National Semiconductor Memory Systems

MODEL NS23P ADD-IN MEMORY SYSTEM SERVICE MANUAL

This document, and all subject matter disclosed herein, are proprietary items which National Semiconductor Corporation retains the exclusive rights of dissemination, reproduction, manufacture, and sale. This document is submitted in confidence for consideration by the designated recipient or intended using organization alone, unless permission for further disclosure is expressly granted in writing by National Semiconductor Corporation.

0
 National Semiconductor Memory Systems

PREFACE

This scrvice manual provides information required to install and maintain the National Semiconductor Corporation (NSC) Model NS23P Add-In Memory System.

The information provided in this manual is comprised of the following:

- System Overview
- Theory of Operation
- Installation
- Maintenance
- Troubleshooting
- Reference Drawings

For additional documentation information, contact:
National Semiconductor Corporation
Memory Systems Division
2900 Semiconductor Drive
Santa Clara, Ca. 95051
(408) 733-2600
-

TABLE OF CONTENTS

Scction Page
1 SYSTEM OVERVIEW 1-1
1.l General Description 1-1
1.2 Features and Options 1-1
1.2.1 Features 1-1
1.2.1.l Internal or External Refresh 1-1
1.2.1.2 Battery Back-Up Provisions 1-2
1.2.1.3 BRPLY External Refresh Response 1-2
1.2.1.4 Expanded Address Space Operation 1-2
1.2.2 Options 1-2
1.2.2.l Parity Generation and Check 1-2
1.2.2.2 8 k or 16 k RAM Operation 1-2
1.2.2.3 Optional Capacities 1-3
1.3 Mechanical Description 1-3
1.4 Power Requirements 1-3
1.4.1 Parameters and Conditions 1-3
1.4.2 Power Consumption 1-3
1.4.3 Battery Back-Up Voltage Requirements. 1-4
1.5 Environmental Requirements 1-4
2 THEORY OF OPERATION $2-1$
2.1 Interface Description 2-1
2.l.l Input Signals to Memory System 2-1
2.1.1.1 BDOUT 2-3
2.1.1.2 BDIN. 2-3
2.1.1.3 BSYNC 2-3
2.1.1.4 BWTBT 2-3
2.1.1.5 BREF 2-4
2.1.1.6 REF KILL 2-4
2.1.1.7 BDCOK 2-4
2.1.1.8 BINIT 2-4
2.1.2 Output Signals 2-4
2.1.2.1 PARERR 2-4
2.1.2.2 BRPLY 2-13
2.1.3 Bi-Dircctional Signals (BDALOO-BDAL17)2-13
2.2 Functional Overvicw 2-13
2.2.1 READ Cycle Overvicw. 2-14
2.2.2 WIRTE Cycle Overview 2-14
2.2.3 Other Cycles 2-14
2.3 DC Power Circuitry 2-17
2.4 Memory Organization 2-17
2.5 Data Paths 2-18
2.5.1 READ Cycle/Parity Check 2-18
2.5.2 WRITE Cycle/Parity Generation 2-18
2.5.3 READ-MODIFY-WRITE 2-19
2.6 Timing and Control 2-19

TABLE OF CONTENTS (Continued)
Section PAGE
2 THEORY OF OPERATION (continued)
2.6 Timing and Control 2-19
2.6.1 Cycle Timing 2-19
2.6.1.1 External Request 2-20
2.6.1.2 Read Cycle 2-23
2.6.l.3 Write Cycle 2-23
2.6.1.4 Read-Modify-Write 2-23
2.6.1.5 Refresh Cycle. 2-24
2.6.2 Reserved I/O. 2-35
2.7 Memory Addressing 2-36
3 INSTALLATION 3-1
3.1 Tools Required 3-1
3.2 Unpacking and Inspection 3-1
3.3 Configuration 3-1
3.3.1 Address Range Selection (Example) 3-1
3.3.2 Reserving I/O Space 3-2
3.3.3 Additional Configuration Jumpers. 3-2
3.4 Installation 3-4
3.5 Verification 3-6
4 MAINTENANCE AND TROUBLESHOOTING 4-1
4.1 Maintenance 4-1
4.2 Troubleshooting 4-1
Appendix
A REFERENCE DRAWINGS A-1
Figure Page
2-1 Read (DATI) Timing 2-5
2-2 Write (DATO-B) Timing 2-7
2-3 Read-Modify-Write (Datio-B) Timing 2-9
2-4 Refresh (External) Timing. 2-11
2-5 NS 1l/02P Block Diagram. 2-15
2-6 Block Diagram Timing and Control. 2-21
2-7 Read Cycle (DATI) - Internal Timing Diagram 2-25
2-8 Write Cycle (DATO-B) - Interface Timing Diagram 2-27
2-9 Read-llodify-Write (DATIO-B) - Internal Timing Diagram 2-29
2-10 Internal Refresh Cycle 2--31
2-11 External Refresh Cycle 2-33
3-1 Switch and Jumper Locations 3-3
3-2 Module Installation. 3-8

LIST OF TABLES

Table Page
2-1 I/O Connector Pin List 2-2
3-1 Address Range Switch Programming 3-5
3-2 Option Jumper. 3-7

This section provides a general description of the NS23P memory card, including compatibility with other cards and systems; features and options; a mechanical description; power and environmental requirements for proper use; and other documentation.

l.l GENERAL DESCRIPTION

The NS23P memory card is an add-in memory designed to be compatible with the DEC* (Digital Equipment Corp.) LSI-11/23, PDP-ll/03, and LSI-ll/2 Microcomputer Systems. The card can be installed in the H 9281 or H 9270 backplanes and works in conjunction with the DEC MSVll-D and MSV11-E series semiconductor memory cards.

