
1

PRENTICE COMPUTER CENTRE
University of Queensland

TECHNICAL MANUAL No.6

EDIT -A LINE EDITOR FOR THE PDP-IO

Edited by

B. A. CLAIRE

MNT-6/ed5

2 April 1979

This manual has been authorized by the
Director of the Prentice Computer Centre

TECHNICAL MANUAL NUMBER 6

EDIT - A LINE EDITOR FOR THE PDP-10

Edited by

B.A. CLAIRE

MNT-6/ed5
2 April 1979

The author wishes to
suggestions made
Mr Nilsson, Senior
Engineering, is the

ACKNOWLEDGMENTS

MNT-6/ed5
2Apr79

thank Mr R.D. Nilsson for his comments and
during the preparation of this manual.
Lecturer in the Department of Civil

original author of the EDIT program.

Version 4 resulted mainly from contributions from La Trobe and
Flinders Universities. Version 5, a major revision, is the work
of Mr I.S. Burgess of the Prentice Computer Centre, University of
Queensland. Due acknowledgment must also be given to
Mr R.A. Cook of La Trobe University for the part that 10LIB
contributes to Version 5.

CONTENTS

chapter

1 INTRODUCTION

1.1
1.2
1.3
1.4
1.5
1.6

USE OF THIS MANUAL
LOGGING INTO THE SYSTEM
GENERAL FEATURES OF THE EDITOR
USE OF TAB CHARACTERS
CONTROL CHARACTERS
CONVENTIONS ON EXAMPLES

2 RUNNING THE EDITOR

2.1
2.2

CREATING A FILE
EDITING A FILE

3 COMMAND FORMATS

3.1

3.2

3.3

3.4

3.5

4 FILES

4.1

LOCATING LINES
3.1.1 TOP and BOTTOM
3.1.2 UP and NEXT
3.1.3 LOCATE
3.1. 4 SEARCH
3.1.5 LABEL and STATEMENT
3.1.6 LINE
3.1.7 BACK
PRINTING LINES
3.2.1 ASCII printing
3.2.2 Octal Printing
INSERTING LINES
3.3.1 Inserting One Line
3.3.2 Inserting One or More Lines
DELETING AND REPLACING LINES
3.4.1 Deleting Lines
3.4.2 Replacing Lines
3.4.3 Deleting and Inserting Lines
ALTERING LINES
3.5.1 Changing Character Strings
3.5.2 Appending and Prepending

Character Strings
3.5.3 Splitting a Line into Two Lines
3.5.4 Concatenating Two Lines

SAVE

v

UNT-6/ed5
2Apr79

page

1-1
1-2
1-2
1-3
1-3
1-3

2-1
2-2

3-2
3-3
~-3

3-4
3-5
3-6
J-7

3-7
3-8

3-9
3-9

3-lel
3-11
3-12

3-12

3-13
3-14
3-14

4-1

MNT-6/ed5
2Apr79

4.2
4.3
4.4
4.5
4.6
4.7
4.8

FILE
QUIT
EXECUTE
RUN
OUTPUT OF A FILE TO DISK
INSERTING FILES
SHIFTING PARTS OF A FILE

5 MODES OF OPERATION

5.1

5.2
5.3

EXTENT OF TYPEOUT
5.1.1 SET VERIFY and SET BRIEF
5.1.2 Temporary Reversal of Typeout Mode
5.1.3 SET VERBOSITY
UPPER/LOWER CASE IN SEARCHES
PRINT-OUT OF SPECIAL CHARACTERS

6 AUTOMATED EDITING AND RECOVERY TECHNIQUES

6.1
6.2
6.3
6.4
6.5

RECOVERY AFTER EDITING MISHAPS
RECORDING THE EDIT COMMANDS AND TEXT
PERFORMING A FILE OF COMMANDS
MAKING A FILE OF COMMANDS
REPEATING COMMANDS

7 JOB INFORMATION COMMANDS

7.1
7.2

JOB COST BALANCE
JOB TIME

8 SPECIALIZED COMMANDS AND OTHER FEATURES

9

8.1

8.2
8.3
8.4
8.5
8.6
8.7

SPECIAL TERMINAL COMMANDS
8.1.1 Lower Case Terminals
8.1.2 Display Terminals
TRANSLATION FROM 026 TO 029 CHARACTERS
FORTRAN DIRECT ACCESS CAPABILITY
BASIC PROGRAMS AND LINE-NUMBERED FILES
PROTECTION AND PRIVACY OF FILES
EDITING OTHER PROGRAMMERS' FILES
CONTROLLING EDITOR SIZE FOR EFFICIENCY

ILLUSTRATED FORTRAN EXAMPLE

vi

4-2
4-2
4-2
4-3
4-3
4-4
4-5

5-1
5-1
5-2
5-3
5-3

6-1
6-1
6-2
6-3
6-3

7-1
7-1

8-1
8-1
8-2
8-2
8-2
8-3
8-3
8-4

9-1

APPENDIX

A LISTING OF PROGRAM 'SAMPLE.FOR'

B SUMMARY OF COMMANDS AND SWITCHES

B.1
B.2
B.3

COMMANDS
SET COMMANDS AND EDIT SWITCHES
FILE SWITCHES

C ASCII CHARACTERS AND THEIR OCTAL CODES

D INFORMATIVE MESSAGES

D.1
D.2
D.3

EDITING MESSAGES
FILE SPECIFICATION SYNTAX ERRORS
FILE INPUT/OUTPUT ERRORS

E GENERAL COMMENTS

E.l CONTROL-O
E.2 CONTROL-U AND RUB OUT
E.3 CONTROL-R
E.4 CONTROL-S AND CONTROL-Q
E.5 TREATMENT OF TAB CHARACTERS BY COMPILERS

E.5.l FORTRAN Compiler
E.5.2 COBOL Compiler

vii

MNT-6/ed5
2Apr79

B-1
B-5
B-6

D-l
D-3
D-3

E-l
E-l
E-l
E-2

E-2
E-2

CHAPTER 1

INTRODUCTION

MNT-6/ed5
2Apr79

A program written in a programming language (such as FORTRAN) is
called a source program. Source programs must be input to the
computer before they can be compiled (i.e. translated into the
computer's machine language) and run by the computer. A program
rarely runs correctly the first time and may need many corrections and
modifications before it is thoroughly tested.

In a batch system a program is punched on to punch cards and these
cards are input to the computer through the card reader. Program
modifications are made by punching up new cards to replace those that
are incorrect. The program must be input again to obtain a new
compilation. The system is slightly different with terminals,
however. In this case, a source program is stored as a file on the
disk, the file having been created either by typing the program in via
the terminal, or reading it in on punched cards. (A file is a
collection of words comprising computer instructions and/or data).
Corrections to the program file are carried out quickly and easily, by
an editing program with which the file on disk can be altered, and
there is no need to re-input the complete program from the terminal
for subsequent compilations.

Data files can also be kept on the disk and edited if necessary.
Files can be kept or deleted as the user wishes.

This manual is intended as a basic teaching manual for the program
EDIT. EDIT is an editing program with a simple command structure
designed to edit disk files. EDIT is designed for use via the remote
terminals on the PDP-10 and it is assumed that users are familiar with
the procedures and commands necessary to operate the PDP-l0 system
from terminals. For the sake of clarity, the EDIT program will be
referred to as the Editor throughout this manual.

1.1 USE OF THIS MANUAL

This is a teaching manual designed to make users familiar with the use
of the Editor via a terminal. It is therefore recommended that the
user reads this manual while seated at a terminal and that he
experiments with the facilities of the Editor as they are outlined.

1-1

mIT-6/ed5 INTRODUCTION
2Apr79

The maJority of the examples given in
sample program created in Section
appended to this manual, Appendix A.

the text will refer to the
2.1, an extra copy of which is

Appendix B gives a summary of all commands, and Appendix D gives a
list of error messages. Appendix E should be studied first by those
unfamiliar with the terminals. The information detailed there is
useful to know. Chapter 9 shows a fully documented FORTRAN example.

1.2 LOGGING INTO THE SYSTEM

It will be assumed that the user is familiar with the technique of
logging into the system. If this is not so, instructions on how to
log in can be found in the User's Handbook. Once the user has
successfully logged in, communication is established with the monitor
which signals its readiness to accept commands by responding with a
period ' ,

1.3 GENERAL FEATURES OF THE EDITOR

There are two functions of the Editor; CREATE to create a file and
EDIT which enables files to be updated. Files may be data files or
source program files. They must be ASCII files (i.e. the data they
contain is stored as characters). The maximum size of a file which
can be edited is limited by the amount of disk space available to a
user and an absolute limit of 1.3 million characters.

The Editor creates files with variable length lines. Lines may be of
any length. On input, very long lines are broken into 280 character
fragments and rejoined on output. During editing, lines may be
increased to a maximum of 300 characters (including the carriage
return/line feed characters appended to the end of the line). To
enter lines longer than 72 characters when inputting data from the
terminal, simply continue typing, giving <cr> only at the end of the
line. The carriage will return automatically to the left margin after
a certain number of characters have been typed. (See "SET TTY WIDTH
n" Monitor command.)

Files in the PDP-10 system are provided with a standard nomenclature.
A file specification, referred to as a filespec, consists of the
device or disk structure, filename and directory path. Often only the
filename need be given. A filename is made up of two parts - a name
and an extension.

The name consists of from 1 to 6 alphanumeric characters. The
extension consists of from 1 to 3 alphanumeric characters, preceded by
a period (.). The extension is usually used to denote the type of
file, the most common being:

.FOR

.MAC
Fortran IV source program
Macro-10 source program

1-2

INTRODUCTION MNT-6/ed5
2Apr79

.REL

.DAT
file for processing by relocating loader (not editable)
Fortran data file

Additionally, switches where appropriate may be included in the file
specification as /switch:value.

examples:
(i) TEST. FOR
(ii) MAIL.MAC[160,100]
(iii) ANSA:STATS.SPS[174,104]
(iv) DACCES.DAT/DIRECT:120

1.4 USE OF TAB CHARACTERS

The tab character is used to space several positions on the
print out. It is similar to the tab on a typewriter where

terminal
a tab or

At any
space all

terminal
character

etc.

'stop' can be made at certain positions on the print line.
point on the print line, typing the tab character will
intervening positions until a tab is encountered. On the
these stops are set automatically in multiples of 8
positions i.e. the tabs are set at positions 9, 17, 25,
(see Section E.5 on the treatment of the tab character by the
compiler) •

Fortran

The tab character is stored on the file as a single character and is
not converted to the equivalent number of blanks. For this reason, a
line containing tab characters can be effectively longer than the
number of characters in the line.

Some terminals have a TAB or HT key. On others, the tab character is
typed by depressing the CTRL key whilst depressing I. Tab characters
are denoted in this manual by <tab>.

1.5 CONTROL CHARACTERS

A carriage return character is used to indicate that this is the end
of a line in the file. This character is typed on most terminals by
striking the RETURN key. It is echoed by a carriage return and a line
feed character. It is denoted in this manual by <cr>.

Other break characters are allowed within search or insert strings of
characters, but terminate the command otherwise. <If>, <bel>, <vt>,
<ff>, <esc> and A Z are defined as break characters. ":" is not a
break character but may be used to terminate a command. The Editor
can begin processing a command only after a break character is typed.

