

DOS®

Beyond 640K

2nd Edition

DOS®

Beyond 640K

2nd Edition

James S. Forney

Windcrest®/McGraw-Hill

SECOND EDITION

FIRST PRINTING

© 1992 by James S. Forney. First Edition © 1989 by James S. Forney.

Published by Windcrest Books, an imprint of TAB Books.

TAB Books is a division of McGraw-Hill, Inc.

The name "Windcrest" is a registered trademark of TAB Books.

Printed in the United States of America. All rights reserved. The publisher takes no

responsibility for the use of any of the materials or methods described in this book,

nor for the products thereof.

Library of Congress Cataloging-in-Publication Data

Forney, James.
DOS beyond 640K / by James S. Forney. - 2nd ed.

p. cm.
Rev. ed. of: MS-DOS beyond 640K.
Includes index.
ISBN 0-8306-9717-9 ISBN 0-8306-3744-3 (pbk.)
1. Operating systems (Computers) 2. MS-DOS (Computer file) 3. PC

-DOS (Computer file) 4. Random access memory. I. Forney, James.
MS-DOS beyond 640K. II. Title.
QA76.76.063F644 1991
0058.4'3--dc20 91-24629

CIP

TAB Books offers software for sale. For information and a catalog, please contact
TAB Software Department, Blue Ridge Summit, PA 17294-0850.

Acquisitions Editor: Stephen Moore
Production: Katherine G. Brown
Book Design: Jaclyn J. Boone
Cover: Sandra Blair Design, Harrisburg, PA WTl

To Sheila

Contents

Preface Xlll

Acknowledgments xv

Introduction xvii

Chapter 1. The unexpanded system 1

Physical limits of the system 2

The physical machine 5

Life beyond 640K 7

The operating system 10

Evolution: a two-way street 12

What else is in there? 13

Out of hiding 13

Chapter 2. At the heart of things 15

The ubiquitous 8088 16

The 80286 20

The supercharged 80386 23

Above and beyond: the i486 29

An SX version of the i486 30

Boosting performance even more ... sometimes 30

A ticking clock 31

There's more 33

Chapter 3. The new breed 35

A brave new world 35

Games anyone can play 36

The revolution almost no one noticed 40

Meanwhile back at the ranch 41

To the beat of a different drummer 42

And in the center ring . .. 45

Chapter 4. Expanded memory 47

In the beginning 48

A little dinner music, please 48

Using expanded memory 52

Expanded memory that is-but isn't-what it seems 53

Only a stopgap 54

Chapter 5. EMS memory 55

The 4.0 backfill: mapping conventional memory 58

But not for everyone 59

The sheep from the goats 60

Registers: real and fake-and often.missing 60

Bus speed 65

The bottom line 66

Chapter 6. Stealing the store 67

A party of volunteers 70

DOS 5's mMEM.SYS and company 71

Bigger than life 75

Fragmentation 76

Declaring open season on the BIOS 78

For want of a map 79

It went where? 81

Stealing still another 64K-maybe even 96K 81

Don't count the 80286 out yet 83

Chapter 7. Extended memory and new frontiers 85

A quick review 86

Protected mode 87

Bottoms up 89

Enter the DOS extender 90

Lotus put it all together-just like 1-2-3 92

Canned answers for uncanny problems 95

What's a VCPI? 98

DPMI: a light in the window 99

In these muddy waters 100

Chapter 8. DOS's mysterious "extra" 64K 103

With a little sleight of hand 104

Fool's gold 107

Gift or Trojan horse? 108

Digging for gold the old-fashioned way 109

Chapter 9. Chairmen of the board 113

The changing face of management 113

Duos, quartets, and one-man bands 114

New directions 115

Getting down to brass tacks 117

Super specialists 118

Gentlemen, start your engines 119

Me too 121

Exceptions to the rule 122

Shots in the dark 123

Getting downright pushy 123

Chapter 10. Two times 5.0 127

Left foot, right foot 128

The Microsoft connection 128

A cut above 130

Just having EMS is not enough 130

From digital research: DR DOS 5.0 134

More than just a matter of semantics 135

Configuring your system on the fly 137

Choices, choices 138

Don't send a boy to do a man's work 139

Chapter 11. Entry-level answers 141

More room with HeadRoom 142

Context switching: Carousel's revolving door approach 145

Task swapping under the DOSs 146

Task switching lurking in the background 148

FAX boards 148

Spoolers and buffered output 149

Peripheral sharing 151

It all helps-but is it enough? 151

Chapter 12. DESQview and the age of multitasking 153

The heretics 154

A textbook 4.0 EMS case study 156

Stick to the straight and narrow 158

To build a better mousetrap 160

Negative overhead 161

Worlds in collision 163

Windows' windows 164

The tortoise and the hare 164

For power users and beyond 165

DESQview X 166

Chapter 13. Windows 169

About a ton of memory 170

A three-windows world 171

What Windows 3.0 provides, and what it doesn't 172

QEMM 173

386MAX 174

ALL CHARGE 386 176

hDC FirstApps 176

Chapter 14. Beyond the real 179

If it will run on any 8086 machine . .. 180

No virtual clock 181

VM386: multitasking and more 181

A megabyte for everyone 183

A clean environment 185

Split personality 187

Virtual machines do not have virtual crashes 188

More than just one pretty face: the multiuser option 189

Chapter 15. The MOOS multiuser option 191

The virtual machine again 192

Multiuser VM386 193

DR Multiuser DOS 195

The double whammy 196

Idle power 199

PC-MOS 200

Only the tip of the iceberg 204

What you don't see 205

Chapter 16. Keeping up, or trying to 207

Supercharging that old 8088 208

The 286 dilemma 210

The ALL 386SX: a new approach 210

The empire strikes back: Intel's SnapIn 386 211

Charge it with the ALL ChargeCard 212

Adopting a new mother 214

The interleave factor 217

Superfast "disks" and disk caching 219

Chapter 17. The ultimate upgrade 221

Striking a happy medium 222

Cash and carry 224

Down memory lane 225

Ladies-in-waiting 226

Don't miss the bus 226

What's wrong with the old bus? 228

Beyond "advanced technology" 228

Putting the pieces together 231

Recycled oldies 233

No no no! 233

Chapter 18. Crash course 237

The high road 239

Looking in high places-even on an 8088 240

On a higher plane 242

Where did that come from? 243

Any old port in a storm 246

Software crashes can be just as hard 246

Detectives on a disk 249

Chapter 19. Parting shots 253

Ship of fools 254

To stretch a point 254

The more things change 255

The ultimate shell game 256

APPENDICES

A. 	Advanced programming functions

available under LIM 4.0 EMS 257

B. Special considerations

for mapping LIM 4.0 EMS memory 261

C. 	Using bootable floppies to test new confIgUrations 265

D. The basics of hexadecimal 269

E. Addresses for the software developers 271

Glossary 273

Index 277

Preface

So much has happened since the first edition of this book was published that
many of the questions asked then have long since been answered. Someone
recently observed that, in the period since the introduction of the mM PC, our
use of memory has increased tenfold every five years. We went so quickly from
just 64K in those first machines to 640K as the standard in later models.

We had reached that tenfold figure less than five years after the introduction
of the first PC; however, the 64K figures predates that machine. The five year
estimate is pretty close. Another five or so years later, we now have seen another
tenfold increase in our needs. To use Windows 3.0 you really need at least 2 Mb;
to multitask you'd better add another 2 Mb or 4 Mb more. To do real multitasking
effectively in DESQview, VM386, or anyone of several multitaskers, you proba
bly need at least that much memory.

Not only has our appetite for memory become almost insatiable, but-with
this appetite, a new genre of hardware, and new, more powerful applications soft
ware-we must change the way we think about memory and how we access it.

Even DOS itself has changed with the introduction of two powerful 5.0
releases from the two key players in the game (old rivals Microsoft and Digital
Research), plus a third if you include the new DR Multiuser DOS 5.0, also from
Digital. Each DOS addresses the challenge of our exploding needs in its own
unique way. Although there is nothing truly novel in the changes any of these
three-or any of the severallook-alikes-have made, they do focus attention on
the issues in a somewhat different light.

In the reflection of that light and the many changes in the issues since this
book first was published, we look now not just beyond 640K but to the issues and
the answers as we look ahead to DOS's second decade.

xiii

Acknowledgments

Very special thanks once again to Gary Saxer of Quarterdeck Office Systems
(Desqview). Without his patience and insights, this project might have fallen short
of expectations.

Special thanks also to the following (not in order of their contributions): Paul
Tarlow at Qualitas, Inc.; John Barrett at All Computers Inc.; Cristy Gersich and
Eric Straub at Microsoft; Dirk Smith at Phar Lap; Roger Kasten at Newer Tech
nology; and Evan Lim at Intelligent Graphics Corporation.

Thanks to the following companies that, in addition to those above, still represent
only a part of the many companies and individuals that generously furnished hard
ware, software and/or expertise specifically for use in preparing this book and in
shaping its direction:

ALR

ALL Computers Inc.

AST Research

Borland

Digital Research, Inc.

Fifth Generation Software, Inc.

Hauppauge Computer Works

Hayes Microcomputer Products, Inc.

Helix Software

mM
Intel

Intelligent Graphics Corporation

Lotus Development Corporation

Merrill and Brian Enterprises

Software Link, Inc.

V Communications, Inc.

Xyquest, Inc.

Zeos International, Ltd.

xv

Introduction

This book is titled DOS Beyond 640K because it follows in the footsteps of an
earlier book, a quite different book (originally called MS-DOS Beyond 640K) that
was devoted to that premise. This time around, I have dropped the "MS-" from
the title, not to play down or belittle the tremendous efforts Microsoft has devoted
to upgrading MS-DOS, but rather in recognition of the fact that users are no
longer dealing with a one-DOS world.

I probably could have dropped the "640K" as well and simply called it DOS
Beyond because the technology has gone so far beyond at this point that a finite
number-especially so Iowa number-is hardly applicable. Yet, the roots of DOS
will always lie below 640K, and so that number will remain significant.

In any event, it seems certain at this point that DOS is here to stay-at least
through the foreseeable future. If DOS as it exists today does not survive, some
thing close enough to be compatible with the applications software now run under
DOS will take its place. However, as the issues and the answers and the focus of
the industry itself have changed dramatically, this second edition has changed with
them in an effort to keep pace with a technology industry that is at once predict
able to some extent but at the same time highly volatile as extended memory,
rather than expanded memory, takes center stage.

There is more memory available for everyone-cheap memory-which is for
tunate as memory demand increases exponentially. However, the pillar of compat
ibility, the very cornerstone of DOS, has crumbled. The world of DOS has
stratified and will continue to become more so at an accelerating rate. This comes
out of the realization that the world could not forever wear the 8088 around its
neck like the proverbial albatross.

The coming of the 80386 and the i486, which brought 32-bit power, was the
engine of the change, yet there was no other operating system on the scene to take

xvii

the place of DOS. DOS, however, is slippery and resilient. With the advent of the
DOS extender, it got yet another lease on life.

It is ironic, as desktop technology leaps forward (no longer measuring its
stride in kilobytes or even megabytes but now in gigabytes), that DOS, a veritable
dinosaur, should manage to survive at all-not only just survive but thrive. It is an
inherently slow 8-bit 1 Mb operating system in an age of seemingly absurd mem
ory limits and clock speeds.

However, life is full of ironies. So, today users have DOS-essentially the
same old 8088-compatible DOS they've always had except for some embellish
ments and for another player (Digital Research) in the game. There is another
DOS-the exact same DOS, but running on an 80286 or higher systems playing
host to DOS-extended programs, providing them a gateway to protected mode.

Even Windows 3.0 and up can step right over DOS to live and work by pref
erence out in protected memory. While Windows still will run on lesser systems,
there is no comparison. This situation has only further crystallized the issues.

Windows was not compatible with DOS extenders as it was first seen, or even
with the VCPI (Virtual Control Program Interface) specification. Without some
form of mutually accepted interface, real mode programs and DOS extended pro
grams cannot coexist. However, rather than comply with that standard (which was
generally accepted by the industry), Microsoft drew up its own, the DPMI (DOS
Protected Mode Interface), which, after attracting something akin to a lynch mob,
Microsoft then threw open to industry participation in revising.

Out of that evolved a quite different DPMI specification, which addressed a
number of shortcomings in both the original DPMI and VCPI specifications, set
ting the stage for a whole new era. Regardless of the ultimate fate of Windows
which despite the hype, has hardly gotten off to a spectacular start in terms of
actual user acceptance-its greatest legacy might be the DPMI specification that it
fostered.

With all this, EMS (expanded) memory-once the darling of the industry
has been relegated to a lesser role. However, while no longer in the spotlight to
the extent that it was, the technology it spawned-particularly the technology for
mapping memory to unused DOS address space above 640K-has played a major
role in taking DOS and look-alikes beyond another new frontier to host new
multiuser systems for the burgeoning new MDOS (Multiuser DOS) market.

Yet, you should not count EMS memory out by any means. As long as there
are 8088s out there-and they're still selling machines-EMS memory will
always be the only way those users can break the bonds of DOS's old 640K, as
long as there are users running anybody's single-user DOS on the 80386 and i486
(and increasingly on 80286s), even with the use of better supporting chip sets that
support mapped memory and as long as the needs of millions of users can be met
by DOS.

Indeed, both MS-DOS 5.0 and Digital's DR DOS now provide expanded

xviii Introduction

memory (EMS 4.0) emulation (Microsoft for 386 and higher systems only, Digital
starting at the 80286 level) with powerful new memory managers that, though
lacking in sophistication and convenience, rival most of the better third-party
memory managers for raw power.

But as it has been increasingly easy for the rapidly expanding base of 80286
and higher users to cash in on the benefits of new memory technology, there also
has been increasing competition for the useful memory gained, particularly in
upper, or reserved memory (640K to 1024K), and the High Memory Area (that
first 64K of extended memory that DOS can still access in real mode). So, while it
has gotten easier, users also are at a point where they need to understand the issues
where choices must be made and not simply take the path of least resistance.

It is to this end that this book was written. To this end, I have tried to put
things in perspective-into the perspective of the times-as DOS moves on into its
second decade.

In this book, I will discuss both the hardware and the software. To demon
strate the various areas as I explore them, I will focus on a number of specific
brand names, often on specific products. All are presented solely on the basis of
my own hands-on experience. Products that did not perform for me are not
included in this book.

This is not to say that you should infer that, if it isn't in this book, it's unwor
thy. It is true that I specifically omitted mention of some products on that basis.
However, while I have tried to bring the most significant to your attention, there
are many products-and surely many good ones-I did not examine.

This does not guarantee that every software package and every bit of hard
ware mentioned will absolutely work for you. At one point, for example, when it
seemed that I was having more than my share of software failures on a premium
priced 386 that I was using for a test bed, I fmally traced the problems to a faulty
BIOS design, which the manufacturer corrected only after over a year of hassle
(during which time I had to buy another machine to finish this book).

So the work goes on. I can only hope that my efforts make your work go eas
ier and the time you spend more productive.

Introduction :xix

1

CHAPTER

The unexpanded

system

Before jumping into the middle of things, you need to understand a little bit about
the basic underlying system-be it a PC, XT, or AT. (For classification purposes
both 80286 and 80386 systems generally are considered to be AT-type systems
despite the major differences, which we will be dealing with in detail in this
book.) Unlike a number of excellent books, this book does not cover the anatomy
of the original PC and its immediate heirs. I'm not even going to give much time
or thought to what you ordinarily do in the old familiar 640K except to show you
how you can squeeze much more usable space out of that 640K on 386s and AT
type systems. For real performance, I'll show you how to swap most of the
640K-running code and all-for big chunks of expanded memory.

This book primarily looks into the hidden nooks and crannies you might
never have known were there or cared about before (except for expanded and/or
extended memory). Also, I will explain how to push DOS beyond its original
1 Mb (640K for the user) limitations and make it embrace extra megabytes with
out undergoing major changes that would make it incompatible with millions of
existing PCs and compatibles (possibly your own) and hundreds of millions of
dollars worth of installed software.

I'll start with a rather general overview and then move quickly to explore the
areas that should be of greatest interest to users of expanded and extended mem
ory. I hopefully will clear up some of the confusion surrounding the different
types of memory. However, first things first: the basic system, the foundation.

1

Physical limits of the system
Physically there really are no practical limits to how much memory you can add to
your existing system. As long as you have some way to connect them electrically,
you could just keep adding and adding and adding and adding. A gigabyte? Sure.
No problem, provided we added a bigger power supply, etc., to support the extra
memory chips.

In the real world, however, we have some real-world problems. You could
keep on adding chips, but beyond a certain point, your computer could no longer
find them. You could see them, point your finger at them and yell, "There,
dummy, there!" at your computers. As far as the computer is concerned, however,
they simply wouldn't be there. What's more, every time the computer looked, it
would find the exact same chips and overlook the exact same group beyond that
certain point.

The problem is that a computer can't see. It only can detect or not detect. It's
similar to a mouse in a maze. There's only room for so many tunnels and passages
to connect to the central chamber where the mouse lives. There might be other
tunnels and passages and they might be full of cheese, but if they can't connect,
then the mouse can't find them or the cheese.

The mouse-not to be confused with the hairless computer variety-is like
the microprocessor chip. In our computers, the passages and tunnels are like the
pins that connect electrically to whatever else is out there. The old 8086 on which
this dynasty was founded had only 20 address pins-whatever other pins were
sticking out of it served other functions. Each address pin, when combined with
other address pins, could look to many addresses.

The magic number two is the binary base of all computer operations. In this
context each address pin can have two states-either it's on or it's not. If we only
had one address pin, it could point to either of two addresses-one if it was on, the
other if it was not. Two pins, each with two states, can manipulate four addresses,
and so on. In the mathematics of computers, a 20-pin chip could address 220

addresses. That product yields a total of 1,048,576 unique memory locations
from OOOOh to FFFFh, or one megabyte. See Table 1-1.

One megabyte. Beyond that magic number, you can plug in chips until the
world is flat. One megabyte of addresses is all that poor old CPU can fmd no mat
ter how hungry it is for more. (The extra DOS-addressable 64K HMA above 1 Mb
is available only to 286 and higher chips.)

Someone is bound to ask how computers manage to manipulate data from 20
address pins using only 16-bit address registers. Someone else surely laid awake
nights to figure that one out. The answer is using the method of dividing absolute
address locations into two parts: a segment and an offset. The format for such

The unexpanded system 2

Table 1-1 The powers of 2 show
the relationship between address
pins on a processor chip and the
mathematically possible range of
addresses. These numbers also
coincide with other numbers com
monly encountered in computer sys
tems, such as 512 bytes to a sector
(disk), 1024K in a megabyte, and
64K blocks that actually contain
65,536 bytes. Not just addresses, but
virtually everything done with a com
puter has its roots in this table.

Address
Pins

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Possible
Addresses

2
4
8

16
32
64

128
256
512

1,024
2,048
4,096
8,192

16,384
32,768
65,536

131,072
262,144
524,288

1,048,576
2,097,152
4,194,304
8,388,608

16,777,216
33,554,432
67,108,864

134,217,728
268,435,456
536,870,912

1,073,741,824
2,147,483,648
4,294,967,296

addresses is segment: offset, or as displayed (in hexadecimal) by DEBUG, some
thing like:

0000:0000

While we will touch lightly in later chapters on the mathematics of translating
absolute addresses to this format to accommodate 16-bit registers and the anoma
lies that result, these are subjects beyond the scope of this book or the needs of
most readers. They, however, are covered amply in other current literature for

Physical limits of the system 3

those who are interested. Each of these hex digit segment:offset addresses repre
sents an absolute address requiring only four hex digits. Five actually are required
to get all 20 bits but, for most purposes, the last one can be ignored. We are con
cerned with those absolute addresses, not with the mumbo jumbo of a 16-bit
world.

Lest you get the impression that having only 16-bit address registers to work
with imposes severe limitation on how much memory can be addressed, consider
this fact: Two 16-bit registers working together can, at least theoretically, handle
232 unique real addresses. Even with only 16-bit registers, you're in little danger
of running out of memory capacity.

The 80286 and then the 80386 added more address pins. Referring back
again to Table 1-1, showing the relationship between address pins and the expo
nential rate at which adding more dedicated address pins increases the potential
number of addresses, you can see how relatively easy it is to add more pins.

The 80286 could handle 16Mb (though other hardware limitations in the
original IBM AT restricted it to 4Mb). The 80386 could open up 4 gigabytes,
4000 Mb of address space, thanks to its 32-bit architecture. When every extra
address pin you add redoubles what you had before in address spaces, memory
capacity adds up awfully fast.

DOS, however, came into being to support the 8086/8088 genre, so therein
lies the dilemma. An 80286 runs quite nicely in only a 1Mb limited address
space, as does an 80386, though it's a little like putting a 1000 hp engine in a
Toyota just to drive down for a loaf of bread. But it works. Both of them work
much faster than an 8086/8088 because the 80286 and 80386 can be run with
faster clocks. (An i486 is even faster yet for reasons besides just clock speed.)

If not for the faster clock speed, you'd hardly notice any difference right
away. Most of your old 8088 software runs just fine. Some didn't, but then soft
ware upgrades quickly took care of that problem. DOS 3.x came out along with
the 80286 AT. The 4.x series, right from 4.0, included some special 80386 sup
port. DOS 3.x was backward-compatible with the older 8088 machines. Theoreti
cally, 4.x is fully backward-compatible back to the old 8088 machine, as well.
Initial releases through IBM's 4.01 exhibited some severe backward compatibility
problems, including an inability to find or read a hard disk even on older genuine
IBM machines. By press time, most of these problems either seemingly had been
fixed or fixes were assured. Going in the other direction, the older DOS versions,
beginning with 2.x, would run on the new machines.

The degree of compatibility that has been achieved is little short of miracu
lous, especially in view of various monkey wrenches and assorted obstacles some
of the heavy hitters in the game have thrown in along the way. Those of you who
might recall the earlier debacles of Apple, which somehow endured a period
when nothing Apple made was compatible with anything else, will surely join in a
hearty cheer to that.

The unexpanded system 4

Unfortunately, the degree of compatibility is the good news. The bad news is
that, to maintain that compatibility, DOS and everything that runs under it is still
restricted to just 1 Mb of address space. Forget about extended or expanded mem
ory. Anything more than 1 Mh, under DOS, is sheer sleight of hand. Now you see
it, now you don't, because it isn't there. It never was, never will be, and never can
be, not under DOS.

Is there another operating system available, something beyond DOS? OS/2
perhaps, someday. (That is exactly what I said about OS/2 in the fIrst edition,
which says something for how far OS/2 has progressed.) Possibly something else
though, something we haven't even seen a glimmer of as yet. All things are possi
ble-or almost all. However, when another operating system comes along and
really pushes DOS aside, the now operating system is going to have to have
enough things going for it to make abandoning most of our present software and
much of our current hardware worthwhile, because that marvelous backward
compatibility is going to go the way of the Edsel.

For now there's DOS. For a long time yet to come, it's going to be there. As
still new tricks and techniques are being added to DOS's repertoire, you can be
sure DOS is going to be around long after something else grabs center stage.

One thing to keep in mind is that there are some things in DOS that cannot
change to keep pace with technology. That old 1 Mb bugaboo is one of them.
Therefore, as long as you use DOS, if you want to address memory beyond 1 Mb,
you've got to somehow fool DOS (and whatever software you're running under
DOS) into thinking you're still working within that 1 Mb the old 8086 stuck us
with. This trickery is what expanded memory is all about. But before we get car
ried away with that, however, let's take a look at the physical machine we have to
work with to better understand some other issues.

The physical machine
Starting with a microprocessor chip with 20 address pins capable of handling
1 Mb of address space, the PC was conceived-before there was a DOS. This idea
came at a time when the idea of 1 Mb of memory for a desktop machine seemed
so incredible as to be ludicrous. Some of the ffiM's fIrst PCs were shipped with as
little as 16K of user RAM. And such was the state of the art that people actually
bought them that way.

In this climate, some critical and irrevocable decisions were made as to what
to do with all that address space. It was all pretty academic-similar to the play
money in a Monopoly game-but somebody had to do it. Therefore, 640K was
generously assigned, preposterous as it might have seemed, to user applications.
A whopping 384K was reserved for system overhead, both real and projected. See
Fig. 1-1. At that time, they didn't need 384K, or anything like it. These same
geniuses, however, didn't even foresee PC users ever even wanting, let alone
demanding such things as floppy disk drives.

The physical machine 5

1-1 	 Suddenly free of earlier 64K total
system limitations, designers of the
PC grabbed 384K of the 1 Mb
address space for system use.

We're really lucky we got 640K out of the deal when you consider the think
ing that went into it. 640K, however, was what we got, and the engineers immedi
ately began slicing up the rest of the pie for use by the system, which they
understood about as well as they understood the market that would quickly
develop and give the PC a life of its own. The market would have been completely
out of their control except that they had made those critical decisions and the die
was cast.

If not for a bunch of greedy engineers grabbing all that memory that they
didn't need, there would be no such thing as expanded memory and the PC might
well have gone the way of the high-button shoes. That critical 384K block of
memory reserved for the system-memory beginning at AOOOh (upward from
640K)-is what we will be dealing with primarily in this book.

Through a piece of that hoarded space above 640K that mM and the other
powers-that-be finally released, we now can access not just little leftover scraps
very useful scraps we'll find when we focus on 80386s-but megabytes of
expanded memory via sophisticated techniques. Some maybe aren't so sophisti
cated, but they work anyway.

The unexpanded system 6

Unfortunately, in the intervening years, many people eyed some of the unused
address space up there above AOOOh and decided that IBM was never going to use
it. Having reached that decision, they made the further assumption that, if IBM
was never going to use it, no one would ever notice if they just sort of moved in on
it. So they did. Some of the most respected names in the industry are among the
squatters that no # are so firmly entrenched that there is no way to move them to
where they belong. In later chapters, I will deal with the reality of their existence
and how to cope in a less than perfect world. For now, let's take a closer look at
just what there is, or is supposed to be, up in that mystical top third and a little
more of our system.

Life beyond 640K
Most users probably know more about the surface of Mars than about what goes
on above 640K. To a point, that's fine. If we all got bogged down in the minutiae
of our technology, there would be little time to put it to work for us. Still, as we
push our computer systems far beyond the imagination of their original designers
and come closer to achieving what until now have been only theoretical levels of
performance, we walk an even-narrower line between perfection and utter chaos.
The more we know about what goes on in there, the closer we can go to the brink
without falling off.

As you have seen, 640K is just an arbitrary number. From day one, the origi
nal PC was a megabyte machine (l024K). The other 384K has always been in
there, even before DOS was developed. The ROM that the first PCs booted from
had its base address up at FOOOh (960K) and ran on up to roughly FFFFh (1 Mb)
as does the ROM installed in almost every new machine since then. When DOS
came along, geared to a 1 Mb machine, it was, and is, a 1 Mb system. We, how
ever, are getting ahead of ourselves, because the origins of 640K go back before
there was a DOS.

Let's start by taking a look at just how the engineers decided to divide their
share of the pie. In Fig. 1-2, I've narrowed the focus to just the address range
above 640K. You can see the areas pretty much as originally assigned.

You can see there is a lot of space above 640K that isn't being used, but pro
grams can only load and run in contiguous, or unbroken, blocks of memory. Sit
ting right up there blocking access to anything above 640K beginning at 4000h is
the 128K set aside for video use-and the beginning of the legendary 640K limit.

Do you have any idea how little actual memory is required to display mono
chrome text? Bit-mapped graphics is another matter, but in the monitors of the
day, about 4K was typical (based on 25 lines of 80 characters using conventional
character generation techniques). The exact amount of memory mapped and avail
able for video usage varies somewhat between various video cards and different
manufacturers. The original IBM monochrome adapter card mapped memory

Life beyond 640K 7

1-2 	 Of the original 384K set aside for
system use, only the top 64K and
the bottom 128K actually were
assigned for specific usage (the top
for ROM and the bottom for video).
Of that latter 128K, many monitors
needed no more than the 32K at the
top of the block. That left as much
as 96K contiguous to the 640K set
aside for users completely wasted,
along with 192K in the middle. Over
the years, system usage of these
areas has changed, but there still is
much unused space above 640K.

between BOOOh and BlOOh, while its CGA adapter mapped a block four times that
big beginning at B800h.

Manufacturers made no pretext about needing that much space. By starting
actual assigned monochrome monitor addressing at BOOOh (704K), they left an
extra 64K of contiguous memory space temptingly attached to the 640K of user
memory addresses. In practice, most of the real monitors in existence started 32K
higher yet (somewhere up around B800h), leaving 96K of contiguous address
space untouched.

This contiguous space was not wasted on early hackers, especially as user
memory demands crept up and started nibbling at the invisible 640K barrier.
Note, however, that I keep talking about address space, not about actual installed
memory. There was generally nothing at those addresses, like a new subdivision
that still had some empty lots and no real owners in sight.

These empty addresses were similar to motherboards that came from the fac
tory with only one bank of memory chips installed but several rows of empty
sockets that, with IBM's PC, would [mally support up to 256K on the mother
board. However, there weren't necessarily even sockets up there to plug into, just
addresses for things that largely didn't exist. The addresses, however, were

The unexpanded system 8

assigned, available, and legitimate and the computer would recognize any device,
within reason, that reported itself installed at those addresses at boot time.

Even with the 8088 machines of the time-machines that, unlike today's
80386s and up, could not remap unused address spaces above 640K because of
limitations of the processor itself, plugging in more user memory was a fairly easy
and straightforward trick, provided you could set the memory to start at the
addresses higher than AOOOh. Some vendors of what then were often referred to as
"expansion boards "-nothing to do with expanded memory under the LIM speci
fications-even began providing at least optional support for a minimum of 64K
and, in some cases, up to 128K of scavenged memory.

Because there was no contiguous 128K block above 640K, methods of mak
ing still more memory available for user applications were generally crude and
often required disabling parity checking to work at all. As a result, 704K became
more or less a defacto practical limit. Some clone manufacturers actually made
740K standard on their machines before the EGA display came into common
usage.

Even the introduction and popularity of the ffiM Color Graphics Adapter
(CGA) caused no problems. The CGA, a crude device with relatively modest
memory requirements, installed itself at the top end of the 128K reserved for
video.

The introduction of the EGA display, however, changed the situation abruptly.
With much greater address/memory requirements than their predecessors, EGA
displays plopped themselves into that previously "reserved for video" space start
ing at AOOOh. This space, after all, supposedly was reserved for video usage.

Unfortunately, no two things can occupy the same space at the same time,
even if the space is actually only an address that might belong to something intan
gible. In computers, the address is important. It's fine as long as nothing else
actually is using it; however, when any two things, hardware or software, try to
use the same address at the same time, something is going to crash. Which
peripheral has the right to access the address is irrelevant. The result is still the
same; the system will crash.

While it is not difficult to deal with intellectually, this principle is something
we must come to terms with to understand what is going on above 640K, at least
as it impacts on the work we do. Therefore, you should put that concept at the top
of your list. You will be meeting that one again. In a later chapter, you will learn
how to recover your system, when-not if, but when-things do collide up there.

I have described briefly what has happened historically in the bottom one
third (l28K) of the memory reserved for system use. There is a tale if intrigue
claim jumping, and even what could sometimes best be characterized as proprie
tary sabotage-attached to usage of most of the remaining 256K, as well. The
pattern is pretty much the same, and you can't always tell the good guys from the
bad by the color of their hats.

Life beyond 640K 9

The operating system
For the sake of understanding DOS as it relates to Extended and Expanded Mem
ory, the operating system must be broken down to the basic modules or building
blocks that go together to make it up.

Users talk about DOS as the operating system, as if it were the total package,
as if without DOS we would have nothing but a bunch of ill-assorted chips and
hardware totally incapable of doing any kind of useful tasks. In practice, DOS has
increasingly assumed that reputation by association. Everybody knows that it is
impossible to run PC-type computers or compatibles without DOS or something
very much like it.

DOS actually provides only a part of the actual operating system. For the
proof, we have only to look back to mM's original PC. And not just the fIrst few
that came off the line with only 16K of memory, either. Not only the oldies, but
also the genuine PC (right up to the time mM quit making them) did not need
DOS to run. You can turn one on-no hard disk or floppy drive was installed-and
in a few seconds the system will boot, the monitor will be alive, and the keyboard
active and ready to go to work. Without DOS or any external "system," the systeII)
can even save programs and data and/or retrieve them from an external mass stor
age device.

Few users ever really used their old PCs without DOS and a disk drive-or
surely not for long. The point is that the PC had built into it a complete, free
standing operating system capable of setting down the operating rules and manag
ing system 110: keyboard, monitor, and a mass storage device. It even included
BASIC that loaded automatically from the ROM when the system was booted.
(Putting the BASIC kernel in ROM still is a distinguishing feature of mM
machines.) That free-standing system was called the BIOS (Basic Input/Output
Services).

If your PC has a floppy disk drive and you have a copy of DOS, you could
boot using DOS. You would not be booting with DOS instead of the built-in oper
ating system, rather in conjunction with it. In fact, the boot sequence fIrst looked
to the internal operating system for everything it really had to have to run, then to
DOS for whatever little extras DOS might have to offer.

One of these extras is the floppy disk drive. The original PCs didn't really
need one. In fact, the creators of the PC really didn't expect most users to even
want one of the then-expensive floppy disk drives. The engineers envisioned the
cassette tape recorder as the most popular mass storage device for the PCs, so that
was the device they provide 110 services for. The engineers also included an
appropriate set of MOTOR commands for the special version of ROM BASIC that
was built into the PC (not surprisingly nicknamed CASSETTE BASIC).

If you wanted to use a disk drive instead of a tape drive you needed a disk
operating system. You needed DOS (Disk Operating System). You needed DOS,

10 The unexpanded system

which you had to get from a disk, in order to use a disk. Some data and instruc
tions were needed even to read other instructions from the disk. These instruc
tions had to be put somewhere where even a dumb system would stumble over
them. They also had to be abbreviated enough so one quick gulp would provide at
least enough 110 instructions to allow the system to suck up the rest of the disk
operating system and whatever assorted services related to disk operations it
might contain. That is the heart and soul of DOS.

That ftrst gulp, generally referred to as the boot record, is always located on
the ftrst sector of the fIrst track of a floppy disk and always on side 1 if the disk is
double-sided. (On a hard disk the boot record is located in the ftrst sector of the
DOS partition.) If the information is any place else on the disk, the half-awake
computer can't ftnd it. Even ifthe computer accidentally stumbled over it, the sys
tem wouldn't recognize the information. At that stage in the boot cycle, the com
puter still is pretty stupid.

Once the computer has gulped down that ftrst sector of track O-like that ftrst
cup of coffee to get you started in the morning-the system, although still only
half-awake, is ready for bigger and better things.

The BIOS is read next. The computer already has a BIOS. One was built-in at
the factory. If your computer didn't have BIOS, the computer couldn't even read
the boot sector of a disk when it did stumble over the sector. The computer has
one BIOS built-in (actually ROM chips that are plugged in), but the system still
needs something else. The BIOS information stored on your DOS diskette adds
more functions than the built-in BIOS provides. In some cases, the disk BIOS
overwrites at least some of the instructions the computer picked up from its built
in BIOS.

The important thing to keep in mind-which will be increasingly important
later in this book-is that DOS, or what is normally thought of as DOS, cannot do
the job alone. It must rely on and work in conjunction with the most basic parts of
the operating system that came built into your computer. Any other operating sys
tem that comes along-DOS, XENIX, PC-MOS/386, OS/2, etc.-must ulti
mately attach itself to this foundation, embrace it, and be completely compatible
with it.

That underlying part of the operating system, which must be read into mem
ory during the boot process, usually is contained on a special kind of chip called a
ROM (Read-Only Memory) chip. Hence, the computer's built-in BIOS is called
ROM BIOS. No functional computer by today's standards can get up and running
without some form of built-in instructions, at least enough to get things started
when you throw the switch. Without this standard and basic set of underlying
instructions, programs could not operate independent of and oblivious to the
physical setup of the machine.

The initial DOS, little more than an afterthought, was pretty skimpy. It did
add support for disk 110: single-sided, 8-sector disk format. DOS, however, pro-

The operating system 11

vided a better disk directory structure than CP1M, the operating system most used
in other contemporary computers designed around the then-popular 8080 chip.

The scheme of DOS version 1.0 included such things as me attribute manage
ment and showed not only exact me size but also the last modification date. The
initial version of DOS also provided for an AUTO EXEC batch me for startup ini
tialization; however, disk services not contained in the ROM BIOS were its pri
mary function.

Most essential services now associated with DOS and taken for granted were
yet to come. Today, you so often see the caution: "Requires DOS 2.0 or higher."
The seemingly basic services most of today's software requires to run just were
not there, not in the ROM BIOS and not in DOS 1.0.

mM was the only vendor to supply DOS 1.0, but then there were no other
players in the game, either. The bandwagon was still under construction; however,
the infant, which would soon become a giant, had taken its first faltering steps.
Even by the time version 1.1 was released, there already were a few more vendors
and, for the first time, there was a parallel MS-DOS available.

DOS 2.0 contained major changes and began looking like a serious operating
system. In addition to its early duties, 2.0 offered I/O redirection, pipes, mters
(borrowed from UNIX), plus print spooling, volume labels, expanded me attri
butes, and greater configuration options via a CONFIG.SYS me. Version 2.0 also
added an ANSI display driver, allowed dynamic control of memory by programs,
program-environment block maintenance, and even user-customized command
processors.

DOS was growing up, although it still had, and still has, some serious short
comings. DOS has managed to mask many of those incompatibilities not only
from the end user but also from the software. It has tried to be too many things to
different people who are using different and not totally compatible computers.

DOS is slow and always will be. It is tied to an outmoded segmented memory
module and, as such, cannot be written to support protected mode operations that
are the real key to the future. It cannot deal with memory that is not contiguous.
The list of negatives goes on and on. Yet, for many users-most users probably
DOS still is the best solution and will be for some time yet to come.

Evolution: a two-way street
Through the years, even the disk services provided by DOS have undergone con
siderable change. New disk services have been added as needed, sometimes to
support devices neither anticipated or supported by the ROM BIOS. The pocket
sized nOK 3.5" disks were neither anticipated or supported either by the ROM
BIOS of older machines or even by the supplementary I/O of any DOS through
3.1. Actually, the 3.5" disks could be used to their full capacity with any DOS
from 2.0 or up but only in conjunction with a third-party device driver. Version

12 The unexpanded system

3.2 included direct support for 3.5" disks, allowing older machines to be
ungraded easily to include not only these higher capacity disks but also other fea
tures and functions not included in earlier versions to help stave off obsolescence.

By the time DOS 3.3 was released, most vendors had incorporated support
for 3.5" disks and some other needed services into the various proprietary rou
tines in their applications. The burden of providing a stopgap solution for the
small, high-density floppies no longer fell on DOS. Not surprisingly, DOS
dropped those services. The interrelationship between DOS and the many "com
patible" computers DOS serves is evolving continually, as both the markets and
devices change.

What else is in there?
Most of the DOS services discussed so far are contained in two fIles that never
show up in a directory listing. The DIR command simply can't find them. They
are locatable, but they are hidden. One of the fIle attributes is set so DIR can't
fmd the fIle. Even if you're a snoop and do find these hidden fIles, DOS still has
another locking mechanism to prevent accidental damage. By means of another
attribute, these fIles are set to read-only.

Generally referred to as the "BIOS module," one of the hidden fIles is mM
BIO.COM. As the name implies, its primary function is in providing auxiliary
110 services beyond those included in the ROM BIOS routines. The MS-DOS
fIle, IO.SYS, is the equivalent of mMBIO.COM.

The other, referred to as the "DOS kernel," provides the necessary software
interface with whatever applications software you are using. mMDOS.COM or
its Microsoft equivalent, MSDOS.SYS, provides a group of hardware-indepen
dent services called "system functions." These include:

• File and record management
• Memory management (conventional memory only)
• Character device input/output
• "Spawning" of other programs
• Access to the real time clock

Applications programs access these functions by loading the appropriate registers
with parameters specific to the functions required. These parameters then are
transferred to the operating system for execution.

Out of hiding
The part of DOS that users have the most contact with is the command processor:
COMMAND.COM. This file is sometimes referred to as the "shell"; however, it
should not be confused with the SHELL, or graphic interface, DOS added begin
ning with version 4.0. To avoid confusion, this fIle will be referred to only as the

What else is in there? 13

http:COMMAND.COM
http:mMDOS.COM
http:mMBIO.COM

command processor, or COMMAND.COM, for the purposes of this book.
The mlhle tells all: COMMAND.COM. It is a complex module that contains

not only a number of built-in, or internal, command functions but also other
external command functions, including the processing of batch (.BAT) files.

Internal refers to commands that can be executed immediately upon comple
tion of the boot process and the loading of the command processor. These com
mands are available in the raw system with nothing extraneous loaded; no
AUTOEXEC batch file, nothing-just the familiar DOS A: > (or C: » prompt
on the screen. With nothing else loaded on the system, you can copy and delete
files, get directory listings, and create, change, and remove directories. These,
and other, commands are internal to COMMAND.COM.

Commands such as FORMAT, MODE, and CHKDSK are external com
mands. The command invokes some separate utility program, which must be
available either on the default disk and directory or in the PATH or are pathed-to
as part of the command. For example:

C: > " DOS" FORMAT

Look in the directory on the DOS distribution disks. Anything in your DOS direc
tory that looks like the name of a valid DOS command but is an executable file
with a .COM or .EXE extension tacked on is the file that is executed (with some
help from the COMMAND.COM) when you type the command. All of these
.COM and .EXE files are nothing but utilities and are not integral parts of DOS.
Most can be erased from your disk without causing any noticeable problem. Add
the control and execution of all batch (.BAT) files to this list of COMMAND
.COM functions and you've got the whole story-or at least all you really need to
know for now.

The important thing to keep in mind, though, is that everything else usually
referred to as DOS really is just a useful collection of utilities. Even the new
expanded memory device drivers, like 386EMM.SYS (or mM's XMA2EMS
.SYS and the tag-along XMAEM.SYS for 80386 systems) supplied beginning
with DOS 4.0. They are all just utilities, and not even necessarily the best utilities
available to do a lot of jobs you might have thought only DOS could do.

Even COMMAND.COM itself is not indispensable. Hewlett-Packard MS
DOS computers have from the beginning been sold with a proprietary screen
oriented shell, called the Personal Applications Manager. Functionally similat to
the optional graphic user interface or Presentation Manager supplied with DOS
beginning with version 4.0, the proprietary HP version was designed to be partic
ularly suited for use with HP's TouchScreen HP-150 but also to be used with
other HP/DOS machines, as well. There also are various third-party command
interpreters available-4DOS being one of the best-that can be used to replace
COMMAND. COM with any DOS version from 2.0 through 5.x.

14 The unexpanded system

http:COMMAND.COM
http:COMMAND.COM
http:COMMAND.COM
http:COMMAND.COM
http:COMMAND.COM

2

CHAPTER

At the heart

of things

Strictly for the sake of argument we are going to break: a computer down to only
two component groupings: the microprocessor, where all the actual work gets
done, and memory-conventional, extended, and expanded. Admittedly, this divi
sion is a simplistic way of viewing a complex subject; however, for all that is
involved in a computer, these two elements are the focus here. The microproces
sor is included only because it governs the set of rules memory can run under and
how memory can or must be addressed. Because the chip you use establishes the
rules, this chapter will start with the microprocessor.

Essentially, this book will be dealing with computers designed around three
uniquely different, yet closely related, microprocessor chips: the 8088 that pow
ered the original PC, the 80286, and the 80386 and i486. The 80386 and i486 are
the heart and soul of successive generations in the sense that one evolved from and
followed the other. However, just as the airplane did not replace the automobile,
the new chips in the industry have not replaced their predecessors, rather the
80386 and i486 have only opened new frontiers.

Along with the chips, there have been parallel evolutions of both software and
specialized auxiliary hardware-particularly memory devices-developed as need
has fostered invention. To a large degree the spectacular technological leaps and
bounds are backward compatible and applicable to most computers running with
any of the three chips discussed here. We are increasingly seeing both software
and specialized hardware, requiring at least a 286 and in other cases, 386 and
higher platforms.

15

Backward compatibility, once considered almost mandatory by many, no
longer limits our horizons. Unlike an army, technology cannot slow its pace to
lock step with its slowest members. In many ways, however, we still are tied to
concepts that are rooted deeply in that way of thinking. Before you plunge too
deeply into the total picture, look briefly at some of the differences as they relate
to how far each chip can hang on to the coattails of the next before dropping off.

The ubiquitous 8088
Historically, the roots of the 8088 can be traced back to the introduction of the
8008 by Intel in 1972. The 8008 was the first commercially available 8-bit micro
processor. Not much needs to be said here about the 8088 or the dynasty-founding
8086. However, to understand the concept of bits, you really need to go back one
generation further to the earlier Intel 4004, which, as the name implies, was a
4-bit chip (Fig. 2-1).

2-1 Intel's 4004, the world's first microprocessor, is the chip that started it all.

16 At the heart ofthings

The significance of four bits is that the number four in a binary system (base
two) is the minimum number capable of representing the numbers zero through
nine. One bit can count to two, two bits can count to four (two times two), and
three bits only to eight. You have to have that fourth bit, making the system capa
ble of counting all the way to 16 (24 = 16), to reach a count of 10.

If all you want to do is work with simple numbers, then four bits is fine. The
4004 was used in simple calculating machines. The chip could add, subtract, mul
tiply, and divide and was a veritable wonder of technology compared to the myr
iad of springs, gears, cams, and cogs of contemporary mechanical office
machines.

Then someone got the bright idea of representing the letters of the alphabet,
too; hence, the quest for an 8-bit chip. In a binary system, most everything is
based in multiples of two.

Eight bits means a possible 256 combinations. That amount is more than
enough for 10 numerals, a full alphabet (in both upper and lower cases), plus
some of the more common foreign language variants and punctuation. Some spe
cial symbols also are included: operands and Greek letters. (Sixteen- and 32-bit
machines deal with the same characters found in 8-bit processors; however, the
larger processors work much faster.) So Intel then developed the 8008 (really little
more than a 4004 with more bits) and, shortly afterward, the 8080 chip, which
represented a quantum leap in technology.

These two developments opened up a whole new can of worms. As long as
you only had four bits to play with and stuck to simple addition, subtraction, mul
tiplication, and division, no real programming was required. Everything was
done in real time; there was no disk storage. Life was simple in a 4-bit world. Not
so in the vast new, untamed 8-bit frontiers. As with the hulking mainframes of the
day, some sort of programming was required. There, however, was a problem:
there was no suitable programming language in existence and there was no easy
way to store or load programs even if a programming language had existed.

One group of engineers split off and, deciding that the 8080 was not the way
to go, fathered another chip: the Z80. An 8-bit chip with 16 available addresses
and a whopping 64K of memory, the Z80 is of special significance-even to us
here-because its proponents developed the first rudimentary operating system for
a microprocessor chip. Patterned roughly after mainframe systems, the new oper
ating system evolved into what later came to be known as CP/M (Control Program
for Microcomputers).

In the meantime, Intel kept refining and polishing its 8080-stil1largely an
orphan-and spinning off new variants, in search of a market share. Intel devel
oped a somewhat similar 16-bit version of the 8080, called the 8086, which
evolved further still to become the 8088. Although the 8086 had a l6-bit poten-

The ubiquitous 8088 17

tial, it found its niche in 8-bit systems that were cheaper to produce. These sys
tems were close enough in design to the earlier 8008 (and, more significantly, to
its competing Z80 stepchild) to enable programs written for CP/M to be converted
easily to run on it. Although the 8086 allowed faster clock speeds than the 8088,
the 8086 was not an immediate success. It found use in the Compaq Deskpro and
the AT&T 6300; however, it was tied to an 8-bit bus in both machines and never
achieved its full potential. More recently the 8086 has appeared in the PS/2 model
30 and is used in a number of clones.

Although the exact chronology of what was going on behind closed doors is
hazy, mM was working on what would become the first PC (mM Personal Com
puter) somewhere in this time span. At this point, these seemingly totally diver
gent forces start to come together, meet, then split apart again still farther, but not
before each played a major role in shaping the role of computers from that to the
present. At one time, mM actually marketed CP/M-86 (a modification of the
Z80-oriented CP/M adapted to the 8086/8088 environment) beside DOS as an
optional alternative operating system for those first PCs.

DOS actually evolved from another spinoff of CP/M. The original work was
attributed to Tim Paterson with a fledgling company called Microsoft, which
acquired the rights from another company called Seattle Computer. The PC was
still little more than a toy with no clear-cut direction or purpose at this stage.

To maintain even a reasonable degree of compatibility with programs written
for CP/M, Intel broke the 1 Mb of address space allowed by its new 8086 and
8088 chips into 64K segments. The segments were 64K because that was the total
amount of memory allowed by the Z80 for which the original CP/M had been
written. The original PCs were only equipped with 16K (standard), expandable to
64K only on the motherboard before you had to add an expansion board, which
fortunately the PC's open architecture allowed.

DOS initially sold beside CP/M-86 for about half of CP/M-86's price and
had the additional benefits of an easier, more logical user interface and syntax.
DOS's lower price and extra benefits soon effectively pushed CP/M-86 out of the
mM/clone PC marketplace. Unfortunately, during this critical formative period,
Microsoft apparently ignored warnings from Intel, which foresaw compatibility
problems between the segmented memory model DOS was embracing and the
protected mode that coming generations of the 8086 family would run in. In a nut
shell, this state of incompatibility is where we are today.

The PC-even the "original" -evolved into something far beyond the wildest
dreams (or nightmares) of its creators. Intel kept designing newer and better chips
around which two new generations of machines have been built, with still another
generation, 80486s, emerging. The more things change, however, the more things
stay the same. A 1 Mb operating system with 64K segments rooted in an operating
system no longer even mentioned in the same breath as the PC and its faster off
spring still is available.

18 At the heart of things

Despite its limitations when compared to the 80286 and especially 80386, the
8088 remains a dependable workhorse capable of coming as close to multitasking
as many users need, via context-switching tools like Software Carousel. With
expanded memory, the 8088 can achieve full multitasking using windowing envi
ronments like Quarterdeck's trend-setting DESQview and, to some extent, with
Microsoft's Windows.

A maximum of 32 Mb of expanded memory is all that can be run on any of
the processors-even 486s. There has been some success with mapping LIM 4.0
EMS memory to unused address space above 65K as well, but it has been very
limited. The architecture of the chip does not allow protected mode or any use
beyond 1 Mb.

Until fairly recently, I would have said the lack of a protected mode would not
affect most 8088 users. Today, however, the world is moving quickly to protected
mode. Most users needing to run applications that require extended memory
probably have access to higher-level machines-286s and 386s-anyway. Cer
tainly, as many of the vintage 8088s expire (as one did in the middle of working on
this book), they will be replaced with new machines that do support protected
mode.

One of the most significant limitations of the 8088 for many applications is
that the 8088 is essentially an 8-bit chip. Some call it 16 and it is-but it really
isn't. The chip contains two 8-bit processors that, running side-by-side, effec
tively amounts to 16-bit processing. By design, the chip is limited to only 8-bit
data communication with the outside world. Accordingly, the standard open
architecture bus of the PC and its various clones and spinoffs is an 8-bit bus.
Given an 8-bit architecture, the operating system and any software that truly is
compatible with it must be scaled to run in and through an 8-bit world.

The 8086 differs significantly from the 8088 in that it can transfer 16 bits and
could, therefore, operate more effectively given access to a 16-bit bus. Internally,
both chips actually can manipulate 16-bit data. The two chips, therefore, are not
directly interchangeable. This, by the way, is essentially the difference between
the 386SX and 386DX chips. Only the DX chips are capable of 32-bit communi
cation (i.e., it supports a 32-bit bus), although both are 32-bit processors.

The limitations of a 1 Mb DOS and of running with an 8-bit operating system
and software spurred development of a new operating system that would match the
16-bit capabilities of the 80286. These limitations led to the development of OS/2,
a 16-bit operating system. In the meantime, we have the 32-bit 80386, no great
enthusiasm for OS/2, which does not yet even offer a viable 16-bit alternative, a
well entrenched 8-bit operating system, and highly evolved user base of 8-bit
compatible software.

Despite the dire predictions of some pundits, the 8088 is not finished yet.
Even in office environments that often require the best that technology has to offer
to meet certain more sophisticated needs, a lot of old PCs still are doing yeoman

The ubiquitous 8088 19

service. With today's software (DESQview especially), the old PCs even can
multitask. With the price of 286 and even 386SX machines becoming more and
more attractive, at all but the most basic entry level, you should set your sights a
little higher.

The 80286
From its introduction, the 80286 has been somewhat of an orphan, caught some
where between the PCs 8088, which it was supposed to replace, and a promise it
somehow never quite fulfilled. The 80286 brought something euphemistically
called extended memory into our jargon, along with such esoteric terms as real
and protected mode. After the initial hype had died away, about all there really
seemed to be was a faster PC with a different kind of RAM disk.

The 80286 could address more memory than the 8088 was capable of han
dling-up to 16 Mb. Specific computers using that chip, however, might have sub
stantially lower limits imposed by other design factors. For example, the ffiM AT
had an official limit of 3 Mb, except for extended and/or virtual memory. Interest
ingly, this amount is the same limit that for many years applied to ffiM's then
multi-million-dollar mainframes. The 80286 also made provision for something
called protected mode, which was supposed to assure data protection and integ
rity.

The idea of something like a protected mode-and several other features sup
ported by the 80286-actually dates back to the mid-1960s and came out of a joint
project sponsored by Bell Labs, MIT, and General Electric. Unfortunately, DOS
had been written on the basis of some shortsighted assumptions that made no
allowance for a protected mode or any possibility of life beyond 1 Mb. Therefore,
as long as there was DOS and it was the only viable operating system available,
there was a problem, or at least there seemed to be. While some software devel
opers ventured cautiously into this ungoverned area called extended memory, it
proved to be a risky business fraught (until rather recently) with all sorts of dan
gers. The result was only limited usage and a lot of bad press based largely on
common misconceptions.

One of the most common of these misconceptions was the "fact" that, no
matter how much extended memory you had, you could not run more than one
application at a time in extended memory because the second application would
most likely overwrite the first, corrupting its data, etc. You could not, for
instance, use your extended memory both for a RAM disk-like VDISK-and for
disk caching or print spooling simultaneously. Maintaining the integrity of several
programs running simultaneously in extended memory was what protected mode
was designed to prevent. Without some help from the operating system, however,
you really didn't have protected mode, only the capability.

DOS still is our primary operating system; however, thanks to the develop

20 At the heart ofthings

ment of something called DOS extenders the problems that plagued 286 extended
memory usage have been largely overcome. In essence, a DOS extender picks up
where just plain DOS leaves off and provides the software management support
for extended memory that DOS lacks. Beyond 1 Mb, the extender takes on the
role of surrogate for the new operating system we're still waiting for-though less
and less with bated breath.

There now are two industry standards for DOS extenders and any other soft
ware running in extended memory. First, there was the Virtual Control Program
Interface (VCPI), which was put together by a group that included most of the
major players in the game (with the exception of Microsoft, which chose not to
participate) in the interest of not shooting themselves-or each other-in the foot.

The VCPI sets down guidelines that, when followed by control programs
(such as DESQview), allow the control programs to coexist without conflict in
extended memory. This standard, while of critical importance, addressed only the
386 (and higher) platform level, which is where most of the interest and activity
continues to be.

Unfortunately, Microsoft Windows was not compatible with the VCPI speci
fication. Although they could have brought their products into compliance with
the VCPI specification, Microsoft chose to push for a quite different interface
standard and, according to various reports, threw its not inconsiderable weight
around to force the new standard's acceptance.

Called the DPMI (DOS Protected Mode Interface), this specification also
embraces the 80286 and, in fairness, does address some shortcomings of the ear
lier-though still more widely accepted and used-VCPI. The DPMI, however,
does not solve all of the problems encountered in trying to use extended memory
with a 286. There are some problems with the chip itself.

The basic problem with the 80286 chip-aside from the lack of an operating
system or even an accepted add-on interface to protected mode until recently-is
that, while the chip will transition easily from real to protected mode, there is no
easy way to bring it back.

Although a program can run all day in protected mode given sufficient data to
calculate, extrapolate, interpolate, and otherwise chew on, it has to come back to
the real world for disk access, file management, and other DOS services. DOS
ends at 1 Mb (FFFFh). Any time you go past that limit, you must go out of DOS
at least until you need DOS services again. There is one exception to this rule,
which will be discussed in a later chapter. That exception, defined by Microsoft in
the Extended Memory Specification Version 2.0, allows DOS to use one addi
tional64K lying almost entirely above l024K.

A couple of methods are used to move back into real mode from protected
mode with the 80286 or 80386. Another peculiar device, however, must be dealt
with in any transiting between modes with these chips. The device, called an A20
gate, wraps calls to addresses above 1024K back around to the bottom of the

The 80286 21

address range, rather than allowing them to pass through into the extended mem
ory range.

Apparently, at one time, a lot of programmers used the rather sloppy trick of
throwing in addresses above 1024K when they really just wanted to wrap back
around within DOS. This trick seems to have been a carry-over from a still earlier
programming era. Unless it is specifically turned off by a command, the A20 gate
will perform this "trick." Programs that really call for addresses beyond 1024K
must tum this gate off before even being allowed access to extended memory. The
programs also must tum it on again to re-enter real mode.

Assuming the gating instructions have all been taken care of, one trick some
programmers have used to return to real mode is to take advantage of an undocu
mented feature of the 80286 chip discovered early on by hackers. Commonly
referred to as the LOADALL function, it was likely built into the 80286 to serve
some internal testing or quality control need at the factory. The function provides
a relatively easy and direct means of returning from protected mode. The prob
lem, however, is that Intel not only has never documented the function but has
never given any assurance that the feature will always be there in later chips.
Although the function does work, there is a definite element of risk involved for
any programmer who chooses to ignore the danger signs.

The more common and more accepted solution-one that requires only well
documented features of the 80286 chip-is something called a triple fault.
Although a full technical explanation is beyond the scope of this book, the curious
might find a thumbnail sketch amusing if nothing else.

When a program running in protected mode needs to return to real mode, it
does something utterly outrageous and loads a register with a value that can only
be interpreted as an error. Having detected the "error," the system goes looking
for instructions as to how to deal with an error at that point, only to fmd another
value indicating a second error at that level (also put there by the program). This
error then sends the chip to its third and fmal level of error protection where it
finds yet another invalid value returned.

After the third fault, the 80286 gets ready to reboot-which would clear the
faults but also lose whatever you were working on. On checking its various regis
ters, however, the chip discovers a pattern of data bits indicating that the system
wasn't just turned on after all; therefore, it doesn't reboot. At least, it doesn't
reboot completely, but rather just far enough to reset certain registers and to put
you back into DOS. The same effect can be noted occasionally with other chips
during a cold boot and somewhat more often during a warm boot. The processor
chip will detect some bit pattern that indicates the system is really alive, it will
only reset rather than reboot, leaving you in limbo somewhere. In those cases, a
reboot must be forced, typically by shutting down the power to force a total
restart.

Convoluted and weird? You bet. But dependable enough. It also is the method

22 At the heart of things

of choice of most 286 programmers. Until the doors to extended memory were
opened wide by the 80386, however, there was little incentive to bother. Besides,
OS/2 was coming and the problem would just go away. The problem, however,
didn't go away. In the meantime, the 80386 is here and blowing the doors off of
everything-hence the sudden scramble to catch the wave.

The 80286, however, has some serious shortcomings, which are made all the
more apparent in the glare of the spotlight on the 386. Unlike the 386, the address
registers of the 286 cannot be remapped to allow tucking bits and bigger chunks of
usable RAM into unused and otherwise unoccupied address spaces between 640K
and DOS's 1 Mb top. The 286 also does not have the virtual machine multitasking
capability inherent in the 386. Some users even go so far as to call the 286 a
"brain dead" chip because of all the things it can't do.

There is, however, a large installed user base of 286 machines out there that is
getting bigger every day. People are still buying 286 machines often because they
simply do not think they can justify the added initial cost. In addition, many users
simply do not now and might never need the performance achievable with a 386.
It would be as silly to buy a 386 just to balance the family budget or write high
school term papers as to buy a high-performance sports car only to drive to the
comer market occasionally for a loaf of bread.

Needs do change though-sometimes as new technologies make new applica
tions available and access to them desirable if not imperative. Fortunately, there
are solutions at hand that address most of these shortcomings. In this case, the
real solution requires some additional hardware to provide services not supplied
by the raw 286 chip. As with the 8088, there is always the accelerator board
upgrade option, which will be discussed in a later chapter.

The supercharged 80386
The original 80386-80386DX to be precise-and its closest relative, the slightly
scaled-down 80386SX, have emerged the biggest winners in the technology
sweepstakes. Now, yet a third jewel is added to this crown: the 386SL, scaled
down in size, but hardly in performance. To date, this family of chips has surely
done more to revolutionize the desktop computer and its role in our lives than any
other single development. Even with what we've seen so far, the 80386 (Fig. 2-2)
is still a sleeping giant just awakening.

Some users, unfortunately, still look upon all 386 computers as little more
than Advanced Technology (AT) warmed over, but with a fancier price tag. In
some cases, that view is accurate. The AT image has been fostered further by the
fact that, lacking a classification of their own, 386s are often classed as ATs in
generic listings that put PCs on one side and everything else on the other.

There are similarities of course-particularly between SX and 286 machines.
If you had to classify the 386 either with the PCs or ATs the latter is certainly the

The supercharged 80386 23

2-2 	 The internal structure of an Intel 80386 is just one indication of the incredible complexity of modern
microprocessor chips. Just imagine what an 80486 might look like, with over 1,000,000 transistors.

better choice. However, 386s-even 386 machines that look for all the world like
old ATs-are indeed a different breed. Throughout this book I will treat them as
such.

As stated up front, I will for the most part refrain from using the terms PC or
AT in this book, but will group machines strictly according to the microprocessor
chip they are based on. Again, I would remind you that even that classification is
risky business because all 386s are not created equal by any means, so all of the
features described here might not be available on all machines you see advertised
on dealer's shelves.

The real and the unreal
After the 286 fiasco, Intel made sure everything had been done right when it
introduced the 80386. It was not just a fix-the 286 chip really seems to be unfix
able-the 80386 was a whole new chip. It was and is compatible with anything
that runs on any member of 8086 dynasty. The 80386 promised higher clock

24 	 At the hean of things

speeds than had been seen with 286s. The real news, however, was in features that
had never before been seen.

One new feature allowed memory to be mapped to any block of addresses no
matter where (within an acceptable range) the addresses were. Although this fea
ture might not sound like much, it was, in fact, a revolution in the making and a
probably whole new lease on life for DOS. For the first time, user memory could
be assigned to unused blocks of address space up in the system area above 640K.
The memory could be worked into little unused nooks and crannies up above the
video area and worked in around such things as network cards, hard disk ROM,
the page frame for expanded memory, and system ROM.

This RAM could not be used directly to run bigger applications-DOS can
run applications only in contiguous memory, which ends when you hit the block
of addresses used by the video. Further complicating the situation, the unused
address space above 640K usually is fragmented (8K here, 32K there, 64 or 96K
somewhere else). Unused memory in the system area, however, could be used to
relocate device drivers and TSRs that were using precious memory below 640K.
Every program moved to higher memory makes that much memory available
below 640K-up to nearly 200K sometimes.

Certainly one of the most significant-although probably least understood
differences in the 386 chips, however, is that they actually have three distinct
operating modes. In real mode, a 386 machine is really just a big, lovable PC. It
looks impressive on anyone's desk-especially as most other new machines take
on a trendy, slimmed-down look and most 386s run at real "gee whiz" speeds by
comparison. At heart, 386 machines are still just big PCs, their 32-bit processing
capabilities wasted.

Shift into protected mode, however, and the differences are quite apparent.
Unlike the 286, the 386 can be readily brought back from protected to real mode
at will, without the convoluted skullduggery required to sneak back when using a
286. Some implementations of OS/2 have been able to use this feature effectively
to allow real-mode MS-DOS programs to run concurrently with OS/2 applica
tions running in protected mode.

Even without going to OS/2 or some yet-to-emerge operating system, pro
tected mode really has come into its own with the 80386. Programs run from
DOS-not some new, exotic, and totally unfamiliar operating system-can load
and run in extended memory and take full advantage not only of an utterly mind
boggling pool of memory, but also of the full 32-bit processing capabilities of the
chip. Translated to demonstrated performance against the same products fine
tuned for use in a 16-bit environment, the results can reflect an increase by a fac
tor of five or more. Even under DOS, this processing power is unleashed, thanks
to DOS extenders.

True, DOS extender technology is being applied to software specifically tar
geted for 16-bit 80286 systems as well. However, much of the current DOS

The supercharged 80386 25

extender technology being applied to 286s could be said to be more hand-me
downs from 386 development rather than from dedicated efforts. Although there
are strong similarities, DOS extenders for use with the 80386 differ significantly
from those intended for use with the 80286. Some of the better known specialized
software development companies-like Phar Lap-only offer development tools
for 32-bit systems, totally ignoring the 286 market. The 80386, however, is
clearly the more attractive development platform. The development of 32-bit sys
tem-specific versions of several popular software packages seems far more likely
than parallel 16-bit releases. There also is a rapidly expanding base of other soft
ware developed specifically for the 32-bit environment. Much of this software
probably will not filter down even one notch to the 286 market.

What has been discussed so far is only part of the 386 story, for the 386 has
still another operating mode yet to explore. This mode called virtual 8086 mode,
is not shared with any of the earlier chips. While opening the doors to new power,
the 386 opens windows like no other chip can. In this V86 mode, the chip can
emulate virtually an unlimited number of separate 8086 machines running side by
side, each with its own operating system and configuration-each one actually
running real mode software in a protected mode.

The virtual machine
The emulation of separate virtual machines is so complete that the user can run
different virtual machines under different operating systems-different versions of
DOS or even other operating systems-provided they are compatible with the
8086 family of processors. Virtual machines also do multitasking like you've
never seen it done before. Running in real mode, we've had multitasking now for
several years even on 8088s with LIM EMS 4.0 expanded memory. This real
mode multitasking is different though because, in real mode, a problem encoun
tered by one multitasking application can bring the entire system down. Fortu
nately, it usually doesn't, but it can.

With full-fledged virtual machines, however, the separation is complete, even
to the extent that, if you totally crash a virtual machine, whatever other virtual
machines you might be running at the moment never know it. You simply reboot
the one that crashed, and you're right back in business. The result is about the
same as having a bunch of physical machines piled on your desk and having one of
them crash and be rebooted.

You still can't get around the fact that, in real or virtual mode alike, you have
only one processor that has to share itself between the different applications that
you have running concurrently. In any event, however, this virtual machine mode
opens more than just new windows; it also opens doors.

26 At the heart ofthings

Big daddy
The "big daddy" of the family, the full 80386DX, is the chip now emerging as
probably the most cost-effective network server. Even though we already have the
still more powerful i486, there is a growing consensus that the 803860X has all
the horsepower needed for all but the most demanding uses.

The OX has more address pins than any previous chip-32 of them-giving it
the capability of addressing up to 4 gigabytes of memory. Two versions of the OX
are available that support clock speeds that are appreciably faster than can be
expected out of even some of the faster 286s. These versions are the two you hear
bandied about the most; however, neither of them really warrants the added cost
over a 286 to most users. To justify the cost, you have to look a little deeper.

Although the DX was the first 386 we saw, it has only more recently emerged
to show its real power (partly because many of the early 386 machines were in
fact little more than warmed-over AT clones). It also took a couple of years for
software written specifically to tap the power of this chip to reach the market in
sufficient quantity to make a real impression.

