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Diskette Files to Accompany 8087 Applications and Programming 

About The Diskette 

The diskette, which is available as an option with the book, contains all 
the programs listed in The Cookbook. Each program appears in three 
forms: as an assembly language source program (e.g., PROG.ASM); as 
an already assembled object module (e.g., PROG.OBJ); and as a file ready 
to be BLOADed into BASIC (e.g., PROG.SAV). In several cases, a number 
of programs have been combined into a single module for ease. For 
instance, the most important matrix manipulation routines are combined 
in files MATRIX.ASM, MATRIX.OBJ, and MATRIX.SAY. The programs 
are supplied on a standard single-sided, 5.25 inch diskette formatted on 
an IBM Personal Computer running PC-DOS 1.1. A copy of the diskette 
documentation appears at the end of the book. 
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Introduction 

Let me explain why I'm excited about the 8087. I've used large computers 
for many years as a tool for professional research. When I bought my 
personal computer, I found I could do many things far more conveniently 
than on these larger machines. But I quickly discovered that my machine 
wasn't fast enough for large scale numerical computing. 

Having an 8087 means that now I can solve many large problems on 
my personal computer. While some problems still belong on big machines 
(and always will), my personal computing horizon has expanded ten
fold. 

The 8087 isn't just fast; it's very easy to use. Whether you are mostly 
a "program user" or mostly a "program writer," you will find that the 
8087 is a remarkable device. I hope you will find 8087 Applications and 
Programming an enjoyable, as well as an educational, introduction. 

Who is This Book For? 
• People who want to know what the 8087 will do (especially Part I, 

Chapters 1-4). 
• People who want to learn how to program the 8087 (especially Part 

II, Chapters 5-8 and Chapter 12 in Part III). 
• People who want prepared programs for number crunching appli

cations on their personal computer (especially Part III, Chapters 9-
15). 

Part I describes the capabilities of the 8087 at a fairly non-technical 
level. If you are considering buying an 8087 and want to know about 
8087-compatible hardware and software, Part I is for you. 

Parts II and III are for the more technically inclined reader. While we 
"begin at the beginning," some prior programming experience is helpful. 
You needn't be an expert by any means, but this book isn't an Intro
duction to Computers. 

Part II (Chapters 5-8) provides an in-depth description of the 8087's 
instructions. We also discuss some of the fundamentals of assembly Ian-
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guage programming for the 8088. We pay special attention to linking 
assembly language and BASIC programs, including a blow-by-blow in
teractive session in which we link an assembly language program with 
both interpreted and compiled BASIC. 

Part III concentrates on applications. We develop many useful 8087 
assembly language routines in Part III. You can use these programs as 
examples, to learn more about 8087 programming, or you can use the 
programs "cookbook" fashion. (Part III also includes, in Chapter 12, an 
explanation of some of the 8087's most advanced instructions. 

How to Read This Book 

I've taken care to write so that you can skip around from one section to 
the next as suits your mood. Please don't feel constrained to read from 
beginning to end. 

Most readers will probably find Part I informative and easy reading. 
If you want to write 8087 assembly language programs, concentrate on 
Part II. (If you are an experienced 8087 programmer, you can skip Part 
II and move on to the applications in Part Ill.) If you are interested in 
applications, but don't care about intimate programming details, read 
Part III. You can always flip back to Part II if you need to check something. 

Finally, you can use the programs here "cookbook" style. You don't 
need to know why a program was written in a certain way or how it 
operates internally, if you just want to get a fast answer. Go ahead and 
use the programs. If a program is useful enough that you want to modify 
it or write a similar one yourself, you can return later for the "how and 
why." 

The Cookbook 

Several chapters begin with an introductory paragraph and then a sign 
that says 

The Cookbook 

Under this sign, you will find a list of the programs appearing in the 
chapter, together with a brief description of the purpose of the program 
and the input and output required. Use the cookbook when you want 
to find a program in a hurry. We spend quite a bit of time discussing 
why certain things are done in certain ways. If you want to run programs, 
but not build your own, you don't need to read the "how and why" 
material. Do scan the material which describes the information you need 
to pass to the programs. 
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Strategic Number Crunching 
In addition to a great deal of detail about the 8087 and about numerical 
programming, this book presents a strategic approach to serious com
putational work. Our strategy grows from two programming maxims:· 

• 10 percent of program code accounts for 90 percent of program execution 
time. 

• The cost of creating a working program is proportional to the square of the 
length of code, regardless of the power of the programming language being 
used. 

Serious programmers sometimes go to great effort, mistakenly, to write 
"efficient programs." A far better strategy is to identify the 10 percent 
of the code that has 90 percent of the computational burden. Re-write 
the 10 percent for maximum efficiency; write the other 90 percent for 
maximum clarity. 

The search for efficiency often leads to writing programs in assembly 
language. Because assembly code can be 10 times the length of equivalent 
BASIC code, assembly language programs can be 100 times harder to 
debug. It (almost) never makes sense to write an entire program in as
sembly language. It does make sense to code the critical routines in as
sembly language. In this way, we get almost the entire advantage of 
assembly language speed at a small fraction of the cost of assembly 
language programming. 

We can actually do even better by recognizing that many numerical 
programming problems use the same underlying subroutines. An 8087 
assembly language program to add up an array is somewhat more com
plicated than a FOR/NEXT loop in BASIC. But we only need to write and 
debug the 8087 program once. Having done so, using the subroutine 
over and over is probably easier than writing a FOR/NEXT loop every 
time we need to add up an array. Computer scientists call this planned 
reuse of subroutines "modular programming." For an example of the 
convenience and power of modular 8087 subroutines, take a look at the 
statistical package in Chapter 14. 

You can actually do even better. 8087 routines for many numerical 
computing needs appear in this book (and on the optional diskette). 
While we hope you decide to learn about all the capabilities of the 8087 
and to write your own special subroutines, you're more than welcome 
to begin by lifting the subroutines bodily from these pages and putting 
them to use in your 8087-equipped personal computer. 
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Hardware and Software Requirements 
The programs in this book run on computers based on the Intel 8087 
Numeric Data Processor and the 8088,8086 family of Intel microproces
sors. In addition to the 8088 and 8086, this family includes the 188, 186, 
and 286 microprocessors and the associated versions of the 8087. The 
programs were all developed and tested on an IBM Personal Computer. 
All timing assumes the processor is a 5 megahertz 8088. Timings are only 
approximate. (For example, the IBM PC runs about five percent slower 
than the stated timings. An 8086-based machine will be somewhat faster.) 
Timings given for BASIC programs refer to interpreted BASIC without 
an 8087, unless otherwise qualified. 

The 8087 assembly language programs can be called as subroutines 
from programs written in either interpreted Microsoft BASIC or compiled 
Microsoft BASIC, as available on the IBM Personal Computer. The pro
grams assume that data is stored in 8087-compatible format. (See Chapter 
3 for an extensive discussion of 8087-compatible software.) The programs 
will run with pre-8087 versions of BASIC, but you will need to add the 
Microsoft-to- Intel conversion programs in the appendix. 

In order to assemble the programs in the book, you will need an 
assembler that recognizes the full set of Intel mnemonic instructions. (Be 
warned that version 1.0 of the IBM Personal Computer MACRO Assem
bler does not recognize 8087 instruction mnemonics, though it will gen
erate 8087 instructions. You can still use this assembler if you are willing 
to re-code the 8087 mnemonics into the 8088 ESCape instruction. On the 
optional diskette, we have already re-coded the mnemonics, so you can 
use the IBM Macro Assembler.) Since BASIC is the dominant personal 
language, we've written all the programs to be called from BASIC instead 
of FORTRAN or some other language more common ,on large computers. 
If you want to combine the programs with a language that uses different 
internal conventions BASIC, you may have to re-write a few instructions. 
The programs all work under Microsoft BASIC using version 1.1 of the 
PC-DOS operating system on the IBM Personal Computer. If you are 
using another computer or different software, some minor details may 
be different. 
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Disclaimers and Limits on Liability 

Legal style: 
The author and publisher of this book and any accompanying software 
hereby disclaim any and all guarantees and warranties, expressed and 
implied, on the programs and information herein. No liability for dam
ages, either direct or consequential, shall be assumed by author or pub
lisher. This product is sold on an "as is" basis; no fitness for any purpose 
whatsoever nor warranty of merchantability is expressed or implied. 

People style: 
We've tried very hard to make sure that all the information given is 
correct and that all the programs work. Nonetheless, it is possible that 
somewhere in the hundreds of pages of manuscript and the thousands 
of lines of code, a bug lurks. The purpose of the book and software is 
to teach. When you use the programs here, make sure you fully test 
them. If most of your programming has been in BASIC, please take special 
note of the section in the book on error-handling. Assembly language 
programs are by their very nature less fool-proof than programs written 
in high-level languages. 

If, despite all my precautions, you think you've found a bug, please 
write me (c/o Robert J. Brady Company, Bowie, Maryland, 20715) so I 
can correct future editions. 

Trademarks 

The following trademarks are used in this book: 
• IBM, IBM Personal Computer, IBM PC, and PC-DOS are trademarks 
of International Business Machines Corporation 

• 8086, 8087, 8088, 186, 188, 286, Numeric Data Processor, and iAPX 
are trademarks of Intel Corporation. The 8087 and 8088 instruction 
mnemonics are copyrighted by Intel. 

• Microsoft and MS-DOS are trademarks of Microsoft Corporation . 
• Apple II+ is a trademark of Apple Computer . 
• DEC-2060 and VAX are trademarks of Digital Equipment Corporation . 
• IMSL is a trademark of IMSL Inc. 
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Turning Minutes Into 
Seconds 

The 8087-equipped personal computer has three nice features: it's easy, 
accurate, and fast. Everything you need to apply 8087 power to practical 
computational problems is in this book. This first chapter describes the 
8087 and its use at the broadest level. 

Throughout the book, we try to take a scientific and analytical approach 
to understanding the 8087. Wherever possible, we discuss general prin
ciples-the "why" of programming-along with the hundred-and-one 
technical details needed to make a computer work. To keep the discussion 
concrete, each general principle is illustrated with a practical application. 
The 8087 is powerful, yet easy to use. We hope this book will be occa
sionally mind-stretching-and fun as well. 

How Easy Is Easy? 
The 8087 has been designed to emphasize ease of use as much as raw 
computational power. Your first step as an 8087 user is especially easy. 
Just add an 8087 to a personal computer and run your programs as usual. 
(You will need the version of BASIC, or other software, intended for use 
with the 8087.) Without any further effort, you can expect to see im
provements in execution speed ranging from about 20 percent to as much 
as a factor of 10. 

If you want the maximum advantage from the 8087's hardware power, 
you will need software specifically designed for the 8087. There is an 
extended discussion in Chapter 3 of what to look for-and what to look 
out for-when purchasing software for the 8087. Here we give a quick 
overview. 

The most important piece of knowledge about 8087 compatible software 
is really a statement about hardware. The 8087 extends the capabilities of 
existing processors without interfering with the processors' usual oper-
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2 8087 Applications and Programming 

ations. Therefore, any software designed "pre- 8087" should continue to 
operate normally when the 8087 is present. 

Such 100 percent "upward compatibility" is a great advantage, but it 
does have a flip side. When you add an 8087 to a system, programs using 
"pre-8087" software do not speed up at all. For example, you can add 
an 8087 to the original IBM Personal Computer in a minute or two. (I 
added one to my IBM PC in order to write the programs for this book.) 
All your interpreted BASIC or compiled BASIC programs will run cor
rectly, but no faster. So when we make statements about the speed 
advantage from adding an 8087, there is also an implicit statement made 
about using 8087 compatible software. 

(With a little reprogramming, you can use the 8087 with pre-8087 ver
sions of BASIC and other software. We discuss this problem in Chapter 
3, but if you'd like a little reassurance, all the programs in this book were 
written using pre-8087 software.) 

You should be aware of one potential trap in buying software for use 
with the 8087. It is possible, though unlikely, that you will get into trouble 
by mixing software designed to take advantage of the 8087 with pre-8087 
software. See Chapter 3 for more discussion. 

Assuming you have the versions of BASIC or other programming lan
guages intended for use with the 8087, you can run all your usual pro
grams. Programs that do a great deal of numerical computing will race 
when compared to pre-8087 performance. If you are a really heavy num
ber cruncher, you will eventually want to use a library of specially written 
high-speed 8087 subroutines. 

Part III of this book (Chapters 9-15) includes the most important sub
routines for numerical computing. All you need do is read the explanation 
of how to use each subroutine, enter them into the computer, and com
bine them with your BASIC programs. (On the diskette available with 
this book, the subroutines have been typed in and assembled for you.) 
When compared to pre-8087 BASIC, the use of these subroutines in
creases execution speed by a factor of 10 to 200. (In rare cases, improve
ment factors as high as 500 have been noted.) 

Part II of this book (Chapter 5-8) prepares you for the most advanced 
stage of 8087 use: writing your own subroutines. As you will see in the 
examples throughout this book, programming the 8087 in assembly lan
guage is relatively simple because of the 8087's elegant design. When 
you've seen the examples and instructions here, you'll have no trouble 
writing your own special purpose programs. 

How Accurate Is Accurate? 
Easily-written, fast-executing programs are no great trick-if you don't 
care about getting the right answer. The most important attribute of the 
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8087 is its remarkable accuracy. The 8087 has three accuracy-enhancing 
features: 

• Internal calculations yield 11 more bits of accuracy than BASIC dou
ble precision numbers. That's worth three extra decimal places. 

• Internal calculations have an extremely wide range. The 8087 can 
represent numbers as large as 104932 and as small as 10-4932 • As a 
result, calculations rarely overflow or underflow during intermediate 
steps. In fact, both the precision and range of numbers are greater 
than those found on most traditional mainframe computers. 

• The 8087 is designed to handle a wide range of error conditions and 
make an automatic, and graceful, recovery. As a result, simple "pa
per and pencil" algorithms are much more likely to work. And when 
something goes wrong, the 8087 follows well- behaved rules instead 
of producing the wrong answer. 

How Fast Is Fast? 

Just how fast is an 8087-equipped PC? A good comparison can be made 
to either a standard mainframe computer or to a microcomputer without 
an 8087. 

Perhaps the most remarkable statement to be made about the 8087 is 
that it actually makes sense to compare its speed to that of a mainframe 
computer costing hundreds of thousands of dollars. The 8087 is several 
times slower than a half million-dollar machine-but then it's more than 
several times cheaper. 

Exact comparisons are always risky, but a few numbers can give you . 
a feeling for the speed of the 8087. Moderate speed mainframe computers 
require from about one to five microseconds to multiply two numbers. 
A supermini might require one microsecond. A $50,000 table-top mini 
might require about 3 microseconds. Efficient 8088 software uses about 
400 microseconds to multiply two numbers (about 900 microseconds for 
double precision). The 8087, which is an inexpensive add-on to a personal 
computer, uses 20 to 30 microseconds for the same task. 

For the very first time, a microcomputer is a cost-effective alternative 
to number crunching on large computers. The PC with an 8087 has ¼ 
to ½o the speed of a large computer at 1/10 to 1/100 of the large machine's 
cost. While large machines will always be more cost-effective than micros 
for some tasks, the 8087-equipped personal computer is the first micro 
to compete economically with its larger cousins. 

Most PC owners care more about how the 8087 will speed up their 
personal computing than about comparisons to large central computer 
facilities. The speed advantage of adding an 8087 to a PC depends on 
the application and on how you use the 8087. (Having read through this 
book, you'll know the methods for attaining the greatest possible ad-
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vantage.) The central point to understand is that the 8087 is a Numeric 
Data Processor. The 8087 only speeds up programs involving numerical 
computation. If you only use the PC for word processing, the 8087 is 
about 99 percent irrelevant. But if you crunch the occasional number, 
adding an 8087 is like trading a sparkler for the Fourth of July fireworks 
display. 

The speed advantage of the 8087 depends very much on how you use 
it, but as an overall guide: 

The 8087 turns minutes into seconds. 

Specific Speed Comparisons 

Just how much you get out of an 8087 depends on the software you use 
as well as the 8087' s hardware speed. Speed is discussed extensively in 
Chapter 4. We give a preliminary discussion here. 

What the 8087 will do for you depends on how much time your soft
ware spends on various "overhead" tasks versus how much time is spent 
in numerical calculations. The 8087 speeds up the numerical calculations 
but does little or nothing about the time spent on overhead. Table 1-1 
shows what kind of results you can expect when you combine the 8087 
with low-overhead, high-speed routines. 

Table 1-1. BASIC versus 8087 speed benchmarks (time in seconds). 

Program 

BASIC 
8087 routine 

50 by 50 matrix 
multiplication 

1200 
8 

5,000 
square roots 

52 
0.35 

The times in Table 1-1 compare (pre-8087) BASIC to special 8087 routines 
which you will find later in this book. The improvement is typical of 
what the combination of the 8087 and good software can do. Depending 
on the application, the 8087 hardware produces an improvement in speed 
by a factor of about 10 to 50-the rest is due to the low-overhead software. 
You won't see nearly as good an improvement if you use the 8087 with 
high-overhead software. (The BASIC interpreters built into a computer 
are, of necessity, high-overhead software.) Since the 8087 only speeds 
up numerical calculations, and such software spends relatively little time 
on numerical calculation, the sum of overhead time and numerical cal
culation time won't fall by nearly the amount shown in the table above. 
The improvement will be impressive, nonetheless. 
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What Equipment Do You Need 
to Use an 8087? 

You need an 8087, of course. You can get an 8087 either as part of the 
original equipment of your personal computer or by adding it to an 
existing machine. You can probably add an 8087 to any PC based on the 
Intel 8088 or 8086 family. The degree of difficulty of adding an 8087 
depends on whether the manufacturer provided a place for the 8087 when 
designing the computer. Even if no provision was made, it is probably 
possible to add an 8087. However, doing so requires quite a bit of tech
nical expertise. 

The good news is that a number of manufacturers did provide a place 
for the 8087. In particular, when IBM (and those companies making 
compatible personal computers) introduced its first PC, it left an empty 
socket on the main circuit board expressly for the 8087. To add an 8087, 
you need only plug an 8087 into this empty socket. Plugging it in is easy 
(I installed my 8087 without help from anyone); easier, in fact, than 
adding a printed circuit board to one of the "expansion slots" inside the 
computer. (If you really know nothing at all about the inside of your 
computer, get someone to help you. Your computer is, after all, a fairly 
expensive piece of equipment.) 

Once you have the cover off your machine, plugging in the 8087 takes 
under a minute. However, you may want to make one other hardware 
modification at the same time. Your computer probably has pre-8087 
software, such as a BASIC interpreter, wired into its Read Only Memory 
(ROM). If new, 8087-compatible software is available from your manu
facturer, you will want to upgrade the ROM chips at the same time. 

What about folks who own a personal computer that is not based on 
the Intel 8088, 8086 family. Can they take advantage of the speed of the 
8087? The answer, unfortunately, is a qualified "no." The 8087 works 
only with the Intel family. However, because the Intel family is so pop
ular, several enterprising companies now sell circuit boards, carrying an 
Intel processor, that fit into Apple and some other computers. Some of 
these boards include an 8087 or make provision for one to be added. 
These boards won't speed up programs executed on your original pro
cessor, but they do allow you to make use of the programs in this book 
and other 8087-compatible software. 



The Intel 8087 Chip 

Processors and Co-processors 

The "brain" of any computer is its "CPU," or central processing unit. 
For the IBM PC, and many other "second generation" personal com
puters, the "brain" is an Intel 8088. A complete, general purpose central 
processing unit built into a single chip, the 8088 has a complete instruction 
set for 8- and 16-bit integer arithmetic, programming logic, and input 
and output. Like most microprocessors, the 8088 lacks the advanced 
mathematical instructions found in large, mainframe computers. 

The Intel 8087 Numeric Data Processor extends the instruction set of 
the Intel 8088 by adding sophisticated new mathematical instructions. 
The 8087 high-speed hardware carries out mathematical operations which 
would require thousands of lines of code if implemented in software. 
The 8087 hardware can operate 10 to 200 times faster than equivalent 
software. 

rom...a programmers viewpoint, the 8087 a ds additional instructions 
to the 8088' s repertoire and makes availabJ a itiona processor regis
ters. Why not include all the capabilities on one chip, rather than create 
an add-on device? There are several reasons: 

• The 8087 is an extraordinarily sophisticated computational device, 
including 75,000 transistors on a single chip. Even though the 8087 
is "limited" to numerical processing, it is much more complex (and 
more expensive) than the general-purpose 8088. Building two sep
arate chips holds down development costs and allows users and 
system manufacturers to tailor-fit systems for different uses. · 

• The 8088 (and its 16-bit bus sibling, the 8086) were available to the 
general market for several years before the first delivery of the 8087. 
In designing 16-bit personal computers, several manufacturers left 
an open socket, labeled the "co-processor socket" on the IBM PC, 
so that machines could be upgraded easily when the 8087 became 
available. 

7 
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• Because the 8087 and 8088 are two devices, they execute instructions 
simultaneously. As a practical programming matter, this means that 
while the 8087 completes one numerical computation, the 8088 pre
pares the next. 

In the remainder of this chapter, we describe the capabilities of the 
8087 in a general way. Chapter 5 provides a much more detailed technical 
discussion. 

Overview of the 8087 
' 

The 8087 serves as a co-processor with the 8088. The 8087 "watches" in
structions as they are received by the 8088. The 8087 processes its own 
instructions, while allowing 8088 instructions to pass by. The 8088 also 
watches all instructions, processing its own, while allowing 8087 instruc
tions to pass by. The 8088 does provide one important service for the 
8087. On seeing an 8087 instruction, t e 8088 cafculates any necessary 
memory address and makes the addres5 available to th 8087. I.he 8088 
then roceeds immediately to the ext instruction. In this way, the co
processo esign a lows the 8087 and 8088 to execute instructions si
multaneously, thus considerably enhancing total system performance. 

The central feature of the 8087' s architecture is eight 80-bit data reg
isters. These registers are organized as a classic "pushdown stack," an 
organizational technique that leads both to fast vector operations and to 
efficient code generation by high-level language compilers. (Chapter 5 
includes an extensive discussion on the operation of the pushdown stack.) 
The 80-bit register width allows the 8087 to perform extremely accurate 
calculations. While the 8087 instruction set recognizes seven different 
data types in memory, all data is automatically converted to an 80-bit 
internal representation when brought into the 8087. This frees the pro
grammer from most worries about converting between data types. 

Instruction Classes 

Each of the 8087's 68 instructions fall into one of six classes. (The clas
sification scheme is a convenient way of describing the capabilities of the 
8087. You needn't remember the classifications in order to use the 8087.) 
The six classes are: 

Data transfer (discussed in Chapter 6). These instructions move data 
back and forth between the 8087 and memory and shuffle data in
ternally among the 8087 registers. 

Arithmetic (discussed in Chapter 6) . At the heart of the 8087 instruction 
set are the operations for addition, subtraction, multiplication, and 
division-plus some extras such as square root and absolute value. 



2 c The Intel 8087 Chip 9 

Transcendental (discussed in Chapter 12). The 8087 hardware has built
in capabilities for computing logarithms and trigonometric functions. 
(These instructions are rarely found even on large-scale mainframes.) 

Constants (discussed in Chapters 6 and 12) . Seven of the most fre
quently used constants, such as 0, 1, and pi, are built into the 8087. 

Comparison (discussed in Chapters 6 and 7). These instructions are 
used for making less than/equal to/greater than, and other similar 
tests. 

Processor control (discussed in Chapter 12) . This class of instructions 
gives the programmer total control over the behavior of the 8087. 
Some of these instructions are also used in conjunction with the 
comparison instructions and 8088 branching instructions to control 
program flow. 

Data Types 
The seven regular 8087 data types are examined in depth in Chapter 5. 
However, for most ordinary 8087 programming considerations, only a 
few facts are really important. The only data types directly available in 
BASIC are integer, single precision, and double precision . Generally, 
only the latter two are used to hold numerical data. If your principal use 
of the 8087 is scientific programming, you need remember only thre 
facts about data types: 

l. Single precision numbers (calle.i short real ~n 8087 terminology) have 
six or seven decimal digits of accuracy ana occupy four by:tes of 

-memory . 
2. Douale precision numbers (called long rea in 8087 terminology) have 

15 or 16 decimal digits of accuracy and occupy eight bytes of me -
ory. 

3. emporary real numbers are used internal y by the 8087. or all cal
culations . They etain better tha 18 decimal digits of accuracy. 
When stored in memory, a temporary real occupies 10 bytes. 

If you are primarily a number cruncher, these three data types will 
probably account for 95 percent of your use. However, the 8087 recog
nizes four additional data types: 

l. Integer numbers (called word integer in 8087 terminology) occupy two 
bytes of storage and are used principally to index arrays and other 
data structures. BASIC and the 8087 use the same representation 
for integer data. 

2. A .short integer occupies four bytes . While the largest (signed) word 
integer is 32,768, a short integer can be as large as two billion. 

3. A long integer occupies eight bytes. A long integer has two or three 
more digits of accuracy than a double precision real number and 
can hold values as large as 1018. 
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4. Packed ecimal representation is used for business and data process
ing operations. A packed decimal uses 10 bytes of memory and 
holds 18 decimal digits . Unlike the three preceding data types, the 
packed decimal form uses decimal rather than binary representa
tion. Each of the digits 0- 9 is represented by four binary bits. These 
decimal igits are then "packed" two to a yte. 

By way of contrast, the types of data recognized by the 8088 hardware 
are limited to one- and two-byte binary integers and short packed decimal 
values. All the numerical processing in pre-8087 BASIC and other high
level languages is performed by software created from operations on 
integers. The 8087 eliminates the need for such software. Not only are 
8087-based systems faster, but programs use up much less space and 
numerical results are more reliable. 

How Does My Computer Access 
the Power of the 8087? 

In the next chapter we discuss software for the 8087. In order to under
stand why some software is 8087-compatible-and why some isn't-it 
helps to review the basics of the 8088/8087 co-operative set-up. 

The instruction set for the 8088 was designed to be extended at a later 
date. One of tne 8088's ·nstructions is called the escape instruction. The 
8088 knows that the esca e instruction really calls for an operation o 
the 8087, so it essentially ignores this instruction and allows the 8087 to 
process it. The instructions used by the 8087 are different varieties of the 
8088 escape. 

When both the 8088 and 8087 are installed, we can think of the com
bination as one large computer with expanded capability . Software which 
uses th escape instruction internally must have an 8087 present ·n order 
to operate correctly. Software built "pre-8087" simply does not use the 
escape instruction and therefore does not take advantage of the new 
capacity. 

If you are writing your own programs at the machine language level, 
you'll know whether or not you've used the escape instruction. Most of 
the time you use a computer, such intimate internal detail isn't under 
your control. In the next chapter, we discuss some of the varieties of 
8087-compatible-and incompatible-software. 

J 



Buying and Building 
8087-Compatible 
Software 
What special considerations apply when buying or building software for 
use with the 8087? Your first question will always be, "What software 
works?" Your second question, "How well?" In this chapter, we break 
our analysis of software compatibility into three parts. In the first part, 
we discuss some important technical details about compatibility. In the 
second section, we analyze why some software produces very fast pro
grams-and why some does not. In the chapter's last section, we discuss 
the merits of various types of software in terms of programming con
venience and calculation speed. 

Compatibility-The Technical Details 

Suppose we cou1 ook at a program that had been translated into our 
computer's "machine language." The program uses either the machine 
language instructions t at ·ve the 8087, the "escape instru..ctions'' men
tioned in the last chapter, or it doesn't. fut doesn't use these instructions, 
then he 8087 is irrelevant. The program will run with or without an 80~7 
and will run at the same speed either way. If the program does use 8087 
instructions, then the 8087 must be present, of course . 

As it turns out, there is a second issue, equally important for com
patibility, which hinges on a detail of software design. All computers 
represent numbers internally as particular patterns of O's and l's. Dif
ferent computers use different patterns for the same number. For the 
most part, we don't care which pattern the computer uses, since we don't 
see the individual O's and l's anyway. The important thing is that the 
computer's hardware knows how to interpret its own patterns. (As it 

11 
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happens, the representation used on the 8087 has been proposed as an 
industry standard. For the curious, we show what the 8087's represen
tation looks like in Chapter 5.) 

Until the introduction of the 8087, personal computers based on the 
8088 family had hardware for integer arithmetic only. Since there was 
no hardware "with an opinion" on how non-integers should be repre
sented, each software designer was free to choose his or her own patterns. 
In practice, this meant that whoever built translators for programming 
languages (compilers, interpreters, and assemblers) made the decision 
for everyone using a particular language. Since icrosoft has been the 
principal supplier of programming languages for 16-bit computers, the 
vast bulk of software uses the patterns chosen by Microsoft. 

Unfortunately, the Microsoft pattern and the_Intel 8087 patterrwr different. 

The result of this conflict is that pre-8087 software and 8087- compatible 
software cannot trade data represented in their respective internal for
mats. With your 8087 in place, you can safely use either pre-8087 or 8087-
compatible software. J y1ou try to combine programs produced with 
pre-8087 and 8087-compatible translators, yo will usually get garbage. 
Further, if you try to exchange data between such programs you will get 
garbage if the data was stored using the computer's internal format. If 
the data is not stored in the internal format, then the programs can 
probably exchange data. 

There is no general rule as to whether a conflict will occur between 
two pieces of software; you need to know the particulars of each program. 
In the third section of this chapter, we give some examples of where to 
look for trouble. 

What Makes a Program Fast or Slow? 

Three asics aetermine a program's speed: the way you solve the problem 
(what computer scientists call the "algorithm"); your hardware's speed; 
and the behavior of the programming language translator. The first is 
always the most important. There is no computer so fast that it cannot 
be slowed to a crawl by a sufficiently bad way to solve a problem. The 
applications chapters of Part III supply high-speed solution techniques 
to many problems in numerical programming. 

The question of hardware speed you solve, of course, when you get 
an 8087. If hardware were the only determinant, your program execution 
time would be cut by a factor of 10 to 50! 

But hardware isn't the only determinant. Depending on how your 
program is translated into instructions the computer can understand, 
using an 8087 may drop execution time by only a few percent or speed 
up execution by a factor of 200. For this reason, and because you can 



3 t1 Buying and Building 8087-Compatible Software 13 

exercise a fair amount of control over which translator you use, we con
centrate on this third factor. 

Translating the Source Program 

Suppose we instruct the computer to add variables A and B and to save 
the result in variable C. A typical command might look like this: 

C=A+B 

The process of going from command to answer is composed of three 
phases: 

• Translation time 
• Invocation time 
• Calculation time 

Translation time is the time th computer takes to figure out what to 
do. For example, every time the BASIC interpreter sees "C =A+ B," it 
has to translate this to mean "find the variable A in memory and then 
find the variable B, next add the two, and finally place the sum in variable 
C." The BASIC compiler makes the same translation as the interpreter, 
but only once, rather than every time a line is executed. Interpreted 
programs spend a lot of time in the translation phase while compiled 
programs spend none at all. 

fnvocation time is tru time it takes he comput _to calculate the ad
dresses of the variables and to call the appropriate internal subroutine. 
For example, the BASIC ROM includes a floating-point addition subrou
tine. The interpreter calls this subroutine to add A and B. Code produced 
by the BASIC compiler calls a similar routine in the run-time library. 

alculation time is the time he computer spends doing the actual ad
dition. All the direct advantage of the 8087 _hardware comes from im
provement in this phase. 

Since the 8087 speeds up only this last phase, programs in which most 
of the time is spent in calculation get a big boost. Programs which spend 
most of their time in translation or invocation get only a small boost. 
Reduction of translation and invocation time depends on the appropriate 
choice of a program translator. 

You might think that we would always choose the translator that gives 
the fastest results. However, there are some tradeoffs involved. For ex
ample, compilers produce faster programs than interpreters, but inter
preters are mor..e convenient to use. And, as a practical matter, almost 
every personal computer comes with a built-in BASIC interpreter, but 
not everyone has a compiler. 

So how important is each phase? The answer depends on the problem. 
In Chapter 1, we presented some representative timings for a matrix 
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multiplication problem and for taking 5,000 square roots. I've made some 
estimates of the time spent in each phase for pre-8087 interpreted BASIC, 
for an 8087-compatible compiler, and for an 8087 assembly language 
program. Table 3-1 shows the time in microseconds for a single addition 
and multiplication (for the matrix program), and for taking the square 
root of one element of a vector. I do have to warn you that Table 3-1 is 
much less accurate than other timings given in this book. Nonetheless, 
it gives a rough guide as to the trade-offs involved. 

Table 3-1. Execution-time speed breakdowns (time in microseconds). 

Matrix Problem Square Root 
(translate invoke calculate) (translate invoke calculate) 

interpreter 8400 ) 1200 3600 ) 6800 
compiler 0 135 56 0 66 70 
assembly 

language 0 10 56 0 0 70 

We will refer back to Table 3-1 several times in our discussions in the 
next section. While the table shows the speed advantage of assembly 
language, it does not reveal the extra work generally involved in writing 
assembly language programs rather than BASIC. As a rule of thumb, an 
assembly language program requires ten times the amount of code as 
one written in BASIC. 

The bulk of numerical computing uses what are called "linear opera
tions." A small family of programs, such as matrix multiplication, can 
be put together to solve all sorts of different linear problems. With a 
library of these routines, such as the library put together in this book, 
you can solve most problems without having to write any subroutines 
yourself. 

The square roo~ example is somewhat different. "Non-linear" opera
tions are all different; there isn't a small family of .routines that you can 
re-arrange as needed for your own problems. As a result, non-linear 
problems require more custom programming. The more programming 
required, the more we will want to favor programming convenience over 
calculation speed. 

Both the matrix multiplication routine and the square root routine 
appear, in assembly language, in later chapters. As assembly language 
programs go, neither is very difficult to write. ( ... and of course you 
needn't write these particular programs, since we've already done so.) 
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Computational Accuracy 

Accuracy deserves as much attention as does speed. The 8087 is extremely 
accurate, but most translators don't allow you to access the 8087's 80-bit 
registers. Assembly language allows full use of 8087 accuracy, as do a 
few compilers (notably, those developed at Intel) intended specifically 
for use with the 8087. These compilers, which provide for operations on 
80-bit data, are not, at present, in common use. 

For some problems, the extra accuracy of 80 bits is worth any amount · 
of programming inconvenience, but for "every day" use most of us will 
settle for double precision accuracy. ('The disappointing omission of dou._
ble precision renders unacceptable, for general number crunching use, 
several prominent compilers used on personal computers.) The assembly 
language routines in this book use 80-bit data in the "delicate" part of 
calculations and the usual single and double precision data types else
where. 

8087-compatible Software 

In this section we discuss a number of different approaches to buying 
and building 8087-compatible software. For each approach, we discuss 
the trade-offs between programming convenience and execution speed. 
The approaches discussed are: 

• Using packaged programs 
• 8087 hardware with pre-8087 software 
• Interpreted BASIC 
• Compiler with 8087 floating point library 
• Compiler for 8087 "native code" 
• Assembly language modules for BASIC 
• Pure assembly language code 

Using Packaged Programs 

How much advantage the 8087 gives you with a "canned" program 
depends on how well the program is written. A really well-written canned 
program will take better advantage of the 8087 than any program you 
write . Not because the programmer knew anything about the 8087 that 
you won't discover in this book, but because for a program that sells 
thousands of copies, a programmer can afford to spend time squeezing 
out every last microsecond. Unfortunately, there is no real satisfactory 
way of knowing how good a canned program is short of "field testing" 
it. Also, unfortunately, software manuals almost never say anything about 
execution speed. 
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You will find three kinds of packages being advertised (with respect 
to 8087 compatibility). 

First, there are programs intended to run only wjth the 8087, which 
make no attempt at compatibility with earlier software or non-8087 ma
chines. Many applied problems cannot be solved on a microcomputer 
(in a reasonable amount of time) without an 8087. For programs that 
solve such problems, compatibility is not an issue. In fact, the speed of 
the 8087 is so critical for some applications that enterprising software 
houses began to market 8087-only packages before the manufacturers of 
personal computers had begun to sell the 8087! 

Second, there are programs fhat will run eithe with or wjthout fhe 
8087. Some software comes in a single version that will run either way. 
Other programs come in two versions: one explicitly for the 8087 and 
one that does not use the 8087. 

Third, there are programs That igno.r:e the 8087. Almost all of these 
programs will run with the 8087 and those that are written in BASIC will 
automatically take advantage of the 8087 if you have an 8087-compatible 
BASIC interpreter in your computer. 

A firs t warning about ca-nned programs. Many high-efficiency pro
grams save information on disk in what are called "binary" files. Binary 
files store data using the computer's internal representation of numbers 
rather than the "ASCII" representation more commonly used for disk 
storage . (This scheme allows programs to avoid conversions between 
internal and external formats and thus makes data storage and retrieval 
much, much faster.) As discussed above, the 8087 uses a different internal 
representation for numbers than does most pre-8087 software. For this 
reason, pre-8087 and 8087-compatible binary files are incompatible. 

If you use a pre-8087 program that saves binary files on disk and then 
.switch to 8087-compatible software, you will e unable to read the files 
back in. Furth~r, since you usually do not have access to a description 
of the file format, it may be impossible for you to convert the files yourself. 
To protect yourself when using a canned program with binary files, use 
the program to convert the files into an ASCII representation while you 
are still using the pre-8087 software and then convert them back to binary 
later. 

A second warning about canned programs. Many high-efficiency pro
grams use small amounts of assembly language code to speed up im
portant calculations. You do not generally have any way of finding out 
whether a particular package uses any machine code . If the machine 
language routines think numbers are stored using Microsoft's original 
format and the BASIC part of the program operates using Intel format 
... well, you can imagine the results. 



3 c Buying and Building 8087-Compatible Software 17 

8087 Hardware with Pre-8087 Software 
It would be awfully nice if we could get the benefit of the 8087 without 
attention to software. For reasons we've discussed, this isn't possible. 
For example, if you add an 8087 to a machine with a pre-8087 BASIC 

· interpreter, your BASIC programs will run, but they won't make any 
use of the 8087. This is not much of an option. 

Understand, however, that it's the translator not the program that needs 
to be 8087-compatible. If you have an 8087-compatible BASIC interpreter, 
or some other 8087-compatible translator, your old BASIC programs will 
run and will take advantage of the 8087. (This illustrates an important 
re_ason for using BASIC or another standard "high-level language." If 
the hardware changes, as is the case when an 8087 is added, you ee<l ~ 
only obtain a new translator and usually'. do not eed to re-write your 
applications programs.) 

It is possible to combine 8087-compatible software with pre-8087 soft
ware by explicitly converting data back and forth between the Intel and 
Microsoft formats. (Conversion programs appear in the appendix.) For 
example, you can use the 8087 programs in this book with the original 
BASIC interpreter supplied with the IBM Personal Computer, but you 
will have to do a little bit of extra BASIC programming. 

Interpreted BASIC 
Depending on when you bought your personal computer, it will either 
include an 8087-compatible BASIC interpreter or you may be able to buy 
such an interpreter to replace the computer's original BASIC ROM. For 
most applications, the BASIC interpreter provides the easiest program
ming and the slowest execution. 

The 8087 does not substantially affect the speed of the translation or 
invocation phase of the interpreter's operation, but the calculation phase 
flies with an 8087 in place. Refer back to Table 3-1. For a problem like 
matrix multiplication, most of the action is in translation and invocation, 
so you can't expect more than about a 10 to 15 percent improvement 
over pre-8087 BASIC. 

Calculation time was a far greater fraction of total execution time in 
the square root problem. The 8087 has much more impact here; we might 
expect an overall gain of about a factor of three. Some non-linear func
tions, such as the trigonometric operations, spend even more time in the 
calculation phase. In some cases, we might see improvement by a factor 
of eight. 

We're ready now to draw our first conclusions. 

If most of your number crunching involves linear operations, the 8087 with 
the updated BASIC interpreter ALONE has only limited value. 
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If much of your number crunching uses the non-linear functions, the 8087 
with the updated BASIC interpreter is worth several non-8087 PCs. 

Here's an important warning about using the 8087 version of BASIC. No 
matter what you may be told, the 8087 and non-8087 versions of BASIC 
are not fully compatible (though they are close). Beeause floating point 
numbers are represented differently, there is no way to make them fully 
com atible. Two fundamentally irresolvable pro lems exist. 

First, the two floating point representations differ slightly in their pre
cision and range. In particular, for double precision the Intel format trades 
about one decimal place less precision for a substantially increased rari.ge 
for the exponent. On rare occasions, programs that worked on the orig
inal BASIC interpreter will give incorrect answers when used on the 8087 
version because of round-off error. Somewhat more frequently, programs 
that run under the new version will have overflow errors if used on a 
personal computer with the old BASIC. Fortunately, such problems are 
rare, and quite unlikely to be a major concern for most users. 

Second, some programs use the BASIC functions MKS$, MKD$, CVS, 
and CVD to convert back and forth between floating point numbers and 
strings. Typically, this is done in order to store numbers on a disk file 
in their binary representation. The functions work in both versions of 
BASIC. But if you store numbers on the disk in one version and retrieve 
them in the other, you will get garbage data without getting any indi
cations of error. If you use binary-representation files for storage between 
program runs, be absolutely certain to convert the files as part of the 
process of changing from one version of BASIC to the other. 

Compiler with 8087 Floating Point Library 
A compiler differs from an interpreter in that it translates the sour_ce 
language program only once, rather than every time a ine of code is 
executed. Compilers have some disadvantages: they take a relatively long 
time to translate a program; they usually generate code that takes up 
more space than does an interpreted program; they slow the business of 
debugging programs; and they can be expensive. But they have one 
undeniable advantage over an interpreter: they eliminate the translation 
phase from program execution, and thereby reduce execution time enor
mously. 

Many of the compilers used on personal computers handle floating 
point operations in the following way. Whenever a floating point oper
ation is needed, the compiler generates a CALL to the appropriate sub
routine. After the program is compiled, the LINK program is used to 
combine the compiler output with a library of subroutines that includes 
all the floating point operations. IBM's BASIC compiler works this way. 

Compilers that use floating point libraries can be converted to 8087 
operation by substituting a new library for the one originally supplied 



3 c Buying and Building 8087-Compatible Software 19 

with the compiler. The original IBM BASIC compiler can be converted 
in this manner. Using a compiler with an 8087 library not only eliminates 
the translation phase, but also brings the calculation phase up to 8087 
speed. However, the invocation phase remains unchanged. Referring 
back to Table 3-1, we see that such a compiler might be 50 times as fast 
as pre-8087 BASIC in the matrix multiplication example and about 75 
times as fast on square roots . 

(You should be warned that the effectiveness of this approach to mak
ing a compiler 8087-compatible varies. Some implementations do not do 
nearly as well as the speed improvements suggested in the previous 
paragraph.) 

Another conclusion now: 

On linear problems, the combination of the 8087 and a compiler is very, very 
good. (Even if it doesn 't quite reach our goal of "turning minutes into 
seconds. " ) On non-linear problems the combination is truly excellent. 

Compiler for 8087 "Native Code" 

Compilers on mainframe computers, and on minicomputers with floating 
point hardware, directly generate floating point instru_ctio:ns instead oL 
generating calls to a subroutine library. This technique eliminates most 
of the invocation time . Some mainframe "optimizing" compilers are so 
good that the code they generate is almost as fast as assembly code. 
Equally good compilers for personal computers are only beginning to 
appear and are not currently in widespread use. You may want to look 
for 8087 "native code" compilers as they come on the market, since such 
a compiler provides the very combination of execution speed and pro
gramming convenience. 

Assembly Language Modules for BASIC 

ssembly language is at the bottom of the list when it comes to pro
gramming convenience, but at the top of the ·st when it co_rnes to spee_d . 
Fortunately, assembly language routines are easily combined with either 
interpreted or compiled BASIC, as well as with programs written in other 
high-level languages. In fact, preparing assembly language modules for 
frequently used tasks can be more convenient than writing the same code 
over and over again in BASIC. (It is very inconvenient to write re-usable 
modules in BASIC.) 

In a typical program, almost all the work takes place in a very small 
fraction of the code. Optimally, we use assembly language modules to 
replace this fraction of the code, while leaving the remainder of the 
program intact. This strategy leaves the bulk of the writing in a convenient 
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programming language and the bulk of the computation in a high speed 
routine. 

Assembly language remains the undisputed speed champion. The as
sembly language matrix multiplication routine which appears in Chapter 
10 is about 150 times faster than pre-8087 BASIC. The square root routine 
also beats BASIC by about 150-to-l. 

Pure Assembly Language Code 

When does it pay to write an entire number crunching program in as
sembly language? In my opinion, never. For linear problems, writing the 
entire program in assembly language has no significant speed advantage 
over using a small number of strategically chosen assembly language 
modules. (This is the approach we follow in the second and third parts 
of the book.) For non-linear problems, where isolating re-usable modules 
is difficult, writing special assembly language programs does increase 
speed over using a compiler, but only at an unreasonable cost in terms 
of programming effort. 

Two final conclusions: 

• If most of your number crunching is on linear operations-and most of the 
world's is-your best overall bet is probably the BASIC interpreter and a 
small set of assembly language routines, either the routines appearing in 
Parts II (Chapters 5-8) and Ill (Chapter 9-15) or another subroutine package 
you purchase commercially. 

• If a good part of your number crunching is non-linear, your best bet is 
probably the combination of BASIC compiler and 8087. While assembly 
language routines are still substantially faster than BASIC, BASIC is far 
more convenient. 

On to Chapter 4 

Just how does the 8087 stack up against other computers? In the next 
chapter we insert a few of our strategic modules in BASIC programs and 
run some timing tests. 



Benchmarks 

With the advent of the 8087, moderate-to-large scale numerical computing 
can now be done on a microcomputer. The 8087 increases the compu
tational range of the microcomputer by one to two orders of magnitude. 

The 8087 brings the "minimum-efficient-scale" of computing down to 
the personal level. In the past, a mainframe computer that cost 100 times 
more than a personal computer would have been thousands or tens of 
thousands times faster. While the 8087 remains several times slower than 
powerful mainframes, an 8087-equipped PC also costs tens or hundreds 
of times less. So today, the 8087 has made the personal computer a cost 
effective number cruncher. 

Historically, large computers have always been more cost efficient, in 
terms of raw computational power, tha11 smaller computers. Very large 
mainframes are more cost efficient than minis; minis are more cost effi
cient than micros. Just as the advent of "super-mini" computers a few 
years ago closed most of the gap between minicomputers and main
frames, the 8087 closes most of the gap between personal and mini
computers. To help you draw your own conclusions, speed benchmarks 
for a range of machines appear below. 

Comparing Benchmarks 
Speed and accuracy ratings are presented below for a number of different 
combinations of hardware and software. Before you start drawing con
clusions, understand what benchmarks do and do not tell us. 

Benchmark programs are used to compare various combinations of 
software and hardware by executing the same program under controlled 
conditions. We've continued here with the timing of the two problems 
examined in Chapter 1. The first benchmark program multiplies two 50 
by 50 matrices in order to illustrate the 8087' s power in linear operations. 
The second benchmark program, taking 5,000 square roots, illustrates 
the 8087's non-linear calculations. Please realize that benchmark com
parisons have some limitations. 

21 
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First, these benchmark problems are not intended to be "fair." I picked 
two problems which show off the capabilities of the 8087. They show 
the kind of results the "number crunching" user can reasonably expect, 
which aren't necessarily the results a "typical" user might expect and 
are totally unrelated to what a "word processing" user will see. 

Second, our benchmark programs are "tuned" to be efficient on the 
8087. For example, we've run most of the comparison programs in BASIC 
because BASIC is the dominant language on personal computers. On a 
larger computer, Fortran or APL or some other computer language may 
be more efficient than BASIC. If we were starting on one of these ma
chines, we might well program in a language other than BASIC. 

Even if not totally "fair," these benchmarks do give a pretty good idea 
of what the 8087 will do. The first set of benchmarks below, compares 
timings on an IBM Personal Computer with and without the 8087. The 
second set of benchmarks compares the 8087 to several other micro, mini, 
and mainframe computers. 

IBM Personal Computer Benchmarks 

The IBM PC is the most popular of the "second generation," 16-bit per
sonal computers. Internally, the PC uses an Intel 8088 microprocessor 
running at a "clock speed" of 4.77 megahertz. It is worth knowing for 
purposes of comparison that some of the 8088-based personal computers 
on the market run at a 5 megahertz "clock," and are just a little bit faster. 
Also, computers based on the 8088's "big brother," the 8086, are quite 
a bit faster. 

For this benchmark, we've taken Table 1-1 from first Chapter 1 and 
added a third alternative, the IBM BASIC compiler. Table 4-1 shows 
execution speeds for both matrix multiplication and the square root prob
lem using IBM's pre-8087 BASIC interpreter, IBM's pre-8087 BASIC com
piler, and our own assembly language modules. 

Table 4-1. BASIC versus 8087 speed benchmarks (time in seconds). 

50 by 50 matrix 5,000 
Program multiplication square roots 

BASIC interpreter 1200 52 
BASIC compiler 140 6 
8087 routine 8 0.35 

The first two rows show why people turn to compilers. The IBM BASIC 
compiler beats the BASIC interpreter by around eight to one. Our 8087 
routines beat the compiler times by a factor of 20! 
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"Outsider" Benchmarks 

How does an 8087-equipped personal computer compare with "other 
people's" equipment? The comparisons below repeat our benchmarks 
on several popular combinations of hardware and software. 

Please don't read these comparisons as "better" or "worse." The hard
ware used runs from an Apple II+ to an IBM 3081. The Apple isn't as 
fast as the PC, but then it doesn't cost as much. An IBM 3081 is faster 
than the PC, but it won't fit on your desk .. 

The comparisons are run on four machines: 

• Apple II +-Many people's favorite first-generation personal com
puter. Both programs used the Apple's built-in Applesoft BASIC 
interpreter. 

• DEC 2060-A moderate size mainframe computer used by many 
universities to provide time-sharing services. (Manufactured by Dig
ital Equipment Corporation.) Both programs were executed using 
compiled BASIC. DEC-2060 BASIC includes a matrix multiplication 
function which we used for the first program. 

• VAX 780-A 32-bit "super-mini" computer, very popular for mod
erate size number crunching applications. (Manufactured by Digital 
Equipment Corporation.) These test programs were written in the 
popular scientific language FORTRAN, and executed using the VAX's 
optimizing compiler. 

• IBM 3081-The IBM 3081 is a very large mainframe computer costing 
millions of dollars. Both programs were written using the "Stanford 
BASIC" interpreter. We again used a built-in matrix multiplication 
function for the first program. 

The benchmark results appear in Table 4-2. 

Table 4-2. Micro, mini, and mainframe speed benchmarks (time in 
seconds). · 

50 by 50 matrix 5,000 
Program/ Computer multiplication square roots 

8087 routine 8 0.35 
Apple II+ BASIC 1796 130 
DEC 2060 BASIC 5.2 0.40 
VAX 780 FORTRAN 1.6 0.20 
IBM 3081 BASIC 0.11 0.26 

As we cautioned above, you need to be careful about benchmarks. The 
8087 routines make optimal use of the 8087' s potential. (The 8087 routines 
appear in later chapters, so you can examine their innards if you wish.) 
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The programs on the other machines use standard programming tech
niques, and so make moderate to excellent use of the hardware's poten
tial. 

Caveats notwithstanding, Table 4-2 tells us quite a bit about how to 
classify an 8087-equipped personal computer. When it comes to number 
crunching, the 8087 doesn't just make a fast micro-it creates the equiv
alent of a slow super-mini or a slow mainframe computer! 



Introduction to 8087 
Architecture 

This chapter provides a detailed, technical description of 8087 architec
ture. The 8087 instruction set is described in Chapters 6 and 12. (For 
hardware and electronic details, see Intel's iAPX 86,88 User's Manual, the 
definitive source on the 8087.) 

More detail is given in this chapter than the typical 8087 user need be 
concerned with. You may want to browse through this chapter and then 
proceed directly to the description of the simple instruction set in Chapter 
6. 

Co-processor Organization 
The 8087 is designed as a co-processor for the._ 8088 CPU. Both th_e 8087 
and 8088 "look" at each instruction fetched from memory. The 8087 acts 
on Jts own instructions and ignores those belonging to the 8088. When 
the 8088 sees an 8087 ins-truetion, which is an 8088 ESCape instruction, 
it calculates the address of any data referenced by the instruction and 
reads-but ignores- one byte of data from this address. Otherwise, the 
8088 treats the 8087 instruction as a null operation. The 8087 copies the 
addLess calculated by the 8088 and uses it to store or fetch data to and 
from memory. In this way, the co-processor design allows the 8087 and 
the 8088 to execute simultaneously, considerably enhancing total system 
performance. 

To ensure properly coordinated parallel operation, 8087/8088 programs 
must follow the following synchronization rules: 

• The 8088 must not change a memory location referenced by an 8087 
instruction until the 8087 is finished. The 8088 is free to change its 
own internal registers and flags . 

• A second 8087 instruction must not be fetched until the current 
operation is complete. (Under special circumstances it is possible to 
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safely violate this rule, but such circumstances do not generally occur 
in application programs.) 

Synchronization, obedience to both rules, is achieved through judi
cious use of the 8088 WAIT instruction. The WAIT instruction tells the 
8088 to suspend processing until the TEST line becomes active. (The 8088 
checks the TEST line status once every microsecond.) When the 8087 
begins an instruction, it sets the TEST line to inactive. It then resets the 
TEST line to active when the instruction is complete. 

The programmer has responsibility fo seeing that the first rule is 
obeyed. To ensure synchronization, code an FWAIT instruction after an 
8087 instruction and before an 8088 instruction whenever the two in
structions access the same memory location. (Except that the FWAIT may 
be omitted if neither instruction changes the memory location.) FW AIT 
generates an 8088 WAIT instruction. (Use of the mnemonic "FWAIT," 
for "floating wait," is a software convention.) FWAIT holds the 8088 until 
the 8087 operation is complete, thus preventing violation of the first rule. 

Responsibility for implementing the second rule is left to the assembler. 
The assembler automatically places a WAIT instruction in front of every 
8087 instruction. Thus the 8088 will suspend processing and not fetch 
another 8087 instruction so long as a previous 8087 instruction is still 
being executed. 

Programs violating either of the two rules will have unpredictable re
sults. Possible outcomes include the computer coming to a dead halt (if 
you are lucky), and having random numbers presented as final results 
(if you are not so lucky). 

Internal 8087 Registers 
Five internal data areas are accessible by the 8087 programmer. These 
are the register stack, the status word, the control word, the tag word, and 
the exception pointers. 

8087 computation is organized around eight 80-bit data registers. These 
registers form a pushdown stack, called the register stack. The register at 
the top of the stack is referred to as ST or ST(0); the register immediately 
below the top is ST(l); and so forth through ST(7). Many 8087 instructions 
implicitly reference ST(0) or both ST(0) and ST(l) . Many instructions also 
push data onto or pop data off of the stack. (The stack is actually orga
nized as a chain, so that ST(0) is "below" ST(7). It is the programmer's 
responsibility to prevent stack overflow.) Stack operations are described 
in detail in Chapter 6. 

The 16-bit status word shows the current state of 8087 operations . We 
make extensive use of the condition code bits in the status word, which 
indicate the result of 8087 comparison operations. The status word also 
shows whether any exceptions (computational errors) have occurred, 
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whether the 8087 is busy, whether the 8087 has requested to interrupt 
the 8088, and which of the eight stack registers is currently the top of 
the stack. These elements are primarily used for systems programming. 
Figure 5.1 shows the layout of the status word. 

15 0 

I B l c3 l , ST , l c2 l c,I co l IR l l PE l UE l OE l ZE l DE l IE I 

~ 
EXCEPTION FLAGS (1 = EXCEPTION HAS OCCURRED) 

INVALID OPERATION 

DENORMALIZED OPERAND 

ZERODIVIDE 

OVERFLOW 

UNDERFLOW 

PRECISION 

(RESERVED) 

INTERRUPT REQUEST 

CONDITION CODEl11 

STACK TOP POINTERl2l 

'-------------------BUSY 

11) See descriptions of compare, test, examine and remainder instructions for 
condition code interpretation. 

121 ST values: 
000 = register 0 Is stack top 
021 = register 1 Is stack top 

. 
111 = reglster71s stacktop 

Figure 5.1. (Used with permission of Intel Corporation.) 

The 16-bit control word allows a number of 8087 options, described 
below under "control options," to be set under program control. These 
include the exc;eption and interrupt-enable masks, which are primarily 
of interest to systems programmers. Other options, defining rounding, 
infinity, and precision controls, are occasionally used to control the re
sults of numerical operations. Figure 5.2 shows the layout of the control 
word. 

The tag word has two bits for each stack register to indicate whether 
the contents of the register are valid, zero, special, or empty. The exception 
pointers show the current instruction and operand. Neither the tag word 
nor exception pointers are normally of any interest to application pro
grammers. 

Control Options 

By manipulating the control word, you can change the way the 8087 
handles rounding, infinity, and precision. 

The 8087 offers four methods of rounding off answers that cannot be 
represented exactly in the available number of bits. The options are round 
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(4) lnlinily Control: 
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Figure 5.2. (Used with permission of Intel Corporation.) 

to nearest, round down (toward minus infinity), round up (toward infinity), 
and chop (truncate toward zero). Round to nearest is the default. 

The 8087, unlike most computers, has a well-defined representation 
of infinity. The 8087 produces the proper result when calculating math
ematical functions with infinite arguments, at least when a mathemati
cally well-defined result exists. For example, 5/infinity yields zero. Both 
positive and negative infinity may be represented. 

Two modes of "infinity control" are offered on the 8087: affine closure 
and projective closure. Under affine closure, positive and negative infinity 
are regarded as being at opposite "ends" of the number line. Under 
projective closure, positive and negative infinity are considered equal, 
as if the two "ends" of the number line bent around and came together. 
Relative comparisons between finite numbers and infinity are permitted 
under affine closure, but not under projective closure. Projective closure 
is the default. 

Precision on the 8087 can be set to 64, 53, or 24 bits of accuracy, 
corresponding to the temporary real, double precision, and single pre
cision data types. This option is offered so that the 8087 may comply 
with certain industry standards which offer only reduced accuracy, and 
so that 8087 computation can be made compatible with less accurate 
computers. Aside from the compatibility issue, the only value in using 
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less than the full 64 bits of accuracy is the educational value of learning 
that more accuracy is better. Default precision is 64 bits. 

Exception Masking 

Various important computational errors are trapped by the 8087. When 
such an error occurs, the 8087 raises an exception condition. Exceptions 
may be unmasked ("unmasked" means exposed to the 8088), in which 
case a program interrupt occurs to permit user supplied exception han
dling software to take control. Usually, however, exceptions are masked 
(hidden from the 8088). The 8087 holds onto any masked exception and 
executes an internal error correction procedure. For example, if your 
program attempts to divide a number by zero, the 8087 will set the answer 
to infinity under exception masking. 

Table 5-1 presents the six exceptions and the most common masked 
response. Note that execution is never halted by a masked response. As 
a default, all exceptions are masked. See Appendix 2 for a full description 
of the masked responses to each exception. 

Table 5-1. Common masked response to 8087 exceptions. 

Exception 

Zerodivide 
Overflow 
Underflow 
Denormalized 

Precision 

Most Common Masked Response 

Return properly signed infinity 
Return properly signed infinity 
Denormalize result 
Memory operand-proceed as usual 
Register operand-convert to unnormal 
Round result 

Note: The terms "denormal" and "unnormal" are defined under Special Data Types, 
below. 

Number Systems 

The 8087 "understands" floating point, integer, and packed decimal num
bers. For number crunching, floating point numbers are by far the most 
important. 

Floating Point Numbers 

In order to accommodate a wide range of values, computers store num
bers in a "floating point" or "real" representation. Essentially, floating 
point is the computer's version of scientific notation. For example, in 
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standard scientific notation the fraction "negative one-half" can be writ
ten out as 

-5.0 X 10-l 

Scientific notation splits the representation of a number into three 
sections. The "sign field" tells us the sign of the number, in the case 
above the leading"-" indicates a negative number. Next, the "significand 
field," 5.0 above, gives the number's significant digits. (The significand 
field is also called the "mantissa.") The third section is the "exponent" 
field. The "-1" above tells us to multiply the significand by ten to the 
minus one power, or, equivalently, to shift the decimal point one place 
to the left. 

The 8087 stores floating point numbers in a form of scientific notation. 
The exact bit patterns used are laid out for the computer's convenience 
so they are a little less than obvious to humans. Fortunately,'we almost 
never need concern ourselves with such minute detail. While exact bit 
patterns ·are covered below, there are really three facts to know about 
each data type: 

1. How many bytes of memory are used up to store a number? 
2. How many digits of accuracy are retained in a number? 
3. How wide is the range of numbers which can be represented? That 

is, how large an exponent can be used? 

The answers to 1 through 3 are shown in Table 5-2. 

Data Types 
The seven regular 8087 data types are shown in Table 5-2. A brief dis
cussion of the use of each type appears below. 

Table 5-2. 8087 data types. 

Significant 
Data Type Bits Digits Range 

Word Integer 16 4 -32,768 to 32,767 
(BASIC Integer) 

Short Integer 32 9 - 2 x 109 to 2x109 
Long Integer 64 18 -9x1018 to 9xlQ18 

Packed Decimal 80 18 18 decimal digits + ·sign 
Short Real 32 6 or 7 10 - 37 to 103s 

(BASIC Single Precision) 
Long Real 64 15 or 16 10 - 307 to 103os 

(BASIC Double Precision) 
Temporary Real 80 19 10-4932 to 104932 
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Short real. Short real corresponds to BASIC's single precision data type. 
Micros have less storage than mainframe computers. Since real-world 
data rarely has more than six or seven digits of accuracy, this data type 
is commonly used for economical storage of basic input data. 

Long real. Long real corresponds to BASIC's double precision data type. 
As a rule, most calculations should be done in double precision in order 
to minimize the effect of round-off error in intermediate steps. 

Temporary real. Whatever the data type in memory, the 8087 converts 
all numbers to the temporary real format for internal use. The significand 
of the temporary real format holds 64 bits, so that every other data type 
can be loaded into a temporary real without loss of precision. 

By designing the 8087 around the temporary real concept, Intel has 
simplified the application programmer's life in several important ways: 

• Since all data types are converted to temporary real by the hardware, 
the programmer rarely need worry about explicit type conversions. 
It is just as easy for the programmer to multiply a double precision 
floating point number by a packed decimal number as it is to multiply 
two integers. (Of course, when storing a number back in memory, 
the programmer remains responsible for ensuring that the destina
tion data type is large enough to hold the result being stored.) 

• The range for temporary reals is (almost) infinite. The exponent 
range is 10 to the ± 4932. As a result, overflows and underflows are 
almost always caused by a bug in either the data or the program, 
and only rarely indicate a numerical computing error. 

• The temporary real has 19 significant digits. Even when a long series 
of intermediate calculations produces significant cumulative round
off error, the loss of 3 or 4 digits of accuracy still leaves an accurate 
double precision answer. With the 8087 onboard, an IBM Personal 
Computer is more accurate than the standard IBM mainframe! 

Word integer. Word integer corresponds to BASIC's integer data type. 
A word integer occupies two bytes of storage and is principally used to 
index arrays and other data structures. 

Short integer. A four-byte integer. Not usually used in numerical pro
gramming. 

Long integer. An eight-byte integer. Not usually used in numerical pro
gramming. 

Packed decimal. Packed decimal representation is used for business and 
data processing operations. A packed decimal uses 10 bytes of memory 
and contains 18 decimal digits. Unlike the three preceding data types, 
the packed decimal form uses a decimal rather than a binary represen
tation. Each of the decimals 0-9 is represented by four binary bits. These 
decimal digits are then "packed" two to a byte. 
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Business and data processing programs generally spend much more 
time converting data between external (ASCII) and internal (binary) rep
resentation than doing arithmetic. Conversion between ASCII and packed 
decimal representation is quite easy. (Also, some data processing lan
guages, such as COBOL, use packed decimal representation as a standard 
data type.) 

Data Type Hardware Representations 

The 8087 knows exactly where each and every little bit goes. This is 
fortunate, because the physical and logical orders in which numbers are 
placed in memory differ. It is fairly easy for this difference to confuse us 
human types. However, the physical layout is easier for the machinery 
to handle and isn't relevant to programmers, except, on occasion, when 
trying to debug a machine language program. The description of the 
exact hardware representations is included here for the sake of com
pleteness. 

Logically, all the data types are laid out left to right. The left-most bit 
is the most significant. Thus, a 16-bit integer is represented by a string 
of 16 bits running from the high-order bit 15 on the left to the low-order 
bit O on the right. Each of the seven data types is laid out in this way, 
as illustrated by Figure 5.3. 

Physically, the right-most logical byte comes first. For example, sup
pose a 16-bit integer is stored in memory locations 100 and 101. The low
order bits, 7-0, are in byte 100, and the high-order bits, 15-8, are in byte 
101. The same "reversal" holds for all the data types. This format is used 
throughout the 8088/8086 family and is common to many microproces
sors. See Figure 5.4. 

Floating Point Representation 

8087 floating point representation makes a number of concessions to the 
computer's convenience. 

• Numbers are represented, unsurprisingly, by a string of binary bits 
rather than decimal numbers. 

• The position of the "binary point" is implicit. Since computer mem
ory contains only zeros and ones, there is no convenient way to 
explicitly write in a decimal point. In ordinary scientific usage we 
write 153.7 as 1.537E2. (Computers typically use "E" in this context 
to indicate multiplication by a power of ten.) If our type font had 
no period, we might agree to write 153.7 as 1537E2 and agree that 
a decimal point is implicit after the first digit. On the 8087, the binary 
point is assumed to appear immediately to the right of the most 
significant bit of the significand. 
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Figure 5.3. 8087 data type bit patterns. 
(Used with permission of Intel Corporation.) 

d2 d1 do 

0 

I 
0 

• Floating point numbers are represented in a "normalized" format. 
The leading bit of a floating point number is always a one. The 
computer shifts the significand left or right, while decreasing or 
increasing the exponent, in order to maintain this format. (However, 
see Special Data Types, below, for some exceptions.) 

• Since single and double precision numbers are always normalized, 
the leading bit is always a one and therefore needn't be stored. It 
isn't. The leading bit is stored in the 80-bit temporary real format. 

• Exponents in scientific notation can be either positive or negative. 
Rather than store an explicit sign bit for exponents, the 8087 uses a 
"biased exponent." The exponent field holds the sum of the true 
exponent and a positive constant. For example, the exponent stored 
in a single precision real number is the true exponent plus 127. The 
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Figure 5.4. 8087 data type byte patterns. 
(Used with permission of Intel Corporation.) 

exponent bias, chosen to provide the widest possible range given 
the number of bits assigned to hold the exponent, is 127 for single 
precision, 1023 for double precision, and 16383 for temporary real. 

