[^0]I

```
M9301 MAINTENANCE MANUAL
```

CONTENTS

1.0	PREFACE
20	INTRODUCTION
2.1	Genepal Descriotion
2.2	Features
2.3	Physical Descpiotion
2.4	Electpical Soeclficatiom
2.4.1	Power Consumptlon
2.4.2	Electrical Intertaces
2.4 .3	External Electrlcal Interfaces
2.4.4	Electpical prepequisites
2.4 .5	Power and Ground Plmouts
2.4.6	Modifled UNIRUS Pin Assionments
2.4.7	Timing
2.5	Doeratimg Enviponmental Spectilcations
2.5.1	Temperature Range
2.5.2	Relative Humldity
3.0	HARDWARE DESCRIPTION
3.1	Introduction
3.1	Definition of Tepms
3.3	Qverview
3.4	Power Up Booting Logic
3.5	Exermal boot cipcult
3.6	Power Up Tramster Detection m Logic
3.7	Power Uo cleap
3.8	Addpess Deteetion Logic
3.9	Address Offset Swltch Bank
3.10	Rom Memory
3.11	M9301 Tepmlmatop

Contents (Con't)

40	M9301 VARIATIONS
4.1	Overview
4.2	M9301-0
4.3	M9301-YA and M9301-YB
4.3 .1	Physteal Difpemences from M9301=0
4.3 .2	Program Memopy Maos
4.3 .2 .1	CPU Diagnostles
4.3.2.2	Regiser Display Routine
4.3 .2 .3	Memopy Dlagnosties
4.3 .2 .4	Bootstrap progmams
	RX11 Diskette
	TAd1 Cassette
	PCII Paper Tape
	Disks
	Mageape
	Console Emulator
4.3 .2 .5	Program Flows
	M9301 YA
	M9301 YB
4.3 .3	Inseallation
4.3.3.1	Reboor Enable
4.3 .3 .2	Low Rom Enable
4.3 .3 .3	Boot switch selection
$4.3,3,4$	External Boot switem
4.4	M9301-YC
4.41	Memory Map
4.4 .2	Genepal Descplotion
4.4 .3	Diagnostic test Descfiptlons
4.4 .4	11/70 Boosstrap
4.4.5	Installaton
4.4 .6	Stapelng Procedupe
4.4 .7	Eproms
5.0	EXTENDED ADDRESSING
5.1 5.2	Exeended Adepessing (Defination) Defination of Viptual and physical addeesses
5.3	Addpess mapplng withour Memopy Management
5.4	Address Macolng wlth Memopy Management
5.5	Cration of a Viprual addmess
5.6	Memofy Management Registems
5.7	Addpess Assigmments
0.0	M9301-YD
6.1	Puppose
6.2	Functionality
6.3	Using eht M9301myd
6.4	Program Listlna
7.0	APPENDIX

1. 0 PREFACE

This manual describes the Ma301 Bootstrapleminator module amd its various versions. Complete undepstanding of lts contents pequipes that the user have a general knowledge op digital cipcuitpy and a basic undersianding of PDP-11 computems the following melated documents may be yaluable as pefepences.

```
PDPdd Perloherals Handbook
PDP11 PPocessom Handbook, 
PDPam11/34, 11/39, USERS MANUAL
```


2.O INPRODUCTION

2.1 General Description

The M9301 Bootstrap/teminatop is a double height extenden module which olugs into a teminator slot on most pDPdi computems isee Insiallapion section 4). It contains a complete set of UnIBUS efmination pesistors along with 512 womds of Readonly memapy whtch ean be used for bootstrap opogmams. the module also provides cipcyippy for initiating bootstmap progmams either on Dower uns of prom an extepal or logic level switen closupe. see figupe 1 fop omoto of module.
2.2 Featupes

- Comblnes UNIBUS tefminatlom and bootstrap capability on one double metght module.
- Can be used in all pDPIl machines which cam hande an extended length module in the tefminator slots.
- Boosstpap programs can be inithated by the following means:

1. Dipect opogram Jumps to the memopy space occupies by bhe bootstrap.
2. Programmer console Load address and stapt sequence.
3. Power pestapts (See Section 3.3)
4. External Root switch closupe

- Ppovides capability of enabling or disabling boots on powef pestapts.
- Proyides 512 words of user memomy space which can be ppogrammed by the user or oumehased with standapd ofttenns opovided by DEC. (see sections 3.10 and 4,2).

Page 4

Module Photo

To Be Supplied

Figure 1

2.3 Phystcal Desciftion

The M930! is a double height extended (8 $1 / 2 \times 51 / 2$ inches) FLPMCHIP module which plugs into the A and B temminator slots on the pDPll backplane. Extepnal connections ape made via three FAST ON CTPI,TPZ. and TP3) tabs provided at the hamdle end of the module.
2.4 Elecepical Specipication

\$5Y DC - 2, A Amperes typical
2.4.2 Electpical Inteptaces

The UNIBUS lneeptace is standapd using 8837 and 8640 peceivens and 8881 divers.

2.4.3 Exepmal Electical Intepfaces

The extepmal theopace consists of thpee FAST ON tabs (TPI, pra ame pp3), each having the following loading and usage constraints.

TP! Represents one standard TTL load with a ik ohm pullmup. Input should be stable duping a oower uo. Refep to Section 3.3 for TPl usage.

TP2 Represents two standard TTL loads with a lk onf pullmup pestston, input signals should be limited to a lanns minimum pulse width with all swlem bounce nolse pestrlcted to a 5 ms maximum dupation Note that tplagering is inttlated upon release of an input low (logic "gh) pulse. On all Dowermus, biageping is disabled untll approximately 1 gems atrep powep ferupns (see section 3.7) assumlno that +5 vic will be avaliable from the power supolv within 2nms. It $_{\text {wn }}$ is also lmportant to peallze that this lnout has no over voltage protection capabillty and adequate fllepling must be proyided when remoting this input outside the standard DEC computer anclosure. Refer to Section 3.5 fop TPZ usage.

Tp3 Should be used as a ground perupn pop extepmal switches attached to TPI and TPZ. Note that there is no protection por large voltage solkes on this dnput so proper fllters should be extemally insealled to guarantee adequate isolation.

```
2.4,4 Electplcal Ppepequiseas
Refer to Secelon 4, for system constralmes on soecific verslon belmg
used.
2,4.5 Power and Gmound Pinouts
    &SVDC: OIN AAZ, BAZ
    GND: PINS ACZ, ATI, BCZ, BTI
2.4.6 M930! MODIFIED UNIBUS P1A Asslgmments
See TABLE 1.
2.4.7 T|ming
Flgupe 2 shows lmportant timing constraints for the m9301. Values
showm are evolcal.
```

 FIGURE 2
 M9301 TIMING
2.5 Operating Envimonmental SDeclifications
2.5.1 Temperatupe Range 0 cto70e
2.5.2 Relative Humidity - 20% to 95%
(with out condensation)

$$
\text { fage } 6 \mathrm{~A}
$$

TABLE \&
M9301 MODIFIED UNIBUS PIN ASSIGNMENTS

PIN	SIGNAL	PIN	SIGNAL
AA!	BUS INIT L	BAd	SPARE
$\triangle A 2$	POWER (+5 V)	BAC	POWER $6+5 \mathrm{~V}$
AB!	BUS INTR L	B81	SPARE
AB2	TEST POINT	B82	TEST POINT
$A C 1$	BUS DOO L	SC1	BUS ER 5L
AC2	GROUND	BC2	GROUND
ADI	BUS DO2 L	BDI	BAT-BACKUP
AD2	BUS DO1 L	BD2	BR 日
AE!	BUS DC4 L	BE!	INT, SSYN.
$A E 2$	BUS D03 L	BE2	PAR: DET.
AF!	BUS D06 L	BF1	BUS ACLO L
$A F 2$	BUS D05 L	3F2	BUS DCLO L
AH!	BuS 008 L	BH!	BUS AOD L
AHE	BUS 007 b	BH 2	BUS A00 L
AJ!	BUS D10 L	BJ1	BUS 003 L
A 32	BUS D09 L	B. 2	BUS A02 L
AK!	BUS D12 b	BK1	BUS 105 L
AK2	BUS D11 L	BK2	BUS A04 L
AL!	BUS D14 b	BL!	BUS A07 L
Ab2	BUS D13 L	BL 2	BUS A06 L
AM1	bus pal	BM !	BUS A99 L
AM2	BUS D15 L	BM2	BUS A08 L
ANI	P1	BN!	BUS A11 L
AN2	BUS PB b	BN2	BUS A10 L
AP1	P	BP1	BUS A13 L
AP 2	BUS BBSY L	BP2	BUS A12 b
AR1	BAT BACKUP +15V	BR!	BUS A15 L
ARE	BUS SACK L	BR2	BUS A14 L
AS1	BAT. BACKUP -15V	BS 1	BUS A17 L
AS2	BUS NPR L	BS 2	BUS A16 L
AT!	GROUND	BT!	GROUND
AT2	BUS ER 7L	872	BUS C1 L
AU1	+20V	Bud	BUS SSYNL
AU2	BUS BR GL	Buz	BUS CO 1
AV1	中20V	BV1	BUS MSYN L
AV2	+20v	By2	-5V

```
3.0 HARDWARE DESCRIPTION
```

```
3.1 Introduction
The following is a detailed circuit deseription of the MOBOL
Bootstrap/tepminals module. yarious segments of this module dill be
analyzed separately for clarley. Ma30& cipcult schematics will be
pefepenced ehpoughtout the descatpton. (CS M930!menm).
3.2 Definition of Tepms
```

```
3.Z.1 Bootserap Program
Bootstrao program is any orogram which load another (usually largem)
ppogram into computer memopy fmom a pepiphepal device.
```

$3.2,28000$
Boot is a verb which means to inltiate execution of a hootstrap
program.
3.2.3 Bootserap
Boorseram and bootstrap progpam ape used intepchangeably,
3.3 ovepuiew

Tyolcally all PDPId comouters Depfopm what is pefepred to as a powep पO sequence each the power is apolied to their cPu module(s). This sequence is as follows:
3.3 Ovepulew continued

中5VDC COMES TRUE
BUS DC LO L RELEASEO
BY POWER SUPPLY
BUS AC LO L RELEASED
BY POWER SUPPLY
PROCESSOR ACCESSES MEMORY LOCATION 2A(8) FOR NEW PC

PROCESSOR ACCESSES MEMORY LOCATION 26(8) FOR NEW PSW

PROCESSOR BEGINS RUNNING PROGRAM
AT NEW PC CONTENTS

WITH AN M9301 BOOTSTRAP/TERMINATOR IN THE PDPII computer systam, on power ups the user can odelonally (a swltch on the M9301 can enable or disable ehis featupe) force the processor bo pead its new PC fpom a ROM memory location (unlbus bocation 773024(8)) and of fet switch bank on the M930d. A new PSW wlll also be mead from a location cunIbus Location $773026(8)$ in the M930! memory. This new PC and PSW will then dipect the processof to a progam (tyoically a bootstrap) in the M9301 ROM (UNIBUS memory loeations 77300 thry 773776).

If bootha on oower ups is disabled an extenmal switch op loglc lovel and be used to fopce the processop to execute a boot program. Programs in the M9301 can also be indtyated by program jumos to theip stapting addesses of through the START switch teature of a programmers switch console if one is avallable in the system.
3. 4 Power up Booting Logic
$A C$ LO and $D C$ LO
The stapus of every PDPII Dower supply is described by the two UNIBUS Conerol lines BUS AC LO L and BUS DC LO b. The condition of these two llmes in melation to the th volt outout of the power supply is tefined by UNIBUS specifications as summarized in figupe 3.

Flaupe 3 power fall Sequence

Power UD op Power DOWN
On the M9301, Power up sequences ape detected by the cipcuitey shown In flgupe A_{0} When $\$ 5$ volts fipse becomes erue, both bus AC LO, and BUS DC LO are assepted low. Assuming the POWER UP REBOOT ENABLE switch (SI-2) is closed on flip flop E29 will then be set. when bus DC LO b goes high followed by BUS AC LO L, this flomilop is then cleapet generating a lowno high transltion on the output of E? (aln 13) This transition tpiggers the onemhot Ell whien assepts UNIGUS addpess lines BUS AOQ by BUS 10 b and BUS Al2 L thru BUS A17 b fop 300 ms .

