

I N S I D E

ADRIAN KING

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright© 1994 by Adrian King

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
King, Adrian, 1953-

Inside Windows 95 I Adrian King.
p. cm.

Includes index.
ISBN 1-55615-626-X
1. Windows (Computer programs)

file) I. Title.
2. Microsoft Windows (Computer

QA76.76.W56K56 1994
005.4' 469--dc20

Printed and bound in the United States of America.

123456789 QMQM 987654

93-48485
CIP

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office. Or contact Microsoft Press
International directly at fax (206) 936-7329.

PageMaker is a registered trademark of Aldus Corporation. Apple, AppleTalk, LaserWriter, Mac,
Macintosh, and TrueType are registered trademarks of Apple Computer, Inc. LANtastic is a registered
trademark of Artisoft, Inc. Banyan and Vines are registered trademarks of Banyan Systems, Inc.
Compaq is a registered trademark of Compaq Computer Corporation. CompuServe is a registered
trademark of CompuServe, Inc. Alpha AXP, DEC, and Pathworks are trademarks of Digital Equipment
Corporation. LANstep is a trademark of Hayes Microcomputer Products, Inc. HP and LaserJet are
registered trademarks of Hewlett-Packard Company. Intel is a registered trademark and Ether Express,
Pentium, and SX are trademarks of Intel Corporation. COMDEX is a registered trademark of Interface
Group-Nevada, Inc. AS/400, IBM, Micro Channel, OS/2, and PS/2 are registered trademarks and PC/
XT is a trademark oflnternational Business Machines Corporation. 1-2-3, Lotus, and Notes are
registered trademarks of Lotus Development Corporation. Microsoft, MS, MS-DOS, and XENIX are
registered trademarks and ODBC, Win32s, Windows, Windows NT, and the Windows operating system
logo are trademarks of Microsoft Corporation. MIPS is a registered trademark and R4000 is a trade
mark of MIPS Computer Systems, Inc. NetWare and Novell are registered trademarks of Novell, Inc.
Soft-lce/W is a registered trademark of Nu-Mega Technologies, Inc. DESQview is a registered trade
mark and Qemm is a trademark of Quarterdeck Office Systems. OpenGL is a trademark of Silicon
Graphics, Inc. PC-NFS, Sun, and Sun Microsystems are registered trademarks of Sun Microsystems, Inc.
TOPS is a registered trademark of TOPS, a Sun Microsystems company. UNIX is a registered trademark
of UNIX Systems Laboratories.

Acquisitions Editor: Mike Halvorson
Project Editor: Erin O'Connor
Technical Editors: Seth McEvoy and Dail Magee, Jr.

CONTENTS SUMMARY

Foreword .. xvii

Preface ... xxi

Introduction .. xxv

CHAPTER ONE

THE ROAD TO CHICAGO 1
CHAPTER TWO

INTEL PROCESSOR ARCHITECTURE 33
CHAPTER THREE

A TOUR OF CHICAGO 63
CHAPTER FOUR

THE BASE SYSTEM 103
CHAPTER FIVE

THE USER INTERFACE AND THE SHELL 157
CHAPTER SIX

APPLICATIONS AND DEVICES 223
CHAPTER SEVEN

THE FILESYSTEM 275
CHAPTER EIGHT

PLUG AND PLAY 309
CHAPTER NINE

NETWORKING 341
CHAPTER TEN

MOBILE COMPUTING 381
EPILOGUE

LEAVING CHICAGO 407

Glossary ... 427

Index ... 455

TABLE OF CONTENTS

Foreword . xvii

Preface ... xxi

Introduction .. xxv

CHAPTER ONE

THE ROAD TO CHICAGO......................... 1
The Mission for Windows 95 . 3

Help for the End User 3
Hardware Platforms. 4

For the Developer-32 Bits at Last . 5
Shall We Go to Chicago or Cairo? . 6

First Stop-Chicago . 7
Clients and Servers . 8

And On to Cairo . 1 O
Summary · 12

Project Goals . 13
Compatibility . 14

The Compatibility Fallback . 15

Performance . 16
Robustness-Adieu UAE? . 17
Timely Product Availability : . 18

Easy Setup and Configuration . 19
The Plug and Play Initiative 20

Configuring Windows 21
User-Level Operations 21

New Shell and User Interface 22
The New Shell . 22

Complete Protected Mode -Operating System 23
32-Bit Application Support . 24

The Jump to 32 Bits . 26

Networking and Mobile Computing . 27

INSIDE WINDOWS 95

vi

Bringing Windows 95 to Market. 28
For Microsoft-The Bottom Line . 30

Conclusion · 31

CHAPTER TWO

INTEL PROCESSOR ARCHITECTURE 33
Intel Inside ... 34

The Intel Processor Family 35
Backward Compatibility . 36

Processor Architecture . 37
· The 8080 and 8086 Processors . 38

The 640K Barrier . 39
The 80286 Processor . 41

The 80386 Processor . 43
80386 Memory Addressing . 45

80386 Descriptor Format . 45

The Descriptor in Summary . 48
Virtual Memory . 48

Virtual Memory Management . 49
Good Virtual Memory Management 50

Mixing 286 and 386 Programs 54
The Protection System . 54

Memory Protection . 55

Operating System Protection . 56
Device Protection . 57

Low-Level Device Access . 57
High-Level Device Access . 58
Using the 80386 Device Protection Capabilities 59

Virtual 8086 Mode . 60
Conclusion ... 61

CHAPTER THREE

A TOUR OF CHICAGO &3
System Overview . 63

The Base System . 66
Windows and Modes 67

Table of Contents

Virtual Machines . 68

Windows Virtual Machines . 70
Initialization 70
The System Virtual Machine 71

MS-DOS Virtual Machines . 72
Protected Mode MS-DOS Applications . 73

DPMI ... 74
Multitasking and Scheduling . 75

Multitasking Models . 76
Critical Sections . 79
Processes in Windows . 80
Modules ... 80

API Support .. 81
Dynamic Linking . 82
Support from the Base System . 84

Memory Management . 85

Application Virtual Memory . 86
Heap Allocation . 87
Windows 95 Application Memory Management. 87

System Memory Management . 88
Windows Device Support . 90

Device Virtualization 90
Minidrivers ... 91

The Windows Interface 92
What Is a Window? . 92

Windows 95 User Interface Design 95
Windows Programming Basics 96

Event Driven Programming . 96
Message Handling 97

Program Resources 99
Windows 95 Programming . 99

Conclusion .. 101

References. 1O1

CHAPTER FOUR

THE BASE SYSTEM 103
Windows 95 Diagrammed . 104

vii

INSIDE WINDOWS 95

viii

Windows 95 Surveyed . 106
Protection Rings in Windows 95 . 107
Windows 95 Memory Map . 108
Tasks and Processes . 110

Virtual Machine Management . 111
Real MS-DOS . 111
Virtual Machine Scheduling . 112

The Windows 95 Schedulers . 114
Scheduling Within the System Virtual Machine 116
Controlling the Scheduler . 116
Threads and UAEs : 117
Threads and Idle Time 118
Application Message Queues . 119

Physical Memory Management. 121
Virtual Memory Management . 125

Memory Mapped Files . 127
Reserving Virtual Address Space. 128
Private Heaps . 129

Virtual Machine Manager Services . 129
Calling Virtual Machine Manager Services 131

VMM Callbacks 131
Loading VxDs . 132
The Shell VxD . 134

Getting Around in Ring Zero . 135
Calling Windows 95 Base OS Services 137
Calling from One VxD to Another . 138

VMM Service Groups 140
Application Support. 141

The API Layer . 142
Mixing 16-Bit and 32-Bit Code . 143
The Win32 Subsystem • 147
Internal Synchronization 149

Conclusion . 155
References. 156

Table of Contents

CHAPTER FIVE

THE USER INTERFACE AND THE SHELL 157
Improving on Windows 3.0 and 3.1 159

System Configuration and Control . 160

Program Manager, File Manager, Task Manager 160
Control Functions . 162

Consistency . 162
Visuals.. 164

Scalability . 164
Concepts Guiding the New User Interface 165

The Document-Centric Interface . 166
Look and Feel . 167

The Windows 95 Shell . 169
Folders and Shortcuts in the Windows 95 Shell 170
Desktop Folders . 172
System Setup . 173

The Initial Desktop 174
The Desktop . 177
The Taskbar . 179

On-Screen Appearance . 182
Light Source . 184

Property Sheets . 185
Online Help ... 186

Implementation . 188
Design Retrospective . 189

The Outside Influences 189
The Development of the Shell . 190

Changes in the Shell . 192
The Taskbar . 194

Folders and Browsing. 195
Animation . 196
The Transfer Model -. 197

Other Changes . 198

The New Appearance . 198
Screen Appearance . 198
Visual Elements . 201

Scalability . 201

ix

INSIDE WINDOWS 95

x

Menus ... 202

Window Buttons . 204

Icons .. 204

Proportional Scroll Box and Sizing Handle 205

New Controls . 205

Tool Bar Control 205

Button List Box Control . 206

Status Window Control . 206

Column Heading Control . 207

Progress Indicator Control . 208

Slider Control . 208

Spin Box Control . 208

Rich Text Control,. 209

Tab Control . 209

Property Sheet Control . 209

List View and Tree View Controls . 21 O
New Dialog Boxes , 210

File Open Dialog . 211

Page Setup Dialog . 213

Long Filenames . 213

Windows 95 Support for MS-DOS Applications 215

Application Guidelines for Windows 95 : 217

Follow the Style Guidelines 218

Support Long Filenames . 218

Support UNC Pathnames . 218

Register Document and Data Types,
and Support Drag and Drop 218

Use Common Dialogs . 219

Reduce Multiple Instances of an Application 219

Be Consistent with the Shell . 219
Revise Online Help . 219

Support OLE Functionality . 220

Conclusion . 220

Reference -. 221

Table of Contents

CHAPTER SIX

APPLICATIONS AND DEVICES 223
The Win32 API . 224

Goals for Win32. 226

Components of the Win32 API . 227

The Win32 API on Windows 95 . 229

Porting to the Win32 API . 229

Porting Tools . 229

API Changes. 230

Memory Management . 232
Version Checking . 233

Nonportable APls 233

Win32 on Windows 95. 234

Security APls . 234

Console APls . 235

32-Bit Coordinate System . 235

Unicode APls . 235

Server APls . 236

Printer Support . 236

Service Control Manager APls . 236

Event Logging 236

Detailed Differences : . 237
Programming for Windows 95 . 238

Multitasking ... 238

Memory Management . 241

Plug and Play Support . 241
The Registry . 242

The User Interface . 245

OLE ... 245

International Support 248

Structured Exception Handling . 249

The Graphics Device Interface 252

GDI Architecture 255

Performance Improvements '.-. 256

Limit Expansion 256

New Graphics Features . 257

xi

INSIDE WINDOWS 95

xii

TrueType 258

Metafile Support 258
Image Color Matching 259

Color Profiles 261

Communicating Color Information 261

The Display Subsystem . 262

The DIB Engine 265

The Display Mini-Driver 266

Bank-Switched Video Adapters . 267

Interfacing with the DIB Engine 268

The Printing Subsystem . 269

Printing Architecture . 270

The Printing Process . 270

Using the Universal Printer Driver. 272

Conclusion . 27 4

References. 27 4

CHAPTER SEVEN

THE FILESYSTEM 21s
Overview of the Architecture 277
Long Filename Support , 281

Storing Long Filenames . 282

Generating Short Filenames . 288

MS-DOS Support for Long Filenames. 289

Long Filenames on Other Systems 291

Installable Filesystem Manager 291
Calling a Filesystem Driver 293

Filesystem Drivers . 294

FSD Entry Points : . 295

1/0 Subsystem . 296

Device Driver Initialization 298

Controlling an 1/0 Request 299

Calldown Chains. 300

Asynchronous Driver Events 301

Interfacing to the Hardware 302

Initialization 302

Execution . 303

Interrupt 303

Table of Contents

Other Layers in the Filesystem Hierarchy . 303

Volume Tracking Drivers . 304
Type Specific Drivers . 305

SCSI Manager . 306

Real Mode Drivers . 307
Conclusion . 308
References. 308

CHAPTER EIGHT

PLUG AND PLAY 309
Why Do We Need Another Standard? 310

History of the Plug and Play Project .. ~ 312
Goals for Plug and Play 314

Easy Installation and Configuration of New Devices 315

Support for a New Hardware Standard 315
New ISA Board Standard 317

Seamless Dynamic Configuration Changes 318
Compatibility with the Installed Base and Old Peripherals 319
Operating System and Hardware Independence 320
Reduced Complexity and Increased Flexibility of Hardware ... 320

The Components of Plug and Play . 321
How the Subsystem Fits Together. 325

After a System Configuration Change 328
Hardware Tree ·. 328

Device Nodes . 329
Device Identifiers 331

Hardware Information Databases 332

Plug and Play Events . 333
Configuration Manager . 333
Enumerators . 334

Resource Arbitrators - . 335
Plug and Play BIOS 336

Plug and Play Device Drivers . 337
Applications in a Plug and Play System . 338
Conclusion . 339
References. 340

xiii

INSIDE WINDOWS 95

xiv

CHAPTER NINE

NETWORKING 341
Windows Networking History . 342

Networking Goals . 346

Network Software Architecture 347
WOSA ... 348
Network Layers . 351
Network Operations . 353

The Multiple Provider Router . 355
32-Bit Networking APls . 357

Network Resources . 357
Connection APls . 358

Enumeration APls 359
Error Reporting APls. 360
Local Device Name APls . 360

UNC APls . 360
Password Cache API . 360

Authentication Dialog API 361
Interfacing to the Network Provider 361

The Network Provider . 362

Network Provider Services . 363
Device Redirection SPI 364
Shell SPI . 365
Enumeration SPI . 365

Authentication SPI . 366
Network Transports . 366

Network Device Drivers . 368

Network Driver Compatibility 369
Network Configurations. 370

The Network Server . 372
Server Components . 373

Network Printing : 375
Network Security . 377

Access Controls . 378
Share-Level Security 379
User-Level Security . 379

Conclusion . 379
Reference . 380

Table of Contents

CHAPTER TEN

MOBILE COMPUTING 381
Remote Communications Support. 382

Remote Network Access . 385

Types of Remote Access 386
The Telephony API . 389

Telephony Applications 390

Modem Support 391

The Communications Driver . 392

The Info Center .. 394

Info Center Applications 396

Messaging APls 396

Messaging Service Providers . 397

Portable System Support. 398

Power Management . 398

Docking Station Support 399

File Synchronization . 400

The Briefcase API . 403

Conclusion . 404

EPILOGUE

LEAVING CHICAGO 407

Glossary ... 427

Index ... 455

xv

FOREWORD

I first met Adrian King in 1981, on the floor of a trade show in
Amsterdam. I was new to Microsoft-a small company of 75 people
with $7.5 million in revenues-and I was on my first trip to Europe to
meet customers and distribution partners. The trade show turned out
to be a flop-more exhibitors than customers. Adrian and I by our
selves might have outnumbered the customers.

We had a lot of time to talk to each other, and I found out that
Adrian had graduated from the University of Liverpool with a master's
degree in computer science and had joined Logica, a big European
consulting outfit, straight out of school. It was clear right off that he un
derstood technology and a lot else besides.

We tried to figure out why the aisles were so empty, and that got us
into talking about the future for software. I remember thinking that
Adrian was an impressive guy and reflecting that with more people like
Adrian involved, the software business might really take off. But even in
our freewheeling exchange of ideas, we didn't come close to envision
ing today's incredible market for software.

A little later, Adrian managed to convince Logica to branch out
from their consulting business into software products-no small feat at
the time-and they became Microsoft's European XENIX partner.
Through the early 1980s, Adrian and I worked together to develop the
European XENIX business. Then, in April of 1984, we met to review
XENIX support issues. That's how it started out, anyway. During the
first half of the meeting, Adrian did his best to convince me that
Microsoft had to do a number of different things to improve our
XENIX product support. During the second half, I did my best to con
vince Adrian that he really ought to become our XENIX product man
ager and take care of those things himself. With a little help from Bill
Gates, I was able to persuade Adrian to do just that.

Adrian did a great job, and before long we gave him even more to
do. He eventually became our director of operating systems products,
picking up responsibilities for MS-DOS and Microsoft OS/2 as well as

xvii

INSIDE WINDOWS 95

xviii

XENIX. At the same time I was focusing on Windows, which had be
come a big priority for the company. We had come to believe that using
a mouse with a graphical user interface was a natural, intuitive way to
use a computer. Adrian worked on the early Windows projects, and in
November of 1985 I put him in charge of Windows/386.

The effort we put in on the early versions of Windows was a foun
dation for the blockbuster success of Windows 3.0 and Windows 3.1.
The work that Adrian and the rest of the team did on the Windows/386
project formed the basis for much of Microsoft's MS-DOS support in
Windows 3.1 and even in Windows NT, for example. And many of the
people from that Windows/386 team are still involved in our Windows
development today.

Adrian went on to other important projects at Microsoft, and
then in 1991 he left to pursue his interest in peer-to-peer networking at
a smaller company. I'm sure' that if Adrian were still at Microsoft he'd
be deeply involved in the development of Windows 95. But at least he's
back in the Microsoft orbit-this time as a chronicler, the author of
Inside Windows 95.

Microsoft's goals for Windows 95 are the same goals we've had for
every release of Windows. We want to make computing even easier.' We
want to increase end user productivity. We want to provide a develop
ment platform for the desktop. We want to provide a high-volume, low
cost operating system that will spur industry growth and innovation. We
believe that Windows 95 will accomplish these goals and that Windows
95 will be even more important to the PC world than Windows 3.1,
which now has over 60 million users.

The list of great new features for Windows 95, a true 32-bit operat
ing system, is amazingly long. Windows 95 will offer a vastly improved
user interface, true multitasking, a freshly designed filesystem, better
connectivity, better support for notebook PCs, easier installation and
configuration-all with performance at least as good as Windows 3.1
performance.

I'm very excited that Adrian has written this book about our most
important Windows operating system ever. We're lucky that Adrian
turned out to be a good writer too because he has a perspective that
only someone from the old days could bring to bear on the history and
the accomplishments of the "Chicago" Windows project. Everyone will
want to read Inside Windows 95-the interested power user, solution
providers, developers, and administrators. I heartily recommend this

Foreword

book to anyone who will want to take full advantage of the technologi
cal innovations in Windows 95. Adrian does an excellent job of explain
ing the major architectural components of the system and provides a
lot of insight into the thinking behind the design and implementation
of Windows 95. I've greatly enjoyed reading his account of the project
and the product in this book, and I think you will too.

Steve Ballmer
Executive Vice President, Microsoft

Redmond, Washington
August 1994

PREFACE

Writing a book about a yet to be released software product and pub
lishing it before the product even ships has to be asking for trouble.
Throw in other factors such as the fact that the product in question is
one that literally thousands of people will examine and critique in
minute detail, and you can easily build a case for declining the writing
opportunity. So, of course, I accepted. Inside Windows 95 is the result.

When I started working for Microsoft in 1984, I'd already known
the company as a customer and development partner for a few years.
One thing I'd learned very quickly about Bill Gates and Steve Ballmer
is that they never, ever give up on something they believe in. In 1984
and 1985, even with massive delays in its initial planned shipment, Win
dows was the something they weren't giving up on. My first office at
Microsoft was next to Steve Ballmer's. One day, after more bad news
about Windows shipment dates, he and his assistant packed everything
up and moved downstairs to occupy new offices in the midst of the Win
dows development team (a group maybe ten strong at the time). Steve
was now the Windows project manager, and he wasn't about to give up.

Windows 1.0 eventually shipped in late 1985. Describing the
market's reaction as lukewarm is akin to describing Bill Gates as well
off. I remember installing the first Windows Software Development Kit
on an IBM PC XT and being at different moments impressed by its fea
tures and bewildered by its complexity. Looking back on it now, I can
see that it was of course sheer madness for Microsoft to believe that
Windows could succeed on the limited hardware available at the time.

But Microsoft wasn't about to give up. Through successive ver
sions, Windows gradually got better and the hardware got faster and
more capacious. In 1987 and 1988 I managed the project that pro
duced Windows/386 and launched it on the first 386-based PC: the
Compaq Deskpro. It was my favorite time at Microsoft, and the entire
project team-all fifteen of us-were rather proud ofWindows/386. In
comparison to. MS-DOS it still didn't sell worth a darn. Even Steye
Ballmer was beginning to think that OS/2 might be the right strategy.

xxi

INSIDE WINDOWS 95

xxii

But Microsoft didn't give up, and on May 22, 1990, Bill Gates in
troduced the latest and greatest release of Windows-version 3.0-to a
rapt audience in New York City. Things were different this time. It was
obvious to me in the theater that day that Windows was about to become
a seven-year-old overnight success. And it did. Bill and Steve would prob
ably try to convince you it was planned that way. Don't believe it.
Whether the galaxies were finally in correct alignment, or a confluence
of market factors finally came about, or sheer determination finally car
ried the day is no longer relevant-Windows was finally a hit.

I was involved only a little in the development of Windows 3.0 and
not at all in the development of Windows 3.1. Shortly before I left
Microsoft in 1991, I began working on what was eventually to become
part of the base operating system for Windows 95. Clearly I was not des
tined to escape the project entirely, and the opportunity to write this
book on Windows 95 for Microsoft Press is one I've enjoyed a lot.
Watching a Windows release once again is fascinating. The scope of the
work that goes into a major new release of Windows these days is stag
gering, with hundreds of people involved rather than only a few dozen.

Of course, I'm only writing about what many have built and oth
ers have yet to go out and sell. Although the Windows team at Microsoft
is considerably bigger these days, it still includes a few people from
back when Steve Ballmer was the project manager. And Steve's current
role at Microsoft as Executive Vice President of Sales and Support
means that he is now in charge of the worldwide sales campaign for
Windows 95. Windows 95 will enter the market under some competi
tive pressure. Proponents of UNIX, OS/2, and NetWare certainly
haven't relaxed their attempts to improve their own products and their
market shares. But Windows 95 is definitely the product to beat. I'm
quite sure Steve won't give up on this challenge either-which means
that nothing has really changed since 1985 except the location of
Steve's office and the size of his marketing budget.

Special thanks go to Erin O'Connor and her team at Microsoft
Press for overcoming my English and several other obstacles in the
preparation of this book. Claudette Moore and Mike Halvorson got the
project started, and several people at Microsoft gave time and assis
tance to the project, for which I'm grateful. George Moore and Joe
Belfiore in particular were always willing to answer my questions. It has
been more than a year since I began work on this book, and, as I write,
I know there's still a lot of work left to finish Chicago. That effort is but
a tiny part of the total still needed to ship Chicago and make it a sue-

Preface

cess. The industry magazines have already published their first reviews
of the Chicago Beta-I release. IBM has launched its anti-Chicago adver
tising campaign. The pundits and self-styled experts have begun their
critique of a product that won't be in the stores for months yet. Win
dows 95 has a long way to go before it will be a runaway success. But I'm
sure that will happen. Microsoft won't give up before it does.

If you'd like to talk to me about this book or about Windows 95 in
general, I'm readily available on the Internet as adriank@gravity.wa.com.
I hope you find at least some of the book useful and enjoyable. Thanks
for taking the time to read it.

Adrian Ki,ng
July 12, 1994

xx iii

xx iv

Publisher's Note

As we went to press, some aspects of Windows 95 were still under a gen
eral nondisclosure agreement, but Microsoft had made public a great
deal of information about Windows 95. This book offers an interpreta
tion of that information, and the author's conclusions are based on his
exploration of Beta-I. The "Chicago" story continues to unfold, and the
product will continue to be refined. For up-to-the-minute changes in
information on Windows 95, we recommend that you periodically visit
the WIN_NEWS forum, which you can find at the following locations:

On CompuServe: GO WINNEWS
On the Internet: ftp: I /ftp. microsoft. com/PerOpSys/Win_News/Chicago

http:/ /www.microsoft.com
On AOL: keyword WINNEWS
On Prodigy: jumpword WINNEWS
On Genie: WINNEWS file area on Windows RTC

You can also subscribe to Microsoft's electronic newsletter WinNews. To
subscribe, send Internet e-mail to enews@microsoft.nwnet;com and put the
words SUBSCRIBE WINNEWS in the text of the e-mail.

When Windows 95 is released, be sure to head to your bookstore for
complete accounts of developing for and using Windows 95.

Microsoft Press
September 16, 1994

INTRODUCTION

To describe this book as an account of everything you could possibly
want to know about Windows 95, or indeed as an account of everything
in Windows 95, would be to mislead. The sheer scope of the Windows
95 development project makes it impossible to write the only book
about the product you'll ever need to buy. If you're an avid student of
Windows, I'm sure your sagging bookshelf will have to bear further
strain in the months ahead. If you're a regular user, you'll find a whole
host of new and exciting features to explore in Windows 95.

First a warning. Even as I write, Windows 95 is still in development
and scheduled for release a few months into the future. Microsoft
made the first external release of the product in August 1993. After in
stallation, one of the first icons you were tempted to double-click on
produced this unsettling screen:

In many other places in the product you could find similar warn
ings: subject to change, not yet impl,emented, and so on. It seems appropri
ate to use the Under Construction screen at the front of this book. My
warnings won't be as dire, though, since this book does describe fea
tures you really can expect to find when Windows 95 hits the streets late

'this year. This book is current as of the Chicago Beta-I release that

xxv

INSIQE WINDOWS 95

xxvi

Microsoft shipped in June 1994, By and large the product was feature
complete at the time of that beta release. However (and here's that
warning), since the book has to go to the printer before the product
ships, there will undoubtedly be some changes of detail in the final re
lease of the product. And the incompatible goals of exploring every last
feature of Windows 95 and still producing this book in advance of the
product means that some features won't be examined in much detail
and some features will be left out altogether.1

The intention of the book is to provide a technical introduction
to the Windows 95 system, including enough detail to satisfy any Win
dows user and most system administrators and Windows programmers.
The book is also "Inside Windows 95," meaning that the emphasis is on
what the system can do, how it does it, and why its features were de
signed and implemented in particular ways. If you're looking for a
book that teaches you how to use the Windows 95 interface, how to cus
tomize Windows 95, or how to write Windows 95 applications, this book
isn't it. But this book does give you a thorough analysis of the system
architecture and explores every important new feature of Windows 95.

Windows 95 is a major product release for Microsoft. It incorpo
rates significant new features for exploitation by developers, and major
advances in the user interface and in system usability that should bene
fit the end user. Since Microsoft Windows has become such an im
mensely successful product, new releases bear a burden of backward
compatibility. Windows 95 has to carry forward the MS-DOS legacy.
And Windows 95 isn't Microsoft's only Windows family operating sys
tem. Windows 95 must take its place alongside Windows NT and the
forthcoming Cairo system. Chapter One explores the goals of the Win
dows 95 project, the constraints on the development team, the market
for the product, and the role of Windows 95 in Microsoft's overall sys
tems software strategy.

When I began work on this book, Microsoft's internal planning
had Windows 95 shipping at the end of the year-the year 1993. Win
dows 95 would have been truly unique among operating systems if it
had shipped on the originally planned date. As I write, the testing sta
tus of Windows 95 suggests that there's a reasonable chance that it will
indeed ship at the end of the year-the year 1994.

1. One major "change" that did make it into this book is the Windows 95 name.
Everyone had been assuming that Chicago's real name would be Windows 4.0. In July
1994 Microsoft decided on the Windows 95 name to align the operating system with a
planned company-wide revision of product names. Fortunately, they made the decision
just before the book went to press.

Introduction

One aspect of the product that I can't cover in this book is exactly
how Windows 95 will be packaged and priced. Microsoft executives are
characteristically vague about these issues when responding to direct
questions. To some degree, that's a competitive response; the final
packaging and pricing decisions are rarely made until quite late in a
project's life cycle. It will probably work the way most other similar
decisions at Microsoft do: at some point Steve Ballmer will simply tell
everyone what the different boxes. should contain and how much
they'll sell for.

One difficult question I confronted as I developed this book was
how much introduction to the underlying hardware (the Intel 386 pro
cessor) and software (Windows itself) to provide. Some authors expect
you to read other tomes as prerequisites to their own. Still others try to
teach you hexadecimal arithmetic before presenting the intimate de
tails of fault-tolerant system design. In the end I decided to support this
book's mission by including the information I would need to refer to
while talking about the more advanced details of Windows 95. Chapters
Two and Three therefore provide a basic description of the Intel 386
processor architecture and the Windows system architecture. If you
know these subjects intimately, you can skim quickly through those two
chapters. If you never knew much about those subjects, the two chap
ters should equip you to deal with the new information about Windows
95 in the rest of the book. If you're like me and can't always remember
exactly how the 386 paging mechanism works, or precisely what a Win
dows task really is, Chapters Two and Three can serve as a close at hand
reference to Intel and Windows architecture.

Windows 95 is built on an operating system base that adds major
new capabilities to the system. Some of these new features, such as the
new filesystem, have already appeared in other Microsoft operating sys
tem products, notably Windows NT and Windows for Workgroups.
Windows 95 integrates these new features and other features to provide
a full 32-bit protected mode environment for Windows applications.
And although MS-DOS compatibility is retained, there really isn't a col
lection of files in Windows 95 that you can point to and label as
MS-DOS. Windows 95 really is a complete operating system for the very
first time in the history of this product line. In Chapter Four we'll ex
plore the inner workings of the Windows 95 operating system base.

Every user of Windows will see a dramatic revision in the on
screen appearance of the operating system. In addition to revising the
appearance of Windows, Microsoft has changed many of the interactive

xxvii

INSIDE WINDOWS 95

xxviii

procedures and added a unified system control application. In Chapter
Five we'll analyze the user interface and the new system shell. That
chapter contains a lot of screen shots illustrating various aspects of the
shell, and I'm quite sure that some of the details of these screens will
change in the final product. I already know that the visuals for the Start
menu are a little different, and the "now it's there, now it's gone" game
continues with the shell's trashcan: post-Beta-I, the trashcan was back
in the product.

Windows 95 introduces some significant changes in both the Win
dows graphical subsystem and the Windows implementation of device
support. For the first time a Microsoft Windows system takes on the
challenge of device-independent color-a feature that has become
critical to many graphical applications. A.major improvement in the
architecture for display drivers is also a highlight of the new system
level features you'll see in Windows 95. In Chapter Six we'll take a look
at all of these changes.

The architecture for supporting disk devices and their associated
filesystems has also changed considerably in Windows 95. A layered de
vice architecture derived from the Windows NT design provides full
protected mode support for hard and floppy disks and CD ROM de
vices. And integrating support for new disk devices into the system be
comes comparatively trivial in Windows 95. Although Windows 95
continues to use the MS-DOS FAT filesystem as its default storage
scheme, the design of the new installable filesystem manager opens the
door for improved filesystem support in the future. Right now, the
most visible enhancement in the Windows 95 filesystem is its support
for long filenames-finally relieving us of the tiresome 8.3 filenaming
convention that has dogged us since 1981. In Chapter Seven we'll in
spect the new filesystem design.

Although not limited to operation in the Windows environment,
Microsoft's Plug and Play technology makes its system debut with Win
dows 95. Fully implemented, Plug and Play makes the task of configur
ing and managing a complex PC a trivial one. Apple Computer won't
be able to run those Windows commercials any longer. In Chapter
Eight we'll explore the need for Plug and Play and its implementation
under Windows 95. Plug and Play capable systems have a life outside
Windows 95, and I fully expect Plug and Play systems to be a highlight
of this year's COMDEX/Fall trade show. The Plug and Play technology
really does work, and if you spend a lot of time messing around with
computers, you'll find the benefits of Plug and Play to be compelling-

Introduction

so much so, that I'd recommend your waiting to buy a Plug and Play
system as your next.

Windows 95 integrates its support for network systems into the
new filesystem architecture. Windows 95 will support several simul
taneously active networks-each with multiple connections-and pro
vide consistent interfaces to any underlying network for applications.
Some of these features were seen for the first time with the release of
Microsoft Windows for Workgroups version 3.11 in the fall of 1993. In
Chapter Nine we'll examine network support in Windows 95. The sud
den surge of popular interest in the Internet prompted Microsoft
to include Internet access utilities in Windows 95 quite late in the de
velopment project. It seems likely that the "Internet readiness" of Win
dows 95 will be a focus of at least some of the early marketing for the
product.

Microsoft intends Windows 95 to play a significant role in the
growing mobile computing market. Windows 95 features related to
that market range from integrated support for pen-based computers to
an enormously improved remote network access capability and support
for the use of laptop docking systems. In Chapter Ten we'll consider
these featur~s together under the general topic of mobile computing.
Windows 95 will include support for pen input devices and the associ
ated "inking" operations. Unfortunately, that topic didn't make it into
this book-publishing deadlines are a little more rigid than software
development deadlines.

Apart from the pen computing capabilities, the only other major
feature of Windows 95 that is not a topic of this book is multimedia sup
port. It will be there in the product, but even as late as the spring of
1994 its precise architecture and features were still rather vague.
Microsoft seemed to think it was pretty significant that there is aver
sion of the popular Doom game running under Windows using the
newly announced WinG graphics library. Game products are really the
final bastion of MS-DOS-specific software. Whether Windows 95 multi
media support will be good enough to conquer the games market re
mains to be seen.

There are components of Windows 95 that will have been in de
velopment for well over three years by the time you can go out and buy
the product in a store. The first order of business is to look at what
Microsoft has been trying to achieve in all that time.

xxix

C H A P T E R 0 N E

THE ROAD TO CHICAGO

Throughout its design and development, Microsoft Windows 95 had
the codename "Chicago," and the introductory slide for early product
presentations depicted a map of the USA entitled "Driving Towards
Chicago " Windows 95 was not designed and developed in a
vacuum-there were a lot of stops on the way to Chicago. Beginning
with the first release of Windows in November 1985 and continuing
through the spectacularly successful introduction of Windows 3.0 in
May 1990 and beyond, Microsoft's total investment in Windows has
been enormous. Until version 3.0, the commercial returns hardly mer
ited the investment. But no one has ever accused Microsoft of giving up
easily, and Windows slowly and steadily improved in both capabilities
and sales. The introduction of Windows 3.0 was a watershed event. It
was as if the world had suddenly discovered the benefits of Windows,
and versions 3.0 and 3.1 sold in great numbers.

In truth, a number of factors contributed to the seemingly sudden
success of Windows 3.0. Personal computers using the Intel 386 chip
were then becoming affordable. By the time Windows 3.1 was released,
386 systems were commonplace and cheap. The 386 systems provided
good performance and the best platform for Windows to run on.
Equally as important, the amount of system memory and the quality
and performance of video hardware finally matched the requirements
set by Windows. Given the now adequate level of system performance,
the real benefits of the graphical user interface became apparent to
large numbers of users.

Microsoft had long extolled the benefits of Windows, but only a
limited number of high-quality Windows-based applications were avail
able before version 3.0. Virtually every demonstration of Windows in
cluded Microsoft Excel, Aldus PageMaker, and very little else. There
were occasions when Microsoft's own applications development group

1

INSIDE WINDOWS 95

2

questioned the wisdom of pinning all their hopes on Windows, and
there were many internal debates, both formal and informal, over the rela
tive priorities of MS-DOS, Windows, UNIX, and OS/2 as application plat
forms. Windows 3.0 changed every company's perspective significantly,
and within several months of its release, the level of application support
for Windows had grown dramatically. Software developers were no longer
faced with the question of whether it was worthwhile to develop a Windows
version of their application-it was simply a question of how fast they
could get the Windows version to market.

Even industry journals that had relegated Windows to the also-ran
category changed their view. As the numbers of users converting to
Windows rose, so did the level of press coverage. Within two years,
reviews and discussion of MS-DOS-based products had become the mi
nor news items, and new journals concerning themselves only with Wm
dows had begun to take up a significant amount of magazine rack space.

It was on this stage that Windows 95 would be introduced. Before
version 3.0, new releases of Windows had received some polite (and a
lot of impolite) interest and had earned the product a few new custom
ers. After all, those were the days when OS/2 had been designated "the
next big thing." In that context, Windows version 3.0 was an over
achiever, surprising everyone with its improved features and popular
success. Microsoft released version 3.1 primarily to solve the problems
that widespread use of the 3.0 product had exposed.1 The product
team knew that the stage would be different for the introduction of
Windows 95. Expectations were high. Every· feature and nuance of the
product was certain to be exhaustively examined, discussed, and criti
cized. 2 Windows 95 had to be the best version of Windows ever, and the
goals the team set for the product had to address the need to incorpo
rate dramatic and worthwhile improvements. With sales of the current
version of Windows topping a million copies a month by mid-1993, any
new release of the product also needed to be totally reliable.

1. Foremost among these problems was the infamous UAE-the Unrecoverable
Application Error. Although UAEs were most often caused by bugs in application
programs, everyone blamed Windows for UAEs. Eliminating UAEs was the driving
motive behind the development of Windows 3.1.

2. One illustration of this high degree of interest: within two weeks of Microsoft's
first, limited, external release of the beta, someone had (illegally) provided a copy to
PC Week. They promptly published a review of the beta-almost a year in advance of
the product's planned release date.

0 N E: The Road to Chicago

Thus, the general goals for Windows 95 were set: build a great
new product that includes compelling new features and that is totally
r~liable-and, of course, develop it quickly. If you've ever worked on a
software development project, you probably recognize those grand
goals. And you know that every project team has to reduce those nebu
lous aims to specific targets. With Windows 95, it was no different.

The Mission for Windows 95
Although the goal is expressed in different ways and set in different
contexts, one phrase summarizes the mission of the Windows 95 devel
opment team: make it easy. The mission to make every aspect of the PC
running Windows 95 easier for users, support staff, hardware manufac
turers, and software developers consistently reasserts itself. The project
mantra often added a qualifying phrase: make it easy, not just easier.
Throughout the design and development cycle, each aspect of Win
dows 95 had to undergo scrutiny within the "make it easy" context.

Help for the End User
Ease of use is an overused phrase in the computer industry. Not that
many people find computers easy to use. Most people find Windows
easier to use than MS-DOS, but the Windows 95 team recognized that on
an absolute scale there was a lot left to do before using Windows would
become "easy." These are some of the problems the team recognized:

II Many users remain intimidated by computers. Many potential
customers won't buy a PC for the same reason.

II Common tasks, such as setting up a printer, are still far too
arduous and error-prone for many users.

II Carrying out a complex operation, such as remote data access,
is difficult for sophisticated users and close to impossible for
most other people.

The scope for the team's mission also needed broadening. It
would be no good making Windows easy to use. if the systems on which
it ran remained difficult to set up and configure. And Windows 95 itself
had to be easy to install and support. To make things easy for the end
user at the expense of the MIS department would be self-defeating.

3

INSIDE WINDOWS 95

Hardware Platforms

4

The basic architecture of today's average PC is that of~ IBM PC AT
compatible machine, circa 1984. Despite many innovations in compo
nents, the overall system design has remained largely unimproved.
Beyond encouraging manufacturers to ship PCs with at least a 386SX
processor, 4 MB of RAM, and good video boards, Microsoft had done
very little in the way of systematically persuading hardware companies
to innovate.

Microsoft saw Windows 95 as an opportunity to change the status
quo to the benefit of both the end user and the system manufacturer.
Central to this effort was the development of the hardware Plug and
Play specification, prepared jointly by Microsoft, Intel, Phoenix Tech
nologies (the BIOS suppliers), and Compaq, among others. Plug and
Play aimed to eliminate most of the problems associated with setting up
and configuring PC hardware. No longer would the user need to know,
for instance, what an IRQ or an 1/0 port address was. The users, their
support staffs, and the system suppliers would all benefit from the
improved ease of system setup.

Microsoft's other major step to encourage renewed hardware inno
vation was the decision to finally remove Windows reliance on MS-DOS
as its underlying operating system. Successive releases of Windows had
incorporated more and more operating system functions, and MS-DOS
gradually came to be used as little more than a rather inefficient disk
filing system. This trend culminates in Windows 95-a complete oper
ating system implementation that incorporates all the features re
quired of a fully protected 32-bit multitasking operating system. The
user needs only to install Windows 95 on the machine; MS-DOS doesn't
have to be present on the system at all. Windows 95 continues to support
MS-DOS applications using a compatibility feature that has its roots in
Microsoft Windows/386, Microsoft OS/2, and Windows NT. 3

Windows 95 offers the system manufacturer the opportunity to
produce improved hardware that doesn't have to conform strictly to
the old IBM PC AT design. Such improvements includ~ the incorpora
tion of an improved BIOS and plug-in cards that cooperate with the op
erating system during system setup. Since device driver software always
controls access to any hardware within a Windows 95 system, the user
can add any new device provided it has a Windows device driver.

3. Although no code is repeated, members of the Windows 95 team had accumu·
lated a significant amount of expertise when they had implemented similar compatibil
ity features for these other operating systems.

0 N E: The Road to Chicago

The need for older-style BIOS compatibility no longer exists unless the
device must also support MS-DOS operations.

For the Developer-32 Bits at Last
Although the mission statement for Windows 95 emphasized making it
easy for users, support staff, and manufacturers, the lifeblood of Win
dows is still application programs. Early on in life, Windows gathered
support from application developers slowly. After the introduction of
Windows 3.0, that trickle of support grew into a veritable torrent of new
applications. But developing a Windows application was never an easy
task, although the quality and variety of development tools and train
ing material have improved by leaps and bounds over those of a few
years before. Windows 95 support for 32-bit programs helps the devel
oper significantly:

II Developing 32-bit programs is just plain easier than develop
ing for the 16-bit segmented model required by earlier
versions of Windows.

II The Windows 95 32-bit API is compatible with the API sup
ported by Microsoft Windows NT. Developers who want to
produce products for both operating systems have an easier
time developing and supporting their applications.

II Windows 95 itself uses a 32-bit memory model, and many of
the limits of earlier versions of Windows disappear as a result.
Valuable system resources, such as file handles, are plentiful.
Application developers no longer have to come up with clever
schemes to minimize their demands upon the system.

Naturally, the availability and quality of applications for the new
release will help determine the success of Windows 95. At the same
time that Microsoft worked on Windows 95, they expended even more
effort on the development of Windows NT and associated products
such as the Advanced Server version of Windows NT. Further mystify
ing the choice of platforms available to the application developer was
word of yet another Microsoft operating system-code-named Cairo
which began to circulate in late 1992.4 Today the success of each of

4. Chicago's project codename was originally "Tripoli "-a city "very close to Cairo."
Humorists on the Windows team then asserted that the name ought to be "Spokane"
a place not very far from Microsoft's headquarters in Redmond. Eventually, "Chicago"
was chosen-more because that was the site of the Windows 3.1 introduction than for
any other geographic significance.

5

INSIDE WINDOWS 95

these operating systems remains undetermined, but before going fur
ther along the road to Chicago, we'll look at how Microsoft sees the
role of each product over the next few years.

Shall We Go to Chicago or Cairo?

6

Over the last few years, every one of us has had several opportunities to
change PC operating systems. The sheer size of the installed base of
MS-DOS systems and application software creates enormous inertia,
and with no compelling reason to change, people simply don't. This
hasn't stopped a variety of vendors from trying to replace MS-DOS with
a better mousetrap. UNIX, for example, in all its versions, has been
around even longer than MS-DOS, and each year brings a renewed
pledge of unity and coherence from the UNIX vendors. Usually the
vendor infighting reasserts itself about six months later, and UNIX
returns to its status of technical overachiever and commercial also-ran.

Microsoft, in partnership with IBM, tried to replace MS-DOS with
OS/2. After a few years and tens of millions of dollars spent in develop
ment and promotion, OS/2 was nowhere in the market. Microsoft
abandoned its OS/2 efforts shortly after the introduction of Windows
version 3.0, when it became clear that Windows would be very success
ful and OS/2 would never be a good enough product to justify a switch
from MS-DOS. Microsoft did press on with the development of another
advanced operating system, however-Windows NT. Why? Hadn't
enough money been wasted on trying to replace MS-DOS? Wouldn't it
have been better just to improve MS-DOS itself?

Technically speaking, MS-DOS is a severely limited operating sys
tem. Its inability to support proper multitasking, memory protection,
and large address spaces makes it a poor base for environments where
the user wants to run several complex applications while connected to
a network. Fixing these problems involves much more than making
modifications to MS-DOS-it really does take a new operating system.
To a degree, Microsoft was able to incorporate some necessary improve
ments to MS-DOS into successive versions of Windows. Multitasking,
limited 32-bit application support, memory protection, and other fea
tures are now all functions of the current release of Windows. This way
of evolving an operating system also passes the test for commercial ra
tionality. Since Windows required MS-DOS to be on the system already,
it was easy for users to upgrade, and Microsoft could add new functions
without having to change MS-DOS itself. In fact, by the time Windows

0 N E: The Road to Chicago

version 3.1 appeared, Windows used MS-DOS for not much more than
loading programs and managing the disk filesystem.

First Stop-Chicago
Windows 95 is a major step in an evolutionary process. On a system run
ning Windows 95, there is no longer any need for a separate product
called MS-DOS. Windows 95 takes over all the operating system func
tions. You install a single product, and when you boot the system, you go
directly into the Windows environment. You'll no longer see the familiar
C:> prompt at which you typed the win command. Naturally, Windows 95
retains MS-DOS compatibility so that you can still run all of your existing
TSR programs and any other MS-DOS applications you use. But the basic
architecture of Windows 95 is Windows with MS-DOS compatibility. It is
not MS-DOS running a Windows subsystem.

There are a lot of technical reasons for implementing Windows
95 this way. Relying at all on MS-DOS as the basic operating system
would have reduced the capability and performance of the overall sys
tem. Now Windows truly supports the functions needed for advanced
applications and networked systems.

This evolutionary progression in the architecture was also feasible
from a marketing perspective. When Windows wasn't very popular, it
would have been impossible to persuade people to give up MS-DOS
and move to an alternative. This conversion is exactly what the OS/2
campaign failed to pull off. Now Windows is popular, and users spend
much more time running Windows applications than they do MS-DOS
applications. Thus, Windows 95 is a great upgrade to Windows 3.1, and
yes, you can still run those aging MS-DOS applications.5

At this point, you might be wondering whether Microsoft is once
again predicting the imminent demise of MS-DOS. Probably not. There
is an active MS-DOS development group at Microsoft, and MS-DOS ver
sions 5.0, 6.0, and now 6.22 attest to their efforts. The possibility of the
protected mode operating system components of Windows 95 forming
the basis of an MS-DOS 7.0 release was the subject of much questioning
and speculation during 1993. Microsoft would not confirm the specula
tion, at least not by July 1994, but it's impossible to ignore the commer
cial success of the retail upgrade packages for MS-DOS 5.0 and 6.0. An
MS-DOS 7.0 upgrade release could provide both significant user benefit
and plenty ofrevenue dollars.

5. Demonstrating their personal bias quite succinctly, Microsoft executives referred to
the release of WordPerfect 6.0 for MS-DOS as "the last great DOS application."

7

INSIDE WINDOWS 95

Clients and Servers

8

Apart from the move to Windows, the other major trend over the last
few years has been the widespread adoption of high-speed local area
networks. Sometimes these LANs have been installed where there were
no computers before, and now they are often installed to replace main
frame- and minicomputer-based systems. Each machine on the net
work usually operates in one of two roles: as a client (typically the
system that's on your desk running your applications) or as a server
(where the systemwide databases and other shared resources, such as
printers, are found).

For a client system, you need a high level of usability, great graphi
cal display performance, and an easy to manage network connection.
Some newer machines, such as the smallest portable systems, probably
spend a lot of their time not connected to anything. At some point,
though, even they have to become true clients, perhaps to print a file or
to connect to an electronic mail network.

For a server, you need performance, performance, performance,
and, of course, performance. Actually, the modern PC network server
needs to offer a lot of complex features:

11111 Performance. The server operating system must be very
efficient at transferring data across the network. To meet the
performance demand, the operating system must also support
machines using multiple processors, very high speed, high
capacity disk drives, and high-performance network hardware.

II Robustness. This word means that the system doesn't crash
and that if it does, it doesn't destroy data in the process. This
requirement extends to the operating system's ability to
protect different programs from each other's weaknesses. If
your wide area communications server falls over in a heap, for
example, you'd certainly prefer that it didn't take the database
server down with it.

1111 Security. Securing data has always been a concern for any
computer system that many people can access, whether the
access be by virtue of proximity or through incoming tele
phone lines. Research efforts in the last few years have formal
ized many aspects of data security, and modern operating
systems are expected to meet some specific requirements.
Most governments insist that computer systems meet demon
strated, and certified, security standards, and many corpora
tions have adopted a corresponding policy.

O N E: The Road to Chicago

• Network management. If you have a large network that is
geographically dispersed, you need the software tools that
allow you to manage it effectively. Activities might range from
simple tasks, such as adding and removing network printers,
to finding and updating every copy of a particular application
program throughout the network.

• Transparent distribution of data and processing power.
Ideally, a network system should allow the user to retrieve data
and access other resources without having to know the net
work locations of the objects in question. Although your client
desktop system participates in locating and using resources,
it's the server that has to figure out where a resource is and
how to give you the most efficient access to it.

Of course, you'd like all these server features on your client ma
chine as well. Unfortunately, implementing these advanced capabilities
takes a lot of software, and that translates into the need for more
memory, more disk space, and more processor speed. Someday we'll all
have 500-MHz processors with gigabytes of memory in our laptop ma
chines and we'll install the most powerful version of everything. Of
course, by then, we'll have figured out some new feature.that we simply
must have and for which we still won't have enough hardware capacity.
Until then, the configuration of most desktop and portable machines
is likely to be a lot smaller and cheaper than a server configuration. Op
erating system vendors generally target a particular product toward ei
ther the client-type machine or the server machine.

Microsoft's operating system development efforts acknowledge
the differences between these two basic system types. For the high
volume client-type machine, Windows 95 is the product Microsoft
wants you to use. As we'll see when we look at the features of Windows
95, there is a very close mapping between its features and user require
ments within the client market segment.6

The lowest-power machine configuration the Windows 95 team
had in mind was an Intel 386SX-based system with 4 MB of memory, a
VGA display, and 80 MB of disk space. In 1994, that's a pretty simple
and cheap configuration. But Windows 95 had to run at least as well as
Windows 3.1 on such a system. The Windows 95 team didn't try to imple
ment the complex security features or multiprocessor support offered

6. Another early Windows 95 marketing slogan-every Microsoft product accumu- ·
lates many before the final tagline is chosen-was "the ideal client system."

9

INSIDE WINDOWS 95

by Windows NT. 7 Such features would have added a lot to the operating
system's hardware requirements, and most users simply don't need or
want such features. Certainly for the portable computer market, which
represents a large share of potential Windows 95 sales, such features
are neither applicable nor even desirable.

For the server market, Microsoft says choose Windows NT. With
Windows NT, you'll get virtually unlimited capacity and the features
that meet all of the server requirements we've just looked at. Many us
ers will have computing requirements that demand the capabilities of a
Windows NT machine right there on the desktop. Their work will also
justify the use of a machine with the power of an Intel 486, 16 MB of
memory, and 256 MB of disk space. Today that's still a pretty impressive
configuration for a desktop machine, but for a network server it's not
much more than an entry-level configuration. Of course, the incred
ible pace of improvement in personal computer hardware will make
that 486 configuration a low-end system within a couple of years, and
users will be able to choose to move up to Windows NT functionality
with no loss ofperformance.8

And On to Cairo

10

The first thing to note about Cairo is that its new features don't make
up a complete operating system. Cairo will actually appear as Microsoft
Windows NT version something point something. Windows NT will
continue as the base operating system, performing all the memory
management, task management, device handling, printing, and so on.
In some ways, this arrangement is similar to the way in which successive
releases of Windows before Windows 95 added new capabilities to the
MS-DOS operating system. For Cairo, however, the underlying operat
ing system is an immensely powerful one. Microsoft freely acknowl
edges that in the first release of Windows NT it sacrificed advances in
usability to designing and building an operating system with a sophisti
cated and long-lived architecture. Cairo seeks to augment the native ca
pabilities of Windows NT rather than add features that should be in the
operating system proper.

7. Windows NT also runs on processors other than the Intel 80386/486/Pentium
family. This portability was never a goal for Windows 95. The enormous difficulty of
maintaining full MS-DOS and Windows compatibility, let alone the implementation
effort that would be needed.j-.made this idea a non-starter.

8. Remember that it was only early 1988 when the very first 16-MHz 386 machines
with 4 MB of memory were considered to be high-end systems.

0 N E: The Road to Chicago

If you plan to use Windows 95, then, in a sense you'll use the first
incarnation of Cairo. In particular, the new look of the Windows 95
interface and of the system shell will appear in Cairo too.9 There will be
a lot more to Cairo than the new look, of course, but as far as appear
ance is concerned, you'll be immediately familiar with the product.
Cairo will be a completely object-oriented system, allowing you to
query networkwide for a data object and examine it as you choose.
Cairo will make it easy for you to query the network for all the memos
authored by people in your department, for example. You won't need
to know anything about filenames, filename extensions, what servers
might contain the document files, and so forth. If your network admin
istrator increases capacity by adding a new network server and splitting
the data between the old and new servers, Cairo will keep track of what
happened. You'll formulate your next query and get the results oblivi
ous to the fact that a configuration change has occurred.

No doubt you're wondering how much hardware power will be
necessary to run Cairo effectively. No doubt a lot. No doubt you'll need
a machine that today would be considered only for duty as a network
server. But by the time Cairo comes up for adoption as the mainstream
operating system, that amount of computing power will be available in
a reasonably priced desktop machine. Someday microprocessor engi
neers may reach an absolute physical limit, but that seems likely to be a
day that you and I won't much care about.

So what of Windows 95 in this networked world? Microsoft plans
to extend the Windows role as the perfect client-side operating system
and to ensure its continued suitability for less powerful hardware, por
table machines, and pen-based systems-few of which will run Cairo.
Through an update to Windows 95, Microsoft will make available the
tools that client systems will need to access Cairo systems effectively.
You'll use your Windows machine to formulate queries, for example,
but it will be the Cairo systems that take care of searching the network
and retrieving the information. Application programs designed for the
Cairo environment will exist as distributed applications. Part of the
software will run on the Windows machine and communicate with a
server-side application running somewhere else on the network.

9. A lot of the original design for the new user interface was actually done by
people on the Cairo team. It was up to the Windows 95 group to implement the
interface and bring it to market, but there was an ongoing effort to ensure consistency
with the evolving Cairo design.

11

INSIDE WINDOWS 95

Summary

12

i
During 1993 Microsoft began the usual seeding process that precedes
all of their major product releases. The company repeated its intention
to build Windows into a family of compatible operating systems that
would cover market requirements from mission-critical corporate com
puting to consumer devices. The executives who gave the public pre
sentations used the slide shown in Figure 1-1 to illustrate their view of
the evolution of the Windows family. 10

Corporate
Mission

Critical

Personal

Non-PC

Figure 1-1.

1993

Evolution of the Windows operating system family.

1994/95

As you can see, a coherent story underlies all the different prod
ucts. The products evolve in capability, and features can migrate to
other operating systems as microcomputer technology allows. Microsoft
itself is a firm believer in the continuing growth of microprocessor ca
pability. This increase in horsepower is largely what allows the ad
vanced features of, say, Windows NT version 3.1 to appear in other
operating systems.

10. The form of this slide changed over time, but the basic message remained
the same.

0 N E: The Road to Chicago

Whether Cairo will be successful is a question that can't be answered
for a few years yet, since its story will be played out much further into the
future than the Windows 95 story. Let's get back to our main subject and
take a detailed look at what the Windows 95 team set out to do.

Project Goals
Let's review the market context for Windows 95:

• Windows 95 would be the next release of an immensely
popular product, Windows 3.1.

• A huge amount of installed software, both for MS-DOS and
for Windows, placed some stringent compatibility require
ments on Windows 95.

• There was a real desire on Microsoft's part to make Windows
95 easier to set up, use, and administer.

• There was a need, principally for the benefit of Windows
application developers, to dramatically improve the funda
mental capabilities of the system. More resource and memory
capacity, better performance, and support for more complex
programs appeared at the top of most petitioners' lists.

• Windows 3.1 appeared in mid-1992. Obviously the next
version of Windows had to make it to market in a reasonable
amount of time after that-meaning that 1997 wouldn't cut it.

• Other operating system development projects were proceeding
in parallel at Microsoft. Care had to be taken to ensure compat
ibility with both Windows NT and the Cairo efforts and with the
release of Windows for Workgroups 3.11 in November 1993.

From the very early discussions about what the Windows 95 product
should be, there emerged a specification that translated these loose mar
ket requirements into a more precise statement of goals for the project.
Each section of the more detailed specification addressed these ten
issues almost as ten commandments and described how each particu
lar feature met the basic project goals.11 The specification grouped

11. By the time work on this book began in earnest in April 1993, the Chicago
Feature Specification was approaching its eighth substantial revision and stretched to
over 200 densely printed pages. Who said software was all about writing tight code?

13

INSIDE WINDOWS 95

the ten issues as "The Four Requirements" and 'The Six Areas for Im
provement." By and large, these ten goals remained unchanged during
the development project.12 Here's how the feature specification sum
marized them (verbatim):

The four requirements:

• Compatibility

• Performance equal to or better than Windows 3.1
performance on a 4-MB system

• Robustness

• Product availability in mid-1994

The six areas for improvement:

• Great setup and easy configuration (Plug and Play)

• New shell and user interface visuals

• Integrated and complete protect mode operating system

• Great network client, peer server, and workgroup
functionality

• Great mobile computing environment

• Windows 32-bit application support

A lot of this book is a detailed examination of the major new
features of Windows 95. Before launching into the detail, it's worth tak
ing a brief look at what these project goals really mean.

Compatibility

14

Compatibility is both the dream and the nightmare of everyone who
develops products for the PC market. The basic PC architecture was
defined by IBM's very first product introduction in August 1981. Once
the clone (later "industry standard") manufacturers were established
and software developers had figured out what compatibility meant for
them, the industry grew spectacularly. Compatibility means that you
and I can walk into a computer store,. buy any PC product there, install

12. The original requirements specified "great 4-megabyte system" and "product
availability in the first half of 1994." As you can see, the performance goal became
more precise and the availability goal exteµded beyond its upper bound.

O N E: The Road to Chicago

it, and expect it to work. Great news for us. Unfortunately for the devel
opers of PC hardware and software, compatibility means that you and I
can walk into a computer store, buy any PC product there, install it,
and expect it to work. Any developer has to do a certain amount of
compatibility testing before releasing a product. For a straightforward
application program, the developer's testing problem is a finite one
that might only involve testing on popular networks and with popular
printers. For a more complex product, such as a memory resident com
munications program that runs in the background, the testing matrix
becomes much larger. The development effort could involve testing for
compatibility with different networks, different modems, and different
versions of MS-DOS, PC-DOS, DR-DOS, and Windows, with other
memory resident programs, ad infinitum. This testing burden repre
sents a substantial part of the product's development cost.

Now consider Windows 95. For the product to be successful, it
simply had to be compatible with everything that had gone before
not only Windows applications software, but MS-DOS applications, de
vice driver software, and network software, to name the principal foes.
If the product were truly compatible, the reasoning went, the new fea
tures alone would persuade every user to upgrade without a second
thought. 13 And the absence of a "real" MS-DOS in the Windows 95 ar
chitecture was a radical revision that seemed guaranteed to produce
some difficult to solve compatibility issues. Clearly, Windows 95 needed
a massive compatibility test effort, and that's what the Windows 95 team
set about organizing.

The Compatibility Fallback
Microsoft also decided that Windows 95 needed an ultimate compat
ibility fallback. Everyone was sure that the fallback would be invoked
only in the event the user wanted to run some ancient, obscure game
software. But the fallback did represent a good insurance policy against
any case in which Windows 95 broke the compatibility regime.

The fallback solution is to allow the user to exit completely from
Windows and run an actual real mode MS-DOS. While the system runs
in this mode, a small software loader stays resident in memory. That's
the only component of Windows 95 still memory resident while the sys
tem is in MS-DOS real mode. Once the user finishes off the Klingon
empire, the software loader traps the application program's exit call and
reloads Windows from disk, returning the system to its normal state.

13. Referred to in Microsoft vernacular as a "no brainer upgrade."

15

INSIDE WINDOWS 95

Performance

16

The earlier versions of Windows garnered a healthy measure of criti
cism on several fronts. Poor performance was an oft-repeated com
plaint. Looking back at the hardware configurations then available for
Windows, it seems amazing that the product was even usable. In 1985,
Windows was able to run on a 286-based system with a poor display
adapter (the CGA), a single megabyte of memory, and a fairly slow
hard disk. Any popular laptop system today has a comparatively much
improved display and better disk hardware, four times as much
memory, and a processor probably 25 or 30 times faster than the first
286. Naturally, Windows has obeyed one of the unwritten laws of com
puter science and expanded to consume all the available hardware
resources.

It's hard to measure the performance of a Windows system in ab
solute terms. Does a benchmark reading of 15 million Winmarks mean
that you'll see your desktop publishing package run at lightning speed?
Generally, users will judge a product's performance from its response
time. Snappy screen redrawing, fast file opening and closing, and quick
scrolling operations always make a good impression. Less easy to db
serve but equally important to the overall system performance are op
erations like network data transfers and program swapping. The
operating system vendor thus has to invest in two parallel performance
measuring activities: checking individual operations, such as how fast a
program can read a file, and observing the whole system as it runs a
mixture of applications and data transfer operations.

Microsoft's development teams have always focused on perfor
mance issues. They tune individual software components for improved
speed and reduced memory consumption as well as raise overall system
performance by removing undesirable interactions among different
components. Within Windows 95 itself, new features such as the 32-bit
protected mode filesystem and dynamically loadable device drivers
were aimed at improving system performance. Would the end user like
to see the system run even faster? Of course, but the recent perfor
mance of Windows 3.1 on the base configuration 386SX with 4 MB of
memory is generally considered as reasonable.

For Windows 95, the development group set itself the goal of run
ning as well as or better than Windows 3.1 on the same base hardware
configuration. Not very ambitious, you might say. However, this goal
took into account that the system had to include the new capabilities
such as the Plug and Play subsystem with its dynamic reconfiguration fa
cility at the same time that it ran the application mix. Adding significant

O N E: The Road to Chicago

functionality while maintaining the same level of performance is ambi
tious. By simple extension, a Windows 95 system doing exactly what the
Windows 3.1 system did, on the same hardware, ought to run faster.
Measuring different application mixes, modeling end user activities,
and playing with the variables have been staple ingredients of Windows
95 performance analysis.

The key, repeated phrase in Microsoft's later Windows 95 presenta
tions was "as well as Windows 3.1." The recurrence of this phrase empha
sized the fact that Windows 3.1 on a 4-MB system running Microsoft
Office and using OLE performs dreadfully. The Windows 95 team
didn't try to address this problem. In fairness, they couldn't. An appli
cation mix of this complexity demands more memory-at least 8 MB
and probably more. Fortunately, early 1994 saw 8 MB becoming the
default configuration for many machines, so, to some degree, the prob
lem would be solved by the time Windows 95 was released.

In early 1994, performance tuning began in earnest, and all of the
project status reports for Windows 95 dwelt on performance tuning
issues for some months. By the time of the Beta-I release, Windows 95
performance was already as good as or better than Windows 3.1 perfor
mance in almost every respect.

Robustness-Adieu UAE?
A robust system is a system that doesn't crash-whatever the user or
application programs do to it. If one program goes awry, the user can
halt it without affecting the operation of any other programs or losing
any data. If a program makes.erroneous requests for operating system
services, the system protects itself by terminating the offending program
with no effect on other programs.

Windows 3.0 was roundly criticized for system crashes. The infa
mous unrecoverable application error (UAE) was a widely publicized,
and poorly understood, problem. Windows 3.0 reported a UAE when
ever it determined that the system itself had reached an inconsistent
state. An application used a file handle to access a file that had been
deleted, for example. For most of the UAEs, the error was actually in
the application program and not in Windows itself. However, Windows
3.0 did a poor job of validating system requests generated by applica
tion programs. Thus, an application could make an invalid request that
Windows happily accepted and tried to process. By the time the error
was discovered, there would be nothing left to do but crash the system as
a rather primitive last line of defense. Fixing this problem was a focus of
the work to produce Windows 3.1, which carefully validated almost every

17

INSIDE WINDOWS 95

system request before processing it. As a result, many application ven
dors had to release updates of their products to fix software bugs that
had never been discovered before. The experience was a painful one for
all concerned, and the Windows 95 team was in no rush to repeat it.

The development team wanted Windows 95 to be extremely ro
bust, with almost no possibility of a system crash caused by an applica
tion program or other external factor. How do you go about ensuring
this? A lot of the answer goes back to the basic design of the system: in
corporating careful validation of application requests, protecting sys
tem data regions, and isolating individual software components. In
particular, the new 32-bit application programming model allowed the
Windows 95 team to implement full memory protection for individual
32-bit programs. Not only are 32-bit programs protected from each
other, but the system is also fully protected from these programs.
(Some improvements were also made for 16-bit programs, but the
options were limited because of compatibility constraints.) Once all of
this is done, you test and test and test some more.

Timely Product Availability

18

The eternal battle between the sales and marketing group and the devel
opment group within any software project comes down to deciding
when the product is ready for release. Microsoft always sets an estimated
release date for a product way ahead of detailed planning. Then the de
velopment team either cuts features or extends the planned release date
to allow completion of all the development work. Factors that influence
the release date include when the previous version was released, the
overall scope of the work for the new version, and how competitive the
market is. The decision to bless a particular version of the software as
the "golden master"14 involves many people from the product group,
senior managers within the development division, product support per
sonnel, and often Bill Gates himself. If the product is simply not ready
for release because of performance inadequacies or major bugs, there's
no debate-you slip the date, and the development team continues its
work. But there finally comes a point when the software is in good shape,
all the introduction materials are ready, the support personnel are
trained, and the printed documentation is waiting in the warehouse.

14. In Microsoft parlance, the development group prepares a succession of
"release candidates" before shipment. When everyone is satisfied with the quality of
the software, the final release candidate becomes the golden master from which the
manufacturing group prepares the production version.

0 N E: The Road to Chicago

There are still some bugs that could be fixed if you were to wake up the
development team and get them to put in yet another day or another
week of effort. Do you ship the software or do you wait? In any complex
software product, from any company, bugs always remain in the ship
ping version. Experience and judgment dictate when those bugs are
sufficiently unobtrusive that the software really is ready for shipment.

· Windows 95 has been no different in this respect. By the middle
of 1993, Microsoft had come up with the product's original, and rather
vague, shipment goal of "the first half of 1994." This date would be
about two years after the release of Windows version 3.1, and that was
one major factor in choosing the planned ship date for Windows 95.
Once the scope of the work was better understood, the development
team pinned the release date down more firmly to "mid-1994." Plans
were also made for a succession oflimited releases to software develop
ers, beta test sites, and others before the final general release. This cycle
of controlled releases began in August 1993, almost a year before the
planned general release date. The fact that a pretty complete and func
tional version of Windows 95 was available that early on says a lot about
the extent of the testing and improvement effort Microsoft planned for
the product before it would release the final version.

Well, guess what? The team completely blew the mid-1994 date. In
fact, the Beta-I release barely made it before the end of June. Once
again, it proved to be beyond human ability to accurately forecast the
completion date for a complex software project. This difficulty is not
unique to Microsoft's release date predictions. Virtually no one is able
to forecast with any accuracy, but Microsoft's plans are often very public.
The most public statement of the release goal was Bill Gates's speech at
the 1994 COMDEX/Spring show, when he demonstrated Windows 95
and committed to a release date of "before the end of the year."

How well "before the end of 1994" will be met remains to be seen.
But rest assured that many long workdays and sleepless nights have yet
to be invested in Windows 95.

Easy Setup and Configuration
Setting up and configuring a Windows system has never been a trivial
task. Each new release has improved the process, but even the setup for
Windows 3.0 and 3.1 (considered to have made quantum leaps in this
area) has continued to baffle a lot of users. The "make it easy" directive
governed much of the effort invested in improvements to the system

19

INSIDE WINDOWS 95

20

setup and configuration procedures. The Windows 95 team decided to
concentrate on these areas for major improvement:

II Hardware configuration. The Plug and Play initiative was
intended to dramatically ease the process of configuring PCs,
and Windows 95 would be the first operating system product
to support the Plug and Play standard that Microsoft, Intel,
Phoenix Technologies, and others were preparing.

II Installing and configuring Windows 95 on an existing Win
dows 3.1 system. The team felt that this process ought to
require no user involvement beyond swapping diskettes at the
right time. After all, ifa system ran Windows 3.1, someone
must have solved any setup or configuration problems already.
Windows 95 ought to be able to use the earlier effort to ease
its own installation process.

Ill System administration and reconfiguration procedures. Every
aspect of the existing system was carefully analyzed to improve
ease of use. For example, the team felt that any user ought to
be able to set up a new printer without a problem. With
Windows 3.1, that had not always been the case.

The Plug and Play Initiative
The Plug and Play standard was an effort with a much broader scope
than simply Windows 95. Intended by its sponsors to be independent of
any particular operating system, Plug and Play defines extensions to
the existing PC hardware architecture, together with new BIOS and
device driver capabilities that aim to shield the user from hardware
setup and configuration issues. Apart from the physical process of plug
ging a system or a device in and turning it on, Plug and Play takes over
the problems of identifying a device, assigning the device the correct
hardware configuration resources (such as an interrupt request level),
and configuring the appropriate device driver software.

Plug and Play is also independent of any particular bus architec
ture. It will use ISA, EISA, Micro Channel, PCMCIA, or any other bus
architecture that has some market share. In the case of the ISA bus, in
which there is really no hardware support for Plug and Play operations,
the specification defines a new adapter card interface. For a small addi
tional hardware cost (perhaps 25 or 50 cents) and with some new soft
ware, an ISA adapter card can become Plug and Play compliant. For even
non-Plug and Play systems, a large amount of effort went into developing

0 N E: The Road to Chicago

device recognition and configuration capabilities. We'll take a detailed
look at the whole Plug and Play architecture in Chapter 8.

Configuring Windows
Configuring Windows itself has become something of a black art.
Lengthy articles, and even whole books, devote considerable attention
to every one of the often obscure lines in the Windows WIN.IN! and
SYSTEM.IN! files. Coupling the contents of these two files with the
contents of the basic CONFIG.SYS and AUTOEXEC.BAT files means
that the user trying to modify or improve the operation of Windows
faces a daunting task. The Windows 95 team decided to subject every
single entry in the configuration files to detailed scrutiny. If an entry
really wasn't needed, why was it there? Furthermore, why were there so
many special case entries? Could better default selections avoid the
need for additio.nal entries? Did Plug and Play make some entries re
dundant? The more settings that could be eliminated, the easier the
system would be to understand.

Apart from the files that control Windows operations, many appli
cations use private initialization files or add parameter information to
the WIN.IN! file. Rationalizing this whole configuration mess was long
overdue, and the Windows 95 team adopted the solution designed by
the Windows NT group. Windows NT uses a special file called the regis
try to contain all the information relating to hardware, operating sys
tem, and application configuration. Entries in the registry are available
to application programs through defined application programming in
terfaces. Applications can add to and retrieve their private configura
tion settings using registry access APis. No longer can the user edit the
text in a configuration file and introduce inconsistencies or other er
rors. Windows 95 uses the registry concept in an identical way, and as
developers update application programs for Windows 95, the jumble of
configuration files will disappear.

User-Level Operations
Many basic system management operations, such as setting up printers
or modifying the layout of the Windows desktop, ought to be available
to every user. Yes, they're there, but some of them are awkward to use
and difficult to comprehend. Windows 95 addresses this problem by
consolidating and simplifying many of the day-to-day operations that
all users must perform on their own systems.

21

INSIDE WINDOWS 95

New Shell and User Interface

22

The most immediately striking aspect of Windows 95 is the new look of
the screen display. Microsoft uses visual designers on all of its projects
these days, and the attention to details of the Windows 95 appearance
is remarkable. No longer does a programmer spend a mere hour de
signing a new icon for a control panel function. The process now in
volves a visual designer who carefully considers the intent, appearance,
and overall consistency of the new visual element. At first glance,
there's no obvious difference between individual screen elements of
Windows 3.1 and those of Windows 95-no immediately apparent
changes in an icon, for example. But if you look closely, you can see the
subtle alterations to the shading and the shadow illusion around the
icons in the Windows 95 version. As you can imagine, a lot of debate
and painstaking effort went into the revision of the appearance of Win
dows 95. Later in the book, we'll examine these changes in detail.

The New Shell
Much more than just a pretty new face, the Windows 95 shell is a major
functional step forward. Asking a Windows 3.1 user to identify "the shell"
elicits some interesting responses. Some people have no idea what the
shell is. Those who do have an idea will often identify the Program Man
ager as the shell component. Further questioning about how the File
Manager, Print Manager, Task Manager, and Control Panel fit in with "the
shell" will usually leave even the most expert Windows user confused.

This confusion is not because the user doesn't understand the sys
tem: Windows actually is rather confusing. For example, why do you
configure printers using the Control Panel, alter print characteristics
using the Print Setup option on the application's File menu, and then
control print spooling using the Print Manager? Most proficient Win
dows users become accustomed to these procedures and forget about
the awkwardness, but trying to introduce a naive user to the system and
justifying, or even explaining, this scattered approach is difficult.

Fortunately, Microsoft itself recognized the problem a long time
ago, and the Windows 95 release represents a serious effort to unify
and improve the collection of system functions that form the shell. Of
course, there are some major new features beyond that:

Ill OLE 2 is the first step in Microsoft's initiative to move
toward a document-centric application architecture. The
Windows 95 shell supports OLE 2 functions and consistent
drag and drop capabilities.

0 N E: The Road to Chicago

• Electronic mail is almost a given in a networked environment.
The shell supports an electronic mail interface directly.

• Long filenames-at last you can name a file My chicken chili
redpe and not have to use CHCHRECP.DOC, ensuring that
a month later you won't have the vaguest idea what the file
contains.

• File viewers have become popular for allowing a user to
examine a formatted file without having to access the appli
cation that created the file. Windows 95 incorporates a set
of viewers.

• Pen gestures that were originally defined for Microsoft Pen
Windows have been revised and incorporated directly into
Windows 95. As the base of pen systems expands, Windows 95
will support pen systems without having to add new operating
system components.

B MS-DOS applications will most likely live forever. Although
Windows 95 appears to hasten their demise by providing
a better Windows environment, the support for MS-DOS
applications is also improved in Windows 95. MS-DOS
window sizing, copy and paste operations, and the use of
TrueType fonts within an MS-DOS application are among
the improvements.

Complete Protected Mode Operating System
Later on in the book, we'll look at exactly what protected mode is and
at what it means to Windows. Suffice it to say at this point that use of the
protected mode removes memory limitations-that is, the 640K barrier
disappears-and provides a solid basis for ensuring system robustness.
The greater part of Windows 3.1 is a protected mode system. MS-DOS
itself, however, remains a real mode system. Consequently, a system
running Windows 3.1 continually switches back and forth between pro
tected mode and real mode.15 The switching overhead detracts from
system performance.

The decision to implement Windows 95 as a complete system, no
longer reliant on MS-DOS, opened the door to dispensing with all the
remaining real mode components. In particular, the filesystem (handled
by MS-DOS when you run Windows 3.1) and the mouse driver could

15. Actually, virtual 8086 mode-it's not quite as bad as real mode.

23

INSIDE WINDOWS 95

now be rewritten as protected mode software. Given the protected
mode base and its enhanced capabilities, other improvements were
obvious. For example, the print spooler could become a true preemp
tively scheduled background program. And some of the limitations of
the Wfadows device driver model (the so called VxDs) could be re
moved, allowing VxDs to be dynamically loaded and unloaded rather
than reside permanently in memory as in Windows 3.1.

The other aspect of completeness that the development team
planned to tackle was filling in the gaps still present in Windows utility
functions. Windows 3.1 has no equivalent to the MS-DOS Chkdsk pro
gram, for example. If you want to run the Chkdsk utility, you have to
exit Windows to do it. Getting rid of such inconveniences was all part of
the goal to provide a complete operating system.

Also on the list of operating system improvements was the re
moval of redundant and conflicting functions. Windows 3.1 introduced
a very successful printing model that incorporated a single major mod
ule supplemented by small, simple device-specific printer drivers. This
model had a number of positive effects, including the elimination of a
lot of duplicate code in the different printer drivers and the promotion
of the quick development of new drivers with fewer errors. Windows
NT made use of a similar concept to standardize disk device support.
Windows 95 would continue along the same path by using a similar
model for its hard disk, SCSI device, display, and communications
driver support.

32-Bit Application Support

24

Along with the growth in complexity of modern operating systems and
computer networks has come a growth in the depth and breadth of
single application programs. No longer does a word processor simply
allow you to put words on paper. Customers expect spelling and gram
mar checking functions, a thesaurus, page layout facilities, and a host of
other features. The sheer scope of today's application programs calls for
the consumption oflarge amounts of memory, disk space, and processor
cycles. Despite the fact that Intel's first true 32-bit chip began to appear
in PCs in 1988, MS-DOS and Windows have never fully supported 32-bit
application programs. Rather inadequate solutions, such as the DPMI
standard incorporated into Windows 3.0, have been little more than
stopgaps to the developers who desperately needed 32 bits' worth of
memory addressing.

0 N E: The Road to Chicago

Windows NT was Microsoft's first operating system in the Windows
family to offer full 32-bit support. Windows 95 will join Windows NT in
supporting Microsoft's Win32 32-bit application programming inter
face. From the application developer's point of view, 32-bit support
provides three major benefits:

• Access to essentially unlimited amounts of memory. A single
Win32 application program can access up to 2 GB of memory.

• A much easier to program memory model. Writing software
for a so called "flat," or linear, 32-bit address space provides
relief from the vagaries of the Intel processor family's seg
mented architecture. A programmer can design data struc
tures without having to worry about the boundaries and
limitations imposed by a 16-bit memory model.

II A consistent application programming interface. The Win
dows API contains hundreds of functions that together
involve thousands of parameters. In Windows 3.1, some of the
parameters are 16 bits and some are 32 bits. It is a rare pro
grammer who can remember which is which and never make
mistakes while writing code that calls these APis. Win32
functions consistently use 32-bit parameters with a consequent
reduction in programming errors.

Before the development of Windows 95, Microsoft defined a subset
API termed Win32s. Included within the Win32s definition were all the
APis that, if strictly adhered to, would allow an application developer to
produce software that would run on both 16-bit Windows 3.1 and 32-bit
Windows NT. Win32s was in fact a true subset of the Windows NT API
and was made available on Windows 3.1 through the use of a library
that converted the Win32s 32-bit API calls to the native 16-bit API calls
of Windows 3.1.

The Windows 95 team needed to improve on the original
Win32s API set and originally defined a Win32c API set that took
Win32s as its base and added a number of APis specific to Windows
95. For example, device-independent color capabilities (important in
most desktop publishing and drawing programs) will appear for the
first time in Windows 95. The term Win32c became quite confusing,
quite quickly, and many questions about the relationships among
Win32, Win32s, and Win32c convinced Microsoft that they needed a

25

INSIDE WINDOWS 95

26

simpler story. 16 After an interval, the Win32c term was dropped alto
gether, and the Windows 95 Win32 API set became simply a subset of
the full Win32 API, defined (at that time) by Windows NT and slated
for expansion in the Cairo era.

The exact definition of the Win32 API set and the individual lev
els of support in each operating system for the Win32 API can be found
only by consulting the appropriate documentation. Microsoft's inten
tion is to allow an application program conforming to the Win32s API
to run on any Windows operating system (from Windows 3.1 onward).
Applications that use more advanced capabilities cannot necessarily be
supported on every version of Windows. For example, applications us
ing the advanced security features available in the Win32 API will run
only on Windows NT and its direct successors.

The Jump to 32 Bits
Moving to the 32-bit API under Windows 95 introduces an interesting
discontinuity, and for once, discontinuity provides a useful break with
the fully compatible past. Since developers who decide to use Win32
must modify their application code, Microsoft reasoned that they could
impose a rule on developers requiring that every API in an application
be a Win32 APL Thus, not only do you modify your code to incorporate
the new 32-bit device-independent color APis, but you also modify all
the other Windows API calls to conform to the Win32 interface. This
includes the basic APis that deal with issues such as file management
and memory allocation.17

Given this new application model, and its associated rules, the
Windows 95 team could incorporate some significant new capabilities
into Windows 95. Since the system would know that it was dealing only
with applications that conform to the Win32 rules, it would know how
to manage the applications a lot more effectively than it could the
existing 16-bit applications. Under Windows 95, the benefits realized
by an application that bases itself on Win32 extend far beyond simply
having 32 bits' worth of memory-notably:

!I Preemption. A Win32 application is fully preemptible, mean
ing that the operating system can suspend its execution at
any moment in order to switch to a higher-priority task. In

16. The first interesting marketing sleight of hand simply modified the inter
pretation of the c in Win32c to say that it was for Win32 common, rather than Win32
Chicago. This didn't go far enough, however.

17. To their credit, Microsoft supplied a program analyzer that simplified a lot of
the grunt work needed to complete this type of conversion.

0 N E: The Road to Chicago

general, this means smoother response (an hourglass displayed
by one application no longer means that you can't switch to
another to do something useful), better system throughput,
and avoidance of the data loss that can come from an ap
plication's having to wait too long for control of the processor.

• Separate address space. A Win32 application runs within its
own protected memory region. No other application can
scramble its code or data.

• Thread support. Often a single application would like to do
two things at once-perhaps writing a backup copy of the
current document to disk while still allowing the user to edit
the on-screen text. Under Windows 3.1, multitasking within a
simple application is an awkward and error-prone feature to
implement. An application's ability under Win32 to utilize
multiple threads of execution provides a structured way to
perform multitasking.

Networking and Mobile Computing
Microsoft originally introduced its peer-to-peer local area networking
extension for Windows in the fall of 1992. Windows 95 essentially incor
porates the Windows for Workgroups local area network functionality
and thus mirrors the model that Windows NT established. Microsoft
has long espoused the belief that networking capability is a fundamen
tal part of the operating system. Separating networking and operating
system products into different categories, or using special purpose op
erating systems for network servers, really isn't the way to go. However,
Windows 95 enters a world in which Novell servers make up the major
part of the installed base. For Windows 95 to become popular in a
Novell-dominated network environment, it needs to offer much more
than its own brand of local area network support.18 Thus, Windows 95
includes software that ensures its host system will be fully equipped as a
NetWare client machine.

Beyond its support of local area network facilities, Windows 95
has many oth~er features that involve communications. From simple
telephone line dial-up facilities to support for the latest generation of

18. Whether peer networking will literally be given away in the Windows 95 box is a
packaging issue that probably won't be decided until shortly before Windows 95 ships.
It may be packaged as a separately priced add-on.

27

INSIDE WINDOWS 95

mobile, handheld devices, Windows 95 aims to be about as good a cli
ent machine operating system as it can be, including

• Client support for all popular networks: Novell's, Banyan's,
Microsoft's, and others.

• Multiple client support, allowing a client machine to connect
simultaneously to different networks-perhaps to a Novell
local area network and to a TCP /IP-based wide area network.

• A peer server capability that matches the original capability
provided by the Windows for Workgroups product. Work
groups or smaller businesses can thus avoid the need to
dedicate a machine to server functions.

• Electronic mail support based on the message application
programming interface (MAPI) and extending to facsimile
devices as well as popular electronic mail networks.

• Remote connectivity and administration features that provide
efficient access to and management of a local area network
over a low-bandwidth connection. Windows 95 acknowledges
the "traveling PC" phenomenon in its support for file synchro
nization capabilities and effective data transfer over a low
speed connection. Thus, you can dial back to home base and
download a copy of a document at a decent speed. When you
revise the document and take it back to the office, Windows
95 helps you figure out how to synchronize your hotel room
edits with the local master copy.

• Pen support. The pen-based computer revolution was pre
dicted, and then it never really happened. Even so, there is a
steady growth in the use of pen computing devices. Windows
95 incorporates support for pen-based machines. As and when
the revolution occurs, your .Windows 95 software will be ready.

Bringing Windows 95 to Market

28

Describing what the Windows 95 development team set out to accom
plish begs the question of whether the product will be successful. The
mission of making a Microsoft product a success involves many other
Microsoft groups. Some of these groups, such as the product support
division, aren't fully engaged in seeing to the success of the product

0 N E: The Road to Chicago

until it ships to customers. Everyone involved faces a considerable chal
lenge. Success for Windows 95 means selling tens of millions of copies.
Sales of only a few million copies (usually an indication of a runaway
software bestseller) will be a commercial disaster.

Outside Microsoft, the most important group influencing the suc
cess of Windows 95 will be the independent software vendors (ISVs)
courted by the company's developer relations group (DRG). If the ISVs
devote their resources to writing applications for Windows 95, compet
ing operating systems such as IBM OS/2 and Novell NetWare will suf
fer by comparison·. Windows 95 presents an unusual selling job for
Microsoft in that they must persuade the application developers to
take presumably perfectly fine Windows applications and modify them.
The DRG spent much of 1993 evangelizing for Microsoft's OLE technol
ogy and the 32-bit API of Windows NT that would appear in Windows 95
in 1994. Whether the benefits of OLE and the 32-bit capabilities of
these operating systems are compelling enough to warrant major in
vestment by the ISVs remains to be seen.

Microsoft provided the ISVs with a lot of early information about
Windows 95 in a series of design reviews held in Redmond during the
summer and fall of 1993. The audience for these events was usually
fairly small (the largest made up of perhaps 100 people), and Microsoft
always prefaced such an event with a warning that many product fea
tures were expected to change. The participants also had an opportu
nity to influence the· Windows 95 design team. The team often asked
for comments on possible solutions to issues that had not been entirely
decided. Early on, the possibilities for change were quite numerous,
but as the planned shipment date drew closer, these opportunities to
influence the Windo~s 95 team naturally diminished.

As Windows 95 gathered marketing momentum, the product
team's goals were translated into the market message behind the
product. Customers are most influenced by the perceived benefits of
any product, and Microsoft used the Windows 95 project goals as the
basis for their initial customer presentations. In the early fall of 1993,
Microsoft's first closed door product briefings identified three main
benefits of Windows 95:

• Easy to use-based on the Plug and Play capability, the new
shell, and the extensive use of Microsoft's OLE 2 technology.

• Powerful 32-bit multitasking system-based on the new
operating system kernel, the new filesystem, and the improve
ments in device support.

29

INSIDE WINDOWS 95

• Great connectivity-based on the new networking compo
nents and the mobile computing enhancements.

The first of the more public product briefings was given to a
group of industry journalists on May 12 and 13, 1994, in Redmond.
The press rollout was scheduled to take place shortly before the Beta-1
release, which was actually supposed to be ready to hand out at the
briefing and to coincide with the launch of the marketing campaign
that precedes every Microsoft operating system product release.

At that rollout, the product goals were restated in short form
"easy," "more powerful," and "more connected." The marketing mes
sage has retained a degree of consistency throughout the project.

Whether these benefits are enough to sell Windows 95 to the end
user is a subject for the future and for a different forum. Certainly
Microsoft has every chance of success with the product. Their early
1994 estimates indicated that about 50 million copies of Windows
would be in use by mid-1994, with perhaps 60 to 70 percent of all new·
machines shipping with Windows already installed. The principal tar
get market for upgrading existing Windows 3.1 users will be about 60
percent of the installed base.19

For Microsoft-The Bottom Line

30

Altruism is rarely a consideration in Microsoft's business thinking. Yes,
some product characteristics, such as compatibility and ease of use, are
deeply ingrained in the thinking of every person in the product devel
opment groups. The Windows 95 team tried as hard as anyone to meet
the ease-of-use goal, and indeed, their motivation did extend far be
yond the simple desire for commercial success. However, the team also
wanted to sell one heck of a lot of software. Work out the numbers and
you'll see that selling a Windows 95 upgrade to every existing Windows
user would translate into a billion dollars of revenue. The team knew
that if Windows 95 really could achieve the "make it easy" goal, the
door to more new users and more software sales would be unlocked.
Building a great product was definitely the number one goal. Selling
lots of copies came in a close second.

19. Microsoft classifies these users as "active" users; that is, they are people who
periodically upgrade some part of their computer systems, be it hardware or software.
The rest simply don't upgrade anything (and probably drive a 10-year-old car quite
happily as well).

0 N E: The Road to Chicago

Conclusion
In this chapter, we've looked at the underlying goals and philosophy
behind the Windows 95 development project and at a synopsis of the
major new features. Entering a mature market, the product has to meet
some stringent compatibility and performance goals as well as intro
duce new features that will motivate Windows users to upgrade and will
attract new users to the Windows platform. Windows 95 is also an im
portant component in Microsoft's systems software plans. Married to
the strengths of Windows NT, it becomes part of an enterprise-wide
computing system and introduces some of the Cairo product concepts
for the first time. As our review of the development team's self-imposed
ten commandments suggests, Windows 95 is also an ambitious project.
How Microsoft plans to meet the target it has set for itself is what most
of the rest of this book is about.

Windows 95 is an Intel processor-based operating system. The Intel family of
processors has had a significant influence on both MS-DOS and Windows over
their lifetimes. In return, Windows has influenced Intel's processor designs. In
the next chapter, we'll look at the Intel processors and highlight the features that
have an impact on the design and operation of Windows itself.

31

C H A P T E R T W 0

INTEL PROCESSOR
ARCHITECTURE

Inside every fine operating system beats the heart of a good processor.
In our case, it's very definitely Intel inside. Windows 95 has been
designed and developed for Intel processor-based systems only.
Microsoft's high-end operating system, Windows NT, broke with the
Intel tradition in order to allow vendors to choose from a variety of pro
cessor types as the base for a system, and Microsoft and its develop
ment partners have introduced versions of Windows NT for the MIPS
R4000, the DEC Alpha, the PowerPC, and other advanced processors.
None of these chips is compatible with the Intel processor family, so the
only way to get existing applications for Windows or MS-DOS to run on
one of these processors is to include some form oflntel processor emula- 0

tion with the Windows NT version for the processor. For a Windows NT
user, the performance overhead of the emulator isn't a real problem.
After all, that user bought Windows NT principally to use on a network
server or to run a new native 32-bit application. Any slowdown in such a
user's occasional use of an existing 16-bit Windows application isn't re
ally an issue. There are also some thorny problems associated with run
ning MS-DOS applications on Windows NT. The preservation of the
Windows NT security model prevents a lot of older MS-DOS applications
from running, for example. But running MS-DOS programs just isn't
the role a Windows NT machine is meant to fill, so Microsoft decided
that putting restrictions on Win9ows NT's 16-bit application environ
ment was acceptable.

For a Windows 95 user, Microsoft felt that any similar restrictions
or performance overhead for running 16-bit applications would be

33

INSIDE WINDOWS 95

completely unacceptable. After all, most Windows 95 users would
already be using Windows on their desktop or laptop machines. Their
main initial reason for installing Windows 95 would probably be to
have their existing applications run faster or better. Any compatibility
or performance problems for 16-bit applications would be a major
barrier to the mass acceptance of Windows 95.

Thus, the Windows 95 team had to provide 100 percent compat
ibility and zero performance overhead to the Windows 3.1 user. Tough
goals. Fortunately, Microsoft's experience with early versions of Win
dows, OS/2, and Windows NT had equipped them with the expertise
they needed to meet these goals. Microsoft's experience also told them
that the compatibility and performance goals could not be met for
Windows 95 running on a non-Intel processor. Any dreams of a por
table version of Windows were laid aside early on. Windows 95, and any
direct successors, will forever run on Intel processor systems only.

Intel Inside

34

One could write a book devoted to the low-level details of Windows 95
and its interaction with the Intel processor and the system that contains
it, but that is not the purpose of this chapter. We'll look at some aspects
of the hardware that have to be understood in order to make sense of
some of the Windows 95 features we'll look at in detail in later
chapters-particularly Windows 95 memory management, its support
for MS-DOS applications, and the new Plug and Play services. However,
this chapter is certainly not intended to be an exhaustive treatment of
the subject.1 Most of the information in this chapter will relate to the
80386, 80486, and Pentium processors that Windows 95 runs on. A lot
of the less relevant details have been left out or simplified. You may
already know more about the Intel processor family than you care to re
member. If you do, I suggest that you go straight to the next chapter. If
you don't care to know a lot about the In_tel processor family, don't
worry: the rest of the chapter deals only with the details of the hard
ware you need to know about. We'll get back to the Windows 95 soft
ware very soon.

1. Of the many books that do provide an exhaustive treatment of hardware issues,
a good one is Ross Nelson's Microsoft's 80386/80486 Programming Guide (Microsoft
Pre~s, 1991).

T W 0: Intel Processor Architecture

Here's what we'll look at in this chapter:

• The Intel processor family-the continuing influence of
the original 16-bit Intel processor, the 8086, on all versions
of Windows because of the MS-DOS software compatibility
requirement

• Processor architecture and modes-the basic design of the
Intel chip family and how the processor can be made to run
the different application types (MS-DOS, 16-bit Windows,
32-bit Windows)

• Memory management-the different methods for handling
memory allocation on the Intel 80386 processor

• Protection-how the 80386 processor allows the operating
system to protect itself and to protect applications and de
vices from one another

The Intel Processor Family
Intel introduced its first 16-bit microprocessor, the 8086, in 1978. IBM
ensured the role of Intel processors in subsequent computing history
by adopting the Intel 8088 (a slightly slower version of the 8086) for
the IBM Personal Computer in 1981. Microsoft (figuratively, at least)
took its place on the podium with MS-DOS, the operating system it
implemented for the IBM PC. Successive models of the PC, from IBM
and its competitors, have continued to use Intel processor chips and
copies of MS-DOS in vast numbers. Somewhere, someone is buying a
PC right now. It probably has an Intel processor inside, and it probably
comes with a copy of MS-DOS. This buying process is repeated tens of
millions of times a year, and many fortunes, Intel's and Microsoft's
included, have been made as a result.

From the software point of view, the Intel processor family has
gone through two major architectural changes since 1978. These
changes appeared with the 80286 and 80386 processors. From the
hardware designer's point of view, there have been other major design
changes, such as the integration of the processor and floating point pro
_cessor capabilities on the single 80486 chip. These hardware changes,
together with many other feature and performance improvements, are
often denoted by product name suffixes such as SX and SL. Each
change almost always meant more speed and rarely required any major

35

INSIDE WINDOWS 95

modification on the part of the operating system software designer.
That was not true in the case of the major architectural revisions intro
duced with the 80286 and 80386 processors. At the risk of offending
some hardware designers, we'll look primarily at the processor design
revisions that enabled significant new software capabilities.

Backward Compatibility

36

The single most important aspect of the Intel processor design has
been the backward software compatibility of the different chips. And
successive versions of MS-DOS have ensured that this compatibility fea
ture has been readily available to both programmers and users. Every
MS-DOS program ever written for an Intel 8086 will run unchanged on
a Pentium processor. This compatibility has allowed users to buy newer
and better hardware with every change in processor generation and
carry with them the applications they know and use every day. I'd be
willing to bet that many copies of version 1.0 of Lotus 1-2-3 are still in
use. Amazingly, the very first release of Microsoft Windows (1985) would
actually run on a floppy disk-based PC with an 8088 processor (1981).
That same software will still run on a Pentium-based system today.

Software compatibility has been the key to the success of the Intel
processor family and, to a large extent, the key to the success of the
whole personal computer industry. When Intel released the 80286 pro
cessor in 1982, the announcement lauded, in addition to compatibility,
its higher speed and new "protected mode." Unfortunately, the pro
tected mode wasn't compatible with the 8086. In 1984, IBM introduced
its first 286-based system, the IBM PC AT. Microsoft didn't try to exploit
the protected mode with the MS-DOS release (version 3.0) for the PC
AT. MS-DOS used the 286 simply as a faster 8086. However, Micro
soft did release XENIX, its UNIX-derivative operating system, for the
PC AT. XENIX was the first operating system that tried to exploit the
286's protected mode of operation. But XENIX didn't try to provide
MS-DOS software compatibility. A few years later, the designers of OS/2
made valiant attempts to exploit the 286's protected mode while retain
ing that all-important property, MS-DOS software compatibility. There
were many shortcomings.

If all of this sounds confused, it was. In truth, Intel's implementa
tion of 8086 compatibility alongside the 286 protected mode feature
was poorly designed. For example, once an operating system had
switched the processor into protected mode operation, there was no
way of switching back to real mode other than by simulating a complete

T W 0: Intel Processor Architecture

reboot of the machine! This and other deficiencies meant that the 286
processor was rarely used as anything other than a faster 8086. How
ever, the mistakes with the 286 design and the early experience from
operating system projects such as OS/2 ensured that the next proces
sor in the family-the 80386-came out right. The 386 offered 8086
compatibility, 286 compatibility (which ultimately might not have been
worth the microcode), a new 32-bit mode (386 native mode), and an
unusual new mode of operation called virtual 8086 mode. This last fea
ture enabled the implementation of an operating system that could
run not just one, but many MS-DOS programs compatibly and simulta
neously. Microsoft helped Intel design virtual 8086 mode and har
nessed that mode initially with the release of Windows/386 in 1987.
Other operating systems-Quarterdeck's DESQview, IBM's OS/2 version
2.0, and many versions of UNIX-also used the virtual 8086 feature to
good effect. The successor processors in the Intel family, the 80486 and
the Pentium, preserved the virtual 8086 mode feature, and today most
operating systems, including Windows 95, continue to exploit it.

The most recent releases of Windows have been designed only for
the 80386, the 80486, and recently, the Pentium processors. Essentially,
Windows has treated each of these processor types as a 386. A number
of low-level processor features have to be managed differently, but
none of this low-level management is visible to an application program
or indeed to most of the Windows operating system itself. Thus, we
won't get into the intricate details of, for example, how Windows 95
manages floating point operations on the different processor types. In
the rest of this book, you'll see references to only the 386 processor.
Read this to mean "386, 486, or Pentium." The keys to understanding
how Windows exploits the Intel 386 processor architecture are in its
management of memory, its processor modes, and its protection
scheme. That's what we'll look at next.

