
generates an octal 17 or decimal IS, providing the 16 passes through the divide loop. This is loaded into D at P2 and 
from there to the BR in P3. 

B 

DR 

H1GH D1VIDEND LOW DIVIDEND 

REMAINDER QUOTIENT 

BR [14:00] 
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Figure 4-10 DIV Flow Block Diagram 

At DIYl, the divisor in B is sent to D; and in DIV2, the count is loaded from BR. At the same time (P2), the high 
dividend in the even Source Register is loaded into BR and a test is made of the D Register which holds the divisor. 
If it isO, then the divisor is 0 and the flow willgo through DIV3 (a No-Op) to DIV4 where the EPS(Z,V,C) bits are 
set before exiting toMOVE EPS. Divide by 0 is undefined and is not executed. . 

If the divisor is not 0, DIVS is entered where the low dividend (R(SFVl))is put into Band the El'S(N) bit is set to 
the state of BRIS. This is the sign of the dividend. The test BUT(BRlS);EUB=3 is set to test the sign of the dividend 
for the branch from DIY6. 

In DIV6, the 2's complement of the low dividend is taken. This is done in the event the negative dividend path at 
DIV7 is to be taken, and it affords a chance to make the dividend positive before operating on it. If the negative 
path is not taken, nothing is destroyed by this complementing. At the same time, the carry-out of bit IS of the ALU 
(COUTlS) is stored in EPS(C) for future use. 
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At P3 of DIV6, the complemented dividend is put into the BR and the BUT(COUNT==O) is made to clear any 
hinderances to NPRs. 

If BRIS was (1) in word DIVS, the flow is to DIV7 where the high dividend is sent to B so that a 2's complement of 
it can be taken in DIV8; Note that the carry-out stored in EPS(C)in DIV6 is now used as a carry-in to effect the 2's 
complement. This arrangement provides the 2's complement of the total 32-bit dividend. A BUT is made here to 
determine whether or not the dividend is the most negative number (EUB=3) which tests bit 15 of the BR. 

In DIVlO, the divisor in R(DEST) is sent to B for use in DIV16;but if BR1S proved to be a (1) in DIV9, its not 
needed and the DIV QUIT path is taken to DIVll (a No-Op) and DIV12 where the condition codes are set 
appropriately and the flow exits to MOVE EPS. 

NOTE 
DIV QUIT is taken because division into the most negative 
number results in more than 15 bits of answer. 

If BR1S proved to be a (0) in DIV9, the indication is that the dividend is not the most negative number and DIV16 
is entered for the first division step. 

Before entering DIV16 in this discussion, the flow is taken back to DIV13 which would be entered if the dividend 
was determined, in DIVS, to be positive. III this case, the low dividend is moved to BR and from BR to DR in 
DIV14. At the same time, the high dividend is put into BR. Then in DIVIS, the divisor is put into the B Register. 
From either path, the entrance into DIV16 sees the divisor in B and the full dividend in BR and DR, with BR 
holding the high 16 bits. 

The first division step is done at DIVI6. The operation in this step, in DIVI9 and in the loop of DIV20, is to shift 
then add, or shift then subtract. 

Note from the statement in DIV16 thatthe D Register will be loaded with BR(14:00), DR1S and B as a function of 
B 15. This process can be followed on the block diagram to the top right of the sheet. There it can be seen that the 
BR concatenated with DR1S, shifted left one bit position through the RDMUX, and fed to the AIN of the ALU, 
while the B Register (the divisor) is fed to the B input of the ALU. Depending upon the state of BIS, the ALU will 
add B to or subtract B from the AIN data of the ALU and feed it to D, through the DMUX to BR. The carry-out, bit 
15 of the ALU, is shifted into the low end of DR as the partial quotient, while a remainder (if there is any) is being 
formed in the BR. 

For divide, there are two possible criteria that determine auxiliary ALU functions. One has already been mentioned 
(SIS) and this is the determinant whenever DAD=14 in the basic ROM is asserted. The ALU functions for the two 
states of B1S are given in a table to the right of word DIVI6. The other criteria are given in the table to the left of 
DIV20 in which the dual conditions. of both B1S and DROO are the determinants. These are used upon the 
simultaneous assertion of GPC=2 in the option ROM and DAD=14 in the basic ROM. Note DROO is the result of the 
last add or subtract. 

At DIV16, just the state of B1S is used (DAD=14 is asserted). Since the 2's complement of the divisor has already 
been taken, and since if after complementing tJle high bit was still aI, the most negative number would have been 
indicated; it is known at this point that BIS is O. rhus, the first shift will take place, followed by a subtract 
operation. The count is decremented, making the count equal to 14. 

The flow then progresses to DIV17 where the size of the quotient is determined with respect to the ability of the 
hardware to express it. If it is greater than 16 bits, it exceeds the capability of the machin" and the DlV QUIT path 
is initiated. As such, DIV17 is a No-Op merely to establishthe test BUT (DIV QUIT):EUB=7. This test looks for the 
three possible sets of conditions expressed in the formula to the right of this word. This is really a test for overflow. 
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In DIVI8, the count is decremented and the C bit is cleared to indicate that divide by 0 was not attempted. This 
reduces the count to 13. 

At this point, if DIV QUIT was not indicated back in DIVI7, the flow is to DIV19 which is the second division 
step. Here another shift is accomplished as described above except that now both BI5 and DROO are used as criteria 
for adding or subtracting after the shift (GPC=2 is asserted). The count is decremented, putting the count at 12. 

Word DIV20 is the divide loop in which the arithmetic operations are performed according to the same determinants 
(BRI5 and DROO) until the remaining 14 passes are completed. The BUT for count equal to 0 is also set in this 
word. 

Upon completion of the count, the flow exits to DIV A on sheet 5 of the EIS flows for the completion of the divide 
operation. 

The object of the steps on this sheet is to ensure that the sign of the remainder is the same as that of the dividend. If 
the dividend is negative,· the remainder must be stored as a negative number and vice versa. Further, the sign of the 
quotient must follow the algebraic rule that division of two negative number (or of two positive numbers) produces 
a positive quotient, whereas one of each produces a negative quotient. Furthermore, since the division process 
subtracts ascending orders of the divisor, an excess operation may occur. Therefore, the remainder might have to be 
corrected away from 0 before it is stored. 

Entering the flow on this page shows the remainder stored in D (DIV2l) and then stored in the odd register 
(DIV22). The test in DIV21 (EUB=12) is made to determine which path to take at the branch from DIV22. This test 
looks at the states of B15 (the sign of the divisor) and DROO (the low bit of the quotient). The latter indicates 
whether or not a correction must be made. If DROO=I, no correction is required, but if DROO=O, a correction is 
required. If B15=O, a positive divisor is indicated; if BI5=1, a negative divisor is indicated. 

Note that the extreme left-hand path to DIV23 is taken if the divisor is positive and no remainder correction is 
needed. The next path is taken if the divisor is positive and remainder correction is required. Note here (DIV27) that 
the correction adds the divisor (B) to the remainder (BR), correcting away from o. The next path to DIV3l is taken 
if remainder correction is required for a negative divisor in which correction away from 0 results in the divisor being 
subtracted from the remainder. And the last path to the right is taken to DIV23 if the divisor is negative and no 
remainder correction is called for. 

The second word in these two central correction paths stores both the corrected remainder in D in the odd Source 
Register and in the BR Register. The copy in BR is used for l's complementing and is transferred to D in case the 
dividend is deemed to be negative by the BUT (EUB=2) in either words DIV23 or DIV33. In words DIV24 or 
DIV34, the complemented remainder is returned from D to Band BR. 

At this point in either DIV23 or DIV33, the results of the BUT(SDIV) are used to guide the flow either to the 
positive dividend paths (-SDIVD) or the negative dividend paths (SDIVD). Note that at this point the sign of the 
divisor is already implicit in the path. 

The path from DIV24 to DIV25 is taken if both the dividend and divisor are positive. This indicates that the 
quotient will also be positive. In DIV25, therefore, the quotient is sent to D and BR from DR; in DIV26, it is stored 
in the even register from D, while the status bits are appropriately set before exit to MOVE EPS. 

The path from DIV34 toDIV35 is taken if both the dividend and divisor are positive. Once again the quotient will 
be positive and the same exit path as above is taken through DIV26, after the remainder is 2's complemented in 
DIV35 and stored inDIV36. 

The other two paths (from DIV24 to DIV29 and from DIV34 to DIV37) are taken if the signs of dividend and 
divisor are different, yielding a negative quotient. From DIV34 to DIV37, no complementing of the remainder is 
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required before complementing the quotient. The corrected remainder was already stored back in DIV32; however, 
from DIV24 to DIV37 the remainder must be complemented before complementing the quotient. This is done in 
DIV29 and DIV30 where the remainder is stored in the odd register. 

Entering DIV37, the remainder has been properly stored and the flow is concerned with storing the quotient as a 
negative number, together with determining if that quotient is or is not the most negative number (100000). 

At DIV37, the quotient is 1 's complemented (in the event that it needs to be at the branch out of DIV39); in 
DIV38, it is stored in the even register (as well as in B). DIV38 also sets up the BUT for D1S (EUB=l), the high bit 
of the complemented quotient. This is done to see whether or not the quotient is negative after l's complementing. 

In DIV39, at P2, 1 is added to the 1 's complement of the quotient to see if it is a most negative number after 2's 
complementing. This test occurs between P2 and P3 of that word. 

NOTE 
This is one of the few cases in which a BUT is made in the 
same word with the modification of that data. The data is 
modified on P2 and tested from P2 to P3. 

At P3 the 2's complemented quotient is stored in the even register. If the result of the BUT in DIV38 found DIS set, 
the quotient is not the most negative number and the quotient is stored in DIV26 where the status bits are also set 
before exiting to MOVE EPS. If, however, the result of the BUT in DIV38 found DIS cleared, the quotient was 
indicated to be a negative number, and in DIV40, the local condition codes are set to indicate that. 

Coming out of DIV40, the results of the BUT in DIV39 come into play and if DIS tested to be clear, the quotient is 
deemed to be negative but not the most negative. This flows through a No-Op at DIV42 to MOVE EPS; but if DIS 
tested to be set in DIV39, the quotient is the most negative number and in DIV41 the EPS(V) bit is altered to (1). 
The flow exits to DIV QUIT. 

4.7.4KEll-F Flow Diagram Discussion 

The KEll-F flows are shown on drawings D-FD-KEI1-F-FD, sheets 1 through 6. The format of these flows is 
identical to that of the KD ll-A and the KE 11-E, and the conventions follow those described in preceding 
paragraphs. 

Entry into the FIS flows is through the KE11-E, initialized in a similar manner to that described for the EIS option 
in which the flow follows through FETCH and then BUT 37 sets bit 8 of the ROM address. This sends the flow over 
into the expansion ROM entering the EIS flows as described before. When BUT(EINSTR I) is raised in the EIS, 
decoding takes place to recognize whether it is an EIS or FIS instruction; and if the outputs of that decoding yield 
IR=7Sxxxx, that signal is sent to the FIS hardware where it is gated with the proper IR bits for an FIS instruction. If 
they compare, a signal is sent back to the EIS branching logic, forcing a branch to the FIS EXIT and from there to 
the FIS entrance on sheet 1 of the FIS flows. 