Only with the teaming of the 80386 with more powerful full 32-bit EISA bus
and fmally the Micro Channel architecture as well did the 80386 begin to really
show its muscle. The power of this chip, however, still had not been fully
unleashed. Modifications to the basic EISA bus now have extended the data path
to as much as 128 bits on some machines. Such wider data paths are essential as
designers talk in data transfer rates as high as 10 Mb per second these days.

The 386DX is an awesome chip and should not be sold short, even along side
the new darling of the industry, the i486. No one as yet has even approached the
OXs 4 gigabyte address limits. Buyers of 80386 machines in general and DXs in
particular, however, should be wary. As powerful as it is, the 80386DX in itself is
only just a chip. Only when it is incorporated in an overall system designed to
fully utilize its powers can you enjoy the DX's power, otherwise, you might be
better off buying a lesser machine and save yourself some money.

The entry-level 386SX
Similar internally to a full 386, the SX (Fig. 2-3) opens the doors to full 32-bit
processing, running any of the new 32-bit software, including 386 DOS-extended
software that will not run on 286s. Because they are descended from the 386, the
SX offers the same three operating modes, the same support and easy access to
Extended Memory (no backflips to get in and out of protected mode), and the
same support for memory mapping to unused address space above 640K.

Essentially, the 386SX can do anything a full-blown 386 can do except
address 4 gigabytes. It has fewer address pins (only 24 instead of 32). The chip

The supercharged 80386 27

2-3 	 Significantly smaller and different in design from the original 80386, the 80386SX offers many of the
same benefits, but at a lower cost to systems developers. While only nominally faster than the 80286
and with a smaller address range, it can be used with virtually all 32-bit software written for the
80386.

still can handle up to 16 Mb of RAM-certainly enough to satisfy most user
needs.

Although the SX performs 32-bit processing internally, it does not support a
32-bit bus. It supports only a 16-bit bus, the same as the old 286 AT. This appar
ent limitation, however, makes the SX more competitive, because producing a 16
bit-bus motherboard is significantly less costly than producing the 32-bit kind.
The net result is a machine that will run anything a full 386 can run, including
many programs that can't run on 286, at a price generally significantly lower than
that of a comparable DX machine. All other things being equal, an SX typically
sells for only $100 to $200 more than a 286 machine. Dollar for dollar, a 386SX
is, without a doubt, the best buy on the market today for most user applications
and should continue to be for some time to come.

28 	 At the heart ofthings

Power to go: the 386SL

It is anticipated that by 1994 as much as 37 percent of a projected 40 million-unit
PC market will be for laptops or the smaller notebook sizes. In the same time
frame, 32-bit systems could account for more than half of all the portable
machines. Looking to that market, Intel now has added the SL to its 386 line. The
386SL is a diminutive chip that, along with a matched set of preshrunken compo
nents-also offered by Intel-fits nicely on a board as small as 4x6 inches.

This tiny powerhouse might be small in size, but not at the expense of major
features. Internally, the diminutive SL contains the equivalent of no less than
885,000 transistors. In addition to the core, the SL contains its own internal
clock, memory, and ISA bus-compatible controllers. It also contains its own
SRAM cache and cache controller.

More than just shrinking the physical size, Intel also has devoted considerable
effort into reducing battery drain and has incorporated power management capa
bilities, such as stopping the clock during periods of inactivity to achieve the long
est battery-powered work session possible between trips to the recharger.

The SL already is available at OEM prices that seem surprisingly attractive
(under $200) considering the relatively higher price-per-horsepower tags we've
seen to date on anything laying serious claim to portability. The area of portable
computers seems likely to be the market where we can expect to see not only the
biggest quantum leap in performance but also the most significant price reduc
tions, bringing those prices more into line with the bulky desktop machines that
will offer little, if any, added power.

Above and beyond: the i486
With the 386 by no means the end of the line, the current darling of the industry is
the i486. Outwardly little more than a souped-up 386, internally it represents
another quantum leap in CPU technology. In the near future, however, the 486
apparently will have little impact on the way most of us live and work.

The i486 is a far superior number cruncher to the 386, with internals that
essentially make it equivalent to running a 386 with a math coprocessor. Ifyou've
priced Weitek or other better coprocessors for 386s of late, the price would go a
good way toward offsetting the significantly higher i486 price tag. To really put
the 486 in a class all by itself, it also supports the use of a coprocessor such as the
Weitek 4167.

The i486 has other attributes that many users feel make it especially well
suited to network server applications. It really is too much chip for the AT-type
ISA bus-even modified AT bus boards like we've seen in many 386s that provide
at least limited 32-bit access. For that reason, most i486 machines are being
designed around the EISA bus, or Micro Channel Architecture at the very least.
Some engineers are even modifying the basic EISA design to increase the data
path to as much as 128 bits.

Above and beyond: the i486 29

Unlike the 286s and 386s, the i486 does not add any new or novel features. It
is still a tri-mode, 32-bit chip. It will not spawn a whole new genre of 486-specific
software. In the context of this book above 640K it looks little different from a 386
above 640K.

An SX version of the i486
In a move that so far has raised more eyebrows than excitement, Intel scaled-down,
its 486DX and made an SX out of it. What Intel has done, essentially, is to elimi
nate the internal math coprocessor, which was the key to the incredible number
crunching capabilities of the i486DX and one of the features that most
distinguished it from the 80386DX.

If number crunching is what you need, Intel will sell you a 487 math copro
cessor, which Intel claims will crunch numbers up to 40 percent faster than a
coprocessor-equipped 386. At this time, however, Intel's price for the coproces
sor alone is more than three times the going price for the 486SX itself-not the
kind of numbers that are likely to set off a stampede.

The 486SX does seem to have some advantages over a 386DX, but the 486SX
certainly does not represent the kind of quantum leap in CPU technology the full
486DX demonstrates. The price of the i486SX is expected to remain somewhat
higher than that of an 80386DX, at least in the foreseeable future. Given this, it
has been widely speculated that, rather than trying to fill a market void, the moti
vation behind the development of a neutered 486 has been more a matter of trying
to preserve market share in the face of the increasingly aggressive marketing of
cloned 386 chips by at least two other vendors at this writing.

Boosting performance even more . . . sometimes
The performance of any processor from the 8088 on up can be enhanced still
more by the addition of a matched coprocessor chip. Generally, these chips are
numbered the same as the main CPU with the exception of the last digit that, in
the case of matched coprocessors, is a 7 (8087, 80287, 80387, and etc.).

The role of these coprocessors, however, is misunderstood by many users.
Installing a coprocessor does not automatically increase the processing power of
your CPU. Coprocessors (often referred to as math coprocessors) are exactly that:
math coprocessors. They crunch numbers. Although everything computers do
involves some form of number crunching, coprocessors are very selective in what
numbers they will crunch. The bottom line is that, even if you're doing spread
sheets, for instance, it is quite likely you will see no improvement at all. You will
certainly see nothing to justify the investment that, in the case of something like
one of the Weitek coprocessors for 386s, can run to $1000 or more. Not that there
are not many applications that will benefit from the use of a coprocessor. Many
will. There are even software packages, such as some releases of AutoCAD, that

30 At the heart ofthings

will not even run unless you have one. The best advice, however, would be not to
buy a coprocessor unless the software you are or expect to be running specifically
requires or, at least, strongly recommends the use of one. Otherwise, you're just
wasting your money.

While I'm on the subject of coprocessors, there has been some interest oflate
in the i860 chip used as a coprocessor in some high-end situations. The perfor
mance figures are sometimes spectacular: 4 to 5 times, even to as much as 11
times faster than the unassisted 486, which already has the equivalent of a math
coprocessor built into the basic chip itself. Don't hold your breath, however, wait
ing to start seeing spinoff benefits.

The i860 is a RISC chip (Reduced Instruction Set Computing), which means
it is not compatible with the DOS instruction set but rather must be given its
instructions separately from those passed to the primary CPU chip. Unlike con
ventional math coprocessors that can take their instructions right along with the
main CPU, the software has to generate a special set of RISC instructions, too.
You could not, for example, take a program like AutoCAD that, as mentioned
before, in certain releases requires a coprocessor and expect the program to hap
pily embrace an i860. We're talking special software here-software written spe
cifically to feed the i860 with the instruction set it needs.

The i860 points to what seems to be a growing trend these days to the use of
more than just a single CPU chip in machines. Chip design in many ways has
reached the outer limits-at least the outer limits as we know them with today's
technology. Barring some major breakthrough, we have long since reached clock
speeds that, in many cases, cannot be supported by the rest of the system. Wait
states, interleaving, and other schemes are ample evidence that even the best
RAM chips available can't keep up.

A ticking clock
No matter what we do, we always seem to come back to clock speed. Clock
speeds have grown by leaps and bounds from 4.77 MHz to a demonstrated speed
of no less than 100 MHz. Most of us live at speeds well above those old Pes these
days, but generally at something less than half of the speed Intel has demon
strated-with a chip literally running so hot that it required internal cooling.

Clock speeds are probably one of the most deceptive measures of computer
performance. Even at the more modest middle speeds most of us run at these
days, systems are pushed right to the limit or beyond, by inserting something
called wait states, which are pauses that allow the rest of the system time to catch
up, not just occasionally but on a regular basis. Wait states can, and often do, slow
the effective system speed down to half of the clock speed, sometimes even less.

One of the most severely limiting factors is the kind of RAM we use-not just
the rated speed of the chips (which at best is no match for today's clock speeds)

A ticking clock 31

but the physical nature of the chips themselves. Most machines today use some
thing called DRAM, or Dynamic RAM chips. By resorting to various design
tricks like interleaving banks of DRAM chips, manufacturers can mask how slow
these chips really are, up to a point. Beyond that point lie wait states, which
means you're not getting the performance you thought you paid for.

To genuinely increase the speed of the overall system, we have to get away
from the use of DRAM and use a faster media. SRAM-Static RAM-chips fall
into that category, with refresh rates typically as short as 25 nanoseconds. Run
ning a machine to about 50 MHz without any wait states should be possible using
SRAM; however, these chips are much more expensive and few manufacturers
have shown much enthusiasm yet. CompuAdd, one of the few enthusiastic manu
facturers offers a SRAM daughter board as an option for one of its high-end tower
machines with enough SRAM to cover the needs of the DOS area.

Another factor that severely limits system performance in today's increasingly
popular multitasking environment is something called time slicing. You take a
chunk of time and slice it into ticks of the computer's clock: two ticks for applica
tion A, one tick for B, etc. In this example, during two ticks, A can have the
microprocessor, but then it has to stand aside for B to have a tum, and so forth.

In the example, in which I have divided things into a 2/1 split, the effective
clock speed of our primary application is only 2/3 the actual clock speed, our sec
ondary application only 1/3. A 16 MHz 386 system then is only showing that sec
ond application a little more than 5 MHz. The old, original 8088 PC ran at 4.77
MHz, and everybody cried, "It's too slow!"

If you divide the available ticks among more than two applications, the situa
tion gets even worse. The system slows down fast, if you'll pardon the seeming
contradiction of the statement. How you allocate the ticks is an option you, the
user, usually has a say in. You can be stingy or generous depending on your indi
vidual needs.

If you've got a lot of numbers that you've got to crunch and have all day to
work on them just so long as you can print out a report by five o'clock, put that
program on a slow back burner. Let it simmer in the background quietly until it's
done. In the meantime you've still got the lion's share of the clock ticks left to run
another application in the foreground-and maybe yet another in the background.

Clock ticks, however, are a resource like megabytes, monitors, and every
thing else that has some finite value. Unless you are involved with multitasking,
you might have never noticed. "Okay," you say, "so everything just runs a little
slower. It's no big deal. I can live with that ... I think." You are going to have to.
Some of your software, however, might not be happy with the arrangement unless
you allocate more clock ticks than you'd really like to (high-speed data communi
cations running in the background, for example).

Although many of the new 386s run at clock speeds that, at a glance, might
seem absurd, remember that every tick of the computer's clock is a finite resource

32 At the heart ofthings

that only can allow a program time enough to do a certain finite measure of work.
If you've never done multitasking, it might not seem like such a big deal. Once
you get into multitasking and have to start handing out the ticks, it will become a
big deal.

Fortunately, there are ways to get around the problem. You can't get around it
completely but you at least can minimize it. Background programs can be polled,
for instance. If they are not actually running code or performing any I/O, their
time slice can be shortened. Some schemes even skip past applications-even in
the foreground-that have been completely idle for a time or two to devote more
time to something else that needs that time. A word processor in the foreground,
for instance, might be waiting for the next keystroke for half an hour, while
dBASE is trying to sort an index and needing all the time it can get.

No matter how you slice it, time is a [mite resource. You can juggle, you can
share it. You can do almost anything with it, except stretch it. With multitasking
and a little help, you can almost seem to stretch time sometimes.

There's more
There are a number of other hardware issues surrounding the underlying system. I
have tried to limit the discussion here to just those especially important issues, as
we venture ever farther into the areas of extended and expanded memory and as
our daily applications force us to press on still farther.

Particularly important are the various ways manufacturers install and imple
ment whatever system memory you start with-extended, expanded, or conven
tional. These and other questions pertaining to memory and memory utilization
become more significant when considered against the broader picture of memory
usage and management.

There's more 33

3

CHAPTER

The new breed

Unfortunately, no matter what kind of microprocessor chip you're using, the box
it comes in looks pretty much the same. A box is a box, and this year's box looks
pretty much like last year's or the year before's. They all have a bunch of memory
stuffed in somewhere. If you know how many Ks you have, that's all you have to
know about the memory, right?

Wrong! That statement might have been true at one time, but not any more,
especially now with all the advancements in extended and particularly expanded
memory technology. True, the primary subject of this book is what's happening
beyond the barriers of DOS; however, conventional memory and the way it is
accessed other hardware provides-or should provide-a foundation on which to
build. Unfortunately, some of those foundations are pretty shaky.

A brave new world
The situation, already chaotic, has become further muddied with the advent of the
DOS extender and the belated recognition that the DOS-based world can no
longer be bound by the restrictive limits of the 8088. With that recognition, total
and absolute backward compatibility, one of the unshakable cornerstones of DOS,
began to crumble.

DOS, beginning with version 5.0 especially, now caters to a split-level hard
ware base. It is and always will remain compatible with 8086/8088 machines.
Even DOS now offers advanced support features applicable only to 80286 and
higher machines and, in the case of expanded memory emulation, only to the
80386 and up. Much of this support is self-serving, geared to the needs of Win
dows 3.0. The mere fact of 3.0's existence, however, is a recognition of a brave
new world beyond DOS's traditional 1 Mb that is accessible from DOS.

Microsoft did not spearhead this new wave, rather it was simply caught up in

35

it. The wave was generated by a lot of other players. Names like Quarterdeck and
Phar Lap have played a major role. They were movers and shakers, if you will.
This wave has resulted in incremental levels of device-specific software-some
requiring a 286 or higher, but more commonly at least a 386. At the same time,
manufacturers are rethinking not only the mission of the machine but also the
philosophical approach to its achievement through design.

What Microsoft's active participation has done more than anything else is to
raise a flag-a rallying point-from which the industry can go out, supported by
the operating system rather than working around it. Some issues, which were par
amount before, now must be reexamined in the light of different hardware plat
forms and performance levels. Other new issues, however, just now are emerging.

We can no longer deal with hardware or software in generic terms, where
anything that is compatible with DOS can run on any DOS machine. Although
much of what is covered in this book applies to any DOS machine, in many places
I will be looking at specific categories based mainly on the strengths or weak
nesses of the CPU chips they incorporate. I, however, need to establish some
ground rules before going on.

Games anyone can play
Expanded memory, the first glimpse most of us had of life beyond 640K, is and
will remain the only way available (even to 8088 users) to access large amounts of
memory. Born of desperation, Lotus was one of the driving forces behind
expanded memory's development as a means of satisfying the needs of Lotus
users for more memory to support bigger spreadsheets. No longer the darling it
was when it was the only game in town, expanded memory nonetheless played a
major role in the evolution of computers as we know them today.

Expanded memory, however, isn't going to fade away into retirement.
Expanded memory not only does, and will continue to, greatly enhance the capa
bilities of the firmly entrenched 8088 user base, but also offers all the added
power or convenience needed by a lot of software. As long as there are 8088s in
use in substantial numbers, software developers will, wherever practical, look to
expanded memory usage first to appeal to the broadest possible market.

The beauty of expanded memory is that any DOS machine can use it-an
original 8088 PC or a shiny new i486 alike. The 8088 was the only chip available
when expanded memory came on the scene. The key is that expanded memory
uses addresses within DOS's nominal 1 Mb limits as a window through which,
with a little sleight-of-hand-small (16K) blocks, or pages, of memory lying out
side that megabyte can be accessed. This window (Fig. 3-1), typically located
above the video area but below the ROM area, is called a page frame. A page
frame generally accommodates four 16K pages at a time, swapping the actual
blocks of memory the pages represent in and out of the window as required.

36 The new breed

ROM
1024K V//77J21

3-1 This figure represents a traditional Frame
pre-EEMS/LIM 4.0 EMS system with
both Fixed Conventional Memory
and Expanded Memory as first
implemented under the original LIM

640K "Expanded"
memory

specification.

Fixed
memory

OK

Borrowing on technology mM had long been using with mainframes, there
was nothing really new or innovative about bringing expanded memory to the then
fledgling, memory-starved 8088 machines-even Apple was doing it. I, however,
did not say DOS was doing the swapping. Prior to version 5.0, DOS pretty much
just turned up its nose and looked the other way, treating calls to the addresses
below l024K used by programs that called for expanded memory just like calls to
any other legitimate DOS addresses. I'll show how the sleight-of-hand is done
later on.

Although any DOS machine can support up to 32 Mb of expanded memory,
the way that support is implemented varies greatly, both in the design of the
underlying machines themselves and in the design of expansion products. Inter
estingly, those differences are not so much a function of the CPU but rather more
the philosophical (loosely translated: cost-cutting) approach taken by the manu
facturer. In practice, however, full support for all of the features codified by the
current LIM EMS specification (4.0) is more often lacking-or more noticeable at
least-in 8088 machines than in machines offering more memory use options.
The problem is in how we access, or manage, the memory resources we have
available.

In the good old days when the PC was king, memory management did not
exist. Memory was something you either had or didn't have. The traditional rela
tionship between the memory you had and the CPU was pretty much as shown in
Fig. 3-2. Viewed at board level inside such a machine, this relationship would be
even more apparent. If you took the trouble to follow the little foil traces from
point to point, you would actually find specific pins on specific RAM chips
hardwired to specific address pins on the system CPU (Fig. 3-3).

Games anyone can play 37

640K

OK

3·2 	 As originally conceived, whatever RAM was installed below 640K (704K to as much as 736K with
some pre-EGA systems) was essentially hardwired to the CPU.

I 	 I

EI 	 I

::
•
I 	

I ::

I

•
CPU 	

L.I

:E
I

Ii
3·3

I
In early PCs, specific CPU address pins were hardwired to specific RAM chip address pins or sock
eting that could support chips answering calls to those specific addresses only. Similar schemes,
still found to varying degrees in newer computers, severely limit memory options.

38 The new breed

There never was any question about where a call to any specific memory
address went. Whether the chip was on the motherboard or on an expansion board
did not matter. You could have traced directly from the address pins on the CPU
chip right to a particular RAM chip, like following a road map from the tax col
lector's office right to your front door. Houses don't move (usually) and neither
does memory.

Although the advent of expanded memory did allow tasks to be swapped back
and forth between conventional and expanded memory, hardwired memory did
not allow concurrent processing except on a very limited basis. Multitasking was
limited essentially to how many programs you could load and run simultaneously
in conventional memory. Code and data swapped to expanded memory essentially
went into limbo, offering little advantage over swapping them to disk (except for
speed).

There were those who argued that the LIM EMS 3.2 specification-then the
industry standard and the one that at least got the ball rolling-did not go far
enough. Most of their argument fell on deaf ears at the time. One of the struggling
innovators of the day, AST Research-then known only for its line of memory
expansion boards-decided to take matters into its own hands and put its money
where its mouth was.

AST Research could do nothing about the hardwired memory on the mother
board. At the time, however, many motherboards-the IBM PC included-would
accommodate a maximum of only 256K. Any more than that amount required an
expansion card. The better expansion cards of the day would fill any gaps up to
640K, then assign any leftover memory as expanded memory. As long as it didn't
upset anybody's applecart, AST pretty much had free rein with the memory above
whatever point the motherboard memory stopped. Unlike most of its competition,
AST didn't hardwire any of the memory, even the part that would be used to bring
the basic system memory up to a full 640K.

The AST Rampage line differed from its predecessors and its competition by
putting all of its onboard memory at the disposal of a memory manager. It also let
the memory manager decide, according to the user's wishes, what memory went
where. Any CPU calls to addresses beyond those fIlled on the motherboard were
intercepted and rerouted to some block of physical RAM, as depicted in Fig. 3-4.

By allowing the memory manager to intercede and arbitrate all calls for mem
ory beyond what is on the motherboard, the Rampage also allowed the memory
manager to switch the entire block it had loaned the CPU for a different block.
The manager could swap the entire contents of these two (or more) blocks-code
and data-in and out, not in the several seconds it took with Software Carousel
running under LIM EMS 3.2 rules, but could swap almost instantaneously. With
Rampage, the manager could make several such swaps a second. AST wrote a
superset for the EMS 3.2 specification called the EEMS (Enhanced Expanded
Memory Specification).

Games anyone can play 39

I. 	 I1

CPU ~ Lill
• I
• I

I••
EMM 	

:EAM
I 	 L..-L..._~-=-~=::•

BUS

3-4 	 In contrast to Fig. 3-3, most well-designed computers today tie only some small part of installed
memory (generally no more than 256K) to fixed addresses. The remainder, as shown here, looks to
a software memory manager for the allocation that best suits its immediate needs. This allows much
more flexibility and more efficient usage.

The revolution almost no one noticed
At the time, no one, not even AST, had any really good idea what all of this mem
ory managing was good for. Lotus, which had pushed the expanded memory in
the first place, was quite happy with the 3.2 specification. The company never
even fully utilitized the features the specifications provided for. Others, including
hardware manufacturers and software developers alike, also were singularly
unimpressed.

If not for another little, then almost unknown company called Quarterdeck
Office Systems, the idea might have died. It saw in the Rampage scheme the key
to multitasking: swapping applications in and out so rapidly they would appear to
be actually running concurrently, although only one could actually have the
CPU's attention at any given time. The memory manager, with a little encourage
ment, just kept swapping, while the CPU, oblivious to any of it, just kept simple
mindedly processing whatever task it saw.

To accomplish this swapping, the memory manager had to be extremely pow
erful. It had to have the power to allocate, deallocate, and reallocate the memory
resources it commanded freely, reusing scattered blocks formerly assigned to
exited applications in much the same way DOS reallocated disk space, often frag

40 The new breed

menting files in the process. Blocks of memory became free agents, like ice cubes
floating freely in a bathtub (Fig. 3-5).

AST would not market a computer under its name for several years yet, but
the revolution had begun. Unfortunately, even several years after the merit and
many benefits of the scheme had been proved beyond any doubt and considerable
software had been written to take advantage of these features, many manufacturers
would continue building hardware the old hardwired way. These manufacturers
included not only most expansion products manufacturers but even such notable
names as IBM.

3-5 	 While RAM chips might appear to

be installed in contiguous group

ings, the memory manager sees

16K blocks (pages), separate and

independent-much like ice cubes

floating in a tub. The memory man

ager captures (allocates) them as

needed as long as there are enough

to go around.

Meanwhile back at the ranch
At this point, I need to backtrack just a little, because expanded memory at best
was only just a stopgap, not a permanent solution. Intel had developed a new chip
that would be the successor to the PC's 8088: the 80286. Widely hailed as the

Meanwhile back at the ranch 41

promise for the future, the 80286 was first utilized in mM's AT (Advanced Tech
nology) machine. Besides being a speed demon by PC standards, the AT brought
with it extended memory-linear memory with addresses beginning where DOS's
megabyte of addresses left off and continuing to as much as 12 Mb. (The 80286
chip could address up to 16 Mb of memory but, as originally implemented at the
AT, was limited by the design of the machine to 12 Mh.)

Unlike 8088 machines, the AT and the many clones that followed incorpo
rated an 8-bit-compatible bus that also would accommodate a new generation of
16-bit hardware to take advantage of the greatly increased power of new chip.
DOS, essentially an 8-bit system, was obviously badly outclassed by this new
machine. A new operating system, however, was already in the works: OS/2.

The new extended memory feature was interesting; however, because beyond
DOS's address limits, about all extended memory was good for was a RAM disk.
The new DOS 3.0 that was introduced with the AT provided a utility called
VDISK.SYS that could create a RAM disk in extended memory. Extended mem
ory, however, promised a great deal more than that, including not only up to sev
eral megabytes of user memory but something called protected mode to keep
applications that were running in extended memory from interfering with each
other.

There was only one problem. The 80286 chip didn't work the way it was sup
posed to. Intel had goofed. The chip allowed software to cross over into protected
mode; however, getting back into real mode for such services as keyboard input,
disk reads and writes, etc., was almost impossible. This problem was a design
defect that could not be corrected, making the AT little more than a faster PC that
could support a VDISK (virtual disk) but little else in extended memory.

There were a lot of red faces over the 286 fiasco. The promised new operat
ing system did not materialize. Even if it had appeared, the operating system could
not have overcome the problems inherent in the chip. Extended memory drifted
into sort of a technological limbo. A few software developers cast hungry eyes on
extended memory. Some even used it; however, lacking any generally accepted set
of rules, they often used it in conflicting ways with catastrophic results that gave
the whole thing a bad name.

To the beat of a different drummer
In the meantime, AST's EEMS scheme drew increasing attention. Thanks mainly
to Quarterdeck's DESQview, multitasking was becoming increasingly popular.
(For a time, AST bundled DESQview with its Rampage boards as an inducement
to get users to buy more Rampage boards, which they were sure to do if they used
DESQview.) DESQview's multitasking required expanded memory but only
worked with AST's EEMS expanded memory, not the LIM EMS 3.2 expanded
memory. Therefore, responding to user pressure, the EMS specification was
redrafted to incorporate most of AST's EEMS features.

42 The new breed

The new LIM EMS 4.0 specification that emerged ignored the fact that,
except for the exclusion of a few lesser features, it was an old copy of AST's
EEMS. Copying EEMS ruffled more than a few feathers because Lotus, Intel,
and Microsoft had demonstrated little genuine interest in the old 3.2 specification.
However, the world had a new specification, and it's incredible what the right
names on a piece of paper can do for the acceptance of a standard.

Under the new EMS/old EEMS specification, access to expanded memory
was not limited to just the page frame but could include all the memory available
to the CPU, starting from OKright on up, or any part thereof. Fully implemented,
the CPU owns nothing; the CPU has to look to the memory manager for every
thing (Fig. 3-4). All memory available to the system, either for filling conven
tional DOS memory addresses (up to 640K) or for use as expanded memory
accessed though the page frame, would come from a common memory pool (Fig.
3-6). In many ways, this method affords a perfect solution, but alas we live in an
imperfect world. Implementation has remained spotty.

At the one extreme, AST built and marketed a 286 machine with no user
RAM on the system board at all (OK). All of the system's memory is installed on
one or more plug-in memory boards. Without at least a partially populated mem
ory board, you couldn't even boot the system because you wouldn't even have a
place to load the operating system. No responsible vendor wants to sell you a
machine that won't even run, so not surprisingly, AST sells this system only with
at least one memory card (minimum 512K) installed.

3-6 	 RAM for all uses-Conventional and
Expanded Memory-is supplied
from a common pool. The increased
flexibility afforded by this scheme
but not provided by many com
puters even today-is critical,
especially to multitasking and many
4.0 EMS applications.

ROM1024K

Frame

Memory pool

640K

Address

space

OK

To the beat ofa different drummer 43

As a purely practical matter, you cannot actually swap out your entire conven
tional memory area. If you tried swapping out even the small part of the kernel
DOS 5.0 leaves behind when it relocates the bulk of itself to the High Memory
Area, the system would die almost immediately. There are some other mundane
system functions that cannot be swapped out either: addresses for things like par
allel and serial ports, disk drives, and other devices. Still, with DOS 5.0, the total
of these requirements is under 32K, so ideally you would like to be able to swap
out almost all of the memory below 640K.

Looking at the other end of the spectrum, however, there still are some real
dinosaurs on the shelves. The users of these systems never will be able to fully tap
the potential of this new technology at all. Some users might be able to use the
technology but only by wasting up to a full megabyte of RAM. IBM's PS/2 model
50s and 60s fall into this category. The entire megabyte that comes standard with
the system is wasted if you want to avail yourself of the full LIM 4.0 EMS capabil
ity by backfilling down from 640K. First, the entire contents of conventional
memory must be copied into expanded memory.

Then, using a software switch (in the PS/2 Model 50 or 60, memory is con
trolled by software rather than by DIP switches), the system board memory is dis
abled, or turned off. You must tum it off. The system doesn't allow you to free the
system board memory for assignment to the expanded memory pool. You also
can't have two blocks of physical memory answering at the same addresses.

After the system memory is disabled, the expanded memory containing the
copied contents then is swapped back to take its place. From that point on, you
have full LIM 4.0 EMS functionality, including backfilling clear down to Oh.
However, the memory is installed on the system board just goes to waste. Either
the CPU owns it or nobody does.

There are all sorts of middle-of-the-roaders offering varying degrees of flexi
bility. Typically, these systems don't start at Oh but somewhere up around 256K,
allowing you to swap conventional memory for expanded memory from 256K on
up to 640K. Enough systems have taken this tack to lead many users to the errone
ous conclusion (fostered by much of the popular computer press) that the potential
for backfilling, or swapping-out, of conventional memory for expanded memory
is limited to that 384K block, which simply is not so. This amount really is an
arbitrary number, a convention based only on statistics, nothing more.

Perhaps it should be thought of in terms of starting from 640K and working
down, instead of working up from any starting point, because only the top is fairly
(though not completely) fixed. Memory above 128K could be disabled on the
original Compaq Deskpro. Even the old 8088 PC allowed memory above 64K to
be disabled. The Epson Equity Plus allows any and all memory installed on the
system board to be switch-disabled down to, and including Oh. Various members
of the IBM PS/2 family allow disabling of system board memory via software
switching.

44 The new breed

Note, however, the term disabled. As pointed out before, disabled usually
means just that: locked out, wasted in the final scheme of things. You don't neces
sarily have to install the full 640K on your system board-assuming you have
socketing for it-just so you can switch it out and waste it. Given any choice in the
matter, you usually can get by with very little memory (or in some cases, none at
all) installed there, leaving it to your extended/expanded memory hardware and
software to fIll in all the gaps with manageable blocks.

And in the center ring . . .
The situation was like trying to watch a 3-ring circus. While the 286 and
expanded memory debate was going on, the 80386 came on the scene. Function
ally, the 386 looked little different from the 286 AT at first glance. Not surpris
ingly, the initial reaction to the 386 machines, in many circles, was an
overwhelming "Ho hum." Indeed, despite the chip's full 32-bit processing power,
early 386s offered only the standard 16-bit AT (ISA) bus and little outward evi
dence of improvement (other than faster clock speeds). Most 386 machines also
included at least one 32-bit slot; however, there was no industry standard 32-bit
bus architecture, so these slots were, for the most part, of use only with special
proprietary memory boards.

Intel, however, had done it right this time. Among other things, the near-fatal
defect that had plagued the 286 had been completely overcome. The promise of
extended memory and a protected mode had been fulfilled.

Still, the full impact would have to await the development of a whole new
genre or applications software to be appreciated. In the meantime, however, the
386 had other capabilities that had not been seen before. One of these capabilities
allowed managed memory to be mapped to any unused address space, including
spaces that had never been used before such as isolated pockets of genuine DOS
addressable addresses between 640K and 1024K.

Seizing on this opportunity, two software developers in particular-Quarter
deck (the DESQview people) and Qualitas (386MAX)-quickly developed pow
erful new 386-specific memory management packages to cater to this special
ability. The new memory managers provided expanded, extended, and conven
tional memory from a common memory pool. They were able to map memory to
these previously unused blocks of address space. Finally, they provided the mech
anism for relocating TSRs and device drivers to these areas, thus freeing the space
they had taken in conventional memory for bigger applications and/or data fIles.

By today's standards, those early 386 memory managers were rather crude;
however, up to nearly 200K of new DOS memory was immediately available, as
well as t;he promise of even bigger and better things to come. The 80386 could use
extended memory. It could take the extended memory-up to 4 gigabytes of
RAM-right in stride, without the paroxysms suffered by the 286. In terms of
hardware, the pieces were all finally in place.

And in the center ring. .. 45

4

CHAPTER

Expanded memory:

something for

everyone

While much of the original luster has dulled, most of the emphasis today moved
to the arena of extended memory. Expanded memory was the first glimpse any of
us had of life beyond 640K. It remains-and will continue to remain-the only
form of added memory available to all DOS users, regardless of the hardware
platform they might be working from, whether one of the original mM pes or the
latest i486.

Today, the future clearly lies in extended rather than expanded memory.
Expanded memory, however, will continue to play an important role-as long as
there is DOS-for three reasons:

• The ability to have expanded memory on any machine opens up a far larger
potential market to software developers than is available for any hardware
specific products.

• Under the LIM 4.0 EMS specification, memory from the same memory
pool can be used to backfill conventional memory address space.

• LIM 4.0 EMS memory also can, with proper management, be mapped to
upper memory blocks on 386 and higher machines. Upper memory then
can be used to load device drivers and TSRs, freeing lower memory for use
by applications.

47

These three functions, while all founded on the use of EMS memory, are so dif
ferent conceptually and so different in their implications that I will deal with them
in separate chapters. This chapter will look at expanded memory as it was origi
nally intended and is still used commonly. To appreciate this facet of the jewel,
you need to look back to the origins of expanded memory as implemented in the
world of DOS.

In the beginning
Lotus was one of the prime movers behind the introduction of expanded memory
to the DOS arena. It was responding to pressure from users unable to live and
work with larger Lotus spreadsheets within the 640K memory model DOS
allowed. The problem was not a lack of space to run their program code. The
problem that users suffered from was insufficient space for storing data.

This problem is critical because it is the sticking point. The issue was space
to store data temporarily when it was not actually being used. The thought-even
the hope-of running programs in the background or implementing any of the
other functions associated with EMS memory today never entered into it. EMS
was a quick fix for an immediate problem, nothing more.

The original expanded memory scheme, borrowing bank switching technol
ogy from the mainframes, was supposed to allow users to access up to 8 Mb. In
practice, that amount proved optimistic, but it was enough to get things rolling at
least. Lotus, Intel, and Microsoft sat down and wrote a formal specification to
define this expanded memory scheme.

Actually, Microsoft, rather typically, did not even join in at first. This fledg
ling idea received a tremendous boost when Microsoft did put its name to it. mM
most surely was consulted in all of this development and, just as surely, had its say
in it. After all, the blocks of addresses needed were in an area mM had big
RESERVED signs planted in. Whatever role it might have played, mM did not
put its name on the specification. mM did not even officially recognize expanded
memory before DOS 4.0 came into being.

Back in Fig. 3-1, I depicted expanded memory as it was originally con
figured. Extended memory passes small portions of memory through a 64K page
frame on a revolving access basis which is managed by an expanded memory
manager. Up to a total of 8 Mb is accessible.

A little dinner music, please
In operation, expanded memory has probably been best compared to something
like a lazy Susan on a dinner table. (While the analogy is flawed in that no physi
cal motion is involved, I think it's close enough to serve our purpose here.) So
imagine yourself at a table with a huge lazy Susan in the middle (Fig. 4-1). The

48 Expanded memory

4-1 	 Expanded Memory sometimes is compared to a lazy Susan. When virtual memory is used, different
data is located at different places on your hard disk.

olives and cranberry sauce are in front of you; the turkey and dressing is out of
reach at the far side. You spin the lazy Susan and spear a piece of turkey with your
fork. The olives and cranberry sauce still are there on the lazy Susan even though
at that point they are out of reach. When you want them, all you've got to do is
spin the turntable again until they come back into reach.

Adding more expanded memory is like building a bigger lazy Susan. The big
ger it is, the more goodies you can pile on and bring spinnning within arm's
reach. With a little practice, even a blind man could find what he was looking for,
as long as everything was always in the same place on the merry-go-round. Given
the obvious loading options expanded memory opens up, where things were
stuffed during yesterday's work session or even where they are this minute really
doesn't matter as long as memory manager knows where they are. The memory
manager can bring them back to someplace where DOS can see them-a window
or a frame of some sort.

This frame-sort of like having to reach through a croquet hoop to get at
something on the lazy Susan-is called a page frame. In the case of expanded
memory, the frame is simply a block of DOS accessible addresses above 604K but
that by definition, must be below 1024K to be accessed through DOS. (The High
Memory Area between 1024K and 1088K, discussed later in this chapter, is a spe
cial case and does not violate this rule.)

DOS, historically and for reasons that are no longer really valid or important
here, is generally broken into 64K segments: 10 for the user (Oh through 9h) and 6

A little dinner music, please 49

for the system (Ab through Fh). Not surprisingly the block generally allocated as
the page frames (the window to expanded memory) is a 64K block. As you can
see from Fig. 4-2, there were blocks beginning at COOOh DOOOh and EOOOh under
the 3.2 specifications. (Not all boards supporting the 3.2 EMS specification sup
ported the entire allowable range.)

FOOO

EOOO

0000

COOO

AOOO

4-2 The page frame for expanded memory generally is installed at one of three addresses: COOO, 0000,
or EOOO. However, it need not use these exact base addresses as long as the base address is a
multiple of 16K and there is 64K of contiguous memory available beginning at that address.

Referring to Fig. 4-3, note that the 64K block, or frame, is broken down still
farther into something called logical pages. Each page contains 16K with four
pages to the frame. The page frame base addresses do not have to be multiples of
64K, but can fall at multiples of 16K, using any 16K block of addresses above
640K not occupied by ROM or RAM. The actual physical block of memory the
CPU sees at those addresses can be anywhere in the 32 Mb of actual installed and
addressable RAM chips that expanded memory allows (under 4.0 EMS).

No matter where the memory actually is located, DOS sees only calls to legit
imate DOS addresses when you try to access the memory. Some form of memory
manager must, in effect, spin the lazy Susan to bring the actual block of memory
that's called for back into the window. Having done its job, the EMM drops out of
the picture until the next time it has to spin the lazy Susan.

Remember, no actual physical motion has taken place. It is an illusion, in
much the same way as call forwarding can intercept telephone calls incoming to
your home or office and invisibly reroute them to you someplace else. Where you

50 Expanded memory

Iges

ECOO

E800

E400

EOOO

Base address

The page frame is divided into four 16K logical pages, as shown here where the base address for the frame is EOOO.

are doesn't matter. All that matters is the information is exchanged and everybody
(hopefully) is happy.

To Lotus users, memory management meant they could have huge spread
sheets-spreadsheets requiring several megabytes of data space. With larger
spreadsheets, you're usually only working with small portions at any given time
anyway. For such applications, a page frame that allows for ready access to any
selected part or parts of the data on a rotating basis is often all that's really needed.

Swapping chunks of a large spreadsheet through a small window was not nec
essarily the issue, just the ability to do it. Expanded memory could do it. As origi
nally defmed, expanded memory was intended solely to increase the memory
available for an application's data space. The original 3.0 specification left much
to be desired and was soon modified. There was a short-lived 3.1 specification
that included some additional features that Lotus needed. A 3.2 EMS specifica
tion emerged then, taking some of the rough edges off of the earlier specification
but adding little more to it.

Prior to its DOS-Extended 286 release 3.0 in 1989, Lotus had never updated
its product to support EMS features beyond those incorporated in the 3.1

A little dinner music, please 51

expanded memory specification. Lotus' inability to access more than a quarter to
possibly half of the 8 Mb allowed by the early EMS specifications was sometimes
cited by some as reason for the larger 32 Mb limits of the 4.0 EMS. Lotus, how
ever, never changed the internal memory management functions to take advantage
of the greater memory allowed even under 3.2 EMS.

Using expanded memory
When and how you use-or can use-EMS expanded memory depends on several
factors. The use of EMS memory to backfill conventional address space, as dis
cussed in chapter 5, is completely invisible to software. When we move out of the
conventional memory area to dip into the memory pool available through the page
frame, however, it is a different world. Just because you add EMS memory to
your machine does not mean any of your favorite programs you're using are going
to use it. These days the odds are fairly good. Even then, in many cases, you must
have one of the later releases of the program.

The use of any managed EMS memory other than to backfill conventional
memory addresses requires that programmers make specific provisions for such
usage in their programs. Increasingly, software developers have provided for such
usage, driven by competition and the demands of a more enlightened user base as
our insatiable appetites for memory, more memory-any kind of memory-con
tinue to grow.

In some cases, increasing available memory is an easy fix; in others, it does
not seem so easy, but it's been happening. At the time I wrote the first edition of
this book, I only had a small handful of TSRs that would run happily above 640K.
Today, the numbers are reversed. With upper memory becoming overcrowded
these days and with the ready availability of expanded memory, an increasing
number of programs have found ways of reaching through the page frame.

To access memory through the page frame the program has to:

1. 	 Determine if expanded memory actually exists on the system.
2. 	 Determine if there is enough expanded memory to meet the program's

needs (Function 3).
3. Allocate expanded memory pages as needed (Function 4 or 18).
4. 	Get the available page frame addresses (Functions 2 and 25).
5. Map in those expanded memory pages (Function 5 or 17).

Only after it has done all these steps can a program read, write, or execute data in
expanded memory as though it was conventional memory, which is where the pro
gram loads and runs if it is unable to complete the first five steps. There is, how
ever, one more step. The program also has to have a mechanism for returning
whatever expanded memory pages it used to the expanded memory pool before
exiting (Function 6 or 18). The program has to clean house, so to speak.

52 Expanded memory

I included function numbers here only to illustrate the point that these are
indeed formal functions covered by a formal set of rules as spelled out by the spec
ification. For a complete listing of the functions, see Appendix A.

The most important thing to see from these steps is that the rules pose no
restrictions on the actual program other than the normal rules of DOS. Where the
program is allowed to load and run and how it exits are, in most cases, all that
needs to change to utilize expanded memory.

The above list, however, includes only the bare minimum of functions a pro
grammer must include to utilize expanded memory. It is by no means a complete
list of the tools available to enhance the capabilities of software running in
expanded memory. Anyone interested in investigating these functions in greater
detail should consult the actual specification document.

Expanded memory that is
but isn't-what it seems
Through the years, humanity's inventive nature has rarely let a little thing like
obstacles stand in its way for long. Even as the PC began to slip its bonds and
leave its toy image behind, programmers had found ways-many borrowed from
the mainframe world-to make whatever actual resources they had available look
and act like more.

This stretching of resources has been especially true in the case of memory,
which is a finite resource with limits beyond which your hardware cannot go. As
the size of programs grew, programmers were forced to look for solutions that
would allow their programs to run even though the programs were larger than the
amount of space (RAM) available on a typical user system.

In the inventory of ordinary resources, there generally are two principle kinds
of user memory. There is RAM, and volatile medium but the medium of choice
for temporary storage. There also is some form of nonvolatile mass storage, gen
erally a hard disk with a lot of megabytes. Just as, with a little clever program
ming, RAM can be made to look like a storage disk (RAM disk) part of a storage
disk can be made to look just like more RAM-you, in many cases, really wish
you had but often simply can't afford.

The ability to simulate RAM on a storage disk has led to the development of a
group of expanded memory emulators. One such emulator is incorporated in
Turbo EMS, which, although primarily a memory management tool, bills itself as
"the affordable alternative to expanded memory boards." Do not confuse these
emulators with EMS emulation in the sense the term is used in conjunction with
DOS 5.0's new EMM386.EXE EMS emulator, which borrows extended memory
and presents it to software as 4.0 EMS memory.

Turbo EMS, or any of a genre of comparable products, deals in virtual mem
ory; it simply swaps the contents of RAM to disk when you don't have enough

Expanded memory that is-but isn't-what it seems 53

real memory to go around. Even though several such emulators boast 4.0 EMS
support, the mere fact of swapping to disk precludes any real multitasking, mem
ory mapping to upper memory blocks, etc. In terms of performance, you might as
well be back under 3.2 at that point (which is why I am including it in this chapter
rather than discussing it as a legitimate 4.0 EMS issue).

I don't mean to pick unfairly on Turbo EMS or the several other comparable
products, but rather only to put them in their proper perspective. Even such better
known packages as Software Carousel and even DESQview will swap to disk
when the well runs dry. Swapping to disk is the only way the new DOS 5.0 task
swapper knows. Because there are a number of programs that can or do use what
is euphemistically called virtual memory, I think the point needs to be made while
on the subject of expanded memory: virtual memory, by definition, is not for real.

I am not saying the use of virtual memory does not have a legitimate role in
many, if not most, user environments. On the average, I probably use it once or
twice a week myself when I have to open one more multitasking window than the
RAM I have supports. In those cases, even at the price of RAM today, the few
seconds 2 Mb of additional RAM save me doesn't justify the cost. When and if it
is justifiable, the only affordable alternative will be the real thing.

Only a stopgap
At most, expanded memory, as it first entered the DOS scene, was a stopgap mea
sure by an infant industry trying at that point to define its legitimate place. There
are problems today that still are rooted in the history of expanded memory and a
failure of the EMS specifications-even to the present-to define a minimum
hardware level that can lay claim to support these specifications. Expanded mem
ory, however, was a turning point and the beginning of a movement no one had
foreseen.

54 Expanded memory

5

CHAPTER

EMS memory:

the dawning of

another age

From the beginning there were many people who said the LIM 3.2 EMS specifi
cation had not gone far enough and essentially was written only to get Lotus off
the hook. Such things as multitasking, as many of us know it today, simply could
not have happened.

At the forefront of those who said the LIM specification had not gone far
enough were a number of other vendors of both hardware and software. Although
EMS was strictly a software standard, hardware was required to implement it,
which meant you first had to have the hardware. Among hardware vendors,
expanded memory triggered a whole new gold rush and a variety of new products.

Intel was in there at an early stage with its AboveBoard, which quickly
spawned a generation of AboveBoards and look-alikes, or clones. Because Intel
had been instrumental in developing the LIM EMS specifications, its boards, not
surprisingly, provided rather scrupulous hardware support based on that standard.

AST Research was in the game rather quickly too; however, it went a rather
different direction with its Rampage boards. While staying within the rules set
down by the 3.2 specification and remaining fully compatible with it, AST went
one step-a giant step-farther. AST developed its own superset called EEMS
(Enhanced Expanded Memory Specification), which added a number of novel
and, at the time, radical features.

55

Most radical of all was the notion that all of the memory should be software
switchable en masse under the control of the memory manager-not just in the
64K page frame, but also through the entire range of address space within its
grasp. At the time, 256K typically was the maximum capacity of a fully-popu
lated motherboard. To add any memory beyond that required an expansion board.

AST's EEMS boards were expansion boards. They could take you to 640K
and, if you had enough chips, some expanded memory as well. Because the
boards were AST's radial EEMS specification, any memory you had beyond
246K limit of the motherboard ultimately was under the control of the memory
manager and could be switched in and out at will.

Interestingly, no one-not even AST -initially knew what real use some of
the advanced features they were touting might be put to. Before long, a then
obscure group, calling themselves Quarterdeck Office Systems, came along and
showed the world what EEMS was good for: multitasking. And it was an idea
whose time had come.

Quarterdeck had achieved real multitasking, not just context switching the
way it could be done with Microsoft's Windows or Software Carousel. This multi
tasking could be done even with an old 8088 PC. DESQview, teamed with the
EEMS boards, could swap whole running programs-as big as 384K or more-in
and out of conventional memory and keep them running in the background while
you had some other process running in the foreground.

The critical difference is that programs shuttled to the background could keep
right on running, doing real work rather than just sitting in limbo, as with context
switchers. You, however, had to have an EEMS board to make DESQview work
with any combinations of programs that totalled more than 640K (including the
operating system and DESQview's own overhead).

In the meantime, many Lotus users were again unhappy because, as a practi
cal matter, they could only access about half of the promised 8 Mb. Unfortunately,
neither the boards Intel was selling nor the early EMS specifications that bore its
name supported real multitasking. They supported context switching but not
multitasking.

To make matters worse, by then Intel had a new chip, the 80386, that was
perfectly suited for multitasking-multitasking as only EEMS supported it. Some
thing clearly had to be done about it, so Lotus, Intel, and Microsoft finally pro
duced a new document. Although seemingly based entirely on AST's EEMS
specification and incorporating most of the features available previously on AST's
EEMS boards, the document was called the LIM 4.0 EMS specifications. AST's
EEMS functions in some ways still exceeded those incorporated into the LIM 4.0
EMS specification.

LIM 4.0, the operative specification today, provided new and better utiliza
tion of expanded memory for such things as:

S6 EMS memory

• More effective use of expanded memory for spreadsheets users

• The ability to load and run memory-resident programs (pop-ups or TSRs)
in expanded memory

• Families of applications using shared data in expanded memory
• Larger RAM disks, print spoolers, and disk caches

• A 32 Mb limit, instead of the old 8 Mb

• Multiple programs in expanded memory, simultaneously and with better
performance

• Allowing more than 64K to be addressed at one time

• Allowing memory to be addressed both above and below 640K

• Allowing for alternative mapping registers for high-speed bank switching

The 4.0 specification maintains backward compatibility in the sense that pro
grams written to conform to and fully implement the new standard will run on
hardware supporting the earlier 3.2 EMS or EEMS variants. In many cases, new
device drivers might be required. In most cases-with the probable exception of
hardware supporting the EEMS standard-performance, however, will not match
that attainable with hardware designed to support the later 4.0 specification.

To software developers, the 4.0 specifications offered 15 new functions and
39 new subfunctions. The benefits from these new functions are not all immedi
ately obvious to the user; however, in the overall scheme of things, they are, the
heart and soul of the 4.0 specification. The new functions include:

• Multiple page mapping-a real plus for better performance in general and
data protection

• Dynamic growth or shrinkage of the amount of expanded memory allo
cated, allowing memory that is no longer needed to be returned to the pool
for availability to other applications, or to increase the amount used after
the initial allocation

• The naming of data "handles" where data is to be shared between two or
more applications loaded and running simultaneously

• Far jump and far call simulation-the ability to run code in expanded mem
ory

• The ability to copy or exchange (swap) a region of memory from conven
tional to expanded, expanded to conventional, or from expanded to
expanded

• The ability to map more than 64K at a time and/or to map into conventional
memory (This function is probably the most important feature of 4.0.)

The 4.0 backfill: mapping conventional memory 57

This last function is where the backfilling capability comes into play, with the
ability to swap a whole chunk (typically, but not limited to, the area above
256K)-running code and all-and, where multitasking is available, to keep it
running in the background.

Under the new specification, expanded memory took on a whole new mean
ing. The 1 Mb computer suddenly had become more host than master in a world
expanded to embrace as much as 32 Mb.

The 4.0 backfill: mapping conventional memory
The promise of a quantum leap in total memory was not what fired the world's
imagination. Few users even now have, need, or even want that much memory.
The ability to backfill conventional addresses from 640K down to some point
(typically around 256K) with managed memory drawn from a pool of memory
was what had everyone excited.

Most of the pre-LIM 3.2 boards allowed you to assign whatever amount of
memory needed to bring your system to the full 640K of user space. When 3.2
came into being, the better boards allowed you to assign any memory you had left
over as expanded memory.

Under 3.2, when you assigned a block from an expanded memory board to
bring your system up to full capacity, the block was assigned to the CPU alone.
Using DIP switches, software, or some combination, you gave that memory to the
CPU. From that moment on, the CPU owned it in the same way it would have
owned the extra memory, an ordinary expansion slot multifunction card, or a nor
mal memory board. When 4.0 is fully implemented, however, that backfilled
memory is only loaned to the system on a revolving basis (like the lazy Susan
analogy in the last chapter). The memory, still is owned by the expanded memory
manager, not the CPU. Because it is only on loan, the memory can be taken back
and swapped-the whole 384K or whatever in one fell swoop-in addition to
whatever you might do with any or all of the 16K logical pages of expanded mem
ory accessed through the addressed COOOh through EFFFh.

The 256K floor actually is an arbitrary number based more on the fact that
few computers-then especially-allowed for memory management below that
point. In many cases, at least the first 256K on the motherboard was essentially
fixed. It was someplace to load DOS and possibly some other essentials and what
ever else just happened to get loaded there.

There is little reason today not to allow backfilling everything except possibly
the first 64K (OOOh to OFFFFh)-especially with DOS 5.0's ability to load most of
itself in the High Memory Area (HMA) above 1 Mb. This ability, however,
depends on the design of the underlying hardware.

Originally, the backfilling feature was available only when an EEMS
expanded memory board supplied memory below 640K. Today, it is available by

58 EMS memory

design on most better-designed computers. Don't make the mistake, however, of
just assuming-or taking some salesman's word-that this capability is built in.

With boards fully supporting the 4.0 EMS, backfilling is entirely different
from any expansion memory below 640K that is supplied by boards that really
only support the 3.2 specification. Under 3.2 EMS, no bank switching was
allowed below 640K. Although expanded memory boards could fill any gap to
present a contiguous 640K block, that memory became dedicated memory locked
into specific addresses and owned by the CPU.

Assuming your computer and/or expansion boards fully support the 4.0 EMS
specification and you have a 4.0 driver installed, no program can tell the differ
ence between backfilled memory and hardwired memory. As long as you are able
to load your programs within a range of continguous conventional memory
addresses, what you do with them after that doesn't matter. With 4.0 EMS, you
can switch fresh blocks of memory of whatever size you need in and out of those
same conventional memory addresses, until you run out of memory.

But not for everyone
As much as the potential of backfilling opens up exciting new horizons, you can't
just run out, buy a 4.0 EMS device driver for your old 3.2-era hardware, and get
4.0 capability across the boards. You can't even do that with some newer hard
ware that claims to support the 4.0 EMS specification. Unlike DOS upgrades that
many times do add new capabilities to old machines, there is often little to be
gained by simply upgrading the expanded memory manager. You, however,
should not automatically rule out that option, especially with 386 machines where
other issues are involved.

No software can increase the physical capabilities of a piece of hardware.
Software can be rewritten, written over, and improved, but hardware is another
matter. Sometimes, however, better software can unlock capabilities that were in
the hardware all the time but just not utilized. DOS has often done that; however,
it has only been able to make an old machine work better where and when the
operating system was able to access and implement unused hardware capabilities.
Unfortunately, boards designed to support the original 3.2 specification generally
do not have the hardware capability to support backfilling.

With few exceptions, earlier expansion boards that supported the 3.2 EMS
Specification did allow up to 384K of whatever memory was installed to be used
to backfill any memory deficiency below 640K. That memory, however, became
dedicated memory. Those boards, typified by Intel's earlier AboveBoards, did not
support the swappable backfilling capability defined in the LIM 4.0 EMS specifi
cation.

This inability to perform backfilling does not preclude bringing the benefits
of backfilling even to an old 8088 PC. Whatever add-in hardware you install must

But not for everyone 59

support backfilling and be able to remap any motherboard memory it finds
between some hardwired point and 640K. The hardware also has to be able to take
control so it can effectively swap the whole block out and swap another in that
block's place. The LIM 4.0 EMS specification, which is what all of this discus
sion revolves around, is strictly a software specification and has nothing to do
with hardware.

The sheep from the goats
Admittedly, you cannot have expanded memory without both hardware and soft
ware. There, however, is no EMS hardware specification in existence. At one
time, such a specification did exist but Intel decided to let manufacturers design
hardware as the manufacturers pleased so long as the software driver provided a
standard interface. The decision is up to each individual manufacturer whether to
support or not support the software standard. The result of this lack of standard
ization is that there are major differences in the degree of which various vendors
support the most important features of the LIM 4.0 EMS specification.

As long as they don't do anything that is incompatible with the 4.0 specifica
tion, vendors can and do claim to support 4.0. In many cases, the hardware they
are selling is still of 3 .2-era design, supporting none of the added features covered
by the later specification. Those hardware shortcomings cannot be overcome by
software.

No matter what you do or what the salesman might have told you, a 3.2 board
is still a 3.2 board. Most add-in memory boards can be used to deliver either
expanded memory, extended memory, or a mix of both. The issues when buying a
board you intend to use for expanded memory are different from those for
extended memory.

Registers: real and fake-and often missing
One important factor in the delivery of EMS memory-particularly full 4.0 EMS
memory-is something called registers. Registers are where the data that keeps
track of all the bits of swapped-out code is actually stored.

Properly called mapping registers, the function of each register is to point to
a 16K block somewhere in a memory pool that, under the 4.0 specification, can
include up to 32 Mb of expanded memory. This will be mapped in and out of logi
cal pages that now, at least in theory, have addresses anywhere within the DOS's
1Mb province.

Mapping registers are like call forwarding for your telephone; nobody's home
at your number but you can be reached someplace else. This feature is the whole
key to expanded memory: the interception of address requests and their redirec
tion to parts unknown to DOS and otherwise inaccessible to it.

60 EMS memory

In operation, the expanded memory manager simply dips into the pool of
memory available to it and fmds available blocks of memory as needed for each
task. Having done that, some sort of record must be kept, so the manager can find
those blocks again whenever they are needed. The registers provide that record to
remember and be able to point the way back. Each register corresponds to the
base of some 16K block of addresses-not memory. Calls sent to those addresses
are directed to some corresponding block known only to it somewhere in ex
panded memory.

Under the earlier 3.2 EMS specification, there was really only one usable
64K page frame, encompassing only four logical pages of 16K each (Fig. 5-1).
There was only one pointer, or register, per logical page. Ifyou had four registers,
you had it made.

ROM

FOOO 	 Memory

Registers

Page frame

EMMVIDEO
Pool

640K AOOO

5-1 	 Putting the pieces together, you see the relationship between the page frame (divided into four 16K
pages), a set of registers controlled by the Expanded Memory Manager, and the 16K blocks
(pages) of memory that the individual registers point to in the pool. Note particularly that the actual
blocks addressed are not shown to be contiguous. Typically, they would not be, although they con
ceivably could be. For simplicity, only four registers-all that was needed under the old 3.2
specification-have been shown here. Most boards that properly support the 4.0 specification have
increased the number of registers per set to 64 to allow mapping to conventional memory address
spaces.

The whole group of registers-four in original 3.2 EMS context-make up
something called a register set. One register set can point to several 16K blocks
somewhere in expanded memory. If you want to access expanded memory for a
different program, or even a different block of data for the same program, you
have two choices:

Registers: real andfake-and often missing 61

• Hunt up a different set 	of data that the registers must contain to access
whatever other blocks the EMM needs and write that data over the data
currently in the registers.

• Have alternate sets of registers and simply switch sets.

In that scenario, the obvious choice-if you have one-is to have alternate sets to
be used as switching sets. This method is much faster than having to hunt for and
rewrite data every time for you to make a switch. In Fig. 5-2, you can see how
alternate sets come into play. Note that the registers are shown even crossing over
each other. Although some set of rules buried in the software determines how
these blocks are selected, the selection might appear to us to be totally random. It
doesn't matter though as long as a register set retains a record of what is where
and belongs to which program.

Register

set

Program A ~
Alternate 16K "pages"

set

Program B ~

5-2 	 The use of alternate register sets is illustrated here. The register set for Program A is pointing to four
16K pages, but an alternate set already is loaded and ready to switch instantly to a different set of
pages for Program B, while a third register set is available, if needed. Again for simplicity, sets of
only four registers each have been shown here; however, in actual practice, under 4.0 EMS, 64 reg
isters per set are required for full implementation.

62 	 EMS memory

If you're wondering why I'm still talking about obsolete technology now in
the face of the LIM 4.0 EMS specification, it is to make a point. The new specifi
cation provides many new memory management functions not available under the
earlier specification. A fair percentage of the expanded memory boards marketed
as supporting the LIM 4.0 EMS specification, however, do not support many-if
any-more features than were included in the earlier specification. The same is
true of many of the EMS device drivers still being distributed.

Supporting the 4.0 EMS specification does not necessarily mean supporting
all the features and functions offered under that specification. All it means is that
the vendor isn't doing something weird that doesn't conform. The wary buyer
needs to know and understand the difference. Even conformity isn't necessary
considering some of the weird things mM did when it first supported the 4.0 EMS
in a way that was totally incompatible with everyone else's interpretation.

As long as expanded memory has existed, registers and register sets have
been there. The significance of registers and register sets, however, becomes a
matter of special concern with the 4.0 EMS (or beginning with AST's EEMS if
you were really on top of things) as we move up to multitasking. Under 3.2, you
could not do multitasking; with EEMS or 4.0 EMS you can. Registers are the key.
It's that simple.

The difference comes down to how many registers you've got-how many
make a set. Four was all you ever needed under 3.2 (four 16K logical pages totally
on 64K page frame).

AST was the first company to increase the number of registers. It needed the
additional registers to support its then radical EEMS scheme, which took the
basic EMS concept and extended it, opening the door to memory at any address
within DOS's entire megabyte of address space. In 16K chunks, that takes 64
pointers or registers (1024 -:- 16 = 64). Realistically, there are some practical
limits here, at least as we are able to juggle our memory usage now.

Limitations or not, however, the critical issue now is the ability to swap con
ventional memory in and out, not just four pages in a page frame but a lot of addi
tional pages from 640K on down. Ifyou only swap from 640K down to 256K that
requires an additional 24 registers to a set (384 -:- 16 = 24). It still takes four
registers for a page frame in high memory. Under 4.0, however, that page frame
can have a base address between OOOOh and EOOOh, so that's actually 36 possible
base addresses (or registers), not four.

If you had only a monochrome or eGA monitor, you could squeeze out an
extra 64K of usable and swappable conventional memory at AOOOh through
AFFFh. Ifyou've got an mM PS/2 model 50 or 60, you're going to have to swap
right down to zero. The exact number varies, but to really implement 4.0 EMS
and make it do the things that 4.0 promises, you need a bunch of registers, just to

Registers: real and fake-and often missing 63

make a set. Because most everything in computers ultimately comes down to
powers oftwo, 64 looks like a pretty good number (16 times as many registers as
we needed under 3.2).

You could squeak by with 32 registers by limiting the floor to 256K (effec
tively ruling out use with several existing computers) and reducing the page frame
choices to two. If you have less than that, you don't have full 4.0 support.

I stress this point because it is the main issue that separates boards built to
minimum 3.2 support standards and boards that fully support all of 4.0's features.
You cannot simply load a different driver and expect a 3.2-era board (other than
EEMS) to give you 4.0 performance. The registers are just not there.

You need 64 registers to a set, but how many register sets? This answer is
harder to quantify. Looking around the industry, AST's Rampage line provides 32
sets. The All ChargeCard, the memory management card that makes 286s almost
act like 386s, adds no memory of its own but provides 16 register sets with 64
registers each to manage what is there.

The exact number of alternate register sets-hardware registers-is not as
critical as the number of registers in a set. Unlike individual registers, additional
sets of registers can be emulated, or faked, by storing the data that would be con
tained in RAM. Using DOS 5.0's 80386 EMS emulator, EMM386.EXE, emu
lated registers are what you get. There, however, is often a significant difference
in performance. The reason is simple. An actual hardware register is a physical
memory device like a RAM chip but dedicated to that specific task and always
available to the EMM. If each register set is stored in its own dedicated device,
then switching windows, for instance, is simply a matter of selecting an alternate
register set that is in use and telling it to do its thing. All the pointers are in place,
needing only to be activated. This set-virtually instantaneous.

In either case, however, the actual pointing must be done by a hardware
device. If there is only one hardware register set, then every time you want to
switch, two things have to happen. First, you must copy the contents of the real
register into memory for storage (several output instructions, plus some other
data, for each register). Then, you must copy the contents of another simulated
register back into the real register every time you have to swap that 16K block out
for another. Most programs today do the first step for you, so you can skip this
step.

Because, under the old 3.2 specification, you were dealing with no more than
four logical pages, you only needed four registers to a set. The time lost in copy
ing register data was negligible, and you were only swapping data, not running
code. With as many as 64 registers, this process is relatively slow going. Anytime
you have to download and upload anything it's slower than just having it there at
the ready. The difference here comes down to microseconds (millionths) versus
milliseconds (thousandths) or a performance factor of about 10.

But what does all that really mean, you ask? Well, with enough hardware reg

64 EMS memory

ister sets to go around, AST boards have demonstrated the ability to do reliable
background communications at 9600 baud. The AST boards were the only boards
to achieve that level of performance in at least one widely publicized independent
test. Not everyone has occasion to do background communications and certainly
not at that speed except in special situations; however, this example is indicative of
the board's potential.

I'm not saying that you necessarily need 32 or even 16 register sets now or for
anything in the foreseeable future. Having at least some hardware alternates, how
ever, certainly is desirable.

Having 64 registers in a set gets to the real heart and spirit of the 4.0 EMS
specification. Under DOS, 64 registers are all that you can ever use. Remember
that this whole issue of registers is unique to expanded memory. The degree to
which they matter-if at all-depends entirely on the extent to which you will be
using expanded memory.

The extent to which having hardware registers matters also depends on
whether you are addressing memory directly as expanded memory at board level
or are starting with extended memory and using part or all of it to emulate
expanded memory, as is supported by DOS 5.0's new HIMEM.SYS and
EMM386.EXE. At some point, you've got to have not only more sophisticated
hardware but also more registers of some kind than were anticipated under the old
3.2 specification to enjoy all of 4.0's benefits.

Bus speed
Bus speed is another issue of importance, particularly when, after fully populat
ing the motherboard, you have to start adding some sort of memory expansion
boards to your system. With many of today's machines able to support as much as
8 Mb or more right on the motherboard, memory expansion boards cease to be a
consideration on many of the newer machines. If it's on the motherboard (and you
bought chips or SIMMs of the proper speed), memory runs at whatever speed the
system is designed to run at. Good or bad, you're struck with it.

This issue is not specific to EMS 4.0 implementation by any means. It becomes
an issue when choosing memory expansion boards for the faster machines that
began appearing at about the same time. Not all chips or SIMMs will run at today's
sizzling clock speeds. Many of the available memory expansion boards also are
incapable of keeping up, no matter what chips or SIMMs you stuff them with.

Admittedly, few expansion boards are exposed to processor clock speeds but
rather to bus speeds. Often, this speed is only half of the rated clock speed or
less-even with accelerator cards installed. For an unmodified system, a 25 MHz
box might have a 12.5 MHz bus speed. Many memory boards fall by the wayside
with such speeds.

Bus speed 65

The bus in so-called state-of-the-art systems runs at something less than the
dazzling clock speeds that the ads would lead us to suspect. Slower bus speeds
speeds compatible with the hardware that's out there on the bus-mean degraded
performance.

Manufacturers are faced with a dilemma. They can slow the buses or they can
just pull out all the stops and let them rip. The second option is not as irresponsi
ble as it sounds because there are at least a few boards out there that can stand
those withering speeds. Boards like Newer Technology's speed demons. All of
Newer's memory boards boast proven compatibility with bus speeds to 12.5 MHz
or higher with no wait states. Even Newer's Concentration board, which can be
populated with up to a full 32 Mb of (soldered) chips on a single board, can han
dle that speed.

When all else fails, board designers can-and often do-add wait states. The
designers don't always give the user much say in the matter, but sometimes they
do. The attention! board from Newer Technology can keep up comfortably to bus
speeds up to 12.5 MHz. Much above that, however, all bets are off.

The attention! has no less than eight software-selectable timing sets, ranging
from none to multiple wait states. It has something for almost everyone. At the
time of this writing, it had not been successfully matched to an NCR 916 Tower,
but no other exceptions were known to exist. Using software to select the timing
set is hardly the ideal solution; however, ours is not a perfect world. This setup
works with a board that (with a piggyback) can add 16 Mb without overhanging
the adjacent slot (1 Mb soldered SIMM chips are required to achieve this density).
The board works well enough to have earned approval from SCQ for use with
XENIX, as well as by Novell and others.

