ordot

KY11-LB programmer's console/interface module operation and maintenance manual
KY11-LB programmer's console/interface module operation and maintenance manual
digital equipment corporation • maynard, massachusetts

Copyright © 1977 by Digital Equipment Corporation

The material in this manual is for informational purposes and is subject to change without notice.

Digital Equipment Corporation assumes no responsibility for any errors which may appear in this manual.

Printed in U.S.A.

This document was set on DIGITAL's DECset-8000 computerized typesetting system.

The following are trademarks of Digital Equipment Corporation, Maynard, Massachusetts:

DEC	DECtape	PDP
DECCOMM	DECUS	RSTS
DECsystem-10	DIGITAL	TYPESET-8
DECSYSTEM-20	MASSBUS	TYPESET-11
		UNIBUS

CONTENTS

Page
CHAPTER 1 OPERATING CHARACTERISTICS
1.1 INTRODUCTION 1-1
1.2 GENERAL DESCRIPTION 1-1
1.3 FUNCTIONAL DESCRIPTION 1-3
1.4 SPECIFICATIONS 1-3
1.4.1 M7859 Interface Module Performance Specifications 1-3
1.4.2 Electrical Specifications 1-4
1.4.3 Mechanical Specifications 1-4
1.4.4 Environmental Specifications 1-4
CHAPTER 2 FUNCTIONAL DESCRIPTION
2.1 INTRODUCTION 2-1
2.2 PROGRAMMER'S CONSOLE KEYPAD FUNCTIONS/ CONTROLS AND INDICATORS 2-1
2.2.1 Console Mode 2-1
2.2.2 Maintenance Mode 2-6
2.3 HARDWARE ORGANIZATION 2-6
2.4 MICROPROCESSOR INSTRUCTION SET 2-10
CHAPTER 3 INTERFACE MODULE
3.1 MICROPROCESSOR 3-1
3.1.1 General Organization 3-1
3.1.2 State Control 3-2
3.1.3 Microprocessor Timing 3-2
3.1.4 Transition State Diagram 3-3
3.1.5 System Start-Up 3-4
3.2
3.2.13.2.2INTERFACE MODULE REGISTERS AND CONTROLS3-4
Address Register 3-4
Bus Address Register 3-4
3.2.3 Switch Register 3-4
3.2.4 Data Bus Control 3-4
3.2.5 Unibus Control 3-4
CHAPTER 4 MICROPROCESSOR INSTRUCTION DESCRIPTION
4.1 DATA AND INSTRUCTION FORMATS 4-1
4.2 MICROPROCESSOR INSTRUCTIONS 4-2
4.2.1 Index Register Instructions 4-2
4.2.2 Accumulator Group Instructions 4-2
4.2.3 Program Counter and Stack Control Instructions 4-4
4.2.4 Input/Output Instructions 4-5
4.2.5 Machine Instruction 4-5
CHAPTER 5 INTERFACE MODULE DETAILED LOGIC DESCRIPTION
5.1 INTRODUCTION 5-1
5.2 PROGRAMMER'S CONSOLE KEYPAD FUNCTION SEQUENCES 5-3
5.2.1 Console Mode Key Functions 5-3
5.2.25.3
5.3.1
5.3.2
5.3.35.3.45.3.5
Maintenance Mode Key Functions 5-5
DETAILED LOGIC DESCRIPTION 5-5
Clock Circuitry 5-5
Power-Up Logic/Interrupt 5-5
Microprocessor 5-6
Timing State Decoder 5-6
Address Register 5-6
ROM 5-7
RAM 5-7Switch Register5-7
5.3.9 Switch Register Address Decode Logic 5-7
5.3.10 Bus Address Register 5-8
5.3.11 Data Bus Control Logic 5-85.3.12
5.3.13
5.3.14
5.3.15
Unibus Control 5-10
Keypad Scan Logic 5-10
Indicator Logic 5-11
5.3.16 Buffers 5-11Halt Logic5-11
5.3.16.1 Tristate Buffers (8093) 5-11
5.3.16.2 Tristate Transceivers (8833) 5-11
CHAPTER 6 CONSOLE MODE OPERATION
6.1 INTRODUCTION 6-1
6.2 CONSOLE KEY OPERATIONS 6-1
6.3 NOTES ON OPERATION 6-5
6.4 EXAMPLES OF CONSOLE SEQUENCES 6-6
CHAPTER 7 MAINTENANCE MODE OPERATION
7.1 INTRODUCTION 7-1
7.2 MAINTENANCE MODE KEY OPERATIONS 7-1
7.3 NOTES ON OPERATION 7-2
CHAPTER 8 KY11-LB MAINTENANCE
8.1 PRELIMINARY CONSIDERATIONS 8-1
8.2 M7859 FAILURES 8-2

CONTENTS (Cont)

Page
CHAPTER 9 KY11-LB INSTALLATION
9.1 KY11-LB DESCRIPTION 9-1
9.2 CPU BOX TYPE 9-1
9.3 CPU DIFFERENCES 9-1
9.4 BA11-L 13.3 CM (5-1/4 INCH BOX) INSTALLATION 9-1
9.5 BA11-K 26.7 CM (10-1/2 INCH BOX) INSTALLATION 9-3
9.6 MAINTENANCE MODE HOOK-UP 9-6
APPENDIX A KY11-LB MICRO-CODE LISTINGS
APPENDIX B IC DESCRIPTIONS
FIGURES
Figure No. Title Page
1-1 Programmer's Console/Interface - PDP-1 1/04/34 Configuration 1-1
1-2 Interface Module (M7859) 1-2
2-1 KY11-LB Logical Organization 2-2
2-2KY11-LB Keypad2-3
2-3 Interface Module Detailed Block Diagram 2-7
3-1 Microprocessor Signal Interface 3-1
3-2 Timing Diagram - Microprocessor Instruction 3-2
3-3 Transition State Diagram 3-3
5-1 RAM Address Allocations 5-1
5-2 Keypad Image 5-2
8-1 Clock Waveforms 8-2
9-1 M7263 9-2
9-2 M7266 9-2
9-3 Cables 9-3
9-4BA11-L9-4
9-5 BA11-K 9-5

TABLES

Table No. Title Page
2-1 KY11-LB Controls and Indicators 2-3
3-1 State Control Coding 3-2
3-2 Cycle Coding 3-3
5-1 RAM Function Address Assignments 5-2

PREFACE

The KY11-LB Programmer's Console/Interface Module Operation and Maintenance Manual provides the information required to operate this option in console or maintenance mode. The manual also presents a detailed theory of operation of the interface module hardware and software components, data on the utilization of the programmer's console as a maintenance tool for the PDP-11/04/34 processors, and information on the troubleshooting and maintenance of the interface module itself. The information is presented in, nine chapters:
Chapter 1 Provides an inroduction, general description, and overview of electrical and mechanical specifications.
Chapter 2 Presents a functional description of the console, operating modes, controls and indicators, and a general discussion of interface module hardware organization and software facilities.
Chapter 3 Describes, on a detailed block diagram level, interface module functions, registers and controls, and the functions of the MOS/LSI microprocessor.
Chapter 4 Describes the microprocessor instruction set.
Chapter 5 Presents a description of the M7859 Interface module to the logic level.
Chapter 6 Provides operating information on console utilization in console mode.
Chapter 7 Contains procedures for using the console in maintenance mode (maintenance of PDP-11/04/34 processor).
Chapter $8 \quad$ Covers some maintenance techniques for the KY11-LB interface module.

Chapter 9 Describes installation procedures for various options.

NOTES

In the material presented in this manual, the term "processor" refers to the KD11-D, KD11-E, and KD11-EA PDP-11/04/34 processors.
If the operator is not familiar with console functions, Chapter 6 should be consulted.

CHAPTER 1 OPERATING CHARACTERISTICS

1.1 INTRODUCTION

The PDP-11/04/34 Programmer's Console and Interface module (KY11-LB) provides all the functions now offered with the PDP-11/05. The Programmer's console interfaces to the Unibus (Figure 11) through a quad SPC module. To use this option, the normally provided KY11-LA Programmer's Console must be removed and the KY11-LB Console installed in its place. The KY11-LB Console contains a 7 -segment LED display and a 20 -key keypad for generating the console commands. Several indicators are also provided for additional convenience in monitoring system status.

Figure 1-1 Programmer's Console/Interface - PDP-11/04/34 Configuration

The KY11-LB Programmer's Console/Interface module comprises an INTEL 8008 single-chip, large scale integration (LSI) microprocessor and associated registers, Unibus control logic, and auxiliary memory. The unit is also provided with a 20-key keypad for operator/programmer interaction with the KD11-D, -E, -EA via the interface module, six indicator LEDs, a 6 -digit, 7 -segment display for address or data, and a dc power switch. The microprocessor communicates with a read-only memory (ROM) which contains a number of fixed routines for use during normal console and maintenance operation.

1.2 GENERAL DESCRIPTION

The M7859 Interface module (Figure 1-2) functions as the interface between the programmer's console and the KD11-D, KD11-E, or KD11-EA processor, via the Unibus. The unit consists of solid state integrated circuits with TTL-compatible input and output lines. The heart of the interface module is a single-chip, large scale integration (LSI) microprocessor which executes designated keyboard functions via programs stored in ROM memory. Auxiliary logic functions including clock, decoding and timing circuitry, and addressing and Unibus drivers/receivers comprise the remaining logic of the board.

8141-14
Figure 1-2 Interface Module (M7859)

The microprocessor chip is an 8-bit, parallel control element packaged as a single metal oxide silicon circuit in an 18 -pin, dual in-line package. With the addition of external clock driving circuitry and decoding elements, plus memory and data bus control, the unit is capable of performing as a powerful, general-purpose, central processing unit. Internal logic of the microprocessor chip is structured around an 8 -bit internal data bus and includes instruction decoding, memory control, accumulator and scratchpad memory, arithmetic and logical capability, program stack, and condition code indicators. Data transfer between the microprocessor chip and the remaining logic functions of the interface module is accomplished through an 8-bit, bidirectional data port which is an integral part of the microprocessor. An internal stack (scratchpad memory) contains a 14-bit program counter (PC) and an additional complement of seven 14-bit registers for nesting up to seven levels of subroutines. The 14-bit addressing capacity allows the microprocessor to access up to 16 K memory locations which may comprise any mix of ROM or RAM.

1.3 FUNCTIONAL DESCRIPTION

The KY11-LB Programmer's Console permits the implementation of a variety of functions through a 20-key keypad located on the front panel of the programmer's console. Keypad functions are divided into two distinct modes: console mode and maintenance mode. In console mode operation, a number of facilities exist for displaying addresses and data, for depositing data in and examining the content of Unibus addresses including processor registers for entering data into a temporary buffer for use as address or data, and for single instruction stepping the processor. The latter feature is especially useful during program debugging functions.

Normal console keyboard functions are not available during maintenance mode. This mode permits sampling and display of the Unibus address lines and Unibus data lines, and may allow the console to take control of the Unibus to examine and deposit Unibus addresses if a processor is not present in the system or is malfunctioning. Additionally, the maintenance function permits assertion of the manual clock enable and display of the current processor microprogram counter (MPC). Single-clock cycling of the MPC is also possible to facilitate step by step checkout of processor op codes and control logic during maintenance functions. In conjunction with this function, assertion of manual clock enable permits the processor to be stepped through its power-up routine. The manual clock enable may be dropped via the START key at any time with a resulting dislay of the current MPC. Exit from maintenance mode to console mode may be accomplished at any time by depressing the CLR key on the keypad.

