

8087 Applications and Programming for the IBM PC and Other PCs

Richard Startz

Robert J. Brady Co.
a Prentice-Hall Publishing and
Communications Company
Bowie, MD 20715

8087 Applications and Programming for the IBM PC and Other PCs

Copyright © 1983 by Robert J. Brady Company.
All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, without permission in writing from the publisher. For information, address Robert J. Brady Co., Bowie, Maryland 20715

Library of Congress Cataloging in Publication Data

Startz, Richard, 1952
8087 applications and programming for the IBM PC and other PCs.
Includes index.

1. INTEL 8087 (Computer)-Programming. 2. IBM Personal Computer-Programming. 3. Microcomputers-Programming. I. Title.

QA76.8.I2923 $1983 \quad 001.64$ 83-12216
ISBN 0-89303-420-7

Prentice-Hall International, Inc., London
Prentice-Hall Canada, Inc., Scarborough, Ontario
Prentice-Hall of Australia, Pty., Ltd., Sydney
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books, Limited, Petone, New Zealand
Editora Prentice-Hall Do Brasil LTDA., Rio de Janeiro
Printed in the United States of America
8485868788899091921098765432

Executive Editor: Terrell Anderson
Production Editor/Text Designer: Michael J. Rogers
Art Director/Cover Design: Don Sellers
Assistant Art Director: Bernard Vervin
Typesetting by: Harper Graphics, Waldorf, MD
Printed by: R.R. Donnelley \& Sons, Harrisonburg, VA
Index by: Elliot Linzer
Cover photo: George Dodson

Acknowledgments

I've decided that the only reason a book ever reaches print is that about the time the author runs out of steam someone else comes along and gives the project a boost. At least that's certainly been true for this book.

The people at the Robert J. Brady Company, editors and staff, have been a pleasure to work with.

Books are reviewed for style and accuracy before going to press. I've been fortunate in having three reviewers make substantial contributions to the final product. Many thanks are due to Peter Norton, Leo Scanlon; and Andy Verhalen.

Intel has been most generous in allowing the use of copyrighted material and in supplying technical information. The authoritative source on the 8087 is Intel's iAPX 86, 88 User's Manual, from which I have borrowed liberally.

My wife, Shelly Lundberg, performed a final inspection of the manuscript. As always, I get my best suggestions from my best friend.

Before I let anyone else see the initial manuscript, I sent it to my sister, Barbara Startz, for editing. Barbara knows a little about computers and a great deal about writing. I haven't quite figured out how she found the time to repair my writing after 90 hours a week at her own job, but I'm awfully glad she did.

It should go without saying that all the people named above are entitled to credit for things you like in the book, but that I alone remain responsible for any remaining inaccuracy or awkwardism.

Dick Startz
Stanford, California

CONTENTS

Introduction viii
1 Turning Minutes Into Seconds 1
How Easy Is Easy? 1
How Accurate Is Accurate? 2
How Fast Is Fast? 3
Specific Speed Comparisons 4
What Equipment Do You Need to Use an 8087 ? 5
2 The Intel 8087 Chip 7
Processors and Co-processors 7
Overview of the 8087 8
Instruction Classes 8
Data Types 9
How Does My Computer Access the Power of the 8087? 10
3 Buying and Building 8087-compatible Software 11
What Makes a Program Fast or Slow? 12
Translating the Source Program 13
Computational Accuracy 15
8087-Compatible Software 15
Using Packaged Programs 15
8087 Hardware with Pre-8087 Software 17
Interpreted BASIC 17
Compiler with 8087 Floating Point Library 18
Compiler for 8087 "Native Code" 19
Assembly Language Modules for BASIC 19
Pure Assembly Language Code 20
4 Benchmarks 21
Comparing Benchmarks 21
IBM Personal Computer Benchmarks 22
"Outsider" Benchmarks 23
5 Introduction to 8087 Architecture 25
Co-processor Organization 25
Internal 8087 Registers 26
Control Options 27
Exception Masking 29
Floating Point Numbers 29
Data Types 30
Data Type Hardware Representations 32
Floating Point Representation 32
Integer Representation 35
Packed Decimal Representation 35
Special Data Types 35
6 Simple Instruction Set 39
Data Transfer Instructions 40
Real Transfer Instructions 41
Integer and Packed Decimal Transfer Instructions 42
Basic Arithmetic Instructions 43
Implicit Operands 45
Addition Instructions 45
Subtraction Instructions 46
Multiplication Instructions 46
Division Instructions 47
Miscellaneous Arithmetic Instructions 47
Comparison Instructions 48
7 Introduction to 8088 Assembly Language Programming 53
Overview of the 8088 54
8088 Program Structure 55
General Registers 55
Memory Addressing 56
Labels and Data Definition 58
Some 8088 Instructions 59
Comparisons 61
Branching 62
8087 Branching 64
Segments 65
Subroutine Branching and Returns 66
Assembler Directives 67
8 BASIC and the 8087 69
Calling a Subroutine 69
Acting Like a Called Subroutine 72
Subroutine Relocation and Segment Addressing 74
Loading Assembly Language Programs 77
Loading a Routine Into Interpreted BASIC 77
Loading a Routine Into Compiled BASIC 78
Interactive Session for Interpreted BASIC 79
Interactive Session for Compiled BASIC 80
9 Simple 8087 Routines 83
Array Indexing 86
Double Precision Arguments 89
Indexing Through Arrays 91
Scalar Routines 93
Unary Operations 95
Utility Routines 96
On Errors 99
Programming Errors 99
Errors in Using the Subroutines 100
Precision Errors 103
10 Basic Matrix Operations 111
What is a Matrix? 114
Why Are Matrices Interesting? 114
Storage Allocation and Memory Access 115
Basic Matrix Operations 119
Scalar and Element-by-Element Operations 119
Matrix Transposition 121
Inner Products and Matrix Multiplication 123
Solving Systems of Linear Equations 133
Equation Manipulation 133
Matrix Manipulation 134
Solving Multiple Linear Systems 137
Space Efficient Gaussian Elimination 138
Matrix Inversion 139
11 Linear Systems and Matrix Inversion: More Advanced Computational Techniques 143
The Theory of "LU Decomposition" 149
The Crout Decomposition 150
8087 Routines for Solving Systems of Linear Equations 153
Back Substitution After a Crout Reduction 166
Matrix Inversion 173
8087 Matrix Program Review 177
12 Advanced Instruction Set 179
Arithmetic Instructions 181
Constant Instructions 182
Transcendental Instructions 183
Logarithms 185
Exponentiation 186
Trigonometric Functions 188
Inverse Trigonometric Functions 194
Processor Control Instructions 196
Interrupt and Exception-handling Instructions 198
13 Non-Linear Methods 201
Numerical Differentiation 202
Numerical Integration 205
Solving a Non-linear Equation 207
Non-linear Optimization 209
14 Statistical Analysis and Program Canning 213
Statistical Analysis 213
Descriptive Statistics 214
Correlation 215
Multiple Regression 216
Regression Formulas 217
Canned Programs 218
Data Storage 218
15 Commercial Data Processing 237
Postscript 243
Appendix 1: Instruction Set Reference Data 244
Appendix 2: Exception Conditions and Masked Responses 256
Appendix 3: Conversion Routines 259
Index 267
Diskette Files to Accompany 8087 Applications and Programming

About The Diskette

The diskette, which is available as an option with the book, contains all the programs listed in The Cookbook. Each program appears in three forms: as an assembly language source program (e.g., PROG.ASM); as an already assembled object module (e.g., PROG.OBJ); and as a file ready to be BLOADed into BASIC (e.g., PROG.SAV). In several cases, a number of programs have been combined into a single module for ease. For instance, the most important matrix manipulation routines are combined in files MATRIX.ASM, MATRIX.OBJ, and MATRIX.SAV. The programs are supplied on a standard single-sided, 5.25 inch diskette formatted on an IBM Personal Computer running PC-DOS 1.1. A copy of the diskette documentation appears at the end of the book.

Introduction

Let me explain why I'm excited about the 8087. I've used large computers for many years as a tool for professional research. When I bought my personal computer, I found I could do many things far more conveniently than on these larger machines. But I quickly discovered that my machine wasn't fast enough for large scale numerical computing.

Having an 8087 means that now I can solve many large problems on my personal computer. While some problems still belong on big machines (and always will), my personal computing horizon has expanded tenfold.

The 8087 isn't just fast; it's very easy to use. Whether you are mostly a "program user" or mostly a "program writer," you will find that the 8087 is a remarkable device. I hope you will find 8087 Applications and Programming an enjoyable, as well as an educational, introduction.

Who is This Book For?

- People who want to know what the 8087 will do (especially Part I, Chapters 1-4).
- People who want to learn how to program the 8087 (especially Part II, Chapters 5-8 and Chapter 12 in Part III).
- People who want prepared programs for number crunching applications on their personal computer (especially Part III, Chapters 915).

Part I describes the capabilities of the 8087 at a fairly non-technical level. If you are considering buying an 8087 and want to know about 8087-compatible hardware and software, Part I is for you.

Parts II and III are for the more technically inclined reader. While we "begin at the beginning," some prior programming experience is helpful. You needn't be an expert by any means, but this book isn't an Introduction to Computers.

Part II (Chapters 5-8) provides an in-depth description of the 8087's instructions. We also discuss some of the fundamentals of assembly lan-
guage programming for the 8088. We pay special attention to linking assembly language and BASIC programs, including a blow-by-blow interactive session in which we link an assembly language program with both interpreted and compiled BASIC.

Part III concentrates on applications. We develop many useful 8087 assembly language routines in Part III. You can use these programs as examples, to learn more about 8087 programming, or you can use the programs "cookbook" fashion. (Part III also includes, in Chapter 12, an explanation of some of the 8087's most advanced instructions.

How to Read This Book

I've taken care to write so that you can skip around from one section to the next as suits your mood. Please don't feel constrained to read from beginning to end.

Most readers will probably find Part I informative and easy reading. If you want to write 8087 assembly language programs, concentrate on Part II. (If you are an experienced 8087 programmer, you can skip Part II and move on to the applications in Part III.) If you are interested in applications, but don't care about intimate programming details, read Part III. You can always flip back to Part II if you need to check something.

Finally, you can use the programs here "cookbook" style. You don't need to know why a program was written in a certain way or how it operates internally, if you just want to get a fast answer. Go ahead and use the programs. If a program is useful enough that you want to modify it or write a similar one yourself, you can return later for the "how and why."

The Cookbook

Several chapters begin with an introductory paragraph and then a sign that says

The Cookbook

Under this sign, you will find a list of the programs appearing in the chapter, together with a brief description of the purpose of the program and the input and output required. Use the cookbook when you want to find a program in a hurry. We spend quite a bit of time discussing why certain things are done in certain ways. If you want to run programs, but not build your own, you don't need to read the "how and why" material. Do scan the material which describes the information you need to pass to the programs.

Strategic Number Crunching

In addition to a great deal of detail about the 8087 and about numerical programming, this book presents a strategic approach to serious computational work. Our strategy grows from two programming maxims:

- 10 percent of program code accounts for 90 percent of program execution time.
- The cost of creating a working program is proportional to the square of the length of code, regardless of the power of the programming language being used.

Serious programmers sometimes go to great effort, mistakenly, to write "efficient programs." A far better strategy is to identify the 10 percent of the code that has 90 percent of the computational burden. Re-write the 10 percent for maximum efficiency; write the other 90 percent for maximum clarity.

The search for efficiency often leads to writing programs in assembly language. Because assembly code can be 10 times the length of equivalent BASIC code, assembly language programs can be 100 times harder to debug. It (almost) never makes sense to write an entire program in assembly language. It does make sense to code the critical routines in assembly language. In this way, we get almost the entire advantage of assembly language speed at a small fraction of the cost of assembly language programming.

We can actually do even better by recognizing that many numerical programming problems use the same underlying subroutines. An 8087 assembly language program to add up an array is somewhat more complicated than a FOR/NEXT loop in BASIC. But we only need to write and debug the 8087 program once. Having done so, using the subroutine over and over is probably easier than writing a FOR/NEXT loop every time we need to add up an array. Computer scientists call this planned reuse of subroutines "modular programming." For an example of the convenience and power of modular 8087 subroutines, take a look at the statistical package in Chapter 14.

You can actually do even better. 8087 routines for many numerical computing needs appear in this book (and on the optional diskette). While we hope you decide to learn about all the capabilities of the 8087 and to write your own special subroutines, you're more than welcome to begin by lifting the subroutines bodily from these pages and putting them to use in your 8087-equipped personal computer.

Hardware and Software Requirements

The programs in this book run on computers based on the Intel 8087 Numeric Data Processor and the 8088,8086 family of Intel microprocessors. In addition to the 8088 and 8086 , this family includes the 188,186 , and 286 microprocessors and the associated versions of the 8087. The programs were all developed and tested on an IBM Personal Computer. All timing assumes the processor is a 5 megahertz 8088. Timings are only approximate. (For example, the IBM PC runs about five percent slower than the stated timings. An 8086-based machine will be somewhat faster.) Timings given for BASIC programs refer to interpreted BASIC without an 8087, unless otherwise qualified.

The 8087 assembly language programs can be called as subroutines from programs written in either interpreted Microsoft BASIC or compiled Microsoft BASIC, as available on the IBM Personal Computer. The programs assume that data is stored in 8087-compatible format. (See Chapter 3 for an extensive discussion of 8087 -compatible software.) The programs will run with pre-8087 versions of BASIC, but you will need to add the Microsoft-to- Intel conversion programs in the appendix.
In order to assemble the programs in the book, you will need an assembler that recognizes the full set of Intel mnemonic instructions. (Be warned that version 1.0 of the IBM Personal Computer MACRO Assembler does not recognize 8087 instruction mnemonics, though it will generate 8087 instructions. You can still use this assembler if you are willing to re-code the 8087 mnemonics into the 8088 ESCape instruction. On the optional diskette, we have already re-coded the mnemonics, so you can use the IBM Macro Assembler.) Since BASIC is the dominant personal language, we've written all the programs to be called from BASIC instead of FORTRAN or some other language more common on large computers. If you want to combine the programs with a language that uses different internal conventions BASIC, you may have to re-write a few instructions. The programs all work under Microsoft BASIC using version 1.1 of the PC-DOS operating system on the IBM Personal Computer. If you are using another computer or different software, some minor details may be different.

Disclaimers and Limits on Liability

Legal style:

The author and publisher of this book and any accompanying software hereby disclaim any and all guarantees and warranties, expressed and implied, on the programs and information herein. No liability for damages, either direct or consequential, shall be assumed by author or publisher. This product is sold on an "as is" basis; no fitness for any purpose whatsoever nor warranty of merchantability is expressed or implied.

People style:

We've tried very hard to make sure that all the information given is correct and that all the programs work. Nonetheless, it is possible that somewhere in the hundreds of pages of manuscript and the thousands of lines of code, a bug lurks. The purpose of the book and software is to teach. When you use the programs here, make sure you fully test them. If most of your programming has been in BASIC, please take special note of the section in the book on error-handling. Assembly language programs are by their very nature less fool-proof than programs written in high-level languages.

If, despite all my precautions, you think you've found a bug, please write me (c/o Robert J. Brady Company, Bowie, Maryland, 20715) so I can correct future editions.

Trademarks

The following trademarks are used in this book:

- IBM, IBM Personal Computer, IBM PC, and PC-DOS are trademarks of International Business Machines Corporation
- 8086, 8087, 8088, 186, 188, 286, Numeric Data Processor, and iAPX are trademarks of Intel Corporation. The 8087 and 8088 instruction mnemonics are copyrighted by Intel.
- Microsoft and MS-DOS are trademarks of Microsoft Corporation.
- Apple II + is a trademark of Apple Computer.
- DEC-2060 and VAX are trademarks of Digital Equipment Corporation.
- IMSL is a trademark of IMSL Inc.

$\{$

Turning Minutes Into Seconds

The 8087-equipped personal computer has three nice features: it's easy, accurate, and fast. Everything you need to apply 8087 power to practical computational problems is in this book. This first chapter describes the 8087 and its use at the broadest level.

Throughout the book, we try to take a scientific and analytical approach to understanding the 8087. Wherever possible, we discuss general prin-ciples-the "why" of programming-along with the hundred-and-one technical details needed to make a computer work. To keep the discussion concrete, each general principle is illustrated with a practical application. The 8087 is powerful, yet easy to use. We hope this book will be occasionally mind-stretching-and fun as well.

How Easy Is Easy?

The 8087 has been designed to emphasize ease of use as much as raw computational power. Your first step as an 8087 user is especially easy. Just add an 8087 to a personal computer and run your programs as usual. (You will need the version of BASIC, or other software, intended for use with the 8087.) Without any further effort, you can expect to see improvements in execution speed ranging from about 20 percent to as much as a factor of 10 .

If you want the maximum advantage from the 8087's hardware power, you will need software specifically designed for the 8087. There is an extended discussion in Chapter 3 of what to look for-and what to look out for-when purchasing software for the 8087. Here we give a quick overview.

The most important piece of knowledge about 8087 compatible software is really a statement about hardware. The 8087 extends the capabilities of existing processors without interfering with the processors' usual oper-
ations. Therefore, any software designed "pre- 8087" should continue to operate normally when the 8087 is present.

Such 100 percent "upward compatibility" is a great advantage, but it does have a flip side. When you add an 8087 to a system, programs using "pre-8087" software do not speed up at all. For example, you can add an 8087 to the original IBM Personal Computer in a minute or two. (I added one to my IBM PC in order to write the programs for this book.) All your interpreted BASIC or compiled BASIC programs will run correctly, but no faster. So when we make statements about the speed advantage from adding an 8087, there is also an implicit statement made about using 8087 compatible software.
(With a little reprogramming, you can use the 8087 with pre-8087 versions of BASIC and other software. We discuss this problem in Chapter 3 , but if you'd like a little reassurance, all the programs in this book were written using pre-8087 software.)

You should be aware of one potential trap in buying software for use with the 8087. It is possible, though unlikely, that you will get into trouble by mixing software designed to take advantage of the 8087 with pre-8087 software. See Chapter 3 for more discussion.

Assuming you have the versions of BASIC or other programming languages intended for use with the 8087, you can run all your usual programs. Programs that do a great deal of numerical computing will race when compared to pre-8087 performance. If you are a really heavy number cruncher, you will eventually want to use a library of specially written high-speed 8087 subroutines.

Part III of this book (Chapters 9-15) includes the most important subroutines for numerical computing. All you need do is read the explanation of how to use each subroutine, enter them into the computer, and combine them with your BASIC programs. (On the diskette available with this book, the subroutines have been typed in and assembled for you.) When compared to pre-8087 BASIC, the use of these subroutines increases execution speed by a factor of 10 to 200. (In rare cases, improvement factors as high as 500 have been noted.)

Part II of this book (Chapter 5-8) prepares you for the most advanced stage of 8087 use: writing your own subroutines. As you will see in the examples throughout this book, programming the 8087 in assembly language is relatively simple because of the 8087's elegant design. When you've seen the examples and instructions here, you'll have no trouble writing your own special purpose programs.

How Accurate Is Accurate?

Easily-written, fast-executing programs are no great trick-if you don't care about getting the right answer. The most important attribute of the

8087 is its remarkable accuracy. The 8087 has three accuracy-enhancing features:

- Internal calculations yield 11 more bits of accuracy than BASIC double precision numbers. That's worth three extra decimal places.
- Internal calculations have an extremely wide range. The 8087 can represent numbers as large as 10^{4932} and as small as 10^{-4932}. As a result, calculations rarely overflow or underflow during intermediate steps. In fact, both the precision and range of numbers are greater than those found on most traditional mainframe computers.
- The 8087 is designed to handle a wide range of error conditions and make an automatic, and graceful, recovery. As a result, simple "paper and pencil" algorithms are much more likely to work. And when something goes wrong, the 8087 follows well- behaved rules instead of producing the wrong answer.

How Fast Is Fast?

Just how fast is an 8087-equipped PC? A good comparison can be made to either a standard mainframe computer or to a microcomputer without an 8087.

Perhaps the most remarkable statement to be made about the 8087 is that it actually makes sense to compare its speed to that of a mainframe computer costing hundreds of thousands of dollars. The 8087 is several times slower than a half million-dollar machine-but then it's more than several times cheaper.

Exact comparisons are always risky, but a few numbers can give you a feeling for the speed of the 8087 . Moderate speed mainframe computers require from about one to five microseconds to multiply two numbers. A supermini might require one microsecond. A $\$ 50,000$ table-top mini might require about 3 microseconds. Efficient 8088 software uses about 400 microseconds to multiply two numbers (about 900 microseconds for double precision). The 8087, which is an inexpensive add-on to a personal computer, uses 20 to 30 microseconds for the same task.

For the very first time, a microcomputer is a cost-effective alternative to number crunching on large computers. The PC with an 8087 has $1 / 4$ to $1 / 20$ the speed of a large computer at $1 / 10$ to $1 / 100$ of the large machine's cost. While large machines will always be more cost-effective than micros for some tasks, the 8087-equipped personal computer is the first micro to compete economically with its larger cousins.

Most PC owners care more about how the 8087 will speed up their personal computing than about comparisons to large central computer facilities. The speed advantage of adding an 8087 to a PC depends on the application and on how you use the 8087. (Having read through this book, you'll know the methods for attaining the greatest possible ad-
vantage.) The central point to understand is that the 8087 is a Numeric Data Processor. The 8087 only speeds up programs involving numerical computation. If you only use the PC for word processing, the 8087 is about 99 percent irrelevant. But if you crunch the occasional number, adding an 8087 is like trading a sparkler for the Fourth of July fireworks display.
The speed advantage of the 8087 depends very much on how you use it, but as an overall guide:

The 8087 turns minutes into seconds.

Specific Speed Comparisons

Just how much you get out of an 8087 depends on the software you use as well as the 8087's hardware speed. Speed is discussed extensively in Chapter 4. We give a preliminary discussion here.

What the 8087 will do for you depends on how much time your software spends on various "overhead" tasks versus how much time is spent in numerical calculations. The 8087 speeds up the numerical calculations but does little or nothing about the time spent on overhead. Table 1-1 shows what kind of results you can expect when you combine the 8087 with low-overhead, high-speed routines.

Table 1-1. BASIC versus 8087 speed benchmarks (time in seconds).

Program	50 by 50 matrix multiplication	5,000 square roots
BASIC	1200	52
8087 routine	8	0.35

The times in Table 1-1 compare (pre-8087) BASIC to special 8087 routines which you will find later in this book. The improvement is typical of what the combination of the 8087 and good software can do. Depending on the application, the 8087 hardware produces an improvement in speed by a factor of about 10 to 50 -the rest is due to the low-overhead software. You won't see nearly as good an improvement if you use the 8087 with high-overhead software. (The BASIC interpreters built into a computer are, of necessity, high-overhead software.) Since the 8087 only speeds up numerical calculations, and such software spends relatively little time on numerical calculation, the sum of overhead time and numerical calculation time won't fall by nearly the amount shown in the table above. The improvement will be impressive, nonetheless.

What Equipment Do You Need to Use an 8087?

You need an 8087, of course. You can get an 8087 either as part of the original equipment of your personal computer or by adding it to an existing machine. You can probably add an 8087 to any PC based on the Intel 8088 or 8086 family. The degree of difficulty of adding an 8087 depends on whether the manufacturer provided a place for the 8087 when designing the computer. Even if no provision was made, it is probably possible to add an 8087. However, doing so requires quite a bit of technical expertise.

The good news is that a number of manufacturers did provide a place for the 8087. In particular, when IBM (and those companies making compatible personal computers) introduced its first PC, it left an empty socket on the main circuit board expressly for the 8087. To add an 8087, you need only plug an 8087 into this empty socket. Plugging it in is easy (I installed my 8087 without help from anyone); easier, in fact, than adding a printed circuit board to one of the "expansion slots" inside the computer. (If you really know nothing at all about the inside of your computer, get someone to help you. Your computer is, after all, a fairly expensive piece of equipment.)

Once you have the cover off your machine, plugging in the 8087 takes under a minute. However, you may want to make one other hardware modification at the same time. Your computer probably has pre-8087 software, such as a BASIC interpreter, wired into its Read Only Memory (ROM). If new, 8087-compatible software is available from your manufacturer, you will want to upgrade the ROM chips at the same time.

What about folks who own a personal computer that is not based on the Intel 8088, 8086 family. Can they take advantage of the speed of the 8087? The answer, unfortunately, is a qualified "no." The 8087 works only with the Intel family. However, because the Intel family is so popular, several enterprising companies now sell circuit boards, carrying an Intel processor, that fit into Apple and some other computers. Some of these boards include an 8087 or make provision for one to be added. These boards won't speed up programs executed on your original processor, but they do allow you to make use of the programs in this book and other 8087-compatible software.

The Intel 8087 Chip

Processors and Co-processors

The "brain" of any computer is its "CPU," or central processing unit. For the IBM PC, and many other "second generation" personal computers, the "brain" is an Intel 8088. A complete, general purpose central processing unit built into a single chip, the 8088 has a complete instruction set for 8 - and 16 -bit integer arithmetic, programming logic, and input and output. Like most microprocessors, the 8088 lacks the advanced mathematical instructions found in large, mainframe computers.

The Intel 8087 Numeric Data Processor extends the instruction set of the Intel 8088 by adding sophisticated new mathematical instructions. The 8087 high-speed hardware carries out mathematical operations which would require thousands of lines of code if implemented in software. The 8087 hardware can operate 10 to 200 times faster than equivalent software.

From a programmer's viewpoint, the 8087 adds additional instructions to the 8088^{\prime} s repertoire and makes available additional processor registers. Why not include all the capabilities on one chip, rather than create an add-on device? There are several reasons:

- The 8087 is an extraordinarily sophisticated computational device, including 75,000 transistors on a single chip. Even though the 8087 is "limited" to numerical processing, it is much more complex (and more expensive) than the general-purpose 8088. Building two separate chips holds down development costs and allows users and system manufacturers to tailor-fit systems for different uses.
- The 8088 (and its 16-bit bus sibling, the 8086) were available to the general market for several years before the first delivery of the 8087 . In designing 16-bit personal computers, several manufacturers left an open socket, labeled the "co-processor socket" on the IBM PC, so that machines could be upgraded easily when the 8087 became available.
- Because the 8087 and 8088 are two devices, they execute instructions simultaneously. As a practical programming matter, this means that while the 8087 completes one numerical computation, the 8088 prepares the next.
In the remainder of this chapter, we describe the capabilities of the 8087 in a general way. Chapter 5 provides a much more detailed technical discussion.

Overview of the 8087

The 8087 serves as a co-processor with the 8088. The 8087 "watches" instructions as they are received by the 8088 . The 8087 processes its own instructions, while allowing 8088 instructions to pass by. The 8088 also watches all instructions, processing its own, while allowing 8087 instructions to pass by. The 8088 does provide one important service for the 8087. On seeing an 8087 instruction, the 8088 calculates any necessary memory address and makes the address available to the 8087. The 8088 then proceeds immediately to the next instruction. In this way, the coprocessor design allows the 8087 and 8088 to execute instructions simultaneously, thus considerably enhancing total system performance.

The central feature of the 8087's architecture is eight 80-bit data registers. These registers are organized as a classic "pushdown stack," an organizational technique that leads both to fast vector operations and to efficient code generation by high-level language compilers. (Chapter 5 includes an extensive discussion on the operation of the pushdown stack.) The 80-bit register width allows the 8087 to perform extremely accurate calculations. While the 8087 instruction set recognizes seven different data types in memory, all data is automatically converted to an 80 -bit internal representation when brought into the 8087 . This frees the programmer from most worries about converting between data types.

Instruction Classes

Each of the 8087's 68 instructions fall into one of six classes. (The classification scheme is a convenient way of describing the capabilities of the 8087. You needn't remember the classifications in order to use the 8087.) The six classes are:

Data transfer (discussed in Chapter 6). These instructions move data back and forth between the 8087 and memory and shuffle data internally among the 8087 registers.
Arithmetic (discussed in Chapter 6). At the heart of the 8087 instruction set are the operations for addition, subtraction, multiplication, and division-plus some extras such as square root and absolute value.

Transcendental (discussed in Chapter 12). The 8087 hardware has builtin capabilities for computing logarithms and trigonometric functions. (These instructions are rarely found even on large-scale mainframes.)
Constants (discussed in Chapters 6 and 12). Seven of the most frequently used constants, such as 0,1 , and pi, are built into the 8087.
Comparison (discussed in Chapters 6 and 7). These instructions are used for making less than/equal to/greater than, and other similar tests.

Processor control (discussed in Chapter 12). This class of instructions gives the programmer total control over the behavior of the 8087 . Some of these instructions are also used in conjunction with the comparison instructions and 8088 branching instructions to control program flow.

Data Types

The seven regular 8087 data types are examined in depth in Chapter 5. However, for most ordinary 8087 programming considerations, only a few facts are really important. The only data types directly available in BASIC are integer, single precision, and double precision. Generally, only the latter two are used to hold numerical data. If your principal use of the 8087 is scientific programming, you need remember only three facts about data types:

1. Single precision numbers (called short real in 8087 terminology) have six or seven decimal digits of accuracy and occupy four bytes of memory.
2. Double precision numbers (called long real in 8087 terminology) have 15 or 16 decimal digits of accuracy and occupy eight bytes of memory.
3. Temporary real numbers are used internally by the 8087 for all calculations. They retain better than 18 decimal digits of accuracy. When stored in memory, a temporary real occupies 10 bytes.
If you are primarily a number cruncher, these three data types will probably account for 95 percent of your use. However, the 8087 recognizes four additional data types:
4. Integer numbers (called word integer in 8087 terminology) occupy two bytes of storage and are used principally to index arrays and other data structures. BASIC and the 8087 use the same representation for integer data.
5. A short integer occupies four bytes. While the largest (signed) word integer is 32,768 , a short integer can be as large as two billion.
6. A long integer occupies eight bytes. A long integer has two or three more digits of accuracy than a double precision real number and can hold values as large as 10^{18}.
7. Packed decimal representation is used for business and data processing operations. A packed decimal uses 10 bytes of memory and holds 18 decimal digits. Unlike the three preceding data types, the packed decimal form uses decimal rather than binary representation. Each of the digits $0-9$ is represented by four binary bits. These decimal digits are then "packed" two to a byte.
By way of contrast, the types of data recognized by the 8088 hardware are limited to one- and two-byte binary integers and short packed decimal values. All the numerical processing in pre-8087 BASIC and other highlevel languages is performed by software created from operations on integers. The 8087 eliminates the need for such software. Not only are 8087 -based systems faster, but programs use up much less space and numerical results are more reliable.

How Does My Computer Access the Power of the 8087?

In the next chapter we discuss software for the 8087. In order to understand why some software is 8087 -compatible--and why some isn't-it helps to review the basics of the 8088/8087 co-operative set-up.

The instruction set for the 8088 was designed to be extended at a later date. One of the 8088's instructions is called the escape instruction. The 8088 knows that the escape instruction really calls for an operation on the 8087, so it essentially ignores this instruction and allows the 8087 to process it. The instructions used by the 8087 are different varieties of the 8088 escape.

When both the 8088 and 8087 are installed, we can think of the combination as one large computer with expanded capability. Software which uses the escape instruction internally must have an 8087 present in order to operate correctly. Software built "pre-8087" simply does not use the escape instruction and therefore does not take advantage of the new capacity.

If you are writing your own programs at the machine language level, you'll know whether or not you've used the escape instruction. Most of the time you use a computer, such intimate internal detail isn't under your control. In the next chapter, we discuss some of the varieties of 8087-compatible-and incompatible--software.

Buying and Building 8087-Compatible Software

What special considerations apply when buying or building software for use with the 8087? Your first question will always be, "What software works?" Your second question, "How well?" In this chapter, we break our analysis of software compatibility into three parts. In the first part, we discuss some important technical details about compatibility. In the second section, we analyze why some software produces very fast pro-grams-and why some does not. In the chapter's last section, we discuss the merits of various types of software in terms of programming convenience and calculation speed.

Compatibility—The Technical Details

Suppose we could look at a program that had been translated into our computer's "machine language." The program uses either the machine language instructions that drive the 8087, the "escape instructions" mentioned in the last chapter, or it doesn't. If it doesn't use these instructions, then the 8087 is irrelevant. The program will run with or without an 8087 and will run at the same speed either way. If the program does use 8087 instructions, then the 8087 must be present, of course.

As it turns out, there is a second issue, equally important for compatibility, which hinges on a detail of software design. All computers represent numbers internally as particular patterns of 0's and 1's. Different computers use different patterns for the same number. For the most part, we don't care which pattern the computer uses, since we don't see the individual 0's and 1's anyway. The important thing is that the computer's hardware knows how to interpret its own patterns. (As it
happens, the representation used on the 8087 has been proposed as an industry standard. For the curious, we show what the 8087's representation looks like in Chapter 5.)

Until the introduction of the 8087, personal computers based on the 8088 family had hardware for integer arithmetic only. Since there was no hardware "with an opinion" on how non-integers should be represented, each software designer was free to choose his or her own patterns. In practice, this meant that whoever built translators for programming languages (compilers, interpreters, and assemblers) made the decision for everyone using a particular language. Since Microsoft has been the principal supplier of programming languages for 16 -bit computers, the vast bulk of software uses the patterns chosen by Microsoft.

Unfortunately, the Microsoft pattern and the Intel 8087 pattern are different.
The result of this conflict is that pre-8087 software and 8087 -compatible software cannot trade data represented in their respective internal formats. With your 8087 in place, you can safely use either pre-8087 or 8087compatible software. If you try to combine programs produced with pre-8087 and 8087-compatible translators, you will usually get garbage. Further, if you try to exchange data between such programs you will get garbage if the data was stored using the computer's internal format. If the data is not stored in the internal format, then the programs can probably exchange data.

There is no general rule as to whether a conflict will occur between two pieces of software; you need to know the particulars of each program. In the third section of this chapter, we give some examples of where to look for trouble.

What Makes a Program Fast or Slow?

Three basics determine a program's speed: the way you solve the problem (what computer scientists call the "algorithm"); your hardware's speed; and the behavior of the programming language translator. The first is always the most important. There is no computer so fast that it cannot be slowed to a crawl by a sufficiently bad way to solve a problem. The applications chapters of Part III supply high-speed solution techniques to many problems in numerical programming.

The question of hardware speed you solve, of course, when you get an 8087. If hardware were the only determinant, your program execution time would be cut by a factor of 10 to 50 !

But hardware isn't the only determinant. Depending on how your program is translated into instructions the computer can understand, using an 8087 may drop execution time by only a few percent or speed up execution by a factor of 200 . For this reason, and because you can
exercise a fair amount of control over which translator you use, we concentrate on this third factor.

Translating the Source Program

Suppose we instruct the computer to add variables A and B and to save the result in variable C. A typical command might look like this:

$$
\mathrm{C}=\mathrm{A}+\mathrm{B}
$$

The process of going from command to answer is composed of three phases:

- Translation time
- Invocation time
- Calculation time

Translation time is the time the computer takes to figure out what to do. For example, every time the BASIC interpreter sees " $\mathrm{C}=\mathrm{A}+\mathrm{B}$, " it has to translate this to mean "find the variable A in memory and then find the variable B, next add the two, and finally place the sum in variable C." The BASIC compiler makes the same translation as the interpreter, but only once, rather than every time a line is executed. Interpreted programs spend a lot of time in the translation phase while compiled programs spend none at all.

Invocation time is the time it takes the computer to calculate the addresses of the variables and to call the appropriate internal subroutine. For example, the BASIC ROM includes a floating-point addition subroutine. The interpreter calls this subroutine to add A and B. Code produced by the BASIC compiler calls a similar routine in the run-time library.

Calculation time is the time the computer spends doing the actual addition. All the direct advantage of the 8087 hardware comes from improvement in this phase.

Since the 8087 speeds up only this last phase, programs in which most of the time is spent in calculation get a big boost. Programs which spend most of their time in translation or invocation get only a small boost. Reduction of translation and invocation time depends on the appropriate choice of a program translator.

You might think that we would always choose the translator that gives the fastest results. However, there are some tradeoffs involved. For example, compilers produce faster programs than interpreters, but interpreters are more convenient to use. And, as a practical matter, almost every personal computer comes with a built-in BASIC interpreter, but not everyone has a compiler.

So how important is each phase? The answer depends on the problem. In Chapter 1, we presented some representative timings for a matrix
multiplication problem and for taking 5,000 square roots. I've made some estimates of the time spent in each phase for pre-8087 interpreted BASIC, for an 8087-compatible compiler, and for an 8087 assembly language program. Table 3-1 shows the time in microseconds for a single addition and multiplication (for the matrix program), and for taking the square root of one element of a vector. I do have to warn you that Table 3-1 is much less accurate than other timings given in this book. Nonetheless, it gives a rough guide as to the trade-offs involved.

Table 3-1. Execution-time speed breakdowns (time in microseconds).

We will refer back to Table 3-1 several times in our discussions in the next section. While the table shows the speed advantage of assembly language, it does not reveal the extra work generally involved in writing assembly language programs rather than BASIC. As a rule of thumb, an assembly language program requires ten times the amount of code as one written in BASIC.

The bulk of numerical computing uses what are called "linear operations." A small family of programs, such as matrix multiplication, can be put together to solve all sorts of different linear problems. With a library of these routines, such as the library put together in this book, you can solve most problems without having to write any subroutines yourself.

The square root example is somewhat different. "Non-linear" operations are all different; there isn't a small family of routines that you can re-arrange as needed for your own problems. As a result, non-linear problems require more custom programming. The more programming required, the more we will want to favor programming convenience over calculation speed.

Both the matrix multiplication routine and the square root routine appear, in assembly language, in later chapters. As assembly language programs go, neither is very difficult to write. (. . . and of course you needn't write these particular programs, since we've already done so.)

Computational Accuracy

Accuracy deserves as much attention as does speed. The 8087 is extremely accurate, but most translators don't allow you to access the 8087's 80 -bit registers. Assembly language allows full use of 8087 accuracy, as do a few compilers (notably, those developed at Intel) intended specifically for use with the 8087. These compilers, which provide for operations on 80 -bit data, are not, at present, in common use.

For some problems, the extra accuracy of 80 bits is worth any amount of programming inconvenience, but for "every day" use most of us will settle for double precision accuracy. (The disappointing omission of double precision renders unacceptable, for general number crunching use, several prominent compilers used on personal computers.) The assembly language routines in this book use 80-bit data in the "delicate" part of calculations and the usual single and double precision data types elsewhere.

8087-compatible Software

In this section we discuss a number of different approaches to buying and building 8087 -compatible software. For each approach, we discuss the trade-offs between programming convenience and execution speed. The approaches discussed are:

- Using packaged programs
- 8087 hardware with pre-8087 software
- Interpreted BASIC
- Compiler with 8087 floating point library
- Compiler for 8087 "native code"
- Assembly language modules for BASIC
- Pure assembly language code

Using Packaged Programs

How much advantage the 8087 gives you with a "canned" program depends on how well the program is written. A really well-written canned program will take better advantage of the 8087 than any program you write. Not because the programmer knew anything about the 8087 that you won't discover in this book, but because for a program that sells thousands of copies, a programmer can afford to spend time squeezing out every last microsecond. Unfortunately, there is no real satisfactory way of knowing how good a canned program is short of "field testing" it. Also, unfortunately, software manuals almost never say anything about execution speed.

You will find three kinds of packages being advertised (with respect to 8087 compatibility).

First, there are programs intended to run only with the 8087, which make no attempt at compatibility with earlier software or non-8087 machines. Many applied problems cannot be solved on a microcomputer (in a reasonable amount of time) without an 8087. For programs that solve such problems, compatibility is not an issue. In fact, the speed of the 8087 is so critical for some applications that enterprising software houses began to market 8087 -only packages before the manufacturers of personal computers had begun to sell the 8087 !

Second, there are programs that will run either with or without the 8087. Some software comes in a single version that will run either way. Other programs come in two versions: one explicitly for the 8087 and one that does not use the 8087 .

Third, there are programs that ignore the 8087. Almost all of these programs will run with the 8087 and those that are written in BASIC will automatically take advantage of the 8087 if you have an 8087 -compatible BASIC interpreter in your computer.
A first warning about canned programs. Many high-efficiency programs save information on disk in what are called "binary" files. Binary files store data using the computer's internal representation of numbers rather than the "ASCII" representation more commonly used for disk storage. (This scheme allows programs to avoid conversions between internal and external formats and thus makes data storage and retrieval much, much faster.) As discussed above, the 8087 uses a different internal representation for numbers than does most pre-8087 software. For this reason, pre-8087 and 8087-compatible binary files are incompatible.

If you use a pre-8087 program that saves binary files on disk and then switch to 8087-compatible software, you will be unable to read the files back in. Further, since you usually do not have access to a description of the file format, it may be impossible for you to convert the files yourself. To protect yourself when using a canned program with binary files, use the program to convert the files into an ASCII representation while you are still using the pre-8087 software and then convert them back to binary later.

A second warning about canned programs. Many high-efficiency programs use small amounts of assembly language code to speed up important calculations. You do not generally have any way of finding out whether a particular package uses any machine code. If the machine language routines think numbers are stored using Microsoft's original format and the BASIC part of the program operates using Intel format . . . well, you can imagine the results.

8087 Hardware with Pre-8087 Software

It would be awfully nice if we could get the benefit of the 8087 without attention to software. For reasons we've discussed, this isn't possible. For example, if you add an 8087 to a machine with a pre- 8087 BASIC interpreter, your BASIC programs will run, but they won't make any use of the 8087. This is not much of an option.

Understand, however, that it's the translator not the program that needs to be 8087-compatible. If you have an 8087-compatible BASIC interpreter, or some other 8087 -compatible translator, your old BASIC programs will run and will take advantage of the 8087 . (This illustrates an important reason for using BASIC or another standard "high-level language." If the hardware changes, as is the case when an 8087 is added, you need only obtain a new translator and usually do not need to re-write your applications programs.)

It is possible to combine 8087-compatible software with pre-8087 software by explicitly converting data back and forth between the Intel and Microsoft formats. (Conversion programs appear in the appendix.) For example, you can use the 8087 programs in this book with the original BASIC interpreter supplied with the IBM Personal Computer, but you will have to do a little bit of extra BASIC programming.

Interpreted BASIC

Depending on when you bought your personal computer, it will either include an 8087-compatible BASIC interpreter or you may be able to buy such an interpreter to replace the computer's original BASIC ROM. For most applications, the BASIC interpreter provides the easiest programming and the slowest execution.

The 8087 does not substantially affect the speed of the translation or invocation phase of the interpreter's operation, but the calculation phase flies with an 8087 in place. Refer back to Table 3-1. For a problem like matrix multiplication, most of the action is in translation and invocation, so you can't expect more than about a 10 to 15 percent improvement over pre-8087 BASIC.

Calculation time was a far greater fraction of total execution time in the square root problem. The 8087 has much more impact here; we might expect an overall gain of about a factor of three. Some non-linear functions, such as the trigonometric operations, spend even more time in the calculation phase. In some cases, we might see improvement by a factor of eight.

We're ready now to draw our first conclusions.
If most of your number crunching involves linear operations, the 8087 with the updated BASIC interpreter ALONE has only limited value.

If much of your number crunching uses the non-linear functions, the 8087 with the updated BASIC interpreter is worth several non-8087 PCs.
Here's an important warning about using the 8087 version of BASIC. No matter what you may be told, the 8087 and non- 8087 versions of BASIC are not fully compatible (though they are close). Because floating point numbers are represented differently, there is no way to make them fully compatible. Two fundamentally irresolvable problems exist.

First, the two floating point representations differ slightly in their precision and range. In particular, for double precision the Intel format trades about one decimal place less precision for a substantially increased range for the exponent. On rare occasions, programs that worked on the original BASIC interpreter will give incorrect answers when used on the 8087 version because of round-off error. Somewhat more frequently, programs that run under the new version will have overflow errors if used on a personal computer with the old BASIC. Fortunately, such problems are rare, and quite unlikely to be a major concern for most users.

Second, some programs use the BASIC functions MKS\$, MKD\$, CVS, and CVD to convert back and forth between floating point numbers and strings. Typically, this is done in order to store numbers on a disk file in their binary representation. The functions work in both versions of BASIC. But if you store numbers on the disk in one version and retrieve them in the other, you will get garbage data without getting any indications of error. If you use binary-representation files for storage between program runs, be absolutely certain to convert the files as part of the process of changing from one version of BASIC to the other.

Compiler with 8087 Floating Point Library

A compiler differs from an interpreter in that it translates the source language program only once, rather than every time a line of code is executed. Compilers have some disadvantages: they take a relatively long time to translate a program; they usually generate code that takes up more space than does an interpreted program; they slow the business of debugging programs; and they can be expensive. But they have one undeniable advantage over an interpreter: they eliminate the translation phase from program execution, and thereby reduce execution time enormously.

Many of the compilers used on personal computers handle floating point operations in the following way. Whenever a floating point operation is needed, the compiler generates a CALL to the appropriate subroutine. After the program is compiled, the LINK program is used to combine the compiler output with a library of subroutines that includes all the floating point operations. IBM's BASIC compiler works this way.

Compilers that use floating point libraries can be converted to 8087 operation by substituting a new library for the one originally supplied
with the compiler. The original IBM BASIC compiler can be converted in this manner. Using a compiler with an 8087 library not only eliminates the translation phase, but also brings the calculation phase up to 8087 speed. However, the invocation phase remains unchanged. Referring back to Table 3-1, we see that such a compiler might be 50 times as fast as pre-8087 BASIC in the matrix multiplication example and about 75 times as fast on square roots.
(You should be warned that the effectiveness of this approach to making a compiler 8087-compatible varies. Some implementations do not do nearly as well as the speed improvements suggested in the previous paragraph.)

Another conclusion now:
On linear problems, the combination of the 8087 and a compiler is very, very good. (Even if it doesn't quite reach our goal of "turning minutes into seconds.") On non-linear problems the combination is truly excellent.

Compiler for 8087 "Native Code"

Compilers on mainframe computers, and on minicomputers with floating point hardware, directly generate floating point instructions instead of generating calls to a subroutine library. This technique eliminates most of the invocation time. Some mainframe "optimizing" compilers are so good that the code they generate is almost as fast as assembly code. Equally good compilers for personal computers are only beginning to appear and are not currently in widespread use. You may want to look for 8087 "native code" compilers as they come on the market, since such a compiler provides the very combination of execution speed and programming convenience.

Assembly Language Modules for BASIC

Abstract

Assembly language is at the bottom of the list when it comes to programming convenience, but at the top of the list when it comes to speed. Fortunately, assembly language routines are easily combined with either interpreted or compiled BASIC, as well as with programs written in other high-level languages. In fact, preparing assembly language modules for frequently used tasks can be more convenient than writing the same code over and over again in BASIC. (It is very inconvenient to write re-usable modules in BASIC.)

In a typical program, almost all the work takes place in a very small fraction of the code. Optimally, we use assembly language modules to replace this fraction of the code, while leaving the remainder of the program intact. This strategy leaves the bulk of the writing in a convenient

programming language and the bulk of the computation in a high speed routine.

Assembly language remains the undisputed speed champion. The assembly language matrix multiplication routine which appears in Chapter 10 is about 150 times faster than pre-8087 BASIC. The square root routine also beats BASIC by about 150-to-1.

Pure Assembly Language Code

When does it pay to write an entire number crunching program in assembly language? In my opinion, never. For linear problems, writing the entire program in assembly language has no significant speed advantage over using a small number of strategically chosen assembly language modules. (This is the approach we follow in the second and third parts of the book.) For non-linear problems, where isolating re-usable modules is difficult, writing special assembly language programs does increase speed over using a compiler, but only at an unreasonable cost in terms of programming effort.

Two final conclusions:

- If most of your number crunching is on linear operations-and most of the world's is-your best overall bet is probably the BASIC interpreter and a small set of assembly language routines, either the routines appearing in Parts II (Chapters 5-8) and III (Chapter 9-15) or another subroutine package you purchase commercially.
- If a good part of your number crunching is non-linear, your best bet is probably the combination of BASIC compiler and 8087. While assembly language routines are still substantially faster than BASIC, BASIC is far more convenient.

On to Chapter 4

Just how does the 8087 stack up against other computers? In the next chapter we insert a few of our strategic modules in BASIC programs and run some timing tests.

4

Benchmarks

With the advent of the 8087, moderate-to-large scale numerical computing can now be done on a microcomputer. The 8087 increases the computational range of the microcomputer by one to two orders of magnitude.

The 8087 brings the "minimum-efficient-scale" of computing down to the personal level. In the past, a mainframe computer that cost 100 times more than a personal computer would have been thousands or tens of thousands times faster. While the 8087 remains several times slower than powerful mainframes, an 8087-equipped PC also costs tens or hundreds of times less. So today, the 8087 has made the personal computer a cost effective number cruncher.

Historically, large computers have always been more cost efficient, in terms of raw computational power, than smaller computers. Very large mainframes are more cost efficient than minis; minis are more cost efficient than micros. Just as the advent of "super-mini" computers a few years ago closed most of the gap between minicomputers and mainframes, the 8087 closes most of the gap between personal and minicomputers. To help you draw your own conclusions, speed benchmarks for a range of machines appear below.

Comparing Benchmarks

Speed and accuracy ratings are presented below for a number of different combinations of hardware and software. Before you start drawing conclusions, understand what benchmarks do and do not tell us.

Benchmark programs are used to compare various combinations of software and hardware by executing the same program under controlled conditions. We've continued here with the timing of the two problems examined in Chapter 1. The first benchmark program multiplies two 50 by 50 matrices in order to illustrate the 8087's power in linear operations. The second benchmark program, taking 5,000 square roots, illustrates the 8087 's non-linear calculations. Please realize that benchmark comparisons have some limitations.

First, these benchmark problems are not intended to be "fair." I picked two problems which show off the capabilities of the 8087. They show the kind of results the "number crunching" user can reasonably expect, which aren't necessarily the results a "typical" user might expect and are totally unrelated to what a "word processing" user will see.

Second, our benchmark programs are "tuned" to be efficient on the 8087. For example, we've run most of the comparison programs in BASIC because BASIC is the dominant language on personal computers. On a larger computer, Fortran or APL or some other computer language may be more efficient than BASIC. If we were starting on one of these machines, we might well program in a language other than BASIC.

Even if not totally "fair," these benchmarks do give a pretty good idea of what the 8087 will do. The first set of benchmarks below, compares timings on an IBM Personal Computer with and without the 8087. The second set of benchmarks compares the 8087 to several other micro, mini, and mainframe computers.

IBM Personal Computer Benchmarks

The IBM PC is the most popular of the "second generation," 16-bit personal computers. Internally, the PC uses an Intel 8088 microprocessor running at a "clock speed" of 4.77 megahertz. It is worth knowing for purposes of comparison that some of the 8088-based personal computers on the market run at a 5 megahertz "clock," and are just a little bit faster. Also, computers based on the 8088 's "big brother," the 8086, are quite a bit faster.

For this benchmark, we've taken Table 1-1 from first Chapter 1 and added a third alternative, the IBM BASIC compiler. Table $4-1$ shows execution speeds for both matrix multiplication and the square root problem using IBM's pre-8087 BASIC interpreter, IBM's pre-8087 BASIC compiler, and our own assembly language modules.

Table 4-1. BASIC versus 8087 speed benchmarks (time in seconds).

Program	50 by 50 matrix multiplication	5,000 square roots
BASIC interpreter	1200	52
BASIC compiler	140	6
8087 routine	8	0.35

The first two rows show why people turn to compilers. The IBM BASIC compiler beats the BASIC interpreter by around eight to one. Our 8087 routines beat the compiler times by a factor of 20 !

"Outsider" Benchmarks

How does an 8087-equipped personal computer compare with "other people's" equipment? The comparisons below repeat our benchmarks on several popular combinations of hardware and software.

Please don't read these comparisons as "better" or "worse." The hardware used runs from an Apple II + to an IBM 3081. The Apple isn't as fast as the PC, but then it doesn't cost as much. An IBM 3081 is faster than the PC, but it won't fit on your desk.

The comparisons are run on four machines:

- Apple II + -Many people's favorite first-generation personal computer. Both programs used the Apple's built-in Applesoft BASIC interpreter.
- DEC 2060-A moderate size mainframe computer used by many universities to provide time-sharing services. (Manufactured by Digital Equipment Corporation.) Both programs were executed using compiled BASIC. DEC-2060 BASIC includes a matrix multiplication function which we used for the first program.
- VAX 780-A 32-bit "super-mini" computer, very popular for moderate size number crunching applications. (Manufactured by Digital Equipment Corporation.) These test programs were written in the popular scientific language FORTRAN, and executed using the VAX's optimizing compiler.
- IBM 3081-The IBM 3081 is a very large mainframe computer costing millions of dollars. Both programs were written using the "Stanford BASIC" interpreter. We again used a built-in matrix multiplication function for the first program.
The benchmark results appear in Table 4-2.

Table 4-2. Micro, mini, and mainframe speed benchmarks (time in seconds).

Program/Computer	50 by 50 matrix multiplication	5,000 square roots
8087 routine	8	0.35
Apple II + BASIC	1796	130
DEC 2006 BASIC	5.2	0.40
VAX 780 FORTRAN	1.6	0.20
IBM 3081 BASIC	0.11	0.26

As we cautioned above, you need to be careful about benchmarks. The 8087 routines make optimal use of the 8087's potential. (The 8087 routines appear in later chapters, so you can examine their innards if you wish.)

The programs on the other machines use standard programming techniques, and so make moderate to excellent use of the hardware's potential.

Caveats notwithstanding, Table 4-2 tells us quite a bit about how to classify an 8087-equipped personal computer. When it comes to number crunching, the 8087 doesn't just make a fast micro-it creates the equivalent of a slow super-mini or a slow mainframe computer!

Introduction to 8087 Architecture

This chapter provides a detailed, technical description of 8087 architecture. The 8087 instruction set is described in Chapters 6 and 12. (For hardware and electronic details, see Intel's iAPX 86,88 User's Manual, the definitive source on the 8087.)

More detail is given in this chapter than the typical 8087 user need be concerned with. You may want to browse through this chapter and then proceed directly to the description of the simple instruction set in Chapter 6.

Co-processor Organization

The 8087 is designed as a co-processor for the 8088 CPU. Both the 8087 and 8088 "look" at each instruction fetched from memory. The 8087 acts on its own instructions and ignores those belonging to the 8088 . When the 8088 sees an 8087 instruction, which is an 8088 ESCape instruction, it calculates the address of any data referenced by the instruction and reads-but ignores-one byte of data from this address. Otherwise, the 8088 treats the 8087 instruction as a null operation. The 8087 copies the address calculated by the 8088 and uses it to store or fetch data to and from memory. In this way, the co-processor design allows the 8087 and the 8088 to execute simultaneously, considerably enhancing total system performance.

To ensure properly coordinated parallel operation, $8087 / 8088$ programs must follow the following synchronization rules:

- The 8088 must not change a memory location referenced by an 8087 instruction until the 8087 is finished. The 8088 is free to change its own internal registers and flags.
- A second 8087 instruction must not be fetched until the current operation is complete. (Under special circumstances it is possible to
safely violate this rule, but such circumstances do not generally occur in application programs.)
Synchronization, obedience to both rules, is achieved through judicious use of the 8088 WAIT instruction. The WAIT instruction tells the 8088 to suspend processing until the TEST line becomes active. (The 8088 checks the TEST line status once every microsecond.) When the 8087 begins an instruction, it sets the TEST line to inactive. It then resets the TEST line to active when the instruction is complete.

The programmer has responsibility for seeing that the first rule is obeyed. To ensure synchronization, code an FWAIT instruction after an 8087 instruction and before an 8088 instruction whenever the two instructions access the same memory location. (Except that the FWAIT may be omitted if neither instruction changes the memory location.) FWAIT generates an 8088 WAIT instruction. (Use of the mnemonic "FWAIT," for "floating wait," is a software convention.) FWAIT holds the 8088 until the 8087 operation is complete, thus preventing violation of the first rule.

Responsibility for implementing the second rule is left to the assembler. The assembler automatically places a WAIT instruction in front of every 8087 instruction. Thus the 8088 will suspend processing and not fetch another 8087 instruction so long as a previous 8087 instruction is still being executed.

Programs violating either of the two rules will have unpredictable results. Possible outcomes include the computer coming to a dead halt (if you are lucky), and having random numbers presented as final results (if you are not so lucky).

Internal 8087 Registers

Five internal data areas are accessible by the 8087 programmer. These are the register stack, the status word, the control word, the tag word, and the exception pointers.

8087 computation is organized around eight 80 -bit data registers. These registers form a pushdown stack, called the register stack. The register at the top of the stack is referred to as ST or ST(0); the register immediately below the top is ST(1); and so forth through ST(7). Many 8087 instructions implicitly reference $\mathrm{ST}(0)$ or both $\mathrm{ST}(0)$ and $\mathrm{ST}(1)$. Many instructions also push data onto or pop data off of the stack. (The stack is actually organized as a chain, so that $\mathrm{ST}(0)$ is "below" $\mathrm{ST}(7)$. It is the programmer's responsibility to prevent stack overflow.) Stack operations are described in detail in Chapter 6.

The 16 -bit status word shows the current state of 8087 operations. We make extensive use of the condition code bits in the status word, which indicate the result of 8087 comparison operations. The status word also shows whether any exceptions (computational errors) have occurred,
whether the 8087 is busy, whether the 8087 has requested to interrupt the 8088 , and which of the eight stack registers is currently the top of the stack. These elements are primarily used for systems programming. Figure 5.1 shows the layout of the status word.

(1) See descriptions of compare, test, examine and remainder instructions for condition code interpretation.
(2) ST values:
$000=$ register 0 is stack top $001=$ register 1 is stack top

Figure 5.1. (Used with permission of Intel Corporation.)

The 16-bit control word allows a number of 8087 options, described below under "control options," to be set under program control. These include the exception and interrupt-enable masks, which are primarily of interest to systems programmers. Other options, defining rounding, infinity, and precision controls, are occasionally used to control the results of numerical operations. Figure 5.2 shows the layout of the control word.

The tag word has two bits for each stack register to indicate whether the contents of the register are valid, zero, special, or empty. The exception pointers show the current instruction and operand. Neither the tag word nor exception pointers are normally of any interest to application programmers.

Control Options

By manipulating the control word, you can change the way the 8087 handles rounding, infinity, and precision.

The 8087 offers four methods of rounding off answers that cannot be represented exactly in the available number of bits. The options are round

Figure 5.2. (Used with permission of Intel Corporation.)
to nearest, round down (toward minus infinity), round up (toward infinity), and chop (truncate toward zero). Round to nearest is the default.

The 8087, unlike most computers, has a well-defined representation of infinity. The 8087 produces the proper result when calculating mathematical functions with infinite arguments, at least when a mathematically well-defined result exists. For example, $5 /$ infinity yields zero. Both positive and negative infinity may be represented.

Two modes of "infinity control" are offered on the 8087: affine closure and projective closure. Under affine closure, positive and negative infinity are regarded as being at opposite "ends" of the number line. Under projective closure, positive and negative infinity are considered equal, as if the two "ends" of the number line bent around and came together. Relative comparisons between finite numbers and infinity are permitted under affine closure, but not under projective closure. Projective closure is the default.

Precision on the 8087 can be set to 64,53 , or 24 bits of accuracy, corresponding to the temporary real, double precision, and single precision data types. This option is offered so that the 8087 may comply with certain industry standards which offer only reduced accuracy, and so that 8087 computation can be made compatible with less accurate computers. Aside from the compatibility issue, the only value in using
less than the full 64 bits of accuracy is the educational value of learning that more accuracy is better. Default precision is 64 bits.

Exception Masking

Various important computational errors are trapped by the 8087. When such an error occurs, the 8087 raises an exception condition. Exceptions may be unmasked ("unmasked" means exposed to the 8088), in which case a program interrupt occurs to permit user supplied exception handling software to take control. Usually, however, exceptions are masked (hidden from the 8088). The 8087 holds onto any masked exception and executes an internal error correction procedure. For example, if your program attempts to divide a number by zero, the 8087 will set the answer to infinity under exception masking.

Table 5-1 presents the six exceptions and the most common masked response. Note that execution is never halted by a masked response. As a default, all exceptions are masked. See Appendix 2 for a full description of the masked responses to each exception.

Table 5-1. Common masked response to 8087 exceptions.

Exception	Most Common Masked Response
Zerodivide	Return properly signed infinity
Overflow	Return properly signed infinity
Underflow	Denormalize result
Denormalized	Memory operand-proceed as usual Register operand-convert to unnormal Precision

Note: The terms "denormal" and "unnormal" are defined under Special Data Types, below.

Number Systems

The 8087 "understands" floating point, integer, and packed decimal numbers. For number crunching, floating point numbers are by far the most important.

Floating Point Numbers

In order to accommodate a wide range of values, computers store numbers in a "floating point" or "real" representation. Essentially, floating point is the computer's version of scientific notation. For example, in
standard scientific notation the fraction "negative one-half" can be written out as
-5.0×10^{-1}
Scientific notation splits the representation of a number into three sections. The "sign field" tells us the sign of the number, in the case above the leading " - " indicates a negative number. Next, the "significand field," 5.0 above, gives the number's significant digits. (The significand field is also called the "mantissa.") The third section is the "exponent" field. The " -1 " above tells us to multiply the significand by ten to the minus one power, or, equivalently, to shift the decimal point one place to the left.

The 8087 stores floating point numbers in a form of scientific notation. The exact bit patterns used are laid out for the computer's convenience so they are a little less than obvious to humans. Fortunately,' we almost never need concern ourselves with such minute detail. While exact bit patterns are covered below, there are really three facts to know about each data type:

1. How many bytes of memory are used up to store a number?
2. How many digits of accuracy are retained in a number?
3. How wide is the range of numbers which can be represented? That is, how large an exponent can be used?

The answers to 1 through 3 are shown in Table 5-2.

Data Types

The seven regular 8087 data types are shown in Table 5-2. A brief discussion of the use of each type appears below.

Table 5-2. 8087 data types.

Data Type	Bits	Significant Digits	Range
Word Integer (BASIC Integer)	16	4	$-32,768$ to 32,767
Short Integer	32	9	-2×10^{9} to 2×10^{9}
Long Integer	64	18	-9×10^{18} to 9×10^{18}
Packed Decimal Short Real (BASIC Single Precision)	80	18	18 decimal digits + sign
Long Real (BASIC Double Precision)	64	6 or 7	10^{-37} to 10^{38}
Temporary Real	80	15 or 16	10^{-307} to 10^{308}

Short real. Short real corresponds to BASIC's single precision data type. Micros have less storage than mainframe computers. Since real-world data rarely has more than six or seven digits of accuracy, this data type is commonly used for economical storage of basic input data.

Long real. Long real corresponds to BASIC's double precision data type. As a rule, most calculations should be done in double precision in order to minimize the effect of round-off error in intermediate steps.

Temporary real. Whatever the data type in memory, the 8087 converts all numbers to the temporary real format for internal use. The significand of the temporary real format holds 64 bits, so that every other data type can be loaded into a temporary real without loss of precision.

By designing the 8087 around the temporary real concept, Intel has simplified the application programmer's life in several important ways:

- Since all data types are converted to temporary real by the hardware, the programmer rarely need worry about explicit type conversions. It is just as easy for the programmer to multiply a double precision floating point number by a packed decimal number as it is to multiply two integers. (Of course, when storing a number back in memory, the programmer remains responsible for ensuring that the destination data type is large enough to hold the result being stored.)
- The range for temporary reals is (almost) infinite. The exponent range is 10 to the ± 4932. As a result, overflows and underflows are almost always caused by a bug in either the data or the program, and only rarely indicate a numerical computing error.
- The temporary real has 19 significant digits. Even when a long series of intermediate calculations produces significant cumulative roundoff error, the loss of 3 or 4 digits of accuracy still leaves an accurate double precision answer. With the 8087 onboard, an IBM Personal Computer is more accurate than the standard IBM mainframe!
Word integer. Word integer corresponds to BASIC's integer data type. A word integer occupies two bytes of storage and is principally used to index arrays and other data structures.
Short integer. A four-byte integer. Not usually used in numerical programming.

Long integer. An eight-byte integer. Not usually used in numerical programming.

Packed decimal. Packed decimal representation is used for business and data processing operations. A packed decimal uses 10 bytes of memory and contains 18 decimal digits. Unlike the three preceding data types, the packed decimal form uses a decimal rather than a binary representation. Each of the decimals $0-9$ is represented by four binary bits. These decimal digits are then "packed" two to a byte.

Business and data processing programs generally spend much more time converting data between external (ASCII) and internal (binary) representation than doing arithmetic. Conversion between ASCII and packed decimal representation is quite easy. (Also, some data processing languages, such as COBOL, use packed decimal representation as a standard data type.)