1.6 CONVENTIONS ON EXAMPLES

For the sake of clarity it is necessary to differentiate between the
characters typed in by the user and the characters typed back by the

1-3

MNT-6/ed5 INTRODUCTION
2Apr79

Editor or the monitor. Throughout this manual, therefore, the
underlined portions of examples will refer to all the output that has
been typed back by the system.

1-4

CHAPTER 2

RUNNING THE EDITOR

MNT-6/ed5
2Apr79

There are two major functions of the Editor: input and edit. Input
state (signalled when the Editor types back 'Input:') means that
consecutive lines of input text can now be inserted in the file. Edit
state is signalled by the response '*' indicating that the Editor is
ready to accept editing commands.

The input state is invoked with the system command CREATE and the edit
state with the system command EDIT.

2.1 CREATING A FILE

CREATE filespec /switchl/switch2 ••••

This command is used to create a new file. A file is said to be
created if no file by the same name existed when the CREATE command
was given. It invokes the Editor, setting it to its input state, and
storing the file name given for later use when the file created is
ready to be stored on disk. If a file of the specified name already
exists, the warning '%EDISEF Superseding existing file' is given. The
user may then either QUIT editing immediately or at the appropriate
time FILE with another filename.

Switches may include the switch form of any of the SET commands, HELP,
DELSEQ and NODELSEQ, in the form /switch:value
e.g. CREATE SUMSQ.FOR/HELP:TEXT/PAGE:20/ULC
See Appendix B for a brief description of the switches available.

Lines can be typed in when input state is signalled by the response
'Input:'. The edit state can be entered at any time by typing a null
line. This is a carriage return as the first character of the line.
Blank lines can be inserted by typing at least one space before typing
carriage return. The FILE command (see Section 4.2) can be used to
keep this created file.

example:
.CREATE SAMPLE.FOR<cr>
Input:
C<tab

[input state]
>THIS IS A SAMPLE PROGRAM<cr>

2-1

MNT-6/ed5 RUNNING THE EDITOR
2Apr79

C<tab >PROGRAM CALCULATES THE SQUARES OF INTEGERS 1 TO 50<cr>
C<tab >PRINT HEADINGS<cr>
<tab >LP=6<cr>
<tab >WRITE (LP, 10)<cr>

10<tab>FORMAT ('1', 3X, 'NUMBER', 5X, 'SQUARE'/)<cr>
C<tab >CALCULATE SQUARE, PRINT NUMBER AND SQUARE<cr>
<tab >DO 30 1=1, 50<cr>
<tab >J=I*I<cr>

30<tab>WRITE (LP, 20) I, J<cr>
20<tab>FORMAT (6X, 12, 8X, 14)<cr>

<tab >STOP<cr>
<tab >END<cr>
<cr>
*FILE<cr>
TEDIFIL Filed SAMPLE. FOR]

CREATE may be abbreviated to CREA

2.2 EDITING A FILE

[null line]
[* indicates edit state]
[the FILE command will be
described in Section 4.2 but
is used here to save the
file for later editing]

EDIT filespec /switchl/switch2 ••••

This command is used to edit an existing file. It runs the Editor and
reads the file into core setting the pointer to, and typing, the first
line of the file. Edit state is signalled by the response '*'

example:
.EDIT SAMPLE.FOR<cr>
C THIS IS A SAMPLE PROGRAM
*FILE<cr>

[EDIFIL Filed SAMPLE. FOR]

EDIT may be abbreviated to ED

[to save file and return
control to the monitor]

If the Editor has been used since the user logged in, the filespec
does not have to be specified for either the CREATE or EDIT commands,
as the Editor will assume the filespec and switches of the previous
CREATE or EDIT command. If no filespec is specified on the first use
of the Editor, the fatal error message "?CMLNPC No previous command"
is generated and the user returns to Monitor mode. Otherwise, if the
file specified does not exist, the fatal error message
"?EDIFNF LOOKUP, No file: filespec" is generated and the user returns
to Monitor mode. If no filespec is specified on a CREATE command but
the Editor has been previously used, the warning
"%EDISEF Superseding existing file" is given but the existing file is
not overwritten until a SAVE, FILE or RUN command is given.

2-2

CHAPTER 3

COMMAND FORMATS

MNT-6/edS
2Apr79

The Editor provides a dummy top line ***TOP and a dummy end line
***END to indicate the top and bottom of the file. These are not real
entities: it is not possible, for example, to insert a line above the
***TOP line. It maintains a pointer which indicates the current line.
Commands are provided to move this pointer up or down any number of
lines (the furthest positions being the dummy top and the dummy end
respectively); or locate it at a line containing any particular
string of characters. Further commands are available for inserting,
deleting or amending lines. Files may also be inserted at any point
in the file.

A summary of commands is given in Appendix B. The command HELP gives
a brief description of the Editor's function and commands, while H
gives a list of commands with no explanation.

Many commands can be made to do an operation on a succession of lines.
This is indicated by a positive or negative integer n following the
command; the sign usually indicates the direction desired, i.e.
(with the exception of the UP command) positive performs searches
etc., down the file, negative back up the file. If n is omitted, or
has the value 0 or 1, the command is performed upon one line, usually
the current line. An '*' implies continuation of the specified
operation to the limits of the file, in the direction indicated.
Wherever +n is given in the command descriptions, legitimate entries
could be:- 6 +6 -6 +* -*

The notation /string/ following the command is used to indicate a
string of characters. Delimiters are necessary because blanks may be
included in the character string. The string consists of all
characters between the leading and trailing delimiters. A '/' or any
other non blank character (except '*','.','#','-','+' or ';') can be
used as a delimiter, provided these delimiters are in matched pairs.
The end of a command (when signified by a carriage return) will cause
any necessary terminating delimiters to be supplied. Numeric
delimiters are not allowed when using any deleting command.

For example, the string of characters (6X, could be indicated by one
of the following:

/(6X,/

3-1

MNT-6/ed5 COMMAND FORMATS
2Apr79

: (6X,:
A(6X,A

Note however
(6X,
, (6X,
X(6X,

that
indicates the string
indicates the string
indicates the string

6X,
(6X
(6

Commands are normally terminated by a carriage return, but more than
one command may be typed on one line by using 'i' or one of the other
break characters. This has special significance when using the REPEAT
command. Note however that break characters may be included within
strings, and as such the closing delimiter must be supplied if the
command is not terminated by a carriage return.

When a filespec may be included in the command, it is indicated by the
notation 'filespec' in the description. This notation includes the
full specification of dev:filename.ext[path]/switches.

3.1 LOCATING LINES

It is necessary to be able to move the line pointer in order to
indicate where new lines are to be inserted, or which lines need
deleting or amending. Moving the pointer can be done by the following
instructions.

3.1.1 TOP and BOTTOM

TOP
BOTTOM

TOP locates the dummy top line and types it out.

example:
.EDIT SAMPLE.FOR(cr>
C THIS IS A SAMPLE PROGRAM
*TOP(cr)
***TOP
*

BOTTOM locates the last line of the file (not the dummy bottom line)
and types it out.

example:
*BOTTOM(cr>

END
*

TOP and BOTTOM may be abbreviated to T and B respectively.

3-2

COMMAND FORMATS

3.1.2 UP and NEXT

UP +n
NEXT +n

MNT-6/ed5
2Apr79

UP and NEXT move the line pointer +n lines up or down respectively.
The located line is typed out.

UP * (i.e. move up all lines from the current line) is equivalent to
TOP (but not as fast). Similarly NEXT * is equivalent to BOTTOM. UP
-n is equivalent to NEXT n.

example:
*T<cr>
***TOP
*NEXT 4<cr>

LP=6
*UP<cr>
C PRINT HEADINGS
*NEXT 6<cr>

J=I*I
*UP 2<cr>
C CALCULATE SQUARE, PRINT NUMBER AND SQUARE

*
UP and NEXT may be abbreviated to U and N respectively.

3.1.3 LOCATE

LOCATE +n /string/

LOCATE starts searching from the next line either up or down the file
for a line containing the indicated string. If the current line is
the bottom line or dummy end line the search starts at the beginning
of the file. If the integer is negative, searching will proceed up
the file.

If the current line is at the extreme of the file in the direction of
searching, the search begins at the other extreme of the file.

example:
*B<cr>

END
*LOCATE -/HEADING/<cr>
C PRINT HEADINGS

*
For this command n does not refer to the number of lines to be
searched. The command attempts to locate the string n times, typing
out and leaving the pointer at the nth line containing any occurrence
of this character string.

3-3

.MNT-6/ed5 COMMAND FORMATS
2Apr79

examples:

(i) To locate the second time 'WRITE' occurs in the sample program:
*T<cr>
***TOP
*LOCATE

30
*

2 /WRITE/<cr>
WRITE (LP, 20) I, J

(ii) To locate the first and fourth comment lines:
*T<cr>
***TOP
*LOCATE
C

/C<tab>/<cr>
THIS IS A SAMPLE PROGRAM
3 !C<tab>/<cr> *LOCATE

C CALCULATE SQUARE, PRINT NUMBER AND SQUARE

*
The search
statement.
or does not
true number

for a character string is terminated by the dummy end
Thus, if this is typed, the string was invalidly written,

exist, or the number of occurrences requested exceeded the
of lines on which it occurred.

example:
*T<cr>
***TOP
*LOCATE /WRITE (l0)/<cr>
***END

*

[this is a nonexistent
character string]

Since LOCATE is a search for the nth occurrence of a character string,
a command such as LOCATE * /string/ is invalid.

example:
*T<cr>
***TOP
*LOCATE * /C<tab>/<cr>
%EDIIVS Illegal value: *

*
LOCATE may be abbreviated to L

3.1. 4 SEARCH

SEARCH +n /string/

SEARCH, like LOCATE,
down the file for
refers to the number
the end of the file,

starts searching from the next line either up or
a line containing the character string. Here n

of lines to be searched. If the next line is at
searching begins at the other end of the file.

If the character string can be found the command will leave the

3-4

COMMAND FORMATS

pointer at the required line and will type that line out.

example:
*T<cr>
***TOP
*SEARCH * /LP=6/<cr>

LP=6
*

MNT-6/ed5
2Apr79

If the
found'
search.
command

character string cannot be found the message '%EDISNF Not
will be typed out unless the dummy end line terminates the

The pointer will be left at the last line checked by the
and this line will be typed out.

example:
*T<cr>
***TOP
*SEARCH
TEDISNF

*SEARCH
***END
*

8 /TYPE 60/<cr>
Not Found]

DO 30 1=1, 50
* /TYPE 60/<cr>

SEARCH may be abbreviated to S

3.1.5 LABEL and STATEMENT

LABEL +label+n

A more efficient method of locating lines is with the LABEL command.
The label required is any alphanumeric string commencing in column 1.
This is more efficient because only column 1 is checked for many
lines.

As in LOCATE, if the current line is at the extreme of the file in the
direction of searching, the search begins at the other extreme of the
file.

The n in this command signifies the number of lines either before (-n)
or after (+n) the labelled line. The label is not delimited.

example:
*B<cr>

END
*LABEL -C+2<cr>

J=I*I
*

is equivalent to
~LOCATE -/J=I*I/

The LABEL command is particularly suited to straight data files, or
Cobol and Macro source files, although it can be used with Fortran
source programs if the statement label begins in column 1. Of special

3-5

MNT-6/ed5 COMMAND FORMATS
2Apr79

use for Fortran source programs is the STATEMENT command.

