# CHARACTER DISPLAY TERMINAL 



SERVICE MANUAL

## CONTENTS

## 1. OUTLINE

1.1 General ..... 1-1
1.2 Features ..... 1-1
2. SPECIFICATIONS
2.1 Display Unit DP-920 Specifications ..... 2-1
2.2 Keyboard Unit KB-920 Specifications ..... 2-5
2.3 Standard Shipment Specifications ..... 2-6
3. SERVICE INFORMATION
4. INSTALLATION
4.1 Unpacking and Installation ..... 4-1
4.2 Appearance and Dimensions ..... 4-4
4.3 Connections ..... 4-6
4.4 Angle Alignment. ..... 4-10
5. OPERATION PRINCIPLES
5.1 General ..... 5-1
5.2 Power Supply ..... 5-1
5.3 Monitor ..... 5-3
5.4. Controller ..... 5-5
5.5 Keyboard block ..... 5-44
6. DISASSEMBLY AND REPLACEMENT
6.1 Disassembly and Replacement of Display Unit. ..... :6-1
6.2 Disassembly and Replacement of Keyboasrd Unit ..... 6-9
7. ADJUSTMENTT
7.1 Adjustment Points............................................. 7 . 1
8. REPAIR
8.1 Self-diagnostic Function.................................... . . 8-1
8.2 Kinds of Self-diagnostic Eunction..................... 8-2

8.4 Execution of Self-diagnostic Function.............. 8-8
8.5 Error Messages...................................................... . . 8-9
8.6 Troubleshooting ................................................... . . . 8-14
9. HOW TO REFERENCE CIRCUIT DIAGRAMS
9.1 Safety..................................................................... . . 9-1
9.2 Indications on Circuit Diagrams......................... 9-1
10. CIRCUIT DIAGRAMS
11. MAINTENANCE PARTS LIST
12. PARTS MOUNTING DIAGRAMS
13. PACKING PARTS AND ACCESSORIES

1. OUTLINE

### 1.1 General

Character display terminal VG-920 consists of display unit DP-920 and keyboard unit KB-920.

This is a conversational-mode equipment that enables data of up to 80 or 132 characters x 24 lines to be displayed on the non-glare $12^{\prime \prime}$ CRT and provided with the DEC VT220 function.

The logic configuration centering around micro CPU allows this terminal to provide a variety of functions and high flexibility in operation. This terminal employs the angle alignment feature for the screen and the low-profile keyboard so as to have high operationability. Thus, it is said to be a high-performance and easy-to-use equipment that can meet a wide range of applications in various fields.
1.2 Features

1) The keyboard unit is separated from the main frame so as to be easily used and it is designed very compact.
2) The operation angle alignment feature allows the display unit to swing up/down and left/right. Moreover, the keyboard can be used at any of three tilt angles to allow convenient operation.
3) Employment of micro CPU and advanced LSIs enables a compact mounting design.
4) The Set Up function enables the optimum function to be selected in order to meet a wide range of applications. Further, the selected optimum function can be stored in nonvolatile memory (NVR).
5) To interface with the host computer, the MODEM interface conforming to RS232C/RS423 and the 20 mA current loop interface are provided as the standard features. The data transfer rate ranging from 75 to 19200 bps can be selected.
6) To interface with the serial printer, the MODEM interface conforming to RS232C/RS423 is provided as the standard feature.
7) The parallel printer interface conforming to the CENTRONIX specifications is also provided as an option at factory shipment.
8) This terminal is fully compatible with the DEC VT220 function.

## 2. SPECIFICATIONS

2.1 Display Unit DP-920 Specifications

1) Display Function
(1) CRT: 12 inch non-glare screen (Green, Amber, and White)
(2) Active display size: $210 \mathrm{~mm} \times 140 \mathrm{~mm}$
(3) Screen capacity: 80 columns x 24 lines or 132 columns x 24 lines (For single-height and single-width characters)
(4) Character format: $7 \times 10$ dot matrix (For single-height and single-width characters)

10 x 10 dot matrix (For 80 characters/line)

9 x 10 dot matrix (For 132 characters/line)
(5) Display system: Raster scan
(6) Refresh rate: $50 \mathrm{~Hz} / \mathrm{sec}$. or $60 \mathrm{~Hz} / \mathrm{sec}$.
(Selected in the Set Up mode)
(7) Cursor: Blinking block/block/blinking underline/underline non- ${ }^{*}$ display (Selected in the Set Up mode)
(8) Character set: ASCII character set (94 characters each) UK national character set Special graphic character set Auxiliary character set Down Line Loadable character set
(9) Code: ANSI/ASCII
2) Operation mode
(1) Set Up mode

Sets the operation conditions with the keyboard unit. (Selected by the Set Up key)
(2) Online mode

Sends/receives data to/from the host computer (Selected in the Set Up mode)
(3) Local mode

Inhibits data from being transmitted to the host computer and stores the received data in the received data buffer. (Selected in the Set Up mode)
3) Control mode
(1) VT200 7-bit control mode

Supports the 7-bit control characters.
(2) VT200 8-bit control mode

Supports the 8-bit control characters.
(3) VT100 mode

This is the control mode compatible with the DEC VT100 terminal.
(4) VT52 mode

This is the control mode compatible with the DEC VT52 terminal.
4) Data transmitting/receiving (Line interface) function
(1) Communication mode: Conversational mode
(2) Transfer rate: 75/110\%150/300/600/1200/2400/ 4800/9600/19200 bps. (Selected in the Set Up mode)
(3) Data format

Asynchronous mode, Bit serial
1 start-stop bit, 7 or 8 data bits, 0 or 1 parity bit, 1 or 2 stop bits. (Selected in the Set Up mode.)
(4) Interface: EIA RS232C/RS423 or 20 mA current loop
5) Print (Printer interface) function
(1) Print mode: Normal print/Auto print/Controller mode
(2) Serial interface
(i) Transfer rate: 75/110/150/300/600/1200/

2400/4800/9600/19200 bps. (Selected in the Set Up mode.)
(ii) Data format:

1 start-stop bit, 7 or 8 data bits, 0 or 1 parity bit, 1 or 2 stop bits. (Selected in the Set Up mode.)
(iii) Interface: EIA RS232C/RS423
(3) Parallel interface (Option) The handshake system (conforming to CENTRONIX, 36 -pin connector) using 8 -bit parallel data at the 'T"L level and acknowledge and busy signals is employed.
6) Audible alarm
(1) Key click: Operates when the effective key on the keyboard unit is pressed.
(2) Bell: Operates when keyed-in data causes the cursor to move to the right margin at occurrence of a RAM error during self-diagnosis, at reception of a BEL code, or at occurrence of a keyboard operation error.
7) Power supply: AC90 to 132V/AC180 to 264 V
$50 / 60 \mathrm{~Hz}$
32W (including the keyboard unit)
8) Ambient temperature and humidity, dimensions, weight, and storage conditions
(1) Ambient temperature: 0 to $40^{\circ} \mathrm{C}$
(2) Ambient humidity: 35 to $80 \% \mathrm{RH}$ (non-condensing)
(3) Dimensions: 343 mm (II) $\times 353 \mathrm{~mm}$ (W) $\times 324 \mathrm{~mm}$ (D)
(4) Weight: About 10 kg
(5) Storage conditions: 〈Temperature〉-10 to $50^{\circ} \mathrm{C}$ <Ilumidity> 10 to $90 \% \mathrm{RH}$ (non-condensing)
2.2 Keyboard Unit KB-920 Specifications

1) Key arrangement
(1) Keytop arrangement: The keytop consists of the main keypad, editing keypad, auxiliary keypad, and TopRow function keys.
(2) Keytop inclination: Step sculpture
(3) Key movement: $4 \pm 0.5 \mathrm{~mm}$
(4) Key row offset: 9.5-4.75-9.5 min
2) Data output function
(1) Structure and output: Low-profile type, capacitive $\begin{aligned} \text { keyboard with serial }\end{aligned}$
encoded output
(2) Roll over: N-key roll over
(3) Repeat function: Automatic repeat (when pressing a key for more than 0.5 second)
3) Ambient temperature and humidity, dimensions, weight, and storage conditions
(1) Ambient temperature: 0 to $40^{\circ} \mathrm{C}$
(2) Ambient humidity: 35 to $80 \% \mathrm{RH}$ (non-condensing)
(3) Dimensions: 30 mun (II) $x 532 \mathrm{~mm}(W) \times 197$ mun (D)
(4) Weight: About 2.5 kg
(5) Strage conditions:
<Temperature〉 -10 to $50^{\circ} \mathrm{C}$ <Humidity> 10 to $90 \% \mathrm{RH}$ (non-condensing)
2.3 Standard Shipment Specifications
VG-920 is so setas to be powered by the AC power supply of your country at shipment. If the AC power supply voltage is 100 to 120V, VG-920 is provided with a 2-A fuse and the AC voltage changeover switch is set at 100 V . On the other hand, if the AC power supply voltage is 200 to 240 V , it is provided with an $1-\mathrm{A}$ fuse and the AC voltage changeover switch is set to 200 V .
CAU'TION
When powering this terminal with other power supply voltage, be sure to use it after replacing the fuse according to the

AC voltage value and setting the AC voltage Select switch to the voltage to be supplied.
3. SERVICE INFORMATION

Be sure to follow the following instructions during the service and inspection of this equipment:

1) Be sure to follow the cautions. For the points which require a special care when they are serviced, the cautions are indicated on the cabinet and the parts with labels, etc. Therefore, be sure to follow these cautions and the cautions described in the function and operation manuals, etc.
2) Beware of an electric shock.
(1) Be careful for handling this equipment when it is powered ON because it has the high-voltage portions inside.
(2) Be careful so as not to touch the heat sink on the board when this equipment is powered ON because the voltage may be impressed to the heat sink.
3) Be sure to use the specified parts.

The parts of this equipment have the safety characteristics such as incombustibility and voltage withstandingness . Therefore, be sure to use the specified parts for replacement.

Use of the part other than the specified one may cause the trouble to get worse or cause an electric
shock or fire.
4) Be sure to restore the parts mounting and wire leading after completion of the service or inspection. Some parts employ insulation materials such as a tube and tape and are mounted being unseated on the printedcircuit board. Also, the internal wiring is so made as to keep away from the heat-generating and high-voltage parts with leading and clampers. Therefore, be sure to restore these.
5) Be careful for handling the CRT. It is dangerous to shock the cone part of the CRT at removal of the CRT or maintenance performed from the back. Be sure to take a great care for handling the CRT.
6) Caution for X ray

The CRT, the high-voltage peripheral circuits, etc. are so designed as to secure the safety against $X$ ray. Therefore, be sure to use the specified parts such as the CRT and do not change the circuit when servicing the high-voltage peripheral circuit.
7) Be sure to perform the safety inspection after completion of the service.

Check if the screws, parts, and wiring removed for
the service are restored and if the serviced points are deteriorated, in order to secure the safety.
8) Do not use any solvent such as thinner, benzine, or gasoline to clean up the exterior of the equipment. It may damages the plastic parts.

Be sure to clean up the equipment with the cloth soaked in a small amount of furniture or house cleaner.

## 4. INSTALLATION

4.1 Unpacking and Installation

For VG-920, display unit DP-920 and keyboard unit KB-920 are independently packaged.

Unpack these units in reference to Figures 4-1-1 and 4-1-2, and place them quietly on a stable and solid stand. For installing VG-920, be sure to meet the power supply and environmental conditions specified in Section 2.1
"Display Unit DP-920 Specifications" and the environmental conditions specified in Section 2.2 "Keyboard Unit KB-920 Specifications, and take care the following points:

1) Do not install this equipment in the place with the direct sunlight.
2) Do not operate this equipment when enclosed with a cover or cloth. This prevents heat radiation effect thus may cause a failure.
3) Keep moisture, dust, oil, and smoke away from this equipment as far as possible.
4) Keep any magnetism generating article (such as a transformer) as far as possible.


PACKING ASY

Fig. 4-1-1 Display Unit Packaging Diagram


Fig. 4-1-2 Keyboard Unit Packaging Diagram

### 4.2 Appearance and Dimensions

Fig. 4-2-1 and Fig. 4-2-2 show the dimensions of display unit DP-920 and keyboard unit KB-920, respectively.


Fig. 4-2-1 Display Unit Dimensions Diagram


Fig. 4-2-2 Keyboard Unit Dimensions Diagram
4.3 Connections

1) Connecting the keyboard unit (KB-920) and the display unit (DP-920)

Connect the DIN connector provided for the keyboard unit with the keyboard connector on the lower right side of the front panel of display unit. Make sure to have the arrow pointing up when connecting the DIN connector.

Be sure to turn OFF the POWER switch when plugging the keyboard connector in and out.

Keyboard connector

2) Connecting the power supply cord

Be sure to check that the AC voltage select switch is set to the voltage to be supplied when connecting the power supply cord.


Be sure to check that the AC voltage select switch is set as shown below when the power supply voltage is 100 to 120 V :


Be sure to check that the AC voltage select switch is set as shown below when the power supply voltage is 200 to 240 V .


## CAUTION

If the switch setting is wrong, be sure to set the switch correctly according to the following procedures. VG-920 may fail if operated with the wrong AC voltage.
(1) Set the AC voltage Select switch to the voltage to be supplied when the power cord is disconnected.
(2) Replace the fuse according to the voltage value to be supplied.

Setting the AC voltage to AC100V: 2A/250V fuse The 2A/250V fuse is pre-set to the equipment to be shipped to the 100 V area as a standard part; it is provided as an accessory for the equipment to be shipped to the 200 V area.

Setting the AC voltage to AC200V: 1A/250V
I'he $1 \mathrm{~A} / 250 \mathrm{~V}$ fuse is pre-set to the equipment to be shipped to the 200 V area as a standard part; it is provided as an accessory for the equipment to be shipped to the 100 V area.
(3) Connect the power cord with the equipment and
plug the cord into the AC plug receptacle.
3) Connecting the line interface connector This equipment is provided with two kinds of line interface; the COMM port conforming to the EIA RS232C/ RS423 standard and the 20 mA port for the 20 mA current loop interface.

Take care the following points for connection:
(1) When connecting the 25 P D connector with the COMM port, be sure to tighten two screws on the connector cover to lock the connector plug onto the equipment.
(2) When connecting the Mate-N-Loc connector with the 20 mA port, fix the connector to the equipment with the left and right lock mechanisins.
(3) Be sure to turn OFF the POWER switch when plugging the line interface connector in and out.
4) Printer interface connector

Either the S.PRT port (standard) conforming to the EIA RS232C/RS423 standard or the P.PRT (Option) for the TTL level (conforming to CENTRONIX) parallel data can be selected. For connection, take care the following points:
(1) When connecting the 9pin D connector with the S.PRT port, be sure to tighten two screws on the connector cover to lock the connector plug onto the equipment.
(2) When connecting the connector with the P.PRT port (option), lock the connector plug onto the equipment with two spring locks of the connector receptacle.
(3) Be sure to turn OFF the POWER switch when plugging the printer interface connector in and out.
4.4 Angle Alignment

1) Angle alignment for display unit DP-920 The tilt swivel feature enables up/down and right/left angle alignment on the CRT. (See Section 4.2
"Appearance and Dimensions.")
2) Angle alignment for keyboard unit KB-920 The tilt angle of the keyboard unit can be adjusted in 3 steps by operating the angle alignment Foots on both right and left sides of this unit. (See Section 4.2 "Appearance and Dimensions.") 'The Foots come out by pressing the bưtton.

## 5. OPERATION PRINCIPLES

### 5.1 General

VG-920 consists of display unit DP-920 and keyboard unit KB-920, and DP-920 consists of the power supply, monitor, and controller.

Fig. 5-1-1 shows the VG-920 configuration.:

5.2 Power supply

The power supply has the input of AC100 to 120 V or AC200 to 240 V , and supplies +12 V to monitor, +5 V and $\pm 12 \mathrm{~V}$ to controller, and +5 V to keyboard unit, respectively. The input voltage (AC100 to 120 V or AC 200 to 240 V ) is set by the AC voltage select switch. Fig. 5-1-2 shows the power supply system diagram.


