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Preface

This text is the first in its field to use Ada 95 throughout as the language of instruction.
It is intended for use in a second or third course at the undergraduate level; it is also
suitable for self-study. I assume a basic knowledge of Ada—equivalent to the first eight
chapters of Feldman/Koffman, Ada 95: Problem Solving and Program Design, Second
Edition, © Addison-Wesley 1996.1 also present a summary of the Ada type system in
Chapter 1, and a synopsis of other features, oriented to readers with Pascal experience,
in Appendix 1. Because many readers may have experience with Ada 83 but not with
Ada 95,1 point out new features wherever appropriate.

BASIC PRINCIPLES

As the title indicates, this book is about software construction and data structures. It

presents most of the classical data structures, together with many algorithms, in a
framework based on software construction using the encapsulation principle. Attention
is paid to "object thinking" through heavy emphasis on the state and behavior of
objects, on the use of private types to achieve encapsulation and tight control over oper
ations, and on the use of generic templates to achieve flexibility and reusability.

Performance prediction ("big O" notation) is introduced early in Chapter 3 and per
vades the remaining chapters; the notion of trade-offs—for example, time versus space
and speed versus abstraction—^is emphasized throughout. The presentation of "big O"
is correct but rather informal, avoiding heavy mathematical notation that might intimi
date some readers.

Inheritance and dynamic dispatching are introduced in the middle of the book.
However, these important techniques are kept under rather tight control, because
overuse of inheritance is now seen by industry as potentially creating large and unman
ageable hierarchies of classes. Indeed, the growing popularity of the Standard Template
Library in the C++ community indicates that generic templates are at least as important
as inheritance structures in building understandable and maintainable software. 1 have
tried for balance, with a preference for generics but with due regard for the role of
inheritance.

Packages and application programs—about 200 in all—are presented in complete
and compilable form; 1 have an aversion to program fragments. However, for teaching
purposes, which are described below, not all programs are fully functional:

•  Sometimes only a package interface is given, so that the student can write the
implementation as an exercise.

•  Sometimes the implementation is provided, but some or all of the operations are
"stubbed out" so as to be compilable but nonfunctional. The intention is to direct
the student to fill in the code for the stubs.

In developing the packages and application programs, I have chosen a well-
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balanced mixture of examples from the computer science, data management, and math
ematical software domains.

GENERAL ORGANIZATION

Each chapter introduces some data structures concepts, a few ADTs, and one or
more applications thereof, all in the context of an integrated approach to Ada 95.

The first chapter is a general introduction to abstraction, with a brief survey of the
Ada type system and the way it is described in the Ada standard. Also presented are a
few basic Ada 95 topics, describing the changes to the names of standard packages, gen
eralized declaration order, and removal of the write-only restriction on OUT parameters.

The second chapter introduces five simple but very useful ADTs:

Rational numbers

Currency (dollars and cents)
Calendar dates

Simple video-screen control using ANSI escape sequences
Simple window management

These ADTs are then used in later chapters.
Chapter 3 discusses recursion and "big O," with emphasis on informal estimation

of the performance of an algorithm. "Big O" comparison is done using a keyed-table
example, with the table implemented furst as an unordered array and then as an ordered
one. This example lays the groundwork for the recurring generic keyed table introduced
in Chapter 5 and reimplemented in later chapters as appropriate data structures (linked
lists, binary search trees, hash tables) are brought into play.

A discussion of the relationship between performance prediction and performance
measurement is given in Section 3.6, along with a package for measuring elapsed CPU
time and some suggestions for implementing it on time-shared computers. Ada's stan
dard time services provide only time of day, which is fine for personal computers but
useless for measuring CPU time on a shared system. Therefore one must resort to using
operating-system services. The example in this section suggests how to do this and
some code is given in an appendix for implementing it under UNIX.

Chapter 4 introduces multidimensional and unconstrained arrays, with examples
from vectors and matrices, as well a general discussion of storage mappings for multi
dimensional arrays.

Chapter 5 introduces generics, including a generic sort and a generic binary search,
and generic ADTs for bit-mapped sets, vectors, and keyed tables.

Chapter 6 introduces variant records, with examples taken from personnel records,
geometric shapes, variable-length strings, and metric (dimensioned) quantities. Also
introduced here are Ada 95 tagged types, with a revision of the personnel example to
show type extension as a much more dynamic kind of variant record.

Chapter 7 introduces queues and stacks, with different implementations—all as
generic ADTs, of course. Stacks are used to implement several simple expression-to-
RPN translators; queues are applied in a discrete simulation of a supermarket.
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Chapters 8 and 9 present dynamic linear linked structures. Chapter 8 introduces the
basics. Chapter 9 presents some interesting generic applications—including a reimple-
mentation of the keyed table—as well as introducing Ada 95 unbounded strings, gen
eral access types and heterogeneous lists.

Chapter 10 introduces directed graphs, with an application to state graphs.
Chapter 11 presents the basics of binary trees, using expression trees and binary

search trees as the main examples. The chapter concludes with an extended example of
a cross-referencer, including an example of Ada 95 subprogram pointers to implement
finite state machines and other table-driven programming.

Chapter 12 presents some "advanced" examples of trees: threaded binary trees,
heaps, AVL trees, and general (nonbinary) trees. The heap is presented as a data struc
ture in its own right, with operations provided in a generic package. An example is
given of using this heap package to implement priority queues; the same generic heap
package is reused in Chapter 14 to implement heap sort.

Chapter 13 gives a brief introduction to hash tables; Chapter 14 presents a collec
tion of sorting algorithms, classified by their "big Os."

Finally, Chapter 15 gives a brief introduction to concurrent programming. Ada task
types and protected types are presented through a series of small examples, followed by
two major applications: a bank simulation and the famous Dining Philosophers.

PROGRAM LIBRARY

The packages and programs in this book make up an integrated and coherent pro
gram library. The book can be used most effectively by making actual use of the pro
gram files, completing the intentionally incomplete ones, building on or modifying
them, and so on. To facilitate this approach, students and teachers should have easy
access to the roughly 200 program files in electronic form so that no time is wasted in
keying them in. To this end, the programs are archived on various Ada-related Internet
servers and CD-ROMs.

From Addison-Wesley, via ftp in the directory:

f tp://f tp.aw.com/cseng/authors/feldman/cs2-ada

From the World Wide Web, which will also include any future support and
announcements:

http://www.aw.com/cseng/authors/feldman/cs2-ada

From the author's ftp site at The George Washington University:

ftp://ftp.gwu.edu/pub/ada/courses

At all sites, three compressed archives are provided:

•  cs2 code. z ip (DOS/Windows)

•  cs2code. tar .Z (UNIX)

•  cs2 code .sit. hqx (Macintosh)
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CHAPTER 1

Abstraction and the Ada

Type System

1.1 Your Ada Starting Points

1.2 Some Ada 95 Changes

1.3 The Life Cycle of Software Development

1.4 The Goals of Software Engineering

1.5 Using Abstraction to Manage Complexity

1.6 A Quick Tour of the Ada Type System

1.7 A Set of Numeric Types for This Book

1.8 Abstract Data Types (ADTs)

1.9 Object-Oriented Programming

1.10 A Predefined ADT; The Ada. Calendar Package

1.11 Application: Time Around the World

1.12 A Predefined ADT: Strings in Ada

This is a book about algorithms and data structures, using an approach very much ori
ented toward the important concepts of abstraction and abstract data types (ADTs).

The dictionary defines abstraction as the act or process of separating the inherent
qualities or properties of a thing from the actual physical object to which they belong.
Abstraction in programming is the process of separating the essential properties of a
thing from the actual details of the way it is implemented or stored.

In computing, an abstract data type is a program unit whose specification provides
a type and a set of operations on that type. In Ada, ADTs are implemented using pack
ages and private types. In this chapter, you will see how Ada's standard package
Ada. Calendar should be viewed as an ADT, and you will use a number of its oper
ations for the first time in an application program. The Ada predefined type String is
also treated as an ADT in this chapter.
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In the next chapter, you will leam how to write ADTs and how to design a test plan
to demonstrate that an ADT works as it should.

1.1 YOUR ADA STARTING POINTS

This book does not teach the rudiments of Ada from the beginning. Here are some of
the things you should know about Ada before attempting the material in this book:

• The basics—the form of a program, the declaration of constants and variables, the
way to use the standard Text_IO library for input and output

• Control structures—assignment, IF, CASE, FOR and WHILE loop statements

• Data structures—the predefined types Integer, Float, Character, and
Boolean, and the way to define subtypes of these; simple record and one-dimen
sional array types

• System structures—^procedures, functions, exception handling, and a bit about packages

You should also know how to edit, compile, link, and execute a program using a
validated Ada compiler on a computer that is available to you.

These are the major Ada topics you will study in this book:

• Multidimensional and unconstrained array types

• Variant records

• Access types and dynamic storage allocation

• Generic units

• Tagged types and other object-oriented features

• Concurrent programming structures

Ada 95

This book uses Ada 95 as its "official" programming language. Ada 95 is the revised
version of Ada whose standard became official when it was adopted by the
International Standards Organization (ISO) in February 1995 and by the American
National Standards Institute (ANSI) in April 1995. The original Ada is widely referred
to as Ada 83, to distinguish it from the revised version, and we will do the same wher
ever a distinction is necessary.

Ada 95 is a nearly 100% "upward compatible" revision of Ada 83, so if you learned Ada
83 before reading this book, all your knowledge is still useful. Almost eveiy Ada 83 pro
gram you have seen or written can be compiled and run correctly with an Ada 95 compiler.
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Ada 95 corrects a few troublesome features of Ada 83 and introduces some inter

esting extensions. In this book, we will point these changes out, as appropriate, either
in the text or in footnotes. Section 1.2 introduces a few Ada 95 features you should
know about from the beginning.

1.2 SOME ADA 95 CHANGES

In this section, we describe some changes to the basic structure of an Ada program.
These changes concern names of standard packages, declaration order, and OUT
parameters.

Names of Standard Packages

Ada 95 has many more standard packages than Ada 83, including standard packages for
powerful string operations, elementary mathematical functions such as square root and
cosine, and random number generators. These packages are not required in Ada 83;
they are often provided as compiler-dependent packages. Ada 95 also provides a fea
ture called hierarchical packages, which allows a package to be declared a "child" of a
parent package.

We will see some examples of the new packages, and will introduce our own child
packages, in later chapters. For now, you should note that Ada 95 compilers supply a
package called Ada, under which most of the standard packages are grouped as chil
dren. Thus, Calendar is now officially called Ada.Calendar, Text_IO is now

called Ada. Text_IO, and so on. In order that existing Ada 83 programs be compati
ble with Ada 95, the Ada 83 package names can still be used and are treated as renam-
ings of, (or "nicknames" for) the new official names. In this book, we use the new
names consistently.

There are two new standard packages that you will find immediately useful.
These provide for input/output operations on values of the predefined Integer and
Float types; they are called, respectively, Ada. lnteger_Text_IO and
Ada. Float_Text_IO. All the familiar Get and Put procedures are available,
including the formatting parameters Width (Integer) , Fore, Aft, and Exp
(Float). As usual, a program using these packages must be preceded by the appro
priate context clause (WITH clause)—for example,

WITH Ada.Integer_Text_IO;

The examples in this book use the new packages wherever appropriate.

Declaration Order

Ada 83 allows a fairly flexible order of declarations of types, variables, constants, and
subprograms within a given subprogram's declarative section. Generally, these can be
intermixed as long as nothing is referenced before it has been declared. However, stu-
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dents of Ada 83 are often unpleasantly surprised to discover that subprogram bodies
must come at the end of the declarations. In the most frequently arising case, attempt
ing to declare a variable or a constant after the declaration of a procedure or function
body results in a compilation error message something like "illegal declaration of
basic declarative item."

This seemingly strange rule was imposed in Ada 83 in an attempt to improve the
readability of programs by ensuring that variable and constant declarations, which are
short, were not "buried" between long subprogram bodies. The rule caused more incon
venience than it eliminated, so it has been eliminated in Ada 95. Declarations of any
kind can be freely intermixed as long as the sensible rule is followed that nothing can
be referenced before it has been declared.

OUT Parameters

Procedures in Ada can take parameters of IN, OUT, and IN OUT modes. Within the
procedure body, an IN parameter may not appear on the left side of an assignment; it is
treated as a constant within the procedure body, and therefore may not be changed
there. In Ada 83, an OUT parameter may not appear on the right side of an assignment;
the resulting compilation error message is something like "illegal reading of an OUT
parameter."

As a result of this rule, an OUT parameter cannot be computed in stages, in state
ments of the form

OutParam := OutParam + 1;

or otherwise used in the procedure. The standard solution is to use a temporary variable
for the computation and copy its value into the OUT parameter just before the procedure
returns to its caller. This is an annoying requirement; the rule is eliminated in Ada 95.
OUT parameters can be used freely within the procedure. Program I.l illustrates the
changes just described. If you have an Ada 95 compiler and the program source file
available, you should compile, link, and execute it to test your familiarity with the com
piler and observe the program's behavior.

PROGRAM 1.1 Illustrating Some Ada 95 Changes

WITH Ada.Text_I0;

WITH Ada.Integer_Text_IO;

PROCEDURE Ada95_Changes IS

--| This program shows four small changes in Ada 95:
--I
--| (1) new names for standard packages (e.g., Ada.Text_I0)

(2) new standard packages for numeric input/output
— I (3) variables can legally be declared after procedure bodies
— I (4) OUT parameters can be legally used within the procedure

--| Author: Michael B. Feldman, The George Washington University
— I Last Modified: October 1995
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PROCEDURE ShowOutParameter (Result: OUT Integer) IS

BEGIN

Result := 2;

Result := Result + 1; -- Result on the right is illegal in Ada 83!
END ShowOutParameter;

Y: Integer; -- declaring Y after a procedure body
-- is illegal in Ada 83!

BEGIN -- Ada95_Changes

ShowOutParameter(Result => Y);

Ada.Text_IO. Put (Item => "Y's value is now");

Ada.Integer_Text_IO.Put(Item => Y, Width => 1);

Ada.Text_IO.New_Line;

END Ada95_Chcuiges;

1.3 THE LIFE CYCLE OF SOFTWARE

DEVELOPMENT

Developing software in classes is somewhat different from doing it in the real world.
In a class, you are generally given the problem specification by an instructor.
Sometimes the problem specification is ambiguous or incomplete, so interaction
between the instmctor and the students is necessary for the students to determine the
details.

In the real world, the initial specification for a software product (a large program
system) may also be incomplete. The specification is clarified through extensive inter
action between the prospective users of the software and its designers. Through this
interaction, the software designers determine precisely what the users want the pro
posed software to do and the users determine what to expect from the software product.
Although it may seem like common sense to proceed in this manner, very often a sup
posedly final version of a software product does not perform as expected. The reason is
usually a communication gap between those responsible for the product's design and its
eventual users; generally, when the software fails to meet expectations, both parties are
at fault.

One cause of the communication gap is that software users are often not familiar
enough with computers and their capabilities to know whether their requests are rea
sonable or how to specify what they want. Software designers, on the other hand, often
assume that they are the best judges of what the user really wants; they are quick to
interpret a user's incomplete or unclear specification as a "blank check," allowing them
to do what they think best. To avoid this communication gap and produce software that
performs correctly and efficiently, truly meeting the needs of its user community, we
must recognize that software is not just coded, but developed and maintained in a sys
tematic fashion. Classically, the process of developing software is called the software
life cycle, which consists of these phases:

1. Requirements specification. State the problem and gain a clear understanding of
what is required for its solution. This sounds easy, but it can be the most critical
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part of problem solving. A good problem solver must be able to recognize and
define the problem precisely. If the problem is not totally defined, you must
study it carefully, eliminating the unimportant aspects and focusing on the root
problem. The solution may require an interactive program, to be operated by a
human user, or a set of types and subprograms to be used not by an end user but
by another developer, or both. It is, in any case, very important to understand
just who the "customer" is.

2. Analysis. Identify problem inputs, desired outputs, and any additional require
ments for or constraints on the solution. Identify the information that is supplied
as problem data and the results that should be computed and displayed. Also
identify how input is to be obtained. Will an interactive user interface be used?
What about external disk files? Finally, determine the required form, and the
units, in which the results should be displayed (for example, as a table with spe
cific column headings).

3. Design. Historically, most software has been developed as a set of functions.
First the functions were identified, and then the data upon which the functions
acted. A more modem view is that software is best when it is a faithful model of
some aspect of the real world. In this view, the world is best seen as a collection

of things, or objects, that carry out actions or have actions performed upon
them. The objects are the data types and variables necessary for the system to
produce the desired outputs from the desired inputs.

Having identified the objects (the "nouns" of the system) identify the oper
ations (the "verbs") to be performed on each kind of object. Generally, each
type and its operations are grouped into a module, or package; the interface, or
"contract," between the module and its human users or its "client" programs is
specified. A program often consists of a relatively small main procedure that
makes use of a number of modules; to an increasing degree, these modules are
already available in software libraries. It is important at this stage to identify
those parts of the system that do not have to be written because someone else
has already written them.

Once the basic module structure is determined, develop the individual algo
rithms for the various operations and the main algorithm to solve the overall
problem.

The modem technique of beginning a design from the system's objects, rather
than from its functions or operations, is commonly called object-oriented design.

It is very important to document your design in written form. This can take
any of a number of forms, including stmcture charts, high-level pseudocode,
block diagrams, and so on. Your instructor will generally specify his or her pre
ferred form of documentation; you will find it much easier to develop it before
you start programming, or at least while programming, instead of rushing it
through just before the project is due. At that point, it will be too late for you to
get the benefit of understanding your own design by carefully writing it down.

4. Developing a Test Plan. It is important to specify, in as much detail as possible,
just how the correctness of the various module operations, and of the overall
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program, will be tested. In college programming, you often design, code, debug,
and test your programs yourself, or perhaps with a colleague or two. It is tempt
ing to test the programs using just a few arbitrarily chosen test data. Once you
believe that the program is correct, you simply hand it in to the instructor and go
on to other work. Because you are the programmer and also do the testing and
are responsible for correcting any bugs, the testing process often is not as com
plete as it should be.

Unfortunately, even for simple programs, this is insufficient. A single test
case, or a set of arbitrarily or randomly chosen ones, is usually not enough. You
must consider special cases, endpoints of the data ranges, responses of the pro
gram to "bad" input, and so on. It is more effective to write your test plan before
you actually code the program, so that you can specify tests based on the desired
inputs and outputs. In this way, you will avoid being biased by an intimate
knowledge of your own code.

In the "real world," testing is a rigorous process that is usually performed by
a group other than the programmers; the users of the software product are often
involved in the testing phase. It is important to identify bugs early, because the
software that controls a rocket or processes payroll checks must be absolutely
free of errors before its first use.

On the other hand, a maxim in computing, attributed to Dr. Edsger
Dijkstra in the early 1970s, states that "testing shows only the presence of
bugs, not the absence of bugs." Complex programs require complex and rig
orous testing to find as many bugs as possible, but unfortunately it is impossi
ble to test every possible state of a complex program. Therefore, it is
important to develop a testing strategy that is as effective as possible, but also
to have a well-managed process for correcting any errors that arise after the
formal testing phase is over.

We could have included developing the test plan as a part of the design
stage; we chose instead to present it as a separate phase of the life cycle, to
emphasize the great importance of developing a testing strategy before the pro
gram is coded.

5. Implementation or coding. Implement the various modules, and the overall pro
gram, in a specific progranuning language. Test modules as they are developed;
it is neither necessary nor desirable to implement the entire system before
beginning to test its parts.

6. Testing. Carry out your test plan systematically. If you need to correct errors, be
sure to rerun all your tests, so that you are sure that fixing one error did not
introduce another. Rerunning a series of tests after correcting an error is gener
ally called regression testing.

7. Operation (sometimes called production).

8. Maintenance. A software product usually must continue to perform effectively
over a long period, sometimes in a changing environment. This requirement
may necessitate periodic updating of the program. If the purpose of the update
is to correct newly discovered errors, the update process is usually called
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maintenance-, if the purpose is to incorporate changes—^for example, revised
tax laws or new features desired by the users—the update process is called
enhancement.

The software life cycle is iterative. During the design phase, problems may arise
that make it necessary to modify the requirements specification. Any such changes
require the approval of the users. Similarly, during coding it may become necessary to
reconsider decisions made in the design phase. Again, any changes must be approved
both by the system designers and by the users.

Estimates vary as to the percentage of life-cycle time spent in each phase. For
example, a typical system may require a year to proceed through the first three phases,
3 months of testing, then 4 years of operation and maintenance. Because the lifetime of
a software product often far exceeds its initial development time, you can see why it is
important to design and document software in such a way that it can be easily under
stood and maintained by a variety of users.

In this section, we have described a systematic approach to the development of
software. The "sizes"—number of pages of documentation, the number of person-
hours expended, and so on—of the various steps of the life cycle should be propor
tional to the scale of the problem: relatively small for simple problems and relatively
large for complex problems. It is important to learn that the same steps are always
present.

1.4 THE GOALS OF SOFTWARE ENGINEERING

The disciplined, systematic development of software, following well-defined methods
such as the one we have described here, is often called software engineering, to stress
its similarity to the systematic methods used in traditional engineering. However, one
need not be an actual engineer or even an engineering student to develop good soft
ware, and "software engineering" is therefore less exclusive than it sounds. To
emphasize that excellent software is often developed by many kinds of people,
whether or not they are engineers, we use the terms software development and soft
ware developer in this book.

Whether we describe ourselves as software engineers or as software developers, it
is important to recognize that our main goal is to develop effective and useful software.
In this book, we study modem software development methods that are intended to pro
duce software that has these six important properties:

1. Correctness. The software meets its specifications; that is, for each set of cor
rect inputs, it produces correct output. Our emphasis on developing a test plan
helps to ensure correctness.

2. Predictability. The software behaves in a predictable, understandable manner
even when it is presented with incorrect inputs. This is a very important prop
erty: To the extent that software possesses it, it does not fail, produce "garbage"
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output, or "crash." Predictability is sometimes known as robustness. We
achieve predictability by developing robust exception handling, and by design
ing test cases that present "bad" inputs to show that our exception handling is
working as it should. Software that is correct and predictable is usually
described as reliable.

3. Understandability. Software is developed, used, and maintained by humans,
and therefore must be designed so that humans can understand it. At the coding
level, this means that a proper coding style must be used and proper comments
provided. Furthermore, the overall structure of a system should be clear. It
should be possible to isolate the various objects and their operations easily, and
to see without difficulty how the program objects and operations are related to
the objects and operations in the domain of the problem. Understandability is
fostered by careful object-oriented design and by careful documentation of the
design and implementation.

4. Modifiability. From our discussion of the software life cycle, we know that soft
ware is rarely put into use once for all time. In practice, errors must be identified
and repaired, even if they become apparent long after the software has been
released, and software often must be enhanced to accommodate changing user
requirements. We must therefore try to design software not just for today, but
for tomorrow. Changes should "scale up" properly: a small change in the
requirements should require only a small change in the design and implementa
tion. The simplest example of design for modifiability is the use of subtypes
with range constraints, and named constants, instead of "magic numbers" scat
tered throughout the code. We will introduce many techniques for improving
the modifiability of programs.

5. Reusability. A software module is reusable if it can immediately, or at least eas
ily, be adapted for use in a larger system other than the one for which it was
originally designed. Not all good software is reusable; some is developed for,
and very specifically tailored to, a single application. However, it is possible to
develop large libraries of reusable software components, built with no specific
application in mind but instead providing very general capabilities for a large
range of applications. The availability of such libraries makes each application
smaller and simpler, because many of its parts have already been designed,
coded, and tested. Much of this book focuses on producing just such compo
nents, in the form of Ada generic packages.

6. Efficiency. A software product is efficient if it makes optimal use of the com
puter resources—time, memory, I/O devices—available to it. History has
shown us that excessive or premature concentration on efficiency can cause a
program to be very difficult to debug or modify. It is said that "it is easier to
make a correct program fast than a fast program correct." In this book, we
emphasize algorithm performance prediction—analysis of the space and time
requirements of an algorithm as a function of the number of data points—
because the most important aspect of developing an efficient program is choos
ing an algorithm with good time and space performance.
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1.5 USING ABSTRACTION TO MANAGE

COMPLEXITY

Beginning programmers often find it difficult to get started on a problem. They are often
reluctant to start writing the code for a program until they have worked out the solution for
every detail. Of course, preplanning and concern for detail are commendable, but these
normally positive work habits can be overdone to the extent that they block the problem-
solving process. To make problem solving flow as smoothly as possible, use the strategy
of "divide and conquer" to decompose a problem into more manageable subproblems.

As mentioned in the introduction to this chapter, abstraction is a very important
concept in this book. Although we are cqncemed mainly with abstraction as a technique
for solving problems on a computer, you should understand that you are aided by
abstraction every time you use a system of any complexity without having to consider
the inner structure or workings of that system. Here are a few examples:

• You use the controls on a microwave oven to heat a meal without thinking about
how the microwave process actually works. In fact, the high-frequency waves cause
the molecules in the food to move about rapidly, generating heat, but you need not
know this to cook your food.

• You set the wall control on your central heating system, to keep your home at a given
temperature, without thinking about how a thermostat works. In fact, typically, a spi
ral strip, consisting of two different metals bonded together, expands and contracts
with the temperature in the room, making or breaking an electrical contact that
switches your furnace on or off. Ignorance of this fact does not hinder you from set
ting the temperature.

• You monitor the speed of your car by watching the speedometer; you need not know
that a typical speedometer works by counting the number of wheel revolutions per
minute to compute your speed in miles (or kilometers) per hour.

• You press buttons on your telephone, or spin an old-fashioned phone dial, and are con
nected to a friend, without thinking about either how the telephone system actually
makes the connection between your phone and your friend's, or how your voice is
transformed into an electrical signal that travels through the wires or through the air.

What do these examples have in common? In each case, you are using a system that
has an interface—huttonSy dials, gauges, and so forth—that is designed to be relatively
simple to use. The user does not need any knowledge of the internal structure of the sys
tem—its implementation in order to use the system effectively. Developing interfaces
and implementations is one of the key themes of this book.

Abstraction Versus Implementation

With these real-life examples in mind, let's proceed to take a look at some examples of
abstraction from the world of programming.
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Integer and Floating'Point Representations

Your ability to use things called integers and real numbers in programming depends on
abstraction, since, in reality, nothing exists in the computer but sequences of bits, oper
ated on by instructions that "understand" the connection between that which you per
ceive as an integer—written in your source program as a base-10 number—^and that
group of 8 or 16 or 32 bits in the computer's memory.

Usually, integer arithmetic is carried oiit by hardware instructions. To understand
the kind of software-level abstraction we will be performing in this book, consider
arithmetic on real numbers. In many computers, no real or floating-point instructions
are available in the hardware instruction set. Sometimes—as in the case of the "math

coprocessor" chips used in some models of the Apple Macintosh and IBM-PC fami
lies—the hardware instructions are an option the purchaser may choose not to buy.

When you declare two Float variables X and Y, and then write, say, an assign
ment statement X : = X*Y + 3 . 0;, the compiler not only allocates memory loca
tions to be used to store the variables X and Y, but may also have to generate calls to

subroutines to do the addition and multiplication operations. The point is that through
the use of the abstraction variable name and the abstraction real number, both provided
in any reasonable high-level language, you are relieved of worrying about the details of
the internal storage or actual instructions used to implement the calculation you specify
when you write an assignment. Abstraction is the way we arrive at a situation called
information hiding, in which details of a data representation or a procedure are hidden
from those who have no need (or desire) to see them.

We shall frequently contrast abstraction and implementation. The abstraction is
essentially that which is made visible to the user (in this case, the high-level-language
(HLL) programmer); the implementation comprises all the "messy details" that have
been hidden away. In this example, we have used an abstraction we might call
RealNumbers, including the operations of addition, multiplication, and assignment or
storage of reals. There is also an operation of creation, which we used by declaring X and
Y to be of the type Float. The implementation of a real number as an area of memory
divided into mantissa and exponent parts, and the operations as subroutines to be called
by your machine-language program, have been taken care of by the compiler designer.

Figure 1.1 shows this relationship for what an HLL programmer sees as an integer
quantity. The exact bit pattern used by the hardware is generally of little or no concern
to the programmer, although in this case the internal value occupies 16 bits, but the pro
grammer generally does not have to know even this.

Figure 1.2 shows an example of the same value, this time when declared as float
ing-point by the programmer and stored in 32-bit form in an Intel 80486-based com
puter. The two values appear to the programmer to be nearly the same, but they have
clearly different internal representations.

Two-Dlmensional Arrays

Perhaps you have used two-dimensional arrays at some time during your programming
experience. You may be aware that the computer's memory is not two-dimensional, but
is addressed simply as a sequence of bytes or words. It is clear, then, that there must be
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x: Integer

x: = 735;—stores value

(a) Abstraction of integer assignment
as seen by the programmer

00000010 11011111

(b) Sixteen-bit location (two bytes)
with binary equivalent of 735
stored

Figure 1.1 Abstraction and Implementation of Integer Assignment

something located between your high-level-language program and that linear memory,
that can interpret a statement like A(3,4) :=B(4,7)+1.0; correctly. As in the pre
vious example, this "something" is the compiler; abstraction has been used to give you
expressive power that is not present in the machine itself.

The abstraction you have used might be called Rectangular Arrays, including the
operations of retrieval (the subscripted reference B (4, 7) to the right of a : = sign),
storage (the reference A (3, 4) to the left of a : = sign), and creation (the declaration
of the arrays and their sizes at the beginning of your program). The compiler designer
has seen to the implementation of the rectangular arrays as areas of linear memory, and
of the assignment and retrieval operations as formulas, generated into your machine-
language program, that express the correspondence.

If you declared your array to hold elements of type Float, then, without thinking
about it in so many words, you've also used the abstraction Real Numbers, since the
values stored in the rectangular array are reals. An important aspect of the power of
abstraction is the ability to "nest" abstractions many levels deep.

Figure 1.3 shows the abstraction and one common implementation of a 3 x 4 array
of floats.

x: Float

x: = 735.0;

(a) Abstraction of float assignment

0100 0100 0011 0111 1100 0000 0000 0000

(b) 32-bit location on lntel-80486 (4 bytes) with
binary float equivalent of 735.0

Figure 1.2 Abstraction and Implementation of Float Assignment
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W: Array (1..3,1,.4) of float

(a) Ada declaration

0.0 -1.0 4.1 5.2

1.8 2.2 0.0 -3.1

-5.1 1.2 2.3 0.7

0.0

-1.0

4.1

5.2

1.8

2.2

0.0

-3.1

-5.1

1.2

2.3

0.7

(c) Filied-in array as
stored by compiler

(b) Programmer's view of filled-in array

Figure 1.3 Abstraction and Implementation of Two-Dlmenslonal Array

Storage of Information on Magnetic Tape

Magnetic tapes are used in large computer centers to store very large files very eco
nomically; they are also used in the personal computer world to back up disk files. Let
us assume that useful information on tape is recorded at a density of 1600 characters
per running inch of tape (the density is usually much higher). A gap of about j inch is
left between groups of useful characters, to allow the tape motors space to accelerate
and decelerate before and after reading. Thus a file of, say, personnel records, of 200
characters each, would waste much more tape than it uses if each record were stored
on its own section of tape, since a record would occupy only j inch of tape followed
by a j inch gap.

T^is is one reason why records are blocked on tape or disk files. A number of
actual records are grouped together on one section of tape between gaps. If the block
ing factor were, for example, 10, then a block would occupy Ijinch of tape, with the
same inch gap.

However, tape is inexpensive, so economical use of storage is a secondary reason
for blocking. A more important reason is that a fair amount of overhead is associated
with each tape read or write operation: The time it takes to set up the operation and to
start and stop the tape-drive motor is significant by comparison with the time it takes to
transfer the information on the tape to and from main storage. Thus time and motor
wear and tear are saved if more information can be read or written in a single operation
once the drive motor is up to speed.

Let us suppose that you write a program in a high-level language to process this
file. Your program is written to process one record at a time, yet actually a number of
records—a block—are being read from your tape file in one I/O operation. You need
not be worried about this "mismatch"; in fact, the operating system or compiler design-
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ers have applied abstraction to hide these "messy details" from you, and your program
ends up processing exactly the record it requires. The abstraction LogicalRecord is
implemented as a block of records written as one physical tape record; you use the oper
ations of reading and writing records, which are implemented so that even though your
program executes many "write" operations, an actual write to tape is executed only
when a block of records has been assembled in an area of main storage, usually called
a buffer.

In the terminology of operating systems, we refer to logical as opposed to physical
records, files, devices, and so on. The terms logical and physical bear a close corre
spondence to the terms abstraction and implementation. The tape example is illustrated
in Figure 1.4.

Sequential Files on Disk

Perhaps you have written a program that uses a series of Ada Get operations, or the
equivalent in another language, to read information from a sequential disk file. Your
program treated the disk file as though it were one continuous sequence of records, one
after the other, terminated by a file marker.
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(a) Magnetic tape with 1600-character/inch storage density, showing
storage of unblocked 200-character records. Each input operation
reads one physical record and thus one logical record
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(a) Magnetic tape with same density and record size, but with
10-record blocking factor. Each input operation reads one
physical record but 10 logical records

Figure 1.4 Abstraction and Implementation of Magnetic Tape File
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However, in a modem disk system, the file itself is actually stored quite differently.
The operating system's disk-management services are programmed so as to minimize
the time it takes to get a given amount of information from the disk, and it happens that
this optimization is done by organizing the file into blocks that are scattered all over the
disk. Yet, when you write a Get call, you assume that the next value to be read is adja
cent to the preceding one. You are not at all concemed about the physical structure of
the disk file, which is complicated and full of messy detail.

Procedural Abstraction and Incremental Development

Procedural abstraction is an approach that maintains that procedure development
should separate the concem of what is to be achieved by a procedure from the details of
how it is to be achieved. In other words, you can specify what you expect a procedure
to do, then use that procedure in the design of a problem solution before you know how
to implement the procedure.

It is also advisable to develop and test your program incrementally—that is, a bit at
a time. There are two strategies for doing this in a systematic way: top-down and bot
tom-up.

In top-down development, having worked out a preliminary design and refinement
of your program into procedures, you code at least a substantial part of the main pro
gram (which is often little more than a series of procedure calls), then test the overall
program flow using miniature, limited-function versions of your procedures, called
stubs. You then implement the full procedures one at a time, testing them as you go.
This is called top-down programming because you fill in detail, then test, starting with
the main program and moving downward into lower and lower levels of procedures.

In bottom-up development, you start again from your preliminary design, but this
time you write the procedures one at a time and test each one using a very simple main,
or "test driver," program whose only function is to help you test and debug the proce
dure. This is called bottom-up programming because you start with the lower-level pro
cedures and work your way back up to the main program. Generally, programmers
perform a combination of top-down and bottom-up development.

Data Abstraction and Software Components

The above discussion is centered on the idea of developing one program, one time, to
solve one problem. Refinement is used to break the problem down into smaller pieces
and to develop procedures that will aid in solving it.

The experience of the last two decades has shown us that we should also focus on
developing reusable software components, analogous to the hardware components in
our computers, that are so generally useful that they can simply be "plugged in" to aid
in the solution of many problems, not just one. The Calendar and Input/Output pack
ages supplied with Ada compilers are examples of reusable components. Indeed, one of
the most important themes of this book is a systematic presentation of the development
of a kind of software component, abstract data types (ADTs). Abstract data types are
produced using data abstraction.
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Data abstraction is a powerful programming tool that takes procedural abstraction
a step further. It is the conceptual approach of combining a set of values with a set of
operations on those values. Furthermore, data abstraction assumes that we can use such
data types without knowing the details of their representation in the underlying com
puter system. Just as procedural abstraction enables us to focus on what a procedure
does without worrying about how it does it, data abstraction enables us to consider the
data objects needed, and the operations that must be performed on those objects, with
out thinking about unnecessary details. An ADT is an abstract description of the values
and operations of a type—that is, a description that does not make reference to the
implementation of the type.

Each chapter of this book presents one or more ADT components and one or more
application programs that illustrate how the components are used.

1.6 A QUICK TOUR OF THE ADA TYPE SYSTEM

Before we proceed with our study of ADTs, we must consider just what a type is.
Further, because building good ADTs will require detailed knowledge of the way Ada's
type system works, we need to review the general structure of that type system.

Types and Strong Typing

The most important principle for you to remember about types in general, and Ada
types in particular, is this:

A type always consists of a set of values and a set of operations that are appro
priately applied to those values.

For example, an integer type, in any programming language for digital computers,
consists of a finite set of integer values together with a set of operations, such as addi
tion, subtraction, multiplication, division, and comparison. It is meaningless to think of
a type only as a set of values; the operations are an inherent part of the type.

Many programming languages, including Ada, employ a related concept called
strong typing or static typing. Strong typing means that

• Every object (variable) in the language has a unique type that does not change dur
ing the life of that object.

• Each object's type is defined (by a declaration) at compilation time so that the com
piler can determine whether that object is being used correctly—that is, whether all
operations on it are appropriate.

Strong typing is a relative term; it is possible for one language to be more strongly
typed than another, and no useful language has perfectly strong typing. Later in the
book we will see some desirable "loopholes" in Ada's strong type system.
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To understand the idea of appropriate operations, consider kinds of operations that
might be inappropriate. For example, adding together the values of two character vari
ables is not appropriate; characters—alphabetical letters, for example—are not numer
ical quantities for which arithmetic operations make sense. Similarly, attempting to
multiply two external files is inappropriate. Because each variable has a unique type
that is known to the compiler, the compiler can check the appropriateness of all opera
tions applied to a variable, generally flagging an inappropriate operation with a "type
clash" or "type inconsistency" diagnostic message.

On the other hand, not all errors can be caught at compilation time; some cannot be
detected until the program is running and computes a new value or reads data from the
outside. Strong typing facilitates execution-time error detection: Because the compiler
knows the set of values and the appropriate operations for each variable, it can generate
executable instructions that will, for example, check to make sure that a value to be
stored in a given variable is in range for that variable's type.

Suppose the data requirements for a program specify that a certain integer variable
must acquire only positive values. If the variable has been declared positive, the com
piler can ensure that no nonpositive value can be stored in it, raising an exception
(Cons traint_Error in Ada) if this requirement is violated during execution.
Assigning a negative value to a positive variable is another inappropriate operation.

In summary, many computer scientists and user organizations believe that using
languages with strong typing leads to more reliable programs, because

• More errors can be located at compilation time.

• Even those errors that cannot be detected at compilation time can usually be reported
more reliably and gracefully at execution time.

Types in Ada

Types are essentially divided into scalar (sometimes called simple) types and compos
ite (sometimes called structured) types. A scalar type is one for which each value has
a single component. In other words, a scalar value cannot be decomposed directly by a
program. In contrast, a composite type—^a record or array type—consists of compo
nents: Records have fields; arrays have elements.

Ada's type system provides three very useful operations that are automatically
applicable to all types, both scalar and composite, with the exception of LIMITED
PRIVATE types, which we will introduce in Chapter 5. These three operations are:

• Assignment or copying—the familiar " :=" operation,

• Equality test —the familiar " =" operation

• Inequality test—the familiar "/=" operation

The assignment operation allows one value of a type to be copied into a variable of
the same type; the entire value—even if it is a large composite—is copied. The equal-
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ity test and the inequality test cause one value of a type to be compared with another
value of the same type. As in assignment, the values, no matter how large, are compared
in their entirety; they are equal if and only if all the bits of one agree with the corre
sponding bits of the other.

Scalar Types

Ada's scalar types comprise

• Integer types

• Floating-point types

• Fixed-point types

• Enumeration types

• Access (or pointer) types

The first three categories are collectively called numeric types. We will examine
these, and enumeration types, in this section, deferring the last category until Chapter
8. Notice that in the list above, all the types are given in the plural. This is because an
important aspect of Ada is the ability to create user-defined scalar types. Although you
may be accustomed to defining your own enumeration types, you might find the idea of
defining your own integer-valued or floating point-valued types to be unusual; many
students do. Indeed, most languages do not provide this ability. As we shall see in
Section 1.7, the presence of this ability in Ada makes it easier to develop portable pro
grams—programs that can be compiled using any Ada compiler and executed on any
kind of computer.

Predefined Numeric Types

An integer type is declared in the following form:

TYPE SomelntegerType IS RANGE MinimumValue..MaximumValue;

Every integer type consists of a finite and ordered set of integer values. Because
the set is finite, and because its integer values are ordered, it has a minimum and a
maximum value. These values can be accessed using the attribute functions
SomelntegerType ' First and SomelntegerType ' Last.

A floating-point type is declared as follows:

TYPE SomeFloatType IS

DIGITS NiiinberOfDigits RANGE MinimumValue. .MaximumValue;

A floating-point type consists of a finite and ordered set of numerical values.
Because the set is finite, and because its values are ordered, it has a minimum and max
imum value. As in the case of integer types, given a type SomeFloatType, these two
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values can be accessed using the attribute functions SomeFloatType' First and
SomeFloatType' Last. Floating-point types are just an approximate way to repre
sent the real numbers. Because a floating-point value in a computer must occupy a
finite amount of memory (say, 32 bits), most values are inexact and are represented
only to a certain precision, or number of significant figures. For example, the value j
cannot be represented exactly. We can write it as 0.333, but of course this is not exactly
j. The number of significant decimal digits in a floating-point type SomeFloatType
can be accessed as SomeFloatType' Digits.

Figures 1.5 and 1.6 show how the Ada 95 Reference Manual describes the prede
fined integer and floating-point types. These descriptions are part of Ada's package
Standard, in which the predefined types and operations are all given. This is not a
true package, in the sense that it must be WITH-ed; rather, it is automatically available
to every Ada program unit. The full package Standard is presented as Appendix C.

In the figures, note that the operations are all specified, but that in the type declara
tions, the details—the ranges, and the number of digits in the type Float—are given
as "implementation-defined." This is very important: It tells us that the language stan
dard does not predefine the minimum and maximum values of the predefined types, nor

-- This is the section of the package Standard that describes
-- the predefined type Integer and its operations.
-- Excerpted and reformatted from the 95 Reference Manual, Annex A.

TYPE Integer IS RANGE implementation_defined;

— "Implementation_Defined" means that the Standard does
-- not specify the range of values, instead leaving this
-- up to the compiler writer, who usually bases it on the
— word size and arithmetic system of the hardware.

- The predefined operators for this type are as follows:

FUNCTION

FUNCTION -/="

FUNCTION

FUNCTION "<="

FUNCTION

FUNCTION ">= "

FUNCTION

FUNCTION «_«

FUNCTION "ABS

FUNCTION

FUNCTION

FUNCTION n * •

FUNCTION V"

FUNCTION "REM'

FUNCTION "MOD'

FUNCTION n * * M

(Left, Right
(Left, Right
(Left, Right

(Left, Right

(Left, Right
(Left, Right

Integer)

Integer)

Integer)

Integer)

Integer)

Integer)

RETURN

RETURN

RETURN

RETURN

RETURN

RETURN

Boolean;

Boolean;

Boolean;

Boolean;

Boolean;

Boolean;

(Right : Integer) RETURN Integer;

(Right : Integer) RETURN Integer;
(Right : Integer) RETURN Integer;

(Left, Right
(Left, Right

(Left, Right
(Left, Right
(Left, Right

(Left, Right

Integer)

Integer)

Integer)

Integer)

Integer)

Integer)

RETURN Integer;

RETURN Integer;

RETURN Integer;

RETURN Integer;

RETURN Integer;

RETURN Integer;

(Left : Integer; Right : Integer) RETURN Integer;

-- Predefined subtypes:

SUBTYPE Natural IS Integer RANGE 0

SUBTYPE Positive IS Integer RANGE 1
Integer'Last;

Integer'Last;

Figure 1.5 Section of Package Standard Describing Integer
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— Section of package Standard that defines the type Float and its
— operations.
— Excerpted and reformatted from the Ada 95 Reference Manual, Annex A.

TYPE Float IS DIGITS Implementation_Defined;

— Neither the range of values nor the precision (number of
— significant digits) is specified; this is up to the compiler
— writer.

— The predefined operators for this type are as follows:

FUNCTION (Left, Right Float) RETURN Boolean;
FUNCTION v=- (Left, Right Float) RETURN Boolean;
FUNCTION (Left, Right Float) RETURN Booleetn;

FUNCTION "<=" (Left, Right Float) RETURN Boolean;

FUNCTION (Left, Right Float) RETURN Boolean;

FUNCTION ">=" (Left, Right Float) RETURN Boolean;

FUNCTION (Right : Float) RETURN Float
FUNCTION (Right :  Float) RETURN Float

FUNCTION "ABS"(Right :  Float) RETURN Float

FUNCTION (Left, Right Float) RETURN Float;

FUNCTION (Left, Right Float) RETURN Float;

FUNCTION « * ■ (Left, Right Float) RETURN Float;
FUNCTION (Left, Right Float) RETURN Float;

FUNCTION •< * * M (Left Float; Right Integer) RETURN Float;

Figure 1.6 Section of Package Standard Describing Float

the number of significant digits in Float. We will return to this point shortly; it is
important enough to merit its own section. For now, note only that the familiar arith
metic and comparison operators are given as function specifications. We will frequently
use this form for describing operators.

We shall ignore fixed-point types, which are used only rarely. The only exception is
the predefined fixed-point type Duration, which measures elapsed time. We shall use
this type occasionally.

Predefined Enumeration Types

An enumeration type is one whose finite set of values is listed, or enumerated, in the
type declaration, in the form

TYPE SomeEnumeratlonType IS (value_l, value_2. .  , value_n);

Because the values are finite and ordered, SomeEnumerationType' First
and SomeEnumerationType' Last are appropriate for enumeration types, as are
the comparison operations ">", and "<=". Naturally, assignment,
equality, and inequality are also available for enumeration types, but arithmetic opera
tions are not.

Package Standard provides two predefined enumeration types. Boolean
and Character, shown in Figures 1.7 and 1.8. Boolean has predefined logical
operators.
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— The declaration of type Character is based on the standard ISO

— 8859-1 character set.

— There are no character literals corresponding to the positions
— for control characters.

-- They are indicated in italics in this definition.

TYPE Character IS

(nul, soh, stx, etx. eot. enq, aek. bel.

hs, ht. If, vt. ff. er. so. si.

die, del. de2. de3. de4. nak. syn. etb.

ean, em. sub. ese. fs. gs. rs. us.

•  '. ■ ! ', • ••', '%■ ,
1 * <

' ' ' ' 9
1  1

'0' , -l' . •2' . '3 • , •4' , '5' , '6' , '7 ■ ,
•8" , '9', ' <' / .  ■p 1

,  'A', 'B' , 'C , 'D' , 'E' , 'F' , 'G' ,
'H' , "I*, ' J' , •K' , 'L' , 'M' , •N' , '0' ,

'P' , 'Q' , 'R' , 'S' , •T' , 'U* , ' V , •w,
'X', 'Y', •Z' , ■  [ ' . '1 ■ , 1 A 1

' ' '/ 'a', 'b', ' c' , ■d' , 'f ■ , 'g'.
'h', ' i ', ' j ' , 'k' . ■1' , 'm' , 'n' , ' o' ,

'P' , 'q' , ' r', ' s' , 't' , 'u' , ■v , 'W ,
'X', 'y' . ' z' « ■ • I " . del.

reserved_128. reserved_129, bph. nbh.
reserved_132, nel, ssa. esa.

hts, htj, vts, pld, plu , ri, ss2. ss3.

dcs, pul, pu2, sts, cch, mw, spa, epa,

SOS, reserved_153, sci, csi,
St, osc, pm, ape,

. . . );

— The predefined operators for the type Character are the same as
— for any enumeration type.

Figure 1.7 Section of Package standard Describing Character

Attributes of Scalar Types
An important aspect of Ada's type system is the notion of attributes. These are charac
teristics of a type or variable that can be used by a program. Scalar types all have these
three attributes:

• First, which gives the first or lowest value in the type
• Last, which gives the last or highest value

• Range, which gives the range of the type

In addition, discrete scalar types—that is, integer and enumeration types—have
these important attributes:
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TYPE Boolean IS (False, True);

— The predefined relational operators for this type are as follows;

FUNCTION •=■ (Left, Right
FUNCTION "/=" (Left, Right
FUNCTION "<" (Left, Right
FUNCTION "<=" (Left, Right
FUNCTION ">" (Left, Right
FUNCTION ">=" (Left, Right

Boolean) RETURN Boolean;
Boolean) RETURN Boolean;
Boolean) RETURN Boolean;
Boolean) RETURN Boolean;
Boolean) RETURN Boolean;
Boolean) RETURN Boolean;

— The predefined logical operators and the predefined logical
— negation operator are as follows:

FUNCTION "AND" (Left, Right : Boolean) RETURN Boolean;
FUNCTION "OR" (Left, Right : Boolean) RETURN Boolean;
FUNCTION "XOR" (Left, Right : Boolean) RETURN Boolean;

FUNCTION "NOT" (Right : Boolean) RETURN Boolean;

Figure 1.8 Section of Package standard Describing Boolean

• Pos, which, given a value in a type, gives its position in the type

• Val, which, given a position in a type, gives the value in that position

• Fred, which, given a value in a type, gives the value that precedes it in the type

• Succ, which, given a value in a type, gives the value that follows

As an example, consider the enumeration type Days:

TYPE Days IS
(Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday);

and the variables

Today, Tomorrow: Days;

Now assuming the assignment:

Today := Friday;

we have

Days'First is Monday
Days'Last is Sunday
Days'Pos(Monday) is 0
Days'Val(0) is Monday
Days•Pos(Sunday) i s 6
Days'Val(6) is Sunday
Days'Pred(Wednesday) is Tuesday
Days'Pred(Today) is Thursday
Days'Succ(Tuesday) is Wednesday
Days'Succ(Today) is Saturday
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Because integer and enumeration types are not cyclical (that is, they do not "wrap
around"), the queries Days ' Pred (Monday) and Days ' Succ (Sunday) are
undefined and would cause an execution-time exception—namely the raising of
Constraint_Error—if attempted. Similarly, if Today had the value Sunday,
then Days' Succ (Today) would cause an exception. Whether the assignment
statement

Tomorrow := Day'Succ(Today);

would cause an exception depends on the value of Today; it cannot cause a compila
tion error because the value of Today is usually unknown at compilation time. We
chose an enumeration type for the example, but the same attributes would work in the

same way if we had used an integer type instead.

Subtypes

A subtype of a given type defines a subset of the base type's set of values. The opera
tions of the base type are passed on to the subtype; sometimes we say that the subtype
inherits the operations of the base type. It is important to realize that a subtype does not
create an entire new type. Because a subtype merely selects a subset of the base type's
values, any value in the subtype will necessarily also be in the base type. Consider the
subtype

SUBTYPE Small IS Integer RANGE -10..10;

and assume that I is of type Integer and S is of type Small. The two assignment
statements

I  := S;

S  := I;

are both legal at compilation time. However, the first statement requires no check to be
done at execution time, because any value that S could hold will also be in range for I.
The second statement requires a check to be made at execution time; the compiler will
generate the checking instructions as part of the object program.

Why is the check necessary? Suppose the value of I is to be read in from the ter
minal; it is therefore not known at compilation time. Suppose the user enters 20 in
response to a prompt for a value for I. This value is quite legal for I, but is out of
range for S, so Constraint_Error should be raised for the attempted assignment.
The subset relationship also shows the need for the check: Any value in the subset
will be in range for the full set, but a value in the full set does not necessarily belong
in the subset.

We say that the variables I and S are compatible', each variable's value can be
copied into the other, provided only that it is in the proper range of the other
variable.