These boards are not the only hot ones on the market, but they certainly are
among the hottest. AST's boards generally stack up pretty well in most tests. As
bus speeds go up, however, the list gets pretty short.

The bottom line
The hardware issues examined in this chapter are expanded memory issues and do
not bear on extended memory, although it has become increasingly difficult-if
not impossible-to totally separate the two. In either case, the system draws from
a common pool of memory.

Despite their similarities, a paradox appears when you compare these two
types of memory. Expanded memory is something that can be made available to
even the most modest member of the 8086 clan. The effective delivery of full 4.0
EMS memory for multitasking and other high performance applications, how
ever, requires a greater level of sophistication in the memory expansion boards
and software drivers. You, therefore, need to weigh your intended memory use
carefully when buying any new expansion boards to be sure the features you are
buying best suit your actual needs and are not wasted.

66 EMS memory

6

CHAPTER

Stealing

the store

The 80386 brought with it more than just the power to use extended memory as
extended memory. The chip has an inherent ability to allow memory to be mapped
to any unused DOS-addressable address, including mapping over areas that might
contain system data that for one reason or another is not needed. The 80386
opened up a whole new area to DOS above 640K. DOS can use this area (200K or
more) for TSRs, device drivers, etc., freeing the space they would have occupied
in conventional memory for use by applications.

More recently, some of the software technology for memory mapping has
trickled down to 286s and, to some extent, even to 8088s. (I'll look at those issues
later in this chapter.) Essentially, mapped memory is the domain of 386 and
higher systems. The rules don't change on lesser systems, but the numbers do
significantly. For the most part, I will deal specifically with 386 and higher sys
tems and address those others later on.

The memory mapping allowed by the 80386 is not extended memory and has
nothing to do with the high memory area (HMA). Although it is adjacent to the
top of the mappable address range (actually overlapping it by about 16 bytes), the
HMA is a totally separate issue. The memory mapping also is not expanded mem
ory in the traditional sense, although the memory used must be drawn from an
LIM 4.0 EMS pool. In much the same way as having a high memory area requires
extended memory to supply that memory, you can have only memory that is map
pable to addresses between 640K and 1024K (AOOOh to FFFFh).

Memory mapping is a term that's been around for awhile. Few users, how
ever, understand just what it is or how it works. It's relatively easy to understand

67

the concept of specific bits of memory having specific addresses when RAM is
plugged into the motherboard-essentially hard-wired to address pins on the
CPU. Figure 6-1 shows the relationship between specific address pins and spe
cific addresses in low or conventional, memory.

CPU chip

o 0+0
1 o + 1

2 1 + 0

3 1 + 1

RAM chip

6-1 	 Address pins have only two states: off or on. Each address represents the combined states off all of
the address pins. Here, to simplify the illustration, I have concentrated on just two pins to demon·
strate how these two pins control four addresses. A third pin would increase the number of available
addresses to eight, a fourth to 16, and so on. Here the relationship between the CPU pins and the
RAM chip address pins is fixed, the same pin's output is always directed to the exact same physical
locations on the same RAM chip.

Somewhere, typically just above 640K, there is a block of addresses used for
video. Those address pins, rather than going to user RAM, are normally re
served. They connect via the bus to the monitor card. As a general rule you can't
map memory to any of those addresses because they're in use-or at least we
assume they are.

In many cases, however, these addresses are not busy. In almost any charac
ter-based color video mode, the first 64K of the video area (AOOOh to BOOOh) is
not used and can be mapped as additional conventional RAM (contiguous to
640K) by better memory managers, like QEMM or 386MAX.

68 Stealing the store

Near the top of Fig. 6-1, there are some address pins that just dead-end.
These are the empty addresses I compared to empty lots in a housing development
in an earlier chapter. Empty lots have addresses, so do unused CPU address pins.
In either case, you can send mail or messages. Just don't expect anyone to pick
them up.

Figure 6-2 adds two more elements:

• Unassigned, or free, memory
• A memory management module

CPU chip

Memory manager

0+0

1 0+1

2 1 + 0

3 1 + 1

RAM chip

6-2 	 This illustration is similar to Fig. 6-1 except that the direct linkage between the CPU and RAM chip
address pins has been broken and a memory manager inserted. The memory manager intercepts
calls and can reroute them-like call forwarding with your telephone-to different locations. This is
the key to accessing 4.0 EMS memory.

A party of volunteers 69

0

Assuming that the memory manager has already figured out which addresses are
unused and available, it adopts those orphan address pins and acts something like
a switchboard. The manager intercepts any calls sent to those addresses and redi
rects them to specific places somewhere in the pool of memory it owns.

A party of volunteers
On 386 systems, memory mapping is like an electronic muster. The EMS memory
manager, the boss, looks the situation over and says something like "Okay, num
ber 4COOOh, you and your group report for duty at B4OOh." For the remainder of
that work session, 4COOOh will answer every call the CPU makes to B4OOh,
4COOlh will answer for B4Olh, and so forth. These groups typically are 4096
bytes (4K), which is about the smallest block of unused (or reusable) addresses
that can be worked with.

Throughout all of this mapping, DOS knows nothing about 4COOOh and
friends. DOS can't even count that high. Only the memory manager knows what's
going on. DOS doesn't need to know as long as something, somewhere picks up
and answers all the mail to those addresses.

This mapping of memory to high DOS (UMB) addresses differs significantly
from the manner other EMS memory is managed. The difference being that, once
mapped, those memory assignments generally remain fixed until the machine is
powered down or rebooted. The physical memory addressed normally does not
change as it did through the page frame that came with LIM 3.2 EMS. These
assignments do not change even when bank switching entire applications and their
data in and out, as occurs with multitasking. If the assignments did change, you
would have to reload any device drivers or TSRs you might need for each applica
tion you were running. The solution is neither practical nor particularly workable.
(Windows 3.0 does support a feature, which is currently supported by both
QEMM and 386MAX, that does allow each window to have its own copy of cus
tomizing drivers such as ANSI.SYS.)

Once the assignments have been made (at the time the memory manager is
installed from the CONFIG.SYS during bootup), they remain in effect until the
system is rebooted. The memory manager, not the CPU, has jurisdication. The
same actual physical bit of memory might be repeatedly assigned to make calls to
the same address. Ifyou change any value on the CONFIG.SYS line that loads the
memory management device driver, the map determining who answers what also
will change at the next reboot.

All of these changes are fine with the CPU; it doesn't care. Any old bit will
do as long as the CPU can find the bit any time it needs the bit to respond to a call
to some specific address within its megabyte.

This concept is really nothing new. It really is no different from the way an
EMM must try to take control of every unused bit of memory in sight and dole it

70 Stealing the store

out. All that's really changed is that there's no longer just that 64K page frame to
manage from the manager's revolving pool. There still is that memory; however,
on a 386-and to some extent on many 286s-there also are the otherwise unus
able addresses above 640K as well.

Managing all those other addresses does require some very different manage
ment techniques. Although there is a variety of device drivers available that can
map memory, only the best can really make the most of your system's memory. To
date, this area has been pretty much a seesaw battle between Quarterdeck and
Qualitas, each fielding powerful, virtually unchallenged contenders. All-the
people behind the ChargeCard for supercharging 286s-have jumped into the 386
memory management area with All Charge 386.

Now, even DOS has gotten into the act, introducing two new memory man
agement tools with release 5.0. DOS also has included the ability to map memory
to high DOS address space on 386s. Although they are not the most powerful
memory management tools, the DOS tools are adequate for many purposes.
Although they lack the frills of some of the more glitzy third party managers, the
DOS tools demonstrate better than any of the better third party managers what is
really involved in using upper memory.

DOS 5's HIMEM.SYS and company
No one is likely to ever call the memory managers that come with DOS 5.0 the
greatest thing since indoor plumbing; however, they're not really all that bad. For
our purposes, EMM386.EXE, the EMS emulator, is the one of greatest interest
here. Understand that EMM386.EXE is not a totally free-standing program.
Working from extended memory, an XMS extended memory manager such as
HIMEM.SYS must be installed ahead ofEMM386.EXE to provide that extended
memory. Note that, despite its .EXE extension, EMM386.EXE is a device driver
that must be installed from the CONFIG. SYS.

Full implementation of the memory mapping features of EMM386.EXE
requires the support of the commands DEVICEHIGH (or DH) or LOADHIGH
(or LH) that are internal to IO.SYS (one of MS-DOS's hidden fIles) in this
release. As you can see, a number of factors actually come into play.

You need to write a CONFIG.SYS fIle based on using DOS's dynamic duo.
In its barest form, your fIle would start something like this:

DEVICE = HIMEM.SYS

DEVICE = EMM386.EXE size RAM

DOS=UMB

This fIle is real bare bones, but it is a starting point. First, the extended memory
(and HMA) manager prepares non-DOS memory and then the EMS emulator for
use. When run at this stage, EMM386 reports something like the following:

DOS 5 's HIMEM. SYS and company 71

EMM386 successfully installed

Available expanded memory 64 KB

LlM/EMS version 4.0
Total expanded memory pages 28
Available expanded memory pages 4
Total handles . 64
Active handles 1
Page frame segment EOOO H

Total upper memory available 75 KB
Largest Upper Memory Block available .. 75 KB
Upper memory starting address CDOO H

EMM386 Active

You might have to put a hold on the boot process at this point (Ctrl- Num Lock) to
keep the information from scrolling off screen too quickly. Although it is limited,
there is some important information in this screen, especially the three lines near
the bottom. They tell us that EMM386 has found just one block of what it con
siders to be mappable address space starting at CDOO and totaling 75K.

For reasons I'll discuss shortly, this amount doesn't necessarily mean that
you can fit files totaling up to 75K into that space. This information also tells me
that EMM386 has either not found or has ignored another 32K block I routinely
use between BOOOh and B7FFh. If it is needed, there is a way to use it; however,
for now, that 75K block will do quite nicely.

Although the EMM386 EMS emulator has a default size of 256K, you proba
bly will want to specify some larger amount (in kilobytes) as the default size.
Although it is more than adequate for mapping memory to high DOS address
space, 256K is woefully inadequate for any serious expanded memory usage. The
amount you set as the default size depends entirely on the needs of your individual
system and the memory resources available. Finding the best balance might take a
little trial and error. (If it is set too low, EMM386 will, under certain circum
stances, override this setting if sufficient extended memory is available.) The
RAM parameter in the following example specifies the use of mapped memory,
while DOS = U M B enables memory to be mapped to high DOS addresses:

DEVICE = HIMEM.SYS
DEVICE = EMM386.EXE 2048 RAM
DOS=HIGH,UMB
DEVICEHIGH = RAMDRIVE.SYS 720 IE
DEVICEH IGH = SMARTDRV.SYS 360
DEVICEHIGH = MOUSE.SYS
DEVICEHIGH = EGA.SYS
DEVICEHIGH = STAK" STACKER.COM IB = C800 1M = 0 D: "STACVOL.OOO

72 Stealing the store

http:STACKER.COM

Now that you've got mapped memory to work with, you can start putting it to
work. This point, however, is where DOS comes up short in the memory manage
ment department. You know how much memory has been mapped; however, how
much memory is in use and what you can do with what is left-if anything-is
another matter. All you can do is just throw programs at it-device drivers and
TSRs-until you run out of memory. You'll get error messages when that hap
pens. Nothing serious will happen; DOS will just load them low the way it would
have anyway.

If you're not happy with which programs manage to fit and which ones get
squeezed out, you can change the order that you try to load them, putting the more
important ones (the biggest usually) closer to the top of the CONFIG.SYS file.
Fitting the programs, however, is a real shot in the dark.

The DOS= HIGH statement in the above listing just tells DOS that it can have
the high memory area and to load the kernel (47K at least) up there. DOS is not
fussy about who's XMS driver you are using. This same command is valid for use
with any XMS driver (if the DOS kernel is what you decide you want to load up
there).

The MEM command, first introduced in DOS 4.0, will give you a little infor
mation about what's going on in high memory when using EMM386.EXE. Little
of the information will be ofuse to most users as shown in this excerpt (which also
shows some TSRs loaded from the AUTOEXEC.BAT or command line).

OCD010 10 00A1CO System Data
RAMDRIVE 0004AO DEVICE=

E: I nstalled Device Driver
SMARTDRV 0045BO DEVICE=

E:SMARTAAR Installed Device Driver
STACKER 005740 DEVICE=

F: Installed Device Driver
0071 EO MSDOS 000030 - - Free -
OD7220 MODE 0001 EO Program
OD7410 XYKBD 000040 Environment
OD7460 XYKBD 0005DO Program
OD7A40 MSDOS 0085BO - - Free -

In this case, there was enough room for everything to load in upper memory.
There, however, was one problem. One of the devices required a specific block of
addresses that EMM386 had found and taken. You have to modify the command
line to prevent EMM386 from using that block with the X parameter as shown
below (the address range specified was detailed in the documentation for the
device requiring that block be left open):

DEVICE = C: " DOS" EM M386. EXE 2048 RAM X = caoo - CBFF

DOS 5's HIMEM.SYS and company 73

EMM386 also supports an I (Include) parameter that allows the user to force
EMM386 to map areas it might not have found but that are thought to be usable
or reusable, as in the case of some ROM or video areas that can be mapped over.
1= BOOO - B7FF tacked onto the DEVICE statement would have picked up that
32K block I mentioned earlier and mapped it too, but it also would introduce
another problem that I'll discuss shortly.

If you work only with text-based applications, most display systems-CGA,
EGA, and VGA-will allow you to add at least another 64K to conventional DOS
memory with another I statement. (You can have mUltiple I and X statements and
other parameters as long as you don't exceed the length of the DOS line.) I will
discuss that option later in this chapter. Unless you're working in graphics mode,
however, most of the area set aside for video usually is just wasted.

Any such exclusions and inclusions must be added manually with any of the
memory managers. This limitation is not something DOS can be faulted for
although some memory managers are certainly better than DOS at finding map
pable blocks. Better third-party managers generally provide some sort of display
of memory usage, making it easier to visualize how memory has been used.

Specific exclusions are something every user-even the beginner taking his or
her first cautious steps above 640K-must be prepared to deal with. In most
cases, you probably will find that the documentation for devices that might com
pete for address space will spell out exactly which blocks or space might be
involved. In many cases, these programs will allow a choice to avoid conflicts
with any other hardware that might be installed.

Includes should be approached more cautiously and probably are best
avoided by beginners. Still, the worst that can happen is that you crash your sys
tem if you try to include an invalid block. (You always want to keep a bootable
floppy handy at such times so you don't lock yourself out.) The best bet is to do as
much experimentation as possible. Work from bootable floppies rather than your
hard disk, changing that configuration only when you're pretty sure you've got the
bugs out-most of them at least. Unfortunately, few managers will not allow you
to install them to a floppy without a lot of aggravation. In those cases, having a
bootable floppy with your old configuration close at hand is doubly important.

Actually, if you've got the patience, you can do quite well just throwing pro
grams at upper memory blocks until you run out of space or develop a different
loading strategy/sequence. I have managed to load as much as 146K (not includ
ing the use of the HMA and 64K EMS page frame), which probably figured out to
something like one hour per kilobyte until I passed about the 96K mark and
increased exponentially from there. There are a number of factors that can really
complicate the process, not the least of which is trying to figure out just how big
your programs are. There is often little correlation between file sizes and the
space needed to load a program.

74 Stealing the store

Bigger than life
FASTOPEN, weighing in with a filesize of something over 11K, really is a clas
sic. In certain DOS releases, it has required as much as 68K of contiguous RAM
to initialize, while in fact needing only 3K to run. This discrepancy borders on the
obscene. There is no way you can-even with an accurate map of where you have
been able to map memory to high DOS addresses-sit down and figure what you
can, or should, load where without some careful scientific trial and error.

There are various strategies that can be applied to dealing with this kind of
problem. You can load bullies like FASTOPEN first while there still is a fair
amount of space to thrash around in, waiting until the dust settles to load your
other programs (and in the process reusing some of that memory). At least one
manager allows you to borrow from the EMS page frame, returning that address
space to page frame use when the programs are finished loading. The All Charge
386 allows users to specify the starting address. You still might have to juggle your
loading sequence in the CONFIG.SYS and AUTOEXEC.BAT files.

Auxiliary programs, such as Quarterdeck's Optimize for QEMM and Quali
tas's Maximize for 386MAX, are able to perform wonders, eliminating most, if
not all, of this trial and error for you. Even ifthese programs weren't a lot more
powerful by nature than EMM386, this feature alone is worth the price of admis
sion. With either of these premium third-party memory managers, you pretty
much just have to install their software on your hard disk, execute the program,
and then you're off and running.

These optimizing programs are not really smarter than most of us, but rather,
they know exactly what to look for. The programs even know which device drivers
and TSRs you have in your CONFIG.SYS and AUTOEXEC.BAT to try to relo
cate in upper memory.

Both Optimize and Maximize actually reboot your system several times
before writing any changes to your CONFIG.SYS or AUTOEXEC.BAT files. The
programs actually go through pretty much the same kind of trial-and-error proc
ess that you would, checking load and run sizes. The last reboot before they alter
your files is to verify that the changes they are about to make will work. This
process takes only minutes at most, not the hours it might take otherwise.

As smart, smooth and sophisticated as programs like Optimize and Maximize
might be, the only thing they know how to do is find programs that can be relo
cated above 640K and load the programs there. Most of the time that's all that
matters. Once in a while, however, they'll come up with a program that will load
above 640K but just will not run right (or not run at all) because the programmer
didn't take upper memory usage into account. This situation, however, cannot be
anticipated. If, after using Maximize or Optimize, one of your pet TSRs or
devices just won't run, you can remove any special loading instructions that might
have been added to the lines that install them as shown here:

Bigger than life 75

DEVICE = C: " DOS" QEMM" LOADHI,SYS IR:2

Fortunately, the number of programs that won't run properly when relocated to
upper memory is relatively small these days and getting smaller.

Fragmentation
Further complicating the task of relocating TSRs and the like in upper memory is
that, unlike the old familiar 640K, the memory mapped above 640K is often frag
mented into bits and pieces. In the EMM386 example used earlier, there was only
a single 75K block to work with. I said, however, that I knew of at least another
32K piece that was usable because I use it every day. There are several usable
blocks (the minimum usable size is usually 4K) scattered around the high DOS
area, including as much as 16K of ROM-often more-that can be mapped over if
you know what you are doing.

Ifyou pick up that 32K and another 16K and add it to our 75K, the total then
comes to 123K. Any of the better memory managers will pick up some or all of it
or we can select it manually with Includes. This 123K, however, is fragmented,
with 75K still the largest single block available. As far as loading programs is con
cerned, 75K is the most available to any single program. The rest isn't even avail
able even on loan to give a rambunctious program like FASTOPEN the extra
elbow room it needs while loading because the memory is not contiguous.

Ifyou look at memory fragmentation in the context of the overall picture, you
can see how this whole mess began. DOS's megabyte was fragmented from day
one when someone plopped the video at AOOOh, leaving users with a 640K frag
ment to work with. Now you're working with the crumbs, and the more memory
you need, the smaller the pieces that you have to settle for. The rules are still the
same. You can only load a program into contiguous memory unless the program
itself specifically allows for fragmentation. (Since 1985, DESQview has been
written to allow the use of discontiguous areas to maximize the use of available
resources.)

I've compiled a partial list of programs that were actually loaded successfully
above 640K on a working station:

18.0 Squish
20.0 Superpck
2.7 Packrmd
0.5 Mode

10.0 Map

There are 51.2K of assorted drivers and TSRs listed-clearly more than you prob
ably could afford space for in conventional memory. Assume for the moment that
you have just 52K of recoverable address space in the high DOS area with RAM
mapped to it.

76 Stealing the store

Loading the program would be easy except that the high memory is frag
mented. One 20K block is squeezed between VGA graphics and text, the other
32K is just underneath the 64K EMS page frame. Although I have changed the
size of the blocks to keep the example fairly obvious and simple, these particular
locations correlate with high memory blocks in an actual system.

They should all fit, but here is what happens. Three of the five fIles listed are
device drivers loaded from the CONFIG.SYS (PACKRAMD.SYS, MAP.SYS
and SQPLUS.SYS). PACKRAMD, a RAM disk driver, was already in use when
the other fIles were added to the system, so they were just tacked on to the end of
the CONFIG.SYS. These other programs are going to settle in before the system
even looks to the AUTOEXEC fIle for whatever else is to be loaded up there,
including that 20K piece from SUPERPCK.COM that has to be loaded some
where for PACKRAMD to work.

Even at a glance, you can see that, if that 2. 7K loads first and picks its spot in
the lower 20K block, there won't be room there for either of those 18K to 20K
chunks. At least one of them must load into that 20K for everything to fit.

Juggling things so the 18K loads first into that lower block doesn't do any
good. MODE is the only other program that could fit with it. The remaining
32.7K has to try to squeeze into a 32K parking space. It just isn't going to fit. If
you just let nature take its course, there probably wouldn't be space to fit that 20K
piece up high at all. As you can see from Fig. 6-3, even with HMA space to spare,
you easily could wind up wasting 20K of conventional memory.

20K mapped RAM 32K mapped RAM

.. ...
18.0 Squish
20.0 Superpck
2.7 Packrmd

.5 Mode
10.0 Map

6-3 The loading order of blocks can affect how the programs will fit (or not fit) in memory.

The only way to make all the programs fit is if you can somehow save that
20K block for the late-loading 20K fIle. In the real world, the more fragmented
upper memory is and the more puzzle pieces you have, the more complicated the
task. I cannot stress this point too strongly. Only when you understand the issues
can you be sure the memory manager you spend your money on is up to doing all
that you expect of it.

Even this example assumes a lot of things you just can't take for granted-like
the possibility that one of the programs might require more elbow room while

Fragmentation 77

http:SUPERPCK.COM

loading than is reflected here. As the crumbs get smaller, care must be taken not
to waste big spaces on a lot of little programs that could as easily fit in smaller
pieces. Programs like Maximize and Optimize take this consideration into
account automatically when they work out your loading sequence and strategy.
You can determine the loading sequence and strategy manually, with a lot of trial
and error. Ifyou value your time as worth anything, however, be sure the memory
manager you buy can do this process for you.

Declaring open season on the BIOS
Traditionally, the 64K occupied by the ROM BIOS (l28K in the case of all of the
PS/2 series from IBM) has been considered to be off-limits. There is a general
feeling among most users that any fiddling around up there is sure to crash the
system. Indiscriminate fiddling surely can and will; however, some of it can be
mapped over and reused.

Much of the ROM space is empty or occupied by unused or unnecessary
functions on almost all machines. (Sometimes when you aren't doing anything, go
poke around up there a little with DEBUG and see how much empty space there
is.) Most of the space is in blocks too small to be of much real use unfortunately;
however, much that is in use can be written over without ill effects. Deciding
which parts you can write over safely is something better left to experts, but the
space is there.

Quarterdeck's QEMM386.SYS is smart enough to sniff blocks of ROM
address space it can appropriate. On the system that I wrote most of this book on,
QEMM mapped more than 24K of ROM space, which, although representing
more than one-third of the total ROM area on that machine, is good but is not
remarkable because the amount that can be mapped over is as high as 40K on
some machines.

QEMM can reclaim as much as 24K out of the BIOS region-possibly even
more on some systems, as shown in Fig. 6-4. This isn't space that ROM doesn't
occupy but rather is ROM that provides no essential services-at least not once
the system is up and running, which is all that really matters.

Except for BlueMAX, Qualitas normally doesn't tamper with ROM space. It,
however, does allow you to Include any you think you can get-as do most other
managers. It's pretty picky business though, but then this whole upper memory
area is.

fur want of a map
For want of a map, the byte was lost; for want of the byte Unfortunately,
even if you had access to the latest versions of all the better memory managers,
figuring out which one was best for your particular system isn't easy, except per

78 Stealing the store

First Meg I Overview
Memory Area Size Description
0000 - 003F 1 K Interrupt Area
0040 - 004F 0.3K BIOS Data Area
0050 - 006F 0.5K System Data
0070 - OD8A 52K DOS
OD8B - OFC4 8.9K Program Area

6·4 Much of ROM can be mapped over
OFC5 - 9FFF 576K [Available)on almost any machine that sup

Conventional memory ends at 640Kports mapping. Here, without any
AOOO - AFFF 64K VGA Graphicshelp, QEMM has found 24K (F800h
BODO - B7FF 32K High RAMto FDFF) that can be put to better

use.
 B800 - BFFF 32K VGA Text
COOO - C7FF 32K Video ROM
C800 - CCFF 20K Unused
CDOO - DFFF 76K High RAM
EOOO - EFFF 64K Page Frame
FOOD - F7FF 32K System ROM
F800 - FDFF 24K High RAM
FEOO - FFFF 8K System ROM

haps in the case of some of the super specialists. One of the greatest frustrations is
that there is, as of this writing, no comprehensive universal mapping utility.

At best, some of the better management packages provide their own proprie
tary mapping programs aimed at demonstrating how good a job the home team
does, but that is all they do. Don't try to check to see how 386MAX does with
QEMM's Manifest, or anybody else's clever demo map.

Unfortunately, no one has marketed a memory manager that is compatible
with the competition. It's not just proprietary nastiness, however. Each of the
developers has his or her own individual way of staking out a claim in high mem
ory. 386MAX not only leaves its own distinctive signature marking the point
where it starts loading anything in high DOS memory but also leaves its mark on
any unused high memory.

Other managers are more subtle than 386MAX. In an ever changing field, it
is impossible for anyone to keep up with all the tricks that developers are using, let
alone figure out a way to show them for comparison-even if they wanted to.
Therefore, there are a bunch of different memory and system use displays from
different vendors. You already have seen what DOS provides, which isn't very
much. DR-DOS 5.0 does better in several ways.

Quarterdeck's MANIFEST is certainly the glitziest of the bunch and overall
probably presents the most useful information. Its presentations, however, are
entirely different than those of Qualitas's 386MAX, shown in Fig. 6-5 (a .COM file
with the same name as the Memory Manager) or All Computer's ALLMENU. I
have tried here to get the best possible comparative look at the performance of each
of the three memory managers these represent, but as you can see, considerable
interpretation is involved.

For want ofa map 79

386MAX === Version 4.01 ===-==__========-======-== Memory Usage
The First Megabyte of Address Space

lponvent1onal memory 	 i~~~~f+~iiii.ililllili~l~W~Wt:~:J
New top of DOS memory 640 KB • DOS :::: Video

Added low DOS memory 0 KB ;'" Low • ROM
w. 	 .Added high DOS memory 72 KB "" HJ.gh
Available extended memory 64 KB i Other # Unused
Available expanded memory 2032 KB in segment EOOO :H EMS

Copyright (C) 1987-8 Qualitas·; Inc.
Extended memory usage ...

ROM mapping region 0 KB
Program storage 136 KB
EMS memory 2032 KB
Remaining ext memory 64 KB
High DOS memory 72 KB
Low DOS memory 0 KB

Total extended memory 2304 KB

Total expanded memory 2608 KB, in use = 1600 KB, available = 1008

--> Loading programs in LOW memory ...

==> 62 KB available in HIGH memory, largest block is 59 KB.

The current state is ON.

6-5 	 Quarterdeck's Manifest is clearly the best utility around for system memory usage analysis and system informatior
general. Generally bundled with Quarterdeck products, it also is available separately and can be used on ,
machine from the 8088 on up, regardless of whether other Quarterdeck software is present. Because of propriet
differences, Manifest cannot give full information on the performance of memory management products other It
products from Quarterdeck.

In these three illustrations, there are discrepancies even in the amount of
memory shown as being used by the same TSRs or device drivers. This variation,
however, might not be an error in reporting, but rather reflect differences in the
amount of memory actually allocated by different managers. Some TSRs and
drivers actually do require different amounts of memory at different times. This
problem further complicates the situation and will be discussed more fully else
where in this book.

Some third-party utilities are available that can be of some help, notably Sys
tem Sleuth, which was used in making one of the preceding illustrations, and
InfoSpotter. Both utilities are relative newcomers on the scene. These utilities
have no ax to grind and, within their capabilities, the information they present is
unbiased. Because different software developers leave different kinds of signa
tures on the memory map there is no way of seeing what is going on-at least so
far. The serious worker, therefore, is still hard-pressed to get the information nec
essary to squeeze the most out of the high DOS area.

It went where?
The whole purpose of this exercise is to increase the amount of conventional
memory available to run your applications software. The first few chunks usually

80 	 Stealing the store

come pretty easy. Ifyou pursue the quest beyond those first few easy pieces, how
ever, you can run into a situation where the more you succeed in moving things up
high, the less you have to show for it. I don't mean less in the literal sense (hope
fully) but in the sense that moving one or more additional TSRs up high might not
give you even one more byte of memory-not even the space the TSRs occupied
down low.

The same forces were at work from the time you relocated your first TSR. In
the heady euphoria, however, you probably would not have noticed if the 23K you
moved only gave you 16K of benefit. The deal probably is still a good one, but
where'd the other memory go?

Numbers lie. Actually, in this case, it isn't the numbers that lie. The rules in
upper memory are different. Earlier, I indicated that 4K was the smallest block
size usable in upper memory for most purposes. If you have six contiguous 4K
blocks, assuming no loading peculiarities, that amount will be enough to hold the
23K program.

Down in conventional memory, however, you don't work with 4K blocks.
16K is a more common block size down there, but then, when you're reduced to
eating crumbs, you have to lower standards. Programs can overlap those 16K
boundaries and sometimes even share, so depending on where the break point
falls, you actually might free only one 16K block. On the other hand, you might
free two and wind up gaining 32K of usable memory. In one extraordinary case, I
set off a 32K avalanche by moving only 9K.

Even knowing this principle, trying to free up even one more block to use
down low sometimes can get really frustrating. In any case, you need to remem
ber that what you load up high is what counts. What matters is how big a chunk
you've got down low to load your applications. If you ever get down to having to
make a choice because you can't fit everything upstairs, go for the combination
that leaves the most for you to use down low because that's what it's all about.

Stealing still another 64K-maybe even 96K
Users working only with character-based applications usually can add an extra
64K to as much as 96K to conventional memory by using still one more trick that
some of the better memory managers have up their sleeves. This technique is not
limited just to the 386s either. It can be done with 286s and even 8088s.

The truth is that many-if not most of us -actually are wasting most of the
memory normally reserved for video use. For character-based screens you actu
ally need only a few kilobytes, the remainder is needed only when you venture off
into some graphical environment.

The little memory that the video system needs, even with EGAs and VGAs, is
somewhere in the B region, leaving at least the entire AOOOh to AFFFh 64K seg
ment-contiguous to the unused 640K. You'll recall from the earlier discussion

It went where? 81

that any block of free memory that's contiguous to the 640K can be added directly
to conventional memory. Only when you break the continuity does DOS have to
put on the brakes. DOS normally can't use this space for anything but video
graphics. With mappable memory, this facet of memory management is mainly
just a matter of taking down the signs and letting DOS move in-right on up to
B7FFh with an EGA or VGA, for a whopping 96K gain.

This memory is additional conventional memory for running bigger applica
tions and bigger spreadsheets or for loading the entire manuscript for a book like
this into RAM in one gulp, along with your word processor. You still have the
HMA and every byte of memory you've mapped as upper memory blocks above
the video.

This memory is the same bonus memory I mentioned in an early chapter in
conjunction with using CGA displays. In that context, a few vendors made it avail
able to users; most didn't. Then with EGAs and VGAs, everyone pretty much for
got about it. If you treat your EGAs and VGAs like CGAs, however, the extra
RAM is still there but with the vastly better screen resolution you paid for when
you bought your better monitors. In this way, you can have your cake and eat it,
too.

There are a few programs that seem to take exception to this incursion for
unaccountable reasons. The BIOS used by some computers also makes assump
tions about the use of the AOOOh to AFFFh area that make it impossible to use this
region. Fortunately, most programs and BlOSs could care less. This information,
however, is something to me away in the back of your mind in case at some point
your display suddenly goes bonkers when you try to load something.

QEMM386 users can grab this unused video RAM by using the utility,
VIDRAM.COM, which can be loaded into memory mapped to addresses above
the video if you've still got any left. VIDRAM can be toggled on and off in mid
session if you wish-to run a desktop publishing or windows application, for
example.

There is one catch, though. You cannot toggle VIDRAM from within
DESQview or any windowing environment. You have to exit the environment to
toggle VIDRAM, even if you want to load it right back up again. This inconven
ience, however, is a small price to pay. In practice, you are not likely to want to
toggle VIDRAM except when changing environments, anyway.

Both Qualtas and All have provisions that allow users to include this portion
of the video area in the space available to DOS. All's ALLMEN4 driver will take
the memory by default if the drive detects a CGA graphics card, rather than an
EGA or VGA. With either of these boards, you must set a parameter in the CON
FIG.SYS. In any case, 64K is 64K. If you're not into graphics, go for the extra
memory, especially if you've got a 286.

82 Stealing the store

http:VIDRAM.COM

Don't count the 80286 out yet
Qualitas mapped high memory first it seems, mapping LIM 4.0 EMS memory to
high DOS addresses on an 80286 with a memory manager called MOVE'EM.
Quarterdeck, however, was hot on QUalitas' heels with QRAM (pronounced
cram). In 386s, the CPU chip makes the difference more than the support chips
on the board. With a 286 or 8088, the difference is in the supporting cast, as dem
onstrated earlier by All Computer's ChargeCard (discussed in detail in chapter
16). The Chips and Technologies chip set, used on some of the better 286s, seems
to give about the best performance short of going the ChargeCard route.

In the best of circumstances, neither of these software solutions-and proba
bly any that might follow-can match the near-386 power and performance of a
ChargeCard-upgraded 286. These software-only packages, however, are not
nearly as expensive as the ChargeCard board, selling at around $90.

Even the vendors will tell you frankly that performance will vary consider
ably. Quarterdeck claims 30K to about 130K for its package. I squeezed out an
extra 64,096 bytes with MOVE'EM on an AST Bravo 286 with an EGA. This
amount is in addition to the 1,408 bytes for MOVE'EM's own overhead. Higher
numbers with better chip sets, therefore, would certainly seem reasonable. Here
again if you're not running in graphics mode with 4.0 EMS memory to map and
one of these to pull it off, you can probably add at least an extra 64K to your con
ventional DOS area, bringing you up to 704K and, in some cases, even 736K of
contiguous DOS memory.

I have devoted a rather disproportionate amount of time and space here to an
area that is relatively small at best. The difference that mapped memory can
make, however, is no small matter and, as you can see, is the one memory area
where understanding what you're doing can really make a difference.

Don't count the 80286 out yet 83

7

CHAPTER

Extended memory

and new frontiers

If expanded memory is like a lazy Susan, then extended memory is a little like a
hundred-story elevator in a 10 story building. It goes right up through the roof and
keeps going. It had better not be gone, however, because, if you can't get back
down to DOS where you started from, you're dead. Getting back to DOS is where
the 80286 ran into trouble. It would let you go, but it would fight you coming
back. Everyone had to wait for the 80386 to really see extended memory work,
but it was worth the wait.

Extended memory is the good stuff-continuous linear memory. It is not only
bigger and better but far faster than expanded memory, particularly on 32-bit sys
tems. To the CPU, extended memory looks like an unbroken string, with
addresses that start at 1024K and keep going until your CPU runs out of address
pins or you run out of money-more likely the latter. With OS/2 and probably
most other operating systems that you're likely to encounter, all the memory you
have is just one big happy family, just one long string of addresses without distinc
tion. With DOS, this last outpost is called extended memory, at least for now.

Promised with the introduction of the 80286 (a promise that the chip could
never quite fulfill), extended memory was a long time coming. With the rapid
acceptance of the 80386 and its SX and SL counterparts and now with the emerg
ing 486 market, extended memory is coming on as the most dynamic area of
expansion, not just for tomorrow but for today. With new software and the power
it unlocks even on today's machines, extended memory is one of the reasons
microcomputer sales have already eclipsed mainframe sales by something like
65 %. In the rush to tap the full capabilities of the 386 and 486 computer chips

85

and the failure of OS/2 to emerge as a viable operating system-many software
developers have taken a new look at the 80286, too.

Extended memory is contiguous, as opposed to expanded's lazy Susan now
you-see-it, now-you-don't revolving access. They are two completely different
systems, requiring different software access.

To another operating system designed without the 1 Mb constraints of DOS,
extended memory would be ordinary conventional memory. You can have up to
4 gigabytes of continuous memory on a full 80386 DX or i486 with a true 32-bit
operating system (accessed in protected mode above 1 Mb), but only 16 Mb on a
32-bit SX.

Using spinoffs of that technology, some developers have taken new looks at
the poor old 80286 as well, because it also has the capability of handling a full
16 Mb of extended memory (plus 32 megs of EMS expanded memory). Even
without the benefit of a true 16-bit operating system, like the still elusive OS/2,
extender technology has paved the way for powerful 16-bit processing from DOS.
This raw processing power is unleashed for running applications, even huge appli
cations, at full throttle right from DOS.

Still, the difference between extended and expanded memory continues to be
one of the greatest sources of confusion and consternation, both to users and pro
grammers alike, although for rather different reasons. Users find it difficult to
understand the difference between the two. Programmers found that for a long
time extended memory proved unruly and difficult, if not at times impossible, to
work with in the DOS environment.

A quick review
As shown on the left side of Fig. 7-1, extended memory (sometimes aptly called
linear memory) is simply a linear continuation of addresses beyond 1 Mb
(lOOOOh), as compared to the bank-switched blocks accessed sideways, as it were,
through discreet 16K pages, as depicted on the right. Note that there are only
16 Mb available under extended memory, while expanded memory gives access to
as much as 32 Mb under the LIM 4.0 EMS specification.

The address pin limitation discussed in chapter 1 prohibits adding memory
beyond those points. The same thing limits the 8088-and DOS-to only 1 Mb.
For either an 80286 or 386 SX, the maximum extended memory that can be
addressed is 16 Mb (24 address pins or 224). The numbers for the 80386 quickly
become seemingly unreal, so for the moment, I'll confine discussion just to the
16 Mb extended memory limit of the SX or 286, which is only half the memory
limit available using any microprocessor chip under DOS.

The critical fact to sort out in your mind at this point-if it isn't sorted out
already-is that there are two totally different ways of accessing memory beyond
640K. Expanded memory is always broken into 16K pages. By stringing pages

86 Extended memory and new frontiers

EMS 4.0 32 Mb

7-1 It is important to have the distinction
Expanded

between e~ended and expanded
memory firmly in mind. Here I have
depicted the memory scheme for an
80286 where the maximums avail

16 Mb

able can be depicted on the same
scale.

EMS 3.2 8 Mb

E~ended

DOS 1 Mb

together, you can do a lot of clever things with it; however, the bigger the program
the more difficult it becomes. But even in a best-case situation with full 4.0 EMS
support, as soon as you exceed the size of your conventional DOS memory, you
have to start juggling pages in and out. The more you have to juggle, the more time
you waste.

Extended memory knows no such limitation, requires no bank switching, and
is bound only by the address limitations of the CPU (and your pocket book) right
up to the 386's 4 gigabyte (230) extremity. That's 250 times as much.

Because 16 Mb is ~urely more than adequate for most users, logical questions
arise. Why should you even bother with all this hocus-pocus of logical pages and
frames and lazy Susans? Why not just buy a 286 or 386 (if you don't already have
one) or an accelerator card for your old PC and just go for it?

It's not that easy. First, you've got to go into protected mode.

Protected mode
More people say more things and know less about protected mode than almost
anything, except perhaps the weather. What protected mode is, in concept, really
is rather simple. Beginning with the 80286, Intel's designers tried to implement a
scheme that would protect virtual addresses (in DOS terms, linear addresses
beyond 1 Mb) so that mUltiple operations could be run there concurrently. The
integrity of each address and its attendant data was protected from the others.

Protected mode 87

The most significant difference between running in real mode and in pro
tected mode is that, in protected mode, segment registers contain selectors rather
than actual physical addresses. This difference is critical. You need to understand
it.

Selectors are a lot like substitution tables. A call directed to any specific seg
ment or address is intercepted and rerouted via a selector to the place that code or
data is actually located, which the selector knows because it put the data there in
the first place. The process is sort of like having an appointment with the Presi
dent. First, the Secret Service has to look you over, then maybe they'll tell you
where he is.

These selectors provided an extra level of indirection when accessing mem
ory. Instead of being the base address of the segment in memory, a selector is
merely an offset into a table of descriptors.

Each descriptor contains the base address and length of the segment, as well
as additional information required to implement the memory protection features
of protected mode. The values loaded into the segment registers do not corres
pond directly to physical addresses.

For an application to access a particular physical address (like screen mem
ory), it must first load the base address of that area of memory into a descriptor
and load the selector that corresponds to that descriptor into a segment register.
Two tables of descriptors are available to each process. One table is called the
Local Descriptor Table (LDT), and the other is called the Global Descriptor Table
(GDT). The GDT is shared by all processes in the system, but each process has its
own LDT. The GDT normally maps system-wide data structures and the LDT
maps process-specific data structures.

The use of descriptors requires a chip with an architecture that, unlike the
8086 and 8088, has the internal capability to do this. It is relatively simple, and
logical. You need to have something like that going for you to prevent utter chaos
outside the relatively well ordered but narrow realm of DOS.

However, it didn't work, not with the 80286 at any rate-at least not well. In
hindsight, someone apparently dropped the ball rather badly when the 286 chip
was designed. To this day, you hear cries of "foul" and see fingers pointed in vari
ous directions. Whatever the underlying cause, the bottom line is that with an
80286 you cannot slip easily back and forth between real mode and the protected
mode without crashing the system or walking a fine line on the brink of doom. (In
the real mode, an 80286 chip or higher behaves just like the original 8086 with the
original 640K/l Mb limitations.) This problem is attributed by some experts to a
conflict between DOS's own internal access needs and the internal addresses
needed for the instructions necessary to shift the 80286 in and out of the protected
mode.

A number of important design differences in the 80386 eliminated those

88 Extended memory and new frontiers

problems. Protected mode is now a practical reality that programmers can work
with. The possibilities are hard to even comprehend-complex applications possi
bly as big as 15 Mb. Some implementations of OS/2 apparently might use this
ability to allow real mode PC/MS-DOS applications to run concurrently (multi
tasking) with protected mode operations running under OS/2 (or some other pro
tected mode operating system).

Even after the 80386 was introduced, there were still obstacles to overcome
before extended memory could come into its own. Like any frontier area, there
were disputes, even about how it should be accessed.

Bottoms up
In the absence of a standard-or even a concensus-for how extended memory
should be accessed during the first three or four years after the introduction of the
AT, software developers were left pretty much to do their own thing up there. It
was a lawless place. There were no good guys and no bad guys really. There were
just a few guys scratching out a living up there, or trying to at least. Driven up
there from a world of starving applications, they scratched and nibbled at
extended memory, mostly just around the edges.

At first, there was not much available besides RAM disks, print spoolers,
disk caching schemes. Soon, however, other people started looking at extended
memory. AutoCAD and several others started stuffing data up there. There still
was no law and order. If you tried to put two tasks, two sets of data, or two any
things up there, both usually would crash.

During this time, two quite different philosophies evolved. mM's VDISK,
which, beginning with DOS 3.0, has been capable of using either conventional or
extended memory, started at the bottom of the pile and ate its way up toward the
top. The other school of thought said extended memory should be accessed from
the top down. There were a number of logical arguments to back up this opinion,
one of the more powerful arguments is that it is less complicated and easier to see
who else is running up there (providing everybody else also is working from the
top down, which they weren't) and how much space they're occupying.

Everyone knows what happens if you try to bum a candle at both ends: messy
drips allover everything. The usage of extended memory got really messy really
fast. Ifyou tried to run more than one program at a time up there, someone's data
usually wound up dripping all over someone else's data and you had corrupted
files and all kinds of nastiness.

The situation was further complicated by several noncooperating applications
that assumed that any extended memory present when they were running was their
exclusive property. The programs went into protected mode and started writing
directly to the memory, without bothering to check for other users.

Bottoms up 89

Not surprisingly, extended memory got a lot of bad press in the beginning
its reputation was made even worse by the grotesque gyrations required to bring
an 80286 back down to earth of real mode once you got up there.

In 1988, Microsoft, in collaboration with AST, Intel, and Lotus, released the
eXtended Memory Specification (XMS) which defined an interface comparable to
the role played by the LIM EMS standard for expanded memory. That paper
defines what is now the industry standard interface for allowing real mode pro
grams to access and use extended memory on machines with 80286 processors
and higher. It, however, goes much farther than that. Overall, it defines a set of
rules governing:

• The use of upper memory blocks (UMBs) between 640K and 1024 K -the
area where memory can be mapped into to relocate device drivers and
TSRs from conventional memory

• The High Memory Area (HMA) between 1024K and 	1088K-the extra
64K of DOS-addressable memory available to 386s and higher machines

• The use of extended memory blocks at addresses on up as far as you've got
bucks to buy the chips for, basically

The XMS also defines a hardware-independent mechanism for controlling the
A20 gate. The gate must be opened every time control passes back and forth
between real and protected modes-as when a program running in extended mem
ory must return to real mode for keyboard input, disk I/O, etc.

Quarterdeck had done much of the pioneering work in both the UMB and
HMA areas. Although much of the company's work was seemingly incorporated
in the new specification, it was not a party to drafting the specification.

Enter the DOS extender
The promise of a true 16-bit operating system for the ill-starred 286 still remained
unfulfilled when the 80386 burst on the scene with a protected mode that really
worked and with full 32-bit processing power. Much of the incentive faded for a
16-bit OS/2. There was and still is talk of something else, a 32-bit OS/3 perhaps.

New operating systems, however, aren't born overnight. OS/2 still is proving
that. The 16-bit OS/2 still was not available when 32-bit power-really fast 80386
ATs, but little more-was already sitting, waiting on people's desks.

In this vacuum, several software developers began to look for some way to
work from DOS. Essentially, they wanted to use the available DOS as a launch
platform, while doing the actual processing out in extended memory. The logic
was impeccable. The idea didn't need a whole new operating system, just a super
set for DOS-a 16-bit instruction set that could run on 16-bit or 32-bit machines,
or a super 32-bit set for 80386 and i486 machines.

90 Extended memory and new frontiers

With rumbles even about the possibility of 64-bit chips to come, the superset
idea had merit. Because it did not require the lengthy process of writing a whole
new operating system, the superset could be done quicldy and in ways that would
allow existing applications to be ported to this modified environment faster and
more economically than might be possible than to some all-new operating system.
And so the DOS extender had arrived.

A DOS extender is a mini operating system that loads on top of DOS, picking
up where DOS leaves off. The way extenders operate is entirely different than
expanded memory managers. (Extenders, for instance, are generally not installa
ble devices but rather merely part of a program loadable from the DOS prompt.)
Both, however, are in their own way parallel in that each provides important ser
vices lacking in the underlying operating system.

A DOS extender also must provide a way to interface with DOS, a strictly
real-mode operating system. This interface is one of the most critical functions of
a DOS extender-even more so with extenders written for the 80286 that have to
cope with the difficulties of getting that chip back into real mode, as discussed in
chapter 2. When multitasking is involved, extenders provide a common interface
that can be shared. There's a lot that must be done.

When DOS services are needed, the DOS extender in some cases will handle
DOS calls itself. For others (file 110, for instance), it generally will switch the
processor back to 8086 real mode and let DOS do the work. Mechanisms vary
according to the task at hand; however, a look at the way extenders handles a DOS
call gives some insight into what goes on invisibly behind the scenes.

A protected mode program cannot be allowed to access DOS directly. To get
around this problem, an INT 21h call made from protected mode typically is han
dled something like this:

• Intercept the INT 21h software interrupt call. (The DOS function inter
rupt, INT 21h, is actually a collection of standard functions available to all
programs that need them.)

• Move any extended memory data buffer into conventional memory.
• Switch the processor to real mode.
• Reissue the interrupt call to DOS.
• Switch the processor back into protected mode.
• Move any returned data buffer to extended memory, if necessary.

Although specific features vary between the various extenders on the market,
most can call real mode routines up from protected mode and vice versa. Some
can write directly to the screen to save the time that otherwise would be wasted
going through the BIOS. Support for virtual memory demand-paging varies from
good to nonexistent.

Enter the DOS extender 91

So far, one of the main reasons to use a DOS extender-the main reason prob
ably-has been to allow an application to easily access large amounts of memory.
Another and sometimes overriding consideration, however, is the ability to run
programs developed under high performance compilers such as MetaWare's High
C or other comparable development tools. High performance compilers means
high performance programs.

High performance on a grand scale is one of several forces that have spurred
the rush of increased interest in and utilization of extended memory and that
would seem to give DOS an even stronger position in the long term scheme of
things. The slow and seemingly increasingly uncertain emergence of OS/2 has
certainly frustrated many ambitions. It's a lot more than that, for with the
extended memory tools available to today's software developer, the full 32-bit
processing capabilities of the 80386 can be tapped right from DOS.

What is emerging then is a new genre of software (in many cases, new
releases of old favorites) tailored to run in extended memory under DOS with no
exotic and iffy new operating system required. In some cases, two parallel sets of
new device-dependent software are emerging, making no apologies for the fact
that, although they do run under DOS, they might or might not run on an 8088.
Or, in the case of 80386 DOS/extended memory software, on an 80286.

There are several unique advantages offered by going the DOS extender
route. Aside from the fact that software developers and users don't have to wait for
some new operating system to be developed, the mere fact that it is being done
under DOS means that any ordinary software written for the DOS environment
can run alongside it, with no gimmicks (like the so-called "compatibility box" in
OS/2) and no waiting.

Lotus put it all together-just like 1-2-3
Lotus was among the ftrst DOS applications to offer a DOS extended version for
286s and up. Its version 3.0, developed around Rational Systems' 16-bit extender
technology, will run even crammed into 1 Mb, as shown in Fig. 7-2. No longer
near the so-called "leading edge" of the technology, a position it held when ftrst
introduced, 16-bit extender technology still is an almost ideal example because of
the rare insight it gives into the way that the same basic product can run so differ
ently in two different operating environments. It is doubly interesting because
Lotus hedged their bets in version 3.0, giving us a product that would run under
either DOS or OS/2. (There actually are two different Lotus 3's, one for DOS and
one that only has the same look and feel designed to operate under OS/2.)

In Fig. 7-2, however, you can see graphically just what extended memory
means and what it can do that expanded memory cannot. Note that the 1 Mb is not
simply 1 Mb of address space in 8088 fashion, but 1 Mb of installed memory as is
typical of many 286 and higher systems. That upper 384K is actually extended

92 Extended memory and new frontiers

IK "reclaimed" Workspace LIM EMS

1 Mb 32 Mb

LIM 4.0

64K

640K
L....

Workspacefentional RAM
8 Mb

LIM 3.2

Overlay workspace

~-.---.-----------.--.--.---------.-~ Expanded RAM

123 root

Overlay

segments

30K
 Protected Mode Shell

DOS

DOS-extended Lotus 3 demonstrates how it can fit on an 80286 (or higher) system with only 1 MB plus expanded
memory. However, overlays must be called in from the disk as needed, significantly slowing many operations. Mem
ory shown as "reclaimed" is simply the balance of a full megabyte installed on many computers, 384K of which is
above 1024K.

memory used here as workspace in conjunction with whatever is available in the
lower 640K. Expanded memory can be used, but mainly for data storage.

Lotus 3.0, typically, is too large to fit in one program, at least as far as DOS
is concerned, so it's broken into overlays that must be loaded in from disk when
they are needed and loaded over when some other task must be performed. This
process is cumbersome, but it is the way users are used to doing business with big
programs in constricted workspace. Note how the whole game plan changes in the
extended memory environment depicted in Fig. 7-3.

Lotus put it all together-just like 1-2-3 93

2-16 Mb
Overlay workspace

Extended RAM

1-2-3 Root

If sufficient RAM overlays I
Overlay segments_. ____.__ ~ to memory for better

-·------·--·---1 performance

User workspace

384K "reclaimed" LIM EMS

LIM 4.01 Mb

640K
Conventional RAM LIM 3.2

Protected mode shell30K •......., Expanded RAM..

Free for other applications

~..•.•......................··········,··················,·······1

DOS

7·3 	 Lotus 3 flexes its muscles in an Extended Memory environment. Given sufficient Extended Memory, the overla}
loaded into RAM, eliminating the need for repeated disk access. Expanded Memory, however, still is used as'
space.

Here, the amount of extended memory available (not just the fact that you
have some) clearly becomes a determining factor. If you have enough extended
memory, the 1-2-3 root, or kernel, is no longer in conventional memory. The root
and whatever overlays available memory will allow are all loaded in extended
memory. The program no longer has to run back to the disk for another function
overlay all the time. It's all there in memory and available at RAM speed. There's
workspace-lots of workspace up there, provided you've got RAM enough.

For data storage, there still is up to 32 Mb of LIM 4.0 expanded memory to
fall back on. In the case of Lotus 3.0, it is the full 32 Mb, not the archaic 3. I-type

94 	 Extended memory and new frontiers

expanded memory access Lotus supported through version 2.1. All this memory
yields a grand total of up to 48 Mb on an 80286. Expanded memory is being used
but has been relegated to a supporting role, because only extended memory can
provide the environment needed (no bank switching or waiting for overlays). In
this scheme, expanded memory could be the bottleneck where large spreadsheets
are involved.

I cited Lotus here not because it is unique but more because it is not. Elimi
nating the bottleneck caused by expanded memory is the lure of extended mem
ory. This is why more and more developers are looking to it, banking on it for the
future.

Lotus's entry into the DOS-extended arena also focused attention on some
other issues that developers must face (the one I discussed earlier in this chapter in
particular: the need for some common, industry-accepted interface). The DOS
extender Lotus used conformed to the YCPI, virtually assuring its compatibility
with DESQview and its ability to multitask in extended memory along side more
mundane DOS applications.

This compatibility requires some careful interfacing because the 80286 must
constantly be switched back and forth between real and protected mode opera
tions. But Microsoft's Windows did not support YCPI, the then-industry-accepted
interface standard, at the time Lotus announced version 3.0 and refused com
ment. After sitting on the sidelines watching the rest of the world seemingly pass
it by, however, Microsoft dropped the other shoe in the spring of 1990 with the
introduction of another, rather different interface specification, which I will look
at later in this chapter, the DPMI.

Before leaving Lotus, I should turn your attention quickly to one other feature
of version 3.0: OS/2 compatibility. Lotus doesn't have to run under DOS.
Although DOS is the subject of this book, a brief aside seems called for. As you'll
note in Fig. 7-4, under OS/2, Lotus will run in the linear memory called extended
memory, using a virtual memory manager instead of expanded memory as a swap
area. By any name, extended memory is where the action is.

Canned answers for uncanny problems
One of the main reasons for the rapid emergence of DOS-extended software has
been the ready availability of the means of accessing extended memory from
DOS. Initially, some developers-Oracle, for instance-went their own way, writ
ing their own proprietary DOS extenders. Developers, however, can buy DOS
extenders basically right off the shelf. Libraries of custom modules along with
special linkers and debuggers make the venture to the outer limits relatively pain
less, whether developing new products or enhancing an existing product.

Many programmers claim that using libraries is much simpler and faster than
trying to get a product up and running under OS/2. Furthermore, programs and

Canned answers for uncanny problems 9S

16 Mb
Extended RAM

Virtual memory manager

User workspace

OS/2 applications OS/2
agenda, etc., Swap area

1-2-3

P.M. shell

r---------------
Os/2 kernel

7-4 	 A hint of things to come, Lotus 3 also will run under OS/2. In that environment, Lotus 3 uses linear
memory as workspace (up to a total of 16K, the limits of an 80286) for even faster operation. Lotus
then uses the disk as a virtual memory swap area when RAM is not sufficient for its needs.

programming languages that had never migrated to DOS because of segment and
size limitations now can be ported to DOS. (Catering to the architecture of the
8088 and 80286, DOS assumes that memory is broken into 64K segments, no
matter how large that memory might be.) In many cases, eliminating EMS man
agement code and recompiling is all that's required to gain the added speed and
performance of running in extended memory using the fu1116 or 32-bit processing
capabilities of the system-typically two to three times faster on a 32-bit system

96 	 Extended memory and new frontiers

than an 80286, and much faster there than on an 8086/8088. The canned answer
would seem to have a whole lot going for it.

There are three names that keep coming up in any discussion about off-the
shelf DOS extender developement tools: Ergo Computers (formerly AI Archi
tects), Rational Systems, and Phar Lap Software, Inc. Of the off-the-shelf 32-bit
runtime environments currently available, AI Architects' OS/386 seems to offer
the closest emulation of DOS and BIOS. Most DOS calls are fully supported,
except that 32-bit registers are used. Each environment, however, has its merits
and its supporters.

Borland went to a Phar Lap when it decided to release a special 386 version
of Paradox-a release that runs up to five times faster than its 16-bit version.

Lotus, after putting its name to the LIM EMS, which its product did not sup
port past 3.1 EMS, jumped on the DOS extender bandwagon with its version 3.0,
as cited earlier. While at the same time offering a superficially improved 2.x for
its established PC user base, Lotus still took a more cautious approach in version
3.0, incorporating a Rational Systems DOS extender that would not exclude the
80286 market. That particular extender includes segmented virtual memory sup
port that allows for swapping certain data temporarily to disk if there is insuffi
cient RAM available or if the need exceeds the 16 Mb of RAM memory
addressable by the 286.

mM now is also marketing software developed around Phar Lap's extender.
This one was especially interesting from several standpoints. What makes its
Interleaf Publisher desktop publishing software especially interesting here is that
it was developed not under OS/2 as anticipated by industry pundits, but rather
under DOS. This choice was hardly a vote of confidence for the future of OS/2
and, according to some, probably another nail in the coffin.

Phar Lap concentrated mainly on the 386 arena. Other software companies,
most notably AI Architects and Rational Systems, offer DOS extender develop
ment tools for both 16- and 32-bit runtime environments. Most interest, however,
seems centered on the 32-bit environment.

With CAD, CAE, and a host of scientific and technical applications, the list
of DOS extender users today is almost endless. There are literally hundreds of
them. This amount is certainly enough to demonstrate-if there was any doubt
that DOS extenders are serious software tools for serious work.

Programs executable in extended memory via some of the better known DOS
extenders characteristically have file extensions different from the . EXE and
.COM tags we're used to under DOS alone. AI Architect's protected mode pro
grams use the file extension .EXP (EXecutable Protected mode). Phar Lap unfor
tunately chose the same extension for 32-bit mode files created around their
extender, which would be fine except for one thing: Phar Lap files are structured
differently. AI Architect's software, however, can run Phar Lap's .EXPs by call
ing the .PLX (Phar Lap eXtended).

Canned answers for uncanny problems 97

Regardless of what's going on inside, as far as the user is concerned, every
thing is done from DOS just like it's always been done. All the other things work
just the way you think they should, even if you're using a control program like
DESQview from Quarterdeck Office Systems, now that we've got the YCPI.

What's a VePI?
Initially, even having the techniques at hand to write workable extenders was only
half an answer. The problem ultimately wasn't even so much between the various
DOS extenders that emerged so much as between applications using DOS extend
ers to run in protected mode and control programs, such as DESQview. Some of
the problems included microprocessor switching, hardware interrupt processing,
and the sharing of extended memory.

The acronym comes from Yirtual Control Program Interface. (The "virtual"
referring not to the kind of program but rather a control program for virtual
machines, that intriguing third mode of operation.) The conflict specifically was
and still is between programs running in protected mode alongside programs
using the virtual 8086 mode of the 386. For example, DESQview 38623 creates a
separate virtual 8086 machine with its own megabyte (Plus expanded memory) for
every application loaded into it-or at least for every window (some windows
might have more than one application loaded into them, as in the case of TSRs
loaded ahead of some primary application). DESQview uses an EMS emulator to
control memory beyond the normal DOS 640K limits to support virtual 8086
mode operations.

Without some sort of interface that resolves these issues satisfactorily, a con
trol program nust be turned off for the user to run a protected mode application.
It's that simple-or complicated, depending on your point of view.

Borland's Paradox 386, wrapped around Phar Lap's 386/DOS extender, orig
inally could not run under DESQview. Quarterdeck (developer of DESQview),
however, was one of the prime movers in an effort to bring the two conflicting
environments under some mutually acceptable set of rules. Aside from Quarter
deck, other initial sponsors of what came to be known as the YCPI were Phar Lap
Software, Inc.; AI Architects, Inc., Quadram, Inc.; Qualitas, Inc.; and Rational
Systems, Inc. (Aren't you glad they didn't try to make an acronym, like LIM,
from that one: QOSPLASIAIQIAIQIRSI!)

Although it primarily addressed conflicts between expanded memory man
agers and programs running in extended memory, the yePI was a major step. For
the first time, there was at least a set of reasoned guidelines founded on the com
bined experience of the companies that had a hand in drafting it. What it said was
that any program adhering to the YCPI standards could coexist with any programs
running-multitasking on the same machine, but in virtual 8086 mode. In the
happy endings department, with a standard and a few adjustments here and there

98 Extended memory and new frontiers

to make accommodation for each other's needs, Paradox 386, with the VePI, ran
nicely under DESQview.

Having a standard and having everybody accept it as a standard are two dif
ferent things. For reasons that are not entirely clear, Microsoft chose not to accept
the standard. Having chosen not even to be party to the drafting of the VePI speci
fication, Microsoft found its perennial bridesmaid, Windows, left out in the cold
and incompatible with any software that supported the VePI specification. The
problems were not unforseen, but extended memory is serious business. Much
too serious for Windows to block the view for long.

DPMI: a light in the window
A window, however, has two sides and which side is in and which is out depends
on the side you are standing on. Whichever side is which, Microsoft clearly did
have several problems with VePI because there was more at stake than Windows.
There were other issues raised by the yePI of concern to others, as well.

WIth pre-release work on an all-new Windows already at an advanced state,
Microsoft summoned other industry leaders and persuaded them to join in a
Microsoft-sponsored interface specification, the DPMI (DOS Protected Mode
Interface). Obviously, Windows compatibility was of paramount importance to
Microsoft.

High on the agenda, however, was yet another important feature of the 80386
architecture that was overlooked by the YePI: the 80386 provides for multiple
levels or rings of protection that can be managed on a need-to-know basis analo
gous access to the warroom at the Pentagon. Only those with specific clearance
can get past the first level of security. Increasingly higher security clearances are
required as you get closer to the center, with only a privileged few having full
access.

In the 80386, this inner sanctum is called ring O. Ifyou can get to ring 0, you
have full access to everything the chip possesses. This highest level is the operat
ing system level. Obviously, the operating system, whether DOS or UNIX or
whatever, has to have free access to ring 0 because any less would limit its effec
tiveness by leaving certain features off limits.

Under the YePI, however, access to this inner circle was not limited exclu
sively to the operating system. To a large degree, the VePI bypasses the protec
tion levels of the outer rings, allowing access to users who might not be properly
qualified. A poorly written program, or one that just encounters a problem, with
access to ring 0 can bring down the whole house of cards, which is a polite way of
saying crash the system.

Now, consider all of the virtual machines you can create using the virtual
8086 mode of the chip. You can create multiple machines for multitasking and for
multiuser systems (where a system crash could be extremely costly and could take

DPMI: a light in the window 99

down the design department, bookkeeping, inventory, and the steno pool in one
fell swoop.

Microsoft and others argued that only the operating system-in multitasking
and multitasking environments, only the host operating machine-should be
allowed ring 0 access. Virtual machines and applications should have no more
access than is absolutely necessary. By properly limiting access, a problem appli
cation could not crash the entire system, but at worst, bring down the virtual
machine that it was running on. If someone in the warehouse screws up, then the
computer for the inventory might go down, but everybody else keeps right on
working as if nothing happened. As far as they're concerned, nothing has hap
pened.

Although, in practice, the number of problems are relatively few, they do
occur. When they do they sometimes, but not always, bring down the system with
the loss of any unsaved data. The issue is not insignificant, assuming a much
greater importance as you move beyond simply mUltitasking to multiuser systems
of increasing complexity.

There are other issues, as well. The DPMI specification is far reaching, even
including features that can bridge the gap between DOS, UNIX, and OS/2 to a
point where applications in the future might not have to be classified on the basis
of operating system but simply on the basis of the hardware they require. That is
for the future. For now, there are some practical realities to face.

In these muddy waters
At this point, there is a double standard among those who were most active in the
writing of the VCPI specification still supporting the VCPI. Certainly the differ
ences between the two standards are of such a nature that those who have
embraced the VCPI scheme cannot just slip a different module in their code and
switch to DPMI support instead.

Interestingly, however, although these two schools of thoughts are not com
patible, they are not mutually exclusive. At least two of the most powerful mem
ory managers, QEMM from Quarterdeck and 386MAX from Qualitas, are
written to the VCPI specification. Both, however, fully support Windows 3.0,
which supports the DPMI instead. Not only do they support Windows 3.0 but also
significantly enhance its memory utilization.

On closer inspection, however, this seeming duality is not necessarily incon
sistent. Looking to the protection ring 0 issue that under DPMI is reserved only
for the operating system but addressable directly by VCPI software, memory
management certainly would seem to be on par with DOS for having a justifiable
right to full direct access privileges when dealing with the CPU. A spokesman for
QUalitas stated rather flatly that Qualitas has no plans to change. Windows 3.0, on
the other hand, runs on top of that environment. Allowing the lesser privileges

100 Extended memory and new frontiers

allowed under the DPMI to Windows and to applications running under it is not
illogical.

To put the matter in perspective, what would seem more important than the
mere facts of who supports which standard is to what use the supporters would put
the standard to. It is an interesting issue and one that does not seem likely just to
fade away.

An issue that will fade quicldy never really was an issue. Even from the
beginning, most memory expansion boards could give a choice of either extended
or expanded memory, or a mix of both. Extended memory was available long
before many of the users had any way of using it or even any reason to understand
the difference.

There is even better news when buying new memory expansion boards now
that users specifically want and need extended memory. It's a lot easier and
cheaper to build a good board for extended memory than for expanded memory. A
spokesman for a firm that prides itself on having developed and marketed some of
the finest, fastest, most sophisticated expanded memory boards available,
summed it up quite nicely when he said, "It would be pretty hard to screw up [an
extended memory board]." All those registers that are an issue with expanded
memory just don't exist.

I think you can get some idea of the difference in complexity not only of the
issues but also of the drivers required by just comparing the sizes of the new MS
DOS 5.0 drivers: 11,120 bytes for HIMEM.SYS (extended memory) and 91,210
bytes for EMM386.COM (expanded memory). Admitted, this point is a crude
comparison and there are issues that might be masked.

Getting the extended memory that EMM386 has to have to start with clearly
is the easy part. Once the starting address for a block of chips has been established
during the configuration or reconfiguration of your system, the addresses don't
change. All the software manager has to do is provide an interface.

In these muddy waters 101

http:EMM386.COM

8

CHAPTER

DOS's mysterious

"extra" 64K

For a long time, everybody thought DOS was strictly a 1 Mb operating system. It
is but it isn't. There is an extra 64Kjust above the 1 Mb limit that DOS can use on
80286 and higher systems. Beginning with version 5.0, DOS can even load most
of itself up there.

Called the High Memory Area (HMA), this unique memory resource can be
used in combination with ordinary extended or expanded memory with both or
with neither one. Extending up as high as 1088K (llFFFh), the HMA can be
used in combination with EMS memory mapped to unused DOS address space
between 640K and l024K. "Extending" is the operative word because it is
closely related to-actually created from-extended memory, but yet it is quite
different.