To illustrate floating point representation, the significand of 2.0 is 
"[1]00 ... " (where the "[1]" indicates the leading 1 is assumed but 
not stored and "00 ... " indicates enough zeros to fill out the rest 
of the significand field). The exponent of 2.0, for single precision, 
is 127. Examples of significand and exponent fields for other numbers 
are: ½ is "[1]00 ... " and 126; 3.0 is "[1]10 ... " and 127; and 4.0 is 
"[1]00 ... " and 127. 

• Zero is represented by all exponent and significand bits set to zero. 
(The sign bit may be either positive or negative, without significance 
for any arithmetic or comparison operation.) 
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Integer Representation 

The three integer types are represented in "two's complement" format. 
Positive numbers are simply binary integers. Negative numbers are rep
resented in the following way: If X is a positive integer, then - X is 
written as (NOT X) + 1. The left-most bit of an integer is always a one 
for negative integers and O for zero or a positive integer. 

Packed Decimal Representation 

Packed decimal numbers are integers represented with a sign and exactly 
18 decimal digits. Bits 0-3 hold the least significant digit, that is, the 
"one's place." Bits 4-7 hold the "ten's place," and so forth. Bits 72-78 
are unused. (If an additional digit were stored here, it would not always 
be possible to convert a packed decimal number into an eight-byte in
teger.) The high-order bit, bit 79, holds the sign. If a decimal digit is not 
in the required range 0-9, the result of using the packed decimal number 
is undefined. 

As an exercise, try writing out a number in each of the seven formats. 
Figure 5.5 gives the hexadecimal representation of -127 for each format. 
(Note that 127 is 01111111 in binary or 7F in hexadecimal.) 

WORD INTEGER ~ 
1 0 BYTE 

SHORT INTEGER I FF I FFI FFI s1j 
3 2 1 0 BYTE 

LONG INTEGER IFFIFFI FFIFFIFFIFFIFFls1I 
7 6 5 4 3 2 1 0 BYTE 

PACKED DECIMAL I so I oo I oo I oo I ool oo I oo I oo I 01 I 211 
9 8 7 6 5 4 3 2 1 0 BYTE 

SHORT REAL I c2jFE I ool ool 
3 2 1 0 BYTE 

LONG REAL I co I 5FI co I oo I ool oo I ool ooj 
7 6 5 4 3 2 1 0 BYTE 

TEMPORARY REAL I co I 051 FEI oolool ool oo! ool oo I ool 
9 8 7 6 5 4 3 2 1 0 BYTE 

Figure 5.5. 8087 hexadecimal representation of -127. 

Special Data Types 

On most computers, every bit pattern represents a valid numerical value. 
In contrast, the 8087 reserves a large class of bit patterns to represent 
special non-numerical values. For almost all applications programs, these 
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special data types can be safely ignored. Here is a brief description of 
these types: 

Denormal: Real numbers are usually stored in the normalized format 
described above. An underflow occurs when the result of an oper
ation would require a negative biased exponent. Rather than merely 
set the result to zero, the 8087 "stretches" the precision of the result 
by setting the exponent field equal to zero and shifting the sigriificand 
right the appropriate number of places. Thus, denormal numbers 
can be recognized, when stored in memory, by the zero exponent 
field together with a non-zero significand field. A denormal is con1 
verted to an unnormal when loaded into the 8087 from memory or 
used in an arithmetic operation. Denormals are perfectly acceptabl~ 
as operands for arithmetic instructions. (With the critical exceptiort 
of transcendental operations which assume without checking that 
operands are normals.) 

Unnormal: When a denormal is used in an arithmetic operation, the 
result is an unnormal. Unnormals exist only in temporary real format 
and can be recognized by a zero in bit 63 (as opposed to one for a 
normal). Unnormals are also perfectly acceptable in arithmetic op
erations. (Except that transcendental operations and unnormals don't 
mix.) The result of an operation on an unnormal is a normal when 
possible and an unnormal otherwise. The existence of denormals 
and unnormals provide a major convenience to the applications pro
grammer. Frequently, numerical algorithms create very small inter
mediate results. Most computers either halt with an underflow signal 
or set the intermediate result equal to 0.0. In contrast, 8087 routines 
continue to execute while maintaining maximum possible accuracy. 

Zero: Zero hardly seems like a special data type. However, it is very 
useful to know ~ow the processor treats operations involving zeros. 
Real zeros may be signed either positive or negative, but the sign is 
always ignored. The 8087 is extraordinarily well behaved when using 
zero in arithmetic operations. Where most processors would come 
to an unpleasant halt, the 8087 produces a sensible answer; for ex
ample, the result of 7/0 is infinity and the result of 0/0 is indefinite. 

Pseudo-zero: Under certain rare circumstances, temporary reals may 
end up containing a type known as a pseudo-zero. The pseudo- zero 
behaves mostly like a zero. For most purposes, this type may be 
safely ignored. 

Infinity: The real formats include the values plus and minus infinity. 
These are represented by a biased exponent of all ones and a sig
nificand with a leading one and trailing zeros. Infinity can be used 
as an argument for most 8087 arithmetic operations. Infinity in a 
register is tagged special (in the tag word). 
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Real indefinite: The 8087 produces the value indefinite as the masked 
response to an invalid operation. A real indefinite is indicated by a 
negative sign bit, all ones in the biased exponent, and a significand 
with two leading ones followed by trailing zeros. Indefinite in a 
register is tagged special. 

Integer and packed decimal indefinite: For each integer type, the larg
est negative number (for example, -215) also represents indefinite. 
Packed decimal indefinite is represented by 16 leading ones with the 
trailing bits undefined. Use of integer and packed decimal indefinite 
should be avoided, as the 8087 treats integer indefinite as the largest 
negative number and gives undefined results after loading a packed 
decimal indefinite from memory. 

NAN (Not-A-Number): Any value, except infinity, with a string of 
ones for the biased exponent is a member of the class NAN (Not
A-Number). NANs propagate through arithmetic operations. Thus 
you can design software that treats members of this class as being 
"special" in any way you'd like (except for real indefinite which is 
reserved for the use described above). For example, particular NANs 
might be used to indicate unassigned memory locations while de
bugging a program or missing data in a statistical or accounting 
problem. 

In the next chapter, we turn away from architectural detail and begin 
writing our first useful programs. 



Simple Instruction Set 

We write our first program in this chapter: a simple routine to calculate 
the sum of an array of numbers. Before preparing our program, we 
discuss the 8087' s basic instructions. 

The 8087 has six instruction groups: data transfer, arithmetic, transcen
dental, constants, comparison, and processor control. We discuss data trans
fer, a few of the comparison instructions, and the basic arithmetic operations 
in this chapter. We defer discussion of the less frequently used instruc
tions until Chapter 12. This chapter is divided into five sections. In the 
first section, we take a close look at the 8087 register stack. The next 
three sections look at the 8087 data transfer instructions, the 8087 basic 
arithmetic instructions, and the basic comparison instructions. In the last 
section we build our first program. 

The Stack Mechanism 
The 8087 has eight 80-bit registers for holding data internally. On most 
computers, these registers would be numbered 0, 1, 2, 3, 4, 5, 6, and 7; 
and a typical instruction would be something like "add register 3 to 
register 4 and leave the sum in register 3." The 8087 uses a more elegant 
system for accessing registers-the stack. · 

The stack method is invariably described by analogy to the plate holders 
found in cafeterias. A stack of plates is loaded on a spring with only the 
top plate visible. If you put a plate on the stack, all the other plates move 
down and only the new plate is accessible. Remove the top plate and all 
the ones below move up one place. On a computer, the action of adding 
an item to a stack is called a push (all the data is pushed down one 
position), and removing the top item is called a pop (all the data pops 
up one position). For the sake of efficiency, a computer doesn't actually 
move data up and down. Instead the computer changes a pointer which 
indicates which register is at the top of the stack. 

The register on top of the 8087 stack is called ST or ST(O). The 8087 
also allows you to reference registers below the stack top. The piece of 
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data immediately below the stack top is called ST(l); one further down 
is ST(2); and so on through ST(7). As we push and pop data from the 
stack, these names become attached to different registers. 

Figure 6.1 illustrates the stack in action. Initially, the stack is empty. 
Next, we push the number 3.14 onto the stack. Now, ST(0) has the value 
3.14 and ST(l) through ST(7) are undefined. Suppose we push 2.18 onto 
the stack. ST(0) holds 2.18 and ST(l) holds 3.14. If we pop the stack, 
then ST(O) will again point to the value 3.14. 

EMPTY ST(O) 

EMPTY 

EMPTY 

EMPTY 

EMPTY 

EMPTY 

EMPTY 

EMPTY 

3.14 

EMPTY 

EMPTY 

EMPTY 

EMPTY 

EMPTY 

EMPTY 

EMPTY 

ST(O) 

ST(1) 

2.18 

3.14 

EMPTY 

EMPTY 

EMPTY 

EMPTY 

EMPTY 

EMPTY 

Figure 6.1. 8087 stack mechanism. 

ST(O) 3.14 

EMPTY 

EMPTY 

EMPTY 

EMPTY 

EMPTY 

EMPTY 

EMPTY 

Notice that the stack mustn't grow to be more than eight deep, since 
the 8087 has only eight internal registers. The 8087 leaves responsibility 
for watching the depth of the stack in your hands. If a program does 
nine pushes in a row, you'll get incorrect answers-but no error mes
sages. (Technically, the 8087 registers are organized as a chain rather 
than a stack. On the ninth push, ST(7) becomes ST(0) and the previous 
contents of ST(7) are lost.) 

Data Transfer Instructions 

Data transfer instructions move data from memory into the 8087 (load), 
from the 8087 into memory (store}, and between 8087 registers (ex
change). Inside the 8087 all data is held in temporary real format. In 
memory, operands fall into one of the seven data types discussed in 
Chapters 2 and 5. As data moves into or out of the 8087, it is automatically 
converted between temporary real and other formats. Three rules sum
marize the way the 8087 distinguishes among the different types of data. 
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• Data stored internally in an 8087 register is always temporary real. 
• Different instructions reference real, integer, and packed decimal 

types. 
• Within a given type, the 8087 distinguishes between arguments of 

different precision according to the amount of memory space the 
argument occupies. For example, an instruction which operates on 
reals treats an operand referencing a four-byte memory location as 
a single precision number and an operand referencing an eight-byte 
memory location as a double precision number. 

The data transfer instructions are summarized in Table 6-1. 

Table 6-1. 8087 data transfer instructions. 

FLO 
FST 
FSTP 
FXCH 

FILO 
FIST 
FISTP 

FBLO 
FBSTP 

Real Transfers 

Load real 
Store real 
Store real and pop 
Exchange registers 

Integer Transfers 

Integer load 
Integer store 
Integer store and pop 

Packed Decimal Transfers 

Packed decimal (BCD) load 
Packed decimal (BCD) store and pop 

(Used with permission of Intel Corporation.) 

(The typical execution time for each instruction appears to the right of 
the instruction name. Appendix 1 gives more precise timing information.) 

Real Transfer Instructions 

FLO source 13 microseconds 
FLD (load real) pushes the source data onto the stack by changing the top 
of stack pointer to point to the next available register and then copying 
the source data into this register. The source may be either a real-memory 
location or an 8087 register. FLD is the basic instruction for moving data 
into the 8087. 

FST destination 23 microseconds 
FST (store real) copies the contents of the top element of the stack into 
the indicated destination, either an 8087 register or a single or double 
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precision memory location. Data moved into memory is automatically 
converted to single or double precision format. FST does not affect the 
depth of the stack or its contents. FST cannot be used to store a temporary 
real in memory. 

FSTP destination 23 microseconds 
FSTP (store real and pop) stores the top element of the stack and then 
pops the top of the stack. Unlike FST, FSTP will move a temporary real 
into memory. 

The "pop" is accomplished in two steps. First, the register currently 
at the top of the stack is marked "empty" (in the tag word). Second, the 
top of stack pointer is changed to point to the register logically "below" 
the current top of stack. Thus the instruction FSTP ST(O) pops the stack 
with no effective transfer. 

FXCH 3 microseconds 

FXCH destination 
FXCH (exchange registers) exchanges the stack top with the designated 
destination register. If the destination is not specified, ST(l) is assumed. 
Thus, FXCH with no destination swaps the contents of the two registers 
at the top of the stack. 

Integer and Packed Decimal Data 
Transfer Instructions 

FILO source 12 microseconds 
FILD (load integer) pushes the integer memory operand onto the stack 
(converting it to a temporary real). 

FIST destination 21 microseconds 
FIST (store integer) rounds the value held in ST(O) and stores the resulting 
integer in the destination memory location. (A copy of the value is made 
before rounding so that the contents of ST(O) remain unchanged.) The 
destination may be either a word or short integer. You cannot store a 
long integer with FIST. 

FISTP destination 21 microseconds 
FISTP (store integer and pop) rounds the top of stack element and stores 
it in the destination memory location. The top of stack is then popped. 
Unlike FIST, FISTP will store into a long integer memory location. 
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FBLD source 69 microseconds 
FBLD (load packed decimal) pushes the memory source location onto the 
top of the stack, converting the operand from packed decimal to tem
porary real. No check is made to see that the data is a valid packed 
decimal number. The result of loading invalid data is undefined and 
should be carefully avoided. (The "B" in FBLD comes from an alternative 
name for packed decimal representation, "BCD or Binary Coded Deci
mal.") 

FBSTP destination 117 microseconds 
FBSTP (store packed decimal and pop) converts the contents of the top 
of stack register into packed decimal representation and transfers the 
converted number to the destination memory location. The top of stack 
is then popped. If the top of stack element is not already an integer, it is 
converted to one by adding 0.5 and truncating. This rounding operation 
sometimes differs from FIST, which operates under 8087 rounding con
trol. Rounding control can be effectively invoked by preceding FBSTP 
with FRNDINT, which rounds the stack top to an integer. (FRNDINT is 
described in Chapter 12.) 

Basic Arithmetic Instructions 

The 8087 has 21 basic arithmetic instructions, summarized in Table 6-2. 
Of these, 18 provide varieties of addition, subtraction, multiplication, 
and division. In addition to the standard use of these four basic opera
tions, the 8087 also allows "reversed" subtraction and "reversed" divi
sion. 

In normal subtraction, the destination is replaced by the destination 
minus the source. In reversed subtraction, the destination is replaced by 
the source minus the destination. Reversed division operates anala
gously. (No reversed operations are needed for addition and multipli
cation, since both operations are commutative.) 

Including the reversed operations, there are six basic arithmetic in
structions. Each instruction comes in three formats: real, real-and-pop, and 
integer. Thus, there are 18 total instructions. 

Arguments in the real format may take the stack form, the register form, 
or the real-memory form. In the stack form, the destination is always ST(l) 
and the source is always ST(0). In the register form, one argument is the 
stack top, ST(0), and the other is any 8087 register. In real-memory form, 
the destination is ST(0) and the source is a location in memory. Only 
single precision and double precision types may be used in the real-memory 
form. 

The real-and-pop format uses the register form. After the operation, the 
stack is popped. For example, FADDP ST(l),ST adds the top two stack 
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Table 6-2. 8087 arithmetic instructions. 

FADD 
FADDP 
FIADD 

FSUB 
FSUBP 
FISUB 
FSUBR 
FSUBRP 
FISUBR 

FMUL 
FMULP 
FIMUL 

FDIV 
FDIVP 
FIDIV 
FDIVR 
FDIVRP 
FIDIVR 

FSQRT 
FSCALE 
FPREM 
FRNDINT 
FXTRACT 
FABS 
FCHS 

Addition 

Add real 
Add real and pop 
Integer add 

Subtraction 

Subtract real 
Subtract real and pop 
Integer subtract 
Subtract real reversed 
Subtract real reversed and pop 
Integer subtract reversed 

Multiplication 

Multiply real 
Multiply real and pop 
Integer multiply 

Division 

Divide real 
Divide real and pop 
Integer divide 
Divide real reversed 
Divide real reversed and pop 
Integer divide reversed 

Other Operations 

Square root 
Scale 
Partial remainder 
Round to integer 
Extract exponent and significand 
Absolute value 
Change sign 

(Used with permission of Intel Corporation.) 

elements, stores the sum one element below the top of stack, and pops 
the stack. After execution, the original contents of the stack top have 
been discarded, the contents of ST(l) are replaced by the sum, and the 
register that was formerly ST(l) pops up to the top of the stack. 

The integer format references a word integer or short integer location in 
memory as the source. ST(O) is the destination. 
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Implicit Operands 

Stack operands may be either implicit or explicit. For example, in the stack 
form ST is always assumed to be the source and ST(l) is assumed to be 
the destination. For purposes of illustration, implicit arguments are shown 
below in curly brackets, as in {ST}, even though these operands are not 
coded in actual programs. 

Use of implicit arguments can lead the unwary programmer into great 
confusion. Unfortunately, an instruction with two implicit arguments 
has a different meaning from the same instruction followed by (the im
plied) explicit arguments. By convention, use of two implicit arguments 
tells the assembler that you wish to pop the register stack after executing 
the instruction. For example, the instruction "FADD" implies the source 
is ST and the destination is ST(l). But the assembler translates the in
struction as "FADDP ST(l),ST", which is quite different from "FADD 
ST(l),ST". You can avoid a lot of trouble by not taking "advantage" of 
this convention. Instead, make both arguments explicit. 

The various combinations of instruction formats are summarized in 
Table 6-3. 

Table 6-3. 8087 arithmetic instruction formats. 

Instruction Form 

Classical stack 
Register 
Register pop 
Real memory 
Integer memory 

Mnemonic 
Form 

Fop 
Fop 
FopP 
Fop 
Flop 

Operand Forms 
destination, source 

{ST(l),ST} 
ST(i),ST or ST,ST(i) 
ST(i),ST 
{ST, short-real/long-real} 
{ST, word-integer/ 

short-integer} 

ASM-86 Example 

FADD 
FSUB ST,ST(3) 
FMULP ST(2) ,ST 
FDIV AZIMUTH 
FIDIV N_pULSES 

NOTES: Braces {} surround implicit operands; these are not coded and are shown here 
for information only. 

op= ADD destination-destination+ source 
SUB destination-destination - source 
SUBR destination-source - destination 
MUL destination~estination * source 
DIV destination~estination -;- source 
DIVR destination-source-;- destination 

(Used with permission of Intel Corporation.) 

Addition Instructions 

FADD 
FADD 

{ST(1 ),sn 
{ST ,}real-memory 

18 microseconds 
25 microseconds 
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FADD ST(i),ST or ST,ST(i) 17 microseconds 
FADDP ST(i),ST 18 microseconds 
FIADD {ST,}integer-memory 27 microseconds 
FADD (add real), FADDP (add real and pop), and FIADD (add integer) 
add the source operand to the destination operand and leave the sum 
in the destination. In addition, F ADDP pops the stack. 

Subtraction Instructions 

FSUB {ST(1),STI 18 microseconds 
FSUB {ST,}real-memory 25 microseconds 
FSUB ST(i),ST or ST,ST(i) 17 microseconds 
FSUBP ST(i),ST 18 microseconds 
FISUB {ST,}integer-memory 27 microseconds 
FSUB (subtract real), FSUBP (subtract real and pop), and FISUB (subtract 
integer) subtract the source operand from the destination operand and 
leave the difference in the destination. In addition, FSUBP pops the stack. 

FSUBR {ST(1),STI 18 microseconds 
FSUBR {ST,}real-memory 25 microseconds 
FSUBR ST(i),ST or ST,ST(i} 17 microseconds 
FSUBRP ST(i},ST 18 microseconds 
FISUBR {ST,}integer-memory 27 microseconds 
FSUBR (reversed subtract real), FSUBRP (reversed subtract real and pop), 
and FISUBR (reversed subtract integer) subtract the destination operand 
from the source operand and leave the difference in the destination. In 
addition, FSUBRP pops the stack. 

Multiplication Instructions 

FMUL {ST(1),STI 28 microseconds 
FMUL {ST,}real-memory 34 microseconds 
FMUL ST(i),ST or ST,ST(i} 28 microseconds 
FMULP ST(i},ST 28 microseconds 
FIMUL {ST,}integer-memory 28 microseconds 
FMUL (multiply real), FMULP (multiply real and pop), and FIMUL (mul
tiply integer) multiply the source and destination operands and leave the 
product in the destination. In addition, FMULP pops the stack. 
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Division Instructions 

FDIV {ST(1 ),SD 41 microseconds 
FDIV {ST,}real-memory 48 microseconds 
FDIV ST(i),ST or ST,ST(i) 40 microseconds 
FDIVP ST(i),ST 41 microseconds 
FIDIV {ST,}integer-memory 49 microseconds 
FDIV (divide real), FDIVP (divide real and pop), and FIDIV (divide in
teger) divide the destination operand by the source operand and leave 
the quotient in the destination. In addition, FDIVP pops the stack. Note 
that FIDIV yields a- temporary-real quotient. 

FDIVR {ST(1 ),SD 41 microseconds 
FDIVR {ST,}real-memory 48 microseconds 
FDIVR ST(i),ST or ST,ST(i) 40 microseconds 
FDIVRP ST(i),ST 41 microseconds 
FIDIVR {ST,}integer-memory 49 microseconds 
FDIVR (divide real reversed), FDIVRP (divide real reversed and pop), 
and FIDIVR (divide reversed integer) divide the source operand by the 
destination operand and leave the quotient in the destination. In addi
tion, FDIVRP pops the stack. Note that FIDIVR yields a temporary-real 
quotient. 

Miscellaneous Arithmetic Instructions 

FSQRT {ST} 37 microseconds 
FSQRT (square root) replaces the top of stack with its square root. 

FABS {SD 3 microseconds 
FABS (absolute value) sets the sign of the top of stack element to positive. 

FCHS {SD 3 microseconds 
· FCHS (change sign) changes the sign of the top of stack element. 

One more instruction really belongs in this chapter, even though it is 
a constant instruction and constant instructions are covered in Chapter 
12. However, this instruction is simple and extremely useful. It is: 

FLDZ {SD 3 microseconds 
FLDZ (load zero) pushes a zero onto the top of the stack. 
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Comparison Instructions 
The 8087 includes a number of instructions for making size comparisons 
between numbers on the register stack. These instructions are used for 
tasks such as identifying the largest number in an array or for determining 
whether a number is less than, equal to, or greater than zero. We describe 
the instructions here. Illustrative programming examples appear in Chap
ter 7. 

The 8087 instruction set includes six comparison and one examine 
instruction. All !he instructions operate on the stack top. Most compare 
the stack top to a specified source operand. There are four possible out
comes of a comparison operation: ST > source, ST < source, ST= source, 
or ST and source are non-comparable. The comparisons are reported by 
setting the condition code bits C3 and CO in the status word, as indicated 
in Table 6-4. The condition code can be examined by using the processor 
control instruction, FSTSW, discussed below. 

Table 6-4. Condition code setting following comparison. 

C3 co Order 

0 0 ST> source 
0 1 ST< source 
1 0 ST = source 
1 1 non-comparable 

(Used with permission of Intel Corporation.) 

Note that non-comparable results from using NANs or projective infinity. 
Non-comparable usually indicates a previous overflow or illegal opera
tion. 

FCOM {ST,ST(1)} 9 microseconds 
FCOM {ST,}ST(i) 9 microseconds 
FCOM {ST,}real-memory 17 microseconds 
FCOM ( compare real) compares the stack top to the source and sets the 
condition code bits. Temporary real format may not be used in the real
memory form. 

FCOMP {ST,ST(1)} 10 microseconds 
FCOMP {ST,}ST(i) 10 microseconds 
FCOMP {ST,}real-memory 17 microseconds 
FCOMP ( compare real and pop) executes a FCOM and then pops the 
stack, discarding the contents of the stack top. 



6 a Simple Instruction Set 49 

FCOMPP {ST,ST(1)} 1 O microseconds 
FCOMPP (compare real and pop twice) executes a FCOM and then pops 
the stack twice. Thus, to compare two numbers in memory, push both 
onto the stack and then use a FCOMPP. 

FICOM {ST,}integer-memory 19 microseconds 
FICOM (compare integer) compares the stack top to a word integer or 
short integer in memory. 

FICOMP {ST,}integer-memory 19 microseconds 
_ FICOMP (compare integer and pop) executes a FICOM and then pops 
the stack. 

FTST {ST} 9 microseconds 
FTST (test) compares the stack top to zero. 

FXAM {ST} 4 microseconds 
FXAM (examine) examines the top of stack and sets the condition code 
bits CO, Cl, C2, and C3 to indicate what sort of value is being held. (The 
various "sorts" were discussed in Chapter 5.) Table 6-5 shows the pos
sible combinations. 

Table 6-5. Condition code settings following FXAM. 

Condition Code Interpretation 

C3 C2 Cl co 
0 0 0 0 + Unnormal 
0 0 0 1 + NAN 
0 0 1 0 Unnormal 
0 0 1 1 -NAN 
0 1 0 0 + Normal 
0 1 0 1 + 00 

0 1 1 0 - Normal 
0 1 1 1 - 00 

1 0 0 0 + 0 
1 0 0 1 Empty 
1 0 1 0 - 0 
1 0 1 1 Empty 
1 1 0 0 + Denormal 
1 1 0 1 Empty 
1 1 1 0 - Denormal 
1 1 1 1 Empty 

(Used with permission of Intel Corporation.) 
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In order to make use of comparison instructions, we need to retrieve the 
condition code bits. The condition codes are retrieved with the processor 
control instruction, FSTSW. 

FSTSW word-integer 5 microseconds 
FSTSW (store status word) stores the 8087 status word at the two-byte 
destination location. All the comparison instructions set bits in the status 
word; FSTSW is used to move the status word into memory so that the 
appropriate bits can be examined and appropriate action taken. Gener
ally, FSTSW should be followed by an FW AIT, to ensure that the con
dition codes are actually stored in memory before the program proceeds. 

This completes our coverage of the basic 8087 instruction set. For most 
programs, these instructions are sufficient. More advanced 8087 instruc
tions are discussed in Chapter 12. 

Our First Program-Adding Up An 
Array of Numbers 
Our first program is picked to show off the speed and ease in using the 
8087. This program runs about 200 times faster than an equivalent BASIC 
program without the 8087! 

To write a complete 8087 program, we need a number of details that 
we haven't covered. For example, we really ought to specify how the 
routine gets its arguments from BASIC. In the interest of preserving 
everyone's sanity, we are going to cheat just this once by leaving out 
some details. Therefore, the program below won't run as it stands. (The 
program appears in full in Chapter 9.) 

We assume that, elsewhere in the program, someone has already de
fined a single precision array named ARRAY. Our task is to add up the 
numbers stored in ARRAY and place a single precision result in a variable 
named DSUM. The integer variable N has the number of elements in 
ARRAY. (ARRAY goes from ARRAY(0) to ARRAY(N-1)). A fragment of 
a BASIC program to do the job follows: 

10 DEFDBL D 
20 DEFINT I 
30 DSUM=0 
40 FOR I=O TO N-1 
50 DSUM=DSUM+ARRAY(IJ 
60 NEXT I 

Notice that we collected the sum in a double precision variable to ensure 
getting at least single precision accuracy for the final answer. 

Our 8087 code appears below. The program assumes that ARRAY is 
an array of single precision memory locations, that N holds a non-neg
ative integer, and that DSUM is a double precision memory location. 
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Everything on a line after a semicolon is a comment. We have used 
comments to number the lines and mark each instruction as either an 
8088 or an 8087 instruction. 

MOV CX,N ;1 {8088} 
FLDZ ;2 {8087} 
JCXZ DONE_ADDING ;3 {8088} 
MOV BX, □ ;4 {8088} 

LOOP_TOP: FADD ARRA Y[BX] ;s {8087} 
ADD BX,4 ;6 {8088} 
LOOP LOOP_TOP ;7 {8088} 

DONE_ADDING: FSTP DSUM ;8 {8087} 

The program uses the following strategy: place the number of array 
elements in the 8088 register CX. Subtract one from this register each 
time through the adding-up loop and quit when the register hits zero. 
Use 8088 register BX to keep track of where we are in ARRAY. (8088 
instructions are covered in detail in the next chapter.) A line-by-line 
explanation of the program follows: 

1. MOV ex, N. Load N into the CX register. (The 8088 instruction "LOOP", 
in line 7, subtracts 1 from the CX register. When CX hits zero, the 
program has gone all the way through the array, so we will jump 
out of the loop.) 

2. FLDZ. Push a zero onto the 8087 stack. We accumulate the running 
total in the top of stack element. 

3. JCXZ DONE-ADDING. If CX (that is, N) is zero, jump to 
DONE_ADDING before entering the loop. 

4. MOV BX, □. Set the BX register equal to zero .. BX is used as an index 
for ARRAY. When BX equals zero, we get the first element of array. 

5. LOOP-TOP: FADD ARRAY[BX]. Add the current element of 
ARRAY into the running sum we are accumulating in the top of 
the stack. 

6. ADD BX, 4. Add 4 to the count in BX. Why? Single precision numbers 
occupy four bytes, so we have to move along ARRAY four bytes at 
a hop. (Some things are just naturally more clumsy in assembly 
language than in a higher level programming language.) 

7. LOOP LOOP-TOP. The LOOP instruction subtracts one from CX. If 
CX is still positive, the program "loops" to LOOP _TOP, otherwise 
we proceed to the next instruction, falling out of the bottom of the 
loop since we must have already added up all N numbers. 

8. DONE-ADDING: FSTP DSUM. Store the answer in DSUM. 
Besides the fact that it was a lot easier to write the BASIC program, 

what's the difference between BASIC and our 8087 code? One, the 8087 
program is a little more accurate, though on most problems we'd probably 
never notice the difference. Two, the 8087 is a bit faster. Adding 10,000 
numbers takes approximately 46 seconds in BASIC. The 8087 needs about 
one-fourth of one second. 



Introduction to 8088 
Assembly Language 
Programming 

Before the era of the 8087, all personal computer thinking was done with 
a general purpose microprocessor such as the Intel 8088. A number 
crunching personal computer combines the mathematical power of the 
8087 with the general programming capabilities of the 8088. The 8087 
needs the 8088 to talk to the outside world. In this chapter, we discuss 
8088 programming. 

This brings us to a dilemma. The 8087 is a simple, elegant machine. 
The 8088 is a complex, elegant machine. Chapters 6 and 12 of this book 
present a complete, detailed description of the 8087 instruction set. A 
similar description of the 8088 instruction set would require a book, and 
wouldn't be very interesting to readers who just want to crunch numbers. 
On the other hand, you can't get to the 8087 except through the 8088. 

As a compromise, we discuss just those 8088 features needed to get 
through to the 8087. We don't attempt to cover all features of the 8088 
or to talk about assembly language programming in general. This chapter 
is oriented toward the BASIC programmer; the experienced assembly 
language programmer is asked to forgive the occasional simplification. 
(If you are already comfortable with 8088 assembly language, you can 
skip this chapter entirely.) For full details on the 8088 (and 8086 family) 
we recommend: 

iAPX 88 Book by Intel; 
iAPX 86,88 User's Manual, by Intel; and 
The 8086 Primer, by Stephen P. Morse, Hayden Book Company. 
IBM PC Assembly Language, by Leo J. Scanlon, Robrert J. Brady Co. 

53 
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Overview of the 8088 

Machine language instructions are much less powerful than BASIC com
mands. (A typical line of BASIC might be equivalent to 10 to 100 lines 
of machine language instructions.) Consequently, it's easy to understand 
what a single line of 8088 code does, but it can be very tedious to put 
together enough lines to do anything useful. For example, suppose we 
want to copy the data in integer variable A into integer variable B. In 
BASIC we write: 

B=A 

8088 code might be: 

MOV AX,A ;MOVE CONTENTS OF LOCATION A INTO REGISTER AX 
MOV B,AX ;MOVE CONTENTS OF REGISTER AX INTO LOCATION B 

A and B are integer variables in both sets of code, but there the sim
ilarity ends. We see the following differences: 

• BASIC uses mathematical notation. 8088 notation takes the form of 
a command to the CPU. 

• BASiC deals directly with the variables of interest. The 8088 uses 
internal registers as intermediaries. In this example, the data in A 
is transferred into a register named II AX" and then transferred from 
the AX register into B. 

• Anything following a semicolon is a comment in assembly language. 
BASIC uses the apostrophe and REM statement for this purpose. 

Suppose we wanted to deal with single precision numbers instead of 
integers. In BASIC, we declare the variables A and B to be of the appro
priate type. Thereafter, B = A works equally well for any type of variable. 
8088 code would have to be modified, leading us to some further differ
ences. 

MOV AX,A 
MOV B,AX 
MOV AX,A+2 
MOV 8+2,AX 

;MOVE THE FIRST HALF OF A INTO AX 
;MOVE AX INTO THE FIRST HALF OF B 
;MOVE THE SECOND HALF OF A INTO AX 
;MOVE AX INTO THE SECOND HALF OF B 

• BASIC deals with data a number at a time. The 8088 works either 
on a word (two bytes) or a byte at a time. Since a single precision 
number occupies two words, two sets of MOV operations are re
quired to move a single precision number. 

• Unlike BASIC, which thinks in terms of variables, the 8088 funda
mentally thinks in terms of memory locations. In the instruction 11MOV 
AX,A", 11 A" represents a memory location to be assigned by the 
assembler. 11 A+ 2" means the memory location 2 bytes after II A". 
11 A+ 2" does not mean add 2 to the value stored in A. 
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8088 Program Structure 

An 8088 assembly language program is structured into procedures,· code 
segments, and data segments. 

Each separate program module is identified to the assembler as a pro
cedure by the PROC and ENDP directives (discussed below). The assem
bler remembers the location of each block of code identified so that the 
module can be called as a subroutine from another 8088 assembly lan
guage program or by use of the BASIC CALL statement. Normally, each 
procedure is a self-contained unit intended to perform one task in a larger 
program. 

Programs written for the 8088 segregate code and data into different 
areas of memory called segments. While any number of segments may 
reside in memory simultaneously, only one code segment and one data 
segment (plus a stack and an extra segment described below) may be 
active at any one time. Segments are identified to the assembler with the 
SEGMENT and ENDS directives (discussed below). Segments are limited 
in length to 64K bytes. 

One way to think of an assembly language program is that we write 
out an exact picture of how memory looks before execution begins. Some 
areas of memory hold program constants or are set aside to hold results 
produced by the computer. These areas are placed in data segments. 
Other areas of memory hold the executable code, as translated from 
assembly language into machine language, by the assembler. The code 
is logically organized into procedures. One or more procedures is then 
placed in each code segment. When we run the program, the computer 
places each segment, as a block, in memory and then begins execution. 

To master the 8088, one must understand: 

1. General registers 
2. Memory addressing 
3. Labels and data definition 
4. Some basic 8088 instructions 
5. Comparisons 
6. Branching 
7. Segments 
8. Memory stack 
9. Subroutine branching and returns 

10. Assembler directives 

General Registers 

The 8088 has eight general registers, each of which holds one 16-bit word. 
The registers are named AX, BX, CX, DX, SI, DI, BP, and SP. In the 
MOV examples above, any of these registers could have been used in 
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place of AX. However, each register has various special purposes in 
addition to its general role. The special uses of interest to us are: 

AX and DX-Register AX is sometimes called the accumulator. A few 
8088 instructions will only work with AX. Instructions that produce 
a double length result, such as multiplication, place the result in AX 
and DX. 

BX, SI, and DI-base and index registers (see Memory Addressing 
below). 

CX-count register (see Branching below). 
BP and SP-stack pointers (see Memory Stack below). 

In addition, registers AX, BX, CX, and DX can each be treated as a 
pair of 8-bit registers. The high-order bytes are addressed as AH, BH, 
CH, and DH and the low-order bytes are addressed as AL, BL, CL, and 
PL. Most 8088 operations can operate on either a word at a time or a 
byte at a time. Moving a byte into AH, for example, changes the high
order half of AX without affecting the low-order half. 

The AH half of AX also has a special use in moving "flags" around 
(see Branching below). 

Memory Addressing 

In the "MOV AX,A" instruction above, "A" represents a particular mem
ory location called the displacement. The first byte of memory is numbered 
0, the second 1, and so forth. The assembler figures out the number of 
the memory location for A and sticks the number into the instruction. 
Note that the 8088 addresses bytes, not words, so the first word begins 
at 0, the second at 2, the third at 4. (It is perfectly acceptable to store a 
byte at 0, a word at 1 and 2, and so forth. Words don't have to fall on 
even-numbered locations. However, the 8086 side of the 8088/8086 family 
will run a tiny bit faster when words do fall on even locations.) 

If we want to use the byte after location A we code "A+l". Analo-. 
gously, the word after location A is "A+ 2", and the byte before location 
A is addressed as "A - 1". 

Just as BASIC allows indexed arrays, the 8088 allows us to index mem
ory. In BASIC the first element of an array A is A(0), the second A(l), 
and so forth. To pick different elements at different points in the program 
we code A(I), and set the variable I appropriately. In 8088 code we index 
memory by indicating that the value held in one of the registers is to be 
added to the displacement in calculating the address. We tell the 8088 
which register to use by placing its name in square brackets, as in A[BX]. 
Further, we can "double index" memory by placing a second register in 
square brackets, as in A[BX][SI]. Thus, if A is location 75, the BX register 
holds 150, and the SI register holds 1000, A[BX][SI] is location 1225. 
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Unfortunately, we are somewhat restricted in which registers can be 
used as indexes. If we use one register, it can be BX, SI, or DI. If we use 
two registers, one must be BX and the other can be either SI or DI. 
(Actually, BP can be used rather than BX as an index, but this is generally 
not done for reasons that become clear when we discuss the memory 
stack.) 

Thus, a memory address consists of a displacement and zero, one, or 
two index registers. The displacement may be omitted, in which case a 
displacement of zero is assumed. This usage is quite common, because 
when we call a subroutine from BASIC, BASIC passes the subroutine 
the address of each argument. If we call a subroutine with an argument 
A(0), the subroutine might place the address of A(0) into the BX register, 
use the SI register to hold an index, and address the array by [BX] [SI] 
with no displacement. 

Note some critical differences between indexing in BASIC and indexing 
in assembly language. In BASIC if the index is 17, we get the 18th (started 
at zero, remember) element of the array, regardless of whether the array 
is of type integer, single precision, or double precision. In machine lan
guage if the index is 17, we get the 18th byte, not the 18th element of 
the array. Depending on the type of data being used, consecutive ele
ments have indexes 0, 2, 4 ... , 0, 4, 8 ... , or 0, 8, 16 .... Also, in BASIC 
we can specify multi-dimensional arrays. 8088 indexing is all one-di
mensional. 

When the displacement is added to the value of the index registers the 
result is a 16-bit logical address. Therefore, the address must be between 
0 and (216)-1, or 64K. (It is no coincidence that BASIC is limited to a 
64K area.) 

Most operations specify a register and a memory location. Instructions 
can also specify two registers, as in 

MOV AX,BX iMOVE THE CONTENTS OF THE BX REGISTER INTO AX 

Some instructions allow one argument to be an immediate operand. An 
immediate operand is a constant built right into the instruction-the 
value is used "immediately," in contrast to being fetched from memory. 
For example, to set the register AX to zero and the value of memory 
location A to minus one: 

MOV AX, □ 
MOV A,-1 

8088 instructions such as MOV can operate either a byte at a time or 
a word at a time. In truth, MOV is really two separate instructions, "move 
word" and "move byte." The assembler looks at the specified operands 
to decide which instruction we mean. Most of the time the assembler 
can figure out whether we want a byte or a word by examining the 
specifications used to define the memory location (see Labels and Data 
Definition below). Sometimes there aren't any such specifications, such 
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as when we use an index register without a displacement, and sometimes 
we want to override the original specifications. To order the assembler 
to think in terms of a byte or a word, use the "PTR" (pointer) directive. 
We indicate that location A is a byte or a word by saying "BYTE PTR A" 
or "WORD PTR A." So to move an integer whose location is held in BX 
into a location held in SI we might code: 

MOV AX, WORD PTR [BX] 
MOV WORD PTR [SI], AX 

Labels and Data Definition 

An assembly language program consists of a series of one-line com
mands. Commands are actually of two sorts: instructions and assembler 
directives. A command may be preceded by an optional identifying label. 
To label an instruction, begin the line with the desired label and a colon. 
The program can jump to a labeled instruction in much the same way 
as a program can GOTO a line number in BASIC. To label a line containing 
a directive, begin the line with the desired label, but omit the colon. 

THIS-IS-A-LABEL: MOV AX,A 

Assembler directives do not generate any machine language code. ln-:
stead they give the assembler information or ask it to perform a task, 
such as setting aside a memory location to be used as data storage. For 
example, the assembler directive "DW" sets aside two bytes of storage. 
It can be followed by an initial value and the storage area can be labeled. 

A DW 37 

Setting aside and labeling memory is somewhat analogous to the BASIC 
statement DIM. "DW" stands for "define word." To define a word with 
no initial value, tell the assembler "DW ?". We can also define a series 
of words with a directive like "DW 3,5,?, -2". Or we could set aside 10 
uninitialized words with "DW 10 DUP(?)". Since an address is actually 
represented by a 16-bit integer, we can also initialize a memory location 
to contain the address of some other instruction, as in 

POINT_TO_A_LABEL DW THIS-IS-A-LABEL 

The 8088 deals with bytes and words. To set aside one or more bytes, 
we use the "define byte" instruction, DB. The 8087 deals with many 
more data types. Table 7-1 shows all the storage allocation directives. 

The assembler knows how much memory is supposed to be associated 
with a particular storage allocation directive. This knowledge is used in 
two ways. First, if you set aside storage using Define Byte, as in "A DB 
5" and then try to use a word instruction, as in "MOV AX,A", the 
assembler will warn you of a type mismatch. If you intend to move the 
two bytes at A and A+ 1, you can override this mechanism by using the 
instruction "MOV AX, WORD PTR A". 
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Table 7-1. Storage allocation directives. 

Directive Interpretation Bytes Pointer type Data types 

DB Define Byte 1 BYTE PTR byte 
ow Define Word 2 WORD PTR word integer 
DD Define 4 DWORD PTR short integer, 

Doubleword short real 
DQ Define 8 QWORDPTR Long integer, 

Quadword long real 
OT Define Tenbyte 10 TBYTE PTR Packed decimal, 

temporary real 

(Used with permission of Intel Corporation.) 

Second, the assembler uses the storage allocation directives to decide 
whether 8087 instructions should operate on single or double precision 
data. For example: 

FLD DWORD PTR A 

loads a single precision number located at bytes A, A+ 1, A+ 2, and A+ 3 
onto the 8087 stack. The instruction 

FLD QWORD PTR A 

loads a double precision number located at bytes A through A+ 7. 

We can also label a memory location without setting aside storage by 
using the directives EQU and THIS WORD. "THIS WORD" takes on the 
value of the next memory location and "EQU" assigns a value to a name. 
For example: 

A 
B 

DW 
EQU 
DW 

10 DUP (?) 

THIS WORD 
30 DUP (?) 

These instructions set aside 40 words of storage. If A ends up being 
located at byte 100 of memory, then B will reference location 120. 

Some Basic 8088 Instructions 

In this section, we cover a few of the most common 8088 instructions, 
concentrating on those instructions we need later for programs. 

ADD destination.source 
ADD (Add) adds the destination and the source and places the sum in 
the destination. 
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AND destination.source 
AND (Logical and) does a bit by bit "and" operation. Bit "i" in the 
destination is set to one if bit "i" is one in both source and destination, 
otherwise it is set to zero. 

DEC destination 
DEC (Decrement) subtracts one from the destination. 

INC destination 
INC (Increment) adds one to the destination. 

MOV destination,source 
MOV (Move) copies the value of the source into the destination. 

MUL source 
MUL (Multiply) multiplies the source by AL or AX. If the source is a 
byte, it is multiplied by AL, and the result is placed in AH and AL (that 
is, the·16-bit answer that occupies AX). If the source is a word, the 32-
bit answer is placed (upper 16 bits) in DX and (lower 16 bits) in AX. Both 
operands are treated as unsigned binary numbers. The source cannot be 
an immediate operand. 

OR destination.source 
OR (Logical inclusive or) does a bit by bit "or" operation. Bit "i" in the 
destination is set to one if bit "i" is one in either the source or the 
destination, otherwise it is set to zero. 

SHL destination.source 
SHL (Shift logical left) shifts the bits in the destination to the left. Bits 
that move out on the left "fall off the end" and zeros are moved in on 
the right. The source can either be "1," in which case the destination is 
shifted left one bit, or it can be CL, the lower half of the CX register, in 
which case the destination is shifted left the number of places indicated 
by the value held in CL. · 

Notice that shifting a number left one place is the same as multiplying 
the number by two. It turns out that we frequently have need to multiply 
by two or by a power of two. The SHL instruction takes only six micro
seconds, while the MUL instruction takes about 30. 

SHR destination.source 
SHR (Shift logical right) shifts the bits in the destination to the right. Bits 
that move out on the right "fall off the end" and zeros are moved in on 
the left. The source can either be "l," in which case the destination is 
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shifted right one bit, or it can be CL, in which case the destination is 
shifted right the number of places indicated by the value held in CL. 

SUB destination.source 
SUB (Subtract) subtracts the source from the destination and places the 
difference in the destination. · 

Comparisons 

Controlling the flow of a program is easier in BASIC than in assembly 
language. In BASIC, we would jump to line 100 when A is greater than 
B with a statement combining a comparison and a conditional jump, such 
as 

IF A>B THEN GOTO 1 □□ 

In assembly language, the comparison and branching are two logically 
separate steps. First, we use a comparison (or other) operation to set 
"flags" inside the 8088. Then, we execute a branching instruction which 
examines the flags and jumps if it sees the right ones "flying." The 8088 
has six internal "flags." These flags can be thought of as occupying six 
out of the 16 bits of a "flag register." The flags, their position, and 
meaning are: 

CF-bit 0-carry flag 
PF-bit 2-parity flag 
AF-bit 4-auxiliary carry flag 
ZF-bit 6-zero flag 
SF-bit 7-sign flag 
OF-bit 11-overflow flag 

The flag names are suggestive of their general use. We care about the 
flags for two reasons. First, 8088 comparison instructions set some of the 
flags to zero or one. Second, 8087 comparison instructions indirectly set 
some of the flags. 

The 8088 compares two numbers by using the CMP instruction. 

CMP destination.source 
CMP (Compare) compares the destination to the source, setting the flags 
to indicate the result of the comparison. The flags are read by the jump 
instructions outlined in Table 7-2. 

The 8087 does its own comparisons, but relies on the 8088 for program 
branching. To set up an 8088 branch following an 8087 comparison, we 
need to set the 8088 flags. SAHF is used for this purpose. 
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SAHF 
SAHF (Store register AH into flags) sets SF, ZF, AF, PF, and CF from 
bits 7, 6 ,4, 2, and O of AH. 

Branching 

JMP address 
The 8088 jump instruction is analogous to GO TO in BASIC. The program 
jumps from its current position to the address specified by the jump. 

The 8088 also has 18 conditional jump instructions. These instructions 
cause a jump to the specified address only if the flags have a certain 
pattern, otherwise execution continues with the next instruction. For 
example, if we execute a "JG SOME_LABEL" following a CMP, the pro
gram goes to SOME_LABEL if the destination was greater than the source, 
and continues on to the next instruction otherwise. Table 7-2 describes 
the conditional jump instructions. 

One warning: an 8087 comparison sets different bits than an 8088 
comparison. See below. 

Table 7-2. 8088 conditional jump instructions. 

Mnemonic 

JA/JNBE 
JAE!JNB 
JB/JNAE 
JBE/JNA 
JC 
JE/JZ 
JG/JNLE 
JGE/JNL 
JL/JNGE 
JLE/JNG 
JNC 
JNE/JNZ 
JNO 
JNP/JPO 
JNS 
JO 
JP/JPE 
JS 

Condition tested 

(CF OR ZF) =0 
CF=0 
CF=l 
(CF OR ZF)=l 
CF=l 
ZF=l 
((SF XOR OF) OR ZF)=0 
(SF XOR OF) = 0 
(SF XOR OF)= 1 
((SF XOR OF) OR ZF) = 1 
CF=0 
ZF=0 
OF=0 
PF=0 
SF=0 
OF=l 
PF=l 
SF=l 

"Jump if ... " 

above/not below or equal 
above or equal/not below 
below/not above nor equal 
below or equal/not above 
carry 
equal/zero 
greater/not less nor equal 
greater or equal/not less 
less/not greater nor equal 
less or equal/not greater 
not carry 
not equal/not zero 
not overflow 
not parity/parity odd 
not sign 
overflow 
parity/parity equal 
sign 

NOTE: "above" and "below" refer to the relationship of two unsigned values: "greater" 
and "less" refer to the relationship of two signed values. 
(Used with permission of Intel Corporation.) 
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A simple program illustrates 8088 branching technique. Suppose we 
want to add up an array of 100 integers in memory and put the answer 
in a location called SUM. 

NEXLADD: 

ARRAY 
SUM 

MOV 

MOV 
MOV 
ADD 
ADD 
DEC 
CMP 
JG 
MOV 

DW 
DW 

AX, □ 

CX,100 
BX, □ 

AX,ARRAY[BX] 
BX,2 
ex 
ex, □ 

NEXLADD 
SUM,AX 

100 DUP(?) 
? 

iCLEAR OUT AX TO HOLD THE 
RUNNING SUM 

iPUT A COUNT INTO ex 
iUSE BX AS AN INDEX REGISTER 

iPOINT BX AT THE NEXT ELEMENT 
iSUBTRACT ONE FROM THE COUNTER 
iIS THE COUNTER ZERO YET? 
iIF NOT, ADD ANOTHER ELEMENT 

Because looping is so important, the 8088 has specialized instructions for 
this sort of routine. 

JCXZ address 
JCXZ (Jump if CX equals zero) takes a conditional branch if the CX register 
equals zero. In the program above, "CMP CX,0" and "JG NEXT_ADD" 
test the CX register at the bottom of the loop. We could instead use JCXZ 
to test the CX register at the top of the loop, as we illustrate below. The 
choice between testing at the bottom versus the top of a loop is largely 
a matter of style. We use both styles in this book to provide you with a 
variety of examples. However, as a matter of good programming practice, 
you may want to choose one style or the other and stick with it. 

MOV AX, □ iCLEAR OUT AX TO HOLD THE 

MOV 
MOV 

NEXLADD: JCXZ 
ADD 
ADD 
DEC 
JMP 

DONE: MOV 

ARRAY 
SUM 

DW 
DW 

LOOP address 

CX,10 □ 

BX, □ 

DONE 
AX, ARRAY[BX] 
BX,2 
ex 
NEXLADD 
SUM,AX 

100 DUP(?J 
? 

RUNNING SUM 
iPUT A COUNT INTO ex 
iUSE BX AS AN INDEX REGISTER 
iGO TO DONE IF ex EQUALS □ 

iPOINT BX AT THE NEXT ELEMENT 
iSUBTRACT ONE FROM THE COUNTER 
iGO TO NEXLADD 

LOOP (Loop on CX) subtracts one from CX and then jumps to the address 
if CX is not equal to zero. Thus LOOP is like a BASIC FOR-NEXT loop 
with a FOR statement "FOR initial-value TO 1 STEP-1". We could 
further modify the original program by replacing "DEC CX", "CMP CX,0", 
and "JG NEXT_ADD" with "LOOP NEXT_ADD". 
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You should be warned that the conditional jumps in Table 7-2, JCXZ, 
and LOOP all have one limitation. They only work when the target is 
within plus or minus 127 bytes. Usually, the target is close enough that 
the limitation isn't binding. (The assembler will warn you if the target is 
too far away.) Unconditional jumps GMP) don't have this limitation, so, 
if you do get stuck, the solution is to write in an extra, close-by, uncon
ditional JMP as the target of the conditional jump instruction. 

8087 Branching 

An 8087 comparison sets the internal 8087 condition codes. These con
dition codes must be transferred into the 8088 flags prior to executing a 
conditional jump instruction. Because the 8087 condition codes do not 
exactly parallel the 8088 flags, a little more programming is required 
following an 8087 comparison than following an 8088 comparison. 

Making an 8087-comµaris©n based decision involves three steps. 

• Execute an 8087 instruction to set the 8087 condition codes. 
• Transfer the 8087 condition codes through memory and into the 8088 

flags, using FSTSW and SAHF. 
• Execute an 8088 branching instruction. 

The 8087 processor control instruction FSTSW, store status word, stores 
the 8087 condition codes, among other things, into a two-byte area of 
memory. (FSTSW must be followed in this usage by the processor control 
instruction FWAIT.) After the FSTSW, the second byte of the memory 
area holds the condition code bits in just the right position to be loaded 
into an 8088 register and then dropped into the 8088 flags. The 8088 does 
not have four separate branching instructions corresponding to the four 
combinations of C3 and CO, the two condition code bits set by the 8087 
comparison instructions. The 8088 instruction JB jumps if CO is on and 
JE jumps if C3 is on. Thus a fragment of code to consider all possible 
outcomes of the condition codes might look like this: 

;ASSUME STATUS-WORD IS A 2-BYTE AREA OF SCRATCH MEMORY 
DEFINED ELSEWHERE 

; DO A COMPARISON TO SET CONDITION CODES 
FSTSW STATUS-WORD 
FWAIT 

;NOW GET CONDITION CODES INTO FLAGS 
MOV AH, BYTE PTR STATUS-WORD+1 
SAHF 

;NOW BRANCH AND TAKE ANY APPROPRIATE ACTIONS 
JB LESS-OR-NON-COMP 
JE EQUAL 

;COME HERE FOR GREATER THAN 
;EQUAL: ; COME HERE FOR EQUAL 

;LESS-OR-NON-COMP: 
JE NON-COMP 



7 a Introduction to 8088 Assembly Language Programming 65 

;COME HERE FOR LESS THAN 
iNON-COMP: 
iCOME HERE FOR NON-COMPARABLE 

Segments 

The ability of the 8088 to address over a million bytes of memory provides 
PC owners with far greater power than was available on old 8-bit ma
chines. The designers of the 8088 had to solve a difficult problem in order 
to access such a large address space. 8088 registers are 16 bits wide. 216 

is 64K. Addressing a megabyte requires 20 bits. The solution is found in 
the 8088 segment registers. 

The 8088 has four internal 16-bit registers called segment registers. 
When calculating an address, the 8088 picks the value from one of the 
segment registers, shifts it left four places, and then adds the logical 
address made up from displacement and index registers. The resulting 
20-bit address is called the effective address. For the most part, we ignore 
the segment registers. However, we sometimes need to manipulate them 
when dealing with subroutines. For example, the BASIC statement 
DEF SEG = defines the beginning of a segment. 

An address is completely specified by giving both a segment location 
and an offset location. For example, location 100 in the data segment can 
be written DS:100. The assembler directives SEG and OFFSET separate 
a complete address back into its component parts. For example, if the 
complete address of A is 8000:100, then SEG A equals 8000 and OFFSET 
A equals 100. 

The four segment registers are CS-code segment, DS-data segment, 
SS-stack segment, and ES-extra segment. 

Since the 8088 uses an area in memory for the stack, we can choose 
its size. (You will remember that the 8087 stack was limited to eight 
items.) We need to know about the stack for two reasons. First, BASIC 
passes arguments to subroutines by placing each argument's address on 
the stack. Second, we can temporarily save small amounts of information 
on the stack without having to allocate extra storage. 

On the 8088, the stack segment register, SS, gives the location of the 
stack segment. The stack pointer register, SP, points to the top of the stack. 
The stack grows (upside) down in memory, progressing toward location 
zero as it grows. Since the stack is just an area in memory, we can access 
data on it with any of the usual 8088 instructions. For example, "MOV 
BX,SP" and "MOV WORD PTR SS:[BX],0" will move the offset of the 
stack top into register BX and then replace the element on top of the 
stack with a zero. 

Usually, however, we use the stack manipulation instructions PUSH 
and POP. 
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PUSH source 
PUSH (Push) subtracts two from the stack pointer, SP, and then transfers 
two bytes from the source into the word at SS:SP. 

POP destination 
POP (Pop) transfers two bytes from SS:SP to the destination and then 
adds two to SP. POP effectively undoes the previous PUSH. 

• As an aid to manipulating data on the stack, whenever you code BP 
as a base register, as in "[BP]+ 10", the 8088 assumes you want the 
stack segment rather than the data segment. 

Subroutine Branching and Returns 

BASIC has the GOSUB and RETURN. The 8088 has CALL and RET. We 
describe the 8088 calling and returning mechanism here. The next chapter 
treats the BASIC-to-80~8/8087 routine-calling mechanism in depth. 

CALL far-procedure-name 
CALL near-procedure-name 
CALL (Call a subroutine) is actually two instructions: one for calling 
subroutines in another segment, CALL far; and one for calling subrou
tines within the current code segment, CALL near. BASIC always uses 
a far CALL. Near CALLs are used in writing relocatable subroutines . 

. CALL far pushes CS and IP (the instruction pointer, which holds the 
address of the next instruction) onto the stack. The address of the code 
segment of the subroutine and the location of the subroutine within the 
segment are taken from the procedure-name argument. (The assembler 
fills these in automatically.) CS is set to the address of the new code 
segment and execution begins at. the beginning of the new subroutine. 

These conventions should sound a bit familiar to anyone who has called 
a machine language routine from BASIC. The DEF SEG = statement tells 
BASIC what value to load into CS. The command CALL SUB() tells BASIC 
to do an 8088 CALL to location SUB in the new code segment. 

CALL near pushs IP onto the stack and jumps to the location given 
as the procedure name. 

RET immediate-operand 
RET (Return) effectively undoes a CALL. The assembler codes a RET to 
undo either a far CALL or a near CALL, depending on whether the 
current procedure is marked FAR or NEAR. (See Assembler Directives 
below.) In a FAR return, the top two words are popped off the stack. 
The first gives the address of the next instruction and the second a new 
value for CS. In a NEAR return, one word is popped off the stack and 
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then used as the address of the next instruction. In either case, "im
mediate-operand" additional bytes are popped off the stack. (The stack 
operates on words, not bytes. However, addresses are always specified 
in bytes. So, to pop one extra word, code "RET 2".) The immediate
operand is optional. 

Note that PUSH/POP and CALL/RET are matched pairs, much like 
FOR/NEXT or WHILE/WEND in BASIC or parentheses in mathematics. 
If the pairing is mismatched, things go very wrong. 

Assembler Directives 

Assembler directives aren't actually 8088 instructions. Rather, they sup
ply the assembler program with necessary information. We've already 
met some of the most important assembler instructions above under 
"Labels and Data Definition." The other important directives follow: 

label SEGMENT 'class' 

label ENDS 
SEGMENT and ENDS (END Segment) define the enclosed series of code 
or data definitions to be a segment named "label". The segment may 
optionally be given a "class" in single quotes. Because some software 
looks for the class of a segment, it is a good idea to give a code segment 
the class 'CODE' and a data segment the class 'DATA'. 

ASSUME CS:segment-label1,DS:segment-label2, 
SS:segment-label3,ES:segment-label4 

ASSUME promises the assembler that the segment registers will contain 
the indicated segment addresses. (It's the programmer's responsibility 
to see to it that the promise is kept at execution time.) Since a section of 
code always has a code segment, "CS: ... " must always be present, the 
three remaining ASSUME specifications appear as needed. 

label PROC FAR 

label ENDP 
PROC (PROCedure) and ENDP (END Procedure) mark the boundaries 
of a procedure just as SEGMENT and ENDS mark the boundaries of a 
segment. FAR signals the assembler that the procedure will be called 
with a CALL FAR instruction. When the assembler sees a RETurn in-
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struction, it generates a RET FAR. (For a NEAR procedure, which you 
can't call from BASIC, code NEAR in place of FAR). 

PUBLIC symbol 
EXTRN name:type 
PUBLIC and EXTRN (EXTeRNal) are used to supply information nec
essary for linking together separately assembled or compiled programs. 
Information about a symbol defined to be PUBLIC is made available to 
other programs. EXTRN tells the assembler to treat "name," which has 
been defined in another program, as being of type "type." The following . 
example shows the most common use of PUBLIC and EXTRN. 

program1 
PUBLIC LABEL 1 

LABEL 1 PROC FAR 

LABEL1 ENDP 

program2 
EXTRN LABEL1 :FAR 
CALL LABEL1 

Any label declared PUBLIC can be accessed by any program declaring 
the same name to be EXTRN. A label which is to be used by separately 
assembled programs should be declared PUBLIC. The declaration should 
be made exactly once, in the program where the label is defined. Any 
number of other programs may declare the label EXTRN. In particular, 
the name of an assembly language procedure should be declared PUBLIC 
if the procedure is to be called as a BASIC subroutine. 

SEGMENT/ENDS and PR0OENDP are also matched pairs. Since these 
directives carry labels, the assembler will probably catch the error if you 
omit a half of either pair. 

END 
END marks the end of the entire assembly language program. 

This chapter has been heavy on required detail. In Chapter 8, we put 
this detail to work writing real 8087 programs. 
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BASIC and the 8087 

Assembly language subroutines, in combination with BASIC programs, 
join the convenience of a high-level language with the speed of the 8087. 
In this chapter, we discuss the software conventions that must be ob
served in writing the 8087 routines. (If you want to use the 8087 proce
dures in this book for languages other than Microsoft BASIC, you may 
have to observe different conventions.) 

Calling a Subroutine 

Calling a subroutine requires three tasks. First, we have to set up a list 
of arguments that can be retrieved by the subroutine. Second, we have 
to store away a return address in a place the subroutine can find. Third, 
we jump to the subroutine. The CALL instruction takes care of the latter 
two tasks. The first is accomplished by pushing the addresses of the 
arguments onto the 8088 stack. 

Calling a subroutine is most easily explained with an illustration. Sup-
pose we wanted to imitate the following BASIC code: 

DEF SEG=&H18□□ 
SUB= □ 
CALL SUB(A(□),SUM,N) 

We could use the following 8088 prpgram: 

CSEG 
ASSUME cs:CSEG,DS:DATA-SEGMENT,SS:STACK-SEGMENT 
SEGMENT' CODE' 
MOV AX,DATA-SEGMENT 

MOV 
MOV 

MOV 
MOV 
MOV 
PUSH 

DS,AX 
AX,STACK_SEGMENT 

SS,AX 
SP,OFFSET STACK-TOP 
AX,OFFSET A 
AX 

69 

iMOVE ADDRESS OF 
SEGMENT 

iTHROUGH AX INTO 
iMOVE ADDRESS OF 

SEGMENT 

DATA 

DS 
STACK 

;THROUGH AX INTO SS 
iSET SP TO STACK TOP 
iPUSH ADDRESS OF A 
iONTO STACK 

i1 
i2 
i3 

i4 
iS 

i6 
i7 
i8 
i9 
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MOV AX,OFFSET SUM 
PUSH AX 
MOV AX,OFFSET N 
PUSH AX 
CALL FAR PTR 1800H:O 

NEXT-LOCATION: ;RETURN 
CSEG ENDS 

DATA-SEGMENT SEGMENT 'DATA' 
A DW 1000 DUP (?) 

SUM DW ? 
N DW 1000 
DATA-SEGMENT ENDS 

;PUSH ADDRESS OF SUM 
;ONTO STACK 
;PUSH ADDRESS OF N 
;ONTO STACK 
;CALL SUBROUTINE 

HERE WHEN SUBROUTINE ENDS 

;LO 
;11 
;12 
;13 
;14 

;15 

;16 
;17 
;18 
;19 
;20 

STACK-SEGMENT 
STACK-AREA 
STACK-TOP 
STACK-SEGMENT 

SEGMENT 'ST ACK' ; 21 
DW 100 DUP (?) ; 22 
EQU THIS WORD ;23 
ENDS ;24 
END ; 25 

1. ASSUME cs . . . . ASSUME promises the assembler we will 
set up the segment registers appropriately. 

2. CSEG SEGMENT 'CODE'. Tell the assembler we are beginning the 
code segment. 

3-4. MOV AX,DATLSEGMENT and MOV DS,AX. Put the address of the 
data segment into the data segment register, by transferring it 
through the AX register. We require two steps because the 
MOY.instruction allows immediate operands, like an address, 
to be moved into memory or a general register, but not into a 
segment register. 

5-6. MOV AX, STACK-SEGMENT and MOV ss, AX. Put the address of the 
stack segment into the stack segment register. 

Note that we do not have to load the code segment register. 
Someone else must have already done this for us since we can't 
execute code to load the code segment register, or to do any
thing else, until the code segment register is loaded. The pro
gram that calls our subroutine is responsible for loading CSEG 
into CS. (And how does that program get CS loaded? And the 
one that calls it? The operating system initially loads the CS 
register when it first calls BASIC (or whatever). The CS value 
for the operating system is wired into the hardware.) 

7. MOV SP,OFFSET STACK-TOP. Set the stack pointer register to 
point to the memory location after the end of the stack area. 
We could have written "MOV SP,STACK.__.AREA + 200" with 
identical results. But by doing it this way, the assembler will 
load the correct address for the stack top even if we decide to 
change the size of the stack in line 22. 

8-9. MOV AX,OFFSET A and PUSH AX. We now push the addresses 
of the arguments onto the stack, in the order of appearance in 
the CALL statement. Since PUSH does not allow an immediate 
operand, we have to go again though a general register. The 
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assembler directive "OFFSET" tells the assembler to load the 
address of A rather than the value of the number stored in A. 
("OFFSET" means use the address relative to the beginning of 
the segment.) The convention of passing the address of an 
argument, instead of its value or its name, is sometimes called 
a "call by address." 

10-13. MOV AX,OFFSET SUM and PUSH AX and MOV AX,OFFSET N and 
PUSH AX. The addresses of SUM and N are pushed in a similar 
manner. Notice that no distinction is made between a scalar 
variable and the first word of an array. 

14. CALL FAR PTR 18□□H: □. CALL a FAR procedure. The current 
. contents of the CS register and the Instruction Pointer (the 
address NEXT_LOCATION) are pushed onto the stack. Then 
CS is set to 1800H. ("H" indicates hexadecimal to the assembler 
just as "&H" does to BASIC. Hex addresses start with a digit, 
not a letter; for example, OAH, not AH, so that the assembler 
can distinguish a number from a name.) The program then 
jumps to location O in a code segment beginning at 18000H. 
(Remember that segment registers always have four zero bits 
added at the right.) · 

15. CSEG ENDS. Tell the assembler we are ending the code segment. 
16. DATA-SEGMENT SEGMENT 'DATA'. Tell the assembler we are be

ginning the data segment. The compiler is smart enough to 
know that "OFFSET A" is an address in the data segment and 
that OFFSET STACI<-TOP is an address in the stack segment. 

17. A DW 10□□ DUP (?). Set aside 1000 uninitialized words for A. 
18. SUM DW ? . Set aside one uninitialized word for SUM. 
19. N DW 1000. Set aside one word for N, initialized to 1000. 
20. DATA-SEGMENT ENDS. End the data segment. 
21. STACK-SEGMENT SEGMENT •STACK•. Begin the stack segment. 
22. STACK-AREA DW 1 □□ DUP (?). Set aside 100 words for the stack. 
23. STACK-TOP EQU THIS WORD. STACI<-TOP is equivalent to the 

address appearing after the 100 words allocated for the 
STACI<-AREA. 