FIGURE 3 power fail sequence

```
    FIGUAE A
PONER UP BOOT LOGIC
```

Processop peads new orogram coumber

Duping he 300 ms timeout of Ezi the centmal poressop will be Deppopming les oower up sequence. when the processop atbemptse pead
 address bits enabled by the omeashot ape logically ored ro genepate the addess $773024(8)$, This locatom hapoens to be an addpess in the M930! pom space winich contains the stapting address of a secifle lsee Section 3.9) boot pouthe.

Processor fead new sbatus word

Having obtained a new PC from location 773024 (8) the processom thon
 locition $26(8)$ the adpess blts enaled by anembot El ape logicelly ORed to generate the addpess 773026 (B) which is also in the M930! ROM adpess space Once this tramsfer is completed the removal Of MSYN fPom the bus wll generate a ADDR CLR L slgnal isee Section 3.6) Which clears bhe onemshot (E21) timeout pemovina addpess blts bus A09, BUS A10. and BUS A12 thry BUS A17. The 300 ms timeour iench of E2l was chosen to guapanter enoygh time por all pDPll ppocessaps to complete the mo memopy pranspers described before peleasing the addpess llmes.

FIGURE 4
POWER UP BOOT LOGIC

The POWER UP $A E B O O T$ ENABLE Switch (SI- 2) can be used bo disable the logic shown in Flgupe 4 With this switch open the cleap fmput to the flipolioo E2g will always be low ppeventing it from ever belmg set On Dower pestapts. FAST ON bab TPI Is provided to allow switch SIm $\mathrm{m}_{\mathrm{m}} \mathrm{be}$ pemoted externa! to the module, Note that when an extepnal switch is used. SI-2 must be left in the ofp position.
3. 5 Externol Boot Cipcult

Tho processor can be externally activated by grounding the fast ON tab PP2 Imput, as shown IA FIGURE 5, This low input sets fliomplop El3 which then generates a BUS AC LO b signal on the UNIBUS Upon seelng को

FIGURE 5
EXTERNAL BOOT CIRCUIT

UNIEUS SIGNAL EVERY POPII PPOCESSOP WIII begin a Dower down moutine anticlparing a peal powep failupe. Atter comoleting this poutine, the
 I will peppopm oomer up sequence thpough location $24(8)$ and 26(8).

When bhe EXTERNAL BODT inout is peleased the oneshot Eli is \& figgeped causing an 6 ms timeout and the set inout to flipoplop El3 pemoved. At the and of the onemshot timeout ilipmplop Els is elocked low peleasing che Bus $A C$ Lo h ine and fiping the 300 ms omemshot (E2d) mentloned In Section 3.4. The ppocessom then is popeed to pead fes new PC and PSW Prom location 773024 and 773026 pespectively as deserlbed in Section 3.4.

FIGURE 5
EXTERNAL BOOT CIRCUIT

TP2 switch closure

BUS ACLOL
E ONE SHOT THROAT

$$
\begin{aligned}
& \text { Hons } \leq t \leq \infty \\
& \text { Figure } 6 \\
& \text { External Boot TimING }
\end{aligned}
$$

3.6 Power Up Tponsfer Detection Logic

FIGURE 7

TRANSFER DETECTION LOGIC
After BUS AC LO L and BUS DC LO L have performed heip Dowep up sequence as described in section 3 , 4 , the logic shown in flgupe 7 counts the fipst two DATI tpansfers on the UNIBUS and genepates a 75 As oulse on the CLR $A D D R L$ line. the two UNIBUS transfeps geffopmed Wll be to obtain a new PC and PSw as opeviously described. The CLR ADDR b pulse pesulting will be used to clear the one shot Ezl shown in Flgupe 4 feleasing bus address line BUS ADa, BUS AlD, and Bus Alz thpu BUS A17.
3.7 Power UD Cleap

The circult shown in figure 8 is included on the M9301 to auarantee hat spectlic stopage elements on the module are cleared when power is fliat apolled the PWR CLR L signal will be held low fop appmoximately 70 ms apter the t5VDC has peturned assuming the t5V supply has a pise the of less bhan 20 ms . The exact peplod of time fop holding pin CLR L is a function of the pise time of the tSVDC cower supply.

FIG. 7
TRANSFES DETECTIONLOGIC

FIG. 8
POWER UP CLEAR LOGIC
3.8 Addpess Detection Logic

M9301 Addpess Soace
Figupe 9 shows the comolete UNIBUS addpess detection logic on the M930. The DUPDose of this cipcuitfy is to detect UNIBUS adfesses Whthin the address soace of the M930! 77300(8) -773777(8) and 765000(8) 765777(8)) and pacognlze the speciflc addesses $773024(8)$ and $773026(8)$ fop the powep up cipeuit previousiy descibed in sectons 3.4 . and 3.5 .

FIG. 9
ADDRESS DECODER LOGIG

M930! Memopy Access Constralnts

The clpculepy show In Figupe 9 detepmines when the M9301 ROM addpess space is belng aceessed. UDon fecelving a recognlzed unibus address. and BUS MSYN, the ROM data outputs ape enabled onto the UNIAUS data llmes (BUS DOD b BUS D 15 L) and BUS SSYN L is emabled 200 As latep. Condtions which must be met before enabling the ROM data and petyping BUS SSYN are as follows:

3. A BUS MSYN b control sigmal has been obtalmed.

Low ROM Enable Swlech
LOW ROM ENABLE switch (sl-1) shown in flgure 9 allows the user to d sable the M9301 detection of UNIBUS addresses 76500 tru 765777. Phese addesses would nopmally repmesent the lower 256 words of the Mo30! memory space, Ofsabling the detecton of these addresses Slel ls set to OFF Dosition) becomes essentlal when that memopy space is belng used by other perioheral devices in the system. Fom M930! modules containing standard DEC programs users should note what program peatures wlll be eliminated by disabling M930! dipes

ROM Addpess Genefation
bogic shown in the lower hal of flgupe 9 peffopms two punctons. Plpse is peceives the mine adress imputs for the Ma301 ROM memomy
 773024 and genefates the offset switen enable signal (see secton 3 , 9 , ENAB JUMP b.
3.9 Addpess Offset Switch Bank

As previously mentioned in section 3.4 on all boots. masol processor obtalns ly new PC from location 773024(8) instead of location 24(8). When the M930l adeses detecton logic (sectlon 3, 8 , decodes the address $24(8)$, lt enables (Via ENABL JUMP L) the addfess oftse swlech bank (Flgupe iof shown below the contents of these swltenes, comblned with the contents of the specilied addiess in MO301 ROM memopy, opoduce new PC pop the CPU. This new Pc will polmt bhe processor to bhe stapting addpess of a spectplc program cusally a bootstrap poutine) in the M9301 memopy. several programs con be facluded in the M930! memopy with any one being usep selectable bhrough the address offset switeh selection

```
Example:
M930! ROM addmess 773024 contalms = = 173000
Offser Swlech Bank contalms
New PC pead by CPU254
\[
0-0000
\]
New PC pead by CPU
173254
```

FIGURE 10
ADDRESS OFFSET
SWITCH BANK

3.10 ROM Memofy

The heapt of the M9301 is the 512 word ROM (Read Only Memopy) showm in Figupe di, It is composed of four 5i2x x Bit Trimstateroms organized in a 512×16 bit conflguration. All poup units shape the same address lines and produce lomblt pDPall instructions for execution by the processor.

All foup ROM outputs ape always enabled, so any change in addess imputs will result in a change in the UNIBUS data limes when the ENAB DATA signals in figure gape emabled. For fupther information on M9301 compatible ROMS, CONSULT THE ROM SDecillcations shown in the Appendix.

M930! users that program their own PROMS should note the following ppogramining constraints.

1. Thepe is no addess op data output pranslation peaufred.
2. UNIBUS address locations $773000(8)$ thry $773776(8)$ ape located In the lower 256 wopds of PROM wond space and UNIBUS addess locations $76500(8)$ thmy $765776(8)$ ape pesident in the uppep 256 words.
3. When coding PROM patterns data bits DOI thru DG8 must always contain the inverse of the data peaulped to compenstre fop the extra inversion logic avaliable in the ma30! 0ptsec swlech cipcuitey.

FIGURE 11
M93O1 ROM MEMORY

3.11 M930! TERMINATOR

The tepminator section of the M9301 consists of poup resistor pack cipcults each containing the reaulped pullaup and pulladown pesistors Por proper UNIBUS termination, Since PDPIl/04 and PDPId/34 computers incopporate QUS GRANT Dulluup resistops on the processor modules, space has been left on the M930! for live jumpers (Wl thpu W5) whleh -llow the user to select whether to include BUS GRANT oullmup peststors: TABLE 2 indicates which versions of the Ma30 have BUS GRANT Jumpers installed.

Caution should be taken when inserting M9301 modules in vaplous PDPId (PDPII/05, 11/10, 11/35, 11/40 computeps, If the ppocessop in question does not have bus GRANT Dullmups on the cPu, jumoers Wl through W5 on the M9301, should be inserted op the M9301 should be posttoned at the end on the UNIBUS fupthest from the CPU.

```
4.O MOSO! VARIATION
```

4. 1 Overview

The M9301 Bootstraplifeminator oresenty comes in five vaniations as described in the following sections. Table 2 summapizes the differences between each variation.

	M9301				
	$=0$	- YA	- YB	myc	-Y0
EXTERNAL BOOT SWITCH RESTART	*	YES	YES	NO	YES
POWER UP REGDOT ENABLE RESTART	*	YES	YFS	NO	YES
PROGRAMMERS CONSOLE STANDARD WITH COMPUTER	*	NO	No	YES	YES
READ ONLY MEMORY (ROM)	NO	YES	YES	YES	YES
SOCKETS SUPPLIED FOR PROGRAMMABLE (ROM/PROM)	YES	NO	NO	NO	No
BUS GRANT PULGEUP TERMINATOR RESISTER (WI THRU W5)	YES	NO	NO	YES	No
SWITCH SELECTABLE BOOTING	*	YES	No	YES	NO
STANDARD DEC BOOTSTRAPS ANO MASSBUS DEVICE BOOTS	NO	NO	YES	No	NO
STANDARD DEC BOOTSTEAPS	NO	YES	NO	NO	No
PDP 11/70 USER PROGRAM	NO	NO	NO	YES	NO
DDCMP USER PRGRAM	NO	NO	No	NO	YES

* indicates user selectable

TABLE 2
M9301 VARIATION FEATURES

M930: Vaplation Usage

General:
Non of the following M9301 vaplations wll function in a pDPll system contaling a unibus pepeater, unless the M930! is inserted in a tepminatop position on the processor side of the repeater.

M9301 - Can be used in any PDP11 computer ehat accepts an extended lengen tepminator, The user defines the bootstrap op program avallable im M930\& Rom space.

M9301 - $Y A=U s e d$ in most PDP11/O4, and 34 OEM machines but is opogram compatble with all PDPll machines that will accept an extended length tefmlnator. Note however. that in other machines having cpus which do mot contain Bus Gqavt pull Up resistops, the MOBDIFY must be placed at the end of the UNIBUS fapthest from the CPU.

M9301 - YB - Same as the M9301-YA exceot it is fntended for ent user machines in the PDP11/04. and 34.

M930 - YC - Fop use in only PDP11/70 machines.
M9301 MD Can be used in any PDP1d machine, Caution should be taken, however, when lasepting the Ma30 in some popll computers. If the opocessor in auestion does not have BUS GRANT Dull-up pesisters on the CPU, Jumpers it thru W5 on M9301 should be inserted or, the M930d should be placed at the end of the UNibus furthest from the processof. (See Section 3.11).
4.2 M9301.0

The M93040 has been created as a universal bootsprap device which allows the user to program and install customized 5iz x 4 hit ROMS. This module version comes with four dowin iC (integraped circuits sockets in place of the roms mopmally inserted on other module verstons. For pinout and access time constraints on roms used, consult the Rom Speciflcation shown in the appendix. When conflguping Rom blt patterns for the M930I-0. care should be taken to arrande them to meet the addess and data output playts on the module. bsee secton 3.10)

4.3 M9301-YA and M9301-YB Versions

Two versions of the M930\& have been created for use in the PD dd/DA, and 34 , computers. One verston designated Ma3日inya, is for OEM (ondginal equipment manyfactuper) use and the other destgmated MO301-YB is for end users. Both units contaim baslc cpu and momory GONO GO diagnostles along with specifle sets of bootsprap progems as shown in Table 3 and Table 4 .
4.3.1 Physical Differences prom the M9301=0

The only ohysical diference between the m9301-yA/M930y=yb modules and the M930!- preylously described, is that specially progpanted Tri State 512×4 bit ROMs are inserted in the four locations occupled by 1601n DIP sockets on the M9301-0.
4.3.2 M9301-yA and M9301-yb program Memory Man

Table 5 is a program memory map of the M9301-yA and M9301-yb modules and bplefly lists the nature of each dagnostic test in the ROMS.
4.3.2.1 Basic CPU Diaanostics

TEST 1 - SINGLE OPERAND TEST
This test executes all single operand instructions using destination mode o. the basic oblective is to verlfy that all single operand instructions oberate: it also provides a cupsopy check on the opepation of each instruction while ensuring that the Cp! decodes each fnspructon in the coprect manner.

