
1/0 FOR THE NEW MILLENNIUM

NO HOE, NO $HIRT...

NOgTARCH!!
I

0

The Book of SCSI, 2nd Edition

2

THE BOOK
of

" d Ed i t •
I 0

1/0 FOR THE NEW MILLENNIVM

Gary Field, Peter M. Ridge et al

No Starch Press

San Francisco

"

THE BOOK Of SCSI, 2Hd EditioH. Copyright 2000 by Gary Field/Peter M. Ridge et al
All rights reseiVed. No part of this work may be reproduced or transmitted in any form or by any means, electronic

or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the

prior written permission of the copyright owner and the publisher.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10-02 01 00

Trademarked names are used throughout this book. Rather than use a trademark symbol with every occurrence

of a trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Publisher: William Pollock

Project Editor: Karol Jurado

Cover and Interior Design: Derek Yee Design

Composition: Derek Yee Design

Technical Review: John Lohmeyer, Ron Engelbrecht

Copy Editor: Carol Lombardi

Proofreader: Christine Sabooni

Indexer: Nancy Humphreys

Distributed to the book trade in the United States and Canada by:

Publishers Group West, 1 700 Fourth Sreet, Berkeley, CA 94710
phone: 800-788-31 23; fax: 5 10-528-551 1
For information on translations or book distributors outside the United States, please contact No Starch Press

directly:

No Starch Press

555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 4 15-863-9900; fax: 415-863-9950; info@nostarch.com; http:/ /www.nostarch.com

The information in this book is distributed on an "As Is" basis, without warranty. While every precaution has been

taken in the preparation of this work, neither the author nor No Starch Press shall have any liability to any person

or entity with respect to any Joss or damage caused or alleged to be caused directly or indirectly by the information

contained in it.

Library of Congress Cataloging-in-Publication Data

Field , Gary.

The book of SCSI : I/0 for the new millennium I Gary Field, Peter

M. Ridge et al. -- 2nd ed.

p. em.

ISBN 1-886411-10-7

1. SCSI (Computer bus) I. Ridge, Peter M. II. Title.

TK789S.B87F44 1999

004.6'2.--dc21 98-52364

YOUR TOUR GUIDES

This book is the work of many hands and has been guided by many minds.
Whether you' re a computer novice or a seasoned expert, these contributors
will help you make the most of your SCSI hardware and supply you with a
wealth of practical know-how and reference material.

Gary Field
Gary Field has a Computer Engineering degree from Northeastern University
and has worked with device level software since 1978. In 1985, while at Wang
Laboratories, he became involved with SCSI on MSDOS platforms, and later
led the development of an ANSI CAM SCSI subsystem for the support of
optical disks on several UNIX platforms. He has also maintained the Usenet
comp.periphs.scsi FAQ list since 1994. In 1996 Gary joined Digital Equipment
Corp. (now Compaq Computer Corp.) as a principal software engineer in
their Tru64 UNIX device driver development group. His "SCSI Info Central"
(http:/ /www.scsifaq.org/) web site is a popular oasis for weary SCSI explorers .
In his home life, he is involved in scouting, and in spare moments he enjoys
photography, electronic and computer tinkering, home automation and
astronomy, as well as camping, boating, and fishing with his wife and son.

John Lohmeyer
John is a principal engineer with LSI Logic in Colorado Springs, Colorado.
He began his involvement with SCSI when it was still called SASI in the summer
of 1981. Since then, John has contributed to the SCSI effort as a member of
the design team on the first SCSI chip (NCR 5385), technical editor of SCSI-1,
and chair of the T10 Technical Committee, which is responsible for the ANSI
SCSI standards. He also maintains the TlO web site (www.tlO.org) to disseminate
information about SCSI and other 1/0 interface standards.

Gerhard !slinger
Gerhard works for Siemens in Munich, Germany as a security consultant. While
his first experiences with computers were far before SCSI, since 1982 he has
done technical and user support in many fields, most of them associated with
high-speed interfaces. Recently he got sidetracked into firewalls and network
security issues, but SCSI and related interfaces still are a main part of his work
and hobby time.

Stefan Groll
Stefan was born in Munich, Germany. Mter finishing school and a long stint in
sports, he began work in freelance software development with a security services
company. In 1986 he began his study of electronics . While developing diagnos­
tic systems and self-test software, he acquired PC and UNIX know-how, which
resulted in his troubleshooting security products for these environments . Mter
some time in the publishing business developing electronic books and retrieval
systems, he returned to security management, where he currently works in a mixed
mainframe and workstation environment.

Peter Ridge
Peter, who has a degree in Electrical Engineering, has worked in a variety
of areas of computer technology, including multimedia, speech recognition,
speech synthesis, artificial intelligence, intelligent agents, SCSI, telephony, and
interactive entertainment during his fourteen years in the PC industry. He is
currently the General Manager and Vice President of Product Development at
Game Commander Interactive (www.gamecommander.com) , where he designed
the award-winning Game Commander voice control software for games. He has
contributed to several books about computer and multimedia hardware and
software including The Book of SCSI: A Guide for Adventurers (No Starch Press) ,
Sound Blaster: The Official Book (Osborne/McGraw-Hill) , and The Business Week

Guide to Multimedia Presentations (Osborne /McGraw-Hill) .

I would like to dedicate this book to my wife Mary and my son Danny who took
up the slack and gave me the time out from my household duties to enable me
to work on this book. I couldn' t have done it without their support. - G.F.

BRIEF CONTENTS

Chapter J
Welcome to SCSI

1

Chapter J.5
A Cornucopia of SCSI Devices

15

Chapter2
A Look at SCSI-3

23

Chapter3
SCSI Anatomy

33

Chapter4
Adding SCSI to Your PC

55

Chapter 5
How to Connect Your SCSI

Hardware

83

Chapter6
Troubleshooting Your SCSI

Installation

103

Chapter?
How the Bus Works

125

ChapterS
Understanding Device

Drivers

171

Chapter 9
Performance Tuning Your

SCSI Subsystem

179

Chapter JO
RAID: Redundant Array

of Independent Disks

191

Chapter J J
A Profile of ASPI

Programming

205

Chapter J2
T he Future of SCSI and

Storage in General

309

Appendix A
All-Platform Technical

Reference

313

Appendix 8
PC Technical Reference

359

Appendix C
A Look at SCSI Test

Equipment

363

Appendix D
ATA/IDE versus SCSI

367

Appendix E
A Small ASPI Demo

Application

375

Glossary
389

Index
399

CONTENTS IN DETAIL

1
WELCOME TO SCSI

A Few Well-Chosen Words
The Birth of SCSI
The Prequel
Intelligent Life
SCSI-2: The First Major Improvement
New and Improved SCSI
Fast SCSI: Just Exactly That/
Wide SCSI: Two Lanes Are Better Than One
The Best of Both Worlds
SCSI-3 Is on Its Way
Serial versus Parallel
Why Choose SCSI?

Multi-Platform Capability
Devices Supported
Expandability

External Device Support

The Speed Thing

Multitasking

Built-In Error Checking

Cost

SCSI Is Easy to Use
. . . but Not a Panacea

1.5
A CORNUCOPIA OF SCSI DEVICES

Storage Devices
Hard Disks
Sidebar: Terminology Wars

Removable Media Disk Drives
Tape Drives
Quarter-Inch Cartridge {QIC)
Digital Audio Tape (DDS DAT}
Bmm Tape

1

3
3
3
4
5

6
6
7
7

8
9
9

17
1 1

1 1

1 2

1 2

1 2

1 2

13
1 3

15

15

1 6

17
17
1 7

1 7
1 8

DLT
Optical Disk Drives
Magneto-Optical (MO) Drives

Write Once Read Many (WORM) Drives

CD-ROM Drives

CD-ROM Recorders (CD-R and CD-RW)

DVD-ROM Drives

Printers and Scanners
Printers

/mage Scanners

Variety Is the Spice of life

2
A LOOK AT SCSn-5

Sidebar: What's in a Name?
Physical SCSI-3 Interfaces
Parallel SCSI

Serial SCSI

SCSI's Greatest Value: The Command Sets
Is SCSI-3 Done Yet?

3
SCSI ANATOMY

18
18
1 8

1 9

1 9

1 9

20

20
21

21

21

25
27
27

29

31
32

SCSI Devices Can Be Initiators or Targets 33
SCSI IDs and LUNs Identify Individual SCSI Devices 34

Ah, the Mysteries of LUNs 35

The SCSI Bus Allows Communication Between Your Computer and Your SCSI Devices 35
Types of SCSI Buses 36
Sidebar: The Differences Between Single-Ended and Differential SCSI 37
SCSI Cables and Connectors 39
Sidebar: Cable Specifications 40

�� �
SCA Adapters 42

Terminating the SCSI Bus 42

The SCSI Bus Is a Transmission line
What's That He Said?

Passive Termination
Active Termination
Sidebar: Passive Termination in Detail
Forced Perfect Termination (FPT)
Don't Forget Differential
Sidebar: Active Termination in Detail
Sidebar: How Parity Checking Works
Using Parity Checking

Is Parity Really Enough?
Your SCSI Devices Can Communicate Either Synchronously or Asynchronously

Asynchronous Communication
Synchronous Communication
Disconnect/Reconnect
Once More for Luck

4
ADDING SCSI TO YOUR PC

Types of SCSI Host Adapters for the PC

A Bus by Any Other Name ... /SA, EISA, MCA, VESA Local Bus, PC/, AGP
The Decisions
Caching Host Adapter Cards Can Increase Performance
Software Caching Is Flexible
Hardware Caching Can Duplicate Software Caching
Which Form of Caching Is Right for You?
One Bus or Two?
BIOS on the Host Adapter Lets You Boot from SCSI Devices
How About Mixing SCSI and Non-SCSI Host Disks in One System?
What Performance Level Do I Really Need?
Installing the SCSI Interface Card
PCI Cards Solve Most of the Problems
Seffing the Port Address-the Front Door to the Interface
Seffing Interrupts
Sidebar: A Note About Interrupts
Using DMA for High-Speed Data Transfer

43
44
45

45

46

46

46

47

48

49
50

50
50

51

51
53

56
56

57

57
58

58

59

60
60
61
61
62
62
62
63
64
65

Sidebar: Data Transfer Methods: DMA, Bus Mastering, Programmed 1/0

Set the SCSI ID on Your Interface Card

Install the Right Drivers
Layered Drivers
Get the Latest SCSI Drivers
Software That Will Simplify Your Driver Installation

DOS Drivers

Windows 3.1 Drivers

Windows 95/98 Drivers

Windows NT Drivers

OS/2 Drivers

linux Drivers
More About Drivers Later
Tips for a Successful Installation
SCSI CD-ROM Drives

SCSI Hard Drives

s
HOW TO CONNECT YOUR SCSI HAR DWARE

Use Quality Cables and Connectors
The Shorter, the Better

Sidebar: Finding the Right Cable

Internal versus External Cables

Know Your Connectors

Connecting Devices to the Bus
Find Pin 1

A Daisy-Chained SCSI System

Terminating the SCSI Bus
The Host Adapter Is a Device, Too

Terminating Your Particular Device
Sidebar: Mix and Match: Combining Regular and Wide SCSI
Terminator Power
SCSI IDs

Setting SCSI IDs
Why Set One Device's ID Higher than Another?
Parity Checking
Another Way to Do All This
That's That, I Guess!

66

68

68
69

70

70

70

73

74

75

76

77
77
77
78
78

84
84
85

87

89

91
92

94
94
95

96
96
98
98
99

99
100
101
101

6
TROUBLESHOOTI NG YOUR SCSI I NSTALLATI ON

Common Problems
Problem: Host Adapter Not Recognized by the System

Problem: One Device Not Found

Problem: No Device Found

Problem: System Can't Boot from SCSI Hard Disk

Problem: Intermittent Lockups and Communication Errors

How to Check Typical Issues
Two Devices with the Same ID

Dead Devices
Termination

Termination Power: Active versus Passive

Cables

Connectors

Tricky Devices

Driver Problems

General Rules for Troubleshooting Drivers

Driver Combinations

Useful Tools

7
HOW THE BUS WORKS

An Intelligent Interface
SCSI Supports Generic Software
A True Peripheral Interface
Initiators, Targets, and Logical Units
What Is an 1/0 Process?
SCSI Configurations
Bus and Device Characteristics
Initiators
Targets
SCSI IDs
SCSI Cables

105
1 05

1 07

1 09

1 1 0

1 1 2

113
1 1 3
1 1 5

1 1 5

1 1 7

1 1 8

1 1 9

1 1 9

1 1 9

1 22

1 22

1 22

125
126
126
126
1 27
127
127
1 29

1 30
130
132

Cable Evolution
SCSI-I, SCSI-2, and SCSI-3 Cabling Diagram

SCSI Bus Signals
Data Bus Signals

Control Signals

The SCSI Protocol
Phase Sequence Diagram

Bus Phases

Connect, Disconnect, and Reconnect Concepts
Connect

Disconnect

Reconnect

Tagged Command Queuing

How Disconnects and Reconnects Work

Information Transfer Phases
Characteristics of the Information Transfer Phases

MESSAGE Phase and Code Descriptions

Protocol Example of a Synchronous Negotiation

COMMAND Phase and Code Descriptions
Status

Check Condition
Contingent Allegiance Condition
Handshaking of Information
Asynchronous Handshake Method

Synchronous Handshake Method

Ever Onward and Upward!

8
UNDERSTANDI NG DEVI CE DRI VERS

In the Beginning ...
The PC BIOS
MS-DOS Drivers
Windows 3.x Drivers
Windows 95/98 Drivers
Windows NT Drivers
UNIX Drivers
Enough Already!

132
134

134
134

135

137
140

143

144
145

147

149

150

151

151
154

155
158

160
164

165
166
166
167

168

170

171
172
173
174
174
175
176
178

9
PERFORMANCE TUNING YOUR SCSI SU BSYSTEM

SCSI Cable Types
Passive Termination
Active Termination
Where to Terminate
TERMPWR Bypassing
High Voltage Differential SCSI
low Voltage Differential
Tricks
How Daring Are You?
let's See How We Did
Keep Your Expectations Realistic

10
RAI D: REDUNDANT ARRAY OF I NDEPENDENT DI SKS

Name Games

RAID Levels

Analyze Your Needs

RAID and the RAB

How Does All This Stuff Connect to My System?

1 1
A PROFILE OF ASPI PROGRAMMI NG

ASPI Developer Information
ASPI for DOS Specification
Accessing ASPI
Getting the ASPI Entry Point
Closing ASPI
Calling ASPI
SCSI Request Block (SRB)
Command Codes

183

184

184
185

186

187

187

188

188

188

189

192

792

799

199

202

206
207

207
208
208
209
210
210

Status 211

Host Adapter Number 211

SCSI Request Flags 211

Reserved for Expansion 211

ASPI Command Codes 211
ASPI for DOS under Windows 3.x 221

ASPI for Windows Specification 221

ASPI Managers for Windows 222

GetASPISupportlnfo 222
SendASPICommand-SC_HA_INQUIRY 224

SendASPICommand-SC_ GET _DEY_ TYPE 226

SendASPICommand-SC_EXEC_SCSI_ CMD 228
SendASPICommand-SC_ABORT_SRB 233
SendASPICommand-SC_RESET _DEY 235
ASPI Polling 238
ASPI Posting 239

Miscellaneous 241

Error Codes and Messages 242

ASPI for Win32 Specification 243

Programming Conventions 244

Calling ASPI Functions 245
Explicit Dynamic Linking 245

Implicit Dynamic Linking 247

GetASPI32Supportlnfo 247
SendASPI32Command 248

SC_HA_INQUIRY 250

SC_GET_DEY_TYPE 253

SC_EXEC_SCSI_ CMD 255

SC_ABORT_SRB 259

SC_RESET_DEY 261

SC_GET_DISK_INFO 263

SC_RESCAN_SCSI_BUS 265
SC_ GET SET_ TIME OUTS 266
GetASPI32Buffer 269
FreeASPI32Buffer 270

T ranslateASPI32Address 271

Waiting for Completion 273

Event Notification 273

Posting 274

Polling 275

ASPI for Win 32 Errors
ASPI for OS/2 Specification
Calling ASPI
Accessing ASPI at Initialization Time
ASPI and OS/2 2.x

Target Allocation with OS/2 2.x

Sample Code for OS/2 2.x

SCSI Request Block (SRB)
Command Code

Status

Host Adopter Number

SCSI Request Flogs

ReseNed for Expansion
ASPI Command Codes
Valid ASP/ Command Codes

ASP/ Status Bytes

ASP/ Command Code = 0: Host Adopter Inquiry

ASP/ Command Code = 1: Get Device Type

ASP/ Command Code = 2: Execute SCSI I/O Command

The SCSI Request Flogs Byte Is Defined As Follows
ASP/ Command Code = 3: Abort SCSI I/O Request

ASP/ Command Code = 4: Reset SCSI Device
The SCSI Requests Flogs Byte Is Defined as Follows

ASP/ Command Code = 5: Set Host Adopter Parameters

ASPI for NetWare Specification
ASPI Routine: ASPI_Entry
Syntax

Return Values

Parameters

Assembly Example

Remarks
SCSI Request Block (SRB)
Command Code

Status

Host Adopter Number
SCSI Request Flogs
ReseNed for Expansion
ASPI Command Codes
Valid ASP/ Command Codes
ASP/ Status Bytes

276
279
280
280
281
281
282
282
283

283

283

283
283

283
283

284

284

285

286

287
290
291

292

292

292
293
293

293

293

293
294
294
294

294

294
294
295
295
295
295

Handling Greater Than 16 Megabytes
Host Adapters Handling > 7 6 MB

Host Adapters Handling P/0 or Second-Party DMA Host Transfers

Host Adapters Handling Bus Mastering /SA Mode Host Transfers

Host Adapters Handling EISA or PC/ Mode Host Transfers

Scanning for New Devices
ASPI Specification Addendum
What Is Residual Byte length?
How Do I Find Out If the ASPI Manager loaded Supports This New Feature?
Now That I Know My ASPI Manager Supports Residual Byte length,
How Do I Make Use of It?
The SCSI Request Flags Byte Is Currently Defined in the Various ASP/

Specifications as Follows

The New Definition for this Byte is as Follows

12
THE FUTURE OF SCSI AND STORAGE I N GENERAL

If You Can't Beat 'em, Buy 'em!
Coming Down the Pike
Ultra3 {Fast-80) L VD

/EEE-7394

Fibre Channel

Device Bay

SCSI Harbor

Storage Area Networks

A
ALL-PLATFORM TECHNI CAL REFERENCE

Electrical Specs
Single-Ended SCSI Interface
Differential SCSI Interfaces

Cable Specs
Internal Cables

External Cables

303

304

304

304

304

305

305

305

305

308

308

308

309

310

370

370

3 7 7

37 7

377

377

31 4
374
375

317
377
378

Connector Specs
Unshielded Connectors

Shielded Connectors

Vendor-Specific SCSI Connectors

Obsolete Connectors

SCSI Bus Signals
Bus Phases and Timing Diagrams
Bus Phases and Conditions

Phase Sequence

Bus Timing

Termination
Termination Circuits

B
PC TECHNICAL REFERENCE

(
A LOOK AT SCSI TEST EQUIPMENT

Your Mission ...
Rent or Buy?

Types of SCSI Analyzers
Analyzer Output

Manufacturers

D
ATA/IDE VERSUS SCSI

History
SCSI
ATA

Speed-and Why It Isn't Everything
Features That Make a Difference
1/0 Device Independence and Multitasking
Cable Length -and What It Means in Real Life

319
321

327

333

337
342
343
343
345

347

352
354

364
364

365
365

366

367
367
368
368
369
369

370

Devices per Channel: Why Should You Care?

What to Choose?
Consider Your Requirements

The Bottom Line

E
A SMALIL ASPI DEMO APPILDCATHON

Program Structure
Why Use Three Layers?

Implementation of the Load/Eject Functionality in ASPI_Interface
Implementation of the Load/Eject Functionality in ASPIApplication
Implementation of the Load/Eject Functionality in the GUI

GLOSSARY
389

INDEX
399

371

371
372

373

375
376

382
386
386

ACKNOWLEDGMENTS

The details involved in producing a book as technical as this can be mind-bog­
gling! I would like to hereby thank john Lohmeyer, our technical editor and
contributing author for his invaluable input. And also, Gerhard !slinger and
Stefan Groll for their hard work on several chapters and appendices. All the
previous authors who contributed to the first edition deserve recognition as
well. Much of their work is still contained herein.

My colleagues at Compaq unknowingly also contributed to this book through
their everyday thoughts and comments. I recognize the value they offer.

Thanks also go to No Starch Press for giving me the opportunity to share
my SCSI experience with the world.

And last but certainly not least Karol Jurado, my project editor, who kept
the many loose ends from unraveling, and Mike Flynn, who saw to i t that the
world would see this book, and the rest of the team that handled all the required
processes that put the book in the form as you now see it.

Many thanks to one and all !

Gary Field

FOREWORD

SCSI amazes me. Each time I begin to think SCSI cannot evolve further, it does.
The standards committees are now working on SPI-4, the fourth generation of
the physical layer of SCSI-3. This is the eighth generation of parallel SCSI. And
still there is no end in sight!

No wonder there is now a second edition of The Book of SCSI. All the great
stuff from the first edition is still here , along with numerous enhancements . I
know because I naively agreed to be the technical reviewer of this second edition.
I thought it would be a piece of cake; how much could they change? A great
deal. I enjoyed every minute spent reviewing this book. Even when those min­
utes turned into hours and days, I got to read it first !

This book continues to be a practical book aimed at helping SCSI 's real
users. It is chock-full of helpful hints on making SCSI work for you. You' ll
find arcane SCSI concepts explained simply and clearly. Whether you already
have SCSI on your PC or are contemplating adding it, this book is definitely
worth reading.

You will find discussions on terminating your SCSI bus (not with a gun) ;
setting SCSI IDs; choosing cables; choosing controller card features; setting
up 1/0 addresses, IRQs, and DMA channels; installing device drivers; and more.
Modern operating systems support SCSI better than ever before, but they do
not do everything. You still need to understand these concepts to get the most
out of your SCSI investment.

As the chair of the TIO Technical Committee on SCSI, I am occasionally
told that standards committees are slow and plodding organizations. We often
are - for good reason. We are required to achieve consensus on highly technical
concepts and our only resources are volunteers who work for competing com­
panies. Some might think it is amazing that we accomplish anything at all ! In
spite of the obstacles, much is achieved (often on evenings and weekends) by
some dedicated individuals who want to have an impact on the industry.

The fact is that most users cannot afford to attend standards committee
meetings and are thus underrepresented in the SCSI standards development
process. If you think your needs are not being met, there are ways you can have
input without appearing at meetings or spending a lot of money. All standards
go through a public review process, which is your formal chance to comment
on pending standards. You can find out about these public review periods by
checking the NCITS web site (www.ncits.org) . The public review comment peri­
ods are only two months long, so you'll need to check monthly.

You' ll probably get even better results if you lurk on the T l O web site
(www.tlO .org) and join the TlO Reflector (it's free !) . To join, send an email
to maj ordomo@tlO.org and include the following line in the message body:

s ubscribe t10

If you are crazy enough to want to join the TlO Technical Committee, I urge
you to visit the TlO Web site or contact NCITS (our parent organization) in
Washington, DC by email at ncits@itic.org or by voice at 202-737-8888.

John Lohmeyer

Chair Tl 0 Technical Committee

LSI Logic Corp.

<lohmeyer@t J O.org>

INTRODUCTION

This is the second edition of this book. Time marches to a rapid beat in the
computer industry and to keep up you need to constantly adapt to the rapidly
improving computing environment. This book is an effort to provide an up to
date guide for those who desire to keep their computer performance in line with
the state of the art. The subtitle: "I/0 for the New Millennium" is intended to
be more than a catch phrase. I truly believe that SCSI has the necessary ingre­
dients to be the leading storage architecture well into the coming century.

Most of the information presented is generic enough that it should apply
to any type of computer (Macintosh, PC, or UNIX workstation) , however, where
system specific information is required, the details are aimed at the IBM PC
clone platform running Microsoft Windows 95/98 or NT 4.0. This detailed infor­
mation is mostly in the area of installing SCSI host adapter cards and loading
device drivers. Most aspects of SCSI relating to the connection of peripheral
devices are the same regardless of platform type and so would be helpful to
Macintosh and UNIX users as well.

The central theme is to provide readers with the practical information
necessary to purchase appropriate SCSI hardware, and then implement SCSI
1/0 in their computers. However, it's not just a cookbook. There's enough the­
ory and variety of information to give readers a depth of understanding, not
just get them into trouble .

The chapters are presented in an order that is appropriate for a reader who
is new to SCSI, but if you're already familiar with SCSI you' ll be able to easily
find the updated information you're looking for. Here's what we've got in store
for you:

Chapter 1 : Welcome to SCSI: Introduces the readers to what SCSI is all about
and why they might want to use it.

Chapter 1.5: A Cornucopia of SCSI Devices: A glimpse at the variety of device
types that SCSI has to offer and a little background on each.

Chapter 2: A Look at SCSI-3: An update on the latest SCSI standards as told by
John Lohmeyer, who has been there since the beginning.

Chapter 3: SCSI Anatomy: Describes the basic concepts and terminology of
SCSI to help ready you for what follows.

Chapter 4: Adding SCSI to Your PC: Explains what you need to get your sys­
tem ready for SCSI devices and how to install it.

Chapter 5: How to Connect Your SCSI Hardware: Describes in detail how to
connect a collection of SCSI devices to your system.

Chapter 6: Troubleshooting Your SCSI Installation: OK, so you didn't get it all
right from the beginning. Now you' ll learn a few things.

Chapter 7: How the Bus Works: For the curious, we explain how all the little
bits do their thing to get the job done.

Chapter 8: Understanding Device Drivers: What a device driver really is and
how it can affect your system.

Chapter 9: Performance Tuning Your SCSI Subsystem: How to squeak all the
performance you can out of your SCSI hardware .

Chapter 10: RAID: Redundant Array of Independent Disks : What RAID is, and
why you might care .

Chapter 1 1 : A Profile of ASPI Programming: This chapter provides the com­
plete ASPI specification, which gives all the details you would need to
write a SCSI application program for MSDOS, Windows 95/98/NT,
OS/2, or Netware . Such a program is the subject of Appendix E.

Chapter 1 2: The Future of SCSI and Storage In General : My view of storage
industry trends and what's on the horizon.

Appendix A: All-Platform Technical Reference: This is a comprehensive collec­
tion of diagrams and pinouts for all the SCSI connectors as well as a guide
to solving SCSI problems that can crop up in almost any SCSI based system.

Appendix B: PC Technical Reference: Tables of PC specific information that are
useful when solving SCSI problems that are specific to the PC architecture .

Appendix C: A Look at SCSI Test Equipment: While aimed at professionals who
need to solve tough system integration problems, this chapter might interest
any technically minded reader as well.

Appendix D: AT A/IDE versus SCSI: The battle rages on between price and
performance.

Appendix E: A Small ASPI Demo Application written using Delphi/Pascal .
The source code referred to here is contained on the CD-ROM.

But wait . . . there 's more !
The CD-ROM includes an easy to use HTML index which provides hot links

to the CD contents and links to other SCSI related stuff out on the Internet.
(Just point your browser (either Netscape or IE) to :

drive :\BOS_CDtour.html)

• ASPI source code examples

• ASPI tar utility (example tape backup utility)

• SCSIDRVR.C

• SCSI test programs and benchmarks

• SCSIReset

" Some useful SCSI utilities courtesy of Western Digital

e ASPIMenu, SCSIBench, SCSIScan etc.

" The comp.periphs.scsi FAQ and SCSI Quick Start Guide

" SCSI: A Game With Many Rules and No Rule Book: A Light hearted look
at hooking up SCSI devices and getting them to work in your system

• Linux SCSI HowTo

• Linux SCSI Programming HowTo

" A collection of some of the most useful links to SCSI information on
the Web

And now to properly set the tone for the reader:

ODE to SCSI

You know that SCSI is the greatest.
Its performance can ' t be beat.
For any storage situation,
Its bus bandwidth's really neat.
Though the cables can get gnarly,
And termination 's such a treat,
The flexibility is worth it,
And the multitasking's sweet.
When you need to add a scanner
To your disk and CD-ROM,
You j ust plug it on the bus,
(Which can only be so long) .
Then you load a device driver,
And scan and print with glee,
Without using another resource,
Try that with IDE !

Well, that's as close as an engineer gets to poetry. And now, let's get to the sub­
ject at hand!

Gary Field

W E L C O M E T O S C S I

We begin this adventure by getting the
lay of the land, so to speak: some basic

vocabulary followed by a short background
on the birth of SCSI (pronounced "scuzzy") ,

then a quick look a t what it is a n d whe re i t' s going.

A Few Well-Chosen Words

Since this may be the first time you've ventured into SCSI territory, here are a

few terms you'll need to be famil iar with before we embark.

bus The bus is the path or channel that carries data between the
computer and other devices (l ike a printer or scanner) or between a

series of devices. Although cables, wires, and optical fiber are components

com monly used to form a bus, the bus itself is not a s ingle physical object

that you can hold in your hand. Rather, it is the entire collection of cables
and wires used to make up the communications pathway. The size of the
bus changes in direct proportion to the number of connections.

2 Chapter 1

bus slots Bus slots are connectors inside the computer that attach add-on

cards (like sound or video cards) and devices to a bus. Examples would be

an ISA slot or PCI slot.

controller card (or host adapter card) Host adapters are circuit boards

that plug into the motherboard on the computer. They allow the com­

puter to communicate with and control devices. SCSI, IDE, and ESDI

cards are examples of hard disk controller cards. Some printers and scan­

ners require their own special controller cards. SCSI host adapter cards

are often referred to as controllers.

For instance, the Windows 95/98 Device Manager menu refers to "SCSI

controllers," although technically a SCSI controller is a chip on a target

device that controls the operation of the device. They really are referring

to host adapters.

Throughout this book I'll try to consistently call a card that plugs into

a PC a "host adapter," but if someone calls it a controller, don't jump down

his throat.

data transfer rate Data transfer rate is a measure of how quickly informa­

tion can be passed between the computer and another device or between

devices. The higher the data transfer rate, the less you'll have to wait for

data to get to its destination. It is commonly expressed in megabytes per

second (MB/sec).

device Device generally refers to hardware that can be connected to the

computer (such as printers, hard disks, scanners, and modems), although

sometimes the computer itself is referred to as a device as well. Devices can

also be interface cards, such as video cards, SCSI cards, and sound cards.

hardware interface A hardware interface consists of the electronics neces­

sary to communicate with and control devices. When you put these

electronics on a card you have an interface card, also known as a host

adapter. In this book, we'll often refer to the hardware interface as simply

"the interface."

multitasking Multitasking simply means performing more than one func­
tion simultaneously. Multitasking operating systems, such as Windows

95/98, Windows NT, OS/2, and UNIX, can run many programs simulta­

neously. When your software or devices are multitasking, they don't have

to wait for one program to finish before they can do their work. They all

work simultaneously. And, as a user of a multitasking system, you don't have

to wait, either.

IDE Integrated Drive Electronics, or IDE, is a common, parallel bus stan­
dard for hard disk drives. All the control electronics for IDE reside on the
hard disk drive , not on the interface card. Because IDE is not an intelli­
gent bus, simpler, low-cost electronics can be used. The low cost of IDE
makes it an ideal interface for the mass market. The more appropriate
industry term for this type of interface is ATA, which stands for advanced
technology attachment.

EIDE Enhanced IDE is an updated version ofiDE that improves on IDE's
speed and adds support for drives larger than 528 MB.

ATAPI ATA Packet Interface is a software protocol that allows support
for CD-ROM drives on IDE/EIDE interfaces .

The Birth of SCSI

The Prequel

Minicomputer interfaces prior to SCSI were not intelligent; they were each
designed specifically for one device, so a special interface was required for
each different device, such as a hard disk interface for a hard disk. Prior to
SCSI, minicomputer users had to change both software and hardware to sup­
port new devices.

Intelligent Life

SCSI began life in 1979 as the Shugart Associates Systems Interface (abbreviated
SASI and pronounced "sassy") . SASI was the first small-scale intelligent hard
disk interface designed to work with smaller minicomputers. SCSI was developed
based on SASI. SCSI 's birth was a major leap forward in hardware interfaces.

Intelligent interfaces, like SCSI , know what types of devices are connected
to the computer and how to deal with each. Intelligent interfaces are designed
to support multiple data rates and use logical command sets that hide the imple­
mentation details of the devices. This allows system software to accommodate
the addition of newer devices as they become available.

As an intelligent interface, SCSI allows users to mix and match devices
on one controller rather than needing to install a separate controller for
each device.

Welcome to SCSI 3

4 Chapter 1

But in order to get everyone to use SCSI and to make sure that every com­
pany's SCSI devices would be compatible, a SCSI standard had to be defined.
And so, in I98I, Shugart Associates and NCR (National Cash Register) presented
their SASI proposal to the X3T9.2 committee for a standard to be published
by the American National Standards Institute (ANSI, pronounced "ANN-see") ,
the standard-setting organization in the U.S . After many long years of debate
on the exact specifications for this new bus, ANSI finally gave its approval in
June, I986. The new standard, document X3.I3I-I986, was named the Small
Computer System Interface (SCSI) , and thus SCSI was born. That first version of
SCSI is now referred to as SCSI-I, because newer standards have been released
since I986.

SCSI-I defined a universal, parallel, system-level interface , called the SCSI

bus, for connecting up to eight devices along a single cable. Parallel devices
(such as the majority of printers) send a group of bits (binary digits) at a time,
as opposed to serial devices (such as modems and mice) , which send data one
bit at a time.

As a system-level interface, SCSI is very different from a device-level inter­
face such as the older ESDI (enhanced small device interface) .

SCSI is an independent and intelligent local l/0 bus through which a
variety of different devices and one or more controllers can communicate and
exchange information independent of what the rest of the system is doing.
ESDI, on the other hand, was limited to two devices, both of which could only
be ESDI drives.

SCSI 's benefits were clear; however, because it was a groundbreaking stan­
dard, the system software took a while to become flexible enough to take
advantage of them.

SCSI-I devices were also limited to a peak throughput of five megabytes
per second (5 MB/sec) , which was comparable to the transfer rate of ESDI.
ESDI didn ' t have all the compatibility headaches that SCSI-I did, either. But
ESDI had a significant problem: a lack of flexibility. Although ESDI was fast,
ESDI drives worked only with ESDI controllers, which brings us back to the
one controller-one device problem. So whereas SCSI had the advantage of
flexibility over ESDI and had comparable speed, something had to be done to
solve the integration problem in order to make SCSI a more attractive solution.

SC:SI-2: The First Maior Improvement

Even before SCSI-I was made an official standard in I986, improvements to it
were in the works. SCSI-I had significant shortcomings: It wasn't as general
purpose as it needed to be, and, although it was fast, some felt that its speed
could be improved. One of the essential shortcomings was a lack of standard­
ization of command sets. Almost immediately after SCSI-I was adopted, an
industry group developed an addendum to it called the SCSI Common

Command Set, or CCS, which solved this problem. This standard was a major
milestone, but the technical committee was already working on improvements .

In January, 1 994 (after almost four years of deliberation) , ANSI approved
the X3T9.2 committee's updated draft standard, SCSI-2. The standard was
designated X3. 1 3 1-1 994 to indicate that it replaced SCSI-1 .

Everyone had been calling this new standard SCSI-2 as early as 1 986,
when it was first proposed. In fact, just as there are a variety of unofficial SCSI-
3 devices on the market today (with the SCSI-3 family of standards still not all
finalized) , there had been a number of SCSI-2 devices on the market prior to
the 1 994 adoption of the SCSI-2 standard.

.... Because SCSI-2 devices were on the market before the adoption of a SCSI-2 standard,
compatibility problems occurred between SCSI-2 devices. You may encounter these prob­

lems if you still have any SCSI-2 hardware developed prior to 1 994. Newer SCSJ-2

devices were developed to adhere to the official ANSI SCSI-2 standard and have proven
to be very compatible, even between different vendors ' products.

New and Improved SCSI

The following is a list of the improvements provided in the SCSI-2 standard,
together with a brief description of what makes these advances important.
We' ll explore them in more detail in Chapter 2.

1 . New 50-pin and 68-pin high-density connectors were standardized, which
shrank the size of the connector and made for more efficient and trouble­
free connections. This was especially important for IBM PC SCSI host
adapters , because the older connectors were extremely difficult to fit onto
an option card rail .

2. The speed of data transfer along the SCSI bus was increased by allowing
for synchronous transfers. This is now standard with optional fast synchro­
nous data transfer mode (Fast SCSI-2) .

3 . The speed of data transfer was further increased by widening the size of
the bus. Both 1 6-bit and 32-bit buses were defined (Wide SCSI-2) .

4 . The reliability of device-to-device communication was increased by allowing
synchronous negotiation to be invoked whenever the initiator or target
device detects a change . Previously, many target devices refrained from
starting such negotiations because some early host adapters locked up.

5 . Signal integrity was improved with the addition of mandatory SCSI bus
parity checking.

Welcome to SCSI 5

6 . Command queuing was added to improve performance.

7. Command sets were added for CD-ROMs, scanners , medium changers,
and communications devices.

8. Extensive enhancements were made to the existing command sets .

Fast SCSI: Just Exactly That!

The SCSI bus allows for both asynchronous and synchronous data transfer
modes (see Chapter 3 for a detailed discussion of these transfer modes) .
Synchronous transfer is considerably faster than asynchronous . SCSI-I allowed
asynchronous transfer rates of 1 .5 MB/sec and synchronous transfer rates at a
maximum of 5 MB/sec. In order to improve on this, Fast SCSI was introduced
as an optional SCSI-2 operating mode.

Fast SCSI squeezed some of the timing margins so that faster handshaking
(connections) could occur, doubling the synchronous transfer rates of SCSI.
The maximum SCSI-I synchronous transfer rate doubled, from 5 MB/sec to
IO MB/sec .

The term "fast" is generally used to describe SCSI devices that can support
synchronous transfers at this improved rate of 10 MB/sec. "Fast SCSI" may be
used only when describing SCSI-2 , because SCSI-I did not support this faster
synchronous transfer mode.

But this increase in speed did not come without added costs and demands.
Sending data twice as fast meant that devices needed better electronics to
ensure error-free data transfers. Similarly, faster data transfer also required
that the cables used for the SCSI bus be of higher quality than those used for
SCSI-I or regular SCSI-2. (We' ll talk more about cables in Chapters 3 and 4 .)
This is the typical progression of SCSI - indeed, of any advancing technology:
Faster and better always means that all supporting technology needs to
advance, too.

M#ollj In order to use Fast SCSI, both your SCSI interface and SCSI devices must have Fast
SCSI capability. Be sure to check the device 's specifications if you 're interested in using

Fast SCSI, because not all SCSI-2 devices support it. Remember, Fast SCSI is an option
with SCSI-2; you don 't need to use Fast SCSI in order to use SCSI-2-compatible devices.

Wide SCSI: Two Lanes Are Better Than One

Besides doubling the rate at which data can be transferred over the SCSI bus
or pathway, SCSI-2 also provided the option to double or quadruple the width
of the SCSI bus with Wide SCSI.

MJI.I I j Although SCSI-2 defined Wide SCSI using a two-cable approach, Wide SCSI didn 't
catch on until SCSI-3 introduced the single "P" cable method of implementing Wide.

6 Chapter 1

The width of the bus is the number of its data lines. By increasing the width of
the bus from 8 bits to either 16 or 32 bits (although 32-bit Wide has yet to catch
on) , the Wide SCSI bus can transfer two to four times more data in the same
amount of time than regular 8-bit SCSI-2 did. Of course, this also means that
the size of the cables must be increased, because more bits require more wires.

MJt.llj As with Fast SCSI, both the SCSI interface and SCSI devices have to support Wide SCSI

in order to take advantage of the Wide capability. If your SCSI controller supports Wide

SCSI but your device does not, or vice versa, communication between the controller and

device will take place at regular 8-bit SCSI-2 speed, and you won 't be able to take advan­

tage of Wide SCSI. But even if your system won 't use Wide SCSI, communication will

still take place without a hitch; it will simply be slower.

The Best of Both Worlds

Although Fast and Wide SCSI can certainly operate independently, a combi­
nation of the two features provides even greater improvement in the rate of
data transfer. The faster transfer rate of Fast SCSI and the extra bus width of
Wide SCSI can be combined to create Fast Wide SCSI, which can send data at
20 MB/sec (on a 1 6-bit Wide bus) .

Data on a SCSI-2 bus won ' t travel any faster than the 20 MB/sec achieved
with Fast Wide SCSI , and this speed is probably more than most people need
on their desktop. However, if Fast SCSI still leaves you hungry for more when
you get into tasks such as full-motion digital video (for editing movies) and
large-scale computer networks, read on. In fact, in such demanding SCSI
applications, you're likely to find that even Fast Wide SCSI isn ' t enough and
you'll need even more speed. Don ' t worry, help is on the way with SCSI-3.

SCSI-3 Is on Its Way
Throughout the history of SCSI, ever-newer SCSI standards have always been
waiting in the wings, and today is no different. Proposals are currently before
the T10 Technical Committee for the next generation of SCSI, called SCSI-3.
For several reasons, including size and flexibility, SCSI-3 is being partitioned
into a family of about fourteen standards. These standards will be used as build­
ing blocks , much like communications standards, to create various combinations
of SCSI-3 features, including serial versions. And, although the entire family of
SCSI-3 standards is not all officially approved, you will notice a bunch of devices
claiming to include SCSI-3 features cropping up on store shelves.

Fast-20 SCSI and Fast-40 SCSI, also marketed as Ultra SCSI and Ultra2
SCSI, may be the SCSI-3 feature most commonly found in new devices. These
Ultra SCSI rates are basically an extension of the Fast SCSI, found in the SCSI-
2 specification, except that Ultra SCSI offers double or quadruple the old "Fast"
rate . Fast-20 SCSI (or Ultra SCSI) will provide 20 MB/sec over the 8-bit bus or
40 MB/sec over the 1 6-bit Wide SCSI bus. Fast-40 (Ultra2 SCSI) is twice as fast

Welcome to SCSI 7

8 Chapter 1

as Fast-20. The future even promises an Ultra3, Fast80 option (up to 1 60
MB/sec) . These aspects of the SCSI-3 protocol are covered in the SPI (SCSI
Parallel Interface) standard and its successors.

Unfortunately, as with everything in real life, speed has its price. The high data transfer
rates promised by Fast-20 SCSI will limit the SCSI bus length to 1 .5 meters (about 5 feet)
for 8 devices, 3 meters (about 1 0 feet) for 4 devices, and will require even higher-quality
cables.

Furthermore, single-ended buses are not acceptable for Fast-40! You will need a host

adapter with "low voltage differential" bus drivers to use this option.

Another hot - but perhaps deferred - feature of the SCSI-3 protocol is
SCAM (SCSI Configured "AutoMagically") .

SCAM, along with Intel PCI and Microsoft's Plug-and-Play, will allow users
to plug in SCSI interface cards and attach SCSI devices without worrying about
jumpers, switches, wheels, or any other kind of configuration option. All con­
figuration options will be handled by the computer - no more headaches. At
least, that's what ANSI had in mind when they created SCAM. Mter all was said
and done, however, Microsoft didn' t implement SCAM in their operating sys­
tems and ANSI is considering removing it from SPI-3 .

Serial versus Parallel

Perhaps SCSI-3 's most notable addition to SCSI will be its introduction of sup­
port for a new breed of very high speed serial devices. The existing standards

for serial communication, such as RS-232, are much too slow for hard disks
and other SCSI devices. In general, parallel data transfer is faster than serial,
but this doesn ' t always apply in SCSI. SCSI-3 defines both serial and parallel
communication, and its serial buses are very fast. However, parallel bus devel­
opment is not standing still and is currently on par with Fibre Channel.
Today's silicon electronics can operate at speeds approaching 1 GHz
(GigaHertz, or billions of cycles per second) , and SCSI-3 will make use of
every bit of it. In fact, expensive gallium arsenide chips offer speeds in excess
of several GHz. That's blazing speed, compared with the 5 MHz bus rate of
SCSI-I. There is a real horse race going on between parallel and serial SCSI
with no clear winner.

The Serial Future

Two interfaces are competing to provide the link between the new high-speed
SCSI-3 serial devices: Fibre Channel and IEEE-1 394 (Apple's FireWire) . These
interfaces offer transfer rates of 400 to 1 000 Mb/sec (Megabits per second) as
opposed to the 20 MB/sec parallel transfer rate of SCSI-2 , which is equivalent
to 1 60 Mb/sec. (There actually is a third serial interface option called SSA,

but it seems to have run out of steam and probably won ' t see widespread
acceptance .)

Each interface promises quick and easy cabling between devices and the
SCSI interface card via small, keyed connectors. (For those of you who struggle
with SCSI device connections, this is sure to be a welcome improvement.)

Going serial also means that cables will have fewer wires (or fibers , as the
case may be) . Rather than the monstrous 50 and 68 wire cables required by
parallel SCSI implementations, serial SCSI will only need 6 (or fewer) wires.

However, the change to serial will require a different way of thinking for
device driver writers. For example, parallel buses supported no more than 1 5
devices. Scanning the bus for devices took n o more than four seconds (that is,
1 /4 second to timeout on each device) . With Fibre Channel supporting 1 6
million devices, clearly a different approach is needed! Also, drivers frequently
used bus reset to recover from certain types of error conditions - and there is no
such thing on Fibre Channel!

For the latest information about SCSI developments, for SCSI standards,
and for the latest on SCSI-3 , you can access the T10 Technical Committee's
web site at http :/ /www. t 10 .org/ .

You can also write to:

Global Engineering Documents
1 5 Inverness Way
Englewood, CO 801 1 2
(800) 854-71 79

We'll hear more about the latest developments in SCSI-3 from the chair of the
T 1 0 Technical Committee himself in Chapter 2 !

Why Choose SCSU?
If you' re reading this book, you've probably either already purchased SCSI
hardware, you' re thinking about it, or you' re just wondering what SCSI is. But
have you thought about why you should use SCSI and not some other stan­
dard, such as the mass-market IDE or EIDE? Well, take a look at the benefits
SCSI brings, as well as the pitfalls, as shown in Table 1 . 1 .

Multi-Platform Capability
As you can see in the first row of Table 1 . 1 , SCSI is a cross-platform interface.
As such, it is highly flexible. In most cases, a SCSI device taken from one type
of computer system (like a Mac or a PC) will work on a completely different
system without your having to modify it in any way. As long as your computer
has a SCSI host adapter card, you simply buy a SCSI drive .

Welcome to SCSI 9

10 Chapter 1

Table 1 . 1 : Comparison of Features

Feature

Computers supported

Device types supported

Maximum number of
devices supported
(per bus or channel)

SCSI IDE/ ATA/EIDE/UDMA

! PC, Macintosh, UNIX I PC, some newer low-end

! servers, and workstations workstations, newer Macintosh

I Hard d isk, CD-ROM, ,11 Hard d isk, CD-ROM, DVD,

I DVD,scanner, tape drive, low-end tape d rive

p;��e�6tica l WORM

[
: Narrow SCSI = 7

Wide (1 6) = 1 5 n/a

F ibre Channel AL = 1 26 n/a

i F ibre Channel fabric = 1 6 M

: Un l im ited number of
; buses per host

n/a

Maximum of 2

I buses per host

�xtern�evice supf'Clrt?
�J Yes ___ _ ' No

Data transfer rate I SCSI- 1 = 5 MB/sec E IDE (PIO) = 3 to 1 6 MB/sec

E IDE (DMA) = 2 to 8 MB/sec

U DMA = up to 33 MB/sec I FAST- 1 0 = 1 0 MB/sec

Note: This is the maximum FAST- 1 0 Wide = 20 MB/sec

burst rate for the interface ' . . .
bus. No individual drive I FAST-20 Wide = 40 MB/sec Note : Although PIO might seem
will ach ieve these rates. . . . fast accord ing to these figu res, it

I FAST-40 Wide = 80 MB/sec consumes the CPU, causing multi­

FAST-SO Wide = 1 60 MB/sec task ing to suffer severely.

____ _
_

_ __ _ __ _ i Fibre Channel = 1 00 MB/ sec
_ _ _

Multitasking abi l ity i Excellent I IDE = Poor owing to pol led 1/0
I o Bus master DMA 1 E IDE = Fair owing to DMA

• Disconnect/reconnect UDMA = good
• Tagged queuing • Only one device active per bus

----- ---------1---------+------------
Error detection

Cost

Yes = Bus parity, CRC wi l l
be introduced with FAST-80.

Relatively expensive because
of the need for terminators,

I more involved device
fi rmware testi ng, and also
because a prem ium is
charged for the extra
performance.

I

I

None currently.

(Rumor has it that, when UDMA66
is introduced, it wi l l use CRC)

Inexpensive because of h igh­
volume production, no need for
term inators (because of short bus
length) and s impl ified testing
owing to s ingle-th readed structure.

In contrast, this is definitely not the case with IDE and many other kinds of
drives. PC IDE drives will not work with your Mac . When buying a drive for an
IDE system, you must buy the specific IDE drive made for your system.

MJI.Uj SCSI's ability to allow swapping peripherals between platforms comes in particularly
handy if you 've got both a Mac and a PC at home or in the office. As long as the PC is

SCSI-based, you 'll be able to swap SCSI devices - whether hard drive, CD-ROM, or the
like- between both systems. Of course, whereas you can interchange the drives, you
won 't necessarily be able to read the data on the drive, because Macs and PCs format

their drives differentZv and the file structures are different.

SCSI is widely supported by many operating systems and platforms, including
Macintosh, UNIX, DOS, Windows, Windows NT, OS/2, and a variety of other
operating systems. Most of these operating systems have built-in support for
SCSI, which makes it even easier to use, install , and swap SCSI devices among
all operating systems.

Devices Supported

The second row of Table 1 . 1 compares the number of devices supported by
SCSI with that supported by IDE. You'll notice that the list for SCSI is consid­
erably longer. In fact, IDE and EIDE support only hard drives , CD-ROM
drives , and some inexpensive tape drives. SCSI can support just about any
device you throw at it. When new device types are developed, the earliest mod­
els are typically equipped with SCSI interfaces.

Expanda&ility

SCSI offers efficient expandability. As you can see in the third row of Table
1 . 1 , if you have a SCSI-I based system, you'll be able to connect up to seven
devices to one interface card, as opposed to a maximum of four if you have
EIDE. These seven devices could be any combination of hardware, such as
hard disks , CD-ROMs, tape drives, image scanners , or even printers . If seven
devices aren ' t enough, just add a second SCSI adapter, and you're ready for
the next seven devices. With Wide SCSI, you can connect fifteen devices (with
1 6-bit Wide SCSI) ; with Fibre Channel Arbitrated Loop you can connect 1 26.
We' re talking about a real system of devices here.

External Device Support

Unlike IDE or EIDE, SCSI supports devices connected to your computer
externally. With IDE or EIDE, all drives that you connect must fit inside your
computer (in fact, the cables are restricted to about 0.5 meter (1 8 inches)
in length . This presents some limitations. If you 're using IDE or EIDE and
you've maxed out your computer case 's expandability with something like two
floppy drives, a CD-ROM, tape backup, and a hard disk, you won ' t have room

Welcome to SCSI 11

12 Chapter 1

to add anything else . On the other hand, with SCSI you can buy devices that
are housed in their own cases and simply connect them to the back of your
computer with a SCSI cable. You therefore won' t need a refrigerator-sized
computer case, and your system's expandability will be much greater. With
Fibre Channel, your devices can be spaced up to 1 0 kilometers (about 6 .2
miles) apart with an unlimited number of hops of 10 km each using fibre
optic cable! This makes a terrific backup strategy, which allows for off-site
backups in case of fire .

The Speed Thing

Although SCSI isn ' t always as fast as simpler interfaces (like IDE or EIDE) , if
you're using just one hard disk, it leaves them behind when you attach several
drives. (That's the reason network servers use SCSI drives: They provide the
flaming speeds required by heavy network use .) Also, because SCSI supports
multitasking environments , multitasking operating systems such as UNIX,
Windows NT, and OS/2 can realize better performance with SCSI than with
IDE or EIDE.

Multitasking

Only SCSI devices will really multi task in multitasking operating systems. IDE
and EIDE devices are single-tasking, so although they'll work in a multitasking
environment, only one drive per bus can be active . (See Appendix A, "The All­
Platform Technical Reference," for more detailed comparisons of iDE, EIDE,
and SCSI .)

Built-In Error Checking

Unlike IDE or EIDE, SCSI offers built-in error checking. This capability
ensures that data transferred through your system from card to device and
back will be error-free . (We' ll talk more about SCSI 's error-checking ability in
Chapter 2 .) IDE depends on short cables to reduce the likelihood of errors.
But if errors do occur, they may well go undetected.

Cost
Price seems to be the only thing that matters in PCs these days; even at the
expense of performance. There 's no doubt that AT A/IDE drives cost less, but
in my opinion many people who buy them probably regret it later when they
want to add spiffy new stuff onto their system. But, c 'est Ia vie .

SCSI Is Easy to Use

And finally, believe it or not, SCSI is easy to use . For example, when you con­
nect a new SCSI hard disk, you don' t have to worry about all the things that
plague many IDE hard disk installations, such as the number of heads , cylin­
ders , and sectors per track in your hard drive . Even the computer doesn' t
worry about such details. The SCSI interface takes care of all that. In essence ,
all you have to do is plug it in. And Windows 95/98 and OS/2 Warp make this
installation even easier with their built-in detection of SCSI cards and devices.

. . . &ut Not C/1 PCIInacea

Although SCSI has a tremendous amount to offer its users, it 's not without its
drawbacks. You should be aware of these drawbacks before going out to buy a
SCSI system.

Installation

For one, interface cards aren ' t all that easy to install. If you 've had problems
installing interface cards before, SCSI is no less a challenge. This book is
intended to help you through as much of the installation as possible, but the
best way to minimize problems is to look for PCI Plug-and-Play SCSI interface
cards that configure themselves. (Or, have your dealer do the installation .) A
system with PCI slots (almost all Pentium- or Pentium Il-based systems) sim­
plifies the process and increases performance greatly. If you have Microsoft' s
Windows 95 or 98 you should look to its built-in tools for step-by-step help
with the installation of your SCSI card. Similarly, IBM's OS/2 Warp 's installa­
tion program scans for the most popular SCSI host adapters and installs them
automatically.

That Cost Issue

Another drawback to SCSI is the cost of the interface card. Although you can
pick up interface cards for less than $50, the performance you' ll get out of
them often isn ' t worth the trouble. To take full advantage of SCSI you need a
"real" SCSI host adapter, and it's going to cost upward of $ 1 00, depending on
its capabilities. At a minimum, we consider a real SCSI card to be one with
built-in BIOS, which has the ability to boot the system from a SCSI hard disk­
and preferably from a CD-ROM as well. Cheap cards do not have built-in
BIOS, which means you'll have to boot your system from a floppy disk or non­
SCSI hard disk.

The first thing people notice is that SCSI devices cost more than EIDE or
UDMA devices . In order to be flexible, fast, and easy to use, SCSI devices need
more built-in intelligence than simple IDE devices tend to have - this costs
money. Beyond this, the difference in price is due primarily to three things.

Welcome to SCS I 1 3

First, because IDE was less expensive when it was introduced, more of them
were sold. Volumes went up, which drove their prices down even farther. Sec­
ond, because SCSI performance is better, vendors feel justified in charging a
premium for it. Third, testing SCSI devices is far more difficult than testing
IDE devices, because the multi-threaded nature of SCSI makes the device firm­
ware more complicated. When you consider the benefits of SCSI (speed, flexi­
bility, and expandability) , the slightly higher cost of SCSI is easily justifiable .

IIIII SCSI is for you if, like us, you struggle to have a useful computer without upgrading
annually. SCSI devices tend to be used longer than any others. Because the interface
isn 't changing so often, a lot of SCSI disks from as far back as 1 988 are still in use,

whereas other early drives (like ST-506 and ESDI) from the same period in time were
generally replaced with SCSI or IDE disks. And, unlike with IDE- or EIDE-based sys­

tems, you 're not likely to run out of bus slots or IRQs (interrupt requests) with a SCSI
system. This means that you can easily add a second or even a third hard disk to your
system and still have room to add more devices to the SCSI bus.

14 Chapter 1

Upgrading the User

Finally, in order to use SCSI effectively, you'll need some basic knowledge of
SCSI technology. You need to know how to install and configure the interface
card (if it isn' t Plug-and-Play} , how to set device IDs, how to terminate the SCSI
bus, how to choose and load device drivers, and how to optimize your system
and keep it healthy.

Not to worry-we'll show you how to handle all of these tasks.

•

A C O R N U C O P I A O F S C S I D EV I C E S

One of the great advan tages of using
SCSI is that it gives you the fl exibi l i ty to

connect to your system a variety of devices ,
not j ust hard disks . Following are descrip tions

of j ust a few of the many devices you can connect
to a SCSI system .

Storage Devices

When you' re shopping for a storage device, the f i rst thing you look at is i ts

capacity (how much data you can store on i t) . The ctp<tci ty of these devices is
specified i n megabytes (MB) or gigabytes (GB) .

Hard Disks

Of all the types of hardware you can connect via SCSI , hard disks are by far the

most commonly used. Hard disks are generally moun t ed inside the computer,

TERM INOLOGY WARS

Computer engineers have always used the convention that "ki lo" means 1 024,

"mega" means l 024 x l 024 and "giga" means l 024 x l 024 x l 024. This is

because everything in a computer works in binary (base 2) , and l 024 is 2 1 0

(two raised to the tenth power). A megabyte (MB) i s therefore 220 and a g iga­

byte (GB) is 230 Using th is convention makes calculations easy for engineers.

The exponents come out to n ice round numbers.

Then along came the marketi ng people, who are not used to b inary and

use decimal l ike most other people. When a marketing person writes an ad for

a d isk drive, they use decimal numbers (thousands, mi l l ions, and so on) to

describe the capacity of the device. This practice, l i kely orig inated by the fact

that most folks dis l ike using unfamil iar systems, coincidentally makes the capac­

ity of the device sound bigger. As a result, a lmost any ad you see for a 9 . 1 GB

d isk wi l l be referring to a capacity of 9, l 00,000,000 bytes. An engineer

would refer to that some drive as on 8 . 475 GB disk.

The main reason I bring al l th is up is that, when your new 9. 1 GB drive

(which was thus described in an ad) arrives and you install it in your computer

(which was designed by eng ineers), the BIOS and operating system will tell

you it has a capacity of 8.475 GB! Don't get upset-you didn't get cheated!

It's s imply a lock of agreement about the definition of a g igabyte.

enclosed in a scaled case. The PC industry coined the phrase hard disk to dif­

ferentiate them from flofJ/J)' disks, which were the main storage medium on

early PCs . Because the media platters inside the drive are permanently fixed

inside of i t , they are also called fixed disks. Removable media hard disk drives,

such as those from SyQuest, allow you to take them with you, ship them, or

lock them up for safekeeping. Another method that helps keep data secure is

to enclose the en tire fixed disk drive in a clocking case that is constructed to

al low the entire drive mechanism to be pu l led out and stored separately.

One bene fit of using SCSI hard disks is that they are available in higher­

performance models with larger capac i ties than the IDE hard disks generally

offer. Al though recen t developments have made 36 GB hard disks available
for I DE , SCSI h a rd d i sks are now available wi th capaci ties of 73 GB, and even
bigger disks arc on the way. Also, IDE drives have j ust become available with

mtation speeds of up to 1 0,000 RPM, but SCSI drives have sportecl l O ,OOO

RPM for a while - and word h as it that 1 4 ,400 RPM is j ust around the corner.

The higher the rotational speed of the media, the less time the user has to

wai t for his data to come around to the heads that ,,�]] read or write it. This
wait ing time is ca l led rotational lall"nl)' and is one of the most i mportant perfor­

mance parameters.

16 Chapter 1 . 5

Removable Media Disk Droves

This class of drives has gotten quite popular. Some examples are the 100 MB
and 250 MB ZIP drives, the 1 20 MB LS-120 SuperDisks and the 2 .2 GB ORB
drives. These make handy back-up drives and are good for storing sensitive data
that can ' t be left on the system, but are generally too slow to act as the main
storage in a system. Also, they are not really designed to be operated continu­
ously, or in severe environments where hard disks are a much better choice.

Tape Drives

Tape drives can easily be attached to the SCSI bus. Tapes come in various
types and are used to store large amounts of data (usually as backup, in case
something happens to the computer's hard disks) . They are not generally
used for primary storage because the data can only be accessed sequentially,
not randomly, as a disk drive allows. The low cost and large storage capability
of tape cartridges make them ideal for archiving purposes . Because tape drives
are rather slow (rewinding a tape can take 30 minutes !) , SCSI 's ability to let
them disconnect from the bus and allow other devices to go about their busi­
ness is a big plus. Several types of tape drives are discussed below. Most of the
tape drives mentioned here are only available with a SCSI interface. IDE just
isn ' t suitable .

Quarter-Inch Cartridge (QIC}

Quarter-inch cartridge tapes aren ' t as common on PCs as they once were .
They are so named because the tape used in the first cartridges was one­
quarter of an inch wide. QIC tapes can hold from 40 MB to as much as 2 GB.
QIC-150 , QIC-1 350, and QIC-2100c are common tape formats. Because they
have well-standardized formats, these tapes have also been used extensively as
a medium of data exchange between UNIX systems. Tape drives that adhere
to these standards are available with SCSI interfaces.

Digital Audio Tape (DDS DAT}

Digital audio tape is well known in the music industry for recording digital
audio. In the PC world, the DAT system provides huge data storage capacity in
a small form factor cassette . 4mm DAT drives employ helical scan similar to a
VCR to increase the bit density on the tape. DDS (digital data storage) stan­
dard DAT tapes hold from 1 .3 GB to 2 GB and cost less than one-third the
price of QIC tapes per megabyte . The DDS-2 tapes store up to 4 GB on one
tape . DDS-2 and newer 4mm drives also employ data compression to increase
the data capacity per tape cassette even more .

A Cornucopio of SCSI Devices J 7

8mm Tape

An 8mm tape, similar to the tape used in camcorders, can also be used for
recording data. As in a camcorder, a helical scan technique is used. It provides
slightly more storage capability than DDS-1 , weighing in at 2 GB to 5 GB per
cartridge. This format was primarily supported by one manufacturer (Exabyte)
and didn ' t become as popular as DDS.

DLT
Digital Linear Tape provides very fast transfer rates and high storage capacity,
but unfortunately, also at a high price. The cartridges consist of a 4" square
cassette with 1 /2" tape inside.

Optical Disk Drives

Optical drives are so named because they use light (optics) in the form of a
laser to read and write data, as opposed to magnetic field changes that are
the basis for most other computer storage. Until 1 993 or so, optical drives
could store more data than magnetic drives such as hard disks, but in recent
years magnetic storage has improved in leaps and bounds while most optical
drives improved only slightly. Optical drives come in two types: Magneto­

optical (MO) (which can be written and re-written many times) , and Write

Once Read Many (WORM) .
As magnetic storage has gotten larger, cheaper, and faster, reasons to use

optical disks have dwindled. WORM media, however, has a loyal following that
actually appreciates the fact that the media cannot be altered after writing: This
provides confidence that the data has not been altered and is used where data
authenticity is very important, such as in storing government records.

Magneto-Optical (MO} Drives

Magneto-optical drives are a cross between an optical drive and a hard disk.
MO drives read data using a laser, and some are almost as fast as hard drives.
The fastest MO drive access time - around 30 ms (milliseconds) - is consider­

ably slower than the average hard disk access times (around 1 5 ms or less) ,
and the transfer rates of MOs are slower than hard disks as well.

Magneto-opticals also use a high-powered laser to write to the disk. The
laser heats up the surface of the disk and, once the disk material is hot enough
(a temperature known as the curie point) , a magnetic field changes the heated
material so it either absorbs or reflects light.

1 8 Chapter 1 . 5

In spite of the speed difference, magneto-optical disks have several
advantages over hard disks : Their storage space is large and expandable for
relatively little money; the disks themselves last for a very long time (about
30 years , or nearly 1 00,000 rewrites) ; and data stored on magneto-opticals
lasts for several decades.

Write Once Read Many (WORNI) Drives

WORM drives are similar to CD-ROM writers in that both burn data onto the
disks and cannot be erased or overwritten. WORM drives are slightly cheaper
than MO drives , but because the disks can' t be reused, this system is more
expensive in the end and is generally only used for specific archival purposes.

CD-ROM Drives

CD-ROM (compact disk read-only memory) made its mark in the industry
with the birth of multimedia because of the large storage requirements of
audio and video data. CD-ROMs are manufactured in the same way as audio
CDs and are designed to be read-only. As a result, they are used to distribute
programs and data files, not to back up your hard disk. CD-ROMs can store up
to 650 MB of data. This medium has become extremely popular for distribut­
ing software because each disk holds so much data and the disks can be mass
produced for less than $ 1 .00 each. CD-ROM disks come in many data formats,
which are governed by a set of standards defined by Sony and Philips called
the colored books, because each standard has a different color cover. Almost
all CD-ROMs have their files stored in IS0-9660 file system format (which is
sometimes also called "High Sierra format" after the name of the hotel where
the s tandards meeting took place) . CD-ROM has become the standard media
for software distribution since every new system shipped can read them.

If copying audio data from music CDs is something you want to be able to
use your drive for, you should check the drive 's spec sheet for its ability to
"rip" audio tracks as data. Some drives cannot do this at all and some can only
do it at the lx speed (the base speed of 1x being 1 50 kbytes/sec) . A few drives
have been optimized for this use and can rip audio tracks at 1 1x and even 20x.

CD-ROM Recorders (CD·Il and CD-RW)

CD-ROM recorders take the read-only aspect out of CD-ROM. By using a
special kind of CD called a CD-R (compact disk recordable) , the CD-ROM
recorder makes a CD-ROM by altering the color of a special dye on the media
using a laser. There are two types of dye that can be used to make blank CD­
Rs: cyanine (a dark blue/green color) and pthalocyanine (a gold color) .
CD-ROM recorders are also referred to as CD-ROM burners. The data can
only be burned in once. You can ' t erase or overwrite data on CD-R, but data

A Cornucopia of SCSI Devices J 9

can be written to it in multiple "sessions. " The best-known example of this is
Kodak's PhotoCD system.

CD-R drives present special problems to the host system and interface .
They are burned sequentially and must receive a continuous flow of data or
the disk being written will become useless. (This i s known a s "making a
coaster.") To improve this situation, CD-R drives usually contain a large
amount of buffer memory (usually about 1 MB) , which helps even out the
flow of data.

CD-RW, a variation on the CD-R, creates disks that can be erased and re­
written . The drawback is that these disks aren' t compatible with most older
CD-ROM drives. CD-RW drives make great backup devices.

The rating for these drives is usually given as the speed multiple that it
can perform each of its functions at . For example, a drive that can record CD­
R media at 6x, CD-RW media at 4x, and read CD-ROM media at 24x might be
referred to as a 6x4x24 CD recorder.

DVD-RONil Drives
DVD-ROM (Digital Versatile Disk Read-Only Memory) is the latest arrival in
the world of multimedia. DVD is fundamentally a CD with huge capacity (up
to 1 7 GB per disk) . DVD-ROMs are manufactured in the same way as CDs are
and, like CDs, are read-only. These drives can also read all existing CD-ROM
disks . The main purpose of this medium is to contain very high quality, full­
length movies complete with multiple audio tracks, dosed captions, and so on.
The film master is converted into a high-quality video master and then digitized
and compressed using MPEG- 2 encoding. This highly compressed data is
then stored on the DVD in large files using the newly developed UDF file sys­
tem format. Three different storage densities are available : single-sided, single
layer for 5 GB; single-sided, dual layer for 9 GB; and double-sided, dual layer
for 1 7 GB. These disks can also be used to store ordinary computer data and
should become popular for distributing software that currently takes multiple
CD-ROM disks. The price of these drives is expected to come down to about
the same as a current CD-ROM drive. Therefore, it is expected that ordinary
CD-ROM drives will soon become extinct. For some reason , the IDE interface
became much more popular for DVD-ROM drives, and I 'm only aware of two
manufacturers producing SCSI DVD-ROM drives , but I think that will change
when DVD-R becomes standardized - forecast to occur late in 2000.

Storage devices aren ' t the only devices that work with SCSI. Even printers and
scanners are available with SCSI interfaces.

2 0 Chapter 1 .5

!Printers

Printers with SCSI interlaces aren' t commonly used now, but more will likely
appear in the high-end market. Why? Because the amount of data transferred
to the printer increases with color images , so a bi-directional high-speed inter­
face, like SCSI 's , is very desirable. Many high-end PostScript printers have an
internal SCSI interlace for attaching hard disks as font, macro, or cache mem­
ory that is used by the printer when printing large files with a variety of typefaces.
Perhaps the longer allowed cable lengths of the IEEE-1 394 flavor of SCSI will
be more appropriate for SCSI printers and also increase their popularity.

Dmage Scanners

Some of the most common SCSI devices are image scanners . The amount of
image data increases dramatically with color depth (the number of colors in the
image) , in fact, it 's not unusual for scanners to generate files of over 20 MB
for a single image, so SCSI is the interlace of choice for most scanner manu­
facturers. Non-SCSI full-page scanners are generally too slow for professional
scanning. Recently released USB scanners are lower cost, and slightly easier to
install, but they can ' t keep up with SCSI-equipped devices.

As you have seen, SCSI allows you to connect quite a spectrum of peripherals
to your system. This is largely due to its high speed and flexible connection
schemes. In my opinion this is one of the strongest reasons for choosing SCSI
I/0 for your system.

A Cornucopia of SCS I Devices 21

A L O O K AT S C S I - 3

by.Jnlm /,nhmf)•el; Senior Consulting l_:_'ngin eer, LSI Logic Corp.,

and Chair of the Tl 0 Techn ical Cmn mittre on SCSI

SCSI-3 departs from SCSI- 1 and SCSI-2 in
that i t is not a single standard. SCSI-3 is a col­

lection of over a dozen standards that are arranged
in a building-block fashio n . This p rovides greater
flexibility: SCSI-3 supports the tradi tional parall e l
bus p l us a t least three serial interfaces . Also , the
building-block approach permits publication of the
various pieces of SCSI-3 when they are ready rather
than requiring that developers wait for all of the
pieces to be ready at the same time (which is nearly
impossible) .

Unfortunately, the building-block approach is not as easy to comprehend

as is the structure of SCSI-2, where everyth i ng you needed to know was in one
standard. Figure 2. 1 shows the various building blocks planned for SCSI-3.

24 Chapter 2

When developing a SCSI-3 product, designers must first conform to two
of the standards, namely SCSI-3 Architecture Model and SCSI-3 Primary Com­
mands . Then they must pick a physical interface (usually a pair of associated
standards) and a command set (one of the standards-SBC, RBC, SSC, and so
on-shown across the top of Figure 2 . 1) . In sum, each SCSI-3 peripheral prod­
uct must conform to at least four standards. Although this may be a bit
confusing at first, don ' t forget that this is a powerful architecture. And a bit of
confusion will be well worth it-there will be no need to rewrite SCSI-3 driver
software when you move from one physical interface to another!

If you are already familiar with communications standards, then you proba­
bly recognize that SCSI-3 has essentially adopted the layered-standards arch­
itecture promoted in the ISO Reference Model, with one key difference: SCSI-3

SCSI-3 Architecture Roodmap
,,..-C,..o_m_m_o_n_A,....c-ce_s_s �M,.-e-:-th-od�(C::-A,.-M�-73),..---,1

Block Reduced Stream Medium Multi-Media Control ler Enclosure
Commands Block Commands Charger Commands Commands Service

(SBC) Commands (SSC) Commands (MMC, MMC-2, (SSC, SSC-2) (SES)

I (RBC) I (SMC) MMC-3 , RMC)

Pr imary Commands (SPC, SPC-2) I
I Architecture Model (SAM, SAM-2) I I
I I I I I

I nterlocked SCSI Serial Bus F ibre SSA
Protocol Paral lel Protocol-2 Channel SCSI-3

(SIP) Interlace (SBP-2) Protocol Protocol

(SPI-2, SPI-3 (FCP, FCP-2) (SSA-S3P)
SCSI

Parallel SPI-4) I SSA-TL2

Interlace H Fast-20 I (aka, Ultra2,
F ibre SSA-PH 1 or Ultra3, Ultra4) (SPI) (U ltra) IEEE 1 394 Channel SSA-PH2

Figure 2. 1 : SCS/-3 Organization Chart

is optimized for storage and local I/O applications. It is not optimized to
operate over the long distances typically associated with communications,
although these distances can be supported using the Fibre Channel serial
interface.

The SCSI-3 family has undergone several changes since the first edition
of this book. 1 Many of the SCSI-3 standards have been completed, approved,
and published. Some second-generation SCSI-3 standards have also been pub­
lished, and one third-generation SCSI-3 standard (SPI-3) is well along in
development. Rather than calling these standards SCSI-4 or SCSI-5 , the T l O
Technical Committee has instead added a "-2" o r "-3" t o the base acronym.
For example, the second generation of SPI is SPI-2; the third is SPI-3 . And a

I . The Book of SCSI: A Guide for Adventurers, No Starch Press, ISBN 1 -88641 1-02-6

WHAT • s I N A NAM E?

SCSI terminology is confusing for a lot af good and some not-so-good reasons.

Part of the problem stems from multiple naming sources, the T1 0 Technical

Committee (T 1 0), the SCSI Trade Association (STA) , and various industry groups.

In spite of the confusing names, there is remarkable interoperabi l i ty

between the various SCSI products. This is because devices negotiate for

advanced speeds a nd features. In almost al l cases, a compatible speed and a

compatible set of features can be found.

Here is a short guide to SCSI names you may encounter:

Name Defined by Meaning

narrow SCSI STA The original 8-bit Wide SCSI.

Wide SCSI T1 0 1 6-bit Wide SCSI. Doubles the data trans­

fer rates as compared to 8-bit SCS I . F i rst

documented as a s ingle-cable feature i n

the SCSI-3 Parallel Interface (SPI) standard .

Fast·xx T l O

SCSI·2 T l O

------- - --

SPI T 1 0

Fast-20 T 1 0

Ultra SCSI I ndustry

The maximum data transfer rate xx i n

megatransfers per second. Multiply th is

number by 2 to get megabytes per second

for a Wide (1 6-bit) SCSI bus. Fast-xx is

mostly used in the various SCSI standards;

marketing names usually i nclude the word

"Ultra . "

The second-generation a l i-in-one SCSI

standard adopted in 1 994 .

(ANSI X3 . 1 3 1 : 1 994)

The first SCSI-3 standard for the parallel

physical interface layer. This sta ndard

defined "Fast SCSI" later called Fast- 1 0.

(ANSI X3 .253 : 1 995)

A "delta" standard that, used i n con junc­

tion with SPI, defines the Fast-20 data rate.

(ANSI X3 . 277: 1 996)

Fast-20 SCSI - 20 MB/sec on a narrow

SCSI bus and 40 MB/sec on a Wide SCSI

bus as defined in SPI a nd Fast-20.

A Look at SCSI-3 2 5

Name Defined by Meaning

SPI-2 T 1 0 The second-generation SCSI-3 standard for

the parallel physical interface layer. This

standard introduced low-voltage d i fferen-

tial (LVD) technology.

(ANSI X3.302: 1 999)

Ultra2 STA Fast-40 SCSI - 40 MB/sec on a narrow

SCSI bus and 80 MB/sec on a Wide SCSI

bus as defined in SPI-2.

SPI-3 T 1 0 The draft th i rd-generation SCSI-3 standard

for the parallel physical i nterface layer.This

standard introduced double transition (DT)

clocking, CRC protection, packetized pro-

local, and quick arbitrate and selection

(GAS) .

Ultra3 STA Fast-80 SCSI - 80 MB/ sec on a narrow

SCSI bus and 1 60 MB/ sec on a Wide

SCSI bus as defined i n SPI-3.

Ultra 1 60/m Industry Ultra3 on a Wide bus with the Domain

Validation feature (does not i nclude packe-

tized or GAS features) .

Ultra 1 60 I ndustry Same as U ltra 1 60/m. The "/m" was

dropped to reduce complexity.

Ultra3+ IBM Corp. Ultra3 plus the packetized and GAS

features.

SPI-4 T l O The draft fourth-generation SCSI-3 stan-

dard for the parallel physical interface

layer. At the time of publication, this draft

standard project was just getting started.

Ultra4 This term was dropped in late 1 999 i n

favor o f Ultra320.

Ultra320 STA Fast- 1 60 on a Wide bus plus packetized

and GAS as defined in SPI-4.

26 Chapter 2

SPI-4 project is likely. In a somewhat futile attempt to avoid further confusing
layers of dashes, developers of the second-generation SCSI-3 projects dropped
the "-3" on SCSI-3 , so that SPI-2 was called "SCSI Parallel Interface-2" instead

of "SCSI-3 Parallel Interface-2 ."
If you aren' t confused yet, another set of names may do the trick. The SCSI

Trade Association has created the marketing names Ultra SCSI, Ultra2 SCSI ,
and Ultra3 SCSI to correspond to SPI + Fast-20, SPI-2 , and SPI-3, respectively.
You'll probably also see the name, Ultra 1 60, which is Ultra3 SCSI minus a few,
less popular features .

Parallel SCSI

Ultra SCSI

The first generation of parallel SCSI-3 consisted of two standards, the SCS/-3
Parallel /ntnface (SPI, pronounced "spy") and the SCS/-3 Interlocked Protocol
(SIP, pronounced "sip") . A close follow-on standard was SCS/-3 Fast-20 Parallel

Intnface (Fast-20) . Together these three standards defined new features that
the marketing people dubbed "Ultra SCSI . " The features included a single­
cable , 1 6-bit interface, 1 6-device support, and up to 20 MB/sec transfers on
narrow cables or 40 MB/sec transfers on wide cables.

Ultra2 SCSI

As good as Ultra SCSI was, it had some serious shortcomings. Each time the
speed was doubled, the maximum cable length was cut in half. This was due
to the marginal signal characteristics of single-ended drivers and receivers
used in over 80 percent of SCSI designs. If Ultra2 SCSI retained single-ended
drivers and receivers, the maximum cable length would be 0.5 meters (about
20 inches) -too short to be useful. And if the high-powered differential dri­
vers and receivers previously in use were also used for another generation, the
system costs would be too high, because these parts required so much power
that they had to be in separate chips from the protocol logic. Furthermore,
doubling the speed meant cutting the skew budget in half-a nearly impossi­
ble feat if the drivers and receivers were on separate chips. It appeared that
SCSI was at the end of its life unless a new driver and receiver technology
could be adopted.

That is when low-voltage differential (LVD) came to the rescue. LVD had
almost all of the benefits of the high-powered differential plus it could be inte­
grated directly on the protocol chip. Besides that, it is 3-volt and 2 .5-volt
friendly, so it is compatible with the newest silicon processes. LDV SCSI could
support 1 6 devices on a 1 2-meter cable (about 39 feet) , and it was possible to
design a multi-mode driver and receiver that could also operate in single­
ended mode (although at Ultra SCSI speeds)-a real win-win situation.

A look at SCS I·3 27

28 Chapter 2

The standard that documents LVD SCSI is called SPI-2 . Besides defining
this new technology, it also documents all the rest of the SCSI physical layer,
including SPI, Fast-20, SIP, and the various SCSI-2 connectors. SPI-2 contains
everything you need to know about the physical layer of parallel SCSI.

Ultra3 SCSI

Of course, we are not done yet. The SPI-3 draft standard defines another dou­
bling of SCSI speed and also adds several new features. The standard is still in
development, so it might change yet. However, the following features appear
locked in:

1 . Fast-80 synchronous data rates. This is done by keeping the REQ and ACK
signal timing the same as for Fast-40 (Ultra2 SCSI) , but both the rising and
falling edges are used. This means that data is transferred twice as fast
without doubling the clocking signal frequencies. This signaling method
is called double transition (DT) as compared to the older method of single
transition (ST) . Also, DT is defined only for 1 6-bit bus widths, because vir­
tually all devices are now 1 6 bits; this simplifies product testing.

2 . CRC has been added to protect data integrity on DT transfers.

3. Domain validation has been defined to verify that the system is capable of
running at the higher rates. This works a bit like modems in that the system
will verify that data can be transferred reliably at the negotiated rate; if
verification fails, the system falls back to a lower speed.

4. Packetized protocol. A new protocol for transferring commands, status, and
data sends this information in packets that are protected with a CRC. These
packets are also sent synchronously (instead of asynchronously) to reduce
the protocol overhead.

5 . Quick arbitrate and select (QAS) reduces the time from one pair o f devices
using the bus to the next pair of devices using the bus .

The last two features have been somewhat controversial because of the amount
of work needed to reduce SCSI overhead. Some companies think the work is
not justified and have coined the term Ultra160 to refer to only the first three
features-the " 1 60" is the 1 6-bit data rate (MB/sec) .

Ultra4 SCSI

This concept is just a gleam in the eyes of the SCSI architects. However, it will
almost certainly involve yet another doubling of SCSI data rates. Stay tuned.
The standards committee will call this standard SPI-4, while the SCSI Trade

Association has already dubbed this effort Ultra320 (abandoning their previ­
ous UltraN naming scheme) .

Serial SCSI

Serial SCSI means different things to different people. It is used here as a
generic term to describe the process of transporting SCSI commands over any
serial interface. The T1 0 Technical Committee has defined SCSI mappings for
three serial interfaces : Fibre Channel (FC) , serial storage architecture (SSA) ,
and high-performance serial bus (IEEE 1 394) .

Fibre Channel

Fibre Channel is being positioned as the high-end "universal pipe . " It is capable
of connecting almost anything to anything else at speeds up to 1 00 MB/sec (1
Gbit/sec) using either coaxial cable or fiber optics. FC devices are connected
through networks that are called fabrics, most of which are actually made up of
circuit switches .

The only trouble with Fibre Channel is that its flexibility and speed are
expensive , and the challenge for its proponents is to get the costs of its fabric
down to a competitive level . One approach, called the Fibre Channel Arbitrated

Loop (FC-AL) , simplifies connections by including a piece of the fabric in each
FC-AL device. A number of FC-AL devices can be connected in a loop or ring,
referred to as an arbitrated loop, in theory reducing the system costs . (The
loop is called "arbitrated" because , like parallel SCSI , FC-AL devices arbitrate
for exclusive use of the loop. The winning device gets access to the loop and,
once finished, the winning device gives up control of the loop so that another
device may arbitrate .) I say "in theory" because FC-AL devices are almost
always used in high-availability systems which then must include Loop Resiliency
Circuits (LRC) to bypass failed devices. The LRCs add cost and complexity, so
circuit switches may still be the best solution .

Serial Storage Architecture

Serial storage architecture (SSA) is less of a general-purpose interface than FC,
because IBM designed it principally as a storage interface. Although SSA
could be used for many of the same applications as FC, it does not extend as
far or connect as many devices as FC. Still , SSA is a powerful interface that can
connect more devices than any PC system is ever l ikely to need.

Although SSA transfer rates (20 or 40 MB/sec) are somewhat lower than
those of FC, SSA loops work differently from FC-AL loops. SSA loops are full­
duplex, allowing for simultaneous two-way conversations. The whole loop is not
dedicated to a conversation , so several separate conversations can occur at the
same time. SSA proponents call these multiple conversations spatial reuse. In
the best case, spatial reuse could give SSA an effective quadrupling of band­
width . However, the reality is that, because many of today's operating systems

A look a t SCS I-3 29

30 Chapter 2

(particularly DOS and Windows) are not multithreaded, they cannot exploit
spatial reuse. Of course, multithreaded 32-bit operating systems, like Unix,
Windows NT, and OS/2, could exploit it handily.

IEEE 1 394

The third contender for the title of serial SCSI is IEEE 1394, which you may
have heard called Firewire or I .Link, Apple Computer's and Sony's names for
their versions, respectively. 1 394 was designed to be a serial replacement for
parallel SCSI , and it solves almost every problem that Apple 's engineers per­
ceived was wrong with SCSI. It uses simple flexible cables that can be plugged
into almost any empty socket, there are no terminators to worry about, no IDs
to set, and it logically appears to be a bus, just like parallel SCSI . Furthermore,
1 394 supports isochronous services. (Isochronous , "having equal duration,"
here means guaranteed timely delivery of certain data. I t ' s a great way to
deliver voice and video data .)

Early 1 394 chips support only 100 Mbit/sec data rates - clearly not com­
petitive with FC and SSA. To remedy this problem, chips are under development
to support 200 Mbit/sec, and a 400 Mbit/sec version is planned. 1 394 is not a
true serial interface, but a 1-bit wide parallel interface. A data signal and a strobe
signal are used to move data. This approach simplifies the interface logic, but
it limits the upper data rates. A third "signal" power keeps the low-level inter­
face logic alive in powered-down devices, thus keeping the bus intact even when
a device is unplugged. Because 1394 has these three signals, its cables have three
twisted pairs .

Which Serial SCSI Will Win?

In the first edition of this book, these interfaces were described as being in a
three-horse race to determine which, if any, would become an important PC
interface. Although we still have not declared a winner, it is safe to say that SSA
has dropped out of the race. Although SSA remains an important interface with­
in IBM Corp . , it has not attracted an outside following.

Fibre Channel is gaining ground as a high-end system-to-subsystem inter­
face. Although a few disk drives are available with Fibre Channel Arbitrated Loop
interfaces, they are currently shipping in low volumes.

IEEE 1394 is attractive for consumer applications such as VCRs and video
cameras, but most storage vendors have panned this interface as too expensive
and too slow for disk drives. Still, a few vendors have prototype 1 394 disk
drives available ; these drives target audio/video applications rather than
traditional storage .

Some new serial contenders have entered the race. The Universal Serial

Bus (USB) is starting to gain acceptance. However, it is much too slow to seri­
ously consider for disk drive applications. Also, the lnfiniBand™ interface
proposal (Intel 's NGIO and Compaq's , IBM's , and HP's SIO, which were
worst-kept secrets until they recently merged) is vying for consideration as an
alternative to Fibre Channel. The serial race is far from over.

SCSI's Greatest Value: The Command Sets

The part of SCSI that has the most value to systems integrators, software
developers, and peripheral manufacturers is its command sets. Because the
computer industry has made a huge investment in SCSI driver software, all
of the serial interfaces need SCSI command set mappings to leverage the
computer industry's command set investment and to get to market quicker.
Even IDE proponents have leveraged the SCSI command sets: The AT API
protocol maps the SCSI CD-ROM command set onto the IDE interface to per­
mit internal IDE CD-ROMs.

The command sets that were in SCSI-2 are partitioned across several
SCSI-3 command set documents near the top of the chart in Figure 2 . 1 .
Enhancements are being made, but most of the changes are evolutionary so
old software continues to run with the new hardware.

Two SCSI-2 command sets are not included in the SCSI-3 s tandards:
Scanner Devices and Communications Devices. If you were building one of these
devices for SCSI-3 , you would need to refer to SCSI-2 for the command set.

Also , SCSI-3 offers several new command sets :

.. The SCSI-3 Controller Commands (SCC) and the SCSI Controller Commands-2

(SCC-2) are new command sets for RAID controllers.

• The Reduced Block Commands (RBC) is a greatly simplified command set
(as compared to SBC) for disk drives.

" The Multimedia Commands-2 (MMC-2) adds DVD support to the CD-ROM
command set.

• The SCSI Anclosure Services (SES) defines a command set for communicating
with an enclosure that holds disk drives or other devices. In high- availability
systems, SES allows the system to find out the status of power supplies, fans,
and so on.

A Look o t SCS I·3 31

32 Chapter 2

Is SCSI-3 Done Yet?

People not familiar with the SCSI-3 architecture and the standards process often
ask this question. Of course, each draft standard goes through the standards
approval process individually, so one cannot name a single specific date . Most
SCSI-3 standards, including SBC, SMC, MMC, SCC, SCC-2, SES, SPC, SAM, SPI,
SIP, Fast-20, SPI-2 , SBP-2, FCP, and the six SSA standards are approved ANSI
standards. Most of the others are nearing completion of their development
phases that will be followed by approval phase, which usually takes about nine
months. The fact is that manufacturers rarely wait for final ANSI approval before
starting product development. Although SCSI-2 is still often referenced, most
SCSI products shipping today use at least some of the features documented in
the SCSI-3 standards.

S C S I A N AT O M Y

Before ven turing deep into the heart of
connecting and configuring SCSI devices ,

you should know some of the basics of SCSI
technology. Once we 've cut through the morass

of techno-babbl e , we hope you ' l l find that the prin­
ciples behind the way SCSI works are actually quite
easy to understan d.

SCSI Devices Can B e Initiators o r Targets

Al t h ough t h e d i ffere n t kinds of SCSI devices are n u mcrous - such as i nt e rface

cards, hard disks, CD-ROMs, and scanners - <t l l or t h e m !a l l i n to t m > runda­

m e n tal categories: i n i t iators and targe t s . The in ilirt lor clc,·ice is also cal led t h e

h o s t , and i t s tarts or i n i t ia tes deYice-t o-cle,· ice com m u n i c t l i o n . The lrngPI

device receives t h e c o m m u n i cation rrom the i n i t iator a n d responds. For

exam p le , when read i n g a file from a SCSI h ard disk. the SCSI i n t e rf'<tcc card

(th e i n i t i a to r) requests r i< t ta rrom t h e SCSI h a rd disk. and the h ard disk (th e

target) responds to the request by sending the data. This is the most common
initiator-target interaction in a SCSI system.

In general , the SCSI host adapter card will be the initiator on the bus.
Most of your other devices will probably be targets.

SCSI peripherals can act both as initiators and as targets. For example,
if you were to use the SCSI Copy command to copy data from one SCSI hard
disk to another, the disk that holds the data to be copied (the source disk)
acts as the initiator, and the hard disk that receives the file is the target.

M#ehj To avoid confusion, I want to point out that operating systems do not use the Copy

command to coj1y data from one disk to another. In general, the data is read from the

source drive into memory and then written from memory to the destination drive. This

may seem inefficient, but it is necessary to implement the file systems that we all know
and love. Without this convenience, you would need to remember the block numbers on

the disk that your data is stored in! I think you 'll agree that this convenience is worth

a little inefficiency.

34 Chapter 3

SCSI systems can have up to eight devices connected in a daisy chain (1 6-bit
Wide SCSI can have up to sixteen devices) . These devices can be any combina­
tion of initiators and targets , but at least one must be an initiator and one a
target in order to have a useful system. Typically, a system will have one host
adapter card and one or more peripheral devices, such as hard disks and
CD-ROM drives.

If you have a system with only one initiator and one target, you have a pretty
simple system - no confusion here . But what happens if you have one initiator
and more than one target? How do you tell one target from another? For
example, if you've hooked three hard disks - E, F, and G - onto the bus and
want to talk to F, how do you send the command to F, bypassing E and stopping
before G?

SCSI 's answer is to give each device on the SCSI bus, including the SCSI
host adapter, a kind of unique identification called a SCSI m. These IDs, or
addresses, are a lot like house numbers in a street address, which identify each
house uniquely so that the mail gets to the right place. Without this identifica­

tion, there would be no way to know where to send commands and data along
the bus and no way to direct signals to a specific device.

Every SCSI device is assigned its own unique SCSI ID number. In our
example above , hard disk E might get ID 2 , hard disk F might have ID 3 , and
hard disk G could get ID 4. Given that SCSI-1 and SCSI-2 allow you to attach
up to eight SCSI devices on the bus, you can have eight possible SCSI IDs.
These SCSI IDs range from 0 to 7, counting 0 as the first number. Note that

1 6-bit Wide SCSI allows a maximum of 1 6 devices, with IDs ranging from 0 to
15 ; and 32-bit Wide SCSI allows for 32 devices, ranging from 0 to 3 1 .

Ah, the Mysteries of I.UNs

If you've been working with SCSI, then you may have encountered LUNs (logical
unit numbers) . LUNs can be really confusing, but don' t fret. They're similar to
SCSI IDs in that they identify SCSI devices. The difference between LUNs and
SCSI IDs, though, is that LUNs represent devices within devices; they're divisions
within IDs. The way this works in practice is that every device ID, from 0 to 7,
can have up to 8 LUNs (64 LUNs in SCSI-3) , also numbered 0 to 7 (0 to 63 in
SCSI-3) , for a total of eight subdevices within each ID. LUNs give SCSI a certain
added flexibility.

If you were a device manufacturer and wanted to allow your customers to
have more than eight devices on a SCSI bus , you consider using Wide SCSI,
which allows up to 16 devices (because it uses a 1 6-bit bus instead of regular
SCSI's 8-bit bus) . But that's not the only alternative . You could also make your
device respond to a single device ID but have each subdevice device respond
to a different LUN for that ID. So, for example, three hard drives, labeled E,
F, and G, could be put together into one drive case and assigned SCSI ID 2 ,
but each drive would have a different LUN number: drive E might be LUN 0,
drive F might be LUN l , and drive G might be LUN 2 . This is what is done in
RAID systems. We'l l talk more about RAIDs in Chapter 10 .

The sad fact is that a SCSI user cannot independently decide t o use LUNs for some purpose.
The hardware needs to be designed with this in mind. Also, LUNs are so seldom used

that many host adapters don 't check for them by default - a practice that speeds up the
bus scanning process and saves a little memory. If you have a device that uses LUNs

(like a CD-ROM changer), you may need to enable LUN support in the host adapter
BIOS or device driver.

The SCSI Bus Allows Communication Between Your
Computer and Your SCSI Devices

Once you have an initiator and a target identified, you have to provide a means
for communicating between them so the devices may send and receive com­
mands and data.

Cables are the answer here . When you connect a cable between the two
devices, you provide a bus or pathway between them. This pathway is the SCSI
bus, and it is the communication channel between all SCSI devices. The SCSI
bus begins at one end of the cable , which is usually attached to a target device,
and ends at the other end of the cable, which is usually attached to the SCSI

SCSI Anatomy 35

36 Chapter 3

I n it iator Bus Target

Figure 3. 1 : A Typical SCSI Bus

host adapter card. We'll go into more detail about using connectors and cabling
in Chapter 5 .

A SCSI bus with one initiator and one target might look like that in
Figure 3. 1 .

Types of SCSI Buses

SCSI buses come in two electrical types: single-ended and differential. The essential
difference between the two is that, on a single-ended bus, the devices signal each
other over one wire (and a ground reference) , whereas on a differential SCSI
bus, the devices communicate over a pair of wires per signal.

Differential SCSI gets its name from the fact that it subtracts (takes the
difference) between the two wires for each signal . When compared with differ­
ential SCSI, single-ended communication is relatively inexpensive, and it's fine
for short distances. Differential SCSI is more expensive than single-ended SCSI ,
but it allows your system to communicate over longer distances.

Single-Ended SCSI Is Cheap, and It's Fine for Short Distances

Most SCSI systems use a single-ended bus, which is a bus with only one wire
(plus a ground reference) per signal. Single-ended buses are the most eco­
nomical way to communicate between devices, because the electronics used
to send and receive the signals are very simple and inexpensive. Single-ended
buses provide high-speed communication for short distances (see Table 3. 1
for maximum lengths allowed) . The maximum length of the single-ended bus
cable for Fast SCSI is shorter than that for regular SCSI, because Fast SCSI is
more error-prone than regular SCSI. The longer the cable, the greater the
chance of introducing errors into the signal, so the Fast SCSI bus cable is kept
short. Put another way, the faster the signals on the bus are, the harder it is to
distinguish them from noise.

Differential SCSI Allows Communication over Longer Distances

When you wanL to go beyond the maximum distance allowed by single-ended

SCSI , you risk encountering signal loss and noise problems due to the

extended length of the cable. Differential SCSI offers an alternatiYe to single­

ended SCSI when vou want a system to communicate over greater distances.

The differential SCSI bus carries commands and data over pairs of wires, tak­

ing the difference in vol tage between each of the two wires (see the sidebar

entitled '"The Differences Between Single-Ended and Differential SCSI" for

more information on this process) .

Because the subtraction process also subtracts off any noise that is the

same on the two signals, differential SCSI extends the maximum bus cable

length to 25 meters (about 82 feet) .

TH E D I FFERENC ES B ETWEEN S I NG LE- E N D ED

AN D D I FFERENTIAL SCSI

Table 3. 1 i l lustrates the differences between single-ended and d ifferential SCSI

by comparing a 50-pin cable for each. In the single-ended configuration, wires

26 through 50 carry signals between devices. Wires 1 through 25 are ground

returns. Because signals are present on only one set of wires, information is

interpreted by the Voltage (the strength of the signal) on the wire relative to

ground . Unfortunately, electrical noise from the outside world can cause the

voltage to fluctuate, resulting in corrupted data.

In the d ifferential configuration, each signal is sent on two wires. The infor­

mation is interpreted by the d i fference in voltage between the wires, not as the

voltage of the signal on a single wire relative to ground . When noise i nterferes

with the signal in this bus configuration, both wires are d isturbed equally.

However, because the noise on one wire is the same as the noise on the other

wire and both are affected equally, the d i fference in Voltage is zero. The result

i s that the device receives the information free of noise.

Don't worry about the detai ls in Table 3. 1 , but notice that the wires in a

single-ended bus are used d ifferently than the wires in a differential bus and

consequently the two cannot coexist. You must have single-ended SCSI devices

on a sing le-ended SCSI bus and differential SCSI devices on a d ifferential SCSI

bus. You cannot have single-ended SCSI devices connected to differential SCSI

devices. In LVD, the signals were aligned with the single-ended signals so interop­

eration between the two signaling standards would not be a problem; avoidi ng

the confusion that occurred with HVD and sing le-ended being connected.

SCSI Anatomy 37

Table 3. 1 : Single-Ended versus Differential SCSI 50-pin Cables

Single-Ended Differential

Pin Signal Pin Signal Pin Signal Pin Signal

1 GROUND 26 DO- GROUND 26 GROUN D

2 GROUN D 27 D 1 - 2 DO+ 27 DO-

3 GROUND 28 D2- 3 D 1 + 2 8 D 1 -

4 GROUND 29 D3- 4 D2+ 29 D2-

5 GROUND 30 D4- 5 D3+ 30 D3-

6 GROUN D 3 1 D5- 6 D4+ 3 1 D4-

7 GROUND 32 D6- 7 D5+ 3 2 D5-

8 GROUN D 3 3 D7- 8 D6+ 3 3 D6-

9 GROUND 34 DPAR- 9 D7+ 34 D7-

1 0 GROUN D 3 5 GROUND 1 0 DPAR+ 35 DPAR-

1 1 GROUND 36 GROUND 1 1 D IFFSENS 36 GROUN D

1 2 RESERVED 37 RESERVED 1 2 RESERVED 37 RESERVED

1 3 OPEN 38 TERMPWR 1 3 TERMPWR 3 8 TERMPWR

1 4 RESERVED 39 RESERVED 1 4 RESERVED 39 RESERVED

1 5 GROUN D 40 ATN- 1 5 ATN + 40 ATN-

1 6 GROUN D 4 1 ATN- 1 6 GROUN D 4 1 GROUN D

1 7 GROUND 42 GROUND 1 7 BSY+ 42 BSY-

1 8 GROUN D 43 BSY- 1 8 ACK+ 43 ACK-

1 9 GROUND 44 ACK- 1 9 RST+ 44 RST-

20 GROUND 45 RST- 20 MSG+ 45 MSG-

2 1 GROUN D 46 MSG- 2 1 SEL+ 46 SEL-

2 2 GROUND 47 SEL- 22 C/D+ 47 C/D-

2 3 GROUND 48 C/D- 23 REG+ 48 REO-

24 GROUND 49 REG- 24 1/0+ 49 1/0-

25 GROUN D 5 0 1/0- 25 GROUN D 5 0 GROUN D

3 8 Chapter 3

Low Voltage Differential

So far when we mentioned differential, we have been referring to what is now
known as High Voltage Differential (HVD) . From here on, we will distinguish
HVD from low voltage differential (LVD) , which is a new signaling standard
introduced by SCSI-3 (SPI-2) .

As SCSI speeds got faster and faster, the allowable length of its cabling got
shorter and shorter. Using differential bus driver chips allowed longer buses,
but greatly increased the cost of both the host adapters and drives, especially
for Wide SCSI , which requires 27 bus drivers . This is because the HVD bus
drivers couldn ' t be integrated into the SCSI protocol chips because of the
amount of power dissipated by them. Also the higher speeds made it increasingly
important that the propagation delays in all the bus drivers be matched quite
accurately. What to do, what to do?

The TlO Technical Committee decided on a compromise. They came up
with an interface that had the advantage of differential signaling, but with low
enough power dissipation that the bus drivers could be integr.tted into LSI chips.
Also, putting all the bus drivers on the same piece of silicon helps to match
their speeds ! To make it even better, they decreed that the devices using this
new LVD interface should be able to determine whether all the devices on the
bus are able to use LVD or switch to single-ended mode to remain compatible.

As a result, LVD devices go by the Voltage they see on the DIFF SENSE
signal to decide whether any single-ended devices are present. If the Voltage is
less than .6 V, there are single-ended devices; if it's between . 7 V and 1 .9 V, it 's
all LVD; and if it 's over 2 .2 V, there are HVD devices present. If HVD devices
are present , the LVD device shuts off its bus drivers to avoid damage . Wow!
That's one less thing we need to worry about when connecting things up.
Starting with Fast-40 devices, this LVD interface became standard. LVD has
been designed to accommodate devices as fast as 320 MHz, so we can expect
to see more of these devices appearing in the future .