STATEMENT +statement+n

'statement' is the statement label of the Fortran line. It may be
anywhere in the first five columns with trailing or leading blanks.
The label is terminated by a tab or a blank. The Editor will not
allow embedded blanks even though Fortran does. Again, the use of +n
or -n allows lines to be located relative to a statement.

As in LOCATE, if the current line is at the extreme of the file in the
direction of searching, the search begins at the other extreme of the
file.

Unlike LABEL, which will check only on
statement number must match completely:
match 100. Statements are not restricted
string to fit the five column leading and
may be located.

example:
*STATEMENT -10-3<cr>
C PRINT HEADINGS
*

the characters given, a
i.e. STATEMENT 10 will not

to integer ones, and any
trailing blank specification

LABEL and STATEMENT may be abbreviated to LA and ST respectively.

3.1.6 LINE

LINE n

LINE is another command which will locate lines very quickly. Each
line in the file is numbered sequentially. LINE with an argument will
type out the indicated line as well as updating the line pointer to
point to that line. LINE with no argument gives the current line
number and the length of the line in characters, including the
<cr><lf>.

example:
*LINE<cr>
Line 3, length = 18
*LINE 12<cr>

STOP
*LINE
Line 12, length = 7

LINE can be abbreviated to LI

[<tab>STOP<cr><lf> = 7 chars]

3-6

COMMAND FORMATS

3.1. 7 BACK

BACK +n

MNT-6/ed5
2Apr79

After a command which moves the line pointer, the BACK command may be
given to move it back from whence it came and down (or up) n lines
from there. Because deletion always begins with the current line,
BACK after a DELETE command does not move the pointer. It is
particularly useful after GET, INSERT, and PRINT commands but may be
used after any command including BACK. BACK is a non-REPEATable
command, allowing it to be used between a line of commands and a
REPEAT command referring to it (see Section 6.5 for REPEAT).

example:
*LINE 4<cr>

LP=6
*LOCATE !D030/<cr>
***END
*BACK<cr>

LP=6
*LOCATE /00 30/<cr>
- DO 30 1=1, 50
*BACK<cr>

LP=6
*RACK<cr>

DO 30 1=1, 50
*

BACK may be abbreviated to BA

3.2 PRINTING LINES

3.2.1 ASCII printing

PRINT ±/string/

PRINT +n

The PRINT command types out n lines of the file (in
starting at the current line up or down the file
pointer to the last line typed. PRINT * will type the
from the current line, typing being terminated by the
***END.

ASCI I forma t)
and moving the
complete file
dummy end line

If the SET FLAG command (Section 5.3) has been used, all control
characters and lower case characters will be flagged as such on
output. This setting may be temporarily reversed by appending a
period "." to the PRINT command.

3-7

MNT-6/ed5 COMMAND FORMA'rS
2Apr79

example:
*'r<cr>
***TOP
*L 4 /C<tab>/<cr>
C CALCULATE SQUARE, PRINT NUMBER AND SQUARE
*PRINT 5<cr>
C CALCULATE SQUARE, PRINT NUMBER AND SQUARE

DO 30 1=1, 50
J=J*I

30 WRITE (LP, 20) I, J
20 FORMAT (6X, 12, aX, 14)

*P.<cr>
20<TAB>FORMAT (6X, 12, 8X, 14)

*
If the current line is the last line or the dummy end line, PRINT *
does not restore control to the dummy top and type the entire file.
PRINT -n causes the printing to be done up the file, in reverse order.

PRINT, PRINT 0, PRINT 1 are all equivalent and will type out the
current line.

PRINT may be abbreviated to P

3.2.2 Octal Printing

OPRINT +n

This command is available should the user wish to inspect the octal
representation of certain characters, especially some of the nontyping
control characters.

This command prints n lines up or down the file starting from the
current line, with each character output in its three character octal
representation.

Appendix C lists the octal codes for ASCII characters in the PDP-10
system.

example:
*P<cr>

20 FORMAT (6X, 12, 8X, 14)
*OPRINT<cr>
040 062 060 011 106 117 122 115 101 124 040 050 066 130 054
040 III 062 054 040 070 130 054 040 III 064 051 015 012

*
OPRINT may be abbreviated to 0

3-8

COMMAND FORMATS

3.3 INSERTING LINES

3.3.1 Inserting One Line

INSERT line

MNT-6/edS
2Apr79

Lines will always be inserted immediately after the current line and
the pointer will be updated to point to the line inserted. The use of
the dummy top and dummy bottom lines can be explained here as
facilitating the insertion of lines at the beginning and end of the
file. The line to be inserted will start one blank after the command.
However, to facilitate the entering of Fortran lines the inserted line
will start immediately after the command if the line starts with a
<tab>. The insertion is performed without typing out the inserted
line.

The text to be inserted may contain ';' or any break character, being
terminated by <cr> (or more specificly, the <If> of the <cr><lf>
pair). Several identical lines may be inserted by following this
command by a REPEAT command, described in Section 6.5.

example:
~L /STOP/<cr>

STOP
*INSERT C<tab >THIS IS THE END OF THE PROGRAM<cr>
*P 3<cr>
C THIS IS THE END OF THE PROGRAM

END
***END
*

3.3.2 Inserting One or More Lines

INSERT

This can be performed by typing the carriage return character
immediately after the command INSERT. Input state is signalled when
the Editor responds with 'Input:'. Any number of lines may b~
inserted after the current line and the line pointer is updated to
point to the last line inserted. Edit state may be re-entered at any
time by typing the null line. This is a carriage return as the first
character of the line.

Lines longer than the nominal limit of 300 characters may be inserted,
but they are broken into fragments of 280 characters or less fOl
editing and reassembled when the file is output.

example:
*T<cr>
***TOP
*INSERT<cr>

3-9

MNT-6/ed5 COMMAND FORMATS
2Apr79

Input:
>FORTRAN PROGRAM<cr> C<tab

C<tab
C<tab
<cr>
*T<cr>
***TOP
*p *<cr>
***TOP
C
c
C
C
C
C

10
C

30
20

C

***END
*

>WRITTEN BY J. SMITH FEB 1970<cr>
>UNIVERSITY OF QLD. ST. LUCIA<cr>

FORTRAN PROGRAM
WRITTEN BY J. SMITH FEB 1970
UNIVERSITY OF QLD. ST LUCIA
THIS IS A SAMPLE PROGRAM
PROGRAM CALCULATES THE SQUARES OF INTEGERS 1 TO 50
PRINT HEADINGS
LP=6
WRITE (LP, 10)
FORMAT ('1', 3X, 'NUMBER', 5X, 'SQUARE'/)
CALCULATE SQUARE, PRINT NUMBER AND SQUARE
DO 30 1=1, 50
J=I*I
WRITE (LP, 20) I, J
FORMAT (6X, 12, ax, 14)
STOP
THIS IS THE END OF THE PROGRAM
END

If edit state is not re-entered (by typing an extra <cr» before
typing editing commands the Editor will treat these commands as
further data to be inserted into the file.

INSERT may be abbreviated to I

3.4 DELETING AND REPLACING LINES

3.4.1 Deleting Lines

DELETE +n

This command deletes n lines, either up or down the file starting at
the current line.

DELETE ~/string/

This command starts deleting from the current line either up or down
the file and continues deleting until the indicated string is located:
the line containing the string is not deleted.

Both versions delete at least one line and the pointer is left at the

3-10

COMMAND FORMATS MNT-6/ed5
2Apr79

first line following the deleted section, this line being typed out.
***TOP and ***END are only indicators and so they cannot be deleted.

An attempt to delete ***TOP will result in the first line of the file
being deleted instead. ***END will terminate a deletion.

example:
*T<cr>
***TOP
*DELETE<cr>
C WRITTEN BY J. SMITH FEB 1970
*

It should be noted that if the string typed in is incorrect, or is
only contained in the current line, then the command will delete the
rest of the file, from, and including the current line. For this
reason, numeric delimiters are not allowed in the DELETE command.
When a string is used, the number of lines deleted is given by
, [EDILDL Lines Deleted: n]'

For example,
deleted from

*T<cr>
***TOP
*DELETE
TEDILDL
C
*T<cr>
***TOP
*p 2<cr>
***TOP

some of the comment lines
the program.

/SAMPLE/<cr>
Lines Deleted: 2]

THIS IS A SAMPLE PROGRAM

C THIS IS A SAMPLE PROGRAM
*

inserted before are to be

If the command given had been DELETE /SAMLE/ then the entire file
would have been deleted since SAMLE is a nonexistent character string.

DELETE may be abbreviated to DEL

3.4.2 Replacing Lines

REPLACE line

The current line is replaced by the line starting one space after the
command, as in the INSERT command. The line pointer is maintained at
its current position. Replacement is performed by the program without
typing out the replaced line.

3-11

MNT-6/ed5 COMMAND FORMATS
2Apr79

example:
*L / 10<tab>/<cr>
-10 FORMAT ('1', 3X, 'NUMBER', 5X, 'SQUARE'/)
*REPLACE 10<tab>FORMAT ('1', 3X, 'NO', 5X, 'SQ'/)<cr>
T

REPLACE may be abbreviated to R

3.4.3 Deleting and Inserting Lines

Quite often the user is interested in deleting a portion of the file
and replacing or inserting extra text in its place. This can be done
directly with the DINSERT command. DINSERT behaves in the same manner
as DELETE, only it places the Editor back into input state, ready to
receive new data.

DINSERT +n

Will delete n lines from the current line, move back to the line
before deletion and print it out before entering input state.

DINSERT ~/string/

Will delete all lines up to the line containing the string, move back
to the line before deletion and print it and a count of the lines
deleted before entering input state.

DINSERT may be abbreviated to DIN

3.5 ALTERING LINES

3.5.1 Changing Character Strings

CHANGE +n /string-l/string-2/

ALLCHANGE ~n /string-l/string-2/

CHANGE substitutes the first occurrence of string-l encountered in the
line by string-2, expanding or contracting the line as necessary.
ALLCHANGE substitutes every occurrence of string-l in the line (and
not Just the first one) by string-2.

The changed line is typed out. If the data string, string-I, is not
found '[EDINOC No Change] e is typed back. If a change would expand
the line to more than 300 characters, the message '%EDILTL No change -
line too long' is given.

example:
*P<cr>
-10 FORMAT ('1', 3X, 'NO', 5X, 'SQ'/)

3-12

COMMAND FORMATS

*CHANGE
TEDINOC
*CHANGE

Ie)
*CHANGE

10

*

/NUMBER/NO/<cr>
No Change]

/NO/NUMBER/<cr>
FORMAT ('1', 3X,
!SQ!SQUARE!<cr>
FORMAT ('1', 3X, 'NUMBER', 5X, 'SQUARE'/)

MNT-6/ed5
2Apr79

These commands can be performed upon n lines either up or down the
file starting at the current line. The line pointer is left at the
last line checked, not the last line changed. Each changed line is
typed out but the 'EDINOC' message is not given for unchanged lines.

example:
*T<cr>
***TOP
*ALLCHANGE * /J/II<cr>

II=I*I
30 WRITE (LP, 20), I, II

***END

*
If string-l does not occur in any of the lines examined by the command
then the dummy end line is the only line typed back.

example:
*T<cr>
***TOP
*CHANGE 5 /IVAL/I/<cr>
*CHANGE * /IVAL/I/<cr>
***END

*
CHANGE and ALLCHANGE may be abbreviated to C and A respectively.