Processor Architecture
The Intel 8086 introduced a microprocessor memory architecture re
ferred to as segmented addressing. Similar schemes had appeared in the
design of other, generally much larger, computers, but the 8086 was the
first major microprocessor to employ the technique. Since all MS-DOS
programs throughout the 1980s were written for compatibility with the
8086 (and Windows 95 still has to be able to run those programs), it's
important to understand the 8086 memory architecture.

37

INSIDE WINDOWS 95

The 8080 and 8086 Processors

38

The 8-bit predecessor of the 8086-the Intel 8080-allowed a program
to address a total of 64 kilobytes. Each addressing register of the 8080
was 16 bits. Sixteen bits gave you 65,536 total addresses and thus 64K of
address space. Intel tried pretty hard to make the 8086 compatible with
the 8080 and did preserve the 16-bit address registers. Intel's goals for
the 8086 were much loftier, however, and they added four segment regis
ters to the 8086, allowing a program to address up to 1 megabyte of
memory. Essentially, a segment register points directly to the first byte
of a memory segment. A segment can begin at any 16-byte chunk of
memory (what Intel called a paragraph). Adding 1 to a segment address
points you to a memory address 16 bytes higher in memory. Using this
segment address as a base address (that is, as address zero for this seg
ment), the programmer can then use another processor register to ref
erence any byte within the subsequent 64K. The processor simply
combines the contents of the segment register and an address register
to form a unique 20-bit address. Twenty bits gives you 1,048,576 total
addresses and thus 1 MB of address space. Figure 2-1 shows how the
8086 performs the address arithmetic. Note that the operation of com
bining the contents of the segment register and the address register to
obtain the final memory address is carried out by the processor itself.
No direct action is required on the part of the programmer.

The segment registers on the 8086 have to be manipulated by the
programmer. When the operating system loads an application, it ini
tializes the segment registers before running the application. After
that, the application code manipulates the segment registers as it needs
to. Most early MS-DOS programmers and compiler writers learned
many tricks for efficiently using the 8086 segment registers.

This segmented memory architecture has been both a boon and a
pain for software writers. On the plus side, the segmentation allowed
the use of techniques such as expanded memory-with a combination
of software and hardware tricks, segments of 8086 memory could be
temporarily replaced, effectively increasing the total memory available
to a program. On the minus side, segment management was a chore for
anyone developing large (that is, larger than two 64K segments) appli
cations.2 Scanning through a 100,000-element array of 2-byte integers,

2. During the development of the first version of Windows, signs proclaiming
SS!= DS were popular in many programmers' offices. The signs were intended to be a
constant reminder to the developers. They hoped the signs would lead to fewer bugs.

16-bit segment base
address

Figure 2-1.
Intel 8086 address calculation.

T W 0: Intel Processor Architecture

16-bit address offset

20-bit physical memory
address

for example, meant reloading the appropriate segment register at least
three times during the scan. Programmers used to larger machines, or
to microprocessors such as Motorola's 68000, were more accustomed to
a linear address scheme. With a linear addressing architecture, the pro
grammer would simply increment a single (usually 24- or 32-bit) address
in order to scan the entire physical memory present on the system.

The 640K Barrier
The I-megabyte memory limit of the 8086 architecture never received
wide public attention. Instead, the infamous 640K limit in DOS was the
popular target for much ire and ill-informed criticism. So where did the
640K limit come from? The designers of the original IBM PC decided
to reserve 384K of the 8086's enormous I-megabyte address space (re
member, this was I98I) for hardware and system software purposes.
The remaining 640K was free for use by DOS and application pro
grams. Within the upper 384K were the BIOS code, screen memory,
and other system elements. Figure 2-2 on the next page is a reproduc
tion of the first published memory layout of the original IBM PC.3

3. IBM Technical Reference #6025005. The first edition was published in August 1981.

39

INSIDE WINDOWS 95

40

System Memory Map

X'OOOOO'
16TO 64KB
ON SYSTEM
BOARD

l/OCHANNEL
ADDEDMEM
MAX 192KB

384KMEMORY
FUTURE
EXPANSION

128KB

EXPANSION
MEMORY
216KB .

40KB
BASE SYSTEM
ROM

X'FFFFF'

Figure 2-2.

256KB R/W MEMORY
PRESENT
SYSTEM
MAX MEMORY

FUTURE
EXPANSION

128KB RESERVED
GRAPHIC/DISPLAY
Bl)FFER

Figure 11. SYSTEM MEMORY MAP

The first published memory map for the origi,nal IBM PC.

3/4MEG
MEMORY
ADDRESS
SPACE

256KB ROM
ADDRESS
SPACE

DOS really had little part in determining the 640K limit, and the
layout for the first megabyte of memory on a PC still has an impact on
the design of operating systems today. If you want to build an operating
system that runs MS-DOS programs, many of which expect to find cer
tain resources at the specific addresses chosen in 1981, you have to
develop some method for supporting this memory layout.

T W 0: Intel Processor Architecture

The 80286 Processor
Enter the 80286 and protected mode operation. Once again, software
compatibility was a key goal in the design of the processor, so the 286
designers retained the basic instruction set and addressing method of
the 8086. Indeed, at power on, the 286 operates in real mode (a term
coined at that time to designate operation in 8086 mode) and behaves
for all intents and purposes just as an 8086 does. But Intel added the
new protected mode of operation to significantly increase the processor's
capabilities. An operating system can programmatically switch the 286
from real to protected mode, and in protected mode, the processor's
segment registers are used very differently.

In protected mode, the processor uses the contents of a segment
register to access an 8-byte area of memory called a descriptor. Within
the descriptor is the information that determines the actual physical
address of the memory location the program is trying to reference. Fig
ure 2-3 on the next page shows how the 286 combines the segment reg
ister, descriptor information, and address register to produce a 24-bit
physical memory address. It's like having a key to a numbered safety
deposit box that contains the real address of the location for a rendez
vous. The segment register actually contains an index into a table of
descriptors. Each descriptor can be set up to address a different area of
physical memory. (Note that in descriptions of protected mode opera
tions, the term selector is customary for describing the contents of the
segment register. Since the value in the register isn't actually a memory
address, there is some justification for yet another term.)

A descriptor contains a lot more information, related primarily to
memory protection issues. The operating system sets up all the descrip
tors for a particular program within a contiguous area of memory
called a kJcal descriptor table, or WT. Each program running on the 286
has its own LDT. The operating system also sets up a global descriptor
table, or GDT. The operating system uses the GDT to allocate memory
for itself and, for example, to allow several programs to access the same
area of physical memory. The operating system can place the GDT and
each application's LDT anywhere in memory. Two special hardware
registers, the GDTR and the LDTR, are set up to contain the base
addresses of the tables for the currently executing program. When the
operating system switches tasks, it will typically change the base address
in the LDTR. Usually, the GDTR remains unchanged while the system
is running. Reloading the GDTR and LDTR registers is a privileged op
eration performed only by the operating system. The system does not
allow application programs to modify the contents of these registers.

41

INSIDE WINDOWS 95

42

16-bit segment register
containing 13-bit selector

8-byte descriptor

Figure 2-3.

24-bit physical memory
address

16-bit address offset

Memory access on the 80286 processor in protected mode.

Two aspects of the new protected mode architecture are impor
tant to note.

M Protected mode introduced the notion of memory protection.
Unless a program's LDT contains a descriptor for a particular
area of memory, there is no way for the program to access
that part of memory. Thus, an operating system can set up
an environment in which several programs run concurrently,
each in its own protected memory area. The 286 actually
has protection capabilities beyond this, and we'll look at all
the details when we examine the 80386 processor. Typically,
the OS uses the GDT descriptors to allow different programs
to access the same area of physical memory.

M The architecture's provision for indirect access to memory
via the LDT or GDT allows the operating system to use any

T W O: Intel Processor Architecture

suitable area of physical memory as a segment. The segments
of one program need not be contiguous and can even be
different sizes. As far as the program is concerned, it has
access to all the memory described by its LDT. The program
doesn't know, or care, exactly where in physical memory the
segments exist. Figure 2-4 shows how such an allocation of
memory might appear within a system running two programs
that share access to one particular memory segment.

Addresses generated
by program A

Figure 2·4.

Descriptor table
for program A Physical memory

Hypothetical memory allocation for two programs running on an
80286 processor in protected mode.

The 80386 Processor
Note that the 80286 retained the 8086's awkward segmented address
ing scheme. A programmer, or a compiler and linker, still had to be

43

INSIDE WINDOWS 95.

44

sure to set up segment registers with the correct selector, and the code
that could scan through that ubiquitous 100,000-integer array still was
not pretty.4 This deficiency alone made Motorola's 32-bit microproces
sor family the almost unanimous choice for manufacturers designing
UNIX workstations. Intel had to respond to this market pressure, and
they did, introducing the 32-bit 80386 processor in 1987.

Microsoft worked closely with Intel during the 80386 design
phase and strongly influenced the capabilities of the new virtual 8086
mode supported by the 386.5 Microsoft's interest in the project was to
make sure that. the 386 included all the capabilities necessary to allow
new operating systems to run existing MS-DOS programs. Microsoft
had a lot of battlefield experience from meeting this requirement over
the course of several operating systems and versions of operating sys
tems, and the work they'd put into OS/2, MS-DOS 95, and Windows,
all for the 286 processor, had persuaded them that there had to be an
easier way. Sometimes silicon chips don't turn out quite the way the
designers intended, but in the case of the 80386, Intel got it right. The
new 32-bit capabilities and the virtual 8086 mode feature worked well
from the time of the first production samples of the 386, and apart
from changes to internal details, those features remain the same in the
80486 and Pentium processors.

Windows 95 is a 386 operating system, so we need to take a close
look at the features of the 386 (and by extension of the 486 and the
Pentium) that are important to Windows 95's operation. Software com
patibility for the now enormous installed base of MS-DOS software
remained an overriding consideration, so PC manufacturers6 first re
leased systems that used the 386 as a yet faster 8086--turn on the power
and the 386 runs in real II).Ode, precisely emulating the 8086. However,
the 386 evolved from the 286 in a number of distinct ways, all of which
called for a new operating system to make the new features of the 386
available to application programs:

II Internally, everything grew from 16 bits to 32 bits-all the
registers, the memory addresses, and so on.

4. If you're interested in the more amusing aspects of microprocessor history, you
might like to revisit Intel's 286 sales campaign of the time. Their explanation of why a
segmented architecture beats a linear architecture is a triumph of marketing over
science.

5. In fact, the I/0 permission bitmap, so important to virtual mode operation, was
present in the 386 largely because of Microsoft's lobbying.

6. Compaq was the first company to introduce a PC that u·sed a 386 processor, and
this was the first time that one of the so-called "clone" manufacturers broke ranks.
Compaq's low-risk bet helped push IBM out of its industry leadership position.

T W 0: Intel Processor Architecture

• Although the 386 preserved the notion of segments, a single
segment could now be 4 gigabytes in size as opposed to a
mere 1 megabyte. For all intents and purposes, the program
mer could now treat the 386 as though it had a linear address
space. Intel finally had a real 32-bit microprocessor.

• The 386 improved the memory protection scheme further. An
operating system designer could now implement a full virtual
memory scheme on the 386. (Note that virtual memory and virtual
8086 mode really aren't related, terminology notwithstanding.)

• An operating system could switch the 386 processor at will
among its different operating modes. The properly equipped
386 system could run 8086, 286, and new 32-bit 386 programs
simultaneously.

• The virtual 8086 mode and the associated I/O permission
mtmap allowed the implementation of complete MS-DOS
software compatibility within a protected multitasking system.

80386 Memory Addressing
The 80386's software compatibility features ensure that in real mode it
operates just as an 8086 does. Address construction is the same as for
the 8086, and all extraneous information (notably the high-order 16
bits of each register) is simply ignored during execution. In protected
mode, the operating system that controls program loading and execu
tion must set up a program's descriptor table in such a way that the pro
cessor knows how to interpret the memory address information. The
protected mode process for calculating a physical address on the 386 is
similar to that of the 286: the processor uses the contents of a segment
register as an index into a descriptor table, and the descriptor table en
try contains nearly all the remaining necessary information-"nearly"
all because the 386 allows an operating system to implement a complete
paged virtual memory scheme. When the operating system enables.
paging, the address information extracted from the descriptor table
must go through a further level of interpretation before it is used as an
actual memory address.

80386 Descriptor Format
Figure 2-5 on the next page illustrates the layout of a single descriptor
table entry on the 386. Let's look at each field in a little more detail.

45

INSIDE WINDOWS 95

46

Figure 2·5.
80386 descriptor table entry format.

Base Address The processor forms a 32-bit address from the four
base address fields. Once assembled, the address specifies the first
memory location of the memory segment the program wants to refer
ence. Adding the 32-bit offset address generated by the program com
pletes the address of the memory reference. For a 286 program, byte 7
of the descriptor (bits 24 through 31 of the base address) is always 0,
since the 286 can deal only with 24-bit base addresses.

This arrangement is the basis of the addressing mechanism for
32-bit programs. Each program has to deal only with a consistent 32-bit
linear address. The operating system sets up the base register to point
to the first byte of the program's code or data segment, and no further
segment manipulation is necessary. Since a 32-bit quantity provides
such an enormous address space, only a tiny number of programs will
ever need to indulge in segment register trickery.

This absence of the need for segment register manipulation is
an important performance benefit. On the 286 running in protected
mode, every time the contents of a segment register change, the pro
cessor must check to see that the new selector is a valid one-that is,
that the new segment register contents address a memory segment allo
cated to the program. If the selector is not valid, the processor generates
a general protection, or GP, fault. This selector validation process consumes
many processor cycles, and when segment registers are frequently
changed, as they must be on the 286 running in protected mode, overall
program performance degrades. On the 386, most programs will never
reload the segment registers and consequently never suffer the perfor
mance hit.

Limit Two fields form the 20-bit limit quantity, which specifies the up
per limit of the memory segment addressed by the descriptor. Twenty
bits, as a byte address, is only I megabyte. But didn't we just say that seg
ments could be 4 GB in size, rather than just I MB? Read on.

T W 0: Intel Processor Architecture

G Bit The single granularity bit specifies whether the processor inter
prets the limit field value as byte granular or page granular. Byte granular
ity means that the processor interprets the limit value in terms of bytes.
This setting (0) assists in running 286 programs correctly. Page granu
larity means that the processor interprets the limit value in terms of
pages. Memory pages on the 386 are 4Kin size, and 20 bits' worth of 4K
pages equals, lo and behold, 4 GB of memory.

D or B Bit This bit is the D bit if the memory segment contains pro
gram code. The value 1 means that the segment contains native, that is,
386, instructions. The value 0 means that the segment contains 286
code. This bit is the B bit ifthe segment contains data. In this case, the
value 1 means that the segment is larger than 64K.

P Bit The present bit denotes whether the memory segment is present
in physical memory. This information is an important aspect of the vir
tual memory scheme implemented by Windows 95 since it allows the
operating system to differentiate between an invalid memory refer
ence-one in which the program tries to access memory it doesn't
own-and a reference to a memory segment that has been temporarily
swapped out to the hard disk.

DPL The 2-bit descriptor privilege level field specifies the privilege level
for the segment-zero through three. The contents of the DPL field,
together with the privilege level of the currently running program, play
an important role in the Windows 95 protection system. Code running
at ring zero, as the terminology goes, has the privilege of executing cer
tain instructions that ring three code does not. Code at ring three, for
example, can't turn interrupts on and off. Windows uses only two privi
lege levels-zero and three-despite the fact that the processor also
supports privilege levels one and two. Someday there may be a good
reason to use the extra privilege levels, but it hasn't come along yet.

S Bit The segment bit is always set to 1 for a memory segment. The
value 0 means that the descriptor references something other than
memory. The "something other" can be one of several special data
structures used by a 386 operating system to control aspects of device
interrupt handling and memory protection.

Type Field The 3-bit type field specifies the memory segment type-for
example, an execute-only code segment or a read-only data segment. The

47

INSIDE WINDOWS 95

contents of the type field help the operating system maintain memory
protection. An attempt to modify the contents of a read-only data seg
ment would obviously be an error, for example.

A Bit The accessed bit indicates whether any program has referenced
the memory segment. Any reference to the segment causes the ac
cessed bit to be set to 1. The Windows 95 memory manager uses the
accessed bit in its virtual memory scheme. If a memory segment has
never been accessed while in physical memory, the physical memory it
occupies becomes an excellent candidate for the operating system to
reclaim it and allocate it to another program when the need comes up.
And if there has been no access to the segment, it obviously has never
been modified, so Windows can reclaim the memory for another use
without having to write the segment out to disk.

The Descriptor in Summary
As you can see, the layout of a 386 memory descriptor is hardly the
most elegant data structure ever devised. The layout is really an artifact
of the earlier processors with which the 386 has to remain compatible.
However, the descriptor does contain the information necessary to
implement a fully protected multitasking system with virtual memory
support. Windows 95 implements exactly that, and apart from the first
hardware initialization sequence after power on, Windows 95 always
runs in 32-bit protected mode with virtual memory enabled.

Virtual Memory

48

Simply put, virtual memory is a method for allowing several concur
rently running programs to share the physical memory of the com
puter. (Note again that virtual memory and virtual mode, or virtual 8086
mode, are very different. The phrase virtual mode refers to the operation of
the 386 processor in virtual 8086 mode. The context will determine the
meaning of any other use of the word virtual.) The techniques for imple
menting and managing virtual memory date from many years before the
introduction of the 386.7 In fact, the early research on virtual memory
was so good that the most effective techniques for handling virtual
memory have changed very little since its earliest implementations. The

7. Over the years, many manufacturers and research institutes have laid claim to
the "first" distinction. The earliest implementation of virtual memory was probably the
one by the Atlas research group at the University of Manchester, England, during the
late 1950s and early 1960s.

T W 0: Intel Processor Architecture

management of virtual memory is entirely under the control of the op
erating system. As far as any individual program is aware, it has access
to all the memory it needs all the time. A simple example should illus
trate how Windows 95 manages virtual memory.

Let's say that we have a Windows 95 system with 4 MB of memory
and a hard disk with plenty of free space. Windows 95 itself, with the
Shell, the Print Manager, and so on, might take up a megabyte of the
available memory. On the disk is a word processing program we decide
to run. Once loaded, this program occupies 2 megabytes, and we load
in a large document that includes several different fonts. Altogether,
this document consumes 400K of the remaining megabyte of memory.
Now we decide that we need to incorporate a table of numbers in the
document. The numbers reside in a spreadsheet, so we have to run the
spreadsheet application to cut and paste a copy into our document. Win
dows 95 obligingly loads the spreadsheet application and its data into the
remaining 624K of memory. Well, maybe-if we still used VisiCalc it
could. Obviously, this software and data won't all fit into memory at the
same time. But from our user point of view, things do work exactly as de
scribed. The system and both applications are running, so to us it seems
that everything must be in memory. Everything is actually held, not in the
available 4 MB of physical memory, but in virtual memory.

Virtual Memory Management
The system's virtual memory is made up of the RAM in the computer
and the Windows swap file on the hard disk. The operating system
manages this total available memory by swapping program and data
segments back and forth between RAM and the swap file. For example,
if the instructions in a particular code segment are to be executed, the
segment must be loaded into RAM. Other code segments can stay on
disk in the swap file until they're needed. A disk data buffer area within
a data segment has to be in RAM if the disk transfer is to succeed.
Whenever a segment is not held in RAM, the operating system can
mark its absence by clearing the present bit in the appropriate segment
descriptor. Then, if an access to that segment is attempted, the 386 will
generate a not present interrupt that notifies the operating system of the
problem. The system will arrange to load the missing segment into an
available area of RAM and then restart the program that caused the in
terrupt. All of this swapping and notification is transparent to the appli
cation program. It's up to the operating system to carry out these
housekeeping activities.

49

INSIDE WINDOWS 95

50

Good Virtual Memory Management
Of course, the art of designing a good virtual memory system revolves
around issues such as how much of a program to keep in RAM at any
one time and which segments to move from RAM to disk when RAM is
full and the system needs space for a new segment. A poor virtual
memory manager can slow the system down considerably. Since copy
ing from the disk and copying to the disk are relatively slow operations,
the goal of good virtual memory management is to minimize the total
number of swap operations. After all, if the operating system is busy
swapping, programs aren't running and no useful work is getting done.

The 386 helps things a lot by allowing the implementation of a
paged virtual memory scheme that allows the operating system to carry
out all memory allocation, de-allocation, and swapping operations in
units of pages. On the 386, a memory page is 4K and each memory seg
ment is made up of one or more 4K pages. (Small page sizes are gener
ally more efficient because many programs exhibit a trait called locality
of reference. For example, a program might repeatedly execute only a few
instructions to scan through a text file searching for a particular string
of characters. Allocating a single page for the program's code and a
single page for a data buffer could satisfy this program's memory re
quirements for several seconds, even though the program is, in total,
much larger.) Windows 95 implements such a paged virtual memory
system. You'll often run across the words pagi,ng, page file, and page fault
in descriptions of memory management operations. These terms are
essentially identical to the swapping, swap file, and not present interrupt
terms used in the earlier description of virtual memory management.

As you can see if you study the 386 segment descriptor format in
Figure 2-5, there appears to be no way to allocate memory in units as
small as a 4K page without wasting a lot of the memory. The trick is in
the interpretation of the address once the operating system enables
paging. During initialization, the operating system will first switch the
processor into protected mode and then enable paging operation.
Once enabled, paging stays on until the system shuts down. With paging
enabled, the 386 alters the interpretation of the 32-bit address first ob
tained by adding the base address from the descriptor to the offset gen
erated by the program. Figure 2-6 illustrates the splitting of this
32-l;>it quantity into three parts. The top 10 bits (31 .. 22) are an index into
a page table directory. Part of each 32-bit quantity in a page table di
rectory points to a page table. The next 10 bits of the original address (21
.. 12) are an index into the particular page table. Part of each page table

32-bit linear address

Figure 2-6.

Page table
directory

T W 0: Intel Processor Architecture

--------------' '

Page tables ·--,
: _ -:

' ·-------------·

+

32-bit physical address

80386 paged virtual memory address decoding.

entry points (finally) to a page of physical memory, and the remaining
12 bits of the original address (11 .. 0) make up an offset within this
page of memory. The operating system anchors the entire structure by
storing the address (for once, a physical address) of the page table di
rectory for the current program in a special processor register called
CR3. Each time the operating system switches tasks, it can reload CR3
to point to the page directory for the new program. Although it sounds
laborious, the whole address decoding process takes place at lightning
speed within the chip itself. Memory caching techniques ensure that

51

INSIDE WINDOWS 95

52

frequently used page table entries are available with no additional
memory references. 8

To fully support the virtual memory scheme, page table entries
contain more than just the address of where to find the next link in the
chain. Figure 2-7 shows the contents of a single 32-bit word in both the
page table directory and page table entry structures. The page table
directory and each page table consume one 4K memory page (1024
entries in each). If you care to do the math, you'll see that this allows
the entire 4 GB of a program's address space to be properly addressed.
However, look at the numbers: a page table directory that points to
1024 page tables could mean that the system has to use 4 MB of
memory (1024 page tables, each 4K in size) simply to store the page
tables. Fortunately, the flag bits in the page table directory allow the sys
tem to store the page tables themselves on disk in the paging file. Thus,
if you run a very large program (for example, a I-GB program, which
will need 256 page table pages), the system will swap page tables as well
as program code and data pages in and out of memory.

Page table directory entry

Page table entry

Figure 2-7.
80386 page table directory entry and page table entry formats.

To fully support the virtual memory operations and the 386
memory protection system, the page directory and page table entries
include a number of flag bits. The processor itself modifies some of
these flags directly. The operating system manages others. Let's look at
a few of these fields in detail.

8. Intel's experiments indicate that the required page table entry is found in the
cache more than 98 percent of the time.

T W 0: Intel Processor Architecture

D Bit Whenever a program modifies the contents of a memory page,
the processor sets the corresponding page table dirty bit. This tells the
operating system that if it wants to remove the page from memory to
free up space, then it must first write the page out to disk to preserve
the modifications.

A Bit Any reference-read, write, or execute-to a page causes the
processor to set the accessed bit in the corresponding page table entry.
The virtual memory manager can use this flag to figure out whether it's
wise to remove a particular page from memory. A page with the access
bit clear for the last 10 seconds, for example, has never been accessed.
Removing that page from memory is probably a better choice than re
moving a page that was definitely in use during the same time period.
Windows 95 uses a standard algorithm known as least recently used (LRU)
to determine which page to remove from memory. The more recently
used a page, the less likely it is to be re-allocated.

P Bit The present bit is set to 1 only when the page table or memory
page addressed by the table entry is actually present in memory. If a
program tries to reference a page or page table that is not present, the
processor generates a not-present interrupt and the operating system
must arrange to load the page into memory and restart the program
that needed the page.

U/S Bit The user/supervisor bit is part of the 386's overall protection
system. If the U /S bit is set to 0, the memory page is a supervisor
page-that is, it is part of the memory of the operating system itself
and no user-level programs can access the page. Any attempted access
causes an interrupt that the operating system must deal with. In Win
dows 95, as in earlier versions of Windows, this illegal memory refer
ence might lead to one of the now infamous General Protection Fault
messages. Since any such access attempt is the direct result of a bug
in the application program, it's hard to know what else to do with the
offending program.

R/W Bit The read/write bit determines whether a program that is
granted access to the corresponding memory page can modify the con
tents of the page. A value of 1 allows page content modification. A value
of 0 prevents any program from modifying the data in the page. Nor
mally, pages containing program code are set up as read-only pages.

53

INSIDE WINDOWS 95

Mixing 286 and 386 Programs
As we have seen, the 286 and 386 processors interpret the contents of
their internal registers and the resultant memory addresses in very dif
ferent ways. Nearly every Windows application program to date has
been written and compiled as a 16-bit program-meaning that it uses
the instructions and memory addressing operations of the 286 proces
sor. One of the major improvements in Windows 95 is its support for
32-bit programs that use the instructions and memory addressing op
erations of the 386 processor. Windows 95 itself is a mixture of 16-bit
and 32-bit code. Mixing the two programming models efficiently is a
major development challenge.

The major problem is allowing 32-bit code to make calls to 16-bit
code and vice versa. Since the memory address formats are completely
different-32-bit base address and 32-bit offset vs.16-bit segment regis
ter and 16-bit offset-simply jumping between 32-bit and 16-bit code is
insufficient: the memory address format must also be changed.

To mediate between the two models, Microsoft developed a tech
nique it calls thunking. A thunk is a short sequence of instructions re
sponsible for converting the memory addresses from one format to the
other. For example, when a 32-bit application makes a call to a Win
dows User function, the Windows kernel accepts the call and its 32-bit
parameters and then calls a thunk. The thunk translates the param
eters and addresses to 16-bit equivalents and then calls the 16-bit User
routine.9

The efficient operation of the thunk layer, as it's called, is critical to
the performance of Windows 95. In Chapter 4, we'll look at exactly how
Windows 95 uses its thunk layer.

The Protection System

54

Any modern operating system must offer protection capabilities: pro
tection of the user's data, protectiqn of one program from others run
ning concurrently in the system, and protection of physical devices
from unauthorized access. Windows 95 harnesses all of the 386's pro
tection facilities to deliver these capabilities.

9. User is one of the Windows 95 components still implemented as 16-bit code.
Compatibility issues coupled with the project schedule were the principal reasons that
User didn't get translated to 32-bit code.

T W 0: Intel Processor Architecture

Memory Protection
We've already seen some aspects of the 386 protection mechanism that
relate specifically to memory protection:

1111 The provision for the operating system to set up page tables
that describe exactly the areas of physical memory a program
can access

II The read/write page table entry flag that prevents a program
from modifying the contents of a read-only page or a program
code page

ii The user I supervisor flag that allows the operating system to
protect all of its own memory from any access by an application

Whenever an application tries to access a memory location that is
not within its current memory map, the 386 processor generates an in
terrupt and hands the operating system a collection of information
about the problem. In a couple of cases, the memory reference will ac
tually be quite legal and the operating system must arrange to add the
appropriate memory page to the application's memory map. For ex
ample, a function call within the application can push onto the program
stack parameters whose requirements exceed the memory currently al
located to the application. The operating system responds by arranging
to add pages to the application's stack space and then restarts the appli
cation as if nothing had happened. With applications for Windows,
there are also cases in which the operating system would like to allocate
more memory to an application but has simply run out. 10 Sometimes
the user sees a dialog box that says system resources are too low to con
tinue, and sometimes the application simply fails. Windows 95 reduces
the likelihood of this type of problem by greatly expanding the number
of available operating system resources. Essentially all system resource
requests are now satisfied by the operating system's allocating memory
from a 32-bit protected mode memory pool.

In still other cases, an invalid memory reference message might
indicate some sort of software problem-an application's incorrectly
trying to access memory past the end of one of its data structures, for
instance-and the system would have no choice but to terminate the

10. The most common case of this, under Windows 3.0 and 3.1, is exhaustion of
the 64K GDI heap space.

55

INSIDE WINDOWS 95

offending program. Those of you who have used earlier versions of
Windows will, no doubt, have seen enough Unrecoverabk Application
Error and General Protection Fault dialogs to be familiar with the han
dling of such a situation.11 Fortunately, the quality of Windows develop
ment tools and application testing has now reached a level that makes
this type of error rare.

Operating System Protection

56

There is more to protection than memory management. There has to
be a way to prevent applications from maliciously or inadvertently cor
rupting the operation of the system. The several special 386 instruc
tions that deal specifically with task switching, interrupt handling, and
other system management issues are cases in point. Clearly, the Win
dows 95 kernel has to be the only software able to perform these opera
tions. If an application could interfere with these delicate operations,
mayhem would be bound to ensue. The 386 provides for this protec
tion requirement by maintaining as many as four processor privilege levels.

Software running with privilege level zero can do anything it
wants to: change page tables, switch processor modes, turn paging on
and off, halt the processor, and so on. The Windows 95 operating sys
tem executes with privilege levels zero and three. Applications run only
with privilege level three and are subject to its several restrictions. A
program with privilege level three that tries to execute any of the privi
leged instructions-specifically the task switching, interrupt handling,
and system management instructions mentioned earlier-will cause
the processor to generate an interrupt. The operating system will re
trieve the interrupt information and will, most likely, terminate the of
fending program.

The 386 has some complex mechanisms for managing software
running at any of the four privilege levels. You'll hear the phrase "run
ning at ring three," for example, meaning that the processor privilege
level is set to three for the program in question. The more privileged

11. In fact, most UAEs under Windows 3.0 came from an application's making
Windows function calls using incorrect parameters. By the time the system would
figure this out, it would have no choice but to terminate the offending program.
Windows 3.1 added parameter validation. An application's passing illegal parameters
to the system resulted in an immediate return of an error to the application. Some
applications couldn't handle the error return and failed in strange ways.

T W 0: Intel Processor Architecture

the software is (that is, the lower its privilege level), the more it can do
to affect the operation of the system or of other programs running un
der the system.

There has to be some controlled way for the processor to switch
between privilege levels-when an application program calls an operat
ing system service, for example, or when a hardware interrupt causes a
device driver to execute. The 386 provides for this switching by means
of a gate, a specialized descriptor table entry that allows control trans
fers to occur between rings. There are actually four different types of
gate: call, interrupt, task, and trap. A call to the operating system, a hard
ware interrupt, or an error condition such as a protection fault causes
an entry to ring zero code via a gate. As processing is en route to a more
privileged execution level, a new instruction pointer and stack pointer
come into use and some sensitive data is stored in a protected area of
memory. The corresponding return to a less privileged level restores
the context of the less privileged code. Since it is the operating system
that sets up the gates originally, the operating system remains in con
trol of what happens during these transitions-ensuring that system in
tegrity isn't compromised.

Device Protection
The device protection issue revolves around correctly sharing a re
source, such as the hard disk, or preventing two programs from both
trying to use a nonshareable device, such as a COM port, at the same
time. Windows 95 handles a lot of the device management issues itself,
but the 386 also has a significant part to play.

Low-Level Device Access
At the basic hardware level, a program controls all input/output opera
tions by manipulating the processor's 1/0 ports and interrupt requests
(usually referred to as IRQs). You've probably installed in your PC
adapters whose documentation refers to their use of specific I/O ad
dresses and IRQs. Adding a third serial port (the COM3 device) to a
system usually involves much frustrating effort to prevent conflicts be
tween the third COM port and the existing COM ports. The conflicts in
question are those between the I/O addresses and the IRQ. Unless you
set up the third COM device with a unique I/O address and IRQ, the
controlling software can't determine which device it needs to take care
of when an I/O request is made.

57

INSIDE WINDOWS 95

58

From the inside looking out, the 1/0 ports appear to be similar to
a memory address. There are a total of65,536 (64K) possible 1/0 ports
on the 386, though the majority of them are never used. Programs con
trol devices by reading from and writing to the appropriate 1/0 ports
by means of special instructions. In the case of a COM device, placing a
byte of data in the appropriate I/O port will cause the data to be sent
down the attached wire. An interrupt manifests itself as a temporary
pause in the processor's current activity, coupled with the execution of
a piece of software that has been specifically set up to be responsible
for dealing with the interrupt. When a hardware interrupt occurs, the
386 arranges an orderly suspension of the current program and then
begins execution of some other code from within the operating system.
A device generally initiates an interrupt whenever it needs attention
when a data transfer has been completed, for example. The processor
and associated hardware take care of generating interrupt signals and
moving bytes in and out of the 1/0 ports. The operating system is re
sponsible for installing and configuring the various routines that man
age the data transfer process and other housekeeping activities.

High-Level Device Access
Windows 95 and most other operating systems control peripherals by
means of device drivers. These software modules control all aspects of a
device's operation-moving data to and from memory buffers, han
dling interrupt requests, and so on. An application requests access to a
device by making a device open call to the operating system. If the call
is successful, the application can then read and write data with a fur
ther series of system calls and, finally, close the device. This holds true
whether the device is a single resource such as a COM port or a shared
resource such as the hard disk. In the case of the hard disk; the open
request is obviously for a file on the disk rather than for the disk itself.
In this ordered world, device management is relatively easy and the sys
tem concerns itself most with the efficiency of the I/O operations. All
these application requests are defined as part of the Windows APL The
operating system validates the API calls, hands them to the appropriate
device driver, and assists in error management and task scheduling.

Unfortunately, it isn't that easy when you want to run MS-DOS ap
plications concurrently with Windows applications. In particular, many
MS-DOS applications believe that they are in total control of the sys
tem. They don't try to account for other applications that might be run
ning simultaneously with them, and they may try to access device

T. W 0: Intel Processor Architecture

hardware directly. For example, most terminal emulation programs
will manipulate the COM port 1/0 addresses without making any oper
ating system requests. This direct access leads to a number of problems
on a Windows 95 system when you want to allow simultaneous execu
tion of more than one MS-DOS application:

• Two applications could try to access the same device at the
same time. There has to be some way to prevent this conflict.

Ill Typically, a 386 program that controls a device directly is
running at ring zero. If Windows 95 allowed an application to
do this, that application would have access to other privileged
system resources. To protect other programs, such privileged
execution must be avoided.

II A program that believes it is in sole control of the system
might sit forever in a loop waiting for something to happen
a key depression or a character from a COM port, for ex
ample. If no other program can run at the same time, the
performance of the whole system sinks to nothing. This kind
of dominance has to be prevented.

Using the 80386 Device Protection CaJ)abilities
Windows 95 uses a whole range of tricks to avoid these device access
problems while still allowing older MS-DOS programs to run without
modification. And the 386 provides one hardware feature crucial to the
successful implementation of this MS-DOS program support: the 1/0
permission bitmap, a hardware mechanism that allows Windows 95 to
manage device access for every program running on the system.

Whenever Windows 95 starts a new application, it determines
whether the application is a Windows application or an MS-DOS appli
cation. Windows applications all use operating system APis to access
files and devices, so each Windows application runs at ring three and
has no permission to access any device directly. A Windows application
will request access to all devices by means of API calls. If the Windows
application does try to access a device I/ 0 port, the 386 will signal a
protection fault to the operating system and Windows 95 will terminate
the offending application. Each time the user starts an MS-DOS appli
cation from the Windows 95 shell, the application will be set up to run
in virtual 8086 mode in a new virtual machine (VM). Windows 95 must
account for the possibility that the MS-DOS application might try to

59

INSIDE WINDOWS 95

directly access any of the hardware devices attached to the system. To
accommodate that possibility, Windows 95 sets up an 1/0 permission
bitmap for each VM. The bitmap is an array of flags, one flag for each
of the 386' s I/ 0 ports, that specifies whether the application can access
the 1/0 port directly. If no access is granted-the normal case-the
386 signals a general protection fault whenever the application refers
directly to the 1/0 port. For an MS-DOS application, a direct access at
tempt is not necessarily a program error, as it is for a Windows applica
tion. For example, a communications application will access the I/O
ports for the COM device directly. For the application to run correctly,
Windows 95 must allow this 1/0 port access to happen-assuming that
some other program is not already in control of the same COM port.
This whole treatment of virtual machine management and direct de
vice control-referred to as device virtualization-is a key element of
Windows 95. The most important aspect of device virtualization to note
here is that the 386 provides the hardware facility for selectively pro
tecting the I/O ports on an individual, program-by-program basis and
informing the operating system each time a direct access occurs.

Virtual 8086 Mode

60

Without the virtual 8086 feature (most often called simply virtual mode),
running MS-DOS applications under Windows 95 would be as difficult
and error-prone as running them under OS/2 or Windows on the 286
processor. If you used earlier versions of either OS/2 or Windows on
286 systems, you'll remember both the errors and the major limitation:
only one MS-DOS program could run at any one time. Clearly, 1/0 per
mission handling is a key requirement of the 386's virtual 8086 mode. A
few other issues are important in Windows 95 running in virtual mode.

Virtual 8086 mode is an inherent part of the protected mode ar
chitecture of the 386. Programs running in virtual 8086 mode are run
ning in protected mode. On the 286, MS-DOS programs didn't have a
virtual mode (protected mode) to run under. To run an MS-DOS pro
gram on the 286, there was no choice but to run the processor in real
mode. Real mode provided absolutely no memory and device protec
tion, and what's more, the MS-DOS program had to occupy the first
megabyte of the system's address space. The 386 solved all of these
problems:

T W 0: Intel Processor Architecture

• Virtual 8086 mode execution remains subject to all the 386
memory and device protection rules. The operating system
has control over the resources it allocates to the virtual mode
program. The 386 reports to the operating system any at
tempted access to resources outside the allocated set.

• The operating system can load virtual mode programs any
where in memory. The 386 translates virtual mode addresses
using the 386 protected mode rules. All of the 386's paging
capabilities are in play in virtual mode, so virtual mode
programs running on the 386 can be swapped just as other
protected mode programs can be.

II Unlike running an MS-DOS program on the 286 by means of
a switch to real mode, running a virtual mode program on
the 386 doesn't require a lengthy mode switch operation. Task
switching between a Windows application and an MS-DOS
application on the 386 is much faster than it was on the 286.

Setting up a virtual mode program on the 386 is straightforward.
Once the program is loaded, the operating system simply identifies it as
a virtual mode program by setting a single flag in one of the 386's
control registers. The 386 then imposes the rules of 8086 program exe
cution on the virtual mode program. Specifically, registers are 16 bits
only (not 32 bits) and addresses are 20-bit values generated exactly as
they would be on an 8086. Of course, this is only half the story. Emulat
ing an 8086 processor is one thing. Emulating an entire PC, including
MS-DOS, is entirely another. That problem has been passed along to
Windows 95 to solve.

Conclusion
The Intel microprocessor has accumulated enormous capability since
its simple beginnings with the introduction of the 8080 in 1974. In a
scant twenty years, the microprocessor has matched or surpassed the
capabilities of any mainframe processor costing thousands of times
more. Along the way, the designers at Intel have had the good fortune to
be able to learn from one failed experiment in protected mode-the
80286-and get it right the next time. The 80386 architecture, particularly
its support of virtual 8086 mode within a paged virtual memory

61

INSIDE WINDOWS 95

62

scheme, has proved to be the right platform for building today's
advanced 32-bit operating systems. The successor processors, the 80486
and the Pentium, have adopted the same basic architecture without
change, and it's a sure bet that successors to the Pentium will do
the same.

Windows 95 takes full advantage of all of the 386's capabilities.
There's a lot going on under the hood when you run applications on
Windows 95. Fortunately, neither the user nor the application pro
grammer has to pay much attention to Windows 95's system and
program management activities. This is as it should be.

That was the basics of how the hardware woiks. Now for the software. It's time to
look at Windows itself.

C H A P T E R T H R E E

A TOUR OF CHICAGO

In this chapter, we're going to take a tour through Windows 95-look
ing briefly at the structure of the system and the associated terminol
ogy. You may know Windows intimately already, in which case there'll
be sections of this chapter that you'll skip through quickly. Chapter
Four is where the detailed examination of Windows 95 begins. The
goal for this chapter is to give you a sufficient grounding in the Win
dows system so that you can approach the new material in Chapter
Four with ease. Although a lot of the information in this chapter is
common to both Windows 3.1 and Windows 95, it will be Windows 95
that we dissect. Even if you've spent the last few years disassembling the
several versions of Windows, you may want to flip through this chapter
to make sure that my terminology matches yours and to get a quick over
view of the structure of Windows 95.

Here's what we're going to look at in this chapter:

Ill The structure of the Windows system, including the graphical
components of Windows and the system's support for Win
dows applications and MS-DOS virtual machines

Ill The Windows multitasking model

Ill The elements of the Windows user interface

Ill Some aspects of Windows application programs

System Overview
Over the course of successive version releases, Windows has grown from
its original role as a graphical extension to MS-DOS to encompass many
of the functions of a full operating system. From its very first release, Win
dows handled program loading functions. With Windows 95, the trans
formation is complete. Windows is now a complete operating system

63

INSIDE WINDOWS 95

64

with MS-DOS compatibility built in. The Windows 95 "single applica
tion mode" allows you to run MS-DOS as a fallback operating system if
you want to run an application that can't function under Windows.

Figure 3-1 shows a block diagram view of the major components
of Windows 95. Let's look at these components in a little more detail.

Figure 3-1.
Windows 95 system architecture.

TH R E E: A Tour of Chicago

The System Virtual Machine (or simply System VM) is the name
given to the environment in Windows 95 that supports all the
Windows applications and the Windows subsystem components
such as the Graphics Device Interface (GDI).

32-bit Windows applications are the new Windows applications
that use the 32-bit memory model of the 80386 processor and a
subset of Microsoft's Win32 application programming interface
(API). In Windows 95, each of these so called Win32 applications
has a private address space that's inaccessible to other applica
tions. 32-bit applications can be preemptively scheduled by
Windows 95.

The Shell is a 32-bit Windows application that provides the essential
user interface to the system. The Shell in Windows 95 consoli
dates the functions of the Windows 3.1 Program Manager, File
Manager, and Task Manager utilities into a single application.

16-bit Windows applications are the "older" Windows applications,
the ones you use on Windows 3.1 today. These applications use
the segmented memory model of the Intel processor family
really an 80286 memory model. As in Windows 3.1, the 16-bit
applications running under Windows 95 share a single address
space and can't be scheduled preemptively. You'll hear Microsoft
refer to these applications as Wini 6 applications.

The application programming interface layer in Windows 95 pro
vides full compatibility with the existing Windows 3.1 API as
well as support for the new 32-bit API accessible only to 32-bit
Windows applications. The 32-bit API is a subset of Microsoft's
full Win32 API first seen in Windows NT and in the Win32s add
on for Windows 3.1.

The Windows Kernel supports the lower-level services required by
Windows applications, such as dynamic memory allocation. For
Windows 95, the Kernel provides these services to both 16-bit
and 32-bit applications.

GDI is the core of Windows' graphical capabilities, supporting
the fonts, drawing primitives, and color management for both
display and printer devices. Although GDI in Windows 95
continues to support existing 16-bit applications, it includes
significant new features available only to 32-bit programs.

65

INSIDE WINDOWS 95

User is the window manager-the Windows 95 component that
manages the creation and manipulation of on-screen windows,
dialogs, buttons, and other elements of the Windows interface.

MS-DOS Vlrtual Machines support the execution of MS-DOS
applications under Windows. As in Windows 3.1, the user can
run multiple MS-DOS VMs concurrently. Windows 95 includes
several new features designed to improve the user's management
of these VMs, but the basic design for MS-DOS VM support
hasn't changed a great deal.

The Base System

66

The remaining modules implement various aspects of the underlying
operating system in Windows 95. The collection of these components is
usually referred to as the base system.

File management has changed dramatically in Windows 95. In Win
dows 3.1, it's MS-DOS that controls the local hard disk filesystem.
This MS-DOS control impaired the performance of Windows,
and the opportunity to improve filesystem support didn't really
exist while MS-DOS remained in control. Under Windows 95, the
situation is entirely different. Notably, MS-DOS is no longer used
for the management of files on local disks.1 The new file man
agement subsystem provides a series of interfaces that allows all
local disk filesystems (including the CD ROM filesystem) and
multiple network filesystems to coexist.

The network subsystem is the latest incarnation of Microsoft's
peer-to-peer network first seen in the Windows for Workgroups
product in 1992 and later seen in Windows NT. 2 The network
subsystem uses the new file management subsystem to coordi
nate its access to remote files. Other network suppliers can
also plug their products into the new file management services,
allowing a user to simultaneously access more than one type of
host network. Windows provides built-in support for SMB,
Novell, and TCP /IP protocols.

1. As we noted in Chapter 1, there may yet be a version of MS-DOS that also in
cludes the new filesystem capabilities. But it won't be the MS-DOS we're familiar with.

2. As of July 1994, it isn't clear how Microsoft will package the Windows 95
networking features. They might all be in the same box as Windows 95, or
they might not.

TH R EE: A Tour of Chicago

Operating system services in Windows 95 include major components
such as the Plug and Play hardware configuration subsystem as
well as a miscellaneous collection of functions such as those that
fulfill date and time of day requests.

The Virtual Machine Manager is the heart of the Windows 95 operat
ing system. It includes software to implement all the basic system
primitives for task scheduling, virtual memory operations, pro
gram loading and termination, and intertask communication.

Device drivers in Windows 95 can come in a number of different
forms-real mode drivers and so called virtual drivers, or VxDs,
among others. Some systems may still require the use of older
real mode MS-DOS device drivers to support particular hard
ware devices, but one of the development gocils for Windows 95
has been to develop protected mode drivers for as many popular
devices as possible, including new protected mode drivers for
the mouse, CD ROM devices, and many hard disk devices.

Virtual device drivers, or VxDs, take on the role of sharing a single
hardware device among several applications. For example,
running two MS-DOS applications in separate screen windows
requires the system to create two MS-DOS VMs each of which
wants access to the single physical screen. The screen driver VxD
has to support this sharing requirement. ''VxD" is also used as a
general descriptor for other 32-bit operating system modules. 3

Windows and Modes
You may never have run Windows on anything other than a 386-based sys
tem with a decent amount of memory-in which case, you've probably
only ever used Windows in its enhanced mode. Operationally speaking, this
meant that Windows used all the capabilities of your 386 processor, in
cluding demand paging and virtual 8086 mode. If your history with Win
dows goes back further, to 286- and even 8088-based systems, you will have
heard the terms real mode and standard mode applied to Windows. If you
knew those terms then, forget them now. Windows 95 operates only in
enhanced mode. In fact, there is no longer a term "mode" for Windows.4

3. "VxD" actually stands for "Virtual anything Driver."

4. With Windows 95, support for the EGA as a display adapter also disappears.
A Windows capable machine now requires at least a 386SX processor, 4 MB of memory,
and a VGA.

67

INSIDE WINDOWS 95

Virtual Machines

68

The word "virtual" appears everywhere as a qualifier for terms in Win
dows 95. 5 Indeed, the provision of a virtualized environment for the ex
ecution of application programs is a key to many of the capabilities of
Windows 95. The most important of the ''virtual" features is undoubt
edly the support for the virtual machines that host the running pro
grams, so it's important to understand both the associated terminology
and the technical basis for Windows virtual machines.

It's easy to get confused about virtual machines. Intel uses the
term virtual 8086 machine to describe the use of the virtual 8086 proces
sor mode to emulate an Intel 8086 processor on the 80386. This virtual
8086 machine includes the I-megabyte address space, the CPU regis
ters, and the 1/0 ports. A Windows virtual machine (usually called simply
a Windows VM) refers to a context for the execution of an application
program. A VM context includes the application's map of addressable
memory and the contents of the hardware registers as well as the Win
dows resources allocated to the application. Because under Windows
3.1 every Windows VM runs at least part of the time in the hardware vir
tual 8086 mode (which is still a protected mode), there are abundant
possibilities for misunderstanding. Many books and articles about Win
dows fail to distinguish among the many possibilities when they use the
term ''virtual." A Windows VM is not the same as an Intel virtual 8086
machine. Here's what's important about Windows VMs:

1111 Windows VMs are either MS-DOS VMs, each of which runs a
single MS-DOS session, or a System VM that provides the
execution context for all Windows applications.

1111 The System VM runs in protected mode all the time.
Under Windows 3.1, there comes a point at which the
System VM switches from protected mode to virtual 8086
mode so that MS-DOS code can run. This very rarely
happens in Windows 95.

II Windows uses virtual 8086 mode to run MS-DOS applications.
The system uses the processor's virtual 8086 mode to erect
a controllable shield around code that would otherwise need
to execute in real mode.

5. The marketing slogan chosen for the original introduction of Windows/386 was
"Virtually Everything." It's a tagline that still seems to be appropriate.

TH R E E: A Tour of Chicago

• Windows applications on Windows 95 never use virtual 8086
mode. They execute in protected mode all the way down to
the bare hardware.6

• An MS-DOS VM is a Windows VM running an MS-DOS
application in virtual 8086 mode.

• Notwithstanding their association with virtual 8086 mode,
MS-DOS VMs can run in 32-bit protected mode under Win
dows with the mediation of a DOS extender that conforms to
the DPMI interface. When an MS-DOS VM switches to pro
tected mode, it's no longer running in the processor's virtual
8086 mode, but Windows still considers it to be an MS-DOS
VM. (This is a subtlety that's rarely recognized.)

To make things potentially more confusing, the word ''virtual" is
also used in talk about memory addresses. In Chapter Two, we ~ooked
at the details of how the 386 translates virtual addresses, generated by
an individual program, to physical addresses that reference actual
memory locations. Software running in any Windows VM always gener
ates virtual addresses. The system itself uses virtual addresses. The only
time that physical addresses come into play is when the memory man
agement subsystem sets up the processor's page tables to provide the
mapping between virtual and physical addresses.

• At least in this book, "address" and "virtual address" are sy
nonymous. The term "physical address" will mean exactly that.

• An MS-DOS VM usually has an address space covering ad
dresses from 0 to I megabyte. This is a virtual address space.
The system maps this virtual address to its chosen set of
physical addresses using the 386's virtual memory capabilities.
The pages of the virtual address space could be widely scat
tered in physical memory.

• The System VM can have a much larger virtual address space
than an MS-DOS VM running in virtual 8086 mode. Appli
cations running in the System VM run in protected mode and
can make use of'this large virtual address space.

6. This isn't strictly true since Windows 95 still runs MS-DOS device drivers in
virtual 8086 mode if there's no protected mode driver available. But real mode drivers
are an endangered species.

69

INSIDE WINDOWS 95

Windows Virtual Machines

70

Regardless of whether it's an MS-DOS VM or the System VM that con
tains all the Windows applications, you define the capabilities and cur
rent context of a virtual machine by looking at the resources allocated
to it. Each VM has to include the following:

II A memory map that defines the virtual memory accessible to
the currently executing code within the virtual machine.

II An execution context, defined by the state of the VM's regis
ters (the directly accessible CPU registers as well as other
controlling factors such as the CPU privilege level).

II A set of resources accessible to the application running with
in the VM. Within the System VM, every Windows applica
tion accesses resources using the Windows APL In an MS-DOS
VM, an application uses the MS-DOS software interrupt (INT)
interface and may also try to access the hardware directly.

The virtual machine environment of Windows 95 remains heavily
reliant on the underlying capabilities of the 386. The 386 dependence
offers advantages:

II The virtual memory allocated to each VM is separated from
the virtual memory allocated to other VMs. Each MS-DOS
VM runs in a private address space, unable to interfere
with applications running in other MS-DOS VMs or in the
SystemVM.

II The memory and 1/0 port protection capabilities of the 386
allow every device on the system to be completely protected.
Any MS-DOS application can run, convinced that it has
the whole machine to itself and ignorant of the fact that it
might actually be sharing the host system with other MS-DOS
VMs or Windows applications.

Initialization
During initialization, the operating system sets up the System VM and
prepares the global context for all MS-DOS VMs. Under Windows 3.1,
this is essentially a snapshot of MS-DOS just at the point at which the
user types the win command. Subsequently, whenever the system creates
a new MS-DOS VM, this global context is used as the basis for the new

TH R E E: A Tour of Chicago

VM's context. The snapshot includes all TSRs, environment variables,
and so on. Windows 95 is subtly different from Windows 3.1 during this
initialization phase. With Windows 3.1, it's up to the user to enter the
win command and start the initialization of the Windows system. Win
dows 95 immediately gains control and switches to protected mode to
complete the initialization process after loading-no win command is
needed. In either case, when Windows switches to protected mode, it
pushes the real mode code aside and takes control of the machine. Win
dows 95 still processes the CONFIG.SYS and AUTOEXEC.BAT files if
they exist, so the user can still customize the global MS-DOS context by
including commands in these two files.

The System Virtual Machine
The context for the System VM is a protected mode environment in
which all the Windows applications run, together with the major com
ponents of the Windows graphical subsystem. The interface between
any application and Windows is by means of one of hundreds of applica
tion programming interface (AP!) functions. 7 This type of interface allows
applications to request system services using named function calls
rather than the numbered software interrupt scheme used in MS-DOS
applications. The linkage between a Windows application and the func
tions in the Windows subsystem is made at program load time by means
of a technique called dynamic linking.

Windows 95 introduces support for a new class of applications:
the 32-bit applications that use the Windows 95 subset of Microsoft's
Win32 APL These 32-bit applications run within the System VM con
text, but each has a private protected address space that prevents other
applications from accessing its private memory.

Windows 3.1 relies upon cooperative multitasking as the basis for
its task scheduling. Under Windows 95, cooperative multitasking is still
the basis of task scheduling for the older 16-bit applications. However,
the system schedules Win32 applications using a preemptive schedul
ing algorithm. For the user of a system that runs Win32 applications
only, the preemptive scheduling means faster and smoother response
when several applications run concurrently.

A Windows program relies on the system to deliver a stream of
messages to it to inform it of new events-mouse dicks in one of the

7. As of early 1994, one rough count had the number of Windows 95 APis,
messages, and macros totaling well over 2000.

71

INSIDE WINDOWS 95

72

application's windows, new programs starting up, and so forth. Under
Windows 3.1, the system uses a single queue to hold all the messages
that originate within the system. As a result, it's possible for one errant
application to choke the flow of messages to all the applications. Win
dows 95 provides for the system to put messages destined for. Win32
applications into private message queues, reducing the possibility of
the system's grinding to a halt when one application fails to service the
message queue.

Windows 3.1 relies upon MS-DOS for filesystem access. Although
this is about the only significant reliance on MS-DOS within Windows
3.1, it is a weak point of the system. This remaining dependence on MS
DOS for filing support creates a whole catalog of problems that the
Windows designers have grappled with over the course of several re
leases. They finally fix the problems in Windows 95 by replacing the
MS-DOS filesystem services with a new protected mode subsystem.

All MS-DOS filesystem services are accessed by means of the INT
21H software interrupt. Within the System VM itself, the execution of
the INT 21H instruction causes a general protection fault that the op
erating system catches and handles. Windows 3.1 deals with this fault by
arranging for the System VM to switch temporarily to virtual 8086
mode so that the MS-DOS INT 21H code can execute correctly. Once
the file operation is completed, the System VM returns to protected
mode and the Windows application code continues to execute.

Windows 95 catches the same fault and simply hands it to the pro
tected mode filesystem manager for processing. No switch from protected
mode to virtual 8086 mode occurs, and providing there is a protected
mode device driver in use for the target device, the System VM context
remains a protected mode context throughout the entire operation.

MS-DOS Virtual Machines
An MS-DOS VM is a faithful replication of a PC running MS-DOS. As
far as the application is concerned, the VM has a megabyte of memory
with a memory map corresponding to the hardware memory map. For
example, the directly addressable video display memory is at memory
address B8000H. The context for the MS-DOS VM is usually, though
not always, a virtual 8086 mode environment with a copy of MS-DOS
mapped into the virtual address space of the VM.

Applications in an MS-DOS VM will use the software interrupt ser
vices of MS-DOS (predominantly the INT 21H services) to make system

TH R E E: A Tour of Chicago

requests. Under Windows 95, these requests ultimately pass to the pro
tected mode code that implements the system services. In the case of
filesystem requests, the INT 21H call will be passed to the new
filesystem manager to be handled together with other concurrent re
quests from applications running in the System VM.

MS-DOS VMs are set up using a VM that you never see-unless
you start poking around with a debugger-and it's a VM that never con
tains an application that actually runs. This is the VM that is set up with
the initial state of the MS-DOS environment once system booting and
the processing of CONFIG.SYS and AUTOEXEC.BAT are complete.
Within this hidden VM is everything that is global to the MS-DOS envi
ronment. For example, if your AUTO EXEC.BAT runs a TSR program
before it starts Windows, that TSR program will be loaded and will be
come part of the global MS-DOS environment. Even under Windows
95, where there's less reliance on MS-DOS, you can still use
CONFIG.SYS to load device drivers and AUTO EXEC.BAT to load TSRs
as parts of the global MS-DOS environment.

Once this global initialization is complete, Windows needs some
where to save a snapshot of the MS-DOS environment. It sets up the
hidden VM context to be used as the initial state of every MS-DOS VM
that's subsequently started. The saved hidden VM itself never runs.
Later on, when you start an MS-DOS application from within Windows,
the system creates a new MS-DOS VM-meaning that it allocates some
memory and the appropriate control blocks within the system-and
then copies into the new VM the entire global environment from the
hidden VM. This copying means that the initial state of the new MS
DOS VM is exactly the state you'd achieve if you had just turned the
machine on and run through the startup procedure again. This copy
ing from the hidden VM also explains why changes that you make in
one MS-DOS VM don't affect any of the others-either those already
running or new VMs that you run later. To verify this inviolability of the
MS-DOS VMS, simply run a few MS-DOS VMs and change the com
mand prompt in each-local changes won't affect the saved global VM
context that governs the initial states of all the VMs.

Protected Mode MS-DOS Applications
One complexity that the Windows designers have had to deal with is
the fact that MS-DOS applications are not simply real mode applica
tions anymore-they can also run in protected mode. You can trace

73

INSIDE WINDOWS 95

74

this wrinkle back to a few years ago when the hunt for more than 640K
of memory began in earnest. Expanded memory, extended memory,
high memory, and the products that exploited them-such as
Quarterdeck's QEMM-became popular resources. For a while, the
whole situation was a mess, with various designs jockeying for position
as the standard.

One group of vendors sought order by agreeing to the VCPI (Vir
tual Control Programming Interface) specification. VCPI was pretty
good except that it didn't fully support Windows. So after a briefface
off with Microsoft, vendors came up with the DPMI (DOS Protected
Mode Interface) specification. Programs that conform to the DPMI
specification can run under MS-DOS and Windows and can exploit
protected mode on both 286 and 386 systems.

DPMI
The DPMI specification lays out the definition of an MS-DOS software
interface that ultimately allows MS-DOS applications to exploit the 32-
bit protected mode while running under Windows. DPMI actually al
lows low-level software components called DOS extenders to coexist with
Windows. A DOS extender supports the execution of protected mode
programs that want to call on MS-DOS for file I/ 0 and other services.
The need for the DPMI specification became apparent during the de
velopment of Windows 3.0, when Microsoft and other companies em
barked on parallel efforts to provide support for 32-bit protected mode
program execution. Microsoft's interest was in Windows, since Win
dows is itself a DOS extender. It was clear that there would be a number
of DOS extenders on the market, so vendors developed DPMI as a way
of allowing them to coexist. Today you can find DOS extenders in use
in several kinds of popular applications that need more than 640K of
MS-DOS memory: compilers, database programs, and others. The in
terfaces to the various DOS extenders are not standardized-the DPMI
interface that allows the DOS extenders to coexist with Windows is.

The DPMI-DOS extender exploitation of protected mode is es
sentially the best way to allow an MS-DOS program to get at more
memory and to use 32-bit addressing (as opposed to struggling on with
segmented addressing). Windows 3.1 implements DPMI and DOS ex
tender functionality within a single module, so as far as a Windows
programmer is concerned, the DPMI and extender services are indivis
ible. This architecture does allow a user to start MS-DOS VMs that run

THREE: A Tour of Chicago

applications that make use of alternative DOS extenders rather than
Windows itself as a DOS extender. In that scenario, Windows provides
only the DPMI services.

The DPMI specification defines two software components needed
to provide a full implementation. The DPMI Host, or DPMI Server, is the
lowest-level software component responsible for administering the
DPMI services. All the DPMI functions are available by means of a call
to INT 31H with a function number that identifies the particular DPMI
service that's required. These services really are very low level-the al
location of descriptors within the LDT or GDT and the reading and
writing of MS-DOS interrupt vectors, for example.

The DPMI Client is any program requesting DPMI services, usually
the DOS extender. Although it's possible, the DPMI interface is not in
tended for direct use by application programs. It's up to the client to
check for the presence of a DPMI server before any attempt to call the
server is made. Most DOS extenders define a private API that allows a
modified MS-DOS application to call the extender for protected mode
services and to provide MS-DOS services to the application while it exe
cutes in protected mode.

Multitasking and Scheduling
One of the more complex Windows activities is its allocation of the pro
cessor to multiple programs. For a program to do anything, it has to exe
cute instructions. Since Windows allows you to run several programs at
once, there has to be a way of sharing the processor among these pro
grams. Enter multitasking-and with it a great deal of terminology and
debate.

Since so much terminology is associated with the subject of
multitasking, we'll need to define a few terms in this chapter. Some of
the terms are frequently used in both a generic context and a very par
ticularized context. The word task, as we'll see, is a classic example. Win
dows is, generically speaking, a multitasking system, and a Windows 3.1
task is a very precise concept, represented by specific data structures and
operational rules.

In the next chapter, we'll look at the details of the Windows 95
multitasking model. In this section, we'll give the subject a general review
with a Windows bias.

75

INSIDE WINDOWS 95

Multitasking Models

76

The generic term multitasking refers simply to an operating system's
ability to share the CPU among several programs. Most operating sys
tem designers refer to a program in its running state as a task, so you
can think of a task as a program loaded into memory and actually do
ing something. The Windows NT and UNIX worlds both use the term
process to mean the same thing. Windows 3.1 says task and, occasionally,
process. And lo and behold, the word process is the term in favor for Win
dows 95. The term task has been officially removed from the Windows
language. The term process is therefore what we'll use. Really, you can
think of task and process as synonyms.8

As soon as you run Windows 3.1, you're multitasking since you're
running the Program Manager and a number of other tasks that are ac
tually part of the system itself rather than programs with visible win
dows on your screen. Windows 95 is no different in this respect. A few
years ago, when observers first began to discuss multitasking operating
systems for PCs, you often heard comments to the effect of "I don't need
multitasking. I do only one thing at a time anyway." Unfortunately,
people rarely understood that a multitasking system could offer features
such as background print spooling and network connectivity even ifthe
user only ran Lotus 1-2-3 all day. Nowadays good multitasking is consid
ered to be essential to providing an effective environment for the PC
user. Even if you only run Lotus 1-2-3/W all day long, Windows
multitasking enables you to manage your network connection, the
Print Manager, and your communications session at the same time.

The operating system component that manages the multitasking
in both Windows 3.1 and Windows 95 is the scheduler. The scheduler
deals principally with time and events. A Windows 95 process gets a time
slice that determines how long it can use the CPU. At the end of the
process's time slice, the scheduler decides whether to let a different
process use the CPU.9 Events influence the scheduler's decisions. To
the scheduler, a mouse click is an event that may mean handing the CPU
to the process that owns the window in which the mouse click occurred.

8. At this point you probably think this discussion is becoming very arcane.
Unfortunately, process has a precise meaning in Windows and the lack of rigor with
respect to such a term in most Windows documentation can generate considerable
misunderstanding.

9. Unlike Windows NT, Windows 95 doesn't (and won't) support multiprocessor
systems, in which the scheduler has more than one processor to allocate to processes.

TH R E E: A Tour of Chicago

Or the scheduler may consider the simultaneous completion of a net
work data transfer to be an event worthy of more attention than the
mouse click. In that case, the process managing the network would get
the CPU, and the other process would have to wait.

You'll hear Windows 3.1 described as a cooperative multitasking sys
tem and Windows NT described as a preemptive multitasking system.
Cooperation and preemption are process scheduling techniques, and
Windows 95 uses both of them, so we have to understand them. Pre
emptive scheduling puts the operating system in complete control over
which process runs next and for how long. At any time, the scheduler
can take the CPU away from the current process and hand it to another
one. Typically, such a preemptive act will occur in direct response to an
event that demands swift attention. The scheduler associates a priority
with each running process. If an event occurs that is of interest to a
high-priority process, the scheduler will preempt the current process
and run the high-priority process. The scheduler gets control of the sys
tem either when a process surrenders the CPU (it reaches a point at
which it's waiting for the user, for example) or when there's a clock in
terrupt. Most systems will program the clock to tick between 20 and 50
times a second, and the final tick is when the scheduler gains control
and can preempt a running process.

Process priorities are recalculated frequently. For example, if the
system has to choose between just two processes-one with a low prior
ity and one with a higher priority-the low-priority process will never
be able to run if the scheduler doesn't dynamically adjust the priorities.
The duration of the time slice plays into the calculation of priorities as
well. It makes no sense to continually give the CPU to a process and
then preempt the process after it has executed only a few instructions.
All that will ever get run is operating system code, not your spreadsheet
or compiler.

Cooperative multitasking relies upon application programmers
to help keep the system running smoothly. In the cooperative tech
nique, the scheduler can switch processes only when the currently run
ning process surrenders the CPU. If the current process decides to
recalculate 1T to 5000 decimal places, there's nothing the scheduler can
do about it. Good programming practice for cooperative multitasking
systems dictates that applications should regularly hand the CPU back
to the operating system-a technique called yielding. An application's
yielding allows the scheduler to run a higher-priority process if one is
ready. In Windows 3.1, cooperative multitasking is why no amount of

77

INSIDE WINDOWS 95

78

mouse clicking will help you when the current application has the hour
glass cursor up on screen. The system duly registers all the mouse click
events and adds them to the application's message queue, but until the
current process surrenders the CPU, the scheduler can't switch away
from it and allow another process to handle the new events.

Windows 3.1 is as insistent as it can be about getting applications
to yield control of the processor. Essentially, every time an application
calls the system, asking to deal with the next event, the system suspends
the process and allows the scheduler to reevaluate process priorities.
The lack of preemption doesn't make this way of handling the coopera
tive multitasking problem foolproof, however.

The absence of preemption in Windows 3.1 does make a number
of design decisions easier for both operating system developers and
application programmers. Neither has to worry about the operating
system code's being reentrant, for instance. The system design doesn't
have to account for the possibility of process preemption while system
code is executing. Suppose, for example, that you run two Windows ap
plications, both of which occasionally use a COM port to dial out and
retrieve data from an information service. If one application could be
preempted in favor of the other partway through the opening of the
COM port, the OS would have to protect itself from the possibility that
the second application would also start an open request. With no pre
emption, the OS doesn't have to worry: the first open request will al
ways run to completion before the other application can run.

Ultimately, though, the lack of preemptive scheduling leads to
problems. High-priority events can't be handled rapidly because an appli
cation won't relinquish the processor in time, for example; or an
application that crashes will lock up the whole system because the
operating system will be unable to deliver messages to other applica
tions. MS-DOS itself has to have a non preemptive scheduling environ
ment. MS-DOS knew nothing of multiple processes when it was
designed, and despite the herculean efforts of many software develop
ers to build multitasking systems on top of MS-DOS, there have always
been shortcomings in the resultant products. Windows has been no ex
ception to this non preemptive rule. Preempting MS-DOS at the wrong
time can lead to disaster, so over the years the Windows designers have
had to put up with building most of an operating system on top of a
very unsuitable foundation. Windows 95 changes that.

TH R EE: A Tour of Chicago

Critical Sections
You'll hear programmers use the term critical section when they talk
about developing software for any preemptive multitasking system. A
critical section is a sequence of instructions executed by more than one
process that for one reason or another must not be preempted before
it completes execution. An obvious example of a critical section occurs
during memory allocation.

Windows, along with most other operating systems, uses deriva
tives of thirty-year-old algorithms for keeping track of blocks of avail
able memory. (It's not that the algorithms are outdated. It's just that
they're as good as they ever need to be.) One particular algorithm in
question maintains available memory blocks as a linked list, with a de
scriptor for each block that identifies its size and location. When Win
dows tries to satisfy an application's request for memory, it has to
unlink the block from the list of available blocks.

At some point during the unlinking procedure, the list data struc
ture is in a mess, with invalid pointers or erroneous flag bits set. If the
system were to reschedule right at that point, a different process might
initiate a new memory allocation request. Since the first process would
not yet be complete, the new process would eventually stumble while
trying to manipulate the invalid list data structure and probably crash
the whole system. To guard against such a situation, the code manipu
lating the list maintains a critical section between the entry and exit
points of the sensitive instruction sequence. Once the process enters
the critical section, the system guarantees that the process will exit the
critical section before any other process can enter it. This isn't to say
that the system necessarily ignores other processes while a critical sec
tion is executing. For example, ignoring hardware interrupts during
the execution of a lengthy critical section would be indicative of bad
system design. Critical section management does guarantee, though,
that once a process has entered a critical section, the system will sus
pend any other process trying to enter the same section.

The technique of allowing only one process at a time to execute a
critical section is sometimes referred to as mutual exclusion, and the un
desirable situation in which several processes fight to get at a protected
resource such as memory by entering the critical section is called con
tention. The Windows Virtual Machine Manager has long supported
critical section management for device drivers. Preemptive scheduling

79

INSIDE WINDOWS 95

means that Windows 95 has to support similar critical section manage
ment functions at the API level. The newly improved nature of multi
tasking and preemption in Windows 95 means that you'll hear more
frequently about objects called mutexes, or semaphores, that are used to
control process entry and exit of critical sections.

Processes in Windows

Modules

80

So, amidst a collection of virtual machines and in a system that sup
ports cooperative multitasking, what exactly is a process in Windows
95? It is one of two objects:

• Windows considers each MS-DOS VM to be a single process.
Regardless of what's going on inside that VM, to Windows
it is only one process.

• Each executing Windows application is also a process. Re
member that every Windows application runs within the
System VM, so this view of the System VM as containing mul
tiple processes points up another difference between the
System VM and an MS-DOS VM.

Under Windows 3.1, all of these processes are described within a
system data structure called the Task Database, or IDB for short. Win
dows 3.1 actually identifies an MS-DOS VM process by marking the ap
propriate TDB entry as being the WinOldAp application.10

Under Windows 95, the tasking model is considerably more com
plex. The most important change from the application developer's
point of view is the addition of threads to the system. Under Windows
95, threads rather than processes are the objects managed by the sys
tem scheduler. A thread defines an execution path within a process,
and any process can create many threads, each of which shares the
memory allocated to the original process. Multiple threads allow a
single application to easily manage its own background activities and to
offer a highly responsive interface to the user.

In Windows, the term module describes a related collection of code, data,
and other resources (such as bitmaps) present in memory. Typically,

10. WinOldAp is the name given to the entity that controls a single MS-DOS VM.
You'll see the name in various Windows status displays and documentation items.

TH R EE: A Tour of Chicago

such a collection will form either a single application program or a dy
namic link library. Windows maintains a data structure, known as the mod
ule database, that identifies all the modules currently active in the system.
The module database describes an essentially static collection of objects
rather than the dynamic collection referenced by the task database.

Keeping a record of currently loaded modules is important be
cause such a record is the basis for the resource sharing supported by
Windows. The second time you run the WordPad (nee Notepad) appli
cation, for example, Windows can see that the code segments and the
bitmap that forms the icon are already in use. Rather than loading a
second copy and consuming more memory, Windows simply creates ad
ditional references to the resources already in use.

During the life of the system, Windows maintains a usage count
for each resource. As applications make use of a resource, the system
increments the reference count. When the application terminates, the
system reduces the reference count. A reference count of 0 is the indi
cation that the resource is no longer in use and that the system can re
move the resource and reclaim the memory it occupied.

APISupport
The Windows 95 API coverage is, to say the least, extensive. The Win
dows 95 API includes a subset of Microsoft's Win32 API and provides
compatibility by including support for 16-bit Windows applications and
MS-DOS applications. Microsoft recommends that 16-bit Windows ap
plication development cease with the introduction of Windows 95 and,
to encourage developers to make that choice, makes the new capabili
ties of the Windows 95 system accessible only to 32-bit applications.
The mere opportunity to finally abandon the Intel architecture's
segmented memory model is likely to be enough reason for most devel
opers to switch. Add in the enhancements available to Win32 applica
tions, and switching becomes a pretty attractive option.

Windows supports its APis by means of three major components:
Kernel, User, and GDI. Kernel incorporates the most operating-system
like functions-memory allocation, process management, and the like.
The User module focuses on the window management issues that come
up throughout Windows operation: window creation and movement,
message handling, dialog box execution, and a myriad of related func
tions. GDI is the Windows graphics engine, supporting all the line
drawing, font scaling, color management, and printing capabilities of
the system.

81

INSIDE WINDOWS 95

Every Windows application shares the code in these three mod
ules. In Windows 95, Kernel, User, and GDI have each a 16-bit and a
32-bit implementation resident in the system. And a lot of code is
shared between, for example, the 16-bit and the 32-bit implementa
tions of GDI. Applications don't have to take any special note of this
dual existence, though. The system connects the application with the
appropriately sized subsystem.

Each Windows API function is accessible by means of a name-in
contrast to the MS-DOS API scheme of numbered interrupts. To get an
application to call on one of the services in a Windows subsystem, the
programmer simply uses the target function name in the application
source code and compiles and links with the appropriate libraries, and
the application is ready to run. This sounds normal so far, but if you ex
amine the compiled program, you won't find any code that actually
implements a Windows API function. If you're a C programmer, you'll
have used the printf() function frequently. Poke through the compiled
program, and sure enough, you'll find a stream of code and data that
implements printf(), and the same is true for many other functions.

What you will find if you care to dissect a compiled Windows
program is a collection of references to the Windows API functions
references that are necessary if Windows is to be able to load the appli
cation correctly. And think about that printf() example again-every
program has its own copy of the code for printf() linked in, whereas the
Windows program that calls GetMessage() calls the single copy of this
function that resides in the User module. So does every other Windows
program. In fact, the Kernel, User, and GDI modules are all examples
of Windows dynamic link liwaries (DILs for short). Windows uses DLLs
extensively, and the technique that allows an application to call a DLL
is dynamic linking.

Dynamic Linking

82

Nowadays it's customary to rely upon the dynamic linking capabilities
of the target operating system when preparing an application for exe
cution. Windows and Windows NT have the capabilities, OS/2 has
them, and so does UNIX. A compilation and link procedure used to
involve the linker in scanning object code libraries and copying large
amounts of code and data into the application's executable file. No
more. In a dynamic linking environment, the traditional role of the
linker is now split between the link step and the program loading step
undertaken by the operating system.

TH R E E: A Tour of Chicago

The linker still scans a set of libraries. Some of the libraries in
clude runtime support code that ends up in the executable file; others
simply contain references to functions that won't be fully resolved until
the operating system loads the program. In Windows, such libraries are
called import lilYraries, and together they contain a defining reference
for each and every Windows API function. The linker scans the import
library and embeds in the executable file a target module name and a
numeric entry point. If an application calls the Windows MessageBox()
function, for example, the executable program file will include a refer
ence to the User module entry point number 1. The application's call
ing the GDI LineTo() function will embed a reference to the GDI
module entry point number 19. At program load time, it's the operat
ing system's responsibility to replace these references with addresses
that are valid for use in function calls. Any module that satisfies these
references via dynamic linking is called a dynamic link library. Every
DLL declares a set of entry points called exports that satisfies the exter
nal references.

Much of Windows itself is a collection of DLLs, and the system
makes heavy use of the runtime name resolution capabilities to inter
connect its various components. For example, printer device drivers
support a standard set of entry points. When the GDI module calls a
printer driver, it references a function that will be resolved via a runtime
dynamic link. Regardless of what type of printer is involved, each
printer driver supports the same set of entry points. Rather than
relinking the operating system when you install a new printer, you sim
ply replace the file containing the device driver code, and the new
driver satisfies the same set of dynamic links. Figure 3-2 shows the first
few entries for the dynamic links exported from the Windows 3.1
Hewlett-Packard PCL and PostScript printer drivers.

Figure 3-2.
Dynamic link entry points in printer drivers.

(continued)

83

INSIDE WINDOWS 95

Figure 3-2. continued

Notice that in each printer driver the names refer to functions
within the driver. They could be any valid name. The external refer
ence uses only the module name and the numeric identifier to resolve
the dynamic link.

The Windows resource sharing technique also applies to DLLs. It
has to-after all, DLLs are built for sharing. Loading unique copies not
only is wasteful but also defeats the whole purpose of a DLL.

Support from the Base System

84

Ultimately, the Windows subsystem has to call on the services of the
base system. This might be an explicit request-for example, to open a
file. Or it might be an implicit one-for example, there's a page fault
and the base system has to set about loading the missing pages from
disk. In the case of an MS-DOS VM, the assistance of the base system is
needed once the MS-DOS software interrupt executes.

A transition to the operating system code in the base system in
volves a transition between processor privilege levels. The Windows
VMs usually run at ring three; the base system-the most privileged
code in Windows-runs at ring zero. Chapter Four looks at the details
of the transition to the base system code. The various ways in which it
happens all amount to presenting the Virtual Machine Manager with
an opportunity to gain control over the transition so that order can be
maintained.

The base system code comprises a number of Windows VxDs. Al
though the name VxD and the term virtual device driver are used inter
changeably, a VxD need have nothing to do with any hardware device.
A VxD is simply a 32-bit protected mode module running at the
processor's most privileged level of execution. Some VxDs do deal with
hardware devices, and others supply operating system functionality that
doesn't have anything directly to do with devices. The VxD architecture

TH R E E: A Tour of Chicago

was originally designed as a standardized format for 32-bit protected
mode code modules. There is an API, internal to the base system, that
VxDs can use.11 Obviously, the scope of these functions is at a much lower
level than the scope of the services called on directly by applications.

Memory Management
Memory management in Windows takes place at two different levels: a
level seen by the application programmer and an entirely different view
seen by the operating system. Over the course of different releases of
Windows, the application programmer has seen little change in the avail
able memory management APls. Within the system, however, the
memory management changes have been dramatic. Originally, Win
dows was severely constrained by real mode and 1 megabyte of
memory. Then expanded memory provided a little breathing room,
and currently the use of enhanced mode and extended memory re
lieves many of the original constraints. Windows 95 goes further yet
and essentially removes all the remaining memory constraints.

Windows 95 continues to support all the API functions present in
Windows 3.1, and you can still build and run applications that use the
segmented addressing scheme of the 286 processor. However, if you
look at the detailed documentation for the Windows 95 memory man
agement API, you'll see that all of the API functions originally designed
to allow careful management of a segmented address space are now
marked "obsolete." The "obsolete" list includes, for example, all the
functions related to selector management. The reason, of course, is the
Windows 95 support for 32-bit linear memory and the planned obsoles
cence of the segmented memory functions-yet another unsubtle hint
that the Win32 API is the API you should be using to write Windows ap
plications.

Although use of the 32-bit flat memory model simplifies a lot of
Windows programming issues, it would be misleading to say that Win
dows memory management has suddenly gotten easy.12 Windows 95
actually has a number of new application-level memory management

11. The Windows Device Driver Kit is the best reference for detailed information
on VxDs and the associated API functions.

'12. The Windows 95 documentation lists 45 API functions under the heading
"Memory Management." The "obsolete" list numbers 28 API functions.

85

INSIDE WINDOWS 95

capabilities. All of the functions relate to the management of memory
within the application's address space, the private virtual memory allocated
to the process. The systemwide management of memory is the responsi
bility of the base system, and the Windows API aims to hide many of the
details of the system's lower-level functions.

Application Virtual Memory

86

Figure 3-3 illustrates the basic layout of a Win32 application's virtual
memory. Every Win32 application has a similar memory map, and each
such address space is unique. However, it is still not fully protected: the
private memory allocated to one Win32 application can be addressed
by another application. The Win32 application's private address space
is also the region in which the system allocates memory to satisfy appli
cation requests at runtime.

The system address space is used to map the system DLLs into the
application's address space. Calls to the system DLLs become calls into
this region. Applications can also request the dynamic allocation of
memory by means of virtual addresses mapped to the shared region.,
Having virtual addresses mapped to the shared address space caters to
the need for controlled sharing of memory with other applications.

4GB

3GB

2GB

Figure 3-3.
Application virtual memory map.

Requests for memory at runtime fall into one of two categories:
the application can make an explicit request for extra memory, or the
system can respond to an implicit request for memory-that is, allocate
memory to an application as a side effect of allocating some other re
source. An implicit request occurs, for example, when an application

TH R E E: A Tour of Chicago

creates a new window on screen: the system must allocate memory for the
data structures used to manage the window. Windows 95 claims memory
for resource allocation from a large 32-bit linear region rather than from
the restrictive 64K segment used in previous versions of Windows. An on
going problem in versions through Windows 3.1, running out of memory
during resource allocation, has been largely eradicated in Windows 95.

Heap Allocation
In Windows parlance, the term heap describes the region of memory
used to satisfy application memory allocation requests. In Windows 3.1,
the system maintains both a local heap and a global heap. The local heap
is a memory region within the application's address space, and the glo
bal heap is a memory region belonging to the system. As an application
makes requests for local memory, its address space is adjusted to en
compass the newly allocated memory. The system resolves requests for
global memory from the same system memory pool used for all applica
tions. It's possible to run out of either or both resources, although the
use of a 2-GB address space makes this highly unlikely. Exhaustion of
the local heap affects only a single application. Exhaustion of the glo
bal heap has systemwide repercussions.

Windows 3.1 programmers have to consider a variety of factors as
they decide how to satisfy an application's runtime memory require
ments. Windows 3.1 also has a range of API functions for manipulating
dynamically allocated segments, and the manipulation of these shifting
regions is further complicated by the underlying segmented memory
model. It isn't just a chunk of memory that must be allocated. The ap
plication also needs a selector so that it can address the memory cor
rectly. Under Windows 95, the Win32 application model does away with
all these considerations. Selectors are n:o longer required-it's simply a
32-bit address that identifies the new memory-and the local and glob
al heaps are merged into a single heap. The API functions that deal
with selectors and the manipulation of memory regions in a segmented
model all become obsoJete.

Windows 95 Application Memory Management
For a Windows programmer, the Win32 API greatly simplifies the most
common dynamic memory allocation chores. Furthermore, the in
creased capability of the underlying 32-bit architecture allowed the
Windows designers to add a number of new functions for application
memory management.

87

INSIDE WINDOWS 95

ill Windows 95 provides functions that support private
heaps whereby an application can reserve a part of mem
ory within its own address space. The application can create
and use as many private heaps as it wishes and can direct
the system to satisfy subsequent memory allocation calls
from a specific private heap. An application might use the
local heap functions to create several different memory
pools that each contain data structures of the same type
and size.

II Windows 95 provides functions that allow an application
to reserve a specific region of its own virtual address space
that once reserved won't be used to satisfy any other dynamic
memory allocation requests. In a multithreaded application,
the 32-bit pointer to this reserved region is a simple way to
provide each thread with access to the same memory.

Iii Memory mapped files allow different applications to share
data. An application can open a named file and map a region
of the file into its virtual address space. The data in the file is
then directly addressable by means of a single 32-bit memory
address. Other applications can open the same file, map it
into their private address spaces, and reference the same data
by means of a single pointer.

System Memory Management

88

Regardless of changes in the details of application memory manage
ment, the Windows programming model has remained pretty consis
tent through the different product releases. Allocating blocks of
memory at runtime, using a reference to a block to manipulate it, and
ultimately returning the block to the system for re-use is the way in
which Windows programmers have always dealt with dynamic memory
requirements. Windows 95 is no different. What has changed, however,
is the way in which the system realizes the application's requests for dy
namic memory.

Starting with the Windows 3.0 enhanced mode and continuing
with the Windows 95 Win32 application model, the Windows API ma
nipulates only the application's virtual address space. This means that
an application request for a block of memory will adjust the
application's virtual address map but might do absolutely nothing to
the system's physical memory. Remember that the 386 deals with physical

TH R E E: A Tour of Chicago

memory in pages each 4K in size. This page size is reflected in the vir
tual address space map of every Windows application. If an application
requests lOOK of memory, for example, its virtual address space will
have 25 pages of memory added to it. The system will also adjust the
data in its own control structures to reflect the application's new
memory map.

However, at the time of allocation, Windows won't do anything to
the physical memory in the system. It's only when the application starts
to use the memory that the underlying system memory management
kicks in and allocates physical memory pages to match the virtual
memory references the application makes. If the application allocates
but never references a region of its virtual memory space, the system
might never allocate any physical memory to match the virtual
memory. The ability of the 386 to allow physical memory pages to be
used at different times within different virtual address spaces is the ba
sis for the operating system's virtual memory capabilities.

Deep within the system are a range of memory management
primitives available to device drivers and other system components that
sometimes deal with virtual memory and sometimes force the system to
commit actual physical memory pages. But these primitives are specific
to the base operating system. Neither applications nor the Windows
subsystem knows or cares about physical memory. Applications can
force the system to allocate physical memory only by actually using the
memory: namely, by reading from and writing to locations within a
page. The separation of Windows memory management into the vir
tual and physical levels is a key aspect of the system. Applications and
the Windows subsystems deal with defined APis and virtual address
spaces. The base system deals with physical memory as well as virtual
address spaces.

Although physical memory is transparent to an application, its be
havior can radically affect the performance of the system. For example,
scanning through a two dimensional array of data row by row using C as
the programming language will cause memory to be accessed from low
to high virtual addresses because C stores two dimensional array data
structures in row major order. As the memory sweep proceeds, the system
will allocate physical memory pages to match the virtual memory ac
cesses. Byte-at-a-time access will cause the system to allocate a new physi
cal page every 4096 references. Other languages-FORTRAN, for
example-store two dimensional arrays in column major order. Referencing
the data row by row will generate memory references to widely scattered

89

INSIDE WINDOWS 95

memory locations, forcing a much higher frequency of physical page
allocation and much-reduced application performance. So, although
the programmer doesn't have to worry about matching virtual memory
to physical memory, it is a good idea for the programmer to know
something about how the underlying system primitives and hardware
support the application.

Windows Device Support
The most important aspect of the Windows device driver architecture is
its ability to virtualize devices. (Yes, it's that word again.) The greatest
difference between the device drivers of Windows 95 and Windows 3.1
is the extensive use of protected mode drivers in Windows 95-in fact,
it will be unusual if your system uses any real mode drivers at all after
you install Windows 95. The use of protected mode for the drivers pays
off in terms of both system performance and robustness. The manufac
turers of disk devices can adopt a new driver architecture-borrowed
from Windows NT-that almost guarantees the availability of a pro
tected mode driver for every hard disk. In addition, new protected
mode drivers for CD ROM devices, serial ports, and the mouse make
the possibility of needing to support a device with a real mode driver
quite remote.

Device Virtualization

90

The device virtualization capability allows Windows 95 to use the
memory and I/O port protection capabilities of the 386 processor
to share devices among the different virtual machines. Every MS
DOS VM believes it has full control over its host PC and is unaware
of the fact that it might be sharing the screen with other MS-DOS
VMs or with the Windows applications running in the System VM.
For MS-DOS applications, the display drivers must reside in the low
est level of the operating system. Many MS-DOS applications, par
ticularly those that use the display in a graphics mode or use serial
ports, will address the hardware directly. Windows has to intercept
all such direct access in order to bring order to a potentially chaotic
situation. The MS-DOS application knows nothing of the need to
cooperate with other applications and certainly doesn't depend on
a system device driver to get the job done. With Windows applica
tions, the system has a slightly easier task since device access is always

TH R EE: A Tour of Chicago

the result of a Windows API call. Thus, the operating system has
control of the entire transaction, and the system components can
collaborate as necessary.

You'll sometimes hear Windows device drivers referred to as
virtual device drivers or even VDDs. But most of the time, a Windows
device driver is classified as a VxD along with all the other VxDs that
perform low-level system functions. Device drivers are written and
built just as any other VxD is-usually in assembly language and al
ways with the freedom to access any system data structure or memory
location.

Minidrivers
The Windows device driver model has undergone some changes for
Windows 95. The minidriver architecture first used for Windows 3.1
printer drivers and more recently for Windows NT disk drivers has found
its way into the display and disk driver designs for Windows 95. 13 The
principal idea of the minidriver design is to provide a single hardware
independent VxD that fulfills most of the necessary driver functions.
This VxD interfaces closely with a minidriver whose role is to perform
the hardware-dependent functions. Each minidriver consists of a set of
the hardware-dependent functions called by the controlling VxD. Win
dows calls the central VxD, and when necessary, the VxD calls the
mini driver.

This design offers a lot of advantages. The basic design tenet is
that most drivers for a particular type of device contain roughly the
same code. Re-implementing the same code for every slightly different
type of device doesn't make a lot of sense-despite the fact that just
about every operating system has done just that for years. Reducing the
implementation task for a new device to simply developing a new
minidriver helps everyone. The device manufacturer doesn't have to
invest in writing code that already exists. The user can look forward to
much higher quality drivers that are readily available when a new de
vice first appears. Microsoft benefits since they can justify the invest
ment of a lot more effort in the central screen VxD, for example, rather
than have the dilution of the effort among drivers for dozens of slightly
different VGA devices.

13. In Windows NT, disk drivers are actually called port drivers.

91

INSIDE WINDOWS 95

In the past, a counterargument always insisted that the minidriver
model would degrade performance. This argument didn't work when
it was applied to printers since the nature of the device makes it very
slow in comparison to the processor anyway. Even the worst printer
minidriver is probably fast enough to keep a printer fully occupied.
Disk device minidrivers do require more attention to performance is
sues. However, a disk minidriver is a simple piece of code that shouldn't
have a negative impact on performance if it's correctly written.
Microsoft can provide lots of good examples to device manufacturers
to make sure that disk minidrivers come out right. Screen devices are
quite a different issue since performance under Windows is so critical.
The importance of performance makes the adoption of a minidriver
model for screen drivers an interesting design choice. Microsoft's con
fidence in its new display driver model comes from investing a lot of
very talented effort in the central VxD.14 Of course, it's still possible for
a manufacturer to ignore the minidriver architecture and implement a
device driver that bypasses the minidriver architecture. The manufac
turer still has this option for supporting unusual devices or squeezing
the last cycle of performance out of the device.

The Windows Interface
Let's review the major elements of the Windows user interface in
preparation for an introduction in Chapter Five to the rather dramatic
changes to be seen in Windows 95. If you're a Windows programmer,
you're already intimately familiar with the user interface terms and the
various user interface components. If you use Windows extensively,
you've seen and used all of the major interface elements. However,
while clicking your way quite happily through a complex dialog box,
you may not have thought too hard about all the different elements
that make up the dialog box.

What Is a Window?

92

Take a look at the Windows 3.1 screen shot in Figure 3-4. It's one of the
more commonly used dialog boxes in Microsoft Word for Windows.
You see it every time you print a document.

14. "World's fastest flat frame buffer device driver" is one claim. We'll see.

TH R EE: A Tour of Chicago

components of a Windows program interface. Of course, the specific text that appears on a button,

Figure 3-4.
Windows, windows, windows ...

This dialog box actually contains several of the most common items used
in dialog boxes-specifically:

Drop-down list box. The box to the right of Print:. Clicking on the
arrow causes a list of items to appear from which the user can
make a single choice.

Spin box. The box to the right of Copies:. Clicking the up and down
arrows changes the numeric value in the box.

Radio buttons. The round buttons inside the Range box. The user
can select just one of the All, Current Page, and Pages buttons.
Clicking one of them causes the others to clear.

Checkbox. The two boxes at the bottom of the dialog box. The Print
to File and Collate Copies boxes can be set on or off.

Button. The rectangular buttons at the right of the dialog box.
The ubiquitous OK and Cancel buttons appear in almost every
dialog box.

93

INSIDE WINDOWS 95

94

You'll hear designers refer to each of these interface items as vi
sual elements; programmers call them controls. These and several other
common elements are the building blocks from which a Windows ap
plication developer will assemble the various dialog boxes and other
standard components of a Windows program interface. Of course, the
specific text that appears on a button, or the size of a box (for ex
ample) will change according to the context. Windows is responsible
for drawing these standard controls on the screen. The programmer
simply describes the layout and dimensions of the visual elements, and
Windows does the rest. 15

The screen shot in Figure 3-4- also shows other, more sophisti
cated, visual elements: the scroll bars to the right and at the bottom of
the document window, the toolbars containing the rows of buttons with
a pictorial indication of the function of each, and the status line at the
bottom of the screen. Add to these the standard menu bar and the ap
plication title bar, and you have examples of most of the visual ele
ments in a Windows 3.1 program.

From the operating system's point of view, every single one of the
interface's visual elements is a window. Not just the larger areas sur
rounded by the framing borders as in Figure 3-4, but virtually every
visual element of the Windows interface, is a separately identified win
dow. The operating system keeps track of all of the windows, and user
actions performed in one window-for example, a mouse click on a
checkbox-ultimately result in the system's sending a message to the
application that owns the window. The message to the application takes
the form of data that informs the application in which window the ac
tion took place and what happened in the window. Very often the appli
cation relies upon the system's default processing to take care of any
action required in response to the message. For example, Windows it
self will draw or remove the mark in a checkbox if the user clicks on the
checkbox. Thus, a large amount of the code in Windows is devoted to
handling all of these default actions, and individual application pro
grams don't have to include equivalent functions. One of Microsoft's
guiding principles in the design of Windows has been to include within
the operating system functions that a majority of users or applications

15. Because Windows is responsible for drawing the controls, your Windows 3.1
applications will have the Windows 95 visual appearance when you run them under
Windows 95. Since it is the system that displays the standard visual elements, a 3.1
application will take on the new look without any modifications.

T H R E E: A Tour of Chicago

will need. It's no surprise then when new visual elements such as an ap
plication toolbar-and the associated default processing-eventually
appear in an operating system release. That's exactly what happens
with Windows 95.16

The concept of window ownership is another notion central to the
Windows system. Windows implements a strict hierarchy of windows. Ev
ery window must have a parent window, and any application may create,
perhaps many, child windows. A child inherits many aspects of the parent,
such as its default behavior. The hierarchical relationship also defines
how window messages pass through the system: the youngest child win
dow gets the first chance to process a message aimed at the window, and
if it ignores the message, its immediate parent inherits the message. Ulti
mately the message may pass all the way to the top of the hierarchy so
that the system itself can respond with the default message handlers.

The windows within our dialog box example are all child windows
of the dialog box window. When the parent window disappears, so
do all the child windows. When an application terminates, all of the
descendant windows created by the application disappear (are
"destroyed," in application programmer's parlance).

The programmer's term control actually refers to standard ele
ments in the Windows interface that populate components such as dia
log boxes and message boxes. Typically a control has some changeable
data associated with it and will constrain what the user can do to the
data. A checkbox, for example, allows only an on or an off condition,
and a list box may allow the user to select only from a predetermined
list of entries. The concept of a control is a little broader than this
simple description indicates, but most applications use these kinds of
controls. For application programmers, Windows makes the use of con
trols very easy by providing all the software to create, manage, and
modify them and, subsequently, to determine user input.

Windows 95 User Interface Design
When contemplating changes to the appearance of Windows, the de
signer faces more considerations than the visual appearance of a par
ticular element, considerations such as those itemized on the next page.

16. In accord with the same principle, network support and disk compression
support have ultimately been incorporated into operating systems. Support for
spreadsheet operations hasn't been and most likely never will be.

95

INSIDE WINDOWS 95

• What is the default behavior for a new window? Is it similar
enough to an existing window type that applications can take
advantage of common processing by the system?

• What behavior does a new window's appearance imply? A
checkbox-like window that requires the user to enter a single
letter or number will probably confuse most users, for instance.

• Is the new element useful for many applications and not
simply for a single special case?

• Does the proposed new element or new appearance or
behavior of an existing element actually help the user? That
is, does the new or changed element provide an easier or
more obvious way to do something?

Add these considerations to the more practical ones of large scale
software development-how much memory is needed, how fast it will
run, whether it can be finished in time-and you can see that changing
the appearance of Windows 3.1 was more than just a facelift operation.
The changes in the interface from Windows 3.1 to Windows 95 do aim
to correct a number of flaws. But more impressive, a number of new
user interface concepts make their first appearance with Windows 95.
These ideas form the basis for the design of many of the new visual ele
ments and for the design of the Windows 95 shell itself. In Chapter
Five, we'll identify the problems in Windows 3.1 that Windows 95 aims
to correct and look at the conceptual basis for the new appearance.

Windows Programming Basics
This book isn't about to try to teach you how to program for Windows.
That subject has been explored comprehensively in hundreds of books
and magazine articles over the last few years.17 However, just to make
sure that we embark on this voyage of discovery on an equal footing,
let's review some basic information.