Data Type Hardware Representations

The 8087 knows exactly where each and every little bit goes. This is fortunate, because the physical and logical orders in which numbers are placed in memory differ. It is fairly easy for this difference to confuse us human types. However, the physical layout is easier for the machinery to handle and isn't relevant to programmers, except, on occasion, when trying to debug a machine language program. The description of the exact hardware representations is included here for the sake of completeness.

Logically, all the data types are laid out left to right. The left-most bit is the most significant. Thus, a 16 -bit integer is represented by a string of 16 bits running from the high-order bit 15 on the left to the low-order bit 0 on the right. Each of the seven data types is laid out in this way, as illustrated by Figure 5.3.

Physically, the right-most logical byte comes first. For example, suppose a 16-bit integer is stored in memory locations 100 and 101. The loworder bits, $7-0$, are in byte 100, and the high-order bits, 15-8, are in byte 101. The same "reversal" holds for all the data types. This format is used throughout the 8088/8086 family and is common to many microprocessors. See Figure 5.4.

Floating Point Representation

8087 floating point representation makes a number of concessions to the computer's convenience.

- Numbers are represented, unsurprisingly, by a string of binary bits rather than decimal numbers.
- The position of the "binary point" is implicit. Since computer memory contains only zeros and ones, there is no convenient way to explicitly write in a decimal point. In ordinary scientific usage we write 153.7 as 1.537 E 2 . (Computers typically use " E " in this context to indicate multiplication by a power of ten.) If our type font had no period, we might agree to write 153.7 as 1537E2 and agree that a decimal point is implicit after the first digit. On the 8087, the binary point is assumed to appear immediately to the right of the most significant bit of the significand.

Figure 5.3. 8087 data type bit patterns. (Used with permission of Intel Corporation.)

- Floating point numbers are represented in a "normalized" format. The leading bit of a floating point number is always a one. The computer shifts the significand left or right, while decreasing or increasing the exponent, in order to maintain this format. (However, see Special Data Types, below, for some exceptions.)
- Since single and double precision numbers are always normalized, the leading bit is always a one and therefore needn't be stored. It isn't. The leading bit is stored in the 80 -bit temporary real format.
- Exponents in scientific notation can be either positive or negative. Rather than store an explicit sign bit for exponents, the 8087 uses a "biased exponent." The exponent field holds the sum of the true exponent and a positive constant. For example, the exponent stored in a single precision real number is the true exponent plus 127. The

Figure 5.4. 8087 data type byte patterns. (Used with permission of Intel Corporation.)
exponent bias, chosen to provide the widest possible range given the number of bits assigned to hold the exponent, is 127 for single precision, 1023 for double precision, and 16383 for temporary real.

To illustrate floating point representation, the significand of 2.0 is " $[1] 00$. . ." (where the " $[1]$ " indicates the leading 1 is assumed but not stored and " $00 \ldots$ " indicates enough zeros to fill out the rest of the significand field). The exponent of 2.0, for single precision, is 127. Examples of significand and exponent fields for other numbers are: $1 / 2$ is "[1]00 . ." and 126; 3.0 is "[1]10 . . " and 127; and 4.0 is "[1]00 . . ." and 127.

- Zero is represented by all exponent and significand bits set to zero. (The sign bit may be either positive or negative, without significance for any arithmetic or comparison operation.)

Integer Representation

The three integer types are represented in "two's complement" format. Positive numbers are simply binary integers. Negative numbers are represented in the following way: If X is a positive integer, then $-X$ is written as (NOT X) +1 . The left-most bit of an integer is always a one for negative integers and 0 for zero or a positive integer.

Packed Decimal Representation

Packed decimal numbers are integers represented with a sign and exactly 18 decimal digits. Bits $0-3$ hold the least significant digit, that is, the "one's place." Bits 4-7 hold the "ten's place," and so forth. Bits 72-78 are unused. (If an additional digit were stored here, it would not always be possible to convert a packed decimal number into an eight-byte integer.) The high-order bit, bit 79, holds the sign. If a decimal digit is not in the required range $0-9$, the result of using the packed decimal number is undefined.

As an exercise, try writing out a number in each of the seven formats. Figure 5.5 gives the hexadecimal representation of -127 for each format. (Note that 127 is 01111111 in binary or 7 F in hexadecimal.)

Figure 5.5. 8087 hexadecimal representation of $\mathbf{- 1 2 7}$.

Special Data Types

On most computers, every bit pattern represents a valid numerical value. In contrast, the 8087 reserves a large class of bit patterns to represent special non-numerical values. For almost all applications programs, these
special data types can be safely ignored. Here is a brief description of these types:

Denormal: Real numbers are usually stored in the normalized format described above. An underflow occurs when the result of an operation would require a negative biased exponent. Rather than merely set the result to zero, the 8087 "stretches" the precision of the result by setting the exponent field equal to zero and shifting the significand right the appropriate number of places. Thus, denormal numbers can be recognized, when stored in memory, by the zero exponent field together with a non-zero significand field. A denormal is con verted to an unnormal when loaded into the 8087 from memory or used in an arithmetic operation. Denormals are perfectly acceptable as operands for arithmetic instructions. (With the critical exception of transcendental operations which assume without checking that operands are normals.)

Unnormal: When a denormal is used in an arithmetic operation, the result is an unnormal. Unnormals exist only in temporary real format and can be recognized by a zero in bit 63 (as opposed to one for a normal). Unnormals are also perfectly acceptable in arithmetic operations. (Except that transcendental operations and unnormals don't mix.) The result of an operation on annormal is a normal when possible and an unnormal otherwise. The existence of denormals and unnormals provide a major convenience to the applications programmer. Frequently, numerical algorithms create very small intermediate results. Most computers either halt with an underflow signal or set the intermediate result equal to 0.0 . In contrast, 8087 routines continue to execute while maintaining maximum possible accuracy.

Zero: Zero hardly seems like a special data type. However, it is very useful to know how the processor treats operations involving zeros. Real zeros may be signed either positive or negative, but the sign is always ignored. The 8087 is extraordinarily well behaved when using zero in arithmetic operations. Where most processors would come to an unpleasant halt, the 8087 produces a sensible answer; for example, the result of $7 / 0$ is infinity and the result of $0 / 0$ is indefinite.

Pseudo-zero: Under certain rare circumstances, temporary reals may end up containing a type known as a pseudo-zero. The pseudo-zero behaves mostly like a zero. For most purposes, this type may be safely ignored.

Infinity: The real formats include the values plus and minus infinity. These are represented by a biased exponent of all ones and a significand with a leading one and trailing zeros. Infinity can be used as an argument for most 8087 arithmetic operations. Infinity in a register is tagged special (in the tag word).

Real indefinite: The 8087 produces the value indefinite as the masked response to an invalid operation. A real indefinite is indicated by a negative sign bit, all ones in the biased exponent, and a significand with two leading ones followed by trailing zeros. Indefinite in a register is tagged special.
Integer and packed decimal indefinite: For each integer type, the largest negative number (for example, -2^{15}) also represents indefinite. Packed decimal indefinite is represented by 16 leading ones with the trailing bits undefined. Use of integer and packed decimal indefinite should be avoided, as the 8087 treats integer indefinite as the largest negative number and gives undefined results after loading a packed decimal indefinite from memory.
NAN (Not-A-Number): Any value, except infinity, with a string of ones for the biased exponent is a member of the class NAN (Not-A-Number). NANs propagate through arithmetic operations. Thus you can design software that treats members of this class as being "special" in any way you'd like (except for real indefinite which is reserved for the use described above). For example, particular NANs might be used to indicate unassigned memory locations while debugging a program or missing data in a statistical or accounting problem.

In the next chapter, we turn away from architectural detail and begin writing our first useful programs.

Simple Instruction Set

We write our first program in this chapter: a simple routine to calculate the sum of an array of numbers. Before preparing our program, we discuss the 8087's basic instructions.

The 8087 has six instruction groups: data transfer, arithmetic, transcendental, constants, comparison, and processor control. We discuss data transfer, a few of the comparison instructions, and the basic arithmetic operations in this chapter. We defer discussion of the less frequently used instructions until Chapter 12. This chapter is divided into five sections. In the first section, we take a close look at the 8087 register stack. The next three sections look at the 8087 data transfer instructions, the 8087 basic arithmetic instructions, and the basic comparison instructions. In the last section we build our first program.

The Stack Mechanism

The 8087 has eight 80 -bit registers for holding data internally. On most computers, these registers would be numbered $0,1,2,3,4,5,6$, and 7 ; and a typical instruction would be something like "add register 3 to register 4 and leave the sum in register 3." The 8087 uses a more elegant system for accessing registers-the stack.

The stack method is invariably described by analogy to the plate holders found in cafeterias. A stack of plates is loaded on a spring with only the top plate visible. If you put a plate on the stack, all the other plates move down and only the new plate is accessible. Remove the top plate and all the ones below move up one place. On a computer, the action of adding an item to a stack is called a push (all the data is pushed down one position), and removing the top item is called a pop (all the data pops up one position). For the sake of efficiency, a computer doesn't actually move data up and down. Instead the computer changes a pointer which indicates which register is at the top of the stack.

The register on top of the 8087 stack is called ST or ST(0). The 8087 also allows you to reference registers below the stack top. The piece of
data immediately below the stack top is called $S T(1)$; one further down is $S T(2)$; and so on through $S T(7)$. As we push and pop data from the stack, these names become attached to different registers.

Figure 6.1 illustrates the stack in action. Initially, the stack is empty. Next, we push the number 3.14 onto the stack. Now, ST(0) has the value 3.14 and ST(1) through ST(7) are undefined. Suppose we push 2.18 onto the stack. $\mathrm{ST}(0)$ holds 2.18 and $\mathrm{ST}(1)$ holds 3.14 . If we pop the stack, then $\mathrm{ST}(0)$ will again point to the value 3.14.

EMPTY	ST(0)	3.14	$S T(0)$$\mathrm{ST}(1)$	2.18	ST(0)	3.14
EMPTY		EMPTY		3.14		EMPTY
EMPTY		EMPTY		EMPTY		EMPTY
EMPTY		EMPTY		EMPTY		EMPTY
EMPTY		EMPTY		EMPTY		EMPTY
EMPTY		EMPTY		EMPTY		EMPTY
EMPTY		EMPTY		EMPTY		EMPTY
EMPTY		EMPTY		EMPTY		EMPTY

Figure 6.1. 8087 stack mechanism.

Notice that the stack mustn't grow to be more than eight deep, since the 8087 has only eight internal registers. The 8087 leaves responsibility for watching the depth of the stack in your hands. If a program does nine pushes in a row, you'll get incorrect answers-but no error messages. (Technically, the 8087 registers are organized as a chain rather than a stack. On the ninth push, $\mathrm{ST}(7)$ becomes $\mathrm{ST}(0)$ and the previous contents of ST(7) are lost.)

Data Transfer Instructions

Data transfer instructions move data from memory into the 8087 (load), from the 8087 into memory (store), and between 8087 registers (exchange). Inside the 8087 all data is held in temporary real format. In memory, operands fall into one of the seven data types discussed in Chapters 2 and 5 . As data moves into or out of the 8087, it is automatically converted between temporary real and other formats. Three rules summarize the way the 8087 distinguishes among the different types of data.

- Data stored internally in an 8087 register is always temporary real.
- Different instructions reference real, integer, and packed decimal types.
- Within a given type, the 8087 distinguishes between arguments of different precision according to the amount of memory space the argument occupies. For example, an instruction which operates on reals treats an operand referencing a four-byte memory location as a single precision number and an operand referencing an eight-byte memory location as a double precision number.
The data transfer instructions are summarized in Table 6-1.

Table 6-1. 8087 data transfer instructions.

Real Transfers

FLD Load real
FST Store real

FSTP Store real and pop
FXCH Exchange registers
Integer Transfers

FILD	Integer load
FIST	Integer store
FISTP	Integer store and pop
	Packed Decimal Transfers
FBLD	Packed decimal (BCD) load
FBSTP	Packed decimal (BCD) store and pop

(Used with permission of Intel Corporation.)
(The typical execution time for each instruction appears to the right of the instruction name. Appendix 1 gives more precise timing information.)

Real Transfer Instructions

FLD source
13 microseconds
FLD (load real) pushes the source data onto the stack by changing the top of stack pointer to point to the next available register and then copying the source data into this register. The source may be either a real-memory location or an 8087 register. FLD is the basic instruction for moving data into the 8087.

FST destination
23 microseconds
FST (store real) copies the contents of the top element of the stack into the indicated destination, either an 8087 register or a single or double
precision memory location. Data moved into memory is automatically converted to single or double precision format. FST does not affect the depth of the stack or its contents. FST cannot be used to store a temporary real in memory.

FSTP destination

23 microseconds
FSTP (store real and pop) stores the top element of the stack and then pops the top of the stack. Unlike FST, FSTP will move a temporary real into memory.

The "pop" is accomplished in two steps. First, the register currently at the top of the stack is marked "empty" (in the tag word). Second, the top of stack pointer is changed to point to the register logically "below" the current top of stack. Thus the instruction FSTP ST(0) pops the stack with no effective transfer.

FXCH destination
FXCH (exchange registers) exchanges the stack top with the designated destination register. If the destination is not specified, $\mathrm{ST}(1)$ is assumed. Thus, FXCH with no destination swaps the contents of the two registers at the top of the stack.

Integer and Packed Decimal Data Transfer Instructions

FILD source

12 microseconds
FILD (load integer) pushes the integer memory operand onto the stack (converting it to a temporary real).

FIST destination

21 microseconds
FIST (store integer) rounds the value held in $\mathrm{ST}(0)$ and stores the resulting integer in the destination memory location. (A copy of the value is made before rounding so that the contents of $\mathrm{ST}(0)$ remain unchanged.) The destination may be either a word or short integer. You cannot store a long integer with FIST.

FISTP destination

21 microseconds
FISTP (store integer and pop) rounds the top of stack element and stores it in the destination memory location. The top of stack is then popped. Unlike FIST, FISTP will store into a long integer memory location.

FBLD (load packed decimal) pushes the memory source location onto the top of the stack, converting the operand from packed decimal to temporary real. No check is made to see that the data is a valid packed decimal number. The result of loading invalid data is undefined and should be carefully avoided. (The " B " in FBLD comes from an alternative name for packed decimal representation, "BCD or Binary Coded Decimal.")

FBSTP destination 117 microseconds FBSTP (store packed decimal and pop) converts the contents of the top of stack register into packed decimal representation and transfers the converted number to the destination memory location. The top of stack is then popped. If the top of stack element is not already an integer, it is converted to one by adding 0.5 and truncating. This rounding operation sometimes differs from FIST, which operates under 8087 rounding control. Rounding control can be effectively invoked by preceding FBSTP with FRNDINT, which rounds the stack top to an integer. (FRNDINT is described in Chapter 12.)

Basic Arithmetic Instructions

The 8087 has 21 basic arithmetic instructions, summarized in Table 6-2. Of these, 18 provide varieties of addition, subtraction, multiplication, and division. In addition to the standard use of these four basic operations, the 8087 also allows "reversed" subtraction and "reversed" division.

In normal subtraction, the destination is replaced by the destination minus the source. In reversed subtraction, the destination is replaced by the source minus the destination. Reversed division operates analagously. (No reversed operations are needed for addition and multiplication, since both operations are commutative.)

Including the reversed operations, there are six basic arithmetic instructions. Each instruction comes in three formats: real, real-and-pop, and integer. Thus, there are 18 total instructions.

Arguments in the real format may take the stack form, the register form, or the real-memory form. In the stack form, the destination is always ST(1) and the source is always $\mathrm{ST}(0)$. In the register form, one argument is the stack top, $\mathrm{ST}(0)$, and the other is any 8087 register. In real-memory form, the destination is $\mathrm{ST}(0)$ and the source is a location in memory. Only single precision and double precision types may be used in the real-memory form.

The real-and-pop format uses the register form. After the operation, the stack is popped. For example, FADDP ST(1),ST adds the top two stack

Table 6-2. 8087 arithmetic instructions.

Addition

FADD	Add real
FADDP	Add real and pop
FIADD	Integer add

Subtraction

FSUB
Subtract real
FSUBP
FISUB
FSUBR
Subtract real and pop

FSUBRP
FISUBR
Integer subtract
Subtract real reversed Subtract real reversed and pop Integer subtract reversed

Multiplication

FMUL	Multiply real
FMULP	Multiply real and pop
FIMUL	Integer multiply

Division

FDIV
Divide real
FDIVP
Divide real and pop
FIDIV
Integer divide
FDIVR
Divide real reversed
FDIVRP Divide real reversed and pop
FIDIVR Integer divide reversed

Other Operations

FSQRT Square root
FSCALE
Scale
FPREM Partial remainder
FRNDINT Round to integer
FXTRACT Extract exponent and significand
FABS Absolute value
FCHS Change sign
(Used with permission of Intel Corporation.)
elements, stores the sum one element below the top of stack, and pops the stack. After execution, the original contents of the stack top have been discarded, the contents of $\operatorname{ST}(1)$ are replaced by the sum, and the register that was formerly $\mathrm{ST}(1)$ pops up to the top of the stack.

The integer format references a word integer or short integer location in memory as the source. $\mathrm{ST}(0)$ is the destination.

Implicit Operands

Stack operands may be either implicit or explicit. For example, in the stack form ST is always assumed to be the source and ST(1) is assumed to be the destination. For purposes of illustration, implicit arguments are shown below in curly brackets, as in $\{\mathrm{ST}\}$, even though these operands are not coded in actual programs.

Use of implicit arguments can lead the unwary programmer into great confusion. Unfortunately, an instruction with two implicit arguments has a different meaning from the same instruction followed by (the implied) explicit arguments. By convention, use of two implicit arguments tells the assembler that you wish to pop the register stack after executing the instruction. For example, the instruction "FADD" implies the source is ST and the destination is $\mathrm{ST}(1)$. But the assembler translates the instruction as "FADDP ST(1), ST", which is quite different from "FADD $\mathrm{ST}(1), \mathrm{ST}^{\prime}$. You can avoid a lot of trouble by not taking "advantage" of this convention. Instead, make both arguments explicit.

The various combinations of instruction formats are summarized in Table 6-3.

Table 6-3. 8087 arithmetic instruction formats.

Instruction Form	Mnemonic Form	Operand Forms destination, source	ASM-86 Example
Classical stack	Fop	\{ST(1),ST\}	FADD
Register	Fop	ST(i),ST or ST,ST(i)	FSUB ST,ST(3)
Register pop	FopP	ST(i),ST	FMULP ST(2),ST
Real memory	Fop	\{ST, short-real/long-real\}	FDIV AZIMUTH
Integer memory	FIop	\{ST, word-integer/ short-integer\}	FIDIV N_PULSES

NOTES: Braces $\}$ surround implicit operands; these are not coded and are shown here for information only.

```
op= ADD destination }\leftarrow\mathrm{ destination + source
    SUB destination\leftarrowdestination - source
    SUBR destination\leftarrowsource - destination
    MUL destination\leftarrowdestination * source
    DIV destination\leftarrowdestination }\div\mathrm{ source
    DIVR destination\leftarrowsource %-destination
    (Used with permission of Intel Corporation.)
```


Addition Instructions

FADD \{ST(1),ST\}
FADD \{ST,\}real-memory

FADD ST(i),ST or ST,ST(i)
17 microseconds
FADDP ST(i),ST
18 microseconds
FIADD \{ST,\}integer-memory
27 microseconds
FADD (add real), FADDP (add real and pop), and FIADD (add integer) add the source operand to the destination operand and leave the sum in the destination. In addition, FADDP pops the stack.

Subtraction Instructions

FSUB \{ST(1),ST\}
18 microseconds
FSUB \{ST,\}real-memory
25 microseconds
FSUB ST(i),ST or ST,ST(i)
17 microseconds
FSUBP ST(i),ST
18 microseconds
FISUB \{ST,\}integer-memory
27 microseconds
FSUB (subtract real), FSUBP (subtract real and pop), and FISUB (subtract integer) subtract the source operand from the destination operand and leave the difference in the destination. In addition, FSUBP pops the stack.

FSUBR \{ST(1),ST\}
FSUBR \{ST,\}real-memory
18 microseconds
FSUBR ST(i),ST or ST,ST(i)
25 microseconds
FSUBRP ST(i),ST
17 microseconds
FISUBR \{ST,\}integer-memory
18 microseconds
FSUBR (reversed subtract real), FSUBRP (reversed subtract real and pop), and FISUBR (reversed subtract integer) subtract the destination operand from the source operand and leave the difference in the destination. In addition, FSUBRP pops the stack.

Multiplication Instructions

FMUL \{ST(1),ST\}
28 microseconds
FMUL \{ST,\}real-memory
34 microseconds
FMUL ST(i),ST or ST,ST(i)
28 microseconds
FMULP ST(i),ST
28 microseconds
FIMUL \{ST,\}integer-memory
28 microseconds
FMUL (multiply real), FMULP (multiply real and pop), and FIMUL (multiply integer) multiply the source and destination operands and leave the product in the destination. In addition, FMULP pops the stack.

Division Instructions

FDIV	$\{S T(1), S T\}$	41 microseconds
FDIV	$\{S T\} r e a l-,m e m o r y$	48 microseconds
FDIV	ST(i),ST or ST,ST(i)	40 microseconds
FDIVP	ST(i),ST	41 microseconds
FIDIV	$\{S T$,$\} integer-memory$	49 microseconds
FDIV (divide real), FDIVP (divide real and pop), and FIDIV (divide in-		
teger) divide the destination operand by the source operand and leave		
the quotient in the destination. In addition, FDIVP pops the stack. Note		
that FIDIV yields a temporary-real quotient.		

FDIVR \{ST(1),ST\}
FDIVR \{ST,\}real-memory
FDIVR ST(i),ST or ST,ST(i)
FDIVRP ST(i),ST
FIDIVR \{ST,\}integer-memory
FDIVR (divide real reversed), FDIVRP (divide real reversed and pop), and FIDIVR (divide reversed integer) divide the source operand by the destination operand and leave the quotient in the destination. In addition, FDIVRP pops the stack. Note that FIDIVR yields a temporary-real quotient.

Miscellaneous Arithmetic Instructions

FSQRT \{ST\}
37 microseconds FSQRT (square root) replaces the top of stack with its square root.

FABS \{ST\}
3 microseconds
FABS (absolute value) sets the sign of the top of stack element to positive.
FCHS \{ST\}
3 microseconds
FCHS (change sign) changes the sign of the top of stack element.
One more instruction really belongs in this chapter, even though it is a constant instruction and constant instructions are covered in Chapter 12. However, this instruction is simple and extremely useful. It is:

Comparison Instructions

The 8087 includes a number of instructions for making size comparisons between numbers on the register stack. These instructions are used for tasks such as identifying the largest number in an array or for determining whether a number is less than, equal to, or greater than zero. We describe the instructions here. Illustrative programming examples appear in Chapter 7.

The 8087 instruction set includes six comparison and one examine instruction. All the instructions operate on the stack top. Most compare the stack top to a specified source operand. There are four possible outcomes of a comparison operation: $\mathrm{ST}>$ source, ST < source, $\mathrm{ST}=$ source, or ST and source are non-comparable. The comparisons are reported by setting the condition code bits C3 and C0 in the status word, as indicated in Table 6-4. The condition code can be examined by using the processor control instruction, FSTSW, discussed below.

Table 6-4. Condition code setting following comparison.

C3	C0	Order
0	0	ST $>$ source
0	1	ST $<$ source
1	0	ST $=$ source
1	1	non-comparable

(Used with permission of Intel Corporation.)

Note that non-comparable results from using NANs or projective infinity. Non-comparable usually indicates a previous overflow or illegal operation.

FCOM \{ST,ST(1)\}
9 microseconds
FCOM \{ST,\}ST(i)
9 microseconds
FCOM \{ST,\}real-memory
17 microseconds
FCOM (compare real) compares the stack top to the source and sets the condition code bits. Temporary real format may not be used in the realmemory form.

FCOMP \{ST,ST(1)\}
FCOMP \{ST,\}ST(i)
FCOMP \{ST,\}real-memory
10 microseconds
10 microseconds
17 microseconds
FCOMP (compare real and pop) executes a FCOM and then pops the stack, discarding the contents of the stack top.

FCOMPP \{ST,ST(1)\}
10 microseconds
FCOMPP (compare real and pop twice) executes a FCOM and then pops the stack twice. Thus, to compare two numbers in memory, push both onto the stack and then use a FCOMPP.

FICOM \{ST,\}integer-memory
19 microseconds
FICOM (compare integer) compares the stack top to a word integer or short integer in memory.

FICOMP \{ST,\}integer-memory
19 microseconds
FICOMP (compare integer and pop) executes a FICOM and then pops the stack.

FTST \{ST\}
9 microseconds
FTST (test) compares the stack top to zero.
FXAM \{ST\}
4 microseconds
FXAM (examine) examines the top of stack and sets the condition code bits C0, C1, C2, and C3 to indicate what sort of value is being held. (The various "sorts" were discussed in Chapter 5.) Table 6-5 shows the possible combinations.

Table 6-5. Condition code settings following FXAM.

Condition Code				
C3	C2	C1	C0	
0	0	0	0	+ Unterpretation
0	0	0	1	+ NAN
0	0	1	0	Unnormal
0	0	1	1	- NAN
0	1	0	0	+ Normal
0	1	0	1	$+\infty$
0	1	1	0	- Normal
0	1	1	1	$-\infty$
1	0	0	0	+0
1	0	0	1	Empty
1	0	1	0	-0
1	0	1	1	Empty
1	1	0	0	+ Denormal
1	1	0	1	Empty
1	1	1	0	- Denormal
1	1	1	1	Empty

(Used with permission of Intel Corporation.)

In order to make use of comparison instructions, we need to retrieve the condition code bits. The condition codes are retrieved with the processor control instruction, FSTSW.

FSTSW word-integer
5 microseconds
FSTSW (store status word) stores the 8087 status word at the two-byte destination location. All the comparison instructions set bits in the status word; FSTSW is used to move the status word into memory so that the appropriate bits can be examined and appropriate action taken. Generally, FSTSW should be followed by an FWAIT, to ensure that the condition codes are actually stored in memory before the program proceeds.

This completes our coverage of the basic 8087 instruction set. For most programs, these instructions are sufficient. More advanced 8087 instructions are discussed in Chapter 12.

Our First Program—Adding Up An Array of Numbers

Our first program is picked to show off the speed and ease in using the 8087. This program runs about 200 times faster than an equivalent BASIC program without the 8087 !

To write a complete 8087 program, we need a number of details that we haven't covered. For example, we really ought to specify how the routine gets its arguments from BASIC. In the interest of preserving everyone's sanity, we are going to cheat just this once by leaving out some details. Therefore, the program below won't run as it stands. (The program appears in full in Chapter 9.)

We assume that, elsewhere in the program, someone has already defined a single precision array named ARRAY. Our task is to add up the numbers stored in ARRAY and place a single precision result in a variable named DSUM. The integer variable N has the number of elements in ARRAY. (ARRAY goes from ARRAY(0) to ARRAY(N-1)). A fragment of a BASIC program to do the job follows:

```
10 DEFDBL D
20 DEFINT I
30 DSUM=0
4 0 ~ F O R ~ I = 0 ~ T O ~ N - 1 ,
50 DSUM=DSUM+ARRAY(I)
60 NEXT I
```

Notice that we collected the sum in a double precision variable to ensure getting at least single precision accuracy for the final answer.

Our 8087 code appears below. The program assumes that ARRAY is an array of single precision memory locations, that N holds a non-negative integer, and that DSUM is a double precision memory location.

Everything on a line after a semicolon is a comment. We have used comments to number the lines and mark each instruction as either an 8088 or an 8087 instruction.

	MOV	$C X, N$;	\{8088\}
	FLDZ		i	\{8087\}
	JCXZ	DONE_ADDING	; 3	\{8088\}
	MOV	$B X, 0$; 4	\{8088\}
LOOP_TOP:	FADD	ARRAY[BX]	; 5	\{8087\}
	ADD	BX,4	ib	\{8088\}
	LOOP	LOOP_TOP	i7	\{8088\}
DONE_ADDING:	FSTP	DSUM	; 8	\{8087\}

The program uses the following strategy: place the number of array elements in the 8088 register CX. Subtract one from this register each time through the adding-up loop and quit when the register hits zero. Use 8088 register BX to keep track of where we are in ARRAY. (8088 instructions are covered in detail in the next chapter.) A line-by-line explanation of the program follows:

1. Mov CX ${ }_{1}$ N. Load N into the CX register. (The 8088 instruction "LOOP", in line 7, subtracts 1 from the CX register. When CX hits zero, the program has gone all the way through the array, so we will jump out of the loop.)
2. FLDz. Push a zero onto the 8087 stack. We accumulate the running total in the top of stack element.
3. $J C X Z$ DONE_ADDING. If $C X$ (that is, N) is zero, jump to DONE_ADDING before entering the loop.
4. MOV $B X, O$. Set the $B X$ register equal to zero. $B X$ is used as an index for ARRAY. When BX equals zero, we get the first element of array.
5. LOOP_TOP: FADD ARRAY[BX]. Add the current element of ARRAY into the running sum we are accumulating in the top of the stack.
6. $A D D B X, 4$. Add 4 to the count in $B X$. Why? Single precision numbers occupy four bytes, so we have to move along ARRAY four bytes at a hop. (Some things are just naturally more clumsy in assembly language than in a higher level programming language.)
7. LOOP LOOP_TOP. The LOOP instruction subtracts one from CX. If CX is still positive, the program "loops" to LOOP_TOP, otherwise we proceed to the next instruction, falling out of the bottom of the loop since we must have already added up all N numbers.
8. DONE-ADDING: FSTP DSUM. Store the answer in DSUM.

Besides the fact that it was a lot easier to write the BASIC program, what's the difference between BASIC and our 8087 code? One, the 8087 program is a little more accurate, though on most problems we'd probably never notice the difference. Two, the 8087 is a bit faster. Adding 10,000 numbers takes approximately 46 seconds in BASIC. The 8087 needs about one-fourth of one second.

7

Introduction to 8088 Assembly Language Programming

Before the era of the 8087, all personal computer thinking was done with a general purpose microprocessor such as the Intel 8088. A number crunching personal computer combines the mathematical power of the 8087 with the general programming capabilities of the 8088 . The 8087 needs the 8088 to talk to the outside world. In this chapter, we discuss 8088 programming.

This brings us to a dilemma. The 8087 is a simple, elegant machine. The 8088 is a complex, elegant machine. Chapters 6 and 12 of this book present a complete, detailed description of the 8087 instruction set. A similar description of the 8088 instruction set would require a book, and wouldn't be very interesting to readers who just want to crunch numbers. On the other hand, you can't get to the 8087 except through the 8088 .

As a compromise, we discuss just those 8088 features needed to get through to the 8087. We don't attempt to cover all features of the 8088 or to talk about assembly language programming in general. This chapter is oriented toward the BASIC programmer; the experienced assembly language programmer is asked to forgive the occasional simplification. (If you are already comfortable with 8088 assembly language, you can skip this chapter entirely.) For full details on the 8088 (and 8086 family) we recommend:
iAPX 88 Book by Intel;
iAPX 86,88 User's Manual, by Intel; and
The 8086 Primer, by Stephen P. Morse, Hayden Book Company.
IBM PC Assembly Language, by Leo J. Scanlon, Robert J. Brady Co.

Overview of the $\mathbf{8 0 8 8}$

Machine language instructions are much less powerful than BASIC commands. (A typical line of BASIC might be equivalent to 10 to 100 lines of machine language instructions.) Consequently, it's easy to understand what a single line of 8088 code does, but it can be very tedious to put together enough lines to do anything useful. For example, suppose we want to copy the data in integer variable A into integer variable B. In BASIC we write:
$\mathrm{B}=\mathrm{A}$
8088 code might be:

| MOV AX,A | MOOVE CONTENTS OF LOCATION A INTO REGISTER AX |
| :--- | :--- | :--- |
| MOV B,AX | |
| MMOVE CONTENTS OF REGISTER AX INTO LOCATION B | |

A and B are integer variables in both sets of code, but there the similarity ends. We see the following differences:

- BASIC uses mathematical notation. 8088 notation takes the form of a command to the CPU.
- BASIC deals directly with the variables of interest. The 8088 uses internal registers as intermediaries. In this example, the data in A is transferred into a register named " AX " and then transferred from the $A X$ register into B.
- Anything following a semicolon is a comment in assembly language. BASIC uses the apostrophe and REM statement for this purpose.
Suppose we wanted to deal with single precision numbers instead of integers. In BASIC, we declare the variables A and B to be of the appropriate type. Thereafter, $\mathrm{B}=\mathrm{A}$ works equally well for any type of variable. 8088 code would have to be modified, leading us to some further differences.

MOV	$A X, A$	MOVE THE FIRST HALF OF A INTO AX
MOV	$B, A X$	MOVE AX INTO THE FIRST HALF OF B
MOV	$A X, A+2$	iMOVE THE SECOND HALF OF A INTO AX
MOV	$B+2, A X$	MOVE AX INTO THE SECOND HALF OF B

- BASIC deals with data a number at a time. The 8088 works either on a word (two bytes) or a byte at a time. Since a single precision number occupies two words, two sets of MOV operations are required to move a single precision number.
- Unlike BASIC, which thinks in terms of variables, the 8088 fundamentally thinks in terms of memory locations. In the instruction "MOV AX, A ", " A " represents a memory location to be assigned by the assembler. " $\mathrm{A}+2$ " means the memory location 2 bytes after " A ". " $\mathrm{A}+2$ " does not mean add 2 to the value stored in A .

8088 Program Structure

An 8088 assembly language program is structured into procedures, code segments, and data segments.

Each separate program module is identified to the assembler as a procedure by the PROC and ENDP directives (discussed below). The assembler remembers the location of each block of code identified so that the module can be called as a subroutine from another 8088 assembly language program or by use of the BASIC CALL statement. Normally, each procedure is a self-contained unit intended to perform one task in a larger program.

Programs written for the 8088 segregate code and data into different areas of memory called segments. While any number of segments may reside in memory simultaneously, only one code segment and one data segment (plus a stack and an extra segment described below) may be active at any one time. Segments are identified to the assembler with the SEGMENT and ENDS directives (discussed below). Segments are limited in length to 64 K bytes.

One way to think of an assembly language program is that we write out an exact picture of how memory looks before execution begins. Some areas of memory hold program constants or are set aside to hold results produced by the computer. These areas are placed in data segments. Other areas of memory hold the executable code, as translated from assembly language into machine language, by the assembler. The code is logically organized into procedures. One or more procedures is then placed in each code segment. When we run the program, the computer places each segment, as a block, in memory and then begins execution.
To master the 8088, one must understand:

1. General registers
2. Memory addressing
3. Labels and data definition
4. Some basic 8088 instructions
5. Comparisons
6. Branching
7. Segments
8. Memory stack
9. Subroutine branching and returns
10. Assembler directives

General Registers

The 8088 has eight general registers, each of which holds one 16-bit word. The registers are named AX, BX, CX, DX, SI, DI, BP, and SP. In the MOV examples above, any of these registers could have been used in
place of AX. However, each register has various special purposes in addition to its general role. The special uses of interest to us are:
$A X$ and $D X$-Register $A X$ is sometimes called the accumulator. A few 8088 instructions will only work with AX. Instructions that produce a double length result, such as multiplication, place the result in AX and DX.
BX, SI, and DI-base and index registers (see Memory Addressing below).
CX—count register (see Branching below).
BP and SP—stack pointers (see Memory Stack below).
In addition, registers $\mathrm{AX}, \mathrm{BX}, \mathrm{CX}$, and DX can each be treated as a pair of 8 -bit registers. The high-order bytes are addressed as AH, BH, CH , and DH and the low-order bytes are addressed as AL, BL, CL, and DL. Most 8088 operations can operate on either a word at a time or a byte at a time. Moving a byte into AH, for example, changes the highorder half of AX without affecting the low-order half.

The AH half of AX also has a special use in moving "flags" around (see Branching below).

Memory Addressing

In the "MOV AX, A^{\prime} instruction above, " A " represents a particular memory location called the displacement. The first byte of memory is numbered 0 , the second 1, and so forth. The assembler figures out the number of the memory location for A and sticks the number into the instruction. Note that the 8088 addresses bytes, not words, so the first word begins at 0 , the second at 2 , the third at 4 . (It is perfectly acceptable to store a byte at 0 , a word at 1 and 2, and so forth. Words don't have to fall on even-numbered locations. However, the 8086 side of the 8088/8086 family will run a tiny bit faster when words do fall on even locations.)
If we want to use the byte after location A we code " $\mathrm{A}+1$ ". Analogously, the word after location A is " $\mathrm{A}+2$ ", and the byte before location A is addressed as " $\mathrm{A}-1$ ".

Just as BASIC allows indexed arrays, the 8088 allows us to index memory. In BASIC the first element of an array A is $A(0)$, the second $A(1)$, and so forth. To pick different elements at different points in the program we code A(I), and set the variable I appropriately. In 8088 code we index memory by indicating that the value held in one of the registers is to be added to the displacement in calculating the address. We tell the 8088 which register to use by placing its name in square brackets, as in $\mathrm{A}[\mathrm{BX}]$. Further, we can "double index" memory by placing a second register in square brackets, as in $\mathrm{A}[\mathrm{BX}][\mathrm{SI}]$. Thus, if A is location 75 , the BX register holds 150, and the SI register holds 1000, $\mathrm{A}[\mathrm{BX}][\mathrm{SI}]$ is location 1225.

Unfortunately, we are somewhat restricted in which registers can be used as indexes. If we use one register, it can be BX, SI, or DI. If we use two registers, one must be BX and the other can be either SI or DI. (Actually, BP can be used rather than BX as an index, but this is generally not done for reasons that become clear when we discuss the memory stack.)

Thus, a memory address consists of a displacement and zero, one, or two index registers. The displacement may be omitted, in which case a displacement of zero is assumed. This usage is quite common, because when we call a subroutine from BASIC, BASIC passes the subroutine the address of each argument. If we call a subroutine with an argument $A(0)$, the subroutine might place the address of $A(0)$ into the $B X$ register, use the SI register to hold an index, and address the array by [BX][SI] with no displacement.

Note some critical differences between indexing in BASIC and indexing in assembly language. In BASIC if the index is 17, we get the 18th (started at zero, remember) element of the array, regardless of whether the array is of type integer, single precision, or double precision. In machine language if the index is 17 , we get the 18th byte, not the 18th element of the array. Depending on the type of data being used, consecutive elements have indexes $0,2,4$. . $0,4,8$. ., or $0,8,16 \ldots$. . Also, in BASIC we can specify multi-dimensional arrays. 8088 indexing is all one-dimensional.

When the displacement is added to the value of the index registers the result is a 16-bit logical address. Therefore, the address must be between 0 and $\left(2^{16}\right)-1$, or 64 K . (It is no coincidence that BASIC is limited to a 64 K area.)

Most operations specify a register and a memory location. Instructions can also specify two registers, as in

```
MOV AX,BX ;MOVE THE CONTENTS OF THE BX REGISTER INTO AX
```

Some instructions allow one argument to be an immediate operand. An immediate operand is a constant built right into the instruction-the value is used "immediately," in contrast to being fetched from memory. For example, to set the register AX to zero and the value of memory location A to minus one:

```
MOV AX,O
MOV A,-1
```

8088 instructions such as MOV can operate either a byte at a time or a word at a time. In truth, MOV is really two separate instructions, "move word" and "move byte." The assembler looks at the specified operands to decide which instruction we mean. Most of the time the assembler can figure out whether we want a byte or a word by examining the specifications used to define the memory location (see Labels and Data Definition below). Sometimes there aren't any such specifications, such
as when we use an index register without a displacement, and sometimes we want to override the original specifications. To order the assembler to think in terms of a byte or a word, use the "PTR" (pointer) directive. We indicate that location A is a byte or a word by saying "BYTE PTR A" or "WORD PTR A." So to move an integer whose location is held in BX into a location held in SI we might code:

```
MOV AXTWORD PTR [BX]
MOV WORD PTR [SI],AX
```


Labels and Data Definition

An assembly language program consists of a series of one-line commands. Commands are actually of two sorts: instructions and assembler directives. A command may be preceded by an optional identifying label. To label an instruction, begin the line with the desired label and a colon. The program can jump to a labeled instruction in much the same way as a program can GOTO a line number in BASIC. To label a line containing a directive, begin the line with the desired label, but omit the colon.

THIS_IS_A_LABEL: MOV AX,A

Assembler directives do not generate any machine language code. Instead they give the assembler information or ask it to perform a task, such as setting aside a memory location to be used as data storage. For example, the assembler directive "DW" sets aside two bytes of storage. It can be followed by an initial value and the storage area can be labeled.

A DW 37

Setting aside and labeling memory is somewhat analogous to the BASIC statement DIM. "DW" stands for "define word." To define a word with no initial value, tell the assembler "DW ?". We can also define a series of words with a directive like "DW 3,5,?, -2 ". Or we could set aside 10 uninitialized words with "DW 10 DUP(?)". Since an address is actually represented by a 16-bit integer, we can also initialize a memory location to contain the address of some other instruction, as in

```
POINT_TO_A_LABEL DU THIS_IS_A_LABEL
```

The 8088 deals with bytes and words. To set aside one or more bytes, we use the "define byte" instruction, DB. The 8087 deals with many more data types. Table 7-1 shows all the storage allocation directives.

The assembler knows how much memory is supposed to be associated with a particular storage allocation directive. This knowledge is used in two ways. First, if you set aside storage using Define Byte, as in "A DB 5 "' and then try to use a word instruction, as in "MOV AX, A", the assembler will warn you of a type mismatch. If you intend to move the two bytes at A and A+1, you can override this mechanism by using the instruction "MOV AX, WORD PTR A".

Table 7-1. Storage allocation directives.

Directive	Interpretation	Bytes	Pointer type	Data types
DB	Define Byte	1	BYTE PTR	byte
DW	Define Word	2	WORD PTR	word integer
DD	Wefine	4	DWORD PTR	short integer, Dhort real
DQ	Doubleword Define	8	QWORD PTR	Long integer, long real Quadword Dacked decimal,
DT	Define Tenbyte D	TBYTE PTR	tempory real	

(Used with permission of Intel Corporation.)

Second, the assembler uses the storage allocation directives to decide whether 8087 instructions should operate on single or double precision data. For example:

FLD DWORD PTR A
loads a single precision number located at bytes $\mathrm{A}, \mathrm{A}+1, \mathrm{~A}+2$, and $\mathrm{A}+3$ onto the 8087 stack. The instruction

FLD QUORD PTR A
loads a double precision number located at bytes A through A+7.
We can also label a memory location without setting aside storage by using the directives EQU and THIS WORD. "THIS WORD" takes on the value of the next memory location and "EQU" assigns a value to a name. For example:

A	DW	IO DUP (?)
B	EQU	THIS WORD
	DW	$\exists D$ DUP (?)

These instructions set aside 40 words of storage. If A ends up being located at byte 100 of memory, then B will reference location 120.

Some Basic 8088 Instructions

In this section, we cover a few of the most common 8088 instructions, concentrating on those instructions we need later for programs.

ADD destination, source
ADD (Add) adds the destination and the source and places the sum in the destination.

AND destination,source
AND (Logical and) does a bit by bit "and" operation. Bit "i" in the destination is set to one if bit " i " is one in both source and destination, otherwise it is set to zero.

DEC destination

DEC (Decrement) subtracts one from the destination.
INC destination
INC (Increment) adds one to the destination.

MOV destination,source

MOV (Move) copies the value of the source into the destination.

MUL source

MUL (Multiply) multiplies the source by AL or AX. If the source is a byte, it is multiplied by AL, and the result is placed in AH and AL (that is, the 16 -bit answer that occupies AX). If the source is a word, the 32bit answer is placed (upper 16 bits) in DX and (lower 16 bits) in AX. Both operands are treated as unsigned binary numbers. The source cannot be an immediate operand.

OR destination,source

OR (Logical inclusive or) does a bit by bit "or" operation. Bit " i " in the destination is set to one if bit " i " is one in either the source or the destination, otherwise it is set to zero.

SHL destination, source
SHL (Shift logical left) shifts the bits in the destination to the left. Bits that move out on the left "fall off the end" and zeros are moved in on the right. The source can either be " 1, " in which case the destination is shifted left one bit, or it can be CL, the lower half of the CX register, in which case the destination is shifted left the number of places indicated by the value held in CL.

Notice that shifting a number left one place is the same as multiplying the number by two. It turns out that we frequently have need to multiply by two or by a power of two. The SHL instruction takes only six microseconds, while the MUL instruction takes about 30 .

SHR destination,source

SHR (Shift logical right) shifts the bits in the destination to the right. Bits that move out on the right "fall off the end" and zeros are moved in on the left. The source can either be " 1, " in which case the destination is
shifted right one bit, or it can be CL, in which case the destination is shifted right the number of places indicated by the value held in CL.

SUB destination,source
SUB (Subtract) subtracts the source from the destination and places the difference in the destination.

Comparisons

Controlling the flow of a program is easier in BASIC than in assembly language. In BASIC, we would jump to line 100 when A is greater than B with a statement combining a comparison and a conditional jump, such as

```
IF A>B THEN GOTO 1DO
```

In assembly language, the comparison and branching are two logically separate steps. First, we use a comparison (or other) operation to set "flags" inside the 8088. Then, we execute a branching instruction which examines the flags and jumps if it sees the right ones "flying." The 8088 has six internal "flags." These flags can be thought of as occupying six out of the 16 bits of a "flag register." The flags, their position, and meaning are:

CF-bit 0-carry flag
PF-bit 2-parity flag
AF-bit 4-auxiliary carry flag
ZF-bit 6-zero flag
SF-bit 7-sign flag
OF—bit 11—overflow flag
The flag names are suggestive of their general use. We care about the flags for two reasons. First, 8088 comparison instructions set some of the flags to zero or one. Second, 8087 comparison instructions indirectly set some of the flags.

The 8088 compares two numbers by using the CMP instruction.

CMP destination, source

CMP (Compare) compares the destination to the source, setting the flags to indicate the result of the comparison. The flags are read by the jump instructions outlined in Table 7-2.

The 8087 does its own comparisons, but relies on the 8088 for program branching. To set up an 8088 branch following an 8087 comparison, we need to set the 8088 flags. SAHF is used for this purpose.

SAHF

SAHF (Store register AH into flags) sets SF, ZF, AF, PF, and CF from bits 7, $6,4,2$, and 0 of AH.

Branching

JMP address

The 8088 jump instruction is analogous to GO TO in BASIC. The program jumps from its current position to the address specified by the jump.

The 8088 also has 18 conditional jump instructions. These instructions cause a jump to the specified address only if the flags have a certain pattern, otherwise execution continues with the next instruction. For example, if we execute a "JG SOME_LABEL" following a CMP, the program goes to SOME_LABEL if the destination was greater than the source, and continues on to the next instruction otherwise. Table 7-2 describes the conditional jump instructions.

One warning: an 8087 comparison sets different bits than an 8088 comparison. See below.

Table 7-2. 8088 conditional jump instructions.

Mnemonic	Condition tested	"Jump if ..."
JA/JNBE	$(\mathrm{CF}$ or ZF$)=0$	above/not below or equal
JAE//NB	$\mathrm{CF}=0$	above or equal/not below
JB/JNAE	$\mathrm{CF}=1$	below/not above nor equal
JBE/JNA	$(\mathrm{CF}$ or ZF$)=1$	below or equal/not above
JC	$\mathrm{CF}=1$	carry
JE/JZ	$\mathrm{ZF}=1$	equal/zero
JG/JNLE	$((\mathrm{SF}$ xOR OF) OR ZF$)=0$	greater/not less nor equal
JGE/JNL	$(\mathrm{SF}$ xOR OF $)=0$	greater or equal/not less
JL/JNGE	(SF xor OF) $=1$	less/not greater nor equal
JLE/JNG	$((\mathrm{SF}$ xOR OF) or ZF$)=1$	less or equal/not greater
JNC	$\mathrm{CF}=0$	not carry
JNE/JNZ	$\mathrm{ZF}=0$	not equal/not zero
JNO	$\mathrm{OF}=0$	not overflow
JNP/JPO	$\mathrm{PF}=0$	not parity/parity odd
JNS	$\mathrm{SF}=0$	not sign
JO	$\mathrm{OF}=1$	overflow
JP/JPE	$\mathrm{PF}=1$	parity/parity equal
JS	$\mathrm{SF}=1$	sign

[^0]A simple program illustrates 8088 branching technique. Suppose we want to add up an array of 100 integers in memory and put the answer in a location called SUM.

Because looping is so important, the 8088 has specialized instructions for this sort of routine.

JCXZ address
JCXZ (Jump if CX equals zero) takes a conditional branch if the CX register equals zero. In the program above, "CMP CX,0" and "JG NEXT_ADD" test the CX register at the bottom of the loop. We could instead use JCXZ to test the CX register at the top of the loop, as we illustrate below. The choice between testing at the bottom versus the top of a loop is largely a matter of style. We use both styles in this book to provide you with a variety of examples. However, as a matter of good programming practice, you may want to choose one style or the other and stick with it.

	MOV	$A X=0$	iCLEAR OUT AX TO HOLD THE RUNNING SUM
	MOV	CX, 100	;PUT A COUNT INTO CX
	MOV	$B X \rightarrow 0$;USE BX AS AN INDEX REGISTER
NEXT_ADD:	JCXZ	DONE	iGO TO DONE IF CX EQUALS D
	ADD	$A X, A R R A Y[B X]$	
	ADD	$B X 72$;POINT BX AT THE NEXT ELEMENT
	DEC	CX	; SUBTRACT ONE FROM THE COUNTER
	JMP	NEXT_ADD	iGO TO NEXT_ADD
DONE:	MOV	SUM,AX	
ARRAY	DW	100 DUP(?)	
SUM	DW	?	

LOOP address

LOOP (Loop on CX) subtracts one from CX and then jumps to the address if CX is not equal to zero. Thus LOOP is like a BASIC FOR-NEXT loop with a FOR statement "FOR initial-value TO 1 STEP-1". We could further modify the original program by replacing "DEC CX", " $\mathrm{CMP} \mathrm{CX}, 0$ ", and "JG NEXT_ADD" with "LOOP NEXT_ADD".

You should be warned that the conditional jumps in Table 7-2, JCXZ, and LOOP all have one limitation. They only work when the target is within plus or minus 127 bytes. Usually, the target is close enough that the limitation isn't binding. (The assembler will warn you if the target is too far away.) Unconditional jumps (JMP) don't have this limitation, so, if you do get stuck, the solution is to write in an extra, close-by, unconditional JMP as the target of the conditional jump instruction.

8087 Branching

An 8087 comparison sets the internal 8087 condition codes. These condition codes must be transferred into the 8088 flags prior to executing a conditional jump instruction. Because the 8087 condition codes do not exactly parallel the 8088 flags, a little more programming is required following an 8087 comparison than following an 8088 comparison.

Making an 8087 -comparison based decision involves three steps.

- Execute an 8087 instruction to set the 8087 condition codes.
- Transfer the 8087 condition codes through memory and into the 8088 flags, using FSTSW and SAHF.
- Execute an 8088 branching instruction.

The 8087 processor control instruction FSTSW, store status word, stores the 8087 condition codes, among other things, into a two-byte area of memory. (FSTSW must be followed in this usage by the processor control instruction FWAIT.) After the FSTSW, the second byte of the memory area holds the condition code bits in just the right position to be loaded into an 8088 register and then dropped into the 8088 flags. The 8088 does not have four separate branching instructions corresponding to the four combinations of C3 and C0, the two condition code bits set by the 8087 comparison instructions. The 8088 instruction JB jumps if C 0 is on and JE jumps if C3 is on. Thus a fragment of code to consider all possible outcomes of the condition codes might look like this:

```
iASSUME STATUS_WORD IS A ב-BYTE AREA OF SCRATCH MEMORY
                                    DEFINED ELSEWHERE
; DO A COMPARISON TO SET CONDITION CODES
    FSTSW STATUS_WORD
    FWAIT
iNOW GET CONDITION CODES INTO FLAGS
    MOV AH, BYTE PTR STATUS_WORD+1
    SAHF
;NOU BRANCH AND TAKE ANY APPROPRIATE ACTIONS
    JB LESS_OR_NON_COMP
    JE EQUAL
iCOME HERE FOR GREATER THAN
;EQUAL: ; COME HERE FOR EQUAL
i
iLESS_OR_NON_COMP:
    JE NON_COMP
```

```
iCOME HÉRE FOR LESS THAN
iNON_COMP:
iCOME HERE FOR NON-COMPARABLE
```


Segments

The ability of the 8088 to address over a million bytes of memory provides PC owners with far greater power than was available on old 8-bit machines. The designers of the 8088 had to solve a difficult problem in order to access such a large address space. 8088 registers are 16 bits wide. 2^{16} is 64 K . Addressing a megabyte requires 20 bits. The solution is found in the 8088 segment registers.

The 8088 has four internal 16 -bit registers called segment registers. When calculating an address, the 8088 picks the value from one of the segment registers, shifts it left four places, and then adds the logical address made up from displacement and index registers. The resulting 20-bit address is called the effective address. For the most part, we ignore the segment registers. However, we sometimes need to manipulate them when dealing with subroutines. For example, the BASIC statement DEF SEG = defines the beginning of a segment.

An address is completely specified by giving both a segment location and an offset location. For example, location 100 in the data segment can be written DS:100. The assembler directives SEG and OFFSET separate a complete address back into its component parts. For example, if the complete address of A is 8000:100, then SEG A equals 8000 and OFFSET A equals 100.

The four segment registers are CS-code segment, DS—data segment, SS-stack segment, and ES--extra segment.

Since the 8088 uses an area in memory for the stack, we can choose its size. (You will remember that the 8087 stack was limited to eight items.) We need to know about the stack for two reasons. First, BASIC passes arguments to subroutines by placing each argument's address on the stack. Second, we can temporarily save small amounts of information on the stack without having to allocate extra storage.

On the 8088 , the stack segment register, SS, gives the location of the stack segment. The stack pointer register, SP, points to the top of the stack. The stack grows (upside) down in memory, progressing toward location zero as it grows. Since the stack is just an area in memory, we can access data on it with any of the usual 8088 instructions. For example, "MOV $\mathrm{BX}, \mathrm{SP}^{\prime \prime}$ and "MOV WORD PTR SS:[BX],0" will move the offset of the stack top into register $B X$ and then replace the element on top of the stack with a zero.

Usually, however, we use the stack manipulation instructions PUSH and POP.

PUSH source

PUSH (Push) subtracts two from the stack pointer, SP, and then transfers two bytes from the source into the word at SS:SP.

POP destination

POP (Pop) transfers two bytes from SS:SP to the destination and then adds two to SP. POP effectively undoes the previous PUSH.

- As an aid to manipulating data on the stack, whenever you code BP as a base register, as in " $[B P]+10$ ", the 8088 assumes you want the stack segment rather than the data segment.

Subroutine Branching and Returns

BASIC has the GOSUB and RETURN. The 8088 has CALL and RET. We describe the 8088 calling and returning mechanism here. The next chapter treats the BASIC-to-8088/8087 routine-calling mechanism in depth.

CALL far-procedure-name
CALL near-procedure-name
CALL (Call a subroutine) is actually two instructions: one for calling subroutines in another segment, CALL far; and one for calling subroutines within the current code segment, CALL near. BASIC always uses a far CALL. Near CALLs are used in writing relocatable subroutines.

CALL far pushes CS and IP (the instruction pointer, which holds the address of the next instruction) onto the stack. The address of the code segment of the subroutine and the location of the subroutine within the segment are taken from the procedure-name argument. (The assembler fills these in automatically.) CS is set to the address of the new code segment and execution begins at the beginning of the new subroutine.

These conventions should sound a bit familiar to anyone who has called a machine language routine from BASIC. The DEF SEG = statement tells BASIC what value to load into CS. The command CALL SUB() tells BASIC to do an 8088 CALL to location SUB in the new code segment.

CALL near pushs IP onto the stack and jumps to the location given as the procedure name.

RET immediate-operand

RET (Return) effectively undoes a CALL. The assembler codes a RET to undo either a far CALL or a near CALL, depending on whether the current procedure is marked FAR or NEAR. (See Assembler Directives below.) In a FAR return, the top two words are popped off the stack. The first gives the address of the next instruction and the second a new value for CS. In a NEAR return, one word is popped off the stack and
then used as the address of the next instruction. In either case, "im-mediate-operand"' additional bytes are popped off the stack. (The stack operates on words, not bytes. However, addresses are always specified in bytes. So, to pop one extra word, code "RET 2".) The immediateoperand is optional.
Note that PUSH/POP and CALL/RET are matched pairs, much like FOR/NEXT or WHILE/WEND in BASIC or parentheses in mathematics. If the pairing is mismatched, things go very wrong.

Assembler Directives

Assembler directives aren't actually 8088 instructions. Rather, they supply the assembler program with necessary information. We've already met some of the most important assembler instructions above under "Labels and Data Definition." The other important directives follow:

label SEGMENT ‘class’

label ENDS

SEGMENT and ENDS (END Segment) define the enclosed series of code or data definitions to be a segment named "label". The segment may optionally be given a "class" in single quotes. Because some software looks for the class of a segment, it is a good idea to give a code segment the class 'CODE' and a data segment the class 'DATA'.

ASSUME CS:segment-label1,DS:segment-label2, SS:segment-label3,ES:segment-label4
ASSUME promises the assembler that the segment registers will contain the indicated segment addresses. (It's the programmer's responsibility to see to it that the promise is kept at execution time.) Since a section of code always has a code segment, "CS:. . ." must always be present, the three remaining ASSUME specifications appear as needed.

label PROC FAR

label ENDP
PROC (PROCedure) and ENDP (END Procedure) mark the boundaries of a procedure just as SEGMENT and ENDS mark the boundaries of a segment. FAR signals the assembler that the procedure will be called with a CALL FAR instruction. When the assembler sees a RETurn in-
struction, it generates a RET FAR. (For a NEAR procedure, which you can't call from BASIC, code NEAR in place of FAR).

PUBLIC symbol
EXTRN name:type
PUBLIC and EXTRN (EXTeRNal) are used to supply information necessary for linking together separately assembled or compiled programs. Information about a symbol defined to be PUBLIC is made available to other programs. EXTRN tells the assembler to treat "name," which has been defined in another program, as being of type "type." The following example shows the most common use of PUBLIC and EXTRN.
program1
PUBLIC LABEL1
LABEL1 PROC FAR
-
-
-
LABEL1 ENDP
program2
EXTRN LABEL1:FAR
CALL LABEL1
Any label declared PUBLIC can be accessed by any program declaring the same name to be EXTRN. A label which is to be used by separately assembled programs should be declared PUBLIC. The declaration should be made exactly once, in the program where the label is defined. Any number of other programs may declare the label EXTRN. In particular, the name of an assembly language procedure should be declared PUBLIC if the procedure is to be called as a BASIC subroutine.

SEGMENT/ENDS and PROC/ENDP are also matched pairs. Since these directives carry labels, the assembler will probably catch the error if you omit a half of either pair.

END

END marks the end of the entire assembly language program.
This chapter has been heavy on required detail. In Chapter 8, we put this detail to work writing real 8087 programs.

BASIC and the 8087

Assembly language subroutines, in combination with BASIC programs, join the convenience of a high-level language with the speed of the 8087. In this chapter, we discuss the software conventions that must be observed in writing the 8087 routines. (If you want to use the 8087 procedures in this book for languages other than Microsoft BASIC, you may have to observe different conventions.)

Calling a Subroutine

Calling a subroutine requires three tasks. First, we have to set up a list of arguments that can be retrieved by the subroutine. Second, we have to store away a return address in a place the subroutine can find. Third, we jump to the subroutine. The CALL instruction takes care of the latter two tasks. The first is accomplished by pushing the addresses of the arguments onto the 8088 stack.

Calling a subroutine is most easily explained with an illustration. Suppose we wanted to imitate the following BASIC code:

```
DEF SEG=&H1800
SUB=0
CALL SUB(A(0);SUM`N)
```

We could use the following 8088 program:
ASSUME CS:CSEG,DS:DATA_SEGMENTiSS:STACK_SEGMENT il
CSEG SEGMENT'CODE' i己
MOV AX,DATA_SEGMENT iMOVE ADDRESS OF DATA i3 SEGMENT
MOV DSIAX \quad THROUGH AX INTO DS
MOV AX,STACK_SEGMENT MMOVE ADDRESS OF STACK i5 SEGMENT
iTHROUGH AX INTO SS ib
iSET SP TO STACK TOP i?
iPUSH ADDRESS OF A ia
iONTO STACK iq

1. ASSUME CS ASSUME promises the assembler we will set up the segment registers appropriately.
2. CSEG SEGMENT 'CODE'. Tell the assembler we are beginning the code segment.
3-4. MOV AX, DATA_SEGMENT and MOV DS,AX. Put the address of the data segment into the data segment register, by transferring it through the $A X$ register. We require two steps because the MOV.instruction allows immediate operands, like an address, to be moved into memory or a general register, but not into a segment register.
5-6. MOV AX, STACK_SEGMENT and MOV SS,AX. Put the address of the stack segment into the stack segment register.

Note that we do not have to load the code segment register. Someone else must have already done this for us since we can't execute code to load the code segment register, or to do anything else, until the code segment register is loaded. The program that calls our subroutine is responsible for loading CSEG into CS. (And how does that program get CS loaded? And the one that calls it? The operating system initially loads the CS register when it first calls BASIC (or whatever). The CS value for the operating system is wired into the hardware.)
7. MOV SP,OFFSET STACK_TOP. Set the stack pointer register to point to the memory location after the end of the stack area. We could have written "MOV SP,STACK_AREA + 200" with identical results. But by doing it this way, the assembler will load the correct address for the stack top even if we decide to change the size of the stack in line 22.
8 -9. mov ax offset a and push ax. We now push the addresses of the arguments onto the stack, in the order of appearance in the CALL statement. Since PUSH does not allow an immediate operand, we have to go again though a general register. The
assembler directive "OFFSET" tells the assembler to load the address of A rather than the value of the number stored in A. ("OFFSET" means use the address relative to the beginning of the segment.) The convention of passing the address of an argument, instead of its value or its name, is sometimes called a "call by address."
10-13. MOV aX, OfFSET SUM and Push ax and mov ax, OfFSET n and PUSH AX. The addresses of SUM and N are pushed in a similar manner. Notice that no distinction is made between a scalar variable and the first word of an array.
14. CALL FAR PTR $1800 H:$. CALL a FAR procedure. The current contents of the CS register and the Instruction Pointer (the address NEXT_LOCATION) are pushed onto the stack. Then CS is set to 1800 H . (" H " indicates hexadecimal to the assembler just as " $\& H^{\prime}$ " does to BASIC. Hex addresses start with a digit, not a letter; for example, 0 AH , not AH, so that the assembler can distinguish a number from a name.) The program then jumps to location 0 in a code segment beginning at 18000 H . (Remember that segment registers always have four zero bits added at the right.)
15. CSEG ENDS. Tell the assembler we are ending the code segment.
16. data_segment segment 'data'. Tell the assembler we are beginning the data segment. The compiler is smart enough to know that "OFFSET A" is an address in the data segment and that OFFSET STACK_TOP is an address in the stack segment.
17. A Dw 1000 DUP (?). Set aside 1000 uninitialized words for A.
18. SUM DW ?. Set aside one uninitialized word for SUM.
19. N DW 1000 . Set aside one word for N , initialized to 1000 .
20. data_segment ends. End the data segment.
21. STACK_SEGMENT SEGMENT 'STACK'. Begin the stack segment.
22. STACK_AREA DW 100 DUP (?). Set aside 100 words for the stack.
23. STACK_TOP EQU THIS WORD. STACK_TOP is equivalent to the address appearing after the 100 words allocated for the STACK_AREA.
24. STACK_SEGMENT ENDS. End the stack segment.
25. END. End the program.

The receiving subroutine finds the DS and SS registers pointing to the data and stack segments defined above. The CS register points to 1800 hex. Most of the important information appears on the stack, which is shown in Figure 8.1. Remember that the 8088 stack actually grows upside down in memory, so that as we push addresses onto the stack, SP moves toward zero. Since we have pushed five words onto the stack (three argument addresses, CS, and NEXT_LOCATION), SP equals $\left(S T A C K _A R E A+200\right)-10$.

STACK_AREA+198

STACK_AREA+190

OFFSET A
OFFSET SUM
OFFSET N
CSEG
NEXT_LOCATION
-
-

Figure 8.1. Memory stack after subroutine call.

Acting Like a Called Subroutine

Machine language subroutines called from BASIC must obey a number of rules. The important ones are:

- At entry, CS is set according to the last DEF SEG. The other segment registers point to the beginning of BASIC's data area.
- At exit, all segment registers and registers SP and BP should hold their original values. The other registers, and the flags, may be changed.
- BASIC promises that the stack pointed to by SP will have eight free words. If the subroutine needs a larger stack, it must set up its own.
- The subroutine must pop the argument addresses off the stack before returning.
Let's write a subroutine, to add up an array of integers, in a form that could be called by the code sequence appearing in the preceding section.