Fig. 5-1-2 Power Supply System Diagram

|  | Voltage <br> select <br> switch | Fuse |
| :--- | :--- | :--- |
| When setting <br> AC100 to 120 V | Close | 2A/250V |
| When setting <br> AC200 to 240 V | Open | $1 \mathrm{~A} / 250 \mathrm{~V}$ |

### 5.3 Monitor

The monitor consists of the non-glare $12^{\prime \prime}$ CRT and the monitor board, and display characters on the CRT screen with the TTL-level video signal (VIDEO), ver.tical synchronous signal (VSYHC), and horizontal synchronous signal (HSYNC) supplied from the controller.

1) Video signal amplifier circuit The video signal supplied from the controller is amplified by the video amplifier transistors (X103 and X401) connected in cascade. The signal outputted from the video amplifier transistors is supplied to the cathode of CRT as the video signal with the corrected frequency characteristic. The amplitude of the video signal is adjusted by the CONTRAST volume (R106). The brightness is controlled by changing the first grid voltage with the BRIGHT volume (R325).
2) Vertical deflection circuit The vertical oscillation, waveform shape, and vertical output circuit consists of single-chip IC AN5763 (IC201) and its peripheral circuit. The sawtooth wave is generated by R210, R211, R220, R221, C205, and C206 and amplified by IC201.

It is supplied to the vertical polarizing coil as the sawtooth current to deflect the CRT beam vertically. The oscillation frequency is controlled by adjusting the discharge time constant determined by C204, R203, and R204, and synchronized with the vertical synchronous signal. The vertical amplitude and the vertical linearity are adjusted by the V.HEIGHT volume (R210) and the V.LIN volume (R209), respectively.
3) Horizontal deflection circuit

The horizontal, phase detector,and horizontal drive circuit consists of a single chip IC AN5753 (IC301) and its peripheral circuits. The horizontal output stage has the function to deflect the CRT beam left and right by impressing the sawtooth waveform deflection current to the horizontal deflection coil, and the function to generate the high screen voltage to be impressed to the CRT and the voltage to be impressed to the video circuit.

The horizontal synchronous signal is impressed to pin 1 of IC301 to synchronize the pulse generated by the fly-back transformer (T302) and the phase-detected oscillation frequency with the synchronous signal.

The output signal of IC301 pin 7 turns ON/OFF the output transistor (X303) via the drive transformer (T301). The damper diode (D302) and this transistor operate as a switch to flow the sawtooth waveform deflection current in the deflection coil. The horizontal amplitude is adjusted by changing the deflection current with the WIDTH COIL (L302) serially connected with the deflection coil.

The high screen voltage required for the CRT is also supplied by stepping up and rectifying with T302 the fly-back pulse generated when transistor X303 is turned OFF.
5.4 Controller

In the controller, all the functions centering around the 8 -bit $C P U$ are controlled by the program control system and incorporated into one logic PWB. Fig. 5-4-1 shows the controller block diagram. The controller consists of the CPU, CRT controller, and interface to be explained as follows.

In the following, the explanation of each unit component (such as an IC) is omitted unless otherwise required. For the details, see each user's manual.


1) CPU block

The CPU block consists of the data bus, the address bus, the bus control signal generator, EPROM, RAM, NVR (nonvolatile RAM), the memory chip select signal generator circuit, the $I / O$ port chip select signal generator circuit, the timer, the CPU clock generator, the reset circuit, and the interruption control circuit centering around the 8 -bit micro CPU (Z80A).
(1) CPU clock generator

The CPU clock generator oscillates the clock of 3.6864 MHz with the XTLT OSC module. This clock is not only supplied to the CPU (Z80A) as the CPUCLK signal but also inputted to pin 11 of LS74A (Location 4B, The location is hereafter omitted.) and used to generate the $\overline{W A I T}$ signal for inserting an 1-clock WAIT into the m1 cycle of CPU. In addition, this is also used as the clock for the timer and that for the serial port.
(2) Reset circuit The reset circuit consists of R34, C35, D3, LS14 (4F), and capacitors C33 añd C34. When the power supply is turned ON to supply +5 V ,
pin 11 of LS14 (4F) determined by R34 and C35 is changed from LOW to HIGII and the RES signal is outputted to pin 10 of LS14 (4F). Both the RES and $\overline{\text { RES }}$ signals are used to initialize the controller.
(3) Interruption control circuit Z80A has two kinds of interruption, an $\overline{\text { INT }}$ interruption and an $\overline{N M I}$ interruption. As the INT interruption, one of modes 0,1 , and 2 can be selected by the internal program. This equipment causes the $\overline{\text { IFT }}$ interruption to control

5 kinds of interruption; the interface transmission/reception interruption (SRINT), CRTC interruption (CRTCINT), keyboard data transmission/reception interruption (KBINT), serial printer interface transmission/reception interruption (PRINT), and timer interruption (TINT).

The interruption control circuit consists of LS174 (3C), LS148 (3D), and LS244 (3B).

At the leading edge of $\overline{M 1}$ signal inputted to pin 9 of LS174 (3C), the states *of TINT (Timer interruption), $\overline{\text { PRINT }}$ (serial printer interface


Table 5-4-1 Interruption List

| Interruption signal name |  | Program jump address | Interruption contents | Generation source | Interruption sense | Priority |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\text { INT }}$ | $\overline{\text { SRINT }}$ | 08H | ```Line interface data trans- mission/ reception``` | Comm, 20 mA port interface | "L" level sense | High |
|  | CRTCIN'T | 10H | Frame timer | CRTC |  |  |
|  | $\overline{\mathrm{KBINT}}$ | 18H | Keyboard data transmission/ reception | Keyboard interface |  |  |
|  | $\overline{\text { PRINT }}$ | 20H | Serial printer data transmis-sion/reception | S.PRIT port interface |  |  |
|  | $\overline{\text { TINT }}$ | 28H | Programmable <br> timer | TIMER |  | Low |

(4) Bus control signal generator

The bus control signal generator controls the bus operation with the status control information from the CPU. For the relationship between the Z80A machine cycle and the state, see the Z80A User's Manual. The control signal generator generates the following control signals:

| Signal name | Function |
| :---: | :---: |
| $\overline{\text { IOR }}$ | Set to "L" when data is read from the I/O port. |
| $\overline{\text { IOW }}$ | Set to "L" when data is outputted to the I/O port. |
| $\overline{\mathrm{RD}}$ | Set to "L" when data is read from memory or from $I / O$ port. |
| $\overline{\text { WR }}$ | Set to "L" when data is written to memory or outputted to the I/O port. |
| $\overline{\text { IORQ }}$ | Set to "L" when the I/O port is accessed. |
| $\overline{\text { MREQ }}$ | Set to "L" when memory is accessed. |
| $\overline{\text { INTA }}$ | Set to "L" when the vector data for an interruption request is read. |
| $\overline{M 1}$ | Set to "L" when the "machine cycle is the Op-code fetch cycle. |

## EPROM

This is one 27256 EPROM(7H) and one 2764 EPROM (7F) of 40 K bytes. The VG-920 control program is written to this EPROM.
(6) RAM

This is a static RAM 6264 (7D) of 8 K bytes and used as the working area for the control prograin, the line interface received data buffer, the keyboard received data buffer, the print editing buffer, the stacking area, etc.
(7) NVR (Nonvolatile RAM)

NVR X2212 (7C) consists of a pair of a $256 \times 4$ bit RAM and a $256 \times 4$ bit EEPROM. When pin 9 ( $\overline{\text { STORE }})$ is set to "L," the contents of the RAM are written to the EEPROM; when pin 10 ( $\overline{\mathrm{RECD}} \overline{\mathrm{LL}})$ is set to "L," the contents of the EEPROM are read to the RAM.

NVR is used to store the Set Up information.
(8) Memory chip select signal generator circuit This circuit consists of LS138 (3L), LS21 (2Ka), and LS08 ( 2 Kb ) and generates EPROM chip select signals $\overline{\text { ROMCS0 }}$ to $\overline{\text { ROMCS1 }}$, RAM chip select signal

RAMCSO, NVR chip select signal RAMCST, and RAM chip select signal $\overline{\text { RAMCS2 }}$ for external character registration.

Table 5-4-2 shows the VG-920 memory map.
(9) I/O port chip select signal generator circuit This circuit causes LS154 (5C) to generate the chip select signal for the controller I/O port. Table 5-4-3 shows the VG-920 I/O port address map.
(10) Timer

8253C-5 (5D) consists of three independent timers and operate with the CPU clock as the basic clock. It generates parallel printer strobe signal $\overline{\text { PRSTB }}$, Baud rate clock signal TSPEED for line-interface transmission data, and timer interruption signal $\overline{\text { TINT }}$ for software control, when accessed by the CPU.
2) CRT control block

The CRT control block consists of refresh memory, attribute memory, character generator, character generator for external character registration, dot clock generator, video control circuit, and their peripheral circuits, centering around CRTC (SCN2674BC4N

Table 5-4-2 VG-920 Memory Map

| Address (Hexadecimal code) | Size | Memory | Usage | Chip select signal | Area Eor use | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 0000 \\ 2 \\ 7 \mathrm{FFF} \end{gathered}$ | 32K | ROM | Program | $\overline{\text { ROMCS0 }}$ | $\begin{gathered} 0000 \\ 2 \\ 7 \mathrm{FFF} \end{gathered}$ | $32 \mathrm{~K} \times 8 \mathrm{bits}$ |
| $\begin{gathered} 8000 \\ 2 \\ 9 \mathrm{FFF} \end{gathered}$ | 8K | ROM | Program | $\overline{\text { ROMCS } 1}$ | $\begin{gathered} 8000 \\ 2 \\ 9 F F F \end{gathered}$ | 8 K x 8 bits |
| $\begin{gathered} \mathrm{A} 000 \\ 2 \\ \mathrm{BFFF} \end{gathered}$ | 8K | RAM | Working buffer or stacking area | $\overline{\text { RAMCSO }}$ | $\begin{gathered} \mathrm{A} 000 \\ ? \\ \mathrm{BFFF} \end{gathered}$ | $8 \mathrm{~K} \times 8 \mathrm{bits}$ |
| $\begin{gathered} \mathrm{C} 000 \\ 2 \\ \mathrm{DFFF} \end{gathered}$ | 8K | NVR | Set Up information | RAMCS 1 | $\begin{gathered} \mathrm{C} 000 \\ 2 \\ \mathrm{C} 0 \mathrm{FF} \end{gathered}$ | $\begin{aligned} & 256 \times 4 \text { bits } \\ & (4 \text { low-order } \\ & \text { bits } \\ & \text { mounted) } \end{aligned}$ |
| $\begin{gathered} \mathrm{E} 000 \\ 2 \\ \mathrm{FFFF} \end{gathered}$ | 8K | RAM | Registration of external character patterns | $\overline{\text { RAMCS } 2}$ | $\begin{gathered} \mathrm{E} 000 \\ 2 \\ \mathrm{E} 7 \mathrm{FF} \end{gathered}$ | 2K x 8 bits |

Table 5-4-3 VG-920 I/O Port Address Map

| ```Address (Hexa- decimal code)``` | Port select signal | Input/ Output | Usage | Data <br> : | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 00-0F | $\overline{\text { SCRTC }}$ | Input/ Output | Writing/reading data to/from the CRTC (SCN2674BC4N40: 1A) register | $\begin{aligned} & \text { D0 - D7 } \\ & \text { (8 bits) } \end{aligned}$ |  |
| 10-1F | $\overline{\text { STIM }}$ | Input/ <br> Output | Writing/reading data to/from the timer (8253C-5: 5D) register | $\begin{aligned} & \text { D0 - D7 } \\ & (8 \text { bits) } \end{aligned}$ | : |
| $20-2 F$ | $\overline{\text { STORE }}$ | Output | Writing the contents of the RAM for NVR (X2212: 7C) to the EEPROM | - |  |
| $30-3 \mathrm{~F}$ | $\overline{\text { RECALL }}$ | Output | Reading the contents of EEPROM for NVR to the RAM | - |  |
| $40-4 F$ | $\overline{\text { IOS }}$ | Input/ <br> Output | Writing/reading data to/from the parallel port (8255A-5: 1M) | $\begin{aligned} & \text { D0 - D7 } \\ & (8 \mathrm{bits}) \end{aligned}$ |  |
| $50-5 F$ | $\overline{\text { GATE }}$ | Output | Transmitting the strobe signal to the parallel printer interface | - |  |
| $60-6 F$ | Unused |  |  |  |  |
| $70-7 F$ | Unused |  |  |  |  |
| $80-8 F$ | $\overline{\mathrm{SCOM}}$ | Input/ <br> Output | Writing/reading data to/from the line interface serial port register | $\begin{aligned} & \text { D0 - D7 } \\ & (8 \mathrm{bits}) \end{aligned}$ | $\cdots$ |
| $90-9 F$ | $\overline{S P R T}$ | Input/ <br> Output | Writing/reading data to/from the serial printer interface serial port register | $\begin{aligned} & \text { D0 - D7 } \\ & \text { (8 bits) } \end{aligned}$ |  |
| A0 - AF | $\overline{\mathrm{SKB}}$ | Input/ <br> Output | Writing/reading data to/from the keyboard interface serial port register | $\begin{gathered} \text { D0 - D7 } \\ (8 \text { bits) } \end{gathered}$ |  |
| $\mathrm{BO}-\mathrm{BF}$ | Unused * |  |  |  |  |
| $\mathrm{CO}-\mathrm{CF}$ | Unused |  |  |  |  |
| D0 - DF | $\overline{\text { CDATA }}$ | Input/ <br> Output | Writing/reading data to/from refresh memory | $\begin{gathered} \text { D0 - D7 } \\ \text { (8 bits) } \end{gathered}$ |  |
| E0 - EF | $\overline{\text { ADATA }}$ | Input/ Output | Writing/reading data to/from attribute memory | $\begin{aligned} & \text { D0 - D7 } \\ & (8 \text { bits }) \end{aligned}$ |  |
| F0-FF | Unused |  |  |  |  |

40: 1A) and attribute controller (SCB2675BC5N40: 1K). The CRT control block has the function to interface the CPU block and the CRT monitor of raster scan type. To display characters on the CRT screen, the CRT screen needs to be always scanned and refreshed. This equipment stores the character data codes to be displayed and the first memory address (line start address) for each display line in refresh memory (6264: 1E), and the contents to modify character data (reverse display, bold display, blink display, and underline display) and the character set select data in attribute memory (6264: 1C).

It causes by CRTC to access both refresh memory and attribute memory simultaneously in order to refresh the CRT screen.
(1) Refresh memory

The 7-bit character data codes are written from the CPU to refresh memory via the bi-directional bus buffer (8×371: 2E). These codes cannot be displayed as characters on the screen as they are. Therefore, they need to be converted into the character patterns. The character generator is used for this
conversion process. It generates a character pattern with the raster number and the character code as its address. The character pattern is read in parallel by dot patterns each for. 1 character and 1 raster, converted into serial data by the attribute controller (SCB2675BC5N40: $1 \mathrm{~K})$, and displayed on the CRT screen.
(2) Attribute memory

Into attribute memory (6264: 1C), 4-bits attribute data (reverse display, bold display, blink display, and underline display) and 3-bit character set select data are read from the CPU via the bi-directional bus buffer (8×371: 2C). The 4-bit attribute data is sent to the attribute controller (SCB2675BC5N40: 1K) as ATTO to ATT3 and used to modify the characters displayed on the screen.

ATT0: Specifies bold display.
ATT1: Specifies underline display.
ATT2: Specifies blink display.
ATT3: Specifies reverse display.
After being delayed for 1 character by LS273 (3A, 3E) as signals ATT5 to ATT7, the 3-bit character
set select data is sent to character generators $2764(1 \mathrm{~F})$ and $6116(2 \mathrm{~F})$ and used for select the display character set.
(3) CRTC

The major CRTC (SCN2674BC4N40:1A) function is to generate the timing signals required for the CRT monitor of raster scan type according to the specifications programmed by the CPU.