Subtypes are very useful in programming; they allow the programmer to "fine-
tune" the ranges of variables, according to the data requirements of the program.
Because the ranges are specified explicitly, the compiler can ensure that assignments
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are always appropriate, at compilation time if possible, or with execution-time checks
if necessary. We will use subtypes frequently in this book.

Assignment Compatibility

An expression involving floating-point operands can be assigned to a variable only of
type Float (or a subtype thereof). An expression involving integer operands can be
assigned to a variable only of type Integer (or a subtype thereoO- An attempt to
assign a value of the wrong type to a variable will result in a compilation error; an
attempt to assign an out-of-range value to a variable (e.g., a negative expression result
to a Positive variable) will cause Constraint_Error to be raised.

Conversions Among Numeric Types

Ada does not usually allow the mixing of types in an expression. However, it does pro
vide a means for performing explicit conversion of a value of one type into a value of
another. Specifically, Ada allows explicit conversion among integer, fixed-point, and
float values. This is done using a function-call syntax, in which the name of the new
type is used as the function. The result of this "function call" is of the new type, unless
the result is out of range, in which case Constraint_Error is raised as usual.

An integer value always has an exact equivalent in floating-point form, but a
floating-point value does not always have an exact integer equivalent. Ada therefore
rounds such a conversion to the nearest integer value. Suppose we have the following
declarations:

SUBTYPE NonNegFloat IS Float RANGE 0.0..Float*Last;

F: Float;

N: NonNegFloat;
I: Integer;

P: Positive;

T: Natural;

Here are some conversions that can be done:

= Float(I); — always possible
= Float(P); — always possible
= Integer(F); — always possible; result is rounded
= Integer(N); -- always possible, result is rounded

N := NonNegFloat(I); — raises Constraint_Error if I is negative
T := Natural(F); -- raises Constraint_Error if F is negative

= Integer(5.49); -- result is 5

= Integer(5.51); -- result is 6

= Integer(5.5); -- result is 6, depending on compiler

Conversion between two subtypes of Integer or two subtypes of Float is
always possible and will succeed if and only if the result is in range. If I happens to be
-57, for example,

T := Natural(I);

will cause Constraint Error to be raised.
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Record Types

A record type is declared in the following way:

TYPE SomeRecordType IS RECORD
Fieldl : Typel;
Field2 : Type2;

Fieldn : Typen;

END RECORD;

Each field is given with its type. An object or variable of type SomeRecordType
is declared as usual:

FirstRecord: SomeRecordType;

In addition to the always-available assignment, the equality test, and the inequality
test, record types permit the operations of field storage and field retrieval, both using
"dot" notation to select the desired field. If FirstRecord and SecondRecord are

both of type SomeRecordType, we can write

FirstRecord.Fieldl := SecondRecord.Fieldl;

Also available for records is aggregate assignment, for example:

FirstRecord ;=

(Fieldl => Valuel, Field2 => Value2, .... Fieldn => Valuen);

It is also legal to omit the field names and write

FirstRecord :=

(Valuel, Value2, . . . , Valuen);

as long as all the Values are supplied, in the proper order.
Finally, parameters to subprograms, and function return type, are allowed to be

record types.

Array Types

An array type is declared in the following form:

TYPE SomeArrayType IS ARRAY SubscriptType OF ElementType;

The subscript can be of integer or enumeration type. For example,

TYPE HoursWorked IS ARRAY(Days) OF NonNegFloat;
TYPE Vector IS ARRAY(Small) OF Integer;

TYPE List IS ARRAY(1..5) OF Character;

are all permissible. In general, good programming style encourages the use of a sub
script type that is a named type or subtype (as in the first two cases), rather than an
explicit range (as in the last case).
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Array element storage and retrieval is analogous to record field storage and
retrieval. Syntactically, parentheses are used. Suppose Arrayl and Array2 are of
type SomeArrayType and SI and 82 are of type SubscriptType:

Arrayl(SI) := Array2(S2);

copies an element of Array2 into the given element of Arrayl.
Of course, array assignment, equality test, and inequality test are available, and

arrays can be passed as parameters to subprograms and returned as function results.

Aggregate Array Assignment

As in the case of records, an entire array can be filled with values using three methods:

• Assignment to each element with an individual assignment statement, either ran
domly or sequentially

• Copying one entire array to another with an array assignment statement, as discussed
just above

• Storing values in an entire array using an aggregate, similar to that used in records

It is the third method that concerns us now. Given an array A of type Vector, the
21 Integer values could, if they were all known in advance, be stored in A with a sin
gle statement such as

A  := (1, 27, 35. -4, 15, . . . ) ;

where the ellipsis must be replaced completely with the other 16 values. This is surely
tedious, but it is better than writing 21 separate assignment statements. As in the case
of records, named association can also be used:

A := (-10 => 1, -9 => 27, . . .);

where the remaining 19 values also need to be supplied. Although in record aggregates
we prefer named association, in array aggregates it can be cumbersome, because an
array can have a large number of elements. In using array aggregates, we will generally
use positional association unless there is a good reason not to do so.

A common and useful application of array aggregates is to initialize most or all ele
ments of an array with the same value. Suppose that our array A were to be "cleared" so
that all values were 0. This could be done in a loop:

FOR I IN Small LOOP

A(I) := 0;

END LOOP;

or with a single aggregate assignment:

A := (-10..10 => 0);
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or, better,

A := (Small => 0);

The aggregate assignment is certainly more concise, expresses the will of the program
mer clearly, and also may possibly execute faster. Suppose now that A were to be ini
tialized such that its first 5 elements were as above, but the other 16 were to be 0. The

assignment

A := (1, 27, 35, -4, 15, OTHERS => 0);

does the trick. The OTHERS clause instructs the compiler to store Os in all those ele
ments not expressly listed in the aggregate. If, say, only the first, third, and fifth ele
ments were nonzero, named association could be used:

A := (1 => 1, 3 => 27, 5 => 35, OTHERS => 0);

Finally, the assignment

A := (OTHERS => 0);

fills the entire array with Os even more concisely: Because no other elements were
explicitly filled, the OTHERS applies to all elements. If A were a large array, for exam
ple, if the range of Small were -100. .100 instead of-10. .10, the OTHERS notation
would be very convenient indeed!

In using an aggregate, it is important to remember that all elements of the array
must be initialized by the aggregate; otherwise a compilation error results. OTHERS ini
tializes all elements not otherwise given.

Multidimensional Arrays

Arrays need not be limited to a single dimension. We will discuss multidimensional
arrays in depth in Chapter 4; for now, let us be content with a type declaration,

TYPE FvinnyTable IS ARRAY (Days, Small) OF Integer;

a variable declaration.

TodaysTable: FunnyTable;

an element assignment

TodaysTable(Sunday, -5) := 13;

and an aggregate assignment

TodaysTable := (OTHERS => (OTHERS => 2));

which stores the value 2 in each of the 147 (7 x 21) elements of the array.

Strings

The only predefined composite type in Ada is the string, which we will consider in
some depth in Section 1.12.
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Type Composition

Types give the programmer much power and flexibility for creating complex data
structures. In Ada, a record field or array element can be of any type, including another
composite type. This lets the programmer compose, or nest, structures in other struc
tures to create ever larger ones. It is quite conmion to see arrays of records, arrays of
arrays, records with arrays as fields, records with records as fields, and so on.

Derived Types

It is possible in Ada to derive a type from another type. Derivation creates a new type,
not just a subset relationship. Values of derived types cannot be directly combined or
assigned to variables of other derived types. Consider

TYPE Small IS NEW Integer RANGE -100..100;
TYPE Little IS NEW Integer RANGE -100..100;

Each of these types has its own set of values and inherits the operations of Integer.
However, objects of one type are incompatible not only with objects of the other type,
but also with Integer. That the types share the same range of values is coincidental.
If I is of type Integer, L is of type Little, and S is of type Small, then all of
these assignments are illegal and will give rise to compilation errors:

= L;

= S;

= I;

= I;

= L;

= S;

You might well ask why the types should be incompatible even though they seem
to have the same set of values. The answer is that sometimes we wish to separate one
group of variables from another and allow the compiler to help us refrain from acci
dentally mixing them together, because they represent, say, different physical quanti
ties that should not be intermixed.

In fact, Ada does allow us to intermix values of different derived types, but only if
we do it intentionally, through explicit conversion. Thus Little (S), Small (L),
Integer (S), and so on, are legal conversions.

We will not use derived types much in this book—we prefer to use subtypes, as dis
cussed above, and new types, as discussed below—^but you should know that derived
types exist; they appear in other books and in "real" programs you might encounter.

New Types

If you have ever written a type declaration for an enumeration, record, or array type in
Ada, you have created a new type. For example, consider the two enumeration types

TYPE USFlagColors IS (Red, White, Blue);

TYPE FrenchFlagColors IS (Red, White, Blue);



1.7 A Set of Numeric Types for this Book 29

These are distinct types, even though they seem to have the same structure and the same
set of values. A value of type USFlagColors cannot be assigned to a variable of type
FrenchFlagColors. The variable and the value are incompatible. Similar incom
patibilities exist between record or array types that appear to have the same structure
but have different type names.

Interestingly, Ada allows us to create new numeric types, of the integer, float, or
fixed variety. This is the subject of Section 1.6.

Private Types

An Ada package specification can provide a type declaration labeled PRIVATE, in the
following form:

TYPE T IS PRIVATE;

The actual type declaration appears at the end of the speciHcation, in a special section
called the PRIVATE section. Whether the actual structure of the type is scalar or com
posite, the set of predefined operations available to a client of the package is limited to
the always-present assignment, equality test, and inequality test. This means that even
if the type happens to be an integer type, no arithmetic is predefined, and if the type
happens to be a record type, no field selection is available to client programs. Private
types allow their authors complete control over the set of operations. This book uses
private types frequently, beginning in Chapter 2.

1.7 A SET OF NUMERIC TYPES FOR THIS BOOK

In the preceding section, we mentioned that it is possible to create new numeric types
in Ada, but we did not go into detail as to why we would wish to do so. In fact, from
time to time in this book we will indeed create our own numeric types.

Why would we bother to create our own types? After all, Ada provides some pre
defined numeric types that would seem capable of serving us well. The answer is that
new numeric types aid us in developing portable programs—that is, programs that will
compile correctly using any Ada compiler and will execute correctly on any computer
for which a compiler exists.

Let's look again at the predefined numeric types. The Ada 95 Reference Manual
predefines Integer and Float, but does not specify what their ranges are to be!
Each compiler writer is free to set a range for each predefined type used by that
compiler. Some compilers use the range -32767. .32767 for Integer, because
that is the range that can be accommodated in a 16-bit memory location. Some
computers provide an extra negative value in the hardware; in those computers
compilers might use the range -32768. .32767. Other compilers use the range
-214748348. .2147483647 for Integer, because that range can be accommodated
in a 32-bit location.
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Now suppose we defined a subtype

SUBTYPE MyBiglnteger IS Integer RANGE -100_000..100_000;

This definition would compile correctly using any compiler that used the 32-bit integer
range. Making MyBiglnteger a subtype of Integer is dangerous, though: We
could use MyBiglnteger values freely in many programs, then switch to a different
compiler and be unpleasantly surprised to discover that these values will not compile or
work if the new compiler happens to use the 16-bit range for Integer.

Most computers have either 16-bit or 32-bit words, but some have words of unusual
size, such as 24 or 60 bits. Because Ada does not specify precisions and ranges for the
predefined types, this variety of word sizes can be accommodated, but this causes a
problem for us: How do we ever specify numerical values that we are sure will work
with all compilers on all computers? Our solution is one that is commonly used in
industry for Ada projects: We define our own numeric types. Changing the declaration
above to

TYPE MyBiglnteger IS RANGE -100_000..100_000;

does the trick: The RM obliges every compiler to store values of this type using some
hardware storage method supported by the computer for which it is generating code. In
the unusual case where the hardware simply cannot accommodate a given range—
because it is absurdly large, for example—the compiler will just issue an error message.
In practice, this rarely happens, because reasonable integer ranges can almost always be
acconunodated.

In this book we shall take advantage of the fact that in practical compilers the range
of predefined integer is at least -32767. .32767. We can therefore safely and
portably use subtypes of the predefined Integer type wherever the subtype range
will lie within -32767. .32767. To handle a larger range—^for example, the 100,000 sit
uation mentioned above—^we will resort to declaring a new integer type to accommo
date just the range we need.

For this book's purposes, we can use predefined Float with confidence, because
practical compilers give a precision of at least six decimal digits and six significant fig
ures are the most we will need here.

This handling of numeric types is a workable compromise between the naive
extreme of using only the predefined types—which, as we have seen, can lead to porta
bility problems—^and the "industrial-strength" extreme of never using the predefined
types, which, in our view, leads to unnecessary complexity in our programs.

1.8 ABSTRACT DATA TYPES (ADTs)

An abstract data type, or ADT, is just what its name suggests: an abstract des
cription of a data type—that is, a description of the values of the type, and the
operations on those values, in an abstract manner independent of any particular
implementation.

For example, we could specify the type Integer as follows:
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• Values—all integers in the range Minlnteger through Maxinteger, inclusive

• Arithmetic Operations—addition, subtraction, multiplication, division, and
remainder

• Comparison Operations— <, <=, =, /=, >, and >=

Mathematically, there is no reason to limit the set of integers to a Unite range; we
do so only because in this book we are interested in solving problems on digital com
puters, and, generally, in digital computers the set of integers is a finite set. Note that no
reference is made to the way in which integers are implemented—^for example, that
they are stored in the computer in 32-bit binary form. This implementation detail is not
relevant to the ADT specification.

A program that uses an ADT is called a client program. A client program should be
designed before it is coded, written as an abstract algorithm that manipulates objects of
the type and uses the type's operations abstractly. Later, when the abstract algorithm is
transformed into statements in a programming language, these manipulations can be
written without the programmer's knowing the details of the internal representation of
the data type or the implementation of its operators. In this way, we separate the use of
the data and the operators (by the client program) from the representation of the type
and the implementation of the operators (by the abstract data type).

Using ADTs provides several advantages. It allows us to implement the client pro
gram and the abstract data type independently of each other. If we decide to change the
implementation of an operator (function or procedure) in the abstract data type, we can
do so without affecting the client program. Finally, because the internal representation
of a data type is hidden from its client program, we can even change the internal repre
sentation at a later time without modifying the client.

An ADT is an important kind of reusable software component. ADTs are written to
be usable by a variety of client programs. An ADT generally has no knowledge of the
client programs that will use it; the client programs need have no knowledge of the
internal details of the ADT. Ideally, as we have pointed out, ADTs are thought of as
analogous to the various integrated electronic components used in modem computers
and other devices: One needs to understand only the interface to an ADT to "plug it
into" a program, as electronic components are plugged into a circuit board.

ADTs and their use by abstract client programs could be studied theoretically, with
out ever writing a concrete program. We could, for example, introduce all our ADTs in
the structured English form shown above and write all our client algorithms in
pseudocode. However, in order to use ADTs in actual programs solving actual prob
lems, we must have a concrete notation in which to specify and implement ADTs. Ada
packages happen to be a very convenient concrete form for this work. The specification
of the predefined Ada types, extracted from PACKAGE Standard and shown in
Figures 1.5 through 1.8, is a good approximation to the ADT form we desire: In each of
those Egures, the type is named and its values described, and a list of operations is
given.

To emphasize that ADTs are independent of specific progranuning languages, we
will sometimes introduce them in the stmctured-English form. Often, however, we will
find it convenient to skip the stmctured English and use Ada notation directly, using
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comments to fill in descriptive material that the Ada syntax cannot express. We will
construct the specification of an ADT—the abstract part—using an Ada package spec
ification, and the implementation of the ADT using a package body.

ADTs facilitate programming in the large because they reside in ever larger
libraries of program resources. The availability of large libraries of general resources
makes the client programs much simpler, because their writers do not have to "reinvent
the wheel." The modem software industry is devoting much time and effort to the
development of component libraries; your study of ADTs will give you a taste of the
way this development is done.

The Structure of an ADT

Abstract data types are a general concept in programming, independent of any particu
lar progranuning language. An ADT consists of the specification of one or more data
types and a set of operations applicable to the type or types. Generally, the type is a
composite type, often a record of some kind. The operations can be grouped into sev
eral classes:

• Constructor. A constmctor creates, or constructs, an object of the type by putting its
component parts together into a unified whole.

• Selector. A selector selects a particular component of an object.

• Inquiry. An inquiry operation asks whether an object has a particular property—for
example, whether it is empty.

• Input/output. As usual, an input/output operation is the communication link between
the value of an object and the world outside the program, usually a human operator
at the terminal or a disk file or printer.

Ada Features for ADTs

Ada provides many capabilities to help us develop ADTs. Here is a summary of the
main data abstraction features we use in this book.

• Ada provides subtypes, derived types, and new types. This has been discussed above.

• Ada provides record field initialization. This allows us to define a record type in
such a way that each field in each variable of that type is initialized to a predeter
mined value.

• Ada provides packages. As we will see throughout this book, a package is an ideal
way of grouping together resources—types, functions, procedures, important con
stants, and so on—and making them available to client programs. A package speci
fication acts as a "contract" between the writer of the package and the writer of the
client program. Furthermore, the compiler checks to make sure that the contract is
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followed: Everything promised in the specification must be delivered in the package
body, and client programs must use the package resources correctly, for example, by
calling procedures only with the correct parameters.

Ada provides private types. The private-type capability enables us to write a pack
age that provides a new type to client programs, in such a way that the client program
cannot accidentally misuse values of the type by referencing information that is most
properly kept private—that is, restricted for the internal use of the package body
only.

Ada provides operator overloading. This allows us to write new arithmetic and
comparison operators for new types and to use them just as we use the predefined
operators.

Ada provides user-defined exceptions. This enables the writer of a package to
provide exceptions to client programs, in order to signal to a client when it has
done something inappropriate with the package. The writer of the client program
can write exception handlers for user-defined exceptions that work exactly the
same way as the handlers we write for the predefined exceptions, such as
Constraint_Error.

Ada provides attributes such as First and Last. Attributes make it possible to
write subprograms that manipulate data structures without knowing all their
details. This is especially useful in the case of arrays, in which a subprogram that
manipulates an array parameter can be written without knowing the array bounds:
It need only inquire about the array bounds by asking for the First and Last
attributes.

Finally, Ada provides generic definition. Generic definition allows us to write sub
programs and packages that are so general that they do not even have to know all
the details of the types they manipulate; these types can be passed to the generic
unit as parameters when the generic unit is instantiated. We have seen generic
instantiation so far only with respect to the Text_IO libraries. Chapter 5 will
introduce more information about generics and show you how to write generic
units of your own.

1.9 OBJECT-ORIENTED PROGRAMMING

The term object seems to appear everywhere in current computer technology. Reading
the literature, from textbooks to scholarly journals to trade magazines, one gets the
impression that an "object-oriented" this-or-that seems to be the only acceptable kind
of this-or-that. The pervasiveness of this terminology makes it essential that we try to
put it in perspective.

To a certain extent, the term object-oriented is a marketing or advertising term: If
one's product is object-oriented, it is likely to sell better than if it is not. However, we
cannot dismiss the term as simply salesmanship. Object-oriented does have some tech
nical meaning, even if its importance is sometimes exaggerated by advertising.
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Object-oriented design (OOD) was mentioned in Section 1.3 as the development of
software starting with consideration of its nouns or objects, rather than with its verbs or
functions. This is a design methodology, and an object-oriented design can be imple
mented, as can all software designs, using any number of different coding techniques
and languages. This book uses GOD as its general approach, although we purposely
keep the approach somewhat informal.

Object-oriented programming {OOP) is a programming methodology, used for
implementing object-oriented designs using a number of language features. These
are:

• Encapsulation, provided very well by Ada's packages and especially by private
types and introduced here starting in Chapter 2.

• Genericity, provided by Ada's generics capability and introduced in Chapter 5.

• Inheritance, through which a new type takes on some or all of the properties of an
existing one. This is provided by Ada's derived types and is extended considerably
in tagged types, which are introduced in Chapter 6.

• Polymorphism, partially supported by Ada's procedure and function name overload
ing, and extended significantly through the concept of dynamic dispatching, which
is introduced in Chapter 9.

An object-oriented language (OOL) is one that possesses these features.
In current OOP terminology, an object has two important characteristics:

1. It has state—that is, it has a value that may change over time, and

2. it has behavior—that is, it has a set of operations that act on it, and these opera
tions are the only ones that can change its state (value).

In working with this book, you will be using OOP concepts from the start. You are
familiar with Ada variables; object is in many ways just a more modem name for vari
able. As you know, each variable has a type—either a predefined type or a program
mer-defined one—and can take on values only from that type's set of values. An Ada
variable, therefore, has stale.

Each type also has a set of operations associated with it. The predefined types, such
as Integer or Ada. Calendar. Time, all have predefined operations, and only
the given operations are valid for values of the given type. Throughout the book, we
emphasize Ada compilers' concem for the validity of operations; they give compilation
errors where possible and compile runtime checks into your program where necessary.
An Ada variable therefore has behavior.

Further, you will be using Ada packages throughout, starting with the input/output
packages and other predefined packages such as Ada.Calendar and
Ada. Numerics. If you've studied Ada previously, you've used other packages and
have perhaps even written one or two yourself. Having reached this point, you are quite
accustomed to encapsulation.
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Section 1.8 explored the idea of writing new types and sets of operations and imple
menting these in ADT packages. Most of the ADTs in this book define new types as
private record types; private types allow us to control precisely which predefined and
programmer-defined operations are valid.

Finally, you will be writing your own generics beginning with Chapter 5 and study
ing inheritance and polymorphism beginning with Chapter 6. By then, you will have
been introduced to most of what you need to do OOP.

Some writers use the term object-based programming to describe programming
that uses "only" encapsulation and genericity but not inheritance and polymorphism.
These writers believe that inheritance and polymorphism are of paramount importance,
and that any program that doesn't take advantage of these two concepts is simply not
object-oriented. By this definition, Ada 83 is an object-based language and Ada 95 is an
object-oriented one.

We think this distinction is somewhat artificial; encapsulation and genericity are
just as important as inheritance and polymorphism in developing good object-oriented
designs. By the time you approach the end of this text, you will have been introduced
to all these concepts in what we hope is a balanced way, and you'll be equipped to judge
them for yourself.

1.10 A PREDEFINED ADT: THE ada.CALENDAR

PACKAGE

Before you learn to write ADTs, it is helpfiil to study an existing one in detail. Ada pro
vides a predefined package Ada. Calendar, which serves as an excellent example of
a well-thought-out ADT. Ada.Calendar is always provided with an Ada compiler
(indeed, it must be provided) and our own ADTs will often be written in the style of
Ada,Calendar. Systematic study of Ada.Calendar will teach you much about
the design of ADTs and prepare you to start writing your own.

Resources Provided by Ada.calendar

Package Ada. Calendar uses a type Duration, which is actually defined in pack
age Standard. Duration is a measure of elapsed time: One duration unit is exactly
equal to one elapsed second. Note that this is not the same as the time of day. Time of
day, often called "wall clock time" in computing applications, gives a particular instant
of time: 12:05 p.m. on January 25, 1980, for example. Duration measures the passage
of time: Two minutes, or 120 seconds, elapse between 12:05 p.m. and 12:07 p.m. on the
same day. Time of day is one of the resources provided by Ada .Calendar, in the
form of a type Time.

The purpose of Ada. Calendar is to provide a useful number of operations on
time-of-day values. Figure 1.9 shows the entire specification of package
Ada.Calendar, which we have copied straight from the Ada standard, making
changes only in the formatting and comments in the specification.
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PACKAGE Ada.Calendar IS

— standard Ada package, must be supplied with compilers
— provides useful services for dates and times

— type definitions

TYPE Time IS PRIVATE;

SUBTYPE Year_Number IS Integer RANGE 1901..2099;
SUBTYPE Month_N\imber IS Integer RANGE 1..12;
SUBTYPE Day_Niimber IS Integer RANGE 1..31;
SUBTYPE Day_Duration IS Duration RANGE 0.0..86_400;
— Duration is a predefined (standard) fixed-point type;
— Day_Duration range is the number of seconds in 24 hours

— constructor operation

— constructs a Time value from its components; note that the
— default for Seconds is 0.0, so if Seconds value isn't given,
— the time is assumed to be at midnight

FUNCTION Time_Of (Year

Month

Day

Seconds

— selector operations

FUNCTION Year (Date

FUNCTION Month (Date

FUNCTION Day (Date
FUNCTION Seconds (Date

Year_Number;

Month_Number;

Day_Number;

Day_Duration:=0.0) RETURN Time;

Time) RETURN Year_Nuinber;
Time) RETURN Month_Niiitiber;
Time) RETURN Day_Number;
Time) RETURN Day_Duration;

— splits a Time value into its component parts

PROCEDURE Split (Date : IN Time;
Year : OUT Year_Nvunber;

Month : OUT Month_Number;
Day : OUT Day_Number;

Seconds : OUT Day_Duration);

— read the computer's clock to get the current time of day

FUNCTION Clock RETURN Time;

— arithmetic and comparison operations

— note that only the "sensible" operations are defined.

-- this is possible because Time is a private type with no
— predefined operations except ;= eind =

FUNCTION "<" (Left, Right ; Time)

FUNCTION "<=" (Left, Right : Time)
FUNCTION ">" (Left, Right : Time)
FUNCTION ">=" (Left, Right : Time)

FUNCTION "+"

FUNCTION "+"

FUNCTION

FUNCTION

(Left : Time; Right
(Left : Duration; Right
(Left : Time; Right
(Left : Time; Right

RETURN Boolean;

RETURN Boolean;

RETURN Boolean;

RETURN Boolean;

: Duration) RETURN Time;
: Time) RETURN Time;
;  Duration) RETURN Time;
;  Time) RETURN Duration;

— exported exceptions

— Time_Error is raised by Time_Of if its actual parameters
— don't form a proper date, and also by "+• and if they
— can't return a date whose year number is in range,
— or if can't return a value that is in the
— range of the type Duration.

Time_Error : EXCEPTION;
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PRIVATE

-- implementation-dependent (the details depend on the computer's
— internal clock structure, and are not important because Calendar

— provides all the operations we need)

END Ada.Calendar;

Figure 1.9 Full Specification of Package Ada.Calendar

The first line of code in Ada. Calendar is a partial type definition;

TYPE Time IS PRIVATE;

The definition is completed at the bottom of the figure, below the word PRIVATE. Ada
provides certain rules for the use of private types. First, variables of the type may be
declared; for example,

MyBirthDay : Ada.Calendar.Time,•
LastWeek : Ada.Calendar.Time;

are permissible declarations. Second, one variable of a private type may be assigned the
value of another variable of the same type, and two variables of a private type may be
compared for equality or inequality. For example,

LastWeek := MyBirthday;
IF LastWeek /= MyBirthday THEN...

are both valid operations. No other operations are predefined. Indeed, one of the pur
poses of private types is to allow the writer of a package to define exactly those opera
tions he or she deems appropriate.

Following the definition of Time are four subtype declarations. Three of these give
the acceptable ranges for year, month, and day values; the fourth specifies the number
of duration units, or seconds, in a 24-hour day: 86,400. The Ada standard specifies that
any time value from midnight on January 1, 1901, to midnight on December 31,2099,
must be treated as a unique valid value by Ada. Calendar.

Time is treated as a private type for two reasons. First, the internal representation
of a time value is dependent on the form used by the hardware clock for time values.
Second, not all operations make sense for time values. If Time were treated as simply
some sort of integer value, for example, we could multiply two times together; how
ever, multiplying 3 p.m. by 4 p.m. is meaningless! Making Time a private type allowed
the designers of Ada to control precisely the set of sensible operations on Time values.
What are these operations?

To use time values well, the client program must be able to create time values—for
example, by supplying a month, a day, and a year. Ada. Calendar provides a function
Time_Of for this purpose. An operation such as Time_Of, which constructs a value of
the new type from its component parts, is called a constructor operation. There are also
five je/ec/or operations. Year, Month, Day, Seconds, and Split, which allow the

client program to select various components of a time value in a useful form (integer and
duration values). The first four of these operations are functions that retum individual
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components; Split is a procedure that produces all four components in a single call.
The next operation is Clock, which retums the current time of day as a Time value.

We know from the discussion above that each time value is unique; also, time val
ues are monotonically increasing', that is, as time progresses, each new value is greater
than the preceding one. This conforms to our "real-world" view of time and to the con
cepts of "earlier" and "later." Because time is monotonically increasing—totally
ordered is another mathematical term with similar meaning—we can confidently com
pare two values. Just as for any private type, Ada already provides equality and inequal
ity operators, so Ada.Calendar provides the others; <, <=, >, and >=. Notice that
these are specified as functions; they can be used in function form, for example

IF Ada.Calendar (RightNow, AnotherTime) THEN

or as normal infix operators, for example

IF RightNow <= AnotherTime THEN

(The latter form is permitted only if a USE Ada. Calendar appears at the top of the
program.)

To perform computations with time values, Ada provides some arithmetic ope
rations. Only those operations that make sense are provided by the package, as follows;

FUNCTION *+" (Left : Time; Right : Duration) RETURN Time;
FUNCTION "+" (Left : Duration; Right : Time) RETURN Time;
FUNCTION (Left : Time; Right ; Duration) RETURN Time;
FUNCTION (Left : Time; Right : Time) RETURN Duration;

For example, adding two times together makes no sense (what does it mean to add
3 P.M. to 4 P.M.?); it is therefore not possible to do so with Ada. Calendar operations.
It does make sense to add a duration to a time; for example, 3 p.m. plus 1 hour is 4 p.m.
The two " +" operations are provided to ensure that the time value can appear on the
right or on the left. Finally, the subtraction operations are sensible ones; Subtracting 3
P.M. from 4 P.M. gives 1 elapsed hour; subtracting 2 hours from 7 a.m. gives 5 a.m.
These operations serve as excellent examples of the usefulness of private types in
ensuring that a client cannot perform meaningless operations or operations that do not
make physical sense.

The final line of code in the specification defines an exception Time_Error. This
exception is raised whenever a Time_Of call would return an invalid time value—^for
example, if 2 (February), 30, and 1990 were supplied as parameters, because February
30 does not exist. Ada.Calendar also understands leap years, so Time_Error
would be raised if 2, 29, and 1995 were supplied to Time_Of, because 1995 is not a
leap year. Time_Error is also raised if the subtraction operator is given two times
that are so far apart that the computer cannot represent the number of elapsed seconds
that separate them.

1.11 APPLICATION: TIME AROUND THE WORLD

As an example of the use of Ada. Calendar, consider the problem of determining the
time in other time zones around the world.
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Problem Specification

Write a program to allow the user to enter the abbreviation of one of a set of cities and
display the current time in that city.

Analysis

Given a table of city codes and the number of time zones separating each from the
user's home time zone, we can use Ada. Calendar to find the current local time, then

add or subtract the appropriate number of seconds to find the time elsewhere.

Data Requirements

Problem inputs

city : Cities

Design

Algorithm

1. Read the value of Ci ty from the keyboard.

2. Find the current local time.

3. Find the time in City by using the time zone offset table.

4. Display the local time and the time in City.

Test Plan

Since you can easily look up the number of hours of offset, test the program for the dif
ferent allowed cities and be certain that the time is computed properly. Also test, as
usual, for invalid input—that is, a token that is not a city code.

Implementation

Program 1.2 gives the program for World_Tiine. Type Cities gives a list of city
names or abbreviations; a procedure ReadCi ty reads a city name robustly, refusing to
permit an invalid city to be entered; and a procedure DisplayTime is used to display
a time value in a useful form.

PROGRAM 1.2 Time Around the World

WITH Ada.Text_IO;

WITH Ada.Integer_Text_IO;
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WITH Ada.Calendar;

PROCEDURE world Time IS

Finds the current time in any of several time zones

Author: Michael B. Feldman, The George Washington University
Last Modified: July 1995

TYPE Cities IS (Paris, London, Rio, Caracas, DC,
Chicago, Denver, Seattle, Honolulu);

PACKAGE City_IO IS NEW Ada.Text_IO.Enumeration_IO(Cities);

TYPE TimeDiffs IS ARRAY (Cities) OF Integer;

— table of time differences from DC; modify this table if you are
— not located in the Eastern U.S. time zone
Offsets : CONSTANT TimeDiffs :=

(Paris => +6, London => +5, Rio => +2, Caracas => -1, DC => 0,
Chicago => -1, Denver => -2, Seattle => -3, Honolulu => -5);

TimeHere : Ada.Calendar.Time;
TimeThere : Ada.Calendar.Time;
There : Cities;

FUNCTION AdjustTime (T: Ada.Calendar.Time; City: Cities;
OffsetTcible: TimeDiffs)

RETURN Ada.Calendar.Time IS

— given a time value, finds the corresponding time
-- in a given time zone

BEGIN — AdjustTime

RETURN Ada.Calendar."+"(T, Duration(OffsetTable(City) * 3600));

END AdjustTime;

PROCEDURE ReadCity(City : OUT Cities) IS

— reads a city ncune from the terminal, robustly

BEGIN — ReadCity

LOOP

BEGIN — exception handler block
Ada.Text_IO.Put_Line
(Item => "Please enter one of the following:");

Ada.Text_IO.Put_Line
(Item => "Paris, London, Rio, Caracas, DC,");

Ada.Text_IO.Put
(Item => "Chicago, Denver, Seattle, Honolulu >");

City_IO.Get(Item => City);
EXIT; — good input data

EXCEPTION — bad input data
WHEN Ada.Text_IO.Data_Error =>
Ada.Text_IO.Skip_Line;
Ada.Text_IO.Put
(Item => "Invalid city name; please try again.");

Ada.Text_IO.New_Line;
END; -- exception handler block

END LOOP;

END ReadCity;
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PROCEDURE DisplayTime(T: Ada.Calendar.Time) IS

— displays a Ada.Calendar.Time value in hh:mm:ss form

TYPE Daylnteger IS RANGE 0. .86400;

SecsPastMidnight
MinsPastMidnight
Sees

Mins

Hrs

BEGIN — DisplayTime

SecsPastMidnight
Mins Pas tMidnight
Sees

Mins

Hrs

Daylnteger; — could be larger thcin 32767
Natural;

Natural;

Natural;

Natural;

= Daylnteger(Ada.Calendar.Seconds(T));
= NaturaKSecsPastMidnight/60) ;
= NaturaKSecsPastMidnight REM 60);

= MinsPastMidnight REM 60;
= MinsPastMidnight / 60;

Ada.Integer_Text_IO.Put (Item => Hrs, Width => 1);
Ada.Text_IO.Put (Item => ':');

IF Mins < 10 THEN

Ada.Text_IO.Put (Item => '0');
END IF;

Ada.Integer_Text_IO.Put (Item => Mins, Width => 1);
Ada.Text_IO.Put (Item => ':');

IF Sees <10 THEN

Ada.Text_IO.Put (Item => '0');
END IF;

Ada.Integer_Text_IO.Put (Item => Sees, Width => 1);

END DisplayTime;

BEGIN — World_Time

ReadCity(City => There);
TimeHere := Ada.Calendar.Cloc)c;

TimeThere ; = AdjustTime
(T=>TimeHere, City =>There, OffsetTcible =>Offsets) ;

Ada.Text_IO.Put(Item => "Current local time is");
DisplayTime(T => TimeHere);
Ada.Text_lO.New_Line;
Ada.Text_IO.Put(Item => "Current time in");
City_IO.Put(Item => There, Width => 1);
Ada.Text_IO.Put(Item => "is");
DisplayTime(T => TimeThere);
Ada.Text_IO.New_Line;

END World_Time;

The function Adj us tTime does the work of computing the new time. It contains
a  table of offsets, or numbers of time zones away from local time.
Ada. Calendar."+" is used to add or subtract the appropriate number of seconds:

RETURN Ada.Calendar."+"(T, Duration(Offsets(City) * 3600));

The array Offsets gives the time-zone differences; the number of seconds is
computed by multiplying the number of time zones by 3600 (the number of seconds in
an hour), then converting to type Duration.

It is important to note that on most computers, Ada. Calendar. Clock gives the
current local time, not some universal time value. The array Offsets is initialized to
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the offsets from the authors' home time zone, the Eastern zone; you will have to change
the table values if you are running this program in another zone. Exercise 3 suggests an
approach to solving this problem in a more robust manner.

1.12 A PREDEFINED ADT: STRINGS IN ADA

In this section, we will take a systematic look at the character string, an important data
structure in many applications. Figure 1.10 shows the part of package Standard
describing this type. It is interesting to note that the comparison operators are all
defined for strings, even though a string is just an array of characters. The comparison
is done following lexicographical, or dictionary, order, so that "ABC" is less than
" EC" even though the first string is longer. This agrees with our intuition about the way
strings should be compared.

Ada's predefined type String is a certain kind of array of characters. A variable
of type String is called a string variable, or sometimes just a string. The basic ideas
are as follows:

• A string variable is in fact an array of characters, with a subscript range that must be
a subtype of Positive.

• String variables can be compared and assigned like other Ada variables, but their
lengths must match exactly.

— Predefined string type:

TYPE String IS ARRAY(Positive RANGE <>) OF Character;

PRAGMA Pack{String}; — pack characters into words if possible

~ The predefined operators for this type are as follows:

FUNCTION "="

FUNCTION "/='

FUNCTION "<"

FUNCTION "<='

FUNCTION ">"

FUNCTION ">=•

(Left, Right
(Left, Right
(Left, Right
(Left, Right
(Left, Right
(Left, Right

String) RETURN Boolean;
String) RETURN Boolean;
String) RETURN Boolean;
String) RETURN Boolean;
String) RETURN Boolean;
String) RETURN Boolecin;

— These four operators provide string concatenation

FUNCTION (Left : String; Right
FUNCTION (Left : Character; Right
FUNCTION •&" (Left : String; Right
FUNCTION *&" (Left : Character; Right

String) RETURN String;
String) RETURN String;
Character) RETURN String;
Character) RETURN String;

Figure 1.10 Section of Package standard Describing string
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• It is possible to assign or refer to a part, or slice, of a string.

• Strings can be concatenated, or "pasted together," to form longer ones.

The type String is predefined in the language and is given in Fig. 1.9. The string
operations are sufficiently systematic and powerful that it makes sense to treat the
string facility as though it were a separate ADT. Later in this book, we will present
ADTs for several alternative methods for representing strings of varying length, with
operations even more powerful than the predefined ones.

Declaring a String Variable

The declarations

NameSize : CONSTANT Positive := 11;

FirstName : String(1..NameSize);
LastNeune : String (1. .NameSize) ;

allocate storage for two string variables: FirstName and LastName. String vari
ables FirstName and LastName can store 11 characters each (subscript range
1. .11). In general, a string variable of type String (1. ,N) can be used to store a
string of up to N characters.

Referencing individual Characters in a String

We can manipulate individual characters in a string variable in the same way as we
manipulate individual elements of an array. The program fragment below reads 11 char
acters into string variable FirstName and displays all characters stored in the string.

Ada.Text_IO.Put(Item => "Enter your first name and an initial,");
Ada.Text_I0.Put(Item => " exactly 11 characters > ");

FOR I IN 1.. NameSize LOOP

Ada.Text_IO.Get (Item => FirstName(I));
END LOOP;

Ada.Text_IO.Put (Item => "Hello ");

FOR I IN 1..NameSize LOOP

Text_IO.Put (Item => FirstName(I));
END LOOP;

Ada.Text_IO.Put(Item => '!');

Ada.Text_IO.New_Line;

A sample run of this program segment is shown below.

Enter your first name and an initial, exactly 11 characters > Jonathan B.
Hello Jonathan B.!

Eleven data characters are read into string variable FirstName after the prompt
in the first line is displayed. The string variable FirstName is

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
J o n a t h a n B



44 Abstraction and the Ada Type System

A Character Is Not Compatible with a
One-Character String

String variable OneString, declared below, is a string of length 1.

OneString : String(1..1);
NextCh ; Character;

The assignment statements

OneString(1) := NextCh;
NextCh := OneString(1);

are valid; they store a copy of NextCh in string OneString. However, the assign
ment statements

OneString := NextCh;
NextCh := OneString;

are invalid; they cause a "type compatibility" compilation error. A string that happens
to be only one character long is still of a different type from a character!

Assigning, Comparing, and Displaying Strings

Besides manipulating individual characters in a string variable, we can manipulate the
string as a unit. The assignment statement

LastName := "Appleseed";

appears to store the string value Appleseed in the string variable LastName
declared earlier. This is not true, however: String assignment is correct only if the
lengths of the strings on both sides are exactly the same. Because Appleseed has
only nine letters, the assignment above might cause a warning at compilation time but
would always cause Constraint_Error to be raised at execution time. If we add
two blanks, the assignment will take place as desired:

LastName := "Appleseed ";

The string variable LastName is defined as shown below:

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
A p p l e s e e d # #

(the # characters are used here only to show the locations of the blanks.)
The statements

Ada.Text_IO.Put(Item => LastName);
Ada.Text_I0.Put (Item => ', ');
Ada.Text_I0.Put (Item => FirstName);
Ada.Text_IO.New_Line;

display the output line

Appleseed , Jonathan B.

Note the two blanks following the last name!
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As with other array types, we can copy the contents of one string variable to
another of the same length, and we can compare two strings of the same length. The
statement

FirstName := LastName;

copies the string value stored in LastName to FirstName; the Boolean condition

FirstName = LastName

is True after the assignment, but would have been False before.

Reading Strings

Ada provides several Get procedures in Ada. Text_IO for entering a string value.
The statement

Ada.Text_IO.Get(FirstName);

reads exactly 11 characters (including blanks, punctuation, and so on) into the string
variable FirstName. The data entry operation is not terminated by pressing RETURN;
if only five characters are entered before RETURN is pressed, the computer simply
waits for the additional six characters! This is a common error made by many Ada
beginners, who think their program is "stuck" when nothing seems to happen after
RETURN is pressed. In fact, the program is doing just what it was told: Read exactly 11
characters. It is not possible to read more than 11 characters into FirstName; the
additional characters just stay in the file, waiting for the next Get call.

This is an unsatisfying way to read strings, because it provides no way to read a
string shorter than the maximum length of the string variable. A better way is to use the
Get_Line procedure in Ada. Text_IO. Given a variable

NameLength : Natural;

the statement

Ada.Text_IO.Get_Line (Item => LastNcune, Last => NameLength);

tries to read 11 characters as before, but if RETURN is pressed before 11 characters are
read, reading stops. NameLength is used as an OUT parameter corresponding to
Get_Line's formal parameter Last; after the Get operation, NameLength con
tains the actual number of characters read. If fewer characters are read than the string
can accommodate, the remaining characters in the string are undefined.

Given the declarations

FirstNcimeLength : Natural;

LastNameLength : Natural;

the statements

Ada.Text_IO.Put(Item => "Enter your first name followed by CR > ");
Ada.Text_IO.Get_Line(Item => FirstName, Last => FirstNameLength);
Ada.Text_I0.Put(Item => "Enter your last name followed by CR > ");
Ada.Text_IO.Get_Line(Item => LastName, Last => LastNameLength);
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can be used to enter string values into the string variables FirstName and
LastName. Up to 11 characters can be stored in FirstName and LastName. If
the data characters Johnny are entered after the first prompt and the data charac
ters Appleseed are entered after the second prompt, string FirstName is
defined as

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
J o h n n y ? ? ? ? ?

and string LastName is defined as

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
A p p l e s e e d ? ?

The variables FirstNameLength and LastNameLength will contain 6 and 9,
respectively. The statement

Ada.Text_IO.Put(Item => FirstName);

will display Johnny, followed by five characters of arbitrary ("garbage") value. The
last five characters are unpredictable, because no values were placed in them by the
Get_Line operation.

String Slicing

The flexibility of string handling in Ada is enhanced by string slicing. This is the abil
ity to store into, or extract, a slice, or section, of a string variable just by specifying the
bounds of the desired section.

Given the string variables FirstName and LastName as above, the slices

FirstName(1..4)

LastName (5..11)

refer to the first through fourth characters of FirstName and the fifth through
eleventh characters of LastName, respectively. The statement

Ada.Text_I0.Put(Item => FirstName(1..FirstNameLength));

displays the string Johnny with no extra blanks. Given declarations

WholeNameLength : Natural;

WholeName : String(1..24);

the statements

WholeNameLength := FirstNameLength + LastNcuneLength + 2;
WholeName(1..LastNameLength) := LastName(1..LastNameLength);
WholeName(LastNameLength+1..LastNameLength+2) := *, ";
WholeName(LastNameLength+3..WholeNameLength) :=
FirstName (1. . FirstNcuneLength) ;

Ada.Text_I0.Put(Item => WholeName(1..WholeNameLength));

will store in WholeNaime and will display

Appleseed, Johnny
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String Concatenation

One more string operation should be considered here. The string concatenation opera
tor &, applied to two strings SI and 82, concatenates, or "pastes together," its two argu
ments. The statement

S3 := SI & S2;

stores in S3 the concatenation of SI and S2. For the assignment to be valid, the length
of S3 still must match the sum of the lengths of SI and S2; if it does not,
Constraint_Error will be raised, as usual. Continuing with the name example
above, WholeName can be created more simply using concatenation:

WholeNameLength := FirstNameLength + LastNameLength 2;
WholeName(1..WholeNameLength) :=
LastNamed. .LastNameLength) & *, " & FirstNeuned. .FirstNameLength) ;

The result of a concatenation can also be passed directly as a parameter, for exam
ple to Ada. Text_IO. Put:

Ada.Text_I0.Put(Item =>

LastName(1..LastNameLength) & &

FirstNcune (1. .FirstNameLength)) ;

String Attributes

Like most types in Ada, a string is provided with a set of attributes. These will be used
quite a bit in this book, beginning with the next chapter.

Given a string S, the important attribute functions for S are

• S' First, which returns the value of the first subscript of S

• S' Last, which returns the value of the last subscript of S

• S' Length, which returns the length of S—that is, the number of characters in S

• S' Range, which returns the range S' First. . S ' Last

It is important to keep in mind that these attributes refer more to the subscripts than
to the actual values of the characters in the string. For example, if we wanted to refer to
the value of the first character in S, we would write S (S ' First), rather than

S' First, which refers to the value of the first subscript.
Now suppose we were interested in the value of the second character. Writing

S (2) would not always be correct. Specifically, S might be only a formal parameter to
a subprogram. Suppose we passed to this subprogram an actual parameter that was a
slice T (3 . . 5) of some other string T. In this case there would be no S (2 );

Constraint_Error would be raised if we tried to refer to it.

The solution to this problem lies in remembering the Succ and Fred attributes.
Assuming that the string contains at least two characters, we can get the second
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character by writing S (Positive' Succ (S' First) ); under the same
assumption, we can always get the next-to-iast character by writing
S(Positive'Pred(S'Last)).

SUMMARY

In this chapter, you have taken a quick trip through the Ada type system and leamed
about abstraction, data abstraction, and abstract data types, or ADTs. The ADT idea is
a powerful one; it is an important approach to building reusable software components
and is one of the essential topics in this book.

Ada was designed to facilitate constructing ADTs and provides many features for
doing so. Subtypes, new and derived types, attributes, operator overloading, packages,
private types, and exceptions all contribute to our ability to create effective and useful
ADTs. You have seen how Ada's predefined types are given in ADT form by the pack
age Standard, and examined the Ada. Calendar package and Ada's predesigned
support for strings.

Armed with this basic introduction to abstraction and using ADTs, you are ready to
proceed to Chapter 2, in which you will learn how to develop your own ADTs.

EXERCISES

1. Explain the various kinds of operations in an ADT.
2. Write a program that tests the operations in package Calendar. For example, try

to add together two time values. Also investigate what happens when Time_Of is
called with parameters that would lead to an invalid time value (February 30, for
example, or February 29, 1991). Does Calendar behave correctly, as the speci
fication suggests?

3. The World_Time program presented in Section 1.11 has a limitation: The array
of time-zone offsets must be completely redefined if the program user is not in the
Eastern U.S. time zone. In many applications, time-zone offsets are computed with
respect to Greenwich Mean Time, often referred to as GMT or Zulu. This is the
local time in Greenwich, England. Modify World_Tiine so that Zulu is used as
the "zero point" for the offsets. (Encyclopedias and almanacs usually describe the
various official time zones around the world; so do amateur radio guides.) Because
a computer's clock normally reports only local time, your program will need to
find out from the user in which time zone he or she is located before it can compute
the time elsewhere.

4. Another limitation in World_Time is that the various time-zone offsets are given
there as integers. In fact, there are actually time zones that are not an integral num
ber of hours from GMT. When it's midnight in London (GMT), it's 5:30 a.m. in
Delhi, India, 9:30 a.m. in Adelaide, Australia, and 8:30 p.m. in St. Johns,
Newfoundland, Canada. Modify World_Time to accommodate nonintegral time-
zone offsets.



CHAPTER 2

Writing Abstract Data
Types

2.1 ADT Design: Rational Numbers

2.2 Developing a Test Plan

2.3 ADT Design: An ADT for Dollars and Cents

2.4 ADT Design: Calendar Dates

2.5 ADT Design: Simple Screen Handler

2.6 ADT Design: Simple Window Manager

2.7 A Few More Ada 95 Topics

Chapter 1 presented some general background about abstraction, the Ada type system,
and about the general ideas embodied in the abstract data type (ADT) concept. In this
chapter, you will learn to write ADTs and you will see the details of several useful
reusable components: rational numbers or fractions, monetary values, calendar dates,
video screen controls, and simple display "windows." You'll also learn bow to design a
test plan to demonstrate that an ADT works as it should.

2.1 ADT DESIGN: RATIONAL NUMBERS

This section explains bow to specify and implement an abstract data type for doing
arithmetic with fractions or rational numbers. A rational number is a number with a

numerator and a denominator. For example, the rational number ̂  has a numerator of a
and a denominator of b\ the rational number y has a numerator of 2 and a denominator
of 3.

Every integer is also equivalent to a rational number: The integer 4 is equivalent to
the rational j. A rational number cannot have a denominator of 0, but a numerator of
zero is fine. Fractions are useful in certain engineering applications—for example,
where we want to represent the number y exactly and not as the floating-point approxi-
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mation 0.3333 Although programming languages usually have built-in support for
integers and floats, they rarely support rationals directly.

An improper rational is a rational number whose numerator is larger than its
denominator—^for example, y. The term improper is historical; there is nothing wrong
with a rational that's "improper." Also, each rational is algebraically equivalent to
many others. For example,

3  6 9 ■■ ■ 36 ■ ■

A rational whose numerator and denominator have no common divisors is referred
to as reduced, or sometimes in lowest terms. An example of a rational in lowest terms
is j-, the others in the series can all be reduced to y.

Requirements

We require a facility to provide full support for creating and manipulating rationals.
Operations include

• Creating a rational value

• Comparing rational values as is done with other numerical quantities, namely
providing support for =, /=, <, <=, >, and >=

• Doing arithmetic with rationals—namely, providing support for +, *, and /

• Inputting and outputting rational values

Ideally, the user of this facility—a programmer writing other applications requiring
rationals—should perceive little or no difference between working with rationals and
working with floats or integers.

Analysis

Since we are developing a reusable component—a package of facilities for dealing with
rationals—and not an application program designed for a single use, there are no spe
cific initial problem inputs or final problem outputs. We will need to provide input/out
put capabilities for reading rational values from the keyboard or from a disk file, and for
writing rational values to the screen or a file. The main constraint on the design is the
requirement that users—in this case, programmers, not end users—be able to deal with
rationals in a way consistent with their experience in dealing with other numerical
quantities in their programs.
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Design of the Rationals Package

For the basic operations on Rational values, we will construct an abstract data type
package to represent the data structure for a rational number with operators for each of
the tasks listed above. We will represent each rational quantity as a record with numer
ator and denominator fields, and we will make the rational type PRIVATE to prevent
client programs from directly manipulating the fields.