PEST f bplags the test destination register through its three oossible stabes zero, negative, and posttive. Each instruction opepates on the register contents in one of foup ways:

1. Data will be changed via a dipect operation, ioep incement. cleap, decpement, etc.
2. Data will be changed via an indipect odepation i.e.. arithmetic shifts, add cappy, and subtpact cappy.
3. Data will be unchangedp but opepated upone via a dipect opepation, $\mathrm{l}_{\mathrm{n}} \mathrm{e}_{\mathrm{a}}$, clear a peglster alpeady contanlag zeros.
4. Data wlll be ynchanged via a nonmodifying instruction (TEST).

Note bhat when operating upon data in am indipect manner, the data is modifled by the state of the a oopopplate condition code. Apithmetic shlft will move the "Cl blt into op out of the destination. This opepation when derformed copfectly, inolies that the "Cl bit was set coprectly by the previous instruction. There are mo checks on the dote integrlty pilor to the end of the test. However, a check is made on end the result of the datamanipulation. A corpect pesult implies ehat all insepuctions manioulated (op, did not manloulate) the data in the coprect way, If the data is incorpect, the program will hang in a progpan loop until the machine is halted.

TEST 2 - DOUBLE OPERAND, ALL SOURCE MODES,

DESTINATION MODE

This bes veplifes all double operand general and logical Insepuctionmeach in one of the seven modes lexcludes mode 0. Thus, two opepations ape checked the coprect decoding of each doubla opepand instruction and the coppect operation of each addessing mode fop the soupce operand.

Each instruction on the test must operate coppectly in opder pon the mext instruction to opepate. This intep-dependence is cappled thmough to the last finstuction (blt test) whepe, only through the coppect exacution of all previous instructions is a data fleldexaminet popa spociflc blt conflgupation. Thus, each instruction priop to the last sepves to set up the polnter to the test datas

Pwo checks on fnstruction opepation ape made in TEST 2 . one eheck, a branch on condition is made following the compape instructione while the second is made as the last instruction in the test sequence.

Slace the GOANO GO best pestdes in a ROM memofy all data manloulation (modiflcation) must be pertormed in destination mode (registep contalms data, ine dara and addressing constants used by TEST $z_{\text {a }}$ ape contained within the ROM.

It is important to note that two difterent tyoes of opepations must execute coprectly in order fop thls test to opeate:
d. Those instructions that paritcipate in computing the final addpess of the data mask for the final bit test instruetion,
2. Those instructions that mantoulate the test data whin the pegister te genepate the expectea bit pattern.

Debecion of an epror within thls test pesults in aprogam 1000 ,
PEST 3 - JUMP TEST MODES 102 AND 3
The ouppose of this eest is to ensume coprect operation of the sump lnsepuction this test is constructed such that only a Jump to the
 1nseructiong

There are two posstbie fallure modes that can occur in thls testg

1. The jump addpessting cipcutpy will malfuncton casing a transper of execution to an incoprect instruction seaunce op noneexdstent memopy.
2. The jump adressing cimcultey wlll maliunction in such a may as to cause the CPU to loop.

The latrep case is a logical eprop fadcator, phe fopmer, howeverp may manlfest ltself as an aftepmbe fact eprop, for example, the the jump causes contral to be glven to other rourtnes within the M930d. ghe lntermependent lnseruction sequences would probably cause o
pailupe so eventually occup. In anv casep the falling of the jump instructon will eventualiy cause an out of seauence of "lllogical eventl booccur. This in itself is a meaningful indicator of a mal unctoning CPU.

This pest contains a JUMP, MODE 2. This instruction is not comatible acposs the PDP=1! line. Howevep, it wll operate on anv odpall. whtht this test due to the unique programming of the instuyction Withla TEST 3. Before lllustrating the operation it is lmpoptant to पndenstand the difference of the JUMP MODE 2 between machines.

On the PDP-11/20, 11/05, and $11 / 10$ ppocessor, for the Jump Mode 2 (JMP (R) $\mathrm{O}_{\text {) }}$ the pegistep (R) is incpemented by 2 ppior to execution of the sump. On the PDP-11/40 and 11/35. (R) is used as the jump address and incremented by 2 after execution of the jump.

In order to avold this incomparabllityp the jump (R)t is programmed With (R) pointing back on the Jump itself. On 11/20, 11/05, and 11/10 processors execution of the instruction would cause (R) to be lmeremented to dolnt to the following instruction eftectively continuing a nopmal execution sequence.

On the PDPall/40 and $11 / 35$ processofsp the use of the dinitial value of (R) Wll cause the Jump to "loop" back on fiself. However, coprect operation of the autooincrement will move (R) to point to the next Insefuction following the initial jump. The jump will then be executed agaln. However, the destination address will be the next instruction in sequence.

PEST 4 - SINGLE OPEAND, NON=MODIFYING, BYTE TEST
Thls best focuses on then one unlaue single operand finstructom, the TST. TST is a special case in the CPU execution flow since is is a monmodifylng operation. TEST 4 also tests the byte operation of this inseruction. The TSTE dnstpucton will be executed in "ode 1 (pegister deferfed) and Mode 2 (fegister deferped auto increment.

Phe TSTB is programmed to operate on data which has a negative value mose signlflcant bye and a zepo (not negative) least significant bye.

In order for this test to operate properly the TSTB on the LSB must. flist, be able to access the even addpessed LSB, then set the prooep condibion codes. The TSTB is then rexexecuted with the automincement facllity, Apter the automincrement the addressing feglstep should be Dointing to the MSB of the test data, Another TSTB is executed on Whet should be the MSB. The "Nll blt of the condition codes should be set by ends operation.

Coppect execution of the last istb implies that the automincrement pecognlzed bhat a byte operation was reauest, thereby only Incpementing the addmess tm the pegister by one pathep than two. If the coprect condition code was not ser by the associatad TSTB Instruction the program wlll loop.

TEST 5 - DOUBLE-OPERANO, NON MODIFYING TEST
These ape two non=modifylng doublemperand instructions the compare (CMP) and blt test (BIT). These two instructions operate on test daba In soupce modes 1 and 4_{0} and destimation modes 2 and 4°

Phe BIT and CMP insepuctions wlll operate on data consisting of all ones (177777). iwo separate flelds of ones are used in opder to Utilize the compare instructions, and to provide a fleld lapge enough to handle the automincementing of the addressing pegistep. since the compare instruction ls executed on two ililds contatning the same data, the expected pesult is a true "Z" bit, dmdicating eaualty,

The BIT instruction will use a mask argument of all ones gainst anobher field of all ones. The expected pesult is a monmero condition (Z).

Most fallupes will pesult in a one instruction loop.
4.3.2.3 Realster Disolay Routine The register display mouthe prints out the octal contents of the CPU registers RO, RA, SP and old $P C$ on the console tefminal. inds seauence will be followed by a prompt chapacter (\$) on the next line.

Example of a eyolcal pelneout.

1. Whepe x signifies an octal number ($\boldsymbol{\theta}=7$)。
2. Whenever thefe is a power up poutine of the bOOT SMIPCH is Pelessed on PDP1I/Q4 and PDP11/34 machines, the PC at this Bime will be stoped in R5. The contents of R5 spe then printed as the OLD PC shown in the example.

The prompting character stplng ladicares that diagostics have been pun and the processop is operating.
4.3.2.3 Memory Modifying CPU Diagnostics

PEST 6 - DOUBLE OPERAND, MODIFYING BYTE TEST
Phe oblective of this test is to vepily that the doublemonerand, modifylag instructions wlll operate the the oyte mode. TEST 6 contalns

2. Test souce mode 3 , desthation mode 2 .
3. Test source mode $0_{\text {, }}$ destination mode 3 , even ove.

The move byte (MOVB), bit clear byte ($B I C B$), and bit set bye (BISB) afe used within TEST 6 to verlfy the opeathon of the modifying doubleoperand qunctions.

Since modifying instructions are under test, memory must be used as a destination for the test datag TEST buses location 50a(n) as a destination addpess. Latep, in TEST 7 and the Memopy Test, location 500 is used as the flist avallable stofage for the stack.

Note that, since TEST 6 is a byte test. locotion 500(8) implles that both $500(8)$ and 501 afe used for the bytes test leven and odd, pespectively, Thus, in the word of data at 500 add and even bytes ape caused to be all zepoes and all ones throughout the test. Each byte is modified Independently of the other.

PEST 7 - JSR TEST
The JSR is the fimst test in the GO-NO GO seauence that utilizes the stack. The jump Subroutine command (JSR is executed in modes 1 and 6. After the jSR is executed, the subroutine which was given controlp Wlll exambe the stack to ensupe that the coprect data was olaced in t compect stack location (50(8)). The routhe will also ensupe that the llae back pegtstep Dolnts to the coppect oddress Any errors detected 1 m this Rest will result in a Halt.

TEST 8 - MEMORY TEST
Athough this test is intended to test both core and MOS memories, the date Datterns used are designed to exhiblt the most taxing operation for MOS. Before the detalls of the test are described, it would be approptate to discuss the assumptions placed upon the fallupe modes of the MOS technology.

This rest is incended to check for two types of problems ehat may arise In the memopy.
do Solld Element of Sense Amp pallupes.
2. Addeesing Malfunctions external to the chip.

The stmolest fallure to detect is a solld read op witteproblemm Ip a cell falls to hold the apppoplate datan it is expected that the Memory test will easlly detect this problem. In addition. the apogram atempts to saturate a chto in such a way as to cause maralnal sense amo operation to manffest ltself as a loss or plck=un of unexpected dotan The $4 k x I$ chip used in the memopy consists of a $64 \times$ ha matrix of MOS seopage elements. Each 64 bit section is tied to common sense ampliflef. the objective of the progam is to satupate the section witho at fipst all zepoes and one "d" bit. This "d" bit is then floated through the chip. At the end the data ls complemented. and the test mepated.

For extermal addressina fallupesp it is assumed that if two of more
locations are selected at the same timep and a wite occupa it is likely that both locations wlll assume the coprect state. Thls, pplop Bo wilting any test data, the background data is chacked to ensume that mepe was no crosstalk between any two locations. All failupes will pesult in program halt as do fallupes in tests and 7 . Aptep the hale ly is expected that the operator wlll deppess the boot switch causing RD (Expected Data), R4 (Received Data), SP (Palling Addfess), and PC (PC indlcating memopy pallupe) to be disolayed.

NOTE
If the expected and pecelved data ape the samen it is highly probable that on intepmltent fallupe has been detected (l, e, eimling or margin problem). The peason the expected and received data can be identical is that the test program rewpeads the failing address after the initial monmcompare is detected. Thus, a fallupe at CPU speed is detered, and indicated by the peading of the falling address on a single pefepence (not at speed) operation.
 M9301-YB - Peploheral devices whose bootstraps ape suppoped by the M9301-YA and M9301-YB afe ifsted IA TABLE 3 and TABLE $厶_{\text {A E EACh of }}$ these bootstraps is compathle with standard DEC boots and oofate as follows.
4.3.2.4.1 RXId DISKETTE Loads the first 64 words (200 byes) of dete from tpack onen sector one lnto memory location 0.177 beginning at location on Once loaded the contents of location o is checked, If lo contalns 240 , opefation is transpeped to the poutine beglanimg in location 0 , If location does not contain 240 , the boot is postapted Restarts Wlll occur 2000 times before the machine is halced aucomatcally.