4.7.4.1 .. FIS Entry - Sheet 1 of the FIS flows describes the FIS entry operation. Entry to this flow is at FIS to FPO 
at location 642. Here the floating stack pointer (R(DF)), pointed to by the destination field of the instruction, is put 
into the BA. Also the DATI is initiated and the clock is shut off to await memory response. The contents of R(DF) 
point to the high B argument on the stack containing the sign, the exponent, and the high part of the mantissa. 
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There are two passes through this flowin fetching and storing the arguments. The first from FPO through FP13 
fetches and adjusts the B arguments; The second from FPl through FP14 fetches and adjusts the A arguments 
(Figure 4-11). 

"R + 61 LOW A ARGUMENT 

R+4 HIGH A ARGUMENT 

R+ 2 LOW B ARGUMENT 

R I HIGH B ARGUMENT 

LOW MANTISSA 

SIGN, EXPONENT, 
HIGH MANTISSA 

LOW MANTISSA 

SIGN, EXPONENT, 
HIGH MANTISSA 
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Figure 4-11 Floating~Point Arguments Order on the Stack 

FPl strobes the argument in off the bus and places it in three places: 1) in BR, 2) in B, and 3) in R(II), the odd 
register. Note that the general purpose register that is used for storage (10 or 11) is a function of ARGA. The ROM 
always specifies the odd register in this flow, but when ARGA is set (only during the second pass through the flow), 
its setting diverts the argument fetched to the even register. 

In FP2, at P2, the high B argument in the BR is put into the DR, the pointer is iricremented by 2, and a DATI is 
initiated in preparation for getting the low B argument. At P3 of FP2, the incremented pointer is returned t6 R(DF) 
and the clock is turned off. After a wait formemory response, FP3 strobes the low B argument into R(13) and into 
B. 

The low B argument is shifted left inFP4 by adding it to itself. Note that in FP3 the low B argument is sent to B, 
and in FP4 those contents are added to the same data in R(13), then sent to D as the 'carry-out 15 is saved in 
EPS(C). At FP3 then, the shifted data is returned to R(13). . 

FP5 puts the high B argument, which was stored in R(11) iri FPl , in B; and FP6 slUfts it left. This su1gle bit-iliift to 
the left puts the entire exponent that was partially in the low byte into the high byte. In so doing, the sign bitis 
shifted out (not lost, still in BR) and the EPS(C) bit is inserted at the low end. The carry-in to the ALU is enabled by 
GPC=4. This double-precision shift operation makes it appear that the full 32 bits were shifted at once and provides 
an extra bit position on the low end of the low B argument for future rounding purposes. At P3 of that word, the 
shifted high B argument is returned to Band R(II). 

Word FP7 is used to separate the exponent and high mantissa and to put the exponent in the low byte of a testable 
word. To do this, the high byte of D is forced to 0 (SBCOO) and the exponent (B(15:08» is sent to the low byte of 
D. This is done for future overflow or underflow testing. These conditions will be indicated by what happens to the 
high byte ofD (1s from the right = overflow, Is from the left = underflow). 

In FP8, the separated exponenfis sent from D to R(15) and if D was equal to 0 (Oexponerit) the EPS(Z) bit is set. 
Note that ZB is not relevant on the first pass through this flow. The zerOness of the exponent is also tested for 
branching at FPl 0 (BUT(D=O):EDB=4) so that if it is 0, a 0 argument will then be generated. 
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At FP9, the hidden 1 is inserted (all numbers are assumed to be normalized). A CON field~O is asserted, generating a 
constant of 4008 which is gated onto the BUS RD to AIN of the ALU and then added to Os for the high byte, and 
to B(07 :00) for the low byte of the BIN port of the ALU. 

NOTE 
At this point, the B Register holds the high mantissa (shifted 
left in FP6). The previously separated exponent is in R15, and 
the sign is in the copy of the high B argument stored in BR 
back in FPl. 

Word FP9 also BUTs the state of the ARGA flop which for this first pass is cleared. Coming out of FP9, the results 
of the test for exponent (D:::;O) in FP8 are felt. 

If the exponent was 0 at that time, the flow goes to FPIO where a 0 is generated for the whole argument. The D 
Register is first zeroed and that is then used to 0 every appearance of the low B argument (BR, B, and R(13)). At 
FPll, the D is used to zero the high B argument in R(1I) and the ARGA flop is set. Note that the ARGA BUT was 
in FPIO, however, directing the flow now to FP13. 

If, back in FP8, the exponent proved to be not equal to 0, the flow from FP9 is to FP12 where the pure high B 
mantissa in D is stored in R(11) and the ARGA flop is clocked before proceeding to FP13. 

NOTE 
The hidden 1, inserted at FP9, is used only if the exponent =1= 

O. If exponent is 0, the 1 is destroyed in FPIO and FPl1. 

In FP13, the sign of the B argument, still in BR, is saved in MSR and in EPS(N). The stack pointer is updated in the 
D Register to point to the high A argument, and then put back in R(DF) at P3 of this word. Once again the DATI is 
initiated and the clock is turned off to wait for memory to respond. 

From FP13, the flow is to FPI to fetch the A argument. The fact that ARGA flop is now set overrides the low bit of 
the register address and causes the even general registers to be selected. Now fARGA will sekct R(10) for storage of 
the high A argument, R(12) for the low A argument, and R(14) for storage of the A exponent. All other operations 
are identical to the fetching of the B arguments previously discussed, except that this time in FP8 the zeroness of the 
B exponent in EPS(Z) is transferred to ZB, and the zeroness of the A exponent is put into EPS(Z). Now the status of 
both exponents can be used in FMUL and FDIV to determine automatic generation of a 0 answer. Also, this time 
the ARGA flop is clocked to the clear state so that odd or even register selection can be determined by the ROM or 
the instruction. 

Coming out of FPll or FP12in this pass, flow is to FPl4 since ARGA was set at FP9. In this word, the high A 
argument (stored in DR at FP2) is sent to B and the decoding of the instruction is made (BUT(FINSTR I):EUB=15). 

At FP15, the high A argument in B and the high B argument in MSR (stored in FP13) are sent through the ALU to 
be XORed. The MSR is also sent to the BR via the DMUX. The XOR is taken at this point to determine the sign for 
FMUL and FDIV. 

From here, the flow exits to the appropriate page as determined by the BUT in FPI4. 

4.7.4.2 FADD and FSUB - Entrance to this flow is either at FADD or FSUB. As shown in the diagram, the 
operations are identical except for one extra step in floating subtract instructions. This is SUBO at location 522 in 
which the high B argument in MSR (subtrahend) is complemented in D (merely to change sign), and put into BR. 
Flow is then diverted to the add flow at ADDO. 
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In a floating-add instruction, entrance through F ADD is to ADDO at location 520. Here the 10wB argument in 
R(I3) is sent to B and the sign of the B argument-{BRIS) is tested for the branch out of ADD!. For FADD 
instructions, BR is loal,i~d with the high B argument at FPIS and for FSUB instructions it is reloaded at SUBO. 

In ADDI, the 2's comple:!Dent of the low-S argument is taken, DAD=lO inserts the. carry into the ALU, and the 
carry-out is saved. This whole operation is done in case the B argument is negative. In that case, the branch is to 
ADD4 where the 2's complement of the low B argument is stored in R(13). 

At ADDS, the high B argument (R(B» is put intoB and complemented in ADD6 with the carry-out of the previous 
2'scompleJIient inserted to yield a 32-bit 2's complement. In ADD7, this complemented high B argument is stored 
back in R(ll) and . flow proceeds to ADD2. 

If BRl5 was (0) in ADDO, the B argument would have been positive, flow would have gone directly to ADD2, and 
complementing of the high B argument would not have occurred. 

At ADD2, the low A argument (R(12» is put in Band BR, and the high A argument sign is tested (DRIS). The DR 
was loaded with the high A argl,lment;at FP2. The low A argument is then put in HSR in ADD3, the 2's complement 
is also taken (in case the argument is negative) and putinto BR, and BUT(COUNT=O) is done for NPRs. 

If the A .argument is positive, the flow proceeds to AD08 where the high A argument,uncomplemented, is put into 
the BR. If it is negative, AD09 is entered instead where the complemented low A argument is stored in HSR and the 
high A argument (R(10» is put into B. The 2's complement is then taken in ADDIO and put into BR. Note that 
either flow (DRIS(O) or DRIS(1» results in the high A argument being stored in BR. 

Now the exponents are considered (they were separated back in the fetching of the arguments) , and in ADD I I , the 
high A argument is putinto the DR while the A exponent in R(14) is put into B. At the same time, the EPS(Z) bit is 
cleared for later use. 

In ADD 12 , the A exponent in B is subtracted from the B exponent in R(15) and that difference (which is used as a 
shift count for lining up binary points) is put into Band BR. Note that between P2 and P3, DI5, which indicates the 
relationship of argument exponents, is tested for the branch out of ADD 13. 

If, in ADOI2, DI5 was set, it indicated that the A exponent (R(14» was greater than the B exponent (R(15», and 
in that case, positions of all arguments and exponents must be swapped. This is necessary later on when binary 
points are lined up so that the proper argument is in position to be shifted. 

ADDI ~ performs a 2's complement in case A>B, andthe flow proceeds.to either·FADDA eXit if B~A, or to ADDI4 
where the general swapping operation begins. Note that if the exponents are equal (D=O), the setting of EPS(Z) in 
this word (ADD13) indicates that fact. 

If A and B arguments must change places, ADDI4 moves the A exponent jn D (actual count) to BR, ADDIS moves 
it fromBR to the count, and :!Doves the low A (in HSR) to D. In ADD16, the low B argument is put into the BR, 
and in ADD39 the low A is put m R(13) from D. 

NOTE 
At this point, low A is where low B was. 

At AD017, IbwBin BR is put in HSR so that low B is now,where low A used to be, and at the same time the high A 
in DR is sent to D. 

In ADDI8, the high B in R(ll) is put in BR; in ADDI9, it is put in the DR while the high A in D is put in R(ll). 
Now both arguments are swapped and in ADD2D and ADD21 the A exponent is put where the B exponent was. This 
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completes the swap of arguments and exponents. Only the A exponent is moved in this operation. The B exponent is 
lost since their"difference was determined in ADD I 2 and A has been determined to be the larger. 

NOTE 
If B was ~ A, R(lS) would still contain the larger exponent 
(B). 

Flow then proceeds through the exit F ADOA to the next sheet of this flow. 

The floating add and floating subtract flows continue on sheet 3 of the FIS flows, then on through FADOA to 
AD022 at location 740. Here the low B argument is shifted left to provide an additional bit position on the low end 
for rounding. This is done by addiugR(13) to itself, saving the carry-out, and putting the result in Band BR. This 
makes two extra rounding positions, as the first was gained in fetching the arguments. 

NOTE 
Although arguments are identified in the diSCussion from this 
point on, it must be "remembered that due to swapping, what is 
caned the low B here lTlI)Y be the low A. What is tenned the 
low B should be thought of as the larger of the two axguments 
to avoid confusion. 

Since a shift is performed; the counter is checked Jor a count greater than 308 • This condition would exceed the 
range of the machine. The mantissa consists of 24 bits including the hldden I (2410 =308 ), If the difference in 
exponents exceeds this, the hardware will not perform any shifting but Will take the argument with the larger 
exponent as the answer before rounding and normalization. 

The BUT (COUNT>30):FUBl, EUB3 is made at P2 of AD022, and at P3 of that word, the count is decremented. 

AD023 performs the same shift of the high B argument by adding R(1I) to itself with the carry-in inserted from the 
previous word, yielding a resultant 32·bit left shift of which only 24 bits are looked at. The high bits are considered 
sign extension. 