	PUBLIC SUB				; 1
	ASSUME CS:CSEG				i2
CSEG	SEGMENT 'CODE'				i3
SUB	PROC	FAR			; 4
	PUSH	BP	iSA	BP	; 5
	MOV	$B P, S P$; $F 1$	ARGUMENT LIST	ib
	MOV	$B X_{7}[B P]+10$; $A D$	EESS A	; 7
	MOV	$S I \sim[B P]+6$; $A D$	EESS N	¢8
	MOV	CX, [SI]	; CX	ETS N	79
	MOV	$A X \rightarrow 0$; CL	R AX	ill
ADD_LOOP:					;1]
	ADD	AXTWORD PTR	[BX]	; $A D D$ A[BX]	: 12
	$A D D$	$B X=2$; NEXT ELEMENT	i13
	LOOP	ADD_LOOP		:DO IT AGAIN	;14

	MOV	DIs $[B P]+8$;ADDRESS SUM	i ${ }^{1} 5$
	MOV	[DI], $A X$;STORE SUM	;17
	POP	$B P$:RESTORE BP	ilf
	RET	b	iRETURN	;18
SUB	ENDP			; 19
CSEG	ENDS			; 20
	END			; 2

1-3. The public, assume, and segment statements supply the usual information to the assembler.
4. PROC FAR tells the assembler that this routine will be called with a FAR CALL; information needed to generate the proper type of return instruction in line 18.
5. PUSH BP. Save the value of the BP register by pushing it onto the stack for later retrieval. Note this instruction subtracts two from SP, so SP now equals STACK_AREA +188.
6. MOV BP, SP. Copy the stack pointer, $S P$, into $B P$. The instructions that follow retrieve information from the stack. BP can serve as a base register, as in [BP], while SP cannot.
7. $\operatorname{MOV} \mathrm{BX}_{1}[\mathrm{BP}]+10$. Copy the contents of $[\mathrm{BP}]+10$ into $B X$. Since BP equals STACK_AREA $+188,[$ BP $]+10$ is STACK_AREA +198. STACK_AREA +198 holds OFFSET A, so after this instruction $B X$ holds the address of the first word of A.
8. MOV SI, $[\mathrm{BP}]+\mathrm{b}$. By the same logic, move the address of N into SI.
9. MOV $\mathrm{CX},[\mathrm{SI}]$. Now move the value of N into the count register, CX.
10. MOV $A X, D$. Clear out the accumulator, $A X$.
11. ADD_LOOP: . Label the top of the loop. Notice that this loop does not worry about errors such as negative or zero N nor about the accumulator overflowing. (Not very good programming practice!)
12. $A D D A X,[B X]$. Adds the element of A currently pointed to it by BX into AX . The first time through, this is $\mathrm{A}(0)$; the second time, $\mathrm{A}(1)$; and so forth.
13. $A D D B X, 2$. Increment $B X$ by 2 so it points to the next word.
14. LOOP ADD_LOOP. Decrements the count register and jump back up to the top of ADD_LOOP if we haven't run the count down to zero.
15. MOV DI, $[B P]+B$. Move the address of SUM into DI.
16. MOV [DI],AX. Move the contents of AX into the address pointed at by the DI register, that is, into SUM.
17. POP BP. Now restore the original value of BP. Also, add two to SP.
18. RET b. Set the Instruction Pointer to point to NEXT_LOCATION and set CS equal to CSEG, in the process add four to SP. Add the optional pop value to SP. Now SP equals STACK_AREA + 200, as it did before the subroutine was called.

19-21. SUB ENDP and CSEG ENDS and END. Tell the assembler to close up the procedure, segment, and program.
In coding the subroutine, a pattern appears.

- If the subroutine is called with " n " arguments, then the address of argument " i " is stored in $[\mathrm{BP}]+6+2^{*}(\mathrm{n}-\mathrm{i})$. In other words, the right-most argument has its address stored at $[\mathrm{BP}]+6$; the right-most-but-one is at $[\mathrm{BP}]+8$; one further to the left is at $[\mathrm{BP}]+10$; and so forth. (These addresses are valid after we set BP, as in lines 5 and 6, with a PUSH and a MOV.)
- It takes one instruction to retrieve the address of the argument; two to retrieve the argument's value.
- The last instruction should be RET $2^{*} n$, where n is the number of arguments.

Subroutine Relocation and Segment Addressing

The BASIC command BLOAD allows us to load a subroutine at any memory location. It is therefore highly desirable that our 8087 routines be dynamically relocatable. We can run into difficulty if the segment addresses at which a routine is initially loaded (see "Loading A Subroutine into Interpreted BASIC") differ from those at which we later BLOAD the routine. Dynamic relocation is automatic for programs which do not explicitly reference segment locations, but is somewhat more complicated otherwise.

For the purposes of this discussion, suppose we had initially loaded SUB with DEF SEG $=\& H 1800$ and then BSAVED it from this location with an offset of zero.

Suppose we now load SUB back in at DEF SEG $=\& H 1900$. When BASIC calls SUB, it sets the code segment register to \&H1900 and the instruction pointer to zero. Execution procedes correctly.

Suppose instead that we load SUB at DEF SEG $=\& H 1900$ and offset 125. SUB "thinks" it will find the first instruction at offset zero in the code segment. Actually, the first instruction is at offset 125. However, when we call SUB we specify the offset. BASIC sets the instruction pointer to 125 . All the instructions we have used, though not every instruction the 8088 knows, operates relative to the instruction pointer. SUB still executes correctly.

SUB is fully relocatable. What sort of subroutine isn't? Unfortunately, any subroutine that explicitly contains a value for a segment register is not relocatable, since the segment may end up at some other memory location than the one originally specified. This is particularly a problem when we define a data, extra, or stack segment inside a routine.

Consider the following, not very useful routine.
EXTRA_SEG SEGMENT 'DATA' il
FOOLISH DW? i2
EXTRA_SEG ENDS ; 3
;SUBROUTINE SILLY(JUNK\%) PUBLIC SILLY i4
ASSUME CS:CSEG,ES:EXTRA_SEG ; 5
CSEG SEGMENT 'CODE' ib
SILLY PROC FAR i?
PUSH BP i8
MOVE BPiSP i9
PUSH ES ;POINT ES ill
MOVE AX,EXTRA_SEG :AT ill
MOVE ESTAX iEXTRA SEGMENT ile
MOVE AX,FOOLISH iRETURN WHATEVER ill
MOVE DI?[BP]+b ;NUMBER WAS il4
MOVE [DI],AX iLYING AROUND ils
POP ES ilb
POP BP il?
RET 2 ils
SILLY ENDP il9
CSEG ENDS i20
END i2l

This subroutine references the extra segment (if not to any good purpose). Instructions 1-9 and 14-21 are standard. Lines 10, 11, and 12 save ES on the stack and then load the address of EXTRA_SEG into ES. Line 13 copies FOOLISH. (Note that the assembler should be smart enough to use ES to reference FOOLISH.) Subroutine SILLY will work if loaded and used at one location, since the loader will figure out the value for EXTRA SEG. However, if we relocate SILLY, EXTRA_SEG will no longer be at its original location, and unpredictable consequences may ensue.

We can make SILLY relocatable by having the subroutine figure out for itself how far it's been moved from its original location. The subroutine "thinks" it begins at location 16^{*} CSEG. In truth, when BLOADed by interpreted BASIC, SILLY begins at 16^{*} DEF SEG + offset. Similarly, the subroutine thinks the extra segment begins at 16*EXTRA_SEG, while it actually begins at 16^{*} EXTRA_SEG $+\left(16^{*}\right.$ DEF SEG + offset -16^{*} CSEG $)$. We can use this relation to correctly load segment registers. Life is complicated a slight bit more because the only way to find "offset" is by examining the value of the instruction pointer at entry.

The following subroutine, SMART, will work correctly, as long as the code segment and extra segment are loaded together at a memory location that is an even multiple of 16.
EXTRA_SEG SEGMENT 'DATA' il
FOOLISH DW? ; 2
EXTRA_SEG ENDS i 3
iSUBROUTINE SMART(JUNK\%)
PUBLIC SMART ; 4
ASSUME CS:CSEG,ES:EXTRA_SEG ; 5
CSEG SEGMENT 'CODE' ib
FIRST_INSTEQU THIS WORD i?
SMART PROC FAR is
PUSH BP $i 9$
MOV BPiSP ill
PUSH ES ill
CALL NEXT ill
NEXT: POP AX il3
SUB $A X$, (OFFSET NEXT)-(OFFSET FIRST_INST) il4
MOV CLi4 ils
SHR $A X, C L$ ilb
MOV $B X T C S$ il?
ADD BX,EXTRA_SEG ill
SUB BX,CSEG il 1
ADD AX,BX i20
MOV ES,AX iᄅl
MOV AX,FOOLISH ;22
MOV DI,[BP]+b i23
MOV [DI],AX i24
POP ES i25
POP BP i2b
RET 己 i27
SMART ENDP i28
CSEG ENDS i29
END ; 30

Lines 1-6, 8-10, 22-24, and 27-30 are standard.
7. FIRST_INST EQU THIS WORD. Define the location of the first instruction in the code segment to be FIRST_INST. (FIRST_INST equals zero here.)
11. PUSH ES. Save ES on the stack. Note we don't change BP so argument references don't change.
12-13. CALL NEXT and NEXT: POP AX. This is a devious way to retrieve the instruction pointer. CALL pushs IP onto the stack. (The instruction pointer will point to the true offset of NEXT, no matter where the routine is located.) POP pops the stack into AX. Now AX holds the true offset of NEXT.
14. SUB AX, (OFFSET NEXT)-(OFFSET FIRST_INST). Now we subtract the expected offset of NEXT from the true offset. AX now holds the number of bytes by which the offset of SMART has changed as compared to the position at which it was originally loaded.

15-16. MOV CL, 4 and SHR AX ${ }^{\text {C CL. Divide }} \mathrm{AX}$ by 16 since we are going to set a segment register. Notice that if the program was relocated by any number other than an even multiple of 16, the program will bomb in an unpredictable manner. Nor will any other method work, since the 8088 requires segments to be placed at addresses that are even multiples of 16.
17-19. mov BX,CS and ADD BX, EXTRA_SEG and SUB bX,CSEG. Figure out how far the code segment has been displaced from its original location and how far the extra segment is from the code segment.
20-21. ADD $A X, B X$ and MOV ES, $A X$. Combine the offset and segment correction and set ES.
25. POP ES. Restore ES before leaving the routine.

While all this manipulation is a bit of a nuisance, it is worth the extra trouble to be able to more easily load subroutines into BASIC. If you only use a compiler, then relocation is handled by the LINK program and this extra code is unnecessary.

Loading Assembly Language Programs

At the end of the chapter, we show two complete interactive sessions in which SMART is used in a BASIC program: one session for the interpreted BASIC built into the IBM Personal Computer and one session for IBM's BASIC compiler. The remainder of this chapter describes the general steps involved. These procedures focus more specifically than most of the material in the book on the IBM Personal Computer running PCDOS. If you have a different machine or different software (especially if you are not using Microsoft software), you may have to adjust these procedures somewhat.

Loading a Routine Into Interpreted BASIC

The assembler transforms an $8087 / 8088$ source program into an object module. Several further steps are required to get the routine into a form suitable for BLOADing into BASIC. These steps involve running the program through the LINKer, through DEBUG, and finally through BASIC. Suppose we begin with a program held in file FOO.ASM.

The ASSEMBLER replaces the instructions and (most) addresses with their binary representation and creates a file FOO.OBJ.

LINK is able to combine several different object files. It creates FOO.EXE.
We use DEBUG to load FOO.EXE. DEBUG figures out the actual memory address at which each segment begins. We can also ask DEBUG to tell us where the program begins.

Finally, we use BASIC to BSAVE the routine. Once the routine is BSAVED, we can BLOAD it whenever desired.

The exact procedure for getting from FOO.ASM to the BSAVEd version is described in Appendix C of the IBM PC BASIC manual. (The descriptions of LINK and DEBUG in the DOS manual supply some additional information.) The exact procedure may vary according to which version of DOS and BASIC you use. The steps described below usually work for the author.

1. Assemble FOO.ASM. (Be warned that the assembler occasionally produces erroneous error messages.)
2. Link FOO.OBJ. Tell the linker to load HIGH (LOW is the default). Get a MAP file from LINK so that you can find the total length of the output file, FOO.EXE. If FOO doesn't have a stack segment, LINK will report its absence as an error. Ignore this message.
3. Enter the DEBUGer with DEBUG BASIC.COM.
4. Type " r " to examine the registers. Copy down the values of CS , SS, IP, and SP.
5. Enter "N FOO.EXE". Type "L". This tells DEBUG to load your routine.
6. Type " r " again. Copy down the new values of CS and IP.
7. Restore SS and SP by using the " r " command. Enter "RSS". The computer will tell you the current value of SS. Respond by entering the value of SS you copied down in step 4. Now enter "RSP" and respond to the computer with the value of SP from step 4.
8. Enter " $\mathrm{g}=\mathrm{CS}: I \mathrm{IP}$ " where CS and IP are replaced by the values copied down in step 4.
9. BASIC should start up now, possibly with an irrelevant warning about a DIRECT STATEMENT IN FILE. Execute DEF SEG = cs, where cs is the value of CS copied down in step 6. Execute a BSAVE filespec,offset,length command; where filespec gives the name of the file in which you wish to save the routine, offset is the value of IP from step 6, and length is the length in bytes of FOO.
From now on, to use FOO from BASIC just do a "DEF SEG=" and "BLOAD filespec".

Loading a Routine Into Compiled BASIC

Combining an assembled program with the output of the PC-BASIC compiler is considerably easier than loading the program into interpreted BASIC.

1. Assemble FOO.ASM. Include subroutine names in a PUBLIC statement.
2. Compile the BASIC program. Omit DEF SEG and BLOAD statements. You need not worry about the location of the subroutine in memory.
3. LINK the output of the BASIC compiler together with FOO.
4. Execute the ".EXE" module.

Interactive Session for Interpreted BASIC

Assume that the routine SMART is in file FOO.ASM on disk B:. The following BASIC program is in a file USEFOO.BAS, also on disk B:.

```
10 DEF SEG=&Hl8OD
20 BLOAD "B:FOO.SAV",D
30 SMART%=0
40 FOOLISH%=9999
50 PRINT FOOLISH%
GO CALL SMART%(FOOLISH%)
7O PRINT FOOLISH%
OD END
```

A sample interactive session for loading FOO into interpreted BASIC follows. Your responses have been underlined.

```
B>A:MASMi
```

THE IBM PERSONAL COMPUTER MACRO ASSEMBLER
VERSION 1. OD (C)COPYRIGHT IBM CORP lq\&l
0004 ES 0007 R
CALL NEXT
ill
ERROR ---

0004 EA 0007 R
CALL NEXT
ERROR ---
bu: NEAR JMP/CALL TO DIFFERENT CS
WARNING SEVERE
ERRORS ERRORS
O b
BaA: LINK

```
IBM PERSONAL COMPUTER LINKER
VERSION 1.1O (C)COPYRIGHT IBM CORP 1982
```

OBJECT MODULES [.OBJ]:FOO/HIGH/MAP
RUN RILE [FOO.EXE]:
LIST FILE [NUL.MAP]: FOO:
WARNING: NO STACK SEGMENT
THERE WAS 1 ERROR DETECTED.
B \quad TYPE FOO. MAP
LOADING HIGH
LOADING HIGH
WARNING: NO STACK SEGMENT

ADDRESS PUBLICS BY NAME

Interactive Session For Compiled BASIC

Assume that the routine SMART is in file FOO.ASM on disk B:. The following BASIC program is in a file USEFOO.BAS, also on disk B:.

10 FOOLISH\%=9१११
20 PRINT FOOLISH\%
30 CALL SMART(FOOLISH\%)

40 PRINT FOOLISH\%
50 END
A sample interactive session for loading FOO into compiled BASIC follows. Your responses have been underlined.
$B>A: M A S M$;
THE IBM PERSONAL COMPUTER MACRO ASSEMBLER VERSION 1. OO (C)COPYRIGHT IBM CORP 1q8l

ERRORS ERRORS

- l
$B>A: B A S C O M$ USEFOOi $\longleftarrow<$ The screen chare here
IBM PERSONAL COMPUTER BASIC COMPILER
(C)COPYRIGHT IBM CORP 1982 VERSION 1.00
(C)COPYRIGHT MICROSOFT, INC. 1982

22l5l BYTES AVAILABLE
22032 BYTES FREE
O WARNING ERROR (S)

- SEVERE ERROR (S)

B $>$ A:LINK USEFOO FOOD
IBM PERSONAL COMPUTER LINKER
VERSION 1.1O (C)COPYRIGHT IBM CORP 1982
B CUSEF 00
9979
0

Simple 8087 Routines

Several fairly simple 8087 routines are presented in this chapter. The purpose of the presentation is twofold. First, the routines themselves are quite useful. For example, our first program can be called from BASIC to add up a series of numbers. Second, we illustrate a number of principles of 8087 subroutine programming including:

- Indexing through a single array.
- Using single precision and double precision arithmetic.
- Indexing through multiple arrays.

The Cookbook—Chapter 9

Program: SUM

Purpose: Sums up a single precision array.
Call: CALL SUM(ARRAY(0),N,DSUM).
Input: ARRAY-single precision array.
N -integer number of elements of ARRAY.
Output: DSUM-double precision sum of ARRAY.
Language: 8087/8088 assembly language.
Program: PRODUCT
Purpose: Product of elements of a single precision array.
Call:
Input:
Output: DPRODUCT-double precision product of ARRAY.
Language: \quad 8087/8088 assembly language.
Program: GSUM
Purpose: Sums up an integer, single, or double precision array.
Call: \quad CALL GSUM(ARRAY(0),TYPE,N,SUM).
Input:
ARRAY-array to be summed.
TYPE-integer variable giving the length of one element of ARRAY

Output: Language:	N -integer number of elements of ARRAY.
	SUM-double precision sum of ARRAY.
	8087/8088 assembly language.
Program:	VADD
Purpose:	Adds two single precision vectors.
Call:	CALL VADD ($\mathrm{A}(0), \mathrm{B}(0), \mathrm{C}(0), \mathrm{N})$.
Input:	A-input array.
	B-input array.
	N --integer number of elements of $\mathrm{A}, \mathrm{B}, \mathrm{C}$.
Output:	C -output array, $\mathrm{C}=\mathrm{A}+\mathrm{B}$.
Language:	8087/8088 assembly language.
Program:	VADD3
Purpose:	Adds three single precision vectors.
Call:	CALL VADD3(A(0), $\mathrm{B}(0), \mathrm{C}(0), \mathrm{D}(0), \mathrm{N})$.
Input:	A-input array.
	B-input array.
	C-input array.
	N -integer number of elements of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$.
Output:	D-output array, $C=A+B+D$.
Language:	8087/8088 assembly language.
Program:	VSET
Purpose:	Sets array to a constant.
Call:	CALL VSET(A(0),SCALAR,N).
Input:	SCALAR-single precision constant.
	N -integer number of elements of A .
Output:	A-output array, $\mathrm{A}=$ SCALAR.
Language:	8087/8088 assembly language.
Program:	ADDSC
Purpose:	Adds scalar to single precision array.
Call:	CALL ADDSC(A(0),SCALAR,B(0),N).
Input:	A-input array.
	SCALAR-single precision constant.
	N -integer number of elements of A .
Output:	B-output array, $B=A+S C A L A R . ~$
Language:	8087/8088 assembly language.
Program:	SQRT
Purpose:	Takes square root of vector.
Call:	CALL SQRT(A(0), B(0),N).
Input:	A-input array.
	N -integer number of elements of A, B.
Output:	B-output array, $B=S Q R(A)$.
Language:	8087/8088 assembly language.
Program:	GCOPY
Purpose:	Copies integer, single, or double precision array.
Call:	CALL GCOPY(A(0), B(0),TYPE,N).

Input:	A-input array. TYPE-integer giving length of element of A. N -integer number of elements of A, B.
Output:	B -output array, $\mathrm{B}=\mathrm{A}$.
Language:	8087/8088 assembly language.
Program:	GBCOPY
Purpose:	Copies integer, single, or double precision array, backwards.
Call:	CALL GBCOPY(A(0), B(0),TYPE,N).
Input:	A-input array.
	TYPE-integer giving length of element of A.
	N -integer number of elements of A, B.
Output:	B-output array, $\mathrm{B}=\mathrm{A}$.
Language:	8088 assembly language.
Program:	GADDSAFR
Purpose:	Adds two vectors, with error checking.
Call:	CALL GADDSAFR(A(0), B(0),C(0),TYPEA,TYPEB, TYPEC,N,IER).
Input:	A-input array.
	B-input array.
	TYPEA-integer giving length of element of A.
	TYPEB-integer giving length of element of B.
	TYPEC-integer giving length of element of C.
	N -integer number of elements of $\mathrm{A}, \mathrm{B}, \mathrm{C}$.
Output:	C -output array, $\mathrm{C}=\mathrm{A}+\mathrm{B}$.
	IER-integer error indicator.
Language:	8087/8088 assembly language.
Program: Purpose: Call:	REALERR
	Check array for invalid data.
	CALL REALERR(ARRAY(0),TYPE,N,IFDEN,IFINF, IFNAN,ELEMENT).
Input:	ARRAY-input array (single or double precision).
	TYPE-integer giving length of element of ARRAY.
	N -integer number of elements of ARRAY.
Output:	IFDEN-integer (-1 if denormal found).
	IFINF-integer (-1 if infinity found).
	IFNAN-integer (-1 if Not-A-Normal found).
	ELEMENT-integer, index of last invalid data.
Language:	8087/8088 assembly language.
Program:	DENTO0
Purpose:	Replace denormal values with zero.
Call:	CALL DENTOO(ARRAY(0),TYPE,N).
Input:	ARRAY-input array (single or double precision).
	TYPE-integer giving length of element of ARRAY.
	N -integer number of elements of ARRAY.

Output: \quad ARRAY-denormals replaced with 0.
Language: $\quad 8087 / 8088$ assembly language.

Array Indexing

Our first 8087 subroutine sums a series of numbers and returns their total. Assuming that a single precision array named ARRAY, dimensioned ARRAY($\mathrm{N}-1$), has been defined elsewhere, that N has been set equal to the number of elements of ARRAY, and that DSUM is a double precision variable, a BASIC instruction sequence might look like this:

```
10 DSUM=0
20 FOR I=0 TO N-I
30 DSUM=DSUM+ARRAY(I)
4 0 ~ N E X T ~ I ~
```

An equivalent 8087 routine appears below. Assuming the routine has been loaded into memory at the location SUM, we could call it from BASIC with the instruction

10 (ALL SUM(ARRAY(O) N, DSUM)
The 8087 routine has three logical sections. First, it must accept the information passed to it from BASIC. Secondly, the routine calculates the sum of the array elements. Third, the answer is passed back into the BASIC variable DSUM. Notice that we execute an FWAIT before returning from the subroutine. The FWAIT guarantees that the sum will have reached memory before the calling program attempts to access it.

```
;SUBROUTINE SUM(ARRAY,N,DSUM)
; ASSUMPTIONS: ARRAY IS A SINGLE PRECISION ARRAY OF LENGTH N
    N IS AN INTEGER
i DSUM IS DOUBLE PRECISION
```

;
PUBLIC SUM
CSEG SEGMENT 'CODE'
ASSUME CS:CSEG
SUM PROC FAR
PUSH BP
MOV $B P, S P$
MOV $B X,[B P]+1 \square \quad$ i $B X=A D D R(A R R A Y)$
MOV $\quad S I_{i}[B P]+8 \quad$ iSI=ADDR(N)
MOV CXT[SI] $\quad i C X=N$
;
iNOW ALL SET UP TO GO
FLDZ \quad iINITIALIZE $S T=0$
CMP CX,OH \quad iHOPE $N>0$
;THE NEXT 3 INSTRUCTIONS DO ALL THE HARD WORK

ADD_LOOP:	FADD	DUORD PTR [BX]	$\begin{aligned} & \text { iDWORD=> SINGLE } \\ & \text { PRECISION } \end{aligned}$
	ADD	BX, 4	iREADY FOR NEXT ELEMENT
	LOOP	ADD_LOOP	
DONE:			
1			
;NOU FILE	ANSUER	BACK IN DSUM	
	MOV	DI, $[\mathrm{BP}]+6$; DI=ADDR(DSUM)
	FSTP	QUORD PTR [DI]	; QUORD ${ }^{\text {P }}$ (DOUBLE
			PRECISION
			idSUM IS NOW PUT AWAY
	POP	BP	
	FWAIT		;BE SURE 8087 IS DONE
	RET	b	
SUM	ENDP		
CSEG	ENDS		
	END		

How long does the addition routine take? Essentially, all the execution time is in the three-instruction "ADD_LOOP." (Calling the subroutine from BASIC, and the beginning and end of the routine obviously takes a little time. But this overhead time is inconsequential for large N .)

The FADD instruction takes approximately 25 microseconds. The ADD instruction uses approximately 1 microsecond. The LOOP instruction requires about 4 microseconds. Thus the routine should take about 30 microseconds per array element. Right?

Wrong, actually. The 8087 and 8088 run in parallel. So, while the 8087 is adding one number, the 8088 is adding to the BX register, decrementing the count in register CX, testing CX, and looping back up. Hence, the routine takes about 25 microseconds per element. Adding 10,000 single precision numbers takes just under one-fourth of a second. How long would a comparable BASIC routine take? Without the 8087 , about 46 seconds.

In addition to the speed advantage, the 8087 produces a more accurate answer because it accumulates in 80 -bit temporary real format rather than 64-bit double precision.

SUM is quite a useful subroutine. Of more general importance, SUM illustrates how to write a routine that indexes through a single array. We use a three-part trick. First we load the address of the array into a convenient base or index register (we could have used SI or DI instead of $B X$) and the count into the CX register. Second, we add four to BX (and so forth) at each step. Third, we use the LOOP instruction to count off the steps.

Operations other than addition are easily written using the same procedure. For example, to take the product of an array of numbers we could do:

```
    10 DPRODUCT=1
    20 FOR I=0 TO N-I
    30 DPRODUCT=DPRODUCT*ARRAY(I)
    4 0 ~ N E X T ~ I ~
or:
    ;SUBROUTINE PRODUCT(ARRAY,N,DPRODUCT)
; ASSUMPTIONS: ARRAY IS A SINGLE PRECISION ARRAY OF LENGTH N
                        N IS AN INTEGER
                        DPRODUCT IS DOUBLE PRECISION
PUBLIC PRODUCT
CSEG SEGMENT 'CODE'
    ASSUME CS:CSEG
PRODUCT PROC FAR
    PUSH BP
    MOV BP,SP
    MOV BX,[BP]+1D ;BX=ADDR(ARRAY)
    MOV SI\imath[BP]+8 iSI=ADDR(N)
    MOV CX,[SI] ;CX=N
i
;NOW ALL SET UP TO GO
    FLDl iINITIALIZE ST=]
    ;FLDl PUSHES A ln JUST AS
    iFLDZ PUSHES A D
    CMP CX,OH ;HOPE N > O
    JLE DONE iIF NOT, RETURN l
MULT_LOOP: FMUL DWORD PTR [BX]
    ADD BX,4 ;READY FOR NEXT ELEMENT
    LOOP MULT_LOOP
DONE:
;
iNOU FILE ANSUER BACK IN PRODUCT
\begin{tabular}{llll} 
& MOV & DI?[BP]+b & iDI=ADDR(DPRODUCT) \\
& FSTP & QWORD PTR [DI] & iPRODUCT IS NOW PUT AWAY \\
& POP & BP & \\
& FWAIT & & \\
RRODUCT & RET & \(b\) & \\
CSEG & ENDP & & \\
& ENDS & & \\
& END & &
\end{tabular}
```

The FMUL instruction takes approximately 29 microseconds. Multiplying 10,000 single precision numbers takes just over one-fourth of a second. A comparable BASIC routine takes about 56 seconds. Accuracy of the 8087 PRODUCT subroutine will, under some circumstances, considerably exceed the accuracy of the equivalent BASIC code. The 8087 temporary real exponent allows a much greater range than the double precision exponent, so intermediate overflows or underflows are much less likely to occur with the 8087 routine.

Double Precision Arguments

The choice between single precision and double precision arithmetic requires a tradeoff between accuracy and memory space. Double precision numbers take up twice as much space as single precision numbers, but are somewhat more than twice as accurate. Good numerical programming practice dictates using double precision throughout. Unfortunately, because of storage limitations this is rarely practical. In fact, there is a "folk theorem" to the effect that problem size expands to use up all available space. The following stages of compromise are recommended:

1. If the problem can be done entirely in double precision, do it that way.
2. Hold raw input and final results in single precision-everything else in double precision. There is little loss to storing original input in single precision-real data can rarely be measured with the seven significant digits provided for by single precision storage. The problem with single precision is the loss of accuracy from cumulative errors. Doing all the calculations in double precision is almost as good as holding everything in double precision.
3. Retain critical intermediate steps in double precision. Delay conversion into single precision as long as possible.
Of course, the 8087's 80 -bit temporary real format is even more accurate than double precision. The most accurate answers are found by doing as many intermediate calculations as possible within the 8087, storing only final results in memory.

In practice, programs use both single and double precision. One advantage of BASIC is that programs "know" whether variables are single or double precision. Our 8087 routines need to be told. There are two ways, both valuable, to "tell" our routines what precision to use. First, we can write separate routines, one for single and one for double precision. Second, we can write routines which handle both cases and include an extra argument to tell the routine which type of data is being used. The first is easier to write, but the flexibility of the second is sometimes worth the extra effort.

Changing a single precision routine to double precision requires only two simple steps: change the 8087 instructions to reference double precision memory, and change the step size to eight rather than four bytes. Thus, we can change subroutine SUM into a double precision subroutine DSUM with the following amendments:

FADD QWORD PTR [BX] instead of FADD DWORD PTR [BX]
and
ADD $B X, 8$ instead of $A D D B X, 4$
The second approach to the problem of variable precision is to pass the needed information on to the subroutine. As long as we're solving
this problem, we may as well make things a bit more general. Subroutine
GSUM accepts a single precision, double precision, or integer vector.

```
;SUBROUTINE GSUM(ARRAY,TYPE,NTSUM)
; ASSUMPTIONS: ARRAY IS AN ARRAY OF LENGTH N
; TYPE IS AN INTEGER: 2-INTEGER 4-SINGLE 8-
                DOUBLE
i
i SUM IS DOUBLE PRECISION
i
        PUBLIC GSUM
CSEG SEGMENT'CODE'
        ASSUME CS:CSEG
GSUM PROC FAR
    PUSH BP
    MOV BP,SP
    MOV BX,[BP]+12 ;BX=ADDR(ARRAY)
        MOV SI_[BP]+]O iSI=ADDR(TYPE)
        MOV AX,[SI] iAX=TYPE
        MOV SI`[BP]+B iSI=ADDR(N)
        MOV CX,[SI] ;CX=N
i
;NOU ALL SET UP TO GO
    FLDZ iINITIALIZE ST=0
    CMP CX,OH
    JLE DONE
;
ADD_LOOP:
    CMP AX,Z iIS IT INTEGER?
    JNE NOT_INTEGER
    FIADD WORD PTR [BX]
    JMP NEXT_ELEMENT
NOT_INTEGER:
    CMP AX,4 iIS IT SINGLE?
    JNE NOT_SINGLE
    FADD DUORD PTR [BX]
    JMP NEXT_ELEMENT
NOT_SINGLE: iBETTER BE DOUBLE
    FADD QUORD PTR [BX]
;
NEXT_ELEMENT:
    ADD BX,AX ;READY FOR NEXT ELEMENT
DONE:
iNOW FILE ANSWER BACK IN SUM
    MOV DI_[BP]+b ;DI GET ADDRESS OF SUM
    FSTP QUORD PTR [DI] ;SUM IS NOW PUT AWAY
    POP BP
    FWAIT ;BE SURE 8OB? IS DONE
    RET &
GSUM ENDP
CSEG ENDS
    END
```

Subroutine GSUM will accept any of the three BASIC numeric variable types. GSUM is slightly more complex than SUM and we have to pass it one extra argument. It may look like GSUM will also be slower, since it has to check TYPE each time through and also jump around extra instructions. However, the comparison and jump only takes about five microseconds, so the 8088 executes these instructions while the 8087 is working on the addition.

If you have a recent version of BASIC, you can "automate" passing the TYPE to GSUM by using the VARPTR\$ function. For example:

```
DESCRIPTOR;=VARPTRक(ARRAY(D)) 'INTERNAL DESCRIPTION OF ARRAY
TYPE;=LEFT;(VARPTR;七\) 'FIRST CHARACTER IS TYPE
TYPE%=ASC(TYPEक) 'NEED INTEGER 2, 4, OR B
CALL GSUM%(ARRAY(D),TYPE%,N%,SUM)
```


Indexing Through Multiple Arrays

In the routines above, we used the BX register to index ARRAY. This procedure works with a single array, but more complicated problems may require us to keep track of several indexes. Up to three indexes may be kept in the registers BX, SI, and DI. In addition, registers AX, DX, and CX are convenient for holding temporary values.

Our next subroutine adds two single precision vectors, returning a single precision vector result.

	FSTP	DWORD PTR [DI]	; $\mathrm{C}(\mathrm{I})=\mathrm{A}(\mathrm{I})+\mathrm{B}(\mathrm{I})$
	ADD	DI, 4	iREADY FOR NEXT C
	LOOP	ADD_LOOP	
DONE:			
;			
	POP	BP	
	FWAIT		;BE SURE 8087 IS DONE
	RET	8	
VADD	ENDP		
CSEG	ENDS		
	END		

Subroutine VADD requires just over half a second to add two 10,000 long vectors. Note that while we have specified three vectors, nothing prevents A and B or A and C, or even all three from being the same vector. Thus the command CALL VADD $(\mathrm{A}(0), \mathrm{A}(0), \mathrm{A}(0), \mathrm{N})$ doubles each element of A.

Creating routines to perform subtraction, multiplication, and division requires us only to change the 8087 addition instruction to an 8087 subtraction, or other type of instruction. Thus we can change one line in VADD:

$$
\mathrm{C}=\mathrm{A}+\mathrm{B} \quad: \quad \text { "FADD DUORD PTR [SI]" }
$$

to make VSUB:

$$
C=A-B \quad: \quad \text { "FSUB DWORD PTR }[S I] "
$$

or to make VMULT:

```
C=A*B : "FMUL DWORD PTR [SI]"
```

or to make VDIV:

```
C=A/B : "FDIV DWORD PTR [SI]"
```

(Note VMULT and VDIV perform element-by-element operations, not "matrix operations.")
The same technique we used for changing SUM into GSUM can be used to change VADD into a routine for single precision or double precision or integer vector addition.

After we have more than three vectors, we run out of index registers. We can program around this limit through use of the 8088 's ability to double index. In the next program, the address of each array is loaded into BX just before we need to reference the array. The array element is indexed in SI. Routine VADD3 adds three single precision vectors and returns the result in a fourth.

```
iSUBROUTINE VADD3(AっB,C,D,N)
; ASSUMPTIONS: A,B,C,D ARE SINGLE PRECISION ARRAYS OF
                                    LENGTH N
i N IS AN INTEGER
;
```

	VADD 3	PUBLIC	
CSEG	SEGMENT	'CODE'	
	ASSUME	CS:CSEG	
VADD 3	PROC	FAR	
	PUSH	BP	
	MOV	BP, SP	
	MOV	$S \mathrm{I}_{7}[\mathrm{BP}]+6$; SI $=A D D R(N)$
	MOV	CXi[SI]	iCX=N
	MOV	SI\%	iSI $=0$
i			
;NOW ALL SET UP TO GO			
	CMP	CX, OH	iHOPE N > 0
	JLE	DONE	
ADD_LOOP:			
	MOV	$B X_{1}[B P]+14$; $B X=A D D R(A)$
	FLD	DWORD PTR [BX][SI]	iLOAD A(I)
	MOV	$B X,[B P]+12$; $B X=A D D R(B)$
	FADD	DWORD PTR [BX][SI]	; ADD B(I)
	MOV	$B X_{1}[B P]+10$; $B X=A D D R(C)$
	FADD	DWORD PTR [BX][SI]	iADD C(I)
	MOV	$B X,[B P]+8$; $B X=A D D R(D)$
	FSTP	DWORD PTR [BX][SI]	i $D(I)=C(I)+A(I)+B(I)$
	ADD	SI, 4	;READY NEXT ELEMENT
	LOOP	ADD_LOOP	

DONE:
;

Scalar Routines

Mathematical operations frequently involve a scalar and a vector. ("Scalar" is the word mathematicians use for a single number, as opposed to an entire vector of numbers.) The simplest example would be setting an entire vector to a constant, as in $\mathrm{A}=5$. Subroutine VSET performs this service. VSET first loads the value SCALAR onto the 8087 stack and then copies the 8087 register ST into each element of A.

```
iSUBROUTINE VSET(A,SCALAR,N)
; ASSUMPTIONS:A IS A SINGLE PRECISION ARRAY OF LENGTH N
; SCALAR IS SINGLE PRECISION
i N IS AN INTEGER
;
\begin{tabular}{lll} 
& PUBLIC & VSET \\
CSEG & SEGMENT & CODE' \\
& ASSUME & CS:CSEG
\end{tabular}
```

VSET	PROC	FAR	
	PUSH	BP	
	MOV	BP, SP	
	MOV	$S I_{7}[\mathrm{BP}]+\mathrm{b}$; SI $=$ ADDR(N$)$
	MOV	CX, [SI]	; $C X=N$
	MOV	$B X_{7}[B P]+1 \square$; $B X=A D D R(A)$
	MOV	$S I_{1}[B P]+8$; SI=ADDR(SCALAR)
	FLD	DWORD PTR [SI]	;PUSH SCALAR ONTO STA
;NOU ALL SET UP TO GO			
	CMP	CX, OH	iHOPE N >
	JLE	DONE	
VSET_LOOP:			
	FST	DWORD PTR [BX]	iSTORE A(I)
	ADD	BX, 4	iREADY FOR NEXT A
	LOOP	VSET_LOOP	
DONE:			
i			
	FSTP	ST(0)	iGET RID OF SCALAR
	POP	BP	
	FWAIT		;BE SURE BOB7 IS DONE
	RET	b	
VSET	ENDP		
CSEG	ENDS		
	END		

A typical mathematical operation is to add a scalar to every element of a vector. Routine ADDSC performs this function.

```
;SUBROUTINE ADDSC(A,SCALAR,B,N)
; ASSUMPTIONS: A^B ARE SINGLE PRECISION ARRAYS OF LENGTH N
i
    SCALAR IS SINGLE PRECISION
; N IS AN INTEGER
i
CSEG SEGMENT 'CODE'
    ASSUME CS:CSEG
ADDSC PROC FAR
    PUSH BP
    MOV BP,SP
    MOV SI_[BP]+b iSI=ADDR(N)
    MOV CX;[SI] iCX=N
    MOV BXI[BP]+12 ; BX=ADDR(A)
    MOV SI_[BP]+1[ ;SI=ADDR(SCALAR)
    FLD DWORD PTR [SI] iPUSH SCALAR ONTO STACK
    MOV SIT[BP]+8 ;SI=ADDR(B)
iNOW ALL SET UP TO GO
    CMP CX,OH ;HOPE N > D
    JLE DONE
ADD_LOOP:
    FLD DLORD PTR [BX] ;LOAD A(I)
    ADD BX,4 GREADY FOR NEXT A
```

	FADD	ST,ST(1)	iADD SCALAR
	FSTP	DWORD PTR [SI]	; $B(I)=A(I)+S C A L A R$
	ADD	SI, 4	iREADY FOR NEXT B
	LOOP	ADD_LOOP	
DONE:			
;			
	FSTP	ST(0)	iGET RID OF SCALAR
	POP	BP	
	FWAIT		;BE SURE BOBT IS DONE
	RET	B	
ADDSC	ENDP		
CSEG	ENDS		
	END		

Adapting ADDSC for subtraction, multiplication, and division is straightforward. (Remember, of course, that "A-SCALAR" is quite different from "SCALAR - A!")

Unary Operations

Operations requiring only one argument are said to be "unary" (as opposed to two-argument "binary" operations such as " $\mathrm{A}+\mathrm{B}^{\prime \prime}$). For example we might want to find the square root, absolute value, or negative of the elements of an array. Routine SQRT, which we used for timing examples in Part I (Chapters 1-4), computes $B=\operatorname{SQR}(A)$.


```
DONE:
;
    POP BP
    FWAIT iBE SURE BOB7 IS DONE
    RET b
    ENDP
CSEG ENDS
    END
```

Routine SQRT is easily changed to compute absolute value or to yield the negative of the input vector by changing FSQRT to FABS or FCHS．

Utility Routines

The speed of the routines above reflects both the 8087＇s prodigious math－ ematical ability and the vast speed advantage of 8088 assembly language code over BASIC．It can be very useful to use assembly language routines even for such＂non－computational＂tasks as copying one array of num－ bers into another．We can use the 8087＇s automatic precision conversion to allow the transfer between single precision，double precision，and integer arrays as a bonus．

The BASIC code
10 DIM A（4१११），$B(4 १ १ १) ~$
20 N\％＝5000
30 FOR I＝0 TO N\％－1
$40 \quad B(I)=A(I)$
50 NEXT I
takes about 18 seconds or more to execute，even if we rewrite the code all on one line，for maximum efficiency（and minimum clarity）．We would actually be better off with the code

```
10 DIM A(4१११)っB(4१११)
```

20 N\％＝5000：SCALAR＝0

which would only take about a quarter of a second，despite its 5,000 useless addition operations！For greater convenience，we create a routine GCOPY that not only copies one array into another，but also handles type conversions for us．

```
;SUBROUTINE GCOPY(AっBっTYPEAヶTYPEB`N)
; ASSUMPTIONS: AוB ARE ARRAYS OF LENGTH N
; TYPEA IS AN INTEGER: 2-INTEGER 4-SINGLE B-
    DOUBLE
    TYPEB "
    N IS AN INTEGER
```

CSEG	SEGMENT	'CODE'	
	ASSUME	CS:CSEG	
GCOPY	PROC	FAR	
	PUSH	BP	
	MOV	BP, SP	
	MOV		; SI=ADDR(TYPEA)
	MOV	$A X_{7}[S I]$; $A X=$ TYPEA
	MOV	$S I \sim[B P]+8$; SI=ADDR(TYPEB)
	MOV	DX, [SI]	i DX=TYPEB
	MOV	$S I_{7}[\mathrm{BP}]+6$; SI=ADDR(N)
	MOV	CX, [SI]	; $C X=N$
	MOV	BX,$[\mathrm{BP}]+14$; $B X=A D D R(A)$
	MOV	SIT[BP]+l2	; SI=ADDR(B)
i ${ }^{\text {a }}$			
©NOW ALL SET UP TO GO			
	CMP	CX, OH	iHOPE N >
	JLE	DONE	
$\begin{aligned} & \text { i } \\ & \text { COPY_LOOP: } \end{aligned}$			
	CMP	AX, 2	iIS A INTEGER?
	JNE	A_NOT_INTEGER	
	FILD	WORD PTR [BX]	
	JMP	STORE_IT	
A_NOT_INTEGER:			
	CMP	$A X, 4$	iIS A SINGLE?
	JNE	A_NOT_SINGLE	
	FLD	DWORD PTR [BX]	
	JMP	STORE_IT	
A_NOT_SINGLE:			;BETTER BE DOUBLE
	FLD	QUORD PTR [BX]	
;			
STORE_IT:			
	ADD	BX, AX	;READY FOR NEXT ELEMENT
	CMP	DX, 2	iIS B INTEGER?
	JNE	B_NOT_INTEGER	
	FISTP	WORD PTR [SI]	
	JMP	LOOP_END	
B_NOT_INTEGER:			
	CMP	DX,4	;IS B SINGLE?
	JNE	B_NOT_SINGLE	
	FSTP	DWORD PTR [SI]	
	JMP	LOOP_END	
B_NOT_SINGLE:			; BETTER BE DOUBLE
	FSTP	QUORD PTR [SI]	
;			
LOOP_END:			
	ADD	SI, DX	;READY FOR NEXT ELEMENT
	LOOP	COPY_LOOP	
DONE:			
	POP	BP	
	FWAIT		;BE SURE BOB7 IS DONE
	RET	10	

GCOPY	ENDP
CSEG	ENDS
	END

GCOPY is about 100 times faster than the equivalent BASIC code.
Our second utility routine is GBCOPY. GBCOPY is like GCOPY, except that it begins copying at $A(N-1)$ and works down to $A(0)$, rather than vice versa, and that GBCOPY does not perform type conversions.

```
;SUBROUTINE GBCOPY(AっBっTYPE,N)
; ASSUMPTIONS: ATB ARE ARRAYS OF LENGTH N
i TYPE IS AN INTEGER: 2-INTEGER 4-SINGLE B-
        DOUBLE
; N IS AN INTEGER
i
CSEG SEGMENT 'CODE'
    ASSUME CS:CSEG
GBCOPY PROC FAR
    PUSH BP
    MOV BP,SP
    MOV BX`[BP]+6 ;BX=ADDR[N]
    MOV CX,[BX] iCX=N
    CMP CX,D
    JLE DONE
    MOV BX,[BP]+B ;BX=ADDR(TYPE)
    MOV AX, [BX] ;AX=TYPE
    MUL CX ;AX=N*TYPE
    MOV BX,AX ;BX=N*TYPE
    MOV CX,AX iCX=N*TYPE
    SHR [X,] iCX=N*TYPE/Z
    MOV SIr[BP]+l2 ;SI=ADDR(A)
    MOV DI,[BP]+1D ;DI=ADDR(B)
BCOPY_LOOP:
    SUB BX,2 ;NEXT INDEX
    MOV AXI[SI][BX] ;GET A
    MOV [DI][BX],AX ISTORE B
DONE: POP BP
    RET &
GBCOPY ENDP
CSEG ENDS
    END
```

GBCOPY illustrates backwards operations on an array. Our first task was to locate the last element of each array. If an array element takes TYPE bytes to store and the first element begins at location ADDR, then the second element begins at location ADDR + TYPE, the third at ADDR $+2^{*}$ TYPE . . . and the Nth at ADDR $+(\mathrm{N}-1)^{*}$ TYPE. Once these locations are found, GBCOPY is like GCOPY except that GBCOPY sub-
tracts to move the elements down to where GCOPY adds to move the elements up．

Why move an array backwards anyhow？Consider the following two problems．First，copy $\mathrm{A}(\mathrm{I}+1)$ into $\mathrm{A}(\mathrm{I})$ for an entire array．This can be done either in BASIC：

```
10 FOR I=0 TO N-2
```

$20 \quad A(I)=A(I+1)$
30 NEXT I
or with GCOPY：
$10 \quad N 1 \%=N-1: T Y P E A \%=4$
20 CALL GCOPY（A（1），A（D）っTYPEA\％っTYPEA\％，N1\％）
Second，copy $A(I)$ into $A(I+1)$ for an entire array．One might be tempted do this in BASIC with

10 FOR I＝D TO N－2
$20 \quad A(I+I)=A(I)$
30 NEXT I
but this won＇t work．On the first step，this puts $A(0)$ into $A(1)$ ．On the next step，when BASIC tries to move $\mathrm{A}(1)$ ，it picks up the value originally in $\mathrm{A}(0)$ ．The original value of $\mathrm{A}(1)$ has been wiped out．Correct BASIC code would be

```
l0 FOR I=N-2 TO O STEP -l
20 A(I+1)=A(I)
30 NEXT I
```

GCOPY（A（0），A（1），TYPEA\％，TYPEA\％，N1\％）would generate the same incorrect results as the first BASIC program．GBCOPY $(\mathrm{A}(0), \mathrm{A}(1)$ ， TYPEA\％，N1\％）works correctly．Since GBCOPY＇s primary use is copying data from one part of an array to another part of the same array，nothing was lost by omitting the type conversion．

On Errors

Errors that might result from using number crunching subroutines can be loosely grouped into four classes：
－Programming errors in the subroutines．
－Errors in using the subroutines．
－Recoverable precision errors．
－Non－recoverable precision errors．

Programming Errors

Computer hardware does not make mistakes．（Not often，anyway．）Peo－ ple who program computers do make mistakes．As you develop your
own number crunching routines for the 8087, you'll naturally hit an occasional bug. Be warned that a personal computer is not quite so forgiving when programmed at the machine language level as it is when programmed in BASIC.

About the worst that can happen in a BASIC program, aside from getting the wrong answer, is that BASIC halts the program and prints a somewhat cryptic error message. Usually, BASIC at least tells you what line caused the error.

What's the worst that can happen with an undebugged machine language program? Frequently, you CALL a machine language program and nothing happens . . . nothing at all happens. The only thing to do is to hit the reset key (Ctrl-Alt-Del on an IBM PC) and restart the system from scratch.

Unfortunately, things can be even a bit worse. Sometimes the reset key doesn't do anything either. A machine language program can, after all, write into any location in memory-including writing garbage into areas that only DOS is supposed to use. When this happens, the only solution is to power down, leave the machine off for a few seconds, and then turn the power back on. It pays to be careful in debugging 8087/8088 programs.

Errors in Using the Subroutines

Even bug-free routines can go wrong if fed invalid input. As a simple example, suppose we feed the wrong value for N to one of the vector routines prepared above. It would be nice if the routines would check for valid input and return an error indication when given garbage.

Consider what our routines do instead. If N gives the correct length of the data arrays, the routines return the correct answer. Notice that special consideration is given to the case of zero length arrays and these are handled properly. Suppose we set N to a negative value. The routines act as if N were zero, but do not report the error. Suppose instead that the arrays are really 100 long, but we mistakenly set N to 50 . The routines give the wrong answer, but return to BASIC without other errors. Suppose we commit the reverse error, setting N to 100 when the arrays are only of length 50 . The routines will merrily write into an area of memory assigned to something other than the arrays we are supposed to be using. If we are lucky, the routine will overwrite something vital and the machine will stop cold. In this way we will come to suspect there is an error. If we are unlucky, the routine will change totally unrelated variables, causing our final answers to be wrong without giving any indication of a possible problem.

It is an unfortunate fact of life that there is no sure-fire way to catch these kinds of errors in a machine language program, or, for that matter,
in many other computer languages．For the routines in this book，we have decided to place all error checking responsibility on the BASIC programmer．However，it is certainly possible to rewrite the routines to catch a few errors．Routine GADDSAFR（General precision ADDition， but SAFeR）illustrates one such approach．

```
;SUBROUTINE GADDSAFR(A,B,C,TYPEAっTYPEB_TYPEC`N`IER)
; ASSUMPTIONS: A`B,C ARE ARRAYS OF LENGTH N
; TYPEA IS AN INTEGER: 2-INTEGER 4-SINGLE 8-
                DOUBLE
                TYPEB " n
                TYPEC n n
                N IS AN INTEGER
                IER IS AN INTEGER RETURNING D IF NO ERROR
                    l IF N IS NEGATIVE
                    2 IF TYPEAっTYPEB,OR TYPEC IS ILLEGAL
```

	PUBLIC	GADDSAFR
CSEG	SEGMENT	＇CODE＇
	ASSUME	CS：CSEG
GADDSAFR	PROC	FAR
	PUSH	BP
	MOV	BP，SP

iCHECK TYPES
MOV $\quad S I,[B P]+14 \quad$ iSI = ADDR(TYPEA)
MOV $A X,[S I] \quad$ iAX $=T Y P E A$
CMP AX,Z
JE TYPEA_OK
CMP AX,4
JE TYPEA_OK
CMP AX,B
JE TYPEA_OK
JMP TYPE_ERROR
TYPEA_OK:

MOV	SIr［BP］+12	iSI＝ADDR（TYPEB）
MOV	AXっ［SI］	iAX＝TYPEB
CMP	$A X, 2$	
JE	TYPEB＿OK	
CMP	$A X, 4$	
JE	TYPEB＿OK	
CMP	$A X, B$	
JE	TYPEB＿OK	
JMP	TYPE＿ERROR	

TYPEB＿OK：

MOV	SI，［BP］＋］D	iSI＝ADDR（TYPEC）
MOV	$A X,[S I]$	iAX＝TYPEC
CMP	$A X, Z$	
JE	TYPEC＿OK	
CMP	$A X, 4$	
JE	TYPEC＿OK	
CMP	$A X, B$	

B_NOT_SINGLE:			
	FADD	QWORD PTR [DI]	
;			
NEXT_C:	ADD	DI, SI	; READY FOR NEXT B
	MOV	$B X, D X$; $B X=A D D R(C)$
	MOV	SI?[BP]+10	; SI=ADDR(TYPEC)
	MOV	SIr [SI]	iSI=TYPEC
	CMP	SIっ2	iIS IT INTEGER?
	JNE	C_NOT_INTEGER	
	FISTP	WORD PTR [BX]	
	JMP	NEXT_ELEMENT	
C_NOT_INTEGER:			
	CMP	SI, 4	;IS IT SINGLE?
	JNE	C_NOT_SINGLE	
	FSTP	DUORD PTR [BX]	
	JMP	NEXT_ELEMENT	
C_NOT_SINGLE:			
	FSTP	QWORD PTR [BX]	
;			
NEXT_ELEMENT:			
	ADD	DX, SI	; READY FOR NEXT C
	LOOP	ADD_LOOPER	;LOOP ONLY JUMPS 127
	MOV	$A X, D$; -NO ERROR-
	JMP	DONE	
ADD_LOOPER:JMP ADD_LOOPDONE:			
	MOV	S I_{7} [BP]+b	; SI=ADDR(IER)
	MOV	[SI],AX	; IER=ERROR CODE
	POP	BP	
	FWAIT		ibe SURE 8087 IS DONE
	RET	613	
GADDSAFR	ENDP		
CSEG	ENDS		
	END		

Error checking adds only about 20 lines of code and a negligible increase in execution time. Unfortunately, many illegal input errors still won't be caught. Besides N simply having the incorrect value, any of the arrays might actually be of a different type than that stated; the type, N , or IER arguments might not be integers; or we might call GADDSAFR with the wrong number or order of arguments.

Precision Errors

A fact of life that programmers find most difficult to accept is that perfectly "correct" programs sometimes give the wrong answer. Computer arithmetic has only limited accuracy. The 8087 is more accurate than most mainframes. Nonetheless, for any finite degree of precision, there exists some problem for which the degree of precision is insufficient. The problem
is somewhat aggravated by the fact that a program will work perfectly with one set of data and not at all with another. With some work, one can even construct a series of numbers which add correctly when added from first to last but give a nonsensical result when added backwards. There are several programming approaches to handling precision errors:

- Ignore the problem and hope no errors ever occur.
- Handle each error as soon as it occurs.
- Set up a general scheme to allow computation to proceed as far as possible.
Ignoring the problem is not quite as silly as it sounds. The 8087 is extremely accurate. Furthermore, the 8087 designers have built in automatic error handling capabilities which operate very sensibly. For most problems, precision errors will not occur. For most precision errors that do occur, the 8087 error handling will apply the correct solution.

As an extreme alternative, the 8087 can be set to stop every time an error occurs. Exception handling software can be written to take care of every error on a problem-specific basis. This approach requires you to hand-tailor every subroutine, so it isn't practical for this book. Exception handling routines are discussed in the Intel iAPX 86,88 User's Manual.

In considering a general scheme for error handling, it is constructive to review what BASIC does about the problem. Among BASIC's rules are the following:

- Integer overflow generates an error message and halts the program.
- Real overflow generates an error message. The result is set to machine infinity. Execution continues.
- Real underflow causes the result to be set to zero. Execution continues without a warning message.
- Passing an invalid argument to a function results in an error message. Execution halts.

The error handling routines in the 8087 hardware always allow execution to continue, while generally indicating errors by producing an answer that is not a "normal", number. All our routines allow the 8087 automatic error handling procedures to maintain control. As a result, the final answers may include an error indication. We need a routine to check whether data is valid or invalid. We would also like to fix those errors for which some obvious fix-up exists. Single and double precision output of the 8087 take one of the following forms, which were discussed at length in Chapter 5:

- Normal-a valid number.
- Denormal-indicates a previous underflow.
- Infinity-may indicate a previous overflow.
- Not-A-Number (NAN)-invalid datum.

Routine REALERR accepts an input array of single or double precision numbers. It returns three integer variables, each of which is set to -1
（true）if any denormal，infinity，or NAN，respectively，is stored in the array，or to 0 （false）otherwise．ELEMENT is an integer variable giving the element number of the last other than normal number found．

Routines REALERR and DENTOO use some processor control instruc－ tions defined in Chapter 12．We include these routines here because of their usefulness for even simple numerical programs．

```
;SUBROUTINE REALERR(ARRAY,TYPE,N,IFDEN,IFINF,IFNAN,ELEMENT)
; ASSUMPTIONS: ARRAY IS OF LENGTH N
                                TYPE IS AN INTEGER: 4-SINGLE, B-DOUBLE
                                N IS AN INTEGER
                                IFDEN,IFINF,IFNAN ARE INTEGER
            RETURNING 0 (FALSE) OR -l (TRUE)
        ELEMENT IS AN INTEGER
        PUBLIC REALERR
        SEGMENT 'CODE'
        ASSUME CS:CSEG`ES:EXTRA_SEG
FIRST_INST EQU THIS WORD
REALERR PROC FAR
        PUSH BP
        MOV BP,SP
;
iSET UP EXTRA SEGMENT TAKING CARE OF RELOCATION
    PUSH ES
    CALL NEXT
NEXT: POP AX
    SUB AX,(OFFSET NEXT)-(OFFSET FIRST_INST)
    MOV CL,4
    SHR AX,CL
    MOV BX,CS
    ADD BX,EXTRA_SEG
    SUB BX,CSEG
    ADD AX,BX
    MOV ESIAX
i
iSET TENTATIVE RETURN VALUES TO ZERO
    MOV SIっ[BP]+l2 ;CLEAR IFDEN
    MOV WORD PTR [SI],D
    MOV SIっ[BP]+lO iCLEAR IFINF
    MOV WORD PTR [SI],D
    MOV SIっ[BP]+B iCLEAR IFNAN
    MOV WORD PTR [SI]?D
    MOV SI`[BP]+b iCLEAR ELEMENT
    MOV WORD PTR [SI]\D
    MOV SI?[BP]+14
    MOV CX,[SI] ;CX=N
    MOV BXT[BP]+1B iBX=ADDR(ARRAY)
    MOV SI;[BP]+lb iSI=ADDR(TYPE)
    MOV AXI[SI] iAX=TYPE
```

```
iNOW ALL SET UP TO GO
    CMP CX,OH
    JL
                                DONE
i
CHECK_LOOP:
    CMP
    JNE
    FLD
    JMP
NOT_SINGLE:
    FLD
;
CHECK_IT:
\begin{tabular}{|c|c|c|c|}
\hline ADD & \(B X, A X\) & \multicolumn{2}{|l|}{iREADY FOR NEXT ELEMENT} \\
\hline FXAM & & ;WHAT DID WE & LOAD? \\
\hline FSTSW & STATUS_WORD & & \\
\hline FSTP & ST(0) & & \\
\hline \multicolumn{4}{|l|}{FWAIT} \\
\hline MOV & \multicolumn{3}{|l|}{DHっBYTE PTR STATUS_WORD+1} \\
\hline AND & DH.01000101B & ¿BLANK OTHER & BITS \\
\hline CMP & DH,00000100B & ;NORMAL? & \\
\hline JE & OK & & \\
\hline CMP & DH701000000B & ;ZERO? & \\
\hline JE & OK & & \\
\hline CMP & DH, 00000101B & ;INFINITY? & \\
\hline JE & INF & & \\
\hline CMP & DH, \({ }^{\text {a }}\) & ;UNNORMAL? & \\
\hline JE & DEN & & \\
\hline CMP & DHっ01000100B & ¿DENORMAL? & \\
\hline JE & DEN & & \\
\hline
\end{tabular}
iMUST BE NAN
    MOV
    JMP
DEN: MOV
    JMP
INF: MOV
SET_ERROR:
    MOV
    MOV
    MOV
        SI?[SI]
    SUB SI,CX
    MOV
    MOV
OK: LOOP
    JMP
    LOOPER: JMP
    SI_[BP]+8
    SET_ERROR
    SI,[BP]+12 ;SET IFDEN
    SET_ERROR
    SI^[BP]+10 ;SET IFINF
    SUB SI,CX
        DI?[BP]+b
        [DI],SI ;SET ELEMENT
    JMP
    DONE:
    POP ES
    POP BP
```

	FWAIT RET	14	;BE SURE 8087 IS DONE
REALERR	ENDP		
CSEG			
ENDS			
EXTRA_SEG	SEGMENT	' Data'	
STATUS_WOR	D DU ?		
EXTRA_SEG	ENDS		
	END		

REALERR is a little complicated, but is nonetheless quite fast, checking an array of 10,000 numbers in about a quarter of a second.

After execution of REALERR, IFDEN, IFINF, and IFNAN are easily tested with BASIC IF statements. The question remains as to what action should follow as a result of the test. The following general rules can serve as a guide:

- NAN-halt execution with an error message.
- Infinity-Halting execution or allowing it to continue depends somewhat on circumstances. Infinity usually indicates a meaningless value, resulting from either an overflow or from some sort of invalid operation. However, there are occasionally functions for which infinity is a sensible number. Consider evaluating the following function:

$$
1 /(1+1 / x)
$$

As x goes to zero, the function goes to zero. Since the 8087 is designed to report 1 divided by zero as infinity, 1 plus infinity as infinity, and 1 divided by infinity as zero, this function will be correctly evaluated, if we ignore intermediate infinite results. If X equals -1 , then the final result will be infinity, as it should be.

- Denormals are a somewhat different case. A denormal indicates that an underflow has occurred. The datum therefore represents a number very close to zero. We can either leave the number as a denormal, in which case the 8087 will continue to treat it as a number very close to zero, or we can set the number to true zero.

Routine DENTO0 replaces all the denormals in an array with true zeros.

```
;SUBROUTINE DENTOO(ARRAYっTYPE,N)
; ASSUMPTIONS: ARRAY IS OF LENGTH N
    TYPE IS AN INTEGER: 4-SINGLE, B-DOUBLE
                                    N IS AN INTEGER
    PUBLIC DENTOL
CSEG SEGMENT 'CODE'
    ASSUME CS:CSEGTES:EXTRA_SEG
FIRST_INST EQU THIS WORD
DENTOD PROC FAR
    PUSH BP
    MOV BP,SP
```

```
iSET UP EXTRA SEGMENT TAKING CARE OF RELOCATION
    PUSH ES
    CALL NEXT
NEXT: POP AX
SUB \(\quad A X,(O F F S E T\) NEXT)-(OFFSET FIRST_INST)
MOV \(\mathrm{CL}, 4\)
SHR \(A X, C L\)
MOV BX,CS
ADD BXTEXTRA_SEG
SUB BX,CSEG
ADD \(A X, B X\)
MOV ESIAX
MOV \(\quad S I_{1}[B P]+b\)
MOV \(\quad[X,[S I] \quad i C X=N\)
MOV \(B X,[B P]+10 \quad ; B X=A D D R(A)\)
MOV \(\quad S I \_[B P]+B \quad\) iSI=ADDR(TYPE)
MOV \(A X,[S I] \quad\) iAX \(=T Y P E\)
```

i
iNOU ALL SET UP TO GO
CMP CX,OH \quad iHOPE $N>0$
;
CHECK_LOOP:
CMP AX,4 iIS A SINGLE?
JNE NOT_SINGLE
FLD DWORD PTR [BX]
JMP CHECK_IT
NOT_SINGLE: ;BETTER BE DOUBLE
FLD QWORD PTR [BX]
;
CHECK_IT:
FXAM iUHAT DID WE LOAD?
FSTSU STATUS_WORD
FSTP ST(D)
FWAIT
MOV DHっBYTE PTR STATUS_WORD+1
AND DH,OlOODIDlB iBLANK OTHER BITS
CMP DH,D iUNNORMAL?
JE DEN
CMP DHっOlOOOLODB iDENORMAL?
JE DEN
JMP LOOP_BOTTOM
DEN:
FLDZ MAKE A ZERO
CMP AX,4 iIS A SINGLE?
JNE STILL_NOT_SINGLE
FSTP DWORD PTR [BX]
JMP LOOP_BOTTOM
STILL_NOT_SINGLE: iBETTER BE DOUBLE
FSTP QWORD PTR [BX]

LOOP_BOTTOM:			
	ADD	BX,AX	
	LOOP	LOOPER	
	JMP	DONE	
LOOPER:	JMP	CHECK_LOOP	
DONE:			
	POP	ES	
	POP	BP	
	FWAIT		;BE SURE BOB7 IS DONE
	RET	b	
DENTOD	ENDP		
CSEG	ENDS		
EXTRA_SEG	SEGMENT	' DATA'	
STATUS_WORD DW ?			
EXTRA_SEG ENDS ?			
	END		-

One last warning about ignoring the presence of denormals, infinities, and NANs. A few 8087 instructions insist on valid data as input. In particular, the transcendental instructions discussed in Chapter 12 will produce an undefined result if fed invalid data and will do so without signaling any error condition!