1.4 SPECIFICATIONS

1.4.1 M7859 Interface Module Performance Specifications

Operating Speed at 500 kHz
Two-Phase Clock Period $2 \mu \mathrm{~s}$
Time State (SYNC) $\quad 4 \mu \mathrm{~s}$
Instruction Time (Microprocessor) $\quad 12-44 \mu \mathrm{~s}$
Word Size
Data
Instruction
Address
8-bit word
1 , 2 , or 38 -bit words
14 bits
Memory Size
ROM
4512×4 organized as 10248 -bit words
RAM

Input/Output Lines
Memory Data 16 bits
Address 18 bits
Control (Address)
2 bits
Unibus Control
5 bits
Microprocessor Instruction Repertoire
48 Basic Instructions
Instruction Categories

Register Operation

Accumulator

PC and Stack Control
I/O
Machine

1.4.2 Electrical Specifications

Power Supply
Input Logic Levels (all modules)
TTL Logic Low
TTL Logic High
Output Logic Levels (all modules)
TTL Logic Low
TTL Logic High
Power Consumption
Interface Module 14 W
Monitor/Control Panel 1 W
+5 V at 3.0 A
-15 V at 60 mA
0.0 to 0.8 Vdc
2.0 to 3.6 Vdc
0.0 to 0.4 Vdc
2.4 to 3.6 Vdc

1.4.3 Mechanical Specifications

M7859 Interface Module
Board Type
Quad SPC
Dimensions
Height
21.44 cm (8.44 in)

Length

$$
26.08 \mathrm{~cm}(10.44 \mathrm{in})
$$

Programmer's Console (Overall Panel Dimensions) Width 47.63 cm (18.75 in)

Height
$13.02 \mathrm{~cm}(5.125 \mathrm{in})$

Depth

6.76 cm (2.66 in)

1.4.4 Environmental Specifications

Ambient Operating Temperature Humidity
5° to $50^{\circ} \mathrm{C}\left(41^{\circ}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
10% to 95% maximum,
wet bulb $32^{\circ} \mathrm{C}\left(90^{\circ} \mathrm{F}\right)$

CHAPTER 2

FUNCTIONAL DESCRIPTION

2.1 INTRODUCTION

Logical organization of the KY11-LB Interface module is centered around a microprocessor and a bidirectional data bus (Figure 2-1). The 8-bit data and address bus (D0-D7) is time multiplexed to permit control signals, 14-bit addresses, and data to be transmitted between the microprocessor, memory, and additional buffer registers. Two registers, the switch register and the bus address register, contain data and addresses (respectively) to be routed to the Unibus. The transceivers permit 16-bit den the the of on the executing at a given time.

In a typical operation involving an instruction fetch, for example, the microprocessor program counter contents are transferred to the address register in two successive 8 -bit bytes. The address register contents are transferred to the address register in two successive 8 -bit bytes. The address register back via the tristate transceivers and the bidirectional bus to the microprocessor for decoding and subsequent execution. Instructions range from one to three bytes in length; the state counter decoding is capable of discriminating between the op code types and the resulting instruction length. The microprocessor is driven by a nominal $500-\mathrm{kHz}$, symmetrical, two-phase, nonoverlapping clock and is capable of responding to externally generated interrupt conditions. The data interface is a bidirectional 8 -bit bus and the unit also provides four control outputs which include three state control signals and a sync signal. The control signals are applied to external decoding logic to generate system timing states and are subsequently distributed to the remaining interface module control circuitry. The state control signals are also utilized in the chip for sequencing data processing operations.
2.2 PROGRAMMER'S CONSOLE KEYPAD FUNCTIONS/CONTROLS AND INDICATORS Operator/programmer control of the KY11-LB is accomplished through a 20-key keypad located on he console panel (Figure 2-2). A summarized description of the key functions and other controls and which are primarily of interest to the progre first presents those functions involved in console maintenance mode and presents facilities useful for processor checkout and maintenance. The CNTRL key functions primarily as an interlock which prevents accidental inerference with other console operations.

2.2.1 Console Mode

Detailed presentation of console mode keypad functions and their use in program debugging is eserved for a later chapter; the various functions are outlined and briefly described in Table 2-1. The operator indicators available for both modes are also described. Upon power-up, the programmer's console is in console mode. If in maintenance mode, pressing the CLR key causes a reversion to console mode through a HALT.

Figure 2-1 KY11-LB Logical Organization

Figure 2-2 KY11-LB Keypad

Table 2-1 KY11-LB Controls and Indicators

Control/Indicator	Function
	Keyboard - Console Mode
LAD	Load Address - Moves the 18-bit number in the temporary reg- ister into the Unibus address pointer. The temporary register is then cleared and displayed.
DSR	Load Switch Register - Moves the 16 lower bits of the tempo- rary register to a register which can be read via Unibus address 777570 . The switch register contents will be displayed.
$0-7$	Deposit - Causes the console to do a DATO on the bus address pointed to, using the data in the temporary register (two MSBs are truncated). Sequential deposits cause the address pointer to be incremented. This key is operative only if the processor is halted.
CNTRL	Numerics - These keys are used to enter data into a temporary data buffer prior to use as either address or data. Use of a numeric key forces the console to display the data held in the temporary buffer. A 6-digit number is generated as octal digits are entered from the right and left shifted.

Table 2-1 KY11-LB Controls and Indicators (Cont)

Control/Indicator	Function
CNTRL-INIT	Initialize - Operative only if the processor is halted. Causes BUS INIT L to be generated for 150 ms.

EXAM

CLR

CNTRL-BOOT

CNRL-HALT/SS

CNTRL-CONT

CNTRL-START

CNTRL-7

CNTRL-6

CNTRL-1

Display Address - This key causes the current Unibus address pointer to be displayed. The next examine or deposit will occur at the address displayed.

Examine - Causes the console to do a DATI on the bus address pointed to and stores the data in the temporary register which is then displayed. Sequential examines cause the address pointer to be incremented by 2 or by 1 if the address is in the range $777700-777717$. This key is operative only if the processor is halted.

Clear Entry - Clears the current contents of the temporary register which is then displayed.

Causes M9301 bootstrap terminator to be activated if present in the system. Console will boot only if the processor is halted.

Halt/Single Step - Halts the processor if the processor is running. If the processor is already halted it will single-instruction step the processor. It also retrieves and displays the contents of R7 (program counter). The CNTRL key is not required to Single-Instruction Step the machine.

Continue - Allows processor to continue using its current program counter from a halted state. The contents of the switch register are displayed.

Operative only if halted, this causes the program counter (R7) to be loaded with the contents of the Unibus address pointer. BUS INIT L is then generated and the processor is allowed to run. Switch register contents are then displayed.

Causes the Unibus address pointer to be added to the temporary data buffer which is also incremented by 2 . This allows the console to calculate the correct offset address when mode 6 or 7 , register 7 PIC (Position Independent Code) instructions are encountered.

This causes the switch register to be added to the temporary data buffer. This is useful when mode 6 or 7 instructions are encountered not using R7.

Maintenance Mode - This combination puts the console into maintenance mode with certain maintenance features available. When the console is in maintenance mode, the normal console mode keypad functions are not available. The CLR key causes the console to exit from maintenance mode into console mode via a processor halt.

Table 2-1 KY11-LB Controls and Indicators (Cont)

Control/Indicator	Function

Keyboard - Maintenance Mode

NOTE
In maintenance mode the keypad functions are redefined with the following definitions.

DIS AD
CLR
EXAM

5

HLT/SS

CONT

BOOT

START

Causes the Unibus address lines to be sampled and displayed.
Returns the console to console mode via a console halt.
Causes the console to sample the Unibus data lines and display the data.

Causes the console to take control of the Unibus. Should be used only when a processor is not present in the system.

Asserts manual clock enable and displays the current microprogram counter (MPC).

Asserts manual clock enable, generates a manual clock pulse, and displays the current MPC.

Boots the M9301. If manual clock enable is asserted, this will allow the processor to be stepped through the power-up routine.

Drops manual clock enable and displays the current MPC.

Indicator LEDs - Any Mode

DC ON

BATT

RUN

All de power $(+5 \mathrm{~V})$ to logic is on.
Battery monitor indicator, operative only in machines having the battery back-up option. This indicator has four states:

Off - Indicates either no battery present or battery failure if a battery is present.

On (continuous) - Indicates that a battery is present and charged.

Flashing (slow) - Indicates ac power is ok and battery is charging.

Flashing (fast) - Indicates loss of ac power and that battery is discharging while maintaining MOS memory contents.

Indicates the state of the processor, either running or halted.

Table 2-1 KY11-LB Controls and Indicators (Cont)

Control/Indicator	Function
SR DISP	Indicates that the content of the switch register is being displayed.
MAINT	Indicates that console is in maintenance mode. Indicates that an examine or deposit resulted in a SSYN time- out or that HALT REQUEST failed to receive a HALT GRANT.
DUS ERR Power Switch	
DC OFF	All dc power to logic is off.
DC ON	All dc power to logic is on.
STNBY	DC power is provided to MOS memory only.*

Table 2-1 refers to certain registers which are located in the scratchpad RAM. These include the following:

1. Display Data
2. Keypad Image
3. Temporary Data Buffer
4. Unibus Address Pointer
5. Switch Register Image
6. EXAM, DEP, ENB and C1 flags

Detailed discussion of the scratchpad RAM and its registers is set forth in Chapter 5.

2.2.2 Maintenance Mode

Mantenance mode is entered by pressing the CNTRL key and the 1 key simultaneously. Note that the functions performed by the appropriate keys are quite different from console mode. This mode offers the ability to assert the manual clock enable and thus to single-clock cycle the processor while monitoring the contents of the processor microprogram counter.

2.3 HARDWARE ORGANIZATION

A detailed block diagram of the interface module showing data flow and control is indicated in Figure 2-3. The control functions shown include those for the Unibus interface and the internal data bus with the microprocessor. The latter controls include those for reading from and writing into the RAM, enabling ROMs 1 and 2, and reading the Unibus temporary buffer register or loading the bus address and switch registers. All of these functions occur on appropriate control from the stored program and keypad.

Figure 2-3 Interface Module

Under microprogram control, the data bus control logic develops the loading or reading signal for the appropriate register and thus determines the selected input/output port via the data bus control and appropriate register and thus determin
the function currently being executed.

As shown in Chapter 3 when the detailed microprocessor cycle is presented, the microprocessor executes four basic machine cycles. They are summarized here to show their relation to interface module functions.

1. $\quad P C I$ - This is always the first cycle of a microprocessor instruction and initiates the instruction fetch. The program counter is transferred in two bytes from the microprocessor to the 16 -bit interface module address register (14 bits of address, 2 control bits) to fetch the instruction data from either the ROM or RAM. A single byte of instructions is retrieved during this cycle.
2. $\quad P C R$ - This cycle may retrieve an additional byte of instruction (if the instruction is a 2- or 3byte instruction) or it may fetch a data byte if the indicated instruction contains only one byte.
3. $P C C$ - This cycle specifies the function as an I / O operation. This machine cycle reads and loads the address and data registers which cause information to be read from or written into the microprocessor.
4. $\quad P C W$ - This cycle controls the memory write function according to the designated address.

Figure 2-3 shows that the basic satellite logic and control for the microprocessor chip consists of the following elements:

2-phase master clock
Decoder for interface module time states
Power-up logic
16-bit address register
16 -word $\times 8$-bit RAM
1024 -word $\times 8$-bit RAM (four -512×4)
Switch register (16 bit)
Switch register address decoding
Bus address register (20 bit)
Tristate transceiver
Keypad scan and display logic
Dnibus control
Unibus control and single-cycle control
Indicator con
These major functions are briefly described in the following paragraphs; detailed theory of operation is presented in Chapter 5

2-Phase Master Clock

The master clock drives the microprocessor internal logic and generates the system states for instruction sequencing. The nominal 1 MHz clock frequency is toggled down to two nonoverlapping, $500-$ kHz pulses known as phase 1 (01) and phase 2 (02). Phase 1 is normally used to pre-charge data lines and memories while phase 2 controls data transfers within the microprocessor.

Decoder for Timing States

The decoder element receives the state outputs $\mathrm{S} 0, \mathrm{~S} 1$, and S 2 from the microprocessor and generates the time states for the operation of the interface module. A sync pulse corresponding to two phase clock periods (1 time state) is also provided by the microprocessor.

Power-up Logic

This circuitry activates the microprocessor, clearing its various registers and generating a clear line to all the registers of the interface module. There are separate clears for the address register and all other registers.

Address Register

This 16-bit register is the principal buffer between the microprocessor and the remainder of the logic of the interface module. Although designated as an address register, the element also handles control data for the Unibus, data bus, and other control functions and outputs to the bus address and switch registers. One of its major functions is to receive the microprocessor program counter contents for fetching new instructions from the ROM or RAM.

RAM

The 16 -word by 8 -bit RAM gives the interface module a scratchpad memory which may be read or whose contents may be modified under program control.

ROM

The ROM, consisting of four 512×4-bit ROMs, makes a total of 10248 -bit bytes available for the stored programs which execute the console functions.

Switch Register Address Decoding

This logic decodes 777570, an 18-bit address defining the switch register and a DATI on the Unibus to cause the switch register to be enabled onto the Unibus.

Switch Register

This 16-bit buffer register handles the data word to the Unibus.

Bus Address Register

This 20 -bit register buffers address information between the interface module and the Unibus. Eighteen bits are allocated for the actual address, and two control bits indicate the direction of data flow. Scan signals for the keypad and NUM lines for the display logic are specified by this register.

