

8087 Applications and
Programming

for the
IBM PC and Other PCs

Richard Startz

Robert J. Brady Co.
a Prentice-Hall Publishing and

Communications Company
Bowie, MD 20715

8087 Applications and Programming for the IBM PC and Other PCs

Copyright© 1983 by Robert J. Brady Company.
All rights reserved. No part of this publication may be reproduced or tr~nsmitted
in any form or by any means, electronic or mechanical, including photocopying
and recording, or by any information storage and retrieval system, without
permission in writing from the publisher. For information, address Robert J.
Brady Co., Bowie, Maryland 20715

Library of Congress Cataloging in Publication Data

Startz, Richard, 1952- ,
8087 applications and programming for the IBM PC and other PCs.

Includes index.
l. INTEL 8087 (Computer)-Programming. 2. IBM Personal Computer-Pro

gramming. 3. Microcomputers-Programming.
I. Title.
QA76.8.I2923 1983 001.64 83-12216
ISBN 0-89303-420-7

Prentice-Hall International, Inc., London
Prentice-Hall Canada, Inc., Scarborough, Ontario
Prentice-Hall of Australia, Pty., Ltd., Sydney
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books, Limited, Petone, New Zealand
Editora Prentice-Hall Do Brasil LTDA., Rio de Janeiro

Printed in the United States of America

84 85 86 87 88 89 90 91 92 10 9 8 7 6 5 4 3 2

Executive Editor: Terrell Anderson
Production Editor/Text Designer: Michael J. Rogers
Art Director/Cover Design: Don Sellers
Assistant Art Director: Bernard Vervin
Typesetting by: Harper Graphics, Waldorf, MD
Printed by: R.R. Donnelley & Sons, Harrisonburg, VA
Index by: Elliot Linzer
Cover photo: George Dodson

Acknowledgments

I've decided that the only reason a book ever reaches print is that about
the time the author runs out of steam someone else comes along and
gives the project a boost. At least that's certainly been true for this book.

The people at the Robert J. Brady Company, editors and staff, have
been a pleasure to work with.

Books are reviewed for style and accuracy before going to press. I've
been fortunate in having three reviewers make substantial contributions
to the final product. Many thanks are due to Peter Norton,Leo Scanlon·,
and Andy Verhalen. ·

Intel has been most generous in allowing the use of copyrighted ma
terial and in supplying technical information. The authoritative source
on the 8087 is Intel's iAPX 86, 88 User's Manual, from which I have
borrowed liberally.

My wife, Shelly Lundberg, performed a final inspection of the manu
script. As always, I get my best suggestions from my best friend:

Before I let anyone else see the initial manuscript, I sent it to my sister,
Barbara Startz, for editing. Barbara knows a little about computers and
a great deal about writing. I haven't quite figured out how she found
the time to repair my writing after 90 hours a week at her own job, but
I'm awfully glad she did.

It should go without saying that all the people named above are entitled
to credit for things you like in the book, but that I alone remain respon
sible for any remaining inaccuracy or awkwardism.

Dick Startz

Stanford, California

CONTENTS

Introduction viii

1 Turning Minutes Into Seconds 1
How Easy Is Easy? 1
How Accurate Is Accurate? 2
How Fast Is Fast? 3
Specific Speed Comparisons 4
What Equipment Do You Need to Use an 8087? 5

2 The Intel 8087 Chip 7
Processors and Co-processors 7
Overview of the 8087 8
Instruction Classes 8
Data Types 9
How Does My Computer Access the Power of the 8087? 10

3 Buying and Building 8087-compatible Software 11
What Makes a Program Fast or Slow? 12
Translating the Source Program 13
Computational Accuracy 15
8087-Compatible Software 15
Using Packaged Programs 15
8087 Hardware with Pre-8087 Software 17
Interpreted BASIC 17
Compiler with 8087 Floating Point Library 18
Compiler for 8087 "Native Code" 19
Assembly Language Modules for BASIC 19
Pure Assembly Language Code 20

4 Benchmarks 21
Comparing Benchmarks 21
IBM Personal Computer Benchmarks 22
"Outsider" Benchmarks 23

5 Introduction to 8087 Architecture 25
Co-processor Organization 25
Internal 8087 Registers 26

iv

Control Options 27
Exception Masking 29
Floating Point Numbers 29
Data Types 30
Data Type Hardware Representations 32
Floating Point Representation 32
Integer Representation 35
Packed Decimal Representation 35
Special Data Types 35

6 Simple Instruction Set 39
Data Transfer Instructions 40
Real Transfer Instructions 41
Integer and Packed Decimal Transfer Instructions 42
Basic Arithmetic Instructions 43
Implicit Operands 45
Addition Instructions 45
Subtraction Instructions 46
Multiplication Instructions 46
Division Instructions 47
Miscellaneous Arithmetic Instructions 47
Comparison Instructions 48

7 Introduction to 8088 Assembly Language Programming 53
Overview of the 8088 54
8088 Program Structure 55
General Registers 55
Memory Addressing 56
Labels and Data Definition 58
Some 8088 Instructions 59
Comparisons 61
Branching 62
8087 Branching 64
~~ffi~ ~
Subroutine Branching and Returns 66
Assembler Directives 67

8 BASIC and the 8087 69
Calling a Subroutine 69
Acting Like a Called Subroutine 72
Subroutine Relocation and Se~ent Addressing 74
Loading Assembly Language Programs 77
Loading a Routine Into Interpreted BASIC 77
Loading a Routine Into Compiled BASIC 78
Interactive Session for Interpreted BASIC 79
Interactive Session for Compiled BASIC 80

9 Simple 8087 Routines 83
Array Indexing 86
Double Precision Arguments 89

V

Indexing Through Arrays 91
Scalar Routines 93
Unary Operations 95
Utility Routines 96
On Errors 99
Programming Errors 99
Errors in Using the Subroutines 100
Precision Errors 103

10 Basic Matrix Operations 111
What is a Matrix? 114
Why Are Matrices Interesting? 114
Storage Allocation and Memory Access 115
Basic Matrix Operations 119
Scalar and Element-by-Element Operations 119
Matrix Transposition 121
Inner Products and Matrix Multiplication 123
Solving Systems of Linear Equations 133
Equation Manipulation 133
Matrix Manipulation 134
Solving Multiple Linear Systems 137
Space Efficient Gaussian Elimination 138
Matrix Inversion 139

11 Linear Systems and Matrix Inversion: More Advanced
Computational Techniques 143
The Theory of "LU Decomposition" 149
The Crout Decomposition 150
8087 Routines for Solving Systems of Linear Equations 153
Back Substitution After a Crout Reduction 166
Matrix Inversion 173
8087 Matrix Program Review 177

12 Advanced Instruction Set 179
Arithmetic Instructions 181
Constant Instructions 182
Transcendental Instructions 183
Logarithms 185
Exponentiation 186
Trigonometric Functions 188
Inverse Trigonometric Functions 194
Processor Control Instructions 196
Interrupt and Exception-handling Instructions 198

13 Non-Linear Methods 201
Numerical Differentiation 202
Numerical Integration 205
Solving a Non-linear Equation 207
Non-linear Optimization 209

vi

14 Statistical Analysis and Program Canning 213
Statistical Analysis · 213
Descriptive Statistics 214
Correlation . 215
Multiple Regression 216
Regression Formulas 217
Canned Programs 218
Data Storage 218

15 Commercial Data Processing 237

Postscript 243

Appendix 1: Instruction Set Reference Data 244

Appendix 2: Exception Conditions and Masked Responses 256

Appendix 3: Conversion Routines 259

~~ w
Diskette Files to Accompany 8087 Applications and Programming

About The Diskette

The diskette, which is available as an option with the book, contains all
the programs listed in The Cookbook. Each program appears in three
forms: as an assembly language source program (e.g., PROG.ASM); as
an already assembled object module (e.g., PROG.OBJ); and as a file ready
to be BLOADed into BASIC (e.g., PROG.SAV). In several cases, a number
of programs have been combined into a single module for ease. For
instance, the most important matrix manipulation routines are combined
in files MATRIX.ASM, MATRIX.OBJ, and MATRIX.SAY. The programs
are supplied on a standard single-sided, 5.25 inch diskette formatted on
an IBM Personal Computer running PC-DOS 1.1. A copy of the diskette
documentation appears at the end of the book.

vii

Introduction

Let me explain why I'm excited about the 8087. I've used large computers
for many years as a tool for professional research. When I bought my
personal computer, I found I could do many things far more conveniently
than on these larger machines. But I quickly discovered that my machine
wasn't fast enough for large scale numerical computing.

Having an 8087 means that now I can solve many large problems on
my personal computer. While some problems still belong on big machines
(and always will), my personal computing horizon has expanded ten
fold.

The 8087 isn't just fast; it's very easy to use. Whether you are mostly
a "program user" or mostly a "program writer," you will find that the
8087 is a remarkable device. I hope you will find 8087 Applications and
Programming an enjoyable, as well as an educational, introduction.

Who is This Book For?
• People who want to know what the 8087 will do (especially Part I,

Chapters 1-4).
• People who want to learn how to program the 8087 (especially Part

II, Chapters 5-8 and Chapter 12 in Part III).
• People who want prepared programs for number crunching appli

cations on their personal computer (especially Part III, Chapters 9-
15).

Part I describes the capabilities of the 8087 at a fairly non-technical
level. If you are considering buying an 8087 and want to know about
8087-compatible hardware and software, Part I is for you.

Parts II and III are for the more technically inclined reader. While we
"begin at the beginning," some prior programming experience is helpful.
You needn't be an expert by any means, but this book isn't an Intro
duction to Computers.

Part II (Chapters 5-8) provides an in-depth description of the 8087's
instructions. We also discuss some of the fundamentals of assembly Ian-

viii

guage programming for the 8088. We pay special attention to linking
assembly language and BASIC programs, including a blow-by-blow in
teractive session in which we link an assembly language program with
both interpreted and compiled BASIC.

Part III concentrates on applications. We develop many useful 8087
assembly language routines in Part III. You can use these programs as
examples, to learn more about 8087 programming, or you can use the
programs "cookbook" fashion. (Part III also includes, in Chapter 12, an
explanation of some of the 8087's most advanced instructions.

How to Read This Book

I've taken care to write so that you can skip around from one section to
the next as suits your mood. Please don't feel constrained to read from
beginning to end.

Most readers will probably find Part I informative and easy reading.
If you want to write 8087 assembly language programs, concentrate on
Part II. (If you are an experienced 8087 programmer, you can skip Part
II and move on to the applications in Part Ill.) If you are interested in
applications, but don't care about intimate programming details, read
Part III. You can always flip back to Part II if you need to check something.

Finally, you can use the programs here "cookbook" style. You don't
need to know why a program was written in a certain way or how it
operates internally, if you just want to get a fast answer. Go ahead and
use the programs. If a program is useful enough that you want to modify
it or write a similar one yourself, you can return later for the "how and
why."

The Cookbook

Several chapters begin with an introductory paragraph and then a sign
that says

The Cookbook

Under this sign, you will find a list of the programs appearing in the
chapter, together with a brief description of the purpose of the program
and the input and output required. Use the cookbook when you want
to find a program in a hurry. We spend quite a bit of time discussing
why certain things are done in certain ways. If you want to run programs,
but not build your own, you don't need to read the "how and why"
material. Do scan the material which describes the information you need
to pass to the programs.

ix

Strategic Number Crunching
In addition to a great deal of detail about the 8087 and about numerical
programming, this book presents a strategic approach to serious com
putational work. Our strategy grows from two programming maxims:·

• 10 percent of program code accounts for 90 percent of program execution
time.

• The cost of creating a working program is proportional to the square of the
length of code, regardless of the power of the programming language being
used.

Serious programmers sometimes go to great effort, mistakenly, to write
"efficient programs." A far better strategy is to identify the 10 percent
of the code that has 90 percent of the computational burden. Re-write
the 10 percent for maximum efficiency; write the other 90 percent for
maximum clarity.

The search for efficiency often leads to writing programs in assembly
language. Because assembly code can be 10 times the length of equivalent
BASIC code, assembly language programs can be 100 times harder to
debug. It (almost) never makes sense to write an entire program in as
sembly language. It does make sense to code the critical routines in as
sembly language. In this way, we get almost the entire advantage of
assembly language speed at a small fraction of the cost of assembly
language programming.

We can actually do even better by recognizing that many numerical
programming problems use the same underlying subroutines. An 8087
assembly language program to add up an array is somewhat more com
plicated than a FOR/NEXT loop in BASIC. But we only need to write and
debug the 8087 program once. Having done so, using the subroutine
over and over is probably easier than writing a FOR/NEXT loop every
time we need to add up an array. Computer scientists call this planned
reuse of subroutines "modular programming." For an example of the
convenience and power of modular 8087 subroutines, take a look at the
statistical package in Chapter 14.

You can actually do even better. 8087 routines for many numerical
computing needs appear in this book (and on the optional diskette).
While we hope you decide to learn about all the capabilities of the 8087
and to write your own special subroutines, you're more than welcome
to begin by lifting the subroutines bodily from these pages and putting
them to use in your 8087-equipped personal computer.

X

Hardware and Software Requirements
The programs in this book run on computers based on the Intel 8087
Numeric Data Processor and the 8088,8086 family of Intel microproces
sors. In addition to the 8088 and 8086, this family includes the 188, 186,
and 286 microprocessors and the associated versions of the 8087. The
programs were all developed and tested on an IBM Personal Computer.
All timing assumes the processor is a 5 megahertz 8088. Timings are only
approximate. (For example, the IBM PC runs about five percent slower
than the stated timings. An 8086-based machine will be somewhat faster.)
Timings given for BASIC programs refer to interpreted BASIC without
an 8087, unless otherwise qualified.

The 8087 assembly language programs can be called as subroutines
from programs written in either interpreted Microsoft BASIC or compiled
Microsoft BASIC, as available on the IBM Personal Computer. The pro
grams assume that data is stored in 8087-compatible format. (See Chapter
3 for an extensive discussion of 8087-compatible software.) The programs
will run with pre-8087 versions of BASIC, but you will need to add the
Microsoft-to- Intel conversion programs in the appendix.

In order to assemble the programs in the book, you will need an
assembler that recognizes the full set of Intel mnemonic instructions. (Be
warned that version 1.0 of the IBM Personal Computer MACRO Assem
bler does not recognize 8087 instruction mnemonics, though it will gen
erate 8087 instructions. You can still use this assembler if you are willing
to re-code the 8087 mnemonics into the 8088 ESCape instruction. On the
optional diskette, we have already re-coded the mnemonics, so you can
use the IBM Macro Assembler.) Since BASIC is the dominant personal
language, we've written all the programs to be called from BASIC instead
of FORTRAN or some other language more common ,on large computers.
If you want to combine the programs with a language that uses different
internal conventions BASIC, you may have to re-write a few instructions.
The programs all work under Microsoft BASIC using version 1.1 of the
PC-DOS operating system on the IBM Personal Computer. If you are
using another computer or different software, some minor details may
be different.

xi

Disclaimers and Limits on Liability

Legal style:
The author and publisher of this book and any accompanying software
hereby disclaim any and all guarantees and warranties, expressed and
implied, on the programs and information herein. No liability for dam
ages, either direct or consequential, shall be assumed by author or pub
lisher. This product is sold on an "as is" basis; no fitness for any purpose
whatsoever nor warranty of merchantability is expressed or implied.

People style:
We've tried very hard to make sure that all the information given is
correct and that all the programs work. Nonetheless, it is possible that
somewhere in the hundreds of pages of manuscript and the thousands
of lines of code, a bug lurks. The purpose of the book and software is
to teach. When you use the programs here, make sure you fully test
them. If most of your programming has been in BASIC, please take special
note of the section in the book on error-handling. Assembly language
programs are by their very nature less fool-proof than programs written
in high-level languages.

If, despite all my precautions, you think you've found a bug, please
write me (c/o Robert J. Brady Company, Bowie, Maryland, 20715) so I
can correct future editions.

Trademarks

The following trademarks are used in this book:
• IBM, IBM Personal Computer, IBM PC, and PC-DOS are trademarks
of International Business Machines Corporation

• 8086, 8087, 8088, 186, 188, 286, Numeric Data Processor, and iAPX
are trademarks of Intel Corporation. The 8087 and 8088 instruction
mnemonics are copyrighted by Intel.

• Microsoft and MS-DOS are trademarks of Microsoft Corporation .
• Apple II+ is a trademark of Apple Computer .
• DEC-2060 and VAX are trademarks of Digital Equipment Corporation .
• IMSL is a trademark of IMSL Inc.

xii

Turning Minutes Into
Seconds

The 8087-equipped personal computer has three nice features: it's easy,
accurate, and fast. Everything you need to apply 8087 power to practical
computational problems is in this book. This first chapter describes the
8087 and its use at the broadest level.

Throughout the book, we try to take a scientific and analytical approach
to understanding the 8087. Wherever possible, we discuss general prin
ciples-the "why" of programming-along with the hundred-and-one
technical details needed to make a computer work. To keep the discussion
concrete, each general principle is illustrated with a practical application.
The 8087 is powerful, yet easy to use. We hope this book will be occa
sionally mind-stretching-and fun as well.

How Easy Is Easy?
The 8087 has been designed to emphasize ease of use as much as raw
computational power. Your first step as an 8087 user is especially easy.
Just add an 8087 to a personal computer and run your programs as usual.
(You will need the version of BASIC, or other software, intended for use
with the 8087.) Without any further effort, you can expect to see im
provements in execution speed ranging from about 20 percent to as much
as a factor of 10.

If you want the maximum advantage from the 8087's hardware power,
you will need software specifically designed for the 8087. There is an
extended discussion in Chapter 3 of what to look for-and what to look
out for-when purchasing software for the 8087. Here we give a quick
overview.

The most important piece of knowledge about 8087 compatible software
is really a statement about hardware. The 8087 extends the capabilities of
existing processors without interfering with the processors' usual oper-

1

2 8087 Applications and Programming

ations. Therefore, any software designed "pre- 8087" should continue to
operate normally when the 8087 is present.

Such 100 percent "upward compatibility" is a great advantage, but it
does have a flip side. When you add an 8087 to a system, programs using
"pre-8087" software do not speed up at all. For example, you can add
an 8087 to the original IBM Personal Computer in a minute or two. (I
added one to my IBM PC in order to write the programs for this book.)
All your interpreted BASIC or compiled BASIC programs will run cor
rectly, but no faster. So when we make statements about the speed
advantage from adding an 8087, there is also an implicit statement made
about using 8087 compatible software.

(With a little reprogramming, you can use the 8087 with pre-8087 ver
sions of BASIC and other software. We discuss this problem in Chapter
3, but if you'd like a little reassurance, all the programs in this book were
written using pre-8087 software.)

You should be aware of one potential trap in buying software for use
with the 8087. It is possible, though unlikely, that you will get into trouble
by mixing software designed to take advantage of the 8087 with pre-8087
software. See Chapter 3 for more discussion.

Assuming you have the versions of BASIC or other programming lan
guages intended for use with the 8087, you can run all your usual pro
grams. Programs that do a great deal of numerical computing will race
when compared to pre-8087 performance. If you are a really heavy num
ber cruncher, you will eventually want to use a library of specially written
high-speed 8087 subroutines.

Part III of this book (Chapters 9-15) includes the most important sub
routines for numerical computing. All you need do is read the explanation
of how to use each subroutine, enter them into the computer, and com
bine them with your BASIC programs. (On the diskette available with
this book, the subroutines have been typed in and assembled for you.)
When compared to pre-8087 BASIC, the use of these subroutines in
creases execution speed by a factor of 10 to 200. (In rare cases, improve
ment factors as high as 500 have been noted.)

Part II of this book (Chapter 5-8) prepares you for the most advanced
stage of 8087 use: writing your own subroutines. As you will see in the
examples throughout this book, programming the 8087 in assembly lan
guage is relatively simple because of the 8087's elegant design. When
you've seen the examples and instructions here, you'll have no trouble
writing your own special purpose programs.

How Accurate Is Accurate?
Easily-written, fast-executing programs are no great trick-if you don't
care about getting the right answer. The most important attribute of the

1 1:1 Turning Minutes into Seconds 3

8087 is its remarkable accuracy. The 8087 has three accuracy-enhancing
features:

• Internal calculations yield 11 more bits of accuracy than BASIC dou
ble precision numbers. That's worth three extra decimal places.

• Internal calculations have an extremely wide range. The 8087 can
represent numbers as large as 104932 and as small as 10-4932 • As a
result, calculations rarely overflow or underflow during intermediate
steps. In fact, both the precision and range of numbers are greater
than those found on most traditional mainframe computers.

• The 8087 is designed to handle a wide range of error conditions and
make an automatic, and graceful, recovery. As a result, simple "pa
per and pencil" algorithms are much more likely to work. And when
something goes wrong, the 8087 follows well- behaved rules instead
of producing the wrong answer.

How Fast Is Fast?

Just how fast is an 8087-equipped PC? A good comparison can be made
to either a standard mainframe computer or to a microcomputer without
an 8087.

Perhaps the most remarkable statement to be made about the 8087 is
that it actually makes sense to compare its speed to that of a mainframe
computer costing hundreds of thousands of dollars. The 8087 is several
times slower than a half million-dollar machine-but then it's more than
several times cheaper.

Exact comparisons are always risky, but a few numbers can give you .
a feeling for the speed of the 8087. Moderate speed mainframe computers
require from about one to five microseconds to multiply two numbers.
A supermini might require one microsecond. A $50,000 table-top mini
might require about 3 microseconds. Efficient 8088 software uses about
400 microseconds to multiply two numbers (about 900 microseconds for
double precision). The 8087, which is an inexpensive add-on to a personal
computer, uses 20 to 30 microseconds for the same task.

For the very first time, a microcomputer is a cost-effective alternative
to number crunching on large computers. The PC with an 8087 has ¼
to ½o the speed of a large computer at 1/10 to 1/100 of the large machine's
cost. While large machines will always be more cost-effective than micros
for some tasks, the 8087-equipped personal computer is the first micro
to compete economically with its larger cousins.

Most PC owners care more about how the 8087 will speed up their
personal computing than about comparisons to large central computer
facilities. The speed advantage of adding an 8087 to a PC depends on
the application and on how you use the 8087. (Having read through this
book, you'll know the methods for attaining the greatest possible ad-

4 8087 Applications and Programming

vantage.) The central point to understand is that the 8087 is a Numeric
Data Processor. The 8087 only speeds up programs involving numerical
computation. If you only use the PC for word processing, the 8087 is
about 99 percent irrelevant. But if you crunch the occasional number,
adding an 8087 is like trading a sparkler for the Fourth of July fireworks
display.

The speed advantage of the 8087 depends very much on how you use
it, but as an overall guide:

The 8087 turns minutes into seconds.

Specific Speed Comparisons

Just how much you get out of an 8087 depends on the software you use
as well as the 8087' s hardware speed. Speed is discussed extensively in
Chapter 4. We give a preliminary discussion here.

What the 8087 will do for you depends on how much time your soft
ware spends on various "overhead" tasks versus how much time is spent
in numerical calculations. The 8087 speeds up the numerical calculations
but does little or nothing about the time spent on overhead. Table 1-1
shows what kind of results you can expect when you combine the 8087
with low-overhead, high-speed routines.

Table 1-1. BASIC versus 8087 speed benchmarks (time in seconds).

Program

BASIC
8087 routine

50 by 50 matrix
multiplication

1200
8

5,000
square roots

52
0.35

The times in Table 1-1 compare (pre-8087) BASIC to special 8087 routines
which you will find later in this book. The improvement is typical of
what the combination of the 8087 and good software can do. Depending
on the application, the 8087 hardware produces an improvement in speed
by a factor of about 10 to 50-the rest is due to the low-overhead software.
You won't see nearly as good an improvement if you use the 8087 with
high-overhead software. (The BASIC interpreters built into a computer
are, of necessity, high-overhead software.) Since the 8087 only speeds
up numerical calculations, and such software spends relatively little time
on numerical calculation, the sum of overhead time and numerical cal
culation time won't fall by nearly the amount shown in the table above.
The improvement will be impressive, nonetheless.

1 a Turning Minutes into Seconds 5

What Equipment Do You Need
to Use an 8087?

You need an 8087, of course. You can get an 8087 either as part of the
original equipment of your personal computer or by adding it to an
existing machine. You can probably add an 8087 to any PC based on the
Intel 8088 or 8086 family. The degree of difficulty of adding an 8087
depends on whether the manufacturer provided a place for the 8087 when
designing the computer. Even if no provision was made, it is probably
possible to add an 8087. However, doing so requires quite a bit of tech
nical expertise.

The good news is that a number of manufacturers did provide a place
for the 8087. In particular, when IBM (and those companies making
compatible personal computers) introduced its first PC, it left an empty
socket on the main circuit board expressly for the 8087. To add an 8087,
you need only plug an 8087 into this empty socket. Plugging it in is easy
(I installed my 8087 without help from anyone); easier, in fact, than
adding a printed circuit board to one of the "expansion slots" inside the
computer. (If you really know nothing at all about the inside of your
computer, get someone to help you. Your computer is, after all, a fairly
expensive piece of equipment.)

Once you have the cover off your machine, plugging in the 8087 takes
under a minute. However, you may want to make one other hardware
modification at the same time. Your computer probably has pre-8087
software, such as a BASIC interpreter, wired into its Read Only Memory
(ROM). If new, 8087-compatible software is available from your manu
facturer, you will want to upgrade the ROM chips at the same time.

What about folks who own a personal computer that is not based on
the Intel 8088, 8086 family. Can they take advantage of the speed of the
8087? The answer, unfortunately, is a qualified "no." The 8087 works
only with the Intel family. However, because the Intel family is so pop
ular, several enterprising companies now sell circuit boards, carrying an
Intel processor, that fit into Apple and some other computers. Some of
these boards include an 8087 or make provision for one to be added.
These boards won't speed up programs executed on your original pro
cessor, but they do allow you to make use of the programs in this book
and other 8087-compatible software.

The Intel 8087 Chip

Processors and Co-processors

The "brain" of any computer is its "CPU," or central processing unit.
For the IBM PC, and many other "second generation" personal com
puters, the "brain" is an Intel 8088. A complete, general purpose central
processing unit built into a single chip, the 8088 has a complete instruction
set for 8- and 16-bit integer arithmetic, programming logic, and input
and output. Like most microprocessors, the 8088 lacks the advanced
mathematical instructions found in large, mainframe computers.

The Intel 8087 Numeric Data Processor extends the instruction set of
the Intel 8088 by adding sophisticated new mathematical instructions.
The 8087 high-speed hardware carries out mathematical operations which
would require thousands of lines of code if implemented in software.
The 8087 hardware can operate 10 to 200 times faster than equivalent
software.

rom...a programmers viewpoint, the 8087 a ds additional instructions
to the 8088' s repertoire and makes availabJ a itiona processor regis
ters. Why not include all the capabilities on one chip, rather than create
an add-on device? There are several reasons:

• The 8087 is an extraordinarily sophisticated computational device,
including 75,000 transistors on a single chip. Even though the 8087
is "limited" to numerical processing, it is much more complex (and
more expensive) than the general-purpose 8088. Building two sep
arate chips holds down development costs and allows users and
system manufacturers to tailor-fit systems for different uses. ·

• The 8088 (and its 16-bit bus sibling, the 8086) were available to the
general market for several years before the first delivery of the 8087.
In designing 16-bit personal computers, several manufacturers left
an open socket, labeled the "co-processor socket" on the IBM PC,
so that machines could be upgraded easily when the 8087 became
available.

7

8 8087 Applications and Programming

• Because the 8087 and 8088 are two devices, they execute instructions
simultaneously. As a practical programming matter, this means that
while the 8087 completes one numerical computation, the 8088 pre
pares the next.

In the remainder of this chapter, we describe the capabilities of the
8087 in a general way. Chapter 5 provides a much more detailed technical
discussion.

Overview of the 8087
'

The 8087 serves as a co-processor with the 8088. The 8087 "watches" in
structions as they are received by the 8088. The 8087 processes its own
instructions, while allowing 8088 instructions to pass by. The 8088 also
watches all instructions, processing its own, while allowing 8087 instruc
tions to pass by. The 8088 does provide one important service for the
8087. On seeing an 8087 instruction, t e 8088 cafculates any necessary
memory address and makes the addres5 available to th 8087. I.he 8088
then roceeds immediately to the ext instruction. In this way, the co
processo esign a lows the 8087 and 8088 to execute instructions si
multaneously, thus considerably enhancing total system performance.

The central feature of the 8087' s architecture is eight 80-bit data reg
isters. These registers are organized as a classic "pushdown stack," an
organizational technique that leads both to fast vector operations and to
efficient code generation by high-level language compilers. (Chapter 5
includes an extensive discussion on the operation of the pushdown stack.)
The 80-bit register width allows the 8087 to perform extremely accurate
calculations. While the 8087 instruction set recognizes seven different
data types in memory, all data is automatically converted to an 80-bit
internal representation when brought into the 8087. This frees the pro
grammer from most worries about converting between data types.

Instruction Classes

Each of the 8087's 68 instructions fall into one of six classes. (The clas
sification scheme is a convenient way of describing the capabilities of the
8087. You needn't remember the classifications in order to use the 8087.)
The six classes are:

Data transfer (discussed in Chapter 6). These instructions move data
back and forth between the 8087 and memory and shuffle data in
ternally among the 8087 registers.

Arithmetic (discussed in Chapter 6) . At the heart of the 8087 instruction
set are the operations for addition, subtraction, multiplication, and
division-plus some extras such as square root and absolute value.

2 c The Intel 8087 Chip 9

Transcendental (discussed in Chapter 12). The 8087 hardware has built
in capabilities for computing logarithms and trigonometric functions.
(These instructions are rarely found even on large-scale mainframes.)

Constants (discussed in Chapters 6 and 12) . Seven of the most fre
quently used constants, such as 0, 1, and pi, are built into the 8087.

Comparison (discussed in Chapters 6 and 7). These instructions are
used for making less than/equal to/greater than, and other similar
tests.

Processor control (discussed in Chapter 12) . This class of instructions
gives the programmer total control over the behavior of the 8087.
Some of these instructions are also used in conjunction with the
comparison instructions and 8088 branching instructions to control
program flow.

Data Types
The seven regular 8087 data types are examined in depth in Chapter 5.
However, for most ordinary 8087 programming considerations, only a
few facts are really important. The only data types directly available in
BASIC are integer, single precision, and double precision . Generally,
only the latter two are used to hold numerical data. If your principal use
of the 8087 is scientific programming, you need remember only thre
facts about data types:

l. Single precision numbers (calle.i short real ~n 8087 terminology) have
six or seven decimal digits of accuracy ana occupy four by:tes of

-memory .
2. Douale precision numbers (called long rea in 8087 terminology) have

15 or 16 decimal digits of accuracy and occupy eight bytes of me -
ory.

3. emporary real numbers are used internal y by the 8087. or all cal
culations . They etain better tha 18 decimal digits of accuracy.
When stored in memory, a temporary real occupies 10 bytes.

If you are primarily a number cruncher, these three data types will
probably account for 95 percent of your use. However, the 8087 recog
nizes four additional data types:

l. Integer numbers (called word integer in 8087 terminology) occupy two
bytes of storage and are used principally to index arrays and other
data structures. BASIC and the 8087 use the same representation
for integer data.

2. A .short integer occupies four bytes . While the largest (signed) word
integer is 32,768, a short integer can be as large as two billion.

3. A long integer occupies eight bytes. A long integer has two or three
more digits of accuracy than a double precision real number and
can hold values as large as 1018.

10 8087 Applications and Programming

4. Packed ecimal representation is used for business and data process
ing operations. A packed decimal uses 10 bytes of memory and
holds 18 decimal digits . Unlike the three preceding data types, the
packed decimal form uses decimal rather than binary representa
tion. Each of the digits 0- 9 is represented by four binary bits. These
decimal igits are then "packed" two to a yte.

By way of contrast, the types of data recognized by the 8088 hardware
are limited to one- and two-byte binary integers and short packed decimal
values. All the numerical processing in pre-8087 BASIC and other high
level languages is performed by software created from operations on
integers. The 8087 eliminates the need for such software. Not only are
8087-based systems faster, but programs use up much less space and
numerical results are more reliable.

How Does My Computer Access
the Power of the 8087?

In the next chapter we discuss software for the 8087. In order to under
stand why some software is 8087-compatible-and why some isn't-it
helps to review the basics of the 8088/8087 co-operative set-up.

The instruction set for the 8088 was designed to be extended at a later
date. One of tne 8088's ·nstructions is called the escape instruction. The
8088 knows that the esca e instruction really calls for an operation o
the 8087, so it essentially ignores this instruction and allows the 8087 to
process it. The instructions used by the 8087 are different varieties of the
8088 escape.

When both the 8088 and 8087 are installed, we can think of the com
bination as one large computer with expanded capability . Software which
uses th escape instruction internally must have an 8087 present ·n order
to operate correctly. Software built "pre-8087" simply does not use the
escape instruction and therefore does not take advantage of the new
capacity.

If you are writing your own programs at the machine language level,
you'll know whether or not you've used the escape instruction. Most of
the time you use a computer, such intimate internal detail isn't under
your control. In the next chapter, we discuss some of the varieties of
8087-compatible-and incompatible-software.

J

Buying and Building
8087-Compatible
Software
What special considerations apply when buying or building software for
use with the 8087? Your first question will always be, "What software
works?" Your second question, "How well?" In this chapter, we break
our analysis of software compatibility into three parts. In the first part,
we discuss some important technical details about compatibility. In the
second section, we analyze why some software produces very fast pro
grams-and why some does not. In the chapter's last section, we discuss
the merits of various types of software in terms of programming con
venience and calculation speed.

Compatibility-The Technical Details

Suppose we cou1 ook at a program that had been translated into our
computer's "machine language." The program uses either the machine
language instructions t at ·ve the 8087, the "escape instru..ctions'' men
tioned in the last chapter, or it doesn't. fut doesn't use these instructions,
then he 8087 is irrelevant. The program will run with or without an 80~7
and will run at the same speed either way. If the program does use 8087
instructions, then the 8087 must be present, of course .

As it turns out, there is a second issue, equally important for com
patibility, which hinges on a detail of software design. All computers
represent numbers internally as particular patterns of O's and l's. Dif
ferent computers use different patterns for the same number. For the
most part, we don't care which pattern the computer uses, since we don't
see the individual O's and l's anyway. The important thing is that the
computer's hardware knows how to interpret its own patterns. (As it

11

12 8087 Applications and Programming

happens, the representation used on the 8087 has been proposed as an
industry standard. For the curious, we show what the 8087's represen
tation looks like in Chapter 5.)

Until the introduction of the 8087, personal computers based on the
8088 family had hardware for integer arithmetic only. Since there was
no hardware "with an opinion" on how non-integers should be repre
sented, each software designer was free to choose his or her own patterns.
In practice, this meant that whoever built translators for programming
languages (compilers, interpreters, and assemblers) made the decision
for everyone using a particular language. Since icrosoft has been the
principal supplier of programming languages for 16-bit computers, the
vast bulk of software uses the patterns chosen by Microsoft.

Unfortunately, the Microsoft pattern and the_Intel 8087 patterrwr different.

The result of this conflict is that pre-8087 software and 8087- compatible
software cannot trade data represented in their respective internal for
mats. With your 8087 in place, you can safely use either pre-8087 or 8087-
compatible software. J y1ou try to combine programs produced with
pre-8087 and 8087-compatible translators, yo will usually get garbage.
Further, if you try to exchange data between such programs you will get
garbage if the data was stored using the computer's internal format. If
the data is not stored in the internal format, then the programs can
probably exchange data.

There is no general rule as to whether a conflict will occur between
two pieces of software; you need to know the particulars of each program.
In the third section of this chapter, we give some examples of where to
look for trouble.

What Makes a Program Fast or Slow?

Three asics aetermine a program's speed: the way you solve the problem
(what computer scientists call the "algorithm"); your hardware's speed;
and the behavior of the programming language translator. The first is
always the most important. There is no computer so fast that it cannot
be slowed to a crawl by a sufficiently bad way to solve a problem. The
applications chapters of Part III supply high-speed solution techniques
to many problems in numerical programming.

The question of hardware speed you solve, of course, when you get
an 8087. If hardware were the only determinant, your program execution
time would be cut by a factor of 10 to 50!

But hardware isn't the only determinant. Depending on how your
program is translated into instructions the computer can understand,
using an 8087 may drop execution time by only a few percent or speed
up execution by a factor of 200. For this reason, and because you can

3 t1 Buying and Building 8087-Compatible Software 13

exercise a fair amount of control over which translator you use, we con
centrate on this third factor.

Translating the Source Program

Suppose we instruct the computer to add variables A and B and to save
the result in variable C. A typical command might look like this:

C=A+B

The process of going from command to answer is composed of three
phases:

• Translation time
• Invocation time
• Calculation time

Translation time is the time th computer takes to figure out what to
do. For example, every time the BASIC interpreter sees "C =A+ B," it
has to translate this to mean "find the variable A in memory and then
find the variable B, next add the two, and finally place the sum in variable
C." The BASIC compiler makes the same translation as the interpreter,
but only once, rather than every time a line is executed. Interpreted
programs spend a lot of time in the translation phase while compiled
programs spend none at all.

fnvocation time is tru time it takes he comput _to calculate the ad
dresses of the variables and to call the appropriate internal subroutine.
For example, the BASIC ROM includes a floating-point addition subrou
tine. The interpreter calls this subroutine to add A and B. Code produced
by the BASIC compiler calls a similar routine in the run-time library.

alculation time is the time he computer spends doing the actual ad
dition. All the direct advantage of the 8087 _hardware comes from im
provement in this phase.

Since the 8087 speeds up only this last phase, programs in which most
of the time is spent in calculation get a big boost. Programs which spend
most of their time in translation or invocation get only a small boost.
Reduction of translation and invocation time depends on the appropriate
choice of a program translator.

You might think that we would always choose the translator that gives
the fastest results. However, there are some tradeoffs involved. For ex
ample, compilers produce faster programs than interpreters, but inter
preters are mor..e convenient to use. And, as a practical matter, almost
every personal computer comes with a built-in BASIC interpreter, but
not everyone has a compiler.

So how important is each phase? The answer depends on the problem.
In Chapter 1, we presented some representative timings for a matrix

14 8087 Applications and Programming

multiplication problem and for taking 5,000 square roots. I've made some
estimates of the time spent in each phase for pre-8087 interpreted BASIC,
for an 8087-compatible compiler, and for an 8087 assembly language
program. Table 3-1 shows the time in microseconds for a single addition
and multiplication (for the matrix program), and for taking the square
root of one element of a vector. I do have to warn you that Table 3-1 is
much less accurate than other timings given in this book. Nonetheless,
it gives a rough guide as to the trade-offs involved.

Table 3-1. Execution-time speed breakdowns (time in microseconds).

Matrix Problem Square Root
(translate invoke calculate) (translate invoke calculate)

interpreter 8400) 1200 3600) 6800
compiler 0 135 56 0 66 70
assembly

language 0 10 56 0 0 70

We will refer back to Table 3-1 several times in our discussions in the
next section. While the table shows the speed advantage of assembly
language, it does not reveal the extra work generally involved in writing
assembly language programs rather than BASIC. As a rule of thumb, an
assembly language program requires ten times the amount of code as
one written in BASIC.

The bulk of numerical computing uses what are called "linear opera
tions." A small family of programs, such as matrix multiplication, can
be put together to solve all sorts of different linear problems. With a
library of these routines, such as the library put together in this book,
you can solve most problems without having to write any subroutines
yourself.

The square roo~ example is somewhat different. "Non-linear" opera
tions are all different; there isn't a small family of .routines that you can
re-arrange as needed for your own problems. As a result, non-linear
problems require more custom programming. The more programming
required, the more we will want to favor programming convenience over
calculation speed.

Both the matrix multiplication routine and the square root routine
appear, in assembly language, in later chapters. As assembly language
programs go, neither is very difficult to write. (... and of course you
needn't write these particular programs, since we've already done so.)

3 c Buying and Building 8087-Compatible Software 15

Computational Accuracy

Accuracy deserves as much attention as does speed. The 8087 is extremely
accurate, but most translators don't allow you to access the 8087's 80-bit
registers. Assembly language allows full use of 8087 accuracy, as do a
few compilers (notably, those developed at Intel) intended specifically
for use with the 8087. These compilers, which provide for operations on
80-bit data, are not, at present, in common use.

For some problems, the extra accuracy of 80 bits is worth any amount ·
of programming inconvenience, but for "every day" use most of us will
settle for double precision accuracy. ('The disappointing omission of dou._
ble precision renders unacceptable, for general number crunching use,
several prominent compilers used on personal computers.) The assembly
language routines in this book use 80-bit data in the "delicate" part of
calculations and the usual single and double precision data types else
where.

8087-compatible Software

In this section we discuss a number of different approaches to buying
and building 8087-compatible software. For each approach, we discuss
the trade-offs between programming convenience and execution speed.
The approaches discussed are:

• Using packaged programs
• 8087 hardware with pre-8087 software
• Interpreted BASIC
• Compiler with 8087 floating point library
• Compiler for 8087 "native code"
• Assembly language modules for BASIC
• Pure assembly language code

Using Packaged Programs

How much advantage the 8087 gives you with a "canned" program
depends on how well the program is written. A really well-written canned
program will take better advantage of the 8087 than any program you
write . Not because the programmer knew anything about the 8087 that
you won't discover in this book, but because for a program that sells
thousands of copies, a programmer can afford to spend time squeezing
out every last microsecond. Unfortunately, there is no real satisfactory
way of knowing how good a canned program is short of "field testing"
it. Also, unfortunately, software manuals almost never say anything about
execution speed.

16 8087 Applications and Programming

You will find three kinds of packages being advertised (with respect
to 8087 compatibility).

First, there are programs intended to run only wjth the 8087, which
make no attempt at compatibility with earlier software or non-8087 ma
chines. Many applied problems cannot be solved on a microcomputer
(in a reasonable amount of time) without an 8087. For programs that
solve such problems, compatibility is not an issue. In fact, the speed of
the 8087 is so critical for some applications that enterprising software
houses began to market 8087-only packages before the manufacturers of
personal computers had begun to sell the 8087!

Second, there are programs fhat will run eithe with or wjthout fhe
8087. Some software comes in a single version that will run either way.
Other programs come in two versions: one explicitly for the 8087 and
one that does not use the 8087.

Third, there are programs That igno.r:e the 8087. Almost all of these
programs will run with the 8087 and those that are written in BASIC will
automatically take advantage of the 8087 if you have an 8087-compatible
BASIC interpreter in your computer.

A firs t warning about ca-nned programs. Many high-efficiency pro
grams save information on disk in what are called "binary" files. Binary
files store data using the computer's internal representation of numbers
rather than the "ASCII" representation more commonly used for disk
storage . (This scheme allows programs to avoid conversions between
internal and external formats and thus makes data storage and retrieval
much, much faster.) As discussed above, the 8087 uses a different internal
representation for numbers than does most pre-8087 software. For this
reason, pre-8087 and 8087-compatible binary files are incompatible.

If you use a pre-8087 program that saves binary files on disk and then
.switch to 8087-compatible software, you will e unable to read the files
back in. Furth~r, since you usually do not have access to a description
of the file format, it may be impossible for you to convert the files yourself.
To protect yourself when using a canned program with binary files, use
the program to convert the files into an ASCII representation while you
are still using the pre-8087 software and then convert them back to binary
later.

A second warning about canned programs. Many high-efficiency pro
grams use small amounts of assembly language code to speed up im
portant calculations. You do not generally have any way of finding out
whether a particular package uses any machine code . If the machine
language routines think numbers are stored using Microsoft's original
format and the BASIC part of the program operates using Intel format
... well, you can imagine the results.

3 c Buying and Building 8087-Compatible Software 17

8087 Hardware with Pre-8087 Software
It would be awfully nice if we could get the benefit of the 8087 without
attention to software. For reasons we've discussed, this isn't possible.
For example, if you add an 8087 to a machine with a pre-8087 BASIC

· interpreter, your BASIC programs will run, but they won't make any
use of the 8087. This is not much of an option.

Understand, however, that it's the translator not the program that needs
to be 8087-compatible. If you have an 8087-compatible BASIC interpreter,
or some other 8087-compatible translator, your old BASIC programs will
run and will take advantage of the 8087. (This illustrates an important
re_ason for using BASIC or another standard "high-level language." If
the hardware changes, as is the case when an 8087 is added, you ee<l ~
only obtain a new translator and usually'. do not eed to re-write your
applications programs.)

It is possible to combine 8087-compatible software with pre-8087 soft
ware by explicitly converting data back and forth between the Intel and
Microsoft formats. (Conversion programs appear in the appendix.) For
example, you can use the 8087 programs in this book with the original
BASIC interpreter supplied with the IBM Personal Computer, but you
will have to do a little bit of extra BASIC programming.

Interpreted BASIC
Depending on when you bought your personal computer, it will either
include an 8087-compatible BASIC interpreter or you may be able to buy
such an interpreter to replace the computer's original BASIC ROM. For
most applications, the BASIC interpreter provides the easiest program
ming and the slowest execution.

The 8087 does not substantially affect the speed of the translation or
invocation phase of the interpreter's operation, but the calculation phase
flies with an 8087 in place. Refer back to Table 3-1. For a problem like
matrix multiplication, most of the action is in translation and invocation,
so you can't expect more than about a 10 to 15 percent improvement
over pre-8087 BASIC.

Calculation time was a far greater fraction of total execution time in
the square root problem. The 8087 has much more impact here; we might
expect an overall gain of about a factor of three. Some non-linear func
tions, such as the trigonometric operations, spend even more time in the
calculation phase. In some cases, we might see improvement by a factor
of eight.

We're ready now to draw our first conclusions.

If most of your number crunching involves linear operations, the 8087 with
the updated BASIC interpreter ALONE has only limited value.

18 8087 Applications and Programming

If much of your number crunching uses the non-linear functions, the 8087
with the updated BASIC interpreter is worth several non-8087 PCs.

Here's an important warning about using the 8087 version of BASIC. No
matter what you may be told, the 8087 and non-8087 versions of BASIC
are not fully compatible (though they are close). Beeause floating point
numbers are represented differently, there is no way to make them fully
com atible. Two fundamentally irresolvable pro lems exist.

First, the two floating point representations differ slightly in their pre
cision and range. In particular, for double precision the Intel format trades
about one decimal place less precision for a substantially increased rari.ge
for the exponent. On rare occasions, programs that worked on the orig
inal BASIC interpreter will give incorrect answers when used on the 8087
version because of round-off error. Somewhat more frequently, programs
that run under the new version will have overflow errors if used on a
personal computer with the old BASIC. Fortunately, such problems are
rare, and quite unlikely to be a major concern for most users.

Second, some programs use the BASIC functions MKS$, MKD$, CVS,
and CVD to convert back and forth between floating point numbers and
strings. Typically, this is done in order to store numbers on a disk file
in their binary representation. The functions work in both versions of
BASIC. But if you store numbers on the disk in one version and retrieve
them in the other, you will get garbage data without getting any indi
cations of error. If you use binary-representation files for storage between
program runs, be absolutely certain to convert the files as part of the
process of changing from one version of BASIC to the other.

Compiler with 8087 Floating Point Library
A compiler differs from an interpreter in that it translates the sour_ce
language program only once, rather than every time a ine of code is
executed. Compilers have some disadvantages: they take a relatively long
time to translate a program; they usually generate code that takes up
more space than does an interpreted program; they slow the business of
debugging programs; and they can be expensive. But they have one
undeniable advantage over an interpreter: they eliminate the translation
phase from program execution, and thereby reduce execution time enor
mously.

Many of the compilers used on personal computers handle floating
point operations in the following way. Whenever a floating point oper
ation is needed, the compiler generates a CALL to the appropriate sub
routine. After the program is compiled, the LINK program is used to
combine the compiler output with a library of subroutines that includes
all the floating point operations. IBM's BASIC compiler works this way.

Compilers that use floating point libraries can be converted to 8087
operation by substituting a new library for the one originally supplied

3 c Buying and Building 8087-Compatible Software 19

with the compiler. The original IBM BASIC compiler can be converted
in this manner. Using a compiler with an 8087 library not only eliminates
the translation phase, but also brings the calculation phase up to 8087
speed. However, the invocation phase remains unchanged. Referring
back to Table 3-1, we see that such a compiler might be 50 times as fast
as pre-8087 BASIC in the matrix multiplication example and about 75
times as fast on square roots .

(You should be warned that the effectiveness of this approach to mak
ing a compiler 8087-compatible varies. Some implementations do not do
nearly as well as the speed improvements suggested in the previous
paragraph.)

Another conclusion now:

On linear problems, the combination of the 8087 and a compiler is very, very
good. (Even if it doesn 't quite reach our goal of "turning minutes into
seconds. ") On non-linear problems the combination is truly excellent.

Compiler for 8087 "Native Code"

Compilers on mainframe computers, and on minicomputers with floating
point hardware, directly generate floating point instru_ctio:ns instead oL
generating calls to a subroutine library. This technique eliminates most
of the invocation time . Some mainframe "optimizing" compilers are so
good that the code they generate is almost as fast as assembly code.
Equally good compilers for personal computers are only beginning to
appear and are not currently in widespread use. You may want to look
for 8087 "native code" compilers as they come on the market, since such
a compiler provides the very combination of execution speed and pro
gramming convenience.

Assembly Language Modules for BASIC

ssembly language is at the bottom of the list when it comes to pro
gramming convenience, but at the top of the ·st when it co_rnes to spee_d .
Fortunately, assembly language routines are easily combined with either
interpreted or compiled BASIC, as well as with programs written in other
high-level languages. In fact, preparing assembly language modules for
frequently used tasks can be more convenient than writing the same code
over and over again in BASIC. (It is very inconvenient to write re-usable
modules in BASIC.)

In a typical program, almost all the work takes place in a very small
fraction of the code. Optimally, we use assembly language modules to
replace this fraction of the code, while leaving the remainder of the
program intact. This strategy leaves the bulk of the writing in a convenient

20 8087 Applications and Programming

programming language and the bulk of the computation in a high speed
routine.

Assembly language remains the undisputed speed champion. The as
sembly language matrix multiplication routine which appears in Chapter
10 is about 150 times faster than pre-8087 BASIC. The square root routine
also beats BASIC by about 150-to-l.

Pure Assembly Language Code

When does it pay to write an entire number crunching program in as
sembly language? In my opinion, never. For linear problems, writing the
entire program in assembly language has no significant speed advantage
over using a small number of strategically chosen assembly language
modules. (This is the approach we follow in the second and third parts
of the book.) For non-linear problems, where isolating re-usable modules
is difficult, writing special assembly language programs does increase
speed over using a compiler, but only at an unreasonable cost in terms
of programming effort.

Two final conclusions:

• If most of your number crunching is on linear operations-and most of the
world's is-your best overall bet is probably the BASIC interpreter and a
small set of assembly language routines, either the routines appearing in
Parts II (Chapters 5-8) and Ill (Chapter 9-15) or another subroutine package
you purchase commercially.

• If a good part of your number crunching is non-linear, your best bet is
probably the combination of BASIC compiler and 8087. While assembly
language routines are still substantially faster than BASIC, BASIC is far
more convenient.

On to Chapter 4

Just how does the 8087 stack up against other computers? In the next
chapter we insert a few of our strategic modules in BASIC programs and
run some timing tests.

Benchmarks

With the advent of the 8087, moderate-to-large scale numerical computing
can now be done on a microcomputer. The 8087 increases the compu
tational range of the microcomputer by one to two orders of magnitude.

The 8087 brings the "minimum-efficient-scale" of computing down to
the personal level. In the past, a mainframe computer that cost 100 times
more than a personal computer would have been thousands or tens of
thousands times faster. While the 8087 remains several times slower than
powerful mainframes, an 8087-equipped PC also costs tens or hundreds
of times less. So today, the 8087 has made the personal computer a cost
effective number cruncher.

Historically, large computers have always been more cost efficient, in
terms of raw computational power, tha11 smaller computers. Very large
mainframes are more cost efficient than minis; minis are more cost effi
cient than micros. Just as the advent of "super-mini" computers a few
years ago closed most of the gap between minicomputers and main
frames, the 8087 closes most of the gap between personal and mini
computers. To help you draw your own conclusions, speed benchmarks
for a range of machines appear below.

Comparing Benchmarks
Speed and accuracy ratings are presented below for a number of different
combinations of hardware and software. Before you start drawing con
clusions, understand what benchmarks do and do not tell us.

Benchmark programs are used to compare various combinations of
software and hardware by executing the same program under controlled
conditions. We've continued here with the timing of the two problems
examined in Chapter 1. The first benchmark program multiplies two 50
by 50 matrices in order to illustrate the 8087' s power in linear operations.
The second benchmark program, taking 5,000 square roots, illustrates
the 8087's non-linear calculations. Please realize that benchmark com
parisons have some limitations.

21

22 8087 Applications and Programming

First, these benchmark problems are not intended to be "fair." I picked
two problems which show off the capabilities of the 8087. They show
the kind of results the "number crunching" user can reasonably expect,
which aren't necessarily the results a "typical" user might expect and
are totally unrelated to what a "word processing" user will see.

Second, our benchmark programs are "tuned" to be efficient on the
8087. For example, we've run most of the comparison programs in BASIC
because BASIC is the dominant language on personal computers. On a
larger computer, Fortran or APL or some other computer language may
be more efficient than BASIC. If we were starting on one of these ma
chines, we might well program in a language other than BASIC.

Even if not totally "fair," these benchmarks do give a pretty good idea
of what the 8087 will do. The first set of benchmarks below, compares
timings on an IBM Personal Computer with and without the 8087. The
second set of benchmarks compares the 8087 to several other micro, mini,
and mainframe computers.

IBM Personal Computer Benchmarks

The IBM PC is the most popular of the "second generation," 16-bit per
sonal computers. Internally, the PC uses an Intel 8088 microprocessor
running at a "clock speed" of 4.77 megahertz. It is worth knowing for
purposes of comparison that some of the 8088-based personal computers
on the market run at a 5 megahertz "clock," and are just a little bit faster.
Also, computers based on the 8088's "big brother," the 8086, are quite
a bit faster.

For this benchmark, we've taken Table 1-1 from first Chapter 1 and
added a third alternative, the IBM BASIC compiler. Table 4-1 shows
execution speeds for both matrix multiplication and the square root prob
lem using IBM's pre-8087 BASIC interpreter, IBM's pre-8087 BASIC com
piler, and our own assembly language modules.

Table 4-1. BASIC versus 8087 speed benchmarks (time in seconds).

50 by 50 matrix 5,000
Program multiplication square roots

BASIC interpreter 1200 52
BASIC compiler 140 6
8087 routine 8 0.35

The first two rows show why people turn to compilers. The IBM BASIC
compiler beats the BASIC interpreter by around eight to one. Our 8087
routines beat the compiler times by a factor of 20!

4 ll Benchmarks 23

"Outsider" Benchmarks

How does an 8087-equipped personal computer compare with "other
people's" equipment? The comparisons below repeat our benchmarks
on several popular combinations of hardware and software.

Please don't read these comparisons as "better" or "worse." The hard
ware used runs from an Apple II+ to an IBM 3081. The Apple isn't as
fast as the PC, but then it doesn't cost as much. An IBM 3081 is faster
than the PC, but it won't fit on your desk ..

The comparisons are run on four machines:

• Apple II +-Many people's favorite first-generation personal com
puter. Both programs used the Apple's built-in Applesoft BASIC
interpreter.

• DEC 2060-A moderate size mainframe computer used by many
universities to provide time-sharing services. (Manufactured by Dig
ital Equipment Corporation.) Both programs were executed using
compiled BASIC. DEC-2060 BASIC includes a matrix multiplication
function which we used for the first program.

• VAX 780-A 32-bit "super-mini" computer, very popular for mod
erate size number crunching applications. (Manufactured by Digital
Equipment Corporation.) These test programs were written in the
popular scientific language FORTRAN, and executed using the VAX's
optimizing compiler.

• IBM 3081-The IBM 3081 is a very large mainframe computer costing
millions of dollars. Both programs were written using the "Stanford
BASIC" interpreter. We again used a built-in matrix multiplication
function for the first program.

The benchmark results appear in Table 4-2.

Table 4-2. Micro, mini, and mainframe speed benchmarks (time in
seconds). ·

50 by 50 matrix 5,000
Program/ Computer multiplication square roots

8087 routine 8 0.35
Apple II+ BASIC 1796 130
DEC 2060 BASIC 5.2 0.40
VAX 780 FORTRAN 1.6 0.20
IBM 3081 BASIC 0.11 0.26

As we cautioned above, you need to be careful about benchmarks. The
8087 routines make optimal use of the 8087' s potential. (The 8087 routines
appear in later chapters, so you can examine their innards if you wish.)

24 8087 Applications and Programming

The programs on the other machines use standard programming tech
niques, and so make moderate to excellent use of the hardware's poten
tial.

Caveats notwithstanding, Table 4-2 tells us quite a bit about how to
classify an 8087-equipped personal computer. When it comes to number
crunching, the 8087 doesn't just make a fast micro-it creates the equiv
alent of a slow super-mini or a slow mainframe computer!

Introduction to 8087
Architecture

This chapter provides a detailed, technical description of 8087 architec
ture. The 8087 instruction set is described in Chapters 6 and 12. (For
hardware and electronic details, see Intel's iAPX 86,88 User's Manual, the
definitive source on the 8087.)

More detail is given in this chapter than the typical 8087 user need be
concerned with. You may want to browse through this chapter and then
proceed directly to the description of the simple instruction set in Chapter
6.

Co-processor Organization
The 8087 is designed as a co-processor for the._ 8088 CPU. Both th_e 8087
and 8088 "look" at each instruction fetched from memory. The 8087 acts
on Jts own instructions and ignores those belonging to the 8088. When
the 8088 sees an 8087 ins-truetion, which is an 8088 ESCape instruction,
it calculates the address of any data referenced by the instruction and
reads-but ignores- one byte of data from this address. Otherwise, the
8088 treats the 8087 instruction as a null operation. The 8087 copies the
addLess calculated by the 8088 and uses it to store or fetch data to and
from memory. In this way, the co-processor design allows the 8087 and
the 8088 to execute simultaneously, considerably enhancing total system
performance.

To ensure properly coordinated parallel operation, 8087/8088 programs
must follow the following synchronization rules:

• The 8088 must not change a memory location referenced by an 8087
instruction until the 8087 is finished. The 8088 is free to change its
own internal registers and flags .

• A second 8087 instruction must not be fetched until the current
operation is complete. (Under special circumstances it is possible to

25

26 8087 Applications and Programming

safely violate this rule, but such circumstances do not generally occur
in application programs.)

Synchronization, obedience to both rules, is achieved through judi
cious use of the 8088 WAIT instruction. The WAIT instruction tells the
8088 to suspend processing until the TEST line becomes active. (The 8088
checks the TEST line status once every microsecond.) When the 8087
begins an instruction, it sets the TEST line to inactive. It then resets the
TEST line to active when the instruction is complete.

The programmer has responsibility fo seeing that the first rule is
obeyed. To ensure synchronization, code an FWAIT instruction after an
8087 instruction and before an 8088 instruction whenever the two in
structions access the same memory location. (Except that the FWAIT may
be omitted if neither instruction changes the memory location.) FW AIT
generates an 8088 WAIT instruction. (Use of the mnemonic "FWAIT,"
for "floating wait," is a software convention.) FWAIT holds the 8088 until
the 8087 operation is complete, thus preventing violation of the first rule.

Responsibility for implementing the second rule is left to the assembler.
The assembler automatically places a WAIT instruction in front of every
8087 instruction. Thus the 8088 will suspend processing and not fetch
another 8087 instruction so long as a previous 8087 instruction is still
being executed.

Programs violating either of the two rules will have unpredictable re
sults. Possible outcomes include the computer coming to a dead halt (if
you are lucky), and having random numbers presented as final results
(if you are not so lucky).

Internal 8087 Registers
Five internal data areas are accessible by the 8087 programmer. These
are the register stack, the status word, the control word, the tag word, and
the exception pointers.

8087 computation is organized around eight 80-bit data registers. These
registers form a pushdown stack, called the register stack. The register at
the top of the stack is referred to as ST or ST(0); the register immediately
below the top is ST(l); and so forth through ST(7). Many 8087 instructions
implicitly reference ST(0) or both ST(0) and ST(l) . Many instructions also
push data onto or pop data off of the stack. (The stack is actually orga
nized as a chain, so that ST(0) is "below" ST(7). It is the programmer's
responsibility to prevent stack overflow.) Stack operations are described
in detail in Chapter 6.

The 16-bit status word shows the current state of 8087 operations . We
make extensive use of the condition code bits in the status word, which
indicate the result of 8087 comparison operations. The status word also
shows whether any exceptions (computational errors) have occurred,

5 ci Introduction to 8087 Architecture 27

whether the 8087 is busy, whether the 8087 has requested to interrupt
the 8088, and which of the eight stack registers is currently the top of
the stack. These elements are primarily used for systems programming.
Figure 5.1 shows the layout of the status word.

15 0

I B l c3 l , ST , l c2 l c,I co l IR l l PE l UE l OE l ZE l DE l IE I

~
EXCEPTION FLAGS (1 = EXCEPTION HAS OCCURRED)

INVALID OPERATION

DENORMALIZED OPERAND

ZERODIVIDE

OVERFLOW

UNDERFLOW

PRECISION

(RESERVED)

INTERRUPT REQUEST

CONDITION CODEl11

STACK TOP POINTERl2l

'-------------------BUSY

11) See descriptions of compare, test, examine and remainder instructions for
condition code interpretation.

121 ST values:
000 = register 0 Is stack top
021 = register 1 Is stack top

.
111 = reglster71s stacktop

Figure 5.1. (Used with permission of Intel Corporation.)

The 16-bit control word allows a number of 8087 options, described
below under "control options," to be set under program control. These
include the exc;eption and interrupt-enable masks, which are primarily
of interest to systems programmers. Other options, defining rounding,
infinity, and precision controls, are occasionally used to control the re
sults of numerical operations. Figure 5.2 shows the layout of the control
word.

The tag word has two bits for each stack register to indicate whether
the contents of the register are valid, zero, special, or empty. The exception
pointers show the current instruction and operand. Neither the tag word
nor exception pointers are normally of any interest to application pro
grammers.

Control Options

By manipulating the control word, you can change the way the 8087
handles rounding, infinity, and precision.

The 8087 offers four methods of rounding off answers that cannot be
represented exactly in the available number of bits. The options are round

28

15

I I

8087 Applications and Programming

I
I 1c I RC I PC l1EMI

I I -- --

0

lill

<1l Interrupt-Enable Mask:

EXCEPTION MASKS (1 = EXCEPTION IS MASKED)

INVALID OPERATION

DENORMALIZED OPERAND

ZERODIVIDE

OVERFLOW

UNDERFLOW

PRECISION

(RESERVED)

INTERRUPT-ENABLE MASK(1)

PRECISION CONTROL(2l

ROUNDING CONTROL(3)

INFINITY CONTROU4l

(RESERVED)

0 = Interrupts Enabled
1 = Interrupts Disabled (Masked)

(2) Precision Control:
00 = 24blts
01 = (reserved)
10 = 53 bits
11 = 64 bits

(3) Rounding Control:
00 = Round to Nearest or Even
01 = Round Down (toward -oo)
10 = Round Up (toward +oo)
11 = Chop (Truncate Toward Zero)

(4) lnlinily Control:

~ : ::rl~!tive

Figure 5.2. (Used with permission of Intel Corporation.)

to nearest, round down (toward minus infinity), round up (toward infinity),
and chop (truncate toward zero). Round to nearest is the default.

The 8087, unlike most computers, has a well-defined representation
of infinity. The 8087 produces the proper result when calculating math
ematical functions with infinite arguments, at least when a mathemati
cally well-defined result exists. For example, 5/infinity yields zero. Both
positive and negative infinity may be represented.

Two modes of "infinity control" are offered on the 8087: affine closure
and projective closure. Under affine closure, positive and negative infinity
are regarded as being at opposite "ends" of the number line. Under
projective closure, positive and negative infinity are considered equal,
as if the two "ends" of the number line bent around and came together.
Relative comparisons between finite numbers and infinity are permitted
under affine closure, but not under projective closure. Projective closure
is the default.

Precision on the 8087 can be set to 64, 53, or 24 bits of accuracy,
corresponding to the temporary real, double precision, and single pre
cision data types. This option is offered so that the 8087 may comply
with certain industry standards which offer only reduced accuracy, and
so that 8087 computation can be made compatible with less accurate
computers. Aside from the compatibility issue, the only value in using

5 tr Introduction to 8087 Architecture 29

less than the full 64 bits of accuracy is the educational value of learning
that more accuracy is better. Default precision is 64 bits.

Exception Masking

Various important computational errors are trapped by the 8087. When
such an error occurs, the 8087 raises an exception condition. Exceptions
may be unmasked ("unmasked" means exposed to the 8088), in which
case a program interrupt occurs to permit user supplied exception han
dling software to take control. Usually, however, exceptions are masked
(hidden from the 8088). The 8087 holds onto any masked exception and
executes an internal error correction procedure. For example, if your
program attempts to divide a number by zero, the 8087 will set the answer
to infinity under exception masking.

Table 5-1 presents the six exceptions and the most common masked
response. Note that execution is never halted by a masked response. As
a default, all exceptions are masked. See Appendix 2 for a full description
of the masked responses to each exception.

Table 5-1. Common masked response to 8087 exceptions.

Exception

Zerodivide
Overflow
Underflow
Denormalized

Precision

Most Common Masked Response

Return properly signed infinity
Return properly signed infinity
Denormalize result
Memory operand-proceed as usual
Register operand-convert to unnormal
Round result

Note: The terms "denormal" and "unnormal" are defined under Special Data Types,
below.

Number Systems

The 8087 "understands" floating point, integer, and packed decimal num
bers. For number crunching, floating point numbers are by far the most
important.