3.5.2 Appending and Prepending Character Strings

APPEND ~n /string/

PREPEND ~n /string/

These commands allow a user to attach the specified character string
onto the end or beginning of the line. The action occurs on n lines
of the file down or up the file, and can be used, for instance, to
place trailing sequence numbers into a file.

example:
*U<cr>

END
*PREPEND 7 999<cr>
-999 END
*APPEND !<tab>!COMMENT

3-13

MNT-6/ed5 COMMAND FORMATS
2Apr79

999 END !COMMENT
*R<tab>END<cr>

"*
APPEND and PREPEND may be abbreviated to AP and PRE respectively.

3.5.3 Splitting a Line into Two Lines

SPLIT +/string/
SPLIT +n

This splits the current line at the point following the specified
string or the n'th character and inserts the rest of the line after
the current line (before the current line for SPLIT -/string/ or
SPLIT -n) • Notice that n refers to a number of characters, not a
number of lines as in other commands and that tab counts as one
character only.

example:
*STATEMENT 10<cr>

10 FORMAT('l', 3X, 'NUMBER', 5X, 'SQUARE'/)
*SPLIT IBER' ,I<cr>
-10 FORMAT('l', 3X, 'NUMBER',

5X, 'SQUARE' /)
*PRE I<tab>l /<cr>

1 5X, 'SQUARE' /)
30<cr>

WRITE (LP, 20) I, J
*SPLIT

30
-3<cr>

WRITE (LP, 20) I, J
*NEXT<cr>

30
*AP /<tab>CONTINUE/<cr>

30 CONTINUE
*

SPLIT may be abbreviated to SP

3.5.4 Concatenating Two Lines

CON CAT
CONCAT -

(split before the <tab>]

[2nd part is inserted above]

This command allows a user to join two adjacent lines of a file. If
no sign is specified, the line below the current line is moved to the
end of the current line. If a minus sign is used, the line above the
current line is moved to the end of the current line. Concatenation
can not create lines longer than 300 characters. The message '%EDILTL
No change - line too long' indicates this.

3-14

COMMAND FORMATS

example:
*STATEMENT -10+1<cr>

MNT-6/ed5
2Apr79

[to line after statement 10]
1 5X, 'SQUARE'/)

*CHANGE /<tab>l //<cr>
-5X, ' SQUARE' /)
*UP<cr>
-10 FORMAT('l', 3X,
*CONCAT<cr>
-10 FORMAT('1',3X,

*

[remove the continuation code]

[back to first line of
'NUMBER' ,

[append the next line]
'NUMBER', 5X, 'SQUARE'/)

pair]

CONCAT may be abbreviated to CO

3-15

MNT-6/ed5
2Apr79

CHAPTER 4

FILES

4.1 SAVE

SAVE filespec

This is a similar command to FILE. SAVE will save the complete file
using the filespec given. If no filespec is supplied the name
specified in the original CREATE or EDIT is used. The previous
version of the file is renamed with a .BAK extension, and the present
incore file will get the specified name. If a LOG file (see Section
6.2) is open it will be closed and restarted.

However, SAVE does not return control to the monitor. Instead, it
returns the line pointer to the line that was being signified before
the SAVE command and types this line out. Editing can then continue.

This is a very useful command when editing a large file. Frequent
SAVE commands can be executed during editing. Then, if a system
malfunction should occur, or the current file is inadvertently
destroyed, editing can recommence from the point of the last SAVE
command. Using the LOG facility and the PERFORM command, this
recovery may be automated making frequent SAVEs less important. Since
SAVE closes off the current log file and restarts it, the current log
file contains only the commands since the last SAVE.

example:
*L /(LP, l0)/<cr>
- WRITE (LP, 10)
*SAVE<cr>
TEDISAV Saved: DSKD:SAMPLE.FOR]

WRITE (LP, 10)
*

SAVE may be abbreviated to S

4-1

[will be saved as SAMPLE. FOR -
the filespec in the original
EDIT command]

MNT-6/ed5 FILES
2Apr79

4.2 FILE

FILE filespec

This command will save the file using the name given. If the filespec
is not present in this command then the file is output with the name
included in the original EDIT or CREATE command.

The dummy top line and dummy bottom line are not written with the rest
of the file. These are simply used during the edit procedure. FILE
returns control to the monitor after the file has been written, and
any current LOG file is closed. If control is transferred to the
monitor by any means other than through the FILE command the created
or edited file may be lost if editing is not CONTINUEd; any current
LOG file will be lost unless it is CLOSEd or editing is continued.

example:
*FILE SAMPLE.FOR<cr>
TEDIFIL Filed : SAMPLE. FOR]

FILE may be abbreviated to F

4.3 QUIT

This command will return control to the monitor without outputting the
file. As with the FILE command it clears the scratch file used by the
Editor from the user's disk area and closes any log file. Exit to the
monitor can be obtained by ~C but this will not clear this scratch
file, and editing may be resumed by giving a CONTINUE or REENTER
command.

example:
.EDIT SAMPLE.FOR/LOG:SAM.EDI<cr>
C THIS IS A SAMPLE PROGRAM
*QUIT<cr>
TEDICLF Closed log file: SAM.EDI]

QUIT may be abbreviated to Q

4.4 EXECUTE

EXECUTE filespec

This command is exactly equivalent to FILE except that instead of
returning to monitor mode, the last compile class command is performed
again. Compile class commands comprise EXECUTE, COMPILE, LOAD and
DEBUG. This feature is useful for rapidly re-editing and recompiling
a program when an error is detected.

4-2

FILES

example:
*EXECUTE(cr>
[EDIFIL Filed: TEST. FOR]
FORTRAN: TEST. FOR
LINK: Loading
[LNKDEB DDT Execution]

EXECUTE may be abbreviated to E

4.5 RUN

RUN filespec

SET RUN filespec
SET RUNOFFSET n

/RUN:filespec
/RUNOFFSET:n

MNT-6/ed5
2Apr79

The RUN command has the function of EXECUTE except that if a SET RUN
command or /RUN switch has been given the program so specified is run
after the edited file is saved.

The SET commands store the name of a program and a starting address
offset respectively.

This facility is provided for those editing data files or RUNOFF files
to provide the convenience EXECUTE gives for program testing.

example:
*SET RUN SYS:RUNOFF(cr>
*RUN TEST.RNO(cr>
TEDIFIL Filed : TEST.RNO]
*

RUN may be abbreviated to RU

4.6 OUTPUT OF A FILE TO DISK

PUT +n filespec
PUT ~/string/ filespec

PUTDEL +n filespec
PUTDEL ~/string/ filespec

[file as TEST.RNO]

[RUNOFF waiting for commands]

These instructions output part of the file and name it as indicated.
If PUTDEL is used instead of PUT the portion output is deleted from
the incore file as well. Output (and deletion) starts from the
current line and is terminated after n lines or when a line containing
the character string is located (this line being neither output nor
deleted) •

The pointer is left at the first line after the section output and
this line is typed out. The PUT command works in the same way as the

4-3

MNT-6/ed5 FILES
2Apr79

FILE command except that only a portion of the file is saved and no
EXIT to the monitor is taken.

example:
.ED<cr>
C THIS IS A SAMPLE
*L IDO 30/<cr>
- DO 30 1=1, 50

PROGRAM

*PUTDEL 4 RTN<cr>
STOP

*

*PUTDEL /STOP/ RTN<cr>
[EDILDL Lines deleted: 4]

STOP

The file RTN will thus consist of:

DO 30 1=1, 50
11=1*1

30 WRITE (LP, 20) I, II
20 FORMAT (6X, 12, ax, 14)

*

while the program SAMPLE will have had these four lines deleted from
the file:

*T<cr>
***TOP
*p *<cr>
***TOP
C
c
C

10
c
c
***END

*

THIS IS A SAMPLE PROGRAM
PROGRAM CALCULATES THE SQUARES OF INTEGERS 1 TO 50
PRINT HEADINGS
LP=6
WRITE (LP, 10)
FORMAT (i I', 3X, 'NUMBER', 5X, 'SQUARE'/)
CALCULATE SQUARE, PRINT NUMBER AND SQUARE
STOP
THIS IS THE END OF THE PROGRAM
END

Reverse PUTting follows from the generalization of the n in command
formats. It is doubtful whether it is a useful feature for these two
commands.

PUT may not be abbreviated: PUTDEL may be abbreviated to PUTD.

4.7 INSERTING FILES

GET filespec

This command is
Insertion takes

used to insert a complete file if it exists.
place after the current line and the pointer is left

4-4

FILES MNT-6/ed5
2Apr79

at the last line inserted, this line being typed out.

For example, the file RTN is to be reinserted into its old position in
the program.

*L 4 /C<tab>/<cr>
C CALCULATE SQUARE, PRINT NUMBER AND SQUARE

RTN <cr>
FORMAT (6X, 12, ax, 14)

*
If the filespec specified in the
'%EDIFNF LOOKUP, No file: filespec' is

example:
*GET FILEI5<cr>
%EDIFNF LOOKUP, No file: FILEl5
*

GET may be abbreviated to G

4.8 SHIFTING PARTS OF A FILE

GET command does not exist
typed back by the program.

The PUT, PUTDEL and GET instructions provide a useful and convenient
way of shifting parts of the incore file to other positions. This
procedure can be simplified by leaving out the names in the commands,
the Editor then provides its own name for naming the temporary files
created. The temporary file should be deleted before logout from the
system.

4-5

MNT-6/ed5
2Apr79

CHAPTER 5

MODES OF OPERATION

5.1 EXTENT OF TYPEOUT

5.1.1 SET VERIFY and SET BRIEF

The normal mode of operation under the edit state is VERIFY.
causes a typeout of located and altered lines.

SET BRIEF or SET NOVERIFY

Restoration of the normal mode of operation is achieved by:

SET VERIFY or SET NOBRIEF

The PRINT commands are not affected by these commands.

example:
*SET VERIFY<cr>
*T<cr>
***TOP
*L 2 !LP/<cr>
- WRITE (LP, 10)
*SET BRIEF<cr>
"*"L /LP, 20/<cr>
*PRINT<cr>

WR IT E (L P, 20) I, I I

*

[this will suppress usual
Editor responses]

This

The switch form, /BRIEF, may be given after the filename in the EDIT
or CREATE command to set the initial mode.

SET VERIFY and SET BRIEF may be abbreviated to SET V and SET B
respectively.

5.1.2 Temporary Reversal of Typeout Mode

If the current mode of typeout is VERIFY, suppression of the usual
typeout may be achieved by appending a period ' , to a particular

5-1

MNT-6/ed5 MODES OF OPERATION
2Apr79

command. The reverse applies if the current mode is BRIEF. Obviously
this has no effect for commands which produce no typeout, such as
INSERT OR REPLACE. A period appended to the PRINT and DISPLAY
commands temporarily reverses the FLAG or NOFLAG mode of printing as
described in Section 5.3.

example:
*SET VERIFY<cr>
*T. iL /LP/<cr>
- LP=6
*L. /WRITE/iPRINT 2<cr>
- WRITE (LP, 10)

10 FORMAT ('I', 3X, 'NUMBER', 5X, 'SQUARE'/)
*SET BRIEF<cr>
*T.iL /LP/<cr>
***TOP
*L. /WRITE/<cr>

WRI'rE (LP, 10)

*

5.1.3 SET VERBOSITY

Messages have a 6 character message identifier as a
error messages are preceeded by"?", warnings by "%"
messages are enclosed in square brackets.

example:

prefix. Fatal
and informative

?EDIDLT Direct access line too big - FILEing discontinued
%EDIAMB Ambiguous command
[EDIFIL Filed : filespec]

Several levels of verbosity are available. The lower levels should be
used with discretion.