These timing signals generated by the CRTC are listed as follows:

- Address signals DADR0 to DADR12 to access both refresh memory and attribute memory
- Timing signals $\overline{\mathrm{WDB}}, \overline{\mathrm{RDB}}$, and $\overline{\mathrm{BCE}}$ for data transmission/reception between refresh or attribute memory and the bi-directional bus buffer
- Raster addresses SL0 to SL3 transmitted to the character generators. (These are transmitted by time-dividing DADRs 4 to 7.)
- Horizontal and vertical synchronous* signals (HSYNC nad VSYNC)
- Cursor control signal (CURS)
- Display time control signal (BLANK)
- Interruption request signal ( $\overline{\text { CRTCINT }})$
- Control signals (Double-width
control, underline control, blink display control, and last line signals: These signals are transmitted by time-dividing DADRs 9 to 11 and DADR 13.)

Once these output signal functions are programmed by the CPU, they are automatically transmitted by the CRTC.

The CRTC consists of the following blocks:
1 Data bus driver block
This block is the interface between the external data bus and the internal CRTC bus.

2 Interface block
This block consists of the decoder for addresses A0 to A2 and the READ/WRITE circuit for the data to be transmitted/ received to/from the CPU.

3 Control block
This block decodes commands sent from the CPU and generates the signals to be sent to other blocks. It is also provided with the
initialization, command, interruption, and status registers to/from which data can be written/read from the CPU via the data bus driver and interface blocks. decoder circuit and generates the horizontal synchronous (HSYNC), vertical synchronous (VSYNC), and screen display time control
(BLANK) signals.
5 Display block
This block consists of the circuit to generate address signals DADR0 to DADR12 to be outputted to both refresh memory and attribute memory, the circuit to generate raster address signals SL0 to SL3 to be outputted to the character generators, the scroll control circuit, the double-height control circuit, the cursor address register, the cursor control circuit, screen start registers 1 and 2, and* the memory address control circuit.

Display handshake logic block
This block generates timing signals $\overline{\mathrm{WDB}}, \overline{\mathrm{RDB}}$,
and $\overline{\mathrm{BCE}}$ required for data transmission/ reception between the $C P U$ and refresh/attribute memory.


Fig. 5-4-2 Display Data Generation Processes

The display control of this equipment which employs this CRIC (SCN2674BC4N40) is shown as follows:

Scan mode: Non-interlace mode
Dot frequency: $15.9686 \mathrm{MHz}(62.623 \mathrm{~ns} /$ dot) when operating at 80 characters/line $23.6710 \mathrm{MHz}(42.246 \mathrm{~ns} /$ dot) when operating at 132 characters/line

Character font (Horizontal x Vertical):
7 x 10 dots (for single-height and single-width characters)
$14 \times 10$ dots (for single-height and double-width characters)
$14 \times 20$ dots (for double-height and double-width characters)

1-character block (Horizontal x Vertical): $10 \times 10$ dots (for 80 characters/ line and single-height and singlewidth characters)

20 x 10 dots (for 80 characters/ line and single-height and doublewidth characters)

20 x 20 dots (for 80 characters/
line and double-height and doublewidth characters)

9 x 10 dots (for 132 characters/ line and single-height and singlewidth characters)

18 x 10 dots (for 132 characters/
line and single-height and doublewidth characters)
$18 \times 20$ dots (for 132 characters/ line and double-height and doublewidth characters)

1-character frequency: 1.59686 MHz (626.23 ns/ character) when operating at 80 characters/line 2.63011 MHz (380.21 ns/character) when operating at 132 characters/
line
80 characters/line screen

Underline Underline cursor


80 characters/line and single-height and
single-width character

80 characters/line and single-height and double-width characters


Screen capacity: Max. 1920 characters ( 80 columns x 24 lines) when operating at 80 characters/line

Max. 3168 characters (132 columns x 24 lines) when operating at 132 characters/line Deflection frequency

- At refresh rate 50 Hz
- When operating at 80 characters/line Horizontal deflection frequency: 15.655 kIIz (63.875 $\mu \mathrm{s}$ ) Vertical deflection frequency: 50.018 Hz (19.993 ms )
- When operating at 132 characters/line Horizontal deflection frequency: 15.655 kilz (63.876 $\mu \mathrm{s}$ )

Vertical deflection frequency: 50.017 Hz (19.993 ms )

- At refresh rate 60 Hz
- When operating at 80 characters/line Horizontal deflection frequency: 15.655 kHz (63.875 $\mu \mathrm{s}$ )

Vertical deflection frequency: 59.983 Hz

- When operating at 132 characters/line Horizontal deflection frequency: 15.655 kliz (63.876 $\mu \mathrm{s}$ ) Vertical deflection frequency: 59.982 Hz (16.672 ms)

Horizontal synchronous signal pulse width:
When operating at 80 characters/line: 5.01 us When operating at 132 characters/line: $4.56 \mu s$ Vertical synchronous signal pulse width:

When operating at 80 characters/line: 0.319 ms
When operating at 132 characters/line: 0.319 ms Cursor blink cycle: 64-frame cycle
(4) Dot clock generation circuit The dot clock generation circuit consists of the two kinds of clock generator for 80 characters/ line and 132 characters/line screens. The dot clock for the 80 characters/line screen oscillates at 15.9686 MHz with the XTL2 OSC module while the dot clock for 132 characters/line oscillates at 23.6710 MHz with the XTL3 OSC module.
(5) Dot clock select circuit

The output from the dot clock generation circuit is selected by the output from pin 39 of parallel port 8225A-5 (1M) at the S38 (4L) NAND gate. When the output from pin 39 is "H," the dot clock ( 23.6710 MHz ) for 132 characters/line screen is selected; when it is "L," the clock for 80 characters/line ( 15.9686 MHz ) is selected. Either of the above clocks is supplied to the attribute controller (SCB2675BC5N40: 1K).
(6) Character generators

The character generators are provided as the 8 K byte EPROM (2764: 1F) and the 2 K byte static RAM (6116: 2F).

The character fonts for the following hard character sets can be defined in the EPROM:

- ASCII character set
- U.K. National character set
- Special graphic character set
- Auxiliary character set

The character fonts for up to 94 characters can be defined by the user in the RAM as the Down Line Loadable character set. From either of the above character generators,
the character font is read as 8 -bit parallel data and supplied to the attribute controller (SCB2675BC5N40: 1K).

The character fonts defined in the EPROM corresponding to the character codes are listed in Tables 5-4-4 to 5-4-7.

Table 5-4-4 ASCII Character Set/CO Control

Character set select data
b5:1 (ATT5:0)
b6:1 (ATT6:0)
b7:1 (ATT7:0)
CHAO to 6 CPU input/output data

| Character Code data | $\mathrm{b}_{6}$ $\mathrm{~b}_{5}$ $\mathrm{~b}_{4}$ | 1 1 1 | 1 1 0 | 1 0 1 | 1 0 0 | 0 1 1 | 0 1 0 | 0 0 1 | 0 0 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{b}_{3} \mathrm{~b}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0}$ | $\text { CHA }-6$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| $\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$ | 0 | $\mathrm{N}_{\mathrm{U}}$ | $\mathrm{D}_{\mathrm{L}}$ | (sp) | 0 | @ | P | - | p |
| $\begin{array}{llll}1 & 1 & 1 & 0\end{array}$ | 1 | $\mathrm{S}_{\mathrm{H}}$ | D1 | $!$ | 1 | A | Q | a | q |
| $\begin{array}{llll}1 & 1 & 0 & 1\end{array}$ | 2 | $S_{X}$ | D2 | " | 2 | B | R | b | r |
| $\begin{array}{llll}1 & 1 & 0 & 0\end{array}$ | 3 | $\mathrm{E}_{\mathrm{X}}$ | D3 | \# | 3 | C | S | C | S |
| $\begin{array}{llll}1 & 0 & 1 & 1\end{array}$ | 4 | $\mathrm{E}_{\mathrm{T}}$ | D4 | \$ | 4 | D | T | d | t |
| $\begin{array}{llll}1 & 0 & 1 & 0\end{array}$ | 5 | $\mathrm{E}_{\mathrm{Q}}$ | $\mathrm{N}_{\mathrm{K}}$ | \% | 5 | E | U | e | u |
| $\begin{array}{llll}1 & 0 & 0 & 1\end{array}$ | 6 | ${ }^{\text {A }}$ K | $S_{Y}$ | \& | 6 | F | V | f | v |
| 1000 | 7 | $\mathrm{B}_{\mathrm{L}}$ | $E_{B}$ | 1 | 7 | G | W | g | w |
| $\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$ | 8 | $\mathrm{B}_{S}$ | $\mathrm{C}_{\mathrm{N}}$ | ( | 8 | H | X | h | x |
| $\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$ | 9 | $\mathrm{H}_{\mathrm{T}}$ | $\mathrm{E}_{\mathrm{M}}$ | ) | 9 | I | Y | i | Y |
| $\begin{array}{lllll}0 & 1 & 0 & 1\end{array}$ | A | $L_{\text {F }}$ | $؟$ | * | : | J | 2 | j | z |
| $0 \quad 1 \begin{array}{llll}0 & 1 & 0\end{array}$ | B | $\mathrm{V}_{\mathrm{T}}$ | $E_{C}$ | + | ; | K | [ | k | $\mathfrak{r}$ |
| $\begin{array}{llll}0 & 0 & 1 & 1\end{array}$ | C | $\mathrm{F}_{\mathrm{F}}$ | F'S | , | $<$ | L | = \} | 1 | 1 |
| $\begin{array}{llll}0 & 0 & 1 & 0\end{array}$ | D | $\mathrm{C}_{\mathrm{R}}$ | GS | - | = | M | 1 | m | \} |
| $0 \cdot 0001$ | E | $\mathrm{S}_{\mathrm{O}}$ | RS | - | > | N | $\wedge$ | n | $\sim$ |
| 0000 | F | $\mathrm{S}_{\mathrm{I}}$ | $U_{S}$ | 1 | ? | 0 | - | $\bigcirc$ | $\mathrm{D}_{\mathrm{T}}$ |

Table 5-4-5 Auxiliary Character Set/C1 Control Code

Character set select data
b5:0 (ATT5:1)
b6:1 (ATT6:0)
b7:1 (ATT7:0)
CHIAO to 6 CPU input/output data

| Character Code data | $\mathrm{b}_{6}$ $\mathrm{~b}_{5}$ $\mathrm{~b}_{4}$ | 1 1 1 | 1 1 0 | 1 0 1 | 1 0 0 | 0 1 1 | 0 1 0 | 0 0 1 | 0 0 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{b}_{3} \mathrm{~b}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0}$ | $\text { CHA }-6$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| $1 \begin{array}{llll}1 & 1 & 1 & 1\end{array}$ | 0 | 80 | 90 | $\mathrm{A}_{0}$ | $\bigcirc$ | A | D0 | à | F0 |
| $1 \begin{array}{llll}1 & 1 & 1 & 0\end{array}$ | 1 | 81 | 91 | i | $\pm$ | Á | $\widetilde{N}$ | á | $\tilde{\mathrm{n}}$ |
| $1 \begin{array}{llll}1 & 1 & 0 & 1\end{array}$ | 2 | 82 | 92 | $\phi$ | 2 | $\hat{A}$ | ¢ | à | ò |
| $1 \begin{array}{llll}1 & 1 & 0 & 0\end{array}$ | 3 | 83 | 93 | $£$ | 3 | $\widetilde{\text { A }}$ | ó | ã | ó |
| $1 \begin{array}{llll}1 & 0 & 1 & 1\end{array}$ | 4 | 84 | 94 | A4 | B4 | A | O | $\ddot{\mathrm{a}}$ | o |
| $1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}$ | 5 | 85 | 95 | ㅍ | $\mu$ | ® | $\widetilde{0}$ | $\stackrel{\circ}{\text { a }}$ | - |
| $1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$ | 6 | 86 | 96 | ${ }^{\text {A } 6}$ | ฯ | 1 E | $\ddot{0}$ | $\nsim$ | Ö |
| 1000 | 7 | 87 | 97 | § | - | Ç | CE | ¢ | ce |
| $0 \quad 1 \begin{array}{llll}0 & 1 & 1\end{array}$ | 8 | 88 | . 98 | $\underline{a}$ | B8 | E | $\varnothing$ | è | $\varnothing$ |
| $\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$ | 9 | 89 | 99 | (c) | 1 | E | U | é | ù |
| $\begin{array}{lllll}0 & 1 & 0 & 1\end{array}$ | A | 8A | $9{ }^{\text {A }}$ | a | 응 | E | U | $\hat{e}$ | ú |
| 0 lllll | B | $8_{B}$ | 9 B | < | 》 | E | Û | $\ddot{\text { é }}$ | 人 |
| $\begin{array}{lllll}0 & 0 & 1 & 1\end{array}$ | C | ${ }^{8} \mathrm{C}$ | ${ }^{9} \mathrm{C}$ | ${ }^{A} C$ | 1/4 | i | - U | i | $\ddot{u}$ |
| $\begin{array}{llll}0 & 0 & 1 & 0\end{array}$ | D | 8D | 9D | $A_{D}$ | 1/2 | $i$ | $\ddot{Y}$ | 1 | $\ddot{y}$ |
| $\begin{array}{llll}0 & 0 & 0 & 1\end{array}$ | E | 8 E | 9 E | $A_{E}$ | BE | 1 | DE | 1 | FE |
| 0000 | F | $8^{\mathrm{F}}$ | 9 F | $A_{F}$ | c | $\ddot{i}$ | $\beta$ | $\ddot{1}$ | $\square$ |

Table 5-4-6 Special Graphic Character Set

Character set select data
b5:1 (ATT5:0)
b6:0 (ATT6:1)
b7:1 (ATT7:0)
CHAO to 6 CPU input/output data

| Character Code data | $\mathrm{b}_{6}$ $\mathrm{~b}_{5}$ $\mathrm{~b}_{4}$ | 1 1 1 | 1 1 0 | 1 0 1 | 1 0 0 | 0 1 1 | 0 1 0 | 0 0 1 | 0 0 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{b}_{3} \mathrm{~b}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0}$ | $\begin{array}{r} \text { CHA } 4-6 \\ \text { CHAO }-3 \end{array}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| $1 \begin{array}{llll}1 & 1 & 1\end{array}$ | 0 |  |  | (sp) | 0 | @ | P | $\checkmark$ |  |
| $\begin{array}{llll}1 & 1 & 1 & 0\end{array}$ | 1 |  |  | ! | 1 | A | Q | $\because \because$ | - |
| $1 \begin{array}{llll}1 & 1 & 0 & 1\end{array}$ | 2 |  |  | " | 2 | B | R | $\mathrm{H}_{\mathrm{T}}$ | - |
| $1 \begin{array}{llll}1 & 1 & 0 & 0\end{array}$ | 3 |  |  | \# | 3 | C | S | $\mathrm{F}_{\mathrm{F}}$ |  |
| $1 \begin{array}{llll}1 & 1 & 1\end{array}$ | 4 |  |  | \$ | 4 | D | 'T | $\mathrm{C}_{\mathrm{R}}$ | 上 |
| $1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}$ | 5 |  |  | \% | 5 | E | U | $L_{\text {F }}$ | - |
| 100001 | 6 |  |  | \& | 6 | F | V | - | 1 |
| 1000 | 7 |  |  | , | 7 | G | W | $\pm$ | T |
| 01111 | 8 |  |  | $($ | 8 | H | X | $\mathrm{N}_{\mathrm{L}}$ |  |
|  | 9 |  |  | ) | 9 | I | Y | $\mathrm{V}_{\mathrm{T}}$ | $\leq$ |
| 0 1 0001 | A |  |  | * | : | J | Z | 」 | $\geq$ |
| 0 l 0 0 | B |  |  | $+$ | ; | K | [ | 7 | $\pi$ |
| $\begin{array}{llll}0 & 0 & 1 & 1\end{array}$ | C |  |  | , | $<$ | L | = 1 | $\Gamma$ | 7 |
| 0 0 1 10 | D |  |  | - | $=$ | M | ] | L | $£$ |
| $\begin{array}{llll}0 & 0 & 0 & 1\end{array}$ | E |  |  | - | > | N | $\wedge$ | $+$ | , |
| 000 | F |  |  | 1 | ? | 0 | (sp) |  |  |