Its standard memory capacity is 32,768 words by 18 bits (32 k x 18). The 32,768 words can be assigned anywhere within the LSIll 128 k word address space in any one or multiple 4 k word increments.

1.2 FEATURES AND OPTIONS

1.2.1 FEATURES

The following paragraphs discuss the user controllable features of the NS23P memory card.

[^0]
1.2.1.1 Internal or External Refresh

The user can select whether refresh is controlled by the LSI-ll processor or by the refresh circuitry on the card itself through jumper points provided on the board.

1.2.1.2 Battery Back-up Provisions

The NS23P memory card can be used with battery back-up for LSI-ll semiconductor memory systems. The card comes with +5 VB and +12 VB battery back-up voltage pins, compatible with the voltage pins DEC provided on the MSVll MOS memory card.

1.2.1.3 BRPLY External Refresh Response

The NS23P memory card can be configured for external refresh operations during installation. Jumper points are provided on the card which permit the user to allow the generation of a BRPLY signal to an external refresh command.

1.2.1.4 Expanded Address Space Operation

The standard NS23P memory card can operate anywhere within the 128 k address space of the LSI-11/23 system.

1.2.2 OPTIONS

There are the following factory installable options for the NS23P memory card.

1.2.2.1 Parity Generation and Check

See paragraphs 2.1.2.1, 2.5.1, and 2.5.2 for discussions of parity generation and check.

1.2.2.2 8 k or 16 k RAM Operation

The standard NS23P card uses $16 k$ RAMs as the memory elements, providing a maximum storage capacity per card of 32 k words. The user can select 8 k RAlis as the memory elements when ordering. This option permits maximum storage capacity per card of $16 k$ words.

1-2

1.2.2.3 Optional Capacities

Optional capacities are available from a minimum of 4,096 words by 16 bits (4 k x l6) to a maximum of 32,768 words by 18 bits (32k x 18).

1.3 MECHANICAL DESCRIPTION

The NS23P memory is completely contained on one multilayer printed circuit card. It is designed to plug directly into standard H9270 ("Quad"), H9281 ("Dual") LSI-ll backplane/card guide assemblies, and the DDV1l-B ("Hex") expansion unit. Its dimensions are:

PCB	Thickness	$0.056^{\prime \prime}$
	Width	Nominal
	Length	$8.193^{\prime \prime}$

1.4 POWER REQUIREMENTS

The following are power requirements for the use of the NS23P memory card.

l.4.1 PARAMETERS AND CONDITIONS

The NS23P requires both of the following voltages: +5.0 volts $\pm 5 \%$ and +12.0 volts $\pm 5 \%$.

1.4.2 POWER CONSUMPTION

The NS23P memory card in a 32 k x 18 configuration has the following current requirements:

	Standby	
+5.0 volts		
+12.0 Amax.		2.0 Amax.
+12 volts	110 mA max..	450 mA max.

1.4.3 BATTERY BACK-UP VOLTAGE REQUIREMENTS

The battery back-up voltages must meet requirements (per card) of +12 volts $\pm 5 \%$ at 110 mA max. and +5 volts $\pm 5 \%$ at 775 mA max.

1.5 ENVIRONMENTAL REQUIREMENTS

The NS23P memory card will operate at a temperature of $5^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ and at a humidity of 10% to 90% (no condensation).

THEORY OF OPERATION

This section provides a detailed discussion of the operation of the NS23P add-in memory. Beginning with an interface description, the discussion proceeds with a functional overview of the card, using a block diagram. Individual functional blocks, data paths, and timing considerations are then covered, with an emphasis on use of the schematics in Appendix A.

2.1 INTERFACE DESCRIPTION

Interface between the INS $23 P$ add-in memory system and the Digital Equipment Corporation LSI-ll Microcomputer System (or others) is conducted by means of eight input signals to the NS23P, two output signals to the CPU, and 18 bi-directional signal lines (address and data) on the memory card. Table 2-l gives the connector assignments of signals, power, and other elements of the interface.

The memory card presents one standard bus load to the LSI-1l bus for each of the signals.

2.1.1 INPUT SIGNALS TO MEMORY SYSTEM

The eight input signals from the LSI-ll CPU to the NS23P are described briefly in this section. The specific purpose of each signal in the operation of the memory system will become clear as each functional module of the system is described in detail later in this section.

Table 2-1. I/O Connector Pin List

Component Side	Pin	Pin	Solder Side
A Connector			
	A1	A2	+5 Volts
	B1	B2	
BDAL16 L	C1	C2	Ground
BDAL17 L	D1	D2	+12 Volts
	El	E2	BDOUT L
	Fl	F2	BRPLY L
	H1	H2	BDIN L
Ground	Jl	J2	BSYNC L
REF KILL L	Kl	K2	BWTBT L
	Ll	L2	
Ground	M1	M2	BIAKI L
	N1	N2	BIAKO L
	P1	P2	BBS 7 L
BREF L	R1	R2	BDMGI L
+12 V BATT	S1	S2	BDMGO L
Ground	Tl	T2	BINIT L
	Ul	U2	BDAL00 L
+5 V BATT	V1	V2	BDAL01 L
B Connector			
BDCOK	Al	A2	+5 Volts
	B1	B2	
	Cl	C2	Ground
	D1	D2	+12 Volts
	El	E2	BDAL02 L
	Fl	F2	BDAL0 3 L
	H1	H2	BDAL04 L
Ground	J1	J2	BDAL05 L
-5 Volts out	K1	K2	BDAL06 L
-5 Volts in Ground	Ll	L2	BDAL0 7 L
	M1	M2	BDAL08 L
	N1	N2	BDAL09 L
	P1	P2	BDALI0 L
	R1	R2	BDALIl L
	Sl	S2	BDAL12 L
Ground	Tl	T2	BDAL13 L
	U1	U2	BDAL14 L
+5 Volts	V1	V2	BDAL15 L

2.1.1.1 BDOUT

This signal is an indication to the memory card that a write (DATO) cycle is to be performed. It must be activated as shown in the timing diagrams in Figures $2-1$ and $2-2$ in the proper relationship to BSYNC.