True, DOS only can deal with 1 Mb of address space, which is why this High
Memory Area really is a separate issue and must be dealt with separately. It's
there though. With a little sleight of hand, DOS can get its hook into an extra 64K
block of usable DOS memory by using legitimate addresses right at its outer limit.
This assumes that:

• There is some extra RAM available to use.

• The CPU has enough address pins to deal with more than 1024K of dis
creet addresses.

That immediately rules out the 8088s because, with only 20 address pins, they
cannot handle anything beyond 1024K, period. For the same reason, 8088s will
never be able to use extended memory, which is the memory area from which the

103

RAM for this extra 64K segment must be drawn. Even one more address pin (and
a bunch of other internal goodies an 8088 doesn't have) would allow access to this
high memory area. One more pin would exactly double the address range. The
ftrst chip that meets this criteria is the 80286, with not one but four more address
pins.

There's a lot more to it than just having CPUs that have the capability of
reaching higher addresses, however, because DOS really is a 1 Mb system. The
1 Mb limitation of DOS is why it was a couple of years after the 80286 and limited
access to extended memory was available before anybody even found it and, hav
ing found it, ftgured out a way to use it.

With a little sleight of hand
Ifyou will recall from the previous chapter, there are two ways to access extended
memory: from the bottom (VDISK fashion) or from the top. At the risk of being
repetitious, there is a point at which one byte is the top of DOS (FFFFh) and the
next byte, consecutive to it, is the bottom of extended memory (lOOOOh).

In OS/2 or other operating systems compatible with the 8086 clan (except 1
Mb DOS look-alikes), this point would be no more noteworthy than when the
odometer of your new car rolls over from 99.9 to record its fIrst 100 miles. To
DOS, however, this is a big deal because in going from FFFFh to 10000h, another
digit has been added. DOS wasn't written to accommodate another digit. There
are ways to work around the problem obviously, but it takes some doing.

I must go back now to something I glossed over earlier: the fact that DOS
works in terms of 64K segments. Normally, we tend to think of these 64K seg
ments as starting at addresses that are multiples of 64K. (It's easier to think of
segments starting at nice, neat addresses like OOOOh, 1000h, and so on.) In truth,
they don't have to. Like most rules, DOS is full of loopholes. These loopholes
really are what keeps DOS going-not that it's really all that good, rather that
there are just so many loopholes. All the 1 Mb limit really means is that you can't
have a 64K code segment that doesn't start inside of 1 Mb.

Just for the sake of starting an argument, suppose a 64K segment starts at
FFFEh, only 16 bytes short of DOS's 1 Mb limit (Fig. 8-1). Would DOS be able
to deal with it? The answer, interestingly is yes. Just as long as the starting address
of the segment is a legitimate DOS address.

As most users know, the top 64K of DOS (FOOOh to FFFFh) is set aside for
system ROM and is off limits-taboo. The system ROM does not use the entire
64K, rather only bits and pieces of it-most of it, but by no means all. As long as
ROM or something else that cannot be written over without dire consequences
isn't using it, the 64K is fair game. (Quarterdeck's QEMM memory manager
searches out and utilizes any 4K block of unused address space lower in the ROM
area to load part of DESQview's code or to load a TSR or device driver.) Pro

104 DOS's mysterious "extra" 64K

64K
HMA

FFFF 	 > <
E -> <
D -> <
C -> <

8-1 	 Rules are made to be broken. The B -> <

HMA breaks the rules by starting a
 A -> <new 64K memory segment just 16

bytes below the top of DOS's nomi 9 -> <

nal megabyte. Even though calls to
 8 -> <addresses above FFFFh must pass

through the A20 gate, which nor 7 -> <

mally separates real mode from pro
 6 -> <tected mode, DOS can use this

segment in real mode. The key is 5
 -> <
that the segment must start within

DOS's 1 Mb limit (i.e., below 4 -> <

FFFFh). 3
 -> <

2 -> <
-> <

FFFE 0 -> <
F

E

D

C

grams that use the HMA don't care what, if anything, is in the tiny part of ROM
overlapped by the HMA segment, only that the offset is large enough to leapfrog
past the ROM. To loader access any of the data in a segment lying even partially
beyond the 1 Mb barrier working from DOS requires not only a CPU chip that
can read from and/or write to addresses beyond 1 Mb but also a set of special
instructions-a superset that is compatible with DOS but that also goes beyond the
1 Mb limit. The key, though, is that you've got to start this extra segment from
within 1 Mb.

That is exactly what Quarterdeck did as far back as 1986 when it was anx
iously looking for someplace-anyplace-to load and run DESQview without
stealing gobs of precious memory from user applications. Quarterdeck reasoned
that, if a CPU chip had more than 20 address pins (l024K) and memory with con
tiguous addresses beyond 1024K, it should be possible to start a 64K code seg
ment near the top of DOS's 1 Mb limit with just enough inside for DOS to get a
toehold but with the rest of it-all but about 16 bytes-beyond the 1 Mb "limit."
Quarterdeck was right.

With a little sleight ofhand lOS

Needless to say, Quarterdeck jumped at the opportunity. By April of the fol
lowing year (1987), it was shipping a special proprietary device driver for running
DESQview on 286 machines. The driver that performed this "magic" was called
QEXT.SYS.

Still, actually using the 64K it does take some doing though because, the
80286 CPU chips (and higher) have something called an A20 gate to screen out
dummy calls beyond 1 Mb and to wrap them back around to zero-as was com
monly done by many programmers at one time. Every legitimate call to an
address above 1 Mb fIrst has to open the A20, then close the door on the way
out-quietly. No crashes please.

Although really quite simple, even in its original form, the QEXT driver was
highly effective. It made itself look like a 64K VDISK, so the memory area was
reserved and other programs wouldn't use it. QEXT also kept an eye on other
extended memory functions, so if a program (like VDISK, which can coexist with
QEXT) did some work with extended memory, then the A20 line would not get
turned off. QEXT would be active doing these things only while DESQview was
running.

This process is done without leaving real mode. With the A20 gate enabled,
it's really mainly a matter of being able to generate addresses beyond 1 Mb
addresses that require more bits than ordinary DOS software is geared to.

For a time, Quarterdeck, although it made no secret of what it had done, was
the sole owner of this high memory area, but not for long. A freebie like this was
just too good for a lot of people to pass up. Microsoft put its oar in the water,
announcing that it had found an extra 64K of memory to work with-the same
64K-when Windows 2 came out in 1988. After that, the existence of the HMA
was codifIed in the Extended Memory SpecifIcation (XMS) released by Micro
soft. Along with this specifIcation, Microsoft released a rudimentary device
driver very similar to DESQview's QEXT.SYS. Microsoft calls its driver
HIMEM.SYS, which the company describes as an Extended Memory Manager
(XMM).

This memory could not and cannot be used in any other way. It would not go
to waste (unless we let it) because if the HMA is not excluded from extended
memory, it is used as extended memory. What sets this block apart as a unique
memory resource is that you can use it for DOS and without leaving DOS
because, properly accessed, it belongs to DOS.

Even as fIrst released, QEXT.SYS could load a big chunk of DESQview's
code beyond 1024K. It set up a 64K code segment starting just 16 bytes inside
DOS's 1 Mb outer limit. That gave DESQview almost a full 64K of extended
memory, for a total just 16 bytes shy of 1088K. With further refInement, Quarter
deck now can load over 63K of actual DESQview code up there and run with it.
To date, no one has done it better or used the HMA more effectively than Quarter
deck does with DESQview.

106 DOS's mysterious "extra" 64K

Fool's gold
As a practical matter, Microsoft added nothing that was not already known and in
use when it released the XMS specification. DOS did not formally embrace the
HMA prior to the release of version 5.0. Microsoft's acknowledgment, however,
formalized the legitimacy of the area between 1024K and l088K as a unique
memory resource. With that, a number of other software developers have released
products that can reach beyond DOS's nominal limits to embrace a few more pre
cious kilobytes of memory accessible directly from DOS. The race was on, but all
that glitters isn't

Although the high memory area is closely akin to ffiM's VDISK in some
respects, it also is quite different. It is different in one critical way in particular:
VDISK, like any RAM disk for other virtual disk, can hold any number of different
programs or fIles simultaneously at any given time (up to the total of the RAM avail
able). You can keep cramming them in until you get DOS disk full error message.

You cannot store multiple files simultaneously with the High Memory Area
however. The HMA can hold one program only-just as VDISK is one program.
If you want a file you've stored on any virtual disk, you do not access that file
directly, rather you access the program that creates the illusion of being a disk and
access your files through it. Most users never really stop to think about it because
DOS handles all the details invisibly for them, but that's what is happening.

You can load only one program into the HMA because only one can have a
legitimate DOS starting address below 1024K (FFFFh). You could conceivably
load some stupid little lK or smaller TSR up there, but that would totally waste
the other 63K, with no way to recover it in any way DOS could benefit from
directly.

Ideally, you would like to fmd some program that used exactly 64K and not one
byte more or less, but that is highly unlikely. Ifyou are going to use the high mem
ory area most effectively, it is important that you load the biggest under-64K pro
gram (or divisable portion of a program) to waste as little of the block as possible.

This point is where you come in. As more and more software developers set
greedy eyes on the HMA, several seem committed to the credo that their use of it
is by some divine right more important than anyone else's could be, no matter
how much or how little of the HMA their software actually uses.

As more and more software comes along that wants the HMA, the time is
almost surely coming-if it isn't here already-when you, the user, are going to
have to make some choices. Even some of the slickest optimizing programs (like
QEMM's Optimize or 386MAX's Maximize), despite the job that they can do
relocating TSRs, drivers, etc. above 640K, can't help you here. You're on your
own and it can be a pretty tricky world out there.

Fool's gold 107

Gift or Trojan horse?
Along with the ability to load most of the DOS 5.0 kernel (47K) into the High
Memory Area, Microsoft has cleverly given us a new XMS memory manager,
HIMEM.SYS, with DOS 5.0 (similar in name but quite different for the XMS
driver supplied Windows 3.0). If you really hope to get the most out of your sys
tem, this manager is one gift horse you had best look at really carefully before you
let it in your system.

Admittedly, with H1MEM.SYS (or almost any good third-party XMS driver)
installed and a DOS=HIGH statement in your CONFIG.SYS, DOS 5.0 now can
load all but about 20K of its overhead into the High Memory Area. At first glance,
this arrangement is a tremendous boost, as shown below. With DOS 5.0 installed
in the conventional way (with the kernel loaded into conventional memory),
MEM shows:

655360 bytes total conventional memory
655360 bytes available to MS-DOS
590864 largest executable program size

3407872 	bytes total contiguous extended memory

3407872 	bytes available contiguous extended memory

As might be expected, DOS has used 64,496, leaving you just under 600K for use
by applications, etc. By loading DOS into the HMA using DOS's HIMEM.SYS
with the DOS = HIGH option, you have all but 17,056 bytes of your total 640K
available for use by your applications, TSRs, etc., as shown below.

655360 bytes total conventional memory
655360 bytes available to MS-DOS
638304 largest executable program size

3407872 	bytes total contiguous extended memory
o bytes available contiguous extended memory

3342336 	 bytes available XMS memory

MS-DOS resident in High Memory Area

This process has gained you 47,440 bytes of precious conventional memory for
use by applications software or whatever else you care to load down in conven
tional memory.

DESQview, as pointed out a little earlier, can load no less than 64K of its
code up in the HMA. That's an extra 16K. Letting DOS 5.0 have the HMA, there
fore, winds up costing precious memory down low instead of giving you a boost.
(I picked on MS-DOS here mainly because almost everybody likes to pick on
DOS.)

Digital's new DR-DOS 5.0, certainly one of the best DOS look-alikes to
come along, does pretty much the same thing up there, too. (DR-DOS 5.0 was

108 DOS's mysterious "extra" 64K

introduced a year or more before MS-DOS 5.0.) Unlike the MS-DOS HIMEM
XMS driver, Digital DOS's HIDOS.SYS is not restricted to using the HMA only
for relocating roughly 37K of its kernel about 640K. It can use any mappable
block it fmds that's big enough (40K minimum). Chalk up another one for Digital
on this feature.

Digging for gold the old fashioned way
Ultimately the test of how well any software utilizes the HMA-or any memory
resource other than conventional memory-is how much space you have left over
to run your applications. Beginning with version 4.01, DOS has provided a handy,
easy-to-use utility, MEM.EXE, to tell you how much space you have left and
more, as shown in Fig. 8-2, where the amount of conventional memory remaining
is spelled right out.

Conventional Memory

.ame 	 Size in Decilllal Size in Hex

MSDOS 52080 (50.9X) CB70
SETVER 400 (0.4X) 190
QEMM386 2416 (2.4X) 970
LOADHI 208 (0.2X) DO
LOADHI 208 (0.2X) DO
COMMARD 4704 (4.6X) 1260
DOSXEY 4128 (4.0X) 1020
FREE 64 (O.lX) 40
FREE 144 (O.lX) 90
FREE 590752 (576.9X) 903AO

Total FREE: 590960 (577.1X)

Total bytes available to programs
590960 (577.1X)
Largest executable program size :
590576 (576.7X)

3637248 bytes total EMS memory

2146304 bytes free EMS memory

3407872 	bytes total contiguous extended memory
o bytes 	available contiguous extended memory

1966080 	bytes available XMS memory

64Xb High Memory Area available

8-2 	 Beginning with release 4.0, MS-DOS has inCluded a MEM utility, which was considerably enhanced
in version 5.0. This screen was obtained using the Ie switch that was added in 5.0. DR DOS also has
a MEM utility that provides much of the same information but in a different-and in some ways,
more understandable-format.

Digging for gold the old-fashioned way 109

Actually the information has been available from DOS since before that even.
CHKDSK reports, as sort of an afterthought, the total conventional RAM on the
system and how much of it is free:

655328 total bytes memory
554128 bytes free

MEM, however, is much faster. When it is used with the optional/PROGRAM or /
DEBUG switches, MEM provides a good deal of additional information, though
more than the average user really wants or needs to know in most cases.

This information is of little value unless you know how much free memory
you had available before you started fiddling with the . HMA. If the HMA is
enabled, you need to start off by disabling it and checking to see how much usable
free memory you have available without it to gauge precisely how well any soft
ware you might want to load up there can utilize it.

From that point, using the HMA efficiently is just a matter of trial and error.
To do it right, you've got to deal with DOS as raw and unadorned as you can make
it. The easiest way is probably from a bootable floppy with nothing in the CON
FIG.SYS or AUTOEXEC.BAT except the specific software that you want to test.
You cannot test the software from within DESQview or Windows because a win
dowing environment might mask the actual numbers, as in the example shown
below:

203776 	 bytes total conventional memory
203776 bytes available to MS-DOS
123168 largest executable program size

3047424 bytes total EMS memory
327680 	bytes free EMS memory

3407872 bytes total contiguous extended memory
o bytes available contiguous extended memory

212992 	bytes available XMS memory

High Memory Area in use

This example is exaggerated, but it demonstrates that the size reported might have
little to do with the actual amount of memory available but rather only the way the
window is configured.

Once you have determined which one of your programs makes the best use of
your HMA, there are several possible strategies that you can use to put the one
you want up there. Most programs that can use the HMA give you a yes/no option
when you install them. DOS 5.0 will only use the HMA if you put a DOS= HIGH
line in your CONFIG.SYS.

MS-DOS 5.0 also provides another mechanism for controlling access to the
HMA. If the HMA is not used for the DOS kernel, you can specify some mini
mum size that will prevent any program smaller than the size you set from loading

110 DOS's mysterious "extra" 64K

in the HMA. This size is specified in the CONFIG.SYS on the HIMEM.SYS
command line as shown here:

DEVICE =HIMEM.SYS Ihmamin =nn where nn is the size in kilobytes

This method, however, is probably the least effective one because, unless you
know specifically what use your software could make of the High Memory Area,
you don't know whether you should set Ihmamin = to 5K or 50K. You don't even
need the Ihmamin = if you take more direct means of controlling HMA access.

However you go about it, the name of the game is to try to find whatever com
bination gives you the most usable conventional memory to run your applications,
after DOS and everything else is loaded. In the HMA, the game rules are a little
different, but the object is the same: whoever winds up with the most bytes wins.
So far, DESQview comes up the hands-down winner when it's in the game-but
then Quarterdeck was the company that found the HMA in the first place. Beyond
that you're strictly on your own.

Digging for gold the old-fashioned way 111

9

CHAPTER

Chairmen

of the board

How much memory you cram into your system doesn't matter. Whether it's just
that extra 384K left over from the megabyte your system probably came with or a
flock of megabytes, without a memory manager it isn't even there. You might as
well try to run your computer without an operating system. Yet so far, I have
looked at memory management only tangentially, concentrating mainly on the
several guises memory beyond 640K assumes and its various uses.

Although the hardware as pointed out repeatedly, must meet certain minimum
design criteria to allow effective software control, beyond that the software deter
mines how effectively that hardware is used. It is a team effort, but both the play
ers and the rules keep changing.

The changing face of management
You might expect that, because more and more TSRs and device drivers have been
written or updated to avail themselves of memory of one sort or another above
640K, the situation up there would only get more crowded and confused. If any
thing, however, the reverse would seem to be true because more and more TSRs
and drivers-including some that earlier relocated into upper memory between
640K and 1024K-are moving on out into the suburbs of expanded memory.

While this expansion has been going on, some of the more powerful memory
management packages like QEMM and 386MAX have gotten still more powerful
and turned what was an art requiring many patient hours on the part of users into a
science. Instead of having to spend hours working out elaborate loading strate
gies, these two programs supply utilities that completely and painlessly automate

113

the process. Not only are they painless, but they often do a better job.
How much better they work varies, and there might be situations where they

really aren't better. I know in my case, that, after many patient trial and error
hours, I had managed to load some 200K of TSRs and device drivers above 640K,
including the High Memory Area. I thought this amount was pretty good until I
used QEMM's Optimize. In just under 2 minutes, the program not only squeezed
an extra 4K into upper memory but, in the process, gave me an additional32K of
conventional memory.

On the flip side, however, I actually have space to spare these days in upper
memory though. In part, that is the result of new releases of some old favorite
TRSs and device drivers that require less high memory. In other cases, all-new
programs-again generally with smaller upper memory appetites-have displaced
old favorites.

Also, to avoid the second-generation RAM cram that was developing in what
Microsoft still refers to as reserved memory above 640K, a number of programs
have moved sizable chunks of code out into expanded memory, leaving just
enough in upper (or conventional) memory to mind the store. There are pro
grams, such as Headroom and PopDrop, that ease the crunch still more, if need
be, with swap-out strategies that can be used to stretch whatever upper memory
you've got still farther.

The net result is that, at this point, most users could probably live quite hap
pily with just the upper memory mapping capabilities of DOS 5.0's EMS emula
tor, EMM386.EXE, which, alongside anyone of several third-party managers, is
something ofa wimp. I'm not saying you should rush out and buy MS-DOS 5.0
or DR DOS 5.0, which has similar overall capabilities-and think you've got all
of the memory management you want or need. Even if you add a network card, a
data compression board, and maybe a special video adapter or mass storage media
device, things still can get overcrowded up there. You also could change your soft
ware, start using Windows 3.0, and see how little space it wants to leave for any
other programs up there. For these and other reasons, I will look in greater detail
in later chapters at the extra horsepower offered by some of the top third-party
memory managers, that can be well worth the added cost.

Duos, quartets, and one-man bands
In prior chapters, you have seen four different kinds of memory beyond 640K,
which means there are four kinds of memory to manage. Granted, it all comes
down to two basic kinds, extended and expanded. When you strip those two down
just a little farther, however, you have four kinds of memory management required
to cover all the bases.

Managing extended memory and its companion HMA is easy. DOS 5.0's
HIMEM.SYS is just a little over 11K and that does that about as well as anybody's

114 Chairmen ofthe board

XMS driver but just for extended memory and the HMA. As stated earlier, how
ever, that is the easy part of memory management.

Only when you dig into EMS expanded memory and begin mapping LIM 4.0
EMS memory to unused address space above 640K (but still within 1 Mb) do
things start getting complicated. And that isn't all that starts to get a little compli
cated if you let it because there are managers that:

• Only do extended memory
• Only do the HMA
• Do both the HMA and extended memory
• Do only EMS memory but do not support UMB mapping
• Do only EMS memory and do support UMB mapping
• Do extended and expanded memory only
• Are specific to proprietary hardware
• Do all four types on 80386s only
• Are for 286s

The list goes on. I think you see the problem, though. The kicker is that you can
only have one memory manager installed for each kind of memory that you need
managed. There are one or two notable exceptions. In some instances, if QEMM
is installed after certain other drivers, it completely takes over from them. In
doing so, they do not break the basic rule, however, because only one survives.
DOS 5's HIMEM.SYS does a fine job; however, its companion, EMM386.EXE,
is no match for QEMM, 386MAX, or any of the better third-party, 80386-specific
managers.

Even if you really like HIMEN.SYS, you'll most likely have to dump it if you
want a better manager for EMS expanded memory or mapping. Most expanded
memory managers are total packages that do everything. (Fortunately XMS driv
ers are not the sort of thing you can get emotional over.)

On the other hand, there are some 286 managers (including the proprietary
manager that comes with All Computer's ChargeCard) that do not support the
High Memory Area. To add HMA support, you must add QEXT or some other
driver that only does the HMA but does not conflict with any other features of the
proprietary driver specific to the ChargeCard hardware. However, the HMA, as
interesting as it is, is really only a peripheral issue. There is a bigger picture.

New directions
In looking at the field of memory management, today more than ever before per
haps, you need to look at it in terms of where you are going-or can at least expect
to go-from here. More than in any other way perhaps, the real significance of
MS-DOS 5.0 is the way it looks beyond the old 640K horizon.

New directions 115

Perhaps the most significant statement MS-DOS 5.0 makes is that not only
has extended memory arrived, but extended memory is the future. Expanded
memory and the ability to map memory to address space above 640K is supported
by DOS 5.0 (actively supported for 386s only) but really only as an afterthought
as far as Microsoft is concerned; you must install HIMEM.SYS, the new DOS 5.0
XMS driver for extended memory and the HMA.

There are some people in the industry already predicting the total demise of
EMS memory as we know it. That prediction seems unrealistic given the solidly
established software base that is dependant on expanded memory and the many
users who, by nature of the machines they are using, have no other avenue of
escape from 640K open other than expanded memory. There is no reason the two
basic forms should not continue to coexist, because expanded memory in no way
detracts from the overall superiority of extended memory.

Beyond the many other indications that the industry is moving above and not
just outside of 640K, in release 5.0, DOS for the first time has a mechanism that
allows most of the kernel-some 47K of it-to be relocated in the High Memory
Area. The mobility makes DOS 5.0 an active player in the IDMEM sweepstakes,
not just a passive host.

Relocating a major portion of the DOS 5.0 kernel, however, is a function of
the kernel and has nothing to do with DOS 5's HIMEM.SYS XMS manager
(unless the Ihmanin parameter is used and is set to some higher number than the
kernel would require). If the HMA is there, the kernel can relocate to it. It makes
no difference even which XMS manager you use-QEMM, 386MAX, or what
ever. If the High Memory Area is supported, the kernel can be relocated by sim
ply adding a DOS-HIGH line to the CONFIG.SYS.

Granted, the fact that 5.0 makes extended memory its first priority for 80386
systems (now even offering features usable only on 386 and higher systems) is
self-serving on the part of Microsoft since Wmdows 3.0 really is written for
extended memory. In the broader picture, however, the rationale clearly seems to
be a tacit acknowledgment of a changing world with changing needs that can only
be met by linear memory (including the HMA). It also seems to be an acceptance
of the fact that the world-even the DOS world-can no longer travel at the speed
of the 8088 pc.

Someone once said, "Don't never look back 'cause sumpthin' might be cat
chin' up." Depending on what you think might be back there, that might be pretty
good advice. It's not in this business. Here you'd better keep an eye out over your
shoulder or you'll get left behind. These days, that means that no matter what
you're doing with expanded memory and all the many benefits it still offers now
(and always will, certainly as long as there are 8088s and no doubt even after
that), extended memory is here.

116 Chairmen ofthe board

Getting down to brass tacks
As you can see from earlier chapters, extended memory is much easier to manage
than expanded memory. MS-DOS's new EMS emulator for 80386 and higher sys
tems (EMM386.EXE) is about nine times the size ofHIMEM. SYS, its compan
ion manager for extended memory and the HMA. From the user point of view,
managing extended memory is so cut and dried today that it should not even be a
factor when deciding on a memory strategy.

The real key to effective overall memory management then is still expanded
memory, despite the fact that the prime focus of the industry has now turned to the
extended memory arena. As long as you run applications in conventional memory
and need to maximize your use of DOS's megabyte, you will need expanded mem
ory. Given that fact and the complexity of the issues involved, you should look
closer at these issues and the way you manage your expanded memory.

There are proprietary EMMs that come with every board that's capable of
giving you expanded memory. DOS is in there too with EMS support for 386 and
higher systems only. Then, there are third-party EMMs, especially for 386s, that
claim to be better.

Times have changed, hardware has changed, but more importantly user needs
have changed. To a large extent, the changes in user needs were caused by an
increasing number of programs that now are written to use EMS memory (if it is
available), so you can use the memory they used to occupy down low for other
things. It is like having your cake and eating it too. Fortunately, while the number
of programs using extended memory was growing, memory management technol
ogy also changed dramatically, driven in part by a healthy competition between
developers of memory managers.

These technological changes were especially dramatic with hardware that
fully supported the LIM 4.0 EMS specification, which was no longer limited to
just that single 64K page in high RAM. The now legitimate function of backfilling
from 640K down and swapping out everything between, say 256K and 640K
(including running code, which still is running happily), makes it a whole new
ball game that imposes new demands on expanded memory managers. It should
match at least the capabilities of any add-in extended/expanded memory boards,
but at the same time be smart enough to recognize a computer that does not allow
it and adjust accordingly.

Probably about the only users who cannot reap significant benefits from
today's more powerful memory management tools are users still running with old
3.2 spec EMS boards. That problem will no doubt continue to haunt us for some
years yet to come, especially in the 8-bit 8088 bus area. Certainly, the problem
will remain as long as there are buyers more concerned with price than a proven
track record.

Getting down to brass tacks 117

Even after ruling out those problems, however, there still are significant dif
ferences, particularly in the ways different 386 managers allow users to fill in
upper memory gaps and provide space to offload system overhead and TSRs. I
discussed this specific area in much greater detail earlier where I dealt only with
mapped memory. There are some other management issues that need to be exam
ined yet, however.

Super specialists
Beyond the lingering 3.2 EMS problems I have discussed previously there are
some brand new memory management problems coming up with new high-qual
ityequipment. IBM, for instance, created a dilly with its PS/2 386 when they took
everything from EOOOh to FFFFh for system ROM-the top 128K rather than the
more modest 64K almost everyone else has been able to live with.

In rare defense of IBM, there was a reason for grabbing all that space. Look
ing ahead to OS/2, designers incorporated a lot of routines up there that have no
use under DOS. That reasoning, however, is of little consolation to DOS users,
who are stuck with all that system overhead.

Although the EMS page frame is commonly located at EOOOh, it's easy
enough to move it somewhere else. Moving it, however, doesn't leave much for
high memory use. So Qualitas took a hard look at that 128K ROM BIOS and came
up with a unique solution in a package appropriately named BlueMAX.

Qualitas has, in its own words, compressed BIOS. (This compression should
not be confused with the kind of data compression technology that squeezes extra
space out of your hard disk.) What Qualitas has done is simply to eliminate the
OS/2-specific portions of the BIOS from its rewritten version. Qualitas also threw
out ROM (Cassette) BASIC, that throwback to a time before PC's were even sup
posed to have floppy drives. Any PS/2 386 users who wish to use BASIC can use
GWBASIC, Quick Basic, or most other stand-alone BASIC interpreters or com
pilers instead of BASIC or BASICA when using BlueMAX.

Even in a normal 64K ROM region, there is a lot of empty space (a few hun
dred bytes here, a few hundred someplace else adding up to several kilobytes).
The total amount of memory saved or gained by all this pruning is in the order of
80K-80K of contiguous mappable address space, or about 65% of the original
size of the reserved BIOS region. Calls for any of the routines retained by the
compressed version of the BIOS have to be revectored and RAM-mapped to the
scavenged address space before they are of any use to you. These are pretty rou
tine management functions.

Combined with its other memory management features, BlueMAX often can
make available as much as a total of 212K of contiguous high RAM during the ini
tialization phase of booting a PS/2. (This number includes the 64K in the page
frame that can be borrowed for use when installing programs like DOS's FAST

118 Chairmen ofthe board

OPEN that require such huge chunks to initialize but require very little to actually
run.) The actual total varies from machine to machine depending on any network or
other adapters that might be installed. In any event, it is impressive.

This is doubly interesting because the same kind of BIOS compression
employed by Qualitas in developing BlueMAX is applicable to any ROM region.
Qualitas started with the PS/2 because:

• Its BIOS region is so large
• All PS/2 386s have essentially identical genuine ffiM ROMs

Unfortunately, with the great number of other BIOS ROMs in use by different
ffiM machines and clones (and even clones of clones), it seems improbable that a
BIOS compression scheme can be developed that is sufficiently generic to work
with all or even any major part of these systems. Rather, it seems they would have
to be taken on a case-by-case basis. At best, the saving starting with a 64K ROM
region would be smaller but still significant, especially if-as in the case of the
BlueMAX-the revectoring of the compressed BIOS resulted in a larger contigu
ous block of mappable addresses.

In the highly competitive third-party memory management market, Quarter
deck, not to be outdone, introduced its own PS/2-specific memory manager:
QEMM50/60. Not content with going toe-to-toe with Qualitas to stay in game in
the lucrative PS/2 market, Quarterdeck set its sights on recovering the whole
ROM area.

Gentlemen, start your engines
With the release 6.0 of QEMM 386, the race for the ROM region took on a new
dimension. Rather than merely compressing ROM to make it fit a smaller block of
precious real estate, Quarterdeck elected simply to remove it. (It was not so sim
ple in temlS of the technology involved, but certainly the most innovative
approach successfully implemented to date.) Not a simple upgrade from the ver
sion 5.x QEMM distributed up until about the time MS-DOS 5.0 was released,
release 6.0 would seem to represent the vanguard of the next generation of 386/
486 DOS memory management technology.

The key to Quarterdeck's new QEMM386 version 6.0 is its new QEMM
386.SYS driver, which can load all but about 4K of its own overhead above 640K.
The real story is in Scram!, one of two new powerful support utilities in this
release. Scram! simply declares open season on ROM.

Scram!, by moving ROM out of the upper memory region, typically can
increase the amount of available mapped memory by 98K to 128K to free that
address space for other usage. This applies not only to system ROM (typically
FOOOh to FFFFh, or EOOOh to FFFFh on PS/2s) but, in many cases, video ROM
and hard disk ROM as well, giving you a clean sweep and a block of contiguous

Gentlemen, start your engines 119

memory the likes of which you've never seen above 640K.
For some time, Quarterdeck's memory managers have been able to spot cer

tain parts of the system ROM region (differing from system to system) that could
be mapped over. That was simply a case of finding regions that were not needed
or at least not needed after the initial bootup phase-and mapping over them. This
scheme is entirely different. This scheme, using any of three different strategies,
moves all ROM out of the way.

To put things in perspective, not everybody really needs this total power. As
in everything else you do with your computers there is a tradeoff involved. The
memory you use for mapping has to come from somewhere. The more fully you
utilize these capabilities, the less EMS (or extended) memory will be left for nor
mal expanded or extended memory uses. For this reason, these are options that
can be)nable or not at the users option.

No matter how you look at it, however, the combination of features available
in QEMM with this release represents the most powerful overall DOS memory
management package seen to date. However, it also clearly seems to demonstrate
the fact that software is fast approaching the ultimate limits of what can possibly
be done under DOS.

Scram! 's three strategies generate the same amount of additional mappable
memory but differ in their approach. One strategy exploits memory management
and protection features of the CPU. This is called the protected method (MR:P).
Alternately, Scram! can use an EMS equivalent, which is called the mapping
method (MR:M).

Scram! 's third strategy will generally make less additional memory available
than the other two. Depending on the individual system, it might be more compat
ible, so this is called the compatibility method (MR:C). This mode attempts to
share the EMS page frame block with a selected ROM area. While QEMM, by
default, will do the choosing of what to map where, it still might be necessary to
fine-tune your individual configuration with a FRAME = parameter for the best
results.

The power to map ROM produces some interesting side effects that might not
be immediately apparent to many users. Copying ROM to RAM-often referred
to as shadowing-has been an accepted technique for some time, speeding the
execution of commands that would otherwise have to be read and re-read from
relatively slow ROM. By extending this to video ROM as well, you can signifi
cantly improve video performance in many cases as well (something that should
be of particular interest to anyone running graphics applications or using a graph
ics interface).

Unlike various attempts to provide additional contiguous memory for DOS
applications by revectoring the video itself-notably by Memory Commander and
previously (although it is no longer supported) by ALL computers in conjunction
with the ALL ChargeCard-Scram! leaves the actual video region unmolested.

120 Chairmen ofthe board

However, the graphics video can be mapped by QEMM as mentioned elsewhere
in this book, but that is a separate issue.

In addition to Scram!, Quarterdeck has another utility called Squeeze!.
Squeeze! can make certain previously off-limits areas above 640K available while
loading and initializing TSRs that run in less space than is required during load
ing. Although Quarterdeck has taken a somewhat different approach, something
similar had been done before and is discussed elsewhere in this book.

Quarterdeck also enhanced its automatic Optimize utility, adding not only
support for these new features but several others, including a new "view, browse
and play" function that allows youto perform what-if analysis. This feature is
great, especially for power users who want to try to second guess the job of relo
cating device drivers and TSRs Optimize has done.

Metoo
In addition to some of the unique memory management problems posed by certain
hardware, as software becomes increasingly complex with huge programs sup
ported now by extended memory, there is an accelerating trend toward special
ized, often proprietary, memory management as well. This trend is nothing new.
Quarterdeck's QEMM and DESQview were a team before Quarterdeck renamed
the package DESQview 386. In writing complex programs (DESQview certainly
has to fall into that category), it can be a great help if those writers can say, "Gee,
if we could do this with memory ..." and then do it: a tweak here, a diddle there.
If you want to squeeze the absolute maximum performance out of DESQview on
an 80386, QEMM is the way to go, or QRAM on a 286.

Windows 3.0 is another case in point. It needs some rather special memory
handling, as you will see in greater detail in the Windows chapter later on. Here,
at least two third-party manager developers, Quarterdeck and Qualitas, already
are marketing upgraded versions of their well-known 80386 products that include
specific Windows 3.0 support.

There is another side to this story, however, because the third-party support in
this case is not as third party as might appear at first glance. According to one
story making the rounds, Quarterdeck was the first to figure out some way to
make some special allowances for Windows 3.0; however, other stories would
have Qualitas in a virtual dead heat with its own tweaks and diddles. At which
point, Microsoft apparently said, "Whoa, if we can't stop you guys, at least let us
write a driver you can all incorporate." The result of that was a shared driver
apparently available to all developers-based on inside information.

There is still another group of software writers who, for one reason or
another, make the memory management needed by their programs integral to the
programs in such a way as to preclude the use of any other form of memory man
agement. An example of this approach is seen in VM386, a modular multitasking/
multiuser package that is featured in a later chapter.

Me too 121

Exceptions to the rule
From the beginning (once we got away from hardwired boards), memory manage
ment has been essentially a software function, limited mainly by the constraints of
the hardware-restraints of the basic system and of whatever add-in memory
boards might be installed. This was fine for 386 owners, but was of no help to 286
owners stuck with the design deficiencies of that chip.

Eventually, some clever designers figured out a way to get around the limita
tions of the 286-a hardware solution for ahardware problem. While other com
panies wrestled with the problem, a Canadian group hit the ground running with
something called the ChargeCard. This palm-sized card plugs into the socket for
the CPU chip-between the socket and the. chip. The ChargeCard's circuitry pro
vided raw memory management potential to the 286, without even taking up a
precious expansion slots.

The hardware couldn't do it all; you still had to have a software driver. Here,
the ChargeCard's creators made an even bolder move. If DOS was limited to
640K by having the video plopped almost in the middle of DOS's megabyte, they
would move the video. They would just pick up that 640K barrier, lock, stock,
and barrel, and plop it someplace else.

The immediate result was a supercharged 286 system with as much as 960K
of DOS-addressable RAM-as much as 50% more user memory. (It sounds easy,
but in practice All encountered problems with revectoring the video and at this
writing was no longer supporting this feature. A more recent entry to the 386
memory manager market, Memory Commander from V Communications, has
incorporated a similar feature, which I will examine in more detail in the next
chapter.) This system, in some ways, was more powerful even than the most pow
erful 386. It could even run virtually any 386-specific software, at a significantly
more attractive price than the cost of an accelerator card or system board swap.

Not content with that, while several other companies raced to develop similar
devices of their own, the ChargeCard people at All Computer set their sights not
only on using some of the same memory management technology to further
enhancing the power of the inherently more powerful 386 bit also to develop
another special card to make the advantages of memory mapping available to the
8088.

Add-on hardware support even for the 8088 is feasible, although not at a level
comparable to what can be added to an 80286. Unlike the strong upgrade market
All found for their 286 card, reaction was less enthusiastic for its 8088 card,
which has been withdrawn from the market. As of this writing, there was at least
one other company that was still marketing a similar add-on upgrade for the 8088
chip, but the cost effectiveness of any such upgrade is questionable at this point.
There are now several similar 286 hardware upgrade options available from Sota
and other vendors, which are breathing a lot of new life into lots of 286s.

122 Chairmen ofthe board

Shots in the dark
More recently (as mentioned in an earlier chapter), a couple of new memory man
agers for the balky, unadorned 286 have hit the scene, even offering some help to
owners of some better 8088 machines, as well. Again, the major players in the
game are Quarterdeck with QRAM and Qualitas with MOVE'M.

Although results vary significantly between machines from different makers,
neither of these programs are going to set the world on fire-particularly on an
8088. They are interesting and, at least on 286s, they aren't just dead ends in
themselves but can be carried over onto ChargeCard-upgraded systems. Quarter
deck in particular claims better performance than with just the software driver All
supplies.

You need to understand that with both of these (and presumably any look
alikes that might emerge from other sources), 286s are not all created equal.
Some are surely more equal than others, depending particulary on whose support
ing chip set shares the board. The best chip sets to date have come from Chips and
Technology and from NEAT (New Enhanced AT). These chip sets will not match
a 286 that has been hardware-upgraded with a ChargeCard, but you can expect
significantly better performance when mapping memory to the 640K to 1024 area
than with most other chips.

Getting downright pushy
Periodically, someone comes up with the idea of revectoring, or moving, the
video memory out of its comfortable but inconvenient location. Indeed, there are
ways it can be done with existing hardware and applications through clever mem
ory management programming. By relocating the video memory area up just
under the EMS page frame (or doing away with the page frame right up under
neath the system ROM), everything south of the border could be mapped with
RAM.

It is not just RAM, but RAM contiguous to 640K, forming an unbroken chain
of as much as 960K of linear addresses. Not only does the scheme allow DOS
applications to have more directly accessible space for files and data but, working
with one contiguous block (even though TSRs and device drivers would load in
conventional memory), they also would load more efficiently than if squeezed,
often wastefully, into fragmented upper memory blocks.

There's nothing really sacred about AOOOh and most of the address space up
to about BFFFh, so it's not surprising that that possibility keeps coming up.
Unfortunately, it's easier said than done. All Computers, Inc., for instance, at one
time supported revectoring and advocated its use. The company has since quietly
backed away from it, however. Although it does work, All found it does not work
with all software.

Getting downright pushy 123

More recently, a new third-party 386 memory manager featuring video revec
toring has been introduced by yet another company, a relative newcomer to the
scene. Aside from some other seeming flaws, it does present an opportunity to
reexamine the revectoring issue. On balance, it still doesn't seem to fly.

I was indeed able to get as much as 836K of contiguous memory and still have
a 64K page frame (at EOOOh). That amount does not represent a net gain of the
nearly 200K that the raw numbers would indicate, but rather a much smaller fig
ure, as reported in the Manifest printout shown here:

Memory Area Size Description
2F04 - 3019 4.3K COMMAND
301A - 301E 0.1K [Available]
301F - 302F 0.3K COMMAND Environment
3030 - 3037 0.1K PZP Environment
3038 - 39C8 38K PZP
39C9 - 39DO 0.1K MC Environment
39D1 - 3A12 1K MC
3A13 - D5FF 623K [Available]

Eliminating some 38K of overhead for a screen grabber (PZP) I use to catch
screens to use as illustrations as I go, this information would seemingly yield just
over 660K of contiguous DOS space to run an application. This example, how
ever, is a bare configuration, without any of my normal device drivers or TSRs
loaded (typically about 50K), which would more than offset that difference.

The net gain in the implementation at best is really not that great, as evi
denced by this second report:

Memory Area Size Description

OD01 - OE16 4.3K COMMAND

OE17 - OE1 B 0.1 K [Available]

OE1C - OE2C 0.3K COMMAND Environment

OE2D - OE35 0.1 K [Available]

OE36 - 9FFF 583K [Available]

= = = =Conventional memory ends at 640K = = = =

The report shows that about 35K less of the same usable memory is available on
the same machine using a different memory manager (QEMM) with no revec
toring and with 50K or so of device drivers and TSRs loaded into upper memory.
The key would seem to lie in the system overhead imposed by memory manager
(roughly 2ooK, in this case, before COMMAND.COM even starts to load, as
opposed to about 50K in the latter case). In any case, there's a lot more than just
the top number that you've got to keep an eye on.

I'll make one final point. I fell back on Manifest rather than capturing the

124 Chairmen ofthe board

http:COMMAND.COM

memory usage display screens this program gives because my screen grabber
wouldn't work with the video relocated. It would not even work with the contigu
ous memory reduced to 736K and the graphics memory retained except that
everything just moved up a notch. Other strictly text programs ran, but don't pack
your bags and move in that direction just yet. It might be time to make a move in
some direction, however, because the world is changing fast. In the closed corpo
rations of our world, the simple operating system itself is available with some
interesting look-alikes to pick from now; it is these corporate chairmen of the
board that hold the power for the direction of change.

Getting downright pushy 125

10

CHAPTER

Two times 5.0:

not quite a ten

As most users know, there are two DOSs to pick from these days: the Microsoft
variety and rival DR DOS from Digital Research. The question arises every time a
new DOS version is released as to whether an upgrade really is needed. The ques
tion now has yet another factor to consider: whose DOS do you choose?

As the DOS wars heat up between these two traditional rivals, the users ulti
mately will be the real winners. Maybe two times 5.0 did not add up to 10, but this
one's not over yet. Regardless of where this finally ends up, users have two power
ful contenders even now, both more powerful than anything seen before 5.0.

There are many similarities between the two DOSs-so many that you could
pretty much install DR DOS 5.0 on the machines used by your colleagues without
their even realizing you had switched their operating system. Until you get into
some of the more advanced features (options and switches that did not exist before
5.0), the commands and syntax are essentially identical. They are remarkably
identical (even odd-ball things like NSLFUNC are there in both of them).

Because they are so similar in many ways, it would not be fair to limit my
discussion here to strictly MS-DOS, especially because, at this point, both offer
memory management features formerly available only from such third-party EMS
specialists as Quarterdeck and Qualitas. Also, for the first time there is, I feel, a
truly credible alternative to MS-DOS-and don't think Microsoft hasn't felt the
heat.

DR DOS 5.0 was released a year or more before the new MS-DOS 5.0 and
not long before Microsoft, to their credit, began one of the most extensive beta
test programs ever launched to assure that the 4.0/4.01 fiasco was not repeated.

127

http:4.0/4.01

During that beta phase, several features introduced by Digital appeared-and
sometimes disappeared again-in succeeding MS-DOS beta copies.

As MS-DOS 5.0 finally emerged, it had features that weren't shared by DR
DOS 5.0 (although another release of DR DOS, which already has been
announced, ups the ante). The reverse also is true. Microsoft focused more on the
needs of less experienced users and the Windows market, while Digital's priori
ties seem aimed more at the power user market with advanced memory manage
ment features MS-DOS 5.0 just never quite caught up with, even given an extra
year MS-DOS had in which to get its act together in the war of the 5s.

I do not say that to be critical of MS-DOS 5.0 by any means. It is a very good
release, coming like a breath of fresh air after 4.x. There clearly are some philo
sophical differences behind the two DOS 5s. These are things that need to be
explored at this point, especially as Microsoft puts increasing emphasis on Win
dows and users are forced to make decisions.

Left foot, right foot
Marching to the beat of different drummers, it is not surprising that the two DOSs
start off on quite different footings as far as memory management for 386 and i486
machines is concerned. While both provide XMS support for extended memory
on 286 machines, only MS-DOS provides a true XMS driver for 386 and higher
machines, providing EMS emulation via a secondary driver (EMM386.EXE).
DR DOS, on the other hand, takes the more traditional direct LIM 4.0 EMS
approach with its EMM386.SYS driver that, unless you tell it otherwise, turns all
spare memory into EMS memory.

Although there are certain advantages that can be argued for either way of
going about it, to most users any difference there might be is not likely to be
noticed. Because Windows 3.0 chose to go the DOS-extender route, that simply
put a little higher priority on extended memory at Microsoft. Otherwise, for the
average user, it's kind of like which shoe you put on first when you get dressed: a
matter of habit rather than reason. However, there are some notable exceptions as
you will see a little later in this chapter.

The Microsoft connection
MS-DOS 4.0 offered token support for extended and expanded memory but of too
limited a nature to be taken seriously. This time, Microsoft is serious. The future
as Microsoft perceives it, surely motivated in no small part by Windows 3.0's
insatiable needs, is in extended memory: linear memory continuing from the
point where MS-DOS must stop and simply continuing as an unbroken string of
addresses.

MS-DOS's XMS driver, HIMEM.SYS, is the key to the entire MS-DOS 5.0
memory management scheme. While it paves the way to extended memory on

128 Two times 5.0

80286 and higher machines, it also provides access to the 64K HMA as well,
making it available either for its own use or to be used by other software written
specifically to use the HMA if it is available.

Not only does this address the needs of Windows 3.0, but extended memory
is a whole lot easier to manage than expanded memory, as evidenced by the rela
tive sizes of typical XMS drivers as compared to EMS drivers, the latter typically
on the order of 10 times the size of a typical XMS driver. Given that, MS-DOS
5.0 was written to allow the bulk of the kernel, some 47K, to be loaded to the
HMA.

To do this on an 80286 or higher requires only the following two lines in the
CONFIG.SYS then:

DEVICE = C:" DOS" HIMEM.SYS

DOS=HIGH

The first line simply loads the XMS driver to provide extended memory and
HMA support (assuming you have sufficient RAM installed, although any
machine that came with 1 Mb installed has enough for this at least). That line
should be at or near the top of the CONFIG.SYS. The next line is simply a loader
that tells DOS where to put the kernel (the default is LOW). That line can be
almost anywhere in the CONFIG.SYS.

Although the idea of moving the kernel out of conventional memory to make
room for bigger applications is hardly new (both PC-MOS and DR DOS did it
well ahead of Microsoft), this, from a memory management point of view, is
probably the most important new feature in this release. I say that because it is the
only memory management issue that cannot and could not be accomplished solely
by third-party memory management software.

The MS-DOS 5.0 kernel can be relocated into HMA memory provided by
any third-party XMS driver as easily as if HIMEM.SYS was used. However, the
kernel cannot move itself but rather requires the presence of a memory manager to
provide a place for it. The capability of being moved at all is something that must
be specifically written into the kernel-that and how and where it can be moved
to. It is critical that you understand this relationship in order to understand impor
tant differences between the two DOS 5s.

With an XMS driver capable of providing not only extended memory but a
High Memory Area on 80286 and higher systems, Microsoft elected to relocate
the MS-DOS kernel to the High Memory Area and only to the High Memory
Area, no matter how much spare memory you might have mapped to high DOS
address space-space going to waste perhaps-on 386 or higher systems.

Some 47K of the kernel can be relocated to the HMA, provided that no one
else is using the HMA. It is winner takes all in that block, unless you have another
program that can use more than 73 percent of the available 64K (DESQview can
use 63K or 98 percent). You are forced to make a choice, because MS-DOS can

The Microsoft connection 129

relocate the kernel to the HMA only. Either you put the kernel in the HMA or the
whole kernel is going to sit down in conventional memory the way it always has.

A cut above
In addition to offering an XMS Extended memory manager in this release, MS
DOS 5.0 for the fIrst time offers expanded memory emulation as well-full LIM
4.0 EMS expanded memory emulation, but only for use on 80386 and higher
machines despite the fact that even 8088 PCs and clones can use expanded memory.

Most of those 8088 and even many 80286 machines, however, can only have
memory available for nay usage beyond 640K by adding expansion cards, such as
the AST RAMpage. These generally provide their own proprietary memory man
agement software. Viewed in this context then, the limiting of expanded memory
support to the upper level of machines and catering specifIcally to features found
only on those machines makes sense.

EMS memory is the memory you need for any applications that require
expanded memory. It also is the only kind of memory that can be mapped to
unused address space above 640K on 386 and i486s. To have expanded memory
using MS-DOS 5. Os new scheme, however, you fIrst must have extended memory.
This is not an option. The new expanded memory emulator, EMM386.EXE, has
to fmd a chunk of extended memory that it can manage in a way that makes you,
your computer, and your software think you have expanded memory.

Because EMM386.EXE can work only when it has extended memory to
work with, it is critical that HIMEM.SYS be installed ahead of it in this manner:

DEVICE = HIMEM.SYS
DEVICE =EMM386.SYS

The EMS emulator does not have to be the next item in the CONFIG.SYS. You
can slip drivers or CONFIG.SYS-Ievel commands in between, but only if they do
not require the use of EMS memory. There is a defInite pecking order that must be
observed here. You cannot access extended memory until you have installed the
XMS driver. The same holds true for any items that will use EMS memory: the
driver for EMS memory can function only when it has extended memory already
in place to work with. The easiest thing then is simply to put any memory man
agement drivers right at the top of the CONFIG.SYS in whatever sequence they
must follow and be done with it.

Just having EMS is not enough
While many programs use expanded memory in one way or another, once you
have provided for the memory they need, the rest is up to them. This is not the
case when it comes to EMS memory that you want to map to high DOS address
space. While EMM386.EXE is capable of fInding some unused address space and

130 Two times 5.0

mapping to it, it can hardly be called aggressive in its efforts.
EMM386.EXE is blind to any empty address space that might exist below

COOOh or any that might be mappable above FOOOh. Operating within those con
straints on my own machine it can find only 75K in the DOS area that's mappable.
However, there are at least two other usable blocks on that machine, which means
that if I need more than just that one 75K block-which I always do-I have to
force the issue.

Fortunately, like most EMS drivers, EMM386.SYS can be forced. It can be
forced to include other blocks that might be usable. It can be forced to ignore
blocks it might think are open when you know you have a piece of hardware that
has not been recognized that early in the boot process. To do that, you must tell
EMM386.EXE what specifically to do as part of its command line in the CON
FIG.SYS. For example:

DEVICE = C: " DOS" EMM386.EXE 256 RAM 1= BOOO-B7FF i= F800 - FDFF
X=C800-CBFF FRAME = EOOO

DOS= UMB

Here, in addition to the 75K found by default, I've used I = statements to include
another 32K starting at BOOOh, plus 24K of ROM I know I can map over on that
machine starting at F800h. A data compression board was sitting at C800h, so the
address space it uses was excluded with an X= statement. For some reason,
EMM386.SYS wanted to put the EMS page frame at DOOOh, breaking even the
75K it found on its own into two smaller blocks so the FRAME = statement forces
it to use EOOOh as the starting address instead, keeping the 75K block intact. The
DOS = U M B (a separate command on a separate line) must be included to tell DOS
what to do with all that space-in this case, to map EMS memory to the available
Upper Memory Blocks. This is what you can do with EMM386.EXE in a typical
situation, as demonstrated in Fig. 10-1.

EMX386 successfully installed

Available expanded memory • 	 512 ltB

LIM/BKS version • • • • • • 4.0
Total expanded memory pages • • 28
Available expanded memory pages 4
Total handles • • • 64
Active handles • • • • • • • 1
page frame seqment •• • • • • EOOO H

Total upper memory available • • • 131 ltB
Largest Upper Memory Block available 75 ltB
Upper memory starting address • • • • • • BOOO H

EMX386 Active

10·1 	 If you can read really fast, EMM386. EXE quickly scrolls a message similar to this one as it loads.
This is only of general interest, however, and of little benefit when you are trying to utilize upper
memory.

Just having EMS is not enough 131

------------- --------------------- -------------

You've really got to read fast (or freeze the scrolling screen with Ctrl
NumLock) to read that as the system is booting. That opening screen really isn't
the information you need anyway. You're better off using the MEM command
with the Ie (classify) switch.

I loaded some drivers up there so you have something more to look at. Figure
10-2 shows what MEM displays in a typical situation with the kernel loaded to the
HMA.

C>MBIl Ie

conventional Memory :

N..e Si.e in Decimal Si.e in Rex

------------ -------------------- ------------MSDOS
RIMBIl
BKK386
COKKAND
PREE
PREE

15536
1184
8400
2624

64
627344

15.2lt)
1. U)
8.U)
2. &It)

(O.llt)
(6U.&It)

3CBO
4AO

20DO
A40

40
99290

Total FREE : 627408 (612.7lt)

Upper Memory :

N..e 	 Si.e in Deoimal Si.e in Rex

SYSTBIl 184320 (180.0lt) 2DOOO
RAHDRIVE 1184 (1.U) 4AO
SKARTDRV 17904 (17.5lt) 451'0
EGA 3280 (3. U) CDO
STACltER 22336 (21.8lt) 5740
MODE 464 (0.5lt) lDO
DltBD 1552 (1. SIt) 610
PREE 48 (O.Olt) 30
PREB 30880 (30.2lt) 78AO

Total FREB 30928 30.2lt)

Total byte. available to proqr... (conventional+Upper) 658336
(642.9lt)
Larqe.t exeoutable proqr.. .i.e : 627216
(612. SIt)

Larqe.t available upper .e.ory block 30880

(30.U)

458752 byte. total BIlS memory
65536 byte. free BIlS .emory

3407872 	byte. total contiquou. extended .emory
o byte. 	available contiquou. extended m..ory

1986560 	byte. available XKS ...ory
MS-DOS re.ident in Riqh Memory Area

10-2 	 A MEM report with the Ie (classify) switch showing over 612K of conventional memory with the
kernel loaded in HMA, half a dozen device drivers loading into upper memory, and space still
remaining for more. However, this does not show the addresses where specific drivers are loaded.
That information requires running MEM again with the Id switch.

132 	 Two times 5.0

What this figure shows is that I've loaded all four of those device drivers plus
two small TSRs (from the AUTOEXEC.BAT) into upper memory blocks. There
still is over 30K that can be used up there. That's not bad for an afternoon's work,
and even better considering it only took minutes to do-just long enough to add
the EMM386.EXE driver and the UMB, to change all of the DEVICE = statements
to DEVICEHIGH = statement and to reboot.

This was a fairly easy case. By the same token it was fairly typical and clearly
well within the capabilities of anyone who can write and/or edit a CONFIG.SYS.
Even without getting fancy, there should be enough power here for many users
probably for some time to come.

Still, they all won't go this easily. There are some nasty programs out there
that require a lot more memory during loading than they need to run. To make
things fit, you sometimes have to juggle things around. Sometimes you have to
change the loading order by changing the order things are called for in the CON
FIG.SYS (or AUTOEXEC.BAT for TSRs). Sometimes when all else fails, you
simply have to let the overflow load low, which then comes down to trying to
squeeze the most bytes into upper memory, so you have the fewest spilling over if
you want to do it right.

When you get into having multiple blocks of mapped memory to work with,
working out a loading sequence that packs the most in becomes much more of a
problem. MEM used with the /d (or /debug) switch can help by providing specific
address information as shown below (left hand column):

01E4DO
09FFFO

OCD010

OD7FOO
OD7F40
OD8120
OD8170
OD8750

MSDOS
SYSTEM

10
RAMDRIVE

E:
SMARTDRV

SMARTAAR
EGA

EGA$

STACKER

F:
MSDOS
MODE
XYKBD
XYKBD
MSDOS

081B10
02D010

OOAEEO
0004AO

0045FO

OOOCDO

005740

000030
0001 DO
000040
0005DO
0078AO

-- Free -
System Program

System Data
DEVICE=
Installed Device Driver

DEVICE=
Installed Device Driver

DEVICE =
Installed Device Driver

DEVICE=
Installed Device Driver

-- Free -
Program
Environment
Program
-- Free -

This however gives no indication of the space required to initialize (to load) any of
these drivers, which is often significantly larger than the space to run them once

Just having EMS is not enough 133

they settle in. Just because the raw numbers seem to indicate that you've got the
space to load another one doesn't mean that you can make it happen, even if you
try a lot of different loading sequence combinations. This problem was discussed
in an earlier chapter; however, because of its importance, I will discuss it again
later in this chapter.

Despite the fact that MS-DOS 5.0 lacks amenities provided by some of the
better third-party memory managers-amenities that make life easier above
640K-the raw power is there. I was pleasantly surprised how well the HIMEM
.SYS/EMM386.SYS duo works with only just a little help.

From digital research: DR DOS 5.0
Outwardly DR DOS 5.0 is so close to being a perfect clone for MS-DOS that you
could probably slip it over on most of your friends or colleagues without their
even knowing. DR DOS 5.0, however, is unique in many ways. Derived from a
different ancestry, it is philosophically quite different. Nowhere is this more
apparent than in the area of memory management.

Much of what was said about MS-DOS 5.0 applies equally-or nearly so-to
DR DOS 5.0. I'm going to cut right to the chase and focus on the primary areas in
which they differ in the way they manage memory, pointing to specific differences
when and where they're really relevant.

First off, I need to define the fundamental underlying difference between the
way these two DOS 5.0s manage money. Microsoft, as pointed out above, has put
its emphasis on extended memory, using an XMS driver as the cornerstone of its
entire memory management strategy. That XMS driver, in addition to providing
extended memory, supports a 64K High Memory Area (that extra 64K DOS can
access in real mode although it lies beyond I Mb, making that HMA available as
an alternative to loading the bulk of the DOS kernel in conventional memory).

Digital, as stated earlier, has gone a different route, making EMS memory its
primary concern for 386 and higher systems. Digital provides an XMS-compliant
driver only for the 80286 user base to whom EMS memory mapping to address
space above 640K is an option except in special situations that their HIDOS.SYS
driver can accommodate.

Digital also has written the kernel in a way that allows a good part of its bulk
to be relocated above 640K. On an 80386, it can be given a starting address right
at the top of DOSs 1 Mb of address space and can be loaded into the address space
that, with an XMS driver, is the High Memory Area. DR DOS's 386 memory
manager, EMM386.SYS, is not an XMS driver, so the kernel is loaded into that
never-never land just above 1 Mb. However, it isn't in the High Memory Area
because EMM386.SYS is not an XMS-compliant driver and, therefore, does not
support the HMA.

134 Two times 5.0

More than just a matter of semantics
The fact that DR DOS's EMM386.SYS is not a true XMS driver despite the fact
that it can relocate the bulk of the Digital kernel just above 1024K in an area
which is the High Memory Area as defined by the XMS specification is more than
simply a matter of semantics. Under the industry-standard XMS protocols, the
area between 1024 K and 1088K can be accessed by any software adhering to
those protocols (it's called HMA-aware). As discussed earlier, it is up to the user
to decide which, if any, of his or her programs get to have the HMA. However,
Digital's 386 driver does not abide by the XMS protocols for access to this area;
therefore, despite the fact that DR DOS can use that address range for its own
purposes, it cannot make that area available to other programs that are HMA
aware.

This phenomenon is not unique to DR DOS, but is common to several other
packages including PC-MOS, one of the multiuser multitaskers I'll discuss in the
next chapter. That address space is not wasted if the kernel is not relocated above
1024K, but is normally available to other software only as extended memory.

On the other hand, by going the route Digital has chosen, it has not limited
itself to only the space above lO24K to relocate its kernel as Microsoft has done.
With DR DOS 5.0, you can, at your discretion, relocate the kernel to any contigu
ous address block above 640K that has a minimum of something like 38K or EMS
memory mapped to it.

In its next release, Digital has taken this still farther, breaking the DOS kernel
into several smaller modules that can be loaded all together, if there is a block
sufficiently large, or separately in smaller blocks. It just doesn't get much better
with a real mode operating system.

This opens up a number of possibilities, not the least of which is using one of
Digital's memory management utilities (HIDOS.SYS) in combination with a
third-party driver like Quarterdeck's QEMM, which does provide XMS support
for a High Memory Area. Although this does not seem to be documented in the
user's guide, it is detailed in supplemental release notes and is not only a viable
option but a highly desirable one for DESQview and many users with specific
memory management problems that involve a combination of HMA and upper
memory usage.

Because Digital's EMM386.SYS memory management scheme for 80386
and higher systems revolves around the use of EMS memory, Digital provides, out
of a necessity, a separate drive, HIDOS.SYS, for 80286s. This one, unlike Digi
tal's 386 driver, is an XMS driver that supports the use of the High Memory Area
as a distinct entity.

HIDOS.SYS not only provides extended memory and HMA support but,
when used with supporting hardware, can make upper memory available on 286s.
Here, however, supporting hardware is the key and, as of this writing, only com
puters using Chips and Technologies LeAPSet, LeAPSetsx, NEAT, and NEATsx

More than just a matter ofsemantics 135

chip sets provide the level of support required. In the next DR DOS release to
follow 5.0, this has been extended to support still other chip sets. This is some
thing MS-DOS does not address at all at this point, nor is it likely to in the fore
seeable future, barring a total overhaul of HIMEM.SYS and its total strategy.

Interestingly, HIDOS.SYS is also the management utility that can be teamed
with third-party memory managers like QEMM or 386MX, making it possible to
put 38K of the DR DOS kernel pretty much where you want it above 640K. Here,
it does not perform a memory management role per se but rather, under the auspi
ces of a third-party memory manager, serves only as a loader, managing the relo
cation of the DR DOS kernel into memory provided by the other driver.

To put this in perspective, using this technique and combining Quarterdeck's
QEMM.SYS with HIDOS.SYS, DR DOS gave me nearly 600K of contiguous
conventional memory to run applications-598K to be exact. I still had another
113K mapped to upper memory blocks, plus the HMA to work with, which is
more than enough to satisfy the needs of DESQview plus another driver or two.
Because I rarely run in graphics mode, I could have grabbed video graphics block
between AOOOh and AFFFh to add still another 64K to the pot if I had needed it.

Some people might argue that introducing a third-party memory manager is
not fair when comparing the relative merits of DR DOS 5.0 and MS-DOS 5.0.
Regardless of what it took to do it with DR DOS, this is performance I have been
unable to match during months of working with MS-DOS 5.0. Fair or not, I rest
my case.

Additionally, DR DOS provides a special EMS driver, EMMXMA.SYS, for
use with memory cards compatible with mM XMA memory expansion cards.
This driver maps memory to a 64K window within the range from COOOh to
DFFFh and can be assigned only a fixed portion of the available memory
resources to use as LIM 4.0 EMS memory or, if no limit is specified, can take
whatever it can get.

To load TSRs, drivers, and the DR DOS kernel above 640K, Digital supports
a command set, which, with the exception of HINSTALL, is similar to those pro
vided by Microsoft for MS-DOS. All of them default to loading in conventional
memory when insufficient upper memory is available. They include:

HIDOS=ON/OFF Used in CONFIG.SYS to load the kernel high or to
force it low.

HIDEVICE = Used instead of DEVICE = in CONFIG.SYS to load the
drivers to upper memory

HINSTALL= Similar to the INSTALL command in both DOSs,
except that it loads supported TSRs to upper memory
from CONFIG.SYS

HILOAD Used from the command line of a batch ftle to load
TSRs to upper memory

136 Two times 5.0

Although the names might differ slightly from their MS-DOS counterparts, they
function similarly, except for HINSTALL.

HINSTALL is the exception, differing from INSTALL only in that, when run
from the CONFIG.SYS rather than from the AUTOEXEC.BAT or command
line, it loads TSR's above 640K rather than in conventional memory. INSTALL,
in my opinion, is generally counterproductive in either DOS, with the emphasis
these days on loading things above 640K whenever possible. DR DOS's HIN
STALL which does not have a MS-DOS counterpart, is very interesting, doubly
so when combined with the multiple CONFIG.SYS configurations options sup
ported by DR DOS.

Configuring your system on the fly
One of the neatest options DR DOS adds to the equation has nothing to do with
memory management per se; it just makes life a whole lot easier as far as optimiz
ing your configuration is concerned. Digital has endowed the CONFIG.SYS with
batch file-like branching capabilities, even adding an extra feature that will pause
and prompt for input as it runs. This allows the option to choose between several
different configurations and, within each configuration, to choose which device
drivers you load for that particular session.

Microsoft really missed the boat when it failed to pick up on this one, because
different configurations can even include installing different memory managers.
You can use 386MAX with its instancing feature and whatever else you might
want specifically for a Windows session, use QEMM for DESQview, use still
another configuration to use DR DOS's own memory management tools, or use a
bare configuration for a VM386 session. Because it is so like batch file program
ming, anyone who can write a batch file can use it. A typical DR DOS CON
FIG.SYS might look something like the model shown in Fig. 10-3.

In addition to the flexibility this affords once you have your system fully con
figured, it is a great development tool when fme-tuning your system. You can
leave your existing configuration intact but still experiment as much as you like
without ever losing the ability to return to your old, proven configuration simply
by rebooting.

Choices, choices
So there are not one, but two DOS 5.0s, coming from the two arch rivals that first
squared off against each other for the early PC market. In their primary function
as disk operating systems, both look pretty good. I would be hard put to make an
irrevocable commitment to either over the other. In terms of actual memory man
agement beyond 640K (which is what this book is all about), however, after work
ing extensively with both, I have to give a definite edge to Digital for offering
more options, particularly when it comes to relocating a big chunk of the kernel.

Configuring your system on the fly 137

?"OO you want to run .tandard configuration?" GOTO STAJlDARD

?"OO you want to run DBSQvi.w?" GOTO DBSQvi.w

?"oo you want to run a WIIIDOWS ••••ion?" GOTO WI.

:STAJlDARD

?d.vic.=a:\drdo.\ema386 ••y. /BDOS=PPPP /P=BOOO /AUTOSCAH=AOOO-PPPP

/EB=1024 /USB=P800-PDPP /BXCLUDE=C800-CCPP

GOTO COMMO.

:QEMM

DEVICE=C:\DOS\QBMM\QEMM386.SYS RAM ROM BXCLUDB=C800-CCPP AU DMA=32

DEVICB=A:\DOS\RIDOS.SYS /BDOS=AUTO

RIDEVICB=device

RI.STALL=TSR program

GOTO COMMO.

:WI.

:COMMO.

?RIDEVICE=••••

10-3 	 DR DOS supports a prompting feature and batch file-like branching that allows users to select from
customized configurations when booting. The question mark, which causes DR DOS to pause and
prompt for input, can preface branching commands or individual loading options. Note how
optional configurations can include both device drivers and TSRs not common to any other config
uration.

Also, DR DOS's HIDOS.SYS XMS driver provides special support for com
puters using Chips and Technologies LeAPSet, LeAPSetsx, NEAT, and NEATsx
chip sets- something not provided by MS-DOS's flagship XMS driver. Addition
ally, I think DR DOS's MEM, with its graphic presentation (Fig. 10-4) and
greater number of display options, runs rings around MS-DOS's MEM.