Table 5－4－7 Katakana Character Set

| Character set select data | $\mathrm{b} 5: 0(\operatorname{ATT} 5: 1)$ |
| :--- | :--- |
| $\mathrm{b} 6: 0(\operatorname{ATT} 6: 1)$ |  |
| $\mathrm{b} 7: 1(A T T 7: 0)$ |  |
|  | CHAO to 6 CPU input／output data |


| Character Code data | $\mathrm{b}_{6}$ $\mathrm{~b}_{5}$ $\mathrm{~b}_{4}$ | 1 1 1 | 1 1 0 | 1 0 1 | 1 0 0 | 0 1 1 | $\begin{aligned} & 0 \\ & 1 . \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$ | 0 0 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{b}_{3} \mathrm{~b}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0}$ | $\begin{array}{r} \mathrm{CHA} 4-6 \\ \mathrm{CHAO}-3 \end{array}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| $1 \begin{array}{llll}1 & 1 & 1 & 1\end{array}$ | 0 |  |  | $(\mathrm{sp}$, | － | 夕 | ₹ | $\mathrm{E}_{0}$ | $\mathrm{F}_{0}$ |
| $1 \begin{array}{llll}1 & 1 & 1 & 0\end{array}$ | 1 | I | － | － | $\bigcirc$ | 于 | 4 | $\mathrm{E}_{1}$ | $\mathrm{F}_{1}$ |
| 110001 | 2 | － |  | 「 | 1 | $\cdots$ | $\times$ | $\mathrm{E}_{2}$ | $\mathrm{F}_{2}$ |
| $1 \begin{array}{llll}1 & 1 & 0 & 0\end{array}$ | 3 |  |  | 」 | ウ | テ | モ | $\mathrm{E}_{3}$ | $\mathrm{F}_{3}$ |
| $1 \begin{array}{llll}1 & 0 & 1 & 1\end{array}$ | 4 |  |  | ， | 工 | ト | 中 | $\mathrm{E}_{4}$ ． | $\mathrm{F}_{4}$ |
| 10010 | 5 |  |  | － | 才 | ナ | ユ | $\mathrm{E}_{5}$ | $\mathrm{F}_{5}$ |
| 10001 | 6 |  |  | $\Rightarrow$ | 力 | $=$ | $\exists$ | $\mathrm{E}_{6}$ | $\mathrm{F}_{6}$ |
| 1000 | 7 |  |  | 7 | ＊ | ヌ | ラ | $\mathrm{E}_{7}$ | $\mathrm{F}_{7}$ |
| $0 \begin{array}{llll}0 & 1 & 1 & 1\end{array}$ | 8 |  |  | 1 | ク | ネ | リ | $\mathrm{E}_{8}$ | $\mathrm{F}_{8}$ |
| $\begin{array}{llll}0 & 1 & 1 & 0\end{array}$ | 9 |  |  | 戸 | ＇r | $\prime$ | ル | $\mathrm{E}_{9}$ | $\mathrm{F}_{9}$ |
| $\begin{array}{llll}0 & 1 & 0 & 1\end{array}$ | A |  |  | ェ | 7 | 八 | V | $\mathrm{E}_{\mathrm{A}}$ | $\mathrm{F}_{\mathrm{A}}$ |
| $0 \quad 100$ | B |  |  | $才$ | サ | 匕 | 口 | ${ }_{\underline{E}}{ }_{B}$ | $\mathrm{F}_{\mathrm{B}}$ |
| $\begin{array}{llll}0 & 0 & 1 & 1\end{array}$ | C |  |  | ＋ | シ | 7 | －$ワ$ | ${ }^{\mathrm{E}} \mathrm{C}$ | $\mathrm{F}_{\mathrm{C}}$ |
| 0 | D |  |  | $=$ | ス | へ | $\nu$ | $\mathrm{E}_{\mathrm{D}}$ | $\mathrm{F}_{\mathrm{D}}$ |
| $0 \quad 0 \quad 0 \quad 1$ | E |  |  | 3 | せ | 小 | ＂ | $\mathrm{E}_{\mathrm{E}}$ | $\mathrm{F}_{\mathrm{E}}$ |
| 0000 | F |  |  | ＊ | ソ | 7 | 0 | $\mathrm{E}_{\mathrm{F}}$ | $\square$ |

(7) Address select and data bus select circuits The address select circuit consists of 3 LS157 chips $2 \mathrm{~J}, 3 \mathrm{~J}$, and 3 K and select the address signal to access the character generator RAM (6116: 2F) for external character registration. During the display period, the character generator RAM is accessed by the output from refresh memory (6264: 1E); on the other hand it is accessed by the address outputted from the CPU (Z80A: 6K). During the display period, the BLANK signal. outputted from the CRTC becomes "L" and inputted to pin 1 of LS157 (2J, 3J, and 3K) after delayed for 2 CRTCLK signal cycles. Delay signals DCHAO to DCHA6 and raster addresses SL0 to SL3 are inputted to the RAM (6116:2F) addresses, and signal $\overline{\text { DII'I' }}$ is inputted to $\overline{\mathrm{OE}}$.

The character generator RAM (6116: 2F) becomes active when signal $\overline{\text { DATM' }}$ is "L" and outputs 8-bit font data in parallel to DOI's 0 to 7. During blanking, the BLANK signal outputted from the CRTC becomes "H" and inputted to pin 1 of LS157 (2J, 3J, and 3K) after delayed for 2 CRTCLK
signal cycles. Address bus signals A0 to A10 outputted from the CPU are inputted to the character generator RAM (6116: 2F) addresses, signal $\overline{\mathrm{RD}}$ is inputted to $\overline{\mathrm{OE}}$.

At this time, if the CPU makes an access to memory area addresses E000 to FFFF, signal RAMCS2 becomes active to start writing/reading data to/from the character generator RAM (6116: 2F).

The CPU's access to the character generator RAM is executed during blanking after waiting for the CRTC interruption caused by the CRTCINT signal. The data bus select'circuit:consists of LS245.(3F) and connects the CPU data buses (D0 to D7) with the data signals (DOTO to DOT7) outputted from the character generator RAM for selection of the data transmission/reception direction.
(8) Bus buffer

This equipment is provided with the two kinds of bus buffer; the bus buffer (8X371: 2E) for refresh memory and the bus buffer ( $8 \times 371: 2 C$ ) for attribute memory. The bus buffer has the function to temporarily latch the data transferred between the CPU and refresh/attribute memory.

When the CPU makes an access to the I/O port, signal $\overline{\text { CDATA }}$ or ADATA becomes active and then the character codes are written to 8 X 371 (2E) or the attribute data and character set'select data are written to $8 \times 371$ (2C). Ihen, the CPU outputs the address data and the write command to the CRTC, and the CRITC makes both the address data and the $\overline{W D E}$ signal active to write the $8 \times 371$ (2E) latch data or the $8 \times 371$ (2C) latch data to refresh memory (1E) or attribute memory (1C).

To read the contents of refresh or attribute memory into the CPU, the CPU first outputs the address data and the read command to the CRTC. The CRTC waits for the timing for blanking and makes both the $\overline{\mathrm{RDB}}$ and $\overline{\mathrm{BCE}}$ signals active to write the contents of the specified memory address to $8 \times 371(2 \mathrm{E}, 2 \mathrm{C})$. After confirming that the CRTC completes writing data to $8 \times 371$ with the contents of the CRTC register, the CPU makes an access to the I/O port to read the character data codes, attribute data, and character set select data.
(9) Bus select circuit

The CRTC reads the first memory address for the next display line from refresh menory during blanking immediately after displaying the last raster (scanning line 10 for each display line.) That is, the CRTC makes both the BLANK and CURS signals active simultaneously to supply refresh memory outputs CHAO to CHA7 to the CRTC bus lines via LS244 (2B) and read these outputs. The bus select circuit controls the timing to supply CPU data bus signals (D0 to D7) and refresh memory outputs CIIA0 to CIIA7 to the CRTC data bus lines. This circuit consists of LS245 (2A) and LS244 (2B).
(10) Attribute controller

The main function of the attribute controller (SCB2675BC5N40: 1K) is to add attribute data to the character-font parallel data read from the character generator and output it as serial data. The attribute controller functions are listed as follows:
o The DO'TCLK signal supplied from the dot clock select circuit causes the attribute controller to perform internal control and
at the same time, it is frequency-divided to generate the $\overline{C R I C L K}$ signal for CRTC control. It is frequency-divided by 10 (when the 132 CHA signal is "L") when the equipment operates at 80 characters/line; by 9 (when the 132 CHA signal is "H") when the equipment operates at 132 characters/line.

- Signals DOTO to DOT7 outputted from the character generator are expanded into 9-bit data and supplied to pins D0 to D8 to output character-font serial data signals TTLV1 and TrLLV2.

If the DOTO signal outputted from the character generator is "H," the contents of the DOT1 signal and those of the DO'I' signal are inputted to D8 and D0, respectively, in order to control the graphic patterns of the special graphic character set so as to link them horizontally. On the other hand, if the DO'r0 signal is "L," the "L" level signals are supplied to D8 and D0 so that the graphic patterns are not linked horizontally. o The DADR10 signal specifies the scan line to
display an underline; the AT'1 signal specifies the characters to be underlined.
o The DADR11 signal specifies the blinking cycle; the A'IT2 signal specifies the characters to be blinked.

- The ATT3 signal specifies the characters to be displayed in reverse.
- The CURS signal causes the cursor data to be added to character-font serial data signals TTLV1 and TTLV2.
o The DOUBLE signal specifies the horizontally magnified character.
o The REVSCN signal causes the entire display screen to be displayed in reverse.
- The ATTO signal specifies bold display.
(11) Video control circuit

Signals TrTLV1 and TrLV2 outputted from the attribute controller and the HSYNC and VSYNC signals outputted from the CRTC generate composite VIDEO SIGNAL and TTL Level Separate Video signals.

The interface block consists of the parallel printer interface, COMM interface, 20 mA current loop interface, serial printer interface, keyboard interface, and video output interface, centering around the parallel port block (8255A-5) and the three serial ports (SCN2641CCIN24).
(1) Parallel port

The parallel port block (8255A-5: 1M) consists of three 8 -bit parallel ports (ports $A, B$, and $C$ ). Ports $A, B$, and $C$ are used to output the control signals, input the control signals, and output the parallel printer data, respectively. Table 5-4-8 shows the function of each input/ output terminal of the parallel port.

Trable 5-4-8 Parallel Port Input/Output Terminal Functions

| Port No. | Pin No. | Input/ <br> Output | Signal Name | Function |
| :---: | :---: | :---: | :---: | :---: |
| - PAO | 4 | Output | COMDR | Set the COMM interface DTR signal turn ON when "H". |
| PAl | 3 | Output | SPDS | Set the COMM interface SPDS signal turn ON when "H" |
| PA2 | 2 | Output | (RREDY) | Stand-by. |
| PA3 | 1 | Output | $\overline{\text { DCDCTL }}$ | Controls the COMM interface RLSD signal. |
| PA 4 | 40 | Output | $\overline{E I A}$ | Selects the COMM interface when "L"; the 20 mA interface when "H". |
| PA5 | 39 | Output | 132 CHA | Selects the 132 characters/ <br> line operation when "H"; <br> the 80 characters/line <br> operation when "L". |
| PA6 | 38 | Output | REVSCN | Selects the reverse screen display when "H". |
| PA7 | 37 | Output | N. C | Unused. |
| PB0 | 18 | Input | DSR | Indicates that the COMM interface DSR signal is turned ON when "H." |
| PB1 | 19 | Input | SPDI | Indicates that the COMM interface SPDI signal is turned ON when "H." |
| PB2 | 20 | Input | COMCS | Indicates that the COMM interface CTS signal is turned ON when "H." |
| PB3 | 21 | Input | N.C | Unused. |
| PB4 | 22 | Input | (TPl) | For internal alignment. |
| PB5 | 23 | Input | LL | Indicates that the last raster of each line (SCANNING line 10) is |
| PB6 | 24 | Input | $\overline{\text { PBUSY }}$ | being displayed when "H". <br> The inverted parallel <br> printer busy signal output is inputted.. |
| PB7 | 25 | Input | PACK | The latch signal for the parallel printer acknowledge signal is inputted. |


| Port <br> No. | Pin <br> No. | Input/ <br> Output | Signal Name | Function |
| :---: | :---: | :---: | :---: | :---: |
| PC0 | 14 | Output | (PD0) |  |
| PC1 | 15 | Output | (PD1) | These are buffered by LS244 |
| PC2 | 16 | Output | (PD2) | (1N) and outputted to the |
| PC3 | 17 | Output | (PD3) | parallel printer as data |
| PC4 | 13 | Output | (PD4) | signals PD0 to PD7. |
| PC5 | 12 | Output | (PD5) |  |
| PC6 | 11 | Output | (PD6) |  |
| PC7 | 10 | Output | (PD7) |  |

(2) COMM/20 mA port interface

Either the COMM port or the 20 mA port is selected in the Communication Set Up.

It is selected by switching the signal line with LS32 (4K), S38 (4L), and LS02 (4J) by using the LIN signal outputted from parallel port (8255A-5: 1M) PA4, the $\overline{D C D C T L}$ signal outputted from parallel port PA3, and the C'ISC'IL signal outputted from the S.PRT port (SCN2641CCIN24: 5F). The data signal (COMSD/COMIRD) transmitted/received to/from this port connects with the CPU bus via the serial port (SCN2641CC1N24:5H) so that the CPU is able to set the data length and the parity and stop bits programmably for the serial port (SCN2641CC1N24: 5H). At this serial port, the data transmitting/receiving rate can be independently set. The data transmitting rate can be determined by supplying the I'SPEED signal outputted from the timer (8253C-5: 5D); the data receiving rate can be determined by frequency-dividing the CPUCLK signal according to the internal resistor value in the serial port.
(3) S.PRI port interface

The data signal (PRTSD/PRTRD) transmitted/received to/from this port connects with the CPU bus via the serial port (SCN2641CC1N24: 5F), and the CPU is able to set the data length and the parity and stop bits programnably for the serial port (SCN2641CC1N24).
'I'he data trasmitting/receiving rate can be determined by frequency-dividing the CPUCLK signal according to the internal register in the serial port.
(4) Keyboard interface

The data signal (KBSD/KBRD) transmitted/received to/from the keyboard connects with the CPU bus via the serial port (SCN2641CC1N24: 5E), and the CPU is able to set the data length and the parity and stop bits programably for the serial port (SCN2641CC1N 24: 5E). The data trasmitting/receiving rate can be determined by frequency-dividing the CPUCLK signal according to the internal register value in the serial port.
(5) Video output interface

The TTL-level separate video signals (VIDEO, HSYNC, and VSYNC) are supplied to the monitor block via the J308 connector and displayed on the

## CRT screen.

The composite video signal (COMPV) are supplied to the J305 connector and can be connected with the external UNIT.

### 5.5 Keyboard block

The keyboard block consists of the capacitive key switch, key switch scanning circuit, indicator LEDs, bell circuit, etc., centering around the single-chip CPU8749 or 8049 (Z4), and connects to the DP-920 display unit controller block with the curl cord.