Tristate Gates

These units are used to gate buffered Unibus data (16 bits) and Unibus address (18 bits) lines onto the tristate data bus by asserting an appropriate read input line. Keypad outputs and those maintenance lines provided for display of the processor microprogram counter are similarly buffered and gated. The outputs are all wire ORed onto the internal data bus and applied as input to the tristate transceivers.

Keypad Scan and Display Logic

This circuitry develops read and drive signals for the keypad and LED display respectively. Five read signals developed from the scan signals are used to scan the keypad switch closures in groups of four. The drive signals are applied to the LED displays whose values are determined by the 3-bit NUM input.

Data Bus Control

This circuitry performs all internal interface module control functions including RAM control, ROM enable, and selection of input/output ports. The logic also determines system operation during instruction, data fetch, or data out (TS3) via a $32-\times 8$-bit ROM.

Unibus Control

The Unibus control register supervises data transfers between the interface module and the Unibus. According to the input bit patterns to the register, data transfer from the interface module to the Unibus, halt request, bus master sync, and other functions may be generated as required for proper interfacing of the two elements. Two other signals generated in the Unibus control register permit single stepping of the processor clock.

Indicator Logic

This 4-bit register drives appropriate console indicators to show certain console states or errors. An indicator is turned on to show the existence of a bus error, when the switch register is being displayed or when in maintenance mode.

Halt Logic

This circuitry halts the processor under various conditions and performs handshaking functions when the console takes complete control of the bus. When a HALT from the console is detected by the processor, the processor recognizes it as an interrupt request. The processor then inhibits its clock and returns a recognition signal to the console causing the console to assert an acknowledge. The console now has complete control of the Unibus and processor and may maintain this condition, with the processor halted, as long as desired.

2.4 MICROPROCESSOR INSTRUCTION SET

The interface module microprocessor has a repertoire of 48 basic instructions. According to the instruction type, these may range from 1 to 3 bytes (8 to 24 bits) in length. The successive bytes of a given instruction must be located in sequential memory locations. Instructions fall into one of five categories:

```
Index Register
Accumulator (Arithmetic/Logical)
Program Counter and Stack Control
Input/Output
Machine
```

A description of the microprocessor instructions and the number of time states required for their execution is given in Chapter 4.

CHAPTER 3

 INTERFACE MODULE
3.1 MICROPROCESSOR

3.1.1 General Organization

The microprocessor sends and receives data over an 8 -bit data and address bus (D_{0} to D_{7}) and utilizes four input and four output lines (Figure 3-1). The microprocessor contains six 8 -bit data registers, an 8 -bit accumulator, two 8 -bit temporary registers, four flag bits, and an 8 -bit parallel binary arithmetic unit. The arithmetic element is capable of performing addition, subtraction, and logical operations. Additionally, a memory stack containing a 14-bit program counter and seven 14-bit words is used to store program and subroutine addresses. The microprocessor machine cycle usually requires five sequential states: TS1, TS2, TS3, TS4, and TS5. During time states TS1 and TS2, the external memory is addressed by a lower and an upper address byte respectively to form a 14 -bit address. Also at TS1 time, the program counter (PC) is incremented for the next instruction fetch cycle. During time state TS3, the instruction addressed during states TS1 and TS2 is fetched and during the final two cycles, TS4 and TS5, it is executed. Figure 3-2 shows the possible number and sequence of the instruction states. Note that for this application of the microprocessor, the interrupt function is utilized only during the power-on sequence.

Figure 3-1 Microprocessor Signal Interface

Figure 3-2 Timing Diagram - Microprocessor Instruction

3.1.2 State Control

The microprocessor operates as a sequential state machine, controls the use of the data bus, and, according to its stored program, determines whether it sends or receives data. Output state signals S0, S1, and S2 are decoded externally and distributed to the peripheral control logic. Table 3-1 shows the coding of the state bits to yield a given phase.

3.1.3 Microprocessor Timing

The microprocessor machine cycle is shown in Figure 3-2. Since machine operation is asynchronous, the exact timing sequences depend on the instruction executed. A typical cycle may consist of five states. During T1 and T2, an address is sent to memory; at T3 time, instruction or data fetch occurs; T4 and T5 provide execution time.

A number of microprocessor instructions may require up to three cycles and do not require the two execution states T4 and T5. As a result, cycle length is variable and the state counter determines whether T4 and T5 are to be executed or omitted. This is accomplished via the cycle control coding (Table 3-2) in bits D6 and D7. Cycle 1 is always an instruction fetch cycle (PCI). The second and third cycles are for data reading (PCR), data writing (PCW), or I/O operations (PCC). The cycle type bits D 6 and D 7 are present on the data bus during T2 time only.

Table 3-1 State Control Coding

S0	S1	S2	State
0	1	0	T1
0	1	1	T11
0	0	1	T2
0	0	0	WAIT
1	0	0	T3
1	1	0	STOPPED
1	1	1	T4
1	0	1	T5

Table 3-2 Cycle Coding

\mathbf{D}_{6}	\mathbf{D}_{7}	Cycle	Function
0	0	PCI	Designates the address is for a memory read (first byte of instruction).
0	1	PCR	Designates the address is for a memory read data (additional bytes of instruction or data).
1	0	PCC	Designates the data is a command I/O operation. 1
1	PCW	Designates the address is for a memory write data.	

3.1.4 Transition State Diagram

Possible state transitions within the processor are shown in Figure 3-3. Note that a normal machine cycle would begin at cycle 1, run from T1-T5, and revert back to cycle 1 again. The state counter within the microprocessor operates as a 5-bit feedback shift register with the feedback path controlled by the current instruction. The number of states normally required by each instruction is discussed in Chapter 4.

NOTE: CF = Failure Condition

Figure 3-3 Transition State Diagram

3.1.5 System Start-Up

The microprocessor of the interface module is running any time power is applied to the system. When power (VDD) and clocks $(01,02)$ are first turned on, a flip-flop internal to the microprocessor is set by sensing the rise of VDD. This internal signal forces a HALT (00000000) into the instruction register and the microprocessor is then in the stopped state. The next 16 clock periods are required to clear internal chip memories and other external logic and registers. Upon clearing the registers the system is ready for operation. If for any reason during operation, the microprocessor decodes a HALT, the system reverts to the beginning of the program after 16 clock periods.

3.2 INTERFACE MODULE REGISTERS AND CONTROLS (Figure 2-1)

3.2.1 Address Register

This is the principal buffer register between the microprocessor and the rest of the interface module logic. It has a capacity of 16 bits (two 8 -bit bytes). The low order byte is loaded by time state TS1 and the high order byte by time state TS2 during each cycle.

3.2.2 Bus Address Register

The bus address register buffers address data between the interface module and the Unibus. Address information may be loaded into this register at time state TS3.

3.2.3 Switch Register

Similar to the bus address register, the switch register buffers outgoing data. This element may also be loaded at TS3.

3.2.4 Data Bus Control

The principal function of the data bus control is to determine interface module operation during TS3 time. It determines, through input bit coding, the type of function to be performed (i.e., RAM control, ROM enable) or programs any of its other I/O in accordance with the stored program.

3.2.5 Unibus Control

This register is also loaded at TS3 and is selected by the data bus control for activation at that time. According to its input coding, U.C.R. may issue a HALT request, BUS INIT, enable-data bus-to-bus, or generate a bus master sync in addition to other functions.

CHAPTER 4 MICROPROCESSOR INSTRUCTION DESCRIPTION

4.1 DATA AND INSTRUCTION FORMATS

Data in the CPU is stored in the form of 8-bit binary integers. All data transfers to the system data bus will be in the same format.

$$
\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}
$$

DATA WORD

The program instructions may be one, two, or three bytes in length. Multiple byte instructions must be stored in successive words in program memory. The instruction formats then depend on the particular operation executed.

One Byte Instructions

$\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$$\quad$| OP CODE |
| :--- |
| Register to register, memory reference
 return instructions. or logical, rotate or |
| return |

Two Byte Instructions

$D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1} D_{0}$	OP CODE	
$D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1} D_{0}$	OPERAND	
Three Byte Instructions		
$D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1} D_{0}$	OP CODE	
$D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1} D_{0}$	LOW ADDRESS mode instructions.	JUMP or CALL instructions
X X D $_{5} D_{4} D_{3} D_{2} D_{1} D_{0}$	HIGH ADDRESS*	

[^0]
4.2 MICROPROCESSOR INSTRUCTIONS

4.2.1 Index Register Instructions

The load instructions do not affect the flag flip-flops. The increment and decrement instructions affect all flip-flops except the carry.

Mnemonic	Minimum States Required	Instruction Code$\mathrm{D}_{7} \mathrm{D}_{6} \quad \mathrm{D}_{5} \mathrm{D}_{4} \mathrm{D}_{3} \quad \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$					Description of Operation
(1) $\mathrm{Lr}_{1} \mathrm{r}_{2}$	(5)	11	D D D	S	S		Load index register r_{1} with the content of index register r_{2}.
(2) LrM	(8)	1	D D D	1	1	1	Load index register r with the content of memory register M.
LMr	(7)	11	111	S	S		Load memory register M with the content of index register r .
(3) LrI	(8)	$\begin{array}{ll} 0 & 0 \\ \mathrm{~B} & \mathrm{~B} \end{array}$	$\begin{array}{lll} \text { D } & \text { D } & \text { D } \\ \text { B } & \text { B } & \text { B } \end{array}$	B			Load index register r with data B . . . B.
LMI	(9)	$\begin{array}{ll} 0 & 0 \\ \text { B } & \text { B } \end{array}$	$\begin{array}{lll} 1 & 1 & 1 \\ \text { B } & \mathrm{B} & \mathrm{~B} \end{array}$	B			Load memory register M with data B . . . B.
INr	(5)	00	D D D	0	0		Increment the content of index register $r(r \neq A)$.
DCr	(5)	00	D D D	0	0	1	Decrement the content of index register $r(r \neq A)$.

4.2.2 Accumulator Group Instructions

The result of the ALU instructions affect all of the flag flip-flops. The rotate instructions affect only the carry flip-flop.

4.2.3 Program Counter and Stack Control Instructions

Mnemonic	Minimum States Required	Instruction Code $\mathrm{D}_{7} \mathrm{D}_{6} \quad \mathrm{D}_{5} \mathrm{D}_{4} \mathrm{D}_{3} \quad \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$	Description of Operation
(4) JMP	(11)	$\begin{array}{llllllll} \hline 0 & 1 & \mathrm{X} & \mathrm{X} & \mathrm{X} & 1 & 0 & 0 \\ \mathrm{~B}_{2} & \mathrm{~B}_{2} \\ \mathrm{X} & \mathrm{X} & \mathrm{~B}_{3} & \mathrm{~B}_{3} \mathrm{~B}_{3} & \mathrm{~B}_{3} & \mathrm{~B}_{3} & \mathrm{~B}_{3} \end{array}$	Unconditionally jump to memory address $B_{3} \ldots B_{3} B_{2} \ldots B_{2}$.
(5) JFc	(9 or 11)	$\begin{array}{ccccccc} 0 & 1 & 0 & C_{4} C_{3} & 0 & 0 & 0 \\ B_{2} & B_{2} & B_{2} & B_{2} & B_{2} & B_{2} & B_{2} \\ B_{2} \\ \mathrm{X} & \mathrm{X} & \mathrm{~B}_{3} & B_{3} B_{3} & B_{3} & B_{3} & B_{3} \end{array}$	Jump to memory address $\mathrm{B}_{3} \ldots \mathrm{~B}_{3} \mathrm{~B}_{2} \ldots \mathrm{~B}_{2}$ if the condition flip-flop c is false. Otherwise, execute the next instruction in sequence.
(5) JTc	(9 or 11)	$\begin{array}{ccccccc} 0 & 1 & 1 & C_{4} C_{3} & 0 & 0 & 0 \\ B_{2} & B_{2} & B_{2} B_{2} B_{2} & B_{2} & B_{2} B_{2} \\ \mathrm{X} & \mathrm{X} & \mathrm{~B}_{3} & B_{3} B_{3} & B_{3} & B_{3} & B_{3} \end{array}$	Jump to memory address $\mathrm{B}_{3} \ldots \mathrm{~B}_{3} \mathrm{~B}_{2} \ldots \mathrm{~B}_{2}$ if the condition flip-flop c is true. Otherwise, execute the next instruction in sequence.
(4) CAL	(11)		Unconditionally call the subroutine at memory address $B_{3} \ldots B_{3} B_{2} \ldots B_{2}$. Save the current address (up one level in the stack).
(5) CFc	(9 or 11)		Call the subroutine at memory address $B_{3} \ldots B_{3} B_{2} \ldots B_{2}$ if the condition flip-flop c is false, and save the current address (up one level in the stack). Otherwise, execute the next instruction in sequence.
(5) CTc	(9 or 11)	$\left.\begin{array}{ccccccc} 0 & 1 & 1 & \mathrm{C}_{4} & \mathrm{C}_{3} & 0 & 1 \end{array}\right]$	Call the subroutine at memory address $B_{3} \ldots B_{3} B_{2} \ldots B_{2}$ if the condition flip-flop c is true, and save the current address (up one level in the stack). Otherwise, execute the next instruction in sequence.
(4) RET	(5)		Unconditionally return (down one level in the stack).
(5) RFc	(3 or 5)		Return (down one level in the stack) if the condition flip-flop c is false. Otherwise, execute the next instruction in sequence.
(5) RTc	(3 or 5)		Return (down one level in the stack) if the condition flip-flop c is true. Otherwise, execute the next instruction in sequence.
RST	(5)	$\begin{array}{lllllllll}0 & 0 & \text { A A A } \\ 1\end{array}$	Call the subroutine at memory address AAA000 (up one level in the stack).