24. STACK-SEGMENT ENDS. End the stack segment. 
25. END. End the program. 

The receiving subroutine finds the DS and SS registers pointing to the 
data and stack segments defined above. The CS register points to 1800 
hex. Most of the important information appears on the stack, which is 
shown in Figure 8.1. Remember that the 8088 stack actually grows upside 
down in memory, so that as we push addresses onto the stack, SP moves 
toward zero. Since we have pushed five words onto the stack (three 
argument addresses, CS, and NEXT_LOCATION), SP equals 
(STACI<-AREA + 200)-10. 
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STACK_AREA+198 OFFSET A 

OFFSET SUM 

OFFSET N 

CSEG 

STACK_AREA+190 NEXT LOCATION • SP POINTS HERE -

-

-

Figure 8.1. Memory stack after subroutine call. 

Acting Like a Called Subroutine 

Machine language subroutines called from BASIC must obey a number 
of rules. The important ones are: 

• At entry, CS is set according to the last DEF SEG. The other segment 
registers point to the beginning of BASIC's data area. 

• At exit, all segment registers and registers SP and BP should hold 
their original values. The other registers, and the flags, may be 
changed. 

• BASIC promises that the stack pointed to by SP will have eight free 
words. If the subroutine needs a larger stack, it must set up its own. 

• The subroutine must pop the argument addresses off the stack before 
returning. 

Let's write a subroutine, to add up an array of integers, in a form that 
could be called by the code sequence appearing in the preceding section. 

PUBLIC SUB a 
ASSUME cs:CSEG ;2 

CSEG SEGMENT 'CODE' ;3 
SUB PROC FAR ;4 

PUSH BP ;SAVE BP ;s 
MOV BP,SP ;FIND ARGUMENT LIST ;6 
MOV BX,[BP]+1 □ ;ADDRESS A ;7 
MOV SI,[BP]+b ;ADDRESS N ;a 
MOV CX,[SI] ;ex GETS N ; "I 
MOV AX, □ ;CLEAR AX a□ 

ADD-LOOP: ;11 
ADD AX,WORD PTR [BX] ;ADD A[BX) ;12 
ADD BX,2 ;NEXT ELEMENT ;13 
LOOP ADD-LOOP ;DO IT AGAIN ;14 



SUB 
CSEG 

MOV 
MOV 
POP 
RET 
ENDP 
ENDS 
END 

DI,[BP]+8 
[DI],AX 
BP 
6 
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; 
;ADDRESS SUM ;15 
;STORE SUM ;16 
;RESTORE BP ;17 
;RETURN ;18 

;19 
;2 □ 
;21 

1-3. The PUBLIC, ASSUME, and SEGMENT statements supply the usual 
information to the assembler. 

4. PROC FAR tells the assembler that this routine will be called with 
a FAR CALL; information needed to generate the proper type 
of return instruction in line 18. 

5. PUSH BP. Save the value of the BP register by pushing it onto 
the stack for later retrieval. Note this instruction subtracts two 
from SP, so SP now equals STACICAREA+188. 

6. MOV BP,SP. Copy the stack pointer, SP, into BP. The instruc
tions that follow retrieve information from the stack. BP can 
serve as a base register, as in [BP], while SP cannot. 

7. MOV BX,[BPJ+1 □. Copy the contents of [BP]+lO into BX. Since 
BP equals STACICAREA + 188, [BP]+ 10 is STACICAREA + 198. 
STACICAREA + 198 holds OFFSET A, so after this instruction 
BX holds the address of the first word of A. 

8. MOV SI,[BPJ+6. By the same logic, move the address of N into 
SI. 

9. MOV CX,[SIJ. Now move the value of N into the count register, 
ex. 

10. MOV AX, □ . Clear out the accumulator, AX. 
11. ADD-LOOP:. Label the top of the loop. Notice that this loop does 

not worry about errors such as negative or zero N nor about 
the accumulator overflowing. (Not very good programming 
practice!) 

12. ADD AX,[BXJ. Adds the element of A currently pointed to it by 
BX into AX. The first time through, this is A(0); the second 
time, A(l); and so forth. 

13. ADD BX,2. Increment BX by 2 so it points to the next word. 
14. LOOP ADD-LOOP. Decrements the count register and jump back 

up to the top of ADD_LOOP if we haven't run the count down 
to zero. 

15. MOV DI,[BPJ+8. Move the address of SUM into DI. 
16. MOV [DIJ,AX. Move the contents of AX into the address pointed 

at by the DI register, that is, into SUM. 
17. POP BP. Now restore the original value of BP. Also, add two 

to SP. 
18. RET 6. Set the Instruction Pointer to point to NEXT_LQCA

TION and set CS equal to CSEG, in the process add four to 
SP. Add the optional pop value to SP. Now SP equals 
STACICAREA + 200, as it did before the subroutine was called. 
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19-21. SUB ENDP and CSEG ENDS and END. Tell the assembler to close 
up the procedure, segment, and program. 

In coding the subroutine, a pattern appears. 

• If the subroutine is called with "n" arguments, then the address of 
argument "i" is stored in [BP]+ 6 + 2*(n -i). In other words, the 
right-most argument has its address stored at [BP] + 6; the right
most-but-one is at [BP] + 8; one further to the left is at [BP] + 10; and 
so forth. (These addresses are valid after we set BP, as in lines 5 and 
6, with a PUSH and a MOV.) 

• It takes one instruction to retrieve the address of the argument; two 
to retrieve the argument's value. 

• The last instruction should be RET 2*n, where n is the number of 
arguments. 

Subroutine Relocation and Segment 
Addressing 

The BASIC command BLOAD allows us to load a subroutine at any 
memory location. It is therefore highly desirable that our 8087 routines 
be dynamically relocatable. We can run into difficulty if the segment ad
dresses at which a routine is initially loaded (see "Loading A Subroutine 
into Interpreted BASIC") differ from those at which we later BLOAD the 
routine. Dynamic relocation is automatic for programs which do not 
explicitly reference segment locations, but is somewhat more complicated 
otherwise. 

For the purposes of this discussion, suppose we had initially loaded 
SUB with DEF SEG = &Hl800 and then BSA VED it from this location. 
with an offset of zero. 

Suppose we now load SUB back in at DEF SEG = &H1900. When BASIC 
calls SUB, it sets the code segment register to &H1900 and the instruction 
pointer to zero. Execution procedes correctly. 

Suppose instead that we load SUB at DEF SEG=&H1900 and offset 
125. SUB "thinks" it will find the first instruction at offset zero in the 
code segment. Actually, the first instruction is at offset 125. However, 
when we call SUB we specify the offset. BASIC sets the instruction pointer 
to 125. All the instructions we have used, though not every instruction 
the 8088 knows, operates relative to the instruction pointer. SUB still 
executes correctly. 

SUB is fully relocatable. What sort of subroutine isn't? Unfortunately, 
any subroutine that explicitly contains a value for a segment register is 
not relocatable, since the segment may end up at some other memory 
location than the one originally specified. This is particularly a problem 
when we define a data, extra, or stack segment inside a routine. 
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Consider the following, not very useful routine. 

EXTRLSEG SEGMENT 'DATA' 
FOOLISH DW ? 
EXTRLSEG ENDS 

; SUBROUTINE SILL Y(JUNK%J 
PUBLIC SILLY 

. ASSUME cs:CSEG,ES:EXTRA-SEG 
CSEG 
SILLY 

SILLY 
CSEG 

SEGMENT 'CODE' 
PROC FAR 
PUSH BP 
MOVE BP, SP 

PUSH ES 
MOVE AX,EXTRLSEG 
MOVE ES,AX 

MOVE AX,FOOLISH 
MOVE DI,[BP]+6 
MOVE [DI],AX 
POP ES 
POP BP 
RET 2 
ENDP 
ENDS 

END 

; POINT ES 
;AT 
;EXTRA SEGMENT 

;RETURN WHATEVER 
;NUMBER WAS 
;LYING AROUND 

;1 
;2 
;3 

; 4 
;5 
;6 
;7 
;8 
;9 

;LO 
;11 
;12 

;13 
;14 
;15 
;16 
;17 
;18 
;19 
;20 

;21 

This subroutine references the extra segment (if not to any good pur
pose). Instructions 1-9 and 14-21 are standard. Lines 10, 11, -and 12 save 
ES on the stack and then load the address of EXTRA_SEG into ES. Line 
13 copies FOOLISH. (Note that the assembler should be smart enough 
to use ES to reference FOOLISH.) Subroutine SILLY will work if loaded 
and used at one location, since the loader will figure out the value for 
EXTRA_SEG. However, if we relocate SILLY, EXTRA_SEG will no longer 
be at its original location, and unpredictable consequences may ensue. 

We can make SILLY relocatable by having the subroutine figure out 
for itself how far it's been moved from its original location. The subroutine 
"thinks" it begins at location 16*CSEG. In truth, when BLOADed by 
interpreted BASIC, SILLY begins at 16*DEF SEG + offset. Similarly, the 
subroutine thinks the extra segment begins at 16*EXTRA_SEG, while it 
actually begins at 16*EXTRA_SEG + (16*DEF SEG + offset -16*CSEG). 
We can use this relation to correctly load segment registers. Life is com
plicated a slight bit more because the only way to find "offset" is by 
examining the value of the instruction pointer at entry. 

The following subroutine, SMART, will work correctly, as long as the 
code segment and extra segment are loaded together at a memory location that 
is an even multiple of 16. 
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EXTRLSEG SEGMENT 'DATA' ;1 

FOOLISH DW ? i2 
EXTRLSEG ENDS i3 

i SUBROUTINE SMART(JUNK%) 
PUBLIC SMART i4 
ASSUME cs:CSEG,ES:EXTRA-SEG iS 

CSEG SEGMENT 'CODE' ib 
FIRSLINST EQU THIS WORD i7 
SMART PROC FAR i8 

PUSH BP i9 
MOV BP,SP i1O 

PUSH ES i11 
CALL NEXT i12 

NEXT: POP AX i13 
SUB AX ,(OFFSET NEXT)-(OFFSET FIRSLINST) i14 
MOV CL,4 i15 
SHR AX,CL i16 
MOV BX,CS i17 
ADD BX,EXTRLSEG i18 
SUB BX,CSEG i19 
ADD AX,BX i2O 
MOV ES,AX i21 

MOV AX,FOOLISH i22 
MOV DI,[BP]+b i23 
MOV [DI], AX i24 
POP ES i25 
POP BP i26 
RET 2 i27 

SMART ENDP i28 
CSEG ENDS i29 

END i3O 

Lines 1-6, 8-10, 22-24, and 27-30 are standard. 

7. FIRST-INST EQU THIS WORD. Define the location of the first in
struction in the code segment to be FIRST.JNST. (FIRST.JNST 
equals zero here.) 

11. PUSH ES. Save ES on the stack. Note we don't change BP so 
argument references don't change. 

12-13. CALL NEXT and NEXT: POP AX. This is a devious way to retrieve 
the instruction pointer. CALL pushs IP onto the stack. (The 
instruction pointer will point to the true offset of NEXT, no 
matter where the routine is located.) POP pops the stack into 
AX. Now AX holds the true offset of NEXT. 

14. SUB AX,(OFFSET NEXT)-[OFFSET FIRSLINST). Now we sub
tract the expected offset of NEXT from the true offset. AX now 
holds the number of bytes by which the offset of SMART has 
changed as compared to the position at which it was originally 
loaded. 
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15-16. M◊V CL, 4 and SHR AX, CL. Divide AX by 16 since we are going 
to set a segment register. Notice that if the program was relocated 
by any number other than an even multiple of 16, the program will 
bomb in an unpredictable manner. Nor will any other method 
work, since the 8088 requires segments to be placed at ad
dresses that are even multiples of 16. 

17-19. M◊V BX,CS and ADD BX,EXTRLSEG and SUB BX,CSEG. Figure 
out how far the code segment has been displaced from its 
original location and how far the extra segment is from the code 
segment. 

20-21. ADD AX,BX and M◊V ES,AX. Combine the offset and segment 
correction and set ES. 

25. POP ES. Restore ES before leaving the routine. 

While all this manipulation is a bit of a nuisance, it is worth the extra 
trouble to be able to more easily load subroutines into BASIC. If you only 
use a compiler, then relocation is handled by the LINK program and this 
extra code is unnecessary. 

Loading Assembly Language Programs 

At the end of the. chapter, we show two complete interactive sessions in 
which SMART is used in a BASIC program: one session for the interpreted 
BASIC built into the IBM Personal Computer and one session for IBM's 
BASIC compiler. The remainder of this chapter describes the general 
steps involved. These procedures focus more specifically than most of 
the material in the book on the IBM Personal Computer running PC
DOS. If you have a different machine or different software (especially if 
you are not using Microsoft software), you may have to adjust these 
procedures somewhat. 

Loading a Routine Into Interpreted BASIC 

The assembler transforms an 8087/8088 source program into an object 
module. Several further steps are required to get the routine into a form 
suitable for BLOADing into BASIC. These steps involve running the 
program through the LINKer, through DEBUG, and finally through BASIC. 
Suppose we begin with a program held in file FOO.ASM. 

The ASSEMBLER replaces the instructions and (most) addresses with 
their binary representation and creates a file FOO.OBJ. 

LINK is able to combine several different object files. It creates FOO.EXE. 

We use DEBUG to load FOO.EXE. DEBUG figures out the actual mem
ory address at which each segment begins. We can also ask DEBUG to 
tell us where the program begins. 
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Finally, we use BASIC to BSAVE the routine. Once the routine is 
BSAVED, we can BLOAD it whenever desired. 

The exact procedure for getting from FOO.ASM to the BSAVEd version 
is described in Appendix C of the IBM PC BASIC manual. (The descrip
tions of LINK and DEBUG in the DOS manual supply some additional 
information.) The exact procedure may vary according to which version 
of DOS and BASIC you use. The steps described below usually work for 
the author. 

1. Assemble FOO.ASM. (Be· warned that the assembler occasionally 
produces erroneous error messages.) 

2. Link FOO.OBJ. Tell the linker to load HIGH (LOW is the default). 
Get a MAP file from LINK so that you can find the total length of 
the output file, FOO.EXE. If FOO doesn't have a stack segment, 
LINK will report its absence as an error. Ignore this message. 

3. Enter the DEBUGer with DEBUG BASIC.COM. 
4. Type "r" to examine the registers. Copy down the values of CS, 

SS, IP, and SP. 
5. Enter "N FOO.EXE". Type "L". This tells DEBUG to load your 

routine. 
6. Type "r" again. Copy down the new values of CS and IP. 
7. Restore SS and SP by using the "r" command. Enter "RSS". The 

computer will tell you the current value of SS. Respond by entering 
the value of SS you copied down in step 4. Now enter "RSP" and 
respond to the computer with the value of SP from step 4. 

8. Enter "g = CS:IP" where CS and IP are replaced by the values copied 
down in step 4. 

9. BASIC should start up now, possibly with an irrelevant warning 
about a DIRECT STATEMENT IN FILE. Execute DEF SEG=cs, where 
cs is the value of CS copied down in step 6. Execute a BSA VE 
filespec,offset,length command; where filespec gives the name of 
the file in which you wish to save the routine, offset is the value 
of IP from step 6, and length is the length in bytes of FOO. 

From now on, to use FOO from BASIC just do a "DEF SEG =" and 
"BLOAD filespec". 

Loading a Routine Into Compiled BASIC 

Combining an assembled program with the output of the PC-BASIC 
compiler is considerably easier than loading the program into interpreted 
BASIC. 

1. Assemble FOO.ASM. Include sub:r:outine names in a PUBLIC state
ment. 

2. Compile the BASIC program. Omit DEF SEG and BLOAD state
ments. You need not worry about the location of the subroutine in 
memory. 
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3. LINK the output of the BASIC compiler together with FOO. 
4. Execute the ".EXE" module. 

Interactive Session for Interpreted BASIC 

Assume that the routine SMART is in file FOO.ASM on disk B:. The 
following BASIC program is in a file USEFOO.BAS, also on disk B:. 

10 DEF SEG=&H18□□ 
20 BLOAD "B:FOO,SAV", □ 

30 SMART%= □ 

40 FOOLISH%=9999 
50 PRINT FOOLISH% 
60 CALL SMART%(FOOLISH%) 
70 PRINT FOOLISH% 
80 END 

A sample interactive session for loading FOO into interpreted BASIC 
follows. Your responses have been underlined. ~ 

~b ¥'~
"\~e, ~~ ~- ~ 

'9.._<ti ~.lll'O\V" ~v 

B>A:MASMi 
THE IBM PERSONAL COMPUTER MACRO ASSEMBLER 
VERSION 1, □□ (()COPYRIGHT IBM CORP 1981 

0004 E8 0007 R 
-&.-___ ,fP"'~tA-6 

CALL NEXT 
i12 

E R R O R 

WARNING SEVERE 
ERRORS ERRORS 
□ 1 
B>A:LINK 

64:NEAR JMP/CALL TO DIFFERENT 

IBM PERSONAL COMPUTER LINKER 
VERSION 1, 10 (()COPYRIGHT IBM CORP 1982 

OBJECT MODULES (,OBJ):FOO/HIGH/MAP J,4/ 
RUN RILE [FOO, EXE): ~1 
LIST FILE [NUL,MAP): FOOi 1 ..1,1.~ 

WARNING: NO STACK SEGMENT\--- oo~o--
THERE WAS 1 ERROR DETECTE~ 

B>TYPE FOO-MAP 
LOADING HIGH 
WARNING: NO STACK SEGMENT 
,.UA.fU__ STOP LENGTH NAME 

(ooooaH) □□□2AH 002BH CSEG 
00030H (Q0031H) 0002H EXTRLSEG 

ADDRESS 

@:oo □: ooo □J 
PUBLICS BY NAME 

SMART 
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ADDRESS 

0000:0000 

PUBLICS BY VALUE 

SMART 

B>A:DEBUG A:BASIC°COM 
-R 

AX= □□□□ BX= □□□□ CX=3F8□ DX=□□□□ SP~v~ 
Ds= □ 9 □ 5 Es= □ 9 □ 5 ss~ csf3!ci]./IP a:i.aa 
0905: 0100 E9E338 , JMP/;,- 3"1£1:, 1 

I // I 
-N FOO.EXE / ,.,.;/ / 

I /",,. 
-L / //'' I 

- I ,; ,; I 
-~ t// ! 

AX=FF47 BX=□□□□ ,tcx= □□8 □ DX=□aaa / SP•DOOO 
DS=09□ 5 ES=0905 ~,' SS=4F"l4 «;S=4F"li?J/ IPmOOOO 
4F94: DODD 55 /,) PUSH / BP / 

-RSS //1 I / 
,; II I ; 

SS 4F94 / /t 1/ 
: 9 D 5.(:- _,. ( ,.-----/' 
-RSP 111 _..,,,"' ,,i 

- I / ,; 
SP ODDO// ,,,,,,. / 
: FFF :/ ,/ / 
-G 90 : DO I 

I 

DIRECT STATEMENT/IN 
OK / 
DEF SEG~ 
OK 
BSAVE "F00-SAV",0,&H31 
OK 
SYSTEM 
PROGRAM TERMINATED NORMALLY 

BP=DOOO SI=DOOO DI=OOOO 
NV UP DI PL NZ NA PO NC 

BP•DOOO SI•OOOO DI•OOOO 
NV UP DI PL NZ NA PO NC 

-~ T '1 e I} CllPM e.£M4.,- iwzt.. 
B>A:BASIC~ 
THE IBM PERSONAL COMPUTER BASIC 
VERSION D1-10 COPYRIGHT IBM CORP- 1981, 1982 
61371 BYTES FREE 
OK 
LOAD "USEFOO" 
OK 
RUN 

9999 
D 

OK 

Interactive Session For Compiled BASIC 

Assume that the routine SMART is in file FOO.ASM on disk B:. The 
following BASIC program is in a file USEFOO.BAS, also on disk B:. 

10 FOOLISH%=9999 
20 PRINT FOOLISH% 
30 CALL SMART(Fo'oLISH%) 
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40 PRINT FOOLISH% 
50 END 

A sample interactive session for loading FOO into compiled BASIC fol
lows. Your responses have been underlined. 

B>A:MASM; 
THE IBM PERSONAL COMPUTER MACRO ASSEMBLER 
VERSION 1- DD (()COPYRIGHT IBM CORP 1981 

0004 E8 0007 R 
;12 

E R R O R 

WARNING SEVERE 
ERRORS ERRORS 
□ 1 

CALL NEXT 

64:NEAR JMP/CALL TO DIFFERENT 

B>A:BASCOM USEFOO; ~------~---7ht,tJ(ftUl>1 c4ML-~ 
IBM PERSONAL COMPUTER BASIC COMPILER 

(()COPYRIGHT IBM CORP 1982 VERSION 1- DD 
(()COPYRIGHT MICROSOFT, INC. 1982 

22151 BYTES AVAILABLE 
22032 BYTES FREE 

D WARNING ERROR(S) 
D SEVERE ERROR(S) 

B>A:LINK USEFOO+FOO; 

IBM PERSONAL COMPUTER LINKER 
VERSION 1-1□ (()COPYRIGHT IBM CORP 1982 
B>USEFOO 
9999 
□ 



Simple 8087 Routines 

Several fairly simple 8087 routines are presented in this chapter. The 
purpose of the presentation is twofold. First, the routines themselves are 
quite useful. For example, our first program can be called from BASIC 
to add up a series of numbers. Second, we illustrate a number of prin
ciples of 8087 subroutine programming including: 

• Indexing through a single array. 
• Using single precision and double precision arithmetic. 
• Indexing through multiple arrays. 

Program: 
Purpose: 
Call: 
Input: 

Output: 
Language: 

Program: 
Purpose: 
Call: 
Input: 

Output: 
Language: 

Program: 
Purpose: 

, Call: 
Input: 

The Cookbook-Chapter 9 

SUM 
Sums up a single precision array. 
CALL SUM(ARRA Y(0),N,DSUM). 
ARRAY -single precision array. 
N-integer number of elements of ARRAY. 
DSUM-double precision sum of ARRAY. 
8087/8088 assembly language. 

PRODUCT 
Product of elements of a single precision array. 
CALL PRODUCT(ARRA Y(0),N,DPRODUCT). 
ARRAY-single precision array. 
N-integer number of elements of ARRAY. 
DPRODUCT-double precision product of ARRAY. 
8087/8088 assembly language. 

GSUM 
Sums up an integer, single, or double precision ar
ray. 
CALL GSUM(ARRA Y(0), TYPE,N,SUM). 
ARRAY-array to be summed. 
TYPE-integer variable giving the length of one ele

ment of ARRAY 

83 
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Output: 
Language: 

Program: 
Purpose: 
Call: 
Input: 

Output: 
Language: 

Program: 
Purpose: 
Call: 
Input: 

Output: 
Language: 
Program: 
Purpose: 
Call: 
Input: 

Output: 
Language: 

Program: 
Purpose: 
Call: 
Input: 

Output: 
Language: 

Program: 
Purpose: 
Call: 
Input: 

Output: 
Language: 

Program: 
Purpose: 
Call: 

N-integer number of elements of ARRAY. 
SUM-double precision sum of ARRAY. 
8087/8088 assembly language. 

VADD 
Adds two single precision vectors. 
CALL VADD(A(0},B(0},C(0),N). 
A-input array. 
B-input array. 
N-integer number of elements of A,B,C. 
C-output array, C =A+ B. 
8087/8088 assembly language. 

VADD3 
Adds three single precision vectors. 
CALL VADD3(A(0),B(0},C(0),D(0},N). 
A-input array. 
B-input array. 
C-input array. 
N-integer number of elements of A,B,C,D. 
D-output array, C=A+B+D. 
8087/8088 assembly language. 

VSET 
Sets array to a constant. 
CALL VSET(A(0),SCALAR,N). 
SCALAR-single precision constant. 
N-integer number of elements of A. 
A-output array, A=SCALAR. 
8087/8088 assembly language. 

ADDSC 
Adds scalar to single precision array. 
CALL ADDSC(A(0),SCALAR,B(0),N). 
A-input array. 
SCALAR-single precision constant. 
N-integer number of elements of A. 
B-output array, B =A+ SCALAR. 
8087/8088 assembly language. 

SQRT 
Takes square root of vector. 
CALL SQRT(A(0},B(0},N). 
A-input array. 
N-integer number of elements of A,B. 
B-output array, B = SQR(A). 
8087/8088 assembly language. 

GCOPY 
Copies integer, single, or double precision array. 
CALL GCOPY(A(0}, B(0), TYPE,N). 
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Input: A-input array. 
TYPE-integer giving length of element of A. 
N-integer number of elements of A,B. 

Output: B-output array, B = A. 
Language: 8087/8088 assembly language. 

Program: GBCOPY 
Purpose: Copies integer, single, or double precision array, 

backwards. 
Call: CALL GBCOPY(A(0),B(0), TYPE,N). 
Input: A-input array. 

TYPE-integer giving length of element of A. 
N-integer number of elements of A,B. 

Output: B-output array, B = A. 
Language: 8088 assembly language. 

Program: GADDSAFR 
Purpose: Adds two vectors, with error checking. 
Call: CALL GADDSAFR(A(0),B(0)",C(0), TYPEA, TYPEB, 

TYPEC,N,IER). 
Input: A-input array. 

B-input array. 
TYPEA-integer giving length of element of A. 
TYPEB-integer giving length of element of B. 
TYPEC-integer giving length of element of C. 
N-integer number of elements of A,B,C. 

Output: C-output array, C=A+B. 
!ER-integer error indicator. 

Language: 8087/8088 assembly language. 

Program: REALERR 
Purpose: Check array for invalid data. 
Call: CALL REALERR(ARRA Y(0), TYPE,N,IFDEN,IFINF, 

IFNAN,ELEMENT). 
Input: ARRAY-input array (single or double precision). 

TYPE-integer giving length of element of ARRAY. 
N-integer number of elements of ARRAY. 

Output: IFDEN-integer ( -1 if denormal found). 
IFINF-integer ( -1 if infinity found). 
IFNAN-integer ( -1 if Not-A-Normal found). 
ELEMENT-integer, index of last invalid data. 

Language: 8087/8088 assembly language. 

Program: DENTO0 
Purpose: Replace denormal values with zero. 
Call: CALL DENTO0(ARRA Y(0), TYPE,N). 
Input: ARRAY-input array (single or double precision). 

TYPE-integer giving length of element of ARRAY. 
N-integer number of elements of ARRAY. 
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Output: 
Language: 

ARRA Y-denormals replaced with 0. 
8087/8088 assembly language. 

Array Indexing 

Our first 8087 subroutine sums a series of numbers and returns their 
total. Assuming that a single precision array named ARRAY, dimen
sioned ARRA Y(N -1), has been defined elsewhere, that N has been set 
equal to the number of elements of ARRAY, and that DSUM is a double 
precision variable, a BASIC instruction sequence might look like this: 

10 DSUM=O 
20 FOR I= □ TO N-1 
30 DSUM=DSUM+ARRAY(I) 
40 NEXT I 

An equivalent 8087 routine appears below. Assuming the routine has 
been loaded into memory at the location SUM, we could call it from 
BASIC with the instruction 

10 CALL SUM(ARRAY(□ ), N, DSUM) 

The 8087 routine has three logical sections. First, it must accept the 
information passed to it from BASIC. Secondly, the routine calculates 
the sum of the array elements. Third, the answer is passed back into the 
BASIC variable DSUM. Notice that we execute an FW AIT before return
ing from the subroutine. The FWAIT guarantees that the sum will have 
reached memory before the calling program attempts to access it. 

iSUBROUTINE SUM(ARRAY,N,DSUM) 
i ASSUMPTIONS: ARRAY IS A SINGLE PRECISION ARRAY OF LENGTH N 
; N IS AN INTEGER 
i DSUM IS DOUBLE PRECISION 

PUBLIC SUM 
CSEG SEGMENT 'CODE' 

ASSUME cs:CSEG 
SUM PROC FAR 

PUSH BP 
MOV BP,SP 
MOV BX,[BP]+10 i BX=ADDR(ARRAY) 
MOV SI,[BP]+8 i SI=ADDR(N) 
MOV ex, !SIJ iCX=N 

; 
iNOW ALL SET UP TO GO 

FLDZ i INITIALIZE ST= □ 
CMP CX,OH iHOPE N > 0 
JLE DONE 

iTHE NEXT 3 INSTRUCTIONS DO ALL THE HARD WORK 
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ADD-LOOP: F.ADD DWORD PTR [BX] iDWORD=> SINGLE 
PRECISION 

ADD BX,4 iREADY FOR NEXT 
ELEMENT 

LOOP ADLLOOP 

DONE: 
; 
iNOW FILE ANSWER BACK IN DSUM 

MOV DI ,[BP]+b i DI=ADDR(DSUMJ 
FSTP QWORD PTR [DI] iQWORD=> DOUBLE 

PRECISION 
iDSUM IS NOW PUT AWAY 

POP BP 
FWAIT iBE SURE 8087 IS DONE 
RET 6 

SUM ENDP 
CSEG ENDS 

END 

How long does the addition routine take? Essentially, all the execution 
time is in the three-instruction "ADD_LOOP." (Calling the subroutine 
from BASIC, and the beginning and end of the routine obviously takes 
a little time. But this overhead time is inconsequential for large N.) 

The FADD instruction takes approximately 25 microseconds. The ADD 
instruction uses approximately 1 microsecond. The LOOP instruction 
requires about 4 microseconds. Thus the routine should take about 30 
microseconds per array element. Right? 

Wrong, actually. The 8087 and 8088 run in parallel. So, while the 8087 
is adding one number, the 8088 is adding to the BX register, decrementing 
the count in register CX, testing CX, and looping back up. Hence, the 
routine takes about 25 microseconds per element. Adding 10,000 single 
precision numbers takes just under one-fourth of a second. How long 
would a comparable BASIC routine take? Without the 8087, about 46 
seconds. 

In addition to the speed advantage, the 8087 produces a more accurate 
answer because it accumulates in 80-bit temporary real format rather than 
64-bit double precision. 

SUM is quite a useful subroutine. Of more general importance, SUM 
illustrates how to write a routine that indexes through a single array. We 
µse a three-part trick. First we load the address of the array into a con
venient base or index register (we could have used SI or DI instead of 
BX) and the count into the CX register. Second, we add four to BX (and 
so forth) at each step. Third, we use the LOOP instruction to count off 
the steps. 

Operations other than addition are easily written using the same pro
cedure. For example, to take the product of an array of numbers we could 
do: 
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10 DPRODUCT=1 
20 FOR I=O TO N-1 
30 DPRODUCT=DPRODUCT*ARRAY(I) 
40 NEXT I 

or: 

; SUBROUTINE PRODUCT(ARRAY, N, DPRODUCT) 
; ASSUMPTIONS: ARRAY IS A SINGLE PRECISION ARRAY OF LENGTH N 
; N IS AN INTEGER 
; DPRODUCT IS DOUBLE PRECISION 
; 

PUBLIC 
CSEG SEGMENT 

ASSUME 
PRODUCT PROC 

PUSH 
MOV 
MOV 
MOV 
MOV 

; 
;NOW ALL SET UP 

FLD1 

CMP 
JLE 

MUL LLOOP: FMUL 
ADD 
LOOP 

DONE: 
; 

TO 

PRODUCT 
'CODE' 
cs:CSEG 
FAR 
BP 
BP,SP 
BX,[BP]+10 
SI,[BP]+8 
ex ,[SIJ 

GO 

; BX=ADDR(ARRAY) 
; SI=ADDR(N) 
;CX=N 

;INITIALIZE ST=1 
;fLD1 PUSHES A 1, JUST AS 
;fLDZ PUSHES A 0 

CX,OH ;HOPE N > 0 
DONE ;If NOT, RETURN 1 
DWORD PTR [BX] 
BX,4 ;READY FOR NEXT ELEMENT 
MULLLOOP 

;NOW FILE ANSWER BACK IN PRODUCT 

PRODUCT 
CSEG 

MOV 
FSTP 
POP 
FWAIT 
RET 
ENDP 
ENDS 
END 

DI ,[BP]+b ; DI=ADDR(DPRODUCT) 
QWORD PTR [DI] ; PRODUCT IS NOW PUT AWAY 
BP 

;BE SURE 8087 IS DONE 
b 

The FMUL instruction takes approximately 29 microseconds. Multi
plying 10,000 single precision numbers takes just over one-fourth of a 
second. A comparable BASIC routine takes about 56 seconds. Accuracy 
of the 8087 PRODUCT subroutine will, under some circumstances, con
siderably exceed the accuracy of the equivalent BASIC code. The 8087 
temporary real exponent allows a much greater range than the double 
precision exponent, so intermediate overflows or underflows are much 
less likely to occur with the 8087 routine. 
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Double Precision Arguments 

The choice between single precision and double precision arithmetic re
quires a tradeoff between accuracy and memory space. Double precision 
numbers take up twice as much space as single precision numbers, but 
are somewhat more than twice as accurate. Good numerical programming 
practice dictates using double precision throughout. Unfortunately, be
cause of storage limitations this is rarely practical. In fact, there is a "folk 
theorem" to the effect that problem size expands to use up all available 
space. The following stages of compromise are recommended: 

1. If the problem can be done entirely in double precision, do it that 
way. 

2. Hold raw input and final results in single precision-everything 
else in double precision. There is little loss to storing original input 
in single precision-real data can rarely be measured with the seven 
significant digits provided for by single precision storage. The prob
lem with single precision is the loss of accuracy from cumulative 
errors. Doing all the calculations in double precision is almost as 
good as holding everything in double precision. 

3. Retain critical intermediate steps in double precision. Delay con
version into single precision as long as possible. 

Of course, the 8087's 80-bit temporary real format is even more accurate 
than double precision. The most accurate answers are found by doing 
as many intermediate calculations as possible within the 8087, storing 
only final results in memory. 

In practice, programs use both single and double precision. One ad
vantage of BASIC is that programs "know" whether variables are single 
or double precision. Our 8087 routines need to be told. There are two 
ways, both valuable, to "tell" our routines what precision to use. First, 
we can write separate routines, one for single and one for double pre
cision. Second, we can write routines which handle both cases and in
clude an extra argument to tell the routine which type of data is being 
used. The first is easier to write, but the flexibility of the second is some
times worth the extra effort. 

Changing a single precision routine to double precision requires only 
two simple steps: change the 8087 instructions to reference double pre
cision memory, and change the step size to eight rather than four bytes. 
Thus, we can change subroutine SUM into a double precision subroutine 
DSUM with the following amendments: 

FADD QWORD PTR [BX] instead of FADD DWORD PTR [BX] 
and 

ADD BX,8 instead of ADD BX,4 

The second approach to the problem of variable precision is to pass 
the needed information on to the subroutine. As long as we're solving 
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this problem, we may as well make things a bit more general. Subroutine 
GSUM accepts a single precision, double precision, or integer vector. 

; SUBROUTINE GSUM(ARRAY, TYPE, N, SUM) 
ASSUMPTIONS: ARRAY IS AN ARRAY OF LENGTH N 

; TYPE IS AN INTEGER: 2-INTEGER 4-SINGLE 8-
DOUBLE 

; N IS AN INTEGER 
SUM IS DOUBLE PRECISION 

; 
PUBLIC GSUM 

CSEG SEGMENT'CODE' 
ASSUME CS: CSEG 

GSUM PROC FAR 
PUSH BP 
MOV BP,SP 
MOV BX,[BP]+12 
MOV SI,[BP]+10 
MOV AX,[SIJ 
MOV SI,[BP]+8 
MOV CX,[SI] 

; 

iNOW ALL SET UP TO GO 
FLDZ 
CMP CX, □ H 

JLE DONE 
; 

ADD-LOOP: 
CMP AX,2 
JNE NOT-INTEGER 
FIADD WORD PTR [BX] 
JMP NEXLELEMENT 

NOLINTEGER: 
CMP AX,4 
JNE NOLSINGLE 
FADD DWORD PTR [BX] 
JMP NEXLELEMENT 

NOT-SINGLE: 
FADD QWORD PTR [BX] 

; 

NEXT-ELEMENT: 
ADD BX,AX 
LOOP ADD-LOOP 

DONE: 
iNOW FILE ANSWER BACK IN SUM 

MOV DI,[BP]+b 
FSTP QWORD PTR [DI] 
POP BP 
FWAIT 
RET 8 

GSUM ENDP 
CSEG ENDS 

END 

; BX=ADDR(ARRAY) 
; SI=ADDR(TYPE) 
iAX=TYPE 
; SI=ADDR(N) 
iCX=N 

;INITIALIZE ST= □ 
iHOPE N > 0 

iIS IT INTEGER? 

iIS IT SINGLE? 

;BETTER BE DOUBLE 

iREADY FOR NEXT ELEMENT 

iDI GET ADDRESS OF SUM 
iSUM IS NOW PUT AWAY 

iBE SURE 8087 IS DONE 
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Subroutine GSUM will accept any of the three BASIC numeric variable 
types. GSUM is slightly more complex than SUM and we have to pass 
it one extra argument. It may look like GSUM will also be slower, since 
it has to check TYPE each time through and also jump around extra 
instructions. However, the comparison and jump only takes about five 
microseconds, so the 8088 executes these instructions while the 8087 is 
working on the addition. 

If you have a recent version of BASIC, you can "automate" passing 
the TYPE to GSUM by using the V ARPTR$ function. For example: 

DESCRIPTOR$=VARPTR$(ARRAY(□JJ 'INTERNAL DESCRIPTION OF ARRAY 
TYPE$=LEFT$(VARPTR$,1) 'FIRST CHARACTER IS TYPE 
TYPE%=ASC(TYPE$) 'NEED INTEGER 2, 4, OR 8 
CALL GSUM%(ARRA Y(□ ), TYPE%, N%, SUM) 

Indexing Through Multiple Arrays 

In the routines above, we used the BX register to index ARRAY. This 
procedure works with a single array, but more complicated problems 
may require us to keep track of several indexes. Up to three indexes may 
be kept in the registers BX, SI, and DI. In addition, registers AX, DX, 
and CX are convenient for holding temporary values. 

Our next subroutine adds two single precision vectors, returning a 
single precision vector result. 

; SUBROUTINE VADD(A, B, C, NJ 
ASSUMPTIONS: A,B,C ARE SINGLE PRECISION ARRAYS OF LENGTH N 

N IS AN INTEGER 
; 

PUBLIC VADD 
CSEG SEGMENT 'CODE' 

ASSUME CS:CSEG 
VADD PROC FAR 

PUSH BP 
MOV BP,SP 
MOV SI,[BP]+b ; SI=ADDR(N) 
MOV ex ,[SIi ;CX=N 
MOV BX ,[BPJ+12 ; BX=ADDR(A) 
MOV SI,[BPJ+1O ; SI=ADDR(B) 
MOV DI,[BP]+8 ; DI=ADDR(C) 

; 
;NOW ALL SET UP TO GO 

CMP CX, □ H ;HOPE N > a 
JLE DONE 

ADD-LOOP: 
FLD DWORD PTR [BX) ;LOAD A(I) 
ADD BX,4 ;READY FOR NEXT A 
FADD DWORD PTR [SI) ; ADD B(I) 
ADD SI,4 ;READY FOR NEXT ELEMENT 
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FSTP DWORD PTR [DI] ; C(I)=A(I)+B(I) 
ADD DI,4 ;READY FOR NEXT C 

DONE: 

VADD 
CSEG 

LOOP ADD-LOOP 

POP 
FWAIT 
RET 
ENDP 
ENDS 
END 

BP 

8 
;BE SURE 8087 IS DONE 

Subroutine VADD requires just over half a second to add two 10,000 
long vectors. Note that while we have specified three vectors, nothing 
prevents A and B or A and C, or even all three from being the same 
vector. Thus the command CALL VADD(A(0),A(0),A(0),N) doubles each 
element of A. 

Creating routines to perform subtraction, multiplication, and division 
requires us only to change the 8087 addition instruction to an 8087 sub
traction, or other type of instruction. Thus we can change one line in 
VADD: 

C=A+B "FADD DWORD PTR [SI]" 

to make VSUB: 

C=A-B "FSUB DWORD PTR [SI]" 

or to make VMULT: 

C=A*B "FMUL DWORD PTR [SI]" 

or to make VDIV: 

C=A/B "FDIV DWORD PTR [SI]" 

(Note VMULT and VDIV perform element-by-element operations, not 
"matrix operations.") 

The same technique we used for changing SUM into GSUM can be 
used to change V ADD into a routine for single precision or double pre
cision or integer vector addition. 

After we have more than three vectors, we run out of index registers. 
We can program around this limit through use of the 8088's ability to 
double index. In the next program, the address of each array is loaded 
into BX just before we need to reference the array. The array element is 
indexed in SI. Routine VADD3 adds three single precision vectors and 
returns the result in a fourth. 

; SUBROUTINE VADD3(A, B, C, D, NJ 
· ASSUMPTIONS: A,B,C,D ARE SINGLE PRECISION ARRAYS OF 

LENGTH N 
; N IS AN INTEGER 
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VADD3 PUBLIC 
CSEG SEGMENT 'CODE' 

ASSUME cs:CSEG 
VADD3 PROC FAR 

PUSH BP 
MOV BP,SP 
MOV SI ,[BP]+b iSI=ADDR(N) 
MOV CX,[SI] iCX=N 
MOV SI, □ iSI=O 

; 

iNOW ALL SET UP TO GO 
CMP CX,OH iHOPE N > 0 
JLE DONE 

ADD-LOOP: 
MOV BX,[BP]+14 iBX=ADDR(A) 
FLD DWORD PTR [BX][SI] iLOAD A(I) 
MOV BX ,[BP]+12 iBX=ADDR(B) 
FADD DWORD PTR [BX](SI] i ADD B(I) 
MOV BX,[BP]+10 iBX=ADDR(C) 
FADD DWORD PTR [BX](SI] iADD C(I) 
MOV BX ,[BP]+8 i BX=ADDR(D) 
FSTP DWORD PTR [BX](SIJ i D(IJ=C(I)+A(I)+B(I) 
ADD SI,4 iREADY NEXT ELEMENT 
LOOP ADD-LOOP 

DONE: 
; 

POP BP 
FWAIT iBE SURE 8087 IS DONE 
RET 10 

VADD3 ENDP 
CSEG ENDS 

END 

Scalar Routines 

Mathematical operations frequently involve a scalar and a vector. ("Sca
lar" is the word mathematicians use for a single number, as opposed to 
an entire vector of numbers.) The simplest example would be setting an 
entire vector to a constant, as in A= 5. Subroutine VSET performs this 
service. VSET first loads the value SCALAR onto the 8087 stack and then 
copies the 8087 register ST into each element of A. 

i SUBROUTINE VSET(A, SCALAR, NJ 
ASSUMPTIONS: A IS A SINGLE PRECISION ARRAY OF LENGTH N 

SCALAR IS SINGLE PRECISION 
; N IS AN INTEGER 

CSEG 
PUBLIC 
SEGMENT 
ASSUME · 

VSET 
'CODE' 
CS:CSEG 
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VSET PROC FAR 
PUSH BP 
MOV BP,SP 
MOV SI,[BPJ+b ; SI=ADDR(NJ 
MOV CX,[SIJ ;CX=N 
MOV BX ,[BPJ+10 ; BX=ADDR(AJ 
MOV SI ,[BPJ+8 ; SI=ADDR(SCALARJ 
FLD DWORD PTR [SI] ;PUSH SCALAR ONTO STACK 

;NOW ALL SET UP TO GO 
CMP CX,OH ;HOPE N > D 
JLE DONE 

VSET-LOOP: 
FST DWORD PTR [BX] ;STORE A(I) 
ADD BX,4 ;READY FOR NEXT A 
LOOP VSELLOOP 

DONE: 
; 

FSTP ST(□) ;GET RID OF SCALAR 
POP BP 
FWAIT ;BE SURE 8087 IS DONE 
RET 6 

VSET ENDP 
CSEG ENDS 

END 

A typical mathematical operation is to add a scalar to every element of 
a vector. Routine AD DSC performs this function. 

;SUBROUTINE ADDSC(A,SCALAR,B,N) 
; ASSUMPTIONS: A,B ARE SINGLE PRECISION ARRAYS OF LENGTH N 
; 

SCALAR IS SINGLE PRECISION 
N IS AN INTEGER 

; 
PUBLIC ADDSC 

CSEG SEGMENT 'CODE' 
ASSUME cs:CSEG 

ADDSC PROC FAR 
PUSH BP 
MOV BP,SP 
MOV SI ,[BP]+b ; SI=ADDR(NJ 
MOV CX,[SIJ ;cx=N 
MOV BX,[BP]+12 ; BX=ADDR(Al 
MOV SI,[BP]+10 ; SI=ADDR(SCALARJ 
FLD DWORD PTR [SI] ;PUSH SCALAR ONTO STACK 
MOV SI,[BP]+8 ; SI=ADDR(Bl 

;NOW ALL SET UP TO GO 
CMP CX,OH ;HOPE N > D 
JLE DONE 

ADD-LOOP: 
FLD DWORD PTR [BX] ;LOAD A(IJ 
ADD BX,4 ;READY FOR NEXT A 



DONE: 

ADDSC 
CSEG 

FADD 
FSTP 
ADD 
LOOP 

FSTP 
POP 
FWAIT 
RET 
ENDP 
ENDS 
END 

ST ,ST(1) 
DWORD PTR 
SI,4 
ADD-LOOP 

ST(□ ) 
BP 

8 
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iADD SCALAR 
[SI] i B(IJ=A(I)+SCALAR 

iREADY FOR NEXT B 

iGET RID OF SCALAR 

iBE SURE 8087 IS DONE 

Adapting ADDSC for subtraction, multiplication, and division is straight
forward. (Remember, of course, that "A - SCALAR" is quite different 
from "SCALAR - A!") 

Unary Operations 

Operations requiring only one argument are said to be "unary" (as op
posed to two-argument "binary" operations such as "A+ B"). For ex
ample we might want to find the square root, absolute value, or negative 
of the elements of an array. Routine SQRT, which we used for timing 
examples in Part I (Chapters 1-4), computes B = SQR(A). 

; SUBROUTINE SQRT(A, B, NJ 
; ASSUMPTIONS: A,B ARE SINGLE PRECISION ARRAYS OF LENGTH N 
; N IS AN INTEGER 
; 

PUBLIC SQRT 
CSEG . SEGMENT 'CODE' 

ASSUME CS:CSEG 
SQRT PROC FAR 

PUSH BP 
MOV BP,SP 
MOV SI ,[BP]+b i SI=ADDR(Nl 
MOV CX,[SI] iCX=N 
MOV BX,[BP]+1O ; BX=ADDR(AJ 
MOV SI ,[BP]+8 . i SI=ADDR(B) 

iNOW ALL SET UP TO GO 
CMP CX,DH iHOPE N > □ 

JLE DONE 
SQRLLOOP: 

FLD DWORD PTR [BX] iLOAD A(Il 
ADD BX,4 

iREADY FOR NEXT A 
FSQRT ; FIND SQRT(A(IJJ 
FSTP DWORD PTR [SI] ; B(I)=SQRT(A(I)l 
ADD SI,4 iREADY FOR NEXT B 
LOOP SQRLLOOP 
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DONE: 
; 

SQRT 
CSEG 

POP 
FWAIT 
RET 
ENDP 
ENDS 
END 

BP 

b 
;BE SURE 8087 IS DONE 

Routine SQRT is easily changed to compute absolute value or to yield 
the negative of the input vector by changing FSQRT to FABS or FCHS. 

Utility Routines 

The speed of the routines above reflects both the 8087' s prodigious math
ematical ability and the vast speed advantage of 8088 assembly language 
code over BASIC. It can be very useful to use assembly language routines 
even for such "non-computational" tasks as copying one array of num
bers into another. We can use the 8087's automatic precision conversion 
to allow the transfer between single precision, double precision, and 
integer arrays as a bonus. 

The BASIC code 

10 DIM A(4999),8(4999) 
20 N%=5000 
30 FOR I=O TO N%-1 
40 B(I)=A(I) 
50 NEXT I 

takes about 18 seconds or more to execute, even if we rewrite the code 
all on one line, for maximum efficiency (and minimum clarity). We would 
actually be better off with the code 

10 DIM A(4999), 8(4999) 
20 N%=5000:SCALAR=O 
30 CALL ADDSC(A(O), SCALAR, 8(0), N%) 

which would only take about a quarter of a second, despite its 5,000 
useless addition operations! For greater convenience, we create a routine 
GCOPY that not only copies one array into another, but also handles 
type conversions for us. 

; SUBROUTINE GCOPY(A, B, TYPEA, TYPEB, NJ 
; ASSUMPTIONS: A,B ARE ARRAYS OF LENGTH N 
; TYPEA IS AN INTEGER: 2-INTEGER 4-SINGLE 8-

DOUBLE 
TYPEB" 
N IS AN INTEGER 

; 
PUBLIC GCOPY 



9 a Simple 8081 Routines 97 

CSEG SEGMENT 'CODE' 
ASSUME cs:CSEG 

GCOPY PROC FAR 
PUSH BP 
MOV BP,SP 
MOV SI,[BP)+1 □ i SI=ADDR(TYPEA) 
MOV AX,[SI) iAX=TYPEA 
MOV SI,[BP]+8 i SI=ADDR(TYPEB) 
MOV DX,[SI] iDX=TYPEB 
MOV SI,[BP]+b ; SI=ADDR(N) 
MOV CX,[SI) iCX=N 
MOV BX,[BP]+14 ; BX=ADDR(A) 
MOV SI,[BP]+12 ; SI=ADDR(B) 

; 

iNOW ALL SET UP TO GO 
CMP CX, □ H iHOPE N > □ 
JLE DONE 

; 
COPY-LOOP: 

CMP AX,2 iIS A INTEGER? 
JNE A-NOT-INTEGER 
FILD WORD PTR [BX) 
JMP STORLIT 

A-NOT-INTEGER: 
CMP AX,4 iIS A SINGLE? 
JNE A-NOT-SINGLE 
FLD DWORD PTR [BX) 
JMP STORE-IT 

A-NOT-SINGLE: iBETTER BE DOUBLE 
FLD QWORD PTR [BX) 

; 
STORLIT: 

ADD BX,AX iREADY FOR NEXT ELEMENT 
CMP DX,2 ; IS B INTEGER? 
JNE B-NOLINTEGER 
FISTP WORD PTR [SI] 
JMP LOOP_END 

B-NOLINTEGER: 
CMP DX,4 iIS B SINGLE? 
JNE B-NOT-SINGLE 
FSTP DWORD PTR [SI] 
JMP LOOP-END 

B-NOLSINGLE: iBETTER BE DOUBLE 
FSTP QWORD PTR [SI) 

LOOP-END: 
ADD :SI,DX ;READY FOR NEXT ELEMENT 
LOOP COPY-LOOP 

DONE: 
POP BP 
FWAIT iBE SURE 8 □ 87 IS DONE 
RET 1 □ 
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GCOPY ENDP 
CSEG ENDS 

END 

GCOPY is about 100 times faster than the equivalent BASIC code. 

Our second utility routine is GBCOPY. GBCOPYis like GCOPY, except 
that it begins copying at A(N-1) and works down to A(0), rather than 
vice versa, and that GBCOPY does not perform type conversions. 

iSUBROUTINE GBeOPY(A,B,TYPE,N) 
i ASSUMPTIONS: A,B ARE ARRAYS OF LENGTH N 
i TYPE IS AN INTEGER: 2-INTEGER 4-SINGLE 8-

DOUBLE 
i N IS AN INTEGER 
; 

PUBLIC GBCOPY 
CSEG SEGMENT 'CODE' 

ASSUME es:CSEG 
GBCOPY PROC FAR 

PUSH BP 
MOV BP,SP 
MOV BX,[BP]+b i BX=ADDR[N] 
MOV eX,[BX] iCX=N 
CMP ex, □ 

JLE DONE 
MOV BX,[BP]+8 i BX=ADDR(TYPE) 
MOV AX,[BX] iAX=TYPE 
MUL ex iAX=N*TYPE 
MOV BX,AX iBX=N*TYPE 
MOV eX,AX iCX=N*TYPE 
SHR eX,1 ;ex=N*TYPE/2 

i(WORDS TO BE MOVED) 
MOV SI,[BP]+12 i SI=ADDR(A) 
MOV DI,[BP]+10 i DI=ADDR(BJ 

BCOPLLOOP: 
SUB BX,2 iNEXT INDEX 
MOV AX, [SI][BX] iGET A 
MOV [DI][BX],AX iSTORE B 
LOOP BCOPLLOOP 

DONE: POP BP 
RET 8 

GBCOPY ENDP 
CSEG ENDS 

END 

GBCOPY illustrates backwards operations on an array. Our first task 
was to locate the last element of each array. If an array element takes 
TYPE bytes to store and the first element begins at location ADDR, then 
the second element begins at location ADDR + TYPE, the third at 
ADDR + 2*TYPE ... and the Nth at ADDR + (N - l)*TYPE. Once these 
locations are found, GBCOPY is like GCOPY except that GBCOPY sub-
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tracts to move the elements down to where GCOPY adds to move the 
elements up. 

Why move an array backwards anyhow? Consider the following two 
problems. First, copy A(I + 1) into A(I) for an entire array. This can be 
done either in BASIC: 

1 □ FOR I= □ TO ~-2 
2 □ A(I)=A(I+1) 
3□ NEXT I 

or with GCOPY: 

1□ N1%=N-1:TYPEA%=4 
2 □ CALL GCOPY(A(1), A(□), TYPEA%, TYPE A%, N1%) 

Second, copy A(I) into A(I + 1) for an entire array. One might be tempted 
do this in BASIC with 

1□ FOR I= □ TO N-2 
2 □ A(I + 1)=A(I) 
3 □ NEXT I 

but this won't work. On the first step, this puts A(0) into A(l). On the 
next step, when BASIC tries to move A(l), it picks up the value originally 
in A(0). The original value of A(l) has been wiped out. Correct BASIC 
code would be 

1□ FOR I=N-2 TO □ STEP -1 
2 □ A(I + 1)=A(IJ 
3□ NEXT I 

GCOPY(A(0},A(l), TYPEA % , TYPEA % ,Nl % ) would generate the same 
incorrect results as the first BASIC program. GBCOPY(A(0),A(l), 
TYPEA % ,Nl % ) works correctly. Since GBCOPY' s primary use is copying 
data from one part of an array to another part of the same array, nothing 
was lost by omitting the type conversion. 

On Errors 

Errors that might result from using number crunching subroutines can 
be loosely grouped into four classes: 

• Programming errors in the subroutines. 
• Errors in using the subroutines. 
• Recoverable precision errors. 
• Non-recoverable precision errors. 

Programming Errors 
,I 

Computer hardware does not make mistakes. (Not often, anyway.) Peo
ple who program computers do make mistakes. As you develop your 
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own number crunching routines for the 8087, you'll naturally hit an 
occasional bug. Be warned that a personal computer is not quite so for
giving when programmed at the machine language level as it is when 
programmed in BASIC. 

About the worst that can happen in a BASIC program, aside from 
getting the wrong answer, is that BASIC halts the program and prints a 
somewhat cryptic error message. Usually, BASIC at least tells you what 
line caused the error. 

What's the worst that can happen with an undebugged machine lan
guage program? Frequently, you CALL a machine language program and 
nothing happens ... nothing at all happens. The only thing to do is to 
hit the reset key (Ctrl-Alt-Del on an IBM PC) and restart the system from 
scratch. 

Unfortunately, things can be even a bit worse. Sometimes the reset 
key doesn't do anything either. A machine language program can, after 
all, write into any location in memory-including writing garbage into 
areas that only DOS is supposed to use. When this happens, the only 
solution is to power down, leave the machine off for a few seconds, and 
then turn the power back on. It pays to be careful in debugging 8087/8088 
programs. 

Errors in Using the Subroutines 

Even bug-free routines can go wrong if fed invalid input. As a simple 
example, suppose we feed the wrong value for N to one of the vector 
routines prepared above. It would be nice if the routines would check 
for valid input and return an error indication when given garbage. 

Consider ·what our routines do instead. If N gives the correct length 
of the data arrays, the routines return the correct answer. Notice that 
special consideration is given to the case of zero length arrays and these 
are handled properly. Suppose we set N to a negative value. The routines 
act as if N were zero, but do not report the error. Suppose instead that 
the arrays are really 100 long, but we mistakenly set N to 50. The routines 
give the wrong answer, but return to BASIC without other errors. Sup
pose we commit the reverse error, setting N to 100 when the arrays are 
only of length 50. The routines will merrily write into an area of memory 
assigned to something other than the arrays we are supposed to be using. 
If we are lucky, the routine will overwrite something vital and the ma
chine will stop cold. In this way we will come to suspect there is an error. 
If we are unlucky, the routine will change totally unrelated variables, 
causing our .final answers to be wrong without giving any indication of 
a possible problem. 

It is an unfortunate fact of life that there is no sure-fire way to catch 
these kinds of errors in a machine language pro&ram, or, for that matter, 
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in many other computer languages. For the routines in this book, we 
have decided to place all error checking responsibility on the BASIC 
programmer. However, it is certainly possible to rewrite the routines to 
catch a few errors. Routine GADDSAFR (General precision ADDition, 
but SAFeR) illustrates one such approach. 

;SUBROUTINE GADDSAFR(A,8,C,TYPEA,TYPEB,TYPEC,N,IER) 
; ASSUMPTIONS: A,8,C ARE ARRAYS OF LENGTH N 
; TYPEA IS AN INTEGER: 2-INTEGER 4-SINGLE 8-

DOUBLE 
TYPES" " 
TYPEC" " 
N IS AN INTEGER 
IER IS AN INTEGER RETURNING O IF NO ERROR 

1 IF N IS NEGATIVE 

PUBLIC 
CSEG SEGMENT 

ASSUME 
GADDSAFR PROC 

PUSH 
MOV 

;CHECK TYPES 
MOV 
MOV 
CMP 
JE 
CMP 
JE 
CMP 
JE 
JMP 

TYPELOK: 
MOV 
MOV 
CMP 
JE 
CMP 
JE 
CMP 
JE 
JMP 

TYPEB-OK: 
MOV 
MOV 
CMP 
JE 
CMP 
JE 
CMP 

2 IF TYPEA,TYPEB,OR TYPEC IS ILLEGAL 

GADDSAFR 
'CODE' 
cs:CSEG 
FAR 
BP 
BP,SP 

SI,[BP)+14 
AX,[SI) 
AX,2 
TYPELOK 
AX,4 
TYPELOK 
AX,8 
TYPELOK 
TYPLERROR 

SI,[BP)+12 
AX,[SI) 
AX,2 
TYPEB-OK 
AX,4 
TYPEB-OK 
AX,8 
TYPEB-OK 
TYPE-ERROR 

SI,[BP]+1O 
AX ,[SI) 
AX,2 
TYPEC-OK 
AX,4 
TYPEC-OK 
AX,8 

; SI=ADDR(TYPEA) 
;AX=TYPEA 

; SI=ADDR(TYPEB) 
;AX=TYPEB 

; SI=ADDR(TYPEC) 
;AX=TYPEC 
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JE TYPELOK 
JMP TYPE-ERROR 

TYPELOK: JMP CHECLN 
TYPE-ERROR: 

MOV AX,2 
JMP DONE 

; 
CHECK_N: 

MOV SI,[BP]+8 ; SI=ADDR(NJ 
MOV CX,[SI] ;CX=N 
CMP CX,OH 
JNE L11 iDONE TOO FAR FOR 
JMP DONE iDIREET JE 

L11: JG STARLADD 
; iOOPS, N>O 

MOV AX,1 
JMP DONE 

; 
STARLADD: 

MOV AX,[BP]+2O iAX=ADDR(A) 
MOV DI,[BP]+18 i DI=ADDR(B) 
MOV DX ,[BP]+16 i DX=ADDR(C) 

ADD-LOOP: 
MOV BX,AX .. ;BX=ADDR(A) 
MOV SI,[BP]+14 i SI=ADDR(TYPEA) 
MOV SI•,[SI] ;SI=TYPEA 
CMP SI,2 iIS IT INTEGER? 
JNE A-NOT-INTEGER 
FILD WORD PTR [BX] 
JMP ADD-B 

A-NOT-INTEGER: 
CMP SI,4 iIS IT SINGLE? 
JNE LNOLSINGLE 
FLD DWORD PTR [BX] 
JMP ADD-B 

A-NOT-SINGLE: 
FLD QWORD PTR [BX] 

; 
ADD-B: ADD AX,SI iREADY FOR A NEXT TIME 

MOV SI ,[BP]+12 i SI=ADDR(TYPEBJ 
MOV SI,[SI] iSI=TYPEB 
CMP SI,2 iIS IT INTEGER? 
JNE B_NOT-INTEGER11 
FIADD WORD PTR [DI] 
JMP NEXLC 

B-NOLINTEGER: 
CMP SI,4 iIS IT SINGLE? 
JNE B_NOT-SINGLE 
FADD DWORD PTR [DI] 
JMP NEXLC 



B-NOT_SINGLE: 
FADD 

; 
NEXT_(: ADD 

MOV 
MOV 
MOV 
CMP 
JNE 
FISTP 
JMP 

CNOT-INTEGER: 
CMP 
JNE 
FSTP 
JMP 

CNOLSINGLE: 
FSTP 

; 
NEXT-ELEMENT: 

ADD 
LOOP 

MOV 
JMP 

ADD-LOOPER: JMP 
DONE: 

MOV 
MOV 
POP 
FWAIT 
RET 

GADDSAFR ENDP 
CSEG ENDS 

END 

QWORD PTR [DI) 

DI,SI 

BX,DX 
SI ,[BPJ+1O 
SI,[SI) 
SI,2 
CNOLINTEGER 
WORD PTR [BX) 
NEXT-ELEMENT 

SI,4 
CNOT-SINGLE 
DWORD PTR [BX] 
NEXT-ELEMENT 

QWORD PTR [BX) 

DX,SI 
ADD-LOOPER 

AX, □ 

DONE 
ADD-LOOP 

SI,[BP]+b 
[SI),AX 
BP 

16 

9 a Simple 8087 Routines 103 

;READY FOR NEXT B 

;BX=ADDR(C) 
; SI=ADDR(TYPEC) 
;SI=TYPEC 
; IS IT INTEGER? 

;rs IT SINGLE? 

;READY FOR NEXT C 
;LOOP ONLY JUMPS 
127 . · · 

; -NO ERROR-

;. . . BYTES 

;SI=ADDR(IERJ 
;IER=ERROR CODE 

;BE SURE 8087 IS DONE 

Error checking adds only about 20 lines of code and a negligible increase 
in execution time. Unfortunately, many ill~gal input errors still won't be 
caught. Besides N simply having the incorrect value, any of the arrays 
might actually be of a different type than that stated; the type, N, or IER 
arguments might not be integers; or we might call GADDSAFR with the 
wrong number or order of arguments. 

Precision Errors 

A fact of life that programmers find most difficult to accept is that perfectly 
"correct" programs sometimes give the wrong answer. Computer arithmetic 
has only limited accuracy. The 8087 is more accurate than most main
frames. Nonetheless, for any finite degree of precision, there exists some 
problem for which the degree of precision is insufficient. The problem 
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is somewhat aggravated by the fact that a program will work perfectly 
with one set of data and not at all with another. With some work, one 
can even construct a series of numbers which add correctly when added 
from first to last but give a nonsensical result when added backwards. 
There are several programming approaches to handling precision errors: 

• Ignore the problem and hope no errors ever occur. 
• Handle each error as soon as it occurs. 
• Set up a general scheme to allow computation to proceed as far as 

possible. 

Ignoring the problem is not quite as silly as it sounds. The 8087 is 
extremely accurate. Furthermore, the 8087 designers have built in au
tomatic error handling capabilities which operate very sensibly. For most 
problems, precision errors will not occur. For most precision errors that 
do occur, the 8087 error handling will apply the correct solution. 

As an extreme alternative, the 8087 can be set to stop every time an 
error occurs. Exception handling software can be written to take care of 
every error on a problem-specific basis. This approach requires you to 
hand-tailor every subroutine, so it isn't practical for this book. Exception 
handling routines are discussed in the Intel iAPX 86,88 User's Manual. 

In considering a general scheme for error handling, it is constructive 
to review what BASIC does about the problem. Among BASIC's rules 
are the following: 

• Integer overflow generates an error message and halts the program. 
• Real overflow generates an error message. The result is set to ma

chine infinity. Execution continues. 
• Real underflow causes the result to be set to zero. Execution contin

ues without a warning message. 
• Passing an invalid argument to a function results in an error message. 

Execution halts. 

The error handling routines in the 8087 hardware always allow exe
cution to continue, while generally indicating errors by producing an 
answer that is not a "normaJ:' number. All our routines allow the 8087 
automatic error handling procedures to maintain control. As a result, the 
final answers may include an error indication. We need a routine to check 
whether data is valid or invalid. We would also like to fix those errors 
for which some obvious fix-up exists. Single and double precision output 
of the 8087 take one of the following forms, which were discussed at 
length in Chapter 5: 

• Normal-a valid number. 
• Denormal-indicates a previous underflow. 
• Infinity-may indicate a previous overflow. 
• Not-A-Number (NAN)-invalid datum. 

\ 

Routine REALERR accepts an input array of single or double precision 
numbers. It returns three integer variables, each of which is set to -1 
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(true) if any denormal, infinity, or NAN, respectively, is stored in the 
array, or to 0 (false) otherwise. ELEMENT is an integer variable giving 
the element number of the last other than normal number found. 

Routines REALERR and DENTO0 use some processor control instruc
tions defined in Chapter 12. We include these routines here because of 
their usefulness for even simple numerical programs. 