SET VERBOSITY HIGH
SET VERBOSITY STANDARD
SET VERBOSITY FIRST
SET VERBOSITY LOW
SET VERBOSITY NONE

full messages
full messages
message identifier missing
only the message identifier
only "?","%" or "[]" given

Other verbosity levels (CONTIN, FIRCON and PRECON) refer to messages
continuing over several lines. At this time, there are no messages
that continue over several lines.

example:
.EDIT SAMPLE.FOR/VERBOSITY:FIRST<cr>
C THIS IS A SAMPLE PROGRAM
*LINE 100<cr>
%No such line: 100 [the prefix EDINSL omitted]
*SET VERB H<cr>
*GET DSKD:ANZAS.TXT<cr>
%EDIIPP LOOKUP, No directory: DSKD:ANZAS.TXT

5-2

MODES OF OPERATION

*SET VERB FIRST<cr)
wCHANGE /DECEMBER/JANUARY/<cr>
TNO change]
*SET VERB LOW<cr>
wDELETE - l0<cr>
%EDIIND
*SET VERB NONE<cr>
wC/D/J/<cr>
T]
1r

MNT-6/ed5
2Apr79

[a space between "-" and "10"]

The initial setting for verbosity is STANDARD unless the /MESSAGE
switch is used at LOGIN.

5.2 UPPER/LOWER CASE IN SEARCHES

SET ULCASE
SET NOULC

/ULCASE
/NOULC

Normally search strings must match exactly before success is declared,
i.e. "Now" with some lower case characters does not match "NOW" in
upper case. SET ULCASE relaxes this rule and allows upper/lower case
to match lower/upper case in all commands where /string/ is an
argument. SET NOULC reverts to the exact match requirement.

example:
*LOCA'rE /lp/<cr>
w**END
*SET ULCASEiBACK<cr>
- J=I*I
*REPEAT<cr)
-30 WRITE(LP, 20), I, J

*

[not found, end reached]

SET ULCASE and SET NOULC may be abbreviated to SET U and SET NOU
respectively.

5.3 PRINT-OUT OF SPECIAL CHARACTERS

SET FLAG
SET NOFLAG

/FLAG
/NOFLAG

SET FLAG causes lower case characters and control characters to be
flagged as such in all subsequent print-out. 'X is printed for x, AB
for Control-B, <FF> for form-feed, <ESC> for escape. This mode
remains in effect until cancelled by SET NOFLAG. Either mode of
typeout may be reversed temporarily with "PRINT." or "DISPLAY."
commands.

5-3

MNT-6/ed5 MODES OF OPERATION
2Apr79

example:
*1 C<tab >This is a TEST<esc><cr>
*SET FLAGiPRINT<cr> [both commands on one line]
C<TAB>T'H'I'S 'I'S 'A TEST<ESC>
*P.<cr> [period reverses FLAG mode]
C This is a TEST$
*SET NOFLAG<cr>

*
SET FLAG and SET NOFLAG may be abbreviated to SET F and SET NOF
respectively.

5-4

CHAPTER 6

AUTOMATED EDITING AND RECOVERY TECHNIQUES

6.1 RECOVERY AFTER EDITING MISHAPS

MNT-6/ed5
2Apr79

Minor editing mistakes may be corrected with the DEL or RUBOUT key or
by ~U (Control-U) if noticed before the end of the line (see Appendix
E.2). Otherwise the line may be edited to correct a wrong word or
replace the whole line (see CHANGE and REPLACE). More catastrophic
errors sometimes occur. For example if the string in "DELETE
/string/" is mistyped, many lines may be deleted. The present editing
may then be aborted - using the QUIT command. If the user had the
foresight to SAVE recently, re-entering the commands typed since then
would not be onerous. The following sections show how commands may be
recorded so that recovery can be automated.

6.2 RECORDING THE EDIT COMMANDS AND TEXT

SET LOG filespec
SET NOLOG

/LOG:filespec

The LOG switch may be given on the EDIT or CREATE command, or SET LOG
used when in edit state. This command closes any open log file and
opens the specified file to receive all further characters, as
commands or text, typed on the terminal.

The log file is check-pointed every 640 characters, so all but about
ten lines should be available in the log after a system failure.
Fatal errors close the log, as do QUI'r, FILE, RUN and EXECUTE. SAVE
closes and reopens the log file so that the current log refers to the
disk copy of the file being edited.

If a command has damaged the in-core file and editing is aborted using
the QUIT command, a log file will help in restoration. First edit the
log file to remove the offending command and the QUIT command. Then
EDIT the original file and PERFORM the log file.

The default filespec is nnnEDI.EDI, where nnn is the job number.

6-1

MNT-6/ed5 AUTOMATED EDITING AND RECOVERY TECHNIQUES
2Apr79

example:
.EDIT SAMPLE.FOR/LOG:SAM<cr>
C THIS IS A SAMPLE PROGRAM
*SET LOG S<cr>
TEDICLF Closed log file: SAM]
*SET NOLOG<cr>
TEDICLF Closed log file: S]

*
SET LOG and SET NOLOG may be abbreviated to SET L and SET NOL
respectively.

6.3 PERFORMING A FILE OF COMMANDS

Where a sequence of editing commands is to be performed more than
once, it may be convenient to create a file of those commands and
PERFORM them.

PERFORM n filespec

PERFORM takes commands from the specified file, reusing the file n
times. "PERFORM *" is not allowed. PERFORM finds useful application
in recovering from editing errors and system failures, where a log
file provides the commands to be performed.

The progress of the PERFORM can be followed since each command
executed within the PERFORM is output to the terminal preceded by a
plus (+) sign, and followed by any output generated. If textual
output is not required, the PERFORM command may be preceded by a SET
BRIEF command. For safety, any warnings given while performing, abort
the PERFORM. The command may also be safely aborted by the user
typing ACAC REENTER.

PERFORM is not REPEATable (see Section 6.5), but the file performed
may contain both REPEAT and PERFORM commands.

The default filespec is nnnEDI.EDI, where nnn is the job number.

example:
*TOPiSET LOG DOTS<cr>
***TOP
*LOCATE. /C<tab>/<cr>
*APPEND /./<cr>
C THIS IS A SAMPLE PROGRAM.
*SET NOLOG<cr>
TEDICLF Closed log file: DOTS]
*PERFORM 3 DOTS<cr>
+LOCATE. /C<tab>/
+APPEND I./C PROGRAM CALCULATES THE SQUARES OF INTEGERS 1 TO 50.
+SET NOLOG
+LOCATE. IC<tab>/
+APPEND I./C PRINT HEADINGS.

6-2

[NOTE: this command exists
in the log file]

AUTOMATED EDITING AND RECOVERY TECHNIQUES

+SET NOLOG
+LOCATE. /C<tab>/
+APPEND /./C CALCULATE SQUARE, PRINT NUMBER AND SQUARE.
+SET NOLOG
+
*

PERFORM may be abbreviated to PER

6.4 MAKING A FILE OF COMMANDS

MACRO filespec

MNT-6/edS
2Apr79

If during an editing session a file of commands is required, this may
be created in one of several ways. One of the most convenient is by
use of the MACRO command. The Editor goes into MACRO input state,
creating the specified file from the lines which follow. Any text may
be inserted into the file, the syntax being checked when the file is
PERFORMed. Return to edit state is accomplished as usual by typing an
extra <cr>. The macro file is then closed as signified by the message
" [EDICMF Closed macro command file: filespec]". No change is made to
the file being edited by this command.

The default filespec is nnnEDI.EDI, where nnn is the job number.

example:
*MACRO DEDOT<cr>
MACRO input:
LOCATE. /C<tab >/<cr>
CHANGE /.//<cr>
<cr>
[EDICMF Closed macro command file: DEDOT]
*TOP;SET BRIEF<cr>
T**TOP
*PERFORM 4 DEDOT<cr> [output not shown here]

MACRO may be abbreviated to M

6.S REPEATING COMMANDS

REPEAT n

This command repeats the previous command or line of commands n times.
This function is achieved by the Editor's remembering each line of
commands in case a REPEAT is requested. Such a line is terminated by
<cr> or <If> or REPEAT. Note that <esc> and "i" do not terminate the
"line of commands" and either may be used as command separators.
Certain commands are not repeatable and are not remembered in this
way. BACK, REPEAT, SAVE and the SET commands are non-repeatable
commands which may be used between the command line and the REPEAT
command referring to it. Commands which invoke the input state

6-3

MNT-6/ed5 AUTOMATED EDITING AND RECOVERY TECHNIQUES
2Apr79

INSERT (multi-line), DINSERT and MACRO - leave nothing to be repeated,
and neither does PERFORM.

There is a limit to the number of commands which may be stored for
repeating. This limit is the number of commands that can be stored in
one 300 character line using the shortest allowable abbreviations.
Further commands may still be typed and are acted on as usual, but the
bell is sounded to warn that the REPEAT command would act on only the
first 300 characters. The MACRO and PERFORM commands have essentially
no limit, so these should be used where the command line length may be
restrictive.

example:
*TOP<cr>
***TOP
*L /<tab>/iSP /<tab>/iUiC /<tab>/ liSP 6iDEL -liCO.<cr>
C THIS IS A SAMPLE PROGRAM [L /<tab>/i]
C [SP /<tab>/i]
THIS IS A SAMPLE PROGRAM
C
C
C

[U i]
[C /<tab>/
[SP 6i]

/ i]

*SET BRIEF<cr>
*REPEAT *<cr>

[delete any excess spaces]
[supress typeout during REPEAT]

C PROGRAM CALCULATES THE SQUARES OF INTEGERS 1 TO 50
C PRINT HEADINGS

LP-6
WRITE (LP, 10)

10 FORMAT ('I', 3X, 'NUMBER', 5X, 'SQUARE'/)
C CALCULATE SQUARE, PRINT NUMBER AND SQUARE

STOP
C THIS IS THE END OF THE PROGRAM

END
***END
*

REPEAT may be abbreviated to REPE

6-4

CHAPTER 7

JOB INFORMATION COMMANDS

MNT-6/ed5
2Apr79

7.1 JOB .COST BALANCE (University of Queensland version only)

JOBBALANCE

The JOBBALANCE command types out the current job balance in dollars
and cents.

At the start of a job the user imposes a cost limit on the job by
means of the COST argument in the LOGIN command. He can change this
limit by means of the SET COST command. However, if at any stage
during a job the limit is exceeded the current task is terminated and
output data could be lost. JOBBALANCE permits a user to enquire into
the state of his job balance while still running the Editor. If the
balance is nearing its limit he can Control-C out of his editing,
issue a SET COST command and then CONTINUE.

example:
*JOBBAL<cr>
Balance of cost limit = $9.98
*

JOBBALANCE may be abbreviated to JOBB

7.2 JOB TIME

JOBTIME

The JOBTIME command types out the total central processor time used
since the user logged in. The result is in hh:mm:ss.s

example:
*JOBTIM<cr>
Processor time = 00:00:03.40
*

JOBTIME may be abbreviated to JOBT

7-1

CHAPTER 8

SPECIALIZED COMMANDS AND OTHER FEATURES

MNT-6/ed5
2Apr79

There are a number of other commands available for performing
specializing functions, e.g. depending on the type of terminal being
used, or the requirements for the file being created.