Event Driven Programming

96

Windows uses an event driven programming model that's almost more
commonplace now than the procedural model everyone learned in

17. As ever, Charles Petzold's book Programming Windows, 3d ed. (Microsoft Press,
1992), remains the best introductory text.

T H R E E: A Tour of Chicago

school. First popularized by the Apple Macintosh operating system,
event driven programming relies on external events to stimulate re
sponses from an application. Mouse clicks and key depressions are the
two most common external stimuli for a Windows application, al
though it's possible to translate any change in the application's envi
ronment into an event suitable for consumption by an application.

Windows feeds an event to an application in the form of a message
that describes the change in the application's environment. Some mes
sages are universal, such as those informing an application that the user
has clicked on an application menu item. Other messages-for example,
those indicating movement of the mouse cursor within an application
window-are often of interest only to a particular type of application. Ev
ery message is associated with a specific application window, and each
window has a window procedure associated with it. A Windows application
receives messages by means of the GetMessage() API function, and calls
Windows by means of the DispatchMessage() API function. Then Windows
itself calls the appropriate window procedure, passing it the message to
be processed. All messages are processed from within a queue that's
maintained by the system and that preserves the order of the messages. If
mouse click and keyboard entry messages, for example, weren't received
and processed in the same order as the user entered them, the system
would be out of control.

Message Handling
It used to be that every Windows application included the code frag
ments shown in Figure 3-5 on the next page-although you should no
tice one innovation in the code shown there. If you've written Windows
programs, you probably have something very similar in your earlier pro
grams. Windows applications rely upon the system to provide significant
amounts of default processing. If an application isn't interested in a par
ticular message, it simply ignores it and allows the system to apply its de
fault response behavior to the message. Often the default processing
means discarding the message altogether, and often it means that the
window procedure for a particular message is simply not part of the ap
plication. For example, it is quite rare for an application to register a
window procedure to handle messages sent to controls-the system's de
fault handling of such messages is usually adequate.

97

INSIDE WINDOWS 95

Figure 3-5. (continued)

Fragments of the Windows message loop.

98

TH R E E: A Tour of Chicago

Figure 3·5. continued

Program Resources
Another common aspect of Windows programs is their use of identifi
ers called handles to reference every object within their environments:
windows, memory blocks, files, communications devices, cursors, bit
maps, and so on. Handles are simply convenient numeric identifiers
for resources that the system has allocated to a Windows program. Al
most every Windows API function deals with a handle in one way or
another. Sometimes a handle can be translated into a more direct ref
erence-a memory address, for example. However, it's bad practice to
do that, and under Windows 95 the unwritten rules for such transla
tions have changed anyway.

Windows 95 Programming
Under Windows 95, the fundamentals of Windows programming
haven't changed. The event driven model is still the basis for how you
write a Windows program. However, there are some evolutionary
changes in writing a program for Windows 95:

B Microsoft is all but forcing developers to move to Win32
as the preferred Windows APL There are a lot of good tech
nical reasons to go to 32-bit programs anyway, but the fact that

. the new capabilities of Windows 95 are accessible only to
Win32 applications tends to predetermine the result.

99

INSIDE WINDOWS 95

100

II The programmer's access to the new capabilities of Windows
95, notably 32-bit programs and preemptive scheduling, will
introduce new twists in the already complex Windows pro
gramming model. If you don't already know how to develop
applications for a preemptive multitasking system, Windows
95 forces you to learn. There are also some subtle changes
that the 32-bit API engenders in application code-if you
looked at the code in Figure 3-5, you saw one example.

II Microsoft's Object Linking and Embedding (OLE) technol
ogy represents a massive investment in a new programming
methodology that may well transform Windows program
ming and the nature of Windows applications. OLE has been
available in advance of the Windows 95 release, but its pres
ence as a standard component of the Windows 95 product is
likely to ensure that a lot of programmers will spend a lot of
time learning it.

II The programming tools now available for Windows stress
more and more the object-oriented programming model
evident in languages such as C++. Windows is by its nature an
object-oriented environment, although purists can point to
areas in which Windows deviates from a pure object-oriented
model. The new tools for Windows programming tend to
hide these minor deviations, and with the emphasis that
Microsoft now places on OLE and the future promise of Cairo,
object-oriented programming is likely to be the discipline in
vogue for the next few years.

Although everything you worked hard to learn about Windows pro
gramming is still valid, there are some new aspects that Windows 95 will
tend to bring into focus. OLE is not the least of these and is by some esti
mates as complex as the entire Windows 2.0 product ever was. However, if
you're comfortable with the basic concepts of events, messages, message
queues, window procedures, handles, and windows, you shouldn't find
anything in the following chapters to be incomprehensible.

T H R E E: A Tour of Chicago

Conclusion
In this chapter, we took a tour through a lot of the basic terminology
and some of the inner workings of Windows. If you knew most of this
Windows lore already, you're ready for the new acronyms and some of
the architectural changes introduced with Windows 95. If you didn't
know your way around Windows, I hope you're ready for a second
heavy dose.

We looked at several of the new features of Windows 95 in this chapter lntt ig
nored a lot of the detail. Chapter Four is where we 're cleared for the approach to
Chicago.

References
Duncan, Ray, et al. Extending DOS. 2d ed. Reading, Mass.: Addison-Wesley,

1991. A collection of lengthy papers about different aspects of squeezing
more memory and more function from MS-DOS. The book includes a
good discussion of DOS extenders and the DPMI specification.

Intel Corporation. MS-DOS Protected Mode Interface Specification. The definitive
specification for version 0.9 of DPMI. There's also a version 1.0, but since
Windows itself supports only version 0.9, this is the de facto standard. To
get a free paper copy, call Intel at 1-800-548-4725.

Petzold, Charles. Programming Windows 3.1. 3d ed. Redmond, Wash.:
Microsoft Press, 1992. A classic in its own way. The best introduction to
Windows programming there is. If we're lucky, Charles is hard at work on
the Windows 95 version.

101

C .H A P T E A F 0 U A

THE BASE SYSTEM

In this chapter and the next, we'll examine the two features of Win
dows 95 that most differentiate it from its predecessors. Of all the new
features in Windows 95, the most prominent to the user will be the new
appearance and the new system shell-the most obvious changes from
Windows 3.1-and that's what we'll look at in Chapter Five. For the
programmer, the support for a native 32-bit API will probably be the
most closely studied new feature in Windows 95. But the 32-bit API is
merely the best-documented manifestation of the changes in the un
derlying operating system. In Windows 95, Windows finally becomes a
complete operating system. No longer is it simply a "graphical DOS ex
tender," some critics' characterization of the earlier versions of Win
dows. In Windows 95, many new or revised components now make full
use of the 32-bit protected mode of the 386 processor. The operating
system within Windows 95 is the subject of this chapter.

Simply looking at the feature highlight list for the base operating
system gives you an indication of how much is new and how much work
has gone into this part of Windows 95:

II For all intents and purposes, real mode MS-DOS is gone.
Finally Windows is a complete operating system with no
reliance on MS-DOS and its real mode architecture and
limitations.

II A new filesystem architecture and 32-bit protected mode
implementation of the FAT filesystem eliminate the last major
dependency of Windows on MS-DOS. The new filesystem also
.provides significant system performance improvements.

103

INSIDE WINDOWS 95

• Windows 95 provides full support for 32-bit applications,
including a 32-bit Windows API and protected, private
address spaces.

• Windows 95 provides for the preemptive sc:heduling of
Windows applicatioq.s.

• Windows 95 provides architected support for multiple
simultaneous network connections.

Naturally, whatever changed in Windows 95 had nevertheless to re
main compatible with Windows 3.1 and MS-DOS. The developers had
the ever present specter of compatibility looking over their shoulders.

And the designers of Windows 95 had to recognize Windows NT
as a preexisting operating system in much of their work. Sometimes the
obligation to Windows NT helped. Windows 95 picked up components
of the disk device driver architecture used in Windows NT, for example.
And sometimes deference to the earlier Windows NT created quanda
ries: which subset of the Windows NT API set Windows 95 should fully
support, for instance. As we examine the system's features, we'll draw a
number of comparisons between Windows 95 and Windows NT.

What we'll concentrate on in this chapter are the underlying archi
tecture and the major functional components of the operating system.
While the project was under development, the Windows 95 team pub
licly referred to this collection of software as the base system, or simply the
base OS.1 Throughout the project, there was a lot of internal and exter
nal discussion and speculation about a protected mode MS-DOS version
7.0 that would provide the operating system functionality required by
Windows 95. By and large, this version of MS-DOS (if it appears) will be
the operating system components of Windows 95 in a different package.
Since we're concerned with Windows only, we won't go into what might
or might not appear in MS-DOS version 7.0.

Windows 95 Diagrammed

104

Software designers often discuss an operating system as if it were a liv
ing, breathing entity. Reducing such an organism to simple diagrams
can't provide a complete picture of either its complexity or the subtle
interactions among its different components. But given our medium,

1. Microsoft code-named the OS components Jaguar and Cougar. There were also
dragons stalking the halls. Interesting place to work.

F 0 U R: The Base System

diagrams are what we have. 2 Figure 4-1, a variation on Figure 3-1, provides
just such an inadequate view of the system's most important components.

System Virtual Machine

Ring 3 components

Ring O components

File Management subsystem

Figure 4-1.
Windows 95 system archi~ecture.

MS-DOS Virtual Machines

Virtual Machine Manager
subsystem

2. One Microsoft designer maintains that drawing a block diagram of Windows NT
gives you a neat, concise presentation showing how the system really does work. For
Windows 95, a similar representation is a little more chaotic, but the diagrammatic
oddities usually point to important concerns:_namely, compatibility and performance.

105

INSIDE WINDOWS 95

It would be difficult to point to a single box as the base operating
system since aspects of the low-level design permeate Windows 95. In
this chapter, we'll concentrate on the functions provided by the Virtual
Machine Manager and on sor(ie details of the System Virtual Machine
architecture:

• Scheduling and memory management services

• The management of Windows-based applications within the
System Virtual Machine

• The management of the MS-DOS virtual machines

• The foundation for the Windows API layer

We won't get into all of the extremely low level details of how
these pieces work. We'll look at the architecture and at some of the
more interesting implementation details.3 Needless to say, you should
be familiar with the material presented in Chapters Two and Three be
fore diving into this chapter.

Windows 95 Surveyed.

106

Let's first take another brief tour through the system and review the im
portant components. Many aspects of the Windows 95 design are simi
lar to aspects of the design of Windows 3.1 that you already know
about. In particular:

System Virtual Machine. Windows applications all run within the con
text of the system VM. The 16-bit applications (the "old" Windows
applications) share a single address space. The new 32-bit support
provides each new application with a private address space.

MS-DOS Virtual Machines. Windows 95 supports the execution of
multiple MS-DOS programs running in either virtual 8086 mode
or protected mode.

Virtual Machine Manager. The VMM is the real heart of the operating
system. It provides low-level memory management and schedul
ing services as well as services for the virtual device drivers.

3. No doubt there will be other books that do take on the Herculean task of
looking at all of the details. The "References" section at the end of this chapter lists a
few of the books.that covered the details for Windows 3.1.

F 0 U R: The Base System

The major new component of Windows 95 is the File Manage
ment System. It's a completely redesigned subsystem that supports mul
tiple concurrently accessible filesystems. Barring any old MS-DOS device
drivers that might be present to support a particular device, the entire
File Management System is protected mode 32-bit code. Its design sup
ports local disks and CD ROM devices as well as one or more network
interfaces by means of an installabl,e fiksystem interface (IFS for short). If
you're really well connected, you can hook up and use your hard disks,
your floppy disks, your CD ROM, your Bernoulli box, your Windows NT
server, and your NetWare network and never leave protected mode the
whole day. In Windows 3.1, it was MS-DOS that provided the filesystem
support for local disks. Support for CD ROM devices and network
filesystems was, at the very least, confused and confusing. 4

The system services called upon by Windows applications-for
graphics, window management, and the like-are all still there, and
they retain the Kernel, User, and GDI names they had in previous ver
sions of Windows. The major change in the system services subsystem is
its support for 32-bit applications. Apart from their different memory
management requirements, 32-bit applications use a full 32-bit Windows
API and call upon services that are now implemented using 32-bit
code. Making the mixture of 16-bit and 32-bit components cooperate
effectively and with good performance was one of the major design and
implementation challenges the Windows 95 team faced.

Protection Rings in Windows 95
Windows 95 exploits the Intel 386 processor's ability to support mul
tiple privilege levels. Since the handling of these rings of protection
tends to affect several aspects of system design, it's worth reviewing
their use up front. Windows 95 runs the processor using privilege levels
zero and three. The ring zero components are what you norm~ly think
of as the operating system proper, including, for example, the lowest lev
els of memory management support. Ring zero software has omnipotent
power over the system: all the processor instructions are valid, and the
software has access to critical data structures such as the page tables.
Clearly, it behooved the system designers to ensure that the software
running at ring zero would have a very good reason to be there and
be completely reliable. For the most part, Windows 95 ensures these

4. The first release of Windows for Workgroups improved this situation some, and
version 3.11 made it better yet. The protected mode FAT filesystem made its debut
in the 3.11 release of Windows.

107

INSIDE WINDOWS 95

conditions. The lapse is in the facility that allows the user to install one
or more new virtual device drivers to support an add-on hardware de
vice or provide some systemwide software. service. VxDs always run at
ring zero, and if one of them fails, it can cripple the entire system. Un
fortunately, the performance overhead that would have been incurred
by putting each VxD in a private address space so that failed drivers
could be isolated and halted was deemed unacceptable. 5

Windows applications and MS-DOS applications always run at
ring three,. so their privileges are significantly restricted. Also running
at ring three are the central components of the Windows graphical en
vironment: Kernel, User, and GDI. The term Kernel has been so preva
lent in descriptions of how earlier versions of Windows operate that
we'll keep its sense in that context rather than adopt the more classic
use of the word to describe the ring zero components of Windows 95.

Some operating systems try to use the other privilege levels of
fered by the Intel 386 processor. Windows 95 isn't one of them. The
two-ring model (sometimes called "kernel and user modes") works
pretty well for most needs. The Windows 95 designers could have come
up with ways of using the other rings-running user installed VxDs at
ring one to reduce the system integrity problem, for instance. But this
line of thinking leads rapidly to a consideration of the various trade
offs, notably implementation effort and system performance vs. real
user benefit. A ring transition on the Intel 386-a change of control
from one processor privilege level to a different one-is expensive in
terms of execution time.6 A lot of processor controlled validation and
register reloading occurs whenever there's an alteration in processor
privilege level-that is, a jump between rings-so minimizing such
transitions represents a big benefit to system performance. This is also
why most of the code for the WiNdows graphical system runs at ring
three. Incurring a ring transition for every Windows API call would
likely result in system performance reminiscent of Windows 1.01 run
ning on an IBM PC XT.

Windows 95 Memory Map

108

The 386 provides a 4-GB virtual address space, and Windows 95 uses it
all. Within this virtual address space, the different system components

5. The problem did get quite a bit of attention. The Windows 95 development
tools do include new VxD debugging and parameter validation capabilities.

6. A direct subroutine call to code in another segment takes 20 clock cycles on the
486. If a ring transition is involved, you need to budget 69 clock cycles. And that's one
way only. The return path is expensive too.

F 0 U R: The Base System

and applications occupy regions with fixed boundaries. Figure 4-2
shows the basic memory map for the system. One duty of the Virtual
Machine Manager (VMM) is to map this 4-GB virtual address space
into the available physical memory. 7

Address·
(32-bit hexadecimal)

Figure 4-2.

FFFFFFFF ;,

BFFFFFFF

07FFFFFF

003FFFFF

000FFFFF
00000000

Windows 95 system memory map.

Address

4GB

3GB

2GB

4MB

1 MB

0

7. The Windows 95 base operating system uses two selectors-28 and 30-for code
and data. The base and limit for the associated descriptors are set at 0 and 4 GB,
effectively providing access to the entire virtual address space.

109

INSIDE WINDOWS 95

In the system memory map, the lowest 1 MB of the virtual address
space is used for the currently executing MS-DOS VM. Each VM also
has a valid memory map within the 2-GB to 3-GB region.8 This map
ping allows the system itself to address the memory of a VM regardless
of whether it is active. But when an MS-DOSVM runs, it's also mapped
to the bottom 1 MB.

Within the virtual address space of a 32-bit Windows application,
the standard development tools use 4 MB as the default load address.
You can choose a lower address, but you'll incur a lot of overhead with
all the fixups the system will have to carry out when it loads the applica
tion. Loading into the 4-MB to 2-GB region is immediate. The 4-MB
application load address matches the address Windows NT used for
loading 32-bit applications in its first production release, so it's a sensible
choice. The lowest 16K of each 32-bit application's address space (that is,
virtual addresses 0 through 3FFF) is invalid. This deliberate design deci
sion aims to trap program errors. One of the most common program
ming errors is the erroneous use of a null program pointer. Under
Windows 95, the 0 address will generate a memory fault, an error likely
to be caught by the developer and not get as far as the user.

Tasks and Processes

110

One significant change in Windows 95 that needs to be appreciated at
the outset is the change in terminology from task to process. Windows 3.1
documentation usually used the word task to describe the running in
stance of a program. Windows 95 aligns itself with Windows NT in using
the word process to describe the same thing. A lot of the Windows 3.1
documentation wa.sn't particularly rigorous in using the word task, so
you can actually find both words used. In Windows 95, the word process
refers, at least in the case of 16-bit Windows applications and MS-DOS
applications, to the "task" you already know about.

If you study the documentation for Windows 95, you'll see that
API calls such as GetCurrentTask() are marked "deleted" or "obsolete,"
and you're referred to the new APL (Yes, you'll find GetCurrentProcess()
instead.) Of course, the compatibility constraints that govern Windows
95 .mean that the system must still support the older task API calls, so
they aren't really "deleted" in the true sense of the word. Even though

8. The 2-GB low address boundary of the shared memory region moved from
1 GB to 2 GB in successive test releases of Windows 95. (Although such a move wasn't
contemplated, it may even have moved again by the time you read this.) It isn't an
address you should depend on for any reason.

F 0 U R: The Base System

Microsoft doesn't expect anyone to develop new 16-bit applications,
you could still do that, and the task APis would be available to you.
Once you enter the 32-bit world, though, a "process" is what you have
and the process APis are what you use.

Virtual Machine Management
The virtual machine concept that was so important in the very first imple
mentation of Windows on the Intel 386 is alive and well in Windows 95.
The Virtual Machine Manager is truly the heart of the Windows 95 base
system. The efficiency of the VMM has a major impact on the perfor
mance of the whole system, and some of the most complex compo
nents of the OS live there. The code for the VMM consumed some of
the best efforts of the development team, and they've added a lot of
new functionality:

11111 32-bit Windows applications are preemptively scheduled
within per-process private address spaces.

II Many new system primitives related to the preemptive sched
uling environment are available to VxDs.

II VxDs can be dynamically loaded and paged, which reduces
the working set for the system.

Also, within the Windows User module, each 32-bit application
obtains a private message queue-eliminating the possibility of a
single application's locking up the entire system, which can happen in
Windows 3.1.

Windows 95 uses the same two basic types of virtual machine that
Windows 3.1 did:

Real MS-DOS

II The system VM, in which the Windows Kernel, User, and GDI
components as well as all the Windows applications run

II The MS-DOS VMs that run a single MS-DOS session each,
with applications running in either virtual 8086 mode or
protected mode

Despite earlier statements to the contrary, MS-DOS is still alive and well
in Windows 95. (You didn't really think it had gone away, did you?) The

111

INSIDE WINDOWS 95

code and data for the current release of MS-DOS (version 6.22) will be
present on the Windows 95 disks at shipment, although it's not clear ex
actly how the packaging and pricing issues will be resolved. Here's why
MS-DOS is still around:

!Iii Windows 95 supports a single MS-DOS-based application mode
to give it its official title. This mode is for MS-DOS applica
tions that can't run under Windows-typically, game programs
that have stringent timer control requirements.

Ii The software in the "hidden" VM, where Windows sets up the
global MS-DOS context for all other VMs, has to come from
somewhere. MS-DOS itself is the obvious candidate for ·
providing the MS-DOS context.

Earlier in the development of Windows 95, the intention was to use
MS-DOS as the bootstrap loader for the system. Rather than reinvent
the code that brings the system to life, processes the CONFIG.SYS and
AUTOEXEC.BAT files, and then runs Windows proper, Microsoft
planned simply to use MS-DOS. Eventually, the boot process was put
into the WINBOOT.SYS module. The module contains a lot of MS-DOS
code, but it's tailored to the job of getting Windows 95 into memory and
starting it.

The big difference in Windows 95's relationship with MS-DOS is
that if you run only Windows applications, you'll never execute any
MS-DOS code. As successive versions of Windows have appeared, each
has supported more and more of the MS-DOS INT-based software ser-

. vices, and Windows applications have had an ever decreasing need to
switch in and out of virtual 8086 mode to execute MS-DOS code. The
big exception to this (up to Windows for Workgroups version 3~ 11) has
been support for the filesystem services. Windows 95 finally breaks all
ties with the real mode MS-DOS code, and with few exceptions even
the existing 16-bit Windows applications follow a protected mode path
through the new File Management System to the disk and back.

Virtual Machine Scheduling

112

Process scheduling in Windows 95 is so closely tied to the management of
virtual machines that it's appropriate to examine scheduling as part of
the VMM discussion. The Windows 95 scheduling algorithms deal with

F 0 U R: The Base System

virtual machines, processes, timeslices, and priorities similarly to the way
Windows 3.1 did. Windows 95 also introduces threads, the principal ob
jects that the system scheduler deals with. The thread is now the basic
unit of scheduling in Windows 95. If you're familiar with Windows NT or
OS/2, you're accustomed to dealing with threads. A thread

1111 Is an execution path within a process.

Iii Can be created by any 32-bit Windows application or VxD
running on Windows 95.

Ill Has its own private stack storage and execution context
(notably processor registers).

Ill Shares the memory allocated to the parent process.

Ill Can be one of many concurrent threads created by a
single process.

Threads are sometimes called "lightweight processes" because cre
ating and managing them are relatively simple operations. In particular,
the fact that threads share all the code and global data of the parent pro
cess means that setting up a new thread involves only minimal amounts
of memory allocation. When Windows 95 loads an application and cre
ates the associated process data structures, the system sets up the process
as a single thread. Many applications will use only a single thread
throughout their execution lifetimes. But an application can (and many
do) use another thread to carry out some short term background opera
tion. Under Windows 3.1, waiting for a word processor to load a large
document can be tedious. If you change your mind halfway through,
you still have to sit and watch the hourglass cursor for a while before
you can do anything else. Under Windows 95, the application can cre
ate one thread to load the document and another to manage a dialog
with a Cancel button. Any time you want to, you can interrupt the docu
ment loading operation with a single click.

Thread services are available only to 32-bit applications and VxDs
under Windows 95. MS-DOS VMs and the older 16-bit Windows appli
cations can't call the thread APis. An MS-DOS VM represents a single
thread: in simple terms, an MS-DOS VM is a process is a thread. Every
16-bit Windows application uses a single thread of execution, and the
cooperative multitasking model for older Windows applications is pre
served. Any 32-bit Windows application or VxD can create additional

113

INSIDE WINDOWS 95

114

threads, and Windows 95 can schedule all these threads preemp
tively-adding a whole new facet to Windows multitasking.9

The Windows 95 Schedulers
There are two schedulers within the Windows 95 VMM: the primary
scheduler, which is responsible for calculating thread priorities, and the
timeslice scheduler, which is responsible for calculating the allocation of
timeslices. Ultimately, the timeslice scheduler decides what percentage
of the available processor time to allocate to different threads. !fa thread
doesn't receive execution time, it's suspended and can't run until the
schedulers reevaluate the situation.

Here's how the scheduling process works:

1. The primary scheduler examines every thread in the system
and calculates an execution priority value for the thread, an
integer between 0 and 31.10

2. The primary scheduler suspends any thread with an exe
cution priority value lower than the highest value. (The
highest value doesn't necessarily mean the value 31. If two
threads have the execution priority value .20 and every other
thread has a priority value lower than 20, then 20 is the
highest value until the next priority recalculation.) Once a
thread is suspended, the primary scheduler pays no further
attention to the thread as far as priority calculation during
this timeslice is concerned.

3. The timeslice scheduler then calculates the percentage of the
timeslice to allocate to each thread using these priority values
and knowledge of the VM's current status.

4. The threads run. By default, the primary scheduler will re
evaluate the priorities every 20 milliseconds.

In the example in Figure 4-3, two of the five active threads (B and
D) have execution priority values of 20 and the other three threads

9. Although these threads can correspond to radically different program types,
the system represents each thread using the same data structure. Thus, the scheduler,
along with other 32-bit system code that uses these internal data structures, could be
implemented without the team's having to worry about 16-bit to 32-bit translation
idiosyncrasies.

10. That this is the same priority model as Windows NT's reflects a design guide
line for Windows 95: "where it makes sense to, be the same as Windows NT."

F 0 U R: The Base System

have lower priorities. The timeslice scheduler will therefore divide the
next timeslice between threads B and D.

Three control flags maintained for each VM also play into this
process. VMStat_Exclusive tells the scheduler that the VM in question
must receive 100 percent of the next timeslice; neither of the remain
ing two flags is set. One of the remaining two flags-VMStat_Background
and VMStat_High_Pri_Background-must be set if the scheduler is to

System VM

MS-DOSVM

Thread B Thread D MS-DOSVM

Figure 4-3.
Windows 95 thread scheduling.

115

INSIDE WINDOWS 95

116

grant a background VM any allocation of the next timeslice; otherwise,
· the foreground VM gets the entire allocation.

Scheduling Within the System Virtual Machine
All the Windows application threads run within the System VM context.
The System VM is the only VM that supports multiple threads: one for
each 16-bit application and at least one for each 32-bit Windows appli
cation. As you can see from the discussion of the scheduling algorithm,
it's possible (in fact probable) that the System VM will frequently con
tain multiple nonidle threads with equal high priorities.

To handle this situation, the timeslice. scheduler adopts a round
robin scheduling policy to ensure a fair allocation of execution time
among threads of equal priority. Once a thread within the System VM
consumes its allocated execution time, the scheduler puts it at the end
of a queue of threads with equal priority. This classic technique ensures
that each thread at the highest priority level has an equal opportunity
to consume processor time. If the chosen thread fails to consume all of
its allocated processor time, the scheduier hands the processor to the
next thread of equal priority in the System VM and allows it to use the
remainder of the timeslice.

Controlling ·the Scheduler
Two different influences control the scheduler. One is its own internal
algorithms that try to provide a smooth multitasking environment with
each thread receiving an equitable share of processor time. "Smooth" in
this context is really a user perception-the goal is to provide a thread
with enough processor time to get work done but not so much time that
other threads are locked out for long periods. Erring on the side of pro
viding too much processor time to a thread will give the user an impres
sion of slow response as he or she waits until the system switches to the
new thread. Providing too little processor time to threads will give the
user an impression of jerky response as the system switches among
threads. The other influence on the scheduler is the direct calls on sys
tem services that VxDs might make.

Internally, the scheduler uses three techniques to help it meet its
goal of equitable distribution of processor time for an impression of
speedy and smooth response:

Dynamic priority boosting allows the primary scheduler to briefly
raise or lower the priority of a thread. For example, a keystro~e
or a mouse click indicates that the receiving thread's priority
should be boosted.

F 0 U R: The Base System

Timed decay causes the boosted priority of a thread to gradually
return to its usual value.

Priority inheritance rapidly turns a low-priority thread into a higher
priority thread. Typically, a thread's priority is inverted to allow a
low-priority thread to rapidly complete its use of an exclusive
resource that high-priority threads are waiting for. 11

The VMM includes a large number of services available to VxDs.
The operating system uses these services extensively to control multi
tasking operations. For software authors brave enough to dive in, the
multitasking services are all available from within user installable VxDs.
These services allow a VxD to inquire about current scheduling condi
tions-priorities, timeslices, VM focus, and other parameters-and to
adjust those conditions.

Threads and UAEs
Ontt of the problems facing the Windows designers has always been
how best to deal with applications that fail during execution. Whether
you call such a crash a UAE or a general protection fault, it comes from
a bug-probably in the application itself, although the user tends to
blame Windows. It's unlikely that any generation of Windows applica
tion designers will deliver totally bug-free software, so Windows itself
has to be able to deal with application crashes. This involves two things:

Ill Handling the program failure gracefully-meaning allowing
the user to close the application with a minimum of fuss
and no lost data.

Ill Cleaning up afterwards. Apart from open files, the application
undoubtedly owns handles to system resources such as
memory segments, pens, and brushes. If the system can't free
up the memory these resources occupy, the available free
resources are reduced.

The most common application program error resulting in a crash is
an addressing error. Typically, the bug causes the program to try to use an
invalid pointer to some object. A 0 address is the most common case,
which is why address 0 is always an invalid address for every Windows

11. Windows 95 immediately adjusts the inherited priority back to its normal value
once the contention condition is past.

117

INSIDE WINDOWS 95

118

95 application. Such an addressing error causes a general protection fault
on the 386, and eventually the user sees a dialog box that provides the
name of the program module that caused the fault and the option to
close the erring application. Of course, this information and the op
tion to close the application don't help the user very much, and often
the system behaves very strangely even after the user closes the applica
tion and dismisses the dialog box.

Windows 95 addresses this problem in two ways. First, the general
protection fault handler runs as a separate thread within the system.
Thus, rather than having the fault and the closing of the application
handled from within the application context, which may by now be in a
hopelessly messed-up state, Windows 95 has the fault dialog and pro
gram termination managed by a thread in a known (good) state.

The system has already tagged every allocated resource with a
thread identifier, so if a thread terminates abnormally, the system can
search its tables for any resources the thread owned and return them to
an unused state. All global memory, window resource.s, logical brushes,
device contexts, and other resources are available for reuse after this
postmortem cleanup. The cleanup goes into immediate effect if a 32-bit
thread fails. Amazingly, one of the "techniques" used by some existing
Windows applications relies on allocated resources remaining available
even after the application quits. For this reason, the resource cleanup
can't take place until the system notices that there are no 16-bit applica
tions running. Then any remaining allocated resources can be returned
to the free pool.12

Threads and Idle Time
Another use of the thread mechanism is to schedule background ac
tivities that can run when the system is quiescent. 13 Waiting until the
system is quiescent ensures that the maximum number of processor
cycles remains available to applications.

12. This technique works also when an application simply "forgets" to release a
resource, such as a display context, b_efore exit.

13. In Windows 3.1, there was a background VxD that wrote modified memory
pages out to the swap file. When no applications were running, this process woke up
and ensured that the swap file images matched the memory images of the currently
executing programs. Experiments showed that this really wasn't a big performance
win, and the technique was dropped in Windows 95.

F 0 U R: The Base System

Application Message Queues
The event driven nature of all Windows applications calls for the system
to provide an effective means of delivering messages to every applica
tion. A message is sent at the behest of a device driver (representing
the occurrence of some e:xoternal event such as a mouse click), by an
other Windows application, or by the system itself (for example, the sys
tem will notify other processes when a new application starts). The
system puts all the hardware-initiated messages into a data structure
called the raw input queue.

A classic problem with Windows 3.1 is that every Windows applica
tion draws messages from a single systemwide message queue. This mes
sage queue contains a processed form of the raw input messages suitable
for application consumption as well as all the other messages that flow
through the system. Whenever a process asks for a message (usually with
a GetMessage() call), the system simply delivers the message at the head of
the queue. Until the process yields control of the CPU, the system
doesn't try to deliver any more messages. Since there is no preemption
in Windows 3.1, if an application fails, the flow of messages-and conse
quently the system-comes to a halt. No doubt you've seen this phenome
non when an application puts up the hourglass cursor and goes to
sleep-sometimes forever. Clicking the mouse on other windows doesn't
help the situation in the least.

Unfortunately, even if Windows 3.1 were to provide a preemptive
multitasking environment, a single message queue would still cause the
same problem. For example, suppose that two messages (A and B) des
tined for the same process were at the head of the queue and that the
process accepted message A and then failed, looping endlessly. The
timeslice would expire, and the system would reschedule and grind to a
halt-unable to deliver message B to the recalcitrant process.

To prevent this kind of situation, Windows 95 supports multiple
message queues, a design improvement it shares with Windows NT.
Since the efficient flow of messages is vital to good response times and
smooth multitasking, this design technique is key. It ensures that a
single errant application can't lock up the entire system.14 The multiple
queue technique is called· input desynchronization, and Figure 4-4 on the
next page shows how it works.

14. For the most part. There's still a design problem associated with the 16-bit
application subsystem that we'll look at later in this chapter.

119

INSIDE WINDOWS 95

120

Hard disk
Keyboard

r
Messages from devices

~~i/~
Raw input queue

Applications

System
messages

Messages
from devices

Application
messages

l ___ ,J

i
32-bit application

Thread message Thread message
queue queue

Figure 4-4.

32-bit application
message queue
(primary thread)

Multiple queue message delivery under Windows 95.

11

Application message
queue for all 16-bit
applications

Under Windows 95, new messages are put into the raw input queue
only briefly. An execution thread within the system regularly empties this
queue and moves the messages to one of these queues:

F 0 U R: The Base System

• A single queue for all 16-bit applications-meaning that the
behavior for these applications is exactly as it was under
Windows 3.1

R A private per-thread queue for 32-bit applications

Messages generated by the system itself or by other processes
move straight to the private queues. There's a small amount of internal
buffering if the system is extremely busy, but most of the time that isn't
necessary. When a 32-bit process first runs, it has a single message
queue associated with its primary thread. If the process creates another
thread, the system doesn't immediately create another message queue,
though. The system creates another message queue only when the sec
ond thread makes its first message queue-related call. If a thread
doesn't need a message queue, the system doesn't waste any resources
building one.

Physical Memory ·Management
Underlying the virtual machines and the virtual address space sup
ported by Windows 95 are the confines of the physical memory present
on the host system. Managing physical memory is the process of choos
ing which pages within the system's 4-GB virtual address space to map
to physical memory at any instant in time. The system swaps the re
maining active pages in the virtual address space to and from the hard
disk, reassigning physical memory pages as it needs to. Many physical
pages-for example, those occupied by the memory resident compo
nents of the kernel-have their use determined during system startup.
These pages never change roles and don't figure in the memory man
agement process. On a system with 4 MB of RAM and a small (probably
very small) disk cache, you can expect roughly 1 MB of memory to be
locked down this way. Several software components contend for the re
mainip.g physical memory: dynamically loaded system components, ap
plication code and data, and dynamically allocated regions such as
DMA buffers and cache regions for the filesystem.

The Windows 95 physical memory manager is brand-new code. The
main reason for rewriting the existing memory manager was the prolifera
tion of memory types that Windows 95 has to deal with. Along with all the
memory page types that Windows 3.1 has to manage, Windows 95

121

INSIDE WINDOWS 95

122

memory page types include 32-bit application code and data, dynami
cally loadable VxDs, memory mapped files, and a dynamic filesystem
cache. 15 This increase in complexity was enough to dictate a rewrite.

Unlike the design of a multiuser system, in which the operating
system has to worry about equitable sharing of the precious memory
resource, the Windows 95 design allows you to fill your memory as you
wish. All available physical memory pages are created equal, and both
the system's dynamically loaded components and running application
programs compete for available memory pages. You want an applica
tion to run as fast as possible, so the application is allowed to fill as
much physical memory as can be made available. Over an extended
period, machines with 8 MB or less of memory are likely to gradually
fill all the available memory and have to start paging.16 Note that the
system imposes a restriction on the total amount of memory an applica
tion can lock-if this weren't controlled, it would be possible to reach a
deadlock situation. Once physical memory is full, the next page alloca
tion request starts the paging process. An interesting side effect of this
design is that there is no reliable way for an application to determine
how much memory is available in the system. The GlobalMemoryStatus()
API reports various statistics about the system's memory, but the report
is a snapshot of current conditions, and calling the API again will prob
ably yield different results.

The paging algorithm in Windows 95 is a standard wast recently
used (LRU) technique that re-allocates the oldest resident pages when
new requests must be satisfied. 17 Pages come and go from different
places: most pages are either directly allocated in memory (as a result
ofa request for new data pages) or loaded initially from an application's
.EXE file. Subsequently, these pages travel back and forth between
physical memory and the swap file. The system always loads pure code

15. The VCache filesystem caching VxD.interacts with the physical memory
manager, claiming and releasing chunks of memory that can then be allocated to the
individual filesystem drivers for cache usage.

16. Windows 95 remembers what it loaded, and even after an application exits, its
code pages may remain in memory for some time. If the pages aren't taken for some
other purpose and the user happens to run the same application again, the pages are
still there and can be reused.

17. Early test releases of Windows 95 used a simple page-at-a-time paging algo
rithm. Late in 1993, the developers began experimenting with clumping pages
together and paging a block of pages in each operation. At the time of this writing,
page out operations were being done in groups, and page in. operations were being
done one page at a time.

F 0 U R: The Base System

pages for Win32 applications and DLLs from their original executable
files. This setup doesn't entirely rule out the possibility of using self
modifying code: if a code page is modified (usually by a debugger), the
page becomes part of the process's swappable private memory-so it
isn't subsequently reloaded from the .EXE. WriteProcessMemory() is the
API that debuggers can use to modify an application's memory image.
Applications can use this API themselves and achieve the same effect.

To assist in the management of all the different types of memory,
every active page-that is, every page that is part of an executing system
module or application-has a handle to a pager descriptor (PD) stored
with it. A PD holds the addresses of the routines used to move a page
back and forth between physical memory and the disk. Regardless of
the type of memory the page contains, to get the page into or out of
memory the physical memory manager simply calls the appropriate
function as defined by the page's PD. Figure 4-5 shows the structure of
a PD. A page is defined as a ''virgin" page ifit has never been written to
during its lifetime. (Win32 application code pages are usually virgin
pages, for example.) A page is "tainted" ifit has been written to at least
once since it was originally allocated, and a tainted page is either
"dirty" or "clean" depending on whether it has been written to since it
was last swapped into physical memory-in which case its contents
must be written out to the swap file before the physical memory page
can be re-allocated.

Figure 4-5.
Pager descriptor structure.

123

INSIDE WINDOWS 95

124

For a Win32 code page, only the pd_virgi,nin routine is needed-all
others are null operations. For a Win32 data page, the PD functions
would be set up this way (a null entry denotes, esssentially, a no-op):

pd_virgjnin

pd_taintedin

pd_cleanout

pd_dirtyout

pd_virgjnfree

pd_taintedfree

Load the page from the .EXE file.

Load the page from the swap file.

Null.

Write the page to the swap file.

Null.

De-allocate the page's space in the swap file.

The functions for an initialized swappable data page would be the
same as this except that the pd_virgi,nin routine would point to a rou
tine that zero fills the page.

In Windows 3.1, the system allocates the swap file during system
setup. This allocation involves the user in responding to a few rather
obscure questions, and once it is created, the swap file occupies a siz
able chunk of the hard disk. Regardless of what the system actually
ends up using, the swap file stays the same size, and Windows 3.1
doesn't offer the user much help in tuning its size to the minimum nec
essary amount of memory. Windows 95 fixes these deficiencies by using
a normal disk file (not hidden, not contiguous) that expands and con
tracts to the required size during system operation. The swap file gets
only as large as it has to, and the user is never involved in either setting
it up or adjusting its size.

The bad news about this technique is that under certain condi
tions the swap file can become much larger than it has to be. For ex
ample, if you run one application, get a lot of its data pages dirty, and
then run a second application, the first application's data pages will
swap to the front of the swap file. Now, if you dirty up plenty of data
pages in the second application, switch back to the first application
(forcing those data pages out to the end of the swap file), and quit the
first application, there will be an unused hole at the front of the swap
file. 18 One feature of the Windows 95 design that helps reduce this frag
mentation problem is that a physical memory page doesn't always

18. AILhough it wasn't implemented in the test releases, Microsoft planned to
incorporate a background swap file compaction process to prevent the swap file from
growing too large.

F 0 U R: The Base System

occupy the same page in the swap file. Unlike in Windows 3.1, ifa dirty
page has to be swapped out in Windows 95, it's swapped to the first
available page in the swap file. This tends to push pages toward the
front of the file.

Virtual Memory Management
Virtual memory management m Windows 95 did get considerably
more complex. Windows 95 puts several new demands on the virtual
memory manager:

11\1 The new Win32 application type with many new API functions
that support a number of different shared and dynamically
allocated application memory types

II Dynamically loadable system components

All of these demands require changes to the 32-bit protected
mode virtual memory manager, although no changes are required to
support the older Winl6 applications. First, let's examine the new virtual
memory types that Windows 95 must support for Win32 applications.
As you can see in Figure 4-6 on the next page, Windows 95 allows a
Win32 application to consume an enormous virtual address space
and there are plenty of new features available to Win32 programs to
encourage the consumption of all that space, including true shared
memory and a number of new dynamic memory allocation capabilities.
The base OS allocates all Win32 application private virtual memory re
gions within the lower 2 GB of the virtual address space. All shared
memory objects-for example, shared memory regions created by the
application-reside within the 2-GB to 3-GB region. Originally, the de
sign had the Windows subsystem DLLs living within this shared memory
region. A later change moved these DLLs above the 3-GB boundary,
mapping them into the System VM's address space as necessary. Notice
that a Win32 application has a true 4-GB address space. Calls to system
DLLs are direct calls with no ring transition and no context switch. The
advantage of this approach is its speed-there's no overhead beyond the
overhead of the function call itself. The disadvantage is that an applica
tion can obtain a pointer into the system address space and start poking
around-possibly to no good effect. Under Windows NT, the system ad
dress space is truly protected and no application can obtain a pointer
into it. In this particular instance, the Windows 95 designers went for
performance over security.

125

INSIDE WINDOWS 95

126

Address
(32-bit hexadecimal)

Figure 4-6.

FFFFFFFF

BFFFFFFF

07FFFFFF

003FFFFF

00003FFF
00000000

Win32 application virtual memory map.

Address

4GB

3GB

2GB

4MB

16K

0

Within the shared memoryregion, the different objects will ap
pear in the address space of every Win32 process. This means that
whenever the system allocates a shared object, that piece of the address
space is reserved in the memory map of every Win32 process-regard
less of whether the process cares about the particular shared object.
Suppose, for example, that you have two processes A and B that need to
communicate with each other by means of a 64K shared memory region.

F 0 U R: The Base System

Process A allocates the shared region, and process B attaches to it. The
system determines where in the shared region the memory actually ex
ists. Let's say that the system allocates address Ox8000000 to Ox800ffff.
Now suppose that processes C and D run and do some similar alloca
tion and sharing. C and D don't care, or even know, about A and Band
their shared memory area. This time the system will allocate a shared
region for C and D between Ox8010000 and Ox80 lffff. The first 64K has
already been reserved across all memory maps, so it's unavailable to C
and D. You might object that the disadvantage here is the possibility
of filling up the shared region. But seriously? One gigabyte of shared
memory? The huge advantage is the performance benefits gained by
mapping a shared region to the same address in every process that uses
it. A process can access the region by simply using the 32-bit pointer the
system hands back-there's not even any system call overhead. 19

The memory management services within the base OS must sup
port the creation of many different memory object types within the
application's virtual address space. Managing their allocation and de
allocation efficiently is a key aspect of the system's memory manage
ment capabilities. Many virtual memory management functions
require that the system back up the virtual memory by allocating physi
cal memory at some point (although there are functions that simply
reserve never-to-be-used regions of virtual address space). However, ac
tual physical memory allocation (that is, RAM allocation) may not oc
cur immediately since there's no need to back up the virtual memory
until the application touches the memory page. But the system does
have to take steps to make sure space is available in the swap file.

Memory Mapped Files
Perhaps the most important new memory management feature for a
Windows programmer is the support of shared memory operations
through memory mapped files. In fact, this is the recommended way of
allocating and using shared memory regions. Typically, applications
will use this facility to enable access to large memory resident data
structures. To access a memory mapped file, an application must ob
tain a handle to a file mapping object using the CreateFileMapping() API
function. Once the application has a handle to the file mapping object,
it can use the MapViewOJFi/,e() API shown in Figure 4-7 on the next page
to obtain a memory address for the memory region. Other applications

19. Again, this approach differs from Windows NT's, in which a shared region can
appear at different virtual addresses within the memory maps of the processes that use it.

127

INSIDE WINDOWS 95

128

Figure 4-7.
Mapping a file into memory.

can access the same file mapping object using the OpenFileMapping()
and Map ViewOJFile() APis.

The pointer returned by MapViewOJFile() is a virtual address some
where within the 2-GB to 3-GB region. As you'd expect, there's no pre
dicting where the memory object will be within this region, but the
shared memory region will appear at the same virtual address within
different processes.

The MapViewOJFileEx() API, also shown in Figure 4-7, is usable in
Windows 95. This API tries to force the system to allocate a shared re
gion at a particular address (and it will fail if some part of that address
space is already in use). Under Windows NT, this explicit request is nec
essary since the system won't guarantee the same virtual address for the
shared region in each process. Under Windows 95, MapViewOJFileEx()
is redundant.

Reserving Virtual Address Space
A.n application can reserve a region within its virtual address space using
the VirtualAlloc() API (Figure 4-8). The address the application passes
as a parameter may be a specific address, or the application may simply
request a region of a certain size at any available address. The applica
tion can simply reserve the virtual address space-meaning that no
physical memory is ever allocated to back up the virtual memory. The
application can also set certain conditions on the region, such as read
only protection.

F 0 U R: The Base System

Figure 4-8.
Reserving a virtual address region.

Private Heaps
An application can take advantage of the existing memory allocation
capabilities of the system by creating private heap space using the
HeapCreate() API (Figure 4-9). Once the application has a handle to the
heap area, it can allocate memory from the private heap in the same
way it allocates memory from the Windows global heap. The system re
serves the memory for the heap within the private virtual address region
of the application and won't allocate physical memory to back up the vir-
tual memory until it's needed. ·

Figure 4-9.
Private heap allocation.

Virtual Machine Manager Services
The Virtual Machine Manager is the single most important operating
system component in Windows 95. As distributed, the VMM is actually a
VxD that lives in the DOS386.EXE file together with a number of other
VxDs, such as the Plug and Play subsystem and the filesystem drivers.
This combination of VxDs forms the base operating system for Win
dows 95. Once it is loaded during system initialization, the VMM is per
manently resident. Although the VMM uses the binary format of a VxD,
it certainly isn't a virtual device driver in the sense in which you nor
mally regard VxDs.

129

INSIDE WINDOWS 95

130

Every VxD can define a service tab"le to identify entry points to func
tions within the VxD that provide a service to other VxDs or applications.
You can think of the services provided by a VxD as an API that's inter
nal to the operating system. Since you can add VxDs to a system and
write applications that call on VxD services, for some purposes you can
consider these services as an extension to the Windows APL No, that
doesn't mean that the Windows 95 API suddenly grew by several hun
dred functions. The services are for use by other VxDs when they're
running at ring zero. Calling them indiscriminately from an application
guarantees a system crash. VxDs don't have to provide any services,
though, and there are standard system VxDs that don't. However, Win
dows 95 does include a documented interface that allows applications to
call VxD services, and therein lies the major difference from Windows
3.1, which included only an undocumented and non portable interface.

The VMM actually provides a central core of services callable by
any VxD and doesn't deal specifically with any device. Windows 95 con
tains over 700 services within the base OS. The fact that the VMM pro
vides close to half of these is an indication of the relative importance of
the VMM.20 Normally, the use ofVMM services is the domain of device
drivers, debuggers, and other system-level extensions to the base OS,
and the scope of VMM services covers the lowest level of OS require
ments, such as

II Memory management-meeting the physical and virtual
memory allocation requirement details

II Scheduling-dynamic priority management and timeslice
administration

II Interrupt handling-hardware device and fault management

II Event coordination-notification and thread supervision

As its name suggests, the VMM controls Windows' virtual ma
chines. It keeps track of each VM using a v.M control block and a 32-bit
handle that identifies the specific VM. (The handle is actually the vir
tual address of the VM control block.) The VM control block contains
information about the current state of the VM, including the VM's exe
cution status (idle or suspended, for example), the VM's scheduling

20. A normal Windows 3.1 system includes a total of about 400 services, and the
Windows 3.1 VMM offers 242 services.

F 0 U R: The Base System

priority, and copies of the VM's registers. Discussions ofVMM services
refer to VMs as clients of the VMM, and you'll often see references to
"client" data structures such as the Client_&g_Struc area used to save
the VM's registers.

Calling Virtual Machine Manager Services
Before looking at how VxDs and applications interact with the VMM,
we should look at how the OS supports the various code paths in the
system, noting at the same time several new features of Windows 95. De
veloping a VxD is not a trivial task. The VMM and every other VxD is
always 32-bit protected mode software running at ring zero, and you
have to use assembly language to call upon VMM services. The Microsoft
Windows Device Driver Kit tells you why you might want to do this and
how to go about it.

Figure 4-10 shows an example call to the VMM's Call_Global_Event
service. As you can see, the VMMcall macro masks the true nature of the
call to the VMM service. A VxDcallmacro is used in a similar way. In fact,
both macros generate the same sequence of instructions, so the differ
ence in name is more for documentation than for any other reason.

Figure 4-10.
Calling a VMM service from a VxD.

VMM Callbacks
One of the important techniques used by the VMM and other VxDs is
a callback mechanism that allows a VxD to register the address of a pro
cedure for the VMM to call when certain conditions hold. The tech
nique is similar to the way an application registers window procedures
that the Windows subsystem calls for message processing. The VMM
uses callbacks extensively to notify VxDs of system events such as hard
ware interrupts and general protection faults and for scheduling re
lated events. Usually, every VMM service that allows the registration of
a callback is matched by another service allowing the caller to cancel
the callback.

131

INSIDE WINDOWS 95

132

The Call_Global_Event service illustrated in Figure 4-10 is one of
the services that use a callback procedure. When the VxD makes the
call to this service, the VMM will make arrangements to call the proce
dure whose address is supplied to the VMM service (CallbackProcin the
example) and pass it the other parameter (CallbackData) supplied in
the original request to Call_Global_Event. In this particular example,
the callback from the VMM may happen immediately, or if the VMM is
busy with.a hardware interrupt, it will defer the callback until the inter
rupt processing is complete. Thus, when the VMM calls the VxD's call
back procedure, the VxD knows the current status of the system and
has a reference to some data that identifies the purpose of the call.

An important point to note about the VMM in general and the call
back mechanism in particular is that many VxDs can call the same ser
vice. If the VMM registers more than one callback for a particular service,
it simply works its way through a list, making each callback in turn. If you
need exclusivity, you have to arrange to get it some other way.

Another example of a callback is the VMM's Call_When_Jd/,e service.
When the system is completely idle-that is, when there is no Windows
action and no VMs are running-the VMM will call every VxD that reg
isters itself with the Call_When_ldle service. Idle time is a good time to
consume processor cycles for housekeeping chores. Windows 3.1 used it
for writing modified memory pages out to the paging file. Windows 95
uses it for swap file compaction. Other VxDs could register a callback for
their own idle purposes. But on a busy system there are only small
amounts of idle time and no guarantee ofwhen they'll occur or which
other VxDs they may have to be shared with. This indeterminapce is an
aspect of many callback services-so design accordingly.

Loading VxDs
Windows 3.1 loads VxDs at only one time: during system initialization.
There's no provision for loading VxDs while the system is running, as
there is for loading application DLLs. Even if a VxD provides only in
frequently used services, it must be loaded at startup and remain resi
dent while Windows runs. Since Windows 3.1 uses the SYSTEM.IN! file
to specify the VxDs to load, installing a new VxD requires the addition
of an entry to SYSTEM.IN!. Another shortcoming of using VxDs in ear
lier versions of Windows was the identifying mechanism used by the sys
tem. Every VxD had to have a unique identifier, and VxD developers
had to apply to Microsoft for this magic number.21 The developer then

21. Internet e-mail to vxdid@microsoft.com will get you the information you need.
One ID actually gives you the ability to create up to 16 unique VxDs.

F 0 U R: The Base System

embedded the so called VxD ID within the VxD, and the system used
this number at runtime to connect VxD service callers to the correct
VxD. There's nothing sinister about having to apply for an identifier;
it's simply an artifact of a rather primitive method for guaranteeing
uniqueness.

Windows 95 solves most of these problems. VxDs are dynamically
loadable and unloadable, and for most VxDs a new naming convention
does away with the need to acquire a private identifier. Microsoft's short
hand for dynamically loadable VxDs is "dynaload VxDs," or simply "DL
VxDs." For brevity, we'll call them "DL VxDs." The operating system
loads DL VxDs into the system's private virtual address space (above
the 3-GB boundary), and the DL VxD author can identify the regions
of the VxD's code and data that are pageable. This identification of
pageable regions allows the developer to optimize the DL VxD's work
ing set. Also, in Windows 95, applications can cause the system to load
DL VxDs by name, which eliminates the need to edit the system's con
figuration files. You need a unique VxD ID from Microsoft only if the
VxD offers VxD services or other API functions. If your VxD doesn't do
this, you can simply use the constant Undefined_Device_JD as its identi
fier. Windows 95 will happily load multiple VxDs with this identifier.

For compatibility, you can still load VxDs during system startup. In
fact, that's what happens with the VMM and most of the base system
VxDs. If you write a VxD for disk device support, for example, you'll
probably want it to be loaded during system boot. If the presence of
your VxD is required only occasionally, the dynamic loading technique
is the one to use. Network support is a good occasion for the use ofDL
VxDs, notably for the large components such as network transports.
The Windows 95 Plug and Play and installable filesystem components
are themselves dependent on DL VxDs. The dynamic loading ofVxDs
is the domain of the VXDLDR module-itself a (static) VxD. VXDLDR
offers six services callable by other VxDs or indirectly by application
programs.

The general rules for a VxD in earlier versions of Windows specify
both its executable format and a number of interfaces it must sup
port.22 The system uses the mandatory interfaces to allow VxD initial
ization and to call the VxD with certain systemwide events the VxD
must respond to. There are several events associated with system initial
ization and shutdown, for example, that each VxD is asked to process.

22. The only substantive change to the executable format ofVxD in Windows 95 is
that you can now define both memory resident and pageable code and data sections.

133

INSIDE WINDOWS 95

134

The rules for DL VxDs don't change very much in Windows 95. The
format is a little different, and there are some restrictions on what a DL
VxD can do. Only one restriction is significant: if a DL VxD offers any
VxD services, it can't be dynamically unloaded. One reason for this re
striction is the difficulty of notifying other VxDs or applications that a
service they're using is about to disappear. Consider the problem asso
ciated with removing a DL VxD that provides a callback service that
other modules might yet try to use.23

The Shell VxD
The final piece in the VMM puzzle is the module called the Shell VxD,
or sometimes the shell device. Note first that the Shell VxD has absolutely
nothing to do with the user shell, the application that manages the
desktop. Once again, overloaded terminology can lead to confusion.
The Shell VxD is the last component of the base system that gets
loaded, and it's responsible for loading the Windows subsystem (Ker
nel, User, and GDI). As the user shell is to the user, so the Shell VxD is
to the ring three software.

There's a Shell VxD in earlier versions of Windows as well. One of
its main functions was the display of dialog boxes on behalf of a VxD. It's
the Shell VxD that generated the System has become unstable dialog that
came up frequently in Windows 3.0 and only occasionally-rarely
in Windows 3.1. Windows 95 expands the Shell VxD services consider
ably, adding functions in two areas that are relevant to this discussion.

The Shell VxD manages to do its dialog box work by running
briefly within the context of an application. Its memory mapping and
resources are those of the System VM, and in some senses the Shell
VxD masquerades as a Windows application to display a dialog. Win
dows 95 generalizes this facility and adds Shell VxD services that allow a
VxD to run at application time. A VxD entered at application time can
do anything an application can: open files, load DLLs, and send mes
sages, for example. VxDs achieve application time execution by sched
uling an event using the Shell VxD's _SHELL_CallAtAppyTime service.24

Windows 95 implements application time by providing an application
thread that the VxD runs on during the callback. Application time isn't

23. No doubt those who probe around in the depths of Windows will soon come up
with ways to overcome this restriction.

24. The service mnemonic gives away the name genealogy. Its originator called this
context "appy time"-a play on "application" and "happy." Unfortunately, Windows
isn't allowed to be whimsical, so "application time" is what the name became.

F 0 U R: The Base System

always available: during system initialization and shutdown, for ex
ample, the system is in a state in which it can't support application time
processing. One use of application time is to post a graphical Windows
dialog informing a user of the options when he or she has pressed

· Ctrl+Alt+Del to close a nonresponding application. In Windows 3.1,
the system could only display a character mode blue screen.

Right about now you're probably beginning to see the expanded
possibilities in Windows 95 for applications to interact with the base OS.
It gets better yet. The Windows 95 Shell VxD also offers three new ser
vices that deal directly with Windows messages:

_SHELL_PostMessage posts a message to a specified window.

_SHELL_BroadcastSystemMessage sends a message to a specified
list of windows and VxDs. This service is the same as the Windows
95 BroadcastSystemMessage() API.

_SHELL_HookSystemBroadcast allows a VxD to monitor calls to the
_SHELL_BroadcastSystemMessage service, so that even if a particu
lar VxD is not a target of the broadcast, it can still observe the
message.

The windows and messages involved in these new services are ex-.
actlywhat you'd expect: application window handles (the hWnds in an
application) and the message identifier and message parameter (the
wParam and lParam in an application message loop). Because the Shell
VxD doesn't constrain the message parameters in any way, you can use
the _SHELL_PostMessage service to set up private transactions between
a VxD and an application. It's essentially a clean way for system compo
nents to send messages to applications.

Getting Around in Ring Zero
OK, enough discussion of the superstructure. It's time to see how all
these pieces collaborate. Of the more interesting paths in the Windows
code, the hyperspace jumps between ring three and ring zero and
some of the trails within ring zero are among the most revealing. Fig
ure 4-11 on the next page illustrates the variety of different call and re
turn transitions. All are code paths executed as a result of a function
call-either a Windows or an MS-DOS API or a call to a base system ser
vice. Other paths, taken as the result of hardware interrupts or page
faults, aren't illustrated in Figure 4-11.

135

INSIDE WINDOWS 95

136

API Layer t t 1

Ring3

Ringo

Figure 4-11.

l INT 2F function 1684h
(BX == VxD id)/

CALURET Call via INT 30
CALURET._~~--;~,_..~---_-:::::~~~...,_--~---.

lCALURET
CreateFile()/DeviceloControl() (via call gate)

CALURET

Calls and returns among applications and VxDs in Windows 95.

In Windows 3.1, both MS-DOS applications and the Windows
DLLs issued INT 21 software interrupts to call on system services as a
result of API calls from applications. Ultimately, these INT instructions
caused a general protection fault that the Windows 3.1 VMM picked up
in ring zero. In the case of the system virtual machine, the base OS
would then switch the VM to virtual 8086 mode and-for all VMs-the
MS-DOS operating system code would run to process the API call.

F OU R: The Base System

Also illustrated in Figure 4-11 is the INT 2F interface supported by
Windows 3.1. For compatibility's sake, the INT 2F interface still works
under Windows 95. But that isn't the way you should do it anymore. The
Windows 3.1 INT 2F function 1684h interrupt allows an application to
retrieve an entry point address for a VxD service. The additional parame
ters in the call have to specify the VxD identifier. The INT 2F call results
in a fault that the VMM intercepts. Using the VxD identifier, the VMM
searches for a matching VxD .and if successful returns an address that
allows the application to directly call the VxD, requesting one of its ser
vices. Windows 3.1 actually implements this call by giving the application
the address of an INT 30 instruction within a memory segment full of
INT 30s. When the application calls the INT 30, there's a fault. The
VMM picks up the fault, recognizes it as an INT 30 request, figures out
the offset of the particular INT 30 within the segment, and, lo and be
hold, there's the index to the requested VxD service. Barring some
trickiness in returning to the application, this interface works the same
for both Windows and MS-DOS applications.

Calling Windows 95 Base OS Services
Obviously; Windows can't do anything about the fact that MS-DOS ap
plications use INT 21 to call system services. File 1/0-related calls now
get handed directly to the protected mode filesystem INT 21 handler,
and the entire filesystem transaction executes in protected mode. The
Windows subsystem no longer issues software interrupts to initiate the
trap from ring three to ring zero-the subsystem now uses a 386 call
gate, passing parameters that identify the required ring zero service.
This is a faster operation than trapping and unraveling a GP fault and
results in a small performance gain. The return from ring zero to ring
three is similarly elegant, simply using a return via the call gate. In the
case of the System VM, there is no excursion into virtual 8086 mode
the processor remains in 32-bit protected mode throughout.

Although Windows 95 still supports the INT 2F interface for
compatibility's sake, the recommended interface now uses the Win32
API functions CreateFik() and DeviceloControl(). If you're familiar with
Windows NT, you may already have seen these APis. DevieeloControl() in
particular is intended for use as a general purpose interface that allows
private communication between an application and a device driver.
Windows 95 uses the interface both for device control and for commu
nication between applications and VxDs.

137

INSIDE WINDOWS 95

138

To initiate communication between an application and a VxD, the
application must obtain a handle to the VxD. You use the CreateFile()
API function to do this (Figure 4-12). The naming syntax for the VxD is
a little unusual. To get a handle to the Shell VxD, for example, you use
the string "\\.\SHELL" as the filename in the Createffle() call. This nam
ing syntax works for any VxD registered with the system.

Figure 4-12.
The CreateFile() AP/function.

Figure 4-13 shows the API definition for the DeviceloControl() func
tion. In its normal mode, the API uses the device control code to initiate
a device-specific operation-formatting a floppy disk, for example.
When the function is used for communication with VxDs, the device
control code and the contents of the input data buffer and the output
buffer are entirely application defined. To fully support a VxD interface
for general application use, the VxD developer will have to publish the
supported control codes and the other'details of the data exchange pro
tocol. But if you write both the application and the VxD, you can use
DeviceloControl() as a private interface for communication between ring
three and ring zero software.25 Within the system, the VMM System Con
trol service, which is called with a W32_DEVICEIOCONTROL message,
dispatches the DeviceloControl() call to the target VxD.

Calling from One VxD to Another
The last interaction we'll look at is the call and return mechanism be
tween VxDs that's used within the base operating system. The method

25. The DeviceloControl() interface also has the advantage that, for published
functions, it's portable between Windows and Windows NT. An INT 2F inter
face definitely isn't.

F 0 U R: The Base System

Figure 4-13.
The DeviceioControl() AP/function.

relies on the system's ability to create a unique 32-bit number formed
from the VxD identifier and the VxD's service number. In Windows 3.1,
the VxD identifier had to be assigned before link time. In Windows 95,
the dynamic VxD loading mechanism allows the VxD identifier to be de
termined at runtime. Both the VMMcall and VxDcall macros generate
code that contains an INT 20H instruction followed by the 32-bit number
identifying the required VxD and service. At runtime, the INT instruc
tion causes a fault that's picked up by the VMM. The VMM examines the
VxD service identifier embedded in the code and replaces it with a di
rect CALL to the VxD service entry point. Subsequent calls to the VxD
then go directly rather than cause a fault.

Dynaload VxDs use a similar mechanism in Windows 95, but there
are some subtle differences:

• At compile time, the VMMcall macro generates a CALL in
struction. The target of the call is an external symbol in the
target VxD indexed by the service identifier.

• At load time, VXDLDR replaces this call with an INT 20
instruction followed by a 32-bit word containing the module
identifier and VxD service number. VXDLDR also sets the
high bit in the 32-bit word to denote that this is a call from
a dynaload VxD.

• At runtime, the VMM patches the INT instruction, using the
32-bit word in the code to map the module identifier to a VxD
identifier.

139

INSIDE WINDOWS 95

You can see ·another reason for the no-services restriction on
dynaload VxDs. Since the VMM patches the calls to VxD services to ac
tual CALL instructions, if a target VxD were unloaded the VMM would
have to go around changing all the CALLs back to INTs.

VMM Service Groups

140

The VMM is by far the dominant provider of base operating system ser
vices, and many of the services are either new or improved for Windows
95. Base OS support for the new threaded architecture for Win32 appli
cations called for many changes and additions to the services, including
thread management, scheduling, and mutual exclusion primitives. The
largest single category of VMM services (about 20 percent of the ser
vices) deals with memory management. Other services are split among
several different categories. In this section, we'll look briefly at the vari
ous service groups. All of these services are offered by the VMM.

Event services allow the caller to register callback procedures for
global events or events for specific virtual machines. Windows 95
adds support for thread events-allowing a VxD to signal an
event for a specific thread.

Memory management services include many different memory
allocation and de-allocation functions for both physical and
virtual memory. Other services that provide information about
memory conditions support the memory management functions.
Windows 95 adds services that support the creation and man
agement of memory for Win32 applications.

Nested execution and protected mode execution services provide
the ability for a VxD to call software within a specific virtual
machine that's running in either virtual 8086 mode or protected
mode. The system may need to call an MS-DOS real mode device
driver or TSR, for example-both of which are always executed
in virtual 8086 mode.

Registry services are new for Windows 95. They allow VxDs to
interrogate the contents of the on-disk registry. The VMM
registry services are similar to those available to applications via
Windows API functions.

F 0 U R: The Base System

Scheduler services let a VxD influence the operation of both the
primary scheduler and the timeslice scheduler. The VxD's
influence can include creation and destruction of individual
threads and VMs and adjustments of the current scheduling
priorities and timeslice parameters.

Synchronization services offer a range of functions for managing
semaphores and mutual exclusion objects (mutexes). The VMM also
offers a number of associated services related to critical section
management. Mutex object management, thread-specific ser
vices, and several of the critical-section services are all new in
Windows 95.

Debug services have been improved in Windows 95, toward the goal
of providing better base OS support for system-level de bugging tools.

1/0 trapping services provide a way for VxDs to collaborate with the
VMM to manage the processor's I/O ports. Using these VMM
services, a VxD can control access to individual I/O ports.

Processor fault and interrupt services allow VxDs to involve them
selves in the system's handling of specific global conditions such
as page not present faults and NMI interrupts.

VM interrupt and callback services interface a VxD to the software
and hardware interrupt status of an individual VM. For example,
a VxD can acquire and modify current interrupt vector settings
within a specified VM.

Configuration manager services interface a VxD to the Plug and
Play subsystem incorporated in Windows 95.

Miscellaneous services cover a host of other functions used to
support VxD execution, including queries about system initial
ization, error handling, linked list manipulation, time-outs, and
even internal versions of the faithful printf() function.

Application Support
Although the details of an operating system can be a fascinating study
in and of themselves, the OS must ultimately be judged on how well it
runs application programs and the associated subsystems. In Chapter

141

INSIDE WINDOWS 95

Six, we'll look at the details of the subsystem that supports the graphi
cal enVironment for Windows applications. Here we'll examine the un
derpinnings for this support. Earlier we looked at the various code
paths between the ring zero and ring three components of Windows 95
and at how an application calls directly on the services of a VxD. Win
dows 95 introduces support for 32-bit Windows applications using
Microsoft's Win32 API while it continues support for existing 16-bit ap
plications (nowadays referred to as "Winl6" applications).

Unlike Windows NT, which began life as a 32-bit operating system,
Windows has evolved slowly toward full 32-bitness. Ever since the release
of Windows/386 in 1988, Windows has included 32-bit code that ex
ploited the 386. Initially, this code was confined to the ring zero system
components. Then, in the era of DOS extenders, we saw the first 32-bit
applications. Third party VxDs followed. The Win32 API is the next step
toward full 32-bit operation for Windows. Win32 is Microsoft's strategic
system interface. Its first appearances were with Windows NT and in the
subset Win32s API introduced for Windows 3.1. In Windows 95, we see
the implementation of this 32-bit API for a product that will most likely
sell millions of copies-so, yes, it's pretty important to learn about it.
But Windows 95 doesn't support a 32-bit API exclusively. Microsoft
hopes that every new Windows application will be a 32-bit application.
However, given the sheer number of Windows applications now avail
able, even the most optimistic marketeer has to acknowledge that 16-
bit application support is going to be a feature of Windows for some
time to come.

The API Layer

142

The code path from a Windows 95 application to the supporting system
code and back is very similar to the one traveled by an application run
ning on Windows 3.1. The system makes extensive use of dynamic link
libraries to provide the necessary code paths between the application
and the Windows subsystem. Earlier the interface between Windows
applications and the Windows subsystem was characterized as a simple
call and return interface (Figure 4-7). It might be simple if every sys
tem module and application were 32-bit code, but it's actually a lot
more complex.

If you think about the Intel processor architecture for a moment,
you'll realize that the internal code structure of 32-bit Windows applica
tions and the system code to support them has to be fundamentally

F 0 U R: The Base System

different from the existing 16-bit environment. In particular, the varia
tion in addressing modes means that you can't easily mix 16-bit and 32-
bit code. For Windows 95 applications, this means new compilers,
assemblers, and linkers to enable 32-bit development. The system itself
must at least provide co-resident 32-bit versions of the Windows sub
systems (Kernel, User, and GDI) to support the new 32-bit API-along
side the 16-bit API for the older applications. And of course all the code
must be small, fast, well tested, and well documented. No problem? Let's
see about that.

Mixing 16-bit and 32-bit Code
The problem of mixing 16-bit and 32-bit code has occupied many de
velopers at Microsoft. They have tried various implementation tech
niques in various forms in earlier versions of Windows and OS/2 and in
Windows NT. The Windows 95 implementation certainly represents
the state of the art. Whether it's the final word on the subject is a differ
ent matter. Here are the problems: 26

II 32-bit code deals in 32-bit linear addresses (usually called
0:32 addressing). 16-bit code uses a 16-bit segment selector and
a 16-bit offset (known as 16:16 addressing). There has to be a
translation between the two address formats so that the 16-bit
code receives valid pointers originally passed as 0:32 parame
ters-for example, an address parameter that points to a
C structure. The solution to this problem involves a technique
called tiling, in which the system allocates a new 16-bit seg
ment descriptor to describe memory that overlies the memory
containing the parameter. (Think of tiles on your roof, and
you'll get the idea.)

Ill In C, the language of choice for Windows, an int data type is
32 bits wide in a Win32 application and only 16 bits wide in a
Winl6 application. When a 32-bit function calls 16-bit code,
the 32-bit int parameters must be narrowed to 16 bits and
then widened on return; this is a relatively easy operation if
the parameters are in registers, but many Windows function
calls will also push parameters onto the stack.

26. Omitted from this list are some tricky problems associated with the different
executable file formats that Windows 95 supports. Essentially, these problems involve
the different relocation information contained within the files. There are people who
live and breathe object file format issues. We're not going to join them in this chapter.

143

INSIDE WINDOWS 95

144

II 16-bit code will return a 32-bit value (for example, a pointer)
in the DX:AX register pair. 32-bit code expects this value to
be in the EAX register.

!fl 32-bit code uses the 386 SS:ESP register pair for stack
addressing. 16-bit code uses the SS:SP registers. There has
to be a stack switch back and forth and possibly some parame
ter copying.

An implementation device called a thunk is central to the ability to
mix 16-bit and 32-bit code effectively.27 Every call and return from 32-
bit code to 16-bit code, or the reverse, requires a thunk. Whenever an
API call has to use a thunk, the execution time for the thunk code is
pure overhead. If the thunks are slow, application performance suffers.
The implementation challenge is therefore to make the thunks con
sume the smallest amount of memory (remember, there are hundreds
of APis) and the shortest possible execution time. Thunks are always
written in assembly language. Figure 4-14 illustrates the different API
execution paths in Windows 95 and shows the position of the thunk
layer relative to the better-known subsystems.

The system handles the stack management issues by building a
new stack frame during the transition between the different code types.
A call from one code segment type to another will translate parameter
formats as the parameter values are pushed on top of the existing stack
frame. The addressing of this new frame will then be set up to conform
to the rules of the target code type.

Some of Microsoft's previous effortS at thunk design have been
documented as parts of various product releases. Windows NT uses a
"generic thunk" method whose details you can find in the Win32 Soft
ware Development Kit. The Win32s subsystem for Windows 3.1 uses a
"universal thunk" mechanism that is an integral part of the subsystem.
The Windows 95 thunk method is another iteration and incorporates
further execution speed improvements.28 Some of the speed improve
ments result from using as much 32-bit code as possible within the

27. The term thunk came to Microsoft with one of the original designers of Win
dows 1.0, courtesy of his college research. It's been around ever since and is now in
use as noun, verb, adjective, and insult. Those who were there way back when remem
ber its original definition as "a piece of code that gets you from one place to another."

28. During the development project, the Windows 95 method was sometimes
referred to as the "extensible thunk" mechanism, although it may end up with a
different final name.

F 0 U R: The Base System

Shared address space

Thunk layer

Figure 4-14.
32-bit AP! support using thunks.

thunk layer. (Microsoft calls this the "flat thunk" mode.) Other speed
improvements come from very careful coding of the thunk handler
in particular, minimizing the number of selector loads. (Remember
that selector load operations are expensive on the Intel processors
since the hardware must validate the new selector against the pro
gram's current privileges and memory map.) Late in 1993, the Win
dows 95 team had a thunk transition down to just seven selector loads
and they were still thunking-er, thinking.

Generating large numbers of thunks by hand is a waste of effort,
so Microsoft developed some tools to help automate the process.29 This

29. The thunk compiler toolset became part of the Windows 95 SDK in early 1994.

145

INSIDE WINDOWS 95

146

automation requires the programmer to prepare a description of the
source and target APis in a language that's very close to C, and the re
sult is a sequence of assembly language instructions that form the
thunk for the particular APL Figures 4-15 and 4-16 illustrate the input
and output for the thunk compiler using the GDI LineTo() API function
as an example.

Figure 4-15.
Example thunk description input.

Figure 4-16. (continued)

Example thunk output.

F 0 U R: The Base System

Figure 4-16. continued

Note that although Microsoft made the thunk compiler tools avail
able, this technique for mixing 16-bit and 32-bit code is not recom
mended as a long-term solution. For one thing, the code isn't compatible
with Windows NT. If you do choose to use thunks as an interim solution,
make sure that the associated code is isolated and easy to replace.

The Win32 Subsystem
You can find the code for Win32 application support in four files in the
\WINDOWS\SYSTEM directory:

GDl32.DLL contains the API entry points and support code for the
32-bit graphics engine functions.

USER32.DLL contains the API entry points and support code for the
32-bit window management functions.

KERNEL32.DLL contains the API entry points and support code for
the 32-bit Windows Kernel functions.

VWIN32.386 contains a VxD that's responsible for loading the other
32-bit DLLs.

Within these modules lies the complete Win32 subsystem. To get it run
ning, the 16-bit Windows Kernel module will load the VWIN32 VxD the
first time there's a call to any 32-bitAPI. VWIN32 loads the three DLLs
and returns to the 16-bit Kernel, which then calls the KERNEL32 DLL
initialization function. Once this call is complete, the Win32 subsystem
is ready for use.30

30. Given that the Windows 95 shell is a 32-bit application, the loading and
initialization of the Win32 subsystem will actually occur during the system startup
phase.

147

INSIDE WINDOWS 95

148

Most of the code in the 32-bit User DLL is little more than a layer
that accepts 32-bit API calls and hands' them to its 16-bit counterpart
for processing.31 Although that sounds simple, it's where all the thunk
trickery comes in. It's also a sensible way of using tried and trusted
code-after all, the 16-bit API implementations have to be there for
compatibility reasons. The 32-bit GDI DLL contains a lot of new code
and embodies some significant performance improvements. Conse
quently, the 32-bit GDI handles a lot of API calls directly. The Kernel32
module is completely independent of its 16-bit ally. There is some com
munication from the 16-bit side to the 32-bit side, but the 32-bit Kernel
never calls across to the 16-bit side. This is as you'd expect since most of
the code-memory allocation and thread management, for example
is quite different.

Since the call and return between the 32-bit and 16-bit code is a
relatively expensive fonction call, the designers had to look carefully at
each API before committing it to the thunk technique. The design
guideline was that if the time to execute a 32-bit to 16-bit call and re
turn was a significant proportion of the total execution time for the
API call, the API should be replicated in 32-bit code. Examples of these
replicated functions are the Get functions in GDI such as GetBrush() and
GetStockObject(). These functions simply collect some data and return it
to the calling application. Very few instructions are necessary within
the API routine. Of course, code replication is out of the question if the
API might need to modify a global data structure since the system has
to guard against reentrancy problems.

The development team's emphasis on putting their efforts into
the new 32-bit code meant that 16-bit applications could pick up many
of the benefits. But there had to be a way to get from the 16-bit side to
the 32-bit side, so the thunk mechanism also supports calls in this direc
tion. The 32-bit GDI code is in some cases so much better than the 16-
bit code that the 16-bit application still runs faster despite the thunk
overhead. An example of this benefit is the more efficient 32-bit
TrueType rasterizer. Also, to ensure memory all~cation consistency, the
16-bit User code calls its 32-bit counterpart to allocate heap storage for
16-bit applications. All the dynamic memory allocation is thus effi
ciently satisfied from a single 32-bit region.32

31. There are actually about 25 User APis that also exist as 32-bit code. Again, this
is for performance reasons.

32. This memory allocation technique supersedes the use that Windows 3.1 made
of DPMI in order to get 32-bit memory chunks.

F 0 U R: The Base System

The team was also conscious of the debate that would arise when
observers began to analyze the mixture of 32-bit and 16-bit code, so
high performance was a priority. The lowest thunk overhead for a
Win32 application runs to just over 60 clock cycles, with the average
overhead at about 90 clock cycles. For a very expensive API function
such as CreateWindow(), which has 11 parameters, the overhead is about
100 clock cycles. Windows NT, with its security requirements that call
for a ring transition and careful validation of all parameters, imposes a
much larger overhead even in a pure 32-bit system call.

Internal Synchronization
One of the biggest design debates inside the Windows 95 development
team was over how to deal with system reentrancy. 33 The 16-bit Win
dows subsystem wasn't originally designed to deal with the possibility of
process preemption. Consequently, there are many places in the 16-bit
GDI, User, and Kernel modules where the system will fail if one thread
is allowed to execute reentrant code concurrently with another. Every
operating system has to deal with this problem. Windows NT handles it
by blocking threads that try to access the same object at critical times.
UNIX and OS/2 contain sections of code that block every thread but
one for the duration of a critical section. Windows 95 absolutely re
quired support for the preemptive multitasking of Win32 applications,
and since many 32-bitAPis call 16-bit code, the development team had to
address the preemption issue. To solve the problem, the team looked at
a number of possibilities:

ill Develop a new subsystem to support the existing 16-bit
applications.

ill Use the new Windows subsystem (particularly the GDI mod
ule) that the Windows NT team had developed.

ill Adopt an approach similar to that of OS/2 2.0, in which each
16-bit Windows application runs as a separate VM-somewhat
as the MS-DOS VM support works.

11111 Use one or more system semaphores to ensure that no more
than one thread at a time can run within the 16-bit subsystem.

33. Not only within the development team. During late 1993, this topic became by
far the most popular topic of debate in the Windows 95 CompuServe forums and at
the various developer events organized by Microsoft.

149

INSIDE WINDOWS 95

150

.
ii Revise the old code to enforce mutual exclusion on system

resources within the appropriate critical sections of the 16-bit
subsystem (a design technique referred to as "serializing the
kernel").

As you can probably imagine, the debate over reentrancy swirled
around issues of compatibility, performance, timescale, implementa
tion effort, and long-term value. The different approaches to the
reentrancy problem broke down to a question of new code, new archi
tecture, or protection of old code. Let's look at just a few of the specific
trade-offs the development team had to take into account as it consid
ered adopting one of the new approaches:

II The nonpreemptive nature of Windows 3.1 and its predeces
sors has meant that some Windows applications could depend
on the ordering and timing of certain system messages. Pre
empting one of these applications at the wrong time would
cause such a program to fail. Breaking this compatibility
constraint was simply not an option.

ii Application-registered callbacks are another difficult com
patibility issue. If the team used a semaphore approach, the
procedure for correctly setting the appropriate flags during a
callback to a 16-bit application would be a tough one to de
velop and test; this is a soluble problem, but the solution
would have involved huge amounts of testing.

II Rewriting the entire Kernel, User, and GDI subsystems as
32-bit code would have dramatically increased the memory
required for the system's working set. The User and GDI
modules alone require a working set of about SOOK. 34 Mea
surements indicated that a conversion to 32-bit code would
have increased the memory requirement by close to 40
percent, which would have raised the working set require
ments for User and GDI to well over a megabyte. Given the
goal of running Windows 95 well on a 4-MB system, this
increase in memory consumption wasn't acceptable.

34. Out of a planned total working set of around 3 MB for the product-similar to
that of Windows 3.1.

F 0 U R: The Base System

• Using the Windows NT subsystem looked attractive but would
have required extensive adaptation work for the Windows 95
architecture and a lot more memory to run in. (The Windows
NT code is written predominantly in C++, whereas Windows
95 is written in C and assembler.)

11111 A similar problem would have arisen from adopting the
multiple VM solution used by OS/2-more memory would
have been needed on the host system. And the OS/2 solution
fails to address some critical compatibility issues that the
Windows team weren't prepared to ignore.

With radically new approaches disqualified, it came down to figur
ing out how to introduce protection (by way of mutual exclusion) into
the Winl6 subsystem. The new 32-bit code designed for the Win32 sub
system simply didn't have this problem: from the outset it was designed
to support a multithreaded environment. Each of the potential solu
tions for the protection of old code traded implementation time off
against overall impact:

Ill A single semaphore guarding the Winl6 subsystem against
reentrancy would have been the simplest solution. It would
have been quick to implement and easy to test, and it would
have had no associated compatibility problems. However,
under certain conditions it could have had a big effect on the
system's multitasking performance.

Ill Multiple semaphores guarding related groups ofWinl6
functions would have reduced the adverse effects of a single
semaphore on multitasking performance; but when the bene
fits were weighed against the implementation and testing
effort it would require, this design didn't seem to be a compel
ling solution. Using multiple semaphores to reduce the granu
larity of a critical section would have imposed a performance
overhead. In one measurement, the execution time for a
single API increased by 10 percent. Providing the user with a
new system that was slower than Windows 3.1 was, again, an
unacceptable trade-off.

Ill The team also looked at a solution somewhere between the
single semaphore approach and the multiple semaphores

151

INSIDE WINDOWS 95

152

approach. In this solution, two semaphores would have been
used: one for Winl6 applications and the other for the 16-bit
User and GDI modules. This arrangement would have allowed
calls from 32-bit code into the 16-bit User and GDI whenever
a Winl6 application was doing something else. Unfortunately,
this solution would have involved modifying over 1000 entry
points within Windows, as well as required modifications to
system DLLs and many third party device drivers. Compatibil
ity constraints disqualified this solution too.

II Serializing the Winl6 subsystem would have been the most
effective solution. Shared resources would have been locked
only briefly-minimizing the impact on the system's multi
tasking performance. Unfortunately, the estimates for imple
menting this solution indicated that it would have taken a
significant amount of time to complete the development work
and would have added a massive testing burden to the project.
The team realized that the serializing approach would have
involved them in one of those software tasks that's virtually
impossible to accurately estimate the timescale for until a lot
of work has already been completed. Certainly, they knew,
months of elapsed time would be involved-enough time to
push the product release beyond acceptable limits.

Microsoft decided to adopt the single semaphore solution for
Windows 95. Figure 4-17 shows a revised version of the diagram in
Figure 4-13, one that depicts what really goes on when l6cbit and 32-bit
applications run concurrently. The semaphore that guards the Winl6
subsystem against reentrancy is called Wini 6Mutex35 • This semaphore is
set whenever the scheduler hands the processor to any 16-bit Windows
thread. The setting of the semaphore has several implications:

II Win32 application threads set and clear the semaphore as
they pass through the thunk layer. A concurrent Win32 thread
blocks on this semaphore while another thread is executing
Winl6 code.

35. The awesome power of marketing. Winl6Mutex used to be Winl 6Lock. After the
early technical debates about Windows 95 multitasking effectiveness, the marketing
group decided that Winl 6Mutex had fewer negative connotations than Winl 6Lock, and
the name was changed.

F 0 U R: The Base System

• A Win32 thread that does not thunk to the Win16 subsystem
never blocks on Winl 6Mutex.

II Whenever the scheduler hands control to a Win16 thread, it
sets the semaphore. Winl 6Mutex remains set until the Winl6
thread yields control.

Ill The behavior of a 16-bit Windows application will be exactly
the same as under Windows 3.1: no preemption and no
changes in message ordering, timing, or any other system
dependent operation.

Shared address space

Thunk layer

Figure 4-17.
Serializing execution of the Win16 subsystem.

153

INSIDE WINDOWS 95

154

The Wini 6Mutex operations warrant more explanation since they
are also the drawback to this solution. Setting Wini6Mutex prevents
a Win32 thread from entering the Winl6 subsystem whenever a Winl6
thread is active. Wini6Mutex has to be ·set because there are non
reentrant Winl6 components, such as the common dialog library, that
a Winl6 application calls directly rather than via an entry to the Winl6
subsystem. Setting and clearing Wini6Mutex as a Winl6 thread enters
the system won't account for this case, so the semaphore has to remain
set whenever a Winl6 thread is active. Under normal operation with
well-behaved 16-bit applications (that is, with applications that regu
larly yield control as they should), the effects on the system's multi
tasking are minimal. At worst, there might be a brief delay in a window
repaint for a Win32 application. (And "brief' here is on the order of
microseconds.) If a 16-bit application actually hangs up, the system will
gradually come to a halt as the Win32 threads block on Wini 6Mutex.
When the user hits Ctrl+Alt+Del to get rid of the offending application,
the system will reset Wini 6Mutex as part of its cleanup procedure-and
everything will proceed normally. If a 16-bit application actually
crashes-with a GP fault, for example-then again Wini6Mutexwill be
cleared during cleanup. The Wini6Mute~semaphore is a less than per
fect solution-no question. And no doubt critics searching for flaws
will pounce on this shortcoming. It is the best solution Microsoft could
come up with to the most obvious problem brought about by the com
patibility constraints placed on Windows 95. Having examined the
trade-offs inherent in each possible solution, I'll happily argue that the
Windows 95 designers made the right choice. Ignoring compatibility
constraints would have been the worst decision the design team could
have made, and the additional constraints of performance, memory
occupancy, and project timescale make the single semaphore solution
the best one. Windows 95 offers a scheduling mechanism that's mark
edly better than the one in Windows 3.1 today. Your existing 16-bit ap
plications will run as well as or better than they ever have, you'll get
full preemption with new Win32 applications, and in everyday use
the combination of the two really won't have a detrimental impact on
performance:

Ill The 32-bit and 16-bit kernel components are independent,
so a Win32 thread requesting a potentially lengthy operation,
such as file I/O, won't have to call into the 16-bit code.

F 0 U R: The Base System

• The User and GDI calls that do have to grab the Win16Mutex
semaphore are predominantly ones that have very short
execution times, so Win32 threads will need to own the
semaphore only briefly. This means that separate Win32
threads will rarely compete for the semaphore.

• Both the shell and the print spooler are 32-bit applications,
so the most commonly used components will avoid the prob

lem altogether.

The possible drawbacks to this solution when the user runs a mix
of 16-bit and 32-bit applications are another incentive for application
developers to concentrate their efforts on Win32 applications. And
don't forget: if you truly, absolutely, require a system that provides guar
anteed preemption of both 32-bit and 16-bit applications, Windows NT
is the product for you.

Conclusion
For students of operating system design, Windows 95 is interesting for
its practical implementation of some modern techniques, such as
threads. And the base system now fully exploits the 386 processor archi
tecture, with its core components retaining no dependence on 16-bit
code or 16-bit processor modes. The ugly practicality of running appli
cations designed for the world's most popular piece of software has
meant that some design compromises had to be made. For the purist,
the compromises may detract from the major improvements imple
mented within the base operating system introduced with this version
of Windows. For the user and for the developer who's in the business of
selling software, the compromises mean compatibility-to this day the
only feature guaranteed to increase the popularity of an operating system.

Windows 95 provides the application programmer with some major new oppor
tunities, including the prospect of developing with a full 3 2-bit AP! and memory
model and the ability to exploit preemptive scheduling. The user will benefiJ from
3 2-bit applications in terms of performance, robustness, and increased function
ality. Those enhancements won't be the user's first impression, however. That will
be provided l7y the major changes in the appearance of Windows 95, and they 're
our next topic.

155

INSIDE WINDOWS 95

156

References
Microsoft Corporation. Win32 Software Development Kit. Redmond, Wash.:

Microsoft, 1993.

Microsoft Corporation. Win32s Programmer's Reference Manual. Redmond,
Wash.: Microsoft, 1992.

Microsoft Corporation. Windows 95 Device Driver Kit. Redmond, Wash.:
Microsoft, 1994. If you really want to grope around inside Windows, you
must have this product. Simply studying the header files reveals a lot of
information about the internals of Windows. There are also reams of
sample VxD source code if you want to get very serious.

Nu-Mega Technologies, Inc. Soft-Ice/W Reference Manual. Nashua, N.H.:
Nu-Mega, 1993. If you program seriously for Windows and you don't use
this debugger, stop everything and go buy it. Clearly, Microsoft itself was
impressed-a preliminary version of Soft-Ice/W for Windows 95 came
with the very first external test release. Apart from being a great tool,
Soft-lce/W offers a lot of interesting information about Windows in its
product manual.

Oney, Walter. "Mix 16-Bit and 32-Bit Code in Your Applications with the
Win32s Universal Thunk." Microsoft Systems journal, November 1993:
39-59. A useful discussion of some of the issues surrounding mixed
memory models and thunking techniques.

Pietrek, Matt. Windows Internals. Reading, Mass.: Addison Wesley, 1993.
If you really want to know how Windows 3.1 does its work, this is a
book you have to read. I imagine Matt as he wrote this book as a lone
spelunker, flaming torch held high as he crawled through the world's
latest and largest heretofore undiscovered system of caves. I hope that
Matt is already at work on the version for Windows 95.

C H A P T E R F I V E

THE USER INTERFACE
AND THE SHELL

Microsoft's introduction of Windows 3.0 in New York on May 22,
1990, was the cornerstone upon which the Windows product line has
built an ever increasing market share over the last few years. Although
there were many notable new features in the Windows 3.0 release, the
product introduction and a large proportion of the product's reviews
focused on the improved visual appeal of the Windows interface. Many
small, simple improvements to the interface, such as buttons that ap
peared to move when the user clicked them with the mouse, enhanced
the product's immediate appeal-perhaps out of all proportion to
their actual importance. The product's eventual success was a function
of the other major new ~eatures of Windows 3.0 plus Microsoft's in
tense marketing campaign and the availability of some important new
Windows application products. But in the first flush of the product's
success, its visual appeal counted for a great deal.

Windows 95 looks as dramatically different from Windows 3.0
(and 3.1) as Windows 3.0 did from its predecessors. From the moment
you start Windows 95, you can see that the appearance of Windows has
been completely altered. Figures 5-1and5-2 on the next page illustrate
the difference. Each shows one of the first screens a user sees after ini
tial installation.

So why change a winning formula so completely? Aren't there some
major business risks associated with asking a loyal base of users to accept
change one more time? Of course there are some risks, apd the recep
tion of Windows 95 will determine whether Microsoft's gamble pays off.1

In this chapter, we'll look at all the new elements of the Windows interface

1. Late in the project Microsoft decided to retain versions of the Windows 3.1
Program Manager and File Manager as desktop accessories for Windows 95-no doubt
to lessen the initial shock for experienced Windows 3.1 users.

157

INSIDE WINDOWS 95

158

and in particular at the new Windows 95 shell-itself significantly differ
ent from the Windows 3.1 Program Manager.

I • • 111 & Control Panel Print Manager CliJilook
Viewe1

• ,. • • Windows PIF Edior Mail Schedule+
Setup

rfi11 rfi11 . -
·Startup Applictitions

Figure 5-1.
The initial default user screen for Windows 3.1.

Figure 5-2.
The initial default user screen for Windows 95.

FI V E: The User Interface and the Shell

If you're familiar with the UNIX or the OS/2 operating system or
with any one of the many products available for MS-DOS or Windows,
the term shell is no doubt also familiar to you. Generally speaking, the
shell is a program that provides the user with a means of control over
the system. The shell is the program the user generally considers to be
"the system." In MS-DOS, both COMMAND.COM and the MS-DOS
Shell provide user control and the system interface. In Windows 3.1,
it's hard to point to "the shell." The Program Manager fulfills some of
the shell function and the File Manager some more. Neither provides
all of the functions that the sophisticated user has come to expect of a
good shell program. The new shell is the component that realizes a lot
of the user interface improvements in Windows 95. The success of the
shell, as the average user's means of controlling the system, will by and
large indicate the success of the user interface improvements in Win
dows 95.

Given that Microsoft rarely alters a successful product simply for
the sake of change, you can conclude that there were good reasons for the
extensive revision of the interface in Windows 95. One was the desire to
take a step toward a fully document-centric interface, one in which users
concern themselves only with their documents and not with files, pro
grams, directories, disk volumes, and the other odd paraphernalia of
operating systems. Microsoft's work on OLE technology laid the foun
dation for a lot of the thinking that went into Windows 95 and also into
Cairo. Windows 95 doesn't quite reach the goal of being a completely
document-centric system, but it is a major step forward. It's up to the
Cairo team to pull off the final jump.

The other major reason for revising the Windows 3.0 and 3.1 in
terface was to fix some of its problems-problems either that Microsoft
knew about from the beginning or that had become apparent as more
and more people began to use Windows. The goal of making Windows
95 easy for users and the desire to attract more new users to the Win
dows platform warranted a major effort to eliminate these problems.

We'll return to document-centric thinking a little later. Let's take
a look at the perceived problems in Windows 3.0 and 3.1 first.

Improving on Windows 3.0 and 3.1
Criticism of Windows became a popular sport shortly after the success
of Windows 3.0 began to pick up speed. The continued success of Win
dows has muted many of the more strident critics, but some critics

159

INSIDE WINDOWS 95

made valid points that Microsoft paid close attention to. Within the com
pany, the· extensive degree to which Windows served as an application
platform created a lot of requests for modification or enhancement of
the product. As most reviewers are quick to point out, Microsoft's first
release of a product is rarely perfect. But Microsoft does strive to get
things right, and most of its products improve dramatically from one re
lease to the next. Windows is no exception, and regardless of whether
you consider Windows 95 to be the third or the eighth release of Win
dows, it does include some major improvements to the user interface.

Windows 95 benefits from the effort invested in the following:

II More unified configuration and control of the system. The
plethora of manager programs and other control functions is
reduced.

l!i Improved consistency of the user interface. Similar functions
look and feel the same.

II Improved visual details.

System Configuration and Control

160

Of all the criticisms of Windows 3.0 and 3.1, the most frequent one con
cerns the confusing variety of managers and control functions.

Program Manager, File Manager, Task Manager
The Windows Program Manager plays a notoriously inconsistent role
as a tool for controlling the system. Windows 3.0 and 3.1 include both a
Program Manager and a File Manager. The fact that the two different
managers allow the manipulation of, in some cases, the same items
compounds the confusion ma11y users experience over the relationship
between the items displayed in one and in the other. A novice user
finds it difficult to grasp the concept of an application program and its
separation from data. Even the expert user, for whom the distinction
between application programs and files is a known, gets frustrated with
the primitive methods Windows 3.0 and 3.1 provide to form an associa
tion between applications and documents.2 Here are a few instances of
the shortcomings and inconsistencies in the standard Windows 3.1
managers:

2. Several Program Manager replacement products, such as Symantec's Norton
Desktop for Windows, have been very successful by virtue of carefully papering over
some of these cracks in the Windows veneer.

FI V E: The User Interface and the Shell

• Double-clicking on a filename in the File Manager will start
the associated application only if the user (or an installa
tion program) has specifically listed an association between
a filename extension and a particular application. If no assoc
iation has been defined, getting at your data means first run
ning an application and then loading the appropriate data
file. This involves a number of steps and a number of names
to know or locate.

II The initial Windows desktop shown in Figure 5-1 offers the
user no clue as to how to begin working. It displays a con
fusing collection of icons and names and offers the naive user
very little help.

Ill Application icons can appear on the desktop (the background
screen) only when they're running. Otherwise, the icons must
reside in one of the Program Manager windows.

Ill Using the Program Manager to delete the icon that refers
to an application or a file is a traumatic experience for many
users. The fact that only the icon and the reference to the file
get removed is not well understood.

Ill Similarly, the true meaning of Move and Copy operations for
program icons is obscure.

Ill Filenames composed of 8.3 character strings, with some char
acters having assigned meanings, are completely inadequate
for virtually all users.

The other major deficiency of the Windows 3.1 Program Manager
is that it really isn't even a complete program manager. The Task Man
ager provides some control over running programs. Unfortunately, the
Task Manager is confusingly implemented and provides the user with
very little actual control over the system. See how many Windows users
you know who routinely double-dick on their desktop wallpaper to
bring up the Task Manager and its list of running applications.

Although it may not happen to you, most Windows users routinely
lose windows on their desktops. Because application windows obscure
others, a user tends to start the same application twice-thinking that the
first instance somehow failed or stopped running. Or the user may believe

161

INSIDE WINDOWS 95

that his or her document is completely and irretrievably lost. The Pro
gram Manager itself can disappear, causing further consternation. The
obscure nature of the Task Manager and of the method for switching
between full screen windows compounds the inadequacy of the Pro
gram Manager as a mechanism for fully managing every program re
gardless of its current state.

Control Functions
Although the Control Panel program incorporates most of the compo
nents used to effect setup, configuration, and control of a particular
Windows system, several other system control functions are hidden
away in other corners. Perhaps the best-known example is printer con
trol. Windows 3.1 includes a printer control function in the Control
Panel program and an entirely separate Print Manager program. And
most applications include a printer setup function accessible from
their menu bars. Exactly when to use which control function, and what
the results will be, remains something of a mystery even to experienced
Windows users. Windows 95 tries to reduce the proliferation of control
functions, locating all of them in only two places: one for printer con
trol functions and the other for all other control functions.