Coming out of A0022, if the count was sensed gre'aterthan 308 , the path to AD029 is taken, thereby bypassing the 
binary point alignment procedure and putting the low answer in HSR and the high answer in BR. BUT COUNT=O 
accommodates NPR servicing and the flow proceeds to A0033. Note that tlUs enters the flow after the steps'that 
would have been taken if the exponents had been in" range. If this were the case, flow would be to AD024 from 
AD023. 

At that point in the flow, the DR (highman,tissa) is concatenated withHSR (low mantissa). When these bits are 
shifted right, the sign of the DR must be duplicated. The statement at PI (AD024) performs that function by 
placing ORIS (sign) into 8ROO. As shifting continues, the state of DRIS is duplicated. The BUT in this word is 
testing for the equality of exponents. EPS(Z) and ZBhave previously been set to indicate this equality. If the 
exponents are equal, EPS(Z) will be set, no shlfting due to exponent difference is required, and the flow is to 
AD028 through ADD25 where the count is decremente<;l again. Note that no shifting due to exponent difference is 
required, but that binary points still require lining up due to the two extra rounding bits alreildy added to the low 
end ofthe B argument. Thus, the A argument (that picked up one extra bit in fetching)must pick up an additional 
extra bit to be aligned with the B lU'gument. This is done in ADD28 where the high A argument in DR and the low A 
argument in HSR are shifted left one place. HSROO picks up a 0 fwm MSRI5. This word then carries off to AD030 
to begin the add operation. 
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If as a result of the BUT in ADD24 the exponents were deteimined not to be equal, the indicatioriisthatshifting is 
required to align the binary points. In this event, the flow would proceed through a decre:ment in AD])25 to 
ADD26.The count, however, had also beeri decremented in ADD22 SO that the original difference in exponents was 
reduced by one. Thus, if the BUT(COUNT=O) in ADD25 is true, an original difference of one in exponents existeil 
and no alignment is required; i.e., an additional bit position was picked upon the B argument in ADD22 and, by not 
shifting the A argument right one place to exhaust that difference, an extra place on the A argument has effectiveiy 
been gained. In" this event; the flow out of ADD26 will not be to ADD27 but rather to ADD30. 

In the event that the result of the BUT(COUNT=O) in ADD25 was "* 0 (note: this BUS is after the decrement in 
ADD22 but before the decrement in ADD25), the decrement in ADD25 will cause the BUT in ADD26 toimHclite 
that an original difference of two existed and just one pass is required through ADD27 , thereby shifting the A 
argument one additional position to account for the extra bit on the low end. 

In ADD27, the number of passes will"always be one less than the original count for the reasons just stated, and in the 
example just given, the decrement in ADD26 will carry the flow out of ADD27 to ADD30. 

An add of the low A and low B arguments is performed in ADD30 and the results (low answer) are stored in BR. 
) The low answer is then sent to HSR in ADD31 and the high B argument (R(1l) is put in B. 

) 

An add of the high A and high B arguments is performed in ADD32 and the results (high answer) are stored in BR. 
The high answer is sent to DR in ADD33 and the low answer in HSR is put in B. The sign of the answer (BRI5) is 
put in EPS(N). " " 

A 2's complement of the low answer in B is taken at ADD34 and stored in the BIi. This is done incase the answer is 
negative. At the same time, But(BRI5) is made to test the sign in the high answer for the branch out of ADD35. 

In ADD35, P2, the high answer in DR is ORed with the low answer in B through the ALU to D. This is done to 
accommodate the BUT(D=O) test in the first word in the normalize flow. At P3, the high answer in DR is sent 
through the DMUX to B. 

At this point, the effects of the sign of the answer are felt. If the answer ispositive, it is shifted right in ADD38 to 
get rid of the second extra bit on the low end and the flow exits to NORMALIZE. If the answer is negative, the 2's 
complement of the high ans~er is taken in ADD36, and in ADD37, the answer is put in DR and B for the ORing 
operation again in ADD35. This time the BUT (BR15) will find a positive answer (because of the complementation) 
and exit through ADD38 to NORMALIZE. 

There are exits in this flow for bus requests. These tests, made by hardware assertion of GPC=7, are not made on the 
BUT MUX. This code will assert bit 5 in the UPP and cause the ROM to branch toBRQ if a bus request has beeIl 
clocked in. The bus data cycle master sync would have clocked the BR request flags in the processor. The 
BUT(COUNT=O} in the option also clocks that flag and throughout these flows that BUT appears periodie~lly 
whenever the length of time for an operation has taken a considerable period. . 

If a bus request had been flagged at A])D25 when the flow was to proceeg to ADD28 for example, the GPC=7 
would have been asserted in ADD25, causing bit 5 of the UPP to be asserted thereby changing the next address from 
717 (ADD30)to 757 (BRQ1). 

If the flow was from ADD25 through ADD26 to ADD27, rather than go to 713 (ADD27), the flow would proceed 
to 753 (BRQO). Also in ADD27, this code is asserted for each pass through the loopso that anytime a bus requestis 
present, the flow will immediately branch to BRQO. . " 

When a bus request is sensed by a GPC=7 code, the instruction "is aborted, the stack pointer is backed up to the high 
B argumeIlt, and the PC is backed up to the floating instruction. This allows return to a restart of the floating 
instruction after servicing the request. 
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Both BRQO and BRQlperform this same operation by generating a constant of 68 (fCON=2) to decrement the 
pointer. It exits through BRQ to BRQ4 at location 755 where the constant in B is subtracted from R(DF), the stack 
pointer. UPP8 is cleared to switch ROMs and word BRQ5 decrements the PC by 2 to point to the floating 
instruction. 

The final exit is to SERVICE C in the KDII-A flows. 

FADD Example 

5000/FADD 3 

Consider hidden bit: 

Arithmetic: 

Since hidden bit is still implied in result: 

R [3] :;:: 7000 

7000/040000 Hi B 
7002/000000 Lo B 
7004/040000 Hi A 
7006/000000 Lo A 

Bop fraction = 1/2 
Aop fraction :;:: 1/2 

exp = 0 
exp = 0 

A + B = 1/2 X 2° + 1/2 X 2° = 1 X 2° = 1 

1 = 21 X 1/2 Therefore the result stored must be: 

7004/040200 Hi ans 
7006/000000 Lo ans 

The following chart lists the contents of the various registers for each flow diagram step of this example. 

Step B D BR DR HSR MSR Registers & Notes 

FPl 040000 040000, R [11] = 040000 
FP2 007002 040000 R [3]= 7002 
FP3 000000 R[13] =000000 
FP4 000000 R [13] == 000000 EPS(C) = 0 
FP5 040000 
FP6 100000 100000 R [11] = 100000 
FP7 000200 
FP8 R [15] = 200; EPS(Z) = 0, ZB=O 
FP9 000400 Insert hidden bit in D 
fP12 R [11] = 400 ARGA +- 1 
FP13 007004 040000 EPS(N) +- 0 R [3] = 7004 
FP1 040000 040000 R [10] = 040000 
FP2 . '040000 R [3] = 7006 
FP3 000000 R [12] = 000000 
FP4 000000 R [12] :;:: 000000, EPS(C) = 0 
FP5 040000 
FP6 100000 100000 R [10] = 100000 
FP7 000200 
FP8 

,. 
R[14] = 200; EPS(Z) =O,ZB=O 

FP9 000400 Insert hidden bit 
FP12 R[10] = 000400 ARGA +- R 
FP14 040000 000000 040000 
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Step. B D BR DR HSR MSR Registers & Not~s 

ADDO ·000000 
ADDI 000000 EPS(C) = 0 . 

ADD2 000000 000000 
ADD3 000000 000000 000000 EPS(C)= 0 

ADD8 000400 
ADD11 000200 000400 EPS(Z)+- 0 

ADD12 000000 000000 000000 
ADD 13 000000 000400 000000 . count=O DR=HIA 

EPS(Z) = 1 HSR = LO A FRACT 

ADD22 000000 000000 000000 EPS(C)=O 

ADD23 001000 R [11) = 001000 
ADD24 000000 
ADD25 
ADD28 001000 000000 
ADD30 000000 000000 EPS(C)=O 
ADD31 001000 000000 

) ADD32 002000 002000 
ADD33 000000 002000 . EPS(N)=O 

ADD34 000000 000000 EPS(C)=O 

ADD35 002000 002000 
ADD38 001000 000000 . Go to normalize 

NOMO 000000 '000000 
NOM 1 000201 R[15) =201 

NOM4 DR9(1) so do not normalize 

NOM7 000400 000000 

) 
NOM8 000001 000001 Round up EPS(C)= 0 
NOM9 000001 
NOMI0 000400 000400 
NOMII 000400 
NOM12 000200 000000 
NOM13 000201 000201 000201 
EXIO 000000 040200 EPS(C) +-0, EPS(Z) = 1 

EXIl 000244 
EXI2 R[14) =244 
EXI7 000000 * DATO, Lo Ans to 7006 

) EXI8 040200 
EXI9 007004 R [3)= 7004 
EXII0 040200 * DATO, Lo Ans to 7006 
EXIll EPS(N) = 0, EPS(Z) = 0, EPS(V,C) = 0 

ASH15 PS(N :C)+- EPS(N :C) 
ASH21 NO-OP 
SERVICEC 

*Here we agree with original calculation from sheet 1 7004/040200 
7006/000000. 
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4.7.4.3 FMUL - The floating multiply flow is shown on sheet 4 of the FIS flows and in Figure 4-12. Entry to this 
flow is through FMUL to FMLO at location S24. In this word, the contents of the D Register is put into the BR. 
This is the result of the XOR of Band MSR performed on sheet 1 at FPlS prior to entry and represents the sign of 
the answer. 

ALU15 ~ 

~u 
~ 

I 0 I B I I RDMUX I 
MULTIPLICAND _I 

I DMUX I I R (11) R (13) I 
I SHIFT RIGHT I I HIGH LOW I 

~ 
I BR I I DR I I HSR I I MSR I 

Y HIGH PRODUCT I I LOW PRODUCT HIGH MULTIPLIER LOW MULTIPLIER I 

I 
11-1628 

Figure 4-12FMUL Flow, Block Diagram 

In FMLl, the B exponent (R(l4» is put in B and the sign of the answer (BRlS) is put in EPS(N). The zeroness of 
the A and B exponents is tested with BUT(ZB+EPS(Z». These bits were set while fetching the exponents in FP8. 

Word FML2 adds the A and B exponents and then proceeds to either FML3 or. FML4. Note that adding two 
exponents, each of which is expressed in excess 200 notation, yields a result that is in excess 400 notation. This will 
be corrected in subs<;lquent steps. 

If the result of the BUT in FMLl indicated that one or both exponents (arguments) was equal to 0, the flow is taken 
to FML3 where the answer is zeroed b<;lfore exiting to ZERO A on the NORMALIZE flow. In this case, the fact that 
the addition of exponents produced excess 400 notation has no meaning and is ignored. 

If neither argument was determined in FMLl to be equal to 0, the flow is to FML4 where the exponent is corrected 
to excess 200 notation by forming a constant of 200. That value is then subtracted in FMLS. Note that the 
subtraction includes a "MINUS 1". Subtracting this additional 1 is done to accommodate the entry to normalize. 

The multiply loop count is formed in FML6 as generated by fCON;:::3 (308 or 241 0) so that once the multiply loop 
is entered at FMULll, the hardware will keep track of the number of passes through the loop until all 24 bits of 
significant mantissa have been monitored. 
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FML710ads the count and puts the low multiplier (R(12» into BR. This proceeds to FML8 where the low multiplier 
is transferred from BR to MSR to make room for the high multiplier (R(lO» from which it is put in HSR in FML9, 
where the BR is also cleared. At this point, the full multiplier is in MSR concatenated with HSR. 