4, 3, 2月, 2 TA11 CASSETTE This bootstrap is identical to that of the Axil except hat data is loaded from the cassette beglaning at the second block.
4.3.2.4.3 PCII PAPER TAPE READER Loads An Absolute boadep fonmatted eape lnto the upper memory locations xxx746 \$0 xxx777 dependent on memopy sized. once loading is completed ehe boot epansters operation to a pouthe beglmating at location xxy752. In systens contalining an MO301my whlch ls set un not co pun diagosulcs

PEST 1 thru TEST 5, $X X X$ Will become OL7 not ehe upper papt of memopy
4.3.2.4.4 - DISKS (excluding RX11) Load 1000 wopds (2000 byes) of data from the disis inco memopy locations 0=1776.

```
4.3.2.4.5 MAGTAPE - TM11 - Loads second pecopd (100B byees maximum
sizel from the magtape |nto memory location gm777. TJUlG boad second record (200 bytes maximum size) from magtape into memory 10cations \(6=1777\).
```

4.3.2.4.6 CONSOLE EMULATOR - When this routine is used in conjunction with the useps tepminalp functions quite similap to those faund on the programmeps console of traditional PDPIl family computers ape generated, as shown the the summary below. the descriotion of the operation that follows assumes that the useris ma301 module is conflgupated to enter the comsole emulaton routine colp switch settings for emulator are shown in TABLE(3) on POWER UP op whenever Bhe B00T swltch is depressed.
a summary of the console emulator functions
LOAD = This qunction loads the addess to be manloulated into the system

EXAMINE - Allows the opepator to examine the contents at the address that was loaded and op deposited.

DEPOSIT - Allows the Operator to wplte fato the addess that was loaded andlor examined

START Intrializes the system and stamts execution of the progpan et the addpess loaded

B007 -
Allows the booting of a specifled device by typlma in a two character code and unlt number.

Console Emulatop Operation
The console emulator allows the user to depform load, examine, deposir, start, and boor operations by tyoing in appropriate code on the keyboard. The comblnation of the console emulator routhe and the keyboard wlll be referred to as "The Console Emulator".

```
Inepoducelon
The simolified ooerator's flow chapt of the console emulator poutthe
(whteh wlll be referped to as the Operatores Flow Chapt) is gpesented
atyents polnt in the text, to glve the peader a unipled pletume of the
console emulatop pousine.
Detolled discussions of each aspect of the chart ape ppesented in
Sections in the following Daragraphs.
Symbols
Rectangle
Rectangles indicate auromatic operatioms which ape peftopmed by the
machine. There is only one entrance and one exit on a pectangle.
Dimmond
A diamond fadicates an automatlc opepation which can take elther of
two paths depending on how the question stated within the diamond is
answered.
cipele
A efpcle lndicates opepator action, and the moving of a swltch op the
gyoing of keys.
```



```
CR
CR is the symbol por the capplage metupm key.
Using the Console Emulatop
Aperep The $ -
Once the system has been powered up op booted, and RD, RA, SP, PC and
$ have been printed, the console emulator moutine can be used.
Keyboard Inoue Symbols
The discussion of keyboapd input format uses the following symbols:
    Soace Bar : (SB)
    Capriage Retupn Key: (CR)
    Amy Number - }
    (Oceal Number)key : (x)
Keyboard Inout Fopmat: Load Examine dedosit start. All eharacter
keys shown in the following discussion pepresent themselves with the
exception of those in papenthesis.
FUNCTION KEYBOARD STROKES
Load Addpess \(L(S B)(X)(X)(X)(X)(X)(X)(C R)\)
Examlne E (SB)
Deposic \(D(S B)(x)(x)(x)(x)(x)(x)(C R)\)
S造安
S (SR)
```

Opdep of Signiflcance of Input keys
The fims chapacter that is tyoed will be the most significant character, Conversely, the last character that is typed is ene last stgniflcant character.
heading Zepos
When an addess or data wora contalns leading zerosp these zepos can be omltied when loading the addiess of depositing the data.

Example Usima the Load, Examine, Deposite and Start Functions

```
d. Tupn on powep
2. Load oddpess 700
3. Examine location 700
4. Deposit 777 into location 700
5. Examinc location 700
6. Seape at location 700
    USER TERMINAL DISPLAY
1. TURNS ON POWER XXXXYX XXXXXXX XXXXXXX XXXXXXX
2. L(SB) 700 (CR) $ L7M0
3. E(SB) $ E 000700 XXXXXXX
4. D(SB) 777(CR)
5. E(SB)
$ E 000700 000777
6. S(CR)
$ S
```

Even Addpesses Only
The console emulator poutine wll not work with odd addresses. Even mumbered addesses must almays be used.

Successive Operations
Examine
Successive examlne opepations ape Depmitted. The addpess is loaded fop the flpst examine only, succesive examlnes cause the addess to fncpement and will display consecutve addesses along with thelf contents.

Examole of Successive Examine Operation
Examine Adpesses 500-506

Operaror INPUT	TePminal DISPLAY
LCSB 500 CR	L 500
$E(S B)$	SE 00500 XXXXXX

$E(S B)$	$\$ E 000502$	$X X X X X X$
$E(S B)$	$\$ E 000504$	$X X X X X X$
$E(S B)$	$S E 000506$	$X X X X X X$

Deposit
Successive deposit operations are permitred. The procedure is ldentical to that used with examine.

Example of Successive Deposit Doepations
Dedosit 60 1neo Location 500
2 into Location 502
4 Into Location 504
Operator Indut Teminal Display
LCSB 500 CR $\$ \mathrm{~L} 500$
$D(S B) 60 \mathrm{CR} \quad 3060$
$D(S B) 2 C R \quad \$ D 1$
$D(S B) \quad 4 C R \quad$ SD 4

Alemnare Deposit - Examine Opepations
This mode of operation will not fncpement the address. the addpess wll contaln the last data which was deposited.

Example of Altepnate Depost Examine Operations
Load adress 500 deposit the following mumbers with examines aftep overy deposis 1000,2000,5420.

Alefrare Examine m Deposit Opepations
If an examine is the tifst instruction after a load seauencen and is alepnately followed by deposits and examines，the address will mot be fnepemented and the addess will contaln the last data wheh was depostred．\quad the above examole apolies to this ooepation whthethe exception of the ofder of examine and deoosit，the end pesult is the same）．

Ll解安 of Operation
The M9301 console emulator routine can dipectiy manioulate the lower 28K of memofy and the $4 K I / 0$ dade．see section 5 for an exolanation of echniaues peaulped to access addresses above the lower 28.

Booting Fpom The Keyboard
Once the $\$$ symbol mas been displayed in response to system oomep comlng up，op the boot switch being deppessedp the system is peady to load bootstrap from the device which the onerator selects．

Console Emularor Boot Procedures
1．Find the two character boot command code on either table 3 op Table 4 ，that corpesponds to the peploheral to be booted．

2．Load papertapen magtaper discr etc．lnto the peripheral bo be booted if peauiped．

3．Vefliy that the perionepal indicators signify that ohe pepipheral is ready（if apolicable）．

4．Type two chapacter code obtalned fom the table．
5．It thepe is mone than one unit of a given peplohepalo tyoe他 unit number bo be booted（ 0 －7）if no number is byped， the default number will be 0 ．

6．Type（CR），this initiates the boot．

Belope Booting．
Always Remember：
1．The medium（paper tapen discomagtape，cassettep ete，must be olaced in the peripheral to be booted orior bo bootina．

2．The machlne will not be under the control of the console emulator poutine after booting．

3．The opogram whlch is booted in must：
I) be self stapting op 2) allow the user to load another program by using the cont function op 3j be opestapiable a ter the consol emulator is mecalled.
3. Actuating the boot switch will alwavs abopt the ppogpam belng fung The contents of the general pegistens (RD日RT) wlll be desproved. There is no way to contimue with the grogram which was aboped. some opognam ape designed bo be peseaptable。

Example; Booting the High Speed Reader Using The
Console Emulatop
An operabor wishes to load the CPU Diagnostic fop an 11/39 compurep system. The system has a high speed peader.

Procedupes
d. Place the HALT/CONT swltem in the CONT position.
2. Obsain a sbys

- Tupning on system Dower
o. Actuating the boot.
(RD, RH, SP, and $P C W l l l$ be printed oplor to the δ,

3. Place he absolute loader papar tape (coded leadep sactong im the high speed peader.
4. TVpe: PR (CR)

The absolute loadep tape wlll be loaded and the macmac will hoit.
5. Remove he absolute loader and place the leader of the

6. Move the HALT/CONT switch $\%$ o HALT and then retufa it bo CONT. The diagnosic wlll be loaded and the machlne will halt foomal for this opogramminge nonodiagnostic progems could Deself staptng.
7. If opogpan is not self staping activate the soot/INIT swlich this will pestart the console emulator poution
8. Using the console emulator deposit desired functons lnto the Software swlech Registep (a memopy addpess) location. See the diagnoselc pop the softwape swlich pegistep"s aceval location and significance.
9. Using the console emulatop, load the stapting addpess and stapt the opogram as described eapliep fn this section.

Example of Booting A Disc Using the Console Emulator
A user wishes to boot the system skil Disk, which contalns bhe cpu Diagnostle which the user wants to rum.

Procedure:

1. Verify the the HALT/CONT switch is in the CONT DOSition amo the write lock switch on the Rkll oeripheral is in the on posttion.
2. The user tupas on system Dower. The system tepminal diselays RO, R4, SP and PC which are random binapy numbers. Fnllowed by a $\$$ on the next infe.
3. The user placed the olsk dack into drive zero.
4. When the RKa5 load light aopears the system is ready bo be booted.
5. The user tyoe in: DK (CR)

This causes the loading of the bootstpap poutine into memopy and the execution of that poutime.
6. The program should identify itself and initiate a dialogue (which won t be discussed here).

CONSOLE EMULATOR

The followlng discussion will describe the efpects of emtering Intormation lncoppecty to the console emulator routine.

Symbols

Space Bar (SB)
Gapriage Retuph Key (CR)
Any Oce: Number (0 - 7) Key (x)
Nonmoctal Number (8 or 9) keys (9)
(Y) Represents:

1. All keys (other than numerics which are unknowna
2. Keys which ape known but do not consluute valld code in the context which they ape entered.

Repep topevious sectons for a discussion op the coprect method operating ene console emulator poutine.

ESCAPE ROUTE
If an entry has not been comoleted and the user peallzes that an Incoprect op unwanted chapacter has been enteped, depers the fub out or delete key. This action will vold ehe entipe entpy and allow the user to bpy ageln.

	DEPOSIT ERROR		USEFUL E	EXAMPLES
ERROR	RESULT	REME9Y	OPERATOR	TERMINAL
L was followed by a key othep than（SB）	Teminal display will Immediately return a $\$$ to signlfy an unknown codes No address is loaded．	Thy again．	$L(Y)$	$\begin{aligned} & \$ L \\ & \$ \\ & \$ \end{aligned}$
An Nllegal fnon oceall number （8 op 9）is eyped after the coppect load entrancen wlthln an otherwise valld number．	Upon peceipt of the illegal number，the console will ignope the entlpe addpess and petupn a $\$$ ．	Tfy again．	$b(S 8) \times \times \times 9$	$\$ \operatorname{L} X X X$
Am imcopfect lpha key is eyped aftep the coppect load entpance wlthln an otherwise valid number．	Same as 1llegal mo．	fry ogaing	L（S日）$x \times x \times$	$\$ L_{\$} x \times X$
The mose signtifleant oceal number in a six blt addpess is greatep than one．	An adpess will be loaded，however．the state of the most sige ndifcant addpess blt Wlll be determined by bit 15 onlv： $\begin{aligned} & 2=03=14=0 \\ & 5=16=07=1 \end{aligned}$	Tpy again 1个 pesulped．	S（S8） $6 \times x \times x \times x$	$\$ L \backsim X X X$
An unwamed byee legal octal number 1 s loaded．	Addpess wlll be loaded． but unchanged．	Tpy agalm，		
Am exere（seventh）octal mymber is typed．	The loaded number will be incoprect．The sys＝ rem will accept any slze wopd but will only pem member the last six chapacteps typed in．	Try again．	$L(S B) 8 \times \times \times \times X X$	$\begin{aligned} & \text { \$L } 1 \times X X \\ & \text { \$ } \\ & \text { Actually } \\ & \text { Load } \\ & \text { IXKXXXXX } \end{aligned}$
A memory locablon hlahep than he highest memopy locablon avallable in the machine is loaded．	No errops Wll result unless a deposit．exm amine or stapt is atyempted．	TPV againo	$\begin{array}{ll} L(S B) & \quad 1 \times \times \times X \\ & (C R) \end{array}$	L $1 \times x \times x \times$
boad entpance and number Were entered copmectly （CR）wasn enterad．	Machtne will wolt ino definitely for（CR）荌 will not be perupned．	Tyoe（CR）	$\begin{aligned} & \text { L(SS) } \quad x \times \times \times \times \\ & (C R) \end{aligned}$	$\begin{aligned} & \mathbb{S} \quad X X X X X \\ & \$ X X X(C R) \end{aligned}$
E op S is pollowed by a key other than space．	Tepminal display Wll dmmedately petupn a s to cignify an unknown co	Tpy agaln．	$\begin{aligned} & E(Y) \text { OP } \\ & S(X) \end{aligned}$	$\begin{aligned} & \$ E \\ & \$ \text { or } \\ & =\$ \text { or } \\ & \$ S \\ & \$ \end{aligned}$

4.3.2.5 Program Flow of M9301-yA and M9301-yb - Figure 12 and figupe 13 show the program flows fop the M9301-yA and M9301-yb pespectyely. Note that entry Doints are dependent on the switch settinas sla! thru SI-10 on the M9301 module. Adapesses which must be generated fop the vaptous devices ape shown next to each entry.