Consistency

162

Another aspect of Windows 3.1 that is treated inconsistently is the par
ticular properties of a control or configuration object. The definitions of
how particular items are set up or of how they will respond in certain situ
ations are inconsistent. For example, Windows 3.1 allows you to get to
the printer setup option either by choosing Printer Setup in the Print
Manager Options menu (see Figure 5-3) or by choosing the Printers icon
in the Control Panel (see Figure 5-4).

Both routes lead to the same dialog (see Figure 5-5 on page 164),
but neither could be described as a swift or direct route to the most per
tinent information. Windows 95 introduces the concept of property
sheet~a feature aimed at resolving this problem. We'll look at property
sheets in some detail later in this chapter.

FIVE: The User Interface and the Shell

Qptlons Help
,/!oolbar
,/ltatus Bar

font ...

\t I NEC Silenll'«ier2 00 on LPT2 (Set .!;olumn Widths

llackground Printing ..•
Ss:parator Pages ...

frlnter Setup •..

Figure 5-3.
Getting to Printer Setup via the Print Manager in Windows 3.1.

Figure 5-4.
Getting to Printer Setup via the Control Panel in Windows 3.1.

163

INSIDE WINDOWS 95

Visuals

164

- Printers

Default Printer-----------,
HP LaserJet Series II on LPTl:

Installed erinters:
HP LaserJet Series II on LPTl:
NEC Silentwriter2 90 on LPT2:

Figure 5-5.
Windows 3.1 printer setup dialog box.

The appearance issues the Windows 95 team addressed are minor
when you take them up individually. But by carefully eliminating all of
the perceived problems and improving the visuals, the team improved
the look and feel of Windows dramatically. Essentially, each change
amounts to a great deal of attention devoted to every visual detail of the
interface. In particular, the team took care to improve the consistency
of the screen display and to reduce visual clutter. Take a look at the dia
log box from Windows 3.1 in Figure 5-6. Notice that the different con
trols and buttons are all different sizes and differently aligned. Look at
the Screen Saver and Wallpaper groups of controls. In one, the drop-·
down list box has the arrow button firmly attached to the text box. In
the other, the arrow button stands alone. Does this difference have any
significance? Actually it does, but this particular visual cue doesn't re
ally help the user at all. The Windows 95 designers were intent on re
moving such small discrepancies.

Scalability
One other visual design issue also received attention: allowing the user
interface to scale better on different display hardware. If you've ever
seen Windows 3.1 on a large, high-resolution monitor, you'll have seen
that a number of the visual elements don't scale up very well. The system
font is one example. With higher-resolution displays becoming more
commonplace on popular systems, Windows 95 had to do a better job.

Screen Saver------===->

Npie:IM.1111iy •

ll.alllJ': ~Minutes
D P1111-d protected

Wallpopor---~

file: I dolphin.bmp I •
®t.•nter Op.
Sizing Grid

§.ra,..larily: @::=:I
lorderWidlh: 0

Figure 5-6.
Windows 3.1 desktop control dialog box.

F I V E: The User Interface and the Shell

Concepts Guiding the New User Interface
Many of the new user interface ideas for Windows 95 came from the vi
sual design group at Microsoft. These are the people who define, refine,
and improve the user interface for all of Microsoft's products. Over the
last few years, Microsoft has used more and more visual design expertise
on its projects, and Windows 95 is perhaps the first product in which the
efforts of the visual design group have had a high level of impact on the
appearance and operation of the product. Involved in more than pure
visual design, the group works with the development team to define how
a product is to respond to user actions. Their goal is to get all of Micro
soft's products appearing and behaving in similar, obvious ways. If you
know how to use one product, your learning time for another should be
greatly reduced. Among other influences, the visual design group uses
real people to test hypotheses about interface design-the input often
coming from controlled usability testing. Does the user actually respond
the way you think he or she should? If not, why not? One team goal for
the revised interface in Windows 95 was to reduce the level of knowl
edge a novice needed in order to begin using the system. The usability
tests helped validate whether the design innovations really did accom
plish that goal.

165

INSIDE WINDOWS 95

In Chapter One, we looked briefly at Microsoft's other major op
erating system effort-the Cairo project. The initial design for the Win
dows 95 shell and for many of its interface elements was done by the
Cairo group. Throughout the Windows 95 development project, there
was a lot of interaction between the Windows 95 and Cairo groups to
ensure the consistency of Windows 95 with the evolving Cairo design. 3

The other major influence on Microsoft's operating system design
efforts during 1992 and 1993 was OLE technology. OLE was originally
developed by Microsoft's Applications Division as a way of providing a
consistent basis for complex data interchange and other application in
teraction features. OLE rapidly became a more and more important
component of Microsoft's evolving software architecture, and in the late
fall of 1993, the OLE group moved from the Applications Division to the
Systems Division-a move that confirmed OLE's central role in
Microsoft's plans. In many ways, OLE can be viewed as the first imple
mentation of Cairo's design concepts. The Windows 95 shell and user
interface would be the next major step. Central to all of this work was
the evolution of the user interface to a document-centric model, replac
ing the application-centric view implemented in Windows 3.1.

The Document-Centric Interface

166

The document-centric interface is the main theme of much of the con
ceptual work for OLE, Windows 95, and in the future, Cairo. The
document-centric approach is derived from the object-oriented con
cepts that are now increasingly popular in the software industry. Unfor
tunately, object orientation has become an overused marketing term.
There are real examples of its use, as in Next's NextStep system, but the
proponents of many a system claim that theirs is an object-oriented ap
proach without really implementing one. OLE and Windows 95 are ma
jor steps toward a full object-oriented system, although neither of them
is complete in that regard. Microsoft intends that Cairo will be.

A document-centric approach means that the users concern them
selves only with documents and not with programs and files. The system
itself is responsible for maintaining the relationship between data of a
particular format and the application that can manipulate the data. Put
ting the responsibility on the system ties in with the usability information

3. And, of course, one thing the Cairo group did not want was for Windows 95 to
appear with features that Cairo would not or could not be compatible with.

F I V E: The User Interface and the Shell

that Microsoft has gathered from users of Windows. Many users, particu
larly those introduced to the PC via Windows, not MS-DOS, find it diffi
cult to separate the concepts of programs and of files. To these users,
the item of concern is the document they work on-whether it be a let
ter composed with a word processing application, or a chart of recent
sales results prepared with a spreadsheet application. For many people,
the application program and the file containing the specific data are
conceptually indivisible.

The document-centric approach contrasts with the approach imple
mented in most systems today, including Windows 3.1. Today you use an
application-centric model. To carry out some operation-for example,
redrawing a sales graph in light of the latest month's results-you must
first run the appropriate application, then load the data file, then
change the numbers, and then redraw the chart. If you want to include
the chart in a report, you also have to know how to run the application
that handles your report and then cut and paste the chart from its native
application into the report file.

OLE introduced the concept of a compound document. With OLE,
many different types of data can be held and edited Within a single docu
ment. Editing one element of the document involves simply double
clicking on the object. The application appropriate for manipulating
that type of data is loaded without any further action from the user. You
see and work with only a single document but possibly several different
application programs. ·

The Windows 95 shell provides a document-centric approach to
the system. Everything that can be conceptualized as a document has
been. Collections of documents formfol,ders Gust like file folders), and
you can organize folders and documents just as you would organize
them in a real filing cabinet.

Look and Feel
The designers and developers of any graphical user interface, such as
the Windows GUI, speak of the look and feel of the interface. This term
refers to two aspects of the interface: the visual appearance of the inter
face and the behavior of the interface in response to a user action such
as a mouse click or a keypress. The appearance and the behavior of the
interface are closely intertwined. Many user actions are the direct result
of a visual cue. A user who is unfamiliar with the details of a particular
operation will seek visual guidance while navigating through a sequence
of actions aimed at producing the desired result. Windows, and other

167

INSIDE WINDOWS 95

168

graphical interface products, tend to reduce the learning task associ
ated with a new application by presenting access to many standard op
erations in the same way. For example, opening a data file within a
Windows application always requires clicking on the File menu and
then on the Open option on that menu.

Designers of these graphical interfaces worry constantly about a
few very important characteristics, asking themselves whether the inter
face can be described in these ways:

Consistent. Does the user always do the same thing in the same way?
Does the user gain access to similar operations using the same
keyboard or mouse inputs, guided by similar visual cues?

Usable. Does the interface allow the user to do simple things simply
and complex things within a reasonable number of operations?
Forcing the user to go through awkward or obscure input
sequences leads to frustration and ineffective use of the system.

Learnable. Is every operatio~ simple enough to be remembered
easily? What the user learns by mastering one operation should
be transferable to other operations.

Intuitive. Is the interface so obvious that no training or documenta
tion is necessary for the user to make full use of it? This aspect of
a GUI is the holy grail for interface designers.

Extensible. As hardware gets better or faster-for example, as
common screen displays achieve higher resolution or new
pointing devices appear-can the interface grow to accommo
date them? Similarly, as new application categories become
popular, does the user interface remain valid?

Attractive. Does the screen look good? An ugly or overpopulated
screen will deter the user and reduce the overall effectiveness of
the interface.4

In Windows 95, Microsoft addresses many of the issues involved
in ensuring compliance with the guidelines set down in The Windows

4. Judging by the sales of screen saver software and the semi underground prolifera
tion of Windows wallpaper and icons, we might conclude that the average computer user
is fairly keen on the entertainment value of the interface as well. Designers might not
admit to spending a lot of time on this aspect of the interface, but Microsoft introduced
a plan to include animated desktops in Windows 95 quite late in the project. Obviously,
the Windows 95 designers believed in the value of entertainment.

F I V E: The User Interface and the Shell

Interface: An Application Desig;n Guide (Microsoft Press, 1992). This book
describes how the appearance and behavior of a Windows application
ought to leverage the user's earlier learning. Microsoft is always at
pains to point out that the book provides guidelines, not absolute
rules. If someone comes up with a better or simpler way to provide a
feature, as far as Microsoft is concerned it's fine to go ahead and use it. 5

The Windows 95 Shell
A lot of design and development effort has gone into the new shell for
Windows. During development, one of the major shell functions was
referred to by the name Explorer. Whether this name will be used in
any form when Windows 95 ships is unknown, but as of mid-1994, the
term Explore still appeared on the shell's Start menu. The name does
embody one important aspect of the shell's function. The Windows 95
shell is intended to be the program you'll use to explore the system
not just your own desktop system, but also the network system you're
connected to. The Windows 95 shell replaces the Windows 3.1 manager
programs such as the Program Manager, the File Manager, the Task
Manager, and the Print Manager. The Windows 95 shell consolidates the
manager functions into. a single program that is always accessible and, at
least by intent, will be the means by which most users will view and use a
Windows 95 system.

One of the more popular terms in Microsoft's Windows group in
recent times has been lnvwsing. Sometimes it sounded as though all
anyone ever wanted to be able to do was to browse around a network,
locating files, programs, printers, and whatever. It began to seem as
though actually doing something with one of these resources was inci
dental. That's stretching the truth a little, but Microsoft does intend
the Windows 95 shell to make browsing (and thus resource locating)
an easy and natural operation.6 If you study your own work patterns,
you'll see that you do spend a significant amount of time locating ob
jects: finding old documents in a word processor directory, for example,
or removing old unwanted files to free up disk space. Both of these tasks

5. One new standardized element of Windows 95 is the application tool bar, an
interface element used by several early application developers and subsequently
copied very widely. The tool bar is a good idea that has become popular with users, so
Microsoft decided to include it as a standard element of the Windows 95 interface.

6. Cairo will take this capability much further by providing a powerful query
mechanism that will allow the user to rapidly locate any object, anywhere on the
network.

169

INSIDE WINDOWS 95

170

involve browsing operations, and improving the efficiency of browsing
is a definite positive.

Folders and Shortcuts in the Windows 95 Shell
The Windows 95 shell implements two new concepts that need immedi
ate introduction: folders and shortcuts.7 Folders are a foundation of the
shell design, and as you use Windows 95, you'll quickly find that short
cuts are a valuable enhancement. A lot of the examples in the upcoming
pages will display the use of folders and shortcuts to one degree or an
other. We'll take a look at shortcuts in the next section.

Folders A number of folders and their contents are shown in Figure
5-7. A folder is a logical container that allows you to group any collection
of items you choose-a set of documents produced with your word pro
cessor, for example. The items, or objects, a folder can hold include

5.25 Floppy 3.5 FlopPJ> (B:) Ardlos_c (C:)
IA:l . - . Beto1_rc1 ID:) (I:) Control Panel

II
-Folder

Figure 5-7.
Folders in the Windows 95 shell.

Spe
llliilTemp
llliilTmp
llliilusr
llliilWroug
llliilWmows o-ec.bok
l!IAutoe.ec

AutoeKeC.dos
c=!Command
D Command de•

~D~:i:dc• Sotuplog.old
Sotuplog
Systemdat

Curved arrow (fA) in lower left
corner of icon denotes a shortcut

7. Microsoft originally used the name "link" to refer to this feature. As expected, it
did change before product release. Among other candidate names, "nickname,"
"remote control,• "jump,• and "post it" were under consideration. The term "shortcut"
was chosen in early 1994. Whether it will be the final term remains to be seen.

F I V E: The User Interface and the Shell

individual files, other folders, or shortcuts. (Notice the curved arrow
mark used to visually denote a shortcut.)

The shell provides a view of both the local and the network system
that is an exact replica of the filesystem-that is, an object shown in
one of the shell's windows is actually a file or a directory residing on a
disk somewhere. Folders are directories, and even shortcuts are stored
as files. This design is different from that of other implementations in
which some objects really are files and others exist in another universe.
In Windows 3.1, for example, the icons in the Program Manager
groups exist physically either as individual files or as resources within
executable files; entries in a .GRP file in the \WINDOWS directory link
the icons to the program groups. When you try to track down the icons
outside the Program Manager, you need special knowledge to do so.
Windows 95 makes everything a file or a directory, so most special files
(such as the .GRP files) disappear. If you know how your desktop looks,
you know how your files are organized, and vice versa.

The generalized folder mechanism, with its ability to contain any
other object, is a big step on the way to a completely document-centric
system. Operations such as printing, copying, and searching through a
document require no knowledge of the particular program used to
implement the operation. Any operation is available in a completely
general way for any document. And one of the most important design
goals for the shell is to provide a fully consistent environment. An op
eration on one kind of object achieves predictable results based on
what you know about the behavior of the same operation with a differ
ent kind of object. The use of the folder concept is key to achieving this
consistency.

Shortcuts The Windows 95 shortcut concept is a very powerful one. It
allows you to create a reference to an object without having to make a
copy of the object. For example, you might create a folder containing sev
eral word processing documents together with a shortcut to the printer
you use for output. Figure 5-8 on the next page is an example of how this
folder might appear. To print a document, you'd simply open up the
folder, click on a document icon, drag the icon to the printer icon, and
drop it. Access to the appropriate printer would be immediate, and the
document would be printed without your needing to specifically run the
application you used to create the document. The shell would take care
of loading the appropriate application and informing it of the operation
(printing) and the chosen document.

171

INSIDE WINDOWS 95

172

~ ~
Shortcut to HP Word

LaserJet

Figure 5-8.
Shortcuts in the Windows 95 shell.

Windows 95 uses shortcuts extensively, and you'll see several other
examples of their power in this chapter.8 Although Windows 95 contin
ues the use of a hierarchically organized filesystem, the availability of
the shortcut mechanism makes it possible for you to organize your
documents the way you want them, without having to make multiple
copies of particular files or programs. For example, if you keep several
folders of documents that require the use of a calculator while you're
working on them, you can store a shortcut to the calculator in each
folder. The calculator is then immediately accessible, and you don't
have to make multiple copies of the calculator program. Although pur
ists might frown at the ability of shortcuts to muddle a pure hierarchi
cal filesystem structure, usability tests have shown that very few people
are comfortable with the constraints of a strict hierarchy. People don't
work hierarchically, and they dislike the hierarchical filesystem for forc
ing them to try to.

Windows 95 implements shortcuts in the shell by recording their
existence in a .LNK file. Each shell folder that contains shortcuts, and
thus each disk directory associated with a folder, contains a .LNK file
for each shortcut.9

Desktop Folders
Desktop folders in Windows 95 are very dynamic, and thus the contents
of the associated disk directories change frequently. A \DESKTOP di
rectory on the system's boot drive contains all the items that define

8. Something akin to links is in use in the Windows 3.1 Program Manager: icons in
program groups are links to the executable program. Other desktop utilities extend
the capability. However, Windows 3.1 neither formalized nor generalized the link
concept.

9. Originally shortcut information was stored in a DESKTOP.IN! file that also held
window placement information for shell folders. DESKTOP.IN! eventually disappeared
in favor of directories collected under the Windows \DESKTOP directory.

F I V E: The User Interface and the Shell

the initial layout of the user's desktop. As items are moved on and off
the desktop, the physical contents of the \DESKTOP directory change.
Figure 5-9 shows a desktop layout and a listing of the associated disk
files that track this configuration. Notice the default SHORTCUT.LNK
files that contain the shortcuts to the printer object.

Figure 5-9.
Desktop folders in the Windows 95 shell.

System Setup

The default
SHORTCUT.LNK file

System setup in Windows 95 is considerably improved over Windows 3.1
setup. As part of the overall goal to make the system easy to use, system
setup makes it simple for the new Windows user to install the system and
get it running for the first time. If you know what you're doing, you can
still customize your system as you install it. But if Windows is a new ad
venture for you, the answers to a few simple questions are sufficient to
get you going. Microsoft's Plug and Play technology is central to the im
proved setup process.

Microsoft's usability tests uncovered the difficulty new Windows us
ers had with getting the system to do something-anything-the very first
time they tried to use it. In retrospect, it's perhaps easy to see why. Look at

173

INSIDE WINDOWS 95

174

the Windows 3.1 screen display in Figure 5-1 back on page 158. Nothing
on the screen provides a hint about how to start-and the StartUp icon
can even mislead. There's a lot of information, but no discernible first ac
tion. The problem is compounded by the physical difficulty many begin
ning users have with the mouse double-click action. In Windows 3.1,
unless you can double-click after installation, it's very hard to get the sys
tem to do anything for you. This isn't a problem limited to Windows.
Most graphical systems today still require users to possess quite a lot of
information and skills before they can start to use the system.

Microsoft addresses these problems early on in Windows 95. The
single "Start" button on the screen (see Figure 5-2 back on page 158) is a
good hint. To make sure that the user doesn't miss the Start button, the
status message alongside bounces against the button when the user first
starts the system-like a finger pointing to the correct path. As the user
continues to work with the system, other helpful hints appear as status
messages.

The Initial Desktop
With the initial default desktop in Windows 95 (see Figure 5-2), there is
but a single obvious point of access to the system-the "Start" button in
the lower left corner. The area at the bottom of the screen is called the
system taskbar. 10 In the initial configuration, the empty desktop and the
message on the taskbar telling you exactly what to do leave you with
only one real choice. In fact, double-clicking on the desktop computer
icons also gets the user going. Clicking on the "Start" button will get
the user to the screen shown in Figure 5-10. Selecting any items with
continuation menus offers yet more possibilities. Figure 5-11 shows one
of these possibilities.

To get this far, the user must at least have mastered the single-click
operation with the mouse. Simply moving the mouse to one of the
items shown on the menu in Figure 5-10 means that you're almost
home. One more click, and you're running an application. Microsoft
believes that this simplified setup and first time operation of the system
will quickly get users to the point at which they're doing real work,
rather than fooling around with the system. It's hard to come up with a

10. Another term that may yet change. "Tray" was the term used for a long time.

Figure 5-1 O.
The default Start menu.

Figure 5-11.
Continuation menus.

FI VE: The User Interface and the Shell

Continuation
menus

175

INSIDE WINDOWS 95

176

general purpose scheme that's faster than two prompted mouse clicks
from startup to application, so the expectation appears to be justified.11

The only other access points on the initial desktop are "My Com
puter" (which the user will promptly rename) and "Network Neighbor
hood" (which appears only if Setup detected a network connection).
Figure 5-12 shows these folders after double-clicking has opened them.
The user can explore the local system further by double-clicking on the
disk icons and can explore the network by double-clicking on the other
systems that are active.12

5.25 Floppy 3.5 Floppy (8:) A1diles_c (C:)
[A:)

(I:) Control Panel

Figure 5-12.
Other access points on the initial desktop.

11. If you think this is an at all unreasonable amount of effort to get users to the
point of running an application, Microsoft's usability testers have some videotapes for
you. The tapes show novice users taking several minutes (and in some cases giving up
the attempt) to locate and run Notepad under Windows 3.1. In the same test under
Windows 95, the time was reduced substantially.

12. Early versions of the shell allowed access to the entire network from this point.
On a large network (such as the Chicago development group's), accessing the entire
network produced a lengthy and nonuseful list of network resources. The neighbor
hood concept allows you to constrain the network resources you view to the resources
you're interested in.

FI V E: The User Interface and the Shell

The Desktop
In Windows 95, a number of new design ideas underlie the new look
and behavior of the desktop. In Windows 3.1, the user's conceptual
desktop consisted of the Program Manager and its program groups
and to some extent the background. Beyond holding minimized win
dows and providing a display area for the user's favorite screen wall
paper, the background didn't do much. Windows 95 changes that
significantly. The Program Manager is gone, and the background be
comes an important part of the overall shell design.

On the.desktop, Windows 95 implements a look and feel that is
consistent across all objects. Drag and drop operations are supported
everywhere. You can move folders by means of drag and drop opera
tions, and as we've already noted, you can print documents by dragging
them to the printer and dropping them. The screen background itself
becomes an integrated part of the desktop. You can drop objects on the
desktop for storage. You can create storage objects and put them on
the desktop for safekeeping. Conceptually, the Windows 95 desktop
is intended to serve just as your own real desk in your own real office
does-even to the extent of allowing you to put pictures of the family
dog on it.

As you gain experience, your desktop will probably look some
thing like those shown in Figures 5-13 and 5-14 on the next page after
you've been using Windows 95 for a while. The desktop itself acts as a
storage medium for any objects you put there: folders, shortcuts to ob
jects, and additional access points to the system such as the local system
and the network. Some of the icons will probably appear on every desk
top because they represent specific points of access to the system.
Other objects on the desktop will reflect the user's personal customi
zation of his or her working environment.

The computer icon provides access to your local disk storage.
Your opening this object is intended to convey an impression of your
"opening" your computer to inspect the information it contains. Ear
lier on, we looked at some of the system folders and at some aspects of
the shell's facilities for browsing as you deal with folders. The network
neighborhood is the point of access to the systems you have connec
tions to. Figure 5-15 on page 179 shows an example of the hierarchy of
folders opened across the network as the user looks for a particular file.

177

INSIDE WINDOWS 95

Figure 5-13.
A user's desktop in Windows 95.

Figure 5-14.
Another user's desktop in Windows 95.

178

FI V E: The User Interface and the Shell

The system taskbar at the base of the screen represents a perma
nently available "home base," or anchor point, for the user. By default,
the system taskbar is always visible and accessible. The Windows 95 de
signers intend the system taskbar to keep the novice user from losing
his or her place in the system. Even when an application maximizes its
window, the taskbar is still visible and the user can access it.

Figure 5-15.
Browsing the network from the desktop.

The Taskbar
Losing windows on the desktop has been an all too common problem
with Windows 3.1, notably when minimized windows got hidden be
hind other windows. To solve this problem, Windows 95 introduces the
taskbar-a user interface element that serves as a common storage
point for several different types of objects. As you'll have noticed from
the earlier figures in this chapter, you'll see the taskbar on the screen
nearly all the time. The default taskbar behavior is to always be visible.
Windows 95 applications must content themselves with the physical
screen dimensions that are left. A maximized window occupies the en
tire physical display except for the area used by the taskbar. If you turn
off the always on top property for the taskbar, a maximized window can
obscure the taskbar. This is not quite the same behavior as that of con
tending windows under Windows 3.1. The always on top attribute in

179

INSIDE WINDOWS 95

180

Windows 3.1 would cause a window to obscure some of the maximized
window underneath. The apparent screen· dimensions did not change
as they do in Windows 95. Microsoft has added an Auto hide option for
the taskbar. Setting this option will cause the taskbar to appear only
when you move the mouse cursor to the edge of the screen at which the
taskbar rests. The taskbar will disappear when the cursor moves away
from that edge of the screen.

In the taskbar, you'll see the following:

Ill The single button that provides immediate access to some
common system functions: help or system shutdown, for
example.

II A resting place for active windows. The system will put a but
ton representing each active window into the taskbar. This
refuge solves the Windows 3.1 problem in which minimized
window icons disappeared when they were hidden behind
other windows.

The user can configure the location and size of the task bar. Figure
5-16 shows an alternative layout. This particular layout makes it easy to
demonstrate the various uses for the taskbar, but it probably isn't one
you'd choose because it significantly reduces the screen space left for
applications. And the shell does limit the configuration possibilities.
You can adjust the size of one dimension of the taskbar, but the taskbar
must rest against one physical screen boundary, and its larger dimen
sion is always the same as that of the chosen edge.

One major function of the taskbar is to provide a consistent
"home position," or anchor point, for the user. If you accept the
taskbar's default behavior, the taskbar is always visible. Then, if you get
confused or the desktop gets thoroughly messed up, the taskbar is al
ways there as a place to return to for help or other system functions and
to reorient yourself.

Application compatibility issues in relation to the system taskbar
are quite interesting. Ultimately, the designers decided to treat the
area occupied by the taskbar as if it were off the edge of the screen.
Thus, Windows 95 clips the window in Figure 5-16 much as ifthe user
had moved it past the right-hand physical edge of the screen. In Fig
ure 5-17, the application believes it is running in a maximized window
and occupying the whole screen. Windows has actually reported the
screen dimensions to the application so that it excludes the area used
by the taskbar.

F I V E: The User Interface and the Shell

Figure 5-16.
The system taskbar in an alternative layout.

you've ever worked on a software development project, you probably recogniz

goals. And you know that every project has to reduce those nebulous aims to s

With Windows 4.0 it was no different.

The Mission For Windows 4.0

Although it's expressed in different ways and set in different contexts, one phr

the mission of the Windows 4.0 development team: make it easy. The mission

aspect of the PC running Windows 4.0 easier for users, support staf£ har

and software developers consistently reasserts itself. The project mantra often

qualifying phrase: make it easy, not just easier. Throughout the design and de

each aspect of Windows 4.0 had to pass scrutiny within the 'make it easy' con

Figure 5-17.
The taskbar and a maximized application window.

181

INSIDE WINDOWS 95

On-Screen Appearance

182

In the example screens we've already looked at, you've no doubt no
ticed many of the innovations in the on-screen appearance of Windows
95. A lot of effort went into refining the overall appearance of the prod
uct. Some changes, such as the introduction of the system taskbar, are
obvious, but there. are many subtle design changes throughout the
product as well. And many specific visual elements have changed in
Windows 95. You may have noticed already the changes in the mini
mize and maximize icons on the application title bar. We'll look at sev
eral other changes later in this chapter.

The example screen detail in Figure 5-18 shows some of the subtle
aspects of changes in the Windows visual elements. This part of a
screen shows a Windows 3.1 application alongside the Windows 95 sys
tem taskbar. If you examine the application buttons closely, you can see
that the alterations are very slight: in the system taskbar, some of the
black outline disappears, and the shading details change. As you look
at an individual element, the change doesn't seem very significant.
However, when replicated in every element of the Windows 95 interface,
this level of detailed change does produce a much softer, more visually
pleasing, and consistent appearance. You can see this attention to visual
detail throughout Windows 95-a case of the whole amounting to more
thanjust the sum of the parts.

urse. develop it q

Jbal.:ly recog:llze

bulO'JS aims to sp

Figure 5-18.
Windows 95 screen detail.

F I V E: The User Interface and the Shell

Figure 5-18 also highlights an interesting side effect of the redesign.
The buttons on the application's menu bar show the new-style minimize,
maximize/restore, and close icons, and their appearance follows the
Windows 95 conventions. The application's button bar, on the other
hand, retains its "older" style. The button bar wasn't a standard control in
Windows 3.1, so the application has to draw its own buttons. Under Win
dows 95, an unmodified application will continue to do that, whereas the
standard controls are drawn by the system itself, so they adopt the new
style and appearance.

Another theme in the redesign for Windows 95 is the provision of
visual cues to the user as often as possible. In earlier examples, you may
have noticed that the minimize and maximize buttons convey the ap
pearance of minimized and maximized windows and that specific appli
cation icons are embedded within document and folder icons. Figure
5-19 shows screen detail from a more obvious example, in which the
user is examining a disk drive. The type of the drive (the hard disk
graphic), the space used in comparison to the available free space (the
pie), and the fact that it's a network drive (the connecting cable) are all
shown pictorially.

Hard
disk

Connecting
cable

Space
used

Available
free space

Figure 5-19.
Visual cues in Windows 95.

183

INSIDE WINDOWS 95

184

Light Source
Another theme of the design for all the visual elements of Windows 95
was the adoption of a consistent light source. The imaginary source
"shines" from high and wide over your left shoulder as you look at the
screen. All the shading for the three-dimensional effects uses the same
light source. The screen detail shown in Figure 5-20 demonstrates this
consistency. The sunken field containing the LPTl: string, for example,
is shaded on the left and upper edges, and the raised New ... button is
darker on the bottom and right edges. In Windows 3.1, the light source
isn't entirely consistent, and you can find examples in which the light
"shines" from different places. Again, this is an apparently trivial atten
tion to detail taken in isolation, but it does add a lot of polish and coher
ence to the product as a whole.

Sunken fields

Raised button

Figure 5-20.
The Windows 95 light source made consistent.

F I V E: The User Interface and the Shell

Property Sheets
Windows 95 attempts to introduce a much higher level of consistency for
access to object properties by making use of the secondary, or right,
mouse button (yes, finally a use for the other button!). Clicking the right
mouse button on any object will produce a popup menu that includes a
Properties item. Selecting the Properties item leads to a new control
called a property sheet. A property sheet is similar to a dialog box in many
respects and can include checkboxes, buttons, and editable fields-in
fact, any kind of control. Within the property sheet lies all the informa
tion about the configuration of the selected object. Figure 5-21 on the
next page, for example, shows the property sheet for the desktop. Note a
few points about objects and property sheets:

II The popup menu for the object appears when you right
click on the object itself.

II An object's property sheet can have multiple pages marked
by tabs-much as a book might have its sections separated by
tabbed dividers. This provision for multiple pages allows a
single property sheet to include a lot of information that
doesn't have to be jammed into one enormous dialog box.

II You make page selections in a property sheet by simply click
ing on the appropriate tab.

Ill Consistent with the Windows 95 theme of providing visual
cues, the property sheet that controls the monitor configura
tion provides a representation of the display and its screen
appearance, the property sheet for printer configuration
provides a representation of a printer, and so on.

The obvious intent is to persuade all application developers to
adopt the same conventions with respect to use of the right mouse but
ton and the property sheet control. If that happens, object property in
spection and modification will be completely consistent under Windows
95. Windows 3.1 applications won't respond to the right mouse button
click or display property sheets since an application must be modified
to do so.

185

INSIDE WINDOWS 95

Figure 5-21.
Desktop property sheet in Windows 95.

Tabs·

Representation of
current property
settings

Properties

Online Help

186

If you've ever tried to find your way to some deep, dark Windows secret,
chances are that you found the online help system rather tedious and
frustrating to use. You probably found that there was a lot of informa
tion to browse through, and you probably had to do a lot of backtrack
ing before you finally unveiled the secret. You weren't the only one.
Microsoft's usability studies showed that this was a common problem.
Windows 95 adopts a much more direct approach to online help pre
sentation. The help text is shorter, more explicit, and more context
sensitive. Microsoft is encouraging application developers to adopt
similar guidelines for revisions to online help in application products.
The Windows 95 help system is unlikely to be perfect, though. There
always has to be a compromise between simple, direct instructions that
satisfy 90 percent of the user's needs and lengthier treatments of the
more obscure details. No doubt we'll see more improvements in future
releases of Windows.

F I V E: The User Interface and the Shell

Here are some of the changes to the Windows 95 online help:

• Keeping a persistent access point available to the user. The
"Help Topics" item on the Start menu is always available.13

• Taking a task-oriented approach to the online help text. The
text describes explicitly the steps the user must take to accom
plish his or her goal instead of providing a general descrip
tion of the topic. Figure 5-22, below, and Figure 5-23 on the
next page include examples of this new format.

• Making sure the help window remains visible throughout.
There's no need to click back and forth between the window
you're trying to work with and the obscured help window that
describes what you're supposed to do. As you can see in Fig
ure 5-22, the active window is the Find File window but the
help window is still visible.14

Figure 5-22.
A Windows 95 help window.

13. For a long time, the shell included a help button on the taskbar.

14. This example also points up one of the problems in keeping the help screen
visible. The help window obscures the Start button in the Find File window.

187

Active
window

Help
window

INSIDE WINDOWS 95

Ill Reducing the help verbiage and the steps you have to take
to complete an operation for which you need help. The text
is simpler and more direct, and the help windows include
shortcut buttons that take you directly to the system function
that will complete the operation. Figure 5-23 shows an ex
ample. Clicking on the button will immediately display the
desktop properties screen saver sheet.

Help shortcut button

Figure 5-23.
A help shortcut in Windows 95.

Ill Heightening context sensitivity. The help for an individual
field within a dialog box is for that field, for example, and not
simply a link to the help text for the entire dialog.

Implementation

188

Apart from enabling the shell as an OLE client, the Windows 95 team in
troduced three other features of the shell implementation worth noting:

Ill 32-bit code. The shell is a 32-bit application that makes full
use of the Win32 API.

II Multithreaded processing. The shell takes advantage of the
threading capabilities of the system. Each window opened by
the shell runs as a separately scheduled thread. You'll see this
innovation in action if you move the hourglass mouse cursor
outside a window boundary. The cursor will change back to

FI V E: The User Interface and the Shell

the normal arrow pointer, and, yes, you can actually continue
working, moving to another task.

• Shell extensions. Acknowledging its competitors' desire to
extend and improve the Windows interface, Microsoft has
included a lower-level interface that allows other vendors to
integrate extensions of the basic Windows shell.

Design Retrospective
We've now looked at each of the major new concepts introduced with
the Windows 95 shell. Of course, some of the concepts come from
much earlier work on user interface design outside Microsoft, and
many have evolved from earlier versions of Windows and Microsoft ap
plication products. The Microsoft designers didn't simply sit down one
day and draw up the design for the Windows 95 shell. During the
course of development (and indeed, during the preparation of this
book), the design of the shell has changed quite a lot. It's worth look
ing at how and why these changes came about.

The Outside Influences
Throughout the history of Windows, Microsoft has taken vociferous
criticism of the user interface. Some of the criticism is attributable to the
product's success, some of it to the detailed legal scrutiny the interface
underwent during the long-running dispute with Apple Computer, and
a great deal of it to the simple fact that people tend to be opinionated
about interface issues. Very few people care a lot about the names of
Windows API calls or about the order of parameters passed to a func
tion. But everyone has an opinion about the user interface. So whether
they wanted to be or not, the Windows 95 designers were the focus of a
lot of attention when they began to show prototypes of the shell.

By the time of Microsoft's first major Windows 95 design review
a meeting in Redmond in July 1993 that hosted about 25 people from
the leading PC software development companies-most of the shell's
features were in place, ready for the product's first external release.
Much animated discussion at this meeting, and much more on the pri
vate CompuServe forum that hosted the early testers of Windows 95,
helped shape the thinking behind the next release.

Although Microsoft sought and received a lot of expert opinion on
the shell's design, one principal influence was the series of usability tests

189

INSIDE WINDOWS 95

it conducted throughout 1993 and 1994. In some 30 separate tests in
volving as many as 12 people at a time, Microsoft observed a mix of users
trying to complete tasks using the new shell. The users included people
who had never used Windows (although they had used MS-DOS) as well
as Windows 3.1 and Macintosh users. Microsoft augmented these tests by
interviewing people who trained Windows users.

Among the user difficulties identified by the usability tests, these
seemed to consume most of the design thinking during the development
of the Windows 95 shell and user interface:

Ii Window management-dragging windows and sizing them,
and the implicit ordering of the windows on the desktop.

Ii The difference between the windows supported by multiple
document interface (MDI) applications and single document
interface (SDI) applications. (Try to explain to a novice why
the Windows 3.1 Program Manager apparently clips some
windows and not others, and you'll see the problem.) 15

Ill The concept of hierarchical containment. Experienced
computer users have learned to live with hierarchy, but
putting a folder in a folder inside another folder is certainly
not the way most people organize a filing cabinet.

11111 The mouse double-click action. If you are innocent of experi
ence and receive no instruction, it's almost impossible to
guess that you need to double-click.

The Development of the Shell

190

The design work for the shell really began back in 1990, although at the
time the effort wasn't even thought of as Windows 95 interface design.
Later a lot of the Windows 95 shell design work was done in conjunction
with the Cairo team's work to ensure long-term consistency between the
two products.

These days Microsoft uses Visual Basic to prototype almost every
screen display. The shell has been no exception. In addition to the ob
vious advantage that people can see and show each other what they're

15. MDI vs. SDI was a hot topic during Windows 95 design reviews. Ultimately, the
team decided that Windows 95 would be an SDI system because they believed SDI to
be easier for users. But since many software developers had invested in it, MDI support
would still be there.

F I V E: The User Interface and the Shell

talking about, VB prototyping makes it possible to develop an early
working model of the design. Although most operations won't have any
effect yet, you can put together a prototype sufficiently rich that you
can get real users to come and try it out. This kind of prototype is what
was used most often in Microsoft's usability tests.

Microsoft released the first external test version of Windows 95 in
August 1993. This so called M4 release was a major milestone for the
development group since it represented the beginning of the end of
the project. The subsequent M5 release was scheduled for the huge
Win32 software developers conference Microsoft hosted in Anaheim in
December 1993. In between M4 and M5, the shell development team
concentrated on transforming the shell from its 16-bit state into a true
32-bit application. The design team in the meantime went back to think
ing and usability testing.

Immediately after the M4 release, Microsoft undertook a six-week
design project that put members of the Windows 95 and Cairo teams
together to refine the shell design in light of current knowledge. This
design effort focused largely on

Ill Learnability-how to get people doing productive work in the
shortest possible time

II Usability-how the observed tests should guide refinement of
the shell to make common tasks easier than in Windows 3.1

Ill Safety-how to achieve an environment in which no user
should ever have to worry that his or her actions might
destroy data

II Appeal-how to get people to like the Windows 95 shell; how
to harness the naturally polarized opinions of the users to
foster an emotional attachment to the shell

The result was a new prototype presented in an internal design re
view meeting with Bill Gates in late September 1993.16 In this meeting,
the team introduced the changes to the shell's folder mechanism, a
new design involving novice and expert modes of the shell, and ani
mated desktops. As they came out of that meeting, the shell design

16. Such meetings are a standard ingredient of Microsoft's development process.·
Always approached with much energy and not a little trepidation, a "BillG review"
continues to have a significant influence on every Microsoft product.

191

INSIDE WINDOWS 95

team believed that pending a final decision on the transfer model
(which we'll look at a little later in this chapter) and a host of small de
tails, they were close to a final design. All they had to do, they thought,
was wait for the programmers to finish the 32-bit conversion for the M5
release, and they could have the user interface they really wanted. This
didn't turn out to be true since the novice and expert modes were later
dropped and the detailed operation of the system taskbar underwent
further changes.

Changes in the Shell

192

The biggest change in perspective that took place during the course of
the shell development project was seeing that the novice user and the
experienced user should be treated differently. Figure 5-24 shows the
default startup screen used in the M4 and M5 releases of Windows 95.

Figure 5-24.
Prototype default startup screen for Windows 95 M4 and M5 releases.

Contrast this prototype with the eventual design we've seen in Fig
ure 5-2 back on page 158, and you can see some big changes:

II The default startup screen in the prototype shown in Figure
5-24 offers several points of access to the system. The taskbar,

FI V E: The User Interface and the Shell

for instance, includes three buttons rather than one, and
the Network icon, the Programs folder, and the File Cabinet
icons on the desktop seem to suggest even more avenues of
approach.

1111 There's no hint to the user about how to begin.

After the M5 release, the design introduced the explicit notion ofa
novice mode and an expert mode. Users who acknowledged themselves
to be novices would see a shell configuration that painstakingly guided
them through the system.

Figure 5-25 shows an example of the novice interface. Eventually
this separation of users was dropped, and it never was a feature in any of
Microsoft's external test releases. 17

Figure 5-25.
The prototype for the novice shell.

With the final design, you end up with a personal desktop that looks
a lot like the older default desktop. The changes to achieve the final de
fault desktop guide the novice into being able to use the system quickly.

17. As of the Beta-I release, some form of graphical buttons for augmenting the
Start menu was still under consideration.

193

INSIDE WINDOWS 95

194

The Taskbar
A number of issues shaped the final design for the taskbar. The main
issue was the behavior of minimized windows. The original design,
shown in Figure 5-26, had windows shrinking and parking themselves
on top of the default taskbar area-although it was still possible to
move a minimized window to a different location on the desktop. Then
the taskbar buttons became directly related to minimized windows.
The final design, shown in Figure 5-27, provides for the creation of a
button in the taskbar that corresponds to any window. (Ingeniously, the
shell gradually shrinks the buttons as you add more and more of them
to the taskbar-the change is almost imperceptible.)

Figure 5-26.
Minimized windows on top of the taskbar area in the early shell.

This final design addresses the user's problems: losing minimized
windows and having trouble differentiating among minimized win
dows, executing applications that simply have very small main windows,
and other desktop objects. The user can always go to the taskbar to find
an application that is running.

F I V E: The User Interface and the Shell

5.25 Floppjl 3.5 FloPPll (B:) Aidies_c (C:) Boto1_rc1 (D:)
!'I:)

!!!.

Figure 5-27.

- • II
0:1 Contlol Panel Pri'lters Folder

Button for
inactive window

Button for
minimized window

Buttons on the taskbar correspond to all open windows in the final
version of the shell.

Folders and Browsing

Button
for active
window

As you can see in Figures 5-24 and 5-26, the old desktop design in the M4
and MS releases incorporated a File Cabinet icon intended to be the
point of access to local file storage. Not surprisingly, experienced Win
dows 3.1 users assumed that this was the familiar File Manager applica
tion. It wasn't. Under Windows 95, it's the shell that allows you to open
folders on the desktop, and the folders can contain any kind of object
not just files. The Windows 3.1 notion of a separate application-the
File Manager-that you must run in order to inspect files doesn't really
exist in Windows 95.

This subtlety proved difficult for many Windows 3.1 users to grasp,
so the designers simplified the shell by altering the file cabinet icon so
that it looks like the computer icon you see in Figure 5-27, thus breaking
the association with the old File Manager.

195

INSIDE WINDOWS 95

196

The default behavior of the shell resulted in folders opening on
top of other folders. Quite soon the desktop would get pretty full, as in
Figure 5-7 back on page 170. The modified shell behavior in the final
release introduces the explicit Explorer program y6u see in Figure 5-
28). The default Explorer behavior displays a two-pane window. Mov
ing through the hierarchy causes the contents of the right-hand pane
to be replaced with the contents of the next folder window you open.
So more often than not, you'll have just one open folder window on the
desktop.

When you browse directly using the shell,):here's also an option
that allows you to choose either to have a new window for each folder or
to replace the current window contents with the new folder. The level of
desktop clutter is thus controllable.

Desktop
Jil···& My Comptier
i $-& 5.25 Floppy IA:I
. $··9 3.5 Fk>ppy (8:)
Iii·&$-· Beta1_rc1 (D:)
$··!ii!! Con o;vers' (E:J
$··ell:l
!-··iii Con~ol Panel

i L..111 Priiters Folder $1 Network Neighborhood
·- Book

Figure 5-28.
Exploring the system.

Animation

Autoexec.bak
C!!Aulo.,.,c
D AutoeKec.dos

~!:I ~~=~~dos Conlig.dos
Detlog
Setuplo~old

Setupk>g
System.dat

The use of animation in Windows 95 isn't purely frivolqus-though it
may appear so at first. On the desktop background, the animation effects
are there purely for user appeal, it's true. The device was introduced dur
ing one of the usability tests, and a lot of people liked it. The popularity
of animated screen savers and animated desktop wallpaper seems to
lead naturally to animated desktops. (Of course, a whole new third
party industry segment will debut, providing replacement desktops for
Windows 95.)

F I V E: The User Interface and the Shell

The more serious use of animation in Windows 95 is as an indica
tor of the relationships among objects: a window that shrinks to a mini
mized state gives the user a pointer that indicates where the application
went. A folder that expands into a window showing a list of objects pro
vides a hint that the different objects share something in common.
This use of animation is actually quite important to the shell's "ex
plorer" mode. One problem identified in Microsoft's usability tests was
the difficulty people had in relating the contents of the left and right
panes of a folder view-the tree and the individual folder. Animation
helps users relate the contents of the two different panes.

The Transfer Model
Transfer model is the term applied to the user's conceptual view of what's
involved in moving information from one place to another. If you know
Windows, you'll usually think of information transfers as the Cut/Copy
and Paste options found on an application's Edit menu. It's rare to find a
document-oriented application for Windows that doesn't support cut
and paste operations. Over successive Windows releases, system support
for cut and paste operations has been improved both for Windows appli
cations (with the Clipbook introduced with Windows for Workgroups)
and for MS-DOS applications in the Windows environment.

Unfortunately, many novice Windows users have difficulty grasping
the cut and paste metaphor. A strange hidden application called "Clip
board" is involved, and the user must understand the notion of different
data formats to use cut and paste proficiently. With OLE-enabled appli
cations starting to appear, the user's reliance on cut and paste ought to
shrink, but there will still be a need to support cut and paste operations
for a long time to come.

Microsoft's designers wrestled with introducing a different transfer
metaphor, one involving the verbs move, copy, link, and put here. As you
can probably guess, the move, copy, and put here operations would have ef
fects similar to those of Cut/Copy and Paste, whereas the link operation
would exploit the new OLE-based ability to support dynamic connec
tions between objects. In fact, OLE uses the new link term together with
the older cut and paste terms. During the July 1993 design review, these
ideas sparked some of the most heated discussions.

Ultimately, the shell designers came to view the problem of rede
signing the transfer model as insoluble. Some believed that the new
metaphor was q:mceptually easier for users to deal with, but they also

197

INSIDE WINDOWS 95

acknowledged the investment to date in code, documentation, and
training that existed for the cut and paste school of thought. The Sep
tember 1993 internal design review resolved to let Bill Gates decide,
with most people leaning toward retaining the cut and paste model.

Other Changes
The most notable change in the shell was the elimination of the
''Wastebasket"/"Recycle Bin" featu,re present in the early test releases.
For a number of reasons, this feature was, unfortunately, dropped. Per
haps next time.18

The New Appearance
We've already looked at the design concepts that underlie the new look
of Windows 95, and you've seen many of the individual elements in the
examples. The new look has four main components:

II A more thoroughgoing use of three-dimensional effects.
Windows 3.1 does include some 3-D effects on buttons, but
Windows 95 uses the 3-D look extensively.

II New system colors and fonts.

1111 New controls. Windows 95 features several new controls, and
these are all available to application programs as well.

Ill New system dialog boxes. Several of the common dialogs,
such as File Open, have been revised.

We're going to take a brief look at all of these items, concentrat
ing on their use in the system. As it did for earlier versions of Windows,
Microsoft will publish an Application Design Guide book that describes
more precisely when, where, and how tb use the new visual elements in
applications. Many of the new guidelines are manifest in the system it
self, and you can find lots of examples in the system of dialogs that have
been simplified and generally cleaned up.

Screen Appearance

198

From the screen shots all through this chapter, you can see that many ele
ments of ti'i.e Windows 95 interface adopt a 3-D appearance. In Windows

18. Stop press: it's back in, together with a comprehensive Undo feature for all
shell operations.

FI V E: The User Interface and the Shell

3.1, use of the 3-D effect was limited: most buttons got the treatment,
but that was about all. In Windows 95, the 3-D effect is used just about
everywhere: for menus, buttons, dialog fields, and more. Of course,
this is a 3-D effect, not a magical new screen display technology. The
main contributor to the effect is the use of different colors around the
edges ofa screen element.19

Figure 5-29 shows how Windows 95 uses outer and inner border
color pairs-light gray with black, and white with dark gray-to pro
duce 3-D effects in keeping with the idea of a consistent light source.
When a button is not pressed, the top and left edges of its outer and
inner borders are in lighter colors than the bottom and right edges of
its outer and inner borders. When a button is pressed-as depicted by
the outer and inner borders shown in Figure 5-29 at right, by the but
ton shown in Figure 5-30 on the next page, and by the top button
shown in Figure 5-31-the top and left edges of its outer and inner bor
ders are in darker colors than the bottom and right edges of its outer
and inner borders, and the color pairing of the outer border becomes
the color pairing of the inner border and vice versa.

The system augments the basic effects by sometimes reversing the
color pairs-pairing black with white, and dark gray with light gray. The
outer and inner borders of the pressed button shown in Figure 5-30 are
composed of such reversed color pairs. Or the system might pair black

Raised
outer border:

light gray
and black

Figure 5-29.

Raised
inner border:

white and
dark gray

Sunken
outer border:

dark gray
and white

Sunken
inner border:

black and
light gray

Using the outer and inner borders to create unpressed and pressed
buttons in the default color pairs.

19. Exactly why the human eye accepts this simple device as three dimensional is
way, way beyond the scope of this book.

199

INSIDE WINDOWS 95

200

with dark gray, and light gray with white. In all, the four colors in three
different pairings, combining to show both pressed and unpressed but
tons, produce six variations.

Figure 5-31 shows an example ofa pressed button as it appears on
the screen in the company of unpressed buttons. The user can change
the default gray color of the button and the default shading color. If the
user changes the default colors, the system supplies the colors it needs
to complete the 3-D effect.

Figure 5-30.

Button pressed:
Sunken outer (top and left edges in darker color)
Sunken inner (top and left edges in darker color)
Colors of outer and inner borders exchanged
Color pairings reversed

Using reversed color pairs and creating a pressed button effect.

Figure 5-31.
A pressed button.

The other major contributors to the new screen appearance are
the different system color scheme and the new treatment of system
fonts. Everything is more subtle: gray is often chosen over the stark black
and white of Windows 3.1, and fonts are no longer bold.20 The menus
shown in Figure 5-32 exhibit the way in which a Windows 3.1 application
automatically inherits these system improvements when it runs under
Windows 95. And the new color scheme all actually works on gray scale
displays-you don't have to have a 256-color SVGA adapter to realize the.
benefits of the new look.

20. Microsoft's early test releases of Windows 95 used Arial 8-point regular for the
system font.

FIVE: The User Interface and the Shell

fage Layout

Qraft

Theb
.IIoolbar
,/ Ri!lbon

such ,/ f!,uler pea:

apart Header/footer ... and

thath footnotes Wi
................... Annotations

CHea
(tc .. ·.~

field .C.odes
bilit

Zoom ...
Nnnlnrl

Figure 5-32.
Changes in system fonts betweer: Windows 3.1 and Windows 95.

Visual Elements
The basic elements of the Windows 95 screen are those you're already
familiar with from using Windows and applications for Windows. Some
of them, such as the tool bar control, appear as standard Windows com
ponents for the first time. But you won't find, apart from the property
sheet and the new controls it uses, any elements that haven't appeared
before, either in Windows or in popular applications for Windows.

Scalability
As part of the overall revision of the Windows screen appearance, the
Windows 95 designers did pay a lot of attention to the issue of how to
scale the Windows interface. As very high resolution screen displays
and adapters have come down in price, their use has grown. Unfortu
nately, Windows 3.1 doesn't handle this hardware particularly well.
Your work might occasionally demand that you use 1280 by 1024 pixel
resolution on a 14-inch monitor, for example-at which point, in Win
dows 3.1, the system font becomes so tiny as to be unreadable and grab
bing a window border with the mouse becomes an exercise in patience
and dexterity. Similarly, running Windows 3.1 on a very large display
tends to result in unnecessarily large amounts of screen real estate de
voted to scroll bars and the like. And, of course, the issue of personal
preference can't be ignored.

201

INSIDE WINDOWS 95

202

Included in Windows 95 is a control panel for window metrics. You
can change the size of every element of a window-even to the extent of
making the window's appearance a little ridiculous, as in Figure 5-33.

Figure 5·33.
New window metrics in place.

System

'

256color
Acces•
Acce"40

..;!Accstat
QtMn.,cfg iA<tiank.pwl

Aicade
Arcsrv32
Aigyle

i=!Aip
.Bozior
[lBilpwl

The user can make these changes dynamically: there's no need to
restart Windows to have them take effect. One issue application devel
opers have to deal with is the possibility that such changes will occur
while an application runs. This problem is similar to that of the user's
resizing the system taskbar or to that of dealing with hardware that allows
the user to rotate the monitor between portrait and landscape orienta
tion. The video device drivers in Windows 95 also allow screen resolution
changes on the fly.

Menus
In addition to the refinements to their colors and fonts, menus have
changed in a few subtle ways and a couple of obvious ways. There is also
one new menu type: the popup menu. The user accesses a popup menu
by using the right mouse button (or, more correctly, mouse button
two) as he or she selects an object. The popup menu appears next to
the object, and the design guidelines recommend that the menu be
context sensitive so that it can change according to the current state of
the object. Figure 5-34 illustrates the popup menu for a printer that is
in the midst of a print operation.

F I V E: The User Interface and the Shell

Figure 5-34.
A popup menu 'IYrought up by a press of the right mouse button
(mouse button two).

The window menu is the new name for what you used to call the
system menu. The design guidelines add a standard ''View" menu that
affects the displayed view in the window. Figure 5-35 on the next page
shows an example in which the status bar and the tool bar have been
turned on using the View menu options.

Of the more subtle changes to menus, the most noticeable is
their behavior. once you have a menu displayed on screen. Simply
moving the mouse along the menu bar will cause other menus to drop
down from the menu bar or cascaded menus to unfold from within
the current menu. You don't need to click or hold down the mouse
button after the first click. This behavior contrasts with that of Win
dows 3.1, where access to any other menu required at least one more
mouse click. 21

21. Sometimes called a "hot mouse," this behavior has been incorporated into
other graphical systems. (It was considered for OS/2 back in 1987 but never imple
mented.) Most implementations of a hot mouse don't even require the first mouse
click-simply passing the mouse cursor over the menu bar makes the menu appear.
Some people find this behavior irritating, and others love it.

203

INSIDE WINDOWS 95

204

El·B Ardiles c [C: I
• i ·iliiil Bo~k

IB'lilllllll
;• Dos
i··-.-iii Dostools

BJ··iliiil Doublecd
fil .. iJd Msoffice
iiJ ..• Msvc20
tBiliiil Sdk
iiJ.iliiil Spe
L.iliiil Temp
Liliiil Tmp

8Jiliiil Usr

iii Sysbckup
iliiil System
~256color
6,.Access
[!)Access40
,.;!Accstat
QfAdminclg
0Ad1iank.pwl I Arcade

Arcsiv32
Argyle

i:IArp

Proportionally sized scroll boxes

Figure 5-35.

~-- Minimize button
Maximize/Restore button
Close button

Toolbar

Sizing handle

~-- Status bar

The window display with Tool Bar and Status Bar options.

Window Buttons
The Minimize, Maximize, and Restore buttons located on the upper
right of a window's title bar have also changed. The icons depicting the
three operations are different. See Figure 5-35 for an example. And a
third icon has been added. Clicking this button is the same as doing a
Close operation on the Window menu. 22

Icons
The visual designers have applied the same principles to icon design
that they have applied to the rest of the system. The apparent light
soun;e for an icon is now the same as for all other controls, and the sub
tler shading and outlining techniques are used for icons too.

/Applications now have to provide two icons: a 32 by 32 pixel icon
and a new 16 by 16 pixel size. Windows 95 uses the larger icon to repre
sent the application itself-for desktop shortcuts, for example. The
smaller icon appears as a visual aid that can be embedded within a
document icon, within a folder's small-icon view (see Figure 5-35),

22. Personally, I disagree with the design decision to place the Qtose button
where Maximize used to be. After you've run a few applications tha~j;tart with a
nonrriaximized window, you'll see what I mean.

F I V E: The User Interface and the Shell

and within a window's title bar. If the application doesn't provide the
smaller icon explicitly, the system will try to create one by scaling down
the application icon. Depending on the complexity of the original
icon, this may or may not result in a recognizable image.

Proportional Scroll Box and Sizing Handle
To see more or different information in a window, you can do one of
two things: scroll the window or resize it so that it has a larger client
area. The information Windows 95 displays to help you do this includes
a proportionally sized scroll box within the standard scroll bar control
and a new sizing handle in the bottom right corner of the window. You
can see an example of each of these in Figure 5-35. The position of the
box within the scroll bar still provides an indication of your current
position in the document. The size of the scroll box shows you how
much of the total document is shown in the window. A scroll box that
fills the entire scroll bar would tell you that you were looking at the
whole document.

The sizing handle is simply a visual cue. Window sizing behavior is
the same under Windows 95 as itwas under Windows 3.1. If there's no
sizing handle, the window is a fixed size.

New Controls

The new Windows 95 controls are available only to 32-bit Windows ap
plications. A 16-bit application can't call the common control DLL that
implements the new controls. Many of the new controls are simply
standardized system implementations of elements you've seen before
in applications for Windows.

Tool Bar Control
With the tool bar control, Windows 95 implements perhaps the most
popular visual device seen in applications for Windows 3.1. Somewhat as
in the garish early days of desktop publishing, applications, including
Microsoft's, have sprouted strips of buttons and edit controls that pur
port to provide a shortcut to every function in an application. Like them
or loathe them, they're here to stay. If the Windows 95 tool bar control
becomes the preferred method of deploying this shortcut feature, at
least we'll have a degree of consistency among different applications.23

23. Microsoft's long-term stated direction is to merge the menu bar with a system
tool bar. I hope we'll all have 35-inch monitors and excellent pattern recognition
capabilities by then.

205

INSIDE WINDOWS 95

206

The tool bar control assists in the management of the buttons on
the control. The edit fields, if any, are separate windows. The program
mer can add, delete, move, raise, and lbwer buttons within a tool bar
control. The control also supports a customization feature, allowing
the user to add his or her favorite buttons to the tool bar. The system
arranges for the tool bar control to be automatically resized when the
window size changes. Figure 5-36 shows the details of an example tool
bar. Figure 5-35 back on page 204 shows an example of how the Win
dows 95 shell uses the control.

Figure 5-36.
Example tool bar control.

Button List Box Control
The button list box control shares some of the tool bar's properties. It al
lows the programmer to create a horizontal or vertical row of buttons
that display application-specific bitmaps. The button list box control
might be used to create the floating palettes of buttons popular in
some existing applications.

Status Window Control
The status window control implements another very popular Windows
application and tools user interface component.24 Figure 5-37 shows an
example of a status bar at the bottom of the folder view window.
Microsoft Word for Windows used the status bar concept in a very early
revision. The status window control allows the programmer to divide a
screen area into multiple windows and display text in each of them.
Usually, the status bar appears at the bottom of the window, although
early API definitions also allowed it to appear at the top of the window.
Typically, the text provides helpful information about the current
document-the present cursor position, for example. Another com
mon use of a status window control is for a brief prompt to indicate the
likely outcome of choosing the current menu item.

24. The Microsoft Foundation Classes for Visual C++ actually included an imple
mentation of the status window control under Windows 3.1.

Figure 5-37.
Example status bar.

Column Heading Control

Sysbckup
Iii! System
il.!t256color
i!.,.Access
I!} Access40
4Accstat
QI' Admincfg
D Adriank.pw1

I Arcade
Arcs1v32

11.!tArgyle
!:JArp

FI V E: The User Interface and the Shell

The column heading control implements a horizontal window that can
include column titles. The programmer positions the column heading
window above columns of related information. The user can grab the
column dividers within the header window control and drag them to
adjust the widths of individual columns. The Windows 95 shell uses the
column heading control extensively. Figure 5-38 shows an example of
the column heading control's use while the contents of a folder are dis
played-the user has substantially increased the default column width
for filenames by dragging the column delimiter to the right.

Figure 5-38.
Example column heading control and status window control.

,Column
heading
control

207

INSIDE WINDOWS 95

208

Progress Indicator Control
The progress indicator control (sometimes called simply a progress bar)
standardizes a visual device already used in many applications. It pro
vides the user with an indication of how far a lengthy process is from
completion. The application programmer can set the range of the con
trol and the rate of the advance of the current position indicator. If a
label for the control is present, it will either show the percentage of the
process that is complete or otherwise indicate the current position. Fig
ure 5-39 shows a progress indicator control. You can see an example of
its use as Windows 95 scans the disk when you open a new folder.

Figure 5-39.
A progress indicator control (progress bar).

Slider Control
The slider control is now the preferred control for setting values within
a continuous range (as opposed to a series of discrete values). Many ap
plications have used scroll bars for this purpose, but that use was a little
misleading since there is no information to scroll through.

The programmer can set the minimum and maximum positions
for the control, the tick marks, and the position of the slider. Figure 5-40
illustrates the basic design of the slider control.

Figure 5-40.
A slider control.

Spin Box Control
The spin box control (Figure 5-41) implements a common input device
often called a spin button or a spin control. Clicking on the arrows in the
control will alter the value displayed in the associated edit field. As the
designers originally defined it, the new control was termed an up-down
control, and the application programmer had to associate the control
with a particular edit control (its "buddy window"). Later discussion
seemed to indicate that this division of controls wouldn't come about
and that the edit control and up-down controls would be combined into
the single spin box control.

FI V E: The User Interface and the Shell

Figure 5-41.
A spin box control.

Rich Text Control
The rich text control implements an oft-requested feature: an edit con
trol that allows for the input of multiple lines of text with word wrap and
other formatting features. 25

Tab Control
The tab control implements a device that allows the user to navigate
among logical "pages" of information. Figure 5-42 shows an example
tab control for three pages of information. The most common use for a
tab control is within the property sheet control we saw in Figure 5-21
back on page 186. The tab control is meant to suggest to the user a peer
relationship among the different pages. If the information is really hier
archical, the dialog organization should reflect that.

Figure 5-42.
An example tab control.

Property Sheet Control
The property sheet control implements the mechanism the shell uses to
display object properties. Providing the property sheet as a basic con
trol within the system makes it readily available for applications to use.
Figure 5-43 on the next page shows a page of the property sheet for
an MS-DOS virtual machine control. You can think of each page in
the property sheet as if it were a separate dialog box. The buttons at
the bottom of the page are global-they relate to the property sheet as
a whole, not to a specific page. Every property sheet includes an Apply
Now button. Clicking on the Apply Now button will alter the properties
to match their new settings but will not dismiss the property sheet
(as would happen if you clicked on the OK button). The absence of
a strict hierarchy is the major difference between a property sheet and

25. This innovation single-handedly reduces much of the implementation of the
Wordpad accessory to the creation and management of a solitary rich text control.

209

INSIDE WINDOWS 95

a cascading series of dialog boxes. In a property sheet, you can flip
back and forth between pages and leave the property sheet from within
any page.

Figure 5-43.
Example property sheet for the MS-DOS virtual machine control,
open to the Tasking properties page.

List View and Tree View Controls
The list view and tree view controls provide the ability to display a collec
tion of items to the user. The shell uses these controls when it displays
folders. Figure 5-28 back on page 196 shows examples of both a tree
view control and a list view control.

The tree view control provides hierarchical information about
items and allows the programmer to expand or collapse parts of the
tree. The list view control supports a single-level list of various types:
large and small icons and a details view.

New Dialog Boxes

210

When Microsoft introduced the notion of common dialog boxes for
standard operations such as File Open, their actual implementation re
quired the application vendor to ship the DLL t..liat supported the famc
tions. In fact, every Windows application you've installed in recent years

FI V E: The User Interface and the Shell

probably came with a copy of the COMMDLG.DLL file. Using the com
mon dialogs meant consistency for the user and less effort for the appli
cation developer.26 These common dialogs gradually became a part of
the Windows product. Windows 95 introduces some improvements and
some new dialogs.27

A few of the common dialogs haven't changed beyond adopting
the Windows 95 visual style: the Find and Replace dialog and the Fonts
dialog are essentially the same as in Windows 3.1. At least initially,
Microsoft planned to make only minor revisions to the Print and Print
Setup dialogs. At Microsoft's early user interface design review meet
ings, however, the audience greeted this plan with something less than
tacit agreement. The Windows 95 product release may well include
larger scale changes to the print dialogs.

Windows 95 does revise the file management and color dialogs,
adds a page setup dialog, and includes all of the OLE dialogs as stan
dard components. Naturally, all of these dialogs exhibit the new visual
style, and Microsoft's application design guidelines encourage develop
ers to always use the common dialogs. The Windows 95 common dia
logs also use the standard controls (including the new ones we've
looked at). Earlier versions of the common dialogs were often built
separately instead of making use of the standard controls, and they in
cluded some subtle incompatibilities as a result.

File Open Dialog
You'd think that the amount of time and brainpower that have been ap
plied to the apparently simple task of opening a file would long ago
have produced the ultimate File Open dialog. Not so. The Windows 95
File Open dialog adds a number of new features to the state of the art:

1111111 The dialog looks very much like a shell folder window,
displaying a tree view and a small icon list view of the files
and directories.

11111 You can browse the network directly. You no longer need to
understand the concept of network drives to cruise for a file.

26. For a long time, one of Bill Gates's better known complaints was "Why on earth
does everyone have to write file open code?" He would usually put it a little more
strongly than that.

27. Early examples of most of these dialogs are shown in this section. Some, such
as the OLE dialogs, weren't available in time to be included here.

211

INSIDE WINDOWS 95

212

ii The dialog includes a document preview window that provides
an indication of the file's contents.28

!II Links and long filenames are understood and handled cor
rectly.

!II The dialog provides direct access to an object's popup
menus.

Figure 5-44 shows the design for the Windows 95 File Open dialog,
which was presented in the first design review meeting. You can see the
tree and list views of the folders and documents, the long filenames, and
the document previewwindow.29

Figure 5-44.

li'l 8 ook Cover

li'l 8 oak Cover

~ Data Analysis

li'l Fox and Sox

~'"'td'llN
li'l Looking for 8 ob

Ii'! Looking for Bob

Ii'! Looking for 8 ob

~Lost and Found

~Lunar Studies

li'l Lute Diagrams

~ Movie Reviews

~ My Reading List

~ My Reading List

One design for the new File Open dialog box.

28. The intention is to provide a preview window for a very wide range of file types.
This goal implies a large number of specialized file viewers and a lot of work-not all
of which might get done for the Windows 95 release. One easy file type to display is an
OLE compound file, in which the dialog can use the embedded thumbnails directly.

29. The first test release of Windows 95, in August 1993, did not include this
dialog.

F I V E: The User Interface and the Shell

Page Setup Dialog
Page Setup is a function you see in many applications for Windows. It's
not used as frequently as a simple file open operation, but in Windows
95, it makes the cut and becomes one of the common dialogs. Figure
5-45 shows the original design for this dialog. It includes paper orienta
tion and margin setting features, as well as paper handling facilities
that used to be part of the Printer Setup dialog.

Figure 5-45.
The new Page Setup dialog box.

Long Filenames
In Chapter Seven, we'll look in detail at the new filesystem for Windows
95. The filesystem's biggest impact on the user interface is its support
for long filenames. It took a lot of development work to get the shell and
other visual elements to fully support this new capability. And if some
one chooses to call a file My letter to Aunt Winnie about the dahlias, dis
playing the name and allowing it to be easily edited becomes a nontrivial
task. One new feature of the shell allows document renaming in situ.
Figure 5-46 on the next page illustrates the creation of the new filename.

213

INSIDE WINDOWS 95

214

Figure 5-46.
Long filename creation.

Windows 95 and any application written for it will handle the long
name quite happily. This is not the case for Windows 3.1 and MS-DOS
applications, and Figure 5-47 illustrates how the long filename will ap
pear in Windows 95. The system creates a short name (using the old 8.3
naming convention) that references the same file. If you know the alter
native name, you can get at the file. The Windows 95 implementation of
COMMAND.COM helps out by listing both the short name and the long
name. Figure 5-48 shows the short version of the long filename as it will
appear in an earlier Windows application running under Windows 95.

Figure 5-47.
COMMAND. COM in Windows 95 provides a directory listing that
shows both the 8.3 version and the long version of a filename.

F I V E: The User Interface and the Shell

Figure 5-48.
The directory listing in an earlier Windows application running
under Windows 95 shows a shortened version of the long filename.

Obviously, with every user's initial mixture of old and new Win
dows applications, there are going to be some user interface difficul
ties. This is an unavoidable price that has to be paid if we are (finally)
to get the extra functionality of long filenames.

Windows 95 Support for MS-DOS Applications
As one well-known advertising slogan put it, "He's back~" or in this case,
they're still here. Around th.e world, beloved MS-DOS applications con
tinue to take up a lot of disk space and CPU time. Acknowledging the
obvious, Windows 95 includes some significant improvements to Win
dows support for MS-DOS sessions-notably:

II COMMAND.COM supports long filenames (as shown in
Figure 5-4 7) . 30

30. Windows 95 also includes new INT 21 API calls that allow the use of long
filenames in MS-DOS applications. It will be very interesting to see how many develop
ers revise their applications to support these functions.

215

INSIDE WINDOWS 95

216

Ill The MS-DOS window is sizeable-just as most other applica
tion windows are.

Ill You can choose the font size for the MS-DOS window. Win
dows adjusts the font size automatically when you resize the
window.

Ill Windows supports cut and paste operations for any rectangular
area within the MS-DOS window.

Ill The MS-DOS session supports a tool bar control that provides
quick access to most of the window functions just described.

Figure 5-43 back on page 210 illustrated part of the MS-DOS VM
property sheet you can use to control the behavior of the session. All of
the many configurable options are there, along with several new ones.
In Figure 5-49, an MS-DOS session window shows part of the tool bar
control and one use for the automatic font sizing capability. The font
has shrunk so small it's unreadable, but if you're interested only in be
ing able to see when a long series of commands have finished execut
ing (during program compilation, for example), it's sufficient. (After
all, you've probably watched that same sequence of commands often
enough that you could recite it v;erbatim.)

Figure 5-49.
MS-DOS application support in Windows 95.

F I V E: The User Interface and the Shell

Application Guidelines for Windows 95
Given all the revisions to the Windows 95 user interface, it's not immedi
ately obvious to an application designer what the most important as
pects of the new interface are. And for users, there are a lot of new
features that require exploring and learning. The success of the product
alone will tell whether Microsoft has met its goal of providing a solid
transition path for existing Windows users. For the application
implementer, Windows 95 includes plenty of new technology to exploit:
the 32-bitAPI and Plug and Play support, for example.

Microsoft recognized the potential bewilderment of the applica
tion interface designer and early on in the Windows 95 preview process
began to provide design guidelines.31 The guidelines fell into two cate
gories:

11111 The user interface style guidelines that had appeared in book
form for previous versions of Windows were updated continu
ally throughout the Windows 95 project. The guidelines
present a detailed series of recommendations on when and
how to use various interface elements: dialog boxes vs. prop
erty sheets, for example.

II Guidelines were made available for exploiting the Windows 95
interface to the extent that an application can truly showcase
the capabilities of the system.

In each case, there's an interesting question of the lines you have
to draw between what you, as an application designer, ought to do or
could do as opposed to what Microsoft really wants you to do. Using the
common File Open dialog that the user is familiar with is something you
ought to do. It makes sense from both a consistency and a cost view
point, and the user is likely to consider your application a little strange if
you don't use it. Adding support for long filenames is probably a good
idea. It costs you implementation dollars, but it's a great feature that
enhances any application. OLE support is a feature Microsoft defi
nitely wants to see you add to your application. And it does add an im
pressive set of features. Unfortunately, it's an expensive addition, and

31. Actually a presentation entitled "How to Be a Great App in the Chicago Shell,"
which remained fairly consistent throughout 1993.

217

INSIDE WINDOWS 95

whether OLE is the way the world will use objects isn't entirely clear yet.
Enough speculation-let's take a look at what Microsoft recommends
to Windows 95 application designers.32

Follow the Style Guidelines
It goes almost without saying that presenting a consistent, predictable
environment helps enormously in the user's learning and using appli
cations. It's really what Windows is all about. As we noted earlier in this
chapter, Microsoft always points out that their recommendations are
just recommendations and not rules. However, many of the guidelines
are entirely noncontroversial and make the application design process
a lot simpler.

Support Long Filenames
Long filenames are probably destined to be the most immediately
popular feature of Windows 95. Given that the system provides much
of the basic support for this capability, it looks like a great thing to sup
port in your applications.

Support UNC Pathnames
The number of PCs attached to networks continues to grow at an im
pressive rate, and Windows 95 is inherently a networked system. Both
of these points argue for making applications fully network capable.
Support for the Universal Naming Convention (UNC) style for filenames
is built into Windows 95, and the shell depends on it also for network
browsing. Microsoft recommends the support of UNC-style names
rather than the drive letter convention. For example, a file open of
\\DocsMss\Book\Chapter 5 is preferable to G:\Book\Chapter 5. The
preferred title bar caption is Chapter 5 On Docs rather than simply the
UNC pathname.

Register Document and Data Types, and Support Drag and Drop
The Windows 95 shell can do a lot without any assistance from the ap
plication, provided the application makes the correct resources avail
able, usually by adding information to the Windows registry so that the
shell can get at it. In particular, the application helps by

218

32. In July 1994 Microsoft began to disclose the requirement that an application
support many of these features in order to qualify to display the Windows logo. Be
warned.

FI V E: The User Interface and the Shell

• Incorporating and registering icons for document types to
allow the shell to display them correctly when the user opens
a folder

• Registering data-specific commands to allow the shell to
display the commands in popup menus

• Supporting drag and drop print capability

Use Common Dialogs
The intent of the common dialogs is to provide consistency across ap
plications for frequent operations. The user expects to see the same in
terface when carrying out one of these operations in any application.
The Windows 95 common dialogs also add a lot of features, such as
network browsing, that are "free" to applications that use them.

Reduce Multiple Instances of an Application
The perennial lost window problem is exacerbated when an applica
tion allows the user to start multiple instances of it rather than simply
becoming the foreground application and opening successive docu
ment windows.

Be Consistent with the Shell
The Windows 95 shell shows off many of the new Windows features:
property sheets, the new controls, popup menus, and so forth. The
user will spend a lot of ti;ine with the new shell and will come to expect
applications to have features similar to the shell's. Providing such fea
tures for an application will provide consistency for the user.

Revise Online Help
The style for help in Windows 95 is quite different from the Windows
3.1 help style. Revising the help text for an application so that it will
conform to the Windows 95 model is a nontrivial task-a task that may
take some time to complete. As part of the revision of online help,
Microsoft strongly advocates the incorporation of much more context
sensitivity-help popups available in dialogs and help on menu items,
for example. As far as the overall revision of help systems is concerned,
the general philosophy of Windows 95 help is for task orientation and
brevity. So don't use a request for fonts help to embark on a discussion
of scaling technologies; tell the user how to choose a font.

219

INSIDE WINDOWS 95

Support OLE Functionality
The move to objects is on, and Microsoft wants you to view the object
oriented world through the capabilities of OLE. Although OLE is not
without its competitors, the support for it from Microsoft's (extremely
successful) operating system platforms gives it a definite edge. In par
ticular, Microsoft has based a number of concepts for the Cairo system
on work originally done by the OLE group.

Several applications have already incorporated OLE technology,
and the resultant functionality is impressive. Right now, adding full
OLE support to an application is an extremely complex engineering
project. New development tools and methods will no doubt reduce the
cost of OLE implementation. If you do use OLE within an application
in combination with Windows 95, you'll get these features:

II The OLE compound file as the application data type allows
the shell to display the document properties such as the
thumbnail view. This compound file format will be the native
format for Cairo, so there's another incentive to support
OLE now.

11111 OLE drag and drop will allow users to move and hold docu
ments anywhere in the shell's workspace-the desktop will be
the most common place in which to hold them.

1111 The OLE in-place editing capabilities preview the move to
component software and the document-centric interface that
Windows 95 promotes.

OLE is leading edge technology. Using it now is expensive but could
also give you a competitive edge in the Windows 95 applications market.

Conclusion

220

In this chapter, we've taken a lengthy tour through the most visible part
of the system. As the Windows 95 visual designers are wont to remind
people: details count. Many details of the interface have changed, and
several new or improved concepts make their debuts in Windows 95.
The biggest change from Windows 3.1 is evident in the shell itself.
Given Microsoft's intention to provide Cairo with the same user inter
face, it will be interesting to see whether the new shell achieves the dual
goals of making the system easier for novices to use and providing a
natural transition for experienced Windows users.

F I V E: The User Interface and the Shell

We haven't looked at some components of the shell in this chapter
the desktop accessories, for example. And you'll have to take your own
tour of Windows 95 to see a lot of the more detailed revisions to specific
dialog boxes and utility programs. But we did look at all the important
new pieces with the exception of the pen interface. Windows 95 includes
support for pen computers within the basic system-pen support no
longer comes from an add-on module as it did for Windows 3.1.

Now we have to dive a little deeper into the system. In Chapter Six, we'll look at
the details of the graphical environment supported by Windows-at how appli
cations harness the graphical environment and how devices are commanded to
display it.

Reference
Microsoft. The Windows Interface-An Application Design Guide. Redmond,

Wash.: Microsoft Press, 1993. This book appeared as part of the Windows
Software Development Kit and as a separately published volume. It's the
final word on how a Windows 3.1 application should look and contains a
lot of useful insight into user interface design. The Windows 95 team
produced an updated version of this book under a new name, User
Interface Design Guide, for the Beta-1 release and planned to update it for
the Beta-2 release. Microsoft Press will publish a final version titled The
New Windows Interface.

221

C H A P T E R S I X

APPLICATIONS
AND DEVICES

In Chapters Four and Five, we looked in detail at two of the major
Microsoft Windows enhancements that appear in Windows 95: the 32-
bit protected mode base operating system and the new user interface
exemplified by the shell. The improvements in the base OS help sup
port many collateral enhancement details in the Windows subsystem,
and the shell with its new features is but one manifestation of the new
capabilities you'll see in Windows 95 applications. To realize these en
hancements, applications call on the Windows API, and when the user
interacts with an application, a requested service is translated into some
device-specific operation, such as the manipulation of visible objects on
the display screen or the reading of information from a disk file.

Many different software modules are involved in the translation
of user and application actions to specific hardware operations. In this
chapter, we'll look at some of the most important components: at the
Windows 95 API and its implementation in the Windows User and GDI
modules and at a few of the device drivers and subsystems associated
with the User and GDI modules. If you need a primer on the basics of
how Windows implements its graphical environment, see Chapter
Three. Our concentration in this chapter will be very much on the new
and different features of Windows 95:

Ill The Win32 API implementation in Windows 95

Ill Enhancements in User, the window management subsystem

II Improvements in GDI and the associated graphical device
subsystems that control the display and the printer

223

INSIDE WINDOWS 95

In later chapters, we'll look at the major product enhancements
for local and network filesystem support. This chapter is biased in the
direction of what Windows is best known for: its graphical application
environment.

The Win32 API

224

During 1993 and 1994, Microsoft invested enormous amounts of its de
veloper relations time and effort in promoting two specific elements of
its operating system products: the Win32 API and OLE. If you left any
of the company's systems software presentations with any doubt about
what Microsoft wanted you, as an application developer, to develop for,
the incessant Win32/0LE chant must have put you to sleep. Naturally,
business reasons were at the base of this promotion: if most of the
industry's applications are written for your operating system interface,
you get to sell the most operating systems. The history of MS-DOS and
Windows bears this out. But as the histories of UNIX, OS/2, and in
deed early versions of Windows attest, convincing developers to invest
resources in a new API is extremely difficult. So Microsoft put every
thing it could in gear to sell the Win32 API, starting with Windows NT
and now with Windows 95.

The Win32 API has one big advantage in its favor: it is by and
large compatible with today's most popular API, the Windows 3.1 APL
The Win32 API is also extensive. With well over 2000 functions and
macros and having undergone a few years of field trials, Win32 offers a
wealth of features.

Microsoft's first implementation ofWin32 was released in 1992 as
the Win32s add-on for Windows 3.1. Recognizing that the rate of adop
tion for Windows NT would be governed largely by the availability of
true 32-bit applications, Microsoft released the Win32s subset to give
developers an early opportunity to begin porting their code to the
Win32 APL With the release of Windows NT in mid-1993 the first full
implementation of Win32 came to market. During the rest of 1993
things got a little more confusing. Later in that year Microsoft began to
talk about Win32c-that "c" initially meaning "Chicago" and later spun
to "compatible." Eventually the "c" was dropped and Microsoft began
to talk simply of different implementations of the Win32 API-each
particular to the underlying operating system.

As a practical matter, the Windows 95 implementation of Win32
will probably come to be seen as the "standard" implementation-if

SIX: Applications and Devices

only because of the size of the Windows 95 market. As a numerical mat
ter, the Win32 APis implemented in Windows 95 account for 95 per
cent of the total defined Win32 interface. The APis missing in the
Windows 95 implementation are specific to capabilities that Windows
NT has and Windows 95 does not-the rigorous security features in
Windows NT, for example. But the Windows 95 implementation intro
duces features that the Windows NT version 3.1 implementation
doesn't include-for example, the new device-independent color capa
bilities. No, this doesn't mean another round of subset and superset
confusion. Microsoft plans to promptly update Windows NT so that it
will retain its position as the provider of the full Win32 API.1

In addition to the API compatibility issue is the issue of binary
compatibility: the different operating system products must be able to
load and run the various flavors of Win32 application. Both Windows
95 and Windows NT will load Intel format Win32 binaries and run
them as full 32-bit applications. Windows 95 will never have a non-Intel
processor implementation of Win32. Only Windows NT will run appli
cations compiled for other processors.

What's a developer to do? If you believe in the continued success
of Windows, you have to develop for that platform. With Windows 95
we'll see the arrival of full 32-bit support for a mainstream operating
system, so if you're starting from scratch, Win32 is the way to go. Since
the new features of Windows 95 are available only to Win32 applica
tions, porting your 16-bit Windows code to the Win32 API is an obvious
first step. Fortunately, the tools Microsoft provides to assist in the port
ing task make it less than onerous. Beyond that, the OLE mountain
looms-although improved versions of Microsoft's Visual C++ (among
other language products) are making that assault a little easier.

All of this begs the question of whether Windows really is the right
platform to develop for. It's hard to argue against the current commer
cial success of Windows, and all of the pieces are falling into place to
ensure a continuation of that success. No doubt the debate will con
tinue in many quarters, however. In the meantime let's take a look at
what Microsoft is trying to achieve with the Win32 APL

1. Some of the new color facilities will appear in the next release of Windows NT
the so called "Daytona" product. Others will appear as add-on libraries when Windows
95 ships.

225

INSIDE WINDOWS 95

Goals for Win32

226

Microsoft's overriding desire is to concentrate both its own efforts and
those of other developers on a single, long-lived APL As candidates for
the base API, the existing APis for both MS-DOS and Windows 3.1 fell
short in several ways: they weren't portable, they weren't 32-bit, and
they were functionally deficient. At one time the OS/2 API was sup
posed to be "the API for the future," but for many reasons that predic
tion didn't work out too well.

A single API does accelerate the market. More people write more
software, resulting in more users finding satisfactory solutions to buy.
This is one of the reasons MS-DOS was so successful. The PC world had
gotten very complex since the first release of MS-DOS, though, and
Microsoft decided it was time to try to re-introduce a little more order.
Enter Win32-an API aimed at meeting the following goals:

1111 Broad support. Meeting this goal entails developing plenty
of developer momentum and getting lots of applications
released in as short a time frame as possible. The best way to
do this is to make Win32 as closely compatible with Winl6 as
possible.2 Porting applications from Win16 to Win32 will thus
be simplified, and momentum will quickly build.

II Portability. Windows NT was designed as a portable operating
system-specifically to allow it to run on RISC processors.
The debate over whether and when the Intel processor archi
tecture will finally be outperformed by RISC technology
continues. Irrespective of the outcome in the hardware battle,
Microsoft aims to establish Win32 as the preferred APL

Ill Room for growth. As PC technology continues to improve, the
operating system must be able to offer access to the improve
ments. Whether the technology be high-speed video on de
mand or radio-based networking, Microsoft wants an API that
can be extended to support the new technologies without
modifications to the existing interfaces.

2. The fact that the OS/2 Presentation Manager API differed so widely from the
Windows API (both conceptually and syntactically) was a major factor in the slow
adoption of OS/2, The Win32 developers, many of whom were involved in the PM
effort, were careful not to make the same mistake twice.

S I X: Applications and Devices

• Scalability. Windows NT supported multiprocessor machines
in its first release. There's already news of processors that
operate with a native word size of 64 bits. The era of the PDA
has begun. Developing software for all of these hardware
platforms would be impossible if the software platform were
different for each. One API suitable for supersetting and
subsetting for different hardware platforms will help a lot.

Components of the Win32 API
Before we examine the details of the Win32 API, it should be worth
while to look at a few of the statistics and then to group the functions.
Bear in mind that the statistics deal with a prerelease of the product
some months before its expected release. The absolute numbers will
probably change, but the proportions should stay roughly the same.

As of this writing the total number of Win32 APis, macros, mes
sages, and defined constants is 2246. Of these members, 1350 were in
cluded in the Win32s subset and only 114 are not in the Win32 API set
supported by Windows 95. Of the 114 members supported only by Win
dows NT, almost all relate to the security features or the service control
and event logging subsystems available under Windows NT. Of the
2246 total, 546 of the interfaces are macros, messages, and predefined
constants, so the API total drops to a very manageable 1700 interfaces!

The major components of Windows 95 remain the Kernel, User,
and GDI modules that provide the interface to the base OS, window
and application management, and the graphics facilities, respectively.
Each of these modules supports about 300 APis.3 In Windows 95, these
APis are the major extensions to the three basic modules:

1111! OLE. The OLE APis, numbering only(!) 66. They are perhaps
the most complex and, for Microsoft at least, the most impor
tant extension of the core Windows system.

Ill Controls. The support for the standard user interface elements
described in Chapter Five.

II Common dialogs. Dialogs such as "File Open" that are shared
by applications.

3. To be precise, in the M5 version it was 346 in Kernel, 262 in User, and 300
in GDI.

227

INSIDE WINDOWS 95

228

II Decompression. File decompression capabilities commonly
used during installation.

II DDE. The Dynamic Data Exchange facility. DDE was Windows'
first popular application information interchange capability.
Over the course of time OLE is expected to replace the use of
DDE.

II RPC. The support for remote procedure calls relied on for
distributed application development.

II Sockets. The so called "WinSock" interface. Sockets has grown
in importance for Windows networking. Originally developed
simply for TCP /IP network support, Sockets is now seen as
the best way to develop non-RPC network applications for
Windows.

1111 Networking. Network-specific APis outside the RPC and
socket interfaces. Of course, many of the Kernel APis ulti
mately find their way to the network subsystem for file input/
output and other operations.

II Communications. A set of APis designed to support reliable
wide area communications applications such as electronic
mail and remote network access.

B Shell. A set of APis supported by the shell itself that enables
the extension of the shell's capabilities through installable
libraries.

II Multimedia. Extensions to the core system for audio and
video management. The multimedia extensions number close
to 200 APis-interestingly the largest single set of extensions.

II Pen. Extensions to the core system that support the specific
needs of pen-based applications.

As mentioned earlier, that won't be the end of the Win32 API
story. Already, Microsoft has begun to describe its plans to implement
the OpenGL 3-D graphics library for Windows NT-a component that
will add another 300 or so APis to Win32. But for the purposes of this
chapter's discussion we'll concentrate on the core components that we
.haven't yet examined: User and GD!.

S I X: Applications and Devices

The Win32 API on Windows 95
Developing a Win32 application for both Windows 95 and Windows NT
requires that you recognize two basic kinds of issues: those inherent in
porting existing 16-bit code to the 32-bit interface, and the Win32 APis
that aren't supported on Windows 95. In addition you can observe
some general programming guidelines that help prepare an applica
tion for future improvements-after all, someday you may actually
have to worry about 64-bit interfaces.

Porting to the Win32 API
You'll find extensive documentation describing the details of the 16- to
32-bit porting process in the Windows SDK products, so there's little
value in a regurgitation of all of it here. A few of the more important
aspects are worth reviewing, however: notably,

II The mechanics of the porting process

II API syntax changes

II Memory management

Iii Version checking

Note too that if you're tempted to try to mix 16-bit and 32-bit
code (using the Microsoft thunk compiler tools) to help speed up the
porting process, you'll end up with an executable program that will run
only on Windows 95 and that won't even load on Windows NT. You'll
also create the potential for many bugs because of the different sizes of
integers (and thus of many Windows data types). Microsoft's recom
mendation is simply don't mix 16-bit and 32-bit code segments. If you
have to mix them, make sure that the 16-bit code is carefully isolated
and plan to replace it as soon as you can.

Porting Tools
If you're starting with a 16-bit Windows application, there's some me
chanical help at your disposal. Included in the Windows SDK is a
source code analyzer called PORTTOOL.EXE that will examine each
and every Windows interface and suggest changes you may need to
make. This porting tool isn't foolproof, but it's a good way to start the
process. Another mechanical aid is to define the STRICT constant

229

INSIDE WINDOWS 95

230

when you compile your code. Then the strictest level of type checking
will be applied to Windows functions. Your fixing the ensuing stream of
warning messages can often remove subtle bugs before they have a
chance to bite.

The WINDOWSX.H header file included in the SDK also con
tains many macros that cloak API calls in a single portable interface. If
you have to maintain both 16-bit and 32-bit versions of an application,
that's some help.

API Changes
As successive versions of Windows have appeared, more and more pa
rameterized types have appeared in the declarations of Windows inter
faces. Most programmers are familiar with declaring device context
handles as HDC, for example, but the "before" and "after" declarations
of the main window procedure shown in Figure 6-1 illustrate just how
pervasive the technique has become with Win32. Admittedly, the per
son who wrote the "before" declaration must not have touched the
code in a very long time, but the new types in the up-to-date version af
fect every part of the declaration.

Figure 6-1.
Using predefined types in Win32.

Modifying the code this way assists in compiler type checking and
also masks the actual word size of the underlying system. Unsigned in
tegers that were 16-bit quantities are now 32-bit values-and can be
come 64-bit values with no further code modification. This widening of
many 16-bit values can be seen in a lot of the Win32 APis. It's really an
artifact of the extensive use ofC integers: they were 16 bits on Windows
3.1, and they become 32 bits on Win32. But the changes aren't purely
syntactic. There are some semantic issues as well.4 Figure 6-2 illustrates

4. There's also the subtle issue of alignment: structure fields that lined up neatly
on 16-bit boundaries may not do the same when integers widen to 32 bits. On the 386
this results in only a slight performance overhead, but on some RISC processors it
causes a hardware fault.

S I X: Applications and Devices

one of the porting problems engendered by the Win32 API that can't
be fixed simply by careful use of the predefined types.5 Here the data
supplied with the WM_COMMAND message has been packed into the
wParam and lParam parameters differently, necessitating code that dif
ferentiates between API versions. This sort of change between Win
dows 3.1 and Win32 is not uncommon. The porting tool helps you find
the occurrences, but even so this is one area in which careful checking
is necessary.

Figure 6-2.
Message parameter passing in Win32.

You'll also see many Win32 APis with names similar to those of
Windows 3.1 APis but with an Ex suffix. Microsoft has used this conven
tion to signal that it's extending the functionality of an existing Win
dows 3.1 API in some minor way.6 The recommendation for porting
code to Win32 is to use only the APis with the Ex suffix. You'll find the
superseded function marked "deleted" or "obsolete" in the Win32 docu
mentation. Figure 6-3 on the next page shows one example, the GDI
function for setting a window origin. The old version has been modified
to return the coordinates of the previous window origin differently.

5. #ifdef'd code never was the best way to handle this sort of problem. You can
write portable code to handle either situation. The #ifdefmethod makes for a better
illustration, though.

6. Unfortunately, neither the extent of the extending nor the name signal are
entirely consistent. A few of the extended functions incorporate major additional
functionality. And some extended functions have Ext as the prefix, not a suffix, for the
old name. The Windows API naming story continues.

231

INSIDE WINDOWS 95

232

Figure 6-3.
Similar function changes in Win32.

Most of the extended APis are GDI functions, and the Ex form of
the API was actually included in Windows 3.1. The difference is that the
older form of the function call is unavailable in Win32. Windows 3.1
actually supported both. The GDI functions also mask one important
difference between Windows NT and Windows 95: the difference in
their graphics coordinate systems. On Windows NT you identify a point
using 32-bit coordinates. Windows 95 retains the older 16-bit coordi
nate system. For graphics-intensive applications this is an important dif
ference that is syntactically manageable by means of the predefined
types (predominantly POINT and SIZE structures). But the associated
semantics are a different matter, with no easy solution for developers
who would like to exploit the capabilities of the 32-bit coordinate sys
tem on both Windows 95 and Windows NT.

Memory Management
We looked at many of the new aspects of Windows 95 memory manage
ment in Chapter Four. Apart from the new features, from the applica
tion programmer's viewpoint, the Win32 API makes things a whole lot
easier. Segments are now a relic, so it's good-bye to far pointers, and
any other vestiges of Windows' 16-bit past, such as having to lock and
unlock memory objects, can be dispensed with. 7

The fact that the system is now entirely virtual memory based
means that the absolute addresses or contiguous locations of certain
segments are no longer the same under Windows 95. The addresses
and locations were never published and ought not to have been as
sumed, and under either Windows 95 or Windows NT, the rules
change. You absolutely must use the defined memory management
APis if your code is to work correctly.

7. If you did atrocious things with direct segment arithmetic, it's payback time.

SIX: Applications and Devices

Version Checking
Microsoft chose to handle the Win32 API subset issue on Windows 95
by actually implementing the full set of Win32 APis and then returning
an error if a call is made to an API not supported by Windows 95. This
strategy allows a Win32 application to always load under either Win- .
dows NT or Windows 95-references to missing DLL entry points don't
stand in the way. But if you call an API that exists only in the full Win32
set on Windows NT, you must be prepared to deal with an error return
on Windows 95.

Calling the GetLastErrorQ API in response to the error return indi
cating a failure and getting the ERROR_CALL_NOT _IMPLEMENTED
error code will tell you that you've called an unsupported APL A
GetVersionO API enables you to identify the particular version of Win-
dows that you're running on. ·

In a very few cases, an API that isn't really supported by Windows
95 will run without the return of an error. One example of such an API
is the GetThreadDesktop() API that under Windows NT will return a
handle to the desktop window associated with a particular thread. Win
dows 95 has only one desktop, so it's always the same handle that gets
returned. Since no undesirable side effects of using this API on Win
dows 95 are possible, it's easier to allow the call to succeed than to insist
that the application handle an error return.

Nonportable APls
Although some of the older Windows APis have vanished, the presence
of their direct descendants in Windows 95 ensures that porting existing
16-bit Windows code will be a manageable chore. The only snag comes
from the use of MS-DOS functions within Windows-based applica
tions-by means of the provided DosJCallO API of Windows 3.1 or by
means of embedded assembly language code that calls MS-DOS di
rectly. Win32 doesn't support a direct MS-DOS interface, and it never
will. Even if translating 32-bit parameters to 16-bit equivalents weren't
an issue, the fact that the base operating system in Windows 95 is en
tirely call based and makes no use of the Intel software interrupt
mechanism other than for compatibility when Windows 95 is running
older MS-DOS applications means that Win32 applications that issue
MS-DOS software interrupts will fail. If you have code that calls MS
DOS directly-for file I/0, for example-you have to replace the call
with the appropriate Win32 APL

233

INSIDE WINDOWS 95

Win32 on Windows 95

234

We'll look at some details of the API changes and enhancements a little
later, when we take a closer look at the User and GDI modules. First
let's see what Windows 95 doesn't implement that Windows NT does
implement. Remember, it's all Win32. As the design of Windows 95
progressed, the Win32 specification changed to accommodate new fea
tures that would come to market for the first time with Windows 95.
Whether the Windows NT API comes to be regarded as a superset of
the Windows 95 API, or the Windows 95 a subset of the Windows NT
remains to be seen.

Faced with the prospect of turning all of the new ideas and the
enhancement requests into specific Win32 APls, Microsoft had to con
sider a couple of factors over and above the basic design and imple
mentation challenge. Was the underlying operating system capable of
fully supporting a proposed feature? Was the feature appropriate for
the intended market? By and large, you can see these criteria reflected
in the eventual choice of APis that would not be fully supported by
Windows95.

Security APls
The collection of Win32 APis that deals with system security issues is
merely the most visible aspect of the security capabilities embodied in
Windows NT. The system implements stringent authentication and
privilege checking features that allow it to be used for secure applica
tions: in a network server role or as a C2-compliant desktop system.8

For the system to be fully secure, you must use the NTFS filesystem with
Windows NT-since the FAT filesystem is provably insecure.

The Windows NT internal system architecture is dramatically dif
ferent from the Windows 95 architecture in order to meet the secure
system goal. This difference translates into a need for more system
memory and more processor horsepower-more than the average tar
get Windows 95 machine would have. Since the underlying operating
system can't fully support them, Windows 95 does not implement the
Win32 security APis. Microsoft's reasoning: why try to provide two
products to meet the same need? If you really need the security capa
bilities, you'll know it-and you'll use Windows NT.

8. Windows NT on its own cannot be C2 certified. The certification process
requires a complete system-the hardware, the operating system, and applications
to undergo verification.

SI X: Applications and Devices

Console APls
The Win32 console APis provide an environment for applications that
require character mode I/0 facilities. For applications with simple user
interface requirements-a compiler, for example-the console APis
offer an easy way to run using Win32.