Our error handling has been limited to single and double precision reals to the exclusion of integers. There are two reasons for this exclusion.

First, if you use 16-bit integers, the only kind available in BASIC, for holding numerical results, you are asking for trouble. Merely multiplying two random integers may result in integer overflow! Floating point arithmetic is every bit as fast as integer arithmetic on the 8087. Use integer variables for subscripts, flags, and subroutine addresses. Otherwise stay away.

Second, the integer data type cannot be set to indicate invalid data in the way real variables can be set. If a number cannot be converted to a valid integer, the 8087 reports the most negative value, $-32,768$. Both BASIC and the 8087 treat $-32,768$ as they do any other integer, so invalid data will not be flagged. If integer variables must be used, all results should be checked and execution should be stopped if $-32,768$ appears.

10

Basic Matrix Operations

Matrix operations occupy the center of the number crunching world. Large scale supercomputers, costing tens of millions of dollars, have special built-in hardware devoted entirely to fast matrix operations. There are even computer languages, such as APL, where the matrix replaces the scalar as the fundamental variable type. Matrices are so important that some versions of BASIC (mostly on large computers) have a special set of "MAT" functions devoted to efficient matrix computation. While the 8087 does not have matrix hardware, its stack design allows for easily written, efficient, matrix subroutines.

We cover matrix operations in two chapters. In this chapter, we prepare routines for the most common matrix operations. Chapter 11 concentrates on advanced methods for solving systems of linear equations and on the related problem of matrix inversion.

The Cookbook—Chapter 10

Program:	COLCOPY
Purpose:	Copy one column of a matrix into a vector.
Call:	CALL COLCOPY(A $(0,0), \mathrm{B}(0), \mathrm{COL}, \mathrm{N}, \mathrm{M})$.
Input:	A-N by M single precision matrix.
	COL-integer column number to be copied.
	N-integer number of rows of A.
	M-integer number of columns of A.
Output:	B-array N long; $\mathrm{B}(\mathrm{I})=\mathrm{A}(\mathrm{I}, \mathrm{COL})$.
Language:	8088 assembly language.
Program:	ROWCOPY
Purpose:	Copy one row of a matrix into a vector.
Call:	CALL ROWCOPY(A $(0,0), \mathrm{B}(0)$, ROW,N,M $).$
Input:	A-N by M single precision matrix.
	ROW-integer row number to be copied.
	N-integer number of rows of A.
	M-integer number of columns of A.

Output: Language:	B-array M long; $\mathrm{B}(\mathrm{I})=\mathrm{A}(\mathrm{ROW}, \mathrm{I})$. 8088 assembly language.
Program:	DIAGCOPY
Purpose:	Copy the diagonal of a square matrix into a vector.
Call:	CALL DIAGCOPY(A(0,0), B(0),N).
Input:	$\mathrm{A}-\mathrm{N}$ by N single precision matrix. N -integer number of rows of A
Output:	B-array N long; $\mathrm{B}(\mathrm{I})=\mathrm{A}(\mathrm{I}, \mathrm{I})$.
Language:	8088 assembly language.
Program:	TRANS
Purpose:	Transpose a matrix.
Call:	CALL TRANS $(\mathrm{A}(0,0), \mathrm{B}(0,0), \mathrm{N}, \mathrm{M})$.
Input:	$\mathrm{A}-\mathrm{N}$ by M single precision matrix. N -integer number of rows of A . M -integer number of columns of A .
Output:	$\mathrm{B}-\mathrm{M}$ by N matrix; $\mathrm{B}(\mathrm{I}, \mathrm{J})=\mathrm{A}(\mathrm{J}, \mathrm{I})$.
Language:	8088 assembly language.
Program:	SQTRANS
Purpose:	Transpose a square matrix in place.
Call:	CALL SQTRANS(A(0,0),N).
Input:	$\mathrm{A}-\mathrm{N}$ by N single precision matrix. N -integer number of rows of A .
Output:	A-new $A(I, J)=$ old $A(J, I)$.
Language:	8088 assembly language.
Program:	INPROD
Purpose:	Inner product of two single precision vectors.
Call:	CALL INPROD $(\mathrm{A}(0), \mathrm{B}(0), \mathrm{C}, \mathrm{N})$.
Input:	A-N long single precision vector.
	$\mathrm{B}-\mathrm{N}$ long single precision vector.
	N -integer number of rows of A .
Output:	C-double precision scalar; $C=$ inner product of A, B.
Language:	8087/8088 assembly language.
Program:	GINP
Purpose:	Inner product of two generalized vectors.
Input:	$\mathrm{A}-\mathrm{N}$ element vector.
	$\mathrm{B}-\mathrm{N}$ element vector.
	TYPEA-integer giving length of element of A.
	TYPEB-integer giving length of element of B.
	SKIPA-integer "skip factor" (see text) for A.
	SKIPB-integer "skip factor" (see text) for B.
Output:	8087 register ST; ST = inner product of A, B.
Language:	8087/8088 assembly language.
Note:	NEAR procedure; see GINPROD.

Program:	GINPROD
Purpose:	Inner product of two generalized vectors.
Call:	CALL GINPROD(A(0),B(0),C,TYPEA,TYPEB, SKIPA,SKIPB,N).
Input:	A-N element vector.
	B-N element vector.
	TYPEA-integer giving length of element of A.
	TYPEB-integer giving length of element of B.
	SKIPA-integer "skip factor" (see text) for A.
	SKIPB-integer "skip factor" (see text) for B.
	N -integer number of rows of A .
Output:	C-double precision scalar; $\mathrm{C}=$ inner product of A, B.
Language:	8087/8088 assembly language.
Note:	Requires NEAR procedure GINP.
Program:	MATMULT
Purpose:	Matrix multiplication.
Call:	CALL MATMULT(A(0,0), $\mathrm{B}(0,0), \mathrm{C}(0,0), \mathrm{L}, \mathrm{M}, \mathrm{N})$.
Input:	$A-L$ by M single precision matrix.
	$\mathrm{B}-\mathrm{M}$ by N single precision matrix.
	L-integer number of rows of A.
	M -integer number of columns of A , rows of B .
	N -integer number of columns of B .
Output:	$C-L$ by N single precision matrix; $C=A B$.
Language:	8087/8088 assembly language.
Note:	Requires NEAR procedure GINP.
Program:	GAUSS
Purpose:	Solve linear equations by Gaussian elimination.
Input:	$\mathrm{A}-\mathrm{N}$ by N coefficient matrix.
	$\mathrm{Y}-\mathrm{N}$ vector.
	N -number of rows and columns of A .
Output:	$X-N$ vector; X solves equations $Y=A X$.
Language:	BASIC.
Program:	GAUSS-SE
Purpose:	Solve linear equations by Gaussian elimination, using space efficient method.
Input:	A-N by N coefficient matrix.
	$\mathrm{Y}-\mathrm{N}$ vector.
	YSTAR-N vector, scratch space.
	N -number of rows and columns of A .
Output:	$X-N$ vector; X solves equations $Y=A X$.
	A-A replaced with Gaussian reduction.
Language:	BASIC.

What is a Matrix?

In computer terms, a matrix is a two-dimensional array. The values in the array can be thought of as being laid out in a rectangular grid, where the first array index is the row number and the second array index is the column number. An example of a " 2 by 3 " matrix is

5	-7	11
0	2	18

Such a matrix might be stored in BASIC by DIMensioning an array with two rows and three columns. The BASIC statement "DIM A $(1,2)$ " produces a matrix laid out like

$\mathrm{A}(0,0)$	$\mathrm{A}(0,1)$	$\mathrm{A}(0,2)$
$\mathrm{A}(1,0)$	$\mathrm{A}(1,1)$	$\mathrm{A}(2,1)$

Since BASIC arrays are numbered starting at zero, an N row by M column matrix is dimensioned $A(N-1, M-1)$.

Why Are Matrices Interesting?

Invariably, matrix algebra is motivated as notation for solving systems of simultaneous linear equations. This may seem a bit strange, as most of us don't have any great need for solving such systems. The truth is that most interesting numerical computation problems have the same mathematical structure as a system of linear equations. Computational aspects of statistics, differential equations, and constrained optimization all center around linear equations and matrix operations. We briefly lay out the linear equation interpretation of matrices here.

As a sample, consider the following system of two linear equations in two unknowns.

$$
\begin{aligned}
18 & =4 x_{1}+2 x_{2} \\
9 & =2 x_{1}-2 x_{2}
\end{aligned}
$$

There is exactly one pair of values for x_{1} and x_{2} that will make both equations true. To find these values, we draw the two equations on a piece of graph paper. Label the horizontal axis x_{1} and the vertical axis x_{2}. Pick any two values for x_{1}. Plug each into the top equation and solve for the corresponding value of x_{2}. Connect the two ($\mathrm{x}_{1}, \mathrm{x}_{2}$) points to get a straight line. Do the same for the bottom equation. The top equation is true for any (x_{1}, x_{2}) point on the first line and the bottom equation is true for any point on the second line. Where the two lines intersect, both equations are true. The point $(4.5,0)$ is the solution to this system of equations.

Matrices provide a compact notation for discussing such systems. In matrix notation, the two equations appear as:

$$
y=A x
$$

where y is a 2 by 1 matrix.

$$
y=\left[\begin{array}{r}
18 \\
9
\end{array}\right]
$$

A is a 2 by 2 matrix

$$
A=\left[\begin{array}{rr}
4 & 2 \\
2 & -2
\end{array}\right]
$$

and x is a 2 by 1 matrix.

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

If we are given values for x , we can solve for y by matrix multiplication. If we are given values for y , we can solve for x by solving a system of linear equations.

Storage Allocation and Memory Access

In order to manipulate matrices, we need to know how BASIC stores a matrix in memory. If A is a 2 by 3 matrix, we can think of it as being logically laid out as shown in Figure 10.1. Since computer memory is one-dimensional, BASIC arranges to store the six elements in consecutive order with the first dimension varying most rapidly as we move up in memory. The two-dimensional matrix is placed in memory in this order: $\mathrm{A}(0,0), \mathrm{A}(1,0), \mathrm{A}(0,1), \mathrm{A}(1,1), \mathrm{A}(0,2), \mathrm{A}(1,2)$. Each element occupies four bytes for a single precision array and eight bytes for double precision.

Another way to say the same thing is that BASIC stores each column in order, placing one column after the next in memory. Suppose the (single precision) matrix A is stored in memory with $A(0,0)$ located at memory address 100 . The first column of A will be at locations 100 and 104; the second column at 108 and 112; the third at 116 and 120. The first row of A will be at locations 100, 108, and 116; the second at 104, 112, and 120. Figure 10.1 illustrates the two-dimensional array to one-dimen-sional-memory mapping.
A(0,0)-100
A(0,1)-108
A(0,2)-116
A(1,0)-104
$\mathrm{A}(1,1)-112$
A(2,1)-120

Figure 10.1

In general, for an n by m matrix, element (i, j) is stored in position $\left(i+n^{*} j\right)^{*} k$, where k equals four for single and eight for double precision.

Notice that a 1 by n matrix, called a row vector, and an n by 1 matrix, called a column vector, will both be stored in the same locations as an n element one-dimensional array.

It is often convenient to think of a matrix as a set of column vectors or a set of row vectors. The routines COLCOPY and ROWCOPY illustrate column and row access. COLCOPY(A,B,COL,N,M) copies column COL of n by m matrix A into the N long array B. Analogously, ROWCOPY copies row ROW of matrix A into an M long array B. The BASIC code below illustrates COLCOPY. (Note that here, as elsewhere, we have written "DIM A(N-1,M-1)" for clarity, where BASIC actually requires " $\mathrm{N} 1=\mathrm{N}-1: \mathrm{M} 1=\mathrm{M}-1: \mathrm{DIM}$ A(N1,M1)".)

DONE：

	POP	BP
	RET	10
COLCOPY	ENDP	
CSEG	ENDS	
END		

；SUBROUTINE ROWCOPY（AっB，ROWっN，M）
；ASSUMPTIONS：A IS A SINGLE PRECISION N BY M MATRIX
i $\quad B$ IS A SINGLE PRECISION ARRAY N LONG
i ROWiNiM ARE INTEGERS
CSEG SEGMENT＇CODE＇

| ROWCOPY | PROC |
| :--- | :--- | :--- |
| | PUSH |

MOV $\quad B P, S P$
MOV $\quad B X,[B P]+6 \quad ; B X=A D D R(M)$

MOV $\quad C X,[B X] \quad i C X=M$
MOV $\quad B X,[B P]+10 \quad ; B X=A D D R(R O W)$
MOV $A X,[B X] \quad ; A X=R O W$
SHL $A X, I \quad ; A X=4 * R O W$
SHL $A X, I$
MOV $\quad S I,[B P]+14 \quad i S I=A D D R(A)$
$A D D \quad S I っ A X \quad$ iSI＝ADDR（A（ROWっO）
MOV $\quad D I,[B P]+l 2 \quad i D I=A D D R(B)$
MOV $\quad B X_{7}[B P]+B \quad ; B X=A D D R(N)$
MOV $B X,[B X] \quad ; B X=N$
SHL $\quad B X, \square \quad ; B X=4 * N$
SHL BXっ」
JCXZ DONE
ROW＿LOOP：
MOV $A X_{7}[S I]$ iMOVE ELEMENT OF ROU
MOV［DI］，AX
MOV $\quad A X T[S I]+2$
MOV $[D I]+2 っ A X$
ADD SIっBX iNEXT ROW
ADD DIっ4 iNEXT B

DONE：POP BF
RET 10
ROWCOPY ENDP
CSEG ENDS
END

COLCOPY and ROWCOPY illustrate four useful points about moving through a matrix：
－Column COL begins at location $4^{*} N^{*} C O L$ ．
－Sequential elements in a column are located 4 bytes apart．

- Row ROW begins at location 4^{*} ROW.
- Sequential elements in a row are located $4^{*} N$ bytes apart.

Of course, " 8 " would replace " 4 " for a double precision matrix.
A matrix with an equal number of rows and columns is called, for obvious reasons, a square matrix. The elements $A(0,0), A(1,1), \ldots$, $\mathrm{A}(\mathrm{N}-1, \mathrm{~N}-1)$ form the principal diagonal of the matrix. To illustrate accessing the principal diagonal, we present DIAGCOPY:

Moving across a diagonal is equivalent to moving down one column and over one row. Note the following two facts about accessing elements of the diagonal of a square matrix:

- Diagonal element i is at location $i^{*} 4^{*}(\mathrm{~N}+1)$.
- Sequential diagonal elements are $4^{*}(\mathrm{~N}+1)$ bytes apart.

Basic Matrix Operations

Matrix operations fall into six categories:

1. Scalar operations.
2. Element-by-element operations.
3. Matrix transposition.
4. Inner products and matrix multiplication.
5. Solving systems of linear equations.
6. Matrix inversion.

Scalar and Element-by-Element Operations

Operations between scalars and matrices operate by applying the scalar operation to every element of the matrix. For example, if A is an n by m matrix, the mathematical operation $B=A+5$ could be done with the BASIC program:

```
10 DEFINT I-N
20 DIM A(N-1,M-1), B(N-1,M-1)
30 FOR I= O TO N-1
40 FOR J= O TO M-]
50 B(I,J)=A(I`J) + 5
60 NEXT J
70 NEXT I
```

This BASIC program could be replaced with the 8087 subroutine SCALADD.

; SUBROUTINE SCALADD(A,SCALAR,B,N,M)			
i ASSUMPTIONS: AヶB ARE SINGLE PRECISION N BY M MATRICES			
N,M ARE INTEGERS			
	PUBLIC	SCALADD	
CSEG	SEGMENT	'CODE'	
	ASSUME	CS:CSEG	
SCALADD	PROC	FAR	
	PUSH	BP	
	MOV	$B P, S P$	
	MOV	$B X_{7}[B P]+12$; $B X=A D D R(S C A L A R)$
	FLD	DWORD PTR [SI]	;PUSH SCALAR ONTO STACK
	MOV	$B X_{7}[B P]+b$; $B X=A D D R(M)$
	MOV	DX $\overbrace{[} \mathrm{BX}]$; DX= \# OF COLUMNS
	MOV	$S I_{1}[B P]+14$; $S I=A D D R(A)$
	MOV	$D I_{7}[\mathrm{BP}]+1 \mathrm{l}$; $\mathrm{DI}=\mathrm{ADDR}(\mathrm{B})$
	FWAIT		
COLUMN_LOOP:			
	MOV	$B X_{7}[B P]+8$; $B X=A D D R(N)$
	MOV	CX, [BX]	; CX=COLUMN LENGTH
	MOV	$B X, 0$	

ADD＿LOOP：

－	FLD	DWORD PTR［BX］［SI］	iLOAD A（IっJ）
	FADD	ST（0）¢ ST（l）	iADD SCALAR
	FSTP	DWORD PTR［BX］［DI］	i $B(I \sim J)=S C A L A R+A(I \sim J)$
	ADD	$B X, 4$	；READY FOR NEXT ELEMENT
	LOOP	ADD＿LOOP	
；NOW MOVE	TO NEXT	COLUMN BY ADDING $4 * N$	TO SI AND DI
	MOV	$B X_{7}[B P]+B$	；$B X=A D D R(N)$
	MOV	$A X,[B X]$	；$A X=$ COLUMN LENGTH
	SHL	$A X>1$	；MULTIPLY AX
	SHL	$A X_{1}$	；BY 4
	ADD	$S I, A X$	
	ADD	$D I, A X$	
；ARE WE D	NE YET？		
	DEC	DX	
	CMP	DX，	
	JLE	COLUMN＿LOOP	
；			
	FSTP	ST（0）	iGET RID OF SCALAR
	POP	BP	
	FWAIT		
	RET	10	
SCALADD	ENDP		
CSEG	ENDS		
	END		

Routine SCALADD takes about 53 microseconds per element．The time for the same routine in BASIC varies according to the number of rows and columns，but，for a 50 by 50 matrix，BASIC requires about 6400 microseconds per element．

SCALADD illustrates indexing down the columns and across the rows of a matrix．It would be straightforward to write routines for the other scalar operations as well as for element－by－element matrix addition，sub－ traction，and so forth．However，a slight＂trick＂of observation suggests an even easier solution．Computer memory doesn＇t＂know＂that the n by m storage locations represent a matrix．The locations could equally well represent an n by m element one－dimensional array．All element－by－ element and scalar matrix operations can be done by using vector routines，as developed in Chapter 9.

For example，the following BASIC code，using ADDSC from Chapter 9，works as well as SCALADD．

10 DEFINT I－N
20 DIM $A(N-1, M-1), B(N-1, M-1)$
30 SCALAR＝5．0：ISIZE＝N＊M
40 CALL ADDSC（A（D）っSCALARっB（D）っISIZE）

Matrix Transposition

The matrix operation transpose exchanges the rows and columns of a matrix. If A is an n by m matrix, then " A transpose" is an m by n matrix such that $(A$ transpose $)(\mathrm{i}, \mathrm{j})=A(j, i)$. A transpose is often written A^{T} or A^{\prime} (pronounced "A transpose" or "A prime"). A BASIC program to transpose a matrix is straightforward. For example:

```
10 DEFINT I-N
20 DIM A(N-1,M-1), AT(M-1,N-1)
30 FOR I=0 TO N-I
40 FOR J-D TO M-1
50 AT(J,I)=A(IっJ)
60 NEXT J
70 NEXT I
```

The 8088 subroutine TRANS accomplishes the same task as the BASIC code above. We take advantage of the fact that we can move down the columns of A by counting off memory locations four at a time and move across the rows of A^{\prime} by counting off memory locations $4^{*} \mathrm{M}$ bytes at a time.

Notice that TRANS requires A and B to be different matrices. If A and B were to occupy the same memory locations, the copying operations would write over some A locations before we were able to read them into B. Subroutine TRANS uses about 16 microseconds per element.

; SUBROUTINE TRANS(A,B,N,M)			
; ASSUMPTI	ONS: A IS	A SINGLE PRECISION	N BY M MATRIX
i	B IS	A SINGLE PRECISION	M BY N MATRIX
i	N, M	ARE INTEGERS	
	PUBLIC	TRANS	
CSEG	SEGMENT	'CODE'	
	ASSUME	CS:CSEG	
TRANS	PROC	FAR	
	PUSH	BP	
	MOV	$B P, 5 P$	
	MOV	$B X,[B P]+B$; $B X=A D D R(N)$
	MOV	$\mathrm{CX},[\mathrm{BX}]$; $C X=N$
	JCXZ	DONE	
	MOV	$B X,[B P]+6$; $B X=A D D R(M)$
	MOV	DX, [BX]	; $D X=M$
	CMP	DX, D	
	JLE	DONE	
	MOV	SIf $[B P]+1$ 2	; SI=ADDR(A)
	MOV	$D I_{9}[B P]+1 \square$; $\mathrm{DI}=\mathrm{ADDR}(\mathrm{B})$
ROW_LOOP:			
	MOV	$B X_{7}[B P]+8$; $B X=A D D R(N)$
	MOV	C $X 7,[B X]$; $C X=N$ (COL LENGTH)
	MOV	$B X, 0$; $\mathrm{BX}=0$
COL_LOOP:			
	MOV	AX, [SI]	IMOVE 4 BYTES

	MOV	[DI][BX], $A X$	
	MOV	$A X_{7}[S I]+2$	
	MOV	[DI][BX]+2っAX	
	ADD	SI, 4	; NEXT A ELEMENT
	MOV	$A X, B X$	iSAVE B ROU POSITION
	MOV	$B X_{7}[B P]+6$; $B X=A D D R(M)$
	MOV	$B X_{7}[B X]$; $B X=M$
	SHL	$B X_{1}$	i $B X=4 * M$
	SHL	$B X, 1$	
	ADD	BX,AX	iNEXT B ELEMENT
	LOOP	COL_LOOP	; IF NOT DONE
	ADD	DI, 4	iNEXT ROU OF B
	DEC	DX	;ONE ROW DONE
	JG	ROW_LOOP	
DONE:	POP	BP	
	RET	B	
TRANS	ENDP		
CSEG	ENDS		
	END		

Transposition of a square matrix leads to an important special case. To conserve space, we frequently transpose a square matrix "in place," as in the following BASIC code. Notice that the second FOR loop only runs from the diagonal element to the end of the row. The "lower triangle" of the square gets swapped with the upper triangle.

```
10 DEFINT I-N
20 DIM A(N-1, N-1)
30 FOR I=0 TO N-1
40 FOR J=I TO N-1
50 SWAP A(I,J) , A(J,I)
60 NEXT J
70 NEXT I
```

We can think of this code as moving along the diagonal of a matrix and swapping the row from the diagonal point to the right with the column from the diagonal down. Subroutine SQTRANS performs this task. The BASIC code above takes about $2800 \mathrm{n}^{2}$ microseconds to transpose A in place. SQTRANS requires only $8 \mathrm{n}^{2}$ microseconds.

; SUBROUTINE SQTRANS(ATN)				
; ASSUMPTIONS: A IS		A SINGLE	PRECISION N BY	N MATRIX
;	N IS	AN INTEGE		
	PUBLIC	SQTRANS		
CSEG	SEGMENT	'CODE'		
	ASSUME	CS:CSEG		
SQTRANS	PROC	FAR		
	PUSH	BP		
	MOV	$B P, S P$		
	MOV	$B X,[B P]+6$	- $\quad B X=A D D R(N)$	
	MOV	DX, [BX]	i $D X=N$	
	MOV	$B X, D X$	i $B X=N$	

	SHL	$\mathrm{BX}, 1$; $\mathrm{BX}=4 * N$
	SHL	$\mathrm{BX}, 1$	
	MOV	$B P,[B P]+8$	IWE'RE SHORT OF REGISTERS
			iSO WE'LL USE BP TO POINT
			;TO DIAGONAL ELEMENT
			; $B P=A D D R(A)$
	CMP	DX, 0	
	JLE	DONE	
DIAG_LOOP:			
	MOV	CX, DX	idX \# OF ELEMENTS LEFT
	MOV	SI, BP	iSI POINTS TO ROW
	MOV	DI, BP	idi Points To COLUMN
ROW_LOOP:			iSWAP ROW AND COLUMN
	MOV	$A X,[S I]$	iMOVE 4 BYTES
	XCHG	[DI], AX	
	MOV	[SI],AX	
	MOV	$A X,[S I]+2$	
	XCHG	[DI]+2, AX	
	MOV	[SI]+2, AX	
	ADD	SI, BX	iNEXT ROU ELEMENT
	ADD	DI,4	iNEXT COLUMN ELEMENT
	LOOP	ROW_LOOP	; IF NOT DONE
	ADD	$B P, B X$	iNEXT DIAGONAL ELEMENT
	ADD	BP, 4	
	DEC	DX	©NEXT COLUMN IS SHORTER
	CMP	DX, 0	
	JG	DIAG_LOOP	
DONE:	POP	BP	
	RET	4	
SQTRANS	ENDP		
CSEG	ENDS		
	END		

Inner Products and Matrix Multiplication

More scientific computation time is spent computing inner products than on any other single problem. Inner products are at the heart of both matrix multiplication and matrix inversion. If x and y are vectors, then to find the inner product of x and y one multiplies the two vectors element by element and sums the products, as in the following BASIC program.

```
10 DEFINT I-N
20 DEFDBL S
30 DIM X(N-1)?Y(N-1)
40 SUM=0
50 FOR I=0 TO N-I
60 SUM=SUM+X(I)*Y(I)
70 NEXT I
```

At first glance, the inner product doesn't appear to be a particularly interesting operation. However, consider the specification of our system of linear equations earlier in the chapter. The first equation was

$$
\mathrm{y}_{1}=\mathrm{A}_{0,0} \mathrm{x}_{1}+\mathrm{A}_{0,1} \mathrm{x}_{2}
$$

Thus y_{1} equals the inner product of the first row of A with the vector x. Similarly, the second equation specifies that y_{2} equals the inner product of the second row of A with x. In this manner, an entire system of equations can be specified in terms of inner products. This leads to a natural definition of matrix multiplication in terms of inner products.

If $C=A B$, then $C_{i j}$ equals the inner product of row i of A with column j of B.
Note that this definition implicitly assumes that A and B are conformable for multiplication, that is, the number of columns of A equal the number of rows of B. A further natural result of the definition is that if A is al by m matrix and B is an m by n matrix, then C will be l by m.

BASIC code to multiply two matrices is:

```
10 DEFINT I-N
20 DEFDBL S
25 REM REMEMBER TO DEFINE L\imathMっN AND USE Ll=L-lっETC IN LINE
30
30 DIM A(L-1, M-1),B(M-1, N-1),C(L-1, N-1)
35 REM DEFINE MATRICES A AND B HERE
40 FOR IROU=0 TO L-1
50 FOR JCOL=O TO N-I
60 SUM=0
70 FOR K=0 TO M-1
80 SUM = SUM+A(IROW,K)*B(K ,JCOL)
90 NEXT K
100 C(IROW.JCOL)=SUM
11O NEXT JCOL
l20 NEXT IROW
```

Lines 70, 80, and 90 are executed $\mathrm{l}^{*} \mathrm{~m}^{*} \mathrm{n}$ times. For matrices of order 50 , that's 125,000 additions and multiplications. You can see why we want these lines to be as efficient as possible!

Notice that we collected the inner product in a temporary variable "SUM," rather than directly in "C(IROW,JCOL)." We did this for two reasons. First, it is somewhat more efficient, since BASIC need calculate the location of C(IROW,JCOL) only $l^{*} n$ times, rather than $l^{*} \mathrm{~m}^{*} n$ times. Second, and far more important, accuracy is improved greatly by accumulating the sum in double precision even if it is to be stored later as a single precision variable.

Because of the central role of inner products and matrix multiplications in numerical computation, accuracy and speed are vital. We present several 8087 routines written with these objectives in mind. Our first routine forms the inner product of two one-dimensional arrays.

; SUBROUTINE INPROD(A,B,C,N)			
; ASSUMPTIONS: A,B ARE SINGLE PRECISION N ARRAYS			
; C IS A DOUBLE PRECISION SCALAR			
;	N IS	AN INTEGER	
	PUBLIC	INPROD	
CSEG	SEGMENT	'CODE'	
	ASSUME	CS:CSEG	
INPROD	PROC	FAR	
	PUSH	BP	
	MOV	$B P, 5 P$	
	MOV	$B X,[B P]+6$; $B X=A D D R(N)$
	MOV	CX, $[\mathrm{BX}]$	iCX=N
	MOV	$S I_{7}[B P]+12$	iSI=ADDR(A)
	MOV	$D I_{1}[B P]+10$; DI=ADDR(B)
	MOV	$B X, D$	
	FLDZ		; SET RUNNING SUM=0
	JCXZ	DONE	
ADD_LOOP:			
	FLD	DWORD PTR [BX][SI]	; $10 A D$ A(I)
	FMUL	DWORD PTR [BX][DI]	iMULTIPLY BY B(I)
	FADDP	ST(l) ${ }^{\text {ST }}$ T	; SUM $=$ SUM $+A(I) * B(I)$
	ADD	BX, 4	iREADY FOR NEXT ELEMENT
	LOOP	ADD_LOOP	
DONE:			
	MOV	$B X 7[B P]+8$; $B X=A D D R(C)$
	FSTP	QWORD PTR [BX]	iC=INNER PRODUCT
	POP	BP	
	FWAIT		
	RET	8	
INPROD	ENDP		
CSEG	ENDS		
	END		

Routine INPROD takes about 59 microseconds per array element.
You might expect our next step would be an 8087 routine to multiply two matrices. Instead of proceeding directly to a matrix multiplication program, we are going to take a short strategic detour. A matrix multiplication subroutine presents two difficulties. First, writing such a routine is complicated by the need to keep track of too many indices. As you can see from the BASIC program above, the program needs to remember IROW, JCOL, K, L, M, N and the locations of A, B, and C. Using a direct approach, we would run out of registers rather quickly. Second, a straightforward matrix multiplication routine could be used only on one specific argument type; for example, multiplying two single precision matrices and returning a single precision result.

Our strategic approach is to write a very general inner product routine upon which we can build more complicated programs. Subroutine GINP, below, calculates the inner product of two n-element arrays. The result is left on the top of the 8087 stack. In addition to specification of the
input vectors, GINP accepts two kinds of options. The first option allows us to specify either single or double precision input arrays. The second option allows us to tell GINP how far apart in memory the elements of each array are spaced. Thus if array A has a "skip" parameter of one, the elements are stored sequentially. If the skip parameter is two, then elements are stored in every other location-with four bytes between elements for a single precision array and eight bytes between elements for a double precision array.

Of what use is the "skip" parameter? Think about accessing a row of a matrix. The elements of an m by n matrix are located $4^{*} \mathrm{n}$ bytes apart. Thus we can move across the row of an m by n matrix by specifying n as the skip parameter.

Subroutine GINP is written as a NEAR procedure. This means it cannot be called directly from BASIC. However, it also means that GINP is automatically relocatable. Below, we write a FAR procedure, GINPROD, to call GINP from BASIC. Because an 8088 NEAR call jumps to a location relative to the current value in the instruction pointer, GINPROD and GINP can be moved together without changing the CALL instruction in GINPROD.

GINP should be assembled together with GINPROD and any other routines which call GINP. This helps insure that our dynamic relocation scheme will function properly. For this same reason, we have omitted the PUBLIC and SEGMENT/ENDS statements, as we will with all NEAR procedures. In fact, the most convenient way to use our matrix routines is to combine them all into one assembly language package. Combining the routines makes it easy for them to share the same copy of GINP and the scratch space we define in GINPROD. (We'll assume that you combine the routines this way and won't set up separate scratch space areas for each.)

Since GINP won't be called from BASIC, we have used slightly different parameter passing conventions for convenience. The addresses of the two arrays, A and B, are pushed onto the stack, then the values of the "types" (four for single precision or eight for double precision), rather than the addresses of the "types," of A and B, the skip parameters for A and B, and the value of N, are pushed onto the stack. Since GINP is a NEAR procedure, the parameters begin in the stack at $[\mathrm{BP}]+4$ rather than [BP]+6. GINP saves registers on the 8088 stack, and expects that any routine calling it will leave free at least seven words on the stack. The calling routine should set up its own stack area rather than rely on the area provided by BASIC.

Procedure GINP uses about 125 microseconds for overhead (finding addresses and so forth) plus 59 microseconds for each array element.

Routine GINPROD makes GINP accessible from BASIC. GINPROD returns, in C , the double precision value of the inner product.


```
iSET UP CALL PARAMETERS
iNOTICE THAT WE HAVE CHANGED THE SS REGISTER
iSO, WE HAVE TO TAKE ADVANTAGE OF THE FACT THAT BASIC SETS
iSS AND DS TO THE SAME LOCATION
PUSH DS:[BP]+20 iADDR(A)
    PUSH DS:[BP]+]B iADDR(B)
    MOV BX,DS:[BP]+14 ;TYPEA
    PUSH [BX]
    MOV BX,DS:[BP]+12 ;TYPEB
    PUSH [BX]
    MOV BX,DS:[BP]+10 iSKIPA
    PUSH [BX]
    MOV BX,DS:[BP]+B iSKIPB
    PUSH [BX]
    MOV BX,DS:[BP]+b iN
    PUSH [BX]
    CALL GINP
    MOV SP,LOCAL_SPACE+2
    MOV SSILOCAL_SPACE
    MOV BX,[BP]+lb iBX=ADDR(C)
    FSTP QWORD PTR [BX] iSTORE C
    POP ES
    POP BP
    FWAIT
    RET lb
GINPROD ENDP
CSEG ENDS
ESEG SEGMENT 'DATA'
    DW 50 DUP (?)
STACK_TOP EQU THIS WORD
LOCAL_SPACE DW 2O DUP (?)
ESEG ENDS
```

One programming "trick" bears special attention here. The stack area provided by BASIC when GINPROD is called may have only eight words on it. Since this isn't enough, GINPROD sets up its own stack segment in the ESEG area. GINPROD changes the stack segment register, SS, to point to this area. Once SS has been changed, we need to use some other segment register when retrieving arguments from BASIC. In GINPROD, we use the DS register since BASIC sets SS and DS to the same value. This works quite well when GINPROD is called from BASIC, but some other method might be necessary if GINPROD is used with another language.

GINPROD leads immediately to a fast BASIC routine for matrix multiplication.

```
10 DEFINT I-N
20 DEFDBL S
30 DIM A(L-1,M-1)っB(M-1,N-1),C(L-1, N-1)
```

```
IONE=1 : ITYPE=4
    FOR IROW=0 TO L-I
            FOR JCOL=0 TO N-]
    CALL GINPROD(A(IROWっO)っB(DっJCOL)っSUMっITYPEっITYPE,MっIONE,M)
        REM FIND INNER PRODUCT OF ROW IROW OF A UITH
        REM COLUMN JCOL OF B RETURNING THE ANSWER IN SUM
        REM NOTE ITYPE=4 INDICATES SINGLE PRECISION
        REM SUM=0
                REM FOR K=0 TO M-1
                REM SUM=SUM+A(IROWっK)*B(KっJCOL)
                REM NEXT K
        C(IROW,JCOL)=SUM
        NEXT JCOL
            NEXT IROU
```

For convenient comparison，we have adapted the earlier BASIC pro－ gram for matrix multiplication by adding statements 35 and 55－58 and changing 70，80，and 90 into REMARKS．This program directly takes the inner product of each row of A with each column of B．

How much time do we save by multiplying matrices using GINPROD instead of straight BASIC code？For large m，both programs are roughly proportional to $\mathrm{l}^{*} \mathrm{~m}^{*} \mathrm{n}$ ．The constant of proportionality is about $9600 \mathrm{mi}-$ croseconds for BASIC．Using GINPROD，the constant of proportionality falls to 61 microseconds．Thus，multiplying two 50 by 50 matrices takes about 20 minutes in BASIC without the 8087．Using the 8087 ，the program takes about eight seconds．

Suppose the middle index，m ，is small compared to 1 and n ．Lines 70， 80 ，and 90 use time proportional to $\mathrm{l}^{*} \mathrm{~m}^{*} \mathrm{n}$ ．Lines 40－60 and 100－120 execute in time proportional to $l^{*} n$ ．Ordinarily in timing analysis，if a cubic term， such as $l^{*} \mathrm{~m}^{*} \mathrm{n}$ ，is present，we drop quadratic terms，such as $l^{*} n$ ．If m is small，the quadratic terms become important．For example，if $m=1$ ，the program spends as much time in lines $40-60$ and $100-120$ as in $70-90$ ；use of the routine GINPROD doesn＇t speed up anything at all．

Speed considerations thus suggest a pure 8087 routine for matrix mul－ tiplication．Routine MATMULT essentially imitates the BASIC code above．

```
;SUBROUTINE MATMULT(A,B,C,L,M,N)
; ASSUMPTIONS: A`B,C ARE SINGLE PRECISION MATRICES
    A IS L BY M
    B IS M BY N
    C IS L BY N
    LっMっN ARE INTEGERS
i
; THIS SUBROUTINE PERFORMS THE MATRIX MULTIPLICATION C=AB
; SUCCESSIVE ROUS OF A ARE MULTIPLIED BY THE FIRST COLUMN
    OF B
; THEN REPEAT FOR SECOND COLUMN, ETC.
    PUBLIC MATMULT
CSEG SEGMENT 'CODE'
    ASSUME CS:CSEGIES:ESEG
```


	MOV	M_HOLD, DX	
	MOV	M4_HOLD, DX	
	SHL	M4_HOLD 1	iGET 4*M
	SHL	M4_HOLD	
	MOV	$B X, D S:[B P]+b$; $B X=A D D R(N)$
	MOV	CXっ[BX]	; $C X=N$
	MOV	N_HOLD, ${ }^{\text {CX }}$	
	MOV	$A X, 4$;SAVE USEFUL 4
	MOV	BX	;SAVE USEFUL 1
i			
COL_LOOP:	CMP	N_HOLD ${ }^{\text {a }}$;COL DONE?
	JE	DONE	
	MOV	SI,ADDRA_HOLD	
	MOV	CX,L_HOLD	
ROW_LOOP:			
	PUSH	SI	; $A(I) 0)$
	PUSH	ADDRB_HOLD	; B ($0, \mathrm{~J}$)
	PUSH	AX	i4
	PUSH	AX	i4
	PUSH	L_HOLD	il
	PUSH	BX	il
	PUSH	DX	iM
	CALL	GINP	
	FSTP	DWORD PTR [DI]	
	ADD	DI, 4	iNEXT C
	ADD	SIっ4	; NEXT A
	LOOP	ROW_LOOP	iNEXT ROU
	MOV	SI,M4_HOLD	i SKIP TO NEXT COLUMN
	ADD	ADDRB_HOLD, ${ }^{\text {SI }}$	iNEXT B
	DEC	N_HOLD	
	JMP	COL_LOOP	
i			
DONE:			
	MOV	SP,LOCAL_SPACE+2	
	MOV	SS.LOCAL_SPACE	
	POP	ES	
	POP	BP	
	FWAIT		
	RET	12	
MATMULT	ENDP		
CSEG	ENDS		
	END		

MATMULT executes in about $211^{*} \mathrm{l}^{*} \mathrm{n}+59^{*} \mathrm{l}^{*} \mathrm{~m}^{*} \mathrm{n}$ microseconds. In the worst case, $\mathrm{m}=1$ and large $\mathrm{l}^{*} \mathrm{n}$, MATMULT uses about 270 microseconds per element. Even though 80 percent of the 270 microseconds is overhead, MATMULT is still over 100 times faster than BASIC. By the time m is as large as 20, execution speed rises to about 70 microseconds per element, which is 80 percent of maximum hardware speed. Adaptation of MATMULT to double precision arguments is straightforward.

GINPROD allows us to easily create many variants of matrix multi－ plication．Suppose we want to multiply the transpose of a matrix A by a matrix B ，as in $C=A^{\prime} B$ ，where A is m by 1 and B is m by n ．Row i of A^{\prime} is column i of A ，so we can use GINPROD specifying a＂skip＂of 1 for A to specify a row of A^{\prime} ．

```
1O DEFINT I-N
20 DEFDBL S
30 DIM A(M-1, L-1), B(M-1, N-1), C(L-1, % N-1)
35 Il=1 : ITYPE=4
40 FOR IROW=0 TO L-1,
            FOR JCOL=0 TO N-I
CALL GINPROD(A(DっIROW)っB(D,JCOL)っSUMっITYPE,ITYPE,Il,っIl,M)
REM SUM=0
REM FOR K=0 TO M-1
REM SUM=SUM+A(K,IROU)*B(K,JCOL)
REM NEXT K
C(IROW, JCOL)=SUM
NEXT JCOL
l2O NEXT IROW
```

A slightly simpler program could be written using INPROD rather than GINPROD，but the method here allows double precision matrices and is easily adaptable to problems such as $\mathrm{C}=\mathrm{AB}^{\prime}$ ，which require the matrix to be processed by row rather than column．

Solving Systems of Linear Equations

This is a good place to pause in your reading．We spend the rest of this chapter on linear algebra and in writing BASIC programs for solving systems of linear equations and inverting matrices．Our next 8087 pro－ gram doesn＇t appear until Chapter 11．If your main interest is the 8087 aspect of these problems，you should just quickly skim the rest of this chapter．

The next few pages move very fast．You can spend most of a course in college learning about linear equations．The next few pages are really more of a quick review than a proper introduction to the subject．If you＇re new to the topic－or if it＇s been a long time since you last saw the subject－spend some time playing with the BASIC programs．One of the nice things about exploring with a personal computer is that your＂study＂ can be as fast or as slow as you please．

Equation Manipulation

Return now to our example of two linear equations in two unknowns． The equations to be satisfied are：

$$
\begin{aligned}
18 & =4 x_{1}+2 x_{2} \\
9 & =2 x_{1}-2 x_{2}
\end{aligned}
$$

which can also be written

$$
y=A x
$$

For a given y, what value of x makes both equations true simultaneously? We solve for x by making judicious use of the following theorems.

1. If we multiply both sides of a true equation by a constant, the resulting equation is also true.
2. If we add one true equation to another, the resulting equation is also true.
3. We can always exchange the position of two equations.

Clever application of these principles allows us to easily solve systems of linear equations. Consider applying the following transformations to our example system.

1. Multiply the top equation by $-1 / 2$ and add the result to the second equation. The transformed system looks like this:

$$
\begin{aligned}
18 & =4 x_{1}+2 x_{2} \\
0 & =0 x_{1}-3 x_{2}
\end{aligned}
$$

2. By inspecting the bottom equation, we see that x_{2} equals 0 . Solving backwards, we set x_{2} to zero in the top equation and see immediately that x_{1} equals $18 / 4$, or 4.5 .

Matrix Manipulation

These steps generalize to a two-step procedure for solving systems of linear equations in terms of matrices.

1. Reduce the system to triangular form. Multiply the first equation by a constant and add the result to the second equation so as to produce a zero in column 1, row 2 . Multiply the first equation by a (different) constant and add the result to the third equation so as to produce a zero in column 1, row 3 . Continue in this manner until the first column is all zeros below the diagonal.
Now take the second equation, multiply it by a constant and add it to the third equation so as to produce a zero in column 2, row 3. Continue until the entire second column is zero below the diagonal. Apply this procedure repeatedly until the entire area below the diagonal equals zero. This sort of matrix, with all zeros below the diagonal is called upper triangular.
2. Back substitute. Take the transformed version of A and y and solve for x by

$$
\begin{aligned}
& x_{n}=y_{n} / A_{n, n} \\
& x_{n-1}=\left(y_{n-1}-A_{n-1, n} x_{n}\right) / A_{n-1, n-1}
\end{aligned}
$$

and so forth.

Let's look at what our sample system looks like in terms of matrices. We start with the original A and y.

$$
A=\left[\begin{array}{rr}
4 & 2 \\
2 & -2
\end{array}\right] \quad y=\left[\begin{array}{c}
18 \\
9
\end{array}\right]
$$

Now we begin the reduction process. Our first step multiplies the top row of A and y by $-1 / 2$ and adds the result to the second row giving us new values of A and y.

$$
A=\left[\begin{array}{cc}
4 & 2 \\
0 & -3
\end{array}\right] \quad y=\left[\begin{array}{c}
18 \\
0
\end{array}\right]
$$

You can see why A is said to be in "triangular form." The non-zero entries form a triangle on and above the diagonal.

Notice that A and y are changed. If you want to keep the original data intact, be certain to perform the reduction on a copy of the original matrices.

The second step is to back-substitute. The matrix equation $\mathrm{y}=\mathrm{Ax}$ still applies to the new versions of A and y. Starting at the bottom and working up we have

$$
0=(0) x_{1}+(-3) x_{2}
$$

so $x_{2}=0$. Now we can substitute this into the first equation.

$$
18=(4) x_{1}+(2) 0
$$

X_{1} equals $(18-0) / 4$, or 4.5 .
In theory, only one thing can go wrong with this procedure. Suppose that at some step the equation we are using to produce zeros below the diagonal has a zero as its own diagonal element. (This diagonal element is called the pivot element.) In this case, the equation cannot be used to eliminate the elements below it and the program stops. The solution to this problem is to exchange the offending equation with another so as to obtain a non-zero pivot. (Implementation of this solution is deferred until the next chapter.) If the entire column equals zero, the system of equations and the matrix A are said to be singular. The system of equations does not have a unique solution.

This method of solving linear systems is called Gaussian elimination. While not the best computational method (better ones are introduced in the next chapter), it is the most straightforward. The following BASIC program implements Gaussian elimination. Notice that the original contents of A and y are replaced by transformed values.

```
REM PROGRAM GAUSS
DEFINT I-N
DIM A(N-1, N-1),Y(N-1),X(N-1)
    REM BE SURE AっY AND N ARE DEFINED
        FOR IEQ=0 TO N-l
        IF A(IEQ,IEQ)=0 THEN PRINT "ZERO PIVOT AT",IEQ:STOP
                FOR JROW=IEQ+] TO N-1
                FACTOR=-A(JROW,IEQ)/A(IEQ,IEQ)
                Y(JROW)=Y(JROW)+FACTOR*Y(IEQ)
                    FOR K=IEQ TO N-I
                A(JROWっK)=A(JROW,K)+FACTOR*A(IEQ,K)
                    NEXT K
                NEXT JROW
        NEXT IEQ
    REM
    REM A IS NOW UPPER TRIANGULAR
    REM
    X(N-1)=Y(N-1)/A(N-1,N-1)
        FOR IEQ=(N-1)-1 TO O STEP -l
        SUM=0
        FOR K=IEQ+1 TO N-1,
        SUM=SUM+A(IEQ,K)*X(K)
        NEXT K
        X(IEQ)=(Y(IEQ)-SUM)/A(IEQ,IEQ)
        NEXT IEQ
```

How long does it take to solve a system using Gaussian elimination？ The outermost loop，the IEQ loop，is executed N－1 times．The next loop， the JROW loop，is done $\mathrm{N}-1$ times for the first IEQ， $\mathrm{N}-2$ for the second， and so forth．So the JROW loop is executed approximately $\mathrm{n}^{2} / 2$ times． The inner－most loop， K ，executes N times per JROW for the first IEQ， $\mathrm{N}-1$ times per JROW for the second IEQ，for a total of about $\mathrm{n}^{3} / 3 \mathrm{op}$－ erations．In total，the time required to solve a system of n equations is proportional to $n^{3} / 3$ ，plus a small factor proportional to $n^{2} / 2$ ．

The logical next step would be to prepare 8087 routines to speed up the program．Since better solution methods are proposed in the next chapter，introduction of more 8087 routines will be postponed until that point．However，here are a couple of suggestions in case you＇d like to experiment．

Almost the entire execution time is spent in lines 80,90 ，and 100 ．These lines multiply a row vector by a scalar and then add two row vectors． The routines prepared in Chapter 9 will only multiply and add column vectors．However，these routines could easily be modified to include a skip parameter，so as to work on row vectors．We might replace lines 80,90 ，and 100 with lines something like this：

```
25 DIM XTRAROU(N-1):IONE=1
85 K=(N-1)-IEQ+1
q5 CALL MULTSC(A(IEQ,IEQ),FACTOR,XTRAROU(D)っN,IONE,K)
105 CALL VADD(A(JROW,IEQ)っXTRAROW(D)っA(JROW,D)っN,IONE,NっK)
```

Lines 180－200 might be replaced with GINPROD for some further gain．
Using BASIC，solving a system of equations takes about $12500 \mathrm{n}^{3} / 3$ microseconds．Solving a 50 －equation system uses over eight minutes of computer time．Replacing the inner－most loop with 8087 routines as sug－ gested will reduce execution time to about $100 \mathrm{n}^{3} / 3$ microseconds．That knocks solution time for a 50 －equation system down to about five sec－ onds．

Solving Multiple Linear Systems

We frequently want to solve a number of linear systems，sharing a com－ mon A matrix but having different y vectors．In place of a single n by 1 column vector y ，we can arrange m column vectors into an n by matrix Y．The solutions can be placed in an n by matrix X ．The entire set of linear equations are represented in this way by the matrix equation

$$
\mathrm{Y}=\mathrm{AX}
$$

Examination of the Gaussian elimination routine shows that all the hard work，that is the order n^{3} work，involves only the A matrix．If we blindly apply the program above，execution time will be of order mn^{3} ． The revision below keeps the transformation of y and backsolving for x out of the innermost loop．

```
10 DEFINT I-N
```

20 DIM A(N-1, N-1),Y(N-1,M),X(N-1, M)

```
```

```
20 DIM A(N-1, N-1),Y(N-1,M),X(N-1, M)
```

```

160 REM A IS NOW UPPER TRIANGULAR
170 REM
\(180 \mathrm{FOR} L E Q=0\) TO M－1
\(190 \quad X(N-1, L E Q)=Y(N-1, L E Q) / A(N-1, N-1)\)
200 FOR IEQ \(=(N-1)-1\) TO O STEP－1
2l0 SUM＝0
220 FOR \(K=I E Q+1\) TO N－1
230 SUM＝SUM＋A（IEQ，K）＊X（K，LEQ）
240 NEXT K
250
```

 REM BE SURE A,Y,N7 AND M ARE DEFINED
    ```
    REM BE SURE A,Y,N7 AND M ARE DEFINED
        FOR IEQ=0 TO N-1
        FOR IEQ=0 TO N-1
        IF A(IEQ,IEQ)=D THEN PRINT "ZERO PIVOT AT",IEQ:STOP
        IF A(IEQ,IEQ)=D THEN PRINT "ZERO PIVOT AT",IEQ:STOP
            FOR JROW=IEQ+] TO N-1
            FOR JROW=IEQ+] TO N-1
            FACTOR=-A(JROW,IEQ)/A(IEQ,IEQ)
            FACTOR=-A(JROW,IEQ)/A(IEQ,IEQ)
                FOR LEQ=0 TO M-1
                FOR LEQ=0 TO M-1
                Y(JROW ,LEQ)=Y(JROW,LEQ)+FACTOR*Y(IEQ,LEQ)
                Y(JROW ,LEQ)=Y(JROW,LEQ)+FACTOR*Y(IEQ,LEQ)
                NEXT LEQ
                NEXT LEQ
                FOR K=IEQ TO N-I
                FOR K=IEQ TO N-I
                A(JROW,K)=A(JROW,K)+FACTOR*A(IEQ,K)
                A(JROW,K)=A(JROW,K)+FACTOR*A(IEQ,K)
                NEXT K
                NEXT K
            NEXT JROW
            NEXT JROW
        NEXT IEQ
        NEXT IEQ
    REM
    REM
    REM
    REM
        FOR LEQ=0 TO M-I
        FOR LEQ=0 TO M-I
        FOR IEQ=(N-1)-1 TO O STEP -1,
        FOR IEQ=(N-1)-1 TO O STEP -1,
        UM=0
        UM=0
                SUM=SUM+A(IEQっK)*X(KっLEQ)
                SUM=SUM+A(IEQっK)*X(KっLEQ)
        X(IEQ,LEQ )=(Y(IEQ,LEQ)-SUM)/A(IEQ,IEQ)
```

 X(IEQ,LEQ)=(Y(IEQ,LEQ)-SUM)/A(IEQ,IEQ)
    ```

2b0 NEXT IEQ
270
NEXT LEQ
This version of Gaussian elimination executes in time proportional to \(\mathrm{n}^{3}\) plus \(\mathrm{mn}^{2}\). For moderately large \(m\) and \(n\), this means an improvement factor of roughly m over repeated Gaussian elimination! Notice that lines \(70-90\) are ripe for replacement by 8087 row operations.

\section*{Space Efficient Gaussian Elimination}

The Gaussian elimination program above solves multiple linear systems quickly, but requires a great deal of storage, since \(2^{*} \mathrm{~m}^{*} \mathrm{n}\) locations are allocated for Y and X . We frequently want to solve systems sequentially, so that only a single \(y\) and \(x\) need be stored.

Gaussian elimination transforms y. As you can see in lines 70-90 above, the same factors are used to transform every column of Y. If we save the factors, we can, at a later stage, transform as many different y's as we like.

At each step in the reduction, all the (lower) elements of \(y\) are transformed. Suppose we save all the factors, labeling the factors from the first step \(f_{00}, f_{10}, f_{20}\), and so forth. The second step produces one less factor. We label these \(f_{11}, f_{21}, f_{31}\), and so forth. Arranging the columns of factors into a matrix, we get
\(F=\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ \mathrm{f}_{10} & 1 & 0 & 0 & 0 & 0 \\ \mathrm{f}_{20} & \mathrm{f}_{21} & 1 & 0 & 0 & 0 \\ \cdot & \cdot & \cdot & 1 & 0 & 0 \\ \cdot & \cdot & \cdot & \cdot & 1 & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & 1\end{array}\right]\)

The matrix of factors is lower triangular with ones along the diagonal. We need a convenient place to store \(F\) for later use. As we reduce A, the area below the diagonal fills with zeros. Since this lower part of A would otherwise go to waste, we'll use it to store the part of F below the diagonal, and remember that the remaining part of F is ones and zeros.

Suppose we label the transformed vector y , " \(\mathrm{y}^{*}\)." The reduction process transforms y according to the following rules:
\[
\begin{aligned}
& y^{*}{ }_{0}=y_{0} \\
& y^{y^{*}}=y_{1}+f_{10} y^{*}{ }_{0} \\
& y^{*}{ }^{*}=y_{2}+f_{20} y^{*}{ }^{*}+f_{21} y^{*}{ }_{1} \\
& y^{*}{ }_{3}=y_{3}+f_{30} y^{*}{ }_{0}+f_{31} y^{*}{ }_{1}+f_{32} y^{*}{ }_{2} \\
& \text { and so forth. }
\end{aligned}
\]

The first step of our space efficient program is to reduce A to upper triangular form and store the factors in A＇s lower triangle．Then，each time we want to find \(x\) for a new \(y\) ，we generate a new \(y^{*}\) from the stored factors and back substitute．The next set of BASIC code takes this ap－ proach．

5 REM PROGRAM GAUSS－SE（SPACE EFFICIENT）
10 DEFINT I－N
20 DIM \(A(N-1, N-1), Y(N-1), X(N-1), Y S T A R(N-1)\)
25 REM BE SURE AヶY，AND N ARE DEFINED
\(30 \quad F O R\) IEQ \(=0\) TO \(\mathrm{N}-1\)
40 IF \(A(I E Q, I E Q)=0\) THEN PRINT＂ZERO PIVOT AT＂，IEQ：STOP
50
60
70
80
90
100
110
120
130
140
150 REM
\(160 \quad \operatorname{YSTAR}(\mathrm{D})=Y(\mathrm{C})\)
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
FOR JROU=IEQ+1 TO N-1
\[
F A C T O R=-A(J R O W, I E Q) / A(I E Q, I E Q)
\]

FOR K＝IEQ TO N－l
\(A(J R O W, ?!?=A(J R O W, K)+F A C T O R * A(I E Q, K)\)
NEXT K
A（JROWっIEQ）＝FACTOR
NEXT JROW
NEXT IEQ
REM
REM A IS NOU UPPER TRIANGULAR

FOR IEQ \(=0\) TO（ \(N-1\) ）－1，
SUM \(=0\)
FOR K＝0 TO IEQ－1
SUM \(=S U M+A(I E Q+1, K) * Y S T A R(K)\)
NEXT K
\(Y S T A R(I E Q+1)=Y(I E Q+1)+S U M\)
NEXT IEQ
\(X(N-1)=Y S T A R(N-1) / A(N-1, N-1)\)
FOR IEQ \(=(\mathrm{N}-1)-1\) TO O STEP－1，
SUM \(=0\)
FOR．\(K=I E Q+1\) TO \(N-1\),
\(S U M=S U M+A(I E Q, K) * X(K)\)
NEXT K
\(X(I E Q)=(Y S T A R(I E Q)-S U M) / A(I E Q, I E Q)\)
NEXT IEQ
Lines 160－310 can be repeated for other y vectors as needed．Notice that lines 190－210 are really forming an inner product and could be replaced with 8087 code．

In the next chapter，we will discuss more advanced methods of solving linear systems．

\section*{Matrix Inversion}

Suppose we were faced with the scalar equation
\[
y=A x
\]
and were asked to solve for \(x\) given \(y\). We might write the answer as
\[
x=y / A
\]
or as
\[
x=A^{-1} y
\]

For a scalar equation, \(A^{-1}\), pronounced " \(A\) inverse," is just \(1 / \mathrm{A}\). The question arises as to whether there is not a matrix we could label " \(\mathrm{A}^{-1}\)," such that \(x=A^{-1} y\). There is indeed such a matrix.

First, define the identity matrix as a square matrix with ones along the diagonal and zeros off the diagonal. For example, if \(I\) is the 3 by 3 identity matrix, then
\[
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\]

The identity matrix is analogous to a one in scalar multiplication. The identities \(\mathrm{IX}=\mathrm{X}\) and \(\mathrm{XI}=\mathrm{I}\) hold for the identity matrix and any conformable matrix \(X\). For scalars, we say that \(A^{-1}\) is the inverse of \(A\) if \(\mathrm{AA}^{-1}=1\). Analogously, for matrices we say
\(A^{-1}\) is the matrix inverse of \(A\) if \(A A^{-1}=I\).
(Note we are restricting our attention to square matrices. For a square matrix, not only does \(\mathrm{AA}^{-1}=\mathrm{I}\), so does \(\mathrm{A}^{-1} \mathrm{~A}\).)
How do we "invert" a matrix? The equation \(I={A A^{-1}}^{\text {has }}\) precisely the same form as the matrix equation \(Y=A X\), where \(I\) is \(Y\) and \(A^{-1}\) is \(X\). We can use our BASIC program above to reduce A to upper triangular form and then back substitute for each column of the identity matrix. Because of the special form of the identity matrix we can calculate \(y^{*}\) without creating each \(y\).

Assume we have executed the reduction part of the previous program. The code below replaces lines 160 on, to calculate \(\mathrm{A}^{-1}\) in AINV.

160
```

DIM AINV(N-1, N-1)

```
DIM AINV(N-1, N-1)
    FOR LEQ=0 TO N-1
    FOR LEQ=0 TO N-1
        FOR IEQ=0 TO LEQ-]
        FOR IEQ=0 TO LEQ-]
            YSTAR(IEQ)=0
            YSTAR(IEQ)=0
            NEXT IEQ
            NEXT IEQ
        YSTAR(LEQ)=1
        YSTAR(LEQ)=1
        FOR IEQ=LEQ TO (N-l)-1
        FOR IEQ=LEQ TO (N-l)-1
        SUM=0
        SUM=0
            FOR K=0 TO IEQ
            FOR K=0 TO IEQ
            SUM=SUM+A(IEQ+1,K)*YSTAR(K)
            SUM=SUM+A(IEQ+1,K)*YSTAR(K)
            NEXT K
            NEXT K
        YSTAR(IEQ+1)=SUM
        YSTAR(IEQ+1)=SUM
        NEXT IEQ
        NEXT IEQ
        AINV(N-1, LEQ )=YSTAR(N-1)/A(N-1,N-1)
        AINV(N-1, LEQ )=YSTAR(N-1)/A(N-1,N-1)
            FOR IEQ=(N-1)-1 TO D STEP -1
```

 FOR IEQ=(N-1)-1 TO D STEP -1
    ```
```

310
SUM=0
320
FOR K=IEQ+! TO N-I,
330 SUM=SUM+A(IEQ,K)*AINV(K,LEQ)
340 NEXT K
350 AINV(IEQ,LEQ)=(YSTAR(IEQ)-SUM)/A(IEQ,IEQ)
360
370
NEXT IEQ
NEXT LEQ

```

We now have a "complete" set of routines to solve systems of linear equations and invert matrices. But these routines still leave a few things to be desired.
- They stop if they hit a zero pivot.
- They would be a lot faster if written in 8087 code.
- They would be more accurate if higher precision arithmetic were used, but we do not want to sacrifice too much storage space.
In the next chapter, we remedy these faults . . . and learn a few new tricks.

\section*{11}

\section*{Linear Systems and Matrix Inversion: More Advanced Computational Techniques}

By the end of the last chapter, we had created a set of procedures for solving systems of linear equations and for handling the related operation of matrix inversion. These methods followed the logic of "school room" techniques. The methods we develop in this chapter are perhaps less familiar, but they lend themselves well to highly acdurate and highly efficient 8087 implementation.

Our goals for this chapter are:
- Fix the "zero pivot" problem.
- Express the solution to a system of linear equations in terms of inner products, in order to take full advantage of the 8087's design.
- Move our procedures from BASIC to 8087 code.