4,3,3 Installation

As a universal bootstradterminatom modulep the m9301-YA and M9301-Y can be adapted by the user to meet a variety of boot requirements and system configurations. Major factors that must be considered duping installation are as follows.
4.3.3.1 Power UD Reboot Enable Automatic booting on all power uos can be enabled of disabled using the POWER UP REBOOT ENAB switem ((SI-2). Ifthis DIP switch is set to the "OfF" dosition the orocessor will power ub nomally obtaining a new PC from memory location $24(8)$ and a new PSH from location $26(8)$. When the switeh is set bhe "ON" dosition the processor will obtain its new pe from location $173024(8)$ which hapoens to be the address of the BOOT SELECT switches $\mathrm{Sl}=3$ thmy $\mathrm{S} I=10$.

The function performed by the REBOOT ENABLE switch (S1-2) can be remoted to an external switch using the FAST-ON tabs on phe M93日, MODULE THIS EXTERNAL SWITCH CLOSURE SHOULO BE MADE T? GROUND (ENABLING BOOT) USING FAST ON tat TP3 as a ground peturn. In the PDP 11/04, AND 34, when MOS memory is peesent with battery backup, a batrepy status indication signal is genepated by the power supply. This signel should be attached to the POWER UF REBOCT ENAB dAEut (TPZ) on the M930. If this status sigmal goes low the contents of the mos memory is no longer valld and must be reloaded usually from some mass gtorage device, The M9301, sensing the status of the memofy fopes a boot on oower up, allowing new data to be written into memory,

If the battery status input is high (logic "1"), the M9301 will not automatically boot on power un and execution will begin at the addpess specifled by location 24.
4.3.3.2 LOW ROM Enable This DIP switch SI-1) when set to the "OFFl position prevents the M9301 from pesponding to the UNIBUS addess range 7650 thry 756777. On ooth the M9301-YA and Ma3日inys. this oddpess space is occuoied by the DISKETTE (RX11) and CASSETTE (TAII) bootseraps.
4.3.3.3 Boot switch Selection - To select which device boot will be min on powermuns and external boot enables, eight DIP swltches (Sl-s thpu Si-10) ape provided on both the M9301-yA and M9301-YB. Actual

ONOOFF selection of each swltch for the vapious devices ape ghomin in TABLE 3.
4.3.3.4 External Boot switch - device can be extemallv boored USIAg the EXTERNAL BOOT InPUt On FAST ON tab TPI Ip this input is brought to ground BUS AC LO L will be activated causing the arocessor \&o Defiofm a POWER FAIL UDON Petupning ro a logic "I" thig inout Wlll deactivate BUS $A C L O L$ Initlating a POWER UP seavence in ghe CPU and thus the boot select switches. FAST ON tab TP3 should be used as a ground petuph for the external boot switch.
$4 \quad M 9301-Y C$
This version of the M9301 has been created specifically fop the 11/70. If contains baslc cpue cache and Memory diagostics ln addton to booting from one of 9 devices. It also includes the capabliliy of booting imto other than the lowest bank of ohysical memory.

Physical Differences from M9301
The MO301-YC vaplation uses 4. Tmimstate ROMOS which contain information used by the $11 / 70$. Tho module also reaulpes gulluy pesister for the bus Grant inces on the unlbus.

11/70 Bisic olagnostics
4.

See Fig. (14)

CACHE MEMORY DIAGNOSTICS

BODTSTRAP
PROGRAM
17773000

CPU AND MEMORY
DIAGNOSTICS

17765000

FIGURE 14
MO3O1-YC PROGRAM MEMORY MAP

```
4,4,2 General Description
The diagnostic portton of the opogram wlll test the basie CPUp
lncluding: the branches, the fegisteps, all addpessing modes, and
most of the dmstructions in the PDPall repeptoipe. It wlll ehen set
the stack Dointer to kepnel Daspace P,A,R. 7, check and tuma on, if
pequestedp memory management and the unibus map. and check memopy
from viptual address dG0 to 157776. After main memopy has been
veplfled, with the cache ottp the cache memopy will be tasted to
verify that molts" occup properly, then main memopy will be scanned
again to insupe that the cache is wopking ppoperly thmoughout the 28k
of memory to be used in the "boot" oderation.
If one of the cache memory tests failsp the operator can attempt to
"boot" the system anyway by ppessing "Continue". This will eause the
program to force "Misses" fo both aroups of the cache before golng to
the bootstrap section of the progmam.
```

4,4.3 Diagnostic Test Descpiptions
See tig. 15

TESTI THIS TEST VERIFIES THE UNCONDITIONAL BRANCH

THE REGISTERS AND CONDITION CODES ARE ALL UNDEFINED WHEN THIS TEST IS ENTERED AND THEY SHOULD REMAIN THAT WAY UPON THE COMPLETION OF THIS TEST.

TEST2 TEST CLR, MODE "g", AND MBMI"p"BVSM,BHI"。BLOS"
THE REGISTERS AND CONDITION CODES ARE ALL UNDEFINED WHEN THE THIS TEST IS ENTERED. OPEN COMPLETION OF THIS TEST THE "SP" (RG) SHOULD GE ZERO AND ONLY THE "Z" FLOP-FLOP WILL BE SET.

PEST3 TEST "DEC", MODE "Q". AND "BPL","BGE"."BGT","BLE"
UPON ENTERING THIS TEST THE CONDITION CODES ARE:
$N=D_{0} Z=1, V=0$, $A N D C=0$.
THE REGISTER ARE: RO = ? R1 = ? R2 = ?
R3: ? R4 = ? R5 =? SP = 000000
UPON COMPLETION OF THIS TEST THE CONDITION CODES WILL BE:
$N=1, Z=0, Y=\theta_{1}$ AND $C=0$
THE REGISTERS AFFECTED BY THE TEST ARE:
SP = 177777


```
TESTA TEST "ROR", MODE "O", AND "BVC","BHIS",BHI","BNE",
UPON ENTERING THIS TEST THE CONDITION CODES ARE:
N=1,Z = D, V = O, AND C = O.
PHE REGISTERS ARE: RO= P, R1 = % R2 = %
R3 = RR4 % %R5 = SP = 177777
UPON COMPLETION OF THIS TEST THE CONDITION CODES WILL BE:
N = |, 2 = 0,V = 1, AND C = 1
THE REGISTERS AFFECTED BY THE TEST ARE:
SP = 077777
```

```
TESP5 TEST "BHI", "RLT", AND "BLOS"
```

TESP5 TEST "BHI", "RLT", AND "BLOS"
UPON ENTERING THIS TEST THE CONDITION CODES ARE:
N= 目 Z = O,V=1, AND C = 1.
THE REGISTERS ARE: RD = ? R1=?R2=?
R3 % % R4 = %R5=? SP = 077777
UPON COMPLETION OF THIS TEST THE CONDITION CODES WILL BE:
N = 1, Z = 1. V = 1, AND C = 1
THE REGISTERS ARE ALL UNAFFECTED BY THE TEST.

```

TEST6 TEST "BLE" AND "EGT"
UPON ENTERING THIS TEST THE CONDITIUN CODES ARE:
\(N=1 . Z=1 . V=1, A N D C=1\).
THE REGISTERS ARE: RO = ? R! \(\quad\) ? R2 \(=?\)

UPON COMPLETION OF THIS TEST THE GONDITION CODES WILL BE:
\(N: 102=0, V\) © \(\quad 1 \circ A N D C=1\)
THE REGISTERS ARE ALL UNAFFECTED BY THE TEST.

TESTT TEST REGISTER DATA PATH AND MODES "2": "3". "6"
WHEN THIS TEST IS ENTERED THE CONDITION CODES ARE:

THE REGISTER REGISTER ARE: RO P RI = ? R2 = ?

UPON COMPLETION OF THIS TEST THE CONDITION COOES ARE:
\(N=0, Z=1, V=0, A N D C=0\).
THE REGISTERS ARE LEFT AS FOLLOWS:
```

$R 0$: 125252 R1 = 000日00, R2 = 125252, R3 = 125252

```


TESTIOTEST "ROL", "BCC", "BLT", AND MODE "6"
WHEN THIS TEST IS ENTERED THE CONDITION CODES ARE \(N=0_{0} 2=1, V=0, A N D C=0\) PHE REGISTERS ARE: RO = 125252 R1 : 000000 R2 \(\quad 125252\) R3: 125252, R4 = 125252, R5 = 125252, SP = 125252. MAPLOO = 125252
```

UPON COMPLETION OF THIS TEST THE CONDITION CODES ARE:
N=0,Z = O, V = 1, ANO C=1.
THE REGISTERS ARE LEFT UNCHANGEO EXCEPT FOR
MAPLOO WHICH SHOULD NOW EOUAL S52524.

```
TESTI\& TEST "ADO", "INC". "COM", AND "BCSM, "BLE"
WHEN THIS TEST IS EATERED THE CONDITION CODES ARE:
\(N=0, Z=0, V=1\) OND \(C=1\).
THE REGISTERS ARE: R月 = 125252, R1 = OADOER R2 = 125252
\(R 3\) ․ 125252, R4 = 125252, R5 = 125252. SP = 125252.
MAPLOO = 052524.
UPON COMPLETION OF THIS TEST THE CONOITION CODES APE:
\(N=0, Z=1, V=0, A N D C=0\).
THE REGISTERS ARE LEFT UNCHANGER EXCEPT FOR
R3 WHICH NOW EQUALS QOOQOO. AND RI WHICH IS ALSO ODGOEOO
PESTAR TEST "ROR", "BIS", "ADN", AND "GLO". "BGE"
WHEN THIS TEST IS ENTERED THE CONDITION CODES ARE:
\(N=0.2=1, V=0\) O AND \(C=\mathbb{O}\)
THE REGISTERS ARE: RO = 125252, R1 = OAMO日0.R2 = 125252

UPON COMPLETION OF THIS TEST THE CONDITION CODES ARE:
\(N=0,2=1, V=0 . \triangle N D C=0\) 。
THE REGISTERS ARE LEFT UNCHANGED EXCEPT FOR
R3 WHICH SHOULD BE MONIFIED BACK TO ODOODO. AND
RU WHICH SHOULD NOW EQUAL O52525
PESTI 3 TEST MDEC" AND "BLOS". \({ }^{\text {MBLT" }}\)
WHEN THIS TEST IS ENPERED THE CONDITION CODES ARE:
\(N=0,2=1, V=0, A N O C=0\).
THE REGISTERS ARE: PQ = 125252 Q1 \(\quad 00\) ODO R R \(=125252\)
R3 = \(000000, R 4=052525, R 5=125252\) SP \(=125252\)
UPON COMPLETION OF THIS TEST THE CONDITION CODES ARE:
\(N=1, Z=O, V=O D C O\)
THE REGISTERS ARE LEFT UNCHANGED EXCFPT FOR
R1 WHICH SHOULD NOW EQUAL 177777
TESTIム TEST "COM, "BIC",AND "BGT"P "BLEA
WHEN THIS TEST IS ENTERED THE CONDITION CODES \(\triangle R E:\)
\(N=10 Z=\theta_{0} V=\theta_{0} A N D C=0\).
PHE REGISTEHS ARE: RO = 125252, R1 = 177777, R2=125252
\(R 3=00000, R 4=052525\) R \(25=125252,5 P=125252\) 日
UPON COMPLETION OF THIS TEST THE CDNDITION CODES ARE:
\(N=0, Z=0, V=10 A N D C E 1\).
TME REGISTERS ARE LEFT UNCHANGED EXCEPT FOR
RO WHICH SHOULD NOW EQUAL OS2525. AND
RI WHICH SHOULO NOW EQUAL 052524
```