The following commands are sent from the controller block to tha keyboard block as the TML-level serial data in the start-stop Asynchronous system:

- Auto repeat speed control command
- Initialize command
- LED control command
- Key-click/bell control command
. Keyboard status request command
The following codes are sent from the keyboard block to the controller block as the TTL-level serial data in the start-stop Asynchronous system:
- Key code
- Initialize sequence code
- Status code

The keyboard block has the following specifications:

- Keytop arrangement: Main keypad, editing keypad, auxiliary keypad, and 'rop-Row function keypad
- Number of keys: 106 keys
- Keytop inclination: Step sculpture
- Key movement: $4 \pm 0.5$ min
- Key row offset: 9.5-4.75-9.5mm
- Key structure: : Low-profile type, capacitive keyboard
- Roll over: N-key roll over
- Repeat function: Auto repeat (when pressing a key for more than 0.5 second)
- Data format: Start-stop Asynchronous system

1 start bit
8 data bits
1 stop bit

- Data transfer rate: 4800 bps
- Input/output signal

| Input/output signal name |  | Cable <br> logic | Signal direction <br> KB block $\leftrightarrow$ Controller | DIN connector pin No. | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| KBRD | Start bit | Positive logic |  |  |  |
|  | Data bit | Negative logic | $\longrightarrow$ | 1 |  |
|  | Stop bit | Negative logic |  |  |  |
| KBBSY |  | Negative <br> logic | $\longrightarrow$ | 5 |  |
| KBSD | Start bit | Positive logic |  | 4 |  |
|  | Data bit | Negative <br> logic |  |  |  |
|  | Stop bit | Negative <br> logic |  |  |  |
| $\overline{\mathrm{KBRTS}}$ |  | Negative <br> logic |  | 2 |  |

6. DISASSEMBLY AND REPLACEMENT
CAUTION: Be sure to turn OFF the POWER switch and pullout the power cable from the plug receptaclebefore disassembling or replacing this equipment.
6.1 Disassembly and Replacement of Display Unit
Fig. 6-1-1 shows the disassembly diagram of display unitDP-920.
1) Removal of the logic PWB (No. 1)
(1) Turn OFF the POWER switch and remove the powercord and the keyboard cable on the back and frontof the display unit, respectively.
(2) Remove the two screws (Part E: No. 2) on the backof the display unit.(3) Remove the two connectors (P307 and P308) on thelogic PWB. (See Fig. 6-1-2.)
(4) Pull out the logic PWB by pushing it up.
2) Removal of the rear cabinet (No. 3)(1) Remove the logic PWB according to the proceduresdescribed in 1).(2) Cover the solid stand surface with a soft clothand place the display unit quietly with the CRTsurface down.
(3). Remove the two screws (Part C: No. 4) on the back of display unit.
(4) Remove the two screws (Part D: No. 5) on the back of display unit.
(5) Remove the two tapping screws (Part F: No. 6) on the side of display unit.
(6) Remove the two tapping screws (Part G: No. 7) on the bottom of display unit.
(7) Pull up the rear cabinet.
3) Removal of the power bracket (No. 3)
(1) Remove the logic PWB and the rear cabinet according to the procedures described in 1) and $2)$.
(2) Remove the J102 connector (10 P) of the switching power supply. (See Fig. 6-1-3.)
(3) Remove the cable from the two cable clamps on the power bracket. (See Fig. 6-1-3.)
(4) Remove the two tapping screws (Part A: No. 9). (See Fig. 6-1-1.)
(5) Remove the tapping screw (No. 10). (See Fig. 6-1-1.)

Fig. 6-1-1 Display Unit Disassembly Diagram


Fig. 6-1-2 Removal of Logic PWB


Fig. 6-1-3 Removal of Power Bracket
4) Removal of monitor PWB (NO. 11)
(1) Remove the J6 connector (5P) on the monitor PWB. (See Fig. 6-1-5.)
(2) Remove the $S G$ connector (3P) of the CRT SOCKET PWB. (SEE FIG. 6-1-5.)
(3) Pull out the CRT SOCKEI PWB from the CRT neck.
(4) Remove the J1 connector (3P), J3 connector (5P), and J 5 connector (2P) on the monitor PWB. (See Fig. 6-1-6.)
(5) Remove the anode cap from the CRT. (See Fig. 6-1-4.)

## CAUTION

Remove the anode cap after discharging the highvoltage electricity from the CRT by shortcircuiting the CRI anode cavity and the CRI mounting lug with a clip wire.


Fig. 6-1-4 Removal of Anode Cap
(6) Remove the two tapping screws (Part B: No. 12).


Fig. 6-1-5 Removal of Monitor PWB


Fig. 6-1-6 Removal of Monitor PWB
5) Removal of PWB CASE ASY (No. 13)
(1) Remove the logic PWB and the rear cabinet according to the procedures described in 1) and $2)$.
(2) Remove the J102 connector according to the procedures described in (2) and (3) of 3) and remove the cable from the cable clamp.
(3) Remove the J6 connector (5P) according to the procedures described in (1) of 4).
(4) Remove the $J 1$ connector (3P) according to the Procedures described in (4) of 4).
(5) Pull out the PWB CASE ASY toward the CR'T neck. 6) Removal of the CRT ASY (No. 14)
(1) Remove the logic PWB, rear cabinet, power bracket, monitor PWB, and PWB CASE ASY according to the procedures described in 1) through 5).
(2) Remove the four tapping screws (No. 15).
(3) Remove the CRT ASY. Cover the solid stand surface with a soft cloth and place the CRT ASY quietly with the CRT surface down. CAUTION

It is dangerous to shock the CI'r corn part. Take care so as not shock the removed CRT ASY.
6.2 Disassembly and Replacement of Keyboard Unit

Fig. 6-2-1 shows the disassembly diagram of keyboard unit KB-920.


Fig. 6-2-1 Keyboard Unit Disassembly Diagram

1) Removal of the function plate (No. 16)
(1) Pull out the function plate so as to pull up its center.
2) Removal of the bottom panel (No. 17)
(1) Cover the solid stand surface with a soft cloth and place the keyboard unit quietly with the keytop surface down.
(2) Remove the six tapping screws (No. 18) on the keyboard bottom. (See Fig. 6-2-1.)
(3) Pull up the bottom panel.
3) Removal of the keyboard PWB (No. 19)
(1) Remove the bottom panel according to the procedures described in 2).
(2) Remove the four tapping screws (No. 20) from the keyboard soldered surface. (See Fig. 6-2-2.)
(3) Remove the two tapping screws (No. 21) from the keyboard soldered surface. (See Fig. 6-2-2.)
(4) Remove the tapping screw (No. 22) from the keyboard soldered surface. (See Fig. 6-2-2.)
(5) Pull up the keyboard PWB.


Fig. 6-2-2 Removal of Keyboard PWE
4) Removal of the keyboard cable (No. 23)
(1) Remove the keyboard PWD according to the procedures described in 2) and 3).
(2) Pull out the keyboard cable holding the housing of the 9 -pin keyboard cable connector.

## 7. ADJUSTMENT

7.1 Adjustment Points

I'he display unit has the following two adjustment points:
(1) +5 V power supply voltage
(2) Monitor screen

I'he above points have already been adjusted at the factory shipment. Therefore, do not touch any part other than the user control knob of the monitor unit unless otherwise required.

1) +5 V power supply voltage adjustment

| Item | Procedure (Condition) | Standard | Tool \& Measuring instrument |
| :---: | :---: | :---: | :---: |
| +5 V power supply voltage adjustment | 1) Check that the keyboard is connected with the display unit. <br> 2) Turn $O N$ the power. <br> 3) Adjust the $+5 V$ Adj volume (VR) on the power supply PWB so as to set the voltage between J307 connector pins $1(+5 \mathrm{~V})$ and 4 (SG) on the logic PWB to the standard value. | $\begin{aligned} & +5.07 \sim \\ & +5.08 \mathrm{~V} \end{aligned}$ | Tester $\left(\begin{array}{c} \text { DC voltage } \\ \text { meter, Digital } \\ \text { volt meter } \end{array}\right)$ |



Fig. 7-1-1 +5V power Supply Voltage Adjustment
2) Monitor screen adjustinent

The monitor is adjusted with the user control knobs, service-man control knobs, centering magnet, etc.

Table 7-1-1 lists the adjusting instruments. The class column with an asterisk indicates user control; that without an asterisk indicates serviceman control. Be sure to adjust these instruments accoording to the adjustment procedures. Each adjusting instrument operates as described below when it is turned clockwise:
'Iable 7-1-1 Monitor Unit Adjustment

| No. | Control class | Name | Wiring diagram symbol | Operation contents |
| :---: | :---: | :---: | :---: | :---: |
| 1 | * | BRIGHT | R326 | Both the raster and picture become bright. |
| 2 | * | CON'TRAST | R106 | The picture becomes bright. |
| 3 | * | V. HOLD | R204 | The picture distorts vertically |
| 4 | * | H. HOLD | R312 | The picture distorts slantly to the right or left. |
| 5 |  | V. HEIGH'T | R210 | The picture expands vertically. |
| 6 |  | V. LIN | R209 | The upper part of the picture extends; the lower part of the picture shrinks. |
| 7 |  | FOCUS | R321 | The picture center is defocused and the picture corners are focused. |
| 8 |  | SUB. BRIGHT | R325 | Both the raster and picture become bright. |
| 9 |  | WIDTH COIL | L 302 | The raster horizontally shrinks. |
| 10 |  | CENTERING MAGNE'T |  | Adjusts the raster so as to be positioned in the CRT center. |
| 11 |  | CORRECTION MAGNET |  | Adjusts the distortion of the picture |



Fig. 7-1-2 Monitor Adjustment Points


Fig. 7-1-3 Monitor Adjustment Points
(1) Adjustment conditions

Be sure to understand the position of each adjusting instrument and its operation contents with Table 7-1-1 and Figures 7-1-2 and 7-1-3. For adjustment, "H" is keyed in from the keyboard unit and displayed on the entire screen. The following shows how to display "II" on the entire screen:
(1) Turn ON the power when the display unit is connected with the keyboard unit.
(2) Select the Set Up Directory (Setting guide) menu by inputting the set $U p$ key and select Local.
(3) Next, select the Display Set Up menu and select Interpret Controls.
(4) Input the Set Up key to cancel the set Up mode.
(5) Input Ctrl $+[0$, Shift $+\#$, and (8.
(2) Adjustment procedures

| No. | Item | Procedure (Condition) | Wiring diagram symbol | Standard | Tool and measuring instrument |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | Set each knob to the center of the rotary angle temporarily. |  |  |  |
| 2 | Horizontally synchronous adjustment | Turn H. HOLD and set picture at the raster center. | R312 | $\begin{aligned} & \text { Service- } \\ & \text { range } \\ & \text { center } \end{aligned}$ |  |
| 3 | Vertically synchronous adjustiment | Turn V. HOLD to set the picture at the center of the service range. | R20 4 | Servicerange center |  |
| 4 | Screen inclination adjustment |  | DY | Less than 1.3 mm (Difference between E and F) DY shall be in fully contact with the CRT so that there is no space between them. | Scale <br> Paint lock |


| No. | I tem | Procedure (Condition) | Wiring diagram symbol | Standard | Tool and measuring instrument |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\therefore 5$ | Picture position adjustment | 1 Set the picture almost at the center of the CRT screen with the centering magnet. <br> (Measure a pair of $A$ and $B$ and that of $C$ and D.) <br> 2 Lock the position with paint. | Centering magnet | Less than 3mm (Difference between $A$ and 13 , $C$ and D.) <br> 1 | Scale <br> Paint lock |
| 6 | Sub. BRIGHT | 1 Maximize BRIGHT and CONTRAST. <br> 2 Turn SUB. BRIGHT and set the raster at the point where it is slightly visible near the cut-off point. <br> 3 Turn CONTRAST'COUnterclockwise about 30 to 45 from the maximum point. <br> 4 Set BRIGHT at the point where the raster disappears. | $\begin{aligned} & \text { R326 } \\ & \text { R106 } \\ & \text { R325 } \end{aligned}$ | The <br> raster <br> shall be slightly visible. |  |
| 7 | Screen size adjustment | 1 Adjust $H$ shown in the adjustment diagram with WIDTH COIL. <br> 2 Adjust $V$ shown in the adjustmentdiagram with V.HEIGHT. | $\begin{aligned} & \text { L } 302 \\ & \text { R210 } \end{aligned}$ | $\begin{gathered} \mathrm{H}=210 \mathrm{~mm} \\ \pm 3 \mathrm{~mm} \\ \\ \mathrm{~V}=140 \mathrm{~mm} \\ \pm 3 \mathrm{~mm} \end{gathered}$ | Scale |


| No. | Item | Procedure (Condition) | Wiring diagram symbol | Standard | Tool and measuring instrument |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | Screen distortion adjustment | l Adjust the screen distortion with correction magnets. (Measure G, H, I, and J.) <br> 2 After screen distortion adjustment, check the screen size and tilt. | Correction magnet | Less than 1.8 mm (Each of G, H, I, and J indicates the distance from the center line.) | Scale |
| 9 | V.LIN | (Character H) <br> (K and M indicate the distance between two lines.) | R209 | Less then 0.5 mm (Differences <br> $K$ and $M$ ) | Scale |
| 10 | FOCUS | Adjust the focus of each character with the FOCUS Knob so that the focus becomes even on the entire screen. |  | * |  |
| 11 | V. HOL D | Turn ON after OFF the POWER switch. |  | It shall not be asynchro nous. |  |


| No. | Item | Procedure (Condition) | Wiring <br> diagram <br> symbol | Standard | Tool and <br> measuring <br> instrument |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 12 | H.HOLD | Turn ON after OFF <br> the POWER switch. | It shall <br> not be <br> asynchro- <br> nous. |  |  |

3. REPAIR
8.1 Self-diagnostic Function

VG-920 is provided with the self-diagnostic function to check the equipment status. 'lhis function has two kinds; AU'M DIAG to be executed automatically at power ON and the self-diagnostic function to be executed by inputting commands from the keyboard unit or the host computer. When the self-diagnosis starts, the data which has been displayed on the CRT is cleared. During execution of the self-diagnosis other than AUTO DIAG, "Testing" is displayed on the lowermost screen line blinking.

When an error is detected, the test is terminated, the error message is displayed, and "END" is displayed on the lowermost screen line.
At normal end of the self-diagnosis, VG-920 OK is displayed on the screen center.

After completion of the self-diagnosis, VG-920 starts operating according to the set Up paraneters set in NVR. 'The message displayed at completion of the self-diagnosis is cleared when data is inputted from the keyboard or received fron the host computer, and data starts being displayed with the first colum on the first line. ( $\Lambda$ t completion of the self-diagnosis other than $\lambda U T O$ DIAG,
the error message displayed on the screen is not cleared by the data received from the host computer. It can be cleared only when data is inputted from the keyboard.)
8. 2 Kinds ofiself-diagnostic Function

1) AUTO DIAG
$\lambda t$ power ON, VG-920 automatically executes the self-diagnosis shown in Table 8-2-1 in sequence. At normal end of the self-diagnosis; $\mathrm{VG}-920$ OK is displayed; at detection of an error; the error message is displayed on the screen.

Table 8-2-1 Kinds of AUTO DIAG

| No. | Name | Operation Outline |
| :---: | :--- | :--- |
| 1 | RAMTST <br> (RAM Test) | Writes/reads data to/from the RAM (6264: <br> 7D) to perform comparison check. |
| 2 | RFMTST <br> (Refresh <br> Memory <br> Test) | Writes/reads data to/from the refresh <br> memory (6264: 1E), attribute memory (6264: <br> lC), and character generator RAM (6116: 2F) <br> to perform comparison check. |
| 3 | ROMTST <br> (ROM Test) | Compares the reqistered SUM check values <br> for EPROM (27256: 7H. 2764: 7F) with the <br> calculated values Eor checking. |
| 4 | KBDTST <br> (Keyboard <br> Test) | Outputs both the LED and BELL control <br> commands to the keyboard unit. Then, re- <br> ceives the status data from the keyboard <br> unit to perform the validity check. Also, <br> checks the timer (8253C-5: 5D). |
|  |  |  |

2) Self-diagnosis performed by commands The commands inputted from the keyboard unit or the host computer cause the self-diagnosis shown in Table 8-2-2 to be executed individually or in combination.