\section*{The Cookbook—Chapter 11}
\begin{tabular}{ll} 
Program: & GAUSS-PP \\
Purpose: & \begin{tabular}{l} 
Solve linear equations by Gaussian elimination with \\
partial pivoting.
\end{tabular} \\
Input: & \(\mathrm{A}-\mathrm{N}\) by N coefficient matrix. \\
& \(\mathrm{Y}-\mathrm{N}\) vector.
\end{tabular}

\begin{tabular}{|c|c|}
\hline Output: & SKIPA-integer "skip factor" (see text) for A. N -integer number of elements of \(\mathrm{A}, \mathrm{B}\). SUM-double precision scalar; sum=inner product A,B. \\
\hline Language: & 8087/8088 assembly language. \\
\hline Note: & Requires NEAR procedure XINP. \\
\hline Program: & PIVOT \\
\hline Purpose: & Perform pivot step in Crout decomposition. \\
\hline & CALL PIVOT(A \((0, \mathrm{~K})\), INDEX ( 0 ), TYPE,K,N). \\
\hline \multirow[t]{4}{*}{Input:} & \(\mathrm{A}-\mathrm{N}\) by N coefficient matrix. \\
\hline & INDEX-integer N vector of row permutations. \\
\hline & TYPE-integer giving length of element of A. K -integer index of column to be searched. \\
\hline & N -integer number of rows and columns of A. \\
\hline Output: & INDEX-updated to reflect new pivot. \\
\hline Language: & 8087/8088 assembly language. \\
\hline Note: & Requires NEAR procedure PIV. \\
\hline Program: & CROUTP \\
\hline \multirow[t]{4}{*}{Purpose:
Input:} & Perform Crout decomposition with partial pivoting. \\
\hline & A-N by N coefficient matrix. \\
\hline & TYPE-integer giving length of element of A. \\
\hline & N -integer number of rows and columns of A. \\
\hline Output: & INDEX-integer N vector of row permutations. \\
\hline Language: & IER-integer error flag, IER \(=-1\) if A singular. \\
\hline \multirow[t]{2}{*}{Note:} & NEAR procedure called by REDUCE \\
\hline & Requires NEAR procedures XINP and PIV. \\
\hline Program: & REDUCE \\
\hline Purpose: & Perform Crout decomposition with partial pivoting. \\
\hline Call: & \(\operatorname{CALL~REDUCE~}(\mathrm{A}(0,0), \operatorname{INDEX}(0), \mathrm{TYPE}, \mathrm{IER}, \mathrm{N})\). \\
\hline \multirow[t]{3}{*}{Input:} & \(\mathrm{A}-\mathrm{N}\) by N coefficient matrix. \\
\hline & TYPE-integer giving length of element of A. \\
\hline & N -integer number of rows and columns of A. \\
\hline Output: & INDEX-integer N vector of row permutations. \\
\hline \multirow[b]{3}{*}{Language:
Note:} & IER-integer error flag, IER \(=-1\) if A singular. \\
\hline & 8087/8088 assembly language. \\
\hline & Requires NEAR procedures CROUTP. \\
\hline Program: & SOLP \\
\hline Purpose: & Solve system of linear equations after Crout decomposition with partial pivoting. \\
\hline \multirow[t]{4}{*}{Input:} & \\
\hline & pivoting. \\
\hline & \begin{tabular}{l}
\(\mathrm{Y}-\mathrm{N}\) vector. \\
N -number of rows and columns of A .
\end{tabular} \\
\hline & INDEX-N vector showing row swaps. \\
\hline Output: & \(\mathrm{X}-\mathrm{N}\) vector; X solves equations \(\mathrm{Y}=\mathrm{AX}\). \\
\hline Language: & BASIC. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Program: & SOL \\
\hline Purpose: & Solve system of linear equations after Crout decomposition with partial pivoting. \\
\hline \multirow[t]{6}{*}{Input:} & \begin{tabular}{l}
\(\mathrm{A}-\mathrm{N}\) by N matrix reduced by CROUTP with partial pivoting. \\
\(\mathrm{Y}-\mathrm{N}\) vector.
\end{tabular} \\
\hline & INDEX--N vector showing row swaps. \\
\hline & TYPEA-integer giving length of element of A. \\
\hline & TYPEY-integer giving length of element of Y. \\
\hline & TYPEX-integer giving length of element of X. \\
\hline & N -integer number of rows and columns of A . \\
\hline Output: & \(\mathrm{X}-\mathrm{N}\) vector; X solves equations \(\mathrm{Y}=\mathrm{AX}\). \\
\hline Language: & 8087/8088 assembly language. \\
\hline Note: & NEAR procedure called by SOLVE. \\
\hline Program: & SOLVE \\
\hline Purpose: & Solve system of linear equations after Crout decomposition with partial pivoting. \\
\hline Call: & CALL SOLVE (A(0,0), \(Y(0), X(0)\),INDEX( 0\(),\) TYPEA, TYPEY,TYPEX,N). \\
\hline \multirow[t]{6}{*}{Input:} & \begin{tabular}{l}
\(\mathrm{A}-\mathrm{N}\) by N matrix reduced by CROUTP with partial pivoting. \\
\(\mathrm{Y}-\mathrm{N}\) vector.
\end{tabular} \\
\hline & INDEX-N vector showing row swaps. \\
\hline & TYPEA-integer giving length of element of A. \\
\hline & TYPEY-integer giving length of element of Y. \\
\hline & TYPEX-integer giving length of element of \(X\). \\
\hline & N -integer number of rows and columns of A . \\
\hline Output: & \(\mathrm{X}-\mathrm{N}\) vector; X solves equations \(\mathrm{Y}=\mathrm{AX}\). \\
\hline Language: & 8087/8088 assembly language. \\
\hline Note: & Requires NEAR procedure SOL. \\
\hline \multirow[t]{3}{*}{Program: Purpose: Call:} & INV \\
\hline & Invert matrix. \\
\hline & CALL SOLVE(A(0,0),AINV(0,0),SCRATCH(0), INDEX(0),IER,TYPEA,N). \\
\hline \multirow[t]{4}{*}{Input:} & A-N by N matrix. \\
\hline & SCRATCH-single precision N vector of scratch space. \\
\hline & TYPEA-integer giving length of element of A,AINV. \\
\hline & N -integer number of rows and columns of A . \\
\hline \multirow[t]{4}{*}{Output:} & AINV-N by N matrix; inverse of A . \\
\hline & A-A replaced by Crout reduction. \\
\hline & INDEX-integer N vector, permutations of reduced A. \\
\hline & IER--integer error flag, \(\mathrm{IER}=-1\) if A singular. \\
\hline Language: & 8087/8088 assembly language. \\
\hline Note: & Requires NEAR procedures CROUTP and SOL. \\
\hline
\end{tabular}

Our original program for Gaussian elimination stops if it hits a zero diagonal, or "pivot," element. A zero pivot may indicate a "mathematical," not "just a computational," problem, because the system of equations may not have a unique solution. Consider the following linear system as an example.
\[
\begin{aligned}
& y_{1}=2 x_{1}+4 x_{2} \\
& y_{2}=4 x_{1}+8 x_{2}
\end{aligned}
\]

The " A " matrix is originally。
\[
\left.\begin{array}{ll}
{\left[\begin{array}{l}
2 \\
4
\end{array}\right.} & 4 \\
\hline
\end{array}\right]
\]

After one step of Gaussian elimination, the reduced matrix looks like this:
\[
\left[\begin{array}{ll}
2 & 4 \\
0 & 0
\end{array}\right]
\]

In addition, we have saved the FACTOR, -2 .
At the next attempted step of Gaussian elimination, the program finds that \(\mathrm{A}_{2,2}\) equals zero, and therefore stops with the error message "ZERO PIVOT AT 2." The problem is a mathematical one. The matrix A is singular, so the pair of equations does not have a unique solution. In fact, an infinite set of combinations of \(x_{1}\) and \(x_{2}\) solve the system if \(y_{2}\) is twice \(y_{1}\). No solution exists if \(y_{2}\) isn't exactly twice \(y_{1}\).

Consider the following rather different pair of equations.
\[
\begin{aligned}
& \mathrm{y}_{1}=0 \mathrm{x}_{1}+1 \mathrm{x}_{2} \\
& \mathrm{y}_{2}=1 \mathrm{x}_{1}+0 \mathrm{x}_{2}
\end{aligned}
\]

The " A " matrix is originally
\[
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
\]

Our Gaussian elimination routine hits a zero pivot-and stops-on the very first step. This example demonstrates a computational, rather than a mathematical, problem. By inspection, the solution to the system is \(x_{1}=y_{2}\) and \(x_{2}=y_{1}\). The solution to the computational problem is simple. We just reorder the equations so that the diagonal elements aren't zero. Instead of solving the system as originally specified, we work on
\[
\begin{aligned}
& \mathrm{y}_{2}=1 \mathrm{x}_{1}+0 \mathrm{x}_{2} \\
& \mathrm{y}_{1}=0 \mathrm{x}_{1}+1 \mathrm{x}_{2}
\end{aligned}
\]
with the " A " matrix
\[
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\]

Gaussian elimination proceeds smoothly as long as we keep track of the order in which the equations are solved.

These two examples illustrate the general rules for dealing with zero pivot elements.
1. If a zero pivot is encountered in equation \(i\), exchange the equation \(i\) with an equation below it that does not have a zero in column \(i\).
2. If all the remaining equations have a zero in column \(i\), the matrix is singular.
3. Keep a record of all equation exchanges, so that we can later "unswap" the equations, if desired.

In practice, we add two further steps. \(\cdot\)
4. Rather than actually exchanging the equations, create an array INDEX such that INDEX(I) is the original number of the equation that now belongs in row \(i\).

Just as a zero pivot stops the program by creating an infinite FACTOR, so too, a very small pivot creates a very large FACTOR and tends to generate sizable round-off error. Accuracy can be considerably enhanced by using the largest possible pivot.
5. Instead of exchanging equations only when a zero pivot is encountered (as required by rule 1), search the remainder of column i for the element, \(A(J, I)\), with the largest absolute value and exchange rows \(i\) and \(j\).
The implementation of Gaussian elimination with rules 2 through 5 is called Gaussian elimination with partial pivoting. The BASIC code below rewrites the Gaussian elimination program of the previous chapter to include partial pivoting. Notice that instead of row I, we now reference row INDEX(I), but column \(j\) remains column \(j\).

5
```

1500
REM
1600
YSTAR(D) $=Y(\operatorname{INDEX}(\mathrm{O}))$
FOR IEQ=1 TO N-I
IEQX=INDEX(IEQ)
SUM=0
FOR K=0 TO IEQ-1
SUM $=$ SUM $+A($ IEQX,$K) * Y S T A R(K)$
NEXT K
YSTAR(IEQ) $=Y($ IEQX $)+S U M$
NEXT IEQ
$I N=I N D E X(N-1)$
$X(N-1)=Y S T A R(N-1) / A(I N, N-1)$
FOR IEQ $=(N-1)-1$ TO \square STEP -1
IEQX=INDEX(IEQ)
SUM=
FOR $K=I E Q+1$ TO $N-1$
$S U M=S U M+A(I E Q X, K) * X(K)$
NEXT K
$X(I E Q)=(Y S T A R(I E Q)-S U M) / A(I E Q X, I E Q)$
NEXT IEQ
STOP
REM SUBROUTINE TO FIND LARGEST ELEMENT IN COLUMN
BIGGEST=ABS(A(INDEX(IEQ) $I E Q)$
IBIGGEST=IEQ
FOR I=IEQ+1 TO N-1.
$P I V=A B S(A(I N D E X(I), I E Q))$
IF PIV>BIGGEST THEN BIGGEST=PIV:IBIGGEST=I
NEXT I
RETURN

```

This program performs the same number of multiplications and additions as simple Gaussian elimination, but will run a little more slowly due to increased overhead. The time spent selecting pivot rows is an order \(\mathrm{n}^{2}\) operation, and is therefore negligible compared to the basic reduction operation.

We've fixed the "zero pivot" problem. Before moving on to the chapter's other goals, we need to discuss some more mathematics. If you're more interested in "how" than "why," skip ahead to the programs. It will help to look at the BASIC programs before the 8087 programs, since the former are easier to follow.

\section*{The Theory of "LU Decomposition"}

A number of advanced methods of solving systems of linear equations, and consequently of matrix inversion, rely on the principle of "LU decomposition." This principle states that a square matrix A can be factored into a lower triangular matrix L and an upper triangular matrix U such that \(L\) times \(U\) equals \(A\). There are many such decompositions. A par-
ticular method is arrived at by our choice of restrictions on the contents of \(L\) or \(U\).

LU methods all work in three steps. Suppose the initial problem is \(y=A x\)
1. Factor \(A\) into \(L\) and \(U\). This decomposition is an order \(n^{3}\) operation. Now we have
\[
y=(L U) x=L(U x)
\]

While LU is a square matrix, Ux is a column vector.
2. Solve the following system of equations for \(y^{*}\). Solution of an upper (or lower) triangular system of equations is an order \(\mathrm{n}^{2}\) operation.
\[
\mathrm{y}=\mathrm{Ly} y^{*}
\]

Since \(y^{*}=L^{-1} y\), we next
3. Solve, the order \(n^{2}\) problem
\[
y^{*}=U x
\]

Does this look like a roundabout method? It really isn't, it only seems that way. For example, the reduction process of Gaussian elimination leaves us with an upper triangular matrix that we might call U. If we add a diagonal with all ones to the set of factors we store along the way, we have a lower triangular matrix that we might call L . A bit of calculation will show you that LU indeed equals A. Further, solving for \(y^{*}\) and \(x\) in the Gaussian elimination programs are exactly steps 2 and 3 above. So Gaussian elimination is actually a particular example of using an LU decomposition.

\section*{The Crout Decomposition}

The most useful LU method for the 8087 is called the Crout decomposition. (The Crout decomposition is a member of the family called "compact" methods.) The defining characteristic of the Crout decomposition is that U has all ones along the diagonal. So this LU decomposition looks like this:
\[
\mathrm{L}=\left[\begin{array}{llllll}
\mathrm{L}_{0,0} & 0 & 0 & \cdot & \cdot & 0 \\
\mathrm{~L}_{1,0} & \mathrm{~L}_{1,1} & 0 & & & \cdot \\
\mathrm{~L}_{2,0} & \mathrm{~L}_{2,1} & \mathrm{~L}_{2,2} & & & \cdot \\
\cdot & \cdot & \cdot & & & \\
\cdot & \cdot & \cdot & & & \\
\cdot & \cdot & \cdot & & & 0 \\
\mathrm{~L}_{\mathrm{N}-1,0} & \mathrm{~L}_{\mathrm{N}-1,1} & \cdot & \cdot & \cdot & \mathrm{~L}_{\mathrm{N}-1, \mathrm{~N}-1}
\end{array}\right]
\]
\[
\mathrm{U}=\left[\begin{array}{lllllll}
1 & \mathrm{U}_{0,1} & \mathrm{U}_{0,2} & \cdot & \cdot & \cdot & \mathrm{U}_{0, \mathrm{~N}-1} \\
0 & 1 & \mathrm{U}_{1,2} & & & & \mathrm{U}_{1, \mathrm{~N}-1} \\
0 & 0 & 1 & & & & \cdot \\
\cdot & & & & & & \cdot \\
\cdot & & & & & & \cdot \\
. & & & & & & \mathrm{U}_{\mathrm{N}-2, \mathrm{~N}-1} \\
0 & 0 & \cdot & \cdot & \cdot & 0 & 1
\end{array}\right]
\]

Notice the special pattern in which the rows of \(L\) match up with the columns of \(U\). The inner product of row 0 of \(L\) and column 0 of \(U\), which equals \(\mathrm{A}_{0,0}\), is just \(\mathrm{L}_{0,0}\). Moving down to the second row of L we see that \(\mathrm{L}_{1,0}\) equals \(\mathrm{A}_{1,0}\), and so forth. In this way, the entire first column of \(L\) is defined.

Now multiply the first row of \(L\) with the second column of \(U\). We find \(\mathrm{L}_{0,0}\) times \(\mathrm{U}_{0,1}\) equals \(\mathrm{A}_{0,1}\). Since we already know \(\mathrm{L}_{0,0}\), we can solve for \(\mathrm{U}_{0,1}\) directly. Moving on to the third column of U gets us \(\mathrm{U}_{0,2}\) in the same manner. In this way the entire first row of \(U\) is defined.

Having defined the first column of \(L\) and the first row of \(U\), we move on to the second column of \(L\) and the first row of \(U\). In effect, the Crout procedure marches down the diagonal of the matrix. At each step, the portion of the column of \(L\) hanging down from the diagonal and the portion of the row of \(U\) sticking out to the right, are defined. To conserve space, we reuse A to store L and U . The following BASIC program performs a CROUT decomposition.
```

10 DEFINT I-N
20 DEFDBL S
30 DIM A(N-1, $N-1)$
40 FOR $K=0$ TO $\mathrm{N}-1$
50 IF $A(K, K)=0$ THEN PRINT "ZERO PIVOT", $K: S T O P$
ba REM FILL IN COLUMN OF L
$70 \quad F O R$ I $=K$ TO $\mathrm{N}-1$
$80 \quad$ SUM $=0$
$90 \quad F O R \quad L=0$ TO $\mathrm{K}-\mathrm{l}$
$100 \quad$ SUM $=S U M+A(I, L) * A(L, K)$
110 NEXT L
$120 \quad A(I っ K)=A(I っ K)-S U M$
130 NEXT I
140 REM FILL IN ROU OF U
150 FOR J=K+l TO N-l
libo SUM=0
l.7 \quad FOR $L=0$ TO $\mathrm{K}-1$
$180 \quad$ SUM $=S U M+A(K, L) * A(L, J)$
190 NEXT L
$200 \quad A(K, J)=(A(K, J)-S U M) / A(K, K)$
210 NEXT J
220 NEXT K

```

Do you see why the Crout decomposition is so well suited to the 8087 ? Lines 80-110 and 160-190 form inner products between a portion of a column of \(L\) and a portion of a row of U! By using INPROD or GINPROD we take full advantage of the 8087's speed. Of probably greater importance, since the inner products are accumulated in temporary real precision, we can store a matrix in single or double precision and still get almost all the accuracy of 80 -bit storage.

If you'd like to get a better handle on the logic of the Crout decomposition, you might try reducing the following 2 by 2 matrix into upper and lower triangular matrices.
\[
A=\left[\begin{array}{ll}
3 & 6 \\
4 & 2
\end{array}\right]
\]

You should end up with these two matrices:
\[
L=\left[\begin{array}{cc}
3 & 0 \\
4 & -6
\end{array}\right] \quad U=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
\]

Note that our program stores both \(L\) and \(U\) in place of \(A\).
\[
\text { A reduced } \left.=\begin{array}{cc}
3 & 2 \\
4 & -6
\end{array}\right]
\]

The "zero pivot" problem has returned with this version of Crout decomposition. We adapt this program to include partial pivoting by exchanging rows just before filling each row of U . The next BASIC program illustrates Crout decomposition with partial pivoting.

5
100
200
300
310
320
330
```

REM PROGRAM CROUT-PP
DEFINT I-N
DEFDBL S
DIM A(N-1, N-1),INDEX(N-1),Y(N-1)
FOR I=0 TO N-I
INDEX(I)=I
NEXT I
FOR K=0 TO N-1
REM FILL IN COLUMN OF L
FOR I=K TO N-1
IX=INDEX(I)
SUM=0
FOR L=0 TO K-I
LX=INDEX(L)
SUM=SUM+A(IX,L)*A(LX,K)
NEXT L
A(IX,K)=A(IX,K)-SUM
NEXT I
REM SWAP ROWS
GOSUB 5000

```
```

1330 SWAP INDEX(K),INDEX(KBIGGEST)
1400 REM FILL IN ROW OF U
1410 KX=INDEX(K)
1,420 IF A(KX,K)=0 THEN PRINT "SINGULAR MATRIX",G:STOP
1500 FOR J=K+1 TO N-1
1600 SUM=0
l7OD FOR L=D TO K-1
l?10 LX=INDEX(L)
1,800 SUM=SUM+A(KX,L)*A(LX,J)
1,900 NEXT L
2000 A(KX,J)=(A(KX,J)-SUM)/A(KXっK)
2]00 NEXT J
2200 NEXT K
3000 STOP
5000 REM SUBROUTINE TO FIND LARGEST ELEMENT IN COLUMN
5l0D BIGGEST=ABS(A(INDEX)(K)っK))
5200 KBIGGEST=K
5300 FOR I=K+1 TO N-1
5400 PIV=ABS(A(INDEX)(I)?K))
5500 IF PIV>BIGGEST THEN BIGGEST=PIV:KBIGGEST=I
5600 NEXT I
5700 RETURN

```

This program effectively takes the original A，permutes A by swapping rows as indicated in INDEX，and then replaces A with the Crout decom－ position of the permuted A．In the solution phase，we＇ll have to undo the row swaps．

\section*{8087 Routines for Solving Systems of Linear Equations}

The time has finally arrived to prepare high－speed 8087 routines for solving systems of linear equations and for matrix inversion．Three rou－ tines based on the Crout decomposition with partial pivoting appear below．REDUCE reduces a matrix to its LU decomposition．Given the reduced matrix and the vector \(y\) ，SOLVE calculates \(x\) ，as in \(y=A x\) ．INV inverts a matrix in one step．

For maximum flexibility，we write a series of 8087 internal procedures， and then add external procedures that may be called from BASIC．Our first procedure，PIV，finds the largest element of a column，indexed by INDEX，and exchanges indexes to accomplish partial pivoting．
```

;SUBROUTINE PIV(AっINDEX,TYPEAっDIAGっN)
; ASSUMPTIONS:A IS ADDRESS OF N-ARRAY IN DATA SEGMENT
INDEX IS AN INTEGER N-ARRAY
TYPEA,DIAG,N ARE INTEGERS
NOTE THIS PROCEDURE CANNOT BE CALLED FROM
BASIC
IT FINDS ITS ARGUMENTS ON THE STACK
; NOT THEIR ADDRESSES

```

\begin{tabular}{|c|c|c|c|c|}
\hline & MUL & & WORD PTR [DI] & ; \(A X=\) TYPEA*INDEX(DI) \\
\hline & MOV & & BX,AX & \\
\hline & CMP & & WORD PTR [BP]+8, 4 & iIS A SINGLE? \\
\hline & JNE & & AI_DOUBLE & \\
\hline & FLD & & DWORD PTR [SI][BX] & iLOAD SINGLE \\
\hline & JMP & & COMPARE & \\
\hline AI_DOUBLE: & FLD & & QUORD PTR [SI][BX] & ;LOAD DOUBLE \\
\hline COMPARE: & & & & \\
\hline & FABS & & & \\
\hline & FCOM & & & ;COMPARE NEW TO \\
\hline STATUS_WORD & D EQU & LOCAL & _SPACE_LAST-4 & iSCRATCH SPACE \\
\hline & FSTSU & & STATUS_WORD & \\
\hline & FWAIT & & & \\
\hline & MOV & & AHっBYTE PTR STAT & S_WORD+1 \\
\hline & SAHF & & & \\
\hline & JB & & LESS_OR_NONCOMPAR & ABLE \\
\hline ; HERE IF NE & EW IS & GREAT & TER THAN OR EQUAL & TO BIGGEST \\
\hline & FSTP & & ST(l) & :MOVE NEW DOUN STACK \\
\hline & MOV & & KBIGGEST, DI & \\
\hline & JMP & & NEXT_ELEMENT & \\
\hline LESS_OR_NON & NCOMPA & RABLE & & ;BIGGEST IS STILL \\
\hline & FSTP & & ST(0) & \\
\hline NEXT_ELEMEN & NT: & & & \\
\hline & LOOP & & COMP_LOOP & \\
\hline ;SWAP INDEX & X(DIAG) & AND & INDEX(KBIGGEST) & \\
\hline & MOV & & \(D X_{7}[B P]+6\) & ; DX= DIAG \\
\hline & MOV & & DI, [BP]+10 & ; DI=ADDR(INDEX) \\
\hline & ADD & & DI, DX & \\
\hline & ADD & & DI, DX & ; \(\operatorname{DI}=A D D R(I N D E X(D I A G))\) \\
\hline & MOV & & \(A X,[D I]\) & ; \(A X=I N D E X(D I A G)\) \\
\hline & MOV & & BX,KBIGGEST & \[
\begin{aligned}
& \text { i } B X=A D D R(I N D E X \\
& \text { (KBIGGEST)) }
\end{aligned}
\] \\
\hline & XCHG & & \(A X,[B X]\) & \\
\hline & XCHG & & \(A X,[D I]\) & \\
\hline DONE: & & & & \\
\hline & FSTP & & ST(0) & ;CLEAR ELEMENT off STACK \\
\hline & POP & & DI & \\
\hline & POP & & SI & \\
\hline & POP & & DX & \\
\hline & POP & & CX & \\
\hline & POP & & BX & \\
\hline & POP & & AX & \\
\hline & POP & & BP & \\
\hline & RET & & 10 & \\
\hline PIV & ENDP & & & \\
\hline
\end{tabular}

Procedure PIV takes roughly 80 microseconds per element. When used for partial pivoting, PIV searches \(n, n-1, n-2\), and so forth elements at
successive calls．Quite roughly then，in solving a system of n equations， we spend about \(80 \mathrm{n}^{2} / 2\) microseconds in PIV．For a large matrix，PIV might take up half a second．If you＇d like an exercise in array addressing tech－ niques，rewrite PIV replacing the MUL instruction in COMP＿LOOP with appropriate SHL（SHift Left）instructions．You should be able to speed up PIV by about 25 percent．

Most of the work of the Crout decomposition is a series of inner prod－ ucts．Unfortunately，the rows are permuted according to INDEX，so we can＇t use procedure GINP．GINP assumes that columns are stored se－ quentially，while ours are＂scrambled．＂Procedure XINP does an inner product with indexed columns．
```

iSUBROUTINE XINP(A(I,D),A(D,J),INDEX,TYPE,TSKIPAっN)
; ASSUMPTIONS:A(I,O) IS THE ADDRESS OF ROU I
A(0,J) IS THE ADDRESS OF COLUMN J
INDEX IS THE ADDRESS OF INTEGER ARRAY INDEX
TYPE,SKIPA,N ARE INTEGERS
NOTE THIS PROCEDURE CANNOT BE CALLED FROM
BASIC
IT FINDS ITS ARGUMENTS ON THE STACK
NOT THEIR ADDRESSES
THERE MUST BE AT LEAST 2 FREE LOCATIONS ON
THE 808? STACK AND AT LEAST l4 FREE BYTES ON
THE MEMORY STACK
XINP RETURNS THE INNER PRODUCT OF THE FIRST N
ELEMENTS OF ROU I AND COLUMN J ON THE
BOB? STACK
XINP TAKES EVERY SKIPA ELEMENT OF A(I_D) AND
INDEXES THE ELEMENTS OF A(D,J)
i

| | ASSUME | CS：CSEG |
| ---: | :--- | :--- |
| XINP | PROC | NEAR |
| | PUSH | BP |
| | MOV | $B P, S P$ |

;SINCE THIS IS A NEAR PROCEDURE, ARGUMENTS BEGIN AT [BP]+4
PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH SI
PUSH DI
FLDZ ;SET RUNNING SUM=0
JCXZ DONE
MOV SIっ[BP]+14 :SI=ADDR(A(I,O))
MOV DIっ[BP]+10 iDI=ADDR(INDEX)
iIF TYPE IS SINGLE PRECISION SET CX=己 ELSE SET CX=3

```
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{；USE CX FOR SHIFTING BELOW} \\
\hline & MOV & CX， 3 & ©ASSUME TYPE DOUBLE \\
\hline & CMP & WORD PTR［BP］＋8，4 & iIS TYPE SINGLE？ \\
\hline & JNE & NOT＿SINGLE & \\
\hline & MOV & CX，\({ }^{\text {c }}\) & iYES，TYPE IS SINGLE \\
\hline \multicolumn{4}{|l|}{NOT＿SINGLE：} \\
\hline & MOV & \(A X,[B P]+6\) & ；\(A X=S K I P\) \\
\hline & SHL & \(A X, C L\) & ；AX＝A ELEMENT DISTANCE \\
\hline & CMP & WORD PTR［BP］＋4，0 & iN LE D？ \\
\hline & JLE & DONE & \\
\hline \multicolumn{4}{|l|}{XINP＿LOOP：} \\
\hline iFIRST GET & READY FOR & COLUMN & \\
\hline & MOV & BX，［DI］ & ；\(B X=I N D E X(L)\) \\
\hline & SHL & \(\mathrm{BX}, \mathrm{CL}\) & ；BX＝TYPE＊INDEX（L） \\
\hline & ADD & \(B X,[B P]+12\) & ；\(B X=A(\operatorname{INDEX}(\mathrm{~L}), \mathrm{L})\) \\
\hline & CMP & CLっ2 & ；IS A SINGLE？ \\
\hline & JNE & A＿DOUBLE & \\
\hline & FLD & DWORD PTR［SI］ & iLOAD SINGLE ROW ELEMENT \\
\hline & JMP & MULT＿B & \\
\hline A＿DOUBLE： & FLD & QWORD PTR［SI］ & iLOAD DOUBLE COL ELEMENT \\
\hline \multicolumn{4}{|l|}{MULT＿B：} \\
\hline & CMP & CLって & ；IS A SINGLE？ \\
\hline & JNE & A＿DOUBLE2 & \\
\hline & FMUL & DWORD PTR［BX］ & ；MULTIPLY SINGLE \\
\hline & JMP & NEXT＿ELEMENT & \\
\hline A＿DOUBLE2： & FMUL & QWORD PTR［BX］ & ；MULTIPLY DOUBLE \\
\hline \multicolumn{4}{|l|}{NEXT＿ELEMENT：} \\
\hline & FADDP & ST（l），ST & ；SUM \(=\) SUM＋ROU（L）＊COL（L） \\
\hline & ADD & SITAX & ；NEXT ROU ELEMENT \\
\hline & ADD & DIって & iNEXT INDEX \\
\hline & DEC & WORD PTR［BP］＋4 & ；DECREMENT COUNT（NOTE N \\
\hline & CMP & WORD PTR［BP］＋4，0 & ；WAS IN TEMP LOCATION） \\
\hline & JG & XINP＿LOOP & \\
\hline
\end{tabular}

DONE：
\begin{tabular}{lll} 
& POP & DI \\
& POP & SI \\
& POP & DX \\
& POP & \(C X\) \\
& POP & \(B X\) \\
& POP & \(A X\) \\
& POP & \(B P\) \\
& RET & 12
\end{tabular}

Like most of our inner product routines，XINP uses about 59 micro－ seconds per element．Notice that we went to the trouble of using the shift rather than the multiply．It actually takes the 8088 longer to multiply two integers than it takes the 8087 to multiply single precision numbers．

If we multiplied rather than shifted，the 8087 would have to wait idly while the 8088 calculated the next address．

Essentially all of the hard computational work of the Crout decom－ position is done by XINP．Because it is a NEAR procedure，XINP cannot be called directly from BASIC．Procedure XINPROD，below，is a FAR procedure，callable from BASIC，that calls XINP for us and then returns the inner product as a double precision result．It＇s also convenient to be able to use PIV，even though PIV is only called \(n\) times as compared to the \(\mathrm{n}^{2}\) calls to XINP，so we also include a FAR procedure，PIVOT．
```

;SUBROUTINE XINPROD(A(I,O),A(O,J),SUMっINDEXっTYPE,SKIPAっN)
; ASSUMPTIONS:A(IっD)っA(DっJ),INDEX ARE ADDRESSES TO BE PASSED
TO XINP
TYPE,SKIPA,N ARE ADDRESSES OF INTEGERS UHOSE
VALUES SHOULD BE PASSED TO XINP
XINP RETURNS THE RESULT ON THE TOP OF STACK
IT SHOULD BE PLACED IN DOUBLE PRECISION SUM
XINP CALLS THE INTERNAL SUBROUTINE XINP
i

```
\begin{tabular}{lll} 
& PUBLIC & XINPROD \\
& ASSUME & CS：CSEG，ES：ESEG \\
XINPROD & PROC & FAR \\
& PUSH & BP \\
& MOV & BP，SP
\end{tabular}
iSET UP STACK AREA IN ESEG
    PUSH ES
    CALL NEXT
    POP AX
    SUB \(\quad A X\) (OFFSET NEXT)-(OFFSET FIRST_INST)
    MOV CL,4
    SHR \(A X, C L\)
    MOV BX,CS
    ADD BX,ESEG
    SUB BX,CSEG
    ADD AX,BX
    MOV . ES,AX
;
    MOV LOCAL_SPACETSS
    MOV LOCAL_SPACE+2,SP
    MOV AXTES
    MOV SSIAX
    MOV SP,OFFSET STACK_TOP
;
;SET UP CALL PARAMETERS
\begin{tabular}{lll} 
PUSH & \(D S:[B P]+18\) & iADDR（A（I，D）） \\
PUSH & \(D S:[B P]+16\) & iADDR（A（,\(~ d))\) \\
PUSH & \(D S:[B P]+1,2\) & iADDR（INDEX） \\
MOU & \(B X, D S:[B P]+10\) & iBX＝ADDR（TYPE） \\
PUSH & {\([B X]\)} & TYYPE
\end{tabular}
\begin{tabular}{lll} 
MOV & \(B X, D S:[B P]+B\) & \(i B X=A D D R(S K I P A)\) \\
PUSH & {\([B X]\)} & iSKIPA \\
MOV & \(B X, D S:[B P]+b\) & i \(B X=A D D R(N)\) \\
PUSH & {\([B X]\)} & iN
\end{tabular}
CALL XINP
MOV SP,LOCAL_SPACE + 2
MOV SSILOCAL_SPACE
MOV
FSTP
POP
\(B X,[B P]+14 \quad\) i \(4 X=A D D R(S U M)\)
QUORD PTR [BX] iSTORE SUM
POP BP
ES
FUAIT
RET
14
XINPROD ENDP

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{iSET UP CALL PARAMETERS} \\
\hline & PUSH & DS: \([B P]+14\) & i \(\operatorname{ADDR}(\mathrm{A}(\mathrm{O}, \mathrm{K})\) ) \\
\hline & PUSH & DS: [BP] +12 & ; \(\operatorname{ADDR}(\mathrm{INDEX})\) \\
\hline & MOV & \(B X, D S:[B P]+10\) & ; \(B X=A D D R(T Y P E)\) \\
\hline & PUSH & [ BX\(]\) & ©TYPE \\
\hline & MOV & \(B X, D S:[B P]+8\) & ; \(B X=A D D R(K)\) \\
\hline & PUSH & [BX] & iK \\
\hline & MOV & \(B X, D S:[B P]+6\) & ; \(B X=A D D R(N)\) \\
\hline & PUSH & [BX] & iN \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & CALL & \multicolumn{2}{|l|}{} \\
\hline & MOV & \multicolumn{2}{|l|}{SPTLOCAL_SPACE +2} \\
\hline & MOV & \multicolumn{2}{|l|}{SSTLOCAL_SPACE} \\
\hline & POP & \multicolumn{2}{|l|}{ES} \\
\hline & POP & \multicolumn{2}{|l|}{BP} \\
\hline & RET & \multicolumn{2}{|l|}{10} \\
\hline PIVOT & ENDP & & \\
\hline
\end{tabular}

With XINPROD and PIVOT in hand, we need only replace the appropriate lines of the BASIC program with CALL statements. The new version of the BASIC program appears below.

100
200
300
310
320
330
340
400
600
700
310
800
900
910
1000
1100
1150
1200
1300
1310
1320
1330 REM SWAP INDEX(K)?INDEX(KBIGGEST)
1350 CALL PIVOT(A \((0, K)\),INDEX ( 0 ) , TYPE, \(K, N\) )
1400 REM FILL IN ROU OF U
1410 KX=INDEX(K)
1420 IF \(A(K X, K)=0\) THEN PRINT "SINGULAR MATRIX",7K:STOP
1500 FOR \(J=K+1\) TO N-1,
1600 SUM=0
1700 REM FOR L=0 TO K-1
1710 REM LX=INDEX(L)
```

1800 REM SUM=SUM+A(KX,L)*A(LX,J)
lYOD REM NEXT L
1950 CALL XINPROD(A(KX,O),A(D,J)っSUMっINDEX(D)っITYPEっNっK)
2000 A(KX,J)=(A(KX,J)-SUM)/A(KXっK)
2100 NEXT J
2200 NEXT K
5000 REM SUBROUTINE TO FIND LARGEST ELEMENT IN COLUMN
5100 REM BIGGEST=ABS(A(INDEX(K),K))
5200 REM KBIGGEST=K
5300 REM FOR I=K+1 TO N-1,
5400 REM PIV=ABS(A(INDEX(I),K))
5500 REM IF PIV>BIGGEST THEN BIGGEST=PIV:KBIGGEST=I
5bOD REM NEXT I
5700 REM RETURN

```

XINP does most of the hard work of Crout reduction．For large \(n\) ，most execution time is spent doing the inner products，so the BASIC code above is quite efficient．Lines 700－1300 and 1500－2100 are executed \(\mathrm{n}^{2}\) times．For moderate \(n\) ，these lines may take up a substantial amount of time．In procedure CROUTP we put everything together into an 8087 program for Crout reduction with partial pivoting．
```

;SUBROUTINE CROUTP(AっINDEX,IER,TYPE,N)
; ASSUMPTIONS:A IS THE ADDRESS OF AN N BY N MATRIX
INDEX IS THE ADDRESS OF AN INTEGER N-ARRAY
IER IS THE ADDRESS OF AN INTEGER
TYPE,N ARE INTEGERS
NOTE THIS PROCEDURE CANNOT BE CALLED FROM
BASIC
IT FINDS ITS ARGUMENTS ON THE STACK
NOT THEIR ADDRESSES
CROUTP REPLACES A UITH THE CROUT LU
DECOMPOSITION
OF THE PERMUTATION OF A RETURNED IN INDEX
AT EXIT IER=-1 IF MATRIX IS SINGULAR, ELSE
IER=0;
ASSUME CS:CSEG
CROUTP PROC NEAR
PUSH BP
MOV BP,SP
iSINCE THIS IS A NEAR PROCEDURE, ARGUMENTS BEGIN AT [BP]+4
PUSH AX iTHESE ARE
PUSH BX
PUSH CX
PUSH DX
PUSH SI
PUSH DI GBUT GOOD FORM

```


\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{TEST_FOR_ZERO:} \\
\hline & FSTSU & STATUS_WORD & \\
\hline \multicolumn{4}{|c|}{FWAIT} \\
\hline & & AHっBYTE PTR STA & S_WORD+1 \\
\hline \multicolumn{4}{|c|}{SAHF} \\
\hline & JC & NOT_SINGULAR & ; JUMP IF C \(=0\) \\
\hline & JNZ & NOT_SINGULAR & ; OR IF CD=0 \\
\hline \multicolumn{4}{|l|}{iSINGULAR MATRIX} \\
\hline & MOV & \(B X,[B P]+B\) & ; \(B X=A D D R(I E R)\) \\
\hline & MOV & WORD PTR [BX],-1 & ; IER=-1 \\
\hline & JMP & DONE & \\
\hline \multicolumn{4}{|l|}{NOT_SINGULAR:} \\
\hline \multicolumn{4}{|l|}{;FILL IN ROW OF U} \\
\hline \multicolumn{4}{|l|}{;MOVE \(J\) THROUGH K+1 TO N-1} \\
\hline & MOV & AX, [BP]+4 & ; \(A X=N\) \\
\hline & SUB & \(A X, S I\) & ; \(A X=N-K\) \\
\hline & MOV & \(D I_{9}[B P]+10\) & ; \(\mathrm{DI}=\mathrm{ADDR}(\mathrm{INDEX})\) \\
\hline & ADD & DI,SI & \\
\hline & ADD & DI,SI & ; DI=ADDR(INDEX(K)) \\
\hline & MOV & DI?[DI] & i DI=INDEX(K) \\
\hline & SHL & DI, CL & ; DI=TYPE*INDEX(K) \\
\hline & ADD & \(D I_{7}[B P]+12\) & ; DI=ADDR(A(INDEX)K)? \({ }^{\text {) }}\) ) \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & MOV & AX,SI & i \(A X=K\) \\
\hline & MUL & WORD PTR [BP]+4 & ; \(A X=N * K\) \\
\hline & SHL & \(A X, C L\) & ; \(A X=T Y P E * N * K\) \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & MOV & DX \({ }_{\text {[ }}\) [BP] +4 & i \(\mathrm{DX}=\mathrm{N}\) \\
\hline & SUB & DX,SI & ; \(\mathrm{DX}=\mathrm{N}-\mathrm{K}\) \\
\hline & MOV & COUNT, DX & \\
\hline U_LOOP: & DEC & COUNT & ; COUNT \(=\) COUNT-1 \\
\hline & CMP & COUNTID & \\
\hline & JLE & END_U_LOOP & \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & MOV & \(\mathrm{BX}{ }_{7}[\mathrm{BP}]+4\) & i \(B X=N\) \\
\hline & SHL & BX,CL & ; \(B X=\) TYPE*N \\
\hline & ADD & \(A X, B X\) & ; \(A X=\) TYPE*N*J \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{; CALL XINP(A(INDEX \((\mathrm{K}), \mathrm{D}), \mathrm{A}(\mathrm{D}, \mathrm{J})\), INDEX,TYPE, \(\mathrm{N}, \mathrm{K})\)} \\
\hline & PUSH & DI & ; \(\operatorname{ADDR}(A(I N D E X(K) ? 0))\) \\
\hline & MOV & \(B X_{1}[B P]+12\) & ; \(B X=A D D R(A(0, \square)\) \\
\hline & ADD & \(B X, A X\) & \\
\hline & PUSH & BX & ; ADDR A(Did) \\
\hline & PUSH & [BP] +10 & ; ADDR INDEX \\
\hline & PUSH & [ \(\mathrm{BP} \mathrm{P}^{\text {+ }}\) b & ;TYPE \\
\hline & PUSH & [BP]+4 & iN \\
\hline & PUSH & SI & iK \\
\hline & CALL & XINP & \\
\hline \multicolumn{4}{|l|}{;CALCULATE (A(INDEX(K) , J)-SUM)/A(INDEX(K)?K)} \\
\hline \multicolumn{4}{|l|}{; FOR SINGLE OR DOUBLE PRECISION} \\
\hline
\end{tabular}
```

iNOTE THAT SUM IS IN ST
iAND A(INDEX(K),K) IN ST(l)
MOV BX,DI ;BX=ADDR(A(INDEX(K);O))
ADD BX,AX iBX=ADDR(A(INDEX(K)`J)) CMP CXっZ iSINGLE? JNE A_DOUBLEG FSUBR DUORD PTR [BX] FDIV STiST(l) FSTP DWORD PTR [BX] JMP NEXT_ROW_ELEMENT i A_DOUBLE3: FSUBR QUORD PTR [BX] iST=A(INDEX(K)?J)-SUM FDIV ST,ST(H) iST=ST/A(INDEX(K)`K)
FSTP QUORD PTR [BX] ;A(INDEX(I)っK)=ST
i
NEXT_ROW_ELEMENT:
JMP
U_LOOP
;
END_U_LOOP:
FSTP ST(D)
;READY FOR NEXT K
INC SI
CMP SI`WORD PTR [BP]+4;K=N?
JGE DONE
JMP MAJOR_LOOP
i
DONE:
POP DI
POP SI
POP -DX
POP CX
POP BX
POP AX
POP BP
RET lO
CROUTP ENDP

```

All we need now is a procedure to call CROUTP from BASIC．We＇ll call this procedure REDUCE．Procedure REDUCE is called by

CALL REDUCE（A \((\mathrm{D}, \mathrm{O})\) っINDEX（ D\()\) っTYPEっIERっN）
where A is the N by N matrix of coefficients．INDEX is an integer array returning the row permutations．TYPE，IER，and N are integers．TYPE indicates whether \(A\) is single or double precision．IER returns 0 if the matrix is nonsingular and -1 if the matrix is singular．REDUCE replaces A with its Crout reduction with partial pivoting．
```

;SUBROUTINE REDUCE(A(D,O)`INDEX(D)`TYPE,IERっN)
; ASSUMPTIONS: A(Dっ0),INDEX(D)?IER ARE ADDRESSES TO BE PASSED
; TO CROUTP

```
```

i TYPE`N ARE ADDRESSES OF INTEGERS WHOSE
VALUES SHOULD BE PASSED TO CROUTP
REDUCE CALLS THE INTERNAL SUBROUTINE CROUTP

```

```

REDUCE PROC FAR
PUSH BP
MOV BP,SP
iSET UP STACK AREA IN ESEG
PUSH ES
CALL NEXT
NEXT: POP AX
SUB AX,(OFFSET NEXT)-(OFFSET FIRST_INST)
MOV CL,4
SHR AX,CL
MOV BX,CS
ADD BX,ESEG
SUB BX,CSEG
ADD AX,BX
MOV ESTAX
i
MOV LOCAL_SPACEqSS
MOV LOCAL_SPACE+2,SP
MOV AX,ES
MOV SSIAX
MOV SP,OFFSET STACK_TOP
i
iSET UP CALL PARAMETERS
PUSH DS:[BP]+14 IADDR(A(0,O))
PUSH DS:[BP]+l2 iADDR(INDEX)
PUSH DS:[BP]+B iADDR(IER)
MOV BX,DS:[BP]+10 ;BX=ADDR(TYPE)
PUSH [BX] iTYPE
MOV BX,DS:[BP]+b iBX=ADDR(N)
PUSH [BX] iN
;
CALL CROUTP
MOV SP,LOCAL_SPACE+2
MOV SSILOCAL_SPACE
POP ES
POP BP
RET lO
REDUCE ENDP

```

\section*{Back Substitution After a Crout Reduction}

REDUCE leaves the LU decomposition in A and the order of row permutation in INDEX. Temporarily setting aside the question of INDEXing,
we face a computationally straightforward problem of solving \(y=\) LUx for \(x\). We do this in two steps. First, solve \(y=L y^{*}\) for \(y^{*}\). Second, solve \(y^{*}=U x\) for \(x\).

Examination of the triangular matrices above shows the simple form for solving triangular systems of equations. For a lower triangular system,
\[
\begin{aligned}
& \mathrm{y}_{0}=\mathrm{L}_{0,0} \mathrm{y}^{*}{ }_{0} \\
& \mathrm{y}_{1}=\mathrm{L}_{1,0} \mathrm{y}_{0}{ }_{0}+\mathrm{L}_{1,1} \mathrm{y}^{*}{ }_{1} \\
& \mathrm{y}_{2}=\mathrm{L}_{2,0} \mathrm{y}^{*}{ }_{0}+\mathrm{L}_{2,1} \mathrm{y}^{*}{ }_{1}+\mathrm{L}_{2,2} \mathrm{y}^{*}{ }_{2} \\
& \text { and so forth. }
\end{aligned}
\]

Turning these equations around we can solve directly for \(\mathrm{y}^{*}\).
\[
\begin{aligned}
& \mathrm{y}_{{ }_{0}}=\mathrm{y}_{0} / \mathrm{L}_{0,0} \\
& \mathrm{y}_{1}^{*}=\left(\mathrm{y}_{1}-\mathrm{L}_{1,0} \mathrm{y}_{0}^{*}\right) / \mathrm{L}_{1,1} \\
& \mathrm{y}_{2}^{*}=\left(\mathrm{y}_{2}-\left(\mathrm{L}_{2,0} \mathrm{y}^{*}{ }_{0}+\mathrm{L}_{2,1} \mathrm{y}^{*}\right)\right) / \mathrm{L}_{2,2}
\end{aligned}
\]
and so forth.
For an upper triangular system we have:
\[
\begin{aligned}
& y_{n-1}^{*}=U_{n-1, n-1} x_{n-1} \\
& y_{n-2}^{*}=U_{n-2, n-2} x_{n-2}+U_{n-2, n-1} x_{n-1} \\
& y_{n-3}^{*}=U_{n-3, n-3} x_{n-3}+U_{n-3, n-2} x_{n-2}+U_{n-3, n-1} x_{n-1} \\
& \text { and so forth. }
\end{aligned}
\]

As we turn these equations around to solve for \(x\), remember that \(\mathrm{U}_{\mathrm{i}, \mathrm{i}}\) equals 1 after the Crout reduction.
\[
\begin{aligned}
& x_{n-1}=y_{n-1}^{*} \\
& x_{n-2}=\left(y^{*}{ }_{n-2}-U_{n-2, n-1} x_{n-1}\right) \\
& x_{n-3}=\left(y^{*}{ }_{n-3}-\left(U_{n-3, n-2} x_{n-2}+U_{n-3, n-1} x_{n-1}\right)\right)
\end{aligned}
\]
and so forth.
The following BASIC code takes a Crout reduced matrix A and a column vector X and solves for X .
```

10 DEFINT I-N
20 DEFDBL S
30 DIM A (N-1, N-1),YSTAR(N-1)`Y(N-1)`X(N-1)
40 REM SOLVE LOWER TRIANGULAR SYSTEM FOR YSTAR
50 FOR I=0 TO N-]
60 SUM=0
7O FOR J=0 TO I-\
80 SUM=SUM+A(IっJ)*YSTAR(J)
90 NEXT J
1 0 0
YSTAR(I)=(Y(I)-SUM)/A(I,I)

```

110
120
130
140
150
160
170
180
190

NEXT I
REM SOLVE UPPER TRIANGULAR SYSTEM FOR X
FOR I＝N－1 TO O STEP－I
SUM \(=0\)
FOR J＝I＋1 TO N－I
SUM \(=\) SUM \(+A(I, J) * X(J)\)
NEXT J
\(X(I)=Y \operatorname{STAR}(I)-S U M\)
NEXT I
Notice that solving the lower triangular and upper triangular system are both order \(\mathrm{n}^{2}\) operations．Once order \(\mathrm{n}^{3}\) operations have been per－ formed to reduce \(A\) ，each new \(y\) can be solved for \(x\) at the expense of only order \(\mathrm{n}^{2}\) additional operations．Notice that lines \(60-90\) and 140－170 form inner products．We could use GINPROD here．

REDUCE performs row permutations in the process of generating a triangular form．Our next set of BASIC code＂undoes＂the INDEXing and also makes explicit use of GINPROD．
```

2500 REM PROGRAM SOLP
2600 ITYPE=4
2700 Il=1
2800 REM USE X FOR SCRATCH SPACE, RATHER THAN nY*"
2900 REM SOLVE LOWER TRIANGULAR SYSTEM FOR YSTAR
3000 FOR I=0 TO N-1,
3l00 NUM=I
3200 CALL GINPROD(A(INDEX(I)っO)^X(O)っSUMっITYPEっITYPEっNっIl^
NUM)
3300 X(I)=(Y(INDEX(I))-SUM)/A(INDEX(I)っI)
3400 NEXT I
3500 REM SOLVE UPPER TRIANGULAR SYSTEM FOR X
3LDO FOR I=N-』 TO O STEP -1
3700 IP=I+1
300 NUM=N-IP
3900 REM CALL GINPROD(A(INDEX(I)っIP)っX(IP)っSUM^
ITYPE,ITYPE,N,Il,NUM)
4000 X(I)=X(I)-SUM
4100 NEXT I

```

The BASIC program is easily recoded into an 8087 NEAR procedure， SOL，which can be called from BASIC by the external procedure SOLVE．
```

;SUBROUTINE SOL(A,Y,X,INDEX,TYPEA,TYPEY,TYPEX,N)
; ASSUMPTIONS: AヶY,X,INDEX ARE ADDRESSES
TYPEA,TYPEY,TYPEX,N ARE INTEGERS
NOTE THIS PROCEDURE CANNOT BE CALLED FROM
BASIC
IT FINDS ITS ARGUMENTS ON THE STACK
NOT THEIR ADDRESSES
SOL SOLVES Y=AX FOR X, WHERE A AND INDEX
RESULT

```
```

i
;
SOL
ASSUME CS:CSEG
PROC NEAR
PUSH BP
MOV BP,SP
PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH SI
PUSH DI
;TAKE CARE OF LOWER TRIANGLE
;FOR I=\ TO N-1

| MOV | $C X_{1}[B P]+4$ | $i C X=N$ |
| :--- | :--- | :--- |
| CMP | $C X, D$ | |
| JG | AROUND | |
| JMP | DONE | |
| MOV | SIっD | $i K E E P$ I IN SI |
| MOV | DIっ[BP]+l2 | $i D I=A D D R(I N D E X(0))$ |

L_LOOP:

```

```

 MOV AX,[DI] iAX=INDEX(I)
 MUL WORD PTR [BP]+10 iAX=TYPEA*INDEX(I)
 ADD AX,[BP]+18 iAX=ADDR(A(INDEX(I)?O))
 PUSH AX
 PUSH [BP]+14 iX(D)
 PUSH [BP]+10 iTYPEA
 PUSH [BP]+b iTYPEX
 PUSH [BP]+4 iN
 MOV BX,]
 PUSH BX il
 PUSH SI
 CALL GINP
 ;SUM IS NOW IN ST
i X(I)=(Y(INDEX(I))-SUM)/A(INDEX(I)?I)
MOV BX,[DI] iBX=INDEX(I)
SHL BX,I
SHL BX,I ;BX=4*INDEX(I)
CMP WORD PTR [BP]+8,4 iIS Y SINGLE?
JNE Y_DOUBLE
ADD BX`[BP]+l6 iBX=ADDR(Y(INDEX(I)))
FSUBR DWORD PTR [BX] iST=Y(INDEX(I))-SUM
JMP DO_DIV
Y_DOUBLE: SHL BX,I ;BX=8*INDEX(I)
ADD BX,[BP]+lb iBX=ADDR(Y(INDEX(I)))
FSUBR QUORD PTR [BX] ;ST=Y(INDEX(I))-SUM
;
DO_DIV:
;AX HAS ADDR(A(INDEX(I)?O)), SO ADD TYPEA*N*I
MOV BX,AX iBX=ADDR(A(INDEX(I)?O))
MOV AX,SI ;AX=I

```
\begin{tabular}{|c|c|c|c|}
\hline & MUL & WORD PTR［BP］＋4 & ；\(A X=N * I\) \\
\hline & SHL & \(A X, 1\) & \\
\hline & SHL & \(A X, 1\) & ；\(A X=4 * N * I\) \\
\hline & CMP & WORD PTR［BP］＋10，4 & iIS A SINGLE？ \\
\hline & JNE & A＿DOUBLE & \\
\hline & ADD & \(B X, A X\) &  \\
\hline & FDIV & DWORD PTR［BX］ &  \\
\hline & JMP & DO＿STORE & \\
\hline A＿DOUBLE： & SHL & \(A X, 1\) & ；\(A X=8 * N * I\) \\
\hline & ADD & \(B X, A X\) &  \\
\hline & FDIV & QUORD PTR［BX］ & \(i(Y(I)-S U M) / A(I N D E X(I) ヶ I)\) \\
\hline i & & & \\
\hline DO＿STORE： & MOV & \(B X, S I\) & ；\(B X=I\) \\
\hline & SHL & \(B X \rightarrow 7\) & \\
\hline & SHL & \(B X 17\) & ；\(B X=4 * I\) \\
\hline & CMP & WORD PTR［BP］＋b，4 & iIS X SINGLE？ \\
\hline & JNE & X＿DOUBLE & \\
\hline & ADD & \(\mathrm{BX},[\mathrm{BP}]+14\) & ；\(B X=A D D R(X(I))\) \\
\hline & FSTP & DWORD PTR［BX］ & ；STORE X（I） \\
\hline & JMP & L＿BOTTOM & \\
\hline X＿DOUBLE： & SHL & \(\mathrm{BX}, 1\) & ；\(B X=8 * I\) \\
\hline & ADD & \(B X_{7}[B P]+14\) & ；\(B X=A D D R(X(I))\) \\
\hline & FSTP & QUORD PTR［BX］ & iSTORE X（I） \\
\hline L＿BOTTOM： & & & \\
\hline & INC & SI & \(; \mathrm{I}=\mathrm{I}+1\) \\
\hline & ADD & DI？ & ；NEXT INDEX \\
\hline & LOOP & GOTO＿L＿LOOP & \\
\hline & JMP & U＿TOP & \\
\hline GOTO＿L＿LOOP & P：J & OOP & \\
\hline i & & & \\
\hline U＿TOP： & & & \\
\hline TTAKE CARE & OF U & TRIANGLE & \\
\hline ；FOR I \(=\mathrm{N}\)－ & TO & & \\
\hline & MOV & \(S I ?[B P]+4\) & ；KEEP I IN SI \\
\hline & MOV & DI？［BP］＋12 & ；DI＝ADDR（INDEX（D）） \\
\hline & ADD & DITSI & \\
\hline & \(A D D\) & \(D I \rightarrow S I\) & ； \(\mathrm{DI}=\mathrm{ADDR}(\mathrm{INDEX}(\mathrm{N})\) ） \\
\hline U＿LOOP： & & & \\
\hline ；CALL GIN & （A）IND & （ 1\()_{\text {¢ }} X(I+1)\) ¢ TYPEA TY & PEX， \(\mathrm{N}, \mathrm{I}, \mathrm{N}-\mathrm{I}-11)\) \\
\hline & DEC & SI & ； \(\mathrm{I}=\mathrm{I}-1\) \\
\hline & SUB & DIって & ；NEXT INDEX \\
\hline & MOV & \(A X, S I\) & ；\(A X=I\) \\
\hline & INC & AX & ；\(A X=I+1\) \\
\hline & MUL & WORD PTR［BP］＋4 & ；\(A X=N *(I+1)\) \\
\hline & ADD & \(A X,[D I]\) & ；\(A X=I N D E X(I)+N *(I+1)\) \\
\hline & SHL & \(A X, 1\) & \\
\hline & SHL & \(A X>1\) & ；\(A X=4 * A X\) \\
\hline & CMP & WORD PTR［BP］＋10，4 & iIS A SINGLE？ \\
\hline & JE & A＿SINGLE & \\
\hline & SHL & \(A X, 1\) & ；\(A X=8 *\)（．－．） \\
\hline A＿SINGLE： & ADD & \(A X,[B P]+18\) & \[
\begin{aligned}
& \text { iAX=ADDR(A(INDEX(I), } \\
& I+1))
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & PUSH & AX & \\
\hline & MOV & \(B X, S I\) & ; \(B X=I\) \\
\hline & INC & BX & ; \(B X=I+1\) \\
\hline & SHL & BX, & \\
\hline & SHL & BX, & ; \(B X=4 *(I+1)\) \\
\hline & CMP & WORD PTR [BP]+6,4 & iIS X SINGLE? \\
\hline & JE & X_SINGLE & \\
\hline & SHL & BXI & ; \(B X=8 *(I+1)\) \\
\hline X_SINGLE: & ADD & BX, [BP] +14 & ; \(B X=A D D R(X(I+1))\) \\
\hline & PUSH & BX & iNOTE: LEAVE ADDR IN BX \\
\hline & PUSH & \([B P]+10\) & ;TYPEA \\
\hline & PUSH & [BP]+6 & :TYPEX \\
\hline & PUSH & [BP]+4 & iN \\
\hline & MOV & DX & \\
\hline & PUSH & DX & i] \\
\hline & MOV & \(D X_{1}[B P]+4\) & ; \(\mathrm{DX}=\mathrm{N}\) \\
\hline & SUB & DX, SI & \\
\hline & DEC & DX & ; \(\mathrm{DX}=\mathrm{N}-(\mathrm{I}+\mathrm{l})\) \\
\hline & PUSH & DX & \\
\hline & CALL & GINP & \\
\hline ; & & & \\
\hline ; \(\mathrm{X}(\mathrm{I})=\mathrm{X}(\mathrm{I})-S\) & SUM & & \\
\hline iNOTE BX S & STILL P & T0 \(X(I+1)\) & \\
\hline & SUB & \(B X,[B P]+6\) & ; \(B X=A D D R(X(I))\) \\
\hline & CMP & WORD PTR [BP]+6,4 & ;ONCE AGAIN, IS \(X\) SINGLE? \\
\hline & JNE & X_DOUBLE2 & \\
\hline & FSUBR & DWORD PTR [BX] & i ST \(=X(I)-\) SUM \\
\hline & FSTP & DWORD PTR [BX] & iSTORE X(I) \\
\hline & JMP & U_BOTTOM & \\
\hline X_DOUBLE2: & FSUBR & QWORD PTR [BX] & iST \(=X(I)-\) SUM \\
\hline & FSTP & QWORD PTR [BX] & iSTORE X(I) \\
\hline U_BOTTOM: & & & \\
\hline & CMP & SITO & idone Yet? \\
\hline & JLE & DONE & \\
\hline & JMP & U_LOOP & \\
\hline i & & & \\
\hline DONE: & & & \\
\hline & POP & DI & \\
\hline & POP & SI & \\
\hline & POP & DX & \\
\hline & POP & CX & \\
\hline & POP & BX & \\
\hline & POP & AX & \\
\hline & POP & BP & \\
\hline & FWAIT & & \\
\hline & RET & 16 & \\
\hline SOL & ENDP & & \\
\hline
\end{tabular}
```

;SUBROUTINE SOLVE(A(D,D)っY(D)っX(D)っINDEX(D)っTYPEAっTYPEYっTYPEXっN)
; ASSUMPTIONS:A(DっD)?Y(D),X(D),INDEX(D) ARE ADDRESSES
TO BE PASSED TO XINP
TYPEA,TYPEY,TYPEX,N ARE ADDRESSES OF INTEGERS
WHOSE VALUES SHOULD BE PASSED TO XINP
SOLVE CALLS THE INTERNAL SUBROUTINE SOL
;
SOLVE
PUBLIC SOLVE
ASSUME CS:CSEG,ES:ESEG
PROC FAR
PUSH BP
MOV BP,SP
iSET UP STACK AREA IN ESEG
PUSH ES
CALL NEXT
NEXT: POP AX
SUB AX`(OFFSET NEXT)-(OFFSET FIRST_INST)
MOV CL,4
SHR AX,CL
MOV BX,CS
ADD BX,ESEG
SUB BX,CSEG
ADD AX,BX
MOV ES,AX
;
MOV LOCAL_SPACE,SS
MOV LOCAL_SPACE+2,SP
MOV AXTES
MOV SS,AX
MOV SP,OFFSET STACK_TOP
i
iSET UP CALL PARAMETERS

| PUSH | DS：$[B P]+20$ | $; \operatorname{ADDR}(A(0,0))$ |
| :---: | :---: | :---: |
| PUSH | DS：［BP］+18 | ； $\operatorname{ADDR}(\mathrm{Y}(\mathrm{D})$ ） |
| PUSH | $D S:[B P]+16$ | ；ADDR（X（D）） |
| PUSH | DS：$[B P]+14$ | ；$A D D R(I N D E X(0))$ |
| MOV | $B X, D S:[B P]+12$ | ；$B X=A D D R(T Y P E A)$ |
| PUSH | ［ BX ］ | ；TYPEA |
| MOV | $B X, D S:[B P]+10$ | ；BX＝ADDR（TYPEY） |
| PUSH | ［BX］ | ；TYPEY |
| MOV | $B X, D S:[B P]+8$ | ；BX＝ADDR（TYPEX） |
| PUSH | ［BX］ | iTYPEX |
| MOV | $B X, D S:[B P]+b$ | ；$B X=A D D R(N)$ |
| PUSH | ［ BX ］ | iN |

i
CALL SOL
MOV SP,LOCAL_SPACE+2
MOV SSiLOCAL_SPACE
POP ES

```
\begin{tabular}{lll} 
& POP & BP \\
& RET & 16 \\
SOLVE & ENDP &
\end{tabular}

\section*{Matrix Inversion}

One good reason for creating procedures from modular programs is the ease with which the subroutines may be rearranged．It is now quite easy to prepare a matrix inversion subroutine．Since matrix inversion is equiv－ alent to solving a system of equations \(n\) times（first for a＂\(y\) vector＂ \(1,0,0\) ， ．．．，then for \(0,1,0,0 \ldots\) ，and so forth．），we can use CROUTP and SOL to create a new subroutine INV．

INV is called by
CALL \(\operatorname{INV}(A(0,0), \operatorname{AINV}(0,0), S C R A T C H(0) っ \operatorname{INDEX}(\mathrm{D}) っ\) IER，TYPEAっN）
A initially contains the \(n\) by \(n\) matrix to be inverted．When INV returns， A contains the Crout decomposition，with permutation index in INDEX； AINV contains \(\mathrm{A}^{-1}\) ．IER equals 0 if A is nonsingular and -1 otherwise． INV calls CROUTP to reduce A．It then sets up a＂y column，＂in vector SCRATCH，n times，and calls SOL to fill in the columns of the inverse matrix，AINV．
```

;SUBROUTINE INV(A(D,O),AINV(D,D)`SCRATCH(D)っINDEX(D)っIERっTYPEAっN) ; ASSUMPTIONS: A`AINV ARE N BY N MATRICES OF TYPE TYPEA
SCRATCH IS SINGLE PRECISION
INDEX,TYPEA,N ARE INTEGERS
INV INVERTS A INTO AINV
PUBLIC INV
ASSUME CS:CSEGTES:ESEG
INV
PROC FAR
PUSH BP
MOV BP,SP
iSET UP STACK AREA IN ESEG
PUSH ES
CALL NEXT
POP AX
SUB AX,(OFFSET NEXT)-(OFFSET FIRST_INST)
MOV CL,4
SHR AX,CL
MOV BXICS
ADD - BX,ESEG
SUB BX,CSEG
ADD AX,BX
MOV ES,AX
i
MOV LOCAL_SPACE,SS
MOV LOCAL_SPACE+2,SP

```
```

 MOV AX,ES
 MOV SS,AX
 MOV SP,OFFSET STACK_TOP
 i
MOV $\quad B X, D S:[B P]+b \quad i B X=A D D R(N)$
MOV CX,[BX] ;CX=N
CMP CX,D
JG ARND
JMP DONE

```

\section*{ARND：}
```

；CALL CROUTP（AヶINDEX，IERヶTYPEっN）
iSET UP CALL PARAMETERS

| PUSH | $D S:[B P]+18$ | $i \operatorname{ADDR}(A(D i \square))$ |
| :--- | :--- | :--- |
| PUSH | $D S:[B P]+12$ | iADDR（INDEX（D）） |
| PUSH | $D S:[B P]+1 \square$ | iADDR（IER） |
| MOV | $B X i D S:[B P]+8$ | iBX＝ADDR（TYPEA） |
| PUSH | $[B X]$ | $i T Y P E A$ |
| PUSH | $C X$ | $i N$ |

i
CALL CROUTP
iWAS IT SINGULAR

| MOV | $B X, D S:[B P]+1 \square$ | iBX＝ADDR（IER） |
| :--- | :--- | :--- |
| $C M P$ | WORD PTR $[B X] \cap D$ | iIER＝D？ |
| JE | ARNDB | |
| JMP | DONE | |

ARNDB：
i
iSOLVE FOR COLUMNS I＝0 TO N－1
MOV SIっロ iKEEP I IN SI
INV＿LOOP：
iCLEAR SCRATCH
MOV $\quad B X, D S:[B P]+b$
MOV $\quad C X,[B X] \quad i C X=N$
MOV $\quad B X, D S:[B P]+14 \quad i B X=A D D R(S C R A T C H(D))$
ZERO＿LOOP：
MOV WORD PTR［BX］？D
MOV WORD PTR $[B X]+2,0$ iSCRATCH（J）＝0
ADD BX，4 $\quad i J=J+1$
LOOP ZERO＿LOOP
；NOW FILL IN APPROPRIATE l
MOV BX ${ }^{\text {SI }}$
SHL BX，l
SHL BX，\quad i $B X=4$＊
ADD BXiwORD PTRDS：［BP］＋14
FLDl iPUSH 1．D ONTO STACK
FSTP DWORD PTR［BX］iSTORE INTO MEMORY
；
iGET ADDRESS OF AINV（D，I）
MOV $\quad B X, D S:[B P]+6 \quad i B X=A D D R(N)$
MOV $\quad A X,[B X] \quad ; A X=N$
MUL SI $i A X=N * I$

```
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & MOV & \(B X, D S:[B P]+B\) & iADDR(TYPEA) \\
\hline & MUL & WORD PTR [BX] & ; \(A X=\) TYPEA*N*I \\
\hline & ADD & \(A X, D S:[B P]+16\) & ; \(A X=A D D R(A I N V(0, I))\) \\
\hline \multirow[t]{12}{*}{;CALL} & \multicolumn{3}{|l|}{} \\
\hline & PUSH & DS: \([B P]+18\) & ; \(\operatorname{ADDR}\left(A(0) \square_{\text {d }}\right)\) \\
\hline & PUSH & DS: \([B P]+14\) & ; ADDR(SCRATCH(D)) \\
\hline & PUSH & AX & i \(A D D R(A I N V(0, I))\) \\
\hline & PUSH & DS: [BP]+1, 2 & ; ADDR(INDEX(D)) \\
\hline & MOV & \(B X, D S:[B P]+8\) & ; \(B X=A D D R(T Y P E A)\) \\
\hline & PUSH & [ BX ] & ;TYPEA \\
\hline & MOV & \(A X>4\) & \\
\hline & PUSH & AX & ; 4 \\
\hline & PUSH & [BX] & ;TYPEA \\
\hline & MOV & \(B X, D S:[B P]+b\) & \\
\hline & PUSH & [BX] & iN \\
\hline \multicolumn{4}{|l|}{i} \\
\hline & CALL & SOL & \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & INC & SI & ; \(\mathrm{I}=\mathrm{I}+1\) \\
\hline & MOV & BX, DS: [BP]+b & ; \(B X=A D D R(N)\) \\
\hline & CMP & SI? \(\left.{ }_{\text {[ }} \mathrm{BX}\right]\) & iSI>N? \\
\hline & JGE & DONE & \\
\hline & JMP & INV_LOOP & \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{DONE:} \\
\hline & MOV & SP,LOCAL_SPAC & \\
\hline & MOV & SS,LOCAL_SPAC & \\
\hline & POP & ES & \\
\hline & POP & BP & \\
\hline & RET & 14 & \\
\hline INV & ENDP & & \\
\hline
\end{tabular}

\section*{Of Linear Things Not Covered Above}

Two chapters and hundreds of lines of code will have to suffice as an introduction to matrix methods. Before moving on, it's worth listing a few of the things not covered here. This is also a good point to pause for a review of some general themes in programming the 8087.