!..a Single-ended SCSI is based on sending a single signal, whereas differential SCSI takes

the difference between two signals. As a result, the two cannot coexist. You must have

single-ended SCSI devices on a single-ended SCSI bus and HVD SCSI devices on a HVD
SCSI bus. You cannot have single-ended SCSI devices (or even L VD devices) connected
to HVD SCSI devices. L WJ bus driver chips are able to identify a single-ended bus and
switch modes to accommodate it, but are not compatible with HWJ. You can expect
HVD equipment to be phased out as L WJ t-eplaces it.

Cables are the physical makeup of the SCSI bus. As a resul t, they become the
lifeline of the entire system. To ensure that the correct cables are used to build
the bus, SCSI-2 and SCSI-3 define minimum requirements for the number of

SCSI Anatomy 39

40 Chapter 3

CAB LE SPECI FICATIONS

This section is for the technically curious. Most people wil l buy their cables from

a vendor who hopefu lly has read and understood the SCSI specs.

The most common internal cable is the 50-conductor (wh ich means it has

50 wi res) flat-ribbon cable, which typically uses 28 AWG (the wire's gouge or

diameter) wires, with 0.050 inch (1 . 3mm) between the centers of each wire.

Typical free-a ir characteristic impedance for th is type of cable runs about 1 05

ohms. This cable is fine for sing le-ended systems, but should be avoided for

HVD and LVD systems. Wide internal cables hove 68 conductors, which ore

spaced only 0.025 inch (0.6mm) aport. So actually Wide cables ore physi­

cally narrower than narrow cables. Are you still with me? :-)

External sh ielded 8-bit SCSI cables typically conta in 25 (or 34) twisted

pairs of 28 AWG (50- (or 68-] conductor) with on overal l foil/braid composite

shield. Generally, round shielded cable, with on impedance of 90 to 95 ohms,

is recommended.

The SCSI-2 standard required that systems using the Fast 1 0 synchronous

data transfer option use cables consisting of 26 AWG or 28 AWG conductors,

with a characteristic impedance between 90 and 1 3 2 ohms. This was really

too loose a tolerance for Fost-20 or Fost-40 buses. SCSI-3 therefore tightened

them in the SPI-2 document, which now requires on impedance of 90 to 95 ohms

and specifies that the REQ and ACK signals should be kept closer to 90 ohms.

wires n eeded as we l l as the electrical properties of the cable. SCSI systems can

u t i l i ze cab l ing bo th inside and outside the device cabi net (or case) . I n ternal

e<tbles �trc typically f lat , unshielded ribbon cables; external cables are general ly

round and sh ie l ded . Because flat cables can cause excessive cross-talk on dif­

f'crcn t i;tl s igna l s . newer LVD systems use round cables internally.

Tables 3.2 and 3.3 summarize the number of wires, maximum transfer

rate , maximum length , and type of cables for the di fferent SCSI standards .

Note in Table 3 .2 that , for SCSI-3 32-bi t , you need to use two cables, P and Q,

etch wi t h 68 wires. This is why you don ' t sec any 32-bit devices for sale. Table

3.3 l is t.-; t h e maximum and min imum lengths for differen t parts of the bus for
each SCSI standard.

Adapters

As l l t C t l l ioncd above, t h ere are two kinds of SCSI cab les , 50-pin and 68-pin . If
you look at the two qu ickly you may confuse which one is considered "wide."
The (iR-p in ribbon cable is actual ly narrower th < tn the 50-pin ribbon because

the wires in t h e 68-p in cable are spaced on l y half as f�tr apart. So the "width"

Table 3.2: SCSD Cable Reference Talbie

Bus Maximum Transfer Number of

Standard Width Rate (MB/sec) Cable Type Conductors

SCSI- 1 8-bit 4 Not specified Not specified

SCSI-2 8-bit 5 A 50

1 6-bit 1 0 B 68

SCSI-3 1 6-bit 80 p 68
Parallel

Interface 3 2-bit 60 P ond Q 68 and 68
(SPI)

Xote: In SPI-3, support for the Q-cable has been dropped.

Table 3.3: SCSI Bus Length Specifications

Differential

Bus Type Property Single-Ended (HVD) LVD

Sync Maximum 6 meters 25 meters 1 2 meters
(5 MHz) bus length (20 feet) (82 feet) (39 feet)

Fast- 1 0 Maximum 3 meters 25 meters 1 2 meters
bus length (1 0 feet) (82 feet) (39 feet)

Fast-20 Maximum 1 .5 meters 25 meters 1 2 meters

(Ultra) bus length (5 feet) (82 feet) (39 feet)

Fast-40 Maximum Don' t do i t 25 meters 1 2 meters
(Uitra2) bus length (82 feet) (39 feet)

spec. but not

ava i lab le* *

Fast-80 Maximum Don't do it Don't do i t 1 2 meters
(Uitra3) bus length (39 feet)

All Maximum 0. 1 meter 0 . 1 meter 0 .2 meter
stub* (4 i nches) (4 i nches) (8 i nches)
length

All Min imum 0 .3 meter n/a n/a
stub* (1 2 i nches)
spacing

*A section of cable that runs between the device and the bus. ConsidRred a defect in the bus, stubs should be as short as
possible.

** Although the SCSI spec. defines ffi![) transceivers for Fast-40, none are manufactured.

SCSI Anatomy 4 l

42 Chapter 3

used in this context concerns the number of pins, not the measured width, of
the cable.

The next thing that may occur to you is "If I get a 68-pin Wide host adapter
and a Wide disk drive, how am I going to be able to connect my existing 50-pin
narrow CD-ROM drive to the same bus?" The answer is adapters.

Additionally, there is another consideration: If you adapt the 1 6-bit Wide
bus down to 8-bit narrow, you need to terminate the upper half of the bus
where the adapting takes place . You will see adapters that say they contain
"Hi-9 termination ," which means that the high order bits and their parity bit
will be terminated right in the adapter. This is what would typically be needed
if your host adapter has an external connector on its back rail that is 68-pin
and you want to connect several narrow devices, like CD-ROMs and scanners,
that are external to the system case. This type of adapter would be called a 68-pin
male to 50-pin female. The 50-pin side is usually either a Centronics type or
High Density type.

If a narrow device, like a CD-ROM for instance, will be placed internal to
the system, and connected to the 68-pin cable, you would use a 68-pin male
to 50-pin female IDC adapter that doesn't have any terminators in it, and you
would plug it directly onto the back of the narrow device. Then the adapter
can plug directly onto an available connector on the internal 68-pin cable.

SCA Adapters

Another type of connector you might encounter is the 80-pin SCA (single
connector attachment) . There are no host adapters with 80-pin connectors.
Drives with this type of connector are designed to be plugged into bays in
"hot-swap" cabinets. A common use for this type of mounting is in RAID arrays,
where you can replace defective drives without even powering down the system.
Sun Microsystems developed this connector arrangement, and it was standard­
ized by the Small Form Factor (SFF) Committee. SCA j ust combines the normal
Wide SCSI signals with the four ID bits and power supply connections. In
addition, SCA drives usually lack built-in terminators, so other arrangements
will need to be made for termination. SCA Adapters are available that bring
out these connections separately, so you can connect an SCA drive to a regu­
lar SCSI bus.

Terminating the SCSI Bus

If there's one aspect of SCSI that always raises the hair on even the wisest tech­
nician 's head, that honor must go, unequivocally, to properly terminating the
SCSI bus. This section covers the types of termination. How to terminate the bus
will be discussed further in Chapter 5 .

(Drum roll, please)
I am now going to attempt to explain , in a few paragraphs, the technical

reasons that a SCSI bus needs terminations. This discussion will require mention
of radio frequency transmission line theory and similar heavy-duty stuff that
most computer people (even computer engineers) have never studied. If this
sounds too scary, just skip to the next section (on page 44) , where I ' ll explain
it in simpler terms.

A transmission line is a pair of wires , parallel to each other, used to send a
signal from one place to another. Impedance is the ratio of voltage to current in
a circuit. The characteristic impedance of a transmission line is the result of the
distributed inductance of the wire it 's made of and the distributed capacitance
caused by the proximity of the two wires to each other.

The mathematical formula for the characteristic impedance of an ideal
transmission line (one where the wires have zero resistance and the insulation
between the wires has zero dissipation) is :

ZO = 276 log10 (2D I d) Ohms

where

D = the center-to-center distance between the two wires
d = the diameter of each wire

A digital signal (a change in voltage from 0 volts to 3 volts , for example) can
be thought of as an incident wave. A transmission line of infinite length does
not need to be terminated, because the incident wave will never reflect back
from anything. A finite transmission line needs a terminating resistance at the
end to absorb the signal wave so it will not reflect.

The effect of a reflection returning from the end of a transmission line is
that the reflected voltage adds to the forward voltage and distorts the wave form .

Digital circuits require that the signal transitions be sharp rises or falls in
voltage . A signal distorted by reflection - in which the voltage comes part way
down, stays the same for a while, and then falls the rest of the way - confuses
the circuit that's trying to determine whether it sees a 1 or a 0. Many types of
signal distortion can happen because of reflected signals combining with forward
moving ones.

Because the SCSI bus has devices (any one of which can generate signals)
all along it and not at just one end, both ends need to be terminated - even
on a "single-ended" bus. :-)

SCSI Anatomy 43

TH E B OTTO �"! "
LI N E '

A finite transmission line must be terminated using a resistance equal in value to its
characteristic imj;edance to keep reflected waves from causing distortion in forward waves.

What's 'That He Said?

Let's try that again without the math and electronic theory.
Because the SCSI bus is a chain of devices with definite ends, the two ends

of the bus must be capped off or terminated. Every wire , even though it con­
ducts , presents a slight impediment to the passing of electrical signals. The
SCSI bus, too, has a specific impedance; but when the signals reach the end
of the cables that make up the bus, they encounter the air, which has very
high impedance and acts as a wall. (That's why the electricity doesn' tjump
out of your wall outlet: The air keeps it in.) The only problem with the high
impedance at the end of the bus for electrical signals is that any signal coming
down the bus is reflected back in the other direction once it hits this barrier.
(Although this is good in racquetball, it 's bad in SCSI .) That's where termina­
tion comes in.

Termination is an electrical requirement that must be met in order to pre­
vent the reflection of signals when they reach the ends of the bus. You terminate
the bus by attaching a resistor (the terminator) to the physical ends of the SCSI
bus. The terminator provides an impedance that matches the cable 's , thereby
preventing the signal from bouncing back.

The terminators on a single-ended SCSI bus serve a second purpose, too.
The terminator resistors act as a supply of current to pull the voltage on idle
signals up to about +3 volts. Yes, you heard me correctly. The SCSI bus is active
low. A "one" (asserted signal) is represented by pulling the bus signal line toward
ground. The terminators get this current from the SCSI bus by way of the ter­
mination power (TERMPWR) wire on the bus. (You'll see this wire in the
Cabling and Connector Pin Out diagrams in Appendix B .)

M#ehj This TERMPWR Voltage must be provided by at least one device on the SCSI bus. In
SCSI-2 and beyond, it is specified that host adapters must supply TERMPWR One

exception to this that I have seen is PCMCIA host adapters that plug into laptop com­

puters. The manufacturers of these apparently feel that portable computers, which typically
run on battery power, cannot afford to supply TERMPWR. Also, the connector pins on
a PCMCIA card are too thin to carry the current required by terminators. l-Vhen attach­
ing SCSI devices to laptojJ systems, set (usually with an internal switch or jumper) one

of the extPmal devices to supply TERMPWR and everyone will be happy.

44 Chapter 3

There are three methods for terminating the bus : passive , active, and forced
perfect termination.

Passive Termination

Passive termination is the oldest method of termination and was defined in the
specifications for SCSI-I .

A passive SCSI terminator is a set of 18 voltage dividers, each containing two
resistors . The resistor pairs have values such that the voltage at their center
j unction will be about 3.3 volts when TERMPWR i� about 5 volts . That is, for
each signal there is a 220-ohm resistor pulling the signal up to TERMPWR and
a 330-ohm resistor pulling it down to ground.

Any two resistor values having the ratio of 2/3 and connected to a 5-volt
source, would give 3 .3 volts at their junction, but these values are chosen
because, when placed in parallel (as they appear to be on the SCSI bus) , their
combined value - (R1 x R2) I (R1 + R2) - becomes 1 32 ohms. This is pretty
close to the value specified for the cable that SCSI buses are made of (but not
as close as we 'd like , as we ' ll soon see) !

Three fundamental problems occur using passive terminators :

• Much of the power drawn from TERMPWR (. 1 6 Amps idle , to a max.
of .40 Amps per terminator) is being wasted in the voltage dividers.

• If the TERMPWR voltage isn ' t high enough or has noise on it, that
problem will be passed on to the SCSI signals being terminated.

• The 1 32-ohm impedance they present turns out not to match typical
cable as well as it should.

Active Termination

Active termination takes a different approach to providing a resistance equal to
the transmission line 's impedance. Instead of a pair of resistors at the end of
the bus, an active terminator has only one. On each of the 18 (or 27 for Wide)
signals is a 1 1 0-ohm resistor connected to a 2 .8-volt power supply. The 2.8
volts is provided by putting an active voltage regulator in series with the
TERMPWR line. Because of this active regulation, the power that each signal
gets from the TERMPWR source is more stable and noise-free than is possible
with passive termination . Also, it has been found that 1 1 0 ohms is closer to the
real impedance of most of the cables being manufactured.

M}Uilj Active terminators are highly recommended when using any devices faster than 5 MHz.

SCSI Anatomy 4 5

46 Chapter 3

PASSIVE TERM I NATION I N D ETAI L

SCSI-1 (Aiternative- 1 in SCSI-2) defined termination by si mply attach ing a 220-

ohm resistor between TERMPWR and the signal l ine and o 330-ohm resistor

between the signal l ine and ground. The resulting impedance of the termi nator

is 1 32 ohms. Because this circuit doesn't act on the bus in any way, it is referred

to as passive termination. This is the mast common type of bus termination in

use. Although th is method is inexpensive to bu i ld , it d raws a lot of power from

the host adapter. Also, any fluctuation in the power supplied by the host adapter

wil l cause fluctuations in the signal l i nes of the bus, resulting in data errors.

In order to mainta in the largest possible h igh-level noise margin , i t is

advisable to use resistors with a maximum tolerance of 2 percent. In worst-case

conditions, the difference could easily add up to 1 40 mY (mil l iVolts) . Worst case

occurs when the pull-up resistor is high in value and the pull-down resistor is low.

Forced Perfect Termination (FPT}

Forced perfect termination is the most complex of the terminators. Beyond merely

stabilizing the power applied to the terminator, it can minimize distortion

caused by reflections. I t is usually used in high-speed SCSI systems that have

many different devices, cables, and terminator types. The complexity of such

a system can in troduce many impedance mismatches that will degrade the sig­

nals sent through the bus. FPT actively compensates for these impedance

variations by means of diode switching and biasing to clamp the voltage levels

of the signals so they go no higher than +3 volts nor any lower than ground.

There is a lot of controversy surrounding FPT termination: Although it can

permit a complex bus to work that would otherwise fail, it technically violates

the SCSI standards by supplying more current than allowed under certain con­

ditions. This could cause SCSI protocol chips to fail prematurely. Figure 3.2

shows a schematic of a typical FPT.

Don 't Forget DiHerential

D ifferential buses use passive and active terminators that have a different
arrangement of resistors to accommodate the fact that the signaling is done

on two wires instead of one. As with everything else pertaining to HVD, you

cannot mix differential terminators wi th any other kind.

As if we didn't already have enough different terminators already, now we

need a new type ! Earlier in this chapter we mentioned a new differential in ter­

face called Low Voltage Differential (LVD) . LVD drives don ' t have terminators

built in as do most single-ended drives. You need to put an LVD terminator
on an unused connector at the end of the cable. This technique can also be

used with single-ended drives and eliminates the need to check all the devices

ACTIVE TERMI NATION 6 N ID IETAO l

I n order to solve the above mentioned problems (wh ich is especia l ly important
on SCSI buses runn i ng at 1 0 MHz and faster) use active term ination. Th is type
of termi nation is known as Alternative-2 in SCSI-2 and uses only a 1 1 0-ohm
res istor on each s ignal l ine connected to a Voltage regulator . Th is regu lator
actively adjusts its output to mainta in 2 .85 V, thereby offering partia l immunity
to voltage d rops on the TERMPWR l i ne.

By using 1 1 0-ohm resistors, the terminator's impedance is a much c loser

match to the impedance of the cable (1 05 to 1 08 ohms) than passive termina­
tion (1 32 ohms) . A closer impedance match between term inators and cables
m in imizes reflections at the ends of the bus to reduce data errors .

The lower resistor values in the terminator a lso result in h igher pu l l-down
currents. As a result, actively terminated buses don 't suffer from r is ing ("sta i r­
case") waveforms commonly seen on weakly driven transm ission l ines.

Stud ies by Kurt Chan and Gordon Matheson, both of Hewlett-Packard ,
have shown that m ixing termination types wi l l yield better performance tha n
us ing passive termination alone. Wherever possible, use SCSI devices that employ

active termi nation . If necessary, add stand-olone active terminators and d isable

the i nterna l terminators (usual ly by setting a switch or jumper i n the device) .

TERMPWR

+

Voltage Regulator
Vout =4.4 volts

Voltage Regu lator
Vout =0.6 volts

Low Dropout
Voltage Regu lator
Vout =2,85 volts

lout > 600 mi l l iamperes

Figure 3.2: Schematic of Forced Perfect Terminator {FPT)

1 1 0n
Typ.

1 1 00
Typ.

-DB (O) .

-DB(l) .

Repeat the above circuit
for each s ignal l ine to be

termi nated .
D iodes are a l l l N4 1 48

SCSI Anatomy 47

48 Chapter 3

TERMPWR

220Q

-signal ------+--------o

1 50Q

+signal

330Q

Figure 3.3: Schematic of Differentiai (HVD) Terminator

to see which ones have their terminator enabled. You j ust terminate the ends

of the cable and can move devices around later without worry. Figure 3.3 shows

a schematic for differential terminator.

HOW PARITY C H ECKING WORKS

When a device receives a byte of data, it con check the data for errors by

counting the number of bits that are set to 1 . Because SCSI uses odd parity, the

number of bits set to 1 , including the parity bit, must a lways be odd. For exam­

ple, the decimal value 35 in binary format is 00 1 000 1 1 . Looking at this byte,

you see a total of three 1 's (an odd number of 1 's). Therefore, the parity bit for

this byte is 0 so that the total number of 1 's is still odd . The data actually sent is

therefore 00 1 000 1 1 0 . The trai l ing 0 is the parity bit . When the receiving

device gets this data, i t counts the number of 1 's in the n ine data bits, sees that

the total is odd, and accepts it as correct.

If the number of 1 's received isn't odd, the device knows that an error has

occurred in the data transmission, and it asks to have the data sent again.

However, parity checking is not foolproof. As you can see i n the last rows of

Table 3 .4, as long as there is an odd number of 1 's , it doesn't matter if one,

three, five, seven, or n ine 1 's are received - an error is not generated . Th i s is

definitely a l im itation of parity checking. But because it's fast and inexpensive

to implement, i t provides a satisfactory level of security. I DE and E IDE don't

offer any error checking of the data that's transmitted over the cable.

Using Parity Checking
When working with SCSI systems, you'll probably encounter the term parity
checking. Parity checking is built into all SCSI-2 devices, and it will be part of all
future SCSI devices. It 's not always present in older, SCSI-1 devices, because
parity checking was an option in the SCSI-1 specification. So, if you have a
SCSI-1 device, be sure to check your manual to see whether your device sup­
ports parity checking.

Table 3.4: Odd Parity Checking (Odd Number of 1 's)

Data Value Number Odd Data Received Number

(8 bits) of 1 's Parity (9 bits, includes of 1 's

Sent Bit parity bit as LSB) Received Error?

00 1 000 1 1 3 (odd) 0 00 1 000 1 1 0 3 (odd) No

00 1 000 1 1 3 (odd) 0 00 1 0 1 0 1 1 0 4 (even) Yes

00 1 000 1 1 3 (odd) 0 00 1 0 1 1 1 1 0 5 (odd) No

00 1 00 1 1 1 4 {even) 00 1 00 1 1 1 1 5 (odd) No

0 1 1 1 1 0 1 1 6 (even) 0 1 1 1 1 0 1 1 1 7 (odd) Yes

There are two types of parity, even and odd. In even parity, there is always an
even number of bits set to 1 , including a reference bit called the parity bit. In odd
parity, there is always an odd number of bits set to 1 , including the parity bit.

Briefly, parity checking is a simple and fast way to detect errors in the data
sent through the SCSI bus by (1) checking the number of 1 's carried in a byte
(eight bits) of data and (2) checking the parity bit.

When you send eight bits of data, you count how many ones there are, and
you set the parity bit to either 0 or 1 , depending on the type of parity being
used. (See the sidebar "How Parity Checking Works" and Table 3.4 for a detailed
explanation of setting the parity bit.) When the target receives the data, it counts
the number of bits that are set to 1 . If the number of 1 ' s is odd when it should
be even or vice versa, the target knows that a data error has occurred, and it can
request that the device send the signal again.

SCSI uses odd parity, which means that the byte of data always contains an
odd number of bits set to 1 . If there is an even number of 1 ' s , then something
went wrong with the data transfer. The parity bit is included with each byte of
data that is transferred. Thus, rather than sending eight bits of data with each
byte , nine bits are sent. The ninth bit is the parity bit.

Although parity checking is simple and effective , whether you'l l be able to
use it depends on the capabilities of all of your SCSI devices. All devices on the
bus must be able to perform parity checking in order for you to enable it. In

SCSI Anatomy 4 9

5 0 Chapter 3

fact, if even one device lacks support for parity checking, you must tum parity
checking off on your host adapter. Otherwise, the one device that doesn ' t set
the parity bit properly will cause errors, and your system won' t work properly.

Is Parity Really Enough?

As bus speeds continue to increase, the TIO Technical Committee is con­
cerned that simple parity checking may not catch all the errors that may
occur. Therefore, in SPI-3, they are adding CRC (Cyclic Redundancy Check)
to be used with Fast-80.

Your SCSI Devices Can Communicate Either
Synchronously or Asynchronously
SCSI devices have two methods of sending and receiving data between devices:
asynchronous and synchronous. Their names are clues to their methods of
operation. In asynchronous communication, every byte of data sent from initiator
to target must be acknowledged by the target, with a kind of return receipt.
Whereas this is a safer way to communicate, it's also slower because the target
needs to send a receipt and the initiator needs to receive it before another byte
of data is sent, resulting in a delay in communication.

Synchronous communication also requires acknowledgment, but allows the
initiator to send many bytes without having to wait first for an "acknowledge"
for each byte from the target. So the initiator can send a whole stream of data,
and it doesn' t matter when the stream of receipts comes back. Thus, synchro­
nous communication is much faster than asynchronous, because instead of a
delay between each byte sent, a flood of data is sent, followed by a delay until
a flood of receipts comes back. In effect, you have one delay rather than a whole
bunch of delays.

Asynchronous Communicaticii'B

SCSI devices communicate with the host adapter asynchronously by default.
Asynchronous "handshaking" ensures that the data reaches the target.
Because devices wait for a return receipt before sending another byte of data,
communication between devices sending and receiving at different speeds
is possible .

For example, let 's say that your SCSI hard disk and host adapter need to
communicate with each other, but they send and receive data at very different
speeds: Your hard disk receives data much more slowly than your host adapter
can send it. If your hard disk were to keep sending data to your host adapter,
you shouldn' t have a problem because the host adapter can keep up. But
reverse the flow of information - assume it' s moving from the fast host adapter
to the slow hard disk - and you have a bottleneck. The host adapter dumps

out data faster than the hard disk can receive it, and the transfer falls apart.
Asynchronous transfer mode provides the solution for the latter case.

With asynchronous transfers, the host adapter will wait for the hard disk to send
acknowledgment that it has received the data. Once the host adapter receives
this acknowledgment, it will send its next byte of data, and so on. Thus, asyn­
chronous negotiation allows for compatibility between devices despite variations
in communication speed.

Because asynchronous transfer mode has this built-in "receipt requested"
feature, it's also a great method for protecting the integrity of data, because
data is sent only after the previous data has been received successfully. But
because of the overhead of the return receipt process, the maximum speed
over the SCSI bus is reduced when using asynchronous transfer.

Synchronous Communication

To speed up the communication process over the bus, synchronous transfer
mode was included in the SCSI specification. "Synchronous" means that the
initiator can issue multiple requests without waiting for the target to acknowl­
edge each one. As a result, the overhead of transferring data is greatly reduced.
However, we have a new problem in the example of our host adapter sending
data faster than the hard disk can receive it. Because the acknowledgments
don' t have to be returned after every byte , how would the host adapter know
not to send data too quickly for the hard disk? Simple. Before a transfer is
going to take place, both devices must agree on the maximum data transfer
speed between them and on the number of bytes that can be sent before
receiving an acknowledge - a process called synchronous transfer negotiation.
For example , a synchronous transfer from host adapter to a hard disk would
be negotiated at the maximum speed of the hard disk, given that it's the slower
device. Problem solved.

How do you know if your devices can communicate synchronously or only
asynchronously? Choosing the wrong method could lead to trouble with devices
that don ' t support synchronous transfers. Synchronous transfer negotiation
takes care of this problem as well . Before a synchronous transfer is attempted ,
the devices negotiate whether to use synchronous or asynchronous transfer
modes. If the target device can handle synchronous transfers, then synchronous
transfer mode is used. Otherwise, asynchronous mode is used for maximum
compatibility between the devices.

Disconnect/Reconnect

Even though SCSI provides features such as synchronous transfer mode, Fast
SCSI, and Wide SCSI to increase the performance of data transfers, all of its
attempts to speed up communication are for naught if you have to wait for the
bus to be available while other devices are seeking their heads or positioning

SCSI Anatomy 51

52 Chapter 3

their tape to prepare to send or receive data. To overcome this problem of
having to wait for devices to respond, SCSI offers disconnect/reconnect.

SCSI transfers data so quickly that, given the speed with which parts in
a device can move, almost any device can become a time-waster. The simple
fact is that operations such as positioning hard disk heads, fas t-forwarding or
rewinding tape cartridges, or changing CDs in a CD-ROM jukebox take a long
time (in terms of computer speed) . In cases such as these, where the hardware
itself becomes the time-waster, the device can get off the bus to go about its
own work and stop holding up the works.

In the meantime, with the "otherwise occupied" device out of the way, other
SCSI devices can go about their business performing various operations, like
sending and receiving data, and so on. When the device finally has its act to­
gether and is ready, it reconnects to the host that gave it the command in the
first place and performs its data transfer. This feature is what gives SCSI its
excellent multitasking capability.

On an active SCSI bus, it 's not unusual to have several devices with operations pending

in a disconnected state, waiting to get their shot at the bus. By planning your system

carefully, you can improve performance by placing heavily used filesystems on different
drives so that operations to them can be overlapped as much as possible.

Consider the case in which you request a file from your tape backup. Because
the tape in the cartridge is very long, a considerable amount of time can be spent
fast-forwarding or rewinding the tape to a specific position in order to read a
file. Rather than tie up the SCSI bus while the tape drive whirrs away, the device
can disconnect from the bus so that you can still access hard drives and any
other SCSI devices attached to the bus, thus preventing devices from hogging
the communication channel. When the tape drive has found the file and is
ready to send, it reconnects to the bus and sends the file. Whew- what a relief!

Disconnect/reconnect is particularly important in multitasking environ­
ments, where more than one program might need to send and request data at
the same time. Because devices can disconnect during slow operations, programs
that are running concurrently within the multitasking environment don' t have
to wait to access other devices on the bus while one device is busy. By using
disconnect/reconnect in a multitasking environment, the bus can be shared
by many devices for greater efficiency and ensure that the bus is not tied up
waiting for a device to be ready.

M�i.ili Although SCSI's disconnect/reconnect feature allows you to overlap the use of devices in

multitasking environments (like Windows NT, OS/2, and UNIX), IDE and EIDE are

poor at multitasking because they lack any similar feature.

Once More for Luck

Although the name may imply the contrary, a "single-ended" SCSI bus needs
terminators on both ends, as do HVD and LVD buses.

SCS I Anatomy 5 3

A D D I N G S C S I T O YO U R P C

In the first few chapters we 've tried to give
you an idea of what SCSI is , explain why

you might want to use it in your compute r,
an d introduce some of the terminology and

technical issues . If you've read this far, we hope you've
decided to add SCSI to your PC. Your reason may
be one of several : you wan t the flexibility of SCSI ;
you 've got to have the ultimate in p erforman c e ; or
maybe you need to install a typ e of device that's
only available with a SCSI interface .

Whatever t h e reason, the fi rs t thing you ' ll need to d o is select and instal l

a SCSI host adapter Gtrd. So what are you going to get? Single-Ended, Di ffer­

e n tial , or Low Vol tage Differential? Bus mastering or not? !SA? PCI? VLB bus)

Fast- 1 0 , Fast-20, Fast-40, or maybe Fibre Channel (for the h igh rol l e rs)) And

t h e n , of course, once you 've bough t the host adapter, you still have to i nstall

i t and get it working. Do you know what in terrupt to use? D!VlA channel? Port

address? Because none of these questions have a single answer that's right for

56 Chapter 4

all installations, it's important to understand the concepts behind the hardware
so that you can figure out what's right for your system.

Types of SCSI Host Adapters for the PC
Before you go out and buy a host adapter, you need to know a few things about
your PC. Nowadays, PCs have different types of slots , and option cards will work
only in their own specific type of slots.

A Bus hy Any Other Name . . . ISA, EISA, MCA,

VESA Local Sus, PCI, AGP

A bus is just a set of electronic signals that conform to a known specification to
allow the transfer of information across an electronic boundary in a computer.
You undoubtedly have heard of one or more of the following bus architectures:
ISA, EISA, MCA, VESA Local Bus, PCI , and AGP. Whereas SCSI is a bus for
transferring data between the computer and a device such as a hard disk, the
above-mentioned buses provide the means for sending data between the com­
puter's CPU and its interface cards.

/SA, or industry-standard architecture, is the bus used on the original IBM
PC or PC/XT. It is an 8-bit bus running at a maximum data rate of 8 MHz, or
8 MB/sec-very slow by today's standards. Upon introduction of the IBM PC/ AT
and the 1 6-bit Intel 80286, the ISA bus was extended to support 1 6-bit data trans­
fers and 1 6-bit cards. However, the data rate stayed the same. This proved to
be a performance bottleneck once 32-bit (386, 486, and Pentium) computers
came on the scene, because their higher performance demanded more data
faster than the bus could send it.

IBM decided that the only way to increase the data rate performance
between the computer and plug-in cards was to totally redesign the bus. (IBM
also wanted to eliminate the plethora of PC clones .) The micro-channel architec­
ture (MCA) was developed to provide 32-bit data transfers at up to 33 MHz. But,
because it wasn' t compatible with existing ISA cards, the MCA standard fell by
the wayside.

In another attempt to improve performance, an extension to the ISA stan­
dard was developed. The enhanced industry-standard architecture (EISA, pronounced
EE-sa) provides 32-bit data transfers at up to 33 MHz, but it can also accept older
ISA cards . The cost of EISA was high, thus restricting its use to expensive net­
work servers and users with large pocketbooks.

Later the Video Electronics Standards Association (VESA, pronounced VEE-sa)
stepped in and proposed an inexpensive 32-bit bus that could be used in
conjunction with ISA. The VESA local bus (VL-Bus, or VLB) allows data to be
transferred at up to 40 MHz between the computer and VL-Bus-compatible
cards . (A 50 MHz version was also defined but was problematic.) Although
VL-Bus is limited to two or three slots for interface cards, it was quite popular

on 386 and 486 computers because of its speed, low cost, and compatibility with
existing ISA cards . With the coming of Pentium class CPUs, VLB options slots
faded from inclusion in new systems.

Most recently, Intel introduced PCI to remove the bottleneck between the
CPU and the peripheral cards. This new bus offers 32-bit or 64-bit data transfers
at 33 MHz, and it supports more slots than VL-Bus. The maximum number of
card slots depends on the manufacturer's design. But beware: PCI is not com­
patible with existing ISA, EISA, or VLB cards, so you'll need to buy new cards
for a PCI machine.

During the transition period from ISA and VL-Bus to PCI, many machines
had both ISA/VL-Bus and PCI slots so users wouldn ' t have to throw away their
old cards. PCI is the bus of choice if you're running a Pentium or faster machine ,
because the speed of the computer won ' t be bogged down waiting for data to
come over a sluggish bus.

AGP is a new bus standard that is intended specifically for video cards.
There is typically only one AGP slot per motherboard. SCSI host adapters are
not available for AGP bus slots .

M�i.uj Many motherboard manufacturers are beginning to include SCSI host adapter logic on
the motherboard. If you buy a motherboard with built-in SCSI, you won 't need to buy a
separate SCSI host adapter card. If you 're considering one of these motherboards, be sure

to ask around (check out the hardware forums online if you can) to see which combina­

tions from which manufacturers are working well for people.

The Decisions

As with most things in the world of PCs, a trade-off exists between price and
performance when it comes to SCSI host adapters. You can expect to pay
more for a high-speed PCI host adapter than you would for a slower ISA one.
However, it doesn ' t do any good to install an adapter card that supports DMA
rates faster than the bus allows.

For example , the Adaptec l 542CF supports DMA bus mastering speeds of
up to 1 0 MB/sec, which is fast enough for FastlO SCSI; but because the ISA
architecture supports only 5 MB/sec DMA throughput, there would be a bot­
tleneck at the bus, and your system wouldn ' t be able to take advantage of the
higher transfer rate .

Caching Host Adapter Cards Cal'il
Increase Performance

Caching SCSI host adapter cards can improve your system performance by
increasing the disk 1/0 performance. Caching works by keeping a copy of cer­
tain data segments in memory so that they are immediately handy if the CPU

Adding SCSI to Your PC 5 7

58 Chapter 4

asks for them. Because it's faster for the system to retrieve a block of data from
memory than to read it off the disk, caching results in faster data transfer.
Caching data that was read from a device is called read caching.

A cache can also be used to improve performance by postponing the writing
of changed blocks of data to disk. This process is known as write caching.

Although write caching doesn' t usually significantly decrease the number of
disk accesses, it can compel the accesses to take place when the system isn ' t
busy doing something else. When the system is idle (waiting for you t o figure
out where your mouse cursor just went, for example) the blocks in the cache
that are marked as changed (or "dirty") are written (or "flushed") out to disk.

Because these changed blocks of data are written to disk only when the
CPU is idle, the CPU is free to finish other processing tasks, and idle time is
minimized. However, because the writing of data to the disk is delayed, if power
fails before the data is written out, that changed data will be lost. This could
potentially result in filesystem corruption. This is one of the reasons you need
to shut down your system properly rather than simply turning off the power.
This situation might prompt you to invest in a UPS (Uninterruptable Power
Supply) backup for your computer so it has time to flush its cache when the
power goes out.

Software Caching Is Flexible

Caching can be maintained either through software or hardware. The advantage
of software caching is that, unlike a hardware cache, it doesn't require dedicated
memory on the host adapter card. A software cache uses a portion of the system
memory to cache data, and you can adjust the size of the cache to suit your
needs.

Most operating systems use software caching to increase disk performance,
and many caching host adapters simply duplicate the caching algorithms of the
operating system software. For example, UNIX and Novell are already heavily
software cached, and MSDOS comes with a software caching program called
SmartDrive (smartdrv.exe) , which provides both read and write caching capa­
bilities . Windows 95 and 98 also cache certain filesystem data. A software disk
cache can dramatically increase its performance and minimize "thrashing" your
hard disk with repetitive reads and writes of the same data.

Hardware Caching Can Duplicate Sohware Caching

Hardware au:hing is another form of caching that uses the host adapter as the
location of the cache. However, because the memory exists on the host adapter
card itself, you cannot use that memory for any purpose other than the cache.
Also, if you need more cache memory, you have to buy more memory specifi-

cally for that purpose. The benefit of a hardware cache, though, is that the
cache management and maintenance is performed by the host adapter card's
own CPU, not the main system CPU. As a result, there 's no overhead when using
a hardware cache.

-

So, if a software cache is good and a hardware cache is good, why not use
both? Well, because using software-caching environments like UNIX, Novell,
Windows 95/98, or DOS with smartdrv.exe, along with a hardware cache in the
SCSI host adapter duplicates the caching algorithms. This double-caching of the
same data adds extra overhead, and it usually slows down the system.

Whic:lh /Forrm of (aching Ds R.iglht forr You?

Should you switch to a caching host adapter card if you're already using software
caching? Not if yours is a single-user system. Single-user systems running MSDOS
and Windows and already using software caching won' t see much improvement
in disk performance with the extra cost of a hardware cache . The zero cost
(it's included!) and flexibility of a software cache is the best solution. Also, single­
user systems generally have plenty of available idle time to write data to disk, so
you 'd probably want to avoid write caching on your PC.

On the other hand, a caching SCSI host adapter can give a big performance
boost if you ' re building a multi-user system like a Novell fileserver. The reason
is that such a heavily loaded system may not have enough idle time for the
software cache to keep up with all the requests for disk access. This causes two
bad things to happen: First, as the system becomes more heavily loaded, the
software cache begins to fill up with dirty sectors waiting to be written to disk.
These sectors take up space in the software cache that could otherwise be used
for read caching- an operation at which the software cache is much more
effective. Second, the software cache flushing operations can begin to interfere
with other system activity as more users are added to the system and less idle
time results . In fact, when the system is under heavy loads with no idle time,
the benefit of soft- ware write caching completely disappears, and hardware
caching is an excellent alternative .

Some caching host adapters are specifically designed to work cooperatively
in software-caching environments like UNIX or Novell. These host adapters are
engineered to make the process of writing changed data blocks more efficient.
Installing one of these specially designed hardware caching host adapters in a
software caching system doesn't eliminate the need for the operating system's
cache buffers to flush the dirty blocks from cache to disk, but it improves the
efficiency and speed of this operation. The hardware cache receives the flushed
data in a fraction of the time it would take without hardware caching, and it
then proceeds to copy the data back to disk concurrently without interfering
with other system activity.

Adding SCSI to Your PC 5 9

60 Chapter 4

One Bus or Two?

If you expect to have many devices on your system, you might want to consider
getting a dual host adapter card. Even though SCSI protocol allows each device
to operate at its own speed on the bus, really slow devices like scanners and
CD-ROM drives can take away performance from your hard disks. If you expect
that these devices will be operated heavily simultaneously (as they might be in
a server) , you might want to consider getting either two host adapters, or a dual
channel one. The main advantage to a dual channel adapter versus two separate
ones is the dual will only require one IRQ (interrupt request) , whereas the two
separate ones will probably need two.

If your system contains LVD devices, you should know that, if you mix sin­
gle-ended devices with LVD devices, the LVD devices won 't be able to operate
in LVD mode, which will limit their performance. The solution to this is to get
a host adapter that has two bus segments . Your system still has only one SCSI
bus, but dividing the bus into segments allows LVD devices to use LVD mode
on their segment and leave the second segment running in single-ended mode.

In a two-segment bus, each segment is separated by a signal conditioner chip
that isolates and re-clocks (cleans up) the signals . This also prevents reflections
from one segment from messing up the signals on the other segment(s) .
Because of this , somewhat longer cables are permitted also.

This technique also allows the host adapter to provide three connectors
(50-pin and 68-pin internal and a 68-pin external, for example) that can all
be used simultaneously. Without a separate segment for the internal devices,
you would be limited to using only two of the three connectors, because using
all three would form a Y-shaped bus, which is not allowed. An example that
illustrates this is the Adaptec 2940UW. It has three connectors but all are on
one segment. The newer version of the host adapter, the 2940UW Pro, has a
second segment, which allows the use of all three connectors simultaneously.

BIOS on the Host Adapter Lets You
Boot from SCSI Devices

Unfortunately, the main BIOS in most PCs doesn' t know how to control a SCSI
drive. On the other hand, the PC BIOS does know how to load extensions to it­
self in the form of PROM-based code on option cards. Therefore, if you want
to boot up your system from a SCSI hard drive, you must have a SCSI host adapt­
er with a built-in BIOS extension. During the boot process, the BIOS on the
computer's motherboard first checks the setup for a boatable disk. If it does­
n ' t find one, it scans for another BIOS on a peripheral card. When it finds the
BIOS on a SCSI host adapter, it allows the SCSI BIOS to handle the boot process .
If you don' t have a BIOS on your SCSI card, you 'll have no choice but to boot
from another type of hard disk (such as IDE or EIDE) or via floppy disk, because
the system's BIOS will recognize all of these .

How A/bout Mixing SCS8 and Non-SCSO

Host Disks in One System?

Even if you already have non-SCSI types of hard drives (like IDE, EIDE, or ATA)
in your system, you can still add a SCSI hard drive . The only catch is that, unless
your motherboard is equipped with a modern BIOS, which allows boot device
specification, the system will boot from the non-SCSI driYe rather than the SCSI
drive . The reason is that, during the boot process , the motherboard BIOS first
looks for bootable drives that have been set up in its BIOS configuration .
Because most SCSI host adapters (except ones built onto the motherboard) are
supported by option BIOSes on the host adapter, SCSI drives are seen after the
drives supported by the motherboard BIOS.

SCSI host adapters will, in general , coexist with other disk controllers as long
as you make sure there are no IRQ or port conflicts between the controllers .

M#o$1 j 'When choosing a SCSI host adapter, it 's impartant to consider what other featm-es the

BIOS offers. Many SCSI cards offer additional featum, such as the ability to format a

drive, extra diagnostics, and the ability to configure IRQ; DMA settings, SCSI ID, and
selection of SCSI options through software instead of with ju mfm-s.

What Performall'llce Leve� Do � Real �y Need?

If you've begun looking through all the Web sites, catalogs , and magazines, you
already know that the best-performing host adapters generally command pre­
mium prices. If you just want to hook up a CD-ROM or scanner, you can safely
opt for the lower-cost cards. If you will be using SCSI for your main hard disk
storage, however, you should consider getting the best-performing card you
can afford. Read the magazine reviews and the Usenet comp.periphs .scsi news­
group for a while to get a feel for what most people have found to be the best
compromise among performance, price, and compatibility. One of the very
important considerations is whether you can expect the manufacturer to remain
in business long term so that you will continue to get driver updates and so on.

In choosing the performance level of the card, be aware that, unless you also
plan to spend top dollar on the hard disks, going for the maximum bus speed
(currently Fast-40) may not actually give you any more overall performance.
For example, currently the fastest disk drives can read data off the media at about
20 MB/sec. Putting only one of these drives on a Fast-40 host adapter (which
can hustle 80 MB/sec in Wide mode across the bus) is not very cost effective .
If, however, you expect to have several of these drives on the bus (as you prob­
ably would in a departmental server) , go for the speed! You can use all the bus
bandwidth you can get.

There is more than bus speed to be gained with Fast-40, though . When
the TlO Technical Committee defined Fast-40, they specified that, when it is

. used on single-ended buses, the maximum length of the bus would have been
about 0 .5 meter (about 20 inches) ! To remedy this situation, they defined

Add ing SCSI to Your PC 61

62 Chapter 4

the low voltage differential (LVD) protocol. The increased noise immunity
allowed the maximum length to be extended out to 1 2 meters (about 39 feet) .
So if you want to be able to space your devices out more , you might want to
get a Fast-40 (Ultra2) LVD host adapter.

The SCSI in tn-face card is the link between your computer and all the SCSI
devices you connect to it. Once you purchase the SCSI interface card, you
have to configure and install it before you can start adding SCSI devices. If
your card uses Intel/Microsoft's Plug-and-Play SCSI interface, the configura­
tion is handled for you after you plug the card in and power up the computer.

For those of you who don' t have a Plug-and-Play card, you will need to
set the SCSI ID, 1/0 port, interrupt, and (on some cards) the DMA channel.
We 'll go over each of these settings, what they do, and what happens if you set
them incorrectly.

PCI-type host adapters have registers that the CPU can read and write to find
out who manufactured the card to set up the appropriate 1/0 ports , inter­
rupts, and DMA channels automatically. About the only thing you might need
to do is go into your BIOS setup menu and select which interrupts will be
used by the PCI slots. PCI cards can share interrupts, so you don' t need one
for each card-as you do with many other types of option cards. If you have a
PCI-based card, you can skip the next few sections , which explain how to set
these things manually.

Setting tlhe fPJorl Addlf'ess -the IFif'ont Doo/1" to the Dnterlace

Every interface card has a port address, also known as the input/output (I/O)
jJOrt. The 1/0 port is the communication channel through which all commands
are passed. Incorrectly setting the port address will render the interface card
useless, because the computer won ' t know where the card is. Setting the port
address incorrectly is like writing the wrong mailing address on a letter. The
message won' t go where you want it to .

The reason it's so important to know what I/0 ports are in use is that, when
two ports arc set to the same address, your system ends up with a hardware
conflict or, more specifically, an 1/0 port conflict. You'l l know when you have
a hardware conflict, because either your SCSI card, or the other interface card,
or both will not function properly, if at all. This doesn' t mean that the cards
are broken. The solution is to simply change the port address on either the

SCSI card or the other conflicting card and try again . As long as there isn ' t a
conflict, and assuming no other problems exist with your card or your system,
your SCSI card should begin to work properly.

There 's more than one way to select the port address, but the general
procedure is that you change a set of switches or jumpers. More and more SCSI
cards allow you to configure the port address through their configuration soft­
ware, so you don ' t have to actually change any physical settings on the card.
The only way to find out how to change the port address on your card is to read
the manual that came with the card.

Regardless of how you set the port address on your card, you will have
several three-digit addresses to choose from. Common addresses include num­
bers like 1 30, 1 34, 230, 234, 330, and 340, but your particular SCSI card may
have other addresses. The particular address you select depends on one thing:
It cannot be the same as an address already being used by another interface in
your PC, like your printer or mouse, for example.

Find Conflicting Addresses

To avoid choosing a conflicting port address, you need to know what ports are
already being used by other devices. To help you to determine which ports are
already being used in the PC, see Appendix B, which lists all the common I/0
port addresses. In addition , check the manuals for the other interface cards in
your computer to see what ports they're set to .

A variety of diagnostic programs, such as Microsoft Diagnostic (msd.exe) ,
comes with DOS 6 .x and Windows 3 .x, but they cannot always identify all the
devices in your computer. A much better utility, provided in Windows 95/98,
is called the Device Manager. To get to it, select Control Panel • System, then
the Device Manager tab . Then you can select the device of interest (in our
case the SCSI host adapter) , and choose Properties to look at what driver has
been loaded for it and what resources (in this case port addresses) are being
used by it.

The only way to know for sure what you have in there and what I/0 ports
your devices use is to open the computer and take a look. Pull out those old
manuals and compare the jumpers or switches on the interface cards in your
system with the information in the manual. Once you determine the settings
for the card, write them down so you won't have to go through this process next
time you add a card.

Setting Interrupts

Without the ability to be interrupted while running a program, your CPU
would be oblivious to any hardware or software around it, including interface
cards (unless the program were specifically programmed to check up on devices
periodically to see if they were in need of attention) . Your computer is a com­
plex system, with different devices placing demands on the CPU at different

Adding SCSI to Your PC 6 3

A NOTE ABOUT I NTERRUPTS

Although there are 1 6 interrupts on 286 and higher class computers, IRQ 2

is not specifically used. These machines use two interrupt controller ch ips, i n

a master a n d slave configuration, with each c h i p provid ing eight interrupts.

However, the 8 interrupts from the slave are channeled into the master via IRQ

2. As a result, IRQs 8 to 15 wil l trigger through IRQ 2 . However, IRQ 2 is not

completely lost. A device that is set to IRQ 2 will be relocated to IRQ 9 .

However, some motherboards have trouble with I R Q 9, s o avoid it unless

you run out of IRQs.

times, regardless of whether the CPU is doing something else at the moment.

What happens when your interlace card wants to send data to the CPU but it

doesn't want to wait around until a program asks for the data? The device uses

a hardware interrupt to request the CPU's immediate attention .

Hrmlware intm·upts are the vehicle with which your computer manages

different devices requesting attention from the CPU. Your computer h as a

number of in terrupt l ines that carry these requests to in terrupt the task the

CPU is working on. When you set hardware interrupts , also called IRQs or

in terrupt requests, you're selecting the interrupt l ine (your CPU has several

interrupt l ines built in as pieces of hardware) in your system that will be used

by a particular device when it wants to request attention from the CPU. Once

I RQs have been set, your devices will use their assigned interrupt line to request

the CPU's attention. The device, l ike your in terface card or your modem, wil l

put a signal on the bus via this interrupt l ine to signal to the CPU that the

device needs attention. Setting the hardware interrupt simply means selecting

which interrupt l ine the device will use to rell the CPU that the device needs

something.

M#•uJ On host adapters, wlwre in terrupts are not usl'd, fJolling is 1·equin�d. Polling is a fJrocess

whn·eby the CPU goes out at regular intnvals to sel' if a drvice needs attention. The biggest

problem with polling is that it wastes a lot of timr in yrn.1.r systnn. Each time a dl'vice needs

attention from tht' CPU, it has to wait for tlw CPU to fH!ll it. It can 't intermfJt the CPU
with rt 'IPIJII.I'Sl jin· nUrntion, as it can wlwn 11sing IHQ1·.

64 Chapter 4

Just as you did with the port address, you set the interrupt on your card by

changing a switch or j umper on the card. In terrupts can also be set on some
cards by using the manufacturer's configuration software . See your card's

manual for speci fics on how to change or select your card's I RQ setting if the

factory default setting won't work.

Your PC has 1 6 possible in terrupts, ranging from 0 to 1 5 . The inte rrupt

you select should be free, meaning that it's not being used by anyth ing else.

Use Appendix B, which lists the interrupts commonly used in most computers,
as an aid to setting your interrupts, but be sure to check the other interface
cards in your system to see exactly which interrupts are used and which ones
are free. Take a look at IRQ 10 , 1 1 , and 15 first because these are most com­
monly available for use by a SCSI card.

One way to see which interrupts are in use in your system is to run
Microsoft Diagnostics, msd.exe, from the DOS command prompt. This program
comes bundled in DOS 6 .x. A selection in the program will give you a list of all
of the interrupts and their status (free or in use) in your system. Be sure to run
the program from the DOS prompt, not from within Windows, for the most
accurate picture of your system. Although this is all that was available under
Windows 3 .x, it wasn ' t a completely reliable tool. As we discussed under "Setting
The Port Address," the Win 95/98 Device Manager can help with interrupts as
well . The only way to know for sure is to open your system and log the settings
for all the cards in your computer. Appendix C also lists IRQs used by the
motherboard. This is important so that you don ' t run into an IRQ conflict v.�th
a built-in device such as the real-time clock.

When you assign the same interrupt to two or more cards, you create the
potential for a hardware conflict commonly called an IRQ conflict. An IRQ
conflict is like having two houses with the same doorbell. When you push the
button, the people in both houses hear the ring and come running to the door.
Funny thing is, you 're probably at only one of the doors.

This is not to say that two devices cannot share one IRQ. In fact, interrupts
can be shared between devices, but only if (1) the devices sharing the IRQs have
some other way of identifYing themselves to the host, or (2) the de,�ces will never
need to request CPU attention at the same time. The printer port is an example
of such a device . For example, if you have a sound card at IRQ 7, it \\�II share
its interrupt with the printer port at IRQ 7. As long as you don't use both devices
simultaneously, a conflict doesn ' t occur. Not all de\�ces are good about sharing
IRQs, and the risk you run when your de\�ces share IRQs is that your computer
will lock up when it encounters a conflict between the devices at the IRQ. The
best rule of thumb is to give each de\�ce its very own IRQ.

Using DMA for High-Speed Data Transfer

When your system accesses a peripheral device, like a disk or tape drive , large
amounts of data are moved back and forth between the device and the com­
puter's RAM (random access memory) . One of the most efficient methods of
moving this data is called direct memory access, or DMA. DMA is a method by
which a plug-in card that controls a peripheral (also called a peripheral con­
troller, or simply a controller) can read or wri te directly to RAM. In contrast,
when DMA is not being used, the CPU, rather than the controller, reads or
writes to RAM, thus taking time away from the CPU that could be used for other
sorts of data crunching. Controllers that support DMA free up the CPU and,
as a consequence, speed up the rest of your system.

Adding S C S I t o Your PC 65

66 Chapter 4

DATA TRAN SFER METHODS: D MA, BUS MASTE RI N G ,

PROGRAM M E D 1 / 0

DMA

Two primary types of DMA are used in PCs: third-party DMA and first-party

(or bus-mastering) DMA. Third-party DMA, used on floppy d isk controllers i n

PC/ AT ISA and E ISA computers, is the slower and less expensive of the two

types of DMA. It relies on an independent DMA controller, typically bu i lt into

the PC motherboard, to move data between a peripheral card (the first party)

and system RAM (the second party). Because it can be shared by multiple

peripheral cards, the DMA controller is considered the third party.

BUS MASTERING

Bus-mastering SCSI controllers can take advantage of the faster DMA, cal led

fi rst-party or bus-mastering DMA. These controllers can move data to and from

system RAM much faster than either PIO or third-party DMA, because they con­

trol the DMA transfer themselves: They don't need the help of the CPU or a

thi rd-party DMA controller to transfer data. While transferring the data using

first-party DMA, the DMA hardware on the peripheral controller suspends CPU

operation and takes control of the system bus. The hardware then automatically

moves the data between system RAM and a buffer on the controller, resulting i n

much faster data transfer, because the C P U i s not being used-the data transfer

is implemented by the controller.

Although DMA improves the multi-tasking performance of the SCSI adapter,

controller cards that use bus mastering, rather than th i rd-party DMA, wi l l gener­

a l ly have the h ighest performance.

PROGRAM MED 1 / 0

I f you don't have a bus-mastering controller card o r a controller card that sup­

ports regular DMA transfers, your system uses a data transfer method called

programmed input/output, or PIO. PIO was used by the hard d isk controller on

the first PC/ AT. PIO uses the CPU to move data between a controller card and

the computer's memory, with data transfer speeds reaching about 2 .5 MB/sec.

In comparison, data transfer rates on even a slow ISA machine with a bus mas­

tering SCSI card can ach ieve more than 5 MB/sec, qu ite a sign ificant increase

in performance.

PIO's relatively slow data transfer is its primary drawback. Its performance

is hampered by the fact that it needs the CPU to read or write each block of

data . As a result, transfer speed is s low and the CPU is unavailable for other

tasks, thus slowing down the entire system. PIO's d rawbacks make it unsuitable
for mul ti-user environments l ike Windows, UNIX, or Novel l fi leservers. DMA, by
contrast, is a much more sophisticated and effective method of data transfer.

SeHing Your DMA Channel

If your SCSI card supports DMA, you will have to set its DMA channel. As you
did with I/0 ports and IRQs, make sure that you select a DMA channel that is
unused by any other card in your system. Not to belabor the point, but the only
way to really know what DMA channels are in use is to log the settings of all the
cards currently in your system. Also check Appendix C for common DMA usage
in the PC. That's the last time we 'll say that. Promise.

In addition to setting its DMA channel, you may also have the option to
set the DMA transfer speed on your SCSI card. Your choice of DMA transfer
speed will depend on the type of bus slots in your PC. Following are the major
types in order by speed:

ISA Relatively speaking, ISA is slow, supporting DMA transfer rates of up
to 5 MB/sec. In most machines, it has been replaced by newer and much
faster bus alternatives, namely EISA, VLB, and PCI.

EISA In contrast to ISA's top speed of 5 MB/sec, the EISA bus supports
DMA transfer speeds of up to 33 MB/sec.

VESA local bus, also called VL-Bus or simply VLB, supports DMA burst
speeds (transfers of small blocks of data) of up to 1 30 MB/sec, though
the sustained rate (continuous data transfer) is closer to 32 MB/sec.

PCI bus can sustain a rate of 132 MB/sec, which beats even the highest
measured burst speeds ofVLB.

Future PCI In a continuing attempt to improve on bus transfer rates, a
forthcoming PCI standard will support DMA rates of 264 MB/sec, twice
the current sustained rate for PCI.

It's important that, when you set the DMA transfer speed, you set it no higher
than the highest transfer speed that the bus slot holding your card can handle .
For example, because most ISA slots can handle data transfer rates no higher
than 5 MB/sec, setting an ISA SCSI card higher than 5 MB/sec could introduce
intermittent data corruption into your system resulting from the incompatible
transfer rates. (This �ata corruption can be very hard to track down, too.)

Add ing SCSI to Your PC 67

68 Chapter 4

When setting the DMA transfer speed, your best option is to use the
card's factory-set default transfer rate . Don' t experiment with faster DMA
transfer speeds unless you know that your computer can support them.

Setting the DMA is similar to setting the l/0 port and IRQ. A set of
j umpers, a switch, or a configuration program will be available to make the
changes. The installation section of your SCSI card's manual will show you
which method to use.

Set the SCSD ID em Your Interface Card

As with any SCSI device, when you install a SCSI interface card you have to
assign it a SCSI ID. You set the host adapter's ID by changing a set of switches
or jumpers on the card or by using the manufacturer's configuration software.
See the manual that came with your SCSI card for specifics on how to set its
host ID.

The host adapter's ID is normally set to 7, the highest priority ID on the
SCSI bus-and you' re probably safest setting it to 7, because many manufac­
turers of SCSI hardware or software default to a setting of 7. However, you can
select any ID from 0 to 7 as the host ID, as long as the ID is not in use by another
SCSI device. If your interface card is a Wide SCSI interface, you'll have more
than the 0 to 7 IDs to choose from: 1 6-bit Wide SCSI offers IDs from 0 to 1 5 ;
32-bit offers IDs from 0 to 3 1 . I D 7 is still the highest priority though, even when
higher IDs are available.

Things to Keep in Mind When Setting SCSi Host Adapter liDs

If you're combining regular and Wide SCSI devices on the same bus, set the
host adapter's ID to an ID between 0 and 7; otherwise, the 8-bit SCSI devices
won' t be able to talk to the host adapter. About the only reason to set the host
adapters ID to anything other than 7 is if you plan to share SCSI devices between
two host systems. In this case, one of the host adapters should be ID 7 and the
other should be ID 6. This is an unusual situation, however.

Instal l the Right Drivers
Drivers are programs that allow the operating system and your applications to
communicate with peripheral devices. When you load a driver, you're actually
loading a program in memory that the computer can use when it needs to access
a device. Some devices, like floppy disk drives for example, have their driver
built into the computer's BIOS, so you probably won' t have to load a driver
for them. Also, depending on what operating system you install , you may not
need to load any driver for your interface card. If it has a built-in BIOS and
you're only using it to access hard disk drives under a single-tasking operating

system like MSDOS, its BIOS probably has all of the software that you'll need
to access your hard disk.

Still, there are many types of SCSI devices on the market besides hard disk
drives , and each requires its own special driver. But it's not the case that each
type of SCSI adapter needs a different driver for each type of SCSI device. If
this were the case, SCSI systems would end up with a multiplicity of drivers and
a lot of confused users: People asking questions like "Where can I get a driver
so my Adaptec AHA-1 540CF can talk to my Toshiba XM-330 1 T CD-ROM?"
would probably drive manufacturers crazy.

!LGyered DD"ivers

To avoid this potentially unpleasant situation, SCSI card manufacturers have
developed standards for drivers that allow most SCSI devices to talk to their
particular interface card. These special drivers are called layered drivers, because
they're built up of layers of different drivers . The bottom, or adapter-specific,
layer is a driver that communicates with the hardware on the SCSI adapter.
This is also called the low-level driver. You load drivers for your specific SCSI
devices on top of this adapter-specific, low-level layer. Instead of communicat­
ing directly with the SCSI adapter card itself, these layered device drivers
communicate only with the bottom-layer adapter driver, so that only this bottom­
layer driver needs to be able to communicate with the SCSI device. The use of
layered drivers really simplifies the problems of driver writing and compatibil­
ity, because host adapter manufacturers need only focus on the bottom layer
of the driver, rather than what may be several layers of drivers on top .

Of course, the world of drivers isn ' t quite that simple. On PCs there are
two competing standards for SCSI device drivers. The most widely used device­
driver standard right now is ASP! (Advanced SCSI Programming Interface) ,
which was developed by Adaptec and has since been adopted by most other
card manufacturers . ASPI exists for MSDOS, all flavors of Microsoft Windows ,
OS/2 , and NetWare. Another advantage to this layered driver approach is the
potential to program the SCSI interface yourself, without needing to know
much about the host adapter itself.

Another driver interface standard is CAM (Common Access Method) , an
ANSI standard (X3.232- 1996) software interface for SCSI device drivers . CAM-

3 is a draft standard that enhances CA as part of the SCSI-3 architecture model.
Currently, CAM isn ' t as widely implemented on PCs as ASPI, though CAM dri­
vers are available for most popular devices.

Windows 95/98 and Windows NT also use a layered driver architecture .
The Windows 95/98 and NT device drivers are called Miniport drivers. Many
ASPI and CAM device drivers written for DOS and Windows 3 .x will work under
Windows 95/98.

For non-PC systems like UNIX workstations, the driver interface is less stand­
ardized. Many manufacturers use their own proprietary driver interface. Digital
Equipment Corporation (now owned by Compaq) uses CAM for their Digital

Adding SCSI to Your PC 6 9

UNIX (now called Tru-64 UNIX) drivers. A few other workstation manufac­
turers do as well. ASPI 's architecture is not flexible enough to accommodate
the needs of UNIX systems.

Get the Latest SCSI Drivers

Probably the most important thing to keep in mind when dealing with SCSI
device drivers is that hardware manufacturers are constantly updating them.
If you experience any problems, always make sure you have the latest drivers
for your hardware. You can usually download the drivers from the manufac­
turer's web site or from the support conferences on online services like
CompuServe or America Online. A list giving many of these URLs is contained
in the SCSI FAQ which is on the CD-ROM accompanying this book. At the same
time that you're making sure you've got the latest device drivers, you should also
make sure that the latest drivers aren ' t buggy. Keep up with the latest informa­
tion about device drivers by checking out the appropriate conference online
or read the SCSI newsgroup on Usenet. A little knowledge about what's happening
in the world of drivers can save you a lot of headache and frustration.

Software That Will Simplify Your Driver Installation

The major SCSI host adapter manufacturers all have SCSI driver installation
tools . For example, Adaptec's program is called EZSCSI, and Symbios (now LSI
Logic) has SDMS. When you run these programs on your system, they analyze
your hardware and software, load the appropriate drivers, and then add the nec­
essary driver installation commands to your config.sys and autoexec.bat files
(in MSDOS-based systems) . In addition to the installation tools, the packages
often include some extra utilities, like a disk formatter or a tape backup pro­
gram as well as performance measuring tools . Also, the Plug-and-Play tools in
Windows 95/98 greatly simplify driver installation.

DOS Drivers

Although the major SCSI host adapter manufacturers supply an easy-to-use
program to install and configure your drivers, you may have to change the
configuration manually someday. To become familiar with the drivers that are
commonly installed into a DOS SCSI system, let's take a look at the two standard
types of SCSI drivers, ASPI and CAM , and what each driver does.

M#ollj The following examples give you a general idea of which DOS drivers might have been
loaded &y your adapter's installation program. You should check the manual for your
SCSI interface to see exactly what drivers it uses and what drivers it comes with for the
devices you want to attach. If you have a SCSI device that doesn 't have drivers supplied
&y the host adapter manufacturer, the driver may have been included with the device.
Check the documentation to see if it has its own SCSI drivers.

70 Chapter 4

ASIPD

The main ASPI driver is the low-level or adapter-specific driver. I t ' s the d river

that talks directly to your SCSI adapter. Each SCSI card has i ts own special low­

level driver that presents a standard interface to upper-level drivers, so that

drivers for specific devices don ' t have to worry about the brand of host adapter

you ' re using. Although the exact name of the low-level driver changes from

company to company and host adapter model to host adapter model , they often

have "ASPI" as a part of the filename, l ike aspixx.sys. Some drivers also have

"DOS" in the fllename, so that you know it 's a DOS driver. For example,

Adaptec 's 1 542 SCSI host adapter's low-level driver is called aspi4dos.sys. The

"aspi" at the beginning indicates that it 's an ASPI-compliant driver; the "4" stands

for the 4x model of the 1 5xx series of cards; and "dos" indicates that it's a DOS

driver. If you have a different brand of SCSI card, your driver's name won ' t be

exactly the same, but it wil l likely be similar.

All the drivers following the ASPI manager in the conflg.sys flle (aspicd.sys

in the example) are device-speciflc drivers . These drivers provide support for

a certain type of device-a hard disk, for example. Once again , ASPI device­

speciflc driver fllenames wil l usually include "ASPI" as well as some indication

of the type of device it supports . For example, Adaptec 's aspidisk.sys provides

support for hard disks, and aspicd.sys supports CD-ROM drives . Some drivers

may use only the device name to identifY the driver, such as cdrom.sys .

The DOS ASPI drivers are loaded by the config.sys file . Following is a

sample config.sys flle :

d ev i c e = c : \ a s p i \ a s p i4 d o s . sy s /d
d o s = h i g h

f i l e s = 3 0

b u f fe r s = 2 0

d ev i c e = c : \ d o s \ h imem . s y s

d ev i c e = c : \ a s p i \ a s p i c d . s y s i c : m s c d001

This file contains entries that load a low-level ASPI driver (device=c:\

aspi\aspi4dos .sys I d) as well as device-specific drivers for hard disks

(device=c:\tspi"<tspidisk.sys) and CD-ROMs (device=c:\tspi\aspicd.sys/ d:mscdOO 1 ,

where /d :mscdOO l is an identif}'ing label for the driver) . Your installation may

have additional options after the name of each driver, depending on the par­

ticular driver you ' re using. Refer to your host adapter's device driver manual

for the use of any additional options. One useful option is to tell the low-level
driver to display a list of what devices are seen at each SCSI ID. This provides

useful troubleshooting info if you run into difficulty later.

If you ' re using DOS 5.0 or higher and EMM386 or a third-party memory

manager such as QEMM or 386Max, you can load the ASPI driver into upper

memory by using the Devicehigh command instead of the Device command,
as shown by the series of devicehigh statement� in the following config.sys (check

Add ing SCSI to Your PC 71

72 Chapter 4

your DOS manual for more information about upper memory and loading
drivers into upper memory) :

device=c : \d o s \ h imem . sys

device=c : \ dos \emm3 86 . exe ram

do s = h ig h , umb

f i l e = 30

buffer s = 2 0

dev i ceh igh=c : \ a s p i \ a s pi4dos . sy s /d

devicehigh= c : \ a s p i \ a s p id i s k . sys

devicehigh=c : \ a s p i \ a s p icd . sys /d : mscdOOl

CAM

Like ASPI, CAM also has a low-level or adapter-specific driver that talks directly
to the SCSI adapter. As in the case of ASPI drivers, each manufacturer has its
own version of the low-level driver. CAM drivers usually have "CAM" as a part
of the filename, and some also have "DOS" in the filename so that you know
it 's a DOS driver. For example , Symbios 's low-level CAM driver is called
doscam.sys . The "dos" indicates that it's a DOS driver and "cam" indicates that
it supports CAM functions. If you have a different brand of SCSI card, your
driver will have a similar name.

Device-specific CAM drivers follow a naming convention similar to that
used with ASPI device-specific drivers. They may have CAM in the filename
and also the type of device supported. For example, Symbios 's scsidisk.sys pro­
vides support for hard disks and cdrom.sys supports CD-ROM drives .

CAM drivers are loaded by entries in the config.sys file like the following:

device=c : \ cam\doscam . sys

d o s = h igh

f i l e s = 30

buffers = 2 0

device=c : \d o s \ h imem . sys

device=c : \ cam\ s c s i d i s k . sys

device= c : \ a s p i \cdrom . sys /d : mscdOOl

This sample config.sys file contains entries that load CAM drivers for a Sym­
bios SCSI adapter (device=c:\cam\doscam.sys) , as well as device-specific drivers
for hard disks (device=c:\cam\scsidisk.sys) and CD-ROMs (device=c:\aspi\
cdrom.sys /d:mscdOO l) . Again, /d:mscdOO l in this example is simply an iden­
tifier for the CD-ROM driver. Your installation may look different depending
on your system configuration. (Refer to your host adapter's device driver man­
ual for more information on the use of your host adapter's drivers .)

If you ' re using DOS 5.0 or higher and EMM386 or other memory man­
ager, you can load the CAM drivers into upper memory with the Devicehigh
command, as shown by the series of device high statements in the following

config.sys file (check your DOS manual for more information about upper
memory and loading drivers into upper memory) :

device=c : \d o s \ h imem . sys

device=c : \ do s \emm3 86 . exe ram

do s = h igh , umb

f i le = 30

buffer s = 2 0

devicehigh =c : \ c am\doscam . sy s

deviceh igh=c : \ cam\s c s i d i s k . sys

deviceh igh =c : \cam\cdrom . sys / d : mscdOOl

If you have a SCSI card that uses CAM drivers, you may also have an ASPI-to­
CAM translation driver. This driver is used to translate commands from
programs that only support ASPI to ones that your CAM driver can understand.
It's only needed if you 're using ASPI-specific programs and drivers that don ' t
talk CAM , such as Central Point Tape Backup. This translation driver i s called
aspicam.sys, aspi2cam.sys , or something close to that.

M�i.Uj The ASP I-to-CAM driver should be loaded after the CAM low-level driver and before any
ASPI-specific drivers.

Windows 3. 1 Drivers

DOS SCSI drivers are compatible with Windows 3. 1 , so once you finish installing
them, Windows will be able to access all your wonderful SCSI devices. Some
manufacturers also include Windows-specific drivers to squeeze out an extra
bit of performance or to support additional features used by their own utility
programs, such as tape backup software, music CD players , or diagnostic tools .
For example, Adaptec's software installs two files for Windows ASPI support:
winaspi.dll and vaspid.386. Your particular SCSI card may not use Windows­
specific drivers . If it doesn ' t, don ' t worry unless you can ' t access your SCSI
devices from Windows, in which case you'l l need to get a driver from the man­
ufacturer of your host adapter or replace it with a different one.

If your card does use a Windows driver, make sure that it 's been copied
into the Windows System directory (usually c :\windows\system) and that the
correct entry exists in the 386Enh section of your system.ini file. The example
below shows this entry in a typical system.ini file, including the Adaptec Windows
ASPI driver vaspid.386:

[3 8 6 E n h]

device=va s p i d . 3 86

device=dva . 3 86

keyboard=*vkd

device=* i n t 1 3

And so on.

Adding SCS I t o You r PC 73

74 Chapter 4

Windows 95/98 Drivers

Windows 95/98 includes drivers for SCSI cards from the leading manufacturers.
In most cases, Windows 95/98 will know when you install a SCSI card into your
system, and you will be sent straight to the Add Hardware Wizard (in which case
you should skip to step 5 below) . If your card wasn ' t detected, you'll need to
run the Add Hardware Wizard yourself as follows :

1 . Click the Start button.

2. Click on the Settings menu option.

3 . Click on Control Panel.

4. In the Control Panel window, double-click the Add/Remove Hardware icon.

5. At the Add Hardware Wizard opening screen, click the Next button.

6. You can now install hardware by auto-detection or you can install it your­
self. Auto-detection isn ' t foolproof and can lock up your system in some
cases. However, it is the simplest way to add new drivers, so try it first. To
auto-detect, click on the button next to Auto-detect. To choose the type of
hardware driver yourself, click on the button next to Install Specific and
skip to step 1 under the "Install Specific" section below.

7. Now click the Next button to run Auto-detect.

Auto-Detect Instal lation

1 . Windows will begin auto-detection. This may take a while. If the progress
meter at the bottom of the window stops for a long period of time (say, 1 5
minutes) , the computer has probably locked up, and you'll have to restart
your system.

2. After all devices have been properly detected, a new window will come up.
If you want to see what devices were detected, click the Details button.
Otherwise, click the Finish button to install the new drivers .

3 . If the required drivers aren't already on your system, Windows will ask you
for the appropriate disk. Follow the instructions from Windows for any
drivers it needs.

4. After all the drivers are installed, you will need to restart the system for
the changes to take effect. Click the Restart button to restart Windows.

lnstcall Specific

1 . To use Install Specific, first scroll clown the list of hardware devices until
you get to SCSI Controllers and then double-click on SCSI Controllers.

2 . Select the manufacturer of your SCSI con troller from the list on the
left by clicking on it. If the manufacturer is not listed, click on the
Have Disk button.

3 . Select the model of SCSI card that you installed from the list on the right
by clicking on it.

4. If you have updated drivers on a disk that came wi th your SCSI card, you
can install the newer version by clicking on the Have Disk button.

5 . Click the Next button to install the clriver(s) .

6. A window will come up showing you the current settings for your SCSI
card. Write this down for future reference so that you can avoid an 1/0,

IRQ, or DMA conflict with the SCSI card when installing an interface card
into your system. Click the Next button after you write clown the settings.

7. Click the Finish button to finish installing the clriver (s) .

8 . After all the drivers are installed, you wi ll need to restart the system for
the changes to take effect. Click the Restart button to restart Windows.

Windows N'lf' Drivers

Windows NT includes drivers for many SCSI interfaces. After installing your
SCSI card, start Windows NT and see if you can access your SCSI devices. If not,
you have to install the NT drivers for your SCSI interface as follows :

1 . Open Program Manager if it isn ' t already opened.

2. Open the Main group window and start the Windows NT Setup program.

3 . Select Add/Remove SCSI Adapters from the Options menu.

4. Click the Add button and select the type of SCSI adapter you 've installed.

5. If Windows tells you that the driver already exists on the system, you can
click Current to use the existing driver or New to install a new copy .

...

Add i n g SCSI to Your PC 75

76 C hapter 4

6 . If you choose to use the current driver, it will be installed and you will
return to the main window where the new SCSI card will be listed.

7. If you choose to install a new driver, Windows will ask you for the full path
to the location of the driver. Type in A:\ or B:\ (or perhaps the drive letter
of a non-SCSI CD-ROM) , depending on which drive you inserted the dri­
ver disk in, and click OK

8. After the driver is installed, you will see it listed in the Main Setup window.
Click the OK button to close the setup program.

9 . Restart Windows NT by clicking on the Restart button for the changes to
take effect.

OS/2 Drivers

OS/2 has its own set of standards and conventions for SCSI device drivers.
Beginning with version 2 .0 , OS/2 includes drivers that allow for direct SCSI
access . OS/2 includes drivers for SCSI disks, CD-ROM drives, and optical disks ,
as well as an ASPI driver for communicating with other devices.

The concept behind OS/2's drivers isn ' t that different from that of ASPI
in DOS. If you' re running OS/2 and adding a new SCSI device, you have to
load a hardware-specific driver for your host adapter card. Either you'll find
this driver on a disk that came with your card or you'll need to get i t directly
from the card's manufacturer or its BBS (see Appendix A for a listing of man­
ufacturers, including their BBS numbers) . This hardware-specific device driver
will probably have a filename with a .add extension.

To load these device drivers , choose Device Driver Install from System
Setup. Follow the directions on your screen, and you should be on your way.
Once you've loaded your hardware-specific .add driver, you may be asked to
load OS/2's device type-specific drivers , which usually have a .dmd extension.
Again, either you'll find this driver on a disk that came with your card or you'll
need to get it from the manufacturer.

Finally, some devices running under OS/2 may require that you load
drivers to change or enhance their operation. These drivers will have an
. fl t extension.

Before direct SCSI support was implemented in version 2. 0 of OS/2, Microsoft and

IBM developed a standard driver interface called LADDR (Layered Device Driver),

which was used in OS/2 versions 1 . 2 and 1 .3. It is not needed in later versions
of OS/2.

Linux Drivers

Let's not forget about Linux. This freely distributable UNIX clone is really
taking off in some segments of the market. One of the fastest growing uses
for Linux is in Web servers.

Because the support for new hardware is provided by volunteer developers
who are highly motivated, Linux supports nearly every host adapter and SCSI
device out there. For the most part, if you buy a boatable CD-ROM distribution
of Linux, like Red Hat, the drivers that your host adapter needs will be auto­
matically detected and loaded during installation. If you buy a card that is so
new that Linux doesn ' t support it yet, you can always volunteer to write the
driver for it.

.mil Unless you 're a UNIX kernel/ driver guru, stick with a card that is supported.

For more information on SCSI under Linux, take a look at the Usenet
comp.os.linux.hardware newsgroup.

More About Drivers Later

This chapter's coverage of device drivers concentrated primarily on how to
install them. If you 're interested in knowing more about the inner workings
of device drivers, take a look at Chapter 8, "Understanding Device Drivers . "
It contains more detail that can aid in understanding and isolating problems
you may encounter in your system.

Tips for a Successful Installation

• Before you remove the SCSI interface card from the package, be sure to
ground yourself. Touch a static discharge plate or your computer's case
to make sure you aren't carrying a static charge. If you do zap your card
with a static discharge, you're liable to fry it with as much as 10 ,000+ volts !
They're never quite the same after that!

• Before getting started, print out the BIOS setup for your system. You can
usually do this by going into the setup program (usually by pressing the
DELETE key at bootup) and then pressing the Print Screen key. If that does­
n ' t work, jot down the values that you see on your screen. You should also
print out your autoexec.bat and config.sys files before you start changing
them, so that you can recreate them if something goes wrong. (Actually,
this is good advice anytime you install anything.) You can also copy the
files to another directory to save a lot of typing in case you have to return
your system to its original state.

Adding SCSI to Your PC 77

• Be sure you have a boatable floppy disk handy before fiddling with the
BIOS setups so that you can boot your machine if you really screw it up.

• Remember, when you load the drivers for your SCSI devices, you have to
specify some of the same parameters , like the 1/0 port, which you deter­
mined when you set up your hardware. If you select an 1/0 port for the
driver that's different from the one you set on your host adapter card, for
example, you 'll have to change the port on your host adapter card too.

SCSI CD-ROM Drives

If you're installing a SCSI CD-ROM drive for use with DOS and Windows 3 . x,
be sure that you install the DOS CD extensions driver, mscdex.exe, in
autoexec.bat. And, if you use smartdrv.exe for disk caching, be sure to load
mscdex.exe before smartdrv.exe in your autoexec.bat file so that the caching
program will recognize the CD drive.

An example of this setup might be the following:

MSCDEX /D : MSCDOOl /M : 1 2 / L : J

LOADHIGH SMARTDRV . EX E

This will cause the Microsoft CD-ROM extensions to be loaded (an IS0-9660
filesystem for MSDOS) , allocate 12 sector buffers for caching CD sectors, and
set the drive letter for the CD-ROM drive to]. This excerpt assumes that you
have loaded a CD-ROM device driver and set its name to MSCD001 in config.sys
as shown in one of the CAM examples above.

An MSDOS boot floppy with the above drivers loaded can also be useful
as a rescue disk or for installing Windows 95/98.

SCSI Hard Drives

Now that SCSI disks have grown so large (up to 73 GB as of this writing) ,
operating systems and BIOSes have needed to increase their address range to be
able to use all that space. If you have a hard disk larger than 8 GB, you need to
enable a feature in your host adapter BIOS called "INT 1 3 extensions," which
circumvents a longstanding limit in the INT 1 3 BIOS interface that hit a wall at
1 024 cylinders. (Even though SCSI disks are addressed by logical block number
instead of by cylinder head and sector, the PC BIOS still thinks in those terms) .
Without this extension feature, your disk will appear to be only 8 GB when it
may actually be much larger!

M;t.Uj If you 're wondering why the PC BIOS needed to be extended to handle larger disks, bear
in mind that the largest hard disks available in 1985 (when the PC/ A T BIOS was written)
were about 33 MB! These new disks are about 1000 times that size. Hindsight is 20/20,
but seeing the future is not so easy! (But that doesn 't stop us from trying in Chapter 12!)

78 Chapter 4

Extending the PC BIOS

Once you 've installed a SCSI hard drive , it's usually a good idea to perform a
low-level format on it. Generally a utility for doing this is provided with the host
adapter, either in the host adapter BIOS or as a disk-based utility. This utility
will send the SCSI FORMAT UNIT command to the disk. You need to be sure
which SCSI ID you want to format, because this process will erase any data on
the disk. The format operation can take as little as a few minutes or as long as
several hours depending on what drive is being formatted. Once the disk is
low-level formatted, you should verify the entire disk to make sure there are no
bad sectors . A utility should be provided for this purpose as wel l . A good verify
utility will also tell the disk drive to replace any bad sectors with good ones from
its spare sector pool.

Partitioning

Once the system is booted from an install floppy (or CD-ROM) , the host
adapter's BIOS will assign the new, blank disk a drive number (hex 80 for
drive C or 8 1 for drive D) . This number is used by FDISK or other operating
system partitioning utility to make INT 13 hex BIOS calls to partition the disk.
Partitioning is dividing up the available disk space into one or more pieces. In
each of these pieces we need to create a filesystem so that the operating system
can use it. When you boot the operating system, if it sees a properly partitioned
and formatted filesystem, that filesystem will be assigned a drive letter.

If you're using DOS or Windows version 3 . x, you will have to run FDISK,
or a similar disk partitioning utility that came with your SCSI interface , to create
a DOS partition. A FAT16 filesystem cannot be any larger than 2 GB. Starting
with Windows 98 FDISK, if you have a disk larger than 2 GB, FDISK asks if you
want support for large disks (larger than 2 GB) . What it's really asking is whether
you want to format your partitions with the FAT32 filesystem instead of the
FAT16 filesystem (which has been used on all MSDOS and Windows 3.x systems
since about 1 987) . FAT32, like many things, has advantages and disadvantages.
The main advantage is that it will allow you to create partitions larger than 2 GB
and use them more efficiently because the cluster size is smaller for the same
size partition using FAT1 6. The main disadvantage of using FAT32 is that this
filesystem is only supported by Windows 95 OSR2 and 98. Windows NT can ' t
access them and neither can MSDOS. This means that i f you boot different
operating systems, or you need to rescue your disk by changing or adding a file
that's been corrupted, you won ' t be able to access i t using a DOS boot floppy.

Mter you finish partitioning, run the FORMAT command on the disk. If
the 0 IS will be MSDOS or Windows 3 . x, be sure to use the Is option of FOR­
MAT to transfer system files if this will be a boot disk. Windows 95198 takes
care of installing the system files itself.

When creating a FAT1 6 partition with FDISK or the parti tioning utility
supplied by the SCSI interface manufacturer, don ' t create a partition that is
larger than what you need even if you have a large hard disk. Larger parti tions

Add ing SCSI to Your PC 79

S O Chapter 4

Table 4. 1 : The Relationship Between Partition and Cluster Size for

fAT Filesystems

Partition Size (MB) Cluster Size (Bytes)

For FAT 1 6

< 3 2 5 1 2

3 3-64 1 024

65- 1 2 8 2048

1 29-256 4096

257-5 1 2 8 1 92

5 1 3- 1 024 1 63 84

For FAT32

5 1 3-8 1 92 4096

Table 4.2: DOS·Assigned Device Drive letters

Device

5- 1 / 4-inch floppy dr ive

3 - 1 /2-i nch floppy drive

IDE pr imary partition (partition 1)

SCSI pr imary partition (partition 1)

IDE first log ical partition (partition 2)

SCSI first log ical partition (partition 2)

SCSI second logical partition (partition 3)

Drive Letter

A:

B:

C:

D :

E :

F :

G :

use larger clusters to store data. Because the sizes of most files aren' t an even
multiple of the cluster size , more space is wasted with larger clusters. Table 4. 1
illustrates how the cluster size increases with larger partitions. On average half
the cluster size is wasted for each file created on the disk. Because it's not
unusual for a system to contain 1 0,000 files, this can really add up !

In order to choose the proper size , you need to have an idea of what the
average size of files you will be storing is (not easy, we know) . If the average
file will be about 1 6 kB, you don 't want to choose a cluster size nearly that big
since that will waste on average half the space on the disk!

DOS and Windows assign drive letters to the primary partitions on drives
before assigning any (extended dos) logical partitions. As a result, partitioning
SCSI drives can result in some pretty interesting arrangements of drive letters.
For example , let's say you have a setup that consists of a PC with two floppy
drives, one IDE drive (the boot drive) with a primary and extended partition,
one SCSI drive with a primary partition, and two logical partitions. Table 4.2
lists the devices, along with the drive letters, as they are assigned by DOS.

Windows NT needs a FAT16 filesystem to install into. It can convert it to
NTFS during install, but the 2 GB FAT16 limit will still apply to that boot par­
tition.

For more tips and hints on troubleshooting and perfecting your SCSI
installation, see Chapter 6, "Troubleshooting Your SCSI Installation."

Now that you 've gotten the host adapter installed and drivers loaded for
it, I guess we 're ready to hook all those SCSI goodies up and make them do
something besides sit there ! Interestingly enough, that's the purpose of the
next chapter.

Adding SCSI to Your PC 81

H O W T O C O N N E C T YO U R S C S I

H A R D WA R E

Once you 've amassed a bunch of SCSI
h ardware , you ' l l probably wan t to connect

i t to your compute r (unless you ' re simply
an enthusiastic collector) . This chapter focuses

on attaching SCSI devices to the compute r. The
discussion applies to all SCSI devices and all systems.
Regardless of whether you have a PC, a Macintosh ,
or a UNIX workstation, this chapter should help
you get those SCSI devices hooked up properly.

(If you own a PC and you have a SCSI hos t adapter you need to instalL

then go to Chapter 4, which addresses PC-specific issues abo u t plugging in

and configuring a SCSI interface .)

84 Chapter 5

Use Quality Cab�es and Ccrnu'llectors

Before you even begin to connect anything together, you should know a bit
about the cables that carry the commands and data between SCSI devices and
the host adapter. If you don ' t have good-quality cables specifically meant for
SCSI, you're liable to create headaches for yourself.

There is a direct relationship between the quality of your SCSI cables and
the performance of your whole SCSI system. Cheap cables can cause data errors
as well as performance loss . There is also usually a direct relationship between
cable quality and price-high-quality cables often command a high price.
Here is the best rule of thumb for buying cables: If it seems like too good a deal, it

probably is.
When setting out to buy SCSI cables, do a little shopping and compare

prices. For example, companies such as Am phenol and Adaptec sell their own
brand of high-quality SCSI cables. The "hole in the wall" clone shops and
warehouse superstores carry low- to mid-grade cables. These mid-grade cables
will probably be just fine if you're using SCSI-1 . On the other hand, Fast SCSI-2
is extremely sensitive to cable quality and will not be reliable at all if you're using
low- to mid-grade cables. If you're using Fast SCSI, Wide SCSI, or SCSI-3, be sure
that you buy only cables certified for SCSI-2 or SCSI-3. You should find some
note of that certification on the cable's packaging. Then again, there is no
agency overseeing the certification of SCSI cables. Just because it says "SCSI-2"
doesn' t always mean much. You really need to trust the vendor on this issue.
Sometimes the only way to find out you have a bad cable is to eliminate all the
other variables and that's not easy.

The Shorter, the Better

Like a bridge, a SCSI cable should be no longer than it needs to be. Cable quality
is not the only factor that will affect data integrity. Because cables carry signals,
cable length is also important. Even though longer cables might make your
connections neater, fight the temptation. In the case of SCSI cables, shorter is
better. The reason is that signals weaken as they travel longer distances. Signals
have energy and, as the signals pass through the wires in your system, they
progressively lose some of that energy to the wires themselves.

The farther the signals have to travel, the weaker they get. As signals weaken,
your devices and your host adapter start to have problems interpreting them.
This is because, in addition to losing some of the desired signal, the cable is also
picking up electrical noise along its whole length. Keeping the cables short
minimizes both problems.

If you're having trouble imagining how signals lose their strength over
greater distances, think of water rushing through a water pipe. As the water
rushes through, it loses energy to the walls of the pipe and slows down. Even­
tually, if nothing pushes (that is, adds energy to) the water, the water will slow
down until it stops.

FI N D I N G THE RIGHT CAB LE

To ensure the best possible performance and data integrity of the SCSI bus, AMP

Incorporated recommends the following specification in selecting cables.

External SCSI cables should be made up of twisted pairs of 28 AWG wire

encased in a sh ielded iocket. A-type cables consist of 25 twisted pairs; P-cables

consist of 34 twisted pairs. The single-ended impedance of the cable should be

80 ohms. A-cables are used for narrow SCSI devices and P-cables are used for

Wide SCSI devices.

Four requirements, l isted below, govern the arrangement of conductors in

the external cable. These requirements are compatible with all sing le-ended and

differential SCSI implementations.

1 . The conductors assigned to the single-ended REO signal and its associated

ground shoulde be a twisted pair located in the cable core. The conductors

assigned to the single-ended ACK signal and its associated ground should

also be a twisted pair located in the cable core. If there are more than three

twisted pairs in the cable core, the REO and ACK pairs should not be adia­

cent to each other.

2 . All conductors assigned to sing le-ended data and parity signals and their

associated grounds should be twisted pairs located in the outer layer of

the cable closest to the external shield.

3 . The conductors assigned to +SIGNAL and -SIGNAL i n a d ifferential configu­

ration are associated as twisted pairs.

4. Conductors are not to be connected together anywhere a long the cable or

with in any connectors except i n the case of P-to-A transition cables.

I nternal SCSI cables can be either unshielded flat-ribbon or unshielded twisted­

pair flat. S ingle-ended systems generally use flat-ribbon cable; th is cable is

avai lable in 2 8 AWG with 0.050 inch (1 .3mm) between the centers of each

wire or 30 AWG with 0.025 inch (0.6mm) between centers. Normally, stranded

wire is used for flexibi l ity, but solid conductors can also be used for slightly higher

impedance.

The SCSI standard recommends unshielded twisted-pair flat cables for

use as internal cables i n differential systems. The twisted-pair configuration helps

to reduce cross talk between wires. Twisted-pair flat cables come in the same

size/spacing as flat-ribbon cables and have flat sections spaced at intervals, such

as every 1 2 i nches (0.3 meter), for attaching connectors.

How to Connect Your SCSI Hardware 85

Similarly, the strength of the signals that travel through your SCSI system is
finite : The signals are created (pushed) once and then they are moved along
the bus. No wire has zero resistance and no insulation has infinite resistance,
so the signal inevitably weakens as it meets these counter influences. Also, wires
that are close together have capacitance unless they form an ideal, impedance­
matched, transmission line. Added capacitance will cause the nice square
edges of our SCSI signals to get rounded off (not good) . Terminators keep
our trans- mission line properly matched and minimize capacitance. Those
darned terminators sure are important!

How ll..ong Can Your Cables Be?

According to the SCSI standards for SCSI-1 and SCSI-2 hardware, SCSI signals
are good for a total bus length of only 6 meters (about 20 feet) when traveling
through SCSI-compliant cables. If you're using Fast SCSI, the maximum cable
length is cut in half to only 3 meters (about 10 feet) . Of course, if you 're using
poorer-quality cables, your signals will be even weaker and will break up much
sooner. The bottom line is this: Whenever connecting a SCSI device, use the
shortest possible cable for the situation; don' t exceed a total of 6 meters
(about 20 feet) for regular SCSI hardware and 3 meters (about 1 0 feet) for
Fast SCSI . Remember, this is the total length of the bus, including all internal
and external cables.

m:lll As cables get longer, the signals weaken and are more susceptible to noise. Buying a

longer cable than you need because it seemed like a good value is false economy. Use

the shortest and best-quality cable you can afford.

86 Chapter 5

Given all the different speed and bus driver options available in SCSI-2 and
SCSI-3, it takes a table to clearly show what lengths are permissible for the
devices you have. When looking at Table 5 . 1 , find the speed of the fastest
device you have in Column 1 - unless your host adapter is slower, in which
case you find the host adapter's speed.

Going Fcartther Requires Repeaters

If you must extend the length of your SCSI bus, you will need to use repeaters
(also called expanders) . A repeater is placed at the end of the cable once the
maximum bus length is reached. Then, another cable is attached to the repeater
to extend the bus. The repeater picks up the signal from the host adapter and
reproduces it on the next section of cable, thereby producing a clean, strong
signal to the devices farther down the bus. Repeaters are pretty expensive, so
lengthening your bus beyond the normal limits is not to be taken lightly. Also,
make sure that the repeater is designed to operate at the speed of the fastest
device beyond the repeater.

Table 5. 1 : Maximum Allowable SCSI Bus Lengths for Various Transfer Rates

and Bus Driver Types

Speed of Fastest Maximum Single· Maximum HVD Maximum LVD

Device Ended Bus Length Bus Length Bus Length

5 MHz (SCSI 1 synch .) 6 meters (20 feet) 25 meters (82 feet) 1 2 meters (39 feet)

1 0 MHz (SCS I2 FAST) 3 meters (1 0 feet) 25 meters (82 feet) 1 2 meters (39 feet)

(not recommended

i n SCSI-2)

20 MHz 1 .5 meters (5 feet) 25 meters (82 feet) 1 2 meters (39 feet)

(U l tra or Fast-20) (not recommended
unti l SCSI3 SPI)

40 MHz Not recommended 1 2 meters (40 feet) 1 2 meters (40 feet)

(U itra2 or Fast-40)

Internal versus Extemal Cables

When you shop for SCSI cables, you' ll find two main types: internal and externaL

They're used just as you'd expect: the internal for internal connections; external
for external hookups.

Internal Cables Look Like Ribbons

Internal SCSI cables look a lot like the cables used for any other internal com­
puter storage device. They're also called ribbon cables because they look like
ribbons. If you haven't seen an internal ribbon cable (because you haven't dared
to open your computer) , an example is shown in Figure 5 . 1 .

As you can see in Figure 5 . 1 , flat-ribbon cables consist of a flat bunch of
single wires all stuck together side by side and packaged in plastic, like a ribbon.
One edge of the cable has a colored (often red) stripe , which indicates the
first wire of the group. This becomes very important when you need to know
how to orient the cable.

Differential SCSI systems usually use twisted-pair ribbon cables instead of
the more common flat-ribbon cables to reduce interference between the wires.
A twisted-pair flat cable looks similar to a flat-ribbon cable , except that each
pair of wires is twisted together along the length of the cable. As a result, twisted­
pair flat cable looks more like a bunch of twisted wires than a bunch of straight
wires. At certain intervals along the cable, the wires are un-twisted so that the
connectors can be attached to them, as you can see in Figure 5 .2 .

How t o Connect Your SCSI Hardware 87

R ibbon

Coble

Cross Section

Connectors

Figure 5. 1 : Typicol lntemal or Flat Ribbon Cable with Cross Section

Connectors

Figure 5.2: Twisted-Pair Ribbon Cable

External Cables Are Round and Thick

External SCSI cables look similar to computer power cords: They are long,
round, and rather thick. You'll often find similar cables attached to your printer,
looking something like that shown in Figure 5.3 .

.:Ill Because external SCSI cables are thick and heavy, they have screws or clips on their con­
nectars to keep them firmly attached to your computer. Always make sure that the screws
or clips are properly fastened. If they fall off while you 're saving an important file, you
won 't be a happy camper.

8 8 Chapter 5

Cable

Connector

Cross Section

Figure 5. 3: Typical External Cable with Cross Section

The two common types of external cables are :

• A cables with 50 wires (for regular [narrow] and Fast SCSI)

• P- and Q- cables with 68 wires (for 1 6-bit Wide and Fast Wide SCSI-3 ; P
used alone for 1 6-bit; P and Q used together for 32-bit)

You don ' t need to worry about the number of wires in the cables, though .
When buying SCSI cables, you' ll need to know only the type of SCSI bus
you're using (e .g . , regular 8-bit or 1 6-bit Wide) and the type of connector.

Know Your Connectors

Connectors attach the cables to SCSI devices and to the computer. They consist
of a plastic or metal housing with either metal pins visible inside or with cavities
into which those pins will fit. It may have screws or clips to hold it tightly in
place. External and internal SCSI cables have different types of connectors ,
and it 's important to recognize the differences so that you' ll fi t the right cable
to the task.

Connectors are often referred to as being male or female. A connector
is female if its contacts are female (they are hollow providing a place for a
male pin to insert) ; male if its contacts are visible pins or other protrusions.
The shape and size of a set of male and female connectors should match
exactly. Remember, too, that it's the contacts that are being referred to, and
not the connector housing or shell. Here 's how to identify the different types
of connectors.

How to Connect Your SCSI Hardware 89

90 Chapter 5

Hll'lternal Cables Usually Have Rectangular Connectors with Holes

Internal SCSI-1 and SCSI-2 cables usually have a rectangular plastic connector
with 50 holes in it (so it's female) . These connectors typically look like that in
Figure 5.4. A male connector for this cable will have 50 pins whose arrangement
matches exactly.

Connector

Figure 5.4: Typical Internal SCSI Cable Connector

Wide SCSI cable connectors have 68 pins (so they' re male) spaced very close
together. The female connector for such a cable will have 68 hollow contacts
whose arrangement matches exactly.

four Common (and Some Not-So-Common) External SCSI Connectors

There are four main types of external SCSI connectors: the 25-pin D-sub, the
Centronics 50-pin, the high-density 50-pin, and the high-density 68-pin.

The 25-pin connectors are used on Apple computers and some low-end
SCSI adapters (such as those included with scanners) ; they can support
only 8-bit SCSI and aren' t actually official SCSI connectors at all, because
they don ' t appear in any SCSI standard.

If you must include any devices that have 25-pin connectors in your system, keep them to
an absolute minimum. Also, keep as much of the bus as possible 50- or 68-pin - that is,
locate a 50-to-25 pin adapter as close to the 25 pin device as possible and keep all the

cables 50-jJin to the extent you can. The popularity of drives which are 25-pin has caused
many peojJle to experience SCSI problems that are due to the 25-bus discontinuity. Because
the 25-pin connectors share grounds between data signals they cannot be for differential
and should not be used for anything running faster than asynchronous.

The 50-pin connectors are used with 8-bit (narrow) SCSI. Most external
SCSI-1 devices have the Centronics version; SCSI-2 devices have the high­
density connectors.

The 68-pin connectors are used with Wide SCSI in order to handle the
additional data bits and extra parity signals. You can use the connector
outlines in Appendix A to see which kind you have or which kind you need.

Following are a few special connectors that were made specifically for a partic­
ular manufacturer's computer:

• IBM created its own version for the PS/2 models by adding 1 0 pins, which
they marked as "reserved" but never actually used. If you have an IBM PS/2
with an IBM SCSI host adapter, you' ll need a special IBM-to-SCSI adapter
cable between your computer and the cable to the first device.

• Apple created a new, smaller connector for their PowerBook notebooks
to save space. There isn ' t anything particularly special about it; it's just
optimized for space reduction. You can find these cables in better-equipped
shops, but they're more expensive than standard cables, of course .

Yet another new SCSI connector has appeared in recent years (whatever you
may think about the fact that there are so many SCSI connectors to choose
from, the connector manufacturers have got to love it !) .

The 80-pin SCA (Single Connector Attachment) was designed to make it
simpler to "hot-swap" SCSI drives in and out of systems, especially RAID
arrays. Drives with SCA connectors typically don ' t provide their own ter­
mination or ID jumpers. They are intended to be plugged into special back­
planes that provide these facilities. You can connect them to a regular SCSI
bus though using SCA to 50/68 pin adapters .

Connecting Devices to the Bus
SCSI devices are connected with cables to form it sequence known as a daisy

chain. It begins at one end of the cable and continues from device to device
until it reaches the last device, usually the SCSI interface inside the computer.
The entire chain of connections is called the SCSI bus, and it carries commands
and data between the host computer and the devices. External devices have
two connectors on their housing so you can chain from one to the next. You
can make an internal device into an external device by simply mounting it in a
special case that has a power supply, an ID switch, and a Y-shaped cable with
an internal connector in the middle and an external connector on each
branch of the Y.

A typical SCSI daisy chain might look like that shown in Figure 5 .5 .

H o w t o Connect Your SCSI Hardware 9!

92 Chapter 5

Find Pin J
To connect a cable to a device, you must orient it correctly. An external
cable 's connectors are shaped so that you can only connect them one way,
so you don ' t need to worry that you' ll connect them upside down. Internal
cables, however, don' t always have such a safeguard. As a result you should
always be aware of the colored stripe on internal cables. The stripe on one
edge of the cable indicates Wire 1, and hence Pin 1 , on the connector. The
connectors that are crimped onto the flat-ribbon cable often have their Pin 1
position indicated by a small triangle or arrow.

SCSI devices also have a mark of some kind to designate where Pin 1 is
located. Sometimes a " 1 " is silk-screened on the circuit board, or it may be
indicated by a small triangle embossed on the connector. If you can ' t find
it,check the manual that came with the device to see which is Pin 1 . Once
you've established the orientation of the device ' s connector, match the
orientation of the internal cable's connector to it, Pin 1 to Pin 1, and plug it
in, as shown in Figure 5.6.

Host

(Also a Device)

Device 1 Device 2 And So On . . .

Figure 5.5: Daisy Chain of SCSI Devices

Slot for
Key

Figure 5.6: Properly Oriented Internal Cables

Device

Pin # 1 on Device

Key
Colored Str ipe

i n Wire #2

In general if you manage to plug in a SCSI cable reversed, no harm will be
done. The designers of the SCSI standard were wise enough to define that the
pin opposite TERMPWR be left open so that it won ' t be shorted to anything
(which might cause damage) .

If you want to add another device, say another hard disk, to your SCSI
installation, you need to extend the bus to that device to make it part of the
system too. To add a second hard disk to your system, you simply add a second
cable between the first hard disk and the second one - not between the second
hard disk and your computer. The resulting system is shown in Figure 5. 7.

You now have three SCSI devices connected on your SCSI bus: the com­
puter, the first hard disk, and the second hard disk. You've started the daisy
chain - connecting the first device to another device, to another device, and
so on. A more elaborate daisy chain, with a couple of hard disks , a CD-ROM,
and an optical drive , might look like that in Figure 5 .8 .