Otherwise, I have pretty much found that, if you can do it on a 386 with MS
DOS 5.0's HIMEM.SYS plus EMM386.EXE, you can do it with DR DOS 5.0's

1<------------------ Conv.ntional ...ory -------------------->
Oh 10000h 20000h 30000h 40000h 50000h 60000h 70000h
OE 64E 128E 1t2E 256E 320E 384E U8E

iii
5 6 781MB

80000h AOOOOh BOOOOh COOOOh DOOOOh BOOOOh 100000h
> >1< 	 Upp.r ...ory ---------------:>1

E.y: I=RAM I=ROM m=Shadow ROM I=EHS

655,360 byte., (640E), oonv.ntional ...ory

587,488 byte., (573E), larqe.t available blook

3,407,872 byt•• , (3328E), extended ...ory

3,407,872 byt•• , (3328E), extended ...ory u••d

o byte., (OE), extended .e.ory available

10-4 	 A portion of a DR DOS MEM display. Six switches (plus a help switch) allow data to be displayed in a
tabular form that is more concise and generally easier to interpret than MS-DOS MEM data.

138 7Wo times 5.0

EMM386.SYS. Having said that, however, both of them are running just about
two years behind the leanest, meanest third-party competition in the memory
sweepstakes: most notably Quarterdeck, Qualitas, and more recently All Com
puter's 286 and 386 memory management offerings.

Singularly lacking in both DOS 5s are tools like QEMM's and QRAM's auto
matic memory Optimize utility and Manifest or 386MAX's Maximize. These two
were joined recently by all Computers, which now provide utilities to automati
cally optimize memory usage with both its 286 and 386/i486 memory manage
ment packages. This would be my biggest complaint with both of them.

For the power user experienced in working above 640K, the basic tools that
the utilities provide are good-not great, but certainly adequate to meet the needs
of most 386, i486, or even 286 users. In both cases, however, that falls considera
bly short of making it happen. Ironically, the better you are when it comes to
working above 640K, the more this becomes a problem.

Don't send a boy to do a man's work
This shortcoming 90mes back to the same problem I addressed in another chapter,
which essentially comes down to the simple fact that no 386 memory management
scheme is really any better than its ability to help you locate address blocks that
can be mapped. This is especially true when mapping over ROM addresses,
which is something few users would even attempt without some guidance-few
even with guidance for that matter-with an extra 24K or even more located up
there that can be used sometimes, it is surely worth the effort.

Ironically, the better you become at sniffmg out the last possible blocks of
mappable address space, the more impossible it is in many cases to develop a suc
cessfulloading strategy by trial and error, which is the only method available with
either of the 5s. If your needs for upper memory are modest-say only two or
three device drivers and maybe a TSR-and, as one of the cases cited above, the
driver by default only finds a single contiguous block of mappable address space,
the task is generally pretty easy.

Compound the problem by fragmenting upper memory and then adding to
that the fact that many drivers and TSRs require a bigger block to load to than they
need to run while others might not, you then get into a sequencing situation. The
chart in Fig. 10-5 demonstrates the astronomical numbers of possible loading
combinations you can run into-more than you could possibly try if you did noth
ing else for several years, in some instances.

Even with mappable upper memory fragmented into only three noncontigu
ous blocks-as in several real life examples used earlier in this chapter-if you
have a total of six TSRs and/or device drivers that you want to load up there, there
are nearly 1300 possible ways to try to make them fit. Even assuming you have
enough total memory available, you can be pretty sure only a few combinations

Don't send a boy to do a man's work 139

HUKBER OP SEPARATE UPPER MEMORY BLOCKS MAPPED
3 4 5 6

HUKBER 3 162 384 750 1,296

OP 4 1,944 6,144 15,000 31,104

RESIDENT 5 29,160 122,880 375,000 933,120

PROGRAMS 6 524,880 2,949,120 11,250,000 33,592,320

10-5 	 As the number of TSRs and drivers loaded in upper memory multiplies and the number of sepa
rate blocks increases, the number of possible loading combinations becomes astronomical, mak
ing it virtually impossible to maximize the use of upper memory without the kind of special
optimizing software furnished only by better third-party memory managers from Quarterdeck.
Qualitas, and ALL Computer.

possibly only one or maybe even none-will actually make them all fit in like
pieces of a puzzle.

Admittedly, for the power user experienced in working above 640K, the basic
tools provided by either of the DOS 5.0s are good-not great, but probably ade
quate to meet the needs of most 386, i486, or even 286 users. However, in both
cases,that falls considerably short of making it happen. This is where you could
really use some help-a lot of help perhaps, especially if you're not used to deal
ing with this kind of problem. This kind of help is something neither DOS 5.0
provides.

Pick either DOS as a basic operating platform that best suits you. You will
surely learn from the experience. However, with either of these DOS 5.0s, if you
really want to score a 10 in managing and using whatever memory resources you
have-or expect to have-beyond 640K, you'd better look beyond just what either
of these DOSs have to offer when it comes to really putting memory above 640K
to work.

140 Two times 5.0

11

CHAPTER

Entry level

answers

Many of the ways of unlocking the power beyond 640K are only remedies for
users with sophisticated hardware-something better than an 8088 at least -and
increasingly suited for nothing short of 386s it seems. Yet there are many ways
that even 8088s can perform in ways that far exceed the wildest dreams of the cre
ators of the original PC and do so on a daily basis.

Remember, it was the 8088 that first made expanded memory a fact of life.
(Conceptually expanded memory dates back to main frame technology and was
used by Apple prior to 8088 PC, but this was the point at which it entered on the
PC scene.) Because of the tremendous installed base of 8088 machines-and the
continuing market for such machines-there are many options open at this level.
In this chapter, I will explore some of the ways of breaking the 640K barrier with
even the most modest of machines. However, these are not strictly entry level
answers-anymore than DESQview or Windows are exclusive to the high-end
market. So these are, to varying degrees, all valid in conjunction even with the
hottest and most powerful machines available today; however, all are suited to the
8088 environment.

Some of these involve the use of add-on/add-in hardware: memory expansion
boards, external printer buffers and spooiers, modems, FAX boards, and the like.
Others, like task switching in its various forms, are largely software solutions
and, as such, are available to almost anyone at any level. So this is where I'll start.

Other than the DOS extender, the ability to perform more than one task con
currently on a computer has been one of the greatest breakthroughs-and one of
the greatest boons to productivity-since the introduction of a practical desktop

141

computer itself. However, even what is generally called-and will consider in the
context of this book to be-true multitasking, is only an illusion-a conjurer's
trick. It should come as no surprise then that there are different levels of creating
that illusion.

More room with HeadRoom
Initially introduced as offering a way to load as many TSRs as you wanted without
using up a lot of precious memory-on the order of what can be done with Pop
Drop-HeadRoom has matured to become a unique tool capable not only of play
ing "now you see it, now you don't" with TSRs but with applications, too.

This is not a multitasker in the sense that DESQview or Windows multitask
(i.e., actually being able to keep multiple programs running concurrently). It is a
task switcher that is so powerful that it can actually pop up a big TSR-any TSR
you happen to have loaded-in the middle of any application you have loaded,
regardless of the total memory the combination of those two programs might
reqUIre.

Let me say that once again: with HeadRoom you can pop up a big TSR-any
TSR you happen to have loaded-in the middle of any application you have
loaded, regardless of the total memory the combination of those two programs
might require, even if that total exceeds the size of the largest single program you
can run in the space left over after loading DOS and HeadRoom (HeadRoom itself
requires about 50K). This presumes that each program can run independently in
something under 640K. In other words, each program has to be able to load and
run on just an ordinary PC under DOS.

It's all an illusion. Even though it might appear on the screen as if HeadRoom
has popped your favorite whooping TSR up in the middle of your most whopping
program, the program code-enough at least to make room for the TSR code-has
been swapped out and stays swapped out until you're ready to exit from your TSR,
so HeadRoom can swap your application code and/or data back into conventional
memory again. Actually, HeadRoom doesn't have to be fussy even about which
blocks of foreground code or data it swaps out to make room for a TSR you've
called for, because the application is suspended while the TSR is popped up any
way.

At no time do you actually have more real memory than you started with.
Sometimes you would swear you do, however, particularly if you've got a fair
amount of expanded or extended memory available.

By default, HeadRoom looks first for expanded memory to work with. Fail
ing that, the next best bet is extended memory. If all else fails, HeadRoom has the
capability to swap things to and from a disk-but only as a last resort. This is in
marked contrast to MS-DOS's new task swapper (part of the MS-DOS 5.0 DOS
SHELL), which can swap only to disk no matter what else is available.

142 Entry-level answers

One of the nicest features for anyone who doesn't have enough real memory
to go around is that HeadRoom allows you to specify the preferred swap medium:
extended or expanded memory or to a disk. This allows you to better manage what
resources you have, saving precious expanded or extended memory for only those
applications and TSRs you use most where disk swapping would cause the great
est inconvenience.

One of the significant features about HeadRoom is that it can swap out pro
grams-even some of the particularly older TSRs-that refuse to run in upper
memory on 386s. It gets them out of the way-out of conventional memory-just
as effectively as if they normally would, but it never actually runs them anyplace
except in conventional memory where everybody's happy. You really can have
your cake and eat it, too. I'm not advocating the use of HeadRoom as the ideal 386
solution; however, it is interesting.

Another interesting feature is that HeadRoom allows programs TSRs of under
64K in size to be loaded directly into the EMS page frame address area. This, it is
claimed, speeds access to any such TSR by as much as 30 times, presumably
based on disk swap times. This also presumes that the page frame is not needed to
access expanded memory being used by other TSRs or applications-in which
case, anything loaded into the frame must be swapped out of the way. However,
certainly the more direct the access the more immediate the response. To load
specifically to this area, HeadRoom provides a special loader called XRUN.

HeadRoom also supports the loading of device drivers into high DOS mem
ory on any machine that supports memory mapping to addresses above 640K;
however, this feature is not available on 8088 machines. To accomplish this, two
proprietary device drivers are supplied: CDEVSWAP.SYS for character device
drivers (printers, display, keyboards and pointing devices, etc.) and BDEVSWAP
.SYS for block device drivers (typically nonstandard storage devices). You have to
exercise a little judgement here, however, because the device driver swappers are
larger than many device drivers (VDISK.SYS or ANSI.SYS for example) to a
point that really makes it impractical. Still, it can be done, which makes you won
der why this kind of thing hasn't been exploited by other software developers.

This one is a little trickier to set up than Carousel, for example. The docu
mentation leaves a lot of unanswered questions that could baffle an entry-level or
even a reasonably experienced user. As shown in Fig. 11-1, it does have a fairly
extensive menu system and on-screen help available, but not enough to meet the
need. However, Helix prides itself on having a fine and readily available technical
support staff (accessible toll free), but I have some reservations about the ability
of some users to know what questions to ask.

In its use of expanded memory, HeadRoom fully supports the LIM 4.0 EMS
specification-something Software Carousel does not do at this time.

On the debit side, HeadRoom does not allow you to adjust the amount of
memory that each application receives so that you can create smaller windows for

More room with HeadRoom 143

HEADROOM SMap Manager Uersion 2.91a

Cop'ypight (c) 1988, Helix Softwape COMPany, Inc.
HIADROON
Hue (I: Slipped in) Actv Key Shift Mode S.ap Location

C n:Heb 12:ChapJe papaMeteps F3:New Activation key F4:0!tions
r5:RAI info Alt/C:Window Colors F18:Load into MeMory ESC:Exit

I!:================== Uel' 2.81a:
11-1 	 HeadRoom no longer simply manages TSRs, but now swaps applications in and out of expanded, extended

virtual memory as well. However, this is task switching rather than true multitasking.

smaller applications to make what memory you have go further-something Car
ousel has always done. However, as mentioned earlier, it does allow you the
option of always swapping certain applications (and/or TSRs) to disk to save what
RAM you have for your most important tasks. Also, at this writing, HeadRoom
cannot be loaded above 640K on machines that support memory mapping.

There are some specific warnings attached to using HeadRoom:

• Any disk caching programs must be installed ahead of HeadRoom. This

also is true of Carousel, DESQview, Windows, or even individual applica

tions.

• Helix specifically recommends against the use of Microsoft's HIMEM

.SYS memory manager.

• HeadRoom does not support Windows/386 or Windows 3.0, except in real

mode and on 286s.

• HeadRoom does not support DESQview 386; however other versions of

DESQview are supported on 8088 and 80286 machines. HeadRoom also

will run nicely under QEMM on 386 machines.

144 Entry-level answers

Overall, HeadRoom has to be one of the hottest entry-level options going at this
point and close enough to multitasking that it just might serve your needs for quite
some time to come.

Context switchin~:

Carousel's revolvmg door approach

Software Carousel from SoftLogic Solutions was one of the first task switchers to
attract a following and to carve out a legitimate niche in the marketplace. It was
with Carousel that I first enjoyed the benefits of task switching on an old PC.
Today's Carousel is a far cry from the Carousel of yore, however.

More conservative in its approach than HeadRoom, through the years, this
venerable product has quietly matured in subsequent releases to a point that,
beginning with release 5.0, Carousel has even supported two displays displaying
separate applications simultaneously. For instance, you can have your spreadsheet
data in front of you on one screen for reference while writing a report using a sep
arate monitor for your word processor. In a more typical configuration, you can
have up to about a dozen applications loaded simultaneously, each with its own
files open, switching back and forth between them with a simple keystroke combi
nation of your choice.

Now, vying for the 386 market, the Carousel program itself-some 6OK
now can be loaded above 640K, which, when run under MS-DOS 5.0 with the
DOS kernel relocated to the HMA, allows for windows of up to about 619K
about the biggest you can ever hope to run under DOS. A number of other new
features have been added to the current 5.x release including mouse support and a
more sophisticated printer buffer.

Improved support has been added for FAX or modem communications. Now,
programs-typically communications packages-can be preset to load and run
automatically at preset times, in addition to a number of other clock/timer fea
tures. Carousel also has added a slick new cut -and-paste facility with formatting
capabilities that facilitate the transfer of data between different types of applica
tions (groups of spreadsheet cells into a word processing document, for example).
For programmers, there is a new API that allows specific Carousel interfaces to
be written in either C or Assembler. It comes with a library of ready-to-use C rou
tines.

As the name Carousel suggests, the trick involves exchanging the whole con
tents of entire blocks of EMS memory-up to a maximum of about 544K each,
depending on system overhead. The swap involves not only whatever applications
package and any TSRs that you've loaded (once you were inside of Carousel) into
that window but also whatever files are opened with them, plus the contents of
video memory, so Carousel can give you back the screen exactly as you left it.

By preference, Carousel uses conventional memory first, then looks to EMS

Context switching: Carousel's revolving door approach 145

(expanded) memory, if it is available. However, it carries with it the ability to use
virtual memory (swap to disk) when all else fails. In that regard, if you've got the
chips to support it, Carousel can manage up to 9984K of EMS 3.2 or better RAM.
This is one of the most significant areas where both Carousel and HeadRoom run
rings around the new MS-DOS 5.0 task swapper, which, as I will discuss a little
later in this chapter, can swap only to disk, which Carousel also can do for about
another 10 Mb.

In any case, however, Carousel uses resources only up to selected limits set
by the user, which can be only a part of those available. However, in its ability to
use whatever resources are available, Carousel falls into the category of being a
hybrid-as are several other software packages discussed in this book.

It should be noted here that unlike DESQview or Windows, Carousel does
not and cannot swap actual blocks of memory in and out and continue running
code for background applications. Carousel uses an entirely different mecha
nism-different even than HeadRoom. It does not swap, not in the same sense that
the term applies to 4.0 EMS functionality, where the memory and its contents stay
where they are and only the addresses are swapped. Carousel meticulously copies
the contents of conventional and video memory, block-by-block into whatever
storage space you have assigned it. Then, block by block, it reads back in any
other previously loaded application you might call for next (or loads it in if it is
not already loaded).

Ifyou're using your hard disk to simulate expanded memory instead of RAM,
you can watch the little light blink on and off as the disk swallows block after
block of data. Either way, even if you have enough RAM to support all this in
physical memory, Carousel still has to go through the copy process. It's much
faster with RAM than copy/swapping to disk, but RAM is not instantaneous
either, typically taking one to three seconds in a 4.77 MHz PC/clone, depending
on the size of the block or window being swapped. Compare this to as much as 45
seconds or so to double-swap a large window to or from a disk on the same
machine.

It is slow, especially if you're short of RAM and have to wait while Carousel
copies back and forth to or from the disk. However, slow is a relative term. Com
pared to closing fIles and quitting one application, then loading another, opening
fIles, and trying to find the place you left off last time, slow really isn't all that
bad.

Task swapping under the DOSs
Version 5.0 of MS-DOS introduced a task swapping feature, which, as the term
implies, supports swapping tasks in and out of the foreground. Normally, because
this now is part of MS-DOS, I would have put this first, before HeadRoom or
Software Carousel; however, this one, unfortunately, isn't even in the same
league.

146 Entry-level answers

Both HeadRoom and Carousel swap tasks to EMS memory as long as there is
enough of that to go around, swapping to disk only when there's nothing else. The
MS-DOS SHELL task swapper swaps only to disk, which makes some kind of
sense when you realize the MS-DOS doesn't even recognize EMS memory, pro
viding EMS emulation on 386 and higher machines. So, unless you have a big
RAM disk, this one is slow by nature.

On a genuine old mM PC with a vintage hard disk, swapping typically takes
about 25 seconds. Fortunately, while no speed demon at best, given a faster hard
disk on a faster machine, the time required to swap one out and another in is
reduced considerably. Put in perspective, these swap times are about on par with
what you might expect with a context switching program like Software Carousel
or even a multitasker like DESQview, if it is not supported by sufficient real
memory to handle everything in RAM.

The MS-DOS swapper also imposes considerable overhead on your hard
disk-something that could be a problem for anyone like me who's always
squeezed for hard disk space anyway. You might not even be aware of it until the
day you suddenly run out of disk space in the middle of a session.

It also lacks many of the other amenities found in Carousel or HeadRoom (the
ability to preconfigure it to automatically open a selected group of applications,
for example). Being only one of several functions provided by the MS-DOS
SHELL, the DOS shell also provides a number of services not found in Carousel,
so a lot depends on your priorities. Speaking strictly as a task swapper, however,
this one leaves a lot to be desired, other than possibly as a set of training wheels
for MS-DOS 5.0 users not yet acquainted with the benefits of task swapping.

Do not despair, however. Not to be outdone as the DOS wars heat up, shortly
after the release of MS-DOS 5.0, Digital Research announced yet another new
release of its own, which added task swapping to the DR DOS repertoire.
Although it is not a full-fledged multitasker as incorporated into DR Multiuser
DOS (which began shipping in the spring of 1991), Digital's task swapper is
designed to use EMS memory, swapping to disk only as a last resort.

Interestingly, Digital is actually in a better position to do this than Microsoft,
because, unlike MS-DOS 5.0, the memory management introduced by Digital in
DR DOS 5.0-and now enhanced still further-provides EMS emutation, not
only for 386 and higher systems but also for an increasing number of the better
80286s that support memory mapping to varying degrees, depending on which
chip they are designed around. In this area, Microsoft, by putting its emphasis so
strongly on extended rather than expanded memory would seem to a large extent
to have excluded that portion of the market that might benefit most from having a
decent task switcher.

You might not find some of the features found in Carousel or HeadRoom in
Digitals new swapstakes entry. In any event, however, for anyone who's never
used a task switcher, there never has been a better time to get your feet wet with all

Task swapping under the DOSs 147

the choices there are to pick from now. Once you start, you'll probably wonder
how you've gotten along this long without it.

Task switching lurking in the background
Another approach-and one that allows at least some of the essential elements of
multitasking even at the most elemental PC level-is a class of TSRs that sit qui
etly unnoticed in the background, but take command when activated by some
external signal. In a machine that has no real multitasking capability, they take
command at that point, simply putting whatever operation you are running in the
foreground on hold temporarily, then returning you to whatever point you left off
when they are finished.

Communications-via either FAX board or modem-represents one of the
best and most popular examples of this kind of background technology. Depend
ing on how much of the time your background operation takes control of your
computer away from you and leaves you twiddling your thumbs, this can be a
valuable tool.

One of the nicest things about this approach is that, with the exception of
some network-like schemes (DeskLink from Traveling Software cannot be used in
conjunction with DESQview as both demand access to the CPU via the same
channels), you can move right up into a full multitasking environment later with
out being obsoleted if and when you decide to upgrade your system. So, I'll look
here at just some of the typical applications that fall into this category.

FAX boards
FAX is more than just a method of communication. It has become a way of life
and a status symbol especially in the corporate world. So these neat little FAX
phones are everywhere these days it seems. There are things an ordinary FAX
phone can't do that a computer can, so the marriage of the two technologies was
natural. Even if you don't need all of the fancy features a computerized FAX has
to offer, you can add a FAX board to your existing computer system at about half
the cost of even a low-end dedicated FAX phone-a number that has stayed fairly
constant even as the prices for both have plummeted.

Using your computer as a FAX transmitter, you can send files right from
disk-no scanner or other reader is required. Incoming traffic can either be saved
to disk, allowing either temporary or permanent storage, or be sent directly to
your dot matrix or laser printer, giving you a crisp copy that won't fade with age
or long term exposure to heat and light.

There are really two distinct classes of FAX boards on the market, generally
with equally distinctive prices. At the low end of the scale are basic FAX boards
simply modems geared to the specifics of FAX communications. Boards of this

148 Entry-level answers

type are sold by various manufacturers, not surprisingly including Hayes, which
acquired the JTFAX line from Quadram. Such boards typically have proprietary
software that can be loaded in the background as TSRs and, if you have a dedi
cated line, will answer incoming calls automatically. This freezes whatever appli
cation you might be running in the foreground at the time until the transmission is
ended and the data is safely saved to disk. At that point, the pop-up pops back out
of sight, returning you to the application you were running until the next time the
phone rings.

These, however, are adequate for the needs of many users, particularly where
little FAX traffic is anticipated or when the bulk of whatever traffic there is can be
scheduled for off hours. Anticipating that these boards will often have to share a
line that's used for voice communications, the auto answer feature can usually be
switched off, allowing you to activate the FAX board manually when it is needed.

A cut above the ordinary FAX modem, there is a class of FAX cards with
their own on-board coprocessors, such as the Intel 80188. This completely frees
them from the underlying system, allowing them to send and receive completely
in the background while you continue to use your computer uninterrupted. This is
multitasking in the truest sense of the word.

While bit-mapped FAX and traditional character-based data communications
require quite different hardware and software, the hardware functions can be
combined in a unit that still takes up only a single expansion slot, as in the case of
the Hayes JTFAX 9600B that accepts a modem daughterboard, making it a com
plete communications package.

While all FAX, modem, or combination communications boards and their
software can be run as background, operations in multitasking environments
(such as DESQview, Windows, VM386, or others), it is not recommended except
when using devices that have their own coprocessors. Otherwise, data can be lost
while the main CPU's attention is diverted to attend to whatever other tasks are
running. This is not to say that it cannot be done under certain circumstances, but
there are too many variables.

Spoolers and buffered output
Another relatively cheap and easy way to slip around the 640K barrier-and one
that can add greatly to productivity-is some form of print spooler. This really is a
sort of poor man's multitasking, because it lets you keep right on working at your
computer while software-or some combination of hardware and software
working in the background, keeps your printer busy churning out those reams and
reams of paper that printers like to pile up on the floor.

In its most elemental form, a print spooler is simply a program-typically a
TSR like MS-DOS's PRINT. COM-that, when activated, assumes control over a
block of RAM it can use for temporary storage for output to a printer. In addition

Spoolers and buffered output 149

to DOS's rather primitive-though effective-spooler, there are some rather slick
third-party spoolers on the market as well. Additionally, many word processors
and other applications programs have some sort of internal spooling capability of
their own.

Some spoolers-especially those that work from inside of an application
succeed in being almost totally invisible, not even adding any noticeable over
head. This is typical of those incorporated into some of the more powerful word
processors like X-Write that let you keep on working uninterrupted-or nearly so
at least-while printing.

There is a certain amount of overhead involved. PRINT.COM, for example,
currently supports user-selectable buffer sizes from 512 to 16,384 bytes, in addi
tion to the 5792 bytes required by the program itself. At most, this is rather mod
est by today's memory usage standards. However, to reduce overhead to an
absolute minimum, some of the more sophisticated spoolers, like PrintQ and
Printer Genius, use hard disk space rather than RAM for their primary storage
space. In one case they use conventionally structured fIles that, if need be, can be
called from DOS or stored in a format that only a spooler could love. They require
some minimal amount of memory; however, by managing small blocks of data at a
time, they can spool huge fIles while remaining unobtrusive.

Unlike DOS's PRINT and most of the give-away spoolers that come bundled
with various expansion boards, better spoolers allow you to assign priorities, so
first-in is not necessarily first-out. The order generally can be changed in midses
sion to accommodate sudden changes in priorities. Some even offer word process
ing-like formatting, editing, and other options not found in more typical dumb
spoolers.

Another somewhat more expensive scheme adds special extra memory-a
buffer-between your computer and your printer. While this is dedicated memory
and cannot be used for anything else no matter what, it adds no overhead either.
As far as your computer is concerned, it is completely invisible. You send a file to
your printer and whatever your printer's internal buffer can swallow is held in the
buffer and is released in small packets as the printer's internal buffer empties and
makes room for more. (While internal buffer sizes vary greatly, printers typically
have internal buffers of from 2K to 5K. A 2K buffer normally will hold the equiv
alent of about one double-spaced typewritten page.)

Such outboard buffers typically come in sizes from about 256K and up, with
some capable of buffering several megabytes of queued fIles. Many come with
minimum memory installed but are upgradable in increments, if and when a
larger buffer is needed. The two options are not mutually exclusive either. An out
board buffer doesn't care whether it gets its input right from the original source
fIle or after some middleman has come into the picture and possibly even modi
fied the fIle in some way. However, it is unlikely that you would want to use both
simultaneously.

150 Entry-level answers

http:PRINT.COM

One possible drawback to outboard buffering is that, in many cases, because
there is no direct communication between the computer and the printer, you might
not get the error messages you normally would get if you forget to tum the printer
on, etc. Buffers are usually pretty dumb. They'll just hold whatever comes their
way and hold it and hold it and hold it until someone discovers the problem, two
hours after that very important and very long document was supposed to go out by
special messenger. Still, the outboard printer buffer can be a very cost-effective
way of increasing productivity. In many cases, it even adds the multiuser conve
nience of networking as well.

Peripheral sharing
Sometimes called peripheral sharing, the lowly buffer has grown up to include a
whole class of devices, many of which are really little short of networking hubs
with the general exception (though not necessarily total exclusion) of file sharing.
With price tags sometimes ranging upwards of a thousand dollars for some of the
better and more sophisticated devices, some of the peripheral sharing boxes allow
the user to mix and match almost any mix of computers and printers up to the total
number of1/0 channels that it has. Typical of devices in this category are devices
manufactured by Rose Electronics and by Buffalo Products. While the number of
channels and configuration options vary widely, a unit with six channels typically
can serve two computers sharing four printers (or three printers and a plotter) or
two printers between four computers.

Not only can the same channels often be used either as inputs or outputs, but
some also support two-way devices such as modems and many can be configured
as either serial or parallel according to specific needs. Serial in and parallel out,
or vice versa, is not uncommon, allowing great flexibility in configuring the over
all system.

Whether serial or parallel, external buffers or peripheral sharing devices
offer an added advantage in not taking up one of your precious expansion slots or
adding more drain to your computer's power supply. In multiuser systems, they
often are able to link even otherwise incompatible computers to one or more
shared printers. Most also include internal buffers with sizes again ranging up to
several megabytes but generally starting with some less amount installed. Priori
ties can be assigned, and the internal buffer can keep all printers on line running at
capacity.

It all helps-but is it enough?
I've cut across only a narrow cross section of the options that are out there-rela
tively easy upgrades that will work regardless of the hardware platform you are
using now. In many cases, something in this category might be all you need to

Peripheral sharing 151

meet your needs, perhaps just for now or perhaps for some time to come. Even
when you do upgrade, you can and probably will take things like spoolers and
external buffers with you. The peripheral sharing box I started with for one old
mM PC and two printers now connects three printers-still one old 8088 but now
a pair of 386s, too.

Are any of these things enough, even for now? There is no simple answer to
that question. If you still are working with an 8088 machine-or even something
that is hotter but is configured pretty basically-they offer you a place to start at
least. From there, the sky really is the limit.

152 Entry-level answers

12

CHAPTER

DESQview

and the age of

multitasking

A funny thing happened on the way to the 386: multitasking. It was real honest
to-goodness multitasking, with 8088s. This multitasking was not just the kind of
swap-to-hard-disk task switching reinvented for DOS 5.0. It was not the feeble
gesture IBM came up with in its ill-starred TopView only to be dug up again by
Microsoft for Windows. (I hesitate to say resurrected because that implies some
form of life.) You could multitask only whatever you could fit-in addition to Win
dows itself-on top of DOS inside 640K.

DESQview could do real multitasking. A lowly PC now could run code both
in the foreground and the background. 286s could do it, too. They were faster, so
multitasking was a little smoother. All you really needed, however, was an old
PC, some extra memory, a program from a (then) upstart software company
called Quarterdeck Office Systems, and a new kind of expanded memory: EEMS.

This is one of those fun stories where the technology guys get ahead of the
pack and nobody quite knows what they've even got until somebody comes up
with a way to use it. AST Research, a small creative bunch of hardware innovators
best known for their memory expansion boards, had come up with a bank switch
ing scheme. They called it EEMS (Enhanced Expanded Memory Specification),
but no one really had a use for it until Quarterdeck picked up on it and saw the key
that had eluded others. The rest, as they say, is history. Multitasking had arrived.

153

AST then pulled a clever marketing stunt. Because DESQview's multitasking
magic only worked with AST's EEMS boards, the company started bundling
DESQview software with its EEMS boards. The more you used DESQview, once
you saw what it could do with EEMS memory, the more memory you had to have.
More memory meant more EEMS boards.

You could buy DESQview separately and you could run it without the benefit
of EEMS expanded memory. You could run DESQview with ordinary 3.2 EMS
boards. DESQview, however, could not multitask with more than a total of 640K
of programs (only what could be loaded at the same time into conventional mem
ory) except when teamed with an AST EEMS board.

EEMS, if you'll recall from chapter 4, was a variation on the then accepted
LIM 3.2 EMS specification. AST's EEMS conformed to that specification and
did everything that EMS allowed. However, it added the ability to bank switch
conventional memory, with that change, the industry was about to get turned on
its proverbial ear.

Suddenly, bank switching up to four 16K packets of data in and out through a
page frame up in the high address range was of only secondary importance. It was
still okay for temporary data storage-for RAM disks, print spoolers, football
field-sized spreadsheets, and the like. By taking conventional memory away from
the CPU and only loaning it back on a rotating on-demand basis, however, the
whole world changed.

The heretics
EEMS was to some as heretical as when poor old Copernicus stated-and
proved-that Earth was not the center of universe (and got excommunicated for
his efforts). Someone had dared to say-and prove-that the CPU was not the cen
ter of the computer world, but rather just a servant in a bigger scheme of things.

The implications of this revolutionary concept were staggering, at least to
those who chose to listen. There are, however, still those convinced the world is
flat. From that point, you could almost divide the computer industry into two
groups. There were the enlightened EEMS advocates in one camp. There also was
something like a Flat Earth Society that surely boasted the designers of mM's
PS/2 models 50 and 60 among its charter members.

Intel, in the meantime, was caught on the horns of a dilemma. As co-authors
of the LIM 3.2 specification and manufacturers of a respected line of memory
expansion boards that did not embrace any of EEMS's more advanced features,
Intel clearly had a serious problem. To admit that EEMS was better was a bitter
pill to swallow. On the other hand, looking to its own new 80386, it had a chip
that offered special multitasking capabilities that, at that point, could be exploited
fully only with the kind of floating memory support EEMS afforded. Back at the
ranch, some of Lotus's customers were unhappy with constraints in the old 3.2

154 DESQview and the age ofmultitasking

EMS specification that as a practical matter limited expanded memory access to
about half of the promised 8 Mb. (Lotus never even fully implemented the fea
tures of the 3.2 specification.)

Intel bit the bullet. The LIM alliance Gang of Three produced a new docu
ment, the LIM 4.0 EMS specification document. In name, it was still Lotus/Intel!
Microsoft, but it was essentially AST's EEMS in a LIM cover. (According to
inside sources, AST was not even consulted.) The new LIM 4.0 EMS did not
include all of EEMS's features (although, interestingly, it does refer hardware
manufacturers to and recommends compliance with one EEMS feature not
included). However, it pretty much did-and does-include those features that
had been proved so crucial to making multitasking a viable reality. Multitasking
and DESQview-truly had arrived.

To set the record straight, Quarterdeck did not invert multitasking, which had
been around since the fairly early mainframe days. What DESQview did that
turned the world around was to take advantage of the features that made AST's
EEMS so special: the ability to bank switch conventional memory from 640K
down to 256K (the 64K page frame called for in the LIM EMS specification was
little more than just a bonus). With the ability to map 384K in and out of conven
tional memory though, things suddenly started falling into place.

Strangely, the old PC actually was better suited for multitasking than some of
today's machines. At least with the old PC, you could set the DIP switches on the
system board to show only 64K in the system (which was all the earliest system
boards held anyway). Other memory then could be mapped into the addresses dis
abled by the switches. If supplied by-and at that time only by-an AST EEMS
board, 384K of expanded memory could be mapped in and out of conventional
memory addresses starting at 256K.

Given that, up to 384K of code and data could be plucked whole out of con
ventional memory address space and replaced by switching another whole 384K
block in its place. This 384K is enough to run most DOS programs handily. By
keeping programs and their data together, they could be kept alive and kicking
actually running (even in the background), not just out there in suspension, fro
zen-dead until they get called back again.

To do this, DESQview gave every program, whether it was running in the
foreground or the background, some share of the CPU's time: time slicing. It was
out of sight perhaps; however, no matter where it was, if your spreadsheet was
recalculating when you swapped it out and brought another job up in the fore
ground it kept on crunching numbers. By the time you brought the spreadsheet
back on screen again, the job likely was done. In the meantime, you did some
other task. Almost any time-consuming task that did not require continued atten
tion or keyboard input could be relegated to the background, which is especially
valuable when you are running communications packages.

The heretics 155

Admittedly, a 4.77 MHz PC, trying to divide itself among several different
tasks, was something less than dazzling in the performance department. In a
world where everything took longer than it does today, however, being able to run
slow tasks unattended in the background meant even more than with the speeding
demons on your desk today. Certainly, it started a revolution that quickly took hold
in the marketplace. When the 80386 came on the market neatly packaged in a
whole new generation of computers, DESQview was ready. With the 386 it
became a faster, sleeker, and more powerful tool than ever.

A textbook 4.0 EMS case study
DESQview is really a case study in the use of EMS memory. An examination of
that usage gives a good insight into its workings. Interestingly, the DESQview you
buy today (packaged as DESQview 386 and bundled with QEMM) is the same
exact DESQview sold as a stand-alone that could be run on any 8086-compatible
machine. DESQview runs better on an 80386; however, its origins are rooted in
the 8088/286 user base (before there was an 80386) and in the use of EEMS (now
LIM 4.0 EMS), expanded memory before extended memory was a practical real
ity, so it really is based on a quite simple memory model.

For the moment ignoring the gyrations allowed by 386 and higher chips,
DESQview loads-like any ordinary program-on top of DOS. Whatever conven
tional memory is left is available to use as a window in which to load and run an
application. At this point, you haven't gained anything. On an 8088, you've actu
ally lost the space DESQview needs for itself in conventional memory.

The payoff comes when DESQview is able to swap that application out into
the EMS area somewhere-not just 16K pages squeezed out like toothpaste
through the page frame to sit in limbo out there, but the entire block of running
code and data (typically up to at least 384K, even in a worst-case situation on an
8088). Swap out that block and swap in another one-another window you
already had another application running in or a fresh one that is ready to load, as
in Fig. 12-1.

In this model, you are working with a single machine and a single DOS envi
ronment, which means that while you can change the environment available to an
application within a window-the path, comspec, or any other variables-deleting
some or adding others specific only to that window. Initially, the window will
have inherited whatever environment was in place at the time DESQview was
loaded.

The following lines illustrate the point. On the left, you see the environment
before loading DESQview and, on the right, the environment as inherited by
every window opened during that session:

156 DESQview and the age ofmultitasking

COMSPEC = C: "COMMAND.COM COMSPEC=C: "COMMAND.COM
TEMP=E: " TEMP= E:"

TODAY =03-01-1991 TODAY = 03-01-1991

PATH =C:" DOS PATH = C: " DOS;C: " DOS" DV

PROMPT=P PROMPT=P

DIRCMD=lo:n/p DIRCMD=lo:n/p

Both lists are identical, except that DESQview has insinuated the directory for its
own files into the path. Like our own environment-the world we live in-we
change the DOS environment a window has inherited. This solution is better than
just packing the parent DOS environment with everything you possibly could
want.

Lotus dBA8E

"\ 	 /
o08---- ---~-AUTOCAO

-

/~\

/ 	 \
XTree WordPerfect

12-1 	 ~eminiscent of the lazy Suzan analogy, as a practical matter, DESQview can load as many applica
tions as you have memory for. However, it sits in the middle and, with 4.0 EMS support or when
running DOS-extended programs, can access any running application almost instantaneously.

A textbook 4.0 EMS case study 157

http:COMMAND.COM
http:COMMAND.COM

Stick to the straight and narrow
It is especially important that you stick to the straight and narrow when it comes to
path statements, because the longer the path, the longer it takes DOS to get there
(particularly when it comes to finding things out near the end of the line). Unless
you specify exactly where a program is located when you enter the command (so
DOS doesn't have to bother with the path), DOS always starts by searching
through the default directory, then searches directory by directory through the
path until it finds the right one-if there is a right one. DOS can't even tell you
Bad command or filename until it has checked the whole list out.

One of the best ways around the problem is to not even set a path before load
ing DESQview. Programs given DESQview windows of their own do not need
paths because that's taken care of when you create the startup file, as shown in
Fig. 12-2. You'll note that the program is not called directly by DESQview in this
case, but rather by a batch file. This setup often works out better because it allows
you to set a path if need be-usually this is not required-or to make the directory
where the data files are located the default directory and call the program from
there, as in this case:

D:

CD "SUPRCALC" 1991

C: "DOS" SUPRCALC" SC5

1~Change=a=Program~==

Change a Program

Program Hame : Procomm

Keys 	to Use on Open Menu: PR Memory Size (in K): 251

Program ... : PROCOMM.EXE

Parameters:

Directory.: C:\TELECOM\PROCOMM

Options:
Writes text directly to screen : [H)

Displays graphics information : [H)

Virtualize text/graphics (Y,H,T) : [Y]
Uses serial ports (Y,H,1,2) : [1]

Requires floppy diskette : [H)

Press F1 for advanced options 	 Press <---1 when you are DOHE

12-2 	 The DESQview CP (Change a Program) screen includes memory allocation and other often used-and needl
options. The advanced options screen allows broader range and allows specific settings.

158 DESQview and the age ofmultitasking

This example does what the DOS APPEND command should do but doesn't.
(The DOS APPEND command cannot even be used from within DESQview any
way, DOS will report a "Topview conflict" if you try to load APPEND.) This
trick, however, does not work equally well with all programs. XyWrite, for exam
ple, must be loaded from the directory that contains a special startup file.

Realistically, about the only time you do want a DESQview window to have a
path is for a blank DOS window-something that's handy for loading programs
you don't use all that often, for experimenting with new programs, etc. Here's one
that does all sorts of things automatically in the background every time the system
starts, including some things that might ordinarily be in the AUTOEXEC.BAT:

@echo off
" dos" dv" dvansi > nul
c:lcd "dos
call add path c: " dos" 4dos;e:" > nul
call "dos" batch" old_date
c: " dos " sitback " sb

mm >nul

Echo MAGIC MIRROR is Installed

Echo Scroll-C to capture, Scroll-T to transfer

prompt P_

set comspec = c: " dos "4dos" 4dos.com

set 4dshell = /s:e:/u

call 4DOS

In the previous example, even the command interpreter and COMSPEC are
changed to use 4DOS, rather than DOS's COMMAND. COM. This, however,
applies only to the current window, as shown below in the environment on the
left. The right side reflects the environment inherited by the next window to be
opened, which goes on as if nothing has happened.

TMP=E: " COMSPEC=C: "COMMAND.COM
TODAY = 03-06-1991 TMP= E:"
PATH =C:" DOS;C:" DOS" UTILITY TODAY = 03-01-1991
PROMPT = P_ PATH = C: " DOS;C: " DOS" DV
COMSPEC = C:" DOS" 4DOS"
4DOS.COM PROMPT=P
4DSHEEL = /S:E:/U DIRCMD=lo:n/p

Sitback (c: " dos " sitback " sb in the above batch file) is a TSR backup program
that runs in the background, automatically backing up any new or modified files

Stick to the straight and narrow 159

http:4DOS.COM
http:COMMAND.COM
http:4dos.com

that are located anywhere on one or more disks and meet specified criteria. It's a
neat program, that is of special interest here because, when it is loaded in this
manner (which is apparently the only way it can be loaded for use with
DESQview, as attempts to load it before loading DESQview proved unsuccess
ful), it continually monitors hard disk activity, updating backups for files created
or modified not just in this window but in all DESQview windows, on an ongoing
basis. (There is also a window-specific version available for use with Windows
3.0.)

What makes Sitback especially interesting is the fact that when it is loaded
this way, Sitback's roughly 16K of overhead is all charged against this window,
giving other windows the benefit at no cost. This is not characteristic of the way
most TSRs work with DESQview. Normally only those loaded ahead of
DESQview (or any windowing environment) are available from within any win
dow, so Sitback is a rare exception.

To build a better mousetrap
Because it was an innovative program, the developers of DESQview were faced
from the beginning with a number of problems that, although not unique, were
made more acute by trying to squeeze their multitasking environment into an
already overcrowded 640K. DESQview is not a small program and the problem
was serious-about 150K serious on an 8088. Necessity, they say, is the mother of
all battles ... or something. It was while searching for a way to reduce the impact
of DESQview's rather portly overhead that Quarterdeck discovered DOS's extra
64K, now known as the High Memory Area (HMA). Because the HMA is most
closely related to extended memory, Quarterdeck exploited its discovery by mar
keting QEXT, an extended memory manager for 80286s with HMA support.

At the time, DESQview was about the only program that could use the
HMA-which was fine. With continued refinement, DESQview eventually was
able to load no less than 63K into that 64K spot, significantly reducing its drain on
conventional system resources.

The 80386, which brought with it the ready capability of mapping 4.0 EMS
memory to unused address space between 640K and 1024K, offered intriguing
new opportunities. Quarterdeck then developed a new memory manager for 386
and higher systems. It was an EMS driver with specific memory mapping support
features that also incorporated the extended memory and HMA management fea
tures of its 286 driver.

With QEMM, Quarterdeck was able to develop a loading strategy that could
spin bits and pieces of DESQview's code off in several directions, actually run
ning sections of it in noncontiguous blocks of memory: 63K to the High Memory
Area. QEMM could utilize the HMA more effectively than any other program to
date. On the system I wrote much of this book on, some of QEMM's code was

160 DESQview and the age ofmultitasking

loaded in high DOS memory (including some mapped over nonessential areas in
ROM), some out in expanded memory, and only a small residual-as little as
14K-down in conventional memory, as shown below:

First Meg I Programs
Memory Area
OD01 - OE16
OE17 - OE1B
OE1C- OE2C
OE2D- OE32
OE33 - OE3B
OE3C - OE61
OE62-11B1
11 B2 - 9FF1

Size
4.3K
0.1K
0.3K
0.1K
0.1K
0.6K

13K
522K

Description
COMMAND
COMMAND Data
COMMAND Environment

COMMAND Data
XDV Environment

XDV
XDV Data
[Available]

= = = = Conventional memory ends at 639K = = = = =
BOOO - BOM

BOAB- BOAD

BOAE- BOAF

BOBO- B15B

B159 - B1CD

B1CE- B60A

B60B - B7FE

CDOO- D271

D272 - DFFE

FBOO - FB03

FB04 - F822

FB23 - FDFF

HMA

2.7K
OK
OK

2.6K
1.BK

16K
7.BK

21K
54K

O.1K
O.5K

23K
64K

PCKRAMD
SUPERPCK Environment
XDV Data
LASTDRIV
FILES
SUPERPCK
XDV Data
STACKER
XDV Data
XDV Data
MODE
XDV Data
DV

As you can see, this data, obtained with Manifest, not only shows how little con
ventional memory is being used by DESQview (XDV) but bits and pieces of its
code and data are distributed, with over 23K (plus DOS's MODE. COM) relo
cated into memory mapped over recycled ROM addresses (F800h to FDFFh).
Such specialized support can be obtained only by working with a memory man
ager written with a specific product in mind.

Negative overhead
The significance of this cooperative effort was such that, with the various tricks
QEMM has at its disposal, DESQview 386 actually can save an amount of con
ventional memory greater than its own overhead. This means that in those circum
stances DESQview 386 can create multiple multitasking windows, with any or all

Negative overhead 161

of them larger than would be available for single tasking without DESQview.
(Assuming that no other memory manager capable of accessing the HMA and
mapping memory to unused high DOS address space is installed.) This is better
than stealing candy from a baby or getting something for nothing-nothing except
a pool of memory large enough to support those windows.

Ultimately, the measure of performance still comes down to how much RAM
you have installed. The more windows you want to have open at any given time,
the more memory you need. That's pretty obvious, but what might not be quite so
obvious is that the amount of memory required will generally be significantly less
than 640K. The amount of memory necessary is typically in the neighborhood of
550K to 570K at most (DOS 5.0 with the kernel loaded in conventional memory
to allow DESQview to have the HMA.)

The space required by DOS itself is a one-shot deal and a DESQview window
can be only as big as the unused conventional memory that's left. This differs
from VM386 and other multitaskers that use the 80386's virtual 8086 mode to
create virtual machines. Every virtual machine requires its own copy of DOS and
any other necessary overhead.

Still, effective multitasking takes a lot of memory. DESQview helps as much
as it can, also providing virtual memory to swap inactive background applications
to disk when the pool runs dry. There, however, is no substitute for the real stuff.

As discussed elsewhere in this book, there is a form of virtual memory usage
(usually demand-paged) that allows the unused portions of the code to be swapped
to disk, keeping those that actually are running in RAM. This is not the kind of
swapping to disk DESQview does, if allowed, when it runs out of RAM. When
DESQview swaps to disk, it's not selective; it just plain swaps. Whatever pro
grams it swaps are stopped cold until recalled from disk to RAM again.

Demand-paged virtualization is something you're likely to run into only with
very large programs of the type that can run in 32-bit protected mode through
DOS extenders, such as Phar Lap's. The DOS extender, however, would have to
perform the necessary memory management. Even if you had such a program,
you would want to tell DESQview that it could not be swapped to disk because, as
far as DESQview is concerned, it couldn't be unless you really mean to put it on
ice.

To stretch whatever memory you have as far as you can, DESQview lets you
set the amount of memory available to each window to whatever size is needed (it
will round off to the next multiple of 16K). The real key to successful multitasking
is careful management of whatever memory resources you have, using them as
sparingly as possible. For example, except for major applications that need a lot
of elbow room for data, when setting up a new window I generally try to pick a
size too small to load the program. The window will simply abort and DESQview
will return you to your previous window. The size then can be increased in 16K
increments until it's big enough to fit.

162 DESQview and the age ofmultitasking

Worlds in collision
For all its many benefits, the 80386 brought a whole new set of problems, too.
DOS cannot run in protected mode. With the emergence of extended memory as a
viable option with far greater potential than could ever be realized with EMS
expanded memory, it was immediately apparent that there was need for a way for
protected mode applications to run under DOS and use other real mode services
(such as disk access, keyboard input, etc.).

Several developers worked on the problem. The result was a new kind of uti1
ity, DOS extenders, that can be linked to protected mode applications. Extenders
could launch the programs from DOS to work in protected extended memory and
return to DOS when necessary for such things as 110 services.

Whenever a DOS-extended application makes a DOS call or any other
request that requires real mode, the DOS extender portion copies any necessary
data down into the 1 Mb conventional memory area and switches to real mode. It
then calls the requested function and switches back into protected mode, returning
any results back to the protected mode operation.

To do this, the DOS extender has to have complete control over the system.
This puts an extender in the category of something called a control program.

The problem is that protected mode normally allows only one control pro
gram to be active, which would limit you to running only a single protected mode
program at any given time. To further complicate the situation, DESQview itself
(or Windows or any multitasker) is also a control program, creating a situation in
which it really wasn't possible to run a DOS-extended program in a multitasking
environment. You could multitask or you could run the new, more powerful DOS
extended programs; you could not do both.

There basically was nothing inherently incompatible involved-nothing that
could be resolved, at any rate. As has been the case on more than one occasion in
this business, it was a matter of different players using different rules. It took
some doing, but Quarterdeck got most of those involved at that time to sit down
and try to sort things out as best they could, for everybody's benefit. Out of that
emerged the Virtual Control Program Interface (VCP!).

There were those who weren't entirely happy with the VCPI specification.
Windows, for example, was not compatible. In fairness, even aside from prob
lems specific to Bill Gates' little darling, the VCPI does not address all of the
issues, although those issues are such that a balance could have been struck and
resulted in a single standard. For the first time, there was at least enough of a con
sensus to get the ball rolling-at least for those who had participated.

Windows' windows
DESQview has almost always supported multitasking for Windows-specific appli
cations, such as Excel and Word, that were supplied with scaled-down runtime

Worlds in collision 163

modules that allowed them to run graphically in nongraphical environments such
as just plain DOS. Users who still have earlier versions of such programs still can,
with the help of those runtime modules, run them in DESQview windows the way
they have in the past.

Unfortunately, those runtime versions of Excel, Word and so forth will not
even run on Windows 3.0. The new Windows is so different in so many different
ways that only programs coded specifically for Windows 3.0 will run on Windows
3.0. As different as today's Windows is and as incompatible as it can be with older
Windows software, DESQview 386 added special support features beginning with
version 2.31 that allowed Windows 3.0 to run complete with application(s) from
within DESQview.

As Microsoft kept patching bugs in the original 3.0 release, Quarterdeck kept
refining its Windows 3.0 support, both as it affected not only running Windows
3.0 from inside DESQview but also direct QEMM support of advanced memory
management features not provided by Microsoft's HIMEM.SYS (the version sup
plied with Windows 3.0 or even the more powerful versions supplied with DOS
5.0). I will discuss these issues in greater detail in the next chapter when I deal
exclusively with Windows issues.

Alas, even with its speed, DESQview can't make Windows or Windows
applications run any faster. Speed is just one of the benefits of the graphical user
interface-any graphical user interface, not to throw rocks specifically in Micro
soft's direction.

The tortoise and the hare
One of DESQview's strongest suits has always been its almost instantaneous
response. To do all the cute things Windows-or any graphical interface-does, it
has to operate in graphics mode, and that takes time. Every prompt screen and
menu Windows shows you must be generated bit-by-bit in graphics mode.

DESQview's text-mode menus don't keep you waiting. Once you know, the
commands things happen as fast as your fingers can find the keys. The only excep
tions are loading programs into windows, which takes the same time it would take
to load them anyway, and opening flIes. They can be done in the background
while you're doing other things.

Outwardly somewhat similar to Windows in one respect, DESQview uses a
form ofPIF (xx-PIF.DVP) file to call up commonly used applications. Rather dif
ferent in form than Microsoft's, they are also generally easier to create. For the
newcomer, DESQview provides a set of startup flIes for a number of the more
common applications programs. New xx-PIF.DVP files can be set up quickly
using the easy, menu-prompted CP (Change Program) function. You can change
existing call-up programs the same way.

As is typical throughout DESQview, even the CP function has two levels,

164 DESQview and the age ofmultitasking

depending on the user's expertise. The default CP screen contains only very basic
information: program name, path, minimum space requirements, user-assigned
two-character callup command, etc. Even some of the blanks come prefilled with
default values suitable for many applications. A batch filename can be substituted
for the actual program name when desired.

Earlier versions of DESQview had some problems with programs that write
directly to the screen-as so many programs do. Such a program running in the
background would not know that it didn't own the screen, so it would keep right
on writing-right through whatever you had running in the foreground. This
would be a nuisance, to say the very least. By version 2.0, however, Quarterdeck
had solved that problem. With the proper settings in your xx-PIEDVP files, the
foreground program now owns the screen if you are using QEMM-386.

For power users and beyond
Another feature many users find convenient is DESQview's macro facility. Called
"scripts," macros can be created via a learn feature that simply remembers and
stores a series of keystrokes as you perform some operation and stores them to a
key of your choice. These keystrokes are not stored in ASCII form. There is a
utility with DESQview that can convert them to ASCII so you can edit them with
your word processor. The same utility then converts them back into DESQview
format so it can use them.

For power users with some programming experience, the DESQview manual
documents several powerful customizing features. One of the most significant of
these to achieve maximum multitasking efficiency is DVYAUSE. If a program
running in the background, for instance, is sitting idle with nothing to do,
DVYAUSE will relinquish the remainder of the program's time slice. This frees
those otherwise wasted ticks to be used by any programs that might be running in
the background. (This is different from the mechanism that DESQview uses to
skip over a program that is waiting for a keystroke.)

For programs containing critical sections of code, there is DVJ3EGIN
_CRITICAL, which can be inserted ahead of a block of critical code so
DESQview will not slice out of it. There is a corresponding DV~ND_CRITI
CAL routine, as well.

Assembly language listings for the above and two other routines are included
in the manual. For professional programmers, there's even a DESQview API
(Application Program Interface). The API opens new horizons, so that today
there are actually three types of applications that can be used in the DESQview
multitasking environment:

• DESQview-oblivious-these programs, including Lotus 1-2-3, Microsoft
Word, and AutoCAD, know nothing about DESQview.

For power users and beyond 165

• DESQview-aware-these programs have been modified slightly by their
developers to make them run more efficiently in DESQview. These
include Paradox, dBASE, and WordPerfect.

• DESQview-specific-this is a much smaller group of programs that are
written to take advantage of features found only in the DESQview API
(Application Program Interface).

DESQviewX
Now a third member of the DESQview family bridges the DOS/UNIX (or DOS/
any operating system that supports X Windows) gap. The X Window System is a
hardware- and operating system-independent standard that is designed to operate
over a network or within a stand-alone machine, based on technology developed
at MIT. Adopted as an industry standard by such companies as AT&T, DEC,
Hewlett-Packard, mM, Sun Microsystems, and others, it is the first commercial
implementation of X Wmdows in the DOS environment.

The possibilities are awesome for DESQview X (Fig. 12-3), which was new
at this writing. DESQview X allows PC users to participate in industry standard
multivendor, multi-operating system distributed processing (Le., cross platform

12-3 	 Visually reminiscent of a Windows display, DESQview X bridges the gap between OOS and UNIX
or other operating systems that support the X Windows protocols.

166 DESQview and the age ofmultitasking

computing) from DOS-based machines. When DESQview X is networked, it will
even allow 16-bit client machines to run sophisticated 32-bit applications on
X-Windows servers, crossing hardware boundaries.

DESQview is not just one tool but a family of highly developed, sophisticated
tools that are getting more powerful by the day. However, you don't have to be a
pro or have a fancy 386 to join the club.

DESQview X 167

13

CHAPTER

Windows

If you believe many of the pundits, Windows is more than just the wave of the
future; it is the future. Certainly, a review of the advertising in the periodicals
would indicate a lot of vendors' futures hinge on catching that wave and riding it
in. Certainly, Microsoft has gambled heavily on being a big enough fish in a small
enough pond to generate a lot of waves.

At one time or another, Windows 3.0 has been on every hard disk in my
house, but I think the wave rolled through here sometime back. There was a damp
spot on the carpet one morning.

Seriously, however, Windows is a fact of life. Judging from the great disparity
that there seems to be between the number of copies Microsoft has sold or given
away and the number of applications that have been shipped, it has hardly taken
the real world by storm. However, many people are using it. Certainly, there are a
number of specific applications that cannot be run except in graphics mode
Computer-Assisted Design and Desktop Publishing for example.

However, graphics mode, by its very nature, imposes severe overhead on any
system's resources. Until and unless video coprocessors come into general use,
whatever benefits there might be will cost users dearly in overall performance.
However, this is true of anything that's done in graphics mode using GEM or any
other software platform. That, too, is a fact of life.

Windows 3, however, raises a number of specific issues, some that might not
be immediately apparent to many users, especially with respect to memory utili
zation. Windows is a memory hog. In a way this is good, because, to breathe new
life back into Windows, Microsoft was forced to crawl out of its 1 Mb shell even
just to fmd room to run it satisfactorily. In doing that, Microsoft in effect, set the
direction that the industry must go as DOS looks to its second decade: extended
memory. Microsoft did not set that direction, rather the industry was already
going that way. It had been since soon after the introduction of the 80386. What

169

Microsoft's de facto endorsement did was to legitimize that movement in a way no
Jesser god could have accomplished.

Unfortunately, Wmdows was incompatible with the existing VCPI DOS
extender specification. Microsoft had chosen not to be a party to its drafting.
Rather than adapt to it, they then chose to try to force the acceptance of a signifi
cantly different specification of its own devising, the DOS Protected Mode Inter
face (DPMI). This move created a great deal of hard feelings in the industry.

The VCPI was not perfect by any means. At best a compromise hammered
out by a number of developers all going off in different directions, it really repre
sented the path of least resistance, requiring the least change by the greatest num
ber of participants rather than an ideal situation. The DPMI, as it emerged
initially, was hardly ideal either.

Ultimately, bowing to pressure, Microsoft reopened the matter and invited
industry participation in revising the DPMI. The document that emerged from
that differs greatly from the original specification. The resultant modified specifi
cation has implications reaching, seemingly, far beyond whatever the future holds
in store for Windows.

For now, I need to discuss Windows and, in the context of this book, the way
it impacts on the use of-and need for-memory.

About a ton of memory
Because Windows 3.0 requires such a prodigious amount of memory that it must
look outside of DOS to adequately satisfy even its own needs, user awareness of
what is required for effective memory management takes on a special importance.
This is especially true in light of the fact that, by default, on installation, Windows
pretty much just takes what it needs of your system's available resources without
regard for any other needs.

This situation is made even worse by the fact that the memory management
tools supplied with Windows 3.0-at least those supplied to date-are first order
crude. They are so crude that, despite the fact that they bear the same names as
the memory management utilities in MS-DOS 5.0, Microsoft specifically recom
mends that, if you have MS-DOS 5.0, you replace the Windows versions with
their MS-DOS counterparts. In terms of overall system performance when run
ning Windows, even those utilities lag far behind the recent memory manager
releases from several third-party developers.

Fortunately, there are currently several good-to-excellent alternative solutions
available to users of Windows 3.0. Quarterdeck, Qualitas, and All Computers,
recognizing the problem immediately, incorporated special Windows support
something none of Microsoft's drivers have-into their memory managers.

Before jumping headlong into a discussion of the virtues of third-party man
agement and how it actually can improve on what IDMEM.SYS and (on 386s or

170 Windows

higher) EMM386.EXE-Microsoft's own managers-can do, we need to take a
look at Windows 3s three modes and at the different problems they present-so
different that all managers cannot address them all.

A three-Windows world
There are three Windows 3s. Each is so different that, aside from all being able to
run Windows 3.x-specific software, they might as well be separate packages.
Which one you run-which mode-depends entirely on the hardware that you
have available; not just which CPU you've got, but what other resources you have,
too.

Standard mode, despite its rather mundane name, is Windows at its best, pro
vided you have enough RAM to support it. The documentation is a little decep
tive, however, calling for only an 80286 with at least 1 Mb of memory (640K plus
256K of extended memory). In addition to providing access to extended memory
(but not to virtual memory) this mode uses hard disk space in lieu of memory you
don't really have. While this mode does allow you to switch among non-Windows
applications, you need a bunch of memory to make that a practical reality.

The next mode is 386 Enhanced Mode. This one needs to be understood for
what it is. It is a realization that probably most of the installed user base Microsoft
would like to appeal to does not have enough RAM at their disposal to really sup
port multitasking. Lacking that, the enhanced mode provides a back door: swap
ping to disk, or what is often euphemistically referred to as virtual memory.
Applications written with this in mind can be designed to spin off chunks of code
that are not needed immediately. To a point, this can cover for a lack of real live
memory.

This says two things about enhanced mode operations:

• They will be slow. How slow they are depends upon the size of the applica
tions being swapped back and forth, hard disk access times, and other fac
tors. You can add two to five or more second of penalty time-most often
more, I've found.

• Disk swapping is not multitasking, because codes cannot run, sorts cannot
be performed, and numbers cannot be crunched while sitting on a disk.

Last-and least-there is Real mode. Real mode requires a minimum of Windows
overhead, but provides a minimum ofWindows functionality. This is Windows for
the masses, Windows even for the 8088-provided that the 8088 has at least 6 Mb
to 8 Mb of free hard disk space that Windows requires before it will even install.

You don't have to have an 8088 to run Windows 3.0 in Real mode, however.
There are other reasons you might elect to do so. Not the least of these is that this
mode provides the maximum compatibility with applications written to run under
Windows 2.x (though still not enough to run some that I tried).

A three-Windows world 171

In any event, a closer look at both Real Mode and Standard Mode reveals
that, to conserve whatever memory is available for Windows itself and Windows
applications, Windows 3.0 always swaps some or all of a non-Windows applica
tion to disk, which, again, is not multitasking.

Discounting the Real Mode for which little can be done to enhance its capa
bilities, effective memory management is one of the most crucial factors in getting
the most out of Windows 3.0. Here, Microsoft provides the Windows user with
some basic tools; however, "basic" is the operative word.

What Windows 3.0 provides, and what it doesn't
The memory management device drivers furnished with Windows 3.0 (at least
those seen to date), while having the same names as those now supplied with DOS
5.0 (HIMEM.SYS and EMM386.EXE), bear little resemblance to those name
sakes. The Windows versions satisfy the bare minimum needs of Windows 3.0
and nothing else. Unfortunately, by stopping far short of the highly sophisticated
memory management techniques demonstrated by any of a growing number of
third-party memory managers and now even supplied with DOS 5.0, they would
seem to do little to encourage anyone to use Windows 3.0.

Specifically, the Windows version of the EMS expanded memory emulator,
EMM386.EXE, does not support the mapping of memory to addresses above
640K (referred to as UMBs in DOS 5.0) in a way that allows relocating device
drivers and TSRs to those areas. While it is true that, even with such crude sup
port, Windows 3.0 can use much of the available address space above 640K for
itself, it also is true that that space can be used more effectively by more powerful
memory management systems, like Quarterdeck's QEMM.SYS, 386MAX from
Qualitas and All Computer's ALLCharge386.

EMM386.SYS is not a stand-alone however. It can emulate expanded mem
ory only if it has extended memory to start with. No matter how many chips you
have or how you have them wired, you need a device driver like HIMEM.SYS
before you can have the extended memory to start with. Then, as the name
implies, you only can use it on 386 (and higher) systems.

Although generally as lacking in frills as the bundled EMM386.EXE, the
HIMEM.SYS supplied with Windows does support the High Memory Area, mak
ing it available for applications that can use it. It also offers a switch for HIMEM,
Ihmamin=nn, that can be included on the CONFIG.SYS command line to set a
threshold level below which no application will be allowed access to the HMA.
This is that peculiar extra 64K area that only one application can have the use of,
so you need to be selective when using it. The typical syntax for these two drivers
as they would normally appear in the CONFIG.SYS (assuming the two device
drivers are in the root directory) is:

DEVICE =HIMEM.SYS Ihmamin=40

172 Windows

DEVICE =EM M386.SYS 384

Here, I've specified 40K as the minimum size HIM EM will recognize as accept
able for HMA access. On the EMM386 line, I've specified 384K as the amount of
extended memory to use in emulating expanded memory.

Other options supported by the Windows version of HIMEM. SYS include the
number of handles available (the default is 32), whether to disable shadow RAM
or not, and specifying the particular machine in use where special support might
be required. Memory options supported by EMM386.EXE include Weitek copro
cessor support, the establishing of a specific alternate page frame base address if a
conflict occurs when the default is used, the exclusion of specific addresses from
EMS page use, how many alternate register sets to emulate (the default is seven),
and how many handles it can use (the default is 255).

While the Windows version of EMM386.EXE does not at this point support
the loading of device drivers or TSRs into upper memory blocks, the
EMM386.EXE supplied with MS-DOS 5.0 does. If it is loaded from the CON
FIG.SYS, the AUTOEXEC.BAT, or the command line ahead of Windows, you
can force the issue, making Windows do with what's left over. This still is not the
ideal solution, however.

QEMM
According to some reports, Microsoft deliberately did not give users access to
high DOS memory when it devised its memory mapping scheme for Windows
3.0, hoping everyone would standardize on Wmdows 3-specific software. That
clearly didn't happen. Cost-conscious corporate America was not about to discard
the hundreds of millions of dollars worth of applications software that was already
in place and replace it with new software that not only was expensive to buy into
but tremendously expensive to retrain their workforce for.

At the individual level, buyers played a lot of solitaire and waited-or tried to
run their old nonWindows software and went back to playing solitaire. My non
Windows word processor, which loads and leaves me 337K for open fIles when
running under plain old DOS, could barely load and gave me only 5K when run
ning under Windows. My non-Windows spreadsheet would not even load.

Quarterdeck was quick to recognize the special needs of Windows 3.x-not
only to recognize the needs but to devise workarounds that could be incorporated
into QEMM beginning with its release 5.1. Meanwhile, others were working on
the problem, too. The chronology, however, would seem to indicate that Quarter
deck was first to effectively crack the Windows code. Confronted with a fait
accompli, Microsoft threw in the towel and offered to make its virtual device
driver code available to Quarterdeck and other interested parties, so it could be
incorporated by them directly into third-party memory managers, etc.

QEMM 173

Giving away its actual V x D driver code like that presents an unusual situa
tion; however, it had to have been clear to Microsoft that if Quarterdeck could do
it, other people would be coming up with their own schemes-some close, some
not so close. So the code was made available. Quarterdeck was apparently the
fIrst third-party vendor to actually market a package with that code incorporated
in it.

For developers like Quarterdeck, there is another benefIt beyond the obvious
in all this, too. With Microsoft's cooperation at this level-having the actual
Microsoft code to work with-the developers do not need to be concerned with
making incremental upgrades as successive Windows 3.x versions come along.

Beginning with QEMM version 5.1, all succeeding QEMM versions (now in
the 6s, to incorporate still further major changes occasioned by the release of
MDS-DOS 5.0) have provided special support for Windows-Windows running
under any of its three modes-on an 80386 or higher system.

The difference can be spectacular and has been reported as such by a number
of power users. While Windows might have started out to be an area that Bill
Gates claimed as his own to use and develop, it appears that Microsoft has cut
itself off in a way that makes it almost mandatory to pass through third-party terri
tory if you really want to get there.

QEMM replaces both HIMEM.SYS and EMM386.EXE, providing, as it
always does, support for extended memory, the High Memory Area, Expanded
memory, and memory mapping to upper memory blocks. However, you do have
to specify how much of your available memory pool you want reserved for use as
extended memory. This is the opposite of using MS-DOS 5s duo, which assumes
you want extended memory unless you load EMM386.EXE and specify how
much of it you want to use to emulate EMS expanded memory.

386MAX
386MAX (BlueMAX for PS/2s), certainly among the more powerful third-party
memory managers, is compatible with Windows 3.0 in 386 Enhanced and Real
modes only. Version 5.11 (and later) of 386MAX provides special support for
Windows; however, this support is available only if specifIed during installation.
With that support enabled, 386MAX requires more memory to run.