We can use Ada's predefined assignment, equality, and inequality for rationals, but
to do so is meaningful only if we store all rationals in lowest terms. To understand why,
remember that Ada's predefined equality compares two records by determining
whether each field of one record is equal to the corresponding field of the other. If each
comparison yields a true result, the overall equality is true. If our design did not require
rationals to be in lowest terms, the equality check would return incorrect results; for
example, j = f is true in the "real world," but would be false in our system. However,
if I were never actually stored in our system, but is replaced with its reduced equiva
lent, j, this problem cannot arise. We will consider detailed algorithms for reduction,
as well as rational arithmetic, a bit later. First we need a structured specification of the
ADT. The package specification for the abstract data type Rationals appears as
Program 2.1.

Program 2.1 Specification for Rationals Package

PACKAGE Rationals IS

Specification of the abstract data type for representing
and manipulating rational numbers.
All rational quantities in this package are initialized
to 0/1.

Author: Michael B. Feldman, The George Washington University
Last Modified: July 1995

TYPE Rational IS PRIVATE;

ZeroDenominator: EXCEPTION;

FtraCTION "/" (X : Integer; Y : Integer) RETURN Rational;
— constructor:

— Pre : X and Y are defined

— Post: returns a rational number

If Y > 0, returns Reduce(X,Y)

If Y < 0, returns Reduce(-X,-Y)

— Raises: ZeroDenominator if Y = 0

FUNCTION Numer (R : Rational) RETURN Integer;
FUNCTION Denom (R : Rational) RETURN Positive;

— selectors:

— Pre: R is defined

— Post: Numer returns the niimerator of R; Denom returns the

denominator

FUNCTION "<" (R1 : Rational; R2 : Rational) RETURN Boolean;

FUNCTION "<=•■ (R1 : Rational; R2 : Rational) RETURN Boolean;
FUNCTION ">" (R1 : Rational; R2 : Rational) RETURN Boolean;
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FUNCTION ">="(R1 : Rational; R2 ; Rational) RETURN Boolean;
— inquiry operators: comparison of two rational niombers
— Pre : R1 and R2 are defined

— Post: return R1 < R2, R1 > R2, R1 <= R2, and R1 >= R2, respectively

FUNCTION "+"(R: Rational) RETURN Rational;
FUNCTION "-"(R: Rational) RETURN Rational;
FUNCTION -ABS"(R: Rational) RETURN Rational;
-- monadic arithmetic constructors:

— Pre: R is defined

— Post; return R, -R, and ABS R, respectively

FUNCTION "+"(R1 : Rational; R2 : Rational) RETURN Rational;
FUNCTION "-"(Rl : Rational; R2 : Rational) RETURN Rational;
FUNCTION "*"{R1 : Rational; R2 : Rational) RETURN Rational;
FUNCTION "/"(Rl : Rational; R2 : Rational) RETURN Rational;
— dyadic arithmetic constructors:
— Pre : Rl and R2 are defined

— Post: return the rational sum, difference, product, and
quotient of Rl and R2, respectively

PRIVATE

— A record of type Rational consists of a pair of Integer values
— such that the first niomber represents the numerator of a rational
— number and the second number represents the denominator.

TYPE Rational IS RECORD

Numerator : Integer := 0;

Denominator: Positive := 1;

END RECORD;

END Nationals;

Specifying an ADT: A Detailed Look at the Rationale
Specification

The first declaration in Program 2.1 is that of the type being exported to the client pro
gram. The type Rational is declared to be PRIVATE so that client programs are pre
vented from directly referencing the internal details of a variable of type Rational.

The private type deHnition is completed at the bottom of the specification, in the
PRIVATE section. A Rational quantity is a record with an Integer field,
Niamerator, and a Positive field. Denominator. We require the denominator to
be positive so that it can never be zero. Note that both fields of the record are initialized,
so that every object of type Rational automatically has the initial value j. This helps
us to ensure that all Rational operations will be meaningful, by making it more dif
ficult for a client program to pass uninitialized storage, containing unpredictable ran
dom or "garbage" values, to the operators.

Making the type PRIVATE is important because we require all Rational values
to be in lowest terms. If we allowed the client program direct access to the fields of the
record, the client could assign, say, 2 to the numerator field and 4 to the denominator
field. This would be inconsistent with the lowest-terms assumption of all the opera
tions, and would therefore lead to unpredictable and incorrect results. You can see how
PRIVATE types help us ensure the correctness and consistency of our operations.
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Specifying Operations with Preconditions and Postconditions

Returning to the beginning of the specification, the first operator given is a constructor

FUNCTION "/" (X : Integer; Y : Integer) RETURN Rational;
— Pre : X and Y are defined

— Post : constructor: returns a rational number in lowest terms

If Y > 0, returns Reduce(X,Y)

If Y < 0, returns Reduce(-X,-Y)

— Raises: ZeroDenominator if Y = 0

This function takes two Integer arguments X and Y and returns a reduced rational
number equivalent to Here we are taking advantage of the fact that Ada allows us to
return a record as the result of a function. Note that the inputs to " /" can both be neg
ative; the constructor will always return a positive denominator by multiplying numer
ator and demominator by -1 if necessary.

Note the form of the comments following the specification. The line

— Pre: X and Y are defined.

describes the precondition for the function. This is the condition that we require to be
true before the function is called; in this case, we require that the calling program has
assigned definite values to X and Y. The next three comment lines describe the post
condition for the function. We are stating our assumptions about the parameters and
promising that if the preconditions are true just before the function is called, then the
postcondition will be true after the function execution is completed.

Preconditions and postconditions form an informal contract between the opera
tion's designer and its user. The designer promises that the operation execution will
cause the postcondition to be true if the user calls the operation only when the precon
ditions are true. If the operation is called when a precondition is not true—for example,
if X and Y haven't been assigned definite values—^then "all bets are off"; that is, we
cannot be responsible for the outcome.

The contract is informal because Ada provides no automatic way to ensure that the
preconditions are met or to guarantee that the operation's execution in fact makes the
postcondition true. (In this case, Ada gives us no way to ensure that a variable has been
defined.) Explicit preconditions and postconditions are therefore nothing more than
documentation, but this documentation is valuable to the user of the operation. The use
of preconditions and postconditions also aids in verifying the correctness of a program
that calls this operation. In this book, we will generally document our procedures and
functions with preconditions and postconditions.

The final comment line in the constructor specification indicates whether the oper
ation can raise any exceptions, and under what circumstances. In this case, if Y hap
pens to be 0, ZeroDenominator—an exception provided by our package—will be
raised.

Will the exception be raised if the preconditions are not met—that is, if Y is not
defined? We do not know, and cannot know, because even undefined memory contains
some unknown pattem of bits. If the "garbage" value in Y happens to be 0, the excep
tion will be raised; if it happens to be nonzero, the exception will not be raised and the
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result of the operation is unpredictable. In general, we will use preconditions to state
assumptions about the user input that the operation cannot test, and exceptions to indi
cate a violation of an assumption that we can test.

Specifying Operations by Operator Overioading

A client of Rationals can create a rational number by calling " / Given the
declaration

R; Rationals.Rational;

the assignment

R := Rationals."/"(2,-4)

creates a record with -1 in the numerator and 2 in the denominator (remember the low
est-terms postcondition).

The next two operators are selector functions Numer and Denom, which, given a
rational, retum the values stored in its numerator and denominator, respectively. The
next four operators specify the comparison operators " <", " >", " < =", and " > ="; the
monadic or unary operators " + ", and "ABS" follow, and then the dyadic or
binary operators " +", " -", " *", and " / ". All these operators are specified by anal
ogy with the corresponding operators for the predefined integer and float types you saw
in package Standard.

Defining new operations as operator symbols is called operator overloading.
Recall the similar group of operators in Ada .Calendar; it makes no difference
whether the operators are provided by a predefined package such as Ada. Calendar
or by a user-defined package such as Rationals. Operators are really nothing more
than functions with a special syntax, appearing between their parameters instead of pre
ceding them. Because function names can be overloaded, so can operator names.
Operator overloading allows us to write operations that are mathematical in nature
using the familiar mathematical symbols.

It is important to understand that Ada allows us to overload only those operator
symbols already available in the language; we cannot, for example, define a new oper
ator " ?", because " ?" is not already an operator in Ada. Also bear in mind that, for
reasons beyond the scope of this book, it is not possible under most circumstances to
define our own operator " =". It is similarly prohibited (and will cause a compilation
error) to overload " / =", the two membership operators "IN" and "NOT IN", and the
short-circuit logical operators "AND THEN" and "OR ELSE". Note that overloading
"AND" and "OR" is permitted.

Generally, ADTs can be written so that Ada's predefined " =" and " /=" work cor
rectly. This is true of Ada. Calendar and also of Rationals, and will be so in
many other ADT packages we develop in this book.

After the package specification is written and compiled into the Ada program
library, programmers can implement and compile (but not link or execute) client pro
grams that use the abstract data type Rational. The next step is to implement in the
package body all the operations promised by the specification.



2.1 ADT Design: Rational Numbers 55

Detailed Design and implementation of the
Package Body

We first consider the important algorithms of the implementation. We have made an
essential design decision to represent all rationals in reduced, or lowest-terms, form.
We first find the greatest common divisor, or GCD, of the absolute values of the ratio
nal's numerator and denominator, then divide both numerator and denominator by this
value. To find the GCD of two positive integers M and N, we use a classical algorithm
published by the ancient Greek scientist Euclid about 2000 years ago.

Algorithm for GCD

1. Divide M by N and store the remainder in R.

2. WHILE R /= 0 LOOP

Set the value of M to that of N.

Set the value of N to that of R.

Divide M by N and store the remainder in R

END LOOP;

3. The result is in N.

Now we can find the sum and product of rationals. The sum of two rationals X and
Y is the result of reducing

(Numer(X) x Denom(y)) -I- (Denom(X) x Numer(y))

Denom(X) x Denom(y)

to lowest terms. For example,

1  2_(lx3) + (6x2)_15^5
6  3 6x3 18 6

The product of two rationals X and Y is the result of reducing

Numer(X) x Numer(y)

Denom(Ar) x Denom(y)

to lowest terms. Subtraction is like addition, except that the numerator is the difference
instead of the sum of the cross-products; division is like multiplication, except that the
numerator and denominator of the divisor, Y, are interchanged. If you're not sure you
understand this, try some examples by hand.

In comparing two rationals, because the denominators are always positive, we can
simply "cross-multiply" and compare the numerators and denominators. Thus X < Y
is determined by the Boolean expression

(Numer(X) x Denom(Y)) < (Nunier(Y) X Denom(X))
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For example, -^ < j because (1 x 3) < (6 x 2).
The package body is shown as Program 2.2. Let us look at several of the operations

in detail.

The Rationai Constructor "/"

Here is the specification of this constructor operation, taken from the ADT specifica
tion in Program 2.1:

FUNCTION "/" (X : Integer; Y : Integer) RETURN Rational;
— constructor: returns a rational nximber in lowest terms

— Pre : X euid Y are defined

— Post: returns a rational number

If Y > 0, returns Reduce(X,Y)
If Y < 0. returns Reduce(-X,-Y)

— Raises: ZeroDenominator if Y = 0

In implementing this specification, we assume the preconditions and implement the
function so that the postconditions are met. Here is the body of this function, taken from
Program 2.2:

FUNCTION "/" (X : Integer; Y : Integer) RETURN Rational IS

G: Positive;

BEGIN ~ V

IF Y = 0 THEN

RAISE ZeroDenominator;

END IF;

IF X = 0 THEN

RETURN (Numerator => 0, Denominator => 1);
END IF;

G := GCD(ABS X, ABS Y);

IF Y > 0 THEN

RETURN (Numerator => X/G, Denominator => Y/G);
ELSE

RETURN (Numerator => (-X)/G, Denominator => (-Y)/G);
END IF;

END '•/•';

First, if the desired denominator is 0, there is no point in proceeding further; we sim
ply raise the required exception. The function will return immediately, raising the
exception at the point in the client program at which it was called. It is then the client's
responsibility to handle the exception; our package cannot correct invalid input, but can
only report it to the client. Abstract data types generally follow this policy of "garbage
in, exception out." An ADT cannot be held responsible for correcting invalid or mean
ingless input, but should be robust enough that it does not produce invalid or meaning
less output either. For all inputs meeting the preconditions, our result must be
predictable, and raising an exception is a predictable consequence.
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We next consider the other possibilities: A numerator of 0 is a perfectly acceptable
value, so we simply return the rational p a negative denominator causes numerator and
denominator to be multiplied by -1, to satisfy the postcondition that the denominator be
positive.

Other Operations

Many of the other operations of Program 2.2 are written as straightforward implemen
tations of the algorithms given above. Some are left as stubs for you to complete.

Using stubs allows the overall package to be partially tested without requiring that
all operations be fully coded. A stub is simply a "framework" for an operation. All we
require of a stub is that it be legally compilable and executable. Generally this means
that a stub must either return its input unchanged or compute some meaningful part of
its computation. For example, in Program 2.2, the and ">" operations are shown as
stubs. The first operation returns a known rational value as its result; the second always
returns True.

FUNCTION "-"(Rl : Rational; R2 : Rational) RETURN Rational IS

BEGIN — stub

RETURN 1/1;

END

FUNCTION ">" (Rl : Rational; R2 : Rational) RETURN Boolean IS

BEGIN — stub

RETURN True;

END ">";

If stubs are available for the operations, the client programs can be compiled and
executed to test the overall flow of control, with the understanding that stubbed-out

operations will retum incorrect results. When all operations in the package body have
been completed, the client programs can be executed in a meaningful way. Completing
the operations in package Rationals, shown as Program 2.2, is left as an exercise.

Program 2.2 Body of Rationals Package

PACKAGE BODY Rationals IS

— I Body of the abstract data type for representing
— I and manipulating rational numbers.
— I Author: Michael B. Feldman, The George Washington University
—( Last Modified: July 1995

— local fvinction GCD, not provided to clients

FUNCTION GCD(M: Positive; N: Positive) RETURN Positive IS

— finds the greatest common divisor of M and N

-- Pre: M and N are defined

-- Post: returns the GCD of M and N, by Euclid's Algorithm

R  : Natural;

TempM: Positive;
TempN: Pos i t ive;
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BEGIN — CCD

TempM := M;

TempN := N;

R := TempM REM TempN;

WHILE R /= 0 LOOP

TempM := TempN;

TempN := R;

R := TempM REM TempN;

END LOOP;

RETURN TempN;

END CCD;

-- exported operations

FUNCTION '/" (X : Integer; Y : Integer) RETURN Rational IS

G: Positive;

BEGIN — •/"

IF Y = 0 THEN

RAISE ZeroDenominator;

END IF;

IF X = 0 THEN

RETURN (Numerator => 0, Denominator => 1);

END IF;

G := GCD(ABS X, ABS Y);

IF Y > 0 THEN

RETURN (Numerator => X/G, Denominator => Y/G);
ELSE

RETURN (Numerator => (-X)/G, Denominator => (-Y)/G);
END IF;

END "/";

— selectors

FUNCTION Numer (R : Rational) RETURN Integer IS
BEGIN -- Numer

RETURN R.Numerator;

END Numer;

FUNCTION Denom (R : Rational) RETURN Positive IS

BEGIN — Denom

RETURN R.Denominator;
END Denom;

— inquiry operators

FUNCTION "<" (R1 : Rational; R2 : Rational) RETURN Boolean IS

BEGIN

RETURN Numer(Rl) * Denom(R2) < Numer(R2) * Denom(Rl);

END "<";

FUNCTION ">" (Rl : Rational; R2 : Rational) RETURN Boolean IS

BEGIN — stub

RETURN True ;

END ">";

FUNCTION *<=" (Rl : Rational; R2 : Rational) RETURN BoolecUtl IS

BEGIN — stub

RETURN True;

END "<=";
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FUNCTION ">=" (R1 : Rational; R2 : Rational) RETURN Boolean IS

BEGIN — stub

RETURN True;

END ">=";

— monadic arithmetic operators

FUNCTION "+"(R : Rational) RETURN Rational IS

BEGIN — '■ + "
RETURN R;

END "+";

FUNCTION "-MR : Rational) RETURN Rational IS
BEGIN —

RETURN (-Numer(R)) / Denom(R);
END

FUNCTION "ABS"(R : Rational) RETURN Rational IS
BEGIN — "ABS"

RETURN (ABS Numer(R)) / Denom(R);
END "ABS";

-- dyadic arithmetic operators

FUNCTION "+*(R1 : Rational; R2 : Rational) RETURN Rational IS
N: Integer;
D: Positive;

BEGIN -- "+"

N := Numer(Rl) * Denom(R2) + Numer(R2) * Denom(Rl);
D ;= Denom(Rl) * Denom(R2);
RETURN N/D; — compiler will use Rational constructor here!

end "+";

FUNCTION "*"(R1 : Rational; R2 : Rational) RETURN Rational IS
N: Integer;
D: Positive;

BEGIN — "*•
N := N\amer(Rl) * Numer(R2);
D := Denom(Rl) * Denom(R2);
RETURN N/D; — compiler will use Rational constructor here!

end "*";

FUNCTION "-"(Rl : Rational; R2 : Rational) RETURN Rational IS
BEGIN — stub

RETURN 1/1;
END

FUNCTION "/"(Rl : Rational; R2 : Rational) RETURN Rational IS
BEGIN -- stub

RETURN 1/1;
END "/";

END Rationals;

The Child Package Rationals. lO

The Rationals package cannot be used very meaningfully as it stands, because it
provides no way to read or display rational values. We could build input/output opera
tions into the package, but we choose instead to write a separate package for input/out
put. This is analogous to the input/output packages provided by Ada. Text_IO; we
will use this style frequently in this book.
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There is no inherent reason why we could not write a completely separate package
for input/output, which would be structurally just like a client package. However, to indi
cate the close relationship between the rationals package and its associated input/output
package, we construct the latter as an Ada 95 child package} Just as the various standard
libraries are given in Ada 95 as children of Ada, we write the rational input/output pack
age as a child of Rationals and call it Rationals. 10. We will introduce a number
of child packages in this book. Think of a child package as an extension of its parent
package, adding (usually) operations to the parent. Child packages in Ada 95 provide a
way of extending a package without modifying or recompiling the parent.

Programs 2.3 and 2.4 show, respectively, the specification and the body of
Rationals. 10, which you should find easy to understand. We note only that the
Get and Put operations—which read from the keyboard and write to the screen—are
implemented as calls to the more general procedures, which use named files. Note that
because this package is a child of Rationals, it does not have a WITH Rationals
context clause. Rather, the very name of the child—Rationals. 10 in this case—
indicates the relationship.

Program 2.3 Specification for Rationals. lo Child Package

WITH Ada.Text_I0;
PACKAGE Rationals.10 IS

— I Specification of the input/output child package for Rationals
—( Author: Michael B. Feldman, The George Washington University
— I Last Modified: July 1995

PROCEDURE Get (Item : OUT Rational);

PROCEDURE Get (File: IN Ada.Text_IO.File_Type; Item : OUT Rational);
— Pre : File is open
— Post: The first integer number read is the numerator of Item;

the second integer number is the denominator of Item.
A "/" between the two numbers is optional.
The Rational constructor "/" is called

to produce a rational in reduced form.

PROCEDURE Put (Item : IN Rational);

PROCEDURE Put (File: IN Ada.Text_IO.File_Type; Item : IN Rational);
— Pre : Item is defined; File is open
— Post: displays or writes the numerator and denominator of Item.

END Rationals.10;

Program 2.4 Body of Rationals. lo Child Package

WITH Ada.Text_IO;

WITH Ada.Integer_Text_IO;
PACKAGE BODY Rationale.10 IS

Body of the input/output child package for Rationals

Author: Michael B. Feldman, The George Washington University
Last Modified: July 1995

'Child packages are new in Ada 95; they are not available in Ada 83.
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— input procedures

PROCEDURE Get (File: IN Ada.Text_IO.File_Type; Item : OUT Rational) IS

N: Integer;

D: Integer;

Dviirany: Character; — dummy character to hold the "/"

BEGIN -- Get

Ada.Integer_Text_IO.Get(File => File, Item => N);

Ada.Text_IO.Get (File => File, Item => Dummy);
Ada.Integer_Text_IO.Get(File => File, Item => D);
Item := N/D;

END Get;

PROCEDURE Get (Item : OUT Rational) IS

BEGIN -- Get

Get(File => Ada.Text_IO.Standard_Input, Item => Item);

END Get;

— output procedures

PROCEDURE Put (File: IN Ada.Text_IO.File_Type; Item ; IN Rational) IS

BEGIN — Put

Ada.Integer_Text_IO.Put

(File => File, Item => Numerdtern), Width => 1);

Ada.Text_lO.Put(File => File, Item => '/');
Ada.Integer_Text_IO.Put

(File => File, Item => Denom(Item), Width => 1);

END Put;

PROCEDURE Put (Item : IN Rational) IS

BEGIN — Put

Put(File => Ada.Text_IO.Standard^Output, Item => Item);

END Put;

END Rationale.10;

Testing the Rationals Package

Once the package is completed, we can execute client programs that use the abstract
data type for rational arithmetic. Program 2.5 shows a client program
that uses abstract data type Rationals. This program, Test_Rationals_l,
uses the data type Rational and five of its operators. The body of
Test_Rationals_l begins by assigning values to the rational numbers A and B,
then reading data into rational numbers C and D. Next, the sum A+B and the product
C*D are saved in E and F, respectively, and displayed. Finally, the sum A+E*F is dis
played, which shows that the result of one operation can be used as an input to
another.
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Program 2.5 Test of nationals Package

WITH Ada.Text_IO;

WITH Rationals;

WITH Rationals.IO;

PROCEDURE Test_Rationals_l IS

I Very rudimentary test of package Rationals and Rationals.IO
I Author: Michael B. Feldman, The George Washington University
I  Last Modified: July 1995

A: Rationals.Rational;

B: Rationals.Rational;

C: Rationals.Rational;

D: Rationals.Rational;

E: Rationals.Rational;

F: Rationals.Rational;

BEGIN — Test_Rationals_l

A := Rationals."/"(1, 3);

B := Rationals."/"(2, -4);

Ada.Text_IO.Put(Item => "A = ");

Rationals.10.Put(Item => A);
Ada.Text_IO.New_Line ?

Ada.Text_IO.Put(Item => "B = ");

Rationals.IO.Put(Item => B) ;

Ada.Text_IO.New_Line;

— Read in rational numbers C and D.

Ada.Text_IO.Put(Item => 'Enter rational number C > ");
Rationals.10.Get(Item => C);
Ada.Text_IO.Put(Item => "Enter rational number D > ");
Rationals.10.Get(Item => D);
Ada.Text_IO.New_Line;

E  := Rationals."+"(A,B); — form the sum

Ada.Text_IO.Put(Item => "E = A + B is ");
Rationals.10.Put(Item => E);

Ada.Text_IO.New_Line;

F  := Rationals. (C,D); — form the product
Ada.Text_IO.Put(Item => "F = C * D is ");
Rationals.10.Put(Item => F);

Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => "A + E * F is ");

Rationals.10.Put(Item => Rationals."+"(A, Rationals. (E,F)));
Ada.Text_IO.New_Line;

END Test_Rationals_l;

Exception Propagation

Suppose, in response to the prompt to enter C, the user enters 3/0. Let us trace the exe
cution. The client calls Rationals. 10. Get. At what point is the zero denominator
noticed, and what happens? Rationals. ID.Get reads an integer N, then a
"dummy" character to skip past the user's /, then a second integer D. Both integers—
including the zero—are read correctly from the keyboard. The Get procedure then tries
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to form the expression N/D, which calls our rational constructor " /". As we saw above,
the constructor detects the zero denominator and raises the exception
ZeroDenominator. Because the constructor only raises the exception but does not
handle it, the exception is immediately propagated to the calling program, which is
Rationals. 10. Get. This procedure has no exception handler either, so the excep
tion is propagated to its calling program, namely Test_Rationals_l. Because
Test_Rational_l also has no handler, the exception is propagated all the way to
the Ada runtime system, which terminates the program with its own exception report.

Program 2.6 shows a modification of our client program in which a
ZeroDenominator handler is given for the main program block. In this case, enter
ing a zero denominator will cause the program to terminate, but with our own message
instead of the runtime system's message. Exercise 1 calls for changing the program so
that it remains "alive" and gives the user a chance to reenter the input values.

Program 2.6 Test of Rationals Package with use Clause and Exception
Handler

WITH Ada.Text_IO; USE Ada.Text_IO;

WITH Rationals; USE Rationals;

WITH Rationals.10; USE Rationals.10;

PROCEDURE Test_Rationals_2 IS

—[Tests the package Rationals,
— I this time with USE clause and an exception hcindler
— IAuthor: Michael B. Feldman, The George Washington University
—[Last Modified: July 1995

A: Rational;

B: Rational;

C: Rational;

D: Rational;

E: Rationals.Rational;

F: Rationals.Rational;

BEGIN — Test_Rationals_2

A := 1/3;

B := 2/(-4);

Put(Item => "A =

Rationals.10.Put(Item => A);

New_Line;
Put(Item => "B = ");

Rationals.ID.Put(Item => B);

New_Line;

— Read in rational numbers C and D.

Put (Item => "Enter rational nvimber C > ");
Get(Item => C);

Put(Item => "Enter rational number D > ");

Get(Item => D);

New_Line;

E  := A + B; -- form the sum

Put(Item => "E = A + B is ");

Put(Item => E);

New_Line;
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F := C * D; -- form the product
Put{Item => "F = C * D is ");

Put(Item => F);

New_Line;

Put(Item => "A + E * F is ");

Put(Item => A + E * F);

New_Line;

EXCEPTION

WHEN ZeroDenominator =>

Ada.Text_lO.Put(Item =>

"Zero not allowed in denominator; teminating program.")
Ada.Text_IO.New_Line;

END Test_Rationals_2;

Using the use Clause

Program 2.6 also shows the advantage of sometimes using the USE clause, which
allows unqualified references to package capabilities. In Program 2.5, where there is no
USE, the rational addition operation is written

E := Rationals."+"(A,B);

but in TestRational2 it is written

E := A + B;

One of the advantages of Ada's permitting operator symbols such as " +" to be
defined as functions is that they can be used in expressions in infix form, as in the above
line. When the expressions become more complex, this feature makes programs even
more readable. Compare the line

Rational_10.Put(Item => Rationals (A, Rationals."*"(E,F)));

from Program 2.5 with the corresponding line in Program 2.6:

Rational_10.Put(Item => A + E * F);

This practice is, however, possible only if a USE clause appears in the client program.
Otherwise, the operator must not only be qualified (as in Rationals." + but must
also be used as a prefix function call like any other function call.

When reading Program 2.6, note that the USE clause would also have allowed us
to write unqualified references to all the other operations in Rationals, but that
we chose to leave some of the qualified references (for example, the
Rationals. 10. Put statements) as they were. This shows that qualified references
are still permitted, even though a USE appears.

This example contains a mixture of qualified and unqualified references, just to show
the possibilities. This is not good programming style; it is important to be consistent. Most
Ada experts advise that qualified references should be used wherever possible, because
they clarify programs by always indicating the name of the package whose operation is



2.1 ADT Design: Rational Numbers 65

being called. These same experts often advocate never writing a USE clause, because then
qualified references are mandatory. In this book, we use the USE where appropriate—^for
example, to make infix ADT operators possible—^but we also use qualified references in
most cases, even where a USE is present and the qualification is optional.

The USE TYPE Clause

The USE clause enables us to make references to resources provided by a package with
out qualifying those references with the package name. To state it officially, the USE
clause makes the exported resources directly visible. Programs 2.5 and 2.6 illustrated
the difference for the Rational s case; the most important benefit of the USE was to
allow the arithmetic and comparison operators to be written in infix form. Given a USE,
we could write, for P, Q, and R of type Rational,

P := Q + R;

as in everyday arithmetic. Without the USE, we would have to write

P := Rationals."+*(Q.R);

which is not very natural.

On the other hand, many people in industry recommend against using the USE
statement, because in a program that WITHs and USEs many packages, the USEs
make so many types and operations directly visible that the reader can become con
fused. Ada 95 adds the USE TYPE statement as a compromise, so that USE can in
general be avoided without losing the benefit of user-defined operators. Writing, for
example,

USE TYPE Rationals.Rational;

gives direct visibility to the infix operators declared in the package, but to nothing else,
and specifically not to functions and procedures such as Numer and Denom, or excep
tions such as ZeroDenominator. Program 2.7 shows a modification of Program 2.5,
in which USE TYPE appears. Notice that the operators can be now written in infix form,
but the variables must be declared as Rationals .Rational and the function

Numer and exception ZeroDenominator must be written Rationals .Numer
and Rationals. ZeroDenominator, respectively; otherwise, a compilation error
would result.

Advantages of private Types

A client program that uses the ADT Rationals does not need to know the actual
intemal representation of data type Rational (i.e., a record with two fields). The
client can call an operator function of ADT Rationals to perform an operation (e.g.,
rational addition) without having this knowledge. In fact, it is better to hide this infor
mation from the client program to prevent the client from directly manipulating the
individual fields of a rational variable.
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Program 2.7 Test of nationals Package with use type Clause

WITH Ada.Text_IO;

WITH Ada.Integer_Text_IO;

WITH Rationals;

USE TYPE Rationals.Rational; — Ada 95: USEs infix operators only
WITH Rationals.ID;

PROCEDURE Test Rationals 3 IS

Tests the package Rationals,

this time with Ada 95 USE TYPE clause and an exception handler

Author: Michael B. Feldman, The George Washington University
Last Modified: July 1995

-- Note: the Rational infix operators (+, <=, etc.) can be used

— without qpialification, but not the Rational type name itself,
-- or other subprograms like Numer, or the exported exception
-- ZeroDenominator, which must still be qualified.

A: Rationals.Rational

B: Rationals.Rational

C: Rationals.Rational

D: Rationals.Rational

E: Rationals.Rational

BEGIN — Test_Rationals_3

A := 1/3;

B := 2/(-4);

Ada.Text_IO.Put(Item => "A = ");

Rationals.10.Put(Itern => A);

Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => "B = ");

Rationals.10.Put(Item => B);

Ada.Text_IO.New_Line;

— Read in rational numbers C and D.

Ada.Text_IO.Put(Item => "Enter rational number C > ");
Rationals.10.Get(Item => C);

Ada.Text_IO.Put(Item => "Enter rational number D > ");

Rationals.10.Get(Item => D);

Ada.Text_IO.New_Line;

E  := A + B; — form the sum

Ada.Text_IO.Put(Item => "E = A + B is ");

Rationals.10.Put(Item => E);

Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => "A + E * B is ");
Rationals.10.Put(Item => A + E * B);

Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => "B's numerator is ");

Ada.Integer_Text_IO.Put(Item => Rationals.Numer(B), Width => 1)

Ada.Text_IO.New_Line;

EXCEPTION

WHEN Rationals.ZeroDenominator =>

Ada.Text_IO.Put(Item =>

"Zero not allowed in denominator; terminating program.");
Ada.Text_IO.New_Line;

END Test_Rationals_3;
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It is best for a client program not to have direct access to the representation of a
rational quantity for three reasons:

• It is easier to write and read a client program that treats a rational quantity just the
same as a predefined one—that is, without being cluttered with direct reference to
implementation details.

• The client program cannot directly store values in the fields of a rational variable.
For example, storing 4 and 12, respectively, in these fields would violate the pack
age's assumption that all rationals are stored in reduced form.

• If we change the representation—for example, to an array of two elements instead of
a record—the client program does not have to be modified in any way, but simply
recompiled.

A fourth advantage would apply if the type were not so simple but represented
something more sophisticated—say, a database record of some kind. Each record
might contain information "for internal use only," that is, for use only by the data
management program itself, rather than for use by clients. Making the record
PRIVATE ensures that not the entire record structure is made available to the

client, but only the information that the ADT designer chooses to supply via the
ADT operations. This is an important advantage for large, complicated, and secure
applications.

2.2 DEVELOPING A TEST PLAN

The test programs shown in Programs 2.5 through 2.7 are only brief examples of client
programs; they do not really constitute full tests of the ADT. Systematic and thorough
testing, using a well-chosen set of test cases, is an essential part of effective software
development; without a well-crafted set of tests we simply cannot persuade ourselves
or others that our software performs "as advertised." Much of today's complex soft
ware is released to customers with errors in it that simply were not discovered even by
thorough testing, but that fact does not relieve software developers of the obligation to
test as best they can.

At intervals in this book, we will discuss testing strategies. We start here, with a
discussion of how one might develop a test plan for a software component. Ideally,
such a plan should be written before the component is even coded. A test plan really
should be thought of as part of the detailed design, because it can and should be created
based on knowledge of the input and output data requirements, which should be set
down on paper long before coding begins.

The main question you should ask yourself in starting to develop a test plan is,
"Suppose I were going to spend a lot of money to buy this component for use in a crit
ical system. What would I need to know about the component in order to be certain that
the results I get from it are reliably correct? How can I have confidence that I am get
ting my money's worth?"
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In considering the Rationals ADT, we need to answer these questions:

1. Does the constructor in fact produce a correct rational value for any legal values
of numerator and denominator? Is the exception ZeroDenominator raised
when it ought to be raised?

2. Do the comparison operators work correctly?

3. Do the arithmetic operators work correctly?

4. Are the results of the operations composablel That is, can we always use the
rational result of one operation as an input to another rational operation?

Putting this differently, we are testing to make sure that if the preconditions for
each operation hold before we call the operation, then the postconditions hold after the
operation is called.

Let's think about how to test the constructor " /". The preconditions require only that
the numerator and denominator be well-defined integers. The postconditions tell us that
the resulting rational will be in reduced form and that if it is negative, the minus sign will
be in the numerator. Also, a zero denominator should cause the exception to be raised.

Choosing tests completely at random will not necessarily test all these conditions.
Table 1.1 is a table of test cases that will do so. In each case we indicate what the test
values are, why we chose that particular test, and what we expect the result to be.

Table 1.2 shows some test cases for the addition operation. We need not use large
numbers to test addition; we need only test the different combinations of positive, neg
ative, and zero rationals.

Table 1.1 Test Cases for Rational Constructor Operation

Test Case No. Values Condition Expected Result

1 1/2 Positive/Positive 1/2

2 (-l)/2 Negative/Positive -1/2

3 l/(-2) Positive/Negative -1/2

4 (-l)/(-2) Negative/Negative 1/2

5 1/0 2^roDenominator Exception raised
6 imo Reduction 12/5

7 123/125 Reduction 123/125

Table 1.2 Test Cases for Rational Addition Operation

Test Case No. Values Condition Expected Result

1 2/3 + 3/2 Positive + Positive 13/6

2 2/3+ (-3/2) Positive + Negative -5/6

3 (-2/3)+ 3/2 Negative + Positive 5/6

4 (-2/3)+ (-3/2) Negative + Negative -13/6

5 0/1+3/2 Zero + Nonzero 3/2

6 3/2 + 0/2 Reduction 3/2
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Exercise 2 requires you to complete the test plan for the rational operators. This might
seem like a large number of test cases, but there are many operators in this package.

In summary, a test plan should be carefully designed, with just enough well-chosen
test cases to make sure the operations behave correctly. It is a good idea to choose values
such that, where possible, the expected result is either obvious or easily hand-calculated.

2.3 ADT DESIGN: AN ADT FOR DOLLARS AND

CENTS

In this section, we develop an ADT for monetary quantities, which we will call
Currency. What is important about this ADT is that in writing operations for
Currency values, we discover that not all operations make sense. An advantage of
the ADT approach is that we can control the set of operations to allow only meaningful
ones to be performed.

Requirements

We require a way to represent monetary values that will ensure that calculations
with these quantities make sense and are exact. Only sensible operations should be
allowed. It is meaningful to compare, add, subtract, and divide monetary quantities,
but not to multiply them: $4.00/$2.00 is a dimensionless ratio 2.0, but $2.00 x
$3.00 has no meaning. On the other hand, it is certainly sensible to multiply a cur
rency value by a "normal" dimensionless quantity—for example, to find 25% of
$150.00.

To understand the exact-result requirement, you must realize that not every frac
tional decimal value can be represented exactly as a binary floating-point quantity, so
that sometimes operations such as addition and subtraction cause the result to be
rounded off. Although this approximation to the real numbers is often acceptable, it is
unacceptable in monetary calculations: You would not be happy if the bank approxi
mated your account balance.

Analysis

As was the case with rationals, we are asked to construct a software component pro
viding a type and a set of operations. There are no specific problem inputs and outputs,
but we will need to provide input and output operations so that our user—^again, another
programmer—can write client programs that read and display currency values.

To ensure exact operations, we cannot simply use floating-point values. Because
integer arithmetic is exact, we will represent currency as a pair of two nonnegative inte
ger values. Dollars and Cents, and a Boolean value to indicate whether the cur
rency value is positive or not. We will then be able to write an ADT that provides exact
operations.
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Design: the Specification for Currency

Program 2.8 shows the specification for this ADT package. The type Quantity is
declared to be PRIVATE so that we can control all operations on values of this type.
Note that we are also providing a subtype CentsType, which has range 0..99.

Program 2.8 Specification for Currency Package

PACKAGE Currency IS

Specification of the abstract data type for representing
and manipulating Currency numbers.
All values of type Currency.Quantity are initialized to 0.0.

Author: Michael B, Feldman, The George Washington University
Last Modified: July 1995

SUBTYPE CentsType IS Integer RANGE 0..99;
TYPE Quantity IS PRIVATE;

— Operations

FUNCTION MakeCurrency (F : Float) RETURN Quantity;
— constructor:

— Pre : F is defined

— Post: returns a Currency Quantity

FUNCTION MakeFloat (Q : Quantity) RETURN Float;
— constructor:

— Pre: Q is defined
-- Post: returns the value of Q in Float form

FUNCTION Dollars (Q : Quantity) RETURN Natural;
FUNCTION Cents (Q : Quantity) RETURN CentsType;
FUNCTION IsPositive(Q : Qucintity) RETURN Boolean;
— selectors:

— Pre: Q is defined

— Post: Dollars returns the Dollars part of Q; Cents the Cents part

FUNCTION "<" (Q1 : Quantity; Q2 : Quantity) RETURN Boolean;
FUNCTION ">" (Q1 : Quantity; Q2 : Quantity) RETURN Boolean;
FUNCTION "<=*(Q1 : Quantity; Q2 : Quantity) RETURN Boolean;
FUNCTION ">="(Q1 : Quantity; Q2 : Quantity) RETURN Boolean;
— inquiry operators:
— Pre : Q1 eind Q2 are defined

— Post: return Q1 < Q2, Q1 > Q2, Q1 <= Q2, and Q1 >= Q2, respectively

FUNCTION "+" (Q : Quantity) RETURN Quantity;
FUNCTION (Q : Quantity) RETURN Quantity;
FUNCTION "ABS"(Q : Quantity) RETURN Quantity;
— monadic arithmetic constructors:

— Pre: Q is defined

— Post: return Q, -Q, ABS Q respectively

FUNCTION "+" (Q1 : Quantity; Q2 : Quantity) RETURN Quantity;
FUNCTION (Q1 : Quantity; Q2 : Quantity) RETURN Quantity;
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FUNCTION (F : Float; Q : Quantity) RETURN Quantity;

FUNCTION (Q : Quantity; F : Float ) RETURN Quantity;
FUNCTION "/" (Q1 : Quantity; Q2 ; Quantity) RETURN Float;
FUNCTION "/" (Q : Quantity; F : Float ) RETURN Quantity;
— dyadic arithmetic constructors;
— Pre : Q1 and Q2 are defined
— Post: these are the sensible arithmetic operators on Quantity.

Note that multiplying two monetary values is not sensible.

PRIVATE

-- A record of type Quantity consists of a pair of Natural values
— such that the first number represents the Dollars part
— and the second nxamber represents the Cents part.
— The sign of a Quantity value is indicated by a Boolean field
-- called Positive.

TYPE Quantity IS RECORD
Positive: Boolean := True;

Dollars : Natural := 0;

Cents : CentsType := 0;
END RECORD; — Quantity

END Currency;

Looking at the operations on the Currency type, we see first that operators are
provided to produce a Currency quantity from its Dollars and Cents compo
nents, and to convert in both directions between our Currency type and Float
values. The next group of operations are selectors to return the Dollars and
Cents parts, and an inquiry operator to determine whether or not a Currency
value is positive.

The next four operators are the usual comparison operations we saw in
Ada.Calendar and Rationale. Note that we can use predefined equality/
inequality with no problem, because two Currency values are equal if and only if
their Dollars, Cents, and signs are respectively equal. The comparison operators
are followed by the three monadic arithmetic operators we saw in nationals. Their
meanings should be obvious.

The final six operators are interesting ones. Note that addition and subtraction are
defined for Currency values, as one would expect. But multiplication is defined only
for a Currency value and a Float value, not for two Currency values. This is
because the product of two Currency values is meaningless, but finding, for example,
0.25 (which might represent 25%) of a Currency value is indeed meaningful. The two
multiplication operations allow the mixed operands to be presented in either order.
Similarly, the division operations are meaningful ones: Dividing one Currency value
by another gives a normal Float; dividing a Currency value by a Float gives a
Currency value.

The last part of the specification is, as usual, the PRIVATE part, in which the
Currency type is defined in full. Note that it is just a record with three fields, and that
all three fields are initialized as before.
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Detailed Design and Implementation of the Body of the
Currency ADT

As we did in the nationals case, we now look at the important algorithms in
Currency calculations. We are allowing both positive and negative values, and rep
resenting a Currency value as a pair of integers. Given a Currency quantity Q,
denote its Dollars and Cents parts by Q.Dollars and Q.Cents respectively;
we carry the sign separately as a flag Q.Positive. First let us see how to convert a
Float value to a Currency value:

Algorithm for Converting a Float f to a Currency Quantity q:

1. Q.Dollars is the integer part of ABS (F); ABS means absolute value, as
usual;

2. Q.Cents is 100X(ABS (F) - Q.Dollars);

3. Q. Positive is True if and only if F >= 0.0.

Note that the Cents part of a Currency value is calculated as the fractional part
of the Float value, multiplied by 1(X).

Now let us look at key algorithms for adding and subtracting two positive
Currency values:

To add two positive Currency values Qi and q2 to produce Result:

1. Set TempCents to the sum of Ql. Cents and Q2 . Cents,

2. IF TempCents > 99, THEN we have a carry:

3. Result. Cents is TempCents - 100.

4. Result. Dollars is Ql. Dollars + Q2 . Dollars + 1

5. ELSE no carry:

6. Result. Cents is TempCents

7. Result. Dollars is Ql. Dollars + Q2. Dollars

END IF;

To subtract 02 from 01 to produce Result:

1. IFQ1<Q2THEN

2. Result is negative:

3. Interchange QI and Q2

END IF;
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4. IF Q1. Cents < Q2 . Cents THEN we need a borrow:

5. Result .Cents is (100 + Q1 .Cents) - Q2. Cents

6. Result.Dollars is (Q1.Dollars - 1) - Q2 .Dollars

7. ELSE no borrow:

8. Result. Cents is Q1. Cents - Q2 .Cents

9. Result. Dollars is Q1. Dollars - Q2 . Dollars

END IF;

Make sure you understand these algorithms; try some examples by hand to test
yourself.

Now Program 2.9 gives the body for Currency.

Program 2.9 Body of Currency Package

PACKAGE BODY Currency IS

Body of the abstract data type for representing

and manipulating Currency numbers.

All values of type Currency.Quantity are initialized to 0.0.

Author: Michael B. Feldman, The George Washington University

Last Modified: July 1995

-- internal operations, not exported to the client

FUNCTION Add (Ql: Quantity; Q2: Quantity) RETURN Quantity IS
— Pre: Ql >= 0.0 and Q2 >= 0.0.
-- Post: Returns the sum of Ql and Q2.
— This is just an auxiliary routine used in "+" and below.

Result : Quantity;

BEGIN — Add

TempCents := Ql.Cents + Q2.Cents;
IF TempCents > 99 THEN — we had a carry
Result.Cents : = TempCents - 100;
Result.Dollars : = Ql.Dollars + Q2.Dollars + 1;

ELSE

Result.Cents : = TempCents;

Result.Dollars: = Ql.Dollars + Q2.Dollars;

END IF;

RETURN Result;

END Add;

FUNCTION Subtract (Ql: Quantity; Q2: Quantity) RETURN Quantity IS
— Pre: Ql >= 0.0 and Q2 >= 0.0.

— Post: Returns the difference of Ql and Q2.

— This is just an auxiliary routine used in " + * eind below.
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Result ; Quantity;
TempCents : Natural;

BEGIN — Subtract

IF Q1 > Q2 THEN — Result is positive
IF Q2.Cents > Q1.Cents THEN — we need a borrow

Result.Cents := (100 + Ql.Cents) - Q2.Cents;
Result.Dollars := (Ql.Dollars - 1) - Q2.Dollars;

ELSE

Result.Cents := Ql.Cents - Q2.Cents;
Result.Dollars := Ql.Dollars - Q2.Dollars;

END IF;

ELSE — Result is negative

Result.Positive := False;
IF Ql.Cents > Q2.Cents THEN — we need a borrow

Result.Cents := (100 + Q2.Cents) - Ql.Cents;
Result.Dollars := (Q2.Dollars - 1) - Ql.Dollars;

ELSE

Result.Cents := Q2.Cents - Ql.Cents;
Result.Dollars := Q2.Dollars - Ql.Dollars;

END IF;

END IF;

RETURN Result;

END Subtract;

— Exported Operators

FUNCTION (Ql : Quantity; Q2 : Quantity) RETURN Quantity IS
BEGIN

IF Ql.Positive AND Q2.Positive THEN
RETURN Add (Q1,Q2);

ELSIF (NOT Ql.Positive) AND (NOT Q2.Positive) THEN
RETURN -Add(-Ql, -Q2);

ELSIF Ql.Positive AND (NOT Q2.Positive) THEN
RETURN Subtract(Ql, -Q2);

ELSE — NOT Ql.Positive AND Q2.Positive;

RETURN Subtract (Q2, -Ql);

END IF;

END "+";

FUNCTION (Ql : Quantity; Q2 : Quantity) RETURN Quantity IS
BEGIN

RETURN Ql + (-Q2);

END

FUNCTION MalteCurrency (F : Float) RETURN Quantity IS
Result; Quantity;
T: Float;

BEGIN

T := Float'Truncation(ABS F); — get whole-nvunber part
Result := (Positive => True,

Dollars => Natural (T), -- just a type change
Cents => Natural(100.0 * (ABS F - T)));

IF F < 0.0 THEN

Result.Positive := False;
END IF;

RETURN Result;

END MakeCurrency;
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Quantity) RETURN Float ISFUNCTION MakeFloat (Q

Result: Float;

BEGIN

Result := Float (100 * Q.Dollars + Q.Cents) / 100.0;

IF Q.Positive THEN

RETURN Result;

ELSE

RETURN -Result;

END IF;

END MalceFloat;

Quantity) RETURN Natural ISFtJNCTION Dollars (Q

BEGIN

RETURN Q.Dollars;

END Dollars;

FUNCTION Cents (Q : Quantity) RETURN CentsType IS
BEGIN

RETURN Q.Cents;

END Cents;

FUNCTION IsPositive (Q : Quantity) RETURN Boolean IS
BEGIN

RETURN Q.Positive;
END IsPositive;

FUNCTION ">" (Q1 : Quantity; Q2 : Quantity) RETURN Boolean IS
BEGIN

RETURN Ma}ceFloat(Ql) > Ma)ceFloat {Q2);

END ">";

Quantity; Q2 : Quantity) RETURN Boolecin IS

Quantity; Q2 ; Quantity) RETURN Boolean IS

Quantity; Q2 : Quantity) RETURN Boolean IS

Quantity) RETURN Quantity IS

FUNCTION "<" (Q1

BEGIN — Stub

RETURN True;

END

FUNCTION "<=" (Q1

BEGIN — Stub

RETURN True;

END

FUNCTION ">=" (Q1

BEGIN — stub

RETURN True;

END

FUNCTION "+"(Q

BEGIN

RETURN Q;

END "+";

FUNCTION "-"{Q : Quantity) RETURN Quantity IS
BEGIN

RETURN (Positive => NOT Q.Positive,
Dollars => Q.Dollars,

Cents => Q.Cents);

END

FUNCTION "ABS" (Q : Quantity) RETURN Quantity IS
BEGIN — stub

RETURN Q;

END "ABS";
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FUNCTION "*"(F : Float; Q : Quantity) RETURN Quantity IS
BEGIN

RETURN (MakeCurrency(F * MakeFloat(Q)));
END

FUNCTION "*"(Q ; Quantity; F : Float ) RETURN Quantity IS
BEGIN — stub

RETURN Q;

END

FUNCTION "/"(Ql ; Quantity; Q2 : Quantity) RETURN Float IS
BEGIN

RETURN MakeFloat(Ql) / MakeFloat(Q2);
END "/";

FUNCTION "/"(Q : Quantity; F : Float ) RETURN Quantity IS
BEGIN -- stub

RETURN Q;

END "/";

END Currency;

The key to understanding the operations is the first four function bodies. The first
two, Add, and Subtract, are not provided to client programs; they are there only to
make writing the other operators more convenient for us.

Add and Subtract are implemented following the algorithms above. The
exported addition operator "+", which can handle positive or negative values, uses Add
or Subtract according to the signs of its operands; the exported operator "-"just adds
a negated value.

MakeCurrency and MakeFloat are our constructors to convert to and from

Currency yalues. Note that MakeCurrency uses the Ada 95 attribute Float'
Truncation, which returns just the whole-number part of its argument. Finally, the
remaining operators are given, mostly as stubs. You can complete the package, and develop
a program to test it, as an exercise. Programs 2.10 and 2.11 give the specification and body
for a child package Currency. 10, which you can use as part of your testing process. We
do not show a test program; we leave its development as Exercise 4.

Program 2.10 Specification for Currency. lo Chiid Package

WITH Ada.Text_IO;

PACKAGE Currency.10 IS

Specification of the input/output child package for Currency

Author: Michael B. Feldman, The George Washington University
Last Modified: July 1995

— input operations to read a Quantity from terminal or file

PROCEDURE Get (Item: OUT Quantity);
PROCEDURE Get (File: IN Ada.Text_IO.File_Type; Item : OUT Queuitity)
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-- Pre : File is open
-- Post: The currency quantity is read as a normal

floating point value.

— output operations to display a Quantity on terminal or
— write it to an external file

PROCEDURE Put (Item: IN Quantity; Width: IN Natural:=8);
PROCEDURE Put (File: IN Ada.Text_IO.File_Type;

Item: IN Quantity; Width: IN Natural:=8);
— Pre: File is open, Item is defined
— Post: Displays or writes the currency quantity.