4.2.4 Input/Output Instructions

Mnemonic	Minimum	Instruction Code		Description of Operation
	States Required	$\mathrm{D}_{7} \mathrm{D}_{6}$	$\mathrm{D}_{5} \mathrm{D}_{4} \mathrm{D}_{3} \quad \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$	
INP	(8)	01	00 M M M 1	Read the content of the selected input port (MMM) into the accumulator.
OUT	(6)	01	R R M M M 1	Write the content of the accumulator into the selected output port (R RMMM) $(R R \neq 00)$.

4.2.5 Machine Instruction

NOTES;
(1) SSS = Source Index Register These registers, r_{1}, are designated A (accumulator-000).

DDD = Destination Index Register $\quad \mathrm{B}(001), \mathrm{C}(010), \mathrm{D}(011), \mathrm{E}(100), \mathrm{H}(101), \mathrm{L}(110)$.
(2) Memory registers are addressed by the contents of registers $\mathrm{H} \& \mathrm{~L}$.
(3) Additional bytes of instruction are designated by BBBBBBBB.
(4) $\mathrm{X}=$ " $\mathrm{Don't}$ Care".
(5) Flag flip-flops are defined by $\mathrm{C}_{4} \mathrm{C}_{3}$: carry (00 overflow or underflow), zero (01 -result is zero), sign (10 MSB of result is " 1 "), parity (11 -parity is even).

CHAPTER 5 INTERFACE MODULE DETAILED LOGIC DESCRIPTION

5.1 INTRODUCTION

Keypad operation initiates appropriate microprocessor routines which perform certain data transfers within the interface module, between the interface module and the Unibus, and between the interface module and the programmer's console display. Prior to discussing the interface module logic, the sequences (i.e., register transfer, I/O operations, etc.) which occur after pressing a given key are briefly described.

Figure $5-1$ shows the 16 -word by 8 -bit scratchpad RAM and its address allocations. This data is also summarized in Table 5-1. The keypad image within the RAM is shown in Figure 5-2.

Figure 5-1 RAM Address Allocations

Figure 5-2 Keypad Image

Table 5-1 RAM Function Address Assignments

Function	Address (Octal)	Address Bits
Display Data	Word 0	Bits 0-7
(18 bits)	Word 1	Bits 0-7
	Word 2	Bits 0, 1
Keypad Image	Word 3	Bits 0-3
(20 bits)	Word 4	Bits 0-3
	Word 5	Bits 0-3
	Word 6	Bits 0-3
	Word 7	Bits 0-3
Temporary Data Buffer	Word 10	Bits 0-7
(18 bits)	Word 11	Bits 0-7
	Word 12	Bits 0, 1
Unibus Address Pointer	Word 13	Bits 0-7
(18 bits)	Word 14	Bits 0-7
	Word 15	Bits 0, 1
EXAM FLAG	Word 15	Bit 7
DEP FLAG	Word 15	Bit 6
ENB FLAG	Word 15	Bit 3
C1 FLAG	Word 15	Bit 2
Switch Register Image	Word 16	Bits 0-7
(16 bits)	Word 17	Bits 0-7

CHAPTER 5 INTERFACE MODULE DETAILED LOGIC DESCRIPTION

5.1 INTRODUCTION

Keypad operation initiates appropriate microprocessor routines which perform certain data transfers within the interface module, between the interface module and the Unibus, and between the interface module and the programmer's console display. Prior to discussing the interface module logic, the sequences (i.e., register transfer, I/O operations, etc.) which occur after pressing a given key are briefly described.

Figure 5 -1 shows the 16 -word by 8 -bit scratchpad RAM and its address allocations. This data is also summarized in Table 5-1. The keypad image within the RAM is shown in Figure 5-2.

Figure 5-1 RAM Address Allocations

Figure 5-2 Keypad Image

Table 5-1 RAM Function Address Assignments

Function	Address (Octal)	Address Bits
Display Data (18 bits)	Word 0	Bits 0-7
	Word 1	Bits 0-7
Keypad Image	Word 2	Bits 0, 1
(20 bits)	Word 3	Bits 0-3
	Word 4	Bits 0-3
	Word 5	Bits 0-3
	Word 6	Bits 0-3
Temporary Data Buffer	Word 7	Bits 0-3
(18 bits)	Word 10	Bits 0-7
	Word 11	Bits 0-7
Unibus Address Pointer	Word 12	Bits 0, 1
(18 bits)	Word 13	Bits 0-7
	Word 14	Bits 0-7
EXAM FLAG	Word 15	Bits 0,1
DEP FLAG	Word 15	Bit 7
ENB FLAG	Word 15	Bit 6
C1 FLAG	Word 15	Bit 3
Switch Register Image	Word 15	Bit 2
(16 bits)		Word 16

5.2 PROGRAMMER'S CONSOLE KEYPAD FUNCTION SEQUENCES

5.2.1 Console Mode Key Functions

NUMERICS (0-7)

1. Value of Key $\xrightarrow[\text { Dift shifted) }]{ }$ Temporary Data Buffer
2. Temporary \rightarrow Display
3. Clear indicators.

LAD

1. Temporary \rightarrow Unibus Address Pointer
2. Zero \rightarrow Temporary
3. Temporäry \rightarrow Display
4. Clear/Indicators.

LSR

1. Temporary \rightarrow Switch Register Image
2. Switch Register Image \rightarrow Switch Register
3. SR DISP indicator is set.

CLR

1. Zero \rightarrow Temporary
2. Temporary \rightarrow Display
3. Clear indicators.

EXAM

1. Pre-increment Unibus address pointer if the EXAM flag is set.
2. Unibus Address Pointer \rightarrow Bus Address Register
3. Bus Address Register \rightarrow Unibus Address
4. Assert MSYN.

NOTE
Console waits for BUS SSYN to be returned. If SSYN does not occur within 20μ s, the transfer is aborted and the BUS ERR indicator is set.
5. Unibus Data \rightarrow Temporary
6. Temporary \rightarrow Display
7. Set EXAM flag.

DEP

1. Pre-increment Unibus address pointer if the DEP flag is set.
2. Unibus Address Pointer \rightarrow Bus Address Register with $\mathrm{C} 1=1$.
3. Bus Address Register \rightarrow Unibus Address
4. Temporary \rightarrow Switch Register
5. Switch Register \rightarrow Unibus Data
6. Assert MSYN.

NOTE
Console waits for BUS SSYN to be returned. If SSYN does not occur within 20μ s, the transfer is aborted and the BUS ERR indicator is set.
7. Set DEP flag.
8. Switch Register Image \rightarrow Switch Register
DIS AD

1. Unibus Address Pointer \rightarrow Display
2. Clear EXAM or DEP flag if set.
CNTRL-INIT
3. Set BUS INIT and HALT REQUEST for 150 ms .
CNTRL-HLT/SS
4. Clears BUS SACK/BUS BUSY if set and sets HALT REQUEST
5. When HALT BUSY is active, sets $777707 \rightarrow$ Bus Address Register
6. Bus Address Register \rightarrow Unibus Address
7. Assert MSYN
NOTE
Console waits for BUS SSYN to be returned. IfSSYN does not occur within 20μ s, the transfer isaborted and the BUS ERR indicator is set.
8. Unibus Data \rightarrow Temporary
9. Temporary \rightarrow Display
CNTRL-CONT
10. Clears BUS SACK and BUS BUSY.
11. Switch Register Image \rightarrow Display
12. Set SR DISP indicator.
CNTRL-BOOT
13. Sets and clears BOOT signal
14. Switch Register Image \rightarrow Display
15. Set SR DISP indicator.
CNTRL-START
16. $\quad 777707 \rightarrow$ Bus Address Register with $\mathrm{C} 1=1$
17. Bus Address Register \rightarrow Unibus Address
18. Unibus Address Pointer \rightarrow Switch Register
19. Switch Register \rightarrow Unibus Data
20. Assert MSYN.
NOTEConsole waits for BUS SSYN to be returned. IfSSYN does not occur within 20μ s, the transfer isaborted and the BUS ERR indicator is set.
21. Switch Register Image \rightarrow Switch Register
22. Assert BUS INIT for 150 ms .
23. Switch Register Image \rightarrow Display
24. Set SR DISP indicator.
CNTRL-7
25. Unibus Address Pointer + Temporary $+2 \rightarrow$ Temporary
CNTRL-6
26. Temporary + Switch Register Image \rightarrow Temporary

CNTRL-1

1. Set maintenance indicator.
2. MPC Lines (sampled) \rightarrow Display

5.2.2 Maintenance Mode Key Functions

CLR

1. Clears indicators.
2. Clears manual clock enable, if set.
3. Goes to halt condition.

DIS AD

1. Unibus Address (sampled) \rightarrow Display

EXAM

1. Unibus Data (sampled) \rightarrow Display

HLT/ISS

1. Sets manual clock enable.
2. Clears BUS SACK and BUS BUSY.
3. MPC (sampled) \rightarrow Display

CONT

1. Sets and clears manual clock
2. MPC (sampled) \rightarrow Display

BOOT

1. Sets and clears BOOT signal.

START

1. Clears manual clock enable, if set.
2. MPC (sampled) \rightarrow Display

No. 5

1. Sets TAKE BUS signal, forcing console to assert BUS BUSY.

5.3 DETAILED LOGIC DESCRIPTION

5.3.1 Clock Circuitry

The M7859 Interface board is driven by an MC 4024 (E42) 1-MHz clock (drawing CS M7859-0-1, sheet 2). The $1-\mathrm{MHz}$ output at E42-8 is toggled down to two nonoverlapping $500-\mathrm{kHz}$ pulses at $\mathrm{E} 12-5$, 6, and E30, and these pulses are applied to the microprocessor (E18) input as 01 and 02 . The 02 clock, designated as KY1 CK2 H and KY1 CK2 L, is also used as a control pulse to clear system registers and together with the sync pulse to define the end of a timing cycle.

Figure 5-1 shows the relation between the two clock pulses.

5.3.2 Power-Up Logic/Interrupt (Drawing CS M7859, Sheet 2)

The power-up logic/interrupt circuitry is comprised of E1-6, E40-10, E1-4, E36, E12, E29-1, E6, and E26. These elements sense when the system turns on, generate the interrupt to the microprocessor needed to start it, and clear registers to force program startup at location 0.

BUS DC LO at E1-3 initiates the function by clearing E36 which is configured as an 8-bit counter and generates KY1 PUP 1 L . This signal is routed to the Unibus control, indicator control, switch register, and bus address register as a master clear line. The address register is provided with its own clear line, KY1 ADR CLR L.

BUS DC LO L puts the microprocessor in the STOP state. The counter starts counting in the STOP state (E6, E36). KY1 STOP L and KY1 C2 L at E29-1 clock E6. E6 is a divide by two on the clock, while E36 counts from 0-7. Sixteen clock periods are thus counted. At the transition of E36 from 7 to 0 , the interrupt is generated at E12-8 and the microprocessor goes into the T1I state (Interrupt). KY1 T1I L and KY1 CK2 L then reset E12 and clear the address register via E6-6 and the system is initialized.

5.3.3 Microprocessor (Drawing CS M7859, Sheet 2)

The 8008 Microprocessor Chip (E18) was discussed in detail in Chapter 3. According to drawing CS M7859, sheet 2, the unit communicates over an 8-bit bidirectional data bus via 8833 tristate transceivers E16 and E17, with the satellite logic of the interface module. A single interrupt line is received from the power-up logic to initiate microprocessor operations. Driven by a $2-\mathrm{phase}, 500-\mathrm{kHz}$ clock (Figure 5-1), the element yields a 3-bit state output code, S0, S1, and S2, plus a sync pulse, to drive a 7442 Timing Phase Decoder. The latter element provides eight separate timing cycles for the sequencing of interface module data transfers and other discrete operations.