8.1 SPECIAL TERMINAL COMMANDS AND OTHER FEATURES

8.1.1 Lower Case Terminals

The Editor will accept commands typed in lower case characters. Users
can therefore set and operate the lower case facility on terminals
such as the G.E. Terminet (by the monitor command SET TTY LC) without
it disturbing the Editor.

8.1.2 Display Terminals

DISPLAY +n
DISPLAY ~/string/

SET PAGE n
SET NOPAGE

/PAGE:n
/NOPAGE

The command DISPLAY is designed for output of sections of files on
display terminals. The command is the same as PRINT except that the
program waits when the bottom of a page is reached and erases the
screen and starts a new page when signalled. The page size is set at
a default of 19, but can be set by the command SET PAGE n or /PAGE:n
on the CREATE or EDIT command.

The DISPLAY command action is:

(a) outputs a hardware form feed to erase the screen

(b) outputs lines until
(i) the n'th line or the line containing 'string' is

displayed,
(ii) the page 'n' is satisfied, or
(iii) a form feed is reached.

8-1

MNT-6/ed5 SPECIALIZED COMMANDS AND OTHER FEATURES
2Apr79

If it is (i) then a new command can be entered to the Editor. If it
is (ii) or (iii) the Editor suspends output until <xon> (AQ) is typed.

In earlier versions of the Editor, it was possible to abort the
display by giving an edit command. Control-C (AC) and REENTER will
achieve this effect safely and return the Editor to edit state.

DISPLAY may be abbreviated to DIS

8.2 TRANSLATION FROM 026 TO 029 CHARACTERS

TRANSLATE +n

TRANSLATE n means translate n lines converting the five 026 characters
that fall within the FORTRAN subset of characters to their 029
equivalents.

i. e. @ becomes punch 8-4
% becomes (0-8-4
< becomes) 12-8-4
& becomes + 12
it becomes = 8-3

This is used if a FORTRAN program has been punched with a mixture of
029 and 026 codes and the deck has then been read with a MODE:ASCII
switch.

TRANSLATE may be abbreviated to TR

8.3 FORTRAN DIRECT ACCESS COMPATIBILITY

/DIRECT:n

This switch on an output filespec allows the Editor to create data
files that will be compatible with Fortran direct access filing
specifications. The 'n' is the RECORD SIZE used in the Fortran OPEN
statement. Two characters are added for the <cr><lf> and lines are
padded out with nulls to the exact word boundary. For example, 5-word
lines would be created if 'n' were set at 20. If a user's line is too
long then an error message is given, the long line is printed and
filing is stopped. The user may edit it if possible and try again, or
use a larger value of n.

/DIRECT:n applies only to the output file to which it was specified,
ego FILE filename/DIRECT:72 or PUT n filename/DIRECT:126

/DIRECT may be abbreviated to /DI

8-2

SPECIALIZED COMMANDS AND OTHER FEATURES

8.4 BASIC PROGRAMS AND LINE-NUMBERED FILES

MNT-6/edS
2Apr79

BASIC and certain line editors create files with special line sequence
numbers on each line. Such files may be edited leaving the line
numbers intact for BASIC programs, but removing them for all other
files. Two switches are available in case it is necessary to override
the default cases.

/DELSEQ
This is the default for all files except BASIC programs. Line numbers
are deleted.

/NODELSEQ
The default for BASIC files (extension .BAS), this switch leaves line
sequence numbers on any lines that have them. The structure of the
line is not preserved, relying on the ability of BASIC to restructure
the sequence number.

/DELSEQ and /NODELSEQ may be abbreviated to /DE and /NOD respectively.

8.S PROTECTION AND PRIVACY OF FILES

Files created by the Editor are given protection from access by other
users depending on
(a) the protection of a pre-existing file of that name, or
(b) the protection of the file from which it was derived, or
(c) the installation default protection.
In addition, no .BAK file is created with so much protection that the
owner cannot delete it without changing its protection first. The
owner may edit files he is allowed to supersede or update. Other
users will not be successful unless the owner has allowed renaming of
the file.

8.6 EDITING OTHER PROGRAMMERS' FILES

Successful editing depends on the protection of the file concerned or
of the directory if the file does not exist.

Ersatz devices are directories referred to by device-like names, e.g.
SYS:, NEW:, HLP: and LIB:. A library is a directory declared as such
at LOGIN or set by program (e.g. SETSRC). A library is regarded as a
read-only device when accessed implicitly. SYS: and NEW: may be
given the status of libraries at LOGIN. The rule followed by the
Editor in determining library status is: "if the path taken to find
the file differs from the specified path or the default path for the
device, the file is treated as if it was found in a library". This is
extended to cover sub-file directories also.

The action of the Editor is best illustrated by examples. Suppose a
person logged in on [100,100], specifying [100,S] as a library and
requesting that NEW: and SYS: be searched for files not found on

8-3

MNT-6/ed5 ILLUSTRATED EXAMPLE
2Apr79

0.0<cr>

END OF EXECUTION
CPU TIME: 0.12 ELAPSED TIME: 22.44
EXIT

The program will now be modified in order that it may produce both the
perimeter and the area for any given diameter. This could be
performed in the following way. (The edit will be performed in verify
mode so that the example can be followed easily) •

• ED<cr> [the filespec and switches
from the create command
will have been remembered]

C PROGRAM TO CALCULATE AREA OF CIRCLE
[first line of file printed]

*C /AREA/PERIMETER AND AREA/<cr>
~ PROGRAM TO CALCULATE PERIMETER AND AREA OF CIRCLE
*L 3 /C<tab>/<cr>

C CALCULATE AREA AND PRINT RESULT

*C. /AREA/PERIMETER AND AREA/<cr>
*C /RESULT/RESULTS/<cr>

[starts locating from the next
1 ine]

[locates the third comment
1 ine]

C CALCULATE PERIMETER AND AREA AND PRINT RESULTS
*SAVE<cr>
TEDICLF Closed log file: SAFETY.EDI]
[EDrSAV Saved: DSKD:FRTRN.FOR]
[EDILFR Log file restarted]

[save file as precautionary
measure - FRTRN.FOR assumed]

C CALCULATE PERIMETER AND AREA AND PRINT RESULTS
*r<cr>
Input:
<tab
<tab
<cr>
*N<cr>

>RAD=(DIAM*.5) <cr>
>PERM=2*3.1416*RAD<cr>

AREA=3.1416*(DIAM*.5)**2
C /(DIAM.5)/RAD/<cr>
- AREA=3.1416*RAD**2
*N.<cr>
~C /AREA/PERM, AREA/<cr>

[insert two lines]
[input state]

[null line]
[transfer pointer to next
1 ine]

[transfer pointer to next
line suppressing printing]

- WRITE(6, 30) DIAM, PERM, AREA
*N<cr>
-30 FORMAT (' DIAM', F10.3, ,
*R 30<tab>FORMAT (' DIAM', F10.3,
~I<tab>lF10.3//)<cr>

AREA', F10.3//)
I PERM', F10.3, , AREA' ,<cr>

[replace line]

The entire file will now look like this:

9-2

ILLUSTRATED EXAMPLE MNT-6/ed5
2Apr79

*T.;N.;P *<cr> [multiple commands on a line]
C PROGRAM TO CALCULATE PERIMETER AND AREA OF CIRCLE
C WRITTEN BY J. SMITH FEB 1970

10 READ (5, 20) DIAM
20 FORMAT (F10.3)

C TEST FOR END OF JOB (DIAM=0)
IF (DIAM.EQ.0.0) STOP

C CALCULATE PERIMETER AND AREA AND PRINT RESULTS
RAD=(DIAM*.5)
PERM-3.1416*RAD*2
AREA-3.1416*RAD**2
WRITE(6, 30) DIAM, PERM, AREA

30 FORMAT (' DIAM', F10.3, ' PERM', F10.3, ' AREA',
1F10.3//)

C RETURN TO READ MORE DATA
GO TO 10
END

***END
*EXEC<cr>
TEDIFIL Filed: DSKD:FRTRN.FOR]
[EDICLF Closed log file: SAFETY.EDI]

Compilation and execution of the program now produces:

FORTRAN: FRTRN.FOR
LINK: Loading
[LNKXCT FRTRN Execution]
10.0<cr>
DIAM 10.000 PERM 31.416 AREA

5.0<cr>
DIAM 5.000 PERM 15.708 AREA

0.0<cr>

END OF EXECUTION
CPU TIME: 0.18 ELAPSED TIME: 9.46
EXI'r

9-3

78.540

19.635

APPENDIX A

LISTING OF PROGRAM rSAMPLE.FORr

This is a listing of the program SAMPLE. FOR:

C THIS IS A SAMPLE PROGRAM

MNT-6/ed5
2Apr79

C PROGRAM CALCULATES THE SQUARES OF INTEGERS 1 TO 50
C PRINT HEADINGS

LP=6
WRITE (LP, HI)

10 FORMAT (rlr, 3X, rNUMBERr, 5X, rSQUAREr/)
C CALCULATE SQUARE, PRINT NUMBER AND SQUARE

DO 30 1=1, 50
J=I*I

30 WRITE (LP, 20), I, J
20 FORMAT (6X, 12, 8X, 14)

STOP
END

A-I

B.I COMMANDS

command

ALLCHANGE

APPEND

BACK

BOTTOM

CHANGE

CONCAT

DELETE

APPENDIX B

SUMMARY OF COMMANDS AND SWITCHES

MNT-6/ed5
2Apr79

abbr general form of command

A ALLCHANGE +n /stringl/string2/
Changes every occurrence of stringl in a line to
string2. Starts at current line for +n lines.

AP APPEND +n /string/
Inserts the string enclosed in any delimiters at
the end of the line. Starts at current line for
+n lines.

BA BACK +n

B

C

CO

DEL

Move line pointer back to its position before
the last command plus or minus n lines. BACK
does not affect REPEATing.

BOTTOM
Moves line pointer to last line in file.

CHANGE +n /stringl/string2/
Changes the first occurrence of stringl in a
line to string2. Starts at current line for +n
lines.

CONCAT
CONCAT -

Concatenates the current line and the next line
in either direction.

DELETE +n
DELETE +/string/

Deletes +n lines starting at current line.
or
Deletes lines up to (but excluding) line

B-I

command abbr

DINSERT DIN

DISPLAY DIS

EXECUTE E

FILE F

GET G

H H

HELP HE

INSERT I

general form of command MNT-6/ed5
2Apr79

containing the string. Starts at current line.

DINSERT +n
DINSERT +/string/

Behaves as with Delete, but moves back up to the
line before the deletion and places the Editor
into input state to accept further data.

DISPLAY +n
DISPLAY +/string/

Used-to display data upon display terminals.
Same as PRINT except that Editor waits when the
bottom of a page is reached and erases the
screen and starts a new page when signalled.
Type ~Q <XON> to continue displaying.

EXECUTE filespec
Saves the current file
executes the last

as filespec, then
COMPILE/LOAD/EXEC/DEBUG

command.

FILE filespec
Saves the file and returns control to the
monitor.