2.1.1.2 BDIN

This signal is an indication to the memory card that the BRPLY response from the memory card is to be activated during a read cycle (DATI), the read portion of read-modify-write, or an external refresh cycle. It must be activated as shown in Figures 2-1, 2-3, and 2-4 in proper time relationship with BSYNC.

2.1.1.3 BSYNC

This signal is an indication to the memory card that either a read (DATI) or read-modify-write (DATIO-B) cycle will be initiated, a write cycle will be initiated when BDOUT is received, or an external refresh cycle should be initiated. The type of cycle initiated is a function of the state of the BDIN, BDOUT, and BREF lines when BSYNC goes to its active state as shown in Figures 2-1 through 2-4.

2.1.1.4 BWTBT

This signal, when used in conjunction with BSYNC and BDOUT, allows the board to determine whether a whole word (l6 bits) or a byte (8 bits) is to be written during a write (DATO) or a read-modify-write (DATIO-B) cycle. Activating BWTBT during a write cycle as shown in Figures 2-2 and 2-3 is an indication to the card to write into the byte specified by address bit A00.

2.1.1.5 BREF

This signal, in conjunction with BSYNC (as shown in Figure 2-4), is an indication to the card to perform a refresh cycle. The card will respond to this signal only if it has been configured for external refresh operation.

2.1.1.6 REF KILL

This signal, when active, will disable the internal refresh circuitry from executing a cycle.

2.1.1.7 BDCOK

This signal is an indication to the memory card that the LSI-ll system has lost its dc power. It is used to prevent the memory card from being inadvertently selected on power up or power down.

2.1.1.8 BINIT

This signal is used to reset internal select registers.

2.1.1 OUTPUT SIGNALS

The two output signals from the NS23P to the LSI-ll CPU are described briefly in this section. The specific purpose of each signal in the operation of the memory system will become clear as each functional module of the system is described in detail later in this section.

2.1.2.1 PARERR

If the parity generation and check option has been selected, PARERR indicates a parity error. Parity is generated on a byte basis on all write cycles and checked on a byte basis on all read cycles. The PARERR signal appears on the address 16 signal line (BDAL 16L).

NOTES: 1. BBS7L IS A MEMORY ADDRESS SELECT TERM. BBS7L HI, MEMORY SHALL RESPOND. BBS7L LO AND BANK SELECT SWITCHES OPEN, MEMORY SHALL NOT RESPOND.
2. FOR BWTBTL HI DURING DATA TIME, A FULL WORD IS WRITTEN, FOR BWTBTL LO DURING DATA TIME, A BYTE IS WRITTEN ACCORDING TO BDALOOL AT ADDRESS TIME,IF BDALOOL IS HI, BITS 00.07 ARE WRITTEN, IF BDALOOL IS LO, BITS 08-15 ARE WRITTEN.

NOTES: 1. BBS7L IS A MEMORY ADDRESS SELECT TERM. BBS7L HI, MEMORY SHALL RESPOND. BBS7L LO AND bANK SELECT SWITCHES OPEN, MEMORY SHALL NOT RESPOND.
2. FOR BWTBTL HI DURING DATA TIME, A FULL WORD IS WRITTEN, FOR BWTBTL LO DURING DATA TIME, A BYTE IS WRITTEN ACCORDING TO BDALOOL AT ADDRESS TIME, IF BDALOOL IS HI, BITS 00-07 ARE WRITTEN, IF BDALOOL IS LO, BITS 08-15 ARE WRITTEN.

Figure 2-4. Refresh (EXTERNAL) Timing

2.1.2.2 BRPLY

This signal is an acknowledgement by the card of the receipt of a BDIN or BDOUT during a read, write, or read-modify-write mode of operation. It is also an acknowledgement of the receipt of BREF if the card has been configured for external refresh operation.

2.1.3 BI-DIRECTIONAL SIGNALS (BDAL00-BDAL17)

The 18 bi-directional signal lines provide the memory card with address and data information. These lines are time-multiplexed between the address and data in/out during any cycle externally requested of the memory card. As shown in Figures $2-1$ and 2-2, the card interprets the data on these lines in relationship to BSYNC, BDIN, BDOUT, and BRPLY. At -75 to +25 nanoseconds either side of the falling edge of BSYNC, the data is interpreted as address information; at all other times, as data into or out of the card.

2.2 FUNCTIONAL OVERVIEW

This section describes the operation of the NS23P during write and read cycles from a general standpoint. Detailed discussion of the timing for each of these cycles is provided elsewhere in the manual.