;SUBROUTINE REALERR(ARRAY,TYPE,N,IFDEN,IFINF,IFNAN,ELEMENT) 
i ASSUMPTIONS: ARRAY IS OF LENGTH N 
; TYPE IS AN INTEGER: 4-SINGLE, 8-DOUBLE 
i N IS AN INTEGER 
; IFDEN,IFINF,IFNAN ARE INTEGER 
; RETURNING D (FALSE) OR -1 (TRUE) 
i ELEMENT IS AN INTEGER 

PUBLIC REALERR 
CSEG SEGMENT 

ASSUME 
FIRST-INST EQU 

'CODE' 
CS:CSEG,ES:EXTRA-SEG 
THIS WORD 

REALE RR PROC 
PUSH 
MOV 

FAR 
BP 
BP,SP 

iSET UP EXTRA SEGMENT TAKING CARE OF RELOCATION 
PUSH ES 
CALL NEXT 

NEXT: POP AX 
SUB AX ,(OFFSET NEXT)-(OFFSET FIRSLINSTJ 
MOV CL,4 
SHR AX,CL 
MOV BX,CS 
ADD BX,EXTRA-SEG 
SUB BX,CSEG 
ADD AX,BX 
MOV ES,AX 

; 
iSET TENTATIVE RETURN VALUES TO ZERO 

MOV SI,[BPJ+12 iCLEAR IFDEN 
MOV WORD PTR [SI], □ 

MOV SI ,[BPJ+1O iCLEAR IFINF 
MOV WORD PTR [SI], D 
MOV SI,[BP]+8 iCLEAR IFNAN 
MOV WORD PTR [SI], □ 

MOV SI,[BP]+6 iCLEAR ELEMENT 
MOV WORD PTR [SI], □ 

MOV SI,[BPJ+14 
MOV CX,[SIJ iCX=N 
MOV BX,[BP]+18 i BX=ADDR(ARRAYJ 
MOV SI,[BP]+16 i SI=ADDR(TYPEJ 
MOV AX, [SI] iAX=TYPE 
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;NOW ALL SET UP TO GO 
CMP CX, □ H ;HOPE N > □ 
JL DONE 

; 

CHECK-LOOP: 
CMP 
JNE 
FLD 
JMP 

NOT-SINGLE: 
FLD 

; 
CHECK-IT: 

ADD 

FXAM 
FSTSW 
FSTP 
FWAIT 
MOV 
AND 
CMP 
JE 
CMP 
JE 
CMP 
JE 
CMP 
JE 
CMP 
JE 

;MUST BE NAN 
MOV 
JMP 

DEN: MOV 
JMP 

INF: MOV 
SELERROR: 

MOV 
MOV 
MOV 
SUB 
MOV 
MOV 

OK: LOOP 
JMP 

LOOPER: JMP 

DONE: 

AX,4 
NOT-SINGLE 
DWORD PTR [BX] 
CHECK-IT 

QWORD PTR [BX] 

BX,AX 

STATUS-WORD 
ST(□) 

;rs A SINGLE? 

;BETTER BE DOUBLE 

;READY FOR NEXT 
ELEMENT 

;WHAT DID WE LOAD? 

DH,BYTE PTR STATUS-WORD+1 
DH, □ 1□□□1□1B ;BLANK OTHER BITS 
DH, □□□□□1□□B ;NORMAL? 
OK 
DH, □ 1□□□□□□B ;ZERO? 
OK 
DH, □□□□□1□1B ;INFINITY? 
INF 
DH, □ ;UNNORMAL? 
DEN 
DH, □ 1□□□ 1□□ B ;DENORMAL? 
DEN 

SI,[BPJ+8 
SET-ERROR 
SI,[BPJ+12 ;SET IFDEN 
SET-ERROR 
SI ,[BPJ+1 □ ; SET IFINF 

WORD PTR [SI], -1 ; ERROR IS TRUE 
SI,[BPJ+14 ;GET N BACK 
SI,[SI] 
SI,CX 
DI,[BPJ+b 
[DI],SI ;SET ELEMENT 
LOOPER 
DONE 
CHECK-LOOP 

POP ES 
POP BP 



REALERR 
CSEG 
ENDS 

FWAIT 
RET 
ENDP 

EXTRA-SEG SEGMENT 
STATUS-WORD DW? 
EXTRLSEG ENDS 

END 
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;BE SURE 8087 IS DONE 
14 

'DATA' 

REALERR is a little complicated, but is nonetheless quite fast, checking 
an array of 10,000 numbers in about a quarter of a second. 

After execution of REALERR, IFDEN, IFINF, and IFNAN are easily 
tested with BASIC IF statements. The question remains as to what action 
should follow as a result of the test. The following general rules can serve 
as a guide: 

• NAN-halt execution with an error message. 
• Infinity-Halting execution or allowing it to continue depends some

what on circumstances. Infinity usually indicates a meaningless value, 
resulting from either an overflow or from some sort of invalid op
eration. However, there are occasionally functions for which infinity 
is a sensible number. Consider evaluating the following function: 

1/(1 + 1/x) 

As x goes to zero, the function goes to zero. Since the 8087 is designed 
to report 1 divided by zero as infinity, 1 plus infinity as infinity, and 
1 divided by infinity as zero, this function will be correctly evaluated, 
if we ignore intermediate infinite results. If X equals -1, then the 
final result will be infinity, as it should be. 

• Denormals are a somewhat different case. A denormal indicates that 
an underflow has occurred. The datum therefore represents a num
ber very close to zero. We can either leave the number as a denormal, 
in which case the 8087 will continue to treat it as a number very 
close to zero, or we can set the number to true zero. 

Routine DENTO0 replaces all the denormals in an array with true zeros. 

; SUBROUTINE DENTOD(ARRA Y, TYPE, NJ 
ASSUMPTIONS: ARRAY IS OF LENGTH N 

; TYPE IS AN INTEGER: 4-SINGLE, 8-DOUBLE 
N IS AN INTEGER 

PUBLIC 
CSEG SEGMENT 

ASSUME 
FIRSLINST EQU 
DENT OD PROC 

PUSH 
MOV 

DENTOO 
'CODE' 
CS:CSEG,ES:EXTRA-SEG 
THIS WORD 
FAR 
BP 
BP,SP 



108 8087 Applications and Programming 

iSET UP EXTRA SEGMENT TAKING CARE OF RELOCATION 
PUSH ES 
CALL NEXT 

NEXT: POP AX 

; 

SUB AX ,(OFFSET NEXT)-(OFFSET FIRSLINST) 
MOV CL,4 
SHR AX,CL 
MOV BX,CS 
ADD BX,EXTRA-SEG 
SUB BX,CSEG 
ADD AX,BX 
MOV ES,AX 

MOV 
MOV 
MOV 
MOV 
MOV 

SI,[BP]+b 
CX,[SI) 
BX,[BP]+1O 
SI ,[BP]+8 
AX,[SI] 

iCX=N 
i BX=ADDR(A) 
i SI=ADDR(TYPE) 
iAX=TYPE 

iNOW ALL SET UP TO GO 

CHECK-LOOP: 

NOLSINGLE: 

CHECK-IT: 

DEN: 

CMP 
JL 

CMP 
JNE 
FLD 
JMP 

FLD 

FXAM 
FSTSW 
FSTP 
FWAIT 
MOV 
AND 
CMP 
JE 
CMP 
JE 
JMP 

FLDZ 
CMP 
JNE 
FSTP 
JMP 

STILL-NOT-SINGLE: 
FSTP 

CX, □ H 

DONE 

AX,4 
NOLSINGLE 
DWORD PTR [BX) 
CHECK-IT 

QWORD PTR [BX) 

STATUS-WORD 
ST(□) 

iHOPE N > □ 

iIS A SINGLE? 

iBETTER BE DOUBLE 

iWHAT DID WE LOAD? 

DH,BYTE PTR STATUS-WORD+1 
DH, □ 1□□□ 1 □ 1B iBLANK OTHER BITS 
DH, □ 

DEN 
DH, □ 1□□□ 1□□ B 
DEN 
LOOP-BOTTOM 

iUNNORMAL? 

iDENORMAL? 

iMAKE A ZERO 
AX,4 iIS A SINGLE? 
STILL-NOT-SINGLE 
DWORD PTR [BX) 
LOOP-BOTTOM 

iBETTER BE DOUBLE 
QWORD PTR [BX) 



LOOP-BOTTOM: 
ADD 
LOOP 
JMP 

LOOPER: JMP 

DONE: 

DENTO□ 
CSEG 

POP 
POP 
FWAIT 
RET 
ENDP 
ENDS 

EXTRA-SEG SEGMENT 
STATUS-WORD DW? 
EXTRLSEG ENDS 

END 

BX,AX 
LOOPER 
DONE 
CHECK-LOOP 

ES 
BP 

6 

'DATA' 
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iBE SURE 8087 IS DONE 

One last warning about ignoring the presence of denormals, infinities, 
and NANs. A few 8087 instructions insist on valid data as input. In 
particular, the transcendental instructions discussed in Chapter 12 will produce 
an undefined result if fed invalid data and will do so without signaling any error 
condition! 

Our error handling has been limited to single and double precision 
reals to the exclusion of integers. There are two reasons for this exclusion. 

First, if you use 16-bit integers, the only kind available in BASIC, for 
holding numerical results, you are asking for trouble. Merely multiplying 
two random integers may result in integer overflow! Floating point arith
metic is every bit as fast as integer arithmetic on the 8087. Use integer 
variables for subscripts, flags, and subroutine addresses. Otherwise stay 
away. 

Second, the integer data type cannot be set to indicate invalid data in 
the way real variables can be set. If a number cannot be converted to a 
valid integer, the 8087 reports the most negative value, -32,768. Both 
BASIC and the 8087 treat -32,768 as they do any other integer, so invalid 
data will not be flagged. If integer variables must be used, all results 
should be checked and execution should be stopped if -32,768 appears. 



Basic Matrix Operations 

Matrix operations occupy the center of the number crunching world. Large 
scale supercomputers, costing tens of millions of dollars, have special 
built-in hardware devoted entirely to fast matrix operations. There are 
even computer languages, such as APL, where the matrix replaces the 
scalar as the fundamental variable type. Matrices are so important that 
some versions of BASIC (mostly on large computers) have a special set 
of "MAT" functions devoted to efficient matrix computation. While the 
8087 does not have matrix hardware, its stack design allows for easily 
written, efficient, matrix subroutines. 

We cover matrix operations in two chapters. In this chapter, we prepare 
routines for the most common matrix operations. Chapter 11 concentrates 
on advanced methods for solving systems of linear equations and on the 
related problem of matrix inversion. 

Program: 
Purpose: 
Call: 
Input: 

Output: 
Language: 

Program: 
Purpose: 
Call: 
Input: 

The Cookbook-Chapter 10 

COLCOPY 
Copy one column of a matrix into a vector. 
CALL COLCOPY(A(0,0),B(0),COL,N,M). 
A-N by M single precision matrix. 
COL-integer column number to be copied. 
N-integer number of -rows of A. 
M-integer number of columns of A. 
B-array N long; B(I)=A(I,COL). 
8088 assembly language. 

ROWCOPY 
Copy one row of a matrix into a vector. 
CALL ROWCOPY(A(0,0),B(0),ROW,N,M). 
A-N by M single precision matrix. 
ROW-integer row number to be copied. 
N-integer number of rows of A. 
M-integer number of columns of A. 

111 
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Output: 
Language: 

Program: 
Purpose: 
Call: 
Input: 

Output: 
Language: 

Program: 
Purpose: 
Call: 
Input: 

Output: 
Language: 

. Program: 
Purpose: 
Call: 
Input: 

Output: 
Language: 

Program: 
Purpose: 
Call: 
Input: 

Output: 
Language: 

Program: 
Purpose: 
Input: 

Output: 
Language: 
Note: 

B-array M long; B(I)=A(ROW,I). 
8088 assembly language. 

DIAGCOPY 
Copy the diagonal of a square matrix into a vector. 
CALL DIAGCOPY(A(0,0),B(0),N). 
A-N by N single precision matrix. 
N-integer number of rows of A. 
B-array N long; B(I) = A(I,I). 
8088 assembly language. 

TRANS 
Transpose a matrix. 
CALL TRANS(A(0,0),B(0,0),N,M). 
A-N by M single precision matrix. 
N-integer number of rows of A. 
M-integer number of columns of A. 
B-M by N matrix; B(I,J)=AG,I). 
8088 assembly language. 

SQTRANS 
Transpose a square matrix in place. 
CALL SQTRANS(A(O,0),N). 
A-N by N single precision matrix. 
N-integer number of rows of A. 
A-new A(I,J) = old AG,I). 
8088 assembly language. 

INPROD 
Inner product of two single precision vectors. 
CALL INPROD(A(0),B(0),C,N). 
A-N long single precision vector. 
B-N long single precision vector. 
N-integer number of rows of A. 
C-double precision scalar; C=inner product of A,B. 
8087/8088 assembly language. 

GINP 
Inner product of two generalized vectors. 
A-N element vector. 
B-N element vector. 
TYPEA-integer giving length of element of A. 
TYPEB-integer giving length of element of B. 
SKIPA-integer "skip factor" (see text) for A. 
SKIPB-integer "skip factor" (see text) for B. 
N-integer number of rows of A. 
8087 register ST; ST=inner product of A,B. 
8087/8088 assembly language. 
NEAR procedure; see GINPROD. 



Program: 
Purpose: 
Call: 

Input: 

Output: 
Language: 
Note: 

Program: 
Purpose: 
Call: 
Input: 

Output: 
Language: 
Note: 

Program: 
Purpose: 
Input: 

Output: 
Language: 

Program: 
Purpose: 

Input: 

Output: 

Language: 
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GINPROD 
Inner product. of two generalized vectors. 
CALL GINPROD(A(0),B(0),C, TYPEA, TYPEB, 
SKIPA,SKIPB,N). 
A-N element vector. 
B-N element vector. 
TYPEA-integer giving length of element of A. 
TYPEB-integer giving length of element of B. 
SKIPA-integer "skip factor" (see text) for A. 
SKIPB-integer "skip factor" (see text) for B. 
N-integer number of rows of A. 
C-double precision scalar; C = inner product of A,B. 
8087/8088 assembly language. 
Requires NEAR procedure GINP. 

MATMULT 
Matrix multiplication. 
CALL MATMULT(A(0,0),B(0,0),C(0,0),L,M,N). 
A-L by M single precision matrix. 
B-M by N single precision matrix. 
L-integer number of rows of A. 
M-integer number of columns of A, rows of B. 
N-integer number of columns of B. 
C-L by N single precision matrix; C=AB. 
8087/8088 assembly language. 
Requires NEAR procedure GINP. 

GAUSS 
Solve linear equations by Gaussian elimination. 
A-N by N coefficient matrix. 
Y-N vector. 
N-number of rows and columns of A. 
X-N vector; X solves equations Y=AX. 
BASIC. 

GAUSS-SE 
Solve linear equations by Gaussian elimination, us-

ing space efficient method. 
A-N by N coefficient matrix. 
Y-N vector. 
YSTAR-N vector, scratch space. 
N-number of rows and columns of A. 
X-N vector; X solves equations Y=AX. 
A-A replaced with Gaussian reduction. 
BASIC. 
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What is a Matrix? 

In computer terms, a matrix is a two-dimensional array. The values in 
the array can be thought of as being laid out in a rectangular grid, where 
the first array index is the row number and the second array index is the 
column number. An example of a "2 by 3" matrix is 

5 -7 11 
0 2 18 

Such a matrix might be stored in BASIC by DIMensioning an array 
with two rows and three columns. The BASIC statement "DIM A(l,2)" 
produces a matrix laid out like 

A(0,0) A(0,1) A(0,2) 
A(l,0) A(l,1) A(2,1) 

Since BASIC arrays are numbered starting at zero, an N row by M column 
matrix is dimensioned A(N-l,M-1). 

Why Are Matrices Interesting? 

Invariably, matrix algebra is motivated as notation for solving systems 
of simultaneous linear equations. This may seem a bit strange, as most 
of us don't have any great need for solving such systems. The truth is 
that most interesting numerical computation problems have the same 
mathematical structure as a system of linear equations. Computational 
aspects of statistics, differential equations, and constrained optimization 
all center around linear equations and matrix operations. We briefly lay 
out the linear equation interpretation of matrices here. 

As a sample, consider the following system of two linear equations in 
two unknowns. 

18 = 4x1 + 2x2 

9 = 2x1 - 2x2 

There is exactly one pair of values for x1 and x2 that will make both 
equations true. To find these values, we draw the two equations on a 
piece of graph paper. Label the horizontal axis x1 and the vertical axis 
x2 • Pick any two values for x1• Plug each into the top equation and solve 
for the corresponding value of x2• Connect the two (xi,x2) points to get 
a straight line. Do the same for the bottom equation. The top equation 
is true for any (xi,x2) point on the first line and the bottom equation is 
true for any point on the second line. Where the two lines intersect, both 
equations are true. The point (4.5,0) is the solution to this system of 
equations. 

Matrices provide a compact notation for discussing such systems. In 
matrix notation, the two equations appear as: 
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y = Ax 

where y is a 2 by 1 matrix. 

A is a 2 by 2 matrix 

A - [: _:] 

and x is a 2 by 1 matrix. 

If we are given values for x, we can solve for y by matrix multiplication. 
If we are given values for y, we can solve for x by solving a system of linear 
equations. 

Storage Allocation and Memory Access 

In order to manipulate matrices, we need to know how BASIC stores a 
matrix in memory. If A is a 2 by 3 matrix, we can think of it as being 
logically laid out as shown in Figure 10.1. Since computer memory is 
one-dimensional, BASIC arranges to store the six elements in consecutive 
order with the first dimension varying most rapidly as we move up in 
memory. The two-dimensional matrix is placed in memory in this order: 
A(0,0), A(l,0), A(0,1), A(l,l), A(0,2), A(l,2). Each element occupies four 
bytes for a single precision array and eight bytes for double precision. 

Another way to say the same thing is that BASIC stores each column 
in order, placing one column after the next in memory. Suppose the 
(single precision) matrix A is stored in memory with A(0,0) located at 
memory address 100. The first column of A will be at locations 100 and 
104; the second column at 108 and 112; the third at 116 and 120. The first 
row of A will be at locations 100, 108, and 116; the second at 104, 112, 
and 120. Figure 10.1 illustrates the two-dimensional array to one-dimen
sional-memory mapping. 

A(0,0)-100 
A(l,0)-104 

A(0,1)-108 
A(l,1)-112 

A(0,2)-116 
A(2,1)-120 

Figure 10.1 

In general, for an n by m matrix, element (i,j) is stored in position (i + n*j)*k, 
where k equals four for single and eight for double precision. 
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Notice that a 1 by n matrix, called a row vector, and an n by 1 matrix, 
called a column vector, will both be stored in the same locations as an n 
element one-dimensional array. 

It is often convenient to think of a matrix as a set of column vectors 
or a set of row vectors. The routines COLCOPY and ROWCOPY illustrate 
column and row access. COLCOPY(A,B,COL,·N,M) copies column COL 
of n by m matrix A into the N long array B. Analogously, ROWCOPY 
copies row ROW of matrix A into an M long array B. The BASIC code 
below illustrates COLCOPY. (Note that here, as elsewhere, we have 
written "DIM A(N -1,M -1)" for clarity, where BASIC actually requires 
"Nl =N-1:Ml =M-1:DIM A(Nl,Ml)".) 

10 DEFINT I-N 
15 REM DEFINE N,M HERE 
20 DIM A(N-1,M-1),B(N-1) 
25 REM FILL IN VALUES OF A 
30 FOR I=O TO N-1 
40 B(I)=A(I, COL) 
50 NEXT I 

iSUBROUTINE COLCOPY(A,B,COL,N,M) 
; ASSUMPTIONS: A IS A SINGLE PRECISION 
; BIS A SINGLE PRECISION 
; COL,N,M ARE INTEGERS 

PUBLIC COLCOPY 
CSEG SEGMENT 'CODE' 

ASSUME cs:CSEG 
COLCOPY PROC FAR 

PUSH BP 
MOV BP,SP 
MOV BX,[BP]+8 
MOV CX,[BX] 
MOV BX,[BP]+10 
MOV AX, [BX] 
MUL ex 
SHL AX,1 
SHL AX,1 
MOV SI,[BP]+14 
ADD SI,AX 
MOV DI, [BP]+ 12 
JCXZ DONE 

COL-LOOP: 
MOV AX ,[SI] 
MOV [DI],AX 
MOV AX,[SI]+2 
MOV [DI]+2, AX 
ADD SI,4 
ADD DI,4 
LOOP COL-LOOP 

N BY M MATRIX 
ARRAY N LONG 

i BX=ADDR(N) 
iCX=N 
i BX=ADDR(COL) 
iAX=COL 
iAX=N*COL 
iAX=4*N*COL 

i SI=ADDR(A) 
i SI=ADDR(A(O, COL) 
i DI=ADDR(B) 

iNEXT COLUMN 
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DONE: 
POP BP 
RET 10 

COLCOPY ENDP 
CSEG ENDS 
END 

;SUBROUTINE ROWCOPY(A,B,ROW,N,M) 
; ASSUMPTIONS: A IS A SINGLE PRECISION N BY M MATRIX 
; BIS A SINGLE PRECISION ARRAY N LONG 
; ROW,N,M ARE INTEGERS 

PUBLIC ROWCOPY 
CSEG SEGMENT 'CODE' 

ASSUME CS:CSEG 
ROWCOPY PROC FAR 

PUSH BP 
MOV BP,SP 
MOV BX,[BP]+6 ; BX=ADDR(M) 
MOV CX,[BX] ;CX=M 
MOV BX,[BP]+10 ; BX=ADDR(ROW) 
MOV AX,[BX] ;AX=ROW 
SHL AX,1 ;AX=4*ROW 
SHL AX,1 
MOV SI,[BP]+14 ; SI=ADDR(A) 
ADD SI,AX ; SI=ADDR(A(ROW, 0)) 
MOV DI,[BP]+12 ;DI=ADDR(B) 
MOV BX,[BP]+8 ; BX=ADDR(N) 
MOV BX,[BX] ;BX=N 
SHL BX,1 ;BX=4*N 
SHL BX,1 
JCXZ DONE 

ROW-LOOP: 
MOV AX,[SI] ;MOVE ELEMENT OF ROW 
MOV [DI],AX 
MOV AX,[SI]+2 
MOV [DI]+2, AX 
ADD SI,BX ;NEXT ROW 
ADD DI,4 ;NEXT B 
LOOP ROW-LOOP 

DONE: POP BP 
RET 10 

ROWCOPY ENDP 
CSEG ENDS 

END 

COLCOPY and ROWCOPY illustrate four useful points about moving 
through a matrix: 

• Column COL begins at location 4*N*COL. 
• Sequential elements in a column are located 4 bytes apart. 

--
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• Row ROW begins at location 4*ROW. 
• Sequential elements in a row are located 4*N bytes apart. 

Of course, "8" would replace "4" for a double precision matrix. 

A matrix with an equal number of rows and columns is called, for 
obvious reasons, a square matrix. The elements A(0,0), A(l,l), ... , 
A(N -1,N -1) form the principal diagonal of the matrix. To illustrate ac
cessing the principal diagonal, we present DIAGCOPY: 

i SUBROUTINE DIAGCOPY(A, B, NJ 
ASSUMPTIONS: A IS A SINGLE PRECISION N BY N MATRIX 

BIS A SINGLE PRECISION ARRAY N LONG 
N IS AN INTEGER 

PUBLIC DIAGCOPY 
CSEG SEGMENT 'CODE' 

ASSUME cs:CSEG 
DIAGCOPY PROC FAR 

DIAG-LOOP: 

PUSH BP 
MOV BP,SP 
MOV BX,[BP]+b 
MOV CX,[BX] 
MOV BX,CX 
INC BX 
SHL BX,1 
SHL BX,1 

MOV 
MOV 
JCXZ 

MOV 
MOV 
MOV 
MOV 
ADD 
ADD 
LOOP 

SI,[BP]+10 
DI,[BP]+8 
DONE 

AX,[SI) 
[DI), AX 
AX ,[SI]+2 
[DI]+2, AX 
SI,BX 
DI, 4 
DIAG_LOOP 

DONE: POP BP 
RET 6 

DIAGCOPY ENDP 
CSEG ENDS· 

END 

i BX=ADDR(NJ 
iCX=N 
iBX=N 
iBX=N+1 
iBX=4*(N+1) 
iNOTE BX HAS DISTANCE 

BETWEEN DIAGONAL 
ELEMENTS 

i SI=ADDR(AJ 
i DI=ADDR(BJ 

iMOVE ONE ELEMENT 

iNEXT ELEMENT 
iNEXT B 

Moving across a diagonal is equivalent to moving down one column and 
over one row. Note the following two facts about accessing elements of 
the diagonal of a square matrix: 

• Diagonal element i is at location i*4*(N + 1). 
• Sequential diagonal elements are 4*(N + 1) bytes apart. 
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Basic Matrix Operations 

Matrix operations fall into six categories: 

1. Scalar operations. 
2. Element-by-element operations. 
3. Matrix transposition. 
4. Inner products and matrix multiplication. 
5. Solving systems of linear equations. 
6. Matrix inversion. 

Scalar and Element-by-Element Operations 

Operations between scalars and matrices operate by applying the scalar 
operation to every element of the matrix. For example, if A is an n by 
m matrix, the mathematical operation B = A + 5 could be done with 
the BASIC program: 

1 □ DEFINT I-N 
2 □ DIM A(N-1,M-1), B(N-1,M-1) 
3□ FOR I= □ TO N-1 
4 □ FOR J= □ TO M-1 
5 □ B(I, J)=A(I, J) + 5 
b □ NEXT J 
7 □ NEXT I 

This BASIC program could be replaced with the 8087 subroutine SCA
LADD. 

;SUBROUTINE SCALADD(A,SCALAR,B,N,MJ 
. ; ASSUMPTIONS: A,B ARE SINGLE PRECISION N BY M MATRICES 
; SCALAR IS SINGLE PRECISION 
; N,M ARE INTEGERS 

CSEG 

SCALADD 

PUBLIC SCALADD 
SEGMENT 'CODE' 
ASSUME CS:CSEG 
PROC FAR 
PUSH BP 
MOV BP,SP 
MOV BX ,[BPJ+12 
FLD DWORD PTR [SI] 

MOV 
MOV 
MOV 
MOV 
FWAIT 

BX,[BP]+b 
DX ,[BX] 
SI,[BPJ+14 
DI,[BPJ+1□ 

COLUMN-LOOP: 
MOV 
MOV 
MOV 

BX,[BPJ+8 
CX,[BX] 
BX, □ 

; BX=ADDR(SCALAR) 
;PUSH SCALAR ONTO 

STACK · 
; BX=ADDR(M) 
; DX= # OF COLUMNS 
; SI=ADDR(A) 
; DI=ADDR(B) 

;BX=ADDR(N) 
;CX=COLUMN LENGTH 
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ADD-LOOP: 
FLD DWORD PTR [BX][SI] iLOAD A(I,J) 
FADD ST(O),-ST(1) iADD SCALAR 
FSTP DWORD PTR [BX][DI] i B(I, J)=SCALAR+A(I, J) 
ADD BX,4 iREADY FOR NEXT 

ELEMENT 
LOOP ADD-LOOP 

iNOW MOVE TO NEXT COLUMN BY ADDING 4*N TO SI AND ,DI 
MOV BX,[BP]+8 iBX=ADDR(N) 
MOV AX,[BX] iAX=COLUMN LENGTH 
SHL AX,1 iMUL TIPLY AX 
SHL AX,1 iBY 4 
ADD SI,AX 
ADD DI,AX 

iARE WE DONE YET? 
DEC DX 
CMP DX, □ 

JLE COLUMN-LOOP 

FSTP ST(□ ) iGET RID OF SCALAR 
POP BP 
FWAIT 
RET 10 

SCALADD ENDP 
CSEG ENDS 

END 

Routine SCALADD takes about 53 microseconds per element. The time 
for the same routine in BASIC varies according to the number of rows 
and columns, but, for a 50 by 50 matrix, BASIC requires about 6400 
microseconds per element. 

SCALADD illustrates indexing down the columns and across the rows 
of a matrix. It would be straightforward to write routines for the other 
scalar operations as well as for element-by-element matrix addition, sub
traction, and so forth. However, a slight "trick" of observation suggests 
an even easie~ solution. Computer memory doesn't "know" that then 
by m storage locations represent a matrix. The locations could equally 
well represent an n by m element one-dimensional array. All element-by
element and scalar matrix operations can be done by using vector routines, as 
developed in Chapter 9. 

For example, the following BASIC code, using ADDSC from Chapter 
9, works as well as SCALADD. 

10 DEFINT I-N 
20 DIM A(N-1,M-1), B(N-1,M-1) 
30 SCALAR=5. □ : ISIZE=N*M 
40 CALL ADDSC(A(□ ), SCALAR, 8(0), ISIZEJ 
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Matrix Transposition 

The matrix operation transpose exchanges the rows and <;:olumns of a 
matrix. If A is an n by m matrix, theri "A transpose" is an m by n matrix 
such that (A transpose)(i,j) = A(j,i). A transpose is often written AT or 
A' (pronounced "A transpose" or "A prime"). A BASIC program to 
transpose a matrix is straightforward. For example: 

10 DEFINT I-N 
20 DIM A(N-1,M-1), AT(M-1,N-1) 
30 FOR I= □ TO N-1 
40 FOR J-0 TO M-1 
50 AT(J, I)=A(I, J) 
60 NEXT J 
70 NEXT I 

The 8088 subroutine TRANS accomplishes the same task as the BASIC 
code above. We take advantage of the fact that we can move down the 
columns of A by counting off memory locations four at a time and move 
across the rows of A' by counting off memory locations 4*M bytes at a 
time. 

Notice that TRANS requires A and B to be different matrices. If A and 
B were to occupy the same memory locations, the copying operations 
would write over some A locations before we were able to read them 
into B. Subroutine TRANS uses about 16 microseconds per element. 

; SUBROUTINE TRANS(A, B, N, M) 
; ASSUMPTIONS: A IS A SINGLE PRECISION N BY M MATRIX 
; BIS A SINGLE PRECISION M BY N MATRIX 
; N,M ARE INTEGERS 

PUBLIC TRANS 
CSEG SEGMENT 'CODE' 

ASSUME cs:CSEG 
TRANS PROC FAR 

PUSH BP 
MOV BP,SP 
MOV BX ,[BP]+8 ; BX=ADDR(N) 

COL-LOOP: 

MOV CX,[BX] ;(X=N 
JCXZ DONE 
MOV 
MOV 
CMP 
JLE 
MOV 
MOV 

MOV 
MOV 
MOV 

MOV 

BX,[BP]+b 
DX,[BX] 
DX, □ 

DONE 
SI,[BP]+12 
DI ,[BP]+10 

BX ,[BP]+8 
CX,[BX] 
BX, □ 

AX,[SI] 

; BX=ADDR(M) 
;DX=M 

; SI=ADDR(A) 
; DI=ADDR(B) 

;BX=ADDR(N) 
; CX=N (COL LENGTH) 
;BX= □ 

;MOVE 4 BYTES 
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MOV [DI)[BX],AX 
MOV AX, [SI]+2 
MOV [DI][BX]+2,AX 
ADD SI,4 
MOV AX,BX 
MOV BX ,[BP]+b 
MOV BX, [BX] 
SHL BX,1 
SHL BX,1 
ADD BX,AX 
LOOP COL-LOOP 

ADD DI,4 
DEC DX 
JG ROW-LOOP 

DONE: POP BP 
RET 8 

TRANS ENDP 
CSEG ENDS 

END 

;NEXT A ELEMENT 
;SAVE BROW POSITION 
; BX=ADDR(M) 
;BX=M 
;BX=4*M 

;NEXT B ELEMENT 
;If NOT DONE 

;NEXT ROW Of B 
;ONE ROW DONE 

Transposition of a square matrix leads to an important special case. To 
conserve space, we frequently transpose a square matrix "in place," as 
in the following BASIC code. Notice that the second FOR loop only runs 
from the diagonal element to the end of the row. The "lower triangle" 
of the square gets swapped with the upper triangle. 

10 DEFINT I-N 
20 DIM A(N-1,N-1) 
30 FOR I=O TO N-1 
40 FOR J=I TO N-1 
50 SWAP A(I, J) , A(J, I) 
60 NEXT J 
70 NEXT I 

We can think of this code as moving along the diagonal of a matrix 
and swapping the row from the diagonal point to the right with the 
column from the diagonal down. Subroutine SQTRANS performs this 
task. The BASIC code above takes about 2800n2 microseconds to trans
pose A in place. SQTRANS requires only 8n2 microseconds. 

; SUBROUTINE SQTRANS(A, NJ 
; ASSUMPTIONS: A IS A SINGLE PRECISION N BY N MATRIX 
; N IS AN INTEGER 

PUBLIC SQTRANS 
CSEG SEGMENT 'CODE' 

ASSUME CS:CSEG 
SQTRANS PRO( FAR 

PUSH BP 
MOV BP,SP 
MOV BX,[BP]+b 
MOV DX,[BX] 
MOV BX,DX 

; BX=ADDR(N) 
;DX=N 
;BX=N 
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SHL BX,1 iBX=4*N 
SHL BX,1 
MOV BP,[BPJ+8 iWE'RE SHORT OF REGISTERS 

;so WE'LL USE BP TO POINT 
iTO DIAGONAL ELEMENT 
i BP=ADDR(A) 

CMP DX, □ 

JLE DONE 
DIAG-LOOP: 

MOV CX,DX i DX # OF ELEMENTS LEFT 
MOV SI,BP iSI POINTS TO ROW 
MOV DI,BP iDI POINTS TO COLUMN 

ROW_LOOP: iSWAP ROW AND COLUMN 
MOV AX,[SI] iMOVE 4 BYTES 
XCHG [DIJ,AX 
MOV [SI],AX 
MOV AX,[SI)+2 
XCHG [DIJ+2, AX 
MOV [SIJ+2, AX 
ADD SI,BX iNEXT ROW ELEMENT 
ADD DI,4 iNEXT COLUMN ELEMENT 
LOOP ROW-LOOP iIF NOT DONE 

ADD BP,BX iNEXT DIAGONAL ELEMENT 
ADD BP,4 
DEC DX iNEXT COLUMN IS SHORTER 
CMP DX, □ 

JG DIAG-LOOP 
DONE: POP BP 

RET 4 
SQTRANS ENDP 
CSEG ENDS 

END 

Inner Products and Matrix Multiplication 

More scientific computation time is spent computing inner products than 
on any other single problem. Inner products are at the heart of both 
matrix multiplication and matrix inversion. If x and y are vectors, then 
to find the inner product of x and y one multiplies the two vectors element 
by element and sums the products, as in the following BASIC program. 

10 DEFINT I-N 
2 □ DEFDBL S 
30 DIM X(N-1),Y(N-1) 
40 SUM= □ 
50 FOR I= □ TO N-1 
60 SUM=SUM+X(I)*Y(I) 
70 NEXT I 
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At first glance, the inner product doesn't appear to be a particularly 
interesting operation. However, consider the specification of our system 
of linear equations earlier in the chapter. The first equation was 

Yi = Ao,oXi + Ao,iX2 

Thus Yi equals the inner product of the first row of A with the vector x. 
Similarly, the second equation specifies that y2 equals the inner product 
of the second row of A with x. In this manner, an entire system of 
equations can be specified in terms of inner products. This leads to a 
natural definition of matrix multiplication in terms of inner products. 

If C = AB, then Cii equals the inner product of row i of A with column j of B. 

Note that this definition implicitly assumes that A and Bare conformable 
for multiplication, that is, the number of columns of A equal the number 
of rows of B. A further natural result of the definition is that if A is a 1 
by m matrix and B is an m by n matrix, then C will be 1 by m. 

BASIC code to multiply two matrices is: 

10 DEFINT I-N 
20 DEFDBL S 
25 REM REMEMBER TO DEFINE L,M,N AND USE L1=L-1,ETC IN LINE 

30 
30 DIM A(L-1,M-1),B(M-1,N-1),C(L-1,N-1) 
35 REM DEFINE MATRICES A AND 8 HERE 
40 FOR !ROW= □ TO L-1 
50 FOR JCOL=O TO N-1 
60 SUM= □ 

70 FOR K=O TO M-1 
80 SUM= SUM+A(IROW, K)*B(K, JCOL) 
90 NEXT K 
100 C(IROW, JCOL)=SUM 
110 NEXT JCOL 
120 NEXT !ROW 

Lines 70, 80, and 90 are executed l*m*n times. For matrices of order 
50, that's 125,000 additions and multiplications. You can see why we 
want these lines to be as efficient as possible! 

Notice that we collected the inner product in a temporary variable 
"SUM," rather than directly in "C(IROW,JCOL)." We did this for two 
reasons. First, it is somewhat more efficient, since BASIC need calculate 
the location of C(IROW,JCOL) only l*n times, rather than l*m*n times. 
Second, and far more important, accuracy is improved greatly by accu
mulating the sum in double precision even if it is to be stored later as ·a 
single precision variable. 

Because of the central role of inner products and matrix multiplications 
in numerical computation, accuracy and speed are vital. We present 
several 8087 routines written with these objectives in mind. Our first 
routine forms the inner product of two one-dimensional arrays. 
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; SUBROUTINE INPROD(A, B, C, NJ 
; ASSUMPTIONS: A,B ARE SINGLE PRECISION N ARRAYS 
; C IS A DOUBLE PRECISION SCALAR 
; N IS AN INTEGER 

CSEG 

INPROD 

ADD-LOOP: 

DONE: 

INPROD 
CSEG 

PUBLIC INPROD 
SEGMENT 'CODE' 
ASSUME CS:CSEG 
PROC FAR 
PUSH BP 
MOV BP,SP 
MOV BX,[BP]+b 
MOV CX,[BX] 
MOV SI,[BP]+12 
MOV DI ,[BP]+1 □ 
MOV BX, □ 

FLDZ 
JCXZ DONE 

FLD DWORD PTR 
FMUL DWORD PTR 
FADDP ST(1),ST 
ADD BX,4 

LOOP ADD-LOOP 

MOV BX,[BP]+8 
FSTP QWORD PTR 
POP BP 
FWAIT 
RET 8 
ENDP 
ENDS 
END 

[BX][SI] 
[BX][DI] 

[BX] 

;BX=ADDR(N) 
;cx=N 
;SI=ADDR(Al 
; DI=ADDR(B) 

;SET RUNNING SUM= □ 

;LOAD A(I) 
; MULTIPLY BY B(I) 
; SUM=SUM+A(I)*B(I) 
;READY FOR NEXT 

ELEMENT 

; BX=ADDR(CJ 
;(=INNER PRODUCT 

Routine INPROD takes about 59 microseconds per array element. 

You might expect our next step would be an 8087 routine to multiply 
two matrices. Instead of proceeding directly to a matrix multiplication 
program, we are going to take a short strategic detour. A matrix multi
plication subroutine presents two difficulties. First, writing such a routine 
is complicated by the need to keep track of too many indices. As you 
can see from the BASIC program above, the program needs to remember 
IROW, JCOL, K, L, M, N and the locations of A, B, and C. Using a direct 
approach, we would run out of registers rather quickly. Second, a 
straightforward matrix multiplication routine could be used only on one 
specific argument type; for example, multiplying two single precision 
matrices and returning a single precision result. 

Our strategic approach is to write a very general inner product routine 
upon which we can build more complicated programs. Subroutine GINP, 
below, calculates the inner product of two n-element arrays. The result 
is left on the top of the 8087 stack. In addition to specification of the 
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input vectors, GINP accepts two kinds of options. The first option allows 
us to specify either single or double precision input arrays. The second 
option allows us to tell GINP how far apart in memory the elements of 
each array are spaced. Thus if array A has a "skip" parameter of one, 
the elements are stored sequentially. If the skip parameter is two, then 
elements are stored in every other location-with four bytes between 
elements for a single precision array and eight bytes between elements 
for a double precision array. 

Of what use is the "skip" parameter? Think about accessing a row of 
a matrix. The elements of an m by n matrix are located 4*n bytes apart. 
Thus we can move across the row of an m by n matrix by specifying n 
as the skip parameter. 

iSUBROUTINE GINP(A,B,TYPEA,TYPEB,SKIPA,SKIPB,N) 
i ASSUMPTIONS: A,B ARE ADDRESSES OF N-ARRAYS IN DATA SEGMENT 

TYPEA,TYPEB,SKIPA,SKIPB,N ARE INTEGERS 
i NOTE THIS PROCEDURE CANNOT BE CALLED FROM 

BASIC 
i IT FINDS ITS ARGUMENTS ON THE STACK 
i NOT THEIR ADDRESSES 

; 

GINP 

iSINCE 

THERE MUST BE AT LEAST 2 FREE LOCATIONS ON 
THE 8087 STACK AND AT LEAST 14 FREE BYTES ON 
THE MEMORY STACK 

GINP RETURNS THE INNER PRODUCT OF A AND BON 
THE 8087 STACK 

GINP TAKES EVERY SKIPA ELEMENT OF A AND 
EVERY SKIPB ELEMENT OF B 

ASSUME 
PROC 
PUSH 
MOV 

THIS IS A 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
FLDZ 
MOV 
MOV 
MOV 
MOV 
MUL 
MOV 
MOV 

CS:CSEG 
NEAR 
BP 
BP,SP 

NEAR PROCEDURE, ARGUMENTS BEGIN AT [BP]+4 
AX 
BX 
ex 
DX 
SI 
DI 

CX,[BP)+4 
SI,[BP]+1b 
DI ,[BP)+14 
AX,[BP]+10 
WORD PTR [BP]+b 
BX,AX 
AX,[BP]+12 

iSET RUNNING SUM=□ 
iCX=N 
i SI=ADDR(A) 
i DI=ADDR(B) 
iAX=TYPEB 
iAX=TYPEB*SKIPB 
iBX=B ELEMENT DISTANCE 
iAX=TYPEA 



GIN-PLOOP: 

MUL 
JCXZ 

CMP 
JNE 
FLD 
JMP 

A-DOUBLE: FLD 

MUL T_B: CMP 
JNE 
FMUL 
JMP 

B_DOUBLE: FMUL 

NEXLELEMENT: 
FADDP 
ADD 
ADD 
LOOP 

DONE: 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
RET 

GINP ENDP 
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WORD PTR [BPJ+8 i AX=A ELEMENT DISTANCE 
DONE 

WORD PTR [BP]+ 12, 4 i IS A SINGLE? 
A-DOUBLE 
DWORD PTR [SI] iLOAD SINGLE A(IJ 
MULLS 
QWORD PTR [SI]· iLOAD DOUBLE A(IJ 

WORD PTR [BP]+ 10, 4 i IS B SINGLE? 
B_DOUBLE 
DWORD PTR [DI] iMUL TIPLY SINGLE B(IJ 
NEXLELEMENT 
QWORD PTR [DI] i MULTI PLY DOUBLE B(IJ 

ST(1J,ST i SUM=SUM+A(I]*B(IJ 
SI,AX 
DI,BX 
GINP-LOOP 

DI 
SI 
DX 
ex 
BX 
AX 
BP 
14 

Subroutine GINP is written as a NEAR procedure. This means it cannot 
be called directly from BASIC. However, it also means that GINP is 
automatically relocatable. Below, we write a FAR procedure, GINPROD, 
to call GINP fro!}l_BASIC. Because an 8088 NEAR call jumps to a location 
relative to the current value in the instruction pointer, GINPROD and 
GINP can be moved together without changing the CALL instruction in 
GINPROD. 

GINP should be assembled together with GINPROD and any other 
routines which call GINP. This helps insure that our dynamic relocation 
scheme will function properly. For this same reason, we have omitted 
the PUBLIC and SEGMENT/ENDS statements, as we will with all NEAR 
procedures. In fact, the most convenient way to use our matrix routines 
is to combine them all into one assembly language package. Combining 
the routines makes it easy for them to share the same copy of GINP and 
the scratch space we define in GINPROD. (We'll assume that you com
bine the routines this way and won't set up separate scratch space areas 
for each.) 
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Since GINP won't be called from BASIC, we have used slightly different 
parameter passing conventions for convenience. The addresses of the 
two arrays, A and B, are pushed onto the stack, then the values of the 
"types" (four for single precision or eight for double precision), rather 
than the addresses of the "types," of A and B, the skip parameters for 
A and B, and the value of N, are pushed onto the stack. Since GINP is 
a NEAR procedure, the parameters begin in the stack at [BP] +4 rather 
than [BP] + 6. GINP saves registers on the 8088 stack, and expects that 
any routine calling it will leave free at least seven words on the stack. 
The calling routine should set up its own stack area rather than rely on 
the area provided by BASIC. 

Procedure GINP uses about 125 microseconds for overhead (finding 
addresses and so forth) plus 59 microseconds for each array element. 

Routine GINPROD makes GINP accessible from BASIC. GINPROD 
returns, in C, the double precision value of the inner product. 

;SUBROUTINE GINPROD(A,B,C,TYPEA,TYPEB,SKIPA,SKIPB,N) 
; ASSUMPTIONS: A,B ARE N-ARRAYS 
; C IS A DOUBLE PRECISION SCALAR 
; TYPEA,TYPEB,SKIPA,SKIPB,N ARE INTEGERS 

; THIS SUBROUTINE CALLS THE INTERNAL SUBROUTINE GINP 
PUBLIC GINPROD 

CSEG SEGMENT 'CODE' 
ASSUME cs:CSEG,ES:ESEG 

FIRST-INST EQU THIS WORD 
GINPROD PROC FAR 

PUSH BP 
MOV BP,SP 

;SET UP STACK AREA IN ESEG 
PUSH ES 
CALL NEXT 

NEXT: POP AX 
SUB AX,(OFFSET NEXT)-(OFFSET FIRSLINST) 
MOV CL,4 
St-tR AX,CL 
MOV BX,CS 
ADD BX,ESEG 
SUB BX,CSEG 
ADD AX,BX 
MOV ES,AX 

MOV LOCAL-SPACE,SS 
MOV LOCAL-SPACE+2,SP 
MOV AX,ES 
MOV SS,AX 
MOV SP,OFFSET STACK-TOP 

; 
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;SET UP CALL PARAMETERS 
;NOTICE THAT WE HAVE CHANGED THE SS REGISTER 
;so, WE HAVE TO TAKE ADVANTAGE OF THE FACT THAT BASIC SETS 
;ss AND DS TO THE SAME LOCATION 

PUSH DS: [BP]+20 
PUSH DS :(8P]+18 
MOV BX,DS :(BP]+14 
PUSH [BX] 
MOV BX,DS:(BP]+12 
PUSH [BX] 
MOV BX,DS:[BP]+10 
PUSH [BX] 
MOV BX, DS :(BP]+8 
PUSH [BX] 
MOV BX,DS:(BP]+b 
PUSH [BX] 

GINP 
SP,LOCAL-SPACE+2 
SS,LOCAL-SPACE 

;ADDR(Al 
; ADDR(B) 
;TYPEA 

;TYPES 

;SKIPA 

;SKIPS 

CALL 
MOV 
MOV 
MOV 
FSTP 
POP 
POP 
FWAIT 
RET 
ENDP 
ENDS 

BX ,[BP]+16 ; BX=ADDR(C) 

GINPROD 
CSEG 

ESEG SEGMENT 
DW 

STACK-TOP EQU 
LOCAL-SPACE DW 
ESEG ENDS 

QWORD PTR [BX] ; STORE C 
ES 
BP 

16 

'DATA' 
50 DUP (?) 
THIS WORD 
20 DUP (?) 

One programming "trick" bears special attention here. The stack area 
provided by BASIC when GINPROD is called may have only eight words 
on it. Since this isn't enough, GINPROD sets up its own stack segment 
in the ESEG area. GINPROD changes the stack segment register, SS, to 
point to this area. Once SS has been changed, we need to use some other 
segment register when retrieving arguments from BASIC. In GINPROD, 
we use the DS register since BASIC sets SS and DS to the same value. 
This works quite well when GINPROD is called from BASIC, but some 
other method might be necessary if GINPROD is used with another 
language. 

GINPROD leads immediately to a fast BASIC routine for matrix mul-
tiplication. 

10 DEFINT I-N 
20 DEFDBL S 
30 DIM A(L-1,M~1),B(M-1,N-1),C(L-1,N-1) 
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35 IONE=1 : ITYPE=4 
40 FOR IROW=O TO L-1 
50 FOR JCOL=□ TO N-1 
55 CALL GINPROD(A(IROW, OJ, 8(0, JCOL), SUM, ITYPE, ITYPE, M, IONE, M) 
56 REM FIND INNER PRODUCT OF ROW IROW OF A WITH 
57 REM COLUMN JCOL OF B RETURNING THE ANSWER IN SUM 
58 REM NOTE ITYPE=4 INDICATES SINGLE PRECISION 
60 REM SUM= □ 
70 REM FORK= □ TO M-1 
80 REM SUM=SUM+A(IROW, K)*B(K, JCOL) 
90 REM NEXT K 
100 C(IROW,JCOL)=SUM 
110 NEXT JCOL 
120 NEXT IROW 

For convenient comparison, we have adapted the earlier BASIC pro
gram for matrix multiplication by adding statements 35 and 55-58 and 
changing 70, 80, and 90 into REMARKS. This program directly takes the 
inner product of each row of A with each column of B. 

How much tim~ do we save by multiplying matrices using GINPROD 
instead of straight BASIC code? For large m, both programs are roughly 
proportional to l*m*n. The constant of proportionality is about 9600 mi
croseconds for BASIC. Using GINPROD, the constant of proportionality 
falls to 61 microseconds. Thus, multiplying two 50 by 50 matrices takes 
about 20 minutes in BASIC without the 8087. Using the 8087, the program 
takes about eight seconds. 

Suppose the middle index, m, is small compared to 1 and n. Lines 70, 
80, and 90 use time proportional to l*m*n. Lines 40-60 and 100-120 execute 
in time proportional to l*n. Ordinarily in timing analysis, if a cubic term, 
such as l*m*n, is present, we drop quadratic terms, such as l*n. If m is 
small, the quadratic terms become important. For example, if m = 1, the 
program spends as much time in lines 40-60 and 100-120 as in 70-90; use 
of the routine GINPROD doesn't speed up anything at all. 

Speed considerations thus suggest a pure 8087 routine for matrix mul-
tiplication. Routine MATMULT essentially imitates the BASIC code above. 

; SUBROUTINE MATMUL T(A, B, C, L, M, NJ 
; ASSUMPTIONS: A,B,C ARE SINGLE PRECISION MATRICES 
; A ISL BY M 
; BIS M BY N 
; C ISL BY N 

L,M,N ARE INTEGERS 

; THIS SUBROUTINE PERFORMS THE MATRIX MULTIPLICATION C=AB 
; SUCCESSIVE ROWS OF A ARE MULTIPLIED BY THE FIRST COLUMN 

OF B 
; THEN REPEAT FOR SECOND COLUMN, ETC. 

PUBLIC MATMULT 
CSEG SEGMENT 'CODE' 

ASSUME CS:CSEG,ES:ESEG 
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FIRSLINST EQU THIS WORD 
FAR 
BP 
BP,SP 

MATMUL T PROC 

;SET UP 

NEXT: 

PUSH 
MOV 

STACK AREA 
PUSH 
CALL 
POP 

IN ESEG 
ES 
NEXT 
AX 

SUB AX ,(OFFSET NEXT)-(OFFSET FIRSLINST) 
MOV 
SHR 
MOV 
ADD 
SUB 
ADD 
MOV 

; 

CL,4 
AX,CL 
BX,CS 
BX,ESEG 
BX,CSEG 
AX,BX 
ES,AX 

LOCAL_SPACE,SS 
LOCAL-SPACE+2,SP 
AX,ES 
SS,AX 

MOV 
MOV 
MOV 
MOV 
MOV SP,OFFSET STACK-TOP 

; TO CALL GINP WE MUST PUSH ONTO THE STACK: 
; A(I, 0) 

8(0, J) 
; 4 

4 
; L 
; 1 
; M 

; ON RETURN THE RESULT GOES IN ((I, J) 
; USE SOME LOCAL STORAGE TO SAVE ADDRESSES OF 
; A(I,0) 8(0,J) C(I,J) 
SOME-SPACE EQU LOCAL-SPACE+ 4 
ADDRA-HOLD EQU SOME-SPACE 
ADDRB-HOLD EQU ADDRA-HOLD+2 
L-HOLD EQU ADDRB-HOLD+2 
M4-HOLD EQU L_HOLD+2 
M-HOLD EQU M4-HOLD+2 
N-HOLD EQU M_HOLD+2 

MOV BX,DS:[BP]+16 
MOV ADDRA-HOLD,BX 
MOV SI,DS:[BP]+14 
MOV ADDRB_HOLD,SI 
MOV DI,DS:[BP]+12 
MOV BX,DS:[BP]+10 
MOV AX,[BX] 
MOV L_HOLD,AX 
MOV BX,DS:[BP]+8 
MOV DX,[BX] 

; BX=AD DR(A(O, 0)) 

; SI=AD DR(B(O, 0)) 

; DI=ADDR(C(O, 0)) 
;BX=ADDR(L) 

;L_HOLD HAS L 
; BX=ADDR(M) 
;DX=M 
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MOV M_HOLD,DX 
MOV M4-HOLD,DX 
SHL M4-HOLD,1 ;GET 4*M 
SHL M4-HOLD,1 
MOV BX,DS:[BP)+b ; BX=ADDR(N) 
MOV CX,[BX] ;CX=N 
MOV N_HOLD,CX 
MOV AX,4 ;SAVE USEFUL 4 
MOV BX,1 ;SAVE USEFUL 1 

; 
COL-LOOP: CMP N-HOLD, □ ;COL DONE? 

JE DONE 
MOV SI,ADDRA-HOLD 
MOV CX,L-HOLD 

ROW-LOOP: 
PUSH SI ;A(I, □ ) 

PUSH ADDRB-HOLD ;B(□ ,JJ 

PUSH AX ;4 
PUSH AX ;4 
PUSH L-HOLD ;L 
PUSH BX ;L 

PUSH DX ;M 
CALL GINP 
FSTP DWORD PTR [DI) 

ADD DI,4 ;NEXT C 
ADD SI,4 ;NEXT A 
LOOP ROW-LOOP ;NEXT ROW 
MOV SI,M4-HOLD ;SKIP TO NEXT COLUMN 
ADD ADDRB-HOLD,SI ;NEXT B 
DEC N_HOLD 
JMP COL-LOOP 

; 
DONE: 

MOV SP,LOCAL-SPACE+2 
MOV SS,LOCAL-SPACE 
POP ES 
POP BP 
FWAIT 
RET 12 

MATMULT ENDP 
CSEG ENDS 

END 

MATMULT executes in about 211*l*n + 59*l*m*n microseconds. In the 
worst case, m= 1 and large l*n, MATMULT uses about 270 microseconds 
per element. Even though 80 percent of the 270 microseconds is overhead, 
MATMULT is still over 100 times faster than BASIC. By the time m is as 
large as 20, execution speed rises to about 70 microseconds per element, 
which is 80 percent of maximum hardware speed. Adaptation of MAT
MUL T to double precision arguments is straightforward. 
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GINPROD allows us to easily create many variants of matrix multi
plication. Suppose we want to multiply the transpose of a matrix A by 
a matrix B, as in C=A'B, where A ism by 1 and Bis m by n. Row i of 
A' is column i of A, so we can use GINPROD specifying a "skip" of 1 
for A to specify a row of A'. 

10 DEFINT I-N 
20 DEFDBL S 
30 DIM A(M-1,L-1),B(M-1,N-1),C(L-1,N-1) 
35 11=1: ITYPE=4 
40 FOR !ROW=□ TO L-1 
50 FOR JCOL= □ TO N-1 
55 CALL GINPROD(A(□, IROW), B(□, JCOL), SUM, !TYPE, !TYPE, I1, I1, Ml 
60 REM SUM=□ 

70 REM FOR K= □ TO M-1 
80 REM SUM=SUM+A(K, IROW)*B(K, JCOL) 
90 REM NEXT K 
10 □ C(IROW, JCOL)=SUM 
11 □ NEXT JCOL 
12 □ NEXT IROW 

A slightly simpler program could be written using INPROD rather than 
GINPROD, but the method here allows double precision matrices and 
is easily adaptable to problems such as C =AB', which require the matrix 
to be processed by row rather than column. 

Solving Systems of Linear Equations 

This is a good place to pause in your reading. We spend the rest of this 
chapter on linear algebra and in writing BASIC programs for solving 
systems of linear equations and inverting matrices. Our next 8087 pro
gram doesn't appear until Chapter 11. If your main interest is the 8087 
aspect of these problems, you should just quickly skim the rest of this 
chapter. 

The next few pages move very fast. You can spend most of a course 
in college learning about linear equations. The next few pages are really 
more of a quick review than a proper introduction to the subject. If you' re 
new to the topic-or if it's been a long time since you last saw the 
subject-spend some time playing with the BASIC programs. One of the 
nice things about exploring with a personal computer is that your "study" 
can be as fast or as slow as you please. 

Equation Manipulation 

Return now to our example of two linear equations in two unknowns. 
The equations to be satisfied are: 

18 = 4x1 + 2x2 
9 = 2x1 - 2x2 
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which can also be written 

y = Ax 

For a given y, what value of x makes both equations true simulta
neously? We solve for x by making judicious use of the following theo
rems. 

1. If we multiply both sides of a true equation by a constant, the resulting 
equation is also true. 

2. If we add one true equation to another, the resulting equation is also true. 
3. We can always exchange the position of two equations. 

Clever application of these principles allows us to easily solve systems 
of linear equations. Consider applying the following transformations to 
our example system. 

1. Multiply the top equation by - ½ and add the result to the second 
equation. The transformed system looks like this: 

18 = 4x1 + 2x2 

0 = Ox1 - 3x2 

2. By inspecting the bottom equation, we see that x2 equals 0. Solving 
backwards, we set x2 to zero in the top equation and see immediately 
that x1 equals 1%, or 4.5. 

Matrix Manipulation 

These steps generalize to a two-step procedure for solving systems of 
linear equations in terms of matrices. 

l. Reduce the system to triangular form. Multiply the first equation by 
a constant and add the result to the second equation so as to produce 
a zero in column 1, row 2. Multiply the first equation by a ( different) 
constant and add the result to the third equation so as to produce 
a zero in column 1, row 3. Continue in this manner until the first 
column is all zeros below the diagonal. 
Now take the second equation, multiply it by a constant and add 
it to the third equation so as to produce a zero in column 2, row 3. 
Continue until the entire second column is zero below the diagonal. 
Apply this procedure repeatedly until the entire area below the 
diagonal equals zero. This sort of matrix, with all zeros below the 
diagonal is called upper triangular. 

2. Back substitute. Take the transformed version of A and y and solve 
for x by 

Xn = Yn/An,n 

Xn-1 = (Yn-1 - A n-1,n Xn)/An-1,n-1 

and so forth. 
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Let's look at what our sample system looks like in terms of matrices. We 
start with the original A and y. 

y= 

Now we begin the reduction process. Our first step multiplies the top 
row of A and y by - ½ and adds the result to the second row giving us 
new values of A and y. 

You can see why A is said to be in "triangular form." The non-zero 
entries form a triangle on and above the diagonal. 

Notice that A and y are changed. If you want to keep the original data 
intact, be certain to perform the reduction on a copy of the original 
matrices. 

The second step is to back-substitute. The matrix equation y = Ax still 
applies to the new versions of A and y. Starting at the bottom and working 
up we have 

0 = (0)x1 + (-3)x2 

so x2 = 0. Now we can substitute this into the first equation. 

18 = (4)x1 + (2)0 

X1 equals (18- 0)/4, or 4.5. 

In theory, only one thing can go wrong with this procedure. Suppose 
that at some step the equation we are using to produce zeros below the 
diagonal has a zero as its own diagonal element. (This diagonal element 
is called the pivot element.) In this case, the equation cannot be used to 
eliminate the elements below it and the program stops. The solution to 
this problem is to exchange the offending equation with another so as 
to obtain a non-zero pivot. (Implementation of this solution is deferred 
until the next chapter.) If the entire column equals zero, the system of 
equations and the matrix A are said to be singular. The system of equations 
does not have a unique solution. 

This method of solving linear systems is called Gaussian elimination. 
While not the best computational method (better ones are introduced in 
the next chapter), it is the most straightforward. The following BASIC 
program implements Gaussian elimination. Notice that the original con
tents of A and y are replaced by transformed values. 
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5 REM PROGRAM GAUSS 
10 DEFINT I-N 
20 DIM A(N-1,N-1),Y(N-1),X(N-1) 
25 REM BE SURE A,Y AND N ARE DEFINED 
30 FOR IEQ=O TO N-1 
40 IF A(IEQ,IEQ)=O THEN PRINT "ZERO PIVOT AT",IEQ:STOP 
50 FOR JROW=IEQ+1 TO N-1 
60 F ACTOR=-A(JROW, IEQ)/ A(IEQ, IEQ) 
70 Y(JROWJ=Y(JROWJ+FACTOR*Y(IEQ) 
80 FOR K=IEQ TO N-1 
90 A(J ROW, K)=A(JROW, K)+F ACTOR*A(IEQ, Kl 
100 NEXT K 
110 NEXT JROW 
120 NEXT IEQ 
130 REM 
140 REM A IS NOW UPPER TRIANGULAR 
150 REM 
160 X(N-1)=Y(N-1)/A(N-1,N-1) 
170 FOR IEQ=(N-1)-1 TO O STEP -1 
180 SUM=□ 
190 FOR K=IEQ+1 TO N-1 
200 SUM=SUM+A(IEQ,K)*X(K) 
210 NEXT K 
220 X(IEQ)=(Y(IEQ)-SUMJ/ A(IEQ, IEQ) 
230 NEXT IEQ 

How long does it take to solve a system using Gaussian elimination? 
The outermost loop, the IEQ loop, is executed N-1 times. The next loop, 
the JROW loop, is done N -1 times for the first IEQ, N -2 for the second, 
and so forth. So the JROW loop is executed approximately n2/2 times. 
The inner-most loop, K, executes N times per JROW for the first IEQ, 
N -1 times per JROW for the second IEQ, for a total of about n3/3 op
erations. In total, the time required to solve a system of n equations is 
proportional to n3/3, plus a small factor proportional to n2/2. 

The logical next step would be to prepare 8087 routines to speed up 
the program. Since better solution methods are proposed in the next 
chapter, introduction of more 8087 routines will be postponed until that 
point. However, here are a couple of suggestions in case you'd like to 
experiment. 

Almost the entire execution time is spent in li~es 80, 90, and 100. These 
lines multiply a row vector by a scalar and then add two row vectors. 
The routines prepared in Chapter 9 will only multiply and add column 
vectors. However, these routines could easily be modified to include a 
skip parameter, so as to work on row vectors. We might replace lines 
80, 90, and 100 with lines something like this: 

25 DIM XTRAROW(N-1): IONE=1 
85 K=(N-1)-IEQ+1 
95 CALL MUL TSC(A(IEQ,IEQ),FACTOR,XTRAROW(O],N,IONE,K) 
105 CALL VADD(A(JROW, IEQ), XTRAROW(OJ, A(J ROW, OJ, N, IONE, N, K) 
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Lines 180-200 might be replaced with GINPROD for some further gain. 

Using BASIC, solving a system of equations takes about 12S00n3/3 
microseconds. Solving a SO-equation system uses over eight minutes of 
computer time. Replacing the inner-most loop with 8087 routines as sug
gested will reduce execution time to about 100n3/3 microseconds. That 
knocks solution time for a SO-equation system down to about five sec
onds. 

Solving Multiple Linear Systems 

We frequently want to solve a number of linear systems, sharing a com
mon A matrix but having different y vectors. In place of a single n by 1 
column vector y, we can arrange m column vectors into an n by m matrix 
Y. The solutions can be placed in an n by m matrix X. The entire set of 
linear equations are represented in this way by the matrix equation 

Y = AX 

Examination of the Gaussian elimination routine shows that all the 
hard work, that is the order n3 work, involves only the A matrix. If we 
blindly apply the program above, execution time will be of order mn3• 

The revision below keeps the transformation of y and backsolving for x 
out of the innermost loop. 

10 DEFINT I-N 
20 DIM A(N-1,N-1),Y(N-1,M),X(N-1,M) 
25 REM BE SURE A,Y,N, AND MARE DEFINED 
30 FOR IEQ=O TO N-1 
40 IF A(IEQ, IEQJ= □ THEN PRINT "ZERO PIVOT AT", IEQ: STOP 
50 FOR JROW=IEQ+1 TO N-1 
60 F ACTOR=-A(JROW, IEQJ/ A(IEQ, IEQJ 
70 FOR LEQ=O TO M-1 
80 Y(JROW, LEQJ=Y(JROW, LEQ)+F ACTOR*Y(IEQ, LEQ) 
90 NEXT LEQ 
100 FOR K=IEQ TO N-1 
110 A(JROW, K)=A(JROW, K)+F ACTOR*A(IEQ, Kl 
120 NEXT K 
130 NEXT JROW 
140 NEXT IEQ 
150 REM 
160 REM A IS NOW UPPER TRIANGULAR 
170 REM 
180 FOR LEQ=O TO M-1 
190 X(N-1, LEQ)=Y(N-1, LEQJ/ A(N-1, N-1) 
200 FOR IEQ=(N-1)-1 TO □ STEP -1 
210 SUM= □ 
220 FOR K=IEQ+1 TO N-1 
230 SUM=SUM+A(IEQ, KJ*X(K, LEQ) 
240 NEXT K 
250 X(IEQ, LEQ)=(Y(IEQ, LEQJ-SUMJ/ A(IEQ, IEQJ 
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26 □ NEXT IEQ 
27 □ NEXT LEQ 

This version of Gaussian elimination executes in time proportional to n3 
plus mn2. For moderately large m and n, this means an improvement 
factor of roughly m over repeated Gaussian elimination! Notice that lines 
70-90 are ripe for replacement by 8087 row operations. 

Space Efficient Gaussian Elimination 

The Gaussian elimination program above solves multiple linear systems 
quickly, but requires a great deal of storage, since 2*m*n locations are 
allocated for Y and X. We frequently want to solve systems sequentially, 
so that only a single y and x need be stored. 

Gaussian elimination transforms y. As you can see in lines 70-90 above, 
the same factors are used to transform every column of Y. If we save the 
factors, we can, at a later stage, transform as many different y's as we 
like. 

At each step in the reduction, all the (lower) elements of y are trans
formed. Suppose we save all the factors, labeling the factors from the 
first step f00, f10, f20, and so forth. The second step produces one less 
factor. We label these f11, f21 , f3i, and so forth. Arranging the columns 
of factors into a matrix, we get 

1 0 0 0 0 0 

f10 1 0 0 0 0 

F= f20 f21 1 0 0 0 

1 0 0 

1 0 

1 

The matrix of factors is lower triangular with ones along the diagonal. 
We need a convenient place to store F for later use. As we reduce A, the 
area below the diagonal fills with zeros. Since this lower part of A would 
otherwise go to waste, we'll use it to store the part of F below the diagonal, 
and remember that the remaining part of F is ones and zeros. 

Suppose we label the transformed vector y, "y*." The reduction process 
transforms y according to the following rules: 

Y*o = Yo 
y*1 = Yi + f10Y*o 
y*2 = Y2 + f20Y*o + f21Y*i 
y*3 = Y3 + f30Y*o + f31Y*1 + f32Y*2 
and so forth. 
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The first step of our space efficient program is to reduce A to upper 
triangular form and store the factors in A's lower triangle. Then, each 
time we want to find x for a new y, we generate a new y* from the stored 
factors and back substitute. The next set of BASIC code takes this ap
proach. 