5.3.4 Timing State Decoder

The timing state decoder (E23) receives the state outputs $S 0, S 1$, and $\mathbf{S} 2$ from the microprocessor and generates the timing states for the interface modules (drawing CS M7859, sheet 2). This unit is a 7442 4-line to 10 -line decoder, with two unused outputs, that yields an 8 -output sequence according to its 3 input state code. State control coding is presented in Chapter 3. State control inputs are determined in the microprocessor and depend on an internal 5-bit feedback shift register with the feedback path controlled by the instruction being executed.

5.3.5 Address Register (Drawing CS M7859, Sheet 2)

The address register, the principal buffer between the microprocessor and the remainder of the interface module logic, consists of four 74175 quad, D-type, double rail output latches. The low order bits are handled by E5 and E4 which generate KY1 ADRD 0 L through KY1 ADRD 3 L (E5) and their complements (for RAM addressing), and KY1 ADRD 4 H through KY1 ADRD 7 H (E4), respectively. This 8 -bit byte is the low order unit of the address or data with E10 and E28 containing the high order information ADRD 08-13 and PC FUN 1 and 0.

The data contained in the address register is routed to the following locations according to direction by the stored program:

1. ROM (address of next instruction)(KY1 ADRD $0 \mathrm{~L} \rightarrow \mathrm{KY} 1$ ADRD 8 L plus ROM 1 EN L or ROM 2 EN L)
2. RAM (address of data to be read or written) (KY1 ADRD $0 \mathrm{~L} \rightarrow \mathrm{KY} 1$ ADRD 3 L)
3. Unibus Control (KY1 ADRD $0 \mathrm{H} \rightarrow \mathrm{KY} 1$ ADRD 3 H)
4. Indicator Control (KY ADRD $4 \mathrm{H} \rightarrow \mathrm{KY} 1$ ADRD 7 H)
5. Data Bus Control (KY1 ADRD $9 \mathrm{H} \rightarrow \mathrm{KY} 1$ ADRD $13 \mathrm{H}, \mathrm{KY} 1 \mathrm{PC}$ FUN 0 H , KY1 PC FUN 1 H)
6. Switch Register (KY1 ADRD $0 \mathrm{H} \rightarrow \mathrm{KY} 1$ ADRD 7 H)
7. Bus Address Register (KY ADRD $0 \mathrm{H} \rightarrow \mathrm{KY} 1$ ADRD 7 H)

The address register is loaded with a low order byte (E4 and E5) by signal KY1 LD AD 1 H , generated by AND E22-12 at time state TS1. The high order byte is gated in E28 and E10 by KY1 LD AD 2 H generated at E22-6 at timing state TS2.

5.3.6 ROM

The interface module ROM consists of E3, E21, E33, and E39 (drawing CS M7859, sheet 3). The four 512 -word by 4 -bit elements are addressed so that the ensemble looks like two $512-\times 8$-bit RMs. E3 and E21 are activated by KY4 ROM 1 EN L and E33 and E39 by KY4 ROM 2 EN L. Address bits KY1 ADRD 0 H through KY1 ADRD 8 H are routed to all four ROM elements with the enable 1 or 2 determining the address activated and thus yielding 1024 8-bit locations. Outputs are wire ORed with various inputs to give the KY2 DIN 0 H through KY2 DIN 7 H inputs to the tristate transceivers, E16 and E17.

The ROM 1 or RM 2 enables are generated by the data bus control logic.

5.3.7 RAM

The scratchpad RAM consists of E11 and E27 (drawing CS M7859, sheet 3). These units effectively comprise a 16 -word by 8 -bit read/write memory, and serve as working storage for the microprocessor programs in storing addresses and data. Data is routed to the RAM (KY1 DOUT 0 H through KY1 DOUT 7 H) directly from the tristate transceivers of the microprocessor bidirectional data bus during RAM write operations. The 4-bit address lines KY1 ADRD 0 L through KY1 ADRD 3 L specify the address to be read from or written into during read/write.

Selection of the RAM for read or write is determined by the stored program via the data bus control. Either KY4 RAM \rightarrow DIN BUS L or KY4 RAM WRITE H must be true to select the RAM. Output lines are wire ORed with various other microprocessor input ports to be routed to the 8833 tristate transceivers.

5.3.8 Switch Register (Drawing CS M7859, Sheet 6)

The switch register contains the 16-bit data used and consists of four 74175 quad, D-type, double rail output latches. The four elements comprising the register are E9, E19, E2, and E15. These units feed the 8641 bus transceivers E7, E25, E8, and E13 (respectively). Incoming 16-bit data (KY5 BB D00 H through KY5 BB D15 H) is applied to the 8093 tristate buffers and gated by an appropriate read line from the data bus control. Outgoing data (BUS D00 L through BUS D15 L) is gated by KY4 EN DB L , a signal generated in the switch register address decoding logic (sheet 5).

The switch register is addressable from the Unibus as address 777570 as described in Paragraph 5.3.9.

5.3.9 Switch Register Address Decode Logic (Drawing CS M7859, Sheet 5)

The switch register address decoding logic allows the Unibus to address the switch register via a decoding of address 777570. The logic has two outputs:

```
1. BUS SSYN L
2. KY4 EN DB }->\mathrm{ BUS L
```

K44 EN DB \rightarrow BUS L at E43-10 gates the data lines onto the Unibus (CS M7859, sheet 6) while the assertion of BUS SSYN L designates that the slave device has completed its part of the data transfer. The second stage of the address decode at E32 is gated by assertion of BUS MSYN L at E32-10. Assertion of MSYN requests that the slave defined by the A (address) lines perform the function required by the C lines. In this case, KY7 BB C1 H at invertor E40-9 specifies that the data is to be transferred to the Unibus data lines.

5.3.10 Bus Address Register (Drawing CS M7859, Sheets 7 and 8)

The bus address register consists of five 74175 quad, D-type, double rail output latches. The five elements comprising the register are E67, E57, E73, E58, and E51. Input to the bus address register is from the address register (KY1 ADRD 0 H through KY1 ADRD 7 H). Outputs are routed to the display and keypad logic and to the 8641 Unibus transceivers E61, E56, E65, E55, and E50.

A Unibus address is enabled to the Unibus via the bus address transceivers from the bus address register by KY7 EN AR L generated at E51-11. The switch register is available to the Unibus as address 777570 via the bus address transceivers and the switch register decode logic. The latter function is discussed in Paragraph 5.3.9.

E67 and E57 contain the keypad scan signals (KY6 SCAN 1 L through KY6 SCAN 6 L) while E73 drives the display (KY6 NUM 1 H through KY6 NUM 3 H).

Incoming 18-bit address information (KY6 BB A 00 H through KY7 BB A17 H) is applied to the 8093 tristate buffers and gated by an appropriate read line from the data bus control.

5.3.11 Data Bus Control Logic (Drawing CS M7859, Sheet 5)

The data bus control directs the reading and loading of the various interface module registers, the reading of the ROMs, and the reading/writing of the RAM. It also determines the direction of data flow in the interface module and between the interface module and the Unibus, i.e., whether data will be read from or be routed to the Unibus. A list of I/O functions and associated select signals follows:

Select Signal
READ INPUT 0 L
READ INPUT 1 L
READ INPUT 2 L
READ INPUT 3 L
READ INPUT 4 L
READ INPUT 5 L
READ INPUT 6 L

READ INPUT 7 L

LD REG 0 H
LD REG 1 H
LD REG 2 H
LD REG 3 H
LD REG 4 H
LD REG 5 H
EN ROM 1 L
EN ROM 2 L
RAM WRITE H
RAM DIN BUS L
DIN DRIVERS DIS H

Function
UNIBUS DATA

UNIBUS ADDRESS

KEYPAD REG
MAINTENANCE

BUS ADDR REG

SWITCH REG

UNIBUS CONT LOGIC
ROM SELECT

RAM WRITE
ENABLE RAM DATA
DISABLE DATA IN

Specifically, the data bus control logic decodes memory references into three areas (ROM 1, ROM 2, and RAM) and determines whether the access is a read or write. The logic also decodes I/O instructions and generates loading or gating signals depending on the direction of data transfer and the port selected.

In order to facilitate understanding of the logic, the following explanation of memory address allocation and I/O instruction operation is included.

ROM 2 (E33 and E39)
Memory addressing space spans locations 0 through 777.
ROM 1 (E3 and E21)
Memory addressing space spans locations 4000 through 4777.
RAM (E11 and E27)
Memory addressing space spans locations 20000 through 20017.
The two bus control signals provided by the microprocessor and latched with the upper byte of the address register, KY1 PC FUN 0 H and KY1 PC FUN 1 H , determine data transfer direction and I/O operations. The following table explains the decoding of these signals.

PC FUN 0	PC FUN 1	
L	L	Memory read of first byte of instruction only (fetch)
L	H	Memory read of additional bytes of instruction or data.
H	H	Memory write (used only to write into RAM).
H	L	I/O operation

Memory reads and writes signify that the address register (KY1 ADRD 0 H through KY1 ADRD 13 $\mathrm{H})$ contains the address of the location in memory to be accessed.

The code for I/O operations, however, signifies a very different situation. This is due to the following occurring after the initial instruction fetch cycle:

1. During TS1 the content of the A register (accumulator) in the microprocessor is available on the data lines and is latched into the low byte of the address register.
2. During TS2 the content of the instruction register (containing the I/O instruction) is available on the data lines and is latched into the high byte of the address register.
3. During TS3 of an INP (input) instruction, data on the data lines is loaded into the A register. On OUT (output) instructions, the data is strobed out of the low byte of the address register.

I/O Instruction Code:
INP 01 OOMMM1
OUT 01 RRMMM1

Note that the two most significant bits of the instruction will correspond to PC FUN $0=1$ and PC FUN $1=0$ when loaded into the high byte of the address register, thus denoting an I/O operation. Therefore, the data bus control logic determines whether to gate data into the microprocessor during TS3 (INP) or to load the data from the low byte of the address register into an output port during TS3 (OUT).

The 32×8 PROM (E34) does the initial decoding of the type of transfer (read, write, or I/O) from the signals KY1 PC FUN 0 H and KY1 PC FUN 1 H . If the transfer is a memory read or write, it is decoded into one of the following four signals. KY4 RAM \rightarrow DIN BUS L (RAM read), KY4 ROM 1 EN L (memory read in address range 4000-4777), KY4 ROM 2 EN L (memory read in address range 000-777), and an enable which is ANDed with KY1 SYNC H, KY1 TS3 L, and KY1 CK2 L to provide a write pulse, KY4 RAM WRITE H, to the RAM.

Another enable from the PROM is ANDed with KY1 TS3 L to provide the signal KY4 DIN DRIVER DIS H. This signal is normally high, disabling the driver portions of the 8833 transceivers (E16 and E17). It will be low only during TS3 and when data transfer is into the microprocessor.

Two other outputs of the PROM are used for I/O operations. One output of the PROM (E34-7), when low, enables the 741544 -to-16 decoder on all I/O instructions. The second output (E34-9) determines whether the I/O instruction is INP or OUT. If the instruction is OUT, then the signal will be high.

Note that address register bits KY1 ADRD 11, KY1 ADRD 10 H , and KY1 ADRD 9 H , are applied to the low order inputs of the 74154 . This selects which of the possible ports will be used. The fourth input, the highest order input, determines if it is an INP or OUT instruction. This input is the ANDed condition of the PROM output (E34-9), KY1 SYNC H, KY1 TS3, and KY1 CK2. Thus, if the instruction is an INP, then the input gating signal will be one of the lower order eight outputs of the 74154 (KY4 READ IN 0 L through KY4 READ IN 7 L).

If the PROM signal (E34-9) is high, signifying an OUT instruction, then initially a low order output is selected (does not substantially affect anything) and then a high order output will be pulsed as the gated clock pulse is applied to the high order input of the 74154. Thus, the high order outputs are pulsed and buffered to provide loading pulses to the selected registers (KY4 LD REG 0 H , etc.).

5.3.12 Unibus Control (Drawing CS M7859, Sheet 5)

Unibus control is accomplished via two 74175 quad, D-type, double rail output latches, E52 and E64. The stored program input bit configurations are read in under control of an appropriate data bus control signal, LD REG 5 H. E64 D2 and D3 latches are utilized for the manual clock enable and manual clock lines while the other six lines are Unibus control signals.

5.3.13 Keypad Scan Logic (Drawing CS 5411800-0-1)

The logic and driving circuitry for the keypad and display elements is located on a circuit board in the rear of the programmer's console panel.