PEST15 TEST "ADC", "CMP", "BIT", AND "BNE", "BGT",BEG"
WHEN THIS TEST IS ENTERED THE CONDITION CODES ARE:
N= On 2 = On V = 1, AND C = 1.
THE REGISTERS ARE: RO = 052525, R| = 052524. R2 = 125252
R3 = 000000. R4 = 052525. R5 = 125252. SP = 125252.
UPON COMPLETION OF THIS TEST THE CONDITION CODES ARE:
N = O, Z = 1, V = O. AND C = O.
THE REGISTERS ARE NOW:
RO % 052525, RI = 00000, R2 = 125252, R3 = 000000
R4 = 052525. R5 = 052525. SP = 125252.
TEST16 TEST "MOVB","SOB", "CLR", "TST" AND "BPL", "BNE"
WHEN THIS PEST IS ENTERED THE CONDITION CUDES ARE:
N = O. Z = ! V = O. AND C = O.
THE REGISTERS ARE: RO = 052525, R1 = 000000% R2 = 125252
R3 = 00000, R4 = 052525, R5 = 052525, SP = 125252,
UPON COMPLETION OF THIS TEST THE CONDITION CODES ARE:
N E O, Z = I, V = D. AND C = O.
RO IS DECREMENTED BY A SOB INSTRUCTION TO ODGODO
R! IS CLEARED AND THEN INCREMENTED AROUND TO DROQOO
PEST17 TEST "ASR". "ASL"
WHEN THIS TEST IS ENTERED THE CONDITION CODES ARE:
N= O, Z = 1, V = OP AND C = O,
PHE REGISTERS ARE: RO = 125252, R1 = ODODOQR R2 = 125252
R3 = OOOOOQR R4 = 052525, R5 = 052525, SP = 125252.
UPON GOMPLETIDN OF THIS TEST THE CONDITION CODES ARE:
N= O, Z = O, V = O, AND C = O.
PHE REGISTERS ARE LEFT UNCHANGED EXCEPT FOR
RO WHICH IS NOW EQUAL TO ODODOD.
R\& WHICH IS NOW OOOOO!. AND
R2 WHICH IS NOW 000000.
TEST2O TEST ASH, AND SWAB
WHEN THIS TEST IS ENTERED THE CONDITION CODES ARE:
N O, Z g O, V = O, AND C % O,
THE REGISTERS ARE\& RO = OQODOD, RI = \#00001. R2 = 000000
R3 % 00000, R4 = 052525, R5 = 052525, SP = 125252,
UPON COMPLETION OF THIS TEST THE CONDITION CODES ARE\&
N = O, Z = 1, V = O, AND C = 1,
FHE REGISTERS ARE LEFT UNEHANGED EXGEPT FOR
R! WHICH SHOULD NOW EQUAL OOOODO

```

\section*{PEST2! TEST 16 KERNEL PAAR AS}

WHEN THIS TEST IS ENTERED THE CONOITION CODES ARE: \(N=0, Z=1, V=0\) O \(A D C=1\).


UPON COMPLETION OF THIS TEST THE CONDITIUN CODES ARE:
\(N=\theta_{0} 2=1 \circ V=D_{0} A N D C=0\).
THE REGISTERS NOW EQUAL:
RO = 172400, R1 = 000000日 R2 = 000000, R3 = 000000
\(R 4=052525 R R 5=125252 \mathrm{SP}=1252520\)
ALL KERNELPA. \(A_{0}=125252\).

PEST22 TEST AND LOAD KIPDR'S
WHEN THIS TEST IS ENTERED THE CONDITION COOES ARE:
\(N=0.2\) : \(2 . V=A N D C=\Leftrightarrow\)
THE REGISTERS ARE: RO \(=172400, R 1=000000 R 2=000000\)
\(R 3=000000\) R4 \(=052525, R 5=125252, S P=125252\)
UPON COMPLETION OF THIS TEST THE CONDITION CODES ARE:
\(N=0,2=1, V=0, A N D C=0\)
THE REGISTERS THAT ARE MODIFIED ARE:
\(R 0=172300 \mathrm{RI}=000000 \mathrm{R} 2=077406\)
ALGERNEL I SPACE P, D.R.S \((172300-172316)=077406\)

TEST23 TEST MISR", "RTS", "RTI"\& "JMP"
THIS TEST FIRST SETS THE STACK POINTER TO MKDPARTM (172376), AND THEN VERIFIES THAT "SSR", "RTS", "RTI" \(\triangle N D ~ " J M P " ~\)
ALL WORK PROPERLY.
ON ENTRY TO THIS TEST THE STACK POINTER MSP IS INITIALIZED
TO 172376 AND IS LEFT THAT WAY ON EXIT.

TEST24 LOAD AND TURN ON MEMORY MANAGEMENT AND THE UNIEUS MAP
THIS PEST IS ONLY EXECUTED IF THE UPPER 4 BITS <15:12> OF THE SWITCH REGISTER ARE NONOZERO. THE TEST WILL LOAD MEMORY MANAGEMENT TO RELOCATE TO THE 32K RLOCK NUMBER SPECIFIED. IT WILL ALSO SET UP THE UNIEUS MAP REGISTER A THRU 6 TO RELOCATE THE UNIBUS ADDRESSES CORRECTLY (IE IF BITS <15:12D SPECIFY BLOCK NUMBER 3. THEN YOU WANT TO BOOT INTO MEMORY FROM 96K TO 128K. THE KIPAR S WILL BE LOADED AS FOLLOWS:


KIPART WILL ALWAYS EQUAL 177600.
THE UNIEUS MAP REGISTERS WIL THEN BE SET AS FOLLOWS:
MAPLD = OOOOOD. MAPHD = O3. MAPL1 = OZOQOQ, MAPLI © O3.
MAPL2 \(=040 Q O Q, ~ M A P H 2=03, ~ M A P L 3=060 Q O Q, ~ M A P H 3=03\).
MAPL4 : 100000 , MAPHG = O3, MAPLS = \(1200 O Q, ~ M A P H 5=03\).
MAPL6 = 1400OO, MAPHG=03,

PEST25 TEST MAIN MEMORY FROM VIRTUAL \(10 D O\) TO \(28 K\)
THIS TEST WILL TEST MAIN MEMORY WITH THE CACHE DISABLED FROM

VIRPUAL ADDRESS OQIOOG TO 157776 . IF THE DATA DIES NOT COMPARE PROPERLY THE TEST WILL HALT AT EITHER 165740 OR 165756, IF A PARPITY ERROR OCCURS THE TEST WILL HALT AT ADDRESS 165776, WITH PHEPC +2 ON THE STACK WHICH IS IN THE KERNEL DOSPACE P.A.R. \({ }^{\circ}\) S.

IN THIS TEST THE REGISTERS ARE INITIALIZED AS FOLLOWS:
RO = OOIODOD RI = DATA READ, R2 = O67400, R3 = OQ1000
\(R 4=06740 Q_{0} R 5=177746(C O N T R O L R E G \rho) S P=172376\)

THE FOLLOWING TWO TESTS ARE CACHE MEMORY TESTS. IF EITHER OF THEM FAILS TO RUN SUCCESSFULLY THEY WILL COME TO A HALT IN THE M9301 ROM. IF YOU DESIRE TO TRY TO BDOT YOUR SYSTEM, OR DIAGNOSTIC ANYWAY, YOU CAN PRESS "CONTINUE" AND THE PROGRAM WILL FORCE MISSES IN BOTH GROUPS OF THE CACHE AND GO TO THE BOOT STRAP THAT HAS BEEN SELECTED.

PEST26 TEST CACHE DATA MEMORY
PHIS TEST WILL CHECK THE DATA MEMORY IN THE CACHE FIRST GROUP O AND THEN GROUP i。 IT LOADS ©52525 INTO AN ADDRESS COMPLEMENTS IT TWICE AND THEN READS THE DATA, THEN IT CHECKS TO INSURE THAT ADDRESS PHE DATA WAS A HIT. THEN THE SEQUENCE IS REPEAPED ON THE SAME WITH 125252 AS THE DTA. ALL GACHE MEMORY DATA LOCATIONS AE TESTED IN THIS WAY, IF EITHER GROUP FAILS ANO THE OPERATOR PRESSES CONTINUE THE PROGRAM WILL TRY TO BOOT WITH THE CACHE DISABLED.

PHE REGISTERS ARE INTIALIZED AS FOLLONS FOR THIS TEST:
\(R 0=100\) (ADDRESS) RI \(=2(C O U N T), R 2=1000(C O U N T)\)
R3 : 1000 (COUNT) \(R 4=125252\) (PATTERN) R5 \(=177746\) (CONTROL REG) SP = 17237A (FLAG OF ZERO PUSHED ON STACK)

TEST27 TEST VIRTUAL 28K WITH CACHE ON
PHIS TEST CHECKS VIRTUAL MEMORY FROM OMIOOO THRU 157776
TO INSURE THAT YOU CAN GET HITS ALL THE WAY UP THROUGH MAIN MEMORY. IT STARTS WITH GROUP 1 ENABLED, THEN TESTS GROUP D, AND
FINALLY CHECKS MEMORY WITH BOTH GROUPS ENABLED. IF ANY OF
THE THREE PASSES FAIL THE TEST WILL HALT AT "CONT \(\mathrm{q}^{2 \prime}\) " THEN
IF THE OPERATOR PRESSES "CONTINUE", THE PROGRAM WILL TRY TO BOOT WITH THE CACHE DISABLED.

UPON ENTRY THE REGISTERS WILL EE SET UP AS FOLLOWS:
RO E OQUOO (ADDRESS) , R! = 3 (PASS COUNT). R2 \(=67400\) (MEMORY COUNTERJ.
R3 : 1000 (FIRST \(A D O R E S S\) ), R4 = 6740 (MEMORY COUNTER). RS = 177746 (CONTROL REG.). SP \(=172374\) (POINTING TO CODE FOR CONTROL RE.

UPON COMPLETION OF THIS TEST MAIN MEMORY FROM VIRTUAL ADDRESS OOIODO THRU 157776 WILL CONTAIN ITS OWN VIRTUAL ADDRESS.

The bootstap poption of the orogram looks at the lower byte of the switen reglster to determine which one of g devices and which ditue
 number（ 0 －7），and switches＜ 06 ： 23 s select the device code（1－11）． If the lower byte of the switch peaister is zerop the opograt will pead the set of switches on the M9301－YC to detemmine the deyice and dife number，ihese switches can be set by field sepvice to select a ＂DEFAULT BOOT＂device．
phe deyice codes and device names are as follows：
\begin{tabular}{|c|c|c|}
\hline 1. & TMI／TU10 & MAGNETIC TAPE，TMII \\
\hline 2. & TC 11／TU56 & DECTAPE，TCII＝G \\
\hline 3. & RK11／8K05 & DECPACK DISK CARTRIDGE，RKII \(=0\) \\
\hline 4. & RP11／RP03 & DISK PACK，RPIIOC \\
\hline 5. & RESERVED & \\
\hline 6. & RH70／TU16 & magnetic tale system，twul6 \\
\hline 7. & RH701RPO4 & DISK PACK，RWPO． \\
\hline 10. & RH7日／RSO4 & FIXED HEAD DISK，RWSA4（OR RWSO3） \\
\hline 11. & R×11／RX01 & OISKETTE \\
\hline
\end{tabular}

If he bootspap operation fails as a pesult of a hardware epror in the perinheral device the program will do a＂RESET＂instruction and jump back to the test that sets upand tums on memory management and tests memory．Then the orogram will attempt to＂BOOT＂again．

4．4．5 Installation
The External Back switch and Boot on Foweravo options ape mot available on the M930imyC．Therefore Power up FEBOOT ENABLE switch on the module（see schematics）should always be off．

Because it is reauired that the diagnostic portion of the aoststap always be executed the LOW ROM ENABLE switch on the module schematics）should always be on．The pemaining 8 switches shotld be set depending on the detault device type and unit number desimed． （See stapting procedure and schematics）．

4， \(4, \theta\) Starting procedure
Swltch Settings
The lower byte of the switch register should be set to have the drive number（ \(0=7\) ）in switches＜02：OQP，and the device code（1－11）in sultehes 《06：03＞。

The upper byte of the swith pegister should be set to have the hank number of the \(32 k\) block of memory to be used fop the hogtspap

Operation (0-17) inswitches <15: 12>.
THE DEVICE CODES \(A R E\) AS FOLLOW:
\begin{tabular}{|c|c|c|c|}
\hline 10 & TM11/TU10 & MAGAETIC TAPE TMII & \\
\hline 2 & TC11/TU56 & DECTAPE,TC11-G & \\
\hline 3. & RKdI/RK05 & DECPACK DIS CARTRIDGE, & RKII-D \\
\hline 4 & RPI1/RPO3 & DISK PACK. RPII-C & \\
\hline 5. & RESERVED FOR & FUTURE DEVICE & \\
\hline 6. & RH7O/TU16 & MAGNETIC TAPE SYSTEM, & TWU16 \\
\hline 7 & RH70/RPDA & DISK PACK, RWPO4 & \\
\hline 10. & RH70/RSOS & FIXED HEAD DISK, RWSOム & (OR RWSO3) \\
\hline 11. & RX11/RX01 & DISKETTE & \\
\hline
\end{tabular}

THE MEMORY BLOCKS ARE AS FOLLOWS:
\begin{tabular}{|c|c|c|c|c|}
\hline 0. & PHYSICAL & MEMORY & - & 28K \\
\hline 1 & PHYSICAL & MEMORY & 32k & - 60 K \\
\hline 2 & PHYSICAL & MEMORY & 64K & - 92k \\
\hline 3. & PHYSICAL & MEMORY & 96k & - 124 K \\
\hline 4 & PHYSICAL & MEMORY & \(128 K\) & - 156 K \\
\hline ? & & & & \\
\hline 10 & PHYSICAL & MEMORY & 256 K & - 284 k \\
\hline 14 & PHYSICAL & MEMORY & 384k & - 412 L \\
\hline 15 & PHYSICAL & MEMORY & 416 K & - 444 L \\
\hline 16 & PHYSICAL & MEMORY & 448K & - 476 K \\
\hline 17 & PHYSICAL & MEMORY & 480k & - 508 K \\
\hline
\end{tabular}

\section*{Sterting Addpesses}

The nommal stapting addpess fop this opogram is 177765000.
If bhe diagnostle poptlon of this ppogmam tails and the operabon wants to atempe to BOOF" anyway he must follow these steps:
1. Set uo memopy mamagement if "BOOTING" lnto other than the lower 28 K of memory.

2A. If device is on massbusi
Ser stack polnter to a valid addpess añ load that address with bhe memory bank number he would put into siliches \(415122^{\circ}\)

2日. If device is on unibus:
Ser uo unlbus map peglsteps 0 thpu 6 to map to same memopy as memopy management
```