During the self-diagnosis, "Testing" is displayed on the lowermost screcn line blinking. At normal end of the self-diagnosis, VG-920 OK is displayed on the screen center. At detection of an error, the test is terminated, the error message is displayed on the screen, and "END" is displayed on the lowermost screen line.

Table 8-2-2 Kinds of self-diagnosis Performed Commands

| No. | Name | Operation Outline |
| :---: | :---: | :---: |
| 1 | RAMTST <br> (RAM Test) | Writes/reads data to/from the RAM (6264: 7D) to perform comparison check. |
| 2 | RFMTST <br> (Refresh Memory Test) | Writes/reads data to/from the refresh memory (6264: lE), attribute memory (6264: 1C), and character generator RAM (6116: 2F) to perform comparison check. |
| 3 | ROMTST <br> (ROM Test) | Compares the registered SUM check values for EPROM! (27256: 7H, 2764: 7F) with the calculated values for checking. |
| 4 | KBD'TST <br> (Keyboard Test) | Outputs the LED and BELL control commands to the keyboard unit. Then, receives the status data from the keyboard to perform validity check. Also, checks for the timer (8253C-5: 5D) and CRTC (SCN2674BC4N40: 1A) interruptions. |
| 5 | EIATST <br> (EIA Test) | Performs the data loop-back test for the COMM port by using the signal loop-back connector. |
| 6 | SPR'TST <br> (Serial <br> Printer <br> Test) | Performs the data loop-back test for the S.PRT port by using the signal loop-back connector. |
| 7 | PPRTST <br> (Parallel <br> Printer <br> Test) | Outputs the fixed message to the printer when the parallel-interface printer (conforming to CENTRONIX) is connected with this equipment. Monitors the time out for the response with the acknowledge signal. |
| 8 | CLPTST <br> (Current <br> Loop Test) | Performs the data loop-back test for the 20mA"port' by: using the signal loop-back connector. |
| 9 | ```SIG'IS'T (EIA Port Signal Test)``` | Checks for the MODEM control signal for the EIA port by using the signal loop-back connector |


| No. | Name | Operation Outline |
| :---: | :---: | :---: |
| 10 | NVRTST <br> (NVR Test) | Writes/reads data to/from NVR (X2212: 7C) <br> to perform comparison check. |
| 11 | DSPrS'T <br> (Display <br> Test) | On the screen, the character fonts (cha- <br> racter generator 2764: lF) for the hard <br> character set, the display character <br> attributes, and the line attributes <br> (magnified display) are displayed. |

## 8. 3 Tools

The following tools are required for executing selfdiagnoses EIATST, SPRTST, PPR'TST, CLPI'SI, and SIGTS':

1) Signal loop-back connector for EIATST/SIGTS' (JT8005)

| Pin connections |  |
| :--- | :--- |
| 25 P D-Sub connector | From |
| 2 (SD) | 3 (RD) |
| 4 (RTS) | 5 (CTS), 8(RLSD) |
| $20(\mathrm{DTR})$ | 6 (DSR) |
| $23(S P D S)$ | $12(\mathrm{SPDI})$ |

2) Signal loop-back comnector for SPRTS'I (JT8007)


| Pin connections |  |
| :--- | :---: |
| From | To |
| $2(S D)$ | $3(\mathrm{RD})$ |
| $5(\mathrm{DTR})$ | $6(\mathrm{DSR})$ |

3) Signal loop-back connector for CLPTST (JT8006)

## Hate-N-Loc connector

 (3P, Manufactured by AMP)

| Pin connections |  |
| :--- | :--- |
| From | To |
| $1(-12 \mathrm{v})$ | 3 (Receive -) |
| $2($ Transmit -$)$ | 7 (Receive + ) |
| $5($ Transmit + ) | $8(\mathrm{SG})$ |

4) Parallel interface printer for PPR'IS'

Conforming to CENTRONIX, TTL-level 8 -bit parallel interface printer and connection cable (36-pin connector)

| P.PRT port connector pin list |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pin NO. | Mnemonic | Signal name | Pin NO. | Mnemonic | Signal name |
| 1 | $\overline{\text { PRSTB }}$ | Printer <br> storobe | 19 | SGND | Signal ground |
| 2 | PDO | Data bit 0 | 20 | SGND | Signal ground |
| 3 | PD1 | Data bit 1 | 21 | SGND | Signal ground |
| 4 | PD2 | Data bit 2 | 22 | SGND | Signal ground |
| 5 | PD3 | Data bit 3 | 23 | SGND | Signal ground |
| 6 | PD 4 | Data bit 4 | 24 | SGND | Signal ground |
| 7 | PD5 | Data bit 5 | 25 | SGND | Signal ground |
| 8 | PD6 | Data bit 6 | 26 | SGND | Signal ground |
| 9 | PD7 | Data bit 7 | 27 | SGND | Signal ground |
| 10 | $\overline{\mathrm{ACK}}$ | Acknowledge | 28 | SGND | Signal ground |
| 11 | BUSY | Printer busy | 29 | SGND | Signal ground |
| 12 |  |  | 30 | SGND | Signal ground |
| 13 |  |  | 31 |  |  |
| 14 |  |  | 32 |  |  |
| 15 |  |  | 33 | * |  |
| 16 |  |  | 34 |  |  |
| 17 | PGND | Protective ground | 35 |  |  |
| 18 |  |  | 36 |  |  |

### 8.4 Execution of Self-diagnostic Function

1) $A U T O$ DIAG

VG-920 automatically executes AU'iO DIAG when powered ON.
2) Self-diagnosis performed by commands

The self-diagnosis shown in T'able 8-2-2 can be executed by receiving the following LSC sequence commands from the keyboard unit or the host computer: $\begin{array}{llllll}1 / 11 & 5 / 11 & 3 / 4 & 3 / 11 & 3 / 11 & 7 / 9\end{array}$ ESC [ 4 ; Ps ; Pn $Y$

Ps: Indicates the kind of the test to be executed. (See Table 8-4-1.)

Pn: Indicates the number of times for executing the test. When $\operatorname{Pn}=0$ or $\operatorname{Pn}$ is none, the test is excuted permanently. The specified value greater than 256 is regarded as 255 .

Table 8-4-1 Ps Values For Tests to be Executed

| $\begin{gathered} \text { Ps } \\ \text { value } \end{gathered}$ | Test to be executed | $\left\lvert\, \begin{gathered} \text { Ps } \\ \text { value } \end{gathered}\right.$ | Test to be executed | $\left\lvert\, \begin{gathered} \text { Ps } \\ \text { value } \end{gathered}\right.$ | Test to be exeduted |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | ROMTST | 1 | RF'MTST | 20 | PPRTST |
|  | KBDTST <br> EIATST |  | ROMTST | 21 | KBDTST |
|  |  |  | KBDTST | 22 | ROMTST |
|  | SPRTST | 2 | EIATST | 23 | RAMTST |
|  | SIGIST | 3 | SPRTST | 24 | RFMTST |
|  | PPRTST | 6 | SIG'ST | 25 | NVRTST |
|  | CLPTST | 7 | CLPTST | 26 | DSPTST |

8.5 Lirror Messages

When an error is detected during execution of AUTO DIAG or a self-diagnosis by inputting a comnand, any of the error messages shown in Table $8-5-1$ is displayed on the screen.

Table 8-5-1 Self-Diagnosis Error Message List

| No. | NAME | $\begin{aligned} & \text { DISPLAY } \\ & \text { LINE } \end{aligned}$ | ERROR MESSAGE | ERROR CONTENTS |
| :---: | :---: | :---: | :---: | :---: |
| 1 | RAMTST |  | None. (The bell rings at occurrence of an error.) | An error is detected during the comparison check for RAM (6264: 7D) 。 |
| 2 | RFMTST | 2 | $\begin{aligned} & \text { Refresh Memory } \\ & \text { Error:0 } \end{aligned}$ | An error is detected during the comparison check for refresh memory (6264: 1E) |
|  |  |  | ```Refresh Memory Error 1``` | An error is detected during the comparison check for attribute memory (6264: 1C) |
|  |  |  | Refresh Memory <br> Error 2 | An error is detected during the comparison check for the character generator RAM (6116: 2F). |
| 3 | ROMTST | 4 | PROM Error | The registered SUM check values for EPROM (27256: 7H, 2764: 7F) do not match the calculated values. lated values. |
| 4 | KBDTS'T | 6 | KBD Error 0 | An error is detected during the munication with the keyboard. |
|  |  |  | KBD Error 1 | An error is detected during the <br> timer (8253C-5: <br> 5D) or CRTC <br> (SCN2674BC4N40: 1A). |


| No. | NAME | $\begin{aligned} & \text { DISPLAY } \\ & \text { LINE } \end{aligned}$ | ERROR MESSAGE | ERROR CONTENTS |
| :---: | :---: | :---: | :---: | :---: |
| 5 | EIATST | 8 | EIA Port Error 0 | Data cannot be sent to the Comm port. |
|  |  |  | EIA Port Error 1 | Data cannot be received from the Comm port. |
|  |  |  | EIA Port Error 2 | The data sent to the Comm port does not match the data received from the Comm port. |
| 6 | SPRTST | 10 | Serial Printer Port Error 0 | Data cannot be sent to the S.PRT port. |
|  |  |  | Serial Printer Port Error 1 | Data cannot be received from the S.PRT port. |
|  |  |  | Serial Printer Port Error 2 | The data sent to the S.PRT port does not match the data received from the S.PR'I port. |
|  |  |  | Serial Printer Port Error 3 | The DSR input signal of S.PRT Port is turned OFF. |
| 7 | PPRTST | 14 | Parallel Printer Port Error | The ACK (Acknowledge) signal does not return from the parallel printer within the specified period of time (10 seconds) or the BUSY signal is not cancelled within the specified period of time ( 60 seconds) |
| 8 | CLPTST | 16 | 20 mA Port Error 0 | Data cannot be sent to the 20 mA port. |
|  |  |  |  |  |


| No. | NAME | DISPLAY <br> LINE | ERROR MESSAGE | ERROR CONTENTS |
| :---: | :---: | :---: | :--- | :--- |
| 8 | CLPAST | 16 | 20mA Port Error 1 | Data cannot be <br> received from the <br> 20mA port |
| 9 | SIGTST | 12 | 20mA Port Error 2 |  |


| No. | NAME | DISPLAY <br> LINE | ERROR MESSAGE | ERROR CONTENTS |
| :---: | :---: | :---: | :--- | :--- |
| 10 | NVRTST | 2 | NVR Error | An error is detec- <br> ted during the <br> comparison check <br> for NVR (X2212: <br> $7 C)$. |
| 11 | DSPTST |  | None. On the <br> screen, the <br> character fonts <br> (2764: 1F) for the |  |
| hard character |  |  |  |  |
| set, the display |  |  |  |  |
| character attri- |  |  |  |  |
| butes, and the |  |  |  |  |
| line attributes |  |  |  |  |
| (magnified dis- |  |  |  |  |
| play) are |  |  |  |  |
| displayed. How- |  |  |  |  |
| ever, neither the |  |  |  |  |
| error message |  |  |  |  |
| nor VG-920 OK at |  |  |  |  |
| normal end is |  |  |  |  |
| displayed. |  |  |  |  |$\quad$.

The cautions and the typical trouble and troubleshooting examples are described as follows:

1) Cautions
(1) Be sure to pull out the power cord before disassembling or replacing the part such as the connector, cabinet.

I'here are some high-voltage parts in the equipment so that it is dangerous to touch them.
(2) Be sure to visually check that there is no abnormal condition on the appearance and the internal parts.
2) Typical trouble and troubleshooting examples
(1) 'lisoubles generated at power ow

| No. | Phenomenon | Troubleshooting <br> example |
| :---: | :--- | :--- |
| 1 | The power LED does not light up <br> when the POWER switch is turned <br> ON. | See Fig. 8-6-1. |
| 2 | The power LED lights up but no <br> data is displayed on the screen. | See Fig. 8-6-2 |
| 3 | The screen display is abnormal. | See Fig. 8-6-3 |
| 4 | An error is displayed during <br> AUTO DIAG. | See Fig. 8-6-4 |
| 5 | The Keyboard operates abnormally | See Fig. 8-6-5 |

(2) Troubles generated during operation

| No. | Phenomenon | Troubleshooting <br> example |
| :---: | :--- | :--- |
| 1 | The screen display is abnormal. | See Fig. 8-6-6 |
| 2 | Data transfer with the external <br> device is abnormal. | See Fig. 8-6-7 |
| 3 | The keyboard operates abnormally. | See Fig. 8-6-5 |

(3) Others

| No. | Phenomenon | Troubleshooting <br> example |
| :---: | :---: | :---: |
| 1 | The abnormal noise is generated. | See Fig. 8-6-8 |




Fig. 8-6-2.


Fig. 3-6-3


Fig. 8-6-4


Fig. 8-6-5.


Fig. 8-6-6


Fig. 8-6-7

9. HOW TO REFERENCE CIRCUIT DIAGRAMS

* The circuit diagrams are the standard circuit diagrams so that they may be changed without any prior notice to improve the product such as the circuit and constant.
9.1 Safety

Be sure to use the specified part to secure safety when replacing the part marked with $\triangle \Delta$ on the circuit diagram. For other parts, be sure to use the specified ones for securing the safety and maintaining the performance.
9.2 Indications on Circuit Diagrams

1) Resistance
(1) Resistance value No unit indication: [ $\Omega$ ]
$\mathrm{K}: ~[\mathrm{~K} \Omega]$
$\mathrm{M}: ~[M \Omega]$
(2) Rated allowable power

No unit indication: $1 / 4 \mathrm{~W}$
Others: Indicated
2) Capacitor
(1) Capacity

P: pF $\mu:$ [ $\mu \mathrm{F}]$ No indication: [ $\mu \mathrm{F}$ ]
(2) Dielectric voltage No indication: 50V

Others: Indicated
3) Ground indications

血: GROUND (SIGNAL) (GND)
$\underset{=}{\perp}: E A R T H$ (FRAME) (FG)
10. CIRCUIT DIAGRAMS
(1) VG-920 WIRING Fig. 10-1
(2) VG-920 LOGIC PWB Fig. 10-2 $1 / 6$ to $6 / 6$
(3) VG-920 MONITOR PWB Fig. 10-3
(4) VG-920 LOGIC PWB CONNECTOR LIST Fig. 10-4


FIG. 10-1 VG-920 WIRING


FIG. 10-2 VG-920 LOGIC PN'B $1 / 6$


FIG. $10-2$ VG-920 LOGIC PWB $2 / 6$



FIG. 10-2 VG-920 LOGIC PNB $4 / 6$


FIG. 10-2 VG-920 LOGIC P::AB $5 / 6$


FIG, 10-2 VG-920 LOGIC P:BB 6/6


FIG, 10-3 VG-920 N TOR PI:B

| J $3 \otimes 2$ <br> $2 Q \mathrm{~mA}$ |  |
| :---: | :---: |
| PIN NO. | SIGNAL NAME |
| 1 | -12 V |
| 2 | TRANSMIT- |
| 3 | RECEIVE - |
| 4 |  |
| 5 | TRANSMIT + |
| 6 |  |
| 7 | RECEIVE + |
| 8 | S $G$ |


| $\begin{array}{ll} \hline \text { J3Q4 } & \text { OPTION } \\ \text { P.PRT } \end{array}$ |  | $\begin{aligned} & J 3 Q 5 \\ & \text { VIDEO } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: |
| PIN NO. | SIGNAL NAME | PIN NO. | SIGNAL NAME |
| 1 | PRSTB | 1 | COMPV |
| 2 | PDQ | 2 | S G |
| 3 | PO1 |  |  |
| 4 | PD2 |  |  |
| 5 | PD3 |  |  |
| 6 | PD4 |  |  |
| 7 | PD5 |  |  |
| 8 | PD6 |  |  |
| 9 | PD7 |  |  |
| 10 | $\overline{\text { ACK }}$ |  |  |
| 11 | BUSY |  | 306 |
| 12 |  |  | BOARD |
| 13 |  | PIN NO. | SIGNAL NAME |
| 14 |  | PIN NO. | SICNAL NAME |
| 15 |  | 1 | +5V |
| 16 |  | 2 | +5V |
| 17 | S G | 3 | KESD |
| 18 |  | 4 | KERD |
| 10 | S G | 5 | KERTS |
| $2 Q$ | S G | 6 | $\overline{\text { K8ESY }}$ |
| 21 | S G | 7 | S G |
| 22 | S G | 8 | SG |
| 23 | S G | 9 | FG |
| 24 | SG |  |  |
| 25 | SG | Mini D | IN CONNECTOR |
| 26 | SG | PIN NO | SIGNAI NAME |
| 27 | SG | PIN NO. | SIGINAL NAME |
| 28 | S G | 1 | KERD |
| 29 | S G | 2 | KERTS |
| 30 | S G | 3 | +5V |
| 31 |  | 4 | KBSD |
| 32 |  | 5 | KEESY |
| 33 |  | 6 | +5V |
| 34 |  | 7 | SG |
| 35 |  | 8 | 56 |
| 36 |  | - E | FG |


| J3Q7 <br> POHER |  |
| :---: | :---: |
| PIN NO. | SIGNAL NAME |
| 1 | +5 V |
| 2 | +5 V |
| 3 | $S G$ |
| 4 | $S ~ G$ |
| 5 | $S G$ |
| 6 | $S G$ |
| 7 | $+12 V$ |
| 8 | $-12 V$ |
| 9 | $F G$ |


| J3Q3 <br> S.PRT |  |
| :---: | :--- |
| PIN NO. | SIGNAL NAME |
| 1 | S G |
| 2 | PRTTXD |
| 3 | PRTRXD |
| 4 | PRTRTS |
| 5 | PRTDTR |
| 6 | PRTDSR |
| 7 | S G |
| 8 |  |
| 9 |  |

11. MAINTENANCE PARTS LIST

The parts marked with $\$ are important. Therefore, be sure to use the specified parts for replacement to secure the safety and maintain the performance.