5 
10 
20 
25 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 

REM PROGRAM GAUSS-SE (SPACE EFFICIENT) 
DEFINT I-N 
DIM A(N-1, N-1), Y(N-1), X(N-1), YST AR(N-1) 

REM BE SURE A,Y, AND N ARE DEFINED 
FOR IEQ=D TO N-1 
IF A(IEQ,IEQJ=D THEN PRINT "ZERO PIVOT AT",IEQ:STOP 

FOR JROW=IEQ+1 TO N-1 
FACTOR= -A(JROW, IEQJ/ A(IEQ, IEQ) 

FOR K=IEQ TO N-1 
A(JROW, !~]=A(JROW, KJ+F ACTOR*A(IEQ, Kl 
NEXT K 

A(JROW, IEQJ=F ACTOR 
NEXT JROW 

NEXT IEQ 
REM 
REM A IS NOW UPPER TRIANGULAR 
REM 
YSTAR(D)=Y(DJ 

FOR IEQ=D TO (N-1)-1 
SUM= □ 

FOR K=D TO IEQ-1 
SUM=SUM+A(IEQ+ 1, K)*YST AR(K) 
NEXT K 

YST AR(IEQ+ 1J=Y(IEQ+ 1J+SUM 
NEXT IEQ 

X(N-1J=YST AR(N-1)/ A(N-1, N-1) 
FOR IEQ=(N-1)-1 TO D STEP -1 
SUM=□ 

FOR_K=IEQ+1 TO N-1 
SUM=SUM+A(IEQ, K)*X(K) 
NEXT K 

X(IEQJ=(YSTAR(IEQJ-SUMJ/ A(IEQ, IEQ) 
NEXT IEQ 

Lines 160-310 can be repeated for other y vectors as needed. Notice that 
lines 190-210 are really forming an inner product and could be replaced 
with 8087 code. 

In the next chapter, we will discuss more advanced methods of solving 
linear systems. 

Matrix Inversion 

Suppose we were faced with the scalar equation 

y = Ax 
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and were asked to solve for x given y. We might write the answer as 
X = y/A 

or as 

X = A-1y 

For a scalar equation, A-1, pronounced "A inverse," is just VA. The 
question arises as to whether there is not a matrix we could label "A1 ," 

such that x = A 1y. There is indeed such a matrix. 

First, define the identity matrix as a square matrix with ones along the 
diagonal and zeros off the diagonal. For example, if I is the 3 by 3 identity 
matrix, then 

0 
1 
0 

The identity matrix is ·analogous to a one in scalar multiplication. The 
identities IX = X and XI = I hold for the identity matrix and any con
formable matrix X. For scalars, we say that A 1 is the inverse of A if 
AA1 = 1. Analogously, for matrices we say 

A-1 is the matrix inverse of A if AA-1 = I. 

(Note we are restricting our attention to sjuare matrices. For a square 
matrix, not only does AA1 = I, so does A A.) 

How do we "invert" a matrix? The equation I = AA1 has precisely 
the same form as the matrix equation Y = AX, where I is Y and A 1 is 
X. We can use our BASIC program above to reduce A to upper triangular 
form and then back substitute for each column of the identity matrix. 
Because of the special form of the identity matrix we can calculate y* 
without creating each y. 

Assume we have executed the reduction part of the previous program. 
The code below replaces lines 160 on, to calculate A 1 in AINV. 

160 DIM AINV(N-1,N-1) 
170 FOR LEQ=O TO N-1 
180 FOR IEQ=O TO LEQ-1 
190 YST AR(IEQJ= □ 

200 NEXT IEQ 
210 YSTAR(LEQJ=1 
220 FOR IEQ=LEQ TO (N-1)-1 
230 SUM= □ 

240 FORK=□ TO IEQ 
250 SUM=SUM+A(IEQ+1, K)*YST AR(K) 
260 NEXT K 
270 YSTAR(IEQ+1J=SUM 
280 NEXT IEQ 
290 AINV(N-1, LEQJ=YSTAR(N-1)/ A(N-1, N-1) 
300 FOR IEQ=(N-1)-1 TO □ STEP -1 
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310 SUM=□ 
320 FOR K=IEQ+1 TO N-1 
330 SUM=SUM+A(IEQ, KJ*AINV(K, LEQ) 
340 NEXT K 
350 AINV(IEQ, LEQJ=(YSTAR(IEQJ-SUMJ/ A(IEQ, IEQ) 
360 NEXT IEQ 
370 NEXT LEQ 

We now have a "complete" set of routines to solve systems of linear 
equations and invert matrices. But these routines still leave a few things 
to be desired. . • 

• They stop if they hit a zero pivot. 
• They would be a lot faster if written in 8087 code. 
• They would be more accurate if higher precision arithmetic were 

used, but we do not want to sacrifice too much storage space. 

In the next chapter, we remedy these faults ... and learn a few new 
tricks. 



Linear Systems and 
Matrix Inversion: 
More Advanced 
Computational 
Techniqu·es 

By the end of the last chapter, we had created a set of procedures for 
solving systems of linear equations and for handling the related operation 
of matrix inversion. These methods followed the logic of "school room" 
techniques. The methods we develop in this chapter are perhaps less 
familiar, but they lend themselves well to highly acdurate and highly 
efficient 8087 implementation. 

Our goals for this chapter are: 

• Fix the "zero pivot" problem. 
• Express the solution to a system of linear equations in terms of inner 

products, in order to take full advantage of the 8087's design. 
• Move our procedures from BASIC to 8087 code. 

Program: 
Purpose: 

Input: 

The Cookbook-Chapter 11 

GAUSS-PP 
Solve linear equations by Gaussian elimination with 

partial pivoting. 
A-N by N coefficient matrix. 
Y-N vector. 

143 
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Output: 

Language: 

Program: 
Purpose: 
Input: 

Output: 

Language: 

Program: 
Purpose: 
Input: 

Output: 
Language: 
Note: 

Program: 
Purpose: 
Input: 

Output: 
Language: 

Program: 
Purpose: 
Call: 

Input: 

YSTAR-N vector; scratch space. 
N-number of rows and columns of A. 
X-N vector; X solves equations Y = AX. 
A-A replaced with permuted Gaussian reduction. 
INDEX-N vector showing row swaps. 
BASIC. 

CROUT-PP 
Perform Crout decomposition with partial pivoting. 
A-Nby N coefficient matrix. 
N-number of rows and columns of A. 
A-A replaced with permuted Gaussian reduction. 
INDEX-N vector showing row swaps. 
BASIC. 

PIV 
Perform pivot step in Crout decomposition. 
A-N by N coefficient matrix. 
INDEX-integer N vector of row permutations. 
TYPEA-integer giving length of element of A. 
DIAG-integer index of column to be searched. 
N-integer number of rows and columns of A. · 
INDEX-updated to reflect new pivot. 
8087/8088 assembly language. 
NEAR procedure called by PIVOT and CROUTP. 

XINP 
Inner product with permuted column. 
A-N vector. 
B-permuted N vector. 
INDEX-integer N vector of row permutations for 

B. 
TYPE-integer giving length of element of A,B. 
SKIP A-integer "skip factor" (see text) for A. 
N-integer number of elements of A,B. 
8087 register ST; ST= inner product A,B. 
8087/8088 assembly language. 
Note: NEAR procedure called by XINPROD and 

CROUTP. 

XINPROD 
Inner product with permuted column. 
CALL XINPROD(A(I,0),A(0,K),SUM,INDEX(0), 

TYPE,SKIPA,N). 
A-N vector. 
B-permuted N vector. 
INDEX-integer N vector of row permutations for 

B. 
TYPE-integer giving length of element of A,B. 



Output: 

Language: 
Note: 
Program: 
Purpose: 
Call: 
Input: 

Output: 
Language: 
Note: 
Program: 
Purpose: 
Input: 

Output: 

Language: 
Note: 

Program: 
Purpose: 
Call: 
Input: 

Output: 

Language: 
Note: 
Program: 
Purpose: 

Input: 

Output: 
Language: 
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SKIPA-integer "skip factor" (see text) for A. 
N-integer number of elements of A,B. 
SUM-double precision scalar; sum= inner product 
A,B. 
8087/8088 assembly language. 
Requires NEAR procedure XINP. 
PIVOT 
Perform pivot step in Crout decomposition. 
CALL PIVOT(A(0,K),INDEX(0), TYPE,K,N). 
A-N by N coefficient matrix. 
INDEX-integer N vector of row permutations. 
TYPE-integer giving length of element of A. 
K-integer index of column to be searched. 
N-integer number of rows and columns of A. 
INDEX-updated to reflect new pivot. 
8087/8088 assembly language. 
Requires NEAR procedure PIV. 
CROUTP 
Perform Crout decomposition with partial pivoting. 
A-N by N coefficient matrix. 
TYPE-integer giving length of element of A. 
N-integer number of rows and columns of A. 
INDEX-integer N vector of row permutations. 
!ER-integer error flag, IER= -1 if A singular. 
8087/8088 assembly language. 
NEAR procedure called by REDUCE. 
Requires NEAR procedures XINP and PIV. 
REDUCE 
Perform Crout decomposition with partial pivoting. 
CALL REDUCE(A(0,0),INDEX(0), TYPE,IER,N). 
A-N by N coefficient matrix. 
TYPE-integer giving length of element of A. 
N-integer number of rows and columns of A. 
INDEX-integer N vector of row permutations. 
!ER-integer error flag, IER= -1 if A singular. 
8087/8088 assembly language. 
Requires NEAR procedures CROUTP. 

SOiP 
Solve system of linear equations after Crout decom

position with partial pivoting. 
A-N by N matrix reduced by CROUTP with partial 

pivoting. 
Y-N vector. 
N-number of rows and columns of A. 
INDEX-N vector showing row swaps. 
X-N vector; X solves equations Y = AX. 
BASIC. 
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Program: 
Purpose: 

Input: 

Output: 
Language: 
Note: 

Program: 
Purpose: 

Call: 

Input: 

Output: 
Language: 
Note: 

Program: 
Purpose: 
Call: 

Input: 

Output: 

Language: 
Note: 

SOL 
Solve system of linear equations after Crout decom

position with partial pivoting. 
A-N by N matrix reduced by CROUTP with partial 

pivoting. 
Y-N vector. 
INDEX-N vector showing row swaps. 
TYPEA-integer giving length of element of A. 
TYPEY-integer giving length of element of Y. 
TYPEX-integer giving length of element of X. 
N-integer number of rows and columns of A. 
X-N vector; X solves equations Y = AX. 
8087/8088 assembly language. 
NEAR procedure called by SOL VE. 

SOLVE 
Solve system of linear equations after Crout decom

position with partial pivoting. 
CALL SOLVE(A(0,0), Y(0),X(0),INDEX(0), TYPEA, 

TYPEY, TYPEX,N). 
A-N by N matrix reduced by CROUTP with partial 

pivoting. 
Y-N vector. 
INDEX-N vector showing row swaps. 
TYPEA-integer giving length of element of A. 
TYPEY-integer giving length of element of Y. 
TYPEX-integer giving length of element of X. 
N-integer number of rows and columns of A. 
X__:._N vector; X solves equations Y = AX. 
8087/8088 assembly language. 
Requires NEAR procedure SOL. 

INV 
Invert matrix. 
CALL SOLVE(A(0,0),AINV(0,0),SCRATCH(0), 
INDEX(0),IER, TYPEA,N). 
A-N by N matrix. 
SCRATCH-single precision N vector of scratch space. 
TYPEA-integer giving length of element of A,AINV. 
N-integer number of rows and columns of A. 
AINV-N by N matrix; inverse of A. 
A-A replaced by Crout reduction. 
INDEX-integer N vector, permutations of reduced 

A. 
!ER-integer error flag, IER= -1 if A singular. 
8087/8088 assembly language. 
Requires NEAR procedures CROUTP and SOL. 
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Our original program for Gaussian elimination stops if it hits a zero 
diagonal, or "pivot," element. A zero pivot may indicate a "mathemat
ical," not "just a computational," problem, because the system of equa
tions may not have a unique solution. Consider the following linear 
system as an example. 

Y1 = 2x1 + 4x2 

Y2 = 4x1 + 8x2 

The "A" matrix is originally. 

[ ~ :] 
After one step of Gaussian elimination, the reduced matrix looks like 
this: 

[6 aJ 
In addition, we have saved the FACTOR, -2. 

At the next attempted step of Gaussian elimination, the program finds 
that A2, 2 equals zero, and therefore stops with the error message "ZERO 
PIVOT AT 2." The problem is a mathematical one. The matrix A is 
singular, so the pair of equations does not have a unique solution. In 
fact, an infinite set of combinations of x1 and x2 solve the system if y2 is 
twice y1• No solution exists if y2 isn't exactly twice y1 • 

Consider the following rather different pair of equations. 

Y1 = 0x1 + lx2 

Y2 = lx1 + 0x2 

The "A" matrix is originally 

[~ ~] 
Our Gaussian elimination routine hits a zero pivot-and stops-on 

the very first step. This example demonstrates a computational, rather 
than a mathematical, problem. By inspection, the solution to the system 
is x1 = y2 and x2 = y1• The solution to the computational problem is 
simple. We just reorder the equations so that the diagonal elements aren't 
zero. Instead of solving the system as originally specified, we work on 

Y2 = lx1 + 0x2 
Y1 = 0x1 + lx2 

with the "A" matrix 

Gaussian elimination proceeds smoothly as long as we keep track of 
the order in which the equations are solved. 
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These two examples illustrate the general rules for dealing with zero 
pivot elements. 

1. If a zero pivot is encountered in equation i, exchange the equation i with 
an equation below it that does not have a zero in column i. 

2. If all the remaining equations have a zero in column i, the matrix is singular. 
3. Keep a record of all equation exchanges, so that we can later "unswap" the 

equations, if desired. 

In practice, we add two further steps. • 

4. Rather than actually exchanging the equations, create an array INDEX 
such that INDEX([) is the original number of the equation that now belongs 
in row i. 

Just as a zero pivot stops the program by creating an infinite FACTOR, 
so too, a very small pivot creates a very large FACTOR and tends to 
generate sizable round-off error. Accuracy can be considerably enhanced 
by using the largest possible pivot. · 

5. Instead of exchanging equations only when a zero pivot is encountered (as 
required by rule 1), search the remainder of column i for the element, A(J ,I), 
with the largest absolute value and exchange rows i and j. 

The implementation of Gaussian elimination with rules 2 through 5 is 
called Gaussian elimination with partial pivoting. The BASIC code below 
rewrites the Gaussian elimination program of the previous chapter to 
include partial pivoting. Notice that instead of row I, we now reference 
row INDEX(!}, but column j remains column j. 

5 REM PROGRAM GAUSS-PP 
100 DEFINT I-N 
200 DIM A(N-1,N-1),Y(N-1),X(N-1),YSTAR(N-1), INDEX(N-1) 
210 FOR IEQ=O TO N-1 
220 INDEX(IEQ)=IEQ 
230 NEXT IEQ 
300 FOR IEQ=O TO N-1 
310 REM NOW SWAP ROWS 
320 GOSUB 5000 
330 SWAP INDEX(IEQ),INDEX(IBIGGESTJ 
340 IEQX=INDEX(IEQ) 
400 IF A(IEQX,IEQ)=O THEN PRINT "SINGULAR MATRIX",IEQ:STOP 
500 FOR JROW=IEQ+1 TO N-1 
510 JROWX=INDEX(JROW) 
600 FACTOR=-A(JROWX, IEQ)/ A(IEQX, IEQ) 
700 FOR K=IEQ TO N-1 
800 A(JROWX, KJ=A(JROWX, K)+F ACTOR.*A(IEQX, Kl 
900 NEXT K 
1000 A(JROWX,IEQJ=FACTOR 
1100 NEXT JROW 
1200 NEXT IEQ 
1300 REM 
1400 REM A IS NOW UPPER TRIANGULAR 
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15□□ REM 
16□□ YST AR(□)=Y(INDEX(□)) 
17□□ FOR IEQ=1 TO N-1 
171□ IEQX=INDEX(IEQ) 
18□□ SUM=□ 
19□□ FORK=□ TO IEQ-1 
20□□ SUM=SUM+A(IEQX, K)*YSTAR(KJ 
21□□ NEXT K 
22□□ YSTAR(IEQ)=Y(IEQXJ+SUM 
23□□ NEXT IEQ 
2310 IN=INDEX(N-1) 
21f □□ X(N-1)=YSTAR(N-1)/ A(IN ,N-1) 
25□□ FOR IEQ=(N-1)-1 TO □ STEP ·-1 
2510 IEQX=INDEX(IEQJ 
26□□ SUM=□ 
27□□ FOR K=IEQ+1 TO N-1 
28□□ SUM=SUM+A(IEQX, K)*X(K) 
29□□ NEXT K 
30□□ X(IEQJ=(YST AR(IEQJ-SUMJ/ A(IEQX, IEQ) 
31□□ NEXT IEQ 
32□□ STOP 
so□□ REM SUBROUTINE TO FIND LARGEST ELEMENT IN COLUMN 
51□□ BIGGEST=ABS(A(INDEX(IEQJ, IEQJ 
52□□ IBIGGEST=IEQ 
530□ FOR I=IEQ+1 TO N-1 
Slf □□ PIV=ABS(A(INDEX(I),IEQ)) 
55□□ IF PIV>BIGGEST THEN BIGGEST=PIV:IBIGG~ST=I 
Sb□□ NEXT I 
57□□ RETURN 

This program performs the same number of multiplications and ad
ditions as simple Gaussian elimination, but will run a little more slowly 
due to increased overhead. The time spent selecting pivot rows is an 
order n2 operation, and is therefore negligible compared to the basic 
reduction operation. 

We've fixed the "zero pivot" problem. Before moving on to the chap
ter's other goals, we need to discuss some more mathematics. If you're 
more interested in "how" than "why," skip ahead to the programs. It 
will help to look at the BASIC programs before the 8087 programs, since 
the former are easier to follow. 

The Theory of "LU Decomposition" 
A number of advanced methods of solving systems of linear equations, 
and consequently of matrix inversion, rely on the principle of "LU de
composition." This principle states that a square matrix A can be factored 
into a lower triangular matrix Land an upper triangular matrix U such 
that L times U equals A. There are many such decompositions. A par-
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ticular method is arrived at by our choice of restrictions on the contents 
of Lor U. 

LU methods all work in three steps. Suppose the initial problem is 

y = Ax 

1. Factor A into Land U. This decomposition is an order n3 operation. 
Now we have 

y = (LU)x = L(Ux) 

While LU is a square matrix, Ux is a column vector. 
2. Solve the following system of equations for y*. Solution of an upper 

( or lower) triangular system of equations is an order n2 operation. 

y = Ly* 

Since y*= L"1y, we next 

3. Solve, the order n2 problem 

y* = Ux 

Does this look like a roundabout method? It really isn't, it only seems 
that way. For example, the reduction process of Gaussian elimination 
leaves us with an upper triangular matrix that we might call U. If we 
add a diagonal with all ones to the set of factors we store along the way, 
we have a lower triangular matrix that we might call L. A bit of calculation 
will show you that LU indeed equals A. Further, solving for y* and x in 
the Gaussian elimination programs are exactly steps 2 and 3 above. So 
Gaussian elimination is actually a particular example of using an LU 
decomposition. 

The Crout Decomposition 

The most useful LU method for the 8087 is called the Crout decomposition. 
(The Crout decomposition is a member of the family called "compact" 
methods.) The defining characteristic of the Crout decomposition is that 
U has all ones along the diagonal. So this LU decomposition looks like 
this: 

0 

L= 

0 

0 

0 

0 

LN-1,N-1 
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1 Uo,1 Uo,2 Uo,N-1 

0 1 U1,2 U1,N-l 

0 0 1 

U= 

UN-2,N-1 

0 0 0 1 

Notice the special pattern in which the rows of L match up with the 
columns of U. The inner product of row O of L and column O of U, which 
equals A0, 0, is just L0, 0• Moving down to the second row of L we see 
that L110 equals A110, and so forth. In this way, the entire first column 
of L is defined. 

Now multiply the first row of L with the second column of U. We find 
L0, 0 times U0, 1 equals A0, 1. Since we already know L0, 0, we can solve for 
U011 directly. Moving on to the third column of U gets us U0, 2 in the 
same manner. In this way the entire first row of U is defined. 

Having defined the first column of Land the first row of U, we move 
on to the second column of L and the first row of U. In effect, the Crout 
procedure marches down the diagonal of the matrix. At each step, the 
portion of the column of L hanging down from the diagonal and the 
portion of the row of U sticking out to the right, are defined. To conserve 
space, we reuse A to store L and U. The following BASIC program 
performs a CROUT decomposition. 

1 □ DEFINT I - N 
2 □ DEFDBL S 
3 □ DIM A(N-1,N-1) 
4 □ FORK=□ TO N-1 
5 □ IF A(K, KJ= □ THEN PRINT "ZERO PIVOT", K: STOP 
b □ REM FILL IN COLUMN OF L 
7 □ FOR I=K TO N-1 
8 □ SUM= □ 
9□ FOR L= □ TO K-1 
1□□ SUM=SUM+A(I, L)*A(L, KJ 
11□ NEXT L 
12□ A(I,K)=A(I,KJ-SUM 
13□ NEXT I 
14 □ REM FILL IN ROW OF U 
15 □ FOR J=K+1 TO N-1 
16□ SUM=□ 
17□ FOR L= □ TO K-1 
18□ SUM=SUM+A(K, L)*A(L, J) 
19 □ NEXT L 
2□□ A(K, J)=(A(K, JJ-SUMJ/ A(K, Kl 
21 □ NEXT J 
22 □ NEXT K 
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Do you see why the Crout decomposition is so well suited to the 8087? 
Lines 80-110 and 160-190 form inner products between a portion of a 
column of L and a portion of a row of U! By using INPROD or GINPROD 
we take full advantage of the 8087' s speed. Of probably greater impor
tance, since the inner products are accumulated in temporary real pre
cision, we can store a matrix in single or double precision and still get 
almost all the accuracy of 80-bit storage. 

If you'd like to get a better handle on the logic of the Crout decom
position, you might try reducing the following 2 by 2 matrix into upper 
and lower triangular matrices. 

A=[~ ~] 
You should end up with these two matrices: 

Note that our program stores both Land U in place of A. 

A reduced = [ 3 2 
] 

4 -6 

The "zero pivot" problem has returned with this version of Crout 
decomposition. We adapt this program to include partial pivoting by 
exchanging rows just before filling each row of U. The next BASIC pro
gram illustrates Crout decomposition with partial pivoting. 

5 REM PROGRAM CROUT-PP 
100 DEFINT I-N 
200 DEFDBL S 
300 DIM A(N-1, N-1), INDEX(N-1), Y(N-1) 
31 □ FOR I= □ TO N-1 
32 □ INDEX(IJ=I 
330 NEXT I 
400 FORK= □ TO N-1 
600 REM FILL IN COLUMN OF L 
700 FOR I=K TO N-1 
71 □ IX=INDEX(IJ 
800 SUM= □ 
900 FOR L= □ TO K-1 
910 LX=INDEX(LJ 
10□□ SUM=SUM+A(IX, L)*A(LX, KJ 
11□□ NEXT L 
12□□ A(IX, KJ=A(IX, KJ-SUM 
1300 NEXT I 
1310 REM SWAP ROWS 
1320 GOSUB 5000 
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133□ SWAP INDEX(K), INDEX(KBIGGEST) 
14□□ REM FILL IN ROW OF U 
141□ KX=INDEX(K) 
142 □ IF A(KX, KJ= □ THEN PRINT "SINGULAR MATRIX", K: STOP 
15□□ FOR J=K+1 TO N-1 
16□□ SUM=□ 
17□□ FOR L=□ TO K-1 
171□ LX=INDEX(L) 
18□□ SUM=SUM+A(KX, L)*A(LX, JJ 
1"1 □□ NEXT L 
2□□□ A(KX, J)=(A(KX, JJ-SUM)/ A(KX, K) 
21□□ NEXT J 
22□□ NEXT K 
3□□□ STOP 
S□□□ REM SUBROUTINE TO FIND LARGEST ELEMENT IN COLUMN 
51□□ BIGGEST=ABS(A(INDEX)(K), Kl) 
52□□ KBIGGEST=K 
53□□ FOR I=K+1 TO N-1 
54□□ PIV=ABS(A(INDEX)(I),K)) 
ss□□ IF PIV>BIGGEST THEN BIGGEST=PIV:KBIGGEST=I 
Sb□□ NEXT I 
57□□ RETURN 

This program effectively takes the original A, permutes A by swapping 
rows as indicated in INDEX, and then replaces A with the Crout decom
position of the permuted A. In the solution phase, we'll have to undo 
the row swaps. 

8087 Routines for Solving Systems 
of Linear Equations 

The tirrie has finally arrived to prepare high-speed 8087 routines for 
solving systems of linear equations and for matrix inversion. Three rou
tines based on the Crout decomposition with partial pivoting appear 
below. REDUCE reduces a matrix to its LU decomposition. Given the 
reduced matrix and the vector y, SOL VE calculates x, as in y = Ax. INV 
inverts a matrix in one step. 

For maximum flexibility, we write a series of 8087 internal procedures, 
and then add external procedures that may be called from BASIC. Our 
first procedure, PIV, finds the largest element of a column, indexed by 
INDEX, and exchanges indexes to accomplish partial pivoting. 

; SUBROUTINE PIV(A, INDEX, TYPE A, DIAG, NJ 
; ASSUMPTIONS: A IS ADDRESS OF N-ARRAY IN DATA SEGMENT 
; INDEX IS AN INTEGER N-ARRAY 
; TYPEA,DIAG,N ARE INTEGERS 
; NOTE THIS PROCEDURE CANNOT BE CALLED FROM 

BASIC 
; IT FINDS ITS ARGUMENTS ON THE STACK 
; NOT THEIR ADDRESSES 



154 8087 Applications and Programming 

; 
; 
; . , 
; 

; 
; 
; 
; 
; 
; 
; 
; 

PIV 

THERE MUST BE AT LEAST 2 FREE LOCATIONS ON 
THE 8087 STACK AND AT LEAST 14 FREE BYTES ON 
THE MEMORY STACK 
.THE LAST 2 WORDS Of LOCAL-SPACE MUST ALSO BE 

FREE 

PIV A SEARCHES FROM DIAG 
TO THE BOTTOM FOR THE ELEMENT LARGEST IN 
ABSOLUTE VALUE, PIV EXCHANGES THE INDEXES Of 
DIAG AND THIS ELEMENT 

A IS ANN-VECTOR PERMUTED ACCORDING TO INDEX 

ASSUME cs:CSEG,ES:ESEG 
PROC NEAR 
PUSH BP 
MOV BP,SP 

; SINCE THIS IS A NEAR PROCEDURE, ARGUMENTS BEGIN AT [BP]+ 4 
PUSH AX 
PUSH BX 
PUSH ex 
P_USH DX 
PUSH SI 
PUSH DI 
MOV ex ,[BP]+ 4 
MOV SI ,[BP]+ 12 
MOV DI,[BP]+10 
MOV DX,[BP]+b 
ADD DI,DX 
ADD DI,DX 

KBIGGEST EQU LOCAL-SPACE-LAST-2 
MOV KBIGGEST,DI 

iCX=N 
; SI=ADDR(A) 
; DI=ADDR(INDEX) 
iDX=DIAG 

i DI=ADDR(INDEX(DIAG)) 
iKEEP BIGGEST FOUND 
iASSUME FIRST IS 

BIGGEST 
SUB 
DEC 

CX,DX iCX=N-DIAG, 

MOV 
.MUL 

MOV 
CMP 
JNE 
FLD 
JMP 

A-DOUBLE: FLD 
LOADED-ONE: 

FABS 
JCXZ 

COMP-LOOP: 
ADD 
MOV 

ex ; # Of ELEMENTS TO 
CHECK 

AX ,[BP]+8 ; AX=TYPEA 
WORD PTR [DI] iAX=TYPEA*INDEX(DI) 
BX,AX 
WORD PTR [BP]+8, 4 ; IS A SINGLE? 
A-DOUBLE 
DWORD PTR [SI][BX] iLOAD SINGLE 
LOADED-ONE 
QWORD PTR [SI][BX] ; LOAD DOUBLE 

DONE 

DI,2 iNEXT INDEX 
AX ,[BP]+8 ; AX=TYPEA 



MUL 
MOV 
CMP 
JNE 
FLD 
JMP 

ALDOUBLE: FLD 
COMPARE: 

FABS 
FCOM 
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WORD PTR [DI] i AX=TVPEA*INDEX(DI) 
BX,AX 
WORD PTR [BP]+8, 4 i IS A SINGLE? 
ALDOUBLE 
DWORD PTR [SI][BX] iLOAD SINGLE 
COMPARE 
QWORD PTR [SI][BX] i LOAD DOUBLE 

STATUS-WORD EQU LOCAL-SPACE-LAST-4 

;COMPARE NEW TO 
BIGGEST 

;SCRATCH SPACE 
FSTSW STATUS-WORD 
FWAIT 
MOV 
SAHF 
JB 

AH,BVTE PTR STATUS-WORD+1 

LESS-OR-NONCOMPARABLE 
;HERE IF NEW IS 

FSTP 
MOV 
JMP 

GREATER THAN OR EQUAL TO BIGGEST 
ST(1) ; MOVE NEW DOWN STACK 
KBIGGEST,DI 
NEXT-ELEMENT 

LESS-OR-NONCOMPARABLE: 

FSTP ST(□) 

NEXT-ELEMENT: 
LOOP 

; SWAP INDEX(DIAG) AND 
MOV 
MOV 
ADD 
ADD 
MOV 
MOV 

XCHG 
XCHG 

DONE: 
FSTP 

POP 
POP 
POP 
POP 
POP 
POP 
POP 
RET 

PIV ENDP 

COMP-LOOP 
INDEX(KBIGGEST) 
DX,[BP]+b 
DI ,[BP]+10 
DI,DX 
DI,DX 
AX ,[DI] 
BX,KBIGGEST 

AX,[BX] 
AX ,[DI] 

ST( □) 

DI 
SI 
DX 
ex 
BX 
AX 
BP 
10 

iBIGGEST IS STILL 
CHAMP 

iDX=DIAG 
; DI=ADDR(INDEX) 

; DI=ADDR(INDEX(DIAG)) 
i AX=INDEX(DIAG) 
; BX=ADDR(INDEX 
(KBIGGEST)) 

iCLEAR ELEMENT OFF 
STACK 

Procedure PIV takes roughly 80 microseconds per element. When used 
for partial pivoting, PIV searches n, n-1, n-2, and so forth elements at 
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successive calls. Quite roughly then, in solving a system of n equations, 
we spend about 80n2/2 microseconds in PIV. For a large matrix, PIV might 
take up half a second. If you'd like an exercise in array addressing tech
niques, rewrite PIV replacing the MUL instruction in COMP _LOOP with 
appropriate SHL (SHift Left) instructions. You should be able to speed 
up PIV by about 25 percent. 

Most of the work of the Crout decomposition is a series of inner prod
ucts. Unfortunately, the rows are permuted according to INDEX, so we 
can't use procedure GINP. GINP assumes that columns are stored se
quentially, while ours are "scrambled." Procedure XINP does an inner 
product with indexed columns. 

; SUBROUTINE XINP(A(I, OJ, A(□ , J), INDEX, TYPE, SKIP A, NJ 
; ASSUMPTIONS: A(I, OJ IS THE ADDRESS OF ROW I 
; A(0,J) IS THE ADDRESS OF COLUMN J 
; INDEX IS THE ADDRESS OF INTEGER ARRAY INDEX 
; TYPE,SKIPA,N ARE INTEGERS 
; NOTE THIS PROCEDURE CANNOT BE CALLED FROM 

BASIC 
; IT FINDS ITS ARGUMENTS ON THE STACK 
; NOT THEIR ADDRESSES 
; 
; 

; 

XINP 

THERE MUST BE AT LEAST 2 FREE LOCATIONS ON 
THE 8087 STACK AND AT LEAST 14 FREE BYTES ON 
THE MEMORY STACK 

XINP RETURNS THE INNER PRODUCT OF THE FIRST N 
ELEMENTS OF ROW I AND COLUMN JON THE 
8087 STACK 

XINP TAKES EVERY SKIPA ELEMENT OF A(I,0) AND 
INDEXES THE ELEMENTS OF A(□, J) 

ASSUME 
PROC 
PUSH 
MOV 

CS:CSEG 
NEAR 
BP 
BP,SP 

;SINCE THIS IS A NEAR PROCEDURE, ARGUMENTS BEGIN AT [BP]+4 
PUSH AX 
PUSH BX 
PUSH ex 
PUSH DX 
PUSH SI 
PUSH DI 
FLDZ ;SET RUNNING SUM= □ 

JCXZ DONE 
MOV SI,[BP]+14 ;SI=ADDR(A(I,0)) 
MOV DI ,[BP]+10 ; DI=ADDR(INDEX) 

;If TYPE IS SINGLE PRECISION SET CX=2 ELSE SET CX=3 
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; USE ex FOR SHIFTING BELOW 
MOV CX,3 ;ASSUME TYPE DOUBLE 
CMP WORD PTR [BPJ+8, 4 i IS TYPE SINGLE? 
JNE NOT-SINGLE 
MOV CX,2 iYES, TYPE IS SINGLE 

NOT-SINGLE: 
iAX=SKIP MOV 

SHL 
CMP 
JLE 

AX,[BP]+6 
AX,CL 
WORD PTR 
DONE 

iAX=A ELEMENT DISTANCE 
[BP]+4, □ iN LE □ ? 

XINP-LOOP: 
;FIRST GET READY FOR COLUMN 

MOV BX ,[DI) 
SHL BX,CL 
ADD BX ,[BP]+12 

CMP CL, 2 
JNE A-DOUBLE 
FLD DWORD PTR [SI) 

JMP MUL LB 
A-DOUBLE: FLD QWORD PTR [SI] 

CMP 
JNE 
FMUL 
JMP 

A-DOUBLE2: FMUL 

NEXT-ELEMENT: 

DONE: 

XINP 

FADDP 
ADD 
ADD 
DEC 
CMP 
JG 

POP 
POP 
POP 
POP 
POP 
POP 
POP 
RET 
ENDP 

CL,2 
A-DOUBLE2 
DWORD PTR [BX] 
NEXLELEMENT 
QWORD PTR [BX] 

ST(1),ST 
SI,AX 
DI,2 
WORD PTR [BP]+4 
WORD PTR [BP]+4, □ 

XINP-LOOP 

DI 
SI 
DX 
ex 
BX 
AX 
BP 
12 

i BX=INDEX(L) 
i BX=TYPE*INDEX(L) 
i BX=A(INDEX(L), LJ 

iIS A SINGLE? 

iLOAD SINGLE ROW 
ELEMENT 

iLOAD DOUBLE COL 
ELEMENT 

iIS A SINGLE? 

iMULTIPLY SINGLE 

iMULTIPLY DOUBLE 

i SUM=SUM+ROW(L)*COL(LJ 
;NEXT ROW ELEMENT 
iNEXT INDEX 
i DECREMENT COUNT(NOTE N 
i WAS IN TEMP LOCATION) 

Like most of our inner product routines, XINP uses about 59 micro
seconds per element. Notice that we went to the trouble of using the 
shift rather than the multiply. It actually takes the 8088 longer to multiply 
two integers than it takes the 8087 to multiply single precision numbers. 
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If we multiplied rather than shifted, the 8087 would have to wait idly 
while the 8088 calculated the next address. 

Essentially all of the hard computational work of the Crout decom
position is done by XINP. Because it is a NEAR procedure, XINP cannot 
be called directly from BASIC. Procedure XINPROD, below, is a FAR 
procedure, callable from BASIC, that calls XINP for us and then returns 
the inner product as a double precision result. It's also convenient to be 
able to use PIV, even though PIV is only called n times as compared to 
the n2 calls to XINP, so we also include a FAR procedure, PIVOT. 

; SUBROUTINE XINPROD(A(I , □ ),A(□, J), SUM, INDEX, TYPE, SKIPA, NJ 
; ASSUMPTIONS: A(I, □),A(□ , JJ,INDEX ARE ADDRESSES TO BE PASSED 
; TO XINP 
; TYPE,SKIPA,N ARE ADDRESSES OF INTEGERS WHOSE 
; VALUES SHOULD BE PASSED TO XINP 
; XINP RETURNS THE RESULT ON THE TOP OF STACK 

IT SHOULD BE PLACED IN DOUBLE PRECISION SUM 

XINP CALLS THE INTERNAL SUBROUTINE XINP 
; 

PUBLIC XINPROD 
ASSUME CS:CSEG,ES:ESEG 

XINPROD PROC FAR 
PUSH BP 
MOV BP,SP 

;SET UP STACK AREA IN ESEG 
PUSH ES 
CALL NEXT 

NEXT: POP AX 
SUB AX,(OFFSET NEXT)-(OFFSET FIRSLINST) 
MOV CL,4 
SHR AX,CL 
MOV BX,CS 
ADD BX,ESEG 
SUB BX,CSEG 
ADD AX,BX 
MOV ES,AX 

; 

MOV LOCAL-SPACE,SS 
MOV LOCAL-SPACE+2,SP 
MOV AX,ES 
MOV SS,AX 
MOV SP,OFFSET STACK-TOP 

;SET UP CALL PARAMETERS 
PUSH DS :[BP]+18 
PUSH DS: [BP]+ 16 
PUSH DS:[BP]+12 
MOV BX, DS: [BP]+ 1 □ 
PUSH [BX] 

; ADDR(A(I, □)) 
; ADDR(A(□, J)) 
; ADDR(INDEX) 
; BX=ADDR(TYPE) 
;TYPE 



XINPROD 

MOV 
PUSH 
MOV 
PUSH 

CALL 
MOV 
MOV 
MOV 
FSTP 
POP 
POP 
FWAIT 
RET 
ENDP 
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BX, DS :[BP]+8 
[BX] 
BX, DS: [BP]+6 
[BX] 

i BX=ADDR(SKIPA) 
iSKIPA 
i BX=ADDR(N) 
iN 

XINP 
SP,LOCAL-SPACE+2 
SS,LOCAL-SPACE 
BX,[BP]+14 iBX=ADDR(SUM) 
QWORD PTR [BX] ; STORE SUM 
ES 
BP 

14 

i SUBROUTINE PIVOT(A(O, K), INDEX, TYPE, K, N) 
i ASSUMPTIONS: A(I, □),INDEX ARE ADDRESSES TO BE PASSED 
i TO PIVOT 
; TVPE,K,N ARE ADDRESSES OF INTEGERS WHOSE 
; VALUES SHOULD BE PASSED TO XINP 
; 
; PIVOT 
; 

PIVOT 

iSET UP 

NEXT: 

; 

; 

CALLS THE INTERNAL SUBROUTINE PIV 

PUBLIC 
ASSUME 
PROC 
PUSH 
MOV 

STACK AREA 
PUSH 
CALL 
POP 
SUB 
MOV 
SHR 
MOV 
ADD 
SUB 
ADD 
MOV 

MOV 
MOV 
MOV 
MOV 
MOV 

IN 

PIVOT 
cs:CSEG,ES:ESEG 
FAR 
BP 
BP,SP 

ESEG 
ES 
NEXT 
AX 
AX,(OFFSET NEXT)-(OFFSET FIRSLINST) 
CL,4 
AX,CL 
BX,CS 
BX,ESEG 
BX,CSEG 
AX,BX 
ES,AX 

LOCAL-SPACE,SS 
LOCAL-SPACE+2,SP 
AX,ES 
SS,AX 
SP,OFFSET STACK-TOP 
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;SET UP CALL PARAMETERS 
PUSH DS:[BP]+14 
PUSH DS: [BP)+12 
MOV BX,DS:[BP]+10 
PUSH [BX) 
MOV BX, DS: [BP]+8 
PUSH [BX] 
MOV BX, DS: [BP]+6 
PUSH [BX] 

; ADDR(A(□, K)) 
; ADDR(INDEX) 
; BX=ADDR(TYPE) 
;TYPE 
; BX=ADDR(K) 

;BX=ADDR(N) 

CALL 
MOV 
MOV 
POP 
POP 
RET 
ENDP 

PIV 
SP,LOCAL-SPACE+2 
SS,LOCAL-SPACE 
ES 
BP 
10 

PIVOT 

With XINPROD and PIVOT in hand, we need only replace the appro
priate lines of the BASIC program with CALL statements. The new ver
sion of the BASIC program appears below. 

100 DEFINT I-N 
200 DEFDBL S 
300 DIM A(N-1,N-1),INDEX(N-1) 
310 FOR I= □ TO N-1 
320 INDEX(I)=I 
330 NEXT I 
340 ITYPE=4 
40 □ FORK= □ TO N-1 
600 REM FILL IN COLUMN OF L 
700 FOR I=K TO N-1 
71 □ IX=INDEX(I) 
800 SUM=□ 
900 REM FOR L= □ TO K-1 
910 REM LX=INDEX(L) 
1000 REM SUM=SUM+A(IX,L)*A(LX,K) 
1100 REM NEXT L 
1150 CALL XINPROD(A(IX, □),A(□ , KJ, SUM, INDEX(□), !TYPE, N, K) 
1200 A(IX,K)=A(IX,KJ-SUM 
1300 NEXT I 
1310 REM SWAP ROWS 
1320 REM GOSUB 5000 
1330 REM SWAP INDEX(K), INDEX(KBIGGESTJ 
1350 CALL PIVOT(A(□, K), INDEX(□), TYPE, K, NJ 
1400 REM FILL IN ROW OF U 
1410 KX=INDEX(K) 
1420 IF A(KX, KJ= □ THEN PRINT "SINGULAR MATRIX", K: STOP 
1500 FOR J=K+1 TO N-1 
1600 SUM=□ 
170□ REM FOR L= □ TO K-1 
1710 REM LX=INDEX(L) 
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1800 REM SUM=SUM+A(KX, L)*A(LX, JJ 
1900 REM NEXT L 
1950 CALL XINPROD(A(KX, □),A(□ , J), SUM, INDEX(□), !TYPE, N, Kl 
2000 A(KX, J)=(A(KX, J)-SUMJ/ A(KX, Kl 
2100 NEXT J 
2200 NEXT K 
5000 REM SUBROUTINE TO FIND LARGEST ELEMENT IN COLUMN 
5100 REM BIGGEST=ABS(A(INDEX(K),K)) 
5200 REM KBIGGEST=K 
5300 REM FOR I=K+1 TO N-1 
5400 REM PIV=ABS(A(INDEX(I),K)) 
5500 REM IF PIV>BIGGEST THEN BIGGEST=PIV:KBIGGEST=I 
5600 REM NEXT I 
5700 REM RETURN 

XINP does most of the hard work of Crout reduction. For large n, most 
execution time is spent doing the inner products, so the BASIC code 
above is quite efficient. Lines 700-1300 and 1500-2100 are executed n2 

times. For moderate n, these lines may take up a substantial amount of 
time. In proced4re CROUTP we put everything together into an 8087 
program for Crout reduction with partial pivoting. 

;SUBROUTINE CROUTP(A,INDEX,IER,TYPE,N) 
; ASSUMPTIONS: A IS THE ADDRESS OF ANN BY N MATRIX 
; INDEX IS THE ADDRESS OF AN INTEGER N-ARRAY 

IER IS THE ADDRESS OF AN INTEGER 
; TYPE,N ARE INTEGERS 
; NOTE THIS PROCEDURE CANNOT BE CALLED FROM 

BASIC 
; IT FINDS ITS ARGUMENTS ON THE STACK 
; NOT THEIR ADDRESSES 

CROUTP REPLACES A WITH THE CROUT LU 
DECOMPOSITION 

OF THE PERMUTATION OF A RETURNED IN INDEX 

AT EXIT IER=-1 IF MATRIX IS SINGULAR, ELSE 
IER=Oi 

ASSUME cs:CSEG 
CROUTP PROC NEAR 

PUSH BP 
MOV BP,SP 

; SINCE THIS IS A NEAR PROCEDURE, ARGUMENTS BEGIN AT [BP]+ 4 
PUSH 

PUSH 
PUSH 
PUSH 
PUSH 
PUSH 

AX 

BX 
ex 
DX 
SI 
DI 

iTHESE ARE 
UNNECESSARY 

iBUT GOOD FORM 



162 8087 Applications and Programming 

MOV 
MOV 

i FIRST SET INDEX(I)=I 
MOV 

INDEX-LOOP: 

MOV 
MOV 

MOV 
INC 
ADD 
LOOP 

BX,[BP]+8 
WORD PTR [BX], D 

ex ,[BPJ+4 
DI,[BP]+1D 
AX, □ 

[DI],AX 
AX 
DI,2 
INDEX-LOOP 

iBX=ADDR(IER) 
ilER=D 

iCX=N 
i DI=ADDR(INDEX) 

i INDEX(I)=I 

ilF TYPE IS SINGLE PRECISION SET CX=2 ELSE SET CX=3 
; USE ex FOR SHIFTING BELOW 

MOV CX,3 iASSUME TYPE DOUBLE 
CMP WORD PTR [BP]+6, 4 i IS TYPE SINGLE? 
JNE NOT-SINGLE 
MOV CX,2 iYES, TYPE IS SINGLE 

NOT-SINGLE: 
iOUTERMOST LOOP IS FOR K=D TO N-1 

MOV SI, □ iKEEP KIN SI 

MAJOR-LOOP: 
MOV 
MUL 
SHL 
MOV 
ADD 

iFILL IN COLUMN OF L 

AX,[BP]+4 
SI 
AX,CL 
DX,AX 
DX,[BP]+12 

i MOVE THROUGH INDEX(!) FOR I=K TO N-1 
; 

COUNT EQU LOCAL_SPACE+4 
; 

MOV AX ,[BP]+ 4 
SUB AX,SI 
MOV COUNT,AX 

i 
MOV DI,[BP]+1O 
ADD DI,SI 
ADD DI,SI 

iAX=N 
iAX=N*K 
iAX=TYPE*N*K 

iDX=ADDR(A(D,K)l 

;SCRATCH SPACE FOR 
COUNTS 

iAX=N 
iAX=N-K 
iCOUNT=N-K 

; DI=ADDR(INDEX(□ )l 

i DI=ADDR(INDEX(Ill 

i CALL XINP(A(INDEX(Ih DJ, A(□ , K), INDEX, TYPE, N, Kl 

MOV 
SHL 
ADD 
PUSH 
PUSH 
PUSH 
PUSH 

BX ,[DI] 
BX,CL 
BX,[BP]+12 
BX 
DX 
[BP]+1O 
[BP]+6 

; BX=INDEX(I) 
iBX=BEGINNING OF ROW 
i BX=ADDR(A(INDEX(I), □)) 

i ADDR(A(D, Kl) 
; ADDR(INDEXJ 
iTYPE 
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PUSH [BP]+4 
PUSH SI 
CALL XINP 

;GET ADDRESS OF A(INDEX(I),KJ 
MOV BX,[DI] 
SHL BX,CL 
ADD BX,DX 

; CALCULATE A(INDEX(I), KJ-SUM FOR SINGLE 
CMP CX,2 
JNE A-DOUBLE 
FSUBR DWORD PTR [BX] 
FSTP DWORD PTR [BX] 
JMP NEXT-COL-ELEMENT 

A-DOUBLE: FSUBR QWORD PTR [BX] 
QWORD PTR [BX] FSTP 

JMP NEXT-COL-ELEMENT 
; 
NEXT-COL-ELEMENT: 

; 
; 

ADD 
DEC 
CMP 
JG 

DI,2 
COUNT 
COUNT, □ 

L-LOOP 

; CALL PIV(A(O, K), INDEX, TYPE, K, NJ 
PUSH DX 
PUSH [BP]+1O 
PUSH [BP]+6 
PUSH SI 
PUSH [BP]+4 
CALL PIV 

;********CHECK FOR SINGULAR MATRIX 
;IS A(INDEX(K), KJ=O??? 
; 
STATUS-WORD EQU 
; 

MOV 
ADD 
ADD 
MOV 
SHL 
ADD 

; 
CMP 
JNE 
FLD 

JMP 
A-DOUBLE2: FLD 

LOCAL_SPACE+b 

DI,[BP]+1O 
DI,SI 
DI,SI 
DI,[DI] 
DI,CL 
DI,DX 

CX,2 
A-DOUBLE2 
DWORD PTR [DI] 

TESLFOR-ZERO 
QWORD PTR [DI] 

; BX=INDEX(IJ 
;BX=TYPE*K 
; BX=ADDR(A(INDEX(I), Kl) 

OR DOUBLE PRECISION 
;SINGLE? 

; ST=A(INDEX(I), KJ-SUM 
; A(INDEX(I), KJ=ST 

; ST=A(INDEX(I), KJ-SUM 
; A(INDEX(I), KJ=ST 

; NEXT INDEX(!) 

; ADDR(A(O, Kl) 
;ADDR INDEX 
;TYPE 
;K 
;N 

; DI=ADDR(INDEX) 

; DI=ADDR(INDEX(K)) 
; DI=INDEX(KJ 
; DI=TYPE*INDEX(K) 
; DI=ADDR(A(INDEX(K), K) 

;SINGLE? 

;LOAD A(INDEX(K),K) 
;AND LEAVE IT ON 

STACK 
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TEST-FOR-ZERO: 
FTST 

STATUS-WORD FSTSW 
FWAIT 
MOV 
SAHF 

AH,BYTE PTR STATUS-WORD+1 

JC 
JNZ 

NOT-SINGULAR 
NOT-SINGULAR 

;JUMP IF C3=□ 
;OR IF c □ =□ 

;SINGULAR MATRIX 
MOV 
MOV 
JMP 

BX, [BP)+8 ; BX=ADDR(IER) 
WORD PTR [BX),-1 ; IER=-1 

NOT-SINGULAR: 
;FILL IN ROW OF u 
;MOVE J THROUGH K+1 

MOV 
SUB 
MOV 
ADD 
ADD 
MOV 
SHL 
ADD 

; 
MOV 
MUL 
SHL 

; 
MOV 
SUB 
MOV 

LI-LOOP: DEC 
CMP 
JLE 

; 
MOV 
SHL 
ADD 

; 

DONE 

TO N-1 
AX,[BPJ+4 
AX,SI 
DI,[BPJ+1□ 

DI,SI 
DI,SI 
DI ,[DI) 
DI,CL 
DI,[BP)+12 

AX,SI 
WORD PTR [BP)+4 
AX,CL 

DX,[BPJ+4 
DX,SI 
COUNT,DX 
COUNT 
COUNT, □ 

END-LI-LOOP 

BX,[BP)+4 
BX,CL 
AX,BX 

;AX=N 
;AX=N-K 
; DI=ADDR(INDEX) 

; DI=ADDR(INDEX(K)) 
; DI=INDEX(K) 
; DI=TYPE*INDEX(K) 
; DI=ADDR(A(INDEX)K), □)) 

;AX=K 
;AX=N*K 
;AX=TYPE*N*K 

;DX=N 
;DX=N-K 

;COUNT=COUNT-1 

;BX=N 
;BX=TYPE*N 
;AX=TYPE*N*J 

; CALL XINP(A(INDEX(K), □),A(□ , J), INDEX, TYPE, N, K) 
PUSH DI ; ADDR(A(INDEX(K), □)) 
MOV BX,[BPJ+12 ;BX=ADDR(A(□,□) 

ADD BX,AX 
PUSH BX 
PUSH [BP)+1□ 

PUSH [BPJ+b 
PUSH [BPJ+4 
PUSH SI 
CALL XINP 

;ADDR A(□ ,J) 

;ADDR INDEX 
;TYPE 
;N 

; CALCULATE (A(INDEX(K), J)-SUMJ/ A(INDEX(K), Kl · 
; FOR SINGLE OR DOUBLE PRECISION 
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;NOTE THAT SUM IS IN ST 
; AND A(INDEX(K), Kl IN ST(1) 

; 
LDOUBLE3: 

MOV BX,DI 
ADD BX,AX 
CMP CX,2 
JNE A-DOUBLE3 
FSUBR ·DWORD PTR [BX] 
FDIV ST,ST(1) 
FSTP DWORD PTR [BX] 
JMP NEXT-ROW-ELEMENT 

FSUBR 
FDIV 
FSTP 

QWORD PTR [BX] 
ST, ST(1) 
QWORD PTR [BX] 

NEXT-ROW-ELEMENT: 
JMP 

EN»-U-LOOP: 
FSTP 

;READY FOR NEXT K 
INC 

LI-LOOP 

ST(□) 

SI 

; BX=ADDR(A(INDEX(K), 0)) 
; BX=ADDR(A(INDEX(K), J)) 
;SINGLE? 

; ST=A(INDEX(K), JJ-SUM 
; ST=ST I A(INDEX(K), Kl 
; A(INDEX(I), KJ=ST 

; ST=A(INDEX(K), JJ-SUM 
; ST=ST I A(INDEX(K), K) 
; A(INDEX(I), KJ=ST 

;CLEAR ST 

CMP 
JGE 

SI,WORD PTR [BP]+4 iK=N? 
DONE 

DONE: 

CROUTP 

JMP 

POP 
POP 
POP 
POP 
POP 
POP 
POP 
RET 
ENDP 

MAJOR-LOOP 

DI 
SI 

·DX 
ex 
BX 
AX 
BP 
10 

All we need now is a procedure to call CROUTP from BASIC. We'll 
call this procedure REDUCE. Procedure REDUCE is called by 

CALL REDUCE(A(□ , OJ, INDEX(□), TYPE, IER, NJ 

where A is the N by N matrix of coefficients. INDEX is an integer array 
returning the row permutations. TYPE, IER, and N are integers. TYPE 
indicates whether A is single or double precision. IER returns O if the 
matrix is nonsingular and -1 if the matrix-is singular. REDUCE replaces 
A with its Crout reduction with partial pivoting. 

; SUBROUTINE REDUCE(A(O, □), INDEX(□), TYPE, IER, NJ 
; ASSUMPTIONS: A(O,OJ,INDEX(OJ,IER ARE ADDRESSES TO BE PASSED 
; TO CROUTP 
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; TYPE,N ARE ADDRESSES OF INTEGERS WHOSE 
i VALUES SHOULD BE PASSED TO CROUTP 

; REDUCE CALLS THE INTERNAL SUBROUTINE CROUTP 

REDUCE 

iSET UP 

NEXT: 

; 

PUBLIC 
ASSUME 
PROC 
PUSH 
MOV 

STACK AREA 
PUSH 
CALL 
POP 
SUB 
MOV 
SHR 
MOV 
ADD 
SUB 
ADD 
MOV 

MOV 
MOV 
MOV 
MOV 
MOV 

IN 

REDUCE 
CS:CSEG,ES:ESEG 
FAR 
BP 
BP,SP 

ESEG 
ES 
NEXT 
AX 
AX ,(OFFSET NEXT)-(OFFSET FIRST-INST) 
CL,4 
AX,CL 
BX,CS 
BX,ESEG 
BX,CSEG 
AX,BX 
ES,AX 

LOCALSPACE,SS 
LOCAL-SPACE+2,SP 
AX,ES 
SS,AX 
SP,OFFSET STACK-TOP 

iSET UP CALL PARAMETERS 

REDUCE 

PUSH DS :[BP]+14 
PUSH DS: [BP]+ 12 
PUSH DS: [BP]+8 
MOV BX,DS:[BPJ+10 
PUSH [BX] 
MOV BX, DS :[BP]+b 
PUSH [BX] 

i ADDR(A(□, OJ) 
i ADDR(INDEX) 
i ADDR(IER) 
i BX=ADDR(TYPE) 
iTYPE 
; BX=ADDR(N) 
iN 

CALL 
MOV 
MOV 
POP 
POP 
RET 
ENDP 

CROUTP 
SP,LOCAL-SPACE+2 
SS,LOCAL-SPACE 
ES 
BP 
10 

Back Substitution After a Crout Reduction 

REDUCE leaves the LU decomposition in A and the order of row per
mutation in INDEX. Temporarily setting aside the question of INDEXing, 
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we face a computationally straightforward problem of solving y = LUx 
for x. We do this in two steps. First, solve y = Ly* for y*. Second, solve 
y* = Ux for x. 

Examination of the triangular matrices above shows the simple form 
for solving triangular systems of equations. For a lower triangular system, 

Yo = Lo,oY*o 

Yi = LvoY*o + Lv1Y*1 

Y2 = L2,0Y*o + L2~1Y*i + L2,2Y*2 

and so forth. 

Turning these equations around we can solve directly for y*. 

Y*o = YolLo,o 

Y*i = (Y1 - LvoY*o)/L1,1 

y*2 = (y2 - (L2,0Y*o + L2,1Y*1))/L2,2 

and so forth. 

For an upper triangular system we have: 

Un-1,n-lXn-1 

Un-2,n-2Xn-2 + Un-2,n-lXn-1 

Un-3,n-3Xn-3 + un-3,rt-2Xn-2 + Un-3,n-lXn-1 

and so forth. 

As we turn these equations around to solve for x, remember that Uili 
equals 1 after the Crout reduction. 

Xn-1 = Y*n-1 

Xn-2 = (y*n-2 

Xn-3 = (y*n-3 

and so forth. 

The following BASIC code takes a Crout reduced matrix A and a column 
vector X and solves for X. 

10 DEFINT I-N 
20 DEFDBL S 
30 DIM A(N-1,N-1),YSTAR(N-1),Y(N-1),X(N-1) 
40 REM SOLVE LOWER TRIANGULAR SYSTEM FOR YSTAR 
50 FOR I= □ TO N-1 
60 SUM= □ 

70 FOR J= □ TO I-1 
80 SUM=SUM+A(I, J)*YSTAR(J) 
90 NEXT J 
100 YSTAR(I)=(Y(IJ-SUM)/ A(I, I) 
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110 NEXT I 
120 REM SOLVE UPPER TRIANGULAR SYSTEM FOR X 
130 FOR I=N-1 TOD STEP -1 
140 SUM=□ 

150 FOR J=I+1 TO N-1 
160 SUM=SUM+A(I, J)*X(J) 
170 NEXT J 
180 X(I)=YSTAR(IJ-SUM 
190 NEXT I 

Notice that solving the lower triangular and upper triangular system 
are both order n2 operations. Once order n3 operations have been per
formed to reduce A, each new y can be solved for x at the expense of 
only order n2 additional operations. Notice that lines 60-90 and 140-170 
form inner products. We could use GINPROD here. 

REDUCE performs row permutations in the process of generating a 
triangular form. Our next set of BASIC code "undoes" the INDEXing 
and also makes explicit use of GINPROD. 

2500 REM PROGRAM SOLP 
2600 ITYPE=4 
2700 I1=1 
2800 REM USE X FOR SCRATCH SPACE, RATHER THAN "Y*" 
2900 REM SOLVE LOWER TRIANGULAR SYSTEM FOR YSTAR 
3000 FOR I= □ TO N-1 
3100 NUM=I 
3200 CALL GINPROD(A(INDEX(I), OJ, X(D), SUM, ITYPE, ITYPE, N, I1, 

NUM) 
3300 X(I)=(Y(INDEX(I)J-SUM)/ A(INDEX(I), I) 
3400 NEXT I 
3500 REM SOLVE UPPER TRIANGULAR SYSTEM FOR X 
3600 FOR I=N-1 TOD STEP -1 
3700 IP=I+1 
3800 NUM=N-IP 
3900 REM CALL GINPROD(A(INDEX(Il, IP), X(IP), SUM, 

ITYPE,ITYPE,N,I1,NUM) 
4000 X(I)=X(I)-SUM 
4100 NEXT I 

The BASIC program is easily recoded into an 8087 NEAR procedure, 
SOL, which can be called from BASIC by the external procedure SOL VE. 

iSUBROUTINE SOL(A,Y,X,INDEX,TYPEA,TYPEY,TYPEX,N) 
ASSUMPTIONS: A,Y,X,INDEX ARE ADDRESSES 

TYPEA,TYPEY,TYPEX,N ARE INTEGERS 
i NOTE THIS PROCEDURE CANNOT BE CALLED FROM 

BASIC 
i IT FINDS ITS ARGUMENTS ON THE STACK 

NOT THEIR ADDRESSES 

SOL SOLVES Y=AX FOR X, WHERE A AND INDEX 
RESULT 
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FROM A CROUT DECOMPOSITION WITH PARTIAL 
PIVOTING 

ASSUME 
SOL PROC 

PUSH 
MOV 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 

;TAKE CARE OF LOWER 
;FOR I= □ TO N-1 

MOV 
CMP 
JG 
JMP 

AROUND: MOV 
MOV 

L-LOOP: 

cs:csEG 
NEAR 
BP 
BP,SP 
AX 
BX 
ex 
DX 
SI 
DI 

TRIANGLE 

ex, [BPJ+ 4 
CX,O 
AROUND 
DONE 
SI, □ 
DI,[BP]+12 

;CX=N 

iKEEP I IN SI 
i DI=ADDR(INDEX(O)) 

i CALL GINP(A(INDEX(IJ, OJ, X(OJ, TYPE A, TYPEX, N, 1, I) 
MOV AX,[DIJ 
MUL WORD PTR [BPJ+10 
ADD AX,[BP]+18 
PUSH AX 
PUSH [BP]+ 14 
PUSH [BP]+10 
PUSH [BP]+b 
PUSH [BP]+4 
MOV BX,1 
PUSH BX 
PUSH SI 
CALL GINP 

iSUM IS NOW IN ST 
i X(IJ=(Y(INDEX(I))-SUMJ/ A(INDEX(IJ, IJ 

MOV BX,[DI) 
SHL BX,1 
SHL BX,1 
CMP WORD PTR [BP)+8, 4 
JNE Y-DOUBLE 
ADD BX,[BP)+16 
FSUBR DWORD PTR [BX) 
JMP DO-DIV 

Y_DOUBLE: SHL BX,1 
ADD BX,[BP]+16 
FSUBR QWO-RD PTR [BX] 

D◊-DIV: 

i AX=INDEX(IJ 
i AX=TYPEA*INDEX(IJ 
i AX=ADDR(A(INDEX(IJ, 0)) 

i X(OJ 
iTYPEA 
iTYPEX 
iN 

i BX=INDEX(I) 

iBX=4*1NDEX(IJ 
iIS Y SINGLE? 

i BX=ADDR(Y(INDEX(IJ)) 
i ST=Y(INDEX(I))-SUM 

i BX=8*INDEX(IJ 
; BX=ADDR(Y(INDEX(I))) 
; ST=Y(INDEX(I))-SUM 

i AX HAS ADDR(A(INDEX(I), □)), SO ADD TYPEA*N*I 
MOV BX, AX i BX=ADDR(A(INDEX(I), OJ) 
MOV AX,SI iAX=I 
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WORD PTR [BP]+4 
AX,1 

;AX=N*1 MUL 
SHL 
SHL 
CMP 
JNE 
ADD 
FDIV 
JMP 

AX,1 ;AX=4*N*I 
WORD PTR [BP]+1O, 4 ;IS A SINGLE? 
A-DOUBLE 

A-DOUBLE: SHL 

; 

ADD 
FDIV 

DO-STORE: MOV 
SHL 
SHL 
CMP 
JNE 
ADD 
FSTP 
JMP 

X-DOUBLE: SHL 

L_BOTTOM: 

ADD 
FSTP 

INC 
ADD 
LOOP 
JMP 

GOTO-L-LOOP: JMP 
; 
U_TOP: 

BX,AX 
DWORD PTR [BX] 
DO-STORE 
AX,1 
BX,AX 
QWORD PTR [BX] 

BX,SI 
BX,1 
BX,1 
WORD PTR [BP]+b, 4 
X-DOUBLE 
BX ,[BP]+14 
DWORD PTR [BX] 
L-BOTTOM 
BX,1 
BX,[BP]+14 
QWORD PTR [BX] 

SI 
DI,2 
GOTO-L-LOOP 
LI-TOP 

L-LOOP 

;TAKE CARE OF UPPER TRIANGLE 
;fOR I=N-1 TO □ STEP -1 

MOV SI,[BP]+4 
MOV DI,[BP]+12 
ADD DI,SI 
ADD DI,SI 

U_LOOP: 

; BX=ADDR(A(INDEX(I), I)) 
; (Y(I)-SUM)/ A(INDEX(I), I) 

;AX=8*N*1 
; BX=ADDR(A(INDEX(l), I)) 
; (Y(I)-SUMJ/ A(INDEX(Il, I) 

;BX=I 

;BX=4*1 
;rs X SINGLE? 