Width is used by analogy with lnteger_IO

END Currency.10;

Program 2.11 Body of Currency. lo Child Package

WITH Ada.Text_IO;

WITH Ada.Integer_Text_IO;

WITH Ada.Float_Text_IO;

PACKAGE BODY Currency.10 IS

Body of the input/output child package for Currency

Author: Michael B. Feldman, The George Washington University

Last Modified: July 1995

—input procedures

PROCEDURE Get (File: IN Ada.Text_IO.File_Type; Item : OUT Quantity) IS
F: Float;

BEGIN — Get

— just read it as a Float quantity, then convert
Ada. Float:_Text_IO.Get (File => File, Item => F) ;
Item := MakeCurrency(F);

END Get;

PROCEDURE Get (Item : OUT Quantity) IS
BEGIN -- Get

Get(File => Ada.Text_IO.Standard_Input, Item => Item) ;

END Get;

— output procedures

PROCEDURE Put (File : IN Ada.Text_IO.File_Type;
Item : IN Quantity; Width: IN Natural:=8) IS

BEGIN — Put

— dollars first

IF IsPositive(Item) THEN

Ada.lnteger_Text_IO.Put
(File=>File, Item=>Dollars (Item),Width=>l);

ELSE

Ada.Integer_Text_IO.Put

(File=>File, Item=>-Dollars (Item),Width=>l);
END IF;
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— then decimal point and cents
Ada.Text_IO.Put(File => File, Item =>
IF Cents (Item) < 10 THEN

Ada.Text_IO.Put(File => File, Item => '0');
END IF;

Ada.Integer_Text_IO.Put

(File => File, Item => Cents (Item),Width => 1);

END Put;

PROCEDURE Put (Item : IN Quantity; Width: IN Natural:=8) IS
BEGIN -- Put

Put(File => Ada.Text_IO.Standard_Output,
Item => Item, Width => Width);

END Put;

END Currency.10;

This example shows the advantage of using a PRIVATE type not just to encapsulate
representation details, but also to give us complete control over the operations a client
is permitted to perform. As part of developing your test program, you might wish to
attempt some operations not provided in the package—for example, multiplying two
Currency values. Attempting this will result in a compilation error; this tells you that
the compiler is aiding you in controlling the client operations.

2.4 ADT DESIGN: CALENDAR DATES

As we saw in Chapter 1, Ada. Calendar provides a useful set of operations for deal
ing with time values, and a few operations such as Month and Day for selecting com
ponents of a value of type Time. However, Ada. Calendar does not really give us a
good set of operations for manipulating dates in a convenient way.

For example, we might need to pay a bill 45 days from today. What will the date be
then? Or we might need to know on which day of the week Christmas will fall next year.
These are but two of many examples of date manipulation. In this section, we will
examine an ADT called Dates, which provides a number of operations to facilitate
working with dates. In writing Dates, we will build on our knowledge of
Ada. Calendar and use its facilities where possible.

Design: Specification of the Dates ADT

How shall we represent a date? It turns out to be convenient for many applications to rep
resent a date in a form that gives the calendar year and the sequential day within the year.
This form is called Julian, named for the ancient Roman emperor Julius Caesar, who
developed the 365/366-day calendar, a variant of which we still use. This date format is
often used in data processing: The date is represented by the year, followed by the
sequential day in the year. For example, January 1,1993 is 1993001; December 31,1993
is 1993365. Naturally, all sequential days after February 28 are different in leap years
than in non-leap years, so that (for example), December 31,1992 is 1992366.
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In this package, we use a variant of the Julian form—namely, a record whose
two fields represent the calendar year (as in package Ada. Calendar) and the
sequential day within the year. Program 2.12 gives the specification of the package.
Note that the Date type is PRIVATE; why? If the client program could go directly
to the DayOfYear field, it could store, say, 366 for a non-leap year. This would be
incorrect, so we prevent this kind of abuse of our abstraction by making the type
PRIVATE.

Program 2.12 Specification for Dates Package

WITH Ada.Calendar;

PACKAGE Dates IS

--j specification for package to represent calendar dates
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

SUBTYPE YearNumber IS Ada.Calendar.Year_Number;

SUBTYPE MonthNumber IS Ada.Calendar.Month_Nuinber;

SUBTYPE DayNuraber IS Ada.Calendar.Day_Nuinber;
SUBTYPE JulianDay IS Positive RANGE 1..366;
SUBTYPE WeekDay IS Positive RANGE 1..7;

TYPE Date IS PRIVATE;

— exported exception
Date_Error : EXCEPTION;

— constructors

FUNCTION Today RETURN Date;

— Pre: none

— Post: returns the current date

FUNCTION MakeDate(Year : YearNumber;

Month : MonthNvunber;

Day : DayNvimber) RETURN Date;
— Pre: Year, Month, and Day are defined
— Post: returns a Date object
— Raises: Date_Error if Year, Month, and Day do not

form a valid date (e.g. 6/31/93 or 2/29/93)

— selectors

FUNCTION Year (Right: Date) RETURN YearNumber;
FUNCTION Month (Right: Date) RETURN MonthNumber;
FUNCTION DayOfMonth (Right: Date) RETURN DayNvirober;
FUNCTION DayOfYear (Right: Date) RETURN JulianDay;
FUNCTION DayOfWeek (Right: Date) RETURN WeekDay;
— Pre: Right is defined
— Post: these return the corresponding parts of the Date object

— comparison operators
FUNCTION (Left, Right: Date) RETURN Boolean;
FUNCTION "<=" (Left, Right: Date) RETURN Boolean;
FUNCTION *>" (Left, Right: Date) RETURN Boolean;

FUNCTION ">=" (Left, Right: Date) RETURN Boolean;
— Pre: Left and Right are defined

— Post: these return the result of the corresponding comparison
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-- arithmetic operators
FUNCTION "+• (Left: Date; Right: JulianDay) RETURN Date;
FUNCTION "+" (Left: JulianDay; Right: Date) RETURN Date;
FUNCTION (Left: Date; Right: JulianDay) RETURN Date;
— Pre: the arguments are defined

— Post: return a Date in the near future or recent past

PRIVATE

TYPE Date IS RECORD

Year: YearNumber := YearNumber'First;
DayOfYear: JulianDay := 1;

END RECORD;

END Dates;

In addition to the Date type, the package provides subtypes YearNumber,
MonthNumber, and DayNumber, by simply "nicknaming" the corresponding
Ada.Calendar subtypes. Also provided are JulianDay, as discussed above, and
WeekDay, with range 1,.7, to provide a way of returning the day of the week to a client
program. Also provided is an exception Date_Error, which will be discussed further
below.

What about the operations on Date values? Most are defined by analogy with
Ada.Calendar operations. For example. Today returns the current date and
MakeDate creates a Date value from its components. Today is analogous to
Ada. Calendar .Clock; MakeDate is analogous to Ada.Calendar.Time_
Of. The selector functions Year, Month, DayOfMonth, DayOfYear, and
DayOfWeek are self-explanatory and are analogous to Ada.Calendar. Year,
Ada. Calendar. Month, and Ada. Calendar. Day. As Exercise 6, you can write
a procedure analogous to Ada. Calendar. Split.

In looking at the three arithmetic operators, we see that—^again by analogy with
Ada. Calendar—only sensible operations are provided. Adding two dates, for exam
ple, is meaningless. Dates does not provide an operation for subtracting one date from
another. Such an operation would indeed be meaningful; you can develop it as sug
gested in Exercise 8.

The Body of the Dates ADT

The body of Dates is given as Program 2.13.

Program 2.13 Body of Dates Package

WITH Ada.Calendar;

PACKAGE BODY Dates IS

body for package to represent calendar dates

Author: Michael B. Feldman, The George Washington University
Last Modified: September 1995

-- body for package to represent calendar dates
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— tables containing the Julian day of the last day of each month
NonLeapDayEndOfMonth: ARRAY(MonthNumber) OF JulianDay :=
— Jan Feb Mar Apr May Jun Jul Aug Sep Get Nov Dec
(31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365);

LeapDayEndOfMonth: ARRAY(MonthNumber) OF JulianDay :=
— Jan Feb Mar Apr May Jun Jul Aug Sep Get Nov Dec
(31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366);

FUNCTION IsLeap(Year: YearNumber) RETURN Boolean IS
— Pre: Year is defined

— Post: returns True if and only if Year is a leap year
BEGIN

RETURN (Year REM 4=0) AND
((Year REM 100 /= 0) OR (Year REM 400 = 0));

END IsLeap;

FUNCTION Ma]ceDate(Year : YearNumber;
Month : MonthNumber;

Day : DayNumber) RETURN Date IS

TempTime: Ada.Calendar.Time.-
Result: Date;

BEGIN — MalceDate

TempTime := Ada.Calendar.Time_Of
(Year=>Year, Month=>Month, Day=>Day);

— assert: date is valid if and only if Time_Error is not raised

Result.Year := Year;

— If it's January, finding the day is easy. If not,
— loolc up days to end of previous month in table
IF Month = MonthNumber'First THEN — it's January

Result.DayOfYear := Day;
ELSIF IsLeap(Year) THEN -- leap year

Result.DayOfYear := LeapDayEndOfMonth(Month-l) + Day;
ELSE — not leap year

Result.DayOfYear := NonLeapDayEndOfMonth(Month-l) + Day;
END IF;

RETURN Result;

EXCEPTION

WHEN Ada,Calendar.Time_Error =>
RAISE Date_Error;

END MakeDate;

FUNCTION Today RETURN Date IS
— Finds today's date and returns it as a record of type Date
— Today's date is gotten from PACKAGE Ada.Calendar

RightNow : Ada.Calendar.Time; -- holds internal clock value

BEGIN — Today

— Get the current time value from the computer's clock
RightNow := Ada.Calendar.Clock;

— Extract the current month, day, and year from the time value
— and call date constructor to put it in our form
RETURN MakeDate(Month => Ada.Calendar.Month(RightNow),

Day => Ada.Calendar.Day (RightNow),
Year => Ada.Calendar.Year (RightNow));
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END Today;

FUNCTION Year (Right: Date) RETURN YearNumber IS
BEGIN

RETURN Right.Year;
END Year;

FUNCTION DayOfYear (Right: Date) RETURN JulianDay IS
BEGIN

RETURN Right.DayOfYear;
END DayOfYear;

FUNCTION Month (Right: Date) RETURN MonthNumber IS

DayOfYear: JulianDay;
Result : MonthNumber;

BEGIN -- Month

DayOfYear := Right.DayOfYear;

-- search table until a quantity > Right.Day is found
IF IsLeap(Right.Year) THEN -- leap year
FOR WhichMonth IN MonthNumber LOOP

Result := WhichMonth;

EXIT WHEN LeapDayEndOfMonth(WhichMonth) >= DayOfYear;
END LOOP;

ELSE -- not leap year
FOR WhichMonth IN MonthNumber LOOP

Result := WhichMonth;
EXIT WHEN NonLeapDayEndOfMonth(WhichMonth) >= DayOfYear;

END LOOP;

END IF;

RETURN Result;

END Month;

FUNCTION DayOfMonth (Right: Date) RETURN DayNumber IS

WhichMonth: MonthNumber;
Result : DayNumber;

BEGIN -- DayOfMonth

WhichMonth := Month(Right); — call routine above
IF WhichMonth - MonthNumber'First THEN — it's January
Result := Right.DayOfYear;

ELSIF IsLeap (Right.Year) THEN -- leap year
Result := Right.DayOfYear - LeapDayEndOfMonth(WhichMonth - 1);

ELSE

Result := Right.DayOfYear - NonLeapDayEndOfMonth(WhichMonth - 1);
END IF;

RETURN Result;

END DayOfMonth;

FUNCTION DayOfWee)c (Right: Date) RETURN WeelcDay IS

SUBTYPE Code IS Natural RANGE 0..6;

Result : Wee)cDay;
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MonthCode : Code;

Century : Code;
ThisMonth : MonthNiunber;

ThisYear : YearNumber;

BEGIN -- DayOfWeek

ThisMonth := Month(Right);
ThisYear := Year(Right);

CASE ThisMonth IS

WHEN 1 => IF IsLeap(ThisYear) THEN
MonthCode ;= 5;

ELSE

MonthCode := 6 ;

END IF;

THENWHEN 2 IF IsLeap(ThisYear)
MonthCode := 1;

ELSE

MonthCode : = 2;

END IF;

WHEN 3 = > MonthCode = 2

WHEN 4 = > MonthCode = 5

WHEN 5 = > MonthCode = 0

WHEN 6 => MonthCode = 3

WHEN 7 => MonthCode = 5

WHEN 8 = > MonthCode = 1

WHEN 9 = > MonthCode = 4

WHEN 10 = > MonthCode = 6

WHEN 11 = > MonthCode = 2

WHEN 12 = > MonthCode = 4

END CASE;

IF ThisYear/100 = 19 THEN

Century := 0;

ELSE

Century := 6;

END IF;

Result := (((ThisYear REM 100) + ({ThisYear REM 100) / 4)
MonthCode + Century)+ DayOfMonth(Right) +

REM 7) + 1;

RETURN Result;

END DayOfWeek;

— comparison operators

FUNCTION "<" (Left, Right: Date) RETURN Boolean IS
BEGIN

IF Left.Year = Right.Year THEN
RETURN Left.DayOfYear < Right.DayOfYear;

ELSE

RETURN Left.Year < Right.Year;
END IF;

END "<";

FUNCTION "<=" (Left, Right: Date) RETURN Boolean IS
BEGIN

IF Left.Year = Right.Year THEN
RETURN Left.DayOfYear <= Right.DayOfYear;

ELSE

RETURN Left.Year < Right.Year;

END IF;

END
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FUNCTION *>" (Left, Right: Date) RETURN Boolean IS
BEGIN

IF Left.Year = Right.Year THEN

RETURN Left.DayOfYear > Right.DayOfYear;
ELSE

RETURN Left.Year > Right.Year;
END IF;

END ">";

FUNCTION ">=•' (Left, Right: Date) RETURN Boolean IS
BEGIN

IF Left.Year = Right.Year THEN
RETURN Left.DayOfYear >= Right.DayOfYear;

ELSE

RETURN Left.Year > Right.Year;
END IF;

END ■>=";

— arithmetic operators

FUNCTION "+" (Left: Date; Right: JulianDay) RETURN Date IS

Result : Date;
Temp : Positive;
YearMax: JulianDay;

BEGIN

IF IsLeap(Left.Year) THEN — leap year
YearMax := 366;

ELSE

YearMax := 365;
END IF;

IF (Right = 366) AND THEN — special case, adding
(NOT IsLeap(Left.Year + 1)) AND THEN — 366 to Dec 31 when
Left.DayOfYear = YearMeuc THEN -- next year not leap

Result := (Left.Year + 2, DayOfYear => 1);

ELSE — normal case

Temp := Left.DayOfYear + Right;
IF Temp > YearMax THEN — into next year

Result := (Year => Left.Year + 1, DayOfYear => Temp - YearMax);
ELSE

Result := (Year => Left.Year, DayOfYear => Temp);
END IF;

END IF;

RETURN Result;

EXCEPTION
WHEN Constraint_Error => — next year out of range

RAISE Date_Error;
END

FUNCTION "+" (Left: JulianDay; Right: Date) RETURN Date IS
BEGIN

RETURN Right + Left; — use the other "+" above
END "+";

FUNCTION (Left: Date; Right: JulianDay) RETURN Date IS

Difference: Integer; — to hold difference between day fields
Result: Date;
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BEGIN

IF (Right = 366) AND THEN — special case, subtracting
(NOT IsLeap(Left.Year - 1)) AND THEN— 366 from Jan 1 when
Left.DayOfYear = 1 THEN — previous year not leap

Result := MakeDate(Year => Left.Year - 2, Month => 12, Day => 31);

ELSE

Difference := Left.DayOfYear - Right;
IF Difference > 0 THEN — result is in the same year

Result := (Year => Left.Year, DayOfYecu: => Difference);
ELSE — result is in previous year
IF IsLeap(Left.Year - 1) THEN
Result :=

(Year => Left.Year-1, DayOfYear => 366+Difference);
ELSE

Result :=

(Year => Left.Year-1, DayOfYear => 365+Difference);
END IF;

END IF;

END IF;

RETURN Result;

EXCEPTION

WHEN Constraint_Error => — previous year out of range
RAISE Date_Error;

END

END Dates;

In this package body, we first declare two "tables" in the form of arrays. These
arrays are indexed by MonthNumber, and each element contains the number of days
from January 1 to the end of the month in question. There are two tables, one for leap
years and one for non-leap years.

The various operations in the package body are almost all algorithmically straight
forward; you can read them closely to understand the details. The only operation whose
workings are less than obvious is DayOfWeek, which finds the day of the week on
which a given date falls. The algorithm provided here is adapted from one that appears
in a number of different sources. The original was apparently developed in 1917 by a
German professor, W. Jacobstal.

Now consider how the way leap year is determined. We have used the very simple
criterion everyone knows: If the year is divisible by 4, it is a leap year. In fact, astro
nomically the formula is more complicated: If a year is divisible by 4 and also by 100,
it is not a leap year unless it is also divisible by 400. Because Ada. Calendar defines
years only in the range 1901..2099, the only "century year" is 2000, which is divisible
by 400. Therefore we can use the simple rule as long as we remain consistent with
Ada.Calendar. We choose instead to implement the complete algorithm, in case
you ever need to modify the package to represent dates that lie outside the
Ada. Calendar range.
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There are many calendars; many have changed over the centuries. Traditional
Hebrew, Muslim, and Chinese calendars are only a few of the many ways humankind
has invented for reckoning days, months, years, and centuries. The study of calen
dars is very interesting, but is far away from this book's topic. If you are interested,
you can study another calendar and think about how to implement it in a Dates
package.

Finally, Program 2.14 illustrates the use of some of the Dates operations. We have
not provided a Dates. 10 package, choosing instead to illustrate one form of date out
put by including a local procedure PutDate in the test program. Writing a Dates. 10
package is left as Exercise 5.

Program 2.14 Demonstration of Dates Package

WITH Dates; USE Dates;

WITH Ada.Text_IO;

WITH Ada.Integer_Text_IO;

PROCEDURE Test_Dates IS

— I Simple test of Dates package
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: October 1995

TYPE Days IS (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
PACKAGE Days_IO IS NEW Ada.Text_IO.Enumeration_IO(Enum => Days);

ThatDay, ThisDay: Date;

PROCEDURE PutDate(Item: IN Date) IS

BEGIN

— DayOfWeek returns 1..7, but positions are 0..6.
Days_IO.Put(Item => Days'Val(DayOfWeek(Item) - 1), Width => 4);

Ada. Integer_Text_IO. Put (Item => Month(Item), Width => 1);
Ada.Text_IO.Put{'/•);

Ada.Integer_Text_IO.Put(Item => DayOfMonth(Item), Width => 1);
Ada.Text_IO.Put('/');

Ada.Integer_Text_IO.Put(Item => Year(Item) REM 100, Width => 1);

END PutDate;

BEGIN — Test_Dates

— First, is today's date OK?
ThisDay := Today;

PutDate(Item => ThisDay);
Ada.Text_IO.New_Line(Spacing => 2);

-- Now make a table of dates for the current year.
Ada.Text_IO.Put("Today Yesterday 31 days from today");
Ada.T6xt_lO.New_Line(Spac ing => 2);

FOR WhichMonth IN MonthNumber LOOP

ThisDay := MakeDate
(Year => Year (ThisDay), Month => WhichMonth, Day=> 1) ;

ThatDay := ThisDay - 1;
PutDate(Item => ThisDay);

Ada.Text_IO.Put(Item => " ");
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PutDate(Item => ThatDay);

Ada.Text_IO.Put(Item => " ");

PutDatedtem => ThisDay + 31);
Ada.Text_IO.New_Line;

END LOOP;

— Now make a table of dates for a leap year.

Ada.Text_IO.New_Line;

Ada.Text_IO.Put("Today Yesterday 31 days from today");
Ada.Text_IO.New_Line(Spacing => 2);

FOR WhichMonth IN MonthNiomber LOOP

ThisDay := MakeDate
(Year => 1992, Month => WhichMonth, Day => 1);

ThatDay := ThisDay - 1;
PutDatedtem => ThisDay);

Ada. Text_IO. E>ut (Item => ■• ");
PutDate(Item => ThatDay);
Ada.Text_IO.Put(Item => " ");
PutDatedtem => ThisDay + 31);
Ada.Text_IO.New_Line;

END LOOP;

END Test_Dates;

2.5 ADT DESIGN: SIMPLE SCREEN HANDLER

Ada's Text_IO package provides operations for reading from the terminal keyboard
and writing to the screen, but it provides no direct operations for controlling the screen
in interesting ways, such as moving the cursor to a given row-column position before
writing. Doing this requires an additional package that uses Text_IO to send control
characters to the terminal; the control characters act as instructions to it rather than as
data it should display.

The Specification and Body of the screen Package

Program 2.15 shows the specification for Screen. This package provides two con
stants, ScreenWidth and ScreenHeight, corresponding to the number of colunms
(usually 80) and rows (usually 25, but for various technical reasons we will use 24) on
the screen. There are also two subtypes. Width and Height, giving the ranges for
valid cursor positions (1. . ScreenWidth and 1. . ScreenHeight, respectively).

Program 2.15 Specification for screen Package

PACKAGE Screen IS

--| Procedures for drawing pictures on ANSI Terminal Screen
— I Author: Michael B. Feldman, The George Washington University
— Last Modified: October 1995

ScreenHeight : CONSTANT Integer := 24;
ScreenWidth : CONSTANT Integer := 80;

SUBTYPE Height IS Integer RANGE 1..ScreenHeight;
SUBTYPE Width IS Integer RANGE 1. .ScreenWidth;
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TYPE Position IS RECORD

Row : Height := 1;
Column: Width := 1;

END RECORD;

PROCEDURE Beep;

— Pre : none

— Post: the terminal beeps once

PROCEDURE ClearScreen;

-- Pre : none

— Post: the terminal screen is cleared

PROCEDURE MoveCursor (To: IN Position);

— Pre : To is defined

— Post: the terminal cursor is moved to the given position

END Screen;

Screen provides a type Position, which groups in a record the horizontal and
vertical coordinates. We choose not to make this a PRIVATE type, because client pro
grams can do no harm by making direct references to the Row and Column values.
Grouping the fields together allows us to deal with the position as a single value, which
is convenient in client programs.

The package provides three procedures. The first two. Beep and ClearScreen,
take no parameters: A procedure call statement

Screen.Beep;

causes the terminal to beep; a procedure call statement

Screen.ClearScreen;

causes the screen to go blank, erasing all previous information from it. The last proce
dure, MoveCursor, takes row and colunm parameters, so that, for example.

Screen.MoveCursor (To => (Row => 10, Column => 22));
Ada.Text_IO.Put (Item => '*');

has the effect of displaying an asterisk at row 10, colunm 22. Finally,

Screen.MoveCursor (To => (Row => 5, Col\imn => 10));
Ada.Text_IO.Put (Itern => " ");

displays the string in row 5, colunms 10 through 14, inclusive.
Program 2.16 gives the body for this package. The strings that are being sent to the

terminal are known as escape sequences. An escape sequence is preceded by the char
acter ASCII. ESC, and is used to give an instruction to the terminal, rather than to give
it data to display. These escape sequences are rather esoteric and can be learned in their
entirety only by reading a manual describing the ANSI terminal controls. The two
sequences used here are among the most common, and will suffice for the screen-con
trol work needed in this book.
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Program 2.16 Body of Screen Package

WITH Ada.Text_IO;

WITH Ada.Integer_Text_IO;

PACKAGE BODY Screen IS

Procedures for drawing pictures on ANSI Terminal Screen
These procedures will work correctly only if the actual
terminal is ANSI compatible. ANSI.SYS on a DOS machine
will suffice.

Author: Michael B. Peldman, The George Washington University
Last Modified: September 1995

PROCEDURE Beep IS

BEGIN

Ada.Text_IO.New_Line;

Ada.Text_IO.Put (Item => ASCII.BEL);

END Beep;

PROCEDURE ClearScreen IS

BEGIN

Ada.Text_IO.New_Line;

Ada.Text_IO.Put (Item => ASCII.ESC);

Ada.Text_IO.Put (Item => "[2J");

END ClearScreen;

PROCEDURE MoveCursor (To: IN Position) IS

BEGIN

Ada.Text_IO.New_Line;
Ada.Text_IO.Put (Item => ASCII.ESC);

Ada.Text_IO.Put ("[");

Ada.Integer_Text_IO.Put (Item => To.Row, Width => 1);

Ada.Text_IO.Put (Item => ';');

Ada.Integer_Text_IO.Put (Item => To.Column, Width => 1)
Ada.Text_IO.Put (Item => 'f');

END MoveCursor;

END Screen;

Using the screen Package

Program 2.17 uses the Screen package to draw vertical and horizontal lines on the
screen, dividing the screen into four quadrants. The loop

FOR Count IN Screen.Width LOOP

Screen.MoveCursor (To => (Row => 12, Colvunn => Count);

Ada.Text_IO.Put (Itern => '-');

Screen.MoveCursor (To =>

(Row => 13, Column => (Screen.Screen_Width - Coimt) + 1);

Ada.Text_IO.Put (Item => •-•));
END LOOP;

draws a horizontal separator consisting of two lines of hyphen characters on
rows 12 and 13 of the screen. The parameters to the first call of Screen.
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MoveCursor move the cursor one position to the right in each loop iteration; just to
make the program more interesting, the second call moves the cursor one position to the
left each time.

Program 2.17 Dividing the Screen into Four Pieces

WITH Ada.Text_I0;

WITH Screen;

PROCEDURE Four_Pieces IS

This program divides the screen into four pieces using
horizontal and vertical lines. Screen operations are used
to position the cursor.
Author: Michael B. Feldman, The George Washington University
Last Modified: October 1995

BEGIN -- Four_Pieces

Screen.ClearScreen;

FOR Count IN Screen.Height LOOP

Screen.MoveCursor (To => (Row => Count, Column => 41));
Ada.Text_IO.Put (Item => '|');
Screen.MoveCursor (To =>

(Row => (Screen.ScreenHeight - Count) + 1, Column => 42));
Ada.Text_IO.Put (Item => '|');

END LOOP;

FOR Count IN Screen.Width LOOP

Screen.MoveCursor (To => (Row => 12, Column => Count));
Ada.Text_IO.Put (Item => '-');

Screen.MoveCursor (To =>

(Row => 13, Column => (Screen.ScreenWidth - Count) + 1));
Ada.Text_IO.Put (Item => '-');

END LOOP;

Screen.MoveCursor (To => (Row => 24, Column => 1));

END Four_Pieces;

ANSI-compatible terminals or emulator programs are probably the most common
ones in use today. Even the most sophisticated windowed workstations usually have an
ANSI or VT-IOO "mode," which will allow output using Screen to appear correctly
on the video device. Exercises 9 and 10 provide for writing a more sophisticated ANSI
package and for writing a package for a non-ANSI terminal.

2.6 ADT DESIGN: SIMPLE WINDOW MANAGER

Windows are a very common scheme for handling interactive input/output on today's
computers. A window is just a bounded area of the screen used for writing output and,
sometimes, echoing input. Most current window systems (for example, Macintosh,
Microsoft Windows, and X-windows) are very powerful and interesting to use. Such
systems are, in general, specific to a particular computer family, operating system, or
terminal type.
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In this section, we introduce a very simple, even oversimplified windowing system
as an example of an ADT. By studying this ADT, you will get some idea of how win
dows work, without being overwhelmed by details either of specific machines or of
graphics algorithms, both of which are beyond the scope of this book. This simple sys
tem is, however, entirely portable and can be compiled and used with any Ada compiler.
Windows uses the Screen package described in section 2.5, so it will produce mean
ingful output on any terminal that is ANSI- or VT-100-compatible, which includes most
"dumb terminals" and also the ANSI.SYS mode of the IBM PC family.

What's a Window?

To get an idea of how windowing systems work, you can look at Figure 2.1, which
shows some writing on a terminal screen assumed to have 24 rows and 80 columns.

This output was produced by Program 2.18, which makes a number of calls of oper
ations in the Windows package. Before studying Windows in detail, let us examine
this client program and its output.

Program 2.18 Demonstration of Windows Package

WITH Windows;

WITH Screen;

PROCEDURE Test_Windows IS

— 1 Very simple test of Windows package
— I Author; Michael B. Feldman, The George Washington University
— I Last Modified: October 1995

W1: Windows.Window;

W2: Windows.Window;

W3: Windows. Window ;

BEGIN — Test_Windows

Screen.ClearScreen;

W1 := Windows.Open(UpperLeft => (Row => 2, Column => 5),
Height => 10, Width => 18);

W2 := Windows.Open(UpperLeft => (Row => 15, Column => 20),
Height => 7, Width => 7);

Windows.Borders(W => Wl, Corner => '+',Down => '|', Across =>
Windows.Titie(Wl, "Window One", '_');

Windows.Put(Wl, "This is the first string going in the window.");
Windows.Put(Wl, "And this is the second one.");

Windows.Put(W2, "This is a window without a border or a title.");

W3 := Windows.Open(UpperLeft => (Row => 5, Column => 35),
Height => 8, Width => 25);

Windows.New_Line(Wl);

Windows.Put(Wl, "Bye.");

Windows.Borders(W => W3, Corner => '*',Down => '*', Across => '*');

Windows.Title(W3, "Window Three", ';');
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Windows.Put

(W3, "This is the first string going in the third window.") ;
Windows.Put(W3, "And this is the second one.");
Windows.New_Line{W3);
Windows.Put(W3, "So long.");
Screen.MoveCursor(To => (Row => 23, Column => 1));

END Test_Windows;

The display in Figure 2.1 shows output in three areas of the screen. Each is a win
dow; each was created by a call to Windows .Open as shown in Program 2.18. The
three calls are scattered throughout the program a bit to indicate that windows do not all
have to be opened at once. As you can see from the form of the Windows. Open calls,
this operation specifies the coordinates of the upper left comer of the window, as well
as its height and width.

Windows W1 and W3 have borders and titles; W2 does not. The Windows. Put and

Windows. New_Line operations used in this test program should be obvious, because
they are closely related to their Ada.Text_lO counterparts. The main difference, of
course, is that these operations work within the confines of a window specified by the
first parameter. Note that the text in each window "wraps around" or flows onto the next
line, if the window is too narrow to hold the full string. Also notice that a bordered win
dow has a "writable area" two rows and two columns smaller than one without borders,
and that putting a title in a window reduces its "writable" area further by two rows.

• -  t
Window One

This is the firs

t string going i *Window Three *

n the window.And *

this is the sec *So long. *
ond one. *g going in the third wi*

Bye. *ndow.And this is the se*

■
■

*cond one. *
************************

Ihis is
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out a b

order o

r a tit
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Figure 2.1 Windowed Output from a Windows Client Program
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The Specification of the windows Package

Program 2.19 shows the specification of Windows. Its operations are more like
Ada. Text_IO operations than like the arithmetic ones we have seen in earlier ADTs. A
Window object is defined as a record with three fields, each of type Screen. Position.
Two of the fields contain the coordinates of the upper left and lower right comers; the third
field gives the current location of the cursor within the window.

Program 2.19 Specification for Windows Package

WITH Screen;

PACKAGE Windows IS

— I Manager for simple, nonoverlapping screen windows
— I Author: Michael B. Feldmcm, The George Washington University
— I Last Modified: October 1995

TYPE Window IS PRIVATE;

FUNCTION Open (UpperLeft: Screen.Position;
Height : Screen.Height;
Width : Screen.Width) RETURN Window;

— Pre: UpperLeft, Height, euid Width are defined
-- Post: returns a Window with the given upper-left corner,

height, euid width

PROCEDURE Title (W : IN OUT Window;
Name : IN String;
Under : IN Character);

— Pre: W, Name, and Under are defined
— Post: Name is displayed at the top of the window W, underlined
— with the character Under.

PROCEDURE Borders (W : IN OUT Window;
Comer, Down, Across : IN Character);

— Pre: All parameters are defined
-- Post: Draw border around current writable area in window with

— characters specified. Call this BEFORE Title.

PROCEDURE MoveCursor (W : IN OUT Window;
P : IN Screen.Position);

— Pre: W and P are defined, and P lies within the area of W

— Post: Cursor is moved to the specified position.
Coordinates are relative to the

upper left comer of W, which is (1, 1)

PROCEDURE Put (W : IN OUT Window;

Ch : IN Character);

— Pre: W and Ch are defined.

— Post: Ch is displayed in the window at
the next available position.
If end of column, go to the next row.

If end of window, go to the top of the window.

PROCEDURE Put (W : IN OUT Window;

S  : IN String);
— Pre: W and S are defined

— Post: S is displayed in the window, "line-wrapped" if necessary
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PROCEDURE New_Line (W : IN OUT Window);
— Pre: W is defined

— Post: Cursor moves to beginning of next line of W;
line is not blanked until next character is written

PRIVATE

TYPE Window IS RECORD

First : Screen.Position; -- coordinates of upper left
Last : Screen.Position; — coordinates of lower right
Current: Screen.Position; — current cursor position

END RECORD;

END Windows;

Consider how we would display a character within a window. Generally, the window
operation calls in a client program "jump around" from window to window as the program
progresses, first putting a bit of information in one window, then in another, and so on, per
haps returning later to the first window. You can see examples of this in Program 2.18.
Interleaving window operations in this way requires that each window "remember" where
the cursor must be to write a character in the next location relative to that window. This is
the purpose of the Current field in the window record. Each time an operation seeks to
display information in a window, the actual screen cursor must be moved to the proper
location, namely the location given by the Current field of the window record.

In window W3 in Figure 2.1, notice that the line " So long" appears at the top of the
window. This is because the window was full of previously displayed text; the Windows
operations respond to this situation by starting again in the upper left comer of the wirldow.

The Body of the windows Package

The body of this package is given as Progrmn 2.20.

Program 2.20 The Body of the Windows Package

WITH Ada.Text_I0;

WITH Screen;

PACKAGE BODY Windows IS

Body of simple Windows package

Author: Michael B. Feldman, The George Washington University
Last Modified: October 1995

FUNCTION Open (UpperLeft: Screen.Position;

Height : Screen.Height;
Width : Screen.Width) RETURN Window IS

Result: Window;

BEGIN

Result.Current:= UpperLe f t;
Result.First := UpperLeft;
Result.Last := (Row => UpperLeft.Row + Height - 1,

Column => UpperLeft.Column + Width - 1);
RETtnUJ Result;

END Open;
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PROCEDURE EraseToEndOfLine (W : IN OUT Window) IS

BEGIN

Screen.MoveCursor (W.Current);

FOR Count IN W.Current.Column .. W.Last.Column LOOP

Ada.Text_IO.Put (' ');

END LOOP;

Screen.MoveCursor (W.Current);

END EraseToEndOfLine;

PROCEDURE Put (W : IN OUT Window;

Ch : IN CHARACTER) IS

BEGIN

-- If at end of current line, move to next line

IF W.Current.Column > W.Last.Column THEN

IF W.Current.Row = W.Last.Row THEN

W.Current.Row := W.First.Row;

ELSE

W.Current.Row := W.Current.Row + 1;

END IF;

W.Current.Column := W.First.Column;

END IF;

— If at First char, erase line

IF W.Current.Column = W.First.Colximn THEN

EraseToEndOfLine (W);
END IF;

Screen.MoveCursor (To => W.Current);

— here is where we actually write the character!
Ada.Text_IO.Put (Ch);

W.Current.Coltimn := W.Current.Column + 1;

END Put;

PROCEDURE Put (W : IN OUT Window;

S  : IN String) IS

BEGIN

FOR Count IN S'Range LOOP

Put (W, S (Count));

END LOOP;

END Put;

PROCEDURE New_Line (W : IN OUT Window) IS

BEGIN

IF W.Current.Column = 1 THEN

EraseToEndOfLine (W);
END IF;

IF W.Current.Row = W.Last.Row THEN

W.Current.Row := W.First.Row;
ELSE

W.Current.Row ;= W.Current.Row + 1;

END IF;

W.Current.Column := W.First.Column;

END New_Line;

PROCEDURE Title (W

Name

Under

IN OUT Window;

IN String;

IN Character)IS



96 Writing Abstract Data Types

BEGIN

-- Put name on top line

W.Current := W.First;
Put (W, Name);

New_Line (W);

— Underline name if desired, and reduce the writable area
— of the window by one line
IF Under = ' ' THEN — no underlining

W.First,Row := W.First.Row + 1;
else — go across the row, underlining
FOR Count IN W.First.Column..W.Last.Column LOOP

Put (W, Under);

END LOOP;

New_Line (W);
W.First.Row := W.First.Row +2; — reduce writable area

END IF;

END Title;

PROCEDURE Borders (W : IN OUT Window;
Corner, Down, Across : IN Character) IS

BEGIN

— Put top line of border
Screen.MoveCursor (W.First);
Ada.Text_IO.Put (Corner);

FOR Count IN W.First.Column + 1 .. W.Last.Column - 1 LOOP
Ada.Text_IO.Put (Across);

END LOOP;

Ada.Text_IO.Put (Comer) ;

— Put the two side lines

FOR Count IN W.First.Row + 1 .. W.Last.Row - 1 LOOP

Screen.MoveCursor ((Row => Count, Column => W.First.Colvimn)) ;
Ada.Text_IO.Put (Down);
Screen.MoveCursor ((Row => Count, Column => W.Last.Column));
Ada.Text_IO.Put (Down);

END LOOP;

— Put the bottom line of the border

Screen.MoveCursor ((Row => W.Last.Row, Column => W.First.Column))
Ada.Text_IO.Put (corner);
FOR Count IN W.First.Colvimn + 1 ., W.Last.Column - 1 LOOP
Ada.Text_IO.Put (Across);

END LOOP;

Ada. Text_IO. Put (Comer);

— Ma)ce the Window smaller by one character on each side
W.First :=

(Row => W.First.Row + 1, Column => W.First.Column + 1);
W.Last :=

(Row => W.Last.Row - 1, Column => W.Last.Column - 1);
W.Current := W.First;

END Borders;

PROCEDURE MoveCursor (W : IN OUT Window;
P  : IN Screen.Position) IS

— Relative to writcdsle Window boundaries, of course
BEGIN

W.Current.Row ;= W.First.Row + P.Row;
W.Current.Column ;= W.First.Column + P.Column;

END MoveCursor;

END Windows;
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Many of the operations are filled with detail, but they are really not difficult to
understand. The first operation is Open, which simply stores the coordinates of the
upper left comer in the First and Current fields, then computes and stores in the
Last field the coordinates of the lower right comer, given the upper left, height, and
width. The next operation is an intemal one; we choose not to provide it to clients. This
operation, EraseToEndOfLine, writes blank characters from the current cursor
position to the end of the current line in the window.

The third operation is really the key one in the package. Put displays a character in
the next available position in the window. If the preceding character was displayed at
the end of a line (relative to the window, of course), the new character must be placed at
the start of the next line, the rest of which is blanked out. If the preceding character was
displayed in the bottom right comer of the window, the new one must go at the top left.
(In a real windowing system, the text would "scroll up" in the window; this is beyond
the scope of our discussion.)

Note the statement

Screen.MoveCursor(To => W.Current);

which is really the critical one. In this statement, the physical cursor is moved to the cor
rect location in the window.

Following Put is another Put, which displays a string in the window. This is done
by a series of single-character Put calls. We cannot simply use Ada. Text_IO. Put
with a string argument, because the wraparound would not be done by
Ada. Text_IO.

The remaining operations are straightforward; we leave it to you to study them in
detail.

2.7 A FEW MORE ADA 95 TOPICS

In this section we introduce several Ada 95 topics. These are the math Junctions pack
age, Float-/o-Integer type conversion, additions to Ada. Text_IO, and com

mand line parameters.

Mathematics Packages

Ada 83 provided no standard package for mathematical functions such square root,
exponential, sine, and the like. Compiler suppliers typically provided these, but the
package names, and occasionally the function names, difiered from compiler to com
piler. Ada 95 remedies this lack by providing some standard facilities for these often-
needed operations. Specifically, a package Ada.Numerics and a package
Ada. Numerics. Elementary_Functions, are required by the Ada 95 standard.
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PACKAGE Ada.Numerics IS

Argument_Error : EXCEPTION;

Pi : CONSTANT :=

3.14159_26535_89793_23846_26433_83279_50288_41971_69399_37511;
e  : CONSTANT :=

2.71828_18284_59045_23536_02874_71352_66249_77572_47093_69996;

END Ada.Niimerics;

Figure 2.2 Package Ada.Numerics

Their specifications are shown in Figures 2.2 and 2.3, respectively. They are given as
figures and not programs because, as in the case of the standard packages given in
Chapter 1, they are supplied with the compiler in precompiled form.

PACKAGE Ada.Numerics.Elementary_Functions IS

FUNCTION Sqrt(X

FUNCTION Log (X

FUNCTION Log (X,
FUNCTION Exp (X

;  Float) RETURN Float;
;  Float) RETURN Float;
Base: Float) RETURN Float;

;  Float) RETURN Float;
FUNCTION "**" (Left, Right: Float) RETURN Float;

FUNCTION Sin

FUNCTION Cos

FUNCTION Tan

FUNCTION Cot

(X : Float) RETURN Float

(X : Float) RETURN Float

(X : Float) RETURN Float

(X : Float) RETURN Float

FUNCTION Arcsin(X : Float)
FUNCTION Arccos{X : Float)

FUNCTION Arctan(Y : Float;

X : Float

FUNCTION Arccot(X : Float;

RETURN Float;

RETURN Float;

= 1.0) RETURN Float;

Y : Float := 1.0) RETURN Float;

FUNCTION Sinh(X : Float) RETURN Float
FUNCTION Cosh(X : Float) RETURN Float

FUNCTION Tanh(X : Float) RETURN Float

FUNCTION CothCX : Float) RETURN Float

FUNCTION Arcsinh (X : Float) RETURN Float

FUNCTION Arccosh (X : Float) RETURN Float

FUNCTION Arctanh (X : Float) RETURN Float

FUNCTION Arccoth (X : Float) RETURN Float

FUNCTION Sin (X, Cycle : Float) RETURN Float;
FUNCTION Cos (X, Cycle : Float) RETURN Float;
FUNCTION Tan (X, Cycle : Float) RETURN Float;
FUNCTION Cot (X, Cycle : Float) RETURN Float;

FUNCTION Arcsin(X, Cycle :
FUNCTION Arccos(X, Cycle :
FUNCTION Arctan(Y : Float;

X : Float := 1

Cycle : Float) RETURN Float;
FUNCTION Arccot(X : Float;

Y : Float := 1

Cycle : Float)

Float) RETURN Flo

.0;

.0;

RETURN Float;

at;
Float) RETURN Float;

END Ada. Niimerics. Elementary_Functions ;

Figure 2.3 Ada 95 Elementary Functions Package



2.7 A Few More Ada 95 Topics 99

Programs 2.21 and 2.22 illustrate the use of the elementary functions library, dis
playing, respectively, a table of square roots and a sine curve. Note that Program 2.22
refers to Ada. Numerics. Pi as well as to Math. Sin. The output of Program 2.23
is shown in Figure 2.4.

Program 2.21 Table of Square Roots

WITH Ada.Text_IO;

WITH Ada.Integer_Text_IO;

WITH Ada.Float_Text_IO;

WITH Ada.Numerics.ElemenCary_Functions;
USE Ada.Numerics.Elementary_Functions;
PROCEDURE Square_Root_Table IS

— I Displays a table of square roots; illustrates the USE clause
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: July 1995

MaxNumber : CONSTANT Positive := 20;

BEGIN — Square_Root_Table

Ada.Text_IO.Put (Item => "Number Square Root*);

Ada.Text_IO.New_Line;
Ada.Text_IO.Put (Item => " ");

Ada.Text_IO.New_Line;

FOR Number IN 1..MaxNumber LOOP

Ada.Integer_Text_IO.Put (Item => Number, Width => 3);
Ada.Float_Text_IO.Put
(Item => Sqrt (Float(Number)), Fore => 7, Aft => 5, Exp => 0);

Ada.Text_IO.New_Line;

END LOOP;

END Square_Root_Table;

Program 2.22 Plotting a Sine Curve

WITH Ada.Text_IO;

WITH Ada.Float_Text_IO;

WITH Ada.Numerics;

USE Ada.Numerics;

WITH Ada.Numerics.Elementary_Functions;
USE Ada.Numerics.Elementary_Functions;
PROCEDURE Sine_Curve IS

— 1 Plots a sine curve.
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: July 1995

RadPerDegree : CONSTANT Float := Pi / 180.0;
— radians per degree

MinAngle : CONSTANT Float

MaxAngle : CONSTANT Float

PlotWidth : CONSTANT Integer

PlotHeight : CONSTANT Integer := 20; — height of plot

-- Pi in Ada.Numerics

= 0.0; -- smallest angle
= 360.0; -- largest angle
= 40; -- width of plot
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StepAngle : CONSTANT Float ; =

(MaxAngle-MinAngle) / Float(PlotHeight);
— change in angle

Star : CONSTANT Character := ; — symbol being plotted
Blank: CONSTANT Character — to "pad" the

SUBTYPE ColumnRange IS Integer RANGE 0..PlotWidth;

Angle : Float; — angle in degrees
Radian : Float; — angle in radians
Scale : Float; — scale factor
Pad : ColumnRange; — size of blank padding

BEGIN -- Sine_Curve

Ada.Text_IO.Put(Item => " Sine curve plot*);
Ada.Text_IO.New_Line(2);

Scale := Float(PlotWidth / 2);

Angle := MinAngle;

WHILE Angle <= MaxAngle LOOP

Radian := Angle * RadPerDegree;
Pad := Natural(Scale * (1.0 + Sin(Radian)));

Ada.Float_Text_IO.Put
(Item =>Angle, Fore => 4, Aft => 0, Exp => 0);

— Display blank padding
Ada.Text_IO.Put(Item => Blank);
FOR BlankCount IN 1 .. Pad LOOP

Ada.Text_IO.Put(Itern => Blank);
END LOOP;

Ada.Text_IO.Put(Item => Star); — Plot * in next column
Ada.Float_Text_IO.Put
(Item =>Sin(Radian) , Fore => 6, Aft => 6, Exp => O.

Ada .Text_IO.New_Line;

Angle := Angle + StepAngle;

END LOOP;

END Sine_Curve;

Ada 95 also provides standard packages for float and discrete (integer, enumera
tion) random number generators.

Float-to-lnteger Type Conversion

A minor annoyance in Ada 83 appears when one converts a Float value to an
Integer one. If I is an integer variable and F a float variable, we know that

I  := Integer(F);

is a legal statement. This is a rounding operation; the Float value is converted to the
nearest integer. Suppose the Float value is exactly halfway between two integers?
The Ada 83 standard indicates that the rounding is compiler-dependent and can go in
either direction. This uncertainty is resolved by Ada 95; a Float value halfway
between two integers is rounded away from zero. Integer (3 .5) will produce 4;
Integer (-3.5) will produce -4.
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sine curve plot

0.0 * 0.000000

18.0 * 0.309017

36.0 * 0.587785

54.0 * 0.809017

72.0 * 0.951057

90.0 * 1.000000

108.0 * 0.951057

126.0 * 0.809017

144.0 * 0.587785

162.0 * 0.309017

180.0 * -0.000000

198.0 * -0.309017

216.0 * -0.587785

234.0 * -0.809017

252.0 * -0.951056

270.0 * -1.000000

288.0 * -0.951056

306.0 * -0.809017

324.0 * -0.587785

342.0 * -0.309017

360.0 * 0.000000

Figure 2.4 Output from Program 2.22

Additions to Ada. Text_IO

Here we present two useful additions to Ada. Text_IO. The first is related to external
files: In Ada 83 there is no standard way to append new data to the end of an existing
file. This capability is provided, in a nonstandard fashion, by many compiler suppliers.
In Ada 95, appending to the end of a file is provided by the addition of a file mode
Append_File to the existing In_File and Out_File modes. If MyFile is a vari
able of type Ada. Text_IO. File_Type and pro j ect7. dat is an existing file in
the file system,

Ada.Text_I0.Open

(File=>MyFile, Mode=>Ada.Text_IO.Append_File, Nanie=>"project7.dat");

opens the file for output and moves to the current end of it, so that any new Put opera
tions append the written data to the end of the file.

The second welcome addition to Ada. Text_IO is a pair of one-character input
procedures:

PROCEDURE Look_Ahead (Item: OUT Character; End_Of_Line: OUT Boolean);
PROCEDtJRE Get_Inanedi ate (Item: OUT Character);

Look_Ahead sets End_Of_Line to True if the current input pointer is at end of
line, including, at end of page, or at end of file; in each of these cases, the value of I tern
is not specified. Otherwise End_Of_Line is set to False and Item is set to the the
next character (without consuming it) from the file. This lets us look one character
ahead in the input stream without actually reading the character.
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Get_Iinmediate reads the next character from the keyboard, without waiting for
the ENTER key to be pressed. As in the case of the other Get operations, these two have
counterparts for external files as well as for the standard input or keyboard file. Program
2.23 illustrates the use of Get_Iinmediate.

Program 2.23 Demonstrating Ada.TextJO.GetJmmedjate

WITH Ada.Text_I0;

PROCEDURE Immediate IS

Demonstrate Ada 95 procedure Ada.Text_IO.Get_Immediate,
which allows reading a character without waiting for a <CR>

Author: Michael B. Peldman, The George Washington University
Last Modified: October 1995

Command: Character;

BEGIN — Immediate

Command := 'a';

LOOP

EXIT WHEN (Command = 'q') OR (Command = 'Q');
Ada.Text_I0.Put(Item =>

"Enter q or Q to quit; any other character to continue.")
Ada.Text_IO.Get_Immediate(Itern => Command);
Ada.Text_I0.New_Line;

Ada.Text_I0.Put(Item => "You entered ");
Ada.Text_IO.Put(Item = > Command);
Ada.Text_10.New_Line;

END LOOP;

END Immediate;

Command-Line Parameters

The final Ada 95 feature we will discuss in this section is the package Ada.
Cominand_Line, which allows a program to retrieve the flags or parameters entered
on the operating system command line when the program is invoked. This is another
feature that is missing fî om Ada 83, that was provided by compiler suppliers in non-
standard ways. The specification for this package is shown in Figure 2.5.

Argument_Count returns the number of arguments on the command line;
Argument takes a positive parameter and returns a given command-line argu
ment, so if Number is 2, Argument returns the second argument. Note that
Argument always returns a string; if the program requires an integer or enumera
tion value, the ' Val attribute can be used, as always, to convert the string. Finally,
the function Coinmand_Name allows the program to find out its own name as
known to the operating system—that is, the name by which it is invoked on the
command line.
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PACKAGE Ada.Coinmand_Line IS

FUNCTION ArgtJinent_Count RETURN Natural;

FUNCTION Argument (Number : IN Positive) RETURN String;

FUNCTION Command_Name RETURN String;

TYPE Status IS RANGE implementation-defined;

Success : CONSTANT Status;

Failure : CONSTANT Status;

PROCEDURE Set_Status (Code : IN Status);

END Ada.Command_Line;

Figure 2.5 Ada 95 Command-Line Package

Some operating systems allow a program, invoked by the command line, to return a
value, usually a small nonnegative integer, to the command shell. The procedure
Set_Status can be used to set this value if the operating system allows it.

Program 2.24 illustrates the use of these functions.

Program 2.24 Demonstrating Ada.Command_Arguments

WITH Ada.Text_IO;

WITH Ada.Coiranand_Line;

PROCEDURE Coininand_Arguments IS

demonstrate Ada 95 command-line parameters

Author: Michael B. Feldman, The George Washington University
Last Modified: September 1995

HowMany: Natural; — how many command-line arguments were there?

BEGIN — Command_Arguments

Ada.Text_IO.Put(Item => Ada.Command_Line.Command_Name);

HowMany := Ada.Command_Line.Argument_Count;

IF HowMany = 0 THEN

Ada.Text_IO.Put_Line(Item => ": No command-line arguments today.");
ELSE

Ada.Text_lO.Put_Line(Item => ": The command-line arguments are: ');

FOR Covint IN 1..HowMany LOOP

Ada.Text_IO.Put_Line

(Item => Ada.Command_Line.Argtiment(Number => Count));
END LOOP;

END IF;

END Command_Arguraents;



104 Writing Abstract Data Types

SUMMARY

In this chapter, you have been introduced to five ADTs: rational numbers, currency
quantities, calendar dates, screen positions, and windows. By now, you should be get
ting the flavor of the kinds of operations commonly found in ADTs, and of a number of
important Ada features—^packages, private types, overloaded operators, and excep
tions—^that support the writing of ADTs.