Floating Point Numbers

In order to accommodate a wide range of values, computers store num
bers in a "floating point" or "real" representation. Essentially, floating
point is the computer's version of scientific notation. For example, in

30 8087 Applications and Programming

standard scientific notation the fraction "negative one-half" can be writ
ten out as

-5.0 X 10-l

Scientific notation splits the representation of a number into three
sections. The "sign field" tells us the sign of the number, in the case
above the leading"-" indicates a negative number. Next, the "significand
field," 5.0 above, gives the number's significant digits. (The significand
field is also called the "mantissa.") The third section is the "exponent"
field. The "-1" above tells us to multiply the significand by ten to the
minus one power, or, equivalently, to shift the decimal point one place
to the left.

The 8087 stores floating point numbers in a form of scientific notation.
The exact bit patterns used are laid out for the computer's convenience
so they are a little less than obvious to humans. Fortunately,'we almost
never need concern ourselves with such minute detail. While exact bit
patterns ·are covered below, there are really three facts to know about
each data type:

1. How many bytes of memory are used up to store a number?
2. How many digits of accuracy are retained in a number?
3. How wide is the range of numbers which can be represented? That

is, how large an exponent can be used?

The answers to 1 through 3 are shown in Table 5-2.

Data Types
The seven regular 8087 data types are shown in Table 5-2. A brief dis
cussion of the use of each type appears below.

Table 5-2. 8087 data types.

Significant
Data Type Bits Digits Range

Word Integer 16 4 -32,768 to 32,767
(BASIC Integer)

Short Integer 32 9 - 2 x 109 to 2x109
Long Integer 64 18 -9x1018 to 9xlQ18

Packed Decimal 80 18 18 decimal digits + ·sign
Short Real 32 6 or 7 10 - 37 to 103s

(BASIC Single Precision)
Long Real 64 15 or 16 10 - 307 to 103os

(BASIC Double Precision)
Temporary Real 80 19 10-4932 to 104932

5 a Introduction to 8087 Architecture 31

Short real. Short real corresponds to BASIC's single precision data type.
Micros have less storage than mainframe computers. Since real-world
data rarely has more than six or seven digits of accuracy, this data type
is commonly used for economical storage of basic input data.

Long real. Long real corresponds to BASIC's double precision data type.
As a rule, most calculations should be done in double precision in order
to minimize the effect of round-off error in intermediate steps.

Temporary real. Whatever the data type in memory, the 8087 converts
all numbers to the temporary real format for internal use. The significand
of the temporary real format holds 64 bits, so that every other data type
can be loaded into a temporary real without loss of precision.

By designing the 8087 around the temporary real concept, Intel has
simplified the application programmer's life in several important ways:

• Since all data types are converted to temporary real by the hardware,
the programmer rarely need worry about explicit type conversions.
It is just as easy for the programmer to multiply a double precision
floating point number by a packed decimal number as it is to multiply
two integers. (Of course, when storing a number back in memory,
the programmer remains responsible for ensuring that the destina
tion data type is large enough to hold the result being stored.)

• The range for temporary reals is (almost) infinite. The exponent
range is 10 to the ± 4932. As a result, overflows and underflows are
almost always caused by a bug in either the data or the program,
and only rarely indicate a numerical computing error.

• The temporary real has 19 significant digits. Even when a long series
of intermediate calculations produces significant cumulative round
off error, the loss of 3 or 4 digits of accuracy still leaves an accurate
double precision answer. With the 8087 onboard, an IBM Personal
Computer is more accurate than the standard IBM mainframe!

Word integer. Word integer corresponds to BASIC's integer data type.
A word integer occupies two bytes of storage and is principally used to
index arrays and other data structures.

Short integer. A four-byte integer. Not usually used in numerical pro
gramming.

Long integer. An eight-byte integer. Not usually used in numerical pro
gramming.

Packed decimal. Packed decimal representation is used for business and
data processing operations. A packed decimal uses 10 bytes of memory
and contains 18 decimal digits. Unlike the three preceding data types,
the packed decimal form uses a decimal rather than a binary represen
tation. Each of the decimals 0-9 is represented by four binary bits. These
decimal digits are then "packed" two to a byte.

32 8087 Applications and Programming

Business and data processing programs generally spend much more
time converting data between external (ASCII) and internal (binary) rep
resentation than doing arithmetic. Conversion between ASCII and packed
decimal representation is quite easy. (Also, some data processing lan
guages, such as COBOL, use packed decimal representation as a standard
data type.)

Data Type Hardware Representations

The 8087 knows exactly where each and every little bit goes. This is
fortunate, because the physical and logical orders in which numbers are
placed in memory differ. It is fairly easy for this difference to confuse us
human types. However, the physical layout is easier for the machinery
to handle and isn't relevant to programmers, except, on occasion, when
trying to debug a machine language program. The description of the
exact hardware representations is included here for the sake of com
pleteness.

Logically, all the data types are laid out left to right. The left-most bit
is the most significant. Thus, a 16-bit integer is represented by a string
of 16 bits running from the high-order bit 15 on the left to the low-order
bit O on the right. Each of the seven data types is laid out in this way,
as illustrated by Figure 5.3.

Physically, the right-most logical byte comes first. For example, sup
pose a 16-bit integer is stored in memory locations 100 and 101. The low
order bits, 7-0, are in byte 100, and the high-order bits, 15-8, are in byte
101. The same "reversal" holds for all the data types. This format is used
throughout the 8088/8086 family and is common to many microproces
sors. See Figure 5.4.

Floating Point Representation

8087 floating point representation makes a number of concessions to the
computer's convenience.

• Numbers are represented, unsurprisingly, by a string of binary bits
rather than decimal numbers.

• The position of the "binary point" is implicit. Since computer mem
ory contains only zeros and ones, there is no convenient way to
explicitly write in a decimal point. In ordinary scientific usage we
write 153.7 as 1.537E2. (Computers typically use "E" in this context
to indicate multiplication by a power of ten.) If our type font had
no period, we might agree to write 153.7 as 1537E2 and agree that
a decimal point is implicit after the first digit. On the 8087, the binary
point is assumed to appear immediately to the right of the most
significant bit of the significand.

5 a Introduction to 8087 Architecture 33

- INCREASING SIGNIFICANCE

WORD INTEGER Isl MAGNITUDE I g~~~tEMENT)

15 0

SHORT INTEGER .. ls_l ____ M_A-GN_1_Tu_D_E ___ _.I g~~~tEMENTI

~ 0

11 I (TWO"S
LONG INTEGER .. s __________ M_A_G_N_IT_u_D_E ________ ... COMPLEMENT)

~ 0

PACKED DECIMAL s X
MAGNITUDE

d17 d16 d15 d14 d13 d12 d11 d,o dg da d7 ds ds . d4 d3

79 72

SHORT REAL s SIGNIFICAND

0
I!

LONG REAL s BIASED SIGNIFICAND EXPONENT

63 0
IA

TEMPORARY REAL Isl BIASED c6 SIGNIFICAND EXPONENT

79 64 63 I

NOTES:
S = Sign bit (0 = positive. 1 = negative)
dn = Decimal digit (two per byte)
X = Bits have no significance; 8087 ignores when loading. zeros when storing.
• = Position of implicit binary point ·
I = Integer bit of significand: stored in temporary real. implicit in short and long real
Exponent Bias (normalized values):

Short Real: 127 (7FH)
Long Real: 1023 (3FFH)
Temporary Real: 16383 (3FFFH)

Figure 5.3. 8087 data type bit patterns.
(Used with permission of Intel Corporation.)

d2 d1 do

0

I
0

• Floating point numbers are represented in a "normalized" format.
The leading bit of a floating point number is always a one. The
computer shifts the significand left or right, while decreasing or
increasing the exponent, in order to maintain this format. (However,
see Special Data Types, below, for some exceptions.)

• Since single and double precision numbers are always normalized,
the leading bit is always a one and therefore needn't be stored. It
isn't. The leading bit is stored in the 80-bit temporary real format.

• Exponents in scientific notation can be either positive or negative.
Rather than store an explicit sign bit for exponents, the 8087 uses a
"biased exponent." The exponent field holds the sum of the true
exponent and a positive constant. For example, the exponent stored
in a single precision real number is the true exponent plus 127. The

34 8087 Applications and Programming

+3
'M'

slsl
161

+2

IMI
+1 SISI

1B1
+1 +3

IM
sit

+o

+7

+6

+5

+4

+3

+2

+1

+O

IL
IS
1B

+O
IL
IS
1B

+2
LM
s1s1
E,F,

WORD INTEGER SHORT INTEGER +1

IMI
SISI
IBI

l
+9

+8

+7 .,, ., +6 ...
a:
0
0

+5 ..

I

s:
(X)

I
MSD

I

+O
IL
IS
of

+7

+6

+5

SHORT REAL

'M
slsl

E
1L M1
1slsl
1E1F1

+9

+8

l
+7

+6

+5

IM
s1s1

E1

'L
IS
,E

IMI
,,s,

F

a: ...
:,:

I .,,
" +4 :i:

+4
.,

+4 ...
a:
0

I 0
+3 +3 .. +3 a: ...

:,:

+2 +2 " :i: +2

+1 +1 +1

IL
IS
1B

+O
I

LSD
I

+O
'L
IS
F

+O I~
F

LONG INTEGER PACKED DECIMAL LONG REAL TEMPORARY REAL

S: Sign bit
MSB/LSB: Most/least significant bit
MSD/LSD: Most/least significant decimal digit
(X): Bits have no significance

S: Sign bit
MSE/LSE: Most/least significant exponent bit
MSF/LSF: Most/least significant lractlon bit
I: Integer bit of slgnlticand

Figure 5.4. 8087 data type byte patterns.
(Used with permission of Intel Corporation.)

exponent bias, chosen to provide the widest possible range given
the number of bits assigned to hold the exponent, is 127 for single
precision, 1023 for double precision, and 16383 for temporary real.

To illustrate floating point representation, the significand of 2.0 is
"[1]00 ... " (where the "[1]" indicates the leading 1 is assumed but
not stored and "00 ... " indicates enough zeros to fill out the rest
of the significand field). The exponent of 2.0, for single precision,
is 127. Examples of significand and exponent fields for other numbers
are: ½ is "[1]00 ... " and 126; 3.0 is "[1]10 ... " and 127; and 4.0 is
"[1]00 ... " and 127.

• Zero is represented by all exponent and significand bits set to zero.
(The sign bit may be either positive or negative, without significance
for any arithmetic or comparison operation.)

5 1:1 Introduction to 8087 Architecture 35

Integer Representation

The three integer types are represented in "two's complement" format.
Positive numbers are simply binary integers. Negative numbers are rep
resented in the following way: If X is a positive integer, then - X is
written as (NOT X) + 1. The left-most bit of an integer is always a one
for negative integers and O for zero or a positive integer.

Packed Decimal Representation

Packed decimal numbers are integers represented with a sign and exactly
18 decimal digits. Bits 0-3 hold the least significant digit, that is, the
"one's place." Bits 4-7 hold the "ten's place," and so forth. Bits 72-78
are unused. (If an additional digit were stored here, it would not always
be possible to convert a packed decimal number into an eight-byte in
teger.) The high-order bit, bit 79, holds the sign. If a decimal digit is not
in the required range 0-9, the result of using the packed decimal number
is undefined.

As an exercise, try writing out a number in each of the seven formats.
Figure 5.5 gives the hexadecimal representation of -127 for each format.
(Note that 127 is 01111111 in binary or 7F in hexadecimal.)

WORD INTEGER ~
1 0 BYTE

SHORT INTEGER I FF I FFI FFI s1j
3 2 1 0 BYTE

LONG INTEGER IFFIFFI FFIFFIFFIFFIFFls1I
7 6 5 4 3 2 1 0 BYTE

PACKED DECIMAL I so I oo I oo I oo I ool oo I oo I oo I 01 I 211
9 8 7 6 5 4 3 2 1 0 BYTE

SHORT REAL I c2jFE I ool ool
3 2 1 0 BYTE

LONG REAL I co I 5FI co I oo I ool oo I ool ooj
7 6 5 4 3 2 1 0 BYTE

TEMPORARY REAL I co I 051 FEI oolool ool oo! ool oo I ool
9 8 7 6 5 4 3 2 1 0 BYTE

Figure 5.5. 8087 hexadecimal representation of -127.

Special Data Types

On most computers, every bit pattern represents a valid numerical value.
In contrast, the 8087 reserves a large class of bit patterns to represent
special non-numerical values. For almost all applications programs, these

36 8087 Applications and Programming

special data types can be safely ignored. Here is a brief description of
these types:

Denormal: Real numbers are usually stored in the normalized format
described above. An underflow occurs when the result of an oper
ation would require a negative biased exponent. Rather than merely
set the result to zero, the 8087 "stretches" the precision of the result
by setting the exponent field equal to zero and shifting the sigriificand
right the appropriate number of places. Thus, denormal numbers
can be recognized, when stored in memory, by the zero exponent
field together with a non-zero significand field. A denormal is con1
verted to an unnormal when loaded into the 8087 from memory or
used in an arithmetic operation. Denormals are perfectly acceptabl~
as operands for arithmetic instructions. (With the critical exceptiort
of transcendental operations which assume without checking that
operands are normals.)

Unnormal: When a denormal is used in an arithmetic operation, the
result is an unnormal. Unnormals exist only in temporary real format
and can be recognized by a zero in bit 63 (as opposed to one for a
normal). Unnormals are also perfectly acceptable in arithmetic op
erations. (Except that transcendental operations and unnormals don't
mix.) The result of an operation on an unnormal is a normal when
possible and an unnormal otherwise. The existence of denormals
and unnormals provide a major convenience to the applications pro
grammer. Frequently, numerical algorithms create very small inter
mediate results. Most computers either halt with an underflow signal
or set the intermediate result equal to 0.0. In contrast, 8087 routines
continue to execute while maintaining maximum possible accuracy.

Zero: Zero hardly seems like a special data type. However, it is very
useful to know ~ow the processor treats operations involving zeros.
Real zeros may be signed either positive or negative, but the sign is
always ignored. The 8087 is extraordinarily well behaved when using
zero in arithmetic operations. Where most processors would come
to an unpleasant halt, the 8087 produces a sensible answer; for ex
ample, the result of 7/0 is infinity and the result of 0/0 is indefinite.

Pseudo-zero: Under certain rare circumstances, temporary reals may
end up containing a type known as a pseudo-zero. The pseudo- zero
behaves mostly like a zero. For most purposes, this type may be
safely ignored.

Infinity: The real formats include the values plus and minus infinity.
These are represented by a biased exponent of all ones and a sig
nificand with a leading one and trailing zeros. Infinity can be used
as an argument for most 8087 arithmetic operations. Infinity in a
register is tagged special (in the tag word).

5 1:1 Introduction to 8087 Architecture 37

Real indefinite: The 8087 produces the value indefinite as the masked
response to an invalid operation. A real indefinite is indicated by a
negative sign bit, all ones in the biased exponent, and a significand
with two leading ones followed by trailing zeros. Indefinite in a
register is tagged special.

Integer and packed decimal indefinite: For each integer type, the larg
est negative number (for example, -215) also represents indefinite.
Packed decimal indefinite is represented by 16 leading ones with the
trailing bits undefined. Use of integer and packed decimal indefinite
should be avoided, as the 8087 treats integer indefinite as the largest
negative number and gives undefined results after loading a packed
decimal indefinite from memory.

NAN (Not-A-Number): Any value, except infinity, with a string of
ones for the biased exponent is a member of the class NAN (Not
A-Number). NANs propagate through arithmetic operations. Thus
you can design software that treats members of this class as being
"special" in any way you'd like (except for real indefinite which is
reserved for the use described above). For example, particular NANs
might be used to indicate unassigned memory locations while de
bugging a program or missing data in a statistical or accounting
problem.

In the next chapter, we turn away from architectural detail and begin
writing our first useful programs.

Simple Instruction Set

We write our first program in this chapter: a simple routine to calculate
the sum of an array of numbers. Before preparing our program, we
discuss the 8087' s basic instructions.

The 8087 has six instruction groups: data transfer, arithmetic, transcen
dental, constants, comparison, and processor control. We discuss data trans
fer, a few of the comparison instructions, and the basic arithmetic operations
in this chapter. We defer discussion of the less frequently used instruc
tions until Chapter 12. This chapter is divided into five sections. In the
first section, we take a close look at the 8087 register stack. The next
three sections look at the 8087 data transfer instructions, the 8087 basic
arithmetic instructions, and the basic comparison instructions. In the last
section we build our first program.

The Stack Mechanism
The 8087 has eight 80-bit registers for holding data internally. On most
computers, these registers would be numbered 0, 1, 2, 3, 4, 5, 6, and 7;
and a typical instruction would be something like "add register 3 to
register 4 and leave the sum in register 3." The 8087 uses a more elegant
system for accessing registers-the stack. ·

The stack method is invariably described by analogy to the plate holders
found in cafeterias. A stack of plates is loaded on a spring with only the
top plate visible. If you put a plate on the stack, all the other plates move
down and only the new plate is accessible. Remove the top plate and all
the ones below move up one place. On a computer, the action of adding
an item to a stack is called a push (all the data is pushed down one
position), and removing the top item is called a pop (all the data pops
up one position). For the sake of efficiency, a computer doesn't actually
move data up and down. Instead the computer changes a pointer which
indicates which register is at the top of the stack.

The register on top of the 8087 stack is called ST or ST(O). The 8087
also allows you to reference registers below the stack top. The piece of

39

40 8087 Applications and Programming

data immediately below the stack top is called ST(l); one further down
is ST(2); and so on through ST(7). As we push and pop data from the
stack, these names become attached to different registers.

Figure 6.1 illustrates the stack in action. Initially, the stack is empty.
Next, we push the number 3.14 onto the stack. Now, ST(0) has the value
3.14 and ST(l) through ST(7) are undefined. Suppose we push 2.18 onto
the stack. ST(0) holds 2.18 and ST(l) holds 3.14. If we pop the stack,
then ST(O) will again point to the value 3.14.

EMPTY ST(O)

EMPTY

EMPTY

EMPTY

EMPTY

EMPTY

EMPTY

EMPTY

3.14

EMPTY

EMPTY

EMPTY

EMPTY

EMPTY

EMPTY

EMPTY

ST(O)

ST(1)

2.18

3.14

EMPTY

EMPTY

EMPTY

EMPTY

EMPTY

EMPTY

Figure 6.1. 8087 stack mechanism.

ST(O) 3.14

EMPTY

EMPTY

EMPTY

EMPTY

EMPTY

EMPTY

EMPTY

Notice that the stack mustn't grow to be more than eight deep, since
the 8087 has only eight internal registers. The 8087 leaves responsibility
for watching the depth of the stack in your hands. If a program does
nine pushes in a row, you'll get incorrect answers-but no error mes
sages. (Technically, the 8087 registers are organized as a chain rather
than a stack. On the ninth push, ST(7) becomes ST(0) and the previous
contents of ST(7) are lost.)

Data Transfer Instructions

Data transfer instructions move data from memory into the 8087 (load),
from the 8087 into memory (store}, and between 8087 registers (ex
change). Inside the 8087 all data is held in temporary real format. In
memory, operands fall into one of the seven data types discussed in
Chapters 2 and 5. As data moves into or out of the 8087, it is automatically
converted between temporary real and other formats. Three rules sum
marize the way the 8087 distinguishes among the different types of data.

6 a Simple Instruction Set 41

• Data stored internally in an 8087 register is always temporary real.
• Different instructions reference real, integer, and packed decimal

types.
• Within a given type, the 8087 distinguishes between arguments of

different precision according to the amount of memory space the
argument occupies. For example, an instruction which operates on
reals treats an operand referencing a four-byte memory location as
a single precision number and an operand referencing an eight-byte
memory location as a double precision number.

The data transfer instructions are summarized in Table 6-1.

Table 6-1. 8087 data transfer instructions.

FLO
FST
FSTP
FXCH

FILO
FIST
FISTP

FBLO
FBSTP

Real Transfers

Load real
Store real
Store real and pop
Exchange registers

Integer Transfers

Integer load
Integer store
Integer store and pop

Packed Decimal Transfers

Packed decimal (BCD) load
Packed decimal (BCD) store and pop

(Used with permission of Intel Corporation.)

(The typical execution time for each instruction appears to the right of
the instruction name. Appendix 1 gives more precise timing information.)

Real Transfer Instructions

FLO source 13 microseconds
FLD (load real) pushes the source data onto the stack by changing the top
of stack pointer to point to the next available register and then copying
the source data into this register. The source may be either a real-memory
location or an 8087 register. FLD is the basic instruction for moving data
into the 8087.

FST destination 23 microseconds
FST (store real) copies the contents of the top element of the stack into
the indicated destination, either an 8087 register or a single or double

42 8087 Applications and Programming

precision memory location. Data moved into memory is automatically
converted to single or double precision format. FST does not affect the
depth of the stack or its contents. FST cannot be used to store a temporary
real in memory.

FSTP destination 23 microseconds
FSTP (store real and pop) stores the top element of the stack and then
pops the top of the stack. Unlike FST, FSTP will move a temporary real
into memory.

The "pop" is accomplished in two steps. First, the register currently
at the top of the stack is marked "empty" (in the tag word). Second, the
top of stack pointer is changed to point to the register logically "below"
the current top of stack. Thus the instruction FSTP ST(O) pops the stack
with no effective transfer.

FXCH 3 microseconds

FXCH destination
FXCH (exchange registers) exchanges the stack top with the designated
destination register. If the destination is not specified, ST(l) is assumed.
Thus, FXCH with no destination swaps the contents of the two registers
at the top of the stack.

Integer and Packed Decimal Data
Transfer Instructions

FILO source 12 microseconds
FILD (load integer) pushes the integer memory operand onto the stack
(converting it to a temporary real).

FIST destination 21 microseconds
FIST (store integer) rounds the value held in ST(O) and stores the resulting
integer in the destination memory location. (A copy of the value is made
before rounding so that the contents of ST(O) remain unchanged.) The
destination may be either a word or short integer. You cannot store a
long integer with FIST.

FISTP destination 21 microseconds
FISTP (store integer and pop) rounds the top of stack element and stores
it in the destination memory location. The top of stack is then popped.
Unlike FIST, FISTP will store into a long integer memory location.

6 a Simple Instruction Set 43

FBLD source 69 microseconds
FBLD (load packed decimal) pushes the memory source location onto the
top of the stack, converting the operand from packed decimal to tem
porary real. No check is made to see that the data is a valid packed
decimal number. The result of loading invalid data is undefined and
should be carefully avoided. (The "B" in FBLD comes from an alternative
name for packed decimal representation, "BCD or Binary Coded Deci
mal.")

FBSTP destination 117 microseconds
FBSTP (store packed decimal and pop) converts the contents of the top
of stack register into packed decimal representation and transfers the
converted number to the destination memory location. The top of stack
is then popped. If the top of stack element is not already an integer, it is
converted to one by adding 0.5 and truncating. This rounding operation
sometimes differs from FIST, which operates under 8087 rounding con
trol. Rounding control can be effectively invoked by preceding FBSTP
with FRNDINT, which rounds the stack top to an integer. (FRNDINT is
described in Chapter 12.)

Basic Arithmetic Instructions

The 8087 has 21 basic arithmetic instructions, summarized in Table 6-2.
Of these, 18 provide varieties of addition, subtraction, multiplication,
and division. In addition to the standard use of these four basic opera
tions, the 8087 also allows "reversed" subtraction and "reversed" divi
sion.

In normal subtraction, the destination is replaced by the destination
minus the source. In reversed subtraction, the destination is replaced by
the source minus the destination. Reversed division operates anala
gously. (No reversed operations are needed for addition and multipli
cation, since both operations are commutative.)

Including the reversed operations, there are six basic arithmetic in
structions. Each instruction comes in three formats: real, real-and-pop, and
integer. Thus, there are 18 total instructions.

Arguments in the real format may take the stack form, the register form,
or the real-memory form. In the stack form, the destination is always ST(l)
and the source is always ST(0). In the register form, one argument is the
stack top, ST(0), and the other is any 8087 register. In real-memory form,
the destination is ST(0) and the source is a location in memory. Only
single precision and double precision types may be used in the real-memory
form.

The real-and-pop format uses the register form. After the operation, the
stack is popped. For example, FADDP ST(l),ST adds the top two stack

44 8087 Applications and Programming

Table 6-2. 8087 arithmetic instructions.

FADD
FADDP
FIADD

FSUB
FSUBP
FISUB
FSUBR
FSUBRP
FISUBR

FMUL
FMULP
FIMUL

FDIV
FDIVP
FIDIV
FDIVR
FDIVRP
FIDIVR

FSQRT
FSCALE
FPREM
FRNDINT
FXTRACT
FABS
FCHS

Addition

Add real
Add real and pop
Integer add

Subtraction

Subtract real
Subtract real and pop
Integer subtract
Subtract real reversed
Subtract real reversed and pop
Integer subtract reversed

Multiplication

Multiply real
Multiply real and pop
Integer multiply

Division

Divide real
Divide real and pop
Integer divide
Divide real reversed
Divide real reversed and pop
Integer divide reversed

Other Operations

Square root
Scale
Partial remainder
Round to integer
Extract exponent and significand
Absolute value
Change sign

(Used with permission of Intel Corporation.)

elements, stores the sum one element below the top of stack, and pops
the stack. After execution, the original contents of the stack top have
been discarded, the contents of ST(l) are replaced by the sum, and the
register that was formerly ST(l) pops up to the top of the stack.

The integer format references a word integer or short integer location in
memory as the source. ST(O) is the destination.

6 1:1 Simple Instruction Set 45

Implicit Operands

Stack operands may be either implicit or explicit. For example, in the stack
form ST is always assumed to be the source and ST(l) is assumed to be
the destination. For purposes of illustration, implicit arguments are shown
below in curly brackets, as in {ST}, even though these operands are not
coded in actual programs.

Use of implicit arguments can lead the unwary programmer into great
confusion. Unfortunately, an instruction with two implicit arguments
has a different meaning from the same instruction followed by (the im
plied) explicit arguments. By convention, use of two implicit arguments
tells the assembler that you wish to pop the register stack after executing
the instruction. For example, the instruction "FADD" implies the source
is ST and the destination is ST(l). But the assembler translates the in
struction as "FADDP ST(l),ST", which is quite different from "FADD
ST(l),ST". You can avoid a lot of trouble by not taking "advantage" of
this convention. Instead, make both arguments explicit.

The various combinations of instruction formats are summarized in
Table 6-3.

Table 6-3. 8087 arithmetic instruction formats.

Instruction Form

Classical stack
Register
Register pop
Real memory
Integer memory

Mnemonic
Form

Fop
Fop
FopP
Fop
Flop

Operand Forms
destination, source

{ST(l),ST}
ST(i),ST or ST,ST(i)
ST(i),ST
{ST, short-real/long-real}
{ST, word-integer/

short-integer}

ASM-86 Example

FADD
FSUB ST,ST(3)
FMULP ST(2) ,ST
FDIV AZIMUTH
FIDIV N_pULSES

NOTES: Braces {} surround implicit operands; these are not coded and are shown here
for information only.

op= ADD destination-destination+ source
SUB destination-destination - source
SUBR destination-source - destination
MUL destination~estination * source
DIV destination~estination -;- source
DIVR destination-source-;- destination

(Used with permission of Intel Corporation.)

Addition Instructions

FADD
FADD

{ST(1),sn
{ST ,}real-memory

18 microseconds
25 microseconds

46 8087 Applications and Programming

FADD ST(i),ST or ST,ST(i) 17 microseconds
FADDP ST(i),ST 18 microseconds
FIADD {ST,}integer-memory 27 microseconds
FADD (add real), FADDP (add real and pop), and FIADD (add integer)
add the source operand to the destination operand and leave the sum
in the destination. In addition, F ADDP pops the stack.

Subtraction Instructions

FSUB {ST(1),STI 18 microseconds
FSUB {ST,}real-memory 25 microseconds
FSUB ST(i),ST or ST,ST(i) 17 microseconds
FSUBP ST(i),ST 18 microseconds
FISUB {ST,}integer-memory 27 microseconds
FSUB (subtract real), FSUBP (subtract real and pop), and FISUB (subtract
integer) subtract the source operand from the destination operand and
leave the difference in the destination. In addition, FSUBP pops the stack.

FSUBR {ST(1),STI 18 microseconds
FSUBR {ST,}real-memory 25 microseconds
FSUBR ST(i),ST or ST,ST(i} 17 microseconds
FSUBRP ST(i},ST 18 microseconds
FISUBR {ST,}integer-memory 27 microseconds
FSUBR (reversed subtract real), FSUBRP (reversed subtract real and pop),
and FISUBR (reversed subtract integer) subtract the destination operand
from the source operand and leave the difference in the destination. In
addition, FSUBRP pops the stack.

Multiplication Instructions

FMUL {ST(1),STI 28 microseconds
FMUL {ST,}real-memory 34 microseconds
FMUL ST(i),ST or ST,ST(i} 28 microseconds
FMULP ST(i},ST 28 microseconds
FIMUL {ST,}integer-memory 28 microseconds
FMUL (multiply real), FMULP (multiply real and pop), and FIMUL (mul
tiply integer) multiply the source and destination operands and leave the
product in the destination. In addition, FMULP pops the stack.

6 a Simple Instruction Set 47

Division Instructions

FDIV {ST(1),SD 41 microseconds
FDIV {ST,}real-memory 48 microseconds
FDIV ST(i),ST or ST,ST(i) 40 microseconds
FDIVP ST(i),ST 41 microseconds
FIDIV {ST,}integer-memory 49 microseconds
FDIV (divide real), FDIVP (divide real and pop), and FIDIV (divide in
teger) divide the destination operand by the source operand and leave
the quotient in the destination. In addition, FDIVP pops the stack. Note
that FIDIV yields a- temporary-real quotient.

FDIVR {ST(1),SD 41 microseconds
FDIVR {ST,}real-memory 48 microseconds
FDIVR ST(i),ST or ST,ST(i) 40 microseconds
FDIVRP ST(i),ST 41 microseconds
FIDIVR {ST,}integer-memory 49 microseconds
FDIVR (divide real reversed), FDIVRP (divide real reversed and pop),
and FIDIVR (divide reversed integer) divide the source operand by the
destination operand and leave the quotient in the destination. In addi
tion, FDIVRP pops the stack. Note that FIDIVR yields a temporary-real
quotient.

Miscellaneous Arithmetic Instructions

FSQRT {ST} 37 microseconds
FSQRT (square root) replaces the top of stack with its square root.

FABS {SD 3 microseconds
FABS (absolute value) sets the sign of the top of stack element to positive.

FCHS {SD 3 microseconds
· FCHS (change sign) changes the sign of the top of stack element.

One more instruction really belongs in this chapter, even though it is
a constant instruction and constant instructions are covered in Chapter
12. However, this instruction is simple and extremely useful. It is:

FLDZ {SD 3 microseconds
FLDZ (load zero) pushes a zero onto the top of the stack.

48 8087 Applications and Programming

Comparison Instructions
The 8087 includes a number of instructions for making size comparisons
between numbers on the register stack. These instructions are used for
tasks such as identifying the largest number in an array or for determining
whether a number is less than, equal to, or greater than zero. We describe
the instructions here. Illustrative programming examples appear in Chap
ter 7.

The 8087 instruction set includes six comparison and one examine
instruction. All !he instructions operate on the stack top. Most compare
the stack top to a specified source operand. There are four possible out
comes of a comparison operation: ST > source, ST < source, ST= source,
or ST and source are non-comparable. The comparisons are reported by
setting the condition code bits C3 and CO in the status word, as indicated
in Table 6-4. The condition code can be examined by using the processor
control instruction, FSTSW, discussed below.

Table 6-4. Condition code setting following comparison.

C3 co Order

0 0 ST> source
0 1 ST< source
1 0 ST = source
1 1 non-comparable

(Used with permission of Intel Corporation.)

Note that non-comparable results from using NANs or projective infinity.
Non-comparable usually indicates a previous overflow or illegal opera
tion.

FCOM {ST,ST(1)} 9 microseconds
FCOM {ST,}ST(i) 9 microseconds
FCOM {ST,}real-memory 17 microseconds
FCOM (compare real) compares the stack top to the source and sets the
condition code bits. Temporary real format may not be used in the real
memory form.

FCOMP {ST,ST(1)} 10 microseconds
FCOMP {ST,}ST(i) 10 microseconds
FCOMP {ST,}real-memory 17 microseconds
FCOMP (compare real and pop) executes a FCOM and then pops the
stack, discarding the contents of the stack top.

6 a Simple Instruction Set 49

FCOMPP {ST,ST(1)} 1 O microseconds
FCOMPP (compare real and pop twice) executes a FCOM and then pops
the stack twice. Thus, to compare two numbers in memory, push both
onto the stack and then use a FCOMPP.

FICOM {ST,}integer-memory 19 microseconds
FICOM (compare integer) compares the stack top to a word integer or
short integer in memory.

FICOMP {ST,}integer-memory 19 microseconds
_ FICOMP (compare integer and pop) executes a FICOM and then pops
the stack.

FTST {ST} 9 microseconds
FTST (test) compares the stack top to zero.

FXAM {ST} 4 microseconds
FXAM (examine) examines the top of stack and sets the condition code
bits CO, Cl, C2, and C3 to indicate what sort of value is being held. (The
various "sorts" were discussed in Chapter 5.) Table 6-5 shows the pos
sible combinations.

Table 6-5. Condition code settings following FXAM.

Condition Code Interpretation

C3 C2 Cl co
0 0 0 0 + Unnormal
0 0 0 1 + NAN
0 0 1 0 Unnormal
0 0 1 1 -NAN
0 1 0 0 + Normal
0 1 0 1 + 00

0 1 1 0 - Normal
0 1 1 1 - 00

1 0 0 0 + 0
1 0 0 1 Empty
1 0 1 0 - 0
1 0 1 1 Empty
1 1 0 0 + Denormal
1 1 0 1 Empty
1 1 1 0 - Denormal
1 1 1 1 Empty

(Used with permission of Intel Corporation.)

50 8087 Applications and Programming

In order to make use of comparison instructions, we need to retrieve the
condition code bits. The condition codes are retrieved with the processor
control instruction, FSTSW.

FSTSW word-integer 5 microseconds
FSTSW (store status word) stores the 8087 status word at the two-byte
destination location. All the comparison instructions set bits in the status
word; FSTSW is used to move the status word into memory so that the
appropriate bits can be examined and appropriate action taken. Gener
ally, FSTSW should be followed by an FW AIT, to ensure that the con
dition codes are actually stored in memory before the program proceeds.

This completes our coverage of the basic 8087 instruction set. For most
programs, these instructions are sufficient. More advanced 8087 instruc
tions are discussed in Chapter 12.

Our First Program-Adding Up An
Array of Numbers
Our first program is picked to show off the speed and ease in using the
8087. This program runs about 200 times faster than an equivalent BASIC
program without the 8087!

To write a complete 8087 program, we need a number of details that
we haven't covered. For example, we really ought to specify how the
routine gets its arguments from BASIC. In the interest of preserving
everyone's sanity, we are going to cheat just this once by leaving out
some details. Therefore, the program below won't run as it stands. (The
program appears in full in Chapter 9.)

We assume that, elsewhere in the program, someone has already de
fined a single precision array named ARRAY. Our task is to add up the
numbers stored in ARRAY and place a single precision result in a variable
named DSUM. The integer variable N has the number of elements in
ARRAY. (ARRAY goes from ARRAY(0) to ARRAY(N-1)). A fragment of
a BASIC program to do the job follows:

10 DEFDBL D
20 DEFINT I
30 DSUM=0
40 FOR I=O TO N-1
50 DSUM=DSUM+ARRAY(IJ
60 NEXT I

Notice that we collected the sum in a double precision variable to ensure
getting at least single precision accuracy for the final answer.

Our 8087 code appears below. The program assumes that ARRAY is
an array of single precision memory locations, that N holds a non-neg
ative integer, and that DSUM is a double precision memory location.

6 a Simple Instruction Set 51

Everything on a line after a semicolon is a comment. We have used
comments to number the lines and mark each instruction as either an
8088 or an 8087 instruction.

MOV CX,N ;1 {8088}
FLDZ ;2 {8087}
JCXZ DONE_ADDING ;3 {8088}
MOV BX, □ ;4 {8088}

LOOP_TOP: FADD ARRA Y[BX] ;s {8087}
ADD BX,4 ;6 {8088}
LOOP LOOP_TOP ;7 {8088}

DONE_ADDING: FSTP DSUM ;8 {8087}

The program uses the following strategy: place the number of array
elements in the 8088 register CX. Subtract one from this register each
time through the adding-up loop and quit when the register hits zero.
Use 8088 register BX to keep track of where we are in ARRAY. (8088
instructions are covered in detail in the next chapter.) A line-by-line
explanation of the program follows:

1. MOV ex, N. Load N into the CX register. (The 8088 instruction "LOOP",
in line 7, subtracts 1 from the CX register. When CX hits zero, the
program has gone all the way through the array, so we will jump
out of the loop.)

2. FLDZ. Push a zero onto the 8087 stack. We accumulate the running
total in the top of stack element.

3. JCXZ DONE-ADDING. If CX (that is, N) is zero, jump to
DONE_ADDING before entering the loop.

4. MOV BX, □. Set the BX register equal to zero .. BX is used as an index
for ARRAY. When BX equals zero, we get the first element of array.

5. LOOP-TOP: FADD ARRAY[BX]. Add the current element of
ARRAY into the running sum we are accumulating in the top of
the stack.

6. ADD BX, 4. Add 4 to the count in BX. Why? Single precision numbers
occupy four bytes, so we have to move along ARRAY four bytes at
a hop. (Some things are just naturally more clumsy in assembly
language than in a higher level programming language.)

7. LOOP LOOP-TOP. The LOOP instruction subtracts one from CX. If
CX is still positive, the program "loops" to LOOP _TOP, otherwise
we proceed to the next instruction, falling out of the bottom of the
loop since we must have already added up all N numbers.

8. DONE-ADDING: FSTP DSUM. Store the answer in DSUM.
Besides the fact that it was a lot easier to write the BASIC program,

what's the difference between BASIC and our 8087 code? One, the 8087
program is a little more accurate, though on most problems we'd probably
never notice the difference. Two, the 8087 is a bit faster. Adding 10,000
numbers takes approximately 46 seconds in BASIC. The 8087 needs about
one-fourth of one second.

Introduction to 8088
Assembly Language
Programming

Before the era of the 8087, all personal computer thinking was done with
a general purpose microprocessor such as the Intel 8088. A number
crunching personal computer combines the mathematical power of the
8087 with the general programming capabilities of the 8088. The 8087
needs the 8088 to talk to the outside world. In this chapter, we discuss
8088 programming.

This brings us to a dilemma. The 8087 is a simple, elegant machine.
The 8088 is a complex, elegant machine. Chapters 6 and 12 of this book
present a complete, detailed description of the 8087 instruction set. A
similar description of the 8088 instruction set would require a book, and
wouldn't be very interesting to readers who just want to crunch numbers.
On the other hand, you can't get to the 8087 except through the 8088.

As a compromise, we discuss just those 8088 features needed to get
through to the 8087. We don't attempt to cover all features of the 8088
or to talk about assembly language programming in general. This chapter
is oriented toward the BASIC programmer; the experienced assembly
language programmer is asked to forgive the occasional simplification.
(If you are already comfortable with 8088 assembly language, you can
skip this chapter entirely.) For full details on the 8088 (and 8086 family)
we recommend:

iAPX 88 Book by Intel;
iAPX 86,88 User's Manual, by Intel; and
The 8086 Primer, by Stephen P. Morse, Hayden Book Company.
IBM PC Assembly Language, by Leo J. Scanlon, Robrert J. Brady Co.

53

54 8087 Applications and Programming

Overview of the 8088

Machine language instructions are much less powerful than BASIC com
mands. (A typical line of BASIC might be equivalent to 10 to 100 lines
of machine language instructions.) Consequently, it's easy to understand
what a single line of 8088 code does, but it can be very tedious to put
together enough lines to do anything useful. For example, suppose we
want to copy the data in integer variable A into integer variable B. In
BASIC we write:

B=A

8088 code might be:

MOV AX,A ;MOVE CONTENTS OF LOCATION A INTO REGISTER AX
MOV B,AX ;MOVE CONTENTS OF REGISTER AX INTO LOCATION B

A and B are integer variables in both sets of code, but there the sim
ilarity ends. We see the following differences:

• BASIC uses mathematical notation. 8088 notation takes the form of
a command to the CPU.

• BASiC deals directly with the variables of interest. The 8088 uses
internal registers as intermediaries. In this example, the data in A
is transferred into a register named II AX" and then transferred from
the AX register into B.

• Anything following a semicolon is a comment in assembly language.
BASIC uses the apostrophe and REM statement for this purpose.

Suppose we wanted to deal with single precision numbers instead of
integers. In BASIC, we declare the variables A and B to be of the appro
priate type. Thereafter, B = A works equally well for any type of variable.
8088 code would have to be modified, leading us to some further differ
ences.

MOV AX,A
MOV B,AX
MOV AX,A+2
MOV 8+2,AX

;MOVE THE FIRST HALF OF A INTO AX
;MOVE AX INTO THE FIRST HALF OF B
;MOVE THE SECOND HALF OF A INTO AX
;MOVE AX INTO THE SECOND HALF OF B

• BASIC deals with data a number at a time. The 8088 works either
on a word (two bytes) or a byte at a time. Since a single precision
number occupies two words, two sets of MOV operations are re
quired to move a single precision number.

• Unlike BASIC, which thinks in terms of variables, the 8088 funda
mentally thinks in terms of memory locations. In the instruction 11MOV
AX,A", 11 A" represents a memory location to be assigned by the
assembler. 11 A+ 2" means the memory location 2 bytes after II A".
11 A+ 2" does not mean add 2 to the value stored in A.

7 c Introduction to 8088 Assembly Language Programming 55

8088 Program Structure

An 8088 assembly language program is structured into procedures,· code
segments, and data segments.

Each separate program module is identified to the assembler as a pro
cedure by the PROC and ENDP directives (discussed below). The assem
bler remembers the location of each block of code identified so that the
module can be called as a subroutine from another 8088 assembly lan
guage program or by use of the BASIC CALL statement. Normally, each
procedure is a self-contained unit intended to perform one task in a larger
program.

Programs written for the 8088 segregate code and data into different
areas of memory called segments. While any number of segments may
reside in memory simultaneously, only one code segment and one data
segment (plus a stack and an extra segment described below) may be
active at any one time. Segments are identified to the assembler with the
SEGMENT and ENDS directives (discussed below). Segments are limited
in length to 64K bytes.

One way to think of an assembly language program is that we write
out an exact picture of how memory looks before execution begins. Some
areas of memory hold program constants or are set aside to hold results
produced by the computer. These areas are placed in data segments.
Other areas of memory hold the executable code, as translated from
assembly language into machine language, by the assembler. The code
is logically organized into procedures. One or more procedures is then
placed in each code segment. When we run the program, the computer
places each segment, as a block, in memory and then begins execution.

To master the 8088, one must understand:

1. General registers
2. Memory addressing
3. Labels and data definition
4. Some basic 8088 instructions
5. Comparisons
6. Branching
7. Segments
8. Memory stack
9. Subroutine branching and returns

10. Assembler directives

General Registers

The 8088 has eight general registers, each of which holds one 16-bit word.
The registers are named AX, BX, CX, DX, SI, DI, BP, and SP. In the
MOV examples above, any of these registers could have been used in

56 8087 Applications and Programming

place of AX. However, each register has various special purposes in
addition to its general role. The special uses of interest to us are:

AX and DX-Register AX is sometimes called the accumulator. A few
8088 instructions will only work with AX. Instructions that produce
a double length result, such as multiplication, place the result in AX
and DX.

BX, SI, and DI-base and index registers (see Memory Addressing
below).

CX-count register (see Branching below).
BP and SP-stack pointers (see Memory Stack below).

In addition, registers AX, BX, CX, and DX can each be treated as a
pair of 8-bit registers. The high-order bytes are addressed as AH, BH,
CH, and DH and the low-order bytes are addressed as AL, BL, CL, and
PL. Most 8088 operations can operate on either a word at a time or a
byte at a time. Moving a byte into AH, for example, changes the high
order half of AX without affecting the low-order half.

The AH half of AX also has a special use in moving "flags" around
(see Branching below).

Memory Addressing

In the "MOV AX,A" instruction above, "A" represents a particular mem
ory location called the displacement. The first byte of memory is numbered
0, the second 1, and so forth. The assembler figures out the number of
the memory location for A and sticks the number into the instruction.
Note that the 8088 addresses bytes, not words, so the first word begins
at 0, the second at 2, the third at 4. (It is perfectly acceptable to store a
byte at 0, a word at 1 and 2, and so forth. Words don't have to fall on
even-numbered locations. However, the 8086 side of the 8088/8086 family
will run a tiny bit faster when words do fall on even locations.)

If we want to use the byte after location A we code "A+l". Analo-.
gously, the word after location A is "A+ 2", and the byte before location
A is addressed as "A - 1".

Just as BASIC allows indexed arrays, the 8088 allows us to index mem
ory. In BASIC the first element of an array A is A(0), the second A(l),
and so forth. To pick different elements at different points in the program
we code A(I), and set the variable I appropriately. In 8088 code we index
memory by indicating that the value held in one of the registers is to be
added to the displacement in calculating the address. We tell the 8088
which register to use by placing its name in square brackets, as in A[BX].
Further, we can "double index" memory by placing a second register in
square brackets, as in A[BX][SI]. Thus, if A is location 75, the BX register
holds 150, and the SI register holds 1000, A[BX][SI] is location 1225.

7 a Introduction to 8088 Assembly Language Programming 57

Unfortunately, we are somewhat restricted in which registers can be
used as indexes. If we use one register, it can be BX, SI, or DI. If we use
two registers, one must be BX and the other can be either SI or DI.
(Actually, BP can be used rather than BX as an index, but this is generally
not done for reasons that become clear when we discuss the memory
stack.)

Thus, a memory address consists of a displacement and zero, one, or
two index registers. The displacement may be omitted, in which case a
displacement of zero is assumed. This usage is quite common, because
when we call a subroutine from BASIC, BASIC passes the subroutine
the address of each argument. If we call a subroutine with an argument
A(0), the subroutine might place the address of A(0) into the BX register,
use the SI register to hold an index, and address the array by [BX] [SI]
with no displacement.

Note some critical differences between indexing in BASIC and indexing
in assembly language. In BASIC if the index is 17, we get the 18th (started
at zero, remember) element of the array, regardless of whether the array
is of type integer, single precision, or double precision. In machine lan
guage if the index is 17, we get the 18th byte, not the 18th element of
the array. Depending on the type of data being used, consecutive ele
ments have indexes 0, 2, 4 ... , 0, 4, 8 ... , or 0, 8, 16 Also, in BASIC
we can specify multi-dimensional arrays. 8088 indexing is all one-di
mensional.

When the displacement is added to the value of the index registers the
result is a 16-bit logical address. Therefore, the address must be between
0 and (216)-1, or 64K. (It is no coincidence that BASIC is limited to a
64K area.)

Most operations specify a register and a memory location. Instructions
can also specify two registers, as in

MOV AX,BX iMOVE THE CONTENTS OF THE BX REGISTER INTO AX

Some instructions allow one argument to be an immediate operand. An
immediate operand is a constant built right into the instruction-the
value is used "immediately," in contrast to being fetched from memory.
For example, to set the register AX to zero and the value of memory
location A to minus one:

MOV AX, □
MOV A,-1

8088 instructions such as MOV can operate either a byte at a time or
a word at a time. In truth, MOV is really two separate instructions, "move
word" and "move byte." The assembler looks at the specified operands
to decide which instruction we mean. Most of the time the assembler
can figure out whether we want a byte or a word by examining the
specifications used to define the memory location (see Labels and Data
Definition below). Sometimes there aren't any such specifications, such

58 8087 Applications· and Programming

as when we use an index register without a displacement, and sometimes
we want to override the original specifications. To order the assembler
to think in terms of a byte or a word, use the "PTR" (pointer) directive.
We indicate that location A is a byte or a word by saying "BYTE PTR A"
or "WORD PTR A." So to move an integer whose location is held in BX
into a location held in SI we might code:

MOV AX, WORD PTR [BX]
MOV WORD PTR [SI], AX

Labels and Data Definition

An assembly language program consists of a series of one-line com
mands. Commands are actually of two sorts: instructions and assembler
directives. A command may be preceded by an optional identifying label.
To label an instruction, begin the line with the desired label and a colon.
The program can jump to a labeled instruction in much the same way
as a program can GOTO a line number in BASIC. To label a line containing
a directive, begin the line with the desired label, but omit the colon.

THIS-IS-A-LABEL: MOV AX,A

Assembler directives do not generate any machine language code. ln-:
stead they give the assembler information or ask it to perform a task,
such as setting aside a memory location to be used as data storage. For
example, the assembler directive "DW" sets aside two bytes of storage.
It can be followed by an initial value and the storage area can be labeled.

A DW 37

Setting aside and labeling memory is somewhat analogous to the BASIC
statement DIM. "DW" stands for "define word." To define a word with
no initial value, tell the assembler "DW ?". We can also define a series
of words with a directive like "DW 3,5,?, -2". Or we could set aside 10
uninitialized words with "DW 10 DUP(?)". Since an address is actually
represented by a 16-bit integer, we can also initialize a memory location
to contain the address of some other instruction, as in

POINT_TO_A_LABEL DW THIS-IS-A-LABEL

The 8088 deals with bytes and words. To set aside one or more bytes,
we use the "define byte" instruction, DB. The 8087 deals with many
more data types. Table 7-1 shows all the storage allocation directives.

The assembler knows how much memory is supposed to be associated
with a particular storage allocation directive. This knowledge is used in
two ways. First, if you set aside storage using Define Byte, as in "A DB
5" and then try to use a word instruction, as in "MOV AX,A", the
assembler will warn you of a type mismatch. If you intend to move the
two bytes at A and A+ 1, you can override this mechanism by using the
instruction "MOV AX, WORD PTR A".

7 a Introduction to 8088 Assembly Language Programming 59

Table 7-1. Storage allocation directives.

Directive Interpretation Bytes Pointer type Data types

DB Define Byte 1 BYTE PTR byte
ow Define Word 2 WORD PTR word integer
DD Define 4 DWORD PTR short integer,

Doubleword short real
DQ Define 8 QWORDPTR Long integer,

Quadword long real
OT Define Tenbyte 10 TBYTE PTR Packed decimal,

temporary real

(Used with permission of Intel Corporation.)

Second, the assembler uses the storage allocation directives to decide
whether 8087 instructions should operate on single or double precision
data. For example:

FLD DWORD PTR A

loads a single precision number located at bytes A, A+ 1, A+ 2, and A+ 3
onto the 8087 stack. The instruction

FLD QWORD PTR A

loads a double precision number located at bytes A through A+ 7.

We can also label a memory location without setting aside storage by
using the directives EQU and THIS WORD. "THIS WORD" takes on the
value of the next memory location and "EQU" assigns a value to a name.
For example:

A
B

DW
EQU
DW

10 DUP (?)

THIS WORD
30 DUP (?)

These instructions set aside 40 words of storage. If A ends up being
located at byte 100 of memory, then B will reference location 120.

Some Basic 8088 Instructions

In this section, we cover a few of the most common 8088 instructions,
concentrating on those instructions we need later for programs.

ADD destination.source
ADD (Add) adds the destination and the source and places the sum in
the destination.

60 8087 Applications and Programming

AND destination.source
AND (Logical and) does a bit by bit "and" operation. Bit "i" in the
destination is set to one if bit "i" is one in both source and destination,
otherwise it is set to zero.

DEC destination
DEC (Decrement) subtracts one from the destination.

INC destination
INC (Increment) adds one to the destination.

MOV destination,source
MOV (Move) copies the value of the source into the destination.

MUL source
MUL (Multiply) multiplies the source by AL or AX. If the source is a
byte, it is multiplied by AL, and the result is placed in AH and AL (that
is, the·16-bit answer that occupies AX). If the source is a word, the 32-
bit answer is placed (upper 16 bits) in DX and (lower 16 bits) in AX. Both
operands are treated as unsigned binary numbers. The source cannot be
an immediate operand.

OR destination.source
OR (Logical inclusive or) does a bit by bit "or" operation. Bit "i" in the
destination is set to one if bit "i" is one in either the source or the
destination, otherwise it is set to zero.

SHL destination.source
SHL (Shift logical left) shifts the bits in the destination to the left. Bits
that move out on the left "fall off the end" and zeros are moved in on
the right. The source can either be "1," in which case the destination is
shifted left one bit, or it can be CL, the lower half of the CX register, in
which case the destination is shifted left the number of places indicated
by the value held in CL. ·

Notice that shifting a number left one place is the same as multiplying
the number by two. It turns out that we frequently have need to multiply
by two or by a power of two. The SHL instruction takes only six micro
seconds, while the MUL instruction takes about 30.

SHR destination.source
SHR (Shift logical right) shifts the bits in the destination to the right. Bits
that move out on the right "fall off the end" and zeros are moved in on
the left. The source can either be "l," in which case the destination is

7 a Introduction to 8088 Assembly Language Programming 61

shifted right one bit, or it can be CL, in which case the destination is
shifted right the number of places indicated by the value held in CL.

SUB destination.source
SUB (Subtract) subtracts the source from the destination and places the
difference in the destination. ·

Comparisons

Controlling the flow of a program is easier in BASIC than in assembly
language. In BASIC, we would jump to line 100 when A is greater than
B with a statement combining a comparison and a conditional jump, such
as

IF A>B THEN GOTO 1 □□

In assembly language, the comparison and branching are two logically
separate steps. First, we use a comparison (or other) operation to set
"flags" inside the 8088. Then, we execute a branching instruction which
examines the flags and jumps if it sees the right ones "flying." The 8088
has six internal "flags." These flags can be thought of as occupying six
out of the 16 bits of a "flag register." The flags, their position, and
meaning are:

CF-bit 0-carry flag
PF-bit 2-parity flag
AF-bit 4-auxiliary carry flag
ZF-bit 6-zero flag
SF-bit 7-sign flag
OF-bit 11-overflow flag

The flag names are suggestive of their general use. We care about the
flags for two reasons. First, 8088 comparison instructions set some of the
flags to zero or one. Second, 8087 comparison instructions indirectly set
some of the flags.

The 8088 compares two numbers by using the CMP instruction.

CMP destination.source
CMP (Compare) compares the destination to the source, setting the flags
to indicate the result of the comparison. The flags are read by the jump
instructions outlined in Table 7-2.

The 8087 does its own comparisons, but relies on the 8088 for program
branching. To set up an 8088 branch following an 8087 comparison, we
need to set the 8088 flags. SAHF is used for this purpose.

62 8087 Applications and Programming

SAHF
SAHF (Store register AH into flags) sets SF, ZF, AF, PF, and CF from
bits 7, 6 ,4, 2, and O of AH.

Branching

JMP address
The 8088 jump instruction is analogous to GO TO in BASIC. The program
jumps from its current position to the address specified by the jump.

The 8088 also has 18 conditional jump instructions. These instructions
cause a jump to the specified address only if the flags have a certain
pattern, otherwise execution continues with the next instruction. For
example, if we execute a "JG SOME_LABEL" following a CMP, the pro
gram goes to SOME_LABEL if the destination was greater than the source,
and continues on to the next instruction otherwise. Table 7-2 describes
the conditional jump instructions.

One warning: an 8087 comparison sets different bits than an 8088
comparison. See below.

Table 7-2. 8088 conditional jump instructions.

Mnemonic

JA/JNBE
JAE!JNB
JB/JNAE
JBE/JNA
JC
JE/JZ
JG/JNLE
JGE/JNL
JL/JNGE
JLE/JNG
JNC
JNE/JNZ
JNO
JNP/JPO
JNS
JO
JP/JPE
JS

Condition tested

(CF OR ZF) =0
CF=0
CF=l
(CF OR ZF)=l
CF=l
ZF=l
((SF XOR OF) OR ZF)=0
(SF XOR OF) = 0
(SF XOR OF)= 1
((SF XOR OF) OR ZF) = 1
CF=0
ZF=0
OF=0
PF=0
SF=0
OF=l
PF=l
SF=l

"Jump if ... "

above/not below or equal
above or equal/not below
below/not above nor equal
below or equal/not above
carry
equal/zero
greater/not less nor equal
greater or equal/not less
less/not greater nor equal
less or equal/not greater
not carry
not equal/not zero
not overflow
not parity/parity odd
not sign
overflow
parity/parity equal
sign

NOTE: "above" and "below" refer to the relationship of two unsigned values: "greater"
and "less" refer to the relationship of two signed values.
(Used with permission of Intel Corporation.)

7 a Introduction to 8088 Assembly Language Programming 63

A simple program illustrates 8088 branching technique. Suppose we
want to add up an array of 100 integers in memory and put the answer
in a location called SUM.

NEXLADD:

ARRAY
SUM

MOV

MOV
MOV
ADD
ADD
DEC
CMP
JG
MOV

DW
DW

AX, □

CX,100
BX, □

AX,ARRAY[BX]
BX,2
ex
ex, □

NEXLADD
SUM,AX

100 DUP(?)
?

iCLEAR OUT AX TO HOLD THE
RUNNING SUM

iPUT A COUNT INTO ex
iUSE BX AS AN INDEX REGISTER

iPOINT BX AT THE NEXT ELEMENT
iSUBTRACT ONE FROM THE COUNTER
iIS THE COUNTER ZERO YET?
iIF NOT, ADD ANOTHER ELEMENT

Because looping is so important, the 8088 has specialized instructions for
this sort of routine.

JCXZ address
JCXZ (Jump if CX equals zero) takes a conditional branch if the CX register
equals zero. In the program above, "CMP CX,0" and "JG NEXT_ADD"
test the CX register at the bottom of the loop. We could instead use JCXZ
to test the CX register at the top of the loop, as we illustrate below. The
choice between testing at the bottom versus the top of a loop is largely
a matter of style. We use both styles in this book to provide you with a
variety of examples. However, as a matter of good programming practice,
you may want to choose one style or the other and stick with it.

MOV AX, □ iCLEAR OUT AX TO HOLD THE

MOV
MOV

NEXLADD: JCXZ
ADD
ADD
DEC
JMP

DONE: MOV

ARRAY
SUM

DW
DW

LOOP address

CX,10 □

BX, □

DONE
AX, ARRAY[BX]
BX,2
ex
NEXLADD
SUM,AX

100 DUP(?J
?

RUNNING SUM
iPUT A COUNT INTO ex
iUSE BX AS AN INDEX REGISTER
iGO TO DONE IF ex EQUALS □

iPOINT BX AT THE NEXT ELEMENT
iSUBTRACT ONE FROM THE COUNTER
iGO TO NEXLADD

LOOP (Loop on CX) subtracts one from CX and then jumps to the address
if CX is not equal to zero. Thus LOOP is like a BASIC FOR-NEXT loop
with a FOR statement "FOR initial-value TO 1 STEP-1". We could
further modify the original program by replacing "DEC CX", "CMP CX,0",
and "JG NEXT_ADD" with "LOOP NEXT_ADD".

64 8087 Applications and Programming

You should be warned that the conditional jumps in Table 7-2, JCXZ,
and LOOP all have one limitation. They only work when the target is
within plus or minus 127 bytes. Usually, the target is close enough that
the limitation isn't binding. (The assembler will warn you if the target is
too far away.) Unconditional jumps GMP) don't have this limitation, so,
if you do get stuck, the solution is to write in an extra, close-by, uncon
ditional JMP as the target of the conditional jump instruction.

8087 Branching

An 8087 comparison sets the internal 8087 condition codes. These con
dition codes must be transferred into the 8088 flags prior to executing a
conditional jump instruction. Because the 8087 condition codes do not
exactly parallel the 8088 flags, a little more programming is required
following an 8087 comparison than following an 8088 comparison.

Making an 8087-comµaris©n based decision involves three steps.

• Execute an 8087 instruction to set the 8087 condition codes.
• Transfer the 8087 condition codes through memory and into the 8088

flags, using FSTSW and SAHF.
• Execute an 8088 branching instruction.

The 8087 processor control instruction FSTSW, store status word, stores
the 8087 condition codes, among other things, into a two-byte area of
memory. (FSTSW must be followed in this usage by the processor control
instruction FWAIT.) After the FSTSW, the second byte of the memory
area holds the condition code bits in just the right position to be loaded
into an 8088 register and then dropped into the 8088 flags. The 8088 does
not have four separate branching instructions corresponding to the four
combinations of C3 and CO, the two condition code bits set by the 8087
comparison instructions. The 8088 instruction JB jumps if CO is on and
JE jumps if C3 is on. Thus a fragment of code to consider all possible
outcomes of the condition codes might look like this:

;ASSUME STATUS-WORD IS A 2-BYTE AREA OF SCRATCH MEMORY
DEFINED ELSEWHERE

; DO A COMPARISON TO SET CONDITION CODES
FSTSW STATUS-WORD
FWAIT

;NOW GET CONDITION CODES INTO FLAGS
MOV AH, BYTE PTR STATUS-WORD+1
SAHF

;NOW BRANCH AND TAKE ANY APPROPRIATE ACTIONS
JB LESS-OR-NON-COMP
JE EQUAL

;COME HERE FOR GREATER THAN
;EQUAL: ; COME HERE FOR EQUAL

;LESS-OR-NON-COMP:
JE NON-COMP

7 a Introduction to 8088 Assembly Language Programming 65

;COME HERE FOR LESS THAN
iNON-COMP:
iCOME HERE FOR NON-COMPARABLE

Segments

The ability of the 8088 to address over a million bytes of memory provides
PC owners with far greater power than was available on old 8-bit ma
chines. The designers of the 8088 had to solve a difficult problem in order
to access such a large address space. 8088 registers are 16 bits wide. 216

is 64K. Addressing a megabyte requires 20 bits. The solution is found in
the 8088 segment registers.

The 8088 has four internal 16-bit registers called segment registers.
When calculating an address, the 8088 picks the value from one of the
segment registers, shifts it left four places, and then adds the logical
address made up from displacement and index registers. The resulting
20-bit address is called the effective address. For the most part, we ignore
the segment registers. However, we sometimes need to manipulate them
when dealing with subroutines. For example, the BASIC statement
DEF SEG = defines the beginning of a segment.

An address is completely specified by giving both a segment location
and an offset location. For example, location 100 in the data segment can
be written DS:100. The assembler directives SEG and OFFSET separate
a complete address back into its component parts. For example, if the
complete address of A is 8000:100, then SEG A equals 8000 and OFFSET
A equals 100.

The four segment registers are CS-code segment, DS-data segment,
SS-stack segment, and ES-extra segment.

Since the 8088 uses an area in memory for the stack, we can choose
its size. (You will remember that the 8087 stack was limited to eight
items.) We need to know about the stack for two reasons. First, BASIC
passes arguments to subroutines by placing each argument's address on
the stack. Second, we can temporarily save small amounts of information
on the stack without having to allocate extra storage.

On the 8088, the stack segment register, SS, gives the location of the
stack segment. The stack pointer register, SP, points to the top of the stack.
The stack grows (upside) down in memory, progressing toward location
zero as it grows. Since the stack is just an area in memory, we can access
data on it with any of the usual 8088 instructions. For example, "MOV
BX,SP" and "MOV WORD PTR SS:[BX],0" will move the offset of the
stack top into register BX and then replace the element on top of the
stack with a zero.

Usually, however, we use the stack manipulation instructions PUSH
and POP.

66 8087 Applications and Programming

PUSH source
PUSH (Push) subtracts two from the stack pointer, SP, and then transfers
two bytes from the source into the word at SS:SP.

POP destination
POP (Pop) transfers two bytes from SS:SP to the destination and then
adds two to SP. POP effectively undoes the previous PUSH.

• As an aid to manipulating data on the stack, whenever you code BP
as a base register, as in "[BP]+ 10", the 8088 assumes you want the
stack segment rather than the data segment.

Subroutine Branching and Returns

BASIC has the GOSUB and RETURN. The 8088 has CALL and RET. We
describe the 8088 calling and returning mechanism here. The next chapter
treats the BASIC-to-80~8/8087 routine-calling mechanism in depth.

CALL far-procedure-name
CALL near-procedure-name
CALL (Call a subroutine) is actually two instructions: one for calling
subroutines in another segment, CALL far; and one for calling subrou
tines within the current code segment, CALL near. BASIC always uses
a far CALL. Near CALLs are used in writing relocatable subroutines .

. CALL far pushes CS and IP (the instruction pointer, which holds the
address of the next instruction) onto the stack. The address of the code
segment of the subroutine and the location of the subroutine within the
segment are taken from the procedure-name argument. (The assembler
fills these in automatically.) CS is set to the address of the new code
segment and execution begins at. the beginning of the new subroutine.

These conventions should sound a bit familiar to anyone who has called
a machine language routine from BASIC. The DEF SEG = statement tells
BASIC what value to load into CS. The command CALL SUB() tells BASIC
to do an 8088 CALL to location SUB in the new code segment.

CALL near pushs IP onto the stack and jumps to the location given
as the procedure name.

RET immediate-operand
RET (Return) effectively undoes a CALL. The assembler codes a RET to
undo either a far CALL or a near CALL, depending on whether the
current procedure is marked FAR or NEAR. (See Assembler Directives
below.) In a FAR return, the top two words are popped off the stack.
The first gives the address of the next instruction and the second a new
value for CS. In a NEAR return, one word is popped off the stack and

7 t1 Introduction to 8088 Assembly Language Programming 67

then used as the address of the next instruction. In either case, "im
mediate-operand" additional bytes are popped off the stack. (The stack
operates on words, not bytes. However, addresses are always specified
in bytes. So, to pop one extra word, code "RET 2".) The immediate
operand is optional.

Note that PUSH/POP and CALL/RET are matched pairs, much like
FOR/NEXT or WHILE/WEND in BASIC or parentheses in mathematics.
If the pairing is mismatched, things go very wrong.