At FMLlO, the zeroed condition ofBR is used to clear the DR, and the low multiplicand (R(13» is put into B. This 
sets up the full 64-bit concatenation with the BR and DR cleared ready to receive the product, and with the 
multiplier in HSR and MSR. The flow is then to the entry of the multiply loop at FMLlI. 

In this word, a shift right through the DMUX is done with D(C) getting ALUI5. The D Register gets the low partial 
product (BR) and the count is decremented. Note that the state ofMSROl is tested in this word rather than MSROO. 
This is because MSROO is actually the extra bit picked up by shifting during the fetching of the arguments on sheet 1 
of these flows and is consequently not Significant at this time. 

On each pass through the multiply loop, this bit position always contains the current least Significant bit of the 
multiplier. It is this bit that is used to determine whether to add and then shift or to just shift without adding. 
Whenever MSROl is a (1), the multiplicand must be added to the partial product before shifting. If it is (0), a simple 
shift of the partial product and multiplier is executed. 

In this multiply loop, the flow is from FMLl2 to FMLl4 through FMLl7 and back to FML11 whenever MSROI is a 
(1); or whenever MSROI is a (0), the route is FML12 to FMLl3 and then back to FML11. In each pass the count is 
tested, and when COUNT=O, the loop is exited and flow is to FMLl8 to store the products for normalization. 

There are two bus request escapes. These are BRQ2 (653) and BRQ3 (657). BRQ2 is used for breakouts during any 
pass through the loop except the last. On the last time through, however, coming out of FMLl3, the base address 
613 can be modified from two sources at the same time. The fact that COUNT=O modifies 613 to 617 (FMLl8) and 
a bus request can modify that address to 657 or BRQ3. Once entered, the BRQ routine is identical to that described 
for F ADD and FSUB. 

During the multiply loop, data is swapped from register to register to accommodate the instantaneous needs of the 
operation. The low multiplicand is· always being added to the partial product held in the DR and the BR. As the 
operation progresses, the low multiplicand is added to the DR, the carry is saved, that sum is loaded into the D 
Register, and the BR is loaded into the DR. The high part is brought up where it can be operated on, the two halves 
are added, and then everything is moved around again. 

In FMLl4 and FMLl5, the low multiplicand (B+-R(13» is added to the partial product (D+-DR PLUS 
B:EPS(C)+-COUT 15). The contents of BR are saved in the DR to make room for the low partial product in D. 

At FMLl6, the high multiplicand (R(12» is put into the B Register, and at FMLl7, the rest of the double-precision 
add is done with the previous carry-out (EPS(C» being used as the carry-in. This is sent to D. The low partial 
product in BR is put back in DR and the high partial product in· D is put back in BR. The flow then goes back to 
FMLlI to look at the next LSB of the multiplier and continues for a count of 308 , unless interrupted by a bus 
request. 

When the coUnt is exhausted, the flow proceeds to FMLl8 where at P2 the low product in DR is put into the D 
Register and the high product is put into the DR Register. At P3 of that word, the low product is transferred from D 
to BR . 

. In FMLl9, the low product in BR is sent to the HSR while the Band BR Registers are cleared. This results in the 
final assembly of the product in the DR and HSR Registers concatenated where it needs to be for the normalization 
process. 

4.7.4.4 FDIV - The floating divide flow is shown on sheet 5 of the PIS flows and in Figure 4-13. Entrance is 
through FOIV to FDVO at location 526. As in multiply, this word takes the XOR of the high A and B arguments put 
in D at FP15 and loads that result (sign of the answer) into BR. 
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Figure 4-13 FDIV Flow Block Diagram 

Word FDVI sends the Bexponent R(IS) to B, and the sign of the mantissa (BRIS) is put in EPS(N). The BUT in 
this word differs from the similar test in FMUL in that this is the ANDing of ZB and EPS(Z) whereas in multiply it 
was an OR function. This test of the A and B exponents determines whether either the divisor or the dividend, or 

) 

neither is equal to o. If the divisor is 0, an underflow is indicated; and if the dividend is 0, a 0 answer will be ) 
generated without going through the divide loop. . 

In FDV2, the B exponent (divisor) put in the B Register in FDVI is subtracted from the A exponent (dividend) in 
R(14) and the difference is put in B. This will be the "initial" exponent, so called because it ha~ not as yet been 
modified by normalization. This subtraction removes the excess 2008 factor in the notation and will be corrected 
later. 

If, at FDVI, the ZB flop was set, the indication is that the divisor (B argument) is 0 and flow is to FDV3 where the 
trap vector for the floating point (244) is formed by fCON=! and the EPS(C) bit is set to indicate division by O. The ... ) 
vector is stored in FDV4 and exit is to the underflow routine on sheet 6 of these flows. 

If; at FDVI, the indication was that the dividend (A argument) was 0 (ZB=O and EPS(Z)=l), flow is to FDVS where 
a 0 answer is generated by zeroing D, BR, B, and R(IS), and then exiting to ZERO A on sheet 6. 

If, at FDVl, both ZB and EPS(Z) were found to be clear, this would indicate that neither the dividend nor the 
divisor were 0 and flow would proceed to FDV6. Here the exponent is returned to excess 2008 notation by adding 
2008 to the difference in exponents. GPC:;:6 generates the constant 2008 , 

Word FDV7 stores the corrected exponent and FDV8 forms the constant 328 or 268 , (the number of times the 
divide loop must be executed). 

At FDV9, the count is loaded from the BR, and BR gets the low dividend (R(12». The low dividend is then put in 
the DR at FDVIO and the BR is cleared. The fact that BR is all Os is then used in FDVII to clear the HSR and MSR 
after which the high dividend (R(10» is put into BR. FDV23 then puts the low divisor (R(13» into B. The data is 
now set up for the first division step in FDV24. 
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The first division step is always a subtract operation, and in FDV24, the low half of a double-precision subtract of 
the low argurnents is perforrned. The high dividend (BR) goes to DR, the low divisor (B) is subtracted frorn the low 
dividend (DR), the carry-out is saved in EPS(C), and the result is put in BR. 

In FDV21 , the high divisor (R01)) is put in B while the count is decrernented before proceeding to FDV22. Here 
the result of the low subtraction (BR) is put in DR. At the sarne tirne, the high divisor (B) is subtracted frorn the 
high dividend (DR), and the carry-in is inserted frorn the previous carry-out. At the sarne tirne, the carry-out 15 frorn 
this result is stored in EPS(C) which will now becorne the MSB of the quotient. Later on this bit will shift into the 
MSR Register as part of the quotient. At P3 of FDV22, the result of this subtraction (high result) is put into BR. 
The BUT(COUNT=O) is done both for NPRs and to see if this is the last tirne through the loop. 

The flow here is to FDV16 where everything is shifted left. Note that these registers are concatenated and that 
EPS(C) goes into MSROO. That is the carry-out frorn the subtraction that indicates whether or not the division step 
was successful. If it is, a carry-out is seen and a (1) is shifted, into the answer. If the step is not successful, no 
carry-out occurs and a 0 is shifted into the answer. 

If this is not the last pass through the loop (COUNT:;i:O), flow is to FDV12 where the low divisor (R(l3)) is put in B 
and the BUT for BRQ is rnade (GPC=7). 

At FDV13, the division step for the low dividend is done. The BR is put into DR, then DR and B are processed 
according to the function of MSROO (see table at bottorn of sheet). MSROO, rernernber, is the result of the last 
subtraction or addition and is an indication of whether division was successful or not. 

On each pass through the divide loop, the hardware deterrnines whether the last subtraction was successful. lfit was, 
a subtraction at FDV13 and FDV22 will occur on the next pass through the loop. If it was not, an addition at 
FDV13 and FDV15 occurs on the next pass. If a carry-out occurs, a subtraction is tried on the next pass and a 1 is 
inserted in the answer. If no carry-out occurred, a 0 is inserted. 

Each pass decrernents the count and the loop continues until the count is exhausted. Note that a BUT for COUNT=O 
is done in either FDV22 or FDV15 since in the last pass the flow could be through either word. 

When COUNT=O, the flow is to FDV17 to set up the quotients for nQrrnalization.In FDV17 and FDV18, the high 
quotient in HSR is put in DR. In FDV19 and FDV20, the low quotient in MSR is put in HSR. The last operation 
before exit to NORMALIZE is to zero the Band BR Registers so that they rnay be used in the rounding routine on 
sheet 6 of these flows. 

The one BRQ breakout facility in this flow is tested at FDV12 where, if a bus request has been clocked in, the UPP 
Register address is rnodified frorn 731 to 771 (BRQ6). 

4.7.4.5 Norrnalize, Round and Store - Sheet 6 of the FIS flows contains the routines for norrnalization, rounding, 
and storing; the flows for F ADD, FSUB,FMUL, and FDIV all exit to this flow before storingtheif answers. Their 
points of entry differ, however, depending upon the instruction being perforrned. 

Entlance to ZERO A is frorn FMUL or FDIV (the only instructions that detect whether one or the other argurnent 
equals 0 so that a 0 answer rnay be stored). 

Upon entering at ZERO A, the 0 answer has already been generated and flow is to NOM3 at location 576. Here the 
BR, already cleared, is used to 0 the HSR and DR. BR15is used to 0 the sign (EPS(N)). The FCIBUS is set to enable 
a DATO. Note that it is enabled one word early because it is double buffered by the FIS U Register and CPU U 
Register. 

The staternent BA(-R(DF) ;DAD=6 is done to check overflow. R(DF) is the stack pointer and if it should happen to 
be register 6, as specified by the destination field of the IR, a decrernent into a protected area could occur later on 
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when answers are stored. The BA is loaded here so that the CLOCK BA signal will be generated which, with DAD=6, 
will set the Check Overflow flag and check for overflow if R(DF) is register 6., Flow then is to the STO~ routine ") 
described later at the end of this discussion. 

Entry at NORMALIZE is from the F ADD or FSUB flow and enters word NOMO at location 727. In this word, the 
BR and B Registers are zeroed for use later in rounding. BUT(D=O) tests for' a 0 answer as set up previously in 
ADD35. If 0=0, it indicates that aO answer should be generated and the flow is through NOMl an<i NOM2 where a 
o answer is generated. 

Entry at NORMALIZE A is from the FMUL or FDIV flows and enters word NOMI at location 554. This entry 
bypasses the zeroing action in NOMObecal,lse this has already been done in FMUL or FDIV. 

In NOMl, the exponent (R(15»)is adjusted by incrementation in D and restored to R(15). In that same word, the 
BUT(NORMALIZED) test is made with GPC=1 also asserted. This combination looks at DR09 for the branch out of 
NOM4. DR09 is the MSB of the mantissa and, if it is set, it indicates that' the mantissa is normalized. If it is 0, the 
mantissa is not normalized. 

NOTE 
Most BUTs in this option look for a condition to be asserted to 
OR a 1 into the ROM address. In this case, assertion does Itot 
modify (705) whereas non-assertion does (707). 

Flow is then directly to NOM4 and not to NOM2 because theBUT(D=O) is not felt by the NORMALIZE A entry. 
NOM4 sets up the R6 overflow,check as described for NOM3 and takes the appropriate normalization branch. 