The next chapter introduces two important and very fundamental computing con
cepts, namely recursion and algorithm performance prediction, and shows how ADTs
and performance prediction are related.

EXERCISES

1. Modify Program 2.6 so that it does not terminate if the user enters a zero denomi
nator. Hint: See the procedure ReadCity in Program 1.2 for an example showing
how to build an exception-handling loop.

2. Complete the test plan begun in Section 2.2, then finish the body of Rationals
by implementing those operations left as stubs. Implement your test plan as a pro
gram. You have three choices for entering the test data: "hard-wired" (coded
directly into the program), entered interactively, or read from an external file you
create with an editor.

3. Modify the child package Rationals. 10 so that the interactive Get procedure
does its own exception handling and does not return to its caller until the input is
valid. Hint: See the procedure ReadCity in Program 1.2. Think about whether it
is possible to make the file-oriented Get procedure equally robust.

4. Complete the package body, and develop a full test plan, for Currency.
5. Design, code, and test a child package Dates. 10 that provides terminal and file

operations for values of type Dates. Date. You have much flexibility here,
because there are many commonly used external formats for dates. Choose one or
more that suit you and design accordingly.

6. The Ada. Calendar package provides a procedure Split, which takes a value
of type Ada. Calendar .Time and returns its components as OUT parameters.
Develop and test a procedure Dates. Split that behaves analogously when it is
given a value of type Dates. Date.

7. In the Dates package, the subtype Dates .JulianDay has range 1..366: the
date-arithmetic operators use this type as an operand. This means that a date cannot
be extended more than one year into the future or the past We can always add sev
eral years' worth of days, one year at a time. This is cumbersome for each client
program to do, so it makes sense to provide a package operation to do it.
Suppose we defined a type that allowed one to add or subtract an arbitrary number of

days. What would an appropriate range for this type be? (Hint: Package
Ada. Calendar is defined only for a certain range of years.) Define such a type, then
write the accompanying arithmetic operations to be added to the Dates package. In
developing the addition algorithm, you will probably find it easiest to do the addition in
a loop, one year at a time. Of course, the loop will be coded inside the addition operation.
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8. Dates does not provide an operation that subtracts two Date values and returns
the number of days between them. Develop such an operation. Would you use the
JulianDay subtype as the result type, or the "larger" day type described in the
preceding problem?

9. Obtain a copy of the documentation for the ANSI terminal control sequences and use
this manual to develop a more complete and sophisticated terminal control package.
Look especially at controls such as reverse video, blinking, and the like. Write an
interesting client program to demonstrate your terminal controller's capabilities.

10. If your computer laboratory supports terminals that are not ANSI-compatible (for
example. Zenith-mode terminals), obtain a manual for the terminals and modify
Screen to handle them properly. You can probably do this by modifying only the
body of Screen (Program 2.15) to handle the different escape sequences.

11. The window-manager package Windows does not provide a procedure to close a
window (erase it from the screen). Extend the window manager to provide such a
procedure, which would erase a window by writing blank characters over the win
dow's entire area. Note that the "writable" area of the window is altered by borders
and titles, so you will need to develop a way to know the window's original dimen
sions. One way to do this is to cany this information in the window record. Another
way is to add flags to the record indicating whether or not the window is bordered
or titled, and to use this information to expand the area that is erased.

12. Suppose that in using the Windows package, a client program contained the
statement

Windows.Put(Ch => ASCII.BS);

where ASCII.BS is Ada's name for the backspace character. Would the Put
operation handle this correctly? If not, modify it so that it will.
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3.1 Algorithms and Algorithm Design

3.2 Recursive Algorithms

3.3 Performance Prediction and the "Big O" Notation

3.4 Design: An ADT for Keyed Tabies

3.5 Application: A Simple Employee Database

3.6 Measuring Program Performance

In this chapter, you will study two important aspects of algorithms. The first is the use
of recursion or recursive algorithms to solve certain computing problems. A recursive
algorithm moves ahead by applying itself to a smaller part of the problem; in program
ming terms, the algorithm, written as a function or procedure, "calls itself." Several use
ful but easy-to-understand recursive algorithms will be presented, together with Ada
programs implementing them.

The second area introduced in this chapter is petformance prediction. You will
learn techniques and rules of thumb to estimate the computation time of an algorithm,
or, more specifically, the variation of the computation time as a function of the size of
the problem being solved. An important bit of terminology in performance prediction is
"big O" notation. This notation is a way of representing the "order of magnitude" or
"growth rate" of an algorithm—in other words, the variation with problem size we have
just mentioned. You'll be introduced to the most common variations or "big O's" to be
encountered later in the book. These are the constant, logarithmic, linear, quadratic,
and N log N growth rates.

At the end of the chapter, you will be introduced to the idea of a keyed table, which
is a simplified model of a data base. The operations on such a table will be presented,
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the "big O's" of two different implementations will be compared, and an application of
the table handler will be given.

Finally, you will learn how to measure the execution time of a program or
algorithm.

3.1 ALGORITHMS AND ALGORITHM DESIGN

Informally, an algorithm is a method used to solve a problem on a computer. Formally,
an algorithm is

a finite sequence of instructions^

each of which has a clear meaning and

can be performed with a finite amount of effort

in a finite length of time

using a finite amount of memory.

The fmiteness is important: A program is an algorithm if it eventually terminates
and never goes into an infinite loop, no matter what input we give it.

The computation time and memory space required by data structures and the algo
rithms that work on them are important, and sometimes scarce, resources. Indeed, you
will see in this book frequent references to trade-offs. A trade-off is a situation in which
alternative solutions to a problem are considered in terms of their resource require
ments. One solution may require more time but less space than another; a third might
require more time and more space than either of the others, but the programs might be
simpler and easier to maintain, making it more economical in human terms. We thus
speak in terms of trading off space for time, or performance for clarity, or computer
resources for human ones.

No book can give you a "right answer" that will serve in every case. When you
are faced with a trade-off situation in deciding on a computer solution to a problem
you have, you must base your decision on the specific circumstances at that time.
What a book can supply is a set of tools for you to use in analyzing all the factors
and trade-offs; the analysis itself, and the final decision, are up to you and your col
leagues.

You can see that data structures and algorithms are interrelated and cannot be stud

ied completely apart from one another. Since you already have some experience in
writing algorithms, in this chapter we will not go back to first principles. Instead, we
will focus your attention on two central concepts in the area of algorithms. One is the
important and useful mathematical notion of recursion, a tool we will use frequently in
this book. The other is performance prediction, a tool to "give us a handle" on the time
requirements of a problem solution.
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5! =5X4!

= 5 X (4 X 3!)
= 5 X (4 X (3x2!))

= 5 X (4 X (3 X (2 X 1!)))

= 5 X (4 X (3 X (2x1)))

= 5 X (4 X (3x2))

= 5 X (4x6)

= 5 X 24

= 120

Figure 3.1 Recursive Calculation of 5!

3.2 RECURSIVE ALGORITHMS

In this section, we introduce a concept in algorithm design called recursion. A recursive
algorithm—an algorithm that uses recursion—is deHned in terms of itself; the solutions
to many interesting programming problems are stated clearly and elegantly in recursive
form. In this book, you will see many recursive algorithms.

Factorial

A classical simple example of recursion is the definition of the factorial of a positive
integer N. Written N\ and read 'W factorial," this is easily understood as the product 1
X 2 X ... X M Thus, 3! = 6, 4! = 24, 5! = 120, and so on. But we can write a definition

without any "dot-dot-dot" as follows:

To find N\:

1. IfW=lthenA^! = l;

2. OtherwiseN! = N X (N-1)!

We have defined the "!" operation in terms of "I". Notice that the definition is not
circular, because the "I" is applied to a smaller and smaller number each time until it is
applied to 1. Figure 3.1 shows the definition applied to calculate 51.

Try the definition on some other numbers to make sure you understand how the recur
sion works. You will discover thatiV! gets very large very quickly: Even an innocent-look
ing calculation, such as 101, produces a rather large number (3,628,800). In fact, if you were
to write a program to calculate N\ and nm it on a computer using 16 bits to represent an inte
ger, your program could not calculate factorials larger than 7!, because 8! > 32767. On a
computer with a 32-bit integer representation, your program would fail to compute 13!.

Program 3.1 shows a recursive Ada function to compute the factorial of a positive
number.

Program 3.1 Recursive Factorial Function

FUNCTION Factorial (N : IN Positive) RETURN Positive IS

— Computes the factorial of N (N!) recursively
— Pre : N is defined

— Post: returns N!
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BEGIN — Factorial

IF N = 1 THEN

RETURN 1; — stopping case

ELSE

RETURN N * Factorial(N-1); — recursion
END IF;

END Factorial;

Program 3.2 declares the factorial function as a local function and attempts to com
pute and display factorials up to 20!. Compiling and executing Program 3.2 will give you
an indication of how far your compiler's representation of Positive will let you go.

Program 3.2 A Test of the Factorial Function

WITH Ada.Text_IO;

WITH Ada.Integer_Text_IO;

PROCEDURE Test_Factorial IS

— I Display the factorials of several natural numbers
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: October 1995

FUNCTION Factorial (N : IN Positive) RETURN Positive IS

-- Computes the factorial of N (N!) recursively
— Pre : N is defined

— Post: returns N!

BEGIN — Factorial

IF N = 1 THEN

RETURN 1; — Stopping case
ELSE

RETURN N * Factorial(N-1); — recursion

END IF;

END Factorial;

BEGIN — Test_Factorial

Ada.Text_I0.Put(Item => " N N!");

Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => " ");

Ada.Text_lO.New_Line;

FOR Num IN 1..20 LOOP

Ada. Integer_Text_IO.Put (Item => Num., Width => 3);
Ada.Integer_Text_IO.Put(Item => Factorial(Num), Width => 11);
Ada.Text_IO.New_Line;

END LOOP;

END Test_Factorial;

It is very important to notice that a workable recursive algorithm must always
reduce the size of the data set, or the number that it is working with, each time it is recur-
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sively called, and must always provide a stopping case, or terminating condition, such
as the first line in our factorial algorithm. Otherwise, the algorithm may never termi
nate, getting itself stuck in an "infinite recursion."

Finding the factorial of a positive integer is only a simple example of what can be
a very handy tool in developing algorithms. You will see this in the rest of this section,
where attention will be focused on four other recursive solutions. Ada programs are
given for three of the four; a program for the fourth will be shown later.

These algorithms are finding the reversal of a string, the permutations of a set, the
recursive binary search, and the recursive merge sort.

Reversal of a String

In our natural languages, there is a certain type of phrase known as a palindrome. This
is a phrase that reads the same forwards and backwards. Two examples of English
palindromes are "radar" and "Able was I ere I saw Elba." The phrase "Madam, I'm
Adam," supposedly spoken by the Biblical first man when he met his wife-to-be. Eve,
is a palindrome if we neglect case, spaces, and punctuation. (Adam, in his first fit of
anger, might also have said "Mad am I, Madam.")

One way to discover whether a phrase, or string of characters, is a palindrome, is to
find the reverse of the string. The string is a palindrome if its reverse is identical to it.

We can find the reverse of a string very easily using the following algorithm:

To find the reverse of a string:

1. If the string contains only one character, its reverse is identical to it and we're
finished.

2. Otherwise, save the first character.

3. Find the reverse of the remaining string, then concatenate the saved character
onto the right-hand end.

Notice that we've found the reverse of a string by saving the first character and
finding the reverse of what's left. This is a recursive algorithm: To carry it out on the
whole set of data, we need to carry it out on a smaller set of data.

It is important to realize that step 1 and step 3 are very different in kind from one
another. Step 1 is a terminating condition, sometimes called a stopping case or a trivial
case. It is a step that can be carried out without making a further recursive call. Step 3, on
the other hand, requires the recursive call "find the reverse." Every recursive algorithm
must have at least one terminating condition, otherwise the algoritlm has no way to stop
and will, in theory, execute an infinte number of recursive calls. In practice, because every
subprogram uses some memory when it is called, a recursive subprogram that never
reaches a terminating condition will exhaust the memory available to it and terminate in
that graceless fashion. In Ada, Storage_Error will be raised in this situation.

Program 3.3 shows an Ada function Flip (S), which retums the reverse of a
string (we have to call it Flip because REVERSE is a reserved word in Ada).
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Program 3.3 Find the Reverse of a String

FUNCTION Flip(S: String) RETURN String IS
— Pre: S is defined

-- Post: returns the reverse of S

C  : Character; — to save the first character of S

BEGIN — Flip

IF S'Length <= 1 THEN
RETURN S;

ELSE

C  := S(S"First);

RETURN Flip(S(S'First + 1 .. S'Last)) & C;
END IF;

END Flip;

Note the place in which Flip is called recursively by Flip. Also, we have used the
Ada attributes Succ and First to advantage in working with the string argument to
Flip. The expression S {S' First) gives us the first character of the string; the slice

S(S'First + 1 ,. S'Last)

gives us the second through last characters of S. Using this slice as an argument to
Flip is what is called for in step 3 of the algorithm.

Program 3.4 shows a function Palindrome (S), which uses Flip to determine

whether its string argument S is a palindrome. The IF statement on this function could
be replaced by the simpler form

RETURN Flip(S) = S;

Program 3.4 Is a String a Palindrome?

FUNCTION Palindrome (S: String) RETURN Boolean IS
— Pre: S is defined

— Post: returns True if and only if S is a palindrome

BEGIN

IF S = Flip(S) THEN
RETURN True;

ELSE

RETURN False;

END IF;

END Palindrome;

Permutations of a Set

Consider a small company that owns four automobiles for its officials to use. Each offi
cial has a designated automobile; the office building has a four-car garage. Letting the
cars be called A, B, C, and D, and the garage stalls 1,2,3, and 4, what are the different
ways in which the cars can be parked in the garages?
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Suppose A parks in stall 1. Then we can list all the possibilities remaining for B, C,
and D. Suppose then that B parks in stall 2. Clearly C and D can park in two different
ways: C in stall 3 and D in stall 4, or the other way around.

Now suppose C parks in stall 2. Then it is B and D that use stalls 3 and 4 in one of
two ways. And if D parks in stall 2, then it is B and C sharing stalls 3 and 4.

Clearly, then, there are six possibilities once A has parked in stall 1. It's easy to see
that another six possibilities arise if B parks in stall 1, and twelve more if C and D park
there. There are a total of 24 possibilities, all shown in Figure 3.2.

This is an example of finding the permutations of the elements of a set, where here
the set consists of the company's automobiles, and a permutation is an assignment to the
stalls in the garage. If the set has N members, the number of permutations is N\.

Let's try to write an algorithm to print out the permutations of the members of a set.
Letting the set be {A, B, C, D}, we can say:

To print all permutations of {A, B, C, D}:

1. Start with the set in the order {A, B, C, D}.

2. Print A, followed by all permutations of {B, C, D}.

3. Interchange A and B, then print B, followed by all permutations of {A, C, D}.

4. Interchange B and C, then print C, followed by all permutations of {B, A, D}.

5. Interchange C and D, then print D, followed by all permutations of {B, C, A}.

We have interchanged A with B, C, and D in turn (as though B, C, and D had
parked, in turn, in stall 1).

To print out all permutations of {B, C, D}, we have a problem just like the larger
one, but smaller! And printing out the permutations of {C, D} is just a smaller version
of that problem! This sort of problem—one in which the same algorithm can be applied
repeatedly to smaller and smaller sets—^lends itself to a recursive solution.

Let's construct a recursive Ada subprogram—^a procedure this time—^to print the per
mutations of an ordered set S with members numbered 1 through N. Without concerning
ourselves with how a set is implemented, assume we have a predefined procedure
PrintSet (S), which prints the entire set S in order, a function CopySet (S), which
returns an exact copy of S; a function Si zeOf (S), which returns the number of members
of S; and a procedure Interchange (S, k, i), which interchanges the ith and Ath mem
bers of S. Our recursive procedure, which is called Print_Pentiutations {S, k, N),
prints the permutations of the ̂th through Nth members of S. The detailed Ada source code
is shown as Program 3.5. Make sure you understand how it works!

ABCD BACD CABD DABC
ABDC BADC CADB DACB
ACBD BCAD CBAD DBAC
ACDB BCDA CBDA DBCA
ADBC BDAC CDAB DCAB
adcb bdca cdba dcba

Figure 3.2 Peimutations of {A, B, C, D}
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Program 3.5 Printing Permutations of a Set

PROCEDURE PrintPermutations {S : IN Set;
K : IN Positive) IS

— Pre: S and K are defined

— Post: displays all permutations of S with members
1..K-1 held constant and members K..N varying

N  : Positive := SizeOf(S);

SI : Set (1..N) := CopySet{S);
— The local variable is used here so the input set

— S doesn't get changed.

BEGIN

IF K = N THEN — stopping case
PrintSet (SI);

ELSE

FOR I IN K .. N LOOP -- recursive case

Interchange (SI, I, K);

PrintPermutations (SI, K + 1);

— this recursive call prints all permutations of
— the Set with the 1st through k-th members held
— constant and the k+lst through N-th varying.

END LOOP;

END IF;

END PrintPermutations;

Recursive Binary Search

Imagine that you've written up a list of your friends, placing their names in alphabeti
cal order, together with their telephone numbers. Because you're very popular, you
have many friends and this list is quite long, running over a number of pages.

Let's consider a clever way to look up a friend's phone number in this long list.
(Actually, it's way better suited to a computer than to a person, but that's because peo
ple often "look things up" intuitively instead of using algorithms!)

To look up a name:

1. Divide your list in half.

2. Find the name right in the middle of the list. (If the number of names is even,
choose the one just below the middle.) If this name is the one whose number
you're searching for, you're finished.

3. If your friend's name is earlier in the alphabet than the middle one, ignore all the
names from this middle one to the end, and look up the name only in the first half.
Divide this shorter list in half, then look at its middle element, and so on.

4. If your friend's name is later in the alphabet than the middle one, ignore the first
half of the list and look up the name in the second half, as above.
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Eventually, one of two things will happen: you'll find your friend in the list, or
you'll divide the list in half so many times that only one name will remain and it won't
be the one you wanted! (In case of an even number, no names at all will remain.) This
will mean that the friend you were looking for isn't in your list.

Like the reversal and permutation algorithms, this method is recursive: the same
method applied to the full list is applied to half the list, then to half of the half, etc. Let's
construct an Ada function for this. We'll let the list be implemented as an array with
subscripts 1..M The function will be called LookUpNcune (L, Name), which looks up
Name in the array L. LookUpName will return the location of Name if it can find it,
and zero if it can't.

Since our list is implemented as an array, we can use two interesting features of
Ada: the array slice and array attributes. If L is an array, then the attribute L' First
gives the value of its lowest subscript and L' Last gives the value of its highest sub
script. Furthermore, the slice L (k. .m) refers to the subarray L (k) through L (m).
Thus the function call LookUpName (L (k. ,m) , Name) will search only in the sub-
array L (k) through L (m); the call

LookUpName(L(L'First..L'Last).Name)

will search the entire array (as will just LookUpName (L, Name), by the way).
The Ada source code for this function is given as Program 3.6. Try finding the loca

tions of some names in the table given in Figure 3.3.

Program 3.6 Recursive Binary Search

FUNCTION LookUpName(L: List; Name: NameType) RETURN Natural IS
— Pre: L and Name are defined and L has at least one element
— Post: returns location of Name in L, or 0 if Name not present

Lower: Positive;

Upper: Pos i t ive;

Middle: Positive;

BEGIN

Lower := L'First;

Upper := L'Last;

Middle := (Lower + Upper) / 2;
-- integer division gives middle item if number of items
-- is odd, item just below middle otherwise.

IF Name = L(Middle) THEN — stopping case - we found it!
RETURN Middle;

ELSIF Lower = Upper THEN — stopping case - subarray has
RETURN 0; — only one name and it's not the one

ELSIF Name < L(middle) THEN — recursion - look in first half
RETURN LookUpName(L(Lower..Middle-1),Name);

else — recursion - look in second half

RETURN LookUpName(L(Middle+l..Upper).Name);

END IF;

END LookUpName;
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1 Alan

2 Alex

3 Ben

4 Bill

5 Dileep
6 Eugene

7 Farhad

8 Jessica

9 Jorge

10 Justin

11 Keith

12 Kevin

13 Kristin

14 Nguyen

15 Sharon

16 Sherry

Figure 3.3 Table of Names in Alphabetical Sequence

We call this algorithm recursive binary search. It is an example of a whole class of
algorithms known as divide-and-conquer, which work, as does this one, by dividing
and subdividing the set of data into two parts.

Recursive Merge Sort

Our last example of recursion in this section involves sorting the elements of a list into
ascending sequence. We will just sketch out an algorithm. Recursive merge sort, leav
ing the details until Chapter 14.

The algorithm depends on our knowing how to merge two sorted lists into a single
sorted list. Informally, the two sorted lists {B, G, H, P} and {A, F, K, L, R, Z) can be
merged into a single list {A, B, F, 0, H, K, L, P, R, Z}, much as you might merge two
sorted decks of 3" x 5" cards into a single deck.

Without being concerned about the details of the merge operation, consider how the two
original sorted lists came to be sorted. Why not by the very same process? In other words, if
we start with a single unsorted list, we can write an informal algorithm as follows;

To sort a list:

1. If the list contains only one element, it is already sorted.

2. If the list contains two elements, these elements are either in the correct order

and the list is already sorted, or they are not, so interchange them.

3. Otherwise, divide the list in half, sort each of the two halves, and then merge
them.

Aha! Another recursive algorithm! Our sorting method moves forward by dividing
its problem in half, then applying itself to the two halves of the list. Recursive merge
sort is thus another divide-and-conquer algorithm, with steps 1 and 2 as the stopping
cases. An example of its use is shown in Figure 3.4.
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Original (ZA CF QB GK PN DE MH RT)
Divide (ZA CF QB GK)(PN DE MH RT)
Divide (Z A C F) (Q B G K) (P N D E) (M H R T)
Divide (Z A) (C F) (Q B) (G K) (P N) (D E) (M H) (R T)
Sort pairs (A Z) (C F) (B Q) (G K) (N P) (D E) (H M) (R T)
Merge (AC F Z) (B G K Q) (D E N P) (H M R T)
Merge (AB CF GK QZ)(DE HM NP RT)
Merge (AB CD EF GH KM NP QR TZ)
Sorted!

Figure 3.4 Example of Recursive Merge Sort

You have seen four recursive algorithms in this section, and will see many more
throughout this book. Recursion is not a mysterious or magical concept; it is just
another tool in the algorithm designer's tool kit. It is time now to move to another
important topic in algorithms—namely, performance prediction.

3.3 PERFORMANCE PREDICTION AND THE

"BIG O" NOTATION

In considering the trade-offs among alternative problem solutions, an important factor
is the expected computation time of each of the alternatives. It is difficult to predict the
actual computation time of an algorithm without knowing the intimate details of the
underlying computer, the object code generated by the compiler, and other related fac
tors. The actual time must really be measured for a given algorithm, language, com
piler, and computer system by means of some carefully designed performance tests,
usually called benchmarks.

On the other hand, it is very helpful to know the way the running time will vary or
grow as a function of the "problem size": the number of elements in an array, the num
ber of records in a file, and so forth. Programmers sometimes discover that programs
that have run in perfectly reasonable time, for the small test sets they have used, take
extraordinarily long when run with "real world"-size data sets or files. These program
mers were deceived by the "growth rate" of the computation.

To take an example, programs whose running time varies with the square of the
problem size are not unusual. A program taking, say, 1 second to complete a file-han
dling problem with 10 records in the file, will require not 2 but 4 seconds for 20 records.
Increasing the file size by a factor of 10, to 100 records, will multiply the original run
time by 100, to 100 seconds. One thousand records will need 10,000 seconds, or about
3 hours, to complete! And 10,000 records (the number of accounts in a fair-sized bank,
or students in a fair-sized university) will need almost 2 weeks! This is a long time by
comparison to the 1 second taken by the 10-record test.

Suppose that this program is moved to a newer computer that is, say, twice as fast
in every respect as the old one. All the running times will be halved, which means that
the 2-week run will now take "only" 1 week. This is probably still much longer than the
time that was desired. The difficulty lies not in the original computer being "too slow,"
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but in the poor growth-rate performance of the algorithm, and only real improvement in
the growth rate will yield significant performance speedup.

It is also futile to blame this sort of poor performance on a language or a compiler.
A compiler only translates the high-level statements of an algorithm into machine
instructions; it does not—cannot—change the algorithm in any significant way. A bet
ter compiler can effect the sort of incremental speedup expected from a faster com
puter, but it cannot compensate for a poorly chosen or poorly coded algorithm.

This example shows that it makes sense to know something about growth rates, lest
program running time grow in unpleasantly surprising ways when problems grow to
meaningful size. Sometimes there is no choice: There may be no alternative solution to
that program running in "squared," or quadratic, time. But at least a programmer with
some experience in performance estimation will not be surprised!

Algorithm Growth Rates

Getting a precise estimate of the computation time of an algorithm is often difficult,
but as you have seen, it helps to "get a handle on it." We do this by trying to write a
formula for the computation time in terms of the problem size N. By the problem size,
generally we mean the number of data items that must be processed by the algorithm.

The computation time of an algorithm consists of two factors. One factor depends
on the programming language, compiler, and speed and instruction set of the underly
ing computer. It is often a good assumption that this system-dependent factor is reason
ably constant, not varying with the problem size, and so we can "factor it out."
(Obviously it's nice to have a small system dependent-constant as well as a small
growth rate, but reducing the size of the constant is hard to do in a general way precisely
because it's system-dependent!)

We give the name growth rate to that part of the formula that does vary with prob
lem size. In discussing the growth rates of algorithms, it is conventional to use the nota
tion OQ (read "growth rate," "big O," or "order of magnitude"). The most conunon
growth rates you will normally encounter are the following:

• 0(1), or constant

• 0(log AO. or logarithmic (the logarithm is usually taken to the base 2)

• 0(iV), or linear (directly proportional to N)

• 0(N log AO, (usually just called N log N)

• 0{N^), or quadratic (proportional to the square of N)

To give you an idea of the computation time of typical file sizes. Figure 3.5 shows the
values of each of these functions for a number of different values of N. The values hap
pen to be powers of 2, but this is just to make the computation of logarithms convenient

From this table you can see that as N grows, log N remains quite small with respect
to N and N log N grows fairly large, but not nearly as large as In studying sorting in
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N 1 log N N log N

1 1 0 0 1

2 1 1 2 4

4 1 2 8 16

8 1 3 24 64

16 1 4 64 256
32 1 5 160 1024

64 1 6 384 4096

128 1 7 896 16384

256 1 8 2048 65536
512 1 9 4608 262144

1024 10 10240 1048576
2048 1 11 22528 4194304

4096 1 12 49152 16777216
8192 1 13 106496 67108864
16384 1 14 229376 268435456
32768 1 15 491520 1073741824

Figure 3.5 Table of Common Algorithm Growth Rates

Chapter 14, you'll discover that most sorting methods have growth rates of N log N or
N^. In the next section we will look at some common algorithmic structures and discuss
ways to estimate their growth rates.

Estimating the Growth Rate of an Aigorithm

While there are no absolute "cookbook" rules that will always work to estimate perfor
mance, we can "get a handle on it" by taking advantage of the fact that algorithms are
developed in a structured way. Structured algorithms combine statements into usefully
complex blocks in four ways:

• Sequence, or writing one statement below another

• Decision, or the well-known if-then or if-then-else

• Loop, including counting loops, while loops, until loops, and the general loop-exit-
end loop structure

• Subprogram call

In Figure 3.6 you can see the Ada notation for a number of different variations on
these structures. Now let's take a look at some typical algorithm structures and estimate
their "big O's." We'll always use N to denote the "problem size."

Simple Statement

A simple statement is, for example, an assignment statement. If we assume that the
statement contains no function calls (whose execution time may, of course, vary with
problem size), the statement takes a fixed amount of time to execute. This we denote by
0(1), because if we factor out the constant execution time, we're left with 1.
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Temp := A; IF x > Max THEN

A := B; Max := x;

B := Temp; END IF;

(a). Sequence (b). Decision

IF X > y THEN IF x >= y AND x >= z THEN

Max := X; Max := x;

ELSE ELSIF y >= X AND y >= z THEN

Max := y; Max := y;

END IF; ELSE

Max := z;

END IF;

(c). If-then-else (d). If-then-elsif-else

FOR i IN p . . q LOOP WHILE x > 0 LOOP
x :=x+i; y :=y+3;

END; X := x/2;
END LOOP;

(e). Counting Loop (f). While loop

LOOP

X ;= X + k;

EXIT WHEN X >= 100;

y := y - z;

END LOOP;

(g). Loop-exit-end loop

Figure 3.6 Some Ada Control Structures

Sequence of Simple Statements

A sequence of simple statements takes time equal to the sum of the individual statement
times. If the individual statements are 0(1), then so is the sum.

Decision

For purposes of estimating performance, we rely on the fact that both the THEN part and
the ELSE part can be arbitrary structures in their own right. Whether the THEN path or
the ELSE path will be executed depends, of course, on the data and other execution-
time conditions. To estimate conservatively, then, we must take the larger of the two
individual "big O's" as the "big O" of the decision.

There are variations of the decision structure. For example, the CASE structure is
really a multiway IF-THEN-ELSE, so in estimating a CASE, we just take the largest
"big O" of all of the CASE choices.

Similarly, Ada and many other languages provide a structure such as IF-THEN-
ELSIF-ELSE, as was shown in Figure 3.6. This is also just a multiway decision.

Note that performance estimation can sometimes get complicated: The condition
tested in a decision may involve a function call, and the timing of the function call may
itself vary with problem size!
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Counting Loop

A counting loop is a loop in which the loop counter is incremented or decremented each
time the loop is executed. This is different from some loops we will consider a bit later,
in which the counter is multiplied or divided by a value.

What is the performance of a simple counting loop? Suppose the body of the loop
contains only a sequence of simple statements. Then the performance of the loop is just
the number of times the loop executes. Let us use the term trip count to mean the num
ber of times a loop executes. If the trip count is constant—independent of problem
size—^the whole loop is 0(1). On the other hand, if the loop is something like

FOR Coxinter IN 1. .N LOOP

the trip count does depend on N, so the performance is 0(AO. These two loop structures,
in which the body contains only simple statements, are shown in Figure 3.7.

Now suppose that the loop body is more complex. Real algorithms have this sort of
complexity, so let's consider a number of possibilities. Remember that we cannot cover
every case; we will look at some common ones that will be encountered in this book, so
that you can recognize these when you see them.

Figure 3.8 shows a double counting loop. The outer loop's trip count is clearly N.
However, the inner loop executes N times for each time the outer loop executes, so the
body of the inner loop will be executed NxN times, and the performance of the entire
structure is OiN^).

In Figure 3.9, a structure is shown that looks deceptively similar to the last one.
The outer loop surely has a trip count of N. But the trip count of the inner loop

depends not only on N but also on the value of OuterCounter! If OuterCounter
is 1, the inner loop has a trip count of 1. If OuterCounter is 2, the inner loop trip
count is 2; if OuterCounter is 3, the inner loop trip count is 3. Finally, if
OuterCounter is N, the inner loop trip count is N.

How many times will the body of the inner loop be executed? It will be the sum

1+2 + 3 + ...+N-1+N.

FOR Counter IN 1 .. 5 LOOP

— something with 0(1) performance

END LOOP;

(a). Trip Count Is Constant

FOR Coimter IN 1 . . N LOOP

— something with 0(1) performance

END LOOP;

(b). Trip Count Depends on N

Figure 3.7 Two Simple Counting Loops
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FOR OuterCounter IN 1 .. N LOOP

FOR InnerCounter IN 1 .. N LOOP

— something with 0(1) performance

END LOOP;

END LOOP;

Figure 3.8 A Double Counting Loop

FOR OuterCounter IN 1 .. N LOOP

FOR InnerCounter IN 1 .. OuterCounter LOOP

-- something with 0(1) performance

END LOOP;

END LOOP;

Figure 3.9 Another Double Counting Loop.

This summation, as you have probably learned in an algebra course, is

Nx(N+ l)/2 = ((N^) + N)/2.

We will say that the performance of this structure is 0(N^X since for large N the con
tribution of the N/2 term is negligible. For example, if N is 100, including the N/2 term
gives 5050; ignoring it gives 5000, a difference of only 1%.

It is interesting that making the inner loop trip count depend on OuterCounter
does not alter the "big O" since we neglect the term in N.

The structure in Figure 3.10 is similar, but the trip count of the inner loop decreases
rather than increasing as above. If OuterCounter is 1, the inner loop has a trip count
of N. If OuterCounter is 2, the inner loop trip count is 1; if OuterCounter is
3, the inner loop trip count is N-2. Finally, if OuterCounter is N, the inner loop trip
count is 1.

The number of times the body of the inner loop is executed is the sum

N + N-l+N-2 + ... + l

which is really the same sum as before;

Nx(N+ 1)I2 = ((N^) + N)f2.

This structure also has performance 0(A^^).
Look at the loop structures in Fig. 3.11 and convince yourself that in all cases the

performance is 0(N^).
From these examples we can generalize as follows: a structure with k nested count

ing loops—loops in which the counter is just incremented or decremented by 1—has
performance (?(M) if the trip count of each loop depends on the problem size. A growth
rate of (?(AA) is called polynomial.
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FOR OuterCounter IN 1 .. N LOOP

FOR InnerCounter IN OuterCounter .. N LOOP

something with 0(1) performance

END LOOP;

END LOOP;

Figure 3.10 Yet Another Double Counting Loop

Multiplicatively Controlled Loop

By a multiplicatively controlled loop, we mean one in which the variable controlling the
loop is multiplied or divided by a constant each time the loop is executed. Multiplicatively
controlled loops arise often in the kinds of algorithms you will see in this book.

FOR OuterCounter IN 1 .. N LOOP

FOR MiddleCounter IN 1 .. N LOOP

FOR InnerCounter IN 1 .. N LOOP

•- something with 0(1) performance

END LOOP;

END LOOP;

END LOOP;

FOR OuterCounter IN 1 .. N LOOP

FOR MiddleCounter IN 1 .. OuterCounter LOOP

FOR InnerCounter IN 1 .. MiddleCounter LOOP

something with 0(1) performance

END LOOP;

END LOOP;

END LOOP;

FOR OuterCounter IN 1 .. N LOOP

FOR MiddleCounter IN 1 .. OuterCounter LOOP

FOR InnerCounter IN MiddleCounter .. N LOOP

-- something with 0(1) performance

END LOOP;

END LOOP;

END LOOP;

Figure 3.11 Some Triple Counting Loops
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Although most programming languages have a special structure for counting loops,
they usually have no structure designed specifically to accommodate multiplicative
control, in Ada, we just use a WHILE or general loop.

Recall that whatever the specific structure used, every loop needs

• An initialization step, which gives the starting value(s) of the control vaiiable(s)

• A termination condition, which is tested during each iteration and which indicates
the circumstances under which the loop stops executing

• A modification step, indicating how the control variable(s) should be changed to
move the loop along from its starting point to its ending point

The difference between a WHILE structure and an UNTIL structure is that in the

former the termination condition is tested before each iteration, and in the latter the con

dition is tested at the end of each iteration.

Consider the structure in Figure 3.12.
In this loop, whose performance clearly depends on the problem size N, the variable

Control is multiplied by the constant 2 until Control becomes larger than iV. Since
Control's starting value is 1, after iterations.

Control = 2*

The number of iterations k can be found just by taking logarithms of both sides so
that we get

log2 Control = k

Since the loop stops when Control >= N, the performance of this algorithm is
OOogAO.

Looking at the structure a bit more generally, suppose we multiply Control by
some other constant factor. Giving this constant the name Factor, we can see that
after k iterations

Control = Factor'^

Control := 1;

WHILE Control <= N LOOP

— something with 0(1)

Control 2 * Control;

END LOOP;

Figure 3.12 A Multiplicatively Controlled Loop
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and so, by the argument above, the performance is 0(logjt N) instead of 0(log2 AO-
However, in considering the "big O" of an algorithm, it doesn't matter what base we
use for logarithms. This is because the logarithm of a number to one base is just a con
stant times the logarithm of the same number to a different base. Since constant factors
are "factored out" of a "big O," the base doesn't matter and we usually just refer to
0(log AO or 0(log2 AO. In Exercise 6, you can fill in the details of a proof that the base
really doesn't matter.

Now look at Figure 3.13, where the control variable is divided by a factor (2 in this
case) instead of multiplied.

This is very similar to the previous example. There, Control was started at a small
value and multiplied repetitively until it reached some maximum; here. Control is
started at a large value and divided repetitively until it reaches a minimum.

What is the "big O" of this structure? Instead of repeating the analysis above, we
just say that it is 0(log N) and leave the details for Exercise 7.

Now look at the two structures in Figure 3.14. Here we have analogies to the nested
counting loops we considered earlier. The performance of these structures is 0(A^ log
AO; you can do the analysis as Exercise 8.

Subprogram Call

We can handle a subprogram call by realizing that the subprogram is also an algorithm
with its own "big O," then imagining that this algorithm appears "in line" with the call
ing program.

In this way, we can deal with it as we have dealt with other complex algorithms
above. If the subprogram call appears inside a decision statement, its "big O" is used in
determining the maximum of the "big O's" of the different branches of the decision. If
the subprogram call appears inside a loop, its "big O" is, essentially, multiplied by the
trip count of the loop.

If the subprogram (call it A) in turn calls another subprogram (call it B), we use B's
"big O" in calculating A's, and then A's in calculating the calling program's "big O" and
so on for deeper nesting of subprograms.

Things get tricky if A and B are the same subprogram—that is, if a recursive call is
involved. In calculating A's "big 0," then, the depth of recursion—the number of times
that A is called recursively—^is usually itself a function of the problem size, so we need
to do the same sort of analysis we have been doing with other structures, to get a han
dle on the depth of recursion.

Control := N;

WHILE Control >= 1 LOOP

— something with 0(1)

Control := Control / 2;

END LOOP;

Figure 3.13 Another Multiplicatively Controlled Loop
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FOR Counter IN 1 .. N LOOP

Control := 1;

WHILE Control <= N LOOP

— something with 0(1)

Control := 2 * Control;

END LOOP;

END LOOP;

Control := N;

WHILE Control >= 1 LOOP

FOR Counter IN 1 . . N LOOP

— something with 0(1)

END LOOP;

Control := Control / 2 ;

END LOOP;

Figure 3.14 Two N log N Loop Structures

The structures you have seen in this section show examples of the most common
"big O" performances: constant, linear, quadratic, log N, and N log N. They also show
how to think through the "big O" analysis for composite program control structures.

Some Examples of Performance Prediction

Let's return to the algorithms in Section 3.2 and estimate their performance. This experi
ence will give you some ideas as to how to do a "big O" analysis on recursive programs.

Factorial

In calculating A^!, 1 is subtracted from the argument of Factorial each time a recur
sive call is done. Since multiplying one number by another is 0(1), the result is very
similar to a one-level counting loop: its performance is 0(N).

String Reversal

Each time Flip is called, its argument—^the string—is shortened by one character.
Thus, the number of recursive calls is determined by the length of the string—^in fact,
directly proportional to it—so the performance seems to be 0(N).

However, a subprogram call is involved: concatenation of a character to the end of
a string. If that operation does not depend on the string length, the performance of
Flip is indeed 0(N). On the other hand, if for some reason the concatenation opera-
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tion had to "walk across" the whole string to add the new character onto the end—a lin
ear operation—then we would have an overall result of 0(N'^) because a linear opera
tion would be done a linear number of times. Without knowing more about
concatenation, we cannot go any farther.

Permutations of a Set

Earlier when we introduced the idea of permutations, we calculated that a set of size N
has A^! permutations. Therefore, the program PrintPermutations has growth rate
OiN\), much larger than any of the other growth rates we've seen. Since algorithms
with factorial growth rate are almost impossibly slow for interestingly large values of
N, we try to avoid them.

On the other hand, sometimes we cannot avoid factorial growth. Whichever algo
rithm we choose for printing all permutations, we cannot escape the mathematical fact
that a set of size N has permutations. Anyone claiming an algorithm which can print
A^! values with performance better than C>(A^!) is claiming something magic, not math
ematical!

Recursive Binary Search

Recall that in LookUpName we divide our sorted list in half, then in half again, and so
on, until we either find what we're looking for or are left with only one element which
is not the one we want. This is just a recursive version of the loop structure shown in
Figure 3.13, for which we have already discovered a performance of (?(log AO.

Recursive Merge Sort

Recursive merge sort, as we saw before, is another divide-and-conquer algorithm
(involving repeated halving of the list to be sorted). The number of times we divide the
list in half is log N, so the performance seems to be log N, but here again a lower-level
subprogram is called, namely "merge," whose implementation is unknown to us.

Here is a hint: The merge operation is usually linear in performance, because all
elements in each list are copied once. The topmost level will then merge two lists of
length A//2, requiring the copying of N values; the second level will do two merges, but
each list is of length A//4, and so on. Thus, if we add up all the merging done at a given
level of recursion, we always get exactly N operations. But since there are log N levels
of recursion, we arrive at a growth rate of oIn log AO- This is a recursive version of a
loop structure in Figure 3.14.

This discussion of performance prediction has been rather informal. It is often pos
sible, for many algorithms you will see in this book, and for others you will write your
self, to do an approximate, rough prediction to "get a handle on it." However, it would
be misleading if we implied that all performance prediction is easy, or that it can all be
done informally. It is important to realize that for many algorithms, performance pre
diction is very difficult and requires rigorous mathematical proof techniques. As you
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continue in courses in the theory of algorithms, you will learn such techniques and they
will serve you well. In the meantime, our informal approach will suffice; if you apply it
to programs that you encounter or consider writing, you will find that the informal
method generally serves you well too.

3.4 DESIGN: AN ADT FOR KEYED TABLES

To show how performance prediction can be done comparatively, let's take up a practi
cal example. We'll consider a bit more fully the problem of maintaining a table such as
the phone list discussed earlier. Let us assume that each element to be stored in the table
is in the form of a record containing a key field and some other fields. We use the key
field to look up elements in the table. In the phone list case, each record's key is the
name of a friend and another field in the record contains that friend's phone number. For
simplicity, we assume that at most one element with a given key can be stored.

Keyed tables are a very common structure in computing, with many applications.
Let us therefore consider the table to be an ADT. The purpose of this section is first to
specify the keyed table, then to present two alternative implementations of the table han
dler, estimating the performance of the various operations for the two implementations.
The keyed-table ADT will reappear several times throughout the book, as we introduce
interesting ways to implement it; each time we bring in a new implementation, we will
revisit the performance estimations.

Specifying the Keyed Table

Consider the operations one must do to maintain a table of records. Even if you are main
taining a set of paper file cards, each of which contains the name and phone number of a
friend, these are the important operations. Figure 3.15 sketches a package specification
for a table handler. All the type declarations are omitted for the time being. The specifi
cation shows five operations, each with its preconditions and postconditions:

• InitializeTable, which creates an empty table, either "from scratch" or by
emptying one that already contains some elements

• Insert, which adds a new element to the table, storing it by its key

• Delete, which deletes from the table the element with a given key

• Retrieve, which copies from the table the element containing a given key

• Traverse, which displays all elements of the table, in order by key

The last operation requires some discussion. Traversing a table means processing
all table elements, "visiting" each element exactly once. To make the operation more
useful to humans, we require that the elements be visited in the order of the keys.
Traversal is a very general operation; we can imagine a number of different actions we
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PACKAGE Tables IS

— Specification of the abstract data type for a table of
— element records, each element containing a key.

— Data structures

TYPE KeyType IS

TYPE EleraentType IS
TYPE TableType IS

— Operators

-- to be defined later

— to be defined later

— to be defined later

PROCEDURE InitializeTable (T : IN OUT TableType);
— Pre : None

— Post: T is an initialized Table, that is, it behaves as though
it were an empty table with no elements.

PROCEDURE Insert (T : IN OUT TableType;
E  : ElementType;
Success : OUT Boolean);

— Pre : T is initialized and E is defined

— Post: Inserts element E into tcdsle T

Success is True if insertion is performed, and False
if T already has an element with the same key as E.

PROCEDURE Retrieve (T

Target

E

Success

TableType;
KeyType;
OUT ElementType;
OUT Boolean);

— Pre : T is initialized and Target is defined
— Post: Copies into E the element of T whose key is Target.

Success is True if the copy is performed, and False
if T has no element whose key is Target.

PROCEDURE Delete (T : IN OUT TableType;
Target : KeyType;
Success. : OUT Booleam);

— Pre : T is initialized and Target is defined
— Post: Deletes from T the element with key Target

Success is True if deletion is performed, and False
if T has no element whose key is Target.

PROCEDURE Traverse (T ; TableType);
— Pre : T is initialized.

— Post: The elements of T are displayed in order by key.

END Tables;

Figure 3.15 Sketch of Specification for Keyed Table Package

might take on each element as it is visited. To keep the discussion simple at this point,
we assume that Traverse simply displays the contents of the table, in ascending
sequence by key.

Let's discuss two possible implementations of this table, both of which use an
array, and consider the performance of the various operations in each implementation.
We won't bother to give detailed programs for them, since we're interested only in
"reasoning out" the performance issues. We assume that the array can hold up to
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Capacity elements, and that the actual number of elements in the array at a given
moment is given by CurrentSize.

Given that the table variable has been declared, InitializeTable in both

implementations simply involves setting CurrentSize to zero to indicate that the
table is empty, a constant-time operation. Assuming that the client program cannot
access the table except through these abstract operations, it does not matter whether
the table elements are initialized to some default value or contain "garbage" or previ
ously stored results. In either case, the client perceives an empty table; what is impor
tant to the client is how the operations behave, not the details of what they are doing.
Therefore, even if the table has been partially filled, InitializeTable need not
actually empty the table; it need only set CurrentSize to zero.

Implementation 1: Unordered Array

In Implementation 1 we leave the array unordered, updating it simply by keeping track
of the number of positions currently occupied, then inserting a newly-arriving element
in the next available position. The Insert operation thus has performance 0(1) (con
stant), since the number of operations required to store an element in the next available
position in an array doesn't depend on the size of the array or on the number of ele
ments that are already there.

What about the Retrieve operation? Since the elements are not in any
particular order in the table, we need to start at one end of the occupied portion of the
table and check the key of every element until either we find the one we wanted or
we reach the other end of the occupied portion. Sometimes we find our element on the
first attempt; sometimes we need to search the entire table; on the average, we check
half the elements. When we locate the desired element we copy a table element back
to the output parameter, which takes constant time. Since both the worst and the aver
age situations depend directly on the number of elements in the table, we can say that
a Retrieve operation is linear or 0(N) (actually (^(CurrentSize)).

The Delete operation also has linear performance. We delete the element corre
sponding to a given key by searching for it as in a Search, then removing it by mov
ing all elements below it up one position, as shown in Figure 3.16a. Since the number
of operations for both the search and the move depend directly on CurrentSize, we
have a linear operation.

We can speed up Delete by recognizing that because the elements in the table are
not in order, we lose nothing by simply copying the latest element into the position occu
pied by the one to be deleted, as shown in Figure 3.16b, then recovering the vacated
space by decrementing ActualElements. Although the average time for a Delete
is surely reduced by this optimization, the growth rate is unchanged, because the search
part of the operation is still linear. This is a very good example of the two parts of the
actual performance of an algorithm: the average time per operation and the growth rate.

The Traverse operation involves sorting the table, since we want the elements to
be visited and displayed in key order. The details of the sorting process are left for
Chapter 14, where many sorting algorithms are presented and compared. For com
pleteness here, we will simply mention that the growth rate of a sorting algorithm is, in
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most cases, either 0(N log AO or 0{hP). Assuming we always choose an N log TV sort
ing method. Traverse has an N log Ncomponent (sorting the array) and a linear com
ponent (movng through the array an element at a time). The overall "big O" is the larger
of these two, or N log N.

implementation 2: Array Ordered by Key

This implementation corresponds to the kind of table discussed in the phone list exam
ple, where we discovered the Binary Search algorithm, which carries out a Search
with 0(log AO performance.

Insert and Delete turn out to have linear performance in this implementa
tion. In an Insert, we need to insert the newly arriving element in its proper place
in the array, to preserve the ordering. To do this, we find this place by using a modi
fied Search operation: Because the element is not yet in the table, the search will
always be unsuccessful, but instead of just reporting that fact, we will make the search
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report the last location it tested, which will tell us exactly where the new element
needs to go. This will work correctly except where the new key is smaller than the
previously smallest key or greater than the previously greatest one, so we can simply
test those two possibilities as special cases before beginning the binary search.

Once the proper location has been found, we need to make room for the new ele
ment by moving those with larger keys forward one position. Thus, the performance
has a logarithmic component and a linear one; as CurrentSize increases, it is so
much greater than its logarithm that the logarithmic component can be ignored. Thus,
Insert has linear performance.

Delete is really just like Search except that we remove the element to be
deleted by moving all elements with greater keys back one position in the array. Since
we cannot use the speedup from Implementation 1 (why?), the move is linear, so the
whole Delete operation is linear.

Retrieve is a log N operation in this implementation, because after we find the
element to be copied (a log N search), the actual copying is 0(1), so we can ignore it.

The last operation to consider is Traverse. Because the table is already ordered.
Traverse can simply start at the beginning and step through the array, displaying
each element as it encounters that element. Thus, Traverse is a linear operation.

Figure 3.17 gives a tabular summary of the growth rates of the operations in both
implementations.

3.5 APPLICATION: A SIMPLE EMPLOYEE

DATA BASE

This section presents an extended project. It is very important to read this section
carefully, because it serves as the basis for a series of projects to be presented in later
chapters.

As an example of the use of the table package described in Section 3.4, consider a
simple system for maintaining employee records of a small company with a maximum
workforce size of, say, 25. An employee record has six fields:

• An identifying number, which we use as the key

• The employee's name, a string of 30 characters filled with blanks at the end if
necessary

Implementation 1 Implementation 2
Unordered Ordered

InitializeTcible 0(1) 0(1)
Insert 0(1) (KN)
Retrieve 0{N) O(log N)
Delete 0(JN) 0(,N)
Traverse 0{N\ogN) o(n)

Figure 3.17 Summary of Growth Rates for Implementations 1 and 2
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• The employee's gender, an enumeration type

• The number of dependents (spouse, children, and so on) living with the employee
(this is important for tax purposes)

• The employee's pay rate, a currency value, of course

• The employee's date of hiring, a date value

We develop the employee system in the following phases:

1. Develop the basic ADT package. Employees, providing constructor and
selector operations similar to those of Dates and Currency.

2. Develop the basic input/output child package. Employees. 10, that provides
the appropriate Get and Put operations.

3. Test the employee packages with a simple test program, Test_Employees.

When phase 3 is completed, we know that we can create employee records,
select their fields, read, and display them. This makes it much easier to debug the
later stages.

4. Develop a package. Tables, capable of providing a keyed table of employees,
following the model discussed in section 3.4. This table package will use the
packages from phases 1 and 2.

5. Test this package using a simple test program, Test_Employee_Tables.

When phases 4 and 5 are completed, we know that the entire employee system
is working smoothly.

6. Finally, develop and test an interactive, menu-driven user interface
(Employee_UI) to the employee system, allowing a terminal user to enter
commands to create and maintain the employee database.