Assembler Directives

Assembler directives aren't actually 8088 instructions. Rather, they sup
ply the assembler program with necessary information. We've already
met some of the most important assembler instructions above under
"Labels and Data Definition." The other important directives follow:

label SEGMENT 'class'

label ENDS
SEGMENT and ENDS (END Segment) define the enclosed series of code
or data definitions to be a segment named "label". The segment may
optionally be given a "class" in single quotes. Because some software
looks for the class of a segment, it is a good idea to give a code segment
the class 'CODE' and a data segment the class 'DATA'.

ASSUME CS:segment-label1,DS:segment-label2,
SS:segment-label3,ES:segment-label4

ASSUME promises the assembler that the segment registers will contain
the indicated segment addresses. (It's the programmer's responsibility
to see to it that the promise is kept at execution time.) Since a section of
code always has a code segment, "CS: ... " must always be present, the
three remaining ASSUME specifications appear as needed.

label PROC FAR

label ENDP
PROC (PROCedure) and ENDP (END Procedure) mark the boundaries
of a procedure just as SEGMENT and ENDS mark the boundaries of a
segment. FAR signals the assembler that the procedure will be called
with a CALL FAR instruction. When the assembler sees a RETurn in-

68 8087 Applications and Programming

struction, it generates a RET FAR. (For a NEAR procedure, which you
can't call from BASIC, code NEAR in place of FAR).

PUBLIC symbol
EXTRN name:type
PUBLIC and EXTRN (EXTeRNal) are used to supply information nec
essary for linking together separately assembled or compiled programs.
Information about a symbol defined to be PUBLIC is made available to
other programs. EXTRN tells the assembler to treat "name," which has
been defined in another program, as being of type "type." The following .
example shows the most common use of PUBLIC and EXTRN.

program1
PUBLIC LABEL 1

LABEL 1 PROC FAR

LABEL1 ENDP

program2
EXTRN LABEL1 :FAR
CALL LABEL1

Any label declared PUBLIC can be accessed by any program declaring
the same name to be EXTRN. A label which is to be used by separately
assembled programs should be declared PUBLIC. The declaration should
be made exactly once, in the program where the label is defined. Any
number of other programs may declare the label EXTRN. In particular,
the name of an assembly language procedure should be declared PUBLIC
if the procedure is to be called as a BASIC subroutine.

SEGMENT/ENDS and PR0OENDP are also matched pairs. Since these
directives carry labels, the assembler will probably catch the error if you
omit a half of either pair.

END
END marks the end of the entire assembly language program.

This chapter has been heavy on required detail. In Chapter 8, we put
this detail to work writing real 8087 programs.

c8)
BASIC and the 8087

Assembly language subroutines, in combination with BASIC programs,
join the convenience of a high-level language with the speed of the 8087.
In this chapter, we discuss the software conventions that must be ob
served in writing the 8087 routines. (If you want to use the 8087 proce
dures in this book for languages other than Microsoft BASIC, you may
have to observe different conventions.)

Calling a Subroutine

Calling a subroutine requires three tasks. First, we have to set up a list
of arguments that can be retrieved by the subroutine. Second, we have
to store away a return address in a place the subroutine can find. Third,
we jump to the subroutine. The CALL instruction takes care of the latter
two tasks. The first is accomplished by pushing the addresses of the
arguments onto the 8088 stack.

Calling a subroutine is most easily explained with an illustration. Sup-
pose we wanted to imitate the following BASIC code:

DEF SEG=&H18□□
SUB= □
CALL SUB(A(□),SUM,N)

We could use the following 8088 prpgram:

CSEG
ASSUME cs:CSEG,DS:DATA-SEGMENT,SS:STACK-SEGMENT
SEGMENT' CODE'
MOV AX,DATA-SEGMENT

MOV
MOV

MOV
MOV
MOV
PUSH

DS,AX
AX,STACK_SEGMENT

SS,AX
SP,OFFSET STACK-TOP
AX,OFFSET A
AX

69

iMOVE ADDRESS OF
SEGMENT

iTHROUGH AX INTO
iMOVE ADDRESS OF

SEGMENT

DATA

DS
STACK

;THROUGH AX INTO SS
iSET SP TO STACK TOP
iPUSH ADDRESS OF A
iONTO STACK

i1
i2
i3

i4
iS

i6
i7
i8
i9

70 8087 Applications and Programming

MOV AX,OFFSET SUM
PUSH AX
MOV AX,OFFSET N
PUSH AX
CALL FAR PTR 1800H:O

NEXT-LOCATION: ;RETURN
CSEG ENDS

DATA-SEGMENT SEGMENT 'DATA'
A DW 1000 DUP (?)

SUM DW ?
N DW 1000
DATA-SEGMENT ENDS

;PUSH ADDRESS OF SUM
;ONTO STACK
;PUSH ADDRESS OF N
;ONTO STACK
;CALL SUBROUTINE

HERE WHEN SUBROUTINE ENDS

;LO
;11
;12
;13
;14

;15

;16
;17
;18
;19
;20

STACK-SEGMENT
STACK-AREA
STACK-TOP
STACK-SEGMENT

SEGMENT 'ST ACK' ; 21
DW 100 DUP (?) ; 22
EQU THIS WORD ;23
ENDS ;24
END ; 25

1. ASSUME cs ASSUME promises the assembler we will
set up the segment registers appropriately.

2. CSEG SEGMENT 'CODE'. Tell the assembler we are beginning the
code segment.

3-4. MOV AX,DATLSEGMENT and MOV DS,AX. Put the address of the
data segment into the data segment register, by transferring it
through the AX register. We require two steps because the
MOY.instruction allows immediate operands, like an address,
to be moved into memory or a general register, but not into a
segment register.

5-6. MOV AX, STACK-SEGMENT and MOV ss, AX. Put the address of the
stack segment into the stack segment register.

Note that we do not have to load the code segment register.
Someone else must have already done this for us since we can't
execute code to load the code segment register, or to do any
thing else, until the code segment register is loaded. The pro
gram that calls our subroutine is responsible for loading CSEG
into CS. (And how does that program get CS loaded? And the
one that calls it? The operating system initially loads the CS
register when it first calls BASIC (or whatever). The CS value
for the operating system is wired into the hardware.)

7. MOV SP,OFFSET STACK-TOP. Set the stack pointer register to
point to the memory location after the end of the stack area.
We could have written "MOV SP,STACK.__.AREA + 200" with
identical results. But by doing it this way, the assembler will
load the correct address for the stack top even if we decide to
change the size of the stack in line 22.

8-9. MOV AX,OFFSET A and PUSH AX. We now push the addresses
of the arguments onto the stack, in the order of appearance in
the CALL statement. Since PUSH does not allow an immediate
operand, we have to go again though a general register. The

8 a BASIC and the 8087 71

assembler directive "OFFSET" tells the assembler to load the
address of A rather than the value of the number stored in A.
("OFFSET" means use the address relative to the beginning of
the segment.) The convention of passing the address of an
argument, instead of its value or its name, is sometimes called
a "call by address."

10-13. MOV AX,OFFSET SUM and PUSH AX and MOV AX,OFFSET N and
PUSH AX. The addresses of SUM and N are pushed in a similar
manner. Notice that no distinction is made between a scalar
variable and the first word of an array.

14. CALL FAR PTR 18□□H: □. CALL a FAR procedure. The current
. contents of the CS register and the Instruction Pointer (the
address NEXT_LOCATION) are pushed onto the stack. Then
CS is set to 1800H. ("H" indicates hexadecimal to the assembler
just as "&H" does to BASIC. Hex addresses start with a digit,
not a letter; for example, OAH, not AH, so that the assembler
can distinguish a number from a name.) The program then
jumps to location O in a code segment beginning at 18000H.
(Remember that segment registers always have four zero bits
added at the right.) ·

15. CSEG ENDS. Tell the assembler we are ending the code segment.
16. DATA-SEGMENT SEGMENT 'DATA'. Tell the assembler we are be

ginning the data segment. The compiler is smart enough to
know that "OFFSET A" is an address in the data segment and
that OFFSET STACI<-TOP is an address in the stack segment.

17. A DW 10□□ DUP (?). Set aside 1000 uninitialized words for A.
18. SUM DW ? . Set aside one uninitialized word for SUM.
19. N DW 1000. Set aside one word for N, initialized to 1000.
20. DATA-SEGMENT ENDS. End the data segment.
21. STACK-SEGMENT SEGMENT •STACK•. Begin the stack segment.
22. STACK-AREA DW 1 □□ DUP (?). Set aside 100 words for the stack.
23. STACK-TOP EQU THIS WORD. STACI<-TOP is equivalent to the

address appearing after the 100 words allocated for the
STACI<-AREA.

24. STACK-SEGMENT ENDS. End the stack segment.
25. END. End the program.

The receiving subroutine finds the DS and SS registers pointing to the
data and stack segments defined above. The CS register points to 1800
hex. Most of the important information appears on the stack, which is
shown in Figure 8.1. Remember that the 8088 stack actually grows upside
down in memory, so that as we push addresses onto the stack, SP moves
toward zero. Since we have pushed five words onto the stack (three
argument addresses, CS, and NEXT_LOCATION), SP equals
(STACI<-AREA + 200)-10.

72 8087 Applications and Programming

STACK_AREA+198 OFFSET A

OFFSET SUM

OFFSET N

CSEG

STACK_AREA+190 NEXT LOCATION • SP POINTS HERE -

-

-

Figure 8.1. Memory stack after subroutine call.

Acting Like a Called Subroutine

Machine language subroutines called from BASIC must obey a number
of rules. The important ones are:

• At entry, CS is set according to the last DEF SEG. The other segment
registers point to the beginning of BASIC's data area.

• At exit, all segment registers and registers SP and BP should hold
their original values. The other registers, and the flags, may be
changed.

• BASIC promises that the stack pointed to by SP will have eight free
words. If the subroutine needs a larger stack, it must set up its own.

• The subroutine must pop the argument addresses off the stack before
returning.

Let's write a subroutine, to add up an array of integers, in a form that
could be called by the code sequence appearing in the preceding section.

PUBLIC SUB a
ASSUME cs:CSEG ;2

CSEG SEGMENT 'CODE' ;3
SUB PROC FAR ;4

PUSH BP ;SAVE BP ;s
MOV BP,SP ;FIND ARGUMENT LIST ;6
MOV BX,[BP]+1 □ ;ADDRESS A ;7
MOV SI,[BP]+b ;ADDRESS N ;a
MOV CX,[SI] ;ex GETS N ; "I
MOV AX, □ ;CLEAR AX a□

ADD-LOOP: ;11
ADD AX,WORD PTR [BX] ;ADD A[BX) ;12
ADD BX,2 ;NEXT ELEMENT ;13
LOOP ADD-LOOP ;DO IT AGAIN ;14

SUB
CSEG

MOV
MOV
POP
RET
ENDP
ENDS
END

DI,[BP]+8
[DI],AX
BP
6

8 a BASIC and the 8087 73

;
;ADDRESS SUM ;15
;STORE SUM ;16
;RESTORE BP ;17
;RETURN ;18

;19
;2 □
;21

1-3. The PUBLIC, ASSUME, and SEGMENT statements supply the usual
information to the assembler.

4. PROC FAR tells the assembler that this routine will be called with
a FAR CALL; information needed to generate the proper type
of return instruction in line 18.

5. PUSH BP. Save the value of the BP register by pushing it onto
the stack for later retrieval. Note this instruction subtracts two
from SP, so SP now equals STACICAREA+188.

6. MOV BP,SP. Copy the stack pointer, SP, into BP. The instruc
tions that follow retrieve information from the stack. BP can
serve as a base register, as in [BP], while SP cannot.

7. MOV BX,[BPJ+1 □. Copy the contents of [BP]+lO into BX. Since
BP equals STACICAREA + 188, [BP]+ 10 is STACICAREA + 198.
STACICAREA + 198 holds OFFSET A, so after this instruction
BX holds the address of the first word of A.

8. MOV SI,[BPJ+6. By the same logic, move the address of N into
SI.

9. MOV CX,[SIJ. Now move the value of N into the count register,
ex.

10. MOV AX, □ . Clear out the accumulator, AX.
11. ADD-LOOP:. Label the top of the loop. Notice that this loop does

not worry about errors such as negative or zero N nor about
the accumulator overflowing. (Not very good programming
practice!)

12. ADD AX,[BXJ. Adds the element of A currently pointed to it by
BX into AX. The first time through, this is A(0); the second
time, A(l); and so forth.

13. ADD BX,2. Increment BX by 2 so it points to the next word.
14. LOOP ADD-LOOP. Decrements the count register and jump back

up to the top of ADD_LOOP if we haven't run the count down
to zero.

15. MOV DI,[BPJ+8. Move the address of SUM into DI.
16. MOV [DIJ,AX. Move the contents of AX into the address pointed

at by the DI register, that is, into SUM.
17. POP BP. Now restore the original value of BP. Also, add two

to SP.
18. RET 6. Set the Instruction Pointer to point to NEXT_LQCA

TION and set CS equal to CSEG, in the process add four to
SP. Add the optional pop value to SP. Now SP equals
STACICAREA + 200, as it did before the subroutine was called.

74 8087 Applications and Programming

19-21. SUB ENDP and CSEG ENDS and END. Tell the assembler to close
up the procedure, segment, and program.

In coding the subroutine, a pattern appears.

• If the subroutine is called with "n" arguments, then the address of
argument "i" is stored in [BP]+ 6 + 2*(n -i). In other words, the
right-most argument has its address stored at [BP] + 6; the right
most-but-one is at [BP] + 8; one further to the left is at [BP] + 10; and
so forth. (These addresses are valid after we set BP, as in lines 5 and
6, with a PUSH and a MOV.)

• It takes one instruction to retrieve the address of the argument; two
to retrieve the argument's value.

• The last instruction should be RET 2*n, where n is the number of
arguments.

Subroutine Relocation and Segment
Addressing

The BASIC command BLOAD allows us to load a subroutine at any
memory location. It is therefore highly desirable that our 8087 routines
be dynamically relocatable. We can run into difficulty if the segment ad
dresses at which a routine is initially loaded (see "Loading A Subroutine
into Interpreted BASIC") differ from those at which we later BLOAD the
routine. Dynamic relocation is automatic for programs which do not
explicitly reference segment locations, but is somewhat more complicated
otherwise.

For the purposes of this discussion, suppose we had initially loaded
SUB with DEF SEG = &Hl800 and then BSA VED it from this location.
with an offset of zero.

Suppose we now load SUB back in at DEF SEG = &H1900. When BASIC
calls SUB, it sets the code segment register to &H1900 and the instruction
pointer to zero. Execution procedes correctly.

Suppose instead that we load SUB at DEF SEG=&H1900 and offset
125. SUB "thinks" it will find the first instruction at offset zero in the
code segment. Actually, the first instruction is at offset 125. However,
when we call SUB we specify the offset. BASIC sets the instruction pointer
to 125. All the instructions we have used, though not every instruction
the 8088 knows, operates relative to the instruction pointer. SUB still
executes correctly.

SUB is fully relocatable. What sort of subroutine isn't? Unfortunately,
any subroutine that explicitly contains a value for a segment register is
not relocatable, since the segment may end up at some other memory
location than the one originally specified. This is particularly a problem
when we define a data, extra, or stack segment inside a routine.

8 t1 BASIC and the 8087 75

Consider the following, not very useful routine.

EXTRLSEG SEGMENT 'DATA'
FOOLISH DW ?
EXTRLSEG ENDS

; SUBROUTINE SILL Y(JUNK%J
PUBLIC SILLY

. ASSUME cs:CSEG,ES:EXTRA-SEG
CSEG
SILLY

SILLY
CSEG

SEGMENT 'CODE'
PROC FAR
PUSH BP
MOVE BP, SP

PUSH ES
MOVE AX,EXTRLSEG
MOVE ES,AX

MOVE AX,FOOLISH
MOVE DI,[BP]+6
MOVE [DI],AX
POP ES
POP BP
RET 2
ENDP
ENDS

END

; POINT ES
;AT
;EXTRA SEGMENT

;RETURN WHATEVER
;NUMBER WAS
;LYING AROUND

;1
;2
;3

; 4
;5
;6
;7
;8
;9

;LO
;11
;12

;13
;14
;15
;16
;17
;18
;19
;20

;21

This subroutine references the extra segment (if not to any good pur
pose). Instructions 1-9 and 14-21 are standard. Lines 10, 11, -and 12 save
ES on the stack and then load the address of EXTRA_SEG into ES. Line
13 copies FOOLISH. (Note that the assembler should be smart enough
to use ES to reference FOOLISH.) Subroutine SILLY will work if loaded
and used at one location, since the loader will figure out the value for
EXTRA_SEG. However, if we relocate SILLY, EXTRA_SEG will no longer
be at its original location, and unpredictable consequences may ensue.

We can make SILLY relocatable by having the subroutine figure out
for itself how far it's been moved from its original location. The subroutine
"thinks" it begins at location 16*CSEG. In truth, when BLOADed by
interpreted BASIC, SILLY begins at 16*DEF SEG + offset. Similarly, the
subroutine thinks the extra segment begins at 16*EXTRA_SEG, while it
actually begins at 16*EXTRA_SEG + (16*DEF SEG + offset -16*CSEG).
We can use this relation to correctly load segment registers. Life is com
plicated a slight bit more because the only way to find "offset" is by
examining the value of the instruction pointer at entry.

The following subroutine, SMART, will work correctly, as long as the
code segment and extra segment are loaded together at a memory location that
is an even multiple of 16.

76 8087 Applications and Programming

EXTRLSEG SEGMENT 'DATA' ;1

FOOLISH DW ? i2
EXTRLSEG ENDS i3

i SUBROUTINE SMART(JUNK%)
PUBLIC SMART i4
ASSUME cs:CSEG,ES:EXTRA-SEG iS

CSEG SEGMENT 'CODE' ib
FIRSLINST EQU THIS WORD i7
SMART PROC FAR i8

PUSH BP i9
MOV BP,SP i1O

PUSH ES i11
CALL NEXT i12

NEXT: POP AX i13
SUB AX ,(OFFSET NEXT)-(OFFSET FIRSLINST) i14
MOV CL,4 i15
SHR AX,CL i16
MOV BX,CS i17
ADD BX,EXTRLSEG i18
SUB BX,CSEG i19
ADD AX,BX i2O
MOV ES,AX i21

MOV AX,FOOLISH i22
MOV DI,[BP]+b i23
MOV [DI], AX i24
POP ES i25
POP BP i26
RET 2 i27

SMART ENDP i28
CSEG ENDS i29

END i3O

Lines 1-6, 8-10, 22-24, and 27-30 are standard.

7. FIRST-INST EQU THIS WORD. Define the location of the first in
struction in the code segment to be FIRST.JNST. (FIRST.JNST
equals zero here.)

11. PUSH ES. Save ES on the stack. Note we don't change BP so
argument references don't change.

12-13. CALL NEXT and NEXT: POP AX. This is a devious way to retrieve
the instruction pointer. CALL pushs IP onto the stack. (The
instruction pointer will point to the true offset of NEXT, no
matter where the routine is located.) POP pops the stack into
AX. Now AX holds the true offset of NEXT.

14. SUB AX,(OFFSET NEXT)-[OFFSET FIRSLINST). Now we sub
tract the expected offset of NEXT from the true offset. AX now
holds the number of bytes by which the offset of SMART has
changed as compared to the position at which it was originally
loaded.

8 a BASIC and the 8087 77

15-16. M◊V CL, 4 and SHR AX, CL. Divide AX by 16 since we are going
to set a segment register. Notice that if the program was relocated
by any number other than an even multiple of 16, the program will
bomb in an unpredictable manner. Nor will any other method
work, since the 8088 requires segments to be placed at ad
dresses that are even multiples of 16.

17-19. M◊V BX,CS and ADD BX,EXTRLSEG and SUB BX,CSEG. Figure
out how far the code segment has been displaced from its
original location and how far the extra segment is from the code
segment.

20-21. ADD AX,BX and M◊V ES,AX. Combine the offset and segment
correction and set ES.

25. POP ES. Restore ES before leaving the routine.

While all this manipulation is a bit of a nuisance, it is worth the extra
trouble to be able to more easily load subroutines into BASIC. If you only
use a compiler, then relocation is handled by the LINK program and this
extra code is unnecessary.

Loading Assembly Language Programs

At the end of the. chapter, we show two complete interactive sessions in
which SMART is used in a BASIC program: one session for the interpreted
BASIC built into the IBM Personal Computer and one session for IBM's
BASIC compiler. The remainder of this chapter describes the general
steps involved. These procedures focus more specifically than most of
the material in the book on the IBM Personal Computer running PC
DOS. If you have a different machine or different software (especially if
you are not using Microsoft software), you may have to adjust these
procedures somewhat.

Loading a Routine Into Interpreted BASIC

The assembler transforms an 8087/8088 source program into an object
module. Several further steps are required to get the routine into a form
suitable for BLOADing into BASIC. These steps involve running the
program through the LINKer, through DEBUG, and finally through BASIC.
Suppose we begin with a program held in file FOO.ASM.

The ASSEMBLER replaces the instructions and (most) addresses with
their binary representation and creates a file FOO.OBJ.

LINK is able to combine several different object files. It creates FOO.EXE.

We use DEBUG to load FOO.EXE. DEBUG figures out the actual mem
ory address at which each segment begins. We can also ask DEBUG to
tell us where the program begins.

78 8087 Applications and Programming

Finally, we use BASIC to BSAVE the routine. Once the routine is
BSAVED, we can BLOAD it whenever desired.

The exact procedure for getting from FOO.ASM to the BSAVEd version
is described in Appendix C of the IBM PC BASIC manual. (The descrip
tions of LINK and DEBUG in the DOS manual supply some additional
information.) The exact procedure may vary according to which version
of DOS and BASIC you use. The steps described below usually work for
the author.

1. Assemble FOO.ASM. (Be· warned that the assembler occasionally
produces erroneous error messages.)

2. Link FOO.OBJ. Tell the linker to load HIGH (LOW is the default).
Get a MAP file from LINK so that you can find the total length of
the output file, FOO.EXE. If FOO doesn't have a stack segment,
LINK will report its absence as an error. Ignore this message.

3. Enter the DEBUGer with DEBUG BASIC.COM.
4. Type "r" to examine the registers. Copy down the values of CS,

SS, IP, and SP.
5. Enter "N FOO.EXE". Type "L". This tells DEBUG to load your

routine.
6. Type "r" again. Copy down the new values of CS and IP.
7. Restore SS and SP by using the "r" command. Enter "RSS". The

computer will tell you the current value of SS. Respond by entering
the value of SS you copied down in step 4. Now enter "RSP" and
respond to the computer with the value of SP from step 4.

8. Enter "g = CS:IP" where CS and IP are replaced by the values copied
down in step 4.

9. BASIC should start up now, possibly with an irrelevant warning
about a DIRECT STATEMENT IN FILE. Execute DEF SEG=cs, where
cs is the value of CS copied down in step 6. Execute a BSA VE
filespec,offset,length command; where filespec gives the name of
the file in which you wish to save the routine, offset is the value
of IP from step 6, and length is the length in bytes of FOO.

From now on, to use FOO from BASIC just do a "DEF SEG =" and
"BLOAD filespec".

Loading a Routine Into Compiled BASIC

Combining an assembled program with the output of the PC-BASIC
compiler is considerably easier than loading the program into interpreted
BASIC.

1. Assemble FOO.ASM. Include sub:r:outine names in a PUBLIC state
ment.

2. Compile the BASIC program. Omit DEF SEG and BLOAD state
ments. You need not worry about the location of the subroutine in
memory.

8 a BASIC and the 8087 79

3. LINK the output of the BASIC compiler together with FOO.
4. Execute the ".EXE" module.

Interactive Session for Interpreted BASIC

Assume that the routine SMART is in file FOO.ASM on disk B:. The
following BASIC program is in a file USEFOO.BAS, also on disk B:.

10 DEF SEG=&H18□□
20 BLOAD "B:FOO,SAV", □

30 SMART%= □

40 FOOLISH%=9999
50 PRINT FOOLISH%
60 CALL SMART%(FOOLISH%)
70 PRINT FOOLISH%
80 END

A sample interactive session for loading FOO into interpreted BASIC
follows. Your responses have been underlined. ~

~b ¥'~
"\~e, ~~ ~- ~

'9.._<ti ~.lll'O\V" ~v

B>A:MASMi
THE IBM PERSONAL COMPUTER MACRO ASSEMBLER
VERSION 1, □□ (()COPYRIGHT IBM CORP 1981

0004 E8 0007 R
-&.-___ ,fP"'~tA-6

CALL NEXT
i12

E R R O R

WARNING SEVERE
ERRORS ERRORS
□ 1
B>A:LINK

64:NEAR JMP/CALL TO DIFFERENT

IBM PERSONAL COMPUTER LINKER
VERSION 1, 10 (()COPYRIGHT IBM CORP 1982

OBJECT MODULES (,OBJ):FOO/HIGH/MAP J,4/
RUN RILE [FOO, EXE): ~1
LIST FILE [NUL,MAP): FOOi 1 ..1,1.~

WARNING: NO STACK SEGMENT\--- oo~o--
THERE WAS 1 ERROR DETECTE~

B>TYPE FOO-MAP
LOADING HIGH
WARNING: NO STACK SEGMENT
,.UA.fU__ STOP LENGTH NAME

(ooooaH) □□□2AH 002BH CSEG
00030H (Q0031H) 0002H EXTRLSEG

ADDRESS

@:oo □: ooo □J
PUBLICS BY NAME

SMART

80 8087 Applications and Programming

ADDRESS

0000:0000

PUBLICS BY VALUE

SMART

B>A:DEBUG A:BASIC°COM
-R

AX= □□□□ BX= □□□□ CX=3F8□ DX=□□□□ SP~v~
Ds= □ 9 □ 5 Es= □ 9 □ 5 ss~ csf3!ci]./IP a:i.aa
0905: 0100 E9E338 , JMP/;,- 3"1£1:, 1

I // I
-N FOO.EXE / ,.,.;/ /

I /",,.
-L / //'' I

- I ,; ,; I
-~ t// !

AX=FF47 BX=□□□□ ,tcx= □□8 □ DX=□aaa / SP•DOOO
DS=09□ 5 ES=0905 ~,' SS=4F"l4 «;S=4F"li?J/ IPmOOOO
4F94: DODD 55 /,) PUSH / BP /

-RSS //1 I /
,; II I ;

SS 4F94 / /t 1/
: 9 D 5.(:- _,. (,.-----/'
-RSP 111 _..,,,"' ,,i

- I / ,;
SP ODDO// ,,,,,,. /
: FFF :/ ,/ /
-G 90 : DO I

I

DIRECT STATEMENT/IN
OK /
DEF SEG~
OK
BSAVE "F00-SAV",0,&H31
OK
SYSTEM
PROGRAM TERMINATED NORMALLY

BP=DOOO SI=DOOO DI=OOOO
NV UP DI PL NZ NA PO NC

BP•DOOO SI•OOOO DI•OOOO
NV UP DI PL NZ NA PO NC

-~ T '1 e I} CllPM e.£M4.,- iwzt..
B>A:BASIC~
THE IBM PERSONAL COMPUTER BASIC
VERSION D1-10 COPYRIGHT IBM CORP- 1981, 1982
61371 BYTES FREE
OK
LOAD "USEFOO"
OK
RUN

9999
D

OK

Interactive Session For Compiled BASIC

Assume that the routine SMART is in file FOO.ASM on disk B:. The
following BASIC program is in a file USEFOO.BAS, also on disk B:.

10 FOOLISH%=9999
20 PRINT FOOLISH%
30 CALL SMART(Fo'oLISH%)

8 t1 BASIC and the 8087 81

40 PRINT FOOLISH%
50 END

A sample interactive session for loading FOO into compiled BASIC fol
lows. Your responses have been underlined.

B>A:MASM;
THE IBM PERSONAL COMPUTER MACRO ASSEMBLER
VERSION 1- DD (()COPYRIGHT IBM CORP 1981

0004 E8 0007 R
;12

E R R O R

WARNING SEVERE
ERRORS ERRORS
□ 1

CALL NEXT

64:NEAR JMP/CALL TO DIFFERENT

B>A:BASCOM USEFOO; ~------~---7ht,tJ(ftUl>1 c4ML-~
IBM PERSONAL COMPUTER BASIC COMPILER

(()COPYRIGHT IBM CORP 1982 VERSION 1- DD
(()COPYRIGHT MICROSOFT, INC. 1982

22151 BYTES AVAILABLE
22032 BYTES FREE

D WARNING ERROR(S)
D SEVERE ERROR(S)

B>A:LINK USEFOO+FOO;

IBM PERSONAL COMPUTER LINKER
VERSION 1-1□ (()COPYRIGHT IBM CORP 1982
B>USEFOO
9999
□

Simple 8087 Routines

Several fairly simple 8087 routines are presented in this chapter. The
purpose of the presentation is twofold. First, the routines themselves are
quite useful. For example, our first program can be called from BASIC
to add up a series of numbers. Second, we illustrate a number of prin
ciples of 8087 subroutine programming including:

• Indexing through a single array.
• Using single precision and double precision arithmetic.
• Indexing through multiple arrays.

Program:
Purpose:
Call:
Input:

Output:
Language:

Program:
Purpose:
Call:
Input:

Output:
Language:

Program:
Purpose:

, Call:
Input:

The Cookbook-Chapter 9

SUM
Sums up a single precision array.
CALL SUM(ARRA Y(0),N,DSUM).
ARRAY -single precision array.
N-integer number of elements of ARRAY.
DSUM-double precision sum of ARRAY.
8087/8088 assembly language.

PRODUCT
Product of elements of a single precision array.
CALL PRODUCT(ARRA Y(0),N,DPRODUCT).
ARRAY-single precision array.
N-integer number of elements of ARRAY.
DPRODUCT-double precision product of ARRAY.
8087/8088 assembly language.

GSUM
Sums up an integer, single, or double precision ar
ray.
CALL GSUM(ARRA Y(0), TYPE,N,SUM).
ARRAY-array to be summed.
TYPE-integer variable giving the length of one ele

ment of ARRAY

83

84 8087 Applications and Programming

Output:
Language:

Program:
Purpose:
Call:
Input:

Output:
Language:

Program:
Purpose:
Call:
Input:

Output:
Language:
Program:
Purpose:
Call:
Input:

Output:
Language:

Program:
Purpose:
Call:
Input:

Output:
Language:

Program:
Purpose:
Call:
Input:

Output:
Language:

Program:
Purpose:
Call:

N-integer number of elements of ARRAY.
SUM-double precision sum of ARRAY.
8087/8088 assembly language.

VADD
Adds two single precision vectors.
CALL VADD(A(0},B(0},C(0),N).
A-input array.
B-input array.
N-integer number of elements of A,B,C.
C-output array, C =A+ B.
8087/8088 assembly language.

VADD3
Adds three single precision vectors.
CALL VADD3(A(0),B(0},C(0),D(0},N).
A-input array.
B-input array.
C-input array.
N-integer number of elements of A,B,C,D.
D-output array, C=A+B+D.
8087/8088 assembly language.

VSET
Sets array to a constant.
CALL VSET(A(0),SCALAR,N).
SCALAR-single precision constant.
N-integer number of elements of A.
A-output array, A=SCALAR.
8087/8088 assembly language.

ADDSC
Adds scalar to single precision array.
CALL ADDSC(A(0),SCALAR,B(0),N).
A-input array.
SCALAR-single precision constant.
N-integer number of elements of A.
B-output array, B =A+ SCALAR.
8087/8088 assembly language.

SQRT
Takes square root of vector.
CALL SQRT(A(0},B(0},N).
A-input array.
N-integer number of elements of A,B.
B-output array, B = SQR(A).
8087/8088 assembly language.

GCOPY
Copies integer, single, or double precision array.
CALL GCOPY(A(0}, B(0), TYPE,N).

9 a Simple 8087 Routines 85

Input: A-input array.
TYPE-integer giving length of element of A.
N-integer number of elements of A,B.

Output: B-output array, B = A.
Language: 8087/8088 assembly language.

Program: GBCOPY
Purpose: Copies integer, single, or double precision array,

backwards.
Call: CALL GBCOPY(A(0),B(0), TYPE,N).
Input: A-input array.

TYPE-integer giving length of element of A.
N-integer number of elements of A,B.

Output: B-output array, B = A.
Language: 8088 assembly language.

Program: GADDSAFR
Purpose: Adds two vectors, with error checking.
Call: CALL GADDSAFR(A(0),B(0)",C(0), TYPEA, TYPEB,

TYPEC,N,IER).
Input: A-input array.

B-input array.
TYPEA-integer giving length of element of A.
TYPEB-integer giving length of element of B.
TYPEC-integer giving length of element of C.
N-integer number of elements of A,B,C.

Output: C-output array, C=A+B.
!ER-integer error indicator.

Language: 8087/8088 assembly language.

Program: REALERR
Purpose: Check array for invalid data.
Call: CALL REALERR(ARRA Y(0), TYPE,N,IFDEN,IFINF,

IFNAN,ELEMENT).
Input: ARRAY-input array (single or double precision).

TYPE-integer giving length of element of ARRAY.
N-integer number of elements of ARRAY.

Output: IFDEN-integer (-1 if denormal found).
IFINF-integer (-1 if infinity found).
IFNAN-integer (-1 if Not-A-Normal found).
ELEMENT-integer, index of last invalid data.

Language: 8087/8088 assembly language.

Program: DENTO0
Purpose: Replace denormal values with zero.
Call: CALL DENTO0(ARRA Y(0), TYPE,N).
Input: ARRAY-input array (single or double precision).

TYPE-integer giving length of element of ARRAY.
N-integer number of elements of ARRAY.

86 8087 Applications and Programming

Output:
Language:

ARRA Y-denormals replaced with 0.
8087/8088 assembly language.

Array Indexing

Our first 8087 subroutine sums a series of numbers and returns their
total. Assuming that a single precision array named ARRAY, dimen
sioned ARRA Y(N -1), has been defined elsewhere, that N has been set
equal to the number of elements of ARRAY, and that DSUM is a double
precision variable, a BASIC instruction sequence might look like this:

10 DSUM=O
20 FOR I= □ TO N-1
30 DSUM=DSUM+ARRAY(I)
40 NEXT I

An equivalent 8087 routine appears below. Assuming the routine has
been loaded into memory at the location SUM, we could call it from
BASIC with the instruction

10 CALL SUM(ARRAY(□), N, DSUM)

The 8087 routine has three logical sections. First, it must accept the
information passed to it from BASIC. Secondly, the routine calculates
the sum of the array elements. Third, the answer is passed back into the
BASIC variable DSUM. Notice that we execute an FW AIT before return
ing from the subroutine. The FWAIT guarantees that the sum will have
reached memory before the calling program attempts to access it.

iSUBROUTINE SUM(ARRAY,N,DSUM)
i ASSUMPTIONS: ARRAY IS A SINGLE PRECISION ARRAY OF LENGTH N
; N IS AN INTEGER
i DSUM IS DOUBLE PRECISION

PUBLIC SUM
CSEG SEGMENT 'CODE'

ASSUME cs:CSEG
SUM PROC FAR

PUSH BP
MOV BP,SP
MOV BX,[BP]+10 i BX=ADDR(ARRAY)
MOV SI,[BP]+8 i SI=ADDR(N)
MOV ex, !SIJ iCX=N

;
iNOW ALL SET UP TO GO

FLDZ i INITIALIZE ST= □
CMP CX,OH iHOPE N > 0
JLE DONE

iTHE NEXT 3 INSTRUCTIONS DO ALL THE HARD WORK

9 1:1 Simple 8087 Routines 87

ADD-LOOP: F.ADD DWORD PTR [BX] iDWORD=> SINGLE
PRECISION

ADD BX,4 iREADY FOR NEXT
ELEMENT

LOOP ADLLOOP

DONE:
;
iNOW FILE ANSWER BACK IN DSUM

MOV DI ,[BP]+b i DI=ADDR(DSUMJ
FSTP QWORD PTR [DI] iQWORD=> DOUBLE

PRECISION
iDSUM IS NOW PUT AWAY

POP BP
FWAIT iBE SURE 8087 IS DONE
RET 6

SUM ENDP
CSEG ENDS

END

How long does the addition routine take? Essentially, all the execution
time is in the three-instruction "ADD_LOOP." (Calling the subroutine
from BASIC, and the beginning and end of the routine obviously takes
a little time. But this overhead time is inconsequential for large N.)

The FADD instruction takes approximately 25 microseconds. The ADD
instruction uses approximately 1 microsecond. The LOOP instruction
requires about 4 microseconds. Thus the routine should take about 30
microseconds per array element. Right?

Wrong, actually. The 8087 and 8088 run in parallel. So, while the 8087
is adding one number, the 8088 is adding to the BX register, decrementing
the count in register CX, testing CX, and looping back up. Hence, the
routine takes about 25 microseconds per element. Adding 10,000 single
precision numbers takes just under one-fourth of a second. How long
would a comparable BASIC routine take? Without the 8087, about 46
seconds.

In addition to the speed advantage, the 8087 produces a more accurate
answer because it accumulates in 80-bit temporary real format rather than
64-bit double precision.

SUM is quite a useful subroutine. Of more general importance, SUM
illustrates how to write a routine that indexes through a single array. We
µse a three-part trick. First we load the address of the array into a con
venient base or index register (we could have used SI or DI instead of
BX) and the count into the CX register. Second, we add four to BX (and
so forth) at each step. Third, we use the LOOP instruction to count off
the steps.

Operations other than addition are easily written using the same pro
cedure. For example, to take the product of an array of numbers we could
do:

88 8087 Applications and Programming

10 DPRODUCT=1
20 FOR I=O TO N-1
30 DPRODUCT=DPRODUCT*ARRAY(I)
40 NEXT I

or:

; SUBROUTINE PRODUCT(ARRAY, N, DPRODUCT)
; ASSUMPTIONS: ARRAY IS A SINGLE PRECISION ARRAY OF LENGTH N
; N IS AN INTEGER
; DPRODUCT IS DOUBLE PRECISION
;

PUBLIC
CSEG SEGMENT

ASSUME
PRODUCT PROC

PUSH
MOV
MOV
MOV
MOV

;
;NOW ALL SET UP

FLD1

CMP
JLE

MUL LLOOP: FMUL
ADD
LOOP

DONE:
;

TO

PRODUCT
'CODE'
cs:CSEG
FAR
BP
BP,SP
BX,[BP]+10
SI,[BP]+8
ex ,[SIJ

GO

; BX=ADDR(ARRAY)
; SI=ADDR(N)
;CX=N

;INITIALIZE ST=1
;fLD1 PUSHES A 1, JUST AS
;fLDZ PUSHES A 0

CX,OH ;HOPE N > 0
DONE ;If NOT, RETURN 1
DWORD PTR [BX]
BX,4 ;READY FOR NEXT ELEMENT
MULLLOOP

;NOW FILE ANSWER BACK IN PRODUCT

PRODUCT
CSEG

MOV
FSTP
POP
FWAIT
RET
ENDP
ENDS
END

DI ,[BP]+b ; DI=ADDR(DPRODUCT)
QWORD PTR [DI] ; PRODUCT IS NOW PUT AWAY
BP

;BE SURE 8087 IS DONE
b

The FMUL instruction takes approximately 29 microseconds. Multi
plying 10,000 single precision numbers takes just over one-fourth of a
second. A comparable BASIC routine takes about 56 seconds. Accuracy
of the 8087 PRODUCT subroutine will, under some circumstances, con
siderably exceed the accuracy of the equivalent BASIC code. The 8087
temporary real exponent allows a much greater range than the double
precision exponent, so intermediate overflows or underflows are much
less likely to occur with the 8087 routine.

9 t1 Simple 8087 Routines 89

Double Precision Arguments

The choice between single precision and double precision arithmetic re
quires a tradeoff between accuracy and memory space. Double precision
numbers take up twice as much space as single precision numbers, but
are somewhat more than twice as accurate. Good numerical programming
practice dictates using double precision throughout. Unfortunately, be
cause of storage limitations this is rarely practical. In fact, there is a "folk
theorem" to the effect that problem size expands to use up all available
space. The following stages of compromise are recommended:

1. If the problem can be done entirely in double precision, do it that
way.

2. Hold raw input and final results in single precision-everything
else in double precision. There is little loss to storing original input
in single precision-real data can rarely be measured with the seven
significant digits provided for by single precision storage. The prob
lem with single precision is the loss of accuracy from cumulative
errors. Doing all the calculations in double precision is almost as
good as holding everything in double precision.

3. Retain critical intermediate steps in double precision. Delay con
version into single precision as long as possible.

Of course, the 8087's 80-bit temporary real format is even more accurate
than double precision. The most accurate answers are found by doing
as many intermediate calculations as possible within the 8087, storing
only final results in memory.

In practice, programs use both single and double precision. One ad
vantage of BASIC is that programs "know" whether variables are single
or double precision. Our 8087 routines need to be told. There are two
ways, both valuable, to "tell" our routines what precision to use. First,
we can write separate routines, one for single and one for double pre
cision. Second, we can write routines which handle both cases and in
clude an extra argument to tell the routine which type of data is being
used. The first is easier to write, but the flexibility of the second is some
times worth the extra effort.

Changing a single precision routine to double precision requires only
two simple steps: change the 8087 instructions to reference double pre
cision memory, and change the step size to eight rather than four bytes.
Thus, we can change subroutine SUM into a double precision subroutine
DSUM with the following amendments:

FADD QWORD PTR [BX] instead of FADD DWORD PTR [BX]
and

ADD BX,8 instead of ADD BX,4

The second approach to the problem of variable precision is to pass
the needed information on to the subroutine. As long as we're solving

90 8087 Applications and Programming

this problem, we may as well make things a bit more general. Subroutine
GSUM accepts a single precision, double precision, or integer vector.

; SUBROUTINE GSUM(ARRAY, TYPE, N, SUM)
ASSUMPTIONS: ARRAY IS AN ARRAY OF LENGTH N

; TYPE IS AN INTEGER: 2-INTEGER 4-SINGLE 8-
DOUBLE

; N IS AN INTEGER
SUM IS DOUBLE PRECISION

;
PUBLIC GSUM

CSEG SEGMENT'CODE'
ASSUME CS: CSEG

GSUM PROC FAR
PUSH BP
MOV BP,SP
MOV BX,[BP]+12
MOV SI,[BP]+10
MOV AX,[SIJ
MOV SI,[BP]+8
MOV CX,[SI]

;

iNOW ALL SET UP TO GO
FLDZ
CMP CX, □ H

JLE DONE
;

ADD-LOOP:
CMP AX,2
JNE NOT-INTEGER
FIADD WORD PTR [BX]
JMP NEXLELEMENT

NOLINTEGER:
CMP AX,4
JNE NOLSINGLE
FADD DWORD PTR [BX]
JMP NEXLELEMENT

NOT-SINGLE:
FADD QWORD PTR [BX]

;

NEXT-ELEMENT:
ADD BX,AX
LOOP ADD-LOOP

DONE:
iNOW FILE ANSWER BACK IN SUM

MOV DI,[BP]+b
FSTP QWORD PTR [DI]
POP BP
FWAIT
RET 8

GSUM ENDP
CSEG ENDS

END

; BX=ADDR(ARRAY)
; SI=ADDR(TYPE)
iAX=TYPE
; SI=ADDR(N)
iCX=N

;INITIALIZE ST= □
iHOPE N > 0

iIS IT INTEGER?

iIS IT SINGLE?

;BETTER BE DOUBLE

iREADY FOR NEXT ELEMENT

iDI GET ADDRESS OF SUM
iSUM IS NOW PUT AWAY

iBE SURE 8087 IS DONE

9 1:1 Simple 8087 Routines 91

Subroutine GSUM will accept any of the three BASIC numeric variable
types. GSUM is slightly more complex than SUM and we have to pass
it one extra argument. It may look like GSUM will also be slower, since
it has to check TYPE each time through and also jump around extra
instructions. However, the comparison and jump only takes about five
microseconds, so the 8088 executes these instructions while the 8087 is
working on the addition.

If you have a recent version of BASIC, you can "automate" passing
the TYPE to GSUM by using the V ARPTR$ function. For example:

DESCRIPTOR$=VARPTR$(ARRAY(□JJ 'INTERNAL DESCRIPTION OF ARRAY
TYPE$=LEFT$(VARPTR$,1) 'FIRST CHARACTER IS TYPE
TYPE%=ASC(TYPE$) 'NEED INTEGER 2, 4, OR 8
CALL GSUM%(ARRA Y(□), TYPE%, N%, SUM)

Indexing Through Multiple Arrays

In the routines above, we used the BX register to index ARRAY. This
procedure works with a single array, but more complicated problems
may require us to keep track of several indexes. Up to three indexes may
be kept in the registers BX, SI, and DI. In addition, registers AX, DX,
and CX are convenient for holding temporary values.

Our next subroutine adds two single precision vectors, returning a
single precision vector result.

; SUBROUTINE VADD(A, B, C, NJ
ASSUMPTIONS: A,B,C ARE SINGLE PRECISION ARRAYS OF LENGTH N

N IS AN INTEGER
;

PUBLIC VADD
CSEG SEGMENT 'CODE'

ASSUME CS:CSEG
VADD PROC FAR

PUSH BP
MOV BP,SP
MOV SI,[BP]+b ; SI=ADDR(N)
MOV ex ,[SIi ;CX=N
MOV BX ,[BPJ+12 ; BX=ADDR(A)
MOV SI,[BPJ+1O ; SI=ADDR(B)
MOV DI,[BP]+8 ; DI=ADDR(C)

;
;NOW ALL SET UP TO GO

CMP CX, □ H ;HOPE N > a
JLE DONE

ADD-LOOP:
FLD DWORD PTR [BX) ;LOAD A(I)
ADD BX,4 ;READY FOR NEXT A
FADD DWORD PTR [SI) ; ADD B(I)
ADD SI,4 ;READY FOR NEXT ELEMENT

92 8087 Applications and Programming

FSTP DWORD PTR [DI] ; C(I)=A(I)+B(I)
ADD DI,4 ;READY FOR NEXT C

DONE:

VADD
CSEG

LOOP ADD-LOOP

POP
FWAIT
RET
ENDP
ENDS
END

BP

8
;BE SURE 8087 IS DONE

Subroutine VADD requires just over half a second to add two 10,000
long vectors. Note that while we have specified three vectors, nothing
prevents A and B or A and C, or even all three from being the same
vector. Thus the command CALL VADD(A(0),A(0),A(0),N) doubles each
element of A.

Creating routines to perform subtraction, multiplication, and division
requires us only to change the 8087 addition instruction to an 8087 sub
traction, or other type of instruction. Thus we can change one line in
VADD:

C=A+B "FADD DWORD PTR [SI]"

to make VSUB:

C=A-B "FSUB DWORD PTR [SI]"

or to make VMULT:

C=A*B "FMUL DWORD PTR [SI]"

or to make VDIV:

C=A/B "FDIV DWORD PTR [SI]"

(Note VMULT and VDIV perform element-by-element operations, not
"matrix operations.")

The same technique we used for changing SUM into GSUM can be
used to change V ADD into a routine for single precision or double pre
cision or integer vector addition.

After we have more than three vectors, we run out of index registers.
We can program around this limit through use of the 8088's ability to
double index. In the next program, the address of each array is loaded
into BX just before we need to reference the array. The array element is
indexed in SI. Routine VADD3 adds three single precision vectors and
returns the result in a fourth.

; SUBROUTINE VADD3(A, B, C, D, NJ
· ASSUMPTIONS: A,B,C,D ARE SINGLE PRECISION ARRAYS OF

LENGTH N
; N IS AN INTEGER

9 1:1 Simple 8087 Routines 93

VADD3 PUBLIC
CSEG SEGMENT 'CODE'

ASSUME cs:CSEG
VADD3 PROC FAR

PUSH BP
MOV BP,SP
MOV SI ,[BP]+b iSI=ADDR(N)
MOV CX,[SI] iCX=N
MOV SI, □ iSI=O

;

iNOW ALL SET UP TO GO
CMP CX,OH iHOPE N > 0
JLE DONE

ADD-LOOP:
MOV BX,[BP]+14 iBX=ADDR(A)
FLD DWORD PTR [BX][SI] iLOAD A(I)
MOV BX ,[BP]+12 iBX=ADDR(B)
FADD DWORD PTR [BX](SI] i ADD B(I)
MOV BX,[BP]+10 iBX=ADDR(C)
FADD DWORD PTR [BX](SI] iADD C(I)
MOV BX ,[BP]+8 i BX=ADDR(D)
FSTP DWORD PTR [BX](SIJ i D(IJ=C(I)+A(I)+B(I)
ADD SI,4 iREADY NEXT ELEMENT
LOOP ADD-LOOP

DONE:
;

POP BP
FWAIT iBE SURE 8087 IS DONE
RET 10

VADD3 ENDP
CSEG ENDS

END

Scalar Routines

Mathematical operations frequently involve a scalar and a vector. ("Sca
lar" is the word mathematicians use for a single number, as opposed to
an entire vector of numbers.) The simplest example would be setting an
entire vector to a constant, as in A= 5. Subroutine VSET performs this
service. VSET first loads the value SCALAR onto the 8087 stack and then
copies the 8087 register ST into each element of A.

i SUBROUTINE VSET(A, SCALAR, NJ
ASSUMPTIONS: A IS A SINGLE PRECISION ARRAY OF LENGTH N

SCALAR IS SINGLE PRECISION
; N IS AN INTEGER

CSEG
PUBLIC
SEGMENT
ASSUME ·

VSET
'CODE'
CS:CSEG

94 8087 Applications and Programming

VSET PROC FAR
PUSH BP
MOV BP,SP
MOV SI,[BPJ+b ; SI=ADDR(NJ
MOV CX,[SIJ ;CX=N
MOV BX ,[BPJ+10 ; BX=ADDR(AJ
MOV SI ,[BPJ+8 ; SI=ADDR(SCALARJ
FLD DWORD PTR [SI] ;PUSH SCALAR ONTO STACK

;NOW ALL SET UP TO GO
CMP CX,OH ;HOPE N > D
JLE DONE

VSET-LOOP:
FST DWORD PTR [BX] ;STORE A(I)
ADD BX,4 ;READY FOR NEXT A
LOOP VSELLOOP

DONE:
;

FSTP ST(□) ;GET RID OF SCALAR
POP BP
FWAIT ;BE SURE 8087 IS DONE
RET 6

VSET ENDP
CSEG ENDS

END

A typical mathematical operation is to add a scalar to every element of
a vector. Routine AD DSC performs this function.

;SUBROUTINE ADDSC(A,SCALAR,B,N)
; ASSUMPTIONS: A,B ARE SINGLE PRECISION ARRAYS OF LENGTH N
;

SCALAR IS SINGLE PRECISION
N IS AN INTEGER

;
PUBLIC ADDSC

CSEG SEGMENT 'CODE'
ASSUME cs:CSEG

ADDSC PROC FAR
PUSH BP
MOV BP,SP
MOV SI ,[BP]+b ; SI=ADDR(NJ
MOV CX,[SIJ ;cx=N
MOV BX,[BP]+12 ; BX=ADDR(Al
MOV SI,[BP]+10 ; SI=ADDR(SCALARJ
FLD DWORD PTR [SI] ;PUSH SCALAR ONTO STACK
MOV SI,[BP]+8 ; SI=ADDR(Bl

;NOW ALL SET UP TO GO
CMP CX,OH ;HOPE N > D
JLE DONE

ADD-LOOP:
FLD DWORD PTR [BX] ;LOAD A(IJ
ADD BX,4 ;READY FOR NEXT A

DONE:

ADDSC
CSEG

FADD
FSTP
ADD
LOOP

FSTP
POP
FWAIT
RET
ENDP
ENDS
END

ST ,ST(1)
DWORD PTR
SI,4
ADD-LOOP

ST(□)
BP

8

9 1:1 Simple 8087 Routines 95

iADD SCALAR
[SI] i B(IJ=A(I)+SCALAR

iREADY FOR NEXT B

iGET RID OF SCALAR

iBE SURE 8087 IS DONE

Adapting ADDSC for subtraction, multiplication, and division is straight
forward. (Remember, of course, that "A - SCALAR" is quite different
from "SCALAR - A!")

Unary Operations

Operations requiring only one argument are said to be "unary" (as op
posed to two-argument "binary" operations such as "A+ B"). For ex
ample we might want to find the square root, absolute value, or negative
of the elements of an array. Routine SQRT, which we used for timing
examples in Part I (Chapters 1-4), computes B = SQR(A).

; SUBROUTINE SQRT(A, B, NJ
; ASSUMPTIONS: A,B ARE SINGLE PRECISION ARRAYS OF LENGTH N
; N IS AN INTEGER
;

PUBLIC SQRT
CSEG . SEGMENT 'CODE'

ASSUME CS:CSEG
SQRT PROC FAR

PUSH BP
MOV BP,SP
MOV SI ,[BP]+b i SI=ADDR(Nl
MOV CX,[SI] iCX=N
MOV BX,[BP]+1O ; BX=ADDR(AJ
MOV SI ,[BP]+8 . i SI=ADDR(B)

iNOW ALL SET UP TO GO
CMP CX,DH iHOPE N > □

JLE DONE
SQRLLOOP:

FLD DWORD PTR [BX] iLOAD A(Il
ADD BX,4

iREADY FOR NEXT A
FSQRT ; FIND SQRT(A(IJJ
FSTP DWORD PTR [SI] ; B(I)=SQRT(A(I)l
ADD SI,4 iREADY FOR NEXT B
LOOP SQRLLOOP

96 8087 Applications and Programming

DONE:
;

SQRT
CSEG

POP
FWAIT
RET
ENDP
ENDS
END

BP

b
;BE SURE 8087 IS DONE

Routine SQRT is easily changed to compute absolute value or to yield
the negative of the input vector by changing FSQRT to FABS or FCHS.

Utility Routines

The speed of the routines above reflects both the 8087' s prodigious math
ematical ability and the vast speed advantage of 8088 assembly language
code over BASIC. It can be very useful to use assembly language routines
even for such "non-computational" tasks as copying one array of num
bers into another. We can use the 8087's automatic precision conversion
to allow the transfer between single precision, double precision, and
integer arrays as a bonus.

The BASIC code

10 DIM A(4999),8(4999)
20 N%=5000
30 FOR I=O TO N%-1
40 B(I)=A(I)
50 NEXT I

takes about 18 seconds or more to execute, even if we rewrite the code
all on one line, for maximum efficiency (and minimum clarity). We would
actually be better off with the code

10 DIM A(4999), 8(4999)
20 N%=5000:SCALAR=O
30 CALL ADDSC(A(O), SCALAR, 8(0), N%)

which would only take about a quarter of a second, despite its 5,000
useless addition operations! For greater convenience, we create a routine
GCOPY that not only copies one array into another, but also handles
type conversions for us.

; SUBROUTINE GCOPY(A, B, TYPEA, TYPEB, NJ
; ASSUMPTIONS: A,B ARE ARRAYS OF LENGTH N
; TYPEA IS AN INTEGER: 2-INTEGER 4-SINGLE 8-

DOUBLE
TYPEB"
N IS AN INTEGER

;
PUBLIC GCOPY

9 a Simple 8081 Routines 97

CSEG SEGMENT 'CODE'
ASSUME cs:CSEG

GCOPY PROC FAR
PUSH BP
MOV BP,SP
MOV SI,[BP)+1 □ i SI=ADDR(TYPEA)
MOV AX,[SI) iAX=TYPEA
MOV SI,[BP]+8 i SI=ADDR(TYPEB)
MOV DX,[SI] iDX=TYPEB
MOV SI,[BP]+b ; SI=ADDR(N)
MOV CX,[SI) iCX=N
MOV BX,[BP]+14 ; BX=ADDR(A)
MOV SI,[BP]+12 ; SI=ADDR(B)

;

iNOW ALL SET UP TO GO
CMP CX, □ H iHOPE N > □
JLE DONE

;
COPY-LOOP:

CMP AX,2 iIS A INTEGER?
JNE A-NOT-INTEGER
FILD WORD PTR [BX)
JMP STORLIT

A-NOT-INTEGER:
CMP AX,4 iIS A SINGLE?
JNE A-NOT-SINGLE
FLD DWORD PTR [BX)
JMP STORE-IT

A-NOT-SINGLE: iBETTER BE DOUBLE
FLD QWORD PTR [BX)

;
STORLIT:

ADD BX,AX iREADY FOR NEXT ELEMENT
CMP DX,2 ; IS B INTEGER?
JNE B-NOLINTEGER
FISTP WORD PTR [SI]
JMP LOOP_END

B-NOLINTEGER:
CMP DX,4 iIS B SINGLE?
JNE B-NOT-SINGLE
FSTP DWORD PTR [SI]
JMP LOOP-END

B-NOLSINGLE: iBETTER BE DOUBLE
FSTP QWORD PTR [SI)

LOOP-END:
ADD :SI,DX ;READY FOR NEXT ELEMENT
LOOP COPY-LOOP

DONE:
POP BP
FWAIT iBE SURE 8 □ 87 IS DONE
RET 1 □

98 8087 Applications and Programming

GCOPY ENDP
CSEG ENDS

END

GCOPY is about 100 times faster than the equivalent BASIC code.

Our second utility routine is GBCOPY. GBCOPYis like GCOPY, except
that it begins copying at A(N-1) and works down to A(0), rather than
vice versa, and that GBCOPY does not perform type conversions.

iSUBROUTINE GBeOPY(A,B,TYPE,N)
i ASSUMPTIONS: A,B ARE ARRAYS OF LENGTH N
i TYPE IS AN INTEGER: 2-INTEGER 4-SINGLE 8-

DOUBLE
i N IS AN INTEGER
;

PUBLIC GBCOPY
CSEG SEGMENT 'CODE'

ASSUME es:CSEG
GBCOPY PROC FAR

PUSH BP
MOV BP,SP
MOV BX,[BP]+b i BX=ADDR[N]
MOV eX,[BX] iCX=N
CMP ex, □

JLE DONE
MOV BX,[BP]+8 i BX=ADDR(TYPE)
MOV AX,[BX] iAX=TYPE
MUL ex iAX=N*TYPE
MOV BX,AX iBX=N*TYPE
MOV eX,AX iCX=N*TYPE
SHR eX,1 ;ex=N*TYPE/2

i(WORDS TO BE MOVED)
MOV SI,[BP]+12 i SI=ADDR(A)
MOV DI,[BP]+10 i DI=ADDR(BJ

BCOPLLOOP:
SUB BX,2 iNEXT INDEX
MOV AX, [SI][BX] iGET A
MOV [DI][BX],AX iSTORE B
LOOP BCOPLLOOP

DONE: POP BP
RET 8

GBCOPY ENDP
CSEG ENDS

END

GBCOPY illustrates backwards operations on an array. Our first task
was to locate the last element of each array. If an array element takes
TYPE bytes to store and the first element begins at location ADDR, then
the second element begins at location ADDR + TYPE, the third at
ADDR + 2*TYPE ... and the Nth at ADDR + (N - l)*TYPE. Once these
locations are found, GBCOPY is like GCOPY except that GBCOPY sub-

9 1:1 Simple 8087 Routines 99

tracts to move the elements down to where GCOPY adds to move the
elements up.

Why move an array backwards anyhow? Consider the following two
problems. First, copy A(I + 1) into A(I) for an entire array. This can be
done either in BASIC:

1 □ FOR I= □ TO ~-2
2 □ A(I)=A(I+1)
3□ NEXT I

or with GCOPY:

1□ N1%=N-1:TYPEA%=4
2 □ CALL GCOPY(A(1), A(□), TYPEA%, TYPE A%, N1%)

Second, copy A(I) into A(I + 1) for an entire array. One might be tempted
do this in BASIC with

1□ FOR I= □ TO N-2
2 □ A(I + 1)=A(I)
3 □ NEXT I

but this won't work. On the first step, this puts A(0) into A(l). On the
next step, when BASIC tries to move A(l), it picks up the value originally
in A(0). The original value of A(l) has been wiped out. Correct BASIC
code would be

1□ FOR I=N-2 TO □ STEP -1
2 □ A(I + 1)=A(IJ
3□ NEXT I

GCOPY(A(0},A(l), TYPEA % , TYPEA % ,Nl %) would generate the same
incorrect results as the first BASIC program. GBCOPY(A(0),A(l),
TYPEA % ,Nl %) works correctly. Since GBCOPY' s primary use is copying
data from one part of an array to another part of the same array, nothing
was lost by omitting the type conversion.

On Errors

Errors that might result from using number crunching subroutines can
be loosely grouped into four classes:

• Programming errors in the subroutines.
• Errors in using the subroutines.
• Recoverable precision errors.
• Non-recoverable precision errors.

Programming Errors
,I

Computer hardware does not make mistakes. (Not often, anyway.) Peo
ple who program computers do make mistakes. As you develop your

100 8087 Applications and Programming

own number crunching routines for the 8087, you'll naturally hit an
occasional bug. Be warned that a personal computer is not quite so for
giving when programmed at the machine language level as it is when
programmed in BASIC.

About the worst that can happen in a BASIC program, aside from
getting the wrong answer, is that BASIC halts the program and prints a
somewhat cryptic error message. Usually, BASIC at least tells you what
line caused the error.

What's the worst that can happen with an undebugged machine lan
guage program? Frequently, you CALL a machine language program and
nothing happens ... nothing at all happens. The only thing to do is to
hit the reset key (Ctrl-Alt-Del on an IBM PC) and restart the system from
scratch.

Unfortunately, things can be even a bit worse. Sometimes the reset
key doesn't do anything either. A machine language program can, after
all, write into any location in memory-including writing garbage into
areas that only DOS is supposed to use. When this happens, the only
solution is to power down, leave the machine off for a few seconds, and
then turn the power back on. It pays to be careful in debugging 8087/8088
programs.

Errors in Using the Subroutines

Even bug-free routines can go wrong if fed invalid input. As a simple
example, suppose we feed the wrong value for N to one of the vector
routines prepared above. It would be nice if the routines would check
for valid input and return an error indication when given garbage.

Consider ·what our routines do instead. If N gives the correct length
of the data arrays, the routines return the correct answer. Notice that
special consideration is given to the case of zero length arrays and these
are handled properly. Suppose we set N to a negative value. The routines
act as if N were zero, but do not report the error. Suppose instead that
the arrays are really 100 long, but we mistakenly set N to 50. The routines
give the wrong answer, but return to BASIC without other errors. Sup
pose we commit the reverse error, setting N to 100 when the arrays are
only of length 50. The routines will merrily write into an area of memory
assigned to something other than the arrays we are supposed to be using.
If we are lucky, the routine will overwrite something vital and the ma
chine will stop cold. In this way we will come to suspect there is an error.
If we are unlucky, the routine will change totally unrelated variables,
causing our .final answers to be wrong without giving any indication of
a possible problem.

It is an unfortunate fact of life that there is no sure-fire way to catch
these kinds of errors in a machine language pro&ram, or, for that matter,

9 a Simple 8087 Routines 101

in many other computer languages. For the routines in this book, we
have decided to place all error checking responsibility on the BASIC
programmer. However, it is certainly possible to rewrite the routines to
catch a few errors. Routine GADDSAFR (General precision ADDition,
but SAFeR) illustrates one such approach.

;SUBROUTINE GADDSAFR(A,8,C,TYPEA,TYPEB,TYPEC,N,IER)
; ASSUMPTIONS: A,8,C ARE ARRAYS OF LENGTH N
; TYPEA IS AN INTEGER: 2-INTEGER 4-SINGLE 8-

DOUBLE
TYPES" "
TYPEC" "
N IS AN INTEGER
IER IS AN INTEGER RETURNING O IF NO ERROR

1 IF N IS NEGATIVE

PUBLIC
CSEG SEGMENT

ASSUME
GADDSAFR PROC

PUSH
MOV

;CHECK TYPES
MOV
MOV
CMP
JE
CMP
JE
CMP
JE
JMP

TYPELOK:
MOV
MOV
CMP
JE
CMP
JE
CMP
JE
JMP

TYPEB-OK:
MOV
MOV
CMP
JE
CMP
JE
CMP

2 IF TYPEA,TYPEB,OR TYPEC IS ILLEGAL

GADDSAFR
'CODE'
cs:CSEG
FAR
BP
BP,SP

SI,[BP)+14
AX,[SI)
AX,2
TYPELOK
AX,4
TYPELOK
AX,8
TYPELOK
TYPLERROR

SI,[BP)+12
AX,[SI)
AX,2
TYPEB-OK
AX,4
TYPEB-OK
AX,8
TYPEB-OK
TYPE-ERROR

SI,[BP]+1O
AX ,[SI)
AX,2
TYPEC-OK
AX,4
TYPEC-OK
AX,8

; SI=ADDR(TYPEA)
;AX=TYPEA

; SI=ADDR(TYPEB)
;AX=TYPEB

; SI=ADDR(TYPEC)
;AX=TYPEC

102 8087 Applications and Programming

JE TYPELOK
JMP TYPE-ERROR

TYPELOK: JMP CHECLN
TYPE-ERROR:

MOV AX,2
JMP DONE

;
CHECK_N:

MOV SI,[BP]+8 ; SI=ADDR(NJ
MOV CX,[SI] ;CX=N
CMP CX,OH
JNE L11 iDONE TOO FAR FOR
JMP DONE iDIREET JE

L11: JG STARLADD
; iOOPS, N>O

MOV AX,1
JMP DONE

;
STARLADD:

MOV AX,[BP]+2O iAX=ADDR(A)
MOV DI,[BP]+18 i DI=ADDR(B)
MOV DX ,[BP]+16 i DX=ADDR(C)

ADD-LOOP:
MOV BX,AX .. ;BX=ADDR(A)
MOV SI,[BP]+14 i SI=ADDR(TYPEA)
MOV SI•,[SI] ;SI=TYPEA
CMP SI,2 iIS IT INTEGER?
JNE A-NOT-INTEGER
FILD WORD PTR [BX]
JMP ADD-B

A-NOT-INTEGER:
CMP SI,4 iIS IT SINGLE?
JNE LNOLSINGLE
FLD DWORD PTR [BX]
JMP ADD-B

A-NOT-SINGLE:
FLD QWORD PTR [BX]

;
ADD-B: ADD AX,SI iREADY FOR A NEXT TIME

MOV SI ,[BP]+12 i SI=ADDR(TYPEBJ
MOV SI,[SI] iSI=TYPEB
CMP SI,2 iIS IT INTEGER?
JNE B_NOT-INTEGER11
FIADD WORD PTR [DI]
JMP NEXLC

B-NOLINTEGER:
CMP SI,4 iIS IT SINGLE?
JNE B_NOT-SINGLE
FADD DWORD PTR [DI]
JMP NEXLC

B-NOT_SINGLE:
FADD

;
NEXT_(: ADD

MOV
MOV
MOV
CMP
JNE
FISTP
JMP

CNOT-INTEGER:
CMP
JNE
FSTP
JMP

CNOLSINGLE:
FSTP

;
NEXT-ELEMENT:

ADD
LOOP

MOV
JMP

ADD-LOOPER: JMP
DONE:

MOV
MOV
POP
FWAIT
RET

GADDSAFR ENDP
CSEG ENDS

END

QWORD PTR [DI)

DI,SI

BX,DX
SI ,[BPJ+1O
SI,[SI)
SI,2
CNOLINTEGER
WORD PTR [BX)
NEXT-ELEMENT

SI,4
CNOT-SINGLE
DWORD PTR [BX]
NEXT-ELEMENT

QWORD PTR [BX)

DX,SI
ADD-LOOPER

AX, □

DONE
ADD-LOOP

SI,[BP]+b
[SI),AX
BP

16

9 a Simple 8087 Routines 103

;READY FOR NEXT B

;BX=ADDR(C)
; SI=ADDR(TYPEC)
;SI=TYPEC
; IS IT INTEGER?