The routines in these two chapters will do just about every ordinary thing you usually need to do with a matrix. However, if you have really large problems, you may soon develop an interest in extraordinary procedures. Everything you need to know about the 8087 is included here, but there are many sophisticated algorithms that we haven't even touched upon. These algorithms appear in many excellent books on numerical computation. Two exceptional books are:
Elementary Numerical Analysis, by S. D. Conte, McGraw-Hill.
Introduction to Matrix Computations, by G. W. Stewart, Academic Press.

One of the best ways to learn more about the "tricks" of numerical programming is to browse through the documentation of a large numerical programming subroutine library. Such a "library collection" can usually be found at your local college computer center. The IMSL library is particularly good. You will find an excellent applied discussion of numerical methods and the IMSL library in (this book is moderately advanced):

Numerical Methods, Software, and Analysis, by John R. Rice, McGrawHill.

The procedures in this and the last chapter provide the basic foundation for matrix programming. Some advanced topic areas not covered here include:
- Matrices with a lot of zeros. Problems in the natural sciences often give rise to special forms of matrices. For example, if we know a matrix is triangular, we can avoid processing the zeros. That would double the speed of matrix multiplication. As we've seen, taking advantage of the shape of a triangular matrix can improve the speed of matrix inversion or solving a system of equations by a factor of n. Other special forms include the "diagonal matrix," in which all off-diagonal elements are zero; the "band matrix," which is zero except for elements close to the diagonal; and the general designation of a "sparse matrix." Sparse matrices, which often arise from solving systems of differential equations, may be 99 percent zeros. Special storage techniques, in which only the nonzero elements are stored, must be used to work with sparse matrices.
- Matrices with special mathematical properties. Sometimes the mathematics of a problem supply special information about the structure of the numbers stored in a matrix. For example, many problems give rise to a symmetric matrix, one in which \(\mathrm{A}_{\mathrm{i}, \mathrm{j}}\) equals \(\mathrm{A}_{\mathrm{j}, \mathrm{i}}\). You can double the speed of many matrix operations by taking advantage of symmetry. Symmetric matrices are especially common in statistical work.
- Super-high accuracy methods. One of the lessons of numerical programming is that mathematically correct procedures don't always give the mathematically correct answer when executed on a computer with finite precision. One place this lesson is often learned is in the reduction of a matrix to triangular form. We picked the Crout reduction with partial pivoting because it is particularly well suited to the 8087's high-precision, temporary real format internal registers. Nonetheless, you may eventually want to learn about other methods, including iterative techniques, which are much slower, but which can be much more accurate.

\section*{8087 Matrix Program Review}
1. Expect assembly language programs to be 10 times as long as their BASIC counterparts. Writing large programs in assembler is time consuming and error prone. In fact, the expense in programming time may be prohibitive. (Even if the time is "free," because it's your own.)
2. 8087 assembly language programs may be 100, or more, times faster than BASIC programs. In fact, when attempting large problems in BASIC, the expense in computer time may be prohibitive. (Even if the time is "free," because the computer is already paid for.)
3. Optimize the inner-most loop. Worry about optimizing, for speed and for accuracy, the equivalent of the inner-most FOR/NEXT loop. For matrix operations, this usually means having an inner product routine carefully hand-coded for the 8087. We chose Crout decomposition over Gaussian elimination for two reasons. First, the inner product specification allowed accumulation in a high-precision register even if the overall operation is only single precision. Second, this specification allows us, if we wish, to code just the inner product routine in assembler and leave the shell of the program in BASIC.
4. Never invert a matrix when you really need only solve a system of equations. Reducing a matrix is an order \(\mathrm{n}^{3}\) operation. Inverting a reduced matrix requires an additional order \(\mathrm{n}^{3}\) operations, while solving a system of equations only requires an additional order \(\mathrm{n}^{2}\) operations. A series of solutions is best obtained with one call to REDUCE and several calls to SOLVE, not one call of INV and several MATMULTs. The principle exception to this rule occurs when the inverse matrix itself has an important interpretation, as it frequently does in statistical applications.
5. The 8088 can do most bookkeeping faster than the 8087 can do floating point arithmetic, so most 8088 operations run in parallel with the 8087's speed as the limiting factor. An exception is the integer multiply used in addressing matrix elements. It pays to keep integer multiplication out of inner-most loops. Sometimes multiplication can be avoided by adding to a location counter at each loop. At other times, a "left shift" can be substituted for each mul-tiply-by-2. (Not coincidentally, Intel made the multiply instruction on its newer processors, the 188 and 186, three times as fast as on the original 8088 and 8086.)
6. Counter testing can be done at either the top or the bottom of a loop. The choice is largely a matter of style. (Loops which use the 8088 LOOP instruction test more naturally at the bottom.) Some of the programs in the last two chapters test at the top and some test at the bottom, so that you can see both methods. Ordinarily, it's
good programming practice to choose one style or the other and stick to it.
7. Subroutine calls, subroutine relocation code, and a few other instruction sequences are very repetitive. If you use the MACRO assembler, you might want to replace these sequences with macros.
8. To conserve storage, the routines here reduce a matrix "in place." If you need to save the original matrix, make a copy first using GCOPY from Chapter 9.

\section*{Onward, Non-linearly}

We set aside matrix operations here, and move on to non-linear operations in Chapter 12. If you'd like some practical applications of our matrix routines, skip ahead to the discussion of statistical computing in Chapter 14.

\section*{\(\{2\)}

\section*{Advanced Instruction Set}

In this chapter, we pick up and complete the task laid aside at the end of Chapter 6, our description of the 8087 instruction set. Describing the use of the most advanced instructions is rather long and technical; on a first reading you may want to proceed directly to the next chapter.

\section*{The Cookbook-Chapter 12}
\begin{tabular}{|c|c|}
\hline Program: & LN \\
\hline Purpose: & Natural logarithm (base e). \\
\hline Input: & 8087 register ST; requires ST>0. \\
\hline Output: & 8087 register ST; new ST \(=\log\) (old ST). \\
\hline Language: & 8087/8088 assembly language. \\
\hline Note: & NEAR procedure. \\
\hline Program: & LOG10 \\
\hline Purpose: & Common logarithm (base 10). \\
\hline Input: & 8087 register ST; requires ST \(>0\). \\
\hline Output: & 8087 register ST; new ST \(=\log _{10}(\) old ST) . \\
\hline Language: & 8087/8088 assembly language. \\
\hline Note: & NEAR procedure. \\
\hline Program: & TWO2THEZ \\
\hline Purpose: & Raises 2 to the power Z . \\
\hline Input: & Z in 8087 register ST. \\
\hline Output: & 8087 register ST; new ST \(=2^{\text {(old ST) }}\). \\
\hline Language: & 8087/8088 assembly language. \\
\hline Note: & NEAR procedure. \\
\hline Program: & EXP \\
\hline Purpose: & Raises e to the power X . \\
\hline Input: & X in 8087 register ST. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Output: & 8087 register ST; new ST \(=\mathrm{e}^{\text {(old ST) }}\). \\
\hline Language: & 8087/8088 assembly language. \\
\hline Note: & NEAR procedure. \\
\hline Program: & TEN2THEX \\
\hline Purpose: & Raises 10 to the power X. \\
\hline Input: & X in 8087 register ST. \\
\hline Output: & 8087 register ST; new ST \(=10^{\text {(old ST) }}\). \\
\hline Language: & 8087/8088 assembly language. \\
\hline .Note: & NEAR procedure. \\
\hline Program: & Y2THEX \\
\hline Purpose: & Raises Y to the power X . \\
\hline Input: & X in 8087 register ST. \\
\hline & Y in 8087 register ST(1). \\
\hline Output: & 8087 register ST; new ST \(=(\text { old ST) })^{(\text {(odd ST(1) }}\). \\
\hline Language: & 8087/8088 assembly language. \\
\hline Note: & NEAR procedure. \\
\hline Program: & TANGENT \\
\hline Purpose: & Compute tangent. \\
\hline Input: & 8087 register ST (angle in radians). \\
\hline Output: & 8087 register ST; new ST \(=\tan\) (old ST). \\
\hline Language: & 8087/8088 assembly language. \\
\hline Note: & NEAR procedure. \\
\hline Program: & SINE \\
\hline Purpose: & Compute sine. \\
\hline Input: & 8087 register ST (angle in radians). \\
\hline Output: & 8087 register ST; new ST \(=\sin\) (old ST). \\
\hline Language: & 8087/8088 assembly language. \\
\hline Note: & NEAR procedure. \\
\hline Program: & COSINE \\
\hline Purpose: & Computer cosine \\
\hline Input: & 8087 register ST (angle in radians) \\
\hline Output: & 8087 register; new ST = cos (old ST). \\
\hline Language: & 8087/8088 assembly language. \\
\hline Note: & NEAR procedure. \\
\hline Program: & ARCTAN \\
\hline Purpose: & Compute arctangent. \\
\hline Input: & 8087 register ST. \\
\hline Output: & 8087 register ST; new ST \(=\arctan (\mathrm{lld}\) ST). \\
\hline Language: & 8087/8088 assembly language. \\
\hline Note: & NEAR procedure. \\
\hline
\end{tabular}

This chapter is divided into four sections. The first two sections finish describing the arithmetic and constant instructions. The last two sections
present the transcendental and processor control instructions. A number of examples are included for the more intricate operations.

\section*{Arithmetic Instructions}

Four arithmetic instructions remain to be discussed.

\begin{abstract}
FRDINT \{ST\}
9 microseconds
FRDINT (round to integer) rounds the element on top of the 8087 stack to an integer. (The number continues to be represented as a temporary real; after an FRDINT the temporary real number has an integer value.) The 8087 offers four rounding modes: round to nearest, round down, round up, and chop (round toward zero). Round to nearest is the default mode.
\end{abstract}

\section*{FSCALE \{ST,ST(1)\} \\ 7 microseconds}

FSCALE (scale by powers of two) adds the value found in \(\mathrm{ST}(1)\) to the exponent of ST. This effectively multiplies the top of stack element by 2 to the power contained in \(\mathrm{ST}(1)\). Since the exponent field is an integer, the value in \(\mathrm{ST}(1)\) should be an integer as well. If ST(1) is not an integer, the value is rounded toward zero before being added to the exponent in ST. The scale factor in ST(1) must be between -32768 and \(32768\left(2^{15}\right)\). If the scale factor is out of range or a non-integer value between -1 and +1 , the result is undefined. For safety, load ST(1) from a word integer. Notice that FSCALE provides an extremely fast way to multiply or divide numbers by a power of 2 .

FPREM \{ST,ST(1)\}
25 microseconds
FPREM (partial remainder) divides the stack top by ST(1) and places the remainder back in the stack top. (We explain use of the name "partial" below.) The result is exact with no loss of precision. FPREM (in effect) repeatedly subtracts ST (1) from ST and leaves the remainder in ST. When no more subtractions can be done without getting a negative difference, FPREM quits. Thus, if ST initially holds \(X\), at completion of FPREM ST holds \(X-(q \times S T(1))\), where \(q\) is an integer.

FPREM will, however, only reduce the difference in magnitude between ST and ST(1) by \(2^{64}\). If the difference is greater than this, repeated executions are necessary. (The 8087 doesn't allow itself to be interrupted in the middle of an instruction. Some programs might want to interrupt the 8087 in a bit of a hurry, so FPREM was designed to work part way through a modular division problem at each execution.) At each step, the "partial remainder" is left in ST. At the end of each execution, three possible comparisons exist between ST and ST(1). If ST<ST(1), the remainder is in ST . If \(\mathrm{ST}=\mathrm{ST}(1)\), the remainder is 0 . If \(\mathrm{ST}>\mathrm{ST}(1)\), then ST has only the partial remainder and FPREM should be repeated. FPREM sets bit C2 of the status word when it needs to be repeated and clears
the bit when it has completed. FPREM also places the least-significant three bits of the quotient, q , in bits \(\mathrm{C} 0, \mathrm{C} 3\), and C 1 , which is quite useful in analyzing periodic functions, such as sine, cosine, and tangent. For example, if all \(\mathrm{C} 0, \mathrm{C} 3\), and C 0 equal zero, then the quotient is a multiple of eight. If C 1 alone equals one, then the quotient is one greater than a multiple of eight. (Why eight? Because trigonometric calculations are based on dividing a circle into eight parts.) Table 12.1 describes the possible bit patterns.

Table 12-1. Condition Code Bits After FPREM.
\begin{tabular}{cccc}
\hline \begin{tabular}{c} 
Least Significant Bits \\
of Quotient
\end{tabular} & C0 & C3 & C1 \\
\hline 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
2 & 0 & 1 & 0 \\
3 & 0 & 1 & 1 \\
4 & 1 & 0 & 0 \\
5 & 1 & 0 & 1 \\
6 & 1 & 1 & 0 \\
7 & & 1 \\
\hline
\end{tabular}

The most important use of FPREM is in bringing arguments into the valid range for the transcendental instructions. Examples using FPREM are given in the section "Trigonometric Functions," below.

FXTRACT \{ST\}
10 microseconds
FXTRACT (extract exponent and significand) separates out the exponent and significand of the top of stack element. The exponent replaces the top of stack element and the significand is then pushed onto the stack. (Both are represented as temporary reals.) If ST originally held zero, both exponent and significand are zero. Note that FXTRACT is the logical inverse of FSCALE.

\section*{Constant Instructions}

The 8087 has seven useful constants "hardwired in." These constants have full temporary real accuracy (over 19 decimal digits). Use of a constant instruction saves about eight microseconds and considerable nuisance as compared to retrieving data from memory.

The constants are zero, one, pi, and four logarithmic values.

FLD1 (load one) pushes 1.0 onto the stack.
FLDPI \(\{S T\} \quad 4\) microseconds
FLDPI (load pi) pushes pi onto the stack.
FLDL2T \{ST\}
4 microseconds
FLDL2T ( \(\operatorname{load} \log _{2} 10\) ) pushes \(\log _{2} 10\) onto the stack.

FLDL2E \{ST\}
4 microseconds
FLDL2E ( \(\operatorname{load}^{\log _{2}} \mathrm{e}\) ) pushes \(\log _{2} \mathrm{e}\) onto the stack. ( e is the base of the natural logarithms.)

FLDLG2 \{ST\} 4 microseconds
FLDLG2 (load common logarithm of 2) pushes \(\log _{10} 2\) onto the stack.
FLDLN2 \{ST\}
4 microseconds
FLDLN2 (load natural logarithm of 2 ) pushes \(\log _{\mathrm{e}} 2\) onto the stack.

\section*{Transcendental Instructions}

Five transcendental instructions are provided on the 8087. Two of these instructions are used for logarithmic calculations, one for exponentiation, and two for trigonometric calculations. The five instructions provide core calculations for a much larger set of transcendental operations. We have written this section in two parts. In the first part we describe the five instructions. In the second part we present a series of 8087 NEAR procedures that can be used for the most common transcendental functions.

The transcendental instructions require valid (normalized) arguments and require that the arguments be within range. Further, the transcendental instructions do not check their arguments. Invalid arguments may produce erroneous results. and places the answer back in the stack top. \(X\) must be between 0 and \(1 / 2\), inclusive. While calculating \(2^{\mathrm{x}}-1\) instead of \(2^{\mathrm{X}}\) seems peculiar at first, this method allows much more accuracy when \(X\) is small. For example, \(2^{0.000001}\) is approximately 1.000000693 . Subtracting one allows the 8087 to report, in this case, about seven extra significant digits.

Below, we show how to use F2XM1 to calculate exponents to bases other then two.

FYL2X \{ST,ST(1)\}
190 microseconds
FYL2X ( Y times \(\log _{2} \mathrm{X}\) ) calculates \(\mathrm{Y} \times \log _{2} \mathrm{X}\), where X is in ST and Y in \(\mathrm{ST}(1)\). The stack is popped, eliminating \(X\), and the answer then replaces \(Y\) in the new top of stack. \(X\) must be strictly positive.

Below, we show how to use FYL2X to calculate logarithms using bases other than two.

FYL2XP1 \{ST,ST(1)\}
170 microseconds
FYL2XP1 ( Y times \(\log _{2}(\mathrm{X}+1)\) ) takes X from the stack top, Y from \(\mathrm{ST}(1)\), and calculates \(Y \times \log _{2}(1+X)\). \(X\) is popped and the result replaces \(Y\) on the new stack top. The absolute value of \(X\) must be greater than zero and less than SQRT(2)/2. FYL2XP1 should be used in preference to FYL2X when the argument is very close to one.

\section*{FPTAN \{ST\}}

90 microseconds
FPTAN (partial tangent) calculates tan(theta), where theta is in the stack top. The argument theta is restricted to the range \(0<\) theta \(<\mathrm{pi} / 4\). The answer is in the form of a ratio \(\mathrm{Y} / \mathrm{X} . \mathrm{Y}\) replaces theta and X is pushed onto the stack.

We can translate from tangent to sine and cosine by use of standard trigonometric identities. (See "Trigonometric Functions", below.)

FPATAN \(\{\mathrm{ST}, \mathrm{ST}(1)\}\)
130 microseconds
FPATAN (partial arctangent) calculates arctan ( \(\mathrm{Y} / \mathrm{X}\) ) where X is taken from ST and Y from ST(1). Y and X must observe the inequality \(0<\mathrm{Y}\) \(<\mathrm{X}<\) infinity. FPATAN pops the stack and then places the answer in the new stack top, replacing Y.

FPATAN serves as a base for calculating all the inverse trigonometric functions.

In the following sections, we create a number of "super instructions." Each "super instruction" is an 8087/8088 NEAR procedure that computes a common mathematical function. The procedures all assume that the calling routine has provided necessary scratch space and defined required constants. The calling routine should look something like the following.

\begin{tabular}{lll} 
ESEG SEGMENT & 'DATA' & \\
STATUS_WORD & DW & \(?\) \\
CONTROL_WORD & DW & \(?\) \\
CONTROL_WORD_TEMP & DW & \(?\) \\
HALF & DD & BFOOODODH \\
MINUSZ & DW & -2 \\
SIGN_STORE & DB & \(?\) \\
REALLY_COS & DB & \(?\) \\
LOCAL_SPACE & DW & ID DUP(?) \\
STACK_AREA & DW & 50 DUP(?) \\
STACK_TOP & EQU & THIS WORD \\
ESEG & \\
& &
\end{tabular}

The diskette prepared for this book includes routines to call each of the "super-instructions" from BASIC.

\section*{Logarithms}

The 8087 hardware calculates logarithms for log base two. Most mathematical applications require natural logarithms, \(\log\) base e, or common logarithms, log base 10. These are easily calculated using the fundamental identity for changing the base of a logarithm. Suppose we want the log of \(X\) base \(n\), and only know how to calculate logarithms using base two.
\[
\log _{n} X=\log _{n} 2 \times \log _{2} X
\]

In this case n is e or 10 . The following "super instructions" assume X is on the stack top, that \(0<X<\) infinity, and that the stack is not too deep to be pushed at least once more. X is replaced with its logarithm.


\section*{Exponentiation}

The 8087 hardware provides the instruction F2XM1 for raising 2 to the power \(X\). Mathematical calculations often require \(e^{x}, 10^{x}\), and \(y^{x}\). These are easily calculated using the fundamental identity for changing the base of an exponent. Suppose we want \(y^{x}\) and only know how to calculate \(2^{\mathrm{X}}\).
\[
y^{x}=2^{\left(x \times \log _{2} y\right)}
\]

Exponentiation routines would be simple if we had an instruction to raise 2 to an arbitrary power. Since F2XM1 only accepts arguments between 0 and \(1 / 2\), we need a super-instruction to perform the operation \(2^{\mathrm{z}}\) for an arbitrary Z. The 8087 instruction set is organized to make this a relatively easy operation, though a bit of planning is required. We actually have two hardware operations for taking a power of two. F2XM1 accepts exponents between 0 and \(1 / 2\). FSCALE accepts any integer exponent. We'll pick \(Z_{1}\) and \(Z_{2}\) such that \(Z_{1}\) is an integer and \(Z_{2}\) is a positive fraction. If \(Z_{2}\) is greater than \(1 / 2\), we'll subtract \(1 / 2\) from \(Z_{2}\) and then multiply the answer by \(2^{1 / 2}\). (This is all easier than it sounds.) The algorithm works as follows:
1. Let \(Z_{1}\) equal the greatest integer less than or equal to \(Z\). This is a little messy since we need to round down Z . In order to accomplish this, we need to change the 8087 rounding control by using the load control word, FLDCW, and store control word, FSTCW instructions; instructions we don't officially meet until the next section.
2. Let \(Z_{2}=Z-Z_{1}\). Note that \(Z_{2}\) is guaranteed to be positive.
3. Is \(Z_{2}>1 / 2\) ? If so, subtract \(1 / 2\) and make note of the fact.
4. Raise 2 to the \(Z_{2}\) and scale by \(Z_{1}\).
5. If we subtracted \(1 / 2\) from \(Z_{2}\) above, now multiply the result by \(2^{1 / 2}\).
```

iz TO THE Z {ST}
2`5 MICROSECONDS
;SUBROUTINE TWOZTHEZ
i
;THIS ROUTINE ASSUMES THAT THE FOLLOWING MEMORY LOCATIONS
iHAVE BEEN DEFINED
; STATUS_WORD ב BYTES
; CONTROL_WORD 2 BYTES
i CONTROL_UORD_TEMP 2 BYTES
; HALF HAS 0.5 IN SHORT-REAL FORMAT
i
;Z IS ASSUMED TO BE FOUND IN ST
; THERE MUST BE AT LEAST ב FREE STACK LOCATIONS
TWOZTHEZ PROC NEAR
PUSH AX ;SAVE AX
FSTCW CONTROL_WORD ISAVE CONTROL WORD SO
UE CAN
;RESTORE IT LATER
FSTCU CONTROL_WORD_TEMP ;USE TEMP TO CHANGE
;ROUNDING CONTROL(RC)

```


This may all seem like going to some trouble, but it does speed things up quite a bit over not having an 8087. How much? Try rewriting our super instruction " 2 to the \(Z\) " in BASIC without the 8087 . You'll find that one minute of 8087 exponentiation takes just about an hour with compiled BASIC and about three hours with interpreted BASIC.

Of course, we aren't actually interested in raising two to some power all that often. With the TWO2THEZ firmly in hand, it's easy to provide new super-instructions for \(\mathrm{e}^{\mathrm{x}}, 10^{\mathrm{x}}\), and \(\mathrm{y}^{\mathrm{x}}\).


\section*{Trigonometric Functions}

The tangent function provides the base for calculating all the common trigonometric functions. FPTAN calculates the tangent for arguments between 0 and \(\mathrm{pi} / 4\). Computation of a trigonometric function involves three broad steps. First, prologue code is used to bring the argument within range of the FPTAN instruction. Second, the FPTAN instruction is applied. Third, epilogue code is used to correct the result of FPTAN. The trigonometric identities used are described in the code below.
```

;TANGENT {ST} 370 MICROSECONDS
;THETA IN ST IS ASSUMED TO BE A VALID NUMBER
;THERE MUST BE AT LEAST 2 FREE STACK LOCATIONS
iTHIS ROUTINE ASSUMES THAT THE FOLLOUING MEMORY
iLOCATIONS HAVE BEEN DEFINED:
iSTATUS_WORD 2 BYTES
iSIGN_STORE l BYTE
iMINUSZ 2 BYTES INITIALIZED TO -2
;
TANGENT PROC NEAR
PUSH AX
PUSH BX
;FIRST CHECK FOR A NEGATIVE ARGUMENT

```


NON_NEGATIVE:
;NOU GET ST BETUEEN D AND PI/4
\begin{tabular}{lll} 
FILD & MINUS2 & iLOAD -2 \\
FLDPI & & iLOAD PI \\
FSCALE & & iGOT PI/4 \\
FSTP & ST( \()\) & iDUMP -2
\end{tabular}
i NOU \(X\) IS IN ST AND PI/4 IN ST(l)
RANGE:
FPREM
FSTSW STATUS_WORD
FWAIT
MOV AH,BYTE PTR STATUS_WORD+1
SAHF
JP
RANGE
;THIS TESTS BIT CZ
;AT THIS POINT AH HAS THE STATUS BITS
iNOU LETS SEE IF THE REMAINDER UAS EXACTLY ZERO
FTST
FSTSU STATUS_WORD
FWAIT
iIT WAS ZERO IF \(C \exists=1\) AND CD=0
iIF ZERO, SET \(B X=-1\), ELSE \(B X=0\)
MOV \(B X_{1} D\)
AND BYTE PTR STATUS_WORD+l,O1OOOOD1B
CMP BYTE PTR STATUS_WORD+1, OlOOOODIB
JNE NOT_ZERO
MOV BX,-I
NOT_ZERO:
iTHERE ARE FOUR POSSIBILITIES GIVEN ST NOU HAS X MOD PI/4
iOCTANT
C3 Cl
CALCULATE
IF ZERO
:0,4
- 0

FPTAN(ST)
D
ili5 0 l l/FPTAN(PI/4 - ST)
1

INFINITY
iقı \(\boldsymbol{7}\) b \(\quad\)-FPTAN(PI/4 - ST)
-1
;
ifIRST CHECK BIT Cl AND TAKE FPTAN
\begin{tabular}{lll} 
TEST & AH,ILOB & iIS Cl ON \\
JZ & CIISOFF & iJUMP IF OFF \\
CMP & BX,D & iST EXACTLY ZERO? \\
JNE & STOANDCI & iJUMP IF YES
\end{tabular}


Sine and cosine functions are also calculated using FPTAN. Since a cosine is just a sine rotated 90 degrees, we build the cosine routine to make use of the code for sines.
```

iSINE {ST}
513 MICROSECONDS
;THETA IN ST IS ASSUMED TO BE A VALID NUMBER
;THERE MUST BE AT LEAST 3 FREE STACK LOCATIONS
;THIS ROUTINE ASSUMES THAT THE FOLLOUING MEMORY
iLOCATIONS HAVE BEEN DEFINED:
iSTATUS_WORD 2 BYTES
;SIGN_STORE I BYTE
iMINUS2 2 BYTES INITIALIZED TO -2
iREALLY_COS l BYTE
SINE PROC NEAR
PUSH AX
PUSH BX
iFIRST CHECK FOR A NEGATIVE ARGUMENT
i NOTE SIN(-X)=-SIN(X)
MOV SIGN_STORE_O iASSUME POSITIVE
FTST
FSTSW STATUS_WORD
FWAIT
MOV AH,BYTE PTR STATUS_WORD +I
SAHF
JNC NON_NEGATIVE
MOV SIGN_STORE^-l iITS NEGATIVE
FABS iNOU POSITIVE
NON_NEGATIVE:
MOV REALLY_COS,O iSINE, NOT COSINE
COS_ENTRY:
iNOW GET ST BETUEEN D AND PI/4
FILD MINUSE iLOAD -2
FLDPI iLOAD PI
FSCALE iGOT PI/4
FSTP ST(3) iDUMP -2
FXCH
; NOU X IS IN ST AND PI/4 IN ST(l)
RANGE:
FPREM
FSTSW STATUS_WORD
FWAIT
MOV AH^BYTE PTR STATUS_WORD+1
SAHF
JP RANGE :THIS TESTS BIT C2
`AT THIS POINT AH HAS THE STATUS BITS
iIF WE ARE REALLY DOING COSINE, UE NEED TO ADD TWO TO THE
OCTANT
CMP REALLY_COS,O
JE ITS_SINE
IADD INTO CJ AND CARRY INTO CD
XOR AH_OlOODOOOB
TEST AH,OLOOODOOB
JNZ NOCARRY
XOR AH,IB

```
```

NOCARRY:
ITS_SINE:
iNOU LETS SEE IF THE REMAINDER WAS EXACTLY ZERO
FTST
FSTSW STATUS_WORD
FWAIT
iIT WAS ZERO IF Cヨ=l AND CO=0
;IF ZERO, SET BX=-1, ELSE BX=0
MOV BX,D
AND BYTE PTR STATUS_WORD+1,0lOOOOOlB
CMP BYTE PTR STATUS_WORD+1, वlOCOOOlB
JNE NOT_ZERO
MOV BX,-I
NOT_ZERO:
;THERE ARE FOUR POSSIBILITIES GIVEN ST NOU HAS X MOD PI/4
iOCTANT C3 Cl CALCULATE IF ZERO
i0 0 0 SIN(ST) 0
il 0 l COS(PI/4 - ST) SQRT(2)/2
i己 l a cos(ST) l
i3 l ll SIN(PI/4 - ST) SQRT(2)/2
i
; OCTANTS 4-7 ARE JUST LIKE D-ヨ ONLY NEGATIVE
iNOTE: IF TAN(THETA)=X/Y, THEN
i SIN(THETA)=X/SQRT(X*X+Y*Y)
i COS(THETA)=Y/SQRT(X*X+Y*Y)
i
iFIRST CHECK BIT Cl AND TAKE FPTAN
TEST AH,IOB
JZ ClISOFF
CMP BX,D
JNE STOANDCl
FSUBP ST(l),ST
FPTAN
JMP SINDONE
STOANDCl:
FSTP S
FSTP ST
FLD]
FLD]
JMP SINDONE
ClISOFF:

```
\begin{tabular}{lll} 
FSTP & ST（1） & iGET RID OF PI／4 \\
CMP & BX，O & iST EXACTLY ZERO？ \\
JNE & STOANDNOCI & iJUMP IF YES \\
FPTAN & & \\
JMP & SINDONE & \\
F & & \\
FSTP & ST & iDUMP ST \\
FLDZ & & iLOAD RATIO OTO
\end{tabular}
iIS Cl ON
；JUMP IF OFF
iST EXACTLY ZERO？
iJUMP IF YES
iNOW PI／4－ST
iPOP ST
；AND PI／4
iLOAD RATIO 〕 TO 〕
SINDONE
CIISOFF：

\section*{SINDONE：}
```

iIS Cl XOR CJ TRUE?
MOV BX,O iASSUME Cヨ OFF

```
iIF Cヨ IS ON
    TEST AHっOlODODOB
    JZ NOC3 iJUMP IF OFF
    MOV \(\quad B X_{1}\)
iNOTE CB ON
NOC3:
iIS Cl ON ?
    TEST AH.]OB
    JZ NOCl
    XOR BXII
    JMP DOSINE
NOCI: XOR BXID
DOSINE:
iIF BX=l THEN WE WANT WANT COSINE FUNCTION
    CMP BX,I
    JNE SINFUNC
    FXCH
SINFUNC:
; \(S T(\mathrm{l})=\mathrm{X}, ~ S T(\mathrm{D})=Y\)
; SIN(THETA) \(=X / S Q R T(X * X+Y * Y)\)
    FMUL \(\quad S T(D), S T(D) \quad i S T(D)=Y * Y\)
    FLD \(\quad S T(\mathrm{l}) \quad\) iST(D) \(=X\)
    FMUL \(\quad S T(D) \rightarrow S T(D) \quad i S T(D)=X * X\)
    FADDP \(\quad S T(\mathrm{l}) \mathrm{T}\) ST( D\() \quad\) iST( \((\mathrm{D})=X * X+Y * Y\)
    FSQRT
    FDIVP \(\quad S T(\mathrm{H}), S T(\mathrm{C})\)
i
iIS BIT CD ON?
    TEST \(\quad A H_{1} \mathrm{DB}\)
    JZ CDOFF
    NOT SIGN_STORE
CDOFF:
iDO WE NEED TO CHANGE SIGN?
    CMP SIGN_STORE,D
    JE LEAVE_POS
    FCHS
LEAVE_POS:
\begin{tabular}{lll} 
& POP & BX \\
& POP & AX \\
& RET & \\
SINE & ENDP &
\end{tabular}
iCOSINE \{ST\}
;THETA IN ST IS ASSUMED TO BE A VALID NUMBER
iTHERE MUST BE AT LEAST 3 FREE STACK LOCATIONS
iTHIS ROUTINE USES THE SINE ROUTINE
\(\begin{array}{lll}\text { COSINE } & \text { PROC } & \text { NEAR } \\ & \text { PUSH } & \text { AX }\end{array}\)
    PUSH BX
```

 FABS
 MOV SIGN_STOREIO iITS POSITIVE NOW
 MOV REALLY_COS,-1
 JMP COS_ENTRY
 COSINE ENDP
    ```

For further explanation of trigonometric calculations and for programs which perform sophisticated error checking, see

Getting Started With the Numeric Data Processor, by Bill Rash, Intel Corporation, Application Note AP-113.

\section*{Inverse Trigonometric Functions}

The 8087 instruction FPATAN performs the core calculations for the inverse trigonometric functions: Arctan, Arcsin, Arccos, Arccot, Arccsc, and Arcsec. Just as FPTAN produces a result in the form Y/X, so FPATAN accepts an argument in the form \(\mathrm{Y} / \mathrm{X}\). The inverse trigonometric functions require somewhat less programming, because the argument range is less restricted for FPATAN than for FPTAN. (The direct trigonometric functions are periodic, where the inverse trigonometric functions aren't.) For FPATAN, we need only assure that the arguments obey the relation 0 \(<\mathrm{Y}<\mathrm{X}<\) infinity. Thus to compute \(\operatorname{Arctan}(\mathrm{Z})\) we need to check seven cases: Z equal \(0, \mathrm{Z}\) positive or negative and \(\mathrm{ABS}(\mathrm{Z})\) less than, equal to, or greater than 1 . We bring Z into the proper range by using the identities:
```

Arctan(Z) = - Arctan(-Z)
Arctan(Z) = pi/2 - Arctan(1/Z)
iARCTAN {ST}
351 MICROSECONDS
iST IS ASSUMED TO BE A NORMAL NUMBER
iTHERE MUST BE AT LEAST 3 FREE STACK LOCATIONS
;THIS ROUTINE ASSUMES THAT THE FOLLOWING MEMORY
iLOCATIONS HAVE BEEN DEFINED:
iSTATUS_WORD ב BYTES
iSIGN_STORE I BYTE
ARCTAN PROC NEAR
PUSH AX
;THE FIRST PROBLEM IS TO CHECK FOR A ZERO OR
; NEGATIVE ARGUMENT
MOV SIGN_STORE,D ;ASSUME NON-NEGATIVE
FTST
FSTSW STATUS_WORD
FWAIT
MOV AH,BYTE PTR STATUS_WORD+1
SAHF
JA POSITIVE
JZ ZERO ;ASSUME ITS ZERO
JMP NEGATIVE

```

ZERO:
iARCTAN(0)=0
\begin{tabular}{ll} 
FSTP & ST(D) \\
FLDZ & \\
JMP & DONE
\end{tabular}

NEGATIVE: iDEAL UITH A NEGATIVE ARGUMENT USING IDENTITY iARCTAN(-X)=-ARCTAN(X)

FCHS
MOV SIGN_STORE,-1
POSITIVE:
; HOW DOES l COMPARE TO X
FLD]
FCOM
FSTSU STATUS_WORD
FWAIT
MOV AH,BYTE PTR STATUS_WORD+1,
SAHF
JA Z_LT_l
JC Z_GT_l
iEXACTLY 1 RETURN ARCTAN(1)=PI/4
FCHS iST NOU=-l
FADD \(\quad S T(D), S T(D) \quad\) iST=-2
FLDPI
FSCALE iST NOU PI/4
FSTP ST(1)
JMP RESTORE_SIGN
Z_GT_l:
iUSE IDENTITY ATAN(X)=PI/2 - ATAN(h/X)
FXCH
FPATAN
FLDI iNOU ADJUST BY PI/己
FCHS
FLDPI
FSCALE
FSTP ST(l)
FSUBRP ST(1) iST
JMP RESTORE_SIGN
Z_LT_l:
FPATAN
\(; S T=1, S T(1)=Z\)
RESTORE_SIGN:
TEST SIGN_STORETOFFH
JZ DONE
FCHS
DONE:
\begin{tabular}{lll} 
& POP & AX \\
& RET & \\
ARCTAN & ENDP
\end{tabular}

\section*{Processor Control Instructions}

Sixteen instructions are used to examine and control the internal status of the 8087. We make regular use of the instructions that manipulate the status word and the control word. In particular, these instructions are used for examining the results of comparisons and for setting the controls, such as for rounding, on the 8087. Most of the other instructions are needed for writing system programs. We discuss these briefly for completeness. The processor control instruction FSTSW (store status word) was discussed in Chapter 6.

\section*{FLDCW word-integer}

4 microseconds
FLDCW (load control word) loads a word from a two-byte memory location into the 8087's internal control word register. FLDCW is used, for example, to change the 8087 rounding control.

\section*{FSTCW word-integer}

5 microseconds
FSTCW (store control word) stores the 8087 control word at the two-byte destination location. We used FSTCW earlier to save a clean copy of the control word before changing rounding control. Later we used FLDCW to restore the control word to its original state.

\section*{FWAIT}

FWAIT is actually an 8088, not an 8087, instruction. (The FWAIT mnemonic generates the 8088 WAIT instruction.) FWAIT halts the 8088 until the 8087 completes its current instruction. FWAIT should be coded before any 8088 instruction that references a memory location being read from or written to by the 8087. During an FWAIT, the 8088 checks the 8087 once per microsecond, and resumes execution as soon as the 8087 is free.

The description of the remaining processor control instructions is included for completeness. None of these instructions are necessary for the programs in this book.

The following two instructions are useful in writing subroutines because they allow a subroutine to save a copy of the 8087's internal state and then restore it.

FSAVE (save state) copies all internal 8087 information into a 94 -byte area in memory. It then reinitializes the processor by executing an FINIT (see below). Figure 12.1 illustrates the layout of the memory save area.

The reinitialization feature of FSAVE can cause undesired side effects, such as unintentionally resetting rounding control. The control word is easily restored by following "FSAVE memory" with "FLDCW memory."


NOTES: \(\mathrm{S}=\mathbf{S i g n}\) Bit 0 of each field is rightmost, least significant bit of corresponding register field.
Bit 63 of significand is integer bit (assumed binary point is immediately to the right).

Figure 12.1. Memory layout for 8087 internal state. (Used with permission of Intel Corporation.)

FRSTOR memory
44 microseconds
FRSTOR (restore state) reloads the 8087 state from the 94 -byte area in memory, effectively "undoing" a previous FSAVE.
FSAVE and FRSTOR provide a mechanism by which a subroutine can use the 8087 and then return it to its original state. BASIC requires us to protect certain 8088 registers in an analogous way. (That's why many of our routines started with "PUSH BP" and ended with "POP BP.") Use of FSAVE/FRSTOR may or not be required, depending on the conventions of a given language translator. Note that the following code can be used to save and restore onto the 8088 stack.
```

SUB SP,94
MOV BP,SP
FSAVE [BP]
MOV BPiSP
FRSTOR [BP]
ADD SP^q4

```

FINIT
1 microsecond
FINIT (initialize processor) resets the 8087. The initialized conditions are described in Figure 12.2.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Field } & Value & \multicolumn{1}{|c|}{ Interpretation } \\
\hline Control Word & & \\
Infinity Control & 0 & Projective \\
Rounding Control & 00 & Round to nearest \\
Precision Control & 11 & 64 bits \\
Interrupt-enable Mask & 1 & Interrupts disabled \\
Exception Masks & 111111 & All exceptions masked \\
Status Word & & \\
Busy & 0 & Not busy \\
Condition Code & 000 & (Indeterminate) \\
Stack Top & 0 & Empty stack \\
Interrupt Request & 000000 & No interrupt \\
Exception Flags & & No exceptions \\
Tag Word & 11 & \\
Tags & N.C. & E.mpty \\
Registers & & Not changed \\
Exception Pointers & N.C. & \\
Instruction Code & N.C. & Not changed \\
Instruction Address \(:\) & N.C. & Not changed \\
Operand Address & Not changed \\
\hline
\end{tabular}

Figure 12.2. 8087 initial conditions. (Used with permission of Intel Corporation.)

\section*{Interrupt and Exception-handling Instructions}

Normally, we allow exceptions to be masked; that is, the 8087 hardware handles computational errors automatically. If a given exception type is unmasked, the 8087 will interrupt the 8088 when the exception occurs. In this way, a computational error can be processed by user- or systemspecified exception-handling software. If the 8088 is handling a task with
higher priority than accepting 8087 "messages," 8087 interrupts can be disabled with the FDISI instruction.

\section*{FDISI}

1 microsecond
FDISI (disable interrupts) disables interrupts by setting the interrupt enable mask bit in the control word.

\section*{FENI}

1 microsecond
FENI (enable interrupts) enables interrupts by clearing the interrupt enable mask bit in the control word.

\section*{FCLEX}

1 microsecond
FCLEX (clear exceptions) clears the exception flags, the interrupt request flag, and the busy flag in the status word. FCLEX is principally used by exception-handling routines after an exception has been taken care of. If the exception were not cleared before returning control to the 8087, a second interrupt request would be issued immediately.

\section*{FSTENV memory}

11 microseconds
FSTENV (store environment) stores the control, status, and tag words, and the exception pointers in a 12-byte memory area, so that these items may be examined by an exception handling routine. FSTENV stores a subset of the information stored by FSAVE and operates with considerably greater speed. Figure 12.3 illustrates the layout of the save area.


Figure 12.3. Memory layout for 8087 internal "environment" information. (Used with permission of Intel Corporation.)

\section*{FINCSTP}

2 microseconds
FINCSTP (increment stack pointer) increments the 8087 stack pointer. Do not use this instruction to pop the stack, since it does not mark ST as empty. Use FSTP ST(0) instead.

\section*{FDECSTP \\ 2 microseconds \\ FDECSTP (decrement stack pointer) decrements the 8087 stack pointer.}

\section*{FFREE ST(i)}

2 microseconds
FFREE (free register) marks the indicated register as empty.

\section*{FNOP}

3 microseconds
FNOP (no operation) executes an FST ST,ST(0) in order to do nothing.

\section*{Advanced Instruction Set Summary}

This chapter has seen much intricate detail. It took, for example, about 90 instructions to calculate a tangent even though the 8087 has a built-in "tangent" instruction. (If you think it took a lot of work this way, try writing a tangent instruction using only 8088 code!)

It is more difficult to build a small set of assembly language modules for non-linear problems than it is for linear problems. This is a place which really calls for an 8087 -compatible language translator. (The nonlinear programs in the next chapter are written in BASIC for this reason.) Nonetheless, it is instructive to see just how much improvement we can expect from the 8087.

Without the 8087, compiled BASIC requires about 26,800 microseconds to calculate a double precision tangent. Our assembly language program uses about 460 microseconds. Even using a poor 8087 -compatible translator, you can look for an order of magnitude speed improvement on non-linear operations.

\section*{13}

\section*{Non-Linear Methods}

Given a non-linear function, \(y=f(x)\), how do we find the value of \(x\) that makes y equal to zero? The value that makes y equal one? What value of \(x\) gives the maximum possible value of the function? Answers to these and related questions are the subject of this chapter. BASIC's DEF FN statement makes it easy to define an algebraic formula as a function, \(f(x)\). For example, suppose we wish to explore the function
\[
y=17-(x-12)^{2}
\]

We write this in BASIC as
```

10 DEFDBL Y,X
20 DEF FNY(X)=1,7-(X-1,2)^2

```

Of course, this particular function could be coded in assembly language in only a few minutes. A really complicated function might take some time. Worse, every time we need to work with a new function, we would need to write a new assembly language routine. Non-linear programs call for use of a high-level language. We use BASIC due to its widespread availability for personal computers.

In this chapter we discuss:
- Numerical differentiation
- Numerical integration
- Solving a non-linear equation
- Non-linear optimization

For many readers, the most interesting topic may be "solving a nonlinear equation." As the first sections of the chapter provide useful background material for solving non-linear equations, you should probably work through these sections as well.

For a concrete focus of the discussion which follows, look now at the chart of the function \(y=f(x)\). Figure 13.1 shows the plot of our sample function.


Figure 13.1. Graph of function \(y=17-(x-12)^{2}\).

This particular function equals zero at \(x=7.88\) and \(x=16.12\). It reaches its maximum value, 17.0 , at \(\mathrm{x}=12\).

\section*{Numerical Differentiation}

The derivative of a function is the slope of the function at a particular point. To find the derivative graphically, draw a line tangent to the function at the point of interest and measure the ratio of the change in the vertical distance to the change in the horizontal distance, as in Figure 13.2.

The computer can't very well draw such a line (at least, not unless it knows the slope). Since the computer can easily evaluate the function, we approximate the tangent line by picking another point close to the point of interest and having the computer effectively "draw" a line to connect these two points. Figure 13.3 shows an "enlargement" of a small part of the function with just such a line.


Figure 13.2. Tangent line.

The ratio of the vertical to the horizontal change is approximately the derivative of the function. If we pick the second point quite close to the first point, then the approximation will be quite accurate. How close do we need to be to assure some desired level of accuracy? The usual procedure is to evaluate the derivative once and then re-evaluate it with a closer second point. If the two answers lie within a distance "epsilon" of each other (that is, if they are no more than epsilon apart), then the answers are probably within epsilon of the true answer as well.

The following BASIC program evaluates the derivative of the function FNY at the point X0, assuming we require an answer accurate to within plus or minus EPS.
```

10 DEFDBL Y,X,F,EっD
20 DEF FNY(X)=17-(X-l2)^2
30 REM SET XO EPS ITLIM
40 XO=16
50 EPS=.001
60 ITLIM=100
70 DELTA=.0l*XO

```


Figure 13.3. Enlarged view of tangent line.
```

80 FXO=FNY(XO)
TO DIFOLD=(FNY(XD+DELTA)-FXD)/DELTA
100 IT=1
llO REM LOOP UNTIL CONVERGENCE OR ITERATION LIMIT REACHED
120 DELTA=DELTA/Z
130 DIF=(FNY(XD+DELTA)-FXD)/DELTA
140 IF ABS(DIF-DIFOLD) <EPS THEN 1000
150 IT=IT+1
l60 IF IT>ITLIM THEN 2OOD
170 DIFOLD=DIF
l80 GO TO l20
1000 REM CONVERGENCE ACHIEVED
1010 PRINT "DERIVATIVE AT ";XO;" IS n;DIF
lO20 PRINT " AFTER ";IT;" ITERATIONS"
1030 STOP
2000 REM NO CONVERGENCE
2010 PRINT "FAILED TO CONVERGE AFTER ";ITLIM;" ITERATIONS"
2020 PRINT "APPROXIMATE DERIVATIVE AT n;XD;" IS ";DIF
2030 STOP

```

Always take the accuracy of this sort of numerical approximation with a grain of salt．It can happen that two successive approximations are close to one another without being equally close to the correct answer． Round－off error can also give results a false appearance of accuracy．The arithmetic operation at which computers are the least accurate is sub－ tracting two numbers that are nearly equal in value，as in FNY（X0＋DELTA） －FNY（X0），for example．
By the way，you should always include an＂iteration limit＂in a program that otherwise relies on a mathematical condition to stop．Computer arithmetic is imperfect．With sufficient bad luck（＂sufficient bad luck＂ means＂sooner or later for sure＂），your program will end up in an endless loop，if it doesn＇t have a guaranteed stopping mechanism．

The execution time for a non－linear program is roughly proportional to the number of function evaluations．That＇s why we evaluated \(\mathrm{FNY}(\mathrm{X} 0)\) early in the program and saved the answer．

\section*{Numerical Integration}

Integration is the inverse function of differentiation．Integration tells us the area under a curve between two points．The area under our sample function，from XLOWER to XUPPER，is shown in Figure 13．4．

We can approximate the area under the curve by drawing in rectangles as in Figure 13．5．The total area in all the rectangles is approximately the area under the curve．The more，and smaller，the rectangles we draw， the closer we come to the answer．

If we draw \(n\) rectangles，we make the width of each one one－nth of the distance between XLOWER and XUPPER．Since the area is just the height times the width，and since each of the n rectangles has the same width one－nth，we can find the area by just adding up the heights and multiplying the sum by the XUPPER－XLOWER．To obtain a more accurate answer，we cut each old rectangle in half and add new rectangles as in 13.6.

The following BASIC program integrates the function FNY．
\begin{tabular}{|c|c|}
\hline 10 & DEFDBL \(Y\) ，\(X, F, E, D, A\) \\
\hline 20 & DEF FNY（X）＝」7－（X－12）＾2 \\
\hline 30 & REM SET XLOWER XUPPER EPS ITLIM \\
\hline 40 & XLOUER＝ 7 \\
\hline 50 & XUPPER＝1コ \\
\hline 60 & EPS \(=.001\) \\
\hline 70 & ITLIM \(=100\) \\
\hline 80 & XUIDTH＝（XUPPER－XLOUER）／こ \\
\hline 90 & FSUM＝FNY（XLOWER）＋FNY（XUPPER） \\
\hline 100 & AREAOLD \(=\) FSUM＊（XUPPER－XLOWER） \\
\hline 110 & \(I T=1\) \\
\hline 120 & \(\mathrm{N}=2\) \\
\hline
\end{tabular}


Figure 13.4. Area under function \(y=17-(x-12)^{2}\).


Figure 13.5. Approximation to area under function.
```

201] PRINT "FAILED TO CONVERGE AFTER ";ITLIM;" ITERATIONS
2ロटD PRINT "APPROXIMATE INTEGRAL IS *;AREA
2030 STOP

```

Of course, one can usually use calculus in place of numerical computation. The formula for the derivative of our sample function is \(24-2 x\). The formula for the integral is \(17 x-(1 / 3)(x-12)^{3}\).

Derivatives can be found by applying the rules of calculus mechanically, so sometimes packaged programs actually figure out the formula for the derivative instead of using numerical methods. Integrals cannot be found by purely mechanical rules.

\section*{Solving a Non-linear Equation}

Suppose we have a function \(y=f(x)\) and know that the value of \(y\) is Y0. How can we find the value of \(x\) that produced Y0? Suppose that \(\mathrm{Y} 0=0\) and look back at Figure 13.2. Start at the point \((\mathrm{f}(\mathrm{XO}), \mathrm{X} 0)\). If the function


Figure 13.6. Refined approximation to area under function.
\(f(x)\) was actually a straight line, we could just run our finger down the tangent line until we hit the \(x\) axis at \((0, X 1)\). Since \(f(x)\) is not a straight line, when we hit the \(x\)-axis we actually get ( \(f(\mathrm{X} 1), \mathrm{X} 1\) ) instead. Now draw a tangent line from the new point and try again.

If the function \(f(x)\) is sufficiently smooth, this "shooting method" will usually converge to the correct point fairly quickly. However, sometimes after we shoot down the tangent, we are even further from the correct answer than we were originally. We'll add another rule to the procedure to prevent this. If our new guess is even further from the right spot then the initial guess, we cut in half the size of the step we took and try again. The BASIC program below implements this modified shooting method.
```

10 DEFDBL Y, X,F,E,D
20 DEF FNY $(X)=17-(X-12) \wedge 2$
$30 \quad \operatorname{DEF}$ FNDIF $(X)=(F N Y((1+D E L) * X)-F N Y(X)) /(D E L * X)$
40 REM SET YTARGET EPS DEL XD ITLIM
$50 \quad$ YTARGET=0
60 DEL=.001
70 EPS =. 01

```
```

80 XD=14
90 X=X0
100 ITLIM=20
110 STEPLIM=5
1,20 Y=FNY(X)
130 IT=1
140 ISTEP=0
150 STEPSIZE=1
160 XNEW=X+STEPSIZE*((YTARGET-Y)/FNDIF(X))
170 YNEW=FNY(XNEW)
180 IF ABS(YNEW-YTARGET)<EPS THEN 1000
190 IF ABS(YNEU-YTARGET)>ABS(Y-YTARGET) THEN 500
200 Y=YNEW
210 X=XNEW
220 IT=IT+l
230 IF IT>ITLIM THEN 2OOD
240 GOTO 140
500 REM REDUCE STEP SIZE
510 ISTEP=ISTEP+1
520 IF ISTEP>STEPLIM THEN 220
530 STEPSIZE=STEPSIZE/2
540 GOTO l\&O
1000 PRINT "SOLUTION IS ";XNEU;" AFTER ";IT;" ITERATIONS"
1O10 STOP
2000 PRINT "FAILED TO CONVERGE AFTER ";ITLIM;" ITERATIONS"
2010 PRINT "APPROXIMATE ANSWER ";XNEU
2020 STOP

```

For the sample function, there are actually two correct answers for some values of YTARGET. This program only finds one, usually the closest to the initial starting point X0. In order to check for more than one solution, the program can be rerun with several different initial values.

Notice that the program uses DEF FNDIF to approximate the derivative. To increase the accuracy of the final solution, DEL should generally be reduced along with EPS. FNDIF could be redefined to give the exact derivative by using calculus. This would speed up the program a little by reducing the number of function evaluations and possibly also because of the greater accuracy of an exact derivative. On the other hand, figuring out analytic derivatives is more work for the user.

\section*{Non-linear Optimization}

Suppose that \(y\) in our sample function described the profits of a small programming business as a function of the number of hours, \(x\), spent typing on the keyboard of a personal computer. We would like to maximize this function, that is, find the value of \(x\) that gives us the highest possible value of \(y\).

If you look back at Figure 13.1 you will see that at the highest point of the function the slope of the function is zero. In calculus terms, the derivative of a function equals zero at its maximum. (In logical terms, if a function is still going up, we should search further to the right; if it's going down, we've gone too far. Exactly at the maximum, the function must be going neither up nor down. Its slope must be zero.)
Finding the maximum of a function \(\mathrm{f}(\mathrm{x})\) reduces to finding the point where the derivative of \(f(x)\) equals zero. The previous program will handle this quite nicely if we redefine the function calls to look at the derivative instead of the original function and the calls on the function for the derivative to look at the derivative of the derivative.
```

10 DEFDBL Y,X,F,E,D
20 DEF FNY(X)=1,7-(X-1,2)^己
30 DEF FNDIF(X)=(FNY((l +DEL)*X)-FNY(X))/(DEL*X)
35 DEF FNDDIF(X)=(FNDIF((l+DEL)*X)-FNDIF(X))/(DEL*X)
40 REM SET YTARGET EPS DEL XD ITLIM
50 YTARGET=0
60 DEL=.001
70 EPS=.001
80 XO=14
90 X=X0
100 ITLIM=20
110 STEPLIM=5
l20 Y=FNY(X)
130 IT=l
140 ISTEP=0
150 STEPSIZE=1
160 XNEW=X+STEPSIZE*((YTARGET-Y)/FNDDIF(X))
17D YNEW=FNDIF(XNEW)
180 IF ABS(YNEW-YTARGET)<EPS THEN IOOD
190 IF ABS(YNEW-YTARGET)>ABS(Y-YTARGET) THEN 500
200 Y=YNEW
2lO X=XNEU
220 IT=IT+I
230 IF IT>ITLIM THEN 2OOO
240 GOTO 1,40
500 REM REDUCE STEP SIZE
510 ISTEP=ISTEP+1
520 IF ISTEP>STEPLIM THEN 220
530 STEPSIZE=STEPSIZE/2
540 GOTO l60
1000 FM=FNY(XNEU)
1010 IF FM>=FNY((l+DEL)*XNEW) AND FM>=FNY((l-DEL)*XNEU) THEN
1050
lQ2D PRINT "CAN'T FIND MAXIMUM"
10\exists0 PRINT "STOPPED AT ";XNEW; "AFTER ";IT;" ITERATIONS
1040 STOP
1050 PRINT "MAXIMUM IS AT ";XNEU;" AFTER ";IT;" ITERATIONS
1OLO PRINT "VALUE AT THE MAXIMUM IS ";FNY(XNEU)
1OTO STOP

```
```