Figure 2-5 is the block diagram for the NS23P. The major blocks of the memory system are the interface transmitterreceiver, the address register, the parity generation and checking unit, the refresh address, module select, timing and control, the three-to-one multiplexer, and the memory array itself. The memory array may be configured from $8 \mathrm{k} x \mathrm{l}$ b bit minimum to 32 k x 18 bit maximum; the 18 -bit width with parity, the l6-bit width without.

2.2.1 READ CYCLE OVERVIEN

Data coming from the interface transmitter-receiver along the BDAL lines (0-17) is asserted 75 nanoseconds (ns) before the low-going edge of the BSYNC line and held for 25 ns beyond it, thus defining address time (see Figure 2-l). Simultaneously with address time, the bank select signal (BBS7) determines if the memory module or a peripheral is to respond. The remaining time for the bus is defined as data time.

At the end of address time, the BDIN signal is taken low, and hand-shaked with a reply signal (BRPLY) from the memory card 225 ns (max.) later. In sequence, 125 ns (max.) after BRPLY goes low, data is brought from memory to the bus; 150 ns (min.) after BRPLY has gone low the processor returns BDIN to its high state; BRPLY returns to high; BSYNC returns high. Data remains on the bus for 100 ns (max.) after BRPLY goes high, and a new cycle may be initiated after 300 ns (min.).

2.2.2 WRITE CYCLE OVERVIEW

The write cycle operates on the same principle as the read cycle with a slight difference in timing. Data is available on the bus immediately after address time, then the handshaking between BDOUT and BRPLY takes place as before. The BWTBT is also brought into play during the write cycle: If BWTBT is high, a full word is written; if BWTBT is low, a byte is written in conjunction with the BDAL00 signal (BDAL00 high, bits 00-07; BDALOO low, bits 08-15). The memory module is selected according to the address and $B B S 7$, as in the case of a read cycle.

2.2.3 OTHER CYCLES

This concludes the overview of the two main cycles in the NS23P memory system. The read-modify-write and refresh cycles will be described in detail in Section 2.5. No overview is provided since the read-modify-write cycle is essentially a read followed by a write cycle.

2.3 DC POWER CIRCUITRY

$D C$ voltage is brought in as +12 volts at input pin AD2 and BD2 as shown on sheet 1 of Figure A-1 (see Appendix A). Part of the +12 volt supply is run through a capacitive filter and directly to the memory array. A second part of the +12 volt supply is run through a dc to dc converter at IC location All, where -5 volts is generated. This -5 volts is led out at pin BKl where it is backplane-jumpered back in at pin BLl. Alternatively, a -5 volt source may be brought in directly at pin BLl (no jumper). In either case, the -5 volts at BLl is run directly to the memory array; it is used nowhere else.

A +5 volt source is brought in at pins AA2, BA2, and BV1, filtered, then run to both the memory array and the logic circuitry.

Provision has been made for battery backup power. If the system is so configured, the +12 volt input will be jumpered to the battery input at pin ASl, and the +5 volt jumpered to pin AVI. If battery power is used, the +5 volt battery supply is run only to that portion of the logic circuitry needed to maintain refresh (+5 volts is not required on the memory chip itself for data retention). For reference, those IC's that use the +5 volt battery source are indicated by a triangle at the IC gates on the schematic.

2.4 MEMORY ORGANIZATION

The standard memory capacity of the memory card is 32,768 words by 18 bits ($32 \mathrm{k} x \mathrm{l}$) , which can be assigned in 4 k increments anywhere within the LSI-ll $128 k$ word address space. Optional capacities are available from a minimum of 4,096 words by 16 bits ($4 \mathrm{k} \times \mathrm{l}$) to the maximum of 32 k x 18 .

Also available as an option is switch-settable reserved I/O space such that $4 \mathrm{k}, ~ 2 \mathrm{k}, ~ 1 \mathrm{k}$, or 512 -word address locations in the upper portion of the address range can be reserved for device addresses.

2.5 DATA PATHS

This section consists of an expansion of the discussion of the read and write cycles in Section 2.2, as well as a detailed description of the read-modify-write cycle not described there. In this section, the schematic diagrams applicable to each operation will be used rather than the block diagram.

2.5.1 READ CYCLE/PARITY CHECK

As shown on sheet 6 of Figure A-l in Appendix A, the data leaves the memory chips at pin 14 and is routed to two sources.

First, parity is checked (see Figure A-1, sheet 5). All of the data bits 0 through l5, including the parity bits, are brought into two 74 S 280 parity checkers (E7 and E8). Output pin 6 of E8, which is the parity check for the low byte on data bits 0 through 7, must always be high for the correct parity check to be performed. If an incorrect parity is developed in any of the data bits (including the parity bit), then this output will go low, signaling the parity error as a high output at pin 3 of gate F8. This high signal is the parity error signal that goes back to the driver and ultimately to the BDAL 16 line.

The data output from the memory elements also goes to IC's J4, J3, J2 and Jl (Figure A-1, sheet 4) running in the transmit mode, and to the bus via the BDAL 0 through 15 lines. If the parity error is active, it is input at (IC) Jll pin l4, and the output appears on the BDAL 16 iine.

2.5.2 WRITE CYCLE/PARITY GENERATION

During a write cycle, data is brought in to the 8641 transmitter/ receivers J4, J3, J2, and Jl on lines BDAL 0-17 from the bus. The receivers invert the data and distribute it to pin 2 of the memory array and to the parity generation circuits, IC's E5 and E6 (Figure A-1, sheet 4).

E5 develops the parity bit for the low-order byte and E6 the parity bit for the high-order byte. The BDAL 16 line, when set (active low), sets the input at E5-l3 and E6-13 high and, in effect, writes parity opposite to that developed on each of the bytes individually for diagnositc check of the parity function.