Windows 95 supports the console APis but provides support for
only a single console subsystem. Whereas Windows NT allows the man
agement of multiple console sessions by means of the AllocConsole() and
FreeConsole() APis, Windows 95 supports only a single console session.

32-Bit Coordinate System
There is no world transform coordinate transformation capability in
Windows 95, and neither the associated SetWorldTransform() and Get
WorldTransform() APis nor the XFORM data structure is supported in
Windows 95.9 Their absence is tied to the decision to retain a 16-bit
coordinate system in GDI. Implementing 32-bit coordinates really re
quires a full 32-bit GDI, which, partly for memory consumption reasons
and partly for timescale reasons, Microsoft chose not to implement for
Windows 95.

Unicode APls
The first release of Windows NT was unusual in that it supported the
Unicode character set specification not only for applications but also as
its own internal character set representation. Every Unicode character
requires 16 bits for storage-which expands the system's memory re
quirements-and in addition many compatibility considerations are
associated with existing character strings: filenames on disk, and 16-bit
Windows application resources, to name just two.

Supporting Unicode would have been a big leap of faith for the
Windows 95 team to take. They chose not to, so the system retains its
ANSI character set roots and doesn't support the Win32 Unicode APis.
However, some new aspects of the Windows 95 system do use Unicode
internally: its long filename support in the filesystem and its 32-bit OLE
subsystem, for example. And Windows 95 has far more extensive sup
port for international versions of applications than any of the earlier
Microsoft operating system products.

9. If you use world transforms, be sure to read up in the Win32 documentation on
how the SetGraphicsMode() API works under Windows 95.

235

INSIDE WINDOWS 95

236

Server APls
The Windows NT role as a highly capable network server means that
there are groups ofWin32 APis supporting server operations: notably,
server-side named pipes and RPC facilities and tape backup APis. The
server-side named pipes allow a server process to create a pipe that mul
tiple client processes can connect to. The RPC facilities you won't find
in Windows 95 include the locator and endpoint mapper features. 10

These features relate to the name service facilities provided by the full
Win32 APL (Windows NT supports an endpoint mapping service,
RPCSS, and a locator service that don't exist on Windows 95.)

Printer Support
Windows 95 doesn't include the entire gamut of print APis defined for
Win32. There is no forms support (all the APis with Form in their
names), and the Addjob() and Schedulejob() APis available on Windows
NT aren't supported either.

Service Control Manager APls
Windows NT supports a service control manager facility that allows a sub
system, such as a network server, to register itself as a service. Once the
subsystem is registered, the system itself takes care of starting the ser
vice and maintaining information about currently running services.
Under Windows NT, the service control manager is actually accessible
across the network by means of RPC, so it's possible to manage net
workwide services from a single machine.

In an oversimplification, you could say that the Windows NT ser
vice control manager is a highly structured form of the capabilities
inherent in the startup files you're familiar with, such as AUTO
EXEC.BAT and WlN.INI. The general philosophy of the service con
trol manager doesn't really fit a personal system such as Windows 95,
so the service control subsystem and the associated Win32 APis aren't
supported. 11

Event Logging
Associated with the service controi manager are the event logging fa
cilities. Under Windows NT, these facilities allow subsystems to record

10. The full Win32 RPC also includes some Unicode and security reiated APis. As
you'd expect, these aren't supported on Windows 95.

11. Service control APls are generally recognizable by virtue of the Service or SC in
their names. For once there's some orderly naming going on.

S I X: Applications and Devices

information about interesting occurrences: unexpected errors, con
figuration changes, and the like. The Windows NT administrator can
inspect the event log when trying to diagnose problems or simply to
verify the health of the system. Windows 95 doesn't support the Win32
event logging APis.

Detailed Differences
Within the Win32 API a number of details have been changed or en
hanced and that will affect some applications. Later we'll look at some
of the brand-new Win32 features and at Microsoft's recommendations
for application developers. Here are just a few of the lower level modifi
cations:12

111111 Most application resource limits have been substantially
raised: memory, handles, and other resources are all plentiful
under Windows 95. There are 32, 767 window handles, for
example, compared to only 200 in Windows 3.1. Similar
improvements have been made for COM and LPT devices,
with Windows 95 providing many more logical ports than
physical ports. Total available memory rather than individual
resources now becomes the limiting factor.

II Windows 95 tags every application resource with the thread
identifier of its owner. When an application quits, the system
automatically frees all resources that have been allocated to
the application. Some Windows 3.1 applications assume the
continued allocation of a resource even after an application
terminates. Such an assumption is not valid with Win32
applications.

II Windows 95 includes yet more parameter validation. Whereas
Windows 3.1 concentrated on validating the parameters sup
plied to the published APis, Windows 95 also validates the so
called "undocumented" interfaces that have been discussed in
various books and journals. If you use undocumented inter
faces, beware.

12. Naturally, the detailed information about these changes tends to be spread
around in the documentation. One way of pointing yourself in the right direction is
to look for the string #if (WINVER >= Ox400) in the Windows SDK header files. The
Windows developers have used this string to bracket all the new definitions.

237

INSIDE WINDOWS 95

11111 There are several new Windows messages, ranging from
generalized application notification for the Plug and Play
subsystem (WM_DEVICEBROADCAST) to the support for
multiple keyboard layouts (WM_KBDLAYOUTCHANGE)
required by fully international applications.

11111 Windows 95 presses into service some previously unused
parts of existing data structures. New capabilities, such as
automatic centering ofa dialog box (the new DS_CENTER
style bit), are supported. If your code "borrows" reserved or
previously unused regions of Windows data structures, you
may need to make some changes.13

Programming for Windows 95
Now that we've looked at some of the things you can't do on Windows
95, let's turn our attention to a more interesting topic: the new capa
bilities you can exploit as you create your next million-copy seller. The
new features are accessible only by 32-bit applications, 14 so the first task
is to port existing code to Win32. Together with all the new possibilities
for Win32 applications come new rules and considerations. We'll look
at those as we examine the new features.

There are many small enhancements to the Windows API, and we
won't look at them all in any detail here. Reference works that analyze
the new features will probably address this extensive topic. Checking
the specification for all the APis with the Ex suffix is one way to begin
an investigation.15

Multitasking

238

As you saw in Chapter Four, the Windows 95 multitasking environment
is dramatically different from the Windows 3.1 environment. If you've

13. To preserve compatibility, Windows 95 includes several internal version checks
to preclude any attempt to interpret "old" data structures with new semantics. An
executable with a version number of 3.1 or lower won't see any of this new behavior.

14. The DPMI challenge was met by a band of developers determined to prove that
real mode code could use protected mode facilities. It'll be interesting to see whether
someone comes up with a trapdoor for 16-bit Windows applications. But don't try this
at hon1e.

15. For example, there's even an ExitWindowsEx() APL Though you're unlikely to
use it, on machines that support the feature, you can close down Windows and turn off
the power.

SIX: Applications and Devices

programmed for other multitasking systems-Windows NT, UNIX, or
OS/2-you're already familiar with some of the issues you'll have to
deal with in the Windows 95 environment:

• Synchronization and sharing. You can never be sure that the
operating system isn't going to preempt your· application and
take the processor away from you, so any use of shared ob
jects, such as memory mapped files, must be synchronized
with other applications' use. Assumptions about the timing of
arriving window messages are also invalid for Win32 applica
tions under Windows 95.

• Multithreading. Using additional execution threads to man
age different windows or background operations such as file
searching adds complexity to an application's code. But users
will quickly come to expect such capabilities. The Windows 95
shell, for example, uses a separate thread for each visible
window. If your application simply puts up the hourglass
cursor during a lengthy operation and refuses to respond
quickly to mouse clicks, it will suffer in comparison with
applications that do allow the user to interrupt the operation
or get on with something else.

A plethora of Win32 APis are available to assist in thread synchro
nization. Many of them look similar to one another, but study of the
details will reveal subtle but significant differences. Windows 95 sup
ports all of the Win32 synchronization APis. One group-made up of
the InterlockedlncrementO, InterlockedDecrementO, and lnterlockedExchangeO
APis that allow manipulation of a single 32-bit word-was originally
designed to help support Windows NT multiprocessor operations.
Even though you'll never see Windows 95 controlling a multiprocessor
system, the APis are still valid on Windows 95.

Win32 synchronization primitives deal with critical sections, events,
mutexes, and semaphores. Here's what's important about each:

A critical section is used by threads belonging to the same process.
One thread declares a CRITICAL_SECTION variable and
initializes it using the InitializeCriticalSectionO API. Thereafter,
any thread can call EnterCriticalSectionO and LeaveCriticalSectionO
to protect code sequences in which it must be the only thread
of the parent process allowed to run.

239

INSIDE WINDOWS 95

240

Any thread can create a named event object and obtain a handle to it
using CreateEvent(). Other threads belonging to any process can
obtain a handle to the same event by specifying the same event
name. Any thread with a valid handle can then use the SetEvent(),
ResetEvent(), or PulseEvent() API to signal an occurrence of the
event. Threads waiting for the event are then free to continue
execution, and multiple threads may become eligible to run
when the event is signaled. These event APis send a "one to
many" signal, unlike the other synchronization APis.

A mutex is a named object that you acquire a handle to by means of
CreateMutex() or GpenMutex(). Again, any thread in any process
can obtain a handle to the mutex ifit knows its name.16 Only a
single thread can gain control of the mutex object-so this
implements critical sections for cooperating processes. The
ReleaseMutex() API relinquishes control of the object.

A semaphore object is controlled in a way similar to control of a
mutex object by means of CreateSemaphore() and OpenSemaphore().
The difference between the two is that the semaphore can have
a value. For example, if you have an application controlling an
eight-line telephone dialer, you can set up a semaphore with a
value of 8 to help manage line allocation. The first eight threads
that ask for a line get one, and the next thread blocks, awaiting a
line release by another thread, which uses the ReleaseSemaphore()
API to increment the count.

All of the interprocess synchronization APis use handles to iden
tify the object in use, be it an event, a mutex, or a semaphore. When a
thread wants to synchronize with another thread, it uses an API that al
lows it to wait for a single object (WaitForSingleObject() and WaitForSingle
ObjectEx()), or for one of possibly many objects (WaitForMultipleObjects()
and WaitForMultipleObjectsEx()). The two multiple objects APis can use
an array of object handles supplied by the caller-plus a time-out-to
simplify the synchronization procedure. The MsgWaitForMultipleObjects()
API allows you to synchronize with any of these objects, or with a time
out, or with a Windows message arriving in the thread's input queue.

16. The DuplicateHandle() API allows you to pass the handle to another process.
The receiving process doesn't have to know the name of the mutex object. This works
with all the handle-based Win32 synchronization APis.

SIX: Applications and Devices

Memory Management
In Chapter Four, we looked at the Win32 memory management APis
and at some aspects of their implementation. Remember:

• The need to lock resources and memory objects is gone. All
objects exist within a huge 32-bit flat virtual address space.
Assumptions about actual addresses of objects are probably
wrong, and they're definitely nonportable. You have to ad
dress objects using only system-supplied handles or pointers.

II The system protects the private address space of each Win32
application. You can't get a valid pointer into some other
Win32 application's address space.17 To exchange informa
tion, cooperating applications must use the defined inter
process communication methods and synchronization APls.
The WriteProcessMemory() API is the only controlled way of
modifying somebody else's address space, and this API is
really meant only for use by debugging tools.

lllil You can't pass handles back and forth between Win32 applica
tions except by using the DuplicateHandle() API.Just as actual
memory pointers aren't valid in different processes, neither
are handles. You have to use the DuplicateHandle() API to get a
valid handle to pass to another process.

II Of the various shared memory allocation methods, using the
CreateFile() and Map ViewOJFile() APis is the recommended
method for sharing. The performance with this method is
good, and the method is fully portable to Windows NT.

Plug and Play Support
Chapter Eight deals with the Plug and Play subsystem in detail. Much of
the Windows 95 Plug and Play support involves device drivers, not appli
cations, but there is one new Windows message specifically associated
with Plug and Play operations. The WM_DEVICEBROADCAST message
informs an application of changes to the system's hardware con
figuration. If your application or device driver is the con trolling party,
you can use the BroadcastSystemMessage() API to send this message.

17. But you can get a pointer into the shared region used by all of the Winl6
applications and the 16-bit subsystem DLLs. Again, this is an artifact of the strict
compatibility requirements for Windows 95.

241

INSIDE WINDOWS 95

Perhaps unusually, this particular message is important to both
applications and system components, although the information the
message sends is often of interest only to device drivers. At the applica
tion level, the device event code the message sends can provide, for ex
ample, information about the addition and removal of logical disk
drives.18 This would allow an application to respond sensibly to docking
and undocking operations, for instance.

The Registry

242

The registry in Windows is a structured file that stores indexed infor
mation describing the host system's hardware, user preferences, and
other configuration data. In Windows 3.1, the registry is used by appli
cations to specify a limited amount of information, such as OLE docu
ment types.19 In Windows NT, everything goes in the registry. Use of the
registry in Windows 95 falls somewhere between these minimalist and
all-embracing approaches.

The purpose of the registry is to reduce the proliferation of con
figuration files that can plague a Windows machine. In Windows 3.1,
the CONFIG.SYS, AUTOEXEC.BAT, WIN.INI, and SYSTEM.IN! files
all contain information related to the system configuration. Some of
the information is vital to the system's operation-specifying device
drivers to load, for instance-and most of the remaining information
describes other important aspects of the system's configuration. Add to
these files the private .INI files set up by applications and the .GRP files
used by the Program Manager, and it gets harder and harder to know
where to look when diagnosing a problem or searching for a configura
tion setting.

Apart from the proliferation of these files in Windows 3.1, their
integrity is a problem. Since the files contain plain text, the user can
edit them directly, perhaps messing them up, and Windows has no way
to figure out what might have happened. Incorporating all the configu
ration information into a registration database file and providing con
trolled access to it would preclude many of these potential problems.

18. This much was true in July 1994. It's clear that the device broadcast message
could be extended to cover many different occurrences.

19. To be precise, Windows 3.1 supports a registration database, which the purist will
argue is different from the Windows NT registry. It's a rather academic point.

S I X: Applications and Devices

Windows NT does away with all of the plain text files that Windows 3.1
uses and, in addition to the system's own use of the registry, allows ap
plications to use the registry for storing private configuration data.

Windows 95 continues to process the configuration files you're
familiar with-AUTOEXEC.BAT for example. Windows 95 also sup
ports the registry. The principal user of the registry in Windows 95 is
the Plug and Play subsystem, and all device-related information moves
to the registry. Although this might seem to simply expand the file pro
liferation problem, you can use your own Windows 3.1 system as an ex
ample to measure the effect of putting this information in the registry.
Count the numberoflines inCONFIG.SYS, AUTOEXEC.BAT, WIN.IN!,
and SYSTEM.IN!, subtract the lines that relate to hardware configura
tion, subtract other lines such as "BUFFERS=" that have no relevance
under Windows 95, and you'll see that a lot of data disappears.20 Al
though the development team would have preferred to adopt the regis
try mechanism in its entirety, the compatibility issues associated with
upgrading the installed base of Windows 3.1 systems and their 16-bit
applications were too great. The old style configuration files thus sur
vive, but no doubt more and more use of the registry will be made in
the future.

Figure 6-4 on the next page shows the arrangement of the registry
database with its principal keys. Notice that the keys are hierarchically
related, meaning that entire subtrees can be isolated and indexed with
sub keys.

A particular software vendor might use the registry database
to store application configuration information under the key
HKEY_LOCAL_MACHINE\SOFTWARE\VENDOR\APPLICATION.
In Figure 6-4, information about Exotic's spreadsheet application is
registered this way. Typically the HKEY_LOCAL_MACHINE branch of
the hierarchy describes non-user-specific information about the host
system. The HARDWARE branch of this subtree is where the Windows
95 Plug and Play subsystem stores all of the system's hardware configu
ration information.

As you might expect, the registry APis supported by Windows 95
don't include the security-related interfaces. Windows 95 does support

20. On my machine, CONFIG.SYS and SYSTEM.IN! disappear altogether, and
AUTOEXEC.BAT and WIN.IN! shrink substantially.

243

INSIDE WINDOWS 95

244

Figure 6-4.
Registry hierarchy in Windows 95, showing the principal keys.

a number of interfaces for VxDs that allow access to the registry, how
ever. A subset of these interfaces is available for read-only access during
the system's real mode initialization procedure.

S I X: Applications and Devices

The User Interface

OLE

In Chapter Five, we looked at the new visual elements of the Windows
95 user interface and at some of the Microsoft guidelines for making
Win32 applications consistent with the shell and its behavior. Underly
ing the new appearance are many new and enhanced APis. Two aspects
of the new interface have an impact on existing applications:

• The minimum hardware supported by Windows 95 is a VGA
display with 16 colors. The system itself operates internally
with a palette of 256 colors, mapping the 256 to 16 if the
hardware has only 16. The new 3-D appearance and the
improved use of color mean that you should avoid hard
coding colors, particularly for owner drawn items such as
buttons. The GetSysColor() API helps you use the currently
selected color palette within an application.

• The ability for the user to resize every visual element-scroll
bar widths, caption bars, and the like-means that your code
must not make assumptions about the size of standard items.
User resizing coupled with the system's ability to change
display resolution on the fly21 plus the overall Plug and Play
environment means that an application that truly exploits the
Windows 95 capabilities must be able to react well to dynamic
configuration changes.

The enhancements to the APis you're familiar with cover many
areas: menus, keyboard accelerators, icon management, and new capa
bilities that allow you to exploit the new visual appearance just as the
shell does. Since this isn't an attempt to teach Windows 95 program
ming, we won't look at the details here. Suffice it to say that if Windows
95 is successful, its users will rapidly come to expect updated applica
tions that exploit its new appearance and interface capabilities.

OLE has been the most widely promoted aspect of Microsoft's system
software products over the last couple of years. Viewed initially as
simply a "better DDE," OLE has evolved to become the cornerstone of

21. You'll receive a WM_DISPLAYCHANGED message both before and after this
happens.

245

INSIDE WINDOWS 95

246

Microsoft's object-oriented system efforts. Windows 95 is the first oper
ating system release that incorporates OLE as a standard function, al
though add-on libraries for Windows 3.1 have been available for
developers to ship with their applications for some time. OLE's impor
tance to developers is underlined by Microsoft's plans for the Cairo op
erating system to provide support for distributed object-based systems
and an object-oriented filesystem-both of which are derived from the
current OLE object model and compound file format. OLE today is a
complex subsystem, but support for it within C++ class libraries contin
ues to grow, somewhat simplifying the developer's task.

OLE has been dealt with extensively in other books. And doing
justice to OLE would merit at least an entire chapter in this book. Nev
ertheless, it's important to at least look at some of the fundamental fea
tures of the technology.

OLE deals with collections of objects that make up compound docu
ments. A compound document is a grouping of data prepared by several
different applications. A letter prepared by a word processor, for ex
ample, might include a numeric table generated by a spreadsheet pro
gram. The Windows DDE capability offered limited facilities for using
multiple applications to prepare and maintain such compound docu
ments, but more often than not, the act of preparation involved simply
copying a final version of the spreadsheet table, pasting it into the let
ter, and printing it. OLE aims to provide the framework wherein the
user can prepare and maintain compound documents without losing
any of the attributes of the data objects or precluding the possibility of
manipulating the data objects in their original forms. This capability
involves either maintaining a link in the compound document to the
object in the original application, or embedding the data object directly
within the document. In either case, when the user selects the data ob
ject, the originating application runs and provides the user with all of
its data manipulation capabilities. The user can not only resize the
spreadsheet as it sits in the document but also change the numbers and
recalculate the contents.

An application that supports this architecture is called an 01.E
server, and an 01.E client is any application that allows the inclusion of
OLE objects within its supported document formats. Selecting an em
bedded object may cause the server to use an in-place activation tech
nique whereby the server takes control of the client application's
menus and of the redrawing of the screen area occupied by the data

S I X: Applications and Devices

object. There's no apparent switching to another application such as
we're used to. The user just has a different set of operations available
for that particular data object.

OLE-enabled applications support drag and drop operations, in
which the user can select a graphical representation of a data object
and deposit it on some other object, whereupon the target object does
something useful with the data. The Windows 95 shell, for example,
allows the user to drag an object onto the desktop and leave it there or
to drag a document to a printer and have it be printed with no further
interaction.

Since the client application in the printing drag and drop ex
ample would know nothing about how to print the document, it would
rely on the programmability of the server application. Simply put, this
means that the client can determine which application created the
document and send the server application a print command together
with the document data. The server will expose possibly many inter
faces to its functions, and any client can call the server functions at will.
A page layout program, for example, could call on the text justification
function available in a word processor. No user actions would be re
quired to make this happen-it's the OLE subsystem that initiates and
controls the interactions among all of the components.

Microsoft calls the core of the OLE design the component object
model, and under this broad heading lists all the programming inter
faces, data structures, and protocols that control OLE operations. OLE
relies completely on object-oriented programming techniques and in
particular on C++. The written OLE specification is based entirely on
C++ conventions. The implementation of OLE on Windows 95 requires
the presence of several DLLs in the Windows directory.

The OLE compound file format specifies a storage mechanism for
OLE objects and their associated data. Within one compound file, it's.
possible to create multiple streams-each of which can contain collec
tions oflogically separated objects. A compound file allows its contents
to be indexed efficiently, and the index is permanently retained-just
as a database index is. Windows 95 implements an OLE compound file
by storing the streams and the index in a single disk file. To the operat
ing system, the file is just a collection of bits. Only the OLE subsystem
knows how to interpret the index and the data streams. All of that will
change with Cairo, and the interfaces offered today by the OLE librar
ies will become part of the operating system proper. With Cairo,

247

INSIDE WINDOWS 95

Microsoft plans to offer a new object filesystem as the native storage
format. Multiple stream support, indexing, and object storage and re
trieval functions will be an inherent feature of this filesystem. Whereas
today we have APis that simply read and write data, Cairo will provide
APis to load and store entire compound documents.

Of course, Microsoft faces healthy competition from various quar
ters in its bid to establish OLE as the preferred object model for PC
based applications. But OLE is gradually establishing itself, and its
ready availability in Windows 95 and Windows NT is a good way to ap
proach the contest.

International Support

248

Over the years Microsoft has invested an enormous amount of effort in
the process of translating its products for use in overseas markets. It
isn't just a matter of translating program text and documentation. Is
sues of local currency and date formats and other cultural consider
ations abound. For the Far East and Middle East markets, the complex
character sets and right to left parsing issues further increase the work
required to make a software product truly international.

Windows 95 will represent Microsoft's largest investment yet in
the internationalization of a product. The plan calls for Windows 95 to
be released simultaneously in seven languages (English, French, Ger
man, Italian, Swedish, Spanish, and Dutch) and for many other lan
guage versions to follow in the subsequent six months. To achieve these
goals, Microsoft has restructured its development methods. Whereas
Windows 3.1 had been localized by having a variety of small teams
modify the source code and carry out the language translation, the rule
for Windows 95 has been no source modifications for localization pur
poses. Whatever changes were necessary for localization were done just
once, in Redmond, and then the individual translation groups worked
with binary resources only.

Apart from the effort it has invested in the localization project it
self, Microsoft has also enhanced Windows 95 considerably for foreign
language support. Among the design decisions that the team had to
make, determining whether to use the Unicode character set, as Win
dows NT does, was one of the major ones. For compatibility and size
reasons, Windows 95 is not a Unicode system, although a number of
its components, such as OLE, use Unicode as their internal character

S I X: Applications and Devices

representation.22 A range of Windows 95 features are aimed at simplify
ing the challenge of producing software that deals with many foreign
languages:

• Support for multiple keyboard layouts, allowing dynamic
switching between character sets. This means, for example,
that more than one foreign language can be used and dis
played within a single document.

• The so called locale APis that handle issues such as string
sorting, code page management, and localized date and time
formats. A locale implies both a language dialect and a loca
tion. 23 So, for example, the issues associated with software for
a multilingual country such as Switzerland can be correctly
handled. Windows 95 allows you to control some 110 different
locale items.

1111 Extensions to existing APis, such as MessageBoxExO, that allow
an application to specify the language resources to be used for
display of the text in buttons.

Structured Exception Handling
Although not specific to Windows, structured exception handling is a
feature that Windows 95 supports. Together with operating system sup
port, you have to have a compiler that supports the capability. One
without the other won't do it. Windows NT with the Microsoft 32-bit C
compiler was the first Microsoft environment to support structured ex-
ception handling, and now it's in Windows 95. ·

Structured exception handling allows the programmer to bring
order and simplicity to the usually onerous chore of error handling. A
condition such as an error code returned by a system API, or a memory
fault caused by an invalid pointer, can be handled in one place rather
than with code scattered throughout an application. Figure 6-5 shows

22. The principal problems were the growth in the size of the system's working set
(remember that 4-MB requirement) if Unicode were to be used and tbe compatibility
testing issues associated with modifying close to 500 individual APis for Unicode
support.

23. Even to the extent that American English can now be properly viewed as a
dialect of the Queen's English!

249

INSIDE WINDOWS 95

250

an example of how you might handle errors the "old" way (including
an "old" bug), and Figure 6-6 is the same code modified to use struc
tured exception handling. Some of the obvious declarations have been
omitted for brevity, and the code is a little artificial-but it serves i:.o il
lustrate the technique.

This code fragment opens a file, reads the first word of the file to
determine the size of the subsequent data record, allocates memory for

Figure 6-5.
Handling errors the old way, without structured exception handling.

S I X: Applications and Devices

the data, and reads the data in. Errors can occur while the code tries
to open the file, while it reads the file, while it tries to allocate the
memory buffer, or when it searches the buffer for a given value-when
the pointer steps past the end of the buffer. The code shown in Figure
6-5 laboriously tests for error conditions. The code in Figure 6-6 han
dles all possible errors by embracing the code in a single try block, de
fining an except block that will be called if any errors occur, and then
cleaning everything up in a finally block that executes regardless of
success or failure. Note that the except block in Figure 6-6will execute in

Figure 6-6.
Using structured exception handling.

251

INSIDE WINDOWS 95

the event of a memory access fault when the code scans past the end of
the allocated memory buffer (with the pattern not found). Neither ex
ample tests for this condition, and in the first case you'd get a program
failure with little useful qualifying information.

Exception handlers are frame based, meaning that their scopes
nest just as declaration scopes do, so it's possible to handle errors on
either a global or a local basis. There are also facilities for specifying
the context in which the exception is handled.24 The structured excep
tion handling feature also allows a program to initiate an exception
(the RaiseException() API) and specifies the protocol for interacting
with a debugging tool if one is in use. Within an except block, you can
determine the cause of an exception so that you can carry out appro
priate error recovery. You shouldn't replace every error test in your
code with an exception sequence, but it is a great way to manage a mul
titude of possible error conditions diligently and efficiently. After all,
how many times do you test for every possible error in your code?

The Graphics Device Interface

252

GDI is the heart of the Windows graphics capabilities. All of the draw
ing functions for lines and shapes are in GDI as well as the color man
agement and font handling functions. Many aspects of Windows
performance are tied closely to GDI performance, and a lot of the GDI
code is handcrafted 386 assembly language. At the application level,
Windows provides logical objects known as device contexts (DCs) that de
scribe the current state of a particular GDI drawing target. A DC can
describe any output device or representation of a device. An applica
tion will obtain a DC for printer output or for completely memory
based operations, for example. Applications manage DCs by means of
Win32 APls only. The actual DC data structure is always hidden from
the application. At any instant a DC contains information about objects
such as the current pen (for drawing lines), the current brush (for fill
ing regions), the color selection, and the location and dimensions of
the logical drawing target.

The key to the use of Windows and Windows applications on a
widely disparate range of target hardware is the device independence

24. Reminiscent of, but much better than, the C language setjmp()/ longjmp()
facility.

S I X: Applications and Devices

embodied in the Windows APL An application uses DCs and other logi
cal objects when calling GDI functions. It never writes data directly to
an output device. GDI itself manages the process of transforming the
data into a format suitable for use by a particular device driver, and the
driver handles the task of placing a representation of the request on
the output device. For example, an application may call the system ask
ing for its main window to be repainted. During the repainting opera
tion, among many other requests, GDI may tell the driver "on the
screen draw a one-pixel-wide black line from position (0, 48) to posi
tion (639, 48)." If the device-a dot matrix printer, say-can't perform
operations such as line drawing, GDI will break the request down into
simpler operations. The device driver will receive a series of calls telling
it to draw individual dots, for example. This architecture frees applica
tions from ;device-dependent problems and allows Windows to make
use of even the simplest hardware as an output device.

With this device-independent capability come several problems.
In addition to simply choosing and managing an appropriate device
independent representation of all the graphics objects, you need to
have a plethora of device drivers available to interface GDI to the target
hardware. Issues such as handling complex fonts through a range of
point sizes and then being able to draw the font legibly on both a 1024
by 768 pixel display screen and a simple dot matrix printer involve
many complex algorithms and a lot of very clever code.

Over successive releases of Windows, the capabilities of GDI have
improved considerably, and the underlying structure of the system has
adapted to the experience gained from earlier versions and to the pre
vailing market forces. The vast majority of Windows users nowadays
tend to have fairly capable hardware: VGA displays and laser or high
resolution dot matrix printers. The hardware will probably get even
more powerful, with higher resolution and color-capable devices
abounding. It's therefore important to get the best possible perfor
mance out of a few core components rather than expend effort on
hundreds of device drivers, each with a limited installed base. It has
also been important .to look ahead at the likely effects of hardware
trends. Two of the major changes in the Windows 95 GDI subsystem
reflect hardware trends: the device-independent bitmap (DIB) engine and
the image color matching (ICM) subsystem.

Windows 3.1 successfully introduced the concept of the universal
printer driver-a device driver that does much of the work for all the
other system printer drivers. The so called printer mini-drivers support

253

INSIDE WINDOWS 95

254

only the hardware-specific operations of a printer and rely on the uni
versal driver for most printing-related functions. This allocation of re
sponsibility allowed Microsoft to invest heavily in a high-performance,
high-quality universal printer driver and in some good example mini
drivers for devices such as the Hewlett-Packard LaserJet. From the
printer manufacturer's perspective, Windows printer driver develop
ment became a much simpler and much less error prone project.

Windows 95 takes up this design concept by incorporating the
DIB engine and a display mini-driver capability. If the display hardware
matches what the DIB engine can do, what was once a very complex,
performance-sensitive development effort is considerably simplified.25

Write a display mini-driver, and rely on the DIB engine as (in
Microsoft's phrase) "the world's fastest flat frame buffer" display driver.
The DIB engine design also recognizes the level of effort that hardware
manufacturers now put into hardware assists for Windows-based sys
tems. If you have hardware acceleration or other capabilities, the dis
play mini-driver can use these instead of calling the DIB engine.

Image color matching is a new capability that addresses device
independence issues for applications that deal with color, such as
photo retouching applications. Although color has always been part of
Windows, earlier releases didn't have to worry too much about the is
sue since color-capable peripherals were relatively rare. But now that
the price of good color scanners and color printers has fallen to the
$1,000 range, Windows has to take careful note of color management.

Here are the other improvements to GDI in Windows 95:

Ill Performance. A lot of code has been tuned, and some impor
tant components have been converted to 32-bit code.

Ill Relaxation of resource limitations. In parallel with what's
been done to the User subsystem, many ofGDI's resource
limits have been raised significantly.

II Win32 support. Windows 95 fully supports many graphics APis
~mavailable in Windows 3.1.

Ill TrueType enhancements.

25. One simple code count shows the VGA display driver in Windows 3.1 to be over
41,000 lines of assembler (for a 16-color-only display). In Windows 95, it's only about
5000 lines for the full 256-color driver.

S I X: Applications and Devices

• Metafile support enhancements compatible with Windows
NT's metafile support.

• Printing subsystem enhancements, including bi-directional
printer support and a new 32-bit print spooler.

GDI Architecture
Figure 6-7 illustrates the major components of the GDI subsystem. It
also shows the breakdown between 16-bit and 32-bit code modules
with one caveat: the DIB engine is actually 32-bit code running with a
16-bit (segmented) view of system memory-so the code makes use of
the fast 386 instructions for memory move operations, for example.
There's considerable trickery involved in efficient address manipula
tion, but it means that existing 16-bit applications can realize the per
formance improvements of the new DIB engine and that the engine
itself can call into the 16-bit GDI code with no additional overhead. If
the DIB engine were placed on the 32-bit side of the fence, either the

16-bitAPI 32-bitAPI

....
Figure 6-7.
The components of GD! in Windows 95.

255

INSIDE WINDOWS 95

256

32-bit GDI module would have to replicate much of the GDI function
ality, or the DIB engine would incur lots of thunk overhead calling back
to the 16-bit side.

Before looking in detail at the new DIB engine and the ICM sub
system, let's review the smaller improvements in the Windows 95 GDI.

Performance Improvements
The performance of the GDI subsystem is critical to the performance
of Windows. Many benchmarks of Windows 3.1 tend to focus attention
on video performance. Although video performance is only one ele
ment of the overall performance of the system, it's certainly a huge fac
tor in perceived performance.

The Windows GDI code has been worked on for a sufficiently
long time that there really aren't any huge undiscovered performance
gains to be made. But Windows 95 includes quite a few incremental
improvements:

• The new DIB engine is handcrafted assembler. The effort
invested in this will improve the performance of many video
display drivers as well as the print subsystem.

• The TrueType rasterizer is the component responsible for
turning a description of a font into the actual image you see
on the screen or on the printed page. The Windows 95
rasterizer is new 32-bit code.

• The print subsystem spools print metafiles, reducing the
amount of data movement and hence speeding up the print
process. The print spooler itself is new 32-bit code that can
run as a true background process.

• A lot of new 32-bit code in key components makes use of the
improved instructions available on the 386 processor. Also the
duplication of some GDI components in 16-bit and 32-bit
code avoids thunk overhead.

Limit Expansion
Along with the move partway to a 32-bit subsystem comes access to the
32-bit memory pools used by Windows 95. Under Windows 3.1, the GDI
subsystem allocated all resources from a single 64K heap-which
limited the total number of available resources significantly on systems
that were capable of running several applications at once.

SIX: Applications and Devices

In Windows 95, GDI still keeps many logical objects in a heap lim
ited to 64K. The data structures that describe brushes, pens, and
bitmap headers, for example, stay in this smaller heap. Display context
structures also remain in this pool. However, GDI now allocates the ob
jects that can really eat up space from a separate, 32-bit memory pool.
GDI regions, font management structures, and physical objects all
move to this pool, which considerably reduces the pressure on the 64K
heap. For example, the collection of rectangles used to describe an el
liptical region can consume up to 45K. Decisions over which objects to
move out of the 64K heap were also influenced by performance consid
erations. Since both 16-bit and 32-bit code has to manipulate the struc
tures, the designers had to be careful not to incur too many selector
loads when switching between the different heap areas.

New Graphics Features
Windows 95 incorporates almost all of the more advanced graphics
APis defined by Win32. Their inclusion increases the suitability of Win
dows for use as an application platform by graphics-intensive applica
tions. The new APis encompass

Ill Support for paths, allowing an application to describe a
complex arrangement of geometric shapes that GDI will
outline and fill with a single function call

ill Bizier curve drawing, in which an application describes a curve
using a series of discrete points and GDI figures out how to
draw the curve

Applications such as high-end drawing packages and CAD prod
ucts have to concern themselves with the very accurate representation
of geometric objects. One of the differences between Windows 95 and
Windows NT is in the drawing algorithms that define the pixels used
when an application draws lines or fills shapes. Internally, an applica
tion can draw anywhere within the 16-bit coordinate space (-32,767 to
+32, 767 in both the x and y directions). GDI may have to scale this im
age dramatically to allow its display on a 640 by 480 pixel screen and,
regardless of scaling issues, drawing a diagonal line on a video screen is
always problematic. Essentially, GDI and the display driver have to fig
ure out between them which pixels become black and which stay white.
For most of us (and most applications), the differences between lines

257

INSIDE WINDOWS 95

258

drawn according to the two algorithms won't be discernible. There are
similar subtle differences between the ways the two GDI subsystems fill
shapes on the screen. The algorithms differ as they determine which
pixels to include or exclude around the edge of the shape.

True Type
The new TrueType rasterizer is implemented in C. It's an adaptation
of the C++ module developed for Windows NT.26 The new code also
implements an improved mathematical representation of a font, using
32-bit fixed point arithmetic with a 26-bit fractional part. Windows
3.1usesa16-bit representation with a 10-bit fraction. This led to some
rounding error problems (leading to reduced fidelity on high resolu
tion devices) and difficulties in handling complex characters such as
those in the Chinese language (the Han characters).

The rasterizer now uses memory mapped files to access font de
scription files (all those .TTF files in your Windows system directory),
and the associated .FOT files are gone. During the system boot process
a private record of an installed font is written to disk and used during
the next boot. This improves the speed of system startup considerably if
you have a lot of fonts installed.

Metafile Support
Metafiles contain sequences of graphics operations written in a device
independent format. An application can obtain a device context to a
metafile and draw a picture using the DC. GDI generates the metafile
records that correspond to the GDI function calls made by the applica
tion. Metafiles can be reprocessed with the drawing output directed to
ward any capable device. The recorded picture will appear with the
original sizing, proportions, and colors intact.

Windows 95 adds support for the enhanced metafiles defined for
Win32, including limited support for world transforms (scaling opera
tions only). There are some Win32-generated metafile records that
Windows 95 won't understand, so it skips them when reading the
metafile. This means that a metafile generated on a Windows NT sys
tem using the full range of graphics capabilities can't be completely re
produced on a Windows 95 system.

26. The Windows NT operating system code uses C++ extensively. There's none in
the Windows 95 operating system.

S I X: Applications and Devices

Image Color Matching
The problem of producing a completely device-independent color ca
pability for Windows remains an intractable one. There doesn't yet ex
ist a recognized solution to the problem-for any general purpose
computer system. Accurate color reproduction is the subject of many
research projects, and a number of international standards try to solve
subsets of the problem. Interestingly, all color standards in use today
are derived from a 1931 definition known as the crnxyz standard.
Apart from the fact that color reproduction involves issues of human
perception, the basic problem is that even if you can define a com
pletely adequate internal color representation system, no two devices
will reproduce a given color identically. Thus, a "red" on the printed
page will look .different on the screen, and many colors that you can
choose for your latest Van Gogh knockoff on screen can't be accurately
matched by the colors your printer can produce. Given the inability of
a device to produce a particular color, what do you do? Adjust that
color to the nearest one available on the output device? Or adjust every
color in the image in an attempt to maintain the original contrast? It
doesn't seem likely that anyone will ever solve the problem to the com-
plete satisfaction of every expert. -

Color management systems that do exist today are built around
specific hardware, so the controlling software knows what colors are
available and what transformations it must use to render accurate color
output. This of course runs counter to the Windows philosophy of al
ways maintaining device independence. Yet the need for a good color
management system is apparent. For a few thousand dollars, you can
set yourself up with a. very high quality color production system, and
the prices will no doubt fall further. Thus, the Windows designers were
faced with the challenge of integrating a color management system
that meets the nonexpert needs (and budgets) of most of us while still
supporting the stringent requirements posed by professionals in maga
zine publishing and photographic reproduction.

Image color matching (ICM) is Microsoft's name for the solution
incorporated into Windows 95:

II ICM defines a logi,cal color space for Windows that is defined in
terms of the RGB (red, green, blue) triplets already used in
Windows 3.1. The use of the existing RGB mechanism is really

259

INSID.E WINDOWS 95

260

a convenient implementation detail. The logical color space is
actually calibrated with reference to the crnxyz standard.

II ICM uses a color profile that defines the color capabilities of a
particular device. Manufacturers of color output peripherals
can ship a color profile with their devices, much as they might
ship a Windows device driver today. If a device has no associ
ated color profile, the system chooses a sensible default
profile.

II The color profile allows the ICM to build a color transform that
defines how to map colors from the logical color space to the
colors reproducible on the output device. For an input device
such as a scanner, ICM uses the profile to transform the
device colors to the logical color space.

11111 ICM thus allows device drivers and the system itself to per
form color matching and color transformation operations in
support of scanning or reproducing .images involving a speci
fic device. ICM aims to be consistent-giving you predictable
results each time you scan, display, or print an image.

II ICM is implemented as a replaceable DLL, and it's possible
to load more than one ICM at a time.27 This means that for
environments with different color management needs the
system's default processing can be replaced or circumvented.

II Windows 95 adds support for the CMYK color standard that's
widely used in applications that produce color separations for
printing and publishing. If an application chooses CMYK as
its color space, Windows stays out of the way and the applica
tion can pass color coordinates to the device driver without
further transformation by the ICM.

Microsoft also realized early on that there were people who knew
a lot more about color management than they did. The specification
and development of the Windows 95 ICM was done in conjunction with
Eastman Kodak, a company that does indeed know quite a lot about
color. The default ICM DLL planned for inclusion with Windows 95
was written largely by Kodak.

27. Loading a new ICM is under application control. Two new APis
LoadlmageColorMatcher() and FreelmageColorMatcher()-manage the procedure.

SI X: Applications and Devices

Color Profiles
Microsoft will publish the format of a color profile in the Windows 95
SDK and DDK products. The definition will describe both the file and
in-memory formats for color profiles. No doubt some standard profiles
will be included with Windows 95 when it ships-just as you get most of
your printer drivers "in the box" today. The contents of a color profile
have been determined by efforts involving several different companies,
and it's freely acknowledged that there are application areas that will
need further extensions of the information embodied in a color pro
file. But for most applications, these color profiles are sufficient.28

As you'd expect, color profiles will be available for scanner de
vices, display screens, and color printers. The profile definition also
enables the specification of profiles that describe abstract devices (al
lowing color effects) and color space conversion (from the internal
logical color space to a different standard) and the specification of de
vice link profiles. A device link profile caters to a system with a fixed
configuration, allowing the color transformations to be fine tuned so
that, for example, the particular "red" generated by your Hewlett
Packard Scan Jet becomes exactly this "red" on your HP Deskjet printer.

Don't imagine that you'll be generating color profiles the same
way you change your desktop colors with the Windows Control Panel,
though. Color profiles are real science and may involve device calibra
tion, temperature correction, and the handling of different paper and
ink types, among other complexities.

Communicating Color Information
Figure 6-8 on the next page illustrates the flow of color information
among the various components in the system. The color information
communicated among the components is always expressed in either
RGB or CMYK values, or in some transformation of these values ac
cording to the way the application has defined its color space.

At the application level, GDI provides several new APis that allow
a specific color space to be defined and manipulated. 29 An application
uses a device-independent bitmap (DIB) to store an image, and the

28. If you don't already believe that color management is a tough problem, note
the way in which the ICM designers acknowledged the difficulty. They listed one of
their goals as specifying a system that's "simple enough to implement in our lifetimes."

29. If you're interested in the details, look for all the ICM-related APis-those that
have the string Color somewhere (!) in their names.

261

INSIDE WINDOWS 95

Win32API

•
Figure 6-8.
Color information handling within the system.

color matching APis operate directly on the bitmap. The DIB structure
itself has been extended to incorporate color information, and, as with
other device-related operations, color manipulation is specific to each
Windows device context.

The Display Subsystem

262

Although Windows allows only a single system display device to be ac
tive, several different software components are involved in controlling
the display. Figure 6-9 illustrates most of these components, together
with the boundaries between them-the API layer and ring zero com
ponents vs. ring three components. The example in Figure 6-9 assumes
a configuration that uses the new device-independent bitmap engine.
The DIB engine assumes a major role in the control of the video dis
play under Windows 95. In a configuration that doesn't use the DIB
engine, the engine and the associated display mini-driver won't be
present, and the system components such as GDI interact with a single

Ring 3

Ring 0

S I X: Applications and Devices

- I

t t
API

..... .,

Screen

Figure 6-9.
Display subsystem components in an example configuration.

display driver module. That's essentially how Windows 3.1 works today,
but in a very large percentage of Windows systems, the video hardware
will be appropriate for use of the new DIB engine and the display mini-

263

INSIDE WINDOWS 95

264

driver architecture introduced with Windows 95. For most purposes,
you can think of the DIB engine and the mini-driver as a single display
driver. Windows always assumes that the video display is directly addres
sable as a memory region. Display adapters that don't allow this aren't
usable by Windows for graphics operations.

Video system performance is critical to Windows, so, in terms of
the length of instruction sequences, bringing the· video memory and
the video display adapter as close as possible to GDI is an overriding
consideration. The device-independent nature of GDI means that it
has to go through a device driver to get to the hardware and, in fact,
two device drivers are involved. One is the VxD responsible for vir
tualizing the video hardware and controlling the switching of the
screen between different virtual machines. (This is the VDD in Figure
6-9.) The other driver is a ring three DLL that always runs in the con
text of the system virtual machine. (This is the combination of the dis
play mini-driver and the DIB engine in Figure 6-9.) So when the
Windows desktop is on the screen (meaning that any MS-DOS applica
tions are either not running or running in the background), the path
from a Windows application to the screen is fairly efficient: a call to one
of the Windows system DLLs, which in tum calls the display driver. No
ring transition is involved, and the display driver has direct access to
the video memory.

If Windows needs to initiate a hardware control operation-for
example, to switch the screen resolution-it do~s rely on the display
driver VxD. Normally, the ring three display driver will use the INT 10
video services interrupt to do this. The INT causes a fault, which ini
tiates a ring transition. The kernel unravels the cause of the fault and
hands control to the display driver VxD. Typically the display VxD will
be the only component that mucks with the display adapter hardware.

The grabbermodule in Windows 95 is the same as in Windows 3.1.
To support MS-DOS applications, the system's WINOLDAP module re
lies on a screen grabber for the purpose of saving artd restoring the
state of the video hardware and the video memory. The grabber has to
match the display hardware type, so the grabber, the display VxD, and
the display mini-driver are developed in concert. The VxD services
used by the grabber include functions for copying data back and forth
between video memory and a memory buffer, and various synchroniza
tion primitives that assist in critical section management and switching
between virtual machines.

SIX: Applications and Devices

The DIB Engine
In Windows, a bitmap is a memory-based representation of a completed
sequence ofGDI operations. The resulting object is suitable for immedi
ate display on a compatible output device, and, in the case of a device
independent bitmap, minimal additional processing will prepare the
object for output to a different device. Bitmaps appear in files (the desk
top wallpaper, for example), as application resources (the pictures on
toolbar buttons, for example), and in main memory, where applica
tions and device drivers can build and manipulate them directly. The
entire Windows desktop display is itself a large bitmap, and the code that
deals with updating the screen is critical to the system's performance.

The Windows 95 DIB engine recognizes the current state of dis
play hardware by implementing a bitmap management capability that
deals very efficiently with color flat frame buffer devices. In hardware
terms, this would mean that the output device provides a large linear
memory space with each screen pixel directly addressable as a memory
location. Associated with each pixel is a color, represented by a number
of bits. The DIB engine handles 1, 4, 8, 16, or 24 bits per pixel color,
giving it a range from simple monochrome displays to high-end output
devices with the ability to display millions of colors.

The DIB engine architecture assumes that it can set a particular
pixel to a particular color by simply storing the appropriate number of
bits in the correct memory location in the device's frame buffer. If the
hardware doesn't have a frame buffer, the DIB engine is usable only for .
assistance in manipulating memory resident bitmaps: it doesn't try to
allocate some huge chunk of memory and pretend it's the display de
vice. Although the principal use of the DIB engine is for managing the
video display, its bitmap manipulation capabilities lend themselves to
other operations as well. Printer drivers can call the DIB engine for as
sistance when preparing a page, and GDI can use the DIB engine for
operations on memory resident bitmaps.

Associated with the DIB engine is a display mini-driver called by
GDI. This driver is still responsible for managing hardware-dependent
operations in collaboration with the display driver VxD. GDI never
calls the DIB engine directly, and, ordinarily, the DIB engine will rely
on the mini-driver for hardware-dependent operations.30 Also, if the

30. Among other enhancements such as color cursors and 32-bit color devices,
Microsoft is already thinking about extending the use of the DIB engine so that GDI
can indeed call it directly.

265

INSIDE WINDOWS 95

display adapter has additional capabilities, such as hardware accelera
tion for text output, the mini-driver is responsible for directly using
these features and the DIB engine won't be called to perform that func
tion. As part of its effort to get complementary hardware designed for
Windows, Microsoft has been lobbying display adapter manufacturers
to build devices with flat frame buffers, local bus video memory, and
hardware acceleration for text output and bit blt operations.

Both the display mini-driver and the DIB engine are dynamically
loadable libraries. Display drivers that rely on the DIB engine will cause
it to be loaded during initialization. If the display driver doesn't use the
DIB engine, it won't be loaded. The bitmap memory manipulated by
the DIB engine is shared with GDI. For performance reasons, there's
an attempt to minimize any back and forth copying of bitmaps. 31 The
design of the DIB engine also tries to recognize the needs of multime
dia applications with very high speed video data transfer requirements.

The Display Mini-Driver

266

The display mini-driver uses two major data structures to interact with
the DIB engine and GDI. The GDIINFO structure is central to all of
·GD I's device-related operations. The structure defines, for example, the
capabilities of the device in terms of its ability to draw lines, circles, text,
and so forth. Many calls between GDI and its device drivers pass a
pointer to the appropriate GDIINFO structure as one of the parame
ters. Information common to all devices is collected in the GDIINFO
structure.

The other data structure is the DIBENGINE shown in Figure 6-10.
Every GDIINFO structure specifies the size of the device descriptor
structure associated with the device. Usually referred to as the
PDEVICE structure, this data structure is entirely device dependent. Its
size and contents vary according to the type of the device. For a display
mini-driver, the PDEVICE structure is a DIBENGINE structure. Taken
together, the GDIINFO structure and the DIBENGINE structure de
scribe everything GDI needs to know about a display device that uses
the DIB engine.

31. There's an analogous CreateDIBSection() API in Windows 95 that allows an
application to reserve a directly addressable memory region for a bitmap that it shares
with GDI. .

S I X: Applications and Devices

Figure 6-10.
The DIBENGINE data structure.

Bank-Switched Video Adapters
Another important component of the DIB engine architecture is a VxD
called VFLATD, the flat frame buffer VxD. This VxD caters to display
adapters that possess large amounts of video memory but have to use a
memory window to switch back and forth between different 64K blocks .
of it. 32 The VFLATD VxD will manage up to a 1-MB logical frame buffer.
The display mini-driver initially contains the code for switching the
physical frame buffer to a different region of the logical frame buffer.
When the mini-driver calls VFLATD to register this bank-switching
code, the VxD actually copies the code into its own memory. Whenever
the video memory window needs to be moved, VFLATD simply

32. If you remember expanded memory, that's exactly what this is like.

267

INSIDE WINDOWS 95

268

executes the switching code by running through it-not even a func
tion call to get in its way as it comes steaming through!

Providing the bank-switching support as a standard part of the sys
tem (and making sure it runs as fast as possible) makes the mini-driver
solution applicable to a much broader range of display adapters, so the
likelihood of your system's using the DIB engine is pretty high.

Interfacing with the DIB Engine
When Windows 95 first loads a display mini-driver and calls the driver's
DLL initialization routine, the driver simply collects information about
its own configuration from the SYSTEM.IN! file. Later on in the sys
tem's initialization process, GDI calls the driver's Enable interface twice.
The first time through, the driver calls DIB_.Enable(). The DIB engine
hands back a pointer to an appropriate GDIINFO structure. The driver
fills in some of the device-dependent fields (for example, the number
of bits per pixel) and returns the GDIINFO structure pointer to GDI.
The second call to Enable is where the rest of the initialization work gets
done, including calling the display VxD to set the hardware into the
correct graphics mode (using an INT 10) and if necessary handing the
bank-switching code to the VFLATD VxD.

Once all the initialization is over, GDI, the mini-driver, the DIB
engine, VFLATD, and the display VxD are all hooked together and
ready to actually put something on the screen. The display mini-driver
provides a standard set of about 30 or so interfaces that allow GDI to
interact with the driver. Many of these functions are the same as those
defined for existing Windows 3.1 display drivers, such as those for man
aging the cursor. All of them are exported entry points from the driver
DLL. Several functions simply accept the call from GDI and hand it di
rectly to the DIB engine. For example, GDI will call the driver's
BitmapBits() function whenever an application creates or copies a
bitmap. The mini-driver can turn around and call the DIB engine's
DJB_BitmapBits() entry point with no transformation of parameters or,
indeed, any other processing.

Management of the cursor is handled largely by the mini-driver,
and, as with Windows 3.1 display drivers, the mini-driver must define
the set of standard cursor resources used by GDI. This includes objects
such as the standard arrow pointer, the I-beam cursor used in text
fields, and the cursor we al! hope we'll see a lot less of, t..lie hourglass.

S I X: Applications and Devices

The Printing Subsystem
Much of the Windows 95 printing subsystem architecture (and indeed
a lot of the code) is shared with Windows NT, so much of the new termi
nology and the new components of the print subsystem will be familiar
to you if you've studied Windows NT. Apart from the new Image Color
Matching capability, Windows 95 doesn't introduce any dramatic
changes into this printing architecture, although across the board
there are a number of significant improvements over the printing sub
system in Windows 3.1:

llli A new spooler, implemented as a fully preemptive Win32
application. Print spooling can thus be a true background
activity under Windows 95.

Ill Support for PostScript Level 2-the version applicable to .
color output devices.

Ill Bi-directional communication with the printer, which enables
good Plug and Play support and the possibility of other
enhancements. 33

Iii Use of the new device-independent bitmap engine for high-.
performance bitmap manipulation.

Iii A new "quality of service" mechanism that allows the system to
manage the simultaneous operation of more than one printer
driver for a particular device.

ii Improvements in the tools used for developing printer mini
drivers.

The Windows 95 printing system also expands the use of the
printing APis in preference to the printer escape functions used in
Windows 3.0. An escape function (generated using the now-obsolete
Escape() API) allowed an application to make a direct request to the
printer driver. Windows 3.1 and Windows NT have replaced more and
more of these escapes with APis, and the recommendation now is to
always use the APl.34

33. A sample of these enhancements is already available in Microsoft's Windows
Printing System product for Hewlett-Packard LaserJet printers.

34. The documentation for the Escape() API describes .the details.

269

INSIDE WINDOWS 95

Printing Architecture
Three groups of components collaborate to print pages under Win
dows 95:

a GDI and its supporting modules, such as the DIB engine and
the printer driver, which are responsible for translating
drawing primitives issued by applications into a data stream
suitable for the target printer.

li'illl The local print processors and the print spooler that accepts
the data stream and either writes it to a local disk file for
subsequent printing or hands it to a local printer monitor for
output to the physical printer.

Ii The despooler process and the print request router (PRR) that
takes a print job and dispatches it to the correct target printer.
This printer may be either a locally connected device or a
network-attached printer.

Figure 6-11 illustrates these components and their interaction. In
Chapter Nine, we'll look in more detail at the PRR and at the manage
ment of network printing. Essentially the PRR determines where a
print job is headed and passes it to either the local printing system or
the appropriate network subsystem for printing on a remote machine.

The Printing Process

270

An application produces output for a printer as it does for any other
graphics device: it asks GDI for an appropriate device context and then
draws its output using the DC. Obtaining the DC is a little different
because the application must use the CreateDC() API, naming a target
printer rather than simply requesting one of the available display de
vice contexts maintained by Windows. Once it has the DC, the appli
cation uses the StartDoc() and EndDoc() APis to identify the beginning
and end of a discrete print job. Within a single job, the StartPage() and
EndPage() APis identify page breaks within the document.

Within the system, GDI, the printer driver, the DIB engine, and
the local spooler combine to generate a disk file containing the data
destined for the printer and an information file used to describe this
print job. Both 'A/indov1s 3.1 and \A/indo"\<vs NT use a series of jo-u-rnal
records as the basis for the print data file. The despooler is responsible

SI X: Applications and Devices

• . • API

Local printer

Figure 6-11.
Components of the Windows 95 printing architecture.

for subsequently handing the print job to the print request router for
actual printing.

If the print job is for a local printer, the local spooler hands the
data to a print processor that converts the journal records to a printer
specific format. Ultimately, the data stream goes to a monitor, and it's the
monitor that actually controls the physical printer. Although it might

271

INSIDE WINDOWS 95

seem that the monitor is yet one more level of indirection in this pro
cess, it enables much more intelligent handling of a printer device.
The monitor handles all bi-directional communication with the printer
so that conditions such as paper out can be reported to the local
spooler. This allows the user to see a useful error message, such as
paper out or cover open, rather than the generic printer not responding. The
monitor also implements the Plug and Play support for printers, en
abling automatic identification of the printer, for example. The moni
tor design also provides a general interface that allows devices such as
direct network-attached printers to function properly. As far as the
spooler is concerned, the monitor is dealing with a directly connected
printer. If the monitor chooses to talk NetBIOS commands to a laser
printer plugged in down the hallway, so be it-the spooler doesn't care.

Rather than· a print job, the application can choose to directly
produce a metafile by requesting a DC using the CreateEnhMetaFile()
APL GDI generates a metafile on disk that describes a reference devic~a
basis for the metafile contents-and a series ofmetafile records. Meta
files remain device independent, and an application can replay their
content and direct the output to a specific device at some later time.

Microsoft plans to use enhanced metafiles as the basis for the con
tents of the print job data file, so all print processors will convert
metafile records to device-dependent data during the despooling op
eration. Windows 95 will implement this for only locally attached print
ers, but in the future metafiles will be used for network printing. Apart
from the fact that much less data gets sent across the network, the
printing subsystem on the local machine is a lot simpler. It doesn't
need to know much about the target printer, and the printer driver and
print processor need only exist on the target machine.

Using the Universal Printer Driver

272

Windows 3.1 introduced a major enhancement into the printing sub
system-the universal printer driver. Like the DIB engine-mini-driver
combination for display drivers in Windows 95, the universal printer
driver recognizes the fact that most printers work pretty much the same
way. Thus, the universal driver can encapsulate much of the printing
workload, leaving the printer manufacturer free to concentrate Qn de
veloping a much simpler printer mini-driver to handle the hardware
dependent interactions. Windows 95 shares the design of the printer
mini-drivers with Windows NT, and a particular mini-driver will work
on either system.

S I X: Applications and Devices

The universal printer driver approach has been extremely suc
cessful, and Microsoft predicts that support for over 700 different print
ers will be included with Windows 95 when it ships. The driver has been
enhanced for Windows 95 in a few small ways, including support for
600-dpi devices and the ability to download TrueType fonts to the tar
get printer. The mini-driver design is largely unchanged, and the phi
losophy remains to offload the majority of print output processing
to the universal driver with the mini-driver providing only device
dependent functionality.

The world of printing is a highly complex one, and the quality of
font reproduction is one of the most carefully scrutinized aspects.
Adobe Systems has built a very successful business by evangelizing both
its fonts and its PostScript printing technology. For many years Adobe
fonts and PostScript output devices have set the standard for computer
based printing and publishing. The majority of printers deal in data
streams interspersed with printer commands (the basis for the univer
sal printer driver design), but PostScript is a page description lan
guage. The PostScript printer driver generates the description of the
page to be printed with very little knowledge of the actual output de
vice.35 This device independence has allowed PostScript to span the
range of printing devices, from $500 laser printers to high-end color
film production systems costing tens of thousands of dollars. A Post
Script interpreter, which resides on the output device, translates the
PostScript data stream into actual hardware operations that place dots
on paper or film. The universal printer driver model doesn't suit the
needs of PostScript, so no use is made of the mini-driver architecture
for PostScript printers.

By far the most popular laser printers for Windows systems are
those in the Hewlett-Packard LaserJet series. Microsoft and Hewlett
Packard have collaborated closely on Windows printing design for
several years, including the design of the TrueType font subsystem.
Hewlett-Packard also has its own printer language-PCL-that is com
mon to all the LaserJet models. Many printers feature "LaserJet emula
tion"-essentially meaning PCL emulation. PCL is closer to the model
of the world implemented by the Windows universal printer driver, so
this class of printer can use the mini-driver architecture.

35. Should you be so inclined, you can actually read the PostScript driver's output
by directing it into a file.

273

INSIDE WINDOWS 95

Conclusion

274

Windows 95 finally makes 32-bit Windows programming a mainstream
activity. In addition to improved ease of development and compatibility
with Windows NT, Windows 95 adds a number of new features to Win
dows. Some, such as the color matching capability, are long-awaited re
sponses to features previously available only in competing operating
systems. Other features, such as OLE and RPC, have existed before
Windows 95 but never as standard components of an operating system
that will be used on millions of PCs. Once again, we can all look for
ward to the amazing inventiveness of the software industry as it har
nesses these features in new application products.

Between the AP! layer and the device drivers that translate application requests
into operations on the bare metal, Windows 95 includes several radically new or
revised subsystems. The rest of this book isolates some of these subsystems and ex
amines them in detail. The next chapter looks at one component that everyone
uses: the filesystem.

References
Microsoft Corporation. Windows 95 SDK documentation. Redmond, Wash.:

Microsoft, 1994. No doubt Microsoft's product documentation will be
augmented by dozens of new or warmed-over books that deal with the
details of the Windows API and Windows device drivers, but I haven't
seen any yet. If you program for Windows and you don't yet have a CD
ROM drive-invest now. The online help files in the SDK and the CD
distributed as part of the Microsoft Developer Network product are
about the only sane way to approach this volume of information.

Brockschmidt, Kraig. Inside OLE 2.0. Redmond, Wash.: Microsoft Press,
1994. This is an intimidating book, nearly 900 pages in length. It is,
however, the single most comprehensive treatment of OLE available.
If OLE development is in your future, this is a book you have to tackle.

C H A P T E R S E V E N

THE Fl LESYSTEM

Although the 32-bit API and the shell are likely to attract the highest
initial interest from programmers and users, the new filesystem archi
tecture of Microsoft Windows 95 is the base operating system compo
nent that has the most widespread impact on the system. Windows 95
continues to use the MS-DOS FAT filesystem as its default on-disk struc
ture, but the code implementing the filesystem organization is com
pletely new. In Windows 95, the FAT filesystem code-referred to as
VFAT-is merely one piece of an entirely fresh design. These new fea
tures supported by the Windows 95 filesystem architecture affect both
end users and application developers:

II Support for long filenames finally addresses the number one
user complaint about earlier versions of MS-DOS and Win
dows. The new API support for long filenames requires
developers to modify their applications, but there is an
immediate and significant payback for the effort invested.

Iii Network support relies on the new installable filesystem
architecture to allow the concurrent use of different network
systems. Support for multiple network connections means that
users can simultaneously access different networks without
suffering through a complex setup and configuration proce
dure. Network software providers can develop Windows 95
network support using an interface designed to allow the
integration of multiple high-performance c6nnections.

II Users will see improved performance resulting from the
implementation of the standard FAT filesystem as
multithreaded 32-bit protected mode software.

275

INSIDE WINDOWS 95

276

Ill Developers specializing in the support of new hardware
devices will realize the benefit of the layered filesystem design
as the effort required to implement new disk device drivers is
significantly reduced.

These features reflect the goals of the filesystem effort-add long
filename support, improve performance, and dispense with the poorly
suited MS-DOS INT 21H mechanism in favor of a properly architected
interface that supports multiple filesystems. The reliance on MS-DOS
has been the major weakness in every release of Windows through ver
sion 3.1. Apart from significant user frustration with the limited
filenaming capabilities, there have been a number of system-level prob
lems stemming from continued reliance on MS-DOS:

11111 MS-DOS1 contains a lengthy critical section that prevents
efficient multitasking of applications-particularly during
heavy disk access. Retaining such a bottleneck is simply not
acceptable in an operating system intended to support
multithreaded applications.

!!I Every access to the filesystem from a Windows-based applica
tion requires the System VM to switch between protected
mode and virtual 8086 mode in order to execute MS-DOS
code. This is another performance hit.

!!I MS-DOS network support requires the network software to
hook the INT 21H software interrupt and reroute the appro
priate filesystem requests across the network. Every other disk
related TSR program uses the same basic interrupt hooking
technique. The interface was never designed for overloading
this heavily. In the case of only one network connection, this
technique tends to destabilize the system, and trying to sup
port multiple network connections is yet more problematic.

11111 Proprietary solutions have led to a profusion of filesystem
interfaces designed to support CD ROM devices, SCSI adapt
ers, tape devices, and other devices. Even when a particular

1. Note that references to MS-DOS in this chapter mean MS-DOS releases up to
and including version 6.22. If there is an MS-DOS version 7.0, it will incorporate the
same filesystem architecture as Windows 95.

SEVEN: The Filesystem

interface proves to be popular under MS-DOS, supporting the
interface in Windows is by no means a straightforward task.

Elements of the new filesystem have been under development
since early 1991, and much of the new filesystem design appeared for
the first time with the November 1993 release of Microsoft Windows for
Workgroups version 3.11. This release of Windows included the pro
tected mode implementation of the MS-DOS FAT filesystem and sup
port for multiple network connections. However, the Windows for
Workgroups release did not include either the long filename capability
or the full features of the base OS to be introduced with Windows 95.

In this chapter, we'll examine the features that enable the co
existence of multiple filesystems and the details of the support for what
Windows 95 calls block devices2-principally disk and tape ch:ives that are
local to the host system. Network support relies on the new filesystem
architecture also, with Windows 95 classifying the higher layer of any
network connection software (usually called the redirector) as a network
filesystem. In Chapter Nine, on Windows 95 networking, we'll revisit
this particular filesystem type in more detail.

Overview of the Architecture
There are many individual components of the new filesystem architec
ture. In fact, to refer to it as "the filesystem" is to be rather inaccurate.
The design relies on a layered approach that places the installable
filesystem manager (IFS) at the highest level and a collection of port driv
ers, or miniport drivers, at the lowest level, where they interface to in
dividual hardware devices. Within the boundaries set by these
components, the system can support several different active filesystems.
Windows 95 supports some-such as the FAT filesystem-directly. Sup
port for non-Microsoft filesystems comes from installable modules sup
plied by other vendors. If you're familiar with the disk subsystem design
of Windows NT, you'll notice a lot of similarities to it in the Windows 95
design. Figure 7-1 on the next page illustrates the principal compo
nents of the filesystem architecture.

2. Microsoft referred to the complete block device driver subsystem as "Dragon"
during development. This subsystem deals only with local block devices and not with
network support. ·

277

INSIDE WINDOWS 95

Adapter Adapter

Figure 7-1.
Windows 95 filesystem architecture layers.

278

Filesystem
layer

S EVE N: The Filesystem

The choice of a layered design controlled by the IFS aims to re
solve the problems inherent in using the MS-DOS INT 21H interrupt
as the solitary interface to every filesystem function. Network systems
and other popular products such as caching software and disk com
pression TSRs all hook INT 21H to inspect every file request for pos
sible rerouting. Since there's no well-defined order for these TSRs, or
any published interface between them, the interactions can cause
problems. And conflicts among different vendors' products usually
highlight any review of an MS-DOS release. Even when various prod
ucts can be made to work well together, the user might have had to
indulge in hand to hand combat with the CONFIG.SYS and
AUTOEXEC.BAT files first. The Windows 95 filesystem design fixes
this situation by providing many levels in which add-on components
can be installed. Each layer has defined interfaces with the layers above
and below, which enables each component to collaborate smoothly
with its neighbors. The new filesystem architecture relies on the dy
namic VxD loading capability of Windows 95 to load many of its lower
level components.

Figure 7-1 illustrates only a small number of the possible layers in
the filesystem-although these are the components you'd expect to
find in a "standard" system. The filesystem design supports as many as
32 layers from the I/O subsystem (IOS) down. Layer 0 is the layer adja
cent to IOS, and layer 31 is closest to the hardware. On initialization, a
component registers itself with IOS and declares the layers at which it
wishes to operate. To operate at more than one level, a module has to
supply IOS with different entry points-one per required level. Above
IOS are the filesystems themselves and the installable filesystem manager
(IFS manager). Let's take a brieflook, from the top down, at the func
tions of the common layers and at the components you'd expect to find
in them:

The IFS manager, at the highest layer, is a single VxD that provides
the interface between application requests and the specific
filesystem addressed by an application function. The IFS man
ager accepts both dynamically linked API calls from Win32
applications and INT 21H calls generated by Win16 or MS-DOS
applications. The IFS manager transforms the API requests into
calls to the next layer, the filesystem layer.

The VFAT, in the filesystem layer, is the protected mode implementa
tion of the FAT filesystem. VFAT is an example of a filesystem
driver, or FSD. Each FSD implements a particular filesystem

279

INSIDE WINDOWS 95

280

organization. An FSD executes requests made by the IFS man
ager on behalf of an application. The IFS manager is the only
module that calls an FSD; applications never call an FSD directly.
VFAT itself is a 32-bit module written as reentrant code, allowing
multiple concurrent threads to execute filesystem code.

The CDFS, in the filesystem layer, is the protected mode implementa
tion of an ISO 9660-compliant CD ROM filesystem. It's another
example of an FSD. Again, it's 32-bit protected mode, reentrant
code. In most cases, CDFS will replace the real mode MSCDEX
TSR that's currently used to support CD ROM devices, so there'll
also be a protected mode execution path all the way to the CD
ROM hardware.

The 1/0 subsystem, or IOS, is the highest layer of the block device
subsystem. The IOS component is permanently resident in
memory and provides a variety of services to the other filesystem
components, including request routing and time-out notification
services.

The volume tracking driver, or VTD, in the layer below the IOS layer,
is the component responsible for managing removable devices.
Typically, such a device is a floppy disk, but any device that
conforms to what Windows 95 calls "the removability rules" can
use the VTD services. The most important job of the VTD is to
make sure that the correct disk or device is in the drive. If you
exchange a floppy disk while an application still has a file open,
it's the VTD that initiates a complaint.

A type specific driver, or TSD, in the layer below the VTD layer,
manages all devices of a particular type-for example, hard disks
or tape devices. A TSD validates requests for the device type that
it controls and carries out the logical to physical conversion of
input parameters. Note that a TSD relates more to devices of a
specific logical type-for example, compressed volumes-than
to devices of a specific hardware type.

A vendor supplied driver, or VSD, is the layer in which another
vendor can supply software that intercepts every 1/0 request for
a particular block device. At this level, for example, you could
modify the behavior of an existing block device driver without

SEVEN: The Filesystem

having to supply a completely new driver. A data encryption
module is one example of a potential VSD.

A port driver, or PD, is a component that controls a specific adapter.
On an ISA bus personal computer, for example, there would
probably be an IDE port driver. A port driver manages the lowest
levels of device interaction, including adapter initialization and
device interrupts.

The SCSlizer translates 1/0 requests into SCSI format command
blocks. Usually these will be one SCSiizer module for each SCSI
device type-CD ROM, for example.

The SCSI manager is a component that allows the use of Windows
NT miniport drivers in Windows 95. Literally, you can use the
sanie binaries for both Windows NT and Windows 95. The SCSI
Manager provides a translation between the Windows NT
mini port driver and the upper layers of the filesystem.

A miniport driver is specific to a SCSI device. In conjunction with the
SCSI manager, it carries out the same function as a port driver,
but for a SCSI adapter. Miniport drivers for Windows 95 share
the design and implementation rules for Windows NT miniport
drivers.

The protected mode mapper is a module that enables the use of
existing MS-DOS drivers under Windows 95. For compatibility,
it's essential to allow existing drivers to run under Windows 95.
The protected mode mapper disguises real mode drivers for the
benefit of the new filesystem modules-so that they don't have
to take account of the different interface.

A real mode driver is an existing MS-DOS-style device driver that
must run in virtual 8086 mode.

Long Filename Support
The widespread ramifications of the new long filename support in Win
dows 95 guarantee that every user and programmer will have to pay at
tention to the feature. Microsoft has ~ncouraged (actually exhorted)
Windows application developers to incorporate support for this feature
as soon as possible. Microsoft's providing long filename support for

281

INSIDE WINDOWS 95

MS-DOS applications underscores this level of encouragement-if you
have a product that is available in both Windows and MS-DOS versions,
there's no barrier to upgrading both versions.

For users, long filenames are a real benefit. The need to learn
rules for filenaming essentially disappears, together with the frustrat
ing inadequacy of the current MS-DOS 8.3 convention. Unfortunately,
it's impossible to simply throw a switch and have every application and
every existing disk in the world suddenly support long names. For some
period of time, applications that support only the old filename conven
tions will live alongside those that offer access to the new naming
scheme. In Figure 7-2, you can see again Chapter Five's example of the
support that Windows 95 has to provide to applications in order to al
low the parallel existence of short and long filenaming. In the first
screen, a file created with a long name is visible in both the Windows 95
shell and the Windows 95 version of COMMAND.COM. The second
screen shows the Open dialog for a Windows 3.1 application running
under Windows 95. The Windows 3.1 application doesn't handle long
filenames, so the system has to generate an equivalent short name that
allows the unmodified application to access the file.

This creation of short name equivalents is a fundamental feature
of the new filesystem architecture. It would be nice to assume that it's
going to be a short-lived feature, but it's probably around to stay. A
short filename is not simply a truncated or mutated version of the long
name-several rules govern both the format of the name and its behav
ior in response to different filesystem operations. We'll look at those
details later in this chapter. First we'll look at the disk structure for stor
ing the new long filename format. 3

Storing Long Filenames

282

The compatibility requirements Windows 95 has to meet meant that it
was impossible to simply change the existing FAT filesystem disk for
mat. Although most applications deal with the disk by means of the de
fined operating system interfaces, there are many popular utility
programs that directly inspect and modify the disk format. Virus scan
ning programs, disk repair utilities, optimizers, and many other pro
grams depend on the on-disk structure of the FAT filesystem.

3. Late in the project Microsoft began to refer to the long filename as the "primary
file name" and to the short name as the "alias" or "alternate name." For clarity's sake,
I'll continue to use "long" and "short" in this chapter.

Windows 95 COMMAND.COM
view of the 8.3 short filename

Shortened version of the long filename in a
Windows 3.1 application running under Windows 95

Figure 7-2.
A long filename and the short version.

S E V E N: The Filesystem

Windows95
COMMAND.COM
view of the
long filename

Windows95
shell view of
the long filename

283

INSIDE WINDOWS 95

284

Modifications to that structure would have caused all of these programs
to fail. In some cases, the failure could well have resulted in loss of the
user's data-a risk that was obviously unacceptable. The technique for
implementing long filename support relies on a little design trickery
and a great deal of careful implementation and compatibility testing.4

Figure 7-3 shows the format of a FAT filesystem directory entry for
a short name (that is, for a filename conforming to the existing 8.3
naming conventions). The new VFAT filesystem supports both long
and short names and, apart from its not using the "last date accessed"
field, the 32-byte short name directory entry is identical in format to
the format supported by previous versions of MS-DOS, Short names in
both the FAT and VFAT filesystems have the following rules associated
with them:

II The name can consist of as many as eight characters with an
optional three character extension.

II Valid characters in the name are letters, digits, the space
character, any character with a character value greater than
7FH, and any of the following:

$
%
'and'

@

(and)

{and}

&

dollar sign

percent symbol

open and end single quotation marks

foot mark (apostrophe)

hyphen

underscore

at sign

tilde

grave accent

exclamation mark

left and right parentheses

left arid right braces

pound sign

ampersand

4. The implementation trick prompted Microsoft to pursue a patent application
for the underlying technique. Pursuit of the patent was abandoned, however.

S EVE N: The Filesystem

• The full path for a file with a short name can be as many as 67
charncters, not including a trailing null character.

• The FAT and VFAT filesystems always convert shortened
names that include lowercase letters to uppercase only. This
avoids potential problems with matching filenames. For
example, the filename Afile.txt is converted to AFILE.TXT
and will match the strings afile.txt, afile.TXT, AFILE.txt, and
any other possible combination of uppercase and lowercase
letters.

Figure 7·3.
Short name directory entry format for the FAT filesystem.

The implementation technique for long filenames relies on the
·use of the short name directory entry attribute byte. Setting the least
significant 4 bits of this byte (that is, the value OFH) gives the directory
entry the attributes read only, hidden, system file, and volume. Adding the
volume attribute produces an "impossible" combination. Amazingly,
Microsoft's testing showed that this combination didn't disturb any ex
isting disk utilities. Unlike other ~nvalid combinations, which cause
disk utilities to try to "fix" the problem and thus destroy the data, the
OFH attribute value protects the directory entry from modification.

Despite the encouraging test results, Microsoft knew there was a
possibility that some untested disk utility could destroy data. To avoid
such a potential catastrophe, the team came up with an "exclusive vol
ume lock" API that an application must call before Windows 95 will al
low direct disk writes (MS-DOS INT 13H and INT 26H).

285

INSIDE WINDOWS 95

286

The "exclusive volume lock" API is accessible either as a new MS
DOS interrupt (INT 21, function 440D, major code 08) or by means of
the Win32 DeviceloControl() API. If an application has not been granted
exclusive volume access before it tries a direct disk write, the attempted
write operation will fail.

To avoid forcing users to get updates to their existing disk utilities,
Microsoft planned to include a command-level interface to allow a user
to run an older disk utility within a ·~apper" function that obtained
and released the volume lock on behalf of the application.

Windows 95 uses multiple consecutive short name entries for a
single long name-protecting each of the 32-byte entries by using the
OFH attribute. The rules for long filenames are different from those for
short names:

a Every long name must have a short name associated with it.
The file is accessible by means of either name.

a A long filename can contain as many as 255 characters, not
including a trailing null character.

a Valid filename characters include all the characters usable in
short names plus any of the following:

+

=
[and]

plus sign

comma

semicolon

equals sign

left and right square brackets

a Leading and trailing space characters within a name are
ignored.

a The fulf path for a file with a long name can be as many as
260 characters, not including a trailing null character.

a The system preserves lowercase characters used in long
filenames.

Within a single directory cluster, a long filename directory entry is
laid out according to the format shown in Figure 7-4. A long filename
component cannot exist without the associated short name entry. If it
does, that's an indication that the disk is corrupt.

SEVEN: The Filesystem

Figure 7-4.
Directory cluster format for a long filename.

Each 32-byte component of the long name entry contains a se
quence number, the protective attribute byte, a type value, and a checksum.
The sequence number helps Windows 95 recognize any inconsistent
modifications to the directory structure. The type field identifies the
component as either LONG_NAME_COMP (a component of the long
name) or LONG_CLASS (a 32-byte entry that contains class informa..:
tion for the file). If the component is part of the name, most of the 32-
byte entry is used to store filename characters. If it's the single class
component for that file, the entry holds the class information. Notice
that the system stores long filenames using the Unicode character set
meaning that each filena,me character requires 16 bits.5 The checksum
field in each component entry is formed from the short name associ
ated with the file. If the short name is ever changed outside the Win
dows 95 environment (for example, the file is renamed on a floppy disk
using MS-DOS version 5.0), Windows 95 can recognize the long name
components as no longer valid. Figures 7-5 and 7-6 on the next page
show the name and class component formats for these entries.

5. Unlike Windows NT, Windows 95 did not switch entirely to using the Unicode
character set for its internal representation. This is one instance in which the change
was made.

287

INSIDE WINDOWS 95

Figure 7-5.
Long filename directory entry format.

Figure 7-6.
Long filename class information directory entry format.

Generating Short Filenames

288

A whole series of rules defines how to generate a short filename .to asso
ciate with a long filename-and we're not going to examine every last
nuance of the algorithms. The principal problem is to generate a
unique short filename that doesn't conflict with an existing short
name. Similarly, if an older application creates a new file with a short
name, that name can't clash with an existing short name associated
with a long filename. Fortunately, these issues aren't really visible to

SEVEN: The Filesystem

application programs-employees of companies that produce disk
utilities are the only people who will have to delve into the intricacies of
the naming system.6 Here's a summary of most of the important rules
used in filename creation:

• Creating a file by using a short name API (that is, by means of
the older INT 21H interface) results in a long name that's
identical to its associated short name. If a matching long
name already exists, the create operation fails-the same
behavior you'd see if you tried to create a file with a
nonunique short name.

Ill Creating a file by using a long name API always results in the
creation of the associated short name at the same time.

Ill If the long name is to be a valid short name, it must be
unique. For example, if a short name AFILE.TXT already
exists, an attempt to create the long name AFile.Txt will
fail-this test is always case insensitive.

ill If the long name is not a valid short name, the system carries
out a series of name truncation and translation operations in
an attempt to arrive at a valid short name. Note to Kathleen
(Review Comments) .Document, for example, would succes
sively translate to7

NotetoKathleen_ReviewComments_. Document
NOTETOKA.DOC
NOTET0-1. DOC

II The system would then modify the -1 suffix to -2, -3, and
so on until it came up with a unique short name. If a -9
suffix didn't work, NOTET0-9.DOC would become
NOTET-10.DOC, NOTET-11.DOC, and so on.

MS-DOS Support for Long Filenames
To help promote the use of long filenames across all application types,
Windows 95 extends the MS-DOS INT 21H interface to allow the use
of long names. This extension involves adding new functions that are

6. This assumption begs the question of whether application developers will invent
schemes to assist users in the translation between long and short names.

7. This is not a description of how the algorithm actually proceeds; it simply serves
to illustrate the steps involved.

289

INSIDE WINDOWS 95

290

directly equivalent to Win32 API functions and modifying existing MS
DOS functions that deal with filenames. The calls to the new and modi
fied INT 21H functions continue to use the standard MS-DOS calling
conventions with parameters passed and returned in registers. And the
functions are still 16-bit code; the fact that the functions are equivalent
to Win32 APis doesn't change the memory mode. Here's a summary of
the new functions-all numbers are hexadecimal values:

MS-DOS Function

INT 21 function 4302

INT 21 function 57

INT 21 function 6C

INT 21 function 7139

INT 21 function 713A

INT 21 function 713B

INT 21 function 7141

INT 21 function 7143

INT 21 function 7147

INT 21 function 714E

INT 21 function 714F

INT 21 function 7156

INT 21 function 716C

INT 21 function 72

Equivalent Win32 Function

GetVolumelnformation()

GetFileTime(), SetFileTime()

CreateFile(), OpenFile()

CreateDirectory()

RemoveDirectory()

SetCurrentDirectory()

DeleteFile()

GetFileAttributes(), SetFileAttributes()

GetCurrentDirectory()

FindFirstFile()

FindNextFile()

MoveFile()

CreateFile(), OpenFile()

Find Close()

Notice that in most cases the functions use new function codes
the other parameters are identical. The new function codes are neces
sary because the system needs to know whether the application is
dealing with short names only or with the extended namespace. For
example, an application using INT 21H function 41H to delete a file
could pass the filename ABIGBADNAME.TXT as the filename parame
ter. The filename is illegal under the "old" semantics, although it is a
perfectly valid long name. If the INT 21H function 41H call were sim
ply overloaded to allow the use of long names, this semantic error
would go undetected. Thus, the new INT 21H function 7141H is the
only way to delete a file with a long name, and the same rules apply to
the other new name-related functions.

S E V E N: The Filesystem

Long Filenames on Other Systems
A file's short name is used by applications that haven't been modified
to handle long names, but reading long filenames isn'tjust an applica
tion issue. Long names also disappear on other, otherwise compatible,
systems such as Windows NT (versions 3.0 and 3.1), OS/2, and earlier
versions of MS-DOS (versions 6.22 and earlier). In most cases, the op
erating system can't handle the new form of directory entry. In the case
of OS/2, the implementation of long filenames is different and incom
patible.8

The restriction also applies to Windows 95 when the user is in
single MS-DOS application mode: the long names are invisible. Access
to any file can always be accomplished by using the short name, how
ever-regardless of the host operating system.

Installable Filesystem Manager
The IFS manager in Windows 95 provides features similar to those in
other implementations of this type of filesystem design. The develop
ment team actually looked very hard at the Windows NT IFS implemen
tation to see whether the code could be adapted for use in Windows 95,
but the internal differences between the two operating systems meant
that a new implementation was required for Windows 95. Where it
made sense to, though, the Windows 95 team used the design of the
Windows NT IFS, and they retained the same names for entry points
and the like.

The basic role of the IFS manager is to accept all filesystem API
calls, convert each to the appropriate IFS interface call, and then pass
the request to the target filesystem driver. The target FSD is responsible
for interpreting the function call according to its private semantics; the
IFS manager simply gets the information to the FSD. The IFS manager
is the common target for both Win32 API calls and MS-DOS INT 21H
filesystem functions. Once the IFS manager is in control, the execution
path for the filesystem call remains a 32-bit protected mode path all the
way to the hardware and back, with two possible exceptions.

8. Windows NT does support long filenames within the NTFS filesystem, but
versions 3.5 and earlier don't support long filenames within a FAT filesystem. The
Windows NT and Windows 95 long name schemes are not compatible.

291

INSIDE WINDOWS 95

292

II The filesystem code has to use a real mode device driver to
interface with the hardware.

II The filesystem code has to call a real mode TSR that has
hooked the MS-DOS INT 21H interrupt.

In either case, the filesystem code calls the real mode component
(using virtual 8086 mode) within the context of the VM initiating the
filesystem request.

The IFS manager loads during system initialization. It is always in
memory, and it must be present before any individual FSD can load.
The IFS manager allows several FSDs to execute concurrently.9 Each
FSD registers itself with the IFS manager during its own initialization,
passing the IFS manager a table of entry points that will be used in
subsequent filesystem calls. Once active, the IFS manager chooses
which FSD to call to resolve a particular filesystem request in one of
three ways:

II If the API provides a path as a parameter, the IFS manager
uses either the embedded drive letter or the whole name to
determine the target FSD. For example, a file open call
specifying C:V\UTOEXEC.BAT will be passed to the local
VFATFSD.

II If the API passes a file handle obtained, for example, as the
result of a previous file open call, the IFS manager uses the
handle as an index into a system file handle structure. The entry
in this structure identifies the target FSD and the FSD-specific
handle for the IFS manager to use when it routes the request
to the FSD.

ii In the event that the IFS manager can't identify the target
FSD, it will call each FSD in turn until one of them agrees to
accept the request. When the user inserts a new floppy disk,
for example, the IFS manager calls each FSD, asking it to
mount the new volume. To mount the volume, the FSD must
recognize the media format; if it doesn't, the IFS manager
passes the mount request to the next FSD.

9. The initial design allowed as many as 10 local filesystem drivers and 10 remote
filesystem drivers to execute at the same time.

i,j
" ,,
,1

1!

S EVE N: The Filesystem

Calling a Filesystem Driver
The interface between the IFS manager and an FSD relies on the use of
a single data structure called an IOREQ. This structure is a large data
object (approximately 100 bytes) containing many individual fields
only some of which are used in each call between the IFS manager and
an FSD. Each call to the filesystem code from an application causes the
IFS manager to fill in an IOREQstructure and pass it to the target FSD.
For performance reasons, the IFS manager passes a pointer to an
IOREQ structure rather than the entire data object. The FSD directly
modifies fields in the IOREQ structure to return results to the IFS man
ager. Before returning to the application, the IFS manager examines
the IOREQ structure and extracts both the information that it retains
internally and the relevant return parameters for the application. Fig
ure 7-7 shows the format of the IOREQstructure.

Figure 7-7.
The IOREQ data structure.

293

INSIDE WINDOWS 95

To ease the implementation burden for developers, Microsoft
used C language calling conventions to define the interface between
the IFS manager and an FSD. So, if you want to get into the business of
developing new filesystems for Windows 95, at least you don't have to
write them in assembly language. The IFS manager also provides a set
of services, callable by FSDs, that fulfill common requirements such as
heap memory management, debugging, event signaling, and filename
string manipulation.

If the IFS manager is to recognize and use an FSD, the FSD must
first register itself using an IFS manager service. The two principal ser
vices are IFSMg;r_RegisterMount() and IFSMg;r_RegisterNet(), which an
nounce, respectively, the presence of an FSD capable of managing local
filesystems or one devoted to the management of a network resource.
No meaningful interaction can occur between the IFS manager and an
FSD until the FSD has declared its presence using one of the IFS regis
tration services. In each call, the FSD passes a single entry point ad
dress to the IFS manager. The entry point address identifies the
function called by the IFS manager the first time the manager calls out
to the FSD.

Filesystem Drivers

294

Each Windows 95 FSD is a single VxD responsible for implementing
the particular semantics of its native file system. Knowledge of a particu
lar filesystem layout exists entirely within the code of an FSD. The IFS
manager deals only in handles, and the lower layers of the filesystem
deal mostly in byte offsets and counts. Only the FSD knows how to get
from an application-supplied name to particular data on a filesystem
volume. FSDs can control either local or remote filesystems. Depend
ing on how the FSD registers itself with the IFS manager (local or re
mote), the FSD must provide a number of individual entry points for
use by the IFS manager. Not every FSD must support every function
defined as part of the IFS interface-the mandatory entry points de
pend largely on whether the filesystem type is local or remote. In addi
tion to the two major filesystem types, Windows 95 recognizes a mailslot
filesystem type that can be used to provide inter-application messaging
services.

The single entry point provided by the FSD when it registers with
the IFS manager identifies either the FS_MountVolume() function (for
local filesystems) or the FS_ConnectNetResource() function (for remote

S EVEN: The Filesystem

filesystems). These functions are among the set of standard entry
points defined for the IFS manager interface. When the IFS manager
calls the single entry point, the FSD will return a pointer to a table of
additional entry points. Subsequent calls from the IFS manager to an
FSD go directly to the specific function using one of these new entry
points. A called function may return yet more entry point addresses.
It's all like peeling away the layers of an onion. The FSD returns these
function pointers to the IFS manager on what you can think of as an as
needed basis, and gradually the IFS manager learns how to call every
entry point in a particular FSD. (Until a file is open, for example, the
FSD won't provide the IFS manager with a way to call either the file
positioning function or the file locking function.)

The IFS manager calls the initial FS_MountVolume() entry point
for local filesystems as the result of either the first access to a device or
a change to the media. The call asks the FSD to try to mount the vol
ume (the VOL_MOUNT operation). It's up to the FSD to determine
whether it recognizes the device media format. If it does, it returns a
volume handle and a pointer to the initial table offunctions to the IFS
manager. The handle is used to identify the volume in subsequent calls
to the FSD. For disks, the volume handle will identify either a hard disk
partition or a specific floppy disk. The IFS manager initiates the re
moval of all access to a volume by calling the F8-MountVolume() entry
point, specifying an unmount (the VOL_UNMOUNT operation).

For network filesystems, the IFS manager calls the function
FS_ConnectNetR.esource() with a network path for the target resource. As
with local filesystem access, the FSD must determine whether it should

· be responsible for managing the particular resource. If it is, it returns a
handle and a function table to the IFS manager. If it isn't, the FSD re
turns an error and the IFS manager must carry on, looking for the cor
rect FSD to match to the network resource.

FSD Entry Points
The next page contains a summary of all the defined entry points for a
filesystem driver. 10

10. There's also a set of entry points used specifically to implement named
pipes - Microsoft's preferred network-based, high-level inter-application com
munication mechanism. Local FSDs don't have to implement these services.

295

INSIDE WINDOWS 95

FSD Entry Point Name

F8-CloseFile()

F8-CommitFile()

F8-ConnectNetResource()

FSJ)eleteFile()

FSJ)ir()

FS_DisconnectNetResource()

FSJi'ileAttributes()

FS'....FileDateTime()

FSJi'ileSeek()

FS'....FindClose()

FSJi'indFirstFile()

FS'....FindNextFile()

FSJi'lush Volume()

F8-GetDisklnfo()

F8-GetDiskParms()

FS_loctll 6Drive()

FS_LockFile()

F8-MountVolume()

ps_ DpenFile()

. F8-ReadFile()
FS_RenameFile()

FS_SearchFile()

F8-WriteFile()

Purpose

Close an open file

Flush any cached data for a particular file

Call initial remote filesystem entry point

Erase a named file

Call directory operations (such as create
and remove)

Remove a network connection

Set and retrieve file and filesystem
information

Perform date and time management on
a file

Perform file positioning operations

Close an FS'....FindFirstFile()-initiated
sequence

Initiate a filename search sequence

Continue an FSJi'indFirstFile() sequence

Flush all cached data for the volume

Get information about disk format and
free space

Call the older MS-DOS DPB function
(INT 21H function 32H)

Call the older MS-DOS I/0 control
operations (INT 21H function 44H)

Call record-locking functions

Call initial entry point for local filesystems

Call file open and create functions

Call input operations

Call file rename operation

Implement MS-DOS find first and find
next operations (INT 21H functions llH,
12H, 4EH, and 4FH)

Call file output operations

1/0 Subsystem

296

IOS is the Windows 95 system component responsible for loading, ini
tializing, and managing all of the lower-level filesystem modules. (Typi
cally, these modules are port drivers directly concerned with the

S EVE N: The Filesystem

underlying hardware.) JOS also provides services to FSDs to allow them
to initiate device-specific requests. JOS must be permanently resident
in memory. It's loaded from the IOS.386 file early in the system initial
ization process.

The IOS and device driver layers rely on the use ofa large number
of interlinked control blocks11 coupled with the standard VxD service
interface and an implementation technique referred to as a cal/down
chain. An FSD will prepare a request for a device by initializing a con
trol block and passing it to the IOS_SendCommand() service. The con
trol block used in such a request is called an J/O packet, or !OP. IOS uses
the IOP to control the passage of the device request down and back up
the driver hierarchy. Most other control blocks used by IOS are hidden
from the higher layers, and an FSD doesn't have to worry about the al
location or management of device-specific control blocks. We'll look at
the role of several other control blocks within the filesystem architec
ture as we examine the components of the IOS and its lower-level
driver modules.

IOS itself operates in one of two roles-as the managing entity
when specific device requests are in progress, or as the provider of a
number of centralized services that any device driver can call. Here are
the three basic VxD services offered by IOS:

IOS_Register() The service used by device drivers to register
their presence in the system. Without the
driver's prior registration, IOS can't interact
with the driver.

IOS_SendCommand() The service used to initiate specific device
actions such as data transfers and disk
ejection.

IOS_Requestor_Service() The service that provides a small number of
individual functions such as the functions
that obtain information about a disk drive's
characteristics.

In addition, a wide range of services (called !OS service requests) are
used by drivers to control their interaction with JOS. Calling these
services first requires the device driver to register itself with JOS.

11. Over 10 different data structures are defined for the I/0 subsystem. Many of
these data structures appear in multiple interlinked lists.

297

INSIDE WINDOWS 95

During registration, IOS provides the driver with the addresses of the
entry points to call when making subsequent service requests.

Device Driver Initialization

298

IOS takes on the job of loading all the device drivers and requesting
their initialization. IOS loads a driver in response to a request from the
configuration manager (part of the Plug and Play subsystem) or be
cause of the presence of the driver in the SYSTEM\IOSUBSYS direc
tory. Configuration manager-initiated loading occurs when the Plug
and Play subsystem detects the presence of a particular device. IOS
force loads the remaining drivers in the IOSUBSYS directory. At the
completion of the entire boot process, IOS will send every driver a
"boot complete" message. If a loaded driver failed to recognize any
hardware it can support, it can unload itself from memory at this point.
There are provisions for the system to load older (non-IOS-compliant)
drivers by simply including them in the SYSTEM.IN! file, as Windows
3.1 does today. Drivers that conform to the new design are all dynami
cally loadable VxDs and must cooperate with IOS in building the layers
of the device control subsystem.

Once IOS has loaded all the necessary device driver modules, the
initialization process begins. The initialization of a specific driver mod
ule occurs when IOS sends to the driver module's control procedure
the VxD message SYS_DYNAMIC_DEVICE_INIT. The driver must reg
ister itself with IOS by calling the IOS_Register() service with the address
of a driver registration packet, or DRP. The DRP is a data block containing
information such as the driver name and the driver's particular charac
teristics. One of the implementation rules for device drivers is that the
address of the driver's DRP structure must appear in the VxD header
for the driver module. The appearance of the address in the VxD
header allows IOS to examine the DRP structure before it sends the
initialization message. Three fields in a DRP are vital to the initializa
tion process:

DRP_ilb

DRP_LGM

Contains the address of an !OS linkage block,
or ILB. IOS fills the ILB structure with the
addresses of several IOS entry points used in
subsequent calls to IOS.

Contains the load group mask, or LCM, used
during the device initialization process.

DRP_aer

S EVE N: The Filesystem

Contains the address of the driver's asynchro
nous event routine, or AER This asynchronous
event function is called by IOS to notify the
driver of any asynchronous event-for
example, the completion of a time-out.

The load group mask is a 32-bit quantity defining the levels at
which a driver module wants to operate. IOS sends the initialization
message to the driver once for each level at which the driver module
wants to register-proceeding from level 31 (the lowest) up to level 0.
Since IOS can examine every driver's DRP_LGM field before any initial
ization, it's able to figure out the order in which to carry out the initial
ization process. IOS completes the initialization for every driver at one
level before it moves upward to the next layer. So the initialization of all
layer 31 drivers occurs first, followed by all layer 30 drivers, and so on.
Several standard levels are defined, so almost every driver will simply
use one of these level numbers as the value of its load group mask field.

IOS uses the driver's asynchronous event entry point during ini
tialization to allow the driver to carry out private setup operations, so
the driver receives control back from IOS at well-defined points during
the initialization process. Among other activities, the driver creates de
vice data blocks (DDBs) that hold control information about the device
and may add itself to the device calldown chain. The driver can also
specify its requirements for private workspace within an IOP during ini
tialization. Once the initialization is complete, IOS calculates the final
size of an IOP for a particular device: the size of a fixed header plus the
size of an 1/0 request (!OR) structure, plus the sum of the sizes of all pri
vate workspace areas. Whenever an FSD subsequently requests the allo
cation of an IOP, the IOP size is known from this initial calculation.
Also, as an individual 1/0 request proceeds, driver modules at different
levels will have access to the necessary private workspaces at known off
sets within their IOPs.

Controlling an 1/0 Request
As we saw earlier, the local block device subsystem deals in terms of vol
umes-a hard disk partition or a floppy disk, for example. For each ac
tive volume, IOS maintains a data structure called a volume request
packet, or VRP. Calling IOS's IOS_Requestor_Service() and specifying the
IRS_ GET_ VRP() function will return the address of the VRP for a par
ticular volume. Within the VRP are the address of the entry point

299

INSIDE WINDOWS 95

300

within IOS that an FSD must use when it initiates I/0 requests, and the
size of the IOP necessary for requests to this volume.