20ロロ PRINT "FAILED TO CONVERGE AFTER ";ITLIM;" ITERATIONS"
2010 PRINT "APPROXIMATE ANSWER ";XNEW
2020 STOP

```

Our BASIC program will find that the maximum，\(y=17\) ，is found at \(\mathrm{X}=12\) ．Just as a non－linear function can have exactly one solution，no solution，or many solutions，in the same way a function can have one maximum，no maximum，or many maxima．The code at line 1000 checks for the possibility that the program located a point where the the deriv－ ative equals zero，but which is not a maximum．Such a point might be a minimum or an＂inflection point．＂Even with this check，care on the part of the user is still a good idea．The program has no way to check whether it has found only a＂local maximum，＂that is，whether there might be a point elsewhere that has an even higher value than the point found by the program．

\section*{Back to Linearity}

In the next chapter，we build a small statistical analysis system and，in so doing，return to linear problems and to the use of assembly language modules．

\section*{14}

\section*{Statistical Analysis and Program Canning}

This chapter has two principle objectives: gaining an understanding of some of the basic techniques of programming for statistical analysis, and working through an example of how to make a "canned" program. This chapter will give you:
- Some basic methods for statistical analysis.
- Some practice in going from mathematical ideas to working programs.
- An adaptable "canned" program (which you can modify if you wish to add your own procedures).
- A complete, working multiple regression package.

\section*{The Cookbook—Chapter 14}

Program: \(\quad 8087\) Statistical Analysis Program
Purpose: "Canned" program for multiple regression and other statistical analysis.
Input: Interactive.
Output: Interactive.
Language: BASIC with 8087/8088 assembly language modules.

\section*{Statistical Analysis}

Three of the basic procedures used in statistical analysis are descriptive statistics, correlation, and multiple regression. These methods are used to summarize data, to examine the relation between different events, and to make tests of scientific hypotheses. We discuss the use of these methods, and how to perform the necessary calculations, below.

One caveat first. The combination of sophisticated statistical methods and high-speed computers has made it possible to draw incorrect conclusions far more easily than at any time in the past. Almost any statistical procedure can be applied to almost any body of data. Just because we can do so does not mean we should. Various important mathematical caveats and warnings are omitted from the discussion below, since a thorough job would occupy a PhD course. We hope that the reader experienced in statistical analysis will not be offended-and that the reader first encountering statistical analysis will be careful.

\section*{Descriptive Statistics}

Given repeated observations on an "event," such as the number of cars passing a certain intersection between 8:00 AM and 8:05 AM, we begin a statistical analysis by looking for simple ways to characterize the observed data. Assume we have made n observations. Call a typical datum, "x."

The very first question usually asked is "What was the average value of the data?" Calculating an average is simple. The mean of the data is the sum of all the data points divided by the number of observations. The mean of \(x\) is often written \(\bar{x}\).
\[
\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
\]

Next we would like to determine whether the observed data all lie close to one another or whether they are spread out over a wide range. The most common measurement is called the variance. Variance is a measure of the dispersion of data around its mean. Essentially, the variance is the average of the squared value of the difference between \(x\) and the mean of \(x\). The variance can be calculated by subtracting the mean off of each datum, squaring this difference, summing the results, and dividing by \(\mathrm{n}-1\). (It turns out that, under reasonable assumptions, dividing by \(\mathrm{n}-1\) rather than \(n\) gives a more accurate average answer.)
\[
\operatorname{var}(x)=\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\ldots\left(x_{n}-\bar{x}\right)^{2}}{(n-1)}
\]

Closely related to the variance is the standard deviation. The standard deviation is the square root of the variance. The standard deviation is frequently a more convenient measure than the variance because it has the same units of measurement as the original data. If you multiply every piece of data by, say, 16, you also multiply the mean and the standard deviation by 16, while the variance is multiplied by 256 . Thus if the original data is measured in pounds, then both mean and standard deviation are measured in pounds (and 16 times either is measured in ounces), while the variance is measured in the less familiar units of "pounds-squared."

The following rule gives a feeling for the "spread" of your data: If the data is drawn from a Normal ("bell curve") distribution, then about twothirds of the data should lie in the range from one standard deviation below the mean to one standard deviation above the mean.

While these three descriptive statistics are probably the most common, there are many others you might also look at. What are the highest and lowest values of the data? What's the middle value? Does the data cluster around certain values? We'll stop at three: mean, variance, and standard deviation.

\section*{Correlation}

Given two sets of data, \(x\) and \(y\), we are frequently interested in whether the two sets of data tend to move together, to move in opposite directions, or whether the two appear to be unassociated. Statisticians use the correlation coefficient as a measure of association between two variables. Two variables that are exactly proportional to one another have a correlation coefficient of one. Two variables that are exactly proportional but that move in opposite directions have a correlation coefficient of minus one. A zero correlation coefficient usually indicates that knowing \(x\) tells you nothing about y , and vice versa.

The correlation coefficient is constructed as a ratio. The numerator measures how much \(x\) and \(y\) move together. The denominator measures how much each moves separately. The numerator is calculated as the average of the product of \(x\) minus \(x\) 's mean and \(y\) minus \(y\) 's mean. The numerator is the product of the standard deviations of \(x\) and \(y\). (However, in this context we use \(n\) rather than \(n-1\) in calculating the standard deviations.)

Guess what's back! Our friend from linear algebra-the inner product. (We promised you it was good for more than playing with systems of linear equations.) Think about calculating the numerator of the correlation coefficient. We begin the calculation by preparing two vectors, the first made up of each observation of \(x\) minus \(x\) 's mean and the second made up similarly from \(y\). The inner product of these vectors is the sum of the product of the elements. So the required average is just the inner product divided by n .

Actually, the same calculation can be done in a more simple form by avoiding the construction of the two vectors of deviations from the means. A little algebra will show that the required average can also be calculated as the inner product of \(x\) and \(y\) divided by \(n\), minus \(n\) times the quantity the mean of \(x\) times the mean of \(y\).

A little exercise for the reader: what's the correlation coefficient between \(x\) and \(y\) if the observations of \(x\) are all the same? The answer is
that it doesn't make much sense to ask whether \(x\) and \(y\) move together if \(x\) doesn't move at all. Both the numerator and denominator of the correlation coefficient equal zero. We'll want to watch for this situation when programming in order to avoid "Division by zero" error messages.

\section*{Multiple Regression}

Multiple regression must be far and away the most common statistical technique for equation estimation and forecasting. Suppose we have a sequence of observations on a variable to be explained, the dependent variable, \(y\), and observations made at the same time on several explanatory, or independent, variables, \(\mathrm{x}_{1}, \mathrm{x}_{2}\), and so forth. We might look for a linear relationship between the dependent and independent variables of the form:
\[
y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\ldots+b_{k} x_{k}+u
\]
where \(u\) is an unobservable error term, indicative of the fact that \(x\) variables will not explain y perfectly. Regression may be interpreted in two ways: as either a statistical procedure or as a technique for fitting an equation to data.

The term "multiple regression" arises out of the statistical interpretation. We might posit that the equation above is a "true" equation in nature and that while we have observed a set of y's and x's, we have been unable to observe the u's. Given a certain set of statistical assumptions, multiple regression produces optimal estimates of the coefficients \(b_{0}\) through \(b_{k}\) in the above equation. (The assumptions are fairly reasonable; but require more mathematics than we want to go into here.)

Further, given these statistical assumptions, we can test hypotheses about the coefficients. The coefficients produced by a multiple regression are estimates of the true values of \(b\). The regression also produces a standard error for each estimated coefficient. There is a two out of three chance that the true coefficient lies in a band from one standard error below the estimated coefficient to one standard error above the estimated coefficient. Chances are about 19 out of 20 that the true coefficient lies in a band of plus or minus two standard errors around the estimated coefficient.

Suppose the true coefficient \(b_{i}\) is zero. This is equivalent to saying that the variable \(x_{i}\) has nothing do to with explaining \(y\). If the estimated coefficient is far away from zero, in the sense of being many standard errors away, then it's unlikely that the true coefficient is zero. The ratio of an estimated coefficient to it's standard error is sometimes called the \(t\)-statistic. If the \(t\)-statistic of \(b_{i}\) is greater, in absolute value, than 2 , there is only 1 chance in 20 that the variable \(x_{i}\) has nothing to do with explaining the variable \(y\).
(All of the statements above are predicated on what are sometimes called the "Gauss-Markov" assumptions. See any good statistics or econometrics text for a thorough discussion of the role of various mathematical assumptions.)

The mathematics of regression is also known as ordinary least squares. We can regard the problem of estimating the coefficients in the preceding equation as a question of fitting the equation to the data, without regard to any statistical assumptions. The difference between the value of \(y\) and the value predicted by applying our estimated coefficients to the data \(x\) is called a residual. Ordinary least squares pick values for the coefficients that minimize the sum of the squared residuals.

In addition to the estimated coefficients, their associated standard errors and t-statistics, a multiple regression results in several auxiliary statistics. The R-squared is a "goodness of fit measure." The R-squared is the percentage of variation of \(y\) explained by the variables \(x\). R-squared equals 1.0 for a perfect fit and 0.0 in the absence of any fit.

The standard error of the regression estimates the standard deviation of the error terms, \(u\). The sum of squared residuals-which is just what it sounds like-is used in making various statistical tests.

We wrote \(b_{0}\) above without any associated \(x\) variable. A constant term \(b_{0}\) is equivalent to the coefficient on an \(x\) variable made up of all ones, which is how we calculate it in the program below. A regression should almost always have a constant term in it, but our program lets the user decide whether or not to include one.

\section*{Regression Formulas}

Computation of a multiple regression is easily specified in matrix notation. Let \(y\) be a vector containing the values of \(y\) and \(X\) be a matrix where each column \(i\) is the values for \(x_{i}\). If \(b\) is the vector of estimated coefficients then:
\[
b=\left(X^{\prime} X\right)^{-1} X^{\prime} y
\]

Remember from Chapter 9 that \(X^{\prime}\) means the transpose of \(X\).
Let SSR stand for the sum of squared residuals, \(s^{2}\) for the square of the standard error of the regression, and \(R^{2}\) for \(R\) squared. If there are n data points and k right-hand side variables (the constant counts as one of the k ), we have
\[
\begin{aligned}
& \text { SSR }=y^{\prime} y-y^{\prime} X b \\
& \mathbf{s}^{2}=S S R /(n-k) \\
& R^{2}=1-S S R /\left(y^{\prime} y\right)
\end{aligned}
\]

\section*{Canned Programs}

If you flip to the end of this chapter, you'll find a complete listing of our "8087 Statistical Analysis Program." You may be struck immediately by the fact that the program is several hundred lines long. The code is lengthy despite the fact that this is a "plain vanilla" program, and despite the fact that all the important mathematics can be specified in only a few lines. (The source code for a commercial, mainframe statistic's package would be anywhere from 10,000 to a few hundred thousand lines long.)

Computer scientists use the name "modular programming" to describe the technique of breaking up a large problem into several smaller ones, each of which can be dealt with independently. Our canned program is composed of 19 "modules." The modules are classified according to whether they provide a user service, such as regression; a user utility, such as data entry; or a system service, such as program initialization. Because the program is broken up into small parts in this way, a new service could be added for the user with little or no modification to the existing modules. The modules in the program listing are:

> User service:
> Descriptive statistics-Module 9
> Correlation-Module 10
> Multiple Regression-Module 11
> User utilities:
> Catalog data in memory-Module 3
> Display data-Module 4
> Enter data-Module 5
> Edit data-Module 6
> Save data to disk-Module 7
> Retrieve data from disk-Module 8
> System service
> Menu display and command choice-Module 2
> Begin program execution-Module 1
> Storage allocation and program initialization-Module 12
> Program restart-Module 13
> Exit-Module 14
> Place variable name in symbol table-Module 15
> Form list of names-Module 16
> Collect product-moment matrix-Module 17
> Error-handling-Module 18
> Screen-handling-Module 19

\section*{Data Storage}

A program can be regarded as a group of procedures acting on a set of data. The program modules can be regarded as communicating with one
another through the changes they make in the program's data base. In this case the data base begins with the data observed by the program user. Suppose the user has \(n\) observations on each of \(k\) different variables. We'll store the data internally in an n by k matrix called X . Observations on variable \(i\) are stored as the ith column of matrix \(X\). As it is frequently convenient to have a constant vector, the program will automatically set column zero of \(X\) to equal 1 .

People think in names, not column numbers. Rather than require the user to number variables, we store the names of the variables, in a string array NAMES\$, and let the computer make the connection between the user specified variable name and the numerical index for the appropriate column of X. NAMES\$ can be thought of as a very simple symbol table. The first variable in the symbol table, "(CONST)", will always point to the ones in column zero.

Several other variable definitions are also useful. TRUE\% and FALSE\% are set to -1 and 0 respectively. NUMVAR is the number of variables the user has defined. MAXVAR is the maximum number of variables the system can hold, a number which depends on the available memory. NUMOBS is the number of observations on a variable. (Each variable must have the same number of observations.) A number of modules communicate through the array LISTV, which contains a list of the column numbers corresponding to a user specified list of variables. LISTLEN is the number of elements in LISTV. Finally, we adopt the convention that all BASIC variables beginning with a letter between I and N will be integer variables. All other variables are single precision unless a "\%", "\#", or "\$" is appended to indicate integer, double precision, or string, respectively.

\section*{Module By Module}

We undertake here a detailed, module-by-module explanation of the statistical analysis program. (Since each module is short, this isn't too difficult.) Along the way, we point out some places where the program could be made more flexible or more "idiot-proof," albeit at the expense of a lot more code. If you read through the code and the explanations here, you should find it easy to make your own additions or changes to the program.

We'll "walk through" the program modules in the order which makes it easiest to understand, rather than the order in which they appear in the code.

\section*{Menu Display—Module 2—Line 2000}

This module displays the available commands and asks for the user's choice. The response must be an integer between 1 and 11. Given any
other response, the program prompts for a new answer. Notice the simple trick to check whether a number is an integer. The program accepts any characters as ANSWER\$. The VAL function sets ANSWER to zero if the response is not a number. We then set ANSW\% = ANSWER. Since ANSW\% must be an integer, the two will only be equal if ANSWER was an integer.

Once ANSW\% is in hand, the routine does an ON ANSW\% GOSUB to the appropriate module. After the program returns, the menu display module starts all over again. To add another command to the program, we need only add a PRINT line to the menu display, add a line number to the GOSUB list, and change the valid answer range from 1 through 11 to 1 through 12.

\section*{Catalog Data in Memory-Module 3Line 3000}

This module allows the user to catalog the system's internal data base. The module first prints out the number of observations per variable, the number of variables already defined, and the number remaining still open for definition.

After displaying the catalog, module 3 calls module 19, which asks the user to hit a key to return to the command menu. If the program didn't do this, the display would vanish from the screen without giving the user time to think.

\section*{Display Data-Module 4-Line 4000}

This module displays the data in one or more user selected variables. Module 16 is called to collect the variable names from the user. Module 16 expects certain information. MAXNAMES is the maximum number of names the user is permitted to enter. In this case, the user can enter as many as have been defined. NEWNAMES = FALSE\% tells module 16 not to enter the names in the symbol table. FORCE \(0 \%=\) FALSE \(\%\) tells module 16 that it should not automatically include "(CONST)" in the list. On return from module 16, LISTV(0) through LISTV(LISTLEN - 1 ) has the column numbers of the matrix \(X\) holding the desired data. (If NAMEERR is true, then module 16 found an error it couldn't handle.)

The data display module prints up to five variables to a line, up to 20 lines to a screen. It then pauses (using module 19) to let the user look at the data. The program could be fancier here in several ways. We might want to display the data differently according to whether the screen displays 40 or 80 columns across. We might also want to allow the user to direct output to the printer rather than the screen. Finally, we could pretty up the display by using more graphics.

\section*{Enter Data-Module 5—Line 5000}

This module allows the user to enter the data for a single variable. We again use module 16 , though this time we only allow one name to be specified and we ask module 16 to place the name as a new entry in the symbol table. Once the variable name is entered, the user is prompted for the data sequentially. Notice that there is no way for the user to "get out" of the data entry sequence except to follow it through to the end.

\section*{Edit Data—Module 6—Line 6000}

Even a "plain vanilla" program must allow the user some way to correct mistakes. First, we use module 16 to ask the user which variable he or she wishes. Once we know the variable, we ask for an observation number. After displaying the current value, the program asks the user to specify a new value. Then the program displays both the new and old value for the user. The program keeps prompting for new observation numbers until the user responds with the ENTER key alone.

\section*{Save Data to Disk—Module 7-Line 7000}

Serious statistical work is rarely completed in a single sitting. Module 7 allows the user to dump the system's database to disk for later retrieval. (The user also gets some protection against lost time due to power failure in this way.) The disk storage format is chosen for simplicity rather than efficiency. On the first line we dump out MAXVAR, NUMVAR, and NUMOBS. The next NUMVAR lines contain the contents of NAMES\$. Finally, we dump the first NUMVAR columns of X. This simple format makes it possible to access the saved data from another program or to use another program to create data which can be read into our Statistical Analysis Program.

What happens if the user specifies a file name that already exists? BASIC will merrily write over an existing file, but it would be better to provide the user with at least some degree of protection against inadvertently wiping out important data. We use the following program trick to provide some protection. Before OPENing the output file, the program tries "NAME FILENAME\$ AS FILENAME \$". This command gives a BASIC error message "File already exists" if FILENAME \(\$\) is on the disk and "File not found" if FILENAME \(\$\) is a new file. The error trapping module, 18, checks to see if either of these errors occurred. In case of "File not found," module 18 RESUMEs execution as if nothing had happened. If this is a duplicate file, then module 18 asks the user for confirmation before allowing execution to proceed.

After storing the data on disk, the program closes the file and prints a message to the user before returning to the command menu.

\section*{Retrieve Data From Disk—Module 8Line 8000}

The disk retrieval module complements the disk storage module. This module retrieves a data base that had previously been stored on a disk file. The module first OPENs for input the user specified disk file. (The error-handling module swings into operation if a non-existent file is specified, so that the program won't bomb.) Once MAXVAR, NUMVAR, and NUMOBS are known, module 12 is called to reinitialize the program and allocate storage. (A more complicated program might add the contents of the disk file to the existing database rather than reinitializing the program.) Setting the flag DISKFILE\% = TRUE\% lets module 12 know that it needn't prompt the user for NUMOBS.

\section*{Restart Program—Module 13-Line 13000}

Restarting the program is easy. Module 13 sets appropriate flags and calls module 12, which does all the work.

\section*{Exit Program—Module 14—Line 14000}

One can always let the user hit a Ctrl-Break to end a BASIC program, but it's a lot more graceful to provide a specific command. Module 14 checks with the user to be sure an exit is intended, thus preventing accidental loss of valuable information. Use of the END statement also ensures that all files have been closed properly.

\section*{Descriptive Statistics-Module 9—Line 9000}

Modules 9, 10, and 11 actually do some "productive" work for the user. Module 9 requests a list of variable names, using module 16, and then prints the mean, standard deviation, and variance of each of the listed variables. The 8087 procedure SUM is used to collect the sum of each variable and the 8087 routine INPROD collects the sum of the squared observations for each variable. Using 8087 routines for these procedures is almost as efficient as writing the entire module in assembly language, since these are the only parts of the module whose execution time is proportional to the number of observations.

\section*{Correlation-Module 10—Line 10000}

The correlation module accepts a list of variable names (via module 16 again) and calculates the correlation coefficient between every pair of
names on the list. This requires the sum of \(X_{i}\) times \(X_{j}\), for each pair, plus the sum of each variable. The easiest, though slightly inefficient, way to get the sum of a variable is to take an inner product with a vector of ones. Module 10 accomplishes this by setting FORCE0\% = TRUE \(\%\) in order to guarantee that "(CONST)" is the first variable in LISTV. Module 17 is called to collect the "product-moment matrix" (the name given to the matrix of inner products of variable i with variable j). Once all the hard work is done in module 17, the correlation module prints out the correlation coefficients, checking as it goes along to avoid a "Division by zero" error.

\section*{Multiple Regression—Module 11—Line 11000}

The multiple regression module uses module 16 twice, first to get the number of the dependent variable and second to get a list of numbers of the independent variables. The matrix \(X^{\prime} y\) and the sum of \(y^{2}\) are formed using INPROD. (Note that " \(X\) " refers here to only those columns of the database specified by the user in the list of independent variables.) Module 17 is called to form the matrix \(\mathrm{X}^{\prime} X\). Module 17 only fills in the upper triangle of \(X^{\prime} X\), since the matrix is symmetric. We copy the upper half into the lower half since the matrix inversion subroutine expects to see the entire matrix. The 8087 routine INV is called to invert X'X \(^{\prime}\). REALERR is used to check that the inversion routine only produced normal numbers. Finally GINPROD is used to multiply ( \(X^{\prime} X^{-1}\) by \(X^{\prime} y\) and to form several auxiliary statistics. Results are then printed. As with the correlation module, all the hard number crunching is done by module 17.

\section*{Begin Program Execution-Module 1Line 1000}

Module 1 is quite simple. Module 12 is called after flag FIRSTTIME\% is set to indicate that this is the first time through the program and flag DISKFILE\% is set to indicate that this is not a call from module 8. The latter flag is logically redundant, but keeps the call to module 12 consistent with other parts of the program. By and large, when programming, consistency is worth a little redundancy.

Some programmers prefer to place program initialization code at the beginning of a program. In fact, some programming languages require one to do so. (The IBM Personal Computer BASIC Compiler for example!) With the BASIC interpreter, the placement of initialization code is largely a matter of taste.

\section*{Allocation and Program InitializationModule 12-Line 12000}

This module needs to consider two questions: Is this the first time the program has been initialized? Is this initialization preparatory to loading a disk file?

Suppose that this is the first time through the program. We need to clear the BASIC workspace and set aside enough space to load in the 8087 routines. Then the 8087 routines must be loaded and calling addresses set. (On the book diskette, all the programs in Chapter 9 are grouped in a file named "VECTOR.SAV"; the programs from Chapter 10 are in file "MATRIX.SAV"; and "MATADV.SAV" has the programs from Chapter 11. The addresses listed below reflect this arrangement. If you group your routines differently, you should change the calling addresses.) Next, the program offers the user the option of loading data from disk. If the user invokes this option, module 8 is called. Note that module 8 calls back to module 12, which is perfectly legal in BASIC, though it is not allowed in many other programming languages. If the user does not choose to load data from disk, the program asks for the number of observations in the data.

Next the module determines how many variables will fit in memory. Since the data is stored in single precision, the data itself will require \(4^{*} n^{*} \mathrm{k}\) bytes. Space must also be set aside for the regression and correlation modules, and for LISTV. The amount of storage needed for NAMES\$ will vary according to the length of variable names chosen by the user. Our module figures out the amount of free space by using the FRE function. It then figures out the maximum number of variables that will fit in the available space, leaving some spare room as a "fudge factor," and allocates storage.

If this is not the first time through the initialization routine, then module 12 must take one of two actions, depending on whether it is acting as a service routine for module 8 . If we are loading data from the disk, then NUMOBS, and so forth, is already known. Module 12 need only erase the old database and dimension storage afresh. If we are not loading data, then the job is almost the same as if this were the first time through the program, except that we can begin directly with asking the user for the number of observations.

Module 12 is very "implementation dependent." For example, if we wanted to use another 8087 assembly language routine, we would have to change this module. While a new module might be programmed to load its own routines, the initialization module needs to know how much space to leave in the CLEAR statement.

If we wanted to use the BASIC compiler in place of the interpreter, this module would have to be moved to the front of the program, because
the BASIC compiler requires DIM and DEF statements to appear before executable operations. Unfortunately, the BASIC compiler also requires fixed size dimensions for all the matrices, so to use the compiler we would be forced to create our own storage allocation mechanism. This would affect data storage in the entire program, not only module 12.

\section*{Insert Name in Symbol Table—Module 15Line 15000}

Module 15 attempts to place the name in NAMEIS\$ in the symbol table and return its symbol table location in NAMELOC. Two possibilities might prevent completion of this task. First, the symbol table might be full, indicating that there is no more room in the database. Second, the name might already be defined. In either of these cases, module 15 prints an error message, sets the flag NAMEERR to TRUE\%, and returns. If neither error arises, the module places NAMEIS\$ in the first open location in NAMES\$, adds one to the variable count in NUMVAR, and returns the proper value in NAMELOC.

\section*{Collect Names From User-Module 16Line 16000}

We've called this module from many other modules. Essentially, its job is to collect a series of names from the user and return their symbol table locations in LISTV. Module 16 treats collecting one variable and more than one variable as different cases, mostly so that we can give the user more intelligent prompts.

In the first case, MAXNAMES equals 1 . We ask the user for a name, and call module 15 if NEWNAMES is TRUE\%. If an undefined name is entered improperly, the user is given the opportunity to re-enter the name or to give a null response. A null response, or an error, causes the module to return with NAMEERR set to TRUE\%. When a correct name is given, \(\operatorname{LISTV}(0)\) is set to the location of the name and module 16 returns with NAMEERR set to FALSE\%.

The problem of module 16 is considerably more complicated when a series of names is called for. We could prompt the user for one name at a time. It's friendlier to allow the user to enter a series of names separated by spaces. (As a side issue, the module must set LISTV ( 0 ) \(=0\) if FORCE0\% requires us to include the constant term.) We accept a "variable list" from the user in ANSWER\$. The module scans ANSWER\$ looking for a space. The substring from the beginning of the scan to the space is taken as a variable name. We start scanning for the next name after the space. The scanning process is complete when the end of the string is reached. We check the names one at a time either by running through NAMES\$ or
by using module 15 , depending on the value of NEWNAMES. (Notice that in this way an entire list of variables can be entered into the symbol table at once, even though the program does not use this feature.) If an error is found in processing the list of names, the user is asked to reenter the entire list.
Notice that the error message for an undefined name displays the offending string within quotes. This is more than a nicety. Suppose the user enters variables named " X " and " Y " and later tries to retrieve " X <non-printing character \(>\mathrm{Y}^{\prime}\) ". The string " X 'space"' doesn't match the string " \(X\) ". By placing the string in quotes we increase the chances that the user will notice the presence of a nondisplaying character.

Module 16 could be usefully modified by putting some restrictions on the legal variable names. Since some other modules only print variable names of limited length, we might want to restrict name length at the time of definition. We also might want to modify this module to accept upper and lower case characters without distinguishing between them. Finally, notice that the user might well enter a string that "wraps around" the end of the line, which is perfectly acceptable, or a string that is longer than 255 characters, which will cause an error that is trapped by the errorhandling module.

\section*{Collect Product-Moment Matrix—Module 17Line 17000}

Almost the entire computational time of the program is spent in this module. The module creates a double precision matrix named XPX\#. Element \(\mathrm{i}, \mathrm{j}\), in the upper triangle of XPX\#, is set to the inner product of the ith and jth variables in LISTV. The 8087 routine INPROD really does all the work.

\section*{Error-handling—Module 18-Line 18000}

Nothing is worse in a canned program, even a simple one like this, than getting a BASIC error message. The whole point of a program being "canned" is that the user needn't understand its innards. Our program doesn't offer quite this level of protection, but it does catch a few possible errors. For example, if the user enters too many characters in response to the name prompt in module 16, we'd like to allow him or her another shot rather than have the program die. In addition, this routine handles a couple of places where we induce deliberate "errors," such as in the specification of file names.

Notice that we are quite careful to check the line number on which the error occurred before handling the error. In this way, we avoid "fixing" an error the program isn't prepared to handle.

\section*{Screen-handling-Module 19—Line 19000}

Since the computer can display text faster than we can read, it's very convenient to have a way to make the screen stand still. Module 19 accomplishes this by going round in circles until the user hits a key.

\section*{A Little More on Programming Strategy}

Our " 8087 Statistical Analysis Program" is a very heavy number cruncher. Did you notice that of the several hundred lines of code, 8087 routines are referenced only nine times!?! Such a ratio is not in the least unusual for a general purpose program. However, these few references are responsible for almost all the speed and accuracy advantage of using the 8087.

```

2050 PRINT "5 SAVE DATA TO DISK"
2060
2070
2080
2090
2100
2l10
2l20
2130
2140
2150
2160
2170
2200 ON ANSW% GOSUB 3000,4000,5000ヶb000,7000ヶ8000っ9000ヶ
10000%l1000%13000っ14000

```

2300 2400 3000
3010
3020 PRINT＂NUMBER OF OBSERVATIONS PER VARIABLE：＂；NUMOBS
3030 PRINT＂NUMBER OF DEFINED VARIABLES：＂；NUMVAR
3040 PRINT＂NUMBER OF REMAINING VARIABLES：＂；MAXVAR－NUMVAR
3050 PRINT＂DEFINED VARIABLES ARE：
3060 FOR \(I=0\) TO NUMVAR－I：PRINT NAMES \(\ddagger(I): N E X T\) I
3070 GOSUB 19000
3080 RETURN
4000 REM
4010 REM DATA DISPLAY
4020 CLS
4030 PRINT＂DATA IN ONE OR MORE VARIABLES MAY BE DISPLAYED＂
4040 MAXNAMES＝NUMVAR：NEWNAMES＝FALSE\％：FORCEO\％＝FALSE
4050 GOSUB lbood：IF Nameerr then return
4060 REM VARIABLE NUMBERS ARE IN LISTV 0 THROUGH LISTLEN－1，
4070 REM PRINT 4 VARIABLES ON A LINE， 20 OBSERVATIONS PER SCREEN
4071 IF LISTLEN＝0 THEN RETURN
4080 FIRSTVAR＝0：LASTVAR＝3：FIRSTOB＝0：LASTOB＝19
4090 IF LASTVAR＞LISTLEN－1 THEN LASTVAR＝LISTLEN－1，
4100 IF LASTOB \(>\) NUMOBS－1 THEN LASTOB＝NUMOBS－1
4110 CLS
4l2D PRINT＂OBSERVATION＂；
4130 FOR I＝FIRSTVAR TO LASTVAR
4140 PRINT USING＂
4150 NEXT I
4160 PRINT
4170 FOR I＝FIRSTOB TO LASTOB
4180 PRINT IT
\(4190 \quad\) FOR J＝FIRSTVAR TO LASTVAR
4200 PRINT X（IっLISTV（J）），
4210 NEXT J
4220 PRINT
\(42 \exists 0\) NEXT I
\begin{tabular}{|c|c|}
\hline 4240
4250 & REM ONE SCREENFUL IS PRINTED GOSUB 19030 \\
\hline 4270 & IF LASTVAR=LISTLEN-1 AND LASTOB=NUMOBS-1 THEN RETURN \\
\hline 4280 & IF LASTOB=NUMOBS-1 THEN 4300 \\
\hline 4290 & FIRSTOB=LASTOB+1:LASTOB=FIRSTOB+19:GOTO 4100 \\
\hline 4300 & REM NEXT SET OF VARIABLES \\
\hline 4310 & FIRSTVAR \(=\) LASTVAR \(+1:\) LASTVAR \(=\) FIRSTVAR +3 \\
\hline 4320 & FIRSTOB=0:LASTOB=19 \\
\hline 4330 & GOTO 4090 \\
\hline 5000 & REM \\
\hline 5010 & REM ENTER DATA \\
\hline 5020 & CLS \\
\hline 5030 & PRINT "ENTER NEU VARIABLE NAME" \\
\hline 5040 & MAXNAMES \(=1\) : NEUNAMES=TRUE\%:FORCE0\%=FALSE\% \\
\hline 5050 & GOSUB lb000:IF NAMEERR THEN RETURN \\
\hline 5055 & REM VARIABLE IN LISTV(0) \\
\hline 5060 & PRINT "ENTER DATA - (<ENTER> ALONE MEANS 0)" \\
\hline 5070 & FOR I=0 TO NUMOBS-1 \\
\hline 5080 &  \\
\hline 5090 & INPUT \({ }^{\text {m\%, }}\) ( I LISSTV(0)) \\
\hline 5100 & NEXT I \\
\hline 5110 & RETURN \\
\hline 6000 & REM \\
\hline b0l0 & REM EDIT DATA \\
\hline 6020 & CLS \\
\hline 6030 & PRINT "ENTER NAME OF VARIABLE TO BE EDITED" \\
\hline 6040 & MAXNAMES \(=1\) : \(\mathrm{NEWNAMES=FALSE} \mathrm{\%:FORCEO} \mathrm{\%=FALSE} \mathrm{\%}\) \\
\hline 6050 & GOSUB lbOOD:IF NAMEERR THEN RETURN \\
\hline 60b0 & REM VARIABLE IN LISTV(0) \\
\hline 6070 & LVAR \(=\) LISTV(0) \\
\hline 6080 & CLS \\
\hline 6090 & PRINT \({ }^{\text {rOBSERSVATION NUMBER }}\) TO BE CHANGED"; \\
\hline 6100 & INPUT \(n\) <ENTER> ALONE RETURNS TO MAIN MENU > \({ }^{\text {a }}\) iANSWER \\
\hline bllo & IF ANSUER \(=\boldsymbol{\square}\) \% THEN RETURN \\
\hline blld & ANSWER = VAL (ANSUER \({ }^{\text {a }}\) ) : ANSW \(\%=\) ANSUER \\
\hline 6130 & IF ANSWER=ANSW\% AND ANSW\%>=0 AND ANSW\%< \(<\) UUMOBS THEN blba \\
\hline 6140 & PRINT "OBSERVATION MUST BE INTEGER BETWEEN \(\square\) AND "; NUMOBS-1 \\
\hline 6150 & GOTO 6090 \\
\hline blbo &  \\
\hline blla & INPUT "NEU VALUE?>",ANSWER \\
\hline bl80 &  \\
\hline 6190 & PRINT \({ }^{\text {r }}\) IS NOW \({ }^{\text {a }}\) ANSWER \\
\hline 6200 & X(ANSW\% , LVAR)=ANSWER \\
\hline b2l0 & GOTO 6090 \\
\hline 7000 & REM \\
\hline 7010 & REM SAVE data on disk file \\
\hline 7020 &  \\
\hline 7030 & REM THEN THE VARIABLE NAMES IN ORDER \\
\hline 7040 & REM THEN THE DATA IN EACH VARIABLE IN ORDER \\
\hline 7050 & CLS \\
\hline
\end{tabular}
```

7060 INPUT "ENTER DISK FILE NAME> \boldsymbol{n}^{7} FILENAME
7065
NAME FILENAME \ddagger AS FILENAME
7070 OPEN FILENAME \boldsymbol{j} FOR OUTPUT AS \#
7080 URITE\#I,MAXVARっNUMVARっNUMOBS
70YD FOR I=0 TO NUMVAR-l:WRITE\#l,NAMES $\$(I): N E X T ~ I ~$
7100
7110
7120
7130
7140
7150
7160
8000
8010
8020
8030
8040
8050
8060
8090
8100
8110
8120
8130
8140
8150
8160
8170
7001
9010
9020
9040

```
```

905
9060
9070
PRINT "VARIABLE"," MEAN ${ }^{\circ}$ "STANDARD DEVIATION",
"VARIANCE"
9090
9100
9110
9112
9120
9130 SUMSQ\#=0:CALL TNPROD\% (X (O) T) X
9140 AVERAGE\#=SUM\#/NUMOBS
9150 VARIANCE\#=(SUMSQ\#-SUM\#*SUM\#/NUMOBS)/(NUMOBS-1)
१lb0 PRINT NAMES\$(LI)っAVERAGE\#,SQR(VARIANCE\#)っVARIANCE\#
9170 NEXT I
9180 GOSUB 19000
91,90 RETURN
10000 REM
1ODID REM PRINT CORRELATIONS
10020 CLS
1 IOL

```
```

10050 GOSUB lbOOD:IF NAMEERR THEN RETURN
1OOLD REM VARIABLE NUMBERS ARE IN LISTV O THROUGH LISTLEN-]
lOOBO CORRERRक= "\ \ \ \ WHOOPS CONSTANT
VARIABLE"
1OOTD PRINT "VARIABLE-l VARIABLE-己 CORRELATION COEFFICIENT"
lOlOD REM HAVE PRODUCT-MOMENT MATRIX COLLECTED IN XPX\#
lOlla GOSUB l?OOD
10120 FOR I=1 TO LISTLEN-1,
10l30 NMlэ=NAMES;(LISTV(I))
10140 FOR J=I TO LISTLEN-1
10150 NM2;=NAMES\$(LISTV(J))
10160 COV\#=NUMOBS*XPX\#(IっJ)-XPX\#(0,I)*XPX\#(0,J)
10l70 Vl,\#=NUMOBS*XPX\#(I,I)-XPX\#(D,I)*XPX\#(D,I)
10l80 V2\#=NUMOBS*XPX\#(JっJ)-XPX\#(0,J)*XPX\#(ロ,J)
10190 IF (Vl\#*V己\#)<>0 THEN lO220
lO200 PRINT USING CORRERR市; NMl市`NM2;
lO2lD GOTO lO230
lO220 PRINT NMlकヶ,NM2क,COV\#/SQR(VI\#*V2\#)
10230 NEXT J,I
10240 GOSUB lq000
10250 RETURN
llOOD REM
1]0lD REM MULTIPLE REGRESSION SECTION
llO2D REM FIRST GET DEPENDENT VARIABLE
llO30 REM THEN INDEPENDENT VARIABLES
llO4D REM THEN GO TO WORK
11050 CLS
]lOLD PRINT "MULTIPLE REGRESSION"
110>0 PRINT "ENTER DEPENDENT VARIABLE"
l,08D MAXNAMES=1:NEUNAMES=FALSE%:FORCEO%=FALSE%
llOYO GOSUB l\&ODO:IF NAMEERR THEN RETURN
lllOD REM DEPENDENT VARIABLE IN LISTV(D)
llllO DEPVAR%=LISTV(D)
lll20 PRINT "ENTER INDEPENDENT VARIABLES"
l1130 MAXNAMES=NUMVAR:NEWNAMES=FALSE%:FORCEO%=FALSE%
11140 GOSUB llODO:IF NAMEERR THEN RETURN
l1150 REM VARIABLE NUMBERS ARE IN LISTV O THROUGH LISTLEN-]
lllb0 IF LISTLEN>=NUMOBS THEN llbOD
lll7D REM ALLOCATE REGRESSION STORAGE
l1,180 ERASE XPY\#,XPXINV\#,BETA\#,SCRATCHっINDEX
11190 Ll=LISTLEN-1
ll200 DIM XPY\#(Ll)っXPXINV\#(Ll,Ll)っBETA\#(Ll)っSCRATCH(Ll)っINDEX(Ll)
llelO REM NOU DO THE REGRESSION
llここ0 YSQR\#=\square:CALL INPROD%(X(DっDEPVAR%),
X(口,DEPVAR%),YSQR\#,NUMOBS)
11230 FOR I=0 TO LISTLEN-1,
1,240 CALL INPROD%(X(D,DEPVAR%),X(D,LISTV(I)),XPY\#(I)っNUMOBS)
1l250 NEXT I
ll2b0 GOSUB l7000 'COLLECT XPX\# - UPPER HALF
ll2b3 FOR I=0 TO LISTLEN-1
ll2b4 FOR J=I+l TO LISTLEN-l
ll2b5 XPX\#(JっI)=XPX\#(IっJ)

```
lıユ⿱㇒日勺 NEXT J，I
11， 270 IER＝0：TYPEX\％＝8：L2＝LISTLEN＊LISTLEN
 TYPEX\％，LISTLEN）

1」2ף2 IFDEN＝FALSE\％：IFINF＝FALSE\％：IFNAN＝FALSE\％：ELEMENT\％＝0
1」2१4 CALL REALERR\％（XPXINV\＃（ロっロ）っTYPEX\％っL2っIFDENっIFINF， IFNAN，ELEMENT\％）
lı⿰弓b IF（NOT IFDEN）AND（NOT IFINF）AND（NOT IFNAN）THEN 11300
l】2१8 PRINT＂WARNING NUMERICAL RESULTS HIGHLY SUSPECT＂
113 100 REM NOW FORM XPXINV\＃TIMES XPY\＃
11310 IONE＝1
11320 FOR I＝0 TO LISTLEN－1，
\(113 \exists 0\) CALL GINPROD\％（XPXINV\＃（Iっロ）っXPY\＃（0）っBETA\＃（I）っTYPEX\％っ， TYPEX\％，LISTLEN，IONE，LISTLEN）
11340 NEXT I
ll350 REM NOU FORM SUM SQUARE RESIDUALS AS Y＇Y－BETA＇X＇Y 11360 TEMP\＃＝0：CALL GINPROD\％（BETA\＃（D）っXPY\＃（D）っTEMP\＃，

TYPEX\％っTYPEX\％，IONE，IONE， LISTLEN）
11．370 SSR\＃＝YSQR\＃－TEMP\＃
11375 IF YSQR\＃＝0 THEN PRINT＂ZERO LHS VARIABLE？？？＂：GOTO 11510
\(11 \exists 80\) CLS
11ヨ१O S己\＃＝SSR\＃／（NUMOBS－LISTLEN）
11410 PRINT＂VARIABLE＂，＂COEFFICIENT＂，＂S．E．＂n \(\boldsymbol{7}^{\boldsymbol{n} T-S T A T I S T I C " ~}\)
11430 FOR I＝0 TO LISTLEN－1
11440 SE\＃＝SQR（S2\＃＊XPXINV\＃（IっI））
11450 IF SE\＃＜＞0 THEN PRINT NAMES CSNG（SE\＃） \(\operatorname{CSNG}(B E T A \#(I) / S E \#)\)
ELSE PRINT NAMES
11460 NEXT I
11470 PRINT NUMOBS；＂OBSERVATIONS＂iLISTLEN；＂VARIABLES＂
11480 PRINT＂STANDARD ERROR OF REGRESSION＝＂iSQR（S己\＃）
11490 PRINT＂SUM SQUARE RESIDUALS＝＂iSSR\＃
11500 PRINT＂R－SQUARED＝＂； \(1-S S R \# / Y S Q R \#\)
11510 GOSUB lqOOD
11.520 RETURN
llbog Print mMore observations than dependent variables REQUIRED＂
11bla GOSUB lqOOD：RETURN
llfog Print＂NUMERICALLY SINGULAR MATRIX＂
llıla PRINT＂EITHER VARIABLE INCLUDED TWICE OR TOO MUCH \({ }^{n}\) ；
ll720 PRINT＂MULTICOLLINEARITY＂
ll730 GOSUB lq000：RETURN
12000 REM
l2010 REM ALLOCATE STORAGE AND INITIALIZE PROGRAM
l2020 IF NOT FIRSTIME\％THEN 12420
l2030 CLEAR \(98 H 7 F O D\)＇SET ASIDE SPACE IF YOU HAVE LESS THAN qbK
12040 DEFINT I－N
12045 ON ERROR GOTO 18000
```

12050
TRUE%=-1:FALSE%=0
l2060 FIRSTIME%=FALSE%:WASFIRST%=TRUE%
l207D DEF SEG=\&HEFD 'SUBROUTINE AREA
l2075 VECTOR%=0:MATRIX%=\&H42O:MATADV%=8H79O
l,2OBD BLOAD "VECTOR.SAV",VECTOR%:BLOAD "MATRIX.SAV",
MATRIX%
l2OB5 BLOAD "MATADV.SAV",MATADV%
l2090 INPROD%=MATRIX%+\&Hl2l:GINPROD%=MATRIX%+\&HlAG
l209l INV%=MATADV%+\&H4FG:SUM%=VECTOR%+D:
REALERR%=VECTOR%+\&H2DC
l2095 CLS
l2lOD PRINT "DO YOU WISH TO LOAD DATA FROM A DISK FILE (Y/
N)>";
12l]G INPUT mm,ANSWER%
l2l20 IF ANSUER⿱=`Y" OR ANSUER$="y" THEN GOSUB BODO:GOTO
 12410
l2l\exists0 INPUT "NUMBER OF OBSERVATIONS>"ANSWER;
l2l40 IF ANSUER$=пп THEN RETURN
l2l50 ANSWER=VAL(ANSWER;
l2l60 ANSW%=ANSWER
l2l70 IF (ANSW%=ANSWER) AND (ANSW%<>0) THEN le2llO
l2l\&D PRINT "POSITIVE INTEGER REQUIRED";
l2lqD PRINT "<ENTER> RETURNS TO COMMAND MENU"
l2200 GOTO l2llO
l22l0 NUMOBS=ANSW%
l己己2D REM FOR K VARIABLES NEED ABOUT
l2230 REM 4NK FOR X
l224D REM lbK*K FOR XPX,XPXINV
l,2250 REM AT LEAST lbK FOR NAMES
l2己GD REM llGK FOR XPY AND BETA
l2z70 REM BETTER LEAVE A LITTLE EXTRA FOR SAFETY, SAY
l2280 REM USE 2000+K(4N+16K+ヨ2)
l2285 ERASE X,NAMES%
l2290 SPACE=FRE(0)-2000
l2\exists00 K=INT(SPACE/NUMOBS/4):Kl=SQR(SPACE/lb)
l2305 IF K>Kl THEN K=Kl 'FIRST ESTIMATE FOR K
l2310 IF (4*K*(NUMOBS+4*K+8))>SPACE THEN K=K-1:GOTO l23l口
l2320 MAXVAR=K
l2330 IF MAXVAR>l THEN l2360
l2340 PRINT "TOO MANY OBSERVATIONS"
12350 GO TO l2l30
l23bD REM NOTE THAT BASIC INITIALIZES EVERYTHING TO ZERO
l2370 Kl=K-1:Nl=NUMOBS-1:NBYK=NUMOBS*MAXVAR
l2380 ERASE NAMES%^X
l2385 DIM NAMES%(Kl),X(N1,Kl)
12390 NAMES%(0)="(CONST)"
l2395 FOR I=0 TO Nl:X(IっO)=』.0:NEXT I
12400 NUMVAR=1
l2410 IF NOT WASFIRST% THEN RETURN
l24l,5 GOTO 2000 'FAKE RETURN, GOSUB WIPED OUT BY CLEAR
l2420 REM NOT THE FIRST TIME INITIALIZED
12430 ERASE XっNAMES卓

```
```

l2440 IF NOT DISKFILE% THEN l2Oq5
12450 K1=MAXVAR-1,N1=NUMOBS-1:NBYK=NUMOBS*MAXVAR
l2460 ERASE NAMES$,X
12465 DIM NAMES$(Kl),X(N1,K1)
12470 RETURN
13000 REM
l301D REM RESTART PROGRAM
13020 FIRSTIME%=FALSE%:DISKFILE%=FALSE%
13030 GOSUB l2000
13040 RETURN
1,4000 REM
14010 REM EXIT PROGRAM
14020 INPUT "ARE YOU SURE YOU WANT TO EXIT (Y/N)>";ANSUERक
14030 IF ANSWERक="y" OR ANSWER;="Y" THEN END
14040 RETURN
15000 REM
15010 REM INSERT NAME IN SYMBOL TABLE
15020 REM NAME TO BE INSERTED IS IN NAMEIS;
1,5030 REM IF SYMBOL TABLE IS FULL, PRINT MESSAGE AND SET
NAMEERR
15040 REM IF NOT A NEW NAME, PRINT MESSAGE AND SET NAMEERR
15050 REM OTHERUISE PUT NAMEIS` IN NEXT LOCATION IN NAMES`
150GO REM REPORT IT'S POSITION IN NAMELOC
15070 IF NUMVAR<MAXVAR THEN 15100
15080 PRINT "SYMBOL TABLE FULL !!!! NO NEW VARIABLES"
15090 NAMEERR=TRUE%:RETURN
15100 FOUNDIT%=FALSE%
15ll] FOR I=0 TO NUMVAR-I
15120 IF NAMEIS%=NAMES;(I) THEN FOUNDIT%=TRUE%
151,30 NEXT I
15140 IF NOT FOUNDIT% THEN 151?O
151,50 PRINT CHR`(34);NAMEIS$;CHRक(34);
 " ALREADY DEFINED - NOT A NEW NAME"
151,55 GOSUB 19ODO
151LG NAMEERR=TRUE%:RETURN
151,7D NAMELOC=NUMVAR
15180 NUMVAR=NUMVAR+1
1,5190 NAMES$(NAMELOC)=NAMEIS%
15200 RETURN
lb000 REM
lbOlO REM COLLECT A LIST OF NAMES AND RETURN LOCATIONS IN
LISTV
lbO20 REM A SINGLE NAME IS A SPECIAL CASE
lbOJD NAMEERR=FALSE%
lbO40 IF MAXNAMES>] THEN lb500
l6050 INPUT "VARIABLE NAME IS?>",NAMEIS%
l6ObD IF NAMEIS;="% THEN NAMEERR=TRUE%:RETURN
lbaTD IF NOT NEUNAMES THEN lblOD
l6080 GOSUB 15000
lb090 IF NAMEERR THEN RETURN ELSE lbl80
1blOD NAMELOC=-1
lbllO FOR I=0 TO NUMVAR-1,

```
```

16l20
IF NAMES字(I)=NAMEIS字 THEN NAMELOC=I
1bl.30 NEXT I
1bl40 IF NAMELOC<>-1 THEN lbl\&D
lbl50 PRINT CHR$(34);NAMEIS;iCHR$(34);" NOT DEFINED"
lblbD PRINT "RE-ENTER NAME OR <ENTER> TO RETURN TO COMMAND
MENU"
lblpa GOTO lbO50
lbl,gO REM PUT NAMELOC IN LISTV
l๒190 LISTLEN=1
1b200 LISTV(D)=NAMELOC
lb己lG RETURN
lb500 REM COME HERE TO COLLECT A SERIES OF VARIABLES
lb50l REM IF FORCEO% THEN INCLUDE CONSTANT AUTOMATICALLY
lb502 IF NOT FORCEO% THEN LISTLEN=0 ELSE LISTV(D)=0:LISTLEN=1
lb5lO INPUT "ENTER VARIABLE NAME(S) SEPARATED BY A SPACE>",
ANSWER क
16520 IF ANSWER;=пn THEN NAMEERR=TRUE%:RETURN
lb530 FOR I=LISTLEN TO MAXNAMES-1:LISTV\$(I)="N:NEXT I
16540 LOOKFROM=1
lb550 REM RETRIEVE A VARIABLE NAME
16560 SPACELOC%=INSTR(LOOKFROM,ANSWER$7" ")
l65?0 IF SPACELOC%=0 THEN SPACELOC%=LEN(ANSWER宁)+]
l6580 NAMEIS;=MID$(ANSWER方,LOOKFROM,SPACELOC%-LOOKFROM)
16590 NAMELOC=-1
lb600 IF NAMEIS%=пn THEN lb730
lbbla IF NOT NEUNAMES THEN lbb30
lbb20 GOSUB l5000: IF NAMEERR THEN RETURN
lb630 FOR I=0 TO NUMVAR-1,
l6640 IF NAMES%(I)=NAMEISक THEN NAMELOC=I
16G50 NEXT I
lbbb0 IF NAMELOC<>-] THEN llaPO
l6670 PRINT CHR;(34);NAMEIS;;CHRक(34);" NOT DEFINED"
lG680 PRINT "RE-ENTER LIST OR <ENTER> TO RETURN TO COMMAND
MENU"
16690 GOTO lb500
lb700 REM PUT NAMELOC IN LISTV
16710 LISTV(LISTLEN)=NAMELOC
l6720 LISTLEN=LISTLEN+]
l6730 LOOKFROM=SPACELOC%+1
16740 IF LOOKFROM>LEN(ANSUER`
lb750 IF LISTLEN<MAXNAMES THEN lb5b0
lbTbD PRINT "TOO MANY NAMES"
1L770 GO TO lьb80
17000 REM
l\OlD REM COLLECT PRODUCT MOMENT MATRIX IN UPPER HALF OF
XPX\#
17O20 ERASE XPX\#:Ll=LISTLEN-1:DIM XPX\#(LlっLl)
l7030 FOR I=0 TO LISTLEN-1
1,7040 FOR J=I TO LISTLEN-1
1.7050 CALL INPROD%(X(D,LISTV(I)),X(D,LISTV(J)),
XPX\#(I,J),NUMOBS)
lTOGD NEXT JII

```
```

l7070 RETURN
18000 REM
lGO1O REM HANDLE A FEW ERRORS HERE
l8020 REM DID WE RUN OUT OF SPACE?
18030 IF ERR<>7 AND ERR<>14 THEN l\&OT0
lGO40 PRINT "PROGRAM RAN OUT OF MEMORY IN LINE ";ERL
l8O50 PRINT "SORRY. . ."
lgObD STOP
18070 REM DID WE TRY TO READ FROM A NON-EXISTENT FILE?
18080 IF ERR<>53 OR ERL<>8040 THEN l8l20
18090 IF FILENAME\$=пn THEN RESUME Bl70 'BACK TO MENU
1\&100 PRINT "CAN'T FIND ";FILENAME;
l8110 RESUME 8030 'TRY AGAIN
18l20 REM IS THIS A NEU OUTPUT FILE?
1\&130 IF ERR<>53 OR ERL<>7065 THEN 181,50
18140 RESUME NEXT
18150 IF ERR<>58 OR ERL<>POL5 THEN l\&200
1BlbD PRINT "FILE ALREADY EXISTS, ARE YOU SURE? (Y/N)";
lBI7O INPUT n",ANSWER%
18180 IF ANSWERक="y" OR ANSWERक="Y" THEN RESUME NEXT
18190 RESUME 7060
l8200 IF ERR<>5 OR (ERL<>l2285 AND ERL<>ll2430 AND ERL<>llll80
AND ERL<>17020 AND ERL<>l2460 AND ERL<>l12380) THEN
l8220
lG2l0 RESUME NEXT 'OK, WE JUST ERASED SOMETHING THAT WASNT
THERE
1B2ZD ON ERROR GOTO D
18230 END
19000 REM HOLD SCREEN
19010 PRINT "HIT ANY KEY TO RETURN TO COMMAND MENU>";
19020 IF INKEYक="п THEN lq020 ELSE RETURN
1.9030 PRINT "HIT ANY KEY TO RETURN TO CONTINUE>";
19040 IF INKEYक=п" THEN lqO40 ELSE RETURN

```

\section*{\(\{5\)}

\section*{Commercial Data Processing}

The name "numeric data processor" naturally leads people to think of the 8087 as a tool for "scientific" rather than "business" applications. While the 8087's forte is certainly working with numbers, it does have important applications in business and commercial EDP (Electronic Data Processing).
\begin{tabular}{|ll|}
\hline & The Cookbook-Chapter 15 \\
\hline Program: & ADDSTR \\
Purpose: & Add array of integer-valued strings. \\
Call: & CALL ADDSTR(A\$(0),ISPACE(0),SUM,IER,N) \\
Input: & A\$-N element string array. \\
& ISPACE-5 element integer array; scratch space. \\
Output: & \begin{tabular}{l} 
N-integer number of elements of A\$. \\
SUM-single precision scalar; sum of VAL(A\$(I)) \\
Language:
\end{tabular} \\
\begin{tabular}{ll} 
IER-integer; -1 if error, 0 otherwise. \\
8087/8088 assembly language.
\end{tabular} \\
\hline
\end{tabular}

The 8087 is valuable in any application involving numbers. In the last chapter, we built a small statistical package out of the matrix routines of Chapters 10 and 11. Business people normally don't care about technical aspects of matrix inversion! However, mathematical tools such as regression analysis (which use matrix operations internally) are a regular part of the forecasting and planning function in every large company. The 8087 is an important tool for anyone building software for business people to use.

Typical commercial EDP applications (payroll programs and the like) do relatively little numerical computation. Such programs spend more
time converting data from an external＂ASCII＂format to an internal binary format than they spend manipulating the numbers after the con－ version．For this reason，commercial programs often avoid conversion costs by operating directly on data stored in decimal，rather than binary， representation．The 8087 supports such operations through its packed decimal instructions．

Almost all commercial data processing applications are written in high－ level languages．Languages such as COBOL and PL／I allow you to operate on decimal data．The BASIC language offered on personal computers rarely provides a decimal data type．In order to show off the 8087＇s prowess at decimal operations，we＇ve written a small assembly language routine that replaces part of a BASIC program．

Consider the following BASIC program which creates a string array filled with integers and then totals up the values in the strings．
```

10 DEFINT I-N
20 DIM A (49%q)
30 N=49११
40 REM FILL UP A\$ WITH INTEGERS
50 FOR I=0 TO N:A (I)=STRक(I):NEXT I
bO REM TIME THIS PART
70 Tl官=TIME;
80 SUM=0
TO FOR I=O TO N
100 SUM=SUM+VAL(A (I))
110 NEXT I
120 T2ヶ=TIME;
130 PRINT N+1,SUM,Tl%,T2;
140 END

```

Most of the work in lines 90,100 ，and 110 is in the function＂VAL＂which converts strings to single precision．（If you change the array of strings， A\＄，to a single precision array，A，you＇ll see the program＇s speed nearly triple．）Assembly language subroutine ADDSTR，below，adds up a vector of strings（representing integers）and returns a single precision sum．We can replace lines \(90-100\) with ADDSTR，as in the following program．
```

10 DEFINT I-N
20 DIM Aक(4१११),ISPACE(4)
30 N=4999
40 REM FILL UP A⿱宀㠯亍 UITH INTEGERS
FOR I=0 TO N:A क人(I)=STR⿱宀(I):NEXT I
REM TIME THIS PART
Tl官=TIME;
SUM=0
IER=0
CALL ADDSTR(Aक(0)っISPACE(D)っSUM,IERっN)
T己弓=TIME%
PRINT N+1,SUMっTl\&っTZ申
END

```

ADDSTR processes each string in three steps．First，it finds the string by untangling the string descriptor provided by BASIC．Second，ADDSTR converts the string＇s ASCII representation to packed decimal while doing some limited error checking．Third，ADDSTR uses the 8087 packed dec－ imal instructions to add up the converted values．
```