Data may also be written as a byte. If BWTBT is issued low, the BLAL0 is interpreted as a byte select address. This signal, input at $J 4$ pin 15 , is output at pin 13 and run to $F 4$ pin 13 (Figure A-l, sheet 3), where the output at pin 12 is latched with the leading edge of the SYNC signal. This term then runs to Dll pin 9 (Figure $A-1$, sheet 6), which in addition to gates Dll with output pins 3 and 11 form the write enable inputs to the memory array according to conditions established at the interface.

2.5.3 READ-MODIFY-WRITE

The read-modify-write cycle is a combination of a read cycle and a write cycle, differentiated from the individual functions only in its timing. While the memory treats the read-modify-write cycle as two internal cycles, to the processor or the external world, it is one cycle. The cycle timing will be discussed in greater detail in paragraph 2.6.1.4.

2.6 TIMING AND CONTROL

This section consists of a discussion of the timing and control involved in the external request, read, write, read-modify-write, and refresh cycles of the NS23P. Refer to the Timing and Control block diagram (Figure 2-6) for a more detailed breakdown of the timing and control section.

2.6.1 CYCLE TIMING

Except for an internal refresh cycle, timing and control are initiated through the external cycle flip-flop (Figure $A-1$, sheet 2, zone D4) Hll pins 8, 9, and 10, and the gates at pins ll, 12, and 13. Internal refresh control is provided by flip-flop J6
through output pins 9 and 8.

Row address select timing (TRAS) is provided by IC El0, a 74 S 74 D-type flip-flop with output pins 5 and 6 . Column address select timing (TCAS) comes from IC El0, output pins 9 and 8.

The 74Sl0 IC gates F9 and H9 are the reply functions for read and write, and for refresh replay if active.

IC Fll controls a digital delay line for address timing. It is digital in that it accepts TTL signals as input and produces buffed TTL signals as output and requires no terminating resistors.

The discrete circuitry composed of a l00-ohm resistor, a 15 pF capacitor and two $4.7 k$ resistors in zone $D 5$ smooths the output from the IC gate H9 pin 6. Its function is to allow the external flip-flop to be set and prevent fault settings of that flip-flop that may occur if a refresh request and external request are made coincidentally.

The arbitration circuitry for coincidental refresh and external requests is made up of gates HlO pins 12 and 13 and output pin 11, H10 pins 4, 5, and 6, a resistor-capacitor delay network made up of a 4.7 k resistor and 10 pF capacitor, and IC E9 pins ll, 12, and 13, and permits only one request to be honored at any time.

2.6.1.1 External Request

An external request is made on the external lines DIN or DOUT, run through.a NOR gate at F6, and applied as an input at gate $H 9$ pin 5. When $H 9$ output pin 6 goes low, the external request flipflop is set with Hll output pin 10 going low, and HlO output pin 3 going high. The Hl0 pin 3 output becomes input to the row address select flip-flop El0, which sets its output pin 5 high and begins the row select timing (TRAS) and the delay line at Fll. At time $T 40,40 \mathrm{~ns}$ after the row select has been initiated, output pins 11 and 6 of the row-column address multiplexer F 8

Figure 2-6. Block Diagram Timing and Control
deselect the row address and select the column address. At time $T 80$ the clock input pin 11 of $E 10$, the column select timing flip-flop, is set and begins the column address select term to the memory array (TCAS).

2.6.1.2 Read Cycle

In a read cycle, the output of the column address select flipflip El0 pin 8 goes low. This sets $F 5$ pin 5 low, output pin 6 high through a l00-ohm resistor 330 pF capacitor delay, and inputs at IC F9 pin 1. This signal along with the DIN input signal at F9-2 sets the F9 output pin 12 to low which connects to F 9 input pin ll. F 9 output pin 8 goes high forming the reply term REPLY for the response of the memory to the DIN signal for a read cycle. Figure $2-7$ shows the internal timing of these events.

2.6.1.3 Write Cycle

The timing for a write cycle is very similar to the read cycle, except that the column address select term (TCAS) is not used to produce reply. REPLY is generated by Nanding, + DOUT with + EXSTART, producing a low output at H9-12. The H9 pin 12 output is input at $F 9$ pin 10 and output as the REPLY term for a write cycle. Figure $2-8$ shows the internal timing of these events.

2.6.1.4 Read-Modify-Write

As mentioned in paragraph 2.5.3, the read-modify-write cycle is no more than a read cycle followed by a write cycle. Figure 2-9 shows the internal timing of this cycle.

2.6.1.5 Refresh Cycle

To begin a refresh cycle, the one-shot refresh timer J7 (Figure A-l, sheet 3, zone A7) times out with IC J7 output pin 10 set low. If the internal refresh jumper has been selected, that output runs to the input at gate J 8 pin 11 and, if the refresh is not killed from the external world, J8 output pin 13 goes high, generating the refresh request signal REFRQ. Refer to figures 2-10 and 2-ll for the internal refresh and external refresh timing events, respectively.