; BX=ADDR(X(l)) 
; STORE X(I) 

;BX=8*1 
; BX=ADDR(X(l)) 
; STORE X(I) 

;I=I+1 
;NEXT INDEX 

;KEEP I IN SI 
; DI=ADDR(INDEX(D)) 

; DI=ADDR(INDEX(Nll 

; CALL GINP(A(INDEX(l), I+ 1), X(I+1), TYPEA, TYPEX, N, 1, N-I-1) 
DEC SI ;I=I-1 
SUB DI,2 ;NEXT INDEX 
MOV AX,SI ;AX=I 
INC AX ;AX=I+1 
MUL WORD PTR [BP]+4 ;AX=N*(I+1) 
ADD AX,[DI] ; AX=INDEX(l)+N*(I+1) 
SHL AX,1 
SHL AX,1 ; AX=4*AX 
CMP WORD PTR [BP]+1O, 4 ;IS A SINGLE? 
JE A-SINGLE 
SHL AX,1 ; AX=8*(, . . ) 

A-SINGLE: ADD · AX,[BPJ+18 ; AX=ADDR(A(INDEX(l), 
1+1)) 
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PUSH AX 
MOV BX,SI ;BX=I 
INC BX ;BX=I+1 
SHL BX,1 
SHL BX,1 ;BX=4*(I+1) 
CMP WORD PTR [BP]+b, 4 ;rs X SINGLE? 
JE X-SINGLE 
SHL BX,1 ;BX=8*(I+1) 

X-SINGLE: ADD BX,[BPJ+14 i BX=ADDR(X(I + 1)) 
PUSH BX ;NOTE: LEAVE ADDR IN 

BX 
PUSH [BPJ+1O iTYPEA 
PUSH [BPJ+b ;TYPEX 
PUSH [BP]+4 iN 
MOV DX,1 
PUSH DX i1 
MOV DX ,[BP]+4 ;DX=N 
SUB DX,SI 
DEC DX ; DX=N-(I+1) 
PUSH DX 
CALL GINP 

; 
; X(I)=X(IJ-SUM 
;NOTE BX STILL POINTS TO X(I+1) 

SUB BX,[BP]+b ; BX=ADDR(X(I)) 
CMP WORD PTR [BP]+b, 4 ;ONCE AGAIN, IS X 

SINGLE? 
JNE X-DOUBLE2 
FSUBR DWORD PTR [BX] ; ST=X(IJ-SUM 
FSTP DWORD PTR [BX] ;STORE X(I) 
JMP LI-BOTTOM 

X_DOUBLE2: FSUBR QWORD PTR [BX] ; ST=X(I)-SUM 
FSTP . QWORD PTR [BX] ; STORE X(I) 

LI-BOTTOM: 
CMP SI, □ ;DONE YET? 
JLE DONE 
JMP U_LOOP 

; 
DONE: 

POP DI 
POP SI 
POP DX 
POP ex 
POP BX 
POP AX 
POP BP 
FWAIT 
RET 16 

SOL ENDP 
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; SUBROUTINE SOL VE(A(D, □), Y(D), X(D), INDEX(□), TYPEA, TYPEY, TYPEX, NJ 
; ASSUMPTIONS: A(D,D),Y(D),X(D),INDEX(D) ARE ADDRESSES 
; TO BE PASSED TO XINP 
; TYPEA,TYPEY,TYPEX,N ARE ADDRESSES OF INTEGERS 

WHOSE VALUES SHOULD BE PASSED TO XINP 

; SOLVE CALLS THE INTERNAL SUBROUTINE SOL 

SOLVE 

PUBLIC 
ASSUME 
PROC 
PUSH 
MOV 

;SET UP STACK AREA 
PUSH 
CALL 

NEXT: POP 

SOLVE 
cs:CSEG,ES:ESEG 
FAR 
BP 
BP,SP 

IN ESEG 
ES 
NEXT 

SUB 
MOV 
SHR 
MOV 
ADD 
SUB 
ADD 
MOV 

AX 
AX,(OFFSET 
CL,4 
AX,CL 
BX,CS 
BX,ESEG 
BX,CSEG 
AX,BX 
ES,AX 

NEXTJ-(OFFSET FIRST-INST) 

MOV LOCAL-SPACE,SS 
MOV LOCAL-SPACE+2,SP 
MOV AX,ES 
MOV SS,AX 
MOV SP,OFFSET STACK-TOP 

;SET UP CALL PARAMETERS 

\ 

PUSH DS :(BP]+2O 
PUSH DS: [BP)+18 
PUSH DS :[BP)+1b 
PUSH DS :[BPJ+14 
MOV BX,DS:[BP)+12 
PUSH [BX) 
MOV BX,DS:[BP]+1O 
PUSH [BX) 
MOV BX,DS:[BP)+8 
PUSH [BX) 
MOV BX, DS: [BP]+b 
PUSH [BX] 

CALL 
MOV 
MOV 
POP 

SOL 
SP,LOCAL-SPACE+2 
SS,LOCAL-SPACE 
ES 

;ADDR(A(O,O)) 
; ADDR(Y(D)) 
; ADDR(X(D)) 
; ADDR(INDEX(D)) 
; BX=ADDR(TYPEA)° 
;TYPEA 
; BX=ADDR(TYPEY) 
;TYPEY 
; BX=ADDR(TYPEX) 
;TYPEX 
; BX=ADDR(Nl 
;N 

\· 
\ 
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POP 
RET 
ENDP 

Matrix Inversion 
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BP 
16 

One good reason for creating procedures from modular programs is the 
ease with which the subroutines may be rearranged. It is now quite easy 
to prepare a matrix inversion subroutine. Since matrix inversion is equiv
alent to solving a system of equations n times (first for a "y vector" 1,0,0, 
... , then for 0,1,0,0 ... , and so forth.), we can use CROUTP·and SOL 
to create a new subroutine INV. 

INV is called by 

CALL INV(A(□, OJ, AINV(□, OJ, SCRATCH(□), INDEX(□), IER, TYPEA, NJ 

A initially contains then by n matrix to be inverted. When INV returns, 
A contains the Crout decomposition, with permutation index in INDEX; 
AINV contains A - 1. IER equals O if A is nonsingular and -1 otherwise. 
INV calls CROUTP to reduce A. It then sets up a "y column," in vector 
SCRATCH, n times, and calls SOL to fill in the columns of the inverse 
matrix, AINV. 

; SUBROUTINE INV(A(□, □), AINV(□, □J, SCRATCH(□), INDEX(□), IER, TYPEA, NJ 
; ASSUMPTIONS: A,AINV ARE N BY N MATRICES OF TYPE TYPEA 
; SCRATCH IS SINGLE PRECISION 
; INDEX,TYPEA,N ARE INTEGERS 

; INV INVERTS A INTO AINV 

INV 

;SET UP 

NEXT: 

; 

PUBLIC 
ASSUME 
PROC 
PUSH 
MOV 

STACK AREA 
PUSH 
CALL 
POP 
SUB 
MOV 
SHR 
MOV 
ADD 
SUB 
ADD 
MOV 

MOV 
MOV 

INV 
cs:CSEG,ES:ESEG 
FAR 
BP 
BP,SP 

IN ESEG 
ES 
NEXT 
AX 
AX,(OFFSET NEXTJ-(OFFSET FIRSLINSTJ 
CL,4 
AX,CL 
BX,CS 
BX,ESEG 
BX,CSEG 
AX,BX 
ES,AX 

LOCALSPACE,SS 
LOCAL-SPACE+2,SP 
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MOV AX,ES 
MOV SS,AX 
MOV SP,OFFSET STACK-TOP 

; 

MOV BX, DS: [BP]+b 
MOV CX,[BX] 
CMP CX,O 
JG ARND 
JMP DONE 

ARND: 
; CALL CROUTP(A, INDEX, IER, TYPE, N)' 
;SET UP CALL PARAMETERS 

PUSH DS :(BP]+18 
PUSH DS :(BP]+12 
PUSH DS :(BP)+10 
MOV BX, DS :(BP]+8 
PUSH [BX) 
PUSH ex 

CALL 
; WAS IT SINGULAR 

MOV 
CMP 
JE 
JMP 

ARNDB: 

;SOLVE FOR COLUMNS 
MOV 

INV-LOOP: 
;CLEAR SCRATCH 

ZERO-LOOP: 

MOV 
MOV 
MOV 

CROUTP 

BX,DS:(BP]+10 
WORD PTR [BX], □ 

ARNDB 
DONE 

I= □ TO N-1 
SI, □ 

BX, DS: [BP]+b 
ex, !BXI 
BX,DS:(BP]+14 

MOV WORD PTR [BX], □ 

; BX=ADDR(N) 
;cx=N 

; ADDR(A(D, □)) 
; ADDR(INDEX(D)l 
; ADDR(IER) 
; BX=ADDR(TYPEA) 
;TYPEA 
;N 

; BX=ADDR(IERJ 
; IER=O? 

;KEEP I IN SI 

;CX=N 
; BX=ADDR(SCRATCH(DJJ 

MOV WORD PTR [BX]+2, 0 ; SCRATCH(J)=D 
ADD BX,4 ;J=J+1 
LOOP ZERO-LOOP 

;NOW FILL IN APPROPRIATE 1 
MOV BX,SI ;BX=I 
SHL BX,1 
SHL BX,1 ;BX=4*I 
ADD BX,WORD PTR DS:(BP]+14 

; BX=ADDR(SCRATCH(I)) 
FLD1 ;PUSH 1,0 ONTO STACK 
FSTP DWORD PTR [BX] ; STORE INTO MEMORY 

; GET ADDRESS OF AINV(D, I) 
MOV BX,DS:(BP]+b 
MOV AX,[BX] 
MUL SI 

; BX=ADDR(NJ 
;AX=N 
;AX=N*I 
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MOV BX, DS: [BP)+8 ;ADDR(TYPEA) 
MUL WORD PTR [BX] ;AX=TYPEA*N*I 
ADD AX, DS: [BP)+1b ; AX=ADDR(AINV(D, I)) 

;CALL SOL(A, SCRATCH, AINV(!], I), INDEX, TYPE A, 4, TYPEA, N) 
PUSH DS:[BP)+18 ; ADDR(A(D, DJ) 
PUSH DS :(BP]+14 ; ADDR(SCRATCH(D)) 
PUSH AX ; ADDR(AINV(D, I)) 
PUSH DS:(BP]+12 ; ADDR(INDEX(D)) 
MOV BX,DS :(BP]+8 ; BX=ADDR(TYPEA) 
PUSH [BX) ;TYPEA 
MOV AX,4 
PUSH AX ;4 
PUSH [BX] ;TYPEA 
MOV BX, DS: [BP)+b 
PUSH [BX] ;N 

; 
CALL SOL 

; 
INC SI ;I=I+1 
MOV BX, DS: [BP]+b ; BX=ADDR(N) 
CMP SI,[BX] ;SI>N? 
JGE DONE 
JMP INV-LOOP 

; 
DONE: 

MOV SP,LOCAL-SPACE+2 
MOV SS,LOCAL-SPACE 
POP ES 
POP BP 
RET 14 

INV ENDP 

Of Linear Things Not Covered Above 

Two chapters and hundreds of lin~s of code will have to suffice as an 
introduction to matrix methods. Before moving on, it's worth listing a 
few of the things not covered here. This is also a good point to pause 
for a review of some general themes in programming the 8087. 

The routines in these two chapters will do just about every ordinary 
thing you usually rteed to do with a matrix. However, if you have really 
large problems, you may soon develop an interest in extraordinary pro
cedures. Everything you need to know about the 8087 is included here, 
but there are many sophisticated algorithms that we haven't even touched 
upon. These algorithms appear in many excellent books on numerical 
computation. Two exceptional books are: 

Elementary Numerical Analysis, by S. D. Conte, McGraw-Hill. 
Introduction to Matrix Computations, by G. W. Stewart, Academic Press. 
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One of the best ways to learn more about the "tricks" of numerical 
programming is to browse through the documentation of a large nu
merical programming subroutine library. Such a "library collection" can 
usually be found at your local college computer center. The IMSL library 
is particularly good. You will find an excellent applied discussion of 
numerical methods and the IMSL library in (this book is moderately 
advanced): 

Numerical Methods, Software, and Analysis, by John R. Rice, McGraw
Hill. 

The procedures in this and the last chapter provide the basic foundation 
for matrix programming. Some advanced topic areas not covered here 
include: 

• Matrices with a lot of zeros. Problems in the natural sciences often give 
rise to special forms of matrices. For example, if we know a matrix 
is triangular, we can avoid processing the zeros. That would double 
the speed of matrix multiplication. As we've seen, taking advantage 
of the shape of a triangular matrix can improve the speed of matrix 
inversion or solving a system of equations by a factor of n. Other 
special forms include the "diagonal matrix," in which all off-diagonal 
elements are zero; the "band matrix," which is zero except for ele
ments close to the diagonal; and the general designation of a "sparse 
matrix." Sparse matrices, which often arise from solving systems of 
differential equations, may be 99 percent zeros. Special storage tech
niques, in which only the nonzero elements are stored, must be used 
to work with sparse matrices. 

• Matrices with special mathematical properties. Sometimes the mathe
matics of a problem supply special information about the structure 
of the numbers stored in a matrix. For example, many problems give 
rise to a symmetric matrix, one in which Ai,j equals Ai,i. You can 
double the speed of many matrix operations by taking advantage of 
symmetry. Symmetric matrices are especially common in statistical 
work. · 

• Super-high accuracy methods. One of the lessons of numerical pro
gramming is that mathematically correct procedures don't always 
give the mathematically correct answer when executed on a com
puter with finite precision. One place this lesson is often learned is 
in the reduction of a matrix to triangular form. We picked the Crout 
reduction with partial pivoting because it is particularly well suited 
to the 8087's high-precision, temporary real format internal registers. 
Nonetheless, you may eventually want to learn about other methods, 
including iterative techniques, which are much slower, but which 
can be much more accurate. 
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8087 Matrix Program Review 
1. Expect assembly language programs to be 10 times as long as their 

BASIC counterparts. Writing large programs in assembler is time 
consuming and error prone. In fact, the expense in programming 
time may be prohibitive. (Even if the time is "free," because it's 
your own.) 

2. 8087 assembly language programs may be 100, or more, times faster 
than BASIC programs. In fact, when attempting large problems in 
BASIC, the expense in computer time may be prohibitive. (Even if 
the time is "free," because the computer is already paid for.) 

3. Optimize the inner-most loop. Worry about optimizing, for speed and 
for accuracy, the equivalent of the inner-most FOR/NEXT loop. For 
matrix operations, this usually means having an inner product rou
tine carefully hand-coded for the 8087. We chose Crout decompo
sition over Gaussian elimination for two reasons. First, the inner 
product specification allowed accumulation in a high-precision reg
ister even if the overall operation is only single precision. Second, 
this specification allows us, if we wish, to code just the inner product 
routine in assembler and leave the shell of the program in BASIC. 

4. Never invert a matrix when you really need only solve a system of 
equations. Reducing a matrix is an order n3 operation. Inverting a 
reduced matrix requires an additional order n3 operations, while 
solving a system of equations only requires an additional order n2 

operations. A series of solutions is best obtained with one call to 
REDUCE and several calls to SOL VE, not one call of INV and several 
MATMULTs. The principle exception to this rule occurs when the 
inverse matrix itself has an important interpretation, as it frequently 
does in statistical applications. 

5. The 8088 can do most bookkeeping faster than the 8087 can do 
floating point arithmetic, so most 8088 operations run in parallel 
with the 8087's speed as the limiting factor. An exception is the 
integer multiply used in addressing matrix elements. It pays to keep 
integer multiplication out of inner-most loops. Sometimes multi
plication can be avoided by adding to a location counter at each 
loop. At other times, a "left shift" can be substituted for each mul
tiply-by-2. (Not coincidentally, Intel made the multiply instruction 
on its newer processors, the 188 and 186, three times as fast as on 
the original 8088 and 8086.) 

6. Counter testing can be done at either the top or the bottom of a 
loop. The choice is largely a matter of style. (Loops which use the 
8088 LOOP instruction test more naturally at the bottom.) Some of 
the programs in the last two chapters test at the top and some test 
at the bottom, so that you can see both methods. Ordinarily, it's 
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good programming practice to choose one style or the other and 
stick to it. 

7. Subroutine calls, subroutine relocation code, and a few other in
struction sequences are very repetitive. If you use the MACRO 
assembler, you might want to replace these sequences with macros. 

8. To conserve storage, the routines here reduce a matrix "in place." 
If you need to save the original matrix, make a copy first using 
GCOPY from Chapter 9. 

Onward, Non-linearly 

We set aside matrix operations here, and move on to non-linear oper
ations in Chapter 12. If you'd like some practical applications of our matrix 
routines, skip ahead to the discussion of statistical computing in Chapter 
14. 



Advanced Instruction 
Set 

In this chapter, we pick up and complete the task laid aside at the end 
of Chapter 6, our description of the 8087 instruction set. Describing the 
use of the most advanced instructions is rather long and technical; on a 
first reading you may want to proceed directly to the next chapter. 

Program: 
Purpose: 
Input: 
Output: 
Language: 
Note: 

Program: 
Purpose: 
Input: 
Output: 
Language: 
Note: 

Program: 
Purpose: 
Input: 
Output: 
Language: 
Note: 

Program: 
Purpose: 
Input: 

The Cookbook-Chapter 12 

LN 
Natural logarithm (base e). 
8087 register ST; requires ST>0. 
8087 register ST; new ST = log(old ST). 
8087/8088 assembly language. 
NEAR procedure. 

LOGl0 
Common logarithm (base 10). 
8087 register ST; requires ST>0. 
8087 register ST; new ST = log10(old ST). 
8087/8088 assembly language. 
NEAR procedure. 

TW02THEZ 
Raises 2 to the power Z. 
Z in 8087 register ST. 
8087 register ST; new ST = 2<0 Id ST)_ 

8087/8088 assembly language. 
NEAR procedure. 

EXP 
Raises e to the power X. 
X in 8087 register ST. 

179 
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Output: 
Language: 
Note: 

Program: 
Purpose: 
Input: 
Output: 
Language: 
.Note: 

Program:. 
Purpose: 
Input: 

Output: 
Language: 
Note: 

Program: 
Purpose: 
Input: 
Output: 
Language: 
Note: 

Program: 
Purpose: 
Input: 
Output: 
Language: 
Note: 

Program: 
Purpose: 
Input: 
Output: 
Language: 
Note: 
Program: 
Purpose: 
Input: 
Output: 
Language: 
Note: 

8087 register ST; new ST = e<01<l ST). 

8087/8088 assembly language. 
· NEAR procedure. 

TEN2THEX 
Raises 10 to the power X. 
X in 8087 register ST. 
8087 register ST; new ST = 10<01ct ST). 

8087/8088 assembly language. 
NEAR procedure . 

Y2THEX 
Raises Y to the power X. 
X in 8087 register ST. 
Yin 8087 register ST(l). 
8087 register ST; new ST = (old ST)<01d ST(l))_ 

8087/8088 assembly language. 
NEAR procedure. 

TANGENT 
Compute tangent. 
8087 register ST (angle in radians). 
8087 register ST; new ST = tan(old ST). 
8087/8088 assembly language. 
NEAR procedure. 

SINE 
Compute sine. 
8087 register ST (angle in radians). 
8087 register ST; new ST = sin(old ST). 
8087/8088 assembly language. 
NEAR procedure. 

COSINE 
Computer cosine 
8087 register ST (angle in radians) 
8087 register; new ST= cos ( old ST). 
8087/8088 assembly language. 
NEAR procedure. 
ARCTAN 
Compute arctangent. 
8087 register ST. 
8087 register ST; new ST = arctan(old ST). 
8087/8088 assembly language. 
NEAR procedure. 

This chapter is divided into four sections. The first two sections finish 
describing the arithmetic and constant instructions. The last two sections 
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present the transcendental and processor control instructions. A number of 
examples are included for the more intricate operations. 

Arithmetic Instructions 

Four arithmetic instructions remain to be discussed. 

FRDINT {SD 9 microseconds 
FRDINT (round to integer) rounds the element on top of the 8087 stack 
to an integer. (The number continues to be represented as a temporary 
real; after an FRDINT the temporary real number has an integer value.) 
The 8087 offers four rounding modes: round to nearest, round down, round 
up, and chop (round toward zero). Round to nearest is the default mode. 

FSCALE {ST,ST(1)} 7 microseconds 
FSCALE (scale by powers of two) adds the value found in ST(l) to the 
exponent of ST. This effectively multiplies the top of stack element by 2 
to the power contained in ST(l). Since the exponent field is an integer, 
the value in ST(l) should be an integer as well. If ST(l) is not an integer, 
the value is rounded toward zero before being added to the exponent in 
ST. The scale factor in ST(l) must be between -32768 and 32768 (215). 

If the scale factor is out of range or a non-integer value between -1 and 
+ 1, the result is undefined. For safety, load ST(l) from a word integer. 
Notice that FSCALE provides an extremely fast way to multiply or divide 
numbers by a power of 2. 

FPREM {ST,ST(1)} 25 microseconds 
FPREM (partial remainder) divides the stack top by ST(l) and places the 
remainder back in the stack top. (We explain use of the name "partial" 
below.) The result is exact with no loss of precision. FPREM (in effect) 
repeatedly subtracts ST(l) from ST and leaves the remainder in ST. When 
no more subtractions can be done without getting a negative difference, 
FPREM quits. Thus, if ST initially holds X, at completion of FPREM ST 
holds X- (q x ST(l)), where q is an integer. 

FPREM will, however, only reduce the difference in magnitude be
tween ST and ST(l) by 264• If the difference is greater than this, repeated 
executions are necessary. (The 8087 doesn't allow itself to be interrupted 
in the middle of an instruction. Some programs might want to interrupt 
the 8087 in a bit of a hurry, so FPREM was designed to work part way 
through a modular division problem at each execution.) At each step, 
the "partial remainder" is left in ST. At the end of each execution, three 
possible comparisons exist between ST and ST(l). If ST<ST(l), the re
mainder is in ST. If ST=ST(l), the remainder is 0. If ST>ST(l), then ST 
has only the partial remainder and FPREM should be repeated. FPREM 
sets bit C2 of the status word when it needs to be repeated and clears 
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the bit when it has completed. FPREM also places the least-significant 
three bits of the quotient, q, in bits CO, C3, and Cl, which is quite useful 
in analyzing periodic functions, such as sine, cosine, and tangent. For 
example, if all CO, C3, and CO equal zero, then the quotient is a multiple 
of eight. If Cl alone equals one, then the quotient is one greater than a 
multiple of eight. (Why eight? Because trigonometric calculations are 
based on dividing a cir<!le into eight parts.) Table 12.1 describes the 
possible bit patterns. 

Table 12-1. Condition Code Bits After FPREM. 

Least Significant Bits 
of Quotient co C3 C1 

0 0 0 0 
1 0 0 1 
2 0 1 0 
3 0 1 1 
4 1 0 0 
5 1 0 1 
6 1 1 0 
7 1 1 1 

The most important use of FPREM is in bringing arguments into the 
valid range for the transcendental instructions. Examples using FPREM 
are given in the section "Trigonometric Functions," below. 

FXTRACT {ST} 1 O microseconds 
FXTRACT (extract exponent and significand) separates out the exponent 
and significand of the top of stack element. The exponent replaces the 
top of stack element and the significand is then pushed onto the stack. 
(Both are represented as temporary reals.) If ST originally held zero, both 
exponent and significand are zero. Note that FXTRACT is the logical 
inverse of FSCALE. 

Constant Instructions 

The 8087 has seven useful constants "hardwired in." These constants 
have full temporary real accuracy (over 19 decimal digits). Use of a con
stant instruction saves about eight microseconds and considerable nuis
ance as compared to retrieving data from memory. 

The constants are zero, one, pi, and four logarithmic values. 

FLDZ {ST} 3 microseconds 
FLDZ (load zero) pushes 0.0 onto the stack. 
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FLD1 {ST} 4 microseconds 
FLDl (load one) pushes l.O onto the stack. 

FLDPI {ST} 4 microseconds 
FLDPI (load pi) pushes pi onto the stack. 

FLDL2T {ST} 4 microseconds 
FLDL2T (load log2 10) pushes log2 10 onto the stack. 

FLDL2E {ST} 4 microseconds 
FLDL2E (load log2 e) pushes log2 e onto the stack. (e is the base of the 
natural logarithms.) 

FLDLG2 {ST} 4 microseconds 
FLDLG2 (load common logarithm of 2) pushes log10 2 onto the stack. 

. . 

FLDLN2 {ST} 4 microseconds 
FLDLN2 (load natural logarithm of 2) pushes loge 2 onto the stack. 

Transcendental Instructions 

Five transcendental instructions are provided on the 8087. Two of these 
instructions are used for logarithmic calculations, one for exponentiation, 
and two for trigonometric calculations. The five instructions provide core 
calculations for a much larger set of transcendental operations. We have 
written this section in two parts. In the first part we .describe the five 
instructions. In the second part we present a series of 8087 NEAR pro
cedures that can be used for the most common transcendental functions. 

The transcendental instructions require vaJid (normalized) arguments 
and require that the arguments be within range. Further, the transcen
dental instructions do not check their arguments. Invalid arguments may produce 
erroneous results. 

F2XM1 {ST} 100 microseconds 
F2XM1 (2 to the X, minus 1) takes the stack top as X, calculates 2x-1, 
and places the answer back in the stack top. X must be between 0 and 
½, inclusive. While calculating 2x -1 instead of 2x seems peculiar at first, 
this method allows much more accuracy when X is small. For example, 
2°-000001 is approximately 1.000000693. Subtracting one allows the 8087 to 
report, in this case, about seven extra significant digits. 

Below, we show how to use F2XM1 to calculate exponents to bases 
other then two. 
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FYL2X {ST,ST(1)} 190 microseconds 
FYL2X (Y times log2 X) calculates Y x log2 X, where X is in ST and Y in 
ST(l). The stack is popped, eliminating X, and the answer then replaces 
Y in the new top of stack. X must be strictly positive. 

Below, we show how to use FYL2X to calculate logarithms using bases 
other than two. 

FYL2XP1 {ST,ST(1)} 170 microseconds 
FYL2XP1 (Y times log2 (X + 1)) takes X from the stack top, Y from ST(l), 
and calculates Y x log2 (1 + X). X is popped and the result replaces Y on 
the new stack top. The absolute value of X must be greater than zero 
and less than SQRT(2)/2. FYL2XP1 should be used in preference to FYL2X 
when the argument is very close to one. 

FPTAN {STI 90 microseconds 
FPTAN (partial tangent) calculates tan(theta), where theta is in the stack 
top. The argument theta is restricted to the range 0 < theta< pi/4. The 
answer is in the form of a ratio Y/X. Y replaces theta and Xis pushed onto 
the stack. 

We can translate from tangent to sine and cosine by use of standard 
trigonometric identities. (See "Trigonometric Functions", below.) 

FPATAN {ST,ST(1)} 130 microseconds 
FPATAN (partial arctangent) calculates arctan (Y/X) where X is taken 
from ST and Y from ST(l). Y and X must observe the inequality 0 < Y 
< X < infinity. FPATAN pops the stack and then places the answer in 
the new stack top, replacing Y. 

FP ATAN serves as a base for calculating all the inverse trigonometric 
functions. 

In the following sections, we create a number of "super instructions." 
Each "super instruction" is an 8087/8088 NEAR procedure that computes 
a common mathematical function. The procedures all assume that the 
calling routine has provided necessary scratch space and defined required 
constants. The calling routine should look something like the following. 

;CALLING ROUTINE FOR "SUPER-INSTRUCTIONS" 
CSEG SEGMENT 'CODE' 

ASSUME CS;CSEG,ES:ESEG 
; WE SHOULD SAVE ANY REGISTERS AS REQUIRED 

CSEG 

MOV AX,ESEG ;POINT TO SCRATCH 

MOV 
MOV 
MOV 
CALL 
ENDS 

ES,AX 
SS,AX 

AREAS 

SP,OFFSET STACK-TOP 
SUPER-INSTRUCTION 



ESEG SEGMENT 
STATUS-WORD 
CONTROL-WORD 
CONTROL-WORD-TEMP 
HALF 
MINUS2 
SIGN-STORE 
REALLY-COS 
LOCAL-SPACE 
STACK-AREA 
STACK-TOP 
ESEG ENDS 

END 

'DATA' 
DW 
DW 
DW 
DD 
DW 
DB 
DB 
DW 
DW 
EQU 
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? 
? 
? 
3f□□□□□□H 
-2 
? 
? 
1 □ DUP(?) 
5 □ DUP(?) 
THIS WORD 

The diskette prepared for this book includes routines to call each of the 
"super-instructions" from BASIC. 

Logarithms 

The 8087 hardware calculates logarithms for log base two. Most mathe
matical applications require natural logarithms, log base e, or common 
logarithms, log base 10. These are easily calculated using the fundamental 
identity for changing the base of a logarithm. Suppose we want the log 
of X base n, and only know how to calculate logarithms using base two. 

logn X = logn 2 x log2 X 

In this case n is e or 10. The following "super instructions" assume X 
is on the stack top, that O < X < infinity, and that the stack is not too 
deep to be pushed at least once more. Xis replaced with its logarithm. 

i NATURAL LOG {ST} 197 MICROSECONDS 
iSUBROUTINE LN 
LN PROC 

FLDLN2 
FXCH 
FYL2X 

RET 
LN ENDP 

i COMMON LOG {ST} 
iSUBROUTINE LOG1□ 
LOG1 □ PROC 

FLDLG2 
FXCH 
FYL2X 

RET 
LOG1 □ ENDP 

NEAR 

NEAR 

iPUSH LOG BASE E 
i SWAP ST, ST(1) 
iPOP AND REPLACE 

LOG 

OF 2 

ST WITH NATURAL 

197 MICROSECONDS 

iPUSH LOG BASE E Of 1 □ 

i SWAP ST, ST(1) 
iPOP AND REPLACE ST WITH NATURAL 

LOG 
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Exponentiation 
The 8087 hardware provides the instruction F2XM1 for raising 2 to the 
power X. Mathematical calculations often require ex, 10x, and yx. These 
are easily calculated using the fundamental identity for changing the base 
of an exponent. Suppose we want yx and only know how to calculate 
2x. 

yX = 2<x X log2 y) 

Exponentiation routines would be simple if we had an instruction to 
raise 2 to an arbitrary power. Since F2XM1 only accepts arguments be
tween 0 and ½, we need a super-instruction to perform the operation 
22 for an arbitrary Z. The 8087 instruction set is organized to make this 
a relatively easy operation, though a bit of planning is required. We 
actually have two hardware operations for taking a power of two. F2XM1 
accepts exponents between 0 and ½. FSCALE accepts any integer ex
ponent. We'll pick 2 1 and 2 2 such that 2 1 is an integer and 2 2 is a positive 
fraction. If 2 2 is feater than ½, we'll subtract½ from 2 2 and then multiply 
the answer by 2 . (This is all easier than it sounds.) The algorithm works 
as follows: 

1. Let 2 1 equal the greatest integer less than or equal to Z. This is a 
little messy since we need to round down Z. In order to accomplish 
this, we need to change the 8087 rounding control by using the load 
control word, FLDCW, and store control word, FSTCW instructions; 
instructions we don't officially meet until the next section. 

2. Let 2 2 = Z - 2 1• Note that 2 2 is guaranteed to be positive. 
3. Is 2 2 > ½? If so, subtract½ and make note of the fact. 
4. Raise 2 to the 2 2 and scale by 2 1• 

5. If we subtracted½ from 2 2 above, now multiply the result by 2½. 

i2 TO THE Z {ST} 
iSUBROUTINE TW02THEZ 

295 MICROSECONDS 

iTHIS ROUTINE ASSUMES THAT THE FOLLOWING MEMORY LOCATIONS 
iHAVE BEEN DEFINED 
i STATUS-WORD 2 BYTES 
i CONTROL-WORD 2 BYTES 
i CONTROL-WORD-TEMP 2 BYTES 
i HALF HAS 0,5 IN SHORT-REAL FORMAT 

iZ IS ASSUMED TO BE FOUND IN ST 
i THERE MUST BE AT LEAST 2 FREE STACK LOCATIONS 
TW02THEZ PROC NEAR 

PUSH AX 
FSTCW CONTROL-WORD 

FSTCW CONTROL-WORD-TEMP 

iSAVE AX 
iSAVE CONTROL WORD SO 

WE CAN 
iRESTORE IT LATER 

iUSE TEMP TO CHANGE 
i ROUNDING CONTROL(RC) 



; 
WAL22: 

TW02THE2 

FWAIT 
AND 

OR 
FLDCW 
FLD 

FRNDINT 
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CONTROL-WORD-TEMP, □F3FFH iCLEAR OUT RC 
BITS 

CONTROL-WORD-TEMP, □□ 4 □□H iRC=ROUND-DOWN 
CONTROL-WORD-TEMP iSET TO ROUND DOWN 
ST(□) i PUSH COPY OF 2 ONTO 

ST 

FLDCW CONTROL-WORD 
i OK, ST=21, ST(1)=2 
iRETURN THINGS TO NORMAL 
i ST(1)(22)=2-Z1 FSUB ST(1), ST 

FXCH 
FLD HALF 

FXCH 
FPREM 

FSTSW STATUS-WORD 
FWAIT 

FSTP ST(1) 
F2XM1 
FLD1 
FADDP ST(1), ST 

ST=22, ST(1)=Z1 
iLOAD 1/2 ONTO THE 

STACK 
i ST=22 ST(1)=1/2 
iST HAS 22 OR 22=1/2 
iC1=1 IN THE LATTER 

CASE 

iNOW WE'VE GOT FLAGS 
SET 

iGET RID OF THE 1/2 
iST=(2 TO THE STJ-1 

TEST BYTE PTR STATUS-WORD+1, □□□□□□ 1 □B 
iST HAS 22 IF BIT 1 ON 

J2 WAL22 iOTHERWISE IT WAS 
22-1/2 

FLD1 ;so, 
FADD ST, ST(□) i MULTIPLY BY THE 
FSQRT ;SQUARE ROOT OF 2 
FMULP ST(1), ST 

iWE JUST NEED TO SCALE 
FSCALE iNOTICE WE DIDN'T 

CHECK 
iFOR OVER OR UNDERFLOW 

FSTP ST(1) 
POP AX 
RET 
ENDP 

This may all seem like going to some trouble, but it does speed things 
up quite a bit over not having an 8087. How much? Try rewriting our 
super instruction "2 to the Z" in BASIC without the 8087. You'll find 
that one minute of 8087 exponentiation takes just about an hour with 
compiled BASIC and about three hours with interpreted BASIC. 

Of course, we aren't actually interested in raising two to some power 
all that often. With the TW02THEZ firmly in hand, it's easy to provide 
new super-instructions for ex, 10x, and yx. 
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; EXP(X) {ST} 
EXP PROC 

FLDL2E 
FMULP 
CALL 
RET 

EXP ENDP 

i 10 TO THE X {ST} 

NEAR 

ST(1), ST 
TW02THEZ 

TEN2THEX PROC NEAR 
FLDL2T 
FMULP ST, ST(1) 
CALL TW02THEZ 
RET 

TEN2THEX ENDP 

;y TO THE X {ST(1),ST} 
; ASSUMES Y IS POSITIVE IN {ST} 
; ASSUMES X IN ST(1) 
Y2THEX PROC NEAR 

FYL2X 
CALL TW02THEZ 
RET 

Y2THEX ENDP 

Trigonometric Functions 

322 MICROSECONDS 

;PUSH LOGE BASE 2 
;ST=X TIMES LOGE BASE 2 
; ST=EXP(X) 

322 MICROSECONDS 

;PUSH LOG 10 BASE 2 
;ST=X TIMES LOG 10 BASE 2 
;ST=10 TO THE X 

482 MICROSECONDS 

iST=Y TIMES LOG X BASE 2 
;ST=Y TO THE X 

The tangent function provides the base for calculating all the common 
trigonometric functions. FPTAN calculates the tangent for arguments 
between O and pi/4. Computation of a trigonometric function involves 
three broad steps. First, prologue code is used to bring the argument 
within range of the FPT AN instruction. Second, the FPTAN instruction 
is applied. Third, epilogue code is used to correct the result of FPTAN. 
The trigonometric identities used are described in the code below. 

;TANGENT {ST} 370 MICROSECONDS 
;THETA IN ST IS ASSUMED TO BE A VALID NUMBER 
;THERE MUST BE AT LEAST 2 FREE STACK LOCATIONS 
;THIS ROUTINE ASSUMES THAT THE FOLLOWING MEMORY 
iLOCATIONS HAVE BEEN DEFINED: 
;STATUS-WORD 2 BYTES 
;SIGN-STORE 1 BYTE 
;MINUS2 2 BYTES INITIALIZED TO -2 

TANGENT PROC NEAR 
PUSH AX 
PUSH BX 

;FIRST CHECK FOR A NEGATIVE ARGUMENT 
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; NOTE TAN(-X)=-TAN(Xl 
MOV SIGN-STORE, □ ;ASSUME POSITIVE 
FTST 
FSTSW STATUS-WORD 
FWAIT 
MOV AH,BYTE PTR STATUS_WORD+1 
SAHF 
JNC NON-NEGATIVE 
MOV SIGN_STORE,-1 ;ITS NEGATIVE 
FABS ;NOW POSITIVE 

NON-NEGATIVE: 
;NOW GET ST BETWEEN □ AND PI/4 

FILD MINUS2 
FLDPI 
FSCALE 
FSTP ST(1) 
FXCH 

; NOW X IS IN ST AND PI/4 IN ST(1) 
RANGE: 

FPREM 
FSTSW 
FWAIT 

STATUS-WORD 

iLOAD -2 
;LOAD PI 
;GOT PI/4 
;DUMP -2 

MOV 
SAHF 

AH,BYTE PTR STATUS-WORD+1 

JP RANGE ;THIS TESTS BIT C2 
iAT THIS POINT AH HAS THE STATUS BITS 
;NOW LETS SEE IF THE REMAINDER WAS EXACTLY ZERO 

FTST 
FSTSW 
FWAIT 

STATUS-WORD 

;IT WAS ZERO IF C3=1 AND CO=□ 
;If ZERO, SET BX=-1, ELSE BX=□ 

NOT-ZERO: 

MOV 
AND 
CMP 
JNE 
MOV 

BX, □ 

BYTE PTR 
BYTE PTR 
NOT-ZERO 
BX,-1 

STATUS-WORD+1, □ 1□□□□□1B 
STATUS-WORD+1, □ 1 □□□□□1B 

;THERE ARE FOUR POSSIBILITIES GIVEN ST NOW HAS X MOD PI/4 

;OCTANT C3 C1 CALCULATE IF ZERO 
;0,4 □ □ FPTAN(ST) □ 
;1,5 □ 1 1/FPT AN(PI/4 - ST) 1 
;2,b 1 □ -1/FPT AN(STJ INFINITY 
;3,7 1 1 -FPTAN(PI/4 - ST) -1 
; 
;FIRST CHECK BIT C1 AND TAKE FPTAN 

TEST AH,1□ B HS C1 ON 
JZ C1ISOFF ;JUMP IF OFF 
CMP BX, □ ;ST EXACTLY ZERO? 
JNE ST□ANDC1 ;JUMP IF YES 
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ST □ ANDC1: 

C1ISOff: 

FSUBP 
F-PTAN 
JMP 

FSTP 
FSTP 
FLD1 
FLD1 
JMP 

FSTP 
CMP 
JNE 
FPTAN 
JMP 

ST □ANDNOC1: 

TANDONE: 

FSTP 
FLDZ 
FLD1 

ST(1),ST 

TANDONE 

ST 
ST 

TANDONE 

ST(1) 
BX, □ 
ST □ANDNOC1 

TANDONE 

ST 

;PUT C1 XOR C3 IN BX 
MOV BX, □ 

;If C3 IS ON THEN 
TEST 
JZ 
FCHS 
MOV 

NOC3: 
HS C1 ON ? 

NOC1: 
RECIP: 

TEST 
JZ 
XOR 
JMP 
XOR 

CHANGE SIGNS 
AH, □ 1□□□□□□B 
NOC3 

BX,1 

AH,10B 
NOC1 
BX,1 
RECIP 
BX, □ 

;NOW PI/4-ST 

;POP ST 
; AND PI/4 
;LOAD RATIO 1 TO 1 

;GET RID OF PI/4 
;ST EXACTLY ZERO? 
;JUMP IF YES 

;DUMP ST 
;LOAD RATIO OTO 1 

;ASSUME C3 OFF 

; JUMP IF OFF 

;NOTE C3 ON 

;JUMP IF OFF 

;If BX=1 THEN WE WANT RECIPROCAL OF RATIO 
CMP 
JNE 
FXCH 

NORECIP: FDIVP 
;DID WE ORIGINALLY 

CMP 

LEAVE-POS: 

TANGENT 

JE 
FCHS 

POP 
POP 
RET 
ENDP 

BX,1 
NORECIP 

ST(1),ST 
CHANGE SIGN? 

SIGN_STORE,O 
LEAVE-POS 

BX 
AX 

;THAT'S IT 

Sine and ~osine functions are also calculated using FPTAN. Since a 
cosine is just a sine rotated 90 degrees, we build the cosine routine to 
make use of the code for sines. 
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; SINE {ST} 513 MICROSECONDS 
;THETA IN ST IS ASSUMED TO BE A VALID NUMBER 
;THERE MUST BE AT LEAST 3 FREE STACK LOCATIONS 
;THIS ROUTINE ASSUMES THAT THE FOLLOWING MEMORY 
;LOCATIONS HAVE BEEN DEFINED: 
; ST A TULWORD 2 BYTES 
;SIGN-STORE 1 BYTE 
;MINUS2 2 BYTES INITIALIZED TO -2 
;REALLY-COS 1 BYTE 
SINE PROC NEAR 

PUSH AX 
PUSH BX 

;FIRST CHECK FOR A NEGATIVE ARGUMENT 
; NOTE SIN(-X)=-SIN(X) 

MOV SIGN-STORE, □ ;ASSUME POSITIVE 
FTST 
FSTSW STATUS-WORD 
FWAIT 
MOV AH,BYTE PTR STATUS-WORD+1 
SAHF 
JNC NON-NEGATIVE 
MOV SIGN-STORE,-1 ;ITS NEGATIVE 
FABS iNOW POSITIVE 

NON-NEGATIVE: 
MOV REALLY-COS, □ 

COS-ENTRY: 
iNOW GET ST BETWEEN D AND PI/4 

FILD MINUS2 
FLDPI 
FSCALE 
FSTP ST(1) 
FXCH 

; NOW X IS IN ST AND PI/4 IN ST(1) 
RANGE: 

STATUS-WORD 

;SINE, NOT COSINE 

;LOAD -2 
;LOAD PI 
;GOT PI/4 
iDUMP -2 

FPREM 
FSTSW 
FWAIT 
MOV 
SAHF 
JP 

AH,BYTE PTR STATUS-WORD+1 

RANGE ;THIS TESTS BIT C2 
;AT THIS POINT AH HAS THE STATUS BITS 

;If WE ARE REALLY DOING COSINE, WE NEED TO ADD TWO TO THE 
OCTANT 

iADD INTO 

CMP 
JE 

C3 AND 
XOR 
TEST 
JNZ 
XOR 

REALLY-COS, □ 

ITS-SINE 
CARRY INTO CO 

AH, □ 1□□□□□□B 
AH,O10□□□□□B 
NOCARRY 
AH,1B 
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NOCARRY: 
ITS-SINE: 
;NOW LETS SEE IF THE REMAINDER WAS EXACTLY ZERO 

FTST 
FSTSW STATUS-WORD 
FWAIT 

;IT WAS ZERO IF C3=1 AND C □ = □ 

;If ZERO, SET BX=-1, ELSE BX=□ 

MOV BX, □ 

AND BYTE PTR STATUS-WORD+1, □ 1□□□□□1B 

CMP BYTE PTR STATUS-WORD+1, □ 1□□□□□1B 
JNE NOT-ZERO 
MOV BX,-1 

NOT-ZERO: 
;THERE ARE FOUR POSSIBILITIES GIVEN ST NOW HAS X MOD PI/4 
;OCTANT C3 C1 CALCULATE IF ZERO 
;a □ □ SIN(ST) □ 
;1 □ 1 COS(PI/4 - ST) SQRT(2)/2 
;2 1 □ COS(ST) 1 
;3 1 1 SIN(PI/4 - ST) SQRT(2)/2 
; 
; OCTANTS 4-7 ARE JUST LIKE □ -3 ONLY NEGATIVE 
; NOTE: IF TAN(THETAJ=X/Y, THEN 
; SIN(THETA)=X/SQRT(X*X+Y*Y) 

COS(THETA)=Y /SQRT(X*X+Y*Y) 
; 

iFIRST CHECK BIT C1 AND TAKE FPTAN 
TEST AH,1 □ B 

JZ C1ISOFF 
CMP BX, □ 

JNE ST □ ANDC1 
FSUBP ST(1), ST 
FPTAN 
JMP SINDONE 

ST □ANDC1: 

FSTP ST 
FSTP ST 
FLD1 
FLD1 
JMP SINDONE 

C1ISOFF: 
FSTP ST(1) 
CMP BX, □ 

JNE ST □ ANDNOC1 
FPTAN 
JMP SINDONE 

ST □ANDNOC1: 

FSTP ST 
FLDZ 
FLD1 

;IS C1 ON 
; JUMP IF OFF 
;ST EXACTLY ZERO? 
;JUMP IF YES 
;NOW PI/4-ST 

;POP ST 
i AND PI/4 
;LOAD RATIO 1 TO 1 

;GET RID OF PI/4 
;ST EXACTLY ZERO? 
;JUMP IF YES 

;DUMP ST 
iLOAD RATIO □ TO 1 
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SINDONE: 
;rs (1 XOR (3 TRUE? 

MOV BX,O 

HF C3 IS ON 

NOC3: 
;rs C1 ON 

NOC1: 
DOSINE: 
;If BX=1 

SINFUNC: 

TEST 
JZ 
MOV 

? 
TEST 
JZ 
XOR 
JMP 
XOR 

THEN WE 
CMP 
JNE 
FXCH 

AH,01000000B 
NOC3 
BX,1 

AH,1 □B 

NOC1 
BX,1 
DOSINE 
BX,O 

WANT WANT COSINE 
BX,1 
SINFUNC 

; ST(1J=X, ST(OJ=Y 
; SIN(THET AJ=X/SQRT(X*X +Y*Yl 

FMUL ST(O), ST(O) 
FLD ST(1) 
FMUL ST(OJ, ST(OJ 
FAD DP ST(1),ST(OJ 
FSQRT 
FDIVP ST(1),ST(O) 

i IS BIT CO ON? 

COOff: 

TEST 
JZ 
NOT 

AH,1B 
COOFF 
SIGN-STORE 

iDO WE NEED TO CHANGE SIGN? 

LEAVE-POS: 

CMP 
JE 
FCHS 

POP 
POP 
RET 

SINE ENDP 

SIGN-STORE, □ 

LEAVE-POS 

BX 
AX 

;ASSUME C3 OFF 

;JUMP IF OFF 
;NOTE C3 ON 

;JUMP IF OFF 

FUNCTION 

i ST(OJ=Y*Y 
i ST(OJ=X 
i ST(□J=X*X 
i ST(□J=X*X+Y*Y 

iCOSINE {ST} 510 MICROSECONDS 
iTHETA IN ST IS ASSUMED TO BE A VALID NUMBER 
;THERE MUST BE AT LEAST 3 FREE STACK LOCATIONS 
;THIS ROUTINE USES THE SINE ROUTINE 
COSINE PROC NEAR 

PUSH AX 
PUSH BX 
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FABS 
MOV 
MOV 
JMP 

SIGN-STORE, □ 
REALLY-COS,-1 
COS-ENTRY 

COSINE ENDP 

;ITS POSITIVE NOW 

For further explanation of trigonometric calculations and for programs 
which perform sophisticated error checking, see 

Getting Started With the Numeric Data Processor, by Bill Rash, Intel Cor
poration, Application Note AP-113. 

Inverse Trigonometric Functions 
The 8087 instruction FPATAN performs·the core calculations for the in
verse trigonometric functions: Arctan, Arcsin, Arccos, Arccot, Arccsc, 
and Arcsec. Just as FPTAN produces a result in the form Y/X, so FPATAN 
accepts an argument in the form Y/X. The inverse trigonometric functions 
require somewhat less programming, because the argument range is less 
restricted for FPATAN than for FPTAN. (The direct trigonometric func
tions are periodic, where the inverse trigonometric functions aren't.) For 
FPATAN, we need only assure that the arguments obey the relation 0 
< Y < X < infinity. Thus to compute Arctan(Z) we need to check seven 
cases: Z equal 0, Z positive or negative and ABS(Z) less than, equal to, 
or greater than 1. We bring Z into the proper range by using the identities: 

Arctan(Z) = - Arctan( - Z) 
Arctan(Z) = pi/2 - Arctan(l/Z) 

;ARCTAN {ST} 
;ST IS ASSUMED TO BE A NORMAL NUMBER 

351 MICROSECONDS 

;THERE MUST BE AT LEAST 3 FREE STACK LOCATIONS 
;THIS ROUTINE ASSUMES THAT THE FOLLOWING MEMORY 
;LOCATIONS HAVE BEEN DEFINED: 
;STATUS-WORD 2 BYTES 
;SIGN-STORE 1 BYTE 
ARCTAN PROC NEAR 

PUSH AX 
;THE FIRST PROBLEM IS TO CHECK FOR A ZERO OR 

NEGATIVE ARGUMENT 
MOV SIGN-STORE, □ 
FTST 
FSTSW 
FWAIT 

STATUS-WORD 

;ASSUME NON-NEGATIVE 

MOV 
SAHF 

AH,BYTE PTR STATUS-WORD+1 

JA 
JZ 
JMP 

POSITIVE 
ZERO 
NEG-ATIVE 

;ASSUME ITS ZERO 
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ZERO: 
; ARCTAN(□)= □ 

FSTP ST(□) 
FLDZ 
JMP DONE 

NEGATIVE: ;DEAL WITH A NEGATIVE ARGUMENT USING IDENTITY 
; ARCT AN(-XJ=-ARCTAN(XJ 

FCHS 
MOV SIGN-STORE,-1 

POSITIVE: 

STATUS-WORD 

; HOW DOES 1 COMPARE TO 
X 

FLD1 
FCOM 
FSTSW 
FWAIT 
MOV 
SAHF 
JA 

AH,BYTE PTR STATUS_WORD+1 

LLT-1 
JC 

;EXACTLY 1 RETURN 
FCHS 
FADD 
FLDPI 
FSCALE 
FSTP 
JMP 

2-GLL: 

2-GT_L 
ARCT AN(1J=PI/ 4 

ST(□), ST(□) 

ST(1) 
RESTORE-SIGN 

; USE IDENTITY AT AN(XJ=PI/2 
FXCH 

- ATAN(1/XJ 

FPATAN 
FLD1 
FCHS 
FLDPI 
FSCALE 
FSTP 
FSUBRP 
JMP 

FPATAN 
RESTORE-SIGN: 

DONE: 

ARCTAN 

TEST 
JZ 
FCHS 

POP 
RET 
ENDP 

ST(1J 
ST(1), ST 
RESTORE-SIGN 

SIGN_STORE, □FFH 

DONE 

AX 

;ST NOW=-1 
;ST=-2 

;ST NOW PI/4 

; ST=Z, ST(1)=1 

;NOW ADJUST BY PI/2 

; ST=1, ST(LJ=Z 
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Processor Control Instructions 
Sixteen instructions are used to examine and control the internal status 
of the 8087. We make regular use of the instructions that manipulate the 
status word and the control word. In particular, these instructions are used 
for examining the results of comparisons and for setting the controls, 
such as for rounding, on the 8087. Most of the other instructions are 
needed for writing system programs. We discuss these briefly for com
pleteness. The processor control instruction FSTSW (store status word) 
was discussed in Chapter 6. 

FLDCW word-integer 4 microseconds 
FLDCW (load control word) loads a word from a two-byte memory lo
cation into the 8087's internal control word register. FLDCW is used, for 
example, to change the 8087 rounding control. 

FSTCW word-integer 5 microseconds 
FSTCW (store control word) stores the 8087 control word at the two-byte 
destination location. We used FSTCW earlier to save a clean copy of the 
control word before changing rounding control. Later we used FLDCW 
to restore the control word to its original state. 

FWAIT 
FWAIT is actually an 8088, not an 8087, instruction. (The FWAIT mne
monic generates the 8088 WAIT instruction.) FWAIT halts the 8088 until 
the 8087 completes its current instruction. FW AIT should be coded before 
any 8088 instruction that references a memory location being read from 
or written to by the 8087. During an FW AIT, the 8088 checks the 8087 
once per microsecond, and resumes execution as soon as the 8087 is free. 

The description of the remaining processor control instructions is in
cluded for completeness. None of these instructions are necessary for 
the programs in this book. 

The following two instructions are useful in writing subroutines be
cause they allow a subroutine to save a copy of the 8087' s internal state 
and then restore it. 

FSAVE memory 44 microseconds 
FSA VE (save state) copies all internal 8087 information into a 94-byte area 
in memory. It then reinitializes the processor by executing an FINIT (see 
below). Figure 12.1 illustrates the layout of the memory save area. 

The reinitialization feature of FSA VE can cause undesired side effects, 
such as unintentionally resetting rounding control. The control word is 
easily restored by following "FSA VE memory" with "FLDCW memory." 



INSTRUCTION { 
POINTER 

OPERAND { 
POINTER 

TOP STACK { 
ELEMENT:ST 

NEXTSTACK { 
ELEMENT:ST(1) 

: 

LASTSTACK { 
ELEMENT:ST(7) 

NOTES: 
S = Sign 
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INCREASING ADDRESSES 

15 

CONTROL WORD 

STATUS WORD 

TAG WORD 

_ IP15-0 

IP19-16 IO I OPCODE 

OP15-0 

OP19·1&I 0 

SIGNIFICAND 15-o 

SIGNIFICAND 31-16 

SIGNIFICAND 47-32 

SIGNIFICAND 83-48 

sl EXPONENT 14-o 

SIGNIFICAND 15-0 

SIGNIFICAND 31-16 

SIGNIFICAND 47-32 

SIGNIFICAND 83-48 

sl EXPONENT 14-0 

SIGNIFICAND 15-0 

SIGNIFICAND 31-16 

SIGNIFICAND 47-32 

SIGNIFICAND 63-48 

sl EXPONENT 14-0 

+o 

+2 

+4 

+8 

+8 

+10 

+12 

+14 

+16 

+18 

+20 

+22 

+24 

+26 

+28 

+30 

+32 

'~ 

+84 

+86 

+88 

+90 

+92 

Bit O of each field is rightmost, least significant bit of corresponding 
regisler field. 
Bit 63 of signlflcand is integer bit (assumed binary point is immediately 
to lhe right). 

Figure 12.1. Memory layout for 8087 internal state. 
(Used with permission of Intel Corporation.) 

FRSTOR memory 44 microseconds 
FRSTOR (restore state) reloads the 8087 state from the 94-byte area in 
memory, effectively "undoing" a previous FSAVE. 

FSA VE and FRSTOR provide a mechanism by which a subroutine can 
use the 8087 and then return it to its original state. BASIC requires us 
to protect certain 8088 registers in an analogous way. (That's why many 
of our routines started with "PUSH BP" and ended with "POP BP.") 
Use of FSA VE/FRSTOR may or not be required, depending on the con
ventions of a given language translator. Note that the following code can 
be used to save and restore onto the 8088 stack. 
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SUB SP,94 
MOV BP,SP 
FSAVE [BP] 

MOV BP,SP 
FRSTOR [BP] 
ADD SP,94 

FINIT 1 microsecond 
FINIT (initialize processor) resets the 8087. The initialized conditions are 
described in Figure 12.2. 

Field Value Interpretation 

Control Word 
Infinity Control 0 Projective 
Rounding Control 00 Round to nearest 
Precision Control 11 64 bits 
Interrupt-enable Mask 1 Interrupts disabled 
Exception Masks 111111 All exceptions masked 

Status Word 
Busy 0 Not busy 
Condition Code ???? (Indeterminate) 
Stack Top 000 Empty stack 
Interrupt Request 0 No interrupt 
Exception Flags 000000 No exceptions 

Tag Word 
Tags 11 Empty 

Registers N.C. Not changed 

Exception Pointers 
Instruction Code N.C. Not changed 
Instruction Address ' N.C. Not changed 
Operand Address N.C. Not changed 

Figure 12.2. 8087 initial conditions. (Used with permission of Intel 
Corporation.) 

Interrupt and Exception-handling Instructions 

Normally, we allow exceptions to be masked; that is, the 8087 hardware 
handles computational errors automatically. If a given exception type is 
unmasked, the 8087 will interrupt the 8088 when the exception occurs. 
In this way, a computational error can be processed by user- or system
specified exception-handling software. If the 8088 is handling a task with 
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higher priority than accepting 8087 "messages," 8087 interrupts can be 
disabled with the FDISI instruction. 

FDISI 1 microsecond 
FDISI (disable interrupts) disables interrupts by setting the interrupt en
able mask bit in the control word. 

FENI 1 microsecond 
FENI (enable interrupts) enables interrupts by clearing the interrupt en
able mask bit in the control word. 

FCLEX 1 microsecond 
FCLEX (clear exceptions) clears the exception flags, the interrupt request 
flag, and the busy flag in the status word. FCLEX is principally used by 
exception-handling routines after an exception has been taken care of. If 
the exception were not cleared before returning control to the 8087, a 
second interrupt request would be issued immediately. 

FSTENV memory 11 microseconds 
FSTENV (store environment) stores the control, status, and tag words, 
and the exception pointers in a 12-byte memory area, so that these items 
may be examined by an exception handling routine. FSTENV stores a 
subset of the information stored by FSA VE and operates with consid
erably greater speed. Figure 12.3 illustrates the layout of the save area. 

INSTRUCTION { 
POINTER 

OPERAND { 
POINTER 

15 

INCREASING ADDRESSES 

~ 
~::! CONTROL WORD 

STATUS WORD 

TAG WOIID 

IP15-0 

IP19-16 Io! OPCODE 

+4 

+6 

+8 

+10 

+12 

OP15-0 

OP19-16I 0 

Figure 12.3. Memory layout for 8087 internal "environment" infor
mation. (Used with permission of Intel Corporation.) 

FLDENV memory 1 O microseconds 
· FLDENV (load environment) loads the control, status, and tag words, 
and the exception pointers from a 12-byte memory area, as in Figure 
12.3. 
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FINCSTP 2 microseconds 
FINCSTP (increment stack pointer) increments the 8087 stack pointer. 
Do not use this instruction to pop the stack, since it does not mark ST 
as empty. Use FSTP ST(0) instead. 

FDECSTP 2 microseconds 
FDECSTP (decrement stack pointer) decrements the 8087 stack pointer. 

FFREE ST(i) 2 microseconds 
FFREE (free register) marks the indicated register as empty. 

FNOP 3 microseconds 
FNOP (no operation) executes an FST ST,ST(0) in order to do nothing. 

Advanced Instruction Set Summary 

This chapter has seen much intricate detail. It took, for example, about 
90 instructions to calculate a tangent even though the 8087 has a built-in 
"tangent" instruction. (If you think it took a lot of work this way, try 
writing a tangent instruction using only 8088 code!) 

It is more difficult to build a small set of assembly language modules 
for non-linear problems than it is for linear problems. This is a place 
which really calls for an 8087-compatible language translator. (The non
linear programs in the next chapter are written in BASIC for this reason.) 
Nonetheless, it is instructive to see just how much improvement we can 
expect from the 8087. 

Without the 8087, compiled BASIC requires about 26,800 microseconds 
to calculate a double precision tangent. Our assembly language program 
uses about 460 microseconds. Even using a poor 8087-compatible trans
lator, you can look for an ordh of magnitude speed improvement on 
non-linear operations. 



Non-Linear Methods 

Given a non-linear function, y = f(x), how do we find the value of x that 
makes y equal to zero? The value that makes y equal one? What value 
of x gives the maximum possible value of the function? Answers to these 
and related questions are the subject of this chapter. BASIC's DEF FN 
statement makes it easy to define an algebraic formula as a function, f(x). 
For example, suppose we wish to explore the function 

y = 17-(x-12)2 

We write this in BASIC as 

10 DEF DBL Y, X 
20 DEF FNY(X)=17-(X-12)/\2 

Of course, this particular function could be coded in assembly language 
in only a few minutes. A really complicated function might take some 
time. Worse, every time we need to work with a new function, we would 
need to write a new assembly language routine. Non-linear programs 
call for use of a high-level language. We use BASIC due to its widespread 
availability for personal computers. 

In this chapter we discuss: 

• Numerical differentiation 
• Numerical integration 
• Solving a non-linear equation 
• Non-linear optimization 

For many readers, the most interesting topic may be "solving a non
linear equation." As the first sections of the chapter provide useful back
ground material for solving non-linear equations, you should probably 
work through these sections as well. · 

For a concrete focus of the discussion which follows, look now at the 
chart of the function y=f(x). Figure 13.1 shows the plot of our sample 
function. 

201 
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y 
(12,17) 

(7.88,0) ( 16.12,0) 
--------------------------x 
0 

Figure 13.1. Graph of function y = 17 - (x -12)2• 

This particular function equals zero at x = 7.88 and x = 16.12. It reaches 
its maximum value, 17.0, at x= 12. 

Numerical Differentiation 

The derivative of a function is the slope of the function at a particular 
point. To find the derivative graphically, draw a line tangent to the 
function at the point of interest and measure the ratio of the change in 
the vertical distance to the change in the horizontal distance, as in Figure 
13.2.· 

The computer can't very well draw such a line (at least, not unless it 
knows the slope). Since the computer can easily evaluate the function, 
we approximate the tangent line by picking another point close to the 
point of interest and having the computer effectively "draw" a line to 
connect these two points. Figure 13.3 shows an "enlargement" of a small 
part of the function with just such a line. 
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y 

Figure 13.2. Tangent line. 

The ratio of the vertical to the horizontal change is approximately the 
derivative of the function. If we pick the second point quite close to the 
first point, then the approximation will be quite accurate. How close do 
we need to be to assure some desired level of accuracy? The usual pro
cedure is to evaluate the derivative once and then re-evaluate it with a 
closer second point. If the two answers lie within a distance "epsilon" 
of each other (that is, if they are no more than epsilon apart), then the 
answers are probably within epsilon of the. true answer as well. 

The following BASIC program evaluates the derivative of the function 
FNY at the point XO, assuming we require an answer accurate to within 
plus or minus EPS. 

10 DEFDBL Y,X,f,E,D 
20 DEF FNY(X)=17-(X-12)A2 
30 REM SET XO EPS ITLIM 
40 X0=16 
50 EPS=-001 
60 ITLIM=10□ 

70 DELTA=-01*XO 
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y 

----------------'---------x 
0 

Figure 13.3. Enlarged view of tangent line. 

8 □ FX □ =FNY(X □) 
9 □ DIFOLD=(FNY(X □+DEL TA)-FX □)/DEL TA 
1 □□ IT=1 
11 □ REM LOOP UNTIL CONVERGENCE OR ITERATION LIMIT REACHED 
12 □ DELTA=DELTA/2 
13□ DIF=(FNY(X □+DEL TA)-FX □)/DEL TA 
14□ IF ABS(DIF-DIFOLD) <EPS THEN 1□□□ 
15□ IT=IT+1 
16 □ IF IT>ITLIM THEN 2 □□□ 
17 □ DIFOLD=DIF 
18 □ GO TO 12 □ 
1□□□ REM CONVERGENCE ACHIEVED 
1 □ 1 □ PRINT "DERIVATIVE AT ";X □;" IS ";DIF 
1 □ 2 □ PRINT" AFTER ";IT;" ITERATIONS" 
1 □ 3 □ STOP 
2□□□ REM NO CONVERGENCE 
2 □ 1 □ PRINT "FAILED TO CONVERGE AFTER ";ITLIM;" ITERATIONS" 
2 □ 2□ PRINT "APPROXIMATE DERIVATIVE AT ";X□;" IS ";DIF 
2 □ 3 □ STOP 
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Always take the accuracy of this sort of numerical approximation with 
a grain of salt. It can happen that two successive approximations are 
close to one another without being equally close to the correct answer. 
Round-off error can also give results a false appearance of accuracy. The 
arithmetic operation at which computers are the least accurate is sub
tracting two numbers that are nearly equal in value, as in FNY(X0+ DELTA) 
- FNY(X0), for example. 

By the way, you should always include an "iteration limit" in a program 
that otherwise relies on a mathematical condition to stop. Computer 
arithmetic is imperfect. With sufficient bad luck ("sufficient bad luck" 
means "sooner or later for sure"), your program will end up in an endless 
loop, if it doesn't have a guaranteed stopping mechanism. 

The execution time for a non-linear program is roughly proportional 
to the number of function evaluations. That's why we evaluated FNY(X0) 
early in the program and saved the answer. · 

Numerical Integration 

Integration is the inverse function of differentiation. Integration tells us 
the area under a curve between two points. The area under our sample 
function, from XLOWER to XUPPER, is shown in Figure 13.4. 

We can approximate the area under the curve by drawing in rectangles 
as in Figure 13.5. The total area in all the rectangles is approximately the 
area under the curve. The more, and smaller, the rectangles we draw, 
the closer we come to the answer. 

If we drawn rectangles, we make the width of each one one-nth of 
the distance between XLOWER and XUPPER. Since the area is just the 
height times the width, and since each of then rectangles has the same 
width one-nth, we can find the area by just adding up the heights and 
multiplying the sum by the XUPPER-XLOWER. To obtain a more accurate 
answer, we cut each old rectangle in half and add new rectangles as in 
13.6. 

The following BASIC program integrates the function FNY. 

1 □ DEFDBL Y,X,F,E,D,A 
2 □ DEF FNY(X)=17-(X-12)A2 
3 □ REM SET XLOWER XUPPER EPS ITLIM 
4 □ XLOWER=9 
5 □ XUPPER=13 
b □ EPS=. □□ 1 
7□ ITLIM=1 □□ 
8 □ XWIDTH=(XUPPER-XLOWER)/2 
9 □ FSUM=FNY(XLOWERJ+FNY(XUPPER) 
1 □□ AREAOLD=FSUM*(XUPPER-XLOWER) 
11 □ IT=1 
12 □ N=2 



206 8087 Applications and Programming 

X 

X lower 
L.......1.------Y 

X upper 

Figure 13.4. Area under function y = 17 - (x -12)2• 

130 REM LOOP UNTIL CONVERGENCE OR ITERATION LIMIT REACHED 
140 XWIDTH=XWIDTH/2 
150 N=N*2 
160 FSUM=O 
170 FOR 1=1 TON STEP 2 
180 X=XLOWER+XWIDTH*I 
190 FSUM=FSUM+FNV(X) 
200 NEXT I 
210 AREA=FSUM*(XUPPER-XLOWER)+(AREAOLD/2) 
220 IF ABS(AREA-AREAOLD) <EPS THEN 1000 
230 IT=IT+1 
240 IF IT>ITLIM THEN 2000 
250 AREAOLD=AREA 
260 GO TO 140 
1000 REM CONVERGENCE ACHIEVED 
1010 PRINT "INTEGRAL FROM "iXLOWERi" TO"iXUPPERi" IS "iAREA 
1020 PRINT" AFTER "ilTi" ITERATIONS" 
1030 STOP 
2000 REM NO CONVERGENCE 
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y 

Figure 13.5. Approximation to area under function. 

2 □ 1 □ PRINT "FAILED TO CONVERGE AFTER ";ITLIM;" ITERATIONS 
2 □ 2 □ PRINT "APPROXIMATE INTEGRAL IS ";AREA 
2 □ 3 □ STOP 

Of course, one can usually use calculus in place of numerical com
putation. The formula for the derivative of our sample function is 24 - 2x. 
The formula for the integral is 17x - (1/3)(x -12)3• 

Derivatives can be found by applying the rules of calculus mechani
cally, so sometimes packaged programs actually figure out the formula 
for the derivative instead of using numerical methods. Integrals cannot 
be found by purely mechanical rules. 

Solving a Non-linear Equation 

Suppose we have a function y = f(x) and know that the value of y is YO. 
How can we find the value of x that produced YO? Suppose that YO= 0 
and look back at Figure 13.2. Start at the point (f(XO),XO). If the function 
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Figure 13.6. Refined approximation to area under function. 

f(x) was actually a straight line, we could just run our finger down the 
tangent line until we hit the x axis at (O,Xl). Since f(x) is not a straight 
line, when we hit the x-axis we actually get (f(Xl),Xl) instead. Now draw 
a tangent line from the new point and try again. 

If the function f(x) is sufficiently smooth, this "shooting method" will 
usually converge to the correct point fairly quickly. However, sometimes 
after we shoot down the tangent, we are even further from the correct 
answer than we were originally. We'll add another rule to the procedure 
to prevent this. If our new guess is even further from the right spot then 
the initial guess, we cut in half the size of the step we took and try again. 
The BASIC program below implements this modified shooting method. 