GET filespec
Inserts file into the incore file.
takes place after the current line.

H

HELP

Lists the commands and
explanation.

Types a full help text.

INSERT line
INSERT

switches

Insertion

with no

Inserts one or more lines.
place after the current line.

Insertion takes

JOBBALANCE JOBB JOBBALANCE
Types out the current job cost balance.

JOBTIME JOBT JOBTIME
Types out the total CPU time since login.

LABEL LA LABEL +label+n
Searches-for a label (the label must start in
column 1) up or down the file plus or minus a
number of lines. No delimiters are used in the
LABEL command.

B-2

command abbr

LINE LI

LOCATE L

MACRO M

NEXT N

OPRINT o

PERFORM PER

PREPEND PRE

PRINT P

PUT PUT

PUTDEL PUTD

QUIT Q

general form of command MNT-6/edS
2Apr79

LINE n
Locates the line number n and moves the pointer
to that line. If no argument is given, the
current line number and length including
<cr><lf> will be typed out.

LOCATE +n /string/
Locates the line containing the nth occurrence
of the string. Search begins at the next line,
up or down the file.

MACRO filespec
Create a file of commands or any text without
disturbing the current file.

NEXT +n
Moves the line pointer down +n lines.

OPRINT +n
Types out +n lines starting at current line, in
octal format.

PERFORM n filespec
Perform the commands from the specified file n
times.

PREPEND +n /string/
Inserts the string enclosed in any delimiters at
the start of the line. Starts on current line
for +n lines.

PRINT +n
PRINT +/str ing/

Types out ~n lines starting at current line.
or
Types out all lines up to (and including) the
line containing the string.

PUT +n filespec
PUT +/string/ filespec

Puts all lines up to
containing string, into
current line.

PUTDEL +n filespec

(but excluding) line
a file. Starts at

PUTDEL +/string/ filespec
Same as PUT except
corresponding section

that it deletes
from the incore file.

the

QUIT
Returns control to the monitor without keeping
the current file. Closes the log file.

B-3

command

REPEAT

REPLACE

RUN

SAVE

SEARCH

SPLIT

STATEMENT

TOP

TRANSLATE

UP

abbr general form of command MNT-6/ed5
2Apr79

REPE REPEAT n

R

RU

SA

S

SP

ST

T

TR

U

Repeat the last command line n times (REPEAT is
not repeatable) •

REPLACE line

RUN

Replaces current line with the one typed in.

filespec
Saves the current file as
the program specified
command.

filespec, then
in the last SET

runs
RUN

SAVE filespec
Saves the file without returning control to the
monitor. Pointer remains at the current line.
Closes and reopens the log file.

SEARCH +n /string/
Searches for line containing string. Starts
searching at next line for +n lines.

SPLIT +/string/
SPLIT +n

spTit the line after the string or the n'th
character placing the rest of the line as a new
line after (before) the current line.

STATEMENT +label+n

TOP

Searches for- Fortran type statements (labels
anywhere in the first 5 columns of the line with
leading or trailing blanks) plus or minus n
lines. No delimiters are required.

Moves pointer to dummy top line.

TRANSLATE +n
Translates n lines from 026 to 029 characters.

UP +n
-Moves pointer up +n lines.

B-4

MNT-6/ed5
2Apr79

B.2 SET COMMANDS AND EDIT SWITCHES

EDIT switches and file switches are given after the CREATE or EDIT
filespec.

command

SET BRIEF

SET VERIFY

SET NOBRIEF

abbr

SET B

command form switch form

SET BRIEF /BRIEF
suppress the usual typeout unless temporarily
overridden by"." after the command.

SET V SET VERIFY /VERIFY
typeout current line unless temporarily
suppressed by"." after the command (default).

SET NOB SET NOBRIEF /NOBRIEF
same as SET VERIFY.

SET NOVERIFY SET NOV SET NOVERIFY /NOVERIFY

SET FLAG

SET NOFLAG

SET LOG

SET NOLOG

SET MAXCOR

SET PAGE

SET NOPAGE

SET F

same as SET BRIEF.

SET FLAG /FLAG
cause flagging of control characters and lower
case characters printed.
"PRINT." overrides "SET FLAG".

SET NOF SET NOFLAG /NOFLAG

SET L

turn off flagging (default).
"PRINT." overrides "SET NOFLAG".

SET LOG filespec /LOG:filespec
write all terminal input to a log file, used to
recover after crash or error.

SET NOL SET NOLOG /NOLOG

SET M

SET P

close any open log file. The file may later be
PERFORMed.

SET MAXCOR n /MAXCOR:n
expand the low segment limit to n Kwords.
If n=0 give some core statistics.

SET PAGE n /PAGE:n
set page mode and page size to
display terminals. By default
unchanged.

n lines for
page mode is

SET NOP SET NOPAGE /NOPAGE
clear page mode.
unchanged.

B-5

By default page mode is

command

SET ULCASE

SET NOULC

abbr

SET U

command form switch form

SET ULCASE /ULCASE

MNT-6/ed5
2Apr79

allow upper/lower case to match lower/upper case
in search strings.

SET NOU SET NOULC
enforce exact
(defaul t) •

/NOULC
case matching in searches

SET VERBOSITY SET VERB SET VERBOSITY x /VERBOSITY:x

SET RUN SET R

where x is one of NONE, LOW, FIRST, STANDARD,
CONTIN, PRECON, FIRCON, HIGH - applies to most
error and informative messages.

SET RUN filespec /RUN:filespec
set a program to run on a RUN command.

SET RUNOFFSET SET RUNO SET RUNOFFSET n /RUNOFFSET:n

B.3 FILE SWITCHES

switch abbr

/DIRECT /DI

/HELP /H

/DELSEQ /DE

/NODELSEQ /NOD

offset from the normal start address of the
program to be run.

general form of switch

/DIRECT:n
Output as Fortran direct access, record size n.

/HELP:TEXT
/HELP:SWITCH
full help text or switches and commands.

/DELSEQ
delete line sequence numbers from input file.

/NODELSEQ
leave line numbers on input file, default for
BASIC.

B-6

APPENDIX C

ASCII CHARACTERS AND THEIR OCTAL CODES

code char code char code char code

000 NUL 040 space 100 @ 140
001 SOH 041 ! 101 A 141
002 STX 042 " 102 B 142
003 ETX 043 # 103 C 143
004 EOT 044 $ 104 D 144
005 ENQ 045 % 105 E 145
006 ACK 046 & 106 F 146
007 BEL 047

,
107 G 147

010 BS 050 (110 H 150
011 HT 051) III I 151
012 LF 052 * 112 J 152
013 VT 053 + 113 K 153
014 FF 054 114 L 154
015 CR 055 115 M 155
016 SO 056 . 116 N 156
017 SI 057 / 117 0 157

020 DLE 060 0 120 P 160
021 DCl 061 1 121 Q 161
022 DC2 062 2 122 R 162
023 DC3 063 3 123 S 163
024 DC4 064 4 124 T 164
025 NAK 065 5 125 U 165
026 SYN 066 6 126 V 166
027 ETB 067 7 127 W 167

030 CAN 070 8 130 X 170
031 EM 071 9 131 Y 171
032 SUB 072 132 Z 172
033 ESC 073 . 133 [173 ,
034 FS 074 < 134 \ 174
035 GS 075 = 135] 175
036 RS 076 136 176
037 US 077 ? 137 177

C-1

MNT-6/ed5
2Apr79

char

a
b
c
d
e
f
9

h
i
j
k
1
rn
n
0

P
q
r
s
t
u
v
w

x
Y
z
{
I
}

DEL

APPENDIX D

INFORMATIVE MESSAGES

D.l EDI'rING MESSAGES

MNT-6/edS
2Apr79

Messages enclosed in brackets are informative, those preceded by % are
warnings, and those preceded by? indicate serious errors.

%EDIAMB Ambiguous command
abbreviation was non-unique. Type H for list of commands.

[EDICLF Closed log file: filespec]
response from SET NOLOG, SET LOG, QUIT, FILE, etc. or a
fatal error.

[EDICMF Closed macro command file: filespec]
end of MACRO command input state, back to edit state.

[EDICOR Low core: n]
information given in response to SET MAXCOR 0.

?EDIDLT Direct access line too big - FILEing discontinued
edit the line or FILE with a greater /DIRECT:value.

%EDIDPF Error deleting paging file
the temporary work file could not be deleted due to some
system faul t.

%EDIFFI Found file in [path]
[CREATE] a file of this name exists in the library path or
[EDIT] the file was read from a library or ersatz device.
No backup will be provided.

[EDIFIL Filed : filespec]
filed successfully.

[EDIICP In-core pages : n]
information given in response to SET MAXCOR 0.

%EDIIND Invalid delimiter: c
illegal delimiters include "+", "-", ".", "~", Hi", "*" and
dig its.

%EDIIVS Illegal value: *
[LOCATE * or PERFORM *] see Section 3.1.3 or Section 6.3.

[EDILDL Lines deleted: n]
for a deletion limited by the occurrence of a string.

[EDILFR Log file restarted]
after a SAVE the log file is restarted at the begining.

[EDILND Line numbers deleted]

D-l

MNT-6/ed5 INFORMATIVE MESSAGES
2Apr79

input file had special line sequence numbers used by BASIC
and some editors. /NODELSEQ prevents such deletion.

%EDILTL No change - line too long
lines may not be changed to exceed the limit of 300
characters.

[EDIMXC Maxcor: n]
information given in response to SET MAXCOR 0.

%EDINAC Not a command - type "H" or "HELP"
"H" gives a list of commands, "HELP" gives an explanation.

%EDINAD Not a digit: c
LABEL nnn+d, or STATEMENT nnn+d, where d is not a digit.

?EDINFS No file specified
FILE, SAVE etc. commands with no file specified and no
default available.

%EDINJT No job cost tables in monitor
only the University of Queensland monitor has the accounting
features required.

%EDINLC No label in command
[LABEL or STATEMENT] an undelimited label is required.

[EDINOC No change]
string to be changed is not in the current line. See also
the SET ULCASE command.

?EDINPU No PATH UUO
needs a modern version of the monitor.

%EDINSC No string in command
CHANGE, ALLCHANGE, SEARCH and LOCATE require a delimited
string.

%EDINSL No such line: n
[LINE n] n is negative or greater than the number of lines
in the file.

%EDINTF Nothing to file
[PUT or PUTDEL] The current line is the dummy end line.

%EDINTR Nothing to repeat
[REPEAT] No preceding repeatable commands. SET, SAVE, BACK
and REPEAT are not repeatable. INSERT, DINSERT, PERFORM and
MACRO leave nothing to repeat.

%EDIPAB Perform aborted
For safety even warnings abort PERFORMs.

?EDIRPF Error reading paging file
a file system error. Recoverable only by performing the log
file, if any.

[EDISAV Saved : filespec]
successful SAVE.

%EDISEF Superseding existing file
[CREATE] the existing file will be lost if no file name is
given on the FILE command.

%EDISNF Not found
SEARCH over n lines did not find the specified string.

%EDITMP Too many nested PERFORM commands
PERFORMs may be nested to a depth of 5. A PERFORM which
performs itself will give this.

?EDIWPF Error writing paging file
a file system error. Recoverable only by performing the log

D-2

INFORMATIVE MESSAGES

file.