Host

(Device # l)

Hard Disk # l

(Device #2)

Figure 5.7: Three Devices on the Bus

SCSI I n terface

I nterna l Cable

Hard Disk #2

(Device #3)

Hard Disk

l

Hard Disk

#2

CD-ROM

Optical Drive

Figure 5. 8: Example of a Daisy-Chained SCSI System

How to Connect Your SCSI Hardware 93

This is one of SCSI 's greatest features - the ability to connect many devices to
one slot on your motherboard, all coming off the same SCSI bus.

If you wanted to max out this daisy-chained system with other SCSI devices,
you'd simply repeat the process of connecting device to device until the number
of devices totaled the maximum for the type of SCSI you're using (8 devices
for 8-bit SCSI, 1 6 for 1 6-bit SCSI) . A maxed-out system would look like that in
Figure 5 .9 .

Note that the device numbers do not refer to their SCSI IDs . The SCSI ID
i s independent of the device 's position on the bus.

That's all there is to making the basic connections for the SCSI bus. But to have
a fully operational SCSI bus, you must follow one more rule: Use only two ter­
minators, one on each end of the chain. You want your signal to flow freely up
and down the chain but not reflect from the ends. (For a more detailed discus­
sion on the types of terminators, refer to Chapter 3 .)

Figure 5 . 10 shows an example of what not to do.

M�i.$ I jl Correct placement of terminators is critical for proper system operation. Always terminate

only the first and last devices on the SCSI bus.

94 Chapter 5

The most common mistake made when connecting devices to the bus is incor­
rect termination. Most SCSI devices can be terminated (not killed :-) . Some
devices have built-in terminators, and if you attach such a device to the middle

Hard Disk #2

Device #4

Hard Disk # 1

Device #2

Hard Disk #3

Device #5

CD-ROM Drive

Device # 1

Optical Disk

Device #6

Figure 5. 9: Example of a Full 8-bit SCSI System (a Total of Eight Devices)

of the bus but forget to remove the terminator, you' ll have the configuration
shown in Figure 5 . 1 0 - and a headache. Make sure you check each device so
that no devices in the middle of the bus are terminated. The only devices that
must be terminated are the ones on the ends. (Technically, it's not the devices
themselves that need to be terminated but the ends of the bus. However, it's
sometimes less expensive to use the terminators provided in most devices rather
than buying separate ones to plug onto the ends of the cable .)

Figure 5 . 1 1 shows a properly terminated SCSI system.

The Host Adapter Is a Device, Too

Remember that the computer's host adapter card is also a device on the bus.
As a result, if the host adapter is on one end of the bus, it must be terminated.

Figure 5. 1 0: SCSI Bus Terminated in the Middle

Host

Terminated End of Bus

Hard Disk # 1

Not Terminated

Hard Disk #2

Terminated End of Bus

Figure 5. 1 1 : Example of a Properly Terminated SCSI System

How to Connect Your SCSI Hardware 9 5

96 Chapter 5

However, if you have both internal and external SCSI devices, the host adapter

is in the middle of the bus and must not be terminated. Figure 5 . 1 2 shows such

a system.

Terminating Your Particular Device

There is more than one way to terminate a SCSI device. Most SCSI devices

have an internal terminator that can be turned on or off with a switch. The

switch is either a jumper or toggle, or it may be software controlled on some

interface cards. Some older devices have physical terminators that must be

pulled off or plugged in to turn termination off or on, respectively. The manual

for (or the manufacturer of) your particular device >viii tel l you what system

M IX AN D MATCH :

C O M B I N I N G REG U LAR AN D WI D E SCSI

Unti l now, we've only discussed methods of connecting devices of the same bus

width: 8-bit devices on an 8-bit bus, 1 6-bit devices on a 1 6-bit bus, and so on.

However, these devices can coexist to a certa in extent.

When mixing devices, you must be aware of three important requirements:

1 . The bus you use must be as wide as the widest device used on the bus. For

example, you can connect an 8-bit device to a 1 6-bit bus, but not vice versa

(unless you can disable Wide negotiation for that device, or the host adapter

doesn't even attempt Wide).

2 . You must terminate the entire width o f the bus, regardless o f the width o f the

last device. Just because the last device on your 1 6-bit bus is 8-bit doesn't

mean you can simply use an 8-bit terminator. The full 1 6-bit bus must be ter­

minated; otherwise, only the 8-bit devices wil l communicate properly.

3 . You must not assign any two devices the same I D, regardless o f their width.

All 8-bit devices will have IDs from 0 to 7; 1 6-bit devices will have I Ds from 0

to 1 5 . As a result, the ID range for 8- and 1 6-bit devices overlaps from 0 to 7.

In a 1 6-bit Wide SCSI-3 system, a P- cable is used. In an 8-bit system, A cables

are used. In order to attach 8-bit devices to a 1 6-bit bus, you will need a P-to-A

(68-to-50 pin) transition adapter. Generally this adapter should have a termina­

tor in it for the high byte. Also, care needs to be exercised in how pins 1 7, 1 8,

and 5 1 on the 68-pin side are connected, because passing them through in the

simplest manner will result in a short from TERMPWR to GROUN D when us ing

typical terminators .

your device uses. Figure 5 . 1 3 shows a typical physical terminator, just in case
neither your device 's manual nor your manufacturer is available .

External SCSI devices also might have a large physical terminator on the
outside of the device, instead of a cable leading to another device, which
might look like that in Figure 5 . 1 4. This particular type of external terminator
looks like a cable connector without the cable.

If you've determined that you need to terminate a device (because it 's
either at the beginning or end of the chain) , you ' II do so by either turning on
its terminator switch or inserting the physical terminator (as instructed by
your manual) . To turn off termination , turn off the switch or remove the phys­
ical terminator. Remember to check that none of the devices in the middle of
the SCSI bus have their terminators switched on.

Hard Disk # 1

Not Terminated

Terminated

Hard Disk #2

Not Term inated

Figure 5. 1 2: A Correctly Terminated SCSI Bus with the Host in the Middle

P in # 1 I ndicator

Pin # 1

Figure 5. 1 3: A Typical Physical Terminator for Internal SCSI Devices

Haw to Con nect Your SCS I Hardware 97

Figure 5. 7 4: A Typical Physical Terminator on an External SCSI Device

Terminator Power
SCSI terminators provide two functions: They prevent reflections (see Chapter 3
for details) from the ends of the bus and provide "pull-up" current to bring
inactive signals up to about 3 volts. In order to provide this second function,
they need a source of power or voltage. Because stand-alone terminators
(ones not inside any device) may be out dangling at the ends of the SCSI bus,
that power needs to be run along the whole bus. The TERMPWR line is pro­
vided for this purpose. The TERMPWR voltage can be supplied by several
devices along the bus or only one device. The SCSI-2 specification requires
that all host adapters (initiators) provide it, but any device can provide it too.

Your components may offer you the choice in this situation: Look for a
jumper on your device marked TP or something similar. It may have two set­
tings : (1) Provide power only to this device 's terminator or (2) Let this device 's
terminator get power from the bus. It doesn ' t hurt to have more than one
device supply TERMPWR-but no more than four should, or a short circuit
on the bus could overheat the wires.

M}I.Jij These settings are completely separate from whether the device 's terminator is enabled or not.

98 Chapter 5

SCSO KDs
Because all devices on a SCSI daisy chain are hooked together in one continu­
ous string, each device on the bus (including the host adapter itself) must
have a unique SCSI device ID. The number of available IDs is directly related
to the width of the bus, like so:

" Regular SCSI-1 and SCSI-2 have eight possible SCSI IDs, one for each of
the eight SCSI devices that can be attached to the bus. These SCSI IDs
range from 0 to 7, counting 0 as the first number.

<> 1 6-bit Wide SCSI has 1 6 IDs, ranging from 0 to 1 5 , because it has a
1 6-bit bus.

o Likewise, 32-bit Wide SCSI has 32 SCSI IDs, ranging from 0 to 3 1 . (You're
not likely to see any devices like this, though .)

Setting SCSI IDs

SCSI IDs are set by changing a numbered wheel, a group of switches, or a set
of jumpers on each device . The method for each particular device will differ.
Check your user manual for each device to see exactly how to set them. There
will be a table of SCSI IDs showing the jumper or switch configuration that
corresponds to each ID. If your device has a numbered wheel, just turn the
wheel to the desired ID.

When choosing SCSI IDs, you can use any number you like , as long as it 's
not in use by another device on the bus and as long as it's within the range for
the type of bus you 're using.

M�I.Uj SCSI-3 will introduce new serial bus designs that will allow more devices on a single
bus, but in general, they will be set automatically so you don 't have to worry about them.

Here 's an example of how you might assign IDs to your SCSI devices. Let's say
that you have one hard disk attached to your computer and you want to add a
second SCSI hard disk and a SCSI CD-ROM drive . Assigning the IDs is simple.
First of all , call the SCSI interface card on your computer ID 7 , just so it's the
last device. Now, give the first hard disk ID 0, the second hard disk ID 1 , and
your CD-ROM ID 2.

M#ohj Again, you 'll set these IDs with some sort of wheel, switch, or jumpers. Check your manual.

Figure 5 . 1 5 shows the results of assigning these three IDs.

Why Set One Device's ID Higher than Another?

In order to avoid conflicts when more than one device tries to access the bus,
the SCSI bus protocol provides a concept called priority. If two devices both
put their IDs on the bus at exactly the same time, the one with the higher ID
gets access and the lower one backs off and waits for the bus to be free again.
This is one reason that the host adapter is usually assigned ID 7, because it is
the most important and heaviest user of the bus. Using this line of thinking,

How to Connect Your SCSI Ha rdware 9 9

1 0 0 Chapter 5

SCSI Hast Adapter

ID #7

Hard Disk # 1

I D #0

Optical Drive

ID #3

Hard Disk #2

ID # l

CD-ROM

ID #2

Figure 5. 1 5: SCSI System with ID Numbers Assigned

you might be tempted to put your hard disk on ID 6, because you likely think
of it as your next most important device. It turns out that this isn ' t always a
good idea. Consider this scenario: Your CD-ROM is trying to return data that
you asked for, but because you have so much hard disk activity at a higher pri­
ority, you'll never get anything from the CD-ROM. In general it is better to
put slower, but less-used devices at the higher IDs and leave the hard disks at
lower IDs. This is especially true of devices like CD recorders and streaming
tape drives which fail to operate properly if their data stream is interrupted. If
you have a CD-R drive and a tape drive, put them at ID 6 and ID 5 respectively.

Parity Checking

When configuring your SCSI system, you' ll probably encounter an option for
parity checking. Parity checking is a simple and fast method of error checking
(discussed in more detail in Chapter 3) . You should tum parity checking on if
your devices support it. Parity checking is turned on or off by either hardware
or software, using a switch, jumper, or configuration program. (Check your
manual to see which method your device uses.)

Whether you' ll b e able to use parity checking will depend o n the capabili­
ties of all of your SCSI devices. All devices on the bus must be able to perform
parity checking in order for you to enable it. In fact, if only one device lacks
support for parity checking, you must tum parity checking off for all of the
others . Otherwise, the one device that doesn' t know how to do the check won ' t
understand the extra data, and your system won ' t work properly.

M�i.iij Parity was optional under the old SCSI-1 standard but is required of all SCSI-2 and

SCSI-3 devices. If you 're unsure if all your devices support parity checking, check the

manual that came with each device. Only old SCSI-1 devices may lack this feature.

Another Way to Do All This

Remember a while back we mentioned 80-pin SCA connectors and how they
can be used to connect devices into RAID cabinets and the like? Well, let's just
touch on that a little more. Now that you've seen all the details of connecting
cables and setting IDs for your devices, you can better appreciate the value of
avoiding that stuff altogether. An SCA backplane case allows the user to simply
fasten drives to slide-in trays and install them without being concerned about
individual data and power connections or ID jumpers. IDs are set either by the
slot position the device occupies in the case or by thumbwheel switches on the
outside of the case itself.

These cases aren' t inexpensive , but make it very easy to replace individual
drives (which may have become defective } , in some cases without even turn­
ing the power of£1 SCA provides power pin sequencing which allows drives to
be connected and disconnected from the SCSI bus without disturbing the
other devices.

That's That, I Guess!

So now you know how to select cables and connectors , hook up all of your
hardware, and assign ID numbers to all devices. What's next? Well, what hap­
pens if it doesn ' t work?

How to Connect Your SCSI Hardware J O J

T R O U B L E S H O O T I N G YO U R S C S I

I N S TA L LAT I O N

Eve ryone hopes that tro ubleshooting will
never be necessary - and then trouble

strikes . Although some ven dors s ti l l seem to
make a company secret of it, troubleshooting

a SCSI system is l ike all other troubleshooting j obs :
Once you know a few basic rules , i t 's a logical
process .

First o fl, i f you d o run into a problem <tnd 1·ou\·c changed an\'lh ing in your

svstem , check for the typical faul ts duri ng bootup. If you ha1·c n ' t changed any­

t h ing, then some hardware must hal'e de1·e loped a f � tu l t a l l lw i tse l f. I f you en­

cou n te r errors or other fau l ty behal'ior during nonn< t l hootup. the f i rst rule is
to "note al l e tTor mess<tges. " System error messages < l i T you r f i rs t clue. The
best p ract ice is to keep a log fi le conta in ing the error messages or a hardcop1·

of the error message . If no log or harclcop1· is al'ai l < t l > le , 1\Ti te i L clom1 1 ·ourse If.

Howel'er, sometimes error messages don ' t he lp : t he1· may be c rl'p t i c , mis­

leading, and u n readable for a l l but your t·esident sys tem guru. I n such cases,

on ly a systemat ic search will help.

1 04 Chapter 6

Before beginning the real troubleshooting process, run through the following
list to check a few basics. In many cases, you'll be able to solve your problem by
resolving one of these issues:

e Does the host adapter have any resource conflicts (namely I/0 port, IRQ,
or DMA) ? (Remember sharing IRQs is OK with PCI cards.)

" Does each device have its own unique SCSI ID?

" Does termination appear only at the bus ends?

• Are cabling rules obeyed?

e Is the device connected properly? Most shrouded header connectors have
a plastic guard around their perimeter with a notch on one side. To prevent
you from incorrectly inserting connectors , these shrouded headers use a
mechanical key (a slot or tab in the connector) , which requires that the
cable be inserted only one way into the shroud. Some cheaper devices (and
a few high-end host adapters) use simple connectors, mostly for cost reasons.
These simple connectors aren' t keyed and won' t prevent incorrect connec­
tions. If your host adapter has such connectors, look for a small white " 1 "
o r a similar label o n the board marking pin 1 .

Open the computer to be sure that internal devices are configured correctly­
often they're not.

Test the system with whatever spare parts you have. You' ll find the following
parts especially useful for particularly pesky problems:

•

..

•

..

•

At least one known good internal and external cable .

Active and passive terminators .

A cable with an unused connector (for the purpose of connecting test
equipment, etc.) .

A multi-meter (for voltage and resistance measurements) .

One or more software tools for scanning your bus and formatting disks, etc .
If your host adapter doesn' t have a BIOS or the BIOS doesn't have a format
utility or similar modules (all such tools need an installed ASPI or CAM
driver) , look on the CD accompanying this book for handy tools.

e For DOS users, a bootable floppy disk with DOS and your adapter's ASPI
or CAM driver. If possible, have a newer DOS variant (DOS 6.0 or above)
on this floppy with multiple boot configurations, which will allow you to
decide which drivers should be loaded at startup.

e A spare host adapter and a small hard disk with a boo table partition on
i t- especially if you have to troubleshoot frequently.

"' An oscilloscope or transient recorder is necessary for some very tricky things,
like measuring RF distortion or noise on static signals like TERMPWR.
There is no way around buying or borrowing these tools if you want to take
measurements like these .

Common Problems

Now that you know what tools you should have (and which, of course, you don ' t
have handy when you need them most) , here are some o f the most basic system
problems and their possible cures:

Prolb6em: Host A.d01ptetr Net Recognized by the System

Symptom

The host adapter isn ' t recognized on startup, or you get a message like
"Couldn ' t initialize host adapter. "

Possible Causes/Problems

l . The SCSI adapter isn ' t seated correctly i n the computer's bus connector.

2. Your system 's hardware is using conflicting system resources, like an 1/0
address , interrupt (IRQ) , or DMA channel.

3. An illegal system resource is set on the host adapter.

4. The host adapter is plugged into the wrong type of bus slot.

5. A device on the SCSI bus is locking up the host adapter because of
a conflict in SCSI settings, such as parity checking or duplicate IDs.

Explanations and Possible Remedies

Problem 1 : Check to see that the host adapter is seated properly in the sys­
tem's card slot. Make sure that it's not installed at an angle so that, although
some functions seem to work, a few conductors are not making contact.

Troubleshooti ng Your SCSI I n stal lat ion 1 0 5

1 0 6 C hapter 6

Problem 2: Check for a resource conflict with the host adapter. (If you
encounter a resource conflict when installing a new SCSI host adapter,
see the installation guidelines in Chapter 4, "Adding SCSI to Your PC. ")
Many systems work fine prior to the installation of a SCSI card, but then
encounter resource conflicts immediately after you add a new adapter
card. (Sound cards are especially notorious for causing resource conflicts,
because many sound cards use the same I/0 ports , interrupts, or DMA
channels as SCSI host adapters.)

Problem 3: Verify your adapter's jumper and switch settings with its user
manual. Some adapters have a set of jumpers or DIP switches, but allow
you to set only a few specific combinations. If you set an undefined combi­
nation, you can create all sorts of problems in your system.

• If your system includes EISA or PCI, verify that each card has a dedi­
cated resource. EISA and PCI add a tricky issue - although the hard­
ware may be able to share interrupts between cards, the drivers may
not. In such cases, try to give each card dedicated resources.

• Check that adapters don't share I/0 addresses. Some adapters restrict
the combination of resources that they can use. For example, the older
Adaptec 1 540A and B models could set different I/0 addresses, but
the BIOS worked only with I/0 address 330 hex.

Problem 4: Confirm that correct slots have been used. EISA, VLB, and
PCI systems have both busmaster-capable and non-busmaster-capable
slots available . Because nearly all SCSI host adapters for these bus systems
use bus mastering, ensure that you select the correct slot type when you
install the adapter.

Problem 5: Check that option settings are compatible with the host adapter's
setting. In some cases, where the SCSI device offers a data transfer option,
like parity, that option has been set but it is incompatible with the host
adapter's setting (not all host adapters will support parity checking, for
example) . This incompatibility could lock up the SCSI controller chip
on the host adapter, thus causing the BIOS or driver to think the adapter
is defective.

Finally, consider the worst case: The host adapter may be defective.

Hints

After ensuring that the board is seated properly and that there are no
resource conflicts, disconnect the bus cables from the host adapter to see
if the adapter is recognized. If it is, your problem is caused by something
related to the SCSI bus .

If you inserted a new board or changed the setup of another board, the
affected board may now have a resource conflict. For example, some sound
boards ' MIDI addresses conflict with those of certain SCSI host adapters .

wa.n; 'When you encounter errors like those listed abovP, always remnnbn that the B/05,' and
the SCSI controller are indejJendent components on the board . .Just because one of them

works doesn 't necessarily mean that the other one alm works.

Problem: One Device Not /Found

Symptom

A device isn ' t found on startup.

Possible Causes/Problems

l . There is a power failure i n this component or its power connector.

2 . There are conflicting SCSI ID settings .

3 . Termination is incorrect.

4. Cabling is incorrect. A connector plugged in the wrong way may be very
dangerous ! Incorrect connections can cause short circuits .

5 . The cables are too long.

6. There is a bad cable (s) .

7 . An external device was turned on after the SCSI bus scan .

Explanations and Possible Remedies

Problem 1 : Check to see that the device power's on . Make sure that the
connector is seated correctly, that the device spins up, or that the device
accepts a tape or CD-ROM, and so on. If not, attach another power cable
and check the voltage on the device 's connector to ensure that power is
available at the device.

Troub leshoot i ng Your SCS I I n sta l la t ion 1 0 7

1 0 8 Chapter 6

Hint

Problem 2: Check all new or external device settings . If a new or external
device is connected to the bus, its SCSI ID may conflict with that of a device
already on the bus. This conflict may cause the device (s) sharing this ID
to malfunction and may even cause the entire bus to fail .

Problem 3: Make sure that the bus is terminated properly. Make sure that
you didn ' t add a terminated device in the middle of the bus or an unter­
minated device at the end of the bus. Be sure that you correctly enabled
or disabled the host adapter's termination.

Problem 4: Check that connectors, particularly non-keyed connectors, are
oriented properly. It is sometimes the case (though usually only with cheap
host adapters or devices with non-keyed connectors) that an internal con­
nector is plugged in the wrong way. The shrouded (keyed) connectors ,
found on better host adapters and devices, prevent you from plugging a
connector in the wrong way. Incorrectly inserted connectors may be haz­
ardous to the SCSI bus itself because termination power may be connected
to ground, thereby causing a short circuit.

Problem 5: Check cable lengths. Your cables may be too long. External
devices, especially scanners, sometimes come with a cable two or three
meters long, which results in an overall bus length that exceeds the SCSI
limitation .

Problem 6: Check cable specs. Your external device may have a cheap
cable that doesn' t meet the SCSI specifications. It is especially important
to use high-quality cables when using Fast SCSI and beyond.

Problem 7: If the device is external, see that it was powered on soon enough
to be recognized by the SCSI bus scan. Some drivers don' t recognize devices
that are turned on after they have scanned the bus for devices. If you turn
on your system and then turn on your external device - a CD-ROM drive,
for example - the external device may take too long to react to inquiry
commands from the SCSI bus, such that the host adapter thinks it isn ' t
present. As a result, the device's driver fails to install. To see whether this
is your problem, try a warm reboot.

If you have a working setup and suddenly a device isn' t recognized, then a power
failure or a termination problem are the most likely causes. However, incorrect
setups can continue working for some time and then fail without an obvious
reason, so it's best to check all possible causes.

Problem: No Device found

Symptom

The host adapter seems to work, but it can ' t find any devices on the bus .

Possible Causes/Problems

1 . The bus cable may have lost its connection .

2 . Termination power may have failed.

3. Termination is incorrect.

4. Device IDs are conflicting.

5. Cabling is incorrect or bad.

6. Cables are too long.

7. There 's a bad cable on the bus.

Explanations and Possible Remedies

Problem 1: Make sure that the cable is still connected properly. If the
SCSI cable was under tension, it may have lost contact with the host
adapter's connector.

Problem 2: The TERMPWR fuse may be blown .

Problem 3: Check the termination . You should have terminators only on
the ends of the bus and no terminators on any other devices.

Problem 4: Check that the SCSI IDs of new or external devices do not con­
flict with that of a device already on the bus . Such a conflict will cause the
device (s) with this ID to malfunction and may cause the entire bus to fail.

Problem 5: Check that connectors, particularly un-keyed connectors, are
oriented properly. If you have internal devices , a connector may have been
plugged in the wrong way, which may either blow the termination power
fuse or simply draw most signals to ground. Either way, the bus won' t work.
The recommended shrouded header connectors prevent this by a mechani­
cal key (a slot in the connector that requires that the cable be inserted only
one way) , but some devices use only simple connectors that may be plugged
in backward.

Troubleshooti ng Your SCSI I n stal lat ion 1 0 9

UO Chapter 6

Problem 6: Although cable length is very seldom the cause of a complete
bus failure , check to see that the length of your cables doesn ' t exceed the
maximum allowable.

Problem 7: Check the external chain for a bad cable. Try disconnecting a
device or two and swap cables to see if there 's a bad one. The same might
apply if you connected a device by an adapter connector, as is usual for
cheap SCA disk drives. Many of these adapters don ' t have a complete pin­
ning and so might miss or short one or more signals. Also, you might keep
in mind that SCA doesn' t have a TERMPWR line - if you rely on an adapter
or a combination of adapters related to SCA, there is no termination power
from this point on.

Hints

e Check for power failure with a voltmeter: If you have a working setup and
suddenly a device isn ' t recognized, then a power failure is the most likely
cause. Note that some setups may continue working for some time before
failing for no apparent reason.

" If you have a new setup and the devices aren' t recognized, tum the sys­
tem off immediately and double-check the complete setup. The fault
may involve terminators on the host adapter and/or devices. Also , some
older host adapters have pluggable fuses for termination power that may
have blown.

Problem: System Can't Soot from SCSI Hard Disk

Symptom

Although the host adapter seems to work and recognizes all devices, the system
either won ' t boot from a SCSI hard disk or it locks up when booting.

Possible Causes/Problems

1 . You have a non-SCSI (ATA/IDE, ESDI, etc .) hard disk in the system.

2. The hard disk has an ID higher than that supported for booting. Some
adapters only boot from a particular ID or range of IDs.

3 . There i s no active partition on the SCSI disk.

4. A DOS memory manager overwrites the SCSI BIOS.

5 . Your SCSI host adapter has no BIOS or i ts BIOS i s disabled.

6. Your SCSI adapter may need an entry for the disk in the computer's setup.

Explanations and Possible Remedies

Problems 1 and 2: If a non-SCSI hard disk (IDE, EIDE, ESDI , or ST506)
is in the system, it has boot priority in the system BIOS. Some PC mother­
board BIOSes offer a "SCSI first" entry for the boot-up sequence, but this
may not be reliable . So, if you have a non-SCSI disk, booting from SCSI may
not work until you disable the non-SCSI hard disk. Many host adapters wil l
only boot from devices with an ID of O or 1 , so if your disk is set on ID 6,
booting either isn ' t possible or you need to set a parameter in the SCSI
host adapter 's settings or a jumper to allow it to boot. (I t ' s best to set the
hard disks to lower IDs to prevent this sort of problem.)

Problem 3 : As with any other disk drive , you need a bootable and active
primary partition to boot from a SCSI hard disk drive . Use FD:U:SK to set
the primary partition to boatable .

Problem 4: H your system boots from the SCSI hard disk, but then locks up,
the DOS memory manager may be overwriting the SCSI BIOS when it i s
started in CONFIG.SYS. To see if this is the case, make a backup copy of
your CONFIG.SYS file and then remove the line for the memory manager.

Now try booting the system again to see if it boots from the SCSI hard disk.

" With more advanced operating systems like Windows NT or
Unix/Linux, the initialization of other peripheral 's drivers may con­
fl ict with the SCSI host adapter's resources and so render the system
unstable or dead from a specific point in the startup process. In this
case , most operating systems support the troubleshooting wi th a boot­
up setting that allows tracing of the driver loading.

Problem 5: If you get "no boot device" or similar error messages, see if
your SCSI BIOS is enabled. Sometimes people try to run a hard disk from
a sound card's SCSI port. While this usually works , the hard disk isn ' t boot­
able if the sound card 's embedded SCSI host adapter doesn ' t have a SCSI
BIOS, and most do not.

Problem 6: Some older SCSI host adapters (older DPT models, for example)
emulate a WD 1 003 hard disk interface and need a CMOS entry for the
boatable hard disk. (This is so unusual for SCSI , that it's easy to forget­
so check your manual .)

Troubleshooti ng Your SCSi l n sto l lo t ion J l l

1 1 2 Chapter 6

Problem: Intermittent 6..ockups and (ommunication Errors

Symptom

The SCSI system usually works but shows intermittent lockups.

Possible Causes/Problems

1 . Termination is incorrect.

2 . Termination power i s too low and/or noisy.

3. You may have folded your internal cable into a tight, neat package, and as
a result, created an R-C (resistor-capacitor) network that has unforeseeable
side effects under dynamic load.

4. Cables are too long. This often happens with external devices, especially
scanners, which sometimes come with a cable two or three meters long.

5. One of your devices, adapter connectors, or cables is bad.

Explanations and Possible Remedies

Problem 1: Check the termination thoroughly. Did you obey all the rules?
Remember, termination occurs only at both ends of the bus.

Problem 2: When using internal devices with resistor SIPs (single inline
packages) , be sure that they are inserted facing in the right direction. Pin
1 is usually marked with a colored spot or line . An incorrectly inserted
passive terminator for example, because it has TERMPWR and ground on
the opposite ends, shifts the voltage bias point of the terminator. The bus
may continue to work but will be unreliable.

• Passive termination is particularly vulnerable to low termination power
voltage. If you follow the specs, TERMPWR should be between 4.25
and 5.25 volts . However, most manufacturers start with the +5 volts
DC (VDC) from the PC's power supply and connect a silicone rectifier
for protection. Now, if the +5VDC is really only 4.85 volts - definitely
in the legal range-and we lose about 0.6 to 0.7 volts across the rectifier,
we' re below spec. If you add the loss on the SCSI cable, we ' re clearly
under spec. (Active termination is far less vulnerable here because i t
works with a voltage regulator, and a good voltage regulator needs only
about 0.5 to 1 volt over the needed 2.85 volts.)

e The same applies for noisy TERMPWR. The basic voltage supply for
the termination power isn ' t very clean, which may cause some systems
to hiccup. Noise might get through the termination network to the
signal lines. As just stated, active termination is less vulnerable because
the voltage regulator suppresses the noise to some degree. If noisy
TERMPWR is your problem, you will need an oscilloscope or transient
recorder to find it-and then you'll need even more good ideas to get
rid of it.

Problem 3: Sometimes, people fold all their internal cables in neat packages,
securing them with cable fasteners or plastic belts . This may or may not
work. When you fold the cables, you create a very complex R-C network,
which may cause the bus to fail at certain dynamic situations under load.
So, even if you're an order fanatic or neat-nick, resist this temptation !
Let the cables flow freely i n the case.

Problem 4: Keep the bus length inside the computer at a minimum. The
maximum bus lengths are defined for an ideal setup, and a real-world setup
is never an ideal one. Also, each connector, each cable change, and each
device introduces impedance changes; so, if possible , keep the cables
shorter than the specified maximum length as a security margin.

Problem 5: If you get a bad cable, replace it . When you identify a cable that
gives you trouble, you may find a cable sequence that works, but it will always
be a suspicious point. So, if possible, replace it right away. When you buy
a cable, especially an external one, don' t get the cheapest - get one that
adheres to the specs.

IIIII SCSI vendors with a good reputation tend to have good quality cables, so their cables

are usuall)' a good choice.

How to Check Typical Issues

Two Devices with the Same ID
If one or more installed devices do not work, but one of them is recognized by
a tool like SHOWSCSI or the host adapter is not able to detect one of them
during the boot phase , you may have two devices at the same ID.

Let's create a scenario for this situation: You have a setup with hard disk
drives at IDs 0 and 1 , a tape drive at lD 2, and a CD-ROM drive at lD 3. Now
you add an external device , say, a CD-ROM drive , configured also for ID 3 .

This change in your setup could cause various error situations:

Troubleshoot ing Your SCSI I n stal lat ion l l 3

• The two devices at ID 3 may simply not work, but the system works
with the remaining devices;

• The CD-ROM driver may lock up on initializing its device; or

• The host adapter hangs at the bus scan.

With similar device types as in this example, the CD-ROM driver may even load,
but later the CD-R driver may drive the system nuts

Whatever happens, check all IDs carefully. If you don ' t know your IDs or
aren't able to find out easily, use this quick-and-dirty approach:

1 . Power up the system and note which devices are found o n what IDs during
bootup.

2. Turn off the system and disconnect/power down the devices that were
recognized - these are the ones that the system knows about.

3 . Turn the system on again and watch, during bootup, for devices to show
up that weren't present before you disconnected the known devices.

4. Add these devices to the list of known devices, and note their IDs to
resolve a possible conflict later in the process.

5 . Repeat these steps until no device i s left on your system.

Mter following these steps, you may be surprised to discover as many as three
devices at the same ID (it happened to me . . .) , and you' ll have a list of all
attached devices and their IDs. Now, armed with your list, change the conflicting
device ID (s) so that there are no longer conflicts , and everything should be OK.

Remember, ID 0 and ID 1 are usually used for hard disks, and ID 7 should
remain reserved for the host adapter. Do not try to attach more devices than the
host adapter is able to handle. A special case of this problem is if you set a peri­
pheral device to the host adapter's ID. Usually, on a bus scan, this device shows
up on all IDs except the host adapter's ID (because the host's ID isn' t checked) .
The problematic part of this situation is that such a single-device configuration
sometimes works, but if you connect a second peripheral device, you won' t get
it to show up during the bootup of your system.

111!13 Some devices MA Y have incomplete implementations of the SCSI interface, and some
older devices have fixed IDs (though a device with an ID fixed at 7 is unheard of). See
the "Tricky Devices " section later in this chapter for more information on how to handle
these devices.

1 1 4 Chapter 6

Dead Devices

Electronic devices have many ways of dying, and heaven only knows which path

your device will choose. Usually, if the SCSI electronics are OK, the system finds
the device, the device will react to inquiry commands, but on accesses or tests
you get a "device not ready" or similar message . This is very common for defec­

tive disk drives or tape devices. If the device is electronically dead, it won ' t react
at all - which is the easiest symptom to detect.

Termination

First, some rules for termination :

l . Bus termination should only be applied at the physical ends of the SCSI
bus. This is the most basic rule of termination , and the one that causes
the most intermittent trouble .

2. From a practical point of view, use active terminators only - passive termi­
nators were never really a good choice, and the in troduction of higher
transfer rates outlawed them years ago. But passive terminators are still sold
and, because they are cheaper than even the cheapest active ones, are some­
times used even though they' re inferior. Occasionally I 've seen people using
single-ended FTP terminators on an LVD setup - not that i t worked, but
they were always sure that they had done the best thing. If you need to buy
a terminator block, get an active one, and if possible one compatible with
active negation and LVD. With this type, you 're on the safest side for what­
ever situation may occur.

If the termination rules are violated, the violation may not show up at once.
Errors may happen infrequently and unexpectedly, often specifically l inked to
one device, leading you to think that that device might be defective. This impres­
sion might be further strengthened when some commands work while others,
possibly including synchronous data transfers , don ' t.

For example, a one-sided termination (only one terminator on the bus)
usually won ' t work with multiple devices or a longer bus cable. Some companies
(for example, Apple in some older systems and NEC with some of their OEM
CD-ROMs) claim that the SCSI bus in their configuration will work even with
only one terminator. Although this may be true under some circumstances,
Uust through good karma) , it isn ' t generally true and is definitely not recom­
mended. Incorrect termination has essentially one result: The system won ' t
work correctly. "Not correctly" can range from "sometimes works , sometimes
doesn' t" to "definitely dead."

Troub leshoot i ng Y o u r S C S I I n sta l la t ion H 5

U 6 Chapter 6

Measuring Passive Terminators

There are two ways to estimate the number of passive terminators installed.
First, count them. This can be a time-consuming job, especially if you have to
open your computer, remove the drives to look at them, and so on. But if you
do, you can check to see that all terminators are installed correctly and all other
device issues are set accordingly. Pay attention to the correct orientation of
internal terminators also.

Second, use your multi-meter. Take appropriate diagrams of the connector
layouts (see Appendix A) and note the position of the following signals :

• Termination power (TERMPWR)

• Ground (GND)

" One of the data lines

Then power down your computer and all devices attached to it. You can now
either replace one of the SCSI cables with your diagnostic cable or you can
remove one of the SCSI devices, preferably an external one. If you remove a
device, don' t forget to see whether it's terminated.

Using this second method, detecting passive terminators is fairly easy.
With your multi-meter, you only have to measure three resistances. If the ter­
mination is correct, your measurement will match those listed in Table 6. 1 .
(Resistances may differ within a range of approximately 5 percent.)

Table 6. 1 : Termination Measurements

Any Signal Any Signal TERMPWR

to GROUND to TERMPWR ta GROUND

No term i nator

1 passive term inator * 1 43 ohms 1 36 . 8 ohms 30.5 ohms

2 passive termi nators 7 1 .5 ohms 68.4 ohms 1 5 .25 ohms

3 passive terminators 47.6 ohms 45 .6 ohms 1 0 . 2 ohms

More than 2 < 7 1 .5 ohms < 1 36 . 8 ohms < 30.5 ohms

passive term i nators

1 passive and 1 1 43 ohms 1 36 . 8 ohms 30.5 ohms

active termi nator *

*The active terminator we used in our first try didn 't show up when not powered, so this was an unlucky case. Other
active terminators behaved differently, depending on their internal circuitry. If the readings change when you switch
your multi-meter probes, at least one active terminator i.< somewhere in the system.

Measuring Active Terminators

Measuring active terminators is difficult and unpredictable. Active terminators
may respond like the example in Table 6 . 1 (our specific model didn ' t show up
when not powered on) , but they don' t necessarily react this way. (Some may be
identified because they yield different readings when the multi-meter probes are
interchanged.)

Because an active terminator's output resistors are clamped directly to the
signal, without the simple pull-up and pull-down resistors , active terminators
affect only the signal-to-TERMPWR reading, if at all - not the signal-to-ground
and TERMPWR-to-ground measurements.

If you find that there are too many terminators in the bus, your only choice
is to remove the additional terminators.

Termination Power: Active versus Passive

Passive termination is especially vulnerable to low or noisy termination power
voltage . The SCSI specification states very clearly that TERMPWR should be
between 4.25 and 5 .25 volts . Although the minimal voltage drops to 3 .0 volts
in SE/LVD multi-mode setups, let's stick with the SCSI specifications for the
moment. In their board designs, many manufacturers start with the +5VDC
level from the systems' power supply and have a silicone diode in the line as a
protection diode. Now, if the +5VDC is just 4.85 volts and we lose about 0 .6 to
0. 7 volts across the diode, it's below spec. If you add the loss on the SCSI cable,
it 's clearly under spec.

What Not ta Do with Your Power Supply

If this low voltage appears in your system, you might be inclined to try adjusting
the voltage of your power supply - don 't do it! In today's systems, a power supply
design with test pins and voltage adjustments is so rare that you will rarely see
one - most are sealed boxes . If you open the box, you not only lose your war­
ranty, but you may also lose your life by touching the wrong part! We don ' t
recommend that you play with any power supply. (An alternative to monkeying
with the power supply might be replacing the standard diode with a Schottky
type that loses only about 0.3 volts or less .)

Active termination is far less vulnerable to low or noisy termination power
voltage because it uses a voltage regulator, and a good voltage regulator needs
an input of about 0.5 to 1 volt over its 2 .85 volt output.

Noise on the TERMPWR line, especially noise in the frequency range used
by SCSI data, can be even more of a nightmare and can lead to all sorts of un­
predictable behavior. The supply voltage for termination power isn ' t always
clean, and its noise might get through the termination network to the signal
lines. If you encounter strange lockups after you've sorted out the basics, and if
you can get access to an oscilloscope, use the oscilloscope to check the signal

Troubleshooting Your SCSI I n stal lat ion 1 1 7

1 1 8 Chapter 6

condition on the TERMPWR line. There shouldn 't be more than about 1 00 mV
of noise.

Here again, active termination is far less vulnerable to noise on the
TERMPWR line, because virtually all voltage regulators used in active termina­
tion have very good noise and ripple rejection circuitry. This is another reason
to prefer active termination over the passive variant.

Placing the computer near a high-voltage wire may also cause strange
behavior. If you encounter this sort of noise, try changing the computer's
orientation relative to the wire .

If noisy TERMPWR is your problem, you will need an oscilloscope or a
transient recorder to find it. If you find noise in the terminator power, look
at the +5V pins from the power supply and see if they show the same noise.
If they do , replace the power supply with a better-quality model and add a
good surge suppressor (the latter often works wonders for this problem) .
If the noise is only on TERMPWR, it may be due to poor quality cables caus­
ing crosstalk between SCSI signals.

In general , do not exceed the maximum bus length. When making this calcu­
lation, remember that the maximum length varies depending on the bus transfer
rate of the fastest device on the bus, and the number of devices on the bus. As
a rule of thumb, the faster the SCSI bus, the shorter the maximum length.
Also, don ' t underestimate the length of the internal cable - a typical internal
four-device cable is between 2.5 feet and 4 feet (76 em and 1 22 em)
in length.

Because cable quality is a critical issue, keep on hand spare internal and
external cables of good quality, especially if you troubleshoot often . This way,
if you suspect a cable, you can change it to see if the behavior changes.

With external cables, the better the quality of the cable, the better its
shielding should be, both against external RF noise and between the signals .
So, a better cable typically is less vulnerable to a noisy environment. It's some­
times worth swapping all cables for better ones, especially if you can ' t stabilize
the system. (Sadly, though, this is not a feasible alternative to try at home, con­
sidering the price of multiple high-quality cables.)

Changing cable types i s always a potential source o f trouble. If, for example,
your system has an external 50-pin cable connected to a disk drive, then a
scanner with a 25-pin connector, and this connects to another disk drive with
a 50-pin cable, you' re probably in trouble. If l cannot avoid a 25-pin connector,
I always make sure it is the last device in the chain and use a 50-pin cable with
a pass-through terminator. This way, at least I ensure correct bus termination ,
and the few centimeters to the device count as a legal "stub" length .

Check all connectors for good contact- one or more may have lost contact
on some pins. External cables are rather easy to check - if the security clamps
or screws are OK, everything should be OK. However, this should not keep you
from disconnecting and reconnecting the cable. If the cable is older or was used
in a harsh environment (high humidity, for example) try using a contact clean­
ing spray. If this is not handy, a few disconnects and reconnects may do the trick
too. Home-made cables are susceptible to the common "I needed one more
connector and so I just squeezed it on" (the wrong way) error.

fricDcy Devices

Some devices can cause grief because of their particular SCSI implementation.
For example, most parallel-to-SCSI adapters draw their supply power from the
TERMPWR line, so if your external device (s) doesn' t supply termination power
to the SCSI bus, these adapters won ' t work.

Some older devices can create strange situations because of limited SCSI
implementations. For example, the old NEC CDR-35 and CDR-36 portable
CD-ROM drives don' t have termination, and they have only one SCSI connector.
Thus they can only be used on the end of the chain, and they must be connec­
ted via a pass-through terminator. In addition, the CDR-35 is fixed to SCSI ID
1 and can ' t be changed.

On some older devices, you may not find a switch to change the ID. This
may be the case for two reasons: Either the device really is fixed to a specific
ID (the Siemens HighScan 800 scanner, for example) , or the switch is hidden
somewhere inside the device. The second case occurs primarily on devices that
have SCSI as an option only, like some older Epson scanners. (These came by
default with special serial and parallel interfaces only, and the SCSI interface
card was an option, with the ID switch on the PCB deep inside the scanner.)

If you encounter strange problems and can ' t find a logical explanation,
it 's probably time to give the manuals a look. Most of the time, these trouble­
shooting issues are addressed somewhere in the manual.

�Drivel!' Ji»mlbDems

!Plug & !Play-Related

When you install a plug & play device in a PC system, the BIOS supplies
resources to the new device and sometimes remaps the resources to fit the
new situation. If something goes wrong in this process - and believe me,
it does sometimes -you may be able to force the system to redistribute its
resources through a BIOS option called Reset Configuration Data, Reset
ESCD Configuration, or similar. Before doing this, you might want to write
down the current settings just in case things get worse instead of better.

Troubleshooti ng Your SCSI I nsta l lat ion 1 .1 9

This can solve many hardware conflicts, but afterward you may need to
check all hardware-based configuration settings-for example those of network
cards and other peripherals - because the drivers may not find the hardware
at its new settings.

Windows (All Versions)

In today's systems, drivers typically aren't an issue-but add PCI, Plug-and-Play,
and autoconfiguration into the mix and you can be in deeper trouble than
before: You can ' t even be sure that the system will repeat its configuration from
one time to the next! Still, here are a few rules of thumb.

Although your Windows version may have drivers for your host adapter,
check whether your adapter came with newer drivers or whether there are
newer ones on the vendor's web site. Window's built-in drivers are often early
releases and don't support the newer adapter models. This is normal, because
the adapter vendors refine their adapters rather often, and the drivers included
with the 0/S often don't know how to handle the newer adapter models. There­
fore, it's usually better to use the drivers supplied with the adapter or an even
newer version from the vendor's support web site .

.m:D Before you install a new device, be it a SCSI adapter, a network card, or whatever, try to

save the system configuration. In Windows NT, this is easily done with the RDISK com­

mand. This way, if a problem arises, you can fall back to the old configuration at startup.

1 2 0 Chapter 6

DOS

Sometimes, the SCSI device drivers for DOS can be real troublemakers. They
may conflict with memory managers, be incompatible with each other, be buggy,
or who knows. However, when you install them correctly and use the few hints
that follow, you'll usually be able to avoid these troubles.

Let's look at a sample configuration, taken from a real support case, that
shows the problems you, or the Install program, might run into (this is for an
ISA PC with an Adaptec 1540 host adapter) :

device=c : \dos\h imem . sys

devicehigh=c : \dos \ s c s i \a sp icd . sys /d : a s picd

device=c : \dos\emm386 . exe ram

devicehigh=c : \dos \ s c s i \ a spi4dos . sys /d

shell=c : \dos\command . com c : \dos\ /e : 2 56 /p

dos=h igh , umb

lastdrive =f

devicehigh=c : \dos \scs i\aspidis k . sys

This configuration has one error and two features that may cause problems:

1 . The first error is that the CD-ROM device driver (ASPICD.SYS) is started
before the low-level driver (ASPI4DOS.SYS) so that, at the device driver's
loading time, no ASPI interface is present. The driver will refuse to load
and the CD-ROM won' t work.

2 . One potential problem i s that EMM386.EXE i s loaded with the RAM
parameter without excluding the SCSI BIOS area. This may or may not
work, depending on the memory manager and its version; but it 's usually
the case that, on loading the EMM386.EXE driver, the SCSI BIOS address
range is overwritten with RAM to gain upper memory blocks (UMBs) for
drivers and resident programs.

3 . The other potential problem may occur because many SCSI device drivers
cannot (or should not) be loaded high. In general, the basic ASPI or CAM
shell drivers for SCSI adapters should be placed before all memory manager
commands, because virtually all those drivers do more than j ust the ASPI

layer. They either provide additional services and/or they provide bug fixes
for the BIOS and other things.

A working configuration would look like this:

device=c : \dos \ s c s i \a s p i4dos . sys /d

device=c : \d o s \ h imem . sys

device=c : \ do s \emm3 86 . exe ram x=dcoo - dfff

d o s = h igh , umb

devicehigh=c : \ dos \ s c s i \ a s p icd . sys /d : a s p icd

dev iceh igh=c : \dos \ s c s i \ a s p i d i s k . sys

s h e l l = c : \ d o s \comma nd . com c : \ dos \ / e : 2 5 6 / p

l a s t d r ive=f

Of course , the possibility for further optimization always exists, but the changes
to the configuration are fairly straightforward. In this working configuration,
the following are true:

• The ASPI driver is loaded before the memory manager, so as not to inter­
fere with it.

• EMM386.EXE excludes the BIOS address range - in this case DCOO to
DFFF, the 1 540 's default.

• All ASPI-dependent drivers are loaded after the ASPI low-level driver so
that they will be able to communicate with the ASPI driver.

Troubleshoot i ng Your SCSI I n stol lat ion 121

1 2 2 Chapter 6

GeiT!lerlfliD iR.JWHes for Troubleshooting Drivers

" If you suspect driver problems or the system locks up when initializing the
SCSI drivers, try a clean boot with only the SCSI drivers to see if you have
a memory conflict or similar problem. Then add in the other drivers one
by one.

" If one or multiple devices are found by the bus scan but won' t operate later,
check the order of the drivers in CONFIG.SYS.

• Avoid loading the SCSI drivers in upper memory unless you've tested that
configuration thoroughly.

" Check memory manager address ranges for proper exclusions.

Driver Combinations

Combinations of different ASPI drivers may cause big trouble. By definition,
ASP! drivers should be cascadable-one manufacturer's ASPI extensions should
work on another's low-level driver- but this is in theory only. Virtually every
manufacturer makes their own (read "incompatible") extensions to the drivers .
As an example , older Adaptec and Buslogic ASPI drivers don ' t cooperate .

Either the Buslogic driver kicks the Adaptec driver out, or the Adaptec driver
refuses to load after the Buslogic driver. Ironically, both adapters (in this case,
a 1 740A and a Buslogic BT-742) work together at BIOS level without any has­
sles, but only one ASPI driver can be used. No possible combination gives you
both adapters with full ASPI support, and nearly the same applies for all o ther
combinations we tried.

Different drivers from the same vendor usually don 't share this problem. The manufac­
turers are definitely interested in making their own adapters work together, but don 't
even count on that before you 've tried it!

Useful Tools

SCSI SniHer

A SCSI sniffer is a pass-through connector that is plugged between the SCSI
bus and the device. Some of these connectors are also a terminator and should
therefore be used on the bus ends only. "Sniffer" means that the connector is
equipped with LEDs that show activity or the status of various SCSI signals.
The most common display LED is for Termination Power, where the simpler
version shows only that there is a voltage present on the TERMPWR line.
There are also versions that show the validity of the TERMPWR level with the
LED color or multiple LEDs.

Table 6.2 shows typical signals from these devices.

Table 6.2: !Diagnostic I!..IEIO meanings

Signal

1/0

C/D

SEL

PWR

ACK

REO

BSY

II.IED Active Means • • •

The i n it iator reads data from the bus .

A command is transferred (LED i nactive means data i s transferred) .

The i n it iator selects a target device.

There i s power present at the TERMPWR l i ne .

The in i tiator acknowledges a ta rget request.

A target requests data from the i n it iator.
The bus i s busy.

Taking the bus phase description from Chapter 7, you can see the system's bus
phase at any point in time (though this only makes sense when the system is
locked up, of course) . Interpreting this is not easy and, even if you can inter­
pret it, you probably won ' t help yourself. In most cases it is enough to see that
there is no ongoing bus activity to know it 's reboot time. If your bus is hung
with a certain combination of LEDs on, and you' re diligent about scrutinizing
the meaning of each from the protocol discussions in Chapter 7, you can
probably figure out whether it was the host adapter or target device that
dropped the ball .

In a case where the system is locked up, the BSY LED is active , and SEL,
C/D, I/0, and MSG are not active . If we avoid a disconnect/reconnect sce­
nario , the active device may be defective or too slow, but we don ' t know for
sure. Interesting, but not really helpful.

However, a very active MSG LED might hint at too many transfer errors
and retransmits, which in turn might point to a cabling or mis-termination issue.

Oscil loscope

An oscilloscope is a very useful tool. The major disadvantages are that you
must have one , and you must know how to use it , or it 's j ust an expensive toy.
The big advantage is that signal-dependent problems are easy to detect with
an oscilloscope.

One case in which an oscilloscope might come in handy is where
termination power is OK without activity and, during bus activity, the
TERMPWR level drops sharply. One possible explanation for such an effect
could be that a "Forced Perfect" terminator draws higher current than the
drivers can deliver. With this knowledge, changing the terminator to a standard
active one might correct the problem in seconds.

Another case in which an oscilloscope would be useful would be where
there are strong overshoots of a signal because of a missing or defective termi­
nator. The upper oscilloscope trace in Figure 6. 1 shows these overshoots on
the unterminated side of the bus. The lower oscilloscope trace shows the same

Troubleshooting Your SCSI I nstal lat ion 1 2 3

1 2 4 Chapter 6

: 1) Ch) : : :J) Ch ::J : 1 'o/olt 1® ns 1 Volt 10:0 ns
.;..dX : u � .4 ns d_y : 1 .5� Volt !: X l : - t 6 .7 ns : Y l : - � .78 vO:lt

llw""-�.¥.1/���Aw..wt� -lo!.
·

..-.FI
·

•

· ·j·_

· ·X:J : · I-.77 ns · Y2 : � 1 84 ·mVolt · · ·
· ·

I . • I . , . I . , . . I

Figure 6. 1 : Oscilloscope View of a Signal

.. .

..;- -

+· I • . , . I

pulse on the other side of the bus (which is equipped with an active negation
terminator) .

Also, the signal is very noisy, because of the cheap ribbon cable used for
the test setup. With clear pictures of the signals, most types of errors - or at
least hints about their causes-can be found.

Amusingly, in this test setup, the single active terminator managed to keep
the system working with the devices "on its side" of the bus, while a device on
the unterminated side of the bus locked up on every request. Of course, this is
only a side effect of a good terminator.

During our troubleshooting exercises in this chapter we've pointed you to
some of the detailed information in Chapter 7, where we explain exactly how the
SCSI protocol works; let's move on and find out more about it. It won ' t hurt!

H O W T H E B U S W O R K S

As we all know by now, SCSI is an acronym
for the small compute r systems interface .

That i s all fi n e and dan dy, b u t what exactly
is SCSI? This chapter goes beyond where the

rest of the book has been to look at the way the
SCSI bus really works . So if you ' re running into
p roblems that wil l require some analysis , you ' re

j ust the curious type , or even if you ' re a hopeless
geek who has to know how everything works , this
chapter may interest you .

An Intelligent Interface

SCSI is an i n t e l l igent i n t e rface t h a t h ides a devi ce ' s phys i ca l format from the

software layers above i t . Each SCSI device a t taches t o the SCSI bus i n the same

manner, and the host computer's only concern is what type of device is attached

(e . g . , disk, tape, and so on) . I n formation i s IT t riCI'ecl from a SCSI device via

1 2 6 Chapter 7

logical block addressing, a scheme that hides the device's physical configuration.
This is beneficial , because the host is not required to know the head, cylinder,
sector, and so on where information is stored. If a host needs a file from a device ,
i t requests the data in the form of logical block numbers from zero to the
maximum address available on the device.

SCSI uses device-generic commands, which, in standardized system software ,
support many devices. In most systems, the host computer requires special
software, known as a device driver, to properly format the command for each
specified device type. There is usually a separate device driver for each device
type attached to the SCSI bus .

SCSI is a true peripheral interface that allows up to 8 devices (SCSI-2) or 1 6
devices (SCSI-3) to be attached to a single bus/cable. These devices can be
any combination of peripherals or hosts, but there must be at least one host.
SCSI protocol is device-independent. The user can attach disk drives, tape
drives, optical disks , and other devices (printers, scanners, and the like) to
the same port.

In addition , SCSI is a buffered interface where all activities involve hand­

shakes so that all devices operate properly with slower and faster devices and
hosts. SCSI 's handshaking allows devices of various communication speeds
to coexist on the same cable. (We talk more about handshaking later in this
chapter, in the section titled "Handshaking of lnformation . ")

SCSI i s also a peer-to-peer interface , where communication can take place
from one host to another, one peripheral device to another, or, most commonly,
a host to a peripheral device.

To understand how SCSI works, you must first know some definitions. For each
communication (I/0 process) that occurs between two devices, each device
involved assumes a particular role. One device assumes the role of an initiator
and is responsible for starting or initiating the I/0 process . The other device
acts as the target and is responsible for managing or controlling the l/0 process .
Logical units are physical peripheral devices that are addressable through a target
or peripheral controller (i .e . , sub-address of the target) . The operational diagram
in Figure 7. 1 shows a host-to-peripheral device connection.

Host Computer

In i tiator
Host Bus to

SCSI Bus Adapter

Target
SCSI Peripheral

Device (Controller)

Figure 7. 7 : Diagram of the Host-to-Peripheral Device Connection

What Is an 8/0 Process?

Log ical
Uni t

In SCSI, the term l/0 process defines a particular method of doing something
with an input/output device. The 1/0 process generally involves numerous
steps. In most cases an I/0 process consists of all the steps required to perform
a single SCSI command, such as read or write a block of data. Figure 7 .2 shows
what an I/0 process might look like if we were to model it.

The illustration in Figure 7.3 is an example of a SCSI transfer at its simplest.
You ' ll find more detail in the section titled "The SCSI Protocol" later in this
chapter.

SCSU Configurations

A SCSI system can have many different configurations, including a single
initiator and single target, single initiator and multiple targets, and multiple
initiators and multiple targets. The diagrams in Figure 7.4 show how the SCSI
standard defines each of these different bus configurations .

Bus and Device Characteristics

A SCSI device can be a host adapter or target controller attached to the SCSI
bus. Each device usually has a fixed role as an initiator or target, but some may
assume either role . The host adapter is a device that connects the host system
to the SCSI bus and performs the lower layers of protocol when accessing the
SCSI bus . Host adapters usually act as initiators.

-- SCSI is an "interlocked interface, " which means that only two devices can communicate
at any given time. When these two devices are communicatin/5J aU other devices must wait
for the bus to free up before they can access the bus.

How the Bus Works 1 2 7

1 2 8 Chapter 7

N

A decision has been made within the host system to store/
retrieve information to/from an 1/0 device. Once the host

adapter has requ i red information it starts the operation .

N Wait and try ===---+� again later.

Gain access to SCSI bus and connect to desi red
target. Once the connection is completed the 1/0

process is active.

Transfer operation i nformation .
This is known as the SCSI COMMAND.

Update 1/0 processes completion information
(good/bad) to the in itiator (host adapter) . This

i s known as the SCSI STATUS.

Figure 7.2: Model of the 1/0 Process

Bus Connection I I COMMAND I I

Figure 7. 3: A Simple SCSI Transfer

DATA II STATUS I I Bus Disconnection

Sing le In i tiator and S ing le Ta rget
uter

I n it iato r Host SCSI Bus

Adopter
System Bus

Main
Memory

S ing le I n it iator and Multiple Ta rgets
I n itiator

Host Host SCSI Bus

Com puter Adopter

Mult ip le I n it iators and Mult ip le Targets
I n itiator

Host Host SCSI Bus

Computer Adopter

I n itiator

Host Host
Computer Adopter

I n it iator

H ost Host
Computer Adopter

Figure 7.4: Various SCSI Configurations

Peripheral
Control ler

Target
Log ica l Unit 0

When two devices are talking to one another, they are performing an I/0
process, as briefly described later in this chapter. The detailed functions of
each device are listed below.

Initiators

When a device is acting as an initiator, it does the following:

How the Bus Works J 2 9

1 3 0 Chapter 7

0 Originates operations.

0 Determines what task needs to be executed and which target will
perform the desired task.

" Delegates authority to the target device to control the 1/0 process .

., Controls certain bus functions, like arbitrating and target selection.

" Confirms that the target performed the task assigned to it.

When a device is acting as a target, it does the following:

., Waits to be selected by an initiator .

., Upon selection, controls the data transfer process, by requesting that
COMMAND, DATA, STATUS, or MESSAGE information be sent across
the data bus .

., May arbitrate and reselect an initiator for the purpose of continuing an
operation that was previously suspended because the device disconnected.

SC:S6 IDs

Each device has a SCSI ID that uniquely identifies it among all other devices
on a particular SCSI bus. When an initiator starts a SCSI request, it sets its ID
bit and the ID bit of the desired target device on the data bus simultaneously.
Priority on the data bus is determined by the bit numbers 0 through 7, with 7
the highest priority and 0 the lowest. The priority on the bus is used only when
multiple devices are trying to access the bus simultaneously. In this instance,
the device with the higher SCSI ID will take over the bus and the other device
will sit back and wait until the bus is free for communication.

A device 's address is determined by jumpers or switches on the device itself
(or in the case of SCA drives , on the SCA back-plane or SCA adapter) , as seen
in Table 7. 1 . Most enclosed SCSI devices come with a switch mounted on the
rear of the peripheral, and newer host adapters allow you to set the host's ID
via software configuration utilities. On narrow SCSI devices, jumpers AO , Al ,
and A2 are required to set the SCSI ID jumper settings , because only eight
devices may be attached.

When SCSI-3 Wide is used, an additional 8 devices may be attached to the
bus. Priority for the lower bits will stay the same, and the remaining bits will be as
shown in Table 7. 1 . The additional addressing of a11 1 6 devices is easily achieved
by just adding a single jumper A3. If the Qcable is implemented, then 32 devices
can be attached to a single bus and a jumper A4 will have to be added.

Table 7. 1 : SCSI IDs, Their !Priority on the Bus, and Jumper SeHings

SCSI ID Priority* Jumper Jumper Jumper Jumper Jumper

A4 A3 A2 A l AO

7 0 0 1
6 2 0 0 0
5 3 0 0 0 1
4 4 0 0 1 0 0
3 5 0 0 0 1
2 6 0 0 0 0
1 7 0 0 0 0 1
0 8 0 0 0 0 0

1 5 9 0 1
1 4 1 0 0 0
1 3 1 1 0 0 1
1 2 1 2 0 1 0 0

1 1 1 3 0 0

1 0 1 4 0 0 1 0
9 1 5 0 1 0 0 1

8 1 6 0 1 0 0 0

2 3 1 7 0 1

22 1 8 0 0

2 1 1 9 0 0

20 20 0 1 0 0

1 9 2 1 0 0 1

1 8 22 0 0 1 0

1 7 23 0 0 0

1 6 24 0 0 0 0

3 1 25 1

30 26 1 0

29 27 0 1

2 8 2 8 1 0 0

27 29 0 1

26 30 0 1 0

25 3 1 0 0 1

24 32 0 0 0

*Where 1 is the highest priority and 32 is the lowest

In the sections that follow, you'll learn about the cables that carry the signals,
and you' ll go inside the SCSI bus, where you ' ll learn about the bus 's data and
control signals. You will also learn which devices drive which signals, and how
these signals control the protocol .

How the Bus Works J 3 J

1 3 2 Chapter 7

SCSI Cables

In order to understand how SCSI protocol works, you ' l l need to know what's

inside the physical cable. The cables used to connect SCSI devices are generally

wired the same, although the number of conductors and the cable specifications

may vary.

Cable Evolution

The A-cable is associated with both SCSI-1 and SCSI-2, B-cable with SCSI-2 only,

and the P- and Q-cables with SCSI-3.

The A-cable (Figure 7.5) is a 50-conductor cable that consists of eight data

signals DB (0-7) (i . e . , physical transmission lines) , parity (D B (P)) , and nine

control signals.

The B-cable (bottom of Figure 7.6) is a 58-conductor Wide bus option

that has an additional 24 data lines, three parity lines, and two control signals

(REQB and ACKB) .

A-Cable

AN Nine Control Signals A TARGET

INITIATOR DB(0-7) DB(P)

Figure 7. 5: The A -Cable

A-Cable

Nine Control Signals

DB(0-7) DB(P)

AN B-Coble
A TARGET

I N ITIATOR Two Control Signals

DB(I 6-8) DB(P l)

DB(23- l 8) DB(P2)

DB(3 l -24) DB(P3)

Figure 7.6: The A- and 8-Cables

MJt.UJ The B-mb!R m ust be used in conjunction with the A-rable, as seen in Figure 7. 6. B ut, in

reality thf B-rable is obsolete and the A, B combination has bPfn replaced by the P-cable,

the 1 6-bit wide SCSI-3 cable alternative. The 8-cab/e was nroer used com mercially, a n d

tlw SCSI- 3 altern ativP ojfns a bfttn I Vidl' b u s solution with on ly o n e cable a n d up to

1 6 droices.

The 1 6-bi t Wide P-cable (Figure 7.7) is a 58-conductor bus option that has nine

control signals (just l ike the A-cable) , 16 data l ines, and two parity signals. In

equation form, we can look a t the P-cable as fol lows:

P-cable = (A-cable) + (8 data lines and a par i ty bi t)

The Q-cablc option (Figure 7.8) adds full 32-bit Wiele capabi l i ty bu t must be

used in conj unction wi th the P-cable. This option (using both P and Q) ancl

adds two control signals (REQQ and ACKQ) , l t:i data lines, and two addi tional

parity b i ts , for a total of 68 more conductors.

MJ!•UJ SCS/-3 replucl's the Widr A-mble I B-mb!R combination of SCSJ-2 with the P-mble.

AN

I N ITIATOR

Figure 1.1: The P-Cable

AN

I N ITIATOR

Figure 1. 8: The P- and Q-Cabfes

P-Coble

Nine Control Signals

DB(7-0) DB(P)

DB(! 5-8) DB(P l)

P-Coble

Nine Control Signals

DB(0-7) DB(P)

DB(1 5-8) DB(P I)

Q-Coble

Two Control Signals

DB(23- 1 6) DB(P2)

DB(3 1 -24) DB(P3)

A TARGET

A TARGET

How the Bu, Work. ! 3 3

1 34 Chapter 7

SCSI· l, SCSI-2, and SCSI-3 Cabling Diagram

The diagram in Figure 7.9 shows all the different cabling and bus options and
what is transferred across them.

�===;--- B-Cable 68 pins • 1 • A-Cable 50 p ins-!

Control bits 3 1 . . • • · 24 23 · • · • · 1 6 1 5 · · • · • 8 7• · • • · · · 0 Control
S ignals-2 I P3 1 Byte 3 II P2 1 Byte 2 II p 1 I Byte 1 II p I Byte 0 I Signa ls-9

t--lo�t---- Q-Cable 68 pins-----t*f---- P-Cable 68 p ins -----4�

Figure 7. 9: SCSI- I , SCSI-2, and SCSI-3 Signal Grouping

Legend:

Control s igna ls - 9

Control s igna ls - 2

P , P l , P2, and P3

SCSI Bus Signals

BSY, SEL, C/D, 1/0, MSG, ATN , RST, REQ, ACK

B-cable - REQB/ACKB or Q-cable - REQQ/ACKQ

The parity bits and byte (0 to 3) a re data bus bytes.

This section describes each bus signal 's definition and characteristics. This
information will give you a detailed description of what each transmission line
is and what it does. Bus signals are either data bus or control signals. We'll
address data bus signals first, because they're relatively straightforward.

The droice driving the signals depends upon whether the droice is initiator or target.

Also, note that the minus sign in front of each signal name denotes active low signals,

meaning that when a droice drives the signal, it goes to a 0 voltage lroel (on single-ended
buses). "When the droice no longer wants to drive the signal line, it releases the signal.
Now, the question is, what happens to the signal lroel when it is released ? It goes to ter­
mination voltage (about 3 volts). This is one reason why the SCSI bus must be terminated.

Data Bus Signals

Data bus signals are relatively straightforward. One thing to keep in mind is your
data bus width. The data bus signals are DB (3l-O, P, P l , P2, and P3) , and data
bus signals have these five characteristics :

• Up to 32 data bus signals plus their respective parity bits (usually only 8-bit
or 1 6-bit) .

• DB7 is the Most Significant Bit (MSB) and has highest priority during
ARBITRATION; DBO is the Least Significant Bit (LSB) .

• Data b i t is defi ned as 1 11·hen signal is t rue . (..:\.ssert cd = 0 1·olts on Single

Ended [S .E .] bus.)

• DaL<t b i t is def ined as 0 when signal is f;t lsc . (1cgatnl = 3 HJ!ts on S.E. bus .)

• Pari ty is odd. (ParitY bi t 11i l l change to l l l ain ta in an odd number of '' l '' b i ts .)

Control Signals

The n i ne con t rol sign;tls can be sp l i t i n to three cttegorics:

• Basic con t rol signals. which arc used to de ter m i n e if the bus is i n usc, to

select another dnice, to get the wrgct ' s < t t t e n t ion , and to reset t h e bus.

• I n formation transfer control s ignals. 11·h ich < trc used by the target to con t rol

the i n format ion transfer phases. I n fonna t i o t t t ransfe r phases arc used to

trans m i t COM !\ L.:\.;\JD, 1\ l t:SSACE. DATA, ;utd STATL'S i nf ormat ion across

the bus.

• Data clock s ignals. which arc used to L t tch (c<tp l l l re) and val idate the data

at the receiving c lcYi ce .

F igure 7. 1 0 shows ;ti l t he signal names and which dc1·ice can chiYe 11 h ich signals.

Notice that some sign;t ls arc c lriYen only by in i t i < t tors, and others only by targets.

Conversely. some sign;tls can he cl tiw:n b;· both in i t iators and targeL� . The con t rol

signals arc used to <tch iC'I'e certain J..>rotocol phases. which arc. in turn , used to

transmit a l l i n formation (i ncluding DATA) < tcross the data bus. V,Te ' l l ta lk about

the protocol in detai l in the section e n t i t l l 'd "Th e SCSI Protoco l . " T;tble 7 . '2

shows you the actual signal name, the sig11al def in i t ion. whether the sig11al is driven

by an i n i t ia tor or targe t . and gi,·es a brief descri p t ion of the s ignal 's func t ion .

A N
I N IT IATOR

I

Figure 7. 1 0: SCSI Signal Sources

BSY
SEL

C/D

1/0
MSG

REO/REOB/REQQ
ACK/ ACKB/ ACKQ

ATN
DB(0-3 1) DB(0-3)

RST

A TARGET

How t he Bus Works J 35

Table 7.2: SCSI Bus Control Signals

Signal Definition Category Initiator Target Description

BSY Busy Basic y y I nd icates that the bus i s
being used .

SEL Select Basic y y I nd icates that a SCSI device

i s try ing to select or reselect

another SCSI device. The i n i-

tiator uses th i s s igna l to select

a target, and the ta rget uses
i t to reselect the i n i tiator.

ATN Attention Basic y N Used by the i n i tiator to i nd i-

cote a n Attention condit ion,

marking a moment when the

i n it iator needs to get the tar-

get's attention .

RST Reset Basic y N I nd icates the Reset cond ition

and gets everyone's attention .

(Targets typica l ly do not d rive

th is s igna l , even though the
SCSI standard says they

cou ld .)

C/D Control/ I n formation N y I nd icates whether control or

Data transfer data i n formation is on the

bus . Fa lse i nd icates data

i n formation and true i nd i-
cates control (COMMAND,

MESSAGE, or STATUS)

i n formation on the bus .

1/0 I nput/ I n formation N y I nd icates which device i s

Output transfer respons ib le for d riving the

control datal bus and controls the
d i rection of data movement
on the data bus with respect
to the in i tiator. False ind icates

the d i rection of data is out of
the i n itiator and true ind icates
the d i rection of data i s i nto
the in itiator. Th is s igna l is a lso
used to d i sti ngu ish between
SELECTION and RESELEC-
TION phases.

136 Chapter 7

Signa! Definition Category Initiator Target Description

MSG

REQ

ACK

Legend:

Message

Request

Acknowl­

edge

Y Drives s igna l

N Doesn't d rive s igna l

I n formation N

transfer

control

Data clock N

Data clock Y

The SCSI Pr@ft'@CO�

y

y

N

Ind icates that a SCSI device

has a message to transfer to

another SCSI device. Th is

s igna l is d riven dur ing a

MESSAGE phase.

Target i nd icates a request for

an i n formation transfer hand­

shake. When the ta rget is

d riv ing the data bus, th is

s igna l is used to latch the

data bus in to the i n itiator's

buffer .

Th is s ignal i nd icates the i n i­

t iator's acknowledgment of

an i nformation transfer hand
shake. When the i n it iator i s

dr iv ing the data bus , th i s sig­

nal i s used to latch the data

bus i nto the target's buffer .

SCSI uses a method to transfer data between devices on the bus in a circular
process that starts and ends in the same layer- that is , the bus must go through
specific steps in a prescribed order. From the first layer, additional layers of
protocol must be executed before any data is transferred to or from another
device, and layers of protocol must be completed after the data has been trans­
ferred to end the process. Figure 7. 1 1 shows this process.

MJt.JiJ The diagram in Figure 7. 1 1 assumes no disconnection occurs (disconnection is covered

in the section titled ''Disconnect " in this chapter).

The protocol layers are referred to as SCSI bus phases. Protocol layers and
their SCSI bus phase equivalents can be seen in Table 7 .3 .

MH•uJ In Table 7.3, the terms "In " or "Out " are based upon the initiator's perspective. The
numbers next to the bus phase refer to the illustration in Figure 7. 1 1 .

How the Bus Works J 3 7

1 3 8 Chapter 7

2
3

rl No one is using I Layers of protocol to I Transfer data
SCSI BUS. I access peripheral and I (Optional) .

start 1/0 process.

4

Layers of protocol to

complete 1/0 process.

Figure 7. 7 7 : SCSI Protocol

Table 7.3: Protocol Layers and Their SCSI Bus Phases

Protocol Layer Characteristics

l . Th is protocol layer ind icates no

bus activity.

2. Devices use this layer to recogn ize
that the bus is ava i lable.

3. Any t ime a device i s not ready to
transfer in formation, protocol reverts
to th i s phase.

4 . Th is phase can happen many times
for each 1/0 process .

l . Th is protocol layer is used to ga in
control of the bus .

2 . I n it iators or targets use this layer to
resolve bus contention .

3 . Th is phase can occur many t imes for
each 1/0 process .

l . Th is i s the protocol layer that an
i n it iat ing device uses to choose
another device (a target) .

2 . I n i tiators use th i s layer to select targets
to start an 1/0 process.

3 . Th is phase occurs only once for each
1/0 process.

l . This protocol layer provides interface
management to on 1/0 process.

2. I n it iators use th i s Ioyer to transmit a
to a target.

SCSI Bus Phase

BUS FREE l

ARB ITRATION 2

SELECTION 2

MESSAGE OUT 2

�

Protcccl ll.ayer Characteristics

3 . Th is phase can occur many times for
message each 1/0 process

1 . Th i s protocol layer transfers the 1/0
process operation i n formation .

2 . Th is phase tel l s the ta rget which
operation to perform .

3 . Th is phase occurs on ly once, at the
beg i n n i ng of each 1/0 process .

1 . Th is protocol layer transfers data to
or from the device .

2 . Th i s phase can occur many times for
each 1/0 process .

1 . Th is protocol layer g ives an update
of the status of an operation .

2 . Th i s phase occurs only once, at the
end of each 1/0 process .

1 . Th i s protocol layer provides interface
management to an 1/0 process.

2. Targets use th i s layer to transmit a
message to an in itiator .

3. Th i s phase may occur many times for
each 1/0 process .

1 . Th i s protocol layer is used by a ta rget
to choose an i n it iator.

2. Targets use th is layer to conti nue a
previously d i sconnected 1/0 process .
Th is phase can occur many times for
each 1/0 process.

SC:S� !Bus Phase

COMMAN D OUT 2

DATA OUT 3

STATUS I N 4

MESSAGE IN 4

RESELECTION

The SCSI bus can be in only one bus phase at any given time . Each phase has
a predetermined set of rules, or protoco� that apply when the bus changes from
one phase to another. The rules are part of device code, or finnware, that
resides on all devices attached to the SCSI bus . This method of defining what
can happen when is called a state machine. This device code makes the device
intelligent by moving peripheral control operations onto the peripheral
device itself.

How the Bus Works 1 3 9

1 4 0 Chapter 7

Phase Sequence Diagram

The sequence diagram in Figure 7. 1 2 is taken from the SCSI-2 standard.
Firmware developers, IC manufacturers, and anyone who has anything to
do with SCSI all use this chart as the bible for SCSI protocol. These are the
steps the bus must follow for every data transfer.

Following the diagram in Figure 7. 12 , the normal progression of bus phase
sequencing is as follows:

1 . BUS FREE to ARBITRATION

2 . ARBITRATION to SELECTION or RESELECTION

3 . SELECTION or RES ELECTION to one or more of the information
transfer phases (MESSAGE, COMMAND, DATA, or STATUS)

- - - - - - - SCSI- 1
Reset or

protocol 1 error

� MESSAGE OUT j--

TIME-OUT 1 j_
I " - - - - - -rr ; - - - - -4 SELECTION COMMAND J_

. j_ .

.

I ARBITRATION I DATA IN or l BUS FREE DATA OUT

•
I RESELECTION I �H STATUS r-TIME-OUT I

l l
y MESSAGE IN l

t I
Figure 7. 1 2: Phose Sequence Diagram

Table 7.4 is a bus phase sequence trace taken from a typical SCSI bus analyzer,

which translates the bus signals into protocol phases and data information. This

information is very detailed, but if you read carefully you will get a real under­
standing of how SCSI protocol works .

Table 7.4: Bus Phase Sequence Trace

Data Bus

(Single values

represent SCSI IDs.

Timing Protacol Layer or Bus Otherwise values
• s.mmm_l'l'l'-"nn Phase That Transpired are in hex bytes.) Event

00.000-000_000 Bus Free Detected 0000

2 26 .032_85 3_700 Arbitration Sta rt 7 000 1

2 26 .032_856_ 1 00 Arb_win 7 0002

2 26 .03 3_5 1 4_ 1 00 (Atn Assertion) ATN 0003

2 26 .03 3_5 2 1 _700 Selection Start 7 4 ATN 0004

2 26 .033_5 22_600 Selection Complete ATN 0005

2 26 .034_ 1 6 1 _850 (Atn Negation) ATN 0006

2 26 .034_83 3_950 Message Out co 0007

2 26 .039 _035_750 Command Out 08 00 01 00 01 00 0008

3 26 .055_860_800 Data I n 00 00 00 00 00 00 0009

3 26 .055_862_300 00 00 00 00 00 00 00 1 0

3 26 .056_ 494_ 450 00 00 00 00 00 00 00 1 1

4 26 .056_894_350 Status In 00 00 1 2

4 26 .057 _852_350 Message In 00 00 1 3

26 .058_ 426_300 Bus Free Detected 00 1 4

Legend:

* 1 No one us ing bus
* 2 Protocol to access peripheral and start process
* 3 Transfer data
*4 Protocol to complete process

Before you panic, take a look at Table 7.5, which provides a detailed description
of the bus phase sequence in Figure 7. 1 3 , event by event.

How the Bus Works 141

142 Chapter 7

Table 7.5: Analysis of SCSI Bus Phase Sequence Diagram

Event

0000

000 1

0002

0003

0004

0005

0006

0007

0008

0009

00 1 2

00 1 3

00 1 4

What Happened

The SCSI bus is in a BUS FREE phase.

A device (in i tiator) with a SCSI ID=7 sta rts the ARBITRATION phase to

ga in bus access .

The i n itiator was granted access to the bus and the ARBITRATION

phase ends.

The i n itiator asserted the ATN signal to notify the peripheral that i t w i l l

have a message to transfer after the SELECTION phase i s completed

(Attention condition) .

The in i tiator starts the SELECTION phase and is attempting to select a

peripheral (target) with a SCSI ID=4. The i n it iator's I D can a l so be seen .

The SELECTION phase has ended successfu l ly . A t th i s point t he ta rget i s

i n control o f the bus and wi l l conti nue contro l l i ng the protocol un t i l the

1/0 process is complete .

The i n itiati ng device drops the attention s igna l .

The peripheral goes into the MESSAGE OUT phase and accepts the "CO"

message . This is because the in i tiator had the ATN signal asserted du ring

the SELECTION phase.

The target enters i nto the COMMAND phase and requests that the com­

mand bytes be sent.

The target deciphers the command code (READ command) and knows to

enter the DATA IN phase. The requested data is transferred to the i n itiator

that started the 1/0 process . Even though only 1 8 bytes of data a re

shown , one block (5 1 2 bytes) had been transferred . The ana lyzer used
i n the above d isplay has a data byte fi l ter, which causes only a few data

bytes to be d isplayed instead of the large number actua l ly transferred .

When the target completes the DATA phase, it enters i n to the STATUS

phase and transfers a "00" status to in form the i n itiati ng device that a l l
went wel l .

When the target completes the STATUS phase, i t enters i nto the MESSAGE
IN phase and transfers a "00" message to in form the in i tiating device that

the 1/0 process is complete .

The target d i sconnects from the bus and the SCSI bus returns to the BUS
FREE phose.

Bus !Phases

This section dives a little deeper into the phases of the bus and provides further
examples and descriptions. Not counting the INs and OUTs, there are eight
distinct bus phases, which can be divided into three categories, namely the
waiting phase , bus control phases, and information transfer phases, as shown

in Table 7.6 .

Table 7.6: Bus Phases

Waiting Phase

BUS FREE

Bus Control Phases

ARB ITRATION

SELECTION

RESELECTION

Information Transfer Phases

MESSAGE I N/OUT

COMMAND

DATA I N/OUT

STATUS

One of two types of bus operations may occur when an 1/0 process takes place ,
namely the phase sequence with no disconnection and the phase sequence
with disconnection, as shown in Tables 7 .7 and 7.8. The "disconnect" takes
place when the second "bus free" occurs in Table 7 .8 . More details of each
phase will be given later in this chapter.

Table 7.7: Phase Sequence with No Disconnection

Phase BSY SEL C/D 1/0 MSG Data Bus

Bus Free 0 0 X X X X

Arbitration Start X X X X l n i t SCSI I D

Arb_win X X X X l n i t SCSI I D

Selection Start 0 X 0 X Both SCSI IDs

Selection Complete X 0 X Both SCSI IDs

Message Out 0 0 Message Byte(s)

Command Out 0 0 0 Command Bytes

Data I n 0 0 0 Data Byte(s)

or (Optional-data is not required for some commands.)

Data Out 0 0

Status I n 0

Message I n 0

Bus Free 0 0 X

0 0

0

X X

Data Byte(s)

Status Byte

Message Byte(s)

X

How the Bus Works 143

Table 7.8: Phase Sequence with Disconnection

Phase BSY SEL C/D 1/0 MSG Data Bus

Bus Free 0 0 X X X X

Arbitration Start X X X X l n i t SCSI I D

Arb_win X X X X l n it SCSI I D

Selection Start 0 X 0 X Both SCSI I Ds

Selection Complete X 0 X Both SCSI IDs

Message Out 0 0 Message Byte(s)

Command Out 0 0 0 Command Bytes

Message I n 0 Message Byte(s)

Bus Free 0 0 X X X X

Arbitration Start X X X X Targ SCSI I D

Arb_win X X X X Targ SCSI I D

Reselection Start 0 X X Both SCSI I Ds

Reselection Complete X X Both SCSI IDs

Message I n 0 Message Byte(s)

Data xxx 0 0 1 or 0 0 Data Byte(s)

Status I n 0 0 Status Byte

Message I n 0 Message Byte(s)

Bus F ree 0 0 X X X X

Legend:

True XXX I n or Out

0 False (doesn 't necessar i ly mean driven fa lse) I n i t I n it iator

X Not driven Targ Target

•�t.n; The ATN sig;nal has been purposely omitted in Tables 7. 7 and 7. 8.

Connect, Disconnect, and Reconnect Concepts

The processes that underlie connect, disconnect, and reconnect are what make
SCSI capable of multitasking. The idea behind this process is that when a device

1 4 4 Chapter 7

experiences some type of delay during a data transfer, mechanical or otherwise,

it gets off the bus and lets another device on. Usually this is done during data
transfer phases.

Connect

The SCSI objective underlying connect is to establish a nexus, which is a link
between initiator, target, and logical unit. The most basic SCSI nexus is called

an I_T_L (initiator, target, logical unit) nexus . The nexus is used by both ini­
tiators and targets to identify an 1/0 process . Initiators use the nexus to
ensure that the SCSI pointers in the host adapter associated with an I/0
process are correctly updated when a previously disconnected 1/0 process
resumes. That was a mouthful, but here is a translation: The nexus allows a
host adapter (initiator) to keep track of multiple operations. The initiator
makes sure that, for every 1/0 process it starts , a unique I_T_L nexus is estab­
lished which is used to keep track of the progress of the I/0 process within
the initiator.

If an initiator is going to send multiple 1/0 processes to the same target
and logical unit, then the initiator needs to extend the nexus to an I_T_L_Q
nexus. The Q provides a command queue value that allows an initiator to queue
up to 256 commands to the same target and logical unit. Targets use the nexus
to differentiate 1/0 processes of one initiator from that of another. They also
use the nexus to differentiate multiple processes from the same initiator, as in
tagged command queuing (i .e . , I_T_L_Q nexus) .

The diagram in Figure 7. 1 3 shows some examples of forming nexus.
Here are a couple of nexus scenarios, using the devices shown in Figure 7. 1 3.

1 . Host 1 (ID=7) wants to send data to the hard disk (ID=O) . Because the
hard disk has only one LUN, the process is directed to LUN 0. Therefore
the I_T_L nexus would be 7_0_0.

2 . Host 2 (ID=6) wants to get data from the media changer (ID=5) . The
desired library file is on LUN 2 . Therefore the I_T_L nexus will be
6_5_2 .

If the bus phase sequence in Table 7.9 occurs, a nexus between the initiator,
target, and logical unit will be established.

111!11 In the phase sequence shown in Table 7. 9, we have listed what the control signals are
doing during the protocol phases. This is how an analyzer can distinguish between one

bus phase and another. For example, when the BSY is asserted (true) and all other con­

trol signals are not driven (jalse) as shown in step 2, the bus phase is ARBITRA TION

How the Bus Works J 4 5

1 4 6 Chapter 7

(Ta rgets)

1-01----- (Vendor

Un ique Bus)

...,... ___ (Log ical Un i ts)

Figure 7. 1 3: How SCSI IDs Are Used to Form a Nexus

Table 7.9: Bus Phase Sequence Including Creation of I_T_L Nexus

Phase BSY SEL C/D 1/0 MSG Data Bus

(l) Bus Free 0 0 X X X X

(2) Arbitration Start 0 0 0 0 I n itiator ID on bus

Arb_win 0 0 0 0 I nexus

(3) Selection Start 0 X 0 X Both SCSI IDs on bus

(4) Selection Complete X 0 X I_T nexus

(5) Message Out 0 0 Identify: I_ T _L nexus

Here's a detailed description of the phase sequence shown in Table 7.9, fol­
lowing it step by step:

1 . Bus is free, as indicated by the simultaneously false (not driven) BSY and
SEL signals .

2 . A device, in this instance an initiator, arbitrates for the bus by asserting
the BSY signal and its SCSI ID via a data bus bit. The initiator wins the
ARBITRATION phase and proceeds to the SELECTION phase.

3. The SELECTION phase is used to transfer control of the I/0 process from
the initiator to the target. The initiator starts the SELECTION phase by
driving (asserting) SEL and its SCSI ID as well as that of the target it wants
to talk to. It also asserts the ATN signal (not shown in Table 7.9) to indicate
that it wants the target to follow SELECTION phase with MESSAGE OUT
phase. Next, the initiator waits a little while (at least 90 nanoseconds) for
the signals to start propagating down the cable. Then the initiator releases

the BSY signal . Because the initiator drives both of the SCSI IDs on the
data bus, the target can retrieve the initiator's ID from the setting of the

data bus bits. The initiator will now wait for the target to drive the BSY signal
or for a time-out condition to occur (i .e . , the target doesn ' t drive BSY) .

4. When the target detects that it's being selected, i t drives the BSY signal .
This notifies the initiator that the Selection process has completed success­
fully. Once the initiator detects that the target is driving the BSY signal ,
the initiator releases the SEL signal, thereby ending the SELECTION phase .
The I_T portion of the nexus is now established

5 . The target switches to the MESSAGE OUT phase because the ATN signal
is asserted. The target must know the logical unit number that tells it where
to direct the I/0 process , and it gets this LUN from the Identify message
sent by the initiator to the target. Not only does the Identify message con­
tain the LUN, but it also carries an important data bit known as the
Disconnect Privilege bit. If the initiator sets this bit in the Identify message,
then the target can disconnect. The I_T_L nexus is now fully established.

M�l.llj The use of the IDENTIFY message to specify the LUN was rpquirfd in SCSI-2. In SCSI-I,

the LUN was allowed to be specified in byte 1 of the C..DB if the IDEN11FY message was
not implemented.

It is interesting to note that with respect to SCSI devices, targets control all
1/0 processes. Once a target allows itself to be selected, it controls the I/0
process until its completion.

Disconnect

The SCSI objective underlying disconnect is to temporarily terminate the link
between devices so that other devices can access the bus. The reasons for ter­
minating the link are to increase the number of 1/0s per second by allowing a
device to disconnect if it is not ready, whether because of mechanical latency

(read/write heads moving into position to access requested data) , or a full or
empty buffer, so that another device can access the bus.

Targets cannot disconnect unless the initiator has granted disconnect fJrivilege in the
Identify message during the original connection process.

Disconnect can have two possible protocol sequences, depending on the type
of operation, how much information is to be transferred, and buffer sizes. For
example, if the initiator asks the target to store a file (WRITE) , or to retrieve a

How the Bus Works 147

148 Chapter 7

file (READ) , a different sequencing of protocol may occur. Or, if an initiator
issues a command that writes more data than the target can store in its buffer,
a disconnection will be required. The target disconnects from the initiator
when its buffer is full and writes the data to the medium. Once the target has
written the data to the medium, it will reconnect to the initiator and ask for
more data, and so on, and so on, until all the data has been transferred.

An actual SCSI phase disconnection sequence can be seen in Table 7. 1 0 .
The target can cause a disconnection by simply switching to the MESSAGE IN
phase and sending a Disconnect message to the initiator. As soon as the initia­
tor decodes a Disconnect message from the target, it will expect the target to
go to the BUS FREE phase.

Table 7. 1 0: A SCSI Phase Disconnection Sequence

Phase

(1) Message I n

(2) Bus Free

BSY SEU.

0

0 0

C/D 1/0 MSG Data Bus

04h·d i sconnect

0 0 0

Another sort of disconnection sequence, which uses the Save Data Pointer
message, can take place if only some of the data has been transferred and a
target wants to disconnect. SCSI data pointers are special program variables
that point to location in the memory of a host computer. Pointers can be
either indirect or indexed and are located on the host adapter or may be
internal to the actual SCSI protocol chip. The objectives of SCSI pointers are
to break up large data transfers into smaller bursts and to facilitate error retry
and recovery.

This Save Data Pointer message sequence acts as a placeholder to ensure
that the initiator remembers where it left off in the data transfer if a discon­
nection occurs before all the data has been transferred. The Save Data Pointer
message sent by the target device tells the initiator to copy its current SCSI
pointers to a saved pointer value. A message sequence involving the Save Data
Pointers message is shown in the phase sequence in Table 7. 1 1 .

Table 7. 1 1 : A Sequence Showing "Save Data Pointers" and

Disconnect Messages

Phase BSY SEL C/D 1/0 MSG Data Bus

(1) Message I n 0 02h·save data poin ter

(2) Message I n 0 04h-d isconnect

(3) Bus F ree 0 0 0 0 0

Reconnect

The SCSI objective underlying reconnect is to reestablish the I_T_L nexus .
When speaking of reconnection in regard to SCSI, we ' re talking about a target
reconnecting to an initiator. The following describes the reconnect process:

• A target reselects an initiator to continue a previously disconnected
I/0 process .

• The target determines when it's ready to reconnect to an initiator.

• The target and initiator resume their roles when a reconnection occurs.

• Reconnect is a series of bus phases.

Table 7. 1 2 shows an actual SCSI phase reconnection sequence. At the end of the
sequence, the I_T_L nexus is reestablished. Following is a detailed description
of the phase sequence shown in Table 7 . 1 2:

Table 7. 1 2: A SCSI Phase Reconnection Sequence

Phase BSY SEL C/D 1/0 MSG Data Bus

(1) Bus Free 0 0 X X X X

(2) Arbitration Sta rt 0 0 0 0 Targ SCSI ID

Arb_win 0 0 0 0 T portion of nexus

(3) Reselection Sta rt 0 X X Both SCSI I Ds

(4) Reselection Complete X X I_T nexus

(5) Message In 0 SOh : I_T_l nexus

1 . Bus is free , indicated by the BSY and SEL signals simultaneously not being
driven (i .e . , false) .

2 . A device, in this instance a target, arbitrates for the bus by asserting the
BSY signal and its own SCSI ID bit on the data bus. The target wins the
ARBITRATION phase and proceeds to the RESELECTION phase .

3. The RESELECTION phase is used by the target to reconnect to a previously
disconnected initiator. The target starts the RESELECTION phase by driv­
ing the SEL, 1/0, and its own SCSI ID bit as well as the initiator ID bit it
wants to talk to. Next the target waits at least 90 nanoseconds for the signals
to start to propagate down the cable. Then the target releases the BSY signal .
Because the target is driving the SCSI IDs on the data bus, the initiator can

How the Bus Works 1 4 9

1 5 0 Chapter 7

retrieve the target's ID from the setting of the data bus bits. The target now
waits for the initiator to drive the BSY signal or for a time-out condition to
occur (i .e . , the initiator doesn' t drive BSY) .

4. Once the target detects that the initiator has driven BSY, i t also drives the
BSY signal and releases the SEL signal. Once the initiator detects the target's
release of the SEL signal, it releases the BSY signal and the reselection is
complete . As a result, the target drives the BSY signal, as i t should, because
targets are responsible for controlling the 1/0 process.

5. The target switches to the MESSAGE IN phase. The Identify message sent

from target to initiator tells the initiator the logical unit number of the
1/0 process. Once the initiator knows the logical unit number, i t deduces
the I_T_L nexus and then restores its SCSI pointers . Once the SCSI point­
ers are restored, the 1/0 process picks up where it left off.

1f'OJgged (ommand Queuing

Tagged command queuing is used when an initiator wants to send multiple
1/0 processes to the same target and logical unit. When tagged command
queuing is used in a connection sequence, its protocol is like that found in
Table 7 . 1 3 . Here, a two-byte message (steps 6 and 7) follows the Identify mes­
sage (step 5) . The message consists of the Queue Tag Message (step 6) ,
followed by the Q Tag nexus value. The Q Tag (step 7) value allows up to 256
commands to be queued to the same target-logical unit combination from
the same initiator. As mentioned earlier, the nexus is extended to an I_T_L_Q
nexus when tagged command queuing is used. A code that designates
Ordered, Simple, or Head of Queue command queue type is sent as part of
the Queue tag message .

When tagged command queuing is used in a reconnection sequence, its
protocol is like that found in Table 7 . 1 4, where the two queue messages are
used to re-establish the I_T_L_Q nexus upon reconnection (steps 5, 6, and 7) .

Table 7. 1 3: Tagged Command Queuing Protocol in a Connection Sequence

Phase BSY SEL C/D 1/0 MSG Data Bus

(1) Bus Free 0 0 X X X X

(2) Arbitration Start 1 0 0 0 0 I n i tiator I D on bus

Arb_win 1 0 0 0 0 I nexus

(3) Selection Sta rt 0 X 0 X Both SCSI IDs on bus
(4) Selection Complete 1 X 0 X I_T nexus

(5) Message Out 0 0 Identify : I_T_l nexus

(6) Message Out 0 0 Queue Tag Message

(7) Message Out 0 0 Q_Tag : I_T_l_Q nexus

Table 7. 1 4: Tagged Command Queuing Protocol in a Reconnection Sequence

Phase BSY SEL C/D 1/0 MSG Data Bus

(1) Bus Free 0 0 X X X X

(2) Arbitration Start 0 0 0 0 Targ SCSI ID

Arb_win 0 0 0 0 T portion of nexus

(3) Reselection Sta rt 0 X X Both SCSI I Ds

(4) Reselection Complete X X I_T nexus

(5) Message In 0 SOh : I_T_l nexus

(6) Message In 0 0 Queue Tag Message

(7) Message In 0 0 Q_Tag : I_T_l_Q nexus

Hew J)isc:onneds (216lld Rec:crmeds Work

The sequence diagrams in Figure 7. 1 4 demonstrate how disconnection and
reconnection can help increase the number of l/Os per second on the SCSI
bus when a target is not ready for an 1/0 process .

With regard to disconnections and reconnections in general, note that

e Any time the bus is disconnected, any device can start a new I/0
process, or the same device can start another 1/0 process (as in tag­
ged command queuing) .

" There is no limit on how many disconnections and reconnections may
occur for each 1/0 process.

" The COMMAND phase occurs only once at the beginning of the I/0
process, and the STATUS phase occurs only once at the end of the
1/0 process .

Information Ttr@ll'llsfer IPihases

Now that you know about BUS FREE, ARBITRATION, SELECTION, and
RESELECTION phases, it's time to learn about the other protocol phases.
This section lists all of the information transfer phases that are controlled by
the target and are used to transfer real information across the data bus.
Before we get into any detail about the information transfer phases though,
note that all phase directions (those containing "In" or "Out") are referenced
from the initiator's point of view, as shown in Figure 7. 1 5 .

The following are descriptions of each of the information transfer phases
shown in Figure 7 . 1 5 (following the phase order from top to bottom) :

How the Bus Works 1 5 1

1 5 2 Chapter 7

I n i tiator Connects

DATA OUT

In i tiator sends data

Target

1 . Disconnects

2. Writes data to medium
3 . Reconnects

Target goes from STATUS to

MESSAGE IN to
BUS FREE

Target

1 . Disconnects

2. Reads data from

medium and file buffer

3. Reconnects

DATA IN

Target sends data fa
I n itiator

Target goes from STATUS to

MESSAGE IN to BUS FREE

Figure 7. 1 4: How Disconnection and Reconnection Increase 1/0s

COMMAND Phase

• Allows the target to request command information from the initiator.

• Target asserts C/D, negates 1/0 and MSG during the REQ/ ACK
handshake.

STATUS Phase

• Allows the target to request that status information be sent to the
initiator.

COMMAND

STATUS

AN MESSAGE IN
A TARGET

IN ITIATOR MESSAGE OUT

DATA IN

DATA OUT

Figure 7. 1 5: Information Transfer Phases

• Target asserts C/D, l/0, and negates MSG during the REQ/ ACK

handshake.

MESSAGE IN Phase

• Allows the target to request that it send message (s) to the i ni tiator.

• Target asserts C/D, I/0, and MSG during the REQ/ ACK handshake.

MESSAGE OUT Phase

• Allows the target to request that the in i tiator send it message (s) .

• Target i nvokes this phase i n response to the Attention condition from

the i n i tiator.

• Target asserts C/D, MSG, and negates I/0 during the REQ/ ACK

handshake.

DATA IN Phase

• Allows the target to request that it send data to the i ni tiator.

• Target asserts I/0, negates C/D and MSG during the REQ/ ACK handshake.

DATA OUT Phase

• Allows the target to request that the in i t iator send i t data.

• Target negates l/0, C/D, and MSG during the REQ/ ACK handshake.

How the Bu5 Works 1 5 3

Table 7. 1 5 lists the contents of the data bus and what is responsible for deter­
mining the information.

Table 7. 1 5: Contents of the Data Bus and What Is Responsible for

Determining the Information

Information Device That Determines

Transfer Phase Contents of Data Bus Information

COMMAND CDB bytes I n i tiator

DATA I N Data in byte(s) Target

DATA OUT Data out byte(s) I n i tiator

STATUS Status byte Target

MESSAGE IN Message in byte(s) Target

MESSAGE OUT Message out byte(s) I n it iator

Chouraderistics of the Information Transfer Phases

M�t.i I j The information contained in Table 7. 1 6 comes directly from the SCSI standard.

1 5 4 Chapter 7

Table 7. 1 6: Bnformation Transfer Phases

Phase Name MSG C/D 1/0 Direction of Transfer Comment

DATA OUT 0 0 0 I n i tiator to ta rget DATA phase

DATA IN 0 0 Target to i n it iator DATA phase

COMMAN D 0 0 I n itiator to to rget

STATUS 0 Target to i n it iator

Reserved for future 0 0

Reserved for future 0

MESSAGE OUT 0 I n itiator to target MESSAGE phase

MESSAGE I N Target to i n it iator MESSAGE phase

The characteristics of the information transfer phases shown in Table 7. 1 6 are
the following:

I . As seen in Table 7. 16 , three bus signals are used to distinguish the different
information transfer phases , as follows:

e MSG When negated, this signal says that the bus is not in a MESSAGE
phase . When asserted, the bus is in a MESSAGE phase.

e C/D When negated, this signal says that the bus is in a DATA phase.
When asserted, the bus is in a COMMAND, STATUS, or MESSAGE
phase.

" l/0 When negated, this signal says that the direction of transfer is
from the initiator to the target. When asserted, the direction of transfer
is from the target to the initiator.

2 . The target drives all three of these signals and therefore controls all changes
from one information transfer phase to another. Once the target is selected,
it is in control of the bus.

3. The initiator can request a MESSAGE OUT phase by asserting ATN
(not shown in table) .

4. The target can cause BUS FREE by releasing MSG, I/0, C/D , and BSY.

5 . During information transfer phases, BSY remains asserted and SEL
remains de-asserted.

6. Information transfer phases use one or more REQI ACK handshakes to
control the transfer of information.

7. Each REQ/ ACK handshake transfers one byte of information (except for
wide DATA phase transfers) .

8 . The target continuously envelopes the REQ! ACK handshake (s) with the
C/D, 1/0, and MSG signals so that these signals are valid for a bus settle
delay (400 ns) before the assertion of REQ, and they remain valid until
the negation of the ACK signal at the end of the handshake of the last
transfer of the phase, as shown in Figure 7. 1 6. This is necessary to prevent
the initiator from thinking that the current phase has ended.

MESSAGE Phase and Code Descriptions

Certain interface functions must be managed in order for SCSI to work

properly. These functions include error recovery, synchronous negotiations,
and the Identify message, which we discussed in the "Connect" section of
this chapter.

How the Bus Works 1 5 5

1 5 6 Chapter 7

C/D 1/0 MSG

-REQ

-ACK

Figure 7. 1 6: Enveloping the REQ/ ACK Handshakes Until the End of the Handshake

Messages are used to manage the SCSI interface. Some messages are used
exclusively by initiators to abort processes, reset devices, clear a target' s com­
mand queue, or recover from SCSI parity errors. In order for the initiator to
get the target to take a message, the initiator must assert the ATN (Attention)
signal. (Remember that the target is in control of the I/0 process and that
the initiator must get the target's attention before it can send a message.)
Once the target detects the Attention condition, i t switches t o the MESSAGE
OUT phase and requests the message from the initiator.

Other messages are used exclusively by targets to tell the initiator that
the I/0 process is completed, ignore invalid data bytes, initiate a recovery
procedure, or instruct the host adapter to save, restore, or modify its data
pointers. Because the target is in control of the I/0 process , it simply switches
to the MESSAGE IN phase and requests that the initiator take the message.
The initiator can tell the bus is in the MESSAGE IN phase by the state of the
C/D, 1/0, and MSG signals (as shown in Table 7. 1 6) .

Though most messages are a single byte long, some messages are two
bytes long and require two consecutive message bytes. Single-byte messages
require the transfer of a single message code from one device to another in
order to perform one of the single byte message functions (such as Save Data
Pointers or Disconnect) .

SCSI-land is also populated with messages known as extended messages.

These are used to negotiate for synchronous and Wide data transfers . Once
power-on has completed, the SCSI interface defaults to asynchronous, narrow
(8-bit) data transfers. If a device wants to transfer data using either synchro­
nous or Wide data transfer, it must negotiate with the receiving device using
an extended message before it can do so.