The REFRQ signal is routed to three places (Figure A-l, sheet 2): J6 pin 13, J8 pin 2, and $H 8$ pin 1. The incoming high signal at J6 pin 13 enables the refresh flip-flop clear input. J8 pin 2 sends J8 output pin l low, disabling any select inputs from the external world at gate $H 9$ pin 3. When the high signal is presented at H 8 pin 1 and the memory is not busy at pin 2 , the output pin 3 goes high, which runs to input at HlO pin 12 . If an external cycle is present or not being honored, as determined by Hl0 pin 13 being high, the HlO output pin 11 goes low, the Hl0 output pin 6 goes high, then is run through a 50 ns delay network composed of a $4.7 k$ resistor and a l0pF capacitor. With a slow rising edge that forms at the delay, the signal is input at E9 pin 13 and, when the threshold is reached, E9 output pin 11 goes low and the output at F 5 pin 8 goes high, clocking the refresh flip-flop J6 at its clock input pin ll. When J6 output pin 9 goes high and pin 8 goes low for the complement, indicating that a refresh cycle is being performed, the refresh select (RFSSEL) disables the row-column address multiplexer and enables the refresh address driver. An additional time delay is introduced through gate H 8 pin 10 by a 4.7 k resistor and 10 pF capacitor network; this is then input to E 9 pin l, allowing time for those multiplexers to change state and set up the refresh address to the memory chip.

Figure 2-10. Internal Refresh Cycle

Figure 2-11. External Refresh Cycle

When E9 pin 3 goes low, Hl0 pin 3 goes high, beginning the timing chain by setting the output of El0 pin 5 high to start the first refresh cycle. The TRAS flip-flop ElO output pin 5 going low, cleared by the timing terms input to Ell pins 4 and 5 and output Ell pin 6 going low, sending El0 pin low, forms the refresh address clock at E9 pin 8. This rising edge changes the least significant refresh address, address 0 , to memory. When -MEMBUSY becomes unbusy at H 8 pin 2 going high, this again begins the second refresh timing edge, proceeding through gate Hl0 pin ll, E9 pin ll, Hl0 pin 8, E9 pin 3, then finally through H10 pin 3, and back to the RAS flip-flop El0 pin 3.

When the second refresh cycle has been completed, the $74 \mathrm{~S} 74 \mathrm{flip-}$ flop J6 (Figure A-1, sheet 3, zone B8) output pin 6 goes high, that triggers the one-shot timer J7 pin 4 , which forms a slight delay. Its output at pin 7 then triggers the one-shot time J7 at pin 12 , and its output deselects the refresh request. When 15 microseconds elapse, the time constant for the IC J7, the dual refresh cycle begins again.

If jumper $W 4$ (Figure $A-1$, sheet 3 , zone A3) is closed for external refresh, the external request begins with the refresh request signal (+REFEX) input to gate H 6 pin 1 , which gets inverted to a low at gate $H 6$ pin 3 then becomes + REFRQ at gate J8 pin 13 , just as with the internal request.

2.6.2 RESERVED I/O

Under the standard card configuration, signal BS7 to the memory looks at the upper 4 k , as I/O reserve; however, the user may gain more active read-write memory by switch-selecting only the upper $2 k$, $1 k$, or 512 -words as peripheral or I / O reserve.

The reserved I/O switches are shown as Sl2-Sl4 at location F3, Figure A-1, sheet 3, zone B3. Closing the switches limits the I/O reserve by routing address terms AD011, ADDl0, or ADD9 through the switches to gate $F 7$ output pin 6 to form an additio-
nal arm of the module select term. The address terms ADDll, 10, and 9, as well as BS7 must be in their active state.

2.7 MEMORY ADDRESSING

Low order addressing is done by the three 74S373 IC's E1, E2, and Fl (Figure A-1, sheet 3, zone 6). Inputs to these IC's form the row and column addresses. External addresses are derived from the DALOl-l4 lines; internally input signals to El ADDO-5 and APl2 become the row address, and input signals to E2 ADD 6-1l and APl3 become the column address. Refresh addressing is performed by IC $F 1$, as a driver, in conjunction with $H 7$, the address counter, and is done entirely internally.

IC's El, E2, and Fl have their outputs paralleled to function as a tri-state driver, and are time-multiplexed to switch in and out as needed. When an external cycle is performed, the row select term that is input active low to El pin l, causes the outputs of El to be enabled; the outputs of E2 and Fl are disabled and the row address is driven to memory. When the column address is issued active low to E2 pin 1, the inputs to El and Fl remain high, and the column address is sent to the memory array. Similarly, at refresh time, -RFSSEL sends pin 1 of Fl low, and El and E 2 turn off. The outputs $\mathrm{AO}-\mathrm{A} 6$ are run through 33 ohm series resistors to damp out any oscillation that might occur in signal transitions to the array.

IC's El and E2, in addition to being multiplexed drivers, are also the row-column latch for external address. The latch term is the G input at El pin ll, and is derived from the bus sync signal (BSYNC). The output of the refresh driver Fl is not latched; it is enabled only at pin 1 by the output of the refresh select flip-flop J6 pin 8.

Refresh address counter H 7 provides five of the six address terms driven to memory. The sixth term, refresh address (RFADO), the least significant address, comes from D-type
flip-flop J6 pin 6. J6 pin 6 toggles from its high state to its low state, addressing once when RFADO is low and once when RFADO is high, thus providing the dual refresh (whether refresh is internal or external). The clock input to J6 pin 3 is the control signal +RFACK generated in the timing control system. J6 is enabled at pin 1 by +RFSSEL, which is active high when refresh is enabled. When the memory is not performing a refresh, +RFSSEL goes low and clears J6, placing the output at pin 5 low. Refresh counter H 7 is also clocked at pin 1 by $J 6$ output pin 5.