 3. DeDostt addpess 173000 into the PC.
 4. Set the device code and drive number in the lower bvee of the
 switch reaister.
 5. Press continue.
 Examoles:
A. RPQ4 - SET STACK POINTER TO 4OQOQ
LOAD AOBOOO INTO ADDRESS GODOO
LOAD 17300O INTO THE BC (177777707)
SET OOOD7O INTO SWITCHES (RPQA) DRIVE D)
PRESS "CONTINUE"
B. RK05 = LOAD 17300Q INTO THE PC (177777707)
SET DOOQ3O INTO SNITCHES (RKO5 DRIVE O)
PRESS "CONTINUE"

```
Opepator Action
If the diagnostic poption of the fnc fails pecopd the PC of the "HALT"
instruction and peter to the listing to find out what dopt on of the
machlne failed.


Eprop Recovepy
Most of the above efror halts are "HARD fallupes, which means that thepe is no recovery from them. Esoecially the two ( 2 ) main memory halts are not recelverable, youp best bet is to tpy to "bont" into another 3 दK bank of memory it it apoars to be a maln memory failupe.

If the processor halts in one of the two cache tests the erpor can be pecovered from by opessimg "CONTINUE" the program will eithep abtempt to finish the test (1f at eiter: 17773644 op 17773736) or Popce "misses" in both groups of the cache andattemot to "ao? the system monitor with the cache fullv disabled (if at eithep: 177736540 17773746. of 17773764).

If his Drogram falls in an uncontrolled manner lt might be due bo an
 "000006" imbo adopess 000004 and a "00g000" imbo location M0日006. Fhis will cause all tmaps to location googau to halt with goagala in the address lights so that the ooepatop can examime the cru eprop medsear at location 17777766.

THE BITS IN THE CPU ERROR REGISTER ARE DEFINED AS FOLLOUS:
BITO3 3 - RED ZONE STACK LIMIT
BITO3 = YELLOW ZONE ATACK LIMIT
BITOA = UNIRUS TIMEOOUT
BITO5 = NON-EXISTANT MEMORY (CACHE)
BITO6 \(\quad\) ODD ADDRESS ERROR
BIT07 I ILLEGAL HALT
5.O EXTENDED \(\triangle D D R E S S I N G\)
5.1 Extended Addeessing (Deflnation)

The console amular rouitne nommally allows accesses to only the lower 28K of memory and the I/0 page (160g00(8) to 177776(8)). However, it is possible by use of memory management to use the console emulator to access beyond 28 k for the examine and deposit functions. The reader should be familiar with the concepts of memony management in the KDII-E processor.
5.2 Definteion of Viptual and physical Addpesses

The processor manloulates dooblt numbers within general peglster and memopy locatlons whlch it often uses as addresses. these addesses ape designated yiphual addpesses as opoosed to physical adfesses which ape assemted on the Unibus to which devices ape hapanifed to pespond.

\subsection*{5.3 Address Mapplng wlthout Memopy Management}

With memopy management disabled bas is the case following depessing the boot switchin a simple hapdware mapolng schene converts viftual addresses to physlcal addpesses. Virtual addpesses in the \(\quad\) bo \(28 k\)
pange ape moped dipectly into physical adopesses in the pange from a to 2ak. Viftugl addresses on the \(1 / 0\) age (160000-177776) ape mapoed fne physical adofesses tm the range from \(124 k\) to \(128 k\) (360000(8)-377776(8)).
5. 4 Address Mapoing With Memopy Management

With memopy management enabied, a difterent mapoing scheme is used.
 to create a ohysical op pelocated adifess.

Vimpal address space consists of eight \(4 k\) banks whene each bank can be relocated by the relocatiom constamt associated with tat bank. The orocedure specified im this section allows the user bo:
1. Gpeate viptual addpess to type into the load ddees command.
2. Determime the pelocation constamt ro pelocate the calculated Vippual addpess 1 tho the desired ohysical address.
3. Enabe of disable the memomy management hardwarea
5.5 Cpeation of a viptual Adopess

The easlest way to cpeate a virgual addpess is to divide the is bit physical addpess into two sepapate fields a ylptual addpess and a physical bank number. The vipoual/addess is peperented by ehe lower 13 bits and the ohysical bank by the upoep pive bits. this cpeates a Virtual adoress in viptual bank o. The calculated pelocation constant is placed in the pelocatlon reglsper associated with virtual bank 0.

Fop example, assume a user wishes to access location 533720. The nommal access capabllity of the console is oto 28 k , This addpess (533720) is between the 28k i imit and the I/0 page (760000m777776) p and consequently must be accessed as a melocated vimtual address, wish memory management enablea. The viptual adapess is \(13720(8)\) in physical bank \(25(8)\) and is deplved as follows:
 Dager 760000777776) may be accessed qhpough virtual mddpess 00000 a 07776 and 160000 - 177776 pespectively. The pelocatisn and
descfiptom pegisteps in the kDil-E ape still accessitie simce ehelp addresses are withtn the I/0 page.

The pelocation constant fop onyslcal bank 25 is 005200 . This constant is added in the relocation unit to the viptual adress, as shown vielding 533720.

013720 Viftual address
520000 Relocated Constant (Table A=1)
- m - - -

533720 Physical Addpess
When memory management is enabled all cpu accesses ape pelocated. Instryctions and data access to the console emulator poutine mill be pelocated through viftual bank 7 since theif virtual accesses exits im臽is bank bsee table 5. for he coppesponding addpesses of each of the eight viptual banks). Note that accesses to the \(1 / 0\) page (viptual bank 7) ape not automatlcally pelocated whth memopy management while accesses to the II/O page ape automatically pelocatec when memopy management is not ytilized.

\subsection*{5.6 Memory Management Registers}

The pelocation constamt that is added to the viputal adaress is stored in a relocation pegistep. One such pegisten exists for each of the eight viptual banks. In addition to the relocation pegisteps each bank has lis own descriotor megiscep which orovides infommation pegapding the eypes of accesses allowea (read onlyp peadop wittep op no access).

The memory manadement logic also opovides various fopms of protection agalmst umauthorlzed access. The corpesponding descriptor pegister must be set up along with the relocation pegister to allom access anywhere within the \(4 k\) bamk.

\subsection*{5.7 Address Asslgnmenes}

The Unibus addresses of the melocation peaisteps and the descmiotop pegisters are given in table 5.1. the relocation constame to be loaded into the pelocation pegister for each \(4 k\) bank is proviteo in Table 5.2. The data to be loaded in the descriptor pegiseep to orovide read/wplte access to the full 4 k is always 077406.

The Unibus address of the control megister to enablememory management is 177572 , ihis registem is loaded with the value goD日OL eo enable memopy management and 0 to disable it.

To complete the example previousiv described (location 533720), the console routine would be as follows:

viptual Addess
\(100000-177776\)
140000-157776
\(120000=137776\)
100000-117776
060000077776 040000-857776 \(020000-037776\) 0000001017776
Viptual
Bank \begin{tabular}{ccc} 
Relocarion \\
Register
\end{tabular}\(\quad\)\begin{tabular}{c} 
Descriptor \\
Register
\end{tabular}
```

 Table 5.2
 Relocarion Constames

```
\begin{tabular}{cc} 
Physical Bank Number & Relocation Constant \\
37 & 007600 \\
36 & 007400 \\
35 & 007200 \\
34 & 007000 \\
33 & 00600 \\
32 & 006400 \\
31 & 006200 \\
30 & 006000 \\
27 & 005600 \\
26 & 005400 \\
25 & 005200 \\
24 & 005006 \\
23 & 084600 \\
22 & 064400 \\
21 & 004200 \\
29 & 004000 \\
17 & 003600 \\
16 & 003400 \\
15 & 003200 \\
14 & 003000 \\
13 & 002600 \\
12 & 002400 \\
11 & 002200 \\
10 & 002000 \\
7 & 001600 \\
6 & 001490 \\
5 & 001200 \\
4 & 001000 \\
3 & 000600 \\
2 & 000400 \\
1 & 000200 \\
0 & 000000
\end{tabular}
boading new pelocatlon constant fato the pelocation pegistep pop V｜revel bank a will cause vimeual addresses ana＠0日177776 eo access the new onystcal bank．A second bank can be made accesslale by loading the felocation constant ant descriptop data tnto the pelocation and descpiptor pegisteps for viptual bank 1 and sceessing the location through virtual adaress 020000日月37776，seven banks ape accessible in this mannep by loadino the prodep constantsp settling up the descpiptor datap and selecting the proper virtual address．Bank 7 （I／0 page）must memaim pelocated to ohysical bank 37 as it is accessed by the cpu to execute the console emulator poutime．

Memory management is disabled by clearing（loading with gs）the Compol Register 177572．lt should always be disabled priop to typing ＊boor command．

The stapt command automatically disables memopy managememt and the cpu begins executing at the ohysical addeess copresponding to the adapess specified by the onevious hoad Addeess command．Depessing the boot swlech outomatically disabies memory management．the contents of the melocation registers ame not modified．

The HALT／CONTINUE SWitch has no eftect on memory management．

6．0M9301＝YD

6． 1 Pupoose

The M9301－yD is omogrammed to provide eransparent passmehmougm nf data between a tepminal on a satelitie computer and an asynchmponous semial llae on the same computer．It also contains all of the mecessapy lnstryctions for requesting a secondary mode proapam lad and fop acceptng a downiline load on its seplal line from another machine USIng DDCMP opotocol．These peatunes enable apppil computem to be a satellite in a REMOTE－11 system．

6．2 Funcelonallyy

O．2！Nopmal Bootstran（SA＝173000）
Opdinarliy，when the ROM code is indtiatedp the satellite comes up in passobmpough mode．Fifst，the memory size of the comoutep is asceptained．Then necessapy comminications pegions ape set ung and the OSOP message MEnter teminal modem is sent on the semal line． All further communication is in ASCII with the ROM program pollimg the peady flags in the poum contmol and status megisters to detemine the
 satellite computer，and transmission is assumed to be full duplex．
```