Probably one of the most important message functions in the SCSI inter­
face is recovery from data bus parity errors. The message system allows two
devices to recover and retry the operation without having to involve an upper­
level protocol, namely the device driver. Thus, the recovery can be handled by
the firmware on each device. Table 7. 17 is a complete listing of all message
codes by message names.

Table 7. 1 7: Complete Alphabetical list of All Message Codes

Support

Code I nit Targ

06h 0 M

ODh * 0 0
24h 0 M M

OCh 0 M

l 6h M M

OEh * 0 0

OOh M M

l 2 h o 0 0

04h 0 0

04h 0 0
O l h 0 0
80h+ M 0

80h+ M M

2 3 h * 0 0

OFh * 0 0
OFh * 0 0
05h M M

OAh 0 0
OBh 0 0

09h M M

07h M M
* * * 0 0

08h M M

2 1 h * 0 0
2 2 h * 0 0

20h * 0 0
l Oh * 0 0
03h 0 0
02h 0 0
* * * 0 0

* * * * 0 0

l 3 h 0 0

Message Name

ABORT

ABORT TAG

ACA TAG

BUS DEVICE RESET

CLEAR ACA

CLEAR QUEUE

COMMAND COMPLETE

CONTINUE 1/0

PROCESS

DISCONNECT

DISCONNECT

EXTENDED MESSAGE
IDENTIFY

IDENTIFY

IGNORE WIDE RES IDUE

(Two Bytes)

I N ITIATE RECOVERY

IN ITIATE RECOVERY

IN ITIATOR DETECTED ERROR

LI NKED COMMAND COMPLETE

LI NKED COMMAND COMPLETE
(with flag)

MESSAGE PARITY ERROR

MESSAGE REJECT

MODIFY DATA POINTER

NO OPERATION

QUEUE TAG MESSAGES

(Two Bytes)

HEAD OF QUEUE TAG

ORDERED QUEUE TAG

SIMPLE QUEUE TAG

RELEASE RECOVERY
RESTORE POINTERS
SAVE DATA POINTER

SYNCHRONOUS DATA

TRANSFER REQUEST
WIDE DATA TRANSFER
REQUEST
TARGET TRANSFER D ISABLE

Negate

ATN Before

Direction Last ACK

I n

I n

I n

I n

I n

I n

I n

I n

I n

I n

I n

I n
I n
I n

I n

Out Yes
Out Yes
Out No
Out Yes
Out No

Out Yes

Out Yes

Out Yes
Out Yes

Out No

Out Yes
Out Yes

Out Yes
Out Yes

Out Yes

Out No
Out No

Out No
Out Yes

Out Yes

Out Yes

Out Yes

How the Bus Works ! 5 7

J 5 8 Cha pter 7

Support

Code Unit Targ Message Name

Negate

ATN Before

Direction Last ACK

1 1 h * 0 0
1 5 h

1 7h- 1 Fh

24h-2 Fh

30h-7Fh

Legend:

M Mandatory support

In Target to i n it iator

Not appl icable

TERMINATE 1/0 PROCESS

Reserved
Reserved

Reserved for two-byte messages

Reserved

Yes I n i tiator sha l l negate ATN before last ACK of message
* Messages added i n SCSI-2 ; these messages are reserved in SCSI- 1
80h+ Codes 80h th rough FFh are used for identify message

0 Optiona l support

Out
* * *

No
"

I n i tiator to target

Extended message

I n it iator may or may not negate ATN before last ACK of message

Messages added in SCSI-3 ; these messages are reserved in SCSI-2

IP'rotocoi /Example of a Synchronous Negotiation

Out Yes

Table 7. 1 8 is a SCSI analyzer display of how messages are used to negotiate for
a synchronous data tmnsfer request (SDTR) between an initiator and target. The
SDTR is established between devices via extended messages. Table 7. 1 8 shows
the extended message codes and their descriptions.

We don ' t expect you to fully comprehend the extended message scenario
in Figure 7. 1 8 ; this display simply shows what an extended message exchange
would look like. Now that we've seen how synchronous negotiations are handled,
here are the characteristics of synchronous data transfers.

1 . The synchronous negotiation is done only once, usually during initializa­
tion, because both devices have the ability to remember if an agreement
had been previously established.

2. Either initiator or target can start the negotiation process. Once the nego­
tiation process is completed successfully, all DATA IN and DATA OUT
phases will be synchronous.

3. An initiator usually s tarts the negotiation process if the host adapter has a
jumper installed or a software switch set to direct the host adapter to initi­
ate the process.

4. A target may start the negotiation process if a jumper is installed or a
software switch is set that directs the target to initiate the process.

5 . Once an agreement i s established, it can be cleared only by the
following events:

'" Reset, power-on reset, or a Bus Device Reset message.

<> A re-negotiation between the same initiator and target.

• A Wide Data Transfer Request message sequence.

Table 7. 1 8: Pratacol Example of a Synchronous Negotiation

Timing/Description Phase Data Bus Event #

00.000_000_000 Bus F ree Detected 0000

26 .032_853_700 Arbitration Start 7 000 1

26 .03 2_856_ 1 00 Arb_win 7 0002

26 .03 3_5 1 4_ 1 00 (Atn Assertion) ATN 0003

26 .033_52 1 _700 Selection Sta rt 7 4 ATN 0004

26 .033_522_600 Selection Complete ATN 0005

26 .034_ 1 6 1 _850 Message Out co ATN 0006

Extended Message Message Out 0 1 ATN 0007

Ext. Msg . Length Message Out 03 I N ITIATOR ATN 0008

Sync Data Transfer Request Message Out 0 1 MESSAGES ATN 0009

Transfer Period 200ns Message Out 32 ATN 00 1 0

(Atn Negate) 00 1 1

REG/ ACK Offset Message Out 07 00 1 2

Extended Message Message I n 0 1 00 1 3

Ext. Msg . Length Message I n 0 3 TARGET 00 1 4

Sync Data Transfer Request Message In 0 1 MESSAGES 00 1 5

Transfer Period 248ns Message In 3E 00 1 6

REG/ ACK Offset Message I n 07 00 1 7

26 .039 _035_750 Command Out 08 00 01 00 01 00 00 1 8

26 .055_860_800 Data I n 00 00 00 00 00 00 00 1 9

26 .055_862_300 00 00 00 00 00 00 0020

How the Bus Works 1 5 9

1 6 0 Chapter 7

Timing/Description Phase !Data Bus

26 .056_ 494_ 450 00 00 00 00

26 .056_894_350 Status I n 00

26 .057 _852_350 Message In 00

26 .058_426_300 Bus Free Detected

COMMAND Phase and Code Descriptions

Event #

002 1

0022

0023

0024

A command is executed when an initiator sends a command descriptor block
(CDB) to the target during the COMMAND phase. Commands tell the target
what operation to perform. The following conditions apply to each CDB:

e The first byte of the CDB is always known as the operation code.

• The last byte of the CDB is the control byte .

• The format of the operation code and control byte are identical for every
SCSI command in the SCSI universe.

Table 7 . 19 shows an example of the basic format of a six-byte command (keep
in mind, though, that many six-byte SCSI commands will differ dramatically) .
Here's what's shown in Table 7. 19 :

Table 7. 1 9: Basic Six-Byte COB

bit 7 1 bit 6 1 bit 5 1 bit 4 1 bit 3 1 bit 2 1 bit 1 1 bit o

byte 0 Operation Code

byte 1 Log ical un i t number* I (MSB)

byte 2 Logical block address (i f requ i red)

byte 3 (LSB)

byte 4 Transfer length (i f requ i red)

byte 5 Control byte

*Reseroed in SCSJ-3

• Operation Code. This field tells the target how long the CDB will be and
what operation the initiator wants the target to perform.

• Logical Unit Number. Although used in SCSI-1 , this field is almost never
used today, because the LUN is now determined in the Identify message.

.. Logical Block Address. This field tells the target where the information is

located on the physical medium. Logical blocks start at 0 and are contiguous

to the last block location on the device's medium. Blocks , measured in bytes,

are the smallest unit of measurement on a device, with a typical block size
measuring 5 1 2 bytes on a hard disk. CD-ROMs have several different block
sizes in the vicinity of 2K, 2048 and 2352 being the most common. It should
be noted that many SCSI devices can change their logical block size. For
example, if a MODE SELECT that sets the logical block size to 5 1 2 bytes is
sent to a CD-ROM drive with media that has 2048 byte blocks , a future
READ command asking for block 3 will return the last 5 1 2 bytes in the
first physical 2048 byte block on the media, rather than the entire fourth
2048 byte block as would have happened had the MODE SELECT not
been issued.

"

"

Transfer Length. This field tells the target how much data to transfer,
usually as an amount of blocks , with 5 1 2 bytes to each block of data. Some
devices, like tape, may be able to store any number of bytes, from 1 to the
maximum size of the device.

Control Byte. This field is used for special operations like command
linking, and it also has some bits that can be used for vendor-unique
operations.

Sometimes all the information required to perform an operation cannot be
squeezed into a six-byte command, and SCSI has a cure for this . The solution

Table 7.20: Basic Ten·IByte Cli>IB

bit 7 1 bit 6 1 bit 5 1 bit 4 1 bit 3 1 bit 2 1 bit 1 1 bit o

byte 0 Operation Code

byte 1 Log ica l un i t number* I Reserved

byte 2 (MSB)

byte 3 Log ical block address (i f requ i red)

byte 4

byte 5

byte 6

byte 7 (MSB)

byte 8

byte 9

*Reseroed in SCSJ-3

Reserved

Transfer length (if requ i red)

Control byte

(LSB)

(LSB)

How the Bus Works 1 6 J

1 6 2 Chapter 7

is to allow commands to also come in 1 0-, 1 2-, and 1 6-byte formats. (The 1 6-byte
format was added in SCSI-3 .) As you can see in Table 7.20 and Table 7.2 1 , the
10-byte and 12-byte CDBs allow the initiator to address a higher logical block and
transfer more blocks with a single CDB.

Some devices support different CDB sizes and others may only support six­
byte CDBs. This information must be known by the device driver before it can
properly format the CDBs it sends to the target. SCSI has specific commands
to find out this information, which can determine the block size of the device,
the maximum logical block address available, the type of device (e .g. , disk or
tape) , and all other operational parameters that the device driver requires.
Table 7.22 lists all the operation codes for the device type known as direct access
(disk) , which should give you an idea of the types of operations that a disk can
perform. We have shown only the operation code (the first byte) of the CDB.
Each command will have a specific format of all remaining bytes. I t is beyond
the scope of this book to completely define all the commands for all device
types. If you will be writing a SCSI device driver, you will need a copy of the
ANSI standard (SCSI-2 or -3) applicable to the device you' re working with .
Refer to the SCSI FAQ list on the accompanying CD-ROM or at http ://www.
scsifaq.org/ to find out how to get the standards documents .

Table 7.2 1 : Basic Twelve-Byte CDI8

bit 7 1 bit 6 1 bit 5 1 bit 4 1 bit 3 1 bit 2 1 bit 1 1 bit o

byte 0 Operation Code

byte l Log ical un i t number* I Reserved

byte 2 (MSB)

byte 3 Log ical block address (i f requ i red)

byte 4

byte 5 (LSB)

byte 6 (MSB)

byte 7 Transfer length (if requ i red)

byte 8

byte 9 (LSB)

byte 1 0 Reserved

byte l l Control byte

*ResmJPd in SCSI-3

Table 7.22: Direct-Access Devices Commands (Numerical Order)

Operation Code

OOh

0 1 h
03h

04h

07h

08h
OAh
OBh
1 2 h

1 5h

1 6h

1 7h

1 8h

1 Ah

1 Bh
1 Ch

1 Dh

1 Eh
25h

28h

2Ah

2 Bh

2Eh

2 F h
30h

3 1 h

3 2 h

3 3 h

34h

35h

36h

37h

39h

3Ah
3 Bh
3Ch

3Eh

Command Name

Test Un i t Ready

Re-zero Un it

Request Sense

Format Un i t

Re-ass ign Blocks

Read (6)

Write(6)
Seek(6)
I nqu i ry

Mode Select(6)

Reserve

Release

Copy

Mode Sense(6)

Start/Stop Un i t

Receive Diagnostic Resu lts

Send Diagnostic

Prevent/ Al low Med i um Removal

Read Capacity

Read (1 0)

Write(1 0)

Seek (1 0)

Write and Verify

Verify

Search Data H igh

Search Data Equa l

Search Data Low

Set L im its

Pre-fetch

Synchron ize Cache

Lock/un lock Cache

Read Defect Data

Compare
Copy and Verify
Write Buffer
Read Buffer

Read Long

Type

M

0

M

M

0

M

M
0
M

0

M

M

0

0

0

0
M

0

M

M

M

0

0

0

0

0

0

0

0

0

0

0

0
0
0
0
0

How the Bus Works 1 63

1 64 Chapter 7

Operation Code

3 Fh

40h

4 1 h

4Ch

4Dh

55h

5Ah

Legend:

Command Name

Write long

Change Defi n ition

Write Same

log Select

log Sense

Mode Select(1 OJ

Mode Sense(1 OJ

M Command implementation is mandatory.

0 Command implementation is optiona l .

Status

Type

0

0

0

0

0

0
0

This section explains when a status is sent and describes the status byte 's for­
mat and codes. A single status byte is sent from the target to the initiator
during the STATUS phase at the completion of each command, unless the
command is terminated by one of the following events :

1!1 An Abort message

1!1 An Abort Tag message

• A Bus Device Reset message

• A Clear Queue message

1!1 A hard reset condition

• An unexpected disconnect

The STATUS phase normally occurs at the end of an I/0 process. Some sta­
tus codes, like 00 = good, are easy to comprehend, whereas others, like the 02
code - which says that a CHECK CONDITION has occurred - are more diffi­
cult. (CHECK CONDITION is an error condition discussed in more detail
below.) The status byte format and status byte code are shown in Tables 7.23
and 7.24, respectively.

Table 7.23: Status Byte Format

bit 1 1 bit 6 bit 5 1 bit 4 1 bit 3 1 bit 2 1 bit 1 bi t O

Reserved Status byte code Reserved

Table 7.24: Status Byte Codes

Status

GOOD

CHECK CONDITION

CONDITION MET

BUSY

I NTERMEDIATE

I NTERMEDIATE CONDITION MET

RESERVATION CONFLICT

COMMAND TERMINATED

QUEUE FULL* or

TASK SET FULL* *

ACA ACTIVE * * *

Al l other codes

Legend:

* New i n SCSI-2
* * New name in SCSI-3

New in SCSI-3 (SAM) * * *

Check Condition

Hex Description

00 Target has successfu l ly completed the

command .

02 An error or a lert condit ion has occurred .

04 Requested operation is satisfied .

0 8 The target i s busy. Retu rned whenever a

target is unable to accept a command

from an otherwise acceptable i n it iator.

1 0 Returned for every successfu l ly completed

command in a series of l i n ked commands

(except for the las t command) .

1 4 Combination of condit ion met and in ter­

mediate status .

1 8 The log ica l un i t or a portion of i t i s reserved

for use by another i n i tiator.

22 Target termi nated cu rrent 1/0 process . Th i s

a l so i nd icates that a CHECK CONDITION

has occurred .

28 Implemented i f tagged command queu ing i s

supported . I nd icates that t he ta rget cannot

accept any more commands .

30 I nd icates that a n Auto-Contingent Al legiance

condit ion exists .

Reserved

The CHECK CONDITION status, one of the most important, is also the status
that a SCSI device driver will spend most of its code handling. In general ,
CHECK CONDITION status indicates that an error of some kind has occurred.
To find out what type of error it is, the device driver must look at the SENSE
DATA. Depending on the operating system and I/0 subsystem involved, the

How the Bus Works 1 6 5

1 6 6 Chapter 7

SENSE DATA may already be stored in the AUTOSENSE buffer, or the driver

may have to issue a REQUEST SENSE command to get it.

Contingent Allegiance Condition

A situation called "Contingent Allegiance Condition" occurs after a target

returns CHECK CONDITION or COMMAND TERMINATED status. When in

this condition the target must retain the SENSE DATA describing the error until

one of the following occurs:

• a BUS RESET is issued

• the initiator issues a BUS DEVICE RESET

• the initiator issues an ABORT message

• the initiator issues another command (usually a REQUEST SENSE)

to the target

If the target issues an INITIATE RECOVERY message, the condition is now

known as extended contingent allegiance. Once in this state, the target will

preserve the SENSE DATA until it receives a BUS DEVICE RESET or RELEASE

RECOVERY message, or a BUS RESET occurs.

In SCSI-3 the ACA state is retained until an explicit CLEAR ACA message

is received from the initiator that caused the ACA to occur. A BUS RESET will

also do it .

If the NACA bit in the control byte of the CDB is set, the target will follow

SCSI-3 rules; if the NACA bit isn't set, the target will follow SCSI-2 rules.

The change was deemed necessary because with the new serial SCSI buses

(like Fibre Channel), several commands can be "floating around" at the time

the Contingent Allegiance occurs.

Handshaking of Information

In the previous section, we talked about how to determine which phase the bus

is in. Now we'll explain how information is transferred. Handshaking is the

term SCSI gurus use when they speak of transferring information across the

data bus. Handshaking the information ensures that data on the bus is prop­

erly latched into the receiving device.

In Chapter 3, we told you a bit about asynchronous and synchronous trans­

fer. These are the two methods of handshaking information. We'll take you
beyond a basic understanding of these concepts in the paragraphs that follow.

M}tehj COMMAND, ME,'SSAGE, and STATUS information can only be transferred via the

asynchronous handshake method, whereas the DA TA phase is the only phase that can

transfer information using either the asynchronous or synchronous handshake method.

A.synchll'OU1JOIIJJS /HiamJshq;y/Jce Meffh@cB

Asynchronous transfer is characterized by the transfer of one byte of data via the
following four-step process :

1 . The target asserts the REQ signal .

2. The initiator asserts the ACK signal .

3 . The target negates the REQ signal .

4 . The initiator negates the ACK signal .

Asynchronous handshaking is shown in the diagram in Figure 7. 1 7.

M#o$1j During asynchronous transfer, the following rules ajJply: The A CK signal can 't assert
until the REQ asserts; the REQ signal can 't nPgate until the A CK signal asserts; the

AG'K signal can 't negate until the REQ negates.

-REQ �--- - - - - - - - - - �-- - - - - - - - - - !
' '

-ACK "\--- - - - - - - - - - - - - - - - - - j
Figure 7. 7 7: The Four Steps of Asynchronous Transfer

The name "asynchronous transfer" stems from the fact that this transfer
method is not dependent upon any uniform timing. Asynchronous transfer
rates range from 2 MB to 6 MB per second, because asynchronous data transfer
is subject to a number of delays , including cable propagation delays ; internal
device delays between receiving a signal and responding to that signal ; de­
skew delays ; and cable skew delays . These latter delays occur because the REQ
and ACK pulses must interlock with one another and because handshake

How the Bus Works l 6 7

1 6 8 Chapter 7

must occur for each byte of data transferred. The skew delays are required in
order to compensate for small differences in the lengths of the conductors in
the bus (yes, really) .

Synchronous Handshake Method

Synchronous transfers allow devices to transfer data more quickly. This is accom­
plished by allowing the target to request that the initiator either send or
receive data before the initiator has to acknowledge the target's request. It is
all done in hardware (thank goodness !) , so you don ' t need to worry about it.

That's the simple explanation. Now for the more technical, detailed
explanation, which sometimes takes half an hour to explain to a roomful of
people during a training session.

The synchronous handshake method is optional and must be negotiated
for between a target and an initiator. Synchronous transfer depends on uniform ,
or synchronous, timing, hence its name. The objective behind synchronous
transfers is to minimize the effect of cable and device delays. Although these
delays cannot be eliminated entirely, their effects can be minimized.

Synchronous handshaking can support rates of up to 10 million transfers/ sec
when the Fast-10 SCSI option is implemented (or 20 MHz for Fast-20, or 40 MHz
for Fast-40) . Synchronous protocol minimizes the effects of cable and device
delays, because the REQ and ACK pulses do not have a one-to-one interlock.
Synchronous transfer is commonly referred to as offset interlock.

In order to transfer one byte of data (or up to four bytes if a Wide32
transfer) via synchronous handshaking, the process is the following:

1 . A REQ/ ACK offset is used to establish a pacing mechanism. During the
synchronous data transfer, the REQ and ACK signals are issued indepen­
dent of one another. The specified offset indicates how far ahead the
sender is allowed to get without seeing an ACK. At the end of the DATA
phase, each device checks to ensure that the number of REQ (or ACK)
pulses sent is equal to the number of ACK (or REQ) pulses received.

2. The initiator and target form a transfer period from the leading edge of
a REQ/ ACK signal to the leading edge of the next REQ/ ACK signal.
During the data transfer, the edges of the REQ and ACK signals are used
to latch the information on the data bus into the receiving device. These
pulses are asserted and negated for a uniform amount of time and form a
transfer period from the leading edge of one pulse to the leading edge of
the next in the pulse train . The width of this period dictates the speed at
which data can be transferred across the bus.

If any of the foregoing makes sense to you, you' re doing great. The timing
diagram in Figure 7. 1 8 may help you understand the technical side of
synchronous transfers.

M:t.llj It takes special hardware (including special !Cs cables and terminators) to achieve Fast

synchronous transfer rates. Other restrictions on cable length may also affect your config­

uration. Fast synchronous transfers are usually implemented on higher-end systems and

workstations. You should be careful if you are going to use the single-ended interface

option and Fast transfers, because the signal quality decreases as the cable length increases.

Always make sure that the cable length does not exceed the maximum allowed for the

speed selected (See Table 3.3).

Pend ing

ACK's ;
'
'
'
'

+REQ :
'

'

: :fi
'
'
'
'
'
'

+ACK :

2 3 4

Figure 7. 1 8: Synchronous Offset Timing Diagram

Synchronous Offset Timing Diagram

3 4 3 4 ; 3 4 3 4 3 :

Figure 7. 1 8 demonstrates how the synchronous offset works . The "Pending
ACKs" represent the number of acknowledgments that an initiator must send
to the target to complete the synchronous transfer successfully.

Here 's what's happening in the diagram in Figure 7. 1 8 , following along
step by step, letter by letter:

A A target issues four REQ pulses (because an offset count of four was agreed
upon between the initiator and target) , then the offset state machine logic
in the target puts a hold on further data transfers until an ACK pulse is
received from the initiator.

B The initiator issues an ACK pulse , thereby allowing the REQ generator on

the target to issue a REQ pulse . After this occurs, the REQ and ACK gen­
erators are free to issue REQ and ACK pulses independent of one another
unless the data FIFOs (First In First Out memory) are full, empty, or the
offset count is exceeded.

How the Bus Works ! 6 9

1 70 Chapter 7

C This represents the data transfer area. The REQ and ACK pulses form a
transfer period that both the initiator and target agreed upon long before
data was transferred.

D Eventually the ACK pulses sent by the initiator must equal the REQ pulses
sent by the target. Because the first ACK pulse was received at the beginning
of the transfer, three more must be sent to "clean house" and complete
the transfer.

Ever Onward and Upward!

Have you had enough hardware for a while? OK, the next chapter will start to
show that there 's more to SCSI than the hardware. Device drivers are every bit
as important!

U N D E R STA N D I N G D EV I C E

D R I V E R S

There are all kinds of drivers - truck driv­
ers , bus drivers , pile drivers , screw drivers ,

and many other ,.vorthy examples - but we ' re
here to talk about device drive rs .

A droirr drivn is a piece of soft\\·arc t h � t t b ridges t h e gap be t11·een an oper­

ating system and t h e computer h ard11.�I JT. \\'e ;u-c goi n g to focus on d ri1·crs t h a t

con trol SCSI h arckarc. b u t dri1·ers arc needed for el'ery p a n o f t h e computer

except the CPU and memory. This ch�t p t cr 1m n ' t t e l l you enough to 1\'l· i te your

own drivers but 11· i l l . hope fu lh' . gil 'e I'OU some i ns i g h t i n t o how t h ey a rc s t ruc­

tured and what func t ions t h ey perform . Anned 11·i t l t t h is i n formation. vou should

be beuer able to selec t the d ril'ers you need a n d isola te ; tny problems t h a t may

come u p .

In the Beginning . . .

v\'hen SCSI 11·as f i rs t b e i n g i n troducC'd to PCs (<tbo u t J qt;t:)) . each h os t adapter

m a n u fac t u re r prol' i c led de1 · ice clri1·crs t h� t t s u pport ed h ; t rc l d isks auachecl to

t h e i r adapter.

1 72 Chapter 8

· When CO-ROMs came on the scene, manufacturers needed to support
those as well. But what if you wanted to buy a hard disk from vendor X and a
CD-ROM from vendor Y? At first manufacturers tried to provide a large matrix
of drivers that would cover as many combinations of devices as possible on their
host adapter. They quickly (well, after about two years) realized that this was
not practical and took a different approach: They divided device driver function­
ality into layers with standardized interfaces between the layers. This was a very
important step.

Initially, each vendor defined their own interfaces, but Adaptec 's ASPI
interface soon emerged as the most popular choice , and the others fell by the
wayside. Now it was possible to buy a device from vendor X, who would provide
an ASPI (Advanced SCSI Programming Interface) -compatible driver with the
device , and this driver could pass SCSI commands down to a host adapter driver
layer made by vendor Y!

The IPC: liMOS

Every PC contains a collection of l/0 routines contained in a ROM (actually,
flash RAM these days) . This collection of routines is called the BIOS, which
stands for basic input/ output system. It enables the operating system code to
be loaded from disk (booting) , and it initializes the various chips in the sys­
tem.

BIOS calls are made via software interrupts like INT 1 3hex (for disk­
related l/0) , INT 14 hex (for serial port l/0) , or a whole bunch of others
(each of which have their own special purpose) . The BIOS routines are very
simple and don ' t allow multiple programs to access them simultaneously
(they're single-threaded) . This was fine for MSDOS, because it had the same
limitations. The PC BIOS on the motherboard knows how to handle only
devices that are on the motherboard itself. However, IBM was farsighted
enough, when defining the original PC/ AT BIOS, to allow for the possibility
of BIOS extensions being located on option cards. During system initialization,
the motherboard BIOS looks at specific memory locations for a "BIOS extension
signature" of 55AA hex. If it finds this pattern at the right location, it executes
the extension at its entry point. This allows the option card BIOS to wedge
itself into the interrupt it extends (INT 1 3hex, for example) adding its own
new functionality.

The Int l3 hex BIOS functions (FORMAT, READ, WRITE, etc .) provide
low-level (bypassing the filesystem) access to disk devices (both floppy and
hard) . The parameters to these functions are in terms of CYLINDER, HEAD,
and SECTOR

MSDOS Drovers
MSDOS is a very simple operating system. One thing to remember in MSDOS
is that only one thing is going on at a time. When one I/0 is started, nothing
else happens until that I/0 is completed. I/0 is done in several different ways.
I/0 to very simple devices, like the keyboard, is done directly via the BIOS. If
your system contains a device that is not supported by the BIOS, for example
a SCSI host adapter, it must have a device driver loaded into RAM to control
and provide access to it. Device drivers are loaded via a configuration file called
CONFIG.SYS.

An example of one entry in such a CONFIG.SYS file would be

Device = c : \ a s pi4dos . sys / d

During the boot process, this line tells MSDOS to load a driver into memory
and execute that driver's init routine.

This particular driver (ASPI4DOS) initializes and controls a particular
type of SCSI host adapter. The next line in CONFIG.SYS might look like

device = c : \ a s p id i s k . sy s

This loads another device driver that i s responsible for creating SCSI CDBs
(Command Data Blocks) that will read or write the desired data to and from
a SCSI disk drive . This second driver can send these CDBs to the SCSI host
adapter via the ASPI interface created by the driver loaded previously
(ASPI4DOS) . This division of responsibility is a very important feature of device
drivers, because it allows a disk from one vendor to be attached to a host adapter
manufactured by a different vendor. During boot, ASPIDISK tells MSDOS how
many disk drives it will support, and MSDOS assigns a drive number (80 hex
through 83 hex, or in some cases 80 hex through 8F hex) . These numbers are
used by the B�OS to select a particular disk. If there are more than four drives,
the ones beyond that cannot be accessed by the BIOS.

Each MSDOS driver has an attribute word, which indicates what type of
device it supports, and two main entry points : Strategy and Interrupt. The
idea was for the Strategy routine to set up an 1/0 transfer and the Interrupt
routine to complete it. But it doesn ' t really matter which does what, because
MSDOS just calls one then the other. The parameters to these routines are
passed in the CPU registers . A set of nineteen command codes cause the driver
to perform the desired operation. Some examples of the command codes are
INIT, OPEN, CLOSE, INPUT, OUTPUT, IOCTL, and CHECK MEDIA. The
driver interface is loosely modeled after UNIX drivers, but the similarity is
purely superficial .

Understand i ng Device Drivers 1 73

1 74 Chapter 8

Windows 3.x Drivers

Windows 3 .x is really just a graphical shell running on top of MSDOS. Hence,
regular MSDOS device drivers do most of the 1/0 under Windows 3 .x. This also
means that Windows 3 .x doesn ' t do much in the way of multi tasking.
Applications may "give up control" for a while to let another application run, but
in general, this doesn' t work very smoothly.

There are also 32-bit virtual device drivers for Windows 3 .x that enhance
performance by operating in 32-bit mode, instead of 1 6-bit mode like the rest
of Windows 3 .x. ASPI in this environment consists of a DOS driver for the host
adapter and a .vxd (virtual device driver) that handles translation from the
virtual addresses used by Windows programs and the real in ode addresses used
by the MSDOS drivers. Also, a .dll (dynamic link library) is included that allows
applications to access the driver by providing entry points that are callable from
Windows programs.

A VxD is a special code module similar to a .dll that has a single entry point
via its device descriptor block, or DDB. Through this single entry point, many logical
entry points can be called. Some examples are event notification, virtual 86
mode services, and protected mode services. One unique thing about VxDs is
that they run entirely in 386 enhanced mode with a flat memory model and
not the segment:offset model used in much of the rest of Windows 3 .x. A VxD
is responsible for making the cooperative multitasking used in Windows 3 .x
work acceptably well. I f not well thought out, one bad VxD can make the whole
system function poorly. Another important function of a VxD is to translate the
virtual addresses used by application programs into physical addresses needed
to actually " touch" the hardware device.

Windows 95/98 Drivers

Windows 95 was designed to be more of a "real" operating system, in that it
contains its own device drivers and operates completely in 32-bit protected
mode. It also provides true pre-emptive multitasking, which means that CPU
time is divided up by the virtual machine manager (VMM32.VXD) and not by
applications giving up the CPU as in Windows 3 .x. Windows 98 is not a major
leap forward, but it added some niceties like support for USB (Universal Serial
Bus) devices and a UDF (Universal Data Format) filesystem for DVD support.
A little spit and polish was put into the user interface , too.

One of the most important things about Windows 95/98 is that each
application runs in its own "virtual machine. " This protects each application
from the transgressions of others. This also means that all devices must be vir­
tualized. That is, when each application performs 1/0 to a particular device,
that I/0 doesn ' t directly affect the hardware. The VMM maintains a copy of
what needs to be done to the hardware based on what each application is trying
to do, and the VMM actually touches the hardware to make it happen.

Windows 95/98 uses two types of drivers : . vxd (virtual device drivers ,
explained above) and .MPD (miniport drivers) . Miniport drivers are the lowest

level of drivers in Windows 95/98. Above the miniport driver is a Microsoft­
provided layer called the "SCSI ' izer" ("SKUZ-ee-eye-zer") . There is a SCSI ' izer
for each type of SCSI device (disk, tape, CD-ROM, and so on) . Above the
SCSI 'izer layer is another layer called the type-specific driver or TSD (also one
TSD for each type of device) . Like Windows 3 . x 32-bit drivers , Windows 95
drivers are .vxd files. Note that, because of the way Windows 95/98 breaks
down 1/0 requests into smaller requests , it doesn ' t use SCSI as efficiently

as Windows NT does .
Another interesting thing about Windows 95/98 is that it can use MSDOS

real mode drivers if necessary. This is not desirable if a Windows 95 driver can
be found for your device, but it is a way to use older devices that are not sup­
ported under Windows 95/98.

Will'lldows NT Drivers
Windows NT is considerably more sophisticated than Windows 95/98. In
addition to providing true multitasking, it is also multi-threaded. This means
that not only can multiple applications run simultaneously, but multiple sub­
processes within those applications can also be running simultaneously. NT
is also extremely modular. Each portion of the kernel has well-defined inter­
faces so that any one can be replaced without breaking the system (at least in
theory) . There are two basic "flavors" of NT: server and workstation. The two
are very similar and for our purposes here we won ' t worry about the differ­
ences. In fact, much to Microsoft's chagrin, some users have found that the
only real difference is a few registry key values and a few additional utilities .
NT applications make requests to the WIN32 subsystem, which passes them
on to the 1/0 Manager. The NT 1/0 Manager subsystem creates 1/0 request
packets (IRPs) and passes those to a filesystem driver or possibly directly to a
class driver. The class then builds a SCSI request block (SRB) and passes it to
the SCSI port driver.

Windows NT uses Miniport drivers just like Windows 95/98. In fact, when
Windows 95 was first being developed, Microsoft realized that they needed a new
type of driver to accommodate the needs of a 32-bit operating system. Given
that the drivers for Windows NT filled the bill, they adopted the Mini port Driver
Model. If only they had also adopted some of the other driver layers from NT,
things would be a lot simpler now! In my opinion, one of the major things
preventing NT from catching on faster is the lack of suitable device drivers for
many devices. When building a system to run NT, you need to be careful to
select hardware that is supported by NT drivers . Many devices, especially low­
end stuff, don ' t include drivers for NT, which can be a particularly big problem
with laptops, because individual devices within the computer aren ' t separately
replaceable. Mini port drivers initialize the host adapter, send command

U nderstand i ng Dev ice Dr ivers 1 75

1 76 Chapter 8

requests to the adapter, handle interrupts, and perform all the other babysitting
that the SCSI hardware requires.

The next layer above the Miniport driver is the SCSIPort driver. The
SCSIPort driver is the equivalent of the CAM XPT. It acts as a single entry
point for all the SCSI requests generated by the class drivers .

CAM XPT is the transport function of the ANSI Common Access Method SCSI driver

architecture defined in the Tl0/792-M specification. Seeftp://ftp. tlO. org/tlO/drafts/
cam/ cam-r 12b.pdf

The disk class driver gets requests from the filesystem and builds disk requests
to send down to the SCSI class driver. The SCSIPort driver takes these system
1/0 requests , translates them into SCSI CDBs, and sends them down to the
specified miniport adapter driver.

A tape class driver, also included with Windows NT, performs a translation
from sequential (rather than random) system 1/0 requests into a form that is
acceptable to the SCSIPort driver.

Although it's not included as part of the operating system, an ASPI class
driver is also available for Windows NT. This separate driver accepts ASPI
requests from an application (like an image scanner utility, for example)
and converts it into SCSIPort driver requests .

As you can see, ASPI is not the native SCSI subsystem in any of the Windows
operating systems, but is layered on top to provide compatibility with existing
applications.

UNIX Drivers

There are many flavors of UNIX. To keep things simple, I 'm going to discuss
UNIX drivers in general enough terms that it won' t matter much exactly which
UNIX I'm talking about. UNIX application programs are protected from each
other by a portion of the operating system called the kernel. Applications run
at user privilege level, and the kernel runs at system privilege level. UNIX app­
lications cannot access system hardware directly; they can only talk to the kernel.
To perform 1/0 applications, users must call device drivers via the kernel.

UNIX device drivers come in two basic types, character and block. Character
drivers are used for devices like keyboards, serial ports, parallel ports, and really,
almost anything except disks. Disk drivers are always block-type drivers.

Character drivers have at least the following entry points :

• Init

• Open

• Close

& Read

& Write

• Ioctl

Block drivers have these entry points :

• Init

'" Open

• Close

.. Strategy

These entry points are an application program 's only way to access the device
directly. When I refer to these entry points (which are actually C language
functions [subroutines]) I will use the notation "foo () " which would be formally
read as "The function named foo." Each device driver has a device special file

(usually in the I dev directory) . The purpose of these special files is to allow
applications to communicate with the desired driver. Associated with each
special file is a major number and minor number. The major number provides
a way for the kernel to know where the driver's entry points are . It 's an index
into a kernel table called the devswitch table, which has pointers to each of the
above-mentioned entry points.

The minor number can be used in any way desired by the driver writer, most
often to specify parameters to the driver. For example, SCSI drivers often use the
minor number to specify the bus, target, and LUN that the user is referring to.

For disk access , most applications will simply make operating system calls
to read data from a file. The filesystem code within the UNIX kernel will figure
out which driver supports the disk where the requested data is stored.

Because this is a book about SCSI , allow me to explain the typical UNIX
method of handling SCSI commands. For the sake of example, let's assume
that four requests come in via the filesystem. As each process makes its request,
the filesystem figures out what disk that data is on and opens that device special
file. The minor number decodes to a particular bus/target/LUN nexus . Each
open () creates an instance of the responding driver's strategy () routine. The
strategy routine creates a SCSI CDB that requests the data be read from the
particular SCSI device . These CDBs are queued to the SCSI host adapter by
a lower layer (the SIM [SCSI Interface Module] in CAM systems) .

When the first command is sent to the disk, the disk will look at the block
being requested. If the block is not one that' s in the device ' s buffer cache, the
device will disconnect from the bus and start the heads seeking to that block.
The host adapter, seeing that the bus is now free , will get the next command

U nderstand i ng Device Drivers Jl 77

! 78 Chapter 8

in the queue and select the proper device to send it to. Let's say the next com­
mand targets a different device from the first. That second device is available
to take the command, and it does the same as the first (looks at the block, checks
its own buffer, and perhaps disconnects from the bus while it seeks the data) .
This continues for all four disks. Remember that disk seek times are still quite
slow relative to the CPU, so all four commands will likely be sent to the disks
before any data is ready to be transferred.

The disk that finds its data first will reconnect to the initiator. This tells the
host adapter to find the request for that drive in its queue, set up the DMA for
the data, and tum control over to the hardware. That data will transfer and the
command will complete.

Immediately, the next drive that finds the requested data will reconnect to
the initiator and do the same thing and so on until all the requests are satisfied.
So, the arms on each disk may all be seeking at the same time, but the bus can
only be doing one thing at a time. The goal is to fully utilize every cycle of the
bus, and SCSI allows that to be done very efficiently. Of course, this also depends
upon the device drivers doing things cleverly-which is why Win95/98 systems
may not take full advantage of SCSI. Windows NT is much more efficient.

IDE is not capable of this type of overlapping, however. Once the first drive
is told to get the data, that drive has the bus until it finds and transfers the data.
Then the next command is sent, and so on - each drive remaining on the bus
until the data is transferred. Also, only two disks are allowed per bus. No over­
lapping is possible.

Enough Already!

I realize this wasn ' t an in-depth description of device drivers (even though I 'm
equally sure it was more than some of you wanted to read) , but I hope i t left you
with a better understanding of how important device drivers are, as part of a
SCSI subsystem. Without them, all that fancy hardware just sits there !

P E R F O R M A N C E T U N I N G YO U R

S C S I S U B S Y S T E M

SCSI has become th e inte rfac e of choice
for h igh-performance s torage subsystems ,

a n d fo r good reason ! T h e original SCSI
specification envisioned transfer rates of up to

5 M H z . The SCSI-2 specification allmvs faster rates
of up to 1 0 MHz. And now SCSI-3 allows operation
at 40 MHz! However, by push i ng these original SCSI
standards to their limits , system in tegrato rs have seen
reliabili ty problems mount .

A n u m ber o f fac tors con t ri b u t e LO del ive ri n g t h e h ighcst SCSI bus

perfom1ancc :

The four f�t c t urs t h a t most dirPcllv a ffect SCSI pcrfo rm<tnce <tre:

• Sel e c t i o n of t h e fas test deYices i n t h e price Ltngc 1 ·ou em affo rd

• Select ion of t h e most appropriate hos t ; tdap t c r f o r t h e chosen de1·ices

• Isolat ion of sl m1Tr de1 ices on to buses (o r bw; ;;cgl l l c n t s) of t he i r own

• S e t t i n g ; t i l device parameters correctly

1 8 0 Chapter 9

These factors can indirectly affect SCSI performance by causing errors, which
then result in retries, and lost performance:

• Cable type, quality, and length

• Use of proper terminators

• Terminator power quality

" Connector adapter quality

The optimization process actually starts before you even buy the hardware .
You need to think about what peripherals you want to attach and how much
room for expansion you want to allow for later on.

To a large degree, the performance you get will be directly related to how
much you spend. The amount of bus bandwidth you need depends upon how
many devices you will attach and how fast each of them is. For example, if you
want two fast hard disks that can each transfer data at 20 MB/sec, you need at
least a Fast-20 Wide host adapter. Even in this case, the host adapter will be
maxed out during heavy 1/0. This setup also lacks headroom for other devices
on the bus, so you might opt for a Fast-40 LVD (also called Ultra-2 Wide or
U2W) host adapter, and LVD drives, so that you' ll be able to add other devices
without slowing things down.

However, even before optimizing your system hardware, you should first
take care of the indirect factors listed above. Before you can speed things up,
they need to operate as free from error as possible , because the very act of
increasing the performance will most likely also increase the error rate unless
everything is perfect in cable- and terminator-land.

The dilemma is that signal quality problems, which have been present from
the start, become more apparent as buses become more heavily loaded and are
operated at faster data rates.

The SCSI electrical specification has several transceiver specifications:

1 . Differential RS-485 transceivers that allow for up to 1 0 MHz data transfer at
a maximum cable length of 25 meters (82 feet) .

2 . Single-ended TTL transceivers , which allow

e Synchronous data transfer of up to 5 MHz at a maximum cable length
of 6 meters (20 feet) .

• Fast- 10 synchronous data transfer up to 1 0 MHz at a maximum cable
length of 3 meters (1 0 feet) .

e Fast-20 synchronous data transfer up to 20 MHz at a maximum cable

length of 1 .5 meters (5 feet) .

., Asynchronous data transfer (no maximum transfer rate is given , but
typical rates are about 1 .5 MHz to 2 MHz) at a maximum cable
length of 6 meters (20 feet) .

3 . Low voltage differential (LVD) transceivers that allow synchronous opera­
tion at up to 40 MHz (soon up to 80 MHz) with up to 1 2 meters (about 39
feet) of cable.

Each transfer may consist of one, two, or four bytes, depending on the bus width
option implemented. Today, though most implementations utilize 1 6-bit Wide
data for hard disks , most other device types are only 8 bits (narrow) . At this
writing, at least one 1 6-bit Wide CD-ROM drive is available.

When 10 MHz Fast SCSI was first proposed, only differential SCSI trans­
ceivers were envisioned. However, many drive manufacturers have chosen to
implement Fast SCSI with single-ended drivers because of savings in cost, size ,
and power consumption. This presents several problems to integrators, especially
as systems increase in speed and size. A very common symptom of an unreliable
single-ended interface is bus errors following the addition of devices or cabling
to the system. The failures increase as the number of devices and length of the
cable grow. The failures are also unpredictable and are not necessarily the same

from system to system.
Most data reliability problems stem from signal reflections and noise that

are read by SCSI receivers as incorrect data or false SCSI bus phases. The SCSI
cable is a transmission line that has a characteristic impedance whose value
depends upon the type of cable used. Discontinuities in this impedance can
cause signal reflections to occur. These impedance variations can be the result
of extra capacitance due to any or all of the following; chips internal to SCSI
devices, connectors, improper terminators, mixing of different cable types, cable
stubs, and so on. At Fast-10 SCSI rates, these reflections are much more prevalent

than at the slower 5 MHz SCSI rates . Additional noise picked up from external
devices, as well as from other signals on the SCSI cable , can add to these false
signals. Unfortunately, a 10 MHz Fast SCSI bus is a more efficient transmitter
of noise than a slower 5 MHz SCSI bus . In general, most systems become more
prone to noise problems as clock speeds increase.

A carefully configured, single-ended SCSI bus can reliably transfer data at
10 MHz without a problem. However, good engineering practices should be
followed in order to guarantee success :

Use the shortest cable length possible. The SCSI-3 SPI working group
recommends that, for 10 MHz data transfers, the total cable length
should not exceed 3 meters (1 0 feet) .

Performance Tun i ng Your SCSI Subsystem 1 8 1

1 8 2 Chapter 9

Avoid stub clustering. Space SCSI devices on the cable at least 0 .3 meter
(1 2 inches) apart. When devices are clustered closely together on the
SCSI cable, their capacitances add together to create an impedance
discontinuity and thus reflections.

Cable stub length should not exceed 0 . 1 meter (4 inches) . Some SCSI
devices may create stubs internal to the device that exceed this value,
resulting in excessive capacitive loading and signal reflections. This pa­
rameter is under the control of the SCSI device (e .g . , tape drive or disk
drive) manufacturer. The SCSI cabling itself should include no stubs.

Watch out for capacitance. As devices are added to a SCSI bus, capacitance
is introduced to each signal from the connectors, receivers, and PC board
traces. The SCSI-2 specification limits this capacitance to 25pF; this number
will probably be lowered to 20pF in SCSI-3. The reason for this limit is that
the added capacitance lowers the impedance of the section of cable to
which these devices are added as well as adding delay. Both of these effects
can be highly detrimental to a Fast SCSI bus. Look for input filters that may
be attached to the SCSI front end of the printed circuit board. These filters
add capacitance which as we've seen isn ' t a good thing on SCSI buses.

Avoid connector adapters. They are just another source of capacitance and
signal degradation.

Route cable with care. Avoid practices such as rolling the cable up on itself,
running the cable alongside metal for long lengths, or routing the cable
past noise generators (such as power supplies) . Placing the cable near
ground planes created by grounded metal cabinetry reduces its impedance.
For example, the free air impedance of an unshielded 28 AWG, 0 .05-inch
center-ribbon cable is about 1 05 ohms, but direct contact with a metal
ground plane cuts that by 61 ohms. Such an impedance discontinuity will
cause signal reflections. The SCSI-3 working group suggests that, in order
to minimize discontinuities due to loql impedance variation, a flat cable
should be spaced at least 1 .3mm (0.05 inch) from other cables, any other
conductor, or the cable itself when the cable is folded.

Use 90 to 95 ohm impedance cables wherever possible. This will allow for
closer termination impedance matching.

Avoid mixing cable types. Select either flat or round, shielded or non­
shielded. Typically, mixing cables mixes impedances. Cable impedance
mismatch is a common problem resulting in signal reflections. If cable
types must be mixed, use of 26 AWG wire in 1 .3mm (0 .05 inch) pitch-flat

cable will more closely match impedances of many round-shielded cables,
resulting in fewer impedance discontinuities and therefore improved signal
quality. Internal cables are typically flat-ribbon cables, whereas external
cables should be shielded. Where they offer easier routing, size advantages,
and better air flow, round cables can be used internally as well. This, in
fact, may be desirable if it allows for better impedance matching to the
external cable .

Ribbon cable shows fairly good cross talk rej ection characteristics for single­
ended buses, because of the Ground-signal-Ground layout. However, more care
needs to be taken to ensure adequate performance when round, shielded cable
is employed.

When round cable is used, select a cable that uses a wise placement of key
lines within the cable . The following is suggested: In the case of a s tandard
25-pair round construction, pairs are arranged inside the cable in three layers.
The closer the pair is to the outside shield, the lower the impedance. Conversely,
pairs located closer to the center of the cable have higher impedances. Using
centrally located high-impedance pairs for speed-critical signals such as REQ
and ACK is desirable. By locating data pairs in the outermost layer of the cable,
cross talk between REQ, ACK, and the data lines is minimized. The middle layer
might contain status lines such as C/D, I/0, MSG, ATN, and so on. Another
thing to look for in a round-shielded cable is to make sure that the lowest
impedance wire in the cable is used for TERMPOWER to minimize transmis­
sion line effects on what is meant to be a voltage supply line. Some SCSI cable
vendors have put a low-impedance conductor into the cable specifically for this
purpose. Typically, a larger wire gauge along with a high dielectric constant
insulation is used on this conductor.

SCSI Cable Types

SCSI systems can utilize cabling both inside and outside the cabinet. Internal
cables are typically flat unshielded ribbon cables, whereas external cables are
generally round and shielded. The most common internal cable is the 50-
conductor flat-ribbon cable, which typically uses 28 AWG conductors on 0 .05-
inch centers. Typical free air characteristic impedances for this type of cable run
about 1 05 ohms. Good success can be had with the 3365 round conductor flat­
ribbon cable manufactured by 3M Corp. It uses 28 AWG stranded wire on 0.05-
inch centers and has a nominal free air characteristic impedance of 1 08 ohms.

External shielded 8-bit SCSI cables typically contain 25 twisted pairs
(50-conductor) with an overall foil/braid composite shield. Typical free air
characteristic impedances for this type of cable have run about 65 to 80 ohms.
Single-ended round shielded cable impedances of 90 to 1 00 ohms are available
and should be used where appropriate .

Performance Tun ing Your SCSI Subsystem J 8 3

1 8 4 Chapter 9

The SPI-2 specification requires that systems employing the fast synchronous
data transfer option shall use cables consisting of 26 AWG or 28 AWG conduc­
tor s. Characteristic impedance is specified as between 90 and 95 ohms. In
addition, signal attenuation should be 0.095 dB maximum per meter at 5 MHz.
The pair-to-pair propagation delay delta (difference) should not exceed 0.2 ns
per meter. Finally, the DC resistance is specified as 0 .23 ohms maximum per
meter at 20 degrees C.

Passive Termination

Passive termination (called Alternative-I in the SCSI-2 specification) was the
most common form of termination in use a few years ago. A typical single-ended
SCSI passive terminator will employ 18 sets of 220-ohm pull-up and 330-ohm
pull-down, thick film resistors to equalize impedance and to absorb reflected
signals. The Thevenin equivalent impedance for this type of termination is
1 32 ohms.

In order to maintain the largest possible high-level noise margin, it is advis­
able to use resistors with a maximum tolerance of 2 percent rather that 1 0
percent. I n worst-case conditions, the difference could easily add up to 1 40 mV.
Worst case occurs when the pull-up resistor is high and the pull-down resistor
is low.

Consider the situation where TERMPWR is being driven across a 6-meter
(19-foot) cable. Due to power supply tolerances and to the 15 or so SCSI bus
signals that may be drawing current simultaneously, it is possible for the remote
end TERMPWR to be sitting at 3 .65 volts (see the "Where to Terminate" sec­
tion for more details) . If 2 percent resistors are used, the worst-case
termination voltage divider will have a divider ration of 0 .588, and the quies­
cent signal bias will be 2 . 15 V. If 10 percent resistors are used, the worst-case
termination voltage divider will have a divider ratio of 0 .55 1 , and the quies­
cent signal bias will be 2 .01 V. In this worst-case example, given the
SCSI-mandated minimum logic high voltage of 2 .0 V, only 1 0 mV of high­
end noise margin will remain.

Active Termination

The preferred termination for 10 MHz and faster SCSI buses is active termination.
This type of termination is known as Alternative-2 and uses only one 1 1 0-ohm
resistor per signal per bus end pulled up to locally supplied, voltage-regulated
2 .85 V. Features of this termination include the following:

• Termination voltages, and therefore the currents flowing through the 1 1 0-
ohm termination resistors, are at least partly immune to IR voltage drops
on the TERMPWR line until TERMPWR minus 2.85 V equals the dropout
voltage of the voltage regulator, or about 1 . 1 V.

• Closer match to the characteristic impedance of the cable (1 1 0 versus 132
for passive as compared to the typical l 05-1 08 ohms free air impedance of
the cable) minimizes reflections.

• Increased high-level noise margin of de-asserted signals.

• Higher pull-down currents avoid rising "staircase" waveforms seen on weakly
driven transmission lines.

Wherever possible , place SCSI devices that employ active termination at the
ends of the bus or plug active terminators onto the connectors at the ends of
the cable .

Where to Terminatte

Termination should be installed only at the far ends of the cable. If the host
adapter is at one end of the bus and a SCSI device is at the other end, the host
adapter's terminator should be enabled. If the host adapter is supporting both
internal and external SCSI devices and thus is located in the middle of the bus,
its terminator must be disabled. In both cases, disable the termination of any
SCSI devices that are not located at the cable ends. This can usually be done
by jumper configuration, removal of resistor packs, or both . Another approach
is to plug a terminator module onto the end connector of the cable and not
enable any of the drive terminators.

Ideally, TERMPWR should be located at the terminations, not in the mid­
dle of the cable . Interface error rates are lower if the termination voltage is
maintained at the extreme ends of the cable. From strictly a signal-quality per­
spective, it is best if terminators get power only from the device to which they
attach , and not over the bus. Unfortunately, cable end devices may be pow­
ered-down and the bus would then be inoperative unless the terminators are
supplied from the other voltage sources along the bus. This fact must be bal­
anced against desired signal quality.

Most drives provide jumpers to select the manner in which TERMPWR is
supplied to their on-board termination. Having drives configured to supply
their own isolated TERMPWR can help solve problems in noisy systems, but
the flexibility of being able to power down individual devices shouldn ' t be given
up lightly . TERMPWR should be applied near terminations because
TERMPWR is a transmission line that shares many of the same characteristics as
the signal lines. Current surges entering this line at the terminators will
propagate and reflect exactly as they would on any signal line, except where
there is a low-impedance voltage source. It follows , then , that current surge
waveforms propagating down the bus , from a point where many data lines are
changing simultaneously, will couple into other signals through the pull-up
termination resistors if the TERMPWR \'Oltage source impedance isn ' t low
enough right at the terminator to absorb or provide the current surge needed.

Performance Tun ing Your SCSI Subsystem 1 8 5

1 8 6 Chapter 9

For this reason, plug-on terminators often include a large capacitor (1 to 1 0 uF)
on TERMPWR to lower the AC impedance.

The worst real-life case is one in which data lines along with MSG, C/D, and
1/0 all change at the same time, causing noise on signals of opposite polarity

(several signals going low causing a de-asserted signal to also go low, or signals
going high causing- an asserted signal to also go high) . This phenomenon has
nothing to do with cross talk or driver skew rate , but is instead a function of
where TERMPWR is applied and where the drivers are located.

Another reason to supply TERMPWR locally is to prevent the loss of
receiver noise margin caused by TERMPWR DC voltage drop across the cable .
It is not uncommon to find TERMPWR resistances of 2 ohms or more on
maximally configured systems. When 15 to 18 signals conduct, the TERMPWR
line will carry nearly 300 rnA to the far terminators, which would cause a voltage
drop across the cable of about 0.6 V during these periods . This can cause
TERMPWR to drop below the specified minimum voltage, causing bus errors.

Modern host adapters drive TERMPWR onto the cable through a self­
healing polymer fuse and a Schottky diode (these have only .3 V forward drop
where ordinary silicon diodes drop .6 V) . Taking into account power supply
tolerances, it is not inconceivable that under maximum loading conditions,
TERMPWR at the controller connector may be lowered to 4.25 V. Subtract 0 .6
V caused by TERMPWR DC resistance, and far-end TERMPWR ends up at 3 .65
V. This would bias a quiescent signal to 2 . 19 V ((330 I 220 + 330) * 3.65) . Com­
paring this to the SCSI-specified minimum V(ih) of 2.0 V for single-ended
inputs leaves a high-end noise margin of only 1 90 m V which is too close for
comfort. This quick and dirty worst-case analysis does not even include termi­
nation resistor tolerances that could exacerbate the problem . It 's a good thing
that TTL receivers typically switch near 1 .4 V to 1 .5 V (the middle of the V[ih]
range) rather than at 2 .0 V; otherwise, most SCSI implementations would not
work reliably.

For all the reasons discussed above , it is advised that TERMPWR be
maintained as close to nominal voltage as possible .

'f/EIRMJPIW/Il Bypassing

The SCSI-3 Technical Committee SPI working group recommends that all
TERMPWR lines be decoupled at each terminator to minimize TERMPWR
glitch coupling.

The minimum recommended values are a 2.2 uF solid tantalum capacitor
along with . 0 1 uF ceramic capacitor in parallel to help with high-frequency,
low-voltage noise. These capacitors, when utilized, will supply the high-frequency,
low-impedance path to ground necessary to filter out glitches. Without the
capacitors , TERMPWR acts simply as a high-impedance node and couples

noise from signal to signal . With the capacitors, an "AC ground" exists that filters
this noise .

For cables of significant length and configurations without TERMPWR at
each terminator, there is a high probability of signal corruption without
adequate decoupling. Therefore, the system integrator should inspect the
chosen devices to ensure that all SCSI devices provide proper decoupling
capacitors on TERMPWR.

However, it is important to keep in mind that decoupling in the middle
of the bus is not sufficient. If the host adapter is supporting both the internal
and external SCSI buses simultaneously, then the SCSI devices at the ends of
the cable need to be bypassed at their terminations. This requirement applies
to both passive and active termination.

High Voltage DiHerential SCSI
When the total length of a Fast-10 , synchronous SCSI bus cable must exceed
3 meters (10 feet) , the use of a differential SCSI interface may be indicated.
With Fast-20 , the decision point is 1 .5 meters (5 feet) .

An important concern is cable selection. When twisted-pair cable is used ,
differential SCSI buses provide greater signal integrity over longer distances
than do single-ended, because noise coupled into a twisted-pair generally
appears equally on both wires. Because differential receivers respond to differ­
ences between the conductors of the twisted-pair, rather than to their absolute
Voltage, the coupled common-mode noise is rejected.

On the other hand, the signal positioning of a differential SCSI on a flat
non-twisted ribbon cable causes two problems. First, noise introduced into
parallel conductors tends not to be common mode. Second, whereas the sin­
gle-ended conductor arrangement naturally interleaves ground wires between
signal wires, there are not enough conductors to interleave grounds between
each differential signal pair. These factors lead to increased cross talk between
adjacent conductors on a ribbon cable.

The use of twisted-pair cable (either twisted-flat or discrete wire twisted­
pairs) for differential-ended SCSI interfaces is highly recommended.

The maximum cumulative cable length permitted is 25 meters (82 feet)
with devices not to be spaced any closer then 0.3 meter apart (1 2 inches) and
stub lengths not to exceed 0.2 meter (8 inches) . As in single-ended, SCSI bus
terminators should be installed only at each end of the cable .

ll.ow Vo�ltage Differentia�

For the highest performance disk drives, you ' ll want to use LVD drives .
Because only hard disks are currently manufactured with LVD interfaces , you' ll
need to keep these devices isolated on their own host adapter or their own bus

Performance Tun ing Your SCSI Subsystem 1 8 7

1 8 8 Chapter 9

segment. This is because the presence of a single-ended device on the bus will
prevent the LVD devices from operating in LVD mode. Certain motherboards
with on-board host adapters provide bus conditioner chips that create separate
LVD and single-ended segments , thus allowing the LVD drives to run at full
speed without the added expense of a second host adapter.

Tricks

One of the major parameters that affects I/0 performance is seek time. This
includes the rotational latency of waiting for the proper sector to fly under the
heads . One way of minimizing this is a trick called striping or RAIDO, which
means instead of writing all data to one drive and incurring all the latency
involved in doing that, the data will be divided into odd and even stripes (usually
track-sized pieces) and written to two identical drives. The odd-numbered stripes
go to one drive and the even stripes to the other. This takes advantage of the
SCSI disconnect/reconnect protocol by keeping both drives busy seeking and
not having to wait to write/read our data. There's more about these techniques
in the Chapter 10 introduction to RAID. Striping can also be done with more
than two drives, but this requires a more complicated algorithm than odd/ even
to distribute the data.

How Daring Are You?

There is another trick that can be done which will increase the write perfor­
mance of your system. But as with many tricks, you need to be careful or you
might get hurt! The trick is to enable the "write cache" on your drives. This
increases performance because the drive doesn ' t wait until the data is written
to the magnetic media before telling the system that it's "done." Normally, this
is not a problem because shortly the drive will write the data to the medium and
it will be safe. But what happens if there is a power failure before the data gets
written to the media? You could lose some of the data that you were writing, or
even worse, the entire filesystem could be corrupted by losing blocks containing
metadata like directories or FATs.

For this reason, we recommend that you only enable write caching on systems
that have a UPS for power backup.

Let's See How We Did

Now that we've applied all we know about improving SCSI performance, it's
time to see how well we accomplished that task. We need to select a benchmark
utility and run it to measure the transfer rate , average seek time, and CPU
consumption. Some of these tools are included on the CD-ROM that comes
with this book, and many others are available from various Internet sources.

Keep Your Expectations Realistic

It's easy to get caught up in the quest for speed. When you see specifications
that say "This host adapter has an 80 MB/second transfer rate ! ," you might
tend to take this at face value and expect that running a benchmark on a disk
attached to one of these host adapters will yield a result equal to or close to that
number. This is not the case !

Did the host adapter manufacturer lie? No, not at all . You need to under­
stand the difference between maximum transfer rate and the real data rate
coming off the disk media. The host adapter is specifying the maximum speed
it can move bytes across the SCSI bus. A single disk, however, cannot supply
data at 80 MB/sec. A more realistic expectation would be 1 5 MB/sec for a single
disk. This means that the Fast-40 Wide host adapter we ' re talking about here
can handle the data from four or five such disks before it becomes the bottle­
neck.

Once you've eked out all the speed you can from your system, if you' re
still not satisfied and your wallet's not yet empty, you might be ready for RAID
(coming right up . . .) .

Performance Tun i ng Your SCSI Subsystem 1 8 9

RA I D : R E D U N D A N T A R RAY O F
I N D E P E N D E N T D I S K S

RAID (Redundan t Array of Independent
Disks) is a technology to combine multiple

small , independent disk drives into an array
that looks like a singl e , big disk drive to the

system. In 1 987, David A. Patterson, Garth Gibson ,
and Randy H . Katz at the University of California
Berkeley published a study e n titled "A Case for
Re dundant Arrays of Inexp e nsive D isks (RAID) . "
Aside from the basic theory to replace a single big disk drive called SLED

(Single Large Expensive Disk) with an array, the Berkeley paper defined five
types of array architectures, called RAID levels- each providing disk fault toler­
ance and each offering different feature sets and performance trade-offs. To
differentiate among the RAID levels , each was assigned a number from 1 to 5 ,
where each RAID level number stands for an array architecture concept, not
a quality level.

J 9 2 Chapter 1 0

(Fault tolerance features had to be a main part of the concept, simply because
in a configuration of n disk drives, a failure of one disk drive is about the factor
n more likely to happen than for a single drive .)

Data i s distributed over the disks o f a n array i n blocks called stripes. The
stripe size may range from the size of a single sector (typically 5 1 2 bytes) to
several megabytes, depending on the application and its l/0 requirements.
A stripe is always confined to a single disk.

While it is possible to implement RAIDs using ATA drives, SCSI 's parallel
processing nature is of great benefit in the application.

Name Games

Mter the term "RAID" was introduced, "RAID 0" was quickly adopted to describe
non-redundant disk arrays, wherein the data striping was used only to increase
capacity and performance of the storage system.

Around RAID 0 and the five "official" array definitions, some proprietary
models were created by vendors that mostly used their own (typically high-level)
numbers, to appear superior. Storage Computer's RAID 7 i s such an example,
although it's basically a RAID 4 system with multiple caches·. Combinations of
levels also get high numbers that are mostly a combination of the used levels ­
RAID 10 , for example, mostly is used for the combination of the levels 0 and 1 .

However, the practice of calling any proprietary method of array or non­
array techniques "RAID level something" leads to confusion. RAID 7, for
example , means typically Storage Computer's proprietary approach, whereas
Mylex, one of the biggest RAID adapter manufacturers, uses the term "Mylex
RAID 7" for JBOD (Just a Bunch Of Disks) configurations, where no RAID-like
technology is used. Also, Mylex calls the aforementioned combination of RAID
level 0 and 1 not Level 0+1 or 10 , but "Mylex RAID 6 ."

Now, before listing the RAID levels, just a couple more definitions you'll
need later: A disk drive that is part of a disk array is typically called a member

disk, and the group of member disks that are related to a logical disk drive is
called a rank. A RAID array may have multiple ranks.

RAID Levels

RAID Level 0: Block Striping

As noted above, RAID level 0 is not a "real" RAID in the Berkeley paper sense,
but it is listed here because the data striping technology it uses is the base for
all RAID levels. RAID level 0 breaks data down into stripes and distributes them
over the member drives of the array. While this method doesn' t provide any
redundancy, it does provide high l/0 performance and a resulting capacity
consisting of the sum of all drives. RAID level 0 is typically called striping and
shouldn' t be used in an application where data availability matters. Figure 1 0 . 1

/
: A
B
c
D

: E '

: F '

G ;

H '

'· · ···· '

/

/

Figure 1 0. 1 : RAID 0 - Block Striping

ABCDEFGH

ll l
A B
c :D
K F
G H

shows how a stream of data is broken down into stripes ABCDEFGH and then

shuffled between the two ranks in the stripe set .

A n even simp ler method o f combining mu l tip le disk drives , called disk

spanning, j ust adds the drives one after the other to a b ig logical drive without

striping data. This also was sometimes called RAJ D 0 in the early days of RAI D

technology.

All RAJD 0 arrays have one major flaw - if one drive fails, the whole array's

data are gone. Therefore , RAJD 0 is typically used only to achieve h igh capaci ty

and performance as cheaply as possible.

RAID Level 1 : Drive Mirroring or Duplexing

RAJD level l , or minoring, was used long before the RAID definitions were

published. Mirroring provides redundancy by IITi ting the same data to both

sides of the mirror- i .e . , to both ranks of the array, therefore leaving a "mir­

rored" copy on each disk. This is shown in Figure 1 0 . 2 : The data ABCD are

written to both disks of the array.

Level 1 is rather simple to implement, provides vel)' good data reliabi l i ty,

and improves read performance of the array, but the capac i ty I cost ratio is

unfavorable - you have to buy twice the capacity you need. To enhance reli­

ability even more, many RAID Ievel l solu tions also can use mirrored disk

controllers, which eliminates the disk controller as a single poin t of failure and
is typically cal led dujJlexing. Even though this system requires purchasing double

your capacity needs, today's disk space is cheap. and the cost of downtime is

rising, so RAJ D level 1 is definitely worth conside ring for applications where

data availabil ity matters.

RAID· Redundant Array of Independent D;sks 193

J 94 Chapter I 0

Figure 1 0. 2: RAID / - Mirroring

RAID Level 2: Striping with ECC

RAID level 2 distributes data in single bits over the member drives and uses

an algorithm called Hamming Code to generate ECC (error correction code)

checksum bits that are stored on multiple dedicated ECC disk drives (shown

in Figure 1 0 .3) . At the time the RAID definitions were written , this made

sense - but because most disk drives today embed ECC information in each

sector, and RAID level 2 shares all disadvantages of RAID level 3 without the

additional benefits, level 2 isn't used any more. (The biggest disadvantage was

the high number of drives needed for ECC generation. According to the theory,

you ' d need four ECC drives for ten data drives and so on.)

Figure 1 0. 3 : RAID 2 - Striping with ECC Stored o n Dedicated Drives

RAID Level 3: Byte Striping with Parity

RA.l D level 3 uses the same striping method as RAID level 2, but instead of

calcula t ing ECC i n formation over the whole data set , level 3 generates pari ty

i nformation over the data on a dedicated parity disk (see Figure 1 0 .4) .

I f a disk drive fai ls , the data can be res tored on the fly by calcula t ing the

PxrlusivP O f?. (XOR) of the data from the remain ing drives. RAJD level 3 provides

h igh data transfer rates and h igh data avai labi l i t)' and is cheaper than mirrori ng.

The maj or drawback to l eYel 3 is that every read or write operation n eeds

to access all drives of' a rank, so only one request can be pending at a time and

the transact ion rate i s l imited to the transact ion rate of a s ingle drive. Also, the

block size depends on the number of disks - wi t h the practical stripe size of

one sector (5 1 2 bytes) per drive, i f you wan t to add a drive to a set of four disk

drives and a pari t)' drive, the request block size or the array would be 2.5K

(ki lobytes) . This is very unusual block size and hard t o handle for most operat­

i ng systems. So, RAJD level 3 arrays typical ly work o n ly wit h an even number of

data drives to ach ieYe more normal block sizes.

RAID level 3 is bad for a "standard" system with mul t ip le l/0 transact ions

at any t ime but . o n the other hand, a s ingle read transac t ion performs very well

wi t h the cumula t i,·e bandwidth of all dri,·es of the ran k .

A
B
c
D
E
F
G
H

Figure 1 0. 4 . RAID 3 - Byte Striping with Parity

RAID Level 4: Block Striping with Parity Drive

RAJD level 4 is somewhat similar to level 3, bu t where l evel 3 distributes data

bit or byte orien ted over the drives of a ran k , I eYe I 4 uses larger stripe sizes ­

various ,·endors offer data block sizes between 8K and l 28K. Therefore, small

(:S: stri pe s ize) data b loc ks can be read asynchro nously from m ul tiple drives of

the rank , givin g a \'el)' good read transac t ion rate .

RAID Redundant Array of Independent Di>k> 1 9 5

1 9 6 Chapler 1 0

For example, using Figure 1 0.5, the Parity l block (PI) would con tain the

XOR of blocks A, B, C, and D, but each of these blocks is separately accessible.

So, if data records fit into the logical block size, multiple records can be read

from the drives in a quasi-parallel manner.

On the other hand, every write access has to wait until the writing of the

parity data on the parity drive is completed. When re-writing block C, both C

and P l have to be read then re-written; the other three drives do not have to be

accessed. The parity drive therefore becomes a bottleneck because it has to be

accessed for all writes, and write performance is identical to that of a single

drive - the parity drive.

With this in mind, RAID level 4 performs best wi th parallel read accesses

to several logical blocks. However, because RAID level 5 shares the advantages

of level 4, but avoids the single parity drive , it is the better choice in such a

system. Possibly for that reason, we don ' t know of any commerc ial RAID 4

implementation.

RAID Level 5: Block Striping with Distributed Parity

RAID level 5 is iden tical to level 4 in all but one aspect : I t reduces the write

bottleneck by distributing the parity data across all member drives of the rank.

Figure 1 0 .6 shows how the parity drives are re-arranged for RAID level 5 .

As with RAID level 4, read performance i s very good, whereas write performance

is substantially less so - although not as troublesome as in level 4. Because the

combination of performance, data availabi l ity , and cost/ capacity ratio is the

best compromise of all Berkeley RAID levels, RAID level 5 is the most used

level today.

Figure 1 0.5: RAID 4 - Bfock Striping with Pority

A
B
c
D
E
F
G
H

.. .. .

Figure 1 0. 6 : RAID 5 - Block Striping with Distributed Parity

Panty 1 blocks ABC
Panty 2 : blocks DEF
Panty 3 blocks GHI
Panty 4 : blocks JKL

RAID Level 6: Block Striping with Two Distributed Parities

RAID level 6 is a RAID level 5 array with an additional parity generated over all

drives, including the RAID 5 parity. This gives one additional level of data

availabil ity, because this scheme can compensate for the loss of two drives - an

improvement over RAID 5's one-drive fault tolerance. Figure 1 0 . 7 shows the

arrangement of a level 7 system.

AJthough level 6 was later established as one additional "official" RAID

level , no one has implemented it yet. It would be the perfect RAID for

mission-critical applications; its downsides are the cost of a very complex con­

troller design and very bad write performance because of the two-stage parity

generation.

Figure 1 0.7: RAID 6 - B/ock Striping with Two Distributed Parities

RAID: Redundant Array of Independent D1>ks J 9 7

J 9 8 Chapter I 0

RAID Level 7: Storage Computer Proprietary

Storage Computer's RAID 7 system is simply a RAID 4 system with ful ly asyn­

chronous 1/0 transfers and big caches (see Figure 1 0 .8) . Each disk drive has

i ts own SCSI disk controller that caches all read and write transfers . The system

controller accesses these SCSI disk controllers asynchronously via a proprietary

high-speed bus called X-Bus. Additionally, the system controller has a very big

cache and con firms write operations while they are stored in the cache only.

RAID Ts main advantage over the "standard" RAID levels is extremely h igh

performance for both read and write operations clue to the larger n um ber of

disk drives. The major disadvantage is extremely high cost per megabyte.

RAID Level 0+ 1 or Level 1 0: Mirrored Striping Array

RAID level 0+ 1 or 1 0 is a combination of Lhe levels 0 (striping) ancl l (mirroring)

and has the same advantages and disadvantages as a standard RAID l solution

(shown in Figure 1 0 .9) .
The additional advantage of RAID level 0+ 1 is performance - read per­

formance goes up because of the paral le l access over m u l tip le drives, and

because no parity needs to be calculated, write operations are very fast . RA J D

0+ l i s usually considered the fastest o f t h e available RA I D implementa tions.

/
...
: A
!B
:c
:D
: E
:F
;G
:H
;

H ost Computer

/

/

/ /
I--

X-Bus
1--

/

Array C omputer with
Cache RPJvl and
Parity G en erall on

Figure 1 0. 8: RAID 7 - Siorage Computer

�

---1

---1
---1

�

.�

---1
---1

=
---1

�
Tri ple

A.d apter
B o ards

r--

=

r--

r--

r---

r--

DataO
Data 1
Data 2

Data 3
Data4
Data 5

Data 6
Data7

-
Data8

Data 9
Panty
Standby

/ /
.•. .. ,
'A
B
c
D
:E

Jl F ll ll ll l. G
H A B c Panty Ia Panty lb

D E Panty 2a Panty 2b F
lf Panty 3a Panty 3b tr I

v Panty4a Pap.ty4b J X L

Figure 1 0. 9: RAID 0+ 1 -Mirrored Striping Array

Analyze Your Needs

The advan tages and disadvantages of the RAJ D levels vary depend ing on the

system arc h i tectu re of the Rr\JD adapter and the disk dri1 es. I f a n i n te l l igen t

RAID con troller \\·i t h big memory caches can be used, the 11Tite performance

h i t of, for example , RAID 5, is not really not iceable. I f, on the other hand,

RAID 5 is c lone i n software, the XOR calc ul <t t ion draws noticeable resources

from your main CPU (s) . Selection of a RAID system should be clone only after

careful a nalysis of your needs.

RAID and the RAB

In 1 992, e ight RAI D manufacturers and consu l tan t s founded the R/1/J (RAID

Advisory Board) to prese n t a podium for RAI D and to ;tc hieve better market

presen c e for the RAI D i dea and the i r products . The RAB (11ww.raid advisory.

com) offers the RAI DBook, 11·h ich describes a l l R.-\ I D a n d EDAP issues i n

great detai l .

Since t h e n , the RAB h as grown to i n c l ude a l l major p lavers i n the RAI D

fi e l d and h as extended t h e fau l t tolerance aspect of RAI D t o a broader view

called /illrl fJ (Extended Data Avai lab i l i ty <t nd Pro t e ct ion) . The idea beh i n d

E D AP is t h a t a s torage system with EDAP cap;tbi l i ty c a n protec t i t s d a t a a n d

provide onl ine access to i Ls claLa despi te L · l i lures with i n t. he disk system, a t tached

u n i ts , or i ts environ men t . This i s a major ext ens ion of t h e RAID concept .

Speciftcallv, RAI D is the par t that addresses b i lurcs i n the disk system on the

lowest l eYel .

RAID Redundanl Array of lndependenl D isb J 9 9

2 0 0 Chapter 1 0

Extended Data Availability and Protection (EDAP)

The original definition of EDAP is the ability of a storage system to provide
reliable online access to data even under abnormal conditions. These condi­
tions are clearly specified as shown in Table 1 0 . 1 .

Table 1 0. 1 : Types of Failures and Their Conditions

Failure Type

I n ternal Fa i l u res

External Fa i l u res

Env i ronmental Fa i l u res

Replacement Periods

Vu lnerable Periods

Example

Fa i l u res with i n the disk system .

Fa i lu res o f equ ipment attached to t he d isk system, inc lud ing

host 1/0 buses and host computers .

Fa i l ures resu l t ing from a bnorma l environmenta l condit ions,

from a power outage or over-temperature to flood, earthquake,

terrorism, or sabotage.

Replacement periods means the t ime needed to do main te­

nance, for example to replace a d i sk drive. Typica l ly, i n a

good RAID setup with hot standby d isks and hot-swap sup­

port, th is means only some time in " reduced mode, " where

the next fa i l i ng d isk d rive could mean d isaster . (Note that i f
ho t swap is not supported by the d i sk system, then the com­

ponent replacement period is identical to down time .)

Vulnerable period , or reduced mode time, means that the d i sk

system has to work around a fai l i ng component, that the system

is vul nerable to add itional (possibly d isastrous) fa i l u res, and

that the system operates at reduced performance un t i l t he fau l t

is corrected .

EDAP now certifies whether a storage system or component fulfills specific
EDAP criteria called EDAP attributes. The EDAP attribute range of a disk system
may include providing EDAP capability in case of an internal disk failure to
providing EDAP capability against any internal, external, or environmental
failure .

RAID denotes the lowest level of EDAP capability- prevention of online
data access because of a disk failure -whereas the highest levels include
things like remote mirroring to protect data access in case of catastrophes
like earthquakes.

EDAP Criteria

EDAP uses seven base classifications for disk systems. Each EDAP classification
level supercedes the previous level. To meet the criteria for a classification,
the listed EDAP attributes must be fulfilled.

Failure Resistant Disk System, FRDS, criteria are :

• Protection against data loss and loss of access to data due to disk failure

• Reconstruction of failed disk contents to a replacement disk

• Protection against data loss due to a "write hole"

• Protection against data loss due to host and host l/0 bus failures

• Protection against data loss due to component failure

• FRU monitoring and failure indication

Failure Resistant Disk System Plus, FRDS+, does everything an FRDS does
and adds the following criteria:

• Disk hot swap

• Protection against data loss due to cache component failure

• Protection against data loss due to external power failure

• Protection against data loss due to a temperature-out-of-operating-range
condition

• Component and environmental failure warning

Failure Tolerant Disk System, ITDS, adds the following criteria:

• Protection against loss of access to data due to device channel failure

.. Protection against loss of access to data due to controller failure

• Protection against loss of data access due to cache component failure

• Protection against loss of data access due to power supply failure

RAID : Redundant Array of I ndependent Disks 2 0 J

2 0 2 Chapter 1 0

Failure Tolerant Disk System Plus, FIDS+, meets all previous criteria and
additionally offers:

• Protection against loss of access to data due to host and host I/ 0 bus failures

• Protection against loss of access to data due to external power failure

• Protection against loss of data access due to FRU replacement

• Disk hot spare

Failure Tolerant Disk System Plus Plus, FIDS++, meets all previous criteria
and adds:

• Protection against data loss and loss of access to data due to multiple disk
failures in an FIDS+

Disaster Tolerant Disk System, DTDS, adds the term "zone," meaning a geo­
graphic zone. Being an FIDS+ array by definition, the DTDS adds mainly:

" Protection against loss of data access due to zone failure

This means that if, for example, a building is flooded, the DTDS has some
provision to offer online data access by a backup unit in a different building
that's definitely not affected by this flood.

Disaster Tolerant Disk System Plus, DTDS+, uses bigger zones to guarantee
online data access, as follows:

" Long distance protection against loss of data access due to zone failure

As you might expect, the higher the EDAP classification, the higher the price
of a complete solution - to fulfill the DTDS criteria, you need to set up two
data centers in two separate buildings or at least building parts that may not
be vulnerable to the same fire, for example. If you' re really serious about dis­
aster tolerance you'll want the two locations in separate cities, or counties ­
preferably on separate tectonic plates !

How Does All This Stuff Connect to My System?

There are three basic types of RAID implementations, internal hardware ,
external hardware, and software only. Internal RAID controllers consist of an
intelligent multi-channel host adapter card (usually PCI) . The card contains

a CPU (usually a RISC processor) and a large amount of memory as well as
several SCSI bus channels (usually three) .

An external RAID unit consists of a cabinet wi th a controller card and a
bunch of bays to mount drives in. The controller card is similar to the one in
internal RAIDs, but also provides another SCSI bus to act as the "front side"
connection (from the host to the RAID) . More sophisticated external RAIDs
provide a second "front side" bus to remove the possibility of this being a sin­
gle point of failure . When all is said and done the entire RAID looks to the
host like one giant SCSI disk drive !

Software RAID

The software approach is certainly the least expensive , but also the most lim­
ited way to implement RAID. Software RAIDO or RAID I are fairly practical ,
but going beyond this incurs a substantial performance hit. Windows NT
Server and Linux have software RAID capability. Remember, though, that you
can ' t boot from a software RAID.

RAID can be a topic for an entire book, but I think we 've gone far
enough to inform the typical user or system integrator of what this RAID stuff
is all about.

RAID: Redundant Array of I ndependent Disks 2 0 3

A P R O F I L E O F A S P I

P R O G RA M M I N G

Coj1yright © 1 994, 1 995 A daptec, Inc. All rights reserved.

Portions rejwinltd with tht permission ofAdajJter, Inc.

ASPI s tands for advanced SCSI program-
ming interface . ASPI is an Adaptec-developed

in terface specification for sending commands to
SCSI host adapters that most h ardware manufactur­
e rs h ave adopted today. The interface p rovides an
abstraction layer that insulates the programmer from
considerations of the particular host adapter used .
With ASP I , software drivers can b e broken into two
components : the low-level ASPI manager, which is
operating system and hardware dependent, and
the ASPI modul e . The ASPI manager accepts ASPI
comman ds and performs the steps necessary to send
the SCSI command to the target. For example ,

2 0 6 Chapter 1 1

although the Adaptec AHA-152x and AHA-294x host adapters have very different
hardware, the ASPI interface to these boards is the same. (Obviously, the driver
module that implements the ASPI interface for the particular host adapter,
e .g . , ASPI2DOS.SYS, is different for each board.)

The ASPI module i s tailored to the command set of a particular peripheral,
such as CD-ROM. Although an ASPI-based CD-ROM driver would have to handle
the differences between different CD-ROM drives, it would not have to handle
host adapter differences.

I. ASPI Developer Information

In response to widespread demand for ASPI software, Adaptec provides the ASPI
Software Developer's Kit (SDK) , a complete toolkit for developing SCSI drivers
for PC peripherals. This kit is designed to help you write your own ASPI device
module that will work with any ASPI-<:ompliant host adapter. The following sec­
tions describe the ASPI specifications for DOS, Windows, and OS/2. Updated
information can be downloaded from the Adaptec FTP site :
ftp:/ /ftp.adaptec.com/pub/BBS/adaptec/ .

The ASPI Software Developer Kit contains the following documentation
and tools .

• A copy of the ASPI specification document and programming guides for
four major operating systems: DOS, Windows, OS/2, and NetWare.

• Sample assembler source code for DOS.

• A SCSI DOS disk driver, which can handle at most one SCSI partition on
one SCSI drive .

• An ASPI demo program, which provides examples of how to use the ASPI
programming interface.

• Sample C source code for Windows.

• An ASPI for Windows utility, which constantly scans the SCSI bus and dis­
plays the name of a device, if it finds one.

• A debugging utility for ASPI for Windows development.

• An ASPI demo utility for OS/2, which scans the SCSI bus and displays
information about the targets it finds. It is a 32-bit application created
with Borland C++ for OS/2. A project file and makefile are included.

'" Sample C source code for OS/2 .

• An ASPI device driver for OS/2 . This driver is intended for simple , single­
threaded applications. If you need to support multitasking, you need to
make your own modifications .

• A complimentary copy of Adaptec EZ-SCSI , the latest version of
DOS/Windows software managers, plus an installation program, CD­
ROM drivers , and other utilities .

To use this kit, it is assumed that you have a solid understanding of system-level
programming and are familiar with at least device driver development for the
operating system you are targeting. Prior to getting this ki t, you should get the
device driver kit from the appropriate operating system vendor.

To order in the U .S. and Canada, call S00-442-7274. To order internation­
ally, call 408-957-7274. Price is US $ 1 50.00 .

M�I.Uj Numerous tables of information appear throughout this chajJler. For conven ience, we
have abbreviated cntain column headings as R/W In cases whn·e R/W appears as a

headin� the entries in that column indicate whether the field is sl'n t to ASP! (W),
returned from ASP! (R), or reserved (-) .

I I . ASPH for DOS Specification

Two steps are involved in order for a driver to make use of ASPI: obtain the
ASPI entry point, and call the ASPI driver. Typically, the entry point is obtained
once, and then ASPI calls are made multiple times within a device driver. ASPI
function calls are used to return data about the ASPI manager, host adapter, and
SCSI devices, but they are mainly used to execute SCSI 1/0 requests. The ASPI
layer is re-entrant and can accept function calls before previous calls have com­
pleted. A call will normally return immediately with zero status, indicating that
the request has been successfully queued. In order to continue program flow
after the function completes , the driver either polls ASPI status or enables the
post bit, which turns control over to a specified routine upon completion of
the ASPI call.

M#ohj When a program makes a call to an ASP! manager, thl' manager uses the caller's stack.

It is therefore necessary for the program to allocate enough stack memmy for itself as well
as the ASP! manager. There is no fixed amount of stack nenled by all ASP! managers; a
programmer needs to be aware of this constraint and test rode with individual managers
for compatibility.

Accessing ASP�

Device drivers wishing to access ASPI must open the driver by performing a
DOS Int 2 l h function call OPEN A FILE as follows :

A Profi le of ASP I Program m i ng 2 0 7

2 0 8 Chapter 1 1

On Entry:

AX = 3DOOh
DS:DX = Pointer to SCSIMGR$, 0

On Return:

AX = File handle if carry flag is not set
Error code if carry flag is set

GeHing the ASPI Entry Point

Device drivers can get the entry point to ASPI by performing a DOS Int 2 l h
function call IOCTL READ as follows:

On Entry:

AX = 4402h
DS:DX = Pointer to data returned (4 bytes)
CX = 4
BX = File handle

On Return:

AX = Nothing
Data returned in DS:DX contains the ASPI entry point:
Byte 0-1 : ASPI Entry Point Offset
Byte 2-3: ASPI Entry Point Segment

Closing ASPI

Device drivers wishing to close ASPI must do it by performing a DOS Int 2 l h
function call CLOSE A FILE as follows:

On Entry:

AH = 3Eh
BX = File handle

On Return:

AX = Error code if carry flag is set
Nothing if carry flag is not set

Calling ASPU
The following is an example of how to call the ASPI manager:

SCS IMgrString

ASPI_E ntry

SRB

start :

ASPI Exit :

NoASPIMa nager :

. MODE L SMA L L

. STACK lOOh

. DATA

db " SCSIMGR$ "

d w 0

db 4 dup (?)

d b 5 8 dup (o)

. CODE

mov ax , @DATA

mov d s , ax

mov ax , 03DOOh

lea dx , SCSIMgrString

int 21h

j c NoASP IManager

push ax

mov bx , ax

mov ax , 4402h

lea dx , ASP I_Entry

mov CX , 4

int 21h

mov a h , 03 E h

pop bx

int 21h

push ds

lea bx , SRB

p u sh bx

lea bx, ASP I_E ntry

call DWORD PTR [bx]

add s p , 4

mov ax , 4COOh

int 21h

ret

jmp ASPI Exit

END

; lOOh byte stack

; NU L L - terminate string

; I nitialize SRB for Host

; Adapter I n q uiry

; I nit DS

; Open ASPI Manager

; Branch if none found

; Save ASPI F ile Handle

; BX = F ile Handle

; Store entry point here

; Four byte s to transfer

; Get ASPI entry point

; BX = ASPI F i le Handle

; Close ASPI Manager

; Pu s h SRB ' s s egment

; Pu s h SRB ' s offset

; Call ASPI

; Restore the s tack

; E xit to DOS

; No ASPI Manager found ! !

; Handle it .

A Profi le of ASPI Programm ing 2 0 9

2 1 0 Chapter 1 1

As shown in the preceding sample code, the SRB's segment is first pushed
onto the stack followed by its offset. ASPI is then called directly.

SCSI Request Block (SRB)

A SCSI request block (SRB) (see Table 1 1 . 1) contains the command to be exe­
cuted by the ASPI manager and is used by both drivers and application programs.
An SRB consists of an SRB header followed by additional fields dependent on
the command code. All request blocks have an 8-byte header.

Table 1 1 . 1 : SCSI Request Bleck

OHset #Bytes

OOh (00) 0 1 h (0 1)

0 1 h (0 1) 0 1 h (0 1)

02h (02) 0 1 h (0 1)

03h (03) 0 1 h (0 1)

04h (04) 04h (04)

Command Codes

Description

Command Code

Status

Host Adapter Number

SCSI Request F lags

Reserved for Expans ion = 0

R/W

w

R

w

w

The Command Code field is used to indicate which of the ASPI services is
being accessed. Refer to Valid ASPI Command Codes in Table 1 1 .2 .

Table 1 1 .2: Valid ASPI Command Cedes

Command Cede Description

OOh Host Adapter I nqu i ry

0 1 h Get Device Type

02h Execute SCSI 1/0 Command

03 h Abort SCSI 1/0 Command

04h Reset SCSI Device

05h Set Host Adapter Parameters

06h Get Disk Drive I nformation

07h-7Fh Reserved for Future Expansion

80h-FFh Reserved for Vendor Un ique

Stati!Js

The Status Byte field is used to post the status of the command. Refer to ASPI
Status Bytes in Table 1 1 .3 .

Host Adcopretr Number

The Host Adapter Number field specifies which installed host adapter the re­
quest is intended for. Host adapter numbers are always assigned by the SCSI
manager layer beginning with zero.

SCSB Request Flags

The SCSI Request Flags field definition is command code-specific.

Reserved lotr /Expansion

The last 4 bytes of the header are reserved and must be zero.

Table 1 1 .3: ASP! Status Bytes

Status Byte Description

OOh SCSI Request in Progress

0 1 h SCSI Request Completed Without Error

02h SCSI Request Aborted by Host

04h SCSI Request Completed With E rror

80h I nva l id SCSI Request

8 l h I nva l id Host Adapter Number

82h SCSI Device Not I nsta l led

AS/PI Command Code = 0: Host Adapter Unqi!Jitry

The status byte (defined in Table 1 1 .3) will always return with a nonzero status.
A SCSI Request Completed Without Error (01 h) status indicates that the remaining
fields are valid. An Invalid Host Adapter Number (8 1h) status indicates that
the specified host adapter is not installed. This function (as shown in Table 1 1 .4)
is used to get information on the installed host adapter hardware, including

A Prof i le of ASPI Programm ing 2 1 1

2 1 2 Chapter 1 1

number of host adapters installed. It can be issued once with host adapter
zero specified to get the number of host adapters. If further information is
desired, it can be issued for each individual host adapter.

The SCSI Request Flags field is currently undefined for this command and
should be zeroed.

Table 1 1 .4: ASPI Command Code = 0: Host Adapter Inquiry

Offset # Bytes Description R/W

OOh (00) 0 1 h (0 1) Command Code = 0 w

0 1 h (0 1) 0 1 h (0 1) Status R

02h (02) 0 1 h (0 1) Host Adapter Number w

03h (03) 0 1 h (0 1) SCSI Request F lags w

04h (04) 04h (04) Reserved for Expansion = 0

08h (08) 0 1 h (0 1) Number of Host Adapters R

09h (09) 0 1 h (0 1) ID of Host Adapter R

OAh (1 0) 1 0h (1 6) SCSI Manager I D R

1 Ah (26) 1 0h (1 6) Host Adapter I D R

2Ah (42) 1 0h (1 6) Host Adapter Un ique Parameters R

The SCSI Manager ID field contains a 1 6-byte ASCII string describing the
SCSI manager.

The Host Adapter ID field contains a 1 6-byte ASCII string describing the
SCSI host adapter.

The definition of the Host Adapter Unique Parameters field is left to imple­
mentation notes specific to a particular host adapter.

ASPI Command Code = J: Get Device Type

This command (defined in Table 1 1 .5) will always return with nonzero status.
A SCSI Request Completed Without Error (01h) status indicates that the

specified device is installed and the peripheral device type field is valid. A
SCSI Device Not Installed Error (82h) indicates that the peripheral device
type field is not valid.

This command is intended for use by various drivers, during initialization,
for identifying the targets that they need to support. A CD-ROM driver, for ex­
ample, can scan each target/LUN on each installed host adapter looking for the
device type corresponding to CD-ROM devices. This eliminates the need for
each driver to duplicate the effort of scanning the SCSI bus for devices.

The peripheral device type is determined by sending a SCSI Inquiry com­
mand to the given target. Refer to any SCSI specification to learn more about
the Inquiry command.

The SCSI Request Flags field is currently undefined for this command
and should be zeroed.

Table 1 1 .5: ASPI Command Code = 1 : Get Device Type

Offset # Bytes Description R/W

OOh (00) 0 1 h (0 1) Command Code = 1 w

0 1 h (0 1) 0 1 h (0 1) Status R

02h (02) 0 1 h (0 1) Host Adapter Number w

03h (03) 0 1 h (0 1) SCSI Request F lags w

04h (04) 04h (04) Reserved for Expansion = 0

08h (08) 0 1 h (0 1) Target ID w

09h (09) 0 1 h (0 1) LUN w

OAh (1 0) 0 1 h (0 1) Peripheral Device Type of T a rget/LU R

ASPI Command Code = 2: Execute SCSI I/O Command

This command (defined in Table 1 1 .6) will usually return with zero status indi­
cating that the request was queued successfully. Command completion can be
determined by polling for nonzero status or through the use of the Post Routine
Address field (discussed later in the section "ASPI Command Posting") . Keep
in mind that if you are going to use polling, interrupts must be enabled.

Table 1 1 .6: ASPI Command Code = 2: Execute SCSI 1/0 Command

Offset # Bytes

OOh (00) 0 1 h (0 1)

0 1 h (0 1) 0 1 h (0 1)

02h (02) 0 1 h (0 1)

03h (03) 0 1 h (0 1)

04h (04) 04h (04)

08h (08) 0 1 h (0 1)

09h (09) 0 1 h (0 1)

OAh (1 0) 04h (04)

Description R/W

Command Code = 2 w

Status R

Host Adapter Number w

SCSI Request F lags w

Reserved for Expansion = 0

Target ID

LUN

Data Allocation Length

w

w

w

A Profi le of ASPI Progra m m i ng 2 1 3

2 1 4 Chapter I I

Offset # Bytes Description R/W

OEh (1 4) 0 1 h (0 1) Sense Al location Length (N) w

OFh (1 5) 02h (02) Data Buffer Pointer (Offset) w

1 1 h (1 7) 02h (02) Data Buffer Pointer (Segment) w

1 3 h (1 9) 02h (02) SRB Li n k Pointer (Offset) w

1 5 h (2 1) 02h (02) SRB Li nk Pointer (Segment) w

1 7h (23) 0 1 h (0 1) SCSI CDB Length (M) w

1 8h (24) 01 h (0 1) Host Adapter Status R

1 9h (25) 0 1 h (0 1) Target Status R

1 Ah (26) 02h (02) Post Routi ne Address (Offset) w

1 Ch (28) 02h (02) Post Routi ne Address (Segment) w

1 Eh (30) 22h (34) Reserved for ASP I Workspace

40h (64) SCSI Command Descriptor Block (CDB) w

40h+M N Sense Al location Area R

The SCSD Request Flags Byte Is Defined As Follows:

7 6 5 4 3 2 0

Rsvd Rsvd Rsvd Di rection Bits Rsvd Li n k Post

The Post bit specifies whether posting is enabled (bit 0 = 1) or disabled
(bit 0 = 0) .

The Link bit specifies whether linking is enabled (bit 1 = 1) or disabled
(bit 1 = 0) .

The Direction bits specify which direction the transfer is:

00 Di rection determ ined by SCSI command . Length not checked .

0 1 Transfer from SCSI ta rget to host. Length checked .

1 0 Transfer from host to SCSI ta rget. Length checked .

1 1 No data transfer .

The Target ID and LUN fields are used to specify the peripheral device involved
in the I/0.

The Data Allocation Length field indicates the number of bytes to be trans­
ferred. If the SCSI command to be executed does not transfer data (i .e . , Rewind,
Start Unit, etc .) the Data Allocation Length must be set to zero .

The Sense Allocation Length field indicates, in bytes, the number of bytes
allocated at the end of the SRB for sense data. A request sense is automatically
generated if a check condition is presented at the end of a SCSI command.

The Data Buffer Pointer field is a pointer to the 1/0 data buffer. You place
the logical address here. ASPI will convert it to the physical address in the case
of a bus master or DMA transfer.

The SRB Link Pointer field is a pointer to the next SRB in a chain. See the
discussion on linking for more information.

The SCSI CDB Length field establishes the length , in bytes, of the SCSI
command descriptor block (CDB) .

The Host Adapter Status field is used to report the host adapter status
as follows :

OOh Host adapter did not detect any error

1 1 h Selection t imeout

1 2 h Data overrun/underrun

1 3 h Unexpected bus free

1 4h Target bus phase sequence fa i l u re

The Target Status field is used to report the target 's SCSI status including:

OOh No target status

02 h Check status (sense data is in sense a l location area)

08h Specified target/lUN is busy

1 8h Reservation confl ict

The Post Routine Address field, if specified, is called when the 1/0 is completed.
See the discussion on posting for more information .

The SCSI command descriptor block (CDB) field contains the CDB as
defined by the target's SCSI command set. The length of the SCSI CDB is
specified in the SCSI Command Length field.

The sense allocation area is filled with sense data on a check condition. The
maximum length of this field is specified in the Sense Allocation Length field.
Note that the target can return fewer than the number of sense bytes requested.

SCSI Command linking with ASP!

ASPI provides the ability to use SCSI linking to guarantee the sequential exe­
cution of several commands. Note that the use of this feature requires the
involved target(s) to support SCSI linking.

To use SCSI linking, a chain of SRBs is built with the SRB link pointer used .
to link the elements together. The link bit should be set in the SCSI request
flags byte of all SRBs except the last in the chain. When a SCSI target returns

A Profile of ASPI Progromming 215

indicating that the linked command is complete, the next SRB is immediately
processed, and the appropriate CDB is dispatched. When using SCSI linking,
make sure that the linking flags in the SCSI CDB agree with the link bit in the
SCSI request flags. Inconsistencies can cause unpredictable results. For example,
setting the CDB up for linking but failing to set the link bit may result in a ran­
dom address being used for the next SRB pointer.

Any error returned from the target on a linked command will break the
chain. Note that if linking without tags is used, as defined in SCSI, posting may
not occur on any elements in the chain until the chain is complete. If you have
the post bit set in each SRB's SCSI request flags byte, then each SRB's post
routine will be called .

.all It is strongly recommended that you do not use SCSI linking. There are many SCSI targets,

as well as SCSI host adapters, which do not handle SCSI linking and will not work with

your ASP! module.

2 1 6 Chapter 1 1

ASPI Command Posting

To use posting, the post bit must be set in the SCSI request flags. Posting refers
to the SCSI manager making a FAR call to a post routine as specified in the SRB.
The post routine is called to indicate that the SRB is complete. The specific SRB
completed is indicated by a 4-byte SRB pointer on the stack. It is assumed that
all registers are preserved by the post routine.

The ASPI manager will first push the completed SRB's 2-byte segment
onto the stack followed by its 2-byte offset. The following is a sample ASPI post
handler:

ASP! Post

ASP! Post

proc far

push bp

mov bp , s p

push a

· push d s

push es

mov bx , [bp+6]

mov es , [bp+S]

pop es

pop ds

pop a

pop bp

retf

endp

; Save all registers

; BX = SRBs offset

; E S = SRBs segment

; E S : BX points to SRB

; Restore a l l registers

; and return to ASP!

When your post routine is first entered, the stack will look as follows :

Top of Stack [SP+O] ->

[SP+2] ->

[SP+4] ->

[SP+6] ->

Return · Address (Offset)

Return Address (Segment)

SRB Pointer (Offset)

SRB Poin ter (Segment)

You may issue any ASPI command from within your post routine except for an
Abort command. Your post routine should get in and out as quickly as possible.

Posting can be used by device drivers and terminate and stay resident (TSR)
programs, which need to operate in an interrupt-driven fashion.

ASPI Command Code = 3: Abort SCSI I/O Command

This command (defined in Table 1 1 . 7) is used to request that an SRB be
aborted. It should be issued on any I/0 request that has not completed if
the driver wishes to timeout on that request. Success of the Abort command
is never assured.

Table 1 1 .7: ASPI Command Code = 3: Abort SCSI 1/0 Command

Offset # Bytes Description R/W

OOh (00) 0 1 h (0 1) Command Code = 3 w

0 1 h (0 1) 0 1 h (0 1) Status R

02h (02) 01 h (0 1) Host Adapter Number w

03h (03) 0 1 h (0 1) SCSI Request F lags w

04h (04) 04h (04) Reserved for Expansion = 0

08h (08) 02h (02) SRB Poin ter to Abort (Offset) w

OAh (1 0) 02 h (1 2) SRB Pointer to Abort (Segment) w

This command always returns with SCSI Request Completed Without Error, but
the actual failure or success of the abort operation is indicated by the status
eventually returned in the SRB specified.

The SCSI Request Flags field is currently undefined for this command and
should be zeroed.

A Profi le of ASPI Programm ing 2 1 7

The SRB Pointer to Abort field contains a pointer to the SRB that is to
be aborted.

M§I.Jij An Abort command should not be issued during a post routine.

2 1 8 Chapter 1 1

ASJPI6 C:cmmcmd Code = 4: Reset SCSI Device

This command (defined in Table 1 1 .8) is used to reset a specific SCSI target.
Note that the structure passed is nearly identical to the execute SCSI I/0 SRB
except that some of the fields are not used.

This command usually returns with zero status indicating that the request
was queued successfully. Command completion can be determined by polling
for nonzero status or through the use of posting.