I'd like to point out something I discussed that might have slipped by unno
ticed a little earlier: 386MAX itself does not support the DPMI, without which
Windows cannot coexist with virtual mode programs. This is not a problem, how
ever, because that support is intrinsic to Windows 3.0 itself and requires no spe
cifIc support by the memory manager. 386MAX does support the more widely
used vePI specifIcation, but this does not result in any conflict.

Among the more powerful Windows-specifIc features now included in
386MAX is a proprietary feature called Automatic Instancing. Without it, many

174 Windows

programs that are not Windows-aware (TSRs and device drivers in particular)
might not work the way you want them to in Windows.

ANSI.SYS is a clear cut case in point for instancing. Normally, it stores a
record of the current screen colors where it is loaded into memory. That's fine
until you want to use a different set of colors with a different window. Automatic
Instancing gives you a copy of relevant drivers and TSRs in each of the multiple
DOS sessions in Wmdows. This is not a problem unique to ANSI.SYS by any
means either. There might be other cases where you might want different internal
data accessed during different sessions.

The Windows documentation recommends you start your sessions first, then
load your TSRs in each session accordingly. This doesn't always work, however.
ANSI.SYS brings up a problem that Automatic Instancing addresses: normally,
programs can be loaded into high memory only before Windows is loaded,
because, given free rein, it will seek out unused address blocks above 640K and
use them for itself. Yet, some of these programs need high memory access to
function properly. It's a vicious circle.

There are a number of known TSRs and drivers that can benefit from Auto
matic Instancing. 386MAX has a list of these that it keeps internally, doing what
the "automatic" in the name implies, so you don't have to worry about it. Obvi
ously, 386MAX cannot anticipate every TSR and driver that needs this support,
but it will catch a bunch of them. (Refer to the Windows 3.0 User's Guide for
more information on the problem.)

386MAX also checks your system (when you boot) against known problems
found in certain disk caches and SCSI disk controllers. There is a lot of smart
built into this one, but then, when memory management is your only business, I
guess you have to try a little harder.

386MAX also supports ROM shadowing under Windows. At boot time, it
copies any ROM-based code-such as the VGA BIOS-into RAM for faster exe
cution.

Everybody wants to get in on the act it seems. Windows 3.0 is able to take
advantage of unused linear address space between 640K and 1 Mb to reduce its
own memory overhead in low DOS. If Windows detects the presence of unused
linear address space in high DOS at startup, it will map the addresses with physi
cal RAM and load a small portion of its data into the remapped RAM. Because
386MAX might be mapping all the unused high DOS address space before Win
dows is loaded, you must be sure to leave some space unmapped to take advantage
of this feature. Here again is one of those places a little trial and error is required
to get the most out of your system.

If the 386MAX installation program detects an available monochrome display
area, it will map only the first 8K of the available space by inserting appropriate
USE = statements in the options profile. By doing so, Wmdows will take advan
tage of a portion of the remaining space (the actual amount used will vary).

386MAX 175

If 386MAX.SYS has detected a nonsupportive busmastering controller and
SMARTDrive is not loaded, then an error message will result when loading Win
dows 3.0. If you are sure you have a VDS-compatible busmastering controller,
place SET BUSMASTER =VDS in your AUTOEXEC.BAT to bypass this error
message and load Windows 3.0. It should be noted though that using these options
without adequate knowledge of your system setup can result in the loss of data, so
look before you leap on this one.

Although Windows will make use of a portion of the unmapped space, it
might not always be the most effective use of the space on all systems. This is a
result of the fact that the unmapped space could have been mapped as high DOS
by 386MAX and used to store resident software, which can be forced to reside in
conventional memory. With the help of a couple of 386MAX's utilities, MAP
MEM and MAXIMIZE, a little trial and error here can result in better usage of
this space. The procedure is well documented.

It should be noted that Windows 386 (as opposed to Windows 3.0) is not
compatible with 386MAX. That earlier version does not support a standard inter
face that allows virtual mode programs to coexist successfully. However, you use
the WIN86 portion of WIN386 by installing according to the instructions below
for WIN286. Also, Windows 286 is fully compatible with 386MAX. For proper
support of all Windows 286 features with 386MAX, you must use a copy of Win
dows dated July 1988 or later (the date of your version can be found by listing the
directory of your Windows SETUP diskette).

ALL CHARGE 386
All Computers has built special Windows 3.0 enhanced mode support into its
ALL CHARGE 386 memory management package beginning with version 3.1.
This release also incorporates All's automatic optimization program. There is no
need to reconfigure manUally. You simply have to run the installation program and
ALL CHARGE 386 will update your existing configuration automatically.

Aside from providing memory management that's far superior to Microsoft's
HIMEM.SYS and company, of greatest interest specifically to Windows users is
the fact that this updated version provides the instancing support that is so vital to
the successful use of many TSRs, ANSI.SYS, and other similar device drivers in
the Windows 3 environment.

Registered users having earlier releases can upgrade at a cost of only $5.00 to
cover shipping and handling. For information call (800) 6274825.

hDC FirstApps
The difficulty in seeing just what you are doing, one of the greatest obstacles to
effective memory management, seems even more frustrating under Windows.
Working with 386 or better systems, any of the top third-party memory managers

176 Windows

provide utilities that enable you to see how effectively you are using mapped
memory. They can be run under Windows in the same way as any non-Windows
application.

There is also another utility package that Windows 3.0 users might want to
consider: hDC FirstApps. Actually a package of utilities, FirstApps has a Mem
ory Viewer function that shows what's where, regardless of what hardware plat
form or which mode Windows is running under.

Memory Viewer opens a window that, as shown in Fig. 13-1, graphically
displays all of the available memory on your system and how it is being currently
utilized. The data displayed depends on whether you are running under Standard,
Enhanced, or Real Mode.

13-1 	 FirstApps from hDC provides helpful information about Windows memory usage as part of utility
package.

Starting at the bottom in Real Mode, Memory Viewer displays one or two
barcharts (depending on whether or not you have expanded memory showing how
all of your available memory is allocated). In Standard Mode, the Memory
Viewer also displays two bar charts. The one to the left shows how all the memory
on your system is being used; the other shows how memory is being used by cur
rently running Windows applications. Enhanced Mode adds a third bar chart,

hDC FirstApps 177

showing how current memory usage is divided between real memory (RAM) and
virtual memory (i.e., code and data swapped to disk, which therefore is not actu
ally running).

The Memory Viewer also has one additional option that is interesting:
include Disposable Memory. This displays the minimum amount of memory an
application can run in. A good part of this information is of interest specifically to
Windows users and, as such, is not readily available from other sources.

Quite aside from the debate over Windows 3 and whether users really need or
even want a Graphic User Interface or whether the DPMI will really playa role in
shaping the direction of the future of the industry, there are a number of more
immediate issues users must address when thinking about Windows. Among
those, having lots of memory and managing that memory effectively have got to
rank among the most important.

178 Windows

14

CHAPTER

Beyond the real:

the virtual machine

Certainly one of the most unique features of the 80386, the i486 and surely any
thing else that comes down the pike at this point is the ability to support not only
real mode machines (the only kind most users are familiar with), but also almost
any number of virtual machines, all running concurrently. Such virtual machines
can be used for multitasking by a single user on a single physical machine, several
different users at remote locations, or a combination of the two.

The virtual machine is probably the least understood of all the capabilities of
these higher CPU chips. They are exotic both in concept and in execution. They
really are essentially just an extension of the protected mode and perhaps demon
strate the real meaning of protected mode more graphically than any ordinary
usage.

Virtual mode is more correctly called virtual 8086 mode because that is what
the CPU is emulating when it runs in virtual mode-multiple 8086 processors.
The illusion of being not one but multiple processors is so complete, as imple
mented in these chips, that multiple operating systems can run concurrently under
a supervisory device. A 386 machine, for example, might boot up in real mode
under DOS but yet play host to virtual machines, one or more running UNIX
tasks while still others might be running under DOS or even a mix of different
versions of DOS or something else.

It's no illusion. You actually have to boot your virtual machines the same as
you would boot a real machine. Booting under DOS, you need a CONFIG and
AUTOEXEC file for each. If it would take 30 seconds to boot up your real mode
machine to start the day, and if you want to run three virtual machines, you've got

179

to start by booting up a real machine and then three more machines. That's a cou
ple of minutes anyway, not including loading your applications software on each
one. For that reason, it is significantly slower getting up and running with a bunch
of virtual machines than DESQview or probably even windows in this one
respect.

You must remember, though, that no matter how real the illusion of the vir
tual machine might be, you still only have one CPU that must be shared among
however many different "machines" you might be running, as in any multitasking
situation. Even aside from that, however, as implemented in VM386, once you're
booted up and running on your virtual machines, they typically will run a little
slower than real machines in actual operations too. The difference is just enough
that you might notice, but not enough to really slow you down in most cases.
There is a tradeoff involved between performance and protection. Even at that,
virtual machines will still run rings around Windows 3.0 in any mode, unless
you're running Windows on a virtual machine for any reason.

If it will run on any 8086 machine . . .
The important thing to keep in mind is that, if a program can be run on any real
8086-family machine, it probably will run on a virtual machine. That seems to be,
if not the sole, at least the primary criterion. There are a few notable exceptions,
including the DOS FORMAT command, but I'll discuss some of these a little
later.

Each virtual machine can have its own extended and expanded memory. The
difference here is that, because virtual machines run only in protected mode, their
memory (once allocated during the bootup process) is the exclusive property of
that machine for the session. This is despite the fact that up until that point it
was-and except for the virtual machine would remain-part of a common pool.
When you terminate a virtual machine (short of shutting off the host machine),
that memory, however, is released.

There is one important difference that must be noted on the subject of mem
ory management. Programs, like VM386, that create and manage virtual
machines do their own memory management. They will not even work in the
presence of another memory manager, like QEMM or DOS 5's HIMEM.SYS.
Whatever DOS you use must boot up pretty bare (typically FILES and BUFFERS
are the only items in the CONFIG.SYS you'd use to boot your host machine). The
CONFIG and AUTOEXEC you use to boot up individual virtual machines look
more like what you would expect.

Theoretically, the ability of an 80386 or higher chip to create virtual
machines is almost unlimited. The entire 4 gigabyte address range is available for
remapping. As a practical matter, however, it is not as unlimited as it might seem
at first glance.

180 Beyond the real

No virtual clock
No matter how clever the illusion is, you still come back to time slicing. There are
no virtual clocks, just one physical clock.

With memory as cheap as it is these days, the clock becomes the ultimate lim
iting factor in the equation. Fortunately, developers have devised some clever
work-arounds to squeeze the most out of that finite resource: sensing periods of
inactivity and devoting more than just the allocated share to CPU-intensive tasks
on other virtual machines.

In a single user multitasking situation, you usually can stretch your precious
time slices, using them only where they'll do the most good, by simply freezing
any background operations that do not have to keep on processing. Fully half the
applications I use in a normal day fall in that category.

On a multiuser system, however, things are different. Jobs that appear as
background activity from the perspective of someone working at the box that
houses both the host as well as his or her virtual machines are the foreground
tasks for other users on the system and are, to each of them at least, of equal
importance. You would like to keep all those other users working, not just sitting
there because, the moment they have to sit and wait their tum, a multiuser system
is no longer viable.

In addition to sharing a common internal clock (which is something any
multitasking/multiuser system has to do), designing systems around virtual
machines raises other problems that are unique. All users must share a common
110 interface that in the case of multiuser systems must, with the exception of
shared resources such as disk drives, deal with different physical devices. Even
shared devices must have special interfacing.

Whatever problems the virtual 8086 might pose, developers have found solu
tions. Now powerful and unique new systems are appearing on the market.

VM386: multitasking and more
Although VM386 from Intellegent Graphics Corp is only one of several packages
written exclusively for virtual 8086 mode operations, it was one of the first to
attract much notice and is still one of the most interesting packages. I picked it for
inclusion in this book for several reasons. Not the least of these reasons is, in my
opinion, the fact that, from the basic entry-level single-user multitasking plat
form, VM386 can be developed and expanded in progressive orderly steps to
build increasingly complex multiuser systems that cannot only share such
resources as modems and printers but also be linked to networks.

Like DESQview, Windows, and other traditional multitaskers, the IGC
VM386 packages are perfect supersets of DOS-they run on top of MS-DOS.
There is a definite advantage to going this route, rather than striking off on its own

No virtual clock 181

to develop a whole new DOS look-alike environment as some developers have
done with varying degrees of success. Some of the look-alikes have come a long
way, but compatibility problems do emerge from time to time.

Sharing a common DOS platform is where similarities end. Unlike
DESQview or Windows (which do their work within the confines of a single
machine), VM386 creates separate machines. These virtual machines all run in
protected mode, completely isolated from each other and from the real mode
machine that created them.

To those unfamiliar with virtual machines and the virtual 8086 mode, this
concept no doubt sounds more like a matter of semantics and a bunch of advertis
ing hype. It, however, is more than that.

With more familiar multitaskers, you really are always working within the
confines of a common single DOS environment on a single physical machine, as
shown in Fig. 14-1. In that environment, if one of your applications hiccups, it
will sometimes bring your entire system down, with the possible loss of data in
whatever other windows you have open at the time. By contrast, the virtual
machines of VM386 (Fig. 14-2) might as well be across town from each other
because they are completely separate.

WordPerfect

LOTUS

dBASE

.DOS 	 XTree

.-

/~~\

14-1 	 With tradition multitasking, even on a 386 or 486, all tasks share a common DOS, inheriting a com

mon environment. Applications simply are switched in and out of the foreground.

182 Beyond the real

D 640K virtual machine running 1-2-3
with expanded memory under DOS
4.0

D Small size virtual machine running EXTENDED MEMORY
small application any DOS

D Up to 640K virtual machine
running any DOS

Unused memory, available for new
virtual machine

DDOS 	 VM386 host machine running
MEMORY 	 under DOS 3.3

14-2 	 Under VM386, isolation is so total that each virtual machine runs under its own copy of DOS.
Under certain circumstances, virtual machines can even concurrently run under different (even
non-DOS) operating systems. All VMs run entirely in protected mode and cannot crash other VMs
or the total system.

A megabyte for everyone
Because VM386 virtual machines conform to all the ordinary rules of DOS, each
virtual machine has one full megabyte of address space starting down at OOOOh
and running up through FFFFh. This space is apportioned in the usual way: 640K

A megabyte for everyone 183

for programs ad the operating system, with the rest reserved for system use
(video, etc.). You can even have an EMS page frame tucked in between the video
and ROM regions, if you like, just like a real machine.

How can all of these virtual machines use the same address space at the same
time? If you look carefully at Fig. 14-2, they only seem to be using the same
address space. This is one of the features unique to the 80386 and i486 chips-the
ability to lock onto a contiguous chunk of protected memory anywhere in the up to
4 gigabytes that the chips can address and present it as if it really started down at
OOOOh. The addresses, as seen by DOS and by your applications, appear like nor
mal conventional memory addresses up to 640K and like whatever else they're
supposed to look like after that.

Outside of the usual megabyte, VM386 supports both extended and expanded
memory. The amount of each-if any-that will be available to any virtual
machine is determined at the time that machine is booted by parameters estab
lished when the machine is created. This, in tum, determines the size of the block
of contiguous memory that is set aside for the exclusive use by that machine. Once
allocated, that memory belongs exclusively to that machine for as long as that vir
tual machine exists-the duration of that work session or until it is specifically
terminated-whether it actually is used or not. There is no sharing.

Although VM386 does support both extended and EMS expanded memory, it
does not currently support the High Memory Area or mapping EMS memory to
high DOS addresses. This limitation, however, is not imposed by the virtual 8086
mode, but rather these are features that simply have not been implemented at this
time. As a practical matter, the fact that each application runs on a machine spe
cifically tailored to its needs rather than having to load device drivers and TSRs in
anticipation of other needs, and the fact that machines running text-only applica
tions can include the memory area above AOOOh normally reserved for graphics,
significantly reduces the need for such support.

With real or virtual machines, not all applications need the full 640K that
DOS allows (or 704K or more for text-only applications). Let's face it; a lot of us
survived rather well for quite a while on 256K or less at one time although it
would be impossible with much of today's software. Still, with only a couple of
exceptions, I fmd most of the applications run quite nicely in a scaled-down work
space.

Just like any machine, you have to allow space for DOS. In this respect,
multitasking with virtual machines requires more memory than ordinary multi
tasking, because each virtual machine must have its own individual copy of DOS
rather than sharing a single common DOS environment. Even at that, in many
cases, you can run an application on a smaller machine. To conserve memory,
VM386 allows virtual machines to be created in almost any size. (The normal
increments are 128K, but advanced users can work with smaller increments, if
desired.)

184 Beyond the real

The configurations that determine machine size and memory allocation when
a virtual machine is created can be saved and used again or used for just one ses
sion as desired. Where configuration files are saved, system startup can be auto
mated, including the booting of several machines and loading of specific
applications on them.

It is important to note, however, that once allocated when you boot a virtual
machine, whatever extended or expanded memory you might have set aside for
that virtual machine belongs to that VM exclusively. On the down side, that
means that, even if that memory is not used and another VM needs it, it can't have
it-at least not as long as the machine that has it is up and running (virtual
machines can be terminated in mid-session and, at that time, whatever memory
they were holding is made available again).

With a little management on your part, this shouldn't be a problem. It is a
small price to pay for the protection that it buys. It is the way protected mode-the
only mode these virtual machines can run in-guarantees protection for the pro
grams and their data. Memory is not just one big pool for everyone to draw on as
users are used to having it.

A clean environment
On an ordinary machine, the environment is something that is created initially on
the basis of certain entries in the CONFIG.SYS and AUTOEXEC.BAT. People
often talk about the DOS environment in the sense of the whole DOS work area;
however, within that, buried somewhere in the bowels of memory, there is a tiny
area that is technically called the environment, as shown in this excerpt from a
Manifest display of first megabyte memory usage:

First Meg I Programs
Memory Area Size Description
OD01 - OE16 4.3K COMMAND
OE17 - OE1 B 0.1 K COMMAND Data
OE1C - OE2C 0.3K COMMAND Environment
OE2D - OE32 0.1 K COMMAND Data

There it is: 0.3K. Actually it is just 256 bytes, and less than that with DOS
releases previous to 5.0. The following is an Ascn dump of that area done with
System Sleuth.

OFFSET--> 0 2 3 4 5 6 7 8 9 ABC 0 E F

PARAGRAPH

OE1C:0000 M ~ ft X Y cI> 6

OE1C:0010 COM S P E C C ,-COMMA

OE1C:0020 N D COM T E M P e

A clean environment 185

OE1C:0030 T M P e T 0 D A Y 0 3"

OE1C:0040 0 5 9 9 P A T H C

OE1C:0050 " D 0 S " C " D 0 S " B A T

OE1C:0060 C H C " D 0 S " U T L T

OE1C:0070 Y P R 0 M P T $ P $

There's more, but this is enough to see that this is the source of the environment
DOS displays at the SET command. Note the new DIRCMD parameter that cus
tomizes the way DOS displays directory listings (this one sorts them alphabeti
cally, displaying only one screenful at a time):

C>SET
COMSPEC=C: "COMMAND.COM
TODAY = 01-13-1991

PATH = C: " DOS; "C: " DOS" BATCH;C: "DOS" UTILITY
PROM PT = P_
DI RCM D = 10: nip

This is probably a fairly typical DOS 5.0 environment. As you can see this is
where DOS stores important information like the path and other things that users
think are important. The only one that DOS really cares about is the COMSPEC,
which tells DOS where to look to find the command interpreter when it needs it.
Without a COMSPEC-or if no valid command interpreter is found there-you've
got a problem.

Working with a windowing-type multitasker, the windows each inherit a copy
of the original environment from DOS. Subsequently, every window you open
inherits its own copy of this original DOS environment: the path, the prompt, the
comspec-everything. This is a fundamental rule of DOS and DOS machines. A
child process-any child process-inherits the environment of its parent. The fol
lowing lines are the environment one of those children, a DESQview window, has
inherited-a stepchild actually:

C>SET
COMSPEC = C: "COMMAND.COM
TODAY = 01-13-1991

PATH = C: " DOS; " C: " DOS" BATCH ;C: " DOS" UTI LlTY;C: " DOS" DV
PROMPT =P_
DIRCMD=lo:n/p

With the exception ofthis window's most immediate parent (DESQview) having
insinuated the location of its files into the path, this is the same as the original
DOS environment before anything was loaded.

186 Beyond the real

http:COMMAND.COM
http:COMMAND.COM

Now, by contrast, see what a VM386 virtual machine gets when it boots. It
doesn't matter here what all was in the original environment; this is what you get:

C>SET
COMSPEC = C:" COMMAND.COM

DOS always points to the copy of the command interpreter associated with the
disk it was booted from and, by default, establishes that copy as the one that DOS
looks to whenever it needs a command interpreter. DOS automatically creates a
COMSPEC = statement in the environment on that basis.

So where did the rest of the environment go? It didn't go anywhere. It was
never there. That's the point. This is a completely different machine, even if it
does reside in the same box. Ifyou want something special in the environment-a
path, a prompt, a different COMSPEC perhaps-you have to put it there.

Split personality
One of the factors that contributes to reducing overhead on individual virtual
machines is the fact that only the device drivers and TSRs required by the applica
tions that will run on that specific VM need be loaded. Each virtual machine
really is a custom machine in every respect. With this in mind, virtual machines
can be given the names of the specific applications that they will run, with match
ing customized sets of CONFIG and AUTOEXEC files for each. You really have
to have customized CONFIG and AUTOEXEC files if you want your new
machine to come up with anything but a blank screen prompting you to input the
time and date. This is where you really start to see and feel the difference.

For instance, I created CONFIG.SC and AUTOEXEC.SC for a Supercalc
VM. Those are the files VM386 reads and executes whenever it boots the Super
calc virtual machine. By the same token, XyWrite has its own virtual machine and
custom startup files. Here is the startup CONFIG file, CONFIG .XY, which looks
exactly like the CONFIG.SYS for a real mode machine, and excerpts from the
AUTOEXEC.XY file, showing several startup commands unique to VM386 vir
tual machines:

CONFIG.XY AUTOEXEC.XY

DEVICE = C: " DOS" VM386 "
VMVDISK.SYS

C: " DOS" VM386 "
VMLlNK.COM LPT1 * FL

DEVICE = C: " DOS" VM386 " C: " DOS" VM386 "
VMEMM.SYS VMFSS.COM

LASTDRIVE = Z C: " DOS" VM386 "
VMID.COM

FILES=20 C: " DOS" VM386 " VM FG
BUFFERS=15 CD "DOS" XYWRITE

EDITOR

Split personality 187

http:AUTOEXEC.XY
http:AUTOEXEC.SC
http:CONFIG.SC
http:COMMAND.COM

Because, for all intents and purposes, you are working with separate machines
when running under VM386, little things like sharing access to such system
resources as printer ports and disk drives are not automatic but rather must be
provided by loading specific proprietary TSRs-device drivers really-on any
VM that requires that access.

In this vein, other than for its own proprietary shared RAM drive, you cannot
use conventional disk caching programs, RAM drives, nonstandard block
devices, or virtual drives with VM386. This limitation effectively rules out the
use of many data compression utilities, particularly those utilizing virtual disks.
One data compression board, tried in conjunction with VM386, allowed files to
be called back and decompressed from the compression boards proprietary virtual
disk, but VM386 would not let it save them back to disk.

There are also some other peculiarites you should know about when working
with virtual machines. These are not just VM386 issues. In virtual 8086 mode,
access to INT13h is barred by the CPU. This is not a problem with VM386's soft
ware but rather has to do with general fault protection and access privileges
allowed to virtual machines.

For the most part, you might never even notice this. Few programs make
INT13h calls. The DOS FORMAT program, however, uses INT13h, as does
CHKDSK with the If (fix) switch; therefore, you cannot format disks while run
ning in virtual mode. You can run CHKDSK on a virtual machine, however. It
just can't try to fix the disk if it fmds lost clusters, chains, etc. The solution in
both cases is simply to boot up in real mode (as you have to at the beginning of a
session anyway), do your disk formats and fixes, then boot your virtual machines
and go on with your work.

VM386 is a fussy program in some respects. It will only run on an 80386 or
higher system with at least a 16-bit bus. Although this does allow it to run on 286s
upgraded with accelerator cards, it will not run on accelerator card-upgraded
8088s (unless upgraded with a new 386 motherboard).

You absolutely have to use an enhanced keyboard with VM386. The scan
codes on enhanced keyboards are different from the older 84-key types and
VM386 just plain will not run-will not even load-unless it finds an enhanced
keyboard. Fortunately for those of us who like our function keys along the left
hand side, there are a few enhanced boards on the market that have the function
keys where they should be. Northgate makes one and there are several others.

Virtual machines do not have virtual crashes
Sooner or later it's going to happen-who knows why? Sooner or later, you're
going to have a virtual machine go down. It is when that happens-more than any
other time perhaps-that you will truly appreciate the virtues of the virtual
machine. The individual virtual machines seem no more and no less prone to
hangups than single tasking on a real machine.

188 Beyond the real

When a virtual machine does crash, none of the other machines, including
the host machine, are affected. You simply reboot the crashed virtual machine,
like you would reboot any crashed machine, but with the power switch. To date, I
have yet to be able to bring the system down by crashing VM386 virtual machines.
The isolation between the virtual machines and the host machine is so complete
that the system seems almost completely bulletproof.

To quickly put this in perspective, let me stress that, based on several years of
multitasking experience, in most cases-with DESQview anyway-one crashed
application will not bring down the entire house of cards. If that were the case, I
would not be so enthusiastic about multitasking. Still, it does happen. When it
does, there is always at least a certain amount of risk.

Because the VM386 host machine is not affected, rebooting a crashed virtual
machine usually can be accomplished with just the old three-key (Ctrl-Alt - Del)
warm boot. The only caution to observe is that you must be sure the machine you
intend to reboot is the foreground machine, because that's the one that's going to
reboot whether you want it to or not. Ifall else fails or you are uncomfortable with
the three-key method, the VM386 control menus provide a reboot function, as
well.

VM386 is really a pretty easy system to work with overall, with a master
menu system never more than a keystroke (Alt-SysReq) away. Multitasking is
only the beginning.

More than just one pretty face:
the multiuser option
Multiuser systems are attracting increasing attention these days. Traditional net
working requires expensive cards and new operating software, which generally
involves at least a certain learning curve when moving from a stand-alone plat
form. Expensive hardware and new software is not necessary with VM386.
Unless you're really into doing something exotic, DOS is all you or any user ever
really sees.

Going multiuser with VM386 requires only one 80386 with some serial ports
available to act as a host machine and some old PCs as terminal emulators or just
dumb terminals, which cost about one third as much as stand-alones. The low fig
ure represents only low-end text-only nodes; however, even going toward the high
end with graphics nodes, a multiuser system can be far more cost effective than
full multitasking.

The two schemes are not mutually exclusive. Multiuser clusters can be net
worked, providing not only a less costly solution to many office needs but also
adding a layer of additional security by allowing multiuser nodes access to net
worked resources (through a networked host) without actually granting the users
at those nodes direct network access.

More than just one pretty face: the rrultiuser option 189

Particularly when using standalones as terminal emulators, the possibilities
are almost limitless in that environment nodes cannot only have their own exclu
sive printers or other resources but also have access to a shared resource pool, as
well. They can even switch back and forth-multitasking if you like-between
stand-alone operations and terminal mode access to the host and beyond.

The transition from single-user VM386 multitasking is relatively painless,
with various packages available supporting various numbers of nodes. The small
est supports two nodes remote from the host machine. The transition involves lit
tle more than installing the new software (which takes about five minutes) and
setting up the nodes. Ifyou have already been running a single user VM386 instal
lation, most-if not all-of the configuration ftles will still be valid on the host
machine.

Earlier versions supported text-only applications, except on the host
machine. It now is possible to run graphics applications and even multitask on
nodes, as well. VM386 has quietly matured into a very powerful family. With its
modular design, it exemplifies not only what can be done with virtual machines
even starting at the entry level of multitasking but also the range of potential of
virtual machine technology.

190 Beyond the real

15

CHAPTER

TheMDOS

multiuser option

Although users most often normally think: of DOS and DOS-like work environ
ments in terms of single user systems, a whole genre of multiuser DOS-based or
start-from-scratch DOS look-alikes has evolved, a quiet revolution that has only
fairly recently come together under a common banner: MDOS. The name derives
from Multiuser DOS. The important thing that MDOS systems have in common is
that they allow two or more machines (up to some specified limit) to be intercon
nected by a simple, inexpensive hardware interface, often sharing applications
written to run under DOS.

You might think: that this sounds like just another name for networking.
Indeed, MDOS systems offer many of the advantages of a LAN, but generally at a
substantially lesser price, because MDOS systems require neither the added
expense or complexity of network cards in each machine or the high cost of net
work software associated with some of the better known network systems.

Typically, the only interface required is just a dedicated serial port at each
machine. Because the underlying operating system-if not MS-DOS-is some
thing pretty close to DOS, the fact that there is anything else involved is generally
invisible to users except, perhaps, at the host machine. For the most part it is
invisible there too, once the system is up and running. Besides the lower price tag
of most multiuser systems, retraining costs can be reduced to nearly nothing.
Ongoing administration is generally much easier than with traditional network
ing' resulting in further savings.

191

This does not mean that Multiuser DOS can or ever will obsolete traditional
networks. However, in many cases, Multiuser DOS can provide a far more cost
effective alternative. In others, it can be teamed with networking in either new or
existing systems to provide the best of both worlds.

Actually, MDOS is nothing new. Only the name is fairly new, coined when
what at first was only just an informal group of vendors got together and decided
to offer a viable alternative to full-scale networking. The DOS part was and is
interpreted rather broadly to include virtually anything that is DOS compatible
(i.e., capable of running software written to run under DOS on a machine with an
8086-compatible CPU).

While the design of multiuser systems and the factors determining the effec
tiveness of the multiuser DOS versus traditional networking are beyond the scope
of this book, it does seem appropriate here to look briefly at some of the options
and how seamless the transition from a world of isolated boxes to one of connec
tivity can be. There are also factors to consider that could or should influence
both hardware and operating system acquisitions for users who can see the need
for connectivity upcoming.

The virtual machine again
In another chapter, I discussed a DOS add-on multitasker called VM386 that took
advantage of this special capability, creating virtual machines on the host machine
with each virtual machine capable of supporting an application as if it was run
ning on a completely separate 8086-type machine. There, I focused on VM386
mainly as a single-user system, but the basic mechanisms are essentially the same
for multiuser systems. VM386 also is available in multiuser increments.

Returning to the underlying mechanics for a moment, however, I showed how
this virtualization could be so total that each new "machine" can be configured
differently-even booting an operating system different from the one the host
machine is running under. This is the extreme case; you cannot virtualize much
more than that. You don't even have to go that far to see the virtual machine at
work. DESQview even virtualizes hardware, but to a lesser extent. The same is
true of Digital's DR Multiuser DOS and PC MOS as well. This area is really
nothing new in concept, rather more in application and sometimes degree.

Intellegent Graphics Corporation, developer of VM386, then took the proc
ess one step farther in its Multiuser VM386. This companion product simply
allows some-or even all-of the virtual machine sessions under its auspices to be
conducted outside of the box containing the host, running instead on machines
that were, at least within the context of that session, simply dumb terminals.

As you can see, it is conceptually a relatively short step to transition from a
single-user multitasker to a multiuser system, running, perhaps, the exact same
number of concurrent sessions but continuously presenting what would be back

192 The MDOS multiuser option

ground sessions on a single user system as active foreground sessions to users at
one or more other stations. As a practical matter, there is a bit more to it than that,
but at least in principle it is a fairly simple step.

Both the single and multiuser versions of VM386 started with an ordinary
DOS system-a bare DOS system-simply loading an additional level, a superset
of DOS, on top and running from that. I'll begin by picking up the VM386 story
where I left it and taking a look briefly at the ways the multiuser version differs.

Multiuser VM386
This is an ideal starting point for the discussion, because here is a genuine-and
logical-upgrade to multiuser status for a product that earned its stripes in the
competitive single-user multitasker market. Most of what I said about the single
user version earlier carries over to the multiuser packages, as well. Rather than
belabor the basics, I'll refer you back to that discussion.

In particular, I would recommend that you review the discussion of the total
virtualization of the hardware by VM386, because in this regard, VM386 (Fig.
15-1) is quite unique from the other multiuser systems that I'll be discussing.
Most, if not all, 386 multitaskers-single or multiuser-virtualize the hardware to
some extent. That is, they create virtual machines, each behaving like a separate
or nearly separate-8086 machine.

:1.1]=-------=--========= Create Virtual Machine -===-==-==----==--------

Profiles Basic Options-------, VM List
128K_PC VM Name= l28K_PC VMl XYWrite 3+i
2S6K_PC Profile= 128K_PC _ VM2 DOS

384K_PC Base Memory (Kb)= 128

S12K_PC Foreground Only= No

64OK_PC SRM Check= Yes

CONN Update Profile= No

Boot Device Boot Files
Hard Disk Config. VM
Floppy Disk Autoexec. VM
ROM Basic
Standard

Info--------------------------.
Select Profile from list. Available memory (Kb)= 1484
Press Ctrl-Enter to see the advanced options
Press Enter to create a new machine. Use Esc to quit.

Hardly a pretty face, VM386's top-level control screen is strictly business. Some of the terminology on this and suc
cessive screens will send you to the documentation, but the power is there.

Multiuser VM386 193

VM386's creators have taken this concept to its ultimate conclusion seem
ingly, developing a DPMI-compatible system that creates and supports virtual
machines that are so totally independent of each other that they can run side by
side concurrently, even under different operating systems. Building on that, it is,
at least conceptually, a small step to physically remove those virtual machines
from the host, so as to conduct those sessions from remote keyboards and view
them on remote displays.

Moving up from single-user VM386 to multiuser involves a little more than
simply loading in the new multiuser software. While the AUTOEXEC.nnn and
CONFIG.nnn files customize individual virtual machines for specific applica
tions, there are other configuration files associated with the host machine. These
other configuration files are not transferable, even as they apply to the primary
workstation. Instead, they must be re-created for the new multiuser installation,
including whatever data is required to configure the system to host remote user
virtual machines, as well.

This is a relatively simple procedure, however, and mainly a matter of work
ing through a series of menus. As with the single user version, you also have the
option of creating specific virtual machines for the current session only or making
them part of the permanent configuration.

Although VM386 does support both extended and EMS expanded memory, it
does not currently support the High Memory Area or mapping EMS memory to
high DOS addresses, even if the overhead of VM386 system itself is concentrated
in the host machine and not shared by the virtual machines that actually run your
applications (each of which simply loads its own copy of DOS the same way any
real machine would do).

This is not a limitation imposed by the virtual 8086 mode, but rather these are
features that simply have not been implemented at this time. However, as a practi
cal matter, the fact that each application runs on a machine specifically tailored to
its needs rather than having to load device drivers and TSRs in anticipation of
other needs-and the fact that machines running text-only applications can
include the memory area above AOOOh normally reserved for graphics-signifi
cantly reduces the need for such support.

On the other side of the coin, whether you are working with real or virtual
machines, not all applications need the full640K that DOS allows (704K or more
for text-only applications). To conserve memory, VM386 allows virtual machines
to be created in almost any size (the normal menu-option increments are 128K but
advanced users can work with smaller increments, if desired). In any case, you
have to allow space for DOS (or a reasonable alternative operating system).

The documentation is extensive-some 426 pages for the five-user starter
package. All of it is devoted to detailing operations under multiuser VM386 and
contains virtually nothing with regard to its workings-much less than is in this
book.

194 The MDOS multiuser option

Multiuser VM386, however, represents only one approach to providing a
multiuser multitasking environment. Its creators chose not to create a total operat
ing system, but rather a perfect superset to DOS (or reasonable DOS look-alike).
This need not be a separate step, however, as exemplified especially by DR Mul
tiuser DOS from Digital Research. Introduced in early 1991, DR Multiuser DOS
will run on anything from a 386SX up and represents a quantum leap beyond Dig
ital's earlier Concurrent DOS 386, which was discussed in the first edition of this
book as one of several interesting possible alternatives to MS-DOS at that time.

It fits the discussion as this point because it does indeed incorporate the capa
bilities required to support multiple concurrent sessions on virtual machines that
are accessible to multiple users as an integral part of an operating system that is
almost a perfect MS-DOS look-alike. It also takes a more traditional-and less
visible-approach to implementing virtual machine technology.

DR Multiuser DOS
Not content with just going head-to-head with Microsoft for the single-user DOS
market-a market Microsoft essentially pulled out from under Digital in early PC
days-Digital Research now is striving for supremacy in the rapidly expanding
multiuser market. Hot on the heels of its single-user DR DOS 5.0 (examined else
where in this book), Digital introduced a multiuser product, DR Multiuser DOS
5.0, which started shipping in the second quarter of 1991.

DR Multiuser DOS is a big operating system. It has to be, given the fact that
it theoretically has the power to support up to 256 users, all running multiple ses
sions. As a practical matter, most DR Multiuser DOS systems probably will not
have more than 10 users, with each running up to a maximum of eight applica
tions concurrently, but the power is there.

The key program, a hidden fIle called DRMDOS.SYS, is 245,504 bytes long
or almost four times the size of MS-DOS 5.0's two hidden fIles put together. By
breaking the kernel into pieces and fitting most of them above 640K, however, the
net conventional memory space left to run applications can run as high as 592K,
although it typically will run a little less as shown in Fig. 15-2, which represents a
fully configured system with VDISK and disk caching that still has up to 576K for
each application on the main console. Intriguingly, a PC with a CGA card used as
a terminal can have even more for each of its sessions than the host machine with a
VGA card.

Although descended from its earlier Concurrent DOS and reminiscent of it in
many ways, this is essentially an all-new product geared exclusively to today's
world of 32-bit machines. This means that, although individual workstations can
be anything from dumb terminals or old 8088 PCs on up, the host machine can
only be a 386 or higher. It is essentially a 32-bit operating system that avails itself
of 32-bit processing power while presenting a conventional DOS environment for

DR Multiuser DOS 195

r-- Drive Disk Size 	 Bytes Free
C 	 32,6141\: 31M U81\: - OM
E 	 3531\: OM 3531\: - OM

Total 	 32, 9671\: 32M 7911\: - OM

Printer I Aux Name OWner - station
printer 0 None
COM1 Port None
COM2 Port I Multiport 1 None

[Total .emory Dos Free Memory Free Me. LIM l
3, 9681\: 	 5651\: 9601\: TPA ,_

- Process Name -.--- Console ----.,.- station - - User Name - - M_ory
SHOW 4 0 	 5761\:

XTG 3 0 	 5761\:
MEMO 2 0 	 2561\:

EDITOR 1 0 	 5761\:

15-2 	 Memory report of a fully configured system running under DR Multiuser DOS shows up to 576K available
to each session running on a VGA-equipped host machine.

applications software, both at the host machine and everywhere along the line.
To someone used to multitasking in a single-user DOS environment, the dif

ference should rather quickly be apparent (although in fairness, there are other
factors that enter into the equation as well). Still, it is not how cleverly the system
time slices or whether it is fully utilizing the 32-bit potential of the CPU that mat
ters. What matters is the bottom line: performance. This one is impressive.

The double whammy
DR Multiuser DOS can be installed as the sole operating system on the host
machine, and no doubt would be in most cases. However, it also can be co
installed in a dual-boot configuration on a hard disk that already contains a boot
able DR DOS, MS-DOS, OS/2, or any of several other operating systems. Unlike
PC MOS, DR Multiuser DOS dual-boot installation does not require repartition
ing your hard disk. DR Multiuser DOS can coexist quite nicely in the sanle pri
mary disk partition in much the same way that various OS/2 and MS-DOS
releases have been able to coexist.

However, in this regard, it is a whole lot easier than setting up an MS-DOS/
OS/2 system. Only certain MS-DOS releases can be teamed with certain OS/2s.
With DR Multiuser DOS, it doesn't matter (which is a good thing, because unlike
most other operating systems, DR Multiuser DOS can be installed only to a hard
disk). You can create a bootable DR Multiuser DOS floppy directly from the dis
tribution disks; however, you can only configure a hard disk installation via the
menu-driven Install/Setup utility.

Once it is installed in a dual-boot situation, the following message appears on
screen whenever you boot the host machine:

196 The MDOS multiuser option

Load Multiuser DOS (J or N)?

An affirmative response loads the DR Multiuser DOS operating system, while a
negative response executes a special loader for whatever other system you might
have had in place when you installed DR Multiuser DOS.

However, you will have only a single and somewhat larger AUTOEXEC.BAT
file than you started with that then serves both, invoking functions unique to DR
Multiuser DOS only when you're running under DR Multiuser DOS and ignoring
them when you're not, as you can see for the excerpt reproduced in Fig. 15-3. In a
dual-boot situation, you probably will have to do some juggling and probably a
little tailoring.

:OSLOAD

(lECHO OFF

if "%os%"=="DRXDOS" goto OSBEGIN

(DOS portion of AUTOEXEC.BAT)

(I.cho off
:OSBEGIN
(lECHO OFF
REM Th. OSBEG and OSEND lab.ls t.ll the SETUP program which
REM statem.nt. it .hould proc.... Put any additional
REM .tatem.nt. for REM Multiu.er DOS between th••e two lab.ls.
REM Any oth.r .tatement••g. for other operating .ystem.
REX .hould be placed out.ide the label••
PATH C:\OSUTILSiC:\dos\batchic:\dos\utilitYic:\bi.ex\utilitY
APPEND C:\OSUTILS
NETDRIVE C: /R
SUSPEND = OFF
IF "%CONSOLE%"=="" SET CONSOLE=%3
PROMPT %CONSOLE% pg
: OS END

15-3 Excerpt for an AUTOEXEC.BAT that serves both DR Multiuser DOS and (in this case) MS·DOS 5.0
in dual-boot installation. Although lines unique to DR Multiuser DOS are created automatically dur
ing installation, integrating them with the original file might require some fine-tuning on your part.

DR Multiuser DOS does not change the existing CONFIG.SYS file on a
dual-boot installation. However, the DR Multiuser DOS installation program does
create a special file, called CCONFIG.SYS, exclusively for DR Multiuser DOS.
Whichever operating system you load then runs its own. Here, as in a number of
areas, Digital has conspicuously not carried over features from its single-user DR
DOS in this multiuser release, although this is a minor point.

As an aside, the Install/Setup utility mentioned above is interesting. A large
program-almost 120K-SETUP.EXE, which is needed any time you want to
change your DR Multiuser DOS configuration, does not exist on the distribution

The double whammy 197

http:Multiu.er
http:tatem.nt
http:statem.nt

disks. At some point during the installation, it is created from INSTALL.EXE,
which remains on the distribution disk in its original form while SETUP.EXE is
copied to your hard disk. From that point, DR Multiuser DOS recognizes
INSTALL in the same sense as it is used in either MS- or DR DOS: to load TSRs
from the CCONFIG.SYS rather than from the command line or batch fIle later.

Aside from configuration or reconfiguring the system in general via the
Install/Setup utility, individual DOS sessions for individual workstations are set
up with simple STARTxxy batch files. However, each session on each station must
have its own individual startup file.

On the other hand, it is one of the easiest systems I've seen. On startup, DR
Multiuser DOS reads and automatically executes whatever STARTxxy.BAT fIles it
finds, in much the same way as DOS looks for and executes the AUTOEXEC
.BAT fIle. In your root directory, you might have something like this:

START001.BAT
START002. BAT
START003.BAT
START004.BAT

Four IS the default number of sessions on the host or at each workstation, but this
can be increased to up to eight for each, as required.

A number of usable sample batch fIles are provided on one of the distribution
disks (but are not automatically copied to your hard disk). The documentation
also deals extensively with creating superuser (the host machine on multiuser sys
tem) files for various typical applications. However, in many cases, simple batch
files are all that is required, often containing nothing more than the command
required to open the program, such as C:" SUPRCALC.SC5. They also can be
full-fledged batch fIles that change directories, establish a different path, or
append for that applications, etc.

Using proprietary commands, these batch fIles also can be used to establish
other than default values for the amount of memory allocated to that session, the
anl0unt of EMS memory available to it, and other values specific only to that win
dow, or session, as windows are referred to. In any case, for anyone fanilliar with
batch fIles, it is a breeze.

DR Multiuser DOS provides a choice of three different hotkey methods Jor
switching from one session to another, any of which can be enabled or disabled at
the user's option when configuring the system:

Ctrl-n to switch directly to a session by its number
Alt - Esc to browse through open sessions
Ctrl-Esc to call a pop-up window showing the status of all sessions

These are simply defaults, however, and can be changed during the installation (or
at any later time) if these conflict with other keyboard assignments.

198 The MDOS multiuser option

The rather risky option of being able to reboot the host machine-ergo
abruptly terminating everybody-via the old three-key (Ctrl-Alt - Del) is en
abled by default, but can be disabled at the user's option when configuring the
system.

One of the factors that contributes significantly to the ability of DR Multiuser
DOS to mask the fact that it is actually not only managing multiple concurrent
sessions on the host machine but possibly on several other PC/terminals is the
way that it divides the CPU's attention between them. This becomes a much more
important consideration in multiuser systems than with single-user multitaskers by
sheer weight of the number of sessions the host machine might have to duplicate
in this case, up to eight times the number that would be involved if every user had
a single-user multitasker.

Idle power
One of the keys to DR Multiuser DOS's success in this area is an IDLE feature
that can be set either to Off or On. The default is On, which means that, during
periods when there is no keyboard input, running applications are skipped over,
so their time slice can be put to better use. All decent multiuser (even single-user)
multitaskers do this to varying degrees. However, DR Multiuser DOS seems to be
among the best I've seen so far, although-as with any of them-improper config
uration can quickly rob you of performance. IDLE OFF is one of the options that
can be set for a particular session by including it in the STARTxxy.BAT (or
entered from the command line before opening an application manually), when
needed. Realistically, about the only time you should ever need to change the
default is when you want to keep on crunching numbers in the background-or
sorting a database, etc. The option is readily available when needed.

Security is often a serious concern on any system accessible to other users or
anyone with a little smarts and an unhealthy curiosity who happens to come along
when no one is looking. DR Multiuser DOS provides a comprehensive password
protection system with three separate levels:

• Read (r)
• Write (w)
• Delete (d)

These can then be assigned to control access by:

• The owner
• The group
• The world at large

Access rights can be set up with the XATTRIB command. A group of ftles then
might have their levels of protection setup something like this (dashes indicate that
access is not allowed):

Idle power 199

rwd fred doc c: " usr" fred" news.doc
rwd rwd joanne doc c: "usr" fred "joanne.txt
rwd fred doc c: "usr" fred "personal.doc
rwd rw r- fred doc c: " usr" fred" letter. doc

Other security utilities include one you can use to lock access to your machine
during coffee breaks, etc. Overall, it seems to be a well thought out scheme.

In terms of overall memory management, DR Multiuser DOS provides full
EMS support for DOS applications. DR Multiuser DOS can run Windows ses
sions in real mode. It does not support either the VCPI or DPMI specifications,
however, so it cannot run any DOS-extended applications. With its dual-boot
capability, it does not completely foreclose that option either. Overall, DR Mul
tiuser DOS is a powerful contender for the rapidly expanding MDOS market.
However, it is not alone.

PC-MOS

Another player in the game is The Software Link, Inc. It has been in the multiuser
DOS look-alike business for sometime, with a succession of PC-MOS products.
Intended at one time strictly for the 80386 market (PC-MSO/386), the product
now embraces the use of 80286 machines as servers with its fourth generation
multiuser/multitasking operating system, now simply called PC-MOS. In it, spe
cial support is provided for 286 machines equipped with the All ChargeCard (see
chapter 16).

MOS stands for Modular Operating System to distinquish it from DOS. How
ever, it is, at least outwardly, a pretty good look-alike, with a command structure
that is pretty similar to DOS. The "Modular" in the name is meant to be more
than just an excercise in semantics. The basic package is designed for single-user
multitasking, with expansion modules available to expand the basic installation to
accommodate groups of workstations. The interest here is mainly in the mul
tiuser/multitasking operating environment.

A number of functions that are external to MS-DOS or DR DOS are internal
in PC-MOS. PC-MOS is structured quite differently from DOS, with most of its
bulk (122,900 bytes in version 4.1) contained in $$MOS.SYS and another 33,207
bytes in $$SHELL.SYS. COMMAND.COM, on the other hand, is only 20 bytes
long.

While the size of the PC-MOS kernel might seem overwhelming at first
glance, it is really hardly any larger than-if it is as large as-the total overhead of
DESQview loaded on top of DOS. The exact balance depends on which versions
of DOS and DESQview you want to talk about. The PC-MOS kernel is written to
allow a good part of it to load above 1024K, in what would be the HMA if MOS
used an XMS-compliant driver, and allows still another piece to be loaded in

200 The MDOS multiuser option

http:COMMAND.COM

upper memory on 386s, i486s, and ChargeCard-equipped 286s that support it. As
is the case with DESQview on comparable machines, the net result is something
anyone can live with.

Overall, the command structure of PC-MOS is similar to DOS in many ways,
with many commands having identical names and syntax. At ftrst glance, the syn
tax looks a little different than MS-DOS, with the documentation showing a
period preceding all of PC-MOS's otherwise look-alike commands. The preftx
dot is actually an option that can be used, if needed, to prevent conflict with other
software that might respond to the same commands if they are not preftxed. This
is not considered to be a common problem, however. PC-MOS itself defaults to
DOT OFF unless speciftcally set to DOT ON.

Despite the fact that many of the commands are the same, many others are
not, so there would seem to be more of a learning curve involved than with some
of the other multiuser systems, particularly as far as the system administrator is
concerned. This seems especially true during the initial setup stage, where,
although things are generally well-documented in the manual, the information is
not always at your ftngertips.

Although marketed primarily for use with 80386s, PC-MOS/386 also can be
used to advantage with 80286s, particularly those equipped with the All Charge
Card or other memory management card that adds remapping to the otherwise
restricted 80286 chip. Even without enhanced memory management on an 80286,
PC-MOS can relocate a part of its kernel in extended memory above 1 Mb with
the help of a special device driver.

PC-MOS also can be run on 8086 and 8088 systems. At a glance, that might
not seem important; however, because 8088s can be used in PC-MOS port-to-port
multiuser conftgurations, it is helpful (although not mandatory) to have all users
on the system at least using the same operating system.

One of the features that is more or less unique to PC-MOS is that it allows
users to call up each other's user sessions, not just the same applications and mes,
on their displays. Access is controlled, so this would seem to have a number of
practical applications.

Here, the rules seem to get a little nebulous, however, As mentioned above,
only the workstation that booted the application in the ftrst place has access rights
that allow rebooting the virtual machine that the application is running on. How
ever, if that workstation is powered down-actually switched off-the virtual
machine (which actually only really exists within the host machine) remains alive
and the work session still is accessible either by other users or by the original
owner, if that terminal is brought back on line.

Conftguring PC-MOS is semi-automated by a menu-drive ACU feature. In
view of the number of proprietary device drivers and options, however, conft
guring PC-MOS will keep you busy for awhile. Also, unless you want to go with
the defaults, you might not have the answers you need right at hand. While the

PC-MOS 201

automated routine puts a rather ominous looking header on the CONFIG.SYS
that it creates, as seen in Fig. 15-4, it is purely informational and has no bearing
on the system.

Fine-tuning PC-MOS takes time. Some of your DOS CONFIG.SYS com
mands especially might need to be eliminated (FASTOPEN for instance) and
some others unique to PC-MOS might need to be added.

To utilize the capabilities of 386s and i486s and ChargeCard-equipped 286s,
PC-MOS supports remapping unused address between 640K and 1024K with
EMS memory. This is accomplished through a FREEMEM command that, when
added to the CONFIG.SYS, can point to as many as five noncontiguous blocks
that PC-MOS can use up there. Otherwise, memory management is automatic
under PC-MOS.

;+++~

;+ This configuration file created by TSL Auto configuration utility.

;+ Do NOT remove or modify this file headinq.

;+ Built: 5/29/91' 20:54:49

;+

;+ COHFIG-IHFO: MAX-TASKS=&

;+ COHFIG-IHFO: SYSPATH=A:\

;++~

15-4 	 The CONFIG.SYS header written by the PC-MOS automatic installation program is purely informational and, a
with any lines beginning with semicolons, is ignored when CONFIG.SYS is read by the system.

Now you see it, now you don't

One of the unique features of PC-MOS is that device drivers can be loaded either
from the CONFIG.SYS (in which case, they become global and part of the envi
ronment inherited by every virtual machine) or they can be added later. In the lat
ter case, they are local, affecting only the environment of the virtual machine for
which they were added. PC-MOS also provides a means of removing device driv
ers that have been installed, but that might not be required for the remainder of
that session.

This set of features essentially stands in sort of a middle ground position,
between something like VM386 at the one extreme, which does not recognize any
device drivers globally (except for a few proprietary ones, such as those required
for access to essential shared system resources such as ports, etc.), and a
DESQview-type situation, in which all applications must share a common envi
ronment.

Figuring out which ones should be global and which ones shouldn't be comes
under the category of fine-tuning. You have to be a little more careful about using
device drivers with PC-MOS than with some other systems; however, because the
work area-the amount of conventional memory available to run our applica
tions-is somewhat smaller with MOS than other multiuser systems.

202 The MDOS multiuser option

The first thing you probably should do is to check to see how all of your appli
cations run under PC-MOS while you're still under PC-MOS's unique 30-day
money-back guarantee. For that, you can get PC-MOS up and running pretty
quickly on the host machine, booting directly from the distribution system floppy,
if you don't want to risk your current DOS hard disk configuration, while you
experiment with PC-MOS.

Compatibility with some applications software was a problem with earlier
PC-MOS releases, but a check of some of those known to have had problems in
the past would seem to indicate that, by release 4.1, the specific problems that I
was looking for had been overcome. In any case, you have ample opportunity to
find out, because PC-MOS comes with one of the best and most foolproof money
back guarantees in the business.

Sold with a money-back guarantee
You can reboot as often as you like and try any or all of PC-MOS's features on
your own machines and at your leisure. You not only can test your applications
software, but you also can fully configure your system and try running a complete
multiuser setup under PC-MOS without voiding the 30-day guarantee.

The gimmick is that, as it comes out of the box PC-MOS, will run only about
an hour, then shut down. You can reboot as often as you like, but each session can
last only an hour, until a little built-in timer shuts you off. However, if at any
point, you're satisfied and ready to adopt PC-MOS, there is another disk. This
one is in a sealed envelope. Opening that envelope to get the disk that turns the
timer off and gives you a permanent PC-MOS terminates the money-back guaran
tee.

This try-it-before-you-buy-it policy holds true not only for the core of the
operating system itself, but also for additional software modules, like Software
Link's LANLink networking package. It's too bad some other software compan
ies don't pick up on this idea.

There is a little more than altruism in the approach The Software Link has
taken here, however. Although the process is reversible, the only way you can cre
ate a bootable PC-MOS disk is by rewriting the boot sector of the disk. A disk
formatted by OOS cannot be made bootable under PC-MOS except by rewriting
the boot sector, which then makes it nonbootable under DOS. While there might
be some advantage to taking this approach, it does create at least a nominally non
standard situation.

To offset this, PC-MOS does provide a special mechanism for configuring a
disk in a way that will allow it to boot under either DOS or MOS. However, to do
this require repartitioning your hard disk and dedicating at least one partition to
PC-MOS, because it requires a special proprietary boot sector to be bootable.
Repartitioning, takes you right back to square one with your hard disk, wiping out
everything on it, so this is not something you want to jump into hastily.

PC-MOS 203

Unfortunately, the up front installation documentation only talks about
replacing DOS with PC-MaS on your hard disk (which can be done without
repartitioning and disturbing any of your other fIles or software) or about reparti
tioning a hard disk to set up the dual-boot capability. However, you can use the
MSYS d: command to write a new boot sector to a floppy or use the PC-MaS
formatter (both options are documented elsewhere in the manual) to prepare a
floppy that you can play with and configure. I made up a 1.2 Mb floppy that way
that was not only bootable under PC-MOS but had all of the utilities contained on
the three distribution disks with space to spare. With something like that, you can
fully configure your system without disturbing your hard disk DOS, until and
unless you're fully satisfied that PC-MaS is for you.

Overall, PC-MOS is a rather large program, not in terms of the amount of
memory it takes up-Which is rather modest-but in terms of the number of driv
ers and utilities provided. It's a rather complicated package to set up-harder than
Multiuser VM386 or DR Multiuser DOS. Still, it is a powerful tool that offers a
variety of unique capabilities that deserve careful consideration, because it is the
long-term capabilities that matter most.

Only the tip of the iceberg
I only have scratched the surface of the world of the multiuser system. In confin
ing discussion to DOS-like operating environments, I have completely overlooked
such powerful multiuser systems as XENIX, which is sort of the granddaddy of
multiuser systems, and this is not entirely fair. While DOS and UNIX represent
quite different operating platforms, with a little software help, the two can coexist
quite nicely.

With products like SCO VP/ix,the fIles can all be mixed together. SCO VP/
ix manages any piping or redirection between DOS and XENIX fIles or processes
that might be required. You can start a session under DOS or under XENIX; it
doesn't really matter. With operating environments like X-Windows and the new
DESQview X, you don't even have to have a 386 or higher to make it one big
almost-happy family. If the DPMI specification lives up to some expectations,
compatibility issues will slip even farther into the background.

The memory issues that are the primary focus of this book are handled differ
ently. What XENIX looks at as standard memory is essentially what is called
Extended memory in the context of the DOS environment: Linear memory start
ing at OOOOh and going right on up. The minimum recommended for a XENIX
configuration is 2 Mb. Really, a minimum of 4 Mb is recommended with still
another megabyte for each additional seo VP/ix user on the system.

What you call memory is of little importance. What matters most is what you
can do with it. Under XENIX or most any operating system today, things like
EMS or whatever kind of memory you need can be emulated. Even the operating

204 The MDOS multiuser option

system is important only as a conveyance, an interface. What really matters is
your applications software-the stuff that does the work that makes it all worth
while, no matter how many of you are all hooked up together.

What you don't see
There are some things you don't see here among the multiuser options. All of the
systems I have discussed run exclusively on 396 or higher systems-or if not
exclusively, by preference. Yet none of them provide or allow for the kind of EMS
memory management that is taken for granted with single-user 80386 systems. It
appears that, while all (or at least most) of these systems use upper memory for
their own use (Multiuser VM386 seems to be an exception), they do not make any
upper memory available for other uses.

You cannot help them out with QEMM, ALL Charge 386, 386MAX, or any
of the powerful memory managers I have discussed in this book-or even any that
I haven't-because all of these multiuser packages are total packages in that they
have their own built-in memory management tailored to their own unique and spe
cial needs. They can work only when given total control over all system memory
resources. They do it their way, or not at all.

This means that any device drivers-other than any that may be internal to
these various systems-must load down in conventional memory. You might have
to reexamine your present use of upper memory and do a little weeding out wher
ever possible, although both PC MOS and VM386 have workarounds that help
ease the problem.

Also, there are some device drivers that, for various reasons, some or all of
these multiuser systems cannot work with. VM386, for example, (single or mul
tiuser) cannot handle nonstandard block devices, such as the virtual disks created
by most real time data compression utilities. I have found some others with some
of the other systems too, not to pick on VM386 unfairly.

However, these are things that users can live with. Face it, it's been only in
the past several years that anyone has had upper memory, reserved memory, or
high DOS memory-whatever you want to call it-to work with anyway. Call it a
small step backward if you will; however, that is a small price to pay for the giant
forward leap that multiuser multitasking (MDOS) represents.

What you don't see 205

16

CHAPTER

Keeping up,

or trying to

At some point, sooner than they'd like to think:, most users have to face the ques
tion of upgrading their overall systems. It is a normal, healthy stage that, in gen
eral, marks at least a fair degree of maturation, both in terms of needs, skills, and
attitudes about computers. Once that is determined, the issue then breaks down
not to the need to upgrade to keep pace, but rather to which one of three possible
avenues to pursue when just adding memory is not enough:

• Perform a partial system transplant via accelerator cards, while retaining
the same motherboards and hardware otherwise.

• 	Replace the motherboard, but otherwise retain all or part of your old hard
ware.

• Start from scratch, replacing your current CPU with complete brand new
80286, 80386, or 486 systems.

The options in themselves have not changed greatly since the first edition of this
book was published (some of the product names have fallen by the wayside as
might be expected, but there are others in their place). However, in the interim,
the industry has changed, not just in measured steps but quantum leaps. At this
point in time, the picture that emerges is quite different from what it was not too
long back. The first of these options represents both the cheapest and the most
expensive solutions, also the easiest but not always the best. Option two is more
middle-of-the-road, often actually requiring more careful thought than the pur
chase of new equipment or merely adding on more memory. However, either of
these first two generally represent the least expensive ways around the problem.

207

None of the above solutions are automatically the best. Just throwing money
at the problem and buying all new hardware might produce the poorest return-or
the best, depending on the specific needs and just how well whatever new equip
ment you purchase fits that need, not only for this year but for the next few years
as well.

For my purposes here I've put the purchase of complete new systems last for a
couple of reasons. If you have existing hardware, prudence-and the bean
counters in most corporate situations-dictate not just rushing out and buying
something else before you check out all the options. By the time I've gone down
through the pros and cons of the other options offered, I will have touched on
many of the issues that should go into buying new hardware.

The questions are-or at least should be-the same in any event. While, with
the exception of some products that have come and gone, the options themselves
have not changed significantly over the past couple of years, the world has
changed drastically. With those changes, some rethinking might well be in order
now before reaching a decision. So, I'll start then at the easy end of the scale and
work my way from there.

Supercharging that old 8088
Generally thought of as the cheapest, least traumatic upgrade options, there are
several accelerator cards on the market. Accelerator cards physically replace the
original CPU chip with something higher, bringing with them their own clock and
often their own memory, plus whatever other support hardware might be neces
sary to complete the conversion.

The popularity of this kind of upgrade has declined considerably, however,
due in part to the fact that, by now, most serious candidates for upgrade already
have been upgraded, phased out, relegated to serving as dumb terminals on mul
tiuser systems served by 80386 or 486 hosts, or just plain died. In any event, with
this decline, there has been a corresponding decrease in the number of accelerator
cards to choose from.

The typical accelerator card replaces the original computer chip with a
higher-powered, faster chip-an 80386 in the place of an 8088 or in the place of
an 80286 to upgrade AT-type machines. However, because the problems and
available options for upgrading 286s are quite different than starting with an 8088
machine, I'll look at the 286 situation just a little later on.

For upgrading 8088 to 386s, one of the most successful-and durable-accel
erator cards is Intel's 16MHz InBoard 386PC. Intel couldn't have thought of a
better way to increase the market for their chips without stepping on toes. While
for several years they also made a card that converted 286s to 386s, their 8088-to
386 card produced a more spectacular improvement at lower cost.

208 Keeping up, or trying to

Priced at just under $800, the PC version can make an old 8088 run about
four to seven times faster on average, or about twice as fast as an AT. It also has a
socket for an optional 80387 coprocessor, if you need one. The whole package
even including one of Intel's optional piggyback memory expansion modules
only takes up one of your precious expansion slots. It is recommended that you
have at least a 125 watt power supply in your PC to support it, but many clones
come with adequate supplies. If you have a genuine Big Blue, you've likely long
since replaced the anemic 65 watt supply that mM supplied, anyway.

Accelerator cards have a defInite advantage when it comes to ease of installa
tion. Typically, you simply remove the old CPU chip from your machine-a bit of
brain surgery, but not at all diffIcult-slip the accelerator card into an empty
expansion slot in your machine, and plug an adapter cable into the old CPU
socket. You're off and running. Even including adding the required device driver
to your CONFIG.SYS, installation can be accomplished in well under an hour
probably as little as 20 minutes for anyone with some experience installing boards
in any of the expansion slots.

Suddenly that old 8088 PC isn't just a PC any more. It's a full-blown 386
sizzler-or is it? The answer is: not entirely-though for many applications it
comes close enough. What it doesn't have is a 16-bit bus comparable to a factory
new 286 or higher machine (except when upgrading a 286 to 386 status). To get
around that, Intel also offers piggyback memory boards that provide up to 4 Mb of
full 32-bit access extended memory-memory that also can emulate full LIM 4.0
expanded memory-bypassing the bus issue except for 110 services.

In addition to the limitations of the 8-bit bus, the access rates of hard disks
installed in most 8088 machines are signifIcantly longer than for the generally
more expensive hard disks sold for faster machines. For example, in a side-by
side test using the new task swapper in DOS 5.0, it took 25 seconds to swap an
application to the hard disk of an upgraded PC, only four seconds to do the same
exact job on a new factory-built 386 SX running at the same clock speed. (The
hard disks in both cases had been unfragmented immediately prior to the tests and
the interleave factors were checked for optimum performance.)

110, disk I/O especially, can be a real bottleneck, especially when starting
with an 8088. However, considering the number of applications being tailored to
run in 32-bit extended memory using DOS Extenders today, that might be less of a
drawback than it once was. Those programs ideally try to leave DOS and all such
problems behind as fast as possible and keep 110 to a minimum. The better they
can manage that, the less these other factors should seem to matter.

One little quirk you're sure to fInd annoying is the length of time it takes to
boot your altered system-especially if it is, or was-a PC. Accelerator cards do
not exist-as far as the motherboard is concerned-until the system is nearly fIn
ished booting and until the CONFIG. SYS fIle loads the device driver that makes

Supercharging that old 8088 209

it recognizable. The original ROM BIOS boots the system, which means it has to
go through the whole slow memory checking exercise, etc. Then the InBoard has
to go through a little dance of its own. It takes just about two minutes before it
wakes up enough to even look for the AUTOEXEC.

Still, I used an InBoard-upgraded 8088 PC on an almost daily basis in my
office for several years-much of the first edition of this book was written on it
regularly running even CPU-intensive programs like AutoCAD. It certainly did
its job.

When considering going this route, however, remember that you are starting
with an old machine that, in a worst case scenario, might already have as much as
six or seven years of hard use on the old motherboard and whatever supporting
chips the installation might require. Given this, unless you're starting with a fairly
new machine, I really wouldn't recommend this kind of upgrade anymore.

The 286 dilemma
Not surprisingly, you can upgrade 286 AT-type machines to full 386s, too. Such
upgrades generally will outperform any upgraded PC/XT class machine (short of
replacing the motherboard) because:

• The base machine has a 16-bit bus
• Most AT-class machines are fitted with faster access hard disks

This option has had its ups and downs, however. It was popular when the cost of
brand new 80386 machines was high, then fell into general disfavor with the intro
duction of the 80386SX and generally declining prices for new machines. For a
time, the cost of upgrading an 80286 was often significantly higher than the cost
of upgrading an 8088 to 80386 status. (The Intel InBoard for 8088s retailed at
$995, its InBoard for 286s sold for $1295.)

As plunging prices made complete replacement 386SX motherboards readily
available at mail order prices (starting at $400 or less), this ceased to really be a
viable option. One or two vendors have continued to sell accelerator cards for
286s at significantly reduced prices. Intel, however, withdrew its InBoard AT
from the market.

The ALL 386SX: a new approach
Into this void came ALL Computers, Inc., a Canadian firm. Already widely known
for its ALL ChargeCard, another update option I will discuss later in this chapter,
ALL developed a new series of plug-compatible adapters. Unlike the ChargeCard,
which simply added additional hardware support to the original 80286 chip but did
not replace it, this new line, starting with the ALL 386SX, actually replaces the 16
bit 80286 with a 32-bit chip. Prices start at just under $400 suggested retail, includ

210 Keeping up, or trying to

ing ALL's potent ALL CHARGE 386 memory management software, which was
recently upgraded to include automatic optimization.