The higher order address terms are sent to IC's H3, H4, H5 pin 10, and H5 pin 5. H3, a 74LS283 4-bit full adder, in conjunction with H5, a 74 S 08 with input pins 4,5 , and output pin 6 , and H6, a 74S86, pins 4, 5, and output pin 6, form a 5-bit binary adder and produce the start address control term of the output of $H 3$ pin 9 (upper right hand quadrant of Figure A-1, sheet 3). This term, run through switch Sll to IC F7 pin 10 , selects and determines whether the address term presented to it on the bus is above or equal to the selected address toggled into switches Sl-S5 at E3.

IC H4, in conjunction with H 5 pin 9 , 10 , and 8, forms a 5-bit adder that performs the stop address function by comparing the external address with the address set in E3 switches S6-Slo. The output of $H 4$ pin 9 is the carry term which, when active high, sends H6 pin 8 and F7 pin 12, active low, and determines that the external address is outside the selected range. Similarly, the output of H 3 pin 9, when switch Sll is activated, sets F 7 pin 10 high and determines that the external address is within the selected range.

If the external address is within the selected range, if refresh is not being initiated, if the dc power is on, and if the bank select has not been asserted, then F7 output pin 8 goes low and J8 output pin 4 sends a high signal to input pin 14 of $F 4$, the select latch, which sends its output pin 15 high forming the
signal +SELECT and allowing the memory to perform an external cycle.

This section contains the basic information for installing the NS23P memory card.

3.1 TOOLS REQUIRED

A ball-point pen or small stylus may be needed to set the switches mounted on the memory card. Otherwise, no special tools are required for installation.

3.2 UNPACKING AND INSPECTION

The memory card should be unpacked with care and examined for physical shipping damage (i.e., broken, bent or dented parts).

```
NOTE
If physical damage is apparent, do not attempt to install or operate the memory card.
```


3.3 CONFIGURATION

The NS23P card has a switch selectable option for the address range to which the memory responds and a switch selectable option for the I / O reserve address range to which the memory does not respond.

3.3.1 ADDRESS RANGE SELECTION (EXAMPLE)

Set switches Sl-S5 and Sll for the desired start address; set switches S6-Sl0 for the desired stop address. The location of the switches is illustrated in Figure 3-1; settings are listed in Table 3-1.

For example, to install the NS23P $16 k$ memory card within the address range of 4 k to 20 k . The start address is 4 k $(20,000)_{8}$ and the stop address is $20 \mathrm{k}(117,776)_{8}$. Set switches as follows:

Start $-4 k$			Stop $=20 k$	
Sl	OFF		S6	OFF
S2	OFF		S7	OFF
S3	OFF		S8	ON
S4	OFF	S9	OFF	
Sll	ON	Sl0	OFF	

3.3.2 RESERVING I/O SPACE

The upper portion of system address is reserved for peripheral devices, normally for the uppermost $4 k$ bank. The NS23P has the capacity to reduce this space to $2 k$, 1 k or 512 words according to switches Sl2, Sl3, and Sl4. The switches should be set as follows:

| Sl2 | Sl3 | Sl4 | Reserved I/O Space (Words) |
| :--- | :--- | :--- | :--- | :--- |
| OFF | OFF | OFF | $4 k$ |
| ON | OFF | OFF | $2 k$ |
| ON | ON | OFF | $1 k$ |
| ON | ON | ON | $5 l 2$ |

The locations of the switches are shown in Figure 3-1.

3.3.3 ADDITIONAL CONFIGURATION JUMPERS

The NS23P also has factory settable jumpers for the following options: $16 k / 8 k$ RAMs, internal/external refresh, external refresh RPLY active/inactive, and battery back-up active/inactive. Locations of these jumpers are shown in Figure 3-1. Definitions of jumper installation/removal are shown in Table 3-2.

Figure 3-1. Switch and Jumper Locations

Table 3-1. Address Range Switch Programming

$\begin{array}{\|l} \hline \text { ABSOLUTE } \\ \text { ADDRESS } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { S5 } \\ & \text { S10 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { S4 } \\ & \text { S9 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{S} 3 \\ & \mathrm{~S} 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { S2 } \\ & \text { S7 } \\ & \hline \end{aligned}$	S1 S6	Sll -	$\begin{aligned} & \text { START } \\ & \text { STOP } \\ & \hline \end{aligned}$
0k	1	1	1	1	1	0	
4 k	0	0	0	0	0	1	
8k	1	0	0	0	0	1	
12k	0	1	0	0	0	1	
16 k	1	1	0	0	0	1	
20 k	0	0	1	0	0	1	
24 k	1	0	1	0	0	1	
28 k	0	1	1	0	0	1	
32k	1	1	1	0	0	1	
36 k	0	0	0	1	0	1	
40 k	1	0	0	1	0	1	
44 k	0	1	0	1	0	1	
48 k	1	1	0	1	0	1	
52 k	0	0	1	1	1	1	
56 k	1	0	1	1	0	1	
60 k	0	1	1	1	0	1	
64 k	1	1	1	1	0	1	
68 k	0	0	0	0	1	1	
72k	1	0	0	0	1	1	
76k	0	1	0	0	1	1	
80 k	1	1	0	0	1	1	
84 k	0	0	1	0	1	1	
88 k	1	0	1	0	1	1	
92 k	0	1	1	0	1	1	
96k	1	1	1	0	1	1	
100k	0	0	0	1	1	1	
104 k	1	0	0	1	1	1	
108k	0	1	0	1	1	1	
112k	1	1	0	1	1	1	
116k	0	0	1	1	1	1	
120k	1	0	1	1	1	1	
124 k	0	1	1	1	1	,	
128 k	1	1	1	1	1	1	
$\begin{aligned} & 1=\text { Switch CLOSED } \\ & 0=\text { Switch OPEN } \end{aligned}$							

3.4 INSTALLATION

The memory card is placed into the backplane's connector slots A and B, or into connector slots C and D; in both cases, as close to the CPU as possible. The memory card's components should face row 1. Positions of components and connector slots are shown in Figure 3-2.