) 

If the BUT in NOM) indicated that the mantissa W'lS not normalized, NOMS is next where the exponent is ) 
decremented because the mantissa is shifted left. GPC=5 allows HSR15 to be concatenated with DROO. As HSR is . 
shifted left one place, a 0 is brought in. Note that the BUT(NORMALIZED) does not assert GPC=1 in this word. 
This causes the hardware to check normalizatjon before the shift by looking at ])R08. If DR08 is set at this time, 
DR09 will be set after the shift and, as a result, the flow will be to NOM7 after the decremented exponent is stored 
in NOM6., Of course it could take several passes to normalize the exponent (l,lp to 318 places), so the 
BUT(COUNT=O) in NOM6 serves to clock NPRs. Note also that the exponent is decremented for each Pass. 

At NOM7, the answer is shifted right one place to put the extra bit on the low end in position for rol,mding. NOM8 
rounds the low part of the answer by adding 1 and the carry-out is saved in EPS(C). In NOM9, the rounded low 
answer is returned to HSR. ) 

At NOMlO, the high answer is rounded by adding 0 to the DR, and bringing in the previous carry-out (EPS(C» as 
the carry-in. In NOMll, the result is sent ,via the BR to DR. By adding 0 to ,the high part and bringing in the carry, 
the effect of adding the 1 may ripple up from the low answer to the high answer via the carry. At this point, the 
rounded high answer is in the DR and the rounded low answer is in the HSR. 

Now that rounding has been done, the extra bit on the low end is no longer neede4 so in NOM12 it is dropped by 
shifting everything right one place. The BR is also cleared. At the same time, normalization is checked by looking at 
DR09 (at this pointDR08 is the MSB). This is to be sure that it is still normalized after rounding. If, as a result of 
rounding, the added 1 had rippled all the way across, the answer would have become unnormalized. To becom<;l 
renormalized, an additional shift is required along with an increment of the exponent. NOM13 sends the expon\,:nt 
(R(I3» to the D, BR, an4 B Registers in case'adjustment is not required. ' 

Coming out of NOM13, the effects of the BUT in NOM12 are felt and, if the answer was not still normalized 
(DR09(1», NOM14 is entered to effect renormalization and to increment the exponent. The adjusted exponent is 
then stored in R(15), Band BR.' ) 
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If, however, the answer was normalized (DR09(0», the ROM address is modified to 542 and the flow exits to moo. 

NOTE 
At this point, the answer has beertrounded and normaliZed, 
the exponent bas been adjusted to the correct value, and the 
hardware Iii ready to assemble the answer and store it .... 

moo assembles the high answer by putting the sign bit (EPS(N) in BR15, the exponent (BR(07:00» in BR(14:07), 
and the high mantissa minus the hidden bit (DR(06:00» in BR(06:00). - -

Word EXl14 sets up the D Register for the BUT to be made in EXII for underflow, overflow, or ~tore.This is done 
by zeroing the upper 8 bits of the D Register with SBC=OO. The EPS(Z) bit is loaded with whether or not the 
exponent is equal to 0 as set up at P2 of NOM13. This establishes one of the conditions for underflow. The low 8 
bits of the D Register are loaded with the high byte of the register that held the exponent(R{15» (previously loaded 
into the B Register at P3 of NOM 13 or NOM 14). In addition EPS(C) is zeroed. 

At EXIl, the trap vector 244 is formed (fCON=2) in case underflow-or overflow are indicated by the BUT in that 
word, and in EXl2 that vector is stored along with setting the DATa control bit (FCIBUS). 

If, at EXll, the D Register contains any data, overflow exists indicating that what was'the high byte of the exponent 
had some carryover from the low byte of the exponent.· In this event, flowwill be to EXl12. Underflow is indicated 
if either EPS(Z) is set, indicating a 0 exponent; or B15 is set, indicating that decrementation of the exponent 
produced a negative number. In this case, the flow will be to EXl3. If neither underflow or overflow are indicated, 
the answer is determined to be legal and flow is to EXl7 for a store operation. 

NOTE' 
If overflow or underflow are indicated, the FCIBIT set in 
EXl2 will have no effect since on the next bus cycle the basic 
ROM is used and the FIS U Register is cleared. 

If overflow is indicated, EXl12 and EXl14 load the EPS{N) bit via BR with a 0 (top bit of 2448 in D is aO). If 
underflow is indicated, EXl4 generates the stack pointer adjustment oonstant of 6, zeros the EPS(Z) bit,and sets-the 
EPS(V) bit. The condition codes for overflow and underflow are as follows: . 

Condition Codes for Overflow and Underflow 

OVFL UNFL 
EPS(N) . 0 1 
EPS(Z) 0 0 
EPS(V) 1 1 

EPS(C) 0 0 

FDIVBy Zero 
1 
o 
1 
1 

By referring to the condition codes in the table above, it can be seen that all codes are properly set by these word 
combinations, including the divide by 0 combination in which the EPS(C) bit was set prior to entry at UNFL A. In 
this same path then, EXl15 moves EPS to the Processor Status Word and clears the extension ROM enable bitUPP8 
while EXl16 adjusts the stack pointer and exits toKDll-A Trap D flow. 

If the STORE path is taken, flow is to EXl7 where the low answer in HSR is sent to D, a DATa is initiated, and the 
clock is shut off to wait for the memory response. 
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At EXI18, the high~nswer assembled In BR in word EXlO is brought into the B Register, and at EXI19 the stack ') 
pointer is decremented by 2 and put into the BA. The DAD=6 checks for a register 6 stack overflow, the modified 
stack pointer is put back in R(OF) , and the FCIBUS is set. 

At EXllO, the assembled high answer (sign, exponent, and high mantissa) in B is stored in D, the DATO is initiated, 
and the clock is turned off. Then at EXl11 the local condition codes are set before exiting to MOVE EPS. 

4.8 LOGIC DESCRIPTIONS 

The KEll·E logic diagrams are shown in drawing D·CS·M7238-O·1, sheets 2 through 9. The sheets are designated 
KE·2 tlirough KE·9, as follows:' . 

KE·2 
KE·3 
KE4 
KE·S . 
KE·6 
KE-7 
KE-8 
KE·9, 
KE·10,17 

BR{l5 :00),OR(15 :00) 
RDMUX(15 :00) 
EUBC MUX AND CONTROL 
CLOCKING AND CONTROL 
EPS AND 'COUNTER 
KE ROM AND U WORD REGISTER 
KD ROM EXPANSION 
KD ROM EXPANSION AND CONNECTORS 
EIS ROM LISTING 

The KE11·F logic diagrams are shown in drawing P·CS·M7239·0-1, sheets 2 through 4. The drawings are designated 
KF-2 through KF4, as follows: 

KF-2 
KF-3 
KF4 
KF·S, 12 

HSR&MSR 
FRDMUX(1S:00) 
ROM & CONTROL 
FlS ROM LISTING 

In these paragraphs, the loglc is described in this sequence for·convenience only. The sequence bears no relationship 
to their logical arrangement. These deSCriptions, together with the Glossary in Appendix A, provide an adequate 
description of the logic diagrams associated with the KE11·E and F Options. 

4.8.1 Basic CPU Timing 

As the KEll·E and KEll·F operate on the basic timing of the KD11·A, a brief description of this timing is given at 
this point. 

There are three basic timing cycle lengths used in the KDl1-A. For a deSCription of their gerieration refer to the 
KDll·A Maintenance Manual EK·KD11A·MM·001. 

The three cycle lengths are designatedCLl, CL2;and CL3. CyclesCLl. and CL2hiwe one clocking pulse which 
occurs at the end of the cycle. Cycle CL3 has two pulses associated with it. The time relationship or'the cycle 
lengths and their respective pulses are shown in Figure 4-14. All clocking action takes place on the trailing edge of 
the clock pulse, 
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Figure 4-14 Basic KDI1-A Timing 

4.8.2 BR and DR Registers (Dwg KE·2) 

The BR Register is a 16-bit holding register which receives data from the CPU via DMUX(l5 :00) H. The BR is used 
to hold data during the EIS and FIS instructions. This register is loaded on the trailing edge of PI or P3 pulses. 

The DR Register is a 16-bitleft-right shift register which receives data from the BR. The DR is also used as a holding 
register. During the multiply instruction, the low product is shifted into the DR via DR15 as the multiplier is shifted 
out at DROO. During a divide, the quotient is shifted into the DR via DROO while the low dividend is shifted out at 
DR15. Output signals are listed in Table 4-4. 

Mnemonic 

BR(l5:00) H 

DR(I5:00) H 

Table 4-4 
KE-2 Output Signals 

Description 

Output from the BR Register, fed to DR(15:00) and through the EIS option. Also to pins 
for distribution to EIS and FIS options. 

Output from the DR Register. Used in ASHC, MUL, and DIV operations in the EIS and in 
all FIS instructions. 

On the left-hand side of this sheet are shown the three hex flip-flop registers, 74174s that comprise the BR Register. 
Inputs to this register are DMUX(l5 :00) coming from the basic machine. All input data from the KDl1-A comes 
into this register from which it is distributed to the rest of the EIS and FIS options. It functions as a holding register 
and buffer. 

The outputs of the BR Register feed four 74194s that comprise the DR Register. These are left-right shift registers 
having the ability to also be loaded in parallel. The DR is used extensively in ASHC, MUL, and DIV to shift and 
store data. Likewise, it is usedin FIS instructions to temporarily store and shift data. 

The shift input to bit 00 of the DR Register has several sources, some from the EIS and others from the FIS; one is 
enabled during an ASI-JC instruction. 
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The bit 00 input to the DR Register is important only if a left shift operation is being performed. In a right shift, 
this line is inSignificant. 

In ASHC, while shifting left, Os must be shifted into the LSB. The DR holds the lower portion of the operand being 
shifted, and as the data is being shifted left, the ASHC L on the gate at E48 keeps a constant 0 asserted at the shift 
input so that each succeeding shift brings in another O. 

Another source for this shift input is at gate E42. The jumper WI is present if just the EIS is installed and is removed 
if the FIS is installed as well. When inserted, it disables the upper input to the gate. When removed, a floating divide 
instruction in combination with GPC=5 L will cause a 0 to be shifted into the DR on a left shift operation. 

This action can be referred to the flow diagrams in sheet 5 of the FIS flows at word FDV16. Here the high quotient 
is being assembled in the HSR as the concatenated low dividend is being shifted left in the DR. Everything is being 
shifted left after the add or subtract. A 0 is brought into the 0 shift-in of the DR Register. If GPC=5 is not true, Os 
will be enabled through. If GPC=5 is true, HSR15 is enabled to the shift input of bit O. Since the use ofHSR15 as a 
shift input is not dependent upon any particular instruction, but rather is supplied by the GPC code, it can be used 
at anytime that particular combination is set in the ROM word. 

The DR Register is clocked byE(Pl +P2) H, generated on drawing KE·5 at location D-6. There is no signal in the 
basic machine called P1+P2, these two signals are ORed here for this function. 

The BR Register is clocked by CLK BR H, generated on KE-5 at location C-6. It is a function of PI or P3 and CLK 
BR(1) H generated on KE-7. 

DR Register bit 15 shift input is used for shifting the register right. Normally BROO is enabled into DR15. This is 
when the BR and DR are concatenated with the BR holding the higher bits. In this case, everything may be shifted 
right with BROO going into DR15. During multiply instructions, however, ALUOO is used as the shift-in with ALUOO 
providing the partial answer being shifted into the DR. 

There are two select lines on the DR Register, KE-7 SDRO and KE-7 SDRl. The truth table for these two signals is 
given on the right-hand edge of sheet KE-2. If both select signals are low, nothing will occur when the register is 
clocked (No-Op). Note that the clock pulse is always present on any PI or P2. A binary 1 combination produces a 
shift right, a binary 2 combination produces a shift left, and a binary 3 permits parallel loading of the register. These 
two bits are generated in the EIS ROM. 