These differ from the traditional accelerator card in that, rather than plugging
into the bus and taking up an expansion slot, these palm-sized packages plug
directly into the CPU socket. Rather than bringing their own clock with them,
they use the existing clock, running at whatever speed the original machine was
designed to run at, eliminating mismatch problems, adding wait states, or other
work arounds.

One of the big advantages that the ALL 386SX (and similar) upgrade pack
ages enjoy over accelerator cards is that the microprocessor chip accesses what
ever memory is installed on the motherboard the same as it always did. All that
changes is what you can do with it.

This is significant because accelerator cards often require that system board
memory be disabled, replacing it totally with their own, and letting the system
board memory go to waste. I already had 4 Mb installed on my 286 when I
upgraded it a while back. While it's never a problem finding a happy home for left
over 1 Mb SIMMs, the less juggling and dislocation the better.

The level of expertise necessary to install a ChargeCard is about on par with
that required to install any expansion card-and certainly less than that required to
replace a motherboard. Once the cabinet is opened, installation requires little
more than removing the 286 chip, which is easily identified, and plugging the
small, palm-size ChargeCard circuit board into its socket. The 286 then is
plugged into a socket on the ChargeCard.

This brings affordable 32-bit processing and the ability to ron all of today's
new 32-bit DOS-extended software within the reach of almost everyone. ALL
already has announced that it is working on still other, hotter plug-in upgrade
modules-up to and including one that mounts an i486. Up just got a little higher.

The empire strikes back: Intel's SnapIn 386
Now, Intel's back in the game, taking a somewhat similar tactic with its new
SnapIn 386 module (Fig. 16-1). It replaces the original CPU with a 386SX chip.
It also brings along its own 20 MHz clock and a custom integrated circuit chip
containing support logic for the upgrade module's 16K SRAM cache, plus sup
port for the unit's 287 math coprocessor interface, all for $495.

In addition to opening the door to 32-bit processing, making it possible to run
anything up to and including today's most powerful 32-bit DOS-extended soft
ware, users can expect as much as a two-times increase in performance, depend
ing on the specific applications being run.

That last item, support for a 287 math coprocessor should be of special inter
est to many 286 owners, because having to add in the cost of upgrading their math

The empire strikes back: Intel's SnapIn 386 211

16-1 Intel's Snapln 386 module converts 286 PS/2s to genuine 386SXs while maintaining support for
80287 coprocessors. This is only one of several relatively inexpensive plug-compatible upgrade
modules that have largely replaced accelerator cards for the 286 market.

coprocessor as well might weigh heavily in making the decision. Suddenly, the
upgrade option just got more interesting.

However, there is a catch. Initially, these Intel modules are sold only for
model 50 and 60 IDM PS/2s and the use of this module with any other machine is
not supported by Intel. However, still another company, Kingston Technology, is
already marketing another plug-in compatible upgrade module for 286s. Clearly
this is a hot area.

Charge it with the ALL ChargeCard
Until now, one of the most interesting pieces of upgrade hardware in the market
place for users with 80286 systems is not an accelerator card but rather a sophisti
cated memory manager for the unruly 286. At prices starting at under $200 it still
is. This is the upgrade route I went on my in-house 286.

Up until now, I have talked about memory managers strictly as a software
function-installable device drivers that often provide other functions beyond just
those required to fully implement the LIM 4.0 EMS specification. ALL Com

212 Keeving up, or trying to

puters, Inc. has gone one step farther, providing added hardware support for the
underlying 80286 microprocessor chip-and at a significantly lower price than
other current upgrade options.

As discussed earlier, software alone can do little to unlock any hidden capa
bilities of either the 8088 or 80286 chips-mainly because there is little hidden to
develop. Just as either will support a math coprocessor that can crunch numbers
faster and more efficiently, it is possible-particularly with the 80286-to add
devices that support other functions through auxiliary hardware. The ALL
ChargeCard 286 adds full memory remapping capabilities otherwise unique to the
80386. You can even run most 386-specific DOS-extended software on charged
up 286s.

Starting with the raw 80286 and designing around it, the ChargeCard 286
actually can map memory into all of the addresses from 640K right up to 1024K
right on through the 64K block of addresses reserved for ROM if you want it to.
This is full LIM 4.0 EMS support that can map memory to any legitimate DOS
address (providing the underlying hardware supports it).

By default, the ChargeCard and ALL's proprietary software steer clear of any
ROM regions, as well as areas reserved for video memory-although it's usually
smart enough to determine if your display actually needs the entire area normally
set aside. With only a CGA adapter installed, for example, the ChargeCard will
take the AOOOh to BOOOh block and map memory to it that is contiguous to the
traditional 640K, making 704K available to DOS in one nice big chunk-that in
addition to being able to map memory to any other unused space between 640 and
1024K.

At one point, ALL boasted being able to make as much as 960K of contigu
ous memory available to DOS on some machines. This, however, required relo
cating the video and revectoring calls to video addresses. While that can be done,.
it also created some problems, so ALL has now backed off from supporting that.

However, it is interesting to note, as pointed out earlier, that there is often at
least 16K of address space in the ROM region that can have memory mapped into
it for loading a device driver or a TSR or two. The ChargeCard can use this space,
but the kicker is that you have got to find it. Typically, this is from F400h to
F800h, but don't depend on it. Try it if you like (use a temporary CONFIG.SYS
on a bootable floppy while you're experimenting). If the system crashes, try
another block. Keep trying until (hopefully) you find an area with stuff the system
won't miss if you map over it.

Going this route, the upgraded unit is still a 16-bits-only machine and cannot
run 32-bit DOS-extended software. Users are bound to wonder why they would
bother now when, with the ALL 386SX, they can go all the way.

About a $200 difference is one real good reason; however, beyond that, a
386SX is not really all that hot. Typically, an 80286 actually will outperform a
386SX (including the ALL 386SX), assuming that they have equal clock speeds.

Charge it with the AIL Charge Card 213

One of the big advantages that the ALL 386SX and similar upgrade packages
enjoy over accelerator cards is that the microprocessor chip accesses whatever
memory is installed on the motherboard the same as it always did. All that
changes is what you can do with it.

Because of differences in circuit board layout and the location of other adja
cent components, it is not always possible to locate the ChargeCard right on top of
the original socket. Also, there are several different types of socketing (PGA and
PLCC) for 80286s. So, there actually are several different ChargeCard kits,
including a slightly more expensive universal kit.

Other than the inherent speed limitation of your existing system, there are
some other limitations that should be noted. The maximum memory that the
ChargeCard can manage in an 80286 system is 16 Mb, not the 32 Mb normally
associated with expanded memory. This is because the 80286 can handle only up
to 16 Mb via the extended memory route. You really are dealing with extended
memory even though it allows you to use it as expanded.

Like any add-on/add-in hardware, the ChargeCard is a device. Like any
device, it requires a device driver not only to identify it so the system recognizes it
but also provide the necessary software interface. The ChargeCard comes com
plete with a proprietary package that centers on ALLEMM4.SYS, which now
includes automatic system optimizing. This is similar in many ways to ALL's
CHARGE 386 memory manager for 386 and higher systems. It has the same look
and feel, but it is different.

Together with its auxiliary programs, the ChargeCard's ALLEMM4 package
does a pretty decent job of mapping memory to unused address spaces above
640K. It features an excellent memory mapping utility called ALLMENU (it is
one of the best) that graphically displays what is and isn't happening from Oh right
to the top-not just to the top of DOS's megabyte but into extended memory, if any
is there.

Adopting a new mother
These days the cost of replacing the whole motherboard often costs little if any
more than simply adding a typical accelerator card to the old system-even ignor
ing the no-name mail-order bargains. I do not mean to speak disparagingly of
these sources. I've bought my share of closeouts and other bargain boards; how
ever, for motherboard, I'll pay the extra.

Starting from an old 8088, any upgrade motherboard at all-286 or 386-also
will move you up to a full 16-bit AT-type (ISA). Ifyou're going full 386 (DX), the
better upgrade boards also usually make some provision for direct 32-bit memory
access via some kind of proprietary board as well. There should be, but don't just
take it for granted, even if there is a 32-bit socket-especially with off-brand
boards. While providing a 32-bit socket, some manufacturers of complete com

214 Keeping up, or trying to

puter systems even have been slow to make matching memory boards available for
them.

If you really want to go first class, board makers like Hauppauge even offer
such optional extras as an EISA bus on 80386 and i860 boards and a variety of
coprocessor socketing options, even including the i860. They provide more
choices and a wider range of prices and performance levels from a single source
than most manufacturers of complete off-the-shelf machines, most of them more
in a range of prices I would consider geared more to new custom installations than
souping up that old PC of yours.

There are plenty of those available too, including a number of 80286 (Fig.
16-2) boards. Familiar names, like the once popular AST, XFMR, are no longer
on the market; however, they're out there. Some are offered on the mail-order
market at prices currently starting under $200, if you really want to squeeze the
nickel and you want to chance it. Given all the benefits of going to a 386 and the
continuing proliferation of the 386-specific (or higher) software, however, it is
increasingly difficult to justify the purchase of new 286 board anymore.

16-2 	 Replacement motherboards are an increasingly attractive upgrade option and increasingly attrac
tive as a way of creating custom-built machines tailored to your specific needs.

The focus is on the 386 family with SX boards starting at under $400. How
ever, at that price level, you generally are dealing with boards of uncertain origin.
In many cases, technical support might range from nebulous to nonexistent, par
ticularly down the line a year or two.

Adopting a new mother 215

One of the most successful manufacturers in this area-and certainly one of
the best known-is Hauppauge Computer Works just outside of New York City.
Specializing only in 386 and higher products, Hauppauge has a board for almost
everyone, including special motherboards for several specific machines. For
example, Hauppauge makes one 386 board that's a special favorite with rebuilders
who buy up old Compaq portables just for their nearly indestructible cases.

The steady decline in the price of most new computers puts the ultimate trans
plant upgrade into a different light, however, if dollars and cents are your primary
concern. Typically, for about $2000, you can buy a whole brand new machine
these days: new hard disk (80 Mb is almost standard), high density floppy drives,
a fresh power supply, the works.

Hauppauge boards start at somewhere under $1000. Anyone who's been
inside a PC a few times should have little trouble with the installation (unless
you've got an old Compaq or something like myoid Colby that's even tighter
inside). That is only about half the cost of a comparable new machine and, on that
basis, the saving is substantial. However, a penny saved is not necessarily a penny
earned in this business.

If it's an AT-class machine you're upgrading-one with a big enough power
supply, a reasonably fast access hard disk and a decent high density floppy drive
or two-the end result should be a first class performer at a genuine saving. If
you're starting with an old 8088, however, you might want to take a closer look
before you leap. 8088 machines have slower-and most often smaller-hard
disks. Additionally, if it's an older machine, you already might have squeezed
most of the good out of that hard disk. (I figure I've got somewhere between
twelve and fifteen thousand hours on one old timer in my office now and I'd hate
to bet on too much more.) OEMs buy hard disks by the hundreds and they buy
them cheap (individually by mail order, figure $400 to $600 for a new one geared
to 386 performance). Floppy drives are under $100 each by mail order. A bigger
power supply is about the same. Your savings are shrinking fast.

Actually, as a practical matter, getting a nice case is one of the best reasons I
can see for gutting an old 8088 and doing a total brain transplant. Old Compaq
shells are much in demand, with good 386 reincarnations still bringing top dol
lar-and not without good reason. With its much better screen and full-size key
board, I'll take my luggable in preference to my laptop as long as I don't have to
actually lug it very far or very often.

Short of custom installations, there are a number of situations that come to
mind where an old shell wrapped around a replacement motherboard makes
sense. There are networking situations where the processing power of the 386 is
all that really matters-so what if the local disks aren't all that great.

When installing any motherboard, at one stage, you will have a lot of connec
tors hanging loose-connectors from the power supply to the board, from the
power supply to the drives you probably had to remove, from the controller cards

216 Keeping up, or trying to

to the various drives. You want to mark things so that you'll know what goes
where and what is right side up.

Not necessarily all of the connectors will be keyed. It's a scary thing to find
one that will go on either way. Even if that happens, you're probably not in major
trouble. Obviously, things won't work right if you get something plugged together
backward, but experience shows that, in general, things aren't likely to start
blowing up. They just don't work. So, you tum the plugs around and try again.
This way is a little sloppy, but with any care, it shouldn't come to that. Things are
rarely as bad as you might think, as long as you watch out for such things as
proper physical clearance between things that should have clearance and make
sure that all connections are tight.

However, there is another issue that should be addressed at this point,
because mating old hard drives with fast new boards involves more than simply
bolting all the pieces back together and matching up the plugs.

The interleave factor
One of the lesser understood issues when dealing with hard disks is something
called the interleave factor-something made necessary because even slow hard
disks usually are too fast for computers to be able to read consecutive sectors.
Something has to be done to slow them down to give computers time to digest
read/write data before giving them the next sector. Unfortunately, you really can't
slow a hard disk down and have it run efficiently, so it's done with something
called interleaving.

As the name suggests, what you have to do is break up sectors of data the
system must read consecutively by interleaving other data sectors in between
them-one, two, or however many might be needed to give the system time to
swallow before choking it with more. Obviously, you can't actually interleave the
data on a disk. The trick is in the way it's written-writing one, then skipping one,
writing one, etc. Reads, then, must be done the same: reading, skipping, reading,
etc. It is basically mechanical wait state.

If, by any chance, the system hasn't finished swallowing the last byte (pardon
the pun) by the time the next sector it's supposed to read comes along, it skips on
past and has to wait until the drive does another full revolution for that sector to
come back under the head again. That wastes time-a whole extra tum. The more
sectors that have to be read, the more time wasted on extra turns. Conversely, if
the interleave is set too high and always makes the hard disk twiddle its heads
while one or two or several extra segments pass, that wastes time, too-not as
much as skipping a tum, but enough to degrade performance.

The thing that controls the interleave factor generally is established when you
first set up your hard disk. Once it is established, your hard disk is formatted on that
basis. Typical interleaves range from about 4: 1 for 4.77 MHz 8088s to 2: 1 for 8 to

The interleave factor 217

10 MHz machines and sometimes 1: 1 with 80386s. A number of factors enter into
it, but clock speed plays a major role. So, clearly when you install a device-a sys
tem board or accelerator card with a faster clock-the timing changes. So, if the
interleave was right before, it won't be when you're finished. (See Table 16-1.)

Fortunately, interleave factors can be changed. To make the most effective use
of an accelerator board-especially in an 8088 machine-it's one of the first
things you should look into.

Table 16-1 Interleave factors and effective transfer rates. This test was conducted on a PC
upgraded with an Intel Inboard386-PC. However, this 16 MHz upgrade does not result in a
bus speed increase that would support a tighter interleave than the original interleave of 5. A
factor of 1 or 2 would be characteristic of a new system designed around an 80386. (The test
data was obtained using Paul Mace's HOPTIMUM software.)

Effective
Interleave transfer rate Time

1 28.3 75.0
2 26.8 29.1
3 25.5 83.3
4 26.8 79.2
5 85.0 25.0*
6 85.0 25.0
7 72.7 29.2
8 63.7 33.3
9 56.6 37.5

10 51.0 41.7
11 46.4 45.8
12 42.5 50.0
13 39.2 54.2
14 36.4 58.3
15 34.0 62.5
16 31.9 66.7

*Relative Best

Special software (HOPTIMUM) for checking the efficiency of the interleave
factor and changing it if indicated is available from Paul Mace. While HOPTI
MUM is well-written, changing the interleave factor is a tricky process that, when
carried to conclusion, must reformat your hard disk sector by sector. Data from
the sectors that are to be reformatted is read into memory, then written back. Gen
erally, it comes off without a hitch, but you most definitely want to back up any
thing you can't afford to lose before you start.

You can buy a faster hard disk, but then you're running up the cost of the
upgrade by perhaps half the cost of the accelerator card, which is likely to make

218 Keeping up, or trying to

you want to think twice. Even then, just because a certain hard disk is capable of
delivering a certain level of performance is no guarantee that that's what you '11
get. HOPTIMUM is still a worthwhile bet, if only to satisfy yourself that your
system really is performing at capacity.

Superfast "disks" and disk caching
Most of you probably have used RAM disks at some time. Your AUTO EXEC can
set up one routinely every time you boot to provide real fast disk access for tempo
rary files. At very best, a mechanical disk of any kind is going to be a laggard by
comparison.

Today, as bigger databases, bigger files, and bigger programs appear, disk
1/0 becomes more of a major bottleneck. You don't have to wait for huge DOS
extended applications to know that. If you work with dBASE very much, you
know how much time you can lose there even now on disk 1/0. You can use disk
caching to move things in and out a little more efficiently; however, you're limited
by how much precious memory you can spare for caching. Even 1 Mb is only a
drop in the bucket compared to the aggregate size of files and data for many appli
cations.

Ifyou've got the memory to spare, you can make the cache bigger if you need
to. If your needs for a larger cache are more occasional, this is probably the better
way to go, leaving that RAM available for other uses other times. Where the need is
fairly constant, you might do well to consider dedicated disk caching hardware. A
line of AT-bus boards that are fairly typical of this type of cache, with capacities to
about 10 Mb are available from a firm called Distributed Processing Technology.

You also can use a RAM disk-no ordinary RAM disk, mind you, but mega
bytes of RAM disk: ten, a hundred, a thousand, even more. Imagine a RAM disk
big enough to download your entire hard disk and having RAM-speed access to
everything. You won't fmd them at your neighborhood computer store probably,
but they are available.

A major supplier of modular expandable RAM disks is Newer Technology, a
firm mentioned earlier in conjunction with fast memory cards that could operate
dependably to bus speeds of 14 MHz. Its DartCard, which fittingly mounts in a
full- or half-height drive bay (depending on the model), can be user upgraded in
4, 16, or 64 Mb increments. If4 Mb chips are used, a single DartCard full-height
assembly can be expanded to as much as 704 Mb and mUltiple units can be daisy
chained.

While marketed primarily as a RAM disk system, RAM is memory. The
memory on a DartCard can be accessed as extended memory, if desired. Up to
8 Mb can be accessed as LIM 3.2 EMS expanded memory. (There were no plans
at this writing to upgrade this device to fully implement LIM 4.0 EMS features.)
It is available with optional interfaces including PC (8-bit), AT, SCSI, and ESDI

Superfast "disks" and disk caching 219

and optionally can be powered continuously and configured as a nonvolatile,
BIOS-compatible bootable disk.

As you can see, there are several valid options to consider before just throw
ing in the towel on what you've got and going out and buying something new.
Upgrading your existing unit might give you all of the computing power you need
now and for some time to come.

It is a paradox that ffiM, the computer that developed that curious toy called
the PC-the PC nobody quite knew what to do with when it first came out-gave
us open architecture. With that open architecture now, the means are available to
make even that old PC act young again-like a fountain of youth. You can be sure
someone didn't think that one through.

220 Keeping up, or trying to

17

CHAPTER

The ultimate

upgrade

At some point, none of the easy remedies (adding an accelerator card or another
memory card) are going to be enough, particularly now, with the spotlight
focused on extended, not expanded, memory. You might be at that point already
the point of trading that old box of yours in on a newer model or even better, rele
gating it to someone you don't like in another office.

Where do you go from here, however? Given the options and the changing
focus of the industry, is an 80286 enough? Is it worth the little extra money for an
80386SX? Should you go the extra distance for a full-blown 80386DX? Then,
there's the i486-the chip someone affectionately called the "the Grinch that stole
the coffee break" because users never have to wait for it. If you're heavy into
number crunching maybe a 486, with the equivalent of a million transistors, is the
way you ought to go. It's generally three to four times faster than a 386 at the same
clock speeds but still a full-fledged backward-compatible member of the 8086
family.

If that still isn't hot enough to suit you, they now are teaming i860 chips with
i486s on some machines to boost number crunching speeds still higher-four,
five, or even ten times faster. Talk about blowing the doors off. This can be done
only with special software, because the i860 is a RISC (Reduced Instruction Set
Chip) and, as such, is not compatible with ordinary DOS-based software. It can
be and is being done.

Coming back down to earth though, aside from crunching numbers faster
(due in large part to the inclusion of what amounts to a math coprocessor in its
design), in the long term, an i486 can do nothing that an 80386 can't handle. It is

221

still just a 32-bit chip, no more. Unlike the 386, it will not spawn a whole new
genre of software.

It appears that the 80386 should remain the darling of the PC set for some
time yet to come. Few users that have 386 have pushed them to their limits, nor
are we likely to real soon. The issues, however, are not as cut-and-dried as they
might appear.

When the i486 is discussed in terms of number crunching, the first image that
is conjured in many minds is heavy scientific applications. In general, however,
CAD, desktop publishing, and graphics packages are essentially just number
crunchers. Just generating the screen displays requires a lot of number crunching,
as evidenced by the fact that the display adapters for some resolution systems now
mount up to 4 Mb of video RAM. A 486 might well be the most cost effective
machine available today for many such applications.

While on the subject of graphics, what about Windows? Not only a real mem
ory grabber like any bit-mapping program, Windows-and Windows-oriented
applications-impose a heavy overhead on the CPU. As a rule of thumb I'd say
anyone contemplating going from a character-based to a graphical environment
should probably figure moving one step higher on the CPU ladder.

For other applications, however, the 486 now is seen as having too much
power. Originally promoted as being the ideal heavy-duty network server, its
power now is seen by many as overkill in this arena. You can only push data
through a network so fast.

Striking a happy medium
At this point, few people could disagree that the 8088 has, to a great extent, out
lived its usefulness, except in rather modest circumstances. Do you need a 386 or
will a 286 do just as well and cost you less?

I have shown that there are ways to get around the 286's problems getting
from protected mode back into real mode and back into DOS. With the kind of
added hardware help the All ChargeCard offers 286 owners, the practical differ
ences between a 286 and a 386 can be narrowed greatly, disappearing altogether
for many applications when measured against a 386SX.

As a purely practical matter, how many of you will ever want or need to go
beyond the 286's 16 Mb extended memory limitation? However, that really is not
the question. The question increasingly is one of 16-bit versus 32-bit systems and
16-bit versus 32-bit software. Even software that started out as 8-bit packages is
leap-frogging right on past the 16-bit 286 market to take advantage of 32-bit proc
essing speeds, thanks to some of the new extended memory development tools.

Possibly the best advice to anyone considering the purchase of a new 286 at
this point would be not to if you can avoid it. The problems inherent in the 286 's
design are not going to go away. As extended memory becomes more important

222 The ultimate upgrade

and DOS-extended 32-bit software becomes more common (which won't run on a
286), the validity of the 286 machine comes more into question, particularly
because the price differential between an SX and comparable 286 has slipped at
this point to something typically around $200.

You can buy the 286 now, knowing you can upgrade with a ChargeCard later
if you like. With a ChargeCard, you can even run a lot of 386-specific software
but not all and don't let anyone try to tell you otherwise. At today's prices, a
ChargeCard upgrade will cost you roughly twice any "savings" that you hope to
realize up front.

Given the competitive price and the benefits of full 32-bit processing power
and most of the other more important features of a full-blown 386, the SX is seen
by many as replacing the 286 altogether in mid-priced machines in the not too
distant future. However, I think it's too early yet to completely write the 286 off.
Still, in bridging the gap between the 8088 and 80386DX, the SX rather neatly
fIlls shoes that never quite fit the 286.

The 386SX, from the beginning, supported clock speeds of at least 16 MHz.
Those speeds, not surprisingly, have gone higher. You have to be careful of clock
speeds, however, because it's too easy for vendors to slip in wait states that slow
the operating speed down to accommodate system board designs and cheaper
components that might not support the blistering speeds advertised.

Another vendor trick I have discovered is using clocks with variable speeds,
so that even if a machine boots at 16 MHz, you might find it running at some far
lesser speed once you put it to work. In a classic case in point, I measured the net
effective speed of one 16 MHz 386SX at only 1.3 times the speed of an old 4.77
MHz 8088. The manufacturer did not see fit to address this situation; therefore, I
must conclude that this is not abnormal for that machine. Unfortunately, the
unwary buyer, lacking the tools to benchmark machine performance, might never
know the difference.

Similar tricks can be used in designing around 486s, as well. Just putting in a
fancy chip does not guarantee performance, as I'll show you a little later in this
chapter. As clock speeds keep going higher and 486 prices are becoming increas
ingly attractive, the wary buyer is going to have to be more and more careful.

Lest there be any doubt, however, the SX is not just a marketing gimmick to
allow Intel (and O.E.M.s) a two-layer price structure for the increasingly popular
80386. It is a different chip that, while enjoying most of the operational features,
is also quite different in other ways. For example, the maximum physical memory
(RAM) that the 386SX will support is limited to 16 Mb-the same as the 80286
rather than the 4 gigabytes of a full-blown 80386. (The 386SX has only 24
address pins-the same as the 286)-hence the similar address capability.) How
ever, it can be used with up to 64 terabytes of virtual memory and supports a max
imum segment size of 4 gigabytes. (Those numbers are identical to the original
80386.)

Striking a happy medium 223

What the SX does not support is a 32-bit bus architecture. Like the amount of
physical memory addressed, this limitation is a function of the number of pins the
SX chip has-32 less than its bigbrother. (The 80386SX chip is a loo-pin "Quad
Flatback" device; the regular 80386 has 132 pins and is housed in a much larger
"Grid Array" package.) A 16-bit bus, however, does not limit its processing
power, only its bus access. The reduced complexity of a 16-bit versus a 32-bit
bus, combined with other factors, makes it possible to significantly reduce manu
facturing costs for systems boards that support the SX chip.

As a DOS machine, the SX retains the full address remapping capability seen
first in the original 386s. There is a companion 80387SX coprocessor available
for heavy-duty number crunching. Certainly for most users (and most applica
tions), the difference between full 386 and 386SX machines should be negligi
ble-if they are noticeable at all.

Still, make no mistake; the SX is not a high-end machine at a mid-range
price. Even with desktop performance that was unimaginable just a few years
back, many people already look upon the SX as an entry-level machine. When
you consider that the price of a typical SX today is less than you would have paid
for a 64K 8088 PC with a green screen not that many years ago, the SX really is
an entry-level machine.

As the price of the SX has slipped, so have other prices, to a point where
i486s are selling at the prices of last year's 386DXs. Hauppauge, one of the top
system board manufacturers, currently even includes a free i860 coprocessor and
special software to drive it, as an added inducement to buy its top-of-the-line 486
board.

Cash and carry
One of the most phenomenal growth areas in the industry is the laptop market.
Developers have now downsized them to notebook sizes, weighing only six or
seven pounds. In many cases notebook computers pack the power of a 386 and are
upgradable to support 8 Mb or more of RAM. In some cases, they even support
math coprocessors, as well.

Prices generally are significantly higher for these mini-wonders than for their
desktop counterparts, which is due in a large part, to the significantly higher cost
of the flat screen technology laptops require. However, with increasing competi
tion, even in the laptop/notebook market, prices have been dropping almost as fast
as high-end performance has increased, making them an increasingly attractive
alternative.

Limited battery power, often restricting cordless use to a couple of hours at
best, continues to be a problem, as with any portable device. You should not take
manufacturer's claims too seriously in this department. I have found in some
worst -case situations that advertised operating times could be attained only with

224 The ultimate upgrade

the screen turned off more than 90 %of the time and little or no floppy disk activ
ity, even on machines that only have floppy drives. Still, as a practical matter, a
couple of hours of serious computing is about all I have time for on most cross
country flights, which is about the only time some alternate power source is not
available.

Purchasers anticipating international travel should be sure the charger/ AC
power supply supports 90 to roughly 220 volt 50/60 cycle operation (carry the
appropriate adapters). Also, some countries, particularly some of emerging
nations, have peculiar regulations regarding the "import" of any high tech
devices. In some cases, they do not allow their entry; in others, customs officials
note their serial numbers next to the immigration stamp in your passport to be sure
that the same devices leave with you. These regulations also are subject to change
without notice, particularly in times of international tension when electronic
devices are looked on with particular suspicion for security reasons. The best
advice is to check with consulates before you leave home, if there is any question,
as well as with whatever airline you are traveling.

Down memory lane
The transition from individual chips to SIMMs probably went unnoticed by most
users. Initially, they seemed to make little difference. Granted, a 256K SIMM
took up only roughly half the space of nine individual chips and was a lot easier to
plug in; however, in practical terms, it made little difference. The speed of the
chips was what mattered most, no matter how you packaged them.

Those days are gone, however. Today, 16 Mb SIMMs exist, packaged on a
single little plug-in module requiring no more than one quarter of a megabyte. A
motherboard with socketing for four SIMMs that once might have added up to just
1 Mb (at 256K each) now can hold 64 Mb. Someday, 64 Mb SIMMs could raise
up the ante to 256 Mb-a quarter of a gigabyte right on the system board.

Admittedly, even with the 80386 DX and i486, such numbers have no rele
vance in today's DOS-based world. Given the explosion in memory usage over the
past decade as a baseline, it is not hard to project a time in the not too distant
future when those numbers will have relevance. Unfortunately, when that day
arrives, the socketing that you have might not be ready for them.

The actual socketing for 64 Mb SIMMs would have to be identical to the
socketing for the more mundane denominations present today. Few, if any, actu
ally would. The exact number enabled by different manufacturers is largely a mat
ter of economics weighed against what individual vendors perceive as necessary
in some cases, or merely expedient in others.

To put this in perspective, in most cases, there would be little point in having
all these lines enabled. No matter what size chips a SIMM is made of, the number
of kilobytes or megabytes than can be addressed is still a function of the number of

Down memory lane 225

data lines, whether they are pins on the processor chip (as discussed back in chap
ter 1) or enabled data lines-lines that actually are connected to the CPU.

A good question for the prudent buyer to ask in today's market is what is the
maximum size SIMM that the device can accommodate. Don't just take "Oh, any
size I guess" for an answer.

Ladies-in-waiting
Intel has demonstrated a CPU chip running at a blistering 100 MHz. As I stated in
the last chapter, however, there are technical limitations that make it impossible
for many devices to run even at today's more mundane clock speeds. To get
around these problems manufacturers inserted wait states that effectively slowed
the system down to operating speeds that are much less than the clock speeds. In
the last chapter, I was talking about the problem as it related mainly to upgrading
old machines, but it is not limited to older machines by any means.

RAM chips can handle data only up to some finite speed. This is a fact of life,
as is the fact that different types of RAM chips have greatly different speed poten
tials. Clock speeds have long since been reached that are well in excess of what
DRAM-Dynamic RAM-chips can keep pace. To an extent, that limitation can
be masked by interleaving banks of RAM, alternately addressing one bank and
then another. There are practical limits to how far any DRAM scheme can go
effectively.

SRAM is much faster but also is more expensive, taking away much of the
edge cheap memory has brought. There are ways the two can be mixed, however.
ComputerAdd has been a leader in this area, with a top-of-the-line tower that,
although using mainly 80 nanosecond DRAM, will support an optional daughter
board with enough 25 nanosecond SRAM to run the DOS conventional memory
area with no wait states. This technique is viable up to about 50 MHz.

To go much farther-to even approach 100 MHz-something else will be
needed, however, because SRAM does not lend itself to interleaving, not that
users have to worry about 100 MHz systems for a while yet anyway. The point is
that you should not be fooled by clock speed claims alone. I have in house, for
instance, an AST 16 MHz 386 SX that consistently benchmarks 15 to 20% slower
than a 12 MHz 286 machine that my wife uses. If you buy them that uses wait
states, you probably are not getting the performance you thought you paid for.

Don't miss the bus
As CPU speeds have climbed higher and higher, bus speed and design also have
become increasingly more than just critical issues with desktop machines. They
are the limiting factors in many instances. I addressed this issue when I discussed

226 The ultimate upgrade

expanded memory boards in an earlier chapter, in which I discussed upgrading
the system you have now on your desk-likely something with the standard AT
type 16-bit bus that still is so common.

Unfortunately, the PC/AT bus, which was adequate in its day (although
hardly inspired by genius except for the open architecture concept), has been
made obsolete, to a considerable extent, by today's technology. Even now, many
memory boards have difficulty coping with today's bus speeds in some machines.
The problem isn't simply one of using faster chips. There are problems inherent
in the basic structure of the bus itself. These problems, it seems, can be addressed
only by completely changing conventional thinking about bus design.

It's been done. That's what's behind the Micro Channel Architecture (MCA)
that mM introduced with the PS/2. Unlike the old PC/AT bus, MCA has not
become an instant industry standard. For one thing, mM was careful to tie the
Microchannel up in all kinds of patents to assure that no one would use it or
design third-party products without mM's blessing (and license). So far, the com
pany has been quite selective in licensing the use of those patents and the indica
tions are that it will continue to be so.

I'm not saying that mM is playing dog-in-the-manger with the MCA; how
ever, I'm also not saying that there might not be at least an element of that, either.
After all, the open architecture of the old bus clearly got away from mM when
suddenly the foolish toy it'd created turned into serious business-for almost ev
erybody else. Don't kid yourself; mM is out for one thing: mM.

Still, some of the top third-party expansion product manufacturers were in
there quickly, almost from the start, with add-ins of various types. Between
licensing and other factors (including special VLSI chips needed to implement
some of these features) do not expect a glut of Microchannel products, as hap
pened with the old style bus.

mM, however, was not the only developer involved in developing a better
bus. The result was that several other bus designs were suggested. One design in
particular has attracted considerable notice and already is being implemented in
top-of-the-line computers from several well-known manufacturers. Called the
EISA bus (Extended Industry Standard Architecture), it developed out of the col
lective thinking of Compaq, Zenith, AST Research, Wyse, Hewlett-Packard,
Olivetti, NEC, Tandy, and Epson.

Philosophically, there are many similarities between these two leading con
tenders, reflecting a general consensus on the part of participants in both camps
with respect to areas of greatest concern. However, there also are significant dif
ferences. Because the purchase of any new computer represents a substantial com
mitment to a particular bus technology, it is something that should be weighed
carefully when buying new equipment.

Don't miss the bus 227

What's wrong with the old bus?
A lot of things are wrong with the old bus. Probably the best way to understand
what's so good about what's new is to look at what's so bad about the old
machines. I cited today's sizzling clock speeds earlier. That actually is one of the
lesser considerations.

One of the biggest problems with the AT bus is that no card can access more
than just a single interrupt line. What that means is that a computer with an AT
bus, in effect, has a one-track mind. Ifyou issue a disk read/write command, the
machine cannot write a screen update until it finishes with the disk 110. In the
meantime, if you need to print a fIle, that fIle has to wait its tum-i.e., for what
ever task is using the interrupt line to release it.

Further adding to the jam-up, only the CPU or DMA (Direct Memory
Access) controller can take control of the AT bus, one job at a time. Users pay a
healthy premium to buy fast access hard disks, then keep the disks waiting for the
bus. Nothing can run a peak efficiency: not the CPU (which is continually being
distracted with housekeeping details) or any other resources that must stand idle
much of the time waiting their tum.

The old PC/AT bus is, at best, a 16-bit bus, even on machines with 32-bit
CPUs, like the 386. God forbid you give a 486 an AT bus. The way many 386s
have weaseled around the 16-bit problem to date-and low- to mid-range units
will no doubt continue to-has been to stick one proprietary 32-bit socket on the
motherboard. The socket that they use is one that generally is usable only for
additional RAM installed via some kind of proprietary (non-standard) 32-bit
expansion board. Everything else is just plain old 8/16 bit stuff.

Speed is a consideration; however, the fact that, regardless of clock speed,
AT bus speeds rarely exceed 8, 10, or occasionally 12 MHz has more to do with
the fact that most of the adapter cards (video, expansion, etc.) designed for use on
AT-bus machines cannot deal with the higher bus speeds that today's higher clock
speeds deserve. So developers slow down the bus and throw in wait states where
they have to, all in the name of compatibility with the hundreds of thousands of
existing AT-bus adapter boards. This is a real waste.

Beyond "advanced technology"
ffiM's Microchannel not only can but does run at sizzling bus speeds-CPU
speeds, with no delays and no waiting. And it is a true 32-bit bus all the way. This
is especially important with 386 and i486 processors that are 32-bit chips,
because it means that any adapter board plugged into any open MCA socket can
be a full 32-bit board.

One of Microchannel's most significant features is advanced bus arbitration.
Translated into performance expressed in ordinary English that means not only

228 The ultimate upgrade

faster data transfer rates but -and this is the biggie-several signals can share the
bus simultaneously. The conventional PC bus can handle only one operation at a
time (move a block of data to or from the hard disk, for instance). The Microchan
nel can do that and handle seven other data transfers at the same time. It is a multi
tasking bus, if you will.

Underlying this multitasking ability is a change in the entire DMA (Direct
Memory Access) design philosophy. With Micro Channel Architecture, DMA
channels-eight of them-move data without having to use the microprocessor to
manage the logistics. The DMA is controlled by a separate chip, which is really
little less than another microprocessor, a coprocessor, that's been specially
designed just for the job of traffic management.

With the Microchannel, the host computer only has to tell the DMA control
ler chip what, where, and when, and then go on about its business computing
while the DMA controller does its thing. In contrast to the traditional PC bus,
when a single DMA transfer takes place, almost everything else must come to a
screeching halt.

The Microchannel is a smart architecture, too. You can forget those pesky
DIP switch settings when changing your configuration. With the Microchannel,
it's all done automatically using software. In case of a fault (a failed memory
bank, for instance), a properly designed MCA board can quietly bypass it and go
on without it.

What might not prove so smart is buying into MCA if you have invested heav
ily in AT bus adapter boards. There is no practical way of adapting them. When
you commit to MCA, you are committed.

When the world outgrew the 8-bit bus, the 16-bit AT bus architecture that
succeeded it did not obsolete it in the way the 32-bit Microchannel obsoletes the
8/16-bit PC/AT bus. When the AT came along, the bus structure it offered would
not only accept a whole new generation of advanced 16-bit add-in cards, but also
most of the older 8-bit cards, as well.

The importance of this compatibility is even more significant today because
even as users move more and more toward 32-bit processing and beyond, there is
no way for many of the boards used today to benefit from-or even use-a 16-bit
data path. For instance, 110 boards for serial and parallel ports can only use an 8
bit data path, as can modems or interfaces for special pointing devices, etc.

There is currently a number of 16-bit video adapters. With the exception of
adapters for some of the higher resolution displays, however, you generally have a
choice it seems, making it possible to retrofit new monitors to systems having only
8-bit buses.

Now, you can mount any of these on fancy 32-bit boards. Unless you have
to-unless the application needs the wider data path-there's nothing to be
gained. You will probably pay a higher price tag to cover the cost of repackaging.

Beyond "advanced technology" 229

This is where the EISA bus, which is descended from something called the ISA
(Industry Standard Architecture), comes in. The ISA bus is the comfortable old
16-bit AT bus, given a formal specification and a fancy name.

EISA is an Extended ISA bus. That's more than just a fancy name. It is a very
clever answer to the thorny problem of maintaining compatibility with the myriad
ISA (AT bus) adapter boards out there.

Remarkably simple in concept, the EISA bus is designed around the use of a
bi-Ievel socket that is an ISA bus socket on top. Under that, however, there is a
second set of contacts (slightly offset) that an ordinary ISA board can't reach as
shown, in Fig. 17-1. The result is a bus that doubles as a true 32-bit bus for EISA
adapter boards or a 16-bit bus for ISA boards. At least one manufacturer (ALR)
has already pushed beyond this basic 32-bit data path extension to create a 128-bit
data path device that is still fully compatible with the standard 8/16-bit AT bus
structure.

EISA slot EISA slot

17·1 	 The left side of the figure is a cutaway representation of the EISA bus. The most important and distinguishing
feature here is the second (lower) set of contacts, both in the socket and on the card being inserted, making data
paths as wide as 128 bits and making other exotic features practical, while retaining compatibility with ISA
boards, which is one of the big selling points for EISA over IBM's Microchannel. In the right side of the figure, you
can see how the ISA card, with a shorter and unslotted skirt, is prevented from reaching lower contacts by posi
tive stop.

With proper engineering, the EISA bus can provide most, if not all, of the
advantages touted for mM's Microchanne1-plus a few of the MCA can't match.
Development costs can be significantly lower for EISA boards in many cases.
With nearly twice the surface area of MCA boards, EISA boards often can be
designed around more conventional components that do not require the more
expensive surface mount technology widely employed on MeA boards.

At least one manufacturer (AST), carrying the EISA bus philosophy one step

230 The ultimate upgrade

farther, has designed its top-of-the-line computers around interchangeable ISA
and EISA system boards. Breaking with traditional design concepts, the ISA and
EISA boards are little more than glorified bus boards. The CPU chip and logic
circuitry are functions of separate plug-in boards that can be mixed and matched
with system boards that hold either ISA or EISA buses. That scheme allows for
incremental upgrades of the bus, the CPU, or both, as needed to keep pace with
changing needs.

ALR, one of the most interesting and innovative players in the game today,
also has gone the plug-in CPU board upgradable route; however, ALR adopted its
own EISA-compatible bus at a more attractive price. (The ALR bus adds even
greater flexibility to the basic EISA-standard bus.) It truly is a buyer's market.

It still is too early to declare a winner in the bus wars and, indeed, there
might never be a clear-cut winner. It is interesting to note, however, that, despite
lliM's two year head start with the MCA, as of this writing more than 40 manu
facturers were either marketing or known to be committed to developing EISA
based computers and/or add-in boards. At the same time, other manufacturers are
betting on lliM's track record. Still others are hedging their bets, developing and
marketing both MCA and EISA hardware lines.

It is doubtful that users have even glimpsed the best that lliM and ALR have
to offer. For instance, there are a lot of other tricks that systems designers can use
to increase the effective I/O speed. Several AT-bus machines using data caching
actually demonstrably outperformed lliM's early implementations of the Micro
channel. By using some of these same-or other-tricks, both camps might well
develop still faster buses in the months and years to come.

Putting the pieces together
I've shown you at least a fair cross section of the hardware and the software that is
out there. You have seen computers designed with no memory of their very own
and, at the other extreme, computers that either own whatever memory they have
or wastefully disable it so nobody can have use of it. Most of the industry lies
somewhere comfortably between these two extremes. Those companies are too
comfortable perhaps, with too many still selling old technology even as the world
around them has turned upside down in many ways.

That does not necessarily mean that users should buy only computers that
have zero memory. If users study the lessons that computer history should teach
them, buying a zero-memory computer might not be a bad idea. Even more than
dazzling supersonic clock speeds, memory management is and will continue to be
one of the most critical issues. There's an interesting story there, too.

I talked earlier about the origins of EMS; however, I said nothing about the
origins of the EEMS that was the foundation stone of expanded memory as it is

Putting the pieces together 231

known today. EEMS, which essentially said that memory should not be owned by
the CPU but controlled independently, was a concept-like the original PC
itself-that had no practical application. There were some clever people at AST
who, motivated by whatever logic there might have been, simply said there had to
be a better way.

So, AST created its own standard, which was compatible with the then
accepted LIM 3.2 EMS but went an extra distance into uncharted territory. It was
not done to meet a need-there was no need. AST simply did it because the com
pany thought that was the way it should be done. It was a better "whatzit" trap,
except nobody knew what a "whatzit" was. As long as you could sell it to catch
mice, however, it was okay. If nothing else, it was good for bragging rights-sort
of like having a star named after you.

Then, a bunch of clever guys came along with DESQview and said, "Wow!
We can do multitasking with this." AST had their "whatzit" and the world had
multitasking.

The moral to the story is simple. There are few really bright ideas in this
business (no matter how disembodied as they might seem at the moment) that can
not find embodiment in the fulfilling of someone else's dream. Even the false
starts succeed sometimes (they laughed at Columbus).

Software can always be upgraded if something better comes along-some
thing backward compatible with your hardware. Hardware, however, is quite a
different matter. If the hardware was not designed anticipating change, there gen
erally is little you can do about it later.

What does it all mean to you? Obviously, each individual situation is differ
ent. From almost any standpoint, however, the 80386 is rapidly emerging as the
platform to build on as the computer moves into the 1990s.

This is not to say that everyone should rush right out and buy the full 32 Mb
allowable under the 4.0 LIM EMS-or even 8 Mb or 4 Mb. Big blocks of mem
ory, although very cheap today compared to just a few years back, are still expen
sive relative to the base price of your CPU. As with most things, the trick is to
strike a balance that is adequate for current needs or just a little more.

Just an extra megabyte or so (when used with Microsoft's Windows, Softlogic
Solution's Carousel, or Quarterdeck's DESQview-three popular windowing
environments allowing more than one application to be loaded simultaneously)
will probably allow you to load your word processor, spreadsheet, database, and
probably a couple of utilities, all at the same time. That depends on just how big
each of those applications and their files are. If you're talking average or typical
small office applications, however, that might well be enough-at least for now.

The problem is that an extra megabyte or so can open up so many doors that
you're likely to need still another megabyte before too long-and then another two
perhaps. With the right choice of hardware, adding more memory should be no

232 The ultimate upgrade

problem. However, there are some hard choices that should be made, especially
with some add-in memory product.

Software will come and go and be replaced by better software. It's inevitable.
As pointed out so graphically by the sudden surge of DOS-Extended software,
how much of tomorrow's new software that still will be able to run on the hard
ware you buy today-or how well it runs-will in large measure depend on how
carefully you select new hardware now.

Recycled oldies
There really isn't that much market for those old PCs, XTs, or even ATs out there
and even less for those old boards you've stuffed in the expansion sockets. The
age of a high-tech equivalent of the used car lot has not yet arrived. Many dealers
don't even want to take old hardware off your hands.

There is some market for used hardware; however, you've got to do a little
digging. Some companies specialize in selling used machines, provided they can
buy the machines at bargain-basement prices, so they can mark them up enough to
make a profit. These companies offer their machines at a fraction of the price they
sold for new. In many cases, there is a lot of life left in those old boxes. It's a
shame to throw them out-or very nearly so, considering how much you get for
them. Today more than ever perhaps, most offices have more employees who
could benefit from having a computer than the budget has allowed so far. The idea
of just putting one on everyone's desk as a stand-alone unit is obvious and cer
tainly needs no elaboration.

Less obvious, perhaps, is the idea of using the computers as either smart or
dumb terminals in one of the increasingly popular and cost-effective multiuser
environments. In chapter 10, I'll look at some environments where those old
desktops might well save you the expense of fancy workstations. There's mul
tiuser PC-MOS, Concurrent DOS, and DOS add-ons like VM386.

There also is full-scale networking. LAN (Local Area Networking) opens up
all kinds of possibilities. Also, autonomous multiuser clusters can be tied together
on a network. There are all kinds of ideas. Speaking of ideas, it's not a bad idea to
keep an old machine or two around as backups for those times the fancy new ones
throw a fit. (I had to drag one out not too long back when one went down.) Don't
be too quick to get rid of those old workhorses, even those old 8088s, not until
you've carefully checked out all the options and considered all the possibilities.

No no no!
A question that inevitably comes up is about reusing old 8-bit PC expanded mem
ory boards in 286 and 386 systems or reusing even older 16-bit boards in many of
today's sizzlers. They will, after all, fit nicely. The 8-bit boards fit into almost

Recycled oldies 233

anything, and the 16-bit boards fit into any ffiM AT-type bus (not Microchannel)
286 or 386, as you can see in Fig. 17-2. They will fit. The likelihood that they'll
work is something else. If you were making odds, they'd have to range from slim
to none.

17-2 	 Visual comparison between the a-bit PC (top), 16-bit AT (center), and Microchannel bus connec
tors (bottom). a-bit cards will fit 16-bit socketing. Many systems with 16-bit bus structures com
monly use a-bit video cards, modems, FAX boards, etc. Bus speed considerations, however,
generally make it unfeasible to use a-bit memory cards on a 16-bit-especially considering the
problems that some 16-bit cards have keeping up with some of today's sizzling bus speeds.
Except for a few computers that offer special bus adapters, there is no interchangeability between
Microchannel cards and either of the other two cards.

It's not just manufacturer's hype, trying to sell you something new when
something old might serve just as well. Expansion boards (third-party or other
wise) are designed for use in specific types of system: the original 8-bit or 16-bit
buses in the PC and AT and more recently, the Micro Channel Architecture in
ffiM's PS/2 line. The very thing that makes these new machines such sizzlers
obsoletes a lot of older memory hardware: speed. Not only have CPU speeds
climbed dramatically, but with them, bus speeds as well.

"Sure;' you say, ''A faster CPU means a faster bus. It has to be." However, it
is not quite that simple. Bus speeds rarely are the same as CPU clock speeds on
today's computers. There are few buses that exceed 12.5 MHz; most are slower.
Some of today's boards even have a problem keeping up and some can't.

Having said that, it should be clear that you should not expect to save a few
bucks if you trade your old box on a dazzling new one by reusing some of those
old boards-even pretty recent "old" sometimes. You can try them, but at your
own risk. Most manufacturers just plain won't support them in this kind of usage.

I'll close this chapter with one [mal caution. Before you buy a machine that
requires proprietary accessories to access any special features of that machine,

234 The ultimate upgrade

make sure the accessories actually are available and not just in the planning, pro
totype, or wishful thinking stage (in the trade, they call it "vaporware") if it's
something you know you're going to need. Remember the 386 I cited earlier as
having come to market with a proprietary 32-bit slot-as most of them do-but
keeping customers waiting for a year or more before there was a proprietary
memory board to fill it. Do you remember the PCjr? These things happen to the
big guys, too.

No no no! 235

18

CHAPTER

Crash course

The word "crash" took on new dimensions when users slipped the bonds of
DOS's old 640K. We have come a long way since then. Software engineering has
evolved from the realm of wizardry and witchcraft into a science, with the result
that today's software is far more robust and reliable.

However, at the same time, with increasing competition for whatever address
space that can be scavenged above 640K, users face another set of problems. It
was the LIM EMS and EEMS specifications that first made legitimate use of
address space above 640K and brought to everyone's attention an area that ffiM
and Microsoft had posted big "Reserved" signs on.

Things had been going on up there for a long time before that. Vendors had
quietly been carving bits and pieces out of the reserved space for such things as
network cards and a whole host of nonstandard devices. Because this was done
surreptitiously, there were no rules and things just popped up here, there, or any
where that their creators thought they could get by with a little benign poachery.
As long as there was little competition for what seemed a lot of empty space up
there (up to as much as 256K or more, depending on the display type), few users
cared-or even noticed.

Despite ffiM and Microsoft's best efforts to intimidate, coax, cajole, or oth
erwise head off the poachers, many otherwise reputable manufacturers started
nibbling away at it for years, almost from day one-and ever more boldly as time
went by when the Big Blue sky didn't fall.

Behold, the sky has fallen. It doesn't matter now who was poaching and who
has legitimate rights above 640K. What matters now is that users somehow have
to try to coexist with network cards, data compression cards, IPS cards, and all
manner of things that have assumed squatters rights up there in the meantime.
Even when it comes to legitimate usage, the boundaries get pretty fuzzy.

237

Take the 64K page frame typically starting at EOOOh as authorized by both the
present and previous standards, for instance. mM had claimed that space for
ROM beginning with the AT, but the company never actually used it until much
later, still confining themselves to FOOOh to FFFFh until the PS/2.

Obediently, Intel's AboveBoards stayed clear of the EOOOh page frame, but
many expanded memory boards did and still do allow users that option-as do
most memory managers. That is the top end of what EMS can use. The EMS page
frame base address can be as low as COOOh when necessary (if you don't have an
EGA ROM, a hard disk ROM, or something else installed down there). The
EOOOh address still is valid if your machine doesn't have somebody's ROM or
something else sitting on those addresses up there.

There are really two ways to fmd out what's going on in your computer:

• Install something new, crash, 	remove the something new (because you
can't reboot with it in there), then map address usage above 640, fmd the
address conflict, see what can be moved to a different address (hopefully
something can), and try again.

• Map existing address usage above 640K and look for possible conflicts
before you start.

Unless you're a masochist, I suggest the second approach, which still doesn't
address the problem of address conflicts below 640K-way down near the bottom
where various devices access your system. To find out what's going on down
there, you can choose between the same two approaches. In other words, you can
do it now or you can do it later.

This is not to make light of a serious subject. However, you might as well
laugh now, because it isn't very funny when it happens. This is especially true
when dealing with 80386s, i486s and 286s equipped with memory managers like
the ALL CHARGECARD, which allow you to map memory to any address below
1024K. This isn't to say you should be paranoid about it either, though. There are
things you can do to make life easier.

There are clearly two different sets of problems: problems at high addresses
and others at low DOS addresses. Most often, it is the high DOS area that users
have to be concerned with. On newer machines, most low DOS problems are
spotted when you first boot up your system and something doesn't match the
CMOS configuration data.

Upper memory, however, is another set of problems that demand a different
set of answers. These are the problems-and solutions-of particular interest in
the context of this book. I also will look briefly at the low end of the totem pole as
well, however.

238 Crash course

The high road

EOOO

DOOO

COOO

BOOO

AOOO

You would like to squeeze in everything you can up there. However, you'd better
know exactly who and what is there and where before you start, because, for obvi
ous reasons, no two things can occupy the same address. With remapping-or
even without it-you can put them there. You won't be happy, though. You don't
have to have an 80386 to fmd that out, even 8088 's can play this game of musical
chairs.

Suppose you've never used expanded memory before and now's the time. You
bring the board home, open up the box, open your computer, and go to it. The
Expanded Memory Specification allows page frames to start as low as COOOh or
at any multiple of 16K above that as long as the top is below FOOOh. That gives
you a region that covers 192K to work in.

As shown in Fig. 18-1, COOOh is above the 128K area set aside for video
between AOOOh and BFFFh (EGA's only use the lower half of that). COOOh looks
like a good bet, so you try it and your system crashes.

BASE ADDRESS

FCOO
F800
F400
FOOO

-~ ECOO
-§} E800

E400
---~ EOOO

~-.f" DCOO

-~ D800

~Jc D400

-'-~ DOOO

-~ ccoo
~;- C800
~.. C400

--~ COOO

~~ BCOO

'-;- B800

'--~ B400

-'-~ BOOO
-~ ACOO
'-~ A800
,;, A400

----4 AOOO

As far as you know, there's nothing in the way above 640K, as long as you stay clear of the video and ROM
regions. Here, even if you were to allow 128K for the video-more than it needs-COOOh would seem a safe
place for the page frame, but don't bet on it.

The high road 239

18-1

If you had checked to see what else was up there before you started, you
would have known that it wasn't going to work. There are a number of tools avail
able to help you see what's happening up there, though many are device specific
or work only in conjunction with certain other specific and generally proprietary
software. A report can be obtained using the 386MAX options that only checks
for ROMs, as shown in Fig. 18-2.

ROM In High Memory

Starting Range
Address Start End Length ROM Option

OOOCOOOO 768 784 16 COOO-C400
000C8000 800 808 8 C800-CAOO
OOOFOOOO 960 1024 64 FOOO-10000

18·2 	 A 386MAX search of the address area above 640K revealed ROM in three different areas. It does
not identify which devices have ROM located at those addresses, but that can be easily deter
mined. These, however, are three areas that must be avoided when mapping memory to take
advantage of unused address space.

Looking in high places-even on an 8088
To be able to see and know what's going on inside your system, the hands-down
winner is Quarterdeck's Manifest. It is sold separately and well worth the money
at about $49. It also is generally bundled free with QEMM, QRAM, or
DESQview 386. Although bundling with those memory managers might seem to
imply that its usefulness was limited to 80286 and higher systems. It can be just as
useful even working with an 8088-which is not the case with most of the others.

The MEM command in Digital's DR DOS 5.0 also can give you quite a bit of
information even on an 8088 (Fig. 18-3). Interestingly, you can use this one when
running under MS-DOS 5.0, but MS-DOS will not return the favor. Here, the
start addresses and sizes are spelled out for both the hard disk ROM and the EMS
page frame, which, in this case, is not exactly where you might expect it.

The MS-DOS 5.0 MEM utility, while critical to fme-tuning MS-DOS's
HIMEM.SYS with EMS emulation (EMM386.EXE) on 386 and higher systems,
is of little value to the 8088 user for spotting possible conflicts beyond 640K.

There are several third-party system snoopers on the market these days; how
ever, of the ones I've tested, only one stands out as really being that much help,
particularly working at the 8088 level. InfoSpotter from Merrill and Bryan is the
exception.

This one is a little pricey, however. Unless you've got a bunch of pes, you
might better put the money toward a hardware upgrade. With more sophisticated

240 Crash course

I

- Addre•• -- owner -- si.e -----,--- Type ----------------,
0:0000 -------- BOOOOh, 72089' ------------- RAN --------------

C800:0000 -------- 1800h, '144 ------------- ROM --------------
0000:0000 EMS 10000h, '553' ---------- EMS .e.ory ----------
POOO:OOOO -------- 10000h, '553' ------------- ROM --------------

1<--------- Conventional ._ory ----------:>
Oh 10000h 20000h 30000h 40000h 50000h 'OOOOh 70000h
OK '4K 128K 192K 25'K 320K 384K U8K

iii
4K 7 1MB

BOOOOh COOOOh DOOOOh 100000h

>------ ------- upper .emory ---------->1

{ey: I=RAN I=ROM H!=Shadow ROM I=EMS

720,89' byte., 704K), conventional memory

'44,0'4 byte., '28K), larqe.t available block

o byte., OK), extended memory available

·3 	 The DR DOS MEM command displays address information clearly and shows usage in conventional and upper
memory areas, depending on the switches used. The display here shows data from an 8088 machine running
under DR DOS 5.0.

systems, this one has a lot to recommend it, so I don't mean to talk: it down. Oth
ers, notably some with catchy names like Sleuth and CheckIt, really don't help
with this kind of problem on an 8088 machine, although they do have other vir
tues.

In any event, more than just being able to determine the existence of devices
that could cause possible conflicts when changing your configuration, you should
keep an accurate record of every address block in use above 640K, whether that
use is system ROM, a hard disk ROM, a network card, data compression card,
IPS, or what have you. A simple chart, such as the one depicted in Fig. 18-4,
should not only serve your immediate needs but also establish a framework for
future needs as well.

You should never attempt to install a new board or change your hardware con
figuration without checking the documentation for any address needs the new
device might have and checking those against current address allocations and
resolving any possible conflicts before you crash your system. Believe me, a little
time spent now can save you hours later on.

The need for such a record becomes increasingly important as you move on to
286 and especially to higher systems where the scene beyond 640K becomes
increasingly crowded.

Looking in high places-even on an 8088 241

BASE 	 ADDRESS

FCOO

FSOO

F400

FOOO

,-" ECOO
~.. ESOO

EMS Frame-+ E400
EOOO _.-i> EOOO

-~ DCOO
-i> DSOO
~i> D400

DOOO _.-0- DOOO

CCOO

CSOO . HARD DISK ROM (SKl}}I)i»U)<}><}}}} }i}}.}})}}}}}
C400

COCO
BCOO
BSOOCOCO
B400

k~~:;;;t;::!~:~~~~~"~""'''li''~iIIl.1111''i!)rf
368 Max Include BOOO 	 --_.-~ BOOO

-i> ACOO

'-i> ASOO

_~ MOO tJ+;~k~{}>< >

AOOO 	 ... -i> AOOO ?)< (

18-4 	 This simple form shows addresses above 640K that are known to be in use by various devices. Something
like this-either in a hardcopy stored with system documentation or stored for easy access in your
computer-can be invaluable in preventing crashes and reducing downtime when you are installing new
hardware (or software on 386 systems). Shading can be used effectively to mark out definite off-limits areas,
but should be used sparingly to allow for changes.

On a higher plane
As you move on to 80286 and especially 80386 and higher systems, the need to
know-ideally to be able to visualize what's going on above 640K-gets even
greater. Most of today's more sophisticated memory managers-especially 386/
486 memory managers but, within the limitations of the hardware, some of the
better 286 managers as well-are smart enough to snoop around above 640K and
sniff out at least a good part of the address space that can be mapped with mem
ory.

However, as users have become increasingly conscious of the availability of
upper memory and more TSRs and drivers have been written or updated to utilize
upper memory when it is available, it has become increasingly crowded up there.
To cope with the increasing need, better memory managers have become more
aggressive in the methods used to find more memory to map.

This is really what you're paying for today when you buy QEMM, QRAM,

242 Crash course

ALL Charge 386, 386MAX, BlueMAX, or what have you, instead of simply
using the management tools furnished with 5.0 (or higher) MS-DOS or DR DOS.
As pointed out elsewhere, those management tools by and large have the raw
power to do virtually anything you can do with the best of the third-party man
agers (with the notable exception of the symbiotic relationship between QEMM or
QRAM and DESQview) if you know where to look for mappable address space.

Most users don't know. There really is little reason they should have to, not
when some of the more powerful memory managers will even rewrite your CON
FIG.SYS files, putting in INCLUDE = or USE= (or equivalent statements) to be
sure you don't lose out on the benefits of some of their more aggressive rummag
ing.

However, this does not mean that you can simply assume that, having bought
the best, you can just let them rip, because the problems first seen at the 8088
level are still there-some of them have even compounded. All that really has
been done is that another layer of problems and potential problems has been
added.

In addition to much more sophisticated memory managers to work with, you
also have more tools at your disposal to help you visualize your situation
although most are keyed to a specific memory management package (even Mani
fest to a great extent). Still, even as good as the best of them are, you cannot get
complacent.

Where did that come from?
As nice as it can be to be able to see what's going on upstairs with Manifest or one
of the other comparable utilities, it is surely equally important that you understand
their limitations. Good as they might be, none of them are perfect. Like the old
deodorant ad said, there are things even your best friend won't tell you. Here, the
issue is the fact that memory managers and their attendant viewers, if left on their
own, can call the shots only the way they see them. A lot of things are not so eas
ily seen-especially if they're not there to see.

Here, in a typical example, I have data from a Manifest report that was taken
just after the system has booted and about halfway through the execution of the
CONFIG.SYS. You can't actually run Manifest halfway through the CON
FIG.SYS, so the last part of the CONFIG.SYS was taken out for the purpose of
this demonstration. However, it does reflect the situation exactly as the system
sees it at that point.

Given a free hand, QEMM-its companion memory manager and one of the
more aggressive ones-has looked around above 640K and found all kinds of
space that it can map memory to (it does this automatically every time it loads). In
this case, as shown in Fig. 18-5, that space includes a 16K block beginning at
C800h. Then, for some reason, it has skipped over a 4K block at CCOOh-marked

Where did that come from? 243

AOOO
BOOO
BIOO

- UPP
- B7PP
- BPPP

64K
32K
32K

VGA Graphios
Biqh RAIl
VGA Text

COOO - C7PP 32K Video ROM
CIOO
CCOO

- CBPP
- CCPP

16K
4K

Biqh RAIl
Unused

CDOO - DPPP
EOOO - EPPP
POOO - P7PP
PIOO - PDPP
PEOO - PPPP

BKA

76K
64K
32K
24K

IK
64K

Biqh RAIl
paqe Pr..e
syst.. ROM
Biqh RAIl
syst.. ROM
Pirst 64K Extended

18-5 	 At bootup, the memory manager-any memory manager-is unable to anticipate the address
space requirements of the device drivers that will load later in the boot cycle. In this case, it has
mapped high RAM to 16K to an area reacquired by a device that must load at C800h. Such con
flicts must be anticipated by the user on the basis of device documentation and must be resolved
by placing specific exclusion statements on the memory driver command line.

as unused by Manifest-but then mapped the next 76K. For some reason, it has
broken what appears to be a contiguous 96K block. That big of a block would be a
real beauty up there.

Apparently, the memory manager found something it didn't like at CCOOh.
Indeed, there is a data compression board sitting there, but that board actually
requires not 4K but 20K. The problem is that there was nothing to tell QEMM
or Manifest-that it has to have 20K to operate, certainly not at this point in the
boot cycle, because at this point, the need does not exist. The device driver wasn't
even loaded yet. Even if it was, there likely wouldn't be a flag that said "keep
off." So, QEMM-like any reasonably aggressive manager worth its salt-has
simply assumed that it could have all but that 4K block.

Here, you'll note that even Manifest can't tell what is there and simply marks
that block as unused. What QEMM found there was just the signature of the com
pression card, as shown in Fig. 18-6, which was all it needed to know that it had
to stay clear of that block.

debug
-dCCOO:OO
CCOO:OOOO 41 53 48 45 52 00 00 00-00 00 00 00 00 00 00 00 ASHER•••••••••••
CCOO:0010 46 69 72 6D 77 61 72 65-20 52 65 76 69 73 69 6F Firmware Revisio
CCOO:0020 6E 3A 20 20 31 31 20 20-31 31 2F 32 32 2F 38 39 n: 11 11/22/89
CCOO:0030 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
18-6 	 Checking the beginning of the address block that QEMM didn't map with MS-DOS DEBUG, you find the signa

ture of a piece of hardware.

Just to prove there was something in the way there, I checked with DEBUG
(DR DOS's SID would have done as well). There is, indeed, something there. A
check of the documentation for the intruding device shows that 4K is only just the
tip of the iceberg.

244 Crash course

This is the point at which you have to intercede and tell whatever memory
manager you might be using that it has to stay clear of a whole 20K block that has
a much lower starting address, based on information in the documentation for that
hardware and its device driver, as shown below:

DEVICE = C:" DOS" QEMM" QEMM3S6.SYS RAM ROM

EXCLUDE=CSOO-CCFF AU DMA=32

While the exact syntax varies, all worthwhile 386 memory managers (or others
capable of mapping to high DOS address space) provide both a means of blocking
off (excluding) certain areas to prevent conflicts and a means of adding (including)
blocks that the defaults would ignore. To achieve the same degree of mapping
with MS-DOS 5.0's HIMEM.SYS/EMM386.EXE duo requires not only the
same exclusion (on that machine with that configuration) but also two inclusions
(I =XXXX-YYYY) , as shown here:

DEVICE = C: "DOS" HIMEM.SYS
DEVICE = C:" DOS" EMM3S6.EXE 256 RAM 1= BOOO - B7FF

1= FSOO-FDFF X = CSOO - CBFF
DOS=UMB

Let me again stress that this behavior is characteristic of all memory managers
capable of mapping memory to address space above 640K. I used QEMM to dem
onstrate earlier primarily because, aside from some managers that now provide
BIOS compression on PS/2s, it is one of the more aggressive managers and its
companion viewer, Manifest, shows the situation so clearly.

Admittedly, there is a lot to keep track of; however, it really isn't all that hard
if you approach it systematically. With tools like Manifest, the 386MAX utilities,
and ALLMenu, you don't even really have to chart things manually. You don't
even have to when using either of the DOS 5.0s or later memory management sys
tems. You do need to keep a record of your current and possibly recent past con
figurations. To make life easy, Manifest, AlIMenu, InfoSpotter, and some of the
viewers and tabulators can send the data directly to a printer or a fIle for you.

Some of the others-like the MS-DOS or DR DOS MEM commands-don't
have that capability built in. However, the output of any character-based utility
can be redirected either to a fIle to print right from the command line, as shown
below:

MEM 1m >e:memfile or
MEM 1m >PRN (or LPTl or COMl as required)

This is the exact command and syntax used with the DR DOS MEM command to
redirect the DR DOS data shown earlier. It is a trick I use a lot for capturing
screens.

Before I leave this subject, I'll give you just one more sage bit of advice:
never make more than one configuration change at a time-hardware or software.

Where did that come from? 245

I know it's tempting sometimes-just some little thing you've been meaning to
do-but don't.

Any old port in a storm
Any port in a storm might be good advice for sailors, but it only can get you in hot
water if you take that approach when selecting an address port for devices that
give you the option of picking one. Ports are another one of those things that most
users talk more than they know about. However, if I might digress briefly from
the heady world above 640K to look at more mundane matters, address conflicts
are by no means limited to upper memory.

Users take such things as parallel and serial ports for granted; however, like
everything else a computer has or does, such things must have base addresses,
too. However, unlike the typical4K minimum block size that users deal with in
high RAM, ports occupy much smaller chunks of memory-often just a few bytes
wide. They often are not as neatly-or uniformly-defined either. The blocks are
small and largely arbitrary.