Table TI l .8: ASPI Command Code = 4: Reset SCSI Device

Offset # Bytes Description R/W

OOh (00) 0 1 h (0 1) Command Code = 4 w

0 1 h (0 1) 0 1 h (0 1) Status R

02h (02) 0 1 h (0 1) Host Adapter Number w

03h (03) 01 h (0 1) SCSI Request F lags w

04h (04) 04h (04) Reserved for Expansion = 0

08h (08) 0 1 h (0 1) Target ID w

09h (09) 0 1 h (0 1) LUN w

OAh (1 0) OEh (1 4) Reserved

1 8h (24) 0 1 h (0 1) Host Adapter Status R

1 9h (25) 0 1 h (0 1) Target' Status R

1 Ah (26) 02h (02) Post Rout ine Address (Offset) w

1 Ch (28) 02h (02) Post Routi ne Address (Segment) w

1 Eh (30) 02h (02) Reserved for ASP! Workspace

il'he SCSH Request Flags Byte Is Defined As Follows:

7 6 5 4 3 2 0

Rsvd Post

The Post bit specifies whether posting is enabled (bit 0 = 1) or disabled
(bit 0 = 0) .

ASPI Command Code = 5: Set Host Adapter Parameters

The definition of the host adapter unique parameters (shown in Table 1 1 .9)
is left to implementation notes specific to a particular host adapter.

Table 1 1 .9: ASPI Command Code = 5: Set Host Adapter Parameters

Offset # Bytes Description R!W

OOh (00) 20 1 h (0 1) Command Code = 5 w

0 1 h (0 1) 0 1 h (0 1) Status R

02h (02) 0 1 h (0 1) Host Adapter Number w

03h (03) 0 1 h (0 1) SCSI Request F lags w

04h (04) 04h (04) Reserved for Expansion = 0

08h (08) 1 0h (1 6) Host Adapter Un ique Parameters w

ASPI managers that support this command code always return with a status
of SCSI Request Completed Without Error (0 1h) . ASPI managers that do
not support this command code always return with a status of Invalid SCSI
Request (SOh) .

AS/PI Ccmmand Code = 6: Get Disk Drive Information

This command (defined in Table 1 1 . 1 0) is intended for use by SCSI disk drivers
that need to determine which disk drives are already being controlled by some
BIOS/DOS and which disk drives are available for use by the disk driver. It also
provides a means to determine which drives are not under control of the BIOS/
DOS yet are still accessible via Int 1 3h. This is useful because many disk caching
utilities will cache Int 1 3h requests but not any disk driver requests. There are
also some disk utility programs that will allow the user to access physical sectors
on a disk via Int 1 3h .

Table 1 1 . 1 0: ASPI Command Code = 6: Get Disk Drive Information

Offset # Bytes Description

OOh (00) 0 1 h (0 1) Command Code = 6

0 1 h (0 1) 0 1 h (0 1) Status

02h (02) O l h (0 1) Host Adapter Number

R/W

w

R

w

A Profi le of ASPI Prog ramm i ng 2 1 9

2 2 0 Chapter 1 1

Offset # Bytes Description R/W

03 h (03) 0 1 h (0 1) SCSI Request F lags w

04h (04) 04h (04) Reserved for Expansion = 0

08h (08) 0 1 h (0 1) Target ID w

09h (09) 0 1 h (0 1) LU N w

OAh (1 0) 0 1 h (0 1) Drive F lags R

OBh (1 1) 0 1 h (0 1) ln t 1 3 h Drive R

OCh (1 2) 0 1 h (0 1) Preferred Head Trans lation R

ODh (1 3) 0 1 h (0 1) Preferred Sector Trans lation R

OEh (1 4) OAh (1 0) Reserved for Expansion = 0

The SCSI Requests Flags field is currently undefined for this command and
should be zero.

The Drive Flags Byte Is Defined As Follows:

7 6 5 4 3 2 0

Rsvd Rsvd Rsvd Rsvd Rsvd Rsvd lnt 1 3 I n fo

All reseroed (Rmd) bits will retunz zeroed.

The Int 1 3 Info bits return information pertaining to the Int 1 3h drive field:

00 The g iven drive (HA #/target/LUN) is not access ib le via lnt 1 3 h . I f you wish to

read/write to th is d rive, you wi l l need to send ASPI read/write requests to the

drive . The lnt 1 3 h Drive field is inva l id .

0 1 The g iven drive (HA #/target/LUN) i s accessible via l n t 1 3 h . The lnt 1 3 h Drive f ield

conta ins the drive's l n t 1 3 h drive number. Th is d rive is under the control of DOS .

1 0 The g iven drive (HA #/target/LUN) is accessible via ln t 1 3 h . The ln t 1 3 h Drive f ield
conta i ns the drive's ln t 1 3 h drive number. Th i s d rive is not under control of DOS

and can be used , for example, by a SCSI disk d river.

1 1 Inva l i d .

The Int 1 3h Drive field returns the Int 1 3 drive number for the given host
adap-ter number, target ID, and LUN. Valid Int 13 drive numbers range for
00-FFh. The Preferred Head Translation field indicates the given host adapter's!
disk drive's preferred head translation method. A typical value will be 64 heads.
The Preferred Sector Translation field indicates the given host adapter's! disk
drive 's preferred sector translation method. A typical value will be 32 sectors
per track.

ASPI for DOS Yncller Windows 3ox
Windows is a graphical user interface that runs under DOS, but writing a device
driver or application capable of making ASPI calls in a Windows environment is
not as simple as in the strictly DOS case. The problem is that ASPI for DOS uses
a real mode interface and Windows uses the DOS protected mode interface
(DPMI) . ASPI expects a real mode segment and offset for the SRB and the
entry point of ASPI, while Windows uses a selector and offset to address data
and code. To program correctly in this environment, a consortium of companies
(including Microsoft and Intel) have written the DOS Protected Mode Inter­
face Specification. The details are too complex to go into detail here, but a copy
should be obtained from the DPMI committee for programming purposes . Two
steps need to be followed to access ASPI for DOS from a Windows application:

1 . Allocate all SRBs and buffers down in real mode memory. This can be
accomplished using Windows' Globa!DosAlloc routine or using DPMI
interrupt 3 1h , function 1 00h. This allows the ASPI module and manager
to locate the SRB and data buffers using segments and offsets.

2. Call the real mode procedure with Far Return Frame Function (interrupt
3 1 h , function 030 1 h) . This makes it possible to call the ASPI manager,
which is a real mode procedure .

I l l . ASPI for Windows Specification

ASPI for Windows is implemented as a dynamic link library (DLL) . The name
of this file is called winaspi .dll. ASPI function calls (shown in Table 1 1 . 1 1) are
used to return information about the ASPI manager, host adapter, and SCSI
devices, but they are mainly used to execute SCSI 1/0 requests. The ASPI for
Windows layer is fully multitasking and can accept function calls before previ­
ous calls have completed. There are two functions that need to be imported
from winaspi.dll into your Windows application.

Table 1 1 . 1 1 : Description of ASPI for Windows Functions

Function

GetASPISupportl nfo

SendASPICommand

Description

This function retu rns the number of host adapters i nsta l led and
other miscel la neous in formation . You shou ld ca l l th is function

to make sure that ASPI is properly i n i tia l ized before ca l l i ng

the SendASPICommand function .

This function a l lows you to send an ASPI for Windows
command. All of your SRBs and data buffers must be in
locked memory before bei ng passed to ASP I .

A Profi le o f ASPI Programm ing 2 2 1

2 2 2 Chapter 1 1

ASPB Managers for Windows

It is not the intent of this specification to define the protocol between winaspi.dll
and any DOS ASPI managers that may be loaded. There are many reasons for
this, including the following:

• Some hardware companies may decide to write an ASPI for Windows
manager without concurrent ASPI for DOS support.

a Some may decide to have winaspi.dll communicate with a Windows 386
enhanced mode virtual device driver (VxD) .

" Some may decide to only support Windows 3 . 1 , which may or may not
have improved hardware support.

It is also not the intent of this specification to define which modes of Windows
need to be supported. We anticipate that most hardware companies will sup­
port ASPI for Windows in standard and 386 enhanced modes, and forego real
mode support.

GetASPISupportlnfo

WORD GetASPISupportlnfo(VOID)
The GetASPISupportlnfo function returns the number of host adapters installed
and other miscellaneous information. It is recommended that this function be
called first before issuing an ASPI command to ensure ASPI has been properly
initialized. This function call does not perform any initialization itself, but rather
confirms that everything is ready for processing.

This function has no parameters.

Retums

The return value specifies the outcome of the function. The LOBYTE returns
the number of host adapters installed if the HIBYTE value equals SS_COMP.
The HIBYTE returns whether ASPI for Windows is ready to accept ASPI
commands. Refer to the sample code. The HIBYTE is defined as shown in
Table 1 1 . 1 2 .

Table 1 1 . 1 2: IHIIBYTE Return Values for GetASPISupportlnfo

Value

SS_COMP

SS_OLD_MANAGER

Meaning

SCSI/ ASP I request has completed without error.

One or more ASPI for DOS managers ore loaded that do not
support ASPI for Windows .

Value

SS_ILLEGAL_MODE

SS_NO_ASPI

SS_FAILED_I NIT

Example

Meaning

This ASPI manager does not support th is mode of Windows.

You wi l l typica l ly see th is error code when runn ing Windows

i n real mode.

No ASPI managers ore loaded . This i s typical ly caused by a
DOS ASPI manager not being resident in memory.

For some reason , other than SS_OLD_MANAGER,

SS_ILLEGAL_MODE, or SS_NO_ASP I , ASP I for Windows

could not properly i n itia l ize itself . Th is may be caused by a

lock of system resources.

The following example returns the current status of ASP! for Windows:

WORD A S P I S t at u s ;

BYT E NumAdapters ;

HWND hwnd ;

ASP I St a t u s = GetAS P I Support i n fo () ;

s w i t c h (H I BYT E (AS P I Stat u s)

c a s e SS_COMP :

I / A S P I for W i ndows is properly i n i t i a l i zed

NumAdapters = LOBYT E (AS P I St at u s) ;

brea k ;

c a s e S S NO AS P I :

Mes sageBox (hwn d , " No ASPI managers were found ! ! " , NUL L , MB _ I CONS TOP) ;

ret urn o ;
c a s e SS I L L EGAL MODE : - -

Mes s ageBox (hwn d , " A S P I for Windows does not s u pport t h i s mode ! ! " , NUL L , MB ICONSTOP) ;

ret u r n o ;
c a s e SS_OLD_MANAG E R :

Me s s ageBox (hwn d , "An ASPI manager wh i c h does not s u pport W i ndows i s r e s i d e nt ! ! " ,

NUL L , MB_ICONSTOP) ;

return o ;
default :

Me s s ageBox (hwn d , " A S P I for Wi ndows is not i n i t ia l i z ed ! ! " ,

N U L L , MB_ICONSTOP) ;

ret u r n o ;

A Profi le of ASPI Program m ing 225

224 Chapter 1 1

SendASPICommand-SC_HA_INQUIRY

WORD SendASPICommand(lpSRB)

LPSRB lpSRB;

The SendASPICommand function with command code SC_HA_INQUIRY
(defined in Table 1 1 . 1 3) is used to get information on the installed host
adapter hardware, including the number of host adapters installed.

Parameter Description

lpSRB Points to the following SCSI request block:

typedef struct

{
BYTE SRB_Cmd ;

BYTE SRB_Statu s ;

BYTE SRB_Ha i d ;

BYTE SRB_F lags ;

DWORD SR B_Hdr_Rsvd ;

BYTE HA_Count ;

BYTE HA_SCSI_ID;

I I ASP I command code = SC_HA_INQUI RY

I I ASP I command status byte

II ASP I host adapter number

I I ASP I request flags

I I Reserved , MUST = 0

II Number of host adapters present

I I SCSI ID of host adapter

I I String describing the manager BYTE HA_Managerid [16] ;

BYTE HA_Identifier [16] ;

BYTE HA_Unique [16] ;

II String describing the host adapter ­

II Host Adapter Unique parameters

} SRB_HAi nquiry ;

Table 1 1 . 1 3: SRB_HAinquiry Structure Definition

Member

SRB_Cmd

SRB_Status

SRB_Ha ld

SRB_Fiags

SRB_Hdr_Rsvd

Description

This field must conta in SC_HA_INQU I RY .

On return, th i s field wi l l be the same
.
a s the return

status defined below.

This field specifies which i nsta l led host adapter the

request is i ntended for. Host adapter numbers are
a lways assigned by the SCSI manager layer beg in­
ning with zero.

The SRB F lags field is currently reserved for th i s function

and must be zeroed before passed to the ASPI manager .

This DWORD f ie ld is currently reserved for th is function
and must be zeroed before passed to the ASP I manager .

R/W

w

R

w

w

Member

HA_Count

HA_SCSI_ID

Description

The ASPI manager wi l l set th is f ield with the number of

host adapters insta l led under ASP I . For example, a

return va lue of 2 ind icates that host adapters #0 and

#1 a re va l i d . To determine the tota l number of host

adapters i n the system, the SRB_Hald field shou ld be

set to zero, or GetASPISupportl nfo can be used .

The ASPI manager wi l l set th is fie ld with the SCSI ID of

the g iven host adapter .

R./W

R

R

HA_Managerl d [. .] The ASPI manager wi l l fi l l th i s 1 6-character buffer with R

HA_Identif ier(. .]

HA_Un ique(. .]

Returns

an ASCI I str ing descr ib ing the ASPI manager .

The ASPI manager wi l l fi l l th is 1 6-cha racter buffer with

an ASC I I str ing describ ing the SCSI host adapter.

The ASPI manager wi l l fi l l th is 1 6-byte buffer with host

adapter un ique parameters . The defi n i tion i s left to impl­

ementation notes specific to a particu lar host adapter .

R

R

The return value specifies the outcome of the function. One of the values
shown in Table 1 1 . 1 4 will be returned by ASPI for Windows.

Table 1 1 . 1 4: Values Returned by ASPI for Windows

Value

SS_COMP

SS_INVALID_HA

SS_I NVALID_SRB

Example

Meaning

SCSI/ ASPI request has completed without error

Inva l id host adapter number

The SCSI request block (SRB) has one or more parameters

set i ncorrectly

The following example retrieves host adapter hardware information from
adapter #O:

S R B_HA!nqu i ry MyS R B ;

WORD ASP I_St at u s ;

MySR B . S R B_Cmd = SC_HA_INQU I RY ;

A Profi le o f ASPI Prog ram m i ng 2 2 5

MyS R B . S RB_Ha l d � o ;
MySRB . S R B_F lags � o ;
MySRB . SR B_Hd r_R svd � 0 ;

A S P I S tatu s � SendASPICommand ((L P S R B) &MySRB) ;

Sem:IIASPOC@mmand-SC_ GET _DEV _TYPE

WORD SendASPICommand(lpSRB)
LPSRB lpSRB;

The SendASPICommand function with command code SC_GET_DEV_TYPE
(defined in Table 1 1 . 1 5) is intended for use by Windows applications for iden­
tifYing the targets they need to support. For example, a Windows tape backup
package can scan each target/LUN on each installed host adapter looking for
the device type corresponding to sequential access devices. This eliminates the
need for each Windows application to duplicate the effort of scanning the SCSI
bus for devices.

M}i.UJ Rather than use this command, some Windows applications may favor scanning the

SCSI bus themselves in case a SCSI device was not present during ASP! initialization

but was rather flowered up after ASP! initialization.

2 2 6 Chapter l l

Parameter Description

lpSRB Points to the following SCSI request block:

typedef struct

{
BYTE S R B_Cmd ;

BYTE S R B_Stat u s ;

BYTE S R B_Ha i d ;

BYTE S R BJlags ;

DWORD SRB_Hdr_R svd ;

BYT E S R B_Ta rget ;

BYTE SRB_Lun ;

BYT E S R B_DeviceType ;

S RB_GDEVBloc k ;

!Retums

II ASPI command code � SC G E T DEV TYP E - - -

I I ASPI c ommand s t a t u s byte

I I ASP I host adapter number

I I ASP I request flags

I I Reserved , MUST � 0

II Target ' s S CS I I D

I I Target ' s L U N number

I I Target ' s per ipheral dev i c e type

The return value specifies the outcome of the function. One of the values
shown in Table 1 1 . 1 6 will be returned by ASPI for Windows.

Table 1 1 . 1 5: SRB_GDEVBiock Structure Definition

Member

SRB_Cmd

SRB_Status

SRB_Ha ld

SRB_Fiags

SRB_Hdr_Rsvd

Description

This field must conta i n SC_GET_DEV _TYPE .

On return, th is field wi l l be the same as the
retu rn status defi ned below.

Th is field specifies wh ich insta l led host adapter

the request is in tended for . Host adapter numbers

are a lways assigned by the SCSI manager layer

beg i nn i ng with zero .

The SRB F lags field is currently reserved for th i s

function and mus t be zeroed before passed to

the ASPI manager.

Th is DWORD fie ld i s currently reserved for th i s

function and must be zeroed before passed to

the ASPI manager.

R/W

w

R

w

w

SRB_Target Target ID of device. W

SRB_Lun Log ica l un it number (LUN) of device. W

SRB_DeviceType The ASPI manager wi l l fi l l th is f ield with the peri- R

phera l device type. Refer to any SCSI specification
to learn more about the SCSI I nqu i ry command .

Table 1 1 . 1 6: Return Values for SendASPI Command SC_GET_DEV_TYPE

Value

SS_COMP

SS_INVALID_HA

SS_NO_DEVICE

SS_INVALID_SRB

Example

Meaning

SCSI/ AS PI request has completed without error.

Inva l id host adapter number.

SCSI device not i nsta l led .

The SCSI request block (SRB) has one or more parameters

set incorrectly.

The following example retrieves the peripheral device type from host adapter
#0, target ID #4, and LUN #0.

A Profi le of ASPI Programm ing 2 2 7

2 2 8 Chapter 1 1

S RB_GDEVBloc k ' MySR B ;

WORD ASPI_St a tu s ;

MySRB . SR B_Cmd = SC_GET_DEV_TYP E ;

MyS R B . S RB_Ha l d = 0 ;

MySR B . S RB_F lags = 0 ;

MySR B . SR B_Hdr_R svd = 0 ;

MySR B . SR B_Ta rget = 4 ;

MyS R B . S R B_ L u n = 0 ;

ASP I Statu s = SendASP ICommand ((L P S R B) &MySRB) ;

! * * * * * ******************************** * * * * * * * * * * * * * * !
I * I f ASP I_Sta t u s == SS_COMP , MySRB . SR B_DeviceType * /
/* wil l conta i n t he peripheral device type . * /
! * * * * * * ** * * * * * * * * * ****************** * * * * * * * * * * * * * * * *!

SendASPICommand-SC_EXEC_SCSI_ CMD

WORD Send.ASPICommand(lpSRB)

LPSRB lpSRB;

The SendASPICommand function with command code SC_EXEC_SCSI_CMD
(defined in Table 1 1 . 1 7) is used to execute a SCSI command, for example, send
a SCSI Test Unit Ready command to a tape drive, etc.

Returns

The return value specifies the outcome of the function. One of the values
shown in Table 1 1 . 1 8 will be returned by ASPI for Windows.

Table 1 1 . 1 7: ExecSCSICmd Structure Definition

Member

SRB_Cmd

SRB_Status

Description

This field must conta in SC_EXEC_SCSI_CMD.

On return, th is field wi l l be the same as the return status defi ned
below.

R/W

w

R

Member

SRB_Ha ld

SRB_F iags

SRB_Hdr_Rsvd

SRB_Target

SRB_Lun

SRB_Buflen

SRB_SenseLen

SRB_BufPoi nter

SRB_CDBLen

Description R/W

This field specifies which i nsta l led host adapter the request is i n- w
tended for. Host adapter n umbers are a lways ass igned by the
SCSI manager layer beg inn i ng with zero .

The SRB F lags field is defined as fol lows : w

Value Meaning

SRB_D IR_SCSI D i rection determined by SCSI command .

Length not checked .

SRB_DI R_IN Transfer from SCSI ta rget to host. Length

checked .

SRB_DI R_OUT Transfer from host to SCSI ta rget. Length

checked .

SRB_POSTI NG I f th i s va lue i s ORed in with one of the pre-
vious three values, posti ng wi l l be enabled .
Refer to the section on ASPI posti ng .

Th i s DWORD field i s currently reserved for th i s function and must

be zeroed before passed to the ASPI manager.

Target ID of device . w

Log ical un i t number (LUN) of device. w

This field ind icates the number of bytes to be transferred . If the w
SCSI command to be executed does not transfer data (i . e . , est

Un it Ready, Rewind, etc .) , th i s fie ld must be set to zero .

This field ind icates the number of bytes a l located at the end of the w
SRB for sense data . A request sense is automatical ly generated i f

a check condition i s presented at the end of a SCSI command .

Th is fie ld is a pointer to the data buffer . w

Th is fie ld estab l i shes the length , in bytes, of the SCSI command w
descri ptor block (CDB) . Th is va lue wi l l typica l ly be 6 or 1 0 .

A Profi le of ASPI Programm ing 2 2 9

Member Description

SRB_HaStat Upon completion of the SCSI command, the ASPI manager w i l l

set th i s field with the host adapter status as fol lows :

Value Meaning

HASTAT_OK Host adapter d id not detect an error

HASTAT_SEl_TO Selection timeout

HASTAT_DO_DU Data overrun/underrun

HASTAT_BUS_FREE Unexpected bus free

HAST AT _PHASE_ERR Target bus phase sequence fa i l u re

SRB_TargStat Upon completion of the SCSI command, the ASPI manager wi l l

set th i s fie ld with the target status as fol lows :

Value Meaning

STATUS_ GOOD No target status

STATUS_CHKCOND Check status (sense data is i n Sense Area)

STATUS_BUSY Specified target/lUN i s busy

STATUS_RESCONF Reservation confl ict

SRB_PostProc If posti ng is enabled, ASPI for Windows wi l l post completion of

an ASPI request to this function pointer. Refer to the section on
ASPI Posti ng .

CDBByte[. .] Th is field conta ins the CDB as defi ned by the target's SCSI

command set . The length of the SCSI CDB is specified i n the

SRB_CDBlen fie ld .

SenseArea [. .] The SenseArea is fi l led with the sense data on a check con-

d ition . The maximum length of th i s fie ld i s specified in the
SRB_Senselen field . Note that the target can retu rn fewer
than the number of sense bytes requested .

.alii You can easily create a new structure for nonstandard CDB lengths.

250 Chapter 1 1

R!W

R

w

w

R

Parameter Description

lpSRB Points to one of the following SCSI request blocks:

typedef s truct

{
BYTE SRB_Cmd ;

BYTE SRB_Statu s ;

BYTE SRB_Ha i d ;

BYTE SRB_F lags ;

DWORD SRB_Hdr_Rsvd ;

BYTE SRB_Target ;

BYTE SRB_Lu n ;

DWORD SRB_Buflen ;

BYTE SRB_SenseLen ;

BYTE far *SRB_BufPointer;

DWORD SRB_Rsvd l ;

BYTE SRB_CDB Len ;

BYTE SRB_HaSta t ;

BYTE SRB_TargStat ;

FARPROC SRB_PostProc ;

BYTE S RB_Rsvd 2 [34] ;

BYTE CDBByte [6] ;

BYTE SenseArea6 [S E NS E_LE N] ;

} SRB_ExecSCSICmd 6 ;

typedef struct

{
BYTE SRB_Cmd ;

BYTE S RB_Status ;

BYTE SRB_Ha i d ;

BYTE S RB_Flags ;

DWORD SRB_Hdr_Rsvd ;

BYTE SRB_Target ;

BYTE SRB_Lun ;

DWORD SRB_Buflen ;

BYTE SRB_Senselen ;

BYTE far *SRB_BufPointer;

DWORD SRB_Rsvd l ;

BYTE SRB_CDBLen ;

BYTE SRB_HaSta t ;

BYTE SRB_TargStat ;

FARPROC SRB_PostProc ;

I I Struct ure for 6 - byte COBs

I I ASPI command code = SC EXEC SCSI CMD
- - -

II ASPI command status byte

II ASPI host ada pter n umber

I I ASPI request flags

I I Reserved , MUST = 0

II Target ' s SCSI I D

I I Target ' s LUN n umber

II Data Allocat ion LengthPG

I I Sense Al location Length

II Data Buffer Pointer

I I Reserved , MUST = o
I I COB Length = 6

I I Host Adapter Status

I I Target Stat u s

I I Post routine

I I Reserved , MUST = 0

I I SCSI COB

II Request Sense buffer

II Structure for 10- byte COBs

I I ASP I command code = SC EXEC SCSI CMD
- - -

I I ASP I command status byte

I I ASPI host adapter n umber

I I ASP I request flags

I I Reserved , MUST = 0

II Target ' s SCS I I D

I I Target ' s L U N n umber

I I Data Allocation Length

I I Sense Allocation Length

I I Data Buffer Pointer

I I Reserved , MUST = 0

II COB Length = 10

I I Host Adapter Statu s

I I Target Status

I I Post routine

A Profi le of ASPI Progra m m ing 2 3 1

2 3 2 Chapter 1 1

BYTE S RB_Rsvd 2 [34] ;

BYT E CDBByte [10] ;

BYTE SenseArea lO [S E N S E L E N] ;

S R B_ExecSC S I Cmd lO ;

I I Reserved , MUST = 0

I I SCS I COB

I I Request Sense buffer

Table 1 1 . 1 8: Return Values for SendASPI Command SC_EXEC_SCSI_CMD

Value

SS_PENDING

SS_COMP

SS_ABORTED

SS_ERR

SS_I NVALID_SRB

SS_ASPI_IS_BUSY

Meaning

SCSI request i s i n progress .

SCSI/ ASPI request has completed without error.

SCSI command has been aborted .

SCSI command has completed wi th a n error.

SCSI request block (SRB) has one or more parameters set i ncorrectly.

ASPI manager cannot handle the request at th i s time. Th is error wi l l

genera l ly occur i f the ASP I manager i s a l ready us ing up a l l o f i ts

resources to execute other requests . You should try resend ing the

command later.

SS_BUFFER_TO_BIG ASPI manager cannot handle the g iven transfer size. P lease refer to

the "Miscel laneous" section for more i n formation .

/Example

The following example sends a SCSI Inquiry command to host adapter #0,
target #0, and LUN #0:

S R B_Exec SCS ICmd6 MyS R B ;

c h a r I nq u i ryBuffer [3 2] ;

FARPROC lpfnPostProcedure ;

l pfnPo s t P rocedure = MakeProc i n stance (Po s t Procedure , h i n s t a n ce) ;

MySR B . SR B_Cmd = SC_EXEC_SCS I_CMD ;

MySR B . S R B_Ha i d = 0 ;

MySR B . S R B_F lags = SRB_DI R_SCS I SR B_POST I NG ;

MySRB . SR B_Hd r_Rsvd = o ;
MySR B . S R B_Ta rget = 0 ;

MySR B . S R B_L u n = o ;
MySRB . SR B_BufLen = 3 2 ;

MySR B . SR B_Sense Len = S E N S E L E N ;

MySR B . S R B_BufPo inter = I nq u i ryBuffer ;

MySR B . S R B_CDB Len = 6 ;

MySRB . SR B_PostProc = lpfnPostProced u re ;

MyS R B . CDBByte [O] = SCSI_INQU I RY ;

MySR B . CDBByte [1] = 0 ;

MyS R B . CDBByte [2] = o ;
MyS R B . CDBByte [3] o ;
MyS R B . CDBByt e [4] 3 2 ;

MySR B . CDBByte [S] o ;

/ ** * * * * * � * * * * * * * * * * * * * * * * * * * !
! * Ma ke s ure a l l o t h e r reserved f i e l d s are z e roed * /
! * before p a s s ing t h e S R B to ASP I for Windows * /
! * * * * * * * * * * * * * * * * * ** !

SendASP IComma nd ((L P S R B) &MySRB) ;

SendASPICommand�SC_ABORT_SRB

WORD SendASPICommand(lpSRB)
LPSRB lpSRB;

The SendASPICommand function with command code SC_ABORT_SRB
(defined in Table 1 1 . 1 9) is used to request that an SRB be aborted. It should
be issued on any 1/0 request that has not completed if the application wishes
to timeout on that request. Success of the Abort command is never ensured.

Table 1 1 . 1 9: SRB_Abort Structure Definition

Member

SRB_Cmd

SRB_Status

SRB_Ha ld

SRB_F iags

Description

This fie ld must conta i n SC_ABORT_SRB .

On return .

Th is fie ld specifies which insta l led host adapter the request i s i n­

tended for. Host adapter numbers are a lways ass igned by the
SCSI manager layer beg inn i ng with zero .

The SRB f lags field is cu rrently reserved for th is function and must
be zeroed before passed to the ASPI manager.

SRB_Hdr_Rsvd This DWORD fie ld is currently reserved for th i s function and must

be zeroed before passed to the ASPI manager.

SRB_ToAbort This field conta ins a pointer to the SRB that is to be aborted . The
actual fa i l u re or success of the abort operation i s i nd icated by the
status eventua l ly retu rned in th i s SRB .

R/W

w

R

w

w

w

A Prof i le of ASPI Programm ing 2 3 3

234 Chapter 1 1

Parameter Description

lpSRB Points to the following SCSI request block:

typedef struct

{
BYTE S R B_Cmd ;

BYTE SR B_Statu s ;

BYTE S RB_Ha i d ;

BYT E S R B_F lags ;

DWORD S RB_Hdr_R svd ;

L P S R B S RB_ToAbort ;

S R B_Abort ;

Returns

II ASPI command code = SC ABORT S R B

II ASP I command status byte

I I ASPI host a d apter number

I I ASP I request flags

II Reserved , MUST = 0
II Pointer to S R B to a bort

The return value specifies the outcome of the function. One of the values
shown in Table 1 1 .20 will be returned by ASPI for Windows.

Table 1 1 .20: Return Values for SendASPICommand SC_ABORT_SRB

Value Meaning

SS_COMP SCSI/ AS PI request has completed without error.

SS_INVALID_HA I nva l id host adapter number.

SS_INVALID_SRB SCSI request block (SRB) has one or more parameters set i ncorrectly.

Example

The following example shows how to abort a stuck SCSI 1/0:

S R B_ExecSCS ICmd6 StuckS R B ;

S R B_Abort Abort S R B ;

WORD ASP I_Stat u s ;

Abort S R B . S R B Cmd = SC_ABORT_SR B ;

AbortSR B . S R B_Ha id = o ;
AbortS R B . S RB_Flags = o ;
AbortS R B . SR B_Hdr_Rsvd = 0 ;
Abort S R B . SR B_ToAbort = (LP S R B) &StuckSR B ;

A S P I Status = SendAS P ICommand ((L P S R B) &AbortS R B) ;

wh i l e (St u c k SR B . S RB_Stat u s = = SS_P E NDING) ;

/ * * * * * * * * * * * * * * * * * ** * * * * * * * * * * �* * * * * * * * * * * ** * * * * * * x /

! * Th i s sample c o d e h a s no error h a nd l i ng , t ime- ' I

! * o u t code , n o r does it free u p t h e proces sor . ' /

! * Your a p p l i c at ion s hould be more robust . · ;
/ * * * * * * * * * * * ** * * * * * * * * * * * * * * * ** * ** * * * * * * � * * * * * * * * * * /

SendASPICommand-SC_RESIE'Ii' _DIEV

WORD SendASPICommand(lpSRB)
LPSRB lpSRB;

The SendASPICommand function with command code SC_RESET_DEV
(defined in Table 1 1 .21) is used to send a SCSI bus device reset to the speci­
fied target.

Table 1 1 .2 1 : SRB_BusDeviceReset Structure Definition

Member

SRB_Cmd

SRB_Status

SRB_Ha ld

SRB_Fiags

SRB_Hdr_Rsvd

SRB_Target

SRB_Lun

SRB_HaStat

Description R/W

This field must conta in SC_RESET_DEV. w

On return, th i s field wi l l be the same as the retu rn status defi ned R

below.

This f ield specifies which insta l led host adapter the request is in· w
tended for. Host adapter numbers are a lways ass igned by the

SCSI manager layer beg i nn i ng with zero.

The SRB Flags field is cu rrently reserved for th i s function and must w
be zeroed before passed to the ASPI manager .

Th is DWORD f ie ld is cu rrently reserved for th i s function and must
be zeroed before passed to the ASPI manager .

Target ID of device. w

Log ical un i t number (LUN) of device. Th is f ield is ignored by ASPI w
for Windows si nce SCSI bus device resets a re done on a per tar-
get basis only.

Upon completion of the SCSI command, the ASPI manager wi l l R

set th i s field with the host adapter status as fol lows :

A Profi le of ASPI Program m ing 235

2 3 6 Chapter 1 1

Member Description

Value Meaning

HASTAT_OK Host adapter d id not detect an error

HASTAT_SEL_TO Selection timeout

HAST AT _DO _DU Data overrun/ underrun

HASTAT_BUS_FREE Unexpected bus free

HASTAT_PHASE_ERR Target bus phase sequence fa i lure

R/W

SRB_Ta rgStat Upon completion of the SCSI command, the ASPI manager w i l l R
set th i s fie ld with the target status as fol lows :

Value Meaning

STATUS_ GOOD No target status

STATUS_CHKCOND Check status (sense data i s i n SenseArea)

STATUS_BUSY Specified ta rget/LUN is busy

STATUS_RESCONF Reservation confl ict

SRB_PostProc If posti ng is enabled, ASPI for Windows wi l l post completion of W

an ASPI request to this function pointer. Refer to the section on

ASPI Posti ng .

Description Parameter

lpSRB Points to the following SCSI request block:

typedef struct

{
BYT E S R B _ Cmd ;

BYT E S R B_St a t u s ;

BYTE S R B_Ha i d ;

BYT E S R B _ F lags ;

DWORD SR B_Hdr_R svd ;

BYTE S R B_Target ;

BYT E S R B _ L u n ;

BYTE S R B_ResetRsvd 1 [14] ;

BYT E S RB_Ha Stat ;

BYT E S R B_TargStat ;

FARP ROC S R B_Post Proc ;

BYT E S R B_ResetRsvd 2 [34] ;

S R B B u sDeviceReset

I I ASP I command code = SC R E S E T DEV

I I ASP I c ommand status byte

I I ASP I host a d apter number

I I ASP I req uest flags

I I Reserved , MUST = 0
I I Target ' s SCS I I D

I I Target ' s L U N n umber

I I Reserved , MUST = 0
II Host Adapter Statu s

I I Target S tatu s

I I Post rout i ne

I I Reserved , MUST = 0

Returns

The return value specifies the outcome of the function . One of the values
shown in Table 1 1 . 22 will be returned by ASP! for Windows. Refer to each
ASPI command code definition for information on which ASP! commands
return which errors.

Table 1 1 .22: Return Values for SendASPICommand SC_RESET_DEV

Value Meaning

SS_COMP SCSI/ ASPI request has completed without error .

SS_INVALID_HA I nva l id host adapter number.

SS_I NVALID_SRB SCSI request block (SRB) has one or more parameters set i ncorrectly.

SS_ASPI_IS_BUSY ASPI manager can not handle the request at th is time . Th is error wi l l gen-

era l ly occur i f the ASPI manager i s a l ready us ing up al l of h i s resources
to execute other requests . You should try resend ing the command later .

Example

The following example issues a SCSI bus device reset to host adapter #0 ,
target #5 :

S R B Bu sDev iceReset MySR B ;

WORD ASP I_Stat u s ;

MySRB . SR B_Cmd = SC_R E S E T_DEV ;

MySRB . SR B_Ha i d = o ;
MySRB . SR B_Flags = 0 ;
MySRB . SR B_Hdr_R svd

MySRB . SR B_Target = 5 ;

MySR B . S R B_L u n = 0 ;

o · ,

ASP I S t atu s = SendAS P I Comma nd ((L P S R B) &MySRB) ;

/ ** * * * * * * * � � * * * * * * !

! * Ma ke s u re a l l other reserved fields are zeroed * /

! * before p a s s i ng t he S R B to ASP I for Windows * /

/ * * * * * * * * * * * ** * * * * * * * * � * * * * * * � * * * ** * * * * * * * * * * * * * * * * /

wh i l e (MySR B . S R B_Sta t u s = = SS_P ENDING) ;

A Profi le of ASPI Programm ing 2 3 7

2 3 8 Chapter 1 1

! * !
! * T h i s sample code h a s no error handling , t ime- * /
! * out code , nor does it free up the proces s or . */
! * Your appl icat ion should be more robu s t . * /
/ * * * * * * * * * * * * * ************************************* !

ASPI Polling
Once you send an ASPI for Windows SCSI request, you have two ways of being
notified that the SCSI request has completed. The first and simplest method is
called polling. Mter the command is sent, and ASPI for Windows returns control
back to your program, you can poll the status byte waiting for the command to
complete . For example, the following code segment sends a SCSI Inquiry
command to target #2.

SRB _ E x e c SC S ! Cmd6 MySRB ;

c h a r I n q u i ryBuffer [3 2] ;

/ * * * * * * * * * * * * * * * * * * * * * **** ** ** * * * * * * * * * * * * * *****"'** I
I * Code is entered with ' MySRB ' zeroed . * I
! * * * * * * * * * * * * * * **** * * * ********* * ************ ** * * *** I
MySR B . SRB_Cmd = SC_EXEC_SCSI_CMD ;

MySR B . SRB_F lags = SRB_DI R_SCSI ;

MySR B . SRB_Target = 2 ;

MySR B . SRB_Buflen = 3 2 ;

MySR B . SRB _ Senselen = SENSE_ L E N ;

MyS R B . SRB _ BufPointer o I n q u i ryBuffe r ;

MySR B . SR B_CDBLen 6 ;

MySRB . COB Byte [0] SCSI I NQU I R Y ;

MySR B . CDBByte [4] 3 2 ;

SendAS P ICommand ((L P S R B) &MySRB) ;

w h i l e (MySR B . SR B_St a t u s == SS_P ENDING) ;

I I Send I nq u i ry command

I I Wait t i l l it ' s f i n i s hed

I * * * * * * * * * * * * * * * *********************************** I
I* At t h i s point , t h e SCSI command h a s comp leted * I
I * with or without an erro r . * I
I * * * * * * * * * * * * * * * * * *****"'**********"'*********** "- * * * * I
if (MySRB . SRB_Stat u s SS COMP

I I Command completed without error

e l s e

I I Command completed with error

Since Windows is currently a nonpreemptive multitasking operating system, you
should use polling wi th caution . The example above is not very good about
freeing up the processor, nor does it have any timeout handler. Later in this
specification, you will find sample code that does free up the processor while
using polling.

ASPI Posting
Most applications will use posting, rather than polling, to be notified that
a SCSI request has completed. When posting is enabled, ASPI for Windows
will post completion by calling your callback function. For example , the fol­
lowing code segment will send a SCSI Inquiry command to target #2 during
the WM_CREATE message.

long FAR PASCAL WndP roc (HWND , WORD , WORD , LONG) ;

void FAR PASCAL AS P I Post Proc (L P S R B) ;

HWND Po stHWND;

HAND L E h i n s t a n c e ;

I I ASP I Post P roc - AS P I f o r Windows w i l l p o s t complet ion of a S C S I

I I
I I
I I
I I
I I
I I

req uest t o t h i s funct ion . Note t h a t t h i s i s most

l i kely dur i ng interrupt t ime so you can only u s e

a few W i ndows funct ions l i ke ' PostMe s s age . ' T h i s

example p o s t procedure i s very s imple . I t w i l l

wa ke u p your a pp l i c a t ion by post ing a WM_AS P I POST

me s s age to your wi ndow handle .

void FAR PASCAL ASP I PostProc (L P S R B DoneSRB)

PostMe s sage (Po s tHWND , WM_ASP I POST ,

(WORD) ((S R B_ExecSC S I Cmd6 far *) DoneSR B) - > S R B S t at u s ,

(DWORD) DoneSRB) ;

return ;

/ / * "� · * * * * * * * * * * *

I I WndProc - W i ndow me s s age handler

long FAR PASCAL WndP roc (HWND hwn d , WORD me s sage , WORD wParam , LONG l P a ram)

{
s t a t i c S R B_Exec SCS ICmd6 MyS R B ;

s t a t i c c h a r I nq u i ryBuffer [3 2] ;

sw i t c h (mes sage)

A Prof i l e o f ASP! Prog ra m m i ng 2 3 9

2 4 0 Chapter 1 1

{
c a se WM CR EAT E :

1 * * * * * ***************************** * * * * * * * * * * * * * * * * 1
I * Code i s entered with ' MySR B ' zeroed . * I
I * * * * * * * * * * * ********************* * * * * * * * * * * * * * * * * * * I

lpfnAS P I PostProc � Ma keProc i n stance (ASPI Post Proc , h i n stance) ;

PostHWND � hwn d ;

MyS R B . SR B_Cmd � SC_EX EC_SCS I_CMD ;

MyS R B . SR B_Flags � SR B_DI R_SCS I I S R B_POSTING ;

MyS R B . SR B_Ta rget � 2 ;

MyS R B . SR B_Buflen � 3 2 ;

MySR B . S R B_Senselen � S E N S E_L E N ;

MyS R B . SR B_BufPointer � Inqu iryBuffer ;

MySRB . SR B_CDBLen � 6 ;

E xecSR B . S R B_PostProc � lpfnASP I PostProc ;

MySRB . CDBByte [o] SCSI INQU I RY ;

MySR B . CDBByte [4] � 3 2 ;

i f SendASP ICommand ((L P S R B) &MySRB) ! � S S_P E ND I NG)
{

el se

ret urn o ;

c a s e WM ASP I POST :

return o ;

c a s e WM DE STROY :

PostQu itMe s s age (o) ;

ret urn o ;

I I Check ret urn s tatu s for c a u s e of fa i l ure !

II Posting will NOT occur due to fa i l ure

II ASPI for Windows will post complet ion to

I I ' l pfnASP I Post Proc ' when command h a s completed .

II Return status i s i n ' wParam '

II SRB Pointer i s in ' l Param '

II We might want to send another ASPI request here .

II Look at ' AS P I Po stProc ' for more i nformation .

ret urn DefWindowProc (hwnd , mes sage , wParam, l Param) ;

When the post routine gets called, the sample post handler will fill the wParam
field and will contain the status of ASP! command (SRB_Status) while the
lParam field will contain a far pointer to the SRB that has completed.

Miscellaneous

• Your ASP! for Windows program should never exit with pending SCSI I/Os.
Doing so could lead to system instability. Send an ASP! Abort command if
you need to.

• Your SRBs and data buffers must be in page-locked memory. Most SCSI
host adapters are bus masters . This means that the data buffer must not
move while the transfer is taking place. We recommend that you allocate
your buffers using GlobalAlloc and then locking it first with GlobalLock
and then with GlobalPageLock. This technique has been used to over­
come some of the quirks that Windows 3 .x seems to have with locking
down buffers.

• It is a minimal requirement that all ASP! for Windows managers support
transfers of 64K (64 kilobytes) or less . It is not possible for all SCSI host
adapters to transfer data larger than this size . If the ASP! manager is
unable to support your requested transfer size , you will be returned the
SS_BUFFER_TO_BIG error from the SendASPICommand routine. No
posting will occur. If this occurs , you should break the transfer down into
64K transfers or less. For maximum compatibility, it is recommended that
you do not request transfer sizes larger than 64K if you do not need to.

• Do not forget to support the SS_ASPI_IS_BUSY return status when sending
a SCSI command. Under extreme loads, some ASP! for Windows managers
may not have enough resources to service each request.

• If you send an ASP! request with posting enabled, and the return value is
not equal to SS_PENDING (in other words, the request is not in progress) ,
then ASP! for Windows will not post completion to your specified window
handle . (Refer to the specific return value for more information as to why
the request is not in progress .)

• ASP! for Windows is fully multitasking. You can send a request to ASP! while
another request is executing. Make sure you use a separate SRB for each
ASPI request. It is also recommended that you only send one SRB at a time
per target.

• If using posting, your post routine will most likely be called during inter­
rupt time. Since most Windows routines are non-reentrant, you should call
Windows routines with caution. One function you can call is PostMessage,
which can be called during interrupt time.

• Make sure that you zero out all reserved fields before passing the SRB to
ASPI for Windows.

A Profi le of ASPI Programm ing 2 4 1

242 Chapter 1 1 ·

Error Codes and Messages

All ASPI for Windows calls can fail. This specification has already defined which
error codes can be returned by each ASPI routine. Table 1 1 .23 summarizes all
of the error codes returned by ASPI routines.

Table 1 1 .23: ASPI for Windows Error Codes

Error Code Value Meaning

OxOOOO SS_PENDING SCSI request i s i n progress.

OxOOO l SS_COMP SCSI/ AS PI request has completed without error.

Ox0002 SS_ABORTED SCSI command has been aborted .

Ox0004 SS_ERR SCS I command has completed with a n error.

Ox0080 SS_INYALID_CMD I nva l id ASP I command code.

Ox008 1 SS_INYALID_HA I nva l id host adapter number.

Ox0082 SS_NO_DEVICE SCSI device not i nsta l led .

OxOOEO SS_INYALID_SRB SCSI request block (SRB) has one or more parameters
set i ncorrectly.

OxOOE l SS _OLD _MANAGER One or more ASP I for DOS managers are loaded

that do not support Windows.

OxOOE2 SS _ILLEGAL_MODE This ASPI manager does not support th is mode of
Windows. You wi l l typ ica l ly see this error code

when runn ing Windows i n rea l mode.

OxOOE3 SS_NO_ASPI No ASPI managers a re loaded. This is typica l ly

caused by a DOS ASPI manager not being resident

i n memory.

OxOOE4 SS_FAI LED_IN IT For some reason, other tha n SS_OLD_MANAGER,

SS_I LLEGAL_MODE, or SS_NO_ASPI , ASP I for

Windows could not properly i n i ti a l ize i tself . Th i s
may be caused by a lack of system resources.

OxOOE5 SS_ASPI_IS_BUSY ASPI manager cannot hand le the request at th i s

t ime. This error wi l l genera l ly occur i f the ASP I man-
ager i s a l ready us ing up a l l of h i s resources to exe-
cute other requests . You should try resending the
command later.

Ox00E6 SS_BUFFER_TO_BIG ASPI manager cannot hand le this larger tha n 64K
transfer. You' l l need to break up the SCSI 1/0 in to
sma l ler 64K transfers.

IV. ASPI for Win32 Specification

ASPI for Win32 is rather similar to ASPI for Windows, but has a few issues to
keep in mind:

• If you are using explicit dynamic linking, remember that the ASPI for Win32
DLL is named WNASPI32.DLL and not WINASPI.DLL. Make sure to call
LoadLibrary appropriately. Similarly, make sure to use WNASPI32.LIB
instead of WINASPI.LIB when using implicit dynamic linking.

" ASPI for Win32 is fully reentrant and permits overlapped, asynchronous
1/0. ASPI modules can send additional ASPI requests while others are
pending completion. Be sure to use separate SRBs for each ASPI request.

• SRB structure definitions are different in ASPI for Win32 from those in ASPI
for Win1 6; however, structure names are consistent with those used in ASPI
for Win 1 6. If you would like to use one source base for both 1 6- and 32-bit
applications, make sure that you conditionally compile with the appropriate
include files for each programming model. Include files are available in
the ASPI developer's kit.

• For requests requiring data transfers, the direction bits in the SRB_Flags
field must be set correctly. Direction bits are no longer optional for data
transfers. This means that SRB_DIR_SCSI is no longer a valid setting. For
requests not requiring data transfers, the direction bits are ignored.

• Be sure that buffers are aligned according to the buffer alignment mask
returned by the SC_HA_INQUIRY command. An alignment of at least a
double word is recommended.

• ASPI SCSI Request Blocks (SRBs) and data buffers do not need to be in
page-locked memory. The ASPI manager takes care of locking buffers and
SRBs. This is different from previous versions of ASPI for Win 1 6 which
required the application to page lock both the SRB and the data buffer.

• If an error SS_BUFFER_TO_BIG is returned by the SendASPI32Command
routine, you should break the transfer down into multiple 64K-byte trans­
fers or less. Another alternative is to use the GetASPI32Buffer I
FreeASPI32Buffer calls to allocate large transfer buffers. For maximum
compatibility, however, we strongly recommend that you do not request
transfer sizes larger than 64K bytes .

• If you send an ASPI request with posting (callbacks) enabled, the post
procedure will always be called. This is different from previous versions
of ASPI for DOS and ASPI for Win 16 which only performed the callback
if SS_PENDING was returned from SendASPI32Command.

A Profi le of ASP I Programm ing 2 4 3

244 Chapter 1 1

• The CDB area has been fixed in length at 1 6. Therefore, the sense data
area no longer shifts location depending on command length as in ASPI
for Win1 6. If you are developing an application targeted only at Win32, you
no longer need to account for the "floating" sense buffer.

• When scanning for devices, the SendASPI32Command may also return the
status SS_NO_DEVICE in the SRB_Status field. Check for this exception in
addition to the host adapter status HASTAT_SEL_TO.

Programming Conventions

This specification contains function prototypes and structure definitions with
the following data types (Table 1 1 .24) :

Table 1 1 .24: Data Types for ASPI for Win32

Type

VOID

BYTE

WORD

DWORD

LPVOID

LPBYTE

LPSRB

Size (Bytes)

N/A

2

4

4

4

4

Description

I nd icates lack of a return va lue or lack of function

arguments .

Uns igned 8-bit va lue .

Uns igned 1 6-bit va lue.

Unsigned 3 2-bit va lue .

Generic pointer . Used i n SRB f ie lds which requ i re

either a poi nter to a function or a Win32 handle

(for example, SRB_PostProc) .

Pointer to an a rray of BYTEs . Ma i n ly used as a

buffer pointer.

Generic poi nter to one of the SRB_ * structures

defi ned below.

Unless otherwise noted, all multibyte fields follow Intel's byte order of low
byte first and end with the high byte. For example, if there is a 2-byte offset
field, the first byte is the low byte of the offset while the second byte is the
high byte of the offset.

All structure fields marked reserved must be set to zero, and structures must
be packed! Packed means that byte alignment is used on all structure definitions.
Microsoft compilers allow byte packing to be set through the use of "#pragma
pack (1) " while Borland compilers allow packing to be set with "#pragma
option -al . " See your compiler documentation for more information. Failure

to pack structures and zero reserved fields can cause system instability, includ­
ing crashes.

All ASPI for Win32 functions are exported from WNASPI32.DLL using the
'C ' calling convention (specifically, _cdecl as implemented by Microsoft's
compilers) . With the 'C' calling convention the caller pushes the last function
argument on the stack first (the first argument has the lowest memory address) ,
and the caller is responsible for popping arguments from the stack.

Calling ASPI Functions

Applications which utilize ASPI for Win32 are known as ASPI modules . ASPI
modules interact with ASPI through WNASPI32.DLL which is a dynamic link
library with five entry points (Table 1 1 .25) :

Table 1 1 .25: ASPI for Win32 functions

Entry Point Description

GetASP I32Supportlnfo I n itia l izes ASPI and returns basic configuration information.

SendASPI3 2Command Subm its SCSI Request B locks (SRBs) for execution by ASP I .

GetASP I32 Buffer Al locates buffers which meet Win95/Win NT la rge transfer

requ i rements .

F reeASPI 3 2 Buffer Releases buffers previously a l located with GetASP I32Buffer .

Trans lateASP I32Address Trans lates ASPI HA/ID/LUN address triples to/from Win95

DEVNODEs.

Note that three of these functions - GetASPI32Buffer, FreeASPI32Buffer,
and TranslateASPI32Address - did not become a part of ASPI for Win32
until version 4.0 1 of EZ-SCSI .

In order to access these five functions, they must be resident in memory.
Dynamic linking is the process by which Windows 95 and Windows NT loads
dynamic link libraries (DLLs) into memory and then resolves application ref­
erences to functions within those DLLs. There are two ways in which this
load/ resolve sequence is handled: explicitly or implicitly.

Explicit Dynamic Linking
Explicit dynamic linking occurs when applications or other DLLs explicitly load
a DLL using LoadLibrary and then manually resolve references to individual
DLL functions through calls to GetProcAddress. This is the preferred method
for loading and calling ASPI for Win32. Explicit dynamic linking allows complete
control over when ASPI is loaded and how load errors are handled. It also is the

A Profi le of ASPI Programm ing 2 4 5

246 Chapter 1 1

only way to detect if the three new ASPI functions are available for use in an
application.

The following block of code is all that is required to load ASPI :

H I N STANCE h i n s tWNASP I 3 2 ;

h i n stWNAS P I 3 2 = Load l i brary ("WNASP I 3 2 ") ;

if (! h i n s tWNAS P I 3 2)
{
I I Handle ASP I load error here . U sual ly t h i s involves the d i s play of a n

I I i nformat ive mes sage based on t h e res u l t s of a c a l l to Get l a s t E rror () .

}

Once a valid instance handle for ASPI is obtained, GetProcAddress is used to
obtain addresses for each of the ASPI for Win32 entry points:

DWORD (* pfnGetAS P I 3 2 Support i n fo) (void) ;

DWORD (* pfn SendAS P I 3 2 Command) (L P S R B) ;

BOO L (* pfnGetAS P I 3 2 Buffer) (PAS P I 3 2 B U F F) ;

BOOL (* pfnF reeAS P I 3 2 Buffer) (PAS P I 3 2 B U F F) ;

BOO L (* pfnTrans lateAS P I 3 2Addres s) (PDWORD, PDWORD) ;

pfnGetAS P I 3 2 Support i nfo = Get ProcAddre s s (h i n s tWNAS P I 3 2 , "GetAS P I 3 2 S upport l nfo "

) ;

pfn SendAS P I 3 2Comma nd = Get ProcAddre s s (h i n s tWNAS P I 3 2 , " SendAS P I 3 2 Comman d ") ;

pfnGetAS P I 3 2 Buffer = Get ProcAddre s s (h i n s tWNAS P I 3 2 , " GetASP I 3 2 Buffer") ;
p fn F reeAS P I 3 2 Buffer = Get ProcAddre s s (h i n stWNAS P I 3 2 , " F reeAS P I 3 2 Buffer") ;

pfnTra n s l ateAS P I 3 2Addre s s = Get ProcAddres s (
h i n s tWNASP I 3 2 , " Tran s l ateAS P I 3 2Addre s s ") ;

At this point there should be a valid address for each of the five functions. If
you have an old version of ASPI then the last three function addresses will be
NULL. This case should be handled by disabling all use of new features in your
ASPI module. It is also good practice to check pfnGetASPI32Supportlnfo and
pfnSendASPI32Command for NULL as well. These variables will be NULL if
there is an error accessing the DLL. If either of these two functions have
NULL addresses your application should cease its use of ASPI and unload
WNASPI32.DLL with a call to FreeLibrary.

Using the addresses returned from GetProcAddress is very simple. Just

use the variable name wherever you would normally use the function name.
For example ,

DWORD dwAS P I Statu s = pfnGetAS P I 3 2 Su pport l nfo () ;

will call the GetASPI32Supportlnfo and place the result in dwASPIStatus. Of
course , if one of these function pointers is NULL and you make a call to it, your
application will crash.

Implicit i>yn@mic Linking

Implicit dynamic linking occurs when a dependent DLL is loaded as a result of
loading another module. This dependency can be established either by listing
exported functions from the DLL in the IMPORTS section of a " .DEF" file
linked with the application, or by including the WNASPI32.LIB file (from the
ASPI SDK) on the linker command line of the calling application.

Implicit dynamic linking is not recommended for three reasons :

• You cannot control when ASPI is loaded. Like anything else, ASPI consumes
system resources. When you use implicit dynamic linking those resources
are allocated as soon as the application starts, and they remain allocated
until the application shuts down. With explicit dynamic linking the appli­
cation controls when (and if) ASPI is loaded.

• You have no control over how load errors are reported to users . If ASPI is
not found during an implicit load a fairly ugly error message (sometimes
two) is displayed by the operating system. If you use explicit loading in con­
junction with a call to SetErrorMode (SEM_NOOPENFILEERRORBOX)
then your application can fully handle any load errors on its own.

• Your application cannot recover if it relies on new ASPI features and it is run
with an older version of ASPI. If your application relies on GetASPI32Buffer,
FreeASPI32Buffer, or TranslateASPI32Address, and then that function is
not found in the loaded version of WNASPI32 .DLL, then the load fails. By
using explicit dynamic linking the application can alter its behavior so
that the functions are not used. For example, an application which "relies"
on TranslateASPI32Address could simply disable Plug and Play support if
the function is not found in the DLL.

GetASPI32Supportlnfo

The GetASPI32Supportlnfo function returns the number of host adapters
installed and ensures that the ASPI manager is initialized properly. This func­
tion must be called once at initialization time, before SendASPI32Command
is accessed.

DWORD GetAS P I 3 2 Support i nfo (VOID) ;

Parameters

None.

A Profi le of ASPI Programm ing 2 4 7

248 Chapter 1 1

Return Values

The DWORD return value is split into three pieces. The high order WORD is
reserved and shall be set to 0. The two low order bytes represent a status code
(bits 1 5-8) and a host adapter count (bits 7-0) .

If the call to GetASPI32Supportinfo is successful, then the status byte is
set to either SS_COMP or SS_NO_ADAPTERS. If set to SS_COMP then the
host adapter status will be non-zero. An error code of SS_NO_ADAPTERS
indicates that ASPI initialized successfully, but that it could not find any SCSI
host adapters to manage.

If the function fails the status byte will be set to one of SS_ILLEGAL_MODE,
SS_NO_ASPI, SS_MISMATCHED_COMPONENTS,
SS_INSUFFICIENT_RESOURCES, SS_FAILED_INIT. See the table of ASPI
errors later in this chapter for more information on each of the errors.

Remarks

The number of host adapters returned represents the logical bus count, not
the true physical adapter count. For host adapters with a single bus, the host
adapter count and logical bus count are identical .

Example

This example returns the current status of ASPI for Win32.

BYTE byHaCount ;

BYTE byAS P I St at u s ;

DWORD dwSupport i nfo ;

dwSupport i nfo = GetAS P I 3 2 Support i nfo () ;

byASP I St a t u s = H I BYT E (LOWORD(dwSupport info)) ;

byHaCount = LOBYT E (LOWORD (dwSupport i nfo)) ;

i f (byASP I S t a t u s ! = SS_COMP && byAS P I St a t u s ! = S S_NO_ADAPT E R S)

{
I I Handle ASP I error here . U s ually t h i s i nvolves t he d i s play

I I of a d i a log box with a n i nformat ive mes sage .

}

SendASPI32Command

The SendASPI32Command function handles all SCSI l/0 requests. Each
SCSI 1/0 request is handled through a SCSI Request Block (SRB) which
defines the exact ASPI operation to be performed.

DWORD SendAS P I 3 2 Command (L P S RB psrb) ;

Parameters

psrb:

All SRBs have a standard header, and the header contains a command code
which defines the exact type of SCSI 1/0 being requested.

typedef struct

{
BYTE S R B_Cmd ; / / ASP I command code

BYT E S R B_Statu s ; / / AS P I command s tatu s byte

BYTE S RB_Ha i d ; / / AS P I host adapter n umber

BYT E S R B_F lags ; / / ASP I request flags

DWORD S R B_Hdr_R svd ; / / Reserved , MUST = 0
}
S R B_Header ;

The SRB_Cmd field contains the command code for the desired SCSI 1/0
operation. This field can be set to one of the values from Table 1 1 .26.

Table 1 1 .26: ASPI Commands

Symbol Value Description

SC_HA_INQUIRY OxOO Queries ASPI for information on specific host adopters.

SC_GET_DEV_TYPE OxO l Requests the SCSI device type for a specific SCSI target.

SC_EXEC_SCSI_ CMD Ox02 Sends a SCSI command (arbitrary CDB) to a SCSI target.

SC_ABORT_SRB Ox03 Requests that ASPI cancel a previously submitted request.

SC_RESET_DEV Ox04 Sends a BUS DEVICE RESET message to a SCSI target.

SC_GET_DISK_INFO Ox06 Returns BIOS information for a SCSI target (Win95 on ly) .

SC_RESCAN_SCSI_BUS Ox07 Requests a rescan of a host adopter's SCSI bus .

SC_ GET SET_ TIME OUTS Ox08 Sets SRB t imeouts for specific SCSI ta rgets .

The use of the remaining header fields varies according to the command type .
Each of the commands along with their associated SRBs i s described in detail
in the following sections .

Return Values

The above ASPI commands may be broken into two categories: synchronous
and asynchronous. All of the SRBs are synchronous except for
SC_EXEC_SCSI_CMD and SC_RESET_DEV, which are asynchronous.

A Profi le of ASPI Progra m m i ng 249

2 5 0 Chapter 1 1

Calls to SendASPI32Command with synchronous SRBs will not return until
execution of that SRB is complete. Upon return the SRB_Status field will be set
to the same value which is returned from SendASPI32Command.

Calls to SendASPI32Command with asynchronous SRBs may return control
to the caller before the submitted SRB has completed execution. In this case
the return value from this function is SS_PENDING, and the caller will have
to use polling, posting, or event notification to wait for SRB completion. Once
completed, the SRB_Status field contains the true completion status. Remember
that while waiting for SRB completion, it is always safe to submit additional SRBs
to ASPI for execution .

See the "Waiting for Completion" and "ASPI for Win32 Errors" sections
for more information on synchronous/asynchronous SRBs and the various
error codes which can be returned either from this function or within an
SRB_Status field.

SC_HA_INQUIRY

The SendASPI32Command function with command code SC_HA_INQUIRY
is used to get information on the installed host adapter hardware, including
the number of host adapters installed.

typedef struct

{
BYTE S R B_Cmd ;

BYTE S R B_Stat u s ;

BYT E S R B _ Ha i d ;

BYTE S R B _Flags ;

DWORD SR B_Hdr_R svd ;

BYTE HA_Count ;

BYTE HA_SCSI_ID ;

BYTE HA_Manageri d [16] ;

BYTE HA_Identifier [16] ;

BYT E HA_Un ique [16] ;

WORD HA_R svd l ;

I I ASP I command code = SC_HA_INQU I RY

II ASP I command s t a t u s byte

II ASP I host adapter number

I I Reserved , MUST = 0
II Reserved , MUST = 0
II Number of host ada pters present

I I SCSI ID of host a d apter

I I String de scr ib i ng the manager

I I String de s cr ib i ng the host a d apter

I I Host Adapter Un ique parameters

I I Reserved , MUST = 0

SR B_HAinqu iry , * PSRB_HAi nquiry ;

SRB FieDds

SRB_Cmd (Input) This field must contain SC_HA_INQUIRY (OxOO) .

SRB_Status (Output) SC_HA_INQUIRY is a synchronous SRB. On return, this
field is the same as the SendASPI32Command return value and is set to either
SS_COMP or SS_INVALID_HA.

SRB_Hald (Input) This field specifies which installed host adapter the request
is intended for. Host adapter numbers are always assigned by the ASPI manager,
beginning with zero. To determine the total number of host adapters in the
system set this field to 0 and then check the HA_Count value on return.
GetASPI32Supportlnfo can also be used.

HA_Count (Output) The number of host adapters detected by ASP!. For
example, a return value of 2 indicates that host adapters #0 and #1 are valid.
The number of host adapters returned represents the logical bus count instead
of the true physical adapter count. For host adapters that support single bus
only, the host adapter count and logical bus count are identical . For host
adapters that support multiple buses, the host adapter count represents the
total logical bus count.

HA_SCSI_ID (Output) The SCSI ID of the host adapter on the SCSI bus. SCSI
adapters usually use ID 7 as their SCSI ID.

HA_Managerld (Output) The ASCII string "ASP! for Win32." The string is
padded with spaces to the full width of the buffer, and it is not null terminated.

HA_Identifier (Output) An ASCII string describing the host adapter. The
string is padded with spaces to the full width of the buffer, and it is not null
terminated.

HA_Unique (Output) Host adapter unique parameters as defined in
Table 1 1 .27.

Table 1 1 .27: Host Adapter Unique Parameters

Size

WORD

Offset Description

0 Buffer a l ignment mask. The host adapter requ i res data buffer a l ign­

ment specified by th is 1 6-bit va lue . A va lue of OxOOOO ind icates no
boundary requirements (e .g . , byte a l ignment) , Ox000 1 ind icates word
a l ignment, Ox0003 ind icates double-word , Ox0007 ind icates 8-byte

a l ignment, etc . The 1 6-bit va lue a l lows data buffer a l ignments of up

to 65536-byte boundaries . Al ignment of buffers can be tested by
logical ANDing ('&' in 'C') th i s mask with the buffer address. If the
result i s 0 the buffer i s properly a l ig ned .

A Profi le of ASPI Programm ing 2 5 1

2 5 2 Chapter 1 1

Size Offset Description

BYTE 2 Residual byte count. Set to OxO l if residual byte counting is supported,

OxOO if not. See "Remarks" below for more i nformation .

BYTE

DWORD

Remarks

3

4

Maximum SCSI targets . I nd icates the maximum number of targets

(SCSI I Ds) the adapter supports . I f th i s va lue i s not set to 8 or 1 6,

then it should be assumed by the appl ication that the maximum target

count i s 8 .

Maximum transfer length . DWORD count ind icati ng the maximum

transfer size the host adapter supports . I f th i s number i s less than 64KB

then the application should assume a maximum transfer count of 64KB.

Residual byte length is the number of bytes not transferred to, or received from,
the target SCSI device. For example, if the ASPI buffer length for a SCSI
INQUIRY command is set for 1 00 bytes, but the target only returns 36 bytes;
the residual length is 64 bytes. If the ASPI buffer length for a SCSI WRITE
command is set for 5 14 bytes but the target only takes 5 1 2 bytes, the residual
length is 2 bytes. ASPI modules can determine if the ASPI manager supports
residual byte length by checking byte 1 of the HA_Unique field. See SC_EXEC_
SCSI_C:ry.m for more information on enabling residual byte counting.

Example

This example sends an SC_HA_INQUIRY to host adapter #1 , and, if successful,
records the maximum transfer length supported by the host adapter.

DWORD dwMaxTra n s ferBytes ;

S R B_HAinqu iry srbHAinqu iry ;

memset (&srbHA i n q u iry , o , s i zeof (SR B_HAi nquiry)) ;

srbHA i n q u i ry . SR B_Cmd = SC_HA_INQU I RY ;

srbHAi n q u i ry . S R B_Ha l d = 1 ;

SendAS P I 3 2 Comman d ((L P S R B) &srbHAi nqu iry) ;

i f (s rbHAinqu i ry . SR B_Status ! = SS_COMP)

{
I I E rror in HAi n q u i ry . Most l i kely SS_INVA L I D_HA .

Return FA L S E ;

}
dwMaxTra n sferBytes =

* (DWORD *) (s rbHAi nq u iry . HA_Unique + 4) ;

SC_GEi_DEV _1YPE
The Senc!ASPI32Command function with command code SC_GET_DEV_1YPE
enables you to identify the devices available on the SCSI bus . A Win32 tape
backup package, for example, can scan each target/LUN on each installed host
adapter looking for a device type corresponding to sequential access devices.
This eliminates the need for each Win32 application to duplicate the effort of
scanning the SCSI bus for devices.

t ypedef struct

{
BYT E S R B _ Cmd ;

BYTE S R B_Statu s ;

BYTE S RB_Ha i d ;

BYTE S R B _Flags ;

DWORD S RB_Hdr_R svd ;

BYTE S RB_Target ;

BYTE S R B_ L u n ;

BYTE S R B_DeviceType ;

BYTE S R B_Rsvd l ;

I I ASP I command code = SC G E T D E V TYP E - - -

I I ASP I command status byte

I I ASP I host adapter n umber

I I Reserved , MUST = 0
I I Reserved , MUST = 0
I I Target ' s SCSI I D

I I Target ' s L U N n umber

I I Target ' s per iphera l device type

I I Reserved , MUST = 0

S R B_GDEVBloc k , * P SRB_GDEVBloc k ;

SRB Fields

SRB_Cmd (Input) This field must contain SC_GET_DEV_1YPE (OxO l) .

SRB_Status (Output) SC_GET_DEV_1YPE is a synchronous SRB. O n return,
this field is the same as the Senc!ASPI32Command return value and is set to
SS_COMP, SS_INVALID_HA, or SS_NO_DEVICE.

SRB_Hald (Input) This field specifies which installed host adapter the request
is intended for.

SRB_Target (Input) SCSI ID of target device .

SRB_Lun (Input) Logical Unit Number (LUN) of target device.

SRB_DeviceType (Output) The peripheral device type . The value is one of the
codes defined by the SCSI specification (see Table 1 1 .28) .

A Profi le of ASPI Programm ing 2 5 3

254 Chapter 1 1

Table 1 1 .28: !Peripheral Device Types

Symbol Value Description

DTYPE_DASD OxOO Di rect-access device (e .g . magnetic d i sk) .

DTYPE_SEQD OxO l Sequentia l-access device (e. g . magnetic tape) .

DTYPE_PRNT Ox02 Printer device.

DTYPE_PROC Ox03 Processor device.

DTYPE_WORM Ox04 Write-once device (e . g . some optical d isks) .

DTYPE_CDROM Ox05 CD-ROM device.

DTYPE_SCAN Ox06 Scanner device.

DTYPE_OPTI Ox07 Optica l memory device (e .g . some optical d isks) .

DTYPE_J UKE Ox08 Med ium changer device (e . g . j ukeboxes) .

DTYPE_COMM Ox09 Commun ication device.

N/A OxOA-OxOB Defi ned by ASC ITS (Graphic arts pre-press devices) .

N/A OxOC-Ox l E Reserved .

DTYPE_U NKNOWN Ox l F Unknown or no device type.

Example

This example scans the system for all CD-ROM drives (all targets must be at
LUN #0) . Please note that MAX_HA_ID and MAX_TARGET_ID should be
replaced with a host adapter count returned by GetASPI32Supportlnfo and a
target count retrieved from a SC_HA_INQUIRY SRB performed within the host
adapter loop .

BYTE byHa I d ;

BYT E byTarget ;

S R B_GDEVBlock srbGDEVBloc k ;

for (byH a i d = o ; byHa i d < MAX_HA_ID ; byHa i dtt)
{
for (byTa rget = o ; byTarget < MAX_TARGET_ID ; byTarget++)
{
memset (&s rbGDEVB loc k , 0 , s izeof (SRB_GDEVBloc k)) ;

s rbGDEVBloc k . SR B_Cmd = SC_GET_DEV_TYPE ;

srbGDEVB loc k . SR B_Ha i d = byHa i d ;

s rbGDEVBloc k . S R B_Target = byTarget ;

SendAS P I 3 2Comma nd ((L P S R B) &srbGDEVB lock) ;

i f (s rbGDEVBloc k . S RB_Statu s ! = SS_COMP) cont i n u e ;

i f (s rbGDEVBloc k . S RB_DeviceType = = DTYP E_CDROM)

I I A CD- ROM ex i s t s at HAI IDI LUN = byHa idl byTarget i O .

I I D o whatever y o u want w i t h it from here !

}
}
}

SC_EXEC_SCSI_ CMD

The SendASPI32Command function with command code SC_EXEC_
SCSI_CMD is used to execute a SCSI 1/0 command. Once an ASPI
client has initialized, virtually all 1/0 is performed with this command.

typedef struct

{
BYTE S R B_Cmd ;

BYTE S R B_St a t u s ;

BYT E S R B_Ha i d ;

BYTE S R B _Flags ;

DWORD SR B_Hdr_R svd ;

BYT E S R B_Target ;

BYT E S R B_L u n ;

WORD S R B_Rsvd l ;

DWORD S R B_BufLen ;

L P BYTE S R B_BufPo inter ;

BYT E S R B_Sense Len ;

BYT E SR B_CDB Len ;

BYT E S R B_Ha St a t ;

BYT E S R B_Ta r�Stat ;

L PVOI D S R B_Post Proc ;

BYT E S R B_Rsvd 2 [20] ;

BYT E CDBByte [1 6] ;

I I ASP I command code = SC E X E C SCSI CMD - - -

I I AS P I command s t atu s byte

II AS P I host adapter n umber

II AS P I request flags

II Reserved , MUST = 0

I I Target ' s SCSI I D

I I Target ' s L U N n umber

II Reserved for Al ignment

II Dat a Allocat ion Length

II Data Buffer Pointer

I I Sense Allocat ion Length

I I CDB Length

I I Host Ada pter Status

I I Target Status

I I Post rout i ne

I I Reserved , MUST = 0

I I SCSI CDB

BYTE SenseArea [S E NS E_L E N+2] ; II Request Sense buffer

}
S R B_ExecSCSICmd , * P S RB_ExecSCS ICmd ;

SRB Fields

SRB_Cmd (Input) This field must contain SC_EXEC_SCSI_CMD (Ox02) .

SRB_Status (Output) SC_EXEC_SCSI_CMD is an asynchronous SRB. This field
should not be examined until after the caller has waited for proper completion
of the SRB (see "Waiting for Completion") . Once completed, this field may be
set to a number of different values. The most common values are SS_COMP or
SS_ERR.

A Profi le of ASPI Programming 2 5 5

2 5 6 Chapter 1 1

SS_COMP indicates successful completion while SS_ERR indicates the caller
should examine the SRB_HaStat and SRB_TargStat fields for more information .
See "ASPI for Win32 Error" for a complete description of possible error codes.

SRB_Hald (Input) This field specifies which installed host adapter the request
is intended for. Host adapter numbers are always assigned by the SCSI manager
layer beginning with zero.

SRB_Flags (Input) One or more of the following flags (see Table 1 1 .29 - note
restrictions where they apply) :

Table 1 1 .29: SRB Flags

Symbol Value

SRB_POSTING OxO l

SRB_ENABLE_RES IDUAL_COUNT Ox04

SRB_DIR_IN Ox08

SRB_DI R_OUT Ox l O

SRB_EVENT_NOTIFY Ox40

Description

Enable posti ng . See "Waiti ng for

Completion" for more in formation . Th is

f lag and SRB_EVENT_NOTIFY o re mutu­

a l ly excl usive.

Enables res idua l byte counti ng assum ing

it i s supported . Whenever a data under­

run occurs the SRB_Buflen field is updated

to reflect the rema in ing bytes to transfer .

Data transfer is from SCSI target to host.

Mutua l ly exc lus ive with SRB_DIR_OUT.

Data transfer i s from host to SCSI ta rget.

Mutua l ly exclus ive with SRB_DIR_IN .

E nable event notification . See "Waiting

for Completion" for more i n formation .

This f lag and SRB_POSTING are mutua l ly

exc lusive.

SRB_Target (Input) SCSI ID of target device.

SRB_Lun (Input) Logical Unit Number (LUN) of target device.

SRB_BufLen (Input) This field indicates the number of bytes to be transferred.
If the SCSI command to be executed does not transfer data (e .g. , Test Unit
Ready, Rewind, etc .) , this field must be set to zero. If residual byte length is
supported (see "SC_HA_INQUIRY') and selected (see SRB_Flags above) , this
field is returned with the residual number of bytes (usually 0) .

SRB_BufPointer (Input) This field is a pointer to the data buffer. If there is
no data to be transfered this field should be NULL.

SRB_SenseLen (Input) This field indicates the number of bytes allocated at
the end of the SRB for sense data. A request sense is automatically generated
if a check condition is presented at the end of a SCSI command. Please note
that under Windows NT it is not possible to reliably request more than 1 8 bytes
of sense data.

SRB_CDBLen (Input) This field establishes the length , in bytes, of the SCSI
Command Descriptor Block (CDB) . This value is typically 6, 1 0 , or 1 2 . See the
SCSI specification for more information on valid CDBs.

SRB_HaStat (Output) Upon completion of the SCSI command, this field is
set to the host adapter status as defined in Table 1 1 .30. Do not examine this
status byte if SRB_Status is set to SS_COMP. It is only to be considered valid
if there is unsuccessful completion of the SRB.

Table 1 1 .30: Host Adapter Status

Symbol

HASTAT_OK

HASTAT_TIMEOUT

HASTAT_COMMAN D_TIMEOUT

HAST AT _MESSAGE_REJECT

Value

OxOO

Ox09

OxOB

OxOD

HASTAT_BUS_RESET OxOE

HASTAT_PARITY_ERROR OxOF

HASTAT_REQUEST_SENSE_FAILED Ox l O

HASTAT_SEL_TO Ox l l

HASTAT_DO_DU Ox 1 2

HASTAT_BUS_FREE Ox 1 3

HAST AT _PHASE_ERR Ox 1 4

Description

Host adopter did not detect on error.

The time a l located for a bus transaction

ran out.

SRB expi red wh i le wa it ing to be

processed .

MESSAGE REJECT received whi le pro­

cess ing SRB .

A bus reset was detected .

A parity error was detected .

The adapter fa i led in i ssu ing a Request

Sense after a check cond ition was

reported by the ta rget device.

Selection of ta rget t imed out.

Data overru n .

Unexpected Bu s Free.

Target Bus phase sequence fa i l u re .

A Prof i le of A S PI Progra m m i ng 2 5 7

2 5 8 Chapter 1 1

SRB_TargStat (Output) Upon completion of the SCSI command, this field is
set to the final SCSI target status. Do not examine this status byte if SRB_Status
is set to SS_COMP. It is only to be considered valid if there is unsuccessful
completion of the SRB. Note that Table 1 1 .3 1 only covers the most common
result codes. Check the SCSI specification for more information on these ·and
other status byte codes.

Table 1 1 .3 1 : SCSI Target Status

Symbol

STATUS_ GOOD

STATUS_CHKCOND

STATUS_BUSY

STATUS_RESCONF

Value

OxOO

Ox02

Ox08

Ox 1 8

Description

No target status .

Check status (sense data is i n SenseArea) .

Specified Target/LUN i s busy.

Reservation confl ict .

SRB_lPostProc (Input) If posting is enabled (SRB_pOSTING) this field contains
a pointer to a function. The ASP! manager calls this function upon completion
of the SRB. If event notification is enabled (SRB_EVENT_NOTIFY) this field
contains a handle to an event. The ASP! manager signals this event upon com­
pletion of the SRB. See "Waiting for Completion" for more information.

CDBByte (Input) This field contains the CDB as defined by the target's SCSI
command set. The length of the SCSI CDB is specified in the SRB_CDBLen
field.

SenseArea (Output) The SenseArea is filled with the sense data after a check
condition (SRB_Status == SS_ERR and SRB_TargStat == STATUS_CHKCOND) .
The maximum length of this field is specified in the SRB_SenseLen field.

/Example

This example sends a SCSI INQUIRY command to host adapter #0, target #5 ,
LUN #0. When examining the code, please note the following:

Manual-reset events are used. The ResetEvent is not needed in this partic­
ular sample because we just created the event, but it is good practice to put
the reset immediately before every SendASPI32Command call to make sure
you don ' t enter the routine with an event signalled.

Because this is an asynchronous SRB, we fully wait for completion before
checking the SRB_Status byte. Also, we use dwASPIStatus instead of SRB_Status
to check for a SS_PENDING return for the same reason.

There is an INFINITE timeout on the WaitForSingleObject because SRB
timeouts are not the same as event timeouts . Use SC_GETSET_TIMEOUT to
associate a timeout with an SRB.

BYT E by i n q u i ry [3 2] ;

DWORD dwAS P I Stat u s ;

HAND L E heve n t S R B ;

S R B_E xec SCS ICmd s r b E xec ;

hevent SRB = CreateEvent (NU L L , TRUE , FAL S E , N U L L) ;

i f (! hevent SRB)
{
I I Couldn ' t get ma n u a l reset event , put error h a nd l i ng code here !

}
memset (& s r b E xec , o , s i zeof (SRB_ExecSC S I Cmd)) ;

s r b E xec . S R B_Cmd = SC_EXEC_SCS I_CMD ;

s r b E xec . S R B_F lags = SRB_DI R_IN I S RB_EVE NT_NOT I FY ;

s r b E xec . SR B_Target = 5 ;

s r b E xec . S R B_BufLen = 3 2 ;

s r b E xec . S R B_BufPo inter = by i nq u i ry ;

s r b E xec . S R B_Sen se Le n = S E N S E_L E N ;

s r b E xec . SR B_CDB Len = 6 ;

s r b E xec . S R B_Po s t P roc = (L PVOID) hevent S R B ;

s r b E xec . CDBByte [o] = SCSI_INQU I RY ;

s r b E xec . CDBByte [4] = 3 2 ;

R e set E vent (hevenSRB) ;

dwAS P I St a t u s = SendAS P I 3 2Comma nd ((L P S R B) &srb E xec) ;

i f (dwAS P I St a t u s = = SS_ P E NDING)
{
Wa it ForS ingleObj ect (hevent S R B , I N F I N I T E) ;
}
i f (s r b E xec . S R B_Statu s ! = S S_COMP)
{
I I E rror proce s s ing the S R B , put error h a n d l i ng code here .

SC_ABORT_SRB

The SendASPI32Command function with command code SC_ABORT_SRB is
used to request that a pending SRB be aborted. I t should be issued on any 1/0
request that has not completed if the application wishes to halt execution of
that request. Success of the abort command is never assured.

A Profi le of ASP I Programm ing 2 5 9

2 6 0 Chapter 1 1

typedef struct

{
BYT E SR B_Cmd ;

BYTE S RB_Stat u s ;

BYTE S R B_Ha l d ;

BYT E S R B_F lags ;

DWORD S R B_Hdr_R svd ;

L P S R B SR B_ToAbort ;

}
S R B_Abort , * P S R B_Abort ;

SRB Fields

I I ASP! command code � SC ABORT SRB

I I ASP! command status byte

l i ASP ! host adapter n umber

I I Reserved , MUST � 0

I I Reserved , MUST � 0

II Poi nter to SRB to a bort

SRB_Cmd (Input) This field must contain SC_ABORT_SRB (Ox03) .

SRB_Status (Output) SC_ABORT_SRB is a synchronous SRB. On return ,
this field is the sa�e as the SendASPI32Command return value and is set to
SS_COMP, SS_INVALID_HA, or SS_INVALID_SRB. Remember that a return
of SS_COMP does not indicate that the SRB to be aborted has been halted.
Instead, it indicates that an attempt was made at aborting that SRB. If the SRB
to be aborted completes with SS_ABORTED then there is positive indication
that the original SC_ABORT_SRB worked.

SRB_Hald (Input) This field specifies which installed host adapter the request
is intended for. Host adapter numbers are always assigned by the ASPI manager
layer beginning with zero.

SRB_ToAbort (Input) This field contains a pointer to the SRB which is to be
aborted. The actual failure or success of the abort operation is indicated by the
status eventually returned in this SRB.

Remarks

As stated above, the success of an SC_ABORT_SRB command is never guaran­
teed. As a matter of fact, the situations in which ASPI is capable of aborting an
SRB already sent to the system are few and far between. The original use for
SC_ABORT_SRB was to terminate 1/0 which had timed out under ASPI for
DOS and ASPI for Winl6. The nature of SC_ABORT_SRB under Win32 greatly
reduces its usefulness. It is recommended that the SC_GETSET_TIMEOUTS
SRB be used to manage SRB timeouts in all new ASPI modules.

SC_RESET_DEV

The SendASPI32Command function with command code SC_RESET_DEV is
used to send a SCSI Bus Device reset to the specified target.

typedef s t ruct

{
BYT E S R B_Cmd ;

BYT E S R B_St a tu s ;

BYT E S R B_Ha i d ;

BYTE S R B _Flags ;

DWORD SR B_Hdr_R svd ;

BYT E S R B_Ta rget ;

BYT E S R B_L u n ;

BYT E S R B_Rsvd1 [1 2] ;

BYTE S R B_Ha Stat ;

BYT E S R B_TargSt at ;

L PVOI D S R B_Post P roc ;

BYT E S R B_Rsvd2 [3 6] ;

}

I I AS P I command code = SC R E S E T DEV

I I ASP I command s t a t u s byte

I I AS P I host adapter number

I I Reserved , MUST = 0

I I Reserved , MUST = 0

I I Ta rget ' s S CS I I D

I I Ta rget ' s L U N n umber

II Res erved , MUST = 0

I I Host Ada pter Stat u s

I I Ta rget S t a t u s

I I Post rout i ne

I I Reserved , MUST = 0

S R B_Bu s DeviceReset , * P S R B_BusDeviceReset ;

SRB Fields

SRB_Cmd (Input) This field must contain SC_RESET_DEV (Ox04) .

SRB_Status (Output) SC_RESET_DEV is an asynchronous SRB. This field should
not be examined until after the caller has waited for proper completion of the
SRB (see "Waiting for Completion") . Once completed, this field may be set
to a number of different values. The most common values are SS_COMP or
SS_ERR. SS_COMP indicates successful completion while SS_ERR indicates
the caller should examine the SRB_HaStat and SRB_TargStat fields for more
information. See "ASPI for Win32 Error" for a complete description of possible
error codes.

SRB_Hald (Input) This field specifies which installed host adapter the request
is intended for. Host adapter numbers are always assigned by the SCSI manager
layer beginning with zero.

SRB_Target (Input) SCSI ID of target device.

A Prof i le of ASPI Programm ing 2 6 J

2 6 2 Chapter 1 1

SRB_Lun (Input) Logical Unit Number (LUN) of target device. This field is
ignored by ASPI for Win32, since SCSI BUS DEVICE RESET is done on a per­
target basis only.

SRB_HaStat (Output) Upon completion of the SCSI command, this field is set
to the host adapter status as defined in Table 1 1 .32. Do not examine this status
byte if SRB_Status is set to SS_COMP. It is only to be considered valid if there
is unsuccessful completion of the SRB.

Table 1 1 .32: Host Adapter Status

Symbol

HASTAT_OK

HAST AT_ TIMEOUT

HAST AT_ COMMAND_ TIMEOUT

HAST AT _MESSAGE_REJECT

HASTAT_BUS_RESET

HAST AT _PARITY _ERROR

HASTAT_REQUEST_SENSE_FAI LED

HASTAT_SEL_TO

rjASTAT_DO_DU

HASTAT_BUS_FREE

HASTAT_PHASE_ERR

Value

OxOO

Ox09

OxOB

OxOD

OxOE

Ox OF

Ox l O

Ox l l

Ox l 2

Ox l 3

Ox l 4

Description

Host adapter d id not detect an error.

The t ime a l located for a bus transaction

ran out.

SRB expi red whi le waiti ng to be

processed .

MESSAGE REJECT received whi le pro­

cess ing SRB .

A bus reset was detected .

A parity error was detected .

The adapter fa i led in i ssu ing a Request

Sense after a check condi tion was report­

ed by the target device.

Selection of target t imed out.

Data overrun .

Unexpected B u s Free.

Target Bus phase sequence fa i l u re .

SRB_TargStat (Output) Upon completion of the SCSI command, this field is
set to the final SCSI target status. Do not examine this status byte if SRB_Status
is set to SS_COMP. It is only to be considered valid if there is unsuccessful
completion of the SRB. Note that Table 1 1 .33 only covers the most common
result codes. Check the SCSI specification for more information on these and
other status byte codes.

Table 1 1 .33: SCSI Target Status

Symbol

STATUS_ GOOD

STATUS_CHKCOND

STATUS_BUSY

STATUS_RESCONF

Value

OxOO

Ox02

Ox08

Ox l 8

Description

No target status .

Check status (sense data is i n SenseArea) .

Specified Torget/LU N is busy.

Reservation confl ict .

SRB_PostProc (Input) If posting is enabled (SRB_POSTING) this field contains
a pointer to a function. The ASPI manager calls this function upon completion
of the SRB. If event notification is enabled (SRB_EVENT _NOTIFY) this field
contains a handle to an event. The ASPI manager signals this event upon com­

pletion of the SRB. See "Waiting for Completion" for more information.

Remarks

The Windows 95 and Windows NT operating systems do not handle BUS
DEVICE RESET properly at the current time. For this reason, SC_RESET_DEV
calls are not guaranteed to function properly. The command is present mainly
to keep older code ported from Win 1 6 from failing.

SC_GET_DISK_INFO
The SendASPI32Command function with command code SC_GET_DISK_INFO
is used to obtain information about a disk type SCSI device. The information
returned includes BIOS Int 1 3h control and accessibility of the device , the
drive ' s Int 1 3h physical drive number, and the geometry used by the Int 1 3h
services for the drive .

MJI.Uj This command is not valid for Windows NT, which does not use the Int 13 interface.

typedef s truct

{
BYT E S R B_Cmd ;

BYT E S R B_St a t u s ;

BYT E S R B_Ha i d ;

BYT E S R B _F lags ;

DWORD SR B_Hdr_R svd ;

BYT E S R B_Target ;

BYT E S R B_L u n ;

BYT E S R B_Dr ive F lags ;

BYTE S R B_ I n t 13HDrive i nfo ;

I I ASP I command code = SC G E T D I S K I N F O
- - -

I I ASP I comma nd s t a t u s b y t e

I I AS P I host adapter number

II Reserved

II Res erved

II Ta rget ' s SCSI ID

II Ta rget ' s LUN number

I I Dr iver flags

II Host Adapter S t a t u s

A Prof i le o f ASPI Progra m m i ng 2 6 3

264 Chapter 1 1

BYT E S RB_Head s ;

BYT E S R B_Sectors ;

BYT E S R B_Rsvd1 [10] ;

}

I I Preferred n umber of heads tra n s l a t io n

II P referred n umber of sectors t r a n s la t ion

I I Reserved

S R B_GetDi s k i nfo, * P S R B_GetDi s k i nfo;

SR/8 Fields

SRB_Cmd (Input) This field must contain SC_GET_DISK_INFO (Ox06) .

SRB_Status (Output) SC_GET_DISK_INFO is a synchronous SRB. On return,
this field is the same as the SendASPI32Command return value and is set to
SS_COMP, SS_INVALID_HA, or SS_NO_DEVICE, or SS_INVALID_SRB.

SRB_Hald (Input) This field specifies which installed host adapter the request
is intended for. Host adapter numbers are always assigned by the ASPI manager
layer beginning with zero.

SRB_Target (Input) SCSI ID of target device.

SRB_Lun (Input) Logical Unit Number (LUN) of target device .

SRB_DriveFiags (Output) Upon completion of the SCSI command this field is
set according to Table 1 1 .34.

Table 1 1 .34: Drive Flags

Symbol

DISK_NOT_INT 1 3

DISK_I NT 1 3_AND_DOS

DISK_INT 1 3

Value

OxOO

OxO l

Ox02

Description

Device is not controlled by lnt 1 3 h services.

Device is under l nt 1 3 h control and i s

c la imed by DOS .

Device is under l n t 1 3 h control but not

c la imed by DOS .

SRB_Int1 3Drivelnfo (Output) Upon completion of the SCSI command, the
ASPI manager sets this field with the physical drive number that Int 1 3h services
assigned to the device. The valid drive numbers are OxOO to OxFF. This field is
only valid if SRB_DriveFlags is set to DISK_INT1 3_AND_DOS or DISK_INT13 .

SRB_Heads (Output) Upon completion of the SCSI command, the ASPI man­
ager sets this field to the number of heads the Int 1 3h services is using for this
device's geometry. The valid drive numbers are OxOO to OxFF. This field is only
valid if SRB_DriveFlags is set to DISK_INT1 3_AND_DOS or DISK_INT1 3.

SRB_Sectors (Output) Upon completion of the SCSI command, the ASPI
manager sets this field to the number of sectors the Int 1 3h services is using
for this device 's geometry. The valid drive numbers are OxOO to OxFF. This
field is only valid if SRB_DriveFlags is set to DISK_INT1 3_AND_DOS or
DISK_INT1 3.

Example

This example obtains disk information from device LUN 0 , SCSI ID 2,
attached to host adapter 0 .

S R B_GetDi s k i nfo s rbGetD i s k i nfo ;

memset (&srbGetDi s k i n fo , o , s i zeof (SR B_GetD i s k i nfo)) ;

s rbGetDi s k i n fo . S R B_Header . SR B_Cmd = SC_GET_D I S K_IN FO ;

s r bGetDi s k i nfo . SR B_Target = 2 ;

SendAS P I 3 2 Command ((L P S R B) &srbGetDi s k i nfo) ;

i f (s r bGetD i s k i nfo . S RB_Statu s ! = SS_COMP)
{
I I E rror h a n d l i ng GetD i s k i n fo SRB . E rror h a nd l i ng code goes here !

SC_RESCAN_SCSI_BUS

The SendASPI32Command function with command code SC_RESCAN_SCSI_
BUS is used to rescan the SCSI bus specified by the host adapter number in the
SRB. It will instruct the 1/0 subsystem to rescan the SCSI bus and update both
the system device map and the ASPI manager device tables.

typedef s truct

{
BYT E S R B _ Cmd ;

BYT E S R B_Stat u s ;

BYT E S R B _Ha i d ;

BYT E S R B _ F lags ;

DWORD SR B_Hdr_R svd ;

}

I I ASP I command code = SC R E SCAN S C S I BUS - - -

I I AS P I command s t a t u s byte

II ASP I host adapter number

II Reserved , MUST = 0

I I Res erved , MUST = 0

S R B_Re s c a n Port , * P S R B_Re s c a n Port ;

SRB Fields

SRB_Cmd (Input) This field must contain SC_RESCAN_SCSI_BUS (Ox07) .

SRB_Status (Output) SC_RESCAN_SCSI_BUS is a synchronous SRB. On return,
this field is the same as the SendASPI32Command return value and is set to
SS_COMP, or SS_INVALID_HA.

A Profi le of ASPI Programm ing 2 6 5

266 Chapter 1 1

SRB_Hald (Input) This field specifies which installed host adapter the request
is intended for. Host adapter numbers are always assigned by the AS PI manager
layer beginning with zero.

Remarks

Under Windows NT, the 1/0 subsystem does not rescan devices/IDs it already
knows about. The impact of this is that it will detect new devices but will not
detect removal of devices or exchanging of devices.

Under Windows 95, there can be a substantial delay between the time
a rescan is initiated with this command and the time at which new devices
are added or old devices are removed from the device map. The best way
deal with this is to rely on the Plug and Play messages in conjunction with
TranslateASPI32Address, or to simply perform your own refresh five or ten
seconds after the rescan command is issued.

There is no way to force a rescan of the entire system. It is up to the oper­
ating system to detect the arrival of new host adapters (for example , PCMCIA)
through Plug and Play, if it is available.

Example

The following example forces a rescan of the SCSI bus attached to host
adapter #0:

S R B_Re s c anPort srbRescanPort ;

memset (&srbRescanPort , o , s i z eof (S R B_Res can Port)) ;

s rbRescanPort . SR B_Cmd = SC_R E SCAN_SCSI_BUS ;

SendAS P I 3 2 Command ((L P S R B) &srbRescanPort) ;

i f (srbRescanPort . SRB_Status ! = SS_COMP)

I I E rror i s s u ing port rescan . E rror handl ing code goes here .

SC_ GETSET _TIMEOUTS

The SendASPI32Command function with command code SC_GETSET_
TIMEOUTS enables you to set target specific timeouts in 1 /2 second incre­
ments. Once set, a timeout applies to all SCSI commands sent through the
SC_EXEC_SCSI_CMD command. Timeouts are process specific, so two differ­
ent applications may set different timeouts for the same target. The SRB_Hald,
SRB_Target, and SRB_Lun fields may be set to a wildcard value to ease the setting
of timeouts on multiple targets. Note that by default, all target timeouts are set
to 30 hours (the maximum allowed) .

typedef s t ruct

{
BYT E S R B_Cmd ;

BYT E S R B_St a t u s ;

BYT E S R B_Ha i d ;

BYT E S R B _ F lags ;

DWORD SR B_Hdr_R svd ;

BYTE S R B_Ta rget ;

BYTE S R B _ L u n ;

DWORD S R B_Timeout ;

I I AS P I comma nd code = SC G E T S E T T IMEOUTS
-· -

I I ASP I command :, t a t u s byt e

I I ASP I h o s t a d ap te r n umber

I I AS P I req u e s t f l ag s

I I Res erved

I I Ta rget ' s SCS I l D
I I Target ' s L U N r 1 u rn ber
I I T imeout i n h a l f s e c o n d s

SR B_Get SetTimeout s , x P S R B_GetSetT imeout s ;

SRB Fields

SRB_Cmd (Input) This field must contain SC_GETSET_TIMEOUTS (Ox08) .

SRB_Status (Output) SC_GETSET_TIMEOUTS is a synchronous SRB. On
return , this field is the same as the SendASPI32Command return value and is
set to SS_COMP, SS_INVALID_HA, SS_NO_DEVICE, or SS_INVALID_SRB
(bad flags , invalid timeout, etc.) .

SRB_Hald (Input) This field specifies which installed host adapter the request
is intended for. If SRB_DIR_OUT is set in SRB_Flags then this value may be a
wildcard (OxFF) indicating that the SRB_Target/SRB_Lun combination on ALL
host adapters should get a new timeout.

SRB_Flags (Input) May be set to one and only one of the two constants from
Table 1 1 .35 .

Table 1 1 .35: SR.B Flags for SC_GETSIET_TIMEOUTS

Symbol Value

SRB_DI R_/ N Ox08

SRB_DI R_OUT Ox l O

Description

SRB i s be ing used to retrieve current timeout sett ing .

Wi ldcards are not a l lowed in the ASP/ address fie lds .

SRB is being used to change the current t imeout setti ng .

Wi ldcards are va l id i n the ASP / address fie lds .

SRB_Target (Input) This field indicates the SCSI ID of the target device. If
SRB_DIR_OUT is set in SRB_Flags then this value may be a wildcard (OxFF)
indicating that ALL SCSI IDs of the passed SRB_Haid/SRB_Lun combination
should get a new timeout.

A Prof i l e of ASP! Progra m m i n g 2 6 7

2 6 8 Chapter 1 1

SRB_Lun (Input) This field indicates the Logical Unit Number (LUN) of the
device . If SRB_DIR_OUT is set in SRB_Flags then this value may be a wildcard
(OxFF) indicating that ALL LUNs of the passed SRB_Haid/SRB_Target com­
bination should get a new timeout.

SRB_Timeout (Input) Target's tim out in half seconds. If SRB_DIR_OUT then
this value holds the new timeout for the specified target(s) . If SRB_DIR_IN
then the value is set by ASPI to the current timeout for the specified target.
The timeout can be from 0-1 08000 (30 hours) with 0 being an easier way of
saying "max timeout" (again, 30 hours) .

Remarks

Once a timeout is set for a target, that timeout will be used on all SRBs passed
to SendASPI32Command with SC_EXEC_SCSI_CMD. If one of these SRBs actually
times out, then the SCSI bus will be reset (this is NOT a bus device reset, but a
full SCSI bus reset) . This causes all of the SRBs executing on the bus to be
cancelled, and the miniport will set error codes in the SRBs as appropriate . It
is up to the code which originally submitted these SRBs to retry the commands
as necessary (for example, if an ASPI request times out and the bus is reset, a
file system command to another target could be cancelled, and it is up to the
file system to retry the command) .

In addition, the result placed in the SRB which times out depends on the
error codes which the miniport places in the SRB. In the case of Adaptec con­
trollers, the result code is SS_ABORT, In other miniports, the result may be
SS_ERR with a host adapter status set to HASTAT_TIMEOUT or HAST AT_
COMMAND_TIMEOUT, or it may be some new error result not yet encoun­
tered. Suffice it to say that the SRB which times out should return with an error,
and it is up to the higher-level applications to perform retries of the SRB and
any other SRB which may have been affected by the associated bus reset.

When using event notification with timeouts , it is important to remember
that the HEVENT used in the SRB_PostProc field has an ENTIRELY SEPERATE
timeout associated with it. In other words, the timeout associated with an event
is seperate from the timeout associated with an SRB. If you set a timeout on an
SRB and then set an infinite timeout in WaitForSingleObject on the SRB event,
then the SRB will STILL TIMEOUT and signal completion of the SRB. Con­
versely, if you set a 30-hour timeout on the SRB and a 5-second timeout on the
event, the event will always go signaled before the SRB completes , and no
cleanup of the SRB on the bus will take place .

Examples

The first example (Table 1 1 .36) illustrates how wildcards work with set time­
out. Th� main point here is that the wildcards are specific. In other words,
setting the Haid to OxFF does not make SRB_Target I SRB_Lun "don ' t cares. "

Table 1 1 .36: Wildcard Validity for SC_GETSET_TIMEOUTS

HA ID LN Affected Device

00 0 1 FF Al l o f target 1 's l uns on host adapter 0 .

FF 00 FF Al l l uns on targets wi th ID 0 on any host adapter.

FF FF 00 Lun 0 of a l l targets on any host adapter .

F F FF FF A l l targets on any host adapter with any lun number (everyth ing) .

Next is an example in which all LUNs on target 5, host adapter 0 are set to 1 0
seconds:

SR B_Get SetT imeout s s r bGetSetT imeout s ;

memset (& srbGetSetT imeout s , 0 , s i zeof (S R B_Get SetT imeout s)) ;

s rbGet SetT imeout s . SR B Cmd = SC G ETS ET TIMEOUTS
- - -

s rbGetSetT imeout s . S RB_F lags = SR B_D I R_OUT ;

s r bGetSetT imeou t s . S R B_Ta rget = OxOS ;

s r bGet SetT imeout s . S RB_ L u n = Ox F F ;

s rbGet SetT imeout s . SR B_T imeout = 10x 2 ;
SendAS P I 3 2Command ((L P S R B) & s rbGetSetTimeout s) ;

if (s rbGet SetT imeout s . S R B_St a t u s ! = SS_COMP)

{
I I E rror set t i ng t imeout s . Put error h andl ing code here .

GetASPI32Buffer

GetASPI32Buffer allocates blocks of memory (up to 5 1 2KB) which are "safe"
for use in ASPI modules. Under normal circumstances memory buffers from
the stack or allocated with VirtuaiAlloc will be too physically fragmented to
allow a transfer greater than 64KB on bus-mastering host adapters. For those
rare instances where a large transfer is required, GetASPI32Buffer allows a
buffer to be allocated which will pass all operating system requirements for
physical continuity.