Scan signals for the keypad are generated at the interface module (bus address register). These six lines (KY6 SCAN 1 L through KY6 SCAN 6 L) are then routed through hex 7417 buffer drivers to the console circuit board where they are designated as READ and DRIVE signals. As indicated by CS 5411800-0-1, sheet 2, READ 1 through READ 5 signals continuously scan the keypad in groups of 4. As each READ signal is applied to check for a pressed key, a corresponding DRIVE signal is simultaneously generated and applied to the appropriate transistor in the LED display circuitry (CS 11800-01 , sheet 3).

A pressed key thus results in activation of 1 to 4 lines. This information is routed out through J 1 to the interface module and applied to the data bus for eventual read-in to the miroprocessor.
5.3.14 Indicator Logic (Drawing CS M7859, Sheet 5)

The indicator control consists of a single quad, D-type, latch configuration, 74175 (E68) and four 7417 open collector inverters (E69) for driving the panel indicators. Input bit coding KY1 ADRD 4 H through KY1 ADRD 7 H via the stored program determines which of the following panel indicators are turned on:

1. BUS ERR
2. SR DISP
3. MAINT
4. BOOT

5.3.15 Halt Logic (Drawing CS M7859-0-1, Sheet 9)

The halt logic allows the console to obtain control of the Unibus in order to perform Unibus transactions. Control of the Unibus is passed to the KY11-LB from the PDP-11 processor via a HALT REQUEST and HALT GRANT sequence. Use of the HALT/SS key initiates a program sequence within the KY11-LB to issue a HALT REQUEST to the PDP-11 processor. The procesor will arbitrate the request and at the appropriate time will respond with HALT GRANT. The reception of HALT GRANT H by the halt logic direct sets the HALT SACK flip-flop on E63-4, causing BUS SACK L to be generated at E62-13. The set output of the HALT SACK flip-flop (E63-5) sets up the data input of the HALT BUSY flip-flop (E63-12).

The reception of BUS SACK L by the PDP-11 processor will cause it to drop HALT GRANT H. When the Unibus becomes free (unasserted BUS BUSY L and BUS SSYN L), the E63-11 will be clocked, setting the HALT BUSY flip-flop. This, in turn, asserts BUS BUSY L through E62-10 and causes the RUN indicator to be turned off via the 7417 buffer (E66-12). This logic operates in the same manner if the HALT GRANT is generated not by a HALT REQUEST from the KY11-LB but by a HALT instruction in the PDP-11 processor. The output of the HALT BUSY flip-flop (KYB HALT BUSY H) can be tested by the microprocessor program to check if the console has control of the Unibus before performing Unibus transactions.

The HALT SACK and HALT BUSY flip-flops are direct cleared by either BUS INIT L from the Unibus or by the signal KY4 CLR BUS L which can be generated by the microprocessor program. Clearing these flip-flops relinquishes control of the Unibus to the PDP-11 processor.

The signal KY4 TAKE BUS L, which can direct set the HALT BUS flip-flop, allows the microprocessor program to perform Unibus operations without first obtaining the Unibus through a legal request. This signal is only used during maintenance mode operation of the KY11-LB to bypass a failing or hung processor.

5.3.16 Buffers (Drawing CS M7859, Sheet 4)

5.3.16.1 Tristate Buffers (8093) - The following units, which are gated by read input signals from the data bus control, buffer input data from several sources.

1. Unibus Data
2. Unibus Address
3. Keypad Register
4. Maintenance Inputs (from processor microprogram counter).

Outputs from the 8093s are wire ORed and sent to the tristate transceivers with the ROM and RAM data as KY2 DIN 0 H through KY2 DIN 7 H .
5.3.16.2 Tristate Transceivers (8833) - These units buffer data between the microprocessor bidirectional data bus and the satellite logic of the interface module.

CHAPTER 6 CONSOLE MODE OPERATION

6.1 INTRODUCTION

This chapter is a recapitulation of all console key and indicator functions. Operation, use, and examples of the utilization of each key are presented. Key operations are divided into console mode and maintenance mode. Examples of console sequences to demonstrate the proper use of the KY11-LB are presented together with further notes and hints on operation.

6.2 CONSOLE KEY OPERATIONS

This section describes the operation of each key in a step-by-step procedure. The reader is assumed to have read earlier chapters as some descriptions include the use of keys previously described.

A notation for each key will be introduced in each description and is enclosed in angle brackets $<>$. These notations are used extensively in Paragraph 6.4 to describe various sequences of key operations.
<CLR> - Used to clear an incorrect entry or existing data.

1. Press and release the CLR key.
2. The display (six digits) will be all zeros.
3. Clears the SR DISP, BUS ERR, or MAINT indicators if on.

Numerics 0-7 - Used to key in an octal numeric digit (0 through 7).

1. Press a numeric key (0 through 7).
2. The corresponding digit will be left shifted into the 6 -digit octal display with the previously displayed digits also being left shifted.
3. Release the numeric key.

To enter the number <xxxxxx>, e.g., 123456:

1. Press and release the CLR key (000000 will be displayed).
2. Press and release the 1 key (000001 will be displayed).
3. Press and release the 2 key (000012 will be displayed).
4. Press and release the 3 key (000123 will be displayed).
5. Press and release the 4 key (001234 will be displayed).
6. Press and release the 5 key (012345 will be displayed).
7. Press and release the 6 key (123456 will be displayed).

The number has now been entered. Leading zeros do not have to be entered.
<LSR> - Used to load the switch register (accessible as Unibus address 777570).

1. Press and release the LSR key.
2. The display will show the data loaded and the SR DISP indicator will be on.

To load the number 777 i.e., <LSR 777>, into the switch register:

1. Press and release the CLR key.
2. Key in the number 777.
3. Press and release the LSR key.
4. 777 will be displayed and the SR DISP indicator will be on.
<LAD> - Used to load the Unibus address pointer prior to performing an EXAMINE, DEPOSIT, or START.
5. Press and release the LAD key.
6. Display will be all zeros.

To load address 200, i.e., <LAD 200>:

1. Press and release the CLR key.
2. Key in 200.
3. Press and release the LAD key.
4. Display is all zeros.
<DIS AD> - Displays the current contents of the Unibus address pointer.
5. Press and release the DIS AD key.
6. Display will show the current Unibus address pointer.

To perform the sequence:

$$
\text { LAD } 400
$$

DIS AD

1. Press and release the CLR key.
2. Key in 400 .
3. Press and release the LAD key (display is all zeros).
4. Press and release the DIS AD key.
5. Display shows the 400 from the Unibus address pointer.
<DEP> - Used to deposit a number into the location pointed to by the Unibus address pointer.
6. Processor must be halted (RUN indicator off); otherwise key is ignored.
7. Press and release the DEP key.
8. Display shows the data deposited.

To deposit <DEP xxxx> (e.g., 5252) into location 1000, the sequence is as follows:
LAD 1000
DEP 5252

1. Press and release the CLR key.
2. Key in 1000 .
3. Press and release the LAD key.
4. Key in 5252.
5. Press and release the DEP key.
<EXAM> - Used to examine the contents of a location pointed to by the Unibus address pointer.
6. Machine must be halted.
7. Press and release the EXAM key.
8. Display shows the contents of the location examined.

To examine general-purpose register R7 (program counter) at Unibus address 777707, the following sequence is used:

LAD 777707
EXAM

1. Press and release the CLR key.
2. Key in 777707.
3. Press and release the LAD key.
4. Press and release the EXAM key.
5. The contents of R 7 will be displayed.
<CNTRL> - The CNTRL key is always used in conjunction with some other key. When it is used it must be pressed and held down while the second key is pressed and released.
<CNTRL-HLT/SS> - Used to halt the processor.
6. Press and hold down the CNTRL key.
7. Press and release the HLT/SS key.
8. Display will show the current contents of R7 (program counter) and the RUN indicator will be off.
9. Release the CNTRL key.

If the processor is already halted, the use of the HLT/SS key will single-instruction step the processor. (The CNTRL key is not required to single-instruction step the processor once halted.)

1. Press and release the HLT/SS key.
2. Processor will perform one instruction and halt.
3. Display will show the new current contents of R7 (program counter).
<CNTRL-CONT> - Used to allow the processor to begin running from a halt.
4. Press and hold down the CNTRL key.
5. Press and release the CONT key.
6. Processor will run unless a program halt instruction is encountered. The RUN and SR DISP indicators should be on and the contents of the switch register should be displayed. If a halt instruction was encountered, the indicators will be off and the program counter will be displayed.
7. Release the CNTRL key.

NOTE
If the processor is already running, use of <CNTRL-CONT> will result in the switch register being displayed; there will be no other effect on the processor.
<CNTRL-BOOT> - Used to initiate running of M9301 Bootstrap program.

1. Processor must be halted.
2. Press and hold down the CNTRL key.
3. Press and release the BOOT key.
4. Processor should start running (RUN indicator on) the bootstrap program selected on the M9301.

NOTE
For more information concerning the M9301 Bootstrap program, consult the system users guide.
5. Release the CNTRL key.
<CNTRL-START>- Used to start the processor running a program from a given starting address.

1. Processor must be halted; otherwise key is ignored.
2. Press and hold down CNTRL key.
3. Press and release the START key.
4. RUN indicator will be on unless a halt instruction is encountered. The SR DISP indicator should also be on and the contents of the switch register should be displayed.
5. Release the CNTRL key.

To start running a program at location 1000 , the following sequence is used:

1. Press and release the CLR key.
2. Key in 1000 .
3. Press and release the LAD key.
4. Press and hold down the CNTRL key.
5. Press and release the START key.
6. Release the CNTRL key.
<CNTRL-INIT>-Generates a Bus Initialize without the processor starting.
7. Processor must be halted.
8. Press and hold down the CNTRL key.
9. Press and release the INIT key.
10. Bus Initialize will be generated for 150 ms .
11. Release the CNTRL key.
<CNTRL-7> - Used to calculate the correct address when a mode 6 or 7 register R7 instruction is encountered.
12. Press and hold down the CNTRL key.
13. Press and release the 7 key.
14. Display will show the new temporary register which contains the old temporary register plus the Unibus address point or plus 2.

See Paragraph 6.4 for an example.
<CNTRL-6>- Used to calculate the offset address when mode 6 or 7 instructions other than register R7 are encountered.

1. Press and hold down the CNTRL key.
2. Press and release the 6 key.
3. Display shows the new temporary register, which contains the old temporary plus the switch register.
4. Release the CNTRL key.

See Paragraph 6.4 for an example.
<CNTRL-1> - Used to enter the console into maintenance mode. Maintenance mode should only be used as an aid to troubleshooting hardware problems. Maintenance mode provides no help in debugging software problems.

1. Press and hold down the CNTRL key.
2. Press and release the 1 key .
3. MAINT indicator will be on and the MPC (microprogram counter) will be sampled and displayed.
4. Release the CNTRL key.

6.3 NOTES ON OPERATION

An erroneous display will result if, while the processor is running and the switch register is being displayed, a numeric key is pressed. Although the SR DISP indicator will remain on, the display no longer reflects the actual contents of the switch register. If at any time while the processor is running, it is desired that the switch register contents be displayed, the CNTRL-CONT keys should be used.

As a general practice, prior to entering a new 6-digit number and if the display is nonzero, the CLR key should be used to initially zero the display.

In order to single-instruction step the processor from a given starting address, the program counter (R7) must be loaded with the starting address using the Unibus address of R7 (777707) i.e., to singleinstruction step from the beginning of a program starting at location 1000, the following sequence is necessary:

LAD 777707
DEP 1000
CNTRL-INIT (if desired)
HLT/SS
HLT/SS
etc.

The console requires an 18 -bit address. This is especially important to remember when accessing device registers (i.e., 777560 instead of 177560). Otherwise an erroneous access to memory or to a nonexistent address will occur.

The Unibus addresses for the general-purpose registers can only be used by the console. A PDP-11 program using the Unibus addresses for the general-purpose registers will trap as a nonexistent address. Also, internal registers R10 through R17, which are used for various purposes (depending upon processor), may be accessed by the console through Unibus addresses 777710 through 777717.

The BUS ERR indicator on the console reflects a bus error by the console only. The indicator will not reflect bus errors due to other devices succh as the processor.

6.4 EXAMPLES OF CONSOLE SEQUENCES

This section combines key operations with example sequences to demonstrate the proper use of the KY11-LB Programmer's Console.