;rs IT SINGLE?

;READY FOR NEXT C
;LOOP ONLY JUMPS
127 . · ·

; -NO ERROR-

;. . . BYTES

;SI=ADDR(IERJ
;IER=ERROR CODE

;BE SURE 8087 IS DONE

Error checking adds only about 20 lines of code and a negligible increase
in execution time. Unfortunately, many ill~gal input errors still won't be
caught. Besides N simply having the incorrect value, any of the arrays
might actually be of a different type than that stated; the type, N, or IER
arguments might not be integers; or we might call GADDSAFR with the
wrong number or order of arguments.

Precision Errors

A fact of life that programmers find most difficult to accept is that perfectly
"correct" programs sometimes give the wrong answer. Computer arithmetic
has only limited accuracy. The 8087 is more accurate than most main
frames. Nonetheless, for any finite degree of precision, there exists some
problem for which the degree of precision is insufficient. The problem

104 8087 Applications and Programming

is somewhat aggravated by the fact that a program will work perfectly
with one set of data and not at all with another. With some work, one
can even construct a series of numbers which add correctly when added
from first to last but give a nonsensical result when added backwards.
There are several programming approaches to handling precision errors:

• Ignore the problem and hope no errors ever occur.
• Handle each error as soon as it occurs.
• Set up a general scheme to allow computation to proceed as far as

possible.

Ignoring the problem is not quite as silly as it sounds. The 8087 is
extremely accurate. Furthermore, the 8087 designers have built in au
tomatic error handling capabilities which operate very sensibly. For most
problems, precision errors will not occur. For most precision errors that
do occur, the 8087 error handling will apply the correct solution.

As an extreme alternative, the 8087 can be set to stop every time an
error occurs. Exception handling software can be written to take care of
every error on a problem-specific basis. This approach requires you to
hand-tailor every subroutine, so it isn't practical for this book. Exception
handling routines are discussed in the Intel iAPX 86,88 User's Manual.

In considering a general scheme for error handling, it is constructive
to review what BASIC does about the problem. Among BASIC's rules
are the following:

• Integer overflow generates an error message and halts the program.
• Real overflow generates an error message. The result is set to ma

chine infinity. Execution continues.
• Real underflow causes the result to be set to zero. Execution contin

ues without a warning message.
• Passing an invalid argument to a function results in an error message.

Execution halts.

The error handling routines in the 8087 hardware always allow exe
cution to continue, while generally indicating errors by producing an
answer that is not a "normaJ:' number. All our routines allow the 8087
automatic error handling procedures to maintain control. As a result, the
final answers may include an error indication. We need a routine to check
whether data is valid or invalid. We would also like to fix those errors
for which some obvious fix-up exists. Single and double precision output
of the 8087 take one of the following forms, which were discussed at
length in Chapter 5:

• Normal-a valid number.
• Denormal-indicates a previous underflow.
• Infinity-may indicate a previous overflow.
• Not-A-Number (NAN)-invalid datum.

\

Routine REALERR accepts an input array of single or double precision
numbers. It returns three integer variables, each of which is set to -1

9 a Simple 8087 Routines 105

(true) if any denormal, infinity, or NAN, respectively, is stored in the
array, or to 0 (false) otherwise. ELEMENT is an integer variable giving
the element number of the last other than normal number found.

Routines REALERR and DENTO0 use some processor control instruc
tions defined in Chapter 12. We include these routines here because of
their usefulness for even simple numerical programs.

;SUBROUTINE REALERR(ARRAY,TYPE,N,IFDEN,IFINF,IFNAN,ELEMENT)
i ASSUMPTIONS: ARRAY IS OF LENGTH N
; TYPE IS AN INTEGER: 4-SINGLE, 8-DOUBLE
i N IS AN INTEGER
; IFDEN,IFINF,IFNAN ARE INTEGER
; RETURNING D (FALSE) OR -1 (TRUE)
i ELEMENT IS AN INTEGER

PUBLIC REALERR
CSEG SEGMENT

ASSUME
FIRST-INST EQU

'CODE'
CS:CSEG,ES:EXTRA-SEG
THIS WORD

REALE RR PROC
PUSH
MOV

FAR
BP
BP,SP

iSET UP EXTRA SEGMENT TAKING CARE OF RELOCATION
PUSH ES
CALL NEXT

NEXT: POP AX
SUB AX ,(OFFSET NEXT)-(OFFSET FIRSLINSTJ
MOV CL,4
SHR AX,CL
MOV BX,CS
ADD BX,EXTRA-SEG
SUB BX,CSEG
ADD AX,BX
MOV ES,AX

;
iSET TENTATIVE RETURN VALUES TO ZERO

MOV SI,[BPJ+12 iCLEAR IFDEN
MOV WORD PTR [SI], □

MOV SI ,[BPJ+1O iCLEAR IFINF
MOV WORD PTR [SI], D
MOV SI,[BP]+8 iCLEAR IFNAN
MOV WORD PTR [SI], □

MOV SI,[BP]+6 iCLEAR ELEMENT
MOV WORD PTR [SI], □

MOV SI,[BPJ+14
MOV CX,[SIJ iCX=N
MOV BX,[BP]+18 i BX=ADDR(ARRAYJ
MOV SI,[BP]+16 i SI=ADDR(TYPEJ
MOV AX, [SI] iAX=TYPE

106 8087 Applications and Programming

;NOW ALL SET UP TO GO
CMP CX, □ H ;HOPE N > □
JL DONE

;

CHECK-LOOP:
CMP
JNE
FLD
JMP

NOT-SINGLE:
FLD

;
CHECK-IT:

ADD

FXAM
FSTSW
FSTP
FWAIT
MOV
AND
CMP
JE
CMP
JE
CMP
JE
CMP
JE
CMP
JE

;MUST BE NAN
MOV
JMP

DEN: MOV
JMP

INF: MOV
SELERROR:

MOV
MOV
MOV
SUB
MOV
MOV

OK: LOOP
JMP

LOOPER: JMP

DONE:

AX,4
NOT-SINGLE
DWORD PTR [BX]
CHECK-IT

QWORD PTR [BX]

BX,AX

STATUS-WORD
ST(□)

;rs A SINGLE?

;BETTER BE DOUBLE

;READY FOR NEXT
ELEMENT

;WHAT DID WE LOAD?

DH,BYTE PTR STATUS-WORD+1
DH, □ 1□□□1□1B ;BLANK OTHER BITS
DH, □□□□□1□□B ;NORMAL?
OK
DH, □ 1□□□□□□B ;ZERO?
OK
DH, □□□□□1□1B ;INFINITY?
INF
DH, □ ;UNNORMAL?
DEN
DH, □ 1□□□ 1□□ B ;DENORMAL?
DEN

SI,[BPJ+8
SET-ERROR
SI,[BPJ+12 ;SET IFDEN
SET-ERROR
SI ,[BPJ+1 □ ; SET IFINF

WORD PTR [SI], -1 ; ERROR IS TRUE
SI,[BPJ+14 ;GET N BACK
SI,[SI]
SI,CX
DI,[BPJ+b
[DI],SI ;SET ELEMENT
LOOPER
DONE
CHECK-LOOP

POP ES
POP BP

REALERR
CSEG
ENDS

FWAIT
RET
ENDP

EXTRA-SEG SEGMENT
STATUS-WORD DW?
EXTRLSEG ENDS

END

9 tt Simple 8087 Routines 107

;BE SURE 8087 IS DONE
14

'DATA'

REALERR is a little complicated, but is nonetheless quite fast, checking
an array of 10,000 numbers in about a quarter of a second.

After execution of REALERR, IFDEN, IFINF, and IFNAN are easily
tested with BASIC IF statements. The question remains as to what action
should follow as a result of the test. The following general rules can serve
as a guide:

• NAN-halt execution with an error message.
• Infinity-Halting execution or allowing it to continue depends some

what on circumstances. Infinity usually indicates a meaningless value,
resulting from either an overflow or from some sort of invalid op
eration. However, there are occasionally functions for which infinity
is a sensible number. Consider evaluating the following function:

1/(1 + 1/x)

As x goes to zero, the function goes to zero. Since the 8087 is designed
to report 1 divided by zero as infinity, 1 plus infinity as infinity, and
1 divided by infinity as zero, this function will be correctly evaluated,
if we ignore intermediate infinite results. If X equals -1, then the
final result will be infinity, as it should be.

• Denormals are a somewhat different case. A denormal indicates that
an underflow has occurred. The datum therefore represents a num
ber very close to zero. We can either leave the number as a denormal,
in which case the 8087 will continue to treat it as a number very
close to zero, or we can set the number to true zero.

Routine DENTO0 replaces all the denormals in an array with true zeros.

; SUBROUTINE DENTOD(ARRA Y, TYPE, NJ
ASSUMPTIONS: ARRAY IS OF LENGTH N

; TYPE IS AN INTEGER: 4-SINGLE, 8-DOUBLE
N IS AN INTEGER

PUBLIC
CSEG SEGMENT

ASSUME
FIRSLINST EQU
DENT OD PROC

PUSH
MOV

DENTOO
'CODE'
CS:CSEG,ES:EXTRA-SEG
THIS WORD
FAR
BP
BP,SP

108 8087 Applications and Programming

iSET UP EXTRA SEGMENT TAKING CARE OF RELOCATION
PUSH ES
CALL NEXT

NEXT: POP AX

;

SUB AX ,(OFFSET NEXT)-(OFFSET FIRSLINST)
MOV CL,4
SHR AX,CL
MOV BX,CS
ADD BX,EXTRA-SEG
SUB BX,CSEG
ADD AX,BX
MOV ES,AX

MOV
MOV
MOV
MOV
MOV

SI,[BP]+b
CX,[SI)
BX,[BP]+1O
SI ,[BP]+8
AX,[SI]

iCX=N
i BX=ADDR(A)
i SI=ADDR(TYPE)
iAX=TYPE

iNOW ALL SET UP TO GO

CHECK-LOOP:

NOLSINGLE:

CHECK-IT:

DEN:

CMP
JL

CMP
JNE
FLD
JMP

FLD

FXAM
FSTSW
FSTP
FWAIT
MOV
AND
CMP
JE
CMP
JE
JMP

FLDZ
CMP
JNE
FSTP
JMP

STILL-NOT-SINGLE:
FSTP

CX, □ H

DONE

AX,4
NOLSINGLE
DWORD PTR [BX)
CHECK-IT

QWORD PTR [BX)

STATUS-WORD
ST(□)

iHOPE N > □

iIS A SINGLE?

iBETTER BE DOUBLE

iWHAT DID WE LOAD?

DH,BYTE PTR STATUS-WORD+1
DH, □ 1□□□ 1 □ 1B iBLANK OTHER BITS
DH, □

DEN
DH, □ 1□□□ 1□□ B
DEN
LOOP-BOTTOM

iUNNORMAL?

iDENORMAL?

iMAKE A ZERO
AX,4 iIS A SINGLE?
STILL-NOT-SINGLE
DWORD PTR [BX)
LOOP-BOTTOM

iBETTER BE DOUBLE
QWORD PTR [BX)

LOOP-BOTTOM:
ADD
LOOP
JMP

LOOPER: JMP

DONE:

DENTO□
CSEG

POP
POP
FWAIT
RET
ENDP
ENDS

EXTRA-SEG SEGMENT
STATUS-WORD DW?
EXTRLSEG ENDS

END

BX,AX
LOOPER
DONE
CHECK-LOOP

ES
BP

6

'DATA'

9 a Simple 8087 Routines 109

iBE SURE 8087 IS DONE

One last warning about ignoring the presence of denormals, infinities,
and NANs. A few 8087 instructions insist on valid data as input. In
particular, the transcendental instructions discussed in Chapter 12 will produce
an undefined result if fed invalid data and will do so without signaling any error
condition!

Our error handling has been limited to single and double precision
reals to the exclusion of integers. There are two reasons for this exclusion.

First, if you use 16-bit integers, the only kind available in BASIC, for
holding numerical results, you are asking for trouble. Merely multiplying
two random integers may result in integer overflow! Floating point arith
metic is every bit as fast as integer arithmetic on the 8087. Use integer
variables for subscripts, flags, and subroutine addresses. Otherwise stay
away.

Second, the integer data type cannot be set to indicate invalid data in
the way real variables can be set. If a number cannot be converted to a
valid integer, the 8087 reports the most negative value, -32,768. Both
BASIC and the 8087 treat -32,768 as they do any other integer, so invalid
data will not be flagged. If integer variables must be used, all results
should be checked and execution should be stopped if -32,768 appears.

Basic Matrix Operations

Matrix operations occupy the center of the number crunching world. Large
scale supercomputers, costing tens of millions of dollars, have special
built-in hardware devoted entirely to fast matrix operations. There are
even computer languages, such as APL, where the matrix replaces the
scalar as the fundamental variable type. Matrices are so important that
some versions of BASIC (mostly on large computers) have a special set
of "MAT" functions devoted to efficient matrix computation. While the
8087 does not have matrix hardware, its stack design allows for easily
written, efficient, matrix subroutines.

We cover matrix operations in two chapters. In this chapter, we prepare
routines for the most common matrix operations. Chapter 11 concentrates
on advanced methods for solving systems of linear equations and on the
related problem of matrix inversion.

Program:
Purpose:
Call:
Input:

Output:
Language:

Program:
Purpose:
Call:
Input:

The Cookbook-Chapter 10

COLCOPY
Copy one column of a matrix into a vector.
CALL COLCOPY(A(0,0),B(0),COL,N,M).
A-N by M single precision matrix.
COL-integer column number to be copied.
N-integer number of -rows of A.
M-integer number of columns of A.
B-array N long; B(I)=A(I,COL).
8088 assembly language.

ROWCOPY
Copy one row of a matrix into a vector.
CALL ROWCOPY(A(0,0),B(0),ROW,N,M).
A-N by M single precision matrix.
ROW-integer row number to be copied.
N-integer number of rows of A.
M-integer number of columns of A.

111

112 8087 Applications and Programming

Output:
Language:

Program:
Purpose:
Call:
Input:

Output:
Language:

Program:
Purpose:
Call:
Input:

Output:
Language:

. Program:
Purpose:
Call:
Input:

Output:
Language:

Program:
Purpose:
Call:
Input:

Output:
Language:

Program:
Purpose:
Input:

Output:
Language:
Note:

B-array M long; B(I)=A(ROW,I).
8088 assembly language.

DIAGCOPY
Copy the diagonal of a square matrix into a vector.
CALL DIAGCOPY(A(0,0),B(0),N).
A-N by N single precision matrix.
N-integer number of rows of A.
B-array N long; B(I) = A(I,I).
8088 assembly language.

TRANS
Transpose a matrix.
CALL TRANS(A(0,0),B(0,0),N,M).
A-N by M single precision matrix.
N-integer number of rows of A.
M-integer number of columns of A.
B-M by N matrix; B(I,J)=AG,I).
8088 assembly language.

SQTRANS
Transpose a square matrix in place.
CALL SQTRANS(A(O,0),N).
A-N by N single precision matrix.
N-integer number of rows of A.
A-new A(I,J) = old AG,I).
8088 assembly language.

INPROD
Inner product of two single precision vectors.
CALL INPROD(A(0),B(0),C,N).
A-N long single precision vector.
B-N long single precision vector.
N-integer number of rows of A.
C-double precision scalar; C=inner product of A,B.
8087/8088 assembly language.

GINP
Inner product of two generalized vectors.
A-N element vector.
B-N element vector.
TYPEA-integer giving length of element of A.
TYPEB-integer giving length of element of B.
SKIPA-integer "skip factor" (see text) for A.
SKIPB-integer "skip factor" (see text) for B.
N-integer number of rows of A.
8087 register ST; ST=inner product of A,B.
8087/8088 assembly language.
NEAR procedure; see GINPROD.

Program:
Purpose:
Call:

Input:

Output:
Language:
Note:

Program:
Purpose:
Call:
Input:

Output:
Language:
Note:

Program:
Purpose:
Input:

Output:
Language:

Program:
Purpose:

Input:

Output:

Language:

1 o a Basic Matrix Operations 113

GINPROD
Inner product. of two generalized vectors.
CALL GINPROD(A(0),B(0),C, TYPEA, TYPEB,
SKIPA,SKIPB,N).
A-N element vector.
B-N element vector.
TYPEA-integer giving length of element of A.
TYPEB-integer giving length of element of B.
SKIPA-integer "skip factor" (see text) for A.
SKIPB-integer "skip factor" (see text) for B.
N-integer number of rows of A.
C-double precision scalar; C = inner product of A,B.
8087/8088 assembly language.
Requires NEAR procedure GINP.

MATMULT
Matrix multiplication.
CALL MATMULT(A(0,0),B(0,0),C(0,0),L,M,N).
A-L by M single precision matrix.
B-M by N single precision matrix.
L-integer number of rows of A.
M-integer number of columns of A, rows of B.
N-integer number of columns of B.
C-L by N single precision matrix; C=AB.
8087/8088 assembly language.
Requires NEAR procedure GINP.

GAUSS
Solve linear equations by Gaussian elimination.
A-N by N coefficient matrix.
Y-N vector.
N-number of rows and columns of A.
X-N vector; X solves equations Y=AX.
BASIC.

GAUSS-SE
Solve linear equations by Gaussian elimination, us-

ing space efficient method.
A-N by N coefficient matrix.
Y-N vector.
YSTAR-N vector, scratch space.
N-number of rows and columns of A.
X-N vector; X solves equations Y=AX.
A-A replaced with Gaussian reduction.
BASIC.

114 8087 Applications and Programming

What is a Matrix?

In computer terms, a matrix is a two-dimensional array. The values in
the array can be thought of as being laid out in a rectangular grid, where
the first array index is the row number and the second array index is the
column number. An example of a "2 by 3" matrix is

5 -7 11
0 2 18

Such a matrix might be stored in BASIC by DIMensioning an array
with two rows and three columns. The BASIC statement "DIM A(l,2)"
produces a matrix laid out like

A(0,0) A(0,1) A(0,2)
A(l,0) A(l,1) A(2,1)

Since BASIC arrays are numbered starting at zero, an N row by M column
matrix is dimensioned A(N-l,M-1).

Why Are Matrices Interesting?

Invariably, matrix algebra is motivated as notation for solving systems
of simultaneous linear equations. This may seem a bit strange, as most
of us don't have any great need for solving such systems. The truth is
that most interesting numerical computation problems have the same
mathematical structure as a system of linear equations. Computational
aspects of statistics, differential equations, and constrained optimization
all center around linear equations and matrix operations. We briefly lay
out the linear equation interpretation of matrices here.

As a sample, consider the following system of two linear equations in
two unknowns.

18 = 4x1 + 2x2

9 = 2x1 - 2x2

There is exactly one pair of values for x1 and x2 that will make both
equations true. To find these values, we draw the two equations on a
piece of graph paper. Label the horizontal axis x1 and the vertical axis
x2 • Pick any two values for x1• Plug each into the top equation and solve
for the corresponding value of x2• Connect the two (xi,x2) points to get
a straight line. Do the same for the bottom equation. The top equation
is true for any (xi,x2) point on the first line and the bottom equation is
true for any point on the second line. Where the two lines intersect, both
equations are true. The point (4.5,0) is the solution to this system of
equations.

Matrices provide a compact notation for discussing such systems. In
matrix notation, the two equations appear as:

1 o a Basic Matrix Operations 115

y = Ax

where y is a 2 by 1 matrix.

A is a 2 by 2 matrix

A - [: _:]

and x is a 2 by 1 matrix.

If we are given values for x, we can solve for y by matrix multiplication.
If we are given values for y, we can solve for x by solving a system of linear
equations.

Storage Allocation and Memory Access

In order to manipulate matrices, we need to know how BASIC stores a
matrix in memory. If A is a 2 by 3 matrix, we can think of it as being
logically laid out as shown in Figure 10.1. Since computer memory is
one-dimensional, BASIC arranges to store the six elements in consecutive
order with the first dimension varying most rapidly as we move up in
memory. The two-dimensional matrix is placed in memory in this order:
A(0,0), A(l,0), A(0,1), A(l,l), A(0,2), A(l,2). Each element occupies four
bytes for a single precision array and eight bytes for double precision.

Another way to say the same thing is that BASIC stores each column
in order, placing one column after the next in memory. Suppose the
(single precision) matrix A is stored in memory with A(0,0) located at
memory address 100. The first column of A will be at locations 100 and
104; the second column at 108 and 112; the third at 116 and 120. The first
row of A will be at locations 100, 108, and 116; the second at 104, 112,
and 120. Figure 10.1 illustrates the two-dimensional array to one-dimen
sional-memory mapping.

A(0,0)-100
A(l,0)-104

A(0,1)-108
A(l,1)-112

A(0,2)-116
A(2,1)-120

Figure 10.1

In general, for an n by m matrix, element (i,j) is stored in position (i + n*j)*k,
where k equals four for single and eight for double precision.

116 8087 Applications and Programming

Notice that a 1 by n matrix, called a row vector, and an n by 1 matrix,
called a column vector, will both be stored in the same locations as an n
element one-dimensional array.

It is often convenient to think of a matrix as a set of column vectors
or a set of row vectors. The routines COLCOPY and ROWCOPY illustrate
column and row access. COLCOPY(A,B,COL,·N,M) copies column COL
of n by m matrix A into the N long array B. Analogously, ROWCOPY
copies row ROW of matrix A into an M long array B. The BASIC code
below illustrates COLCOPY. (Note that here, as elsewhere, we have
written "DIM A(N -1,M -1)" for clarity, where BASIC actually requires
"Nl =N-1:Ml =M-1:DIM A(Nl,Ml)".)

10 DEFINT I-N
15 REM DEFINE N,M HERE
20 DIM A(N-1,M-1),B(N-1)
25 REM FILL IN VALUES OF A
30 FOR I=O TO N-1
40 B(I)=A(I, COL)
50 NEXT I

iSUBROUTINE COLCOPY(A,B,COL,N,M)
; ASSUMPTIONS: A IS A SINGLE PRECISION
; BIS A SINGLE PRECISION
; COL,N,M ARE INTEGERS

PUBLIC COLCOPY
CSEG SEGMENT 'CODE'

ASSUME cs:CSEG
COLCOPY PROC FAR

PUSH BP
MOV BP,SP
MOV BX,[BP]+8
MOV CX,[BX]
MOV BX,[BP]+10
MOV AX, [BX]
MUL ex
SHL AX,1
SHL AX,1
MOV SI,[BP]+14
ADD SI,AX
MOV DI, [BP]+ 12
JCXZ DONE

COL-LOOP:
MOV AX ,[SI]
MOV [DI],AX
MOV AX,[SI]+2
MOV [DI]+2, AX
ADD SI,4
ADD DI,4
LOOP COL-LOOP

N BY M MATRIX
ARRAY N LONG

i BX=ADDR(N)
iCX=N
i BX=ADDR(COL)
iAX=COL
iAX=N*COL
iAX=4*N*COL

i SI=ADDR(A)
i SI=ADDR(A(O, COL)
i DI=ADDR(B)

iNEXT COLUMN

-- -- -- -- -- -- --

1 o a Basic Matrix Operations 117

DONE:
POP BP
RET 10

COLCOPY ENDP
CSEG ENDS
END

;SUBROUTINE ROWCOPY(A,B,ROW,N,M)
; ASSUMPTIONS: A IS A SINGLE PRECISION N BY M MATRIX
; BIS A SINGLE PRECISION ARRAY N LONG
; ROW,N,M ARE INTEGERS

PUBLIC ROWCOPY
CSEG SEGMENT 'CODE'

ASSUME CS:CSEG
ROWCOPY PROC FAR

PUSH BP
MOV BP,SP
MOV BX,[BP]+6 ; BX=ADDR(M)
MOV CX,[BX] ;CX=M
MOV BX,[BP]+10 ; BX=ADDR(ROW)
MOV AX,[BX] ;AX=ROW
SHL AX,1 ;AX=4*ROW
SHL AX,1
MOV SI,[BP]+14 ; SI=ADDR(A)
ADD SI,AX ; SI=ADDR(A(ROW, 0))
MOV DI,[BP]+12 ;DI=ADDR(B)
MOV BX,[BP]+8 ; BX=ADDR(N)
MOV BX,[BX] ;BX=N
SHL BX,1 ;BX=4*N
SHL BX,1
JCXZ DONE

ROW-LOOP:
MOV AX,[SI] ;MOVE ELEMENT OF ROW
MOV [DI],AX
MOV AX,[SI]+2
MOV [DI]+2, AX
ADD SI,BX ;NEXT ROW
ADD DI,4 ;NEXT B
LOOP ROW-LOOP

DONE: POP BP
RET 10

ROWCOPY ENDP
CSEG ENDS

END

COLCOPY and ROWCOPY illustrate four useful points about moving
through a matrix:

• Column COL begins at location 4*N*COL.
• Sequential elements in a column are located 4 bytes apart.

--

118 8087 Applications and Programming

• Row ROW begins at location 4*ROW.
• Sequential elements in a row are located 4*N bytes apart.

Of course, "8" would replace "4" for a double precision matrix.

A matrix with an equal number of rows and columns is called, for
obvious reasons, a square matrix. The elements A(0,0), A(l,l), ... ,
A(N -1,N -1) form the principal diagonal of the matrix. To illustrate ac
cessing the principal diagonal, we present DIAGCOPY:

i SUBROUTINE DIAGCOPY(A, B, NJ
ASSUMPTIONS: A IS A SINGLE PRECISION N BY N MATRIX

BIS A SINGLE PRECISION ARRAY N LONG
N IS AN INTEGER

PUBLIC DIAGCOPY
CSEG SEGMENT 'CODE'

ASSUME cs:CSEG
DIAGCOPY PROC FAR

DIAG-LOOP:

PUSH BP
MOV BP,SP
MOV BX,[BP]+b
MOV CX,[BX]
MOV BX,CX
INC BX
SHL BX,1
SHL BX,1

MOV
MOV
JCXZ

MOV
MOV
MOV
MOV
ADD
ADD
LOOP

SI,[BP]+10
DI,[BP]+8
DONE

AX,[SI)
[DI), AX
AX ,[SI]+2
[DI]+2, AX
SI,BX
DI, 4
DIAG_LOOP

DONE: POP BP
RET 6

DIAGCOPY ENDP
CSEG ENDS·

END

i BX=ADDR(NJ
iCX=N
iBX=N
iBX=N+1
iBX=4*(N+1)
iNOTE BX HAS DISTANCE

BETWEEN DIAGONAL
ELEMENTS

i SI=ADDR(AJ
i DI=ADDR(BJ

iMOVE ONE ELEMENT

iNEXT ELEMENT
iNEXT B

Moving across a diagonal is equivalent to moving down one column and
over one row. Note the following two facts about accessing elements of
the diagonal of a square matrix:

• Diagonal element i is at location i*4*(N + 1).
• Sequential diagonal elements are 4*(N + 1) bytes apart.

10 a Basic Matrix Operations 119

Basic Matrix Operations

Matrix operations fall into six categories:

1. Scalar operations.
2. Element-by-element operations.
3. Matrix transposition.
4. Inner products and matrix multiplication.
5. Solving systems of linear equations.
6. Matrix inversion.

Scalar and Element-by-Element Operations

Operations between scalars and matrices operate by applying the scalar
operation to every element of the matrix. For example, if A is an n by
m matrix, the mathematical operation B = A + 5 could be done with
the BASIC program:

1 □ DEFINT I-N
2 □ DIM A(N-1,M-1), B(N-1,M-1)
3□ FOR I= □ TO N-1
4 □ FOR J= □ TO M-1
5 □ B(I, J)=A(I, J) + 5
b □ NEXT J
7 □ NEXT I

This BASIC program could be replaced with the 8087 subroutine SCA
LADD.

;SUBROUTINE SCALADD(A,SCALAR,B,N,MJ
. ; ASSUMPTIONS: A,B ARE SINGLE PRECISION N BY M MATRICES
; SCALAR IS SINGLE PRECISION
; N,M ARE INTEGERS

CSEG

SCALADD

PUBLIC SCALADD
SEGMENT 'CODE'
ASSUME CS:CSEG
PROC FAR
PUSH BP
MOV BP,SP
MOV BX ,[BPJ+12
FLD DWORD PTR [SI]

MOV
MOV
MOV
MOV
FWAIT

BX,[BP]+b
DX ,[BX]
SI,[BPJ+14
DI,[BPJ+1□

COLUMN-LOOP:
MOV
MOV
MOV

BX,[BPJ+8
CX,[BX]
BX, □

; BX=ADDR(SCALAR)
;PUSH SCALAR ONTO

STACK ·
; BX=ADDR(M)
; DX= # OF COLUMNS
; SI=ADDR(A)
; DI=ADDR(B)

;BX=ADDR(N)
;CX=COLUMN LENGTH

120 8087 Applications and Programming

ADD-LOOP:
FLD DWORD PTR [BX][SI] iLOAD A(I,J)
FADD ST(O),-ST(1) iADD SCALAR
FSTP DWORD PTR [BX][DI] i B(I, J)=SCALAR+A(I, J)
ADD BX,4 iREADY FOR NEXT

ELEMENT
LOOP ADD-LOOP

iNOW MOVE TO NEXT COLUMN BY ADDING 4*N TO SI AND ,DI
MOV BX,[BP]+8 iBX=ADDR(N)
MOV AX,[BX] iAX=COLUMN LENGTH
SHL AX,1 iMUL TIPLY AX
SHL AX,1 iBY 4
ADD SI,AX
ADD DI,AX

iARE WE DONE YET?
DEC DX
CMP DX, □

JLE COLUMN-LOOP

FSTP ST(□) iGET RID OF SCALAR
POP BP
FWAIT
RET 10

SCALADD ENDP
CSEG ENDS

END

Routine SCALADD takes about 53 microseconds per element. The time
for the same routine in BASIC varies according to the number of rows
and columns, but, for a 50 by 50 matrix, BASIC requires about 6400
microseconds per element.

SCALADD illustrates indexing down the columns and across the rows
of a matrix. It would be straightforward to write routines for the other
scalar operations as well as for element-by-element matrix addition, sub
traction, and so forth. However, a slight "trick" of observation suggests
an even easie~ solution. Computer memory doesn't "know" that then
by m storage locations represent a matrix. The locations could equally
well represent an n by m element one-dimensional array. All element-by
element and scalar matrix operations can be done by using vector routines, as
developed in Chapter 9.

For example, the following BASIC code, using ADDSC from Chapter
9, works as well as SCALADD.

10 DEFINT I-N
20 DIM A(N-1,M-1), B(N-1,M-1)
30 SCALAR=5. □ : ISIZE=N*M
40 CALL ADDSC(A(□), SCALAR, 8(0), ISIZEJ

10 1:1 Basic Matrix Operations 121

Matrix Transposition

The matrix operation transpose exchanges the rows and <;:olumns of a
matrix. If A is an n by m matrix, theri "A transpose" is an m by n matrix
such that (A transpose)(i,j) = A(j,i). A transpose is often written AT or
A' (pronounced "A transpose" or "A prime"). A BASIC program to
transpose a matrix is straightforward. For example:

10 DEFINT I-N
20 DIM A(N-1,M-1), AT(M-1,N-1)
30 FOR I= □ TO N-1
40 FOR J-0 TO M-1
50 AT(J, I)=A(I, J)
60 NEXT J
70 NEXT I

The 8088 subroutine TRANS accomplishes the same task as the BASIC
code above. We take advantage of the fact that we can move down the
columns of A by counting off memory locations four at a time and move
across the rows of A' by counting off memory locations 4*M bytes at a
time.

Notice that TRANS requires A and B to be different matrices. If A and
B were to occupy the same memory locations, the copying operations
would write over some A locations before we were able to read them
into B. Subroutine TRANS uses about 16 microseconds per element.

; SUBROUTINE TRANS(A, B, N, M)
; ASSUMPTIONS: A IS A SINGLE PRECISION N BY M MATRIX
; BIS A SINGLE PRECISION M BY N MATRIX
; N,M ARE INTEGERS

PUBLIC TRANS
CSEG SEGMENT 'CODE'

ASSUME cs:CSEG
TRANS PROC FAR

PUSH BP
MOV BP,SP
MOV BX ,[BP]+8 ; BX=ADDR(N)

COL-LOOP:

MOV CX,[BX] ;(X=N
JCXZ DONE
MOV
MOV
CMP
JLE
MOV
MOV

MOV
MOV
MOV

MOV

BX,[BP]+b
DX,[BX]
DX, □

DONE
SI,[BP]+12
DI ,[BP]+10

BX ,[BP]+8
CX,[BX]
BX, □

AX,[SI]

; BX=ADDR(M)
;DX=M

; SI=ADDR(A)
; DI=ADDR(B)

;BX=ADDR(N)
; CX=N (COL LENGTH)
;BX= □

;MOVE 4 BYTES

122 8087 Applications and Programming

MOV [DI)[BX],AX
MOV AX, [SI]+2
MOV [DI][BX]+2,AX
ADD SI,4
MOV AX,BX
MOV BX ,[BP]+b
MOV BX, [BX]
SHL BX,1
SHL BX,1
ADD BX,AX
LOOP COL-LOOP

ADD DI,4
DEC DX
JG ROW-LOOP

DONE: POP BP
RET 8

TRANS ENDP
CSEG ENDS

END

;NEXT A ELEMENT
;SAVE BROW POSITION
; BX=ADDR(M)
;BX=M
;BX=4*M

;NEXT B ELEMENT
;If NOT DONE

;NEXT ROW Of B
;ONE ROW DONE

Transposition of a square matrix leads to an important special case. To
conserve space, we frequently transpose a square matrix "in place," as
in the following BASIC code. Notice that the second FOR loop only runs
from the diagonal element to the end of the row. The "lower triangle"
of the square gets swapped with the upper triangle.

10 DEFINT I-N
20 DIM A(N-1,N-1)
30 FOR I=O TO N-1
40 FOR J=I TO N-1
50 SWAP A(I, J) , A(J, I)
60 NEXT J
70 NEXT I

We can think of this code as moving along the diagonal of a matrix
and swapping the row from the diagonal point to the right with the
column from the diagonal down. Subroutine SQTRANS performs this
task. The BASIC code above takes about 2800n2 microseconds to trans
pose A in place. SQTRANS requires only 8n2 microseconds.

; SUBROUTINE SQTRANS(A, NJ
; ASSUMPTIONS: A IS A SINGLE PRECISION N BY N MATRIX
; N IS AN INTEGER

PUBLIC SQTRANS
CSEG SEGMENT 'CODE'

ASSUME CS:CSEG
SQTRANS PRO(FAR

PUSH BP
MOV BP,SP
MOV BX,[BP]+b
MOV DX,[BX]
MOV BX,DX

; BX=ADDR(N)
;DX=N
;BX=N

1 o a Basic Matrix Operations 123

SHL BX,1 iBX=4*N
SHL BX,1
MOV BP,[BPJ+8 iWE'RE SHORT OF REGISTERS

;so WE'LL USE BP TO POINT
iTO DIAGONAL ELEMENT
i BP=ADDR(A)

CMP DX, □

JLE DONE
DIAG-LOOP:

MOV CX,DX i DX # OF ELEMENTS LEFT
MOV SI,BP iSI POINTS TO ROW
MOV DI,BP iDI POINTS TO COLUMN

ROW_LOOP: iSWAP ROW AND COLUMN
MOV AX,[SI] iMOVE 4 BYTES
XCHG [DIJ,AX
MOV [SI],AX
MOV AX,[SI)+2
XCHG [DIJ+2, AX
MOV [SIJ+2, AX
ADD SI,BX iNEXT ROW ELEMENT
ADD DI,4 iNEXT COLUMN ELEMENT
LOOP ROW-LOOP iIF NOT DONE

ADD BP,BX iNEXT DIAGONAL ELEMENT
ADD BP,4
DEC DX iNEXT COLUMN IS SHORTER
CMP DX, □

JG DIAG-LOOP
DONE: POP BP

RET 4
SQTRANS ENDP
CSEG ENDS

END

Inner Products and Matrix Multiplication

More scientific computation time is spent computing inner products than
on any other single problem. Inner products are at the heart of both
matrix multiplication and matrix inversion. If x and y are vectors, then
to find the inner product of x and y one multiplies the two vectors element
by element and sums the products, as in the following BASIC program.

10 DEFINT I-N
2 □ DEFDBL S
30 DIM X(N-1),Y(N-1)
40 SUM= □
50 FOR I= □ TO N-1
60 SUM=SUM+X(I)*Y(I)
70 NEXT I

124 8087 Applications and Programming

At first glance, the inner product doesn't appear to be a particularly
interesting operation. However, consider the specification of our system
of linear equations earlier in the chapter. The first equation was

Yi = Ao,oXi + Ao,iX2

Thus Yi equals the inner product of the first row of A with the vector x.
Similarly, the second equation specifies that y2 equals the inner product
of the second row of A with x. In this manner, an entire system of
equations can be specified in terms of inner products. This leads to a
natural definition of matrix multiplication in terms of inner products.

If C = AB, then Cii equals the inner product of row i of A with column j of B.

Note that this definition implicitly assumes that A and Bare conformable
for multiplication, that is, the number of columns of A equal the number
of rows of B. A further natural result of the definition is that if A is a 1
by m matrix and B is an m by n matrix, then C will be 1 by m.

BASIC code to multiply two matrices is:

10 DEFINT I-N
20 DEFDBL S
25 REM REMEMBER TO DEFINE L,M,N AND USE L1=L-1,ETC IN LINE

30
30 DIM A(L-1,M-1),B(M-1,N-1),C(L-1,N-1)
35 REM DEFINE MATRICES A AND 8 HERE
40 FOR !ROW= □ TO L-1
50 FOR JCOL=O TO N-1
60 SUM= □

70 FOR K=O TO M-1
80 SUM= SUM+A(IROW, K)*B(K, JCOL)
90 NEXT K
100 C(IROW, JCOL)=SUM
110 NEXT JCOL
120 NEXT !ROW

Lines 70, 80, and 90 are executed l*m*n times. For matrices of order
50, that's 125,000 additions and multiplications. You can see why we
want these lines to be as efficient as possible!

Notice that we collected the inner product in a temporary variable
"SUM," rather than directly in "C(IROW,JCOL)." We did this for two
reasons. First, it is somewhat more efficient, since BASIC need calculate
the location of C(IROW,JCOL) only l*n times, rather than l*m*n times.
Second, and far more important, accuracy is improved greatly by accu
mulating the sum in double precision even if it is to be stored later as ·a
single precision variable.

Because of the central role of inner products and matrix multiplications
in numerical computation, accuracy and speed are vital. We present
several 8087 routines written with these objectives in mind. Our first
routine forms the inner product of two one-dimensional arrays.

10 a Basic Matrix Operations 125

; SUBROUTINE INPROD(A, B, C, NJ
; ASSUMPTIONS: A,B ARE SINGLE PRECISION N ARRAYS
; C IS A DOUBLE PRECISION SCALAR
; N IS AN INTEGER

CSEG

INPROD

ADD-LOOP:

DONE:

INPROD
CSEG

PUBLIC INPROD
SEGMENT 'CODE'
ASSUME CS:CSEG
PROC FAR
PUSH BP
MOV BP,SP
MOV BX,[BP]+b
MOV CX,[BX]
MOV SI,[BP]+12
MOV DI ,[BP]+1 □
MOV BX, □

FLDZ
JCXZ DONE

FLD DWORD PTR
FMUL DWORD PTR
FADDP ST(1),ST
ADD BX,4

LOOP ADD-LOOP

MOV BX,[BP]+8
FSTP QWORD PTR
POP BP
FWAIT
RET 8
ENDP
ENDS
END

[BX][SI]
[BX][DI]

[BX]

;BX=ADDR(N)
;cx=N
;SI=ADDR(Al
; DI=ADDR(B)

;SET RUNNING SUM= □

;LOAD A(I)
; MULTIPLY BY B(I)
; SUM=SUM+A(I)*B(I)
;READY FOR NEXT

ELEMENT

; BX=ADDR(CJ
;(=INNER PRODUCT

Routine INPROD takes about 59 microseconds per array element.

You might expect our next step would be an 8087 routine to multiply
two matrices. Instead of proceeding directly to a matrix multiplication
program, we are going to take a short strategic detour. A matrix multi
plication subroutine presents two difficulties. First, writing such a routine
is complicated by the need to keep track of too many indices. As you
can see from the BASIC program above, the program needs to remember
IROW, JCOL, K, L, M, N and the locations of A, B, and C. Using a direct
approach, we would run out of registers rather quickly. Second, a
straightforward matrix multiplication routine could be used only on one
specific argument type; for example, multiplying two single precision
matrices and returning a single precision result.

Our strategic approach is to write a very general inner product routine
upon which we can build more complicated programs. Subroutine GINP,
below, calculates the inner product of two n-element arrays. The result
is left on the top of the 8087 stack. In addition to specification of the

126 8087 Applications and Programming

input vectors, GINP accepts two kinds of options. The first option allows
us to specify either single or double precision input arrays. The second
option allows us to tell GINP how far apart in memory the elements of
each array are spaced. Thus if array A has a "skip" parameter of one,
the elements are stored sequentially. If the skip parameter is two, then
elements are stored in every other location-with four bytes between
elements for a single precision array and eight bytes between elements
for a double precision array.

Of what use is the "skip" parameter? Think about accessing a row of
a matrix. The elements of an m by n matrix are located 4*n bytes apart.
Thus we can move across the row of an m by n matrix by specifying n
as the skip parameter.

iSUBROUTINE GINP(A,B,TYPEA,TYPEB,SKIPA,SKIPB,N)
i ASSUMPTIONS: A,B ARE ADDRESSES OF N-ARRAYS IN DATA SEGMENT

TYPEA,TYPEB,SKIPA,SKIPB,N ARE INTEGERS
i NOTE THIS PROCEDURE CANNOT BE CALLED FROM

BASIC
i IT FINDS ITS ARGUMENTS ON THE STACK
i NOT THEIR ADDRESSES

;

GINP

iSINCE

THERE MUST BE AT LEAST 2 FREE LOCATIONS ON
THE 8087 STACK AND AT LEAST 14 FREE BYTES ON
THE MEMORY STACK

GINP RETURNS THE INNER PRODUCT OF A AND BON
THE 8087 STACK

GINP TAKES EVERY SKIPA ELEMENT OF A AND
EVERY SKIPB ELEMENT OF B

ASSUME
PROC
PUSH
MOV

THIS IS A
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
FLDZ
MOV
MOV
MOV
MOV
MUL
MOV
MOV

CS:CSEG
NEAR
BP
BP,SP

NEAR PROCEDURE, ARGUMENTS BEGIN AT [BP]+4
AX
BX
ex
DX
SI
DI

CX,[BP)+4
SI,[BP]+1b
DI ,[BP)+14
AX,[BP]+10
WORD PTR [BP]+b
BX,AX
AX,[BP]+12

iSET RUNNING SUM=□
iCX=N
i SI=ADDR(A)
i DI=ADDR(B)
iAX=TYPEB
iAX=TYPEB*SKIPB
iBX=B ELEMENT DISTANCE
iAX=TYPEA

GIN-PLOOP:

MUL
JCXZ

CMP
JNE
FLD
JMP

A-DOUBLE: FLD

MUL T_B: CMP
JNE
FMUL
JMP

B_DOUBLE: FMUL

NEXLELEMENT:
FADDP
ADD
ADD
LOOP

DONE:
POP
POP
POP
POP
POP
POP
POP
RET

GINP ENDP

1 o a Basic Matrix Operations 127

WORD PTR [BPJ+8 i AX=A ELEMENT DISTANCE
DONE

WORD PTR [BP]+ 12, 4 i IS A SINGLE?
A-DOUBLE
DWORD PTR [SI] iLOAD SINGLE A(IJ
MULLS
QWORD PTR [SI]· iLOAD DOUBLE A(IJ

WORD PTR [BP]+ 10, 4 i IS B SINGLE?
B_DOUBLE
DWORD PTR [DI] iMUL TIPLY SINGLE B(IJ
NEXLELEMENT
QWORD PTR [DI] i MULTI PLY DOUBLE B(IJ

ST(1J,ST i SUM=SUM+A(I]*B(IJ
SI,AX
DI,BX
GINP-LOOP

DI
SI
DX
ex
BX
AX
BP
14

Subroutine GINP is written as a NEAR procedure. This means it cannot
be called directly from BASIC. However, it also means that GINP is
automatically relocatable. Below, we write a FAR procedure, GINPROD,
to call GINP fro!}l_BASIC. Because an 8088 NEAR call jumps to a location
relative to the current value in the instruction pointer, GINPROD and
GINP can be moved together without changing the CALL instruction in
GINPROD.

GINP should be assembled together with GINPROD and any other
routines which call GINP. This helps insure that our dynamic relocation
scheme will function properly. For this same reason, we have omitted
the PUBLIC and SEGMENT/ENDS statements, as we will with all NEAR
procedures. In fact, the most convenient way to use our matrix routines
is to combine them all into one assembly language package. Combining
the routines makes it easy for them to share the same copy of GINP and
the scratch space we define in GINPROD. (We'll assume that you com
bine the routines this way and won't set up separate scratch space areas
for each.)

128 8087 Applications and Programming

Since GINP won't be called from BASIC, we have used slightly different
parameter passing conventions for convenience. The addresses of the
two arrays, A and B, are pushed onto the stack, then the values of the
"types" (four for single precision or eight for double precision), rather
than the addresses of the "types," of A and B, the skip parameters for
A and B, and the value of N, are pushed onto the stack. Since GINP is
a NEAR procedure, the parameters begin in the stack at [BP] +4 rather
than [BP] + 6. GINP saves registers on the 8088 stack, and expects that
any routine calling it will leave free at least seven words on the stack.
The calling routine should set up its own stack area rather than rely on
the area provided by BASIC.

Procedure GINP uses about 125 microseconds for overhead (finding
addresses and so forth) plus 59 microseconds for each array element.

Routine GINPROD makes GINP accessible from BASIC. GINPROD
returns, in C, the double precision value of the inner product.

;SUBROUTINE GINPROD(A,B,C,TYPEA,TYPEB,SKIPA,SKIPB,N)
; ASSUMPTIONS: A,B ARE N-ARRAYS
; C IS A DOUBLE PRECISION SCALAR
; TYPEA,TYPEB,SKIPA,SKIPB,N ARE INTEGERS

; THIS SUBROUTINE CALLS THE INTERNAL SUBROUTINE GINP
PUBLIC GINPROD

CSEG SEGMENT 'CODE'
ASSUME cs:CSEG,ES:ESEG

FIRST-INST EQU THIS WORD
GINPROD PROC FAR

PUSH BP
MOV BP,SP

;SET UP STACK AREA IN ESEG
PUSH ES
CALL NEXT

NEXT: POP AX
SUB AX,(OFFSET NEXT)-(OFFSET FIRSLINST)
MOV CL,4
St-tR AX,CL
MOV BX,CS
ADD BX,ESEG
SUB BX,CSEG
ADD AX,BX
MOV ES,AX

MOV LOCAL-SPACE,SS
MOV LOCAL-SPACE+2,SP
MOV AX,ES
MOV SS,AX
MOV SP,OFFSET STACK-TOP

;

10 a Basic Matrix Operations 129

;SET UP CALL PARAMETERS
;NOTICE THAT WE HAVE CHANGED THE SS REGISTER
;so, WE HAVE TO TAKE ADVANTAGE OF THE FACT THAT BASIC SETS
;ss AND DS TO THE SAME LOCATION

PUSH DS: [BP]+20
PUSH DS :(8P]+18
MOV BX,DS :(BP]+14
PUSH [BX]
MOV BX,DS:(BP]+12
PUSH [BX]
MOV BX,DS:[BP]+10
PUSH [BX]
MOV BX, DS :(BP]+8
PUSH [BX]
MOV BX,DS:(BP]+b
PUSH [BX]

GINP
SP,LOCAL-SPACE+2
SS,LOCAL-SPACE

;ADDR(Al
; ADDR(B)
;TYPEA

;TYPES

;SKIPA

;SKIPS

CALL
MOV
MOV
MOV
FSTP
POP
POP
FWAIT
RET
ENDP
ENDS

BX ,[BP]+16 ; BX=ADDR(C)

GINPROD
CSEG

ESEG SEGMENT
DW

STACK-TOP EQU
LOCAL-SPACE DW
ESEG ENDS

QWORD PTR [BX] ; STORE C
ES
BP

16

'DATA'
50 DUP (?)
THIS WORD
20 DUP (?)

One programming "trick" bears special attention here. The stack area
provided by BASIC when GINPROD is called may have only eight words
on it. Since this isn't enough, GINPROD sets up its own stack segment
in the ESEG area. GINPROD changes the stack segment register, SS, to
point to this area. Once SS has been changed, we need to use some other
segment register when retrieving arguments from BASIC. In GINPROD,
we use the DS register since BASIC sets SS and DS to the same value.
This works quite well when GINPROD is called from BASIC, but some
other method might be necessary if GINPROD is used with another
language.

GINPROD leads immediately to a fast BASIC routine for matrix mul-
tiplication.

10 DEFINT I-N
20 DEFDBL S
30 DIM A(L-1,M~1),B(M-1,N-1),C(L-1,N-1)

130 8087 Applications and Programming

35 IONE=1 : ITYPE=4
40 FOR IROW=O TO L-1
50 FOR JCOL=□ TO N-1
55 CALL GINPROD(A(IROW, OJ, 8(0, JCOL), SUM, ITYPE, ITYPE, M, IONE, M)
56 REM FIND INNER PRODUCT OF ROW IROW OF A WITH
57 REM COLUMN JCOL OF B RETURNING THE ANSWER IN SUM
58 REM NOTE ITYPE=4 INDICATES SINGLE PRECISION
60 REM SUM= □
70 REM FORK= □ TO M-1
80 REM SUM=SUM+A(IROW, K)*B(K, JCOL)
90 REM NEXT K
100 C(IROW,JCOL)=SUM
110 NEXT JCOL
120 NEXT IROW

For convenient comparison, we have adapted the earlier BASIC pro
gram for matrix multiplication by adding statements 35 and 55-58 and
changing 70, 80, and 90 into REMARKS. This program directly takes the
inner product of each row of A with each column of B.

How much tim~ do we save by multiplying matrices using GINPROD
instead of straight BASIC code? For large m, both programs are roughly
proportional to l*m*n. The constant of proportionality is about 9600 mi
croseconds for BASIC. Using GINPROD, the constant of proportionality
falls to 61 microseconds. Thus, multiplying two 50 by 50 matrices takes
about 20 minutes in BASIC without the 8087. Using the 8087, the program
takes about eight seconds.

Suppose the middle index, m, is small compared to 1 and n. Lines 70,
80, and 90 use time proportional to l*m*n. Lines 40-60 and 100-120 execute
in time proportional to l*n. Ordinarily in timing analysis, if a cubic term,
such as l*m*n, is present, we drop quadratic terms, such as l*n. If m is
small, the quadratic terms become important. For example, if m = 1, the
program spends as much time in lines 40-60 and 100-120 as in 70-90; use
of the routine GINPROD doesn't speed up anything at all.

Speed considerations thus suggest a pure 8087 routine for matrix mul-
tiplication. Routine MATMULT essentially imitates the BASIC code above.

; SUBROUTINE MATMUL T(A, B, C, L, M, NJ
; ASSUMPTIONS: A,B,C ARE SINGLE PRECISION MATRICES
; A ISL BY M
; BIS M BY N
; C ISL BY N

L,M,N ARE INTEGERS

; THIS SUBROUTINE PERFORMS THE MATRIX MULTIPLICATION C=AB
; SUCCESSIVE ROWS OF A ARE MULTIPLIED BY THE FIRST COLUMN

OF B
; THEN REPEAT FOR SECOND COLUMN, ETC.

PUBLIC MATMULT
CSEG SEGMENT 'CODE'

ASSUME CS:CSEG,ES:ESEG

10 ci Basic Matrix Operations 131

FIRSLINST EQU THIS WORD
FAR
BP
BP,SP

MATMUL T PROC

;SET UP

NEXT:

PUSH
MOV

STACK AREA
PUSH
CALL
POP

IN ESEG
ES
NEXT
AX

SUB AX ,(OFFSET NEXT)-(OFFSET FIRSLINST)
MOV
SHR
MOV
ADD
SUB
ADD
MOV

;

CL,4
AX,CL
BX,CS
BX,ESEG
BX,CSEG
AX,BX
ES,AX

LOCAL_SPACE,SS
LOCAL-SPACE+2,SP
AX,ES
SS,AX

MOV
MOV
MOV
MOV
MOV SP,OFFSET STACK-TOP

; TO CALL GINP WE MUST PUSH ONTO THE STACK:
; A(I, 0)

8(0, J)
; 4

4
; L
; 1
; M

; ON RETURN THE RESULT GOES IN ((I, J)
; USE SOME LOCAL STORAGE TO SAVE ADDRESSES OF
; A(I,0) 8(0,J) C(I,J)
SOME-SPACE EQU LOCAL-SPACE+ 4
ADDRA-HOLD EQU SOME-SPACE
ADDRB-HOLD EQU ADDRA-HOLD+2
L-HOLD EQU ADDRB-HOLD+2
M4-HOLD EQU L_HOLD+2
M-HOLD EQU M4-HOLD+2
N-HOLD EQU M_HOLD+2

MOV BX,DS:[BP]+16
MOV ADDRA-HOLD,BX
MOV SI,DS:[BP]+14
MOV ADDRB_HOLD,SI
MOV DI,DS:[BP]+12
MOV BX,DS:[BP]+10
MOV AX,[BX]
MOV L_HOLD,AX
MOV BX,DS:[BP]+8
MOV DX,[BX]

; BX=AD DR(A(O, 0))

; SI=AD DR(B(O, 0))

; DI=ADDR(C(O, 0))
;BX=ADDR(L)

;L_HOLD HAS L
; BX=ADDR(M)
;DX=M

132 8087 Applications and Programming

MOV M_HOLD,DX
MOV M4-HOLD,DX
SHL M4-HOLD,1 ;GET 4*M
SHL M4-HOLD,1
MOV BX,DS:[BP)+b ; BX=ADDR(N)
MOV CX,[BX] ;CX=N
MOV N_HOLD,CX
MOV AX,4 ;SAVE USEFUL 4
MOV BX,1 ;SAVE USEFUL 1

;
COL-LOOP: CMP N-HOLD, □ ;COL DONE?

JE DONE
MOV SI,ADDRA-HOLD
MOV CX,L-HOLD

ROW-LOOP:
PUSH SI ;A(I, □)

PUSH ADDRB-HOLD ;B(□ ,JJ

PUSH AX ;4
PUSH AX ;4
PUSH L-HOLD ;L
PUSH BX ;L

PUSH DX ;M
CALL GINP
FSTP DWORD PTR [DI)

ADD DI,4 ;NEXT C
ADD SI,4 ;NEXT A
LOOP ROW-LOOP ;NEXT ROW
MOV SI,M4-HOLD ;SKIP TO NEXT COLUMN
ADD ADDRB-HOLD,SI ;NEXT B
DEC N_HOLD
JMP COL-LOOP

;
DONE:

MOV SP,LOCAL-SPACE+2
MOV SS,LOCAL-SPACE
POP ES
POP BP
FWAIT
RET 12

MATMULT ENDP
CSEG ENDS

END

MATMULT executes in about 211*l*n + 59*l*m*n microseconds. In the
worst case, m= 1 and large l*n, MATMULT uses about 270 microseconds
per element. Even though 80 percent of the 270 microseconds is overhead,
MATMULT is still over 100 times faster than BASIC. By the time m is as
large as 20, execution speed rises to about 70 microseconds per element,
which is 80 percent of maximum hardware speed. Adaptation of MAT
MUL T to double precision arguments is straightforward.

1 O a Basic Matrix Operations 133

GINPROD allows us to easily create many variants of matrix multi
plication. Suppose we want to multiply the transpose of a matrix A by
a matrix B, as in C=A'B, where A ism by 1 and Bis m by n. Row i of
A' is column i of A, so we can use GINPROD specifying a "skip" of 1
for A to specify a row of A'.

10 DEFINT I-N
20 DEFDBL S
30 DIM A(M-1,L-1),B(M-1,N-1),C(L-1,N-1)
35 11=1: ITYPE=4
40 FOR !ROW=□ TO L-1
50 FOR JCOL= □ TO N-1
55 CALL GINPROD(A(□, IROW), B(□, JCOL), SUM, !TYPE, !TYPE, I1, I1, Ml
60 REM SUM=□

70 REM FOR K= □ TO M-1
80 REM SUM=SUM+A(K, IROW)*B(K, JCOL)
90 REM NEXT K
10 □ C(IROW, JCOL)=SUM
11 □ NEXT JCOL
12 □ NEXT IROW

A slightly simpler program could be written using INPROD rather than
GINPROD, but the method here allows double precision matrices and
is easily adaptable to problems such as C =AB', which require the matrix
to be processed by row rather than column.

Solving Systems of Linear Equations

This is a good place to pause in your reading. We spend the rest of this
chapter on linear algebra and in writing BASIC programs for solving
systems of linear equations and inverting matrices. Our next 8087 pro
gram doesn't appear until Chapter 11. If your main interest is the 8087
aspect of these problems, you should just quickly skim the rest of this
chapter.

The next few pages move very fast. You can spend most of a course
in college learning about linear equations. The next few pages are really
more of a quick review than a proper introduction to the subject. If you' re
new to the topic-or if it's been a long time since you last saw the
subject-spend some time playing with the BASIC programs. One of the
nice things about exploring with a personal computer is that your "study"
can be as fast or as slow as you please.

Equation Manipulation

Return now to our example of two linear equations in two unknowns.
The equations to be satisfied are:

18 = 4x1 + 2x2
9 = 2x1 - 2x2

134 8087 Applications and Programming

which can also be written

y = Ax

For a given y, what value of x makes both equations true simulta
neously? We solve for x by making judicious use of the following theo
rems.

1. If we multiply both sides of a true equation by a constant, the resulting
equation is also true.

2. If we add one true equation to another, the resulting equation is also true.
3. We can always exchange the position of two equations.

Clever application of these principles allows us to easily solve systems
of linear equations. Consider applying the following transformations to
our example system.

1. Multiply the top equation by - ½ and add the result to the second
equation. The transformed system looks like this:

18 = 4x1 + 2x2

0 = Ox1 - 3x2

2. By inspecting the bottom equation, we see that x2 equals 0. Solving
backwards, we set x2 to zero in the top equation and see immediately
that x1 equals 1%, or 4.5.

Matrix Manipulation

These steps generalize to a two-step procedure for solving systems of
linear equations in terms of matrices.

l. Reduce the system to triangular form. Multiply the first equation by
a constant and add the result to the second equation so as to produce
a zero in column 1, row 2. Multiply the first equation by a (different)
constant and add the result to the third equation so as to produce
a zero in column 1, row 3. Continue in this manner until the first
column is all zeros below the diagonal.
Now take the second equation, multiply it by a constant and add
it to the third equation so as to produce a zero in column 2, row 3.
Continue until the entire second column is zero below the diagonal.
Apply this procedure repeatedly until the entire area below the
diagonal equals zero. This sort of matrix, with all zeros below the
diagonal is called upper triangular.

2. Back substitute. Take the transformed version of A and y and solve
for x by

Xn = Yn/An,n

Xn-1 = (Yn-1 - A n-1,n Xn)/An-1,n-1

and so forth.

1 O a Basic Matrix Operations 135

Let's look at what our sample system looks like in terms of matrices. We
start with the original A and y.

y=

Now we begin the reduction process. Our first step multiplies the top
row of A and y by - ½ and adds the result to the second row giving us
new values of A and y.

You can see why A is said to be in "triangular form." The non-zero
entries form a triangle on and above the diagonal.

Notice that A and y are changed. If you want to keep the original data
intact, be certain to perform the reduction on a copy of the original
matrices.

The second step is to back-substitute. The matrix equation y = Ax still
applies to the new versions of A and y. Starting at the bottom and working
up we have

0 = (0)x1 + (-3)x2

so x2 = 0. Now we can substitute this into the first equation.

18 = (4)x1 + (2)0

X1 equals (18- 0)/4, or 4.5.

In theory, only one thing can go wrong with this procedure. Suppose
that at some step the equation we are using to produce zeros below the
diagonal has a zero as its own diagonal element. (This diagonal element
is called the pivot element.) In this case, the equation cannot be used to
eliminate the elements below it and the program stops. The solution to
this problem is to exchange the offending equation with another so as
to obtain a non-zero pivot. (Implementation of this solution is deferred
until the next chapter.) If the entire column equals zero, the system of
equations and the matrix A are said to be singular. The system of equations
does not have a unique solution.

This method of solving linear systems is called Gaussian elimination.
While not the best computational method (better ones are introduced in
the next chapter), it is the most straightforward. The following BASIC
program implements Gaussian elimination. Notice that the original con
tents of A and y are replaced by transformed values.

136 8087 Application$ and Programming

5 REM PROGRAM GAUSS
10 DEFINT I-N
20 DIM A(N-1,N-1),Y(N-1),X(N-1)
25 REM BE SURE A,Y AND N ARE DEFINED
30 FOR IEQ=O TO N-1
40 IF A(IEQ,IEQ)=O THEN PRINT "ZERO PIVOT AT",IEQ:STOP
50 FOR JROW=IEQ+1 TO N-1
60 F ACTOR=-A(JROW, IEQ)/ A(IEQ, IEQ)
70 Y(JROWJ=Y(JROWJ+FACTOR*Y(IEQ)
80 FOR K=IEQ TO N-1
90 A(J ROW, K)=A(JROW, K)+F ACTOR*A(IEQ, Kl
100 NEXT K
110 NEXT JROW
120 NEXT IEQ
130 REM
140 REM A IS NOW UPPER TRIANGULAR
150 REM
160 X(N-1)=Y(N-1)/A(N-1,N-1)
170 FOR IEQ=(N-1)-1 TO O STEP -1
180 SUM=□
190 FOR K=IEQ+1 TO N-1
200 SUM=SUM+A(IEQ,K)*X(K)
210 NEXT K
220 X(IEQ)=(Y(IEQ)-SUMJ/ A(IEQ, IEQ)
230 NEXT IEQ

How long does it take to solve a system using Gaussian elimination?
The outermost loop, the IEQ loop, is executed N-1 times. The next loop,
the JROW loop, is done N -1 times for the first IEQ, N -2 for the second,
and so forth. So the JROW loop is executed approximately n2/2 times.
The inner-most loop, K, executes N times per JROW for the first IEQ,
N -1 times per JROW for the second IEQ, for a total of about n3/3 op
erations. In total, the time required to solve a system of n equations is
proportional to n3/3, plus a small factor proportional to n2/2.

The logical next step would be to prepare 8087 routines to speed up
the program. Since better solution methods are proposed in the next
chapter, introduction of more 8087 routines will be postponed until that
point. However, here are a couple of suggestions in case you'd like to
experiment.

Almost the entire execution time is spent in li~es 80, 90, and 100. These
lines multiply a row vector by a scalar and then add two row vectors.
The routines prepared in Chapter 9 will only multiply and add column
vectors. However, these routines could easily be modified to include a
skip parameter, so as to work on row vectors. We might replace lines
80, 90, and 100 with lines something like this:

25 DIM XTRAROW(N-1): IONE=1
85 K=(N-1)-IEQ+1
95 CALL MUL TSC(A(IEQ,IEQ),FACTOR,XTRAROW(O],N,IONE,K)
105 CALL VADD(A(JROW, IEQ), XTRAROW(OJ, A(J ROW, OJ, N, IONE, N, K)

1 O a Basic Matrix Operations 137

Lines 180-200 might be replaced with GINPROD for some further gain.

Using BASIC, solving a system of equations takes about 12S00n3/3
microseconds. Solving a SO-equation system uses over eight minutes of
computer time. Replacing the inner-most loop with 8087 routines as sug
gested will reduce execution time to about 100n3/3 microseconds. That
knocks solution time for a SO-equation system down to about five sec
onds.

Solving Multiple Linear Systems

We frequently want to solve a number of linear systems, sharing a com
mon A matrix but having different y vectors. In place of a single n by 1
column vector y, we can arrange m column vectors into an n by m matrix
Y. The solutions can be placed in an n by m matrix X. The entire set of
linear equations are represented in this way by the matrix equation

Y = AX

Examination of the Gaussian elimination routine shows that all the
hard work, that is the order n3 work, involves only the A matrix. If we
blindly apply the program above, execution time will be of order mn3•

The revision below keeps the transformation of y and backsolving for x
out of the innermost loop.