;SUBROUTINE ADDSTR(A\&(D)`ISPACE(D)`SUM,IER`N)
i ASSUMPTIONS: A⿱亠⿱口小彡
i ISPACE - lO FREE BYTES
; IER - INTEGER, O ON RETURN FOR NO ERROR
-1 IF ERROR
N - INTEGER NUMBER OF ELEMENTS OF A;
ELEMENTS OF A⿱丶万丶 ARE ASSUMED TO BE
INTEGERS NO MORE TAHN l\& BYTES LONG.

```
i
; ADDSTR ADDS UP VALUES IN A
;
CSEG SEGMENT 'CODE'
    ASSUME CS:CSEG
ADDSTR PROC FAR
    PUSH BP
    MOV BPiSP
    MOV \(B X,[B P]+B \quad ; B X=A D D R(I E R)\)
    MOV WORD PTR [BX]?D iASSUME NO ERROR
    MOV \(B X_{1}[B P]+b \quad\) iKEEP COUNT OF ARRAY
    MOV CX, BX\(] \quad\) IIN CX AS USUAL
    FLDZ iCLEAR OUT STACK TOP
        CMP CX,O
        JG NOTDONE iN=0?
        JMP DONE
NOTDONE:
    MOV \(\quad B X_{7}[B P]+14 \quad\) i \(4 X=A D D R(A\) ( D\(\left.)\right)\)
;NOTICE BX KEEPS TRACK OF THE DESCRIPTORS OF THE STRINGS,
i NOT THE STRINGS THEMSELVES
GET_DESCRIPTOR:
iUNFORTUNATELY, THE BASIC COMPILER AND THE BASIC INTERPRETER
iSTORE STRINGS DIFFERENTLY
iTHE COMPILER DESCRIPTOR HAS THE STRING LENGTH IN ONE WORD
; FOLLOWED BY THE STRING ADDRESS IN A SECOND WORD
;THE INTERPRETER DESCRIPTOR HAS THE STRING LENGTH IN ONE
    BYTE
; FOLLOWED BY THE STRING ADDRESS IN A WORD
iASSUME THIS PROGRAM IS RUN WITH COMPILED BASIC
                        MOV AX,WORD PTR [BX] iASSUME COMPILER
i MOV \(\quad\) AH,D
i MOV ALっBYTE PTR [BX] iIF INTERPRETER


\section*{Ll:}
iUE NEED TO REMEMBER UHETHER TO PLACE DIGIT IN
iLEFT OR RIGHT NIBBLE (HALF OF BYTE)
iKEEP FLAG IN DH, 0 MEANS RIGHT l MEANS LEFT
MOV DHD
iNOU TRANSLATE EACH CHARACTER
NEXTNUM:
\begin{tabular}{lll} 
MOV & DL,BYTE PTR [DI] & iGET CHARACTER \\
CMP & \(D L \_\exists Z\) & iIS IT A SPACE? \\
JNE & NOT_A_SPACE & \\
MOV & \(D L っ 4 B\) & iIF SO, MAKE IT ZERO
\end{tabular}

NOT_A_SPACE:
\begin{tabular}{lll} 
CMP & DL,48 & \(i<0 ?\) \\
JL & ERROR & \\
CMP & DL,5? & \(i>9 ?\) \\
JG & ERROR & \\
SUB & DL,48 & iMAKE 0-q \\
CMP & DH,0 & iRIGHT NIBBLE? \\
JNE & LEFT &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{STOWIT:} & \(T: \quad O R\) & BYTE PTR[SI], \({ }_{\text {dL }}\) & ;STORE DECIMAL \\
\hline & XOR & DH, & ;SWITCH NIBBLE \\
\hline & JMP & NEXTCH & \\
\hline \multirow[t]{7}{*}{LEFT:} & SHL & DL, & ; GET IT TO LEFT \\
\hline & SHL & DL, & iNIBBLE \\
\hline & SHL & DL, & \\
\hline & SHL & DL, 1 & \\
\hline & OR & BYTE PTR[SI], DL & ;STORE DECIMAL \\
\hline & XOR & DH7 & ; SWITCH NIBBLE \\
\hline & INC & SI & iNEXT BYTE \\
\hline \multicolumn{4}{|l|}{NEXTCH:} \\
\hline & DEC & DI & ; NEXT CHARACTER \\
\hline & DEC & AX & ;DONE YET \\
\hline & JG & NEXTNUM & ; MORE? \\
\hline \multirow[t]{5}{*}{;NOW IS} & ISPACE HAS & A NICE PACKED DECIM & L NUMBER IN IT \\
\hline & MOV & SIf [BP] +12 & \begin{tabular}{l}
iPOINT TO ISPACE \\
;AGAIN
\end{tabular} \\
\hline & FBLD & [SI] & ;PUSH IT ONTO STACK \\
\hline & FADDP & ST(l) \(\mathrm{ST}^{\text {T }}\) & iADD INTO TOTAL \\
\hline & ADD & BX, 4 & iNEXT ARRAY ELEMENT \\
\hline \multirow[t]{2}{*}{;} & ADD & BX, 3 & i IF INTERPRETER \\
\hline & LOOP G & GOTO_GET_DESCRIPTOR & \\
\hline \multirow[t]{5}{*}{DONE:} & MOV & \(S I_{1}[B P]+10\) & ; SI=ADDR(SUM) \\
\hline & FSTP & DWORD PTR [SI] & ;STORE AWAY SUM \\
\hline & POP & BP & \\
\hline & FWAIT & & \\
\hline & RET & 10 & \\
\hline \multicolumn{4}{|l|}{GOTO_GET_DESCRIPTOR: JMP GET_DESCRIPTOR} \\
\hline \multirow[t]{3}{*}{ERROR:} & : MOV & \(B X \neg[B P]+B\) & ; \(B X=A D D R(I E R)\) \\
\hline & MOV & WORD PTR [BX]-] & ;ERROR INDICATOR \\
\hline & JMP & DONE & \\
\hline ADDSTR & \(R\) ENDP & & \\
\hline \multirow[t]{2}{*}{CSEG} & ENDS & & \\
\hline & END & & \\
\hline
\end{tabular}

Notice how we provide the scratch space that ADDSTR needs to store the packed decimal value. We could have set up a 10-byte area in an extra segment, as we have in other programs. Instead, we get BASIC to pass us a 10-byte array called ISPACE. (This was mostly just as an excuse to show an alternative technique for finding storage for an assembly language program.)

Table 15-1 provides some timing figures with and without ADDSTR.
Routine ADDSTR took over 100 lines of assembly language code to replace three lines of BASIC. In return for the extra work, we got a program that runs 50 times faster than interpreted basic and 12 times faster than compiled BASIC. In this example, the speed improvement for a commercial application is the same as we found for scientific applications earlier in the book.

While the 8087 may never become quite so indispensable in commercial work as it is in scientific programming, we can still expect its use to

Table 15-1. Speed benchmarks for packed decimal instructions (time in seconds).
\begin{tabular}{lc} 
Program & \begin{tabular}{c} 
Add 5,000 integer \\
strings
\end{tabular} \\
\hline BASIC interpreter & 64 \\
BASIC compiler & 15 \\
8087 routine & 1.25 \\
\hline
\end{tabular}
become widespread, especially as 8087 -compatible translators for commerical programming languages appear.

\section*{Postscript}

I told you a little fib in the first chapter. I said you would use the 8087 to "turn minutes into seconds." The 8087 will indeed turn minutes into seconds, but I think you will find that the 8087's real value lies in its ability to extend your reach. Now that your machine is many times faster, you will find you will want to solve problems that are many times largerand probably problems with more important answers. Solutions that could formerly be found only on a large computer-or that weren't available to you at all-are now within your grasp.

\section*{Appendix 1}

Table A1-1. Instruction Set Reference Data. Courtesy of Intel Corporation.
\begin{tabular}{|c|c|c|c|c|c|}
\hline FABS & \multicolumn{2}{|l|}{FABS (no operands; Absolute value} & \multicolumn{3}{|r|}{Exceptions: I} \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 14 & 10-17 & 0 & 0 & FABS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FADD & \multicolumn{4}{|l|}{FADD //source/destination, source Add real} & Exceptions: I, D, O, U, P \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline \begin{tabular}{l}
I/ST,ST(i)/ST(i),ST \\
short-real \\
long-real
\end{tabular} & \[
\begin{gathered}
85 \\
105+E A \\
110+E A
\end{gathered}
\] & \[
\begin{gathered}
70-100 \\
90-120+E A \\
95-125+E A
\end{gathered}
\] & \[
\begin{gathered}
0 \\
2 / 4 \\
4 / 6
\end{gathered}
\] & 0
4
8 & \[
\begin{aligned}
& \text { FADD ST,ST(4) } \\
& \text { FADD AIR_TEMP [SI] } \\
& \text { FADD [BX].MEAN }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FADDP & \multicolumn{4}{|l|}{FADDP destination, source Add real and pop} & Exceptions: I, D, O, U, P \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline ST(i), ST & 90 & 75-105 & 0 & 0 & FADDP ST(2),ST \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FBLD & \multicolumn{4}{|l|}{FBLD source Packed decimal (BCD) load} & Exceptions: 1 \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline packed-decimal & \(300+\) EA & 290-310+EA & \(5 / 7\) & 10 & FBLD YTD_SALES \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FBSTP & \multicolumn{4}{|l|}{\begin{tabular}{l}
FBSTP destination \\
Packed decimal (BCD) store and pop
\end{tabular}} & Exceptions: 1 \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline packed-decimal & 530+EA & 520-540+EA & 6/8 & 12 & FBSTP [BX].FORECAST \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FCHS & \multicolumn{2}{|l|}{FCHS (no operands) Change sign} & \multicolumn{3}{|r|}{Exceptions: 1} \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 15 & 10-17 & 0 & 0 & FCHS \\
\hline
\end{tabular}

Table A1-1. Instruction set reference data (continued). Courtesy of Intel Corporation.
\begin{tabular}{|c|c|c|c|c|c|}
\hline FCLEX/FNCLEX & \multicolumn{4}{|l|}{FCLEX (no operands) Clear exceptions} & Exceptions: None \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { ! } \\
\text { Operands }
\end{gathered}
\]} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 5 & 2-8 & 0 & 0 & FNCLEX \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FCOM & \multicolumn{2}{|l|}{FCOM //source Compare real} & \multicolumn{3}{|r|}{Exceptions: I, D} \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline //ST(i) & 45 & 40-50 & 0 & 0 & FCOM ST(1) \\
\hline short-real & 65+EA & 60-70+EA & 214 & 4 & FCOM [BP].UPPER_LIMIT \\
\hline long-real & 70+EA & 65-75+EA & \(4 / 6\) & 8 & FCOM WAVELENGTH \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline FCOMPP & \multicolumn{4}{|l|}{FCOMPP (no operands) Compare real and pop twice} & Exceptions: I, D \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transters} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 50 & 45-55 & 0 & 0 & FCOMPP \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|l|}
\hline \multirow{2}{*}{ FDECSTP } & \multicolumn{4}{|c|}{\begin{tabular}{l} 
FDECSTP (no operands) \\
Decrement stack pointer
\end{tabular}} & \multicolumn{3}{c|}{\multirow{2}{*}{ Exceptions: None }} \\
\hline \multirow{2}{*}{ Operands } & Execution Clocks & Transfers & \multirow{2}{*}{ Coding Example } \\
\cline { 2 - 5 } & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 9 & \(6-12\) & 0 & 0 & \multirow{2}{*}{ FDECSTP } \\
\hline
\end{tabular}

FDISI/FNDISI

FDISI (no operands) Disable interrupts

Exceptions: None
\begin{tabular}{|c|c|c|c|l|}
\hline \multicolumn{2}{|c|}{ Execution Clocks } & \multicolumn{2}{|c|}{ Transfers } & \multirow{2}{*}{ Coding Example } \\
\cline { 1 - 4 } Typical & Range & 8086 & 8088 & \\
\hline 5 & \(2-8\) & 0 & 0 & FDISI \\
\hline
\end{tabular}

Table A1-1. Instruction set reference data (continued). Courtesy of Intel Corporation.
\begin{tabular}{|c|c|c|c|c|c|}
\hline FDIV & \multicolumn{4}{|l|}{FDIV //source/destination, source Divide real} & Exceptions: I, D, Z, O, U, P \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline I/ST(i), ST & 198 & 193-203 & 0 & 0 & FDIV \\
\hline short-real & 220+EA & 215-225+EA & \(2 / 4\) & 4 & FDIV DISTANCE \\
\hline long-real & 225+EA & 220-230+EA & \(4 / 6\) & 8 & FDIV ARC [DI] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FDIVP & \multicolumn{4}{|l|}{FDIVP destination,source Jivide real and pop} & Exceptions: I, D, Z, O, U, P \\
\hline \multirow[t]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline ST(i),ST & 202 & 197-207 & 0 & 0 & FDIVP ST(4).ST \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FDIVR & \multicolumn{4}{|l|}{FDIVR //source/destination, source Divide real reversed} & Exceptions: I, D, Z, O, U, P \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline //ST,ST(i)/ST(i),ST & 199 & 194-204 & 0 & 0 & FDIVR ST(2), ST \\
\hline short-real & 221+EA & 216-226+EA & \(2 / 4\) & 6 & FDIVR [BX].PULSE_RATE \\
\hline long-real & 226+EA & 221-231+EA & \(4 / 6\) & 8 & FDIVR RECORDER.FREQUENCY \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FDIVRP & \multicolumn{4}{|l|}{FDIVRP destination, source Divide real reversed and pop} & Exceptions: I, D, Z, O, U, P \\
\hline & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline Operands & Typical & Range & 8086 & 8088 & \\
\hline ST(i), ST & 203 & 198-208 & 0 & 0 & ST(1), ST \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FENI/FNENI & \multicolumn{2}{|l|}{FENI (no operands) Enable interrupts} & \multicolumn{3}{|r|}{Exceptions: None} \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 5 & 2-8 & 0 & 0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FFREE & \multicolumn{2}{|l|}{FFREE destination Free register} & \multicolumn{3}{|r|}{Exceptions: None} \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline ST(i) & 11 & 9-16 & 0 & 0 & FFREE ST(1) \\
\hline
\end{tabular}

Table A1-1. Instruction set reference data (continued). Courtesy of Intel Corporation.

\begin{tabular}{|c|c|c|c|c|c|}
\hline FICOM & \multicolumn{4}{|l|}{FICOM source Integer compare} & Exceptions: I, D \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline word-integer short-integer & \[
\begin{aligned}
& 80+E A \\
& 85+E A
\end{aligned}
\] & \[
\begin{aligned}
& 72-86+E A \\
& 78-91+E A
\end{aligned}
\] & \[
\begin{aligned}
& 1 / 2 \\
& 2 / 4
\end{aligned}
\] & \[
2
\] & FICOM TOOL.N_PASSES FICOM [BP + 4].PARM _COUNT \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FICOMP & \multicolumn{2}{|l|}{FICOMP source Integer compare and pop} & \multicolumn{3}{|r|}{Exceptions: I, D} \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & Tran & fers & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline word-integer short-integer & \[
\begin{aligned}
& 82+E A \\
& 87+E A
\end{aligned}
\] & \[
\begin{aligned}
& 74-88+E A \\
& 80-93+E A
\end{aligned}
\] & \[
\begin{aligned}
& 1 / 2 \\
& 2 / 4
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 4
\end{aligned}
\] & FICOMP [BP].LIMIT [SI] FICOMP N SAMPLES \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FIDIV & \multicolumn{4}{|l|}{FIDIV source Integer divide} & Exceptions: I, D, Z, O, U, P \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline word-integer short-integer & \[
\begin{aligned}
& 230+E A \\
& 236+E A
\end{aligned}
\] & \[
\begin{aligned}
& 224-238+E A \\
& 230-243+E A
\end{aligned}
\] & \(1 / 2\)
\(2 / 4\) & 2 & FIDIV SURVEY.OBSERVATIONS FIDIV RELATIVE ANGLE[DI] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FIDIVR & \multicolumn{4}{|l|}{FIDIVR source Integer divide reversed} & Exceptions: I, D, Z, O, U, P \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline word-integer short-integer & \[
\begin{aligned}
& 230+E A \\
& 237+E A
\end{aligned}
\] & \[
\begin{aligned}
& 225-239+E A \\
& 231-245+E A
\end{aligned}
\] & \[
\begin{aligned}
& 1 / 2 \\
& 2 / 4
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 4
\end{aligned}
\] & FIDIVR [BP].X_COORD FIDIVR FREQUENCY \\
\hline
\end{tabular}

\section*{FILD}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline word-integer & 50+EA & 46-54+EA & 1/2 & 2 & FILD [BX].SEQUENCE \\
\hline short-integer & 56+EA & 52-60+EA & \(2 / 4\) & 4 & FILD STANDOFF [DI] \\
\hline long-integer & 64+EA & 60-68+EA & \(4 / 6\) & 8 & FILD RESPONSE.COUNT \\
\hline
\end{tabular}

FILD source Integer load

\section*{- Exacullon}

Exception: I

Table A1-1. Instruction set reference data (continued). Courtesy of Intel Corporation.
\begin{tabular}{|c|c|c|c|c|c|}
\hline FIMUL & \multicolumn{4}{|l|}{FIMUL source Integer multiply} & Exceptions: I, D, O, P \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline word-integer short-integer & \[
\begin{aligned}
& 130+E A \\
& 136+E A
\end{aligned}
\] & \[
\begin{aligned}
& 124-138+E A \\
& 130-144+E A
\end{aligned}
\] & \[
\begin{aligned}
& 1 / 2 \\
& 2 / 4
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 4
\end{aligned}
\] & \begin{tabular}{l}
FIMUL BEARING \\
FIMUL POSITION.Z_AXIS
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FINCSTP & \multicolumn{2}{|l|}{FINCSTP (no operands) Increment stack pointer} & \multicolumn{3}{|r|}{Exceptions: None} \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transters} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 9 & 6-12 & 0 & 0 & FINCSTP \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FINIT/FNINIT & \multicolumn{4}{|l|}{FINIT (no operands) Initialize processor} & Exceptions: None \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 5 & 2-8 & 0 & 0 & FINIT \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FIST & \multicolumn{2}{|l|}{FIST destination Integer store} & \multicolumn{3}{|r|}{Exceptions: I, P} \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline word-integer short-integer & \[
\begin{aligned}
& 86+E A \\
& 88+E A
\end{aligned}
\] & \[
\begin{aligned}
& 80-90+E A \\
& 82-92+E A
\end{aligned}
\] & \[
\begin{aligned}
& 2 / 4 \\
& 3 / 5
\end{aligned}
\] & 4
6 & \begin{tabular}{l}
FIST OBS.COUNT [SI] \\
FIST [BP].FACTORED_PULSES
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FISTP & \multicolumn{2}{|l|}{FISTP destination Integer store and pop} & \multicolumn{3}{|r|}{Exceptions: I, P} \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline word-integer & 88+EA & 82-92+EA & 214 & 4 & FISTP [BX].ALPHA_COUNT [SI] \\
\hline short-integer & 90+EA & 84-94+EA & 315 & 6 & FISTP CORRECTED_TIME \\
\hline long-integer & 100+EA & 94-105+EA & 517 & 10 & FISTP PANEL.N_READINGS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FISUB & \multicolumn{4}{|l|}{FISUB source Integer subtract} & Exceptions: I, D, O, P \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline word-integer short-integer & \[
\begin{aligned}
& 120+E A \\
& 125+E A
\end{aligned}
\] & \[
\begin{aligned}
& 102-137+E A \\
& 108-143+E A
\end{aligned}
\] & \[
\begin{aligned}
& 1 / 2 \\
& 2 / 4
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 4
\end{aligned}
\] & FISUB BASE_FREQUENCY FISUB TRAIN_.SIZE [DI] \\
\hline
\end{tabular}

Table A1-1. Instruction set reference data (continued). Courtesy of Intel Corporation.
\begin{tabular}{|c|c|c|c|c|c|}
\hline FISUBR & \multicolumn{2}{|l|}{FISUBR source Integer subtract reversed} & \multicolumn{3}{|r|}{Exceptions: I, D, O, P} \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline word-integer short-integer & \[
\begin{aligned}
& 120+E A \\
& 125+E A
\end{aligned}
\] & \[
\begin{aligned}
& \text { 103-139+EA } \\
& \text { 109-144+EA }
\end{aligned}
\] & \[
\begin{aligned}
& 1 / 2 \\
& 2 / 4
\end{aligned}
\] & 2 & FISUBR FLOOR [BX][SI] FISUBR BALANCE \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FLD & \multicolumn{2}{|l|}{FLD source Load real} & \multicolumn{3}{|r|}{Exceptions: I, D} \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline ST(i) & 20 & 17-22 & 0 & 0 & FLD ST(0) \\
\hline short-real & 43+EA & 38-56+EA & \(2 / 4\) & 4 & FLD READING [SI].PRESSURE \\
\hline long-real & 46+EA & 40-60+EA & \(4 / 6\) & 8 & FLD [BP].TEMPERATURE \\
\hline temp-real & 57+EA & 53-65+EA & \(5 / 7\) & 10 & FLD SAVEREADING \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FLDCW & \multicolumn{2}{|l|}{FLDCW source Load control word} & \multicolumn{3}{|r|}{Exceptions: None} \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline - 2 -bytes & \(10+E A\) & 7-14+EA & \(1 / 2\) & 2 & FLDCW CONTROL WORD \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FLDENV & \multicolumn{2}{|l|}{FLDENV source Load environment} & \multicolumn{3}{|r|}{Exceptions: None} \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transiers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline 14-bytes & 40+EA & 35-45+EA & 719 & 14 & FLDENV [BP + 6 ] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FLDLG2 & \multicolumn{4}{|l|}{FLDLG2 (no operands) Load \(\log _{10} 2\)} & Exceptions: I \\
\hline & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline Operands & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 21 & 18-24 & 0 & 0 & FLDLG2 \\
\hline
\end{tabular}

FLDLN2

FLDLN2 (no operands)
Load \(\log _{\mathrm{e}} 2\)

Exceptions: 1
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multirow{2}{*}{ Operands } & \multicolumn{2}{|c|}{ Execution Clocks } & \multicolumn{2}{c|}{ Transfers } & \multirow{2}{*}{ Coding Example } \\
\cline { 2 - 5 } \cline { 2 - 5 } & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 20 & \(17-23\) & 0 & 0 & FLDLN2 \\
\hline
\end{tabular}

Table A1-1. Instruction set reference data (continued). Courtesy of Intel Corporation.
\begin{tabular}{|c|c|c|c|c|c|}
\hline FLDL2E & \multicolumn{4}{|l|}{FLDL2E (no operands) Load \(\log _{2} \mathrm{e}\)} & Exceptions: 1 \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & Tran & fers & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 18 & 15-21 & 0 & 0 & FLDL2E \\
\hline FLDL2T & \multicolumn{2}{|l|}{\begin{tabular}{l}
FLDL2T (no operands) \\
Load \(\log _{2} 10\)
\end{tabular}} & & & Exceptions: 1 \\
\hline Operands & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline Operands & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 19 & 16-22 & 0 & 0 & FLDL2T \\
\hline FLDPI & \multicolumn{2}{|l|}{\begin{tabular}{l}
FLDPI (no operands) \\
Load \(\pi\)
\end{tabular}} & & & Exceptions: I \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 19 & 16-22 & 0 & 0 & FLDPI \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|l|}
\hline \multirow{2}{*}{ FLDZ } & \multicolumn{5}{c|}{\begin{tabular}{l} 
FLDZ (no operands) \\
Load +0.0
\end{tabular}} \\
\hline \multirow{2}{*}{ Operands } & \multicolumn{2}{|c|}{ Execution Clocks } & \multicolumn{3}{c|}{ Transfers } \\
\multirow{2}{*}{ Exceptions: 1} \\
\cline { 2 - 7 } & Typical & Range & 8086 & 8088 & \multirow{2}{*}{ Coding Example } \\
\hline (no operands) & 14 & \(11-17\) & 0 & 0 & FLDZ \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|l|}
\hline \multirow{2}{*}{ FLD1 } & \multicolumn{5}{c|}{\begin{tabular}{l} 
FLD1 (no operands) \\
Load +1.0
\end{tabular}} & \multirow{2}{*}{ Exceptions: 1} \\
\hline \multirow{2}{*}{ Operands } & \multicolumn{3}{c|}{ Execution Clocks } & Transfers & \multirow{2}{*}{ Coding Example } \\
\cline { 2 - 6 } & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 18 & \(15-21\) & 0 & 0 & FLD1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FMUL & \multicolumn{4}{|l|}{FMUL //source/destination,source Multiply real} & Exceptions: I, D, O, U, P \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline //ST(i),ST/ST,ST(i)' & 97 & 90-105 & 0 & 0 & FMUL ST,ST(3) \\
\hline //ST(i),ST/ST,ST(i) & 138 & 130-145 & 0 & 0 & FMUL ST, ST(3) \\
\hline short-real & 118+EA & 110-125+EA & \(2 / 4\) & 4 & FMUL SPEED_FACTOR \\
\hline long-real' & 120+EA & 112-126+EA & 416 & 8 & FMUL [BP).HEIGHT \\
\hline long-real & 161+EA & 154-168+EA & \(4 / 6\) & 8 & FMUL [BP].HEIGHT \\
\hline
\end{tabular}

\footnotetext{
occurs when one or both operands is "short'"-it has 40 trailing zeros in its fraction (e.g., it was loaded from
} a short-real memory operand).

Table A1-1. Instruction set reference data (continued). Courtesy of Intel Corporation.
\begin{tabular}{|c|c|c|c|c|c|}
\hline FMULP & \multicolumn{4}{|l|}{FMULP destination.source Multiply real and pop} & Exceptions: I, D, O, U, P \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline ST(i),ST & 100 & 94-108 & 0 & 0 & FMULP ST(1).ST \\
\hline ST(i),ST & 142 & 134-148 & 0 & 0 & FMULP ST(1).ST \\
\hline \multicolumn{6}{|l|}{occurs when one or both operands is "short"-it has 40 trailing zeros in its fraction (e.g.. it was loaded from a short-real memory operand).} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FNOP & \multicolumn{2}{|l|}{FNOP (no operands) No operation} & & & Exceptions: None \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 13 & 10-16 & 0 & 0 & FNOP \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FPATAN & \multicolumn{4}{|l|}{FPATAN (no operands) Partial arctangen:} & Exceptions: U.P (operands not checked) \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 650 & 250-800 & 0 & 0 & FPATAN \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FPREM & \multicolumn{4}{|l|}{FPREM (no operands) Partial remainder} & Exceptions: I. D. U \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transters} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 125 & 15-190 & 0 & 0 & FPREM \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multirow{2}{*}{ FPTAN } & \multicolumn{4}{c|}{\begin{tabular}{c} 
FPTAN (no operands) \\
Partial tangent
\end{tabular}} & \multicolumn{3}{c|}{\begin{tabular}{c} 
Exceptions: 1, P \\
(Operands not checked)
\end{tabular}} \\
\hline \multirow{2}{*}{ Operands } & \multicolumn{2}{c|}{ Execution Clocks } & Transfers & \multirow{2}{*}{ Coding Example } \\
\cline { 2 - 6 } & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 450 & \(30-540\) & 0 & 0 & FPTAN \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FRNDINT & \multicolumn{4}{|l|}{FRNDINT (no operands) Round to integer} & Exceptions: I. P \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline (nooperands) & 45 & 16-50 & 0 & 0 & FRNDINT \\
\hline
\end{tabular}

Table A1-1. Instruction set reference data (continued). Courtesy of Intel Corporation.
\begin{tabular}{|c|c|c|c|c|c|}
\hline FRSTOR & \multicolumn{4}{|l|}{FRSTOR source Restore saved state} & Exceptions: None \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfars} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline 94-bytes & \(210+\) EA & 205-215-EA & 47.49 & 96 & FRSTOR [BP] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FSAVE/FNSAVE & \multicolumn{4}{|l|}{FSAVE destination Save state} & Exceptions: None \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transters} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typlcal & Range & 8086 & 8088 & \\
\hline 94-bytes & \(210+\) EA & \(205-215+\) EA & 48.50 & 94 & FSAVE [BP] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FSCALE & \multicolumn{2}{|l|}{FSCALE (no operands) Scale} & \multicolumn{3}{|r|}{Exceptions: I. O.U} \\
\hline & \multicolumn{2}{|l|}{Exectition Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline Operands & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 35 & 32-38 & 0 & 0 & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multirow{2}{|c|}{\begin{tabular}{l} 
FSQRT (no operands) \\
Square root
\end{tabular}} & \multicolumn{4}{c|}{ Exceptions: I.D.P } \\
\hline \multirow{2}{*}{ Operands } & Execution Clocks & Transfers & \multirow{2}{*}{ Coding Example } \\
\cline { 2 - 6 } & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 183 & \(180-186\) & 0 & 0 & FSQRT \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FST & \multicolumn{4}{|l|}{FST destination Store real} & Exceptions: I. O. U.P \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline \begin{tabular}{l}
ST(i) \\
short-real \\
long-real
\end{tabular} & \[
\begin{gathered}
18 \\
87+E A \\
100+E A
\end{gathered}
\] & \[
\begin{gathered}
15-22 \\
84-90+E A \\
96-104+E A
\end{gathered}
\] & \[
\begin{gathered}
0 \\
3 / 5 \\
5 / 7
\end{gathered}
\] & 0
6
10 & \begin{tabular}{l}
FST ST(3) \\
FST CORRELATION [DI] \\
FST MEAN READING
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FSTCW/FNSTCW & \multicolumn{4}{|l|}{FSTCW destination Store control word} & Exceptions: None \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline 2-bytes & 15+EA & 12-18+EA & \(2 / 4\) & 4 & FSTCW SAVE CONTROL \\
\hline
\end{tabular}

Table A1-1. Instruction set reference data (continued). Courtesy of Intel Corporation.
\begin{tabular}{|c|c|c|c|c|c|}
\hline FSTENV/FNSTENV & \multicolumn{4}{|l|}{FSTENV destination Store environment} & Exceptions: None \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline 14-bytes & 45+EA & \(40-50+E A\) & 8!10 & 16 & FSTENV |BP| \\
\hline FSTP & \multicolumn{2}{|l|}{FSTP destination Store real and pop} & \multicolumn{3}{|r|}{Exceptions: I, O, U, P} \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline \begin{tabular}{l}
ST(i) \\
short-real \\
long-real temp-real
\end{tabular} & \[
\begin{gathered}
20 \\
89+E A \\
102+E A \\
55+E A
\end{gathered}
\] & \[
\begin{gathered}
17-24 \\
86-92+E A \\
98-106+E A \\
52-58+E A
\end{gathered}
\] & \[
\begin{gathered}
0 \\
3 / 5 \\
5 / 7 \\
6 / 8
\end{gathered}
\] & \[
\begin{gathered}
0 \\
6 \\
10 \\
12
\end{gathered}
\] & ```
FSTP ST(2)
FSTP [BX].ADJUSTED RPM
FSTP TOTAL_DOSAGE
FSTP REG _SAVE [SI]
``` \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FSTSW/FNSTSW & \multicolumn{4}{|l|}{FSTSW destination Store status word} & Exceptions: None \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfeis} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline 2-bytes & 15+EA & 12-18+EA & \(2 / 4\) & 4 & FSTSW SAVE_STATUS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FSUB & \multicolumn{4}{|l|}{FSUB //source/destination,source Subtract real} & Exceptions: I,D,O,U,P \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline //ST,ST(i)/ST(i), ST & 85 & 70-100 & 0 & 0 & FSUB ST,ST(2) \\
\hline short-real & 105+EA & 90-120+EA & \(2 / 4\) & 4 & FSUB BASE_VALUE \\
\hline long-real & 110+EA & 95-125+EA & \(4 / 6\) & 8 & FSUB COORDINATE.X \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FSUBP & \multicolumn{4}{|l|}{FSUBP destination, source Subtract real and pop} & Exceptions: I,D,O,U,P \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline ST(i),ST & 90 & 75-105 & 0 & 0 & FSUBP ST(2),ST \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FSUBR & \multicolumn{4}{|l|}{FSUBR //source/destination, source Subtract real reversed} & Exceptions: I,D,O,U,P \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline //ST,ST(i)/ST(i),ST short-real long-real & \[
\begin{gathered}
87 \\
105+E A \\
110+E A
\end{gathered}
\] & \[
\begin{gathered}
70-100 \\
90-120+E A \\
95-125+E A
\end{gathered}
\] & 0
\(2 / 4\)
\(4 / 6\) & 0
4
8 & FSUBR ST,ST(1) FSUBR VECTOR[SI] FSUBR [BX].INDEX \\
\hline
\end{tabular}

Table A1-1. Instruction set reference data (continued). Courtesy of Intel Corporation.
\begin{tabular}{|c|c|c|c|c|c|}
\hline FSUBRP & \multicolumn{4}{|l|}{FSUBRP destination, source Subtract real reversed and pop} & Exceptions: I, D, O,U,P \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Executon Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline ST(i),ST & 90 & 75-105 & 0 & 0 & FSUBRP ST(1),ST \\
\hline FTST & \multicolumn{4}{|l|}{\begin{tabular}{l}
FTST (no operands) \\
Test stack top against +0.0
\end{tabular}} & Exceptions: I, D \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 42 & 38-48 & 0 & 0 & FTST \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FWAIT & \multicolumn{4}{|l|}{FWAIT (no operands) (CPU) Wait while 8087 is busy} & Exceptions: None (CPU instruction) \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & \(3+5{ }^{*}\) & \(3+5 n\) * & 0 & 0 & FWAIT \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FXAM & \multicolumn{2}{|l|}{FXAM (no operands) Examine stack top} & \multicolumn{3}{|r|}{Exceptions: None} \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 17 & 12-23 & 0 & 0 & FXAM \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FXCH & \multicolumn{4}{|l|}{FXCH //destination Exchange registers} & Exceptions: 1 \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline \({ }^{1 / S T}(i)\) & 12 & 10-15 & 0 & 0 & FXCH ST(2) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ FXTRACT } & \multicolumn{5}{c|}{\begin{tabular}{l}
FXTRACT (no operands) \\
Extract exponent and significand
\end{tabular}} & \multirow{2}{*}{ Exceptions: । } \\
\hline \multirow{2}{*}{ Operands } & \multicolumn{2}{|c|}{ Execution Clocks } & \multirow{2}{*}{ Coding Example } \\
\cline { 2 - 6 } & Typical & Range & \(\mathbf{8 0 8 6}\) & \(\mathbf{8 0 8 8}\) & \\
\hline (no operands) & 50 & \(27-55\) & 0 & 0 & FXTRACT \\
\hline
\end{tabular}

Table A1-1. Instruction set reference data (continued). Courtesy of Intel Corporation.
\begin{tabular}{|c|c|c|c|c|c|}
\hline FYL2X & \multicolumn{2}{|l|}{FYL2X (no operands)
\[
Y \cdot \log _{2} X
\]} & \multicolumn{3}{|r|}{\begin{tabular}{l}
Exceptions: \\
\(P\) (operands not checked)
\end{tabular}} \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 950 & 900-1100 & 0 & 0 & FYL2X \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FYL2XP1 & \multicolumn{2}{|l|}{FYL2XP1 (no operands)
\[
Y \cdot \log _{2}(X+1)
\]} & \multicolumn{3}{|r|}{\begin{tabular}{l}
Exceptions: \\
P (operands not checked)
\end{tabular}} \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 850 & 700-1000 & 0 & 0 & FYL2XP1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline F2XM1 & \multicolumn{4}{|l|}{F2XM1 (no operands)
\[
2 x-1
\]} & \begin{tabular}{l}
Exceptions: \\
U, P (operands not checked)
\end{tabular} \\
\hline \multirow[b]{2}{*}{Operands} & \multicolumn{2}{|l|}{Execution Clocks} & \multicolumn{2}{|l|}{Transfers} & \multirow[b]{2}{*}{Coding Example} \\
\hline & Typical & Range & 8086 & 8088 & \\
\hline (no operands) & 500 & 310-630 & 0 & 0 & F2XM1 \\
\hline
\end{tabular}

\section*{Appendix 2}

Table A2-1. Exception conditions and masked responses.
Courtesy of Intel Corporation.
\begin{tabular}{|c|c|}
\hline Condition & Masked Response \\
\hline \multicolumn{2}{|c|}{Invalid Operation} \\
\hline \begin{tabular}{l}
Source register is tagged empty (usually due to stack underfiow). \\
Destination register is not tagged empty (usually due to stack overflow). \\
One or both operands is a NAN. \\
(Compare and test operations only): one or both operands is a NAN. \\
(Addition operations only): closure is affine and operands are opposite-signed infinities; or closure is projective and both operands are \(\infty\) (signs immaterial). \\
(Subtraction operations only): closure is affine and operands are like-signed infinities; or closure is projective and both operands are \(\infty\) (signs immaterial). \\
(Multiplication operations only): \(\infty\) * 0 ; or \(0 * \infty\). \\
(Division operations only): \(\infty \div \infty\); or \(0 \div 0\); or \(0 \div\) pseudo-zero; or divisor is denormal or unnormal. \\
(FPREM instruction only): modulus (divisor) is unnormal or denormal; or dividend is \(\infty\). \\
(FSQRT instruction only): operand is nonzero and negative; or operand is denormal or unnormal; or closure is affine and operand is \(-\infty\); or closure is projective and operand is \(\infty\).
\end{tabular} & \begin{tabular}{l}
Return real indefinite. \\
Return real indefinite (overwrite destination value). \\
Return NAN with larger absolute value (ignore signs). \\
Set condition codes "not comparable". \\
Return real indefinite \\
Return real indefinite. \\
Return real indefinite. \\
Return real indefinite. \\
Return real indefinite, set condition code = '"complete remainder". \\
Return real indefinite.
\end{tabular} \\
\hline
\end{tabular}

Table A2-1. Exception conditions and masked responses (continued). Courtesy of Intel Corporation.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{Invalid Operation} \\
\hline \begin{tabular}{l}
(Compare operations only): closure is projective and \(\infty\) is being compared with 0 or à normal, or \(\infty\). \\
(FTST instruction only): closure is projective and operand is \(\infty\). \\
(FIST, FISTP instructions only): source register is empty, or a NAN, or denormal, or unnormal, or \(\infty\), or exceeds representable range of destination. \\
(FBSTP instruction only): source register is empty, or a NAN, or denormal, or unnormal, or \(\infty\), or exceeds 18 decimal digits. \\
(FST, FSTP instructions only): destination is short or long real and source register is an unnormal with exponent in range. \\
(FXCH instruction only): one or both registers is tagged empty.
\end{tabular} & \begin{tabular}{l}
Set condition code \(=\) " not comparable" \\
Set condition code = "not comparable". \\
Store integer indefinite. \\
Store packed decimal indefinite. \\
Store real indefinite. \\
Change empty register(s) to real indefinite and then perform exchange.
\end{tabular} \\
\hline \multicolumn{2}{|c|}{Denormalized Operand} \\
\hline \begin{tabular}{l}
(FLD instruction only): source operand is denormal. \\
(Arithmetic operations only): one or both operands is denormal. \\
(Compare and test operations only): one or both operands is denormal or unnormal (other than pseudo-zero).
\end{tabular} & \begin{tabular}{l}
No special action; load as usual. \\
Convert (in a work area) the operand to the equivalent unnormal and proceed. \\
Convert (in a work area) any denormal to the equivalent unnormal; normalize as much as possible, and proceed with operation.
\end{tabular} \\
\hline \multicolumn{2}{|c|}{Zerodivide} \\
\hline (Division operations only): divisor \(=0\). & Return \(\infty\) signed with "exclusive or"' of operand signs. \\
\hline \multicolumn{2}{|c|}{Overflow} \\
\hline \begin{tabular}{l}
(Arithmetic operations only): rounding is nearest or chop, and exponent of true result > 16,383. \\
(FST, FSTP instructions only): rounding is nearest or chop, and exponent of true result > +127 (short real destination) or \(>+1023\) (long real destination).
\end{tabular} & \begin{tabular}{l}
Return properly signed \(\infty\) and signal precision exception. \\
Return properly signed \(\infty\) and signal precision exception.
\end{tabular} \\
\hline
\end{tabular}

Table A2-1. Exception conditions and masked responses (continued). Courtesy of Intel Corporation.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{Underilow} \\
\hline (Arithmetic operations only): exponent of true result <-16,382 (true). & Denormalize until exponent rises to \(-16,382\) (true), round significand to 64 bits. If denormalized rounded significand \(=0\), then return true 0; else, return denormal (\(\mathrm{tag}=\) special, biased exponent \(=0\)). \\
\hline (FST, FSTP instructions only): destination is short real and exponent of true result <-126 (true). & Denormalize until exponent rises to - 126 (true), round significand to 24 bits, store true 0 if denormalized rounded significand \(=0\); else, store denormal (biased exponent \(=0\)). \\
\hline (FST, FSTP instructions only): destination is long real and exponent of true result <-1022 (true). & Denormalize until exponent rises to -1022 (true), round significand to 53 bits, store true 0 if rounded denormalized significand \(=0\); else, store denormal (biased exponent \(=0\)). \\
\hline \multicolumn{2}{|c|}{Precision} \\
\hline True rounding error occurs. & No special action. \\
\hline Masked response to overflow exception earlier in instruction. & No special action. \\
\hline
\end{tabular}

\section*{Appendix 3}

Four of the programs below convert data back and forth between the Intel format used in the 8087 and the Microsoft format used in much pre8087 software. Two programs, SM2I and DM2I, convert from Microsoft to Intel; two, SI2M and DI2M, convert from Intel to Microsoft. Two programs, SM2I and SI2M, convert single precision data; two, DM2I and DI2M, convert double precision data. Occasional minor loss of precision in the conversion process is unavoidable.

The fifth program, INIT8087, initializes the 8087.

\section*{The Cookbook—Appendix 3}

Program:
Purpose:
Call:
Input: Language: 8088 assembly language.
Program: SI2M

Language: 8088 assembly language.
Program: DM2I
Purpose:
Call:

Output: DESTINATION-single precision N-vector.

Purpose: Convert single precision vector from Intel 8087 format to pre-8087 Microsoft format.
Call: \(\quad\) CALL SI2M(SOURCE(0), \(\operatorname{DESTINATION(0),N).~}\)
Input: SOURCE-single precision \(n\)-vector.
N -integer number of elements in SOURCE.
Output: DESTINATION-single precision N-vector.
SM2I
Convert single precision vector from pre-8087 Microsoft format to Intel 8087 format.
CALL SM2I(SOURCE(0), DESTINATION(0),N).
SOURCE-single precision \(n\)-vector.
N -integer number of elements in SOURCE.

Convert double precision vector from pre-8087 Microsoft format to Intel 8087 format.
CALL DM2I(SOURCE(0),DESTINATION(0),N).
\begin{tabular}{ll|}
Input： & SOURCE－double precision n－vector． \\
& N－integer number of elements in SOURCE． \\
Output： & DESTINATION－double precision N－vector． \\
Language： & 8088 assembly language． \\
Program： & DI2M \\
Purpose： & Convert double precision vector from Intel 8087 for－ \\
mat to pre－8087 Microsoft format． \\
Call： & CALL DI2M（SOURCE（0），DESTINATION（0），N）． \\
Input： & SOURCE－double precision n－vector． \\
& N－integer number of elements in SOURCE． \\
Output： & DESTINATION－double precision N－vector． \\
Language： & 8088 assembly language． \\
Program： & INIT8087 \\
Purpose： & Initialize 8087． \\
Call： & CALL INIT8087． \\
Input： & none． \\
Output： & none． \\
Language： & 8087／8088 assembly language．
\end{tabular}

If you use a version of BASIC which does not store data in Intel format， you must use conversion routines before and after calling 8087 routines． The following BASIC code provides an example．
```

10 DEFINT I-N
20 DEFDBL D
30 N=100:N1=N-1
4 0 ~ D I M ~ A ( N J )
50 FOR I=0 TO Nl:A(I)=RND:NEXT I
60 CALL INITADB?
70 CALL SM2I(A(D),A(D)?N)
80 CALL SUM(A(D)?N,DSUM)
70 CALL SIEM(A(O),A(D)っN)
100 Il=1:CALL DIEM(DSUMっDSUMっIl)
llO PRINT "THE SUM IS",DSUM
l2D END

```

\section*{Conversion Routines}
```

PUBLIC SM2IっSI2MっDMEI`DI2M`INIT\&ロ\&?
ESEG SEGMENT 'DATA'
WS DW 4 DUP(?)
ESEG ENDS
CSEG SEGMENT 'CODE'
FIRST_INST EQU THIS WORD

```


```

LOOPBOT2: ADD SI,4
ADD DI,4
LOOP SI2MLOOP
POP ES
POP BP
RET b
SI2M ENDP
;SUBROUTINE DMZI(SOURCE,DESTINATION,N)
iCONVERT MICROSOFT TO INTEL
ASSUME CS:CSEG,ES:ESEG
DM2I PROC FAR
PUSH BP
MOV BP,SP
i
iSET UP EXTRA SEGMENT TAKING CARE OF RELOCATION
PUSH ES
CALL NEXT53
NEXT53: POP AX
SUB AX`(OFFSET NEXT53)-(OFFSET FIRST_INST)
MOV CL,4
SHR AX,CL
MOV BX,CS
ADD BX,ESEG
SUB BX,CSEG
ADD AX,BX
MOV ES,AX
i
;ROUTINE PROPER STARTS HERE

	MOV	$B X_{4}[B P]+b$	; $\operatorname{ADDR}(\mathrm{N})$
	MOV	CX, [BX]	; $C X=N$
	JCXZ	AROUND 3	
	JMP	LL3	
AROUND 3 :	JMP	OUT3	
LL3:	MOV	SI, [BP] +10	
	MOV	DI, $[\mathrm{BP}]+8$	
DMEILOOP:	MOV	$A X,[S I]$	;COPY SOURCE INTO
	MOV	ES:WSTAX	iWORK AREA
	MOV	$A X,[S I]+2$	
	MOV	ES: US $+2, A X$	
	MOV	$A X_{7}[S I]+4$	
	MOV	ES: WS $+4, A X$	
	MOV	$A X T[S I]+b$	
	MOV	$E S: W S+6, A X$	
	MOV		;GET SIGN BIT INTO
	AND	$\mathrm{DH}, \mathrm{BOH}$	; DH
	SUB	$A X, A X$	; CLEAR AX REGISTER
	MOV	$A L,[S I]+7$	;GET EXPONENT
	CMP	AL,	;CHECK FOR ZERO
	JE	Z3	
	ADD	AX)(1023-1299)	;CORRECT BIAS

```
\begin{tabular}{|c|c|c|c|}
\hline & SHR & DH & iSHIFT SIGN BIT INTO \\
\hline & SHR & DH，\({ }^{\text {d }}\) & ：RIGHT POSITION \\
\hline & SHR & DH7］ & \\
\hline & SHR & DH7］ & \\
\hline & OR & AH，DH & iSET SIGN BIT \\
\hline & AND & BYTE PTR ES：
\[
W S+b, 7 F H
\] & ；CLEAR OLD SIGN BIT \\
\hline & SHR & & \\
\hline & JNC & L3 & \\
\hline & OR & BYTE PTR ES：
\[
W S+b, 80 H
\] & ；TURN ON LSE BIT \\
\hline Lヨ： & MOV & BX，\({ }^{\text {a }}\) & \\
\hline LA3： & SHR & AX，\({ }^{\text {d }}\) & \\
\hline & RCR & BYTE PTR ES： WS＋bっI & \\
\hline & RCR & WORD PTR ES：
\[
\text { ב י + + } 4
\] & \\
\hline & RCR & WORD PTR ES：
ـ & \\
\hline & RCR & WORD PTR ES：WS．1 & \\
\hline & DEC & BX & \\
\hline & JG & LA3 & \\
\hline & MOV & BYTE PTR ES：
\[
W S+7, A L
\] & ；ALL SET IN WORK AREA NOW \\
\hline & MOV & \(A X, E S: W S\) & ；STICK IN DESTINATION \\
\hline & MOV & ［DI］，AX & \\
\hline & MOV & \(A X, E S: W S+2\) & \\
\hline & MOV & ［DI］＋2，AX & \\
\hline & MOV & \(A X, E S: W S+4\) & \\
\hline & MOV & ［DI］＋4，AX & \\
\hline & MOV & \(A X, E S: W S+b\) & \\
\hline & MOV & ［DI］＋b，AX & \\
\hline & JMP & LOOPBOT3 & \\
\hline Z3： & MOV & WORD PTR［DI］？0 & ©STORE AWAY ZERO \\
\hline & MOV & WORD PTR
\[
[D I]+2,0
\] & \\
\hline & MOV & WORD PTR
[DI]+4, & \\
\hline & MOV & WORD PTR
[DI]+b, D & \\
\hline LOOPBOTE： & ADD & SI，B & \\
\hline & ADD & DIヶ8 & \\
\hline & LOOP & DMEILABEL & \\
\hline & JMP & OUT3 & \\
\hline DM2ILABEL： & JMP & DMEILOOP & \\
\hline OUT3： & POP & ES & \\
\hline & POP & BP & \\
\hline & RET & b & \\
\hline DM2I & ENDP & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline & SHR & \(\mathrm{DH}_{7}\) & ;RIGHT POSITION \\
\hline . & SHR & DH7 & \\
\hline & AND & BYTE PTR ES:
\[
W S+6, O F H
\] & ;CLEAR OLD SIGN BIT \\
\hline & OR & BYTE PTR ES:
\[
\omega S+b, ~ D H
\] & ;SET SIGN BIT \\
\hline & MOV & \(\mathrm{BX}, 3\) & \\
\hline L4: & SHL & WORD PTR ES: US & \\
\hline & RCL & WORD PTR ES: US+2, I & \\
\hline & RCL & WORD PTR ES:
\[
\text { ב ו } 4 S+
\] & \\
\hline & RCL & BYTE PTR ES:
I & \\
\hline & DEC & BX & \\
\hline & JG & L4 & \\
\hline & Mov & AX,ES:WS & iSTICK IN DESTINATION \\
\hline & MOV & [DI],AX & \\
\hline & MOV & \(A X, E S: W S+2\) & \\
\hline & MOV & [DI]+2, AX & \\
\hline & MOV & AX,ES:WS+4 & \\
\hline & MOV & [DI]+4, AX & \\
\hline & MOV & \(A X, E S: W S+b\) & \\
\hline & Mov & [DI]+b,AX & \\
\hline & JMP & LOOPBOT 4 & \\
\hline Z4: & MOV & WORD PTR [DI],0 & ©STORE AWAY ZERO \\
\hline & MOV & WORD PTR
[DI]+2, & \\
\hline & MOV & WORD PTR
\[
[D I]+4.0
\] & \\
\hline & MOV & \begin{tabular}{l}
WORD PTR \\
[DI]+6•0
\end{tabular} & \\
\hline LOOPBOT4: & ADD & SI, 8 & \\
\hline & ADD & DI, 8 & \\
\hline & LOOP & DIEMLABEL & \\
\hline & JMP & OUT 4 & \\
\hline DIEMLABEL: & JMP & DIEMLOOP & \\
\hline OUT4: & POP & ES & \\
\hline & POP & BP & \\
\hline & RET & b & \\
\hline DIEM & ENDP & & \\
\hline ; SUBROUTINE & INIT8087 & & \\
\hline INIT808? & PROC FINIT RET & FAR & \\
\hline INIT808? & ENDP & & \\
\hline CSEG & ENDS & & \\
\hline & END & & \\
\hline
\end{tabular}

\section*{Index}

16-bit personal computers, 7
8086 microprocessor chips, 5
addressing of words in, 86
speed of, 22
8087 floating point library, 18-19
8087 Numeric Data Processor chips, 7-8
accuracy of, 2-3, 15
automatic error handling in, 104
BASIC and, 69-81
benchmarks for, 21-24
calculation speed improved by, 13-14
control options on, 27-29
as co-processors, 25-26
data types on, 9-10, 30-32, 35-37
hardware requirements of, 5
instruction classes on, 8-9
instruction sets for, 40-50, 179-200
registers in, 26-27, 39-40
representation of numbers on, 32-35
software compatibility for, 11-12, 15-16
speed of, 3-4
statistical analysis program for, 227-236
subroutines for solving systems of linear equations using, 153-166
used for commercial data processing, 237
8088 microprocessor chips, 5, 7-8
8087 as co-processor with, 25-26
assembly language programming for, 5368
benchmarks on, 22
ESCAPE instructions on, 10
matrix programs and, 177
speed of, 3
unmasked exceptions passed to, 198
Access to memory for matrix operations, 115-118
Accumulator (AX register), 56
Accuracy, 2-3, 15, 28-29, 89-91
of differentiation, 203, 205
of double precision numbers, 89
errors in, 103-104
of matrix operations, 176
ADD instruction, 59
Addition instructions, 45-46
Addition programs, 50-51, 86-87
for vectors of strings, 238-241
Addressing
by 8088 chip, 8,25
of memory, 56-58
of segments, 65, 74-77

Affine closure, 28
Algebra
Gaussian elimination, 138-139
matrix, 114, 133-134
matrix manipulation in, 134-137
non-linear methods for, 201-211
solving multiple linear systems, 137-138, 143-178
see also Equations
Algorithms, 12
AND instruction, 60
APL, 111
Apple computers, 5
benchmarks on, 23
Architecture of 8087 chip, 25-37
Arguments
double precision, 89-91
formats for, 43-44
to transcendental instructions, 183
Arithmetic instructions, 8, 43-47, 181-182
Arrays
copying of, 96-99
indexing of, 86-88
matrices, 114-115
in memory, 56,57
multiple, indexing of, 91-93
see also Matrix operations
ASCII code, 16, 32
Assembler directives, 58, 67-68
Assemblers
object modules created by, 77
WAIT instructions inserted by, 26
Assembly language
8087 accuracy available to, 15
for BASIC, 19-20
loading of programs in, 77
matrix-handling programs in, 177
in packaged programs, 16
program for addition of vectors of strings in, 238-241
programming in, 14, 53-68
ASSUME directive, 67
AX (accumulator) register, 56
Band matrices, 176
Base register, 56
BASIC
8087 chip and, 69-81
assembly language modules for, 19-20
benchmark programs in, 22
compiled, 18-19
compilers and interpreters for, 13
data types available in, 9
error handling in, 104
error messages in, 100
indexing in, 57
interpreted, 17-18
machine language and, 43
matrix operations in, 111, 114-116, 177
non-linear methods in, 201
packaged programs in, 16
for use with 8087, 2
BASIC compilers
with 8087 floating point library, 18-19
benchmarks on, 22
interactive use of, 80-81
loading subroutines into, 78-79
program initialization in, 224-225
BASIC interpreters, 17-18
benchmarks on, 22
high overhead on, 4
installation of 8087 chips and, 5
interactive use of, 79-80
loading subroutines into, 77-78
program initialization in, 224-225
Benchmarks, 21-24
Binary files, 16,18
Binary operations, 95
Binary point, 32
BLOAD.command, 74, 78
BP (stack pointer) register, 56, 57, 72
Branching instructions, 64-65
in assembly language, 62-64
from subroutines, 66-67
BSAVE command, 78
BX (index) register, 56, 57
Bytes, addressing of, 56
Calculation time, 13, 17
using compiled BASIC, 19
Calculus, 207
CALL instruction
in assembly language, 66
in BASIC, 69
Canned (packaged) programs, 15-16, 218227
Central Processing Units (CPUs), 7
8087 chip as co-processor in, 25
Circuit boards, 5
Clock speeds, 22
CMP instruction, 61
Code segment (CS) register, 65, 72
Column vectors, 116
Commands
in assembly language, 58
in canned statistical analysis program, 219220
Commercial data processing, 237-242

Comparison instructions, 9, 48-50
in assembly language, 61-62
Compatibility
of 8087 and non- 8087 versions of BASIC, 18
of software, 11-12, 15-16
Compiled BASIC, see BASIC compilers
Compilers, 13
8087 accuracy available to, 15
with 8087 floating point library, 18-19
for 8087 "native code," 19
benchmarks using, 22
see also BASIC compilers
Condition code bits, 26, 64
examining, 48, 50
Constants, 9
instructions for, 182
Control work (register), 27-28
processor control instructions for, 196
Correlation, 215-216
in canned statistical analysis program, 222223
Cosines, 190
Counter testing, 177-178
Count (CX) register, 56
Conversions
between ASCII and binary representations, 32
of pre-8087 software, 17
Co-processors, 7-8
organization of, 25-26
Copying of arrays, \(96-99\)
CPUs (central processing units), 7
8087 chip as co-processor in, 25
Crout decomposition, 150-153, 176, 177
back substitution after, 166-172
subroutines using, 153-166
CS (code segment) register, 65, 72
CX (count) register, 56
Data
in canned statistical analysis program, 220222
invalid, errors from, 109
representation of, 11-12, 16, 32-35
rules for handling of, 40-41
special types of, 35-37
storage of, in canned programs, 218-219
types of, 9-10, 30-32
Data definition, 58-59
Data processing, commercial, 237-242
Data registers, 8, 26
Data segment (DS) register, 65, 129
Data transfer instructions, 9, 40-43
Debugging, 100
DEBUG utility, 77
DEC-2060, 23

Decimal data, 10
see also Packed decimal data
DEC instruction, 60
DEF FN statement, 201
Denormal data, 36
Dependent variables, 216
Derivatives, 202-205, 207, 210, 211
Descriptive statistics, 214-215
in canned statistical analysis program, 222
Diagonal matrices, 176
Differentiation, numerical, 202-205, 207
Digital Equipment Corporation, 23
Directives, 58, 67-68
DI (index) register, 56, 57
Disk storage, 221, 222
Displacement (memory location), 56, 57
Division instructions, 43, 47
Double precision (long real) data, \(9,15,31\), 33
in 8087 and non- 8087 versions of BASIC, 18
arguments in, 89-91
DS (data segment) register, 65, 129
DX register, 56
EDP (Electronic Data Processing), 237-238
Effective addresses, 65
Element-by-element matrix operations, 119120
END directive, 68
ENDP directive, 67-68
ENDS directive, 67
Equations
Crout decomposition of, 149-153
Gaussian elimination for, 138-139
linear, 114-115, 133, 143, 175-176
linear, 8087 subroutines for solving, 153166
linear, back substitution after Crout reduction for, 166-172
linear, zero pivots in, 147-149
LU decomposition of, 149-150
manipulation of, 133-134
matrix inversions for, 173-175
matrix manipulation for, 134-137
multiple linear, solving, 137-138
multiple regression, 216, 217
non-linear, solving, 207-209
Error conditions, 3
duplicate file names, 221
exceptions, 26,29
overflows, 18
from programming, 99-100
from subroutines, 99
from use of subroutines, 100
Error handling in BASIC, 104
in canned statistical analysis program, 226
Errors
correction of, in canned statistical analysis program, 221, 226
in precision, 103-109
Error terms, 216
ESCAPE instructions, 10, 11, 25
ES (extra segment) register, 65
Exception-handling instructions, 198-199
Exception-handling software, 104
Exceptions, 26, 29
Execution pointers (registers), 27
Explicit operands, 45
Exponentiation, 186-188
Exponents, 33-34
Extra segment (ES) register, 65
EXTRN directive, 68
F2XM1 instruction, 183, 186
FABS instruction, 47
FADD instruction, 45, 46
FADDP instruction, 46
FAR procedures, 127, 158
FBLD instruction, 43
FBSTP instruction, 43
FCHS instruction, 47
FCLEX instruction, 198-199
FCOM instruction, 48
FCOMP instruction, 48
FCOMPP instruction, 49
FDECSTP instruction, 199
FDISI instruction, 198
FDIV instruction, 47
FDIVP instruction, 47
FDIVR instruction, 47
FDIVRP instruction, 47
FENI instruction, 198
FFREE instruction, 199
FIADD instruction, 46
FICOM instruction, 49
FICOMP instruction, 49
FIDIV instruction, 47
FIDIVR instruction, 47
FILD instruction, 42
Files, binary, 16, 18
FIMUL instruction, 46
FINCSTP instruction, 199
FINIT instruction, 197
FIST instruction, 42
FISTP instruction, 42
FISUB instruction, 46
FISUBR instruction, 46
Flag register, 61
Flags, 61, 64
in canned statistical analysis program, 223
FLD1 instruction, 183

FLDCW instruction, 196
FLDENV instruction, 199
FLD instruction, 41
FLDL2E instruction, 183
FLDL2T instruction, 183
FLDLG2 instruction, 183
FLDLN2 instruction, 183
FLDPI instruction, 183
FLDZ instruction, 47, 182
Floating point libraries, 18-19
Floating point numbers, 29-30
in 8087 and non- 8087 versions of BASIC, 18
errors avoided by using, 109
representation of, 32-34
FMUL instruction, 46
FMULP instruction, 46
FNOP instruction, 199
FPATAN instruction, 184-185, 194
FPREM instruction, 181-182
FPTAN instruction, 184, 188
FRDINT instruction, 181
FRSTOR instruction, 197
FSAVE instruction, 196
FSCALE instruction, 181, 186
FSQRT instruction, 47
FSTCW instruction, 196
FSTENV instruction, 199
FST instruction, 41-42
FSTP instruction, 42
FSTSW instruction, 50, 64
FSUB instruction, 46
FSUBP instruction, 46
FSUBR instruction, 46
FSUBRP instruction, 46
FTST instruction, 49
Functions
differentiation of, 202-205
for floating point conversions, 18
integration of, 205-207
inverse trigonometric, 194-195
non-linear, 201-202
non-linear, optimizing, 209-211
non-linear, solving, 207-209
trigonometric, 188-194
FWAIT instruction, 26, 64, 196
FXAM instruction, 49
FXCH instruction, 42
FXTRACT instruction, 182
FYL2X instruction, 184
FYL2XP1 instruction, 184
Gaussian elimination, 135-139, 177
zero pivot problem in, 147-149
General registers, 55-57
Hardware, 5
benchmarks for, 21-24
data type representations on, 32
for matrix operations, 111
with pre-8087 software, 17
speed of, 12
IBM 3081, 23
IBM Personal Computers (PCs)
benchmarks on, 22
compiled BASIC on, 18, 19
CPU on, 7
socket for 8087 in, 5
Identity matrices, 140
Immediate operands, 57
Implicit operands, 45
IMSL library, 176
INC instruction, 60
Independent variables, 216
Indexes in matrices, 114
partial pivoting with, 153, 156
Indexing
of arrays, \(86-88\)
of memory, 56-57
of multiple arrays, 91-93
Index registers, 56, 57
Infinity, 28, 36
Initialization, 223-225
Inner products
in correlation coefficients, 215
in matrices, 123-133
Installation of 8087 chips, 5
Instructions and instruction sets, 7, 10, 39
advanced, 179-200
arithmetic, 43-47
in assembly language, 58-68
classes of, 8-9
comparison, 48-50
in co-processor environments, 25-26
data transfer, 40-43
Integer (word integer) data, 9, 31
indefinite, 37
overflows of, 109
representation of, 35
transfer instructions for, 42-43
Integer format arguments, 44
Integration, numerical, 205-207
Intel microprocessor chips, 5
see also 8086 microprocessor chips; 8087
Numeric Data Processor chips; 8088
microprocessor chips
Interactive programming
in compiled BASIC, 80-81
in interpreted BASIC, 79-80
Interpreted BASIC, see BASIC interpreters
Interpreters, 13
BASIC, 17-18
benchmarks using, 22
see also BASIC interpreters
Interrupts
instructions for, 198-199
by unmasked exceptions, 29
Inverse trigonometric functions, 194-195
Invocation time, 13
JCXZ instruction, 63
JMP instruction, 62-63
Labels, 58-59
Library collections (of programs), 176
Linear equations and systems, 114-115,133134, 143, 175-178
8087 subroutines for solving, 153-166
back substitution after Crout reduction for, 166-172
Crout decomposition of, 150-153
Gaussian elimination for, 138-139
LU decomposition of, 149-150
matrix inversions for, 173-175
matrix manipulation for, 134-137
solving, 137-138
zero pivots in, 147-149
Linear operations, 14, 17, 19, 20
LINK utility, 77
Loading
of assembly language programs, 77
of subroutines into compiled BASIC, 7879
of subroutines into interpreted BASIC, 77-78
Logarithms, 185
Long integer data, 9, 31
Long real data, see Double precision data
LOOP instruction, 63-64
Loops
counter testing in, 177-178
endless, 205
for optimization, 177
LU decomposition, 149-150
Machine language
errors in programs in, 100
subroutines in, 72-74
MACRO assembler, 178
Mainframe computers, 3, 19, 21
benchmarks on, 23
MAT functions, 111
Mathematical instructions, 7, 43-47, 181195
Matrices, 14
in canned statistical analysis program, 226
special types of, 176
Matrix multiplication, 115, 123-133
Matrix multiplication program
8087 speed of, 4
as benchmark, 21
execution time for, 14,17
speed of, in assembly language, 20
Matrix operations, 111, 114-115, 143, 175178
8087 subroutines for solving systems of linear equations, 153-166
back substitution after Crout reduction, 166-172
Crout decomposition, 150-153
Gaussian eliminations, 138-139
inversion, 139-141, 173-175
LU decomposition, 149-150
manipulation, 134-137
memory access for, 115-118
multiplication and inner products, 123133
programs for, 111-113
scalar and element-by-element, 119-120
solving multiple linear systems, 137-138
transpositions, 121-123
zero pivot problem in, 147-149
Means (averages), 214
Memory
addressed by 8088 chip, 8
addressing of, 56-58
data transfer instructions for, 40-43
for matrix operations, 115-118
segments in, 55, 65-66
Menus, 219-220
Microprocessors
8088 chip, 7
co-processors, 25-26
speed of, 22
Microsoft, 12
conversions of software in format of, 17
Minicomputers, 3, 19, 21
benchmarks on, 23
Modular programming, 218
Modules, 218-227
MOV instruction, 60
MUL instruction, 60
Multiple regression, 216-217
in canned statistical analysis program, 223
Multiplication
instructions for, 46
matrix, 115, 123-133
shifting versus, 157-158, 177
see also Matrix multiplication program
Multiple arrays, indexing of, 91-93
NAN (Not-A-Number) data, 37
"Native code" compilers, 19
NEAR procedures, 127, 158
Negative numbers, 35
Non-linear operations, 14, 18-20, 200, 201211

Normal distribution, 215
Normalized floating point format, 33
Not-A-Number (NAN) data, 37
Numbers
floating point, 29-30
representation of, 11-12, 16, 32-35
rounding of, 27-28
special types of, 35-37
types of, 9-10, 30-32
Number systems, 29
Numerical differentiation, 202-205, 207
Numerical integration, 205-207
Object modules, 77
Operands
immediate, 57
stack, 45
Optimization
of loops, 177
non-linear, 209-211
Ordinary least squares, 217
OR instruction, 60
Overflow errors, 18, 109
Overhead, time spent on, 4
Packaged (canned) programs, 15-16, 217227
Packed decimal data, 10, 31, 32
in commercial data processing, 238
indefinite, 37
in program to add vectors of strings, 241
representation of, 35
transfer instructions for, 42-43
Parameters, skip, 126
Partial pivoting, 148-149, 153-156, 161, 165, 176
PCs, see IBM Personal Computers
Personal computers
CPUs on, 7
installation of 8087 chips in, 5
see also IBM Personal Computers
POP instruction, 66
Positive numbers, 35
Pre-8087 software, 2
compared with 8087 subroutines, 4
hardware with, 17
noncompatibility of, 12,16
Precision, 3, 28-29, 89-91
errors in, 103-109
see also Accuracy
Procedures, 55
NEAR and FAR, 127, 158
Processor control instructions, 9, 50, 196197
Processors, 7-8
co-processors, 25-26
PROC FAR directive, 67-68

Programming
in assembly language, 53-68
in BASIC, 69-81
errors from, 99-100
matrix, advanced, 175-178
modular, 218
Programs
addition, 50-51
for addition of vectors of strings, 238-241
in assembly language, loading of, 77
bugs in, 100
compatibility of, 11-12
for linear systems and matrix inversion, advanced, 143-146, 153-166, 177-178
matrix, 111-113
packaged (canned), 15-16, 218-219
simple subroutines, 83-86
speed of, 12-13
for statistical analysis, 219-236
translation of, 13-14
using advanced instruction set, 179-180
see also Software, Subroutines
Projective closure, 28
Pseudo-zero, 36
PTR directive, 58
PUBLIC directive, 68
Pushdown stacks, 8, 26
PUSH instruction, 66
Read Only Memory (ROM) chips, 5, 17
Real-and-pop format arguments, 43-44
Real format arguments, 43
Read indefinite data, 37
Real transfer instructions, 41-42
Registers, 8, 26-27, 39-40
flag, 61
general, 55-57
segment, 55
Register stack, 26, 39-40
comparison instructions for, 48
Regression, 216-217
in canned statistical analysis program, 223
Relocation of subroutines, 74-77
Representation of numbers, 11-12, 16, 32
floating point, 32-34
integer, 35
packed decimal, 35
Residuals (in regression), 217
RET instruction, 66-67
Returns from subroutines, 66-67
Reversed division instructions, 43
Reversed subtraction instructions, 43
ROM (Read Only Memory) chips, 5, 17
Rounding, 27-28
Routines, see Subroutines
Row vectors, 116
R-squared statistic, 217

SAHF instruction, 62
Scalar matrix operations, 119-120
Scalar subroutines, 93-95
Scientific notation, 30, 33
Screen handling, 227
SEGMENT directive, 67
Segment registers, 65
Segments, 55, 65-66
addressing of, 74-77
Shifting, 157-158, 177
SHL instruction, 60
Short integer data, 9, 31
Short real (single precision) data, 9, 31, 33, 89
SHR instruction, 60-61
Simultaneous linear equations, see Linear equations and systems
Sines, 190
Single precision (short real) data, 9, 31, 33, 89
SI (index) register, 56, 57
Skip parameters, 126
Software
for 8087, 1
8087-compatible, 15
assembly language modules for BASIC, 19-20
BASIC, 69-81
benchmarks for, 21
compatibility of, 11-12
compilers, 18-19
ESCAPE instructions in, 10
exception-handling, 104
interpreted BASIC, 17-18
packaged programs, 15-16
pre-8087, 2, 17
speed of, 12-13
upgrading of, during installation of 8087 chips, 5
see also Programs; Subroutines
Source programs
compiling of, 18
translation of, 13-14
Sparse matrices, 176
Special data types, 35-37
Speed
of 8087-equipped PCs, 3-4
of assembly language, 19, 20
benchmarks of, 21-24
of matrix multiplication subroutines, \(130-\) 132
of pre-8087 software, 2
of programs, 12-13
SP (stack pointer) register, 56, 65, 72
Square root program
8087 speed of, 4
as benchmark, 21
execution time for, 14,17
SS (stack segment) register, 65, 129
Stack operands, 45
Stack pointers (BP and SP registers), 56,65 , 72
Stacks, 8, 26, 39-40
arithmetic instructions on, 43-45
comparison instructions for, 48
used in matrix multiplication, 128, 129
Stack segment (SS) register, 65, 129
Standard deviations, 214-215
Standard errors, 216, 217
Statistical analysis, 213-214
correlation in, 215-216
descriptive statistics in, 214-215
multiple regression in, 216-217
program for, 219-236
ST (stack) registers, 26, 39-40
arithmetic instructions on, 43-45
Status word (register), 26-27
processor control instructions for, 196
Strings, program for addition of vectors of, 238-241
Subroutines, 83-86
branching and returns from, 66-67
calling, in BASIC, 69-71
double precision arguments in, 89-91
errors resulting from, 99
errors in use of, 100-103
for linear systems and matrix inversion, advanced, 143-146, 153-166
loading of, into compiled BASIC, 78-79
loading of, into interpreted BASIC, 77-78
in machine language, 72-74
matrix, 111-113
relocation and segment addressing of, 7477
scalar, 93-95
using advanced instruction set, 179-180
utility, 96-99
Subtraction instructions, 43, 46
Symmetric matrices, 176
Synchronization of co-processors, 26
Tag word (register), 27, 36
Tangents, 184, 188, 200
in differentiation, 202, 208
Temporary real data, 9, 31, 89
TEST line, 26
Transcendental instructions, 9, 183-185 invalid data fed into, 109
Translation of source programs, 13-14
Translation time, 13
eliminated by compilers, 18
Translators
8087 accuracy available to, 15
8087-compatible, 17
compilers, 18-19
number representations in, 12
speed of, 12-13
see also Compilers; Interpreters
Transpositions of matrices, 121-123
Trigonometric functions, 188-194
inverse, 194-195
t-statistic, 216
"Two's complement" format, 35
Unary operations, 95-96
Underflows, 36
Unnormal data, 36
Utility subroutines, 96-99

Variables
correlation coefficients for, 215-216
in multiple regression, 216-217
Variance, 214
VAX-780, 23
WAIT instruction, 26
Word integer data, see Integer data
Word processing, 4
Words, addressing of, 56
Zero, 34, 36
in matrix manipulations, 135, 138, 140, 147-149, 152, 176

\section*{Diskette Files to Accompany 8087 Applications and Programming for the IBM PC and Other PCs}

The diskette files accompanying 8087 Applications and Programming for the IBM PC and Other PCs are described in this note. Complete descriptions of the programs and their operation appear in the text. This note is limited to a technical description of the diskette files.

If you have not already done so, please read the copyright notice, liability disclaimer, and the section on the inherent dangers in using machine language programs.

The programs require one single-sided disk drive, 64 K of memory, a copy of the operating system version 1.1 or 2.0 and, for the most part, an 8087. The programs are distributed on a "flippy diskette." (Each side of the diskette is equivalent to one regular single-sided diskette.) The diskette is not copy protected.

The assembly language programs in the text appear in the following files:

VECTOR.ASM
MATRIX.ASM
MATADV.ASM
TRANS.ASM BCD.ASM
BCDI.ASM CONVERT.ASM

Chapter 9 programs--basic vector routines Chapter 10 programs-basic matrix routines Chapter 11 programs-advanced matrix routines Chapter 12 programs-transcendental routines Chapter 15 program-compiler version Chapter 15 program-interpreter version Appendix programs-Intel/Microsoft conversion routines

These files are almost, but not exactly, identical to the programs appearing in the book. The differences are:
1. All 8087 mnemonics have been replaced with the equivalent 8088 mnemonics so that the programs can be assembled by assemblers which do not recognize the 8087 names. The 8087 mnemonics have a semicolon placed in front of them to turn them into comments. (For the information of IBM PC users, all these files can be assembled using version 1.0 of the IBM Macro Assembler.)
2. The programs from each chapter have been grouped together in one file. Slight rearrangements of CSEG/ENDS statements have been made. Some statement labels have been modified to eliminate duplicate definitions. For example, you will see labels "NEXT01",
"NEXT02", and so forth, instead of "NEXT", and "NEXT", and so forth.

Not everyone has an assembler program. As a convenience, each file above has been assembled into a program with the extension ".OBJ" replacing the extension ". \(\mathrm{ASM}^{\prime}\) ".

Since linking a machine language program for use with interpreted BASIC is time consuming, we have translated each of the files into a file with the extension ".SAV". These files can be loaded directly into interpreted BASIC using the BLOAD command. (Since program BCD can be used only with the interpreter, there is no ".SAV" version. Use "BCDI.SAV" instead.)

The memory map produced by the LINK program appears in files with extension ".MAP". Use the information in these files to find the offset of a particular routine. If you are going to load more than one file into BASIC, remember that the relocation scheme explained in the book requires the routines to be loaded at an address ending in hexadecimal zero. That is, you can say BLOAD "CONVERT.SAV", \&H10, but you should not try BLOAD "CONVERT.SAV",\&H11.

For an example of loading multiple assembly language programs into an interpreted BASIC program, see the program "STAT87.BAS".

Remember that the assembly language routines expect all data to be in INTEL format. If you are mixing these routines with pre-8087 programs, you must convert data. For an example of using conversion routines, see the program "STATPRE.BAS".

The " 8087 Statistical Analysis Program" appears in two versions. STAT87.BAS is the program as it appears in the text. STATPRE.BAS includes calls to the conversion routines, so you can use the program immediately with pre-8087 versions of BASIC. Module 12 of these programs include "CLEAR" and "DEF SEG" statements that allow these programs to run in systems with 64 K of memory. If you have more memory, you may want to change these statements to increase the space available for data storage. The programs are standard text files. If you load the program into BASIC and then SAVE it, the SAVEd version will LOAD much faster than the original. If you eliminate the REMark statements from the program, the space for data storage will increase.

The following BASIC programs also appear on the diskette. Remember to modify these programs to reflect your own data and functions.

CPP.BAS
GPP.BAS
SOLP.BAS
DIFFER.BAS
INTEGRAT.BAS
ZERO.BAS
MAX.BAS

Crout decomposition
Gauss decomposition
Solution following Crout decomposition
numerical differentiation numerical integration solve non-linear equation maximize non-linear function

\title{
"A pleasure tc reas . . . the author's style is excellent and
} the explanatic \(n\) of what the 8087 can do is terrific ...'"
- Peter Norton, President of NORTON UTILITIES, author of Inside the IBM

Nows Large Scele Numerical Computing Is Morde Faster and Easier Than Ever Before With . . .

\section*{8087 Applications and Programming For The IBW PG And Other PGs}

\section*{Richard Startz}

Finally-a book that gives you a clear, complete explanation of the number crunching 8087 microprocessor for the IBM PC and other compalible machines! Whether you're a "program writer" or "program user," this unique guide helps you understand how the 8087 chip works, what it does, and how fast it processes!
- For Novice and Motential Chip Users, the text includes a nontechnical overviaw of the capabilities of the 8087, featuring speed benchmarking and guidelines for buying compatible 8087 software!
- For Program Writers Who Want to Know Intimate Details About The Chip, the text includes a complete section of the 8087's instructrons-with special attention to linking assembly language and BASIC programs!
- For Program Usurs, the text includes a wide variety of ready-to-use "cookbook" applications designed to give you answers fast anc easy, including the "8087's Statistical Analysis Program'!

\section*{CONTENTS}

Turning Minutes Into Seconds/The Intel 8087 Chip/Buying and Building 8087-Compatible Software/Benchmarks/Introduction to 8087 Architecture/Simple Instruction Set/Introduction to 8088 Assembly Language Programming/BASIC and the 8087/Simple 8087 Routines/Basic Matrix Operations/ Linear Systems alid Matrix Inversion: More Advanced Computational Techniques/Advanced Instruction Set/Non-Linear Methods/Statisticral Analysis and Program Canning/Commercial Data Proce:ssing/Appendices/Index/Diskette Files to Accompany 8087 Applications and Programming

ALSO AVAILABLE . . OPTIONAL DISKETTE
This accompanyingrdiskette includes all programs from the text. See insert inside this bc ok for ordering information.```

[^0]: NOTE: "above" and "below" refer to the relationship of two unsigned values: "greater" and "less" refer to the relationship of two signed values.
 (Used with permission of Intel Corporation.)