10 DEFDBL Y,X,F,E,D 
20 DEF FNY(X)=17-(X-12)A2 
30 DEF FNDIF(XJ=(FNY((1+DEL)*X)-FNY(X))/(DEL*Xl 
40 REM SET YTARGET EPS DEL XO ITLIM 
50 YTARGET=□ 

60 DEL=-001 
70 EPS=. □ 1 
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80 X0=14 
90 X=XO 
100 ITLIM=20 
110 STEPLIM=5 
120 Y=FNY(X) 
130 IT=1 
140 ISTEP=O 
150 STEPSIZE=1 
160 XNEW=X+STEPSIZE*((YTARGET-Y)/FNDIF(X)) 
170 YNEW=FNY(XNEW) 
180 IF ABS(YNEW-YTARGETJ<EPS THEN 1000 
190 IF ABS(YNEW-YTARGET)>ABS(Y-YTARGET) THEN 500 
200 Y=YNEW 
210 X=XNEW 
220 IT=IT+1 
230 IF IT>ITLIM THEN 2000 
240 GOTO 140 
500 REM REDUCE STEP SIZE 
510 ISTEP=ISTEP+1 
520 IF ISTEP>STEPLIM THEN 220 
530 STEPSIZE=STEPSIZE/2 
540 GOTO 160 
1000 PRINT "SOLUTION IS ";XNEW;" AFTER ";IT;" ITERATIONS" 
1010 STOP 
2000 PRINT "FAILED TO CONVERGE AFTER ";ITLIM;" ITERATIONS" 
2010 PRINT "APPROXIMATE ANSWER ";XNEW 
2020 STOP 

For the sample function, there are actually two correct answers for 
some values of YTARGET. This program only finds one, usually the 
closest to the initial starting point XO. In order to check for more than 
one solution, the program can be rerun with several different initial 
values. 

Notice that the program uses DEF FNDIF to approximate the deriva
tive. To increase the accuracy of the final solution, DEL should generally 
be reduced along with EPS. FNDIF could be redefined to give the exact 
derivative by using calculus. This would speed up the program a little 
by reducing the number of function evaluations and possibly also because 
of the greater accuracy of an exact derivative. On the other hand, figuring 
out analytic derivatives is more work for the user. 

Non-linear Optimization 

Suppose that y in our sample function described the profits of a small 
programming business as a function of the number of hours, x, spent 
typing on the keyboard of a personal computer. We would like to maximize 
this function, that is, find the value of x that gives us the highest possible 
value of y. 
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If you look back at Figure 13.1 you will see that at the highest point 
of the function the slope of the function is zero. In calculus terms, the 
derivative of a function equals zero at its maximum. (In logical terms, if 
a function is still going up, we should search further to the right; if it's 
going down, we've gone too far. Exactly at the maximum, the function 
must be going neither up nor down. Its slope must be zero.) 

Finding the maximum of a function f(x) reduces to finding the point 
where the derivative of f(x) equals zero. The previous program will handle 
this quite nicely if we redefine the function calls to look at the derivative 
instead of the original function and the calls on the function for the 
derivative to look at the derivative of the derivative. 

10 DEFDBL Y,X,F,E,D 
20 DEF FNY(X)=17-(X-·12)A2 
30 DEF FNDIF(X)=(FNY((1+DEL)*X)-FNY(X))/(DEL*X) 
35 DEF FNDDIF(X)=(FNDIF((1+DEL)*X)-FNDIF(X))/(DEL*X) 
40 REM SET YTARGET EPS DEL XO ITLIM 
50 YT AR GET=□ 
60 DEL=. 001 
70 EPS=. □01 

80 X □ =14 

90 X=X □ 
10 □ ITLIM=2□ 
11 □ STEPLIM=5 
12□ Y=FNY(X) 
13 □ IT=1 
14 □ I:S:TEP=□ 
15 □ STEPSIZE=1 
16□ XNEW=X +STEPSIZE*((YT ARGET-Y)/FNDDIF(X)l 
17 □ YNEW=FNDIF(XNEWJ 
18 □ IF AB:S:(YNEW-YTARGET)<EPS THEN 10□□ 
190 IF ABS(YNEW-YTARGET)>ABS(Y-YTARGET) THEN 500 
20 □ Y=YNEW 
21 □ X=XNEW 
22 □ IT=IT+1 
23 □ IF IT>ITLIM THEN 200□ 

24 □ GOTO 14 □ 
500 REM REDUCE STEP SIZE 
51 □ ISTEP=ISTEP+1 
52 □ IF ISTEP>STEPLIM THEN 22 □ 
530 STEPSIZE=STEPSIZE/2 
540 GOTO 160 
10□□ FM=FNY(XNEWJ 
101□ IF FM>=FNY((1+DEL)*XNEW) AND FM>=FNY((1-DEL)*XNEWJ THEN 

105□ 
102 □ PRINT "CAN'T FIND MAXIMUM" 
1030 PRINT ":STOPPED AT "iXNEWi "AFTER "iITi" ITERATIONS: 
1040 STOP 
105□ PRINT "MAXIMUM IS AT "iXNEWi" AFTER "iITi" ITERATIONS 
1060 PRINT "VALUE AT THE MAXIMUM IS: "iFNY(XNEWJ 
107 □ STOP 
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2000 PRINT "FAILED TO CONVERGE AFTER "iITLIMi" ITERATIONS" 
2010 PRINT "APPROXIMATE ANSWER "iXNEW 
2020 STOP 

Our BASIC program will find that the maximum, y = 17, is found at 
X = 12. Just as a non- linear function can have exactly one solution, no 
solution, or many solutions, in the same way a function can have one 
maximum, no maximum, or many maxima. The code at line 1000 checks 
for the possibility that the program located a point where the the deriv
ative equals zero, but which is not a maximum. Such a point might be 
a minimum or an "inflection point." Even with this check, care on the 
part of the user is still a good idea. The program has no way to check 
whether it has found only a "local maximum," that is, whether there 
might be a point elsewhere that has an even higher value than the point 
found by the program. 

Back to Linearity 

In the next chapter, we build a small statistical analysis system and, in 
so doing, return to linear problems and to the use of assembly language 
modules. 



Statistical Analysis and 
Program Canning 
This chapter has two principle objectives: gaining an understanding of 
some of the basic techniques of programming for statistical analysis, and 
working through an example of how to make a "canned" program. This 
chapter will give you: 

• Some basic methods for statistical analysis. 
• Some practice in going from mathematical ideas to working pro

grams. 
• An adaptable "canned" program (which you can modify if you wish 

to add your own procedures). · 
• A complete, working multiple regression package. 

Program: 
Purpose: 

Input: 
Output: 
Language: 

The Cookbook-Chapter 14 

8087 Statistical Analysis Program 
"Canned" program for multiple regression and other 

statistical analysis. 
Interactive. 
Interactive. 
BASIC with 8087/8088 assembly language modules. 

Statistical Analysis 

Three of the basic procedures used in statistical analysis are descriptive 
statistics, correlation, and multiple regression. These methods are used 
to summarize data, to examine the relation between different events, and 
to make tests of scientific hypotheses. We discuss the use of these meth
ods, and how to perform the necessary calculations, below. 

213 
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One caveat first. The combination of sophisticated statistical methods 
and high-speed computers has made it possible to draw incorrect con
clusions far more easily than at any time in the past. Almost any statistical 
procedure can be applied to almost any body of data. Just because we 
can do so does not mean we should. Various important mathematical 
caveats and warnings are omitted from the discussion below, since a 
thorough job would occupy a PhD course. We hope that the reader 
experienced in statistical analysis will not be offended-and that the 
reader first encountering statistical analysis will be careful. 

Descriptive Statistics 

Given repeated observations on an "event," such as the number of cars 
passing a certain intersection between 8:00 AM and 8:05 AM, we begin 
a statistical analysis by looking for simple ways to characterize the ob
served data. Assume we have made n observations. Call a typical datum, 
"x." 

The very first question usually asked is "What was the average value 
of the data?" Calculating an average is simple. The mean of the data is 
the sum of all the data points divided by the number of observations. 
The mean of x is often written x. 

X1 + Xz + ... + Xn x= 
n 

Next we would like to determine whether the observed data all lie close 
to one another or whether they are spread out over a wide range. The 
most common measurement is called the variance. Variance is a measure 
of the dispersion of data around its mean. Essentially, the variance is the 
average of the squared value of the difference between x and the mean 
of x. The variance can be calculated by subtracting the mean off of each 
datum, squaring this difference, summing the results, and dividing by 
n -1. (It turns out that, under reasonable assumptions, dividing by n -1 
rather than n gives a more accurate average answer.) 

( -)2 ( -)2 ( - 2 
() _ X1-X + X2-X + ... Xn-x) 

var x - (n-l) 

Closely related to the variance is the standard deviation. The standard 
deviation is the square root of the variance. The standard deviation is 
frequently a more convenient measure than the variance because it has 
the same units of measurement as the original data. If you multiply every 
piece of data by, say, 16, you also multiply the mean and the standard 
deviation by 16, while the variance is multiplied by 256. Thus if the 
original data is measured in pounds, then both mean and standard de
viation are measured in pounds (and 16 times either is measured in 
ounces), while the variance is measured in the less familiar units of 
"pounds-squared." 
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The following rule gives a feeling for the "spread" of your data: If the 
data is drawn from a Normal ("bell curve") distribution, then about two
thirds of the data should lie in the range from one standard deviation 
below the mean to one standard deviation above the mean. 

While these three descriptive statistics are probably the most common, 
there are many others you might also look at. What are the highest and 
lowest values of the data? What's the middle value? Does the data cluster 
around certain values? We'll stop at three: mean, variance, and standard 
deviation. 

Correlation 

Given two sets of data, x and y, we are frequently interested in whether 
the two sets of data tend to move together, to move in opposite directions, 
or whether the two appear to be unassociated. Statisticians use the cor
relation coefficient as a measure of association between two variables. Two 
variables that are exactly proportional to one another have a correlation 
coefficient of one. Two variables that are exactly proportional but that 
move in opposite directions have a correlation coefficient of minus one. 
A zero correlation coefficient usually indicates that knowing x tells you 
nothing about y, and vice versa. 

The correlation coefficient is constructed as a ratio. The numerator 
measures how much x and y move together. The denominator measures 
how much each moves separately. The numerator is calculated as the 
average of the product of x minus x's mean and y minus y's mean. The 
numerator is the product of the standard deviations of x and y. (However, 
in this context we use n rather than n-1 in calculating the standard 
deviations.) 

Guess what's ba~k! Our friend from linear algebra-the inner product. 
(We promised you it was good for more than playing with systems of 
linear equations.) Think about calculating the numerator of the correlation 
coefficient. We begin the calculation by preparing two vectors, the first 
made up of each observation of x minus x' s mean and the second made 
up similarly from y. The inner product of these vectors is the sum of the 
product of the elements. So the required average is just the inner product 
divided by n. 

Actually, the same calculation can be done in a more simple form by 
avoiding the construction of the two vectors of deviations from the means. 
A little algebra will show that the required average can also be calculated 
as the inner product of x and y divided by n, minus n times the quantity 
the mean of x times the mean of y. 

A little exercise for the reader: what's the correlation coefficient be
tween x and y if the observations of x are all the same? The answer is 
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that it doesn't make much sense to ask whether x and y move together 
if x doesn't move at all. Both the numerator and denominator of the 
correlation coefficient equal zero. We'll want to watch for this situation 
when programming in order to avoid "Division by zero" error messages. 

Multiple Regression 
Multiple regression must be far and away the most common statistical 
technique for equation estimation and forecasting. Suppose we have a 
sequence of observations on a variable to be explained, the dependent 
variable, y, and observations made at the same time on several explan
atory, or independent, variables, xi, x2, and so forth. We might look for a 
linear relationship between the dependent and independent variables of 
the form: 

y = b0 + b1x1 + b2x2 + ... + bkxk + u 

where u is an unobservable error term, indicative of the fact that x variables 
will not explain y perfectly. Regression may be interpreted in two ways: 
as either a statistical procedure or as a technique for fitting an equation 
to data. 

The term "multiple regression" arises out of the statistical interpreta
tion. We might posit that the equation above is a "true" equation in 
nature and that while we have observed a set of y's and x's, we have 
been unable to observe the u's. Given a certain set of statistical assump
tions, multiple regression produces optimal estimates of the coefficients 
b0 through bk in the above equation. (The assumptions are fairly rea
sonable; but require more mathematics than we want to go into here.) 

Further, given these st~tistical assumptions, we can test hypotheses 
about the coefficients. The coefficients produced by a multiple regression 
are estimates of the true values of b. The regression also produces a 
standard error for each estimated coefficient. There is a two out of three 
chance that the true coefficient lies in a band from one standard error 
below the estimated coefficient to one standard error above the estimated 
coefficient. Chances are about 19 out of 20 that the true coefficient lies 
in a band of plus or minus two standard errors around the estimated 
coefficient. 

Suppose the true coefficient bi is zero. This is equivalent to saying that 
the variable xi has nothing do to with explaining y. If the estimated 
coefficient is far away from zero, in the sense of being many standard 
errors away, then it's unlikely that the true coefficient is zero. The ratio 
of an estimated coefficient to it's standard error is sometimes called the 
t-statistic. If the t-statistic of bi is greater, in absolute value, than 2, there 
is only 1 chance in 20 that the variable xi has nothing to do with explaining 
the variable y. 
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(All of the statements above are predicated on what are sometimes 
called the "Gauss-Markov" assumptions. See any good statistics or 
econometrics text for a thorough discussion of the role of various math
ematical assumptions.) 

The mathematics of regression is also known as ordinary least squares. 
We can regard the problem of estimating the coefficients in the preceding 
equation as a question of fitting the equation to the data, without regard 
to any statistical assumptions. The difference between the value of y and 
the value predicted by applying our estimated coefficients to the data x 
is called a residual. Ordinary least squares pick values for the coefficients 
that minimize the sum of the squared residuals. 

In addition to the estimated coefficients, their associated standard er
rors and t-statistics, a multiple regression results in several auxiliary sta
tistics. The R-squared is a "goodness of fit measure." The R-squared is 
the percentage of variation of y explained by the variables x. R-squared 
equals 1.0 for a perfect fit and 0.0 in the absence of any fit. 

The standard error of the regression estimates the standard deviation 
of the error terms, u. The sum of squared residuals-which is just what 
it sounds like-is used in making various statistical tests. 

We wrote b0 above without any associated x variable. A constant term 
b0 is equivalent to the coefficient on an x variable made up of all ones, 
which is how we calculate it in the program below. A regression should 
almost always have a constant term in it, but our program lets the user 
decide whether or not to include one. 

Regression Formulas 

Computation of a multiple regression is easily specified in matrix nota
tion. Let y be a vector containing the values of y and X be a matrix where 
each column i is the values for xi. If bis the vector of estimated coefficients 
then: 

Remember from Chapter 9 that X' means the transpose of X. 

Let SSR stand for the sum of squared residuals, s2 for the square of 
the standard error of the regression, and R2 for R squared. If there are 
n data points and k right-hand side variables (the constant counts as one 
of the k), we have 

SSR = y'y-y'Xb 
s2 = SSR/(n-k) 
R2 = 1-SSR/(y'y) 
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Canned Programs 

If you flip to the end of this chapter, you'll find a complete listing of our 
"8087 Statistical Analysis Program." You may be struck immediately by 
the fact that the program is several hundred lines long. The code is 
lengthy despite the fact that this is a "plain vanilla" program, and despite 
the fact that all the important mathematics can be specified in only a few 
lines. (The source code for a commercial, mainframe statistic's package 
would be anywhere from 10,000 to a few hundred thousand lines long.) 

Computer scientists use the name "modular programming" to describe 
the technique of breaking up a large problem into several smaller ones, 
each of which can be dealt with independently. Our canned program is 
composed of 19 "modules." The modules are classified according to whether 
they provide a user service, such as regression; a user utility, such as 
data entry; or a system service, such as program initialization. Because 
the program is broken up into small parts in this way, a new service 
could be added for the user with little or no modification to the existing 
modules. The modules in the program listing are: 

User service: 
Descriptive statistics-Module 9 
Correlation-Module 10· 
Multiple Regression-Module 11 

User utilities: 
Catalog data in memory-Module 3 
Display data-Module 4 
Enter data-Module 5 
Edit data-Module 6 
Save data to disk-Module 7 
Retrieve data from disk-Module 8 

System service 
Menu display and command choice-Module 2 
Begin program execution-Module 1 
Storage allocation and program initialization-Module 12 
Program restart-Module 13 
Exit-Module 14 
Place variable name in symbol table-Module 15 
Form list of names-Module 16 
Collect product-moment matrix-Module 17 
Error-handling-Module 18 
Screen-handling-Module 19 

Data Storage 

A program can be regarded as a group of procedures acting on a set of 
data. The program modules can be regarded as communicating with one 
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another through the changes they make in the program's data base. In 
this case the data base begins with the data observed by the program 
user. Suppose the user has n observations on each of k different variables. 
We'll store the data internally in an n by k matrix called X. Observations 
on variable i are stored as the ith column of matrix X. As it is frequently 
convenient to have a constant vector, the program will automatically set 
column zero of X to equal 1. 

People think in names, not column numbers. Rather than require the 
user to number variables, we store the names of the variables, in a string 
array NAMES$, and let the computer make the connection between the 
user specified variable name and the numerical index for the appropriate 
column of X. NAMES$ can be thought of as a very simple symbol table. 
The first variable in the symbol table, "(CONST)", will always point to 
the ones in column zero. 

Several other variable definitions are also useful. TRUE% and FALSE% 
are set to -1 and O respectively. NUMVAR is the number of variables 
the user has defined. MAXV AR is the maximum number of variables the 
system can hold, a number which depends on the available memory. 
NUMOBS is the number of observations on a variable. (Each variable 
must have the same number of observations.) A number of modules 
communicate through the array LISTV, which contains a list of the col
umn numbers corresponding to a user specified list of variables. LISTLEN 
is the number of elements in LISTV. Finally, we adopt the convention 
that all BASIC variables beginning with a letter between I and N will be 
integer variables. All other variables are single precision unless a "%", 
"#", or"$" is appended to indicate integer, double precision, or string, 
respectively. 

Module By Module 
We undertake here a detailed, module-by-module explanation of the 
statistical analysis program. (Since each module is short, this isn't too 
difficult.) Along the way, we point out some places where the program 
could be made more flexible or more "idiot-proof," albeit at the expense 
of a lot more code. If you read through the code and the explanations 
here, you should find it easy to make your own additions or changes to 
the program. 

We'll "walk through" the program modules in the order which makes 
it easiest to understand, rather than the order in which they appear in 
the code. 

Menu Display-Module 2-Line 2000 
This module displays the available commands and asks for the user's 
choice. The response must be an integer between 1 and 11. Given any 
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other response, the program prompts for a new answer. Notice the simple 
trick to check whether a number is an integer. The program accepts any 
characters as ANSWER$. The VAL function sets ANSWER to zero if the 
response is not a number. We then set ANSW% = ANSWER. Since ANSW% 
must be an integer, the two will only be equal if ANSWER was an integer. 

Once ANSW% is in hand, the routine does an ON ANSW% GOSUB 
to the appropriate module. After the program returns, the menu display 
module starts all over again. To add another command to the program, 
we need only add a PRINT line to the menu display, add a line number 
to the GOSUB list, and change the valid answer range from 1 through 
11 to 1 through 12. 

Catalog Data in Memory-Module 3-
Line 3000 
This module allows the ·user to catalog the system's internal data base. 
The module first prints out the number of observations per variable, the 
number of variables already defined, and the number remaining still open 
for definition. 

After displaying the catalog, module 3 calls module 19, which asks the 
user to hit a key to return to the command menu. If the program didn't 
do this, the display would vanish from the screen without giving the 
user time to think. 

Display Data-Module 4-Line 4000 
This module displays the data in one or more user selected variables. 
Module 16 is called to collect the variable names from the user. Module 
16 expects certain information. MAXNAMES is the maximum number of 
names the user is permitted to enter. ~n this case, the user can enter as 
many as have been defined. NEWNAMES = FALSE% tells module 16 not 
to enter the names in the symbol table. FOR CEO% =FALSE% tells module 
16 that it should not automatically include "(CONST)" in the list. On 
return from module 16, LISTV(0) through LISTV(LISTLEN -1) has the 
column numbers of the matrix X holding the desired data. (If NAMEERR 
is true, then module 16 found an error it couldn't handle.) 

The data display module prints up to five variables to a line, up to 20 
lines to a screen. It then pauses (using module 19) to let the user look 
at the data. The program could be fancier here in several ways. We might 
want to display the data differently according to whether the screen 
displays 40 or 80 columns across. We might also want to allow the user 
to direct output to the printer rather than the screen. Finally, we could 
pretty up the display by using more graphics. 
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Enter Data-Module 5-Line 5000 
This module allows the user to enter the data for a single variable. We 
again use module 16, though this time we only allow one name to be 
specified and we ask module 16 to place the name as a new entry in the 
symbol table. Once the variable name is entered, the user is prompted 
for the data sequentially. Notice that there is no way for the user to "get 
out" of the data entry sequence except to follow it through to the end. 

Edit Data-Module 6-Line 6000 
Even a "plain vanilla" program must allow the user some way to correct 
mistakes. First, we use module 16 to ask the user which variable he or 
she wishes. Once we know the variable, we ask for an observation num
ber. After displaying the current value, the program asks the user to 
specify a new value. Then the program displays both the new and old 
value for the user. The program keeps prompting for new observation 
numbers until the user responds with the ENTER key alone. 

Save Data to Disk-Module 7-Line 7000 
Serious statistical workis rarely completed in a single sitting. Module 7 
allows the user to dump the system's database to disk for later retrieval. 
(The user also gets some protection against lost time due to power failure 
in this way.) The disk storage format is chosen for simplicity rather than 
efficiency. On the first line we dump out MAXVAR, NUMV AR, and 
NUMOBS. The next NUMV AR lines contain the contents of NAMES$. 
Finally, we dump the first NUMVAR columns of X. This simple format 
makes it possible to access the saved data from another program or to 
use another program to create data which can be read into our Statistical 
Analysis Program. 

What happens if the user specifies a file name that already exists? 
BASIC will merrily write over an existing file, but it would be better to 
provide the user with at least some degree of protection against inad
vertently wiping out important data. We use the following program trick 
to provide some protection. Before OPENing the output file, the program 
tries "NAME FILENAME$ AS FILENAME$". This command gives a BASIC 
error message "File already exists" if FILENAME$ is on the disk and 
"File not found" if FILENAME$ is a new file. The error trapping module, 
18, checks to see if either of these errors occurred. In case of "File not 
found," module 18 RESUMEs execution as if nothing had happened. If 
this is a duplicate file, then module 18 asks the user for confirmation 
before allowing execution to proceed. 

After storing the data on disk, the program closes the file and prints 
a message to the user before returning to the command menu. 
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Retrieve Data From Disk-Module 8-
Line 8000 
The disk retrieval module complements the disk storage module. This 
module retrieves a data base that had previously been stored on a disk 
file. The module first OPENs for input the user specified disk file. (The 
error-handling module swings into operation if a non-existent file is spec
ified, so that the program won't bomb.) Once MAXVAR, NUMVAR, and 
NUMOBS are known1 module 12 is called to reinitialize the program and 
allocate storage. (A more complicated program might add the contents 
of the disk file to the existing database rather than reinitializing the 
program.) Setting the flag DISKFILE%=TRUE% lets module 12 know 
that it needn't prompt the user for NUMOBS. 

Restart Program-Module 13-Line 13000 
Restarting the program is easy. Module 13 sets appropriate flags and 
calls module 12, which does all the work. 

Exit Program-Module 14-Line 14000 
One can always let the user hit a Ctrl-Break to end a BASIC program, 
but it's a lot more graceful to provide a specific command. Module 14 
checks with the user to be sure an exit is intended, thus preventing 
accidental loss of valuable information. Use of the END statement also 
ensures that all files have been closed properly. 

Descriptive Statistics-Module 9-Line 9000 
Modules 9, 10, and 11 actually do some "productive" work for the user. 
Module 9 requests a list of variable names, using module 16, and then 
prints the mean, standard deviation, and variance of each of the listed 
variables. The 8087 procedure SUM is used to collect the sum of each 
variable and the 8087 routine INPROD collects the sum of the squared 
observations for each variable. Using 8087 routines for these procedures 
is almost as efficient as writing the entire module in assembly language, 
since these are the only parts of the module whose execution time is 
proportional to the number of observations. 

Correlation-Module 10-Line 10000 
The correlation module accepts a list of variable names (via module 16 
again) and calculates the correlation coefficient between every pair of 
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names on the list. This requires the sum of Xi times Xi, for each pair, 
plus the sum of each variable. The easiest, though slightly inefficient, 
way to get the sum of a variable is to take an inner product with a vector 
of ones. Module 10 accomplishes this by setting FORCED% = TRUE% in 
order to guarantee that "(CONST)" is the first variable in LISTV. Module 
17 is called to collect the "product-moment matrix" (the name given to 
the matrix of inner products of variable i with variable j). Once all the 
hard work is done in module 17, the correlation module prints out the 
correlation coefficients, checking as it goes along to avoid a "Division by 
zero" error. 

Multiple Regression-Module 11-Line 11000 
The multiple regression module uses module 16 twice, first to get the 
number of the dependent variable and second to get a list of numbers 
of the independent variables. The matrix X'y and the sum of y2 are formed 
using INPROD. (Note that "X" refers here to only those columns of the 
database specified by the user in the list of independent variables.) Mod
ule 17 is called to form the matrix X'X. Module 17 only fills in the upper 
triangle of X'X, since the matrix is symmetric. We copy the upper half 
into the lower half since the matrix inversion subroutine expects to see 
the entire matrix. The 8087 routine INV is called to invert X'X. REALERR 
is used to check that the inversion routine only produced normal num
bers. Finally GINPROD is used to multiply (X'X)- 1 by X'y and to form 
several auxiliary statistics. Results are then printed. As with the corre
lation module, all the hard number crunching is done by module 17. 

Begin Program Execution-Module 1-
Line 1000 
Module 1 is quite simple. Module 12 is called after flag FIRSITIME% is 
set to indicate that this is the first time through the program and flag 
DISKFILE% is set to indicate that this is not a call from module 8. The 
latter flag is logically redundant, but keeps the call to module 12 consistent 
with other parts of the program. By and large, when programming, 
consistency is worth a little redundancy. 

Some programmers prefer to place program initialization code at the 
beginning of a program. In fact, some programming languages require 
one to do so. (The IBM Personal Computer BASIC Compiler for example!) 
With the BASIC interpreter, the placement of initialization code is largely 
a matter of taste. 
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Allocation and Program Initialization
Module 12-Line 12000 
This module needs to consider two questions: Is this the first time the 
program has been initialized? Is this initialization preparatory to loading 
a disk file? 

Suppose that this is the first time through the program. We need to 
clear the BASIC workspace and set aside enough space to load in the 
8087 routines. Then the 8087 routines must be loaded and calling ad
dresses set. (On the book diskette, all the programs in Chapter 9 are 
grouped in a file named "VECTOR.SAY"; the programs from Chapter 
10 are in file "MATRIX.SAY"; and "MATADV.SAV" has the programs 
from Chapter 11. The addresses listed below reflect this arrangement. If 
you group your routines differently, you should change the calling ad
dresses.) Next, the program offers the user the option of loading data 
from disk. If the user invokes this option, module 8 is called. Note that 
module 8 calls back to module 12, which is perfectly legal in BASIC, 
though it is not allowed in many other programming languages. If the 
user does not choose to load data from disk, the program asks for the 
number of observations in the data. 

Next the module determines how many variables will fit in memory. 
Since the data is stored in single precision, the data itself will require 
4*n*k bytes. Space must also be set aside for the regression and correlation 
modules, and for LISTV. The amount of storage needed for NAMES$ 
will vary according to the length of variable names chosen by the user. 
Our module figures out the amount of free space by using the FRE 
function. It then figures out the maximum number of variables that will 
fit in the available space, leaving some spare room as a "fudge factor," 
and allocates storage. 

If this is not the first time through the initialization routine, then mod
ule 12 must take one of two actions, depending on whether it is acting 
as a service routine for module 8. If we are loading data from the disk, 
then NUMOBS, and so forth, is already known. Module 12 need only 
erase the old database and dimension storage afresh. If we are not loading 
data, then the job is almost the same as if this were the first time through 
the program, except that we can begin directly with asking the user for 
the number of observations. 

Module 12 is very "implementation dependent." For example, if we 
wanted to use another 8087 assembly language routine, we would have 
to change this module. While a new module might be programmed to 
load its own routines, the initialization module needs to know how much 
space to leave in the CLEAR statement. 

If we wanted to use the BASIC compiler in place of the interpreter, 
this module would have to be moved to the front of the program, because 
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the BASIC compiler requires DIM and DEF statements to appear before 
executable operations. Unfortunately, the BASIC compiler also requires 
fixed size dimensions for all the matrices, so to use the compiler we 
would be forced to create our own storage allocation mechanism. This 
would affect data storage in the entire program, not only module 12. 

Insert Name in Symbol Table-Module 15-
Line 15000 
Module 15 attempts to place the name in NAMEIS$ in the symbol table 
and return its symbol table location in NAMELOC. Two possibilities 
might prevent completion of this task. First, the symbol table might be 
full, indicating that there is no more room in the database. Second, the 
name might already be defined. In either of these cases, module 15 prints 
an error message, sets the flag NAMEERR to TRUE%, and returns. If 
neither error arises, the module places NAMEIS$ in the first open location 
in NAMES$, adds one to the variable count in NUMV AR, and returns 
the proper value in NAMELOC. 

Collect Names From User-Module 16-
Line 16000 
We've called this module from many other modules. Essentially, its job 
is to collect a series of names from the user and return their symbol table 
locations in LISTV. Module 16 treats collecting one variable and more 
than one variable as different cases, mostly so that we can give the user 
more intelligent prompts. 

In the first case, MAXNAMES equals 1. We ask the user for a name, 
and call module 15 if NEWNAMES is TRUE%. If an undefined name is 
entered improperly, the user is given the opportunity to re-enter the 
name or to give a null response. A null response, or an error, causes the 
module to return with NAMEERR set to TRUE%. When a correct name 
is given, LISTV(0) is set to the location of the name and module 16 returns 
with NAMEERR set to FALSE%. 

The problem of module 16 is considerably more complicated when a 
series of names is called for. We could prompt the user for one name at 
a time. It's friendlier to allow the user to enter a series of names separated 
by spaces. (As a side issue, the module must set LISTV(0)=0 ifFORCE0% 
requires us to include the constant term.) We accept a "variable list" from 
the user in ANSWER$. The module scans ANSWER$ looking for a space. 
The substring from the beginning of the scan to the space is taken as a 
variable name. We start scanning for the next name after the space. The 
scanning process is complete when the end of the string is reached. We 
check the names one at a time either by running through NAMES$ or 
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by using module 15, depending on the value of NEWNAMES. (Notice 
that in this way an entire list of variables can be entered into the symbol 
table at once, even though the program does not use this feature.) If an 
error is found in processing the list of names, the user is asked to re
enter the entire list. 

Notice that the error message for an undefined name displays the 
offending string within quotes. This is more than a nicety. Suppose the 
user enters variables named "X" and "Y" and later tries to retrieve "X 
<non-printing character> Y". The string "X 'space"' doesn't match the 
string "X". By placing the string in quotes we increase the chances that 
the user will notice the presence of a nondisplaying character. 

Module 16 could be usefully modified by putting some restrictions on 
the legal variable names. Since some other modules only print variable 
names of limited length, we might want to restrict name length at the 
time of definition. We also might want to modify this module to accept 
upper and lower case characters without distinguishing between them. 
Finally, notice that the user might well enter a string that "wraps around" 
the end of the line, which is perfectly acceptable, or a string that is longer 
than 255 characters, which will cause an error that is trapped by the error
handling module. 

Collect Product-Moment Matrix-Module 17~ 
Line 17000 
Almost the entire computational time of the program is spent in this 
module. The module creates a double precision matrix named XPX#. 
Element i,j, in the upper triangle of XPX#, is set to the inner product of 
the ith and jth variables in LISTV. The 8087 routine INPROD really does 
all the work. 

Error-handling-Module 18-Line 18000 
Nothing is worse in a canned program, even a simple one like this, than 
getting a BASIC error message. The whole point of a program being 
"canned" is that the user needn't understand its innards. Our program 
doesn't offer quite this level of protection, but it does catch a few possible 
errors. For example, if the user enters too many characters in response 
to the name prompt in module 16, we'd like to allow him or her another 
shot rather than have the program die. In addition, this routine handles 
a couple of places where we induce deliberate "errors," such as in the 
specification of file names. 

Notice that we are quite careful to check the line number on which the 
error occurred before handling the error. In this way, we avoid "fixing" 
an error the program isn't prepared to handle. 
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Screen-handling-Module 19-Line 19000 
Since the computer can display text faster than we can read, it's very 
convenient to have a way to make the screen stand still. Module 19 
accomplishes this by going round in circles until the user hits a key. 

A Little More on Programming Strategy 
Our "8087 Statistical Analysis Program" is a very heavy number cruncher. 
Did you notice that of the several hundred lines of code, 8087 routines 
are referenced only nine times!?! Such a ratio is not in the least unusual 
for a general purpose program. However, these few references are re
sponsible for almost all the speed and accuracy advantage of using the 
8087. 
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180 
190 
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500 
510 

1000 
1010 
1020 
2000 
2005 

2010 
2020 
2030 
2040 

REM PROGRAM FOR STATISTICAL ANALYSIS 
REM THE PRINCIPLE SECTIONS OF THIS PROGRAM BEGIN AT 

LINES: 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 

1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 
9000 
10000 
11000 
12000 
13000 
14000 
15000 
16000 
17000 
18000 
19000 

PROGRAM EXECUTION BEGINS 
MENU DISPLAY 
DATA CATALOG 
DATA DISPLAY 
DATA INPUT 
DATA EDITING 
SAVE DATA 
RETRIEVE DATA 

DESCRIPTIVE STATISTICS 
CORRELATION 
MULTIPLE REGRESSION 
ALLOCATE STORAGE AND INITIALIZE 
RESTART PROGRAM 
EXIT PROGRAM 
INSERT NAME IN SYMBOL TABLE 
ASK USER FOR LIST OF NAMES 
COLLECT PRODUCT MOMENT MATRIX 
HANDLE ERRORS 
HOLD SCREEN SCROLLING 

PROGRAM 

FIRSTIME%=-1 'FLAG FIRST TIME THROUGH PROGRAM AS TRUE 
DISKFILE%=0 'NOT LOADING A DISKFILE 
GOSUB 12000 
CLS 
PRINT "COMMANDS OF THE 8087 STATISTICAL ANALYSIS 

PROGRAM" 
PRINT "1 CATALOG DATA IN MEMORY" 
PRINT "2 DISPLAY DATA" 
PRINT "3 ENTER DATA" 
PRINT "4 EDIT DATA" 
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2050 PRINT "5 SAVE DATA TO DISK" 
2060 PRINT "6 RETRIEVE DATA FROM DISK" 
2070 PRINT "7 MEANS, STANDARD DEVIATIONS, AND VARIANCES" 
2080 PRINT "8 CORRELATIONS BETWEEN VARIABLES" 
2090 PRINT "9 MULTIPLE REGRESSION" 
2100 PRINT "10 RESTART PROGRAM" 
2110 PRINT "11 EXIT PROGRAM TO BASIC" 
2120 PRINT 
2130 INPUT "ENTER DESIRED SERVICE (1-11) >"; ANSWER 
2140 ANSW%=ANSWER 
2150 IF ANSW%=ANSWER AND ANSW%>=1 AND ANSW%<=11 THEN 2200 
2160 PRINT_ "RESPONSE REQUIRES AN INTEGER BETWEEN 1 AND 11" 
2170 GOSUB 19030:GOTO 2000 
2200 ON ANSW% GOSUB 3000,4000,5000,6000,7000,8000,9000, 

2300 
2400 
3000 
3010 
3020 
3030 
3040 
3050 
3060 
3070 
3080 
4000 
4010 
4020 
4030 
4040 
4050 
4060 
4070 

4071 
4080 
4090 
4100 

10000,11000,13000,14000 
REM RETURN HERE AFTER PERFORMING SERVICE 
GOTO 2000 
REM DATA CATALOG 
CLS 
PRINT "NUMBER OF OBSERVATIONS PER VARIABLE: ";NUMOBS 
PRINT "NUMBER OF DEFINED VARIABLES: ";NUMVAR 
PRINT "NUMBER OF REMAINING VARIABLES: ";MAXVAR-NUMVAR 
PRINT "DEFINED VARIABLES ARE:" 
FOR I=O TO NUMVAR-1:PRINT NAMES$(I):NEXT I 
GOSUB 19000 
RETURN 
REM 
REM DATA DISPLAY 
CLS 
PRINT "DATA IN ONE OR MORE VARIABLES MAY BE DISPLAYED" 
MAXNAMES=NUMVAR:NEWNAMES=FALSE%:FORCEO%=FALSE 
GOSUB 16000:IF NAMEERR THEN RETURN 
REM VARIABLE NUMBERS ARE IN LISTV O THROUGH LISTLEN-1 
REM PRINT 4 VARIABLES ON A LINE, 20 OBSERVATIONS PER 

SCREEN 
IF LISTLEN=O THEN RETURN 
FIRSTVAR=O:LASTVAR=3:FIRSTOB=O:LASTOB=19 
IF LASTVAR>LISTLEN-1 THEN LASTVAR=LISTLEN-1 
IF LASTOB>NUMOBS-1 THEN LASTOB=NUMOBS-1 

4110 CLS 
4120 PRINT "OBSERVATION"; 
4130 FOR I=FIRSTVAR TO LASTVAR 
4140 PRINT USING ""- "-"; NAMES$(LISTV(I)); 
4150 NEXT I 
4160 PRINT 
4170 FOR I=FIRSTOB TO LASTOB 
4180 PRINT I, 
4190 FOR J=FIRSTVAR TO LASTVAR 
4200 PRINT X(I, LISTV(J)), 
4210 NEXT J 
4220 PRINT 
4230 NEXT I 
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4240 REM ONE SCREENFUL IS PRINTED 
4250 GOSUB 19030 
4270 IF LASTVAR=LISTLEN-1 AND LASTOB=NUMOBS-1 THEN RETURN 
4280 IF LASTOB=NUMOBS-1 THEN 4300 
4290 FIRSTOB=LASTOB+1:LASTOB=FIRSTOB+19:GOTO 4100 
4300 REM NEXT SET OF VARIABLES 
4310 FIRSTVAR=LASTVAR+1:LASTVAR=FIRSTVAR+3 
4320 FIRSTOB=O:LASTOB=19 
4330 GOTO 4090 
5000 REM 
5010 REM ENTER DATA 
5020 CLS 
5030 PRINT "ENTER NEW VARIABLE NAME" 
5040 MAXNAMES=1:NEWNAMES=TRUE%:FORCEO%=FALSE% 
5050 GOSUB 16000:IF NAMEERR THEN RETURN 
5055 REM VARIABLE IN LISTV(OJ 
5060 PRINT "ENTER DATA - (<ENTER> ALONE MEANS OJ" 
5070 FOR I=O TO NUMOBS-1 
5080 PRINT NAMES$(LISTV(0)) i "(";Ii") >"; 
5090 INPUT "", X(I, LISTV(□)) 

5100 NEXT I 
5110 RETURN 
6000 REM 
6010 REM EDIT DATA 
6020 CLS 
6030 PRINT "ENTER NAME OF VARIABLE TO BE EDITED" 
6040 MAXNAMES=1:NEWNAMES=FALSE%:FORCEO%=FALSE% 
6050 GOSUB 16000:IF NAMEERR THEN RETURN 
6060 REM VARIABLE IN LISTV(□J 
6070 LVAR=LISTV(O) 
6080 CLS 
6090 PRINT "OBSERVATION NUMBER TO BE CHANGED"; 
6100 INPUT" <ENTER> ALONE RETURNS TO MAIN MENU >"iANSWER$ 
6110 IF ANSWER$="" THEN RETURN 
6120 ANSWER=VAL(ANSWER$J: ANSW%=ANSWER 
6130 IF ANSWER=ANSW% AND ANSW%>=0 AND ANSW%<NUMOBS THEN 

6160 
6140 PRINT "OBSERVATION MUST BE INTEGER BETWEEN O AND 

"iNUMOBS-1 
6150 GOTO 6090 
6160 PRINT NAMES$(LVAR)i"( "ANSWERi"J = "iX(ANSW%,LVAR)i 
6170 INPUT "NEW VALUE?>",ANSWER 
6180 PRINT NAMES$(LVAR)i "( "ANSWER;") WAS "; X(ANSW%, LVAR)i 
6190 PRINT" IS NOW "iANSWER 
6200 X(ANSW%,LVARJ=ANSWER 
6210 GOTO 6090 
7000 REM 
7010 REM SAVE DATA ON DISK FILE 
7020 REM FIRST LINE HAS MAXVAR,NUMVAR,NUMOBS 
7030 REM THEN THE VARIABLE NAMES IN ORDER 
7040 REM THEN THE DATA IN EACH VARIABLE IN ORDER 
7050 CLS 



230 8087 Applications and Programming 

7060 
7065 
7070 
7080 
7090 
7100 
7110 
7120 
7130 
7140 
7150 
7160 
8000 
8010 
8020 
8030 
8040 
8050 
8060 
8090 
8100 
8110 
8120 
8130 
8140 
8150 
8160 
8170 
9000 
9010 
9020 
9040 
9050 
9060 
9070 

9090 
9100 
9110 
9112 
9120 
9130 
9140 
9150 
9160 
9170 
9180 
9190 
1000□ 
10010 
10020 
10040 

INPUT "ENTER DISK FILE NAME> ",FILENAME$ 
NAME FILENAME$ AS FILENAME$ 
OPEN FILENAME$ FOR OUTPUT AS #1 
WRITE#1,MAXVAR,NUMVAR,NUMOBS 
FOR I=O TO NUMVAR-1:WRITE#1,NAMES$(I):NEXT I 

FOR I=O TO NUMVAR-1 
FOR J= □ TO NUMOBS-1 
WRITE#1, X(J, I) 

NEXT J,I 
CLOSE #1 
PRINT "DATA FILED IN ";FILENAME$ 
GOSUB 19000:RETURN 
REM 
REM RETRIEVE DATA FROM DISK FILE 
CLS 
INPUT "ENTER DISK FILE NAME> ",FILENAME$ 
OPEN FILENAME$ FOR INPUT AS #1 
INPUT#1,MAXVAR,NUMVAR,NUMOBS 
DISKFILE%=TRUE% 
GOSUB 120□□ 
FOR I=O TO NUMVAR-1:INPUT#1,NAMES$(I):NEXT I 

FOR I= □ TO NUMVAR-1 
FOR J=O TO NUMOBS-1 
INPUT#1, X(J, I) 

NEXT J,I 
CLOSE #1 
PRINT "DATA RETRIEVED FROM ";FILENAME$ 
GOSUB 1900□ :RETURN 

REM 
REM PRINT MEANS, STANDARD DEVIATIONS, VARIANCES 
CLS 
MAXNAMES=NUMVAR:NEWNAMES=FALSE%:FORCE0%=FALSE% 
GOSUB 160□□ :IF NAMEERR THEN RETURN 
REM VARIABLE NUMBERS ARE IN LISTV □ THROUGH LISTLEN-1 
PRINT "VARIABLE"," MEAN ","STANDARD DEVIATION", 

"VARIANCE" 
REM COLLECT SUM OF EACH VARIABLE IN SUM# 
REM COLLECT SUM-SQUARE OF EACH VARIABLE IN SUMSQ# 
FOR I=O TO LISTLEN-1 
LI=LISTV(I) 
SUM#=□: CALL SUM%(X(O, LI), NUMOBS, SUM#) 
SUMSQ#=O: CALL INPROD%(X(□, LI), X(□, LI), SUMSQ#, NUMOBS) 
AVERAGE#=SUM#/NUMOBS 
VAR IAN CE#=(SUMS Q#-S UM#* SUM#/ NUM OB S)/(NUMOB S-1) 
PRINT NAMES$(LI), AVERAGE#, SQR(VARIANCE#J, VARIANCE# 
NEXT I 
GOSUB 19000 
RETURN 
REM 
REM PRINT CORRELATIONS 
CLS 
MAXNAMES=NUMVAR:NEWNAMES=FALSE%:FORCE0%=TRUE% 



10050 
10060 
10080 

10090 
10100 
10110 
10120 
10130 
10140 
10150 
10160 
10170 
10180 
10190 . 
10200 
10210 
10220 
10230 
10240 
10250 
11000 
11010 
11020 
11030 
11040 
11050 
11060 
11070 
11080 
11090 
11100 
11110 
11120 
11130 
11140 
11150 
11160 
11170 
11180 
11190 
11200 
11210 
11220 

11230 
11240 
11250 
11260 
11263 
11264 
11265 
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GOSUB 16000:IF NAMEERR THEN RETURN 
REM VARIABLE NUMBERS ARE IN LISTV O THROUGH LISTLEN-1 
CORRERR$= "' ' ' 'WHOOPS CONSTANT 

VARIABLE" 
PRINT "VARIABLE-1 VARIABLE-2 CORRELATION COEFFICIENT" 
REM HAVE PRODUCT-MOMENT MATRIX COLLECTED IN XPX# 
GOSUB 17000 

FOR I=1 TO LISTLEN-1 
NM 1 $=NA ME S$(L ISTV(I)l 

FOR J=I TO LISTLEN-1 
N M2$=N A MES $(LIS TV( J)) 
COV#=NUMOBS*XPX#(I, JJ-XPX#(O, I)*XPX#(O, J) 
V1#=NUMOBS*XPX#(I, IJ-XPX#(O, I)*XPX#(O, I) 
V2#=NUMOBS*XPX#(J, JJ-XPX#(O, J)*XPX#(O, J) 
IF (V1#*V2#)<>0 THEN 10220 
PRINT USING CORRERR$; NM1$,NM2$ 
GOTO 10230 
PRINT NM1$, NM2$, COV#/SQR(V1#*V2#) 

NEXT J,I 
GOSUB 19000 
RETURN 
REM 
REM MULTIPLE REGRESSION SECTION 
REM FIRST GET DEPENDENT VARIABLE 
REM THEN INDEPENDENT VARIABLES 
REM THEN GO TO WORK 
CLS 
PRINT "MULTIPLE REGRESSION" 
PRINT "ENTER DEPENDENT VARIABLE" 
MAXNAMES=1:NEWNAMES=FALSE%:FORCEO%=FALSE% 
GOSUB 16000:IF NAMEERR THEN RETURN 
REM DEPENDENT VARIABLE IN LISTV(O) 
DEPVAR%=LISTV(O) 
PRINT "ENTER INDEPENDENT VARIABLES" 
MAXNAMES=NUMVAR:NEWNAMES=FALSE%:FORCEO%=FALSE% 
GOSUB 16000:IF NAMEERR THEN RETURN 
REM VARIABLE NUMBERS ARE IN LISTV O THROUGH LISTLEN-1 
IF LISTLEN>=NUMOBS THEN 11600 
REM ALLOCATE REGRESSION STORAGE 
ERASE XPY#,XPXINV#,BETA#,SCRATCH,INDEX 
L1=LISTLEN-1 
DIM XPY#(L1), XPXINV#(L1, L1), BETA#(L1), SCRA TCH(L1), INDEX(L1J 
REM NOW DO THE REGRESSION 
YSQR#=O: CALL INPROD%(X(O, DEPVAR%), 
X(O, DEPVAR%), YSQR#, NU MOBS) 

FOR I=O TO LISTLEN-1 
CALL INPROD%(X(O, DEPVAR%), X(O, LISTV(I)l, XPY#(I), NUMOBS) 
NEXT I 

GOSUB 17000 'COLLECT XPX# - UPPER HALF 
FOR I=O TO LISTLEN-1 

FOR J=I+1 TO LISTLEN-1 
XPX#(J, I)=XPX#(I, J) 
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11266 
1127□ 
1128□ 

1129□ 
11292 
11294 

11296 
11298 
113□□ 
1131□ 
1132□ 
1133□ 

NEXT J,I 
IER=□ :TYPEX%=8:L2=LISTLEN*LISTLEN 

CALL INV%(XPX#(□, □), XPXINV#(□, □),SCRATCH(□), INDEX(□), IER, 
TYPEX%, LISTLENJ 

IF IER<>□ THEN 117□□ 
IFDEN=FALSE%:IFINF=FALSE%:IFNAN=FALSE%:ELEMENT%=□ 

CALL REALERR%(XPXINV#(□, □), TYPEX%, L2, IF DEN, IFINF, 
IFNAN, ELEMENT%) 

IF (NOT IFDENJ AND (NOT IFINF) AND (NOT IFNAN) THEN 113□□ 
PRINT "WARNING NUMERICAL RESULTS HIGHLY SUSPECT" 
REM NOW FORM XPXINV# TIMES XPY# 
IONE=1 

FOR I= □ TO LISTLEN-1 
CALL GINPROD%(XPXINV#(I, □), XPY#(□) ,BETA#(!), TYPEX%, 

TYPEX%,LISTLEN,IONE,LISTLEN) 
1134□ NEXT I 
1135□ REM NOW FORM SUM SQUARE RESIDUALS AS Y'Y-BETA'X'Y 
1136□ TEMP#=□: CALL GINPROD%(BETA#(O), XPY#(O), TEMP#, 

1137□ 
11375 

1138□ 
1139□ 
1141□ 
1143□ 
1144□ 
1145□ 

1146□ 
1147□ 
1148□ 
1149□ 

115□□ 
1151□ 
1152□ 

116□□ 

1161□ 

117□□ 
1171□ 
1172□ 
1173□ 

12□□□ 
12□1 □ 
12□2 □ 
12□3 □ 

12□ 4 □ 
12 □ 45 

SSR#=YSQR#-TEMP# 

TYPEX%,TYPEX%,IONE,IONE, 
LISTLEN) 

IF YSQR#=□ THEN PRINT "ZERO LHS VARIABLE???":GOTO 
1151□ 

CLS 
S2#=SSR#/(NUMOBS-LISTLEN) 
PRINT "VARIABLE","COEFFICIENT","S·E·"" ,"T-STATISTIC" 

FOR I= □ TO LISTLEN-1 
SE#=SQR(S2#*XPXINV#(I, I)) 

IF SE#<>□ THEN PRINT NAMES$(LISTV(I)), CSNG(BET A#(I)), 
CSNG(SE#), CSNG(BET A#(I)/SE#) 

ELSE PRINT NAMES$(LISTV(I)), CSNG(BETA#(I)), "-", "-" 
NEXT I 

PRINT NUMOBS;" OBSERVATIONS ";LISTLEN;" VARIABLES" 
PRINT "STANDARD ERROR OF REGRESSION= ";SQR(S2#) 
PRINT "SUM SQUARE RESIDUALS= ";SSR# 
PRINT "R-SQUARED= ";1-SSR#/YSQR# 
GOSUB 19□□□ 
RETURN 
PRINT "MORE OBSERVATIONS THAN DEPENDENT VARIABLES 

REQUIRED" 
GOSUB 19□□□ :RETURN 
PRINT "NUMERICALLY SINGULAR MATRIX" 
PRINT "EITHER VARIABLE INCLUDED TWICE OR TOO MUCH"; 
PRINT "MULTICOLLINEARITY" 
GOSUB 19□□□ :RETURN 
REM 
REM ALLOCATE STORAGE AND INITIALIZE PROGRAM 
IF NOT FIRSTIME% THEN 1242□ 

CLEAR ,&H7F□□ 'SET ASIDE SPACE IF YOU HAVE LESS THAN 
96K 

DEFINT I-N 
ON ERROR GOTO 18□□□ 
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12050 TRUE%=-1:FALSE%=0 
12060 FIRSTIME%=FALSE%:WASFIRST%=TRUE% 
12070 DEF SEG=&HEFO 'SUBROUTINE AREA 
12075 VECTOR%=0:MATRIX%=&H420:MATADV%=&H790 
12080 BLOAD "VECTOR-SAV",VECTOR%:BLOAD "MATRIX-SAV", 

MATRIX% 
12085 BLOAD "MATADV 0 SAV",MATADV% 
12090 INPROD%=MATRIX%+&H121:GINPROD%=MATRIX%+&H1A6 
12091 INV%=MATADV%+&H4F3:SUM%=VECTOR%+0: 

REALERR%=VECTOR%+&H2DC 
12095 CLS 
12100 PRINT "DO YOU WISH TO LOAD DATA FROM A DISK FILE (Y/ 

NJ>"; 
12110 INPUT "",ANSWER$ 
12120 IF ANSWER$="Y" OR ANSWER$="y" THEN GOSUB 8000:GOTO 

12410 
12130 INPUT "NUMBER OF OBSERVATIONS>"ANSWER$ 
12140 IF ANSWER$="" THEN RETURN 
12150 ANSWER=VAL(ANSWER$) 
12160 ANSW%=ANSWER 
12170 IF (ANSW%=ANSWER) AND (ANSW%<>0) THEN 12210 
12180 PRINT "POSITIVE INTEGER REQUIRED"; 
12190 PRINT "<ENTER> RETURNS TO COMMAND MENU" 
12200 GOTO 12100 
12210 NUMOBS=ANSW% 
12220 REM FORK VARIABLES NEED ABOUT 
12230 REM 4NK FOR X 
12240 REM 16K*K FOR XPX,XPXINV 
12250 REM AT LEAST 16K FOR NAMES 
12260 REM 16K FOR XPY AND BETA 
12270 REM BETTER LEAVE A LITTLE EXTRA FOR SAFETY, SAY 
12280 REM USE 2000+K(4N+16K+32) 
12285 ERASE X,NAMES$ 
12290 SPACE=FRE(0)-2000 
12300 K=INT(SPACE/NUMOBS/4): K1=SQR(SPACE/16) 
12305 IF K>K1 THEN K=K1 'FIRST ESTIMATE FORK 
12310 IF (4*K*(NUMOBS+4*K+8))>SPACE THEN K=K-1: GOTO 12310 
12320 MAXVAR=K 
12330 IF MAXVAR>1 THEN 12360 
12340 PRINT "TOO MANY OBSERVATIONS" 
12350 GO TO 12130 
12360 REM NOTE THAT BASIC INITIALIZES EVERYTHING TO ZERO 
12370 K1=K-1:N1=NUMOBS-1:NBYK=NUMOBS*MAXVAR 
12380 ERASE NAMES$,X 
12385 DIM NAMES$(K1), X(N1, K1) 
12390 NAMES$(0)="(CONST)" 
12395 FOR I=O TO N1:X(I,0)=1-0:NEXT I 
12400 NUMVAR=1 
12410 IF NOT WASFIRST% THEN RETURN 
12415 GOTO 2000 'FAKE RETURN, GOSUB WIPED OUT BY CLEAR 
12420 REM NOT THE FIRST TIME INITIALIZED 
12430 ERASE X,NAMES$ 
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12440 
12450 
12460 
12465 
12470 
13000 
13010 
13020 
13030 
13040 
14000 
14010 
14020 
14030 
14040 
15000 
15010 
15020 
15030 

15040 
15050 
15060 
15070 
15080 
15090 
15100 
15110 
15120 
15130 
15140 
15150 

15155 
15160 
15170 
15180 
15190 
15200 
16000 
16010 

16020 
16030 
16040 
16050 
16060 
16070 
16080 
16090 
16100 
16110 

IF NOT DISKFILE% THEN 12095 
K1=MAXVAR-1:N1=NUMOBS-1:NBYK=NUMOBS*MAXVAR 
ERASE NAMES$,X 
DIM NAMES$(K1),X(N1,K1) 
RETURN 
REM 
REM RESTART PROGRAM 
FIRSTIME%=FALSE%:DISKFILE%=FALSE% 
GOSUB 12000 
RETURN 
REM 
REM EXIT PROGRAM 
INPUT "ARE YOU SURE YOU WANT TO EXIT (Y/N)>"iANSWER$ 
IF ANSWER$="y" OR ANSWER$="Y" THEN END 
RETURN 
REM 
REM INSERT NAME IN SYMBOL TABLE 
REM NAME TO BE INSERTED IS IN NAMEIS$ 
REM IF SYMBOL TABLE IS FULL, PRINT MESSAGE AND SET 

NAMEERR 
REM IF NOT A NEW NAME, PRINT MESSAGE AND SET NAMEERR 
REM OTHERWISE PUT NAMEIS$ IN NEXT LOCATION IN NAMES$ 
REM REPORT IT'S POSITION IN NAMELOC 
IF NUMVAR<MAXVAR THEN 15100 
PRINT "SYMBOL TABLE FULL !!!! NO NEW VARIABLES" 
NAMEERR=TRUE%:RETURN 
FOUNDIT%=FALSE% 

FOR I=O TO NUMVAR-1 
IF NAMEIS$=NAMES$(I) THEN FOUNDIT%=TRUE% 
NEXT I 

IF NOT FOUNDIT% THEN 15170 
PRINT CHR$(34); NAMEIS$; CHR$(34); 

"ALREADY DEFINED - NOT A NEW NAME" 
GOSUB 19000 
NAMEERR=TRUE%:RETURN 
NAMELOC=NUMVAR 
NUMVAR=NUMVAR+1 
NAMES$(NAMEL OC)=NAMEIS$ 
RETURN 
REM 
REM COLLECT A LIST OF NAMES AND RETURN LOCATIONS IN 

LISTV 
REM A SINGLE NAME IS A SPECIAL CASE 
NAMEERR=FALSE% 
IF MAXNAMES>1 THEN 16500 
INPUT "VARIABLE NAME IS?>",NAMEIS$ 
IF NAMEIS$="" THEN NAMEERR=TRUE%:RETURN 
IF NOT NEWNAMES THEN 16100 
GOSUB 15000 
IF NAMEERR THEN RETURN ELSE 16180 
NAMELOC=-1 

FOR I=O TO NUMVAR-1 



1612□ 
1613□ 
1614 □ 
1615□ 

1616□ 

1617□ 
1618□ 
1619□ 

162□□ 
1621□ 

165□□ 
165□1 
165 □ 2 
1651□ 

1652□ 
1653□ 
1654□ 
1655□ 
1656□ 
1657□ 
1658□ 
1659□ 

166□□ 
1661□ 
1662□ 
1663□ 
1664□ 

1665□ 
1666□ 
1667□ 
1668□ 

1669□ 

167□□ 
1671□ 
1672□ 
1673□ 
1674□ 

1675□ 
1676□ 
1677□ 

17□□□ 
17□1 □ 

17 □ 2 □ 
17□ 3 □ 
17□ 4 □ 
17□ 5 □ 

17 □ 6 □ 
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IF NAMES$(IJ=NAMEIS$ THEN NAMELOC=I 
NEXT I 

IF NAMELOC<>-1 THEN 1618□ 

PRINT CHR$(3Lf)i NAME IS$ i CHR$(34)i" NOT DEFINED" 
PRINT "RE-ENTER NAME OR <ENTER> TO RETURN TO COMMAND 

MENU" 
GOTO 16 □ 5 □ 
REM PUT NAMELOC IN LISTV 
LISTLEN=1 
LISTV(□)=NAMELOC 
RETURN 
REM COME HERE TO COLLECT A SERIES OF VARIABLES 
REM IF FORCE□% THEN INCLUDE CONSTANT AUTOMATICALLY 
IF NOT FORCE□ % THEN LISTLEN=□ ELSE LISTV(□J= □ :LISTLEN=1 
INPUT "ENTER VARIABLE NAME(~ SEPARATED BY A SPACE>", 

ANSWER$ 
IF ANSWER$="" THEN NAMEERR=TRUE%:RETURN 
FOR I=LISTLEN TO MAXNAMES-1: LISTV$(IJ="": NEXT I 
LOOKFROM=1 
REM RETRIEVE A VARIABLE NAME 
SPACELOC%=INSTR(LOOKFROM, ANSWER$," ") 
IF SPACELOC%=□ THEN SPACELOC%=LEN(ANSWER$)+1 
NAMEIS$=MID$(ANSWER$,LOOKFROM,SPACELOC%-LOOKFROM) 
NAMELOC=-1 
IF NAMEIS$="" THEN 1673 □ 

IF NOT NEWNAMES THEN 1663□ 

GOSUB 15□□□: IF NAMEERR THEN RETURN 
FOR I= □ TO NUMVAR-1 

IF NAMES$(IJ=NAMEIS$ THEN NAMELOC=I 
NEXT I 

IF NAMELOC<>-1 THEN 167□□ 
PRINT CHR$(34)i NAME IS$ i CHR$(34)i" NOT DEFINED" 
PRINT "RE-ENTER LIST OR <ENTER> TO RETURN TO COMMAND 

MENU" 
GOTO 165□□ 
REM PUT NAMELOC IN LISTV 
LISTV(LISTLENJ=NAMELOC 
LISTLEN=LISTLEN+1 
LOOKFROM=SPACELOC%+1 
IF LOOKFROM>LEN(ANSWER$) THEN RETURN 
IF LISTLEN<MAXNAMES THEN 1656□ 
PRINT "TOO MANY NAMES" 
GO TO 1668□ 
REM 
REM COLLECT PRODUCT MOMENT MATRIX IN UPPER HALF OF 

XPX# 
ERASE XPX#:L1=LISTLEN-1:DIM XPX#(L1,L1) 

FOR I= □ TO LISTLEN-1 
FOR J=I TO LISTLEN-1 
CALL INPROD%(X(□, LISTV(Il), X(□, LISTV(J)l, 

XPX#(I, J), NUMOBSJ 
NEXT J,I 
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17 □ 7 □ RETURN 
18□□□ REM 
18 □ 1 □ REM HANDLE A FEW ERRORS HERE 
18 □ 2 □ REM DID WE RUN OUT OF SPACE? 
18 □ 3 □ IF ERR<>? AND ERR<>14 THEN 18 □ 7 □ 

18 □ 40 PRINT "PROGRAM RAN OUT OF MEMORY IN LINE "iERL 
18 □ 5 □ PRINT "SORRY ... " 
18 □ 6 □ STOP 
18 □ 70 REM DID WE TRY TO READ FROM A NON-EXISTENT FILE? 
18 □ 8 □ IF ERR<>53 OR ERL<>8□ 4 □ THEN 1812□ 
18 □90 IF FILENAME$="" THEN RESUME 817 □ 'BACK TO MENU 
181□□ ~RINT "CAN'T FIND ";FILENAME$ 
1811 □ RESUME 8 □ 3 □ 'TRY AGAIN 
1812□ REM IS THIS A NEW OUTPUT FILE? 
1813 □ IF ERR<>53 OR ERL<>7 □ 65 THEN 1815 □ 

1814 □ RESUME NEXT 
1815 □ IF ERR<>58 OR ERL<>7 □ 65 THEN 182□□ 
1816 □ PRINT "FILE ALREADY EXISTS, ARE YOU SURE? (Y /N)" i 
1817 □ INPUT "",ANSWER$ 
1818 □ IF ANSWER$="y" OR ANSWER$="Y" THEN RESUME NEXT 
1819□ RESUME 7 □ 6 □ 
18?. □□ If ERR<>5 OR (ERL<>12285 AND ERL<>1243□ AND ERL<>1118□ 

AND ERL<>17□ 2 □ AND ERL<>1246□ AND ERL<>1238 □) THEN 
1822□ 

18210 RESUME NEXT 'OK, WE JUST ERASED SOMETHING THAT WASNT 
THERE 

1822 □ ON ERROR GOTO □ 

1823 □ END 
19□□□ REM HOLD SCREEN 
19 □ 1 □ PRINT "HIT ANY KEY TO RETURN TO COMMAND MENU>"i 
19 □ 2 □ IF INKEY$="" THEN 19 □ 2 □ ELSE RETURN 
19 □ 3 □ PRINT "HIT ANY KEY TO RETURN TO CONTINUE>"i 
19 □ 4 □ IF INKEY$="" THEN 19 □ 4 □ ELSE RETURN 



Commercial Data 
Processing 

The name "numeric data processor" naturally leads people to think of 
the 8087 as a tool for "scientific" rather than "business" applications. 
While the 8087's forte is certainly working with numbers, it does have 
important applications in business and commercial EDP (Electronic Data 
Processing). 

Program: 
Purpose: 
Call: 
Input: 

Output: 

Language: 

The Cookbook-C~ap~er 15 
ADDSTR 
Add array of integer-valued strings. 
CALL ADDSTR(A$(0),ISPACE(0),SUM,IER,N) 
A$-N element string array. 
ISPACE-5 element integer array; scratch space. 
N-integer number of elements of A$. 
SUM-single precision scalar; sum of V AL(A$(I)) 
!ER-integer; -1 if error, 0 otherwise. 
8087/8088 assembly language. 

The 8087 is valuable in any application involving numbers. In the last 
chapter, we built a small statistical package out of the matrix routines of 
Chapters 10 and 11. Business people normally don't care about technical 
aspects of matrix inversion! However, mathematical tools such as regres
sion analysis (which use matrix operations internally) are a regular part 
of the forecasting and planning function in every large company. The 
8087 is an important tool for anyone building software for business people 
to use. 

Typical commercial EDP applications (payroll programs .and the like) 
do relatively little numerical computation. Such programs spend more 
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time converting data from an external "ASCII" format to an internal 
binary format than they spend manipulating the numbers after the con
version. For this reason, commercial programs often avoid conversion 
costs by operating directly on data stored in decimal, rather than binary, 
representation. The 8087 supports such operations through its packed 
decimal instructions. · 

Almost all commercial data processing applications are written in high
level languages. Languages such as COBOL and PL/I allow you to operate 
on decimal data. The BASIC language offered on personal computers 
rarely provides a decimal data type. In order to show off the 8087's 
prowess at decimal operations, we've written a small assembly language 
routine that replaces part of a BASIC program. 

Consider the following BASIC program which creates a string array 
filled with integers and then totals up the values in the strings. 

10 DEFINT I-N 
20 DIM A$(4999) 
30 N=4999 
40 REM FILL UP A$ WITH INTEGERS 
50 FOR I= □ TO N: A$(I)=STR$(IJ: NEXT I 
60 REM TIME THIS PART 
70 T1$=TIME$ 
80 SUM=□ 
90 FOR I= □ TO N 
100 SUM=SUM+VAL(A$(I)) 
11 □ NEXT I 
120 T2$=TIME$ 
130 PRINT N+1,SUM,T1$,T2$ 
140 END 

Most of the work in lines 90, 100, and 110 is in the function "VAL" which 
converts strings to single precision. (If you change the array of strings, 
A$, to a single precision array, A, you'll see the program's speed nearly 
triple.) Assembly language subroutine ADDSTR, below, adds up a vector 
of strings (representing integers) and returns a single precision sum. We 
can replace lines 90-100 with ADDSTR, as in the following program. 

10 DEFINT I-N 
20 DIM A$(4999), ISPACE(4) 
30 N=4999 
40 REM FILL UP A$ WITH INTEGERS 
50 FOR I= □ TO N: A$(IJ=STR$(IJ: NEXT I 
60 REM TIME THIS PART 
70 T1$=TIME$ 
80 SUM=□ 
90 IER=(;t,, 
100 CAL[ ADDSTR(A$(0),ISPACE(□),SUM,IER,NJ 
11 □ T2$=TIME$ 
12 □ PRINT N+1,SUM,T1$,T2$ 
13 □ END 
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ADDSTR processes each string in three steps. First, it finds the string 
by untangling the string descriptor provided by BASIC. Second, ADDSTR 
converts the string's ASCII representation to packed decimal while doing 
some limited error checking. Third, ADDSTR uses the 8087 packed dec
imal instructions to add up the converted values. 