MNT-6/edS
2Apr79

%EDIWNF Writing a null file
FILE, SAVE, RUN or EXECUTE with no lines to write creates an
empty file.

% Minimum abbreviation for DELETE is DEL
a safety feature to prevent accidental deletion of lines.

D.2 FILE SPECIFICATION SYNTAX ERRORS

Error Id Description

EDIASW ambiguous switch name

EDIILC illegal character in input string

EDIIPG programmer number zero or too big

EDIIPJ project number zero or too big

EDINDV Null device name in device specification

EDINOR number out of range

EDIUKW unknown keyword in switch specification

EDIUSW unknown switch name

EDIVIL value illegal in switch specification

EDIWDV wild device name in device specification

EDIWFN wild file name in file specification

EDI2DV two device names in one file specification

EDI2EX two extensions in one file specification

EDI2NM two file names in one file specification

EDI2PT two paths specified in file specification

D-3

MNT-6/ed5 INFORMATIVE MESSAGES
2Apr79

D.3 FILE INPUT/OUTPUT ERRORS

Error Id Description

EDIAEF File already exists

EDIBKT block too large, quota exceeded or disk full

EDIDER device error

EDIDNA device not available

EDIDTE data error, e.g. checksum or parity error

EDIEOF end of file

EDIFBM file being modified

EDIFNF file not found

EDIIPP no directory

EDIIMP improper 10 mode for this device

EDILVL too many levels of SFDs

EDINCE can't create in directory

EDINEC not enough core

EDINET not enough table space in monitor

EDINFC no free 10 channels

EDINRM no room on structure

EDINSD no such device

EDIPRT protection failure

EDIQTA quota exceeded

EDIRSD restricted device

EDISLE search list empty

EDISNF no subfile directory

EDITRN transmission error

EDIWLK write-locked device

D-4

APPENDIX E

GENERAL COMMENTS

E.l CONTROL-O

MNT-6/ed5
2Apr79

Typeout from the program can be stopped at any time by typing AO
(depress CTRL key while striking 0). This suppresses all printout
from the program but will not suppress the '*' which indicates that
the program is still in edit state. It is therefore possible to
ascertain when the Editor is ready to receive additional data.

E.2 CONTROL-U AND RUBOUT

Typing AU (depress CTRL key while striking U) can be used to erase any
characters the user has typed in - back to the last break character.
Break characters are <cr>, <If>, <bel>, <vt>, <ff>, <esc> and AZ.

example:
*RPLACE AU
REPLACE <tab>LP=7<cr>
*

If only a few characters are incorrect and need to be retyped, these
can be erased by typing the RUBOUT or DEL key until the appropriate
number of characters has been removed. Those characters that have
been rubbed out are bounded by '\'.

example:
*REPACE\ECA\LACE <tab>LP=7<cr>

*
E.3 CONTROL-R

After a line has been corrected using rubout, typing Control-R will
retype the cdrrected line.

E-l

MNT-6/edS GENERAL COMMENTS
2Apr79

example:
*REPACE\ECA\LACEAR
REPLACE<tab>LP=7<cr>
*

E.4 CONTROL-S AND CONTROL-Q

When page mode is set either by the monitor command SET TTY PAGE or by
the Editor command SET PAGE, typeout can be suspended by typing AS
<XOFF>. Output is resumed when AQ <XON> is typed.

E.S TREATMENT OF TAB CHARACTER BY COMPILERS

E.S.l FORTRAN Compiler

It is worth noting the special treatment by the FORTRAN compiler of
the tab character. The first tab character of a FORTRAN source
statement, if it occurs before the 6th character of the line, will
advance to column 7 if followed by a non-numeric character, or to
column 6 if followed by a numeric character. Subsequent tab
characters will index to the next multiple of 8 characters as normal.
This feature enables one to create normal FORTRAN statements by
preceding the body of the statement by a tab. A continuation of the
statement is likewise created by a tab followed by a numeric
continuation character. The feature is designed to simplify the
creation of FORTRAN source programs and it must be emphasized that it
is a property of the FORTRAN compiler, not the Editor which does not
in any way differentiate between the first and subsequent tabs, or in
fact between any other logical characters.

E.S.2 COBOL Compiler

The format of a COBOL program is organized so that division names,
paragraph names etc. begin at column 1 (if there are no program
sequence numbers) or column 8 (if the program has sequence numbers).
This is referred to as the A margin.

The body of the program
margin. However, if
area, the compiler will
starting from the B
necessity of typing the
program correctly.

appears in the B margin, 4 spaces after the A
a <tab> is typed anywhere within the A margin
treat the remaining data on the line as
margin, saving the programmer the laborious

individual spaces required to format the

E-2

MNT-6/ed5
2Apr79

INDEX

Allchange (command) •••••
Append (command) . . • • •
Ase i i

Bac k (command)
Basic language •
Bottom (command)
Break character •••
Brief (set command or switch)

Change (command) •••••••••
Check-point • • • • • • • • •
Cobol compiler • •••••••
Command ••••• • • • • • •
Concat (command) • • • ••
Concatenating lines • • • • •
Continue (monitor command)
Control character • • • • • •
Control-c • • • • • • • • • •
Control-o • • • • •• ••••
Control-q • •• •••••••
Control-r • • • • • •
Control-s • • • • • • • • • • • •
Control-u • • • • • • • • • • • •
Create (monitor command) •••
Creating files • • • •

Data files ••
Delete (command)
Delimiter •••
Del seq (swi tch)
Dinsert (command)
Direct (switch)
Direct access
Display (command)

Edit (monitor command) •••.••
Ersatz device • • • • • • • • • •
Execute (command) ••••
Extension • •• •••••••

File (command) • • • • • • • • • •
Filename • • • • • • • • • • • • •
Filespec • • • • • • • • • • • • •
Flag (set command or swi tch) • • •
Fortran compiler • • • • • • • • •

Get (command)

3-12, B-1
3-13, B-1
1-2, 3-7 to 3-8, 8-2

3-7, 6-4, B-1
8-3
3-2, B-1
1-3, 3-2, 3-9,
5-1, 6-2, B-5

3-12, 6-1, B-1
6-1
E-2
3-1
3-14, B-1
3-14
4-2, 7-1
1-3, 3-7, 5-3
4-2, 6-2, 7-1,
E-l
8-2, E-2
E-l
E-2
6-1, E-l
1-2, 2-1, 4-2,
2-1

4-3
3-10, B-1
3-1, 3-11, D-l
2-1, 8-3, B-6
3-12, 6-4, B-2
8-2, B-6
8-2, B-6
5-2, 8-1, B-2

E-l

8-2

5-1, 6-1, 8-1

1-2, 2-2, 4-2, 5-1, 6-1, 8-1
8-3, D-l
4-2, 6-1, B-2
1-2

2-1, 4-2, 6-1,
1-2
1-2, 2-2, 3-2,
3-7, 5-2, B-5
E-2

4-4, B-2

B-2

4-1

Help (command) ••••••••••
Help (swi tch) ••••••••

Insert (command)
Jobba1ance (command) •••••••
Jobtime (command) ••••••

Label (command) •••••••
Library •• • • • • • • • • • • •
Line (command) • • • • • • • •
Line length (see also maximum)
Locate (command) • • • • • • • ••
Log (set command or swi tch) •••
Login (monitor command) •••••
Lower case • • • • • • • • • • • •

Macro (command) •••••
Maxcor (set command or switch)
Maximum command line • • • ••
Maximum file size • •
Maximum line length • • • • • . .
Next (command) ••••••••••
Nobrief (set command or switch)
Node1seq (switch) ••••••
Nof1ag (set command or switch)
No1og (set command or swi tch) ••
Nopage (set command or switch) ••
Nou1c (set command or swi tch) ••
Noverify (set command or switch) •

Octal ••••••••••••••
Oprint (command) • • • • • • • • •

Page (set command or swi tch) • • •
Page size •• • • • • • • • •
Perform (command) • • ••••
Prepend (command) ••••••••
Print (command) •••••••
Privacy of files •••••••••
Protection • • • • • • • •••
Pu t (command) ••• ••• • •
putde1 (command) • • • • • • • • •

Quit (command) • • · . . · .
Reenter (monitor command) · •
Repeat (command) · · · · · · · · •
Replace (command) • · · · · · · · Return · · · · · · · · Rubout · · · · · • • · Run (command) • · · · · · • · Run (set command or swi tch) · Runoffset (set command or swi tch)

Save (command) ·

3-1, B-2
2-1, B-6

3-9, 3-12,

7-1, B-2
7-1, B-2

3-5, B-2
8-3, D-1
3-6, B-3
3-6

6-4,

3-3 to 3-5, B-3

B-2

4-1 to 4-2, 6-1, B-5
5-3, 7-1, 8-3
3-7, 5-3, 8-1

6-3 to 6-4, B-3
8-4, B-5
6-4
1-2
1-2, 3-9, 3-12, 3-14

3-3, B-3
B-5
2-1, 8-3
5-2, B-5
6-1, B-5
8-1, B-5
5-3, B-6
B-5

3-8
3-8, B-3

8-1, B-5
8-1
4-1, 6-1 to 6-2, 6-4, B-3
3-13, B-3
3-7, 5-2 to 5-3, 8-1, B-3
8-3
8-3
4-3, B-3
4-3, B-3

2-1, 4-2, 6-1, B-3

4-2, 6-2, 8-2
3-7, 3-9, 6-2 to 6-4,
3-11, 6-1, B-4
1-3, 3-2, 3-9
6-1, E-1
4-3, 6-1, B-4
4-3, B-6
4-3, B-6

4-1, 6-1, 6-4, B-4

B-4

Search (command)
Sequence number
Set (command)
Set flag (command)
Set log (command)

.
Set maxcor (command) •••••••
Set noflag (command)
Set nolog (command) •••••••
Se t nopag e (command) • • •
Set noulc (command) •••
Set page (command) ••••••••
Set run (command) ••••••••
Set runoffset (command) •••
Set ulcase (command) •••
Set verbosity (command) •••••
Split (command) •••
Statement (command) •••
String • • • • • • • • • • • • • •
Switch • • • • • •• •••••

Tab
Top (command) ••••••••••
Translate (command) •••••
Typeout • • • • • • • • •

Ulcase (set command or switch)
Up (command) • • • • •••
Upper case • • • • • • • • • •

Verbosity (set command or switch)
Verify (set command or switch)

3-4, B-4
8-3
2-1, 6-4
5-2 to 5-3
6-1
8-4
5-2 to 5-3
6-1
8-1
5-3
8-1
4-3
4-3
5-3
5-2
3-14, B-4
3-5, B-4
3-1, 3-3 to 3-4, 3-12
1-3, 2-1 to 2-2, 3-2

1-3, 3-9, 3-14, E-2
3-2, B-4
8-2, B-4
5-1, 5-3, E-l to E-2

5-3, B-6
3-3, B-4
5-3

5-2, B-6
5-1, B-5

MNT-6/ed5
2Apr79

COMMENTS SHEET

Title of Publication EDIT - A LINE EDITOR FOR THE PDP-10

The Computer Centre welcomes any suggestions that will assist in
improving their publications. Please comment on the usefulness and
readability of this document. Suggest additions and deletions and
indicate any specific errors and omissions. Please provide page or
section references where relevant.

Name :

position

Address :

ERRORS

COMMENTS

Please return to The Librarian,
Prentice Computer Centre,
University of Queensland.