Both the DR and BR Register outputs are brought out to pins for use elsewhere in the options and for testing 
purposes. 

The BR can be used for buffering the loading into either the count or DR in the EIS, or into either the HSR or MSR 
in the FIS option. 

4.8.3 RDMUX (Dwg KE-3) 

The RDMUX is a 16-bit-wide 4: 1 multiplexer which selects one of four sets of 16-bit inputs to be fed to the CPU via 
the 16-bit wire-ORed BUS RD(15 :00). Output signals are listed in Table 4-5. 

Table 4-5 
KE-3 Output Signals 

Mnemonic Description 

BUS RD(15 :00) L Output of the RDMUX. Feeds data directly back to the processor. 
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This is the hardware that enables data onto the BUS RD to be sentback to the basic machine. These are 74153 dual 
4:1' multiplexers controlled by combinations of SRDMI and SRDMO as generated in the Expansion U Word (see 
truth table on this sheet). 

A binary 0 combination sends the EIS status (EPS(C,V,Z, and N» back to the basic machine; This operation is called 
out in the flows as MOVE EPS. Note that in this mode the upper 12 bits of the multiplexer inputs are grounded. 

A binary 1 sends the contents of the DR Register straight through and back to the basic machine. 

A binary 2 concatenates the BR and DR Registers, essentially shifting both registers left, and either losing the high 
bit of the BR or using it elsewhere. 

A binary 3 sends the BR Register straight through and back to the processor. 

Note that these enables are set up one word before the enable for the 74HOI drivers where possible. Thisis the AND 
of EUPP8 (set if the option is enabled) andSTRDM(l) H, another bit set in the ROM word. This allows putting data 
out to the RDMUX as quickly as possible without any timing problems. Note that the multiplexer strobeinputs 

) (STB) are grounded (always enabled). 

) 

) 

The outputs of the 74HOls feed BUS RD(15 :00) of the CPU. 

4.8.4 EUBC Control (DWg K(4) 

This is the External Microbranch Control that serves as a supplement to the branch control logic ·in the basic 
machine. The EUB field of the KEll-E ROM is used to select various inputs to the EUBC multiplexer for testing in 
order to enable the microprogram to branch to alternate paths of flow. Output signals for this sheet are listed in 
Table 4-6. 

Mnemonic 

EUBC(3*4)ENB L 

D(15:00)=O L 

EUBC(4:1) L 

IR=075XxxL 

Table 4-6 
KE4 Output Signals 

Description 

Enables EUBC(4:3) MUX. Used as a partial enable on KE-5 8-D 7402 gate at E19. 

Inversion of D(15 :00)=0 H from the basic machine. Is used by FIS board as part of 
OVFL/UNFL test on thatboard, 

Four bits that modify a base address on a microbranch test. They ate sent to OR gates on 
. the M7232 module in the basic machine; . . 

The Op code that indicates a floating instruction. It is sent to FIS board where it is gated 
and is returned as FIS INStRL at location D-6. If true, allow the branch to the FIS flow. 

In the upper left-hand corner of this sheet is the 8251 decoder which is enabled by a 07 condition in the upper two 
octal digits of the IR (IR(15: 12». It then decodes IR bits 11 :09 to detect whether an EIS (070 through 074) or FIS 
(075) instruction is called for. Any other code is not recognized and results in a reserved instruction trap. The 
IR=075xxxL signal goes out to the FIS module decoder logic. 

The four decoded instructions are fed to a 7420 NOT OR' gate that yields EIS INSTR H used to feed the 
conditioning inputs of the input gates on the EUBC multiplexers. . 
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The EUBC MUXcomprises four multiplexers. The 74153 dual 4:1 multiplexer controls EUBC(4:3) while a single 
8:1 74151 controls EUBC2. EUBCl is controlled by two 74151s operated in tandem. When EUBCl MUX B is 
operating, EUBCl MUX A is disabled and vice versa. EUBCl MUX A at E37 provides testing of octal combinations 0 
through 7 of the EUBC field and EUBC MUX B at E24 tests combination 10 through 17 (see table at right-hand side 
·of this sheet, KE-4). This provides 16 possible conditions that may be used to control EUBCl. Note that when the 
FIS option is installed, the EUBF consists- of5 bits. When it is not installed, the 74H1O AND gate at location C-3 on 
the drawing has pin 03 (EUBF4(O)H) held high via R2 (lK). There is an additional 8:1 multiplexer in the FIS to be 
described later that provides 8 more branch conditions for EUBCl control. IfEUBF4 from the FIS board is asserted, 
the EUBC1 MUX A is disabled. 

The outputs of these multiplexers (EUBC(4:l)L) are sent to OR gates on theM7232 module in the basic machine 
where they are used to modify the base address on a branch. 

Conditioning of the inputs to these multiplexers is effected by combinations of EUBF( 4 :0) as set in the Expansion 
U Word. These are fed to the multiplexers' as selection signals. The operation performed by their combination may 
be derived by reference to the truth tables at the bottom of the page and the BUT chart at the right of the sheet 
(KE-4). 

4.8.5 Control (Dwg KE-5) 

This sheet contains much of the discrete logic used to generate the many control signals used throughout the BIS 
logic. It utilizes inputs from the ROM, together with clock pulses generated by the basic machine, to generate these 
control signals. Most of the input signals on this drawing are fairly obvious and as such are not described. Some are 
enables from the ROM word, others are covered elsewhere as interfacing signals. Output signals are described in 
Table 4-7. 

In the center of the sheet is the 8251 GPC decoder with inputs GPC(2 :0). These bits are set in the Expansioh U 
Word. 

The input logic in the upper right-hand corner of this sheet at location C-4 pertains to auxiliary ALU control where 
several conditions are monitored to determine what function the CPU ALU will perform. The jumper W2 is normally 
inserted unless the FIS option is installed. When removed, it allows the FIS option to control auxiliary ALU control 
also. 

Mnemonic 

EXT P CLR TRAP L 

CLK EPS(N;Z) H 

CLK l]pP8 H 

CLK EU(88:S7) H 

Table 4-7 
KE-5 Output Signals 

Description 

Clears the Trap flag in the processor which ",as set as a result of EIS or FIS instruction 
being sensed during a FETCH. 

Clocks the EPS Nahd.Z bits. Made up of the ep.able bit of the EIS microregister and 
PI or P2 from the CPU. 

Is sent back to basic machine to clock UPP bit 8. Gated with an enable bit from the 
BIS ROM word and a clock pulse. Once the option has been enabled, bringing up the 
enable bit allows UPP bit 8 to be clocked clear. 

This is the clock pulse for the external U Register bits 88 through 57. (Bits 88:81 are 
onthe FIS board, M7239.) 
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Mnemonic 

ESALU(3 :0) L 

ECINOO H 

GPC=2 L 
lL 
7L 
6L 
5L 

INHPSCLKL 

". 
) 

EUPP8 BH 

EUPP8 L 

EUBC8 L 

ECOMUXSOL 
1 L 

EUPP8 AL 

ENPRCLKL 

E(Pl+P2) H 

CLKEPS(V)H 

CLKBRH 

Table 4-7 (Cont) 
KE-5 Output Signals 

Description 

External Select ALU. These are the select bits for the ALU when operated in auxiliary 
control mode. Discrete ALU control is provided by bits in the ROM word where it is 
known ahead of time what function the ALU should perform. Auxiliary ALU control 
is provided in instances where the operation to be performed by the ALU is dependent 
upon incidental conditions of the operation. These signals then are made dependent 
upon combinational logic that decodes conditions within the operation. The functions 
performed by the ALU for the various states of these signals are given in a table to the 
right of the print (KE-5). Note that the four signals are really two signals, each of 
which are brought out to two separate pins. 

External Carry-In to the CPUALU. Used in auxiliary control mode of the ALU to 
insert a carry-in to correct the A MINUS B MINUS 1 function during subtraction. 

Output combinations of the GPC decoder. These are used for special case applications 
such as operations to be performed only once or twice,in a flow. Some of these signals 
go to the FIS board. 

Used to inhibit clocking all bits in the Processor Status Word except PS(N,Z,V,C). This 
signal is also used in the memory management option (KTn -D). 

External microprogram pointer bit 8. Used in the EIS and FIS options as an enable 
signal. 

Same as above. 

External microbranchcode bit 8. Used as data in the basic machine to set or clear 
UPP8 when clocked by P CLK UPP8. 

External Carry-Out Mux. (Same source to two pins.) Selection signal to the 4:1 
multiplexer on the output of the CPU ALU, causing ALU bit 15 to be selected into 
the Carry-Out Mux. 

Same as EUPP8 B H above. Duplication for loading purposes. 

External NPR Clock. Provides the clock for the NPR and. Bus Request flags in the 
basic machine while the EIS and FIS options are active. Made up of the branch 
microtest BUT(COUNT=O) performed periodically in the flow, particularly in loops 
where long periods of time could be consumed. 

The PI and P2 from the basic machine used to clock the DR and the counter. Also 
clocks the MSR and HSR Registers in the FIS board M7239. 

A clock for the EPS(V) bit. Made up of CLK(V) (1) H from the EIS U Word gated 
with PI or P2 from the CPU. 

Clock for the BR Register, enabled from theEIS U Word and PI or P3 from the CPU. 
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Mnemonic 

LDCOUNT L 

CLKEPS(C) H 

BEUPP8 AH 

CLK COUNT H 

Table 4-7 (Cont) 
XE-S Output Signals 

Description 

Load Count. When true, loads the counter with BR(07:00). 

A clock for the EPS(C) bit. Gated with an enable by a bit from the EIS U Register and 
PI or P2 from the CPU. 

Buffered external microprogram pointer k Another source for bit 8 of the ROM 
•. address to enable various points in the ~ogic. 

This is essentially the end pulse in each cycle length. Generated by an enable from the 
BIS U Register and with the fact that the counter is not equal to O. When the count 
goes to 0, this clock is disabled preventing any further counting during testing of that 
condition. . 

4.8.6 EPSand Count (Dwg KE-6) 

This drawing contains the external processor status, which records the condition codes of the EIS and FIS 
instructions; and the count, an 8-bitup-down counter used to count the number of shifts for the ASH and ASHC 
instructions and to keep track of the number of steps in the MUL and DIV instructions. The count is loaded from 
the BR. The logic contains multiplexers for gating information into the external status. Output signals are listed .in 
Table 4·8. 

Mnemonic 

EPS(N) (l) H 

EPS(Z)(I) H 

EPS(V) (l) H 

EPS(C) (1) H 

COUNT(7:0) (l) H 

COUNT=OH 

Table 4-8 
KE-6 Output Signals 

Description 

The output of the external processor status N bit. Used to store the sign of operands. 

The output of the external processor status Z bit. Used to store whether an operand is 
equal to 0 or not. 

The output of the external processor status V bit.' Used to record overflow conditions. 

The output of the external processorstatusCbit. Used to store carry data. 

Th~ outputs of the counter used to keep track of the number of steps executeq in the 
BIS andFIS instnlctions. These signals also go to the FIS board (M7239). 

This signal is asserted whenCOUNT(5:0) is equal to zero. 

The counter consists of two 7419ls at E64 and Es6;operated in tandem and fed by BR(07:00) H. It is an up/down 
counter that can be loaded by LD COUNT L. This is not a clock type load but rather a write type load in which the 
counter is loaded withol,lta clock whenever pin 11 is low. Pin 05 is used to determine direction of count. Note that 
this signal is derived from bit 5 of the count through a 74H04inverter at E52. When bit Sis set, the output of the 
inverter is low, causing the counter to count up. When hit 5 is clear. the count is down. This is used in ASH so that a 
right shift will count up and a left shift will count down (always toward 0). 
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The counter always counts if it is clocked (CLK COUNT at pin 14). If the load input is low it will override the clock 
input. The clock is enabled by COUNT=O L inverted. This way whenever the count has reached 0, counting ceases. 