BOO L GetASP I 3 2 B uffer (PASP I 3 2 BU F F pab) ;

Parameters

pab:
Pointer to a filled out ASPI32BUFF structure .

typedef s t r u c t

A Profi le o f AS PI Programm ing 2 6 9

270 Chapter 1 1

L P BYTE AB_BufPointer ;

DWORD AB_Buflen ;

DWORD AB_Zero F i l l ;

DWORD AB_Reserved ;

ASP I 3 2 BU F F , * PASP I 3 2 BUF F ;

I I Pointer t o the ASP I a llocated buffer

II Length in bytes of the buffer

II F lag set to 1 if buffer should be zeroed

II Reserved , MUST = 0

AB_BufPointer (Output) After a successful call (return value TRUE) this field
contains the address of the large transfer buffer which has been allocated for
the application.

AB_ButLen (Input) Set to the size, in bytes, desired for the transfer buffer.
This must be less than or equal to 5 1 2KB and should be greater than 64KB
(although there are no requirements on the low end) .

AB_ZeroFill (Input) Set this flag to 1 if ASPI should clear the transfer buffer
after allocation but before returning to the caller. Leave the flag set to 0 if the
memory can remain uninitialized.

Return Values

This function returns TRUE if it successfully allocates a large transfer buffer,
and FALSE otherwise. The caller should assume that this call can fail , and
should allow the code to work with smaller transfer buffers allocated from
VirtuaWloc (if at all possible) .

Example

The following example allocates a 1 28KB buffer for use with ASPI.

ASP I 3 2 B U F F a b ;

memset (&ab , o , s i zeof (ASP I 3 2BUF F)) ;

a b . AB_Buflen = 1 3 107 2 l u ;

a b . AB_Zero F i l l = 1 ;

if (! GetASP I 3 2 B uffer (&ab)
{
I I Unable to a l locate buffer . E rror handl ing code goes here !

FreeASPI32BuHer

FreeASPI32Buffer releases memory previously allocated by a successful call go
GetASPI32Buffer.

BOOL F reeASP I 3 2 B uffer (PASP I 3 2 BUF F pab) ;

Parameters

pab:

Pointer to a filled out ASPI32BUFF structure .

typedef s t r uct

{
L P BYTE AB_BufPo i n te r ;

DWORD AB_Buflen ;

DWORD AB_Zero F i l l ;

DWORD AB_Reserved ;

ASP I 3 2 BU F F , XPAS P I 3 2 BU F F ;

I I Pointer to t he ASP I a l located buffer

II Length i n byte s of t h e buffer

I I Reserved , MUST = 0

I I Reserved , MUST = 0

AB_BufPointer (Input) Pointer to the buffer previously returned from a suc­
cessful call to GetASPI32Buffer. The address must match exactly for the free
to occur.

AB_BufLen (Input) Set to the original size , in bytes, of the buffer allocated by
a call to GetASPI32Buffer. The size must match exactly for the free to occur.

Return Values

This function returns TRUE if the memory allocated to the buffer has been
released. FALSE is returned if there is an error freeing the memory or if the
passed in AB_BufPointer/ AB_BufLen fields don ' t match those of a previously
allocated buffer.

TranslateASPI32Address

TranslateASPI32Address provides translation between Windows 95 DEVNODEs
and ASPI HA/ID/LUN triples (or vice versa) . Because DEVNODEs are associ­
ated with WM_DEVICECHANGE messages, it is possible to use this function to
associate ASPI target addresses with Plug and Play events .

M#aiij This command is not valid for Windows NT, which does not currentZv have Plug and

Play capabilities.

BOO L T ra n s l ateAS P I 3 2Addre s s (PDWORD pdwPat h , PDWORD pdwDE VNODE) ;

Parameters

pdwPath Pointer to a ASPI address "path . " The path is simply a packed version
of an ASPI address triple. Every target address in ASPI consists of a host adapter

A Prof i l e of AS P I Program m i ng 2 71

2 72 Chapter 1 1

identifier, a SCSI ID, and a SCSI LUN. Each of these values consists of a BYTE,
so an ASPI address "path" is a DWORD encoded as OxOOHHIILL where HH is
the host adapter identifier, II is the SCSI ID, and LL is the SCSI LUN. Note that
if II and LL are both OxFF then the path represents a host adapter. This is
necessary because host adapters have their own DEVNODEs in the Plug and
Play subsystem.

pdwDEVNODE Pointer to a DWORD which contains a Windows 95 DEVNODE
ID. This parameter controls the direction of translation. If the DWORD contains
a 0 (note that this does not mean that pdwDEVNODE is NULL) then translation
is from the ASPI triple to the DEVNODE. If the DEVNODE is non-zero then
translation is from the DEVNODE to an ASPI triple.

Return Values

TRUE if there is a successful translation. FALSE is returned if the parameters
are invalid or if there is no translation between ASPI path and Windows 95
DEVNODE.

Remarks

In order for this scheme to work properly, applications should pay attention
to WM_DEVICECHANGE messages which utilize DBT_DEVTYP _DEVNODE
device change data. The device change data type can be detected by checking
the dcbh_devicetype field in the DEV _BROADCAST_HEADER associated
with device change events. Review the Plug and Play documentation in Win32
for more information.

Example

The function below checks broadcast data from a WM_DEVICECHANGE
message to see if the device change message is related to an ASPI target
(but not host adapter) .

BOO L Chec kForASP ITargetBroadcast (PDEV_BROADCAST_HDR pHeader)

{
BOOL bStat u s ;

DWORD dwTarget Pat h ;

DWORD dwDEVNODE ;

PDEV_BROADCAST_DEVNODE pDevnodeData

i f (pHeader - > dbch_dev icetype 1 = DBT_DEVTYP_DEVNODE

{
ret urn FA L S E ;

pDevnodeDat a = (PDEV_BROADCAST_DEVNODE) pHeader ;

dwDEVNODE = pDevnodeDat a - > dbcd_devnode ;

bSt a t u s = Tra n s l a teAS P I 3 2Addres s (&dwTarget P a t h , &dwDEVNODE) ;

i f (! b S t a t u s I I ((dwTarget Path & Ox F F F F l u) = = ox F F F F l u))

{
ret urn FA L S E ;

ret urn T RU E ;

Waiting for Completion

There are two types of SRBs sent to SendASPI32Command: synchronous
and asynchronous . Synchronous SRBs are always complete when the call
to SendASPI32Command returns. Asynchronous SRBs, however, may or
may not be complete upon return from the SendASPI32Command call.

When called with an asynchronous SRB, the status return from
SendASPI32Command should be checked for a value of SS_PENDING. If
the status code is not SS_PENDING then the SRB is complete and it is safe
to look at its status codes, etc. If SS_PENDING is returned then the SRB is still
under the control of ASPI, and the caller needs to wait for the SRB to
complete before doing anything else with that SRB.

There are three ways of being notified that an asynchronous SRB has
completed. The first and recommended method uses event notification. The
second method uses posting (a callback) , and the third method uses polling.
All three completion methods are illustrated below using a simple INQUIRY
command to host adapter #0, SCSI ID #5 , LUN #0.

Event Notification

Event notification is an ideal mechanism for notifying ASPI clients of the com­
pletion of an ASPI request. ASPI clients may efficiently block on this event until
completion. Upon completion of a request, the ASPI for Win32 manager will
set the event to the signaled state. The ASPI client is responsible for making
sure that the event is a manual-reset style event which is not in a signaled state
when an ASPI request is submitted.

A Profi le of ASPI Programm ing 2 73

274 Chapter 1 1

BYTE byinqu iry [3 2] ;

DWORD dwASP I Status ;

HANDL E heventSRB ;

S RB_ExecSCSICmd srbExec ;

heventSRB = CreateEvent (NU L L , TRU E , FALSE , NU L L) ;

i f (! heventSRB)

{
I I Couldn ' t get manual reset event , put error handling code here !

}
memset (&srbExec , o, s i zeof (SR B_ExecSCSICmd)) ;

srbExec . SRB_Cmd = SC_EXEC_SCSI_CMD ;

srbExec . SRB_F lags = SRB_DI R_IN I SRB_EVENT_NOTI FY ;

srb Exec . SRB_Target = 5 ;
srbExec . SRB_BufLen = 3 2 ;

srbExec . SR B_BufPointer = byinquiry ;

srb Exec . SRB_SenseLen = S ENSE_L E N ;

srbExec . SRB_CDBLen = 6 ;

srb Exec . SRB_PostProc = (LPVOID) heventSRB ;

srbExec . CDBByt e [o] = SCS I_INQUIRY;

s rbExec . CDBByte [4] = 3 2 ;

Reset E vent (hevenSRB) ;

dwAS P I Status = SendASP I 3 2Command ((L PSRB)&srbExec) ;

if (dwAS P I Status == SS_P ENDING)

{
Wait ForSingleObject (heventSRB , I N F INITE) ;
}
i f (srbExec . SRB_Status ! = SS_COMP)

{
I I E rror process ing the SRB , put error handling code here .

}

Posting

Posting (or callbacks) may be used to receive notification that a SCSI request
has completed. When posting is used, ASPI for Win32 posts completion by
passing control to a callback function. If you send an ASPI request with posting
enabled, the callback procedure will always be called. The post or callback
routine is called as a standard C function. The caller (in this case, the ASPI man­
ager) cleans up the stack. The prototype for the callback is below in the sample.

BYTE byi nqu iry [3 2] ;

S RB_ExecSCSICmd srbExec ;

memset (&srbExec , o , s i zeof (S RB_ExecSCSICmd)) ;

srbExec . SRB_Cmd = SC_EXEC_SCS I_CMD ;

srbExec . SRB_Flags = SRB_DI R_IN I SR B_POSTING ;

s r b E xec . S R B_Target = 5 ;

s r b E xec . S R B_Buflen = 3 2 ;

s rb E xec . S R B_BufPointer = by i nq u i ry ;

s r b E xec . S R B Sen se len = S E N S E _ L E N ;

s rb E xec . S R B CDB Len = 6 ;

s r b E xec . S R B Po st Proc = ASP I I n q u i ryCa llbac k ;

s r b E xec . CDBByte [O) S C S I I NQU I RY ;

s r b E xec . CDBByt e [4) 3 2 ;

SendAS P I 3 2Command ((L P S R B) &srb E xec) ;

� � ·

• � • T he code a bove i s a separate t h read of exec ut ion from

" * * the code below wh i c h handles the i n q u i ry c a l lbac k . Note t h a t

· � • t h e c a l l b a c k u s u a l ly s ignal s the ma in t h read of exec ut ion t h a t

* * * t h e a n S R B it s u bmitted h a s completed . I n t h i s c a s e we aren ' t
* * * d o i ng a nyt h i ng but c hec k i ng for error s .

* * I

VO ID ASP I I n q u i ryCa l lbac k (S R B_E xec SCS ICmd p s r b E xec

{
i f (p s r b E xec - > S R B_St a t u s ! = S S_COMP)

{
I I E r ror proce s s ing t he S R B , put error h and l i ng code here .

Polling

Polling is another method of determining SCSI request completion. This
method is not recommended because of the large number of CPU cycles con­
sumed while checking the status byte . After the command is sent and ASPI for
Win32 returns control back to the calling application , you can then poll the
status byte waiting for the command to complete . Note that this completion
method is the only one to "break" the rule of not touching an SRB's data until
after completion. With polling you must look at the SRB_Status byte in order
to tell when the SRB is complete. You are still prohibited from accessing any
other fields of the SRB.

BYT E by i nq u i ry [3 2) ;

S R B_E xec S C S I Cmd s rb E xec ;

memset (& s r b E xec , o , s i z eof (SR B E xecSCS ICmd)) ;

s r b E xec . S R B_Cmd = SC_E X EC_SCS I_CMD ;

s r b E xec . S R B_ F l ags = S R B_D I R_I N ;

s r b E xec . S R B_Target = S ;
s r b E xec . S R B_BufLen = 3 2 ;

s r b E xec . S R B B ufPointer by l n q u i ry ;

A Prof i le o f A S P I Progra m m i ng 2 75

276 Chapter 1 1

srbExec . S R B_Senselen = SENSE_L E N ;

srb Exec . S RB_CDBLen = 6 ;

srb Exec . CDBByte [o) = SCS I_INQUIRY ;

s rb Exec . CDBByt e [4) = 3 2 ;

SendASP I 3 2Command ((L P S R B)&srbExec) ;

wh i l e (srbExec . SR B_Status = = S S_P E NDING) ;

i f (s rb Exec . SR B_Status ! = SS_COMP)

{
I I E rror proce s s i ng the S R B , put error handling code here .

}

ASPI for Win32 Errors

Each of these errors can be returned by ASPI for Win32 on either Windows 95
or Windows NT. The ASPI header files included with the ASPI SDK may have
codes defined which cannot be returned by an actual ASPI implementation.
These codes are in the header file to serve as placeholders for other ASPI
managers. They are not documented in this table (Table 1 1 .37) .

Table 1 1 .37: ASPI for Win32 Errors

Symbol

SS_PENDING

SS_COMP

SS_ABORTED

SS_ERR

SS_I NVALID_CMD

Value Description

OxOO Returned from SendASP I32Commond

OxO l

on SC_EXEC_SCSI_CMD and SC_RESET_DEV

SRBs to i nd icate that the command is i n

progress. Use pol l i ng , posting , o r event-noti­

fication (preferred) to wait for completion .

E ither retu rned from SendASP I32Commond,

or set i n the SRB_Stotus fie ld of the SRB

header. Th is va lue ind icates successfu l com­

pletion of on SRB.

Ox02 The cu rrent SRB was aborted either by the

operati ng system d i rectly (for example, a
th i rd party does a hard reset of the SCSI
bus) or through a SC_ABORT_SRB.

Ox04 Returned on SC_EXEC_SCSI_CMD ca l l s

i f there i s a host adapter, SCSI bus, or
SCSI ta rget error. I t i nd icates that the

caller should examine SRB_TargStat and
SRB_HaStat for addit ional i n formation .

Ox80 The SRB_Cmd passed in on SRB is inva l id .

Symbol Value

SS_INVALID_HA Ox8 1

SS_NO_DEVICE Ox82

SS_INVALID _SRB Ox EO

SS_BUFFER_ALIGN OxE l

SS _I LLEGAL_ MODE OxE2

SS_NO_ASPI OxE3

Description

The SRB_Hald passed i n an SRB is inva l id .

Ca l l GetASP I32Supportl nfo to determ ine the

va l id range of host adapters identifiers.

Returned from cal l s to SendASPI32Command,

or set in the SRB_Status fie ld of the SRB

header . Th is va lue i nd icates that there i s no

target present at the SCSI address i nd icated

in the SRB . Note that th i s is not a selection

timeout. The operati ng system keeps a table

of known devices and does not permit

commands to "non-existent" devices . This

code cou ld be returned i f an operati ng

system rescan of the SCSI bus i s requ i red

to detect a newly powered-on device.

An SRB sent to ASPI had a va l id address

and a va l id command byte, but it was some-

how faulty in another way. The exact cause of

the fa i l u re is dependent on the SRB type. For

example, an SC_EXEC_SCSI_CMD SRB may

fa i l i f an i nva l i d flag is set in the SRB_Fiags

word , i f a buffer length i s specified but there

is a NULL buffer pointer, or i f ASPI detects

an SRB has been reused . In any case, the
code creati ng the SRB is fau lty and needs
to be ana lyzed .

SRB data buffers must meet a l ignment

requ i rements as returned by SC_HA_INQUIRY

SRBs. If a transfer buffer does not meet those

requ i rements, th i s error i s returned .

An attempt was made to sta rt AS PI for Win32

from Win32s . ASP I for Win32 is a pure

Win32 component and cannot be run under

the Windows 3 . 1 x Win32 subsystem .

WNASPI 3 2 . DLL i s present on t he system,
but i t could not fi nd i ts helper driver. Under

Windows 95 APIX.VXD i s the helper driver,

and under Windows NT ASPI3 2 . SYS i s the

helper driver. Either the ASP! i n sta l lation is
inva l id , or there are resource confl icts pre-
venti ng ASP! from sta rti ng .

A Profi le of A S P I Progra m m i ng 2 77

2 78 Chapter 1 1

Symbol

SS_FAILED _I N IT

SS_ASPI_IS_BUSY

SS_BUFFER_ TO _BIG

Value Description

OxE4 A general i nternal fa i l u re has occurred

with i n ASP I . Th is can occur dur ing i n i t ia l­

ization or at run-time. Th is error should
only occu r i f basic Windows operati ng

services beg i n to fa i l , i n which case the
whole system i s unstable.

OxE5 Returned either from SendASP I3 2Command,

or set i n the SRB_Status field of the SRB

header. Th i s code i nd icates that ASP I d id not

have enough resources to complete the

requested SRB at the present time . Th i s i s

d i fferent from SS_INSUFF ICIENT_RESOURCES

in that it i s usua l ly a tempora l condit ion, and
the fa i led SRB may be retried at a later time .

OxE6 Returned in the SRB_Status field of a fa i l i ng

SRB. The code ind icates that the buffer associ

ated with the SRB did not meet i nternal oper­

ating system constra ints for a va l id tra nsfer

buffer. For example, a buffer >64KB on a

bus-master ing control ler wi l l usual ly fa i l with

th i s error because it i s not phys ica l ly contigu­

ous enough to be described by a

scatter/gather l i st .

SS_MISMATCHED_COMPONENTS OxE7 ASPI for Win32 consists of th ree components

under Windows 95 : WNASPI3 2 . Dll,

APIX.VXD, and ASPIENUM.VXD. I t consi sts

of two components under Windows NT:

WNASPI3 2 . Dll, ASPI 32 . SYS. Each of

these components has a version number, and

a l l the version numbers on a particu lar plat

form must agree for ASPI to function . This error

wi l l only occur if the i nsta l lation has been

corrupted, and components with d i fferent
vers ion numbers have been i n sta l led on the
system . The only fix for th i s i s to remove a l l

o f the ASPI components for that operati ng

system, and then reinsta l l a fu l l , cons istent set
of ASPI d rivers .

Symbol Value Description

SS_NO _ADAPTERS OxE8 Returned from GetASP I32Supportl n fo i f ASP!

has i n i t ia l ized successfu l ly, but there a re no

host adapters on the system . I t i s sti l l possible

that an adapter may become active through

Plug and Play, so a lack of manageable host

adapter i s no longer considered an error as

i t was in previous vers ions of ASP I .

SS_I NSUFF IC IENT_RESOURCES OxE9 The error occurs only dur ing i n i tia l ization if

there are not enough system resources (mem­

ory, event hand les, cr i tica l sections, etc .) to

fu l ly i n i t ia l ize ASP I . I f th i s error occurs i t is

l ikely that the system is critical ly low on memory.

V. ASPI for OS/2 Specification

Device drivers wishing to access ASPI must determine the address of the ASPI
entry point through an OS/2 Attach Device Help call as follows:

SCS IMGR$ DB ' SCS IMGR$ - , 0

Return Data Buffer D B 1 2 DUP (i)

MOV BX , OF F S E T SCSIMGR

MOV DI , OF F S E T Return_Data Buffer

MOV D L , DevHlp_Attac hDD

CAL L [DevH l p]

On return from the Attach Device Help call, a clear carry flag indicates that
the SCSI manager SCSIMGR$ was found and that the return data is valid. A
set carry flag indicates that the SCSI manager was not found.

The return data buffer has the following format:

ASP I Real OW Real Mode offset of ASPI entry point

Real OS

OW Real Mode CS segment of ASPI entry point

OW Real Mode OS of ASPI entry point

ASPI Prot OW P rotected Mode offset of AS P I entry point

OW Protected Mode CS selector of ASP I entry point

P rot OS OW P rotected Mode OS of ASP I entry point

A Profi le of ASP I Progra m m i ng 2 79

IIIII ASPI_Real and Real_DS are used by OS/2 l . x only. Information returned under OS/2
2.x is irrelevant.

280 Chapter 1 1

Calling ASPI

Once the ASPI entry point parameters have been successfully determined,
calling ASPI is a matter of using the values appropriate to the mode of the
processor. The address of the ASPI request block and the DS of the ASPI
entry point must be pushed onto the stack before making a FAR call .

The following is an example of how to call ASPI :

PROT CAL L :

CAL L DON E :

PUSH AX

PUSH @ASP I_SRB

SMSW AX

T E ST AX , PROTECT_MODE

J NZ PROT CAL L

PUSH Real DS

CAL L (ASPI_R EAL]

JMP CAL L DONE

PUSH Prot DS

CAL L (ASP I_PROT]

ADD SP , 6

POP AX

; Save AX

; Pu s h pointer to ASP ! SRB

; Check mode of processor

; Restore t he stack

Accessing ASPI at Initial ization Time

At initialization time, an OS/2 device driver lacks the privilege level for making
a FAR call to the ASPI interface. To circumvent this restriction, the SCSI man­
ager provides a special IOCTL that can be used by a driver to pass an ASPI
request. To use the IOCTL, the driver must first use a DOSOPEN call to get a
file handle for the SCSI manager. Having completed this successfully, the driver
can call ASPI at initialization time as follows:

PUSH @DATA_BUF F E R

PUSH @REQUE ST_B LOCK

PUSH 40H

PUSH 80H

PUSH ASP ! Handle

CAL L DOSDEVIOCT L

; Not Appl icable

; Pa rameter L i st = SRB

; F u nct ion Code

; F unct ion Category

; F ile handle from DosOpen

Once the driver has returned from initialization, this access method is no
longer valid.

A5PI and 05/2 2.x

The device driver architecture for OS/2 2 .x is divided into several basic layers.
Device manager drivers (DMDs) receive requests from the file systems and other
device drivers. These requests are passed on to an adapter device driver (ADD) ,
which sends the appropriate command to the host adapter.

ASPI for OS/2 2 .x is a translation layer, and it has been implemented as a
device driver (os2aspi.dmd) . An application can send SRBs to any SCSI adapter
that has an ADD installed. It is no longer possible to set host adapter parameters,
because OS2ASPI has no direct control over the host adapter.

Target Allocation with 05/2 2.x

The device driver architecture for OS/2 2.x is structured so that targets con­
trolled by an ADD must be allocated to an individual DMD. For example, when
the system boots, os2dasd.dmd is normally the first device manager loaded, and
it will automatically search for all available hard drives and permanently allocate
them for use by the file systems. Other DMDs usually do something similar with
targets that they assume should be controlled by them.

The standard method for preventing a DMD from allocating a particular
target is through the use of command line switches on the ADD that handles
the device. If you are planning on using ASPI to control a device that may be
allocated by a DMD that loads before os2aspi.dmd, be sure to specify that the
device manager in question is not allowed access to it.

• If you are writing an ASPI application for a magneto-optical drive (target
6 on an AHA-1 540) that returns device type 0 (DASD) in the Inquiry data,
you must be sure to prevent OS2DASD from accessing it:

BAS E DEV=AHA1 54X . ADD /A : O / ! DM : 6

• If you are writing an ASPI application for a device that also may be con­
trolled by a device driver through os2scsi .dmd (target 6 on an AHA-1 540) ,
you can also prevent OS2SCSI from accessing it:

BAS ED EV=AHA1 54X . ADD /A : O / ! SM : 6

Currently, only os2dasd.dmd and os2scsi.dmd can be controlled in this manner,
because they are the only DMDs mentioned in IBM's specification for ADDs.
For a complete explanation of command line switches supported by the ADD
that are provided with OS/2 2. 1 , consult the online help for SCSI .

A Profi le of ASPI Programm ing 281

2 8 2 Chapter 1 1

The current ASPI specification does not provide a method for allocating
targets, and there are no command line switches for os2aspi.dmd that can be
used with the current ADD. The target for each SRB will be allocated and
deallocated on a command basis until the first Execute I/0 SRB is sent. At
this point, the target will be permanently allocated to os2aspi .dmd and other
DMDs will no longer have access to the target.

Sample Code for 05/2 2.x

The SDK (ASPI Software Developer's Kit) includes sample code for designing
ASPI applications and device drivers to be used with OS/2 2 . x.

ASPIAPP is a simple program that scans the SCSI bus and displays informa­
tion about any targets that it finds on adapters in the system. This application is
a single-threaded, character-based application intended to show you how ASPI
can be used.

ASPIDRV is a simple device driver that passes requests from ASPIAPP to
os2aspi.dmd after converting any virtual addresses to physical addresses. This
driver is intended for handling single-threaded requests that are small enough
not to require a scatter/gather list. If you are transferring large blocks of data,
you may have to convert the virtual address of the buffer into a page table that
can be used as a scatter I gather list.

SCSI Request Block (SRB)

A SCSI request block (SRB) , defined in Table 1 1 .38, contains the command
to be executed by the ASPI manager and is used by both drivers and applica­
tion programs. An SRB consists of an SRB header followed by additional fields
dependent on the command code. All request blocks have an 8-byte header.

Table 1 1 .38: SCSI Request Block Header

Offset # Bytes Description R/W

OOh (00) 0 1 h (0 1) Command Code w

0 1 h (0 1) 0 1 h (0 1) Status R

02h (02) 0 1 h (0 1) Host Adapter Number w

03h (03) 0 1 h (0 1) SCSI Request F lags w

04h (04) 04h (04) Reserved for Expansion = 0

Command Code

The Command Code field is used to indicate which of the ASPI services is being
accessed. Refer to Table 1 1 .39 for a description of valid ASPI command codes.

Status

The Status Byte field is used to post the status of the command. Refer to Table
1 1 .40 for a description of ASPI status bytes.

Host Adapter Number

The Host Adapter Number field specifies which installed host adapter the
request is intended for. Host adapter numbers are always assigned by the SCSI
manager layer beginning with zero.

SCSI Request Flags

The SCSI Request Flags field definition is command code-specific.

Reserved for Expansion

The last 4 bytes of the header are reserved and must be zero.

ASPI Command Codes

Valid ASPI Command Codes

See Table 1 1 .39 for a list of valid ASPicommand codes, and their descriptions.

Table 1 1 .39: Valid ASPI Command Codes

Command Code Description

OOh Host Adapter I nqu i ry

0 1 h Get Device Type

02h Execute SCS I 1/0 Command

03h Abort SCSI 1/0 Command

04h Reset SCSI Device

05h Set Host Adapter Parameters

06h-7Fh Reserved for Future Expans ion

80h-FFh Reserved for Vendor Un ique

A Profi le of ASP I Programm ing 2 8 3

284 Chapter 1 1

ASPI Status Bytes

See Table 1 1 .40 for a list of ASPI status bytes, and their descriptions.

Table 1 1 .40: ASPI Status Bytes

Status Byte

OOh

0 1 h

02h

04h

BOh

8 1 h

82h

Description

SCSI Request In Progress

SCSI Request Completed Without E rror

SCSI Request Aborted By Host

SCSI Request Completed With E rror

I nva l id SCSI Request

I nva l id Host Adopter Number

SCSI Device Not I n sta l led

ASPI Command Code = 0: Host Adapter Inquiry

The status byte (defined in Table l l .41) always returns with a nonzero status.
A SCSI Request Completed Without Error (01h) status indicates that the remain­
ing fields are valid. An Invalid Host Adapter Number (81h) status indicates that
the specified host adapter is not installed.

Table 1 1 .4 1 : ASPI Command Code = 0: Host Adapter Inquiry

Offset # Bytes Description R/W

OOh (00) 0 1 h (0 1) Command Code = 0 w

0 1 h (0 1) 0 1 h (0 1) Status R

02h (02) 0 1 h (0 1) Host Adopter Number w

03h (03) 0 1 h (0 1) SCSI Request F logs w

04h (04) 04h (04) Reserved for Expansion = 0

OBh (08) 0 1 h (0 1) Number of Host Adopters R

09h (09) 0 1 h (0 1) Target ID of Host Adopter R

OAh (1 0) 1 0h (1 6) SCSI Manager ID R

1 Ah (26) 1 0h (1 6) Host Adapter ID R

2Ah (42) 1 0h (1 6) Host Adopter Un ique Parameters R

This function is used to get information on the installed host adapter hardware,
including number of host adapters installed. It can be issued once with host
adapter zero specified to get the number of host adapters. If further information
is desired, it can be issued for each individual host adapter.

The SCSI Request Flags field is currently undefined for this command
and should be zeroed.

The SCSI Manager ID field contains a 1 6-byte ASCII string describing the
SCSI manager.

The Host Adapter ID field contains a 1 6-byte ASCII string describing the
SCSI host adapter.

The definition of the Host Adapter Unique Parameters field is left to
implementation notes specific to a particular host adapter.

ASPI Command Code = l: Get Device Type

This command (defined in Table 1 1 .42) always returns with a nonzero status .

Table 1 1 .42: ASPI Command Code = 1 : Get Device Type

Offset # Bytes Description R/W

OOh (00) 0 1 h (0 1) Command Code = 1 w

0 1 h (0 1) 0 1 h (0 1) Status R

02h (02) 0 1 h (0 1) Host Adapter Number w

03h (03) 0 1 h (0 1) SCSI Request F lags w

04h (04) 04h (04) Reserved for Expa nsion = 0

08h (08) 0 1 h (0 1) Target ID w

09h (09) 0 1 h (0 1) LUN w

OAh (1 0) 0 1 h (0 1) Peri phera l Device Type of Target/LUN R

A SCSI Request Completed Without Error (0 1h) status indicates that the spec­
ified device is installed and the peripheral device type field is valid. A SCSI
Device Not Installed Error (82h) indicates that the peripheral device type
field is not valid.

This command is intended for use by various drivers , during initialization,

for identifying the targets they need to support. A CD-ROM driver, for example ,
can scan each target/LUN on each installed host adapter looking for the device
type corresponding to CD-ROM devices. This eliminates the need for each
driver to duplicate the effort of scanning the SCSI bus for devices.

The peripheral device type is determined by sending a SCSI Inquiry com­
mand to the given target. Refer to any published SCSI specification to learn
more about the Inquiry command.

A Prof i le of ASPI Programm ing 2 8 5

2 8 6 Chapter 1 1

The SCSI Request Flags field is currently undefined for this command and
should be zeroed.

ASPI Command Code = 2: Execute SCSI 1/0 Command

This command (defined in Table 1 1 .43) usually returns with zero status indicating
that the request was queued successfully. Command completion can be deter­
mined by polling for nonzero status or through the use of the Post Routine
Address field in the ASPI Command Posting section (discussed later) . Keep
in mind that if you are going to use polling, interrupts must be enabled.

Table 1 1 .43: ASP! Command Code = 2: Execute SCSI 1/0 Command

Offset # Bytes Description R/W

OOh (00) 0 1 h (0 1) Command Code = 2 w

0 1 h (0 1) 0 1 h (0 1) Status R

02h (02) 0 1 h (0 1) Host Adapter Number w

03h (03) 0 1 h (0 1) SCSI Request F lags w

04h (04) 02h (02) Length of Scatter /Gather L ist w

06h (06) 02h (02) Reserved for Expansion = 0

08h (08) 0 1 h (0 1) Target ID w

09h (09) 0 1 h (0 1) LUN w

OAh (1 0) 04h (04) Data Al location Length w

OEh (1 4) 0 1 h (0 1) Sense Al location Length (N) w

OFh (1 5) 04h (04) Data Buffer Poi nter w

1 3 h (1 9) 04h (04) SRB L ink Poi nter w

1 7h (23) 0 1 h (0 1) SCSI CDB Length (M) w

1 8 h (24) 0 1 h (0 1) Host Adapter Status R

1 9h (25) O l h (0 1) Target Status R

1 Ah (26) 02h (02) Rea l Mode Post Routi ne Offset* w

1 Ch (28) 02h (02) Rea l Mode Post Routi ne CS* w

1 Eh (30) 02h (02) Rea l Mode Post Routi ne DS* w

20h (32) 02h (02) Protected Mode Post Routi ne Offset w

22h (34) 02h (02) Protected Mode Post Routi ne CS w

Offset # !Bytes Description R/W

24h (36) 02h (02) Protected Mode Post Routi ne DS w

26h (38) 04h (04) Physical Address of SRB w

2Ah (42) 1 6h (22) Reserved for ASP I Workspace

40h (64) M SCSI Command Descriptor Block (CDB) w

40h+M N Sense Al location Area R

*Used by OS/2 l .x only. FU!lds are not used under OS/2 2.x.

The SCSI Request Flags Byte Is Defined as Follows:

7 6 5 4 3 2 0

Rsvd Rsvd SGE Direction Bit Rsvd l ink Post

The Post bit specifies whether posting is enabled (bit 0 = 1) or disabled
(bit 0 = 0) .

The Link bit specifies whether linking is enabled (bit 1 = 1) or disabled
(bit l = O) .

The Direction Bits specify which direction the transfer is :

00 Di rection determi ned by SCSI command . Length not checked .

0 1 Transfer from SCSI ta rget to host. Length checked .

1 0 Transfer from host to SCSI ta rget. Length checked .

l l No data transfer .

The Scatter/Gather Enable (SGE) bit specifies whether scatter/gather is enabled
(bit 5=1) or disabled (bit 5=0) .

The Target ID and LUN fields are used to specify the peripheral device
involved in the 1/0.

The Data Allocation Length field indicates the number of bytes to be
transferred. If the SCSI command to be executed does not transfer data (i .e . ,
Rewind, Start Unit, etc.) , the data allocation length must be set to zero.

The Length of Scatter I Gather List field is valid only when the scatter I gather
enable bit in the flags is set. It contains the number of descriptors in the array
pointed by the Data Buffer Pointer field.

The Sense Allocation Length field indicates, in bytes, the number of bytes
allocated at the end of the SRB for sense data. A request sense is automatically
generated if a check condition is presented at the end of a SCSI command.

A Profi le of ASPI Programm ing 2 8 7

2 8 8 Chapter 1 1

The Data Buffer Pointer field is a pointer to the I/0 data buffer. When
scatter/gather is enabled, this field is a physical pointer to a scatter/gather list.
A scatter I gather list is made up of one or more descriptors of the following
format:

DWORD Buffer Pointer

DWORD Buffer Size

The SRB Link Pointer field is a pointer to the next SRB in a chain. See the
section "SCSI Command Linking with ASPI'' for more information.

The SCSI CDB Length field establishes the length, in bytes, of the SCSI
command descriptor block (CDB) .

The Host Adapter Status field is used to report the host adapter status
as follows:

OOh Host adapter d id not detect any error

1 1 h Se lection timeout

1 2 h Data overrun/underrun

1 3 h Unexpected bus free

1 4h Target bus phase sequence fa i l u re

The Target Status field is used to report the target's SCSI status, including:

OOh No target status

02h Check status (sense data is i n sense a l location area)

08h Specified target/LUN is busy

1 8h Reservation confl ict

The host adapter status and the target status are valid only when the status byte is

either 2 or 4.

The Post Routine Address field, if specified, is called when the I/0 is completed.
See the section "ASPI Command Posting" for more information.

The SCSI command descriptor block (CDB) field contains the CDB as
defined by the target's SCSI command set. The length of the SCSI CDB is
specified in the SCSI Command Length field.

The sense allocation area is filled with sense data on a check condition.
The maximum length of this field is specified in the Sense Allocation Length
field. Note that the target can return fewer than the number of sense bytes
requested.

SCSI Command llinking with ASPI

ASPI provides the ability to use SCSI linking to guarantee the sequential execu­

tion of several commands. Note that the use of this feature requires the involved
target (s) to support SCSI linking.

To use SCSI linking, a chain of SRBs is built with the SRB link pointer used
to link the elements together. The link bit should be set in the SCSI request
flags byte of all SRBs except the last in the chain . When a SCSI target returns
indicating that the linked command is complete, the next SRB is immediately
processed and the appropriate CDB is dispatched. When using SCSI linking,
make sure that the linking flags in the SCSI CDB agree with the link bit in the
SCSI request flags. Inconsistencies can cause unpredictable results. For example,
setting the CDB up for linking but failing to set the link bit may result in a
random address being used for the next SRB pointer.

Any error returned from the target on a linked command will break the
chain. Note that if linking without tags is used, as defined in SCSI , posting may
not occur on any elements in the chain until the chain is complete. If you have
the post bit set in each SRB's SCSI request flags byte , then each SRB's post

routine will be called.

MJI.IIj It is strongly recommended that you do not use SCSI linking. There are many SCSI targets,

as well as SCSI host adapters, that do not handle SCSI linking and will not work with

your ASP! module.

ASPI Command Posting

Posting refers to the SCSI manager making a FAR call to a post routine as spec­
ified in the SRB. This can be used by a driver much like a hardware interrupt
might be used. Post routines have all the same privileges and restrictions as a

hardware interrupt service routine in OS/2. Posting is optional but should
almost always be used in OS/2. To use posting, the post bit must be set in the
SCSI request flags. The post routine is called to indicate that the requested I/0
is complete . The specific SRB completed is indicated by the 4-byte SRB
pointer on the stack. The DS of the post routine as specified in the SRB is also
passed to the s tack.

The post routine will be called with interrupts enabled. I t is assumed that
all registers are preserved by the post routine.

ASP I Post proc far

p u s h bp

mov b p , s p

p u s h a

p u s h e s

mov b x , [bp+6]

mov a x , [bp+ l O]

mov a x , [bp+8]

; U se bp a s a reference

; Save all reg i s t e r s

; Save E S

; Load DS of PO S T rout i ne

; P hy s i c a l a ddre s s of S R B->AX : BX

A Prof i le of ASPI Progra m m i ng 2 8 9

2 9 0 Chapter 1 1

pop es

pop a

pop d s

p o p b p

retf

ASP I Post endp

; Re store reg i sters

When your post routine is first entered, the stack will look as follows:

Top o f S t ac k [S P+O] -> Return Addre s s (Offset)

[S P+2] -> Return Address (Segment)

[SP+4] -> SRB Pointer (Offset)

[S P+6] -> SRB Pointer (Segment)

You may issue any ASPI command from within your post routine except for an
abort command. Your post routine should get in and out as quickly as possible .

ASPI Command Code = 3: Abort SCSI I/O Request

This command (defined in Table 1 1 .44) is used to request that an SRB be
aborted. It should be issued on any 1/0 request that has not completed if
the driver wishes to timeout on that request. Success of the Abort command
is never assured.

Table 1 1 .44: ASPI Command Code = 3: Abort SCSI 1/0 Request

Offset # Bytes Description R/W

OOh (00) 0 1 h (0 1) Command Code = 3 w

0 1 h (0 1) 0 1 h (0 1) Status R

02h (02) 0 1 h (0 1) Host Adapter Number w

03h (03) 0 1 h (0 1) SCSI Request F lags w

04h (04) 04h (04) Reserved for Expansion = 0

08h (08) 04h (04) Physical SRB Poi nter w

This command always returns with SCSI Request Completed Without Error, but
the actual failure or success of the abort operation is indicated by the status
eventually returned in the SRB specified.

The SCSI Request Flags field is currently undefined for this command
and should be zeroed.

The SRB Pointer to Abort field contains a pointer to the SRB that is to
be aborted.

M#oi I i An Abort command should not be issued during a post routine.

ASPI Command Code = 4: Reset SCSI Device

This command (defined in Table 1 1 .45) is used to reset a specific SCSI target.
Note that the structure passed is nearly identical to the execute SCSI 1/0 SRB
except that some of the fields are not used.

Table 1 1 .45: ASPI Command Code = 4: Reset SCSI Device

Offset # Bytes Description R/W

OOh (00) 0 1 h (0 1) Command Code = 4 w

0 1 h (0 1) 0 1 h (0 1) Status R

02h (02) 0 1 h (0 1) Host Adapter Number w

03h (03) 0 1 h (0 1) SCSI Request F lags w

04h (04) 04h (04) Reserved for Expansion = 0

08h (08) 0 1 h (0 1) Target ID w

09h (09) 0 1 h (0 1) LUN w

OAh (1 0) OEh (1 4) Reserved

1 8h (24) 01 h (0 1) Host Adapter Status R

1 9h (25) 01 h (0 1) Target Status R

1 Ah (26) 02h (02) Real Mode Post Routi ne Offset* w

1 Ch (28) 02h (02) Rea l Mode Post Routi ne CS * w

1 Eh (30) 02h (02) Rea l Mode Post Routi ne DS * w

20h (32) 02h (02) Protected Mode Post Routi ne Offset w

22h (34) 02h (02) Protected Mode Post Routi ne CS w

24h (36) 02h (02) Protected Mode Post Routi ne DS w

26h (38) 1 6h (22) Reserved for ASPI Workspace

*Uml by OS/2 l.x only. l'ields are not used under OS/2 2.x.

A Profi le of ASPI Programm ing 2 9 1

2 9 2 Chapter 1 1

This command usually returns with zero status indicating that the request was
queued successfully. Command completion can be determined by polling for
nonzero status or through the use of posting.

The SCSI Request Flags Byte Is Defined as Follows:

7 6 5 4 3 2 0

Rsvd Post

The Post bit specifies whether posting is enabled (bit 0 = 1) or disabled
(bit 0 = 0) .

ASPI Command Code = 5: Set Host Adapter Parameters

The definition of the host adapter unique parameters (defineci in Table 1 1 .46)
is left to implementation notes specific to a particular host adapter.

Table 1 1 .46: ASPI Command Code = 5: Set Host Adapter Parameters

Offset # Bytes Description R/W

OOh (00) 0 1 h (0 1) Command Code = 5 w

0 1 h (0 1) 0 1 h (0 1) Status R

02h (02) 01 h (0 1) Host Adapter Number w

03h (03) 0 1 h (0 1) SCSI Request F lags w

04h (04) 04h (04) Reserved for Expans ion = 0

08h (08) 1 0h (1 6) Host Adapter Un ique Parameters w

VI. ASPI for NetWare Specification

Before creating your NetWare loadable module (NLM) , you must first create
the object file and a definition file. In the definition file, you tell NetWare®
what routines you wish to export to the operating system and what routines
you wish to import into your NLM. You will need to import one ASPI routine.
Sample definition file:

IMPORT

ASP I_E n t ry

Using the Novell linker, the object and definition files are linked together to
create your NLM.

During load time, if Net Ware 386 does not find this imported routine, it
will not load your NLM. You must load the ASPI module before the other
modules can access it.

ASPI Routine: ASPI_Entry

This routine allows you to pass a SCSI request block (SRB) to ASPI.

Syntax

Void ASPI_Entry (void *ASPIRequestBlock)

Return Values

Returns nothing

Parameters

Parameter Description

ASPIRequestBlock This field contains a pointer to your SRB.

Assembly Example

p u s h O F F S E T ASP I_Req Block

call ASP I_E ntry

lea e s p , [e s p+ (P4)]

; P u s h S R B onto t he s t a c k

; C a l l ASP I

; Restore t h e s t a c k

A Profi le o f ASP I Programm ing 2 9 3

294 Chapter 1 1

Remarks

On entry, interrupts should be disabled. Returns with interrupts disabled.

SCSI Request Block (SRB)

A SCSI request block (SRB) contains the command to be executed by the ASPI
manager and is used by both drivers and application programs. An SRB consists
of an SRB header (shown in Table 1 1 .47) followed by additional fields depen­
dent on the command code. All request blocks have an 8-byte header.

Table 1 1 .47: SCSI Request Block Header

Offset # Bytes Description

OOh (00) 0 1 h (0 1) Command Code

0 1 h (0 1) 0 1 h (0 1) Status

02h (02) 0 1 h (0 1) Host Adapter Number

03h (03) 0 1 h (0 1) SCSI Request F lags

04h (04) 04h (04) Reserved for Expansion = 0

Command Code

R/W

w

R

w

w

The Command Code field indicates which ASPI service is being accessed.
Table 1 1 .48 lists the valid ASPI command codes.

Status

The Status Byte field is used to post the status of the command. Refer to Table
1 1 .49 for a description of ASPI status bytes.

Host Adapter Number

The Host Adapter Number field specifies which installed host adapter the re­
quest is intended for. Host adapter numbers are always assigned by the SCSI
manager layer beginning with zero.

SCSI Request Flags

The SCSI Request Flags field definition is command code-specific.

Reserved for Expansion

The last 4 bytes of the header are reserved and must be zero.

ASPI Command Codes

Valid ASPI Command (odes

Table 1 1 .48 lists the valid ASPI command codes and their descriptions.

Table 1 1 .48: Valid ASP! Command Codes

Command Code

OOh

0 1 h

02h

03 h

04h

05h

06h-7Fh

BOh-FFh

ASPI Status Bytes

Description

Host Adapter I nqu i ry

Get Device Type

Execute SCSI 1/0 Command

Abort SCSI I/O Command

Reset SCSI Device

Set Host Adapter Parameters

Reserved for Future Expans ion

Reserved for Vendor Un ique

Table 1 1 .49 lists the ASPI status bytes and their descriptions.

Table 1 1 .49: ASPI Status Bytes

Status Byte

OOh

O l h

02h

04h

BOh

B l h

82h

Description

SCSI Request in Progress

SCSI Request Completed Without Error

SCSI Request Aborted by Host

SCSI Request Completed With Error

I nva l id SCSI Request

I nva l id Host Adapter Number

SCSI Device Not I n sta l led

A Profi le of ASPI Progra m m i ng 2 9 5

2 9 6 Chapter 1 1

ASPI Command Code = 0: Host Adapter Inquiry

The status byte (defined in Table 1 1 .50) always returns with a nonzero status.
A SCSI Request Completed Without Error (01h) status indicates that the remaining
fields are valid. An Invalid Host Adapter Number (81h) status indicates that the
specified host adapter is not installed.

Tab�e 1 1 .50: ASPI Command Code = 0: Host Adapter Inquiry

Offset # Bytes Description R/W

OOh (00) 0 1 h (0 1) Command Code = 0 w

0 1 h (0 1) 0 1 h (0 1) Status R

02h (02) 0 1 h (0 1) Host Adapter Number w

03h (03) 0 1 h (0 1) SCSI Request F lags w

04h (04) 04h (04) Reserved for Expans ion = 0

08h (08) 0 1 h (0 1) Number of Host Adapters R

09h (09) 0 1 h (0 1) Target ID of Host Adapter R

OAh (1 0) 1 0h (1 6) SCSI Manager I D R

1 Ah (26) 1 0h (1 6) Host Adapter ID R

2Ah (42) 1 0h (1 6) Host Adapter Un ique Parameters R

This function is used to get information on the installed host adapter hardware,
including number of host adapters installed. It can be issued once with host
adapter zero specified to get the number of host adapters. If further informa­
tion is desired, it can be issued for each individual host adapter.

The SCSI Request Flags field is currently undefined for this command
and should be zeroed.

The SCSI Manager ID field contains a 1 6-byte ASCII string describing the
SCSI manager.

The Host Adapter ID field contains a 1 6-byte ASCII string describing the
SCSI host adapter.

The definition of the Host Adapter Unique Parameters field is left to
implementation notes specific to a particular host adapter.

ASPI Command Code = J : Get Device Type

This command (defined in Table 1 1 .5 1) always returns with nonzero status .
A SCSI Request Completed Without Error (01h) status indicates that the

specified device is installed and the peripheral device type field is valid. A
SCSI Device Not Installed Error (82h) indicates that the peripheral de--.ice
type field is not valid.

Table 1 1 .5 1 : ASPI Command Code = 1 : Get Device Type

Offset # Bytes Description R/W

OOh (00) 0 1 h (0 1) Command Code = 1 w

0 1 h (0 1) 0 1 h (0 1) Status R

02h (02) 0 1 h (0 1) Host Adapter Number w

03h (03) 0 1 h (0 1) SCSI Request F lags w

04h (04) 04h (04) Reserved for Expansion = 0

08h (08) 0 1 h (0 1) Target ID w

09h (09) 0 1 h (0 1) LUN w

OAh (1 0) 0 1 h (0 1) Peripheral Device Type of Target/LUN R

This command is intended for use by various drivers during initialization for
identifying the targets that they need to support. A CD-ROM driver, for example,
can scan each target/LUN on each installed host adapter looking for the device
type corresponding to CD-ROM devices. This eliminates the need for each driver
to duplicate the effort of scanning the SCSI bus for devices.

The peripheral device type is determined by sending a SCSI Inquiry com­
mand to the given target. Refer to any SCSI specification to learn more about
the Inquiry command.

The SCSI Request Flags field is currently undefined for this command and
should be zeroed.

ASPI Command Code = 2: Execute SCSI 0/0 Command

This command (defined in Table 1 1 .52) usually returns with zero status indi­
cating that the request was queued successfully. Command completion can be
determined by polling for nonzero status or through the use of the Post Routine
Address field (discussed later in the section ASPI Command Posting) . Keep in
mind that if you are going to use polling, interrupts must be enabled.

A Profi le of ASP! Programm ing 2 9 '7

2 9 8 Chapter 1 1

Table 1 1 .52: ASPI Command Code = 2: Execute SCSI 1/0 Command

Offset # Bytes Description R/W

OOh (00) 0 1 h (0 1) Command Code = 2 w

0 1 h (0 1) 0 1 h (0 1) Status R

02h (02) 0 1 h (0 1) Host Adapter Number w

03h (03) 0 1 h (0 1) SCSI Request F lags w

04h (04) 04h (04) Reserved for Expans ion = 0 w

08h (08) 0 1 h (0 1) Target I D

09h (09) 0 1 h (0 1) LUN w

OAh (1 0) 04h (04) Data Al location Length w

OEh (1 4) 0 1 h (0 1) Sense Al location Length (N) w

OFh (1 5) 04h (04) Data Buffer Pointer w

1 3 h (1 9) 04h (04) SRB L ink Pointer w

1 7h (23) 0 1 h (0 1) SCSI CDB Length (M) w

1 8h (24) 0 1 h (0 1) Host Adapter Status R

1 9h (25) 0 1 h (0 1) Target Status R

1 Ah (26) 04h (04) Post Routi ne Add ress w

1 Eh (30) 22h (34) Reserved for ASPI Workspace

40h (64) M SCSI Command Descriptor Block (CDB) w

40h+M N Sense Allocation Area R

The SCSI Request Flags Byte Is Defined as Follows:

7 6 5 4 3 2 0

Rsvd Rsvd Rsvd Direction Bits Rsvd Li n k Post

• The Post bit specifies whether posting is enabled (bit 0 = 1) or disabled
(bit 0 = 0) .

• The Link bit specifies whether linking is enabled (bit 1 = 1) or disabled
(bit 1 = 0) .

• The Direction bits specify which direction the transfer is.

00 Di rection determ i ned by SCSI command . Length not checked .

0 1 Transfer from SCSI target to host. Length checked .

1 0 Transfer from host to SCSI ta rget. Length checked .

1 1 No data transfer .

The Target ID and LUN fields are used to specify the peripheral device involved
in the I/0.

The Data Allocation Length field indicates the number of bytes to be
transferred. If the SCSI command to be executed does not transfer data (i . e . ,
Rewind, Start Unit, etc .) the Data Allocation Length must be set to zero.

The Sense Allocation Length field indicates , in bytes, the number of bytes
allocated at the end of the SRB for sense data. A request sense is automatically
generated if a check condition is presented at the end of a SCSI command.

The Data Buffer Pointer field is a pointer to the I/0 data buffer. You
place the logical address here. ASP! will convert it to the physical address in
the case of a bus master or DMA transfer.

The SRB Link Pointer field is a pointer to the next SRB in a chain. See
the discussion on linking for more information.

The SCSI CDB Length field establishes the length, in bytes, of the SCSI
command descriptor block (CDB) .

The Host Adapter Status field is used to report the host adapter status
as follows:

OOh Host adapter d id not detect any error.

1 1 h Selection t imeout.

1 2 h Data overrun/underrun .

1 3 h Unexpected bus free .

1 4h Target bus phase sequence fa i l ure.

The Target Status field is used to report the target's SCSI status , including:

OOh No ta rget status .

02h Check status (sense data is i n sense a l location area) .

08h Specified target/LUN is busy.

1 8h Reservation confl ict.

A Prof i le of ASPI Progra m m i ng 2 9 9

The Post Routine Address field, if specified, is called when the I/0 is completed.
See the section ASPI Command Posting for more information .

The SCSI command descriptor block (CDB) field contains the CDB as
defined by the target's SCSI command set. The length of the SCSI CDB is
specified in the SCSI Command Length field.

The Sense Allocation Area is filled with sense data on a check condition.
The maximum length of this field is specified in the Sense Allocation Length
field. Note that the target can return fewer than the number of sense bytes
requested.

SCSI Command Linking with ASPI

ASPI provides the ability to use SCSI linking to guarantee the sequential exe­
cution of several commands. Note that the use of this feature requires the
involved target(s) to support SCSI linking.

To use SCSI linking, a chain of SRBs is built with the SRB link pointer used
to link the elements together. The link bit should be set in the SCSI request
flags byte of all SRBs except the last in the chain. When a SCSI target returns
indicating that the linked command is complete, the next SRB is immediately
processed, and the appropriate CDB is dispatched. When using SCSI linking,
make sure that the linking flags in the SCSI CDB agree with the link bit in the
SCSI request flags. Inconsistencies can cause unpredictable results. For example,
setting the CDB up for linking but failing to set the link bit may result in a
random address being used for the next SRB pointer.

Any error returned from the target on a linked command will break the
chain. Note that if linking without tags is used, as defined in SCSI, posting may
not occur on any elements in the chain until the chain is complete . If you have
the post bit set in each SRB's SCSI request flags byte , then each SRB's post
routine will be called.

IIIII! It is strongly recommended that you do not use SCSI linking. There are many SCSI targets,
as well as SCSI host adapters, that do not handle SCSI linking and will not work with

your ASP/ module.

3 0 0 Chapter 1 1

ASPI Command Posting

To use posting, the Post bit must be set in the SCSI request flags . Posting refers
to the SCSI manager making a call to a post routine as specified in the SRB.
The post routine is called to indicate that the SRB is complete. The specific SRB
completed is indicated by a 4-byte SRB pointer on the stack.

If your post routine is written in assembly language, it must save the C
registers : EBP, EBX, ESI, and EDI. Below is a sample ASPI post handler:

ASP I Post proc near

Cpush

mov ea x , [e s p+20]

CPop

ret

ASPI Post endp

C example:

void AS P I Post (SRB Pointer

void * S R B_Po inter ;

; P u s h ' C ' requ i red regs

; EAX poi nt s to S R B

; Handle posted S R B

; Restore reg i s ters a n d

; ret urn to ASP I

! * Handle posted S R B * /

M#,IIJ On entry, interrupts will be disabled. You should return with interrupts disabled. You
may issue any ASP! command from within your post routine except for an abort com­
mand. Your post routing should get in and out as quickly as possible.

ASPI Command Code = 3: Abort SCSI I/O Command

This command (defined in Table 1 1 .53) is used to request that an SRB be aborted.
It should be issued on any I/ 0 request that has not completed if the driver wishes
to timeout on that request. Success of the Abort command is never assured.

Table 1 1 .53: ASPI Command Code = 3: Abort SCSI 1/0 Command

Offset # Bytes

OOh (00) 0 1 h (0 1)

0 1 h (0 1) 0 1 h (0 1)

02h (02) 0 1 h (0 1)

03h (03) 0 1 h (0 1)

04h (04) 04h (04)

08h (08) 04h (04)

Description R/W

Command Code = 3 w

Status R

Host Adapter Number w

SCSI Request F lags w

Reserved for Expansion = 0

SRB Pointer to Abort w

A Profi le of ASPI Programm ing 3 0 1

This command always returns with SCSI Request Completed Without Error (Olh) ,
but the actual failure or success of the abort operation is indicated by the status
eventually returned in the SRB specified.

The SCSI Request Flags field is currently undefined for this command
and should be zeroed.

The SRB Pointer to Abort field contains a pointer to the SRB that is to
be aborted .

.m:zl An abort command should not be issued during a post routine.

3 0 2 Chapter 1 1

ASPI Command Code = 4: Reset SCSI Device

This command (defined in Table 1 1 .54) is used to reset a specific SCSI target.
Note that the structure passed is nearly identical to the execute SCSI I/0 SRB
except that some of the fields are not used.

This command usually returns with zero status indicating that the request
was queued successfully. Command completion can be determined by polling
for nonzero status or through the use of posting.

Table 1 1 .54: ASPI Command Code = 4: Reset SCSI Device

OHset # Bytes Description R/W

OOh (00) 0 1 h (0 1) Command Code = 4 w

0 1 h (0 1) 0 1 h (0 1) Status R

02h (02) 0 1 h (0 1) Host Adapter Number w

03h (03) 01 h (0 1) SCSI Request F lags w

04h (04) 04h (04) Reserved for Expansion = 0

08h (08) 0 1 h (0 1) Target ID w

09h (09) 0 1 h (0 1) LUN w

OAh (1 0) OEh (1 4) Reserved

1 8h (24) 0 1 h (0 1) Host Adapter Status R

1 9h (25) 01 h (0 1) Target Status R

1 Ah (26) 02h (02) POST Routi ne Add ress w

1 Eh (30) 02h (02) Reserved for ASP I Workspace

7l'he 5(50 !Request IF6ags I!yte Ds li:Pefitroed CBS /Fo86ows:

7 6 5 4 3 2 0

Rsvd Rsvd Rsvd D i rection Bi ts Rsvd L ink Post

The Post bit specifies whether posting is enabled (bi t 0 = 1) or disabled
(bit 0 = 0) .

ASPI CommCBtrod Code = 5: Set Host AdCJpter fFJarCBmeters

The definition of the host adapter unique parameters (defined in Table 1 1 .55)
is left to implementation notes specific to a particular host adapter.

Table 1 1 .55: ASPI Command Code = 5: Set Host Adapter Parameters

OHset # Bytes Description R/W

OOh (00) 0 1 h (0 1) Command Code = 5 w

0 1 h (0 1) 0 1 h (0 1) Status R

02h (02) 0 1 h (0 1) Host Adopter Number w

03h (03) 01 h (0 1) SCSI Request F logs w

04h (04) 04h (04) Reserved for Expa nsion = 0

08h (08) 1 0h (1 6) Host Adapter Un ique Parameters w

Handling Greater timan � 6 MB
Bus master ISA SCSI host adapters have a restriction in that they cannot perform
DMA above 1 6MB of RAM . This is because the ISA bus only receives 2 bits of
the address bus (224 = 1 6 MB) . Thus, if you pass a buffer pointer above 1 6MB
to an ASP! manager /hardware that cannot handle it, you will most likely crash
the file server. For these host adapters , you must make sure that both the ASP!
SRBs and data buffers are below the first 1 6MB of RAM . Adaptec 's current
host adapters handle this situation as detailed:

A Prof i le of ASP I Programm i ng 3 0 3

3 04 Chapter 1 1

Host Adapters Handling > J 6MB

• AHA-1510

• AHA-1520

• AHA-1 522

• AIC-6260

• AIC-6360

Host Adapters Handling PIO or Second-Party DMA Host Transfers

When in PIO mode, there is no restriction. When in second-party DMA mode,
all ASP! SRBs and all data buffers must be below the first 1 6MB of RAM .

• AHA-1 540

• AHA-1542

Host Adapters Handling Bus Mastering ISA Mode Host Transfers

All ASPI SRBs and all data buffers must be below the first 1 6MB of RAM .

• AHA-1 640

• AHA-1 740 (standard mode)

• AHA-1 740 (enhanced mode)

• AHA-2740 series

Host Adapters Handling EISA or PCI Mode Host Transfers

Host adapters with no restrictions are the EISA adapters AHA-1 740 in enhanced
mode and the AHA-2740 series, and all PCI adapters .

For the AHA-1540/1542/1 640/1 740 (standard mode) , you will need to run
with an ASPI manager that can run with more than 1 6MB of RAM. You will need
aha1 540.dsk v2 .22 or later, or aha1 640.dsk v2 .22 or later for this .

NetWare 386 v3. 1 1 (and above) has defined some new routines you can
use to force a buffer allocation below the first 1 6MB of RAM . Refer to the
Net Ware 386 Technical Specification for more information.

Scanning for New Devices

Most ASPI managers will not immediately scan the SCSI bus when first loaded.
Rather, ASPI managers will wait for NetWare 386 to call its Scan for New Devices
routine before the ASPI manager will scan the bus and update its internal ASPI
device table. There may be some cases where you use ASPI 's Get Device Type
routine and your device does not appear although it is really there. In this case,
you may want to request NetWare Force A Scan For New Devices, or you may
want to scan the SCSI bus from within your own ASPI module. Refer to the
appropriate NetWare 386 Technical Specification for more information.

VII . ASPI Specification Addendum
Adaptec has made minor additions to the ASPI specification to give greater
flexibility to ASPI modules. The main addition is support for residual byte
length reporting.

What Is Residual Byte Length?

Residual byte length is the number of bytes not transferred to, or received from,
the target SCSI device. For example, if the ASPI buffer length for a SCSI Inquiry
command is set for 1 00 bytes, but the target only returns back 36 bytes, this makes
for a residual length of 64 bytes. As another example, if the ASPI buffer length
for a SCSI write command is set for 5 1 4 bytes, but the target only takes 5 1 2 bytes,
this makes for a residual length of 2 bytes.

How Do I Find Out If the ASPI Manager Loaded
Supports This New Feature?

ASPI modules can determine if the loaded ASPI manager supports residual
byte length by issuing an Extended Host Adapter Inquiry command. If you
refer to the current ASPI for DOS specification, the standard Host Adapter
Inquiry command is shown in Table 1 1 .56 .

.all The following discussion assumes you are already familiar with sending an ASP! Host
Adapter Inquiry command to an ASP! manager. If not, refer to the section ASP! Com­
mand Codes for the operating system you are using.

A Profi le of ASP! Programm ing 3 0 5

Table 1 1 .56: Host Adapter Inquiry Command

Offset # # Bytes Description R/W

OOh (00) 0 1 h (0 1) Command Code = 0 w

0 1 h (0 1) 0 1 h (0 1) Status R

02h (02) 0 1 h (0 1) Host Adapter Number w

03h (03) 0 1 h (0 1) SCSI Request F lags w

04h (04) 04h (04) Reserved for Expansion = 0

08h (08) 0 1 h (0 1) Number of Host Adapters R

09h (09) 0 1 h (0 1) Target ID of Host Adopter R

OAh (1 0) 1 0h (1 6) SCSI Manager ID R

1 Ah (26) 1 0h (1 6) Host Adapter ID R

2Ah (42) 1 0h (1 6) Host Adopter Un ique Parameters R

The Extended Host Adapter Inquiry command is defined in Table 1 1 .57.

Table 1 1 .57: Extended Host Adapter Inquiry Command

OHset # Bytes Description R/W

OOh (00) 0 1 h (0 1) Command Code = 0 w

0 1 h (0 1) 0 1 h (0 1) Status R

02h (02) 01 h (0 1) Host Adopter Number w

03h (03) 01 h (0 1) SCSI Request F logs w

04h (04) 0 1 h (0 1) Extended Request Signatu re = 55h R/W

05h (05) 0 1 h (0 1) Extended Request Signatu re = AAh R/W

06h (06) 0 1 h (0 1) Length of Extended Buffer (N) , Low Byte R/W

07h (07) 0 1 h (0 1) Length of Extended Buffer (N) , H igh Byte R/W

08h (08) 0 1 h (0 1) Number of Host Adopters R

09h (09) 0 1 h (0 1) Target ID of Host Adopter R

OAh (1 0) 1 0h (1 6) SCSI Manager ID R

1 Ah (26) 1 0h (1 6) Host Adapter ID R

2Ah (42) 1 0h (1 6) Host Adopter Un ique Parameters R

3Ah (58) N Extended Buffer R

3 0 6 Chapter 1 1

The user places the AA55h in bytes #4-5 of the structure . The Extended Buffer
length (N) also needs to be initialized to the size of the extended buffer. A typical
value would be four.

If the ASPI manager that is passed this new extended structure supports
the Extended Host Adapter Inquiry command, the AA55h bytes wil l be flipped
around to 55AAh. If this does not occur, the caller should assume that the ASPI
manager does not support residual byte length or any of the other defined fields
in the extended buffer. Note that it is possible to have multiple host adapters
loaded where the ASPI manager loaded for one card supports this Extended call ,
while the ASPI manager for the other card does not. In certain situations, this
could cause the Extended Host Adapter Inquiry call to fail (i .e . , default back to
standard Host Adapter Inquiry call) .

If the signature bytes are swapped (AA55h->55AAh) , the Length of Extended
Buffer field will also be modified to indicate how many bytes of the extended

buffer were modified. This leaves us room to expand the meaning of the ex­
tended buffer in the future . For example, if an extended buffer size of ten is
passed in, though the ASPI manager loaded only supports the first 4 bytes, then
the value of four will be returned in the Length of Extended Buffer field.

Currently only the first 8 bytes of the extended buffer are defined.
The extended buffer field is formatted as shown in Table 1 1 .58 .

Table 1 1 .58: IE.xtended !Buffer IField Definition

Offset

3Ah (5 8)

3Ch (60)

3Eh (62)

Bytes

02h (02)

B i ts 1 5-4

B i t 3

B i t 2

B i t 1

B i t 0

0 2 h (02)

04h (04)

Description R/W

Featu res Word R

Reserved

0 = Not Wide SCSI 32 host ada pter

1 = Wide SCSI 32 host adapter

0 = Not Wide SCSI 1 6 host adapter

1 = Wide SCSI 1 6 host adapter

0 = Res idua l byte length not reported

1 = Res idua l byte length reported

0 = Scatter/gather not supported

1 = Scatter/gather supported

Maxi mum Scatter/gather l i st length R

Maxi mum SCSI data tra nsfer length R

The Features Word bit fields defined above are self-explanatory. Note that if
bit #2 is set, your ASPI module should scan SCSI IDs 0-1 5 on this host adapter
for SCSI devices. The Scatter/Gather fields (including the scatter/gather list
length) are currently only used by ASPI for OS/2.

A Prof i l e of ASPI Prog ramm i ng 3 0 7

I M P O RTA N T

A Maximum SCSI Data Transfer Length of zero indicates no data transfer
length limitation. A nonzero value indicates the largest value you should specify
in the ASPI SRB Data Allocation Length.

Make sure you check the return value in the Length of Extended Buffer field to make

certain that the field you are looking at is valid (e.g., if 4 is returned in the Length of

Extended Buffer field, you should not use the value in the Maximum SCSI Data Trans­

fer Length field).

Now That I Know My ASPI Manager Supports Residual
Byte Length, How Do I Make Use of It?
The SCSI Request Flags Byte Is Currently Defined in the Various ASPI

Specifications as Follows:

7 6 5 4 3 2 0

Rsvd Rsvd S/G Direction Bits Rsvd Li n k Post

Note: The S/G (scatter/gather) bit is currently used only under ASP! for OS/2.

The New Definition For This Byte Is as Follows:

7 6 5 4 3 2 0

Rsvd Rsvd S/G Direction B i ts Res idua l Li n k Post

If bit #2 (Residual) is set to 1, and the ASPI manager supports residual byte
length, then the residual byte length will be reported in the Data Allocation
Length field within the SRB (bytes OAh-ODh) . On a typical command comple­
tion with all requested data transferred and no residual bytes, the Data
Allocation Length field will contain the value zero.

MJI.i I 4 Adaptec EZ-SCSI since v3. 0 includes support for the residual byte feature.

3 0 8 Chapter 1 1

T H E F U T U R E O F S C S I A N D

S T O RAG E I N G E N E RA L

Perhaps Winston Churchill best expressed
the frustration involved in trying to predict

what is yet to come: "The future is just one
damned thing after another . . . " It hasn't gotten

any easier since his day!

If You Can't Beat 'em, Buy 'em!

That seems to be the accepted business philosophy these days. Almost every

day, the business section of the newspaper describes the latest corporate merger

or acquisition. The computer industry is constantly churning with such trans­
actions, and the SCSI segment is no different.

Adaptec bought Trantor, then Future Domain, then Western Digital's host

adapter product line, then Corel's CD creator product, then lncat Systems' Easy

CD product. Apparently they're not done yet, because in November, 1 999, they

announced their intention to buy DPT for $235 million. This gives them primary

control of the PC host adapter market and the CD recording software market.

With the addition of DPT's resources i t gives them a strong grip on the RAID

market, too!

3 1 0 Chapter 1 2

AT&T bought NCR and called it AT&T GIS. Then they sold the Micro­
electronics Division to Hyundai, who called it Symbios. Adaptec tried to buy
Symbios , but the ITC said no (because it would give Adaptec too much con­
trol of the SCSI industry) , so LSI Logic bought them instead !

It seems strange, but these days former competitors form alliances and
pool their resources to withstand the market pressure of larger companies
looking to take over their market. Other companies that try to go it alone often
buckle and disappear - like Micropolis and many other names from the past.

Another sequence of interesting acquisitions was when Conner Peripherals
bought Archive and then Seagate bought Conner. Seagate 's purchase of Conner
Peripherals was the final blow that killed SSA. With Conner gone, IBM had no
credible second source of SSA disk drives.

All these changes can influence your decision when choosing a host
adapter. For example, you look for assurance that the company will be there
when you need technical support or updated drivers . Will your card be sup­
ported under the new whiz-bang operating system when it's available? All
manufacturers compete to provide what their market research tells them is
the best combination of price, performance, support, name recognition, and
so on. If you choose the wrong product, it may become an orphan if it loses
sufficient market share to keep software vendors interested in supporting it.

(@mung Down the Pike

Ultra-3 (Fast-SO) LVD

As of early 2000, manufacturers offer host adapters and disk drives that transfer
data at 1 60 MB/sec over a parallel bus. The first implementations at this speed
will be called Ultra3 1 60. The parallel SCSI vendors find themselves in a race
with the serial SCSI vendors, and at the moment it seems that parallel is winning.
They're trying to increase the performance of parallel SCSI to the point where
Fibre Channel (1 00 MB/sec) and IEEE-1 394 (50 MB/sec) will not be improve­
ments and thus postpone the serial takeover as long as possible .

8/EEE 1 394
This interface holds great promise and potential , but has been slow in coming
to fruition. Currently, the main application for IEEE 1 394 is in connecting
digital cameras and camcorders to PCs for high-quality video capture and edit­
ing. Standard parallel SCSI is unsuitable for this purpose for several reasons:
First, the parallel SCSI cables are just too big and thick to attach to something
like a camcorder. Second, parallel SCSI lacks an isochronous (real time) transfer
mode. IEEE 1 394 provides this ability and is relatively inexpensive to implement
as well . "Time waits for no man," and neither does video!

Fibre Channel

This has been the "Promised Land" of heavy-duty storage users and is finally
coming into popular use .

Fibre Channel comes in two interface types: copper and actual glass fibre .
The copper connection is lower in cost, yet still offers many of the serial inter­
face 's advantages. A fibre connection is required to get the full benefit of Fibre
Channel, though. Its long connection distances (1 0 km/segment for glass fibre)
and high speed (1 00 MB/sec) make fibre channel a good choice for corporate
servers, off-site backups, and redundant storage systems.

At some point, the price of fibre channel host adapters and devices may
come down to the point where it will be used in PCs, but that day seems quite
a ways off. See http :/ /www.fibrechannel.com for more information.

Device Bay

This is a proposed standard being developed by Compaq, Intel, and Microsoft
to allow computer users to add peripheral devices to their system without
opening the case. It can support any computer peripheral except for memory,
CPUs, and video cards . The three sizes of Device Bay modules - DB 1 3 (.5") ,
DB20 (.8") , and DB32 (1 .3") - accommodate the different sizes of computers
and devices, laptops through desktops. It combines IEEE 1 394 and USB.
Whether Device Bay becomes an important development remains to be seen.
See http :/ /www .devicebay.org for more information.

SCSI Harbor

This is an attempt by the SCSI Industry to define a standard modular package
for SCSI devices. This would make them more interchangeable and user instal­
lable . The current proposal consists of a "wrapper" assembly that accepts a 3 .5"
form factor SCA-2 drive, which plugs into a dock assembly allowing easy insertion
and removal of the drive from a system.

It 's a shame this wasn' t standardized long ago. We're looking forward to
being able to install SCSI drives without fiddling with ID switch cables and
jumpers ! To check on the progress of this project, go to http :/ /www.scsita.org.

Storage Area Networks

Corporations with vast amounts of mission-critical data want their data not
only to be available quickly throughout their entire company, they demand
that it also be automatically backed up in separate geographic locations so
that it is protected from natural disasters, fire, and so on. Storage Area Networks
are the answer to this need. They are similar in some ways to data communica­
tions networks like intranets, but they have some additional requirements

The Future of SCSI and Storage in General 3U

3 1 2 Chapter 1 2

because of the nature of the data they carry. Protocols for data storage must
ensure that the data actually gets written onto the media even in situations where
the connection is lost or hardware fails. Communications protocols like TCP /IP
generally don' t handle such situations well, so special protocols are being devel­
oped for this purpose. In general, Fibre Channel is the transport of choice for
SANs. They may even be its raison d'etre .

Watch companies like Compaq, EMC, Adaptec and others for product
announcements . Comedian Stephen Wright has been heard to say: ''You can ' t
have everything; Where would you put it?" Well, the storage industry apparently
didn' t realize he was joking! It seems that at the current rate of growth, before
too long, there will be enough disk space to store a detailed description of every
atom on the planet (well, maybe not quite) . In the "Information Age," the more
data you can store , the more value you provide. We don ' t see an end to this
trend any time soon.

A L L - P LAT F O R M T E C H N I C A L

R E F E R E N C E

Parallel SCSI contains two types of electrical i nterface: single-ended and dif­

feren tial . The single-ended interface, labeled "SE," is the standard signal-to­

ground interface that came from the legacy of the SCSI predecessor SASI .

Differential SCSI, which uses the voltage difference between two signal wires,

came into the game as an interface for the professional market, where greater

distances between the system and the peripherals were desirable and reliability

requirements were h igher.

With the ongoing work on SCSI-3, differential SCSI now splits into two

i nterfaces: the old differential SCSI, now called high voltage differential or

HVD , and low voltage differential , or LVD. Whereas HVD has always been

more expensive to implement, LVD is comparable to single-ended SCSI in

price and therefore should replace HVD in time.

Because most interface types use the same connectors, SCSI-2 introduced

logos to indicate the type of interface. Figure A. l shows these logos. If you have
a system or external device that's not too old (made in 1 996 or later) , it should

have one of these logos near the SCSI port to differentiate between the visually

identical inte rfaces. These icons can be used on devices, cables, terminators,

and connectors; they may appear with or without text labels. Also, they can be

scaled as needed.

�D/SE

Figure A 1 : SCSI Logos {left to right): Single-Ended (SE), High Voltage Differential (DIFF),

Low Voltoge Differential (LVD), and LVD/SE SCSI

(In Figure A. l , SCSI LVD/SE means the device is a multi-mode SCSI device that
senses if it's connected to an LVD or an SE SCSI bus and switches its drivers to
the correct mode .

Now let's take a deeper look at the interfaces.

The standard electrical interface for SCSI is single-ended, which means an inter­
face with one signal line and a corresponding ground line for each SCSI signal.
All signals are active low, which means that when the voltage is high the signal
is false , and when the voltage is low the signal is true. The official SCSI term for
the true signal state is signal assertion.

To define it more technically, the single-ended SCSI interface consists of
an open-collector or tri-state driver for each signal , capable of sinking at least
48 milliamps of current on signal assertion . The signal levels are listed in
Table A. l .

Table A. l : Single-IEnded SICS� Signal Leve�s

Signal State

True (or "asserted")
False (or "deosserted")

Electrical Level

low
High
mode (see below)

Valtage

0.0 to 0.5 V DC
2.5 to 5 . 25 V DC, 2 .5 to 3 . 7 V DC
in active negation

The single-ended SCSI interface can have a bus length of up to 6 meters (1 9. 7
feet) , when using standard 5 MB/sec SCSI-2 timing. Using higher signal fre­
quencies makes it necessary to shorten the bus accordingly. Therefore, if you
use Fast SCSI , your maximum bus length drops to 3 meters (9 .8 feet) . Ultra-

3B4 Appendix A

SCSI (Fast-20) keeps this bus length, if you attach no more than four devices
on the bus. With more than four devices, UltraSCSI specifies a maximum bus
length of 1 .5 meters (4.9 feet) .

Active Negation

The faster UltraSCSI timing required active negation, a method to speed up
the asserted/ deasserted transition of the line drivers by supporting the line
driver. Whereas a standard SE SCSI driver has two states, asserted and high­
impedance (deasserted) , an active negation driver additionally has a transitional
state, wherein it actively negates (in the SCSI logical sense) the signal by pulling
the signal up to about 3 V. Technically, this is done by sourcing current until
the signal line has reached a safe negation level .

Active negation should be used by devices capable of higher speeds than
Fast SCSI on the REQ, ACK, and data lines. Active negation cannot be used
on the OR-tied signals , and it needs to be disabled while the SCAM protocol
runs. You may find "Active Negation" also written on terminator packages,
because newer termination chips tend to have active negation compatibility
listed as a feature , but any active terminator will work fine.

DiHerential SCSI Interfaces

"Classic" or "High Voltage" DiHerential {HVD)

The differential SCSI interface was defined to increase robustness and to over­
come the maximum bus length limitation of single-ended SCSI . Two-wire
differential signaling is an old and proven way to achieve reliable signal trans­
mission in noisy environments and over long distances. The industry standard
for HVD SCSI interfaces is ISO/IEC 8482-1993-12 .

Differential SCSI 's greatest advantage is its ability to use bus lengths of up
to 25 meters (82 feet) , regardless of the signal timing used. Also, differential
SCSI is the only SCSI-2 interface that officially supports Fast SCSI timings . It 's
interesting to note the elegant way the SCSI-2 standard says this : "Use of single­
ended drivers and receivers with the fast synchronous data transfer option is
not recommended."

In differential SCSI , each signal consists of two lines called "-signal" and
"+signal. " A signal is true if the +signal is higher than the -signal and false if
the -signal is higher than the +signal . This setup, along with twisted-pair cables,
yields very good noise immunity. Also, the resultant higher voltage levels of the
differential configuration make it possible to achieve a 25-meter (82-foot) bus.

The signal levels for high voltage differential SCSI are shown in Table A.2.

All-Platform Techn ica l Reference 3 1 5

Table A.2: Differential SCSI Signal Levels

Signal State HVD Valtage Levels

Low-level (false} output voltage
High�evel (true} output voltage
Differential output voltage

1 .7 V maximum
2 .7 V m in imum
1 V m in imum
-7 to + 1 2 V DC Common mode (DC} voltage range

To avoid the risk of burning up a SCSI bus by accidentally connecting a single­
ended device to a differential bus, the SCSI standard defines a protection
scheme. The differential line drivers are enabled by a signal called DIFFSENS
(differential sense) on the SCSI bus. If you connect a single-ended device to
the bus, the DIFFSENS line is grounded and the differential drivers are disabled.
However, some (fortunately only a few) older devices didn' t use the DIFFSENS
line, so if you have some older differential SCSI disks, be sure to find out if
they are single-ended or differential before connecting them to your system.
Single-ended and high voltage differential devices can ' t coexist on the same bus.

Low Voltage Differential (LVD as Used in "Uitra2" and "Uitra3" SCSI)

The higher working frequencies of Fast-40 SCSI made it nearly impossible to
maintain data integrity with the single-ended interface . On the other hand, the
implementation cost of the classic differential SCSI interface made it too expen­
sive for the mass market. So a new standard was born, called low voltage
differential, or LVD, signaling. With LVD, the synchronous timing could be
reduced to achieve an effective working frequency of 40 MHz, or an 80
MB/sec data rate for a 16-bit wide channel. Additionally, cable length could go
up to 12 meters (39.4 feet) . For point-to-point connections, this distance may
even be extended up to 25 meters (82 feet) .

Additionally, with LVD, differential technology and its advantages can be
implemented into the protocol chip, eliminating the need for external drivers
and high voltages on the logic board. This makes LVD competitive with the
standard single-ended interface in terms of implementation cost and introduces
differential signaling in the mass market.

(It 's nearly impossible for a simple signal table to show the voltage levels
as in SE or HVD. If you're ready to dig deeply into electrical matters , check
Chapter 7 and Annex A of the actual SCSI-3 SPI standard - but this may be
more than you need to know to create a robust, functional system.)

As compatibility with single-ended interfaces is built in, L VD will likely
eliminate the single-ended interface in the long term, The newer line drivers
that are used in LVD devices don ' t turn off the interface when they sense
ground on the DIFFSENS line, but switch to single-ended mode. This happens

3l6 Appendix A

at power-on , and LVD devices on this bus react like standard single-ended
UltraSCSI devices. This downward compatibility poses one potential problem,

however: Imagine a typical system with , say, two LVD disks inside and one

external , all attached to 4 meters (1 3 . 1 feet) of cable length -easily within the
spec. Now, if for any reason you need to connect a single-ended device (with
external cable) to this SCSI channel - bingo, you just exceeded the single­
ended UltraSCSI spec by at least 2 meters (5 .5 feet) . In such cases you would
have to disable all "Fast anything" support. To overcome this issue , most host
adapter vendors use a two-channel solution with one LVD and one SE channel
on one chip.

Cable Specs

In SCSI, the cable is - in some ways - the most important part of the bus,
because its quality directly affects the reliability of the whole system. It's important
to obey SCSI 's rather tight cable specifications in order to get the best perfor­
mance from your SCSI system. Like everything in SCSI , the cable evolved over
time. In SCSI-1 , a cable impedance of 1 32 ohms would have been a perfect
impedance match with the SE termination circuit (an HVD cable impedance
should have been 1 22 ohms) . At that time, such cables simply were not available,
so this was noted in the standard. In the end, 1 00 ohms ± 1 0% were defined.
SCSI-2 used the same recommendations but restated them slightly, specifying
cable impedance of over 90 ohms and under 1 40 ohms. For Fast SCSI-2 , the
upper limit dropped to 1 32 ohms. The SCSI-3 drafts SPI-2 and SPI-3 now state
minimum and maximum impedances for every speed and interface. In general,
using a cable with a characteristic impedance between 84 ohms and 95 ohms
meets the SE requirements for all speeds, and a cable with an impedance

between 1 15 and 1 35 ohms is the perfect match for differential SCSI , be it HVD
or LVD. This sounds like different cables, but because of the different measuring
setups for SE and differential modes, a good quality cable typically can meet both
specs. For example, a typical good ribbon SCSI cable is specified ·with impedance
values of 90 ± 5 ohms for SE and 1 25 ± 10 ohms for differential SCSI mode.

Internal Cables

The SCSI-2 standard defines 50- and 58-conductor unshielded flat-ribbon cables
with an impedance between 90 and 1 40 ohms and a minimum conductor size
of 0 .080 inch (28 AWG) . Also specified is a 25- or 34-pair twisted-pair cable .
The twisted-pair cable is better for two reasons: First, a signal line twisted with
its ground wire is less sensitive to RF (radio frequency) noise than is a flat-ribbon
cable. Second, twisted-pair cables often have loose cable pairs between the
connectors , making them more flexible and easier to handle than a rather
stiff 50- or 58-conductor ribbon cable.

Al l -P la tform Tec h n ica l Re ference 3 1 7

/Ex:terrlllJal Cables

The electrical specifications for external cables are fundamentally identical to
those of internal cables. External cables are, in virtually all cases, round shielded
cables with a SCSI connector on both ends. The SCSI standard even specifies
a particular layout for an external cable, wherein the signals are distributed in
three layers of wire pairs with REQ and ACK, the most sensitive signals, in the
center. For cables that have a third pair of wires in the center, the SCSI stan­
dard defines the third pair as ground.

Figure A.2 shows a cross section of an external SCSI cable with some of the
wire pairs drawn in to indicate the layers. The REQ and ACK signals are in the
very center, control signals are in the middle layer, and data lines and termi­
nation power are in the outer layer.

The largest hurdle to overcome with external SCSI cabling is the numerous connections

between the round external cables and ribbon cables. The junction of every connector

causes impedance mismatches and signal losses. As a result, a SCSI system with many

external devices is more susceptible to data errors than one with many internal devices.

Lately, Teflon® cables have gotten a lot of attention. This refers to a standard
copper cable with a PTFE (Poly Tetra Fluoro Ethylene) insulation instead of
the typical polyvinyl chloride (PVC) or thermoplastic elastomer (TPE) insula­
tion. These really are better cables - aside from better electrical specs
(capacitance and cross talk are lower, insulation resistance is higher than with

Figure A. 2: Recommended SCSI Round Cable Layout

3.R8 Appendix A

Control s igna l s

REQ and ACK s igna ls

Data l ines and
Termination Power

PVC, for example) , PTFE is harder and tougher than PVC-giving you a more
robust cable physically and electrically.

Connector Specs

Connectors are a continuing saga in the life of SCSI because of the various
interface widths, longevity of the standards process, and manufacturer prefer­
ences. We' ll look at the standard connectors first.

Since the first SCSI-2 drafts, the cables are called by one-letter names like
A-cable or B-cable and so on, differentiated by bus width and cable/ connector
layout. You might expect that each letter would name a typical combination of
cable layout and connector type, but that would be too easy. Instead, the A­
cable comes in three different flavors, all three in current use, and some of
the other cable connectors in both a shielded and an unshielded version.

We need to differentiate between unshielded and shielded official con­
nectors, vendor-specific connectors, and obsolete connectors (both shielded
and unshielded) . To sum up, following are the connectors we ' ll specify later.

The unshielded connectors in use are:

., 50-pin flat cable connector called IDC header ("A-cable"; female configu­
ration for cables, male for devices) . This connector was defined in SCSI-1 .

., 68-pin high-density connector ("P-cable" and "Q-cable" ; male for cables,
female for devices) . This connector was introduced in SCSI-2 and is the
standard connector for Wide SCSI.

• 80-pin single connector attachment (SCA-2) connector. This connector
was introduced in the SCSI-3 SPI-2 standard and carries the P-cable
together with device power and a few additional control signals. It is
meant to be used with SCSI backplanes.

Shielded connectors that are common in the market are :

• 50-pin Centronics-type connector ("A-cable"; male for cables, female for
devices) . This connector was defined in SCSI-I .

., 50-pin high-density connector ("A-cable"; male for cables, female for
devices) . This connector was defined in SCSI-2 and, together with the
Centronics-type connector, is the standard connector for 8-bit SCSI.

• 68-pin high-density connector ("P-cable" and "Q-cable"; male for cables,
female for devices) . This connector was introduced in SCSI-2 and is the
standard external connector for Wide SCSI .

All-Platform Techn ical Reference 3l9 ·

• 68-pin very high-density cable interconnect (VHDCI or VHD) connector
("P-cable" and "Qcable"; male for cables, female for devices) . The VHDCI
connector was introduced in the SCSI-3 SPI-2 standard.

From the vendor-specific connectors, the following are still in use :

• 25-pin Sub-D connector (Apple defined pin wiring) . Apple defined this
connector and layout with the introduction of the Macintosh computer.
Because of the Mac's popularity, the cable was widely used for external
devices (and still haunts us to this day) . This connector works only for
single-ended, asynchronous signaling.

• Apple 30-pin HDI connector ("PowerBook connector") . When Apple
needed a SCSI connector for their PowerBook notebooks, they defined
a new compact SCSI connector instead of using the new HD connector,
presumably for cost reasons.

• IBM 60-pin high-density mini Centronics connector. This connector was
in discussion for SCSI-2, but then became unpopular. IBM used this con­
nector on PS/2 and RS-6000 machines.

And last, but not least, the obsolete connectors:

• 68-pin high-density for the Wide SCSI B-cable. The B-cable never really
appeared

• Sun 50-pin sub-D connector. This three-row sub-D connector was widely
used by Sun Microsystems on their old workstations.

• Novell/Procomp DCB SCSI connector. A two-row 37-pin sub-D connector
defined by Novell for their DCB controller boards.

• 25-pin sub-D connector (Future Domain pinout) . At about the same time
as Apple, Future Domain defined this connector and layout as a cheap
SCSI connector for the emerging market of personal computers . This
pinout never caught on in a big way.

All official standard connectors are available in single-ended, high voltage dif­
ferential, and low voltage differential versions. Some of the vendor-specific and
obsolete ones are available in single-ended and high voltage differential: In
sum, this adds up to a whopping 40 connector/interface options - and you
can be sure that some are missing!

320 Appendix A

M�i.Jij Cables desig;ned for differential use generally can be used for single-ended operation, but

be careful if you attempt to use a single-ended cable in a differential system. Aside from the

connector options with less than 50 pins, some- mainly cheajJer- SCSI cables use less

than the required 50 conductors by combining multiple ground pins on one conductor.

On a single-ended system, it 's "only " the sig;nal quality that is at risk, but using this cable

in a differential setup shorts multiple sig;nal lines and may not be healthy for the devices.

Unshielded Connectors

50-Pin 8-Bit IDC Header Connector

The venerable 50-pin IDC header connector was the standard connector for
SCSI' s predecessor SASI and still is the standard device connector for 8-bit
SCSI devices. Even devices with vendor-specific external connectors (Apple,
Future Domain, IBM, Novell/Procomp) use this connector on the inside .
Figures A.3 and A.4 show the 50-pin IDC header connector. The upper con­
nector with the female contacts is the cable connector, and the lower male
part is the connector you will see on SCSI devices. If you' re unsure about
the orientation or if you have a connector without the keying notch, you can
generally identify pin 1 by a mark on the conn�ctor's plastic body-typically
an arrow, spot, or line is used.

Pin 1 D P in 49
P in 2 D P in 5 0

Figure A. 3: Female /DC Header Connector (Cable)

P in 49 II Ill Ill II Ill Ill Ill Ill Ill Ill II Ill Ill llil li!l llil llil llil l!il l!il llil llil llil llil li!l P in 1
P in 50 II II II Ill II llil Ill Ill II Ill Ill Ill Iii Ill Iii llil llil llil li!l li!l Iii l!il li!l llil llil P in 2

Figure A.4: Male /DC Header Connector (Device}

The pinouts for the single-ended and differential variants of this connector
are shown in Table A.3.

Al l -P la tform Tec h n ica l Reference 3 2 !

Table A.3: A-Cable Pinouts (IDC Header Connector)

High Low High Low
Single Voltage Voltage Single Voltage Voltage

Pin Ended Differential Differential Pin Ended Differential Differential

SIGNAL RETURN GROUN D +DB(O) 26 TERMPWR TERMPWR TERMPWR
-DB(O) GROUND -DB(O) 27 RESERVED RESERVED RESERVED
SIGNAL RETURN + DB(O) +DB(1) 28 RESERVED RESERVED RESERVED

4 -DB(1) -DB(O) -DB(1) 29 GROUND +ATN GROUND
5 SIGNAL RETURN +DB(1) +DB(2) 30 GROUND -ATN GROUN D
6 -DB(2) -DB(1) -DB(2) 3 1 SIGNAL RETURN GROUND +ATN
7 SIGNAL RETURN + DB(2) +DB(3) 32 -ATN GROUN D -ATN
B -DB(3) -DB(2) -DB(3) 33 GROUND +BSY GROUND
9 SIGNAL RETURN +DB(3) +DB(4) 34 GROUND -BSY GROUN D
1 0 -DB(4) -DB(3) -DB(4) 35 SIGNAL RETURN +ACK +BSY
1 1 SIGNAL RETURN + DB(4) +DB(5) 36 -BSY -ACK -BSY
1 2 -DB(5) -DB(4) -DB(5) 37 SIGNAL RETURN +RST +ACK
1 3 SIGNAL RETURN + DB(5) +DB(6) 38 -ACK -RST -ACK
1 4 -DB(6) -DB(5) -DB(6) 39 SIGNAL RETURN +MSG +RST
1 5 SIGNAL RETURN +DB(6) +DB(7) 40 -RST -MSG -RST
1 6 -DB(7) -DB(6) -DB(7) 4 1 SIGNAL RETURN +SEL +MSG
1 7 SIGNAL RETURN +DB(7) +DB(P) 42 -MSG -SEL -MSG
1 8 -DB(P) -DB(7) -DB(P) 43 SIGNAL RETURN +C/D +SEL
1 9 GROUND + DB(P) GROUND 44 -SEL -C/D -SEL
20 GROUN D -DB(P) GROUND 45 SIGNAL RETURN +REQ +C/D
2 1 GROUND DIFFSENS DIFFSENS 46 -C/D -REQ -C/D
22 GROUND GROUND GROUND 47 SIGNAL RETURN + 1/0 +REQ
23 RESERVED RESERVED RESERVED 48 -REQ -1/0 -REQ
24 RESERVED RESERVED RESERVED 49 SIGNAL RETURN GROUND +1/0
25 N/C TERMPWR TERMPWR 50 -1/0 GROUN D -1/0

68-Pin Wide SCSU P· and Q·Cables

The P- and Q-cables use the high-density connector introduced in SCSI-2 . The
high-density connector was specified for multiple reasons, but one of the most
pressing was that the emerging (at that time) 3Xz-inch devices didn ' t have
enough mounting space to fit an IDC connector with 68 pins. This connector
is basically the same for internal and external cables - the internal version
is unshielded, has a plastic body, and lacks locking mechanisms. The cable
connector is the male connector (Figure A.S) ; the device is the female con-
nector (Figure A.6) .

Table A.4 shows the pinouts for single-ended and differential P-cables.

Pin 1 P in 34

[� : D � D D II D : }]
P in 2 P i n 68

Figure A.5: SCS/-2 Wide High-Density Connector, Male (P- and Q-cable)

322 Appendix A

P i n 34 P in 1 \aaa a;'
c

P in 68 P in 3 5

Figure A .6 : SCS/-2 Wide High-Density Connector, Female {Device}

Table A.4 shows the pinouts for single-ended and differential P-cables.

Table A.4: P·Cable Pinauts

Pin SE HVD LVD Pin SE I LVD HVD

SIGNAL RETURN +D8(1 2) +D8(1 2) 35 -D8(1 2) -D8(1 2)

2 SIGNAL RETURN +D8(1 3) +D8(1 3) 36 -D8(1 3) -08(1 3)

3 SIGNAL RETURN +D8(1 4) +D8(1 4) 37 -D8(1 4) -D8(1 4)

4 SIGNAL RETURN +D8(1 5) +D8(1 5) 38 -D8(1 5) -D8(1 5)

5 SIGNAL RETURN +D8(P 1) +D8(P 1) 39 -D8(P 1) -D8(P 1)

6 SIGNAL RETURN GND +D8(0) 40 -D8(0) GROUND

7 SIGNAL RETURN +D8(0) +D8(1) 4 1 -D8(1) -D8(0)

8 SIGNAL RETURN +D8(1) +D8(2) 42 -D8(2) -D8(1)

9 SIGNAL RETURN +D8(2) +D8(3) 43 -D8(3) -D8(2)

1 0 SIGNAL RETURN +D8(3) +D8(4) 44 -D8(4) -D8(3)

1 1 SIGNAL RETURN +D8(4) +D8(5) 45 -D8(5) -D8(4)

1 2 SIGNAL RETURN +D8(5) +D8(6) 46 -D8(6) -D8(5)
1 3 SIGNAL RETURN +D8(6) + DB(l) 47 -D8(7) -D8(6)

1 4 SIGNAL RETURN + D8(7) +D8(P) 48 -D8(P) -D8(7)

1 5 GROUND +D8(P) GROUND 49 GROUND -D8(P)
1 6 GROUND DIFFSENS DIFFSENS 50 GROUN D GROUND

1 7 TERMPWR TRMPWR TERMPWR 5 1 TERMPWR TRMPWR
1 8 TERMPWR TRMPWR TERMPWR 52 TERMPWR TRMPWR
1 9 RESERVED RESERVED RESERVED 53 RESERVED RESERVED
20 GROUND +ATN GROUND 54 GROUND -ATN
2 1 SIGNAL RETURN GROUND +ATN 55 -ATN GROUND
22 GROUND +8SY GROUND 56 GROUND -8SY
23 SIGNAL RETURN +ACK +8SY 57 -8SY -ACK

24 SIGNAL RETURN +RST +ACK 58 -ACK -RST

25 SIGNAL RETURN +MSG +RST 59 -RST -MSG
26 SIGNAL RETURN +SEL +MSG 60 -MSG -SEL
27 S IGNAL RETURN +C/D +SEL 6 1 -SEL -C/D
28 SIGNAL RETURN +REQ +C/D 62 -C/D -REQ
29 SIGNAL RETURN +1/0 +REQ 63 -REQ -1/0
30 SIGNAL RETURN GROUND +1/0 64 -1/0 GROUND
3 1 SIGNAL RETURN +D8(8) +D8(8) 65 -D8(8) -D8(8)

32 SIGNAL RETURN +D8(9) +D8(9) 66 -D8(9) -D8(9)

33 SIGNAL RETURN +D8(1 0) +D8(1 0) 67 -D8(1 0) -D8(1 0)
34 S IGNAL RETURN +D8(1 1) +D8(1 1) 68 -D8(1 1) -D8(1 1)

Al l-Platform Techn ical Reference 5 2 5

Table A.5 shows the pinouts for single-ended and differential Qcables.

Table A.5: Q·Cable Pinouts

Pin SE LVD HVD Pin SE I LVD HVD

SIGNAL RETURN +DB(28) +DB(28) 35 -DB(28) -DB(28)
2 SIGNAL RETURN +DB(29) +DB(29) 36 -DB(29) -DB(29)
3 SIGNAL RETURN +DB(30) +DB(30) 37 -D8(30) -DB(30)
4 SIGNAL RETURN +D8(3 1) +D8(3 1) 3 8 -D8(3 1) -DB(3 1)
5 SIGNAL RETURN +D8(P3) +D8(P3) 39 -D8(P3) -D8(P3)
6 SIGNAL RETURN +D8(1 6) GROUND 40 -D8 (1 6) GROUND
7 SIGNAL RETURN +D8(1 7) +DB(1 6) 4 1 -D8(1 7) -D8(1 6)
8 SIGNAL RETURN +D8(1 8) +DB(l l) 42 -D8(1 8) -DB(1 7)
9 SIGNAL RETURN +D8(1 9) +D8(1 8) 43 -DB(1 9) -D8(1 8)
1 0 SIGNAL RETURN +DB(20) +DB(1 9) 44 -DB(20) -DB(1 9)
1 1 SIGNAL RETURN +DB(2 1) +D8(20) 45 -D8(2 1) -D8(20)
1 2 SIGNAL RETURN +DB(22) +DB(2 1) 46 -DB(22) -DB(2 1)
1 3 SIGNAL RETURN +DB(23) +D8(22) 47 -DB(23) -D8(22)
1 4 SIGNAL RETURN +D8(P2) +DB(23) 48 -D8(P2) -D8(23)
1 5 GROUND GROUND +D8(P2) 49 GROUND -DB(P2)
1 6 GROUND DIFFSENS DIFFSENS 50 GROUND GROUND
1 7 TERMPWRQ TERMPWRQ TERMPWRQ 5 1 TERMPWRQ TERMPWRQ
1 8 TERMPWRQ TERMPWRQ TERMPWRQ 52 TERMPWRQ TERMPWRQ
1 9 RESERVED RESERVED RESERVED 53 RESERVED RESERVED
20 GROUND GROUND TERMINATED 54 GROUND TERMINATED
2 1 . GROUND TERMINATED GROUND 55 TERMINATED GROUND
22 GROUND GROUND TERMINATED 56 GROUND TERMINATED
23 GROUND TERMINATED +ACKQ 57 TERMINATED -ACKQ
24 SIGNAL RETURN +ACKQ TERMINATED 58 -ACKQ TERMINATED
25 GROUND TERMINATED TERMINATED 59 TERMINATED TERMINATED
26 GROUND TERMINATED TERMINATED 60 TERMINATED TERMINATED
27 GROUND TERMINATED TERMINATED 6 1 TERMINATED TERMINATED
28 GROUND TERMINATED +REQQ 62 TERMINATED -REQQ
29 SIGNAL +REQQ TERMINATED 63 -REQQ TERMINATED
30 GROUND TERMINATED GROUND 64 TERMINATED GROUND
3 1 SIGNAL RETURN +D8(24) +D8(24) 65 -DB(24) -D8(24)
32 SIGNAL RETURN +D8(25) +D8(25) 66 -DB(25) -D8(25)
33 SIGNAL RETURN +D8(26) +D8(26) 67 -D8(26) -D8(26)
34 SIGNAL RETURN +D8(27) +D8(27) 68 -D8(27) -D8(27)

80·Pin Wide SCSI SCA Connector

The SCA-2 connector was specified in SCSI-3 SPI-2 for SCSI backplanes - with
disk drive arrays in mind - and is a bit different from the other connectors,
because it not only carries the SCSI signals, but also supplies voltage for the
devices and necessary control signals for drive arrays.

The SCA-2 connector is an approved EIA standard (EIA-700AOAE) and
an SFF project (SFF-8451) . SCA-2 has some advantages for applications
wherein drives may be swapped or lots of identical drives must be held as
spare parts:

324 Appendix A

" SCA-2, together with the defined connector position, is ideal for slide-in
devices. The manufacturer doesn' t necessarily need to define a proprietary
connector (nor do you) . Of course, most manufacturers still do.

" As stated, it carries all SCSI signals and the supply power in one connector,
removing the need for different connectors.

• SCA-2 is hot-pluggable . Defined lengths of the pins lead to a defined con­
tact sequence with pre-charging of the drive 's electronic circuits , enabling
suppression of spikes and other signal noise while connecting. The embed­
ded motor start control helps here and also carries the mechanism for
standby drives.

• SCA-2 carries spindle synchronization. Even though spindle sync is not yet
standardized over different disk drives, it remains desirable for arrays of
identical drives. This signal is now considered obsolete and may be removed
in new devices.

• SCA-2 devices by definition are not terminated. Therefore you can ' t acci­
dentally forget to remove this jumper.

Figures A.7 and A.8 show the connectors; Table A.6 lists the pinouts .