10 DEFINT I-N
20 DIM A(N-1,N-1),Y(N-1,M),X(N-1,M)
25 REM BE SURE A,Y,N, AND MARE DEFINED
30 FOR IEQ=O TO N-1
40 IF A(IEQ, IEQJ= □ THEN PRINT "ZERO PIVOT AT", IEQ: STOP
50 FOR JROW=IEQ+1 TO N-1
60 F ACTOR=-A(JROW, IEQJ/ A(IEQ, IEQJ
70 FOR LEQ=O TO M-1
80 Y(JROW, LEQJ=Y(JROW, LEQ)+F ACTOR*Y(IEQ, LEQ)
90 NEXT LEQ
100 FOR K=IEQ TO N-1
110 A(JROW, K)=A(JROW, K)+F ACTOR*A(IEQ, Kl
120 NEXT K
130 NEXT JROW
140 NEXT IEQ
150 REM
160 REM A IS NOW UPPER TRIANGULAR
170 REM
180 FOR LEQ=O TO M-1
190 X(N-1, LEQ)=Y(N-1, LEQJ/ A(N-1, N-1)
200 FOR IEQ=(N-1)-1 TO □ STEP -1
210 SUM= □
220 FOR K=IEQ+1 TO N-1
230 SUM=SUM+A(IEQ, KJ*X(K, LEQ)
240 NEXT K
250 X(IEQ, LEQ)=(Y(IEQ, LEQJ-SUMJ/ A(IEQ, IEQJ

138 8087 Applications and Programming

26 □ NEXT IEQ
27 □ NEXT LEQ

This version of Gaussian elimination executes in time proportional to n3
plus mn2. For moderately large m and n, this means an improvement
factor of roughly m over repeated Gaussian elimination! Notice that lines
70-90 are ripe for replacement by 8087 row operations.

Space Efficient Gaussian Elimination

The Gaussian elimination program above solves multiple linear systems
quickly, but requires a great deal of storage, since 2*m*n locations are
allocated for Y and X. We frequently want to solve systems sequentially,
so that only a single y and x need be stored.

Gaussian elimination transforms y. As you can see in lines 70-90 above,
the same factors are used to transform every column of Y. If we save the
factors, we can, at a later stage, transform as many different y's as we
like.

At each step in the reduction, all the (lower) elements of y are trans
formed. Suppose we save all the factors, labeling the factors from the
first step f00, f10, f20, and so forth. The second step produces one less
factor. We label these f11, f21 , f3i, and so forth. Arranging the columns
of factors into a matrix, we get

1 0 0 0 0 0

f10 1 0 0 0 0

F= f20 f21 1 0 0 0

1 0 0

1 0

1

The matrix of factors is lower triangular with ones along the diagonal.
We need a convenient place to store F for later use. As we reduce A, the
area below the diagonal fills with zeros. Since this lower part of A would
otherwise go to waste, we'll use it to store the part of F below the diagonal,
and remember that the remaining part of F is ones and zeros.

Suppose we label the transformed vector y, "y*." The reduction process
transforms y according to the following rules:

Y*o = Yo
y*1 = Yi + f10Y*o
y*2 = Y2 + f20Y*o + f21Y*i
y*3 = Y3 + f30Y*o + f31Y*1 + f32Y*2
and so forth.

10 a Basic Matrix Operations 139

The first step of our space efficient program is to reduce A to upper
triangular form and store the factors in A's lower triangle. Then, each
time we want to find x for a new y, we generate a new y* from the stored
factors and back substitute. The next set of BASIC code takes this ap
proach.

5
10
20
25
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310

REM PROGRAM GAUSS-SE (SPACE EFFICIENT)
DEFINT I-N
DIM A(N-1, N-1), Y(N-1), X(N-1), YST AR(N-1)

REM BE SURE A,Y, AND N ARE DEFINED
FOR IEQ=D TO N-1
IF A(IEQ,IEQJ=D THEN PRINT "ZERO PIVOT AT",IEQ:STOP

FOR JROW=IEQ+1 TO N-1
FACTOR= -A(JROW, IEQJ/ A(IEQ, IEQ)

FOR K=IEQ TO N-1
A(JROW, !~]=A(JROW, KJ+F ACTOR*A(IEQ, Kl
NEXT K

A(JROW, IEQJ=F ACTOR
NEXT JROW

NEXT IEQ
REM
REM A IS NOW UPPER TRIANGULAR
REM
YSTAR(D)=Y(DJ

FOR IEQ=D TO (N-1)-1
SUM= □

FOR K=D TO IEQ-1
SUM=SUM+A(IEQ+ 1, K)*YST AR(K)
NEXT K

YST AR(IEQ+ 1J=Y(IEQ+ 1J+SUM
NEXT IEQ

X(N-1J=YST AR(N-1)/ A(N-1, N-1)
FOR IEQ=(N-1)-1 TO D STEP -1
SUM=□

FOR_K=IEQ+1 TO N-1
SUM=SUM+A(IEQ, K)*X(K)
NEXT K

X(IEQJ=(YSTAR(IEQJ-SUMJ/ A(IEQ, IEQ)
NEXT IEQ

Lines 160-310 can be repeated for other y vectors as needed. Notice that
lines 190-210 are really forming an inner product and could be replaced
with 8087 code.

In the next chapter, we will discuss more advanced methods of solving
linear systems.

Matrix Inversion

Suppose we were faced with the scalar equation

y = Ax

140 8087 Applications and Programming

and were asked to solve for x given y. We might write the answer as
X = y/A

or as

X = A-1y

For a scalar equation, A-1, pronounced "A inverse," is just VA. The
question arises as to whether there is not a matrix we could label "A1 ,"

such that x = A 1y. There is indeed such a matrix.

First, define the identity matrix as a square matrix with ones along the
diagonal and zeros off the diagonal. For example, if I is the 3 by 3 identity
matrix, then

0
1
0

The identity matrix is ·analogous to a one in scalar multiplication. The
identities IX = X and XI = I hold for the identity matrix and any con
formable matrix X. For scalars, we say that A 1 is the inverse of A if
AA1 = 1. Analogously, for matrices we say

A-1 is the matrix inverse of A if AA-1 = I.

(Note we are restricting our attention to sjuare matrices. For a square
matrix, not only does AA1 = I, so does A A.)

How do we "invert" a matrix? The equation I = AA1 has precisely
the same form as the matrix equation Y = AX, where I is Y and A 1 is
X. We can use our BASIC program above to reduce A to upper triangular
form and then back substitute for each column of the identity matrix.
Because of the special form of the identity matrix we can calculate y*
without creating each y.

Assume we have executed the reduction part of the previous program.
The code below replaces lines 160 on, to calculate A 1 in AINV.

160 DIM AINV(N-1,N-1)
170 FOR LEQ=O TO N-1
180 FOR IEQ=O TO LEQ-1
190 YST AR(IEQJ= □

200 NEXT IEQ
210 YSTAR(LEQJ=1
220 FOR IEQ=LEQ TO (N-1)-1
230 SUM= □

240 FORK=□ TO IEQ
250 SUM=SUM+A(IEQ+1, K)*YST AR(K)
260 NEXT K
270 YSTAR(IEQ+1J=SUM
280 NEXT IEQ
290 AINV(N-1, LEQJ=YSTAR(N-1)/ A(N-1, N-1)
300 FOR IEQ=(N-1)-1 TO □ STEP -1

10 a Basic Matrix Operations 141

310 SUM=□
320 FOR K=IEQ+1 TO N-1
330 SUM=SUM+A(IEQ, KJ*AINV(K, LEQ)
340 NEXT K
350 AINV(IEQ, LEQJ=(YSTAR(IEQJ-SUMJ/ A(IEQ, IEQ)
360 NEXT IEQ
370 NEXT LEQ

We now have a "complete" set of routines to solve systems of linear
equations and invert matrices. But these routines still leave a few things
to be desired. . •

• They stop if they hit a zero pivot.
• They would be a lot faster if written in 8087 code.
• They would be more accurate if higher precision arithmetic were

used, but we do not want to sacrifice too much storage space.

In the next chapter, we remedy these faults ... and learn a few new
tricks.

Linear Systems and
Matrix Inversion:
More Advanced
Computational
Techniqu·es

By the end of the last chapter, we had created a set of procedures for
solving systems of linear equations and for handling the related operation
of matrix inversion. These methods followed the logic of "school room"
techniques. The methods we develop in this chapter are perhaps less
familiar, but they lend themselves well to highly acdurate and highly
efficient 8087 implementation.

Our goals for this chapter are:

• Fix the "zero pivot" problem.
• Express the solution to a system of linear equations in terms of inner

products, in order to take full advantage of the 8087's design.
• Move our procedures from BASIC to 8087 code.

Program:
Purpose:

Input:

The Cookbook-Chapter 11

GAUSS-PP
Solve linear equations by Gaussian elimination with

partial pivoting.
A-N by N coefficient matrix.
Y-N vector.

143

144 8087 Applications and Programming

Output:

Language:

Program:
Purpose:
Input:

Output:

Language:

Program:
Purpose:
Input:

Output:
Language:
Note:

Program:
Purpose:
Input:

Output:
Language:

Program:
Purpose:
Call:

Input:

YSTAR-N vector; scratch space.
N-number of rows and columns of A.
X-N vector; X solves equations Y = AX.
A-A replaced with permuted Gaussian reduction.
INDEX-N vector showing row swaps.
BASIC.

CROUT-PP
Perform Crout decomposition with partial pivoting.
A-Nby N coefficient matrix.
N-number of rows and columns of A.
A-A replaced with permuted Gaussian reduction.
INDEX-N vector showing row swaps.
BASIC.

PIV
Perform pivot step in Crout decomposition.
A-N by N coefficient matrix.
INDEX-integer N vector of row permutations.
TYPEA-integer giving length of element of A.
DIAG-integer index of column to be searched.
N-integer number of rows and columns of A. ·
INDEX-updated to reflect new pivot.
8087/8088 assembly language.
NEAR procedure called by PIVOT and CROUTP.

XINP
Inner product with permuted column.
A-N vector.
B-permuted N vector.
INDEX-integer N vector of row permutations for

B.
TYPE-integer giving length of element of A,B.
SKIP A-integer "skip factor" (see text) for A.
N-integer number of elements of A,B.
8087 register ST; ST= inner product A,B.
8087/8088 assembly language.
Note: NEAR procedure called by XINPROD and

CROUTP.

XINPROD
Inner product with permuted column.
CALL XINPROD(A(I,0),A(0,K),SUM,INDEX(0),

TYPE,SKIPA,N).
A-N vector.
B-permuted N vector.
INDEX-integer N vector of row permutations for

B.
TYPE-integer giving length of element of A,B.

Output:

Language:
Note:
Program:
Purpose:
Call:
Input:

Output:
Language:
Note:
Program:
Purpose:
Input:

Output:

Language:
Note:

Program:
Purpose:
Call:
Input:

Output:

Language:
Note:
Program:
Purpose:

Input:

Output:
Language:

11 a Linear Systems and Matrix Inversion 145

SKIPA-integer "skip factor" (see text) for A.
N-integer number of elements of A,B.
SUM-double precision scalar; sum= inner product
A,B.
8087/8088 assembly language.
Requires NEAR procedure XINP.
PIVOT
Perform pivot step in Crout decomposition.
CALL PIVOT(A(0,K),INDEX(0), TYPE,K,N).
A-N by N coefficient matrix.
INDEX-integer N vector of row permutations.
TYPE-integer giving length of element of A.
K-integer index of column to be searched.
N-integer number of rows and columns of A.
INDEX-updated to reflect new pivot.
8087/8088 assembly language.
Requires NEAR procedure PIV.
CROUTP
Perform Crout decomposition with partial pivoting.
A-N by N coefficient matrix.
TYPE-integer giving length of element of A.
N-integer number of rows and columns of A.
INDEX-integer N vector of row permutations.
!ER-integer error flag, IER= -1 if A singular.
8087/8088 assembly language.
NEAR procedure called by REDUCE.
Requires NEAR procedures XINP and PIV.
REDUCE
Perform Crout decomposition with partial pivoting.
CALL REDUCE(A(0,0),INDEX(0), TYPE,IER,N).
A-N by N coefficient matrix.
TYPE-integer giving length of element of A.
N-integer number of rows and columns of A.
INDEX-integer N vector of row permutations.
!ER-integer error flag, IER= -1 if A singular.
8087/8088 assembly language.
Requires NEAR procedures CROUTP.

SOiP
Solve system of linear equations after Crout decom

position with partial pivoting.
A-N by N matrix reduced by CROUTP with partial

pivoting.
Y-N vector.
N-number of rows and columns of A.
INDEX-N vector showing row swaps.
X-N vector; X solves equations Y = AX.
BASIC.

146 8087 Applications and Programming

Program:
Purpose:

Input:

Output:
Language:
Note:

Program:
Purpose:

Call:

Input:

Output:
Language:
Note:

Program:
Purpose:
Call:

Input:

Output:

Language:
Note:

SOL
Solve system of linear equations after Crout decom

position with partial pivoting.
A-N by N matrix reduced by CROUTP with partial

pivoting.
Y-N vector.
INDEX-N vector showing row swaps.
TYPEA-integer giving length of element of A.
TYPEY-integer giving length of element of Y.
TYPEX-integer giving length of element of X.
N-integer number of rows and columns of A.
X-N vector; X solves equations Y = AX.
8087/8088 assembly language.
NEAR procedure called by SOL VE.

SOLVE
Solve system of linear equations after Crout decom

position with partial pivoting.
CALL SOLVE(A(0,0), Y(0),X(0),INDEX(0), TYPEA,

TYPEY, TYPEX,N).
A-N by N matrix reduced by CROUTP with partial

pivoting.
Y-N vector.
INDEX-N vector showing row swaps.
TYPEA-integer giving length of element of A.
TYPEY-integer giving length of element of Y.
TYPEX-integer giving length of element of X.
N-integer number of rows and columns of A.
X__:._N vector; X solves equations Y = AX.
8087/8088 assembly language.
Requires NEAR procedure SOL.

INV
Invert matrix.
CALL SOLVE(A(0,0),AINV(0,0),SCRATCH(0),
INDEX(0),IER, TYPEA,N).
A-N by N matrix.
SCRATCH-single precision N vector of scratch space.
TYPEA-integer giving length of element of A,AINV.
N-integer number of rows and columns of A.
AINV-N by N matrix; inverse of A.
A-A replaced by Crout reduction.
INDEX-integer N vector, permutations of reduced

A.
!ER-integer error flag, IER= -1 if A singular.
8087/8088 assembly language.
Requires NEAR procedures CROUTP and SOL.

11 c Linear Systems and Matrix Inversion 147

Our original program for Gaussian elimination stops if it hits a zero
diagonal, or "pivot," element. A zero pivot may indicate a "mathemat
ical," not "just a computational," problem, because the system of equa
tions may not have a unique solution. Consider the following linear
system as an example.

Y1 = 2x1 + 4x2

Y2 = 4x1 + 8x2

The "A" matrix is originally.

[~ :]
After one step of Gaussian elimination, the reduced matrix looks like
this:

[6 aJ
In addition, we have saved the FACTOR, -2.

At the next attempted step of Gaussian elimination, the program finds
that A2, 2 equals zero, and therefore stops with the error message "ZERO
PIVOT AT 2." The problem is a mathematical one. The matrix A is
singular, so the pair of equations does not have a unique solution. In
fact, an infinite set of combinations of x1 and x2 solve the system if y2 is
twice y1• No solution exists if y2 isn't exactly twice y1 •

Consider the following rather different pair of equations.

Y1 = 0x1 + lx2

Y2 = lx1 + 0x2

The "A" matrix is originally

[~ ~]
Our Gaussian elimination routine hits a zero pivot-and stops-on

the very first step. This example demonstrates a computational, rather
than a mathematical, problem. By inspection, the solution to the system
is x1 = y2 and x2 = y1• The solution to the computational problem is
simple. We just reorder the equations so that the diagonal elements aren't
zero. Instead of solving the system as originally specified, we work on

Y2 = lx1 + 0x2
Y1 = 0x1 + lx2

with the "A" matrix

Gaussian elimination proceeds smoothly as long as we keep track of
the order in which the equations are solved.

148 8087 Applications and Programming

These two examples illustrate the general rules for dealing with zero
pivot elements.

1. If a zero pivot is encountered in equation i, exchange the equation i with
an equation below it that does not have a zero in column i.

2. If all the remaining equations have a zero in column i, the matrix is singular.
3. Keep a record of all equation exchanges, so that we can later "unswap" the

equations, if desired.

In practice, we add two further steps. •

4. Rather than actually exchanging the equations, create an array INDEX
such that INDEX([) is the original number of the equation that now belongs
in row i.

Just as a zero pivot stops the program by creating an infinite FACTOR,
so too, a very small pivot creates a very large FACTOR and tends to
generate sizable round-off error. Accuracy can be considerably enhanced
by using the largest possible pivot. ·

5. Instead of exchanging equations only when a zero pivot is encountered (as
required by rule 1), search the remainder of column i for the element, A(J ,I),
with the largest absolute value and exchange rows i and j.

The implementation of Gaussian elimination with rules 2 through 5 is
called Gaussian elimination with partial pivoting. The BASIC code below
rewrites the Gaussian elimination program of the previous chapter to
include partial pivoting. Notice that instead of row I, we now reference
row INDEX(!}, but column j remains column j.

5 REM PROGRAM GAUSS-PP
100 DEFINT I-N
200 DIM A(N-1,N-1),Y(N-1),X(N-1),YSTAR(N-1), INDEX(N-1)
210 FOR IEQ=O TO N-1
220 INDEX(IEQ)=IEQ
230 NEXT IEQ
300 FOR IEQ=O TO N-1
310 REM NOW SWAP ROWS
320 GOSUB 5000
330 SWAP INDEX(IEQ),INDEX(IBIGGESTJ
340 IEQX=INDEX(IEQ)
400 IF A(IEQX,IEQ)=O THEN PRINT "SINGULAR MATRIX",IEQ:STOP
500 FOR JROW=IEQ+1 TO N-1
510 JROWX=INDEX(JROW)
600 FACTOR=-A(JROWX, IEQ)/ A(IEQX, IEQ)
700 FOR K=IEQ TO N-1
800 A(JROWX, KJ=A(JROWX, K)+F ACTOR.*A(IEQX, Kl
900 NEXT K
1000 A(JROWX,IEQJ=FACTOR
1100 NEXT JROW
1200 NEXT IEQ
1300 REM
1400 REM A IS NOW UPPER TRIANGULAR

11 a Linear Systems and Matrix Inversion 149

15□□ REM
16□□ YST AR(□)=Y(INDEX(□))
17□□ FOR IEQ=1 TO N-1
171□ IEQX=INDEX(IEQ)
18□□ SUM=□
19□□ FORK=□ TO IEQ-1
20□□ SUM=SUM+A(IEQX, K)*YSTAR(KJ
21□□ NEXT K
22□□ YSTAR(IEQ)=Y(IEQXJ+SUM
23□□ NEXT IEQ
2310 IN=INDEX(N-1)
21f □□ X(N-1)=YSTAR(N-1)/ A(IN ,N-1)
25□□ FOR IEQ=(N-1)-1 TO □ STEP ·-1
2510 IEQX=INDEX(IEQJ
26□□ SUM=□
27□□ FOR K=IEQ+1 TO N-1
28□□ SUM=SUM+A(IEQX, K)*X(K)
29□□ NEXT K
30□□ X(IEQJ=(YST AR(IEQJ-SUMJ/ A(IEQX, IEQ)
31□□ NEXT IEQ
32□□ STOP
so□□ REM SUBROUTINE TO FIND LARGEST ELEMENT IN COLUMN
51□□ BIGGEST=ABS(A(INDEX(IEQJ, IEQJ
52□□ IBIGGEST=IEQ
530□ FOR I=IEQ+1 TO N-1
Slf □□ PIV=ABS(A(INDEX(I),IEQ))
55□□ IF PIV>BIGGEST THEN BIGGEST=PIV:IBIGG~ST=I
Sb□□ NEXT I
57□□ RETURN

This program performs the same number of multiplications and ad
ditions as simple Gaussian elimination, but will run a little more slowly
due to increased overhead. The time spent selecting pivot rows is an
order n2 operation, and is therefore negligible compared to the basic
reduction operation.

We've fixed the "zero pivot" problem. Before moving on to the chap
ter's other goals, we need to discuss some more mathematics. If you're
more interested in "how" than "why," skip ahead to the programs. It
will help to look at the BASIC programs before the 8087 programs, since
the former are easier to follow.

The Theory of "LU Decomposition"
A number of advanced methods of solving systems of linear equations,
and consequently of matrix inversion, rely on the principle of "LU de
composition." This principle states that a square matrix A can be factored
into a lower triangular matrix Land an upper triangular matrix U such
that L times U equals A. There are many such decompositions. A par-

150 8087 Applications and Programming

ticular method is arrived at by our choice of restrictions on the contents
of Lor U.

LU methods all work in three steps. Suppose the initial problem is

y = Ax

1. Factor A into Land U. This decomposition is an order n3 operation.
Now we have

y = (LU)x = L(Ux)

While LU is a square matrix, Ux is a column vector.
2. Solve the following system of equations for y*. Solution of an upper

(or lower) triangular system of equations is an order n2 operation.

y = Ly*

Since y*= L"1y, we next

3. Solve, the order n2 problem

y* = Ux

Does this look like a roundabout method? It really isn't, it only seems
that way. For example, the reduction process of Gaussian elimination
leaves us with an upper triangular matrix that we might call U. If we
add a diagonal with all ones to the set of factors we store along the way,
we have a lower triangular matrix that we might call L. A bit of calculation
will show you that LU indeed equals A. Further, solving for y* and x in
the Gaussian elimination programs are exactly steps 2 and 3 above. So
Gaussian elimination is actually a particular example of using an LU
decomposition.

The Crout Decomposition

The most useful LU method for the 8087 is called the Crout decomposition.
(The Crout decomposition is a member of the family called "compact"
methods.) The defining characteristic of the Crout decomposition is that
U has all ones along the diagonal. So this LU decomposition looks like
this:

0

L=

0

0

0

0

LN-1,N-1

11 a Linear Systems and Matrix Inversion 151

1 Uo,1 Uo,2 Uo,N-1

0 1 U1,2 U1,N-l

0 0 1

U=

UN-2,N-1

0 0 0 1

Notice the special pattern in which the rows of L match up with the
columns of U. The inner product of row O of L and column O of U, which
equals A0, 0, is just L0, 0• Moving down to the second row of L we see
that L110 equals A110, and so forth. In this way, the entire first column
of L is defined.

Now multiply the first row of L with the second column of U. We find
L0, 0 times U0, 1 equals A0, 1. Since we already know L0, 0, we can solve for
U011 directly. Moving on to the third column of U gets us U0, 2 in the
same manner. In this way the entire first row of U is defined.

Having defined the first column of Land the first row of U, we move
on to the second column of L and the first row of U. In effect, the Crout
procedure marches down the diagonal of the matrix. At each step, the
portion of the column of L hanging down from the diagonal and the
portion of the row of U sticking out to the right, are defined. To conserve
space, we reuse A to store L and U. The following BASIC program
performs a CROUT decomposition.

1 □ DEFINT I - N
2 □ DEFDBL S
3 □ DIM A(N-1,N-1)
4 □ FORK=□ TO N-1
5 □ IF A(K, KJ= □ THEN PRINT "ZERO PIVOT", K: STOP
b □ REM FILL IN COLUMN OF L
7 □ FOR I=K TO N-1
8 □ SUM= □
9□ FOR L= □ TO K-1
1□□ SUM=SUM+A(I, L)*A(L, KJ
11□ NEXT L
12□ A(I,K)=A(I,KJ-SUM
13□ NEXT I
14 □ REM FILL IN ROW OF U
15 □ FOR J=K+1 TO N-1
16□ SUM=□
17□ FOR L= □ TO K-1
18□ SUM=SUM+A(K, L)*A(L, J)
19 □ NEXT L
2□□ A(K, J)=(A(K, JJ-SUMJ/ A(K, Kl
21 □ NEXT J
22 □ NEXT K

152 8087 Applications and Programming

Do you see why the Crout decomposition is so well suited to the 8087?
Lines 80-110 and 160-190 form inner products between a portion of a
column of L and a portion of a row of U! By using INPROD or GINPROD
we take full advantage of the 8087' s speed. Of probably greater impor
tance, since the inner products are accumulated in temporary real pre
cision, we can store a matrix in single or double precision and still get
almost all the accuracy of 80-bit storage.

If you'd like to get a better handle on the logic of the Crout decom
position, you might try reducing the following 2 by 2 matrix into upper
and lower triangular matrices.

A=[~ ~]
You should end up with these two matrices:

Note that our program stores both Land U in place of A.

A reduced = [3 2
]

4 -6

The "zero pivot" problem has returned with this version of Crout
decomposition. We adapt this program to include partial pivoting by
exchanging rows just before filling each row of U. The next BASIC pro
gram illustrates Crout decomposition with partial pivoting.

5 REM PROGRAM CROUT-PP
100 DEFINT I-N
200 DEFDBL S
300 DIM A(N-1, N-1), INDEX(N-1), Y(N-1)
31 □ FOR I= □ TO N-1
32 □ INDEX(IJ=I
330 NEXT I
400 FORK= □ TO N-1
600 REM FILL IN COLUMN OF L
700 FOR I=K TO N-1
71 □ IX=INDEX(IJ
800 SUM= □
900 FOR L= □ TO K-1
910 LX=INDEX(LJ
10□□ SUM=SUM+A(IX, L)*A(LX, KJ
11□□ NEXT L
12□□ A(IX, KJ=A(IX, KJ-SUM
1300 NEXT I
1310 REM SWAP ROWS
1320 GOSUB 5000

11 a Linear Systems and Matrix Inversion 153

133□ SWAP INDEX(K), INDEX(KBIGGEST)
14□□ REM FILL IN ROW OF U
141□ KX=INDEX(K)
142 □ IF A(KX, KJ= □ THEN PRINT "SINGULAR MATRIX", K: STOP
15□□ FOR J=K+1 TO N-1
16□□ SUM=□
17□□ FOR L=□ TO K-1
171□ LX=INDEX(L)
18□□ SUM=SUM+A(KX, L)*A(LX, JJ
1"1 □□ NEXT L
2□□□ A(KX, J)=(A(KX, JJ-SUM)/ A(KX, K)
21□□ NEXT J
22□□ NEXT K
3□□□ STOP
S□□□ REM SUBROUTINE TO FIND LARGEST ELEMENT IN COLUMN
51□□ BIGGEST=ABS(A(INDEX)(K), Kl)
52□□ KBIGGEST=K
53□□ FOR I=K+1 TO N-1
54□□ PIV=ABS(A(INDEX)(I),K))
ss□□ IF PIV>BIGGEST THEN BIGGEST=PIV:KBIGGEST=I
Sb□□ NEXT I
57□□ RETURN

This program effectively takes the original A, permutes A by swapping
rows as indicated in INDEX, and then replaces A with the Crout decom
position of the permuted A. In the solution phase, we'll have to undo
the row swaps.

8087 Routines for Solving Systems
of Linear Equations

The tirrie has finally arrived to prepare high-speed 8087 routines for
solving systems of linear equations and for matrix inversion. Three rou
tines based on the Crout decomposition with partial pivoting appear
below. REDUCE reduces a matrix to its LU decomposition. Given the
reduced matrix and the vector y, SOL VE calculates x, as in y = Ax. INV
inverts a matrix in one step.

For maximum flexibility, we write a series of 8087 internal procedures,
and then add external procedures that may be called from BASIC. Our
first procedure, PIV, finds the largest element of a column, indexed by
INDEX, and exchanges indexes to accomplish partial pivoting.

; SUBROUTINE PIV(A, INDEX, TYPE A, DIAG, NJ
; ASSUMPTIONS: A IS ADDRESS OF N-ARRAY IN DATA SEGMENT
; INDEX IS AN INTEGER N-ARRAY
; TYPEA,DIAG,N ARE INTEGERS
; NOTE THIS PROCEDURE CANNOT BE CALLED FROM

BASIC
; IT FINDS ITS ARGUMENTS ON THE STACK
; NOT THEIR ADDRESSES

154 8087 Applications and Programming

;
;
; . ,
;

;
;
;
;
;
;
;
;

PIV

THERE MUST BE AT LEAST 2 FREE LOCATIONS ON
THE 8087 STACK AND AT LEAST 14 FREE BYTES ON
THE MEMORY STACK
.THE LAST 2 WORDS Of LOCAL-SPACE MUST ALSO BE

FREE

PIV A SEARCHES FROM DIAG
TO THE BOTTOM FOR THE ELEMENT LARGEST IN
ABSOLUTE VALUE, PIV EXCHANGES THE INDEXES Of
DIAG AND THIS ELEMENT

A IS ANN-VECTOR PERMUTED ACCORDING TO INDEX

ASSUME cs:CSEG,ES:ESEG
PROC NEAR
PUSH BP
MOV BP,SP

; SINCE THIS IS A NEAR PROCEDURE, ARGUMENTS BEGIN AT [BP]+ 4
PUSH AX
PUSH BX
PUSH ex
P_USH DX
PUSH SI
PUSH DI
MOV ex ,[BP]+ 4
MOV SI ,[BP]+ 12
MOV DI,[BP]+10
MOV DX,[BP]+b
ADD DI,DX
ADD DI,DX

KBIGGEST EQU LOCAL-SPACE-LAST-2
MOV KBIGGEST,DI

iCX=N
; SI=ADDR(A)
; DI=ADDR(INDEX)
iDX=DIAG

i DI=ADDR(INDEX(DIAG))
iKEEP BIGGEST FOUND
iASSUME FIRST IS

BIGGEST
SUB
DEC

CX,DX iCX=N-DIAG,

MOV
.MUL

MOV
CMP
JNE
FLD
JMP

A-DOUBLE: FLD
LOADED-ONE:

FABS
JCXZ

COMP-LOOP:
ADD
MOV

ex ; # Of ELEMENTS TO
CHECK

AX ,[BP]+8 ; AX=TYPEA
WORD PTR [DI] iAX=TYPEA*INDEX(DI)
BX,AX
WORD PTR [BP]+8, 4 ; IS A SINGLE?
A-DOUBLE
DWORD PTR [SI][BX] iLOAD SINGLE
LOADED-ONE
QWORD PTR [SI][BX] ; LOAD DOUBLE

DONE

DI,2 iNEXT INDEX
AX ,[BP]+8 ; AX=TYPEA

MUL
MOV
CMP
JNE
FLD
JMP

ALDOUBLE: FLD
COMPARE:

FABS
FCOM

11 ll Linear Systems and Matrix Inversion 155

WORD PTR [DI] i AX=TVPEA*INDEX(DI)
BX,AX
WORD PTR [BP]+8, 4 i IS A SINGLE?
ALDOUBLE
DWORD PTR [SI][BX] iLOAD SINGLE
COMPARE
QWORD PTR [SI][BX] i LOAD DOUBLE

STATUS-WORD EQU LOCAL-SPACE-LAST-4

;COMPARE NEW TO
BIGGEST

;SCRATCH SPACE
FSTSW STATUS-WORD
FWAIT
MOV
SAHF
JB

AH,BVTE PTR STATUS-WORD+1

LESS-OR-NONCOMPARABLE
;HERE IF NEW IS

FSTP
MOV
JMP

GREATER THAN OR EQUAL TO BIGGEST
ST(1) ; MOVE NEW DOWN STACK
KBIGGEST,DI
NEXT-ELEMENT

LESS-OR-NONCOMPARABLE:

FSTP ST(□)

NEXT-ELEMENT:
LOOP

; SWAP INDEX(DIAG) AND
MOV
MOV
ADD
ADD
MOV
MOV

XCHG
XCHG

DONE:
FSTP

POP
POP
POP
POP
POP
POP
POP
RET

PIV ENDP

COMP-LOOP
INDEX(KBIGGEST)
DX,[BP]+b
DI ,[BP]+10
DI,DX
DI,DX
AX ,[DI]
BX,KBIGGEST

AX,[BX]
AX ,[DI]

ST(□)

DI
SI
DX
ex
BX
AX
BP
10

iBIGGEST IS STILL
CHAMP

iDX=DIAG
; DI=ADDR(INDEX)

; DI=ADDR(INDEX(DIAG))
i AX=INDEX(DIAG)
; BX=ADDR(INDEX
(KBIGGEST))

iCLEAR ELEMENT OFF
STACK

Procedure PIV takes roughly 80 microseconds per element. When used
for partial pivoting, PIV searches n, n-1, n-2, and so forth elements at

156 8087 Applications and Programming

successive calls. Quite roughly then, in solving a system of n equations,
we spend about 80n2/2 microseconds in PIV. For a large matrix, PIV might
take up half a second. If you'd like an exercise in array addressing tech
niques, rewrite PIV replacing the MUL instruction in COMP _LOOP with
appropriate SHL (SHift Left) instructions. You should be able to speed
up PIV by about 25 percent.

Most of the work of the Crout decomposition is a series of inner prod
ucts. Unfortunately, the rows are permuted according to INDEX, so we
can't use procedure GINP. GINP assumes that columns are stored se
quentially, while ours are "scrambled." Procedure XINP does an inner
product with indexed columns.

; SUBROUTINE XINP(A(I, OJ, A(□ , J), INDEX, TYPE, SKIP A, NJ
; ASSUMPTIONS: A(I, OJ IS THE ADDRESS OF ROW I
; A(0,J) IS THE ADDRESS OF COLUMN J
; INDEX IS THE ADDRESS OF INTEGER ARRAY INDEX
; TYPE,SKIPA,N ARE INTEGERS
; NOTE THIS PROCEDURE CANNOT BE CALLED FROM

BASIC
; IT FINDS ITS ARGUMENTS ON THE STACK
; NOT THEIR ADDRESSES
;
;

;

XINP

THERE MUST BE AT LEAST 2 FREE LOCATIONS ON
THE 8087 STACK AND AT LEAST 14 FREE BYTES ON
THE MEMORY STACK

XINP RETURNS THE INNER PRODUCT OF THE FIRST N
ELEMENTS OF ROW I AND COLUMN JON THE
8087 STACK

XINP TAKES EVERY SKIPA ELEMENT OF A(I,0) AND
INDEXES THE ELEMENTS OF A(□, J)

ASSUME
PROC
PUSH
MOV

CS:CSEG
NEAR
BP
BP,SP

;SINCE THIS IS A NEAR PROCEDURE, ARGUMENTS BEGIN AT [BP]+4
PUSH AX
PUSH BX
PUSH ex
PUSH DX
PUSH SI
PUSH DI
FLDZ ;SET RUNNING SUM= □

JCXZ DONE
MOV SI,[BP]+14 ;SI=ADDR(A(I,0))
MOV DI ,[BP]+10 ; DI=ADDR(INDEX)

;If TYPE IS SINGLE PRECISION SET CX=2 ELSE SET CX=3

11 a Linear Systems and Matrix Inversion 157

; USE ex FOR SHIFTING BELOW
MOV CX,3 ;ASSUME TYPE DOUBLE
CMP WORD PTR [BPJ+8, 4 i IS TYPE SINGLE?
JNE NOT-SINGLE
MOV CX,2 iYES, TYPE IS SINGLE

NOT-SINGLE:
iAX=SKIP MOV

SHL
CMP
JLE

AX,[BP]+6
AX,CL
WORD PTR
DONE

iAX=A ELEMENT DISTANCE
[BP]+4, □ iN LE □ ?

XINP-LOOP:
;FIRST GET READY FOR COLUMN

MOV BX ,[DI)
SHL BX,CL
ADD BX ,[BP]+12

CMP CL, 2
JNE A-DOUBLE
FLD DWORD PTR [SI)

JMP MUL LB
A-DOUBLE: FLD QWORD PTR [SI]

CMP
JNE
FMUL
JMP

A-DOUBLE2: FMUL

NEXT-ELEMENT:

DONE:

XINP

FADDP
ADD
ADD
DEC
CMP
JG

POP
POP
POP
POP
POP
POP
POP
RET
ENDP

CL,2
A-DOUBLE2
DWORD PTR [BX]
NEXLELEMENT
QWORD PTR [BX]

ST(1),ST
SI,AX
DI,2
WORD PTR [BP]+4
WORD PTR [BP]+4, □

XINP-LOOP

DI
SI
DX
ex
BX
AX
BP
12

i BX=INDEX(L)
i BX=TYPE*INDEX(L)
i BX=A(INDEX(L), LJ

iIS A SINGLE?

iLOAD SINGLE ROW
ELEMENT

iLOAD DOUBLE COL
ELEMENT

iIS A SINGLE?

iMULTIPLY SINGLE

iMULTIPLY DOUBLE

i SUM=SUM+ROW(L)*COL(LJ
;NEXT ROW ELEMENT
iNEXT INDEX
i DECREMENT COUNT(NOTE N
i WAS IN TEMP LOCATION)

Like most of our inner product routines, XINP uses about 59 micro
seconds per element. Notice that we went to the trouble of using the
shift rather than the multiply. It actually takes the 8088 longer to multiply
two integers than it takes the 8087 to multiply single precision numbers.

158 8087 Applications and Programming

If we multiplied rather than shifted, the 8087 would have to wait idly
while the 8088 calculated the next address.

Essentially all of the hard computational work of the Crout decom
position is done by XINP. Because it is a NEAR procedure, XINP cannot
be called directly from BASIC. Procedure XINPROD, below, is a FAR
procedure, callable from BASIC, that calls XINP for us and then returns
the inner product as a double precision result. It's also convenient to be
able to use PIV, even though PIV is only called n times as compared to
the n2 calls to XINP, so we also include a FAR procedure, PIVOT.

; SUBROUTINE XINPROD(A(I , □),A(□, J), SUM, INDEX, TYPE, SKIPA, NJ
; ASSUMPTIONS: A(I, □),A(□ , JJ,INDEX ARE ADDRESSES TO BE PASSED
; TO XINP
; TYPE,SKIPA,N ARE ADDRESSES OF INTEGERS WHOSE
; VALUES SHOULD BE PASSED TO XINP
; XINP RETURNS THE RESULT ON THE TOP OF STACK

IT SHOULD BE PLACED IN DOUBLE PRECISION SUM

XINP CALLS THE INTERNAL SUBROUTINE XINP
;

PUBLIC XINPROD
ASSUME CS:CSEG,ES:ESEG

XINPROD PROC FAR
PUSH BP
MOV BP,SP

;SET UP STACK AREA IN ESEG
PUSH ES
CALL NEXT

NEXT: POP AX
SUB AX,(OFFSET NEXT)-(OFFSET FIRSLINST)
MOV CL,4
SHR AX,CL
MOV BX,CS
ADD BX,ESEG
SUB BX,CSEG
ADD AX,BX
MOV ES,AX

;

MOV LOCAL-SPACE,SS
MOV LOCAL-SPACE+2,SP
MOV AX,ES
MOV SS,AX
MOV SP,OFFSET STACK-TOP

;SET UP CALL PARAMETERS
PUSH DS :[BP]+18
PUSH DS: [BP]+ 16
PUSH DS:[BP]+12
MOV BX, DS: [BP]+ 1 □
PUSH [BX]

; ADDR(A(I, □))
; ADDR(A(□, J))
; ADDR(INDEX)
; BX=ADDR(TYPE)
;TYPE

XINPROD

MOV
PUSH
MOV
PUSH

CALL
MOV
MOV
MOV
FSTP
POP
POP
FWAIT
RET
ENDP

11 a Linear Systems and Matrix Inversion 159

BX, DS :[BP]+8
[BX]
BX, DS: [BP]+6
[BX]

i BX=ADDR(SKIPA)
iSKIPA
i BX=ADDR(N)
iN

XINP
SP,LOCAL-SPACE+2
SS,LOCAL-SPACE
BX,[BP]+14 iBX=ADDR(SUM)
QWORD PTR [BX] ; STORE SUM
ES
BP

14

i SUBROUTINE PIVOT(A(O, K), INDEX, TYPE, K, N)
i ASSUMPTIONS: A(I, □),INDEX ARE ADDRESSES TO BE PASSED
i TO PIVOT
; TVPE,K,N ARE ADDRESSES OF INTEGERS WHOSE
; VALUES SHOULD BE PASSED TO XINP
;
; PIVOT
;

PIVOT

iSET UP

NEXT:

;

;

CALLS THE INTERNAL SUBROUTINE PIV

PUBLIC
ASSUME
PROC
PUSH
MOV

STACK AREA
PUSH
CALL
POP
SUB
MOV
SHR
MOV
ADD
SUB
ADD
MOV

MOV
MOV
MOV
MOV
MOV

IN

PIVOT
cs:CSEG,ES:ESEG
FAR
BP
BP,SP

ESEG
ES
NEXT
AX
AX,(OFFSET NEXT)-(OFFSET FIRSLINST)
CL,4
AX,CL
BX,CS
BX,ESEG
BX,CSEG
AX,BX
ES,AX

LOCAL-SPACE,SS
LOCAL-SPACE+2,SP
AX,ES
SS,AX
SP,OFFSET STACK-TOP

160 8087 Applications and Programming

;SET UP CALL PARAMETERS
PUSH DS:[BP]+14
PUSH DS: [BP)+12
MOV BX,DS:[BP]+10
PUSH [BX)
MOV BX, DS: [BP]+8
PUSH [BX]
MOV BX, DS: [BP]+6
PUSH [BX]

; ADDR(A(□, K))
; ADDR(INDEX)
; BX=ADDR(TYPE)
;TYPE
; BX=ADDR(K)

;BX=ADDR(N)

CALL
MOV
MOV
POP
POP
RET
ENDP

PIV
SP,LOCAL-SPACE+2
SS,LOCAL-SPACE
ES
BP
10

PIVOT

With XINPROD and PIVOT in hand, we need only replace the appro
priate lines of the BASIC program with CALL statements. The new ver
sion of the BASIC program appears below.

100 DEFINT I-N
200 DEFDBL S
300 DIM A(N-1,N-1),INDEX(N-1)
310 FOR I= □ TO N-1
320 INDEX(I)=I
330 NEXT I
340 ITYPE=4
40 □ FORK= □ TO N-1
600 REM FILL IN COLUMN OF L
700 FOR I=K TO N-1
71 □ IX=INDEX(I)
800 SUM=□
900 REM FOR L= □ TO K-1
910 REM LX=INDEX(L)
1000 REM SUM=SUM+A(IX,L)*A(LX,K)
1100 REM NEXT L
1150 CALL XINPROD(A(IX, □),A(□ , KJ, SUM, INDEX(□), !TYPE, N, K)
1200 A(IX,K)=A(IX,KJ-SUM
1300 NEXT I
1310 REM SWAP ROWS
1320 REM GOSUB 5000
1330 REM SWAP INDEX(K), INDEX(KBIGGESTJ
1350 CALL PIVOT(A(□, K), INDEX(□), TYPE, K, NJ
1400 REM FILL IN ROW OF U
1410 KX=INDEX(K)
1420 IF A(KX, KJ= □ THEN PRINT "SINGULAR MATRIX", K: STOP
1500 FOR J=K+1 TO N-1
1600 SUM=□
170□ REM FOR L= □ TO K-1
1710 REM LX=INDEX(L)

11 a Linear Systems and Matrix Inversion 161

1800 REM SUM=SUM+A(KX, L)*A(LX, JJ
1900 REM NEXT L
1950 CALL XINPROD(A(KX, □),A(□ , J), SUM, INDEX(□), !TYPE, N, Kl
2000 A(KX, J)=(A(KX, J)-SUMJ/ A(KX, Kl
2100 NEXT J
2200 NEXT K
5000 REM SUBROUTINE TO FIND LARGEST ELEMENT IN COLUMN
5100 REM BIGGEST=ABS(A(INDEX(K),K))
5200 REM KBIGGEST=K
5300 REM FOR I=K+1 TO N-1
5400 REM PIV=ABS(A(INDEX(I),K))
5500 REM IF PIV>BIGGEST THEN BIGGEST=PIV:KBIGGEST=I
5600 REM NEXT I
5700 REM RETURN

XINP does most of the hard work of Crout reduction. For large n, most
execution time is spent doing the inner products, so the BASIC code
above is quite efficient. Lines 700-1300 and 1500-2100 are executed n2

times. For moderate n, these lines may take up a substantial amount of
time. In proced4re CROUTP we put everything together into an 8087
program for Crout reduction with partial pivoting.

;SUBROUTINE CROUTP(A,INDEX,IER,TYPE,N)
; ASSUMPTIONS: A IS THE ADDRESS OF ANN BY N MATRIX
; INDEX IS THE ADDRESS OF AN INTEGER N-ARRAY

IER IS THE ADDRESS OF AN INTEGER
; TYPE,N ARE INTEGERS
; NOTE THIS PROCEDURE CANNOT BE CALLED FROM

BASIC
; IT FINDS ITS ARGUMENTS ON THE STACK
; NOT THEIR ADDRESSES

CROUTP REPLACES A WITH THE CROUT LU
DECOMPOSITION

OF THE PERMUTATION OF A RETURNED IN INDEX

AT EXIT IER=-1 IF MATRIX IS SINGULAR, ELSE
IER=Oi

ASSUME cs:CSEG
CROUTP PROC NEAR

PUSH BP
MOV BP,SP

; SINCE THIS IS A NEAR PROCEDURE, ARGUMENTS BEGIN AT [BP]+ 4
PUSH

PUSH
PUSH
PUSH
PUSH
PUSH

AX

BX
ex
DX
SI
DI

iTHESE ARE
UNNECESSARY

iBUT GOOD FORM

162 8087 Applications and Programming

MOV
MOV

i FIRST SET INDEX(I)=I
MOV

INDEX-LOOP:

MOV
MOV

MOV
INC
ADD
LOOP

BX,[BP]+8
WORD PTR [BX], D

ex ,[BPJ+4
DI,[BP]+1D
AX, □

[DI],AX
AX
DI,2
INDEX-LOOP

iBX=ADDR(IER)
ilER=D

iCX=N
i DI=ADDR(INDEX)

i INDEX(I)=I

ilF TYPE IS SINGLE PRECISION SET CX=2 ELSE SET CX=3
; USE ex FOR SHIFTING BELOW

MOV CX,3 iASSUME TYPE DOUBLE
CMP WORD PTR [BP]+6, 4 i IS TYPE SINGLE?
JNE NOT-SINGLE
MOV CX,2 iYES, TYPE IS SINGLE

NOT-SINGLE:
iOUTERMOST LOOP IS FOR K=D TO N-1

MOV SI, □ iKEEP KIN SI

MAJOR-LOOP:
MOV
MUL
SHL
MOV
ADD

iFILL IN COLUMN OF L

AX,[BP]+4
SI
AX,CL
DX,AX
DX,[BP]+12

i MOVE THROUGH INDEX(!) FOR I=K TO N-1
;

COUNT EQU LOCAL_SPACE+4
;

MOV AX ,[BP]+ 4
SUB AX,SI
MOV COUNT,AX

i
MOV DI,[BP]+1O
ADD DI,SI
ADD DI,SI

iAX=N
iAX=N*K
iAX=TYPE*N*K

iDX=ADDR(A(D,K)l

;SCRATCH SPACE FOR
COUNTS

iAX=N
iAX=N-K
iCOUNT=N-K

; DI=ADDR(INDEX(□)l

i DI=ADDR(INDEX(Ill

i CALL XINP(A(INDEX(Ih DJ, A(□ , K), INDEX, TYPE, N, Kl

MOV
SHL
ADD
PUSH
PUSH
PUSH
PUSH

BX ,[DI]
BX,CL
BX,[BP]+12
BX
DX
[BP]+1O
[BP]+6

; BX=INDEX(I)
iBX=BEGINNING OF ROW
i BX=ADDR(A(INDEX(I), □))

i ADDR(A(D, Kl)
; ADDR(INDEXJ
iTYPE

11 a Linear Systems and Matrix Inversion 163

PUSH [BP]+4
PUSH SI
CALL XINP

;GET ADDRESS OF A(INDEX(I),KJ
MOV BX,[DI]
SHL BX,CL
ADD BX,DX

; CALCULATE A(INDEX(I), KJ-SUM FOR SINGLE
CMP CX,2
JNE A-DOUBLE
FSUBR DWORD PTR [BX]
FSTP DWORD PTR [BX]
JMP NEXT-COL-ELEMENT

A-DOUBLE: FSUBR QWORD PTR [BX]
QWORD PTR [BX] FSTP

JMP NEXT-COL-ELEMENT
;
NEXT-COL-ELEMENT:

;
;

ADD
DEC
CMP
JG

DI,2
COUNT
COUNT, □

L-LOOP

; CALL PIV(A(O, K), INDEX, TYPE, K, NJ
PUSH DX
PUSH [BP]+1O
PUSH [BP]+6
PUSH SI
PUSH [BP]+4
CALL PIV

;********CHECK FOR SINGULAR MATRIX
;IS A(INDEX(K), KJ=O???
;
STATUS-WORD EQU
;

MOV
ADD
ADD
MOV
SHL
ADD

;
CMP
JNE
FLD

JMP
A-DOUBLE2: FLD

LOCAL_SPACE+b

DI,[BP]+1O
DI,SI
DI,SI
DI,[DI]
DI,CL
DI,DX

CX,2
A-DOUBLE2
DWORD PTR [DI]

TESLFOR-ZERO
QWORD PTR [DI]

; BX=INDEX(IJ
;BX=TYPE*K
; BX=ADDR(A(INDEX(I), Kl)

OR DOUBLE PRECISION
;SINGLE?

; ST=A(INDEX(I), KJ-SUM
; A(INDEX(I), KJ=ST

; ST=A(INDEX(I), KJ-SUM
; A(INDEX(I), KJ=ST

; NEXT INDEX(!)

; ADDR(A(O, Kl)
;ADDR INDEX
;TYPE
;K
;N

; DI=ADDR(INDEX)

; DI=ADDR(INDEX(K))
; DI=INDEX(KJ
; DI=TYPE*INDEX(K)
; DI=ADDR(A(INDEX(K), K)

;SINGLE?

;LOAD A(INDEX(K),K)
;AND LEAVE IT ON

STACK

164 8087 Applications and Programming

TEST-FOR-ZERO:
FTST

STATUS-WORD FSTSW
FWAIT
MOV
SAHF

AH,BYTE PTR STATUS-WORD+1

JC
JNZ

NOT-SINGULAR
NOT-SINGULAR

;JUMP IF C3=□
;OR IF c □ =□

;SINGULAR MATRIX
MOV
MOV
JMP

BX, [BP)+8 ; BX=ADDR(IER)
WORD PTR [BX),-1 ; IER=-1

NOT-SINGULAR:
;FILL IN ROW OF u
;MOVE J THROUGH K+1

MOV
SUB
MOV
ADD
ADD
MOV
SHL
ADD

;
MOV
MUL
SHL

;
MOV
SUB
MOV

LI-LOOP: DEC
CMP
JLE

;
MOV
SHL
ADD

;

DONE

TO N-1
AX,[BPJ+4
AX,SI
DI,[BPJ+1□

DI,SI
DI,SI
DI ,[DI)
DI,CL
DI,[BP)+12

AX,SI
WORD PTR [BP)+4
AX,CL

DX,[BPJ+4
DX,SI
COUNT,DX
COUNT
COUNT, □

END-LI-LOOP

BX,[BP)+4
BX,CL
AX,BX

;AX=N
;AX=N-K
; DI=ADDR(INDEX)

; DI=ADDR(INDEX(K))
; DI=INDEX(K)
; DI=TYPE*INDEX(K)
; DI=ADDR(A(INDEX)K), □))

;AX=K
;AX=N*K
;AX=TYPE*N*K

;DX=N
;DX=N-K

;COUNT=COUNT-1

;BX=N
;BX=TYPE*N
;AX=TYPE*N*J

; CALL XINP(A(INDEX(K), □),A(□ , J), INDEX, TYPE, N, K)
PUSH DI ; ADDR(A(INDEX(K), □))
MOV BX,[BPJ+12 ;BX=ADDR(A(□,□)

ADD BX,AX
PUSH BX
PUSH [BP)+1□

PUSH [BPJ+b
PUSH [BPJ+4
PUSH SI
CALL XINP

;ADDR A(□ ,J)

;ADDR INDEX
;TYPE
;N

; CALCULATE (A(INDEX(K), J)-SUMJ/ A(INDEX(K), Kl ·
; FOR SINGLE OR DOUBLE PRECISION

11 a Linear Systems and Matrix Inversion 165

;NOTE THAT SUM IS IN ST
; AND A(INDEX(K), Kl IN ST(1)

;
LDOUBLE3:

MOV BX,DI
ADD BX,AX
CMP CX,2
JNE A-DOUBLE3
FSUBR ·DWORD PTR [BX]
FDIV ST,ST(1)
FSTP DWORD PTR [BX]
JMP NEXT-ROW-ELEMENT

FSUBR
FDIV
FSTP

QWORD PTR [BX]
ST, ST(1)
QWORD PTR [BX]

NEXT-ROW-ELEMENT:
JMP

EN»-U-LOOP:
FSTP

;READY FOR NEXT K
INC

LI-LOOP

ST(□)

SI

; BX=ADDR(A(INDEX(K), 0))
; BX=ADDR(A(INDEX(K), J))
;SINGLE?

; ST=A(INDEX(K), JJ-SUM
; ST=ST I A(INDEX(K), Kl
; A(INDEX(I), KJ=ST

; ST=A(INDEX(K), JJ-SUM
; ST=ST I A(INDEX(K), K)
; A(INDEX(I), KJ=ST

;CLEAR ST

CMP
JGE

SI,WORD PTR [BP]+4 iK=N?
DONE

DONE:

CROUTP

JMP

POP
POP
POP
POP
POP
POP
POP
RET
ENDP

MAJOR-LOOP

DI
SI

·DX
ex
BX
AX
BP
10

All we need now is a procedure to call CROUTP from BASIC. We'll
call this procedure REDUCE. Procedure REDUCE is called by

CALL REDUCE(A(□ , OJ, INDEX(□), TYPE, IER, NJ

where A is the N by N matrix of coefficients. INDEX is an integer array
returning the row permutations. TYPE, IER, and N are integers. TYPE
indicates whether A is single or double precision. IER returns O if the
matrix is nonsingular and -1 if the matrix-is singular. REDUCE replaces
A with its Crout reduction with partial pivoting.

; SUBROUTINE REDUCE(A(O, □), INDEX(□), TYPE, IER, NJ
; ASSUMPTIONS: A(O,OJ,INDEX(OJ,IER ARE ADDRESSES TO BE PASSED
; TO CROUTP

166 8087 Applications and Programming

; TYPE,N ARE ADDRESSES OF INTEGERS WHOSE
i VALUES SHOULD BE PASSED TO CROUTP

; REDUCE CALLS THE INTERNAL SUBROUTINE CROUTP

REDUCE

iSET UP

NEXT:

;

PUBLIC
ASSUME
PROC
PUSH
MOV

STACK AREA
PUSH
CALL
POP
SUB
MOV
SHR
MOV
ADD
SUB
ADD
MOV

MOV
MOV
MOV
MOV
MOV

IN

REDUCE
CS:CSEG,ES:ESEG
FAR
BP
BP,SP

ESEG
ES
NEXT
AX
AX ,(OFFSET NEXT)-(OFFSET FIRST-INST)
CL,4
AX,CL
BX,CS
BX,ESEG
BX,CSEG
AX,BX
ES,AX

LOCALSPACE,SS
LOCAL-SPACE+2,SP
AX,ES
SS,AX
SP,OFFSET STACK-TOP

iSET UP CALL PARAMETERS

REDUCE

PUSH DS :[BP]+14
PUSH DS: [BP]+ 12
PUSH DS: [BP]+8
MOV BX,DS:[BPJ+10
PUSH [BX]
MOV BX, DS :[BP]+b
PUSH [BX]

i ADDR(A(□, OJ)
i ADDR(INDEX)
i ADDR(IER)
i BX=ADDR(TYPE)
iTYPE
; BX=ADDR(N)
iN

CALL
MOV
MOV
POP
POP
RET
ENDP

CROUTP
SP,LOCAL-SPACE+2
SS,LOCAL-SPACE
ES
BP
10

Back Substitution After a Crout Reduction

REDUCE leaves the LU decomposition in A and the order of row per
mutation in INDEX. Temporarily setting aside the question of INDEXing,

11 a Linear Systems and Matrix Inversion 167

we face a computationally straightforward problem of solving y = LUx
for x. We do this in two steps. First, solve y = Ly* for y*. Second, solve
y* = Ux for x.

Examination of the triangular matrices above shows the simple form
for solving triangular systems of equations. For a lower triangular system,

Yo = Lo,oY*o

Yi = LvoY*o + Lv1Y*1

Y2 = L2,0Y*o + L2~1Y*i + L2,2Y*2

and so forth.

Turning these equations around we can solve directly for y*.

Y*o = YolLo,o

Y*i = (Y1 - LvoY*o)/L1,1

y*2 = (y2 - (L2,0Y*o + L2,1Y*1))/L2,2

and so forth.

For an upper triangular system we have:

Un-1,n-lXn-1

Un-2,n-2Xn-2 + Un-2,n-lXn-1

Un-3,n-3Xn-3 + un-3,rt-2Xn-2 + Un-3,n-lXn-1

and so forth.

As we turn these equations around to solve for x, remember that Uili
equals 1 after the Crout reduction.

Xn-1 = Y*n-1

Xn-2 = (y*n-2

Xn-3 = (y*n-3

and so forth.

The following BASIC code takes a Crout reduced matrix A and a column
vector X and solves for X.

10 DEFINT I-N
20 DEFDBL S
30 DIM A(N-1,N-1),YSTAR(N-1),Y(N-1),X(N-1)
40 REM SOLVE LOWER TRIANGULAR SYSTEM FOR YSTAR
50 FOR I= □ TO N-1
60 SUM= □

70 FOR J= □ TO I-1
80 SUM=SUM+A(I, J)*YSTAR(J)
90 NEXT J
100 YSTAR(I)=(Y(IJ-SUM)/ A(I, I)

168 8087 Applications and Programming

110 NEXT I
120 REM SOLVE UPPER TRIANGULAR SYSTEM FOR X
130 FOR I=N-1 TOD STEP -1
140 SUM=□

150 FOR J=I+1 TO N-1
160 SUM=SUM+A(I, J)*X(J)
170 NEXT J
180 X(I)=YSTAR(IJ-SUM
190 NEXT I

Notice that solving the lower triangular and upper triangular system
are both order n2 operations. Once order n3 operations have been per
formed to reduce A, each new y can be solved for x at the expense of
only order n2 additional operations. Notice that lines 60-90 and 140-170
form inner products. We could use GINPROD here.

REDUCE performs row permutations in the process of generating a
triangular form. Our next set of BASIC code "undoes" the INDEXing
and also makes explicit use of GINPROD.

2500 REM PROGRAM SOLP
2600 ITYPE=4
2700 I1=1
2800 REM USE X FOR SCRATCH SPACE, RATHER THAN "Y*"
2900 REM SOLVE LOWER TRIANGULAR SYSTEM FOR YSTAR
3000 FOR I= □ TO N-1
3100 NUM=I
3200 CALL GINPROD(A(INDEX(I), OJ, X(D), SUM, ITYPE, ITYPE, N, I1,

NUM)
3300 X(I)=(Y(INDEX(I)J-SUM)/ A(INDEX(I), I)
3400 NEXT I
3500 REM SOLVE UPPER TRIANGULAR SYSTEM FOR X
3600 FOR I=N-1 TOD STEP -1
3700 IP=I+1
3800 NUM=N-IP
3900 REM CALL GINPROD(A(INDEX(Il, IP), X(IP), SUM,

ITYPE,ITYPE,N,I1,NUM)
4000 X(I)=X(I)-SUM
4100 NEXT I

The BASIC program is easily recoded into an 8087 NEAR procedure,
SOL, which can be called from BASIC by the external procedure SOL VE.

iSUBROUTINE SOL(A,Y,X,INDEX,TYPEA,TYPEY,TYPEX,N)
ASSUMPTIONS: A,Y,X,INDEX ARE ADDRESSES

TYPEA,TYPEY,TYPEX,N ARE INTEGERS
i NOTE THIS PROCEDURE CANNOT BE CALLED FROM

BASIC
i IT FINDS ITS ARGUMENTS ON THE STACK

NOT THEIR ADDRESSES

SOL SOLVES Y=AX FOR X, WHERE A AND INDEX
RESULT

11 c Linear Systems and Matrix Inversion 169

FROM A CROUT DECOMPOSITION WITH PARTIAL
PIVOTING

ASSUME
SOL PROC

PUSH
MOV
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH

;TAKE CARE OF LOWER
;FOR I= □ TO N-1

MOV
CMP
JG
JMP

AROUND: MOV
MOV

L-LOOP:

cs:csEG
NEAR
BP
BP,SP
AX
BX
ex
DX
SI
DI

TRIANGLE

ex, [BPJ+ 4
CX,O
AROUND
DONE
SI, □
DI,[BP]+12

;CX=N

iKEEP I IN SI
i DI=ADDR(INDEX(O))

i CALL GINP(A(INDEX(IJ, OJ, X(OJ, TYPE A, TYPEX, N, 1, I)
MOV AX,[DIJ
MUL WORD PTR [BPJ+10
ADD AX,[BP]+18
PUSH AX
PUSH [BP]+ 14
PUSH [BP]+10
PUSH [BP]+b
PUSH [BP]+4
MOV BX,1
PUSH BX
PUSH SI
CALL GINP

iSUM IS NOW IN ST
i X(IJ=(Y(INDEX(I))-SUMJ/ A(INDEX(IJ, IJ

MOV BX,[DI)
SHL BX,1
SHL BX,1
CMP WORD PTR [BP)+8, 4
JNE Y-DOUBLE
ADD BX,[BP)+16
FSUBR DWORD PTR [BX)
JMP DO-DIV

Y_DOUBLE: SHL BX,1
ADD BX,[BP]+16
FSUBR QWO-RD PTR [BX]

D◊-DIV:

i AX=INDEX(IJ
i AX=TYPEA*INDEX(IJ
i AX=ADDR(A(INDEX(IJ, 0))

i X(OJ
iTYPEA
iTYPEX
iN

i BX=INDEX(I)

iBX=4*1NDEX(IJ
iIS Y SINGLE?

i BX=ADDR(Y(INDEX(IJ))
i ST=Y(INDEX(I))-SUM

i BX=8*INDEX(IJ
; BX=ADDR(Y(INDEX(I)))
; ST=Y(INDEX(I))-SUM

i AX HAS ADDR(A(INDEX(I), □)), SO ADD TYPEA*N*I
MOV BX, AX i BX=ADDR(A(INDEX(I), OJ)
MOV AX,SI iAX=I

170 8087 Applications and Programming

WORD PTR [BP]+4
AX,1

;AX=N*1 MUL
SHL
SHL
CMP
JNE
ADD
FDIV
JMP

AX,1 ;AX=4*N*I
WORD PTR [BP]+1O, 4 ;IS A SINGLE?
A-DOUBLE

A-DOUBLE: SHL

;

ADD
FDIV

DO-STORE: MOV
SHL
SHL
CMP
JNE
ADD
FSTP
JMP

X-DOUBLE: SHL

L_BOTTOM:

ADD
FSTP

INC
ADD
LOOP
JMP

GOTO-L-LOOP: JMP
;
U_TOP:

BX,AX
DWORD PTR [BX]
DO-STORE
AX,1
BX,AX
QWORD PTR [BX]

BX,SI
BX,1
BX,1
WORD PTR [BP]+b, 4
X-DOUBLE
BX ,[BP]+14
DWORD PTR [BX]
L-BOTTOM
BX,1
BX,[BP]+14
QWORD PTR [BX]

SI
DI,2
GOTO-L-LOOP
LI-TOP

L-LOOP

;TAKE CARE OF UPPER TRIANGLE
;fOR I=N-1 TO □ STEP -1

MOV SI,[BP]+4
MOV DI,[BP]+12
ADD DI,SI
ADD DI,SI

U_LOOP:

; BX=ADDR(A(INDEX(I), I))
; (Y(I)-SUM)/ A(INDEX(I), I)

;AX=8*N*1
; BX=ADDR(A(INDEX(l), I))
; (Y(I)-SUMJ/ A(INDEX(Il, I)

;BX=I

;BX=4*1
;rs X SINGLE?

; BX=ADDR(X(l))
; STORE X(I)

;BX=8*1
; BX=ADDR(X(l))
; STORE X(I)

;I=I+1
;NEXT INDEX

;KEEP I IN SI
; DI=ADDR(INDEX(D))

; DI=ADDR(INDEX(Nll

; CALL GINP(A(INDEX(l), I+ 1), X(I+1), TYPEA, TYPEX, N, 1, N-I-1)
DEC SI ;I=I-1
SUB DI,2 ;NEXT INDEX
MOV AX,SI ;AX=I
INC AX ;AX=I+1
MUL WORD PTR [BP]+4 ;AX=N*(I+1)
ADD AX,[DI] ; AX=INDEX(l)+N*(I+1)
SHL AX,1
SHL AX,1 ; AX=4*AX
CMP WORD PTR [BP]+1O, 4 ;IS A SINGLE?
JE A-SINGLE
SHL AX,1 ; AX=8*(, . .)