It isn't as bad as it might seem, though. Maybe it's just me, but these conflicts
don't seem to occur as often as they used to. Also, some of the smarter device
drivers are able to hunt through the port address space until they find a vacant
place to install themselves.

In any event, conflicts still do happen occasionally. You should know how to
deal with them. The key to preventing such conflicts-or to resolving them, if
they do occur-is exactly the same as in the high DOS area:

• Keep track of the address 	of any nonstandard devices already installed.
This list also should contain data on alternate addresses that can be used
with those devices, if it is necessary to move them.

• Check the documentation for whatever new device you are installing for
possible address options.

• 	Check your current DOS configuration for existing port addresses, then
check against addresses being used by other nonstandard devices.

Port conflicts generally are less likely to crash your entire system-which is just as
well, because port assignments are usually made before the computer is ready to
tum control over to the operator. Symptomatically, one or more devices simply
will not come on-line, which might or might not result in an error message being
generated and reported on your display.

Software crashes can be just as hard
Although hardly unique to using extended and expanded memory, the likelihood
of system crashes seems to increase exponentially as users are able to load at the

246 Crash course

same time in all that extra memory. Tracking down the culprit when you start hav
ing more than your usual share of system crashes can be a frustrating business,
doubly so if you do not approach it systematically. Your immediate conclusion
most often is likely to be that it is whatever application you are running, but it isn't
necessarily.

It could be a TSR kicking its heels because it didn't like something your
application did. It could be something about the DOS version you're using in
combination with your particular hardware and software. As you'll see shortly, it
isn't always as easy as you might think, but it isn't necessarily that difficult either,
if approached properly.

This is not to say that every time your system has the hiccups you should
panic and start looking for a major problem. In all those millions of bytes, some
random things can happen sometimes. It's only when it seems to happen often or
when there seems to be a pattern that you start to look for trouble.

Often your system can be extremely helpful if you let it. Take for instance
something like:

Exception Error #13 at 1607:0000
Error code 0000
Do you want to T)ermiante the program, R)eboot, or try to C)ontinue?

When you get a message like this, make a note of it before you reboot or do any
thing-not verbatim necessarily, but at least the numbers. The important part in
most instances other than the random case is the address. Even if you knew what
Exception 13 or Error Code 0000 were, it probably wouldn't help much-cer
tainly not until you knew which of the various programs you had loaded was hav
ing the problem. That information, however, could be very helpful when you call
to report the problem to someone's technical support staff.

You don't know which program caused the problem, but at least in this case,
you've got one number you can go to work with. You have an address: 1607h.
That address means the problem is down in low memory.

This actual case history example turned out to be a rather easy one, but the
method would be the same any time your system was kind enough to leave a clue
like that as it died. What's needed at that point is a program you can run (before
you crash) that reads and reports what is loaded where. This also requires that
your applications allow you to access DOS while still in them so that your map
reflects the total situation including the application that you're in. Not all applica
tions will shell to allow you to access DOS to map your system from within them,
but fortunately many will.

Some of the more sophisticated memory management programs include map
ping utilities. There also are a variety of freestanding mapping utilities that can be
run under Microsoft Wmdows or DESQview or in conjunction with other win
dowing environments and/or applications software. Figure 18-7 shows a typical

Software crashes can be just as hard 247

PCMAP 1.0 (c) 1987, Ziff-Davis Publishing Corp.
Segment Paragraphs Bytes Program
1517H 00D1H 3344 COMMAND. COM
1E58H 0375H 14160 DV.COM
1E34H 001FH 496 UNCRASH.COM
1EOFH 0023H 560 MODE.COM
19C7H 0446H 17504 VKETTE.COM
15P7B 03CEB 155ac CULPRIT. COM
1E78H 0003H 48 command. com
21D3H OODAH 3488 command. com
22A2H 0004H 64 (Free)
22B4H OA2BH 41648 SQLOAD.EXE
2CE1H 0065H 1616 CHSTACK.COM
2D48H 335EH 210400 EDITOR.EXE
60A7H 00D8H 3456 COMMAND.COM
6183H 3E87H 256112 PCMAP.COM (Free space)

18-7 An address map showing CULPRIT.

report from one such freestanding program. This report is from PCMAP.COM,
one of the free programs available for downloading from PC magazine's bulletin
board; however, it is compatible only through DOS 3.3

Note that there is no program neatly flagged AT 1607, Rather 1607 is an
address somewhere within the block occupied by CULPRIT. COM (I took the lib
erty of renaming it after I had it identified). With a little simple arithmetic, you
find:

1607h - 15F7h = lOh

That's just 16 bytes above the starting address of CULPRIT -a disk caching pro
gram in this case-as reported by MEM /d, Manifest, or any program you have
handy that can give that information. Because it is loaded from the AUTOEXEC
.BAT, you would expect it to always show up at the same address.

The proof comes when you remove CULPRIT from the loading sequence and
see if the problem goes away. In this case, the culprit was an old favorite that took
an immediate dislike to something new in the system. What you do about it is up
to you. In this case, a call to the culprit's creator was answered with a quick
upgrade release via return mail. Other people, it turned out, had the same prob
lem.

Problems won't always be in low memory. Things can go sour up in high
memory, too. This is especially true when you try to squeeze out that last possible
block of unused memory up there. However, just as there are mapping programs
for low memory, there are utilities that read and report what's where between
AOOOh and FFFFh.

Unfortunately, there are some devices-typically graphics adapters-that use
pieces of legitimate high RAM as what might be called scratch pad space. No
amount of memory mapping will point to these addresses which, by their nature,
leave no signature. If you try installing something else in seemingly unused

248 Crash course

http:PCMAP.COM

address space, you might stumble onto one of these. If you do, you're going to
have a crash. In the case of a graphics board using scratch pad space, you'll likely
find yourself with no display.

A special word about tracking down problems that might involve programs
running in expanded memory in windowing environments like DESQview and
Windows (or context-switched as under Carousel): the addresses reported are
DOS addresses. What programs actually are using those addresses changes every
time you switch windows however-the same programs, always coming up at
those same addresses within a work session (or loaded in the same sequence in
subsequent sessions).

While in the case cited here, the offending program was below the base
address of any of the DESQview windows that were open at the time, it might not
have been. In that case, only a map that reflected the system including the soft
ware in the window that was open at the time of the crash could give any real clue
to the cause. If you have to change windows to access DOS, the act of switching
windows will hide the application somewhere in expanded memory where you
can't map it.

Detectives on a disk
Several third-party system snooping software packages have hit the shelves, prom
ising-and generally delivering-all sorts of system information. Unfortunately,
little of the information is germane to issues dealt with in this chapter-or even in
this book. Even where the information is valid, it generally is obtainable with MS
DOS (or DR DOS) utilities like DEBUG (or SID) or MEM with one or more of
the various supported switches.

Of the lot, about the only one I've found so far that warrants serious attention
is called InfoSpotter. Aside from providing system data, under certain circum
stances, it can recover lost data from the far hinterlands of memory. It doesn't
always work, but it doesn't have to very often to pay for itself. It's certainly worth
a try.

To be recoverable through InfoSpotter, the handle for the host program must
not have been released. You cannot have exited the program and suddenly discov
ered five minutes later that you didn't save what you were working on and try to
go back to it. The data still is floating around out there somewhere; however, once
it is returned to the memory pool, there's no practical way of ever finding it, let
alone recovering it. However, if you have accidentally aborted a data file or, in
some cases, hung the system with at least part of the data unsaved you still might
have a shot at it-at least with text files.

My word processor, for example, allows up to nine windows to be open at
any time. More than once, one has been invertently closed. Until now, whatever
pearls of wisdom it might have contained were lost-forever usually, because it's

Detectives on a disk 249

awfully hard to exactly reconstruct the process that led to writing them. After
aborting a window, however, I was able to recover the data shown in Fig. 18-8.

Config Memory Interrupts >EMM< XMM DOS BIOS Tests settings User
EMS Handle Dump

EMS Handle Name Pages Size
13 DV:Win5 36 576K

Pg Ofs 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
OF 0480 20 61 64 64 72 65 73 73 20 69 6E 66 6F 72 6D 61 address informa
OF 0490 74 69 6F 6E 20 63 6C 65 61 72 6C 79 2C 20 73 68 tion clearly, sh
OF 04AO 6F 77 73 20 75 73 61 67 65 20 69 6E 20 65 69 74 ows usage in eit
OF 04BO 68 65 72 20 63 6F 6E 76 65 6E 74 69 6F 6E 61 6C her conventional
OF 04CO 20 61 6E 64 20 75 70 70 65 72 20 6D 65 6D 6F 72 and upper memor
OF 04DO 79 20 61 72 65 61 73 2C 20 64 65 70 65 6E 64 69 Y areas, dependi
OF 04EO 6E 67 20 6F 6E 20 73 77 69 74 63 68 65 73 20 75 ng on switches u
OF 04FO 73 65 64 2E 20 20 44 69 73 70 6C 61 79 20 68 65 sed. Display he
OF 0500 72 65 20 69 73 20 64 61 74 61 20 66 72 6F 6D 20 re is data from
OF 0510 38 30 38 38 20 6D 61 63 68 69 6E 65 20 72 75 6E 8088 machine run
OF 0520 6E 69 6E 67 20 75 6E 64 65 72 20 44 52 20 44 4F ning under DR DO
OF 0530 53 20 35 2E 30 2E OD OA FD 02 81 DC 02 AF OD OA S 5.0•.••.•
OF 0540 54 68 65 20 4D 53 2D 44 4F 53 20 35 2E 30 20 4D The MS-DOS 5.0 M
OF 0550 45 4D 20 75 74 69 6C 69 74 79 2C 20 77 68 69 6C EM utility, whil
OF 0560 65 20 63 72 69 74 69 63 61 6C 20 74 6F 20 66 69 e critical to fi
OF 0570 6E 65 20 74 75 6E 69 6E 67 20 4D 53 2D 44 4F 53 ne tuning MS-DOS

FlO Print =

18-8 	 A fringe benefit of InfoSpotter is its ability to help you recover lost data from memory limbo, under certain circu
stances.

Granted, this is only 256 bytes at a time or about 50 words of text. However,
by starting at the beginning of the lost portion and appending succeeding screens
to the file (InfoSpotter will do that for you), you can recover as much as you like.
If it was in memory, it's there. With the help of a little macro to strip away all but
the good stuff, it will take a lot less time than trying to redo it. Once you've
opened a new file, all bets are off; however, there is a moment you just might have
one last shot at it with InfoSpotter.

In fairness, I should quickly point out that you can do the same thing using
MS-DOS's DEBUG (version 4.0 or later) or any comparable utility you have at
hand. It's mainly just a matter of mapping logical pages for the handle in question
to physical pages. Assuming you're using MS-DOS, at the DEBUG prompt,
enter:

XM 11 pp hhhh

where:

11 is the number of the logical page to start with
pp is the number of the physical page to map to
hhhh is the number of the handle

250 Crash course

The handle number is obtainable with MEM /d, Manifest, or any of at least a
dozen other utilities. Beyond that, it's just a matter of doing your DEBUG thing,
with the added advantage of being able to use DEBUG's search command to help
you zero in on just the data that you're looking for, as in this example:

snnnn:nn rrrr "string"

where:
nnn:nn is the starting address of the block you want searched
rrrr is the range (in hex)
string speaks for itself

This takes a little more experience than using something that's more user friendly.
It also is much more flexible and powerful.

To track down the most common kinds of problems both above and below
640K, it's really hard to beat the utilities supplied by the major players in the
memory management game or with DOS when it comes to analyzing system
resources and putting them to work. When all else fails, they give the information
necessary to resolve whatever problems they can't handle. When it comes to that,
you can use all the help you can get.

Detectives on a disk 251

19

CHAPTER

Parting shots

I have discussed many aspects of the world beyond 640K; however, I have barely
scratched the surface. Much more is heating up than just the war between the
competing DOSs-one in which Microsoft, if only by virtue of force of habit,
draws the most attention, remains preeminent in the marketplace, and thereby
moves the world-the DOS world anyway.

As soon as MS-DOS 5.0 was officially announced, the rumblings of another
salvo could be heard as Digital prepared to answer MS-DOS 5.0 with DR DOS
6.0, offering new features will not seen in MS-DOS and going one step farther yet
in memory management by breaking up the kernel into more than just the single
38K piece that could be loaded high in DR DOS 5.0, even into rather badly frag
mented upper memory on 80386 and1iigher systems, and extending memory
mapping support to other chip sets now in use on many 80286s.

The activity has not been limited to just those two contenders. Few things are
truly secret in this industry for long, especially as beta copies of upcoming soft
ware packages begin to circulate (Microsoft put out MS-DOS 5.0 beta copies to
something over 5000 sites starting almost a year before its ultimate release). As a
result, not only was this probably the most thoroughly debugged release in his
tory, but other developers had a lot of time to look for-and fix-any incompati
bilities the new DOS might exhibit. A lot of people got a jump on writing or
revising software with MS-DOS 5.0 in mind.

Quarterdeck, for instance, already had a major new 6.0 release of QEMM
updated to exploit MS-DOS 5.0's shortcomings-ready for release almost as soon
as MS-DOS 5.0 started showing up on dealers's shelves. Suddenly, there was a
rush of new beta offers and my FAX machine was busy with a spate of nondisclo
sure forms for those of interest.

253

The cycle starts anew; the software wars go on. Ultimately it is the users who
are the winners as the two DOSs face off, each growing stronger with each round
that's fired. Yet, if the pundits had been even partly right, everyone would have all
forsaken DOS long ago in favor of some new and far more powerful operating
system.

Ship of fools
Events have a funny way of making fools of everyone sometimes. One ofmy favor
ite stories, left over from my childhood, is about nine blind wise men who had
never seen an elephant and went to study one. Each encountered a different part of
the elephant's anatomy: one its snakelike trunk, another its spearlike tusks,
another its leaflike ear, and yet another the north end of the south-bound beast-a
tail resembling frayed rope. They went away, each arguing a quite different thesis
on the nature of an elephant.

To a great extent everyone is like those blind wise men, for this field is far too
vast for anyone to grasp the total picture. Users can analyze only bits and pieces in
detail and then ponder and, unable to see the total picture, draw conclusions from
that which might or might not be valid in the total context.

In the short span of years between the first edition of this book and this one,
the insatiable appetite for memory has continued to increase about tenfold every
five years and shows no sign of slowing. Fortunately, the cost of memory has
fallen from about a buck per kilobyte at a commensurate rate, which has largely
kept the new technology affordable.

To stretch a point
In discussing software in this book, I have largely glossed over one of the real stars
of the show: the DOS Extender, the vehicle by which today's more powerful soft
ware can escape to take full advantage of the 16-bit and 32-bit CPUs that are so
much for granted these days. This is not an oversight, however, because, in the
context of what you need to know to live and work not only just beyond 640K but
far beyond, there is really very little users need to know about the DOS Extender.

It is nice to have a general understanding of the role of DOS Extenders. It is
nice to know that DOS-extended programs generally run faster-often signifi
cantly faster-mostly by virtue of being able to unleash the full processing poten
tial of your machine, but they also are unencumbered by DOS's segmented
memory model.

However, they are-and always will remain-invisible to you. They require
no special consideration when you configure your machine. They only require
that you provide the necessary hardware platform-32 bits for many DOS
extended programs and at least a 286 or better CPU for the rest, all with memory
resources sufficient for their needs.

254 Parting shots

In that regard, you should know that many-most DOS-extended programs
probably-can virtualize memory (swap to disk) to run in less real memory than
they would like to have available. Swapping to disk generally will result in some
degradation in performance, but it might not even be noticeable, depending on
how well programs lend themselves to being broken into modules that, a little on
the order of overlays, can be swapped out and how much swapping is required
because of memory constraints.

True memory virtualization represents a sophisticated technology quite dif
ferent from the arbitrary brute-force and dead-in-the-water kind of swaps-to-disk
behavior associated with crude implementations, like MS-DOS 5's new task
swapper. At some point you will see a difference probably, a noticeable slowing;
however, as long as you have enough memory to meet the bare minimum require
ments of your software, at least you're up and running. You can always add more
memory if you are inconvenienced. Beyond that, from a user point of view, a
DOS-extended program really is remarkably unremarkable except to the pro
grammer.

The more things change
The more things change, the more they really stay the same in many ways. There
have been changes and there will continue to be changes as the technology
improves; however, in terms of memory management, what has been seen is not
so much of a change but a general realignment in which one or more of the new
DOSs has embraced at least the substance, if not the essence, of memory manage
ment techniques pioneered by third-party developers, most notably by Quarter
deck but with others playing major roles as well.

When I say the "substance if not the essence," as you have seen here, it is not
the raw power to manage memory that is lacking in either MS-DOS 5.0 or DR
DOS 5.0. What is lacking most in both is the sophistication necessary to explore
your system's resources and go beyond a rudimentary set of safe and simple, but
too often inadequate, defaults to exploit them adequately.

For this, you must still look to the third-party market. It seems unlikely this
will change in the foreseeable future. It is not in Microsoft's or Digital's best
interest to kill that market or suppress the kind of creativity that the market
spawns-from which they too will ultimately benefit.

Multiuser DOS and DOS-like systems dramatically change the equation in
the way they utilize whatever usable address space you have available beyond
640K and make their own rules tailored to their own specific needs. I have briefly
only touched on how that might impact upon your DOS habits in the workplace
and completely overlooked the subject of full scale Local Area Networking. Both
areas are sufficiently complex to warrant dedicated volumes of their own.

The more things change 255

The ultimate shell game
In what could be another of those strange twists of irony, regardless of the ultimate
fate of windows, its true legacy might be the DPMI that Bill Gates pushed so hard
for as a means of keeping Windows in the game with the coming of the DOS
Extender.

The real promise of the DPMI, if it indeed sees fruition, is that it has the
potential to cut across operating system boundaries and to allow conforming DOS
extended applications programs to run not only under DOS but under OS/2,
UNIX, and possibly other essentially incompatible operating systems as well.

Yet at the same time, while everyone's attention has been riveted on DOS and
all that's new-and yet not really new-beyond 640K, another pot is coming to a
boil. It looks like OS/2 really is coming this time. Despite the problems that have
plagued it from its earliest beginnings, OS/2 still keeps resurfacing. Each time it
does, it is enhanced a little more and is less hostile to the DOS that it is trying to
replace.

After the much talked about split between Microsoft and mM (apparently the
result of a furor over Windows), OS/2 2.0 is coming now from IBM. This time, it
is not just a curiosity, an orphan lacking interest or support from any quarter, but a
robust new 32-bit operating system with the power to embrace today's DOS appli
cations. Claimed to be a better DOS than DOS and a better Windows than Win
dows, it will even multitask the applications now run under DOS. No longer
limited to the single session compatibility box that never really was compatible,
OS/2 intermixed with super-powerful new applications written to exploit process
ing power that DOS can never equal.

In any event, one thing seems very clear as DOS enters its second decade.
The future of the familiar DOS environment has been assured now for some time
to come. The most intriguing-and exciting-irony is that, as the role of operating
systems changes and the boundaries become increasingly unclear, it might not
even be a DOs that takes users there.

Regardless of how everyone gets there, it is memory technology itself that is
the real growth industry, not DOS or OS/2 or UNIX. Those are simply vehicles
used as means of accessing and manipulating computer memory. It is the memory
that is important. It is at least equal in importance to the CPU, because without
memory, a lot of memory-more and more each day it seems-the CPU is mean
ingless. In this age of gigabytes and even terabytes, the steps taken beyond 640K
today are only the beginning.

256 Parting shots

A

APPENDIX

Advanced

•programmIng

functions available

under LIM 4.0 EMM

The following list contains the functions available under versions 3.2 and 4.0 of
the LIM specification for EMM. Functions 1 through 15 apply to LIM 3.2 only.
The remaining functions (16 through 30) were added by LIM 4.0 EMS.

Number
1 Get Status

functional

Description
test whether the expanded memory hardware is

2 Get Page Frame Address obtains the segment address of the
page frame used by the expanded memory manager

3 Get Unallocated Page Count obtains the total number of logical
pages of expanded memory present in the system and the number
of pages not already allocated

4 Allocate Pages notifies that the EMM program will be using
expanded memory, obtains handle, and allocates the required
number of logical pages to be controlled by that handle

257

5 	 MaplUnmap Handle Page maps one of the logical pages

assigned to a handle into one of four physical pages within the

expanded memory manager's page frame

6 	 Deallocate Pages releases the logical pages of expanded memory
currently assigned to the handle, then releases the handle

7 	 Get Version returns the version number of expanded memory

manager software

8 	 Save Page Map saves the contents of the page mapping registers
from all expanded memory boards into an internal save area

9 	 Restore Page Map restores (from an internal save area) page

mapping register contents on expanded memory boards for a

particular EMM handle

10 	 (no longer used)

11 	 (no longer used)

12 	 Get Handle Count returns the number of open EMM handles in
the system

13 	 Get Handle Pages returns the number of pages allocated to a
specific EMM handle

14 	 Get All Handle Pages returns an array of active EMM handles
and the number of pages allocated to each

15 	 Get/Set Page Map (subfunction) saves, restores the mapping
context for all mappable memory regions (both conventional and
expanded) in destination array supplied by application

16 	 Get/Set Partial Page Map (subfunction) provides mechanism
for saving partial mapping context for specific mappable memory
regions

17 	 MaplUnmap Multiple Handle Pages in single invocation, can
map (or unmap) logical pages into as many physical pages as is
supported by the system

18 	 Reallocate Pages can increase or decrease the amount of
expanded memory allocated to a handle

19 	 Get/Set Handle Attribute allows the application program to
determine and set the attribute associated with the handle

258 Advanced programming functions available under liM 4.0 EMM

20 	 Get/Set Handle Name gets eight character name currently
assigned to the handle and assigns an eight character name to the
handle

21 	 Get Handle Directory returns information about active handles
and names assigned each

22 	 Alter Page Map and Jump alters memory mapping context and
transfers control to the specified address

23 	 Alter Page Map and Call alters specified mapping context and
transfers control to the specified address. A return can then restore
the context and return control to the caller

24 	 MovelExchange Memory Region copies or exchanges a region
of memory from conventional to conventional, conventional to
expanded, expanded to conventional, or expanded to expanded
memory

25 	 Get Mappable Physical Address Array returns an array
containing the segment address and physical page number for each
mappable physical page in the system

26 	 Get Expanded Memory Hardware Information returns the
array containing hardware capabilities of installed expanded
memory

27 	 Allocate StandardlRaw Pages allocates the number of standard
or nonstandard size pages that the operating system requests and
assigns a unique EMM handle to these pages

28 	 Alternate Map Register Set enables an application to simulate
alternate sets of hardware mapping registers

29 	 Prepare Expanded Memory Hardware for Warm Boot
prepares expanded memory hardware for "impending" warm boot

30 	 EnablelDisable OSIE enables operating systems developers to
enable and disable functions designed for operating system use

Advanced programming functions available under LIM 4.0 EMM 259

B

APPENDIX

Special

considerations for

mapping LIM 4.0

EMS memory

In accordance with the LIM 4.0 specification, all of the better memory managers
for 80386 and higher systems provide for mapping memory. There are, however, a
number of programs that have problems if they encounter mapped memory in spe
cific areas that they are programmed to try to use, including a number that (at
least with certain memory managers) have difficulty dealing with mapped mem
ory below 640K. In these cases, special allowances must be made when setting up
the memory manager. These allowances usually entail including some sort of spe
cific EXCLUDE statement on the memory manager's command line in the CON
FIG.SYS, as in the example shown here:

DEVICE = QEMM386.SYS ram rom EXCLUDE =C800-CBFF au dma =32

Although, in many cases, other command line parameters are determined and
written to the CONFIG. SYS automatically by the installation program, such
exclusions generally have to be added by the user. Information relative to the need
for special address exclusion should be part of the documentation for any program

261

requiring such special treatment. However, if any conflicts are observed from
error messages during loading or the malfunction of any software that had been
working previously, it might be necessary to call for tecnnical support.

Difficulties encountered by the failureto exclude specific address areas vary.
In some cases, it results only in programs that might otherwise use high memory
being loaded in conventional memory instead. In more severe cases, it can result
in the failure of certain hardware or software to function.

The following listing presents a sampling of programs known to have encoun
tered problems under certain circumstances and exclusions or other corrective
measures that can be taken to ensure proper operation. I have used EXCLUDE =
and FRAME = in the examples shown below. Although this is the syntax used by
several memory management packages, you should refer to the documentation for
the specific manager you are using to determine the syntax that should be used. If
a problem does exist, the specific address areas should be constant regardless.

Program name 	 Special instructions

DC Windows Express 	 EXCLUDE=looo-Aooo (under Windows 2.x or use
WININ)

Deluxe Paint 	 EXCLUDE=looo-Aooo (for versions 1 and 2)

Excel EXCLUDE=looo-Aooo (run-time version only)

Javelin EXCLUDE = looo-Aooo

Pagemaker 	 EXCLUDE = looo-Aooo (under Windows run-time
2.x or use WIN IN)

Paradox 3.0 	 EXCLUDE=Aooo-Booo (for monochrome or CGA
systems)

Smartware II 	 EXCLUDE=looo-Aooo

SQL Windows 	 EXCLUDE = looo-Aooo

Stacker 	 EXCLUDE=C800-CBFF

SuperCalc5 EXCLUDE=1ooo-Aooo (see the text at end of this
chart)

SuperProject+ EXCLUDE=looo-Aooo

Word for Windows EXCLUDE=1ooo-Aooo (under Windows 2.11 and
2.1)

JLASERISA FRAME = Dooo (versions of the JLASERISA software
prior to 4.14 only)

Ventura Publisher FRAME = Eooo (or below if the EMS page frame
starts above Eooo)

262 Special considerations for mapping LIM 4. 0 EMS memory

There are also some programs that, although normally run in color mode, can use
the monochrome buffer area to access special characteristics of the VGA/EGA
card installed. If these programs are used, the monochrome buffer area cannot be
reclaimed as high DOS or as an EMS without video problems reSUlting.

Of these programs, SuperCalc5 and Smartcom are probably the best known,
although there are others. In such cases, be aware of any statements on the mem
ory manager's DEVICE= line that would include the BOOO to B800 area. If any
are found, those references should be deleted.

Additionally, a number of display adapters are known to require special
parameters to be set when the adapters are used in conjunction with certain mem
ory managers. When installing new display adapters (particularly special purpose
or high resolution adapters), special attention should be given to the documenta
tion in this regard.

Special considerations for mapping liM 4. 0 EMS memory 263

C

APPENDIX

Using bootable

floppies to test

new configurations

When experimenting with upgrades to new DOS versions, alternative operating
systems, or different memory managers, it is virtually imperative that you leave
whatever system you are using intact on your hard disk. Do as much experimenta
tion as possible working from bootable floppy disks rather than blindly installing
something that may take hours, even days, to fme-tune to your system-if you even
can fine-tune it to meet your particular needs.

Getting up bootable floppies'is now pretty much down to a science. At any
given time, users typically have a dozen or more of them, each with some differ
ent combination of DOS versions and/or alternate operating systems working in
combination with different memory managers. Some bootable floppies are fme
tuned nicely; however, others are not. User needs are different, but the problem is
always the same. Even when you think you've got things worked out nicely, you
get bit once in a while when you finally try installing something to your hard disk.
No system is infallible.

There are still some basic bootable floppy strategies I'd like to pass along.
First, you probably cannot simply copy your existing CONFIG.SYS and
AUTOEXEC.BAT files to a bootable floppy and automatically have them work.
Chances are you've got lines in your AUTOEXEC.BAT like:

MODE COM1:9600,N,8,1,P

265

If you boot from drive A; with MODE.COM residing in C:" DOS, for example,
you're going to have a problem. One of the easiest ways around this problem is
simply to add a line at the top of your normal AUTOEXEC.BAT (on C:/) that
makes C: the default drive:

C:

That's all it takes. Then, write a new one-line AUTOEXEC.BAT for drive A: that
transfers command to drive C: and your normal AUTOEXEC:

C:AUTOEXEC

If you already are using one of the more powerful memory managers and have
your system configured for its use, it generally is better, I find, to work with an
alternative startup batch file. I call mine ALTSTART.BAT. It is similar to my
working AUTOEXEC.BAT, except it has any references to proprietary programs
designed to work in conjunction with my normal memory manager to load TSRs
above 640K. For instance, in the following case, the portion shown in italics is
deleted in the ALTSTART.BAT, leaving the basic commands themselves:

dos, qemm , loadhi Ir: 1 dos, qemm , lastdrive =Z
dos, qemm, loadhi Ir:1 dos, qemm, files + 20
dos,qemm,loadhi Ih DOS, MODE COM1 :9600,N,8,1,P
dos, qemm, loadhi Ih DOS, MODE COM2:9600,N,8, 1,P
dos, qemm, loadhi Ir:2 DOS, PCKWIK, SUPERPCK I S: 1 000

There are two command lines that must be removed altogether, requiring, in this
case, that the FILES and LASTDRIVE functions be set from DOS in the CON
FIG.SYS, which would normally be the case anyway. In the other cases, only the
parts of lines dealing with LOADHI have had to be removed.

Using this ALTSTART.BAT as a template that can be copied to bootable flop
pies as a starting point eliminates the need for disturbing my normal operating
configuration until-and unless-I have determined experimentally that what I am
trying is better-and until I'm reasonably sure I've got the bugs worked out of the
configuration. To use the alternate startup template, I simply copy it to a new
bootable floppy, changing the name to AUTOEXEC.BAT in the process:

C>COPY ALTSTART.BAT A:AUTOEXEC.BAT

A basic template for a starting CONFIG.SYS to use on new bootable floppies can
be created and used in much the same way.

Many users find one of the most objectionable features to booting from a
floppy is the fact that DOS automatically sets COMSPEC = to the boot drive.
This means that every time DOS needs COMMAND. COM it has to go back to
drive A:, which is not only slow but prevents you from using A: for almost any
thing else that session. You can get around this problem easily. If you are not

266 Using bootable floppies to test new configurations

http:MODE.COM

changing DOS versions (or trying an alternate operating system), all you have to
do is include a COMSPEC statement in your floppy AUTOEXEC:

SET COMSPEC =C:" COMMAND.COM

This simply points to a copy of COMMAND.COM on the hard disk root direc
tory-the one you probably would normally use anyway. However, COMMAND
.COM (or an alternate command interpreter, such as 4DOS) can reside almost
anyplace you'd like to have it. This opens up several possibilities of particular
interest when upgrading to a new DOS version or trying a different operating sys
tem.

For example, you might use a COMSPEC statement something like this:

SET COMSPEC = C: " DR_DOS" COMMAND.COM

This points to a subdirectory on C: for the command interpreter for Digital's DR
DOS. You can either copy the utilities associated with that operating system to that
subdirectory and PATH to the subdirectory or you can keep them on your bootable
floppy (and PATH to the floppy). This latter scheme will require you to have the
disk containing these files in drive A: whenever they are needed.

Alternately, you can copy the command interpreter for the operating system to
a RAM disk and set your COMSPEC to point there. I prefer this approach. I usu
ally copy some of the most often used version-specific utilities to the RAM disk,
as well. Things run even faster this way than if these flles resided only on the hard
disk.

Finally, be sure that you label your bootable floppies carefully so you can
keep track of them for future use-and possibly for further experimentation. I use
an inexpensive program called NAME THAT DISK, which reads the contents of
each disk and prints labels either with specific fllename or wildcards, along with
pertinent data. Whether you choose to follow these suggestions or go it your own
way, the most important thing is to have some kind of system and to stick with it.

As a final note, there are a few proprietary installation programs that, in an
effort to make themselves idiot-proof, do not allow installation except to your hard
disk. They cavalierly make changes to your CONFIG.SYS and AUTOEXEC.BAT
pretty much to suit themselves. I absolutely hate such programs and generally try
to give them a wide berth. However, not all of them give you adequate warning in
advance-something I hate even worse. To prevent the loss of my working CON
FIG.SYS and AUTOEXEC.BAT, I always make sure I have an updated copy of
both files saved under different names, so I can restore them quickly, if necessary.

Using bootable floppies to test new configurations 267

http:COMMAND.COM
http:COMMAND.COM
http:COMMAND.COM

D

APPENDIX

The basics

of hexadecimal

This book is about addresses-computer addresses. Everything a computer does
involves some block of addresses. Devices (printers, keyboards, and monitors)
are installed at addresses. Software installs itself at addresses. For the purposes of
this book, there are about a million of them. To be precise, there are 1,048,576
unique and identifiable absolute addresses-or, in simpler terms, FFFFh (the "h"
is for "hexadecimal"). Using hexadecimal is much simpler than using powers and
multiples of two.

I don't have to go deeply into hexadecimal-and don't intend to here. A few
of the basics however, will make life easier.

People count in tens (the decimal system) because its easy-for them at least.
Computers count in twos (the binary system) because that's all they've got. Each
transistor (or equivalent speck buried in a chip) is either switched on (0) or off
(1). They, however, count a lot faster and better than people do in tens. Like it or
not, at some point we have to come to terms with it, but not necessarily by adding
up long strings of twos.

As you can quickly see, the number 16 (24) provides a convenient compro
mise. A bunch of impossible-to-remember binary numbers is equated to a neat
uniform progression in hexadecimal. The first ten blocks (0 through 9) cover the
entire 640K of conventional user memory available to ordinary applications.

This is good so far; however, six more single-character somethings are
needed to bring the count to 16. The letters: A, B, C, D, E, and F are used to fill
in the gap. Now the count runs 0, 1,2,3,4,5,6,7, 8,9, A, B, C, D, E, F.

269

Referring again to Fig. D-1, you'l1 see the progression in either notation is
just a series of blocks of 64K. These blocks really aren't nice, neat increments of
64,000 bytes, but actually 65,536. In hexadecimal, it really is a nice, neat, even
number: lOOOOh. That's really all there is to understanding hexadecimal. At least,
it is enough to start putting hexadecimal numbers to work for you.

In various literature find two address-numbering conventions used. Both con
ventions appear to be in hex notation, with a mix of letters and numbers; however,
some will have only four characters, while others will have five.

Even in hex, it takes five places to show the whole of addresses to 1024 kilo
bytes (1 Mb). To be precise, it takes 20 bits to point to any address in that range.
The 8088, however, has only 16-bit address registers to work with. As a result,
addresses must be broken up into components that can be managed by 16-bit reg
isters. The result is a two part address, consisting of a four-character "segment"
(cccc:) and a second four character offset group. The resulting address looks
something like:

xxxx:yyyy

To arrive at the ful132-bit address used in real mode from these two 16-bit num
bers, you add these two values, offsetting the second part in this manner:

1111
+ 	2222

13332

For the purposes of this book, however, the segment address (like any number
rounded off for the sake of convenience) the segment address contains all of the
information needed here, unless otherwise noted.

In this book, I will generally refer to blocks of memory-64K for instance
in their decimal approximations, as also is commonly done. The most significant
break points in DOS still come at multiples of 65536 bytes-multiples of 10000 in
hexadecimal.

What is 3 times 65536? The answer is 30000 in hexadecimal, or 3000 if you
drop a zero to reduce the number to a four digit segment. Instead of complicating
life, hex really makes counting easier when dealing with computers.

270 The basics ofhexadecimal

E

APPENDIX

Addresses for the

software developers

The list below contains the addresses and phone numbers of many of the software
developers and distributors mentioned in this book:

AI Architects, Inc.
One Kendall Square
Cambridge, MA 02139
(617) 577-8052

Rational Systems, Inc.
P.O. Box 480
Natick, MA 01760
(508) 653-6006

Phar Lap Software, Inc.
60 Aberdeen Avenue
Cambridge, MA 02138
(617) 661-1510

Intelligent Graphics Corp.
4800 Great America Parkway
Santa Clara, CA 95054
(408) 986-8373

Advanced Logic Research, Inc.
9401 Jeronimo
Irvine, CA 92718
(800) 444-4ALR

Rose Electronics
P.O. Box 742571
Houston, TX 77274

ALL Computers, Inc.
34711 Chardon Road
Willoughby Hills, OH 44094
(216) 944-0110

Buffalo Products
P.O. Box 117097
Burlingame, CA 94011
(800) 345-BFLO

Digital Research, Inc.

Box DR!

Monterey, CA 93942

(408) 649-3896

The Software Link, Inc.
3755 Parkway Lane
Norcross, GA 30092
(404) 448-5465

271

Hauppauge Computer Works, Inc.
91 Cabot Court
Hauppauge, NY 11788
(516) 434-1600

Distributed Processing Technology
132 Candade Drive, P.O. Box 1864
Maitland, FL 32751
(305) 830-5522

Paul Mace Software
400 Williamson Way
Ashland, OR 97520

Newer Technology
1117 South Rock Road, Suite 4
Wichita, KS 67207
(316) 685-4904

I discussed many software products and packages throughout this book. The fol
lowing list contains several of the pieces of software that I covered more thor
oughly:

Turbo EMS

Merrill and Bryan Enterprises, Inc.

9770 Carroll Center Road, Suite C

San Diego, CA 92126

System Sleuth

Dariana Technology Group, Inc.

7439 La Palma Avenue, Suite 278

Buena Park, CA 90620

HeadRoom

Helix Software

83-65 Daniels Street

Briarwood, NY 11435

Printer Genius

Nor Software, Inc.

P.O. Box 1747
Murray Hill Station
New York, NJ 10156

PrintQ

Software Directions, Inc.
1572 Sussex Turnpike
Randolph, NJ 07869

hDC FirstApps

hDC Computer Corp.
6742 185th Avenue N.E.
Redmond, WA 98052

HOPTIMUM

Paul Mace Software
400 WIlliamson Way
Ashland, OR 97520

Software Carousel

Softlogic Solutions
530 Chestnut Street
Manchester, NY 03101

272 Addresses for the software developers

Glossary

alternate register set A single register set can only point to a single set of 16K
blocks (logical pages) in expanded memory. To access more than 64K of data
(under 3.2 EMS) or provide one set of 16K blocks to backfill conventional
memory and/or access data in expanded memory (under 4.0 EMS), addi
tional sets of pointers-alternate register sets-must be provided.

ASCII American Standard Code for Information Interchange. A method of
translating computer machine language to a user-identifiable character set.

beta A final phase of testing where a product is put in the hands of selected users
for a period of actual in-use testing prior to general distribution.

BIOS Basic In/Out Services. A set of instructions managing computer opera
tions at the lowest level.

boot sector A special disk sector reserved for information that the computer
needs to load the operating system.

byte The basic unit of measure for computer memory. A character (such as a
letter, number, or punctuation mark) uses one byte of memory. A byte is com
posed of eight binary bits.

conventional memory The term applied to user memory, generally below
640K, but under certain circumstances can be increased to 704K or more
depending on the type of display and video addresses used.

configuration The grouping of hardware and software that make up a computer
system. The grouping includes the main console (display), any printers, the
operating system, and any other applications and hardware.

data compression A means of packing data to lessen the space it occupies for
storage.

device driver A piece of software that contains the specifications for running a
particular device. When invoked, it activates and controls communications
with the device.

273

DOS Derived from Disk Operating System. It is sometimes used generically,
but in this book is used specifically to refer to the Microsoft operating sys
tems marketed as mM DOS (sometimes called PC DOS) and MS-DOS (often
renamed by vendors as COMPAQ DOS, TANDY DOS, etc.).

EEMS Enhanced Expanded Memory Specification. An enhanced version of the
earlier LIM 3.2 EMS. A superset of EMS, many features were incorporated
in LIM 4.0 EMS.

executable file A file that contains machine-recognizable language that can be
executed directly without an interpreter.

expanded memory Nonlinear memory beyond 1 Mb that is accessible on
revolving basis in blocks made available by an Expanded Memory Manager
(EMM) at addresses within DOS's 1 Mb limits.

extended memory Linear memory at addresses above 1 Mb, it is accessible and
directly usable only with 80286 and higher processors and can be used to
emulate expanded memory.

gigabyte One billion (l09) bytes.
hexadecimal The base-16 numbering system derived from the binary nature of

computer logic (24), which cannot deal directly with decimal values.
high DOS memory The term used to refer to RAM mapped to unused address

spaces above 640K but below 1024K. It also is referred to as Upper Memory
Blocks (UMBs).

high memory area The "extra" 64K available to DOS between 1024K and
1088K, applicable with 286 and higher CPUs only.

kilobyte One thousand (103) bytes.
LIM Acronym derived from Lotus/Intel/Microsoft, used to describe Expanded

Memory Specification (EMS), which was developed through a joint effort
that ultimately included other firms as well.

linear memory Directly accessible memory made up of conventional memory
(including upper memory from 640K to 1 Mb) and extended memory above 1
Mb for 80286- or 80386-based machines.

logical page 16K block of memory. Under 3.2 EMS, it applied only the blocks
(four per 64K page frame) above 640K. Under 4.0 EMS, it can apply to any
16K block (with a base address that is a multiple of 16K) below 1024K.

low RAM Conventional RAM.
megabyte One million (1(Yi) bytes.
multitasking Running multiple applications simultaneously. With DOS, this is

facilitated by using a multitasking or windowing environment, such as Micro
soft Windows or DESQview. Protected mode operating systems, such as
Xenix and OS/2, have this capability integral to them.

nanosecond One-billionth of a second.
overhead The memory used by whatever software is loaded. The operating sys

274 Glossary

tern requires a substantial amount of memory and still more is added by any
TSRs, etc.

page A 16K block of information that can be electronically repositioned from
expanded memory to conventional memory through the bank switching proc
ess.

page frame An area through which pages are switched in the bank switching
process.

page register A memory location that acts as a point and locates a particular
area in memory.

paged memory Memory that is divided into 16K blocks called pages. (see
expanded memory)

perfect superset A term used to describe some set of functions or commands
that go beyond the limitations of the underlying system to provide additional
services, while maintaining absolute compatibility with same. EEMS, for
instance, was a perfect superset for the original LIM EMS specification.

port The physical device that serves as a channel for peripheral devices to com
municate with the Central Processing Unit (CPU).

print spooler An area in volatile memory (RAM) set aside to take data that is
being sent to the printer, thereby freeing the processor for other tasks. While
not considered multitasking in the usual sense, it is to the extent that the user
can go on with some other task even while the job is still printing.

protected mode A special mode of operation that allows addressing of up to 16
Mb of extended memory with 80286 systems. It currently is available in alter
native operating systems, such as Xenix and OS/2. It also can be used by the
80386.

RAM Volatile memory. An area of memory in which code and data can be
stored during processing.

RAM disk An area of volatile memory (RAM) set aside for the quick access of
data. When data is placed in a RAM disk, a program can access it much more
quickly than it could if it had to read that same data from a floppy or hard
disk.

register The pointer required to locate a particular 16K block of data stored in
expanded memory.

register set The collection off all of the registers used by a particular program or
application at any given time.

remapping The ability to assign unused addresses (typically above 640K) to
blocks of physical RAM, so they appear to be at those addresses. It generally
is limited to 80386 systems where it is supported by the microprocessor chip
itself.

ROM BIOS Low-level Basic In/Out Services loaded into memory during boot
processes from Read-Only Memory chips.

Glossary 275

SIMM Single Inline Memory Module A mini circuit board generally contain
ing one complete bank of typically nine memory chips. This type of memory
unit takes up significantly less space than individual DRAM chips in sockets
but requires special socketing unique to this type of installation.

Split Memory Addressing A term used by AST to define the ability of its
boards to allocate some of their memory to fIll out conventional memory (up
to 640K), allocating the rest to expanded or extended memory.

superset A term used to describe some set of functions or commands that go
beyond the limitations of the underlying system to provide additional ser
vices. (see perfect superset)

terabyte One trillion (1012) bytes.
time slicing A commonly used technique for switching (dividing the attention

of) a single microprocessor chip between two or more applications. If
switched fast enough, it gives the illusion of simultaneous processing, or
multitasking.

thrashing Where the time slice alloted to an application using virtual memory
in a multitasking environment is insufficient to complete read or write access.
As long as that access remains incomplete, the heads thrash back and forth
each time that application's time slice comes up until the task is finished.

upper memory Sometimes called reserved memory, this is any memory in the
640K to 1 Mb address range. It originally was used for system functions,
such as display memory, ROM BIOS, and various auxiliary functions. Now it
also includes page frames used by expanded memory and, with remapping
(80386 only, except with additional hardware support) is used for relocation
of various functions from conventional 640K.

Vdisk An mM software product that creates a simulated disk drive in RAM.
volatile A term used to describe memory that retains its contents only as long as

it is receiving power to refresh itself. Common RAM falls into this category.
XMS A memory usage and management specification written by Microsoft (but

also incorporating the work of others) that defmes a protocol controlling
access to high (1024K to 1088K) , upper (640K to 1024K) , and extended
memory on all computers using 80286 or higher chips.

276 Glossary

A
~veBorurl,55,59,238

~e1erator crurls, 207, 208-212

!ccess time, 209

A.LL 386SX, 210-211

bootup time, 209

InBorurl386PC,208-21O

Snapln 386, 211-212

dressing memory, 2-5, 38-39

B0386 microprocessor

capabilities, 25

legment and offset, 2-4

Architects, 97, 98

.L 386SX accelerator crurl,

210-211

I Computer, 83, 115, 120-123,

170, 172,212

.LCharge 386,71,75, 172,

176,243

JLMENU, 80,83,245

)Cation,memory (see memory

management)

JR Inc., 231

-lSI display driver, 12

:T Research, 39-41, 130,232

DESQview, 153-154

EMS memory, 63-64

toCAD,89

JTOEXEC.BAT

)()Qtable floppies, testing new

configurations, 265-267

DR DOS, 136, 137

Index

testing new configurations on

bootable floppies, 265-267

virtual machines, 187-188

B
backfilling, conventional memory

mapping, 58-59

BASIC, 118

BASICA,118

BAT files, 14

BIOS (see ROM BIOS)

BlueMAX, 78, 118-119,243

bootable floppies,

new-configuration testing,

265-267

bootup, triple fault, rebooting, 22

Borland, 97, 98

Buffalo Products, 151

buffers, print, 150-151

buses

direct memory access (DMA),

229

EISA, 227-228, 230-231

EMS memory, speed, 65-66

micro channel architecture

(MCA), 226-229

PCIAT, speed considerations,

228

C
caching disks, 219-220

Carousel (see Software Carousel)

ChargeCard, 71, 83, 115, 120,

122, 123, 212-214, 223, 238

CheckIt, 241

Chips and Technology, 123, 135,

138

clock speed, 4, 31-33

buses, PCIAT, 228

dynamic vs. static RAM, 32

EMS memory, 65-66

polling, 33

time slicing, 32-33

upgrading considerations, 223

virtual machines, 18t'

wait states, 31

COM files, 14

COMMAND. COM , 13-14

commands, internal vs. external,

14

compatibility method (MR:C),

120

compatibility, DOS versions, 4-5

CONFIG.SYS

bootable floppies, testing new

configurations, 265-267

DR DOS, 136, 137

EMM386.EXE, 71-74

testing new configurations on

bootable floppies, 265-267

virtual machines, 187-188

configuration

bootable floppies, testing new

configurations, 265-267

Index 277

configuration (cont.)

on-the-fly, DR DOS, 137

virtual machines, 185-187

context switching, Software
Carousel, 145-146

coprocessors, 30-31

CP/M,18

crashes, software and memory

management, 246-249

D
DC Windows Express, 262

DEBUG,249-251

Deluxe Paint, 262

demand-paged virtualization,

DESQview, 162

descriptors, protected mode, 88

DeskLink, 148

DESQview, 19-20,42,45,54,

56, 82, 95, 98, 104, 105, 106,

121, 129, 136, 137, 148,

153-167, 192,240,243, 247

AST Research, 153-154

backup program (Sitback),

159-160

demand-paged virtualization,

162

DOS extenders, 163

enhanced expanded memory

specification (EEMS),

153-154

high memory area (HMA),

108, 160

UM 4.0 EMS, 154-157

macros, scripts, 165-166

memory allocation and use,

158

multitasking, 153

path statements, 158-159

PIF files, 164-165

QEMM,I60-162

virtual control program

interface (YCpn, 163

Windows, 163-164

X Window System, 166-167

device drivers (see TSRs)

DEYICEHIGH,71

Digital Research, xviii

direct memory access (DMA),

229

DOS, 10-12

ANSI display driver, 12

278 Index

BIOS module, IBMBIO.COM,
13

COMMAND.COM,13-14

evolution and development,

12-13

expanded memory use, 14

extenders, 21, 25-26, 90-92,

95-98, 254-255

IBMDOS.COM, 13

internal vs. external commands,

14

ROM BIOS, 11-13

shell, COMMAND.COM,

13-14

DOS protected mode interface

(DPMl), 21, 274

80386 support, 99-101

extended memory, 99-101

Lotus, 95

Windows, 170

DR DOS, xviii, 127-128,

134-140,253

AUTOEXEC.BAT, 136, 137

CONFIG.SYS, 136, 137

configuration-on-the-fly, 137

EMM386.SYS, 135

EMMXMA.SYS, 136

HIDOS.SYS, 135-136, 138

high memory area (HMA),

108, 134, 135

HINSTALL, 136-137

memory management, MEM,

114, 240, 245

multiuser options DR Multiuser

DOS, 195-200

DR Multiuser DOS, 195-200

dynamic RAM, 32, 226

E
80286 CPU chip, xviii-xix, 15,

19,20-23

addressing capabilities, 4

clock speed, 4

DOS extenders, 21

extended memory development,

20,41-42, 85, 90

LOADALL function, 22

memory management, 83

memory-mapping, 67, 83

protected mode, 42, 87, 88

real vs. protected mode use, 20

triple fault, 22

80386 CPU chip, xvii-xviii,
19,23-29

addressing capabilities, 4

clock speed, 4

compatibility with other

microprocessors, 24

DOS extenders, 25-26

DPMI support, 99-101

DX, 80386 DX deve10pme

and use, 27, 30

EISA bus, 27

expanded memory, 45

extended memory, 25,85,

memory-mapping and

addressing, 25, 67

Micro Channel Architectut

protected mode operations,

88

real mode operation, 25

SL, 80386 SL, 29

SX, 80386 SX, 27-28

YCPI support, 98-101

virtual machine, 26

virtual mode, 26

8086 chip, 17-19

8088 chips, xviii, 15, 16-20

expanded memory

development, 19

memory-mapping, 67

protected-mode use, 19

EMM386.COM, 101

EMM386.EXE, 64-65, 71-7,

101, 114, 115, 117, 128,

130-134, 138, 171-173,2

245

EMM386.SYS, 134, 135, 13

EMMXMA.SYS, 136

EMS memory, xviii, 55-66

add-in memory boards, 60

AST Research developmen

55,63-64

backfill, conventional merr

mapping, 58-59

bus speed, 65-66

EMS emulators,

EMM386.EXE, 64-65

enhanced expanded memo]

specification (EEMS), 55

high memory area, 58-59

HIMEM.SYS, 65

LIM 4.0 EMS, 56-64

mapping registers, 60

http:EMM386.COM
http:COMMAND.COM
http:IBMDOS.COM
http:IBMBIO.COM

nemory-management, 64

nultitasking, 56

:egister sets, 61-62

:egisters, 60-65

Nait states, 66

lulation, expanded memory,

53-54

lulators, expanded memory,

53-54

tlanced expanded memory

specification (EEMS), 39,

42-43, 55-57, 153-154,

231-232

tlanced mode, Windows, 171

go Computers, 97

:cel,262

CE files, 14

panded memory, 19, 35, 47-54,

67

80286 and extended memory,

41-42

80386 development, 45

allocation of memory, 48-50

AST Research development,

39-41

disabling system memory,

44-45

DOS device drivers, 14

~mulation vs. emulators, 53-54

~mulation, MS-DOS 5.0 and

DR DOS, xviii

~mulators, 53-54

~nhanced expanded memory

specification (EEMS), 39,

42-43, 55-57

~xpanded memory, 48-50

~xtended memory vs., 86

ugh memory area use, 49

: . .IM EMS 3.2, 39, 42

:"'IM EMS 4.0,37,43-44,47

ogical pages, 50-51

:...otus development, 48

nemory-management,4(}.41,

52-53, 115, 239

~icrosoft development, 48

nultitasking, 39, 40

lage frames, 36, 49-52

lages, accessing pages, 36

tAM allocation, 43

l'urbo EMS, 53-54

'irtual machines, 180, 184

landed memory (EMX), xviii

expansion boards, 233-235

extended industry standard

architecture (EISA)

80386 DX, 27

buses and upgrading, 227-228,

230-231

i486 chip, 29

upgrading, motherboard

replacement, 215

extended memory, 20, 25,85-101

80286 development, 41-42, 85,

90

80386, 85, 90

accessing schemes, 89-90, 104

address pin limitations, 86-87

continuous memory, 86

DOS extenders, 90-92, 95-98

DOS protected mode interface

(DPMI),99-101

expanded memory vs., 86

extended memory specification

(XMS),90

high memory area (HMA), 90

i486, 86, 90

Lotus development, 92-95

memory-management, 45,114

memory-mapping, 67

OS/2 compatibility, 95

protected mode, 42, 87-89

upper memory blocks (UMBs),

90

VDISK, 42, 89

virtual control program

interface (VCPI), 98-101

virtual machines, 180, 184

extended memory manager

(XMM), high memory area

(HMA) , 106

extended memory specification

(XMS),90, 106

extenders, DOS, 21, 25-26,

90-92,95-98,254-255

DESQview use, 163

DOS protected mode interface

(DPMI), 21, 274

virtual control program

interface (VCPI), 21, 274

F
4.0 LIM EMS, 232

4004 chip, Intel, 16-17

FAX boards, 148-149

floppy disks, bootable,

new-configuration testing,

265-267

fragmentation, 76-78

functions, LIM 4.0 EMM,

advanced programming

functions, 257-259

G
Global Descriptor Table (GDT),

88

GWBASIC, 118

H
hard disks

disk caching, 219-220

interleave factor, 217-219

optimization software, 218-219

RAM disks, 219-220

hDC FirstApps, Windows,

176-178

Headroom, 114, 142-145

hexadecimal number system,

269-270

HIDOS.SYS, 109, 135-136, 138

high memory area (HMA), xix,

44,49,58-59,103-111, 115

accessing schemes, 104-106

addressing and segments,

104-106

DESQview, 108, 160

DR DOS, 108, 134, 135

extended memory, 90

extended memory manager

(XMM) , 106

extended memory specification

(XMS) , 106

HIDOS.SYS, 109

HIMEM XMS, 109

HIMEM.SYS, 106, 108

loading files/programs, 107

memory allocation and use,

MEM,109-111

memory management, 114, 116

memory-mapping, 67

MS-DOS, 128-129

QEXT,106

VDISK, 104, 106, 107

HIMEM.SYS, 71-74, 101, 106,

108, 115-117, 128-129, 138,

170,172-173,180,240,245

EMS memory, 65

Index 279

http:nemory-management,4(}.41

HIMEM.SYS (cont.)

memory management, 114

HIMEM.XMS driver, 109

HINSTALL, 136-137

HOPTIMUM, 218-219

I

i486 chip, xvii-xviii, 15, 29-30,

221-222

clock speed, 4

EISA bus, 29

extended memory, 86,90

Micro Channel Architecture, 29

SX,30

i860 chip, 31, 221

mMBIO.COM, 13

mMDOS.COM, 13

IDLE feature, DR Multiuser DOS

security, 199-200

InBoard 386PC accelerator card,

208-210

InfoSpotter, 80, 240, 245,

249-250

Intelligent Graphics Corporation,

192

Interleaf Publisher, 97

interleave factor, 217-219

J
Javelin, 262

JLASER/SA, 262

L
laptop computers, 224-225

LeAPSet, 135, 138

LeAPSeffix, 135, 138

LIM 3.2 EMS, 39, 42, 55, 59

LIM 4.0 EMS, 19,37,43-44,

47, 56-58, 59-64, 83, 115,

117,128

advanced programming

functions, 257-259, 261

bus speed, 65-66,

DESQview, 154-157

memory-mapping, 67, 261-263

MS-DOS, 130

LOADALL function, 22

LOADHIGH,71

Local Descriptor Table (LDT), 88

logical pages, expanded memory,

50-51

280 Index

Lotus, 97
DPMI,95
expanded memory
development, 48

extended memory development,

92-95

VCPI,95

M
macros, DESQview, 165-166

Manifest, 79, 80, 124,240,

243-245, 251

Map, 76

mapping (see memory-mapping)

mapping method (MR:M), 120

mapping registers, EMS memory,

60

Maxuruze, 75, 78, 107, 139

MEM command, 73, 249, 251

high memory area (HMA),

109-111

memory management, 240, 245

memory allocation

above 640K, user vs. system,

7-9

addressing, 2-5

addressing, segment and offset,

2-4

assignment of memory, user vs.

system, 5-9

backftlling, conventional

memory mapping, 58-59

contiguous memory blocks,

above 640K, 9

DOS extenders, 254-255

dynamic RAM vs. static RAM,

32

enhanced (see enhanced
memory)

expanded (see expanded
memory)

high area (see high memory
area)

LIM 4.0 EMS (see LIM 4.0
EMS)

managing (see memory
management)

reserved, xix

video usage, 7-9

memory boards, 66

Memory Commander, 120-122

memory management, 37, 69-7

79-81, 113-125,237-251

386MAX, 113, 116, 240, 24

80286,83

AboveBoard,238

ALLMenu, 245

BlueMAX, 118-119

ChargeCard, 122, 123,

212-214, 238

CheckIt, 241

compatibility method (MR:C

120

DEBUG,249-251

DESQview, 121

device drivers, 114

DR DOS, 114, 240, 245

EMM386.EXE, 71-74, 114,

117,240

EMS memory, 64

expanded memory, 40-41,

52-53, 115, 239

extended memory, 45, 114

fragmentation, 76-78

Headroom, 114

high memory area (HMA),

114, 115, 116

HIMEM.SYS, 71-74, 114,

116, 117,240

InfoSpotter, 240, 245, 249-2:

large ftles, 75-76

LIM 4.0 EMS, 115, 117

Manifest, 124, 240, 243-245

251

mapping method (MR:M), 1

MEM command, 73, 240, 2,

249,251

Memory Commander, 122

MOVE'EM, 83, 123

MS-DOS, 240, 245

multiuser options, 205

NEAT,123

Opturuze, 114

PopDrop, 114

ports, parallel vs. serial, 24(

protected method (MR:P)

mapping, 120

PS/2, 119

QEMM, 113, 116

QEMM50/6O, 119

QRAM,123

reserved memory, 114

http:mMDOS.COM
http:mMBIO.COM

lOM BIOS, 78-79, 118-119

:cram!, 119, 120-121

m,249

:leuth,241

oftware crashes, 246-249

:queeze!, 121

'SRs, 75, 80, 81, 114

ideo RAM, 68, 81-83,

123-135,239-240

irtual machines, 180

'M386,121

Vindows, 121, 170-173

mory Viewer, Windows,

177-178

mory-mapping, 67-83

0286,67,83

0386 microprocessor

capabilities, 25, 67

088,67

ackfill, 58-59

ompatibility method (MR:C),

120

lMM386.EXE,71-74

"panded memory, 67

"tended memory, 67

ragmentation, 76-78

ree or unassigned memory, 69

igh memory area (HMA),

MEM, 67, 109-111

rrge flIes, 75-76

.1M 4.0 EMM, 67, 261-263

lapping method (MR:M), 120

iEM command, 73

lemory management, 69-71

lOVE'EM,83

rotected method (MR:P)

mapping, 120

OM BIOS, 78-79

ideo RAM, 68, 81-83

irtual machines, 184

rrill and Bryan, 240

ro channel architecture

:MCA)

:>386 DX, 27

Ilses and upgrading, 226-229

f86 chip, 29

roprocessors, 15-33

:le,76

herboard replacement,

lpgrading, 214-217

¥E'EM, 83, 123

MS-DOS, xviii, 127-134, 253

EMM386.EXE, 130-134

HlMEM.SYS, 128-129

LIM 4.0 EMS, 130

memory management, MEM,

240,245

Microsoft development,

128-130

Windows, 129

multitasking, 100

DESQview, 153-167

EMS memory, 56

expanded memory, 39, 40

Quarterdeck, 40

virtual machines, 181-183

multiuser DOS (MDOS), xviii,

191-205

DR DOS, 195-200

virtual machines, VM386,

192-195

VM386, 192-195

multiuser options

DR Multiuser DOS, 195-200

memory management, 205

multiuser DOS (MDOS),

191-205

PC-MOS, 200-204

SCO VP/ix, 204

virtual machines, 189-190

XENIX,204

N
NEAT, 123, 135, 138

NEATsx, 135, 138

New Technology, 66

number systems, hexadecimal vs.

binary and decimal, 269-270

0
offset, address, 2-4

operating systems, 5, 10-12, 100

Optimize, 75, 78, 107, 114, 121,

139

Oracle, 95

OS/2, 5, 11, 19,25, 86, 89, 90,

95,100, 118

Lotus compatibility, 95

P
Packrmd, 76-77

page frames, expanded memory,

36,49-52

Pagemaker, 262

pages, expanded memory, 36

Paradox, 97, 98, 262

parallel ports, 246

PC-MOS multiuser option, 11,

200-204

bootup procedures, 203-204

compatibility, 202-203

device driver loading, 202

installation, 203-204

peripheral sharing, 151

Phar Lap Software, 36, 97, 98

polling, 33

PopDrop, 114

ports, parallel vs. serial, 246

PRINT,150

print spoolers, 149-150

protected method (MR:P)

mapping, 120

protected mode, 19, 20, 25

80286 operations, 87, 88

80386 operations, 88

descriptors, 88

extended memory, 42,87-89,

97

Global Descriptor Table

(GDT),88

Local Descriptor Table (LDT),

88

selectors, 88

PS/2, 119

Q
QEMM, 68, 70, 75, 100, 104,

107,113-116,120, 121, 124,

135,136,137,139, 160-162,

173-174, 180,240, 242, 243,

253

QEMM.SYS,I72

QEMM386, 78, 82, 119

QEMM50/60, 119

QEXT,I06

QRAM, 123, 139,240,242,243

Quadram,98

Qualitas, 45, 71,75,78,83,98,

100, 118-119, 121, 123, 170,

172

Quarterdeck, 36,40,42, 45, 56,

71,78,90,98, 100, 104, 105,

106, 119, 121, 123, 135, 170,

172, 240, 253

Index 281

R
RAM allocation, expanded

memory, 43

RAM disks, 53, 219-220

Rampage (See also AST

Research), 39-41, 55, 64, 130

Rational Systems, 97, 98

real mode, 20, 25

real mode, Windows, 171-172

reduced instruction set computing

(RISC) chips, 31

register sets, EMS memory,

61-62

registers, EMS memory, 60-65

reserved memory area, xix, 114

ring 0, DPMI, 99

ROM BASIC, 10, 118

ROM BIOS, 11-13,78-79,

118-119

Rose Electronics, 151

s
SCO VP/ix, 204

Scram!, 119, 120-121

scripts, DESQview, 165-166

segment, address, 2-4

selectors, protected mode, 88

serial ports, 246

SHELL command, 13

task swapping, 146-148

shell, DOS, 13

SID,249

SIMM chips, 225-226

Sleuth, 80, 241

Smartware n, 262

SnapIn 386 accelerator card,

211-212

software developers' addresses,

271-273

Software Carousel, 19, 39, 54,

56, 145-146

SQL Windows, 262

Squeeze!, 121

Squish,76

Stacker, 262

standard mode, Windows,

171-172

static RAM, 32, 226

SuperCalc, 262

Superpck, 76-77

SuperProject+, 262

System Sleuth, 80, 241

282 Index

T
386EMM.SYS, 14

386MAX, 45, 68, 70, 75, 79,

100, 107, 113, 115, 116, 136,

137, 139, 172, 174-176,240,

243,245

task swapping, SHELL, 146-148

task switching, 148

HeadRoom, 142-145

time slicing, 32-33

Traveling Software, 148

triple fault, 22

TSRs, memory management, 75,

80, 104, 113, 114

1:urbo EMS, 53-54

U
UNIX, 12, 100

upgrading, 207-235

4.0 LIM EMS, 232

8-bit vs. 16-bit expansion

boards, 233-235

80286 vs. 80386 upgrades,

222-224

80286-to-80386 upgrades, 210

accelerator cards, 207-212

ALL 386SX accelerator card,

210-211

buses, direct memory access

(DMA),229

buses, EISA, 227-228, 230-231

buses, micro channel

architecture (MCA), 226-229

buses, PC/AT, speed

considerations, 228

ChargeCard, 212-214

clock speed considerations,

223

CPU replacement, 207

disk caching, 219-220

dynamic vs. static RAM, 226

enhanced expanded memory

specification (EEMS),

231-232

hard-disk optimization,

HOPTIMUM,218-219

i486 chips, 221-222

i860 chips, 221

interleave factors, 217-219

laptop computers, 224-225

microprocessor chip

replacement, 221-235

motherboard replacement,

214-217

RAM disks, 219-220

recycled hardware, 233

SIMMs, 225-226

SnapIn 386, 211-212

SX vs. DX upgrades, 223-:

upper memory blocks (UMB:

extended memory, 90

v

V Communications, 122

VDISK utility, 42, 89, 104, 1

107

Ventura Publisher, 262

video RAM, 7-9

memory management, 68,

81-83, 123-125,239-240

memory-mapping, 68, 81-1

VIDRAM.COM, 82

virtual control program inten

(yCP!), xviii, 21

80386 support, 98

DESQview, 163

extended memory, 98-101

Lotus, 95

Windows, 95, 170

virtual machines, 26, 99, l(X

179-190

addressing memory, 183-11

AUTOEXEC.BAT

customization, 187-188

booting procedures, 179-1~

clocks, clock speed, 181

compatibility, 8086-8088

machines and up, 180

CONFIG .SYS customizati(

187-188

crashes, 188-189

environmental configuratiol

185-187

expanded memory, 180, 18

extended memory, 180, 18,

HIMEM.SYS, 180

mapping memory, 184

memory management, 180

multitasking, 181-183

multiuser options, 189-190

QEMM,180

VM386, 180-190

virtual memory, EMS emulat

53-54

http:VIDRAM.COM

Jal mode, 26, 179

386,121,137,180-190

lultiuser DOS (MDOS),

192-195

ix, 204

W
t states, 31, 66

ldows, xviii, 19, 35, 56, 70,

l21, 129, 169-178,247

B6MAJ{, 172, 174-176

,LLCharge386, 172, 176

DESQview, 163-164

DOS protected mode interface

(DPMI),170

EMM386.SYS, 172-173

enhanced mode, 171

hDC FirstApps, 176-178

HIMEM.SYS, 172-173

memory management, 170-173

Memory Viewer, 177-178

QEMM, 172-174

real mode, 171-172

standard mode, 171-172

VCPI incompatibility, 21,95,

170

versions, differences,

171-172

X Window System, 166-167

Word for Windows, 262

x

X Window System, 166-167

XENIX, 11, 204

XMA2EMS.SYS, 14

XMAEM.SYS, 14

Index 283

	Contents
	Introduction
	1. The unexpanded system
	2. At the heart of things
	3. The new breed
	4. Expanded memory: something for everyone
	5. EMS memory: the dawning of another age
	6. Stealing the store
	7. Extended memory and new frontiers
	8. DOS's mysterious"extra" 64K
	9. Chairmenof the board
	10. Two times 5.0: not quite a ten
	11. Entry level answers
	12. DESQview and the age of multitasking
	13.Windows
	14. Beyond the real: the virtual machine
	15. The MDOS multiuser option
	16. Keeping up, or trying to
	17.The ultimate upgrade
	18. Crash course
	19. Parting shots
	Appendices