Position 1 Position 40

I l l \I : 11 11 1
t Posit ion 4 1 Position 8 0 t .__ --------- Advanced Grounding Contacts -----------'-

Figure A.7: SCA-2 Connector, Female (Backplane)

P in 40 P in 1

P in 80 P i n 4 1

Figure A .B: SCA-2 Connector, Male {Device)

All-Platform Techn ical Reference 3 2 5

Table A.6: SCA·2 Pinouts

Pin Single Ended LVD/HVD Pin Single Ended LVD/HVD

1 (long) 1 2 V CHARGE 1 2 V CHARGE 41 (long) 1 2 V GROUND 1 2 V GROUND
2 1 2 v 1 2 v 42 (long) 1 2 V GROUND 1 2 V GROUND
3 1 2 v 1 2 v 43 (long) 1 2 V GROUND 12 V GROUND
4 1 2 v 1 2 v 44 MATED 1 MATED 1
5 3 . 3 v 3 . 3 v 45 (long) 3 . 3 V CHARGE 3 . 3 V CHARGE
6 3 . 3 v 3 . 3 v 46 (long) GROUND DIFFSENS
7 -DB(l l) -DB(l l) 47 SIGNAL RETURN +DB (l l)
8 -DB(l O) -DB(l O) 48 SIGNAL RETURN +DB (l O)
9 -DB(9) -DB(9) 49 SIGNAL RETURN +DB(9)
1 0 -DB(8) -DB(8) 50 SIGNAL RETURN +DB(8)
1 1 -1/0 -1/0 5 1 SIGNAL RETURN +1/0
1 2 -REQ -REQ 52 SIGNAL RETURN +REQ
1 3 -C/D -C/D 53 SIGNAL RETURN +C/D
1 4 -SEL -SEL 54 SIGNAL RETURN +SEL
1 5 -MSG -MSG 55 SIGNAL RETURN +MSG
1 6 -RST -RST 56 SIGNAL RETURN +RST
1 7 -ACK -ACK 57 SIGNAL RETURN +ACK
1 8 -BSY -BSY 58 SIGNAL RETURN +8SY
1 9 -ATN -ATN 59 SIGNAL RETURN +ATN
20 -DB(P) -DB(P) 60 SIGNAL RETURN +DB (P)
2 1 -DB(7) -DB(7] 6 1 SIGNAL RETURN +DB(7)
22 -DB(6) -D8(6) 62 SIGNAL RETURN +DB(6)
23 -D8(5) -D8(5) 63 SIGNAL RETURN +D8(5)
24 -D8(4) -D8(4) 64 SIGNAL RETURN +D8(4)
25 -DB(3) -D8(3) 65 SIGNAL RETURN +D8(3)
26 -DB(2) -DB(2) 66 SIGNAL RETURN +D8(2)
27 -DB(l) -DB(l) 67 SIGNAL RETURN +D8(1)
28 -DB(O) -D8(0) 68 SIGNAL RETURN +D8(0)
29 -DB(P l) -D8(P l) 69 SIGNAL RETURN +D8(P l)
30 -D8(1 5) -D8(1 5) 70 SIGNAL RETURN +D8 (1 5)

3 1 -D8(1 4) -D8(1 4) 7 1 SIGNAL RETURN +D8 (1 4)
32 -DB(1 3) -D8(1 3) 72 SIGNAL RETURN +D8(1 3)
33 -DB(1 2) -D8(1 2) 73 SIGNAL RETURN +D8(1 2)
34 5 V 5 V 74 MATED 2 MATED 2
35 5 V 5 V 75 (long) 5 V GROUND 5 V GROUND
3 6 (long) 5 V CHARGE 5 V CHARGE 76 (long) 5 V GROUND 5 V GROUND
3 7 (long) SP INDLE SYNC SPINDLE SYNC 77 (long) ACTIVE LED OUT ACTIVE LED OUT
38 (long) RMT_START RMT_START 78 (long) DLYD_START DLYD_START

39 (long) SCSI ID (OJ SCSI ID (0) 79 (long) SCSI ID (1) SCSI ID (1)

4 0 (long) SCSI ID (2) SCSI ID (2) 80 (long) SCSI ID (3) SCSI ID (3)

.... On most of the cheap SCA connector adapters on the market, the DIFFSENS pin in the
SCA connector is not connected. This leads to trouble with an SCA L WJ drive on an SE
bus. If you have such an adapter, you 'll need to solder a short wire from the SCA con-

nectar 's pin 46 to the HD connector's pin 16 to connect DIFFSENS.

326 Appendix A

Shielded Connectors

Shielded connectors are used generally for external cables , meaning cables
that are not located in closed cases and therefore need shielding. Compared
with the few standardized unshielded connectors, this is where the real mess
with SCSI connectors starts . Whatever you do, be prepared for the fact that
the adapter you need now isn ' t available in your favorite store .

50-Pin Centronics-Style (A-Cable)

The Centronics-style connector started in SCSI-1 and is still the de facto standard
for external connections - even though it is losing ground against the high- density
connector. This connector is usually secured with two spring clamps. Like all
other ribbon-contact connectors , i t is intended to be foolproof- you virtually
can ' t damage it or connect it incorrectly, even using force, and contact reliabil ity

is typically very high.
Table A.7 lists the pinouts for 50-pin Centronics-style connectors. Figures

A.9 and A. l O show the 50-posi tion shielded low-density cable and device con­
nectors (A-cable) .

Table A.7: Centronics·Style Connector Pinouts

Single Single
Pin Ended HVD LVD Pin Ended HVD LVD

GROUND GROUND +DBIO) 26 -DBIO) GROUND TE RMPWR

2 GROUND +DBIO) -DBIO) 27 -DBj l) -DBIO) RESERVED

3 GROUND +DBj l) +DBj l) 2 8 -DBI2) -DB! l) RESERVED

4 GROUND +DBI2) -DB! l) 29 -DBI3) -DBI2) GROUND

5 GROUND +DBI3) +DBI2) 30 -DBI4) -DBI3) GROUND

6 GROUND +DBI4) -DBI2) 3 1 -DBI5) -DBI4) +ATN

7 GROUND +DBI5) +DBI3) 3 2 -DBI6) -DBI5) -ATN

8 GROUND +DBI6) -DBI3) 33 -DB!l) -DBI6) GROUND

9 GROUND +DB!l) + DBI4) 34 -DBIP) -DB!l) GROUND

1 0 GROUND +DBIP) -DBI4) 35 GROUND -DBIP) +BSY

1 1 GROUND DIFFSENS +DBI5) 36 GROUND GROUND -BSY

1 2 RESERVED RESERVED -DBI5) 37 RESERVED RESERVED +ACK

1 3 Not TERMPWR +DBI6) 38 TE RMPWR TERMPWR -AC K
connected

1 4 RESERVED RESERVED -DBI6) 39 RESERVED RESERVED +RST

1 5 GROUND +ATN +DB!l) 40 GROUND -ATN -RST

1 6 GROUND GROUND -DB!l) 4 1 -ATN GROUND +MSG

1 7 GROUND +BSY +DBIP) 42 GROUND -BSY -MSG

1 8 GROUND +ACK -DBIP) 43 -BSY -ACK +SEL

1 9 GROUND +RST GROUND 44 -AC K -RST -SEL

20 GROUND +MSG GROUND 45 -RST -MSG +C/D

2 1 GROUND +SEL DIFFSENS 46 -MSG -SEl -C/D

22 GROUND +C/D GROUND 47 -SE L -C/D +REQ

23 GROUND +REQ RESERVED 48 -C/D -REQ -REQ

24 GROUND +1/0 RESERVED 49 -REQ -1/0 +1/0

25 GROUND GROUND TERMPWR 50 -1/0 GROUND -1/0

Al l -P la tform Tec h n ica l Reference 3 2 7

Pi n 1 P in 25

P i n 26 P in 50

Figure A 9: Centronics-Style Low-Density Connector, Male {Cable}

Pin 25 Pin l

P in 50 P i n 36

Figure A 1 0: Centronics-Style Low-Density Connector, Female (Device)

50·1Pin IHligh·IDensity Connector (A-cable)

Figures A. l l and A. l 2 show the 50-position shielded high-density cable and
device connectors for the A-cable . This is the standard connector you will see
as external cable connector on SCSI-2 host adapters now.

Table A.8 lists the pinouts for this connector.

Pin l P in 25

� �:� a a a a • a �
t P in 26 P in 50 t Spring c lamp lock mechan isms

Figure A I I : Shielded High-Density Sub-D Connector, Male {Cable)

328 Appendix A

P in 25 P in 1

� \cccc c/ � � c �
P in 50 tL--------- Spring c lamp lock mechan isms ---------....It P in 26

Figure A 1 2: Shielded High-Density Sub-D Connector, Female {Device)

Table A.8: High-Density Sub·D Connector (A-Cable Pinouts)

Pin

1
2

4
5
6
7

8
9
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25

SE LVD HVD Pin SE I LVD HVD

SlGNAL RETURN +D8101 GROUND 26 -D8j0) GROUND
SIGNAL RETURN +D8j l) +D8j0) 27 -D8j l) -D8j0)
SIGNAL RETURN +D8j2) +D8j l) 28 -D8j2) -D8j l)
SIGNAL RETURN +D8j3) +D812) 29 -D8j3) -D8j2)
SIGNAL RETURN +D8j4) +D8j3) 30 -D8j4) -D8j3)
SIGNAL RETURN +D8j5) +D8j4) 3 1 -D8j5) -D8j4)
SIGNAL RETURN +D8j6) +D8j5) 32 -D8j6) -D8j5)
SIGNAL RETURN +D8j7) +D8j6) 33 -DBjl) -D8j6)
SIGNAL RETURN +D81P) +DBjl) 34 -D8jP) -DBjl)
GROUND GROUN D +D8jP) 35 GROUN D -D8jP)
GROUND DIFFSENS DIFFSENS 36 GROUN D GROUN D
RESERVED RESERVED RESERVED 37 RESERVED RESERVED
OPEN I l l TERMPWR TERMPWR 38 TERMPWR TERMPWR
RESERVED RESERVED RESERVED 39 RESERVED RESERVED
GROUN D GROUND +ATN 40 GROUND -ATN
SIGNAL RETURN +ATN GROUND 4 1 -ATN GROUND
GROUND GROUND +8SY 42 GROUND -8SY
SIGNAL RETURN +8SY +ACK 43 -8SY -ACK
SIGNAL RETURN +ACK +RST 44 -ACK -RST
SIGNAL RETURN +RST +MSG 45 -RST -MSG
SIGNAL RETURN +MSG +SEL 46 -MSG -SEL
SIGNAL RETURN +SEL +C/D 47 -SEL -C/D
SIGNAL RETURN +C/D +REQ 48 -C/D -REQ
SIGNAL RETURN +REQ + I/O 49 -REQ -1/0
SIGNAL RETURN +1/0 GROUND 50 -1/0 GROUND

68-Pin High-Density Connector (P· and Q-Cables)

The pinouts and mechanical dimensions for the shielded P- and Q-cable con-
nectors are the same as those of the internal connectors , except that they have
a metal-shielded body and their locking mechanism uses screws instead of
clamps (Figures A. l 3 and A. l4) . This is the standard connector for 1 6-bit SCSI
interfaces since SCSI-2 Wide regardless of the electrical interface, be it Wide
SCSI, Ultra Wide, or Ultra2 LVD.

All-Platform T ech n icol Reference 3 2 9

P i n 1 Pin 34

. 11 11 11 11 11 111 11 II II II II II II

0
. II II II II II II II II II II • a a a a a

P in 35

Screw-i n lock mechan isms

Figure A 7 3: Shielded High-Density Sub-D Connector, Male (Cable)

Table A.9 shows the pinouts for the P-cables, Table A. l O for the Q-cable.

Table A.9: High-Density Sub·D Connector (P-Cable Pinouts)

Pin SE HVD LVD Pin SE I LVD HVD

SIGNAL RETURN +DB(1 2) +DB(1 2) 35 -DB(1 2) -DB(1 2)

2 SIGNAL RETURN +DB(1 3) +DB(1 3) 36 -DB(1 3) -DB(1 3)

3 SIGNAL RETURN +DB(1 4) +DB(1 4) 37 -DB(1 4) -DB(1 4)

4 SIGNAL RETURN +DB(1 5) +DB(1 5) 3 8 -DB(I 5) -DB(1 5)

5 SIGNAL RETURN +DB(P 1) +DB(P 1) 39 -DB(P l) -DB(P l)

6 SIGNAL RETURN GROUND +DB(O) 40 -DB(O) GROUND

7 SIGNAL RETURN +DB(O) +DB(l) 4 1 -DB(l) -DB(O)

8 SIGNAL RETURN +DB(l) +DB(2) 42 -DB(2) -DB(l)

9 SIGNAL RETURN +DB(2) +DB(3) 43 -DB(3) -DB(2)

1 0 SIGNAL RETURN +DB(3) +DB(4) 44 -DB(4) -DB(3)

1 1 SIGNAL RETURN +DB(4) +DB(5) 45 -DB(5) -DB(4)

1 2 SIGNAL RETURN +DB(5) +DB(6) 46 -DB(6) -DB(5)

1 3 SIGNAL RETURN +DB(6) +DB(7) 47 -DB(7) -DB(6)

1 4 SIGNAL RETURN +DB(7) +DB(P) 48 -DB(P) -DB(7)

1 5 GROUND +DB(P) GROUND 49 GROUND -DB(P)

1 6 GROUND DIFFSENS DIFFSENS 50 GROUND GROUND

1 7 TERMPWR TERMPWR TERMPWR 5 1 TERMPWR TERMPWR

1 8 TERMPWR TERMPWR TERMPWR 52 TERMPWR TERMPWR

1 9 RESERVED RESERVED RESERVED 53 RESERVED RESERVED

20 GROUND +ATN GROUND 54 GROUND -ATN

2 1 SIGNAL RETURN GROUND +ATN 55 -ATN GROUND

22 GROUND +BSY GROUND 56 GROUND -BSY

23 SIGNAL RETURN +ACK +BSY 57 -BSY -ACK

24 SIGNAL RETURN +RST +ACK 58 -ACK -RST

25 SIGNAL RETURN +MSG +RST 59 -RST -MSG

26 SIGNAL RETURN +SEL +MSG 60 -MSG -SEL

27 SIGNAL RETURN +C/D +SEL 6 1 -SEL -C/D

28 SIGNAL RETURN +REQ +C/D 62 -C/D -REQ

29 SIGNAL RETURN +1/0 +REQ 63 -REQ -1/0

30 SIGNAL RETURN GROUND +1/0 64 -1/0 GROUND

3 1 SIGNAL RETURN +DB(B) +DB(B) 65 -DB(B) -DB(B)

32 SIGNAL RETURN +DB(9) +DB(9) 66 -DB(9) -DB(9)

33 SIGNAL RETURN +DB(1 0) +DB (l O) 67 -DB(l O) -DB(l O)

34 SIGNAL RETURN +DB(l l) +DB(1 1) 68 -DB(1 1) -DB(l l)

330 Appendix A

P in 34 P i n 1 , \c c/
(� c)

P in 68 P i n 35

Screw-i n lock mechan i sms

Figure A. 1 4: Shielded High-Density Sub-D Connector, female (Device)

Table A. l 0: High-Density Sub·D Connector (Q·Cable Pinouts)

Pin SE LVD HVD Pin SE I LVD HVD

1 SIGNAL RETU RN +DB (2 8 J +DB (2 8 J 35 -DB (2 8 J -DB (28 J

2 SIGNAL RETURN +DB (2 9 J +DB (29 J 36 -DB (29 J -DB (29 J

3 SIGNAL RETURN +DB (3 0J +DB (3 0J 37 -DB (30J -DB (30J

4 SIGNAL RETURN +DB (3 1 J +DB (3 1 J 3 8 -DB (3 1 J -DB (3 1 J

5 SIGNAL RETURN +DB (P3 J +DB (P3 J 3 9 -DB (P3 J -DB (P3 J

6 SIGNAL RETURN +DB (l 6 J GROUND 40 -DB (l 6 J GROUND

7 SIGNAL RETURN +DB (l 7J +DB (l 6J 4 1 -DB (l 7J -DB (l 6 J

8 SIGNAL RETURN +DB (l 8 J +DB (l 7J 42 -DB (l B J -DB (l 7J

9 SIGNAL RETURN +DB (l 9 J +DB (l B J 43 -DB (l 9 J -DB (l 8 J

1 0 SIGNAL RETURN +DB (20J +DB (l 9J 44 -DB (20J -DB (l 9 J

1 1 SIGNAL RETUR N +DB (2 1 J +DB (20 J 45 -DB (2 1 J -DB (20J

1 2 SIGNAL RETURN +DB (2 2 J +DB (2 1 J 46 -DB (2 2 J -DB (2 1 J

1 3 SIGNAL RETU RN +DB (2 3 J +DB (22 J 47 -DB (23 J -DB (22 J

1 4 SIGNAL RETURN +DB (P2 J +DB (2 3 J 4 8 -DB (P2 J -DB (23 J

1 5 GROUND GROUND +DB (P2 J 49 GROU N D -DB (P2 J

1 6 GROUND DIFFSENS DIFFSENS 50 GROUND GROUND

1 7 TERMPWRQ TERMPWRQ TE RMPWRQ 5 1 TERMPWRQ TE RMPWRQ

1 8 TERMPWRQ TERMPWRQ TERMPWRQ 52 TE RMPWRQ TERMPWRQ

1 9 RESERVED RESERVED RESERVED 53 RESERVED RESERVED

20 GROUND GROUND TERMI NATED 54 GROU N D TERMINATED

2 1 GROUND TERMI NATED GROUND 55 TERMINATE D GROUND

22 GROUND GROUND TERMINATED 56 GROUND TERMINATED

23 GROUND TERMINATED +ACKQ 57 TERMINATED -ACKQ

24 SIGNAL RETU RN +ACKQ TERMINATED 58 -AC KQ TERMINATED

25 GROUND TERMI NATED TERMINATED 59 TERMI NATED TERMI NATED

26 GROUND TERMINATED TERMINATED 60 TERMINATED TERMI NATED

27 GROUND TERMI NATED TERMINATED 6 1 TERMI NATE D TERMI NATED

28 GROUND TERMINATED +REQQ 62 TERMI NATED -REQQ

29 SIGNAL RETURN +REQQ TERMINATED 63 -REQQ TERMINATED

30 GROUND TERMINATED GROUND 64 TERMINATED GROUND

3 1 SIGNAL RETURN +DB (24 J +DB (24 J 65 -DB (24 J -DB (24 J

3 2 SIGNAL RETU RN +DB (25 J +DB (25 J 66 -DB (25 J -DB (25 J

3 3 SIGNAL RETU RN +DB (26 J +DB (26 J 67 -DB (26 J -DB (26 J

34 SIGNAL RETURN +DB (2 7J +DB (27J 68 -DB (2 7J -D8 (27J

Al l -P latform Tech n ica l Reference 3 3 1

68-Pin Very High Density Cable Interconnect (VHDCI) Connector

(1?- and Q-Cables)

The new very high density cable interconnect (VHDCI or VHD) connector is
a real godsend for RAID adapter manufacturers-with its small dimensions,
two Wide SCSI bus connectors use about the same space as one HD-68 con-
nector. The pin layout is the same as that of the high-density sub-D connector,
but the VHD connector uses ribbon contacts similar to the old Centronics-
type connector.

Figures A. IS and A. l6 show the connectors, and Table A l l lists the pinouts.
Like the SCA-2 connector, the VHDCI connector is an approved EIA standard
(EIA-700AOAF) and an SFF project(SFF-8441) .

Table A. 1 1 : VHDCB Connector (P-Cable Pinouts)

Pin SE HVD LVD Pin SE I LVD HVD

1 SIGNAL RETURN +DB(l 2) +DB(l 2) 3 5 -DB(l 2) -DB(l 2)

2 SIGNAL RETURN +DB(l 3) +DB(l 3) 3 6 -DB(l 3) -DB(l 3)

SIGNAL RETURN +DB(l 4) +DB(l 4) 3 7 -DB(l 4) -DB(l 4)

4 SIGNAL RETURN +DB(l 5) +DB(1 5) 3 8 -DB(1 5) -DB(l 5)

5 SIGNAL RETURN +DB(P l) +DB(P l) 3 9 -DB(P l) -DB(P l)

6 SIGNAL RETURN GROUND +DB(O) 40 -DB(O) GROUND

7 SIGNAL RETURN +DB(O) +DB(l) 4 1 -DB(l) -DB(O)

8 SIGNAL RETURN +DB(l) +DB(2) 42 -DB(2) -DB(l)

9 SIGNAL RETURN +DB(2) +DB(3) 43 -DB(3) -DB(2)

1 0 SIGNAL RETURN +DB(3) +DB(4) 44 -DB(4) -DB(3)

1 1 SIGNAL RETURN +DB(4) +DB(5) 45 -DB(5) -DB(4)

1 2 SIGNAL RETURN +DB(5) +DB(6) 46 -DB(6) -DB(5)

1 3 SIGNAL RETURN +DB(6) +DB(7) 47 -DB(7) -DB(6)

1 4 SIGNAL RETURN +DB(7) +DB(P) 48 -DB(P) -DB(7)

1 5 GROUND +DB(P) GROUND 49 GROUND -DB(P)

1 6 GROUND DIFFSENS DIFFSENS 50 GROUND GROUND

1 7 TERMPWR TERMPWR TERMPWR 5 1 TERMPWR TERMPWR

1 B TERMPWR TE RMPWR TERMPWR 52 TERMPWR TERMPWR

1 9 RESERVED RESERVED RESERVED 53 RESERVED RESERVED

20 GROUND +ATN GROUND 54 GROUND -ATN

2 1 SIGNAL RETURN GROUND +ATN 55 -ATN GROUND

22 GROUND + BSY GROUND 56 GROUND -BSY

23 SIGNAL RETURN +ACK + BSY 57 -BSY -ACK

24 S IGNAL RETURN + RST +ACK 58 -ACK -RST

25 SIGNAL RETU RN +MSG +RST 5 9 -RST -MSG

26 SIGNAL RETURN +SEL +MSG 60 -MSG -SEL

27 S IGNAL RETURN +C/D +SEL 6 1 -SEL -C/D

28 SIGNAL RETU RN +REO +C/D 62 -C/D -REQ

29 SIGNAL RETU RN +1/0 +REO 63 -REO -1/0

30 SIGNAL RETURN GROUND +1/0 64 -1/0 GROUND

3 1 SIGNAL RETURN +DB(B) +DB(B) 65 -DB(B) -DB(B)
3 2 SIGNAL RETU RN +DB(9) +DB(9) 66 -DB(9) -DB(9)

33 SIGNAL RETURN +DB(l O) +DB(l O) 67 -DB(l O) -DB(l O)

34 S IGNAL RETU R N +DB(l l) +DB(l l) 68 -DB(l l) -DB(l l)

332 Appendix A

Table A. 1 2: VHDCI Connector (Q-Cable Pinouts)

Pin

2

A
5
6
7

8
9
1 0
1 1
1 2
1 3
1 A
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
2A
25
26
27
28
29
30
3 1
3 2
33
3A

SE LVD HVD Pin SE I LVD HVD

SIGNAL RETURN +DB(28) +DB(28) 35 -DB(28) -DB(28)

S IGNAL RETURN +DB(29) +DB(29) 36 -DB(29) -DB(29)

SIGNAL RETURN +DB(30) +DB(30) 37 -DB(30) -DB(30)

SIGNAL RETURN +DB(3 1) +DB(3 1) 3 8 -DB(3 1) -DB(3 1)

SIGNAL RETURN +DB(P3) +DB(P3) 39 -DB(P3) -DB(P3)

SIGNAL RETURN +DB(1 6) GROUND AO -DB(1 6) GROUND

SIGNAL RETURN +DB (l l) +DB(1 6) A I -DB(1 7) -DB(1 6)

SIGNAL RETURN +DB(1 8) +DB (1 7) A2 -DB(1 8) -DB(1 7)

SIGNAL RETURN +DB (1 9) +DB(1 8) A3 -DB(1 9) -DB(1 8)

SIGNAL RETURN +DB(20) +DB(1 9) AA -DB(20) -DB(1 9)

SIGNAL RETURN +DB(2 1) +DB(20) A5 -DB(2 1) -DB(20)

SIGNAL RETURN +DB(22) +DB(2 1) A6 -DB(22) -DB(2 1)
SIGNAL RETURN +DB(23) +DB(22) Al -DB(23) -DB(22)
SIGNAL RETURN +DB(P2) +DB(23) AB -DB(P2) -DB(23)

GROUND GROUND +DB(P2) A9 GROUND -DB(P2)

GROUND DIFFSENS DIFFSENS 50 GROUND GROUND
TERMPWRQ TERMPWRQ TERMPWRQ 5 1 TERMPWRQ TERMPWRQ
TERMPWRQ TERMPWRQ TERMPWRQ 52 TERMPWRQ TERMPWRQ

RESERVED RESERVED RESERVED 53 RESERVED RESERVED

GROUND GROUN D TERMINATED 5A GROUND TERMINATED

GROUND TERMINATED GROUND 55 TERMINATED GROUND

GROUND GROUND TERMINATED 56 GROUND TERMINATED
GROUND TERMINATED +ACKQ 57 TERMINATED -ACKQ
SIGNAL RETURN +ACKQ TERMINATED 58 -ACKQ TERMINATED

GROUN D TERMINATED TERMINATED 59 TERMINATED TERMINATED
GROUND TERMINATED TERMINATED 60 TERMINATED TERMINATED

GROUND TERMINATED TERMINATED 6 1 TERMINATED TERMINATED

GROUND TERMINATED +REQQ 62 TERMINATED -REQQ
SIGNAL RETURN +REOQ TERMINATED 63 -REQQ TERMINATED
GROUND TERMINATED GROUND 6A TERMINATED GROUND
SIGNAL RETURN +DB(2AJ +DB(24) 65 -DB(24) -DB(24)
SIGNAL RETURN +DB(25) +DB(25) 66 -DB(25) -DB(25)
SIGNAL RETURN +DB(26) +DB(26) 67 -DB(26) -DB(26)
SIGNAL RETURN +DB(27) +DB(27) 68 -DB(27) -DB(27)

Vendor-Specific SCSI tConnedors

Companies decide to introduce proprietary SCSI connectors for their own
reasons. The most common ones still in use are Apple's 25-pin sub-D connec-
tor and their 30-pin HDI connector-used in the Macintosh computer and
in PowerBook notebooks, respectively-and IBM's proprietary 60-pin mini-
Centronics connector used on RS/6000 and PS/2 systems.

25-Pin Sub-D Connector (Apple Layout)

When Apple introduced the Macintosh computer, which used SCSI as the
default bus system, it was a revolutionary event for the SCSI market: Suddenly
a mass market existed for SCSI peripherals . Sadly (and possibly for space
reasons) Apple did not use a standard SCSI connector - at that time, the

Al l-Platform Techn ical Reference 3 3 3

Posit ion 1 Posit ion 34 1 --@--�: t-@-- 1
Position 35 Posit ion 68

t�... ________ Screw-in lock mechan ism ________ ..Jt
Figure A 1 5: VHDCI Connector, Male (Cable)

Position 34 Pos it ion 1 0 ' : : : : : : : : : : : : : : 4 @

Posit ion 35 t Position 68 tL..-------- Screw-in lock mechan i sm ----------l

Figure A 1 6: VHDCI Connector, Female (Device}

Centronics connector would have been the logical choice, but instead of using
it, Apple introduced a 25-pin sub-D connector (as Future Domain did but with
a different signal layout) . When it was introduced, Apple 's connector I cable
combination worked well with the then-current version of SCSI. However, after
the introduction of Fast SCSI, the so-called "Apple SCSI" connector became
the most prominent source of trouble in SCSI. Because of the lack of dedicated
ground lines, signal integrity is lousy. And, because of the Mac's success, lots
of peripherals still use this connector: Image scanners, ZIP drives, and similar
removable media drives are good (or bad) examples of this. Figure A. l 7 shows
the connectors and Table A. l 3 lists the signal pins.

P in 1 3 P i n 1

e \ o 0 0 0 0 0 0 0 0 0 0 0 o/o \ 0 0 0 0 0 0 0 0 0 0 0 0

Pin 1 4 P i n 25

P in 1 P i n 1 3

o \• • • • • • • • • • • • • I o
• • • • • • • • • • • • I

P in 25 P in 1 4

Figure A 1 7: Apple Sub-D Connectors {top to bottom): Female (Device); Male (Cable)

334 Appendix A

Table A. 1 3: Apple Sub-D Connector

Pin Signal Pin Signal

-REQ 1 3 -DB7

-MSG 1 4 RESERVED/ GROUND

-1/0 1 5 -C/D

4 -RST 1 6 RESERVED /GROUND

5 -ACK 1 7 -ATN

6 -BSY 1 8 GROUND

7 GROUND 1 9 -SEL
-DBO 20 -DBP

9 GROUND 2 1 -DB 1

1 0 -DB3 22 -DB2

1 1 -DB5 23 -DB4

1 2 -DB6 24 GROUND
25 TERMPWR *

* Pin 25: Termination Power is not con nected in some .\lac con nat on.

Apple PowerBook 30-Pin HOI Connector

The most recent addition to the growing list of non-standard SCSI connectors
is Apple's HDI connector used in the PowerBook series of notebook computers.
Its main feature is the very compact and rugged external connector shown in
Figure A. l8 .

Spring Clamp

P in
P in 30 25 P in 30

1 9
1 3
7

• II II Ill • liJ Cl til Cl

t t I
Pin 1

Figure A 7 8: HD/-30 Connectors, Male (Cable) and Female (PawerBook). Pin 1 is reserved

for special use.

The pinout is listed in Table A. l4 . Pin 1 is not used and not connected in the
standard cable, because it is used to select the "PowerBook Disk Mode ," where
the PowerBook, when connected with a special adapter cable , acts as external
disk drive to a "standard" Macintosh computer.

Al l -P latform Tech n ica l Reference 3 3 5

Table A. 1 4: Pinout for HDI 30 External Connector (SE)

Pin

1
2
3
4
5
6
7
8
9
1 0
1 1
1 2
1 3
1 4
1 5

Signal

-LINK.SEL
-DB(O)
GROUND
-DB! l)
TERMPWR
-DBI21
-DBI3)
GROUND
-ACK
GROUND
-DBI41
GROUND
GROUND
-DB I 51
GROUND

Pin

1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30

IBM 60-Pin High-Density Centronics Connector

Signal

-DBI6)
GROUND
-DBilJ
-DB !PI
GROUND
-REQ
GROUND
-BSY
GROUND
-ATN
-CID
-RST
-MSG
-SEL
-1/0

IBM, for whatever reasons, used the 60-pin connector for their RS/6000 and
early PS/2 systems. It is a high-density Centronics-style connector, and its first
50 pins are identical to the standard SCSI-2 HD connectors . The remaining 1 0
conductors are simply defined as "reserved" without any explanation o f their
purpose. (A reasonable guess would be that they're reserved for additional signals,
such as spindle synchronization or a failure message bus for RAID systems.)

The connector is shown in Figures A. l9 and A.20, and the pin assignments
are shown in Table A. l5 .

Table A. 1 5: Pinout for IBM 60-Pin High-Density Centronics Connector (SE)

Pin

1
2

4
5

6
7
8
9
1 0
1 1
1 2
1 3
1 4
1 5

Signal

GROUND
-DB IOJ
GROUND
-DB(l)
GROUND
-DBI21
GROUND
-DBI31
GROUND
-DBI41
GROUND
-DB I 5 1
GROUND
-DBI61
GROUND

Pin Signal

1 6 -DBilJ
1 7 GROUND
1 8 -DBIPJ
1 9 GROUND
20 GROUND
2 1 GROUND

22 GROUND
23 RESERVED I GROUND
24 RESERVED I GROUND
25 NOT CONNECTED
26 TERMPWR
27 RESERVED
28 RESERVED
29 GROUND
30 GROUND

336 Appendix A

Pin Signal Pin Signal

3 1 GROUND 46 -CID
32 -ATN 47 GROUND
33 GROUND 48 -REQ
34 GROUND 49 GROUND
35 GROUND 50 -1/0
36 -BSY 5 1 GROUND
3 7 GROUND 52 RESERVED
38 -ACK 53 RESERVED
39 GROUND 54 RESERVED
40 -RST 55 RESERVED
4 1 GROUND 56 RESERVED
42 -MSG 57 RESERVED
43 GROUND 58 RESERVED
44 -SEL 59 RESERVED
45 GROUND 60 RESERVED

P i n 1 P i n 30

\: � � �

�

P i n 3 1 P in 60

Lock Mechan i sm screws

Figure A 1 9: IBM 60-Pin High-Density Centronics Connector, Male {Cable)

P in 30 P i n 1

� \I : : : : : : : : : : : : 1/ (
P in 60 P i n 3 1

Lock Mechan i sm screws

Figure A.20: IBM 60-Pin High-Density Centronics Connector, Female {Device)

Obsolete Connectors

Some connectors were defined in SCSI-2 and later, but never really saw the
market- the B-cable and the L-cable were such tragic cases. Just for com­
pleteness, let's have a look at them and at several other proprietary connectors
that have (luckily) died since their introduction.

68-pin High-Density Sub·D Connector (Wide SCSI "B·Cable")

The B-cable would have expanded the 8-bit SCSI bus of the A-cable to 32
bits . Mainly for mechanical reasons - the upcoming smaller (3�") disk drives
didn' t have the space to fit the neccessary connectors. Thus, it never appeared,
and the P- and Q-cables were instead defined as one of the first tasks of the
SCSI-3 committee.

25-Pin Sub·D Connector (Future Domain Layout)

Very early in SCSI history, Future Domain (a major player then) created cheap
(at that time) SCSI host adapters for IBM PC and clones. To reduce cost, a 25-pin
sub-D connector with a proprietary layout was used. This connector is shown in
Figure A.2 1 .

All -P latform Techn ical Reference 3 3 7

P in 1 3 P in 1

0 \ o o o o o o o o o o o o o / 0 _\ 0 0 0 0 0 0 0 0 0 0 0 0 J
P in 1 4 P in 25

P in 1 P in 1 3

o \• . · . · . · . · . · . · . · • • • • • • • • . ·jo
P in 25 P in 1 4

Figure A.2 7 : 25-Pin Sub-D Connector {top to bottom): Female (Device); Male (Cable)

When Apple later introduced their own layout on the same connector, one
major reason for SCSI smoke signals they also created - see for yourself in
Table A. l6 .

Table A. 1 6: Future Domain and Apple Sub-D Connector Layouts

Future Domain Apple

Pin Signal Pin Signal

GROUND 1 -REQ
2 -DB(1) 2 -MSG
3 -DB(3) -1/0
4 -DB(5) 4 -RST
5 -DB(l) 5 -ACK
6 GROUND 6 -BSY
7 -SEL 7 GROUND

GROUND B -DBO

9 SPARE 9 GROUND
1 0 -RST 1 0 -DB3

1 1 -C/D 1 1 -DB5

1 2 -1/0 1 2 -DB6

1 3 GROUND 1 3 -DB7
1 4 -DB(O) 1 4 RESERVED/ GROUND
1 5 -DB(2) 1 5 -C/D

1 6 -DB(4) 1 6 RESERVED/ GROUND
1 7 -DB(6) 1 7 -ATN
1 8 -DB(P) 1 8 GROUND
1 9 GROUND 1 9 -SEL
20 -ATN 20 -DBP
2 1 -MSG 2 1 -DB 1
22 -ACK 22 -DB2
23 -BSY 23 -DB4
24 -REQ 24 GROUND
25 GROUND 25 TERM. POWER

338 Appendix A

- Virtually all signal positions are incompatible between this and the Apple connector

layout, but the dangerous part is pin 25. Apples cab IRs don 't have a connection here so

there isn 't a problem, but most SCSI adapters or devices with the Apple connector pinout

do provide Termination Power at pin 25. So, connecting an Apple layout SCSI adapter

with an old Future Domain cable will cause a short circuit that will blow the host adapter 's
or device 's terminator power fuse. The same thing could happen with a devicl' providing

terminator power via an old Future Domain adapter. Ifyou havl' an older Future Domain
SCSI adapter, look for the label "Apple layout " on the covPr plate and/or an "M" in the

model number. If it 's a Future Domain pinout type, you need a special SCSI cable­

type HCA-1 08-from Future Domain (now Adapter).

Sun Microsystems' Sub·D Connector

Figure A.22 and Table A. 1 7 show the Sun 50-pin sub-D connector. According
to Sun's documentation, pin 1 is the pin in the upper-left corner. Remember
that this means the male connector's pin 1 is on the upper-left as shown in
Figure A.22. Pin 2 is the lower-left pin (in the third row of contacts , labeled
pin 34) . Pin 3 is the leftmost pin in the middle row (labeled pin 1 8) . Pin 4 is
the second-left pin in the upper row, and so on.

Pin 1 8

P i n 3 3

P in 1 P in 1 7

o \ · · · · · · · • • • o o e a o e o / o
8 8 0 8 8 8 8 8 e G G 0 8 8 0 e \ e e 8 G e 8 8 8 e 0 8 0 0 G 0 0 G /

P i n 34 P i n 5 0

P i n 1 7 P i n 1

P in 3 3

o o o o o o o o o o o o o o o o / 0
o o o o o o o o o o o o o o -1-f-=-1- P i n 1 8

o o o o o o o o o o o o o o o oj
P i n 5 0 P i n 34

Figure A.22: Sun 50-Pin Sub-D Connector

Instead of Sun's pin numbering scheme, Table A. 1 7 uses the scheme the
connector manufacturers use in their documentation, because this way all
sub-D connectors use a comparable numbering system. So, Table A. 1 7 is the
pinout scheme you will see if you look at a real cable , not the one shown in
Sun's documentation. Beware, however, of confusing the two if you have an
older Sun device.

Al l-P latform Techn ica l Reference 3 3 9

- When looking at Table A. 1 7, keep in mind that there are two connector numbering

schemes shown in the table. But the ones in Figure A .22 are the standard ones that
connector manufacturers like AMP use on the connectors. These are not the numbers
used by Sun. For whatever reason, Sun used an unusual numbering scheme, which

differs from the counting scheme the connector manufacturers use and print on the
connector bodies. So, if you use an older Sun device, be extremely careful when supply­

ing home-made cables.

Table A. 1 7: Sun 50-Pin Sub·D Connector Layouts

Stondard
Pin

2

4
5
6
7
8
9
1 0
1 1
1 2
1 3
1 4
1 5

1 6
1 7
1 8
1 9
20
2 1
22
23
24
25

Sun Single-Ended SCSI Pinout

Sun's Stondard Sun's
Pin

4
7
1 0
1 3
1 6
1 9
22
25
2 8
3 1
34
37
40
43
46
49
3
6
9
1 2
1 5
1 8
2 1
24

Signal Pin Pin Signal

GROUND 26 27 RESERVED
-D8(1 J 27 30 GROUND
GROUND 28 33 GROUND

-D8(4J 29 36 -8SY

GROUND 30 39 GROUND
-DB(7) 3 1 42 -MSG

GROUND 32 45 GROUND
GROUND 33 48 -REQ
N.C . 34 2 -DB(OJ
RESERVED 35 5 GROUND

GROUND 36 -D8(3J
GROUND 37 1 1 GROUND

GROUND 38 1 4 -DB(6J
-RST 39 1 7 GROUND
GROUND 40 20 GROUND
-C/D 4 1 23 RESERVED

GROUND 42 26 TERMPWR

GROUND 43 29 GROUND

-D8(2J 44 3 2 -ATN
GROUND 45 35 GROUND
-D8(5J 46 3 8 -ACK
GROUND 47 4 1 GROUND
-D8(PJ 48 44 -SEL

GROUND 49 47 GROUND

RESERVED 50 50 -1/0

Novell and Procomp DCB 37-Pin D·Sub Connector

Years ago, Novell designed a proprietary external connector for their DCB
SCSI boards. Procomp used the same connector for their F-DCB and M-DCB
host adapters to maintain 100 percent compatibility. This connection uses a

340 Appendix A

37-pin D-sub connector. Unlike the 25-pin connectors, it has enough conductors
to provide discrete wire pairs for each signal. It 's interesting to note that
Novell 's cable doesn ' t connect the TERMPWR line, so that the terminated
device must supply its own termination power. Figure A.23 shows the connec­
tor; Table A. l 8 shows the pin assignments .

P in 1 9 P in 1

0 \ o o o o o o o o o o o o o o o o o o o /0 \ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 j
P in 20 P in 37

P in 1 P in 1 9

0 \ • • • • • • • • • • • • • • • • • • · I. \ • • • • • • • • • • • • • • • • • • / 0
P in 37 P in 20

Figure A.23: Nove/1/Procomp 37-Pin D-Sub Connector

Table A. 1 8: Noveii/Procomp DCB External Layout

Pin Signal Pin Signal

1 GROUND 20 -DB(O)

2 GROUND 2 1 -DB(1)

3 GROUND 22 -DB(2)

4 GROUND 23 -DB(3J

5 GROUND 24 -DB(4J

6 GROUND 25 -DB(5J

7 GROUND 26 -DB(6J

GROUND 27 -DB(7J

9 GROUND 28 -DB(PJ

1 0 GROUND 29 -ATN

1 1 GROUND 30 -BSY

1 2 GROUND 3 1 -ACK
1 3 GROUND 32 -RST
1 4 GROUND 33 -MSG

1 5 GROUND 34 -SEL

1 6 GROUND 35 -C/D

1 7 GROUND 36 -REO
1 8 GROUND 37 -1/0
1 9 TERMPWR

(possibly not connected)

Al l -P latform Techn ical Reference 341

SCSH BllDs Signals

The SCSI bus has eight (or more) data lines and a few control signals. Table A. 1 9
shows, briefly, what the signals are and how they're used.

Table A. 1 9: SCSI Signals, 8· and 1 6·Bit

BSY (Busy)

SEL (Select)

C/D (Control/Data)

1/0 (Input/Output)

MSG (Message)

REQ (Request)

ACK (Acknowledge)

ATN (Mention)

RST (Reset)

DB(O) to DB(7)

DB(P)

DB(B) to DB(1 5)

DB(P 1)

BSY ind icates that the SCSI bus i s i n use.

SEL is used i n the Arbitration phose to select a target for commun ication. In th is case,
the term target could also mean an in i tiator, i f SEL i s set in a RESELECTION phase.

C/D indicates whether control or data in formation is on the data bus. I f C/D is set, i t
ind icates control i n formation.

l/0 controls the d i rection of data movement on the data bus, seen from the i n i tiator.
True ind icates i nput to the in i tiator. 1/0 also d ist inguishes between SELECTION and
RESELECTION phases.

MSG is used to ind icate a MESSAGE phose (together with C/D).

REQ is used by a target to request an ACK information transfer handshake.

ACK is used by an i n itiator to acknowledge the above REQ information transfer hand­
shake request.

ATN is set by an in i tiator to ind icate the ATIENTION condit ion.

RST indicates the RESET condition .

These are the data bits on the B-bit SCSI data bus.

DB(P) i s the parity bi t far the f irst data byte. If a 1 6-bit bus i s used, the second data
byte and its parity bit are used .

These are the additional data bits for the 1 6--bit SCSI data bus.

DB(P 1) i s the parity bi t for the second data byte.

Some notes about the above mentioned signals :

" BSY, SEL, and RST are OR-tied, which means they can be asserted by
multiple devices simultaneously.

" ACK and ATN are used only by the initiator for control purposes .

., C/D, I/0, MSG, and REQ are driven, or controlled, by the target.

" Each data byte is accompanied by a parity bit (odd parity is used, so the
parity bit is set to 1 when the number of logical 1 signals, without the par­
ity bit, is an even number) .

" If a 32-bit bus is used, additional data and control signals are needed, as
shown in Table A.20. These additional signals are supplied by a second
cable, the Q-cable.

342 Appendix A

Table A.20: Additional 32-Bit SCSI Signals

REQQ !RequestO)

ACKQ !AcknowledgeO)

DBI 1 6J to DB(3 1)

DB(P2) and DB(P3)

REQQ is the REQ signal for the O<able, if 32-bit data transfers are used .

S im i lar to REQQ, ACKQ is the ACK signal for the O<able, if 32-bit data
transfers are used.
These are the additional data bits for the 32-bit SCSI data bus.

DB(P2) and DB(P3) are the parity bits for the third and fourth data bytes.

Bus Phases and Timing Diagrams

Sus Phases and Conditions

This section lists the bus phases defined in the SCSI standard (Tables A.2 1
through A.23) and provides a phase sequence diagram (Figure A.24) for quick
reference.

Principally, the SCSI bus is a "state machine." This means it has a number of
states, of which at any given time exactly one is active. To maintain this behavior,
several states (phases) are defined, along with numerous timing parameters
that are used in the state switching process.

SCSI bus states are called "phases"; the eight phases break down into two
types: four phases handle the bus protocol and access control, and four phases
handle information transfer. The phases handling the protocol are shown in
Table A.2 1 .

Table A.2 1 : Protocol Phases

Phase

BUS FREE

ARBITRATION

SELECTION

RESELECTION

Definition

The BUS FREE phase indicates that no 1/0 process i s running and the SCSI bus i s avai lable
for a connection . I t is the basic state of the bus before every transfer.
The ARBITRATION phase al lows al l anached SCSI devices to announce " I need the bus" and
eventual ly gain control over the SCSI bus so that the bus can i n itiate or resume an 1/0 process.
In the SELECTION phose, the in itiator !the ARBITRATION winner) selects a target for its pending
operation. When th is target selection has happened, the target asserts the REQ signal to enter
an i nformation transfer phase.

The RESELECTION phase i s a special vers ion of a SELECTION phase needed i n case af an
uncompleted operation. for example, i f a target device d isconnected i tself (it a l lowed a BUS
FREE phose by releasing the BSY and SEL signa ls) , the RESELECTtON process a llows the target
to reconnect to the in i tiator of the suspended operation. Contrary to the standard SELECTION
phose, i n a RESELECTION phose, the target of a former operation takes action to get a
connection to the in i tiator .

The COMMAND, DATA, STATUS, and MESSAGE phases are commonly
called the information transfer phases because, in these phases, the actual
data exchange between the initiator and the target happens. Their specifica­
tions are shown in Table A.22.

All -P latform Techn ica l Reference 343

Table A.22: Information Transfer Phases

Phase

COMMAND
DATA

STATUS

MESSAGE

Definition

The COMMAND phose allows the target to request command information from the in i tiator.
DATA phose has two variants, DATA IN and DATA OUT, in which the target asks to send
data to or receive data from the in itiator.
The STATUS phose al lows the target to request that status information be sent from the target
to the in itiator.
MESSAGE phose also con be a MESSAGE IN or a MESSAGE OUT phase. In the MESSAGE phose, the
target can request a message to or from the in itiator. A message can be either a single-byte or
a multiple-byte message, but the whole message must be contained in one MESSAGE phose ­
that means without any change in the C/D, 1/0, and MSG signals.

Three bus signals (C/D, 1/0, and MSG) are used to distinguish between the
different information transfer phases and data directions.

Table A.23: Information Transfer Phase Control Signals

Signal•

MSG C/D 1/0

0 0 0
0 0 l
0 0
0 l

0 0

0 l

0

Phase Name

DATA OUT
DATA IN
COMMAND
STATUS
RESERVED**
RESERVED* *
MESSAGE OUT

MESSAGE IN

Transfer Direction

From In itiator to T orget
To In itiator from Target
From In itiator to Target
To In i tiator from Target

From I n itiator to Target
To In i tiator from Target

*0 � False � Deasserted, 1 � Tnu � Assrrted
**Reserved Jar future standardization

During a SCSI operation, the target device controls these signals , so it has con­
trol over the changes among these information transfer phases. In these
phases, REQ/ ACK handshake procedures are used for each byte of information.
REQ/ ACK handshake means that the target asserts the REQ signal to REQuest
a byte of information, then the initiator sets the data bus and sets the ACK signal
to ACKnowledge the transfer request. The target then reads the data bus and
releases the REQ signal to allow the initiator to release the ACK signal . Then
the next byte can be transferred with the same REQ/ ACK procedure .

In addition to the bus phases are two SCSI bus "conditions" : the
ATTENTION and the RESET conditions.

In the ATTENTION condition, the initiator can inform a target that he
has a message ready. The target then can get this message by performing a
MESSAGE OUT phase. An ATTENTION condition is issued by asserting the

344 Appendix A

ATN signal; this can happen in any bus state except during the ARBITRATION
or BUS FREE phases .

The RESET condition is used to immediately clear all SCSI devices from
the bus. The RESET condition has absolute priority over all other phases and
conditions. Any SCSI device can create the RESET condition by asserting the
RST signal. On RESET, all SCSI devices release all SCSI bus signals except RST,
so that a BUS FREE phase follows the reset condition .

Phase Sequence

SCSI bus phases usually follow a defined sequence pattern . A typical phase
sequence on the bus could be as follows:

• BUS FREE phase

• ARBITRATION phase

• SELECTION or RESELECTION phase

• MESSAGE OUT phase

• One or more of the information transfer phases (COMMAND, DATA,
STATUS, or MESSAGE)

• MESSAGE IN phase where a DISCONNECT or COMMAND COMPLETE
message is transferred, followed by the next

• BUS FREE phase

The RESET condition can abort any phase and is always followed by a BUS
FREE phase. Any other phase can also be followed by the BUS FREE phase.
If this happens, it's generally due to an error, but it 's legal .

A complete phase model looks a bit puzzling at first, with its plentiful
possible action sequences, but on second glance, it is not too difficult. See
Figure A.24.

BUS FREE as the initial state can lead only into an ARBITRATION phase.
ARBITRATION can lead into a SELECTION or RESELECTION phase, then
either the requested Information Transfer Phase (s) are issued, until the device
enters a BUS FREE phase - its idle state . The last of the information transfer
phases usually is a STATUS phase for the command, followed by a MESSAGE
phase with the "Command Complete" message.

To show a simple example, a typical phase sequence for the TEST UNIT
READY command would have the following sequence order:

All-Platform Techn ical Reference 345

e BUS FREE idle state

" ARBITRATION data according to the IDs 90hex would be ID7 and ID4
(l .O .O . l .O .O .O.Obin) , meaning that the devices 7 and 4 want to get the bus

<> SELECTION data according to the IDs 8 l hex would be ID7 and IDO
(l .O.O .O .O .O .O . l bin) , meaning that the devices at ID7 and at IDO
communicate

" MESSAGE OUT data byte 80hex = Identify command

" COMMAND data byte OOhex = Test Unit Ready command
(The TEST UNIT READY command has 6 bytes, all 6 bytes are 0011ex)

" STATUS data byte 0011ex = GOOD, which means the SCSI device is ready

" MESSAGE IN data byte OOhex = Command Complete

e BUS FREE idle state

The "frame" (BUS FREE to MESSAGE OUT and STATUS to BUS FREE) is
identical for most combinations, but the number of COMMAND phases varies
with the different commands.

SCSI Reset or

Bus E rror

Bus Free

Figure A.24: SCSI Phase Sequence Model

346 Appendix A

Sus Timing

SCSI bus timing is a very complex thing, but it can be broken down into some
fundamental figures. The timing diagrams in this appendix are simplified.
They do not include the various signal delays that actually occur on the SCSI
bus. In reality, if an electrical signal changes its state, it never happens as cleanly
as the timing diagrams would lead you to believe . To give the signals time to
settle to their states, various delays are implemented. Table A.24 lists the various
delays along with minimum or maximum times for defined changes to occur.

Table A.24: SCSI Timing Elements

Timing
Element Time Description

SCSI-2 Syn Fast SCSI Ul traSCSI Ultra2 SCSI

(Fast 5) (Fast 1 0) (Fast-20) (Fast-40)

Arbitration 2 .4 ps 2.4 ps 2 .4 ps 2 .4 ps When a SCSI device Delay has asserted BSY during the
arbitration phase, it must wait at least one Arbitration
Delay before dec id ing that i t has won the arbitration .

Assertion Period, 70 ns 22 ns 1 1 ns 6.5 ns
Receive

Transmit 80 ns 30 ns 1 5 ns 8 ns R EQ/REQB and ACK/ ACKB signals must be asserted for
at least one Receive Assertion period to be recognized,
and the sender has to assert them for at least one transmit
assertion period.

Bus Clear Delay 800 ns 800 ns 800 ns 800 ns I f a device detects a Bus Free phase, i t has this amount of
t ime to release al l s ignals .

Bus Free Delay 800 ns 800 ns 800 ns 800 ns Aher detection of a Bus Free phase, a device must wait one
Bus Free Delay before starting the arbitration process.

Bus Set Delay 1 .6 ps 1 . 6 ps 1 .6 ps 1 . 6 ps A SCSI device ma� assert BSY and its ID bit for an arbi-
!ration not longer t an one Bus Set Delay.

Bus SeHie Delay 400 ns 400 ns 400 ns 400 ns Aher a phase chan�e, signal levels should nat be changed
by devices during t e Bus SeHie Delay.

Cable Skew Delay 4 ns (1 0 ns) 4 ns (5 ns) 3 ns 2 .5 ns The s�nal run length between twa SCSI signals an the bus
shaul n't d i ffer by mare than a Cable Skew Dela& . This is
especial ly important when a signal i s i nfluenced y a fer-
rite core or s imi lar damping measures.

Data Release Delay 400 ns 400 ns 400 ns 400 ns When 1/0 changes its state from true to false, the in i tiator
must release the data l i nes for one Data Release Delay.

System Deskew Delay 45 ns 45 ns 45 ns 45 ns Time to decouple various signals.

Disconnection Delay 200 ps 200 ps 200 ps 200 ps When a target gets disconnected by the in i tiator, the
target must wait at least one Disconnection Delay before
trying a new arbitration.

Hold Time, Receive 25 ns 25 ns 1 1 .5 ns 4 .75 ns

Transmit 53 ns 3 3 ns 1 6 .5 ns 9.25 ns During a synchronous transfer, data must be asserted for
at least one Hold Time to a llow the receiving device to
read them from the bus.

Negation 70 ns 22 ns 1 1 ns 6 .5 ns During a synchronous transfer, each REQ/REQB Receive
Period 80 ns 30 ns 15 ns 8 ns Transmit or ACK/ACKB pulse must be followed by at least

one Negation Period .

Reset Hold Time 25 ps 25 ps 25 ps 25 ps The RST signal must be asserted far at least one Reset Hold
Time before a reset i s issued.

Al l -P latform Techn ica l Reference 34'1

Timing
Element Time Description

SCSI-2 Syn Fast SCSI UltraSCSI Ultra2 SCSI

(Fast S) (Fast 1 0) (Fast-20) (Fast-40)

Selection Abort Time 200 �s 200 �s 200 �s 200 �s I f a target doesn 't react to a selection by asserting BSY
during the Selection Abort Time, the in i tiator enforces a
Bus Free phase (either throuil,h a reset condition or by
releasing the data i nes and t en releasing SEL and ATN) .

Setup Time 15 ns 1 5 ns 6.5 ns 4 .75 ns
Receive

Transmit 23 ns 23 ns 1 1 .5 ns 9 .25 ns

Transfer Period 200 ns 1 00 ns 50 ns 25 ns The min imum time between two REQ/REQB or ACK/ ACKB
pulses. The Jdssible Transfer Period is negotiated, between
the involve devices. This i s listed simply as "negotiated"
in older specs, but with SCSI-3 defined t imings come up.

Power On to Selection 1 0 s l O s l O s l O s A SCSI device should be able to answer to SCSI commands
i n this amount of t ime alter power-on. This is only a rec-
ommendation, but a meaningful one, because most host
adapter drivers consider this the maximum t ime for a
device to respond before its ID is skipped .

Reset to Selection 250 ms 250 ms 250 ms 250 ms Reset to Selection is the recommended maximum t ime a
device is al lowed to sit idle alter a reset before i t is able
to answer to commands.

Selection Timeout Delay 250 ms 250 ms 250 ms 250 ms During a Selection phase, a device should wait at least
one Selection Timeout Delay lor an answer before stop-
ping the selection . This is only a recommended
time, not a mandatory value.

In the SCSI-3 drafts, new features like Quick Arbitration and Double Transition
Clocking will introduce a few new variables, but the basic values are and will
remain the same.

The timing diagrams included in Figures A.25 through A.30 illustrate the
relationship between the various SCSI signals as follows:

• ARBITRATION and SELECTION phases (Figure A.25)

• ARBITRATION, RESELECTION, and MESSAGE IN phases (Figure A.26)

" MESSAGE OUT and COMMAND phases (Figure A.27)

• DATA I/0 phases for asynchronous (Figure A.28) and synchronous
(Figure A.29) transfer modes

• STATUS MESSAGE IN phase followed by a BUS FREE phase (Figure A.30)

3 4 8 Appendix A

DB(O)-DB(7)

BSY

SEL

1/0

C/D

MSG

ATN

REQ

ACK

Arbitration-IDs

In i tiator

I

I n it iator- and Torget-ID

L__j Target

I I
BUS FREE Phose ARBITRATION Ph<;1se SELEc;TION P�ose

Figure A.25: ARBITRATION Followed by a SELECTION Phase

DB(O)-DB(7)

BSY

SEL

1/0

C/D

MSG I I
ATN I I
REQ I I
ACK I I

BUS FREE Phase · ARBITRATION Phase

I I
I I
I I
I I
I I
I I

RESELECTION Phase

I
I
I
I
I

Figure A. 26: ARBITRATION, RESELEGION, and MESSAGE IN Phases

L
L

I ll__
I 11_
I MESSAGE IN Phase

All -P latform Techn ical Reference 349

DB(O)-DB (7) j � Msg . Bytea � Cmd. Byte� � Cmd. Byte�
BSY

==!::::::==���::=!:==����====���=

SEL
I
----T-----�-----+------r---------------------

l/0

::�9-�:::::=:==�=============

ATN

REO L_j L
--

--

-'--

-' ACK
L.....-----+----lr-----,L_j L

I MESSAGE
1
OUT Phose I

Figure A.27: MESSAGE OUT and COMMAND Phases

Data bits set by Target

DB (O)-DB(7)�
BSY

SEL

1/0

C/D ----�--�--�--�-­
MSG

----�---r--�---r--
ATN

COMMAND Phose

Data b i ts set by I n i tiator

___s----L__lL_
I I I I

REQ�-----r----r----r----r--

d

-

riven by Target�
ACK� driven by l n i tiotor i-Un-JTL

DATA IN Phose DATA OUT Phose I I I I

Figure A.28: Asynchronous Data Transfer

3 5 0 Appendix A

Data bytes set by Target

DATA OUT Phase

Figure A.29: Synchronous Data Transfer

DB(O)-DB(7)�
BSY

SEL

���--��:=========*======�-r-----
MSG__j I
ATN REa===�-+h-L----_-_-_-_-_-_-_-_-_+-

or-_ -�n-._ -_ -_ -_ -_ -_ -_ --,r-� -_ -_ -_ -_ -_ -_ -_
ACK I n nL---�---

STATUS Phase MESSAGE I N Phase I BUS FREE Phase

Figure A .30: MESSAGE IN Phose and BUS FREE Phose

All-Platform Techn ica l Reference 3 5 1

Termination

Next to cabling, termination is the most crucial part of SCSI. The basic rule of
termination is simple: Both ends of the bus must be closed with termination
circuits . Notwithstanding this simplicity, termination and termination-related
issues are the cause of at least 80 percent of all SCSI problems.

To illustrate this, let's just look at three simple setups.

Internal Devices Only

With internal devices only (Figure A.31) , one cable with multiple connectors
leads from the host adapter to the devices. The host adapter and the device
on the last connector have to be terminated. If you don' t have a device on the
last connector, either move your connectors so that the last connector is used
or apply a terminator to the last connector.

fl 0 mJ not terminated

1::;�::1
13 [J :::::::::::::::

Figure A.3 1 : Termination, Infernal Devices Only

External Devices Only

xxxxxxxxx
- - -

terminated

With external devices only (Figure A.32) , a cable goes to the first device; from
this device 's second SCSI connector, a second cable goes on to the next
device, and so on. The host adapter and the last device on this chain have
to be terminated. On a modem host adapter, this is usually done by a jumper
or by software via its SCSI BIOS. The device either has to be terminated inter­
nally or you have to attach a terminator plug on its second SCSI connector.

352 Appendix A

,--

xxxxxxxxx
- - -

�

term inated

Figure A. 32: Termination, External Devices Only

Internal and External Devices

I �
-

[] []

term inated

Q KID = I
-

CI CI ICII II:II I:II • a •
CII CI CU:::U:U� I:I II:I III DI D D I:I 'I:. CI

D

D

With both connectors on your host adapter used (Figure A.33) , the same rules
apply - terminate both ends only. So you disable the termination on the host
adapter and terminate the last internal and the last external device.

With Wide SCSI, one new wrinkle shows up - the mix of Wide SCSI and
"narrow" SCSI devices. The basic rules are the same, of course - termination
on both ends of the bus. However, if you mix Wide SCSI disks and a narrow
SCSI CD-ROM, the easiest setup is to have the complete SCSI bus 1 6 bits wide
and to connect the CD-ROM in the middle of the bus with a 50-pin female

- - - - - - - - - - - - -- - - - - - - - - - - - -- - - - - - - - - - - - -
ll C

I I � O llD

I E:i:::;:;:;:;:;:;:;:;:;:;:;:;:;:;:J I El IJ lillillilllillillillillillilll • t term inated

Figure A.33: Termination, Internal and External Devices

All-P latform Techn ical Reference 3 5 3

to 68-pin female adapter to the bus. In this configuration, you don 't need
termination on the CD-ROM and an adapter without high byte termination ­
easy and trouble-free.
With a Wide SCSI disk drive on your narrow SCSI bus, it's a bit more complex
because most Wide SCSI devices need to "see" a correctly implemented Wide
SCSI bus. You therefore need an adapter that terminates the high byte . This
can be either a full-scale active termination circuit or a simple version that
pulls up the upper byte [-DB (8) to -DB (1 5) and -DB (P 1)] with a 4.7 kilo-ohms
resistor to TERMPWR. If the adapter has no high byte termination, the drive
may work or not-it depends on the drive and its abilities: Some drives won' t
work a t all with the high byte "open," some drives can be switched to "narrow"
mode and then ignore the high byte completely. It just depends on the SCSI
implementation.

Some combinations may not even work when assembled correctly: An
Ultra Wide SCSI host adapter with internal Ultra Wide disk drives, together
with an external scanner with a 68- to 25-pin adapter and 1 .5 meter cable is a
nearly sure no-go case. Such an assemblage contains so many mismatches for
impedance, propagation delay, grounding problems, and so on that it's pure
luck if it works.

LVD is a bit different here-LVD devices typically don' t have on-board
termination, therefore you needn' t hassle with termination settings on the
devices. You just terminate the bus with a terminator plug if the cable itself is
not terminated. Typically, if you buy an LVD cable or an LVD host adapter kit,
you get a 1 6-bit LVD-compatible cable with an active LVD/SE multi-mode ter­
minator mounted on one or on both ends.

Termination Circuits

Passive Termination

When the SCSI-1 standard was published, the established standard for termi­
nation was a passive terminator for each signal. Passive means that only passive
parts were used-in this case two resistors per signal line, one with 220 ohms
as a pull-up resistor against the TERMPWR line and the other a 330-ohm pull­
down resistor to ground (0 V) . This resulted in a standby signal level of about
3 V if TERMPWR is at 5 V. Passive termination has a few drawbacks . I t draws a
relatively high current and, although the standard stated that using resistors
with +/-1 percent tolerance improves noise margins, most passive terminators
use 5 percent resistor arrays just because they're about ten cents cheaper.
Figure A.34 shows a schematic of single-ended passive termination. Figure A.35
shows the schematic of the differential version of the passive terminator. Only
one signal line is shown.

354 Appendix A

....---------o TERMPWR

2200

any SCS I s igna l

3300

Figure A. 34: Passive Termination, Single-Ended

TERMPWR

2200

-signa l

1 50 0

+s igna l

3300

Figure A.35: Passive Termination, High Voltage Differential

Active Termination

SCSI-2 introduced active termination (shown in Figure A.36) , also called Boulay­
Terminator after Paul Boulay, who first designed it. Even with the historic card
computer buses, like SIOO or the European ECB and SMP bus systems, active
termination proved far superior to passive termination in signal quality and
current draw. Active is far better than passive termination with respect to all signal

All-Platform Techn ica l Reference 3 5 5

+

Low Dropout

Voltage Regulator

Vout =2,85 volts

lout >600 mi l l iamperes

Tanta lum

1

4.71J.F

Figure A. 36: Active Termination, Single-Ended

n on

l OOnF

TERMPWR

-DB(O)

-DB(l)

-DB(2)

-DB(3)

-DB(4)

-DB(5)

-DB(6)

-DB(7)

-DB(P)

-ATN

-BSY

-ACK

-MSG

-SEL

-C/D

-REQ

-1/0

quality issues, and it is needed for Fast SCSI timing. However, one of active ter­
mination's biggest advantages is often underestimated: It is far more forgiving
of low voltage and noise on the TERMPWR line than passive termination.
Unfortunately, as with many other advances in the high-tech industry, active
termination's advantages make it more complex and more expensive to use
than passive termination.

The official active termination specification recommends a voltage of 2.85
V at the signal lines. Because good low-drop regulators need an input voltage
of only 0 .5 V above the output, the terminator could be designed to work reli­
ably with TERMPWR as low as 3.5 V-far below the specification. To be on the
safe side, however, newer devices tend to use SCSI termination ICs (integrated
circuits)-like the Dallas Semiconductor DS2107A, which operates safely with
TERMPWR from 4.0 to 5.25 V.

As you can see in Figure A.36, the official active termination circuit needs
a voltage regulator. Although this isn ' t an expensive part, many vendors tend
to simplify this circuit and replace the voltage regulator with a simple green
LED with about 2 . 7 V reverse breakdown voltage. In general, these cheap ter­
minators work, but they are a bit on the risky side .

3 5 6 Appendix A

Forced Perfect Termination

Forced perfect termination, or FPT, is a variant of active termination. It works
with a network of diodes and voltage regulators (or zener diodes acting as
voltage regulators) to "force" an impedance match of the terminator to the
cable. Some people recommend FPT as a means to get a critical bus to stable
operation, and this sometimes even works. However, I do not recommend it
in general because it draws much higher current than the SCSI spec allows
(during peak surges) and so is a bit dangerous. Especially in combination with
active negation drivers (see discussion earlier in this appendix) in new host
adapters and devices, it is extremely dangerous for the line drivers of the
negating device.

All -P latform Techn ical Reference 35'7

P C T E C H N I CA L R E F E R E N C E

The following tables will give you a starting point for determining the possible
configuration of add-on cards in your system. Due to the sheer number of add­
on cards for the PC, these tables are by no means an exhaustive list of devices
and their resource usage . Be sure to check the installation or user manuals for
the devices in your system to ensure that you don ' t introduce hardware conflicts
when adding new cards.

Table B. 1 : 1/0 Port Usage

Hex Port

Range Defined Use

O-FF I nternal use only

1 00- 1 EF undefined

1 70h- 1 77h Secondary AT A

hard d isk control ler

1 F0- 1 F7 Pr imary ATA hard

d isk control ler

200-20F Joystick port

2 1 0-26F undefi ned

270-27F Pri nter port

280-2AF undefi ned

2 B0-2DF Alternative EGA

address range

2E0-2EF undefi ned

2 F0-2F7 undefi ned

2F8-2FF Seria l port 2

(COM2 :)

300-36F u ndefi ned

370-37F Para l le l port 1

380-3 8F undefined

390-39F undefi ned

3A0-3AF undefi ned

360 Appendix B

Other Uses, Comments

Plug-in cards genera l ly don't use 1/0 ports in th i s range.

Typical ly, only 200-207 are used .

2 1 0, 220, 230, 240, 250, 260, 280 a re typical for Sound

Blaster and compatibles.

Typica l ly no longer used for pr inters. ISA P lug & Play

genera l ly uses th is space.

GPIB in terface card at 2 EOh-2Efh .

This range was reserved for a prototype card , so many

developers used it for thei r adapters . MPU-40 1 MID I sec­

ondary address range at 300h-301 h. MPU-40 1 MIDI primary

addresses at 330h-33 1 h .

Only 370-377 are used .

SDLC or second bisync control ler .

This was reserved for IBM c luster adapter.

This was reserved for IBM bisync control ler .

Hex Port

Range Defined Use

3B0-3 BF Monochrome

video card and

pri nter port

3C0-3CF EGA vieo card

3 D0-3 DF CGA video card

3 E0-3 EF u ndefi ned

3F0-3 F7 F loppy d isk
control ler

3 FB-3FF Ser ia l port 1

(COM 1 :)

400-FFFF E ISA and PCI
boards

Table 8.2: Interrupt (IRQ) Usage

Interrupt

Number (IRQ) Defined Use

0 Timer

2

3

4

5

6

7

8

Keyboard

Cascade for I RQ

8- 1 5

Seria l port COM2

Seria l port COM 1

free

F loppy control ler

Pr inter port LPT l

Rea l-time clock

Other Uses, Comments

Sti l l needed for compatib i l i ty. Pr inter port on that board

used 3BC-3BF .

Sti l l needed for compatib i l ity.

Sti l l needed for compatib i l ity.

In th i s range, addresses are typica l ly assigned automatica l ly

by PCI .

Comments

Needed by the motherboard .

Needed by the motherboard .

I RQ 2 is used for cascading the second in terrupt control ler .

Devices on I RQ 2 are relocated to IRQ 9 , so for the system, IRQ

2 = I RQ 9 . This I RQ can be used for expansion boards, but i s

sometimes a bit tricky.

I f i nsta l led, th is is used by printer port LPT 2 .

I RQ 7 can often be shared between the pr inter port and a
sound card .

Needed by the motherboard .

PC Techn ica l Reference 3 6 1

Interrupt

Number (IRQ)

9

1 0

1 1

1 2

1 3

1 4

1 5

Defined Use

IRQ 2 redi rect

free

free

free

Math coprocessor

Hard disk
control ler 1

Hard disk
control ler 2

Comments

See IRQ 2 .

Needed by the motherboard .

Typically IDE/ATA channel 1 . Free if no IDE/AT A devices are
used and the onboard control ler is d i sabled .

Typically IDE/ATA channel 2 . Free if no IDE/ATA devices are
used and the onboard controller is d isabled .

Table 1.3: DMA Channel Usage

DMA

Channel

0

2

3

4

5

6

7

Defined Use Comments

free 8-bit DMA

free 8-bit DMA

Floppy control ler 8-bit DMA

free 8-bit DMA

Cascade for Needed by the motherboard .
DMA 0-3

free 1 6-bit DMA

free 1 6-bit DMA

free 1 6-bit DMA

Given that ISA Plug-and-Play and PCI's mostly automatic configuration are
both common in today's systems, you shouldn' t need to take extra care ­
but if your system experiences strange lockups, check anyway.

362 Appendix B

A L O O K AT S C S I T E ST E Q U I P M E N T

This chapter is really aimed at engineers whose job it is to bring together a
set of SCSI peripherals to create a high-performance system. Also, if you 're
a software engineer developing SCSI device drivers, you'll find this appendix
useful. If you ' re joe Average-User, you can just skip this section unless your
curiosity has gotten the better of you.

In SCSI , as in so many other technologies, things are great when they work,
but what about when they don' t? When you are responsible for deciding which
devices to integrate into a system, and the ones you chose don ' t play happily
together, what do you do? Whose fault is it? You properly terminated the bus ,
the IDs are all unique, but sometimes the system hangs ! Now what?

If the devices are all manufactured by the same vendor, you can usually get
the vendor to work it out for you. But more commonly, you ' I I choose a host
adapter from one vendor, a disk from another vendor, and a DVD-ROM from
yet another. You try to isolate the problem by removing all but one device , but
find that the problem only occurs when everything is connected.

It 's time to call in the big guns. Armed with some experience, the right
test equipment, and your trusty SCSI standards documents, you enter the
dragon's lair. When the finger-pointing starts, there just isn ' t any substitute
for good test equipment.

Your Mission • • .

What you need to do is capture the moment in time when things go awry and
the events immediately leading up to that moment. Then, using your under­
standing of the SCSI protocol, you must figure out which device messed up
the perfect order of things and either (1) get that vendor to fix the problem
or (2) choose a different device. (Some analyzers actually minimize your own
need for SCSI protocol expertise by incorporating significant intelligence of
their own .)

Rent or /Buy?

These types of problems are not as common these days as they were when SCSI
was new, but when they occur, you need to be able to solve them quickly. If your
company is small or doesn' t work with SCSI too often, renting test equipment
might be the best option for you. The price tags on this stuff could scare the
warts off a toad, and the SCSI standards evolve so fast that equipment can
become obsolete in just a few years. You need to weigh the issues carefully and
decide whether to buy or rent. Owning the equipment gives you fast access to
it and - given that you own it-you use it more often and become more
skilled in its use .

Back in the Stone Age

When I first started working with SCSI in 1 986, there was no such thing as SCSI
test equipment. I used a standard 1 6-channel logic analyzer and connected the
probes to test points on a perfboard upon which I had wired SCSI connectors,
some LEDs (to display the current signal state of all the SCSI signals) , and a
reset switch. Because the logic analyzer only had about 8K words of memory and
no combination trigger, capturing exactly the part of the bus activity I wanted
was no easy feat. If l set the sample rate too fast, I wouldn' t capture enough.
If I set it too slow, I might miss brief signal transitions (like ACK/REQ) that might
be important. Developing those first device drivers was quite a challenge,
because neither the host adapter hardware nor the devices I was trying to talk
to had been tested, and there were no "example drivers" to give me an idea of
what needed to be done !

I suppose this approach could still be used today if you're really strapped
for cash or enjoy mental anguish, but I wouldn ' t recommend it. Today, test

3 64 Appendix C

tools are available to help you work out problems, but the price tags pretty

much restrict their purchase to professional developers. To add insult to injury,

SCSI technology changes so quickly that today's s tate-of-the-art SCSI analyzer

becomes tomorrow's doorstop very rapidly !

Types of SCSI Analyzers

Several forms of SCSI analyzers exist. One type consists of an aluminum brief­

case with a built-in data display /keyboard and several connectors (to accommo­

date the ever-widening selection of "standard" SCSI connectors) . Switches to

enable or disable internal termination or reset the bus are also present . These

stand-alone units typically offer a printer connection and internal disk or other

storage media. Many times you' l l need to send the printed output to a device

manufacturer to point out a deficiency in their device .

Another approach is to offer a small box with the SCSI connections. The

box has a cable that connects to a special PCMCIA card in a notebook computer.

A software analyzer application is then run on the notebook, which displays

the data captured by the external module . Some analyzers allow data capture

without the notebook computer attached - which helps you avoid coming

back to get your results only to find that your notebook has magically

vanished!

Another type consists of a special SCSI adapter in a desktop PC that, in

combination with application software , performs SCSI bus analysis.

I know what you're thinking: Why doesn ' t someone just write software that

will use my existing SCSI host adapter and let me snoop on what's happening

on the SCSI bus? The answer is that SCSI controller chips, used on host

adapter cards , don ' t provide sufficient control to allow this . So, as much as

we 'd all l ike to see it, you can ' t use your general-purpose host adapter as a SCSI

analyzer, no matter what software you are willing to write.

Am:��Uyzer Output

The basic function of SCSI analyzers is to display a snapshot of the sequence of

bus states that were involved in a particular SCSI command execution. This may

be in the form of a logic analyzer-style timing diagram or as a text listing show­

ing which initiator selected which target and what command was sent with which

parameters. The result looks similar to an assembly language program listing.
Analyze rs offer so many options about what will be captured and what will

cause a trigger that i t generally takes longer to get things set the way you want

them than to actually capture the data of interest. However, if you've decided

that you 've j ust got to have one of these, and your budget allows a $6,000 to

$ 1 2 ,000 expenditure, here are some companies that make them:

A look at SCSI Test Equ ipment 365

Manufacturers

Ancot

1 1 5 Constitution Drive
Menlo Park, CA 94025
(650) 322-5322
http :/ /www.ancot.com/

Data Transit

3732-A Charter Park Drive
San Jose, CA 951 36
(408) 264-4300
http :/ /www.data-transit.com/

Innotec Design

7035 Orangethrope Avenue, Unit I
Buena Park, CA 90621
(7 14) 522-1469
http :/ /www.innotecdesign.com/

I-Tech

1 0200 Valley View Road
Eden Prairie, MN 55344
(61 2) 941-5905
http :/ /www. i-tech.com/

Verisys

335-H Spreckels Drive
Aptos , CA 95003
(83 1) 662-7900
http :/ /www.verisys.com

5 6 6 Appendix C

Xyratex

U.K. :
Langstone Road
Havant
Hampshire
P09 1SA
+44(0) 23 9249 6000
http :/ /www .xyratex.eo .uk/

USA:
2 15 1 Michelson Drive , Suite 235
Irvine, CA 92612
(949) 476- 1016

ATA / I D E V E R S U S S C S W

"What is better, SCSI or ATA?" is a question you may hear often these days.
Usenet carries heated discussions between ATA and SCSI zealots every day
(check for yourself in the comp.periphs .scsi newsgroup) , and the prejudices
on both sides are, in many cases, far from the technical facts .

As you might expect in a book about SCSI, the authors think SCSI i s the
better interface. However, the question "What is better?" usually means "What
is faster?" - simply the wrong question. In fact, we have two interfaces that
had (and have) rather different goals.

Because high-end systems and servers have no serious choice other than
SCSI at the moment, we 'll look at the issues from a small workstation 's point
of view.

History

SCSI

Historically, SCSI emerged from Shugart's SASI approach to define a univer­
sal interface for disk drives and other peripherals like tape drives, the most
common peripherals at that time. Remember that we ' re talking about a time

when CD-ROMs and other common devices used today didn' t exist. The uni­
versal interface that resulted needs considerable effort to implement the hard­
and software.

ATA

ATA, the AT Attachment interface, was developed as a replacement for the
ST-506 disk interface to overcome that interface's inherent limitations and yet
remain as compatible as possible with old software. Therefore, all ATA disk
drives still emulate the old WD-1 003 controller at the I/0 register level.

As the ATA specification states, "This standard defines the AT Attachment
Interface. This standard defines an integrated bus interface between disk drives
and host processors . "

IDE/EIDE

Whenever you see the name IDE or EIDE, the same interface is meant: When
the first ATA drives came into the market, the name IDE (Integrated Drive
Electronics) was used to distinguish the new ATA interface from the old ST-506
interface. When later the ATA interface was enhanced by the addition of faster
transfer modes and by moving it off the slow AT bus to the faster local VLB and
PCI buses, the end product was called Enhanced IDE or EIDE. ATA was the
name used when formalizing the standard for this interface.

AT API

Later, the ATA Packet Interface (AT API) was added to control additional
storage devices, like CD-ROM and tape drives. From an abstract technical
view, there is no SCSI storage device that couldn' t be made available as an
AT API device. Mter all, the AT API commands are just SCSI commands sent
over the ATA bus.

Speed - and Why It Isn't Everything

Data transfer rates are the feature most often compared - a silly comparison.
Besides, SCSI Ultra/ 1 60 m -with bus transfer rates of up to 1 60 MB/sec ­
should settle this question for the next few years. As you'll read later, there are
other considerations, but for the moment, let's have a look at the interfaces'
data transfer rates shown in Table D. l .

368 Appendix D

Table D. 1 : Interface Burst Transfer Rates in MB/ sec

Mode

SCSI

1 /2

Fast

SCSI 2

Ultra

SCSI

Ultra 2

LVIO

Ultra

/ 1 60 m

SCSI ATA

Single- Multi-

Word Word

8 Bit 1 6 Bit Mode PIO DMA DMA

5 1 0 0 3 . 3 2 . 1 4 . 2

1 0 20 5 . 2 4 . 2 1 3 . 3

2 0 4 0 2 8 . 3 8 . 3 1 6 . 6

4 0 80 3 1 1 . 1 3 3 . 3

8 0 1 60 4 1 6 . 6 66 .6

As you see , from a raw speed point of view, both ATA and SCSI are suitably fast
for a small disk system, keeping in mind that a typical high-end disk drive still
delivers under 30 MB/sec and that ATA has a limit of two devices per channel.
So, at the moment, speed isn ' t an issue you need to consider.

What will arise isn ' t yet clear - IEEE 1 394 should be fairly well established
within a couple years , but still won ' t have the potential to replace ATA from a
speed point of view.

1/0 Device Independence and Multitasking

A big difference between SCSI and ATA is device independence and overlapping
l/0 capability.

Device independence

A SCSI host adapter negotiates the synchronous data transfer speed indepen­
dently for each device. Older, slower devices therefore limit the bus transfer
speed only when they're busy transmitting data, but faster devices, in their own
transmissions, use their own maximum transfer rate .

ATA/ID E versus SCSI 3 6 9

.mzl A TA can do this to some extent too, but most A TA controllers and drivers don 't imple­

ment this feature. So in many situations, the slowest device on an A TA channel limits

the transfer mode and throttles the faster devices. Fortunately, this seems to be getting

better in the newer chip sets.

Overlapping

Overlapping I/0 is a different issue : When a command is issued in ATA, the
next command can ' t be sent to the drive until the first command's execution
has finished. This is especially ugly when a command - like Recalibrate or
Seek- takes a long time. So, command tasks in ATA can only be executed in
the order you send them to the device. This was not an issue in MS-DOS and
similar operating systems, but given the increasing frequency of concurrent
disk requests in today's operating systems, it matters now.

SCSI has two mechanisms to avoid this problem. The easiest is "Disconnect/
Reconnect" - a device receiving a command that needS some time can acknowl­
edge the command, disconnect from the bus, execute the command, and, when
it's done , reconnect to the host adapter and deliver the result.

In addition, more sophisticated SCSI devices will do tagged command queuing.

This feature lets the device rearrange pending tasks to optimize the execution
order of the commands. For example, a disk drive can reorder disk reads to
optimize head movements. This was sometimes also called elevator seeking because
the model fits perfectly-in an elevator, the door opens on the nearest selected
floor, regardless of the order in which the buttons were pressed.

Sadly, because both mechanisms are only optional, you may encounter
poorly designed SCSI peripherals that don ' t support these features.

OS Support

Also, depending on the operating system you plan to use, you should check
whether the OS supports these features. It is pointless, for example , to boast
about the multitasking capabilities of the hardware if you plan to use DOS or
Windows 95 on a PC. On the other hand, operating systems such as Windows
NT, OS/2, and all flavors of Unix strongly benefit from these capabilities.

Cable Length-and What It Means in Real Life

Cable length is always an issue . The maximum ATA cable length of 1 8 inches
(0.5 meter) is not much, especially if you need to shorten the cable a few inches
because the board vendor sacrificed maintaining short traces against a more
convenient connector position. So you're nearly always on the border of the
critical range with ATA systems. This poses no problem with slow transmit rates,
but is a threat to system integrity with the faster ATA modes.

370 Appendix D

Compared to ATA, SCSI allows cable lengths beyond compare , even in
the most limited high-speed implementations - 1 .5 meters (59 inches) is the
shortest limitation SCSI has under most circumstances.

Mainly because of the defined bus length , external devices in ATA are
dubious, even if there are some implementations of external "tabletop" cabinets
for CD-ROMs.

With SCSI ' s bus length specifications and the definition of shielded cables,
addition of external devices is not only possible but simple. SCSI is therefore
still the interface of choice to attach image scanners and other external periph­
erals to computer systems, although USB (for low-end peripherals) and IEEE
1 394 (also known as FireWire or i .Link) show some potential to compete with
parallel SCSI in this area.

Devices per Channel: Why Should You Care?

A SCSI channel allows you to attach seven to fifteen devices to a host adapter.
Wide SCSI is an interesting issue for disk drives, but- aside from some high­
end tape drives -non-disk peripherals are virtually unavailable as Wide SCSI.
Let's therefore settle for seven devices per channel for this comparison. ATA,
on the other hand, accepts only two devices per channel. Although this doesn ' t
seem to be a big issue -you could just add channels - the reality i s that in
today's PC architecture , you typically need an interrupt for a channel, and
interrupts are a scarce resource. In your everyday PC, you lose IRQ 14 and 1 5
to the two standard ATA ports.

Multi-channel adapters that overcome the IRQ issue are available for both
interfaces, so all is not lost if you're out of device resources. However, with SCSI
this isn ' t too likely at all .

This discussion is not as far-fetched as it seems. A typical home or office PC
today has a disk and a CD-ROM or DVD. For such devices, distributed to both
ATA channels of a system, everything should be okay. Now, if you add a CD
recorder and a removable disk device like a Zip drive - two common devices ­
ATA's limit is reached. If you want any additional device - be it an additional
disk drive, a tape drive, or something new we haven ' t dreamt of yet -you need
to go either the SCSI route or buy a special multi-channel controller, if one is
available that fits your system, and if your system has free resources (one free
IRQ and a free slot) to install it. A lot of "ifs" there !

What to Choose?
With the above said, the question is what to choose for the desired system.
Mter the feature comparisons in Table D .2 , we 'll suggest a few simple rules to
use as an appropriate guide.

ATA/IDE versus SCSI 3 71

Table D.2: SCSI Versus ATA Design Issues

Feature SCSI ATA

Devices per channe l 7 (8 bit) or 1 5 (Wide) 2

Cable length per channel Depending on c lock

rate, 1 .5 m to 6 m *

(4 .9 ft to 1 9 .7 ft)

1 8 i nches (46 em)

External cabl ing Yes No

I ndependent tim i ng per device Yes Sometimes

Data i ntegrity mechan isms One bit parity SCSI-3

provides ECC

None

U ltra DMA provides ECC

Overlapping 1/0 (Multitask ing) Yes No

Maximum Data Rate 80 MB/sec * 66 MB/sec

*A few issues lilre L VV and Ultra/ 160 m are not releuant here

Consider Your Requirements

CPU Load

Note that we don' t (okay, we do . . .) mention CPU load. Although SCSI tends
to have lower CPU load on transfers than ATA, the introduction of busmastering
DMA transfers in ATA has shifted the emphasis to exactly which devices you
purchase - that is, CPU load is now more dependent on the devices and the
driver quality than on the interface itself. So, for a standard system the point
is moot - and where it really counts , other issues inhibit ATA.

Games

H you're building a standard home PC and/ or a system directed at games, think
about using AT A. For such systems you'd typically have one big disk drive and
a fast CD-ROM, and you'd use Windows 95/98 as your operating system, which
strongly limits the advantage of SCSI 's device independence. The price advan­
tage of ATA cannot be overlooked, and so you 'd end up with a possibly 20
percent cheaper system to get essentially the same performance.

372 Appendix D

Graphics, Video, or Development

If you want to do graphics, video manipulation, or development work, go SCSI .
All such applications require lots of disk activity for tasks like background
compiling, swapping large image files (or parts of them) in and out of memory,
and generally multitasking to a high degree. With AT A's sequential tasking,
timing is so much more critical that you might decide to use SCSI for that
reason alone.

External Peripherals

If you want to use external peripherals, check your requirements. Middle-quality
desktop scanners are available with USB interfaces and alone are possibly not
enough reason to go SCSI . Higher-end devices typically aren ' t available with
interfaces other than SCSI, and then it's likely you' ll be doing graphics work as
discussed above. So again, it makes sense to go SCSI anyway.

Operating Systems

If you want to use Windows NT, Windows 2000, or a flavor of UNIX, go SCSI .
In operating systems like these , a lot of background processing requires disk
activity, resulting in better responsiveness under load. There are profound
reasons why all vendors of such operating systems recommend SCSI over ATA.

The BoHom Line

Under most conditions, SCSI is the better- and even faster - interface .
You' ll have to decide for yourself if your application can use the advantages
and if it 's worth the price tag.

ATA/IDE versus SCSI 3 73

A S M A L L AS P I D E M O
A P P L I CAT I O N

(O R , H O W TO U S E A S P I W I TH O U T D I G G I N G T O O
D E E P)

Source files for all the code shown in this section are included on the CD-ROM accompanying

this book.

ShowSCSI .pas is a small program that shows how to communicate with the
ASPI interface. Because it concentrates strictly on communicating with the
ASPI interface, there are no bells and whistles . Mostly, even error checking
is simplified or omitted to keep it as small as possible . We will, however, con­
tinue developing it and extend it into a usable library with the possible add-on
of a few handy tools. Check http:/ /www.nostarch.com/scsi_updates.htm from
time to time.

Program Structure

ShowSCSI is written in Delphi and consists of mainly three components:

1 . ShowSCSI.pas, the main program. Basically, it offers the GUI and the
program logic - not much in this case: It just calls the interface functions
from AspiApplication.pas and offers the container lists for the results from
this call .

2 . AspiApplication.pas, the middle layer. AspiApplication.pas offers high
level function calls for things like "Start Device" or "Eject Medium" and
such. This unit doesn' t know much about ASPI-itjust calls a function from
the "hardcore" layer ASPI_Interface .pas, submits the address of the device
(host adapter, SCSI ID, LUN) and an object to hold the return value (s) .

As an example, after the completion of an issued command the list
referenced by P _ASPI_Devinfo contains the result value of the command­
in this case the Inquiry string of the device with list vendor name, device
name, and so on.

3. ASPI_Interface.pas, the lowest layer and the only part that "talks" ASPI/SCSI
to the devices. In ASPI_Interface , the ASPI/SCSI commands are defined,
for example ASPI_GetDeviceType to get the device type (Disk, Optical
drive , etc .) of the addressed SCSI device.

Why Use Three Layers?

There are mainly three goals, the most important being to keep a clean struc­
ture to the code.

1 . The ASPI interface should be wrapped in a layer where you can say "I
want the CD-ROM tray to open" without knowing that you need to issue
a Start/Stop Unit command with the right settings for the Start/Stop and
Load/Eject bits in the SCSI command descriptor block. While you need
to know this to implement the function in ASPI_Interface .pas , there is no
need to have a SCSI CDB reference ready to use this late in your
ShowSCSI application.

2 . While this program and its parts are only small excerpts from the ASPI/SCSI
world, the concept can be used for bigger applications, too, and we want
to expand the tool chest over time. In a layered concept, it is easily possi­
ble to extend the list of SCSI functions from ASPI_Interface .pas without
changing anything in other parts of the project and without the program
becoming "spaghetti code." The same reason applies for the middle layer
AspiApplication.pas . Therefore, if you want to add a new function, which
we 'll do later in this appendix, you ' ll stay compatible with all other parts
of the old program.

3 . The user interface should be strictly separated from the technical part of
the program. While we have an application with a graphical user interface
here, it is no problem to replace ShowSCSI .pas with a console mode part,
for example, to eject a CD from the command line or a batch file.

376 Appendix E

So, using a layered concept is a key point to easy expansion of the program,
and if you want to add a new function, which we 'll do later in this appendix,
you'll stay compatible with all other parts of the old program.

Additionally, a few files offer definitions: wnaspi32 .pas for ASPI for
Windows 32, SCSI. pas has some SCSI definitions, and LibUtil.pas gives us a
handy conversion routine for packing option bits into bytes for the SCSI com­
mand. Please keep in mind that the separation is not complete; for clarity,
some definitions are local in the sources.

What we want is a program that checks if ASPI is installed, shows us the
known devices, and offers buttons to stop and start a selected device. Provided
that this command (Start/Stop Unit) makes sense to the device, it should then
spin down or up. A slightly extended version should have the possibility to eject
and load the medium tray, for example on a CD-ROM drive .

Now let's dive a little deeper into it. On startup, ShowSCSI searches for ASPI
host adapters (including the check if ASPI is installed at all) and collects the
host adapter data in a list called HAList.

If a host adapter is selected, all possible device IDs are checked for a device
with the SCSI Inquiry command. The inquiry data are written to a new list called
DeviceList and the devices are shown in the GUI. After a device is selected, a
command can be issued to it, in our case either Start or Stop. These two "high­
level" commands are basically the same SCSI command with just one bit set
differently.

Typically, the first thing to do is to initialize all neccessary structures of
the program. This is done by the startup routine in the main program:

procedure T Forml . FormCreate (Sender : TObj ect) ;

HAL i s t : =T l i s t . Create ;

Device l i s t : =T L i s t . Create ;

I I l i s t of host adapters

II list of actual devices

GetHAi nfos (Memo . L ines) ; I I get HA ' s and d i s play l i s t i n Memo

for i : =O to HAL i s t . count - 1 do begin II load HA l i s t box with all HA ' s

HAL i s t Box . Items . Add (i nttostr (PHADevices (HAL i st [i]) A . HA) + ' : ' +

PHADevices (HA L i st [i]) A . HAName) ;

Of course, the ASPI parts of the program from the lower layers are responsible
for their own initializing, for the code here doesn ' t know anything about their
internals . Therefore the GetHAinfos function from AspiApplication.pas has
its own housekeeping that uses the parameters from ASPI_Interface.pas . As
confusing as it may sound at first, it is easier to define it this way than to have
all parameters defined locally.

A Smal l ASP.I Demo Appl icat ion 3 77

f u n c t ion GetHAinfos (Protokoll : TStrings) : boolea n ;

VAR NumAd a p

HA N u m

p S t r i n g

AktHA

Longint ;

intege r ;

s t r i n g ;

PHADev ices ;

PASPI_HAi nfo : P_ASP I_HAinfo ;

beg i n

GetHA i n fos : = f a l s e ;

PASPI_HA i nfo : = New (P _AS P I_HA i nfo)

ASPI_GetHAN u m (N umAd a p) ;

[o . . n]

for HA_Num : =0 t o NumAdap - 1 do beg in

A S P I _ GetHA i n fo s (HA_Num, PASPI_HAinfo)

AktHA : =New(PHADev i c e s) ;

AktHA' . HA : =HA _ Num ;

HA L i s t . Ad d (Ak t HA) ;

I I i n i t i a l i s e A S P I manager

I I from ASP! I nterface . . .

I I ret urn the number of HAs

I I a s k every found hostadapter

I I add one entry (ho s t a d a p t e r) t o the

I l l i s t box " host a d a pt e r s "

pSt r i n g : = format (' Hostadapter + PASP I_HAi nfo ' . Ha Name +
' Asp iNum : %d , SCSI - ID : %d ' ,

(PASPI _ HAinfo' . HaAs p i l d , PAS PI_ HA! nfo' . HaSc s i i d]) ;

Protokol l . add (pString) ; I I add one e n t ry to t h e

I I memofield " de v i c e info"

AktHA' . HAName := PASP I_HAi nfoA . HaName ;

end ;

end ;

Here, the ASPI manager is asked whether there are host adapters present, and
which ones they are . If no ASPI manager is present, we can safely assume that
there is no point in continuing the program. Due to the lack of an error handler
here, the program just quits with an error message from Windows, while in a
commercial quality program, you would include an error handler here to end
the program gracefully.

Now we have a list of host adapters (in HAList) from which we can select
one. This is done back in the CUI part ShowSCSI.pas in the HAListBoxClick
procedure :

procedure T F orml . HA L i s t BoxC l i c k (Sender : TObj e ct) ; I I c l i c k i n g on a HA

v a r

i : i n t ege r ;

HA : i n t eger ;

beg i n

H A : = HAL i s t Box . I t em i ndex ;

3761 Appendix E

I I adapter from the l i s t

I I Number of t h e selected hostadapter

I I selected Host adapter , defined i n

I I the ASPIAppl i c at ion u n i t

I I form c l e a n u p

end ;

L i st Box l . C l e a r ;

L i s t 8ox1 . Refre s h ;

I I a c t ion . . .

GetDev i c e l i s t (HA , Dev i ce l i s t) ;

for i : =O t o Dev i ce l i s t . count - 1 do

I I c l e a r d e v i c e l i s t

I I refresh dev i c e l i s t

I I g e t dev i c e s a n d l o a d memo f i e l d

I I f i l l d e v i c e l i s t box

L i st 8ox 1 . I t ems . Add (inttostr (P _ ASPI _Dev i nfo (Dev i c e l i s t [i]) A . ID) + ' : ' +

inttos t r (P _ ASPI _Dev i nfo (Dev i c e l i s t [i]) A . LUN) + ' : ' +

P _ ASPI _Dev i nfo (Dev i c e l i s t [i]) ' . I n q u i r y . Product i d) ;

Again , some housekeeping should be done by clearing the device list first, then
GetDeviceList from AspiApplication.pas is called with the selected host adapter,
and fills the list of devices called DeviceList. The GUI part then extracts the
neccessary data to fill the Listbox to click on a particular device. If this click
happens, the clicked device is selected and the inquiry data from this device
are shown in a text box (Memo) .

procedure T F orm1 . L i stBoxlC l i c k (Sender : TObj ect) ;

var

DEVINDEX : integer ;

begin

Memo . C l ea r ;

DEVINDEX : = L i s t Box l . Itemindex ;

I I c l e a r memofi e l d

I I s e l e c t e d Dev i c e (e l ement f r o m L i s t bo x)

with P_ASP I_Dev i n fo (Devi c e L i st [DEVINDEX]) A do / / add device i nformat ion

I I to memo l i s t " De v i ce s "

b eg i n

end ;

e n d ;

Memo . L i n e s . add (format (' Dev i c e HA : %d : lD %d , LUN %d , Type %d =

+DevType , [HA , I D , LUN , TypeNum])) ; I I output i n q u i r y data i n

Memo . L i n e s . a d d (I n q u irySt r i n g) ; I I memof ie ld

Now, any of the buttons can be pressed to submit a SCSI command to the device.

procedure TForml . StopButtonC l i c k (Sender : TObj ect) ; I /Stop Button

var i : intege r ;

beg i n

f o r i : =O to L i s tBox l . it ems . c ount - 1 d o

i f L i s t boxl . selected [i]

t h e n

StartStopUnit (f a l s e , Dev i c e l i s t [i]) ;

end ;

I I for e a c h selected d e v i c e

I I send Start / Stop U n i t c ommand with

1 I ' start ' a n d ' ej e c t ' flags set false

A Smal l ASP I Demo Appl icat ion 3 79

This button sends a Start/Stop Unit command with the Start/Stop bi t set to
"Stop" to the selected device (DeviceList[i]) . If we look deeper into what hap­
pens now, StartStopUnit fills the SRB structure with the neccessary parameters
and calls ASPI_StartStopUnit:

function ASPI _ StartStopUn it (HA , ID, LUN : integer ; Start : boolea n ;

var error code : integer) : boolean ;

var Buffer : PSRBBuf ;

SRB : PSRB _ E xecSCSICmd ;

begin

SRB : =New(PSRB _ E xecSCSICmd) ;

Buffer : =New (PSRBBuf) ;

I n i tSRB (S R B , s i zeOf (SRBA)) ;

SRBA . SRB-HAid : =HA;

SRBA . SRB_ Target : = I D ;

SRBA . SRB_ Lun : = LUN ;

SRBA . SRB _ BufPointer : =Buffer ;

SRBA . SRB _ CMD : =SC _EXEC_ SCSI_ CMD;

SRBA . SRB _F lags : =0 ;

SRBA . SRB _ BufPointer : =n i l ;

SRBA . S R B _Buflen : =0 ;

SRBA . SRB Sense len : =SENSE L E N ;

S RBA . S R B _COB Len : = 6 ;

SRBA . COB Byt e [o] : = $ 1 B ;

SRBA . CDBByte [1] : = LUN* 3 2 ;

if Start t hen

SRBA . CDBByt e [4] : =1

e l se

SRBA . COB Byt e [4] : =0 ;

SendAS P I 3 2 Command (SR B) ;

I I PSRBBuf from Wna s p i 3 2

I I PSRB_ExecSCSICmd from Wna s p i 3 2

I I c reate new SRB structures

I I i n i t i a l i ze SRB

I I fill SRB pa rameters

I I no buffer :

I I buffer s i z e o , the Start / Stop Unit

I I command doesn ' t t ran sfer data . . .

I I defa ult ASPI sense buffer lengt h , 14 bytes

I I 6 - Byte command

I I - - - - SCSI command block parameters - - - ­

I I Start / Stop Unit $ 1 B

I I L UN sh ifted 5 bits to the left

I I where it belongs . . . _

I I set SCSI command - start b it

I I act ion !

Now the program polls the ASPI status until it indicates that the command has
completed. Because it's pointless to poll a few million times until a start/stop
unit command completes, we add l OOms pauses to release the CPU for this time.

wh i le SRBA . SRB_Status=O do begin

s leep (lOO) ;

end ;

3 6! 0 Appendix E

I I don ' t lockup the machine . . .

If the command has completed, the SCSI target status of the device is checked.
This would be the place to implement a SCSI error handler, if you want or need
one. At the moment, we check only if the command succeeded or not.

c a s e SR B ' . SRB _ T argStat of I I This handler may be used later to repeat

I I a command based on cert a i n cond i t ions

e l se

TARGSTAT GOOD : I I All done now

beg in

ASPI_Start StopUn it : =True ;

end ;

TARGS TAT CHKCOND : I I Check Cond i t ion ,

beg in I I e . g . proces s sense data

ASPI _StartStopUni t : = F a l se ;

end ;

TARGSTAT BUSY : I I Device is Busy

beg i n

ASP !_ Start StopUn i t : = F a l se ;

end ;

TARGSTAT R E SCONF : I I Reservation Confl ict

begi n

ASP !_ StartStopUni t : = F a l se ;

end ;

beg i n I I t here m a y be v e r y spec i a l c a ses . . .

ASP!_ Start StopUn it : = F a l se ;

end ;

end ;

Finally, the data structures used for the SCSI function call are freed.

d i s pose (SR B) ;

d ispose (Buffer) ;

end ;

I I cleanup data s t ructures . . .