An FSD initiates an I/O request by allocating an IOP of the cor
rect type and size (this allocation is another IOS service), filling in the
IOR structure (contained within the IOP), and passing the IOP to IOS.

IOS itself uses a structure called a device control block, or DCB, to
manage much of its interaction with a particular device. A DCB is a
large (256-byte) data structure that contains information about the de
vice, such as the total number of sectors and the number of sectors per
track for a disk drive. Whereas an application I/0 request initially re
sults in the creation of an IOP that provides a logical description of the
request, the DCB holds information about many of the physical aspects
of the device that must satisfy the application I/O request. Applications
and, indeed, FSDs never deal with the internals of a DCB; it's a data
structure used only by IOS and the lower-level device control software.

One of the fields in a DCB is the address of the call down chain for
the device. IOS's successive passing of pointers to the appropriate DCB
and IOP to each entry in the device calldown chain defines the path of
execution within IOS and its lower-level driver modules.

Calldown Chains
The multiple layers of the filesystem architecture offer a great deal of
flexibility to device driver writers. Essentially, you can get control at any
point in the path between an application's issuing a file-related API and
the lowest-level device driver's poking the controller registers. This
flexibility is a far cry from the single INT 21H hooking technique prac
ticed by existing MS-DOS filesystem and device control software.

The calldown chain technique is what Windows 95 uses to imple
ment the multilayer mechanism. During initialization, a device driver
module can add itself to the calldown chain for a particular device,
specifying the level for the subsequent call. (This is similar to the tech
nique for specifying the initialization level for the device driver mod
ule.) IOS inserts the address of the target function into the calldown
chain for the device-using the specified level to order the chain cor
rectly. As an I/O request proceeds fr?m IOS down to the hardware, IOS
arranges to call each function in the calldown chain for the device.

A driver routine inserted in a calldown chain may elect to pass the
request on-either unmodified or not-to the next lower layer, or if

S EVE N: The Filesystem

able, the routine may simply complete the request and never pass it on
down the chain. A driver can also arrange a callback on completion of
a device request by the next lower layer. This amounts to a feature
equivalent to the calldown chain, but the call occurs after the device
operation rather than before.

Asynchronous Driver Events
Asynchronous events notification allows IOS to interact with device
driver modules outside the flow of normal I/O requests up and down
the driver hierarchy. In some cases, the driver itself asks IOS to signal
an asynchronous event at some later time. In other cases, IOS initiates
the request.

IOS signals an asynchronous event by calling the driver's asyn
chronous event entry point, passing it an asynchronous event packet, or
AEP. An AEP has a standard header that specifies the asynchronous
function and the associated device data block (DDB). The AEP also has
a field the driver uses as a completion code. Beyond the header, the
structure of the data block differs according to the type of event and
contains additional event-specific parameters. Here's a summary of the
function of each asynchronous event that IOS can signal:

AEP_INJTIALIZE Initialize the driver. Sent when a driver is
first loaded.

AEP_BOOT_COMPLETE System boot is complete. The driver can
switch to its runtime configuration.

AEP_CONFJG_DCB Configure the physical device and
associated DCB.

AEP_JOP_TIMEOVT Time-out counter within an IOP has
reached 0.

AEP_CONFIG_LOGICAL Configure the logical device.

AEP_DEVICE_INQUIRY Retrieve device identification information.

AEP_RESET_COUNTERS Reset performance counters.

AEP_REGISTER_DONE Registration processing is complete.

AEP_HAU_SEC Half a second has elapsed.

AEP_l_SEC One second has elapsed.

AEP_2_SECS Two seconds have elapsed.

AEP_ 4_SECS Four seconds have elapsed.

AEP_DBG_DOT_ CMD Pass debug parameters to the driver.

301

INSIDE WINDOWS 95

Interfacing to the Hardware

302

Port drivers are the most common manifestations of the hardware con
trol level in the filesystem software hierarchy. Port drivers that control
ISA or EISA configuration adapters interface directly to the hardware.
In the absence of another intermediate layer, such as a volume tracking
driver layer or a protected mode BIOS layer, the type specific driver
(TSD) provides the only other software layer between IOS and the
hardware. The port driver is, therefore, what you would typically think
of as the "device driver" for the filesystem.

The port driver is hardware specific, and although layers such as
the TSD's reduce the driver's workload, the port driver still has the job
of translating I/O requests into hardware commands. As with the devel
opment of most drivers for devices with similar characteristics, develop
ing a new port driver will typically involve the modification of an
existing example rather than the creation of entirely new code. A port
driver is a dynamically loaded VxD that provides no VxD services. Fig
ure 7-8 illustrates the declaration of a port driver together with the
driver registration packet (DRP_Port) used by IOS during the driver's
initialization phase. Notice the inclusion of the pointers to the port
driver asynchronous event routine (PORT_Async) and to the ILB struc
ture (PORT_ilb) that IOS needs to complete the initialization process.

Figure 7-8.
Port driver and DRP declaration.

We've already looked from the IOS perspective at what happens
within the filesystem hierarchy. Turning this around, let's look at a sum
mary of an individual port driver's responsibilities during different exe
cution phases.

Initialization
IOS first sends a SYS_DYNAMIC_DEVICE_INIT message to call the
port driver. The port driver uses the IOS_Register() service to register

S EVE N: The Filesystem

itself. During registration, the port driver has to respond to callbacks to
its asynchronous event routine:

AEP _INITIALIZE requires allocation of a DDB, retrieval of configura
tion information, initialization of the hardware, and definition
of the device's interrupt handler.

AEP _OEVICE_INQUIRY messages are sent for each possible drive
attached to the adapter. (The design accommodates drive
numbers 0 through 127.) The port driver must respond with an
indication of the presence or absence of a particular drive. 12

AEP _CONFIG_DCB allows the driver to add its normal I/O request
entry point to the calldown chain.

AEP _BOOT _COMPLETE allows the port driver to confirm or deny
that it has detected hardware it can control. IOS will remove the
driver from memory if no applicable hardware is present in the
system.

Execution
Normal execution for the port driver involves processing and queuing
IOPs passed to the driver via its normal I/O request function. For ac
tual device I/O operations, ifthe device isn't busy, the port driver starts
the operation. The port driver must also respond to time-out events
(AEP_IOP_TIMEOUT) signaled by IOS.

Interrupt
If the device interrupts as the result of its completing an I/O operation,
the port driver finishes processing the associated IOP. If there are other
IOPs queued for the device, the driver starts the next I/O operation.

Other Layers in the Filesystem Hierarchy
Of the other available levels within the IOS managed hierarchy, a few
are used by components that are standard modules within the Windows
95 filesystem architecture. In general, the modules installed at these
intermediate levels are designed to provide services commonly re
quired by port drivers. The installation of these modules relieves a

12. The port driver can also respond with an indication of no more devices present to
avoid processing 128 separate inquiries.

303

INSIDE WINDOWS 95

driver developer from having to re-implement private versions of func
tions needed by every driver. The type specific driver (TSD) for disks,
for example, will perform some error checking and logical to physical
parameter translation, relieving the individual port drivers of this
chore. Supplying standardized components such as these is also a
means for Microsoft to avoid problems with device driver bugs. The
more complex a single device driver, the more likely it is to contain
bugs and the more likely it is that Microsoft's technical support group
will get a phone call. A user will regard the problem as a bug in Win
dows-rare is the user who would call Exotic Disk Drive, Inc., if
Windows crashed because of a bug in the device driver that came with
the drive.

The most highly developed use of the IOS layering capabilities is
for the support of SCSI devices. Microsoft Windows NT placed a lot of
emphasis on the support of SCSI peripherals-partly because the mar
ket for these devices was growing rapidly during the development of
Windows NT and partly because SCSI peripherals were a good match
for the Windows NT performance and automatic configuration goals.
The SCSI design also standardizes many device interface issues, mak
ing SCSI devices a perfect match for the layered device architecture.

Windows 95 standardizes other existing features of block device
drivers by including modules that manage the issues associated with
exchangeable media and by providing a generalized interface to data
caching. New in Windows 95 are the support for Plug and Play capabili
ties and the continued support of real mode device drivers within a
fully protected mode operating system.13

Volume Tracking Drivers

304

The volume tracking driver, or VTD, is at the top of the calldown chain
for a device. Its role is to ensure that the medium in a particular drive
(usually a floppy disk or a tape) is the medium that the I/O request actu
ally refers to. Obviously, in the case of a read operation, a medium that
doesn't match what the application previously referred to will probably
be only confusing to the user; in the worst case, though, the mismatch
could cause an application to fail. In the case of an output operation, the
effect of writing on the wrong medium could be disastrous.

13. Windows NT ducked this particular challenge by not providing MS-DOS device
driver support. Given its compatibility requirements, this was not an option for
Windows 95.

S E V E N: The Filesystem

The VTD maintains its knowledge of the current medium by
matching a volume handle retained in the current DCB for the device
with the volume handle contained in any IOP passed down by the
filesystem driver. A mismatch means that the medium present in the
device is not the medium previously referred to by the FSD. This may
result in the user's being asked to insert the correct medium.14

Knowledge of the current volume is maintained by the !OS's ask
ing an FSD to read a volume label each time the medium changes (an
event that the device driver will notice) or, in the case of hardware that
can't report a medium change directly, whenever the medium may
have changed. It is up to the FSD to read volume labels because the
other components of the filesystem have no knowledge of how to do
this. The FSD retains information about a volume label from the time
the medium is first mounted.

Type Specific Drivers
In Windows 95, a type specific driver (TSD) currently exists for a disk
device in order to provide a mapping from logical to physical device
parameters. Using handles and offsets, an FSD will typically translate
application requests to requests for logical block numbers within a logi
cal drive-for example, read block 93 of drive C: (where a numeric
handle would represent C:). The TSD will translate such requests for
logical block numbers into physical block numbers. This translation
may involve a mapping oflogical blocks into physical blocks (where the
device's sector size doesn't match the filesystem's block size) or the
translation from a logical drive to a specific physical disk partition. The
TSD checks every request it processes, ensuring that the lower-level
drivers don't have to perform any validation.

During initialization, the TSD is responsible for allocating and
building a device control block for each logical device present on a
physical device (for each hard disk partition, for instance). The TSD
adds each logical DCB to a list that is associated with the DCB previ
ously allocated to describe the physical device. Within the logical DCB
is all the information describing the geometry of the drive device-sec
tors per track and bytes per sector, for instance.

14. Volume tracking requirements may change according to the environment. If a
file is left open with data still to write out, a different medium is usually an error. For a
multivolume backup operation, though, it's an expected condition. -

305

INSIDE WINDOWS 95

One valuable contribution to flexibility this architecture affords is
the ability it gives the system to adapt to the different geometry on
high-capacity exchangeable media. Several manufacturers now offer
drives with removable media that can store 100 megabytes of data or
more. Most of these drives can read older, compatible but less densely
packed media. The Windows 95 filesystem participation in the dynamic
reconfiguration of the device characteristics for specific partitions
helps to support these devices properly.

SCSI Manager

306

Windows 95 builds on the SCSI device architecture developed for Win
dows NT by making use of the same low-level device drivers (the so
called miniport drivers). By providing a method for interfacing existing
Windows NT miniport drivers to the Windows 95 filesystem architec
ture, Windows 95 gains immediate support for a wide range of SCSI
peripherals with almost no new code having to be developed. This
method for interfacing drivers between the two systems is another
manifestation of the Windows compatibility goal. For a device manu
facturer, the fact that a single miniport driver will support two different
operating systems is a definite benefit.

The SCSI manager, or SCSI port driver, is the upper layer of this
support. The SCSI driver offers a range of functions common to any
SCSI device, including error logging, cache management, and logical
to physical address translation. Essentially, the SCSI manager and the
miniport drivers associated with it split the functions of a normal port
driver, with the hardware-specific aspects isolated in the miniport
driver. Three main data structures are used for communication be- ·
tween the SCSI manager and the miniport drivers:

SCSLREQUEST _BLOCK contains information describing an indi
vidual SCSI device 1/0 request.

HW_INITIALIZATION_DATA contains the miniport device driver's
entry points called by the SCSI manager for a specific device.

PORT _CONFIGURATION_INFORMATION contains data that describes
the properties of an individual SCSI host adapter, including, for
example, its DMA capabilities. ,

The entry points provided by each miniport driver allow the SCSI man
ager to call for hardware-specific operations during various phases of

SEVEN: The Filesystem

device control: initialization, I/O request initiation, and interrupt
processing.

For the ultimate efficiency in implementation, use of the existing
Windows NT miniport drivers would have been the optimal solution.
Unfortunately, the requirements ofreal mode compatibility made their
presence felt once again. The existing miniport drivers for Windows
NT have to undergo a few minor modifications for full compatibility
with Windows 95. The modifications have largely to do with the real
mode to protected mode transitions and with the fact that, in Windows
95, a real mode SCSI device driver can exist in conjunction with the
protected mode miniport driver. However, once the driver has been
modified to accommodate the need for real mode compatibility in
Windows 95, the new version will still run under Windows NT-the new
real mode support code will simply never be executed in the Windows
NT environment. Note too that as with support for any device under
Windows 95, SCSI drivers should participate in the Plug and Play envi
ronment and that means other modifications to the miniport driver.

Real Mode Drivers
Continued support for existing MS-DOS real mode device drivers is
obviously critical to the success of Windows 95. Despite the advantages
of protected mode device drivers, the sheer number of drivers available
for MS-DOS means that it will be impossible to replace every real mode
driver when Windows 95 first ships. But replacement of the real mode
drivers for many widespread devices, such a.s IDE hard disk controllers
and NEC-compatible floppy disks, will happen immediately, so most
users will quickly see the performance benefits of the new protected
mode filesystem. ·

The filesystem design in Windows 95 allows a protected mode
port driver to take control of a real mode driver and bypass it while the
system is running in protected mode-Windows 95 can classify the real
mode driver as a "safe" driver, that is. Safe means, essentially, that the
protected mode driver can offer functionality identical to the real
mode driver's. In such a case, the protected mode driver will simply
carry out all the 1/0 operations and never call the real mode driver. In
a number of instances, the protected mode driver's taking over the
function of the real mode driver is considered unsafe. The real mode
driver may do data encryption, for example, or may interface with a
real mode system BIOS to do dynamic bad sector mapping for the hard

307

INSIDE WINDOWS 95

disk. The standard Windows 95 port driver for the disk adapter, though
able to control the hardware, can't replicate this extra functionality, so
it arranges to route I/O requests through the real mode driver-exe
cuting the driver in virtual 8086 mode in order to do so.

To recognize a safe driver, Windows 95 maintains a list of such de
vice drivers by means of the registry. If the system running in protected
mode detects the presence of a real mode driver, it consults the safe
driver list to determine whether the real mode driver functions can be
subsumed under the protected mode driver functions. The identifica
tion for the real mode driver is its name as entered in CONFIG.SYS or
AUTOEXEC.BAT. If the driver name doesn't appear in the safe driver
list, Windows 95 will use the real mode driver.

Conclusion

308

From the discussion in this chapter, you've no doubt realized that the
new filesystem design for Windows 95 is a major revision to Windows.
Although the compatibility constraints imposed on Windows 95 allow a
device manufacturer to continue to support hardware using an older
real mode device driver, the advantages to be gained in terms of perfor
mance, multitasking, and reduced memory requirements are compel
ling reasons to provide a full Windows 95 protected mode driver. And,
of course, the addition of long filename support is a huge benefit to
the user.

The new Plug and Play subsystem augments many of the operations of the
filesystem components, and that's what we'll look at in the next chapter. The
installable filesystem capabilities also dramatically improve networking support
in Windows 95, and that will be the subject of Chapter Nine.

References
Microsoft Corporation. Windows 95 Device Driver Kit. Redmond, Wash.:

Microsoft, 1994.

Schulman, Andrew. Undocumented DOS. 2d ed. Reading, Mass.: Addison
Wesley, 1993.

C H A P T E R E I G H T

PLUG AND PLAY

1you've ever had to suffer through the experience of opening up a PC
system unit to plug in a new device adapter card, you'll immediately
understand why Plug and Play is important. The combination of Win
dows 95 and a PC that supports the Plug and Play specification will re
duce your system setup and reconfiguration suffering to a minimum.
You'll still have to know how to use a screwdriver, but that's about the
only extra skill you'll need. Although the collaborators who developed
the Plug and Play specification deliberately avoided tying the standard
to a particular operating system or hardware type, Windows 95 has the
distinction of being the first system to provide full support for the Plug
and Play standard.

Typically, the process of adding a new device to a PC has involved
figuring out how to set all the switches and jumpers on the new card,
plugging the card in, installing software, ~ebooting the system, and
praying. The amount of time you could spend trying to resolve prob
lems during the installation of a new device could be extensive. Every
PC has one or more lnts devices. Usually, several devices are trying to
share the system lnts, and those attempts to share often lead to conflict.
The bus design determines the electrical characteristics of many system
components as well as some aspects of the method that device driver
software must use to control an individual device on the bus. Most PC
buses conform to a specification referred to as industry standard architec
ture, or ISA for short. The ISA specification is little more than the for
mal description of the original IBM PC architecture that was written
down long after the PC first went on sale.

Most device adapter cards plug directly into the system bus. The
software that controls a device communicates with the adapter by writing
commands to the system 1/0 ports. The command information travels
along the system bus to the device adapter. Some devices (often called

309

INSIDE WINDOWS 95

memory mapped devices) also use a memory region in the 640K to I-MB
upper memory area. Both the device and the device driver software can
'·access the data in that memory area, allowing for the high-speed trans
fer of large amounts of information between the device and the
system's memory. Non-memory-mapped devices transfer data by means
of the system bus, raising a hardware interrupt when they need atten
tion from the device driver.

When you first plug a device adapter into the bus, it is normally
set up to communicate with the system by means of a default set of I/O
addresses, interrupt requests, and possibly a shared memory region or
a direct memory access (DMA) channel. If some other device on the
bus is already using one or more of these control signals or memory
areas, a conflict occurs. The system will usually react to the conflict by
refusing to boot properly, requiring you to open the box again and try
to resolve the conflict by selecting a different configuration. Or some
times the system will boot but the device will appear not to work when
you try to access it, calling for more reconfiguration effort. Once you
have working hardware, you have to configure the associated software
to match. Over the history of the PC industry, this type of configuration
activity has probably consumed the lion's share of the effort put forth
by technical support groups all over the world.

What's the solution? Automatic management of the system's low
level hardware resources-IRQs, I/0 ports, DMA channels, and
memory-seems to be the key. Plug and Play is Microsoft's attempt to
provide such an automatic system management capability. Full Plug
and Play support will appear for the first time in Windows 95 and,
Microsoft says, will appear over time in their other operating system
products. In Windows 95, the system setup process relies heavily on the
Plug and Play system management capabilities. And once the system is
up and running, the Plug and Play subsystem is responsible for manag
ing all hardware configuration changes.

Why Do We Need Another Standard?

310

Naturally, there have been other attempts to solve system configuration
problems, but none of them has achieved the critical mass of support
that's necessary to truly eradicate the configuration conflict problem.
The two best-known solutions each involved the introduction of a new
system bus design: IBM's MicroChannel bus, used only in IBM's PS/2
series, and the EISA (Extended Industry Standard Architecture) bus.

E I G H T: Plug and Play

The designers of the MicroChannel bus came up with a new bus design
that allowed any card plugged into the bus to identify itself to the oper
ating system. After plugging the card into the bus and installing the
device software, you could configure the adapter card using a standard
configuration program. Unfortunately, the Micro Channel design suf
fered from a number of problems. First, the MicroChannel bus was in
compatible with the existing ISA bus. You couldn't take your old
network adapter, for example, and simply plug it into a MicroChannel
bus. Since the PS/2 series never came to dominate the market, the
MicroChannel never won wholehearted support from other device
manufacturers. The other problem with the MicroChannel bus was
that every adapter needed a unique identifying number, issued by IBM,
that was hardwired into the adapter. This requirement reduced con
figuration flexibility somewhat, and the user still had to work his or her
way through the device configuration program in the event of a system
conflict.

The EISA bus designers adopted some of the better ideas in the
MicroChannel design but based their design on the ISA bus. The big
advantage of an EISA bus was that you could use any existing ISA
adapter in an EISA machine, although the smarter configuration facili
ties were available only for new EISA adapters. Several PC companies
ship EISA systems, and the EISA bus has gathered a reasonable amount
of support from device manufacturers, but EISA is by no means a domi
nant architecture either.

Other, perhaps less ambitious, attempts to reduce hardware con
figuration problems include the efforts of suppliers who preconfigure
systems with network cards, pointing devices, and the appropriate soft
ware already set up. Microsoft's Windows "Ready To Run" campaign
was based on the expectation that PC vendors would ship preconfig
ured machines with Windows 3.1 already installed. Some device manu
facturers allow devices to be reconfigured without anyone's having to
open up the machine and reset hardware jumpers and switches. Intel's
EtherExpress network adapter is a good example of this type of rela
tively easy to configure device. You plug in the adapter, and if the de
fault adapter configuration doesn't work, a software setup program
allows you to change the hardware configuration with commands from
the keyboard.

All of these solutions share some of the shortcomings itemized on
the next page.

311

INSIDE WINDOWS 95

II There is still no single, generally accepted standard for device
installation and configuration. In particular, there is no stan
dard for the market's leading hardware architecture: the ISA
bus. A single standard would help by encouraging every manu
facturer to adopt the same solution to the problem. A standard
that catered to the ISA bus as well could greatly reduce the
problems of hardware setup for the majority of users.

Ill Whereas a PC used to have just one bus, recent technology
improvements have led to PCs that incorporate multiple
buses: SCSI, PCMCIA, and various types of local video buses,
for example. None of the existing configuration methodolo
gies allows for this mixture of bus types.

Ill There's a growing need for a dynamic configuration method.
Consider the situation in which you might have a modem on
a PCMCIA card plugged into your laptop as COMl and you
connect the laptop to its docking station, which has a more
conventional serial COMl device. Or consider the dynamic
reconfiguration requirements of a wireless-based network that
supports mobile workstations. None of the existing solutions
is flexible enough to handle this kind of situation.

The Plug and Play standard tries to address all of these issues, and Win
dows 95 intends to be the first major operating system to provide full
support for the Plug and Play standard.1

History of the Plug and Play Project

312

The Plug and Play standard has its beginnings in the several different
attempts to address the problem of hardware configuration-with
IBM's Micro Channel and the Extended Industry Standard Architec
ture (EISA) effort initiated by Compaq among the most well known.
Microsoft's Plug and Play effort began in 1991, and the first public
specifications appeared during 1993. 2 At first, Microsoft worked on the

1. For information about the pieces of the Plug and Play specification, see the
"References" section at the end of this chapter.

2. Folklore has it that the initial impetus for the project was provided by the PC
configuration problems experienced by the mother of the vice president of Microsoft's
Personal Systems Group. Another story cites Microsoft's irritation at the advertising
campaign run by Apple Computer-the one that portrayed Windows as hard to set up
and use.

E I G H T: Plug and Play

specification alone, seeking an ordered solution to an apparently in
tractable problem. Early discussions with Intel and Compaq helped to
steer the design effort, although these companies did not formally
agree to support the Plug and Play standard until the spring of 1993.

The deciding factor in wider industry support was the develop
ment of the Plug and Play ISA specification-a document that defined
a modified hardware design for adapter cards that could be used on ex
isting ISA bus PCs. Also included in the Plug and Play ISA specification
was a software-only solution that could be applied to the installed base
of "legacy adapter cards" (a new term considered more polite than "old
adapters"). These accommodations of the installed base are where the
Plug and Play effort differentiated itself from earlier initiatives. Both
the MicroChannel and the EISA bus designs did little to help the users
of the installed base of PCs. The attention it paid to the predominant
ISA bus design moved the Plug and Play effort from a somewhat aca
demic realm into the entirely practical world. And the fact that a Plug
and Play compliant adapter card could be produced for only a tiny
amount more than it cost to produce existing adapters made the Plug
and Play specification immediately attractive to a broad range of manu
facturers. (Microsoft had started with a cost target of a few dollars and
realized early on that this would be too expensive. Current estimates
pin the hardware cost of adding Plug and Play at around 25 cents.)
Once the Plug and Play ISA specification was out, support for the stan
dard gained momentum during 1993, with Intel supplying early devel
oper kits, Phoenix Technologies joining the core group to help define
a new BIOS for Plug and Play systems, 3Com providing extensive tech
nical input, and companies such as Future Domain releasing early
ASIC implementations of the Plug and Play hardware interface.

By the end of 1993, variants of the Plug and Play specification had
been produced for several different bus types, including the ISA,
PCMCIA, PCI, and SCSI types.3 The Plug and Play effort began to have
other influence as well. Inside Microsoft, the design of the Windows
NT registry underwent modification to incorporate Plug and Play capa
bilities before the shipment of Windows NT. Outside Microsoft, design
efforts such as the IEEE's serial SCSI specification began to take Plug
and Play requirements into account.

3. This effort continued, and specifications for every major bus type (except EISA)
and for several specific devices (such as the parallel port) had been produced by
mid-1994.

313

INSIDE WINDOWS 95

At the time of this writing, the Plug and Play effort has a long way
to go before a complete implementation will be in the hands of a large
number of users. Microsoft gained early experience with some of the
device detection and configuration techniques they deployed in prod
ucts such as Windows for Workgroups and Windows NT. These systems
try to automatically sense the configurations of their host machines. In
the case of Windows for Workgroups, it's the video adapter, mouse, key
board, and network adapter types that the operating system tries to fig
ure out. Windows NT goes much further, sensing SCSI devices and
other installed hardware. The benefits during installation are obvious.
Windows 95 goes further still, implementing almost automatic installa
tion and dynamic reconfiguration. Regardless of the success of Win
dows 95 itself, the Plug and Play specification certainly seems to have
enough momentum to gain real acceptance in the marketplace.

Goals for Plug and Play

314

The Plug and Play project identified a number of goals that the specifi
cation, and any of its implementations, needed to meet. The overrid
ing goal, though, was simply to make it easier to add new hardware to
or change the configuration of an existing system-actually, not just
easier, but very, very easy. This ease helps everyone. Users waste less
time and get less frustrated when they try to change their hardware.
There's less burden on any support groups that users might call. The
device manufacturers have a well-specified standard to develop to
rather than the prospect of trying to solve all the potential installation
and configuration issues themselves. With new hardware developed to
the Plug and Play standard, the goal of requiring absolutely no effort
beyond plugging in the device and copying the software to the hard
disk can be realized. With existing hardware, it's difficult to reach that
level of simplicity because the hardware itself doesn't conform to the
Plug and Play standard. However, a lot can be done in software alone,
and the Plug and Play standard calls for upgrades to existing device
driver software. Upgraded device driver software will allow current ISA
hardware to be well managed within a Plug and Play environment.

The Plug and Play specification lists five formal goals:

II Easy installation and configuration of new devices

II Seamless dynamic configuration changes

E I G H T: Plug and Play

• Compatibility with the installed base and old peripherals

• Operating system and hardware independence

• Reduced complexity and increased flexibility of hardware

Plug and Play is of course the core of one of the major goals for
the Windows 95 project: great setup and easy configuration. And the
specification's attention to the existing ISA hardware base is a neces
sary aspect of the compatibility goal set for the Windows 95 product.

Let's look briefly at each of the major Plug and Play goals.

Easy Installation and Configuration of New Devices
With new-that is, full Plug and Play specification-hardware, the in
stallation and configuration process is reduced to plugging in the de
vice and running a simple installation program. Some assembly is
required, but the installation program does little more than copy the
device support software to the Windows directory. During the boot pro
cess, the system can identify the device and locate the appropriate de
vice driver software and load it. The responsibility for identifying the
hardware devices and configuring them correctly belongs to the oper
ating system, not the user.

For the reasons we've already reviewed, the Plug and Play stan
dard provides a potential for tremendous savings of time and effort.
The drawback is that for the full Plug and Play benefits to be realized,
you need a full Plug and Play machine and full Plug and Play device
adapters.

Support for a New Hardware Standard
The Plug and Play specification does not define yet-another way of
building a PC. What it does specify is what PC hardware must be able to
do if it is to support full Plug and Play capabilities. "PC hardware" means
the system motherboard, the BIOS, and the plug-in adapter cards. If
each of these components complies with the specification, the operating
system vendor can implement Plug and Play. To date, draft or final speci
fications have been completed for the Plug and Play BIOS and for the
ISA, SCSI, PCMCIA, and PCI buses. By the time you read this, there will
be many other specifications for Plug and Play compliant hardware.

Some current bus designs lend themselves to a very simple imple
mentation of Plug and Play support; the required information and ca
pabilities already exist. All that's needed is the appropriate layer of

315

INSIDE WINDOWS 95

316

software to provide the information in Plug and Play format. For the
existing ISA bus, implementation of Plug and Play support is a lot
harder. However, the low-level operations that the bus and associated
devices must support are somewhat similar in every case:

Isolating a device. There has to be a way for the operating
system to interact with one, and only one, device at a time
during the system boot process. If two devices respond to the
same operating system inquiry, the process breaks down.

II Reading information from the device. The Plug and Play
subsystem needs to collect information from the device. For a
Plug and Play device, a defined interface allows the device to
provide specific information in a standard format. In the case
of a legacy adapter with no provision for Plug and Play sup
port, the software has to collect whatever information it can
and then play the software equivalent of a word guessing
game during the identification step.

II Identifying the device. Whatever information the device
provides must be sufficient for the Plug and Play subsystem
to correctly identify the device. Identifying a 3Com network
adapter as a Hewlett-Packard scanner will obviously lead to
problems.

II Configuring the device. Plug and Play devices expect to be
told which resources they can use: which IRQ, which I/O
ports, which DMA channel, and which memory region. This
provision is a key aspect of the Plug and Play specification
design. No longer will you enter a deadlock situation in which
two different devices absolutely require use of the same IRQ.
Non-Plug and Play devices don't have a reconfiguration
capability, so the resources these cards consume are reserved
first and made unavailable to other devices.

II Locating and loading a device driver for the device. Once the
device driver is loaded, it takes over the control of the device,
using the allocated resources.

Devices that conform to the full Plug and Play specification make the
operations in this process quite straightforward. The various specifica
tion documents for Plug and Play hardware describe the requirements

E I G H T: Plug and Play

and implementation methods in great detail. The more difficult job is
making the legacy cards appear to behave like Plug and Play devices.

New ISA Board Standard
Since ISA systems are what most of us own, it's interesting to take a
brief look at how the Plug and Play specification augments the ISA
adapter design so that ISA systems can support full Plug and Play opera
tions. The Plug and Play specification describes all the hardware and
software components in elaborate detail. Essentially, a Plug and Play
ISA card must include a small amount of additional hardware logic that
implements the following sequence of behavior:

1. At power on, the device remains quiescent until it senses a
specific pattern of commands written to a predefined 1/0
port-the so called initiation key.

2. The device then enters a state in which it waits for a "wake"
command written to an I/O port. In response to a wake
command, the controlling software can either wake up a
specific card, if it already has a unique identifier for the card,
or move all the cards to the "isolation" state.

3. The Plug and Play software communicates with one and only
one card in the isolation state. The device responds to com
mands sent via the 1/0 ports by sending data bytes back to
the Plug and Play software. The data the device sends back
includes a unique identifier that allows the software to iden
tify the device-the identifier includes fields such as a manu
facturer ID to ensure unique identification.

4. Once the device has been uniquely identified, the software
and the device can exchange information. In this exchange,
resource requirements are identified and allocated.

For the cost of redesign and a small increment in manufacturing
overhead, an existing ISA card can become a Plug and Play device. Pref
erably, the host system will have a new Plug and Play BIOS and of
course a Plug and Play capable operating system such as Windows 95. 4

4. The Plug and Play BIOS ensures that a system with multiple boot devices will in
fact boot. However, if a Plug and Play BIOS is not present, the operating system takes
over all the device configuration chores.

317

INSIDE WINDOWS 95

Seamless Dynamic Configuration Changes

318

With this rather grandiose phrase, the Plug and Play standard ad
dresses the increasingly common situation in which a system's hard
ware configuration changes while the system is running. No, you won't
be opening up your desktop machine and plugging new cards in while
your C compiler runs, but there are already a lot of systems available
that do allow hardware configuration changes while the system contin
ues to run. The currently popular example of this capability is a laptop
system that supports the PCMCIA peripheral standard. Other ex
amples include infrared printer connections and wireless-based net
works. The hardware specification for PCM CIA cards took quite a while
to develop to everyone's satisfaction, but now a wide variety of
PCMCIA-standard peripheral devices is available. In addition to the at
tractions of their small physical dimensions and light weights, these
cards allow you to alter a system's configuration by simply removing
one card and plugging in another. You might use an Ethernet card con
nected to the office network, for example, and exchange it for a fax/
modem card while you're traveling. During 1993, many more of the
manufacturers began to offer systems with PCMCIA slots, including
PCs that use nothing but PCMCIA card slots, such as Hewlett-Packard's
OmniBook.

Obviously, the convenience of PCMCIA, or other dynamically
reconfigurable systems, is lost if users have to go through an extended
software reconfiguration process and reboot whenever they change pe
ripheral cards. The Plug and Play standard addresses this sticking point
by defining how a system should allow for hardware resources to be
both removed and added while the system is operational. Managing
the removal process is easily as important as dealing with the addition
of new devices. You certainly don't want the user pulling a disk drive
out of the system before all the files on the drive have been correctly
updated and closed. Windows 95 takes this aspect of Plug and Play to its
logical conclusion by having a notification system inform applications
of configuration changes. Every significant configuration change
causes a message broadcast that applications can either process or ig
nore. A facsimile application, for instance, can process a message in
forming it that the user has tried to eject the fax/modem card. The
application's response to the message might be putting up a dialog in
dicating that there are fax messages still to be sent.

E I G H T: Plug and Play

Compatibility with the Installed Base and Old Peripherals
Perhaps the most difficult goal for the Plug and Play consortium to re
alize was the incorporation of support for the billions of dollars' worth
of hardware already in use. Previous attempts at improving configura
tion flexibility had largely ignored this issue. Not even the combined
might of Intel, Microsoft, and the other Plug and Play partners could
wave a hardware wand and suddenly make the old systems fully Plug
and Play. It was up to the software developers in the consortium to cre
ate that magic. The partners realized that achieving the compatibility
goal would probably make or break the success of the entire Plug and
Play effort.

A number of software components of the Plug and Play imple
mentation contribute to its support for current hardware. Each compo
nent makes the configuration process a little easier for the end user.
Naturally, some situations will require the user's assistance. For ex
ample, if an adapter can be hardware configured only-by moving
jumpers and switches on the card, that is-or if the device driver soft
ware can't report the adapter's configuration, Windows 95 will have to
ask the user for help.

Over the last few years, Microsoft has built a veritable library of
techniques for isolating and identifying different ISA devices, and the
great majority of popular devices can now be supported by the Plug
and Play subsystem. Inevitably, there will be exceptions. If you happen
to be the proud owner of one of the only three Flash bang 9000 network
adapters ever made, you're almost out of luck. Almost, but not quite.
The Plug and Play specification recognizes the need for a fallback posi
tion: ask the user for device configuration information. In Windows 95
this might happen during system setup, or during some future recon
figuration exercise called for when the user has added a new adapter
that the Plug and Play subsystem simply cannot recognize. A series of
dialogs will lead the user through the process of specifying the device
and the resources it requires. Once the device is identified, Plug and
Play will store the information in the registry and re-use it the next time
the system is turned on.

The Plug and Play implementation tries to minimize such appeals
to the user for information by both supporting extensions to the device
driver software-so that some reporting is available-and recording
the current hardware configuration on disk. If you think of the number
of times you've lost the scrap of paper on which you'd written the IRQ

319

INSIDE WINDOWS 95

you assigned to the network card when you plugged it in, you'll surely
appreciate Windows 95 when the time to add another adapter to the
system comes around. In the case of device driver software, a manufac
turer can provide some Plug and Play support by simply updating the
driver. No hardware changes are needed. Given the fairly efficient
driver distribution mechanisms in place-the Windows 95 product it
self, the device driver library disk, and bulletin boards-it's reasonable
to expect that a lot of manufacturers will try to add basic Plug and Play
support to current hardware. And you don't have to have updated de
vice drivers. Even with no changes to the driver, Windows 95 will sup
port the device and do its level best to detect the device and its
configuration during installation. All of this will go a long way in mak
ing Plug and Play attractive to the installed base.

Operating System and Hardware Independence
Given the collaborative nature of the Plug and Play specification effort,
you'd expect the standard to address any hardware or operating system
environment. And in spite of competitive issues, the Plug and Play
specification does acknowledge the importance of providing a suitable
base for future development. After all, the introduction of PCMCIA
and local bus systems gathered momentum only recently. And efforts
such as the IEEE serial SCSI specification have not yet left the commit
tee room. Few people would be willing to bet that there will be no other
fundamental industry developments in hardware interfaces. Given the
intensity of competition, we can expect major improvements in operat
ing system technology over the next few years.

All of this demands that the Plug and Play specification be inde
pendent of the underlying hardware and software. The basic data struc
tures, naming conventions, and user interface aspects of Plug and Play
are defined only to a level that allows a consistent implementation of
the specification across different platforms. Specific implementation
details are left to the operating system developer.

Reduced Complexity and Increased Flexibility of Hardware

320

We've looked at a number of the complexities surrounding hardware
configuration. As we noted earlier, making hardware configuration
easy was the prime goal for the Pfog and Play standard. The specifica
tion also lists the goal of making hardware "flexible." Meaning what
exactly? Flexibility goes back to the goal of reducing complexity. One

E I G H T: Plug and Play

of the most frustrating problems with current hardware is resolving
conflicts between devices. As we've already noted, for example in Chap
ter Two's history of the Intel processor, two adapters can't share an IRQ
or a set of 1/0 ports. Yet it's asking a lot to expect users to understand
this and be diligent enough to check for conflicts as they add new
adapters to their systems. Diagnosing conflicts is also difficult: some
times the system appears to work fine-until it crashes with no warning
and no useful diagnostics.

The goal of increased flexibility really amounts to directing manu
facturers to produce hardware that can use a range of different device
settings and allow the settings to be chosen by the operating system
not by hardwired jumper and switch settings. In practice, this means
that an adapter whose default configuration calls for it to use, say, IRQ
3 can be told by the operating system to use IRQ 10 instead. The user
will have provided no input to initiate this change and, in fact, will be
unaware of it. Such a requirement for flexibility extends to the dynamic
reconfiguration of a system, where the system can instruct a device us
ing a particular configuration to change its configuration in situ. Taken
to its logical extreme, this flexibility means that any fully Plug and Play
compliant adapter could be plugged into any Plug and Play system and
be guaranteed to work. No longer will a user need to dismember a sys
tem to disable an existing COM port before installing a new fax card.

Although a lot of the burden for implementing this flexibility falls
on the hardware manufacturers, it is also good news for them. Hardware
that easily adapts itself to any host configuration is likely to massively re
duce the technical support a manufacturer will need to provide. Plug it
in and it works-with no series of frustrated phone calls to a support
technician who must try to figure out how the user can make the device
work alongside the other adapters he or she has already installed. Simi
larly, the documentation for the product will be simpler, and the installa
tion program for the device driver will be trivial.

The Components of Plug and Play
As we've seen, the goals for Plug and Play are ambitious: easy installa
tion, easy reconfiguration, and on-the-fly configuration changes.
What's more, achieving the goals involves a number of different
people: the operating system supplier, the system manufacturer, the
BIOS developer, and the device vendor. Of course, there needs to be a
well-defined set of interfaces and clear divisions of responsibility if the

321

INSIDE WINDOWS 95

322

goals are to be met. The Plug and Play specification approaches the
problem of dividing and coordinating the labor by defining a layered
architecture for implementation and carefully separating functions
into different components. To fully understand how Windows 95
implements the Plug and Play standard, we need to look at the major
elements of the subsystem. Figure 8-1 is a representation of relation
ships among the various components. The description of the compo
nents here is, not surprisingly, for the Windows 95 implementation of
Plug and Play. Many elements would be the same for a Plug and Play
subsystem supported by another operating system. 5

A number of components, not all of which are shown in Figure
8-1, collaborate in the Plug and Play subsystem. Here's a summary of
the role of each:

• Hardware tree. The database of information describing the
current system configuration. The hardware tree is built by
the configuration manager and kept in memory. Every node
on the hardware tree is termed a device node and contains the
logical description of either an actual device or a bus device.

• .INF files. A collection of disk files containing information
about particular types of devices. SCSI.INF, for example, holds
information about every known SCSI device. During the
installation of a new Plug and Play device, a new .INF file
specific to that device will be used to help complete the
software installation. Usually the .INF file will be on the
installation diskette that comes with the device.

• Registry. The Windows 95 registry containing as a subtree the
hardware tree describing the hardware.

• Events. A set of APis used to signal changes in the system's
current configuration. In Windows 95, the message system is
used to signal events. In other implementations, an operating
system component could be used to signal events.

• Configuration manager. The component responsible for
building the database of information describing the
machine's configuration (in the registry) and notifying the

5. Windows 95 also uses the Plug and Play subsystem extensively during system
setup and subsequent device installation. Other Plug and Play-supportive operating
systems may do things differently.

E I G H T: Plug and Play

App II cations

---Operating system

Configuration
manager

•
.INF
files

Hardware
tree

----------~----------BIOSand
device
drivers

Bus

Devices

Figure 8-1.
The Plug and Play components.

323

IN S I D E W I N D 0 W S 9 5

324

device drivers of their assigned resources. The configuration
manager is the central component of the Plug and Play
subsystem when the system is running.

• Enumerator. A new piece of driver software that collaborates
with the device driver and the configuration manager. An
enumerator is specific to any device (typically to a bus) to
which other devices can be attached. 6 Every bus device in the
hardware tree always has an enumerator associated with it. A
special enumerator, called the root enumerator, is part of the
configuration manager. The root enumerator assists in setting
up non-Plug and Play devices.

• Resource arbitrator. A function responsible for presiding over
the allocation of specific resources and for helping to resolve
conflicts.

Ill Plug and Play BIOS. A new system BIOS that supports Plug
and Play operations. A device (a video controller, for ex
ample) may also have a device-specific BIOS that conforms to
the Plug and Play rules. The Plug and Play BIOS is also the
enumerator for the motherboard devices and in this guise
plays a critical role in managing the docking and undocking
operations of portable systems .

. 111 The Plug and Play device drivers. Protected mode drivers
responsible for device control as well as participation in the
Plug and Play subsystem.

Ill User interface. A collection of standard dialogs used to solicit
information when the Plug and Play system needs to get the
user involved in configuration information gathering. The
user can also examine the system configuration built by the
Plug and Play subsystem.

Ill Application. In the Plug and Play context, a program modi
fied for improved operation under Windows 95 that can
accept and process system configuration change messages.

6. Early designs of the Plug and Play subsystem also used the term bus driver.
Differentiating the roles of enumerators and bus drivers became sufficiently hard
that the functions were finally combined.

E I G H T: Plug and Play

Remember that the entire Plug and Play subsystem is mainly con
cerned with the management of four different resource types on behalf
of the various devices:

Memory. The physical memory requirements of the device-for
example, how many pages of memory the device needs and any
alignment constraints.

110. The 1/0 ports the device will respond to. The device configura
tion information includes a specification of each of the alterna
tive sets of ports that the device can use (if any).

OMA. Any DMA channels the device requires and any alternative
channels it can use.

IRQ. The device's IRQrequirements, alternative IRQs, and whether
the device can share an IRQ.

How the Subsystem Fits Together
As you can probably guess, the entire Plug and Play subsystem is a lot of
C and assembly language code. Fortunately, very little of the code is
memory resident and the system will load most components dynami
cally. Before we look at the detailed operations of a few components,
let's take a step-by-step look at how the whole subsystem hangs to
gether. Central to the entire Plug and Play subsystem is the hardware tree
data structure that describes the current system hardware configura
tion. We'll look at the hardware tree's components in more detail in
the next section. 7 Figure 8-2 on the next page shows the hardware tree
structure that corresponds to a typical Plug and Play system.

Although in this example we're fortunate enough to own a real
Plug and Play system, we have held onto our legacy network adapter.
Although t~e network adapter is physically plugged into the ISA
bus, as a non-Plug and Play device the adapter is logically attached to
the root of the hardware tree during system configuration. More on
this in a moment. We haven't made any system configuration changes
since the last time we used the system. Let's turn our system on and see
what happens.

7. This simple logical representation of the hardware appeared very early in the
software design process and has survived every challenge and attempt at improvement.

325

INSIDE WINDOWS 95

326

Figure 8-2.
Hardware tree for a typical Plug and Play system.

1. The system BIOS reads nonvolatile memory to determine
the machine configuration. The BIOS configures any adapter
for which it finds configuration information, notably the
motherboard devices. The BIOS disables any adapter for
which there is no configuration information.

2. The boot process begins. The system is still in real mode. The
configuration manager's root enumerator uses the hardware
subtree in the Windows registry as its reference for what the
system configuration ought to be.

3. The root enumerator scans the registry subtree looking for all
the non-Plug and Play devices. When it finds one, it con
structs a device node and adds it to the root of the memory
resident hardware tree. This is where you can see the device

E I G H T: Plug and Play

node for the legacy network adapter in Figure 8-2's example.
The root enumerator also configures the device if the BIOS
has not already done so.

4. The real mode boot process continues. The system loader
processes SYSTEM.IN!, loading the static VxDs that it specifies.

5. Now the next enumerators get loaded. The BIOS has regis
tered the fact that, for example, the system includes an ISA
bus. The registry shows which enumerator to load for the
particular bus device.

6. The enumerator examines the devices attached to the bus and
loads either a static VxD (if one is required) or another
enumerator to examine a descendant bus. In the example
configuration shown in Figure 8~2, the ISA enumerator would
load the PCMCIA enumerator.

7. All the real mode drivers and static VxDs are now in memory.
The operating system kernel completes its initialization and
switches to protected mode.

8. Now the configuration manager runs. Some of the system's
devices are fully initialized, and their drivers are loaded.
Other devices simply have their presence on the system
recorded with no device driver yet loaded.

9. The configuration manager loads the appropriate remaining
enumerators. These enumerators in turn examine the at
tached devices, build device nodes, and add them to the
hardware tree. When this process is complete, the configura
tion manager will load the device drivers that correspond to
the newly created device modes. (During the process, any
configuration conflicts will arise and present themselves for
solution.)

10. If an unknown non-Plug and Play device is left over, Windows
starts the device install process, which asks the user for help in
resolving the configuration. Otherwise, the system is now up
and running.

Time passes

327

INSIDE WINDOWS 95

After a System Configuration Change
Suppose you automatically load a fax application whenever you start
this system. The application uses the fax/modem card on the PCMCIA
bus. At some point, you decide you want to transfer the card to another
machine, so you press the card eject button. ·

1. The PCM CIA enumerator receives notice of the button press.
It informs the configuration manager. The configuration
manager broadcasts the hardware change notification message.

2. Each enumerator sees the change notification message and
queries its associated device drivers as to whether they care
about your ejecting the card.

3. Eventually, the configuration manager broadcasts a message
indicating that the fax card is about to be ejected.

4. The fax application sees the message from the configuration
manager and puts up a dialog asking whether you really want
to eject the card. You respond Yes. The fax application checks
to see whether there are any fax transmissions in progress or
pending. If there are no transmissions in progress or pending,
the fax application tells the system that the eject operation is
OK and returns to a dormant state.

As you can see from this sampling, a lot of interaction goes on
among the different Plug and Play components. Much more detail
about these interactions would probably overwhelm you. We'll look at a
few more implementation details in this chapter, but if you really want
every last detail, you need to make the Plug and Play specification itself
your favorite bedtime reading.

Hardware Tree

328

Windows 95 builds the hardware tree during the system boot process,
and any subsequent configuration change modifies the tree. The tree
is a logical representation of the system hardware configuration. The
tree exists as a data structure held in memory while Windows 95 is run
ning. The registry contains a record of every different hardware con
figuration in the system's lifetime. The memory resident tree is more
dynamic, changing as the user adds and removes devices. If you don't
change the configuration of your machine from one day to the next,
the registry and the memory tree will contain the same (unchanging)
information.

E I G H T: Plug and Play

Device Nodes
Each node of the hardware tree is called a device node. The specification
also refers to a node as a Plug and Play object, although Plug and Play is
not strictly an object-oriented subsystem. The leaf nodes of the tree
represent individual devices present in the system-keyboard, monitor,
tape, modem, for example. Parent nodes represent lnts devices--devices
that each play a role in the control of at least one other device.

The bus device is fundamental to the design of the Plug and Play
subsystem. Plug and Play defines a bus device to be "any device that
provides resources." A Plug and Play bus device is also the most com
mon type of parent node for any device node in the hardware tree. In
most cases, you can think of the logical Plug and Play bus as the hard
ware bus in the system. For example, a bus in an ISA system provides in
terrupt resources (the different IRQs) and I/O port resources. It is also
the parent device in the sense that you plug devices into it. In the par
ticular configuration shown in Figure 8-2 on page 326, every node in
the tree diagram is a device node, and the SCSI lnts, ISA lnts, and
PCM CIA !ms nodes are bus devices. Take a look at Figure 8-2 again, and
note that since the Keyboard controller node is also a parent node in the
hardware tree, it too is considered a Plug and Play bus device.8 Every
Plug and Play bus device has an enumerator associated with it.

Every Plug and Play device node-whether for a device or for a
bus device-always contains the following information:

II A unique device identifier-actually a string, not just a
number

II A list of resources required by the device node

II A list of resources actually allocated to the device node

Ill If the device node represents a bus device, a pointer to the
descendant device nodes in the tree

Access to the device node data structure is always via a set of sys
tem APis. Device drivers, and other. modules, never manipulate the
device node data structure directly. Also, it's only the device drivers,
enumerators, and other Plug and Play-related modules that use the de
fined APis. Application programs never use the APis.

8 .. This is where the mind's eye representation of a Plug and Play bus as a hardware
bus breaks down. Thinking of a Plug and Play bus device as· any piece of hardware that
you can plug something into is perhaps a better visualization.

329

INSIDE WINDOWS 95

330

Figure 8-3 is a more detailed representation of a Network adapter

and a SCSI bus device node data structure. The configuration example
shown in Figure 8-3 is similar to the example shown in Figure 8-2 ex
cept that the network adapter is a Plug and Play adapter.

8 All required resources have been allocated to the Network

adapter node.

8 The resources required by the SCSI bus child nodes (Tape and
CD ROM) have been allocated.

Figure 8-3.
Development of the Network adapter and SCSI bus nodes of the
logfral hardware tree representation.

E I G H T: Plug and Play

Notice that the Network adapter device node depicted in Figure 8-3
has more than one entry in its list for each of the required resources.
This provision allows the Plug and Play configuration manager to try to
allocate alternative resources when an attempt to allocate an entry in
the first set runs into a conflict. For example, if the default IRQ is al
ready in use by another device, the configuration manager will try to
use an alternative IRQ. In our example, the registry would have had to
contain the information that describes the configuration possibilities
for the network adapter.

Device Identifiers
A naming scheme that allows every device on a Plug and Play system to
be uniquely identified is a critical requirement for Windows 95. Sensi
bly, the Plug and Play specification incorporates whatever assistance it
can get from currently specified information such as the PCMCIA
manufacturer number or the PCI identifier. However, ISA devices have
never had a standardized identifying nomenclature, so a new scheme
was needed. Rather than trying to evolve an identifier system within the
constraints of a 32-bit or 64-bit number, the Plug and Play design uses
character strings-sometimes very long character strings. Yes, you can
read them, but don't expect to make much sense out of them if you do.

The generation of the device identifier strings is one of the func
tions of the device enumerator software. The function has to be part of
the enumerator since it is this driver alone that is supposed to under
stand the intimate details of the bus and its attached hardware. Unlike
in a static EISA device identifier scheme, the ISA enumerator driver
generates the device identifiers dynamically. The algorithm varies from
type to type and may involve techniques such as copying company
name strings from device ROMs to help. On similarly configured Plug
and Play systems with attached ISA devices, the enumerator-generated
device name will be the same from one system to the next.

The device identifier for an ISA bus begins with the string
ISAENM\. This beginning at least identifies the enumerator that gener
ated the identifier (and that therefore has control of the device). In
our example PC, the modem attached to the PCMCIA bus might end
up with a device identifier like ISAENM\PCMCIAENM\0020071001-
with the trailing digit string's having been generated by the
enumerator's reading the manufacturer's ID and part number from
the device itself. The enumerator might use just about any naming

331

INSIDE WINDOWS 95

scheme that ensures uniqueness. If a system had two identical network
cards plugged in, for example, the name string might end with ... \0300
and ... \0320 denoting the particular I/0 addresses that the cards re
spond to.9

Within the system itself, the device identifiers are very important.
Each device node in the memory resident hardware tree contains the
device identifier, and the same identifier acts as the registry key the op
erating system uses to access device-specific information.

Hardware Information Databases

332

Windows 95 uses four sources of information to determine or record
the details of every device on the system:

II The configuration files (.INF) held on disk and containing a
permanent record of every device ever known. These files
arrive already installed on your system.

II The .INF file supplied with each new device (presumably on
the installation diskette).

II The user, who has to intercede to solve otherwise unresolvable
conflicts or to provide information absent from the databases.

II The Windows 95 registry hardware archive subtree that
contains information about the current system configuration.
The Windows 95 setup program builds the initial hardware
archive in the registry. The registry includes Plug and Play
information under three keys:

HKEY_LOCAL_MACHINE The global settings for the system

HKEY_CURRENT_USER The current user's personal
preferences

HKEY_CURRENT_CONFIG The current machine configura
tion-alterable by, for example,
whether the system is docked or not

The Plug and Play subsystem draws its information primarily from
the hardware archive and the current machine configuration. The user
becomes involved only if Windows 95 can't figure out some aspect of

9. Note that the I/0 port address is only for identifying purposes. Nothing actually
parses the string trying to find the I/0 address.

E I G H T: Plug and Play

the hardware configuration. Such intervention should come into play
only for the older ISA devices that don't conform to the Plug and Play
specification.

From all this information, the memory resident hardware tree is
built and maintained. Windows 95 updates the hardware tree as the sys
tem configuration changes. If you change the configuration before
turning the machine on again (switch PCMCIA cards, for example, or
replace a defective adapter), the detection process has to refresh the
hardware tree with the new configuration.

Note that there is a preferred method of hardware installation for
manually configured devices-where you must manually change a
jumper setting, for instance. You install the software first, and then you
turn the machine off to install the hardware. When you switch the sys
tem back on, its configuration will be correctly determined.

Plug and Play Events
Early on in the design of the Plug and Play subsystem, there was a dis
tinct software component called the event manager. Later revisions of
the design simplified this notion so that Plug and Play events exist as a
set of APis that use the standard Windows messaging system to allow
the broadcasting of messages that describe Plug and Play events. Mes
sages describe events such as requests to remove a device from the sys
tem and the addition of new logical volumes to the network. The
message from a device driver or enumerator is sent to the configura
tion manager, which may propagate it on through the system-perhaps
in a different form. A device level event in particular could be trans
lated and sent to applications as a window message. Any device driver
or VxD can call the event API, specifying the event and providing the
associated event data. Applications and drivers with an interest in the
particular event will receive and process the message in the normal way.

Configuration Manager
The configuration manager is the principal software component of the
Plug and Play subsystem. It's responsible for controlling the hardware
tree database and linking the other components of the Plug and Play
subsystem together. During the system boot process, the configuration
manager is the ultimate authority for ensuring that the hardware tree is
fully populated and that its information is correct. The configuration
manager is also involved, somewhere along the line, whenever a Plug

333

INSIDE WINDOWS 95

and Play event occurs. If a system configuration change occurs, for ex
ample, the configuration manager will control the process through
which the various bus and device drivers interact, Plug and Play event
messages are sent and processed, and modifications to the hardware
tree take place.

Here's an example of what happens ifa user runs a word process
ing application, loads a document from a PCMCIA hard disk card, and
then presses the card eject button before closing the document file:

1. The PCMCIA disk driver recognizes the card eject button
press and notifies the configuration manager.

2. The configuration manager broadcasts the hardware change
notification message, which asks whether the card removal
operation is allowable.

3. Each device driver responds, indicating that it's OK

4. The configuration manager broadcasts a message describing
the physical device-the hard disk.

5. The I/O subsystem recognizes that the hard disk card con
tains an active logical drive and broadcasts an application
level message describing the logical device.

6. The word processing application receives the message, pro
cesses it, and recognizes that there is a document file open on
the affected drive. It displays a dialog for the user that might
present two options: save the document and allow the card to
be removed, or cancel the card removal and continue.

7. The user's response filters back to the configuration manager
in the form of responses to the various messages. In the case
of the user's choosing to save the document and thus allow
the card to be removed, the configuration manager will
ultimately inform the disk driver that the eject operation can
proceed. If the user chooses to cancel the card removal, the
disk driver will ignore the button press.

Enumerators

334

An enumerator is a new type of device driver associated specifically
with any device that controls another device. Usually, such a device is
really a bus, although a device such as the keyboard controller may also

E I G H T: Plug and Play

have an associated enumerator. "Enumerator" is an elaborate term for
referring to its most common function: walking through each attached
device node in its branch of the hardware tree, repeating a particular
action. For example, during system startup the enumerator accesses
each device on the attached bus, initializing the device and ensuring
that the information in the particular device node is complete. The
configuration manager calls each enumerator to carry out operations
on its attached devices. Using the enumerator this way ensures that the
details of the physical bus and the attached devices are hidden from
the configuration manager. The enumerator and the associated device
drivers deal with the hardware specifics of the device, and the configu
ration manager deals with device nodes.

The code for a particular enumerator could be implemented by a
manufacturer as part of a device adapter BIOS-this is likely, for ex
ample, if the system has a proprietary local bus design-or as a pro
tected mode driver that is part of the Windows kernel. For standard
hardware, such as the ISA bus, the enumerator is a standard compo
nent of Windows 95.

Resource Arbitrators
The other software component that understands the intimate details of
a particular hardware device is the resource arbitrator. This kind of
function understands the specific hardware resource requirements of a
device-for example, the fact that a standard ISA COM device must use
either IRQ 3 or IRQ 4. The configuration manager calls an arbitrator
function for a device, providing it with the list of required resources
from the device node. It is up to the arbitrator to allocate the resources
that will satisfy the device's requirements. The configuration manager
may also call the arbitrator to inform it that it must relinquish a re
source that it is using. Usually, the arbitrator function exists as code
within the Windows device driver.

During an attempt to satisfy a hardware resource allocation re
quest, the arbitrator may well come to a dead end. It will need a par
ticular hardware resource, but that resource will already belong to
some other device. The arbitrator won't try to resolve the conflict. It
will report the error back to the configuration manager and try to pro
vide information that will help the configuration manager resolve the
conflict. It's left up to the configuration manager to oversee the pro
cess of reallocating resources in an attempt to resolve the conflict.

335

lhlSIDE WINDOWS 95

During this conflict resolution process, arbitrators may be asked to sur
render resources they already control. The reallocation process might
occur during system startup-the configuration manager reaches a
dead end and has to back up-or during a configuration change when a
new device requests resources that are already allocated somewhere else.

Plug and Play BIOS

336

The Plug and Play BIOS is an enhancement of the BIOS that comes in
the ROM of every PC. There is a companion document to the Plug and
Play specification that describes the details of a Plug and Play BIOS.
Every complete BIOS implementation must include both the BIOS
functions in use in current machines and the functions that support
Plug and Play operation. The design of the Plug and Play BIOS allows
both real mode software and 16-bit protected mode software to call
BIOS functions. There is no provision for direct calls to the BIOS from
a 32-bit protected mode program.

The Plug and Play BIOS extends normal BIOS functionality by

ii Maintaining a description of the devices attached to the
system board using a data structure very similar to the device
node structure used throughout the Plug and Play subsystem

111111 Supporting a small number of functions that allow an operat-
ing system to retrieve and update information about the
attached devices

II Providing an event notification mechanism that interfaces
with the system configuration manager-this mechanism
allowing the operating system to retrieve event information
associated with devices that are under BIOS control

II Supporting docking operations on portable systems

The issue of where the BIOS stores the device information is left
open to the system and BIOS suppliers. Most systems are likely to use
the CMOS memory that the system battery keeps alive. Current PCs al
ready use this memory for storing configuration information, so it's the
obvious repository for the Plug and Play information as well. The Plug
and Play BIOS specification describes the expected format of the de
vice information that the BIOS must return to the caller. When you
make a call to the BIOS function to get device information, the caller

E I G H T: Plug and Play

provides a buffer for the BIOS to store the information in. Similarly,
when updating the device information for a BIOS controlled device,
the operating system calls the BIOS with a modified device node. The
Plug and Play specification doesn't allow for direct access to the device
information, so exactly where and how the BIOS. stores the data is left
up to the system manufacturer.

The Plug and Play specification also allows for the BIOS event
mechanism to be implemented in two different ways. The BIOS can ei
ther simply set a flag in a specific memory location whenever an event
occurs or allow the operating system to install an interrupt handler that
the BIOS will call to notify the operating system of the occurrence of an
event. In the first case, the operating system simply checks the memory
location regularly to see whether the event flag is set. Either way, the
system must then call the BIOS to retrieve information about the spe
cific event.

Plug and Play Device Drivers
One of the issues facing the Windows 95 team was how to build mo
mentum behind the Plug and Play standard. Although Plug and Play
has a broader scope, the fact that Windows 95 would be the first major
operating system to support it needed thinking about. Apart from sim
ply convincing all the hardware manufacturers that Plug and Play was
indeed a really good idea, the team thought that making it easy to con
form to the Plug and Play standard would help a lot. One simple way to
make life easy for the manufacturers was to limit the software changes
necessary to support Plug and Play. Since Windows 95 can use existing
Windows device drivers, you don't absolutely need to develop a new
driver to support a Plug and Play system. But this is rather passive sup
port for Plug and Play. To actively support Plug and Play, an existing
Windows driver needs to incorporate several modifications and exten
sions. Here's what such a driver needs to do:

II Be dynamically loadable and unloadable. Thus, a Plug and
Play driver becomes a dynamically loadable VxD.

II Use the Windows 95 registry for nonvolatile parameter
storage. Windows 95 frowns upon system components that
store parameter information in private files or other storage
areas. Everything should be in the registry. Information stored
under the registry key HKEy_cuRRENT_CONFIG also

337

INSIDE WINDOWS 95

defines the current machine state-docked or undocked, for
example.

II Register with the configuration manager at load time and
accept the hardware resources allocated by the configuration
manager, and then configure the device according to the
configuration manager's allocations rather than according to
any existing default.

II Support the release of resources on request.

1111 Support the new Plug and Play APis, including the events
notified by the event APis.

The major manifestation of a philosophical change in a Windows
95 device driver is its acceptance of the configuration manager as the
controlling entity for resource allocation. Rather than simply initializ
ing a device to a known configuration, the driver must obey the con
figuration instructions passed to it by the configuration manager. The
driver must also respond to event notification if it is to be a good citizen
within the overall event system.

Windows 95 device drivers must support several new APis if they
are to operate within the Plug and Play environment. For example, the
configuration manager uses specific APis to either demand or request
that the driver release an already allocated resource. Another API tells
the driver to configure the hardware according to the resource alloca
tion specified in the device node parameter. The configuration man
ager may make this call several times while it attempts to adjust the
system configuration to avoid allocation conflicts.

Applications in a Plug and Play System

338

Any application can involve itself in Plug and Play issues by responding
to the events that Windows 95 defines. A lot of applications won't care
that the system is Plug and Play. After all, a Plug and Play system with no
removable devices probably won't change its configuration from power
on to power off. However, for many of the latest generation of portable
PCs, there are a number of instances in which applications ought to be
aware of dynamic configuration changes. Here are a few examples:

E I G H T: Plug and Play

• Applications running on portable systems that use PCMCIA
cards for disk storage need to take account of the possibility
that the user will try to eject a card when there are files open
on that disk.

• User alteration of connectivity options-for example, ex
changing a network card for a modem card-is likely to be of
interest to both the network subsystem and any communica
tions application. The application ought to try to adapt itself
to the new speed of the connection, for example.

• Applications ought to adapt smoothly to changes in display
resolution initiated by the user.

• The "disappearance" of network volumes when the user walks
out of range of his or her wireless network should not result
in inelegant or misleading error messages.

In general, applications need to be event aware, and certainly more
hardware aware than they have been. Both the new event system and
the use of the Windows 95 registry are key to the implementation of
standout Windows 95 applications.

Conclusion
In this chapter, we've looked at the Plug and Play specification from the
viewpoint of the general goals and architecture of the Plug and Play
subsystem. The details we've gone into are specific to the Windows 95
implementation of the Plug and Play.specification, but implementa
tions for other operating system environments will share many similari
ties with the Windows 95 version. If Plug and Play hardware becomes
ubiquitous, it's almost certain that other operating systems will support
the Plug and Play specification.

Plug and Play represents a major step forward in the ease of use of
personal computers. An Apple Macintosh user might assert that they've
always had it that good, but then they've also had a much narrower
range of third party hardware to choose from. If you remember· the
theme of Apple's recent anti-Windows television advertising campaign,
you'll appreciate how long overdue an enhancement to the PC envi
ronment Plug and Play is. Although it will take time for the industry to

339

INSIDE WINDOWS 95

340

catch up and start providing full Plug and Play compliant systems and
components, the benefits to users and overwrought support personnel
make the effort's wisdom seem compelling.

So far, we've looked at a Windows 95 system from the perspective of a single user.
Now that we have Plug and Play, we can fearlessly connect our system to just
about anything. The corporate network is probably what occurs first to most of us,
so in the next chapter we'll look at the networking capabilities of Windows 95.

References
To receive a copy of the Plug and Play Device Driver Kit (DDK), send elec
tronic mail to plugp!,ay@intel.com or fax a request to Intel at (503) 696-1307.

To receive information about future developments at Microsoft on
Plug and Play topics, send electronic mail with complete contact information
(your name, mailing address, phone number, fax number, and e-mail
address) to p!,aylist@microsoft.com.

Copies of the various Plug and Play specifications are available for
downloading from the Plug and Play forum on CompuServe. Type go
plugplay at any command prompt. The following specifications are currently
available, but others may be added:

The Plug and P/,ay ISA specification

The Plug and Play BIOS specification

The Plug and Play SCSI specification

The Plug and P/,ay PCMCIA specification

The Plug and Play PC/ specification

The Plug and P/,ay Advanced Power Management specification

C H A P T E R N I N E

NETWORKING

Early presentations of the Windows 95 networking strategy character
ized Microsoft's goal as "providing the best desktop operating system
for networked personal computers." To this end, Windows 95 incorpo
rates full peer-ta-peer networking capabilities, allowing you to configure
self-contained Windows 95 networks with each machine acting as a net
work server. In addition, Windows 95 aims to provide connectivity to
every leading network architecture through a single user interface and
a common set of APis for network applications. Networking under
Windows 95 relies on features we've already looked at-most notably
on the installable filesystem mechanism discussed in Chapter Seven. In
Chapter Ten, we'll look more closely at how Windows 95 handles re
mote communications; in this chapter, we'll concentrate on Windows
95 support for local area net:Working.

Although whether or not you'll get networking for free probably
won't be clear until the day the product is officially announced, Win
dows 95 certainly emphasizes networking by incorporating peer-to
peer support, local area network connectivity, and remote connectivity.
Windows 95 needed to do a great job of supporting client connections
to other networks, and the market positioning for Windows 95 tends to
emphasize this connectivity over the peer-to-peer facilities. In fact,
most of the newly designed features for Windows networking are more
important to client connectivity than to peer-to-peer operation.
Microsoft's emphasis on client support is reflected in its development
of Novell NetWare support for Windows 95 and its more recent charac
terization of Windows 95 as "the well-connected client."

Of course, Novell remains the industry's dominant supplier of
network products and, at least at the time of this writing, a staunch

341

INSIDE WINDOWS 95

advocate of the client-server architecture.1 The Windows 95 team had
to be pragmatic about this situation: their goal that Windows 95 be the
perfect client operating system meant addressing the NetWare issue as
well as client operation on a Microsoft network. As in the recent release
of Windows for Workgroups 3.11, Windows 95 incorporates support for
a full Novell client. Buy Windows 95, and you can plug straight in to a
NetWare network without buying any other software.2

Both Windows for Workgroups version 3.11 and Windows 95 go a
lot further than just offering Novell NetWare support alongside sup
port for a Microsoft network. In both products, the system provides for
the use of multiple simultaneous network interfaces by using the
installable filesystem capability to support remote filesystems. Many us
ers question when on earth they'd ever need to take advantage of this
feature. But desktop configurations with, for example, a local link to a
NetWare server, a wide area link using a TCP /IP protocol stack,3 and a
dial-up terminal connection to some other network are actually com
monplace nowadays. Windows 95 allows these three kinds of network
connections to be cleanly integrated-a far cry from the earlier trials
and tribulations of networking under Windows 3.0.

Windows Networking History

342

Before we dive into the technology, let's review some of the history of
Windows networking. Microsoft has been an active participant in the
network market since 1984, when MS-DOS version 3.1 and MS Net were
released. For some years, MS Net was outsold by Novell NetWare, and
until the release of Microsoft LAN Manager in 1988, Microsoft really
didn't have an industrial strength network operating system. During the
same period, network support in Windows was weak-a situation that
has changed dramatically as Windows has built its market share over
the last three years, since the release of Windows 3.0.

1. Novell's acquisition of UNIX System Laboratories and its UNIX technology at
least raises the question of whether Novell will ultimately provide a mainstream peer
to-peer network product.

2. Since packaging issues hadn't been decided, in this chapter I've treated
"Windows 95" as the networkable version of the product. Maybe the product will be in
a single package-maybe not.

3. Basic TCP /IP connectivity was another feature under development for Windows
95 that may or may not be "in the box" for free come product release time.

N I N E: Networking

Peer-to-peer networking has leaped to prominence only in rela
tively recent times. The release of Microsoft's Windows for Workgroups
has sparked a heightened interest in what had been, until late 1992,
something of an underground movement in the personal computer
industry. When Microsoft announced Windows for Workgroups just be
fore the 1992 COMDEX/Fall trade show, peer-to-peer networking
joined the technology mainstream. Despite the apparent youth of the
technology, peer-to-peer networks had actually been in wide use since
the introduction of the Apple Macintosh in 1985. Apple included the
AppleTalk networking capability with each and every Macintosh they
shipped. Most early users of the Macintosh were unaware of the fact
that they were using peer-to-peer networking whenever they printed a
document on the Apple LaserWriter. Apple based the design of the
AppleTalk networking protocol on the peer-to-peer principle, and
AppleTalk continues to be widely used on Macintosh networks today.4

In the PC market, products such as IBM's PC Network and Novell
NetWare debuted and began building an installed base. Principally
because of the overwhelming success of Novell NetWare, client-server
networking became known as the way to set about connecting multiple
IBM-compatible PCs. Microsoft's early network products, MS Net and
Microsoft LAN Manager, reinforced the notion that it was a client
server world. In fact, until the release of Windows for Workgroups,
Microsoft really didn't acknowledge the existence of the alternative
model for networking.

There were companies that had built a business espousing the
peer-to-peer model. Products such as lONet, TOPS, and LANtastic built
a solid market base and had many loyal and enthusia~tic customers. But
it was tough going. On the one hand, they had Apple giving away free
networking with every Macintosh, and on the other, they had industry
heavyweights such as Novell, IBM, and Microsoft advocating a client
server approach. The companies in the peer-to-peer business found
that their products were perceived as suitable only for small networks

4. In keeping with their habit of promoting benefits rather than technology, Apple
never pronounced themselves a leader in peer-to-peer networking; nor did they try to
promote their technology as the best way to network personal computers. Many users
from the IBM-compatible side of the PC universe as a consequence express surprise
when they're exposed to the networking capabilities of the Macintosh.

343

INSIDE WINDOWS 95

344

or for small businesses who employed no PC professionals. Although
this positioning belied the capabilities of a peer-to-peer network, this
type of environment was where the leading peer-to-peer product com
panies found their easiest sales and their most enthusiastic customers.
Competitive pressures have taken their toll on the peer-to-peer net
work companies, and today only Artisoft's LANtastic has significant
market share. Other early products, such as lONet, have changed own
ership a number of times, and although the other peer-to-peer prod
ucts still exist, they have fairly small installed bases and the future of the
various vendors is uncertain. This sad history doesn't sound like much
of an advertisement for peer-to-peer networking, but the lack of success
so far comes more from the market issues than from any deficiencies in
the capabilities of the underlying technology.

Until late 1991, Novell, IBM, and Microsoft continued to espouse
the benefits of client-server networking and either ignore or dismiss
peer-to-peer solutions. This market situation was an artificial one, cre
ated more by marketing dollars than by technology, but it did make
good business sense:

• Server software, for use on a more limited number of ma
chines, allowed the supplier to charge a higher price.

• Server-based application software could similarly command a
premium price.

• The buyer was often a DP professional, familiar with the
client-server model that had been established by the main
frame and minicomputer network manufacturers.

• Network administration tools were often quite poor, even on a
server. A peer-to-peer network could compound the problem
by putting poor tools in the hands of an unsophisticated user.

• The technology associated with ensuring the security of a
peer-to-peer network was still more a research topic than an
off-the-shelf product. In contrast, client-server networks
provided more reliable security.

Perhaps ironically, the most popular UNIX-based network solu
tions had also adopted a peer-to-peer model, but IBM-compatible PCs
and mainframes remained the stronghold of client-server networking.
The situation began to change when Novell introduced its peer-to-peer

N I N E: Networking

product, NetWare Lite, in late 1991. Positioned as a direct competitor
to the increasingly popular LANtastic network from Artisoft, NetWare
Lite experienced less than spectacular success. NetWare Lite was not a
very good product. Novell had tried to ensure that it would not impact
upon the continued success ofNetWare proper and as a result had in
troduced a product that was not competitive in its own sphere. The
NetWare Lite introduction did put the peer-to-peer concept on many
people's radar screens for the first time, however.

In 1992, Microsoft's position on peer-to-peer networking also be
gan to change, as the company began the marketing campaign for its
next major operating system product: Windows NT. After years of pro
motion and successive product releases, Microsoft Windows had be
come a runaway hit, OS/2 was still selling poorly, and Microsoft had
reshaped its plans to promote a Windows operating system product
family. At the outset, Microsoft put little emphasis on the networking
capabilities of Windows NT. (Remember, Microsoft LAN Manager on
OS/2 was the then current solution.) But as more information about
the product became available, people began to realize that Windows
NT incorporated peer-to-peer networking facilities within the basic
operating system. Together with the Windows NT networking news,
information about a p.ew version of Windows, called Windows for
Workgroups, began to appear. Released for the first time in October
1992, Windows for Workgroups turned out to be a full peer-to-peer net
work product. During most of 1993, Windows for Workgroups was
regarded as a somewhat unsuccessful product, with its critics complain
ing about slow sales and lackluster features.5 The "slow sales" charge
was unfair; Windows for Workgroups racked up more than a million
units in shipments during its first year. And in the fall of 1993,
Microsoft released Windows for Workgroups version 3.11-a product
that included the debut of a number of features important to Windows
95, such as the protected mode FAT filesystem. Clearly, Microsoft didn't
think that peer-to-peer networking wasn't worth further investment. In
the summer of 1993, Microsoft had delivered the first production re
lease of Windows NT, with built-in peer-to-peer capabilities, and of
course the Windows NT Advanced Serve:r-a product that more
closely resembled the client-server architecture of earlier Microsoft
LAN Manager releases.

5. Even inside Microsoft, the belief that sales were slow prompted company
humorists to call the product ''Windows for Warehouses."

345

INSIDE WINDOWS 95

This is really where our historical diversion began. Although it has
taken Microsoft a while to join the advocates of peer-to-peer network
ing, it appears that the peer-to-peer model provides the direction for
the company's own networking products in the foreseeable future-a
direction reinforced by the release of Windows 95.

Microsoft's move to a reliance on peer-to-peer networking is
hardly unique. Recent developments in distributed systems technology
have begun to find their way into commercially available products, with
remote procedure call capabilities and distributed object management
features6 moving from the realm of computer science research to pro
duction systems. Distributed systems tend to rely on the availability of
an underlying peer-to-peer network architecture, and despite what
Novell might say, client-server networking seems destined to become
not much more than a network configuration issue over the near term.

Of course, the major improvements in Windows networking also
allow Microsoft to prevent Novell from establishing any market share
in desktop systems. Sure, you may continue to buy Novell servers, but
the capabilities of Windows 95 make Microsoft your most likely desk
top operating system supplier.

Networking Goals

346

Microsoft emphasizes the support for multiple network connections
over the other goals for networking in Windows 95. You'll hear the
term "universal client" used to characterize this particular goal. Here's
what the term actually means:

II A set of architected interfaces that enable a network vendor
to incorporate proprietary network client support into
Windows95. ·

II System support for simultaneous operation of a single Win
dows 95 system on several networks.

1111 A common user interface for network browsing, resource
connection, and printing-regardless of the underlying
physical network type.

6. Capabilities that Microsoft has already announced as an important part of its
Cairo development project. ·

NINE: Networking

• Support for network operations from within the system shell.
No longer is networking an "add on" component; it's a
fundamental part of the system.

Acknowledging the entrenched position of both Novell NetWare
and the UNIX-dominated TCP /IP networks, Microsoft has developed
Windows 95 client support for both. Of course, Microsoft would like its
own network solutions to become as popular as those of Novell, so Win
dows 95 has to be a good family member and support connections to
Windows NT systems as well as existing Windows for Workgroups net
works. Incorporating a peer server with good file and printer sharing
capabilities allows Windows 95 to act as a capable, self-contained net
working product.

Microsoft chose to develop its own client services for NetWare for
Windows 95. This decision was largely a response to Novell's poor track
record when it came to providing timely, high-performance client soft
ware for Microsoft operating systems. Early tests of Microsoft's client
services for NetWare (reported in May 1994) showed some impressive
results, with two to three times the performance of the Novell solution
for Windows 3.11.

The other major goal for Windows 95 networking was to develop
new 32-bit protected mode software for all the network components.
Networking is a big winner when it escapes the limitations of real
mode, the advanta'.ges corresponding to those that were gained by the
introduction of a 32-bit protected mode filesystem. Overall perfor
mance improves, large software components such as network trans
ports disappear from low memory, and the use of Windows 95's
multithreaded architecture gives improved response and network
throughput. Naturally, the network team had to obey the laws of com
patibility, and Windows 95 still allows the use of older MS-DOS and
Windows 3.1 network drivers.

Network Software Architecture
Like the new filesystem architecture, network support in Windows 95
relies on a layered design that separates functionality into several dis
tinct modules. Early formalized approaches to network software design
were among the first instances of this technique, and proponents of

347

.. INSIDE WINDOWS 95

WOSA

348

existing network architectures, such as the OSI model, tend to be quite
doctrinaire about the layered approach. As with most aspects of Win
dows design, though, implementation performance and memory re
quirements are paramount considerations. Although the designers of
Windows 95 networking adopted a layered approach, practical consid
erations dictated a few design impurities. Figure 9-1 shows the overall
network software configuration in a "typical" Windows 95 system that
provides access to two networks through a single network adapter.

Many of the component names in Figure 9-1 are probably already
familiar to you. We'll look at each of them as we analyze the architec
ture. Windows 95 networking is one of the best examples of the use of
Microsoft's Windows open Services Architecture (WOSA), and coming to
grips with the networking subsystem is easier if you understand WOSA
to begin with.

Microsoft came up with the unwieldy WOSA name as an umbrella for a
set of software components that, although originating in different
projects, exhibited many similar characteristics. Much of the design
impetus for WOSA came from the need for applications to interface to
different networkS, although WOSA can be applied to non-networked
f"nvironm.f"nts ::is wf"lL F.ssf"nti::11lv WOSA f"nromn:::issf"s :::i st>rif"s ofintf"r----·-- ----------- --- .. ---· ------------;} .. - --- ----,...---r------ -- ------ -- ------

faces designed to allow multiple software components with similar
functionality to co-exist in the operating system. The user's interaction
with an application ultimately results in the application;s using the
system's defined APis to manipulate data. WOSA introduces the service
provider interface, or SP!, that allows the OS to call system components
(called service providers) to complete the processing of the data.
Whereas the API is independent of the underlying hardware or service,
the SPI remains hardware independent but is usually service depen
dent, and the service provider component itself is intimately connected
to its target environment. As far as the user or an application is con
cerned, a service provider is simply part of the operating system. Figure
9-2 on page 350 illustrates the common components you'll find when
ever WOSA is used as the system model. The standard configuration in
cludes the API layer, the routing module, the SPI layer, and the
underlying service providers. To get its work done, a service provider
may call on any operating system functions ot use other, lower-level,
service providers (again by means of a defined SPI).

API

SPI

Transport
APVSPI

NDIS

Figure 9-1.

' Network
adapter driver

'

Networking software components in Windows 95.

N I N E: Networking

One good example of the use of WOSA is in an electronic mail
application. Most heavy e-mail users today still have to learn at least a
couple of different message editors, different mail addressing schemes,

349

INSIDE WINDOWS 95

350

API

SPI

Figure 9-2.
Components in a standard WOSA configuration.

and idiosyncrasies of the underlying mail system. The desirable situa
tion would be to prepare messages using a single application and have
the underlying software figure out how to deliver the message-regard
less of whether it's to someone in your office, to a CompuServe sub
scriber, or to a user out on the Internet. There are applications that try
to do this, but from the point of view of the application developer, it's a
daunting prospect to have to write a single application that knows
everything about every electronic mail system. If you write the world's
best message editor, you'd like to be able to hand a completed message
to the world's best Internet mail delivery program, or to the world's
best CompuServe mail delivery program, and so forth. Lower down in
the system, the mail delivery programs themselves should have the
option of using one of many different network transports to complete
the physical transmission of data-and writing network transports is
not what an electronic mail application vendor wants to spend re
sources on.

WOSA is the basis for providing this functional separation within
Windows. In an extension of the example we've been considering, a
mail message editor would use the Windows API. A mail service pro
vider would implement the appropriate SPI (in this case, Microsoft's

N I N E: Networking

MAPI), and Windows itselfwould link the components using the rout
ing module. A similar arrangement would exist for other services. Sev
eral examples of the WOSA model already exist: the TAPI interface for
telephone equipment manufacturers, the WinSock interface that stan
dardizes the TCP /IP socket interface under Windows, ODBC for data
base access, and others. 7

Network Layers
Looking back at Figure 9-1 on page 349, you can see the influence
WOSA has on the Windows 95 networking subsystem. Networking sup
port in Windows 3.1 was restricted to a single network. Windows for
Workgroups expanded this to provide support for its native peer net
working plus one other network. Windows 95 makes use of WOSA
design techniques to allow you to install support for as many concur
rent network connections as you want.8 The multiple provider router
(MPR) shown in Figure 9-1 is the routing component for Windows 95
networking. Both the network provider modules and the network transports
conform to SPI rules, and at the lowest level, the popular NDIS (Network
Driver Interface Specification) interface provides further support for
shared device access and abstraction of the network hardware.

Here's a summary of the functions of each of the components il
lustrated in Figure 9-1:

API. The API layer is the standard Win32 APL Apart from file-based
operations such as file open that happen to address remote
filesystems, the Win32 API provides specific network-oriented
APis. These functions allow for such operations as remote
resource interrogation and remote printer management. The
WNetGetUser() API, for example, allows an application to deter
mine the user name associated with a particular network connec
tion. All Win32 network APis have the WNet prefix.

Multiple Provider Router. The MPR is the routing component for
Windows 95 network operations. The MPR also implements
network operations common to all network types. The MPR

7. Each of these interfaces is a service provider. As you can see, marketing
requirements dictate that an SPI must also have its own acronym.

8. An arbitrary implementation limit of ten networks was used in early releases of
Windows 95. We'll have to wait and see whether ten equals infinity.

351

INSIDE WINDOWS 95

352

handles all Win32 network APis, some of which may be routed
to the appropriate network provider module. The MPR and the
network provider modules are 32-bit protected mode DLLs.

Network provider. The NP implements the defined network service
provider interface, encompassing such operations as making
and breaking network connections and returning network status
information. Only the MPR calls the network provider; an
application never directly calls an NP.

IFS Manager. The IFS Manager fulfills its normal role of routing
file system requests to the appropriate file system driver (FSD).
The MPR won't see pathname-based or handle-based application
calls; it's up to the IFS manager to route such calls to the net
work FSD. Network providers can call the IFS manager directly
to perform file operations.

Network Filesystem Driver. Each network FSD is responsible for
implementing the semantics of a particular remote filesystem.
The FSD may be called by the IFS manager with requests of the
same type as for local filesystems (for example, file open or file
read), or the NP may call the network FSD directly. Obviously, a
network vendor has to develop the NP and the network FSD
toge.ther since each understands something of the semantics of
the underlying filesystem, so these modules aren't interchange
able with others at the same level. Each network FSD is a 32-bit
protected mode VxD. (This alone guarantees a substantial
performance boost for Windows 95 networking.)

Network transport. The network transport VxD implements the
device-specific network transport protocol. Windows 95 allows
multiple transports to be in use simultaneously. The network
FSD calls upon the transport for the actual delivery and receipt
of network data. Given the likely network configurations of
Windows 95 systems, each network FSD will probably use a par
ticular transport. However, the separation of functions means
that it's perfectly feasible for more than one FSD to use the same
transport. Microsoft's NetBEUI and Novell's IPX/SPX are exam
ples of network transports due to be delivered with Windows 95.

NDIS. The Network Driver Interface Specification is a vendor
independent software specification that defines the interaction

N I N E: Networking

between any network transport and the underlying device driver.
NDIS was originally developed to allow more than one transport
to use the same physical network adapter and its associated
device driver. NDIS has been revised over time, and Windows 95
networking supports NDIS version 3.0, although Windows 95
also contains provisions for using older 16-bit drivers conform
ing to either the ODI (Novell's Open Datalink Interface) model or
earlier versions of NDIS. Both Windows NT and Windows 95
support the NDIS 3.0 interface, which means that network
device driver developers only need to follow the appropriate
rules to produce a single driver that works under either operat
ing system.

Network adapter driver. The network adapter driver VxD controls the
physical network hardware. The NDIS interface allows the driver
to remain unconcerned about most network protocol issues
the driver simply works in concert with the network transports to
send and receive data packets. Drivers designed for Microsoft's
networking products are called media access control, or simply
A:IAC, drivers. The driver does have to incorporate support for
the Plug and Play subsystem in order to participate fully in the
Windows 95 environment.9

Network Operations
Before we delve into the details of some of the Windows 95 networking
software components, let's look at a few of the basic network operations
Windows 95 supports and at some of the terminology that pervades
Windows 95 networking. The screen in Figure 9-3 on page 355 shows
a typical networking action-using the shell to wander around the net
work looking for something. Such wandering is called browsing, and the
objects of the user's attention are various types of network resources.
Here are the terms you'll see as you deal with this type of user action or
in descriptions of the software that implements such an action:

A resource is a network object available for shared access-usually a
printer, a collection of files grouped in a disk directory, or a
communications device such as a fax or a modem.

9. The network adapter driver supports Plug and Play in concert with the NDIS.386
VxD, which is a standard component of Windows 95.

353

INSIDE WINDOWS 95

354

To browse is to wander the network looking for resources. The
Windows 95 shell's manifestation of browsing is a series of
windows that open to display successive levels of network re
sources.

To enumerate is to list or examine a set of related objects. A server
may be sent a command requesting it to enumerate all of its
resources, for example. The local shell would then display this
list to the user during a browse operation.

A connection is a logical link between a local name, such as COMI:,
and a network resource. Establishing and maintaining network
connections is a principal function of the higher layers of the
network subsystem.

A domain in Microsoft's networking architecture is a collection of
servers and resources. Such a logical grouping allows for easier
administration since a user's access privileges to the domain
define the user's access to each server. A friendlier grouping
concept, the Network Neighborhood, was introduced into
Windows 95 early in 1994. Whereas a domain has a formal
specification, the neighborhood is simply the network resources
you choose to include there.

A container is an object that holds other objects. A domain, for
example, acts as a container for network servers. Using container
objects when browsing a large network is easier for the user, who
will at first see a probably small list of container objects rather
than a very long list of individual servers.

A share point is a disk resource that a remote user can connect to. All
directories and files in the share point's subtree become part of
the connected network resource.

The connection is particularly significant in Windows 95 networking. A
network connection is essentially the ability to have references to the
local LPTI: device be replaced with operations on a network printer
\\Serverl\Laserjetlll or a network file \\Server2\letters\letter.doc take
the place of an apparently local file H:LETTER.DOC. Windows 95 for
malizes the notion of a persistent connection, a network connection that
has a lifetime beyond a single session or working day. You'll see persis
tent connections in use whenever you log in to the network. The shell
remembers the connections that were in place the last time you logged

N I N E: Networking

Figure 9-3.
Browsing the network with the Windows 95 shell.

in and restores them. If you use the same network printers and the
same network mailbox each day, as most people do, you don't need to
explicitly restore the connections every day. Windows 95 networking
allows an application to identify a connection to a network resource as
a persistent connection, and thereafter the shell will take care of restor
ing the connection-neither the application nor the network provider
needs to worry further about having to set up the connection for each
new session.

The Multiple Provider Router
Windows 95 provides the multiple provider router as a standard DLL.
Functions within the MPR relieve each network vendor of the need to
implement a large amount of common code. Equally as important, the
fact that each NP relies on the same code in the MPR means that there
will be a consistent treatment of many network issues. The MPR recog
nizes the fact, for example, that the names LPTI and LPTI: refer to the
same local device. Leaving such details up to each NP would almost
guarantee some set of minor differences that would have the potential
to confuse the user.

355

INSIDE WINDOWS 95

356

An application (including the system shell) is the principal cause
of most MPR service calls. The MPR DLL resolves all the networking
APis defined for the Win32 interface. Microsoft refers to this subset of
the Win32 APis as "WinNet" or "WNet" functions, and every API in the
subset uses VViVet as a name prefix. To avoid any confusion, the func
tions provided by each network provider use NP as a name prefix. Ap
plication calls to WinNet functions may well result in the MPR's calling
NP services, but applications never call the network providers directly.

The 32-bit WNet API functions are another example of the Win
dows 95 teani's efforts to take advantage of the switch to 32-bit inter
faces to improve on the API design. Apart from improvements in the
network subsystem proper, enhancements in the Windows 95 base op
erating system add a lot to the Windows networking capabilities.
Changes in the API reflect these improvements in Windows 95:

Ill Plug and Play technology is a major aid in reducing the
complexity of setting up a network. The original release of
Windows for Workgroups actually pioneered several aspects
of the hardware recognition and configuration capabilities
now incorporated in the Plug and Play subsystem.

Ill Support in the base system for long filenames was previously
part of the network subsystem to allow interoperation with
Windows NT and OS/2 LAN Manager servers, both of which
support long filenames on certain filesystem types.

Ill Multiple concurrent network support obviates the need for
someAPis.

Ill Common interfaces with Windows NT reduce both the
application developer's and the device driver developer's
workloads as they try to support both operating systems.

A number of Windows 3.1 APis, though still supported for 16-bit
application compatibility, have disappeared from the Win32 API set
and have been declared "obsolete" by Microsoft. All the IFN prefix
APis that dealt explicitly with long filenames, for instance, are "obsolete."

Reducing the number of explicit network APis obviously benefits
the application developer, who now has less to learn when incorporat
ing networking capabilities. The API reduction doesn't mean less func
tionality, however, since improvements in the base operating system
also boost the networking capabilities of the average application. For

N I N E: Networking

example, using UNC pathnames that reference network locations such
as \\Server\Resource\DocumenLFile is now recommended practice for
every application. The filesystem supports this naming convention di
rectly (through the CreateFile() API), and using full network pathnames
is now just plain good programming practice rather than a convention
limited to network-aware applications. The new filesystem architecture
results in an API call that needs network services being routed to the ap
propriate network component. The application doesn't need to worry
about calling a network-specific APL

32-Bit Networking APls
Before we look at the services that must be supplied by a network pro
vider, let's look at the APis that are specific to a network environment.
The Win32 network APis fall into two main sets: the set of functions
that deal with network connections, and a set of miscellaneous services
that support other network features. Apart from applications' calling
these APis directly, network providers also call these APis to take advan
tage of the common code implemented in the MPR.

Network Resources
Several of the WNet APis use a data structure identified as a
NETRESOURCE. This object is central to the interaction of the appli
cation and the underlying system and describes the type of the re
source in addition to linking the resource to the underlying network
provider that supports it. Figure 9-4 shows the NETRESOURCE data
structure. Specific API calls may not use all of the fields in the struc
ture, and in some cases, there is a don't care or all value for a field.

Figure 9-4.
The NETRESOURCE data structure.

357

INSIDE WINDOWS 95

358

If you examine the purposes of the fields in the NETRESOURCE
data structure, you can begin to see the relationship between the ap
plication (particularly the shell) and the underlying network subsystem:

The dwScope field, when used in an enumeration function, specifies
the scope of the enumeration. The scope can be all resources
on the network, currently connected resources, or persistent
connections.

The dwType field determines whether the resource type is a disk, a
printer, or another type.

The dwDisplayType field identifies the resource as a network domain,
a network server, or a share point for purposes of graphically
displaying the network resource.

The dwUsage field denotes the resource as one that you can directly
connect to or as a container resource.

The lpLocalNamefield points to a string that names the local device.

The lpRemoteNamefield points to a string that names the network
resource.

The lpComment field points to a string that contains a comment
supplied by the associated network provider.

The lpProviderfield points to a string that contains the name
of the network provider associated with the resource. (A
NULL value indicates that the name of the provider is un
known.)

Connection APls
The connection APis allow applications to create and break access to
explicit network resources. The connection APis appeared in earlier
versions of Windows networking, but the latest form of these APis al
ters the format of the call parameters slightly, and although older APis
such as WNetAddConnection() are still supported, the recommendation
is to use the most recent form (in this case, WNetAddConnection2()).
Here's a summary of the connection APis:

N I N E: Networking

API Name Function

WNetAddConnection() Connect to a network resource using
a local device name. Replaced by
WNetAddConnection2().

WNetAddConnection2() Connect to a network resource using a
local device name. ·

WNetCancelConnection() Break an existing network connection.
Replaced by WNetCancelConnection2().

WNetCancelConnection2() Break an existing network connection.

WNetGetConnection() Retrieve the network resource name
associated with a local device name.

WNetNotifyReg;ister() Register a connection notification
function.

WNetConnectionDialog() Start a network connection dialog box.

WNetDisconnectDialog() Start a network disconnection dialog box.

The connection APis generally de~ with NETRESOURCE struc
tures-passing a structure with the fields necessary to complete the op
eration filled in. An application can call the WNetConnectionDialog()
and WNetDisconnectDialog() functions directly to allow the user to make
or break a network connection. These two functions are the same ones
used by the shell for network browsing.

The services of a network provider are called on to help complete
the connect or disconnect operation, but the NP doesn't need to be
directly involved in the details of network browsing, resource selection,
and persistent connections. However, the WNetNotiJYRegi,ster() API does
allow the NP to watch network connections ifit wishes. Using this API,
an NP can register a callback that occurs before and after each network
resource connect and disconnect operation initiated by the MPR.
Within the callback, an NP can affect the operation in progress. For
example, if a connect operation fails, the NP can use the notification
callback to instruct the MPR to retry the connection attempt.

Enumeration APls
The three enumeration APis-WNetopenEnum(), WNetEnumResource(),
and WNetCloseEnum()-allow a caller to examine the details of the avail
able network resources. You use these APis much as you might use an
MS-DOS FindFirst/FindN ext sequence to search for a file on a disk. The
WNetopenEnum() API allows the caller to describe the set of target net
work resources, and successive calls to the WNetEnumResource() API will

359

INSIDE WINDOWS 95

360

return NETRESOURCE structures filled in with the details of the match
ing available network resources. The MPR will involve the NPs in com
pleting the enumeration process, but the Win32 APls cloak the details of
a particular NP's enumeration functions. The user sees the result of a
network enumeration as a series of open windows displaying the succes
sive layers of the enumeration, as in Figure 9-3 back on page 355.

Error Reporting APls
The WNetSetLastError() and WNetGetLastError() APis are equivalent to
the Win32 SetLastError() and GetLastError() functions normally used by
DLLs. These functions allow a caller to set a specific error code that will
be returned to another caller or to retrieve an extended error code.
The network versions of the functions are provided for use by a net
work provider only and not as a general application interface.

Local Device Name APls
The local device name APis help an NP to manipulate device names
consistently. Again, these APis are intended for use by NPs only and are
not for general application use. The WNetDeviceGetNumber() API will ac
cept a device name string and return a local device number-the MPR
carries out all the necessary name validation and matching during the
call. The WNetDeviceGetString() function reverses the procedure, return
ing a name for a given device number. The WNetGetFreeDevice() function
simply returns a currently unused local device number.

UNCAPls
The UNC APis are designed to provide a service to the network provid
ers that allows consistent treatment of UNC pathnames. For example,
MS-DOS naming conventions call for the \ character as a pathname
component separator, whereas a UNIX system uses the I character.
UNC naming support is available for both environments, however. The
WNetUNCValidate() API function checks a complete pathname, and the
WNetUNCGetltem() API returns successive components of the name to
the caller.

Password Cache API
Windows 95 networking implements a local password cache scheme
that encrypts passwords and stores them locally. The administrator can
disable this scheme (for extra security), and an NP can prevent its pass
words from being retained in persistent storage. WNetCachePassword() is
the API that provides access.to the password cache services.