A-SINGLE: ADD · AX,[BPJ+18 ; AX=ADDR(A(INDEX(l),
1+1))

11 a Linear Systems and Matrix Inversion 171

PUSH AX
MOV BX,SI ;BX=I
INC BX ;BX=I+1
SHL BX,1
SHL BX,1 ;BX=4*(I+1)
CMP WORD PTR [BP]+b, 4 ;rs X SINGLE?
JE X-SINGLE
SHL BX,1 ;BX=8*(I+1)

X-SINGLE: ADD BX,[BPJ+14 i BX=ADDR(X(I + 1))
PUSH BX ;NOTE: LEAVE ADDR IN

BX
PUSH [BPJ+1O iTYPEA
PUSH [BPJ+b ;TYPEX
PUSH [BP]+4 iN
MOV DX,1
PUSH DX i1
MOV DX ,[BP]+4 ;DX=N
SUB DX,SI
DEC DX ; DX=N-(I+1)
PUSH DX
CALL GINP

;
; X(I)=X(IJ-SUM
;NOTE BX STILL POINTS TO X(I+1)

SUB BX,[BP]+b ; BX=ADDR(X(I))
CMP WORD PTR [BP]+b, 4 ;ONCE AGAIN, IS X

SINGLE?
JNE X-DOUBLE2
FSUBR DWORD PTR [BX] ; ST=X(IJ-SUM
FSTP DWORD PTR [BX] ;STORE X(I)
JMP LI-BOTTOM

X_DOUBLE2: FSUBR QWORD PTR [BX] ; ST=X(I)-SUM
FSTP . QWORD PTR [BX] ; STORE X(I)

LI-BOTTOM:
CMP SI, □ ;DONE YET?
JLE DONE
JMP U_LOOP

;
DONE:

POP DI
POP SI
POP DX
POP ex
POP BX
POP AX
POP BP
FWAIT
RET 16

SOL ENDP

172 8087 Applications and Programming

; SUBROUTINE SOL VE(A(D, □), Y(D), X(D), INDEX(□), TYPEA, TYPEY, TYPEX, NJ
; ASSUMPTIONS: A(D,D),Y(D),X(D),INDEX(D) ARE ADDRESSES
; TO BE PASSED TO XINP
; TYPEA,TYPEY,TYPEX,N ARE ADDRESSES OF INTEGERS

WHOSE VALUES SHOULD BE PASSED TO XINP

; SOLVE CALLS THE INTERNAL SUBROUTINE SOL

SOLVE

PUBLIC
ASSUME
PROC
PUSH
MOV

;SET UP STACK AREA
PUSH
CALL

NEXT: POP

SOLVE
cs:CSEG,ES:ESEG
FAR
BP
BP,SP

IN ESEG
ES
NEXT

SUB
MOV
SHR
MOV
ADD
SUB
ADD
MOV

AX
AX,(OFFSET
CL,4
AX,CL
BX,CS
BX,ESEG
BX,CSEG
AX,BX
ES,AX

NEXTJ-(OFFSET FIRST-INST)

MOV LOCAL-SPACE,SS
MOV LOCAL-SPACE+2,SP
MOV AX,ES
MOV SS,AX
MOV SP,OFFSET STACK-TOP

;SET UP CALL PARAMETERS

\

PUSH DS :(BP]+2O
PUSH DS: [BP)+18
PUSH DS :[BP)+1b
PUSH DS :[BPJ+14
MOV BX,DS:[BP)+12
PUSH [BX)
MOV BX,DS:[BP]+1O
PUSH [BX)
MOV BX,DS:[BP)+8
PUSH [BX)
MOV BX, DS: [BP]+b
PUSH [BX]

CALL
MOV
MOV
POP

SOL
SP,LOCAL-SPACE+2
SS,LOCAL-SPACE
ES

;ADDR(A(O,O))
; ADDR(Y(D))
; ADDR(X(D))
; ADDR(INDEX(D))
; BX=ADDR(TYPEA)°
;TYPEA
; BX=ADDR(TYPEY)
;TYPEY
; BX=ADDR(TYPEX)
;TYPEX
; BX=ADDR(Nl
;N

\·
\

SOLVE

POP
RET
ENDP

Matrix Inversion

11 a Linear Systems and Matrix Inversion 173

BP
16

One good reason for creating procedures from modular programs is the
ease with which the subroutines may be rearranged. It is now quite easy
to prepare a matrix inversion subroutine. Since matrix inversion is equiv
alent to solving a system of equations n times (first for a "y vector" 1,0,0,
... , then for 0,1,0,0 ... , and so forth.), we can use CROUTP·and SOL
to create a new subroutine INV.

INV is called by

CALL INV(A(□, OJ, AINV(□, OJ, SCRATCH(□), INDEX(□), IER, TYPEA, NJ

A initially contains then by n matrix to be inverted. When INV returns,
A contains the Crout decomposition, with permutation index in INDEX;
AINV contains A - 1. IER equals O if A is nonsingular and -1 otherwise.
INV calls CROUTP to reduce A. It then sets up a "y column," in vector
SCRATCH, n times, and calls SOL to fill in the columns of the inverse
matrix, AINV.

; SUBROUTINE INV(A(□, □), AINV(□, □J, SCRATCH(□), INDEX(□), IER, TYPEA, NJ
; ASSUMPTIONS: A,AINV ARE N BY N MATRICES OF TYPE TYPEA
; SCRATCH IS SINGLE PRECISION
; INDEX,TYPEA,N ARE INTEGERS

; INV INVERTS A INTO AINV

INV

;SET UP

NEXT:

;

PUBLIC
ASSUME
PROC
PUSH
MOV

STACK AREA
PUSH
CALL
POP
SUB
MOV
SHR
MOV
ADD
SUB
ADD
MOV

MOV
MOV

INV
cs:CSEG,ES:ESEG
FAR
BP
BP,SP

IN ESEG
ES
NEXT
AX
AX,(OFFSET NEXTJ-(OFFSET FIRSLINSTJ
CL,4
AX,CL
BX,CS
BX,ESEG
BX,CSEG
AX,BX
ES,AX

LOCALSPACE,SS
LOCAL-SPACE+2,SP

174 8087 Applications and Programming

MOV AX,ES
MOV SS,AX
MOV SP,OFFSET STACK-TOP

;

MOV BX, DS: [BP]+b
MOV CX,[BX]
CMP CX,O
JG ARND
JMP DONE

ARND:
; CALL CROUTP(A, INDEX, IER, TYPE, N)'
;SET UP CALL PARAMETERS

PUSH DS :(BP]+18
PUSH DS :(BP]+12
PUSH DS :(BP)+10
MOV BX, DS :(BP]+8
PUSH [BX)
PUSH ex

CALL
; WAS IT SINGULAR

MOV
CMP
JE
JMP

ARNDB:

;SOLVE FOR COLUMNS
MOV

INV-LOOP:
;CLEAR SCRATCH

ZERO-LOOP:

MOV
MOV
MOV

CROUTP

BX,DS:(BP]+10
WORD PTR [BX], □

ARNDB
DONE

I= □ TO N-1
SI, □

BX, DS: [BP]+b
ex, !BXI
BX,DS:(BP]+14

MOV WORD PTR [BX], □

; BX=ADDR(N)
;cx=N

; ADDR(A(D, □))
; ADDR(INDEX(D)l
; ADDR(IER)
; BX=ADDR(TYPEA)
;TYPEA
;N

; BX=ADDR(IERJ
; IER=O?

;KEEP I IN SI

;CX=N
; BX=ADDR(SCRATCH(DJJ

MOV WORD PTR [BX]+2, 0 ; SCRATCH(J)=D
ADD BX,4 ;J=J+1
LOOP ZERO-LOOP

;NOW FILL IN APPROPRIATE 1
MOV BX,SI ;BX=I
SHL BX,1
SHL BX,1 ;BX=4*I
ADD BX,WORD PTR DS:(BP]+14

; BX=ADDR(SCRATCH(I))
FLD1 ;PUSH 1,0 ONTO STACK
FSTP DWORD PTR [BX] ; STORE INTO MEMORY

; GET ADDRESS OF AINV(D, I)
MOV BX,DS:(BP]+b
MOV AX,[BX]
MUL SI

; BX=ADDR(NJ
;AX=N
;AX=N*I

11 a Linear Systems and Matrix Inversion 175

MOV BX, DS: [BP)+8 ;ADDR(TYPEA)
MUL WORD PTR [BX] ;AX=TYPEA*N*I
ADD AX, DS: [BP)+1b ; AX=ADDR(AINV(D, I))

;CALL SOL(A, SCRATCH, AINV(!], I), INDEX, TYPE A, 4, TYPEA, N)
PUSH DS:[BP)+18 ; ADDR(A(D, DJ)
PUSH DS :(BP]+14 ; ADDR(SCRATCH(D))
PUSH AX ; ADDR(AINV(D, I))
PUSH DS:(BP]+12 ; ADDR(INDEX(D))
MOV BX,DS :(BP]+8 ; BX=ADDR(TYPEA)
PUSH [BX) ;TYPEA
MOV AX,4
PUSH AX ;4
PUSH [BX] ;TYPEA
MOV BX, DS: [BP)+b
PUSH [BX] ;N

;
CALL SOL

;
INC SI ;I=I+1
MOV BX, DS: [BP]+b ; BX=ADDR(N)
CMP SI,[BX] ;SI>N?
JGE DONE
JMP INV-LOOP

;
DONE:

MOV SP,LOCAL-SPACE+2
MOV SS,LOCAL-SPACE
POP ES
POP BP
RET 14

INV ENDP

Of Linear Things Not Covered Above

Two chapters and hundreds of lin~s of code will have to suffice as an
introduction to matrix methods. Before moving on, it's worth listing a
few of the things not covered here. This is also a good point to pause
for a review of some general themes in programming the 8087.

The routines in these two chapters will do just about every ordinary
thing you usually rteed to do with a matrix. However, if you have really
large problems, you may soon develop an interest in extraordinary pro
cedures. Everything you need to know about the 8087 is included here,
but there are many sophisticated algorithms that we haven't even touched
upon. These algorithms appear in many excellent books on numerical
computation. Two exceptional books are:

Elementary Numerical Analysis, by S. D. Conte, McGraw-Hill.
Introduction to Matrix Computations, by G. W. Stewart, Academic Press.

176 8087 Applications and Programming

One of the best ways to learn more about the "tricks" of numerical
programming is to browse through the documentation of a large nu
merical programming subroutine library. Such a "library collection" can
usually be found at your local college computer center. The IMSL library
is particularly good. You will find an excellent applied discussion of
numerical methods and the IMSL library in (this book is moderately
advanced):

Numerical Methods, Software, and Analysis, by John R. Rice, McGraw
Hill.

The procedures in this and the last chapter provide the basic foundation
for matrix programming. Some advanced topic areas not covered here
include:

• Matrices with a lot of zeros. Problems in the natural sciences often give
rise to special forms of matrices. For example, if we know a matrix
is triangular, we can avoid processing the zeros. That would double
the speed of matrix multiplication. As we've seen, taking advantage
of the shape of a triangular matrix can improve the speed of matrix
inversion or solving a system of equations by a factor of n. Other
special forms include the "diagonal matrix," in which all off-diagonal
elements are zero; the "band matrix," which is zero except for ele
ments close to the diagonal; and the general designation of a "sparse
matrix." Sparse matrices, which often arise from solving systems of
differential equations, may be 99 percent zeros. Special storage tech
niques, in which only the nonzero elements are stored, must be used
to work with sparse matrices.

• Matrices with special mathematical properties. Sometimes the mathe
matics of a problem supply special information about the structure
of the numbers stored in a matrix. For example, many problems give
rise to a symmetric matrix, one in which Ai,j equals Ai,i. You can
double the speed of many matrix operations by taking advantage of
symmetry. Symmetric matrices are especially common in statistical
work. ·

• Super-high accuracy methods. One of the lessons of numerical pro
gramming is that mathematically correct procedures don't always
give the mathematically correct answer when executed on a com
puter with finite precision. One place this lesson is often learned is
in the reduction of a matrix to triangular form. We picked the Crout
reduction with partial pivoting because it is particularly well suited
to the 8087's high-precision, temporary real format internal registers.
Nonetheless, you may eventually want to learn about other methods,
including iterative techniques, which are much slower, but which
can be much more accurate.

11 a Linear Systems and Matrix Inversion 177

8087 Matrix Program Review
1. Expect assembly language programs to be 10 times as long as their

BASIC counterparts. Writing large programs in assembler is time
consuming and error prone. In fact, the expense in programming
time may be prohibitive. (Even if the time is "free," because it's
your own.)

2. 8087 assembly language programs may be 100, or more, times faster
than BASIC programs. In fact, when attempting large problems in
BASIC, the expense in computer time may be prohibitive. (Even if
the time is "free," because the computer is already paid for.)

3. Optimize the inner-most loop. Worry about optimizing, for speed and
for accuracy, the equivalent of the inner-most FOR/NEXT loop. For
matrix operations, this usually means having an inner product rou
tine carefully hand-coded for the 8087. We chose Crout decompo
sition over Gaussian elimination for two reasons. First, the inner
product specification allowed accumulation in a high-precision reg
ister even if the overall operation is only single precision. Second,
this specification allows us, if we wish, to code just the inner product
routine in assembler and leave the shell of the program in BASIC.

4. Never invert a matrix when you really need only solve a system of
equations. Reducing a matrix is an order n3 operation. Inverting a
reduced matrix requires an additional order n3 operations, while
solving a system of equations only requires an additional order n2

operations. A series of solutions is best obtained with one call to
REDUCE and several calls to SOL VE, not one call of INV and several
MATMULTs. The principle exception to this rule occurs when the
inverse matrix itself has an important interpretation, as it frequently
does in statistical applications.

5. The 8088 can do most bookkeeping faster than the 8087 can do
floating point arithmetic, so most 8088 operations run in parallel
with the 8087's speed as the limiting factor. An exception is the
integer multiply used in addressing matrix elements. It pays to keep
integer multiplication out of inner-most loops. Sometimes multi
plication can be avoided by adding to a location counter at each
loop. At other times, a "left shift" can be substituted for each mul
tiply-by-2. (Not coincidentally, Intel made the multiply instruction
on its newer processors, the 188 and 186, three times as fast as on
the original 8088 and 8086.)

6. Counter testing can be done at either the top or the bottom of a
loop. The choice is largely a matter of style. (Loops which use the
8088 LOOP instruction test more naturally at the bottom.) Some of
the programs in the last two chapters test at the top and some test
at the bottom, so that you can see both methods. Ordinarily, it's

178 8087 Applications and Programming

good programming practice to choose one style or the other and
stick to it.

7. Subroutine calls, subroutine relocation code, and a few other in
struction sequences are very repetitive. If you use the MACRO
assembler, you might want to replace these sequences with macros.

8. To conserve storage, the routines here reduce a matrix "in place."
If you need to save the original matrix, make a copy first using
GCOPY from Chapter 9.

Onward, Non-linearly

We set aside matrix operations here, and move on to non-linear oper
ations in Chapter 12. If you'd like some practical applications of our matrix
routines, skip ahead to the discussion of statistical computing in Chapter
14.

Advanced Instruction
Set

In this chapter, we pick up and complete the task laid aside at the end
of Chapter 6, our description of the 8087 instruction set. Describing the
use of the most advanced instructions is rather long and technical; on a
first reading you may want to proceed directly to the next chapter.

Program:
Purpose:
Input:
Output:
Language:
Note:

Program:
Purpose:
Input:
Output:
Language:
Note:

Program:
Purpose:
Input:
Output:
Language:
Note:

Program:
Purpose:
Input:

The Cookbook-Chapter 12

LN
Natural logarithm (base e).
8087 register ST; requires ST>0.
8087 register ST; new ST = log(old ST).
8087/8088 assembly language.
NEAR procedure.

LOGl0
Common logarithm (base 10).
8087 register ST; requires ST>0.
8087 register ST; new ST = log10(old ST).
8087/8088 assembly language.
NEAR procedure.

TW02THEZ
Raises 2 to the power Z.
Z in 8087 register ST.
8087 register ST; new ST = 2<0 Id ST)_

8087/8088 assembly language.
NEAR procedure.

EXP
Raises e to the power X.
X in 8087 register ST.

179

180 8087 Applications and Programming

Output:
Language:
Note:

Program:
Purpose:
Input:
Output:
Language:
.Note:

Program:.
Purpose:
Input:

Output:
Language:
Note:

Program:
Purpose:
Input:
Output:
Language:
Note:

Program:
Purpose:
Input:
Output:
Language:
Note:

Program:
Purpose:
Input:
Output:
Language:
Note:
Program:
Purpose:
Input:
Output:
Language:
Note:

8087 register ST; new ST = e<01<l ST).

8087/8088 assembly language.
· NEAR procedure.

TEN2THEX
Raises 10 to the power X.
X in 8087 register ST.
8087 register ST; new ST = 10<01ct ST).

8087/8088 assembly language.
NEAR procedure .

Y2THEX
Raises Y to the power X.
X in 8087 register ST.
Yin 8087 register ST(l).
8087 register ST; new ST = (old ST)<01d ST(l))_

8087/8088 assembly language.
NEAR procedure.

TANGENT
Compute tangent.
8087 register ST (angle in radians).
8087 register ST; new ST = tan(old ST).
8087/8088 assembly language.
NEAR procedure.

SINE
Compute sine.
8087 register ST (angle in radians).
8087 register ST; new ST = sin(old ST).
8087/8088 assembly language.
NEAR procedure.

COSINE
Computer cosine
8087 register ST (angle in radians)
8087 register; new ST= cos (old ST).
8087/8088 assembly language.
NEAR procedure.
ARCTAN
Compute arctangent.
8087 register ST.
8087 register ST; new ST = arctan(old ST).
8087/8088 assembly language.
NEAR procedure.

This chapter is divided into four sections. The first two sections finish
describing the arithmetic and constant instructions. The last two sections

12 a Advanced Instruction Set 181

present the transcendental and processor control instructions. A number of
examples are included for the more intricate operations.

Arithmetic Instructions

Four arithmetic instructions remain to be discussed.

FRDINT {SD 9 microseconds
FRDINT (round to integer) rounds the element on top of the 8087 stack
to an integer. (The number continues to be represented as a temporary
real; after an FRDINT the temporary real number has an integer value.)
The 8087 offers four rounding modes: round to nearest, round down, round
up, and chop (round toward zero). Round to nearest is the default mode.

FSCALE {ST,ST(1)} 7 microseconds
FSCALE (scale by powers of two) adds the value found in ST(l) to the
exponent of ST. This effectively multiplies the top of stack element by 2
to the power contained in ST(l). Since the exponent field is an integer,
the value in ST(l) should be an integer as well. If ST(l) is not an integer,
the value is rounded toward zero before being added to the exponent in
ST. The scale factor in ST(l) must be between -32768 and 32768 (215).

If the scale factor is out of range or a non-integer value between -1 and
+ 1, the result is undefined. For safety, load ST(l) from a word integer.
Notice that FSCALE provides an extremely fast way to multiply or divide
numbers by a power of 2.

FPREM {ST,ST(1)} 25 microseconds
FPREM (partial remainder) divides the stack top by ST(l) and places the
remainder back in the stack top. (We explain use of the name "partial"
below.) The result is exact with no loss of precision. FPREM (in effect)
repeatedly subtracts ST(l) from ST and leaves the remainder in ST. When
no more subtractions can be done without getting a negative difference,
FPREM quits. Thus, if ST initially holds X, at completion of FPREM ST
holds X- (q x ST(l)), where q is an integer.

FPREM will, however, only reduce the difference in magnitude be
tween ST and ST(l) by 264• If the difference is greater than this, repeated
executions are necessary. (The 8087 doesn't allow itself to be interrupted
in the middle of an instruction. Some programs might want to interrupt
the 8087 in a bit of a hurry, so FPREM was designed to work part way
through a modular division problem at each execution.) At each step,
the "partial remainder" is left in ST. At the end of each execution, three
possible comparisons exist between ST and ST(l). If ST<ST(l), the re
mainder is in ST. If ST=ST(l), the remainder is 0. If ST>ST(l), then ST
has only the partial remainder and FPREM should be repeated. FPREM
sets bit C2 of the status word when it needs to be repeated and clears

182 8087 Applications and Programming

the bit when it has completed. FPREM also places the least-significant
three bits of the quotient, q, in bits CO, C3, and Cl, which is quite useful
in analyzing periodic functions, such as sine, cosine, and tangent. For
example, if all CO, C3, and CO equal zero, then the quotient is a multiple
of eight. If Cl alone equals one, then the quotient is one greater than a
multiple of eight. (Why eight? Because trigonometric calculations are
based on dividing a cir<!le into eight parts.) Table 12.1 describes the
possible bit patterns.

Table 12-1. Condition Code Bits After FPREM.

Least Significant Bits
of Quotient co C3 C1

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

The most important use of FPREM is in bringing arguments into the
valid range for the transcendental instructions. Examples using FPREM
are given in the section "Trigonometric Functions," below.

FXTRACT {ST} 1 O microseconds
FXTRACT (extract exponent and significand) separates out the exponent
and significand of the top of stack element. The exponent replaces the
top of stack element and the significand is then pushed onto the stack.
(Both are represented as temporary reals.) If ST originally held zero, both
exponent and significand are zero. Note that FXTRACT is the logical
inverse of FSCALE.

Constant Instructions

The 8087 has seven useful constants "hardwired in." These constants
have full temporary real accuracy (over 19 decimal digits). Use of a con
stant instruction saves about eight microseconds and considerable nuis
ance as compared to retrieving data from memory.

The constants are zero, one, pi, and four logarithmic values.

FLDZ {ST} 3 microseconds
FLDZ (load zero) pushes 0.0 onto the stack.

12 a Advanced Instruction Set 183

FLD1 {ST} 4 microseconds
FLDl (load one) pushes l.O onto the stack.

FLDPI {ST} 4 microseconds
FLDPI (load pi) pushes pi onto the stack.

FLDL2T {ST} 4 microseconds
FLDL2T (load log2 10) pushes log2 10 onto the stack.

FLDL2E {ST} 4 microseconds
FLDL2E (load log2 e) pushes log2 e onto the stack. (e is the base of the
natural logarithms.)

FLDLG2 {ST} 4 microseconds
FLDLG2 (load common logarithm of 2) pushes log10 2 onto the stack.

. .

FLDLN2 {ST} 4 microseconds
FLDLN2 (load natural logarithm of 2) pushes loge 2 onto the stack.

Transcendental Instructions

Five transcendental instructions are provided on the 8087. Two of these
instructions are used for logarithmic calculations, one for exponentiation,
and two for trigonometric calculations. The five instructions provide core
calculations for a much larger set of transcendental operations. We have
written this section in two parts. In the first part we .describe the five
instructions. In the second part we present a series of 8087 NEAR pro
cedures that can be used for the most common transcendental functions.

The transcendental instructions require vaJid (normalized) arguments
and require that the arguments be within range. Further, the transcen
dental instructions do not check their arguments. Invalid arguments may produce
erroneous results.

F2XM1 {ST} 100 microseconds
F2XM1 (2 to the X, minus 1) takes the stack top as X, calculates 2x-1,
and places the answer back in the stack top. X must be between 0 and
½, inclusive. While calculating 2x -1 instead of 2x seems peculiar at first,
this method allows much more accuracy when X is small. For example,
2°-000001 is approximately 1.000000693. Subtracting one allows the 8087 to
report, in this case, about seven extra significant digits.

Below, we show how to use F2XM1 to calculate exponents to bases
other then two.

184 8087 Applications and Programming

FYL2X {ST,ST(1)} 190 microseconds
FYL2X (Y times log2 X) calculates Y x log2 X, where X is in ST and Y in
ST(l). The stack is popped, eliminating X, and the answer then replaces
Y in the new top of stack. X must be strictly positive.

Below, we show how to use FYL2X to calculate logarithms using bases
other than two.

FYL2XP1 {ST,ST(1)} 170 microseconds
FYL2XP1 (Y times log2 (X + 1)) takes X from the stack top, Y from ST(l),
and calculates Y x log2 (1 + X). X is popped and the result replaces Y on
the new stack top. The absolute value of X must be greater than zero
and less than SQRT(2)/2. FYL2XP1 should be used in preference to FYL2X
when the argument is very close to one.

FPTAN {STI 90 microseconds
FPTAN (partial tangent) calculates tan(theta), where theta is in the stack
top. The argument theta is restricted to the range 0 < theta< pi/4. The
answer is in the form of a ratio Y/X. Y replaces theta and Xis pushed onto
the stack.

We can translate from tangent to sine and cosine by use of standard
trigonometric identities. (See "Trigonometric Functions", below.)

FPATAN {ST,ST(1)} 130 microseconds
FPATAN (partial arctangent) calculates arctan (Y/X) where X is taken
from ST and Y from ST(l). Y and X must observe the inequality 0 < Y
< X < infinity. FPATAN pops the stack and then places the answer in
the new stack top, replacing Y.

FP ATAN serves as a base for calculating all the inverse trigonometric
functions.

In the following sections, we create a number of "super instructions."
Each "super instruction" is an 8087/8088 NEAR procedure that computes
a common mathematical function. The procedures all assume that the
calling routine has provided necessary scratch space and defined required
constants. The calling routine should look something like the following.

;CALLING ROUTINE FOR "SUPER-INSTRUCTIONS"
CSEG SEGMENT 'CODE'

ASSUME CS;CSEG,ES:ESEG
; WE SHOULD SAVE ANY REGISTERS AS REQUIRED

CSEG

MOV AX,ESEG ;POINT TO SCRATCH

MOV
MOV
MOV
CALL
ENDS

ES,AX
SS,AX

AREAS

SP,OFFSET STACK-TOP
SUPER-INSTRUCTION

ESEG SEGMENT
STATUS-WORD
CONTROL-WORD
CONTROL-WORD-TEMP
HALF
MINUS2
SIGN-STORE
REALLY-COS
LOCAL-SPACE
STACK-AREA
STACK-TOP
ESEG ENDS

END

'DATA'
DW
DW
DW
DD
DW
DB
DB
DW
DW
EQU

12 ci Advanced Instruction Set 185

?
?
?
3f□□□□□□H
-2
?
?
1 □ DUP(?)
5 □ DUP(?)
THIS WORD

The diskette prepared for this book includes routines to call each of the
"super-instructions" from BASIC.

Logarithms

The 8087 hardware calculates logarithms for log base two. Most mathe
matical applications require natural logarithms, log base e, or common
logarithms, log base 10. These are easily calculated using the fundamental
identity for changing the base of a logarithm. Suppose we want the log
of X base n, and only know how to calculate logarithms using base two.

logn X = logn 2 x log2 X

In this case n is e or 10. The following "super instructions" assume X
is on the stack top, that O < X < infinity, and that the stack is not too
deep to be pushed at least once more. Xis replaced with its logarithm.

i NATURAL LOG {ST} 197 MICROSECONDS
iSUBROUTINE LN
LN PROC

FLDLN2
FXCH
FYL2X

RET
LN ENDP

i COMMON LOG {ST}
iSUBROUTINE LOG1□
LOG1 □ PROC

FLDLG2
FXCH
FYL2X

RET
LOG1 □ ENDP

NEAR

NEAR

iPUSH LOG BASE E
i SWAP ST, ST(1)
iPOP AND REPLACE

LOG

OF 2

ST WITH NATURAL

197 MICROSECONDS

iPUSH LOG BASE E Of 1 □

i SWAP ST, ST(1)
iPOP AND REPLACE ST WITH NATURAL

LOG

186 8087 Applications and Programming

Exponentiation
The 8087 hardware provides the instruction F2XM1 for raising 2 to the
power X. Mathematical calculations often require ex, 10x, and yx. These
are easily calculated using the fundamental identity for changing the base
of an exponent. Suppose we want yx and only know how to calculate
2x.

yX = 2<x X log2 y)

Exponentiation routines would be simple if we had an instruction to
raise 2 to an arbitrary power. Since F2XM1 only accepts arguments be
tween 0 and ½, we need a super-instruction to perform the operation
22 for an arbitrary Z. The 8087 instruction set is organized to make this
a relatively easy operation, though a bit of planning is required. We
actually have two hardware operations for taking a power of two. F2XM1
accepts exponents between 0 and ½. FSCALE accepts any integer ex
ponent. We'll pick 2 1 and 2 2 such that 2 1 is an integer and 2 2 is a positive
fraction. If 2 2 is feater than ½, we'll subtract½ from 2 2 and then multiply
the answer by 2 . (This is all easier than it sounds.) The algorithm works
as follows:

1. Let 2 1 equal the greatest integer less than or equal to Z. This is a
little messy since we need to round down Z. In order to accomplish
this, we need to change the 8087 rounding control by using the load
control word, FLDCW, and store control word, FSTCW instructions;
instructions we don't officially meet until the next section.

2. Let 2 2 = Z - 2 1• Note that 2 2 is guaranteed to be positive.
3. Is 2 2 > ½? If so, subtract½ and make note of the fact.
4. Raise 2 to the 2 2 and scale by 2 1•

5. If we subtracted½ from 2 2 above, now multiply the result by 2½.

i2 TO THE Z {ST}
iSUBROUTINE TW02THEZ

295 MICROSECONDS

iTHIS ROUTINE ASSUMES THAT THE FOLLOWING MEMORY LOCATIONS
iHAVE BEEN DEFINED
i STATUS-WORD 2 BYTES
i CONTROL-WORD 2 BYTES
i CONTROL-WORD-TEMP 2 BYTES
i HALF HAS 0,5 IN SHORT-REAL FORMAT

iZ IS ASSUMED TO BE FOUND IN ST
i THERE MUST BE AT LEAST 2 FREE STACK LOCATIONS
TW02THEZ PROC NEAR

PUSH AX
FSTCW CONTROL-WORD

FSTCW CONTROL-WORD-TEMP

iSAVE AX
iSAVE CONTROL WORD SO

WE CAN
iRESTORE IT LATER

iUSE TEMP TO CHANGE
i ROUNDING CONTROL(RC)

;
WAL22:

TW02THE2

FWAIT
AND

OR
FLDCW
FLD

FRNDINT

12 a Advanced Instruction Set 187

CONTROL-WORD-TEMP, □F3FFH iCLEAR OUT RC
BITS

CONTROL-WORD-TEMP, □□ 4 □□H iRC=ROUND-DOWN
CONTROL-WORD-TEMP iSET TO ROUND DOWN
ST(□) i PUSH COPY OF 2 ONTO

ST

FLDCW CONTROL-WORD
i OK, ST=21, ST(1)=2
iRETURN THINGS TO NORMAL
i ST(1)(22)=2-Z1 FSUB ST(1), ST

FXCH
FLD HALF

FXCH
FPREM

FSTSW STATUS-WORD
FWAIT

FSTP ST(1)
F2XM1
FLD1
FADDP ST(1), ST

ST=22, ST(1)=Z1
iLOAD 1/2 ONTO THE

STACK
i ST=22 ST(1)=1/2
iST HAS 22 OR 22=1/2
iC1=1 IN THE LATTER

CASE

iNOW WE'VE GOT FLAGS
SET

iGET RID OF THE 1/2
iST=(2 TO THE STJ-1

TEST BYTE PTR STATUS-WORD+1, □□□□□□ 1 □B
iST HAS 22 IF BIT 1 ON

J2 WAL22 iOTHERWISE IT WAS
22-1/2

FLD1 ;so,
FADD ST, ST(□) i MULTIPLY BY THE
FSQRT ;SQUARE ROOT OF 2
FMULP ST(1), ST

iWE JUST NEED TO SCALE
FSCALE iNOTICE WE DIDN'T

CHECK
iFOR OVER OR UNDERFLOW

FSTP ST(1)
POP AX
RET
ENDP

This may all seem like going to some trouble, but it does speed things
up quite a bit over not having an 8087. How much? Try rewriting our
super instruction "2 to the Z" in BASIC without the 8087. You'll find
that one minute of 8087 exponentiation takes just about an hour with
compiled BASIC and about three hours with interpreted BASIC.

Of course, we aren't actually interested in raising two to some power
all that often. With the TW02THEZ firmly in hand, it's easy to provide
new super-instructions for ex, 10x, and yx.

188 8087 Applications and Programming

; EXP(X) {ST}
EXP PROC

FLDL2E
FMULP
CALL
RET

EXP ENDP

i 10 TO THE X {ST}

NEAR

ST(1), ST
TW02THEZ

TEN2THEX PROC NEAR
FLDL2T
FMULP ST, ST(1)
CALL TW02THEZ
RET

TEN2THEX ENDP

;y TO THE X {ST(1),ST}
; ASSUMES Y IS POSITIVE IN {ST}
; ASSUMES X IN ST(1)
Y2THEX PROC NEAR

FYL2X
CALL TW02THEZ
RET

Y2THEX ENDP

Trigonometric Functions

322 MICROSECONDS

;PUSH LOGE BASE 2
;ST=X TIMES LOGE BASE 2
; ST=EXP(X)

322 MICROSECONDS

;PUSH LOG 10 BASE 2
;ST=X TIMES LOG 10 BASE 2
;ST=10 TO THE X

482 MICROSECONDS

iST=Y TIMES LOG X BASE 2
;ST=Y TO THE X

The tangent function provides the base for calculating all the common
trigonometric functions. FPTAN calculates the tangent for arguments
between O and pi/4. Computation of a trigonometric function involves
three broad steps. First, prologue code is used to bring the argument
within range of the FPT AN instruction. Second, the FPTAN instruction
is applied. Third, epilogue code is used to correct the result of FPTAN.
The trigonometric identities used are described in the code below.

;TANGENT {ST} 370 MICROSECONDS
;THETA IN ST IS ASSUMED TO BE A VALID NUMBER
;THERE MUST BE AT LEAST 2 FREE STACK LOCATIONS
;THIS ROUTINE ASSUMES THAT THE FOLLOWING MEMORY
iLOCATIONS HAVE BEEN DEFINED:
;STATUS-WORD 2 BYTES
;SIGN-STORE 1 BYTE
;MINUS2 2 BYTES INITIALIZED TO -2

TANGENT PROC NEAR
PUSH AX
PUSH BX

;FIRST CHECK FOR A NEGATIVE ARGUMENT

12 a Advanced Instruction Set 189

; NOTE TAN(-X)=-TAN(Xl
MOV SIGN-STORE, □ ;ASSUME POSITIVE
FTST
FSTSW STATUS-WORD
FWAIT
MOV AH,BYTE PTR STATUS_WORD+1
SAHF
JNC NON-NEGATIVE
MOV SIGN_STORE,-1 ;ITS NEGATIVE
FABS ;NOW POSITIVE

NON-NEGATIVE:
;NOW GET ST BETWEEN □ AND PI/4

FILD MINUS2
FLDPI
FSCALE
FSTP ST(1)
FXCH

; NOW X IS IN ST AND PI/4 IN ST(1)
RANGE:

FPREM
FSTSW
FWAIT

STATUS-WORD

iLOAD -2
;LOAD PI
;GOT PI/4
;DUMP -2

MOV
SAHF

AH,BYTE PTR STATUS-WORD+1

JP RANGE ;THIS TESTS BIT C2
iAT THIS POINT AH HAS THE STATUS BITS
;NOW LETS SEE IF THE REMAINDER WAS EXACTLY ZERO

FTST
FSTSW
FWAIT

STATUS-WORD

;IT WAS ZERO IF C3=1 AND CO=□
;If ZERO, SET BX=-1, ELSE BX=□

NOT-ZERO:

MOV
AND
CMP
JNE
MOV

BX, □

BYTE PTR
BYTE PTR
NOT-ZERO
BX,-1

STATUS-WORD+1, □ 1□□□□□1B
STATUS-WORD+1, □ 1 □□□□□1B

;THERE ARE FOUR POSSIBILITIES GIVEN ST NOW HAS X MOD PI/4

;OCTANT C3 C1 CALCULATE IF ZERO
;0,4 □ □ FPTAN(ST) □
;1,5 □ 1 1/FPT AN(PI/4 - ST) 1
;2,b 1 □ -1/FPT AN(STJ INFINITY
;3,7 1 1 -FPTAN(PI/4 - ST) -1
;
;FIRST CHECK BIT C1 AND TAKE FPTAN

TEST AH,1□ B HS C1 ON
JZ C1ISOFF ;JUMP IF OFF
CMP BX, □ ;ST EXACTLY ZERO?
JNE ST□ANDC1 ;JUMP IF YES

190 8087 Applications and Programming

ST □ ANDC1:

C1ISOff:

FSUBP
F-PTAN
JMP

FSTP
FSTP
FLD1
FLD1
JMP

FSTP
CMP
JNE
FPTAN
JMP

ST □ANDNOC1:

TANDONE:

FSTP
FLDZ
FLD1

ST(1),ST

TANDONE

ST
ST

TANDONE

ST(1)
BX, □
ST □ANDNOC1

TANDONE

ST

;PUT C1 XOR C3 IN BX
MOV BX, □

;If C3 IS ON THEN
TEST
JZ
FCHS
MOV

NOC3:
HS C1 ON ?

NOC1:
RECIP:

TEST
JZ
XOR
JMP
XOR

CHANGE SIGNS
AH, □ 1□□□□□□B
NOC3

BX,1

AH,10B
NOC1
BX,1
RECIP
BX, □

;NOW PI/4-ST

;POP ST
; AND PI/4
;LOAD RATIO 1 TO 1

;GET RID OF PI/4
;ST EXACTLY ZERO?
;JUMP IF YES

;DUMP ST
;LOAD RATIO OTO 1

;ASSUME C3 OFF

; JUMP IF OFF

;NOTE C3 ON

;JUMP IF OFF

;If BX=1 THEN WE WANT RECIPROCAL OF RATIO
CMP
JNE
FXCH

NORECIP: FDIVP
;DID WE ORIGINALLY

CMP

LEAVE-POS:

TANGENT

JE
FCHS

POP
POP
RET
ENDP

BX,1
NORECIP

ST(1),ST
CHANGE SIGN?

SIGN_STORE,O
LEAVE-POS

BX
AX

;THAT'S IT

Sine and ~osine functions are also calculated using FPTAN. Since a
cosine is just a sine rotated 90 degrees, we build the cosine routine to
make use of the code for sines.

12 a Advanced Instruction Set 191

; SINE {ST} 513 MICROSECONDS
;THETA IN ST IS ASSUMED TO BE A VALID NUMBER
;THERE MUST BE AT LEAST 3 FREE STACK LOCATIONS
;THIS ROUTINE ASSUMES THAT THE FOLLOWING MEMORY
;LOCATIONS HAVE BEEN DEFINED:
; ST A TULWORD 2 BYTES
;SIGN-STORE 1 BYTE
;MINUS2 2 BYTES INITIALIZED TO -2
;REALLY-COS 1 BYTE
SINE PROC NEAR

PUSH AX
PUSH BX

;FIRST CHECK FOR A NEGATIVE ARGUMENT
; NOTE SIN(-X)=-SIN(X)

MOV SIGN-STORE, □ ;ASSUME POSITIVE
FTST
FSTSW STATUS-WORD
FWAIT
MOV AH,BYTE PTR STATUS-WORD+1
SAHF
JNC NON-NEGATIVE
MOV SIGN-STORE,-1 ;ITS NEGATIVE
FABS iNOW POSITIVE

NON-NEGATIVE:
MOV REALLY-COS, □

COS-ENTRY:
iNOW GET ST BETWEEN D AND PI/4

FILD MINUS2
FLDPI
FSCALE
FSTP ST(1)
FXCH

; NOW X IS IN ST AND PI/4 IN ST(1)
RANGE:

STATUS-WORD

;SINE, NOT COSINE

;LOAD -2
;LOAD PI
;GOT PI/4
iDUMP -2

FPREM
FSTSW
FWAIT
MOV
SAHF
JP

AH,BYTE PTR STATUS-WORD+1

RANGE ;THIS TESTS BIT C2
;AT THIS POINT AH HAS THE STATUS BITS

;If WE ARE REALLY DOING COSINE, WE NEED TO ADD TWO TO THE
OCTANT

iADD INTO

CMP
JE

C3 AND
XOR
TEST
JNZ
XOR

REALLY-COS, □

ITS-SINE
CARRY INTO CO

AH, □ 1□□□□□□B
AH,O10□□□□□B
NOCARRY
AH,1B

192 8087 Applications and Programming

NOCARRY:
ITS-SINE:
;NOW LETS SEE IF THE REMAINDER WAS EXACTLY ZERO

FTST
FSTSW STATUS-WORD
FWAIT

;IT WAS ZERO IF C3=1 AND C □ = □

;If ZERO, SET BX=-1, ELSE BX=□

MOV BX, □

AND BYTE PTR STATUS-WORD+1, □ 1□□□□□1B

CMP BYTE PTR STATUS-WORD+1, □ 1□□□□□1B
JNE NOT-ZERO
MOV BX,-1

NOT-ZERO:
;THERE ARE FOUR POSSIBILITIES GIVEN ST NOW HAS X MOD PI/4
;OCTANT C3 C1 CALCULATE IF ZERO
;a □ □ SIN(ST) □
;1 □ 1 COS(PI/4 - ST) SQRT(2)/2
;2 1 □ COS(ST) 1
;3 1 1 SIN(PI/4 - ST) SQRT(2)/2
;
; OCTANTS 4-7 ARE JUST LIKE □ -3 ONLY NEGATIVE
; NOTE: IF TAN(THETAJ=X/Y, THEN
; SIN(THETA)=X/SQRT(X*X+Y*Y)

COS(THETA)=Y /SQRT(X*X+Y*Y)
;

iFIRST CHECK BIT C1 AND TAKE FPTAN
TEST AH,1 □ B

JZ C1ISOFF
CMP BX, □

JNE ST □ ANDC1
FSUBP ST(1), ST
FPTAN
JMP SINDONE

ST □ANDC1:

FSTP ST
FSTP ST
FLD1
FLD1
JMP SINDONE

C1ISOFF:
FSTP ST(1)
CMP BX, □

JNE ST □ ANDNOC1
FPTAN
JMP SINDONE

ST □ANDNOC1:

FSTP ST
FLDZ
FLD1

;IS C1 ON
; JUMP IF OFF
;ST EXACTLY ZERO?
;JUMP IF YES
;NOW PI/4-ST

;POP ST
i AND PI/4
;LOAD RATIO 1 TO 1

;GET RID OF PI/4
;ST EXACTLY ZERO?
;JUMP IF YES

;DUMP ST
iLOAD RATIO □ TO 1

12 a Advanced Instruction Set 193

SINDONE:
;rs (1 XOR (3 TRUE?

MOV BX,O

HF C3 IS ON

NOC3:
;rs C1 ON

NOC1:
DOSINE:
;If BX=1

SINFUNC:

TEST
JZ
MOV

?
TEST
JZ
XOR
JMP
XOR

THEN WE
CMP
JNE
FXCH

AH,01000000B
NOC3
BX,1

AH,1 □B

NOC1
BX,1
DOSINE
BX,O

WANT WANT COSINE
BX,1
SINFUNC

; ST(1J=X, ST(OJ=Y
; SIN(THET AJ=X/SQRT(X*X +Y*Yl

FMUL ST(O), ST(O)
FLD ST(1)
FMUL ST(OJ, ST(OJ
FAD DP ST(1),ST(OJ
FSQRT
FDIVP ST(1),ST(O)

i IS BIT CO ON?

COOff:

TEST
JZ
NOT

AH,1B
COOFF
SIGN-STORE

iDO WE NEED TO CHANGE SIGN?

LEAVE-POS:

CMP
JE
FCHS

POP
POP
RET

SINE ENDP

SIGN-STORE, □

LEAVE-POS

BX
AX

;ASSUME C3 OFF

;JUMP IF OFF
;NOTE C3 ON

;JUMP IF OFF

FUNCTION

i ST(OJ=Y*Y
i ST(OJ=X
i ST(□J=X*X
i ST(□J=X*X+Y*Y

iCOSINE {ST} 510 MICROSECONDS
iTHETA IN ST IS ASSUMED TO BE A VALID NUMBER
;THERE MUST BE AT LEAST 3 FREE STACK LOCATIONS
;THIS ROUTINE USES THE SINE ROUTINE
COSINE PROC NEAR

PUSH AX
PUSH BX

194 8087 Applications and Programming

FABS
MOV
MOV
JMP

SIGN-STORE, □
REALLY-COS,-1
COS-ENTRY

COSINE ENDP

;ITS POSITIVE NOW

For further explanation of trigonometric calculations and for programs
which perform sophisticated error checking, see

Getting Started With the Numeric Data Processor, by Bill Rash, Intel Cor
poration, Application Note AP-113.

Inverse Trigonometric Functions
The 8087 instruction FPATAN performs·the core calculations for the in
verse trigonometric functions: Arctan, Arcsin, Arccos, Arccot, Arccsc,
and Arcsec. Just as FPTAN produces a result in the form Y/X, so FPATAN
accepts an argument in the form Y/X. The inverse trigonometric functions
require somewhat less programming, because the argument range is less
restricted for FPATAN than for FPTAN. (The direct trigonometric func
tions are periodic, where the inverse trigonometric functions aren't.) For
FPATAN, we need only assure that the arguments obey the relation 0
< Y < X < infinity. Thus to compute Arctan(Z) we need to check seven
cases: Z equal 0, Z positive or negative and ABS(Z) less than, equal to,
or greater than 1. We bring Z into the proper range by using the identities:

Arctan(Z) = - Arctan(- Z)
Arctan(Z) = pi/2 - Arctan(l/Z)

;ARCTAN {ST}
;ST IS ASSUMED TO BE A NORMAL NUMBER

351 MICROSECONDS

;THERE MUST BE AT LEAST 3 FREE STACK LOCATIONS
;THIS ROUTINE ASSUMES THAT THE FOLLOWING MEMORY
;LOCATIONS HAVE BEEN DEFINED:
;STATUS-WORD 2 BYTES
;SIGN-STORE 1 BYTE
ARCTAN PROC NEAR

PUSH AX
;THE FIRST PROBLEM IS TO CHECK FOR A ZERO OR

NEGATIVE ARGUMENT
MOV SIGN-STORE, □
FTST
FSTSW
FWAIT

STATUS-WORD

;ASSUME NON-NEGATIVE

MOV
SAHF

AH,BYTE PTR STATUS-WORD+1

JA
JZ
JMP

POSITIVE
ZERO
NEG-ATIVE

;ASSUME ITS ZERO

12 1:1 Advanced Instruction Set 195

ZERO:
; ARCTAN(□)= □

FSTP ST(□)
FLDZ
JMP DONE

NEGATIVE: ;DEAL WITH A NEGATIVE ARGUMENT USING IDENTITY
; ARCT AN(-XJ=-ARCTAN(XJ

FCHS
MOV SIGN-STORE,-1

POSITIVE:

STATUS-WORD

; HOW DOES 1 COMPARE TO
X

FLD1
FCOM
FSTSW
FWAIT
MOV
SAHF
JA

AH,BYTE PTR STATUS_WORD+1

LLT-1
JC

;EXACTLY 1 RETURN
FCHS
FADD
FLDPI
FSCALE
FSTP
JMP

2-GLL:

2-GT_L
ARCT AN(1J=PI/ 4

ST(□), ST(□)

ST(1)
RESTORE-SIGN

; USE IDENTITY AT AN(XJ=PI/2
FXCH

- ATAN(1/XJ

FPATAN
FLD1
FCHS
FLDPI
FSCALE
FSTP
FSUBRP
JMP

FPATAN
RESTORE-SIGN:

DONE:

ARCTAN

TEST
JZ
FCHS

POP
RET
ENDP

ST(1J
ST(1), ST
RESTORE-SIGN

SIGN_STORE, □FFH

DONE

AX

;ST NOW=-1
;ST=-2

;ST NOW PI/4

; ST=Z, ST(1)=1

;NOW ADJUST BY PI/2

; ST=1, ST(LJ=Z

196 8087 Applications and Programming

Processor Control Instructions
Sixteen instructions are used to examine and control the internal status
of the 8087. We make regular use of the instructions that manipulate the
status word and the control word. In particular, these instructions are used
for examining the results of comparisons and for setting the controls,
such as for rounding, on the 8087. Most of the other instructions are
needed for writing system programs. We discuss these briefly for com
pleteness. The processor control instruction FSTSW (store status word)
was discussed in Chapter 6.

FLDCW word-integer 4 microseconds
FLDCW (load control word) loads a word from a two-byte memory lo
cation into the 8087's internal control word register. FLDCW is used, for
example, to change the 8087 rounding control.

FSTCW word-integer 5 microseconds
FSTCW (store control word) stores the 8087 control word at the two-byte
destination location. We used FSTCW earlier to save a clean copy of the
control word before changing rounding control. Later we used FLDCW
to restore the control word to its original state.

FWAIT
FWAIT is actually an 8088, not an 8087, instruction. (The FWAIT mne
monic generates the 8088 WAIT instruction.) FWAIT halts the 8088 until
the 8087 completes its current instruction. FW AIT should be coded before
any 8088 instruction that references a memory location being read from
or written to by the 8087. During an FW AIT, the 8088 checks the 8087
once per microsecond, and resumes execution as soon as the 8087 is free.

The description of the remaining processor control instructions is in
cluded for completeness. None of these instructions are necessary for
the programs in this book.

The following two instructions are useful in writing subroutines be
cause they allow a subroutine to save a copy of the 8087' s internal state
and then restore it.

FSAVE memory 44 microseconds
FSA VE (save state) copies all internal 8087 information into a 94-byte area
in memory. It then reinitializes the processor by executing an FINIT (see
below). Figure 12.1 illustrates the layout of the memory save area.

The reinitialization feature of FSA VE can cause undesired side effects,
such as unintentionally resetting rounding control. The control word is
easily restored by following "FSA VE memory" with "FLDCW memory."

INSTRUCTION {
POINTER

OPERAND {
POINTER

TOP STACK {
ELEMENT:ST

NEXTSTACK {
ELEMENT:ST(1)

:

LASTSTACK {
ELEMENT:ST(7)

NOTES:
S = Sign

12 a Advanced Instruction Set 197

INCREASING ADDRESSES

15

CONTROL WORD

STATUS WORD

TAG WORD

_ IP15-0

IP19-16 IO I OPCODE

OP15-0

OP19·1&I 0

SIGNIFICAND 15-o

SIGNIFICAND 31-16

SIGNIFICAND 47-32

SIGNIFICAND 83-48

sl EXPONENT 14-o

SIGNIFICAND 15-0

SIGNIFICAND 31-16

SIGNIFICAND 47-32

SIGNIFICAND 83-48

sl EXPONENT 14-0

SIGNIFICAND 15-0

SIGNIFICAND 31-16

SIGNIFICAND 47-32

SIGNIFICAND 63-48

sl EXPONENT 14-0

+o

+2

+4

+8

+8

+10

+12

+14

+16

+18

+20

+22

+24

+26

+28

+30

+32

'~

+84

+86

+88

+90

+92

Bit O of each field is rightmost, least significant bit of corresponding
regisler field.
Bit 63 of signlflcand is integer bit (assumed binary point is immediately
to lhe right).

Figure 12.1. Memory layout for 8087 internal state.
(Used with permission of Intel Corporation.)

FRSTOR memory 44 microseconds
FRSTOR (restore state) reloads the 8087 state from the 94-byte area in
memory, effectively "undoing" a previous FSAVE.

FSA VE and FRSTOR provide a mechanism by which a subroutine can
use the 8087 and then return it to its original state. BASIC requires us
to protect certain 8088 registers in an analogous way. (That's why many
of our routines started with "PUSH BP" and ended with "POP BP.")
Use of FSA VE/FRSTOR may or not be required, depending on the con
ventions of a given language translator. Note that the following code can
be used to save and restore onto the 8088 stack.

198 8087 Applications and Programming

SUB SP,94
MOV BP,SP
FSAVE [BP]

MOV BP,SP
FRSTOR [BP]
ADD SP,94

FINIT 1 microsecond
FINIT (initialize processor) resets the 8087. The initialized conditions are
described in Figure 12.2.

Field Value Interpretation

Control Word
Infinity Control 0 Projective
Rounding Control 00 Round to nearest
Precision Control 11 64 bits
Interrupt-enable Mask 1 Interrupts disabled
Exception Masks 111111 All exceptions masked

Status Word
Busy 0 Not busy
Condition Code ???? (Indeterminate)
Stack Top 000 Empty stack
Interrupt Request 0 No interrupt
Exception Flags 000000 No exceptions

Tag Word
Tags 11 Empty

Registers N.C. Not changed

Exception Pointers
Instruction Code N.C. Not changed
Instruction Address ' N.C. Not changed
Operand Address N.C. Not changed

Figure 12.2. 8087 initial conditions. (Used with permission of Intel
Corporation.)

Interrupt and Exception-handling Instructions

Normally, we allow exceptions to be masked; that is, the 8087 hardware
handles computational errors automatically. If a given exception type is
unmasked, the 8087 will interrupt the 8088 when the exception occurs.
In this way, a computational error can be processed by user- or system
specified exception-handling software. If the 8088 is handling a task with

12 a Advanced Instruction Set 199

higher priority than accepting 8087 "messages," 8087 interrupts can be
disabled with the FDISI instruction.

FDISI 1 microsecond
FDISI (disable interrupts) disables interrupts by setting the interrupt en
able mask bit in the control word.

FENI 1 microsecond
FENI (enable interrupts) enables interrupts by clearing the interrupt en
able mask bit in the control word.

FCLEX 1 microsecond
FCLEX (clear exceptions) clears the exception flags, the interrupt request
flag, and the busy flag in the status word. FCLEX is principally used by
exception-handling routines after an exception has been taken care of. If
the exception were not cleared before returning control to the 8087, a
second interrupt request would be issued immediately.

FSTENV memory 11 microseconds
FSTENV (store environment) stores the control, status, and tag words,
and the exception pointers in a 12-byte memory area, so that these items
may be examined by an exception handling routine. FSTENV stores a
subset of the information stored by FSA VE and operates with consid
erably greater speed. Figure 12.3 illustrates the layout of the save area.

INSTRUCTION {
POINTER

OPERAND {
POINTER

15

INCREASING ADDRESSES

~
~::! CONTROL WORD

STATUS WORD

TAG WOIID

IP15-0

IP19-16 Io! OPCODE

+4

+6

+8

+10

+12

OP15-0

OP19-16I 0

Figure 12.3. Memory layout for 8087 internal "environment" infor
mation. (Used with permission of Intel Corporation.)

FLDENV memory 1 O microseconds
· FLDENV (load environment) loads the control, status, and tag words,
and the exception pointers from a 12-byte memory area, as in Figure
12.3.

200 8087 Applications and Programming

FINCSTP 2 microseconds
FINCSTP (increment stack pointer) increments the 8087 stack pointer.
Do not use this instruction to pop the stack, since it does not mark ST
as empty. Use FSTP ST(0) instead.

FDECSTP 2 microseconds
FDECSTP (decrement stack pointer) decrements the 8087 stack pointer.

FFREE ST(i) 2 microseconds
FFREE (free register) marks the indicated register as empty.

FNOP 3 microseconds
FNOP (no operation) executes an FST ST,ST(0) in order to do nothing.

Advanced Instruction Set Summary

This chapter has seen much intricate detail. It took, for example, about
90 instructions to calculate a tangent even though the 8087 has a built-in
"tangent" instruction. (If you think it took a lot of work this way, try
writing a tangent instruction using only 8088 code!)

It is more difficult to build a small set of assembly language modules
for non-linear problems than it is for linear problems. This is a place
which really calls for an 8087-compatible language translator. (The non
linear programs in the next chapter are written in BASIC for this reason.)
Nonetheless, it is instructive to see just how much improvement we can
expect from the 8087.

Without the 8087, compiled BASIC requires about 26,800 microseconds
to calculate a double precision tangent. Our assembly language program
uses about 460 microseconds. Even using a poor 8087-compatible trans
lator, you can look for an ordh of magnitude speed improvement on
non-linear operations.

Non-Linear Methods

Given a non-linear function, y = f(x), how do we find the value of x that
makes y equal to zero? The value that makes y equal one? What value
of x gives the maximum possible value of the function? Answers to these
and related questions are the subject of this chapter. BASIC's DEF FN
statement makes it easy to define an algebraic formula as a function, f(x).
For example, suppose we wish to explore the function

y = 17-(x-12)2

We write this in BASIC as

10 DEF DBL Y, X
20 DEF FNY(X)=17-(X-12)/\2

Of course, this particular function could be coded in assembly language
in only a few minutes. A really complicated function might take some
time. Worse, every time we need to work with a new function, we would
need to write a new assembly language routine. Non-linear programs
call for use of a high-level language. We use BASIC due to its widespread
availability for personal computers.

In this chapter we discuss:

• Numerical differentiation
• Numerical integration
• Solving a non-linear equation
• Non-linear optimization

For many readers, the most interesting topic may be "solving a non
linear equation." As the first sections of the chapter provide useful back
ground material for solving non-linear equations, you should probably
work through these sections as well. ·

For a concrete focus of the discussion which follows, look now at the
chart of the function y=f(x). Figure 13.1 shows the plot of our sample
function.

201

202 8087 Applications and Programming

y
(12,17)

(7.88,0) (16.12,0)
--------------------------x
0

Figure 13.1. Graph of function y = 17 - (x -12)2•

This particular function equals zero at x = 7.88 and x = 16.12. It reaches
its maximum value, 17.0, at x= 12.

Numerical Differentiation

The derivative of a function is the slope of the function at a particular
point. To find the derivative graphically, draw a line tangent to the
function at the point of interest and measure the ratio of the change in
the vertical distance to the change in the horizontal distance, as in Figure
13.2.·

The computer can't very well draw such a line (at least, not unless it
knows the slope). Since the computer can easily evaluate the function,
we approximate the tangent line by picking another point close to the
point of interest and having the computer effectively "draw" a line to
connect these two points. Figure 13.3 shows an "enlargement" of a small
part of the function with just such a line.

13 a Non-Linear Methods 203

y

Figure 13.2. Tangent line.

The ratio of the vertical to the horizontal change is approximately the
derivative of the function. If we pick the second point quite close to the
first point, then the approximation will be quite accurate. How close do
we need to be to assure some desired level of accuracy? The usual pro
cedure is to evaluate the derivative once and then re-evaluate it with a
closer second point. If the two answers lie within a distance "epsilon"
of each other (that is, if they are no more than epsilon apart), then the
answers are probably within epsilon of the. true answer as well.

The following BASIC program evaluates the derivative of the function
FNY at the point XO, assuming we require an answer accurate to within
plus or minus EPS.

10 DEFDBL Y,X,f,E,D
20 DEF FNY(X)=17-(X-12)A2
30 REM SET XO EPS ITLIM
40 X0=16
50 EPS=-001
60 ITLIM=10□

70 DELTA=-01*XO

204 8087 Applications and Programming

y

----------------'---------x
0

Figure 13.3. Enlarged view of tangent line.

8 □ FX □ =FNY(X □)
9 □ DIFOLD=(FNY(X □+DEL TA)-FX □)/DEL TA
1 □□ IT=1
11 □ REM LOOP UNTIL CONVERGENCE OR ITERATION LIMIT REACHED
12 □ DELTA=DELTA/2
13□ DIF=(FNY(X □+DEL TA)-FX □)/DEL TA
14□ IF ABS(DIF-DIFOLD) <EPS THEN 1□□□
15□ IT=IT+1
16 □ IF IT>ITLIM THEN 2 □□□
17 □ DIFOLD=DIF
18 □ GO TO 12 □
1□□□ REM CONVERGENCE ACHIEVED
1 □ 1 □ PRINT "DERIVATIVE AT ";X □;" IS ";DIF
1 □ 2 □ PRINT" AFTER ";IT;" ITERATIONS"
1 □ 3 □ STOP
2□□□ REM NO CONVERGENCE
2 □ 1 □ PRINT "FAILED TO CONVERGE AFTER ";ITLIM;" ITERATIONS"
2 □ 2□ PRINT "APPROXIMATE DERIVATIVE AT ";X□;" IS ";DIF
2 □ 3 □ STOP

13 a Non-Linear Methods 205

Always take the accuracy of this sort of numerical approximation with
a grain of salt. It can happen that two successive approximations are
close to one another without being equally close to the correct answer.
Round-off error can also give results a false appearance of accuracy. The
arithmetic operation at which computers are the least accurate is sub
tracting two numbers that are nearly equal in value, as in FNY(X0+ DELTA)
- FNY(X0), for example.

By the way, you should always include an "iteration limit" in a program
that otherwise relies on a mathematical condition to stop. Computer
arithmetic is imperfect. With sufficient bad luck ("sufficient bad luck"
means "sooner or later for sure"), your program will end up in an endless
loop, if it doesn't have a guaranteed stopping mechanism.

The execution time for a non-linear program is roughly proportional
to the number of function evaluations. That's why we evaluated FNY(X0)
early in the program and saved the answer. ·

Numerical Integration

Integration is the inverse function of differentiation. Integration tells us
the area under a curve between two points. The area under our sample
function, from XLOWER to XUPPER, is shown in Figure 13.4.

We can approximate the area under the curve by drawing in rectangles
as in Figure 13.5. The total area in all the rectangles is approximately the
area under the curve. The more, and smaller, the rectangles we draw,
the closer we come to the answer.

If we drawn rectangles, we make the width of each one one-nth of
the distance between XLOWER and XUPPER. Since the area is just the
height times the width, and since each of then rectangles has the same
width one-nth, we can find the area by just adding up the heights and
multiplying the sum by the XUPPER-XLOWER. To obtain a more accurate
answer, we cut each old rectangle in half and add new rectangles as in
13.6.

The following BASIC program integrates the function FNY.

1 □ DEFDBL Y,X,F,E,D,A
2 □ DEF FNY(X)=17-(X-12)A2
3 □ REM SET XLOWER XUPPER EPS ITLIM
4 □ XLOWER=9
5 □ XUPPER=13
b □ EPS=. □□ 1
7□ ITLIM=1 □□
8 □ XWIDTH=(XUPPER-XLOWER)/2
9 □ FSUM=FNY(XLOWERJ+FNY(XUPPER)
1 □□ AREAOLD=FSUM*(XUPPER-XLOWER)
11 □ IT=1
12 □ N=2

206 8087 Applications and Programming

X

X lower
L.......1.------Y

X upper

Figure 13.4. Area under function y = 17 - (x -12)2•

130 REM LOOP UNTIL CONVERGENCE OR ITERATION LIMIT REACHED
140 XWIDTH=XWIDTH/2
150 N=N*2
160 FSUM=O
170 FOR 1=1 TON STEP 2
180 X=XLOWER+XWIDTH*I
190 FSUM=FSUM+FNV(X)
200 NEXT I
210 AREA=FSUM*(XUPPER-XLOWER)+(AREAOLD/2)
220 IF ABS(AREA-AREAOLD) <EPS THEN 1000
230 IT=IT+1
240 IF IT>ITLIM THEN 2000
250 AREAOLD=AREA
260 GO TO 140
1000 REM CONVERGENCE ACHIEVED
1010 PRINT "INTEGRAL FROM "iXLOWERi" TO"iXUPPERi" IS "iAREA
1020 PRINT" AFTER "ilTi" ITERATIONS"
1030 STOP
2000 REM NO CONVERGENCE

13 a Non-Linear Methods 207

y

Figure 13.5. Approximation to area under function.

2 □ 1 □ PRINT "FAILED TO CONVERGE AFTER ";ITLIM;" ITERATIONS
2 □ 2 □ PRINT "APPROXIMATE INTEGRAL IS ";AREA
2 □ 3 □ STOP

Of course, one can usually use calculus in place of numerical com
putation. The formula for the derivative of our sample function is 24 - 2x.
The formula for the integral is 17x - (1/3)(x -12)3•

Derivatives can be found by applying the rules of calculus mechani
cally, so sometimes packaged programs actually figure out the formula
for the derivative instead of using numerical methods. Integrals cannot
be found by purely mechanical rules.

Solving a Non-linear Equation

Suppose we have a function y = f(x) and know that the value of y is YO.
How can we find the value of x that produced YO? Suppose that YO= 0
and look back at Figure 13.2. Start at the point (f(XO),XO). If the function

208 8087 Applications and Programming

Figure 13.6. Refined approximation to area under function.

f(x) was actually a straight line, we could just run our finger down the
tangent line until we hit the x axis at (O,Xl). Since f(x) is not a straight
line, when we hit the x-axis we actually get (f(Xl),Xl) instead. Now draw
a tangent line from the new point and try again.

If the function f(x) is sufficiently smooth, this "shooting method" will
usually converge to the correct point fairly quickly. However, sometimes
after we shoot down the tangent, we are even further from the correct
answer than we were originally. We'll add another rule to the procedure
to prevent this. If our new guess is even further from the right spot then
the initial guess, we cut in half the size of the step we took and try again.
The BASIC program below implements this modified shooting method.

10 DEFDBL Y,X,F,E,D
20 DEF FNY(X)=17-(X-12)A2
30 DEF FNDIF(XJ=(FNY((1+DEL)*X)-FNY(X))/(DEL*Xl
40 REM SET YTARGET EPS DEL XO ITLIM
50 YTARGET=□

60 DEL=-001
70 EPS=. □ 1

13 a Non-Linear Methods 209

80 X0=14
90 X=XO
100 ITLIM=20
110 STEPLIM=5
120 Y=FNY(X)
130 IT=1
140 ISTEP=O
150 STEPSIZE=1
160 XNEW=X+STEPSIZE*((YTARGET-Y)/FNDIF(X))
170 YNEW=FNY(XNEW)
180 IF ABS(YNEW-YTARGETJ<EPS THEN 1000
190 IF ABS(YNEW-YTARGET)>ABS(Y-YTARGET) THEN 500
200 Y=YNEW
210 X=XNEW
220 IT=IT+1
230 IF IT>ITLIM THEN 2000
240 GOTO 140
500 REM REDUCE STEP SIZE
510 ISTEP=ISTEP+1
520 IF ISTEP>STEPLIM THEN 220
530 STEPSIZE=STEPSIZE/2
540 GOTO 160
1000 PRINT "SOLUTION IS ";XNEW;" AFTER ";IT;" ITERATIONS"
1010 STOP
2000 PRINT "FAILED TO CONVERGE AFTER ";ITLIM;" ITERATIONS"
2010 PRINT "APPROXIMATE ANSWER ";XNEW
2020 STOP

For the sample function, there are actually two correct answers for
some values of YTARGET. This program only finds one, usually the
closest to the initial starting point XO. In order to check for more than
one solution, the program can be rerun with several different initial
values.

Notice that the program uses DEF FNDIF to approximate the deriva
tive. To increase the accuracy of the final solution, DEL should generally
be reduced along with EPS. FNDIF could be redefined to give the exact
derivative by using calculus. This would speed up the program a little
by reducing the number of function evaluations and possibly also because
of the greater accuracy of an exact derivative. On the other hand, figuring
out analytic derivatives is more work for the user.