More or less, this is it - a working program using the ASPI interface to com­
municate with a SCSI device. However, this code has two known problems.
One lies in using the ASPI polling mechanism. As shown above in the

wh i l e S RB ' . SRB _ Status=O do beg in

s leep (lOO) ;

end ;

I I don ' t lockup the mach ine . . .

piece of code, we add a pause of l OOms after each ASPI poll for the SRB status.
If this weren ' t there , the program would use 1 00 percent of CPU time until the

A Smal l ASPr Demo Appl icat ion 381

command completes and SRB".SRB_Status would change from 0 to another
value. If you write more complex or commercial applications with ASPI, the
keyword here is "ASPI posting," together with setting timeouts using the ASPI
SC_GETSET_TIMEOUTS command.

The second problem is a bigger one. With the standard ASPI layer present
in Windows 95, 98, or NT4, all interfaces being or mimicking a SCSI host adapter
are listed as host adapters. This includes the standard AT API driver under the
name ESDI_506 as well as special drivers like Notebook PCMCIA ATA cards and
drivers like Virtual CD. Note that most of these appear only if there are non-disk
devices attached to the adapter.

Now, our program sends the Inquiry command to each possible device to
get a list of devices. If such a real or virtual device doesn' t respond, the ASPI
layer locks up waiting for a response and - usually after a few tries of the user
to kill the program - takes the system with him. In general, behavior here is not
really predictable; as far as the systems used in writing this demo program, some
worked, and some locked up -without any possibility of recovery. A possible
quick and dirty approach that even some commercial programs use is to filter
the names of the host adapters and either eliminate the known names or accept
only known names, but this isn ' t a very good solution. Here again, the
keyword is setting timeouts using the ASPI SC_GETSET_TIMEOUTS command.

Enough for now with complex problems - next, we ' ll try to implement a
new command in our program to load or eject the media tray, for example on
a CD-ROM or a removable disk drive.

Implementation of the Load/Eiect Functionality in
AS PI _Interface

To add a command, you basically use the same function layout as used for the
other commands in ASPI_Interface.pas. The SendASPI32Command () function
call needs an SRB structure, so we fill this structure with the correct parameters
for our command. Because Load/Eject is an application of the Start/Stop
Unit command, the parameters are basically the same as in
ASPI_StartStopUnit, with the exception of Byte 4 of the CDB. In addition to the
Start bit to determine between a Start and a Stop Unit operation, we need the
Eject bit to add the Load/Eject action.

SRB' . SRB _ HAid : =HA;

SRB' . SRB _Target : = I D ;

S RB' . S R B _Lun : = LUN ;

SRB' . SRB _BufPointer : =Buffer ;

SRB' . SRB _ CMD : =SC_ EXEC_SCSI _ CMD ;

SRB' . SRB _Flags : =0 ;

SRB' . SRB _ BufPointer : = n i l ;

3 8 2 Appendix E

I I no buffer :

SRBA . S RB _Buflen : =0 ;

S RBA . SRB Senselen : = S E NS E L E N ;

S RBA . S R B _(DB Len : = 6 ;

S RBA . CDBByte [o] : = $ 1 B ;

S RBA . CDBByt e [1] : = LUN*3 2 ;

i f E ject t hen

SRBA . COB Byt e [4] : = 2

e l se

SRB A . CDBByte [4] : = 3 ;

I I buffer s i ze o , for the Start /Stop Unit

I I command does n ' t t ran sfer data • . .

I I default ASPI sense buffer lengt h , 14 bytes

I I 6 - Byte command

I I SCSI command block parameters

I I Start/Stop Unit $ 1 B

I I LUN sh ifted 5 b i t s to the left

I I where i t belongs

I I set SCSI command - s t a rt and eject bit

After filling the SRB structure , SendASPI32Command (SRB) is called and the
program polls for the command completion.

SendAS P I 3 2 Comman d (SRB) ;

wh i l e SRB ' . SR B_Statu s =O d o beg i n

s leep (100) ;

end ;

I I ASPI command pen d i ng . . .

Now we check the target status code from the addressed device in SRB_TargStat.
This would be the place to implement a better error handler for the command,
if needed. This code mainly checks if the command worked or not, but doesn ' t
do more.

case SRBA . SR B_Ta rgStat of

TARGSTAT GOOD :

beg i n

ASPI _ Loa d E jectUni t : =True

end ;

TARGSTAT _CHKCOND :

beg i n

ASPI_Load E j ectunit : = F a l se ;

end ;

TARGSTAT _BUSY :

begi n

ASPI _ LoadEjectUni t : = F a l se

end ;

I I Th i s handler may be used later

I I to repeat a command based on

I I s pec ia l cond it ions

I I All done now

I I Check Cond i t i o n ,

I I e . g . proces s s e n se d a t a

I Device i s B u sy

A S m a l l ASPI D e m o Appl icat ion 3 8 3

TARGSTAT _R E SCON F :

begin

ASP!_ LoadEjectUni t : = F a l s e

e n d ;

e l s e

beg i n

A S P ! _ Loa d E j ectUnit : = F a l s e

end ;

end ;

I I Reservation Confl i c t

I I t here may be s ome v e r y spec i a l c a s e s

Again, the complete function for the Load/Eject call:

function ASP!_ LoadEj ectUnit (HA, ID, LUN : integer ; Eject : boolean ;

var errorcode : integer) : boolean ;

Des c r iption : Start / Stop Unit with Eject b i t set

P a rameters : HA, ID, LUN of t h e SCSI device

Eject bit set true/fa l s e

E rrorcode (return value f o r e . c . - n o t y e t implemented)

Returns True / F a l s e

var Buffer : PSRBBuf ;

SRB : PSRB _ ExecSCSICmd ;

begin

SRB : =New (PSRB_ExecSCSICmd) ;

Buffer : =New (PSRBBuf) ;

I n i t S R B (S R B , s i zeOf (S R B A)) ;

SRBA . SRB-HAid : =HA ;

SRBA . S R B _Target : = I D ;

S R B A . SRB _ L u n : = LUN ;

SRBA . SRB _ BufPointer : = Buffe r ;

SRBA . SR B_CMD : = SC_EX E C_SCS I_CMD ;

S R B A . SRB _ F l a g s : = 0 ;

S R B A . S R B _ BufPointer : = n i l ;

SRBA . SRB_Buflen : =0;

SRBA . SRB _Sense len : = S E NSE_ L E N ;

SRBA . S R B _ CDBLen : = 6 ;

SRBA . CDBByte [o] : =$1 B ;

384 Appendix E

I I PSRBBuf from Wna s p i 3 2

I I PSRB_E xecSCSICmd from Wna s p i 3 2

I I no buffer :

I I b uffer s i z e o, for t h e Start / Stop Unit

I I command doesn ' t t r a n s fer d a t a . . .

I I defa u l t AS P ! s e n s e buffer lengt h , 14 byte s

I 6 - Byte command

I I SCSI comma nd block parameters

I I Start/Stop Unit $ 1 B

SRBA . CDBByte [l] : = LUN*32 ;

if Eject then

SRBA . CDBByte [4] := 2

else

SRB A . CDBByte [4] := 3

SendASPI32Command (SRB) ;

while SRBA . SRB _ Status=O do begin

s leep (lOO) ;

end ;

case SRBA . SRB _ TargStat of

TARGSTAT_GOOD :

begin

ASPI_LoadEjectUnit : =True

end ;

TARGSTAT _ CHKCOND :

begin

ASP!_ LoadEjectUnit : =False ;

end ;

TARGSTAT_BUSY :

begin

ASPI_LoadEjectUnit : =False ;

end ;

TARGSTAT _RESCONF :

begin

end;

else

begin

end ;

end ;

ASPI_LoadEjectUnit : =False ;

ASP!_ LoadEjectUnit : =False

dispose (SRB) ;

dispose (Buffer) ;

end ;

I I LUN shifted 5 bits to the left

II where it belongs

I I set SCSI command - start and eject bit

II action !

I I ASP! command pending . . .

I I This handler may be used later

I I to repeat a command based on

I I special conditions

I I All done now

I I Check Condition,

I I e . g . process sense data

I I Device is Busy

I I Reservation Conflict

I I there may be some very special cases

I I cleanup data structures . . .

A Small ASP! Dema Appl icatian 385

implementation of the Load/Eiect Functionality
in ASPIApp�ocation

The AspiApplication layer is built from function blocks with simple names like
StartStopUnit or LoadEjectUnit that act as call interface for the GUI front end.
This layer more or less translates the functional command (Load Tray) in its
ASPI/SCSI equivalent by calling the neccessary commands from ASPI_Interface.
In our case, this is only the single command Start/Stop Unit, but for a more
complex task, this is the place to implement the high-level function.

Error handling from the called function (s) should also be done here ,
because in multi-command functions, the exact place of the error might need
to be checked. Because we have only one command that does the basic checking
itself, we have omitted this here.

funct ion LoadEjectunit (E ject : boolean ; P : P _ ASPI _ Devi nfo) : boolean ;

{ Des c r iption : Load o r eject med ium, depending o n Eject b it

Parameters : E j ect - I f set , ejects , if not , loads

P ASPI Dev info - SCSI device record

Returns True/ F a l s e

v a r

errorcode : integer ;

beg i n

res u l t : = ASPI_Load E jectUnit (P ' . HA , P ' . ID , P ' . LUN , E j ec t , errorcode)

end ;

lmplemen1t�tion of the Load/Eiect Functionality
in the GUm
Calling the new function is the easiest part of all -we need two new buttons
in the front end, reasonably labeled Load and Eject. The ClickEvent of these
buttons gets a callback procedure to call our new function LoadEjectUnit with
the parameters of the device selected in the DeviceList.

procedure EjectButtonCl i c k (Sender : TObject) ;

procedure LoadButtonClick (Sender : TObject) ;

implementation

procedure T Forml . LoadButtonC l i c k (Sender : TObject) ;

var i : i ntege r ;

beg i n

Sc reen . Cursor : = crHourglas s ;

try

3 61 6 Appendix E

for i : =0 to L i stGU i x l . items . count - 1 do

if L i s tGU i x l . selected [i]

then

Loa d E jectun i t (f a l se , Dev i ce L i s t [i]) ;

f i n a l ly

Sc reen . C ursor : = c rDefau lt ;

end ;

end ;

procedure T Forml . E j ectButtonC l i c k (Sender : TObj ect) ;

var i : i n teger ;

beg i n

f o r i : =O to L i stGU i x l . items . count - 1 d o

i f L i stGU i x l . selected [i]

then

L oa d E jectun i t (true , Dev ice List [i]) ;

end ;

II as aGUive , but ' st a rt ' b it

I I and ' eject ' b it true

I I Stop Un it with ' eject ' b it t rue

This is i t-you just added a new command to your application.
As stated above, there are issues in this example program you wouldn ' t

(and couldn ' t) accept i n a commercial application. But basically, this i s a
possible way to use the ASPI interrace for your own programs.

Have fun in programming, and if you extend the functionality, let us know.

A Smal l ASPI Demo Appl icat ion 587

G L O S S A RY

A
Adapter A card that connects the SCSI bus with the host system's bus.

Address A number that refers to a specific location in memory.

ANSI American National Standards Institute .

API (Application Program Interface) A clearly defined set of software routines
and variables that form the interface between related programs.

ASPI (Advanced SCSI Programming Interface) A software layer that allows
SCSI peripheral drivers and applications to send SCSI commands to a SCSI
host adapter without needing to know the details about that host adapter.

Asynchronous SCSI A way of sending data over the SCSI bus. The initiator
sends a command or data over the bus and then waits until it receives a
reply (e .g . , an ACKnowledge) . All commands are sent asynchronously
over the 8-bit part of the SCSI bus. Data may be transferred via either
asynchronous or synchronous protocol.

B
Backward compatibility The ability of newer technology to work with older

technology without any modification.

BIOS (Basic Input Output System) Software stored in ROM or other non­
volatile memory in all PCs. The BIOS contains routines that allow the PC
to boot from various disk devices and communicate with other vital
devices, such as the keyboard and video display.

Block A portion, or sector, of a disk that stores a group of bytes that must all
be read or written together. Most current hard disks and operating systems
use a block size of 5 1 2 bytes. CD-ROM disks have 2048-byte blocks.

Burst speed The maximum speed at which data can be transferred, even if only
for a very short time.

Bus A set of hardware signals and connections that act together to communicate
between SCSI devices. Narrow (8-bit) SCSI provides a 50-pin bus; Wide SCSI
uses a 68-pin bus.

Bus mastering A method of transferring data across a bus in which the device
takes control of the bus from the CPU and performs the data transfer
directly to or from memory. Most PCI cards can do this, but some mother­
boards only allow bus mastering in certain PCI slots .

c
Cache Memory that is used as a high-speed temporary storage place for fre­

quently used data.

CAM (Common Access Method) The ANSI standard for SCSI device driver
and software layering. It is similar in nature and superior in capabilities to
ASPI, but never received as much industry acceptance.

CDB (Command Descriptor Block) The bytes that form a SCSI command.

Chain A chain is a set of SCSI devices "daisy-chained" together to form a bus.

Channel A SCSI channel is a block of hardware that provides an independent
SCSI bus. Some SCSI host adapters contain the hardware for two (or more)
SCSI buses. Some cards provide separate bus segments that allow isolation
of some devices from others and localize signal reflections. A true SCSI
channel allows another entire set of SCSI IDs to be connected.

Clilster A group of blocks in a filesystem (most commonly FAT16 or 32) that
must be used together. The term can also refer to a group of computers
that share storage devices and other resources for purposes of maintain­
ing operation even during a hardware failure in one of the systems.

Cylinder A collection of tracks all aligned one above the other on multiple
disk platters .

D
Device driver A specialized software module that communicates with and

transfers data to/from a device or host adapter.

390 Glossary

Differential (now called high voltage differential [HVD] to distinguish it from
LVD) Uses two wires to drive each signal . Electrically incompatible with
single-ended devices ! HVD uses much more expensive line driver chips
than single-ended interfaces. Differential signaling is more immune to
noise because the same noise is picked up on both signal wires and the
differential amplifier on the input subtracts the two signals from each
other, which causes the noise to be cancelled out.

Disconnect/reconnect (also called reselect) This feature of the SCSI protocol
allows a device to temporarily give up control of the SCSI bus. This is typi­
cally done when the device is performing an operation that will take some
time. For example, it is very important for tape drives, which would other­
wise lock out other devices during long operations such as Rewind.

DLL (Dynamic Link Library) A Windows file that contains code that can be
shared between applications.

ECC (Error Correction Code) A mathematical algorithm that allows for cor­
recting small amounts of data that were read incorrectly from the disk
media.

EIDE (Enhanced IDE) The second generation of IDE technology) Improves
the data throughput of IDE hard disks and adds the ability to support
ATAPI CD-ROM drives to the same interface .

ESDI (Enhanced Small Disk Interface) An enhanced version of the ST-506
disk interface that provided increased performance for disks only. Has
been superseded by SCSI and IDE.

F
Fast SCSI A synchronous data transfer option, which allows up to a 1 0 MHz

data rate on the bus . Also called Fast- 10 . Newer variations allow for 20
MHz (also called Ultra) and 40 MHz (Ultra2) rates .

Filesystem A collection of blocks of data and the information that organizes
that data so that specific data can be associated with named files . An exam­
ple of a simple filesystem would be the FAT 1 6 filesystem used by MS-DOS
and Windows 95.

Examples of more sophisticated filesystems would be NTFS for Windows NT,
ext2fs for Linux, and IS0-9660, used on CD-ROMs.

Glossory 3 9 1

Format How blocks (sectors) are arranged on the disk medium.

FPT (Forced Perfect Termination) A sophisticated form of active SCSI termi­
nator that clamps the voltage level of reflected bus signals to minimize the
effect of impedance mismatches.

G
GB (Gigabyte) Two values commonly represent a gigabyte : One is the binary

value of 2 to the thirtieth power or 1 ,073,741 ,824 bytes; the other is the
decimal value of one billion or 1 ,000,000,000. Computer engineers gener­
ally use the binary meaning; sales and marketing people like the decimal
value better (because it makes the disk sound bigger) .

H
Head A very tiny electromagnet used for reading and writing bits on disk

media. A disk drive usually has 2 to 20 of these so that data can be read or
written to multiple media platters without mechanically needing to move
the heads.

Host adapter Also called a host bus adapter or HBA. The interface card
that connects your computer's bus to the SCSI bus. Sometimes called
a SCSI controller.

I
IDE (Integrated Drive Electronics) A hard disk technology that combines the

communication, control, and related circuitry on the same physical unit
as the disk media. Older ST-506 technology had some of the electronics
on the drive mechanism and some on a controller card.

IEEE 1394 An interface standard for connecting computer peripherals to a
host system that uses a serial protocol (one bit at a time) rather than 8
bits at a time (as does normal SCSI) . Apple called their version of this
interface Firewire. SCSI-3 provides for sending SCSI commands over IEEE
1 394 buses.

392 Glossary

IRQ (Interrupt Request) A computer signal used by a device to indicate that
it needs the attention of the CPU. IRQs can be shared by PCI devices, but
not ISA devices.

J
JBOD Acronym for Just a Bunch Of Disks. This refers to a group of disk drives

that are not organized into a RAID set.

K
KB Kilobyte . 1 024 bytes.

L
Logical Unit Nwnber (LUN) A LUN is a sub-unit of a target. Most of the time,

the LUN is just 0 , because most types of target devices don' t have sub-units.
One example of where you might use LUNs is with multi-disk CD-ROM
changers . Many of these units refer to each disk in the changer as a LUN.
For example, with the CD-ROM drive set as target ID 4, the first CD disk
would be ID 4, LUN 0, the next would be ID 4, LUN 1 , and so forth.
Another example is an optical disk jukebox where the optical drive might
be LUN 0 and the changer might be LUN 1 .

Some host adapters ignore LUNs unless the Enable LUNs option is set in
the host adapter BIOS or operating system driver configuration. They
default to not using LUNs because doing so speeds up the bus scan
process and because most targets don' t support LUNs anyway.

LUN numbers are generally defined by the manufacturer and can ' t be
changed by the user.

LVD (Low Voltage Differential) A variation on the older high voltage differ­
ential signaling used in SCSI-1 and SCSI-2 . LVD has the advantage of noise
immunity, yet is low in cost because its low voltage levels - and consequently
lower power dissipation - allow it to be integrated into single bus-driver
chips. It also has the advantage of being able to coexist with single-ended
devices on the same bus segment. LVD devices detect what type of bus
they're on by looking at the TERMPWR voltage .

Glossary 5 9 5

M
MB (Megabyte) 1 024 kilobytes.

N
Nexus A complete SCSI address that specifies not only the SCSI ID but

bus, LUN, and Queue as well. This is sometimes referred to as an
I_ T _L_ Q nexus.

p
P-Cable A 68-pin cable used for Wide SCSI.

Partition A logically separate portion of a disk. Partitions are used to allow
multiple different filesystems or even operating systems to coexist on a
single disk drive. Under Microsoft operating systems, partitions are cre­
ated and changed by using a utility called FDISK.

PCI (Peripheral Component Interconnect bus) A bus developed by Intel that
allows devices to communicate efficiently with the CPU.

R
RAID (Redundant Array of Independent Disks) A set of disk drives connected

in such a way as to allow certain types of access optimization or data security.
This can be accomplished either in hardware using a special dual-ported
SCSI adapter or completely in software in a special device driver.

A RAID 0 array stripes the data across multiple drives to decrease data
latency. A RAID 1 array mirrors the data on multiple drives for increased
data integrity. A RAID 5 array uses extra drives in a distributed manner to
store parity information that can be used to apply data correction and
recover any data in the event of any individual disk failure. This provides
high reliability.

394 Glossary

s
SCA, SCA-2 (Single Connector Attachment) SCA is a standard for providing a

single connector on SCSI devices that contains connections for SCSI signals,
SCSI ID selection, drive options, and power. It uses an 80-pin very high
density (VHD) connector. SCA devices are aimed primarily at the hot­
swap RAID controller market, but adapters can be purchased that allow
SCA drives to connect to regular 50-pin or 68-pin SCSI buses. These
adapters bring out separate conventional connectors for the various sig­
nals and frequently provide an optional terminator. Most SCA drives do
not include a terminator on board.

Segment, bus A portion of a SCSI bus isolated by a signal conditioner chip. A
bus segment is logically part of a single SCSI bus (e .g . , SCSI IDs must be
unique) but is electrically separated such that reflections on the segment
do not affect other segments . Using bus segments allows longer buses
because the signals are cleaned up (edges re-clocked and so on) by the
signal conditioner chips . Each segment must have its own termination:
one at the signal conditioner chip and one at the far end of the segment.
Using a separate bus segment also allows LVD devices to be used on the
same SCSI bus as regular single-ended devices.

Single-ended "Normal" SCSI signals. Uses open collector drivers to drive
the SCSI bus, meaning that a transistor closes the circuit from the SCSI
bus signal to ground to represent an asserted signal. The terminator
supplies the current to make the signal go to a high voltage to represent
a de-asserted signal .

SLED (Single Large Expensive Disk) The opposite of RAID.

SSA (Serial Storage Architecture) An IBM serial device interface.

Synchronous SCSI Rather than waiting for an ACK, a pair of devices that both
support synchronous SCSI can send bytes more efficiently than single-ended
devices using the following sequence:

send d a t a l : send data2 : . . . : send data3 (max out s t a n d i ng bytes)

: wa it : wa i t : responsel : repon se2 : . . .

Glossory 3 9 5

This improves throughput, especially if you use long cables. (The time
that a signal spends traveling from one end of the cable to the other end
of the cable is not zero .)

T
Target A device that responds to commands from the initiator.

Tenninator (active) In contrast to passive terminators that use TERMPWR,
which may not be exactly +5 V, active terminators use a voltage regulator. An
active terminator consists of a set of 1 1 0-ohm resistors, one from each
SCSI signal connected to a 2.85 V regulated voltage source.

Tenninator (passive) A group of resistors on the physical ends of a single-ended
SCSI bus (and only on these ends) that dampens reflected signals from
the ends of the bus. Each terminated signal is connected by a 220-ohm
resistor to TERMPWR and by a 330-ohm resistor to ground.

TERMPWR (Terminator power) One of the signals present on all SCSI buses.
Supplies current to the terminators at the ends of the SCSI bus. The host
adapter is normally responsible for supplying TERMPWR, but other
devices may supply it as well.

Track A ring of blocks (sectors) on a disk.

Twisted pair A type of transmission line used for sending electrical signals
across a SCSI bus. It is NOT two people who are into kinky stuff. :-)

u
UltraSCSI Synchronous data transfer option, which allows up to a 20 MHz

data rate on the bus. Also called Fast-20.

Ultra2 SCSI Synchronous data transfer option, which allows up to a 40 MHz
data rate on the bus. Also called Fast-40. Use of this option also requires
the use of LVD bus drivers.

Ultral60 SCSI Synchronous data transfer option, which allows up to an 80 MHz
data rate on the bus. Also called Fast-80 . The 1 60 refers to the fact that,
because this option also assumes a Wide SCSI bus, you will get a 160 MB/sec
maximum transfer rate. Use of this option also requires the use of LVD
bus drivers.

3 9 6 Glossary

w
Wide SCSI Uses a 68-pin P-cable (which contains an extra 8 data bits and an

extra parity bit) to send the data 1 6 bits at a time as opposed to regular
narrow SCSI , which only sends data 8 bits at a time (over a 50-pin cable) ,
thus doubling data transfer speed over the SCSI bus.

X
X3Tl0 The former name for the ANSI technical committee responsible for

organizing, realizing, and promoting the SCSI standards. The new name
is simply TIO .

Glossary 3 9 7

I N D EX

Italic page numbers indicate an illustra­
tion or chart.

A

Abort command, 2 1 8 , 259, 302
ABORT message, 1 66
A-cable , 85, 89, 1 32

50-pin Centronics-style connectors,
3 1 9 , 327-328

50-pin high-density connectors, 3 1 9 ,
328, 329

50-pin IDC header connectors, 3 1 9 ,
32 1 , 322

adapter, 96
ACKQ signal , 343
ACK signal, 1 3 7, 1 55, 342. See also

REQ/ ACK handshake
active negation, 3 1 5

and FPT, 357
active termination , 45, 47, 355-356

vs. passive termination, 1 1 2
active terminators

detecting presence of, 1 1 6n
on differential buses, 46
features of, 1 84--1 85
measuring the number of, 1 1 7
vs. passive terminators, 1 1 2-1 1 3,

1 1 5 , 1 1 7
when to use, 45

Adaptec
corporate acquisitions, 309-3 1 0
drivers. See ASPI drivers
FTP site with ASPI information, 206
host adapters, 303-304, 308

adapter cards. See host adapters
adapter device drivers (ADDs) for OS/2

2 . x, 281
adapters, 40, 42. See also connectors

for 68-pin external SCSI cable connec-
tors, 42

IBM PS/ 2, 9 1
multi-channel, 371
P to A transition , 96
for SCA drives, 9 1

o n single-ended SCSI buses, 1 82
.add files, 76
add-on cards for the PC. See

peripheral controllers
addresses

ASPI HA/ID/LUN (address)
triples, 271

of devices. See SCSI IDs
Logical Block, 1 60- 1 6 1

ADDs (adapter device drivers) for OS/2
2 . x, 281

AGP bus, 57
Alternative-I and -2 termination, 1 84
ANSI (American National Standards

Institute) , 4
standards for SCSI, 32, 1 76
T I O Technical Committee, 25,

29, 1 76
Apple Computer

25-pin SCSI cable connectors , 90
25-pin Sub-D connectors, 320,

333-335, 338, 339
Firewire . See iEEE 1 394
Powerbook 30-pin HDI connectors,

9 1 , 320, 335-336
applications

ASPI demo, 375-387
using SCSI to develop, 373

ARBITRATION phase, 138, 1 43, 1 45 ,
1 49, 343, 345
followed by RESELECTION and

MESSAGE IN phases, 349
followed by SELECTION

phase, 349
ASPI, 69, 1 72

demo applications, 375-387
for DOS, 207-220
for DOS under Windows 3 .x, 220-2 2 1
meaning of, 205
for NetWare, 292-305
for OS/2, 279-292
programming with, 205
R/W notation for column headings,

207
SCSI command linking with , 2 1 5-2 1 6
for Windows, 2 2 1-242

for Windows (continued)

for Windows (Win32) , 243-279
ASPIAPP, 282
AspiApplication.pas, 376, 386
ASPI Command Codes for DOS,

210, 2 1 1-220
0: Host Adapter lnquiry, 21 1-212
1: Get Device Type, 2 1 2-213
2 : Execute SCSI 1/0 Command,

2 1 3-2 15
3: Abort 1/0 Command, 2 1 7-2 18
4: Reset SCSI Device, 218
5: Set Host Adapter Parameters, 219
6: Get Disk Drive Information,

2 1 9-220
ASPI Command Codes for Net Ware,

295, 296--303
0: Host Adapter Inquiry, 296
1 : Get Device Type, 297
2 : Execute SCSI 1/0 Command, 297,

298-301
3: Abort SCSI 1/0 Command,

301-302
4: Reset SCSI Device, 302
5: Set Host Adapter Parameters,

303, 303
ASPI Command Codes for OS/2 2 .x,

283, 284-292
0: Host Adapter Inquiry, 284-285
1 : Get Device Type, 285-286
2: Execute SCSI l/0 Command,

286--290
3: Abort SCSI 1/0 Request,

290, 291
4: Abort SCSI 1/0 Request,

29 1 , 292
5 : Set Host Adapter Parameters, 292

ASPI Command Codes for Windows.
See SendASPICommand

ASPI Command Codes for Windows
(Win32) . See SendASPI32Command

ASPI command posting. See posting
ASPI drivers, 71-72

combining, 122
components of, 205
for DOS, 207-208. See also ASPI

managers for DOS
loading in config.sys files, l 2 1 , 1 73

for Windows 3. 1 , 73
for Windows NT, 1 76

ASPIDRV, 282
ASPI_Entry, 293-294
ASPI functions, calling, 245-247
ASPI HA/ID/LUN (address) triples,

271
ASPI Host Adapter Number field of

SRBs, 2 1 1
ASPI_Interface.pas, 376, 382-387
ASPI_Load/EjectUnit, 384-387
ASPI managers, 205-206

support for residual byte length, 252,
305-308

ASPI managers for DOS
calling, 209-2 1 0
stack needed by, 207

ASPI managers for NetWare
handling of more than 1 6 MB,

303-305
scans for new devices, 305

ASPI managers for Windows, 222
ASPI modules, 205, 206, 245
ASPIPostProc, 239
ASPI program for communication

with SCSI device, 377-381
ASPI Software Developer's Kit (SDK) ,

206--207, 282
ASPI_StartStopUnit, 380, 382 ·

ASPI Status Byte field of SRBs, 2 1 1
polling, 238

ASPI-to-CAM translation drivers, 73
asynchronous data transfer, 50-5 1

four steps for, 1 67
handshaking method, 1 67-1 68
timing diagram of, 350

asynchronous data transfer rates,
6, 1 67

asynchronous SRBs, 249-250, 273-276
ATA (advanced technology attach­

ment) , 3
hard drives, 1 92
1/0 ports for, 360
maximum cable length, 370-371
vs. SCSI, 1 0, 367-373

AT API (ATA Packet Interface) , 3,
3 1 , 368

ATN signal, 136, 1 56, 342

ATIENTION condition, 344-345
audio data recording, 1 9

audio/video applications, 30
autoexec.bat file, safeguarding

your, 77

B

backplane cases, 1 0 1 , 324
backups. See also RAID systems

off-site Fibre Channel, 1 2
separated geographically, 3 1 1-3 1 2

Ehcable, 1 32 , 1 33, 337
BIOS on host adapter cards, 60, 78, 1 1 1
BIOS (PC)

calls and functions, 1 72
defined, 1 72
extending, 79
option for hardware conflicts, 1 1 9
printing settings in, 77
troubleshooting, 1 07

bits
Direction, 2 1 4, 243
Disconnect Privilege , 1 47
Ej ect, 382
ID, 1 30
Link, 2 1 4
Most and Least Significant, 1 34
NACA, 1 66
parity, 49
Post, 2 1 4
S / G (scatter/gather) , 308
Start, 382

block striping, 1 92- 1 93
with distributed parity, 1 96, 1 97
with parity, 1 95-1 96
with two distributed parities, 197

block-type drivers (Unix) , 1 76
bootable floppy disks

creating, 78
FAT32 filesystems and, 79

bootup problems, troubleshooting,
1 1 0-1 1 2 . See also BIOS (PC)

BSY signal, 136, 1 55, 342
bus. See also SCSI bus

architectures, 56-57
control signals, 1 35, 1 43
defined, 1

BUS DEVICE RESET
message, 1 59, 1 66
Windows 95/NT and, 263

BUS FREE phase , 138, 1 43, 1 46, 1 55 ,
343, 345
preceded by MESSAGE IN phase, 351

bus mastering SCSI controllers, 66
BUS RESET message , 1 66
bus slots

defined, 2
and DMA transfer speeds, 67
and SCSI, 1 4

buttons
Load and Eject, 386-387
Start and Stop, 379

byte packing, 244

c

cables. See also A-cable ; Ehcable;
L-cable; P-cable; Q-cable;
terminators
choosing, 84, 85, 1 83-1 84, 1 87
connecting, 92-93, 1 82
diagram of, for SCSI-1 , SCSI-2 , and

SCSI-3 , 134
differential SCSI, 37, 38, 40, 1 8 7
electrical specs for all, 3 1 7-3 1 9
evolution o f SCSI, 1 32-1 33, 134
extending distance of, 37, 60, 86
external , 40, 88-89
Fast SCSI-2, 6
flat ribbon , 40, 87-88
HVD SCSI, 1 87
icons on, 3 1 3, 3 1 4
I D E , 1 2
IEEE 1 394, 2 1 , 30
impedances, 1 83
internal, 40, 87-88
length, importance of, 36, 84
length vs. ATA cables, 370-371
lengths to use , 86, 8 7
LVD SCSI, 40
mixing, 1 82-1 83
narrow, 40, 42
number of pins, 40
for printers, 2 1
quality, importance of, 84

reference table for, 41
SCSI-3, 6, 8
SCSI-3 32-bit, 40
single-ended SCSI, 37, 38
specs, 40
Teflon, 3 I 8-3 I 9
transceiver specs and lengths of,

I 80-I8I
troubleshooting, I I 8
twisted-pair ribbon, 88
Ultra2, 27
wide, 40, 42
Y-shaped, 9 I

caching host adapter cards, 57-59
callbacks. See posting
CAM (Common Access Method) ,

69-70
CAM (Common Access Method) dri­

vers, 72-73
ASPI-to-CAM translation, 73
loading in config.sys files, I 2 I
X PT transport function, I 76

CAM (Common Access Method)
systems (Unix) , I 77

camcorders, 3 I O
capacitance, I 8 2
capacity o f storage devices, I 5

hard drives, I 6
CDBs (command descriptor blocks) ,

I 60
6-byte, 1 60- I 6 I
1 0-byte, 1 61-I 62
I 2-byte, I 62
device driver that loads, I 73
nonstandard lengths of, 230

CD burners, I 9-20
CD-ROM drives, I 9

I 6-bit Wide SCSI, I 8 I
installing, 78
on non-SCSI interfaces, 3
SCSI IDs, assigning, I OO
swapping, between platforms, I I

CD-ROM recorders (CD-R and
CD-RW) , I 9-20

C/D signal, 136, I 55, I 56, 342, 344
Centronics-style connectors, 3I9,

327-328, 336
channels

number of devices permitted on, 37I

character drivers (Unix) , I 76
CHECK CONDITION status, I 65-I 66
Classic interface . See HVD (High

Voltage Differential)
CLEAR ACA message, I 66
color depth, 2 I
colored books, I 9
command codes for DOS

drivers, I 73
Command Complete message , 345
command descriptor blocks. See CDBs

(command descriptor blocks)
COMMAND OUT phase , 139, 1 43
COMMAND phase, I 5 I , I 52 , I 60-I 64,

I 67, 343-34� 345, 346
preceded by MESSAGE OUT phase,

350
commands. See also ASPI Command

Codes; SRBs (SCSI request blocks)
6-byte, 1 60-I 6 I
1 0-byte , 1 61-I 62
I 2-byte, I 62
Abort, 2 I 8 , 259, 302
for direct-access devices, 1 63-1 64
executing, sequential vs. concurrent,

370
MODE SELECT, I 6 I
the nature o f SCSI, I 26
REQUEST SENSE, I 66
residual byte length of, 252, 305
Start, 377, 379-380
Stop, 377, 379-380
TEST UNIT READY, 345-346

command sets
defined, 24
SCSI-3, 3I

COMMAND TERMINATED
status, I 66

communication among SCSI devices,
50-53. See also 1/0 processes

computers
lockups and communication errors,

1 1 2-1 1 3
SCSI drives for Macintoshes, I I
SCSI drives for PCs, I l
that support SCSI, IDE, ATA, EIDE,

and UDMA, 9-1 1
conductors in external SCSI cables, 85

config.sys file

examples of, 7 1 , 72, 73, 1 20, 1 2 1

loading drivers i n , 1 73

safeguarding, 77
connect, 1 45-1 47
connectors, 40-42. See also adapters

25-pin external SCSI cable , 90, 9 1
25-pin Sub-D , 320, 333-335,

338, 339
25-pin Sub-D (Future Domain) , 320,

337-339
30-pin HOI (Apple) , 320, 335-336
37-pin Sub-D (Novell and Procomp

DCB) , 320, 340-341
50-pin Centronics-style , 3 1 9 , 327-328
50-pin external SCSI cable, 90, 9 1
50-pin high-density, 3 1 9 , 328, 329
50-pin IDC header, I , 319 , 32 1 , 322
50-pin Sub-D (Sun Microsystems) , 320,

339-340
60-pin high-density Centronics-style ,

336
68-pin external SCSI cable , 90, 91
68-pin high-density, 3 1 9 , 329, 330, 331
68-pin high-density Sub-D

(B-cable) , 320, 337
68-pin internal SCSI cable, 90
68-pin VHDCI, 320, 332-333, 334
68-pin Wide SCSI P- and Q-cable, 3 1 9,

322, 323, 324
80-pin SCA, 42, 9 1 , 1 0 1
80-pin Wide SCSI SCA-2, 3 1 9 ,

324-325, 326
electrical specs for, 3 1 9-34 1
external SCSI cable, 88
high-density, 322
host adapter cards wi th multiple , 60
icons on, 3 1 3 , 314
identifying, 89-9 1
internal SCSI cable, 90
quality, importance of, 84
shrouded header, 1 04
troubleshooting, 1 04, 1 1 9

Contingent Allegiance Condition , 1 66
Control Byte field of COBs, 1 6 1
controller cards . See also host adapters

defined, 2
internal and external RAID, 202-203
for peripherals, 65-68, 1 26

control signals, data bus, 134, 1 35 ,

136-137

corporate acquisitions by computer

manufacturers, 309-3 1 0
cost o f SCSI , IDE, ATA, EIDE, and

UDMA, 1 0, 1 2 , 1 3- 1 4
CPU load, SCSI vs. ATA, 372
CRC (Cyclic Redundancy Check)

protection, 26, 28, 50

D

daisy chain, 9 1 , 92, 93, 94
data

copying, among hard drives, 34
protection. See backups; RAID
protocol for storage of, 3 1 2
reliability problems, 1 8 1

data bus
contents of, 154
signals, 1 34-1 35
transferring information across the ,

1 66-1 70
data clock signals, 1 35
DATA IN phase , 1 53, 350, 35 1
DATA OUT phase, 139, 1 43, 1 53, 350,

351
DATA phase, 1 67 , 343-344, 345
data storage. See backups
data striping. See striping
data transfer. See also SCSI bus phase

sequence
diagram of, 1 28
high-speed, using D MA, 65-66, 67-68
large , with ASPI for OS/ 2 2x, 282
large, on NetWare networks, 303-305
large, on Win32 systems, 269-270
maximum length of, 308
methods of, 66

data transfer rates. See also asynchronous

data transfer rates; synchronous data
transfer rates
defined, 2
vs . real data rates, 1 89
of SCSI-I devices, 4
of SCSI-3 devices, 8
of SCSI , IDE, ATA, EIDE, and UDMA,

1 0, 1 2

data transfer rates (continued)

of SCSI vs. ATA, 368-369
serial vs. parallel, 8

data types for ASPI for Win32, 244
DAT tapes, 1 7
DB (O) to DB(7) , 342
DB (8) to DB (1 5) , 342
DB (1 6) to DB (31) , 343
DB (P) and DB (Pl) , 342
DB (P2) and DB (P3) , 343
DDBs (device descriptor blocks) , 1 74
DDS and DDS-2 tapes, 1 7
definition file, NetWare, 292-293
development, using SCSI for

applications, 373
Device Bay, 31 1
device code, 1 39
device controllers, 2

and SCSI, 3
device descriptor blocks (DDBs) , 1 74
device drivers. See also SCSI drivers

block-type and character, 1 76
conflicts caused by, 1 1 1 , 363-366
defined, 68, 1 7 1
device-specific, 71
for SCSI-3 serial devices, 9
SCSlport, 1 75, 1 76
tape class NT, 1 76
troubleshooting, 1 1 9-122
type-specific, 1 75
virtual (.vxd) , 1 74, 1 75

device independence, 369-370
DeviceList, 377, 379
device manager drivers (DMDs) for

OS/2 2 .x, 281
devices. See also SCSI devices

defined, 2
external, 1 1-1 2
parallel and serial, 4
support for, by SCSI, IDE, ATA,

EIDE, and UDMA, 10, 1 1
DEVNODEs, 271-273
differential RS485 transceivers, 180
differential SCSI bus, 36, 37, 39

cables, 38, 87
terminators, 46, 48

differential SCSI interfaces, 315,
31fr.317 . See also HVD (High Voltage
Differential) ; L VD (low voltage dif­
ferential)

DIFFSENS, 3 1 6
Digital Audio Tape (DAT) , 1 7
digital cameras, 3 1 0
Digital Linear Tape (DLT) , 1 8
direct-access (SCSI) devices commands,

1 63-1 64
Direction bit, 2 1 4, 243
direct memory access. See DMA

(direct memory access)
Disaster Tolerant Disk Systems, 202
disconnect, l 47-1 48. See also discon-

nect/ reconnect
Disconnect message, 1 48
Disconnect Privilege bit, 1 4 7
disconnect/ reconnect, 5 1-53

sequence, 1 5 1
disk spanning, 193
.dll (dynamic link library) files, 1 74
DLT (Digital Linear Tape) , 1 8
DMA

for high-speed data transfer, 65-66,
67-68
rates, 57

DMA channels, setting, 67-68
DMA channel usage, 363
DMA transfer speeds, setting, 67
DMDs (device manager drivers) for

OS/2 2 .x, 281
Domain Validation feature

(SCSI-3) , 28
DOS, ASPI for, 207-220
DOS memory managers and SCSI,

1 1 1 , 1 2 1
DOS Protected Mode Interface

Specification, 220
DOS SCSI drivers, 70-73, 1 73

troubleshooting, 1 20-1 21
double-caching, 59
drives. See also CD-ROM drives; hard

drives
letters for, assigned by DOS, 80
optical disk, 1 8-20
removable media disk (zip) , 1 6, 1 7
SCSI command flags for, 264
tape, 1 7-18

DT (double-transition) clocking,
26, 28

dual host adapter cards, 60
duplexing, 193- 1 94
DVD, Windows 98 support for, 1 74

DVD-ROM drives, 20
dynamic linking (Windows 95/NT) ,

245-247
dynamic link library (dll) files, 1 74

E

8mm tapes, 1 8
ECC (error correction code) , 194
EDAP (extended data availability and

protection) , 200-202
EIDE (Enhanced IDE)

defined, 3
hard drives, 1 6
history of, 368
vs. SCSI, 1 0, 53

EISA boards, I/0 ports for, 361
EISA bus, 56
Eject bit, 382
elevator seeking, 370
Enhanced IDE. See EIDE (Enhanced

IDE)
error checking. See parity checking
error detection by SCSI, IDE, ATA,

EIDE, and UDMA, 1 0, 1 2
error messages

ASPI for Windows, 242
examples of, 1 05-1 1 3 , 1 1 5
handling, 1 03

errors. See also RAID; trouble­
shooting
ASPI for Win32, 27&-2 79
indicated by CHECK CONDITION,

1 65-1 66
while loading NLMs, 293
and speed, 1 80-1 81

ESDI, 4 ,
event notification, 273-274

with timeouts, 268
ExecSCSICmd Stmcture Definition,

228-230
expanders, 86
explicit dynamic l inking, 245-246
extended contingent allegiance condi-

tion, 1 66
extended data availability and

protection (EDA) , 200-202

Extended Host Adapter Inquiry
command, 305, 306-308

extended messages, 156
external cables, 40, 88-89, 1 83

buying, 85
electrical specs, 3 1 8-31 9
troubleshooting, 1 1 8

external connectors, 90-9 1 . See also

shielded connectors
external devices

ATA, 371
data errors using, 3 1 8
SCSI vs. USB, 373
support for, by SCSI , IDE, ATA, EIDE,

and UDMA, 1 0, 1 1-1 2
terminating, 352-353
typical terminator for, 98

F

failures. See RAID
false signals, 1 8 1
Fast-10 SCSI, 25
Fast-20 SCSI, 7 , 25, 27
Fast-40 host adapter cards, 61-62
Fast-40 SCSI, 7
Fast-80 SCSI, 8
Fast SCSI, 25

cables for, 84
cable length for, 86
single-ended interface with, 1 8 1

Fast SCSI-2 , 5 , 6
cables for, 84

Fast synchronous transfer rates, 1 69-1 70
Fast Wide SCSI, 7
FAT filesystems, 79, 80, 81
FC-AL. See Fibre Channel: Arbitrated

Loop (FC-AL)
female connectors, 89
Fibre Channel, 8, 9, 1 0 , 29, 30

an alternative to, 30
Arbitrated Loop (FC-AL) , 1 1 , 29, 30
interface types, 3 1 1
for off-site backups, 1 2
over long distances, 24
storage area networks (SANs) and, 3 1 2

Firewire . See IEEE 1 394
firmware, 1 39

first-party DMA, 66
fixed disks, 1 6
flat ribbon cable, 40, 87-88
.flt files, 76
FPT (forced perfect termination) , 46,

47, 357
FreeASPI32Buffer, 245, 270-271
FTP sites, Adaptec's, 206
Future Domain 25-pin Sub-D

connectors, 320, 337-339

G

games, using SCSI for, 372
GB (gigabyte) , defined, 392
GetASPI32Buffer, 245, 269-270
GetASPI32Supportlnfo, 245,

247-248
GetASPISupportlnfo, 221 , 222-223
GetDeviceList, 379
GetHAinfos, 378-379
GetProcAddress, 246
gigabyte (GB) , defined, 392
graphics, using SCSI for, 373

H

HAList, 377
HAListBoxClick, 378-379
handshake , SCSI, 1 26, 1 66-1 70. See

also REQI ACK handshake
hard disks. See hard drives
hard drive interfaces, 3. See also EIDE

(Enhanced IDE) ; IDE (Integrated
Drive Electronics) ; SCSI interface

hard drives. See also RAID; SCSI
hard drives
ATA (advanced technology attach-

ment) , 192
choosing, 15 , 16
EIDE (Enhanced IDE) , 16
IDE (Integrated Drive Electronics) ,

1 1 , 1 6
letters for, assigned by DOS, 80
magneto-optical disk advantages

over, 1 9
mirrored o r duplexed, 193- 1 94

mixing SCSI and non-SCSI, 6 1
USB (Universal Serial Bus) , 3 1

hardware caching, 58-59
hardware interfaces

defined, 2
SCSI impact on, 3

hardware interrupts. See IRQs (inter-
rupt requests)

HA5TAT_BUS_FREE, 25 7
HA5TAT_BUS_RESET, 25 7
HA5TAT_COMMAND_ TIMEOUT,

25 7
HA5TAT_DO_DU, 25 7
HA5TAT_MESSAGE_REJECT, 25 7
HA5TAT_OK, 25 7
HA5TAT_PARI1Y_ERROR, 257
HA5TAT_PHA5E_FREE, 25 7
HA5TAT_REQUEST_SENSE_FAILED,

25 7
HA5TAT_SEL_TO, 244
HA5TAT_TIMEOUT, 25 7
HBAs. See host adapters
HDI-30 connectors (Apple) , 320,

335-336
Hi-9 termination, 42
HIBYfE, 222-223
high-density external SCSI cable con­

nectors, 90, 9 1
high-density IBM 60-pin Centronics­

style connectors, 336
high-density Sub-D connectors, 3 19 ,

328, 329
68-pin B-cable, 320, 337
for P- and Q cables, 319, 329, 330, 331

High Sierra format, 1 9
Host Adapter Inquiry command,

305, 306
host adapters, 93

Adaptec bus master ISA, 304
ASPI manager for, 205-206
BIOS on, 60, 78, 1 1 1
built into the motherboard, 57
caching by, 57-59
choosing, 55, 57, 6 1 , 3 1 0
configuring, 8 , 62-68
cost of, 1 3
defined, 2
dual, 60
EISA, 304

Fast-40, 61-62
fuses, 1 1 0
as initiators, 1 27
installing, 1 3
IRQs (interrupts) , lacking, 64
multiple connectors, using, 60
with other disk controllers, 6 1
parameters under Win32, 251-252
PCI, 304
PCMCIA laptop, 44
as SCSI analyzers, 365
setting IDs on, 68, 1 30
specific drivers for, 7 1
status reports for, 2 1 5
status reports for Win32, 257
terminating, 95-96, 97
troubleshooting, 1 05-1 07, l l O , I l l
two-channel, 3 1 7

host bus adapters. See host adapters
host devices, 33
HVD (High Voltage Differential)

cable for, 1 87
devices, 37, 39
electrical specs, 3 1 5-3 1 6
icon, 314
vs. LVD (low voltage differential) , 39
maximum length of bus, 87
terminators, 46, 48, 53

IBM. See also SSA (serial storage archi­
tecture)
SCSI adapter cable for PS/2, 91
SCSI connectors, 333 , 336

icons, SCSI interface , 3 1 3 , 314
ID bit , 1 30
IDC header connector, 319 , 321 , 322
IDE (Integrated Drive Electronics) . See

also EIDE (Enhanced IDE)
defined, 3
error reduction technique, 1 2
hard drives, l l , 1 6
history of, 368
vs. SCSI, 1 0, 53, 367-373

Identify message, 1 47, 1 50
and LUNs, 1 60

IEEE 1 394, 8, 30, 3 1 0

cables, 30
with USB, 3 l l

! .Link. See IEEE 1 394
image scanners, 2 1
impedance, 43
implicit dynamic linking, 247
InfiniBand interface, 3 1
information transfer control signals,

1 35, 1 43
information transfer phases, 1 5 1-155,

343--344
command phase and code descriptions,

1 60-1 64
control signals, 344
message phase and code descriptions,

1 55-1 59
status phase and code descriptions,

1 64-166
INITIATE RECOVERY message, 1 66
initiator devices, 33--34, 36, 1 26,

1 29-1 30
control signals driven by, 135
information transfer phases of, 153
synchronous data transfer, 1 58-1 59

Inquiry command, 2 1 3, 377
INT 13 extensions, 78
Int l 3h, 2 1 9 , 220

Windows NT and, 263
interface cards. See host adapters
interfaces. See also ASPI ; SCSI interface

defined, 2
intelligent, 3, 1 25
interlocked, 1 2 7

internal cables, 4 0 , 87-88
buying, 85
colored stripe on, 92
commonly used, 183
connectors on , 90
electrical specs, 3 1 7
troubleshooting, l l 8

internal connectors. See unshielded
connectors

internal devices
converting, into external devices, 9 1
data errors using, 3 1 8
terminating, 352-353
typical terminator for, 97

Internet resources
Adaptec's FTP site , 206

Internet resources (continued)

Usenet newsgroups for SCSI, 6 1 , 77,
367, 370

See also Web sites
interrupts . See IRQs (interrupt

requests)
l/0 (input/output) overlapping,

370
1/0 ports, 62-63

usage, 360-361
I/ 0 processes

bus operations, 1 43
defined, 1 27, 12� 1 29
disconnect/reconnect effect on,

1 5 1 , 152
DOS handling of, 1 73
SCSI device control of, 1 47
sending multiple, 150
Win32 handling of, 248-250

1/0 signal, 136, 155 , 1 56, 342,
344, 344

IRQs (interrupt requests)
conflicts , 65
defined, 393
the devices that use particular,

361-362
freeing for use , 60
IRQs 2 and 9, 64
IRQs 10 , 1 1 , and 1 5 , 65
IRQs 1 4 and 1 5 , 371
PCI cards and, 62
and SCSI, 1 4
setting, 63-65
sharing, 65

ISA (industry standard architecture)
bus, 56

ISA Plug-and-Play configuration,
362
I/0 ports for, 360

ISA slots, 2. See also PCI slots
isochronous services, 30
I_ T _L nexus, 1 45

creating, 146
establishing, 1 47
reestablishing, 1 40

I_T_L_Q nexus, 1 45, 1 50

J

jumpers
setting SCSI IDs with, 1 30, 131
TP, 98

L

LADDR (layered device driver) , 76
laptops

Apple PowerBook connectors, 9 1 ,
320, 335-336

NT drivers for, 1 75
SCSI devices and, 44

layered drivers, 69-70, 76
layered programs, 376-377
L-cable , 337
Least Significant Bit (LSB) , 1 34
LEDs on SCSI sniffers, 1 23
Link bit, 2 1 4
Linux SCSI drivers, 77
Listbox, 379
load/ eject ASPI application, 382-387
LoadEjectUnit, 386
LOBYfE, 222
Logical Block Address field of CDBs,

1 60-1 61
Logical Unit Number field of CDBs,

1 60
Logical Unit Numbers (LUNs) ,

24, 1 47
logical units, 1 26
logos, SCSI interface , 3 1 3, 314
Loop Resiliency Circuits (LRC) , 29
low-level drivers, 69 , 71
low voltage differential . See L VD (low

voltage differential)
LRC (Loop Resiliency Circuits) , 29
LSB (Least Significant Bit) , 1 34
LUNs (Logical Unit Numbers) , 35

specifying, 1 47
LVD (low voltage differential) , 27

cables for, 40
devices, 37, 39, 46, 60
electrical specs, 3 1 6-31 7

Fast-40 (Ultra2) host adapter, 62
icon, 314
maximum length of bus, 87
terminators, 46, 53
transceivers, 1 80-181

LVD/SE SCSI icon, 314

M

Macintosh computers, SCSI drives
for, 1 1

Magneto-Optical (MO) drives, 1 8-19
male connectors , 89
manufacturers

computer industry, transitory nature
of, 309-31 0

o f SCSI analyzers, 366
MAX_HA_ID, 254
MAX_TARGET_ID, 254
MB/sec (megabytes per second) , 2
MCA (micro-channel architecture)

bus, 56
mechanical latency, 1 47
media trays, program to load or eject,

382-387
megabytes per second (MB/sec) , 2
MESSAGE IN phase, 139, 1 43, 1 48, 1 50,

1 53, 1 56, 345
followed by BUS FREE phase, 351
preceded by ARBITRATION and

RESELECTION phases, 349
MESSAGE OUT phase, 138, 1 46--1 47,

1 53, 1 55 , 1 56, 345
followed by COMMAND

phase, 350
MESSAGE phase, 1 55-1 59, 1 67,

343--344, 345
messages, 1 56, 157-158

ABORT, 1 66
BUS DEVICE RESET, 1 59, 1 66
BUS RESET, 1 66
CLEAR ACA, 1 66
Disconnect, 1 48
extended, 156
Identify, 1 47, 1 50
INITIATE RECOVERY, 1 66
Queue Tag, 1 50
RELEASE RECOVERY, 1 66
Save Data Pointer, 1 48

single-byte, 1 5 6
terminating a STATUS phase, 1 64

Microsoft
Diagnostics (mscdex.exe) , 86
SCAM (SCSI Configured

"AutoMagically") , 8
support for SCSI, 1 3

Miniport drivers, 69, 1 75
mirroring, 1 93--1 94
MMC-2 (Multimedia Commands) , 3 1
MODE SELECT command, 1 6 1
M O (Magneto-Optical) drives, 1 8-19
Most Significant Bit (MSB) , 1 34
MPD (Miniport drivers) , 69 , 1 75
MSB (Most Significant Bit) , 1 34
mscdex.exe, 78
msd.exe, 65
MSDOS. See DOS entries
MSG signal, 137, 1 55 , 1 56, 342,

344, 344
multi-channel adapters, 371
multimedia applications, 30
multitasking

activities requiring, 373
with ASPI for Windows, 241
defined, 2
disconnect/reconnect and, 52-53, 1 44
pre-emptive, 1 74
by SCSI vs. AT A, 369-370
by SCSI, IDE, ATA, EIDE, and UDMA,

1 0, 1 2
with Windows 3 .x, 1 74
with Windows NT, 1 75

multithreaded operating systems, 30
Windows NT, 1 75

music CDs, 1 9

N

NACA bit, 1 66
narrow SCSI, 25. See also Wide SCSI
narrow SCSI devices

mixing with Wide SCSI devices,
353--354

setting IDs for, 1 30
NetWare Loadable Modules (NLMs) ,

293
networks. See also RAID

host adapter cards for, 59

networks (continued)

SCSI on small , advantages of, 371
storage area, 3 1 1-312

ne�groups, 61 , 77, 367, 370
nexus. See also I_T_L nexus; I_T_L_Q

nexus
forming, with SCSI IDs, 146

NLMs (NetWare Loadable Modules) ,
293

noise problems, 1 8 1
N o Starch Press Web site , 375
notebook computers. See laptops
Novell

connectors, 320, 340-341
NLMS (NetWare Loadable

Modules) , 2 1

0

object file, NetWare, 292, 293
obsolete connectors, 320,

337-341
odd parity checking, 49
operating systems

copying data among drives, 34
multitasking by, 2 , 53
and software caching, 58
and spatial reuse , 30
support for device independence

and I/0 overlapping, 370
support for SCSI, 1 1 , 1 3
that SCSI i s recommended for,

373
Operation Code field of CDBs,

1 60
optical disk drives, 1 8-20
OS/2 . See also ASP!: for OS/2

SCSI drivers, 76
Warp, 1 3

os2aspi.dmd, 28 1 , 282
os2dasd.dmd, 281
os2scsi .dmd, 281
oscilloscope, 1 23-1 24

signal, view of, 124
overlapping I/0, 370

p

packetized protocol feature (SPI-3) ,
27, 28

page-locked memory, 243
parallel devices, 4
parallel SCSI-3 interfaces, 27-29,

310 , 3 1 3
parity bit, 49
parity checking, 48-50

using, 1 00-1 01
parity data bus signal, 1 35
parity errors, recovery from, 1 56
partitioning a SCSI hard drive, 79-81
passive termination, 45, 1 84, 354, 355

problems with, 1 1 2
passive terminators

vs. active terminators, 1 1 2-1 1 3 ,
1 1 5, 1 1 7

on differential bus, 46
measuring the number of, 1 1 6
problems with, 45

P-cable , 85, 89, 1 32 , 1 33
adapter, 96
shielded connectors, 3 19 , 329, 330
unshielded connectors, 3 19 , 322, 323
VHDCI connectors, 320, 332, 334

PC computers, SCSI drives for, 1 1 ·
PCI boards

configuration, 362
I/0 ports for, 361

PCI bus, 57
PCI slots, 8 , 1 3

defined, 2
PCI-type host adapters, 62, 304
PCMCIA host adapters, 44
performance tuning, 1 79-1 89

with caching host adapter cards,
57-59

with DMA, 65-68
peripheral controllers, 65, 1 26,

359-362
peripherals. See devices
phases. See SCSI bus phases
pin 1 on internal SCSI cable connec­

tors, 92-93

PIO (programmed I/0) , 66-67
Plug and Play

ASPI use of, 27 1-273
impact on SCSI, 8
ISA, 360, 362
PCI 's advantages, 1 3
troubleshooting, 1 1 9-1 20

polling, 64, 238, 275-276, 380-382
port addresses, setting, 62-63
Post bit, 2 1 4, 2 1 6-2 1 7
posting, 2 1 6-2 17 , 239, 274-275, 382

with ASPI for Win32, 243
for NetWare, 300-30 1

PostMessage, 241
power supplies, 1 1 7
printers, 2 1
priority o n the SCSI bus, 99-100,

1 30, 131
problem-solving. See troubleshooting
Procomp connectors, 320, 340-341
programmed input/ output, 66-67
programming, SCSI for, 373
proprietary SCSI connectors, 333-33 7
protocol layers, SCSI bus, 1 37, 138-139
protocol phases, SCSI bus, 34 3
protocols

defined, 1 39
synchronous negotiation, example of,

1 58- 159
tagged command queuing, 150
two sequences of, for a disconnect,

1 47-1 48
PS/2 computers, 336

Q

QAS (quick arbitrate and selection) , 26,
27

Q�able , 89, 1 30, 1 32, 1 33
shielded connectors, 319 , 329, 331
unshielded connectors, 319 ,

322, 324
VHDCI connectors, 320, 332-333, 334

QIC (quarter-inch cartridge) tapes, 1 7
Queue Tag message , 150

R
RAID

fault tolerance, 200-202
implementations of, 202-203
meaning of, 1 9 1
name games with, 1 92

RAID Advisory Board (RAB) , 1 99
RAID levels, 1 9 1

level 0 , block striping, 1 88, 1 92-193
Ievel l , mirroring or duplexing,

193- 1 94
level 2, striping with ECC (error

correction code) , 194
level 3 , byte striping with

parity, 1 95
level 4, block striping with parity drive,

1 95-1 96
level 5, block striping with distributed

parity, 1 96, 1 97
level 6, block striping with two distrib­

uted parities, 197
level l O (0 + 1) , mirrored striping

array, 1 98, 1 99
RAID systems, 35

RAID 7 proprietary systems,
1 92 , 1 98

RBC (Reduced Block Commands) , 31
read caching, 56
reconnect, 1 49-1 50

sequence, 151
red stripe on cables, 87
RELEASE RECOVERY message, 1 66
removable media hard disk drives, 16 , 1 7
repeaters, 86
REQ/ ACK handshake, 1 55, 156, 1 67,

1 68, 344
REQQ signal , 343
REQ signal, 137, 1 55 , 342
REQUEST SENSE command, 1 66
rescue disks

creating, 78
and FAT filesystems, 79

reselect. See disconnect/ reconnect
RESELECTION phase , 139, 1 43, 1 49,

343, 345

RESELECTION phase (continued)

with ARBITRATION and
MESSAGE IN phases, 349

RESET condition, 344, 345
residual byte length, 252, 305

using, 308
ribbon cable , 87

connecting with round cable, 318
cross-talk rejection by, 183

rotational latency, 16
round cable, 88-89

connecting with ribbon cable , 318
cross-section of, 318
using internally, 1 83

RS/6000 computers, 336
RST signal, 136, 342, 345

s
SANs (storage area networks) ,

3 1 1-3 1 2
SASI (Shugart Associates Systems

Interface) , 3
Save Data Pointer message sequence ,

1 48
SCA

adapters, 42, 9 1 , 326
backplane cases, 1 0 1
LVD drives, 326

SCA-2
connectors, 319 , 324-325, 326

SCAM (SCSI Configured
"AutoMagically") , 8

scanners, 2 1
SCSI-3 command sets for, 3 1
SCSI vs. USB, 373

SCC and SCC-2, 3 1
SCSI. See also SCSI-I ; SCSI-2; SCSI-3

benefits and pitfalls of, 9-1 4
birth of, 3-4
Common Command Set (CCS) , 4-5
Configured "AutoMagically"

(SCAM) , 8
features chart, 1 0
meaning of, 4
operating systems supporting, 1 1
pronouncing, 1

resources about. See Internet
resources

serial versions of, 7, 29-31 , 1 66
speed of, 1 2

SCSI-I , 4
cables, 84
connectors, 90, 9 1
logical unit numbers (LUNs) , 1 47
number of available SCSI IDs, 98
parity checking support, 49, 1 0 1
signal grouping, 134

SCSI-2, 4-7, 25
connectors, 90, 9 1
logical unit numbers (LUNs) , 1 47
number of available SCSI IDs, 98
signal grouping, 134

SCSI-3 , 7-9
architecture roadmap, 24
cables, 40, 84, 1 33
command sets, new, 31
device drivers, 24
and multimedia applications, 30
optimal uses, 24
parallel interfaces, 27-29, 3 1 0
parallel interface standards, 26--29
serial interfaces, 29-31 , 1 66
signal grouping, 134
standards, 23-24, 32

SCSI analyzers, 355-366
SCSI bus. See also cables; IEEE 1 394;

PCI bus; SCSI bus phases; terminators;
USB
advantages of, 1 4
vs . AT A/IDE bus, 367-373
characteristics, 1 27
conditions, 344-345
configurations, l 27, 129
control signals, 136-137
defined, 9 1
differential , 57
example of, 36
example of three devices on , 93
extending the distance covered by, 37
history of, 367-368
how it works, 35-36
length specs, 41
maximum lengths, 8 7
priority o f SCSI devices o n , 99-100,

1 30, 131

QAS improvement to, 28

reflecting signals on, 45
SCSI- 1 , 4
SCSI-2 maximum data transfer rate, 7
SCSI-3 maximum data transfer rate ,

8, 1 0
signals, 1 34-1 37, 342-343
single-ended, 36-38, 39 , 44
statistics, 1 0
terminating, 94-98
two-segment, 60

SCSI bus phases, 1 43, 343-346. See also

information transfer phases

distinguishing among, 1 45
relation to protocol layers, 1 37,

138-139
SCSI bus phase sequences, 345-346

connection, with tagged command
queuing protocol , 150

creating I_T_L nexus, 1 46-147
diagram of, 140, 1 40
disconnection, 1 48, 148
model, 346
reconnection , 149
reconnection, with tagged command

queuing protocol, 151
showing save data pointers and discon­

nect messages, 148
trace, 1 41, 1 42
with and without disconnection,

143, 144
SCSI bus reset, 268

SCSI bus states. See SCSI bus phases

SCSI bus timing, 347-35 1
SCSI controller cards, 2. See also host

adapters

for peripherals, 65-68
SCSI data pointers, 1 48
SCSI devices. See also initiator devices;

SCSI drivers; SCSI IDs; SCSI interface;
target devices
32-bit, 40
absence of all on a system, I 09
absence of one on a system , 107-1 08
ASPI drivers for, 206
ASPI for NetWare scans for

new, 305
ASPI interface program for communi­

cating with, 377-381

attaching to the computer, 83- 1 0 1
attaching t o laptop systems, 4 4
and block addressing, 1 26

booting from , 60
bootup, order of, 1 08
with built-in terminators, 94
on a bus, 93
cases for, 9 1 , 101
characteristics, 1 27

command sets for, 31
commands for direct-access , 1 63-1 64
communication among, 50-53
communication with computer, 35-39
configuration, 8
conflicts among, 363-366
connecting single-ended, HVD and

LVD , 39 , 60
connection to the bus, 91-94
connectors for, 9
cost of, 1 0, 1 2 , 1 3-1 4
dead, checking for, 1 1 5
drive numbers assigned to, 1 73
external. See external devices

Fast SCSI capability of, 6
host-to-peripheral connection, 127
HVD (High Voltage Differential) , 39
icons on, 3 1 3 , 314
installing, 1 20
intell igence of, 1 39
internal . See internal devices
logical block sizes in , 1 6 1
LVD (low voltage differential) , 39, 46
maximum number supplying

TERMPWR, 98
maximum number supported, 1 0
mixing narrow and Wide, 68, 96,

353-354
modular packages for, 3 1 1
multi-platform capability of, 9
number of, on a channel , 371
parallel , 4
polling of, 64
with the same SCSI ID, 1 1 3-1 1 4
SCSI-2 , 5
SCSI-3 , 7
SCSI-3 serial , 8-9
setting IDs for, 1 30
setting priorities for, with IDs, 99-100
sharing between two host systems, 68

SCSI devices (continued)
spacing on a single-ended SCSI bus,

1 82
speeds of, 1 89
Sun Microsystems' older, 340
support for different CDB sizes, 1 62
technical reference for, 359-362
terminating, 352-354
terminating particular, 96-97
with TP jumpers, 98
troubleshooting, 1 19-122
types of, 1 0, 1 5-2 1
types of, under Win32, 254
vs. USB devices, 373
Wide SCSI capabilities of, 7

SCSI drivers, 68-69, 1 26, 1 71-1 78. See
also ASPI drivers
active negation, 315
CAM drivers, 72-73
conflicts caused by, 1 1 1
DOS system, 70-73, 1 73
installing, 70, 77-8 1
layered, 69-70
for Linux systems, 77
loading into upper memory, 71-72,

72-73
newest, choosing the, 70
for OS/2 systems, 76
translation, 73
troubleshooting, 1 19-1 22
for UNIX systems, 69-70, 1 76-1 78
for Windows 3 . 1 systems, 73, 1 7 4
for Windows 95/98 systems, 74-75,

1 74-1 75
for Windows NT systems, 75-76,

1 75-1 76
writing, 1 62

SCSI Harbor, 3 1 1
SCSI hard drives, 1 5-16. See also RAID

booting from, 60-61
enhancing performance of, 1 88
file com1ption on, avoiding, 58
formatting and partitioning, 79-81
IEEE 1 394 and multimedia

applications, 30
installing, 78-81
larger than 8 gigabytes, 78
letters for, assigned by DOS, 80
LVD , 46

Mac/PC formatting of, 1 1
mirrored or duplexed,

1 93- 1 94
vs. other PC drives, 1 4
running from sound card's SCSI port,

I l l
SCA, 42, 9 1
SCA LVD, 326
SCSI IDs to assign to, 1 00
speeds of, 1 6
troubleshooting, 1 1 0-1 1 2

SCSI host adapter cards. See host
adapters

SCSI IDs, 34
checking for, 1 1 3-1 1 4
and device priorities o n th e bus,

1 30, 131
forming a SCSI nexus with, 146
number of available , 98
setting, 68, 99 , 1 00
setting priorities for devices with,

99-100
SCSI interface. See also SCSI devices

compared to ESDL (enhanced small
device interface) , 4

electrical specs for, 3 1 4-3 1 7
Fast SCSI capability of, 6
functions of, 1 55
intelligence of, 1 25-1 26
interlocked nature of, 1 2 7
LVD (low voltage differential) , 39
SCSI-3, 24, 25, 27-31
serial, 8-9, 29-31
system-level vs. device-level, 4
Wide SCSI capability of, 7

SCSI interface cards. See host adapters
SCSI ' izer, 1 75
SCSI linking, 2 1 5-2 1 6
SCSI Parallel Interface (SPI)

standards, 8 , 24, 25, 26, 27
SCSI Phase Disconnection sequence,

1 48
SCSI Phase Reconnection sequence,

149-150
SCSI protocol , 1 26, 1 37-1 44
SCSI request blocks. See SRBs

(SCSI request blocks)
SCSI request flags, 2 1 1
SCSI requests. See commands

SCSI sniffers, 1 22-1 23
SCSI standards

finding documents with, 1 62
information transfer phases, 1 54
SCSI-I (X3 . 1 31-1986} , 4
SCSI-2 (X3. 1 31-1994) , 5
SCSI-3, 7-8
SCSI Parallel Interface (SPI) , 8

SCSI systems. See also RAID
advantages for home office/small

business, 371
vs. ATA systems, 372
choosing, 371-373
configuration, 1 27, 129
daisy-chained, 9 1 , 92, 93, 94
data errors with external versus

internal, 3 1 8
instability, 245
non-sCSI hard drives with, 61
optimizing performance on, 52
performance of, factors that affect,

1 79-1 80
setting device priorities on, 99-100
sharing devices between, 68
single-ended, building, 1 8 1-183
terminating, 352-354
troubleshooting, 1 03--1 24

SCSI terminology, 1-3, 25-26
SCSI test equipment, 363--366
SDTR (synchronous data transfer

request) , 158
SE . See single-ended SCSI interface
seek time, minimizing, 1 88
SELECTION phase, 138, 143, 1 46-1 47,

343, 345
preceded by ARBITRATION PHASE,

349
SEL signal, 136, 1 55 , 342
SendASPI32Command, 245, 248-250

function call example, 382
reset, where to put, 258
SC_ABORT_SRB, 249, 259-260
SC_EXEC_SCSI_CMD, 249, 255-259
SC_GET_DEV_TYPE, 249, 253-255
SC_GET_DISK_INFO, 249, 263-265
SC_GETSET_TIMEOUTS, 249, 259,

260, 266-269, 382
SC_HA_INQUIRY, 243, 249,

250-253

SC_RESCAN_SCSI_BUS, 249,
265-266

SC_RESET_DEV, 249, 261-263
waiting for completion, 273--276

SendASPICommand, 2 2 1
SC_ABORT_SRB, 233--237
SC_EXEC_SCSI_CMD, 228-233
SC_GET_DEV_TYPE, 226-228
SC_HA_INQUIRY, 224-226
SC_RESET_DEV, 235-238

SENSE DATA, 1 65-1 66
sense data area under Win32, 244
serial devices, 4

SCSI-3, 8-9
serial interfaces, 8-9, 29-31
serial storage architecture (SSA) ,

29, 30
SES (SCSI Enclosure Services) , 3 1
S/G (scatter/gather) bit, 308
shielded connectors, 3 19-320, 327-333.

See also external connectors
ShowSCSI, components of, 375-382
ShowSCSI.pas, 375
shrouded header connectors, 1 04
Shugart Associates Systems Interface

(SASI) , 3
signal assertion, 3 1 4
signal distortion by reflection, 43, 1 8 1
single-byte messages, 156
single-ended SCSI bus, 36 , 37

cables, 38, 1 81-183
devices, 39
maximum length, 87
terminators, 44, 53
TTL transceivers, 1 80-1 8 1

single-ended SCSI interface, 3 1 4,
314-3 1 5
for Fast data transfers, 1 69
icon for, 314

SIP (SCSI-3 Interlocked Protocol)
standard, 27

Small Computer System Interface. See
SCSI

sniffers, 1 22-1 23
software caching, 58
Software Developer's Kit (SDK) for

ASPI, 206-207, 282
software RAID, 203

Sony I .Link. See IEEE 1 394
Sound Blaster, 1/0 ports for, 360
spatial reuse, 29
speed. See also data transfer rates

and errors, 1 80-1 81
of hard drives, SCSI vs. EIDE, 16
why it isn 't everything, 368-369

SPI, 8
naming conventions for, 24, 25,

26, 27
SPI-2, 26, 27, 28, 320, 324
SPI-3, 24, 26, 27, 28
SPI-4, 26, 27, 28-29
spindle synchronization, 325
SRB_Abort Structure Definition,

233-234
SRB_BusDeviceReset Structure

Definition, 235-236
SRB_DIR_SCSI, 243
SRB_GDEVBlock Structure Definition,

227
SRB_HAinquiry Structure Definition,

224-225
SRBs (SCSI request blocks) , 210-2 1 1

associating timeouts with, 259
command codes, 249
effect of bus reset on, 268
flags, 256
flags for SC_GETSET_TIMEOUTS,

267
structure definitions in Win 16 and

Win32, 243
synchronous and asynchronous,

249-250, 273-276
SSA (Serial Storage Architecture) , 8-9,

29, 30, 3 1 0
SS_ABORTED, 232, 242

for Win32 systems, 260, 276
SS_ASPI_IS_BUSY, 232, 241 , 242

for Win32 systems, 278
SS_BUFFER_ALIGN

for Win32 systems, 277
SS_BUFFER_TO_BIG, 232, 241 ,

242, 243
for Win32 systems, 278

SS_COMP, 222, 242
for Win32 systems, 255-256, 260, 276

SS_ERR, 232, 242
for Win32 systems, 255-256, 276

SS_FAILED_INIT, 223, 242
for Win32 systems, 2 78

SS_ILLEGAL_MODE, 223, 242
for Win32 systems, 277

SS_INSUFFICIENT_RESOURCES
for Win32 systems, 279

SS_INVALID_CMD, 242
for Win32 systems, 276

SS_INVALID_HA, 225, 242
for Win32 systems, 277

SS_INVALID_SRB, 225, 242
for Win32 systems, 277

SS_MISMATCHED_COMPONENTS,
278

SS_NO_ADAPTERS, 279
SS_NO_ASPI, 223, 242

for Win32 systems, 277
SS_NO_DEVICE, 227, 242

for Win32 systems, 244, 277
SS_OLD_MANAGER, 222, 242
SS_PENDING, 232, 241 , 242

and asynchronous SRBs, 273
for Win32 systems, 2 76

ST-506 disk interface, 368
standards

ANSI, 32, 1 76
for CD-ROM disks, 19
SCSI-I (X3. 1 31-1986) , 4
SCSI-2 (X3. 1 3 1-1994) , 5
SCSI-3, 7-8, 23-29, 32
for SCSI device drivers, 69-70, 1 76
SPI (SCSI Parallel Interface) ,

8, 24, 25, 26, 27
Start bit, 382
StartStopUnit, 380
STA (SCSI Trade Association) , 25
state machine, 1 39 , 343
status byte codes, 1 65
status byte format, 1 64
STATUS IN phase , 139, 143
STATUS phase, 1 5 1 , 152, 1 64, 1 67,

343-344, 345
examples of, 380, 381

status reports
for host adapters, 2 1 5
for targets, 2 1 5
for Win32 targets, 258

storage area networks (SANs) ,
31 1-3 1 2

storage devices, 1 5

stripes, 1 9 2

striping, 1 88 , 1 92 , 1 93. See also block

striping

byte-sized, with parity, 1 95

with ECC (error correction code) , 1 94
ST (single-transition) clocking, 28

stubs, 41 , 1 82

Sub-D connectors
68-pin B-cable , 320, 337

Apple 25-pin , 320, 333-335,
338, 339

Future Domain 25-pin, 320, 337-339

Novell and Procomp DCB 37-pin, 320,
340-341

Sun Microsystems' 50-pin, 320,

3 39-340

Sun Microsystems' connectors, 320,
339-340

synchronous data transfer, 50, 5 1 , 351
handshaking method, 1 68-1 70
messages that negotiate , 1 56

protocol example of negotiated,

1 58- 159

synchronous data transfer rates,

6 , 1 68

synchronous data transfer request

(SDTR) , 1 58

synchronous offset timing diagram,

1 69-1 70

synchronous SRBs, 249-250, 273-276
system. ini file example, 73

TlO Technical Committee, 25, 29

T l 0/ 792-M specification, 1 76

tagged command queuing, 1 50, 370
in a connection sequence, 150
in a reconnection sequence, 151

tape drives, 1 7- 1 8

SCSI I D s t o assign t o , 1 00
target con trollers, 1 26
target devices, 33-34, 36, 1 26, 1 30

associating with Plug-and-Play events,

2 7 1 -273
control signals driven by, 135

identifying, 34-35

information transfer phases of, 153

OS/2 2 . x and, 2 8 1 -282

setting timeouts for, 266

status reports for, 2 1 5 , 258
synchronous data transfer, 1 58-1 59

technical data for all platforms, 3 1 3-357

Teflon cables, 3 1 8-3 1 9

termination, 352-354. See also active ter­
mination; passive termination

termination ICs (integrated circuits) ,

356
terminators, 36. See also active termina­

tors; passive terminators

and active negation, 3 1 5

o n devices vs. cables, 95

differential bus, 46, 48, 48

FPT, 46, 4 7

functions of, 98

in "Hi-9 termination" adapters, 42
on host adapters, 95-96, 97
icons on, 3 1 3 , 314
importance of, 86, 1 34

measuring, 1 1 6-1 1 7
placement of, 94, 1 85-186

reasons to use, 43-44

rules for, 1 1 5

TERMP"WR

active terminators and, 356
decoupling capacitors on, 1 86-1 8 7

Novell 's cable connector a n d , 341

placement of, 1 85-1 86

terms to know, 1-3, 25-26

tools for testing, 1 22 , 1 24

troubleshooting, 1 09 , 1 1 0 , 1 1 7-1 1 8

voltage sources, 44, 98

TEST UNIT READY command, 345-346

third-party DMA, 66

throughput. See data transfer rates
tools

for benchmarking, 1 88
for SCSI driver installation, 70

for troubleshooting, 1 05 , 1 22-1 24. See
also SCSI test equipment

TP j umpers, 98
transceiver specs, 1 80-1 8 1
Transfer Length field o f CDBs, 1 6 1
transfer rates. See data transfer rates

TranslateASPI32Address, 245, 271-273
translation drivers, 73
transmission line, 43
troubleshooting. See also Internet

resources; performance tuning
common problems, 1 05-1 1 3
checking typical issues, 1 1 3-122
initial steps, 1 03-104
tools for, 104-105, 1 22-1 24. See also

SCSI test equipment
tme signal state, 3 1 4
TSDs (type-specific drivers) , 1 75
twisted-pair ribbon cable, 88
type-specific drivers (TSDs) , 1 75

u

UDF (Universal Data Format) , 1 74
UDMA features vs. SCSI's, 10
Ultra SCSI , 7, 25 , 27

standards for, 27
Ultra2 SCSI, 7-8, 26 , 27-28. See also

LVD
standards for, 27

Ultra3 SCSI, 8, 26, 28
standards for, 27

Ultra3+ SCSI, 26
Ultra3 (Fast-80 LVD) SCSI, 310
Ultra4 SCSI , 26 , 28-29
Ultra1 60m SCSI, 26
Ultra 1 60 SCSI, 26, 28, 310
Ultra320 SCSI, 26 , 29
Ultra Wide SCSI devices, terminating,

354
Unintermptable Power Supply (UPS) ,

58, 1 88
Universal Data Format (UDF) , 1 74
UNIX systems, SCSI drivers for, 69-70,

1 76-1 78
unshielded connectors, 319 , 321-326
USB (Universal Serial Bus)

combined with IEEE 1 394, 31 1
external devices, 373
hard drives, 31
scanners, 2 1
Windows 9 8 support for, 1 74

Usenet newsgroups for SCSI, 6 1 , 77,
367, 370

v

vendor-specific connectors, 320,
333-337

very high density connectors. See VHD
connectors

VESA local bus, 56
VHDCI connectors, 320, 332-333, 334
VHD connectors, 320, 332-333, 334
video

using IEEE 1 394 for, 30, 3 1 0
using SCSI for, 373

virtual machine manager
(VMM32.VX.D) , 1 74

VLB or VL-bus (VESA local bus) , 56
voice and digital data delivery, 30
voltage regulators for termination cir-

cui�, 1 1 2 , 356, 357
.vxd (virtual device driver) files,

1 74, 1 75

w

waiting for completion of
SendASPI32Command, 273-276

Web sites
devicebay, 3 1 1
fibrechannel, 3 1 1
nostarch, 375
scsita, 3 1 1

Wide SCSI, 5, 6-7, 25
68-pin high-density connectors, 9 1 ,

3 1 9 , 329, 330, 331
cables recommended with, 84
data transfer via, 1 56
internal cable connectors for, 90
maximum devices supported by

Wide SCSI-2 , 1 0, 1 1
number of available SCSI IDs, 99
P- and Q-cables for, 3 19 , 322,

323, 324
SCA-2 connectors for, 319 , 324-325,

326
Wide SCSI-3, 25, 26

Wide SCSI drives
CD-ROM drives, 1 8 1
mixing with narrow SCSI devices, 68,

96, 353-354

tape drives, 371
wildcard validity for SC_GETSET_TIME­

OUTS, 269
Win32, ASPI commands for. See

SendASPI32Command
winaspi.dll, 22 1 , 243
Windows 3 . 1

3 8 6 enhanced mode, 1 74
SCSI drivers for, 63, 69, 1 20, 1 74

Windows 3 .x
ASPI for DOS under, 200-22 1

Windows 9 5 . See also ASP!: for Win32
detecting devices, 266
DEVNODEs, 271-273
handling BUS DEVICE RESET, 263

Windows 95/98
Device Manager, 63
dynamic linking, 245-247
SCSI drivers for, 74-75, 1 20, 1 74-1 75

Windows NT. See also ASPI: for Win32
detecting devices, 266
dynamic linking, 245-247
efficient use of SCSI, 1 75
and FAT filesystems, 79, 8 1
handling BUS DEVICE RESET, 263
and Int1 3h, 263
SCSI drivers for, 69, 75-76, 1 20,

1 75-1 76
and TranslateASPI32Address, 271

WM_CREATE message, 239
WM_DEVICECHANGE message, 271 ,

272
wnaspi32.dll , 243, 245
words to know, 1-3, 25-26
WORM (Write Once Read Many) drives,

1 9
write caching, 56

enabling, 1 88

Y-shaped cables, 9 1

zip drives, 1 7

y

z

ABOUT THE CD- ROM

System Requirements

In order to use this CD-ROM disc, your system must have

• Hardware: A CD-ROM drive (ATAPI or SCSI , any speed)

• Software: Windows 95/98/NT/2000 or Linux (any version with Joliet
CD-ROM support, such as Red Hat Linux 5 .x or newer)

Recommended Additional Software

A graphical World Wide Web Browser, such as Netscape Communicator 4 .x
or Microsoft Internet Explorer 4 .x or 5 .x

CD-ROM Format

IS0-9660 with joliet file names (which are longer than the 8 .3-character
names that MS-DOS FAT allows)

The CD-ROM includes

• An easy-to-use HTML index that provides hot links to the CD contents
and links to other SCSI-related stuff on the Internet

• A searchable copy of the entire text of the book! Find the references to
that SCSI buzzword that's been bugging you-in just seconds.

• ASPI example program Source and binaries to "showscsi" referenced in
Appendix E of this book

• ASPI Python An ASPI function library callable from the Python scripting
language

ASPI source code examples:

• ASPI tar utility Example tape backup utility for MS-DOS and Windows
(Uses ASPI interface)

• SCSIDRVR.C Source code for an MS-DOS driver in C

• SCSI utility programs (Win32 executables) and SCSITool

SCSI utilities courtesy of Western Digital (Win32 executables) :

• ASPIMenu Allows the user to issue SCSI commands

• WDBench A benchmark utility

• WDScan Shows you what's on your SCSI bus

• SCSI FAQ The official comp.periphs.scsi

• SCSI Quick Start Guide For those in a hurry (SCSI FAQ Lite, if you will)

• SCSI: A Game with Many Rules and No Rule Book A light-hearted look
at hooking up SCSI devices and getting them to work in your system

• Linux SCSI HowTo

• Linux SCSI Programming HowTo

• Some of the most useful links to SCSI information on the Web

Using the CD-ROM

The CD-ROM included with this book is particularly easy to use . You can use
everything directly from the CD, or if you plan to use these utilities a lot, you
can copy the whole thing (or any portion) to your hard disk.

To access the contents directly lrom your CD-ROM drive

Insert the book's disc into your CD-ROM drive. Your CD-ROM drive appears
as a drive letter (D: through Z:) . In Windows, it will appear in your "My
Computer" folder.

For the easiest access, you should have a graphical Web browser installed
on your system.

If you have an Internet connection, you will be able to take advantage of
the many hot links to SCSI information out on the World Wide Web.

To install the entire contents onto your hard disk

Make a folder on your hard disk (name it BOS-CD or some other name you
like better) . Select the entire contents of the CD-ROM and drag it into the
folder you made above.

To access the SCSI programs and information

Using Netscape Communicator (4 .x) : From the "File" Menu, select "Open
Page." Click on the "Choose File" button, select your CD-ROM drive, and
open the BOS_Cdtour.html file.

Using Internet Explorer (4. x or newer) : From the "File" Menu, select
"Open." Click on the "Browse" button, select your CD-ROM drive, and open
the BOS_Cdtour.html file .

H you don' t have a Web browser: In Windows, view the files on the CD-ROM
directly from Windows Explorer. In Linux, use "Is" .

I M ore No- Nun;ense Books /rom pj_,� h 0 5 t � I' G � P I' � 5 5

THE NO B.S. GU IDE TO
RED HAT LIN UX 6
by B O B RANKIN

This book is a thorough yet concise guide to mstal l i ng Red Hat L i n u x (, a n d

exploring i t s capabi lit ies . Author B o b Rankin (The No B . S. G11ide t o l . in11x,

No Starch Press) provides easy-to-fol low instructions for i nsta l l ing a n d running

Red Hat 6 . Through examples and helpful i l l u strations, the a uthor g u i des

readers through these topics and more:

• Insta l lation - i n ten easy steps!

• How to use and con figure GNOME- the new Linux G U I

• How t o write Bash or Perl scri pts a n d use the Bash shel l

• How to connect to the Internet with SLI P/PPP and how to run the ApJche

Web server for Linux

• How to access DOS files and run Windows programs under Linux

The CD-ROM contains Red Hat Li n ux 6 - one of the most popular Linux d is­

tributions ava i l able . It's easy to i nsta l l and requ ires m i n i m a l configu rat ion ­

you ' l l be up and running in a snap'

BOB RAN KIN is a programmer and nationally recognized expert on rhe I nt e rnet.

He is a columnist for B oardwatch Magazine and a contributor ro severa l com­

puter p u b l ications. His books include Dr. B o b 's Painless G11idc to the lntcmet

(1 9 9 6) and The No B.S. Guide to Linux (r 9 9 7) .

t 9 9 9 , 40 2 pp. , w/CD-RO M $ 3 4 . 9 5 ($ 5 4 .00 C D N)
I S B N r - 8 8 64 r i - 3 o - r , Item # 3 o r

THEIS l
HO . r H I_UII_f o u
RED HAT X
,-DB-RANKIN 6

L I N U X
M U S I C &
S O U N D

� . · ·
' �;
'

LINUX PROBLEM SOLVER
b y B R I AN WARD

• Hands-on, practical guide solves kernel issues

• Helps solve hundreds of problems

A must-have for intermediate to advanced users who already have Linux up
and runni ng. Solves technical problems related to pr inting, networking, back­
up, crash recovery, and compil ing or upgrading a kernel . Quick and concise in
approach, with over 1 00 problem boxes that help to solve specific problems in
addition to those discussed throughout the book .

CD - R O M : Supports the book's contents with configuration files and numerous
p rograms not i ncl uded in many Linux distributions.

B R I A N WARD is a Unix systems program mer, and i s the author o f the " Li nux
Kernel HOWT O " , widely circulated on the Internet. A Unix network a d m inis­
trator, he has worked with Linux s ince 1 9 9 3 . He is currently pursuing a Ph. D .
i n computer science a t the University of Chicago.

3 5 0 pp. w/CD-ROM , $ 3 4 . 9 5 ($ 5 4 .00CD N)
I S B N r - 8 8 64 1 1 -3 5 -2, Item #3 5 2

LINUX MUSIC E SOUND
by D A V E P I-II L LI P S

Linux Music & Sound offers in-depth i nstruction on recording, storing, p lay­
ing, and editing music and sound under L i n ux. The author, a programmer and
performing musician, discusses the basics of sound and digita l a udio, and cov­
ers spec i fic software and hardware issues specific to Linux, including:

• A clear introduction to the fundamental concepts of d igital sound

• Linux-specific issues including available toolkits, GUI l ibraries, and
driver support

• Reviews of available software with recom mendations

• Recommended components for bui lding a complete system i ncluding a
d igital audio p layer/recorder, soundfile editor, M I D I recorder/player/edit
or, and software mixer

• Coverage of hard disk recording, advanced MIDI support, network audio,

and MP3

• A complete bibliography and an extensive l i s t of Internet resources

• A CD-ROM with dozens of software packages

A performing musician for over 30 years, DAVE PHILLIPS became interested

in computers as a means for playing, editing, and recording music. He is an

expert in MIDI, Csound, and Linux. He currently maintains several educational

Web sites on these topics.

3 00 pp., paperback, $ 3 9 . 9 5 w/c o-ROM
ISBN r - 8 8 6 4 1 1 - 3 4-4

STEAL TH IS COMPUTER BOOK:
WHAT THEY WON'T TELL YOU
ABOUT THE INTERNET
by WALLACE WANG

"A delightfully irresponsible primer. " - Chicago Tribune

"If this book had a soundtrack, it'd be Lou Reed's ' Walk on the Wild Side. "'

- Info World

"An unabashed look at the dark side of the Net- the stuff many other books

gloss over. " -Amazon.com

Steal This Computer Book explores the dark corners of the Internet and reveals

little-known techniques that hackers use to subvert authority. Unfortunately,

some of these techniques, when used by malicious hackers, can destroy data

and compromise the security of corporate and government networks. To keep

your computer safe from viruses, and yourself from electronic con games and

security crackers, Wal lace Wang explains the secrets hackers and scammers

use to prey on their victims. Discover:

• How hackers write and spread computer viruses

• How criminals get free service a nd harass legitimate customers on online

services l ike America Online

• How online con artists trick people out of thousands of dollars

" tt · � � � "-
0'
s-"' 0 �
� f} "'
;;<> a: """
�
C) Cl �
� 1<:

• Where hackers find the tools to crack into computers or steal software

• How to find and use government-quality encryption to protect your data

• How hackers steal passwords from other computers

wALLACE wAN G is the author of several computer books, including Microsoft
Office 97 for Windows for Dummies and Visual Basic for Dummies. A regular
contributor to Boardwatch magazine (the "Internet Underground" columnist) ,
he's also a successful stand-up comedian. He lives in San Diego, California.

340 pp., paperback, $ 1 9 . 9 5
I S B N 1 - 8 8 64 I I-21-2

P h o n e :
I (8oo) 420-7240 O R

(4 1 5) 8 63 -9900
MONDAY THROUGH FRIDAY,

9 A.M. TO 5 P.M. (PST)

Fax :
(4 1 5) 8 63 -9950
24 HOURS A DAY,

7 DAYS A WEEK

E - m a i l :
SALES@NOSTARCH.COM

Web :
HTTP://WWW.NOSTARCH.COM

M a i l :
NO STARCH PRESS

55 5 DE HARO STREET, SUITE 2 50
SAN FRANCISCO, CA 94107
USA

This book was carefully reviewed for technical accuracy, but it's inevitable that
some things will change after the book goes to press. Visit the Web site for this
book at http:/ /www.nostarch.com/scsi2_updates.htm for updates, errata, and
other information.

CD- ROM UCENSEAGREEMENT FOR THE BOOK OF SCSI , 2NID EDmON : 1/0 FORA NEW Mlu..ENNIUM

Read this Agreement before opening this package. By opening this package, you agree to be bound by the terms

and conditions of this Agreement.

This CD-ROM (the "CD") contains programs and associated documentation and other materials and is distributed with the book entit led The Book of
SCSI, 2nd Edition: 1/0 for a New Millennium to purchasers of the book for their own personal use only. Such programs, documentation and other
materials and their compilation (col lectively, the "Col lection") are licensed to you subject to terms and conditions of this Agreement by No Storch Press,
having a place of business at 555 De Haro Street, Suite 250, San Francisco, CA 941 07 ("licensor") . I n addition to being governed by the terms and
conditions of th i s Agreement, your rights to use the programs and other materials included on the CD may a l so be governed by separate agreements
distr ibuted with those programs and materials on the CD (the "Other Agreements") . I n the event of any inconsistency between this Agreement and
any of the Other Agreements, those Other Agreements shal l govern insofar as those programs and materials ore concerned. By using the Col lection,
in whole or in part, you agree to be bound by the terms and conditions of this Agreement. licensor owns the copyright to the Collection, except insofar
as it contains materials that are proprietary to third party suppliers. All rights in the Collection except those expressly granted to you in this Agreement
ore reserved to licensor and such suppliers as their respective interests may appear.

1 . Limited License. licensor g rants you a limited, nonexclusive, nontransferable l icense to use the Collection on a s ing le dedicated computer
(excluding network servers). This Agreement and your rights hereunder shal l automatically terminate if you fail to comply with any provision of this
Agreement or the Other Agreements. Upon such termination, you agree to destroy the CD and a l l copies of the CD, whether lawful or not, that are in
your possession or under your contro l . licensor and i ts suppliers retain al l rights not expressly granted herein as their respective i nterests may appear.

2. Additional Restrictions. (A) You shal l not (and shal l not permit other persons or entities to) d irectly or indirectly, by electronic o r other means,
reproduce (except for archival purposes as permitted by law), publish, distribute, rent, lease, se l l , sublicense, ass ign, or otherwise transfer the Collection
or any part thereof or this Agreement. Any attempt to do so shal l be void and of no effect. (B) You shall not (and shall not permit other persons or
entities to) reverse-engineer, decompile, disassemble, merge, modify, create derivative works of, or translate the Collection or use the Collection or any
part thereof lor any commercia l purpose. (() You shal l not (and shal l not permit others persons or ent it ies to) remove o r obscure licensor's or i ts
suppliers' or l icensor's copyright, trademark, or other proprietary not ices or legends from any port ion of the Col lect ion o r any related materia ls . (D)
Y o u agree a n d certify that t h e Collection will n o t be exported outside the United States except a s authorized a n d a s permitted b y t h e laws a n d regulations
of the Un ited States. I f the Collection has been rightfully obtained outside of the United States, you agree that you will not reexport the Col lection, except
as permitted by the laws and regulations of the U nited States and the laws and regulations of the jurisdiction in which you obtained the Col lection.

3. Disclaimer of Warranty. (A) The Col lection and the CD ore provided "as is" without warranty of any kind, either express or impl ied, including,
without l imitation, any warranty of merchantabi l ity and fitness lor a particular purpose, the entire risk as to the results and performance of the CD
and the software and other materials that is part of the Collection is assumed by you, and licensor and i t s suppl iers and distributors shal l have no
responsibil ity for defects i n the CD or the accuracy or appl ication of or errors or omissions in the Collection and do not warrant tha t the functions con­
tained in the Collection wil l meet your requirements, or that the operation of the CD or the Col lection wil l be uninterrupted or error-free, or that any
defects in the CD or the Col lect ion wil l be corrected. I n no event shal l l icensor or i ts suppl iers or distributors be l iab le for any d irect, indirect, specia l ,
incidental, or consequentia l damages ar is ing out of the use of or inabil ity to use the Collection or the CD, even if l icensor or its suppl iers or distributors
have been advised of the l ikel ihood of such damages occurring. licensor and its suppliers and distributors shall not be liable for any loss, damages,
or costs arising out of, but not l imited to, lost profits or revenue; loss of use of the Collection or the CD; loss of data or equipment; cost of recovering
software, data, or materials i n the Col lection; the cost of substitute software, data, or materials in the Collection; claims by third parties; or other sim­
i lar costs. (B) I n no event shal l licensor or its suppliers' or distributors' total l iability to you lor a l l damages, losses, and causes of action (whether in
contract, tort or otherwise) exceed the amount paid by you for the Collection. (() Some states do not a l low exc lus ion or l imitation of implied warranties
or l imitation of l iabi l i ty lor incidental or consequential damages, so the above limitations or exclusions may not apply to you.

4. U.S. Government Restricted Rights. The Col lection is l icensed subject to RESTRICTED R IGHTS. Use, duplication, or disclosure by the U.S.
Government or any person or entity acting on its behalf is subject to restrictions as set forth in subdivis ion (c) (1)(i i) of the Rights i n Technical Data
and Computer Software Clause at D FARS (48 CFR 252 .227-70 1 3) lor DoD contracts, in paragraphs (c) (1) and (2) of the Commercial Computer
Software Restricted Rights douse in the FAR (4B CFR 52.227 - 1 9) lor c ivi l ian agencies, or, in the case of NASA, in douse 1 8-52 .227-86(d) of the
NASA Supplement to the FAR, or in other comparable agency clauses. The contractor/manufacturer is No Starch Press, 555 De Haro Street, Suite 250,
San Francisco, CA 94 1 07 .

S. General Provisions. Noth ing in th i s Agreement constitutes a waiver of licensor's, or i t s suppliers' or l icensors' r ights under U .S . copyright laws
or any other federal, state, local, or foreign law. You are responsible lor installation, management, and operation of the Collection. This Agreement
shal l be construed, interpreted, and governed under Cal ifornia law. Copyright ©2000 No Starch Press: All r ights reserved. Reproduction i n whole or
in part without permission is prohibited.

" Since 1 99 4 , No Starch Press has

published computer books that make a

difference. We hope that this book has made

a difference for you. "

- William Pollock, Publisher

billp@nostarch.com

=--\-:-:::::)_,� • • s t • r • L r r • < <

----:- 5 5 5 De Haro S t reet

S u i te 2 5 0

S a n Franc isco. CA 9 4 1 0 7

e-mail: i n foii:>nos t a r c h . com

web: h t t p : //www . nostarch . com

tel : 1 . 800 . 420 .7 240
fax: 1 . 4 1 5 .863 .9950

- - - - - - - -

GIVE US A PIECE OF YOUR MIND
\XIh i c h hook did rh i s c:nd come h·o m � 1-l < ll\ c o u l d r h i s hook he 1 11 1pron·d �

Did r h i s hook t l l l'L'r ,·o u r c :-; pccr:J r i o n s)

W h v/Wiw nor ?

.J PLEASE ADD ME TO YOUR MAILING LIST

\: :\ .\I I· :

:\ ll I> R I '- ' <

(II Y :

P t l O .'..: I· :

r\ n y s uggcsr ions for orhn com p u rn hooks)

r:J E - .\1 \ I I () :-.. I 'I

C u .\1 1' \ :-..: Y

'-, [\ I I : / 1 1 ' : (t l l · :-.- r t n :

E - .\t \ t l :

BUS I N ESS RE P LY MAI L
F I RST-CLASS MAIL PERMIT NO. 268 12 SAN FRANCI SCO CA

POSTAGE WILL BE PA ID BY ADDRESSEE

P/.ff " o s t .a. r c. L I' r q s s

- Ste. 2 5 0
5 5 5 De Haro Street
San Franc isco , CA 9 4 1 0 7 - 9339

1 1 . 1 • • • 1 • • 1 • • • 1 1 1 1 • • • 1 • • • 1 1 . 1 • • • • 1 1 • • • 1 1 . 1 . 1 • • • 1 . 1 . 1

N O POSTAG E
N ECESSARY

I F MA ILED I N THE
U N ITED STATES

$49 . 9 5 ($77.50 CdM)

"Whether you already have SCSI on your PC or are
contemplating adding it, this book is definitely worth
reading. "- from the foreword by John Loh meyer,

Chairman of the T 1 0 Techn ical Comm ittee

A C D - RO M iHci HdE:.- SCSI d i a a "o.-tic tool.- a H d

Vll!!fl w t i l i t i £ A , p r o a r a nt ttt i H a £xa ttt p l eA , a H d a

PDF VE:rAioH of ti.E: book for q H i c k rE:fE: rE:HciH!I

This thoroug h ly u pdated and expanded edit ion of

The Book of SCSI is you r source for a l l th ings SCSI .

New features i nclude:

• Coverage of SCSI 3 (i nc luding U ltra2/LVD) , RAID,

SCSI test equi pment, and device d rivers.

• Performa nce tuning you r SCSI subsystem .

• Basics o f ASPI programming, including sample

source code.

• More con nector drawings and pinouts.

And, of course, you' l l find all the stuff that made the

first edition so good, inc luding plain Eng l ish explan­

ations of SCSI concepts (l ike I Ds, LUNs, termi nation,

bus mastering, cach ing, and so on); an in-depth ex­

planation of insta l lation and how the SCSI bus works;

clear, u ncompl icated drawings and diagrams; tips,

tricks, and troubleshooting help for SCSI systems;

and an extensive g lossary of SCSI terms as wel l as

a comprehensive i ndex.

ABOUT THE AUTHOR

Gary Field has a Computer Eng ineering deg ree from

Northeastern University and has worked with device

level software s i nce 1 978. He has mainta i ned the

Usenet com p . periphs. scsi FAQ l ist since 1 994 . H i s

"SCSI Info Central" (http : / /www. scsifaq . org/) website

is a popular oasis for weary SCSI explorers.

I S B N 1 - 8 8 6 4 1 1 - 1 0 - 7
5 4 9 9 5 >

9 7 6 8 9 1 4 5 1 1 1 0 7

l ""
"

s
I- 0

c.
I- 0
t'l't ""

z
I'll

--<

z ::z: c.

<: z ..

l t'l't -

E 0

s