N I N E: Networking

Authentication Dialog API
The WNetAuthenticationDialog() API provides a service that allows an NP
to request authentication information-particularly a user name and
password-from the user. Again, the intent is to present a consistent
network access interface to the user, regardless of the underlying net
work type.

Interfacing to the Network Provider
The MPR is responsible for loading each NP in turn. The settings in the
Windows SYSTEM.IN! file determine the total network configuration
for a particular machine. Figure 9-5 shows a section of a SYSTEM.IN!
file that describes a three-network configuration-Windows for
Workgroups, NetWare, and the revolutionary NewNet product.10 The
loading and initialization order for network providers will be the order
in which they're specified in the SYSTEM.IN! file. Each NP can store
additional initialization information within its private section of the
SYSTEM.IN! file, but values for the NPID, NPName, NPDescription, and
NPProvider fields are required, and Microsoft has reserved all strings
with the NPprefix for its own use. The WNetGetSectionName() API allows
an NP to find its private section within the SYSTEM.IN! file.

Figure 9-5.
SYSTEM.IN! entries for multiple (three) networks.

10. The latter product is unlikely ever to see the light of day but is useful for
illustrative purposes.

361

INSIDE WINDOWS 95

The NPProvider field identifies the DLL that implements the net
work provider interface. The NPID field identifies the type of the
network. Figure 9-6 shows a partial list of the network products identi
fied for support-which says something for how serious Microsoft is
in its intention to allow a Windows 95 system to connect to just about
anything you can put on the other end of the wire. Simply adding the
name of an existing network driver to the SYSTEM.IN! list doesn't magi
cally get you network support, though: the DLL that provides the net
work interface must be a full Windows 95-compatible network provider,
and it's up to the various vendors to produce this software themselves. 11

Mnemonic Identifier

WNNC_NET_MSNET

WNNC_NET_LANMAN

WNNC_NET_NET"'7ARE

WNNC_NET_VINES

WNNC_NET_IONET

WNNC_NET_SUN_PC_NFS

WNNC_NET _LANTASTIC

WNNC_NELAS400

WNNC_NET _FTP _NFS

WNNC_NET_PATHWORKS

WNNC_NET_POWERLAN

Figure 9-6.

Supported Network Type

Microsoft MS Net

Microsoft LAN Manager

Novell NetWare

Banyan VINES

TCS lONet

Sun Microsystems PC NFS

Artisoft LANtastic

IBM AS/400 Network

FTP Software NFS

DEC Pathworks

Performance Technology
Power LAN

Some of the network types supported in Windows 95.

The Network Provider

362

A single network provider implements the service provider interface
for a particular network as a Windows DLL. The NP doesn't have to
worry about multiple network issues or about most aspects of interfac
ing to the user. The MPR and the support that comes from the underly
ing filesystem architecture take care of all this. In fact, Microsoft's
design recommendations for network vendors specifically deter the

11. By shipment time, this list may well have changed-not least because some
network vendors may no longer exist.

N I N E: Networking

implementer from using private user interface dialogs. This isn't to say
that the characteristics of a particular network are totally hidden from
the user. In several instances, the NP can register functions that the
MPR will call-to extend its default handling of network browsing op
erations, for example.

The MPR will load the NP if its associated network is listed in the
SYSTEM.IN! file as active. Since the NP is a Windows DLL, the system
will call its standard initialization entry point once the NP is loaded.
This allows the NP to carry out any private initialization it needs to.
Thereafter, the NP responds to the MPR by means of the defined net
work provider interface. Many of the defined NP functions are op
tional-the NP supports them only if it has something, to add to the
default actions of the MPR. For example, the NP doesn't need to imple
ment the group of functions responsible for enhancing the graphical
display of network resources unless it wants to alter the shell's represen
tation of the resources. The MPR also has to determine what the NP
can support-for example, whether the NP is able to handle UNC
pathnames completely.

To figure out exactly what the behavior of a particular NP is going
to be, the MPR calls the NPGetCaps() interface. The parameter to this
call is a query about a particular NP capability or about an NP charac
teristic (the supported network type, for example). In the case of a
query about a capability, the response from the NP determines whether
the MPR will subsequently call the specific interfaces that implement
the feature or rely on its own default handling. NPs don't need to
implement stub routines or return errors for unsupported interfaces
once the MPR recognizes that an NP doesn't support a particular capa
bility, it won't try to call any of the related interfaces.

There are also times when the MPR calls each NP in turn, trying
to find an NP that recognizes a particular resource. An error return
from one NP causes the MPR to move to the next, finally returning an
error to the caller if no NP responds successfully.

Network Provider Services
Let's take a look at the details of the service provider interface for an
NP. Apart from the NPGetCaps() interface just described, there are six
groups of functions:

User Identification. The single NPGetUser() interface that allows the
caller to determine the current username associated with a
particular network resource.

363

INSIDE WINDOWS 95

364

Device redirection. The interfaces that make, break, and manipulate
network connections.

Shell interface. Functions that augment the native display behavior of
the shell during browsing and other operations.

Enumeration. Functions that an NP must support if it supports
· browsing operations.

Authentication. Functions that support the network-specific security
features.

Configuration. Two optional interfaces: NPEndSession(), to notify the
NP that Windows is closing down, and NPDeviceMode(), to allow
network-specific configuration actions, such as choosing a
network adapter from among those available.

All of the functions share similar calling and error return conventions.

Device Redirection SPI
The device redirection set of NP interfaces is the eventual target of the
WNet connection APis that form the associations between drive letters
(A: through Z:) or device names (LPTI: and so on) and network re
sources. Some networks don't need local devices for network connec
tions-a characteristic that a network reports through the NPGetCaps()
interface. The optional NPValidLocaTDevice() interface allows an NP to
restrict the set of local devices that the MPR can use to make connec
tions through the NP. For example, the NP may support only LPTI:
and LPT2:, whereas Windows 95 supports additional LPT devices. If
the NP doesn't export the NPValidLocaTDevice() function, that's an indi
cation that the NP can handle any local device name.

NPNotifyAddConnection() is the callback function an NP can use to
involve itself more directly with the network connection process.
Here's the set of functions it belongs to:

NPAddConnection()

NPCancelConnection()

NPGetConnection()

NPNotifyAddConnection()

NPValidLoca/Device()

Make a network connection.

Break a network connection.

Obtain information about a connection.

Arrange a callback during network
resource connection and disconnection.

Indicate whether a local device is valid for
use as a network connection (optional).

N I N E: Networking

Shell SPI
The shell interface functions assist the shell in displaying the network
layout and the attached resources for the user. Several of these func
tions are optional. If an NP is happy with the default displays generated
by the shell, it doesn't have to support the possible extensions. Here's a
summary of the shell NP functions:

NPGetDirectory Type()

NPSearchDialog()

NPFormatNetworkName()

NPGetDisplayLayout()

NPDisplayCallback()

NPGetEnumText()

NPGetNetworkFileProperties()

NPDirectoryNotify()

Provide information about a network
directory.
Assist in network browsing.
Change the display appearance of a
network pathname.
Customize the appearance of the
network layout.
Call back during network display.
Return additional text information
during display.
Display file properties.
Notify of directory creation, deletion,
and movement.

The NPSearchDialog() function extends the standard shell brows
ing mechanism, allowing an NP to display its own view of the associated
network. If an NP supports this extension, the shell enables a Search
button in its connection dialog. If the NP doesn't support the enumera
tion interfaces, the shell will use its private search facility exclusively for
browsing.

Enumeration SPI
The enumeration functions are an all or nothing subset-if the NP re
sponds to a query from the MPR by indicating that it supports enu
meration, it must support all four functions. If an NP doesn't support
network browsing, it doesn't need to implement the enumeration func
tions. Within an NP that supports them, the open, enumerate, and
close functions are the eventual target of the corresponding WNet enu
meration APis. The NPGetR.esourceParent() SPI assists the shell in browse
operations by providing a means of moving back up a hierarchy. The
enumeration functions are shown on the next page.

365

INSIDE WINDOWS 95

NPOpenEnum()

NPEnumResource()

NPCloseEnum()

NPGetResourceParent()

Authentication SPI

Begin enumeration.

Enumerate network resources.

End enumeration.

Return the parent of a specified network
resource.

The authentication functions allow the NP to participate in the net
work logon and logoffprocedures controlled by the MPR. During the
logon process (see Figure 9-7), the NP has the opportunity to carry out
additional user authentication and to provide the MPR with the name
of an executable file it can use as a logon script. The shell will restore
the user's persistent connections for the network during the logon.
Here are the authentication functions:

NPLogon()

NPLogoff()

NPGetHomeDirectory()

NPChangePassword()

Figure 9-7.

Log on to the network.

Log off the network.

Return the user's personal network
directory.

Notify of a successful change of the user's
password.

Standard network logon dialog box.

Network Transports

366

Windows 95 has not revolutionized the world of network transports.
Network transports still play .the same role: they provide reliable, se
quenced, error-free connections among the upper-level network soft
ware modules. Windows 95 also has to live within the constraints of

N I N E: Networking

compatibility-particularly for existing real mode network device driv
ers-and the networking subsystem incorporates features that allow
the continued use of these drivers by the transports.

The network transport has to play two basic roles within the sys
tem: it must act as a communications medium for the network FSDs as
they provide support for the file and print services, and as an API us
able directly by network applications. In both cases, it's the published
transport protocol interface that comes into play. Windows 95 supports
both NetBIOS (via Microsoft's NetBEUI transport) and Novell's IPX/
SPX protocols. The transports for both protocols are full 32-bit pro
tected mode modules supporting 32-bit and 16-bit application inter
faces. These days, network applications such as client-server databases
and network management systems tend to make use of higher-level
network protocols (named pipes or Microsoft's ODBC, for example)
rather than deal directly with the transport interface. But there are
plenty of important applications still written to both the NetBIOS and
the IPX/SPX interfaces.

In the medium term, Microsoft has begun to recommend use of
the Windows Sockets interface for network applications. The project to
define the so called WinSock interface was a multicompany attempt to
rationalize all of the different versions of the TCP /IP12 protocol-based
socket interface that various vendors had ported to the Windows envi
ronment. Originally introduced as a networked interprocess communi
cations mechanism with version 4.2 of the Berkeley UNIX system, the
socket interface has become a popular APL Although the sockets line
age goes back to the TCP /IP world, sockets can be implemented on top
of other transport protocols. The Windows Sockets project was so suc
cessful that, in addition to using Windows Sockets as an interface to the
TCP /IP world, Microsoft developed a Windows Sockets module that
uses NetBEUI as its underlying transport. 13

In the longer term, the need for fully distributed applications will
make an RPG-based method the preferred network application inter
face. Windows NT has already begun to emphasize the use of RPC in
terfaces, and Microsoft's Cairo system will underline their long-term

12. TCP /IP is now officially called the Internet Protocol Suite.

13. Windows 95 will include a TCP /IP transport and several related utilities such as
FTP, Telnet, and Internet access programs.

367

INSIDE WINDOWS 95

importance. However, the migration from a simple client-server appli
cation model to a fully distributed one is not yet upon us, so the simpler
network programming interfaces supported by Windows 95 will remain
important for some time to come.

Network Device Drivers

368

Microsoft defines a media access control, or .MAC, device driver model. A
MAC driver is the lowest-level software in the networking subsystem
and deals directly with the network adapter. A MAC driver conforms to
the Network Driver Interface Specification (NDIS). So called clients of the
MAC driver-the transport protocol modules-access the MAC driver
functions via the NDIS interface (a process termed binding). The NDIS
specification was originally developed for Microsoft's OS/2 LAN Man
ager product and has become fairly widely used on network systems
that don't use a Microsoft OS. NDIS is now at version 3.0. The develop
ment of this most recent version of the specification was done largely
by the Windows NT group.14

NDIS aims to provide solutions to a number of problems inherent
in a complex network environment:

• Hardware independence. The interface between the transport
protocol and the MAC driver ought to allow at least source
code portability for the transport software.

Ill Transport protocol independence. The MAC driver has to be
hardware dependent, but the NDIS interface ought to allow
the use of the driver by any network transport.

• Multiple transport protocols. The interface to the driver
needs to allow more than one protocol to share a single
network adapter (and a single Ethernet cable).

Ill Multiple network adapters. NDIS has to allow the simulta
neous use of more than one network adapter in the same host
machine (possibly using a single MAC driver).

14. Along with other general improvements to the specification, Windows NT
required that NDIS 3.0-compliant software be usable in a multiprocessor environ
ment. The Windows 95 team didn't have to worry about this particular requirement.

NINE: Networking

• Performance. Network vendors strive continually to win
benchmark competitions: if using NDIS implies poor perfor
mance, it's unlikely to be a very popular interface. 15

You can think of NDIS as an interface that allows multiple trans
port protocols to talk tb multiple network adapters, possibly on a multi
processor machine. Despite their graduated degrees of freedom, NDIS
compliant drivers are not that difficult to develop, and any network
adapter you buy will probably come with an NDIS driver. Of course, the
adapter may not yet come with a protected mode NDIS version 3.0
driver-and that's a problem the Windows 95 networking team had to
address directly.

Although the NDIS model has achieved wide acceptance, there's
another company in the networking business that has a different way of
doing things. Novell's open Datalink Interface (OD/) specification mir
rors Microsoft's NDIS in aiming to define a protocol-independent de
vice interface. And there are a lot of ODI drivers available too. In
addition to needing to provide compatibility for older NDIS drivers,
Windows 95 had to support ODI drivers.

Network Driver Compatibility
To solve the problem of supporting non-NDIS 3.0 network device
drivers-specifically NDIS 2.0 and ODI drivers-Microsoft has
evolved a series of low-level modules, sometimes called helper mod
ules, that act as "glue" between the various interfaces. This allows the
Windows 95 protected mode NetBEUI transport to use an NDIS
version 2.0-compliant real mode adapter driver, for example, or a
real mode IPX/SPX transport and associated ODI driver to operate
alongside a NetBEUI configuration.

Essentially, the helper modules present an upper-level interface
that complies with the caller's requirements, and they translate the
calls to a lower-level interface that matches the capabilities of the avail
able device driver. In some cases, the helper module may simply man
age the transition between protected mode and real mode (actually
virtual 8086 mode). You can recognize the type of the helper module as

15. NDIS is specified as a C language interface, and for performance reasons many
of the NDIS function calls are implemented as inline code using macros.

369

INSIDE WINDOWS 95

either a protected mode VxD (with a .386 filename suffix) or an MS
DOS TSR (with a .SYS filename suffix). The PROTOCOL.IN! file is set
up to contain the description of how all the pieces fit together in a run
ning system.

Network Configurations

370

Putting together the jigsaw of network transports, drivers, and compat
ibility helper modules yields some interesting configuration possibili
ties. Figure 9-8 illustrates the simplest case-a single network adapter
with a protected mode NDIS 3.0-compliant driver. The additional
module illustrated-the VNETBIOS component-virtualizes the ac
cess to the transport for the concurrently running virtual machines.

.

• Ethernet

Figure 9-8.

NetBIOS virtualizer

NetBEUI transport

NDIS 3.0 support layer

NDIS 3.0 driver
(3Com Etherlink II)

A simple NDIS 3.0 network config;uration.

Figure 9-9 illustrates a configuration that supports the NDIS
3.0-compliant NetBEUI transport running together with a real mode
NetBEUI transport. At the lowest level, the network adapter driver is an
NDIS 2.0 real mode driver (UBNEl.DOS in the example). The helper

NI N E: Networking

modules NDIS2SUP.386 (a protected mode VxD) and NDISHLP.SYS (a
real mode MS-DOS TSR) merge these different interfaces into a work
able configuration.

NetBIOS virtualizer

NetBEUI transport

NDIS 3.0 support layer

NDIS 2.0 support layer

.

• Ethernet

Figure 9-9.
Mixing NDIS 2. 0 and NDIS 3. 0 in a single network configuration.

Although it seems highly unlikely that the configuration illus
trated in Figure 9-10 on the next page would have a life outside
Microsoft's test labs, it does serve to show the extent of the compatibil
ity provided under Windows 95. This configuration shows four separate
transport protocols in use-Novell's IPX/SPX, the purely illustrative
ABC protocol, and NetBEUI and TCP/IP cloaked by the Windows
Sockets interface. The lower layers again use a combination of pro
tected mode and real mode helper modules to form the paths to and
from the network adapters. ·

371

INSIDE WINDOWS 95

• I ., I • • t • I ... •••••
Ethernet

Figure 9-1 o.
A complex network configuration-multiple protocols and multiple
adapters.

The Network Server

372

The peer-to-peer capability of Windows 95 networking means that
there has to be a server available for use on the local machine. Al
though the Windows 95 networking group is not trying to compete
with the high performance and industrial strength of Microsoft's own
Windows NT Advanced Server product, they have produced a highly
capable server with performance exceeding the levels reached in Win
dows for Workgroups version 3.11. As in previous versions, the server
supports file and printer sharing features, giving you the option to pro
vide other network users with access to files, directories, and printers

N I N E: Networking

local to your machine. In response to many customers who want to pre
vent their users from running desktop systems as network servers, Win
dows 95 can be configured to run as a client machine only. Figure 9-11
on the next page shows how the Windows 95 server software interfaces
with the other network components.

Server Components
The major server component is a ring zero VxD named VSERVER that
provides the bulk of the local file and printer access capability. The
server utilizes the defined installable filesystem interfaces for access to
the real data on local hard disks and CD ROM devices and interacts
with the print spooler to support the printer sharing feature. Here's a
summary of what each component is responsible for:

Spooler. The print spooler exists at the application level (in ring
three) and also as a system component (a VxD running at ring
zero). There's a shared memory interface for communication
between the ring zero and ring three components, and a ring
zero API that allows the server to submit a print job to the ring
zero spooler.

MSSHRUI. The Microsoft share point user interface component is
a ring three DLL that the shell uses as it satisfies user-initiated
operations such as adding new share points to the local machine.

VSERVER. The main server software component itself is multi
threaded, maintaining a pool of threads that it allocates among
the different network requests. The server accesses the network
directly using the transport level interface and accesses the local
file systems through the IFS Manager.

Access Control. The Access Control VxD controls individual file
access requests, using the provided username and filename to
verify the rights of the particular user to access a shared
resource.

Security Provider. The Security Provider component takes responsi
bility for authentication of network access requests. It uses the
combination of the user's login name and supplied password to
verify the legality of any access request.

373

INSIDE WINDOWS 95

Ring3

API
Ring 0

Transport
APl/SPI

NDIS

Figure 9-11.

Network
adapter driver

Windows 95 Network Server architecture.

374

Local
filesystem

devices

N I N E: Networking

Network Printing
Of all the features of Windows, printing is perhaps the most commonly
used and the most difficult for an average user to come to grips with.
The complexity inherent in supporting hundreds of different types of
printers-each with many configuration possibilities-and the layers of
obfuscation added by a network can make printing under Windows 3.1
a painful experience. Even Microsoft's own Windows Printing System
product fails to solve the network printing problem, although it does a
good job of supporting a locally attached printer. Windows 95 aims to
solve these problems with a new printing architecture whose design was
borrowed from Windows NT and then adapted. Figure 9-12 on the
next page illustrates the major components of the printing subsystem.

in common with the network file access capabilities, the printing
system uses a routing component (the Print Request R.outer, or PRR) that
accepts Win32 API calls and directs them to a print provider (PP). A
single system may host several print providers if there are connections
to multiple printers. The PP translates the information in the API call
to a form suitable for the underlying network-for example, the
printer might be attached to a NetWare server-and passes it on. The
PP will convert the returned information to the correct Win32 format
and pass it back to the application. The application itself doesn't need
to know anything about the printer's capabilities or any network con
nection details. Although it will include several print providers as stan
dard components; Microsoft's intent is that the printer manufacturers
themselves will produce their own print providers. The printing archi
tecture allows for multiple PPs related to a single printer to install
themselves. So, for example, the generic PP for an HP LaserJet might
be overridden by the better "quality of service" offered by a Hewlett
Packard-produced PP.

Locally attached printers participate in this printing architecture,
with the local print proVider interfacing to the resident printer driver
and the spooling system. The printing architecture also allows for the
inclusion of a monitor within the chain of modules that collaborate dur
ing the printing process. A monitor takes responsibility for low-level
interaction with the printer. In the case of a printer attached to a bi
directional port, the monitor enables intelligent error handling and

375

INSIDE WINDOWS 95

376

API

Transport
APl/SPI

NDIS

Figure 9-12.
Windows 95 Network printing architecture.

Local printer

'

N I N E: Networking

printer management.16 More recent product innovations, such as print
ers with built-in network adapters that attach directly to the network,
can also be handled by means of the monitor mechanism. The monitor
simply talks to the printer via the network transport interface. The up
per layers of software don't know and don't care about the specifics of
the printer's connection.

One of the design goals of the Windows 95 team was encapsulated
in the phrase "point and print," which was used during many early
product presentations. What it meant was the ability of the user to print
by simply dragging a document icon to a printer icon on the shell desk
top and dropping it. Windows then figures out how to print the docu
ment, restoring a network connection if necessary and even loading
the appropriate printer software dynamically. No longer does the user
need to know a printer's exact model number designation and the
amount of memory in the printer, which might be fifty yards away-let
alone need to have a copy of the right Windows installation diskette
handy. The point and print capability is supported by several new APis
that enable the shell to determine the available printers and associated
drivers and then to dynamically load a printer driver. 17

Network Security
Microsoft's emphasis in the design of Windows 95 networking security
was on providing good security for the Windows 95 system itself and
enabling a Windows 95 machine to participate in the security system

· implemented in a more complex scheme. The design of the FAT
filesystem alone means that a Windows 95 machine is probably inse
cure-at least not up to the level of security required by the stringent
government specifications that Windows NT complies with. In fact,
presentations of the Windows 95 network security feature usually in
clude some form of this statement: "if you want something that's small,
fast, and easy to use, we have it; if you want something that's bulletproof,

16. Microsoft's Windows Printing System was the first product to make use of this
bi-directional capability within Windows. Although the Windows Printing System was a
great product for locally attached printers, it didn't support network printing. The
Windows 95 printing architecture fixes that problem.

17. If you're searching for details, the EnumPrinters(), GetPrinter(), GetPrinterDriver(),
GetPrinterDriverDirectory(), GetPrintProcessorDirectory(), and LoadLibrary() functions are
those most intimately involved with the point and print capability.

377

INSIDE WINDOWS 95

use Windows NT." In the business world, most network administrators
have to worry about some level of security protection and only a few
have to concern themselves with protection against sophisticated
break-ins. Windows 95 aims to meet the majority's need, and Windows
NT is there for those who need a higher level of security.

Windows 95 provides two types of security:

II Share-level security similar to the security scheme in Windows
for Workgroups. An administrator configures each network
share point with a particular set of access rights.

II User-level security. A user's network name implicitly grants the
user a defined set of access rights to each network resource.

Earlier designs for the system allowed for an additional security type
one that made use of a technique called pass through authentication. This
technique would have allowed Windows 95 to pass a supplied login
name and password to another system so that the other system could
validate the user's security credentials and return access rights for the
user to the Windows 95 host. The feature wasn't greeted with much
enthusiasm, and it was dropped from the product. In the current de
sign, a single system can operate under either share-level or user-level
security-you can't mix the two types of security on one system. Most
likely, every system in an organization will be set up with the same type
of security. ,

Access Controls

378

A user's access to network resources is determined by what Microsoft
calls access controls, also referred to simply as ACLs-for "access control
lists." The AGL is the system data structure that describes access rights.
In Windows 95, access controls can be applied to files, printers and a
remote administration capability. Microsoft planned to incorporate se
curity and other administrative functions together in a System Policy Edi
tor-a utility aimed at supporting all of the network security and
management features. 18

18. This utility had appeared in various incarnations in Microsoft LAN Manager,
Windows NT, and Windows for Workgroups. It was a late arrival in Windows 95. It
wasn't folded into the product until after the Beta-I release in June 1994.

N I N E: Networking

Share-Level Security
Share-level security applies a set of permissions to an individual re
source-regardless of which user is trying to gain access to the resource.
The resource can be either a file (typically a subtree within the
filesystem) or a printer. The administrator can protect a resource with a
password that allows either full (read and write) access or read-only ac
cess. If a user knows the password, he or she has access to the resource.

User-Level Security
User-level security allows you to specify the names of individual users
who have access to shared resources. For convenience, you can collect
users into groups and give access permissions to an entire group-im
plying that every user belonging to the group gets the same access per
mission. To gain access to a resource, the user must belong to the set of
users granted the appropriate permissions.

Conclusion
Windows networking has evolved from support for a single network
with primitive setup facilities to a complete architecture supporting
multiple network connections. The structure of Windows 95 network
ing relies heavily on Microsoft's WOSA design, and with support from
the new installable filesystem interface, the networking architecture
ought to be able to stand unchanged for several releases. As we'll see in
the next chapter, the implementation of remote communications fea
tures is greatly simplified by the underlying support of Windows 95 for
network components.

We haven't looked at a couple of features of Windows 95: the remote
procedure call (RPC) capability and the collection of administrative fea
tures bundled together under the heading "systems management." The
RPC facilities in Windows 95 are essentially identical to those avail
able in Windows NT, and although Windows 95 itself doesn't make
use of the RPC capability as extensively as Windows NT does, certain
Windows 95 components, such as the network printing subsystem, do
use RPC. The systems management features of Windows 95 incorpo
rate all the administrative capabilities common to networked sys
tems-assigning users to named groups, granting a user certain
administrative privileges, and so on.

379

INSIDE WINDOWS 95

380

The new networking design allows any vendor to provide network
access for Windows 95, although it's hard to see why a product that
provides out of the box support for Microsoft, Novell, and TCP /IP net
works would need to be augmented. Now that the operating system
underlying the networking architecture is much more sophisticated,
the peer-to-peer capability and overall performance ought to provide
competition for the smaller networking companies. Although its secu
rity features don't match the rigorous approach taken by Windows NT,
for many small to medium-size networks, Windows 95 will probably
provide all the networking facilities that are needed. It will be interest
ing to observe the impact of Windows 95 on the local area networking
market.

Sophisticated local area networks are at the upper end of the market Windows 95
addresses. The Windows 95 team also had a mandate to provide very good sup
port for the other end of the market-for the ever-shrinking portab/,e computer
now used in a variety of "on the road" situations and for the burgeoning con
sumer market for multimedia applications. Those markets and Windows 95 sup
port for them are the subjects of the next chapter.

Reference
Tanenbaum, Andrew. Computer Networks. 2d ed. Englewood Cliffs, NJ.:

Prentice Hall, 1989. The standard tome on networking. If it isn't in
this book, either it's not worth worrying about or it's fresh out of the
research lab.

C H A P T E R T E N

MOBILE COMPUTING

Many of the new features of Windows 95-the 32-bit operating system
and 32-bit applications, the new rich visuals of the shell, and the built
in local area networking capabilities-call for the use of a fairly high
powered desktop system. But the Windows 95 development team also
had to address the needs of a large class of users who don't have con
tinuous access to a powerful desktop computer. These users are loosely
classified as "mobile," meaning that they use computers in various
physical locations at various times. Some users are truly mobile-using
only laptop computers and traveling frequently, retaining contact with
their home bases or their customers via electronic mail, phone, and fax.
Other users may move between only two locations-their offices and
their homes-each location having a desktop system with somewhat dif
ferent capabilities from the other's but the work at hand traveling back
and forth and the work task remaining fundamentally the same.

Add to this already established need for mobility the recent mar
ket data that shows sales of portable computers growing more rapidly
than sales of any other machine type, and sales of modems exceeding
even wild expectations-and it's clear that Windows 95 needs to be a
good product for smaller machines and for communications. Of course,
the much vaunted era of the personal digital assistant (PDA) is now offi
cially upon us too. Although from a practical standpoint the use of gen
eral purpose PDAs remains limited and frustration prone, Microsoft has
invested considerable effort in the development of handwriting recogni
tion technology and an integrated application, WinPad, targeted at
PDAs.

In this chapter, we'll look at a collection of Windows 95 capabili
ties loosely grouped under the heading "mobile computing": commu
nications support, electronic mail and fax support, and portable system

381

INSIDE WINDOWS 95

support. A lot of the communications support relies on features of Win
dows 95 that we've already examined: the layered network architecture
and the WOSA service provider capabilities. And there are aspects of
other features, such as Plug and Play, that take on even greater impor
tance when smaller portable systems are involved. But to meet Microsoft's
goals of great connectivity and what it sometimes refers to as "here,
there, and everywhere computing," Windows 95 includes several new
software components with important roles.

Remote Communications Support

382

The design of the communications subsystem in Windows 95 is derived
largely from the design of the local area networking subsystem we
looked at in Chapter Nine. An important aspect of the Windows 95 net
work software design is its ability to support many simultaneous con
nections via different network protocols and network transports. One
or more of those connections can go from the user's machine via the
communications subsystem to a remote network or to another commu
nications provider such as a bulletin board system or an electronic mail
gateway. From the user's perspective, the Windows 95 shell integrates
access to remote systems with local area network access, and at least for
file sharing and printer sharing purposes, remote communications
looks and acts the same as any other network connection.

This consistency is maintained in applications written to make use
of remote services: the Win32 API provides a consistent interface regard
less of whether the needed resource is a file on the network server down
the hallway or a file back at your main office thousands of miles away and
accessible only by modem. Applications don't have to take special ac
count of these different physical connectivity characteristics (although
some optimization is possible if they do). Windows 95 provides all the
glue necessary for the various system components to make each type of
connection. And, naturally, for applications that will exploit characteris
tics of the remote connectivity features, many specific Win32 APis offer
that .capability.

New in Windows 95 is the Windows Telephony API-TAPI for
short. This new set of Win32 interfaces integrates many of the func
tions associated with controlling telephone style devices, including fax,
answering devices, and the like. Previous versions of Windows didn't
have a standard API set to support operations such as dialing and auto
matic answering, so application developers had to invent their own.

T E N: Mobile Computing

TAPI addresses this problem with the consequent benefits of standard
ization and the ability to share devices between active applications.

Underlying many of the features that fall into the communica
tions category is the basic device support offered in Windows 95.
Whether you 're the owner of a venerable 1200-bps modem or the latest
cellular fax device, the communications driver-usually referred to
simply as VCOMM-is a critical software component of any connection
via these devices. The communications (serial port) driver in Windows
3.1 has been much maligned-especially from the point of view of its
inability to handle higher-speed connections. As a result, the develop
ers of many communications applications such as fax packages or ter
minal programs have replaced the Windows driver with their own. This
scattered development has often led to conflicts and bugs that a user of
two of the applications has been left unable to resolve. For Windows 95,
Microsoft has concentrated a great deal of effort on providing a com
munications driver that will reliably handle extremely high line
speeds.1 The communications subsystem also benefits substantially
from the improvements in the Windows 95 operating system kernel
from preemptive scheduling and dynamic VxD loading in particular.

The design of the VCOMM module follows what has become a
popular design technique for Windows components-VCOMM itself is
shared among individual ports with hardware dependent operations
managed by individual communications port drivers. Each of the stan
dard serial and pa,rallel ports of an ISA machine, for example, would
have its own port driver and share the functions provided in the single
VCOMM module.

Figure 10-1 on the next page illustrates the main software compo
nents that would be present in a Windows 95 system configured for re
mote communications. Some of the components in the illustration are
optional or redundant, and others go by yet more acronymic names.
Here's a summary of their functions.

RNA. Remote Network Access is the subsystem that allows a user to
dial out from his or her local system and log on to a remote
network. The connection is set up so that the network appears
to the user just as if he or she had logged on from a directly con
nected network workstation. RNA includes both a client and a
server component.

1. The stated goal is to be able to handle serial line speeds in excess of 38.4 Kbps.

383

INSIDE WINDOWS 95

384

API

'II{ •

Rlng3

Ringo

NDIS interface

Port drivers

Figure 10-1.
Communications architecture in a Windows 95 system confilfUred
for remote communications.

T E N: Mobile Computing

TAPI. The DLL that implements the Telephony API incorporates the
new Win32 functions for telephone line management.

Unimodem. The Unimodem service provider is Microsoft's attempt to
simplify and unify support for modem devices under Windows.
Rather than have each and every communications application
developer produce and test its own modem interface, Microsoft
has Unimodem use a collection of modem description files to
enable every related application to determine a modem's con
figuration and the appropriate modem control sequences where
necessary. In many cases, the application simply uses open and
close type API calls and the Unimodem port driver accesses the
modem information file.

PPP. The point to point protocol driver is for a simple protocol that has
been widely adopted. PPP is used for single-session communi
cations over relatively low speed lines (typically telephone lines).
The PPP module handles the blocking and deblocking of data
packets and simple error correction.

VCOMM. The new communications driver for Windows 95 includes
a set of functions intended to be used by the port drivers and
other VxD-level clients. The closest equivalent to VCOMM
in Windows 3.1 is the serial port driver, butVCOMM addresses
additional communication link device types, including infrared
and wireless radio connections.

Port Drivers. The port driver components contain the hardware
specific code peculiar to an individual device, such as the
serial port, or an infrared connection. Windows 95 will come
with standard port drivers for serial and parallel devices. Other
port drivers will be supplied by the device manufacturers.

Remote Network Access
RNA refers to the ability of a Windows 95 system to gain access to a re
motely located network. The typical scenario features a business trav
eler equipped with a portable system dialing out from a hotel room to
collect electronic mail and other documents from the home office.
Many products currently on the market offer this capability. They come
in three flavors:

m Dial-in terminal access programs that offer simple point to
point connections. On the server side, the software might offer

385

INSIDE WINDOWS 95

386

access to a bulletin board system with file transfer capability or
to electronic mail. Commercial networks such as CompuServe
and MCI Mail offer this type of service.

• True network access for which the software on the server
acts as a gateway to the local network. The remote user can
access network resources as if he or she were locally con
nected. Remote access to network resources is subject to the
same security constraints as for a local connection. Microsoft
Windows NT offers this feature as part of its Remote Access
Services (RAS).

• Remote control software that allows the user to "take over"
the remote machine to which he or she connects. The remote
user can make use of the capabilities of the machine he or she
connects to and transfer files back and forth between the two
machines. Products such as Carbon Copy and PC Anywhere
implement this capability.

Windows 95 RNA implements the first two of these flavors. An up
graded Terminal application uses the lower levels of the communica
tions subsystem to provide dial-up access.2 The full RNA subsystem
provides network access for remote users using either a Windows NT or
a Windows 95 system that has a local network connection. Figure 10-2
illustrates the various network access configurations RNA makes possible.

On the server side, the Windows 95 RNA subsystem supports a
single connection, so the most obvious use of this feature will be for a
user at a remote location to dial in to his or her own system back at the
office or perhaps call back home from the office. In this case, a network
might not be involved and the RNA server might simply provide access
to the resources of the machine it's running on.

Types of Remote Access
Windows 95 provides three different ways to go about establishing a
connection to a remote network:

• Making an explicit connection, in which the user selects a
remote system and establishes a session.

2. The new version of Terminal was developed for Windows 95 under contract to
Microsoft by Hilgraeve, the developers of the popular DynaComm product.

·-· -·d
'=.. Modem ~ndows 95

portable system

•
·~

server

Figure 10·2.
Remote Network Access config;urations.

T E N: Mobile Computing

Windows95
portable system

~I,, IN,,,~ ..
portable system

lllll!'!odem

I

1

Ill Making an implicit connection, in which the user tries to access
a file or a printer located on a remote system. The Windows 95
shell takes care of establishing the connection with the remote
system. Obviously, the local system has to be configured cor
rectly, and the likely delay in getting the connection set up will
leave the user in no doubt about what's going on.

387

INSIDE WINDOWS 95

388

Ill Using the RNA Session API, a set ofWin32 interfaces for
applications that will set up and manage remote con
nections directly. 3

Figure 10-3 is an example of the shell's screen in the case in which
the user has elected to make an explicit connection by double-clicking
on the Home System icon in the network Remote Access folder. This
particular remote system has already been set up with the appropriate
telephone number and device to connect through. Once the user has
clicked on OK in the login dialog box, RNA takes care of dialing and
completing the connection. At the receiver's end, the called system
must be running the Remote Access Server (or an equivalent) and be
listening for the incoming call.

Figure 10-3.
Connecting to a remote network.

Implicit network connections are generally handled by the shell.
When the user tries to access a remote resource, the shell initiates the
connection attempt with minimal further user input.

The Win32 API associated with RNA provides several functions
that allow an application to set up and manage a remote connection:

3. All of the functions in the RNA Session API are identifiable by the Ras prefix in
their names. There are no equivalent Winl6 APis in Windows 95.

RasDial()

RasHangup()

RasEnumConnections()

RasGetConnectStatus()

The Telephony API

T E N: Mobile Computing

Handles the process of making a remote
connection.
Terminates an active connection.

Returns information about the currently
active connections.

Returns information about the current
status of the connection initiated by a call
to RasDial().

The development of the Windows Telephony API (TAP!) began as part
of Microsoft's At Work office automation initiative. The intent of the At
Work initiative is to integrate common office equipment, such as fac
simile machines and photocopiers, with the desktop PC. A PC user could
send, receive, and print documents in a common digital format under
the umbrella of devices supported by the At Work operating system. The
most common device in the office is the telephone, and the At Work
effort included the specification of an API that allows Windows applica
tion developers to control suitable telephone handsets and conforming
exchange equipment. The emphasis for Windows 95 is on what Microsoft
refers to as personal telephony applications-essentially applications
that assume the use of a single PC and a single telephone handset.

Today most telephone equipment that can be connected to a PC
offers the application developer a bewildering variety of (often proprie
tary) interfaces, and most of the available application solutions tend to
be either highly specialized or specific to a narrow range of devices.
TAPI is Microsoft's attempt to standardize an interface and, in addition
to meeting the challenge of developing a suitable API, Microsoft must
convince the telephone equipment manufacturers to support the as
sociated service provider interface (SPI) in the WOSA framework.4 The
use of WOSA allows TAPI to remain independent of the specifics of any
hardware device. In the Windows 95 product, the philosophy of multiple
providers is retained: for example, a service provider can offer access to a
shared network device concurrently with a locally attached device.

For the application developer, the success of TAPI would mean
that a single Windows application could be developed to control a wide
range of telephone hardware. For the user, the incorporation of TAPI

4. A full discussion ofWOSA and the service provider interface (SPI) appears in
Chapter Nine.

389

INSIDE WINDOWS 95

390

into the core Windows 95 product ought to mean that there will be a
wide range of telephony-related applications available-either special
ized applications (call screening, for instance) or applications that are
extensions of the functionality available in mainstream desktop appli
cations (the integration of voice mail messaging within an electronic
mail package, for instance). RNA itself uses TAPI when it initiates and
controls remote connections made over telephone lines.

Telephony Applications
TAPI identifies two separate connection types: a phone-centric connec
tion type, ill which the telephone handset is directly connected to the
telephone network and then to the PC via a serial interface, and a PC
centric connection type, in which an adapter card in the host PC con
nects to both the telephone network and the telephone handset. In the
phone-centric case, the application controls the telephone network by
sending commands to the handset for forwarding. In the PC-centric
case, the combination of the hardware in the PC and the TAPI applica
tion software emulates a phone handset to the network and involves
the real handset only when necessary.

In the development of telephony applications, these hardware
arrangements manifest themselves as a line device class and a phone
device class. A line device is the connection from the desktop to the
telephone network. The line device responds to data objects such as
an address (the telephone number) and to state changes such as ac
tive and inactive. The phone device is the handset component and
provides logical access to components such as the ringer and any but
tons or indicators on the handset.

One of the important concepts underlying MiCrosoft's view of tele
phony applications is the idea that a single desktop machine might run
several concurrent applications that have an interest in the single tele
phone line. An incoming call might be a facsimile transmission, for ex
ample, a voice call, or a connection request from a remote modem. An
application that conforms to the TAPI interface has to be prepared to
examine an incoming call and, if the call is of no interest to it, hand the
call off to the next potentially interested application. Similarly, once
the telephone line is active, an application that tries to use the line has
to be prepared to gracefully handle the error condition resulting from
the line's busy status.

TEN: Mobile Computing

Modem Support
First there was a universal printer driver, and now with Windows 95
come a universal display driver and a universal modem driver. Once
again, the intent is to provide a common set of well-tested functions
that can control a broad range of similar devices. The Unimodem
name is given both to a TAPI service provider and to a low-level driver
(implemented as a VxD) that works together with a port driver to di
rectly control an attached modem.

There have been other attempts to standardize a modem con
trol interface-notably on UNIX systems. To some degree, the prob
lem is a more tractable one than it used to be since virtually every
modem manufacturer uses the Hayes-defined command strings for
direct modem control. In fact, the Unimodem driver assumes the
standard Hayes command set as a base and then defines exceptions
to the command set for specific modems. The description of a modem
appears in a text file that might be supplied by the hardware vendor.
Windows 95 comes with a large database of known modems-their de
scriptions are in the MODEMS.INF file, which is a standard compo
nent of Windows 95.

When you set up a modem using the Control Panel, the appropri
ate command strings are copied from either MODEMS.INF or the
manufacturer-supplied .INF file into the registry.5 Once the command
strings are installed, the universal modem driver (UNIMODEM.386)
can directly access the command strings. An application never sees the
command strings used at the lower levels. It merely issues requests such
as open and close. This arrangement hides the peculiarities of any par
ticular modem from the application. Figure 10-4 on the next page illus
trates the interactions between the various components when a modem
attached to a serial port is in use.

Notice that the upper level of the universal modem driver is a
TAPI service provider and that it can co-exist with other service provid
ers. At the lower level, the communications driver (VCOMM) routes
modem-related calls to the modem driver, which, alone, deals with the
registry. For actual control of the attached modem, the modem driver
calls back into VCOMM, which in turn calls the associated port driver
(the serial port driver SERIAL.386 in this example).

5. You may see references to modem mini-drivers .. These are simply the text files
that encapsulate the modem commands.

391

INSIDE WINDOWS 95

Ring3

Ringo

Figure 10-4.
Modem interface.

Application

Telephony API

UNIMODEM.386
(universal modem driver)

The Communications Driver

392

In Windows 3.1, the communications port driver suffered from perfor
mance problems engendered by mode-switching back and forth be
tween protected and real modes and by the absence of preemptive
multitasking capabilities in the operating system. The VCOMM driver
in Windows 95 helps to solve the performance problem by providing a
protected mode code path from the application all the way to the hard
ware. And the improvements in the OS itself assist in meeting the goal
of re.Hable, high-speed communications device support~

Figure 10-5 illustrates the way in which VCOMM interacts with
other system components. Notice that the COMM.DRV module is

T E N: Mobile Computing

there to provide compatibility for existing Win 16 applications. It is sim
ply a thunk layer that translates 16-bit API calls to the Win32 interface.
It is not an updated version of the Windows 3.1 communications driver.

Win16 COMM API

' COMM.ORV

Ring3

Ringo

Figure 10-5.
Communications driver components.

Win32 COMM API

}1;~~:~~~;]

* Hardware ports

VCOMM is a static VxD that is always loaded during the Windows
95 boot process. VCOMM participates in the Plug and Play subsystem by
loading the appropriate enumerator and subsequently loading the indi
vidual port drivers (which are dynamically loaded VxDs) as ports are
first opened. VCOMM is multithreaded, and its code is shared among all
of the lower-level port drivers that interact directly with the hardware.
The VCOMM services are available to other VxDs, but they are never
called directly by an application, only via the defined Win32 APis. 6

6. All of the VCOMM services can be identified by means of the prefix _vcoMM_.

393

INSIDE WINDOWS 95

Windows 95 provides port drivers for both serial (SERIAL.386) and
parallel (LPT.386) ports. When VCOMM first loads a port driver, the
driver registers its presence using the _VCOMM_Register_Port_Driver
service and provides the address of a DriverControl() function in the port
driver. VCOMM uses the DriverControl() entry point to instruct the driver
to carry out the function of initializing a hardware port. Once a port is
recognized and registered, VCOMM will open it using a PortOpen() func
tion in the driver. Subsequent calls from VCOMM into the driver go via a
table of functions whose address is returned to VCOMM as a result of a
successful PortDpen() call.

The Info Center

394

Quite late in the development of Windows 95 Microsoft decided to
group the various information access components under the collective
name of Info Center. Although the name has little more significance
than to be a simple way to refer to the collection of information access
modules, it's an umbrella for a useful grouping. The structure of the
Info Center suggests that its capabilities can be broadened significantly
in the future. Thus, the early establishment of a "brand name" for these
Windows 95 functions seems to have been a good idea. Competitive is
sues are at work here too. One of the major challenges to Microsoft's
dominance of the office software market has been the Lotus Notes
product. Positioning the Windows 95 Info Center as a key component
of a workgroup application strategy allows Microsoft to begin reclaim
ing some of the ground it has lost to Notes. Synonymous with the Info
Center is what Microsoft calls "messaging," and you'll hear talk of "mes
saging APis" and "messaging services." The messaging APis and ser
vices are at the heart of the Info Center.

The Windows 95 Info Center serves as a common access point for
the applications and services that deal with office information-elec
tronic mail messages, voice mail messages, facsimile documents, stan
dard forms, and other types of typically textual, loosely structured data.
For the user, Windows 95 provides a Microsoft Mail client and the
Internet access tools that rely on the WinSock API and the TCP /IP proto
col stack.7 For the application developer, the underlying services provide
a standard interface to various messaging systems. The structure of the

7. The latest versions of Windows 95 actually have an Info Center icon on the default
shell desktop-similar to the local computer and network neighborhood icons. The
similarity suggests that the Info Center will be a commonly used information access tool.

T E N: Mobile Computing

Info Center allows applications and service provider modules to be
added very easily. Figure 10-6 illustrates the components that Windows 95
grou'ps under the Info Center heading.

API

Service Provider Interface

Figure 10-6.
Info Center architecture.

The Info Center breaks into three layers of software: the applica
tion level visible to end users, which includes an electronic mail appli
cation, for example, and two lower layers. The first of the two lower layers

395

INSIDE WINDOWS 95

is a collection of Windows DLLs that implement the messaging APis, and
the other of the two lower layers is a service provider layer offering ac
cess to different message-related services. Once again, the structure
conforms to Microsoft's WOSA model. Below the service provider layer
can be any network protocol and transport or, in the case of voice mail
handling, for example, some other subsystem such as TAPI.

Info Center Applications
The Info Center viewer is a Microsoft Mail client integrated with the
Windows 95 shell. Any time you're using Windows 95 you can send a
message-there's no need to start up a separate e-mail application.
Microsoft has also announced that Windows 95 will include an inter
face to the Internet, although by mid-1994 the final form of this appli
cation hadn't been determined.8

If you're in an organization that has standardized on a non
Microsoft electronic mail package such as ccMail, the inclusion of the
Microsoft client application won't really help you. But, as you'd expect,
the messaging API is available to all applications, so Windows 95 will no
doubt have a variety of electronic mail packages available for it.

Although other kinds of applications don't strictly come under
the Info Center umbrella, the inclusion of the messaging API as a
standard component of Windows 95 means that other applications
word processors, for example-can make use of the messaging ser
vices. An application that deals with documents can add a Send
Document option to its standard menu and enable direct document
transmission using the messaging APis. Microsoft refers to this type of
application as "messaging aware." This isn't new. Many applications
have offered this feature under Windows 3.1. The difference is that
the messaging APis are now a standard part of Windows 95, and any
application can rely on their presence.

Messaging APls

396

The messaging APis in Windows 95 are incorporated into three separate
modules, two of which implement Microsoft's core messaging effort
the Messaging Application Programming Interface (MAPI). Although
Microsoft has gathered support from other companies for MAPI, the

8. Including this feature was a late decision, spurred by the growing public interest
in the so called information highway.

TE N: Mobile Computing

design and development of MAPI are very much under the control of
Microsoft. These are the three components of the messaging API:

Simple MAPI. The basic send and receive functions of MAPI.

Extended MAPI. A superset of Simple MAPI that incorporates mes-
sage storage, retrieval, and searching capabilities.

CMC. The Common Messaging Calls, a Windows 95 implementation
of the functions defined by the X.400 API Association, of which
Microsoft is an active member.

Both MAPI and CMC allow an application to use a standard set of
functions for messaging. The application developer doesn't have to
worry about the details of the underlying message system. The essential
difference between MAPI and CMC is that MAPI is defined for Win
dows systems only-Microsoft hasn't made any attempt to adapt it to
other operating systems. CMC on the other hand is defi!1ed as OS inde
pendent, and if you're planning a messaging application for a variety of
different hardware and software environments, CMC is, preferable to
MAPI. In terms of their basic functions, CMC and Simple MAPI are
very similar.

Simple MAPI contains only 12 messaging functions, and it's in
tended primarily for use in messaging aware applications rather than for
the implementation of a full blown messaging application-an elec
tronic mail package, for example. The Simple MAPI functions allow an
application to send and receive messages and to manipulate message
address information. Simple MAPI also allows files to be attached to
messages and OLE objects to be incorporated in messages (hence the
Windows dependency).

Extended MAPI is intended for major messaging applications
electronic mail systems, workflow applications, and forms management
packages, for example. Functions in Extended MAPI allow the applica
tion to access and manipulate the message store and the address books
supported by the service providers and to incorporate forms manage
ment capabilities.

Messaging Service Providers
Underlying the messaging API is the set of service providers that under
stand the details of the messaging system they manage. All of the pro
viders support the same service provider interface, but each service

397

INSIDE WINDOWS 95

provider is written to interface to a particular messaging system. So, for
example, one service provider will support Microsoft Mail on the local
network whereas another could support dial-in access to MCI Mail.

Common to the design of each MAPI service provider are the no
tions of a store pravider (wherein information can be stored and re
trieved), an address book provider (offering some means of translating a
name into an address), and a transport provider (which takes informa
tion and actually transmits it to the intended recipient via some physi
cal means, such as facsimile transmission or simple file copying). This
separation of duties is masked by the messaging API, and, in fact, the
underlying service provider can be implemented as a single module.

Microsoft plans to include a personal address book provider and
transports for the At Work FAX interface and for Microsoft Mail. The
local address book in a Windows 95 system is the single place where
user names and associated information are collected. The networking
system, for example, uses MAPI as the means for acquiring user infor
mation and translating login names.

Portable System Support
Microsoft's standard gee whiz demonstration of Windows 95 portable
computer support comes in a segment in which Plug and Play gets the
spotlight. The scenario involves an imaginary user removing his laptop
system from its desktop docking station and rushing off to another lo
cation. This user doesn't bother to turn the laptop machine off, and
while he heads out to the waiting taxi, the Plug and Play subsystem dy
namically reconfigures Windows 95 so that the user can return to his
word processing session as soon as he takes his seat. Do you know any
one who might do this? Neither do I. Nevertheless, as a technology
demonstration, it's gripping stuff. Cynicism aside, Windows 95 does in
clude a number of features specifically intended to improve the use of
portable systems. Most of these features rely on aspects of the Plug and
Play subsystem, and generally the user doesn't have to worry about
what's going on-it just works.

Power Management

398

One of the well-researched technologies in the last few years has been the
power supply for portable systems. Low-power chips and displays and im-

TEN: Mobile Computing

provements in battery technology have combined to make battery
powered machines feasible for even long trips by air. These hardware im
provements must work hand in hand with software enhancements that
allow the user to control the system, and many portables come equipped
with a utility for customizing power consumption. Nowadays, it's the user
who controls the length of the interval before the screen blanks or the
hard disk spins down to an idle state. In the Plug and Play subsystem,
these functions are subsumed under its power management activities.9

Docking Station Support
Although portable systems with docking stations haven't sold in the
numbers that were first predicted, Windows 95 may be the catalyst to
change that. The situation that the Windows 95 Plug and Play subsystem
needed to handle is exactly the one described in the earlier example
how do you go about dynamically reconfiguring a system when it moves
between a docked state (presumably with access to a network and with a
good, high-resolution display) and an undocked state (with a portable
display and perhaps a different pointing device) ?10

Plug and Play is key to solving this problem. The automatic
reconfiguration of the system involves unloading and loading the VxDs
that control the attached hardware. As a device disappears, Plug and
Play will unload the controlling device driver. If a device changes (an
external 1024 by 768 256-color display becomes a local 640 by 480 16-
level gray-scale LCD screen, for example), the system alters its configu
ration to suit. The reconfiguration isn't just a system-level activity. Plug
and Play will broadcast messages informing running applications that
the configuration is about to change. The applications can respond by
closing files, blocking the system reconfiguration process, or simply ter
minating. If the system's FAX card is about to disappear, for example,
the background FAX receiver application has no reason to continue to
run. For more subtle changes, such as the change of display described
above, the application will have to recognize the difference in capabil
ity and react accordingly.

9. Details of the state of the art in power management are to be found in the
Advanced Power Management Specification Version 1.1, available from Microsoft.

10. Microsoft also intended to implement deferred printing in Windows 95-so
that even if your printer is not currently attached to your machine you can go ahead
and print. The physical output will appear when your machine is next connected to
the printer. As of the Beta-1 release, this feature hadn't been implemented.

399

INSIDE WINDOWS 95

The reconfiguration process is most likely to take place at power on.
You'll turn your machine off, pull it out of its docking station, head out of
the office, and power the machine on sometime later. The machine will
boot up in its new configuration. This won't be the case with PCMCIA
peripheral cards: one likely operation is to remove one card and re
place it with another of a different type while the system is running.
Windows 95 will manage this reconfiguration process the same way it
does at power on, and, after a short delay, the system will be
reconfigured with no user interaction. You finally have a good reason
to fill your pockets with PCM CIA credit cards whenever you head out of
the office.

File Synchronization

400

One irritating problem that comes up when you're using two different
systems is needing to ensure that you're always using the most up-to
date version of a file. If you have a single portable computer and dock
ing stations wherever you go, you've solved the problem. But if, like most
people, you copy files from one machine onto a diskette and then copy
that diskette's contents onto another system, you're always running into
the problem of synchronizing the two different physical copies of the
file. Windows 95 has a "briefcase" that makes it easy to manage updated
copies of files.

The shell allows you to create a briefcase object and drop other
objects into it. When you leave the office, you simply copy the entire
briefcase to a diskette (or perhaps across the network to another hard
disk). You can work on the files in the briefcase and then get the shell's
assistance when it's time to return any updated copies to the original
system. Typically you'll create a briefcase on the desktop and leave it
there, although you can create many independent briefcases if you
want to. In the example shown in Figure 10-7, the file CHAPIO.ZIP has
been copied from the desktop to the briefcase. The original remains
in place.

T E N: Mobile Computing

Figure 10-7.
A briefcase on the desktop.

You copy the briefcase and its contents by simply dragging and
dropping the whole thing to its destination. In this example, the desti
nation is a floppy disk. Examining the contents of the briefcase on the
disk would lead you to believe that only the files you copied to the brief
case are present in the briefcase (see Figure 10-8). In fact, the shell adds
hidden files that describe the contents of the briefcase to assist the later
reconciliation of different versions of the files you've copied.

·a 5.25 Floppy (A:J
··a 15 Floppy [B:J

rB8111li@•
Ardiles_c [C:]

l··Jiil Book
~J-Jiil Chicago

Figure 10-8.
The contents of a briefcase.

401

INSIDE WINDOWS 95

402

When you return to the original system, you copy the briefcase
back to the desktop and then initiate an update operation on the con
tents of the briefcase. The shell compares the versions of the files and
recommends the reconciliation action that seems to be appropriate. In
the example shown in Figure 10-9, the shell suggests that the updated
copy of the file contained in the briefcase ought to replace the original
file on the desktop.

D
Chap10.zip

In Briefcase
Modified
07 /11 /94 1 0: 37PM

Figure 10-9.

Replaces

In C:\C. .. \Desktop
Unmodified
07 /11 /94 1 0: 27PM

Replacing a file with an updated version from the briefcase.

Of course, if you are only one of a number of people working on a
shared document, it's possible that the original will also have been up
dated in the meantime. In this situation, the shell won't know how to pro
ceed, and you'll see a dialog similar to the one shown in Figure 10-10. At
this point the user has to guide the update process.

Although this is a simple scheme, in practice it works well, and
naturally there is more to it than simple file modification date and time
comparison.

T E N: Mobile Computing

D
Chap10.zip

In Briefcase
Modified
07111 /94 10:37PM

Figure 10-10.

?
Skip (both changed)

In C: \C ... \Desktop
Modified
07 /1 1 /94 1 0: 40PM

Reconciling a file when both the briefcase version and the original
have been modified.

The Briefcase API
Both briefcases and their contents are controlled by the AddObjectTo

Briefcase() API. This API not only copies the physical data associated
with the document to the briefcase but also updates the control infor
mation associated with the briefcase. Objects copied to the briefcase in
some other way won't have this control information incorporated and
thus can't be reconciled at a later time.

The ReconcileObject() API initiates the process of reconciling two
different copies of an object. The shell calls on the services of a reconcili

ation handler to perform the actual updating process. In many cases this
will simply mean copying the newest version of the file over the older
one. But in cases in which a true merge of the file contents has to take
place, the reconciliation handler must understand the details of the file
format it's dealing with. Microsoft plans to provide a number of standard
reconciliation handlers for common file types.11 An application can also

11. Although this was announced, the exact plans were still vague as of July 1994.
Also, an earlier announcement that objects within OLE compound files could not be
individually reconciled appears not to be true, so expect this capability as part of the
Windows 95 product.

403

INSIDE WINDOWS 95

register its own reconciliation handler and thus be called on by
the shell to perform the reconciliation action for the associated
object type.

Conclusion

404

If Windows 95 meets Microsoft's dual goals of providing excellent com
munications capabilities and providing good performance on existing
386 machines with only (sic) 4 megabytes of memory, it will be a strong
contender for adoption as the preferred OS for portable and home
computer use. 12 If the lower-level communication drivers live up to the
advance performance claims, there should be no barrier to developers
basing their communications software on Windows 95. With the lay
ered network architecture and MAPI, Windows 95 should provide a
great platform for remote networking and applications that rely on
electronic mail and other connectivity options. Windows 95 also ad
dresses a few of the real practical problems of mobile computing: the
synchronization of files, deferred printing, and (with Plug and Play)
the dynamic adjustment of system configuration.

At one time I planned to discuss the capabilities of Windows 95
with respect to handwriting recognition and the use of handwriting
recognition technology on the so called personal digital assistants
(PDAs). The early Chicago presentations gave significant airtime to the
handwriting technology planned for Windows 95, but the industry's
love affair with pen-based systems has cooled off in recent months.
Microsoft still plans to incorporate handwritten input recognition as a
standard part of Windows 95, and the WinPad application is intended
principally for use with a PDA. It doesn't seem likely that Windows 95
will usher PDAs into a new era of productive use-but we'll have the
basis for some exciting applications when and if handwritten input be
comes practical.

12. Naturally the other part of the home equation is what Windows 95 will offer
game players and developers. Microsoft's announcement of the WinG graphics library
and its recent efforts to court MS-DOS game software developers ought to help meet
this particular need.

T E N: Mobile Computing

Although I've examined much of Windows 95 in a lot of detail, I've passed over
some features, and other features are still changi,ng as this book goes to the
printer. In a concluding interview, I had a chance to ask Microsoft's Paul
Maritz, Senior Vice President, Systems Software Division, and Brad Silverberg,
Vice President, Personal Systems Group, about late-breaking news and
Microsoft's goals and aspirations for the product during the latter part of 1994
and into 1995.

405

EPILOGUE

LEAVING CHICAGO

By the time this book went to press, the Beta-1 release of Windows 95
(nee Chicago) had been distributed to about 15,000 developers and
users around the world. Early reviews and product evaluations had ap
peared in industry magazines, and interest in the product had already
swelled beyond the dull roar level. The early sightings of the product
also raised a number of questions-about the positioning of Windows
95 vis-a-vis Windows NT, about the new user interface, and about the
likely level of success for Windows 95.

Right before this book went to press, I talked with Paul Maritz, se
nior vice president of Microsoft's Systems Software Division, and Brad
Silverberg, vice president of Microsoft's Personal Operating Systems
Group-the group directly responsible for Windows 95. The interview
took place in Paul's office at Microsoft on July 22, 1994. I asked Paul
and Brad about their aspirations for Windows 95 and about some of the
product features already receiving critical review. Their answers were
candid and largely devoid of the marketing hype that Microsoft is so
justly famous for. Brad in particular is an irrepressible Windows 95 en
thusiast. Clearly, neither man had any illusions about the amount of
work still left to do before Microsoft would be in a position to ship a
great product, but their demeanor suggested that the light they saw at
the end of the tunnel was not from an oncoming train. Here is the in
terview. It's been edited for syntax, and the sounds oflunch have been
deleted, but the semantics remain untouched.

AK: Adrian King, Interviewer
PM: Paul Maritz, Senior Vice President, Microsoft Systems Software

Division
BS: Brad Silverberg, Vice President, Personal Operating Systems,

Microsoft

407

INSIDE WINDOWS 95

408

AK: My first question relates to the potential for confusion when Chicago ap
pears in the market. You'll have a Windows 3.1 product that's been very popular,
Chicago, Windows NT, and Cairo coming up. As far as the evolution of the
desktop is concerned, over what time frame do you see which operating system
claiming the major share of the desktop market? And what should people be do
ing when they upgrade or when they really need to move to the more powerful
product?

PM: There are basically two ways you can approach that question. One
is Chicago vs. Windows 3.1, and the other is Chicago vs. Windows NT. I'll
let Brad address the 3.1 part of it.

BS: Chicago is simply the next major version of our high-volume desk
top Windows operating system. So it's the successor to, replacement ·
for, Windows 3.1 and Windows for Workgroups. Those products have
been phenomenally successful. We're selling over 2 million units of
those a month. We announced yesterday that we've shipped over 60
million copies of them. And Windows Chicago is just the next version.
Anybody who will be buying a new version of Windows after Chicago
comes out should be buying Chicago. Anybody who is running Win
dows should be running Chicago. Just as today I don't know anybody
who is running Windows 3.0, I would expect in some period soon,
maybe a year after Chicago ships, that if you talk to people who are run
ning Windows-they'll be running Chicago. It's a replacement. And it's
complementary with our version of Windows targeted for high-end
workstations, mission-critical applications, technical workstations, and
the most demanding corporate applications. That's Windows NT.
Daytona is simply the next version of Windows NT, and Cairo is the
next major version of that product line.

PM: I think there will come a day when we will shift more and more of
our corporate customers toward the NT platform. But with Windows
NT we deliberately bit off some very challenging things. Basically it's a
tremendous investment in raw software technology-writing a code
base that's truly portable across architectures, that's certifiably secure,
that's suitable for distributed computing, that's highly extensible, etc.
And all of those things come at a price. They require a lot of resources,
which means that as of today Cairo is really targeted at the higher end
of the line-to people for whom those features of security, extensibility,
and scalability are very important, and who are willing to pay for the
hardware resources necessary to allow them to have those features.

E P I L 0 G U E: Leaving Chicago

Over time, as the center of gravity in the hardware base shifts, par
ticularly in the corporate environment, as people move toward
Pentium-class machines, with 16 or more megabytes of memory, we'll
be able to shift more of our corporate customers in the direction of the
Windows NT code base. But we see forever having to maintain at least
two implementations of Windows in order to be able to cover the broad
spectrum of people who use PCs.

BS: The products represent two natural design centers, and that will
continue. I mean the natural flow of technology is always-starts out at
the high end, a couple of years later it becomes mainstream, a couple
more years later it's obsolete. It's no different from what we see today.

PM: Today and in the future we see ourselves having a design center at
the high end, where we're trying to push technology as fast as we can,
realizing that we're probably using more resources than most people
have in order to do that. On the other hand, we need to remain really
focused on the broad market in two senses, making sure that we stay
within the resource constraints that not only new machines but the in~
stalled base of machines has and that we stay very focused on produc
ing software for ordinary people who don't want to understand
anything complicated and just want to use their systems.

We see ourselves having to maintain these two design centers and
two teams focused on doing that. That's been our strategy for the last
three years, and I can see that as being our strategy in the future. What
you're seeing is simply the output of those two focuses coming into the
marketplace when we move from Windows 3.1 to Chicago, and there
will be successors to Chicago. Some of those successors to Chicago
might use a lot of the technology that you find only in Windows NT to
day, but they'll still be, from a design point of view and a philosophy
point of view, targeted at a broad mass market. At the same time, we'll
be using new technology at the high end-what you think of as the
Windows NT line-where our focus is really on client-server comput
ing, distributed computing, system administration, and a lot of other
aspects. We hope we can increasingly share technologies between those
two environments, but I think there's always going to be a difference
between them.

It is a more complicated strategy, both to explain and to execute.
It certainly does put some strains on us, but I think the result of it is that
we'll be able to serve a broader class of customers in the future and not

409

INSIDE WINDOWS 95

410

be forced to bifurcate the world and say that for corporate computing
you use only Windows, and for home computing you have to go and
buy some other random product that comes out of Nintendo-space or
whatever.

BS: That's like with Intel when the 386 first came out. It was high end;
you only ran the 386 for servers; and then it was on high-end desktops;
and now it's pretty ubiquitous. And now, at least from an accounting
standpoint at Microsoft, we've written off all our 386s. That's just a
natural flow of technology. But there's still that high-end space. Intel is
still producing very high end chips, and they are focused on the server
first, and then they come down to the desktop. The hardware technol
ogy flows that way. You'll see the same thing in our operating systems.

PM: There are some things that flow the other way as well. Ease of use
factors in particular. And that's what you see being pioneered in the
Chicago area. Things like the new user interface and the Plug and Play
framework, which are absolutely vital for the broad market but which
you'd like to have in the business-oriented market and the high-end
market as well. And those things will flow into our high-end product
line and be used there. So Cairo has as one of its objectives to absorb
some of the features that are being introduced with Chicago.

AK: At !,east in the Windows NT product line, you've made a big investment in
the portability of the code for adaptation to RISC processors, which is not a con
sideration for Chicago. Yet the· RISC-based machines have had a minimal
impact in the market so far. Do you see that changing? Or do you think Intel
Intel-compatible chips-is going to hold sway forever?

PM: It's still hard to say. I mean, today, clearly Intel has been very suc
cessful in bringing new parts into the marketplace and increasing their
price performance on a regular basis, which has meant that it's been
tough sledding for anyone else to make enough of an impact to get
some market share. But we still think we've done the right thing in
terms of slowly but surely investing in technology that says, whenever,
whatever happens down in the silicon, our customers are going to be
insulated from it; that we can take advantage of innovation wherever it
comes from; that it's not something that people need to be concerned

E P I L 0 G U E: Leaving Chicago

about. I think Intel is very focused on the challenge posed to them by
the Power PC chip. I think the huge investments that they're making in
future processors, the kinds of deals they're announcing with compa
nies like Hewlett-Packard, mean that they have every intention of not
giving up their leadership.

AK: For each of these products, and here I mean Chicago, Daytona, and Cairo,
what's a good configuration for me to buy to run them?

BS: What applications do you want to run?

AK: Microsoft Office?

BS: The goal with Chicago, and one we've worked super hard as a
team to achieve, is that whatever you're running today, on Windows
3.1, if all you do is move from 3.1 to Chicago, you 'II be at least as happy
as you were before. So that the performance you saw before when you
ran those applications you'll see with Chicago.

PM: And on higher-end machines you'll be even happier.

BS: The Chicago performance curve is that the more memory you
add, the better we can really take advantage of it. And that is something
a little different from 3.1. In Windows 3~1, we weren't able to take ad
vantage of higher amounts of memory the same way, and the perfor
mance curve would flatten out. But with Chicago we have an integrated
cache management system for the filesystem, the network, and virtual
memory that allows us to dynamically balance the cache in real time to
really take advantage of additional amounts of memory. But if you're
running games or Microsoft Works or Microsoft Publisher, as with a lot
of these home machines, and you go to a mass merchant like Costco,
what you need and what they sell is a 4-MB machine. People take it
home and they're happy. How many? Seven million home machines
sold in the United States in 1994? People are buying 4-MB 486 systems
for their homes.

PM: If you run some of the application benchmark suites that use nor
mal features like cut and paste, printing, and things like that, with Chi
cago the knee of the performance curve is approximately 6 MB. For
that user scenario you won't get a lot of performance increase by going

411

INSIDE WINDOWS 95

412

above 6 MB. And on Daytona [Windows NT version 3.5-Ed.] the knee is
around 12 MB.

AK: Mat is it going to be with Cairo?

PM: You can't say at this point in time. Clearly the development team is
going to work hard to make it as good as it can be. Both our teams, the
Chicago team and the Windows NT team, have learned the religion of
"you'd better stay on top of size and performance." It's very hard to put
those things back into a product. You have to stay on top of them up
front. The Cairo team-they're going to be working really hard trying
to contain that. On the other hand, their goal is to be a very functional
platform, so they have to set the trade-off dial in terms of resources vs.
function. And it's set differently on that platform. And the kinds of cus
tomers who will buy Cairo are not nearly as concerned about whether it
runs on a 4-MB machine.

BS: One of the missions of Chicago is to be able to upgrade the exist
ing installed base. It's not just for new machines. That means ...

PM: You've got to be religious about it.

BS: ... you've got to be really hard core about making sure you run on
what people have today and not have to have them buy more memory.
And that means running well with whatever they're running today, and
running in the same amount of memory. At the same time, I'm sure as
people get into Chicago, as they want to start taking advantage of some
of the new capabilities, sure they'll need more memory. As you take
advantage of stuff you weren't using before, you might need additional
resources.

PM: I think the other thing to say is that usage patterns of applications
are changing as you go toward compound documents and things like
that. You really have to have a lot more memory than many people do
today. We're rapidly reaching the day when applications' usage of
memory is getting to dominate the operating systems' use of memory.
To really answer those "What configuration?" questions, you have to
ask, "What kind of applications? How many? How complex are your in
teractions among them?"

E P I L O G U E: Leaving Chicago

AK: My follow-up question would be, gi,ven that there's this big emphasis on
OLE ...

PM: There's no question that if you want to get the full benefit out of
OLE you've got to have more memory. If you really wanted to use one
of the modern office suites, whether it be Microsoft Office or Lotus
Smart Suite, to its fullest capability, you'd be looking at an 8-MB mini
mum machine.

BS: For that type of system. Some people are very content to run Works
or Publisher or run their games. There are millions and millions of
people like that.

PM: Or even within the suites, they may be using something but not us
ing OLE. Perhaps just doing basic word processing, for example, so
they don't need all that extra memory.

AK: So if I walk into Computer City in a year's time to buy a new system . ..

PM: You personally? Oh, 32 MB easy ...

AK: No. I'm buying it for my mother or somebody. Is Computer City going to
have 8-MB machines as their standard boxes on the shelves?

PM: In a year's time? I think so.

BS: Probably that will be typical for Computer City. Costco might still
have quite a selection of 4-MB machines. Not as many as today. But Chi
cago won't be a factor in that.

PM: Brad and I were talking about that this morning. PCs, I mean re
ally well-equipped PCs, 486-class machines, are almost down into the
consumer appliance price band. And it's interesting to speculate about
what happens when a decently equipped multimedia machine gets be
low $800. We might see a whole new segment of the market open up
there. Which is another reason we have to remain very, very focused on
assuring that we'll have software that continues to run on the 4-MB
level for some time to come.

413

INSIDE WINDOWS 95

414

AK: Talking about Chicago in particular, what I've noticed most as I've used it
during all the testing periods is the amount of effort that has been applied to
cleaning up everything in Windows that used to annoy you. I mean, every little
detail has been gone into. There is no stone unturned. That plus the new features
represents a huge amount of development and testing effort-in particular, com
patimlity testing. Given that you 're now later than you would have liked to have
been, in terms of releasing Chicago, do you regret any of that investment?

BS: Oh no. No. That's Chicago's mission-first and foremost to make
PCs really easy to use, delivering on the promise of PCs as an appliance.
That's the number one thing we set out to do with Chicago.

There were really four things we set out to do in Chicago. One was
to make PCs easy to use. That involves a new shell, Plug and Play, and
this fit and finish polish you've just talked about. Number two is to have
a modern 32-bit operating system underneath with threads and 32 bits
and all that stuff. An aspect of that is to make Chicago a fully bootable,
complete operating system so that it's not limited by DOS, not crippled
by DOS, and has all the benefits of being a completely self-contained
graphical operating system. The third element· was connectivity
whether in a LAN or a WAN or a mobile dial-up environment. And the
fourth is compatibility: being a no brainer upgrade.

Clearly number one was ease of use. And that was the thing that
drove a lot of the things in category number two-the powerful operat
ing system. For example, we added long filenames. When we set out to
do Chicago, we didn't think we could figure out a way to do long
filenames, in the FAT filesystem, in a compatible way. For years, I mean
you know this, we've continued to look at this problem. The idea of
long filenames is not a new one. Eight-dot-three names is not some
thing that people have always said, ''Wow, this is a really great thing.
Let's stick with it." It's really painful. But every time we've looked at it
and had good people look at it, they've failed to come back with solu
tions that were workable. But this time, when they came back and said,
''We can't figure it out," we sent them back and said, ''We don't have a
product unless you fix that." I can't imagine coming out with the next
major version of Windows, whose mission is ease of use, and we're still
telling people they need to use eight-dot-three names. That's failure.
So we went back, and the team came up with a very, very clever solution
that allows us to have eight-dot-three names as well as long filenames in
a compatible high-performance way. I think it shows the commitment
to solving hard technical problems in the kernel that is one of the de-

E P I L 0 G U E: Leaving Chicago

fining characteristics of Chicago. So I don't regret those efforts for a
second. Chicago is going to last for a long time. The legacy of Chicago
is going to be with us for years. And cutting corners to release the prod
uct a month or two earlier would have been a completely false
economy.

AK: Am there featums you wish you hadn't included? For whatever reason? You
don't like them. You don't think they 're applicable in the current market . ..

BS: I love the product. I'm so in love with this product. My history of
using the product is that I have two identical machines in my office.
Both 8-MB 386~ 33-MHz systems. One runs Windows for Workgroups
3.11 and the other has been running Chicago since M5 time frame [De
cember 1993-Ed.]. I wanted to be like a user and use the product like a
user. So initially I spent most of my time, probably 80 percent of my
time, on the WFW machine, and then I would just go over to Chicago
and explore for a while and find some things I didn't like and send
some mail to see if we could get this or that fixed. And as the product
progressed, it got better and better and faster and easier and more ro
bust-to the point now where 99 percent of my time is spent on the
Chicago machine. When I have to go back to the Windows for
Workgroups machine, it's like, 'This is the old stuff. How did I ever use
this? How did I ever like it?" And I think the shell team has done a phe
nomenal job of really delivering on the promise of ease of use-it be
comes addictive, so much so that you just don't want to use the old stuff
anymore. And Windows 3.1 really is, in comparison with Chicago, last
generation. So, I can't really point out anything I wish we would have
done differently. I wish, obviously we all wish, that the product was on
the market today and we were working on version 2. But we're commit
ted to making sure the product is right before we ship it.

AK: Lets talk about the user interface some more. Already, in some of the re
views of the first beta release, theres been criticism that the shell is too different or
simply a mix of lots of other things that have gone befom. Whats your msponse to
that, and what do you think am the really original features of the shell?

BS: I think the shell is tremendous. And the feedback I get from beta
testers, the vast majority of beta testers-and I'm very active on the
CompuServe beta test forum, I know these people, I've worked with
them for years, and they don't hold back-what do they think? They

415

INSIDE WINDOWS 95

416

love it. You know, the first day it feels like a new pair of shoes. It feels a
little bit uncomfortable. You're just not used to how it feels. The second
day it starts to get a little broken in. By the third day it feels like the
most comfortable pair of shoes you've ever owned and how did you
ever wear the old ones? Some of the people who are passing opinions
haven't even used it! There are other people, who for whatever rea
sons, want to stick with the old user interface, for training or migration
reasons, maybe. That's fine. We're glad. We'll supply that feature and
we'll make it easy for people to use File Manager, Program Manager,
and so on. And they can migrate to the new user interface at the pace
they like.

I have heard some of the criticisms, that it's a collection of OS/2
and Motif features, and features from all these other things, and itjust
makes me laugh. We never even looked at Motif. I can't tell you what
Motiflooks like! I don't think Joe can either [Joe Belfiore, the lead shell de
signer in the Chicago group-Ed.].

PM: There were people who looked at Motif. We didn't put our heads
in the sand and not look at what was going on around us. But what is
certainly the case is that this thing was not designed from "Oh yes, let's
take three features from there and three features from there." It was
designed to solve problems that had been identified in the existing
Windows 3.1 user interface.

BS: And problems in other graphical operating systems.

PM: We had guys go out and not only do the internal usability testing
you traditionally do, where you get a bunch of guys in and videotape
them as they try to do some tasks on a machine. We also went out and
spent time with real users, just sitting in and watching. And we learned
a lot of stuff there, like what nine-tenths of the world finds very diffi
cult. It turns out that nine-tenths of the world can't find their windows,
nine-tenths of the world finds overlapping windows confusing. Most
people run with their windows maximized all the time ...

BS: ... or only run single applications. These are common problems
people have that we went out to solve, and one of the things we learned
as we worked on the Chicago user interface is that by having a really
good design you solve a lot of problems you never anticipated you were
setting out to solve. Good design really means that you have a small

E P I L 0 G U E: Leaving Chicago

number of really good principles that work together, that combine
freely and combine well. So that while we started out to make Chicago
easy for novices, we found that having a small number of really useful,
easy to combine principles means that we made the product a lot easier
and a lot more powerful for power users too. That's the benefit of good
design. I think we make quite a number of innovations and contribu
tions in the Chicago user interface. I fully expect the developers of
other operating systems to follow suit with some variation of what we're
doing. Things like the taskbar. The taskbar is a breakthrough in how
you manage multiple applications. On whatever graphical operating
system, we've found that people can't do window management. They
lose track of things. They don't run multiple applications because they
just lose track of them. The taskbar makes it very easy for people to run
multiple applications and not have to worry about window manage
ment. It's like Windows TV! You just click a button and you get the Ex
cel channel or you get the Word channel or you get the Mail channel.
It's a metaphor that people are very used to. It gives you an anchor
point together with the Start button so that if you don't know how to
get something done, you're led to that one place that's really the
source of90 percent of what the system can do.

The Start button. Having a uniform namespace so that all system
objects are in a single namespace, so you don't have a Font Manager
and a Program Manager and a File Manager and all these other manag
ers. If you want to look at your printers, you go to the Printers folder. If
you want to look at the attributes of your printer, you look at Properties
on your Printers. You don't have to say, "I want to add a printer. Do I go
to the Control Panel for Printers, do I want Setup or do I want some
thing else ... "

PM: Going back to your original question. People who say that this
thing is like the Workplace shell, or Motif, or something else just really
haven't used either product, or they wouldn't be able to say that.

BS: So having properties on all objects in the system-that's uniform.
Anytime you see something, you know it has properties, and you can
right-dick and get to the properties. That eliminates the complexity
bomb that would otherwise be there. If you want to add more and more
capabilities to a system, unless you have this common framework that
allows you to add things in a uniform way, you're just adding idiosyncratic
feature after idiosyncratic feature. So the right-dick for properties, the

417

INSIDE WINDOWS 95

418

taskbar and the Start button, shortcuts or links-whatever we end up
calling them-I think will all be important. They change the way you
work. They absolutely change the way you use the system. You never
have to remember crazy pathnames all over the network anymore. You
just create a folder. Single-dick to close. Stupid little things, but once
you get used to it and then you go back to 3.1, you say, "This is really
awkward. How did we ever live with this?"

AK: So coming from that, name your three favorite Chicago features.

BS: The shell itself. For sure,just the whole look and feel and gestalt of
the shell. Second, I love shortcuts. I think shortcuts, particularly short
cuts to network resources, change the way I use the product. They
make me more efficient on a day-to-day basis. The third feature I'd say
is the integration of the network. How the network is seamlessly inte
grated into the system.

PM: I think a lot of the Plug and Play features are pretty nice. And not
just at the "stick the boards in and pull them out" level. It's the whole
way you can go in and reconfigure your desktop without rebooting
your system and having to clink around like that.

BS: Plug in a CD ROM and not have to spend the weekend doing it.

PM: I think a lot of the mobile features are pretty nice. It's a real nice
system to take on the road on your laptop. There was a bunch of stuff in
M5 [the release distributed at the December 1993 developer conference-Ed.]
that we got cleaned up in Beta-I, and more still needs to be done, but
you can see that it's going to be a lot better for mobile users. The Brief
case and all those kinds of features that are really cool. Thirdly, there
are elements in the user interface that you think, Boy, how did we live
without these things? Like the Document list and the Start button. You
notice how much easier it is than if you have to open up the File Man
ager, find the directory, scroll down the directory list, and find the
document and then open it. It cuts four or five clicks out of every op
eration. You realize you're getting to stuff far more quickly than you
were before.

AK: Do you think Chicago is MS-DOS 7. O? Or is there going to be a different
animal called MS-DOS 7. 0?

E PI L 0 G U E: Leaving Chicago

PM: I think that for all intents and purposes Chicago is MS-DOS 7.0, if
by that you mean that MS-DOS 7.0 is the next version of the software
that every PC comes equipped with. Will there be a nongraphical prod
uct that will have the familiar C:\ prompt as its fundamental interface?
And as such is it MS-DOS 7.0? It's an interesting question. You have to
ask yourself, "What is the market for the end product?" There would
have to be somebody who for some reason has a complete aversion to
graphical user interfaces and refuses to use one under any circum
stances. On the other hand, we've always been surprised by the number
of people who want to buy an upgrade to MS-DOS.

AK: Have you identified the people who like the C:\ prompt, or are you just
guessing that they 're out there?

PM: That's why we haven't made a decision one way or the other
whether we want to do MS-DOS 7.0. It's hard for us to figure out how
many of these things we'd sell. Logic would say you're not going to sell
that many.

BS: Chicago would run the same MS-DOS apps that such a product
would. We put a lot of effort into our support for MS-DOS applications
so that we could run anything that's out there. It's not as if an MS-DOS
7.0 would run applications that Chicago wouldn't. It just wouldn't be
able to run Windows applications. We just don't know yet if there's suf
ficient demand. If there's enough demand, we'll build it.

AK: When do you see the release of a fully Chicago compatib/,e version of Win
dows NT happening? By that I mean a release with the new shell, Plug and
Play, and all the rest of it.

PM: That's the next release after Daytona, called Cairo. Our goal is to
get that out during 1995.

AK: Do you worry that peopl,e will simply dismiss Windows NT when Chicago
hits the streets with all the attendant publicity ? That they 'll just sort of forget
about it and assume that Microsoft has aced itself again?

PM: There's a very real reason they won't forget about NT. NT is our
offering, quite apart from any other issues, for the server market. So
we'll continue to sell NT very aggressively in the server market, where it

419

INSIDE WINDOWS 95

420

offers tremendous advantages-where it can handle multiprocessors
and offer security, reliability, and robustness-those sorts of things.
Those features are not just "nice"-they're absolutely necessary.

And there are significant customers who have already selected
Windows NT as their desktop operating system. They'll be buying Win
dows NT in fairly large numbers during Y995. These are customers like
financial trading houses, who have long development and deployment
cycles because they're planning to run some very critical applications.
So there will be significant customers buying and deploying Windows
NT during 1995. And our focus will be on servicing those customers.
Windows NT is not an operating system that we have ever expected to
sell through the comer store. It was built expressly in order to solve
specific problems for people, and we'll concentrate our marketing ef
forts on servicing those customers. And then, when we get to Cairo,
which does pick up the Chicago UI, that's when we'll expand our mar
keting of the NT product to an even broader segment of the corporate
market.

AK: Do you lose any sleep over the people who are trying to compete with you fJy
attacking Windows? The WABI initiative, Taligent, OS/2, etc., etc.?

PM: Do we take competitors seriously? Yes. We have to because of the
very large sums of money that people are spending to compete with us.
And these are not incompetent people, not stupid people. These are
people who are very serious and have us steadily in their sights. We
can't afford to grow lax or to ignore them. On the other hand, I think if
we execute, if we deliver in a reasonable way, and above all, if we deliver
quality, we'll be OK. My biggest concern with Chicago is that because it
has to sell to so many people and be a successful upgrade for so many
satisfied users today, it has to be a very high quality product. So if we ex
ecute well in a reasonably timely way and deliver a quality product, I
think it's going to be a tough job for our competitors to try and match
that.

AK: Do you think it's technically feasible for somebody to run a Chica~
compatible system hosted on top of another operating system?

BS: It's only software.

E P I L 0 G U E: Leaving Chicago

PM: It's a question of time ...

AK: Within our lifetime?

PM: ... and resources. You understand, we're not religious about this.
We have licensed the Windows source code including the Chicago
source code to people so that they can do precisely that-in the UNIX
environment, for instance.

BS: If IBM wants to license Chicago, we're glad to license it to them.
To us it's just a business decision. It's not a religious decision.

PM: Cloning these modern pieces of software is a tough challenge. I
don't know the exact line count of Chicago, but it's millions of lines of
code, and compatibility is just an incredible, incredible challenge. We
have full access to all the Windows 3.1 source code and our test suites,
and getting both Chicago and Windows NT to be compatible with Win
dows 3.1 and run all those applications has got to be the largest part, by
far, of our expenditure of effort.

BS: All things said, I'd rather be playing our hand than their hand.
We've got a tough challenge, and if we execute, we're in good shape.
I'd rather be in our position than theirs.

AK: You 're re-emphasizing OLE with Chicago by including it as a standard
component. How do you feel OLE is doing in terms of both the number of ISVs
who are really adopting it and its position in competition with the other object
architectures?

PM: There's a tremendous amount of heat and light about "things ob
ject" at the moment-most of which has nothing to do with the average
end user. This is truly an industry-induced storm here, where we're just
talking to each other. But OLE is the only thing (a) that an ISV can con
cretely do something about and (b) that an end user can actually use to
get some benefits from component-oriented software. We have done a
lot of thinking about OLE, and a lot of design work has gone into it. A
lot of what you hear bandied about, that OLE isn't good with a distrib
uted environment, or isn't able to handle nonrectangular Windows, is
all just nonsense. All that stuff has been thought about and provision
made for it and, in fact, if you take the distributed case, designed very

421

INSIDE WINDOWS 95

422

elegantly for in the sense that all of the components that are written
today will be able to play in a distributed environment with no change
whatsoever. This is not true of models like DSOM, where you have to
make source code changes to get your components to work in a distrib
uted environment.

In terms of acceptance in the marketplace, the thing to do is to
watch people's feet, not their mouths. There isn't any major software
vendor who isn't making significant investments in OLE technology.
OLE is a very broad thing. It's really an umbrella for a series of technolo
gies-application automation, compound document support, etc. Not
all ISVs are using all the options under that framework, but that's to be
expected. It's like an operating system: not all ISVs use all the APis in the
operating system. There are many people making their applications
OLE enabled. There isn't anybody of note at the moment who isn't.

AK: The recent Microsoft Developer Network News listed "the magnificent
seven" requirements for an ISV who wants to license the new Windows logo for
display on the product box. One of these was that you've got to support OLE.
That's a little bit aggressive, I would say. Why did you decide to do that?

BS: I think to build a quality Chicago application requires developing
Win32 OLE applications. That's part of what it means to build a great
Chicago application.

PM: People should have certain expectations of their applications
when they see that logo. What we're saying is that they should be able
to see that this application, by virtue of carrying the logo, is going to be
a first-class citizen in this environment. And, in our opinion, to be a
first-class citizen this is what you need to do.

BS: Win32, OLE, long filenames ...

PM: People don't have to use the logo. This is an issue of what you want
the end user to be able to expect when he sees an application that has
the Chicago logo on it.

AK: One of the things I didn't understand looking through that requirements
list was that a qualifying app must be able to run on Windows NT version 3.5.
Given that you don't have all the Chicago facilities in that rekase, how does an
ISV do that? On the one hand, you 're insisting on adoption of the new look and
feel, and on the other you 're insisting on being able to run on Windows NT.

E P I L 0 G U E: Leaving Chicago

PM: The answer is that we've made it very easy for people to produce a
high-quality, first-class-citizen Chicago application and also have that
application run on Windows NT 3.5. The controls that you'd use to get
that new look and feel will be available on the Daytona platform, so we
feel that that is actually a very modest requirement. And most ISVs plan
to meet it.

AK: So that will be a library that'.s going to ship with Daytona or a compiler or
something?

PM: Yes, with Daytona.

BS: The main thing that Daytona won't have will be integration with
the shell. But that's OK because the key message for ISVs is that they
just write to Windows./ And there are two different implementations of
Windows. There's the high-end NT implementation and there's the high
volume Chicago implementation. But it's just like when you write an
Intel program: you don't write to a Pentium, you don't write to a 486,
you just write to the Intel instruction set and depend on Intel to get the
semantics of that instruction set uniform across the implementations.
The same is true with Windows. We just want ISVs to write to Windows
and leave it to Microsoft, with some testing by the ISVs, to make sure
that it will run.across the various implementations of Windows.

PM: And there are some rules you have to follow to do that, but by and
large we feel that those are fairly commonsensical and that they won't
be a big overhead.

AK: Can you give some idea of the scope of the project? Number of programmers,
testers, and those sorts of metrics.

BS: I can't tell you exactly how many people. Chicago is done by my
core team as well as by people both within Microsoft and outside
Microsoft working on some external components. The OLE code, for ·
instance, is done by a group in Daytona. Mail is done by a group in the
Business Systems Division. And some components came from outside
the company, like the file viewers, the terminal application, and the
backup application. And I have no idea how many people are working
on those components. If you eliminate those people, just within the

423

INSIDE WINDOWS 95

424

Chicago core group, it's approximately 350 people. That includes de
velopers, program managers, testers, and marketing people. Of which,
say I 60 developers-I think there are I 60 developers in the Chicago
group. That's again just my team. That doesn't include Mail or OLE or
some of the external components. And approximately the same num
bei of testers.

AK: Do you know the numbers of tests that have been done?

BS: I know that to this point, we've done over 400,000 hours of stress
tests. We've got about 20,000 beta sites. The product has been in a PDK
(Programmers Development Kit) release for almost a year now. The
first PDK was in August I 993. By the time we ship, it will be the most
stress-tested, most beta-tested, most analyzed, most speculated-on piece
of code ever delivered in the history of software. !think it's about 4 mil
lion lines of code altogether.

AK: Do you think there are any features that you might yet drop?

BS: Oh yes. I don't really want to discuss what they might be. But we
have a list offeatures in the category "if we have a hard time with these,
we'll find a way to get them done," and we've got another list of fea
tures in the category "if we have a hard time with these, they'll catch the
next train." But as you can see from Beta-I, the product is awfully com
plete. In many ways, if we hadn't spent so much time talking about
some of the features yet to come, it'd be a fine product-even if we
didn't add anything that wasn't in Beta-I. We feel real good about the
content that's in the beta. And stuff that's not yet in the beta? We hope
to get most of it in, but if we don't, I'll still feel good.

AK: And you 'm planning two mom beta cycles be/om shipping?

BS: Yes.

AK: I think the first one went to about 20,000 people?

BS: Beta-I has gone out to about I5,000 now, and by the time we finish
rolling it out it will be up to about 20,000.

AK: Is that going to incmase?

E PI LOG U E: Leaving Chicago

BS: Oh yes, it'll only increase. And the last one will be truly massive. I
mean, some of the numbers we're talking about are 100,000, 200,000.
Because we want to make sure that the product really has those road
miles underneath it so that when it comes out, people are really com
fortable that it's solid production quality and they can roll it out broadly.

AK: How many national languages are you going to ship in?

BS: Simultaneously we will have seven languages. We'll go up to some
thing like twenty-six languages altogether. And they will all be done
within the first 180 days of shipment. The vast majority will come out
within the first 30 to 60 days. The first seven languages are English, Ger
man, French, Italian, Swedish, Dutch, and Spanish.

Let me give you an example of just how broadly we're going to
localize Chicago. We're doing a Thai version. We just approved, this
week, a Slovenian version of Chicago. We're doing a Catalan version of
Chicago. We're doing a Basque version. So there's really nowhere in
the world you can go and not be able to get a localized version.

AK: .. . and not run into Chicago. And one final detail question. The Pen ex
tensions were heavily emphasized early on in some of the product presentations,
and then discussion of them kind of disappeared. What happened there?

BS: They're in the product. We're definitely planning to include the
Pen extensions with Chicago. The level of visibility they get, I think, will
be commensurate with the level of visibility that pen-based machines
will have in the market. A couple of years ago, they were getting a lot
more visibility than they are now. Some pen-based products came out,
but they weren't particularly successful. We still think there's a place for
them, particularly in vertical markets. We're just building the Pen ex
tensions in as part of the product. It's not worth calling out that much
attention to them, but if companies are building pen-based machines,
they'll know that the pen support will be there.

AK: Thanks for all the infovmation. Good luck with getting the product out
the door.

And there it is-Chicago circa July 22, 1994. No doubt the long road from
Redmond has a few twists and turns yet to be revealed. I'm sure we'll all be
watching with a great deal of interest.

425

GLOSSARY

0:32 addressing Memory addressing that uses the least significant 32
bits of the full address.

16:16 addressing Memory addressing that uses a 16-bit selector and
a 16-bit address.

access control list (ACL) The data defining the access rights of net
work users to a particular network resource.

account See user account.

address book A database used by the messagi,ng system to record
usernames and electronic address information.

address space See virtual address space.

AEP See asynchronous event packet.

alias At one time, a synonym for shortcut.

API See application programming interface.

application programming interface (API) The defined set of func
tions provided by the operating system for use by an application.

appy time (application time) A Windows system condition in which it
is safe for a VxD to make fiksystem calls or request memory allocation
services much as if it were an application program.

asynchronous event packet (AEP) A data structure used in the
fiksystem software to notify the lower layers of the occurrence of an
event such as the completion of a data transfer.

427

INSIDE WINDOWS 95

428

asynchronous event routine A function that can be called by the oper
ating system kernel upon the occurrence of a set of predefined events.

At Work Microsoft's office product automation initiative, designed to
allow common devices such as photocopiers, facsimile machines,
and personal computers to exchange information in a common digi
tal format.

authentication Validation of a user's network logon information. See
also pass through authentication.

automation See OLE automation.

base system The operating system components of Windows 95,
comprising the memory management, task management, and inter
rupt management functions of the operating system.

Bezier curve A mathematical technique for drawing a curved path
given a set of discrete points. Frequently used in computer-based
drawing systems.

BIOS (and Plug and Play BIOS) The Basic Input Output System of
the PC. The BIOS comprises the lowest-level interface to common
devices such as the system clock, the hard disk, and the display. A
Plug and Play BIOS supplements the BIOS functions with routines
that support Plug and Play operations such as device enumeration.

bit bit A bit block transfer, an operation that moves a collection of
bits from one place to another. The most common example is the
transfer of an in-memory image to a display device.

block devices Devices addressed in terms of blocks of bytes, such as
disks and tapes, as opposed to devices addressed in terms of single
characters or pixels, such as printers or displays.

boot loader The software responsible for starting the operating sys
tem-typically after power on. In Windows 95, the boot loader is a
modified form of MS-DOS.

briefcase A specialized shell folder that allows the synchronization of
different versions of the same file.

Glossary

browsing Looking around the network-locating files, programs,
printers, and so on. See also Explorer.

bus A device that plays a role in the control of at least one other de
vice. In the hardware context, adapter cards plug into a bus. In the
Plug and Play context, any device that provides resources is a bus.

cache A transient storage area in main memory used for data that
might be needed again in a very short time frame-for example, the
directory information associated with a ftksystem. Intel processors
also implement a hardware cache to retain copies of frequently ac
cessed memory locations. Windows 95 implements a shared cache
(under control of the VCACHE VxD) used for file and network access
and paging.

Cairo The codename for Microsoft's future release of the Windows NT
operating system. See also object fiksystem.

calldown chain An implementation technique (used in the ftksystem
architecture) that allows an arbitrary number of functions to be
chained together for execution.

call gate See gate.

CDFS The Windows 95 protected mode implementation of an ISO
966<H:ompliant CD ROM filesystem.

CISC processor A complex instruction set computer processor. A
CISC processor uses a large number of instructions containing mul
tiple fields, addressing modes, and operands. Many CISC instruc
tions take more than a single clock cycle to decode and execute.

client Usually a system attached to a network that accesses shared net
work resources.

client application A program that makes requests of a server applica
tion using a defined interface such as named pipes, RPC, or NetBIOS.

client-server networking· A network architecture in which shared re
sources are concentrated on powerful server machines and the at
tached desktap systems fulfill the role of clients, making requests
across the network for centralized information.

429

INSIDE WINDOWS 95

430

CMC See Common Messagi,ng Calls.

CMOS memory Memory kept alive by the system battery. PCs use
CMOS memory to store configuration information, and some Plug
and Play systems use CMOS memory to store device information.

color profile The definition of a devi§:e's color capabilities and cur
rent calibration. Used by the image color matching system. See also im
age color matching.

COM See Component Object Model.

Common Messaging Calls (CMC) The set of calls defined by the
X.400 API Association for use in messaging applications. Similar in
scope to Simple MAP!.

Component Object Model (COM) The architecture from which OLE
is derived. Microsoft is working to establish COM as an industrywide
standard for object-oriented systems.

compound document An OLE term that describes a single document
containing multiple data types and operated on by multiple OLE
server applications. See also container.

compound flle A file used by OLE. On Windows 95, a compound file
is a single disk file that contains multiple independent data streams
and indexing information.

configuration manager The component of the Plug and Play system
that's responsible for managing the software configuration associ
ated with a system's current hardware configuration.

connection A logical link between a local name and a network resource.

container In OLE, an object that can hold other objects. See also com
pound document.

contention A condition in which two or more active threads require
access to a single resource. The operating system resolves the conten
tion problem by providing a means for one thread to gain control of

Glossary

the resource and thereby block access to all other threads. See also
mutual exclusion service (mutex) and semaphore.

context menu See popup menu.

control A fundamental object in Windows that defines the appear
ance and behavior of a particular visual element such as a menu or a
scroll bar.

cooperative multitasking An operating system scheduling technique
that relies on running applications to yiel.d control of the processor
to the operating system at regular intervals. See also preemptive
multitasking.

coordinate system The Windows GD! definition of the drawing
space available to an application. The coordinate system follows the
simple geometric model you learned in grade school.

critical section A sequence of instructions that must be guaranteed
to execute without yielding control of the processor to another
thread. A critical section is typically used to guarantee the integrity of
a change to an in-memory data structure.