; SUBROUTINE ADDSTR(A$(0J, ISPACE(□J, SUM, IER, NJ 
; ASSUMPTIONS: A$ - N LONG ARRAY OF STRINGS 
; ISPACE - 10 FREE BYTES 
; SUM - SINGLE PRECISION ANSWER 
; IER - INTEGER, □ ON RETURN FOR NO ERROR 
; -1 IF ERROR 
; N - INTEGER NUMBER OF ELEMENTS OF A$ 

; 

ADDSTR 
; 

CSEG 

ADDSTR 

NOTDONE: 

ELEMENTS OF A$ ARE ASSUMED TO BE 
INTEGERS NO MORE TAHN 18 BYTES LONG. 

ADDS UP VALUES IN A$ 

PUBLIC 
SEGMENT 
ASSUME 
PROC 
PUSH 
MOV 
MOV 
MOV 
MOV 
MOV 
FLDZ 
CMP 
JG 
JMP 

ADDSTR 
'CODE' 
cs:CSEG 
FAR 
BP 
BP,SP 
BX,[BP]+8 
WORD PTR 
BX ,[BP]+6 
CX,[BX] 

ex, □ 

NOTDONE 
DONE 

[BX], □ 

iBX=ADDR(IERJ 
iASSUME NO ERROR 
iKEEP COUNT OF ARRAY 
iIN ex AS USUAL 
iCLEAR OUT STACK TOP 

iN= □ ? 

MOV BX,[BP]+14 iBX=ADDR(A$(0)) 
iNOTICE BX KEEPS TRACK OF THE DESCRIPTORS OF THE STRINGS, 
i NOT THE STRINGS THEMSELVES 
GELDESCRIPTOR: 

iUNFORTUNATELY, THE BASIC COMPILER AND THE BASIC INTERPRETER 
iSTORE STRINGS DIFFERENTLY 
iTHE COMPILER DESCRIPTOR HAS THE STRING LENGTH IN ONE WORD 
i FOLLOWED BY THE STRING ADDRESS IN A SECOND WORD 
iTHE INTERPRETER DESCRIPTOR HAS THE STRING LENGTH IN ONE 

BYTE 
FOLLOWED BY THE STRING ADDRESS IN A WORD 

iASSUME THIS PROGRAM IS RUN WITH COMPILED BASIC 
MOV AX, WORD PTR [BX] i ASSUME COMPILER 
MOV AH, □ 

MOV AL, BYTE PTR [BX] i IF INTERPRETER 
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; AX IS NUMBER OF BYTES IN STRING 
;CLEAR OUT WORKSPACE 

MOV SI,[BP]+12 ;SI=ADDR(ISPACEJ 
MOV WORD PTR [SI], □ 

MOV WORD PTR [SI]+2, 0 
MOV WORD PTR [SI]+4,0 
MOV WORD PTR [SI]+b, 0 
MOV WORD PTR [SI]+8, 0 

MOV 
MOV 

DI, WORD PTR [BX]+2 ; DI=ADDR(STRING(I)) 
DI, WORD PTR [BX]+1 IF INTERPRETER 

;CHECK FIRST CHARACTER FOR MINUS SIGN 
MOV DL, BYTE PTR [DI] ; DL IS FIRST CHARACTER 
CMP DL,45 ;CHECK FOR MINUS 
JNE NUMBER ;SIGN 

;IT'S NEGATIVE 
OR BYTE PTR [SI],80H ; SET SIGN BIT 
DEC AX ;USED UP ONE BYTE 

; CHECK STRING LENGTH 
CMP AX, □ 

JLE ERROR 
CMP AX,18 
JG ERROR 

NUMBER: 
;NOW START AT RIGHT END OF 

ADD DI, AX 

;NULL STRING NOT 
;ALLOWED 

STRING AND WORK BACKWARD 
;DI POINTS TO 

DEC DI 
CMP DL,45 
JNE L1 

;LAST BYTE OF STRING 
;BUT TEST IF WE HAD 
;ALREADY SUBTRACTED 

INC DI 

u: 
;WE NEED TO REMEMBER WHETHER TO PLACE DIGIT IN 
; LEFT OR RIGHT NIBBLE (HALF OF BYTE) 
;KEEP FLAG IN DH, 0 MEANS RIGHT 1 MEANS LEFT 

MOV DH, □ 

;NOW TRANSLATE EACH CHARACTER 
NEXTNUM: 

MOV DL,BYTE PTR 
CMP DL,32 
JNE NOLA-SPACE 
MOV DL,48 

NOT-A-SPACE: 
CMP DL,48 
JL ERROR 
CMP DL,57 
JG ERROR 
SUB DL,48 
CMP DH, □ 

JNE LEFT 

[DI] ;GET CHARACTER 
;IS IT A SPACE? 

;If SO, MAKE IT 

;< □ ? 

;>9? 

;MAKE 0-9 
;RIGHT NIBBLE? 

ZERO 
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STOWIT: OR BYTE PTR[SI], DL iSTORE DECIMAL 
XOR DH,1 i SWITCH NIBBLE 
JMP NEXTCH 

LEFT: SHL DL,1 iGET IT TO LEFT 
SHL DL,1 iNIBBLE 
SHL DL,1 
SHL DL,1 
OR BYTE PTR[SI),DL iSTORE DECIMAL 
XOR DH,1 ; SWITCH NIBBLE 
INC SI iNEXT BYTE 

NEXTCH: 
DEC DI iNEXT CHARACTER 
DEC AX iDONE YET 
JG NEXTNUM iMORE? 

iNOW ISPACE HAS A NICE PACKED DECIMAL NUMBER IN IT 

DONE: 

MOV 

FBLD 
FADDP 
ADD 
ADD 
LOOP 
MOV 
FSTP 
POP 
FWAIT 

SI ,[BPJ+12 

[SI] 
ST(1), ST 
BX,4 
BX,3 

GOTO-GET-DESCRIPTOR 
SI ,[BP)+1O 
DWORD PTR [SI] 
BP 

RET 10 

iPOINT TO ISPACE 
iAGAIN 
iPUSH IT ONTO STACK 
iADD INTO TOTAL 
iNEXT ARRAY ELEMENT 
iIF INTERPRETER 

i SI=ADDR(SUM) 
iSTORE AWAY SUM 

GOTO-GET-DESCRIPTOR: JMP GET-DESCRIPTOR 
ERROR: MOV BX ,[BPJ+8 i BX=ADDR(IER) 

ADDSTR 
CSEG 

MOV WORD PTR [BX),-1 iERROR INDICATOR 
JMP DONE 
ENDP 
ENDS 
END 
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Notice how we provide the scratch space that ADDSTR needs to store 
the packed decimal value. We could have set up a 10-byte area in an 
extra segment, as we have in other programs. Instead, we get BASIC to 
pass us a 10-byte array called ISP ACE. (This was mostly just as an excuse 
to show an alternative technique for finding storage for an assembly 
language program.) 

Table 15-1 provides some timing figures with and without ADDSTR. 

Routine ADDSTR took over 100 lines of assembly language code to 
replace three lines of BASIC. In return for the extra work, we got a 
program that runs 50 times faster than interpreted basic and 12 times 
faster than compiled BASIC. In this example, the speed improvement 
for a commercial application is the same as we found for scientific ap
plications earlier in the book. 

While the 8087 may never become quite so indispensable in commercial 
work as it is in scientific programming, we can still expect its use to 
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Table 15-1. Speed benchmarks for packed decimal instructions 
(time in se·conds). 

Program 

BASIC interpreter 
BASIC compiler 
8087 routine 

Add 5,000 integer 
strings 

64 
15 
1.25 

become widespread, especially as 8087-compatible translators for com
merical programming languages appear. 



Postscript 

I told you a little fib in the first chapter. I said you would use the 8087 
to "turn minutes into seconds." The 8087 will indeed turn minutes into 
seconds, but I think you will find that the 8087's real value lies in its 
ability to extend your reach. Now that your machine is many times faster, 
you will find you will want to solve problems that are many times larger
and probably problems with more important answers. Solutions that 
could formerly be found only on a large computer-or that weren't avail
able to you at all-are now within your grasp. 
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Appendix 1 
Table Al-1. Instruction Set Reference Data. Courtesy of Intel 
Corporation. 

FABS FABS (no operands; 
Exceptions: I Absolute value 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 14 10-17 0 0 FABS 

FADD FADD //source/destination.source 
Exceptions: I, D, 0, U, P 

Add real 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

/ /ST,ST(i)/ST(i),ST 85 70-100 0 0 FADD ST,ST(4) 
short-real 105+EA 90-120+EA 2/4 4 FADD AIR_ TEMP [SI) 
long-real 110+EA 95-125+EA 4/6 8 FADD [BX].MEAN 

FADDP FADDP destination.source 
Exceptions: I, D, 0, U, P Add real and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

ST(i),ST 90 75-105 0 0 FADDP ST(2),ST 

FBLD FBLD source 
Exceptions: I Packed decimal (BCD) load 

Execution Clocks Transfers 
Operands 

Typical Range 8088 8088 
Coding Example 

packed-decimal 300+EA 290·310+EA 5/7 10 FBLD YTO_SALES 

FBSTP FBSTP destination 
Packed decimal (BCD) store and pop Exceptions: I 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

packed-decimal 530+EA 520-540+EA 6/8 12 FBSTP (BX].FORECAST 

FCHS FCHS (no operands) 
Change sign Exceptions: I 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 15 10-17 0 0 FCHS 
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Table Al-1. Instruction set reference data (continued). Courtesy of 
Intel Corporation. 

FCLEX/FNCLEX FCLEX (no operands) 
Exceptions: None Clear exceptions 

\ Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 5 2-8 0 0 FNCLEX 

FCOM FCOM //source 
Exceptions: I, D 

Compare real 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

//ST(i) 45 40-50 0 0 FCOM ST(1) 
short-real 65+EA 60-70+EA 2/4 4 FCOM [BP].UPPER_ LIMIT 
long-real 70+EA 65-75+EA 4/6 8 FCOM WAVELENGTH 

FCOMP FCOMP / /source 
Exceptions: I, D Compare real and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

//ST(i) 47 42-52 0 0 FCOMP ST(2) 
short-real 68+EA 63-73+EA 2/4 4 FCOMP [BP+2].N_READINGS 
long-real 72+EA 67-77+EA 4/6 8 FCOMP DENSITY 

FCOMPP FCOMPP (no operands) 
Exceptions: I, D Compare real and pop twice 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 50 45-55 0 0 FCOMPP 

FDECSTP FDECSTP (no operands) 
Exceptions: None Decrement stack pointer 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 9 6-12 0 0 FDECSTP 

FDISI/FNDISI FDISI (no operands) 
Exceptions: None Disable interrupts 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 5 2-8 0 0 FDiSI 
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Table Al-1. Instruction set reference data (continued). Courtesy of 
Intel Corporation. 

FDIV FDIV //source/destination.source 
Exceptions: I, D, Z, 0, U, P Divide real 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

//ST(i),ST 198 193-203 0 0 FDIV 
short-real 220+EA 215-225+EA 2/4 4 FDIV DISTANCE 
long-real 225+EA 220-230+EA 4/6 8 FDIV ARC [DI} 

FDIVP FDIVP destination.source 
Exceptions: I, D, Z, 0, U, P )ivide real and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

ST(i),ST 202 197-207 0 0 FDIVP ST(4),ST 

FDIVR FDIVR / /source/destination.source 
Exceptions: I, D, Z, 0, U, P Divide real reversed 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

/ /ST,ST(i)/ST(i),ST 199 194-204 0 0 FDIVR ST(2),ST 
short-real 221+EA 216-226+EA 2/4 6 FDIVR [BX}.PULSE_RATE 
long-real 226+EA 221-231+EA 4/6 8 FDIVR RECORDER.FREQUENCY 

FDIVRP FDIVRP destination.source 
Exceptions: I, D, Z, 0, U, P Divide real reversed and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

ST(i),ST 203 198-208 0 0 FDIVRP ST(1),ST 

FENI/FNENI FENI (no operands) 
Exceptions: None Enable interrupts 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 5 2-8 0 0 FNENI 

FFREE FFREE destination 
Exceptions: None 

Free register 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

ST(i) 11 9-16 0 0 FFREE ST(1) 
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Table Al-1. Instruction set reference data (continued). Courtesy of 
Intel Corporation. 

FIADD FIADD source 
Exceptions: I, 0, 0, P 

Integer add 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

word-integer 120+EA 102-137+EA 1 /2 2 FIAOO OISTANCE_TRAVELLEO 
short-integer 125+EA 108-143+EA 2/4 4 FIAOO PULSE_COUNT [SI) 

FICOM FICOM source 
Integer compare Exceptions: I, O 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

word-integer 80+EA 72-86+EA 1/2 2 FICOM TOOL.N_PASSES 
short-integer 85+EA 78-91+EA 2/4 4 FICOM [BP+4[.PARM .• COUNT 

FICOMP FICOMP source 
Exceptions: I, D Integer compare and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

word-integer B2+EA 74-88+EA 1/2 2 FICOMP [BPJ.LIMIT [SI) 
short-integer 87+EA 80-93+EA 2/4 4 FICOMP N SAMPLES 

FIDIV FIOIV source 
Exceptions: I, 0, Z, 0, U, P 

Integer divide 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

word-integer 230+EA 224-238+EA 1/2 2 FIOIV SURVEY.OBSERVATIONS 
short-integer 236+EA 230-243+EA 2/4 4 FIDIV RELATIVE ANGLE [DIJ 

FIDIVR FIDIVR source 
Exceptions: I, 0, Z, 0, U, P 

Integer divide reversed 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

word-integer 230+EA 225-239+EA 1 /2 2 FIDIVR [BP).X_COORO 
short-integer 237+EA 231-245+EA 2/4 4 FIOIVR FREQUENCY 

FILO FILO source 
Exception: I 

Integer load 

Execution Clocks Transfers 
Operands Typical Range 8086 8088 

Coding Example 

word-integer 50+EA 46-54+EA 1 /2 2 FILO [BXJ.SEOUENCE 
short-integer 56+EA 52-60+EA 2/4 4 FILO STANDOFF [Olj 
long-integer 64+EA 60-68+EA 4/6 8 FILO RESPONSE.COUNT 
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Table Al-1. Instruction set reference data (continued). Courtesy of 
Intel Corporation. 

FIMUL FIMUL source 
Exceptions: I, D, 0, P 

Integer multiply 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

word-integer 130+EA 124-138+EA 1/2 2 FIMUL BEARING 
short-integer 136+EA 130-144+EA 2/4 4 FIMUL POSITION.Z_AXIS 

FINCSTP FINCSTP (no operands) 
Exceptions: None Increment stack pointer 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 9 6-12 0 0 FINCSTP 

FINIT /FNINIT FINIT (no operands) 
Exceptions: None 

Initialize processor 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 5 2-8 0 0 FINIT 

FIST FIST destination 
Exceptions: I, P 

Integer store 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

word-integer 86+EA 80-90+EA 2/4 4 FIST OBS.COUNT [SI] 
short-integer 88+EA 82-92+EA 3/5 6 FIST [BP].FACTORED_PULSES 

FISTP FISTP destination 
Exceptions: I, P Integer store and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

word-integer 88+EA 82-92+EA 2/4 4 FISTP [BX].ALPHA_COUNT [SI] 
short-integer 90+EA 84-94+EA 3/5 6 FISTP CORRECTED_ TIME 
long-integer 100+EA 94-105+EA 517 10 FISTP PANEL.N_READINGS 

FISUB FISUB source 
Exceptions: I, D, O. P Integer subtract 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

word-integer 120+EA 102-137+EA 1 /2 2 FISUB BASE_FREOUENCY 
short-integer 125+EA 108-143+EA 2/4 4 FISUB TRAIN __ SIZE [DI] 
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Table Al-1. Instruction set reference data (continued). Courtesy of 
I~tel Corporation. 

FISUBR FISUBR source 
Exceptions: I, D, 0, P Integer subtract reversed 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

word-integer 120+EA 103-139+EA 1 /2 2 FISUBR FLOOR IBX] [SI[ 
short-integer 125+EA 109-144+EA 2/4 4 FISUBR BALANCE 

FLD FLO source 
Exceptions: I, D Load real 

E'xecution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

ST(i) 20 17-22 0 0 FLO ST(0) 
short-real 43+EA 38-56+EA 2/4 4 FLO READING [Sl[.PRESSURE 
long-real 46+EA 40-60+EA 4/6 8 FLO JBPJ.TEMPERATURE 
temp-real 57+EA 53-65+EA 5/7 10 FLO SAVEREADING 

FLDCW FLDCW source 
Exceptions: None Load control word 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

· 2-bytes 10+EA 7-14+EA 1 /2 2 FLDCW CONTROL WORD 

FLDENV FLDENV source 
Exceptions: None Load environment 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

14-bytes 40+EA 35-45+EA 7/9 14 FLDENV [BP+6J 

FLDLG2 FLDLG2 (no operands) 
Exceptions: I 

Load log10 2 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 21 18-24 0 0 FLDLG2 

FLDLN2 FLDLN2 (no operands) 
Exceptions: I 

Loadlog 0 2 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 20 17-23 0 0 FLDLN2 
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Table Al-1. Instruction set reference data (continued). Courtesy of 
Intel Corporation. 

FLDL2E FLDL2E (no operands) 
Exceptions: I 

Loadlog2e 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 18 15-21 0 0 FLDL2E 

FLDL2T FLDL2T (no operands) 
Exceptions: I 

Load 109210 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 19 16-22 0 0 FLDL2T 

FLDPI FLDPI (no operands) 
Exceptions: I Load n 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 19 16-22 0 0 FLDPI 

FLDZ FLDZ (no operands) 
Exceptions: I Load +0.0 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 14 11-17 0 0 FLDZ 

FLD1 FLD1 (no operands) 
Exceptions: I 

Load +1.0 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 18 15-21 0 0 FLD1 

FMUL FMUL / /source/destination.source 
Exceptions: I, D, 0, U, P Multiply real 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

I /ST(i),ST/ST,ST(i)' 97 90-105 0 0 FMUL ST,ST(3) 
I /ST(i),ST/ST,ST(i) 138 130-145 0 0 FMUL ST,ST(3) 
short-real 118+EA 110-125+EA 2/4 4 FMUL SPEED_FACTOR 
long-real' 120+EA 112-126+EA 4/6 8 FMUL IBP].HEIGHT 
long-real 161+EA 154-168+EA 4/6 8 FMUL IBP].HEIGHT 

occurs when one or both operands is "short"-it has 40 trailing zeros in its fraction (e.g., it was loaded from 

a short-real memory operand). 
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Table Al-1. Instruction set reference data (continued). Courtesy of 
Intel Corporation. 

FMULP FMULP destination.source 
Exceptions: I. D, 0, U, P Multiply real and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

ST(i),ST 100 94-108 C 0 FMULP ST(1).ST 
ST(i),ST 142 134-148 0 0 FMULP ST(1).ST 

occurs when one or both operands is "short"-it has 40 trailing zeros in its fraction (e.g .. it was loaded from 

a short-real memory operand). 

FNOP FNOP (no operands) 
Exceptions: None No operation 

Execution Clocks Transfers 
Operands 

Typical Range 8088 8088 
Coding Example 

(no operands) 13 10-16 0 0 FNOP 

FPATAN FPATAN Ino operands) Exceptions: U. P 
Partial arctangen: (operands not checked) 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 650 250-800 0 0 FPATAN 

FPREM FPREM Ino operands! 
Exceptions: I. D. U Partial remainder 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 125 15-190 0 0 FPREM 

FPTAN FPTAN (no operands! Exceptions: I, P 
Partial tangent (operands not checked) 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 450 30-540 0 0 FPTAN 

FRNDINT FRNDINT Ino operands! 
Exceptions: I. P Round to integer 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 45 16-50 0 0 FRNDINT 
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Table Al-1. Instruction set reference data (continued). Courtesy of 
Intel Corporation. 

FRSTOR FRSTOR source 
Exceptions: None 

Restore saved state 

Execution Clocks Transfe.rs 
Operands 

Typical Range 8086 8088 
Coding Example 

94-bytes 210•EA 205-215.:.EA 47,49 96 FRSTOR \BP] 

FSAVE/FNSAVE FSAVE destination 
Exceptions: None 

Save state 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

94-bytes 210•EA 205-215-EA 48 50 94 FSAVE \BP] 

FSCALE FSCALE 1no operands) 
Exceptions: I. 0. U 

Scale 

Execl'tion Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 35 32-38 0 0 FSCALE 

FSQRT FSORT 1no operands) 
Exceptions': l. D. P 

Square root 

Execution Clocks Transfers 
Operands 

Typical Range [1086 8088 
Coding Example 

(no operands) 183 180-186 0 0 FSORT 

FST FST destination 
Store real 

Exceptions: I, 0. U. P 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

ST(i) 18 15-22 0 0 FST ST(3) 
short-real 87+EA 84-90+EA 3/5 6 FST CORRELATION \DI] 
long-real 100+EA 96-104+EA 517 10 FST MEAN READING 

FSTCW /FNSTCW FSTCW dest1nat1on 
Exceptions: None 

Store control word 

Execution Clocks Transfers 
Operand,; 

Typical Range 8086 8088 
Coding Example 

2-bytes 15+EA 12-18.,.EA 2/ 4 4 FSTCW SAVE CONTROL 
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Table Al-1. Instruction set reference data. (continued). Courtesy of 
Intel Corporation. 1 

FSTENV/FNSTENV FSTENV destination 
Store environment Exceptions: None 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

14-bytes 45+EA 40-SO+EA 8/10 16 FSTENV !BPI 

FSTP FSTP destination 
Store real and pop 

Exceptions: I, 0, U, P 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

ST(i) 20 17-24 0 0 FSTP ST(2) 
short-real 89+EA 86-92+EA 3/5 6 FSTP IBXj.ADJUSTED RPM 
long-real 102+EA 98-106+EA 517 10 FSTP TOTAL.DOSAGE 
temp-real 55+EA 52-58+EA 6/8 12 FSTP REG_SAVE ISlj 

FSTSW /FNSTSW FSTSW destination 
Exceptions: None 

Store status word 

Execution Clocks Transfe,s 
Operands 

Typical Range 8086 8088 
Coding Example 

2-bytes 15+EA 12-18+EA 2/4 4 FSTSW SAVE_STATUS 

FSUB FSUB / /sourcetdestination,source 
Exceptions: l,D,O,U,P 

Subtract real 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

//ST,ST(i)/ST(i),ST 85 70-100 0 0 FSUB ST,ST(2) 
short-real 105+EA 90-120+EA 2/4 4 FSUB BASE_VALUE 
long-real 110+EA 95-125+EA 4/6 8 FSUB COORDINATE.X 

FSUBP FSUBP destination.source 
Exceptions: l,D,O,U,P Subtract real and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

ST(i),ST 90 75-105 0 0 FSUBP ST(2),ST 

FSUBR FSUBR / /source/destination,source 
Exceptions: l,D,O,U,P 

Subtract real reversed 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

/ /ST,ST(i)/ST(i),ST 87 70-100 0 0 FSUBR ST,ST(1) 
short-real 105+EA 90-120+EA 2/4 4 FSUBR VECTOA[SI] 
long-real 110+EA 95-125+EA 4/6 8 FSUBA [BX].INDEX 
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Table Al-1. Instruction set reference data (continued). Courtesy of 
Intel Corporation. 

FSUBRP FSUBRP destination.source 
Exceptions: 1,0,0,U,P 

Subtract real reversed and pop 

Executon Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

ST(i),ST 90 75-105 0 0 FSUBRP ST(1),ST 

FTST FTST (no operands) 
Exceptions: I, D 

Test stack top against +0.0 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 42 38-48 0 0 FTST 

FWAIT FWAIT (no operands) 
Exceptions: None (CPU instruction) (CPU) Wait while 8087 is busy 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 3+5n' 3+5n' 0 0 FWAIT 

FXAM FXAM (no operands) 
Examine stack top Exceptions: None 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 17 12-23 0 0 FXAM 

FXCH FXCH //destination 
Exchange registers Exceptions: I 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

//ST(i) 12 10-15 0 0 FXCH ST(2) 

FXTRACT FXTRACT (no operands) 
Extract exponent and significand Exceptions: I 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 50 27-55 0 0 FXTRACT 
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Table Al-1. Instruction set reference data (continued). Courtesy of 
Intel Corporation. 

FYL2X FYL2X (no operands) Exceptions: 
Y • Log2 X P (operands not checked) 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 950 900-1100 0 0 FYL2X 

FYL2XP1 FYL2XP1 (no o~erands) Exceptions: 
Y • log2(X+1) P (operands not checked) 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 850 700-1000 0 0 FYL2XP1 

F2XM1 F2XM1 (no operands) Exceptions: 
2•-1 u. P (operands not checked) 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Coding Example 

(no operands) 500 310-630 0 0 F2XM1 
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Table A2-1. Exception conditions and masked responses. 
Courtesy of Intel Corporation. 

Condition Masked Response 

Invalid Operation 

Source register is tagged empty (usually 
due to stack underflow). 

Destination register is not tagged empty 
(usually due to stack overflow). 

One or both operands is a NAN. 

(Compare and test operations only): 
one or both operands Is a NAN. 

(Addition operations only): closure is 
affine and operands are opposite-signed 
Infinities; or closure is projective and both 
operands are co (signs immaterial). 

(Subtraction operations only): closure is 
affine and operands are like-signed 
infinities; or closure is projective and both 
operands are co (signs immaterial). 

(Multiplication operations only): 00 • O; or 
0 • co. 

(Division operations only): co+ co; or O + O; 
or O + pseudo-zero; or divisor is denormal 
or unnormal. 

(FPREM instruction only): modulus 
(divisor) is unnormal ordenormal; 
or dividend is co. 

(FSQRT Instruction only): operand is 
nonzero and negative; or operand is 
denormal or unnormal; or closure Is affine 
and operand is -co; or closure is projective 
and operand is co. 

256 

Return real indefinite. 

Return real indefinite (overwrite 
destination value). 

Return NAN with larger absolute value 
(Ignore signs). 

Set condition codes "not comparable". 

Return real indefinite 

Return real indefinite. 

Return real indefinite. 

Return real indefinite. 

Return real indefinite, set condition code 
= "complete remainder". 

Return real indefinite. 
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Table A2-1. Exception conditions and masked responses (continued). 
Courtesy of Intel Corporation. 

Invalid Operation 

(Compare operations only): closure is Set condition code= "not comparable" 
projective and 00 is being compared with O 
or a normal, or oo. 

(FTST instruction only): closure is Set condition code= "not comparable". 
projective and operand is 00 • 

(FIST, FISTP instructions only): source Store integer indefinite. 
register is empty, or a NAN, or denormal, 
or unnormal, or 00 , or exceeds represent-
able range of destination. 

(FBSTP instruction only): source register Store packed decimal indefinite. 
is empty, or a NAN, or denormal, or 
unnormal, or 00 , or exceeds 18 decimal 
digits. 

(FST, FSTP instructions only): destination Store real indefinite. 
is short or long real and source register is 
an unnormal with exponent in range. 

(FXCH instruction only): one or both Change empty register(s) to real indefinite 
registers is tagged empty. and then perform exchange. 

Denormalized Operand 

(FLO instruction only): source operand is No special action; load as usual. 
denormal. 

(Arithmetic operations only): one or both Convert (in a work area) the operand to the 
operands is denormal. equivalent unnormal and proceed. 

(Compare and test operations only): one Convert (in a work area) any denormal to 
or both operands is denormal or unnormal the equivalent unnormal; normalize as 
(other than pseudo-zero). much as possible, and proceed with 

operation. 

Zerodivide 

(Division operations only): divisor= 0. Return 00 signed with "exclusive or" of 
operand signs. 

Overflow 

(Arithmetic operations only): rounding is Return properly signed ooand signal 
nearest or chop, and exponent of true precision exception. 
result> 16,383. 

(FST, FSTP instructions only): rounding is Return properly signed oo and signal 
nearest or chop, and exponent of true precision exception. 
result> +127 (short real destination) 
or> +1023 (long real destination). 
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Table A2-1. Exception conditions and masked responses (continued). 
Courtesy of Intel Corporation. 

Underflow 

(Arithmetic operations only): exponent of Denormalize until exponent rises to 
true result<-16,382 (true). -16,382 (true), round slgnificand to 64 bits. 

If denormalized rounded significand = 0, 
then return true O; else, return denormal 
(tag= special, biased exponent =O). 

(FST, FSTP instructions only): destination Denormalize until exponent rises to -126 
is short real and exponent of true result (true), round significand to 24 bits, store 
<-126 (true). true O if denormalized rounded significand 

= O; else, store denormal (biased expo-
nent = 0). 

(FST, FSTP instructions only): destination Denormalize until exponent rises to -1022 
is long real and exponent of true result (true), round significand to 53 bits, store 
<-1022 (true). true O if rounded denormalized significand 

= O; else, store denormal (biased expo-
nent = 0). 

Precision 

True rounding error occurs. No special action. 

Masked response to overflow exception No special action. 
earlier in instruction. 
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Four of the programs below convert data back and forth between the 
Intel format used in the 8087 and the Microsoft format used in much pre-
8087 software. Two programs, SM2I and DM2I, convert from Microsoft 
to Intel; two, SI2M and DI2M, convert from Intel to Microsoft. Two 
programs, SM2I and SI2M, convert single precision data; two, DM2I and 
DI2M, convert double precision data. Occasional minor loss of precision 
in the conversion process is unavoidable. 

The fifth program, INIT8087, initializes the 8087. 

Program: 
Purpose: 

Call: 
Input: 

Output: 
Language: 

Program: 
Purpose: 

Call: 
Input: 

Output: 
Language: 

Program: 
Purpose: 

Call: 

The Cookbook-Appendix 3 

SM21 
Convert single precision vector from pre-8087 Mi-

crosoft format to Intel 8087 format. 
CALL SM2I(SOURCE(0),DESTINA TION(0),N). 
SOURCE-single precision n-vector. 
N-integer number of elements in SOURCE. 
DESTINA TI ON-single precision N-vector. 
8088 assembly language. 

S12M 
Convert single precision vector from Intel 8087 for-

mat to pre-8087 Microsoft format. 
CALL SI2M(SOURCE(0),DESTINATION(0),N). 
SOURCE-single precision n-vector. 
N-integer number of elements in SOURCE. 
DESTINATION-single precision N-vector. 
8088 assembly language. 

DM21 
Convert double precision vector from pre-8087 Mi

crosoft format to Intel 8087 format. 
CALL DM2I(SOURCE(0),DESTINATION(0),N). 

259 
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Inpu~: 

Output: 
Language: 

Program: 
Purpose: 

Call: 
Input: 

Output: 
Language: 

Program: 
Purpose: 
Call: 
Input: 
Output: 
Language: 

SOURCE-double precision n-vector. 
N-integer number of elements in SOURCE. 
DESTINATION-double precision N-vector. 
8088 assembly language. 

D12M 
Convert double precision vector from Intel 8087 for-

mat to pre-8087 Microsoft format. 
CALL DI2M(SOURCE(0),DESTINATION(0),N). 
SOURCE-double precision n-vector. 
N-integer number of elements in SOURCE. 
DESTINATION-double precision N-vector. 
8088 assembly language. 

INIT8087 
Initialize 8087. 
CALL INIT8087. 
none. 
none. 
8087/8088 assembly language. 

If you use a version of BASIC which does not store data in Intel format, 
you must use conversion routines before and after calling 8087 routines. 
The following BASIC code provides an example. 

10 DEFINT I-N 
20 DEFDBL D 
30 N=100:N1=N-1 
40 DIM A(N1) 
50 FOR I=O TO N1: A(I)=RND: NEXT I 
60 CALL INIT8087 
70 CALL SM2I(A(0), A(0), NJ 
80 CALL SUM(A(0), N, DSUM) 
90 CALL SI2M(A(0),A(0),N) 
100 11=1: CALL DI2M(DSUM, DSUM, 11) 

110 PRINT "THE SUM IS",DSUM 
120 END 

Conversion Routines 

PUBLIC SM2I,SI2M,DM2I,DI2M,INIT8087 

ESEG SEGMENT 'DATA' 
WS DW 4 DUP(?) 
ESEG ENDS 

CSEG SEGMENT 
FIRST-INST EQU 

'CODE' 
THIS WORD 



;SUBROUTINE SM2I(SOURCE,DESTINATION,NJ 
;CONVERT MICROSOFT TO INTEL 

ASSUME cs:CSEG,ES:ESEG 
SM2I PROC FAR 

PUSH BP 
MOV BP,SP 
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;SET UP EXTRA SEGMENT TAKING CARE OF RELOCATION 
PUSH 
CALL 

NEXT51: POP 
SUB 
MOV 
SHR 
MOV 
ADD 
SUB 
ADD 
MOV 

; 
; ROUTINE PROPER 

MOV 
MOV 
JCXZ 
MOV 
MOV 

SM2ILOOP: MOV 
MOV 
MOV 

MOV 
AND 
SUB 
JBE 

SHR 
JC 
AND 
JMP 

SET1: OR 
u: AND 

OR 
MOV 
JMP 

Z1: MOV 
MOV 

LOOPBOT1: ADD 
ADD 
LOOP 

ES 
NEXT51 
AX 
AX ,(OFFSET 
CL,4 
AX,CL 
BX,CS 
BX,ESEG 
BX,CSEG 
AX,BX 
ES,AX 

STARTS HERE 
BX,[BP]+b 
CX,[BX] 
OUT 
SI,[BP]+1O 
DI,[BP]+8 
AX, [SI] 
[DI], AX 
DX,[SI]+2 

AH,DL 
AH,8DH 

NEXT 51)-(OFFSET FIRSLINST) 

;ADDR(N) 
;cx=N 

;COPY SOURCE WORD 1 

;MOVE WORD 2 INTO 
DX 

; GET SIGN BIT 

DH, (129-127) 
Z1 

DH,1 
SET1 
DL,7FH 
L1 
DL,8DH 
DH,7FH 
DH,AH 
[DI]+2, DX 
LOOPBOT1 

WORD PTR 
WORD PTR 
[DI]+2, □ 

SI,4 
DI,4 
SM2ILOOP 

[DI], □ 

;CHECK FOR ZERO OR 
CLOSE 

;BIT 7 OFF 

;BIT 7 ON 
;SET SIGN 
;BIT 
;STUFF ANSWER AWAY 

;MAKE IT ZERO 



262 8087 Applications and Programming 

OUT: 

SM2I 

POP 
POP 
RET 
ENDP 

ES 
BP 
6 

;SUBROUTINE SI2M(SOURCE,DESTINATION,N) 
;CONVERT INTEL TO MICROSOFT 

ASSUME CS:CSEG,ES:ESEG 
SI2M PROC FAR 

PUSH BP 
MOV BP,SP 

;SET UP EXTRA SEGMENT 
PUSH 

TAKING CARE OF RELOCATION 
ES 

CALL 
NEXT52: POP 

SUB 
MOV 
SHR 
MOV 
ADD 
SUB 
ADD 
MOV 

; 

;ROUTINE PROPER 
MOV 
MOV 
JCXZ 
MOV 
MOV 

SI2MLOOP: · MOV 
MOV 
MOV 
MOV 
AND 
SHL 
TEST 
JZ 
OR 

L2: CMP 

JE 
ADD 
AND 
OR 
MOV 
JMP 

22: MOV 
MOV 

NEXT52 
AX 
AX, (OFFSET NEXT 52)-(0FFSET FIRST _INST) 
CL,4 
AX,CL 
BX,CS 
BX,ESEG 
BX,CSEG 
AX,BX 
ES,AX 

STARTS HERE 
BX,[BP]+b 
CX,[BX] 
OUT2 
SI,[BP]+10 
DI ,[BP]+8 
AX,[SI] 
[DI), AX 
DX,[SI]+2 
AH,DH 
AH,80H 
DH,1 
DL,80H 
L2 
DH,1 
DH, □ 

22 
DH, (129-127) 
DL,7FH 
DL,AH 
[DI)+2,DX 
LOOPBOT2 
WORD PTR [DI), 0 
WORD PTR 
[DI]+2,0 

; ADDR(N) 
;CX=N 

;COPY SOURCE WORD 1 

;WORD 2 INTO DX 
;GET SIGN BIT 

;LOOK AT LSE BIT 

;SET LSE 
;CHECK FOR TRUE 

ZERO 

;BIT 7 OFF 
;SET SIGN BIT 

;SET TO ZERO 



LOOPBOT2: ADD SI,4 
ADD DI,4 
LOOP SI2MLOOP 

OUT2: POP ES 
POP BP 
RET 6 

SI2M ENDP 

;SUBROUTINE DM2I(SOURCE,DESTINATION,NJ 
;CONVERT MICROSOFT TO INTEL 

ASSUME CS:CSEG,ES:ESEG 
DM2I PROC FAR 

PUSH BP 
MOV BP,SP 

; 
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;SET UP EXTRA SEGMENT TAKING CARE OF RELOCATION 
PUSH 
CALL 

NEXT53: POP 
SUB 
MOV 
SHR 
MOV 
ADD 
SUB 
ADD 
MOV 

; 
; ROUTINE PROPER 

MOV 
MOV 
JCXZ 
JMP 

AROUND3: JMP 
LL3: MOV 

MOV 
DM2ILOOP: MOV 

MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 

MOV 
AND 
SUB 
MOV 
CMP 
JE 
ADD 

ES 
NEXT53 
AX 
AX ,(OFFSET 
CL,4 
AX,CL 
BX,CS 
BX,ESEG 
BX,CSEG 
AX,BX 
ES,AX 

STARTS HERE 
BX,[BP]+b 
ex ,[BXJ 
AROUND3 
LL3 
OUT3 
SI,[BP]+10 
DI ,[BP]+8 
AX,[SIJ 
ES:WS,AX 
AX,[SI]+2 
ES:WS+2,AX 
AX,[SI)+4 
ES:WS+4,AX 
AX,[SI]+b 
ES:WS+b,AX 

DH ,[SI]+b 
DH,80H 
AX,AX 
AL,[SI]+7 
AL, □ 
Z3 

NEXT 53)-(0FFSET FIRSLINSTJ 

;ADDR(NJ 
;CX=N 

;COPY SOURCE INTO 
;WORK AREA 

;GET SIGN BIT INTO 
;DH 
;CLEAR AX REGISTER 
;GET EXPONENT 
;CHECK FOR ZERO 

AX, (1023-129) ;CORRECT BIAS 
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SHR DH,1 ;SHIFT SIGN BIT 
INTO 

SHR DH,1 ;RIGHT POSITION 
SHR DH,1 
SHR DH,1 
OR AH,DH ;SET SIGN BIT 
AND BYTE PTR ES: ;CLEAR OLD SIGN BIT 

WS+6,7FH 
SHR AX,1 
JNC L3 
OR BYTE PTR ES: ;TURN ON LSE BIT 

WS+6,80H 
L3: MOV BX,3 
LA3: SHR AX,1 

RCR BYTE PTR ES: 
WS+b,1 

RCR WORD PTR ES: 
WS+4,1 

RCR WORD PTR ES: 
WS+2,1 

RCR WORD PTR 
ES:WS,1 

DEC BX 
JG LA3 
MOV BYTE PTR ES: ;ALL SET IN WORK 

WS+7,AL AREA NOW 
MOV AX,ES:WS ;STICK IN 

DESTINATION 
MOV [DI],AX 
MOV AX,ES:WS+2 
MOV [DI]+2,AX 
MOV AX,ES:WS+4 
MOV [DI]+4,AX 
MOV AX,ES:WS+b 
MOV [DI)+b,AX 
JMP LOOPBOT3 

Z3: MOV WORD PTR [DI), □ ;STORE AWAY ZERO 
MOV WORD PTR 

[DI]+2, 0 
MOV WORD PTR 

[DI]+4,0 
MOV WORD PTR 

[DI]+b,O 
LOOPBOT3: ADD SI,8 

ADD DI,8 
LOOP DM2ILABEL 
JMP OUT3 

DM2ILABEL: JMP DM2ILOOP 
OUT3: POP ES 

POP BP 
RET 6 

DM2I ENDP 



;SUBROUTINE DI2M(SOURCE,DESTINATION,N) 
;CONVERT INTEL TO MICROSOFT 

ASSUME cs:CSEG,ES:ESEG 
DI2M PROC FAR 

PUSH BP 
MOV BP,SP 

; 
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;SET UP EXTRA SEGMENT TAKING CARE OF RELOCATION 
PUSH ES 
CALL NEXT54 

NEXT54: POP AX 
SUB AX ,(OFFSET NEXT 54)-(0FFSET FIRSLINST) 
MOV CL,4 
SHR AX,CL 
MOV BX,CS 
ADD BX,ESEG 
SUB BX,CSEG 
ADD AX,BX 
MOV ES,AX 

; ROUTINE PROPER STARTS HERE 
MOV BX ,[BP]+b ; ADDR(NJ 
MOV ex ,[BXJ ;CX=N 
JCXZ AROUND4 
JMP LL4 

AROUND4: JMP OUT4 
LL4: MOV SI ,[BP]+10 

MOV DI,[BPJ+8 
DI2MLOOP: MOV AX,[SI] ;COPY SOURCE INTO 

MOV ES:WS,AX ;WORK AREA 
MOV AX ,[SIJ+2 
MOV ES:WS+2,AX 
MOV AX,[SIJ+4 
MOV ES:WS+4,AX 
MOV AX ,[SI]+b 
MOV ES:WS+b,AX 
MOV DH,[SI]+7 ;GET SIGN BIT INTO 
AND DH,8□ H ;DH 
MOV AX,[SI]+b ;GET EXPONENT 
AND AX, □11111111111 □□□□B 
SHR AX,1 
SHR AX,1 
SHR AX,1 
SHR AX,1 ;NOW EXPO IS IN 

RIGHT SPOT 
CMP AX, (1023-129) ;CHECK FOR ZERO 
JBE Z4 
SUB AX,(1023-129) ;CORRECT BIAS 
MOV BYTE PTR ES: ;STORE AWAY 

WS+7,AL EXPONENT 
SHR DH,1 ;SHIFT SIGN BIT 

INTO 
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SHR DH,1 ;RIGHT POSITION 
SHR DH,1 
AND BYTE PTR ES: ;CLEAR OLD SIGN BIT 

WS+b, □FH 

OR BYTE PTR ES: ;SET SIGN BIT 
WS+b,DH 

MOV BX,3 
L4: SHL WORD PTR 

ES:WS,1 
RCL WORD PTR ES: 

WS+2,1 
RCL WORD PTR ES: 

WS+4,1 
RCL BYTE PTR ES: 

WS+b,1 
DEC BX 

.. JG L4 

MOV AX,Es:ws ; STICK IN 
DESTINATION 

MOV [DI), AX 
MOV AX,ES:WS+2 
MOV [DI]+2,AX 
MOV AX,ES:WS+4 
MOV [DI)+4,AX 
MOV AX,ES:WS+b 
MOV [DI]+b, AX 
JMP LOOPBOT4 

Z4: MOV WORD PTR [DI), □ ;STORE AWAY ZERO 
MOV WORD PTR 

[DI]+2, □ 

MOV WORD PTR 
[DI)+4, □ 

MOV WORD PTR 
[DI)+b, □ 

LOOPBOT4: ADD SI,8 
ADD DI,8 
LOOP DI2MLABEL 
JMP OUT4 

DI2MLABEL: JMP DI2MLOOP 
OUT4: POP ES 

POP BP 
RET 6 

DI2M ENDP 
;SUBROUTINE INIT8□87 

INIT8□87 PROC FAR 
FINIT 
RET 

INIT8O87 ENDP 
CSEG ENDS 

END 
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DEF FN statement, 201 
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Dependent variables, 216 
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Diagonal matrices, 176 
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Digital Equipment Corporation, 23 
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33 
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18 
arguments in, 89-91 

DS (data segment) register, 65, 129 
DX register, 56 

EDP (Electronic Data Processing), 237-238 
Effective addresses, 65 
Element-by-element matrix operations, 119-

120 
END directive, 68 
ENDP directive, 67-68 
ENDS directive, 67 
Equations 

Crout decomposition of, 149-153 
Gaussian elimination for, 138-139 
linear, 114-115, 133, 143, 175-176 
linear, 8087 subroutines for solving, 153-

166 
linear, back substitution after Crout re-

duction for, 166-172 
linear, zero pivots in, 147-149 
LUdecomposition of, 149-150 
manipulation of, 133-134 
matrix inversions for, 173-175 
matrix manipulation for, 134-137 
multiple linear, solving, 137-138 
multiple regression, 216, 217 
non-linear, solving, 207-209 

Error conditions, 3 
duplicate file names, 221 
exceptions, 26, 29 
overflows, 18 
from programming, 99-100 
from subroutines, 99 
from use of subroutines, 100 

Error handling 
in BASIC, 104 
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in canned statistical analysis program, 
226 

Errors 
correction of, in canned statistical analysis 

program, 221, 226 
in precision, 103-109 

Error terms, 216 
ESCAPE instructions, 10, 11, 25 
ES ( extra segment) register, 65 
Exception-handling instructions, 198-199 
Exception-handling software, 104 
Exceptions, 26, 29 
Execution pointers (registers), 27 
Explicit operands, 45 
Exponentiation, 186-188 
Exponents, 33-34 
Extra segment (ES) register, 65 
EXTRN directive, 68 

F2XM1 instruction, 183, 186 
FABS instruction, 47 
FADD instruction, 45, 46 
FADDP instruction, 46 
FAR procedures, 127, 158 
FBLD instruction, 43 
FBSTP instruction, 43 
FCHS instruction, 47 
FCLEX instruction, 198-199 
FCOM instruction, 48 
FCOMP instruction, 48 
FCOMPP instruction, 49 
FDECSTP instruction, 199 
FDISI instruction, 198 
FDIV instruction, 4 7 
FDIVP instruction, 47 
FDIVR instruction, 47 
FDIVRP instruction, 47 
FENI instruction, 198 
FFREE instruction, 199 
FIADD instruction, 46 
FICOM instruction, 49 
FICOMP instruction, 49 
FIDIV instruction, 47 
FIDIVR instruction, 47 
FILD instruction, 42 
Files, binary, 16, 18 
FIMUL instruction, 46 
FINCSTP instruction, 199 
FINIT instruction, 197 
FIST instruction, 42 
FISTP instruction, 42 
FISUB instruction, 46 
FISUBR instruction, 46 
Flag register, 61 
Flags, 61, 6'4 

in canned statistical analysis program, 223 
FLDl instruction, 183 
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FLDCW instruction, 196 
FLDENV instruction, 199 
FLD instruction, 41 
FLDL2E instruction, 183 
FLDL2T instruction, 183 
FLDLG2 instruction, 183 
FLDLN2 instruction, 183 
FLDPI instruction, 183 
FLDZ instruction, 47, 182 
Floating point libraries, 18-19 
Floating point numbers, 29-30 

in 8087 and non-8087 versions ofBASIC, 
18 

errors avoided by using, 109 
representation of, 32-34 

FMUL instruction, 46 
FMULP instruction, 46 
FNOP instruction, 199 
FPATAN instruction, 184-185, 194 
FPREM instruction, 181-182 
FPTAN instruction, 184, 188 
FRDINT instruction, 181 
FRSTOR instruction, 197 
FSA VE instruction, 196 
FSCALE instruction, 181, 186 
FSQRT instruction, 47 
FSTCW instruction, 196 
FSTENV instruction, 199 
FST instruction, 41-42 
FSTP instruction, 42 
FSTSW instruction, 50, 64 
FSUB instruction, 46 
FSUBP instruction, 46 
FSUBR instruction, 46 
FSUBRP instruction, 46 
FTST instruction, 49 
Functions 

differentiation of, 202-205 
for floating point conversions, 18 
integration of, 205-207 
inverse trigonometric, 194-195 
non-linear, 201-202 
non-linear, optimizing, 209-211 
non-linear, solving, 207-209 
trigonometric, 188-194 

FWAIT instruction, 26, 64, 196 
FXAM instruction, 49 
FXCH instruction, 42 
FXTRACT instruction, 182 
FYUX instruction, 184 
FYUXPl instruction, 184 

Gaussian elimination, 135-139, 177 
zero pivot problem in, 147-149 

General registers, 55-57 

Hardware, 5 

benchmarks for, 21-24 
data type representations on, 32 
for matrix operations, 111 
with pre-8087 software, 17 
speed of, 12 

IBM 3081, 23 
IBM Personal Computers (PCs) 

benchmarks on, 22 
compiled BASIC on, 18, 19 
CPU on, 7 
socket for 8087 in, 5 

Identity matrices, 140 
Immediate operands, 57 
Implicit operands, 45 
IMSL library, 176 
INC instruction, 60 
Independent variables, 216 
Indexes in matrices, 114 

partial pivoting with, 153, 156 
Indexing 

of arrays, 86-88 
of memory, 56-57 
of multiple arrays, 91-93 

Index registers, 56, 57 
Infinity, 28, 36 
Initialization, 223-225 
Inner products 

in correlation coefficients, 215 
in matrices, 123-133 

Installation of 8087 chips, 5 
Instructions and instruction sets, 7, 10, 39 

advanced, 179-200 
arithmetic, 43-47 
in assembly language, 58-68 
classes of, 8-9 
comparison, 48-50 
in co-processor environments, 25-26 
data transfer, 40-43 

Integer (word integer) data, 9, 31 
indefinite, 37 
overflows of, 109 
representation of, 35 
transfer instructions for, 42-43 

Integer format arguments, 44 
Integration, numerical, 205-207 
Intel microprocessor chips, 5 

see also 8086 microprocessor chips; 8087 
Numeric Data Processor chips; 8088 
microprocessor chips 

Interactive programming 
in compiled BASIC, 80-81 
in interpreted BASIC, 79-80 

Interpreted BASIC, see BASIC interpreters 
Interpreters, 13 

BASIC, 17-18 
benchmarks using, 22 



see also BASIC interpreters 
Interrupts 

instructions for, 198-199 
by unmasked exceptions, 29 

Inverse trigonometric functions, 194-195 
Invocation time, 13 

JCXZ instruction, 63 
JMP instruction, 62-63 

Labels, 58-59 
Library collections (of programs), 176 
Linear equations and systems, 114-115, 133-

134, 143, 175-178 
8087 subroutines for solving, 153-166 
back substitution after Crout reduction 

for, 166-172 
Crout decomposition of, 150-153 
Gaussian elimination for, 138-139 
LU decomposition of, 149-150 
matrix inversions for, 173-175 
matrix manipulation for, 134-137 
solving, 137-138 
zero pivots in, 147-149 

Linear operations, 14, 17, 19, 20 
LINK utility, 77 
Loading 

of assembly language programs, 77 
of subroutines into compiled BASIC, 78-

79 
of subroutines into interpreted BASIC, 

77-78 
Logarithms, 185 
Long integer data, 9, 31 
Long real data, see Double precision data 
LOOP instruction, 63-64 
Loops 

counter testing in, 177-178 
endless, 205 
for optimization, 177 

LU decomposition, 149-150 

Machine language 
errors in programs in, 100 
subroutines in, 72-74 

MACRO assembler, 178 
Mainframe computers, 3, 19, 21 

benchmarks on, 23 
MAT functions, 111 
Mathematical instructions, 7, 43-47, 181-

195 
Matrices, 14 

in canned statistical analysis program, 226 
special types of, 176 

Matrix multiplication, 115, 123-133 
Matrix multiplication program 

8087 speed of, 4 
as benchmark, 21 
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execution time for, 14, 17 
speed of, in assembly language, 20 

Matrix operations, 111, 114-115, 143, 175-
178 

8087 subroutines for solving systems of 
linear equations, 153-166 

back substitution after Crout reduction, 
166-172 

Crout decomposition, 150-153 
Gaussian eliminations, 138-139 
inversion, 139-141, 173-175 
LU decomposition, 149-150 
manipulation, 134-137 
memory access for, 115-118 
multiplication and inner products, 123-

133 
programs for,. 111-113 
scalar and element-by-element, 119-120 
solving multiple linear systems, 137-138 
transpositions, 121-123 
zero pivot problem in, 147-149 

Means (averages), 214 
Memory 

addressed by 8088 chip, 8 
addressing of, 56-58 
data transfer instructions for, 40-43 
for matrix operations, 115-118 
segments in, 55, 65-66 

Menus, 219-220 
Microprocessors 

8088 chip, 7 
co-processors, 25-26 
speed of, 22 

Microsoft, 12 
conversions of software in format of, 17 

Minicomputers, 3, 19, 21 
benchmarks on, 23 

Modular programming, 218 
Modules, 218-227 
MOY instruction, 60 
MUL instruction, 60 
Multiple regression, 216-217 

in canned statistical analysis program, 
223 

Multiplication 
instructions for, 46 
matrix, 115, 123-133 
shifting versus, 157-158, 177 
see also Matrix multiplication program 

Multiple arrays, indexing of, 91-93 

NAN (Not-A-Number) data, 37 
"Native code" compilers, 19 
NEAR procedures, 127,158 
Negative numbers, 35 
Non-linear operations, 14, 18-20, 200, 201-

211 
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Normal distribution, 215 
Normalized floating point format 33 
Not-A-Number (NAN) data, 37 
Numbers 

floating point, 29-30 
representation of, 11-12, 16, 32-35 
rounding of, 27-28 
special types ot 35-37 
types of, 9-10, 30-32 

Number systems, 29 
Numerical differentiation, 202-205, 207 
Numerical integration, 205-207 

Object modules, 77 
Operands 

immediate, 57 
stack, 45 

Optimization 
of loops, 177 
non-linear, 209-211 

Ordinary least squares, 217 
OR instruction, 60 
Overflow errors, 18, 109 
Overhead, time spent on, 4 . 

Packaged (canned) programs, 15-16, 217-
227 

Packed decimal data, 10, 31, 32 
in commercial data processing, 238 
indefinite, 37 
in program to add vectors of strings, 241 
representation ot 35 
transfer instructions for, 42-43 

Parameters, skip, 126 
Partial pivoting, 148-149, 153-156, 161, 165, 

176 
PCs, see IBM Personal Computers 
Personal computers 

CPUs on, 7 
installation of 8087 chips in, 5 
see also IBM Personal Computers 

POP instruction, 66 
Positive numbers, 35 
Pre-8087 software, 2 

compared with 8087 subroutines, 4 
hardware with, 17 
noncompatibility ot 12, 16 

Precision, 3, 28-29, 89-91 
errors in, 103-109 
see also Accuracy 

Procedures, 55 
NEAR and FAR, 127, 158 

Processor control instructions, 9, 50, 196-
197 

Processors, 7-8 
co-processor~ 25-26 

PROC FAR directive, 67-68 

Programming 
in assembly language, 53-68 
in BASIC, 69-81 
errors from, 99-100 
matrix, advanced, 175-178 
modular, 218 

Programs 
addition, 50-51 
for addition of vectors of strings, 238-241 
in assembly language, loading of, 77 
bugs in, 100 
compatibility of, 11-12 
for linear systems and matrix inversion, 

advanced, 143-146, 153-166, 177-178 
matrix, 111-113 
packaged (canned), 15-16, 218-219 
simple subroutines, 83-86 
speed of, 12-13 
for statistical analysis, 219-236 
translation ot 13-14 
using advanced instruction set, 179-180 
see also Software, Subroutines 

Projective closure, 28 
Pseudo-zero, 36 
PTR directive, 58 
PUBLIC directive, 68 
Pushdown stacks, 8, 26 
PUSH instruction, 66 

Read Only Memory (ROM) chips, 5, 17 
Real-and-pop format arguments, 43-44 
Real format arguments, 43 
Read indefinite data, 37 
Real transfer instructions, 41-42 
Registers, 8, 26-27, 39-40 

flag, 61 
general, 55-57 
segment 65 

Register stack, 26, 39-40 
comparison instructions for, 48 

Regression, 216-217 
in canned statistical analysis program, 223 

Relocation of subroutines, 74-77 
Representation of numbers, 11-12, 16, 32 

floating point, 32-34 
integer, 35 
packed decimal, 35 

Residuals (in regression), 217 
RET instruction, 66-67 
Returns from subroutines, 66-67 
Reversed division instructions, 43 
Reversed subtraction instructions, 43 
ROM (Read Only Memory) chips, 5, 17 
Rounding, 27-28 
Routines, see Subroutines 
Row vectors, 116 
R-squared statistic, 217 



SAHF instruction, 62 
Scalar matrix operations, 119-120 
Scalar subroutines, 93-95 
Scientific notation, 30, 33 
Screen handling, 227 
SEGMENT directive, 67 
Segment registers, 65 
Segments, 55, 65-66 

addressing of, 74-77 
Shifting, 157-158, 177 
SHL instruction, 60 
Short integer data, 9, 31 
Short real (single precision) data, 9, 31, 33, 

89 
SHR instruction, 60-61 
Simultaneous linear equations, see Linear 

equations and systems 
Sines, 190 
Single precision (short real) data, 9, 31, 33, 

89 
SI (index) register, 56, 57 
Skip parameters, 126 
Software 

for 8087, 1 
8087-compatible, 15 
assembly language modules for BASIC, 

19-20 
BASIC, 69-81 
benchmarks for, 21 
compatibility of, 11-12 
compilers, 18-19 
ESCAPE instructions in, 10 
exception-handling, 104 
interpreted BASIC, 17-18 
packaged programs, 15-16 
pre-8087, 2, 17 
speed of, 12-13 
upgrading of, during installation of 8087 

chips, 5 
see also Programs; Subroutines 

Source programs 
compiling of, 18 
translation of, 13-14 

Sparse matrices, 176 
Special data types, 35-37 
Speed 

of 8087-equipped PCs, 3-4 
of assembly language, 19, 20 
benchmarks of, 21-24 
of matrix multiplication subroutines, 130-

132 
of pre-8087 software, 2 
of programs, 12-13 

SP (stack pointer) register, 56, 65, 72 
Square root program 

8087 speed of, 4 
as benchmark, 21 

Index 273 

execution time for, 14, 17 
SS (stack segment) register, 65, 129 
Stack operands, 45 
Stack pointers (BP and SP registers), 56, 65, 

72 
Stacks, 8, 26, 39-40 

arithmetic instructions on, 43-45 
comparison instructions for, 48 
used in matrix multiplication, 128, 129 

Stack segment (SS) register, 65, 129 
Standard deviations, 214-215 
Standard errors, 216, 217 
Statistical analysis, 213-214 

correlation in, 215-216 
descriptive statistics in, 214-215 
multiple regression in, 216-217 
program for, 219-236 

ST (stack) registers, 26, 39-40 
arithmetic instructions on, 43-45 

Status word (register), 26-27 
processor control instructions for, 196 

Strings, program for addition of vectors of, 
238-241 

Subroutines, 83-86 
branching and returns from, 66-67 
calling, in BASIC, 69-71 
double precision arguments in, 89-91 
errors resulting from, 99 
errors in use of, 100-103 
for linear systems and matrix inversion, 

advanced, 143-146, 153-166 
loading of, into compiled BASIC, 78-79 
loading of, into interpreted BASIC, 77-78 
in machine language, 72-74 
matrix, 111-113 
relocation and segment addressing of, 7 4-

77 
scalar, 93-95 
using advanced instruction set, 179-180 
utility, 96-99 

Subtraction instructions, 43, 46 
Symmetric matrices, 176 
Synchronization of co-processors, 26 

Tag word (register), 27, 36 
Tangents, 184, 188, 200 

in differentiation, 202, 298 
Temporary real data, 9, 31, 89 
TEST line, 26 
Transcendental instructions, 9, 183-185 

invalid data fed into, 109 
Translation of source programs, 13-14 
Translation time, 13 

eliminated by compilers, 18 
Translators 

8087 accuracy available to, 15 
8087-compatible, 17 
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compilers, 18-19 
number representations in, 12 
speed of, 12-13 
see also Compilers; Interpreters 

Transpositions of matrices, 121-123 
Trigonometric functions, 188-194 

inverse, 194-195 
t-statistic, 216 
"Two's complement'' format, 35 

Unary operations, 95-96 
Underflows, 36 
Unnormal data, 36 
Utility subroutines, 96-99 

Variables 
correlation coefficients for, 215-216 
in multiple regression, 216-217 

Variance, 214 
VAX-780, 23 

WAIT instruction, 26 
Word integer data, see Integer data 
Word processing, 4 
Words, addressing of, 56 

Zero, 34, 36 
in matrix manipulations, 135, 138, 140, 

147-149, 152, 176 



Diskette Files to Accompany 8087 
Applications and Programming for the IBM PC 
and Other PCs 

The diskette files accompanying 8087 Applications and Programming for the 
IBM PC and Other PCs are described in this note. Complete descriptions 
of the programs and their operation appear in the text. This note is limited 
to a technical description of the diskette files. 

If you have not already done so, please read the copyright notice, 
liability disclaimer, and the section on the inherent dangers in using 
machine language programs. 

The programs require one single-sided disk drive, 64K of memory, a 
copy of the operating system version 1.1 or 2.0 and, for the most part, 
an 8087. The programs are distributed on a "£lippy diskette." (Each side 
of the diskette is equivalent to one regular single-sided diskette.) The 
diskette is not copy protected. 

The assembly language programs in the text appear in the following 
files: 

VECTOR.ASM 
MATRIX.ASM 
MATADV.ASM 
TRANS.ASM 
BCD.ASM 
BCDI.ASM · 
CONVERT.ASM 

Chapter 9 programs-basic vector routines 
Chapter 10 programs-basic matrix routines 
Chapter 11 programs-advanced matrix routines 
Chapter 12 programs-transcendental routines 
Chapter 15 program-compiler version 
Chapter 15 program-interpreter version 
Appendix programs-Intel/Microsoft conversion 
routines 

These files are almost, but not exactly, identical to the programs ap
pearing in the book. The differences are: 

1. All 8087 mnemonics have been replaced with the equivalent 8088 
mnemonics so that the programs can be assembled by assemblers 
which do not recognize the 8087 names. The 8087 mnemonics have 
a semicolon placed in front of them to turn them into comments. 
(For the information of IBM PC users, all these files can be assembled 
using version 1.0 of the IBM Macro Assembler.) 

2. The programs from each chapter have been grouped together in 
one file. Slight rearrangements of CSEG/ENDS statements have been 
made. Some statement labels have been modified to eliminate du
plicate definitions. For example, you will see labels "NEXT0l", 
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"NEXT02", and so forth, instead of "NEXT", and "NEXT", and so 
forth. 

Not everyone has an assembler program. As a convenience, each file 
above has been assembled into a program with the extension ". OBJ" 
replacing the extension ".ASM". 

Since linking a machine language program for use with interpreted 
BASIC is time consuming, we have translated each of the files into a file 
with the extension ". SA V". These files can be loaded directly into inter
preted BASIC using the BLOAD command. (Since program BCD can be 
used only with the interpreter, there is no ".SAV" version. Use "BCDI.SAV" 
instead.) 

The memory map produced by the LINK program appears in files with 
extension ".MAP". Use the information in these files to find the offset 
of a particular routine. If you are going to load more than one file into 
BASIC, remember that the relocation scheme explained in the book re
quires the routines to be loaded at an address ending in hexadecimal 
zero. That is, you can say BLOAD "CONVERT.SAV",&HlO, but you 
should not try BLOAD "CONVERT.SAV",&Hll. 

For an example of loading multiple assembly language programs into 
an interpreted BASIC program, see the program "STAT87.BAS". 

Remember that the assembly language routines expect all data to be 
in INTEL format. If you are mixing these routines with pre-8087 pro
grams, you must convert data. For an example of using conversion rou
tines, see the program "STATPRE.BAS". 

The "8087 Statistical Analysis Program" appears in two versions. 
STAT87.BAS is the progr~m as it appears in the text. STATPRE.BAS 
includes calls to the conversion routines, so you can. use the program 
immediately with pre-8087 versions of BASIC. Module 12 of these pro
grams include "CLEAR" and "DEF SEG" statements that allow these 
programs to run in systems with 64K of memory. If you have more 
memory, you may want to change these statements to increase the space 
available for data storage. The programs are standard text files. If you 
load the program into BASIC and then SA VE it, the SA VEd version will 
LOAD much faster than the original. If you eliminate the REMark state
ments from the program, the space for data storage will increase. 

The following BASIC programs also appear on the diskette. Remember 
to modify these programs to reflect your own data and functions. 

CPP.BAS Crout decomposition 
GPP.BAS Gauss decomposition 
SOLP.BAS Solution following Crout decomposition 
DIFFER. BAS numerical differentiation 
INTEGRAT.BAS numerical integration 
ZERO.BAS solve non-linear equation 
MAX. BAS maximize non-linear function 
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"A pleasure ta reacl ... the author's style is excellent and 
the 1~xplanatic ,n of what the 8087 can do is terrific .. . 11 

-Peter Norton, President of NORTON UTILITIES, author of Inside the IBM 

Now, Large Scc/e Nr,merical Computing 
Is Mnde Faster and Easier Than Ever Before With ... 

8087 Applications and Programming 
For The IBM PC And Other PCs 

Rrchard Startz 

Finally-a book th,1t gives you a clear, complete explanation of 
the number crunc,hing 8087 microprocessor Jor the IBM PC 
and other compatible machines! Whether you're a "program 
writer" or "progra'TI user," this unique guide hetps you under
stand how the 8087 chip works, what it does, and how fast 
it processes! 

• For Novice and llotential Chip Users, the text includes a non
technical overviaw of the capabilities of the 8087, featuring 
speed benchma-rking and guidelines for buying compatible 
8087 software! 

• For Program Writers Who Want to Know Intimate Details 
About The Chip, the text includes a complete section of the 
8087's instruct,ons-with special attention to linking as
sembly langua~ and BASIC programs! 

• For Program Us11rs, the text includes a wide variety of ready
to-use "cookb~k" applications designed to give you an
swers fast anc easy, including the "8087's Statistical 
Analysis Program"! 

CONTENTS 
Turning Minutes Into Seconds/The Intel 8087 Chip/Buying 
and Building 808'7-Compatible Software/Benchmarks/Intro
duction to 8087 Architecture/Simple Instruction Set/Intro· 
duction to 8088 Assembly Language Programming/BASIC 
and the 8087 /Simple 8087 Routines/Basic Matrix Operations/ 
Linear Systems a11d Matrix Inversion: More Advanced Compu
tational Techniq..ies/Advanced Instruction Set/Non-Linear 
Methods/Statistic-al Analysis and Program Canning/Commer
cial Data Proce 1sing/Appendices/lndeX/Diskette Files to 
Accompany 8087 Applications and Programming 

ALSO AVAILABLE ... OPTIONAL DISKETTE 
This accompanying.diskette includes all programs from the text. See 
insert inside this be ok for ordering information. 

ISBN 0-89303-420-7 
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