The package structure of the desired system is shown diagrammatically in Figure
3.18. The boxes represent packages and the main program; an arrow from package P to
package or program Q means that Q is a client of P and, therefore, has a context clause
WITH P.

The Basic Employees Package and
Ei!q;>loyees. 10 Child Package

Let's proceed with the first two phases. Program 3.7 shows a specification for a simple
employee ADT. We assume that the Dates and Currency packages from Chapter 2
are available. We leave it to you to write the body of Employees, which is easy, given
your experience with the ADTs of Chapter 2.
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Tables

Currency.10

Employees.10

Dates.10Dates

Employees

Employee_UI

Currency

Figure 3.18 Package Structure for Employee System

Program 3.7 ADT Specification for Employees

WITH Currency;

WITH Dates;

PACKAGE Employees IS

--| Specification for ADT package to handle Employee records
--j Author: Michael B. Feldman, The George Washington University
--I Last Modified: October 1995

-- constant and type definitions

McocName: CONSTANT Positive := 30;

SUBTYPE NameType IS String(1..MaxName);

SUBTYPE IDType IS Positive RANGE 1111..9999;
TYPE GenderType IS (Female, Male);

TYPE Employee IS PRIVATE;

— operations

— constructor

FUNCTION MakeEmployee (ID: IDType;
Name: NameType;

Gender: GenderType;

NumDepend: Natural;
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Salary: Currency.Quantity;
StartDate: Dates.Date) RETURN Employee;

— Pre: all input parameters are defined
— Post: returns a value of type Employee

-- selectors

FUNCTION RetrievelD

FUNCTION RetrieveName

FUNCTION RetrieveGender

FUNCTION RetrieveNxjmDepend
FUNCTION RetrieveSalary
RETURN Currency.Quant i ty;

FUNCTION RetrieveDate

RETURN Dates.Date;

—Pre: OneEmp is defined
—Post: each selector retrieves its desired field

(OneEmp

(OneEmp

(OneEmp

(OneEmp
(OneEmp

Employee)
Employee)

Employee)

Employee)

Employee)

RET

(OneEmp: Employee)

URN IDType;

RETURN NameType;

RETURN GenderType;

RETURN Natural;

PRIVATE

TYPE Employee IS RECORD

IDType := IDType'Last;

NameType := (OTHERS => ' ');
GenderType := Female;

Natural := 0;

Currency.Quantity := Currency.Ma)ceCurrency(0.00)
Dates.Date := Dates.MakeDate(1980, 1, 1);

ID:

Name:

Gender:

NumDepend:

Salary:

StartDate:

END RECORD;

END Employees;

Program 3.8 gives the specification for Employees. 10; Program 3.9 shows the
body. Note that the Get is not robust; it simply prompts the user for the required input.
Also, no file operations are provided. Finally, the body of Employees . 10 requires
Currency. 10, which was given in Chapter 2, and Dates. 10, which was not given
there. Therefore, you must complete Dates. 10 before you can complete
Employees.10.

Program 3.8 Specification for Employees. lO

PACKAGE Employees.10 IS

— I Child Package for Employee Input/Output
— I Author: Michael B. Feldmem, The George Washington University
—j Last Modified: July 1995

PROCEDURE Get (Item: OUT Employee);

—reads an Employee record from the terminal

—Pre: none

—Post: Item contains a record of type Employee

PROCEDURE Put (Item: IN Employee);

—displays ein Employee record on the screen
—Pre: Item is defined

—Post: displays the fields of Item on the screen

END Employees.10;
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Program 3.9 Body of Employees. lO

WITH Ada.Text_IO;

WITH Ada.Float_Text_IO;
WITH Ada.Integer_Text_IO;

WITH Dates.10;

WITH Currency.ID;

PACKAGE BODY Employees.10 IS

— I Body of Child Package for Employee Input/Output
— I Author: Michael B. Feldman, The George Washington University

Last Modified: July 1995

PACKAGE GenderType_IO IS
NEW Ada.Text_IO.Enunieration_IO(Enum => GenderType) ;

PROCEDURE Get (Item: OUT Employee) IS

S: Stringd. .MaxName) ;

Count: Natural;

BEGIN -- simple, non-robust Get

Ada.Text_IO.Put(Item => "ID > °);

Ada.Integer_Text_IO.Get(Item => Item.ID);

Ada.Text_IO.Skip_Line;

Ada.Text_IO.Put(Item => "Name > ");

Ada.Text_IO.Get_Line(Item => S, Last => Count);

It em. Named. .Count) := S(l..Count) ;

Ada.Text_IO.Put(Item => "Gender (Female or Male) > ");
GenderType_IO.Get(Item => Item.Gender);

Ada. Text_IO. Put (Item => "Nvimber of dependents > ");

Ada.Integer_Text_IO.Get(Item => Item.NumDepend);

Ada.Text_IO.Put(Item => "Salary > ");
Currency.10.Get(Item => Item.Salary);

Ada.Text_IO.Put(Item => "Starting Date, mmm dd yyyy > ");
Dates.10.Get(Item => Item.StartDate);

END Get;

PROCEDURE Put (Item: IN Employee) IS

BEGIN — simple Put

Ada.Integer_Text_IO.Put(Item => Item.ID, Width => 1);

Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => Item.Name);

Ada.Text_IO.New_Line;

GenderType_lO.Put(Item => Item.Gender);

Ada.Text_IO.New_Line;
Ada.Integer_Text_IO.Put(Item => Item.NumDepend, Width => 1);

Ada.Text_IO.New_Line;
Currency. 10.E>ut (Item => Item.Salary) ;
Ada.Text_IO.New_Line;
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Dates.10.Put(Itern => Item.StartDate);
Ada.Text_IO.New_Line;

END Put;

END Employees.10;

Testing Ei^ployees and En^loyees. 10

We can proceed to phase 3. Program 3.10 shows a simple test program that reads and
displays three employee records.

Program 3.10 A Simple Test of Employees and Employees. lo

WITH Ada.Text_IO;

WITH Employees;

WITH Employees.10;
PROCEDURE Test_Employees IS

— I Simple Test of Employee Table
I Author: Michael B. Feldman, The George Washington University

— I Last Modified: July 1995

OneEmployee: Employees.Employee;

BEGIN -- Test_Employees

FOR Count IN 1..3 LOOP

Employees.10.Get{Item => OneEmployee);
Ada.Text_IO.Put(Item => " «);
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => "You entered ");
Ada.Text_IO.New_Line;
Employees.10.Put(Item => OneEmployee);
Ada.Text_IO.Put(Item => " •);
Ada.Text_IO.New_Line;

END LOOP;

END Test_Employees;

A typical run of this program will produce the following output:

ID > 1234

Ncune > John Brown

Gender (Female or Male) > male

Number of dependents > 3
Salary > 50000
Starting Date, ramm dd yyyy > jan 1 1996

You entered

1234

John Brown

MALE

3

50000.00

JAN 1 1996
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ID > 5678

Name > Virginia Dare
Gender (Female or Male) > female

Number of dependents > 1
Salary > 25000

Starting Date, mmm dd yyyy > feb 28 1980

You entered

5678

Virginia Dare
FEMALE

1

25000.00

FEB 28 1980

ID > 7777

Name > George Washington
Gender (Female or Male) > make

raised ADA.IO_EXCEPTIONS.DATA_ERROR
Trace Back Information

Program Name File Name Line

employees.io.get employees-io.adb 32
test_employee test_employee.adb 17

The user entered make instead of male for the gender of the last employee;
Ada. Text_IO. Data_Error was raised, giving the trace back shown. The pre
cise form of the trace back varies from compiler to compiler, but the information in
it allows you to find the line of your program that caused the exception to be raised.

Ideally, the exception should not be propagated to the main program, but should be
handled in an exception-handling loop within Employees . 10.Get. Providing this
robustness is left as an exercise.

Specification of the Empioyee Data Base Package Tables

Program 3.11 shows the specification for a table handler for records of type
Employees. Employee.

Program 3.11 ADT Specification for Employee Table

WITH Employees;

PACKAGE Tables IS

— I ADT for simple employee table type
— I Author: Michael B. Feldman, The George Washington University

Last Modified: October 1995

SUBTYPE KeyType IS Employees.IDType;

SUBTYPE ElementType IS Employees.Employee;
TYPE TableType IS LIMITED PRIVATE;
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PROCEDURE InitializeTable (T : IN OUT TableType);
— Pre : None

— Post: T is an initialized Table.

PROCEDURE Insert (T : IN OUT TableType;

E  : ElementType;
Success : OUT Boolean);

— Pre : T is initialized and Target is defined
— Post: Inserts element E into table T

Success is True if insertion is performed, and False
if T already has an element with the same key as E,

PROCEDURE Retrieve (T : TableType;
Target : KeyType;

E  : OUT ElementType;
Success : OUT Boolean);

— Pre : T is initialized and Target is defined
— Post: Copies into E the element of T whose key is Target.

Success is True if the copy is performed, and False
if T has no element whose key is Target.

PROCEDURE Delete (T : IN OUT TableType;

Target : KeyType;

Success : OUT Boolean);
— Pre : T is initialized and Target is defined
-- Post: Deletes from T the element with key Target

Success is True if deletion is performed, and False
if T has no element whose key is Target.

PROCEDURE Traverse (T : TableType);
Pre : T is initialized.

Post: The elements of T are displayed in order by key.

PRIVATE

MaxElements: CONSTANT Positive := 25;

StJBTYPE Tablelndex IS Natural RANGE 1. .MaxElements;

SUBTYPE TableRange IS Natural RANGE 0..MaxElements;

TYPE Elements IS ARRAY(TableIndex) OF ElementType;

TYPE TableType IS RECORD

ActualElements: Elements;

CurrentSize: TableRange := 0;
END RECORD;

END Tables;

This more definite specification, based on the abstract sketch given in Figure 3.15,
uses SUBTYPES to define KeyType and ElementType as "nicknames" of the cor
responding items of Employees. TableType is then declared as LIMITED PRI
VATE. We will discuss this shortly.

The PRIVATE section gives the implementation details. Note the two subtypes:

•  Companylndex, which is used to subscript the array that will hold the employee
records,

•  CompanyRange, which gives the range of the actual number—which could be
zero—of elements in the array
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Finally, we have the array type Elements and the record type TableType. The
latter has two fields, the employee array and the actual number of elements in the
table.

Using this specification, a client program could actually declare and use several
employee tables, each with the same structure. This might be useful, for example, in
keeping a table for each of several company offices in different cities.

The Table as a limited private Type

The definition of TableType as a LIMITED PRIVATE type warrants explanation. A
LIMITED PRIVATE type not only excludes a client program from manipulating
details of objects of the type, but removes the assignment and equality-testing opera
tions as well. To give ourselves maximum flexibility in implementing the table package,
we need to assure ourselves that a client program could not use the predefined symbols
": =" or " =" in a meaningless or misleading way.

The table is represented as an array. Most of the time, this array will be only partially
filled with data; the unfilled part of the array will contain unspecified "garbage." The
various table operations deal with this fact by working only with the filled part of the
array, which is the array slice from 1 to CurrentSize.

The writer of a client program, writing an equality-check operation on two table
objects, will almost always get an incorrect result, because even if the two tables contain
the same data, the "garbage" in the arrays will differ. Since equality simply compares all
the bits in one array to the corresponding bits in the other, it will return False even if
the arrays are logically equal. Therefore, our best policy is simply to prevent the use of
" =" by a client; we do this by making the table type LIMITED PRIVATE. This gives
us the most flexibility in choosing a table implementation while allowing us to guaran
tee (as ADT writers must) that client operations will always be meaningful ones. As we
will see in later chapters, it is also wise to prevent the client from using ■■: = •• to copy
one table to another.

A Reusable Package for Debugging Other Packages

Before proceeding to the body of Tables, we introduce a debugging package that can
assist you in developing and debugging other packages. The purpose is to allow a pack
age developer to instrument the package by placing, in each subprogram of the package,
calls to tracing operations that will write a message when the subprogram is called, and
another when the subprogram is ready to return to its caller.

However, we do not want these tracing operations to be called when the package is
operating normally, only when it is being debugged. Accordingly, we will allow a client
of the package to set a switch indicating whether the trace output is desired.

Program 3.12 shows the specification for this package. It provides an enumeration
type giving the values Off and On, a procedure SetDebug, and procedures Enter
and Leave. As can be seen from the comments. Enter and Leave are intended to be

used by the writer of the package and SetDebug is intended to be used by the client.
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SetDebug has two parameters: a required parameter WhichWay, indicating how to
set the debug switch, and an optional parameter FileName, to specify a file to which
the debugging output is to be written. A client calling

Debugging_Support.SetDebug(WhichWay => On, FileName => "trace.txt");

is specifying that trace output go to the given file.

Program 3.12 Specification for Debugging_Support

WITH Ada.Text_IO;

PACKAGE Debugging_Support IS

Package Giving Operations Useful for Debugging Other Packages
WITH-ed by the body of a package to provide an easy way to
trace calls and returns from subprograms;
WITH-ed by a client of the package only to turn debugging on.
Author: Michael B. Feldman, The George Washington University
Last Modified: January 1996

TYPE Switch IS (Off, On);

PROCEDURE SetDebug(WhichWay: IN Switch; FileName: String := ""};
— Pre: WhichWay is defined
— Post: Debugging support is turned On or Off, as the case may be;

If FileName = debugging output goes to Standard_Output;
otherwise, debugging output goes to the given file.

PROCEDURE Enter(Subprogram: IN String; Message: IN String := "");
— Pre: Sxibprogram is defined
— Post: Writes a message to Standard_Output or an external file

Enter is not intended as a user operation, but should
be called only from within a package being debugged.

PROCEDURE Leave(Subprogram: IN String; Message: IN String := "");
— Pre: Subprogram is defined
— Post: Writes a message to Standard_Output or an external file

Leave is not intended as a user operation, but should
be called only from within a package being debugged.

END Debugging_Support;

Now Program 3.13 shows the body of Debugging_Support. It is very
straightforward and easy to understand. The procedures Enter and Leave are
"silent" unless the package client has turned on the debugging switch, and write their
output to the screen unless the client has specified an external file. We will use
Debugging_Support in developing the body of our employee table package.

Program 3.13 Body for Debugging_Support

WITH Ada.Text_I0;
PACKAGE BODY Debugging_Support IS

— I Body of Package for Debugging Other Packages
— I WITH-ed by the body of a package to provide an easy way to
— I trace calls and returns from subprograms;



3.5 Application: A Simple Employee Data Base 141

I WITH-ed by a client of the package only to turn debugging on.
I Author; Michael B. Feldman, The George Washington University
j  Last Modified: January 1996

DebugginglsOn: Boolean := False;
-- no debugging unless client calls SetDebug(WhichWay => On);

DebugFile: Ada.Text_IO.File_Type;
WritingToFile: Boolean := False;
— use steindard output unless client gives a file name

PROCEDURE SetDebug{WhichWay: IN Switch; FileNcune: String := "") IS
BEGIN — SetDebug

IF WhichWay = Off THEN
DebugginglsOn := False;

ELSE

DebugginglsOn := True;

-- Open debugging file, if any
IF FileName /= "" THEN

WritingToFile := True;
Ada.Text_IO.Create(File => DebugFile,

Mode => Ada.Text_IO.Out_File,
Name => FileNcime) ;

END IF;

END IF;

END SetDebug;

PROCEDURE Enter(Subprogram: IN String; Message: IN String := "") IS
BEGIN — Enter

IF WritingToFile THEN
Ada.Text_IO.Put

(File => DebugFile, Item => "»»> Entering " & Subprogram) ;
IF Message /= "" THEN

Ada.Text_IO.Put(File => DebugFile, Item => "; " & Message);
END IF;

Ada.Text_IO.New_Line(File => DebugFile);
ELSE — standard output
Ada. Text_IO. Put (Item => "»»> Entering * & Subprogram);

IF Message /= "" THEN

Ada.Text_IO.Put(Item => "; " & Message);

END IF;

Ada.Text_IO.New_Line;
END IF;

END Enter;

PROCEDURE Leave(Subprogram: IN String; Message: IN String := "") IS
BEGIN — Leave

IF WritingToFile THEN
Ada. Text_IO. I>ut

(File => DebugFile, Item => "»»> Leaving " & Subprogram) ;
IF Message /= "" THEN

Ada.Text_lO.Put(File => DebugFile, Item => "; " & Message);
END IF;

Ada.Text_IO.New_Line(File => DebugFile);
ELSE -- standard output
Ada. Text_IO. Put (Item => "»»> Leaving " & Subprogram);

IF Message /= "" THEN

Ada. Text_IO. E>ut (Item => "; " & Message);

END IF;

Ada.Text_IO.New_Line;
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END IF;

END Leave;

END Debugging_Support;

Body of the Employee Data Base Package Tables

We return now to the employee table package, whose body is shown in Program 3.14.
The operations InitializeTable, Insert, and Traverse are coded in full; the
operations Retrieve and Delete are given as stubs. Note the way in which all the
procedures use the services of Debugging_Support.

Program 3.14 Body of Employee Table ADT

WITH Employees.10;

WITH Debugging_Support; USE Debugging_Support;
PACKAGE BODY Tables IS

Body of the abstract data type for a table of
element records, each element containing a key.

Author: Michael B. Feldman, The George Washington University
Last Modified: October 1995

PROCEDURE InitializeTable (T : IN OUT TableType) IS
BEGIN — InitializeTable

Enter(Subprogram => "InitializeTable");

T.CurrentSize := 0;

Leave

(Subprogram => "InitializeTable",

Message => "teible is initialized.");

END InitializeTable;

PROCEDURE Insert (T : IN OUT TableType;
E  : ElementType;
Success : OUT Boolean) IS

BEGIN — Insert

Enter(Subprogram => "Insert");

Success := True;

— First search table for E's ID; set Success false if found

FOR Which IN 1..T.CurrentSize LOOP

IF Employees.RetrievelD(T.ActualElements(Which)) =
Employees.RetrieveID(E) THEN
Success := False;

RETURN;

END IF;

END LOOP;
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— we didn't find a matching record, so we can insert this one

T.CurrentSize ;= T.CurrentSize + 1;

T.ActualElements(T.CurrentSize) := E;

Leave (Subprogram => " Insert ■*) ;

END Insert;

PROCEDURE Traverse (T : TableType) IS
BEGIN — Traverse

Enter(Subprogram => "Traverse");
FOR Count IN 1. .T.CurrentSize LOOP

Employees.10.Put(Item => T.ActualElements(Count));
END LOOP;

Leave(Subprogram => "Traverse");

END Traverse;

PROCEDURE Retrieve (T : TableType;
Target : KeyType;
E  : OUT ElementType;
Success : OUT Boolean) IS

BEGIN — stub

Enter(Subprogram => "Retrieve", Message => "under construction");
Leave(Subprogram => "Retrieve");

END Retrieve;

PROCEDURE Delete (T : IN OUT TableType;
Target ; KeyType;
Success : OUT Boolean) IS

BEGIN — stub

Enter(Subprogram => "Delete", Message => "under construction");
Leave(Subprogram => "Delete");

END Delete;

END Tables;

InitializeTable simply sets the current size to zero. There is no need to do
more, because the other operations depend on the current size and therefore ignore the
"garbage" in the unfilled parts of the array. Insert implements the table as an
unordered array; it just adds the new record to the end of the table. Traverse loops
through the table, calling Employees. 10. Put to display each employee.

Program 3.15 is a brief program that tests some of the table operations. Notice that
this program also uses Debugging_Support.

Program 3.15 A Test of the Employee Table ADT

WITH Ada.Text_IO;
WITH Employees;
WITH Employees.10;
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WITH Tables;

WITH Debugging_Support;
USE Debugging_Support;
PROCEDURE Test_Einployee_Table IS

--| Simple Test of Employee Table
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: July 1995

OneEmployee: Employees.Employee;
Success: Boolean;

OneTckble: Tables .TableType;
BEGIN — Test_Employee_Table

SetDebug(WhichWay => On);

Tables.InitializeTable{T => OneTable);

FOR Count IN 1..3 LOOP

Ada.Text_IO.Put(Item => " ");
Ada.Text_IO.New_Line;

Employees.10.Get(Item => OneEmployee);

Ada.Text_IO.Put(Item => " ");
Ada.Text_IO.New_Line;

Tables.Insert(T => OneTable. E => OneEmployee, Success =>
Success); Tables.Traverse(T => OneTable);

Ada.Text_IO.Put(Item => " «);
Ada.Text_IO.New_Line;

END LOOP;

END Test_Employee_Table;

Here is some typical output from the test program:

»»> Entering InitializeTable
»»> Leaving InitializeTable; table is initialized.

ID > 1234

Name > John Smith

Gender (Female or Male) > male
Number of dependents > 3
Salary > 50000
Starting Date, mmm dd yyyy > jan 1 1996

»»> Entering Insert
>»» Leaving Insert
»»> Entering Traverse
1234

John Smith

MALE

3



3.5 Application: A Simple Employee Data Base 145

50000.00

JAN 1 1996

»»> Leaving Traverse

ID > 5678

Name > Virginia Dare
Gender (Female or Male) > female

Number of dependents > 1

Salary > 45000
Starting Date, mmm dd yyyy > feb 28 1990

»»> Entering Insert
»»> Leaving Insert
»»> Entering Traverse
1234

John Smith

MALE

3

50000.00

JAN 1 1996

5678

Virginia Dare
FEMALE

1

45000.00

FEB 28 1990

»»> Leaving Traverse

ID > 3456

Name > George Washington
Gender (Female or Male) > male

Number of dependents > 5
Salary > 75000

Starting Date, mmm dd yyyy > mar 15 1980

»»> Entering Insert

»»> Leaving Insert

»»> Entering Traverse
1234

John Smith

MALE

3

50000.00

JAN 1 1996

5678

Virginia Dare
FEMALE

1

45000.00

FEB 28 1990

3456

George Washington
MALE

5

75000.00

MAR 15 1980

»»> Leaving Traverse
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Developing the Interactive User Interface
We have completed phases 1 through 5 of the development. Phase 6 calls for an menu-
driven user interface, Employee_UI, so that users can enter table operations interac
tively. Program 3.16 shows the shell of this program. The interactive command input is
provided, but the user interface is not yet "connected" to the operations in the table
package. Completing this program is left as an exercise.

Program 3.16 Menu-Driven User Interface for Employee Database

WITH Ada.Text_I0;

WITH Screen;

WITH Tables;

PROCEDURE Employee_UI IS

Shell of menu-driven user interface for Employee "data base"
when correct input is entered, a message is displayed
instead of actually executing the command .
Author: Michael B. Feldman, The George Washington University
Last Modified: October 1995

TYPE MenuValues IS (I, — Initialize data base

A, — Add a record

D, -- Delete a record

F< — retrieve (Find) and display a record
R. — find and Replace a record
P, -- Display all records
Q>; -- Quit the program

PACKAGE Menu_I0 IS

NEW Ada.Text_I0.Enumeration_10 (Enum => MenuValues);

MenuSelection : MenuValues;

BEGIN — Employee_UI

LOOP — main program loop

Screen.ClearScreen;

Screen.MoveCursor (To=>(Row => 5, Column => 20));
Ada.Text_IO.Put (Item => "Select one of the operations below.*);
Screen.MoveCursor (To=>(Row => 7, Column => 20));
Ada.Text_IO.Put (Item => "I Initialize the Employee Database");
Screen.MoveCursor (To=>(Row => 8, Column => 20));
Ada.Text_IO.Put (Item => "A Add a New Employee to the Database");
Screen.MoveCursor (To=>(Row => 9, Column => 20));
Ada.Text_lO.Put (Item => "D Delete an Employee from the
Database");

Screen.MoveCursor (To=>(Row => 10, Column => 20));
Ada.Text_IO.Put (Item => "F Find and Display. One Employee*);
Screen.MoveCursor (To=>(Row => 11, Column => 20));
Ada.Text_IO.Put (Item => "R Replace Old Record with New One");
Screen.MoveCursor (To=>(Row => 12, Column => 20));
Ada.Text_IO.Put (Item => "P Display All Records in the Database")
Screen.MoveCursor (To=>(Row => 13, Column => 20));
Ada.Text_lO.Put (Item => "Q Exit the program*);
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LOOP

BEGIN — exception handler block

Screen.MoveCursor {To=>(Row => 14, Column => 20));
Ada.Text_IO.Put ("Please type a comitieuid, then press Enter > ");

— this statement will raise Data_Error if input is invalid
Menu_lO.Get (Item => MenuSelection);

— these statements will be executed

— only if the input is correct;
-- otheirwise, control passes to exception handler
Screen.MoveCursor (To=>(Row => 15, Column => 20));
Ada.Text_IO.Put ("Thank you for correct input.");
Ada.Text_IO.New_Line;
EXIT; — valid data; go ahead to process it

EXCEPTION — invalid data

WHEN Ada.Text_lO.Data_Error =>

Screen.Beep;

Screen.MoveCursor (To=>(Row => 15, Column => 20));

Ada.Text_IO.Put (Item => "Value entered is not a command.");
Ada.Text_IO.New_Line;
DELAY 1.0;

Ada.Text_IO.Skip_Line;

Screen.MoveCursor (To=>(Row => 15, Coliunn => 20));
Ada.Text_IO.Put (Item => " »);

WHEN OTHERS =>

Screen.Beep;

Screen.MoveCursor (To=>(Row => 15, Column => 20));
Ada.Text_IO.Put (Item => "Un)cnown error; try again,
please.");

Ada.Text_IO.New_Line;
DELAY 1.0;

Ada.Text_IO.Skip_Line;

Screen.MoveCursor (To=>(Row => 15, Column => 20));
Ada.Text_IO.Put (Item => " »);

END; — of exception handler block

END LOOP;

Screen.MoveCursor (To=>(Row =>22, Colvimn => 20));

CASE MenuSelection IS

WHEN I =>

Ada.Text_IO.Put (Item => "I entered; here we'd initialize");
WHEN A =>

Ada.Text_IO.Put (Item => "A entered; here we'd insert");
WHEN D =>

Ada.Text_IO.Put (Item => "D entered; here we'd delete");
WHEN F =>

Ada.Text_IO.Put (Item => "F entered; here we'd find");
WHEN R =>

Ada.Text_IO.Put (Item => "R entered; here we'd replace");
WHEN P =>

Ada.Text_IO.Put (Item => "P entered; here we'd display all");
WHEN Q =>

Ada.Text_IO.Put (Item => "Q entered; have a nice day.");
EXIT; — the main loop and quit the program

END CASE;
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Ada.Text_IO.New_Line;
DELAY 2.0;

END LOOP;

END Employee_UI;

3.6 MEASURING PROGRAM PERFORMANCE

Much of this chapter has emphasized predicting the performance of an algorithm or
a program. In this section, we will discuss approaches to measuring performance—
that is, finding out the actual running time of a program or a section of program.

What Should Be Measured?

We know that several factors influence a program's running time. The specific com
puter, the compiler, the chosen algorithm, and the number of data values all play their
roles. Although a single measurement—clocking the running time of a program one
time, with one set of data, on one specific computer—is sometimes useful, in general
we are interested less in a single measurement than in a set of measurements in which
all factors but one are held constant, and in that remaining factor. Here are some exam
ples of sets of measurements:

1. A single program, compiled by the same compiler and using the same set of
data, executed on several similar but different computers—for example, on an
Intel 80386 computer, running at 33 megahertz (MHz) nominal speed, and on
an Intel 80486 computer, at 50 MHz speed

2. A single Ada source program, executed on the same computer with the same
data, but compiled with two or more different Ada compilers

3. A case similar to case 2, but using a single compiler with different settings of its
"optimization switch" used as compilation time

4. A sorting program, run on the same computer three times: once with a set of val
ues already sorted, once with the same values in reverse order, and once with the
same values in some random order

5. One program, run repeatedly on the same computer with systematically varying
numbers of data values

6. A case similar to case 4, but comparing two different algorithms on the same
varying sets of data

As you can see, there are many possibilities for comparison. It is most important to
know just what you are measuring and to hold all factors constant except the one whose
results you wish to compare. There is no substitute for a carefully designed set of mea
surements; a carelessly designed measurement experiment is likely to produce mis
leading or meaningless results.
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Timing an Aigorithm Using Ada on a Personal Computer

As you know, package Ada. Calendar provides the Ada. Calendar .Clock
operation, which returns the time of day as a value of type Ada. Calendar. Time. In
addition, one such value can be subtracted from another to give a Durat:ion value.

You could use these operations directly to insert timing instructions into a program,
or a section of a program, as follows;

1. In your code, before the Hrst line you wish to time, insert a statement that calls
Ada. Calendar. Clock, storing the result in a variable, say StartTime.

2. After the last line you wish to time, insert a statement to read the clock again and
subtract StartTime from it. This will give, as a Duration value, the
elapsed time in seconds.

As you will see in the next section, Ada.Calendar operations are not mean
ingful for this purpose on a time-sharing system. Therefore, instead of directly
using Ada.Calendar, we show in Program 3.17 the specification for a package
CPUClock, providing a subtype CPUTime as an ordinary nonnegative Float
value. The operations provided are similar to those on a stopwatch: a procedure
ResetCPUTime, which resets the "stopwatch" to zero, and a function
CPUTime, which returns the elapsed CPU time, in seconds, since the "stopwatch"
was last reset.

Program 3.17 Specification for CPU Timing Package

PACKAGE CPUClock IS

— I Specification for a package to do CPU timing of algorithms
— I Author: Michael B. Feldman, The George Washington University
— Last Modified: October 1995

SUBTYPE CPUSecond IS Float RANGE 0.0 .. Float'Last;

— We make CPUSecond a Float type so the usual operations are availcOsle

PROCEDURE ResetCPUTime;

— Pre: none

— Post: resets a CPU timer

FUNCTION CPUTime RETURN CPUSecond;

— Pre: none

— Post: returns the number of CPUSeconds since the last reset

END CPUClock;

Program 3.18 gives a body for this package, suitable for use on a personal computer
such as an IBM PC-compatible or an Apple Macintosh. As you can see, the
ResetCPUTime operation simply stores the current clock value in a variable internal
to the package, and the CPUTime function returns the elapsed CPU time as discussed
in the previous paragraph. This implementation, using Ada. Calendar, gives mean-
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ingftil results on a PC because there is only one user at a time on a PC, and so the run
ning time of a program is almost exactly the same thing as the elapsed clock time.

Program 3.18 Body of CPU Timing Package

WITH Ada.Calendar; USE Ada.Calendar;

PACKAGE BODY CPUClock IS

— I This body is compatible with Ada compilers whose output
— I runs on single-user IBM-PC-family and Apple Macintosh computers
— I Author: Michael B. Feldman, The George Washington University
— Last Modified: October 1995

SavedTime : Ada.Calendar.Time;

PROCEDURE ResetCPUTime IS

BEGIN

SavedTime := Ada.Calendar.Clock;
END ResetCPUTime;

FUNCTION CPUTime RETURN CPUSecond IS

BEGIN

RETURN CPUSecond (Ada.Calendar. (Ada.Calendar.Clock,SavedTime));
END CPUTime;

BEGIN -- initialization of package

— this statement is executed once, when the package is elaborated,
— i.e., just before its client program starts executing

ResetCPUTime;

END CPUClock;

Program 3.19 shows an example of a timing experiment: A large two-dimensional
array is filled with values, each of which is the product of the row and column subscripts.
If the array is 50 by 50,2,500 multiplications are required for execution of this algorithm.

Program 3.19 Test of CPU Timing Package

WITH Ada.Text_I0;

WITH CPUClock;
USE TYPE CPUClock.CPUSecond;

WITH Ada.Integer_Text_IO;
WITH Ada.Float_Text_IO;
PROCEDURE TestClok IS

— I An example program to show how the CPUClock operations
— I can be used
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: October 1995

TrialTime : CPUClock.CPUSecond; — CPU time for each trial
TotalTime : CPUClock.CPUSecond; — total time for all trials
NumberOfTrials : CONSTANT Integer := 10;
NumberOfCycles : CONSTANT Integer := 5;



3.6 Measuring Program Performance 151

Maxindex : CONSTANT Integer := 50;

A  : ARRAY {1 .. Maxindex, 1 .. Maxindex) OF Integer;

BEGIN ~ TestClok

TotalTime := 0.0;

FOR Trial IN 1 .. NumberOfTrials LOOP

CPUClock.ResetCPUTime;

— this loop runs each trial a number of times before
— reading the clock, which allows the time to build up to
— a more easily measured value
FOR Cycle IN 1 .. NvunberOfCycles LOOP

— this pair of loops is really the algorithm being timed;
— for Maxindex = 50 we are doing 2,500 multiplications
FOR Row IN 1 .. Maxindex LOOP

FOR Col IN 1 .. Maxindex LOOP

A {Row, Col) := Row * Col;

END LOOP;

END LOOP;

END LOOP;

— read clock; accumulate total time

TrialTime := CPUClock.CPUTime;

TotalTime := TotalTime + TrialTime;

-- display results for this trial
Ada.Text_IO.Put(Item => "Trial ");
Ada.Integer_Text_lO.Put(Item => Trial, Width => 1);
Ada.Text_IO.Put (Item => " time used ");
Ada.Float_Text_IO.Put

(Item => TrialTime, Fore => 1, Aft => 2, Exp => 0);

Ada.Text_IO.Put (Item => " seconds; total time so far ");
Ada.Float_Text_IO.Put

(Item => TotalTime, Fore => 1, Aft => 2, Exp => 0);

Ada.Text_IO.Put(Item => " seconds.");

Ada.Text_IO.New_Line;
Ada.Text_IO.New_Line;

END LOOP;

END TestClok;

On a very fast computer, even 2,500 multiplications take only a very brief time to
execute, often much less than a second, and the interval may be so small that the clock
function cannot reliably measure it. Therefore, Program 3.19 has an extra loop around
the algorithm, so that the entire algorithm is really executed flve times before the clock
is read. The actual time of the algorithm is, then, one fifth the reported time.

Sometimes there is even some random fluctuation in the CPU timer's reading. This
too results from the relatively coarse "resolution" of some clock hardware. The exam
ple program therefore has yet another loop; this one causes the entire experiment to run
10 times. A reasonable measure of the actual time for each run of the algorithm is then
one fifth of the average times of the ten cycles. Exercise 13 invites you to modify this
program so that the results are reported in this fashion.

Exercise 14 depends on the fact that the algorithm is 0(A^^), because the number
of multiplications is the product of the number of rows by the number of columns. In
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this exercise, you can modify the program to vary the number of rows and columns,
reporting and plotting the results to see whether the actual timings reflect the "big O"
estimate.

Finally, Exercise 15 asks you to run the program using different computers or dif
ferent compilers and to compare the results.

Timing an Algorithm Using Ada on a Multiuser Computer

Ada provides the Ada. Calendar operations to produce the time of day, and we can
compute elapsed time as the difference of two time measurements. However, these val
ues measure the real time, often called the wall-clock time, because they represent the
time of day as seen on a clock on the wall.

We have seen that wall-clock time measurements are meaningful on a PC. Are they
meaningful on a time-sharing computer, such as a multiuser UNIX or VMS computer
in the computer center? On such a computer, the operating system is juggling many
simultaneous users, giving each running program a small amount of time before giving
control to another running program. It is this "time-slicing" that gives you and your col
leagues the illusion that each of you is alone on the computer—^the computer can, usu
ally, skip around rapidly enough that you seldom realize others are sharing the machine.
Only when the load on the computer is very heavy do you notice that the computer is
slow to respond to your keystrokes, or that a compilation is proceeding at what seems
like a glacial pace.

This fast-versus-slow perceived behavior is exactly the problem with trying to
use wall-clock measurements on a shared computer. A compilation, say, may
appear to be taking 5 seconds now, but at "rush hour" in the lab—when all students
are desperately trying to finish their projects—the same compilation may appear to
be taking 30 seconds or more. In fact, the compilation is taking just about the same
actual time in both cases; what is different is the level of contention or "competi
tion" in the system. You and your colleagues are, literally, slowing each other
down. If we could measure the actual CPU time for both compilations, we would
find them very similar.

We would like to be able to use Ada directly to measure the actual CPU time
taken by our program. Unfortunately, Ada does not provide standard facilities for
this procedure; we need to use operating system services. This means that we must
use an Ada facility called interfacing, which allows us to write a subprogram in
another language (Fortran, Pascal, or C, for example) and call it, or perhaps call a
subprogram in the system library, from an Ada program unit. The details of this
process are beyond the scope of our discussion, and are highly system-dependent.
Appendix J presents some ideas and sample code for interfacing to the operating-sys
tem timing services.

The interfacing code is enclosed in an alternative package body for CPUClock, so
that you can use the same package spec and timing calls regardless of the computer you
are running on. If you are working in a laboratory with a time-shared computer, ask
your instructor or system manager to provide a version of the CPUClock package
body that will provide meaningful results for that system.



Summary 153

SUMMARY

In this chapter, we have discussed algorithms and, in particular, the two important areas
of recursion and performance prediction.

An algorithm is a method used to solve a problem in a systematic way; it consists
of a finite number of steps that will complete its work, regardless of the input given to
it, in a finite amount of time with a finite effort.

A recursive algorithm is one that "invokes itself; its own name appears in its def
inition. Infinite recursion is avoided by making certain that the algorithm has in its def
inition a specific step indicating the conditions for stopping the recursion, and that each
recursive call operates on a data set smaller than the previous one.

Five recursive algorithms were presented: factorial, string reversal, permutations,
binary search, and merge sort. The Ada versions of these algorithms made clear that
recursive programs can be written straightforwardly in the Ada language.

Performance prediction is the process of estimating how the computation or run
ning time of an algorithm or program varies with the "problem size." The currently
accepted way of expressing this variation, often called "growth rate," is the 0(...), or
"big O," notation.

Although there is no easy, guaranteed way to calculate the performance, there are cer
tain techniques and rules of thumb that are helpful in "getting a handle on it." Performance
prediction is facilitated when programs are written according to structured coding con
ventions, because such programs have a well-defined loop and decision structure.

In the section on performance prediction, examples were given of various program
structures and their "big O" formulas. The most common growth rates in our data-
structures work are, in order of steepness: constant, or 0(1); logarithmic, or O(log AO;
linear, or 0(N); 0(N log AO; and quadratic, or 0{hP).

The design section introduced you to two different implementations of a table as an
array. Although few program details were given, the growth rates of the various opera
tions were "reasoned out" and compared for both implementations.

Finally, we introduced some ideas for actually measuring the running time of a pro
gram, and discussed the difierence between a measurement on a single-user personal
computer and one on a time-sharing system.

This concludes the "preliminaries" part of the book. Equipped with an introduction
to abstract data types, recursion, and performance prediction, you are ready to see how
these concepts play important roles in the study of data structures.

EXERCISES

1. Give a recursive definition of the integer addition operation. Write and test a
recursive function to produce the sum of two integers. {Hint'. Use the built-in "+"
operation only to add 1 to a number.)

2. Give a recursive definition of the integer multiplication operation. Write and test
a recursive function to carry out the definition. {Hint: Multiplication is repeated
addition.)
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3. Give a recursive definition of the integer exponentiation operation. Write and test
a recursive function to carry out the definition (Hint: Exponentiation is repeated
multiplication).

4. The Fibonacci numbers of order 1 are a sequence of positive integers starting with
1, 2, 3, 5, 8,.... In other words, each number except the first two is the sum of
the two previous numbers. Give a recursive definition of this sequence; write a
recursive procedure to print out the first 25 numbers.

5. What is the "big O" of the usual algorithm to set to zero all the elements of a two-
dimensional square array with N rows and N columns?

6. Show that in computing a "big O" that turns out to have a logarithmic compo
nent—that is, something of the form log(...)—the base we use to represent the
logarithm does not matter.

7. Show that the growth rate of the algorithmic structure given in Figure 3.13 is
G(log N).

8. Show that the growth rates of the structures in Figure 3.14 are 0(N log N).
9. Complete the bodies of the packages Employees, Employees. 10, and

Tables in Section 3.5, using either the unordered or the ordered implementation
discussed in Section 3.4, and complete the interactive program Employee_Ul,
which allows the terminal user to input operations and data that maintain the
employee data base.

10. A real data base program would not require that data be entered interactively each
time the program is run. Instead, the records would be stored in a disk file and the
client program would operate something like this:
Step 1: Read all the employee records from a file created by the previous run.
Step 2: Accept operations from the interactive user, until, say, a "quit" command
is entered.

Step 3: Write the records in the array back out into the disk file and terminate the
program.

Modify the package and your client program from exercise 10 to operate in this
manner.

11. Consider the problem of searching for a key k in an unordered array where dupli
cate keys are permitted.
Discuss the performance of each of the following cases:
a. k does not appear in the array.
b. k appears once in the array.
c. k appears several times in the array (not necessarily in adjacent locations!)

but only the location of the first appearance is desired.
d. k appears several times in the array and the locations of all appearances are to

be reported.
12. Repeat the preceding problem for an ordered array.
13. Modify Program 3.19 so that the timing results are reported more usefully, in

terms of the average of the five cycles and the 10 trials.
14. Modify Program 3.19 so that a number of different array sizes are used. Vary the

number of rows and columns in some systematic way (8, 16, 32, 64, 128, for
example) so that you can determine easily whether the actual results follow the
theoretical "big O." You might wish to plot the results on graph paper. If t is a
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specific execution time, try plotting tJN^ and see whether the result approximates
a straight line.

15. Try compiling the timing package and Program 3.19 using several different com
pilers on the same personal computer, if you have access to several compilers. If
not, try the timing experiment with one compiler on computers of differing
speeds, or on a PC and a time-shared computer. How do the results compare?
How does the variation compare with the "big O" in each case?



CHAPTER 4

Multidimensional and

Unconstrained Array Types

4.1 Data Structures; Multidimensional Arrays

4.2 Data Structures: Unconstrained Array Types

4.3 Application: A Generai Sorting Program

4.4 ADT Design: Mathematicai Vectors

4.5 ADT Design: Mathematical Matrices

4.6 Storage Mappings

So far, the arrays we have seen have been one-dimensional ones, and the array bounds
have always been declared as part of the type declaration. In this chapter we look at
more interesting array structures.

A multidimensional array has, as its name suggests, more than one dimension.
Instead of being a linear collection of elements, it may have the "shape" of a rectangle
(two-dimensional) or even of a rectangular solid or cube (three-dimensional). In fact,
there is in theory no limit to the number of dimensions an array type can have, although
it is rare to see an example with more than three. Multidimensional arrays give us the
ability to structure information in useful tabular forms.

In this chapter, you will leam how to declare and use multidimensional arrays. You
will also leam about storage mapping functions, which relate the abstraction of multidi
mensional arrays to their implementation in computer memory.

An unconstrained array type is one declared in such a way that the bounds of the
array are not specified in the type declaration; rather, they are supplied only when a vari
able of the type is declared. Many arrays of the same number of dimensions but of dif
fering sizes can be declared from the same type definition. Moreover, subprograms can
be written that accept these arrays as parameters and work with them without knowing
their sizes in advance. This is extremely helpful in writing general-purpose programs
such as sorts and numerical algorithms.

As it happens, we have been using an unconstrained array type all along in this
book. Ada's String type is one of these, predefined in Standard. In this chapter, you will
leam how to define and use unconstrained array types of your own.

156
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The chapter presents three design examples; general sorting, mathematical vectors,
and mathematical matrices.

4.1 DATA STRUCTURES: MULTIDIMENSIONAL

ARRAYS

Our first example of a multidimensional array is the multiplication table for the integers
1 through 15. Here are declarations for a subscript range, an array type, and a variable:

SUBTYPE OneToFifteen IS Integer RANGE 1..15;

TYPE FifteenByFifteen IS
ARRAY{OneToFifteen, OneToFifteen) OF Positive;

MultiplicationTable: FifteenByFifteen;

A given element of this array can be referred to as

MultiplicationTable(Row, Column)

where Row and Column are of type OneToFifteen.
Each element of the array contains the product of its row and column subscripts.

We can initialize this array using nested FOR loops:

FOR Row IN OneToFifteen LOOP

FOR Column IN OneToFifteen LOOP

MultiplicationTcible(Row, Column) := Row * Column;
END LOOP;

END LOOP;

and display the array in tabular form, as in Fig. 4.1, with a similar fragment:

— display column titles
Ada.Text_IO.Put(Item => • ");

FOR Column IN OneToFifteen LOOP

Ada.Integer_Text_IO.Put(Item => Column, Width => 4);
END LOOP;

Ada.Text_IO.New_Line;

— march across each row

FOR Row IN OneToFifteen LOOP

Ada.Integer_Text_IO.Put(Item => Row, Width => 4); — row title
FOR Column IN OneToFifteen LOOP

Ada.Integer_Text_IO.Put

(Item=>MultiplicationTable(Row, Column), Width=>4);
END LOOP;

Ada.Text_IO.New_Line;
END LOOP;

Let US look at a more realistic example. Cloud Nine Airways (CNA), a new airline
company, provides service to six cities: Boston, Chicago (O'Hare Airport), Newark,
Philadelphia, Seattle, and Washington, DC (National Airport). Let us represent these
cities using an enumeration type containing the standard three-letter codes used by air
lines and travel agents:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15
2 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

3 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

4 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

6 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90

7 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105

8 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

9 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135

10 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

11 11 22 33 44 55 66 77 88 99 110 121 132 143 154 165

12 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

13 13 26 39 52 65 78 91 104 117 130 143 156 169 182 195

14 14 28 42 56 70 84 98 112 126 140 154 168 182 196 210

15 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225

»4.1 Multiplication Table for Integers 1 Through 15

TYPE Cities IS (BOS, ORD, EWR, PHL, SEA, DCA);

It is not obvious that all these codes are related to city names, but that is what they
are. We can tabulate the average daily number of CNA flights leaving each city in an
array declared as

TYPE FlightTable IS ARRAY (Cities) OF Natural;
CNAFlightsLeaving: FlightTable;

but in this section we are interested in multidimensional arrays, not in one-dimensional
ones. Let us tabulate the number of nonstop flights from each city to each city:

TYPE RouteMap IS ARRAY (Cities, Cities) OF Natural;
CNACi tyPairs: RouteMap;

Here the row and column subscript types are the same. We can indicate that two flights
per day leave Boston for Chicago by writing

CNACityPairs (BOS, EWR) := 2;

With 36 such assignment statements, we can fill the array. Figure 4.2 shows this route
map Blled with values.

Note that some cities are not connected nonstop to all the others. Given city vari
ables From and a city To, we can indicate that three flights leave From for To by
writing

CNACityPairs (From, To) := 3;

We can store values in the entire array by using a two-dimensional aggregate:

CNACityPairs :=
(BOS => (BOS=>0, 0RD=>3, EWR=>2. PHL=>0, SEA=>0, DCA=>1),
ORD => (B0S=>3, ORD=>0, EWR=>3, PHL=>1, SEA=>2, DCA=>2),
EWR => (B0S=>1, 0RD=>3, EWR=>0, PHL=>2, SEA=>0, DCA=>1),
PHL => (BOS=>0, ORD=>0, EWR=>3, PHL=>0, SEA=>0, DCA=>2),
SEA => (BOS=>0, 0RD=>2, EWR=>0, PHL=>1, SEA=>0, DCA=>1),
DCA => (B0S=>1, 0RD=>3, EWR=>2, PHL=>1, SEA=>1, DCA=>0));
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Destination City

BOS ORD EWR PHL SEA DCA

BOS 0  3

ORD 3  0

O EWR 1  3
c

PHL 0  0

O

SEA 0  2

DCA 1  3

Figure 4.2 Cloud Nine Airways City-Pair Services

The row and column subscript types need not be the same; we could tabulate
the number of flights leaving each city on each of the 7 days with the array type
Daily Flights:

TYPE Days IS (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
TYPE DailyPlights IS ARRAY (Cities, Days) OF Natural;
CNADailyFlights: DailyPlights;

Figure 4.3 shows this table filled with values; you can write the aggregate assignment.
Finally, we can use three dimensions to tabulate the fares for each city pair, by class

of seat (1 = First Class, 2 = Coach):

SUBTYPE Classes IS Integer RANGE 1..2;

SUBTYPE FareRange IS Float RANGE 0.00 .. 2000.00;
TYPE FareTable IS ARRAY (Cities, Cities, Classes) OF FareRange;
CNAFareTable: FareTable;

Alternatively, we could have used an enumeration type for the classes. This would,
in fact, have been better style in a real program; we used an integer subtype here just for
variety.

Mon Tue Wed Thu Fri Sat Sun

BOS 6 5 5 5 7 6 7

ORD 11 10 10 10 12 11 12

EWR 7 6 6 6 8 7 8

PHL 5 4 4 4 6 5 6

SEA 4 3 3 3 5 4 5

DCA 8 7 7 7 9 8 9

Figure 4.3 Cloud Nine Airways Departures by Day of the Week
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Using Multidimensional Arrays

Given the Cloud Nine arrays as presented above, we now go through a set of examples.
First, given a positive variable TotalFlights, we compute the average total number
of flights leaving Boston:

TotalFlights := 0;
FOR Destination IN Cities LOOP

TotalFlights := TotalFlights + CNACityPairs(BOS, Destination);
END LOOP;

Here we total across a row, by holding the row subscript constant and varying the col
umn subscript. Next, we compute the average number of arriving flights at Chicago:

TotalFlights := 0;
FOR Origin IN Cities LOOP

TotalFlights ;= TotalFlights + CNACityPairs(Origin, ORD);
END LOOP;

in which we are totaling down a column by holding the column subscript constant and
varying the row subscript.

What is the total number of flight segments flown by CNA?

TotalSegments := 0;
FOR Origin IN Cities LOOP
FOR Destination IN Cities LOOP

TotalSegments :=
TotalSegments + CNACityPairs(Origin, Destination);

END LOOP;

END LOOP;

Here we sum all the elements of the array using nested loops.
In this introduction to multidimensional arrays, we have used integer and enumera

tion subscript types, and scalar element types. Naturally, array elements can be of arbi
trary type, as in the case of one-dimensional arrays. As always in Ada, array assignment
and equality/inequality tests are defined for multidimensional arrays; these can, of
course, be passed as parameters or returned as function results.

4.2 DATA STRUCTURES: UNCONSTRAINED

ARRAY TYPES

The purpose of unconstrained array types is to allow subprograms that operate on arrays
to be written without prior knowledge of the bounds of the arrays. Let us start with a
type definition:

TYPE ListType IS ARRAY (Integer RANGE <>) OF Float;

The construct Integer RANGE <> means that the subscript range, or bounds, of
any variable of type ListType must form an integer subrange; the symbol "<>"
(which is read "box") means "We'll fill in the missing values when we declare
ListType variables."
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The type ListType is said to be unconstrained. When variables are declared, the
compiler must know how much storage to allocate, so variable declaration must carry a
range constraint—^for example,

Ll : ListTyped. .50) ; — 50 elements
L2 ; ListType(-10..10); — 21 elements
L3 : ListType(0..20); — 21 elements

Operations on Unconstrained Array Types

The operations of assignment and equality testing are defined for unconstrained array
types, but for either operation to proceed without raising Constraint_Error, both
operands must be variables of the same unconstrained array type and both operands
must have the same number of elements. Thus,

Ll := L2;

will raise Constraint_Error, but the following operations will all succeed:

L2 := L3;

Ll (20..40) := L2;

L2 (1..5) := Ll (6..10);

These slicing operations were introduced in Chapter 1, in the discussion of Ada
strings. Ada's string type is actually defined in Standard as follows:

TYPE String IS ARRAY (Positive RANGE <>) OF Character;

making strings just a special case of unconstrained arrays. The slicing operations work
for all one-dimensional arrays just as they do for strings.