DC See device context.

DCB See device control block.

DOE See dynamic data exchange.

demand paging A technique that brings the memory pages of an ap
plication or operating system component into memory from disk
only at the time the pages are needed. This technique is opposed to
the one in which the entire memory image of an application is
loaded when the application first starts. Demand paging requires · ·.
support from the processor. Intel 386 and later processors provide
this support. The earlier processors do not.

descriptor On the Intel 386 series processors, an 8-byte area of
memory used to fully describe a region of memory. Descriptors are
grouped into either a local descriptor table (LDT) private to the pro
cess, or a global descriptor table (GDT) shareable among processes.

431

INSIDE WINDOWS 95

432

Every address generated on the 386 includes a selector that identi
fies which descriptor table to use and includes the index of the de
scriptor in the table. The descriptor tables themselves are held in
memory with special purpose processor registers used to hold the
starting addresses of the tables.

descriptor table See descriptor.

desktop What you see on your Windows screen. Also the logical con
tainer managed by the shell. See also Z order.

despooler The system component responsible for taking the data in
spool files and handing it to the software responsible for .writing it to
an output device.

device context (DC) A GD! data structure that describes the current
state of a device or drawing surface.

device control block (DCB) A data structure used in the !OS to retain
information about a particular hardware device.

device driver A generic term used to refer to the lowest-level software
in an operating system that deals directly with the hardware of a par
ticular device.

device-Independent bitmap (DIB) An in-memory bitmap whose at
tributes are independent of any particular hardware device.

device node The logical object in the Plug and Play subsystem's hard
ware tree that is used to describe a specific device. Also called a Plug
and Play object.

device vlrtualization A technique used in Windows to replicate the
hardware characteristics of a device in a software interface. The
virtualization technique allows more than one application to manipu
late a single hardware device at the same time. The technique relies
on hardware support from the Intel 386 processor. See also VxD.

dialog A visual element of Windows that groups one or more con
trols. Usually employed to interact with the user.

Glossary

DIB See device-independent bitmap.

display driver The Windows component responsible for manipulat
ing the display hardware. See also mini-driver.

DLL See dynamic link library.

DL VxD See dynaload VxD.

OMA channel A hardware interface that allows a device to transfer
l

information to and from main memory without interrupting the
processor.

document-centric design A design technique that focuses the user
on documents and the information therein rather than on the appli
cations generating the data that combine to form the document.

domain A collection of network servers and resources in a logical grouping.

DPMI The DOS Protected Mode Interface. An older technique for
allowing 32-bit protected mode programs to run under MS-DOS.

driver registration packet (DRP) An !OS data structure used to initial
ize the logical connection between IOS and a particular device driver.

DRP See driver registration packet.

dynaload VxD (DL VxD) A dynamically loaded VxD-loaded as
needed by the operating system.

dynamic data exchange (DOE) An older form of data exchange be
tween two or more cooperating application programs. Windows 95
aims to replace the use of DDE with OLE or RPG.

dynamic link library (DLL) A library of shared functions that applica
tions link to at runtime as opposed to compile time. A single in
memory copy of the DLL satisfies requests from all callers.

EGA The Enhanced Graphics Adapter. Under Windows 95, no longer
supported.

433

INSIDE WINDOWS 95

434

EISA The Extended Industry Standard Architecture. A bus design
that allows 32-bit adapters and some automatic device recognition
and configuration. EISA hasn't achieved the success expected for it ..
See also ISA.

embedding An OLE term for the inclusion of an objed within a con
tainer. The data associated with the Qbjed actually resides in the con
tainer. See also link.

enumerate To list a set of related objects--for instance, all of a server's
resources.

event The occurrence of a condition that's ofinterest to one or more
software components. The term is typically used to describe the in
ternal manifestation of an action such as a mouse click.

event-driven program A programming technique in which the appli
cation is driven by events rather than by data. The event-driven
model dominates modern personal computer operating systems.

exception An event that results from an error such as division by zero.
See also strudured exception handling.

Explorer The shell function that provides the user with the ability to
lnvwse files, folders, and other resources.

export table The definition of callable functions included in a DLL.
The linkage between an application and a DLL is formed by means
of the entries in the export table.

Extended MAPI The complete set of Microsoft's MAP! functions.
Extended MAPI enhances Simple MAP! by adding features such as
address book manipulation and message store querying. See also MAP!
and Simple MAPL

FAT The File Access Table. The default MS-DOS filesystem organization.

filesystem A logical structure of files and associated indexing infor
mation, typically stored on a disk.

Glossary

fllesystem driver (FSO) The component of !OS that implements the
interface to a particular type of.fiksystem. Windows 95 supports mul

. tiple concurrent FSDs.

folder A logical container implemented by the shell that allows the
user to group any collection of items--a set of documents, for in
stance. Folders are most usefully thought of as directories.

frame buffer The region of memory directly associated with a display.
Changes to the data in the frame buffer result in changes on the vis
ible screen.

FSO See fiksystem driver.

gate A specialized descriptor tabl,e entry that allows control transfers
between protection rings on the Intel 386 processor.

GOI Graphics Device Interface. The component of Windows respon
sible for implementing the graphical functions such as line drawing
and color management. GDI is a DLL that includes all of the graphi
cal AP!s in Windows.

GOT See descriptor.

geometry (of a device) The organization of a device, such as the num
ber of sectors per track and bytes per sector of a disk drive device.

global descriptor table (GOT) See descriptor.

grabber See screen grabber.

granularity (of allocation) The amount of the smallest storage incre
ment that can be used to satisfy any request for additional storage.

handle A program data objectthat provides access ~o an allocated Win
dows resource. Almost every item manipulated by a Windows applica
tion is addressed by means of a handle. Individual windows, memory
regions, files, timers, and other objects have handles.

435

INSIDE WINDOWS 95

436

hardware tree The logical representation of a system's current hard
ware configuration built and managed by the Plug and P/,ay subsystem.

heap A region of in-memory storage that can contain data items of
different sizes, types, and attributes.

ICM See image color matching.

IFS See instal/,abl,e .filesystem.

IFS manager See installabk .fiksystem manager.

image color matching (ICM) A new Windows 95 subsystem respon
sible for the manipulation of color information in a way that is
device-independent.

import library A compile time library used to satisfy references to ex
ternal functions that will ultimately be resolved at runtime by a DLL.

in-place activation In OI.E, a technique whereby a user can make use
of functions of a server application on a data object in situ within a docu
ment. In-place activation supersedes the more common current tech
nique, in which the user sees the screen display change focus to
another application.

in-place editing See in-place activation.

installable filesystem (IFS) A technique used by Windows 95 and
Windows NT in which more than one active .fil.esystem type is sup
ported by the operating system. Windows 95 allows an IFS to be dy
namically loaded. See also instal/,abl,e .filesystem manager.

installable filesystem manager (IFS manager) The component that
provides the interface between application requests and the specific
.fil.esystem addressed by an application function. The IFS manager
routes .fiksystem requests to the appropriate .fil.esystem driver (FSD).

interrupt A hardware signal that causes the processor to begin execu
tion at a different address upon completion of the current instruc
tion. A hardware device uses an interrupt to gain the attention of the
operating system. See also interrupt service routine.

Glossary

interrupt service routine (ISR) A sequence of instructions executed
as a result of a hardware interrupt.

1/0 packet (IOP) An !OS data structure that describes a single data
transfer operation.

1/0 port An addressable location on the Intel 386 processor to and
from which hardware control information is read and written.

IOS See 1/0 supervisor.

1/0 supervisor (IOS) The Windows 95 subsystem responsible for con
trol of the attached block devices.

IPX/SPX Novell's lower-level network protocol.

IRQ The interrupt request level. Each hardware device raises an inter
rupt on a predetermined IRQ (numbered 0 through 15). The pro
cessor associates specific interrupts with different interrupt seroi<:e routines.

ISA The Industry Standard Architecture. An acronym used to de
scribe PCs compatible with IBM's original IBM PC AT design. See
alsoEISA.

ISR See interrupt service routine.

kernel The core component of an operating system. The kernel is
usually considered to include the lowest level of memory, interrupt,
and process management functions.

Kernel The Windows memory management, process management,
and file management functions.

LDT See descriptor.

least recently used (LRU) technique A memory management tech
nique used to ensure that a page reclaimed for use is the "oldest"
(least recently accessed) page in memory.

legacy Older hardware and software still in use. In the Plug and Play
context, the installed base of device cards that don't conform to the
Plug and Play standard.

437

INSIDE WINDOWS 95

438

linear addressing A memory addressing scheme that organizes
memory so that incrementing an address pointer guarantees a valid
pointer to the next byte in memory. See also segmented addressing.

link An OLE term for a reference within a container to an object whose
data is maintained by another application. Also used in earlier ver
sions of the shell for shortcut.

local descriptor table (LDT) See descriptor.

locale A Windows term that refers to the system's current interna
tional configuration, including the national language and other
items such as date and time formats.

locality of reference A program pattern of behavior that results in
heavy access to closely grouped memory locations.

look and feel The appearance of a system and the response of the sys
tem to user input.

LRU See kast recently used technique.

MAC driver See media access control driver.

MAPI The messaging AP! defined by Microsoft to allow applications
to use a consistent interface to message-related subsystems such as
those handling electronic mail messages, voice mail, and facsimile
data. MAPI comes in two forms: simple and extended. See also Ex
tended MAP! and Simpk MAP!.

mapped file A file whose contents are directly addressable as part of
an application's address space.

MDI The multiple document interface. A user interface technique
that allows an application to support several active documents whose
windows are clipped to the application's parent window. Microsoft is
advising developers to discontinue use of MDI. See also SDI.

media access control driver (MAC driver) A device driver respon
sible for the lowest level of network device control. A MAC driver
deals directly with the network adapter.

Glossary

memory mapped device A device, such as a display, that can be ad
dressed directly as part of the system's address space.

message In Windows, a message is a unit of data the operating sys
tem hands to an application to inform it of an event. The word mes
sage is also used as a generic term to describe the data manipulated
by MAP.I-based applications.

message loop The common Windows application program structure
in which a control loop repeatedly receives and processes messages.

message store The structured storage associated with messages
handled by MAP.I-based applications.

messaging The generic term applied to applications that manipu
late communicated information such as that found in electronic
mail or voice mail messages, or facsimile documents.

metafile A file format that describes a series of graphical operations
in a high-level, device-independent data format.

Micro Channel IBM's PS/2 series hardware bus.

mini-driver The hardware-dependent component of a device driver
in which the driver is structured as a collection of shared functions
and a smaller hardware-dependent driver module. Mini-drivers
emerged first for printers and in Windows 95 are available for dis
plays, modems, disks, and pointing devices. See also universal driver.

miniport driver In the Windows 95 filesystem architecture, a driver
specific to a particular SCSI device.

monitor A low-level device driver responsible for interfacing to a
printer, either directly or via the network. The monitor is specialized
in that it can receive input from a (usually) output only device and,
as a result, return status and error information to higher layers of
the operating system.

MPR See multiple provider router.

multiple provider router (MPR) The routing component for Win
dows 95 network operations. The MPR, a 32-bit protected mode DLL,

439

INSIDE WINDOWS 95

440

implements network operations common to all network types. See
also print request router.

multitasking An operating system feature that allows several inde
pendent programs to run concurrently.

mutex See mutual exclusion service.

mutual exclusion service (mutex) A software technique designed to
ensure that only one thread can execute a certain sequence of instruc
tions or gain the ability to manipulate a particular data structure, at
one time. See also critical section and semaphore.

named pipe A high-level data exchange protocol used by client-server
applications on Microsoft networks.

native mode The 32-bit mode of the 80386 processor.

NDIS See Network Driver Interface Specification.

NetBEUI transport The NetBIOS Extended User Interface. A network
transport commonly used on Microsoft networks.

NetBIOS A high-level network interface that provides reliable, error
free transmission of data between two cooperating applications on a
local area network.

Network Driver Interface S~clfication (NDIS) A software specifica
tion that defines the interaction between a network transport and the
underlying device driver. The NDIS is vendor independent.

network filesystem driver A 32-bit protected mode VxD responsible
for implementing the semantics of a particular remote filesystem.

network provider (NP) An implementation of the network service
provider interface. Called by the multiple provider router (MPR) only,
never directly by an application, the NP encompasses operations
such as making and breaking network connections and returning
network status information.

Glossary

network transport The lowest layer of the network subsystem, re
sponsible for transmitting and receiving data packets via the under
lying network device driver.

not-present interrupt A fault condition generated by the Intel 386 to
signify that a memory page is not currently present in main memory.
See also demand pagi,ng.

NP See network provider.

object In formal terms, an encapsulation of both data and access
methods, some or all of which may be usable by another application.
Object-oriented techniques allow an object's developer to expose
well-defined interfaces to the object's behavior and to hide the de
tails of the object's implementation, which ought to allow the use of
the object by many unrelated applications. Although the term is
heavily used throughout Windows 95, in many cases it is simply a
more attractive way of saying "data" or "thing." O/Jject is also thy cur
rent favorite for most overused term in the software industry. ·

object filesystem A filesystem designed by means of object-oriented
methods and suitable for use by object-oriented applications. Cairo is
reputed to have such a filesystem. OLE compound files are a prototype
for an object filesystem.

ODBC Open Database Connectivity. Microsoft's standard for allow
ing applications to access different database systems by means of a
common APL

OLE Microsoft's implementation of its Component O/Jject Model (COM)
architecture on Windows systems.

OLE automation A technique that enables a client application to con
trol an OLE server without direct input from the user. The automation
capability relies on an application's providing defined interfaces to its
functions for use by the client application.

Open Datalink Interface (ODI) Novell's network device driver inter
face standard.

441

INSIDE WINDOWS 95

442

page On the Intel 386, a contiguous physical memory region of 4K.

paging See demand pagi,ng.

paragraph Originally a region of 16 bytes of memory on an Intel pro
cessor. It's becoming an obsolete term now that 32-bit linear address
ing is here.

pass through authentication An authentication technique that relies
on another system or software subsystem to perform validation. The
caller-supplied information is passed to the validating system, and
the results are passed back to the caller.

path In· GD!, a description of a series of points that GDI can connect
(the stroke) with a particular type of pen or brush. The characteris
tics of the pen determine the pattern and colOr (fill) of the connect
ing stroke. A path (or pathname) to a file or directory is a name that
describes the logical location of the file or directory.

pathname See path.

PCI bus A bus definition whose design was led by Intel. The design is
intended to support high-speed 32-bit data paths between devices,
memory, and the processor. Plug and Play fully supports the PCI bus.

PCMCIA A bus definition that defines a hardware interface suitable
for peripherals with a very small (credit card size) form factor. Such
peripherals are typically used on portable machines, for which
weight, size, and power consumption are important considerations.

peer-to-peer networking A network architecture in which each con
nected system can act as both client and server.

persistent connection A network connection that has a lifetime be
yond a single session or working day. The Windows 95 shell will return
persistent connections to their prior states when the user logs in to
the network.

physical address A memory address whose physical location
matches its address. See also virtual address.

Glossary

pixel The smallest element of a display that can be modified under
software control. Pixels typically have color attributes individually
associated with them.

Plug and Play The specification for a hardware and software archi
tecture that allows automatic device identification and configura
tion. In Windows 95, the Plug and Play subsystem is responsible for
these functions on behalf of the operating system.

popup menu A menu that appears disconnected from other visual
elements (unlike the drop-down menus associated with most appli
cation menu bars). Windows 95 frequently displays popup menus
when the user clicks the right (secondary) mouse button. Popup
menus are sometimes called shortcut menus or context menus.

port driver A component in the Windows 95 filesystem architecture that
controls a specific adapter. A port driver manages adapter initializa
tion and device interrupts.

POSIX A definition of a standardized UNIX. The POSIX standard is
not supported by Windows 95.

PPP The point to point protocol. An industry standard protocol in
tended for use over lower-speed, potentially unreliable connections
such as telephone lines.

preemptive multitasking An operating system scheduling technique
that allows the operating system to take control of the processor at
any instant regardless of the state of the currently running applica
tion. Preemption guarantees better response to the user and higher
data throughput. See also scheduler.

print request router (PRR) The routing component for Windows 95
print requests. The application calls are directed to the appropriate
print subsystem via the PRR.

process A common term, used also by Windows 95, to describe the
running state of a program.

property An attribute of an olJject. The term is used widely throughout
Windows 95 to describe settings such as the color of a title bar or the

443

INSIDE WINDOWS 95

444

connected state of a modem. The guidelines for Windows 95 appli
cations suggest that an object's properties should always be available
as the result of a right mouse click. See also property sheet.

property sheet A new Windows 95 dialog box intended to allow the
convenient grouping of an object's properties in a single place.

protected mode A mode of the Intel 386 processor in which the
hardware carries out numerous validation checks on memory refer
ences, function calls, 1/0 port accesses, and other items. A protec
tion failure allows the operating system to gain control and deal with
the condition. An application must run in protected mode if it is to
make use of the full address space and virtual memory capabilities of
the 386.

protected mode mapper In the Windows 95 .filesystem architecture, a
module that disguises real mode drivers so that new protected mode
.filesystem modules don't have to take account of the different inter
face for existing MS-DOS drivers.

protection ring One component of the Intel 386 processor's protected
mode validation capabilities. Windows 95 uses protection ring three
for application-level software and ring zero for operating system
components. Software executing at ring three can be prevented
from executing privileged instructions or accessing defined memory
regions. Software executing at ring zero has no such restrictions
placed on it.

protocol The definition of an interaction between two software com
ponents that ensures reliable, error-free communication between the
components. Typically used to refer to network-based exchanges.

protocol stack The collection of software modules that implement a
particular network protocol.

PRR See print request router.

RAS See remote access services.

rasterizer The software component that turns a description of a font
into a physical rendition of the characters suitable for use on a dis
play or a printer device.

Glossary

raw Input queue The data structure maintained by the operating sys
tem into which all input events, such as mouse clicks and keystrokes,
are placed before they are distributed to the message queues associ
ated with individual applications.

real mode The Intel 8086-compatible mode of the Intel 386 proces
sor. Real mode allows no access to the 386's large virtual address space
or demand pagi,ng capabilities. Real mode does not enable the
processor's protection system.

real mode driver An existing MS-DOS device driver that Windows 95
will run in virtual 8086 mode.

redirector The client-side software that accepts file access requests
and transforms them into network requests.

registry . A database maintained by Windows 95 for storing hardware
and software configuration information. The registry is used heavily
by the Plug and Play subsystem.

remote access services (RAS) A Windows 95 subsystem that imple
ments remote dial-in and connection functions. See also remote net
work access.

remote network access (RNA) In Windows 95, the subsystem that al
lows a remote user to log in to a network much as if he or she were
logging in locally. By means of RNA, network resources become acces
sible to the remote user.

remote procedure call (RPC) A software technique that allows an ap
plication to execute a function call in which the callee is executing
on another machine on a network.

resource A network of1ect such as a printer, or a collection of files
grouped in a directory, that is available for shared access.

resource arbitrator A component of the Plug and Play system that
understands the specific hardware resource requirements of a particu
lar device and can resolve conflicts between devices that request the
same resource. The arbitrator allocates the resources that will satisfy
the device's requirements.

445

INSIDE WINDOWS 95

446

rich text Textual information that includes formatting information
such as font, layout, and other properties.

ring See protection ring.

RISC processor A reduced instruction set computer processor: A
RISC processor uses a small number of simple instructions. The
technique allows the processor chip to be smaller (it has fewer tran
sistors) and thus faster (the paths between individual gates are
shorter), and cooler (so that it can run at higher clock speeds). Typi
cally, every instruction on a RISC chip executes in a single clock cycle.
See also CISC processor.

RNA See remote network access.

RPC See .remote procedure call.

safe driver In Windows 95, a real mode driver whose functionality can
be offered by an equivalent protected mode driver. 'rhe protected
mode driver can thus take control of the real mode driver and safely
bypass it while the system is running in protected mode.

scheduler The operating system component responsible for allocat
ing processor time to a thread for execution.

screen grabber The component of a Windows display driver that
saves and restores the screen state on behalf of an MS-DOS virtual
machine.

SCSI The Small Computer System Interface. An industry standard
hardware bus. SCSI devices respond to a defined set of commands
and can be addressed by means of a unit number.

SCSI manager The Windows 95 filesystem component that provides
the translation between a Windows NT miniport driver and Windows 95.

SDI The single document interface. SDI (in comparison to MDI) uses
one window per document. Users switch between full screen win
dows (and thus documents) rather than switching between child
windows within an application's parent window.

Glossary

segment On the Intel 386, a region of virtual memory specified by a
single descriptor.

segmented addressing An Intel processor memory addressing scheme
in which the address is specified as the combination of a segment and
an offset within a segment. This addressing technique (finally) goes
the way of the dodo in use of the Win32 AP/ on Windows 95. See also
linear addressing.

semaphore A software mechanism used to implement resource or criti
cal section management. A semaphore differs from a mutex in that it
has a finite value that is usually greater than 1 initially. The control
ling entity can thus allocate a predetermined number of copies of a
particular resource.

server The system on a network that owns the resources available to cli
ents. Server resources can be files, printers, or server applications
(such as a multiuser database).

server application The software that controls access to a resourcevia a
programmatic interface. Client software typically connects to a server
application using one of the supported high-level protocols such as
named pipes or RPG.

service provider A component of WOSA that provides the lower-level
interface to a specific service, such as a messaging system, a database
system, or a mainframe communications system. The Service Provider
Interface (SPI) is defined for each service but never called directly
by an application.

service table The definition of functions supported by a VxD and
available to other VxDs. ·

shared memory A technique that allows a memory region to appear
in the virtual address space of more than one process. Windows 95 sup
ports a variety of shared memory features.

share-level security A network security method that relies on the ad
ministrator to associate access privileges with each network resource.
See also access control list.

447

INSIDE WINDOWS 95

448

share name The name given to a share point.

share point A file resource that a remote user can connect to. All of
the directories and files in the share point's subtree become part of
the connected network resource.

shell A program that provides the user with a means of control over
the system. In Wi~dows 95, the shell controls the desktop and much
of the interaction with the system's resources.

shell VxD The VxD responsible for loading the ring three compo
nents of the system. The shell VxD also implements services that al
low messages to be sent between applications and VxDs.

shortcut A shell technique that allows the use of an alternative name
to refer to an object. Many shortcuts can be defined for a single ob
ject. Shortcuts were at one time or another. in the development of
Windows 95 called links or aliases.

Simple MAPI The basic message addressing, transmission, and recep
tion features of Microsoft's messaging AP/ subsystem. See also MAP!
and Extended MAP!.

SMB protocol The Server Message Block network protocol. The de
fault protocol for Microsoft networks.

sockets The application interface to a TCP /IP protocol stack.

SPI See service provider.

spooler The component that takes application generated output in
tended for a printer and stores it temporarily on disk.

Start menu The name for the shell's most obvious access point to the
functions of Windows 95. The popup menu associated with the Start
button on the taskbar.

static VxD A VxD loaded during the system boot process and never
unloaded.

structured exception handling A software technique that enables
controlled recovery from unexpected error conditions.

Glossary

swap file The disk file used by Windows 95 to hold the active system
and application memory pages that are not currently present in
main memory.

system tray The early name for the Windows 95 taskbar.

system VM The virtual machine context in which all Windows applica
tions execute.

TAPI The Telephony APL Microsoft's API definition for the WOSA
telephony functions.

task Synonymous with process.

taskbar The final (?) name for the Windows 95 shell visual element
that gives the user access to the Start menu and to currently running
programs.

TCP/IP The Transmission Control Protocol/Internet Protocol. The
default wide area network protocol used by both Windows 95 and Win
dows NT.

thread A single path of execution within a process. A single process
can initiate multiple threads. The threads in a process share the
code and global data of the parent.

thumbnail In OLE, the reduced image of a document stored within
an OLE compound fiJe. The shell can display OLE thumbnails to help
the user during file browsing operations.

thunk An implementation technique that, for example, allows 16--bit
code to call 32-bit code and vice versa. Originally defined simply as a
piece of code that gets you from one place to another.

timeslice The amount of processor time the scheduler allocates among
threads before its next evaluation of thread priorities.

transfer model The conceptual process of moving data from one
application location to another. Implemented under Windows 95
using the Cut, Copy, and Paste operations.

transport See network transport.

449

INSIDE WINDOWS 95

450

TSO See type specific driver.

type specific driver (TSO) A component of !OS that manages all
devices of a particular type.

UAE Unrecoverable Application Error. An error that would compro
mise the integrity of the system if it were to be ignored. In reality, it's
a bug in the application program.

UNC See Universal Naming Convention.

Unicode A standard that defines an international character set en
coding scheme.

Unimodem The Windows 95 name for the universal modem driver.
In reality, a driver-level component that uses modem description
files to control its interaction with the communications driver
VCOMM.

universal driver A shared set of hardware-independent functions
called on by the mini-drivers. Originally used by printer drivers, in Win
dows 95 used by modem, display, disk, and pointing device drivers.

Universal Naming Convention (UNC) A file naming convention that
uses a \\NAME prefix to specify a network-unique path for a file or
directory.

UNIX An operating system with many features similar to those of Win
dows NT, including multitasking and multithreading. Available on
many different hardware architectures, with versions from Sun
Microsystems, Novell, IBM, and others.

User The Windows 95 component that implements the window, dia
log, and control manipulation capabilities of the system.

user account A database of information, accessed by means of the
user's network logon name, that defines the user's access rights to
network resources.

user level security A network security method that associates resource
access privileges with a particular network login name.

/

Glossary

VCACHE The VxD that implements a common disk caching capabil
ity used by all the filesystem drivers.

VCOMM The VxD that implements the common communications
port driver functions.

vendor supplied driver (VSD) A layer in !OS that allows a particular
vendor to extend !OS functionality.

VFAT The protected mode implementation of the FATfilesystem.

VFLATD The universal display driver VxD.

VGA Video Graphics Adapter. The default display type for Windows 95.

virtual 8086 mode The Intel 386 processor mode that allows an oper
ating system to run software in an Intel 8086-compatible fashion
while retaining a degree of protection.

virtual address An address in a thread's virtual address space. The
physical memory corresponding to a particular virtual address may
or may not be present in main memory. See also demand pagi,ng,
physical address, and virtual address space.

virtual address space The collection of addresses that make up the
total virtual memory allocated to a particular thread.

virtual machine (VM) The Windows context for execution of an ap
plication. The context includes a virtual address space, processor re
gisters, and privileges.

virtual machine manager (VMM) The component of the Windows 95
base system that controls the initialization, resourm allocation, and
termination of individual virtual machines.

virtual memory Memory. allocated to the address space of a thread

but not necessarily present in main memory, or indeed not neces
sarily backed up by physical memory.

visual cue A technique used by the Windows 95 shell to suggest the
purpose behind a particular visual element, or an association be
tween different elements.

451

INSIDE WINDOWS 95

452

VM See virtual machine.

VMM See virtual machine manager.

volume tracking driver (VTD) The component of /OS responsible for
managing removable devices.

VTD See volume tracking driver.

VxD Literally, virtual anything driver. A low-level software component
that manages a single resour<:e, such as a display screen or a serial
port, on behalf of possibly many concurrent threads. This enables,
for example, applications running in separate MS-DOS VMs to use a
single screen. A VxD is always 32-bit protected mode code and is fre
quently written in assembly language.

widening The expansion of a bit quantity to a larger number of bits.
Typically used to transform 16-bit integers into 32-bit integers of the
same value.

Win16 The 16-bit subsystem of Windows 95.

Win16Lock The old name for Win16Mutex.

Wln16Mutex The software semaphore that controls entry to .the non
reentrant components of the 16-bit kernel. Called Winl 6Lock early on
in the Windows 95 project.

Win32 The 32-bit subsystem of Windows 95.

Wln32s The subset of the Win32 AP! implemented for Windows 3.1.

window menu What used to be called the system menu.

window procedure The function in a Windows application that is as
sociated with a specific window.

Windows NT Microsoft's high-end 32-bit operating system.

Windows Open Services Architecture (WOSA) Microsoft's umbrella
term for its definition of application-specific services, such as MAP!
and ODBC, available under Windows.

Glossary

Windows Sockets The Windows implementation of the TCP/IP socket
interface.

working set The collection of memory pages belonging to a particular
thread that must be present in main memory for the thread to execute.

WOSA See Windows Open Services Architecture.

yielding An application's handing control back to the operating sys
tem. See also cooperative multitasking.

Z order The order in which windows appear on the desktop.

453

INDEX

Numbers
0:32 addressing, 143, 427
3Com, 313
3-D appearance, shell, 184, 198-200
8-bit processor, 38
lONet program, 343
16:16 addressing, 143, 427
16-bit vs. 32-bit code

calls and returns between, 144-47, 148, 149
mixing, 54, 107, 142-47, 148, 149
porting process, 229-33
and process preemption, 149-55

16-bit Windows applications
APis for, 110-11
further development status, 81
message queue for, 120, 121
running under Windows 95, 33-34, 64, 65, 81
running under Windows NT, 33
virtual address space, 25, 109

32-bit Windows applications. See also Win32 API
message queue for, 120, 121
and preemption, 26-27
support for applications developers, 5-6,

24-27,54
and System VM, 71-72
virtual address space, 25, 27, 85, 86-88, 109,

110, 125, 126
and Win32 API, 224-38
as Windows 95 component, 64, 65
Windows 95 shell as, 147, 188

286. See 80286 processor
386. See 80386 processor
386 native mode, 37
486. See 80486 processor
640K barrier, 23, 39-40
8080 processor, 38
8086 processor

I-megabyte memory limit, 38, 39
compatibility with 80286 processor, 36, 37, 41
compatibility with 80386 processor, 36, 37,

45,68
first introduced, 35
memory architecture, 37, 38
segmented addressing, 37, 38

8088 processor, 35
80286 processor

compatibility with 8086 processor, 36, 37, 41
deficiencies of, 36, 37, 43-44
as faster 8086, 36, 37
and IBM PC AT computers, 36
as major architectural revision, 35, 36
and MS-DOS 3.0, 36
overview, 41-43
in protected mode, 36, 41-43
in real mode, 41
segmented addressing, 41-43

80386 processor
16-bit applications for, 54
and 32-bit mode, 37, 44, 45
benefits of, for MS-DOS-based applications,

59,60-61
compatibility with 8086, 36, 37, 45, 68
compatibility with 80286, 36, 37, 41
descriptor format, 45-48
as major architectural revision, 35, 36, 44
and memory addressing, 45-54
Microsoft's role in developing, 44
and need for new operating system, 44-45
and operating modes, 45
overview, 43-45
privilege levels of, 56-57
in protected mode, 45
protection capabilities of, 54-60
in real mode, 45
and segment feature, 45, 46
and software compatibility, 45
successful follow-on to 286, 37, 44
system performance, 1
and virtual 8086 mode, 37, 44, 45, 68
and Windows, 1, 37, 44-45

80486 processor, 35, 37, 44

A
access control lists (ACLs), 373, 378, 427
access controls. See access control lists (ACLs)
accessed bit, 47, 53
active users, defined, 30
adapter cards, 20, 315, 317

455

INSIDE WINDOWS 95

Add]ob() API function, 236
AddObjectToBriefcase() API, 403
address book, defined, 427
addressing, 16-bit vs. 32-bit code, 25, 143
address registers, 38, 41, 42
address space. See virtual address space
Adobe Systems, 273
AEP. See asynchronous event packet
AEP_BOOT_COMPLETE message, 303
AEP _CONFIG_DCB message, 303
AEP _DEVICE_INQUIRY message, 303
AEP _INITIALIZE message, 303
AEP _IOP _TIMEOUT message, 303
alias, defined, 427
anchor point, taskbar as, 179, 180
animation, 196-97
ANSI character set, 235
appearance, screen. See also screen display

of dialog boxes, 94, 164, 165, 211-13
elements of, 198-213
new controls, 205-10
overall screen appearance, 22, 182-84,

198-201
screen elements, 201-13

API. See application programming interface;
Win32API

API functions
Add]ob(), 236
BroadcastSystemMessage(), 242
CreateDC(), 270
CreateDIBSection(), 266
CreateDirectory(), 290
CreateEnhMetaFile(), 272
CreateEvent(), 240
CreateFile(), 137, 138, 241, 290
CreateFileMapping(), 127
CreateMutex(), 240
CreateSemaphore(), 240
CreateWindow(), 149
DeleteFile(), 290
DeviceloControl(), 137, 138, 139, 286
DispatchMessage(), 97
Dos3Call(), 233
DuplicateHandle(), 240, 241
EndDoc(), 270
EndPage(), 270
EnterCriticalSection(), 239
Escape(), 269
FindClose(), 290

456

API functions, continued
FindFirst.File(), 290
FindNext.File(), 290
FreelmageColorMatcher(), 260
GetBrush(), 148
GetCurrentDirectory(), 290
GetCurrentProcess(), 110
GetCurrentTask(), 110
Get.FileAttributes(), 290
Get.FileTime(), 290
GetLastError(), 233
GetMessage(), 82, 97
GetStockObject(), 148
GetSysColor(), 245
GetThreadDesktofl(), 233
GetVersion(), 233
GetVolumelnformation(), 290
GlobalMemoryStatus(), 122
HeapCreate(), 129
InitializeCriticalSection(), 239
InterlockedDecrement(), 239
InterlockedExchange(), 239
Interlockedlncrement(), 239
LeaveCriticalSection(), 239
LoadlmageColorMatcher(), 260
MapViewOJFile(), 127, 128, 241
MapViewOJFileEx(), 127, 128
MessageBox(), 83
MessageBoxEx(), 249
MoveFile(), 290
MsgWait.ForMultipleObjects(), 240
openFile(), 290
openFileMapping(), 127
openMutex(), 240
openSemaphore(), 240
PulseEvent(), 240
RaiseException(), 252
RasDial(), 389
RasEnumConnections(), 389
RasGetConnectStatus(), 389
RasHangup(), 389
ReleaseMutex(), 240
ReleaseSemaphore(), 240
RemoveDirectory(), 290
ResetEvent(), 240
Schedulefob(), 236
SetCurrentDirectory(), 290
SetEvent(), 240
Set.FileAttributes(), 290

API functions, continued
SetFileTime(), 290
StartDoc(), 270
StartPage(), 270
VirlualAlloc(), 128-29
WaitForMultipleObjects(), 240
WaitForMultipleObjectsEx(), 240
WaitForSingleObject(), 240
WaitForSingleObjectEx(), 240
WNetAddConnection(), 358, 359
WNetAddConnection2(), 358, 359
WNetAuthenticationDialog(), 360
WNetCachePassword(), 360
WNetCancelConnection(), 359
WNetCancelConnection2(), 359
WNetCloseEnum(), 359
WNetConnectionDialog(), 359
WNetDeviceGetFreeDevice(), 360
WNetDeviceGetNumber(), 360
WNetDeviceGetString(), 360
WNetDisconnectDialog(), 359
WNetEnumResource(), 359
WNetGetConnection(), 359
WNetGetLastError(), 360
WNetGetSectionName(), 360
WNetNotifj&gister(), 359
WNetopenEnum(), 359
WNSetLastError(), 360
WNetUNCGetltem(), 360
WNetUNCValidate(), 360
WriteProcessMemory(), 123, 241

Apple Macintosh, 339, 343
AppleTalk, 343
application developers

32-bit applications support, 5-6, 24-27, 54
adding OLE capability, 100, 217-18, 220,

245-48
developer relations group (DRG), 29
guidelines for, 217-20
and international support, 248-49
marketing Windows 95 to, 29
and memory management, 241
and multitasking, 238-41
and online help system, 186, 219
and Plug and Play subsystem, 241-42
and the registry, 242-44
and user interface, 245
Windows programming basics, 96-100

application platforms, 2, 5-6

Index

application program errors, 2, 17, 56, 117-18
application programming interface (API),

142-55. See also Win32 API
and 32-bit support, 25
defined,64,65,351,427
functions, 71
Windows 95 Win32 API set, 26

applications. See also 16-bit Windows applica
tions; 32-bit Windows applications;
MS-DOS-based applications

backward compatibility with Intel chips,
36-37

common dialog boxes, 210-13, 217, 219, 227
compatibility with taskbar, 180-81
icons for, 204-5
memory management, Windows 95, 87-88
messages to, 119-21
OLE client vs. OLE servers, 246, 247
in Plug and Play systems, 323, 338-39
and privilege levels, 56
and protection rings, 108
starting, from Windows 95, 59
and UAEs, 56
Windows 95 base system suppo.rt, 141-55

appy time (application time), defined, 427
architecture

of Intel processors, 37-45
of PCs, 4-5
segmented memory, 38-39, 41-43
Windows 95 filesystem, 277-81
Windows 95 GDI subsystem, 255-56
Windows 95 network subsystem, 347-55
Windows 95 printing subsystem, 269, 270, 272

Artisoft, 345
assembly language, thunks in, 144
asynchronous event packet (AEP), 301, 427
asynchronouseventroutine,defined,428
AtWork,defined,428
authentication,360,366,428
AUTOEXEC.BAT file, 21, 71, 73, 112, 242, 243

B
backward compatibility, 36-37
bank-switched video adapters, 267-68
Banyan networks, 27, 28
base address, descriptor table entry, 46
base system, Windows 95

application support, 141-55
components of, 66-67

457

INSIDE WINDOWS 95

base system, Windows 95, continued
defined,66,428
features of, 103-4
and privilege levels, 84
virtual device drivers (VxDs), 67, 84-85
Virtual Machine Manager (VMM), 67, 111-41

Beta-1 release, xxv, 30
Bezier curve drawing, 257, 428
BillG reviews, 191
BIOS, 4, 5

defined,428
Plug and Play standard, 315, 317, 324,

336-37, 428
bit blt, defined, 428
bitmaps. See device-independent bitmap (DIB)

engine; 1/0 permission bitmaps
block devices, 277, 428
bootloader,defined,428
bottom line, 30
briefcase object, 400-404, 428
BroadcastSystemMessage() API function, 242
browsing

defined, 354, 429
design evolution of, 195-96
using Windows 95 shell, 169...;.70, 177

bus architecture, Plug and Play standard, 20,
315-17

bus devices, 329, 429
button list box control, 206
buttons

control of, 183
dialog box, 93
on system taskbar, 194, 195
window, 183, 204

byte granularity, 47

c
C++,246,247
cache,defined,429
Cairo project

defined, 429
and document-centric interface, 159
as object-oriented system, 11, 166, 247
and OLE, 220, 246, 247-48
and RPC, 367-68
team involvement in Windows 95 shell

design, 190, 191
and visual design issues, 166
vs. Windows 95, 6-13
as Windows NT version, 10

458

calldown chains, 297, 300-301, 429
call gates, 57
Call_Global_Event service, 132
Call_ When_ldl,e service, 132
ccMail, 396
CDFS (CD ROM filesystem) driver, 280, 429
checkboxes, 93
Chicago project, xxv-xxvi, 1. See also Cairo

project; Windows 95
child windows, 95
Chkdsk program, 24
CIENZY standard, 259
CISC processor, defined, 429
C language, and 16-bit vs. 32-bit code, 143
client applications, defined, 429
client machines

defined,8,429
multiple, Windows 95 support for, 28
requirements for, 8
and Windows 95, 9, 11
Windows 95 support for, 28

client-server networking, 8-10, 28, 341-42, 343,
344,429

Clipbook, 197
Close button, 183, 204
CMC (Common Messaging Calls), 397, 430
CMOS memory, defined, 430
CMYK color standard, 260
color management systems, 259-62
color profiles, 260, 261, 430
color reproduction, 259-62
color scheme, changes in, 200 .
colorspace,259,261-62
column heading control, 207
COM (component object model), 247, 430
COMMAND.COM file, 159, 214, 282
COMMDLG.DLL file, 211
COMM.ORV module, 392
common dialogs

new visual style, 211-13
use of, 210-13, 217, 219
Win32 APis, 227

Common Messaging Calls (CMC), 397, 430
communications. See also portable computers

COM ports, controlling, 57-60
port drivers, 392-94
Win32 APls, 228
and Windows 95, 27-28, 60

Compaq, and Plug and Play standard, 4

compatibility
backward, 36-37
MS-DOS-based application issues, 4, 7, 44, 45
and NDIS (Network Driver Interface

Specification), 369-70
network transport issues, 366-68
Plug and Play issues, 319-20
as Windows 95 requirement, 4, 7, 14-15,

44,45
component object model (COM), 247, 430
COM ports, controlling, 57-60
compound documents, 167, 246, 247

defined, 246, 430
previewing, 212

compound files, 247, 430
CompuServe, 189
CONFIG.SYS file, 21, 71, 73, 112, 242, 243
configuration, hardware, and Plug and Play, 20,

315-17,318
configuration files, Windows 95, 243, 332
configuration manager

defined,322,324,430
role in Plug and Play, 141, 322, 323, 324,

333-34
console APis, Windows 95 vs. Windows NT, 235
containers

on networks, defined, 354
in OLE, defined, 430

contention, in multitasking, 79-80, 430-31
contex468,70-71, 72, 73
context menus. See popup menus
continuation menus, 174, 175
control blocks, VM, 130
control objects

button list box, 206
column heading, 207
defined,94,95,431
list view, 210
new, 205-10
progress indicator, 208
property sheet, 185-86, 209-10
rich text, 209
slider, 208
spin box, 208-9
status window, 206-7
tab, 209
tool bar, 205-6
tree view, 210
Win32 APis, 227

Index

Control Panel program, 22, 162
cooperative multitasking, 77-78, 431
coordinate systems

16-bit vs. 32-bit systems, 232, 235, 257
defined,431
Windows 95 vs. Windows NT, 232, 235, 257

Cougar project, 104
CreateDC() API function, 270
CreateDIBSection() API function, 266
CreateDirectory() API function, 290
CreateEnhMetaFile() API function, 272
CreateEvent() API function, 240
CreateFile() API function, 137, 138, 241, 290
CreateFileMapping() API function, 127
CreateMutex() API function, 240
CreateSemaphore() API function, 240
·Create Window() API function, 149
critical sections

defined,239,431
managing, 79-80
Win32 APls, 239

Ctrl+Alt+Del, 135, 154
cursor, 268
customer benefits of Windows 95, 29
cut and paste operations, 197-98

D
data structures, Windows 95 use of, 238
DCBs (device control blocks), 300, 432
DC (device context), defined, 432
DDE (dynamic data exchange), 228, 245, 433
debugVMM services, 141
DEC Alpha processor, 33
default startup screen. See also screen display

design evolution, 192-93
Windows 95 vs. Windows 3.1, 157, 158

DeleteFile() API function, 290
demand paging, defined, 431
descriptor privilege level (DPL), 47
descriptors, 41, 42, 109, 431~32
descriptor tables, 41, 42, 45-48
desktop, Windows 95

animation on, 196-97
defined,432
folders on, 172-73, 177
initial, 174-76
look and feel of, 177
overview, 174-79

Desktop dialog box (Windows 3.1), 164, 165

459

INSIDE WINDOWS 95

directory, 172
Desktop property sheet, 185, 186
despooler, 270, 432
DESQview, 37
developer relations groups (DRG), 29
developers. See application developers
device context (DC), defined, 432
device control blocks (DCBs), 300, 432
device data blocks (DDBs), 299
device drivers. See also mini-drivers

and asynchronous events, 301
controlling peripherals with, 4, 58-59
defined,432
and device-independent capability, 253-54
driver registration packets (DRPs), 298-99
initialization, 298-99
and IOS services, 298
and MS-DOS-based applications, 58-59, 90
and Plug and Play subsystem, 20, 324, 337-38
protected mode, 24, 67
real mode, 67, 69, 281, 307-8, 445
virtual, 67
virtualizing devices, 90-91

device identifiers, 331-32
device-independent bitmap (DIB) engine

and bank-switched video adapters, 267-68
defined,432
and display mini-driver, 254, 264, 265, 266,

268
in GDI architecture, 254, 255, 256, 262, 263
interfacing with, 268
overview, 253
and universal printer driver, 253-54, 272-73

DeviceloControl() API function, 137, 138, 139, 286
device nodes, 329-31, 432
devices. See hardware
device virtualization, 60, 90-91, 432
dialog boxes

appearance of, 94, 164-65, 211-13
common,210-13,217,219,227
controls in, 94, 95
defined, 432
elements in, 93-95

DIB engine. See device-independent bitmap
(DIB) engine

DIBENGINE data structure, 266, 267
directories, 171, 172-73. See also folders
dirty bit, 53
DispatchMessage() API function, 97

460

display drivers
defined,433
DIB engine/mini-driver combination, 254,

264,265,266,268
display screen. See screen display
display subsystem

and DIB engine, 265-66
and display mini-driver, 254, 264, 265, 266,

268
overview, 262-64

DLLs (dynamic link libraries), 82, 147, 433
DL VxDs, 133, 433
DMA channel, defined, 433
document-centric interface, 159, 166-67, 433
domains, network, defined, 354, 433
DOS386.EXE file, 129
Dos3Call() API function, 233
DOS extenders, 69, 74
DOS Protected Mode Interface (DPMI) specifi-

. cation,24,74-75,433
DPL (descriptor privilege level), 47
DPMI (DOS Protected Mode Interface) specifi-

cation, 24, 74-75,433
drag and drop operations, 24 7
driver registration packet (DRP), 298, 433
drivers. See device drivers; mini-drivers
drop-down list boxes, 93
DRP (driver registration packet), 298, 433
DuplicateHandl,e() API function, 240, 241
dynaload (DL) VxDs, 133, 433
dynamic data exchange (DDE)

defined,433
vs. OLE technology, 245
Win32 APis, 228

dynamic linking, 71, 82-84
dynamic link libraries (DLLs), 82, 147, 433

E
Eastman Kodak, 260
EGA (Enhanced Graphics Adapter), support for,

67,433
EISA (Extended Industry Standard Architecture)

bus, 310, 311, 434
electronic mail, 23, 28, 349-50, 394-98
embedding, 246, 434. See also OLE technology
EndDoc() API function, 270
EndPage() API function, 270
end users, and ease of use, 3, 19-22, 29
enhanced mode, 67, 85

EnterCriticalSection() API function, 239
enumerating, defined, 354, 434
enumerators, and Plug and Play, 324, 328, 334-35
error handling, 249-52. See also application

program errors
Escape() API function, 269
EtherExpress network adapter, 311
event driven programming, 96-97, 99-100, 434
event logging APis, Windows 95 vs. Windows NT,

236-37
events

defined,76-77,434
Plug and Play, 322, 333
VM:tdservicesfor, 140
Win32 APis, 240

exception handling, 249-52
exceptions,defined,434
execution priority, 114-15, 116, 117
expanded memory, 38, 74, 85
Explorer program, 169, 196, 434
export table, defined, 434
Extended MAPI, defined, 434
extended memory, 74, 85

F
FAT (File Access Table) filesystem

defined,434
vs. VFAT filesystem, 284-85
in Windows 95, 275, 282, 284

feature specification, Windows 95, 13-28
file decompression, Win32 APis, 228 .
file management subsystem. See filesystem
File Manager program, 22, 159, 160-61, 169, 195
file mapping objects, 127-28
filenames, long

application support, 214, 217, 218
overview,23,213-15,275,281-82
short equivalents, 282, 284-85, 286, 288-89
storing, 282-88
Windows 3.1 and MS-DOS applications, 161,

214,282,289-91
Windows 95 vs. Windows NT, 291

File Open dialog box, 210, 211-12
file preview windows, 212
files. See folders
file synchronization, 400-404
filesystem

defined,66,434
layered design, 277-81

filesystem, continued
long filename support, 23, 213-15, 275,

281-91
and MS-DOS, 112, 276-77, 279
network support, 275
new and improved features, 275-77
subsystem architecture, 277-81
Windows 3.1 vs. Windows 95, 66, 72, 107

filesystem drivers (FSDs)
calling, 293-94
defined,435
entry points, 295-96
network,352,440
overview, 294-96
VFAT example, 279-80

file viewers, 23
Find and Replace dialog box, 211
FindClose() API function, 290
FindFirstFile() API function, 290
FindNextFUe() API function, 290
folders

defined,435
design evolution of, 195-96
on desktop, 172-73, 177
overview, 167, 170-71

fonts, system, changes in, 200, 201
Fonts dialog box, 211
foreign languages, 248-49
.FOT files, 258
frame buffer, 267-68, 435
FreelmageColorMatcher() API function, 260
FS_ ConnectNetResource() function, 294, 295
FSDs. See filesystem drivers
FS_MountVolume() function, 294, 295
function calls, 71

G
gates, 57, 435
Gates, Bill, 18, 19, 191, 198, 211
GDI32.DLLfile, 147, 148
GDI (Graphics Device Interface)

API support, 81, 82
defined, 65, 435
device-independent capability, 253-54
as dynamic link library, 82

Index

image color matching capability, 254, 259-62 .
loading, 134
metafile support, 258
overview,64,65,252-55

461

INSIDE WINDOWS 95

GDI (Graphics Device Interface), continued
privilege level, 108
resource limit expansion, 254, 256-57
subsystem architecture, 255-56
Win32 APis, 227, 231-32
Windows 95 improvements to, 254-58

GDINFO data structure, 266, 268
GDT (global descriptor table), 41, 42
GDTR register, 41
general protection faults, 53, 56, 117-18
geometry (of a device), defined, 435
GetBrush() API function, 148
GetCurrentDirectory() API function, 290
GetCurrentProcess() API function, 110
GetCurrentTask() API function, 110
GetFileAttrilnttes() API function, 290
GetFileTime() API function, 290
GetLastError() API function, 233
GetMessage() API function, 82, 97
GetStockObject() API function, 148
GetSysColor() API function, 245
GetThreadDesktop() API function, 233
GetVersion() API function, 233
GetVolumelnformation() API function, 290
global context, 70-71, 73
global descriptor table (GDT), 41, 42
global heap, 87
GlobalMemoryStatus() API function, 122
grabber, 264, 446
granularity bit, 47, 435
graphical user interfaces (GUis), characteristics

of, 168-69
graphics coordinate systems. See coordinate

systems
Graphics Device Interface. See GDI
.GRP files, 171, 242
GUls (graphical user interfaces), characteristics

of, 168-69

H
handles, 99, 240, 292, 435. See afso sizing handle
hardware

device protection, 57-,60
dynamic configuration changes, 318
flexibility goal, 320-21
as hardware tree nodes, 329-31
information databases, 332-33
installation and configuration, 20, 315-17
interfacing to, 302-3

462

hardware, continued
platforms, 4-5
and Plug and Play, 315-17, 318, 322, 331-32

hardware tree
building during boot process, 328, 332-33
defined,322,436
device nodes, 329-31
Plug and Play example, 325-28
vs. registry, 328, 332

HeapCreate() API function, 129
heaps,87,88, 129,256-57,436
help system

and application developers, 186, 219
changes in Windows 95, 187-88
context sensitivity of, 188
task-oriented approach of, 187-88
visibility of, 187

Hewlett-Packard LaserJet printers, 273
hidden VM, 73, 112
home base, taskbar as, 179, 180
"hot mouse," 203
hourglass cursor, 27, 188

I
IBM MicroChannel bus, 310, 311, 439
IBM OS/2, 29, 37
IBM PC AT computers, 4-5, 36
IBM Personal Computer, 35, 39, 40
ICM (image color matching), 254, 259-62, 436
icons, 204-5
IEEE (Institute of Electrical and Electronics

Engineers), 313, 320
IFS (installable filesystem), 107, 436
IFSMgr_RegisterMount() service, 294
IFSMgr_RegisterNet() service, 294
image color matching (ICM), 254, 259-62, 436
import libraries, 83, 436
independent software vendors (ISVs), 29
.INF files, 322, 332
Info Center, Windows 95, 394-98
.INI files, 242
InitializeCriticalSection() API function, 239
in-place activation, 246, 436
input desynchronization, 119
installable filesystem (IFS), 107, 436
installable filesystem (IFS) manager, 277, 279,

291-94,352,436
Institute of Electrical and Electronics Engineers

(IEEE), 313, 320

Intel Corporation. See also names of processors
EtherExpress network adapter, 311
and Plug and Play standard, 4, 313
processors, 33, 35-37, 38-54

interface. See user interface
lnterlockedDecrement() API function, 239
InterlockedExchange() API function, 239
Interlockedlncrement() API function, 239
international support, 248-49
interrupt requests (IRQs), 57, 437
interrupts, 57, 141, 290, 301, 436. See also

software interrupts
interrupt service routines (ISRs), defined, 437
1/0 operations, controlling, 57-60
1/0 packet (IOP), 297, 299, 437
1/0 permission bitmaps, 45, 59, 60
1/0 ports, defined, 437
IOREQ data structure, 293
IOS. See l/0 subsystem
/OS_&gister() service, 297, 298, 302
IOS_&questor_Service service, 297, 300
/OS_SendCommand() service, 297
1/0 subsystem (IOS)

defined,280,437
device driver initialization, 298-99
port driver example, 302-3
service requests, 297, 300-301
VxD services, 297

1/0 trapping VMM services, 141
IPX/SPX protocol, 367, 369, 371, 437
IRQs (interrupt requests), 57, 437
ISA (Industry Standard Architecture), 313, 317,

437
ISRs (interrupt service routines), defined, 437
ISVs (independent software vendors), 29

J, K
Jaguar project, 104
journal records, 270
Kernel

API support, 81, 82
defined,65,437
as dynamic link library, 82
loading, 134
privilege level, 108
Win32 APis, 227
as Windows 95 component, 64, 65

kernel, defined, 437
KERNEL32.DLL file, 147, 148
key depressions, as events, 97

Index

L
languages, foreign, 248-49
LAN Manager, 342, 343, 345, 368
LANs (local area networks), 8-10, 27, 28
LANtastic, 343, 344
laptop computers

docking station support, 399-400
and PCMCIA bus, 312, 313, 318, 320
power management, 398-99
Windows 95 support, 381, 398-400

layered filesystem design, 277-81
LDT (local descriptor table), 41, 42
LDTR register, 41
least recently used (LRU) technique, 122, 437
LeaveCriticalSection() API function, 239
legacy, defined, 437
light source, 184, 199
linear addressing, 25, 39, 85, 143, 438
LineTo() function, 83
linker, 82-83
links, 246, 438
list view control, 210
.LNK files, 1 71
load group mask (LGM), 299
LoadlmageColorMatcher() API function, 260
local area networks (LANs), 8-10, 27, 28
local buses, 312, 320
local descriptor table (LDT), 41, 42
locale, defined, 438
locale APis, 249
local heap, 87
locality of reference, 50, 438
logical color space, 259, 261-62
logical frame buffer, 267-68
long filenames

application support, 214, 217, 218
overview,23,213-15,275,281-82
short name equivalents, 282, 284-85, 286,

288-89
storing, 282-88
Windows 3.1 and MS-DOS applications, 161,

214,282,289-91
Windows 95 vs. Windows NT, 291

look and feel, 164, 167-69, 438
LRU. See least recently used (LRU) technique

M
MAC (media access control) driver, 353, 368,

438
mainframes, 8

463

INSIDE WINDOWS 95

MAPI (message application programming
interface), 28, 396-97, 438

mapped files, 127-28, 438
MapViewOJFile() API function, 127, 128, 241
MapViewOJFileEx() API function, 127, 128
marketing of Windows 95, 28-30
maximize/restore button, 182, 183, 204
MDI (multiple document interface), 190, 438
media access control (MAC) drivers, 353,

368,438
memory

640K barrier, 39-40
and 80286 protected mode, 41-43
addressing, 24-25, 45-54
descriptor format, 45-48
local vs. global, 87
protection, 45, 55-56
segmented architecture, 38-39, 41-43
segmented vs. linear, 25, 38-39, 85, 143
virtual vs. physical addresses, 69

memory management
application, 87-88
overview, 85-90
and programming, 241
system, 88-90
Virtual Memory Manager (VMM), 125-29
VMM services, 140
Win32 APis, 232, 241

memory mapped devices, defined, 439
memory mapped files, 88, 127-28, 258
memory maps

original IBM PC, 39, 40
Win32 applications, 125, 126
Windows 95, 108-10

menus
changes in, 202-4
continuation, 17 4, 175
popup, 185,202-3,443
Start menu, 169, 174, 175, 448

message application programming interface
(MAPI),28,396-97,438

MessageBox() API function, 83
MessageBoxEx() API function, 249
message loops, defined, 439
message queues, 97, 119-21
messages, 71, 94, 97, 439
message stores, defined, 439
messaging, 396-97, 398, 439
metafiles, 272, 439

464

MicroChannel bus, 310, 311, 439
Microsoft Corporation. See also Gates, Bill

developer relations groups (DRG), 29
and development of Plug and Play standard,

4, 312-14
family of Windows operating systems, 12-13
importance of OLE technology to, 166,

245-46
"Ready To Run" campaign, 311
Windows 95 shell design story, 189-98
Windows networking history, 342-46

Microsoft LAN Manager, 342, 343, 345, 368
Microsoft Mail, 394, 396
Microsoft OS/2, 2, 4, 6, 7, 36, 37, 44, 82. See also

IBMOS/2
Microsoft Pen Windows, 23
Microsoft Windows/386, 4, 37, 111
minicomputers, 8
mini-drivers

defined, 439
for display driver, 254, 264, 265, 266, 268
performance of, 92
for printer driver, 253-54, 272-73
and VxDs, 91-92
in Windows 95, 91-92
in Windows NT, 91

minimize button, 182, 183, 204
miniport drivers, 281, 439
MIPS 4000 processor, 33
modems, 391, 392
MODEMS.INF file, 391
modes, and Windows 95, 67. See also protected

mode; real mode
modules, defined, 80-81
monitor, 271-72, 375, 377, 439
Motorola processors, 39, 44
mouse

clicks as events, 97
double-clicking, 17 4, 190
"hot mouse," 203
right button, 185, 202

MoveFile() API function, 290
MPR (multiple provider router), 351-52, 355-62,

439
MS-DOS-based applications

and 32-bit addressing, 74
80386 support for, 44, 59, 60-61
benefits of virtual mode, 60-61
and BIOS, 5

MS-DOS-based applications, continued
calls to system services, 136-37
compatibility issues, 4, 7, 44, 45
decline of, 2
and device drivers, 58-59, 90
and DPMI standard, 74-75
future of, 23
and 1/0 permission bitmap, 45, 59, 60
long filenames support, 214, 282, 289-91
and multitasking, 78
in protected mode, 73-75
and real mode drivers, 67, 69, 281, 307-8, 445
running in single application mode, 15, 64,

111-12
running under Windows NT, 33
starting from Windows 95, 59, 60
as VMs, 59-60, 68, 69, 72-73
and Win32 API, 233
Windows 95 support for, 4, 7, 23, 215-16

MS-DOS operating system
and 640K memory limit, 39, 40
as fallback, 15, 64, 111-12
and filesystem, 276-77, 279
future of, 7, 104
and IBM Personal Computer, 35
INT-based software services, 112, 276
limitations of, 6
relationship to Windows 95, 4, 7, 59, 60,

63-64, 111-12
running in single application mode, 15, 64,

111-12
MS-DOS Shell, 159
MS-DOS virtual machines (VMs)

in 32-bit protected mode, 69
context for, 70-71, 72, 73
defined, 106, 111
and DOS extenders, 69
hidden VM, 73
overview,68,69,72-73
replicating PCs running MS-DOS, 72
as single processes, 80, 113
vs. System VM, 68, 69, 80
virtual address space, 109, 110
as Windows 95 component, 64, 66

MsgWaitForMultifleObjects() API function, 240
MS-Net, 342
MSSHRUI DLL, 373
multimedia, Win32 APis, 228
multiple document interface (MDI), 190, 438

multiple provider router (MPR), 351-52,
355-62,439

multitasking
cooperative vs. preemptive, 77-78
critical section management, 79-80
defined,76,440
managing, with the scheduler, 76-78
and MS-DOS-based applications, 78
network connectivity example, 76
overview, 76-78
print spooling example, 76
and programming, 238-41
use of term, 75
Win32 APis, 239-41

Index

multithreaded processing, 27, 116, 188-89
mutex (mutual exclusion), 79, 80, 151-52, 240
mutual exclusion (mutex), 79, 80, 151-52, 240
"My Computer," 176

N
named pipe protocol, defined, 440
native mode, 37, 440
NCP protocol, 347
NDIS (Network Driver Interface Specification)

compatibility issues, 369-70
configuration example, 370-72
defined,352-53,440
overview, 368-69

nested execution VMM services, 140
NetBEUI transport, 367, 369, 370, 440
NetBIOS protocol, 367, 440
NETRESOURCE data structure, 357-58
NetWare,29,342,343

Microsoft NetWare client for Windows 95, 27,
28,347

NetWare Lite, 345
network adapter driver VxD, 353
network connections

defined,354,430
multitasking example, 76
PC vs. phone-centric, 390
persistent, 354-55, 442
as Windows 95 benefit, 30, 341, 342, 346-47

Network Driver Interface Specification (NDIS).
See NDIS

network filesystem drivers (FSDs), 352, 440
networking

client-server, 8-10, 28, 341-42, 343-44, .429
configuring, 370-72

465

INSIDE WINDOWS 95

networking, continued
LANs,8-10, 27,28
peer-to-peer, 341, 342, 343, 344-46
printing, 272, 375-77
security issues, 377-79
subsystem architecture, 347-55, 373, 374
terminology, 353-55
Win32 APis, 228
Windows history, 342-46
and Windows NT, 345

"Network Neighborhood,".176
network providers (NPs)

authentication SPI, 366
defined, 352,440
device redirection SPI, 364
enumeration SPI, 365-66
interfacing to, 361-62
services of, 363-66
shell SPI, 365

network servers
access control, 373, 378
architecture, 373, 374
defined, 8,447
minimum configuration, 10
operating systems for, 5, 10, 372
overview, 8-10
for peer-to-peer networking, 372-74
print spooler, 373
requirements for, 8-9
security issues, 8, 373, 377-79
VSERVER software, 373
and Windows NT, 5, 10, 372

network subsystem, Windows 95, 66, 34 7-55
network transports, 352, 366-72, 441
not-present interrupt, defined, 441
Novell, 341-42, 343

NetWare Lite, 345
protocols, 66, 347, 367
Windows 95 network support, 27, 28, 347

NPCancelConnection() SPI, 364
NPChangePassword() SPI, 366
NPClosedEnum() SPI, 366
NPDeviceMode() SPI, 364
NPDirectoryNotifj() SPI, 365
NPDisplayCallback() SPI, 365
NPEndSession() SPI, 364
NPEnum&source() SPI, 366
NPFormatNetworkName() SPI, 365
NPGetCaps() SPI, 364

466

NPGetDirectoryType() SPI, 365
NPGetDisplayLayout() SPI, 365
NPGetEnumText() SPI, 365
NPGetHomeDirectory() SPI, 366
NPGetNetworkFileProperties() SPI, 365
NPGet&sourceParent() SPI, 365, 366
NPGetUser() SPI, 364
NPLogojJ() SPI, 366
NPLogon() SPI, 366
NPNotifjAddConnection() SPI, 364
NPOpenEnum() SPI, 366
NPs. See network providers ·
NPSearchDialog() SPI, 365
NP() SPI, 366
NPValidLocalDevice() SPI, 364

0
object filesystem, 24 7-48, 441
object linking and embedding. See OLE

technology
object orientation, 11, 100, 166, 247
objects. See also control objects; OLE technology

configuring, in property sheets, 185-86
defined,441
on desktop, 177
property sheets for, 185-86
referencing vs. copying, 171-72
on taskbar, 179

ODBC (Open Database Connectivity), defined,
441

offset address, 46
OLE automation, defined, 441
OLE clients, 167, 188, 246, 247
OLE servers, 246, 24 7
OLE technology

and application developers, 100, 217-18, 220,
245-48

and Cairo, 220, 246, 247-48
client vs. server applications, 246, 247
compound documents, 167, 212, 246, 247,

430
vs. DDE, 245
defined,441
and document-centric interface, 159, 166-67,

433
and drag and drop operations, 247
importance of, 166, 245-46
in-place activation, 246
marketing of, 29

OLE technology, continued
overview, 22, 245-48
Win32 APls, 227

online help
and application developers, 186, 219
changes in Windows 95, 187-88
context sensitivity of, 188
task-oriented approach of, 187-88
visibility of, 187

Open Database Connectivity (ODBC), defined,
441

Open Datalink Interface (ODI) specification,
369,441

Open dialog box, 210, 211-12
OpenFile() API function, 290
OpenFileMapping() API function, 127
OpenGL 3-D graphics library, 228
OpenMutex() API function, 240
OpenSemaphore() API function, 240
operating systems. See also base system,

Windows 95; MS-DOS operating system
choices in, 6-7
limitations of MS-DOS, 6
and processors, 33, 44-45
protected mode, 23-24
protection capabilities, 54-60
Windows 95 as, 7, 63-64, 66-67
Windows family of, 12-13

OS/2. See IBM OS/2; Microsoft OS/2
OS/2 LAN Manager, 368

p
page descriptors (PDs), 123
paged virtual memory, 45, 50-52
page granularity, 47
pages, 121, 123-24,442
Page Setup dialog box, 213
page tables, 50, 51, 52-53
paging, 45, 50, 122, 436. See also demand paging,

defined
paragraphs, memory, defined, 38, 442
parent windows, 95
pass through authentication, defined, 442
paths, 257, 442
PC-centric connections, 390
PCI bus, 313, 442
PCL language, 273
PCMCIA bus, 312, 313, 318, 320, 442
PC Network (IBM), 343

·Index

PCs, architecture of, 4-5
PDAs (personal digital assistants), 381
PDEVICE data structure, 266
peer-to-peer networking, 27, 66, 341, 342, 343,

344-46
defined,442
server machines for, 28, 372-74

pen-based applications, 23, 28, 228, 425
Pentium processor

as 386 processor, 37, 44
and backward software compatibility, 36
and virtual 8086 mode, 37
and Windows, 37

performance requirement, Windows 95, 16-17
persistent connections, 354-55, 442
personal digital assistants (PDAs), 381
Phoenix Technologies, and Plug and Play

standard, 4, 313
phone-centric connections, 390
physical frame buffer, 267-68
physical memory

and 80286 processor, 41, 42, 43
calculating addresses in protected mode, 45
defined,442
managing, 88-90, 121-25
vs. virtual memory, 69

pixels, defined, 443
platforms

for 32-bit programs, 5-6
MS-DOS vs. Windows vs. UNIX vs. OS/2, 2
for running Windows, 4-5

Plug and Play BIOS, 315, 317, 324, 336-37, 428
Plug and Play standard

and BIOS, 315, 317, 324, 336-37, 428
and bus design, 315-17
for bus types, 313
compatibility issues, 319-20
defined,20,443
goals for, 314-21
history of, 312-14
overview, 4, 309-10
and resource types, 325
why needed, 310-12

Plug and Play subsystem
and application developers, 241-42
components overview, 321-25
device drivers, 324, 337-38
and docking stations, 398-400
hardware tree, 325-32

467

INSIDE WINDOWS 95

Plug and Play subsystem, continued
printer support, 272
and system setup; 173
use of registry, 243
Win32 APls, 241-42

point to point protocol (PPP), 385, 443
popup menus, 185, 202-3, 443
portabiiity, of Windows NT, iO
portable computers

docking station support, 399-400
and PCMCIA bus, .312, 313, 318, 320
power management, 399
Windows 95 support, 381, 398-400

port drivers (PDs)
communications, 392-94
defined,281,385,443
execution, 303
initializing, 302-3
and interrupts, 303
overview, 277, 302

porting
16-bit code to Win32, 229-33
tools for, 229-30, 231

PORTIOOL.EXE file, 229
POSIX, defined, 443
PostScript printing, 273
PowerPC processor, 33
PPP (point to point protocol), 385, 443
preemptive multitasking

critical section management, 79-80
defined,77,443
problem of 16-bit code, 149-55
scheduling, 77, 78, 100
and Win32 applications, 26-27

present bit, 47, 53
preview windows, 212
primary scheduler, 114
primitives, system, 67, 89-90, 239-40
Print dialog box, 211
printer APis, Windows 95 vs. Windows NT, 236
printer drivers

DIB engine/mini-driver combination, 253-54,
272-73

dynamic links, 83-84
universal, 24, 253-54, 272-73

printers, configuring, 22, 24
Printer Setup dialog box, 213
printing

API functions for, 236, 269
and bi-directional communication, 272

468

printing, continued
on networks, 375-77
process of, 270-72
subsystem architecture, 269, 270, 272
using shortcut concept, 171
Windows 95 improvements, 269

Print Manager program, 22, 162, 169
print processor, 271
print provider (PP), 375
print request router (PRR), 375, 443
Print Setup dialog box, 211
print spooler, 76, 270, 271, 373, 448
priorities. See execution priority
private heaps, 88, 129
privilege levels. See also protection rings

for applications, 56
descriptor table entry, 47
for operating system protection, 56-57
switching between, 57, 84

processes
critical sections in, 79-80
defined,443
MS-DOS VMs as, 80
in System VM, 80
vs. tasks, 76, 110-11
vs.threads,80, 113
Windows applications as, 80

processor fault VMM services, 141
Program Manager program, 22, 159, 160-62,

169, 177
programming. See also application developers

eventdriven,95,96-97,99-100,434
and message handling, 97-99
object-oriented, 11, 100, 166, 247
and OLE, 100, 217-18, 220, 245-48
under Windows 95, 99-100
Windows basics, 96-100

progress indicator control, 208
properties,defined,443-44
Properties menu item, 185
property sheets, 185-86, 209-10, 444
protected mode

and 80286 processor, 36, 41-43
defined,444
descriptors in, 41, 42
device drivers, 67, 281
and indirect access to memory, 42-43
mapper, 281 ·
MS-DOS-based applications in, 73-75, 281
and operating systems, 23-24

protected mode, continued
selectors in, 41, 42
virtual mode as part of, 60
VMM services, 140

protection capabilities
of 80386 processor, 54-60
device protection, 57-60
memory protection, 55-56
operating system protection, 56-57

protection rings
and base system, 84
defined,444
overview, 107-8
ring zero, 56, 135-40

protocols, defined, 444
protocol stack, defined, 444
PRR (print request router), 375, 443
PulseEvent() API function, 240

Q,R
Quarterdeck, 37
radio buttons, 93
RaiseException() API function, 252
RAM allocation, 127. See also physical memory
RAM (random access memory), and virtual

memory management, 49-53
RAS (remote access services), defined, 445
RasDial() API function, 389
RasEnumConnections() API function, 389
RasGetConnectStatus() API function, 389
RasHangup() API function, 389
rasterizer, 256, 258, 444
rawinputqueue, 119, 120,445
read/write bit, 53
"Ready To Run" campaign, 311
realmode,41,45,60,67, 112,445
real mode drivers, 67, 69, 281, 307-8, 445
ReconcileObject API, 403
Recycle Bin feature, 198
redirector, defined, 445
reentrancy, and 16-bit vs. 32-bit code, 149-55
registers, segment. See segmented addressing
registration database, 242
registry

application use, 218-19
defined,445
organization of, 243-44, 332
in Plug and Play subsystem, 322
and programming, 242-44
Win32 APis, 21, 244

ReleaseMutex() API function, 240
ReleaseSemaphore() API function, 240
remote access services (RAS), defined, 445
remote communications, 28, 382-94

elements of, 383-85
types of access, 386-89

Index

remote network access (RNA), 383, 385-89, 445
remote procedure calls (RPCs), 228, 367, 445
RemoveDirectory() API function, 290
reserving virtual address space, 128-29
ResetEvent() API function, 240
resource arbitrators, 324, 335-36, 445
resources

availability, 55, 87, 237, 256-57
defined,445
network,defined,353
usage count, 81

resource sharing, 81, 84
rich text, 209, 446
right mouse button, 185, 202
ring zero, 56, 135-40. See also privilege levels;

protection rings
RISC processor, defined, 446
RNA (remote network access), 383, 385-89, 445
robustness requirement, 8, 17-18
RPCs (remote procedure calls), 228, 367, 445
runtime memory requirements, Windows 3.1 vs.

Windows 95, 87

s
safe driver, defined, 446
scalability, 164, 201-2, 227
Schedulefob() API function, 236
schedulers

controlling, 116-17
and cooperative multitasking, 77-78
defined, 76,446
and events, 76
importance of threads, 80, 113
and preemptive multitasking, 78
primary vs. timeslice, 114-16
and priorities, 77, 114-15, 116, 117
and time slices, 76, 77
and Virtual Machine Manager (VMM), 112-

21, 141
and VM control flags, 115-16

screen display
3-D appearance, 184, 198-201
controls, 205-10
default, 157, 158, 192-93

469

INSIDE WINDOWS 95

screen display, continued
design evolution, 189-98
dialog boxes, 210-13
elements of, 201-13
icons, 204-5
menus, 202-4
overall Windows 95 appearance, 22, 182-84,

198-201
scalability, 164, 201-2
scroll boxes, 204, 205
sizing handle, 204, 205
window buttons, 204

screen grabber, 264, 446
scroll bars, 94, 205
scroll boxes, 204, 205
SCSI_CONFIGURATION_INFORMATION data

structure, 306
SCSI device support, 201, 304, 306-7
SCSI_INITIALIZATION_DATA data structure,

306
SCSiizer, 281
SCSI manager, 281, 306-7, 446
SCSI_REQUEST_BLOCK data structure, 306
SCSI (Small Computer System Interface) bus,

312,313,320,446
SDI (single document interface), 190, 446
security APis, Windows 95 vs. Windows NT, 234
security of servers, 8, 373, 377-79
Security Provider, 373
segment bit, 47
segmented addressing

for 8086 processor, 37, 38
for 80286 processor, 41-43
architecture, 38-39, 41-43
defined,447
vs. linear addressing, 25, 38-39, 85, 143

segment registers. See segmented addressing
segments, 38-39, 41-43, 45, 46, 47-48, 447
selectors, 41, 42, 46, 87, 109
semaphores

defined,240,447
Win16mutex, 152-55
and Win16 subsystem, 151-52
Win32 APis for, 240

serial ports, adding, 57
server APis, Windows 95 vs. Windows NT, 236
server applications, defined, 447
servers. See network servers
service control manager APis, Windows 95 vs.

Windows NT, 236

470

service provider interface (SP!), 348, 447
service providers, 348, 44 7
service tables, VxD, 130, 447
SetCurrentDirectory() API function, 290
SetEvent() API function, 240
SetFileAttributes() API function, 290
SetFileTime() API function, 290
shading, 184, 199-200
shared memory, 86, 88, 127-28, 447
share-level security, 378, 379, 447
share name, defined, 448
share points, 354, 373, 448
shell

3-D appearance of, 184, 198-200
as 32-bit application, 147, 188
animation in, 196-97
briefcase object in, 400-404, 428
defined, 159,448
design retrospective, 189-98
development of, 190-92
elements of, 169-82
extensibility of, 189
need for application consistency with, 219
new features, 22-23
for novice vs. experienced users, 192, 193
as OLE client, 167, 188
outside influences on, 189-90
prototyping in Visual Basic, 190-92
system color scheme, 200
system fonts, 200, 201
threading capabilities of, 188-89
and transfer model, 191, 197-98
usability testing of, 189-90
Win32 APis, 228
as Windows 95 component, 64, 65

_SHELL_BroadcastSystemMessage service, 135
_SHELL_CallAppyTimeservice, 134
SHELL HookSystemBroadcast service, 135
_SHELL_PostMessage service, 135
Shell VxD, 134-35, 448
shortcuts, 170, 171-72, 448
Simple MAP!, defined, 448
single MS-DOS-based application mode, 15, 64,

112
sizing handle, 204, 205
sizing windows, 205
slider control, 208
SMB protocol, 66, 448
sockets, 228, 367, 371, 448
software. See applications

software interrupts, 72, 73, 136, 137
specification for Windows 95, 13-28
spin boxes, 93, 208-9
SPI (service provider interface), 348, 447
spooler, 76,270, 271,373,448
standard mode, 67
Start button, 174
StartDoc() API function, 270
Start menu, 169, 174, 175, 448
StartPage() API function, 270
startup screen. See also screen display

design evolution, 192-93
Windows 95 vs. Windows 3.1, 157, 158

static VxD, defined, 448
status window control, 206-7
streams, 247
structured exception handling, 249-52, 448
swap faults, 50
swap file, 50, 123, 124, 449
synchonization VMM services, 141
synchronization primitives, 239-40
system bus design, 310
system crashes, 17-18
system file handle structure, 292
system fonts, changes in, 200, 201
SYSTEM.IN! file, 21, 242, 243, 268, 298, 361, 362
system menu. See window menu
System Policy Editor utility, 378
system primitives, 67, 89-90, 239-40
system reentrancy, and 16-bit vs. 32-bit code,

149-55
system resources. See resources
system taskbar, 174, 179-81, 194-95
system tray, defined, 449
System Virtual Machine (VM)

T

context for, 71
defined,65, 106, 111,449
vs. MS-DOS VMs, 68, 69, 80
multiple processes in, 80
overview, 71-72
scheduling within, 116
and Win32 applications, 71-72
as Windows 95 component, 64, 65, 68, 69

tab control, 209
TAPI (Windows Telephony API), 382-83, 385,

389-90,449
task bar

as anchor point, 179, 180
and application compatibility, 180-81

taskbar, continued
buttons on, 194, 195
configuring, 180
default for, 179
defined, 174, 449
design evolution, 194-95
hiding/displaying, 179-80
overview, 179-81

Task Database (TDB), 80
Task Manager, 161-62, 169
tasks

defined,76,449
as gates, 57
vs. processes, 76, 110-11
use of term, 75

TCP/IP protocol, 66, 347, 371, 449
telephony applications. See TAPI (Windows

Telephony API)
third-party vendors, 189
threads

and application errors, 11 7-18
and background activities, 118

Index

as basic unit of scheduling, 80, 113, 114-15
defined,449
execution priority, 114-15, 116, 117
and general protection faults, 117-18
limits of, 113
MS-DOS VMs as, 113
multiple, 27, 116, 188-89
overview, 113
vs. processes, 80, 113
suspending, 114
synchronization primitives, 239-40
in System VM, 116
and UAEs, 117-18

thumbnails, defined, 449
thunk compiler, 145, 146-47
thunks

defined,54, 144,449
origin of term, 144
in Windows 3.1, 144-45
in Windows 95, 145-47, 148, 149

tiling, 143
timeslices, 76, 77, 449
timeslice scheduler, 114-15, 116
toolbar, 94, 95, 204, 205-6
TOPS networking program, 343
transfer model, 191, 197-98, 449
transports. See network transports
traps, as gates, 57
tree view control, 210

471

INSIDE WINDOWS 95

TrueType rasterizer, 256, 258, 444
TSD (type specific driver), 280, 304, 305-6, 450
TSR programs, 7
.TTF files, 258
type specific driver (TSD), 280, 304, 305-6, 450

u
U AEs (Unrecoverable Application Errors), 2, 1 7,

56, 117-18, 450
UNC (Universal Naming Convention), 218, 450
Unicode

vs. ANSI character set, 235
defined,450
and internationalization, 248
Windows NT vs. Windows 95 APis, 235

Unimodem, 385, 391, 450
UNIMODEM.386 driver, 391
universal client, defined, 346-47
universal drivers, defined, 450
Universal Naming Convention (UNC), 218, 450
universal printer driver, 24, 253-54, 272-73
UNIX, 2, 6, 37, 44, 82, 347, 450
Unrecoverable Application Error message, 2, 17, 56
usability tests, for Windows 95 shell, 189-90
User

API support, 81, 82
defined,66,450
as dynamic link library, 82
loading, 134
privilege level, 108
Win32 APis, 227
as Windows 95 component, 64, 66

USER32.DLL file, 147, 148
user accounts, defined, 450
user interface. See also shell

important characteristics, 168-69
improvements to, 159-65
look and feel issue, 167-69
for Plug and Play subsystem, 324
Win32 APis, 245
Windows 95 design, 95-96
Windows overview, 92-95

user-level security, 378, 379, 450
users, active, defined, 30
user/supervisor bit, 53
utility functions, 24

v
VCACHE, defined, 451
VCOMM VxD, 385, 391, 392-94, 451

472

VCPI (Virtual Control Programming Interface)
specification, 74

vendors. See independent software vendors
(ISVs)

vendor supplied driver (VSD), 280-81, 451
VFAT filesystem '

defined, 451
driver, 279-80
vs. FAT filesystem, 284-85

VFLATD VxD, 267-68, 451
VGA, defined, 451
video display, controlling with DIB engine, 262
video memory, 264, 267-68
View menu, 203, 204
virtual 8086 machine. See virtual 8086 mode
virtual 8086 mode. See also virtual mode

and 80386 processor, 37, 44, 45, 68
defined, 451
and virtual machines (VMs), 59, 68
vs. virtual memory, 48
vs. Windows VM, 68

virtual addresses
defined, 451
vs. physical addresses, 69

virtual address space
for 16-bit Windows applications, 109
for 32-bit Windows applications, 25, 27, 85,

86-88, 109, 110, 125, 126
defined,451
for MS-DOS VM, 109, 110
reserving, 128-29
shared vs. private, 86
system memory map, 108-10
system vs. application, 86

VirtualAlloc() API function, 128-29
Virtual Control Programming Interface (VCPI)

specification, 74
virtual device drivers (VDDs), 91-92, 108
virtual device drivers (VxDs), 67, 84-85

callback mechanism, 131-32
calling between, 136, 138-40
defined,67,452
defining service tables, 130
dynaload, 133, 433
loading dynamically, 133-34
loading in Windows 3.1, 132-33
loading in Windows 95, 133-34
mini-drivers as, 91-92
and protection rings, 108
Shell VxD, 134-35, 448
VNrM"servicesto, 117, 130, 133, 140-41

Virtual Machine Manager (VMM)
callback mechanism, 131-32, 144
calling of services, 84, 131-35, 136
configuration manager services, 141
debug services, 141
defined,67, 106,451
event services, 140
I/O trapping services, 141
memory management services, 140
nested execution services, 140
new features in Windows 95, ll l, 125-29
overview, Ill, 125
processor fault services, 141
processor interrupt services, 14}
protected mode execution services, 140
registry services, 140
and scheduling, 112-21, 141
scope of services, 130
services of, 129-41
services to VxDs, 117, 130, 133, 140-41
synchonization services, 141
system mapping function, I 09
VM callback services, 141
VM interrupt services, 141
VMs as clients, 131
asVxD, 129

virtual machines (VMs). See also Windows virtual
machines

contextfor,68, 70-71, 72, 73
control blocks, 130
control flags, 115-16
defined,451
MS-DOS-based applications as, 59-60, 68,

69, 72-73
overview, 68-75

virtual memory
defined,48,451
managing, 49-53
paged,45,50-52
vs. virtual mode, 48
and Win32 applications, 86-88

virtual mode
benefits for MS-DOS-based applications,

60-61 '
defined,48
as part of protected mode, 60
vs. virtual memory, 48

Visual Basic, prototyping Windows 95 shell in,
190-92

visual cues, 183, 451
visual design issues, 164-69
VMM. See Virtual Machine Manager
VMMcall macro, 139

Index

VMs. See virtual machines (VMs)
VMStat_Background flag, 115
VMStat_Exclusive flag, ll5
VMStat_High_Pri_Background flag, 115
voice mail, and Windows 95 Info Center, 394-98
volume request packet (VRP), 299-300
volume tracking driver (VTD), 280, 304-5
VSERVER software, 373
VTD. See volume tracking driver
VxDcall macro, 139
VXDLDR module, 134
VxDs. See virtual device drivers (VxDs)

w
WaitForMultipleObjects() API function, 240
WaitForMultipleObjectsEx() API function, 240
WaitForSingleObject() API function, 240
WaitForSingleObjectEx() API function, 240
Wastebasket feature, 198
widening, defined, 452
Win16Lock, defined, 452
Win16Mutex

defined,452
drawbacks of, 154-55
as reentrancy safeguard, 152-53

Winl6 subsystem, defined, 452. See also 16-bit
Windows applications

WIN32.386 file, 147
Win32API

and 16-bit applications, 110, 111., 142
benefits of, 26-27
binaries issue, 225
common dialog functions, 227
communications functions, 228
compatibility issues, 110-11, 224-25
components of, 227-28
controls, 227
DDE functions, 228
and dynamic memory allocation, 87-88
extensibility of, 226
file decompression functions, 228
file location, 147-48
functions unsupported in Windows 95, 234-38
GDI functions, 227, 231-32
goals for, 226-27

473

INSIDE WINDOWS 95

Win32 API, continued
graphics APis, 257
Kernel functions, 227
locale functions, 249
and memory management, 85-90, 232, 241
messaging functions, 396, 397
multimedia functions, 228
muititasking functions, 239-4i
named functions, 82
names of functions, 231-32
networking functions, 228, 356-61
and nonportable functions, 233
OLE functions, 227
overview,25,65,81-85,224-25
pen functions, 228
portability of, 226
porting to, 229-33
preferred Windows API, 99
and registry, 244
RNA Session API, 388-89
RPC functions, 228
scalability of, 227
shell functions, 228
size of, 227
sockets functions, 228
as "standard," 224-25
support for, 226
Telephony API (TAPI), 382-83, 385, 389-90
User functions, 227
and user interface, 245
using, in Windows 95 programming, 238-52
version checking, 233
Win32c subset, 25, 224
Win32s subset, 25, 26, 224, 452
and Windows 3.1, 224
and Windows 95, 26, 81-85, 225, 229-38
Windows NT support, 25
Windows vs. MS-DOS, 82

Win32c API, 25, 224
Win32s API, 25, 26, 224, 452
Win32 Software Development Kit, 144
Win32 subsystem, 144, 147-49, 452. See also

32-bit Windows applications
WINBOOT.SYS file, 112
window menu, 203, 452
window procedures, defined, 452
windows

hierarchy of, 95
ownership of, 95

474

windows, continued
parent vs. child, 95
scaling, 164, 201-2
sizing, 205
User as manager for, 66

Windows 3.0, l, 2, 17
Windows 3.1

caiis to system services, 136-37, 139
as cooperative multitasking system, 77-78
files and directories, 167, 171
getting started, 173-74
improvements on, 159-65
installing Windows 95 on existing systems, 20
and Intel 3~6 chip, 1
physical memory manager, 124
printer control, 24,.162, 163-64
property information, 162
real vs. protected modes, 23
reason for introduction, 2
reliance on MS-DOS, 72
sales of, 2
system management inconsistencies, 160-62
Task Database (TDB), 80
and Win32 API, 224
Windows 95 API compatibility, 65

Windows 95
32-bit application support, 5-6, 24-27, 54
and 80386 processor, 44-45
APicoverage,81-85,234-38
application guidelines for, 217-20
areas for improvement, 19-28
Beta-I release, xxv-xxvi, 30
boot process, 112
character set, 235
and client-server systems, 9, 11, 346, 347
codename "Chicago," xxv-xxvi, 1
communications subsystem, 382-94
compatibility requirement, 4, 7, 14-15, 44, 45
as complete operating system, 4, 7, 63-64,

66-67
components of, 106-11
configuration files, 243, 332
coordinate system, 232, 235, 257
and ease of use, 3, 19-22, 29
feature specification for, 13-28
filesystem architecture, 277-81
GDI improvements, 254-58
general goals, 3
getting started, 173-76

Windows 95, continued
initial desktop, 174-76
internationalization of, 248-49
marketing, 13, 28-30
Microsoft requirements for, 14-19
minimum hardware requirements for, 9, 16,

67,245,413
mission for, 3-6
an,d MS-DOS compatibility, 4, 7, 44, 45
naming of, xxvi
network architecture, 347-55, 373, 374
and network connectivity, 30, 341, 342,

346-47
networking security, 8, 373, 377-79
new screen display look, 198-213
and object-oriented programming, 100, 111,

166,247
OLE in, 100, 217-18, 220, 245-48
online help system, 186-88
part of Windows family of operating systems,

12-13
Plug and Play subsystem, 321-38
press rollout, 30
programming under, 99-100
.relationship with MS-DOS, 4, 7, 59, 60, 63-64,

111-12
release date, 18-19
resource availability, 55, 87, 237, 256-57
robustness requirement, 17-18
run "as well as Windows 3.1" requirement,

16-17
shell,169-82
similarity to Cairo, 11
system architecture, 64-66, 104-6
system overview, 63-67
system setup, 173-74
timely availability, 18-19

Windows/386, 4, 37, 111
Windows API functions, 82, 83
Windows-based applications. See 16-bit Windows

applications; 32-bit Windows applications
Windows device driver, 4, 91
Windows for Workgroups, 27, 28, 66, 107, 112,

197,342,343,345
Windows NT, 4, 5, 6

and 16-bit applications, 33
32-bit support, 25
Advanced Server version, 5, 372
and Cairo, 10

Index

Windows NT, continued
defined, 452
dynamic linking capability, 82
graphic coordinates system, 232
Intel processor emulation, 33
minimum hardware. requrements for, 9
and networking, 66, 345

. Plug and Play support, 313
portability of, 10
as preemptive multitasking system, 77
preexistence of, 104
running MS-DOS applications on, 33
as server machine, 10
variety of processor types for, 33
and Win32 API, 224, 225, 234-38

Windows Open Services Architecture (WOSA),
348-51,389,452

Windows Sockets, 228, 367, 371, 453
Windows subsystem. See GDI (Graphics Device

Interface); Kernel; User
Windows Telephony API (TAPI), 382-83, 385,

389-90
Windows user interface. See user interface
Windows virtual machines. See also MS-DOS

virtual machines (VMs); System Virtual
Machine (VM)

address space, 69
defined,68
importance of, 68-,-69
initialization, 70-71
vs. Intel virtual 8086 machines, 68
MS-DOS VMs, 68, 69, 72-73
overview, 70-73
System VM, 68, 69, 71-72

Windows VMs. See Windows virtual machines
WINDOWSX.H header file, 230
WIN.INI file, 21, 242, 243
WinNet functions, 356-61
WinSock interface, 228, 367
WM_DEVICEBROADCAST message, 238, 242
WM_DISPLAYCHANGED message, 245
WM_KBDLAYOUTCHANGE message, 238
WNetAddConnection() API function, 358, 359
WNetAddConnection2() API function, 358, 359
WNetAuthenticationDialog() API function, 360
WNetCachePassword() API function, 360
WNetCancelConnection() API function, 359
WNetCancelConnection2() API function, 359
WNetCloseEnum() API function, 359

475

INSIDE WINDOWS 95

WNetConnectionDialog() API function, 359
WNetDeviceGetFreeDevice() API function, 360
WNetDeviceGetNumber() API function, 360
WNetDeviceGetString() API function, 360
WNetDisconnectDialog() API function, 359
WNetEnumResource() API function, 359
"\VNetfunctions,356-61
WNetGetConnection() API function, 359
WNetGetLastError() API function, 360
WNetGetSectionName() API function, 360
WNetNotifyR.eg;ister() API function, 359
WNetDpenEnum() API function, 359

476

WNetSetLastError() API function, 360
WNetUNCGetltem() API function, 360
WNetUNCValidate() API function, 360
working set, defined, 453
WOSA (Windows Open Services Architecture),

348-51,389,452
WriteProcessMemoryO API function, 123, 241

X-Z
XENIX, 36
yielding, defined, 453
Z order, defined, 453

Adrian King is a native of London and graduated in 1976 from the University
of Liverpool with a master's degree in computer science. That same year he
joined the European consulting firm Logica, working in its system software
division on real time control and communications projects. While at Logica,
he founded the Software Products Group, which became Microsoft's Euro
pean XENIX partner in 1981. Adrian moved to the U.S. in 1984 to become
Microsoft's XENIX product manager.

At Microsoft, Adrian worked for Steve Ballmer as XENIX product manager
and later became director of operating systems products, assuming responsi
bilities for MS-DOS and Microsoft OS/2. He later managed the group that
developed Windows/386, the product that pioneered the use of software vir
tual machine technology in Microsoft operating systems.

In the late 1980s Adrian took over product responsibility for the SQL Server
and Communications Server products and later Microsoft LAN Manager. In
July 1991 he left Microsoft to become vice president of engineering at
Artisoft. While he was in charge of development at Artisoft, LANtastic
Artisoft's local area network product-won PC Magazine's Editors Choice
award.

In 1992 Adrian founded Gravity Communications, a consulting firm special
izing in the preparation of technical literature. He has written the book Run
ning LANtastic (Bantam, 1991) and articles for Microsoft Systems Journal and
other computer magazines.

Adrian is an active general aviation pilot and participates enthusiastically in
soccer, skiing, golf, and other sports.

T he manuscript for this book
was prepared and submitted

to Microsoft Press in electronic
form. Text files were prepared using
Microsoft Word 2.0 for Windows.
Pages were composed by Microsoft
Press using Aldus PageMaker 5.0
for Windows, with text in New
Baskerville and display type in
Helvetica Bold. Composed pages
were delivered to the printer as
electronic prepress files.

Cover Designer
Clement Mok designs, Inc.

Interior Graphic Designer
Kim Eggleston

Interior Graphic Artists
David Holter, Sandi Lage,

Jim Kramer

Principal Typographer
Barb Runyan

Principal Proofreader/Copy Editor
Shawn Peck

Indexer
Julie Kawabata

Programming Pracuces

DEBUGGING
THE
DEVELOPMENT
r_~t.s:s==

STf.VE MAGUIRE
o\lldiorof"""""Wd°'*

WRITlNG
SOLID
CODE

SHVE MAGUIRE

CODE
COMPLETE

STEVE McCONNELL

Debugging the Development Process
Practical Strategies/or Staying Focused, Hitting Ship Dates,
and Building Solid Teams
Steve Maguire
From the author of the award-winning Writing Solid Code comes a
compelling look at the people who develop the code and the group dynamics
behind the scenes of the software development process. Steve Maguire draws on
his real-world experiences at Microsoft for candid accounts of how he brought
together and maintained efffective teams for development of timely, high-quality
commercial applications. Find out what did and didn't work at Microsoft, and why.
216 pages, softcover $24.95 ($32.95 Canada) ISBN 1-55615-650-2

Writing Solid Code
Microso/13 Techniques/or Developing Bug-Free C Programs
Steve Maguire
Foreword by Dave Moore,
Director of Development, Microsoft Corporation
"I read it with great interest for hours at a stretch. It presents
detailed solutions to real problems." IEEE Micro

Written by a former Microsoft developer and troubleshooter, this book
is an insider's view of the most important aspect of the development process:
preventing and detecting bugs. Maguire identifies the places developers
typically make mistakes, offers practical advice for detecting costly errors,
and presents proven programming techniques for producing clean code.
288 pages, softcover $24.95 ($32.95 Canada) ISBN 1-55615-551-4

Code Complete
Steve McConnell
"We were impressed A pleasure to read, either straight through or as a
reference." PC Week

This practical handbook of software construction covers the art and
science of the entire development process, from design to testing. Examples
are provided in C, Pascal, Basic, FORTRAN, and Ada-but the focus is on pro
gramming techniques. Topics include up-front planning, applying good design
techniques to construction, using data effectively, reviewing for errors, managing
construction activities, and relating personal character to superior software.
880 pages, softcover $35.00 ($44.95 Canada) ISBN 1-55615-484-4

Microsoft Press"' books are available wherever quality books are sold and through CompuServe's Electronic Mall-(}0 MSP.
Call 1-800-MSPRESS for direct ordering information or for placing credit card orders.*

Please refer to BBK when placing your order. Prices subject to change.
*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call 1-800-667-1115.

Outside the U.S. and Canada, write to International Sales, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399.

More Inside Information

BBVll J.
IRU&UN!KI •

1DE

2

Inside the Windows NT™ File System
Helen Custer
This detailed, infonnative monograph by critically acclaimed author
Helen Custer is an up-to-date adjunct to her bestselling Inside Windows NT.
In this special edition, Custer expands on her discussion of the robust new
Windows NT File System (NTFS) and documents its arduous design and
creation process. This book includes the first discussion of data compression in
Windows NT, describes the file system's internal structure, and explains in
detail how NTFS recovers a volume and reconstructs itself after a system failure.
104 pages, softcover $9.95 ($12.95 Canada) ISBN 1-55615~660-X

Inside Visual C++~M 2nd ed.
David J. Kruglinski
Now updated to cover Visual C++ version 1.5, this book discusses OLE,
ODBC enhancements, and Microsoft Foundation Class (MFC) Library version
2.5. This is the foundation book for Visual CH: developers programming in
Windows. Through lively examples, this book takes readers from the basics
through the advanced capabilities of this rich programming environment, while
explaining the methodologies and the tools. The CD-ROM includes all the
source code files necessary to create the sample programs in the book.
768 pages, softcover with one CD-ROM disk
$39.95 ($53.95 Canada) ISBN 1-55615-661-8

Inside OLE 2
Kraig Brockschmidt

... _ ·----..,._

-

Here's the inside scoop on how to build powerful object-oriented applications
for Windows. Written by a leading OLE expert, this guide shows experienced
programmers how to take advantage of OLE to develop next-generation
applications that will take Windows to a new level. Brockschmidt explains how
to build OLE applications from scratch as well as how to c-0nvert existing
applications. The disks contain 44 source code examples that demonstrate how
to implement objects and how to integrate OLE features into your applications.
1008 pages, softcover with two 1.44-MB 3.5-inch disks

KilAJG BROCKSCHMJDT • $49.95 ($67.95 Canada) ISBN 1-55615-618-9

Microsoft Press® books are available wherever quality books are sold and through CompuServe's Electronic Mall--GO MSP.
Call 1-800-MSPRESS for direct ordering information or for placing credit card orders.*

Please refer to BBK when placi;;g your order. Prices subject to cl;ange.
*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call 1-800-667-1115.

Outside the U.S. and Canada, write to International Sales, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399.