The 74HSO at E46, operated as an XOR of BRlS and BRI4, is used during an ASH or ASHC left operation to 
forecast an impending change in sign. The output of this gate feeds an OR (7402) which is also fed by the EPS(V) 
bit. This provides a latch path for the EPS(V) flip-flop so that once it is set it will remain set regardless of what 
happens at the XOR from that point on. . 

Each output of the counter is fed to the FIS board (M7239) for use in branch tests during floating instructions. 

There are three multiplexers on this sheet each used to set control flip-flops for each external status bit in the 
option. The flip-flop outputs go to the RDMUX and the EPS(Z) is also fed to the FISboard. The dual 4: 1 
multiplexers are used to control the bits. Because there were more than four conditions required to control the C 
bit, an additional half 741S3 is ORed in to control the (EPS(C)) bit flip-flop. In the CV MUX at ES3, the V portion 
of that multiplexer is always enabled, but the C portion is disabled by SDVM2(1) H when the C MUX at E66 is 
enabled. 

) The combinations of the basic select bits (SCVM(2:0) and SNZM(l :0)) required to perform multiplexing operations 
are listed with their results in the truth tables provided on this drawing. 

) 

4.8.7 KE ROM Word (Dwg KE-7) 

This logic contains the basic KE ROM word (U80:S7), 24 bits of ROM that control the KEn-E. All outputs from 
the ROMs are fed into 74174 hex registers except bit CLK UPP8 which is a discrete flip-flop. Output signals are 
listed in Table 4-9. 

This sheet contains six 4-bit ROMs (23-BXXA2), feeding 24 bits into four 74174 hex register gates. One exception, 
EUPP8 at coordinate C-2, is fed to a discrete flip-flop. The enable for the ROMs is EUPP8 L. The signal CLR EU H is 
just a pull up for the registers. Registers are clocked by CLK EU (33:S7) H generated on KE-S. 

The boxes labeled 13-11003.Q20n the outputs of each ROM bit are resistor divider networks which are part of a 
16-pin IC package (see table on this drawing (KE-7) for schematic and values). 

Mnemonic 

CLKBR(1)H 

EUBFO(1) H 
1 
2 
3 

ECNT(l) H 

CLK UPP8(1) H 

LCNT(1) H 

Table 4-9 
KE-7 Output Signals 

Description 

An enable for the clocking of the BR Register. Gated with P3 on KE~5; 

External Microbranch Field. Used on KE4 for the EUBC MUX. Also used on FIS 
board for the one EUBC MUX on that board. 

Enable Count. An enable to clock the count gated with PEND H on KE-S. 

Enable for clocking bit 8 of the UPP. Gated with ECLK U Lon KE-S. 

Load Count. An enable for the signal that is gated to load the counter. Gated with PI 
and P2 on KE-S. 
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Mnemonic 

GPCO(l) H 
1 
2 

CLKC(l) H 

CLKV(1)H 

CK.LNZ(1)H 

SNZMO(1)H 
1 

SCVMO(l) H 
1 
2 

SDRO(l) H 
1 

SRDMO(I)H 
1 

STROM(!) H 

Table 4.9 (Cont) 
K.E-7 Output Signals 

Description 

The three bits in the GPC field of the U Word used on KE·5 as an input to the GPC 
decoder. 

Clock C. Used on KE·5 gated with PI and P2 to generate the clocking signal for the 
EPS(C). 

Clock V. Enable for the EPS(V) bit clock; 

Clock NZ. Enable for the EPS(N;Z) bits clock. 

Select bits for the N,Z multiplexer used on KE·6. 

Same as above for the C, V multiplexer. 

Select bits for the DR Register that determine a shift left, a shift right, a load or 
No.Op. Used on KE"6. 

Select bits for the RD MUX. Determines which MUX input is sent back to the basic 
machine via the BUS RD(15:00). Used on KE·3 and KF·3. 

Strobe RO Mux. Used on KE~3. Enables the 74801 drivers to the BUS RD(15 :00). 

4.8.8 KD ROM Word (Dwgs KE·8 and KE·9) 

This logic (2 sheets) contains only those ROM bits in the basic machine that afeactively duplicated. Those that are 

) 

) 

not actively duplicated al.'e driven low by the KEll·E during the time that the option is enabled. These outputs are ) 
wire"ORed with the outputs of the basic machine ROMs; and when the option is enabled (by UPP8 being set), these 
bits control the inputs to the basic machine U Register rather than those in the KDll·A ROM which is disabled by 
the setting of UPP8.0utput signals are Iistedin Table 4·10. 

BUS U(43:00} L 

Table 4.10 
KE·8 and KE-9 Output Signals 

Description 

Microbus output signals. All go to the three Berg 40·pin connectors on the back ofthe 
module. There are three cables to the basic machine. The connectors are shown on 
J(E-9. 
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An example of one ROM bit feeding two U Register bits is seen at coordinates C-6. Here one bit from the ROM is 
feeding two bits back to the basic machine through it pair of 74HOl gates (BUS U40 L and BUS U39 L).1t is not 
necessary to actively duplicate all the bits in the basic machine, but they do have to be driven low if they are not 
used. As long as the option is enabled, these bits are driven low and always register Os. These bits are the SPS field (a 
3-bit field) in the basic machine U word from which only 2 codes are required in the EIS. The terminators for the 
BUS U bits are not shown on this sheet because they are located in the basic machine. There is a terminator, 
however, for the signal feeding the 74HOl-lson this drawing because that signal is not sent directly back to the basic 
machine. The 74HOl-l is an open collector gate and its terminator is back in the processor. . 

On sheet 9 at coordinates D-6, the jumper W3 must be removed when the FIS option is installed. Thisis used when 
fetching the floating arguments. A common flow is provided for fetching both arguments, and the first time through, 
the ROM always specifies an odd general register address in which to store the argument. The first time the odd 
address is used and the second time through the even address.is used. This is done by input Signal ARGA at D" 7. It 
enables that gate when ANDed with an active option to drive BUS U9 low. This is the low bit of the register address 
that is being negated to yield an even register address. 

4.8.9 HSR and MSR (Dwg KF <~) 

This is the first drawing for the M7239 module constituting theFIS option. The same timing prevails for this option 
as that described for the FIS option (paragraph 4.8.1). These paragraphs pertain to only those customers utilizing 
the Floating-Point Option. 

Drawing KF -2 contains the HSR and MSRRegisters~ Both are left/right shift registers and both are fed from the BR 
in the EIS option. They are used as either holding registers or shift registers. Output signals are listed in Table 4-11 . 

Mnemonic 

MSR(l5:00)(l) H 

MSROOL 

HSR15 L 

HSR(15 :00)(1) H 

. Table 4-11 
KF-2 Output Signals 

Description 

The outputs from the MSR left/right shift registers. 

The inverted output of MSROO. Used on KE-5 to determine auxiliary ALU functions 
for floating divide instructions. 

The inverted output of HSR15. Used on KE-2 as DROO shift input data. 

The outputs from the HSR left/right shift registers. 

These registers consist of 74194s fed in parallel byBR(l5_:00)(1) H. Both registers are clocked by E(P1+P2) H 
generated on the EIS board. This clock is always present at both registers but no. action will occur until the proper 
select bits are present on the register. Selection is accomplished by a 3-bit combination of SHSRO(l)H, SHSR1(1) 
H, and SMSR(1) H. The HSR select bits are fed directly to the HSR Register,and are also gated into the MSR 
Register by the common signal SMSR(l) H. When only the SHSR signals are asserted, only the HSRis loaded. When 
SMSR is asserted as well, the MSR is also loaded. This is why in the flows whenever both registers are to be used, the 
MSR is loaded first and then the HSR is loaded Without affecting the MSR. 

The clear inputs to these registers are tied to pull ups. There are shift inputs to the high bit and low bit of both 
registers. 

Generally, these registers are used to shift data. In FMUL, they are concatenated with the MSR being the lower 
register and the HSR the higher. In this application, HSROO(1) H enters the shift input of MSR15 at DS3, 
coordinates D-7. The low shift input to the MSR is EPS(C) at coordinates C-3 used in shifting left. 
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The high bit shiftinput to the HSR is DROO(1) H at coordinatesB-7.In FMUL, the low DR bit will enter the high .. 
shift input of HSR .. The low shift input of the HSR is either MSR15 gated with the code GPN, or Os. When GPC=5 ) 
is not present, Os are shifted into the HSR. 

4.8.10 FRDMUX(lS:OO) (D'WgKF-3) 

The FRDMUX is a 16-bit-wide 4: 1 multiplexer that selects one of four sets of 16-bit inputs to be fed to the CPU via 
the BUS RD(15 :00). This operat~s similarly to theRD MUX in the BIS option, using the same select bits as used in 
that logic with a separate strobe (STFRDM) to enable this set of drivers instead of the EIS drivers. Output signals are 
listed in Table 4.12. 

Table 4-12 
KF -3 Output Signal~ 

Mnemonic Description 

BUS RD(15 :00) L The outputs of the 74HOl-l drivers to the BUS RD over which data from theFIS 
option is transferred to the cPU. . 

4.8.11 ROM and Control (Dwg KF-4) 

This logic provides the extra control needed for the FISinstructions. It comprises combinational logic and two 
ROMs that supply the extra ROM bits required by the FIS logic. The logic controls the registers in the FIS and 
generates the constants. Output signals are given in Table 4-13. 

Mnemonic 

STFRDM(1)H 

SHSRO(I) H 
1 

SMSR(1)H 

Table 4-13 
KF 4 OUtput Signals 

Description 

Strobe floating RD multiplexer bjt, used on KF:3 to enahlethe FRDMUX to the BUS lID. 

Select bits for the HSR Register. 

Select bit for the MSR Register. Enables the SHSR(1:0) (1) Hbits to control the MSR 
Register. 
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Mnemonic 

EUBF4 

FCIBUS(O) H 

CONO(l) H 
1 

FAUX ALU H 

FDIVH 

FISINSTRL 

EUBC5 L 

FUBCl 

ZB+EPS(Z) H 

AB(1)H 

ARGA(1)H 

UNFLH 

OVFLH 

Table 4-13 (Cont) 
KF-4 Output Signals 

Description 

Provides additional branch test conditions for the FIS. Disables the EUBCl branch 
multiplexer in the EIS and enables FUB MUX on this print (KF4). Allows the FIS to 
control bit 1 (EUBCl) ofthe ROM address rather than its counterpart in theEIS. 

Sets the appropdate bit (BUSCl) on the. C lines to initiate a DATO operation for 
floating-point operations. 

These are the two bits that select the c;onstants generated by the FIS option. These together 
with GPC=6 combine in the logic to generate CONxx signals that are used to generate the 
octal constants 400, 244, 6, 30, and 200. 

Floating auxiliary ALU control. Used in the floating divide loop to enable auxiliary ALU 
control on KE-5 of the EIS prints. 

Floating divide. Used here to enable the generation of FAUX ALU H, and on KE-2 of the 
EIS board as one of the shift input enables for the DR Register. 

Allows a floating instruction to enable the option ROM and to branch to the FIS flow. 

Inputs to the M7232 module U word in the basic machine. When low, ORs into the ROM 
address to modify the address. Used only to abort the floating instruction in event of a bus 
request. 