Display unit parts

| Symbol | $\triangle$ | Part No. | Description | Remarks |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | DFS0003-005 | FRONT PANEL ASY |  |  |
|  |  | KD10342-012* | REAR COVER |  |  |
|  |  | KD4 2100 | MASK PLA'TE |  |  |
|  |  |  |  |  |  |
|  |  | KD42245 | CAU'IION LABEL | English indication |  |
|  |  |  |  |  |  |
|  |  | KD43073 | SERIAL LABEL | English indication |  |
|  |  | KD31717-00A | STAND ASY |  |  |
|  |  | KD31623-002 | BOTTOM PLATE |  |  |
|  |  | TFS0021 | PWB CASE ASY | . |  |
|  | $\triangle$ | TSS0025 | POWER BRACKE'T ASY | Set at l00V |  |
|  | $\triangle$ | TSS0038-001 | POWER BRACKE'I' ASY | Set at 200 V |  |
|  | $\triangle$ | KD42530C* | SWITCHING REGULATOR UNIT | , |  |
|  | $\triangle$ | 02-TFK-0114* | NOISE FILTER |  |  |
|  | $\triangle$ | FH033* | FUSE HOLDER |  |  |
|  | $\triangle$ | KDE40067* | POWER SWI'TCH |  |  |
|  | $\triangle$ | T-S12NB6 2 - ${ }^{*}$ * | VOL'TAGE SELECI' SWITCH |  |  |
|  | $\Lambda$ | QMF51U2-2R0* | FUSE | For 100 V |  |
|  | $\triangle$ | QMF51U2-1R0* | FUSE | For 200V |  |
|  | $\triangle$ | 310 KGB (QA) ${ }^{*}$ | CRT TUBE | AMBER |  |
|  | $\triangle$ | $310 \mathrm{KGB4N} *$ | CRT TUBE | WHI'TE |  |
|  | ¢ | 310KGB31N* | CRT TUBE | GREEN |  |
|  | 1 1 | DPS0032-001 | MONITOR PWB ASY |  |  |
| R301 | 4 | QMF5lUl-2R0* | FUSE | For MONITOR PWB |  |
|  | $\triangle$ | KDE40056* | DY |  |  |
|  |  | TPS0024-001 | LOGIC PWB ASY | D-SUB mm screw conforming to ASCII specifications |  |

Display unit parts


Keyboard unit parts

| Symbol | $\Lambda$ | Part No. | Description | Remarks |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
|  |  | KDE40077-002 | KEYBOARD PWB <br> ASY | ASCII spe- <br> Cifications |  |
|  | KDl0410-002 | KEYBOARD CASE | Upper cover |  |  |
|  |  | KD2l211-002 | FUNC'IION PLATE | ASCII specifi- <br> cations |  |
|  |  |  |  |  |  |

Accessories

| Symbol | $\Lambda \triangle$ | Part No. | Description | Remarks |  |
| :---: | :---: | :--- | :---: | :---: | :---: |
|  | $\Lambda \triangle$ | KDH40058* | POWER CORD |  | Note 1 |
|  | $\triangle \triangle$ | KDH40121* | POWER CORD |  | Note 2 |
|  | $\triangle \triangle$ | KD42532 | POWER CORD |  | Note 3 |

Notes 1 through 3:

Tools

| Symbol | $\triangle$ | Part No. | Description |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | JT8005 | Signal <br> loop-back <br> Connector | For EIATST, | D-Sub |  |
|  | JT8007GTST | Signal <br> loop-back <br> Connector | For SPRTST | D-Sub |  |
|  | JT8006 | Signal <br> loop-back <br> Connector | For CLPTST | Mate-N <br> -Loc |  |

LOGIC PWB

| Symbol | A | Part No. | Description | Remarks |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 K |  | D780C-1 | IC |  |  |
| 1C,1E,7D |  | HM6264P-15 | IC |  | x 3 |
| 1F, 7F |  | 2764 | IC | 250 ns | - x 2 |
| 2 F |  | HM6116L P-4 | IC |  |  |
| 1M |  | M5L 8255 AP-5 | IC |  |  |
| 5D |  | $\mu \mathrm{PD} 8253 \mathrm{C}-5$ | IC |  |  |
| 1A |  | SCN 2674 BC 4 N 40 | IC |  |  |
| $5 \mathrm{E}, 5 \mathrm{~F}, 5 \mathrm{H}$ |  | SCN2641CCIN24 | IC |  | x 3 |
| 1K |  | SCB2675BC5N40 | IC |  |  |
| 2C, 2E |  | $8 \times 371$ | IC |  | x 2 |
| 7 C |  | X2212 | IC |  |  |
| $4 \mathrm{~N}, 4 \mathrm{P}, 5 \mathrm{P}$ |  | $\mu \mathrm{A} 9636 \mathrm{AC}$ | IC |  | x 3 |
| $5 \mathrm{M}, 5 \mathrm{~N}$ |  | Am26LS 32 A | IC |  | x 2 |
| 7H |  | 27256 | IC | 300 ns |  |
| 4D |  | SN74LS00N | IC |  |  |
| 4 J |  | SN74LS02N | IC |  |  |
| 2L, 4H |  | SN74LS04N | IC |  | x 2 |
| 2 Kb |  | SN74LS08N | IC |  |  |
| 4 F |  | SN74LS14N | IC |  |  |
| 4E, 4K, 7M |  | SN74LS32N | IC |  | x3 |
| 4B, 4C |  | SN74LS74AN | IC |  | x 2 |
| 2M |  | SN74LS86N | IC |  |  |
| 3L |  | SN74LS138N | IC |  |  |
| 4M |  | SN74LS139N | IC |  |  |

LOGIC PWB

| Symbol | $\triangle$ | Part No. | Description | Remarks |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3D |  | SN74LS148N | IC |  |  |
| 5C |  | HD74LS154P | IC |  |  |
| 2J, 3J, 3K |  | SN74LSI57N | IC |  | x 3 |
| 2B, 3C |  | SN74LS244N | IC |  | x 2 |
| 1N |  | SN74LS244N | IC | For P. PRT OPTION |  |
| 2A, 3F |  | SN74LS245N | IC |  | x 2 |
| 3B, 3E, 3H |  | SN74LS273N | IC |  | x3 |
| 7A |  | SN74LS174N | IC |  |  |
| 2Ka |  | SN74LS21N | IC |  |  |
| 2N, 5L |  | SN7406N | IC |  | x 2 |
| 3M |  | SN7407N | IC |  |  |
| 4L |  | SN74S38N | IC |  |  |
| $3 \mathrm{Na,3Nb}$ |  | PS2001B | IC |  | x2 |
| D1,D2,D3 |  | 1S2075K | DIODE |  | x3 |
| ZD1 |  | RD6.8EB | Z. DIODE |  |  |
| ZD2,ZD3 |  | RD16EB | Z. DIODE |  | x2 |
| X1, X 2 |  | 2SC1360 (C) | TRANSIS'TOR |  | x2 |
| X3, X4, X5 |  | 2SC458K (C) | TRANSISTOR |  | x3 |
| R27 |  | QRD141J-270S | C. RESIS'TOR | $27 \Omega \quad 1 / 4 \mathrm{~W}$ |  |
| R6 |  | QRDI41J-470S | C. RESISTOR | $47 \Omega \quad 1 / 4 \mathrm{~W}$ |  |
| R17, R18 |  | QRD141J-680S | C. RESISTOR | $68 \Omega \quad 1 / 4 \mathrm{~W}$ | x2 |
| R13 |  | QRDI4.1J-750S | C. RESISTOR | 75 s 1/4W |  |
| $\begin{aligned} & \mathrm{R} 7, \mathrm{R} 12, \mathrm{R} 25, \\ & \mathrm{R} 36, \mathrm{R} 37 \end{aligned}$ |  | QRDI4lJ-221S | C. RESISTOR | $220 \Omega 1 / 4 \mathrm{~W}$ | x5 |
| R21 |  | QRD141J-471S | C. RESISTOR | $470 \Omega 1 / 4 W$ |  |
| R11,R16,R29 |  | QRDl4lJ-681S | C. RESIS'TOR | $680 \Omega^{\circ} 1 / 4 \mathrm{~W}$ | x 3 |
| R9 |  | QRD141J-911S | C. RESISTIOR | $910 \Omega 1 / 4 W$ |  |
| R3, R4, R5, R15,R19,R20, R31,R32,R33, R35,R40,R53, R54,R56,R57, R58 |  | QRD141J-102S | C. RESIST'OR | $\begin{array}{cc} 1 \mathrm{~K} \Omega & 1 / 4 \mathrm{~W} \\ & \end{array}$ | x16 |
| R14 |  | QRD141J-102S | C. RESIS'IOR | $1 \mathrm{~K} \Omega \quad 1 / 4 \mathrm{~W}$ For P. PR'T OPTION |  |
| R10 |  | QRD141J-222S | C. RESISTOR | 2.2K $\Omega 1 / 4 \mathrm{~W}$ |  |
| R55 |  | QRD141J-362S | C. RESIS'IOR | $3.6 \mathrm{~K} \Omega \mathrm{l} / 4 \mathrm{~W}$ |  |

LOGIC PWB

| Symbol | ¢ | Part No. | Description | Remarks |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R22 |  | QRDI41J-472S | C. RESISTOR | 4.7Kת 1/4W |  |
| $\begin{aligned} & \mathrm{Rl}, \mathrm{R} 8, \mathrm{R} 42 \\ & \mathrm{R} 43, \mathrm{R} 44 \end{aligned}$ |  | QRD141J-562S | C. RESISTOR | 5.6K'今 $1 / 4 \mathrm{~W}$ | x 5 |
| R34 |  | QRD141J-103S | C. RESISTOR | 10K $\Omega .1 / 4 \mathrm{~W}$ |  |
| $\begin{aligned} & \mathrm{R} 41, \mathrm{R} 45, \mathrm{R} 46 \\ & \mathrm{R} 47, \mathrm{R} 48, \mathrm{R} 49, \\ & \mathrm{R} 50 \end{aligned}$ |  | QRDI41J-273S | C. RESISTOR | 27K $\Omega 1 / 4 \mathrm{~W}$ | x 7 |
| R24 |  | QRDI41J-683S | C. RESISTOR | $68 \mathrm{~K} \Omega 1 / 4 \mathrm{~W}$ |  |
| R39,R51 |  | QRD141J-753S | C. RESIS'COR | $75 \mathrm{~K} \Omega 1 / 4 \mathrm{~W}$ | x 2 |
| R26 |  | QRD141J-104S | C. RESISTOR | $100 \mathrm{~K} \Omega \mathrm{l} / 4 \mathrm{~W}$ |  |
| R38 |  | QRDI4IJ-474S | C. RESIS'TOR | $470 \mathrm{~K} \Omega 1 / 4 \mathrm{~W}$ |  |
| R2 |  | QRX121F-31R6 | M.F.R | $31.6 \Omega 1 / 2 \mathrm{~W}$ |  |
| RA1 |  | 8R103K | SIL RESIS'IOR | $10 \mathrm{~K} \Omega$ |  |
| C33,C34,C51 |  | QFN41HK-102 | M. CAPACITOR | 1000 pF 50 V | x 3 |
| C32 |  | QFN41HK-102 | M. CAPACITOR | $\begin{aligned} & \text { lo00pF } 50 \mathrm{~V} \\ & \text { FOr P.PRT } \\ & \text { OPRION } \end{aligned}$ |  |
| C31 |  | QFN41HK-104 | M. CAPACITOR | $0.1 \mu \mathrm{~F} 50 \mathrm{~V}$ |  |
| C35 |  | QET $21 \mathrm{CR}-226$ | E. CAPACITOR | $22 \mu \mathrm{~F} \quad 16 \mathrm{~V}$ |  |
| C36,C47 |  | QET 21CR-227 | E. CAPACITOR | $220 \mu \mathrm{~F} \quad 16 \mathrm{~V}$ | x 2 |
| C48, C49 |  | QET21ER-106 | E. CAPACITOR | $10 \mu \mathrm{~F} \quad 25 \mathrm{~V}$ | x2 |
| $\begin{aligned} & \mathrm{C} 37, \mathrm{C} 38, \mathrm{C} 39, \\ & \mathrm{C} 40, \mathrm{C} 41, \mathrm{C} 42, \\ & \mathrm{C} 43, \mathrm{C} 44, \mathrm{C} 45 \text {, } \\ & \mathrm{C} 46 \end{aligned}$ |  | QET 21CR-106 | E. CAPACITOR | $10 \mu \mathrm{~F} \quad 16 \mathrm{~V}$ | x10 |
| $\begin{aligned} & \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3 \\ & \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6, \\ & \mathrm{C} 7, \mathrm{C}, \mathrm{C} 9, \\ & \mathrm{C} 10, \mathrm{C} 11, \mathrm{C} 12, \\ & \mathrm{C} 13, \mathrm{C} 14, \mathrm{C} 15, \\ & \mathrm{C} 16, \mathrm{C} 17, \mathrm{C} 18, \\ & \mathrm{C} 19, \mathrm{C} 20, \mathrm{C} 21, \\ & \mathrm{C} 22, \mathrm{C} 23, \mathrm{C} 24, \\ & \mathrm{C} 25, \mathrm{C} 26, \mathrm{C} 27, \\ & \mathrm{C} 28, \mathrm{C} 29, \mathrm{C} 30 \end{aligned}$ |  | RPE122F1042 50 | C. CAPACITOR | $0.1 \mu \mathrm{~F} \quad 50 \mathrm{~V}$ | $\times 30$ |