The following precautions should be observed during installation:

- Turn off memory power before installing or removing the memory card to avoid damage.
- Do not attempt to insert the memory card into slot one on the backplanes. Slot one is reserved for the LSI-ll processor on both backplanes.
- If the DDV1l-B expanded backplane is being used, insert the memory card into the $A B$ connectors of the backplane.
- The REVIl DMA refresh must be the highest priority DMA device on the bus when this option is being used. If not, refresh may not operate properly and loss of memory data may occur.
- When systems with expansion boxes are being used in addition to the REVll DMA refresh board, install a REVIl-C board (no termination resistors) into row 2A \& B (the highest priority row), then install a TEVll termination board in the last row of the bus.

3.5 VERIFICATION

After the NS23P memory card has been installed, apply memory power and verify operation by running system diagnostics to test the memory.

Table 3-2. Option Jumpers

Jumper	Status	Function
W3	I	Internally controlled on-board Refresh
W4	R	
W3	R	Externally controlled Refresh
W4	I	
W5	I	Refresh reply disabled for
W6	R	Externally controlled Refresh.
W5	R	Refresh reply enabled for
W6	I	Externally controlled Refresh.
W7	I	Configuration for +5 V power
W8	R	For non-battery Back-up System.
W7	R	Configuration for +5 V power
W8	I	For battery back-up systems.
W9	I	
W10	R	For non-battery back-up systems.
$\begin{aligned} & \text { W9 } \\ & \text { W10 } \end{aligned}$	R	Configuration for +12 V power For battery back-up systems.
Note: See assembly drawings sheet 2, and Table 3-2A below, for jumper locations and information.$\begin{aligned} & \mathrm{I}=\text { Install } \\ & \mathrm{R}=\text { Remove } \end{aligned}$		

Table 3-2A. Option Jumpers

$$
\begin{aligned}
& \text { W3 J to K } \\
& \text { W4 }=\mathrm{H} \text { to J } \\
& \mathrm{W} 5=\mathrm{M} \text { to } \mathrm{N} \\
& \mathrm{~W} 7=\mathrm{E} \text { to } \mathrm{F} \\
& \mathrm{~W} 8=\mathrm{D} \text { to E } \\
& \mathrm{W} 9=\text { to } \\
& \text { W10 }=\text { B to C }
\end{aligned}
$$

Figure 3-2. Module Installation

- (TBD)
- MOS/CORE memory exercizer for 0 to 124 k with or without parity bits.

4.1 MAINTENANCE

The NS23P memory card does not require routinely scheduled maintenance checks. However, systems diagnostics for both the NS23P memory card and the LSI-ll Microcomputer System should be performed occasionally to verify correct operation.

4.2 TROUBLESHOOTING

If problems occur, check the following:

- Are the address range switches and the I/O reserve switches set properly?
- Are the option jumpers installed/removed for the appropriate features?
- Are all power supplies turned on? Make sure that +5 V and +12 V power is applied to the backplane.
- Has the DMA priority daisy chain been maintained? Verify that there are no empty slots between the first and last board.
- Are the system cables installed correctly? Check that the cables are connected at both ends.

Appendix A
 Reference Drawings

This appendix contains the required reference schematic and assembly drawings for the NS23P memory.

Figure A-1	$870103625-001$	Schematic
Figure A-2	$980103625-000$	Assembly

			in ${ }_{\text {in }}^{0}$		\%iv.		nucuso oro semmar	${ }^{\text {a }}$	
						metosoxamoen		8tica	"mums
33					470101134-063	RES, cc,	, 1 , $1 / 8 \mathrm{P}, \pm 5 \%$		${ }_{8 B^{1}-\mathrm{B}^{8}-5}$
34				04	470101134-109	${ }^{\text {Res }}$, cc, C,	, 82K, /1/ $/$ W, 5 \%	P3	${ }_{\text {cex }}$
35			2		$440101134-087$	RES, , CC,	, 10K, $1 / 8 \mathrm{~W}, \pm 5 \%$	29	${ }^{88}+0_{0} 8^{-5}-5$
					471596-005				
38				04	${ }^{47404568-005}$	RES. MO	PD, 6 PiN, $3 / 33 \mathrm{r}$		
39				04	474100806-041	RES. MOD	D, 6 PIN, $5 / 1 \mathrm{~K}$	RP2	
40				04	474104568 -033	RES MO	Do, 6 PIN, $3 / 470$ R		
41					474104569-055	RES MO	D, 8 PIN, 4/4.7K	RP4	
42				\bigcirc	$474104569-005$	RES. MO	D, 8 PIN, $4 / 33.2$	RP	
44									
45				04	513100986 -010	SWITCH,	, DIP, IOPPOS, ROC		
46				104.	513100986 -004	WITCH,	, DIP, 4-POS, ROC		
48									
							NS 23		
							$32 \mathrm{~K} \times 18$		
				\cdots			9801036	36200000	-00

[^0]: *DEC, LSI ll, LSI ll/23, LSI $11 / 2$ and PDP-1l/03 are registered trademarks of the Digital Equipment Corporation.