Attribute Functions for Unconstrained Arrays

Ada defines a number of attribute functions that can be used to determine the bounds of

array variables. Given the type ListType above and the variable L2,

L2 ' First returns the low bound of L2, or -10 in this case.

L2 ' Last returns the high bound of L2, or 10.

L2 ' Length returns the number of elements in L2, or 21.

L2 ' Range returns the range -10..10.

The last attribute is useful in controlling loops—^for instance,

FOR WhichElement IN L2'Range LOOP
Ada.Float_Text_IO.Put

(Item=>L2(WhichElement), Fore=>l, Aft=>2, Exp=>0);
Ada.Text_IO.New_Line;

END LOOP;
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The construct L2 ' Range is a short way of writing L2 ' First. . L2 ' Last, so
the same fragment could be written

FOR WhichElement IN L2'First..L2"Last LOOP

Ada.Float_Text_IO.Put

(Item=>L2{WhichElement), Fore=>l, Aft=>2, Exp=>0);
Ada.Text_IO.New_Line;

END LOOP;

To show the utility of unconstrained arrays, consider a function to find the max
imum value stored in an array of floating-point numbers. For this function to be
generally useful and reusable, it must be able to work for all kinds of floating-point
arrays, no matter what their bounds. Using the type List Type, Program 4.1
shows such a function, contained in a test program. The program also contains a
procedure DisplayList, which displays the contents of a ListType variable,
whatever its bounds. The main program declares two lists of differing bounds, then
displays the lists and tests the function MaxValue. From the output of the pro
gram, you can see that the maximum is found correctly even though the two lists
have different sizes.

Program 4.1 Finding the Largest Value in an Array

WITH Ada.Text_IO;

WITH Ada.Float_Text_IO;

PROCEDURE Test_Mckx_Value IS

— I Illustrates use of unconstrained array types
I Author: Michael B. Feldman, The George Washington University

— I Last Modified: September 1995

TYPE ListType IS ARRAY(Integer RANGE <>) of Float;

LI : ListType(1..5); — 5 elements
L2 ; ListType(-4..3); — 8 elements

— local procedure to display the contents of a list

PROCEDURE DisplayList(L: ListType) IS
— Pre: L is defined

— Post: display all values in the list

BEGIN — DisplayList

FOR Count IN L'RcUige LOOP

Ada.Float_Text_IO.Put(Itero=>L(Count), Fore=>3, Aft=>l, Exp=>0);
END LOOP;

Ada.Text_IO.New_Line;

END DisplayList;

FUNCTION MaxValue(L: ListType) RETURN Float IS
— Pre: L is defined

— Post: returns the largest value stored in L

CurrentMax : Float;

BEGIN — MaxValue

CurrentMax := Float'First; — minimum value of Float

FOR WhichElement IN L'Range LOOP
IF L(WhichElement) > CurrentMax THEN
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CurrentMax := L(WhichElement);

END IF;

END LOOP;

— assert: CurrentMax contains the largest value in L

RETURN CurrentMax;

END MaxValue;

BEGIN — Test_Max_Value

LI := (0.0, -5.7, 2.3, 5.9, 1.6);

L2 := (3.1, -2.4, 0.0, -5.7, 8.0, 2.3, 5.9, 1.6);

Ada.Text_lO.E>ut(Item=> "Testing MaxValue for float lists");

Ada.Text_IO.New_Line;
Ada.Text_IO.New_Line;
Ada.Text_IO.Put (Item=> "Here is the list H");
Ada.Text_IO.New_Line;
DisplayList(L => LI);

Ada.Text_IO.Put(Itein=> "The maximum value in this list is ");
Ada.Float_Text_IO.Put(Item => MaxValue(L=>L1),

Fore=>l, Aft=>2, Exp=>0);

Ada.Text_IO.New_Line;
Ada.Text_IO.New_Line;

Ada.Text_IO.E»ut(Item=> "Here is the list L2");
Ada.Text_IO.New_Line;
DisplayList(L => L2);

Ada.Text_IO.Put(Item=> "The maximum value in this list is ");
Ada.Float_Text_IO.Put(Item => MaxValue(L=>L2),

Fore=>l, Aft=>2, Exp=>0);

Ada.Text_IO.New_Line;

END Test_Max^Value;

Slicing and Unconstrained Arrays

In Section 1.12, we studied array slicing in the context of strings. Slicing is actually
more general: It is available for all one-dimensional unconstrained arrays in Ada. For
example, given the function MaxValue from Program 4.1 and a float variable Y, it is
permissible to call MaxValue with a slice as its parameter, as in

Y := MaxValue(L => L2(0..2));

which would search only the given slice of the array for a maximum value. As an exer
cise, you can modify Program 4.1 to test this concept.

4.3 APPLICATION: A GENERAL SORTING

PROGRAM

We have introduced the concept of sorting and sort algorithms in earlier chapters. The
utility of a sort procedure is greatly enhanced if it can be used with a wide variety of
arguments. In this section, we develop a sort that will work for arrays of the same
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unconstrained type but differing bounds; in Chapter 5 we will exploit the full general
ity of Ada's generics to create a sort that will work with any unconstrained array type at
all, regardless of its index type or element type.

Requirements

You are employed in the customer support department of a software company. The toll-
free telephone system is open 7 days per week. Your supervisor is interested in know
ing how many calls arrive each day, and also in seeing the data presented in ascending
order. That is, the day with the fewest calls will appear first and the day with the most
calls will appear last. Your supervisor might also wish to see only the data for weekdays
or for weekend days.

Analysis and Design

Since you are experienced in data handling, you realize that this is basically a sorting
problem, so you develop a sort program that will work with arrays of call records. The
program should correctly handle arrays of one through seven elements, so that, for
example, just the weekdays or just the weekend days can be sorted.

Here is a good application of unconstrained array types. Let us define the types.

TYPE Days IS (Mon, Tue, Wed, Thu, Fri, Sat, Svin) ;
SUBTYPE DayRange IS Natural RANGE 0..6;
TYPE CallRecord IS RECORD

DayOfWeek : Days;
NumberOfCalls: Natural;

TYPE Callers IS ARRAY(DayRange RANGE <>) OF CallRecord;

and write a procedure Exchange that is capable of exchanging two elements of type
Natural. The procedure SelectSort will implement a very simple sorting algorithm.

Algorithm

Fill each position in the array, starting fi-om the beginning of the array, with the small
est element in the subarray from that position to the end. This can be refined to

FOR each position in the array LOOP
Exchange the value at this position with the smallest value in the subarray from this
position to the bottom.

END LOOP;

This can be further refined to

FOR each position PositionToFill in the array LOOP

Set IndexOfMin to PositionToFill
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FOR each position ItemToCompare from PositionToFill to bottom of array
LOOP

IF value at ItemToCompare < value at IndexOfMin THEN

Set IndexOfMin to ItemToCompare

END IF;

END LOOP;

Exchange the values at IndexOfMin and PositionToFill.

END LOOP;

This is not a very efficient sorting method, but its simplicity makes it useful for this
example, which is designed to show the array structure without concentrating on the
sort method. What is its "big

Coding

Program 4.2 shows the sort procedure SelectSort, together with auxiliary proce
dures Exchange and DisplayCallers. The main program declares three arrays of
type Callers with differing bounds, and illustrates the sort procedure operating on
the three arrays in turn. Note how the attributes are used in SelectSort to make the
procedure independent of the bounds of the parameter.

Program 4.2 Sorting Arrays of Unconstrained Type

WITH Ada.Text_I0;

WITH Ada.Integer_Text_IO;

PROCEDURE Phone_Service IS

— I Shows sorting of unconstrained arrays eind slices
— I Author; Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

SUBTYPE DayRange IS Natural RANGE 0..6;

SUBTYPE Weekdays IS DayRange RANGE 0..4;
SUBTYPE Weekend IS DayRange RANGE 5..6;

TYPE Days IS (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
TYPE CallRecord IS RECORD

DayOfWeek : Days;
NumberOfCalls: Natural;

END RECORD;

TYPE Callers IS ARRAY(DayRange RANGE <>) of CallRecord;

PACKAGE Days_IO IS NEW Ada.Text_IO.Envuneration_IO(Enum => Days);

ThisWeek: Callers(DayRange);
WeekdayCallers: Callers(Weekdays);
WeekendCallers: Callers(Weekend);

PROCEDURE DisplayCallers (List: Callers) IS
— Pre: List is defined

— Post: display all elements in the vector
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BEGIN — DisplayCallers
FOR Count IN List'Range LOOP
Days_IO.Put {Item=>List(Count).DayOfWeek, Width=>3)i
Ada.Integer_Text_IO.Put

(Itein=>List(Count) .NiiinberOfCalls, Width=>4);
Ada.Text_IO.New_Line;

END LOOP;

Ada.Text_IO.New_Line;

END DisplayCallers;

PROCEDURE Exchange(Valuel, Value2: IN OUT CallRecord) IS
— Pre: Valuel and Value2 are defined

— Post: Valuel and Value2 are interchanged

TempValue: CallRecord;

BEGIN — Exchange

TempValue

Valuel

Value2

END Exchange;

= Valuel;

= Value2;

= TempValue;

PROCEDURE SelectSort(List: IN OUT Callers) IS
— Pre: List is defined

— Post: elements of List are arranged in ascending order

IndexOfMin: DayRange;

BEGIN

FOR PositionToFill IN List'First..List'Last - 1 LOOP

— Find the element in subarray 1..PositionToFill
— with smallest value

IndexOfMin := PositionToFill;

FOR ItemToCompare IN PositionToFill + 1..List'Last LOOP

IF List (ItemToCompare) .NvunberOfCalls
< List(IndexOfMin).NumberOfCalls THEN

IndexOfMin := ItemToCompare;
END IF;

END LOOP;

— assert: element at List(PositionToFill) is
-- smallest in subarray

IF IndexOfMin /= PositionToFill THEN

Exchange(List(PositionToFill),List(IndexOfMin));
END IF;

END LOOP;

END SelectSort;

BEGIN — Phone_Service

ThisWeek := ((Mon, 12), (Tue, 23), (Wed, 100), (Thu, 40),
(Fri, 52), (Sat, 17), (Sun, 2));

WeekdayCallers := ThisWeek(Weekdays);
WeekendCallers := ThisWeek(Weekend);

Ada.Text_lO.Put(Item=> "Testing SelectSort for telephone callers ")
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item=> "Here is ThisWeek before sorting.");
Ada.Text_IO.New_Line;
DisplayCallers(List => ThisWeek);
Ada.Text_IO.New_Line;
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SelectSort(List => ThisWeek);
Ada.Text_IO.Put(Item=> "Here is ThisWeek after upward sorting.");
Ada.Text_IO.New_Line;

DisplayCallers(List => ThisWeek);
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Itera=> "Here is WeekdayCallers before sorting.");
Ada.Text_IO.New_Line;

DisplayCallers(List => WeekdayCallers);
Ada.Text_IO.New_Line;

SelectSort(List => WeekdayCallers);

Ada.Text_IO.Put

(Item=> "Here is WeekdayCallers after upward sorting.");
Ada.Text_IO.New_Line;

DisplayCallers(List => WeekdayCallers);

Ada.Text_IO.New_Line;

Ada.Text_IO.Put

(Item=> "Here is WeekendCallers before sorting.");
Ada.Text_IO.New_Line;
DisplayCallers(List => WeekendCallers);
Ada.Text_IO.New_Line;

SelectSort(List => WeekendCallers);

Ada.Text_IO.Put

(Item=> "Here is WeekendCallers after upward sorting.");
Ada.Text_IO.New_Line;
DisplayCallers(List => WeekendCallers);

Ada.Text_IO.New_Line;

END Phone_Service;

4.4 ADT DESIGN: MATHEMATICAL VECTORS

Many of the first computers, developed in the 1940s and 1950s, were intended chiefly
for the solution of scientific and engineering—that is, mathematical—^problems.
Indeed, the first devices resembling what we would call digital computers—built in the
mid-1940s—^were designed mainly to perform calculations that led to the tables used
for artillery control. Later it was realized that computers could be very powerful in data
processing and in other less mathematical applications such as language translation,
large-scale information systems, and so on.

In the mid-1950s, when an alternative was sought to coding mathematical prob
lems in machine language, Fortran was developed by John Backus and his team at
IBM. Given the predominance of vectors and matrices in mathematical problems, it is
not surprising that the Formula Translator—Fortran—embodied support for these in
the form of what were (and still are) called arrays. The single- and multidimensional
arrays of Fortran are implementations of the mathematical abstractions of vectors,
matrices, and tensors (three-dimensional matrices); they serve as the models for simi
lar implementations in Fortran's successor languages: Algol, PL/I, Basic, Pascal, and,
of course, Ada. We have seen many uses for arrays, but their origins were in mathe
matics.
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A vector of N components is a set of N values that is ordered in the sense that each
value is assigned a specific "position" in the set. For example, the vector U = <3,5, -1>
is different from the vector V = <5, -1, 3>: They both have the same set of values, but
the values appear in different orders. Generally, we implement vectors through the use
of one-dimensional arrays.

It is important to realize that the type of a vector's elements need not be scalar or
even numerical, although integers and floats are the types seen most frequently in engi
neering problems. In Ada, we could, of course, also have vectors of rational numbers.

Requirements

Develop a means of performing arithmetic on mathematical vectors.

Analysis

Mathematicians have defined a number of standard operations on vectors. Among
these are several we will study here. In each case, we assume that U and V are vec

tors with the same element type and number of components; designate the element
type as ElementType and the index range, or bounds, of the vectors by the range

The vector sum of U and V, written C/ + V, is a vector T with bounds such

that, for each r in the range

Tr=Ur + Vr

That is, the components of the two vectors are added pairwise.
The inner product of U and V, written U*V and sometimes called the scalar prod

uct or dot product^ is a value of type ElementType, whose value is the sum of all the
pairwise products

Ur X v;

taken over all the components. This operation is called the scalar product because the
result is a scalar value—^that is, a single value of type ElementType.

The sum ofV with a scalar AT, written AT + V, is a vector T", with the same bounds as
V, whose components have values

Z = K-i-V,

The product ofV by a scalar AT, written AT x V, is a vector T, with the same bounds as V,

whose components have values

Tr = KxV,
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Design of the Vector Package

We will develop Vectors as an ADT package, listing the operations above in the
specification and implementing them in the package body. We can use an uncon
strained array type for the vectors, so that our vector operations can deal with vectors of
differing sizes at different times.

TYPE Vector IS ARRAY {Integer RANGE <>) OF Float;

Now we can declare Vector variables such as

V: Vector(1..5);

Q: Vector(-5..6);

and they'll have the proper dimensions.
Program 4.3 shows the package specification for Vectors.

Program 4.3 Specification for vectors Package

PACKAGE Vectors IS

— I Specification for vector arithmetic package
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: October 1995

TYPE Vector IS ARRAY(Integer RANGE <>) OF Float;

— exported exception, raised if two vectors are not conformable
— (i.e., have different bounds)

Bounds_Error : EXCEPTION;

FUNCTION "+" (K : Float; Right : Vector) RETURN Vector;
— Pre: K and Right are defined

— Post: returns the sum of the vector and the scalar

Result(i) := K + Right(i)

FUNCTION "*• (K : Float; Right : Vector) RETURN Vector;

— Pre: K and Right are defined
— Post: returns the product of the vector and the scalar

Result(i) := K * Right(i)

FUNCTION (Left, Right : Vector) RETURN Float;

— Pre: Left and Right are defined
— Post: returns the inner product of Left and Right
— Raises: Bounds_Error if Left and Right have different bounds

FUNCTION "+" (Left, Right : Vector) RETURN Vector;
— Pre: Left and Right are defined
— Post: returns the sum of Left and Right

result(i) := Left(i) + Right(i)
-- Raises: Bounds_Error if Left and Right have different bounds

END Vectors;

The Vector type is not defined as private because we wish to allow client pro
grams access to the individual vector components in the usual array-referencing way. If
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the type were private, that access would be forbidden! The operations are specified as
Ada operator symbols, which will allow a client program to write

V3 := V2 + VI;

for example, just as a mathematician would. An exception Bounds_Error is pro
vided by the package, because the vector addition and inner-product operations make
no sense if their vector operands do not have the same bounds. This precondition will
have to be checked in the bodies of these operations; if it is not met, Bounds_Error
is raised to the client program.

Coding the Body of vectors

The body of Vectors is shown in Program 4.4. Notice in the scalar addition operation
how a vector is created to hold the result: The construct Right' Range is another way
to write the longer form Right' First. . Right' Last. When the result vector is
returned to the calling program, there must be a vector there of the proper size to hold
it; otherwise, Constraint_Error is raised as usual.

Program 4.4 Body for vectors Package

PACKAGE BODY Vectors IS

— I Body of Vectors package
--I Author: Michael B. Feldman, The George Washington University
— I Last Modified: October 1995

FUNCTION "+" (K : Float; Right : Vector) RETURN Vector IS
Result : Vector(Right'Range);

BEGIN

FOR R IN Right"Range LOOP

Result(R) := K + Right(R);
END LOOP;

RETURN Result;

END * + ■*;

FUNCTION (K : Float; Right : Vector) RETURN Vector IS
BEGIN — stub

RETURN Right;
END

FUNCTION "+" (Left, Right : Vector) RETURN Vector IS
Result : Vector(Left"Range);

BEGIN

-- First check for conformability
IF Left"First = Right"First AND

Left"Last = Right"Last THEN

— if conformable, go on to compute
FOR R IN Left"Range LOOP

Result(R) := Left(R) + Right(R);
END LOOP;

RETURN Result;
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ELSE

RAISE Bounds_Error;

END IF;

END

FUNCTION (Left, Right : Vector) RETURN Float IS
Sum : Float;

BEGIN -- stub

RETURN 0.0;

END

END Vectors;

The scalar-multiplication and inner-product operations are left as stubs for you to
complete as an exercise.

Program 4.5 shows a test program for the vector operations. The last test attempts to
add two vectors with dissimilar bounds; the exception Vectors .Bounds_Error
should be raised when this case is executed.

Program 4.5 Using the Vectors Package

WITH Ada.Text_IO;

WITH Ada.Float_Text_IO;

WITH Vectors;

USE TYPE Vectors.Vector;

PROCEDURE Test_Vectors IS

— I Example of use of Vector operations
— I Author: Michael B. Feldman, The George Washington University
--! Last Modified: October 1995

VI: Vectors.Vectord. .4) ;= (1.0, 0.0, -2.0, 3.0);

V2: Vectors.Vectord. .4) := (0.0, -5.0, 3.0, 1.0);

V3: Vectors.Vector(l..3} := (1.0, 2.0, 3.0);
V4: Vectors.Vectord. .4) ;

PROCEDURE DisplayVector(V: Vectors.Vector) IS
BEGIN

FOR Component IN VFirst..VLast LOOP
Ada.Float_Text_IO.Put

(Item => V(Component), Fore=>5, Aft=>2, Exp=>0)
END LOOP;

END DisplayVector;

BEGIN — Test_Vectors

Ada.Text_IO.Put(Item => "VI = ");

DisplayVector(V => VI);

Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => "V2 = ");
DisplayVector(V => V2);
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => "V3 = ");
DisplayVector(V => V3);
Ada.Text_IO.New_Line;

V4 := 3.0 + VI;
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Ada.Text_IO.Put(Item => "3.0 + VI = ");

DisplayVector(V => V4);
Ada.Text_IO.New_Line;

V4 := VI + V2;

Ada.T6xt_I0.Put(Item => "VI + V2 = ");
DisplayVector(V => V4);
Ada.Text_IO.New_Line;

Ada.Text_IO. Put (Item => "VI * V2 = "J.
Ada. Float_Text_IO. Put (Item => VI * V2, Fore=>l, Aft=>2, Exp=>0);
Ada.Text_IO.New_Line;

V4 ;= VI + V3; -- should raise exception!

END Test_Vectors;

The Vectors package is somewhat oversimplified. In ordinary mathematics, two
vectors can be added if they have the same lengths but different bounds. Also, ordinarily
the scalar-vector addition can be written with the scalar on either side of the addition

operator. In Ada, since the compiler cannot understand the intention of an infix operator,
if we wish the scalar to appear on either side we must provide two operators. As an exer
cise, you can modify our Vectors package to accommodate this mathematical realism.

4.5 ADT DESIGN: MATHEMATICAL MATRICES

So far, we have seen unconstrained array types with only one dimension. Now we will
examine multidimensional unconstrained array types. These are useful in representing
tables or mathematical matrices of varying size. As an example, we will consider matri
ces. Matrix operations can be written in a manner similar to that for vector ones, using
a type definition such as

TYPE Matrix IS ARRAY (Integer RANGE <>, Integer RANGE <>) OF Float;

The two occurrences of the "box" symbol allow (and require) both sets of bounds to be
specified when variables are declared. The specification for a package Matrices is
shown as Program 4.6.

Program 4.6 Specification for Matrix Package

PACKAGE Matrices IS

— I Specification for package Matrices
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: October 1995

TYPE Matrix IS ARRAY(Integer RANGE <>, Integer RANGE <>) OF Float;

-- exported exception, raised if two matrices are not conformable
Bounds_Error : EXCEPTION;

FUNCTION -+" (K : IN Float; M : IN Matrix) RETURN Matrix;
— adds a scalar to a matrix

— Pre: K and M are defined

— Post: returns the sum of the scalar and the matrix

Result(i,3) := K + M(i,j)
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FUNCTION (K : IN Float; M ; IN Matrix) RETURN Matrix;

— multiplies a matrix by a scalar
— Pre: K and M are defined

— Post: returns the product of the scalar and the matrix
Result(i,j) := K * M(i,j)

FUNCTION "+" (Left, Right : IN Matrix) RETURN Matrix;
— finds the stum of two matrices

— Pre: Left and Right are defined and have the same bounds

— Post; returns the sum of Left and Right
Result{i,j) := Left(i,j) + Right(i,j)
Raises Bounds_Error if the matrices are not conformable

FUNCTION "*"(Left, Right : IN Matrix) RETURN Matrix;
— finds the product of two matrices
-- Pre: Left and Right are defined

and Left's column bounds agree with Right's row bounds
— Post: returns the product of Left and Right

Raises Bounds_Error if the matrices are not conformable

FUNCTION Transpose(M : IN Matrix) RETURN Matrix;
— finds the transpose of a matrix
— Pre: M is defined

— Post: returns a matrix such that Result(i,j) = M(j,i)
Result has M's bounds, interchanged

END Matrices;

Assuming M and N are matrices with the same bounds and AT is a scalar, the opera
tors M + Ny K + M and AT x M are similar to their counterparts in the vector case. In the
case of matrix addition, the precondition that the matrices must have matching bounds
must be checked by the operators.

Here is the code for the matrix sum operation:

FUNCTION "+" (K : ElementType; M : IN Matrix) RETURN Matrix IS

Result : Matrix(M'Range(1), M'Range(2));

BEGIN

FOR R IN M'Ranged) LOOP
FOR C IN M'Range(2) LOOP

Result(R, C) := K + Right(R, C);
END LOOP;

END LOOP;

RETURN Result;

END "+";

Notice the attributes used to establish the bounds of the parameter and the result:
M' Fir s t (1) means "the low bound of the first dimension"; M' Las t (2) means "the

high bound of the second dimension." The construct M' Range (1) is another way to
write M' First (1) ..M' Last (1). For multidimensional arrays, the "dimension
number" must be given; for one-dimensional arrays, no "dimension number" is
required or permitted.

Mathematically, the transpose of a matrix, T, returns a matrix whose second dimen
sion is the same as M's first dimension, and whose first dimension is the same as M's

second dimension. For all row and column values r and c, = Mcr
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The definition of matrix multiplication Afx M common in many applications, is not
as obvious as the others. The precondition for multiplication is that the second bounds
of M must be the same as the first bounds of N {M must have as many columns as N has
rows). The product is a matrix P, with ATs row bounds and iVs colunm bounds. So if M
has bounds (1..5, -3..0) and N has bounds (-3..0, 6..8) then Af x has bounds (1..5,
6..8). Each element of P, designated P^, is given by the formula

k

where the index k ranges over the columns of M. Writing and testing the package body
for Matrices is left as an exercise.

4.6 STORAGE MAPPINGS

An interesting study in abstraction versus implementation is provided by the storage
mappings used for one-dimensional and multidimensional arrays. A storage mapping is
a formula that maps the abstraction of an array onto the storage units of the underlying
hardware.

In this section, we discuss storage mappings in a general way; there are a few Ada
declarations here, but the discussion is intended to show you how languages in general
handle the array question. Also, although for simplicity we use numerical array ele
ments and integer subscripts in these examples, nearly everything we say in this section
generalizes both to enumeration subscript types and to array elements of arbitrary type.

One-Dimensional Arrays

Consider the declaration

T: ARRAY(1..10) OF Integer;

This declaration indicates that the compiler is to set aside space for 10 integer val
ues and that the valid range of subscripts into the resulting array is 1, 2, ..., 10.
(Declaring an array type, then declaring T to be a variable of that type, has the same
effect and is usually considered better Ada style; in this section, we use the simpler form
given above for brevity.)

Once the array declaration has been elaborated at execution time, we know that we
can carry out two operations on array elements: We can store a value, as in the assign
ment T (2) : = 3, or we can retrieve a previously stored value, as in the assignment
Y : = T (2). We could just as well have stored or retrieved using a variable as the sub
script, as in T (I) := 3, as long as we made certain that at the time the statement was
executed I had a value in the range 1 thru 10.

These array element operations are familiar; why belabor them here? The point is
that there are really two separate operations involved—a storage operation and a
retrieval operation—even though Ada, like most programming languages, permits the
same array-element-referencing syntax to be used on either side of the assignment oper
ator. These two abstract operations have been implemented in a way that is syntactically
convenient and inmitively comfortable.
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What sort of machine instructions would a compiler have to produce in order to
support subscripting in array element operations? When an array is declared, space is
reserved for as many elements as are requested by the declaration. How much space is
this? It depends, in fact, on the type of the array elements and the basic storage unit of
the computer.

For example, some computers represent an integer as one 16-bit word and a float
ing-point number as two words, or 32 bits. In that sort of computer, an array of 100
floating-point numbers will require 200 16-bit words of memory. In other computers,
space is allocated in 8-bit bytes rather than in 16-bit words; the same array requires 400
bytes, because floating-point numbers in that machine occupy 4 bytes each.

Similarly, an array of one hundred 200-character student records, including name,
address, course grades, etc., would require a total of 20,000 bytes.

When the space has been allocated, the compiler must generate certain instructions
that encode the relationship between a subscript reference such as A (i) and the inter
nal storage in the particular computer involved. This relationship is called the storage
mapping, or sometimes the storage mapping Junction.

Letting add(T) be the machine address of the first storage unit (byte, word, or other
unit) of the array, and NUNTTS be the number of storage units per array element, what
is the storage mapping for an array such as T, above? We need a formula that tells us
how many elements to "skip over" in order to reach the i-th one. Clearly we need to skip
over i - I of them. So the address of T (i) is in fact

add(T) + (i -1) X NUNTTS

Is this formula correct? Consider a 4-byte float in a computer in which addressing
is done byte-by-byte, so NUNTTS = 4. The address of T (1) is in fact simply add (T)
because the second term drops out; the address of T (2) is add (T) +4, and so on.

The array T is really a special case, since the lowest subscript value is 1. In the more
general situation, the only restriction on the lowest value is that it cannot be greater than
the highest subscript value. These two values are usually called the range of the subscripts.

Under the more general scheme, what should the storage mapping look like? Call
the lowest subscript value First, and the highest Last. Then assuming we declare

T: ARRAY(First..Last) OF Float;

we will need (Last - First + 1) x NUNITS of space, such that T (First) maps
to add (T). To get to an arbitrary T (i), how many elements do we need to skip over?
It is i - First elements.

To see this, suppose that First = 3 and Last = 10, as in

T: ARRAY(3..10) OF Float;

Clearly eight elements will be required, each NUNTTS long; to get to T (5), say,
we need to skip elements 3 and 4, which is 5 - 3 = 2 elements. To get to the first ele
ment T (3), we skip no elements (3 - 3 = 0). So our storage mapping becomes

T (i) maps to add(T) + (i - First) NUNTTS
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Notice, by the way, that this is perfectly consistent with the special case used in
Fortran-66: In that language, First = 1 always. It also works even if First and/or Last
are negative. Let us try finding the storage mapping for NUNTTS = 4 and the declaration

T: ARRAy(-5..7) OF Float;

This will require 7 - (-5) + 1 4-byte elements, or 52 bytes; T (i) maps to add (T)
+ (i - (-5)) X 4 or add (T) + (i + 5) X 4. Then T (-5) maps to add (T) ; T (0) maps
to add{T) + 20 (we've skipped over five elements!) and so on. This arrangement is
shown in Figure 4.4.

A brief aside: There is nothing sacred about mapping the lowest-subscripted ele
ment to add(T); indeed, in some computers, such as the Hewlett-Packard HP-3000, the
hardware design is such that add(T) maps most conveniently to the zeroth element, so
elements with negative and positive subscripts are said to lie below and above the zero
point, respectively. Even if there is no zeroth element, add(T) is mapped to the place
where it would be located if there were one. For uniformity in this book, we shall retain
the convention that the lowest-subscripted element maps to add(T).

Another aside: Some earlier programming languages restricted the low bound of an
array subscript. In Fortran-66, the low bound was required to be 1; in many versions of
BASIC it was required to be 0, and, indeed, arrays in C are assumed to have a low
bound of 0.

Two-Dimensional Arrays

An R X C array M is said to have R rows and C columns, and then refer to any particular
element in the array by using two subscripts r and c in an expression M(r, c). Note
that if we were to view M pictorially, as in Figure 4.5, the rows would be oriented hori
zontally, the columns vertically, and the subscript reference would give the row sub
script first. (There is nothing sacred about this view; it is just a convention to help us
visualize the array.)

As in the one-dimensional case, we have an abstraction 2-D Array, implemented in
most programming languages by the feature that allows us to declare two-dimensional
arrays and to store and retrieve elements in them in the form M (r, c). How do compil
ers implement this abstraction?

byte 0 byte 1 byte 2 byte 3

"e:q>loded" view of T(l)
1 real number = 4 bytes

T(-4) T(-3) T(-2) T{-1) T(0) T(1) T{2) T(3) T(4) T(5) T(6) T(7)

add(T)

Figure 4.4 Storage Allocation in Linear Memory for t : array (-5.. 7) of Float
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R rows

M(2,l)

M(R,1)

M(l,2) M(l,3)

M(3.3)

M(1,C)

M(3,C)

M(R,C)

Figure 4.5 Abstract View of a Rectangular Array

Memory in most computers is organized logically in linear fashion, with the
addresses of the storage units (words or bytes) running in a single increasing sequence.
Therefore, a structure with two dimensions has to be mapped onto a structure with only
one dimension. Programming languages often implement the abstraction 2-D Array in
a form called row-major, in which the two-dimensional array is stored row by row in
linear memory, as shown in Figure 4.6.

That this is not the only way to do it is evidenced by the column-major scheme in
Fortran, in which a two-dimensional array is stored column by column. This is shown
for the same array in Figure 4.7.

What is the storage mapping function for a two-dimensional array stored in row-
major form? As before, let us begin with the familiar case in which the rows and
columns are numbered 1.. R and 1. . C respectively. Since the array is stored row by
row, to reach any element in the r-th row we need to "skip over" r - 1 rows; then to
reach the c-th element in the r-th row, we need to "skip over" c - 1 elements. Each
row has C elements; each element requires NUNTTS of storage. Thus, the mapping
function is

M(r,c) maps to add(M) + (r - 1)C x NUNITS + (c - 1) x NUNITS

MU.I) nii,2» MlR.ll HIR.2)

Figure 4.6 Row-Major Implementation of Rectangular Array in Linear Memory
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Mll.U HW.ll ml.il M(2.2I

y^\, — o
add(H) I

H(1,C) HI2,CI

m

Figure 4.7 Column-Major implementation of Rectangular Array In Linear Memory

Letting NUNITS = 4 as above (for, say, a four-byte float), for the 5 x 6 array in
Figure 4.8, 120 bytes of storage are needed.

M (1, 1) maps to add(M) + 0.

M(5, 6) maps to add(M) + 4x6x4 + 5x4 = add(M) + 116.

M(3 , 2) maps to add(M) + 2x6x4 + 1x4 = add(M) + 52.

M; ARRAY ot tioat

(a) Declaration

1.0 -3.5 7.4 2.0 -4.5 0.0

-4.6 0.0 1.0 2.3 -1.5 1.0

-2.2 -1.0 2.0 0.0 -5.72 0.0

-5.0 1.0 -2.1 3.0 2.3 -4.0

0.0 4.35 3.6 1.0 0.0 1.0

(b) Abstract view

/

1.0 -3.5 ... 0.0 -4.6 0.0 • • • 1.0 0.0 4.35

add(M)

1.0

(c) Row-major implementation in linear memory (note real
numbers are stored as 4-byte floating point)

Figure 4.8 Abstraction and Implementation of a 5 x 6 Array of Float Values
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As in the one-dimensional case, we can generalize this idea to permit subscripts to
have an arbitrary integer range, as in Pascal or Ada (or Fortran-77, for that matter).
Consider, then, the declaration in Ada

M: ARRAY(FirstR..LastR, FirstC..LastC) OF Float;

The details of the row-major storage mapping function are left as an exercise, as is
the question of developing a storage mapping for two-dimensional arrays implemented,
as in Fortran, in column-major form.

Higher-Dimensional Arrays

There is often a need in programming problems to work with arrays of higher dimen
sion than 2, and most programming languages support a feature to permit up to some
fairly large number of subscripts.

How is this facility implemented? It is a generalization of the two-dimensional
case. Considering three-dimensional arrays, for example, the third dimension is con
ventionally called a plane, and the new subscript is conventionally added before the one
for a row. So the Ada declaration

A: ARRAYd. .4,1. .5,1. .6) OF Float;

would be interpreted as an array with four planes, each having five rows and six
columns. A reference A (p, r, c) would then be interpreted as that element at the inter
section of the pth plane, rth row, and cth column.

As in the two-dimensional case, this abstract structure is then mapped onto linear
storage in either row-major or column-major fashion. In row-major form, we reach the
element A (p, r, c) by skipping over p - 1 planes to reach the pth plane, then r - 1
rows to reach the rth row, then c - 1 elements (each in a column) to reach the cth ele
ment. In column-major form, we imagine first skipping over c -1 columns to reach the
cth column, then r -1 rows to reach the rth row, then p -1 elements (each in a plane)

to reach the pth element. These schemes are illustrated in Figure 4.9, for the case of an
array A (-1. . 1, 0. . 3, 5 . . 6).

Obtaining storage mapping functions for this case and for higher dimensionality is
left as a set of exercises. The general idea is that in any row-major scheme, of whatever
dimension, the leftmost subscript varies most slowly; in any column-major scheme, the
rightmost subscript varies most slowly.

The Ada Standard Does Not Specify Storage Mappings

As mentioned above, programming-language reference manuals have generally speci
fied a required storage mapping. Fortran (in all its versions) has specified a column-
major mapping; PL/I, Pascal, and C all use row-major.

Alone among popular languages, Ada does not specify any particular array storage
mapping. The Ada standard in general takes no position on the details of how storage
is to be allocated, instead leaving this task to compiler implementers, who are most
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M: ARRAY (-1..1,0..3,5.-6)

(a) Declaration

column 5

M(0,0,5)

M(l,0,5)

row 0 M(-l,0,5) M(-l,0,6)

row 1 M(-l.l,5) M(-l,l,6)

row 2 M{-1,2,5) M(-l,2,6)

row 3 M(-l,3,5) M(-l,3,6)

plane -1

(b) Abstract view

M(0,0,6)

M(0,1.6)

M(0,2,6)

M(0,3,6)

column 6

M<1,0,6)

M(l.l,6)

M(1.2,6)

M(l,3,6)

plane +1

plane 0

•plane -1- ■plane 0- • plane -t-l-

row ijrow 1 jrow^jrowT'^' ^
M(-l,2,6} Col. 5 Col. 6

add(M)

I row ojrow|l|row 2|row 3
M(0,3,5) M{1,1,5)

(c) Row-major Implementation

<  column 5 ► <  column 6 ■

1  1 1

/ X /\^ \add(M) plane -1 \ plane 1 \
M(l,l,5) \

plane 0
M(0

row 0 I row 2 (/ row 2 I row 3

,3,5) M(-l,2,6)

(d) Column-major implementation

Figure 4.9 Abstraction and Implementation of a Three-Dlmenslonai Array in
Linear Memory

familiar with the underlying hardware for which their products produce code. A pro
grammer in a high-level language rarely needs to make explicit use of a storage map
ping, so finding appropriate mappings is likely to be done closer to optimally when they
are not overspecified in the standard.

To see how this can be a real advantage, consider an Ada program that must call a
procedure written in another language, passing to the procedure a multidimensional
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array. If the two storage mappings agree, then the array will "make sense" both to the
Ada caller and to the foreign-language procedure. Otherwise, the calling program must
make a large effort to transpose the array.

Storage-mapping problems caused much difficulty in the 1960s, when PL/I propo
nents advocated writing new programs in PL/I to interface with older Fortran subpro
grams. Whenever multidimensional arrays were involved, there was trouble: PL/I
required row-major mapping, whereas Fortran required column-major. Indeed, storage
mapping-incompatibility is sometimes cited as a major factor in the failure of PL/I to
replace Fortran as a science and engineering language.

In theory, this interfacing problem is relatively easy to solve with Ada: A compiler
designed so that programs can interface easily with a row-major language is quite free
to use a row-major mapping; to interface with Fortran, an Ada compiler is perfectly free
to use a column-major mapping. Indeed, the same compiler is free to use different map
pings for different array types.

In practice, this has not happened with Ada compilers, which almost universally
use row-major mappings. Also, aggregate assignments to multidimensional arrays are
written as if the mapping were row-major—^for instance,

SomeArray := (OTHERS => (OTHERS =>0.0));

Although the Ada standard does not require all compilers to use the same storage
mapping, or other storage allocations, you can always find out how a specific compiler
handles these by consulting the programming guide supplied with that compiler.

It is interesting to note that the Ada 95 standard specifies, in Annex B, an inter
face to Fortran (along with others to Cobol and to C) allowing the programmer to
specify that an array type be stored according to the Fortran conventions. The
details of this are beyond the scope of this text; if you are interested in storage map
pings or interfacing to other languages, you are invited to consult the Ada 95 LRM.

A consequence of the Ada standard's not specifying a storage mapping for multidi
mensional arrays is that although it is perfectly permissible to declare an Ada array type
whose element type also happens to be an array type, such a type is not equivalent to a
two-dimensional array type. Contrast this with the situation in Pascal, for example, in
which a two-dimensional array is by definition the same as a one-dimensional array of
one-dimensional arrays. This necessarily implies a row-major mapping. The situation
in C is very similar to that in Pascal.

One final comment on array storage mappings: Row- and column-major mappings
are not the only ones possible. Indeed, in Chapter 12, Exercise 6, you will find some
discussion of an interesting tree-structured storage mapping.

SUMMARY

Multidimensional arrays have been introduced in this chapter. Nested loops are needed
to manipulate the elements of a mutidimensional array in a systematic way. The corre
spondence between the loop-control variables and the zirray subscripts determines the
order in which the array elements are processed.

Also introduced in this chapter were unconstrained array types, as illustrated by
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general sorting, mathematical vectors, and mathematical matrices.
Finally, array storage mappings were discussed, to illustrate how array abstractions

are implemented in computer memory.

EXERCISES

1. A certain city has just held an election. The results from the mayor's race have
been reported by each precinct (neighborhood) as follows:

Candidate Candidate Candidate Candidate

Precinct A B C D

1 192 48 206 37

2 147 90 312 21

3 186 12 121 38

4 114 21 408 39

5 267 13 382 29

Write a program to do the following:
a. Display the table with appropriate headings for the rows and columns.
b. Compute and display the total number of votes, and the percentage of the

total votes cast, received by each candidate.
c. If any one candidate received over 50% of the votes, the program should print

a message declaring that candidate the winner.

d. If no candidate received 50% of the votes, the program should print a message
declaring a runoff between the two candidates receiving the highest number of
votes; the two candidates should be identified by their one-letter designations.

e. Run the program once with the data given in the table and once with
Candidate C receiving only 108 votes in Precinct 4.

2. Write a program that reads the five cards representing a poker hand into a two-
dimensional array (first dimension, suit; second dimension, rank). Evaluate the
poker hand by determining whether the hand is a flush (all one suit), a straight
(five cards with consecutive ranks), a straight flush (five consecutive cards of one
suit), four of one rank, a full house (three of one rank, two of another), three of one
rank, two pair, or one pair.

3. Do Problem 2, but represent a card as a record with two fields representing the suit
and the rank, and a poker hand as a one-dimensional array of these records.
Contrast the new solution with that of problem 2. Which representation of the
poker hand do you find more natural?

4. Modify Program 4.4 to call MaxValue with parameters LI (2. . 4),
L2 (0. . 2), and L2 (- 4 . . -1). Ascertain that the program correctly finds the
given maximum values.

5. Complete and test the body of the Vectors package given in Program 4.4.
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6. Suppose that V is a vector and X is a scalar. Mathematically, the operations on a
vector and a scalar are commutative; that is, V^+X and X + V give the same result,
as do V X X and X x V, The Vectors package would be more useful if the cor
responding operators were made commutative. This can be done in Ada using
additional overloaded operators. Revise the Vectors package to allow these
commutative operators.

7. A mathematician, looking at our Vectors package, would probably say that we
have used an excessively strong requirement for conformability. In fact, it is not
necessary that two vectors have the same bounds to be conformable; they need
only have the same lengths. Revise and test Vectors to make it more satisfac
tory to mathematicians.

8. Complete and test the Matrices package of Section 4.5.
9. Obtain a detailed storage mapping function for a two-dimensional array stored in

row-major form.
10. Obtain a detailed storage mapping function for a two-dimensional array stored in

column-major form.
11. Obtain a detailed storage mapping function for a three-dimensional array stored

in row-major form.
12. Obtain a detailed storage mapping function for a three-dimensional array stored

in column-major form.

13. Obtain a general storage mapping function for an array of D dimensions stored in
row-major form.

14. Obtain a general storage mapping function for an array of D dimensions stored in
column-major form.

15. To understand the value of the Ada 95 interface to Fortran, suppose that it did not
exist, and that a specific Ada compiler stores multi-dimensional arrays in row-
major form. We know that Fortran stores them in column-major form. Suppose an
Ada program creates a three-dimensional array, then needs to pass it to a subrou
tine written in Fortran. Assume that in both languages, subroutine linkage
arrangements just pass the address of the array, thus the same physical copy of the
array is used by both programs. A reference to, say M (1, 5,4) in the Ada pro
gram refers to a different physical location from that referred to by the same ref
erence in the Fortran program. What has to be done to make the two languages
communicate better? Write whatever programs you need.
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Generic Subprograms and
Packages

5.1 Ada Structures: Generic Units

5.2 Application: A Generic Sorting Program

5.3 Application: A Generic Binary Search Program

5.4 ADT Design: An Abstract Data Type for Sets
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5.10 Application: Airline Passenger List

5.11 ADT Design: ADTs versus Abstract Data Objects

This chapter introduces you to an important feature of Ada that makes the language
extremely useful for developing reusable software components: generics. A generic
component (package or subprogram) is one that is parametrized at the level of the types
it works with. There are generic formal and actual parameters, just like the "normal"
ones we use with subprograms and variant records. A generic component can be instan
tiated or "tailored" to work with a specific type. This means that a very general program
or package can be written whose code is independent of the type it manipulates.
Versions of it can be created, using a single statement for each version, to handle many
different types.

This chapter shows you how to create your own generics and tailor them for many
interesting purposes; the remaining chapters of this book introduce many other
generic units. Through the careful design of generic units, an entire industry of
reusable, tailorable software components can be built up and used for a wide range of
applications.

184
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5.1 ADA STRUCTURES: GENERIC UNITS

Ada's system of types and procedures requires that the type of a procedure's actual
parameter always match that of the formal parameter. This means that a procedure or
function that needs to do the same thing to values of two different types must be writ
ten twice—once for each type. Consider the procedure Exchange;

PROCEDURE Exchange(Valuel, Value2: IN OOT Natural) IS
TempValue: Natural;

BEGIN

TempValue
Valuel

Value2

END Exchange;

= Valuel;

= Value2;

= TempValue;

A procedure to exchange two Float values would have the same sequence of
statements, but the type references would be different:

PROCEDURE Exchange(Valuel, Value2: IN OUT Float) IS

TempValue: Float;
BEGIN

TempValue
Valuel

Value2

END Exchange;

= Valuel;

= Value2;

= TempValue;

Obviously, we could modify the first version to give the second version by using an
editor. Because we are likely to need the Natural version again, we modify a copy of
it. This gives two versions of a procedure that are almost the same; because of over
loading, the two can both be called Exchange. Carrying this to its extreme, we could
build up a large library of Exchange programs with our editor and be ready for any
eventuality. Exchange could even be made to work with array or record structures,
because Ada allows assignment for any type.

There is a problem with this approach: It clutters our file system with a large num
ber of similar programs. Worse still, suppose that a bug turns up in the statements for
Exchange or in another program with more complexity. The bug will have turned up
in one of the versions; the same bug will probably be present in all of them, but we will
probably forget to fix all the others! This is, in miniature, a problem long faced by
industry: multiple versions of a program, all similar but not exactly alike, all requiring
debugging and other maintenance.

Returning to our simple example, it would be nice if we could create one version of
Exchange, test it, and then put it in the library. When we needed a version to work
with a particular type, we could just tell the compiler to use our pretested Exchange
but to change the type it accepts. The compiler would make the change automatically,
and we would still have only a single copy of the procedure to maintain.

It happens that Ada allows us to do exactly this. The solution to this problem is
generics. A generic unit is a recipe, or template, for a procedure, function, or package.
Such a unit is declared with formal parameters that are types, and sometimes are pro
cedure or junction names. An analogy can be drawn with an unusual recipe for a layer
cake: All the elements are there except that the following items are left as variables to
be plugged in by the baker:
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• The number of layers

• The kind of filling between the layers

• The flavor of the cake itself

• The flavor of the icing

This recipe was pretested by the cookbook author, but before we can use it for a
three-layer yellow cake with marshmallow filling and chocolate icing, we need to (at
least mentally) make all the changes necessary to the list of ingredients. Only after this
instance of the recipe has been created does it make sense to try to make a cake using it.

Generic Type Parameters

Program 5.1 is a specification for a generic exchange program. This specification indi
cates to the compiler that we wish ValueType to be a formal parameter. The formal
parameters are listed between the word GENERIC and the procedure heading. Writing

TYPE ValueType IS PRIVATE;

tells the compiler that any type, including a private one, can be plugged in as the kind
of element to exchange. We will introduce more examples of type parameters below.

Program 5.1 Specification for Generic Exchange Procedure

GENERIC

TYPE ValueType IS PRIVATE; — any type OK except LIMITED PRIVATE

PROCEDURE Swap_Generic(Valuel, Value2: IN OUT ValueType);

— I Specification for generic exchcuige procedure
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

The body of Swap_Generic is presented as Program 5.2. Notice that
Swap_Generic looks essentially the same as the integer and float versions, except
for the use of ValueType wherever a type is required. ValueType is ?i formal type
parameter.

Program 5.2 Body of Generic Exchange Procedure

PROCEDURE Swap_Generic(Valuel, Value2: IN OUT ValueType) IS

— I Body of generic exchemge procedure
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

TempValue: ValueType;



5.1 Ada Structures: Generic Units 187

BEGIN — Swap_Generic

TempValue

Valuel

Value2

= Valuel;

= Value2;

= TempValue;

END Swap_Generic;

Compiling the specification and the body creates a version of the generic that is
ready to be instantiated, or "tailored" by plugging in the desired type. Here are two
instances:

PROCEDURE IntegerSwap IS NEW Swap_Generic (ValueType => Integer);
PROCEDURE CharSwap IS NEW Swap_Generic (ValueType => Character);

The notation is familiar; we have used it in creating instances of
Text_IO. Enunierat:ion_IO. Program 5.3 shows how Swap_Generic could be
tested and used. The two instantiations shown above appear in the program.

Program 5.3 A Test of the Generic Swap Procedure

WITH Swap_Generic;
WITH Ada.Text_I0;

WITH Ada.Integer_Text_IO;

PROCEDURE Test_Swap_Generic IS

--| Test program for Swap_Generic
--j Author: Michael B. Feldman, The George Washington University
— Last Modified: September 1995

Integer;

Integer;

A : Character;

B : Character;

PROCEDURE IntegerSwap IS NEW Swap_Generic (ValueType => Integer)
PROCEDURE CharSwap IS NEW Swap_Generic (ValueType => Character);

BEGIN — Test_Swap_Generic

= 3;

= -5;
=  ' X' ;

=  'q';

Ada.Text_IO.Put("Before swapping, X and Y are, respectively ")
Ada.lnteger_Text_IO.Put(Item => X, Width => 4);
Ada.Integer_Text_IO.Put(Item => Y, Width => 4);
Ada.Text_IO.New_Line;

IntegerSwap(Valuel => X,Value2 => Y);

Ada.Text_IO.Put("After swapping, X and Y are, respectively ");
Ada.Integer_Text_IO.Put(Item => X, Width => 4);
Ada.Integer_Text_IO.Put(Item => Y, Width => 4);
Ada.Text_IO.New_Line;

Ada.Text_IO.New_Line;
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Ada.Text_IO.Put("Before swapping, A and B are, respectively");
Ada.Text_iO.Put(Item => A);
Ada.Text_IO.Put(Item => B);

Ada.Text_IO.New_Line;

CharSwap(Valuel => A,Value2 => B);

Ada.Text_IO.Put ( "After swapping, A and B are, respectively");
Ada.Text_IO.Put(Item => A);

Ada.Text_IO.Put(Item => B);

Ada.Text_IO.New_Line;

END Test_Swap_Generic;

Generic Subprogram Parameters

Sometimes a generic recipe needs to be instantiated with the names of functions or pro
cedures. To continue the food analogy, a certain fish recipe can be prepared by either
baking or broiling; the rest of the recipe is independent. Thus, the action "desired cook
ing method" would be a parameter of that recipe.

Consider the function Maxinuim, which returns the larger of its two Integer
operands:

FUNCTION Maximum (Valuel, Value2: Integer) RETURN Integer IS

Result: Integer;

BEGIN

IF Valuel > Value2 THEN

Result ;= Valuel;

ELSE

Result := Value2;

END IF;

RETURN Result;

END Maximum ;

We would like to create a hinction that returns the larger of its two operands regard
less of the types of these operands. As in the case of Generic_Swap, we can use a
generic type parameter to indicate that an instance can be created for any type. This is
not enough, however. The IF statement compares the two input values. Suppose the
type we use to instantiate does not have an obvious, predefined "greater than" operation.
Suppose the type is a user-defined record with a key field, for example. "Greater than"
is not predefined for records! We can surely write such an operation, but we need to tell
the compiler to use it; when writing a generic, we need to reassure the compiler that all
the operations used in the body of the generic will exist at instantiation time. Let us indi
cate in the generic specification that a comparison function will exist.

Program 5.4 is the desired generic specification. The WITH syntax shown here takes
getting used to, but it works.

Program 5.4 Specification for Generic Maximum Function

GENERIC

TYPE ValueType IS PRIVATE;

WITH FUNCTION Compare(L, R : ValueType) RETURN Boolean;
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FUNCTION Maximum_Generic(L, R : ValueType) RETURN ValueType;

— I Specification for generic maximum function
— I Author: Michael B. Feldman, The George Washington University
— Last Modified: September 1995

The body of the generic function, presented as Program 5.5, looks similar to the one just
given for Maximum.