Non-linear Optimization

Suppose that y in our sample function described the profits of a small
programming business as a function of the number of hours, x, spent
typing on the keyboard of a personal computer. We would like to maximize
this function, that is, find the value of x that gives us the highest possible
value of y.

210 8087 Applications and Programming

If you look back at Figure 13.1 you will see that at the highest point
of the function the slope of the function is zero. In calculus terms, the
derivative of a function equals zero at its maximum. (In logical terms, if
a function is still going up, we should search further to the right; if it's
going down, we've gone too far. Exactly at the maximum, the function
must be going neither up nor down. Its slope must be zero.)

Finding the maximum of a function f(x) reduces to finding the point
where the derivative of f(x) equals zero. The previous program will handle
this quite nicely if we redefine the function calls to look at the derivative
instead of the original function and the calls on the function for the
derivative to look at the derivative of the derivative.

10 DEFDBL Y,X,F,E,D
20 DEF FNY(X)=17-(X-·12)A2
30 DEF FNDIF(X)=(FNY((1+DEL)*X)-FNY(X))/(DEL*X)
35 DEF FNDDIF(X)=(FNDIF((1+DEL)*X)-FNDIF(X))/(DEL*X)
40 REM SET YTARGET EPS DEL XO ITLIM
50 YT AR GET=□
60 DEL=. 001
70 EPS=. □01

80 X □ =14

90 X=X □
10 □ ITLIM=2□
11 □ STEPLIM=5
12□ Y=FNY(X)
13 □ IT=1
14 □ I:S:TEP=□
15 □ STEPSIZE=1
16□ XNEW=X +STEPSIZE*((YT ARGET-Y)/FNDDIF(X)l
17 □ YNEW=FNDIF(XNEWJ
18 □ IF AB:S:(YNEW-YTARGET)<EPS THEN 10□□
190 IF ABS(YNEW-YTARGET)>ABS(Y-YTARGET) THEN 500
20 □ Y=YNEW
21 □ X=XNEW
22 □ IT=IT+1
23 □ IF IT>ITLIM THEN 200□

24 □ GOTO 14 □
500 REM REDUCE STEP SIZE
51 □ ISTEP=ISTEP+1
52 □ IF ISTEP>STEPLIM THEN 22 □
530 STEPSIZE=STEPSIZE/2
540 GOTO 160
10□□ FM=FNY(XNEWJ
101□ IF FM>=FNY((1+DEL)*XNEW) AND FM>=FNY((1-DEL)*XNEWJ THEN

105□
102 □ PRINT "CAN'T FIND MAXIMUM"
1030 PRINT ":STOPPED AT "iXNEWi "AFTER "iITi" ITERATIONS:
1040 STOP
105□ PRINT "MAXIMUM IS AT "iXNEWi" AFTER "iITi" ITERATIONS
1060 PRINT "VALUE AT THE MAXIMUM IS: "iFNY(XNEWJ
107 □ STOP

13 a Non-Linear MethodsSoftware 211

2000 PRINT "FAILED TO CONVERGE AFTER "iITLIMi" ITERATIONS"
2010 PRINT "APPROXIMATE ANSWER "iXNEW
2020 STOP

Our BASIC program will find that the maximum, y = 17, is found at
X = 12. Just as a non- linear function can have exactly one solution, no
solution, or many solutions, in the same way a function can have one
maximum, no maximum, or many maxima. The code at line 1000 checks
for the possibility that the program located a point where the the deriv
ative equals zero, but which is not a maximum. Such a point might be
a minimum or an "inflection point." Even with this check, care on the
part of the user is still a good idea. The program has no way to check
whether it has found only a "local maximum," that is, whether there
might be a point elsewhere that has an even higher value than the point
found by the program.

Back to Linearity

In the next chapter, we build a small statistical analysis system and, in
so doing, return to linear problems and to the use of assembly language
modules.

Statistical Analysis and
Program Canning
This chapter has two principle objectives: gaining an understanding of
some of the basic techniques of programming for statistical analysis, and
working through an example of how to make a "canned" program. This
chapter will give you:

• Some basic methods for statistical analysis.
• Some practice in going from mathematical ideas to working pro

grams.
• An adaptable "canned" program (which you can modify if you wish

to add your own procedures). ·
• A complete, working multiple regression package.

Program:
Purpose:

Input:
Output:
Language:

The Cookbook-Chapter 14

8087 Statistical Analysis Program
"Canned" program for multiple regression and other

statistical analysis.
Interactive.
Interactive.
BASIC with 8087/8088 assembly language modules.

Statistical Analysis

Three of the basic procedures used in statistical analysis are descriptive
statistics, correlation, and multiple regression. These methods are used
to summarize data, to examine the relation between different events, and
to make tests of scientific hypotheses. We discuss the use of these meth
ods, and how to perform the necessary calculations, below.

213

214 8087 Applications and Programming

One caveat first. The combination of sophisticated statistical methods
and high-speed computers has made it possible to draw incorrect con
clusions far more easily than at any time in the past. Almost any statistical
procedure can be applied to almost any body of data. Just because we
can do so does not mean we should. Various important mathematical
caveats and warnings are omitted from the discussion below, since a
thorough job would occupy a PhD course. We hope that the reader
experienced in statistical analysis will not be offended-and that the
reader first encountering statistical analysis will be careful.

Descriptive Statistics

Given repeated observations on an "event," such as the number of cars
passing a certain intersection between 8:00 AM and 8:05 AM, we begin
a statistical analysis by looking for simple ways to characterize the ob
served data. Assume we have made n observations. Call a typical datum,
"x."

The very first question usually asked is "What was the average value
of the data?" Calculating an average is simple. The mean of the data is
the sum of all the data points divided by the number of observations.
The mean of x is often written x.

X1 + Xz + ... + Xn x=
n

Next we would like to determine whether the observed data all lie close
to one another or whether they are spread out over a wide range. The
most common measurement is called the variance. Variance is a measure
of the dispersion of data around its mean. Essentially, the variance is the
average of the squared value of the difference between x and the mean
of x. The variance can be calculated by subtracting the mean off of each
datum, squaring this difference, summing the results, and dividing by
n -1. (It turns out that, under reasonable assumptions, dividing by n -1
rather than n gives a more accurate average answer.)

(-)2 (-)2 (- 2
() _ X1-X + X2-X + ... Xn-x)

var x - (n-l)

Closely related to the variance is the standard deviation. The standard
deviation is the square root of the variance. The standard deviation is
frequently a more convenient measure than the variance because it has
the same units of measurement as the original data. If you multiply every
piece of data by, say, 16, you also multiply the mean and the standard
deviation by 16, while the variance is multiplied by 256. Thus if the
original data is measured in pounds, then both mean and standard de
viation are measured in pounds (and 16 times either is measured in
ounces), while the variance is measured in the less familiar units of
"pounds-squared."

14 r:i Statistical Analysis and Program Canning 215

The following rule gives a feeling for the "spread" of your data: If the
data is drawn from a Normal ("bell curve") distribution, then about two
thirds of the data should lie in the range from one standard deviation
below the mean to one standard deviation above the mean.

While these three descriptive statistics are probably the most common,
there are many others you might also look at. What are the highest and
lowest values of the data? What's the middle value? Does the data cluster
around certain values? We'll stop at three: mean, variance, and standard
deviation.

Correlation

Given two sets of data, x and y, we are frequently interested in whether
the two sets of data tend to move together, to move in opposite directions,
or whether the two appear to be unassociated. Statisticians use the cor
relation coefficient as a measure of association between two variables. Two
variables that are exactly proportional to one another have a correlation
coefficient of one. Two variables that are exactly proportional but that
move in opposite directions have a correlation coefficient of minus one.
A zero correlation coefficient usually indicates that knowing x tells you
nothing about y, and vice versa.

The correlation coefficient is constructed as a ratio. The numerator
measures how much x and y move together. The denominator measures
how much each moves separately. The numerator is calculated as the
average of the product of x minus x's mean and y minus y's mean. The
numerator is the product of the standard deviations of x and y. (However,
in this context we use n rather than n-1 in calculating the standard
deviations.)

Guess what's ba~k! Our friend from linear algebra-the inner product.
(We promised you it was good for more than playing with systems of
linear equations.) Think about calculating the numerator of the correlation
coefficient. We begin the calculation by preparing two vectors, the first
made up of each observation of x minus x' s mean and the second made
up similarly from y. The inner product of these vectors is the sum of the
product of the elements. So the required average is just the inner product
divided by n.

Actually, the same calculation can be done in a more simple form by
avoiding the construction of the two vectors of deviations from the means.
A little algebra will show that the required average can also be calculated
as the inner product of x and y divided by n, minus n times the quantity
the mean of x times the mean of y.

A little exercise for the reader: what's the correlation coefficient be
tween x and y if the observations of x are all the same? The answer is

216 8087 Applications and Programming

that it doesn't make much sense to ask whether x and y move together
if x doesn't move at all. Both the numerator and denominator of the
correlation coefficient equal zero. We'll want to watch for this situation
when programming in order to avoid "Division by zero" error messages.

Multiple Regression
Multiple regression must be far and away the most common statistical
technique for equation estimation and forecasting. Suppose we have a
sequence of observations on a variable to be explained, the dependent
variable, y, and observations made at the same time on several explan
atory, or independent, variables, xi, x2, and so forth. We might look for a
linear relationship between the dependent and independent variables of
the form:

y = b0 + b1x1 + b2x2 + ... + bkxk + u

where u is an unobservable error term, indicative of the fact that x variables
will not explain y perfectly. Regression may be interpreted in two ways:
as either a statistical procedure or as a technique for fitting an equation
to data.

The term "multiple regression" arises out of the statistical interpreta
tion. We might posit that the equation above is a "true" equation in
nature and that while we have observed a set of y's and x's, we have
been unable to observe the u's. Given a certain set of statistical assump
tions, multiple regression produces optimal estimates of the coefficients
b0 through bk in the above equation. (The assumptions are fairly rea
sonable; but require more mathematics than we want to go into here.)

Further, given these st~tistical assumptions, we can test hypotheses
about the coefficients. The coefficients produced by a multiple regression
are estimates of the true values of b. The regression also produces a
standard error for each estimated coefficient. There is a two out of three
chance that the true coefficient lies in a band from one standard error
below the estimated coefficient to one standard error above the estimated
coefficient. Chances are about 19 out of 20 that the true coefficient lies
in a band of plus or minus two standard errors around the estimated
coefficient.

Suppose the true coefficient bi is zero. This is equivalent to saying that
the variable xi has nothing do to with explaining y. If the estimated
coefficient is far away from zero, in the sense of being many standard
errors away, then it's unlikely that the true coefficient is zero. The ratio
of an estimated coefficient to it's standard error is sometimes called the
t-statistic. If the t-statistic of bi is greater, in absolute value, than 2, there
is only 1 chance in 20 that the variable xi has nothing to do with explaining
the variable y.

14 a Statistical Analysis and Program Canning 217

(All of the statements above are predicated on what are sometimes
called the "Gauss-Markov" assumptions. See any good statistics or
econometrics text for a thorough discussion of the role of various math
ematical assumptions.)

The mathematics of regression is also known as ordinary least squares.
We can regard the problem of estimating the coefficients in the preceding
equation as a question of fitting the equation to the data, without regard
to any statistical assumptions. The difference between the value of y and
the value predicted by applying our estimated coefficients to the data x
is called a residual. Ordinary least squares pick values for the coefficients
that minimize the sum of the squared residuals.

In addition to the estimated coefficients, their associated standard er
rors and t-statistics, a multiple regression results in several auxiliary sta
tistics. The R-squared is a "goodness of fit measure." The R-squared is
the percentage of variation of y explained by the variables x. R-squared
equals 1.0 for a perfect fit and 0.0 in the absence of any fit.

The standard error of the regression estimates the standard deviation
of the error terms, u. The sum of squared residuals-which is just what
it sounds like-is used in making various statistical tests.

We wrote b0 above without any associated x variable. A constant term
b0 is equivalent to the coefficient on an x variable made up of all ones,
which is how we calculate it in the program below. A regression should
almost always have a constant term in it, but our program lets the user
decide whether or not to include one.

Regression Formulas

Computation of a multiple regression is easily specified in matrix nota
tion. Let y be a vector containing the values of y and X be a matrix where
each column i is the values for xi. If bis the vector of estimated coefficients
then:

Remember from Chapter 9 that X' means the transpose of X.

Let SSR stand for the sum of squared residuals, s2 for the square of
the standard error of the regression, and R2 for R squared. If there are
n data points and k right-hand side variables (the constant counts as one
of the k), we have

SSR = y'y-y'Xb
s2 = SSR/(n-k)
R2 = 1-SSR/(y'y)

218 8087 Applications and Programming

Canned Programs

If you flip to the end of this chapter, you'll find a complete listing of our
"8087 Statistical Analysis Program." You may be struck immediately by
the fact that the program is several hundred lines long. The code is
lengthy despite the fact that this is a "plain vanilla" program, and despite
the fact that all the important mathematics can be specified in only a few
lines. (The source code for a commercial, mainframe statistic's package
would be anywhere from 10,000 to a few hundred thousand lines long.)

Computer scientists use the name "modular programming" to describe
the technique of breaking up a large problem into several smaller ones,
each of which can be dealt with independently. Our canned program is
composed of 19 "modules." The modules are classified according to whether
they provide a user service, such as regression; a user utility, such as
data entry; or a system service, such as program initialization. Because
the program is broken up into small parts in this way, a new service
could be added for the user with little or no modification to the existing
modules. The modules in the program listing are:

User service:
Descriptive statistics-Module 9
Correlation-Module 10·
Multiple Regression-Module 11

User utilities:
Catalog data in memory-Module 3
Display data-Module 4
Enter data-Module 5
Edit data-Module 6
Save data to disk-Module 7
Retrieve data from disk-Module 8

System service
Menu display and command choice-Module 2
Begin program execution-Module 1
Storage allocation and program initialization-Module 12
Program restart-Module 13
Exit-Module 14
Place variable name in symbol table-Module 15
Form list of names-Module 16
Collect product-moment matrix-Module 17
Error-handling-Module 18
Screen-handling-Module 19

Data Storage

A program can be regarded as a group of procedures acting on a set of
data. The program modules can be regarded as communicating with one

14 t1 Statistical Analysis and Program Canning 219

another through the changes they make in the program's data base. In
this case the data base begins with the data observed by the program
user. Suppose the user has n observations on each of k different variables.
We'll store the data internally in an n by k matrix called X. Observations
on variable i are stored as the ith column of matrix X. As it is frequently
convenient to have a constant vector, the program will automatically set
column zero of X to equal 1.

People think in names, not column numbers. Rather than require the
user to number variables, we store the names of the variables, in a string
array NAMES$, and let the computer make the connection between the
user specified variable name and the numerical index for the appropriate
column of X. NAMES$ can be thought of as a very simple symbol table.
The first variable in the symbol table, "(CONST)", will always point to
the ones in column zero.

Several other variable definitions are also useful. TRUE% and FALSE%
are set to -1 and O respectively. NUMVAR is the number of variables
the user has defined. MAXV AR is the maximum number of variables the
system can hold, a number which depends on the available memory.
NUMOBS is the number of observations on a variable. (Each variable
must have the same number of observations.) A number of modules
communicate through the array LISTV, which contains a list of the col
umn numbers corresponding to a user specified list of variables. LISTLEN
is the number of elements in LISTV. Finally, we adopt the convention
that all BASIC variables beginning with a letter between I and N will be
integer variables. All other variables are single precision unless a "%",
"#", or"$" is appended to indicate integer, double precision, or string,
respectively.

Module By Module
We undertake here a detailed, module-by-module explanation of the
statistical analysis program. (Since each module is short, this isn't too
difficult.) Along the way, we point out some places where the program
could be made more flexible or more "idiot-proof," albeit at the expense
of a lot more code. If you read through the code and the explanations
here, you should find it easy to make your own additions or changes to
the program.

We'll "walk through" the program modules in the order which makes
it easiest to understand, rather than the order in which they appear in
the code.

Menu Display-Module 2-Line 2000
This module displays the available commands and asks for the user's
choice. The response must be an integer between 1 and 11. Given any

220 8087 Applications and Programming

other response, the program prompts for a new answer. Notice the simple
trick to check whether a number is an integer. The program accepts any
characters as ANSWER$. The VAL function sets ANSWER to zero if the
response is not a number. We then set ANSW% = ANSWER. Since ANSW%
must be an integer, the two will only be equal if ANSWER was an integer.

Once ANSW% is in hand, the routine does an ON ANSW% GOSUB
to the appropriate module. After the program returns, the menu display
module starts all over again. To add another command to the program,
we need only add a PRINT line to the menu display, add a line number
to the GOSUB list, and change the valid answer range from 1 through
11 to 1 through 12.

Catalog Data in Memory-Module 3-
Line 3000
This module allows the ·user to catalog the system's internal data base.
The module first prints out the number of observations per variable, the
number of variables already defined, and the number remaining still open
for definition.

After displaying the catalog, module 3 calls module 19, which asks the
user to hit a key to return to the command menu. If the program didn't
do this, the display would vanish from the screen without giving the
user time to think.

Display Data-Module 4-Line 4000
This module displays the data in one or more user selected variables.
Module 16 is called to collect the variable names from the user. Module
16 expects certain information. MAXNAMES is the maximum number of
names the user is permitted to enter. ~n this case, the user can enter as
many as have been defined. NEWNAMES = FALSE% tells module 16 not
to enter the names in the symbol table. FOR CEO% =FALSE% tells module
16 that it should not automatically include "(CONST)" in the list. On
return from module 16, LISTV(0) through LISTV(LISTLEN -1) has the
column numbers of the matrix X holding the desired data. (If NAMEERR
is true, then module 16 found an error it couldn't handle.)

The data display module prints up to five variables to a line, up to 20
lines to a screen. It then pauses (using module 19) to let the user look
at the data. The program could be fancier here in several ways. We might
want to display the data differently according to whether the screen
displays 40 or 80 columns across. We might also want to allow the user
to direct output to the printer rather than the screen. Finally, we could
pretty up the display by using more graphics.

14 a Statistical Analysis and Program Canning 221

Enter Data-Module 5-Line 5000
This module allows the user to enter the data for a single variable. We
again use module 16, though this time we only allow one name to be
specified and we ask module 16 to place the name as a new entry in the
symbol table. Once the variable name is entered, the user is prompted
for the data sequentially. Notice that there is no way for the user to "get
out" of the data entry sequence except to follow it through to the end.

Edit Data-Module 6-Line 6000
Even a "plain vanilla" program must allow the user some way to correct
mistakes. First, we use module 16 to ask the user which variable he or
she wishes. Once we know the variable, we ask for an observation num
ber. After displaying the current value, the program asks the user to
specify a new value. Then the program displays both the new and old
value for the user. The program keeps prompting for new observation
numbers until the user responds with the ENTER key alone.

Save Data to Disk-Module 7-Line 7000
Serious statistical workis rarely completed in a single sitting. Module 7
allows the user to dump the system's database to disk for later retrieval.
(The user also gets some protection against lost time due to power failure
in this way.) The disk storage format is chosen for simplicity rather than
efficiency. On the first line we dump out MAXVAR, NUMV AR, and
NUMOBS. The next NUMV AR lines contain the contents of NAMES$.
Finally, we dump the first NUMVAR columns of X. This simple format
makes it possible to access the saved data from another program or to
use another program to create data which can be read into our Statistical
Analysis Program.

What happens if the user specifies a file name that already exists?
BASIC will merrily write over an existing file, but it would be better to
provide the user with at least some degree of protection against inad
vertently wiping out important data. We use the following program trick
to provide some protection. Before OPENing the output file, the program
tries "NAME FILENAME$ AS FILENAME$". This command gives a BASIC
error message "File already exists" if FILENAME$ is on the disk and
"File not found" if FILENAME$ is a new file. The error trapping module,
18, checks to see if either of these errors occurred. In case of "File not
found," module 18 RESUMEs execution as if nothing had happened. If
this is a duplicate file, then module 18 asks the user for confirmation
before allowing execution to proceed.

After storing the data on disk, the program closes the file and prints
a message to the user before returning to the command menu.

222 8087 Applications and Programming

Retrieve Data From Disk-Module 8-
Line 8000
The disk retrieval module complements the disk storage module. This
module retrieves a data base that had previously been stored on a disk
file. The module first OPENs for input the user specified disk file. (The
error-handling module swings into operation if a non-existent file is spec
ified, so that the program won't bomb.) Once MAXVAR, NUMVAR, and
NUMOBS are known1 module 12 is called to reinitialize the program and
allocate storage. (A more complicated program might add the contents
of the disk file to the existing database rather than reinitializing the
program.) Setting the flag DISKFILE%=TRUE% lets module 12 know
that it needn't prompt the user for NUMOBS.

Restart Program-Module 13-Line 13000
Restarting the program is easy. Module 13 sets appropriate flags and
calls module 12, which does all the work.

Exit Program-Module 14-Line 14000
One can always let the user hit a Ctrl-Break to end a BASIC program,
but it's a lot more graceful to provide a specific command. Module 14
checks with the user to be sure an exit is intended, thus preventing
accidental loss of valuable information. Use of the END statement also
ensures that all files have been closed properly.

Descriptive Statistics-Module 9-Line 9000
Modules 9, 10, and 11 actually do some "productive" work for the user.
Module 9 requests a list of variable names, using module 16, and then
prints the mean, standard deviation, and variance of each of the listed
variables. The 8087 procedure SUM is used to collect the sum of each
variable and the 8087 routine INPROD collects the sum of the squared
observations for each variable. Using 8087 routines for these procedures
is almost as efficient as writing the entire module in assembly language,
since these are the only parts of the module whose execution time is
proportional to the number of observations.

Correlation-Module 10-Line 10000
The correlation module accepts a list of variable names (via module 16
again) and calculates the correlation coefficient between every pair of

14 1:1 Statistical Analysis and Program Canning 223

names on the list. This requires the sum of Xi times Xi, for each pair,
plus the sum of each variable. The easiest, though slightly inefficient,
way to get the sum of a variable is to take an inner product with a vector
of ones. Module 10 accomplishes this by setting FORCED% = TRUE% in
order to guarantee that "(CONST)" is the first variable in LISTV. Module
17 is called to collect the "product-moment matrix" (the name given to
the matrix of inner products of variable i with variable j). Once all the
hard work is done in module 17, the correlation module prints out the
correlation coefficients, checking as it goes along to avoid a "Division by
zero" error.

Multiple Regression-Module 11-Line 11000
The multiple regression module uses module 16 twice, first to get the
number of the dependent variable and second to get a list of numbers
of the independent variables. The matrix X'y and the sum of y2 are formed
using INPROD. (Note that "X" refers here to only those columns of the
database specified by the user in the list of independent variables.) Mod
ule 17 is called to form the matrix X'X. Module 17 only fills in the upper
triangle of X'X, since the matrix is symmetric. We copy the upper half
into the lower half since the matrix inversion subroutine expects to see
the entire matrix. The 8087 routine INV is called to invert X'X. REALERR
is used to check that the inversion routine only produced normal num
bers. Finally GINPROD is used to multiply (X'X)- 1 by X'y and to form
several auxiliary statistics. Results are then printed. As with the corre
lation module, all the hard number crunching is done by module 17.

Begin Program Execution-Module 1-
Line 1000
Module 1 is quite simple. Module 12 is called after flag FIRSITIME% is
set to indicate that this is the first time through the program and flag
DISKFILE% is set to indicate that this is not a call from module 8. The
latter flag is logically redundant, but keeps the call to module 12 consistent
with other parts of the program. By and large, when programming,
consistency is worth a little redundancy.

Some programmers prefer to place program initialization code at the
beginning of a program. In fact, some programming languages require
one to do so. (The IBM Personal Computer BASIC Compiler for example!)
With the BASIC interpreter, the placement of initialization code is largely
a matter of taste.

224 8087 Applications and Programming

Allocation and Program Initialization
Module 12-Line 12000
This module needs to consider two questions: Is this the first time the
program has been initialized? Is this initialization preparatory to loading
a disk file?

Suppose that this is the first time through the program. We need to
clear the BASIC workspace and set aside enough space to load in the
8087 routines. Then the 8087 routines must be loaded and calling ad
dresses set. (On the book diskette, all the programs in Chapter 9 are
grouped in a file named "VECTOR.SAY"; the programs from Chapter
10 are in file "MATRIX.SAY"; and "MATADV.SAV" has the programs
from Chapter 11. The addresses listed below reflect this arrangement. If
you group your routines differently, you should change the calling ad
dresses.) Next, the program offers the user the option of loading data
from disk. If the user invokes this option, module 8 is called. Note that
module 8 calls back to module 12, which is perfectly legal in BASIC,
though it is not allowed in many other programming languages. If the
user does not choose to load data from disk, the program asks for the
number of observations in the data.

Next the module determines how many variables will fit in memory.
Since the data is stored in single precision, the data itself will require
4*n*k bytes. Space must also be set aside for the regression and correlation
modules, and for LISTV. The amount of storage needed for NAMES$
will vary according to the length of variable names chosen by the user.
Our module figures out the amount of free space by using the FRE
function. It then figures out the maximum number of variables that will
fit in the available space, leaving some spare room as a "fudge factor,"
and allocates storage.

If this is not the first time through the initialization routine, then mod
ule 12 must take one of two actions, depending on whether it is acting
as a service routine for module 8. If we are loading data from the disk,
then NUMOBS, and so forth, is already known. Module 12 need only
erase the old database and dimension storage afresh. If we are not loading
data, then the job is almost the same as if this were the first time through
the program, except that we can begin directly with asking the user for
the number of observations.

Module 12 is very "implementation dependent." For example, if we
wanted to use another 8087 assembly language routine, we would have
to change this module. While a new module might be programmed to
load its own routines, the initialization module needs to know how much
space to leave in the CLEAR statement.

If we wanted to use the BASIC compiler in place of the interpreter,
this module would have to be moved to the front of the program, because

14 a Statistical Analysis and Program Canning 225

the BASIC compiler requires DIM and DEF statements to appear before
executable operations. Unfortunately, the BASIC compiler also requires
fixed size dimensions for all the matrices, so to use the compiler we
would be forced to create our own storage allocation mechanism. This
would affect data storage in the entire program, not only module 12.

Insert Name in Symbol Table-Module 15-
Line 15000
Module 15 attempts to place the name in NAMEIS$ in the symbol table
and return its symbol table location in NAMELOC. Two possibilities
might prevent completion of this task. First, the symbol table might be
full, indicating that there is no more room in the database. Second, the
name might already be defined. In either of these cases, module 15 prints
an error message, sets the flag NAMEERR to TRUE%, and returns. If
neither error arises, the module places NAMEIS$ in the first open location
in NAMES$, adds one to the variable count in NUMV AR, and returns
the proper value in NAMELOC.

Collect Names From User-Module 16-
Line 16000
We've called this module from many other modules. Essentially, its job
is to collect a series of names from the user and return their symbol table
locations in LISTV. Module 16 treats collecting one variable and more
than one variable as different cases, mostly so that we can give the user
more intelligent prompts.

In the first case, MAXNAMES equals 1. We ask the user for a name,
and call module 15 if NEWNAMES is TRUE%. If an undefined name is
entered improperly, the user is given the opportunity to re-enter the
name or to give a null response. A null response, or an error, causes the
module to return with NAMEERR set to TRUE%. When a correct name
is given, LISTV(0) is set to the location of the name and module 16 returns
with NAMEERR set to FALSE%.

The problem of module 16 is considerably more complicated when a
series of names is called for. We could prompt the user for one name at
a time. It's friendlier to allow the user to enter a series of names separated
by spaces. (As a side issue, the module must set LISTV(0)=0 ifFORCE0%
requires us to include the constant term.) We accept a "variable list" from
the user in ANSWER$. The module scans ANSWER$ looking for a space.
The substring from the beginning of the scan to the space is taken as a
variable name. We start scanning for the next name after the space. The
scanning process is complete when the end of the string is reached. We
check the names one at a time either by running through NAMES$ or

226 8087 Applications and Programming

by using module 15, depending on the value of NEWNAMES. (Notice
that in this way an entire list of variables can be entered into the symbol
table at once, even though the program does not use this feature.) If an
error is found in processing the list of names, the user is asked to re
enter the entire list.

Notice that the error message for an undefined name displays the
offending string within quotes. This is more than a nicety. Suppose the
user enters variables named "X" and "Y" and later tries to retrieve "X
<non-printing character> Y". The string "X 'space"' doesn't match the
string "X". By placing the string in quotes we increase the chances that
the user will notice the presence of a nondisplaying character.

Module 16 could be usefully modified by putting some restrictions on
the legal variable names. Since some other modules only print variable
names of limited length, we might want to restrict name length at the
time of definition. We also might want to modify this module to accept
upper and lower case characters without distinguishing between them.
Finally, notice that the user might well enter a string that "wraps around"
the end of the line, which is perfectly acceptable, or a string that is longer
than 255 characters, which will cause an error that is trapped by the error
handling module.

Collect Product-Moment Matrix-Module 17~
Line 17000
Almost the entire computational time of the program is spent in this
module. The module creates a double precision matrix named XPX#.
Element i,j, in the upper triangle of XPX#, is set to the inner product of
the ith and jth variables in LISTV. The 8087 routine INPROD really does
all the work.

Error-handling-Module 18-Line 18000
Nothing is worse in a canned program, even a simple one like this, than
getting a BASIC error message. The whole point of a program being
"canned" is that the user needn't understand its innards. Our program
doesn't offer quite this level of protection, but it does catch a few possible
errors. For example, if the user enters too many characters in response
to the name prompt in module 16, we'd like to allow him or her another
shot rather than have the program die. In addition, this routine handles
a couple of places where we induce deliberate "errors," such as in the
specification of file names.

Notice that we are quite careful to check the line number on which the
error occurred before handling the error. In this way, we avoid "fixing"
an error the program isn't prepared to handle.

14 a Statistical Analysis and Program Canning 227

Screen-handling-Module 19-Line 19000
Since the computer can display text faster than we can read, it's very
convenient to have a way to make the screen stand still. Module 19
accomplishes this by going round in circles until the user hits a key.

A Little More on Programming Strategy
Our "8087 Statistical Analysis Program" is a very heavy number cruncher.
Did you notice that of the several hundred lines of code, 8087 routines
are referenced only nine times!?! Such a ratio is not in the least unusual
for a general purpose program. However, these few references are re
sponsible for almost all the speed and accuracy advantage of using the
8087.

5
10

20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
500
510

1000
1010
1020
2000
2005

2010
2020
2030
2040

REM PROGRAM FOR STATISTICAL ANALYSIS
REM THE PRINCIPLE SECTIONS OF THIS PROGRAM BEGIN AT

LINES:
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000
18000
19000

PROGRAM EXECUTION BEGINS
MENU DISPLAY
DATA CATALOG
DATA DISPLAY
DATA INPUT
DATA EDITING
SAVE DATA
RETRIEVE DATA

DESCRIPTIVE STATISTICS
CORRELATION
MULTIPLE REGRESSION
ALLOCATE STORAGE AND INITIALIZE
RESTART PROGRAM
EXIT PROGRAM
INSERT NAME IN SYMBOL TABLE
ASK USER FOR LIST OF NAMES
COLLECT PRODUCT MOMENT MATRIX
HANDLE ERRORS
HOLD SCREEN SCROLLING

PROGRAM

FIRSTIME%=-1 'FLAG FIRST TIME THROUGH PROGRAM AS TRUE
DISKFILE%=0 'NOT LOADING A DISKFILE
GOSUB 12000
CLS
PRINT "COMMANDS OF THE 8087 STATISTICAL ANALYSIS

PROGRAM"
PRINT "1 CATALOG DATA IN MEMORY"
PRINT "2 DISPLAY DATA"
PRINT "3 ENTER DATA"
PRINT "4 EDIT DATA"

228 8087 ·Applications and Programming

2050 PRINT "5 SAVE DATA TO DISK"
2060 PRINT "6 RETRIEVE DATA FROM DISK"
2070 PRINT "7 MEANS, STANDARD DEVIATIONS, AND VARIANCES"
2080 PRINT "8 CORRELATIONS BETWEEN VARIABLES"
2090 PRINT "9 MULTIPLE REGRESSION"
2100 PRINT "10 RESTART PROGRAM"
2110 PRINT "11 EXIT PROGRAM TO BASIC"
2120 PRINT
2130 INPUT "ENTER DESIRED SERVICE (1-11) >"; ANSWER
2140 ANSW%=ANSWER
2150 IF ANSW%=ANSWER AND ANSW%>=1 AND ANSW%<=11 THEN 2200
2160 PRINT_ "RESPONSE REQUIRES AN INTEGER BETWEEN 1 AND 11"
2170 GOSUB 19030:GOTO 2000
2200 ON ANSW% GOSUB 3000,4000,5000,6000,7000,8000,9000,

2300
2400
3000
3010
3020
3030
3040
3050
3060
3070
3080
4000
4010
4020
4030
4040
4050
4060
4070

4071
4080
4090
4100

10000,11000,13000,14000
REM RETURN HERE AFTER PERFORMING SERVICE
GOTO 2000
REM DATA CATALOG
CLS
PRINT "NUMBER OF OBSERVATIONS PER VARIABLE: ";NUMOBS
PRINT "NUMBER OF DEFINED VARIABLES: ";NUMVAR
PRINT "NUMBER OF REMAINING VARIABLES: ";MAXVAR-NUMVAR
PRINT "DEFINED VARIABLES ARE:"
FOR I=O TO NUMVAR-1:PRINT NAMES$(I):NEXT I
GOSUB 19000
RETURN
REM
REM DATA DISPLAY
CLS
PRINT "DATA IN ONE OR MORE VARIABLES MAY BE DISPLAYED"
MAXNAMES=NUMVAR:NEWNAMES=FALSE%:FORCEO%=FALSE
GOSUB 16000:IF NAMEERR THEN RETURN
REM VARIABLE NUMBERS ARE IN LISTV O THROUGH LISTLEN-1
REM PRINT 4 VARIABLES ON A LINE, 20 OBSERVATIONS PER

SCREEN
IF LISTLEN=O THEN RETURN
FIRSTVAR=O:LASTVAR=3:FIRSTOB=O:LASTOB=19
IF LASTVAR>LISTLEN-1 THEN LASTVAR=LISTLEN-1
IF LASTOB>NUMOBS-1 THEN LASTOB=NUMOBS-1

4110 CLS
4120 PRINT "OBSERVATION";
4130 FOR I=FIRSTVAR TO LASTVAR
4140 PRINT USING ""- "-"; NAMES$(LISTV(I));
4150 NEXT I
4160 PRINT
4170 FOR I=FIRSTOB TO LASTOB
4180 PRINT I,
4190 FOR J=FIRSTVAR TO LASTVAR
4200 PRINT X(I, LISTV(J)),
4210 NEXT J
4220 PRINT
4230 NEXT I

14 a Statistical Analysis and Program Canning 229

4240 REM ONE SCREENFUL IS PRINTED
4250 GOSUB 19030
4270 IF LASTVAR=LISTLEN-1 AND LASTOB=NUMOBS-1 THEN RETURN
4280 IF LASTOB=NUMOBS-1 THEN 4300
4290 FIRSTOB=LASTOB+1:LASTOB=FIRSTOB+19:GOTO 4100
4300 REM NEXT SET OF VARIABLES
4310 FIRSTVAR=LASTVAR+1:LASTVAR=FIRSTVAR+3
4320 FIRSTOB=O:LASTOB=19
4330 GOTO 4090
5000 REM
5010 REM ENTER DATA
5020 CLS
5030 PRINT "ENTER NEW VARIABLE NAME"
5040 MAXNAMES=1:NEWNAMES=TRUE%:FORCEO%=FALSE%
5050 GOSUB 16000:IF NAMEERR THEN RETURN
5055 REM VARIABLE IN LISTV(OJ
5060 PRINT "ENTER DATA - (<ENTER> ALONE MEANS OJ"
5070 FOR I=O TO NUMOBS-1
5080 PRINT NAMES$(LISTV(0)) i "(";Ii") >";
5090 INPUT "", X(I, LISTV(□))

5100 NEXT I
5110 RETURN
6000 REM
6010 REM EDIT DATA
6020 CLS
6030 PRINT "ENTER NAME OF VARIABLE TO BE EDITED"
6040 MAXNAMES=1:NEWNAMES=FALSE%:FORCEO%=FALSE%
6050 GOSUB 16000:IF NAMEERR THEN RETURN
6060 REM VARIABLE IN LISTV(□J
6070 LVAR=LISTV(O)
6080 CLS
6090 PRINT "OBSERVATION NUMBER TO BE CHANGED";
6100 INPUT" <ENTER> ALONE RETURNS TO MAIN MENU >"iANSWER$
6110 IF ANSWER$="" THEN RETURN
6120 ANSWER=VAL(ANSWER$J: ANSW%=ANSWER
6130 IF ANSWER=ANSW% AND ANSW%>=0 AND ANSW%<NUMOBS THEN

6160
6140 PRINT "OBSERVATION MUST BE INTEGER BETWEEN O AND

"iNUMOBS-1
6150 GOTO 6090
6160 PRINT NAMES$(LVAR)i"("ANSWERi"J = "iX(ANSW%,LVAR)i
6170 INPUT "NEW VALUE?>",ANSWER
6180 PRINT NAMES$(LVAR)i "("ANSWER;") WAS "; X(ANSW%, LVAR)i
6190 PRINT" IS NOW "iANSWER
6200 X(ANSW%,LVARJ=ANSWER
6210 GOTO 6090
7000 REM
7010 REM SAVE DATA ON DISK FILE
7020 REM FIRST LINE HAS MAXVAR,NUMVAR,NUMOBS
7030 REM THEN THE VARIABLE NAMES IN ORDER
7040 REM THEN THE DATA IN EACH VARIABLE IN ORDER
7050 CLS

230 8087 Applications and Programming

7060
7065
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
8000
8010
8020
8030
8040
8050
8060
8090
8100
8110
8120
8130
8140
8150
8160
8170
9000
9010
9020
9040
9050
9060
9070

9090
9100
9110
9112
9120
9130
9140
9150
9160
9170
9180
9190
1000□
10010
10020
10040

INPUT "ENTER DISK FILE NAME> ",FILENAME$
NAME FILENAME$ AS FILENAME$
OPEN FILENAME$ FOR OUTPUT AS #1
WRITE#1,MAXVAR,NUMVAR,NUMOBS
FOR I=O TO NUMVAR-1:WRITE#1,NAMES$(I):NEXT I

FOR I=O TO NUMVAR-1
FOR J= □ TO NUMOBS-1
WRITE#1, X(J, I)

NEXT J,I
CLOSE #1
PRINT "DATA FILED IN ";FILENAME$
GOSUB 19000:RETURN
REM
REM RETRIEVE DATA FROM DISK FILE
CLS
INPUT "ENTER DISK FILE NAME> ",FILENAME$
OPEN FILENAME$ FOR INPUT AS #1
INPUT#1,MAXVAR,NUMVAR,NUMOBS
DISKFILE%=TRUE%
GOSUB 120□□
FOR I=O TO NUMVAR-1:INPUT#1,NAMES$(I):NEXT I

FOR I= □ TO NUMVAR-1
FOR J=O TO NUMOBS-1
INPUT#1, X(J, I)

NEXT J,I
CLOSE #1
PRINT "DATA RETRIEVED FROM ";FILENAME$
GOSUB 1900□ :RETURN

REM
REM PRINT MEANS, STANDARD DEVIATIONS, VARIANCES
CLS
MAXNAMES=NUMVAR:NEWNAMES=FALSE%:FORCE0%=FALSE%
GOSUB 160□□ :IF NAMEERR THEN RETURN
REM VARIABLE NUMBERS ARE IN LISTV □ THROUGH LISTLEN-1
PRINT "VARIABLE"," MEAN ","STANDARD DEVIATION",

"VARIANCE"
REM COLLECT SUM OF EACH VARIABLE IN SUM#
REM COLLECT SUM-SQUARE OF EACH VARIABLE IN SUMSQ#
FOR I=O TO LISTLEN-1
LI=LISTV(I)
SUM#=□: CALL SUM%(X(O, LI), NUMOBS, SUM#)
SUMSQ#=O: CALL INPROD%(X(□, LI), X(□, LI), SUMSQ#, NUMOBS)
AVERAGE#=SUM#/NUMOBS
VAR IAN CE#=(SUMS Q#-S UM#* SUM#/ NUM OB S)/(NUMOB S-1)
PRINT NAMES$(LI), AVERAGE#, SQR(VARIANCE#J, VARIANCE#
NEXT I
GOSUB 19000
RETURN
REM
REM PRINT CORRELATIONS
CLS
MAXNAMES=NUMVAR:NEWNAMES=FALSE%:FORCE0%=TRUE%

10050
10060
10080

10090
10100
10110
10120
10130
10140
10150
10160
10170
10180
10190 .
10200
10210
10220
10230
10240
10250
11000
11010
11020
11030
11040
11050
11060
11070
11080
11090
11100
11110
11120
11130
11140
11150
11160
11170
11180
11190
11200
11210
11220

11230
11240
11250
11260
11263
11264
11265

14 ci Sta~istical Analysis and Program Canning 231

GOSUB 16000:IF NAMEERR THEN RETURN
REM VARIABLE NUMBERS ARE IN LISTV O THROUGH LISTLEN-1
CORRERR$= "' ' ' 'WHOOPS CONSTANT

VARIABLE"
PRINT "VARIABLE-1 VARIABLE-2 CORRELATION COEFFICIENT"
REM HAVE PRODUCT-MOMENT MATRIX COLLECTED IN XPX#
GOSUB 17000

FOR I=1 TO LISTLEN-1
NM 1 $=NA ME S$(L ISTV(I)l

FOR J=I TO LISTLEN-1
N M2$=N A MES $(LIS TV(J))
COV#=NUMOBS*XPX#(I, JJ-XPX#(O, I)*XPX#(O, J)
V1#=NUMOBS*XPX#(I, IJ-XPX#(O, I)*XPX#(O, I)
V2#=NUMOBS*XPX#(J, JJ-XPX#(O, J)*XPX#(O, J)
IF (V1#*V2#)<>0 THEN 10220
PRINT USING CORRERR$; NM1$,NM2$
GOTO 10230
PRINT NM1$, NM2$, COV#/SQR(V1#*V2#)

NEXT J,I
GOSUB 19000
RETURN
REM
REM MULTIPLE REGRESSION SECTION
REM FIRST GET DEPENDENT VARIABLE
REM THEN INDEPENDENT VARIABLES
REM THEN GO TO WORK
CLS
PRINT "MULTIPLE REGRESSION"
PRINT "ENTER DEPENDENT VARIABLE"
MAXNAMES=1:NEWNAMES=FALSE%:FORCEO%=FALSE%
GOSUB 16000:IF NAMEERR THEN RETURN
REM DEPENDENT VARIABLE IN LISTV(O)
DEPVAR%=LISTV(O)
PRINT "ENTER INDEPENDENT VARIABLES"
MAXNAMES=NUMVAR:NEWNAMES=FALSE%:FORCEO%=FALSE%
GOSUB 16000:IF NAMEERR THEN RETURN
REM VARIABLE NUMBERS ARE IN LISTV O THROUGH LISTLEN-1
IF LISTLEN>=NUMOBS THEN 11600
REM ALLOCATE REGRESSION STORAGE
ERASE XPY#,XPXINV#,BETA#,SCRATCH,INDEX
L1=LISTLEN-1
DIM XPY#(L1), XPXINV#(L1, L1), BETA#(L1), SCRA TCH(L1), INDEX(L1J
REM NOW DO THE REGRESSION
YSQR#=O: CALL INPROD%(X(O, DEPVAR%),
X(O, DEPVAR%), YSQR#, NU MOBS)

FOR I=O TO LISTLEN-1
CALL INPROD%(X(O, DEPVAR%), X(O, LISTV(I)l, XPY#(I), NUMOBS)
NEXT I

GOSUB 17000 'COLLECT XPX# - UPPER HALF
FOR I=O TO LISTLEN-1

FOR J=I+1 TO LISTLEN-1
XPX#(J, I)=XPX#(I, J)

232 8087 Applications and Programming

11266
1127□
1128□

1129□
11292
11294

11296
11298
113□□
1131□
1132□
1133□

NEXT J,I
IER=□ :TYPEX%=8:L2=LISTLEN*LISTLEN

CALL INV%(XPX#(□, □), XPXINV#(□, □),SCRATCH(□), INDEX(□), IER,
TYPEX%, LISTLENJ

IF IER<>□ THEN 117□□
IFDEN=FALSE%:IFINF=FALSE%:IFNAN=FALSE%:ELEMENT%=□

CALL REALERR%(XPXINV#(□, □), TYPEX%, L2, IF DEN, IFINF,
IFNAN, ELEMENT%)

IF (NOT IFDENJ AND (NOT IFINF) AND (NOT IFNAN) THEN 113□□
PRINT "WARNING NUMERICAL RESULTS HIGHLY SUSPECT"
REM NOW FORM XPXINV# TIMES XPY#
IONE=1

FOR I= □ TO LISTLEN-1
CALL GINPROD%(XPXINV#(I, □), XPY#(□) ,BETA#(!), TYPEX%,

TYPEX%,LISTLEN,IONE,LISTLEN)
1134□ NEXT I
1135□ REM NOW FORM SUM SQUARE RESIDUALS AS Y'Y-BETA'X'Y
1136□ TEMP#=□: CALL GINPROD%(BETA#(O), XPY#(O), TEMP#,

1137□
11375

1138□
1139□
1141□
1143□
1144□
1145□

1146□
1147□
1148□
1149□

115□□
1151□
1152□

116□□

1161□

117□□
1171□
1172□
1173□

12□□□
12□1 □
12□2 □
12□3 □

12□ 4 □
12 □ 45

SSR#=YSQR#-TEMP#

TYPEX%,TYPEX%,IONE,IONE,
LISTLEN)

IF YSQR#=□ THEN PRINT "ZERO LHS VARIABLE???":GOTO
1151□

CLS
S2#=SSR#/(NUMOBS-LISTLEN)
PRINT "VARIABLE","COEFFICIENT","S·E·"" ,"T-STATISTIC"

FOR I= □ TO LISTLEN-1
SE#=SQR(S2#*XPXINV#(I, I))

IF SE#<>□ THEN PRINT NAMES$(LISTV(I)), CSNG(BET A#(I)),
CSNG(SE#), CSNG(BET A#(I)/SE#)

ELSE PRINT NAMES$(LISTV(I)), CSNG(BETA#(I)), "-", "-"
NEXT I

PRINT NUMOBS;" OBSERVATIONS ";LISTLEN;" VARIABLES"
PRINT "STANDARD ERROR OF REGRESSION= ";SQR(S2#)
PRINT "SUM SQUARE RESIDUALS= ";SSR#
PRINT "R-SQUARED= ";1-SSR#/YSQR#
GOSUB 19□□□
RETURN
PRINT "MORE OBSERVATIONS THAN DEPENDENT VARIABLES

REQUIRED"
GOSUB 19□□□ :RETURN
PRINT "NUMERICALLY SINGULAR MATRIX"
PRINT "EITHER VARIABLE INCLUDED TWICE OR TOO MUCH";
PRINT "MULTICOLLINEARITY"
GOSUB 19□□□ :RETURN
REM
REM ALLOCATE STORAGE AND INITIALIZE PROGRAM
IF NOT FIRSTIME% THEN 1242□

CLEAR ,&H7F□□ 'SET ASIDE SPACE IF YOU HAVE LESS THAN
96K

DEFINT I-N
ON ERROR GOTO 18□□□

14 a Statistical Analysis and Program Canning 233

12050 TRUE%=-1:FALSE%=0
12060 FIRSTIME%=FALSE%:WASFIRST%=TRUE%
12070 DEF SEG=&HEFO 'SUBROUTINE AREA
12075 VECTOR%=0:MATRIX%=&H420:MATADV%=&H790
12080 BLOAD "VECTOR-SAV",VECTOR%:BLOAD "MATRIX-SAV",

MATRIX%
12085 BLOAD "MATADV 0 SAV",MATADV%
12090 INPROD%=MATRIX%+&H121:GINPROD%=MATRIX%+&H1A6
12091 INV%=MATADV%+&H4F3:SUM%=VECTOR%+0:

REALERR%=VECTOR%+&H2DC
12095 CLS
12100 PRINT "DO YOU WISH TO LOAD DATA FROM A DISK FILE (Y/

NJ>";
12110 INPUT "",ANSWER$
12120 IF ANSWER$="Y" OR ANSWER$="y" THEN GOSUB 8000:GOTO

12410
12130 INPUT "NUMBER OF OBSERVATIONS>"ANSWER$
12140 IF ANSWER$="" THEN RETURN
12150 ANSWER=VAL(ANSWER$)
12160 ANSW%=ANSWER
12170 IF (ANSW%=ANSWER) AND (ANSW%<>0) THEN 12210
12180 PRINT "POSITIVE INTEGER REQUIRED";
12190 PRINT "<ENTER> RETURNS TO COMMAND MENU"
12200 GOTO 12100
12210 NUMOBS=ANSW%
12220 REM FORK VARIABLES NEED ABOUT
12230 REM 4NK FOR X
12240 REM 16K*K FOR XPX,XPXINV
12250 REM AT LEAST 16K FOR NAMES
12260 REM 16K FOR XPY AND BETA
12270 REM BETTER LEAVE A LITTLE EXTRA FOR SAFETY, SAY
12280 REM USE 2000+K(4N+16K+32)
12285 ERASE X,NAMES$
12290 SPACE=FRE(0)-2000
12300 K=INT(SPACE/NUMOBS/4): K1=SQR(SPACE/16)
12305 IF K>K1 THEN K=K1 'FIRST ESTIMATE FORK
12310 IF (4*K*(NUMOBS+4*K+8))>SPACE THEN K=K-1: GOTO 12310
12320 MAXVAR=K
12330 IF MAXVAR>1 THEN 12360
12340 PRINT "TOO MANY OBSERVATIONS"
12350 GO TO 12130
12360 REM NOTE THAT BASIC INITIALIZES EVERYTHING TO ZERO
12370 K1=K-1:N1=NUMOBS-1:NBYK=NUMOBS*MAXVAR
12380 ERASE NAMES$,X
12385 DIM NAMES$(K1), X(N1, K1)
12390 NAMES$(0)="(CONST)"
12395 FOR I=O TO N1:X(I,0)=1-0:NEXT I
12400 NUMVAR=1
12410 IF NOT WASFIRST% THEN RETURN
12415 GOTO 2000 'FAKE RETURN, GOSUB WIPED OUT BY CLEAR
12420 REM NOT THE FIRST TIME INITIALIZED
12430 ERASE X,NAMES$

234 8087 Applications and Programming

12440
12450
12460
12465
12470
13000
13010
13020
13030
13040
14000
14010
14020
14030
14040
15000
15010
15020
15030

15040
15050
15060
15070
15080
15090
15100
15110
15120
15130
15140
15150

15155
15160
15170
15180
15190
15200
16000
16010

16020
16030
16040
16050
16060
16070
16080
16090
16100
16110

IF NOT DISKFILE% THEN 12095
K1=MAXVAR-1:N1=NUMOBS-1:NBYK=NUMOBS*MAXVAR
ERASE NAMES$,X
DIM NAMES$(K1),X(N1,K1)
RETURN
REM
REM RESTART PROGRAM
FIRSTIME%=FALSE%:DISKFILE%=FALSE%
GOSUB 12000
RETURN
REM
REM EXIT PROGRAM
INPUT "ARE YOU SURE YOU WANT TO EXIT (Y/N)>"iANSWER$
IF ANSWER$="y" OR ANSWER$="Y" THEN END
RETURN
REM
REM INSERT NAME IN SYMBOL TABLE
REM NAME TO BE INSERTED IS IN NAMEIS$
REM IF SYMBOL TABLE IS FULL, PRINT MESSAGE AND SET

NAMEERR
REM IF NOT A NEW NAME, PRINT MESSAGE AND SET NAMEERR
REM OTHERWISE PUT NAMEIS$ IN NEXT LOCATION IN NAMES$
REM REPORT IT'S POSITION IN NAMELOC
IF NUMVAR<MAXVAR THEN 15100
PRINT "SYMBOL TABLE FULL !!!! NO NEW VARIABLES"
NAMEERR=TRUE%:RETURN
FOUNDIT%=FALSE%

FOR I=O TO NUMVAR-1
IF NAMEIS$=NAMES$(I) THEN FOUNDIT%=TRUE%
NEXT I

IF NOT FOUNDIT% THEN 15170
PRINT CHR$(34); NAMEIS$; CHR$(34);

"ALREADY DEFINED - NOT A NEW NAME"
GOSUB 19000
NAMEERR=TRUE%:RETURN
NAMELOC=NUMVAR
NUMVAR=NUMVAR+1
NAMES$(NAMEL OC)=NAMEIS$
RETURN
REM
REM COLLECT A LIST OF NAMES AND RETURN LOCATIONS IN

LISTV
REM A SINGLE NAME IS A SPECIAL CASE
NAMEERR=FALSE%
IF MAXNAMES>1 THEN 16500
INPUT "VARIABLE NAME IS?>",NAMEIS$
IF NAMEIS$="" THEN NAMEERR=TRUE%:RETURN
IF NOT NEWNAMES THEN 16100
GOSUB 15000
IF NAMEERR THEN RETURN ELSE 16180
NAMELOC=-1

FOR I=O TO NUMVAR-1

1612□
1613□
1614 □
1615□

1616□

1617□
1618□
1619□

162□□
1621□

165□□
165□1
165 □ 2
1651□

1652□
1653□
1654□
1655□
1656□
1657□
1658□
1659□

166□□
1661□
1662□
1663□
1664□

1665□
1666□
1667□
1668□

1669□

167□□
1671□
1672□
1673□
1674□

1675□
1676□
1677□

17□□□
17□1 □

17 □ 2 □
17□ 3 □
17□ 4 □
17□ 5 □

17 □ 6 □

14 a Statistical Analysis and Program Canning 235

IF NAMES$(IJ=NAMEIS$ THEN NAMELOC=I
NEXT I

IF NAMELOC<>-1 THEN 1618□

PRINT CHR$(3Lf)i NAME IS$ i CHR$(34)i" NOT DEFINED"
PRINT "RE-ENTER NAME OR <ENTER> TO RETURN TO COMMAND

MENU"
GOTO 16 □ 5 □
REM PUT NAMELOC IN LISTV
LISTLEN=1
LISTV(□)=NAMELOC
RETURN
REM COME HERE TO COLLECT A SERIES OF VARIABLES
REM IF FORCE□% THEN INCLUDE CONSTANT AUTOMATICALLY
IF NOT FORCE□ % THEN LISTLEN=□ ELSE LISTV(□J= □ :LISTLEN=1
INPUT "ENTER VARIABLE NAME(~ SEPARATED BY A SPACE>",

ANSWER$
IF ANSWER$="" THEN NAMEERR=TRUE%:RETURN
FOR I=LISTLEN TO MAXNAMES-1: LISTV$(IJ="": NEXT I
LOOKFROM=1
REM RETRIEVE A VARIABLE NAME
SPACELOC%=INSTR(LOOKFROM, ANSWER$," ")
IF SPACELOC%=□ THEN SPACELOC%=LEN(ANSWER$)+1
NAMEIS$=MID$(ANSWER$,LOOKFROM,SPACELOC%-LOOKFROM)
NAMELOC=-1
IF NAMEIS$="" THEN 1673 □

IF NOT NEWNAMES THEN 1663□

GOSUB 15□□□: IF NAMEERR THEN RETURN
FOR I= □ TO NUMVAR-1

IF NAMES$(IJ=NAMEIS$ THEN NAMELOC=I
NEXT I

IF NAMELOC<>-1 THEN 167□□
PRINT CHR$(34)i NAME IS$ i CHR$(34)i" NOT DEFINED"
PRINT "RE-ENTER LIST OR <ENTER> TO RETURN TO COMMAND

MENU"
GOTO 165□□
REM PUT NAMELOC IN LISTV
LISTV(LISTLENJ=NAMELOC
LISTLEN=LISTLEN+1
LOOKFROM=SPACELOC%+1
IF LOOKFROM>LEN(ANSWER$) THEN RETURN
IF LISTLEN<MAXNAMES THEN 1656□
PRINT "TOO MANY NAMES"
GO TO 1668□
REM
REM COLLECT PRODUCT MOMENT MATRIX IN UPPER HALF OF

XPX#
ERASE XPX#:L1=LISTLEN-1:DIM XPX#(L1,L1)

FOR I= □ TO LISTLEN-1
FOR J=I TO LISTLEN-1
CALL INPROD%(X(□, LISTV(Il), X(□, LISTV(J)l,

XPX#(I, J), NUMOBSJ
NEXT J,I

236 8087 Applications and Programming

17 □ 7 □ RETURN
18□□□ REM
18 □ 1 □ REM HANDLE A FEW ERRORS HERE
18 □ 2 □ REM DID WE RUN OUT OF SPACE?
18 □ 3 □ IF ERR<>? AND ERR<>14 THEN 18 □ 7 □

18 □ 40 PRINT "PROGRAM RAN OUT OF MEMORY IN LINE "iERL
18 □ 5 □ PRINT "SORRY ... "
18 □ 6 □ STOP
18 □ 70 REM DID WE TRY TO READ FROM A NON-EXISTENT FILE?
18 □ 8 □ IF ERR<>53 OR ERL<>8□ 4 □ THEN 1812□
18 □90 IF FILENAME$="" THEN RESUME 817 □ 'BACK TO MENU
181□□ ~RINT "CAN'T FIND ";FILENAME$
1811 □ RESUME 8 □ 3 □ 'TRY AGAIN
1812□ REM IS THIS A NEW OUTPUT FILE?
1813 □ IF ERR<>53 OR ERL<>7 □ 65 THEN 1815 □

1814 □ RESUME NEXT
1815 □ IF ERR<>58 OR ERL<>7 □ 65 THEN 182□□
1816 □ PRINT "FILE ALREADY EXISTS, ARE YOU SURE? (Y /N)" i
1817 □ INPUT "",ANSWER$
1818 □ IF ANSWER$="y" OR ANSWER$="Y" THEN RESUME NEXT
1819□ RESUME 7 □ 6 □
18?. □□ If ERR<>5 OR (ERL<>12285 AND ERL<>1243□ AND ERL<>1118□

AND ERL<>17□ 2 □ AND ERL<>1246□ AND ERL<>1238 □) THEN
1822□

18210 RESUME NEXT 'OK, WE JUST ERASED SOMETHING THAT WASNT
THERE

1822 □ ON ERROR GOTO □

1823 □ END
19□□□ REM HOLD SCREEN
19 □ 1 □ PRINT "HIT ANY KEY TO RETURN TO COMMAND MENU>"i
19 □ 2 □ IF INKEY$="" THEN 19 □ 2 □ ELSE RETURN
19 □ 3 □ PRINT "HIT ANY KEY TO RETURN TO CONTINUE>"i
19 □ 4 □ IF INKEY$="" THEN 19 □ 4 □ ELSE RETURN

Commercial Data
Processing

The name "numeric data processor" naturally leads people to think of
the 8087 as a tool for "scientific" rather than "business" applications.
While the 8087's forte is certainly working with numbers, it does have
important applications in business and commercial EDP (Electronic Data
Processing).

Program:
Purpose:
Call:
Input:

Output:

Language:

The Cookbook-C~ap~er 15
ADDSTR
Add array of integer-valued strings.
CALL ADDSTR(A$(0),ISPACE(0),SUM,IER,N)
A$-N element string array.
ISPACE-5 element integer array; scratch space.
N-integer number of elements of A$.
SUM-single precision scalar; sum of V AL(A$(I))
!ER-integer; -1 if error, 0 otherwise.
8087/8088 assembly language.

The 8087 is valuable in any application involving numbers. In the last
chapter, we built a small statistical package out of the matrix routines of
Chapters 10 and 11. Business people normally don't care about technical
aspects of matrix inversion! However, mathematical tools such as regres
sion analysis (which use matrix operations internally) are a regular part
of the forecasting and planning function in every large company. The
8087 is an important tool for anyone building software for business people
to use.

Typical commercial EDP applications (payroll programs .and the like)
do relatively little numerical computation. Such programs spend more

237

238 8087 Applications and Programming

time converting data from an external "ASCII" format to an internal
binary format than they spend manipulating the numbers after the con
version. For this reason, commercial programs often avoid conversion
costs by operating directly on data stored in decimal, rather than binary,
representation. The 8087 supports such operations through its packed
decimal instructions. ·

Almost all commercial data processing applications are written in high
level languages. Languages such as COBOL and PL/I allow you to operate
on decimal data. The BASIC language offered on personal computers
rarely provides a decimal data type. In order to show off the 8087's
prowess at decimal operations, we've written a small assembly language
routine that replaces part of a BASIC program.

Consider the following BASIC program which creates a string array
filled with integers and then totals up the values in the strings.

10 DEFINT I-N
20 DIM A$(4999)
30 N=4999
40 REM FILL UP A$ WITH INTEGERS
50 FOR I= □ TO N: A$(I)=STR$(IJ: NEXT I
60 REM TIME THIS PART
70 T1$=TIME$
80 SUM=□
90 FOR I= □ TO N
100 SUM=SUM+VAL(A$(I))
11 □ NEXT I
120 T2$=TIME$
130 PRINT N+1,SUM,T1$,T2$
140 END

Most of the work in lines 90, 100, and 110 is in the function "VAL" which
converts strings to single precision. (If you change the array of strings,
A$, to a single precision array, A, you'll see the program's speed nearly
triple.) Assembly language subroutine ADDSTR, below, adds up a vector
of strings (representing integers) and returns a single precision sum. We
can replace lines 90-100 with ADDSTR, as in the following program.

10 DEFINT I-N
20 DIM A$(4999), ISPACE(4)
30 N=4999
40 REM FILL UP A$ WITH INTEGERS
50 FOR I= □ TO N: A$(IJ=STR$(IJ: NEXT I
60 REM TIME THIS PART
70 T1$=TIME$
80 SUM=□
90 IER=(;t,,
100 CAL[ADDSTR(A$(0),ISPACE(□),SUM,IER,NJ
11 □ T2$=TIME$
12 □ PRINT N+1,SUM,T1$,T2$
13 □ END

15 ci Commercial Data Processing 239

ADDSTR processes each string in three steps. First, it finds the string
by untangling the string descriptor provided by BASIC. Second, ADDSTR
converts the string's ASCII representation to packed decimal while doing
some limited error checking. Third, ADDSTR uses the 8087 packed dec
imal instructions to add up the converted values.

; SUBROUTINE ADDSTR(A$(0J, ISPACE(□J, SUM, IER, NJ
; ASSUMPTIONS: A$ - N LONG ARRAY OF STRINGS
; ISPACE - 10 FREE BYTES
; SUM - SINGLE PRECISION ANSWER
; IER - INTEGER, □ ON RETURN FOR NO ERROR
; -1 IF ERROR
; N - INTEGER NUMBER OF ELEMENTS OF A$

;

ADDSTR
;

CSEG

ADDSTR

NOTDONE:

ELEMENTS OF A$ ARE ASSUMED TO BE
INTEGERS NO MORE TAHN 18 BYTES LONG.

ADDS UP VALUES IN A$

PUBLIC
SEGMENT
ASSUME
PROC
PUSH
MOV
MOV
MOV
MOV
MOV
FLDZ
CMP
JG
JMP

ADDSTR
'CODE'
cs:CSEG
FAR
BP
BP,SP
BX,[BP]+8
WORD PTR
BX ,[BP]+6
CX,[BX]

ex, □

NOTDONE
DONE

[BX], □

iBX=ADDR(IERJ
iASSUME NO ERROR
iKEEP COUNT OF ARRAY
iIN ex AS USUAL
iCLEAR OUT STACK TOP

iN= □ ?

MOV BX,[BP]+14 iBX=ADDR(A$(0))
iNOTICE BX KEEPS TRACK OF THE DESCRIPTORS OF THE STRINGS,
i NOT THE STRINGS THEMSELVES
GELDESCRIPTOR:

iUNFORTUNATELY, THE BASIC COMPILER AND THE BASIC INTERPRETER
iSTORE STRINGS DIFFERENTLY
iTHE COMPILER DESCRIPTOR HAS THE STRING LENGTH IN ONE WORD
i FOLLOWED BY THE STRING ADDRESS IN A SECOND WORD
iTHE INTERPRETER DESCRIPTOR HAS THE STRING LENGTH IN ONE

BYTE
FOLLOWED BY THE STRING ADDRESS IN A WORD

iASSUME THIS PROGRAM IS RUN WITH COMPILED BASIC
MOV AX, WORD PTR [BX] i ASSUME COMPILER
MOV AH, □

MOV AL, BYTE PTR [BX] i IF INTERPRETER

240 8087 Applications and Programming

; AX IS NUMBER OF BYTES IN STRING
;CLEAR OUT WORKSPACE

MOV SI,[BP]+12 ;SI=ADDR(ISPACEJ
MOV WORD PTR [SI], □

MOV WORD PTR [SI]+2, 0
MOV WORD PTR [SI]+4,0
MOV WORD PTR [SI]+b, 0
MOV WORD PTR [SI]+8, 0

MOV
MOV

DI, WORD PTR [BX]+2 ; DI=ADDR(STRING(I))
DI, WORD PTR [BX]+1 IF INTERPRETER

;CHECK FIRST CHARACTER FOR MINUS SIGN
MOV DL, BYTE PTR [DI] ; DL IS FIRST CHARACTER
CMP DL,45 ;CHECK FOR MINUS
JNE NUMBER ;SIGN

;IT'S NEGATIVE
OR BYTE PTR [SI],80H ; SET SIGN BIT
DEC AX ;USED UP ONE BYTE

; CHECK STRING LENGTH
CMP AX, □

JLE ERROR
CMP AX,18
JG ERROR

NUMBER:
;NOW START AT RIGHT END OF

ADD DI, AX

;NULL STRING NOT
;ALLOWED

STRING AND WORK BACKWARD
;DI POINTS TO

DEC DI
CMP DL,45
JNE L1

;LAST BYTE OF STRING
;BUT TEST IF WE HAD
;ALREADY SUBTRACTED

INC DI

u:
;WE NEED TO REMEMBER WHETHER TO PLACE DIGIT IN
; LEFT OR RIGHT NIBBLE (HALF OF BYTE)
;KEEP FLAG IN DH, 0 MEANS RIGHT 1 MEANS LEFT

MOV DH, □

;NOW TRANSLATE EACH CHARACTER
NEXTNUM:

MOV DL,BYTE PTR
CMP DL,32
JNE NOLA-SPACE
MOV DL,48

NOT-A-SPACE:
CMP DL,48
JL ERROR
CMP DL,57
JG ERROR
SUB DL,48
CMP DH, □

JNE LEFT

[DI] ;GET CHARACTER
;IS IT A SPACE?