The following sequences use the notations for key operations as described in Paragraph 6.2.
The angle brackets $<>$ will be used in the sequences to identify the display contents after the operation is performed, i.e., LAD $200<0>$

1. Press and release the CLR key.
2. Press and release 2 key .
3. Press and release 0 key .
4. Press and release 0 key.
5. Press and release the LAD key.
6. 000000 will be displayed in the 6 -digit readout.

Example 1

This sequence uses the examine function and the switch register Unibus address 777570 to read the contents of the switch register.

LSR 123456	$<123456>$
LAD 777570	$<0>$
EXAM	$<123456>$
DIS AD	$<777570>$
LSR 777	$<777>$
EXAM	$<777>$

Example 2

This sequence demonstrates the use of the following keys: LAD, DIS AD, LSR, EXAM, DEP, CNTRL-START, CNTRL-CONT, and CNTRL-HLT/SS.

This example loads the following program into memory, which is then run to demonstrate various operations.

Program

1000/13737
1002/177570
1004/1014
1006/0000
1010/137
1012/1000
1014/0000

Memory Location/Contents

;Move the contents of the switch register to memory location 1014
;Halt
;Jump to location 1000

Sequence

LAD 1000	<0>
DEP 13737	<13737>
DEP 177570	<177570>
DEP 1014	<1014>
DEP 0	<0>
DEP 137	<137>
DEP 1000	<1000>
DEP 0	<0>
LAD 1000	<0>
EXAM	<13737>
EXAM	<177570>
EXAM	<1014>
EXAM	<0>
EXAM	<137>
EXAM	<1000>
EXAM	<0>
DIS AD	<1014>
LSR 123456	<123456>
LAD 1000	<0>
CNTRL-START	<1010>
LAD 1014	<0>
EXAM	<123456>
DEP 0	<0>
EXAM	<0>
DIS AD	<1014>
LSR 125252	<125252>
CNTRL-CONT	<1010>
LAD 1014	<0>
EXAM	<125252>
DEP 0	<0>
LAD 1006	<0>
DEP 240	<240>
EXAM	<240>
LAD 1000	<0>
CNTRL-START	<125252>
LSR 70707	<10707>
CNTRL-HLT/SS	
LAD 1014	<0>
EXAM	<10707>
HLT/SS	
HLT/SS	
HLT/SS	
-	
-	
LSR 05252	<052525>
HLT/SS	
LAD 1014	<0>
EXAM	<052525>

Example 3

This sequence demonstrates the use of CNTRL-7 and CNTRL-6. The following data are loaded into memory:

1000/177
1002/100
1004/000
1006/5060
1010/1020
1104/1006
$R O=777760$
The sequence to load the data is as follows:

LAD 1000
<0>
DEP 177
<177>
DEP 100
<100>
DEP 0
DEP 5060
DEP 1020
LAD 1104
DEP 1006
LAD 777700
DEP 777760
<0>
<5060>
<1020>
<0>
<1006>
<0>
<777760>

Sequence

LAD 1000	$<0>$
EXAM	$<177>$
EXAM	$<100>$
CNTRL-7	$<1104>$
LAD	$<0>$
EXAM	$<1006>$
LAD	$<0>$
EXAM	$<5060>$
EXAM	$<1020>$
LSR	$<1020>$
LAD 777700	$<0>$
EXAM	$<777760>$
CNTRL-6	$<100006>$
LAD	$<0>$
EXAM	$<177>$

CHAPTER 7
 MAINTENANCE MODE OPERATION

7.1 INTRODUCTION

This chapter covers the keypad facilities of the programmer's console available for hardware maintenance of the processor.

7.2 MAINTENANCE MODE KEY OPERATIONS

The following definitions apply to a subset of the same keys used in console mode; however the functions and operations differ from those in console mode. In general, console mode functions are not available while in maintenance mode, and many keys have no function in maintenance mode.

NOTE
Maintenance mode operation is indicated by the MAINT indicator being on.

In order to use the hardware maintenance features available in maintenance mode, the maintenance cable (11/04) or cables (11/34) must be connected between the KY11-LB interface board (M7859) and the corresponding processor board (M7263-11/04, M7266-11/34, M8266-11/34A, or M8267-FP11A). An exception to this is the 5 (maintenance mode) operation which allows the console to examine or deposit into memory or device registers without the processor being either present or functional.

DIS AD (Maintenance Mode) - Used to display Unibus address lines.

1. Press and release the DIS AD key.
2. Unibus address lines will be sampled (read once) and displayed, i.e., display will not be updated as address lines change.

EXAM (Maintenance Mode) - Used to display Unibus data lines.

1. Press and release the EXAM key.
2. Unibus data lines will be sampled and displayed.

HLT/SS (Maintenance Mode) - Asserts manual clock enable and displays MPC (microprogram counter).

1. Press and release the HLT/SS key.
2. Manual clock enable will be asserted.
3. MPC will be sampled and displayed.

CONT (Maintenance Mode) - Single microsteps the processor through one microstate and displays the MPC.

1. Press and release the CONT key.
2. Manual clock will be pulsed.
3. New MPC will be sampled and displayed.

BOOT (Maintenance Mode) - Boots the M9301. If manual clock enable is asserted, the M9301 routine will not be entered but because the M9301 simulates a power fail the processor will power up through location 24.

1. Press and release the BOOT key.
2. The display is not affected. If manual clock enable is asserted, the MPC is now at the beginning of the power-up sequence. To see the new MPC, use the HLT/SS key.

START (Maintenance Mode) - Drops manual clock enable.

1. Press and release the START key.
2. Manual clock enable is released.
3. MPC will be sampled and displayed.

CLR (Maintenance Mode) - Returns console to console mode operation.

1. Press and release the CLR key.
2. MAINT indicator is off.
3. Processor should halt.
4. Program counter should be displayed.

5 (Maintenance Mode) - Allows the console to take control of the Unibus if a processor is not in the system.

1. Press and release the 5 key.
2. The MAINT indicator will be off (console mode operation now).
3. Console attempts to read the program counter which is not present and therefore the BUS ERR indicator will be on.

7.3 NOTES ON OPERATION

If the single-microstep feature in maintenance mode is to be used, it is preferable that the processor be halted prior to entering maintenance mode, if it is possible. This is because the assertion of manual clock enable, which turns off the processor clock if it is running, cannot be synchronized with the processor clock. Therefore, if the processor is not halted, the clock may be running and the assertion of manual clock enable may cause an erroneous condition to occur.

In order to single-microstep the processor from the beginning of the power-up sequence, the following steps may be used:

1. Halt the processor if possible.
2. Use CNTRL 1 to enter maintenance mode.
3. Use HLT/SS to assert manual clock enable (RUN indicator should come on).
4. Use BOOT to generate a simulated power-fail (will not work if M9301 is not present in the system).
5. Use HLT/SS to display the MPC (microprogram counter) for the first microstep in the power-up routine.
6. Use CONT to single-microstep the processor through the power-up routine. (The new MPC will be displayed at each step.)
7. Unibus address lines and Unibus data (see NOTE below) lines may be examined at any microstep by using DIS AD and EXAM, respectively. Use of these keys does not advance the microprogram. To redisplay the current MPC without advancing the microprogram, use the HLT/SS key.
8. To return from maintenance mode, use the CLR key.
9. To single-microstep through a program, the program counter (R7) must first be loaded with the starting address of the program as in single-instruction stepping the processor prior to entering maintenance mode.

NOTE
Because the data transfer occurs asynchronously with the processor clock, Unibus data will not be displayed on DATI in maintenance mode when using the console with an 11/04 processor. Unibus data on DATO on the $11 / 04$ and both DATI and DATO on the $11 / 34$ will be displayed.

Due to hardware changes, the M8266 module will gate the AMUX lines onto the Unibus when manual clock enable is asserted and a Unibus transaction is not occurring.

CHAPTER 8 KY11-LB MAINTENANCE

8.1 PRELIMINARY CONSIDERATIONS

The following is a guide to locating possible problems on the KY11-LB.

1. Power Switch Failure - If the power switch fails to control the power supply, check cable 7011414-2-2 (BA11-L) at J2 or cable 7011992-0-0 (BA11-K) at Faston tabs TB4 and TB5 on the bezel-mounted board to ensure that cable(s) are securely and correctly installed.
2. If the power switch does turn on the power supply (fans turn) but the DC ON indicator does not come on, check cable 7011992-0-0 (BA11-K) at tabs TB6 and TB7 on the bezel-mounted board.
3. If the four indicators on the left side of the keypad are all on, then the cable 7012214-0-0 connecting the bezel-mounted board to the interface board (M7859) is probably plugged in backward on one end.
4. If no display and none of the four indicators are on, then check cable 7012214-0-0 at J1 on the bezel-mounted board and M7859 board to ensure that it is correctly and securely installed.
5. Note that there should be no cables from either the bezel-mounted board or the M7859 board attached to the backplane. The connection at the backplane is for use by the KY11LA Operator Console only.
6. If the RUN indicator is on but there is no display and no response from the keypad, the problem is probably at the M7859 Interface module. Check the module to ensure that the microprocessor chip (E18) is securely installed in its socket.
7. If the display works and the console responds to the keypad except for the BOOT key, check that cable 7011413-0-0 is properly connected to the M9301 and to the bezel-mounted board at tabs TB1 and TB2.
8. If the display MPC, single microstep, etc. functions in maintenance mode do not work correctly, check that the cable(s) from J2 and J3 of the M7859 are properly installed.

NOTE

These cables should be installed only for maintenance of the processor. By disconnecting these cables for normal operation, the effect is that the maintenance functions are nonoperative except for the TAKE BUS function.

8.2 M7859 FAILURES

In general, there are two levels of possible failures on the M7859 module. The first level and most difficult to fix is the microprocessor and its support logic which constitutes about $1 / 3$ of the logic. The second level is failures which occur in the peripheral logic constituting the Unibus interface and the display/keypad interface. These are generally easier to troubleshoot.

Generally, a first level failure is readily apparent and will usually be indicated when no display is on and the only indicators on are DC ON and RUN.

A second level failure, although easier to troubleshoot, is not always readily apparent as it may only occur on certain key functions or may be data dependent. A failure on the display/keypad interface would be indicated by odd displays, row, or column failures on the keypad. The Unibus interface can be tested with a good confidence level by loading the switch register with a 123456 data pattern and then reading it back over the Unibus by examining location 777570.

The following is a guide to troubleshooting a failing M7859 module. Generally, the minimum equipment needed is a dual-trace oscilloscope with delayed sweep.

1. Check that 9 V is available at pin 1 of the microprocessor, E18.
2. Check that the clock frequency is $1.0 \mathrm{MHz} \pm 2 \%$ at the test point, TP1. The frequency can be corrected if needed by adjusting the variable resistor at the top of the module.
3. Check that the two clock signals are at E18-15 and E18-16. These clocks should be 500 kHz frequency with nonoverlapping positive pulses of 0.5 ms duration (Figure 8-1).

Figure 8-1 Clock Waveforms
4. Check the signal at E18-18 which should be at logic low. If the signal is high the microprocessor may not have responded to the interrupt request on power-up. If the signal is toggling, this may be indicative of a different class of problems discussed in the following paragraphs.
5. The M7859 logic is such that if the microprocessor encounters a HALT instruction and goes to the STOP state, peripheral logic will automatically try to restart the microprocessor from location 0 . Hence, if there are problems in the microprocessor support logic, such as address or data failures, time state decoding failures, etc., the microprocessor will not follow the program and generally encounters a HALT instruction.

The general technique to solve this class of problems is to sync off of the signal STOP L and to use delayed sweep to track addresses backward to find the specific failing address. A quick check of the number of times TS1 L is true between the times that STOP L is true will give an idea of how far into the program the failure occurs. In general the easiest technique is to use the TS3 L signal as a visual key on one channel while using the other channel to probe addresses, data, timing signals, etc.

CHAPTER 9 KY11-LB INSTALLATION

9.1 KY11-LB DESCRIPTION

The KY11-LB is a programer's console option for both the $11 / 04$ and 11/34 CPUs. It replaces the KY11-LA (operator's console) which is the standard console on $11 / 04 \mathrm{~s}$ and $11 / 34 \mathrm{~s}$. The hardware in the KY11-LB option is exactly the same for both the $11 / 04$ and $11 / 34$. The KY11-LB contains a bezel assembly (consisting of a keypad, 7 -segment display, indicator lamps, and ON/OFF switch) and a separate SPC quad interface module (M7859). Also, three loose piece cables: two 10 -conductor, 45.7 cm (18 inch) long cables and one 20 -conductor cable. The two 10 -connector cables are not required for normal console functions and should only be installed when using the console in maintenance mode.