LOGIC PWB

| Symbol | $\triangle$ | Part No. | Description | Remarks |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C50 |  | QCS21HJ-151 | C. CAPACITOR | 150 pF 50 V |  |
| : |  |  |  | 1 |  |
| XTL 1 |  | KDE40069-001 | $\mathrm{X}-\mathrm{TAL}$ | 3.6864 MHz |  |
| XTL 2 |  | KDE40069-007 | X-TAL | 15.9686 MHz |  |
| XTL 3 |  | KDE40069-008 | X-TAL | 23.6710 MHz |  |
| 1F,7F,7H |  | DICF-28CS | IC SOCKET |  | x3 |
| J306 |  | TCF7680-01-201 | CONNECTOR | Mini DIN |  |
| J301 |  | DB-25PA-N | CONNECTOR | D-SUB 25P |  |
| J303 |  | DE-9PA-N | CONNECTOR | D-SUB 9P |  |
| J 305 |  | BNC-LR-PC-4 | CONNECTOR | BNC |  |
| J 302 |  | KDE40068 | CONNECTOR |  |  |
| J304 |  | KDE40066 | CONNECTOR | For P. PR'T OPTIION |  |
| J 307 |  | S9B-XH-A | CONNECTOR |  |  |
| J 308 |  | S4B-XH-A | CONNECTOR |  |  |
| TP1,TP2 |  | KD41377 | TEST POINT |  | x2 |
|  |  | KDH40077 | JUMP WIRE |  |  |

MONITOR PWB

| Symbol | $\triangle$ | Part No. | Description | Remarks |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IC201 |  | AN5763 | IC |  |  |
| IC301 | ¢ | AN5753 | IC |  |  |
| X103 |  | 2SC1360 | TRANSIS'TOR |  |  |
| X201 |  | 2SC1815Y | TRANSIS'IOR |  |  |
| X303 |  | 2SD1069 | TRANSISTOR | * |  |
| X401 |  | 2SC2068 | TRANSIS'TOR |  |  |
| D201 |  | 10E1 | DIODE |  |  |
| D30'1, D302 |  | U06E | DIODE |  | x 2 |
| D303,D304 |  | V09E | DIODE |  | x2 |
| D305 |  | V11N | DIODE |  |  |
| D502 |  | SLP-135B-08 | LED | RED |  |
| D308 |  | RD30EB | Z. DIODE |  |  |
| T301 |  | A42131A-1* | H. DRIVE TRANS |  |  |
| T302 | 4 | KD42167* | H.V TRANS |  |  |
| L301 |  | A45660-001 | CHOKE COIL |  |  |
| L 302 | $\triangle$ | KD41914A* | H. WID'ri Coir |  |  |
| L 303 | $\triangle$ | KD41427 | H. LIN COIL |  |  |
| Rl06 |  | KD42177-501 | V. RESIS'TOR | $500 \Omega$ CONTRAST |  |
| R204 |  | KD42177-104 | V. RESISTOR | $100 \mathrm{~K} \Omega \mathrm{~V}$. HOLD |  |
| R209 |  | EVLS3AA00B53 | V. RESISTOR | $5 \mathrm{~K} \Omega \quad$ V.LIN |  |
| R210 |  | EVL VOAA00B15 | V. RESISTOR | 100K $\Omega$ V. HEIGHT |  |
| R312 |  | KD42177-102 | V. RESIS'TOR | 1K $\Omega$ H. HOLD |  |
| R321 |  | VG151HB2M | V. RESISTOR | $2 \mathrm{M} \Omega$ FOCUS |  |
| R325 |  | EVL VOAA00B25 | V. RESISTIOR | $200 \mathrm{KS} \text { S } \begin{aligned} & \text { SUB } \\ & \text { BRIGH'T } \end{aligned}$ |  |
| R326 |  | KD42177-204 | V. RESIS'TOR | 200K $\Omega$ BRIGHT |  |

MONITOR PWB

| Symbol | $\triangle$ | Part No. | Description | Remarks |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R314 |  | QRG019J-150 | Oxidized metal film resistor | 15 1W |  |
| R317 |  | QRG019J-220 | Oxidized metal film resistor | $22 \Omega 1 \mathrm{~W}$ |  |
| R310 | ¢ | QRG019J-680 | Oxidized metal film resistor | $68 \Omega 1 \mathrm{~W}$ |  |
| R401 |  | QRG029J-102 | Oxidized metal <br> film resistor | $1 \mathrm{~K} \Omega \quad 2 \mathrm{~W}$ |  |
| R315 |  | QRX126K-R47 | Metal film resistor | $0.4781 / 2 \mathrm{~W}$ |  |
| R205 |  | QRX126K-1R2 | Metal film resistor | $1.2 \Omega \mathrm{l} / 2 \mathrm{~W}$ |  |
| R323 | \} | QRX019J-4R7 | Metal film resistor | 4.78 1W |  |
| R212 | $\triangle$ | QRX019J-6R8 | Metal film resistor | 6.88 1W |  |
| R220 |  | A04292-103 | NEGATIVE THERMISTOR | $3.3 \mathrm{~K} \Omega$. |  |

MONITOR PWB

| Symbol | $\wedge$ | Part No. | Description | Remarks |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R601 |  | QRC122K-561 | COMP RESTSTOR | $560 \Omega$ 1/2W |  |
| R318,R319 |  | QRC122K-102 | COMP RESISTOR | $1 \mathrm{~K} \Omega 8 \quad 1.2 \mathrm{~W}$ | $\times 2$ |
| R316 |  | QRCl22K-152 | COMP RESISTOR | $1.5 \mathrm{~K} \Omega 1 / 2 \mathrm{~W}$ |  |
| R306 |  | QRC122K-103 | COMP RESISTOR | $10 \mathrm{~K} \Omega \quad 1 / 2 \mathrm{~W}$ |  |
| R307 |  | QRCl22K-153 | COMP RESISTOR | $15 \mathrm{~K} \Omega \quad 1 / 2 \mathrm{~W}$ |  |
| R320 |  | QRC122K-184 | COMP RESISTOR | $180 \mathrm{~K} \Omega \mathrm{l} / 2 \mathrm{~W}$ |  |
| R214 |  | QRD148J-4R7S | C. RESISTOR | $4.7 \Omega: 1 / 4 \mathrm{~W}$ |  |
| R206 |  | QRD.148J-6R8S | C. RESTSTIOR | $6.8 \Omega \quad 1 / 4 \mathrm{~W}$ |  |
| R109 |  | QRD148J-330S | C. RESISTOR | $33 \Omega \quad 1 / 4 \mathrm{~W}$ |  |
| R110 |  | QRD148J-680S | C. RESISTOR | $68 \Omega \quad 1 / 4 \mathrm{~W}$ |  |
| R111 |  | QRD148J-820S | C. RESISTOR | $82 \Omega \quad 1 / 4 \mathrm{~W}$ |  |
| R313 |  | QRD148J-101S | C. RESISTOR | $100 \Omega \quad 1 / 4 \mathrm{~W}$ |  |
| R305 |  | QRD148J-181S | C. RESISTOR | $180 \Omega \quad 1 / 4 \mathrm{~W}$ |  |
| R107,R402 |  | QRD148J-221S | C. RESISTOR | 2208. $1 / 4 \mathrm{~W}$ | x 2 |
| R213 |  | QRDI48J-271S | C. RESISTOR | $270 \Omega 1 / 4 \mathrm{~W}$ |  |
| R311 |  | QRDI48J-242S | C. RESISTIOR | $2.4 \mathrm{~K} \Omega 1.4 \mathrm{~W}$ |  |
| R208 |  | QRD148J-272S | C. RESISTIOR | $2.7 \mathrm{~K} \Omega 1 / 4 \mathrm{~W}$ |  |
| R217,R218 |  | QRD148J-332S | C. RESISTOR | $3.3 \mathrm{~K} \Omega 1 / 4 \mathrm{~W}$ | x 2 |
| R308, R328 |  | QRD148J-472S | C. RESIS'TOR | $4.7 \mathrm{~K} \Omega 1 / 4 \mathrm{~W}$ | x 2 |
| R219 |  | QRD148J-562S | C. RESISTOR | $5.6 \mathrm{~K} \Omega 1 / 4 \mathrm{~W}$ |  |
| R115 |  | QRD148J-682S | C. RESISTOR | $6.8 \mathrm{~K} \Omega 1 / 4 \mathrm{~W}$ |  |
| R116 |  | QRD148J-103S | C. RESISTOR | $10 \mathrm{~K} \Omega \quad 1 / 4 \mathrm{~W}$ |  |
| R221 |  | QRDI48J-153S | C. RESISTOR | $15 \mathrm{~K} \Omega \quad 1 / 4 \mathrm{~W}$ |  |
| R202,R309 |  | QRD148J-333S | C. RESISTOR | $33 \mathrm{~K} \Omega \quad 1 / 4 \mathrm{~W}$ | x 2 |
| R203 |  | QRD148J-563S | C. RESISTOR | $56 \mathrm{~K} \Omega \quad 1 / 4 \mathrm{~W}$ |  |
| R211 |  | QRDI48J-823S | C. RESISTOR | $82 \mathrm{~K} \Omega \quad 1 / 4 \mathrm{~W}$ |  |
| R327 |  | QRD148J-104S | C. RESISTOR | $100 \mathrm{~K} \Omega \mathrm{l} / 4 \mathrm{~W}$ |  |
| C207, C307 |  | QET51EM-335 | E. CAPACITOR | 3.3uF 25V | x 2 |
| C302 |  | QET 51EM-475 | E. CAPACI'TOR | 4.7 F 25 V |  |
| C320 |  | QET 52CM-475 | E. CAPACITOR | $4.7 \mu \mathrm{~F}$ 160V |  |
| C318 | $\triangle$. | A03054-685 | E. CAPACITOR | $6.8 \mu \mathrm{~F} \mathrm{25V}$ |  |
| C208 |  | QET51CM-106 | E. CAPACITOR | $10 \mu \mathrm{~F} \quad 16 \mathrm{~V}$ |  |
| C319 |  | QE'T52AM-476 | E. CAPACITOR | $47 \mu \mathrm{~F}$ l00V |  |
| C316 |  | ECEALVF101R | E. CAPACITOR | $100 \mu \mathrm{~F} 35 \mathrm{~V}$ |  |
| $\begin{aligned} & \mathrm{C} 101, \mathrm{C} 108 \\ & \mathrm{C} 212, \mathrm{C} 308 \end{aligned}$ |  | QET51CM-227 | E. CAPACITOR | $220 \mu \mathrm{~F}$ 16V | x 4 |

MONITOR PWB

| Symbol | A | Part No. | Description | Remarks |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C211 |  | QET51CM-477 | E. CAPACITOR | $470 \mu \mathrm{~F} \quad 16 \mathrm{~V}$ |  |
| C209, C315 |  | QET51CM-108 | E. CAPACITOR | $1000 \mu \mathrm{~F} \quad 16 \mathrm{~V}$ | x 2 |
| C203, C311 |  | QFM8.1HK-103 | MYLAR CAPACITOR | $0.01 \mu \mathrm{~F} \quad 50 \mathrm{~V}$ | x 2 |
| C202 |  | QFM81HK-153 | MYLAR CAPACITOR | $0.015 \mu \mathrm{~F} \quad 50 \mathrm{~V}$ |  |
| $\begin{aligned} & \mathrm{C} 303, \mathrm{C} 304 \\ & \mathrm{C} 306 \end{aligned}$ |  | QFM81HK-183 | $\begin{aligned} & \text { MYLAR CAPA- } \\ & \text { CITOR } \end{aligned}$ | $0.018 \mu \mathrm{~F} 50 \mathrm{~V}$ | x3 |
| C210 |  | QFM81HK-683 | MYLAR CAPACITOR | $0.068 \mu \mathrm{~F} \quad 50 \mathrm{~V}$ |  |
| C310 |  | QFP31HJ-102 | PP CAPACITOR | $0.001 \mu \mathrm{~F} \quad 50 \mathrm{~V}$ |  |
| C309 |  | QFP31HJ-392 | PP CAPACITOR | $0.0039 \mu \mathrm{~F} \mathrm{50V}$ |  |
| C313,C321 | \ | QFP32XK-103 | PP CAPACITOR | $0.01 \mu \mathrm{~F} \quad 630 \mathrm{~V}$ | x2 |
| C312 | $\triangle$ | QFP32XK-183 | PP CAPACITOR | $0.018 \mu \mathrm{~F} \quad 630 \mathrm{~V}$ |  |
| C305 |  | QCS21HJ-101 | C. CAPACITOR | 100 pF 50V |  |
| C106 |  | QCS21HJ-151 | C. CAPACITOR | $150 \mathrm{pF} \quad 50 \mathrm{~V}$ |  |
| C107 |  | QCS21HJ-271 | C. CAPACITOR | 270 pF 50 V |  |
| $\begin{aligned} & \mathrm{C} 317, \mathrm{C} 401 \\ & \mathrm{C} 402, \mathrm{C} 403 \end{aligned}$ |  | QCY22HP-102 | C. CAPACITOR | $0.001 \mu \mathrm{~F} 500 \mathrm{~V}$ | x 4 |
| C204 |  | CSI5E1VR33MIS | TANTAL CAPACI'TOR | $0.33 \mu \mathrm{~F} \quad 35 \mathrm{~V}$ |  |
| C205, C206 |  | CSI5E1D4R7MIS | TANTAL CAPACITOR | $4.7 \mu \mathrm{~F} \quad 20 \mathrm{~V}$ |  |
|  |  | A75802-5 | PLUG ASY | 5P DY |  |
|  |  | A75802-3 | PLUG ASY | 3 P 12V |  |
|  |  | 171825-5 | PLUG ASY | 5 P VIDEO IN |  |
|  |  | 171825-3 | PLUG ASY | 3P CRT EARTH |  |
|  |  | 171825-2 | PLUG ASY | 2P LED |  |
| F301 |  | PU51212 | CONTACT CLIP |  | x2 |
| X303 |  | C40635-A | HEAT SINK |  |  |
| SG-1 |  | A04237-1 | SPARK GAP |  |  |
| SG-2, SG-3 |  | SP10N | SPARK GAP |  | x 2 |
|  |  | A44397-C* | CRT SOCKET |  |  |
|  |  | KD31698-00A | LED WIRE ASY |  |  |

## 12. PAR'SS MOUNTING DIAGRAMS

(1) VG-920 LOGIC PWB Parts Mounting Diagram Fig. 12-1
(2) VG-920 MONITOR PWB Parts Mountiṇg Diagram Fig. 12-2


Fig. 12-1-1 Logic PWB Parts Mounting Diagram


CRI SOCKET PWB

Fig, 12-1-2 Monitor PWB Parts Mounting Diagram
13. PACKING PARTS AND ACCESSORIES
(1) Display unit packing parts

| Description | Part No. | Remarks | $:$ |
| :--- | :--- | :--- | :---: |
|  |  |  |  |
| PACKING ASY | KD31735-01N |  |  |
| CUSHION | KD10362 |  |  |
| CUSHION | KD21084 |  |  |
| POLY BAG | KD42182 |  |  |
| LABEL | KD43234-002 |  |  |

(7) Keyboard unit

| Description | Part No. | Remarks |  |
| :--- | :--- | :--- | :--- |
| PACKING ASY | KD10415-00B |  |  |
| POLY BAG | KD42272 |  |  |
| LABEL | KD43234-002 |  |  |
|  |  |  |  |
| POLY BAG | KD41811-008 | FOR KEYBOARD CABLE |  |

(8) Display unit accessories

| Description | Part No. | Remarks |  |
| :--- | :--- | :--- | :--- |
| POWER CORD | KDH40058* |  | Note 1 |
| POWER CORD | KDH40121* |  | Note 2 |
| POWER CORD | KD42532 |  | Note 3 |
| CONNECTOR | DB-25S-N | D-SUB 25P |  |
|  |  | For D-SUB inch <br> screw |  |
| J. SHELL | DB-C3-J10 | For D-SUB inch * <br> Screw |  |
| LOCK DEVICE | D20419-21 |  |  |
| INST MANUAL | KD43027 | English |  |
| FUSE | QMF51U2-2RO* | For 100V |  |
| FUSE | QMF51U2-1RO* | For 200V |  |