Controls the lowest modifiable bit (l) of the ROM address to provide additional branch tests 
for the FIS option. 

The OR of ZB (previous) and EPS(Z) present Z status information. 

Output of the ZB flop (see above). 

Sent to the EIS, gated with bit 8 of the ROM address. When set, forces selection of the even 
register for storage of floating arguments even though the ROM is selecting the odd register. 

Underflow, indicated by either the EPS(Z)bit being set or B15(1). 

Overflow, indicated by both BI5 being clear and the D Register not equal to O. 

The two ROMs (23-BXXA2) are fed by BUPP(7:0) H and are enabled by EUPP8 H. Their outputs feed two 74175 
quad registers that supply the resultant outputs to the logiC. The clear inputs to these registers are tied to a pull up 
resistor and they are clocked by CLK EU(88 :57) H, generated on KE-5 of the EIS board. 

The 74151 (FUB MUX) is an 8:1 multiplexer that controls bit 1 (EUBCl) of the ROM address, thereby providing 
extra branch tests not available with the EIS logic. This MUX is strobed by EUBF4(l) HANDed with bit 8 of the 
ROM address. When EUBF4, is asserted, the 0 side of that bit disables the multiplexer EUBC MUX A on KE4 of the 
EIS board and enables the FUB MUX. Inputs to this MUX are selected by combinations of EUBF(2:0)(1) H. The 
table on this sheet (KF 4) gives the results of these combinations. 

4-61 



When DO is selected, the state of ARGA flip"flop is tested during floating argument fetching to determine if the A 
argument has been fetched. When D1 is selected, MSROI is tested. This is used in the floating multiply loop to 
determine the need for addition. 

D2 tests the OR of ZB and EPS(Z). Note that the ZB flip-flop gets its input from the EPS(Z) flop and is clocked at 
the same time as EPS(Z). D3 looks at counter bits 7:0 to determine when the count exceeds 30g • 

D4 tests to see if the answer is normalized. there are two tests here: 1) is the answer now normalized? (DR09(1) 
H), or 2) will the answer be normalized after the shift? (DR08(1) H). The 74H50 is a NOT OR AND gate in which 
one of the inputs on each OR gate must be satisfied. If GPC;=l is asserted, pin 02 of E09 will be enabled causing the 
logic to look at DR09 on pin 05. If GPC=l is not asserted, the inverter output at pin 04 will be low causing DR08 at 
pin 03 to be examined. 

If D5 is selected, MSROO(1) H is tested. This is used to determine whether to add or subtract the high divisor in the 
FDIVloop. 
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CHAPTER '5 

INSTALLATION AND MAINTENANCE 
REFERENCE INFORMATION 

5.1 INSTALLATION 

When the KEll-E is included as part of the initial PDP-ll/40 System, the M7238 module is installed prior to 
shipment. If it is being added to an existing system, 'proceed as follows: 

a. Insert the M7238madulein 2(A.:...F); 

b. Remove the jumper (WI) on processor module M7233 (IR DECODE) at location 5(A-F). 

c. Install the three "over the back" cables from J1, J2, and 13 of the M7238 module to J1, J2, and 13 
respectively of the M7232 (U Word) module at location 3(A~D)., 

When the KEII-F is to be added to a system, the KEII-Emust also be added. Proceed as follows: 

a. Perform steps a. through c. above. 

b. Insert the M7239 tnodwe in I (A-D). , 

c. On the M7238 module, remove the followingjumpers: 

I. WI from C02F2 Jo ground., 

2.W2from A02BI to ground. 

3. W3 ffO~ D02q to ground. 

NOTE 
'If these jumpers are n()t re~~ved, the KE11~E Option will still 
executeEIS instructions but will not execute FIS instructions. 

When the above steps are performed,' the KEll-E ahd KEll-F Options are ready to be checked out using the 
diagnostic programS supplied with the options. " ' 

5.2 MAINTENANCE 

The design, cOJ;lstruction, and implementation of the M7238 and M7239 modules used in these options are similar to 
those used in theKDll-A Central Processor and other options. Maintenance procedures for the entire system are 
described in the PDP-ll/40 System Manual, Chapt,er 7. There are no special maintenance procedures for these 

, , 

options. 



5.2.1 Diagnostic Programs 

Table 5-1 lists the KEll-E and KEll-F diagnostic programs. These programs are part of a complete package of basic 
processor and option diagnostics. The sequence of running the diagnostics is set up to completely test the KD ll-A 
Central Processor before attempting to run the diagnostic programs for these options, thus eliminating the KDll-A 
as a possible cause offailure. 

Table 5-1 
J(EII-E allCl Ion I_Fo Dlag!losti/:: Programs 

MAINDECNo. 

KEH-E EIS Option 

MAlNDEC-ll-DCKBL 
MAlNDEC-11-DCKBK-A-PB 
MAINDEC-I1-DCKBJ 
MAlNDEC-1I-DCKBI 
MAlNDEC-ll-DCQA 

KEll-F FIS Option 

MAlNDEC-llcDBKPA 
MAlNDEC-II-DBKEB 
MAlNDEC-ll ~DBKEO 

Function 

Divide instruction 
Multiply instruction 
Arithmetic shift combined instruction 
Arithmetic shift instruction 
MUL/DIY Exerciser 

Basic instruction tests 
Exerciser 
GTPoveday 

The MAINDEC (maintenance descriptions) for each diagnostic program indicates how the program is to be loaded 
and run. The program listing indicates the functional logic that is being tested by each routine. The diagnostic 
programs are written along Junctional lines to test and exercise all of the KEI1-E and KEI1-F logic. 

5.2.2 Troubleshooting Test Procedures 

The KMII-A Maintenance Module (also referred to as the maintenance console) provides the user with a means of 
manually operating the system and monitoring status during maintenance operations. 

The maintenance module is a W130/WI31 board containing. 4 switches and 28 indicators that monitor various signals 
within the processor. When an indicator is lit, it means that the associated logic level is high. An overlay can be 
attached to the module to indicate what signals are being monitored. This overlay is necessary because the module is 
designed as a general.purpose device and can be used; without modification other than using different overlays, in 
m;my PDP-ll devices. The specific functions monito!ed by the module dependon the logic signals wired to the 
device receptacle that receives the module. 

When the module is used for monitoring operation of the REt I-E Extended Instruction Set and KEII-F Floating 
Instruction Set Options, addition of the KEIl-E/F overlay (Figure 5·1) is necessary. In this application; the module 
is inserted into processor slot El and the 12 indic(ltors on the right of the overlay are used for the KE ll-E/F 
functions. Note that none of the switches are operational when the module is used for this purpose. The functions 
monitored by the indicators are listed in Table 5-2. . 
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Indicator 

BIS 

ECIN 00 

EXPUNFL 

EXPOVFL 

) 
DRaa 

DR09 

MSROO 

MSROI 

EPS(C) 

EPS (V) 

EPS (Z) 

EPS (N) 

NOTE 
The functions described in Table 5-2 indicate the general 
putpose of the indicator. At times, a single indicator may show 
a number of functions, depending on the current state of the 
processor and option. This. is why in order to use the 
maintenance module properly, the flow diagrams should be 
followed to determine the significance of an indication at any 
one time. 

Table 5-2 
KEII-E/F Maintenance Module Indicators 

Indication 

Bit 15 of CPU B register. In divide, used with DRaa to 
determine the ALU function to be performed in division loop. 

An external carry-in to the ALU. 

Indicates exponential underflow during EXIl of floating point 
flows. 

Indicates exponential overflow during EXIl of floating point 
flows. 

Used in conjunction with other bits to indicate various 
conditions, e.g., with BI5 in divide to determine ALU 
functions and to determine need for divisor correction. See 
EPS(C) for other use. 

Used as test for normalization (see floating point flows page 
6). 

Bit 00 of MSR register. Indicates ALU function in FDIV. 

Bit a I of MSR register. Indicates ALU function in FMUL. 

C bit of extended processor status. In MUL, used with DRaa 
to determine ALU function in multiply loop. 

Overflow bit of the extended processor status 

Zero bit of the extended processor status 

Negative bit of the extended processor status 
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A.1 GENERAL 

APPENDIX A 

GLOSSARY OF TERMS 

Table A-I contains a collection of some of the terms used in this manual that may need defining. It does not include 
all terms, only those that it is thought might be confusing. Listing is in alphabetical order. 

ADD 
ADR 
ALU 
ALUM 
AR.GA 
ASH 
ASHC 
BBSY 
BRQ 
BUS 
BUS.U 
BUSY 
BUT 
CIN 
CLK 

Term 

CLKB 
CLKBA 
CLKD 
CLKOFF 
CLR 
CON 
COUTMUX 
Cl BUS 
DAD 
DEST 
DIY 
DMUX 
EINSTR 
EIS 

Table A-1 
Glossary of Terms 

A-I 

Definition 

Add (instruction) 
Address 
Arithmetic Logic Unit 
Arithmetic Logic Unit Mode 
Argument A(f/f) 
Arithmetic shift (instruction) 
Arithmetic shift combined (instruction) 
Bus busy 
Bus request 
Unibus 
Bus microprogram 
Busy 
Branch microprogram· test 

. Caqy-in (ALU) 
Clock 
Clock B Register 
Clock BA Register 
Clock D Register 
Clock off 
Clear C,V,N,z (instruction) 
Constant 
Carry-out multiplexer (ALU) 
CIofUnibus 
Discrete alteration of data 
Destination 

. Divide (instruction) 
Data multiplexer 
Extended Instruction 
Extended arithmetic instruction set 



Table A.l (Cont) --, 

Glossary of Terms ) 

Term Definition 

EPS Extended Processor Status 
EUB Extended microprogram bus 
EUPP Extended microprogram pointer 
EXP Exponent 
f Function of 
FADD Floating add (instruction) 
FC 1 BUS Floating Cl Bus 
FDIV Floating divide (instruction) 
FETCH Fetch (Processor State) 
FINSTR Floating Instruction 
FIS Floating instruction set 
FMUL Floating multiply (instruction) 

) FSUB Floating subtract (instruction) 
FUB Floating microprogram bus 
IR Instruction register 
ISP Instruction set processor 
JAMUPP Jam microprogram pointer 
MUL MUltiply (instruction) 
MUX Multiplexer -
NO·OP No operation 
OVFL Overflow 
'Pc Program Counter ) 
PS Processor Status Register 
R(x) Scratch Pad Register 
RSVDINSTR Reserved instruction 
SALU Select arithmetic logic unit 
SALUM Select arithmetic logic unit mode 
SBC Select B constant 
SERVICE Service 
SET CONDCODES Set condition codes 
SF Source field 
SFVl Source field ORed with 1 ) 
SRC Source (processor major state) 
STPM Special Trap Pointer Marker 
TRAP User call 
U Microprogram 
UBP Microprogram branch field 

,~ 

UNFL Underflow 
UPP Microprogram pointer 
UWORD Microprogram word 

, 
VECT Vector 
XOR Exclusive OR (V) 
ZB "Z" bit previous state (flip-flop) 

" .. 
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Reader's Comments 

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of 

our publications. 

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well 

written, etc.? fs it easy to use? 

What features are most useful? 
------------------------------------------------------~ 

What faults do you find with the manual? 

Does this manual satisfy the need you think it was intended to satisfy? 

Does it satisfy your needs? _________ _ Why? _____________________________ _ 

Would you please indicate any factual errors you have found. 

Please describe your position. 

Name Organization 

Street 
___________________________________ Department ___________________________ --__ 

City _______________ _ State ___________________ _ Zip or Country __________ _ 
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