The only way that temmlnal mode may be discontinued is the pecelot of
a DDCMP message. The ROM only accepts the messages, "Pmogpam load
Wlthout transfep address", Program load with pransfer addpess", and
"Emter terminal mode""
0,2,2 Secondapy mode dootstrap.
An altepnate stapt addpess (173014) will cause the "Entep temminal
modell message to be replaced by "Reauest secondapy mode progmam load."
All other actions ape identical to the nommal bootstpap. The host
machine should pespond to this message with a opogram load so that
termimal mode is only transiently activated. the bus addpessed
177560-177566 wll| be addpessed duplng this time. The secomdamy mode
program load message may be used for loading Drograms in to satell|tes

```

```

graphics terminal.

```

6,2,3 Sending DDCMP Messages
A callable subpoutine within the ROM will send DDCMP "BOOt" mode messages. Location 162 is loaded by the M9307 with the ardiess of this subpoutine, To use lt, call by

MOV HMSG, R5
JSR PC. 162
Where MSG has the following fopmat
bytes \(\triangle\) and \(d\) contain the number of bytes in the message
bype 2 has an OSOP code
bytes 3 thpough \(n\) have the data (ifany)

The message is sent using interrupt dplven codep but control is not feturned to the user program until the message has been comoletely sent oup.
6.2. 4 Receiving DOCMP Messages

The boot will automatically peceive DDCMP messages if omoperly fnitialized and the ingerpupt fop the sepial line pecelve peeisper is enabled. A opogram to do this follows:


To mestapt he Boot:
JMP 164

The M93010yD uses locatioms 150167 for comunleations and 17 an 171 for temporapy data dyming program loads. It also loads location. 54 mith the hlgh usable memory addpess. The addpess in 5y has heen ajiusted bo leave poom for buffers and stack for use by the ROM.

\section*{6. 3 Using the M9301=YD}

The M9301日YD ROM will Pum of amy PDP=11 computer. Two DLelds ape peaulped wheh the following addresses and yecrops:
\begin{tabular}{lll} 
FUNCTION & ADDRESS & VECTOR \\
LOCAI teminal & 177560 & 60 \\
Imterorocessor & 1775610 & 400
\end{tabular}

The ROM may be activated by placing the address given for the desimed JUACtion in switch pegister and opessing LOAD ADDRESS, START op by
 gwleches should all be off for nommal boot. secondary mode peaulpes电he switches to be set tommom.
6. 4 Progmam Listing.
7. APPENDIX
7. General descrlotion:

This fully decoded 2048 Blt Memory is oparized as 512 wopde of 4 birs each. It has TTL compatible inputs and TTL compatiole tpiastate outputs. There is also one Chip Enable provided whose outouts are bussatele \(b\) allow for memory expansion capability.

Memopy Appays ape addpessed in stpalght binapy with full onachlo decoding. An overflding chloselect lnout is provided which when taken highn will inhibit the function causing all outputs so be in a highoimpedance state that neithep loads nor dplves the bus ines. Data as specified by D.E.C. ape pepmanently popgammed into the 2048 Ble locations.

7.3. REQUIREMENTS:
inls device shall meet the pollowing pequipements under all opepating
```

conditions and over the full operating free Alp Temperature Range,

```
```

7.3.1 Mechanlcal:

```
7.3.1.1 Package Configuratlon: a 16 pin dual in line shall meet the

7.3. REQUIREMENTS (CONQinHed)
7.3.1.2 Marerial (Packadin): Shall be cepamicor olastic (Enozy- B)
or equivalent) silicome package shall not be shippeg without ppiop
writyen aporoval from D.E.C.

7.3.2 Electplcal:
7.3.2 boglc Diagram: shall meet mequirements of floupe 2.
7.3.2,2 Absolute Maximum Ratimas - Reference Table I.
```

7.3.2.3 Recommended Operating Conditions m Reperence Table II.
7.3.2.4 Eqectrical Chapacteristics: Refemence Table 111.
7.3.2.5 Test Load and Timing Diagram: Shall meet the pequirements
of Figure 3.

```
7.3.3 Environmental:
7.3.3.1 Temperarupe:
    A. Operating: 0 C to +75 C .
    B. Storage: \(\quad 60 \mathrm{C}\) © \(0+150 \mathrm{C}\)
7.3.3.2 Altitude - The device shall mot be mechanlcally op
electrlcaliv damaged at altitudes of 50 odo peet ( 90 mmmercupv).
7.3.3.3 Hymioltv:
    A. Operatingi \(10 \%\) to \(90 \% \mathrm{R}\) H. over the operating temoerature
        range, (nonmcondensina).
    B. Storage: \(5 \%\) to \(95 \%\) R. \(H\) ovep the stomage temperapupe mangen
        (condensing allowed).
7.3 REQUIREMENTS (COntinued)
7.3.4 Marklng:
Shall comeain vendor name or symbol vendor bart numberg pla 1
location ano data code.
7.3.5 Process Compatibility Test Methods:
The device shall stay within the initlal electricallmechantcel
roquipements and shall not show any evidence of degpadaton in
cosmetlcs when sublected to the followlng methods.
 100
"Solvent Resistance".
7.3.5.2. Refer to Digital. AmPS.1902gez-GS fop other ppocess Compatibllity Reaulpements.
7.3.6 Shelf L! Le :

The device shall meet the intial Electpical/Mechanical pegulpements after 1 year at stopage peauimements por temperatupe and pelative humidity.
7.3.7 Packaging and Shiooing:

Mapking on the packagaing shall concain as mimimum infopmation, vendops name or symbol, vendors art number, Purchase Opder Number and aumatity It shall meet I.C.C. pequipements for shipmeme by alpolane, rall and tpuck, Devices shall be packaged to meet the pequipements of Digttal \(A=P S=1900002=G S\).
7.3.8 Digital \(A\) OPS=1900002-6S:

General Requirements DEC Quality Assurance Specification for atoolar Integrated cipcute shall apply whepe mo other document is specifically peferenced.
7. 4 . CONFLICT OF REQUIREMENTS:

The mequifements of this document shall take precedent over all and any documents when a conflict apises.

\subsection*{7.5. Approval:}

The devices submitted under this specification shall have been intelally approved by Digital Equipment Coppopation Apopoval shall be glven only after samoles peopesentative of the vendors nomal production run have been examined tested and found to meet the pequlpaments as specified.
7.6. Consppuction changes:
```

Apppoved vendors who desipe at any time to make a change im the
design, materials, opocess, process control which fmace any
pequipement, shall submit a written request describing th degall the
changes peauested, Also, evidence to justipy such chanaes. The
cognizant englneep will them submit this request to the proper
Englneering Depaptment(s) Component Engineeping Gpoup amd all opoduct
l|mes affected, No changes shall be incorporated until witeten
apppoval has been feceived fpom the above mentioned group op gpoups
authoplzed by the Cognizant Engineer.
Fallupe co comoly shall be sufficient cause for pemoval as "oualified Soupce": complete reaualification may be reauired before the product \|s deemed acceptable.

```

TABLE 1
ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{parameter} \\
\hline NAME & SYMEOL & VALUE & UNIT \\
\hline SUPPLY VOLTAGE & VCC & +7.0 & V \\
\hline Input voltage & VIN & -1.5 \(10+5.5\) & V \\
\hline Output Voltage & vout & -0.5 \(90+5.5\) & V \\
\hline \multicolumn{4}{|l|}{Temperature:} \\
\hline Stopage Range & Ts\%g & -65 to \$150 & c \\
\hline
\end{tabular}

TABLE 11
RECOMMENDED OPERATING CONDITIONS
parameter NAME

Supoly voltage
Temperature:
ODepating Fpeeair iA D 中70 \$C


\section*{NOTE}

The above chapacteriselcs are guaranteed to meet the output high level state when the chio is enabled \(C E=0, \Delta v\) a and a programmed bit is addressed. These characteristics cannot be tested pplop to programming but are guaranteed by design.

ELECTRICAL CHARACTERISTICS (COntinued)
A.C SWITCHING CHARACTERISTICS (TA=25 C, VCC=5.QV)

\[
\text { Page } 75
\]



\section*{ACCESS TIME VIA ADDRESS INPUTS}


OUTPuT ENABLE AND disarle thaes



FIGURE

PROGRAMMING PROCEOURE:
Device Description: This memory apray is manufactuped with logic level zemos in all storage locations. In order to orogram a logic level one at a soecipied bit. electplcally alter a bit at logic level "Q" to logic level "1". There ape 2048 oits which are organized as si? words of 4 bits each.

The device is programmed per the Digital Eauloment comooration gattem soectfication.
\begin{tabular}{|c|c|c|c|}
\hline CHARACTERISTICS & LIMIT & UNITS & CONDITION \\
\hline \multicolumn{4}{|l|}{Programming Pulse:} \\
\hline Amoli sude & \(20 \%+5 \%\) & TA & Constant Cuprent \\
\hline Voltage (clamp) & \(28.0+2 \%-2 \%\) & v & Voltage ilmit of cuprent soupce. \\
\hline Ramo Rate dv/dt Pulse width & \[
\begin{aligned}
& 70 \text { max } \\
& 7.5+5 \%
\end{aligned}
\] & \[
\begin{gathered}
\text { V/us } \\
\text { us }
\end{gathered}
\] & 15 V pointsp 150 load. \\
\hline Duty Cycle & 70\% min. & & \\
\hline Sense cuppent & 20.0+0.5 & ma & The sense cuprant must be interruoted afiem each addess change for 10 us min. the sense cuprent pamp pate dv/dt must be \(<7\) bV/us, and clamped to \(28 . Q V+0 \%=2 \%\). \\
\hline Programming Vec & \(5.0+5 \%-7 \%\) & V & \\
\hline Maxtmum Sensed Voltage POP a programmed "1". & 7,0+0, 1 & V & \begin{tabular}{l}
A blt opogrammed when two successive \\
sense readimes \(1^{\text {m }}\) us apart with no intepvening \\
programming pulse, Dass the limit. when this conaition has been met, 16 additional proaram pulses are apulied and the fulse tpain is then cepminated.
\end{tabular} \\
\hline Delay from tralling edge of program pulse befope sensina output voltage & 0.7 mim. & YS & \\
\hline To Electpically Altep a Bit at bogic \({ }^{n} 0^{\prime \prime}\) to bogie "1"。 & 200 & us & \\
\hline
\end{tabular}

Inplui Conditions:

\section*{Amplacide -0 V to 3 V}

Rise \& Fall Time -5ns from 1 V to 2 V Frequency - 9 MHz
\begin{tabular}{|c|c|c|c|}
\hline SWITCUP!NG parafieter & \(R_{1}\) & \(\mathrm{F}_{2}\) & \(c_{6}\) \\
\hline \({ }^{8} A A\) & 300: 2 & 60058 & 30 pr \\
\hline "DIS "J" & \(\infty\) & 60053 & \(10 \mathrm{pl}:\) \\
\hline "DIS "O" & 300 2 & \(600 \Omega 2\) & 10 pF \\
\hline "EN "9," & \(\infty\) & 6002 & 30 pl \\
\hline \({ }^{\text {TE }}\) EN "O" & 300 2 & 600s & 30 pF \\
\hline
\end{tabular}

\section*{SWITCHING TIME TEST CONDITION OUTPUT LOAD CIRCUIT}
```


[^0]: The information in this document is subject to change without notice and should not be construed as a commitment b Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this manual.