;If SO, MAKE IT

;< □ ?

;>9?

;MAKE 0-9
;RIGHT NIBBLE?

ZERO

15 a Commercial Data Processing

STOWIT: OR BYTE PTR[SI], DL iSTORE DECIMAL
XOR DH,1 i SWITCH NIBBLE
JMP NEXTCH

LEFT: SHL DL,1 iGET IT TO LEFT
SHL DL,1 iNIBBLE
SHL DL,1
SHL DL,1
OR BYTE PTR[SI),DL iSTORE DECIMAL
XOR DH,1 ; SWITCH NIBBLE
INC SI iNEXT BYTE

NEXTCH:
DEC DI iNEXT CHARACTER
DEC AX iDONE YET
JG NEXTNUM iMORE?

iNOW ISPACE HAS A NICE PACKED DECIMAL NUMBER IN IT

DONE:

MOV

FBLD
FADDP
ADD
ADD
LOOP
MOV
FSTP
POP
FWAIT

SI ,[BPJ+12

[SI]
ST(1), ST
BX,4
BX,3

GOTO-GET-DESCRIPTOR
SI ,[BP)+1O
DWORD PTR [SI]
BP

RET 10

iPOINT TO ISPACE
iAGAIN
iPUSH IT ONTO STACK
iADD INTO TOTAL
iNEXT ARRAY ELEMENT
iIF INTERPRETER

i SI=ADDR(SUM)
iSTORE AWAY SUM

GOTO-GET-DESCRIPTOR: JMP GET-DESCRIPTOR
ERROR: MOV BX ,[BPJ+8 i BX=ADDR(IER)

ADDSTR
CSEG

MOV WORD PTR [BX),-1 iERROR INDICATOR
JMP DONE
ENDP
ENDS
END

241

Notice how we provide the scratch space that ADDSTR needs to store
the packed decimal value. We could have set up a 10-byte area in an
extra segment, as we have in other programs. Instead, we get BASIC to
pass us a 10-byte array called ISP ACE. (This was mostly just as an excuse
to show an alternative technique for finding storage for an assembly
language program.)

Table 15-1 provides some timing figures with and without ADDSTR.

Routine ADDSTR took over 100 lines of assembly language code to
replace three lines of BASIC. In return for the extra work, we got a
program that runs 50 times faster than interpreted basic and 12 times
faster than compiled BASIC. In this example, the speed improvement
for a commercial application is the same as we found for scientific ap
plications earlier in the book.

While the 8087 may never become quite so indispensable in commercial
work as it is in scientific programming, we can still expect its use to

242 8087 Applications and Programming

Table 15-1. Speed benchmarks for packed decimal instructions
(time in se·conds).

Program

BASIC interpreter
BASIC compiler
8087 routine

Add 5,000 integer
strings

64
15
1.25

become widespread, especially as 8087-compatible translators for com
merical programming languages appear.

Postscript

I told you a little fib in the first chapter. I said you would use the 8087
to "turn minutes into seconds." The 8087 will indeed turn minutes into
seconds, but I think you will find that the 8087's real value lies in its
ability to extend your reach. Now that your machine is many times faster,
you will find you will want to solve problems that are many times larger
and probably problems with more important answers. Solutions that
could formerly be found only on a large computer-or that weren't avail
able to you at all-are now within your grasp.

243

Appendix 1
Table Al-1. Instruction Set Reference Data. Courtesy of Intel
Corporation.

FABS FABS (no operands;
Exceptions: I Absolute value

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 14 10-17 0 0 FABS

FADD FADD //source/destination.source
Exceptions: I, D, 0, U, P

Add real

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

/ /ST,ST(i)/ST(i),ST 85 70-100 0 0 FADD ST,ST(4)
short-real 105+EA 90-120+EA 2/4 4 FADD AIR_ TEMP [SI)
long-real 110+EA 95-125+EA 4/6 8 FADD [BX].MEAN

FADDP FADDP destination.source
Exceptions: I, D, 0, U, P Add real and pop

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

ST(i),ST 90 75-105 0 0 FADDP ST(2),ST

FBLD FBLD source
Exceptions: I Packed decimal (BCD) load

Execution Clocks Transfers
Operands

Typical Range 8088 8088
Coding Example

packed-decimal 300+EA 290·310+EA 5/7 10 FBLD YTO_SALES

FBSTP FBSTP destination
Packed decimal (BCD) store and pop Exceptions: I

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

packed-decimal 530+EA 520-540+EA 6/8 12 FBSTP (BX].FORECAST

FCHS FCHS (no operands)
Change sign Exceptions: I

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 15 10-17 0 0 FCHS

244

Appendix 1 245

Table Al-1. Instruction set reference data (continued). Courtesy of
Intel Corporation.

FCLEX/FNCLEX FCLEX (no operands)
Exceptions: None Clear exceptions

\ Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 5 2-8 0 0 FNCLEX

FCOM FCOM //source
Exceptions: I, D

Compare real

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

//ST(i) 45 40-50 0 0 FCOM ST(1)
short-real 65+EA 60-70+EA 2/4 4 FCOM [BP].UPPER_ LIMIT
long-real 70+EA 65-75+EA 4/6 8 FCOM WAVELENGTH

FCOMP FCOMP / /source
Exceptions: I, D Compare real and pop

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

//ST(i) 47 42-52 0 0 FCOMP ST(2)
short-real 68+EA 63-73+EA 2/4 4 FCOMP [BP+2].N_READINGS
long-real 72+EA 67-77+EA 4/6 8 FCOMP DENSITY

FCOMPP FCOMPP (no operands)
Exceptions: I, D Compare real and pop twice

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 50 45-55 0 0 FCOMPP

FDECSTP FDECSTP (no operands)
Exceptions: None Decrement stack pointer

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 9 6-12 0 0 FDECSTP

FDISI/FNDISI FDISI (no operands)
Exceptions: None Disable interrupts

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 5 2-8 0 0 FDiSI

246 8087 Applications and Programming

Table Al-1. Instruction set reference data (continued). Courtesy of
Intel Corporation.

FDIV FDIV //source/destination.source
Exceptions: I, D, Z, 0, U, P Divide real

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

//ST(i),ST 198 193-203 0 0 FDIV
short-real 220+EA 215-225+EA 2/4 4 FDIV DISTANCE
long-real 225+EA 220-230+EA 4/6 8 FDIV ARC [DI}

FDIVP FDIVP destination.source
Exceptions: I, D, Z, 0, U, P)ivide real and pop

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

ST(i),ST 202 197-207 0 0 FDIVP ST(4),ST

FDIVR FDIVR / /source/destination.source
Exceptions: I, D, Z, 0, U, P Divide real reversed

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

/ /ST,ST(i)/ST(i),ST 199 194-204 0 0 FDIVR ST(2),ST
short-real 221+EA 216-226+EA 2/4 6 FDIVR [BX}.PULSE_RATE
long-real 226+EA 221-231+EA 4/6 8 FDIVR RECORDER.FREQUENCY

FDIVRP FDIVRP destination.source
Exceptions: I, D, Z, 0, U, P Divide real reversed and pop

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

ST(i),ST 203 198-208 0 0 FDIVRP ST(1),ST

FENI/FNENI FENI (no operands)
Exceptions: None Enable interrupts

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 5 2-8 0 0 FNENI

FFREE FFREE destination
Exceptions: None

Free register

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

ST(i) 11 9-16 0 0 FFREE ST(1)

Appendix 1 247

Table Al-1. Instruction set reference data (continued). Courtesy of
Intel Corporation.

FIADD FIADD source
Exceptions: I, 0, 0, P

Integer add

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

word-integer 120+EA 102-137+EA 1 /2 2 FIAOO OISTANCE_TRAVELLEO
short-integer 125+EA 108-143+EA 2/4 4 FIAOO PULSE_COUNT [SI)

FICOM FICOM source
Integer compare Exceptions: I, O

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

word-integer 80+EA 72-86+EA 1/2 2 FICOM TOOL.N_PASSES
short-integer 85+EA 78-91+EA 2/4 4 FICOM [BP+4[.PARM .• COUNT

FICOMP FICOMP source
Exceptions: I, D Integer compare and pop

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

word-integer B2+EA 74-88+EA 1/2 2 FICOMP [BPJ.LIMIT [SI)
short-integer 87+EA 80-93+EA 2/4 4 FICOMP N SAMPLES

FIDIV FIOIV source
Exceptions: I, 0, Z, 0, U, P

Integer divide

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

word-integer 230+EA 224-238+EA 1/2 2 FIOIV SURVEY.OBSERVATIONS
short-integer 236+EA 230-243+EA 2/4 4 FIDIV RELATIVE ANGLE [DIJ

FIDIVR FIDIVR source
Exceptions: I, 0, Z, 0, U, P

Integer divide reversed

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

word-integer 230+EA 225-239+EA 1 /2 2 FIDIVR [BP).X_COORO
short-integer 237+EA 231-245+EA 2/4 4 FIOIVR FREQUENCY

FILO FILO source
Exception: I

Integer load

Execution Clocks Transfers
Operands Typical Range 8086 8088

Coding Example

word-integer 50+EA 46-54+EA 1 /2 2 FILO [BXJ.SEOUENCE
short-integer 56+EA 52-60+EA 2/4 4 FILO STANDOFF [Olj
long-integer 64+EA 60-68+EA 4/6 8 FILO RESPONSE.COUNT

248 8087 Applications and Programming

Table Al-1. Instruction set reference data (continued). Courtesy of
Intel Corporation.

FIMUL FIMUL source
Exceptions: I, D, 0, P

Integer multiply

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

word-integer 130+EA 124-138+EA 1/2 2 FIMUL BEARING
short-integer 136+EA 130-144+EA 2/4 4 FIMUL POSITION.Z_AXIS

FINCSTP FINCSTP (no operands)
Exceptions: None Increment stack pointer

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 9 6-12 0 0 FINCSTP

FINIT /FNINIT FINIT (no operands)
Exceptions: None

Initialize processor

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 5 2-8 0 0 FINIT

FIST FIST destination
Exceptions: I, P

Integer store

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

word-integer 86+EA 80-90+EA 2/4 4 FIST OBS.COUNT [SI]
short-integer 88+EA 82-92+EA 3/5 6 FIST [BP].FACTORED_PULSES

FISTP FISTP destination
Exceptions: I, P Integer store and pop

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

word-integer 88+EA 82-92+EA 2/4 4 FISTP [BX].ALPHA_COUNT [SI]
short-integer 90+EA 84-94+EA 3/5 6 FISTP CORRECTED_ TIME
long-integer 100+EA 94-105+EA 517 10 FISTP PANEL.N_READINGS

FISUB FISUB source
Exceptions: I, D, O. P Integer subtract

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

word-integer 120+EA 102-137+EA 1 /2 2 FISUB BASE_FREOUENCY
short-integer 125+EA 108-143+EA 2/4 4 FISUB TRAIN __ SIZE [DI]

Appendix 1 249

Table Al-1. Instruction set reference data (continued). Courtesy of
I~tel Corporation.

FISUBR FISUBR source
Exceptions: I, D, 0, P Integer subtract reversed

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

word-integer 120+EA 103-139+EA 1 /2 2 FISUBR FLOOR IBX] [SI[
short-integer 125+EA 109-144+EA 2/4 4 FISUBR BALANCE

FLD FLO source
Exceptions: I, D Load real

E'xecution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

ST(i) 20 17-22 0 0 FLO ST(0)
short-real 43+EA 38-56+EA 2/4 4 FLO READING [Sl[.PRESSURE
long-real 46+EA 40-60+EA 4/6 8 FLO JBPJ.TEMPERATURE
temp-real 57+EA 53-65+EA 5/7 10 FLO SAVEREADING

FLDCW FLDCW source
Exceptions: None Load control word

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

· 2-bytes 10+EA 7-14+EA 1 /2 2 FLDCW CONTROL WORD

FLDENV FLDENV source
Exceptions: None Load environment

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

14-bytes 40+EA 35-45+EA 7/9 14 FLDENV [BP+6J

FLDLG2 FLDLG2 (no operands)
Exceptions: I

Load log10 2

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 21 18-24 0 0 FLDLG2

FLDLN2 FLDLN2 (no operands)
Exceptions: I

Loadlog 0 2

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 20 17-23 0 0 FLDLN2

250 8087 Applications and Programming

Table Al-1. Instruction set reference data (continued). Courtesy of
Intel Corporation.

FLDL2E FLDL2E (no operands)
Exceptions: I

Loadlog2e

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 18 15-21 0 0 FLDL2E

FLDL2T FLDL2T (no operands)
Exceptions: I

Load 109210

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 19 16-22 0 0 FLDL2T

FLDPI FLDPI (no operands)
Exceptions: I Load n

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 19 16-22 0 0 FLDPI

FLDZ FLDZ (no operands)
Exceptions: I Load +0.0

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 14 11-17 0 0 FLDZ

FLD1 FLD1 (no operands)
Exceptions: I

Load +1.0

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 18 15-21 0 0 FLD1

FMUL FMUL / /source/destination.source
Exceptions: I, D, 0, U, P Multiply real

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

I /ST(i),ST/ST,ST(i)' 97 90-105 0 0 FMUL ST,ST(3)
I /ST(i),ST/ST,ST(i) 138 130-145 0 0 FMUL ST,ST(3)
short-real 118+EA 110-125+EA 2/4 4 FMUL SPEED_FACTOR
long-real' 120+EA 112-126+EA 4/6 8 FMUL IBP].HEIGHT
long-real 161+EA 154-168+EA 4/6 8 FMUL IBP].HEIGHT

occurs when one or both operands is "short"-it has 40 trailing zeros in its fraction (e.g., it was loaded from

a short-real memory operand).

Appendix 1 251

Table Al-1. Instruction set reference data (continued). Courtesy of
Intel Corporation.

FMULP FMULP destination.source
Exceptions: I. D, 0, U, P Multiply real and pop

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

ST(i),ST 100 94-108 C 0 FMULP ST(1).ST
ST(i),ST 142 134-148 0 0 FMULP ST(1).ST

occurs when one or both operands is "short"-it has 40 trailing zeros in its fraction (e.g .. it was loaded from

a short-real memory operand).

FNOP FNOP (no operands)
Exceptions: None No operation

Execution Clocks Transfers
Operands

Typical Range 8088 8088
Coding Example

(no operands) 13 10-16 0 0 FNOP

FPATAN FPATAN Ino operands) Exceptions: U. P
Partial arctangen: (operands not checked)

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 650 250-800 0 0 FPATAN

FPREM FPREM Ino operands!
Exceptions: I. D. U Partial remainder

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 125 15-190 0 0 FPREM

FPTAN FPTAN (no operands! Exceptions: I, P
Partial tangent (operands not checked)

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 450 30-540 0 0 FPTAN

FRNDINT FRNDINT Ino operands!
Exceptions: I. P Round to integer

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 45 16-50 0 0 FRNDINT

252 8087 Applications and Programming

Table Al-1. Instruction set reference data (continued). Courtesy of
Intel Corporation.

FRSTOR FRSTOR source
Exceptions: None

Restore saved state

Execution Clocks Transfe.rs
Operands

Typical Range 8086 8088
Coding Example

94-bytes 210•EA 205-215.:.EA 47,49 96 FRSTOR \BP]

FSAVE/FNSAVE FSAVE destination
Exceptions: None

Save state

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

94-bytes 210•EA 205-215-EA 48 50 94 FSAVE \BP]

FSCALE FSCALE 1no operands)
Exceptions: I. 0. U

Scale

Execl'tion Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 35 32-38 0 0 FSCALE

FSQRT FSORT 1no operands)
Exceptions': l. D. P

Square root

Execution Clocks Transfers
Operands

Typical Range [1086 8088
Coding Example

(no operands) 183 180-186 0 0 FSORT

FST FST destination
Store real

Exceptions: I, 0. U. P

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

ST(i) 18 15-22 0 0 FST ST(3)
short-real 87+EA 84-90+EA 3/5 6 FST CORRELATION \DI]
long-real 100+EA 96-104+EA 517 10 FST MEAN READING

FSTCW /FNSTCW FSTCW dest1nat1on
Exceptions: None

Store control word

Execution Clocks Transfers
Operand,;

Typical Range 8086 8088
Coding Example

2-bytes 15+EA 12-18.,.EA 2/ 4 4 FSTCW SAVE CONTROL

Appendix 1 253

Table Al-1. Instruction set reference data. (continued). Courtesy of
Intel Corporation. 1

FSTENV/FNSTENV FSTENV destination
Store environment Exceptions: None

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

14-bytes 45+EA 40-SO+EA 8/10 16 FSTENV !BPI

FSTP FSTP destination
Store real and pop

Exceptions: I, 0, U, P

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

ST(i) 20 17-24 0 0 FSTP ST(2)
short-real 89+EA 86-92+EA 3/5 6 FSTP IBXj.ADJUSTED RPM
long-real 102+EA 98-106+EA 517 10 FSTP TOTAL.DOSAGE
temp-real 55+EA 52-58+EA 6/8 12 FSTP REG_SAVE ISlj

FSTSW /FNSTSW FSTSW destination
Exceptions: None

Store status word

Execution Clocks Transfe,s
Operands

Typical Range 8086 8088
Coding Example

2-bytes 15+EA 12-18+EA 2/4 4 FSTSW SAVE_STATUS

FSUB FSUB / /sourcetdestination,source
Exceptions: l,D,O,U,P

Subtract real

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

//ST,ST(i)/ST(i),ST 85 70-100 0 0 FSUB ST,ST(2)
short-real 105+EA 90-120+EA 2/4 4 FSUB BASE_VALUE
long-real 110+EA 95-125+EA 4/6 8 FSUB COORDINATE.X

FSUBP FSUBP destination.source
Exceptions: l,D,O,U,P Subtract real and pop

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

ST(i),ST 90 75-105 0 0 FSUBP ST(2),ST

FSUBR FSUBR / /source/destination,source
Exceptions: l,D,O,U,P

Subtract real reversed

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

/ /ST,ST(i)/ST(i),ST 87 70-100 0 0 FSUBR ST,ST(1)
short-real 105+EA 90-120+EA 2/4 4 FSUBR VECTOA[SI]
long-real 110+EA 95-125+EA 4/6 8 FSUBA [BX].INDEX

254 8087 Applications and Programming

Table Al-1. Instruction set reference data (continued). Courtesy of
Intel Corporation.

FSUBRP FSUBRP destination.source
Exceptions: 1,0,0,U,P

Subtract real reversed and pop

Executon Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

ST(i),ST 90 75-105 0 0 FSUBRP ST(1),ST

FTST FTST (no operands)
Exceptions: I, D

Test stack top against +0.0

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 42 38-48 0 0 FTST

FWAIT FWAIT (no operands)
Exceptions: None (CPU instruction) (CPU) Wait while 8087 is busy

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 3+5n' 3+5n' 0 0 FWAIT

FXAM FXAM (no operands)
Examine stack top Exceptions: None

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 17 12-23 0 0 FXAM

FXCH FXCH //destination
Exchange registers Exceptions: I

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

//ST(i) 12 10-15 0 0 FXCH ST(2)

FXTRACT FXTRACT (no operands)
Extract exponent and significand Exceptions: I

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 50 27-55 0 0 FXTRACT

Appendix 1 255

Table Al-1. Instruction set reference data (continued). Courtesy of
Intel Corporation.

FYL2X FYL2X (no operands) Exceptions:
Y • Log2 X P (operands not checked)

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 950 900-1100 0 0 FYL2X

FYL2XP1 FYL2XP1 (no o~erands) Exceptions:
Y • log2(X+1) P (operands not checked)

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 850 700-1000 0 0 FYL2XP1

F2XM1 F2XM1 (no operands) Exceptions:
2•-1 u. P (operands not checked)

Execution Clocks Transfers
Operands

Typical Range 8086 8088
Coding Example

(no operands) 500 310-630 0 0 F2XM1

Appendix 2
Table A2-1. Exception conditions and masked responses.
Courtesy of Intel Corporation.

Condition Masked Response

Invalid Operation

Source register is tagged empty (usually
due to stack underflow).

Destination register is not tagged empty
(usually due to stack overflow).

One or both operands is a NAN.

(Compare and test operations only):
one or both operands Is a NAN.

(Addition operations only): closure is
affine and operands are opposite-signed
Infinities; or closure is projective and both
operands are co (signs immaterial).

(Subtraction operations only): closure is
affine and operands are like-signed
infinities; or closure is projective and both
operands are co (signs immaterial).

(Multiplication operations only): 00 • O; or
0 • co.

(Division operations only): co+ co; or O + O;
or O + pseudo-zero; or divisor is denormal
or unnormal.

(FPREM instruction only): modulus
(divisor) is unnormal ordenormal;
or dividend is co.

(FSQRT Instruction only): operand is
nonzero and negative; or operand is
denormal or unnormal; or closure Is affine
and operand is -co; or closure is projective
and operand is co.

256

Return real indefinite.

Return real indefinite (overwrite
destination value).

Return NAN with larger absolute value
(Ignore signs).

Set condition codes "not comparable".

Return real indefinite

Return real indefinite.

Return real indefinite.

Return real indefinite.

Return real indefinite, set condition code
= "complete remainder".

Return real indefinite.

Appendix 2 257

Table A2-1. Exception conditions and masked responses (continued).
Courtesy of Intel Corporation.

Invalid Operation

(Compare operations only): closure is Set condition code= "not comparable"
projective and 00 is being compared with O
or a normal, or oo.

(FTST instruction only): closure is Set condition code= "not comparable".
projective and operand is 00 •

(FIST, FISTP instructions only): source Store integer indefinite.
register is empty, or a NAN, or denormal,
or unnormal, or 00 , or exceeds represent-
able range of destination.

(FBSTP instruction only): source register Store packed decimal indefinite.
is empty, or a NAN, or denormal, or
unnormal, or 00 , or exceeds 18 decimal
digits.

(FST, FSTP instructions only): destination Store real indefinite.
is short or long real and source register is
an unnormal with exponent in range.

(FXCH instruction only): one or both Change empty register(s) to real indefinite
registers is tagged empty. and then perform exchange.

Denormalized Operand

(FLO instruction only): source operand is No special action; load as usual.
denormal.

(Arithmetic operations only): one or both Convert (in a work area) the operand to the
operands is denormal. equivalent unnormal and proceed.

(Compare and test operations only): one Convert (in a work area) any denormal to
or both operands is denormal or unnormal the equivalent unnormal; normalize as
(other than pseudo-zero). much as possible, and proceed with

operation.

Zerodivide

(Division operations only): divisor= 0. Return 00 signed with "exclusive or" of
operand signs.

Overflow

(Arithmetic operations only): rounding is Return properly signed ooand signal
nearest or chop, and exponent of true precision exception.
result> 16,383.

(FST, FSTP instructions only): rounding is Return properly signed oo and signal
nearest or chop, and exponent of true precision exception.
result> +127 (short real destination)
or> +1023 (long real destination).

258 8087 Applications and Programming

Table A2-1. Exception conditions and masked responses (continued).
Courtesy of Intel Corporation.

Underflow

(Arithmetic operations only): exponent of Denormalize until exponent rises to
true result<-16,382 (true). -16,382 (true), round slgnificand to 64 bits.

If denormalized rounded significand = 0,
then return true O; else, return denormal
(tag= special, biased exponent =O).

(FST, FSTP instructions only): destination Denormalize until exponent rises to -126
is short real and exponent of true result (true), round significand to 24 bits, store
<-126 (true). true O if denormalized rounded significand

= O; else, store denormal (biased expo-
nent = 0).

(FST, FSTP instructions only): destination Denormalize until exponent rises to -1022
is long real and exponent of true result (true), round significand to 53 bits, store
<-1022 (true). true O if rounded denormalized significand

= O; else, store denormal (biased expo-
nent = 0).

Precision

True rounding error occurs. No special action.

Masked response to overflow exception No special action.
earlier in instruction.

Appendix 3

Four of the programs below convert data back and forth between the
Intel format used in the 8087 and the Microsoft format used in much pre-
8087 software. Two programs, SM2I and DM2I, convert from Microsoft
to Intel; two, SI2M and DI2M, convert from Intel to Microsoft. Two
programs, SM2I and SI2M, convert single precision data; two, DM2I and
DI2M, convert double precision data. Occasional minor loss of precision
in the conversion process is unavoidable.

The fifth program, INIT8087, initializes the 8087.

Program:
Purpose:

Call:
Input:

Output:
Language:

Program:
Purpose:

Call:
Input:

Output:
Language:

Program:
Purpose:

Call:

The Cookbook-Appendix 3

SM21
Convert single precision vector from pre-8087 Mi-

crosoft format to Intel 8087 format.
CALL SM2I(SOURCE(0),DESTINA TION(0),N).
SOURCE-single precision n-vector.
N-integer number of elements in SOURCE.
DESTINA TI ON-single precision N-vector.
8088 assembly language.

S12M
Convert single precision vector from Intel 8087 for-

mat to pre-8087 Microsoft format.
CALL SI2M(SOURCE(0),DESTINATION(0),N).
SOURCE-single precision n-vector.
N-integer number of elements in SOURCE.
DESTINATION-single precision N-vector.
8088 assembly language.

DM21
Convert double precision vector from pre-8087 Mi

crosoft format to Intel 8087 format.
CALL DM2I(SOURCE(0),DESTINATION(0),N).

259

260 8087 Applications and Programming

Inpu~:

Output:
Language:

Program:
Purpose:

Call:
Input:

Output:
Language:

Program:
Purpose:
Call:
Input:
Output:
Language:

SOURCE-double precision n-vector.
N-integer number of elements in SOURCE.
DESTINATION-double precision N-vector.
8088 assembly language.

D12M
Convert double precision vector from Intel 8087 for-

mat to pre-8087 Microsoft format.
CALL DI2M(SOURCE(0),DESTINATION(0),N).
SOURCE-double precision n-vector.
N-integer number of elements in SOURCE.
DESTINATION-double precision N-vector.
8088 assembly language.

INIT8087
Initialize 8087.
CALL INIT8087.
none.
none.
8087/8088 assembly language.

If you use a version of BASIC which does not store data in Intel format,
you must use conversion routines before and after calling 8087 routines.
The following BASIC code provides an example.

10 DEFINT I-N
20 DEFDBL D
30 N=100:N1=N-1
40 DIM A(N1)
50 FOR I=O TO N1: A(I)=RND: NEXT I
60 CALL INIT8087
70 CALL SM2I(A(0), A(0), NJ
80 CALL SUM(A(0), N, DSUM)
90 CALL SI2M(A(0),A(0),N)
100 11=1: CALL DI2M(DSUM, DSUM, 11)

110 PRINT "THE SUM IS",DSUM
120 END

Conversion Routines

PUBLIC SM2I,SI2M,DM2I,DI2M,INIT8087

ESEG SEGMENT 'DATA'
WS DW 4 DUP(?)
ESEG ENDS

CSEG SEGMENT
FIRST-INST EQU

'CODE'
THIS WORD

;SUBROUTINE SM2I(SOURCE,DESTINATION,NJ
;CONVERT MICROSOFT TO INTEL

ASSUME cs:CSEG,ES:ESEG
SM2I PROC FAR

PUSH BP
MOV BP,SP

Appendix 3 261

;SET UP EXTRA SEGMENT TAKING CARE OF RELOCATION
PUSH
CALL

NEXT51: POP
SUB
MOV
SHR
MOV
ADD
SUB
ADD
MOV

;
; ROUTINE PROPER

MOV
MOV
JCXZ
MOV
MOV

SM2ILOOP: MOV
MOV
MOV

MOV
AND
SUB
JBE

SHR
JC
AND
JMP

SET1: OR
u: AND

OR
MOV
JMP

Z1: MOV
MOV

LOOPBOT1: ADD
ADD
LOOP

ES
NEXT51
AX
AX ,(OFFSET
CL,4
AX,CL
BX,CS
BX,ESEG
BX,CSEG
AX,BX
ES,AX

STARTS HERE
BX,[BP]+b
CX,[BX]
OUT
SI,[BP]+1O
DI,[BP]+8
AX, [SI]
[DI], AX
DX,[SI]+2

AH,DL
AH,8DH

NEXT 51)-(OFFSET FIRSLINST)

;ADDR(N)
;cx=N

;COPY SOURCE WORD 1

;MOVE WORD 2 INTO
DX

; GET SIGN BIT

DH, (129-127)
Z1

DH,1
SET1
DL,7FH
L1
DL,8DH
DH,7FH
DH,AH
[DI]+2, DX
LOOPBOT1

WORD PTR
WORD PTR
[DI]+2, □

SI,4
DI,4
SM2ILOOP

[DI], □

;CHECK FOR ZERO OR
CLOSE

;BIT 7 OFF

;BIT 7 ON
;SET SIGN
;BIT
;STUFF ANSWER AWAY

;MAKE IT ZERO

262 8087 Applications and Programming

OUT:

SM2I

POP
POP
RET
ENDP

ES
BP
6

;SUBROUTINE SI2M(SOURCE,DESTINATION,N)
;CONVERT INTEL TO MICROSOFT

ASSUME CS:CSEG,ES:ESEG
SI2M PROC FAR

PUSH BP
MOV BP,SP

;SET UP EXTRA SEGMENT
PUSH

TAKING CARE OF RELOCATION
ES

CALL
NEXT52: POP

SUB
MOV
SHR
MOV
ADD
SUB
ADD
MOV

;

;ROUTINE PROPER
MOV
MOV
JCXZ
MOV
MOV

SI2MLOOP: · MOV
MOV
MOV
MOV
AND
SHL
TEST
JZ
OR

L2: CMP

JE
ADD
AND
OR
MOV
JMP

22: MOV
MOV

NEXT52
AX
AX, (OFFSET NEXT 52)-(0FFSET FIRST _INST)
CL,4
AX,CL
BX,CS
BX,ESEG
BX,CSEG
AX,BX
ES,AX

STARTS HERE
BX,[BP]+b
CX,[BX]
OUT2
SI,[BP]+10
DI ,[BP]+8
AX,[SI]
[DI), AX
DX,[SI]+2
AH,DH
AH,80H
DH,1
DL,80H
L2
DH,1
DH, □

22
DH, (129-127)
DL,7FH
DL,AH
[DI)+2,DX
LOOPBOT2
WORD PTR [DI), 0
WORD PTR
[DI]+2,0

; ADDR(N)
;CX=N

;COPY SOURCE WORD 1

;WORD 2 INTO DX
;GET SIGN BIT

;LOOK AT LSE BIT

;SET LSE
;CHECK FOR TRUE

ZERO

;BIT 7 OFF
;SET SIGN BIT

;SET TO ZERO

LOOPBOT2: ADD SI,4
ADD DI,4
LOOP SI2MLOOP

OUT2: POP ES
POP BP
RET 6

SI2M ENDP

;SUBROUTINE DM2I(SOURCE,DESTINATION,NJ
;CONVERT MICROSOFT TO INTEL

ASSUME CS:CSEG,ES:ESEG
DM2I PROC FAR

PUSH BP
MOV BP,SP

;

Appendix 3 263

;SET UP EXTRA SEGMENT TAKING CARE OF RELOCATION
PUSH
CALL

NEXT53: POP
SUB
MOV
SHR
MOV
ADD
SUB
ADD
MOV

;
; ROUTINE PROPER

MOV
MOV
JCXZ
JMP

AROUND3: JMP
LL3: MOV

MOV
DM2ILOOP: MOV

MOV
MOV
MOV
MOV
MOV
MOV
MOV

MOV
AND
SUB
MOV
CMP
JE
ADD

ES
NEXT53
AX
AX ,(OFFSET
CL,4
AX,CL
BX,CS
BX,ESEG
BX,CSEG
AX,BX
ES,AX

STARTS HERE
BX,[BP]+b
ex ,[BXJ
AROUND3
LL3
OUT3
SI,[BP]+10
DI ,[BP]+8
AX,[SIJ
ES:WS,AX
AX,[SI]+2
ES:WS+2,AX
AX,[SI)+4
ES:WS+4,AX
AX,[SI]+b
ES:WS+b,AX

DH ,[SI]+b
DH,80H
AX,AX
AL,[SI]+7
AL, □
Z3

NEXT 53)-(0FFSET FIRSLINSTJ

;ADDR(NJ
;CX=N

;COPY SOURCE INTO
;WORK AREA

;GET SIGN BIT INTO
;DH
;CLEAR AX REGISTER
;GET EXPONENT
;CHECK FOR ZERO

AX, (1023-129) ;CORRECT BIAS

264 8087 Applications and Programming

SHR DH,1 ;SHIFT SIGN BIT
INTO

SHR DH,1 ;RIGHT POSITION
SHR DH,1
SHR DH,1
OR AH,DH ;SET SIGN BIT
AND BYTE PTR ES: ;CLEAR OLD SIGN BIT

WS+6,7FH
SHR AX,1
JNC L3
OR BYTE PTR ES: ;TURN ON LSE BIT

WS+6,80H
L3: MOV BX,3
LA3: SHR AX,1

RCR BYTE PTR ES:
WS+b,1

RCR WORD PTR ES:
WS+4,1

RCR WORD PTR ES:
WS+2,1

RCR WORD PTR
ES:WS,1

DEC BX
JG LA3
MOV BYTE PTR ES: ;ALL SET IN WORK

WS+7,AL AREA NOW
MOV AX,ES:WS ;STICK IN

DESTINATION
MOV [DI],AX
MOV AX,ES:WS+2
MOV [DI]+2,AX
MOV AX,ES:WS+4
MOV [DI]+4,AX
MOV AX,ES:WS+b
MOV [DI)+b,AX
JMP LOOPBOT3

Z3: MOV WORD PTR [DI), □ ;STORE AWAY ZERO
MOV WORD PTR

[DI]+2, 0
MOV WORD PTR

[DI]+4,0
MOV WORD PTR

[DI]+b,O
LOOPBOT3: ADD SI,8

ADD DI,8
LOOP DM2ILABEL
JMP OUT3

DM2ILABEL: JMP DM2ILOOP
OUT3: POP ES

POP BP
RET 6

DM2I ENDP

;SUBROUTINE DI2M(SOURCE,DESTINATION,N)
;CONVERT INTEL TO MICROSOFT

ASSUME cs:CSEG,ES:ESEG
DI2M PROC FAR

PUSH BP
MOV BP,SP

;

Appendix 3 265

;SET UP EXTRA SEGMENT TAKING CARE OF RELOCATION
PUSH ES
CALL NEXT54

NEXT54: POP AX
SUB AX ,(OFFSET NEXT 54)-(0FFSET FIRSLINST)
MOV CL,4
SHR AX,CL
MOV BX,CS
ADD BX,ESEG
SUB BX,CSEG
ADD AX,BX
MOV ES,AX

; ROUTINE PROPER STARTS HERE
MOV BX ,[BP]+b ; ADDR(NJ
MOV ex ,[BXJ ;CX=N
JCXZ AROUND4
JMP LL4

AROUND4: JMP OUT4
LL4: MOV SI ,[BP]+10

MOV DI,[BPJ+8
DI2MLOOP: MOV AX,[SI] ;COPY SOURCE INTO

MOV ES:WS,AX ;WORK AREA
MOV AX ,[SIJ+2
MOV ES:WS+2,AX
MOV AX,[SIJ+4
MOV ES:WS+4,AX
MOV AX ,[SI]+b
MOV ES:WS+b,AX
MOV DH,[SI]+7 ;GET SIGN BIT INTO
AND DH,8□ H ;DH
MOV AX,[SI]+b ;GET EXPONENT
AND AX, □11111111111 □□□□B
SHR AX,1
SHR AX,1
SHR AX,1
SHR AX,1 ;NOW EXPO IS IN

RIGHT SPOT
CMP AX, (1023-129) ;CHECK FOR ZERO
JBE Z4
SUB AX,(1023-129) ;CORRECT BIAS
MOV BYTE PTR ES: ;STORE AWAY

WS+7,AL EXPONENT
SHR DH,1 ;SHIFT SIGN BIT

INTO

266 8087 Applications and Programming

SHR DH,1 ;RIGHT POSITION
SHR DH,1
AND BYTE PTR ES: ;CLEAR OLD SIGN BIT

WS+b, □FH

OR BYTE PTR ES: ;SET SIGN BIT
WS+b,DH

MOV BX,3
L4: SHL WORD PTR

ES:WS,1
RCL WORD PTR ES:

WS+2,1
RCL WORD PTR ES:

WS+4,1
RCL BYTE PTR ES:

WS+b,1
DEC BX

.. JG L4

MOV AX,Es:ws ; STICK IN
DESTINATION

MOV [DI), AX
MOV AX,ES:WS+2
MOV [DI]+2,AX
MOV AX,ES:WS+4
MOV [DI)+4,AX
MOV AX,ES:WS+b
MOV [DI]+b, AX
JMP LOOPBOT4

Z4: MOV WORD PTR [DI), □ ;STORE AWAY ZERO
MOV WORD PTR

[DI]+2, □

MOV WORD PTR
[DI)+4, □

MOV WORD PTR
[DI)+b, □

LOOPBOT4: ADD SI,8
ADD DI,8
LOOP DI2MLABEL
JMP OUT4

DI2MLABEL: JMP DI2MLOOP
OUT4: POP ES

POP BP
RET 6

DI2M ENDP
;SUBROUTINE INIT8□87

INIT8□87 PROC FAR
FINIT
RET

INIT8O87 ENDP
CSEG ENDS

END

-Index
16-bit personal computers, 7
8086 microprocessor chips, 5

addressing of words in, 86
speed of, 22

8087 floating point library, 18-19
8087 Numeric Data Processor chips, 7-8

accuracy of, 2-3, 15
automatic error handling in, 104
BASIC and, 69-81
benchmarks for, 21-24
calculation speed improved by, 13-14
control options on, 27-29
as co-processors, 25-26
data types on, 9-10, 30-32, 35-37
hardware requirements of, 5
instruction classes on, 8-9
instruction sets for, 40-50, 179-200
registers in, 26-27, 39-40
representation of numbers on, 32-35
software compatibility for, 11-12, 15-16
speed of, 3-4
statistical analysis program for, 227-236
subroutines for solving systems of linear

equations using, 153-166
used for commercial data processing, 237

8088 microprocessor chips, 5, 7-8
8087 as co-processor with, 25-26
assembly language programming for, 53-

68
benchmarks on, 22
ESCAPE instructions on, 10
matrix programs and, 177
speed of, 3
unmasked exceptions passed to, 198

Access to memory for matrix operations,
115-118

Accumulator (AX register), 56
Accuracy, 2-3, 15, 28-29, 89-91

of differentiation, 203, 205
of double precision numbers, 89
errors in, 103-104
of matrix operations, 176

ADD instruction, 59
Addition instructions, 45-46
Addition programs, 50-51, 86-87

for vectors of strings, 238-241
Addressing

by 8088 chip, 8, 25
of memory, 56-58
of segments, 65, 74-77

267

Affine closure, 28
Algebra

Gaussian elimination, 138-139
matrix, 114, 133-134
matrix manipulation in, 134-137
non-linear methods for, 201-211
solving multiple linear systems, 137-138,

143-178
see also Equations

Algorithms, 12
AND instruction, 60
APL, 111
Apple computers, 5

benchmarks on, 23
Architecture of 8087 chip, 25-37
Arguments

double precision, 89-91
formats for, 43-44
to transcendental instructions, 183

Arithmetic instructions, 8, 43-47, 181-182
Arrays

copying of, 96-99
indexing of, 86-88
matrices, 114-115
in memory, 56, 57
multiple, indexing of, 91-93
see also Matrix operations

ASCII code, 16, 32
Assembler directives, 58, 67-68
Assemblers

object modules created by, 77
WAIT instructions inserted by, 26

Assembly language
8087 accuracy available to, 15
for BASIC, 19-20
loading of programs in, 77
matrix-handling programs in, 177
in packaged programs, 16
program for addition of vectors of strings

in, 238-241
programming in, 14, 53-68

ASSUME directive, 67
AX (accumulator) register, 56

Band matrices, 176
Base register, 56
BASIC

8087 chip and, 69-81
assembly language modules for, 19-20
benchmark programs in, 22
compiled, 18-19

268 Index

compilers and interpreters for, 13
data types available in, 9
error handling in, 104
error messages in, 100
indexing in, 57
interpreted, 17-18
machine language and, 43
matrix operations in, 111, 114-116, 177
non-linear methods in, 201
packaged programs in, 16
for use with 8087, 2

BASIC compilers
with 8087 floating point library, 18-19
benchmarks on, 22
interactive use of, 80-81
loading subroutines into, 78-79
program initialization in, 224-225

BASIC interpreters, 17-18
benchmarks on, 22
high overhead on, 4
installation of 8087 chips and, 5
interactive use of, 79-80
loading subroutines into, 77-78
program initialization in, 224-225

Benchmarks, 21-24
Binary files, 16, 18
Binary operations, 95
Binary point, 32
BLOAD.command, 74, 78
BP (stack pointer) register, 56, 57, 72
Branching instructions, 64-65

in assembly l_anguage, 62-64
from subroutines, 66-67

BSA VE command, 78
BX (index) register, 56, 57
Bytes, addressing of, 56

Calculation time, 13, 17
using compiled BASIC, 19

Calculus, 207
CALL instruction

in assembly language, 66
in BASIC, 69

Canned (packaged) programs, 15-16, 218-
227

Central Processing Units (CPUs), 7
8087 chip as co-processor in, 25

Circuit boards, 5
Clock speeds, 22
CMP instruction, 61
Code segment (CS) register, 65, 72
Column vectors, 116
Commands

in assembly language, 58
in canned statistical analysis program, 219-

220
Commercial data processing, 237-242

Comparison instructions, 9, 48-50
in assembly language, 61-62

Compatibility
of8087 and non-8087 versions of BASIC,

18
of software, 11-12, 15-16

Compiled BASIC, see BASIC compilers
Compilers, 13

8087 accuracy available to, 15
with 8087 floating point library, 18-19
for 8087 "native code," 19
benchmarks using, 22
see also BASIC compilers

Condition code bits, 26, 64
examining, 48, 50

Constants, 9
instructions for, 182

Control work (register), 27-28
processor control instructions for, 196

Correlation, 215-216
in canned statistical analysis program, 222-

223
Cosines, 190
Counter testing, 177-178
Count (CX) register, 56
Conversions

between ASCII and binary representa
tions, 32

of pre-8087 software, 17
Co-processors, 7-8

organization of, 25-26
Copying of arrays, 96-99
CPUs (central processing units), 7

8087 chip as co-processor in, 25
Crout decomposition, 150-153, 176, 177

back substitution after, 166-172
subroutines using, 153-166

CS (code segment) register, 65, 72
ex (count) register, 56

Data
in canned statistical analysis program, 220-

222
invalid, errors from, 109
representation of, 11-12, 16, 32-35
rules for handling of, 40-41
special types of, 35-37
storage of, in canned programs, 218-219
types of, 9-10, 30-32

Data definition, 58-59
Data processing, commercial, 237-242
Data registers, 8, 26
Data segment (DS) register, 65, 129
Data transfer instructions, 9, 40-43
Debugging, 100
DEBUG utility, 77
DEC-2060, 23

Decimal data, 10
see also Packed decimal data

DEC instruction, 60
DEF FN statement, 201
Denormal data, 36
Dependent variables, 216
Derivatives, 202-205, 207, 210, 211
Descriptive statistics, 214-215

in canned statistical analysis program, 222
Diagonal matrices, 176
Differentiation, numericaL 202-205, 207
Digital Equipment Corporation, 23
Directives, 58, 67-68
DI (index) register, 56, 57
Disk storage, 221, 222
Displacement (memory location), 56, 57
Division instructions, 43, 47
Double precision (long real) data, 9, 15, 31,

33
in 8087 and non-8087 versions ofBASIC,

18
arguments in, 89-91

DS (data segment) register, 65, 129
DX register, 56

EDP (Electronic Data Processing), 237-238
Effective addresses, 65
Element-by-element matrix operations, 119-

120
END directive, 68
ENDP directive, 67-68
ENDS directive, 67
Equations

Crout decomposition of, 149-153
Gaussian elimination for, 138-139
linear, 114-115, 133, 143, 175-176
linear, 8087 subroutines for solving, 153-

166
linear, back substitution after Crout re-

duction for, 166-172
linear, zero pivots in, 147-149
LUdecomposition of, 149-150
manipulation of, 133-134
matrix inversions for, 173-175
matrix manipulation for, 134-137
multiple linear, solving, 137-138
multiple regression, 216, 217
non-linear, solving, 207-209

Error conditions, 3
duplicate file names, 221
exceptions, 26, 29
overflows, 18
from programming, 99-100
from subroutines, 99
from use of subroutines, 100

Error handling
in BASIC, 104

Index 269

in canned statistical analysis program,
226

Errors
correction of, in canned statistical analysis

program, 221, 226
in precision, 103-109

Error terms, 216
ESCAPE instructions, 10, 11, 25
ES (extra segment) register, 65
Exception-handling instructions, 198-199
Exception-handling software, 104
Exceptions, 26, 29
Execution pointers (registers), 27
Explicit operands, 45
Exponentiation, 186-188
Exponents, 33-34
Extra segment (ES) register, 65
EXTRN directive, 68

F2XM1 instruction, 183, 186
FABS instruction, 47
FADD instruction, 45, 46
FADDP instruction, 46
FAR procedures, 127, 158
FBLD instruction, 43
FBSTP instruction, 43
FCHS instruction, 47
FCLEX instruction, 198-199
FCOM instruction, 48
FCOMP instruction, 48
FCOMPP instruction, 49
FDECSTP instruction, 199
FDISI instruction, 198
FDIV instruction, 4 7
FDIVP instruction, 47
FDIVR instruction, 47
FDIVRP instruction, 47
FENI instruction, 198
FFREE instruction, 199
FIADD instruction, 46
FICOM instruction, 49
FICOMP instruction, 49
FIDIV instruction, 47
FIDIVR instruction, 47
FILD instruction, 42
Files, binary, 16, 18
FIMUL instruction, 46
FINCSTP instruction, 199
FINIT instruction, 197
FIST instruction, 42
FISTP instruction, 42
FISUB instruction, 46
FISUBR instruction, 46
Flag register, 61
Flags, 61, 6'4

in canned statistical analysis program, 223
FLDl instruction, 183

270 Index

FLDCW instruction, 196
FLDENV instruction, 199
FLD instruction, 41
FLDL2E instruction, 183
FLDL2T instruction, 183
FLDLG2 instruction, 183
FLDLN2 instruction, 183
FLDPI instruction, 183
FLDZ instruction, 47, 182
Floating point libraries, 18-19
Floating point numbers, 29-30

in 8087 and non-8087 versions ofBASIC,
18

errors avoided by using, 109
representation of, 32-34

FMUL instruction, 46
FMULP instruction, 46
FNOP instruction, 199
FPATAN instruction, 184-185, 194
FPREM instruction, 181-182
FPTAN instruction, 184, 188
FRDINT instruction, 181
FRSTOR instruction, 197
FSA VE instruction, 196
FSCALE instruction, 181, 186
FSQRT instruction, 47
FSTCW instruction, 196
FSTENV instruction, 199
FST instruction, 41-42
FSTP instruction, 42
FSTSW instruction, 50, 64
FSUB instruction, 46
FSUBP instruction, 46
FSUBR instruction, 46
FSUBRP instruction, 46
FTST instruction, 49
Functions

differentiation of, 202-205
for floating point conversions, 18
integration of, 205-207
inverse trigonometric, 194-195
non-linear, 201-202
non-linear, optimizing, 209-211
non-linear, solving, 207-209
trigonometric, 188-194

FWAIT instruction, 26, 64, 196
FXAM instruction, 49
FXCH instruction, 42
FXTRACT instruction, 182
FYUX instruction, 184
FYUXPl instruction, 184

Gaussian elimination, 135-139, 177
zero pivot problem in, 147-149

General registers, 55-57

Hardware, 5

benchmarks for, 21-24
data type representations on, 32
for matrix operations, 111
with pre-8087 software, 17
speed of, 12

IBM 3081, 23
IBM Personal Computers (PCs)

benchmarks on, 22
compiled BASIC on, 18, 19
CPU on, 7
socket for 8087 in, 5

Identity matrices, 140
Immediate operands, 57
Implicit operands, 45
IMSL library, 176
INC instruction, 60
Independent variables, 216
Indexes in matrices, 114

partial pivoting with, 153, 156
Indexing

of arrays, 86-88
of memory, 56-57
of multiple arrays, 91-93

Index registers, 56, 57
Infinity, 28, 36
Initialization, 223-225
Inner products

in correlation coefficients, 215
in matrices, 123-133

Installation of 8087 chips, 5
Instructions and instruction sets, 7, 10, 39

advanced, 179-200
arithmetic, 43-47
in assembly language, 58-68
classes of, 8-9
comparison, 48-50
in co-processor environments, 25-26
data transfer, 40-43

Integer (word integer) data, 9, 31
indefinite, 37
overflows of, 109
representation of, 35
transfer instructions for, 42-43

Integer format arguments, 44
Integration, numerical, 205-207
Intel microprocessor chips, 5

see also 8086 microprocessor chips; 8087
Numeric Data Processor chips; 8088
microprocessor chips

Interactive programming
in compiled BASIC, 80-81
in interpreted BASIC, 79-80

Interpreted BASIC, see BASIC interpreters
Interpreters, 13

BASIC, 17-18
benchmarks using, 22

see also BASIC interpreters
Interrupts

instructions for, 198-199
by unmasked exceptions, 29

Inverse trigonometric functions, 194-195
Invocation time, 13

JCXZ instruction, 63
JMP instruction, 62-63

Labels, 58-59
Library collections (of programs), 176
Linear equations and systems, 114-115, 133-

134, 143, 175-178
8087 subroutines for solving, 153-166
back substitution after Crout reduction

for, 166-172
Crout decomposition of, 150-153
Gaussian elimination for, 138-139
LU decomposition of, 149-150
matrix inversions for, 173-175
matrix manipulation for, 134-137
solving, 137-138
zero pivots in, 147-149

Linear operations, 14, 17, 19, 20
LINK utility, 77
Loading

of assembly language programs, 77
of subroutines into compiled BASIC, 78-

79
of subroutines into interpreted BASIC,

77-78
Logarithms, 185
Long integer data, 9, 31
Long real data, see Double precision data
LOOP instruction, 63-64
Loops

counter testing in, 177-178
endless, 205
for optimization, 177

LU decomposition, 149-150

Machine language
errors in programs in, 100
subroutines in, 72-74

MACRO assembler, 178
Mainframe computers, 3, 19, 21

benchmarks on, 23
MAT functions, 111
Mathematical instructions, 7, 43-47, 181-

195
Matrices, 14

in canned statistical analysis program, 226
special types of, 176

Matrix multiplication, 115, 123-133
Matrix multiplication program

8087 speed of, 4
as benchmark, 21

Index 271

execution time for, 14, 17
speed of, in assembly language, 20

Matrix operations, 111, 114-115, 143, 175-
178

8087 subroutines for solving systems of
linear equations, 153-166

back substitution after Crout reduction,
166-172

Crout decomposition, 150-153
Gaussian eliminations, 138-139
inversion, 139-141, 173-175
LU decomposition, 149-150
manipulation, 134-137
memory access for, 115-118
multiplication and inner products, 123-

133
programs for,. 111-113
scalar and element-by-element, 119-120
solving multiple linear systems, 137-138
transpositions, 121-123
zero pivot problem in, 147-149

Means (averages), 214
Memory

addressed by 8088 chip, 8
addressing of, 56-58
data transfer instructions for, 40-43
for matrix operations, 115-118
segments in, 55, 65-66

Menus, 219-220
Microprocessors

8088 chip, 7
co-processors, 25-26
speed of, 22

Microsoft, 12
conversions of software in format of, 17

Minicomputers, 3, 19, 21
benchmarks on, 23

Modular programming, 218
Modules, 218-227
MOY instruction, 60
MUL instruction, 60
Multiple regression, 216-217

in canned statistical analysis program,
223

Multiplication
instructions for, 46
matrix, 115, 123-133
shifting versus, 157-158, 177
see also Matrix multiplication program

Multiple arrays, indexing of, 91-93

NAN (Not-A-Number) data, 37
"Native code" compilers, 19
NEAR procedures, 127,158
Negative numbers, 35
Non-linear operations, 14, 18-20, 200, 201-

211

272 Index

Normal distribution, 215
Normalized floating point format 33
Not-A-Number (NAN) data, 37
Numbers

floating point, 29-30
representation of, 11-12, 16, 32-35
rounding of, 27-28
special types ot 35-37
types of, 9-10, 30-32

Number systems, 29
Numerical differentiation, 202-205, 207
Numerical integration, 205-207

Object modules, 77
Operands

immediate, 57
stack, 45

Optimization
of loops, 177
non-linear, 209-211

Ordinary least squares, 217
OR instruction, 60
Overflow errors, 18, 109
Overhead, time spent on, 4 .

Packaged (canned) programs, 15-16, 217-
227

Packed decimal data, 10, 31, 32
in commercial data processing, 238
indefinite, 37
in program to add vectors of strings, 241
representation ot 35
transfer instructions for, 42-43

Parameters, skip, 126
Partial pivoting, 148-149, 153-156, 161, 165,

176
PCs, see IBM Personal Computers
Personal computers

CPUs on, 7
installation of 8087 chips in, 5
see also IBM Personal Computers

POP instruction, 66
Positive numbers, 35
Pre-8087 software, 2

compared with 8087 subroutines, 4
hardware with, 17
noncompatibility ot 12, 16

Precision, 3, 28-29, 89-91
errors in, 103-109
see also Accuracy

Procedures, 55
NEAR and FAR, 127, 158

Processor control instructions, 9, 50, 196-
197

Processors, 7-8
co-processor~ 25-26

PROC FAR directive, 67-68

Programming
in assembly language, 53-68
in BASIC, 69-81
errors from, 99-100
matrix, advanced, 175-178
modular, 218

Programs
addition, 50-51
for addition of vectors of strings, 238-241
in assembly language, loading of, 77
bugs in, 100
compatibility of, 11-12
for linear systems and matrix inversion,

advanced, 143-146, 153-166, 177-178
matrix, 111-113
packaged (canned), 15-16, 218-219
simple subroutines, 83-86
speed of, 12-13
for statistical analysis, 219-236
translation ot 13-14
using advanced instruction set, 179-180
see also Software, Subroutines

Projective closure, 28
Pseudo-zero, 36
PTR directive, 58
PUBLIC directive, 68
Pushdown stacks, 8, 26
PUSH instruction, 66

Read Only Memory (ROM) chips, 5, 17
Real-and-pop format arguments, 43-44
Real format arguments, 43
Read indefinite data, 37
Real transfer instructions, 41-42
Registers, 8, 26-27, 39-40

flag, 61
general, 55-57
segment 65

Register stack, 26, 39-40
comparison instructions for, 48

Regression, 216-217
in canned statistical analysis program, 223

Relocation of subroutines, 74-77
Representation of numbers, 11-12, 16, 32

floating point, 32-34
integer, 35
packed decimal, 35

Residuals (in regression), 217
RET instruction, 66-67
Returns from subroutines, 66-67
Reversed division instructions, 43
Reversed subtraction instructions, 43
ROM (Read Only Memory) chips, 5, 17
Rounding, 27-28
Routines, see Subroutines
Row vectors, 116
R-squared statistic, 217

SAHF instruction, 62
Scalar matrix operations, 119-120
Scalar subroutines, 93-95
Scientific notation, 30, 33
Screen handling, 227
SEGMENT directive, 67
Segment registers, 65
Segments, 55, 65-66

addressing of, 74-77
Shifting, 157-158, 177
SHL instruction, 60
Short integer data, 9, 31
Short real (single precision) data, 9, 31, 33,

89
SHR instruction, 60-61
Simultaneous linear equations, see Linear

equations and systems
Sines, 190
Single precision (short real) data, 9, 31, 33,

89
SI (index) register, 56, 57
Skip parameters, 126
Software

for 8087, 1
8087-compatible, 15
assembly language modules for BASIC,

19-20
BASIC, 69-81
benchmarks for, 21
compatibility of, 11-12
compilers, 18-19
ESCAPE instructions in, 10
exception-handling, 104
interpreted BASIC, 17-18
packaged programs, 15-16
pre-8087, 2, 17
speed of, 12-13
upgrading of, during installation of 8087

chips, 5
see also Programs; Subroutines

Source programs
compiling of, 18
translation of, 13-14

Sparse matrices, 176
Special data types, 35-37
Speed

of 8087-equipped PCs, 3-4
of assembly language, 19, 20
benchmarks of, 21-24
of matrix multiplication subroutines, 130-

132
of pre-8087 software, 2
of programs, 12-13

SP (stack pointer) register, 56, 65, 72
Square root program

8087 speed of, 4
as benchmark, 21

Index 273

execution time for, 14, 17
SS (stack segment) register, 65, 129
Stack operands, 45
Stack pointers (BP and SP registers), 56, 65,

72
Stacks, 8, 26, 39-40

arithmetic instructions on, 43-45
comparison instructions for, 48
used in matrix multiplication, 128, 129

Stack segment (SS) register, 65, 129
Standard deviations, 214-215
Standard errors, 216, 217
Statistical analysis, 213-214

correlation in, 215-216
descriptive statistics in, 214-215
multiple regression in, 216-217
program for, 219-236

ST (stack) registers, 26, 39-40
arithmetic instructions on, 43-45

Status word (register), 26-27
processor control instructions for, 196

Strings, program for addition of vectors of,
238-241

Subroutines, 83-86
branching and returns from, 66-67
calling, in BASIC, 69-71
double precision arguments in, 89-91
errors resulting from, 99
errors in use of, 100-103
for linear systems and matrix inversion,

advanced, 143-146, 153-166
loading of, into compiled BASIC, 78-79
loading of, into interpreted BASIC, 77-78
in machine language, 72-74
matrix, 111-113
relocation and segment addressing of, 7 4-

77
scalar, 93-95
using advanced instruction set, 179-180
utility, 96-99

Subtraction instructions, 43, 46
Symmetric matrices, 176
Synchronization of co-processors, 26

Tag word (register), 27, 36
Tangents, 184, 188, 200

in differentiation, 202, 298
Temporary real data, 9, 31, 89
TEST line, 26
Transcendental instructions, 9, 183-185

invalid data fed into, 109
Translation of source programs, 13-14
Translation time, 13

eliminated by compilers, 18
Translators

8087 accuracy available to, 15
8087-compatible, 17

274 Index

compilers, 18-19
number representations in, 12
speed of, 12-13
see also Compilers; Interpreters

Transpositions of matrices, 121-123
Trigonometric functions, 188-194

inverse, 194-195
t-statistic, 216
"Two's complement'' format, 35

Unary operations, 95-96
Underflows, 36
Unnormal data, 36
Utility subroutines, 96-99

Variables
correlation coefficients for, 215-216
in multiple regression, 216-217

Variance, 214
VAX-780, 23

WAIT instruction, 26
Word integer data, see Integer data
Word processing, 4
Words, addressing of, 56

Zero, 34, 36
in matrix manipulations, 135, 138, 140,

147-149, 152, 176

Diskette Files to Accompany 8087
Applications and Programming for the IBM PC
and Other PCs

The diskette files accompanying 8087 Applications and Programming for the
IBM PC and Other PCs are described in this note. Complete descriptions
of the programs and their operation appear in the text. This note is limited
to a technical description of the diskette files.

If you have not already done so, please read the copyright notice,
liability disclaimer, and the section on the inherent dangers in using
machine language programs.

The programs require one single-sided disk drive, 64K of memory, a
copy of the operating system version 1.1 or 2.0 and, for the most part,
an 8087. The programs are distributed on a "£lippy diskette." (Each side
of the diskette is equivalent to one regular single-sided diskette.) The
diskette is not copy protected.

The assembly language programs in the text appear in the following
files:

VECTOR.ASM
MATRIX.ASM
MATADV.ASM
TRANS.ASM
BCD.ASM
BCDI.ASM ·
CONVERT.ASM

Chapter 9 programs-basic vector routines
Chapter 10 programs-basic matrix routines
Chapter 11 programs-advanced matrix routines
Chapter 12 programs-transcendental routines
Chapter 15 program-compiler version
Chapter 15 program-interpreter version
Appendix programs-Intel/Microsoft conversion
routines

These files are almost, but not exactly, identical to the programs ap
pearing in the book. The differences are:

1. All 8087 mnemonics have been replaced with the equivalent 8088
mnemonics so that the programs can be assembled by assemblers
which do not recognize the 8087 names. The 8087 mnemonics have
a semicolon placed in front of them to turn them into comments.
(For the information of IBM PC users, all these files can be assembled
using version 1.0 of the IBM Macro Assembler.)

2. The programs from each chapter have been grouped together in
one file. Slight rearrangements of CSEG/ENDS statements have been
made. Some statement labels have been modified to eliminate du
plicate definitions. For example, you will see labels "NEXT0l",

275

"NEXT02", and so forth, instead of "NEXT", and "NEXT", and so
forth.

Not everyone has an assembler program. As a convenience, each file
above has been assembled into a program with the extension ". OBJ"
replacing the extension ".ASM".

Since linking a machine language program for use with interpreted
BASIC is time consuming, we have translated each of the files into a file
with the extension ". SA V". These files can be loaded directly into inter
preted BASIC using the BLOAD command. (Since program BCD can be
used only with the interpreter, there is no ".SAV" version. Use "BCDI.SAV"
instead.)

The memory map produced by the LINK program appears in files with
extension ".MAP". Use the information in these files to find the offset
of a particular routine. If you are going to load more than one file into
BASIC, remember that the relocation scheme explained in the book re
quires the routines to be loaded at an address ending in hexadecimal
zero. That is, you can say BLOAD "CONVERT.SAV",&HlO, but you
should not try BLOAD "CONVERT.SAV",&Hll.

For an example of loading multiple assembly language programs into
an interpreted BASIC program, see the program "STAT87.BAS".

Remember that the assembly language routines expect all data to be
in INTEL format. If you are mixing these routines with pre-8087 pro
grams, you must convert data. For an example of using conversion rou
tines, see the program "STATPRE.BAS".

The "8087 Statistical Analysis Program" appears in two versions.
STAT87.BAS is the progr~m as it appears in the text. STATPRE.BAS
includes calls to the conversion routines, so you can. use the program
immediately with pre-8087 versions of BASIC. Module 12 of these pro
grams include "CLEAR" and "DEF SEG" statements that allow these
programs to run in systems with 64K of memory. If you have more
memory, you may want to change these statements to increase the space
available for data storage. The programs are standard text files. If you
load the program into BASIC and then SA VE it, the SA VEd version will
LOAD much faster than the original. If you eliminate the REMark state
ments from the program, the space for data storage will increase.

The following BASIC programs also appear on the diskette. Remember
to modify these programs to reflect your own data and functions.

CPP.BAS Crout decomposition
GPP.BAS Gauss decomposition
SOLP.BAS Solution following Crout decomposition
DIFFER. BAS numerical differentiation
INTEGRAT.BAS numerical integration
ZERO.BAS solve non-linear equation
MAX. BAS maximize non-linear function

276

"A pleasure ta reacl ... the author's style is excellent and
the 1~xplanatic ,n of what the 8087 can do is terrific .. . 11

-Peter Norton, President of NORTON UTILITIES, author of Inside the IBM

Now, Large Scc/e Nr,merical Computing
Is Mnde Faster and Easier Than Ever Before With ...

8087 Applications and Programming
For The IBM PC And Other PCs

Rrchard Startz

Finally-a book th,1t gives you a clear, complete explanation of
the number crunc,hing 8087 microprocessor Jor the IBM PC
and other compatible machines! Whether you're a "program
writer" or "progra'TI user," this unique guide hetps you under
stand how the 8087 chip works, what it does, and how fast
it processes!

• For Novice and llotential Chip Users, the text includes a non
technical overviaw of the capabilities of the 8087, featuring
speed benchma-rking and guidelines for buying compatible
8087 software!

• For Program Writers Who Want to Know Intimate Details
About The Chip, the text includes a complete section of the
8087's instruct,ons-with special attention to linking as
sembly langua~ and BASIC programs!

• For Program Us11rs, the text includes a wide variety of ready
to-use "cookb~k" applications designed to give you an
swers fast anc easy, including the "8087's Statistical
Analysis Program"!

CONTENTS
Turning Minutes Into Seconds/The Intel 8087 Chip/Buying
and Building 808'7-Compatible Software/Benchmarks/Intro
duction to 8087 Architecture/Simple Instruction Set/Intro·
duction to 8088 Assembly Language Programming/BASIC
and the 8087 /Simple 8087 Routines/Basic Matrix Operations/
Linear Systems a11d Matrix Inversion: More Advanced Compu
tational Techniq..ies/Advanced Instruction Set/Non-Linear
Methods/Statistic-al Analysis and Program Canning/Commer
cial Data Proce 1sing/Appendices/lndeX/Diskette Files to
Accompany 8087 Applications and Programming

ALSO AVAILABLE ... OPTIONAL DISKETTE
This accompanying.diskette includes all programs from the text. See
insert inside this be ok for ordering information.

ISBN 0-89303-420-7

	2020_07_27_17_35_21.pdf
	fixme