9.2 CPU BOX TYPE

PDP-11/04s and $11 / 34 \mathrm{~s}$ are available in both the BA11-L 13.4 cm (5-1/4 inch) box and BA11-K 26.7 cm (10-1/2 inch) box. The difference between these two boxes creates the only difference in installing the KY11-LB. In all cases, the 10 -conductor cable, running from the operator's console to the CPU backplane, is not used and must be removed when the KY11-LB is installed. It is extremely important not to connect this cable to the KY11-LB as a short circuit may result.

9.3 CPU DIFFERENCES

The $11 / 04$ is a single-module CPU (M7263). The $11 / 34$ is a 2 -module CPU (M7265 and M7266). Maintenance mode connections between KY11-LB and 11/04 are made on the M7263. Maintenance mode connections between KY11-LB and 11/34 are made on the M7266 (Figures 9-1 and 9-2). Note that all figures in this procedure show the M7266 module (11/34). This is done because the hook-up for normal KY11-LB operation is the same for both CPUs.

To identify cables and part numbers for cables, refer to Figure 9-3.

9.4 BA11-L 13.3 CM (5-1/4 INCH BOX) INSTALLATION

1. Remove the operator's console (KY11-LA), noting to which Faston tabs the M9301 is connected. The connections will be to the same tabs on the KY11-LB. The cable from H777 Power Supply plugged into J2 on the KY11-LA will plug into J2 on the KY11-LB. The cable from the CPU backplane to J1 on the KY11-LA must be removed. No connection is made from the backplane to the KY11-LB.

Figure 9-1 M7263

Figure 9-2 M7266

CHAPTER 9 KY11-LB INSTALLATION

9.1 KY11-LB DESCRIPTION

The KY11-LB is a programer's console option for both the $11 / 04$ and 11/34 CPUs. It replaces the KY11-LA (operator's console) which is the standard console on $11 / 04 \mathrm{~s}$ and $11 / 34 \mathrm{~s}$. The hardware in the KY11-LB option is exactly the same for both the $11 / 04$ and $11 / 34$. The KY11-LB contains a bezel assembly (consisting of a keypad, 7 -segment display, indicator lamps, and ON/OFF switch) and a separate SPC quad interface module (M7859). Also, three loose piece cables: two 10 -conductor, 45.7 cm (18 inch) long cables and one 20 -conductor cable. The two 10 -connector cables are not required for normal console functions and should only be installed when using the console in maintenance mode.

9.2 CPU BOX TYPE

PDP-11/04s and 11/34s are available in both the BA11-L 13.4 cm (5-1/4 inch) box and BA11-K 26.7 cm (10-1/2 inch) box. The difference between these two boxes creates the only difference in installing the KY11-LB. In all cases, the 10 -conductor cable, running from the operator's console to the CPU backplane, is not used and must be removed when the KY11-LB is installed. It is extremely important not to connect this cable to the KY11-LB as a short circuit may result.

9.3 CPU DIFFERENCES

The $11 / 04$ is a single-module CPU (M7263). The $11 / 34$ is a 2 -module CPU (M7265 and M7266). Maintenance mode connections between KY11-LB and 11/04 are made on the M7263. Maintenance mode connections between KY11-LB and 11/34 are made on the M7266 (Figures 9-1 and 9-2). Note that all figures in this procedure show the M7266 module (11/34). This is done because the hook-up for normal KY11-LB operation is the same for both CPUs.

To identify cables and part numbers for cables, refer to Figure 9-3.

9.4 BA11-L 13.3 CM (5-1/4 INCH BOX) INSTALLATION

1. Remove the operator's console (KY11-LA), noting to which Faston tabs the M9301 is connected. The connections will be to the same tabs on the KY11-LB. The cable from H777 Power Supply plugged into J2 on the KY11-LA will plug into J2 on the KY11-LB. The cable from the CPU backplane to J1 on the KY11-LA must be removed. No connection is made from the backplane to the KY11-LB.

Figure 9-1 M7263

Figure 9-2. M7266

Figure 9-3 Cables
2. Install M7859 (KY11-LB interface) in any SPC slot (within CPU backplane) and connect it to the KY11-LB bezel as shown in Figure 9-4.

CONFIGURATION NOTE
The M7859 consumes 2 A at +5 V and can only be plugged into the CPU backplane.

WARNING

When doing any reconfigurating of the CPU backplane that might be necessary to make room for the M7859, be sure that the M9302 is never installed in a modified Unibus slot (which results in short circuits).

9.5 BA11-K 26.7 CM (10-1/2 INCH BOX) INSTALLATION

1. Remove the operator's console (KY11-LA), noting to which Faston tabs the M9301 is connected. The connection will be the same tabs on the KY11-LB (Figure 9-5). You will notice that J 2 on the operator's console is not used on the BA11-K box. The signals and voltages that come in on this jack in the BA11-L box come in on Faston tabs in the BA11-K box. The cable connecting the CPU backplane to J1 on the operator's console must be removed and no connection from the backplane to the KY11-LB is made.
2. Install M7859 (KY11-LB interface) in any SPC slot (with CPU backplane) and connect to KY11-LB bezel as shown in Figure 9-5.

WARNING

When doing any reconfigurating of the CPU backplane that might be necessary to make room for the M7859, be sure that the M9302 is never installed in a modified Unibus slot (which results in short circuits).

* THIS CONNECTOR NOT USED

Figure 9-4 BA11-L

* H775C

$11-4848$

Figure 9-5 BA11-K

9.6 MAINTENANCE MODE HOOK-UP

To utilize the KY11-LB as a maintenance tool for troubleshooting the CPU or system, additional cable(s) must be installed. The $11 / 04$ requires one additional cable and the $11 / 34$ requires two additional cables.

PDP-11/04 (Maintenance Mode Cabling)

The $11 / 04$ requires only one additional cable for maintenance mode operation. This 10 -conductor cable (Part No. 70-11411-1D-0) connects J2 of the M7859 to the unmarked male connector on the M7263 (11/04 CPU). The cable (70-11411-1D-0) has a pointer on each end to indicate pin 1 as shown in Figure 9-3. Install the cable with the pointer on the end of the cable lined up with pin 1 on the CPU module (M7263). Pin 1 on M7263 is called out on Figure 9-1. Points on J2 (M7859) and the cable should also be lined up.

PDP-11/34 (Maintenance Mode Cabling)

The $11 / 34$ requires two additional cables for maintenance mode operation. Both cables are the same and are the same part as is used on the 11/04. See Figure 9-3 for part number.

NOTE
Maintenance cables for both $11 / 04$ and $11 / 34$ are all 45.7 cm (18 inch) long, 10 -conductor cables.

When installing maintenance cables connect J2 (M7859) to J1 (M7266) and J3 (M7859) to J2 (M7266). The pointers on the cable and board must be matched at both ends of the cables.

	00066	000		
62				\% PO PCK UF THE CONTENTS OF THE FTRST LOCATION IN RAM.
63	00067		L...A M	, GET THE CONTENTS OF THE FIRST LOCATMON IN FAM.
	00067	307		
64	00070		NoI 7	MMASK OFF THE LOWEST 3 BTTS ANO
	00070	044		
	00071	007		
65	00072		OuT REG:	\%OUTFUT TO THE UTSFI.AY.
	00072	123		
36	00073		L.A M	و LOAL THE O REGTSTER INTO A FEGTSTER ANG OUTFUT IT
	00073	303		
67	00074		OUT REGO	\% TO TURN ON THE FROFER MTGTT OF THE MISFLAY, THTS
	00074	121		
68				\%WTL ALCSO SELECT A FARTTCULAR COLUMN OF THE KEYFAX
$\begin{aligned} & 69 \\ & 70 \end{aligned}$	0007		L..A ${ }^{\text {a }}$	YGET THE CONTENTS OF REGTSTEF O ANO FOTATE LEFT
	00075	303		
71.	00076		RLC	\%TO SET UF TO TUFN ON THE NEXT WrgTt
	00076	002		
72	00077		1...1. A	
	00077	330		
73	001100		LBI 3	
	001100	01.6		
	00101.	00.3		
74	00102		Comb Shert	OSUBFOUTINE WHTCH WTLI SHTFT THE UTFI..AY XATA 3
	00102	106		
	001103	335		
	001104	000		
75				pFOSITIONS.
76	00:105		1..AC	OON RETUR' FROM SHTFT SUBROUTINE, LOAX REGTSTEF
	00)105	302		
77	001106		CFI 1	9 A WITH REGTSTER C ANM CHECK FOR A 1 TO SEEE IFF L.AST
	00106	074		
	001107	00.1.		
78				g deat TS BETNG XITSFMYEO.
79	00110		JTz MTSF45	
	001110	1.50		
	00111	137		
	00.112	000		
80				g INFUT ROUTINE
81	00113		AOI :	y OTHEFWTSE AMG A 1 TO REGISTEF A (CONTATNTNG FEGTSTEF 0)
	00113	004		
	001114	001		
82	00115		1..1. A	yANG LOAG MEMORY FOTNTEF TO FOINT TO KEYFAD IMAGE
	00115	360		
8				\%AREA OF THE RAM.
	00116		INF KEYS	y INPUT A COL UMN FROM THE KEYFALI ANO
	001116	113		
85	001117		NWI 17	9MASK FOR STGNTFIGANT BTTS.
	00.117	044		
	00120	0.17		
86	00121.		Jtz mitsp 4	9CHECK FOR NO KEYS OEFRESSEXyOTEHEFWTSE
	001.21	1.50		
	00122	136		
	00123	000		
87	00124		XR M	勺COMFARE AGATNST THE CONTENTS OR THE RAM (KEYFAO IMAGE)
	001.24	257		
	11 LEB	AM	CFO UMO2--10	0\%13:25 FAGE 8+

[^1]
APPENDIX B IC DESCRIPTIONS

$V_{C C}=P I N 05$
$G N D=P I N 10$
GND=PIN 10

CLKBC		OUT	PUT	
INPUT PULSE	(ii)	$\begin{array}{r} R 1 \\ (1) \\ \hline \end{array}$	$\begin{aligned} & \text { R2 } \\ & (1) \end{aligned}$	$\left(\begin{array}{l} R 3 \\ (1) \end{array}\right.$
0	0	0	0	0
1	1	0	0	0
2	0	1	0	0
3	1	1	0	0
4	0	0	1	0
5	1	0	1	0
6	0	1	1	0
7	1	1	1	0
8	0	0	0	1
9	1	0	0	1
10	0	1	0	1
11	1	1	0	1
12	0	0	1	1
13	1	0	1	1
14	0	1	1	1
15	1	1	1	1

Notes:

1. Truth table applies when 7493 is used as 4 -bit ripple - through counter.
2. Output RO(1) connected to input CLKO.
3. To reset all outputs to logical 0 both pins 02 and 03 inputs must be high.
4. Either (or both) reset inputs $\mathrm{R}_{0(1)}$ (pins 02 and 03) must be low to count.

8641 QUAD BUS TRANSCEIVER

The 8641 consists of four identical receiver/drivers and a single enabling gate in one package for interfacing with the PDP-11 Unibus. The transceiver drivers are enabled when ENABLE A and ENABLE B are both low. The other input of each driver is connected to the data to be sent to the Unibus. For example, when enabled, DATA IN 1 (pin 2) is read to the Unibus via BUS 1 (pin 1). During a write operation, data comes from the Unibus as BUS 1 (pin 1) and is passed through the receiver to the device as DATA OUT 1 (pin 3).

74154 4-LINE TO 16-LINE DECODER

The 74154 4-Line to 16 -Line Decoder decodes four binary-coded inputs into one of 16 mutuallyexclusive outputs when both strobe inputs (G1 and G2) are low. The decoding function is performed by using the four input lines to address the output line, passing data from one of the strobe inputs with the other strobe input low. When either strobe input is high, all outputs are high.

74175 QUAD STORAGE REGISTER

Reader's Comments

KY11-LB Programmer's Console/Interface Module Operation and Maintenance Manual EK-KY1LB-MM-001

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of our publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well written, etc.? Is it easy to use? \qquad
\qquad
\qquad

What features are most useful? \qquad
\qquad
\qquad

What faults do you find with the manual? \qquad
\qquad
\qquad

Does this manual satisfy the need you think it was intended to satisfy? \qquad
Does it satisfy your needs? Why? \qquad
\qquad
\qquad
\qquad

Would you please indicate any factual errors you have found. \qquad
\qquad

Please describe your position. \qquad
Name
Organization
Street
Department \qquad
City \longrightarrow State
Zip or Country

Eabuba

digital equipment corporation

[^0]: *For the third byte of this instruction, D_{6} and D_{7} are "don't care" bits.

[^1]: TET, TEXT=M8008E: я TEXT