Program 5.5 Body of Generic Maximum Function

FUNCTION Maximum_Generic(L, R : ValueType) RETURN ValueType IS

Body of generic maximum function

Author: Michael B. Feldman, The George Washington University
Last Modified: September 1995

BEGIN — Maxiraum_Generic

IF Compare(L, R) THEN

RETURN L;

ELSE

RETURN R;

END IF;

END Maximum_Generic;

An instantiation for Float values might be

FUNCTION FloatMax IS

NEW Maximum_Generic (ValueType=>Float, Compare=>

Notice how the "greater than" operator is supplied. It makes no difference that the
generic expected a function and we gave it an operator; after all, an operator is a func
tion. What is important is that the structure of the actual parameter matches the struc
ture of the formal parameter. As long as a ">" is available for Float (of course there
is, in Standard), the instantiation will succeed.

The Ada compiler has no idea what the function Compare will do when the
generic is instantiated. It tums out, then, that if we just supply "<" as an actual parame
ter for Compare, the instantiation finds the minimum instead of the maximum!
Program 5.6 shows a total of six instantiations, giving minimum and maximum func
tions for Integer, Float, and Currency values. All the minimums are called
Minimum; all the maximums are called Maximum; this is just the normal Ada over
loading principle in action.

Program 5.6 Test of Generic Maximum Function

With Ada.Text_IO;

WITH Ada.Float_Text_I0;
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WITH Ada.Integer_Text_IO;
WITH Currency; USE Currency;
WITH Currency.10;

WITH Maximuin_Generic;

PROCEDURE Test_MciximunuGeneric IS

— 1 Test program for Generic Maximum, using six instances
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

FUNCTION Maximum IS

NEW Maximum_Generic (ValueType=>Float, Compare=>
FUNCTION Minimum IS

NEW Maximum_Generic (ValueType=>Float, Compare=>

FUNCTION Maximum IS

NEW Maximum_Generic (ValueType=>Integer, Compare=> ">");
FUNCTION Minimum IS

NEW McUcimum_Generic {ValueType=>Integer, Compare=> "<");

FUNCTION Maximum IS

NEW McUcimvim_Generic (ValueType=>Quantity, Compare=> ">");
FUNCTION Minimum IS

NEW Maximum_Generic (ValueType=>Quantity, Compare=>

BEGIN — Test_Maximxim_Generic

Ada.Text_IO.Put("Maximiim of -3 and 7 is ");
Ada. Integer_Text_IO. Put (Item => Maxim\im(-3, 7), Width=>l) ;
Ada.Text_IO.New_Line;

Ada.Text_IO.Put("Minimum of -3 and 7 is ");

Ada.Integer_Text_IO.Put(Item => Minimum(-3, 7), Width=>l);
Ada.Text_IO.New_Line(Spacing => 2);

Ada.Text_IO.Put("Maximum of -3.29 and 7.84 is ");
Ada.Float_Text_IO.Put

(Item => Maximum(-3.29, 7.84), Fore=>l, Aft=>2, Exp=>0);
Ada.Text_IO.New_Line;

Ada.Text_IO.Put("Minimiim of -3.29 and 7.84 is ");
Ada.Float_Text_IO.Put
(Item => Minimum(-3.29, 7.84), Fore=>l, Aft=>2, Exp=>0);

Ada.Text_IO.New_Line(Spacing => 2);

Ada.Text_IO.Put("Maximum of 23.65 and 37.49 is ");
Currency.10.Put

(Item => Maximvim(Ma]ceCurrency (23.65) , MakeCurrency (37.49))) ;
Ada.Text_IO.New_Line;

Ada.Text_IO.Put("Minimum of 23.65 and 37.49 is ");
Currency.10.Put

(Item => Minimum(MakeCurrency(23.65), MakeCurrency(37.49)));
Ada.Text_IO.New_Line(Spacing => 2);

END Tes t_Maximum_Gener i c;

Generic Array Parameters

An important use for generics, combined with unconstrained array types, is building
very general subprograms to deal with arrays. For a generic to be instantiated for many
different array types, we need to specify formal parameters for the index and array types.
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Program 5.7 is a specification for a function Maximiiin_Array_Generic that
returns the "largest" of all the elements in an array, regardless of the index or element
type. We place "largest" in quotation marks because we already know that we can make
it work as a minimum-finder as well.

Program 5.7 Specification for Generic Array Maximum Function

GENERIC

TYPE ValueType IS PRIVATE; — any nonlimited type
TYPE IndexType IS (<>); — any discrete type
TYPE ArrayType IS ARRAY(IndexType RANGE <>) OF ValueType;
WITH FUNCTION Compare(L, R ; ValueType) RETURN Boolean;

FUNCTION Maximum_Array_Generic(List: ArrayType) RETURN ValueType;

— I Specification for generic version of array maximum finder
— I Author: Michael B. Feldman, The George Washington University
— Last Modified: September 1995

The syntax of the specification for IndexType means "any discrete type is
acceptable as an actual parameter." Recalling that discrete types are the integer and
enumeration types and subtypes, this is exactly what we need for the index type of the
array. The specification for ArrayType looks like a type declaration, but it is not.
Rather, it is a description to the compiler of the kind of array type that is acceptable as
an actual parameter. In this case, the array type must be indexed by IndexType (or a
subtype thereof) and must have elements of type Valuetype (or a subtype thereof).

The body of Mcixiinuin_Array_Generic is shown in Program 5.8.

Program 5.8 Body of Generic Array Maximum Function

FUNCTION Maximum_Array_Generic(List: ArrayType) RETURN ValueType IS

— 1 Body of generic array maximiun finder
--| Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

Result: ValueType;

BEGIN — Maximum_Array_Generic

Result:=List(List'First)) ;

FOR WhichEleroent IN List'Range LOOP

IF Compare(List(WhichElement), Result) THEN
Result := List(WhichElement);

END IF;

END LOOP;

RETURN Result;

END Maximum_Array_Generic;

You can write a test program for it as an exercise. As a hint, consider the following
declarations;
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TYPE FloatVector IS ARRAY(Integer RANGE <>) OF Float;
TYPE RationalVector IS ARRAY (Positive RANGE <>) OF Rational;

and instantiate the generic as follows;

FUNCTION Maximum IS

NEW Maximum_jArray_Generic(ValueType=>Float, IndexType=>Integer,
ArrayType=>FloatVector, Compare=>">");

FUNCTION Minimum IS

NEW MaximuiiuArray_Generic(ValueType=>Rational, IndexType=>Positive,
ArrayType=>RationalVector, Compare=>"<");

5.2 APPLICATION: A GENERIC SORTING

PROGRAM

Let us continue our study of generics with the development of a generic sort procedure
that uses much of what we have done in this chapter. We develop a sort procedure that
will work correctly for any variable of any unconstrained array type, regardless of its
bounds, index type, or element type.

In Program 4.2 we developed SelectSort, which works for any array of a par
ticular unconstrained array type. We need only to modify it to make it generic. We also
have our procedure Swap_Generic, which we can instantiate and use to handle
exchanges.

Program 5.9 is the specification for the generic sort routine. This is similar to
Maximum_Array_Generic from Program 5.7.

Program 5.9 Specification for Generic Sort Procedure

GENERIC

TYPE ElementType IS PRIVATE; — any nonlimited type will do
TYPE IndexType IS (<>); — any discrete type for index
TYPE ListType IS ARRAY (IndexType RANGE <>) OF ElementType;
WITH FUNCTION Compare (Left, Right : ElementType) RETURN Boolean;

PROCEDURE Sort_Generic(List: IN OUT ListType);

— I Specification for Generic Exchange Sort - will sort input
— I array in order according to Compare

I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

With your current knowledge of generics, you can easily understand this specifica
tion. The body of the generic sort is presented as Program 5.10. Notice that the body
begins with the context clause

WITH Swap_Generic;

and instantiates this procedure for whatever the element type turns out to be. We have
here a case of one generic instantiating another; this is the kind of situation that
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demonstrates the power of generics to help write very general programs. The rest of the
procedure body is very similar to SelectSort (Program 4.2), with the necessary
modifications.

Program 5.10 Body of Generic Sort Procedure

WITH Swap_Generic;
PROCEDURE Sort_Generic(List: IN OUT ListType) IS

--| Body of Generic Sort Procedure
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

— we need to make an instance of Swap_Generic for this case
PROCEDURE Exchange IS NEW Swap_Generic (ValueType => ElementType);

IndexOfMax: IndexType;

BEGIN — Sort_Generic

FOR PositionToFill IN List'First .. IndexType'Pred(List'Last) LOOP

IndexOfMax := PositionToFill;

FOR ItemToCompare IN IndexType'Succ(PositionToFill) .. List'Last
LOOP

IF Compare(List(ItemToCompare), List(IndexOfMax)) THEN
IndexOfMcoc := ItemToCompare;

END IF;

END LOOP;

IF IndexOfMax /= PositionToFill THEN

Exchange(List(PositionToFill), List(IndexOfMax));
END IF;

END LOOP;

END Sort_Generic;

Using the Generic Sort to Order an Array of Records

Sort_Generic can be especially useful in sorting arrays of records. Consider the fol
lowing declarations:

MaucSize : CONSTANT Positive := 250;

MeucScore : CONSTANT Positive := 100;

SUBTYPE StudentName IS Stringd. .20) ;

SUBTYPE Classlndex IS Positive RANGE l..MaxSize;

SUBTYPE ClassRange IS Natural RANGE O..MaxSize;

SUBTYPE ScoreRange IS Natural RANGE O..MaxScore;

TYPE ScoreRecord IS RECORD

Name: StudentName;

Score: ScoreRange;

END RECORD;

TYPE ScoreArray IS ARRAY (Classlndex RANGE <>) OF ScoreRecord;
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Here is a "compare" function that tells us whether one record is "less than" another
(in the sense that one score is lower than the other):

FUNCTION ScoreLess(Scorel, Score2 : ScoreRecord) RETURN Boolean IS

BEGIN

RETURN Scorel.Score < Score2.Score;

END ScoreLess;

This function compares the score fields of the two records, returning True if the first
record is "less than" the second and False otherwise. We could have named this func

tion of course, but chose not to do so in the interest of clarity. Given
Sort_Generic, it takes only a single instantiation statement to create a sort that will
order an array of score records in ascending order:

PROCEDURE SortUpScores IS NEW Sort_Generic

(ElementType => ScoreRecord,
IndexType => Classlndex,
ListType => ScoreArray,
Compare => ScoreLess);

Given variables Scores and ClassSize as follows:

Scores: ScoreArray(Classlndex'First..Classlndex'Last);
ClassSize: ClassRange;

we see that Scores can hold up to 250 records, and ClassSize can be used to
determine the actual number of records read from a file into the array. The array can
easily be put into ascending order by score, just by calling SortUpScores with the
appropriate array slice:

SortUpScores(List => Scores(1..ClassSize));

Program 5.11 demonstrates the sort for two entirely different array types: an
array of float values and an array of phone call records like the one we used in
Section 4.3.

Program 5.11 Test of Generic Sort Procedure

WITH Ada.Text_IO;

WITH Ada.Integer_Text_IO;
WITH Ada.Float_Text_IO;

WITH Sort_Generic;

PROCEDURE Test_Sort_Generic IS

Demonstrates Sort_Generic using two unrelated kinds of lists;
this is not a realistic application, but rather just shows that
many instances of a generic can occur within one client program.
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1995

SUBTYPE Index IS Integer RANGE 1..10;
TYPE FloatVector IS ARRAY(Index RANGE <>) OF Float;

VI : FloatVector(1..10);

SUBTYPE DayRange IS Natural RANGE 0..6;
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SUBTYPE Weekdays IS DayRange RANGE 0..4;
SUBTYPE Weekend IS DayRange RANGE 5..6;

TYPE Days IS (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

TYPE CallRecord IS RECORD

DayOfWeek : Days;

NumberOfCalls: Natural;

END RECORD;

TYPE Callers IS ARRAY{DayRange RANGE <>) of CallRecord;

PACKAGE Days_IO IS NEW Ada.Text_IO.Eniimeration_IO(Enum => Days);

ThisWeek: Callers(DayRange);

-- if we are going to sort CallRecords,
--we need to know how to compare them

FUNCTION "<" (L, R: CallRecord) RETURN Boolean IS

BEGIN

RETURN L.NumberOfCalls < R.NiamberOfCalls;

END "<";

FUNCTION ">" (L, R: CallRecord) RETURN Boolean IS

BEGIN

RETURN L.NumberOfCalls > R.NumberOfCalls;

END

-- local procedures to display the contents of two kinds of lists

PROCEDURE DisplayCallers (List: Callers) IS
BEGIN — DisplayCallers
FOR Count IN List'Range LOOP
Days_IO.Put (Item=>List(Count).DayOfWeek, Width=>3);
Ada.lnteger_Text_IO.Put
(Item=>List(Count).NumberOfCalls, Width=>4);

Ada.Text_IO.New_Line;

END LOOP;

Ada.Text_IO.New_Line;

END DisplayCallers;

PROCEDURE DisplayFloatVector (V: FloatVector) IS
BEGIN

FOR Count IN VFirst..VLast LOOP

Ada.Float_Text_IO.Put(Item=>V{Count), Fore=>4, Aft=>2, Exp=>0);

END LOOP;

Ada.Text_IO.New_Line;

END DisplayFloatVector;

— two instances of Sort_Generic for Float vectors;
— the first sorts in increasing order, the second in decreasing order

PROCEDURE SortUpFloat IS NEW Sort_Generic
(ElementType => Float,
IndexType => Index,
ListType => FloatVector,
Compare => "<");

PROCEDURE SortDownFloat IS NEW Sort_Generic

(ElementType => Float,
IndexType => Index,
ListType => FloatVector,

Compare => ">");
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— two instances of Sort_Generic for Callers;

— the first sorts in increasing order, the second in decreasing order

PROCEDURE SortUpCallers IS NEW Sort_Generic

(ElementType => CallRecord,
IndexType => DayRange,
ListType => Callers,
Compare => "< *);

PROCEDURE SortDownCallers IS NEW Sort_Generic

(ElementType => CallRecord,
IndexType => DayRange,
ListType => Callers,
Compare => ">");

BEGIN -- Test_Sort_Generic

VI := (0.7, 1.5, 6.9, -3.2, 0.0, 5.1, 2.0, 7.3, 2.2, -5.9);
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item=> "Testing Sort_Generic for float vectors");
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item=> "Here is the vector before sorting.");
Ada.Text_IO.New_Line;

DisplayFloatVector(V => VI);
Ada.Text_IO.New_Line;

SortUpFloat(List => VI);

Ada.Text_IO.Put(Item=> "Here is the vector after upward sorting.");
Ada.Text_IO.New_Line;

DisplayFloatVector(V => VI);
Ada.Text_IO.New_Line;

SortDownFloat(List => VI);

Ada.Text_IO.Put(Item=> "Here is the vector after downward sorting.");
Ada.Text_IO.New_Line;
DisplayFloatVector(V => VI);
Ada.Text_IO.New_Line;

ThisWeek := ((Mon, 12), (Tue, 23), (Wed, 100), (Thu, 40),
(Fri, 52), (Sat, 17), (Sun, 2));

Ada.Text_IO.Put(Item=> "Testing Sort_Generic for telephone callers");
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item=> "Here is ThisWeek before sorting.");
Ada.Text_IO.New_Line;
DisplayCallers(List => ThisWeek);
Ada.Text_IO.New_Line;

SortUpCallers(List => ThisWeek);

Ada.Text_IO.Put(Item=> "Here is ThisWeek after upward sorting.");
Ada.Text_IO.New_Line;
DisplayCallers(List => ThisWeek);
Ada.Text_IO.New_Line;

SortDownCallers(List => ThisWeek);
Ada.Text_IO.Put(Item=> "Here is ThisWeek after downward sorting.");
Ada.Text_IO.New_Line;

DisplayCallers(List => ThisWeek);
Ada.Text_lO.New_Line;

END Test_Sort_Generic;
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5.3 APPLICATION: A GENERIC BINARY SEARCH

PROGRAM

Sorting and searching are both very important applications in computing. Having exam
ined a simple generic sorting program, we will now look at a generic version of binary
search, which was discussed in Section 3.2. Recall that it is meaningful to use binary
search only on a table of sorted values, and that the "big O" of binary search is log N.

We choose to show an iterative version, rather than the recursive one given earlier,
both for the sake of variety and also because the iterative version does not require 0(log
N) levels of recursion. For large W, this would be a large number of recursive calls; it is
better to avoid these, especially because the iterative algorithm is as easy to understand
as the recursive one.

Specification of the Generic Binary Search

Program 5.12 shows the generic specification for the generic binary search.

Program 5.12 Specification for Generic Binary Search Procedure

GENERIC

TYPE KeyType IS PRIVATE;

TYPE ElementType IS PRIVATE;
TYPE IndexType IS (<>);
TYPE ListType IS ARRAY (IndexType RANGE <>) OF ElementType;
WITH FUNCTION "<"(Left, Right: KeyType) RETURN Boolean;
WITH FUNCTION KeyOf (Element: ElementType) RETURN KeyType;

PROCEDURE Binary_Search_Generic (List : IN ListType;
Target : IN KeyType;

Location: OUT IndexType;
Found : OUT Boolean);

Performs ein iterative binary search of em ordered array of
Iceys with bounds List'First. .List'Last.
Pre : Target and List are defined, and List is sorted upward
Post: If Target is found in array List, returns True in Found

and the location in Location; otherwise,

returns False in Found and returns in Location

the location in which to insert Target
Raises: Ada will raise Constraint_Error

if List'Last = IndexType'Last and Target would be
inserted beyond List'Last.

Author: Michael B. Feldman, The George Washington University
Last Modified: October 1995

Let's discuss the six generic parameters. Here, we take a slightly different approach
from that of the sort program. In general, we will be searching arrays of records, using
some field in the record as the search key. Let's call the key and record types KeyType
and ElementType, respectively. As in the sort program, we also specify the index and
the list types. The last two parameters are given by
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WITH FUNCTION "<"(Left, Right: KeyType) RETURN Boolean;
WITH FUNCTION KeyOf (Element: ElementType) RETURN KeyType;

The fomial comparison parameter, shown here as " <", compares keys, not ele
ments. We therefore provide a sixth parameter, KeyOf, so that the client can specify
exactly how to find the key field of an element.

This binary search is, in another way, more general than the simple one given in
Section 3.2. That program returns 0 if the search is unsuccessful, whereas this one returns,
in the OUT parameter Location, the location into which to insert this value. The client
can then choose whether or not to actually perform the insertion. This generality will make
it possible to use binary search in the generic table handler we present in Section 5.8.

Before we examine the body of the binary search procedure, let's see how it might
be instantiated and used. Program 5.13 shows a test of the generic search procedure,
instantiating for a record consisting of a name and a test score.

Program 5.13 A Test of Generic Binary Search

WITH Ada.Text_I0;
WITH Ada.Integer_Text_IO;
WITH Binary_Search_Generic;
PROCEDURE Test_Binary_Search IS

— I Test of generic binary search, array of records
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: October 1995

Success: Boolean;

WhereFound: Positive;

SUBTYPE NameType IS String(1..10);
SUBTYPE ScoreType IS Natural RANGE 0..100;

TYPE ScoreRecord IS RECORD

Name: NameType;

Score: ScoreType := 0;

END RECORD;

TYPE ScoreArray IS ARRAY(Positive RANGE <>) OF ScoreRecord;
Testl: ScoreArray(1..9);

FUNCTION NameOf (Item: ScoreRecord) RETURN NameType IS
BEGIN

RETURN Item.Ncune;

END NameOf;

PROCEDURE BinarySearch IS
NEW Binary_Search_Generic(ElementType => ScoreRecord,

KeyType => NameType,
IndexType => Positive,
ListType => ScoreArray,
"<" =>

KeyOf => NameOf);

PROCEDURE DisplayArray(I: ScoreArray) IS
BEGIN

FOR Count IN I'Range LOOP

Ada.Text_IO.Put(Item => I(Count).Name);
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Ada.Integer_Text_IO.Put(Item => I(Count).Score, Width =>4);
Ada.Text_IO.New_Line;

END LOOP;

Ada.Text_IO.New_Line;

END DisplayArray;

BEGIN — Test_Binary_Search

Testl := ( Bill ",29),

Dave ",69),

Ernie ",50),

Jill ",75),

Katie ",66),

Marianne ",66),

Nora ",82),

' Samuel ■,95),
Yetta ",95))

DisplayArray(Testl);

BinarySearch(Testl, "Dave ", WhereFound, Success);
IF Success THEN

Ada.Text_IO.Put(Item => "Dave is at location ");
Ada. Integer_Text_IO. Put (Item => WhereFound, Width => D.
Ada .Text_IO.New_Line;

ELSE
Ada.Text_lO.Put(Item => "Dave would be at location ");
Ada.Integer_Text_IO.Put(Item => WhereFound, Width => 1);
Ada.Text_IO.New_Line;

END IF;

BinarySearch(Testl, "Adcun WhereFound, Success);
IF Success THEN

Ada.Text_IO.Put(Item => "Adam is at location ");
Ada. Integer_Text_IO. Put (Item => WhereFound, Width => D.
Ada .Text_IO.New_Line;

ELSE
Ada. Text_IO. Put (Item => "Adam would be at location "),-
Ada.Integer_Text_IO.Put(Item => WhereFound, Width => 1);
Ada.Text_IO.New_Line;

END IF;

BinarySearch(Testl, "Bill WhereFound, Success) ,-
IF Success THEN

Ada. Text_IO. Put (Item => "Bill is at location "),-
Ada.Integer_Text_IO.Put(Item => WhereFound, Width => D.
Ada .Text_IO.New_Line;

ELSE
Ada.Text_IO.Put(Item => "Bill would be at location ");
Ada. Integer_Text_IO. Put (Item => WhereFound, Width => D.
Ada . Text_IO. New_Line ,-

END IF;

BinarySearch(Testl, "Mary ", WhereFound, Success) ,-
IF Success THEN

Ada. Text_IO. Put (Item => "Mary is at location ") ,-
Ada. Integer_Text_IO. Put (Item => WhereFound, Width => D.
Ada .Text_IO.New_Line;

ELSE
Ada.Text_IO. Put (Item => "Mary would be at location "),-
Ada.Integer_Text_IO.Put (Item => WhereFound, Width => 1) ,-
Ada. Text_IO. New_Line ,-

END IF;
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Binary-Search(Testl, "Zachary WhereFound, Success);
IF Success THEN

Ada.Text_IO.Put(Item => "Zachary is at location ");
Ada.Integer_Text_IO.Put(Item => WhereFound, Width => 1);
Ada.Text_IO.New_Line;

ELSE

Ada.Text_IO.Put(Item => "Zachary would be at location ");
Ada.Integer_Text_IO.Put(Item => WhereFound, Width => 1};
Ada.Text_IO.New_Line;

END IF;

END Test_Binary_Search;

To specify how to find the key part of a score record, we write

FUNCTION NameOf (Item: ScoreRecord) RETURN NameType IS
BEGIN

RETURN Item.Ncime;

END NameOf;

and use this function as an actual parameter in the instantiating statement

PROCEDURE BinarySearch IS
NEW Binary_Search_Generic(ElementType => ScoreRecord,

KeyType => NameType,
IndexType => Positive,
ListType => ScoreArray,
-<" =>

KeyOf => NameOf);

You should examine the various cases used in the test program and try to predict the
response for each case.

Now suppose the array we are searching contains simple integer elements.

TYPE IntegerArray IS ARRAY(Positive RANGE <>) OF Integer;

In this case, there is no actual key, because there is no record whose field is the key.
However, the binary search procedure requires a KeyOf function to fill that parameter.
In this case, we can write a "dummy" function that simply returns the value of its inte
ger input.

FUNCTION Identity (Value: Integer) RETURN Integer IS
BEGIN

RETURN Value;
END Identity;

Now we can instantiate Generic_Binary_Search, as follows:

PROCEDURE BinarySearch IS
NEW Binary_Search_Generic(ElementType => Integer,

KeyType => Integer,

IndexType => Positive,
ListType => IntegerArray,
"<" => *<",

KeyOf => Identity);

Modifying the test program to fit this case is left as an exercise.
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Body of the Generic Binary Search

Look now at Program 5.14, the body of the search procedure.

Program 5.14 Body of Generic Binary Search Procedure

PROCEDURE Binary_Search_Generic (List : IN ListType;
Target : IN KeyType;

Location : OUT indexType;
Found : OUT Boolean) IS

— I Body of Generic Binary Search Procedure
— I Author: Michael B. Feldman, The George Washington University

Last Modified: October 1995

Middle : IndexType; — the subscript of the middle element
Success: Boolean;

Left : IndexType;

Right : IndexType;

BEGIN — Binary_Search_Generic

Left := List'First;

Right := List'Last;
Success:= False;

IF Target = KeyOf(List(Left)) THEN
Found := True;

Location := Left;

ELSIF Target < KeyOf(List(Left)) THEN — Target goes in pos. 1
Found := False;

Location := Left;

ELSIF Target = KeyOf(List(Right)) THEN
Found := True;

Location := Right;
ELSIF NOT (Target < KeyOf(List(Right))) THEN — Target beyond end
Found := False;

Location := IndexType'Succ(Right);
ELSE

WHILE (Left <= Right) AND (NOT Success) LOOP

Middle := IndexType'Val((IndexType'Pos(Left)
+ IndexType'Pos(Right)) / 2);

IF Target = KeyOf(List(Middle)) THEN
Success := True;

ELSIF Target < KeyOf(List(Middle)) THEN
Right := IndexType'Pred(Middle); — search lower subarray

ELSE

Left IndexType' Succ (Middle); — search upper subarray
END IF;

END LOOP;

IF (NOT Success) AND KeyOf(List(Middle)) < Target THEN
Location := IndexType'Succ(Middle);

ELSE

Location := Middle;

END IF;
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Found ;= Success;

END IF;

END Binary_Search_Generic;

We see that it has a number of special cases. If the target key is less than or equal
to the first key in the table, or greater than or equal to the last key in the table, it saves
time simply to indicate this to the caller and return, rather than running the search to
completion.

If, in fact, the search must be run, we proceed as described in Section 3.2. A middle
location is computed; if the target is equal to the key in the middle of the table, we are
finished. Otherwise, if the target is "less" than the middle key, we continue searching in
the lower half of the table; if the target is "greater" than the middle key, we continue in
the upper half. "Less" and "greater" are, of course, enclosed in quotation marks because
the meanings of these terms really depend on which comparison function is plugged in
for "<".

Computing the middle location is a bit more complicated than it was in the earlier
version of the algorithm. This is because the present version is generic, so we cannot
simply do arithmetic on integer subscripts to find the middle one—it is possible that the
index type will be a enumeration type! We must therefore compute the middle location
using attributes. Instead of adding the subscripts and dividing by 2, we add and divide
their positions in IndexType.

Be certain you understand the workings of this algorithm; you might try to hand-
trace its operation on an array of your choosing. As was the case in the generic sort of
Section 5.2, this generic search is completely independent not only of the array size, but
also of its subscript and element types. The procedure tells us not only whether the tar
get is in the table, but also where it should be placed if it is not already there. We can
therefore use a call to this procedure as one step in an insertion or deletion operation.

One flaw of the generality is that there is one situation in which it can fail. Suppose
the target is "greater" than the "largest" key in the table. In this case, the search returns
a location one greater than Table' Last, which will cause Cons train t_Error to
be raised. If the table passed to the search is not a slice but the whole table, this means
the table is full and cannot accommodate the new value anyway. It is therefore the
responsibility of the client to make sure the table is not full before calling the search, or,
if it is, to check itself to see whether the target is "greater" than the last value.

5.4 ADT DESIGN: AN ABSTRACT DATA TYPE FOR
SETS

Sets are very important both in mathematics and in computer applications. Given a uni
verse of objects or values, a set S is just a collection of objects belonging to that uni
verse. Some common universes are the integers, the positive integers, the letters of the
alphabet, and so on. Sets are so important in programming that some languages, espe
cially Pascal, provide sets as a predefined type. Ada does not have a predefined set type;
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in this section we will show an ADT that will emulate Pascal's predefined type, using
a generic package.

Often sets are described simply by listing their members between braces, as in the
set {a, b), taken from the universe of English alphabetic characters. In general, there is
no ordering associated with a set, so {a, b] and {b. a] usually describe the same set.
Two sets are said to be equal if they have the same members. A set is said to be empty
if it has no members. In cases where there is no ordering, it also makes no difference if
we name a member twice, so {a, b, a] = {b, a, b) = {a, b}.

Operations on Sets

What are the important operations associated with sets? Certainly inserting a member
in a set and deleting a member from a set are essential; so are testing a set to see whether
a given element is a member of it and testing a set to see whether it is empty. The last
two operations are predicate or inquiry selector operations; they return true/false val
ues. The most important dyadic constructor operations are

• The union of two sets S and T (usually written as 5 u T), which retums the set con
taining all of 5's members and all of fs members

• The intersection of S and T(S nT), which retums the set containing all elements
which are members of both S and T

• The difference S-T, which retums the set containing all elements which are mem
bers of S but not of T

An often-used monadic constmctor is the complement -S, which retums the set
containing all elements in the universe that are not members of S.

We will use "+" and to represent the union and intersection, respectively,
because the union and intersection symbols are not part of the normal Ada character set.
For example, if the universe is the letters a..k inclusive and 5 = {a, d, e, g} and 7= {b,
c, d, e, k}, then

5 + r = {a,b,c,d,e,g,k}

5*r = {d,e}

S-T = {a,g} and r-5 = {b,c,k}

-5 = {b,c,f,h,i,j,k}

Finally, two more inquiry operations are commonly used:

• The improper subset operation (5^7) which retums Tme if and only if all members
of 5 are also members of T

• The proper subset operation iSczT) which retums Tme if and only if 5 c T and S /=
T; that is, at least one member of T is not a member of S.
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Because the subset symbols are also missing from the Ada character set, we use <
and < for improper and proper subset, respectively. For example {b,c}^ {a, b, c, d, e}
and (b, c} < {a, b, c, d, e) but is not a subset of {c, e]. Also, [a, b) ̂  {a, b).

Specifying the Generic Set ADT

Mathematically, sets can be infinite (all the integers, for example). In programming
applications, however, it is finite sets that are most interesting. Therefore we confine
ourselves to representing finite sets—specifically, to sets taken from finite universes of
integers or enumeration values. As we shall see, it is easy to use Ada's generic facility
to build a package providing a good but more flexible approximation to the predefined
set facility of Pascal.

A universe is either an integer subtype or an enumeration type; this means that a
universe also happens to be a valid index range for arrays. Choosing a universe, we
implement a set as a one-dimensional array of Boolean values, with index range corre
sponding to that universe. Given a set S represented as an array S, if a given member of
the universe is a member of S, we let the corresponding element of S be True; other
wise we let that element be False. This representation is often called the characteris
tic Junction or bit map of a set, and is an especially compact way to represent a large set.
For example, suppose we choose the universe a ..g. Every set over this universe is rep
resented as a Boolean array indexed ' a' .. ' g'; the set 5 = {a, rf, g, g), specifically, is
represented as

True False False True True False True

Now let us devise a generic Ada package for this ADT. A framework for the
generic part of the specifrcation is

GENERIC

TYPE Universe IS (<>);

PACKAGE Sets_Generic IS

END Sets_Generic;

The second line specifies a generic parameter that can match any discrete type;—
that is, any enumeration type or integer subtype. This is exactly what we need for our
fmite, discrete universes!

Program 5.15 gives the desired specification, complete with PRIVATE part defin
ing the type Set. Making sets a PRIVATE type allows client programs to copy sets and
check them for inequality using the predefined assignment, equality, and inequality
operations, but denies clients direct access to the implementation of sets. This leaves
the package writer the flexibility to change the implementation of sets without requir
ing any code changes in client programs.
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Program 5.15 Specification for Generic Set Package

GENERIC

TYPE Universe IS (<>); -- any integer or enumeration type

PACKAGE Sets_Generic IS

— I Specification for sets over discrete universes
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: October 1995

TYPE Set IS PRIVATE;

Phi: CONSTANT Set; — empty set

— constmjctors

FUNCTION "+• (S: Set; E: Universe) RETURN Set;

FUNCTION (S: Set; E: Universe) RETURN Set;

— Pre: S and E are defined

— Post: returns S with E inserted or deleted respectively;
"+" has no effect if IsIn(S,E); has none if NOT Isln(S,E)

FUNCTION Singleton(E: Universe) RETURN Set;
FUNCTION "+■ (El, E2: Universe) RETURN Set;
— Pre: E, El, and E2 are defined
— Post: returns a set made from one or two elements

FUNCTION "+* (S, T : Set) RETURN Set;
FUNCTION (S, T : Set) RETURN Set
FACTION (S, T ; Set) RETURN Set;
— Pre: S and T are defined
— Post: returns the xinion, intersection, and difference of

S eund T, respectively

FUNCTION (S : Set) RETURN Set;
— Pre: S is defined
— Post: returns the complement of S

— selectors
FUNCTION Isin (S : Set; E : Universe) RETURN Boolean;
— Pre: S and E are defined
— Post: returns True if and only if E is a member of S

FUNCTION IsEmpty (S : Set) RETURN Boolean;
— Pre: S is defined
— Post: returns True if and only if S is empty

FUNCTION SizeOf (S : Set) RETURN Natural;
— Pre; S is defined
— Post: returns the number of members in S

FUNCTION "<=" (S, T : Set) RETURN Boolean;
FUNCTION "<" (S, T : Set) RETURN Boolean;
— Pre: S and T are defined
— Post: returns True if and only if S is

em improper or proper subset of T, respectively

PRIVATE

TYPE SetArray IS ARRAY (Universe) OF Boolean;
TYPE Set IS RECORD

Store: SetArray := (OTHERS => False);
END RECORD;
Phi: CONSTANT Set := (Store => (OTHERS => False));

END Sets_Generic;
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Note in the type definition that the Boolean array is stored in a record. This is done
to let us initialize all sets by default to the empty set: Recall that Ada allows us to
default-initialize only objects of a record type. Note also the constant Phi, which we
use to represent the empty set. The constant is partially declared at the top of the speci
fication, then completed in the private part, after the fiill type definition for the private
type is given.

The operations to insert and delete a member are shown as operators " +" and " -",
respectively, so that given a set S and an element E, the expressions S + Bands - E
are meaningful. We include an additional constructor operator Singleton, which cre
ates a singleton set—a set with a single member—from its element parameter, and
another " +" operator to create a set from two elements. Specifying all these operations
as functions makes it easy to create a set with the desired membership. For example, a
client program could instantiate Sets_Generic as follows:

SUBTYPE SmallNatural is NATURAL RANGE 0..15);
PACKAGE NaturalSets IS NEW Sets_Generic(Universe => SmallNatural);

and then, having declared a variable

S: NaturalSets.Set;

could include the odd small naturals in S with

S  := 7 + 3 + 13 + 5 + 1 + 9 + 11 + 15;

Implementing the Generic Set ADT

Program 5.16 shows the body of the package Sets_Generic. Note that the union,
intersection, and difference operators construct their results by looping through the sets,
finding element-wise AND, OR, and NOT values. These operations, as well as the
Si zeOf and subset operations, are therefore 0{N) operations, where N is the size of the
universe. In Exercise 7, you are asked to exploit a nice feature of Ada's Boolean arrays
in order to simplify the operators.

Program 5.16 Body of Generic Set Package

PACKAGE BODY Sets_Generic IS

— I Body of generic sets package
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: October 1995

— constructors

FUNCTION "+"(S: Set; E: Universe) RETURN Set IS

Result: Set := S;
BEGIN — "+•

Result.Store (E) := True;
RETURN Result;

END "+";
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FUNCTION (S: Set; E; Universe) RETURN Set IS

Result: Set := S;

BEGIN —

Result.Store (E) := False;

RETURN Result;

END

FUNCTION Singleton(E: Universe) RETURN Set IS
BEGIN — Singleton
RETURN Phi + E;

END Singleton;

FUNCTION "+" (El, E2: Universe) RETURN Set IS

BEGIN —

RETURN Phi + El + E2;

END "+";

FUNCTION "+" (S, T : Set) RETURN Set IS

Result: Set;

BEGIN — "+"

FOR E IN Universe LOOP

Result.Store(E) := S.Store{E) OR T.Store(E);
END LOOP;

RETURN Result;

END "+";

FUNCTION (S, T : Set) RETURN Set IS

Result: Set;

BEGIN --

FOR E IN Universe LOOP

Result.Store(E) := S.Store(E) AND T.Store(E);

END LOOP;

RETURN Result;

END

FUNCTION (S, T : Set) RETURN Set IS

Result: Set;

BEGIN —

FOR E IN Universe LOOP

Result.Store(E) := S.Store(E) AND NOT T.Store(E);
END LOOP;

RETURN Result;

END

FUNCTION (S : Set) RETURN Set IS

Result: Set;

BEGIN —

FOR E IN Universe LOOP

Result.Store(E) := NOT S.Store(E);

END LOOP;

RETURN Result;

END

— selectors

FUNCTION Isin (S : Set; E : Universe) RETURN Boolean IS

BEGIN -- Isin

RETURN S.Store (E);

END Isln;

FUNCTION IsEmpty (S ; Set) RETURN Boolean IS

BEGIN — IsEmpty
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RETURN S = Phi;

END IsEmpty;

FUNCTION SizeOf (S : Set) RETURN Natural IS

Result: Natural := 0;

BEGIN — SizeOf

FOR E IN Universe LOOP

IF S.Store(E) THEN

Result := Result + 1;
END IF;

END LOOP;

RETURN Result;

END SizeOf;

FUNCTION "<=" (S, T : Set) RETURN Boolean IS

BEGIN — "<="

FOR E IN Universe LOOP

IF S.Store(E) AND NOT T.Store(E) THEN

RETURN False;

END IF;

END LOOP;

RETURN True;

END "<=";

FUNCTION "<" (S, T : Set) RETURN Boolean IS

BEGIN — "<"

RETURN S /= T AND THEN S <= T;
END "<";

END Sets_Generic;

5.5 APPLICATION: MUSIC MAKERS

Program 5.17 shows an example of how Sets_Generic might be used. An enumer
ation type Instruments is declared, representing common musical instruments. The
generic package is instantiated for these and variables are created representing different
kinds of musical ensembles, depending on the instruments usually found in them. The
program shows one local procedure DisplayEnsemble by using an instance of
Text_IO. Enumeration_lO and iterating through an ensemble to display only the
instruments present in that ensemble.

Program 5.17 A Music-Makers Program

WITH Ada.Text_IO;

WITH Sets_Generic;

PROCEDURE Music_Ma)cers IS

— I Example of the use of Sets_Generic, to create musical ensembles
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

TYPE Instruments IS

(Violin, Viola, Cello, BassViol, -- classical strings
Piano, Harpsichord, Organ, — classical Iceyboards
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Clarinet, Scixophone, — single-reed woodwinds
Oboe, Bassoon, — double-reed woodwinds
Flute, Piccolo, — flutes

Trunpet, Trombone, FrenchHorn, Tuba, — brass
Tympani, Snare, TomTom, BassDrum, — drxoms
Cymbals, Triangle, Bells, Marimba, — percussion
Guitar, Bcinjo, Ukelele, — folk strings
Accordion, Keyboard); — miscellaneous

PACKAGE Music_IO IS NEW Ada.Text_IO.Enumeration_IO(En\im =>
Instrximents) ;

PACKAGE Ensembles IS NEW Sets_Generic (Universe => Instruments);

USE Ensembles;

SUBTYPE Ensemble IS Ensembles.Set; — nickname for this program

Strings; CONSTANT Ensemble := Violin + Viola + Cello + BassViol;
Brasses: CONSTANT Ensemble := Trumpet + Trombone + FrenchHorn + Tuba;
JazzDrums: CONSTANT Ensemble := Snare + TomTom + BassDrum + Cymbals;

JazzCombo: Ensemble;

StringQuartet: Ensemble;
PhillyStringBand: Ensemble;
RockBand: Ensemble;

PROCEDURE DisplayEnsemble(Band: Ensemble) IS
BEGIN

FOR Instrument IN Instruments LOOP

IF IsIn(Band, Instrument) THEN

Music_IO. Put (lnstr\iment) ;
Ada.Text_IO.New_Line;

END IF;

END LOOP;

Ada.Text_IO.New_Line;
END DisplayEnsemble;

BEGIN — Music_Makers

JazzCombo := JazzDrums + Guitar + BassViol + Trumpet;
Ada.Text_IO.Put(Item => "Jazz Combo:");

Ada.Text_IO.New_Line;
DisplayEnsemble(Band => JazzCombo);

PhillyStringBand := Guitar + Ukelele + Banjo + Accordion
+ Saxophone + Snare + BassDrum;

Ada.Text_IO.Put(Item => "Philly String Band:");
Ada.Text_lO.New_Line;
DisplayEnsemble(Band => PhillyStringBand);

StringQuartet := Strings - BassViol;
Ada.Text_IO.Put(Item => "String Quartet;");

Ada.Text_IO.New_Line;
DisplayEnsemble(Bamd => StringQuartet);

RockBand := Guitar + Keyboard + JazzDrums;
Ada.Text_IO.Put(Item=> "Rock Band:");

Ada.Text_IO.New_Line;

DisplayEnsemble (Bemd => RockBeUid) ;

END Music_Makers;
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One of the ensembles in the program, PhillyStringBand, reveals the author's
Philadelphia upbringing: This city is the home of the String Band, which—as can be
seen from the instruments—^includes more than strings and has no violins. A large num
ber of String Bands march in Philadelphia's New Year's Day parade; prizes are
awarded to the groups that have the most imaginative costumes as well as the best
music.

In Exercise 10, you can create some of your favorite musical ensembles. Tiy creat
ing a brass band and a symphony orchestra. This example highlights one of the
difficulties of using sets in the pure mathematical sense: Because duplicate elements do
not change the set, we cannot, using this representation, keep track of just how many of
each instrument are in a particular ensemble—only the instrument types are represented.

5.6 ADT DESIGN: A GENERIC VECTOR PACKAGE

We continue our study of generics by showing how to build a generic version of the
Vectors package introduced in Section 4.4. Program 5.18 gives the specification for
the package.

Program 5.18 Specification for Generic Vectors Package

GENERIC

TYPE ValueType IS PRIVATE;
TYPE IndexType IS (<>);

WITH FUNCTION "+"(L,R: ValueType) RETURN ValueType;
WITH FUNCTION "*"{L,R: ValueType) RETURN ValueType;

Zero: ValueType;

PACKAGE Vectors_Generic IS

— I Generic specification for vector arithmetic package
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: October 1995

TYPE Vector IS ARRAY{IndexType RANGE <>) OF ValueType;

— exported exception, raised if two vectors are not conformable
— {i.e., have different bounds)

Bounds_Error : EXCEPTION;

FUNCTION " + •■ (K : ValueType; Right : Vector) RETURN Vector;
— Pre: K and Right are defined
— Post: returns the sum of the vector and the scalar

Result(i) := K + Right(i)

FUNCTION "*" (K : ValueType; Right : Vector) RETURN Vector;
— Pre: K and Right are defined
— Post: returns the product of the vector and the scalar

Result(i) := K * Right(i)
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FUNCTION (Left, Right : Vector) RETURN ValueType;
— Pre: Left and Right are defined and have the same bovinds
— Post: returns the inner product of Left and Right

FUNCTION "+" (Left, Right : Vector) RETURN Vector;
— Pre: Left and Right are defined and have the same bounds
— Post: returns the sum of Left and Right

Result(i) := Left(i) + Right(i)

END Vectors_Generic;

The specification promises that we will provide actual parameters for the index type
and value type; the package itself will create the vector type so that a client program can
use it, just like any other type provided by a package. The two WITH FUNCTION lines
are necessary because the body of the package adds and multiplies elements—for exam
ple, in the dot product function. Finally, the line

Zero: ValueType;

promises that we will supply a "zero" value for the element type. Because in the inner
product routine the Siom variable needs to be set to zero, this parameter is necessary. We
cannot simply write

Sum := 0.0;

as in the nongeneric version: What if ValueType is not Float? Then 0 .0 does not
exist! Instead, we need to write

Sum := Zero;

and pass the value of Zero as a generic parameter. You can write the package body as an
exercise; it will be similar to the one shown in Program 4.4. A sample compilable instan
tiation, which will provide vectors of Float values, indexed by Integer ranges, is

WITH Vectors_Generic;

PACKAGE FloatVectors IS NEW Vectors_Generic

(ValueType => Float,
IndexType => Integer,
"+" =>

Zero => 0.0);

A client program could use this instance by writing the context clause

WITH FloatVectors;

Defaults: Short Cut for Specifying Generic Subprogram
Parameters

Ada provides a "short cut" for specifying generic function and procedure parameters.
By analogy with other kinds of default values—for example, the default initialization of
fields in a record type—^we can assign a default value to a subprogram parameter. Recall
that in the specification of Vectors given in Program 5.19, the line
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WITH FUNCTION "+" (L,R: ValueType) RETURN ValueType;

indicates that a function with the correct parameter profile and return type will be pro
vided at instantiation. The client program, instantiating for, say. Float values, as in the
example just above, must include

"+" => "+"

in the actual parameter list. We can simplify the client's job a bit by using a default:

WITH FUNCTION "+* (L,R: ValueType) RETURN ValueType IS <>;

whose rather strange-looking IS <> syntax instructs the compiler to do the work of
searching among all the visible operations for a function named " +" with the correct
profile. This allows—^but does not require—the instantiating program to omit that para
meter from the list of actuals. In the Vectors example, if the " +" and " *" operators
both carried this default, the instantiation could be shortened to

WITH Vectors_Generic;

PACKAGE FloatVectors IS NEW Vectors_Generic
(ValueType => Float,
IndexType => Integer,
Zero =>0.0);

and the compiler would search for matching operators, finding the predefined addition
and multiplication for Float values.

Now suppose we wished to instantiate for a user-defined value type—^Rational,
for example. We would then include a WITH and a USE:

WITH Rationale;

USE Rationale;

and then write

WITH Vector6_Generic;

PACKAGE RationalVectors IS NEW VectorB_Generic
(ValueType => Rational,
IndexType => Integer,
Zero => 0/1);

The compiler would find three rational operators: the defaulted " +" and " *" and the
rational constructor " /" needed to create the value 0/1.

Finally, remember that the default allows omission of the actual subprogram para
meter only if its name matches that of the formal. Suppose we wished to create a pack
age capable of dealing with vectors of Boolean values (similar to the Sets
representation above; we will also see other applications later in the book). In Boolean
algebra, the role of the addition operator is played by "OR" and the role of the multi
plication operator by "AND". An instantiation of Vectors would look like

WITH Vector6_Generic;

PACKAGE BitMape IS NEW Vectore_Generic
(ValueType => Boolean,
IndexType => Integer,
•+• => "OR",
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=- "AND",

Zero => False);

and in this case the two operator parameters must be supplied, even with the defaults,
because " OR" has a different name from " +".

Default values for subprograms are handy, especially in the case of infix operators
that appear in Standard and user-defined mathematical ADTs such as Rationals
and Matrices. As an exercise, you can revise the matrix system introduced in Section
4.5 so that it is generic and can be instantiated for any mathematical type such as
Integer, Float, or Rational.

5.7 SUMMARY OF GENERIC SPECIFICATIONS

A generic specification defines a generic procedure, function, or package, for which a
corresponding body must also be provided. The list of generic formal type, procedure
or function, and object parameters indicates the structure of the parameters to be sup
plied at instantiation of the generic.

Here are the forms of the generic type parameters we have seen here, as well as
their interpretation. There are other generic type parameters, but their discussion is
beyond the scope of this book. The form

TYPE ValueParameterName IS PRIVATE;

which is most commonly used as a value parameter, indicates that any type can be
matched at instantiation, including a private type, as long as it is not LIMITED PRI
VATE. That is, the operations of assignment and equality testing must be defined for the
type. The form

TYPE IndexParameterName IS (<>);

indicates that any discrete type—that is, an integer or enumeration type or subtype—
can be matched at instantiation. This form is commonly used to specify the index type
of an array type. The form

TYPE ArrayParameterName IS

ARRAY(IndexParameterName RANGE <>) OF ValueParameterName;

indicates that any unconstrained array type with the given index and value types can be
matched at instantiation.

A generic procedure parameter specification is of the form

WITH PROCEDURE ProcedureName(Paraml: Typel; Param2: Type...);

and a generic function parameter specification is of the form

WITH FUNCTION

FunctionName(Paraml: Typel; Param2: Type2...) RETURN Type3;

where either of these can be terminated by IS <> to provide a default value.
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5.8 ADT DESIGN: GENERIC KEYED TABLE

HANDLER

The keyed table ADT was introduced in Section 3.4. The ADT discussed there was
only sketched out, in order to discuss the performance ("big O") of its operations for
sorted and unsorted implementations. Section 3.5 introduced an application of the
keyed table, namely employee records. That application is limited in that everything is
tailored specifically to employee records and some receding would be necessary to use
the database for other kinds of records.

The purpose of this section is to generalize the keyed table so that with a simple
instantiation we can use it for many kinds of record structures. Moreover, we will
develop the specification for the ADT in a way that facilitates changing the implemen
tation with no effect on the source code for client programs.

After a description in English of the operations of an ADT for a keyed table, we
develop a generic package specification and an array implementation. The keyed table
is a recurring theme in this book: In subsequent chapters, we will consider at least three
additional implementations: the one-way linked list, the binary search tree, and the hash
table.

The Generic Package Specification

We wish to specify the keyed table in a way that is, as far as is possible, independent of the
record type, die key type, or, indeed, the data structures used for the implementation. In this
manner, we give client programs the most flexibility in supplying keys and records, and we
give ourselves the most flexibility in determining and changing implementations without
affecting any of the statements of the client program.

To provide the desired flexibility to the client, we make the package generic, with
the following list of generic formal parameters:

GENERIC

TYPE Element IS PRIVATE; -- assignment and equality predefined
TYPE KeyType IS PRIVATE; — here too

Capacity: IN Positive; — maximum table size

— These generic parameters specify how to
— retrieve the key from an element, compare elements
WITH FUNCTION KeyOf (Item: Element) RETURN KeyType IS <>;
WITH FUNCTION "<" (Keyl, Key2: KeyType) RETURN Boolean IS <>;

— This parameter specifies what to do with each element during
— a traversal of a table;

WITH PROCEDURE Visit (Item: Element);

PACKAGE Tables_Generic IS

TYPE TableType IS LIMITED PRIVATE;

END Tables_Generic;
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As in the generic binary search, the types Element and KeyType are specified as
PRIVATE to allow any types to be supplied as actual parameters as long as assignment
and equality are defined for them. The parameter Capacity allows the client program
to specify the maximum number of elements the table can hold.

We require the client to provide functions " <" and KeyOf, which serve the same
purpose they served in the search case. Finally, the procedure Visit is required so that
the client program can specify how each element is to be processed during a traversal
of the table.

Program 5.19 gives the full specification of the table package.

Program 5.19 Specification for Generic Tables Package

GENERIC

TYPE Element IS PRIVATE; -- assignment and equality predefined
TYPE KeyType IS PRIVATE; — here too

Capacity: IN Positive; — maximvim table size

— These generic parameters specify how to
— retrieve the key from an element, compare elements
WITH FUNCTION KeyOf (Item: Element) RETURN KeyType IS <>;
WITH FUNCTION "<" (Keyl, Key2: KeyType) RETURN Boolean IS <>;

— This parameter specifies what to do with each element during
— a traversal of a tcible;

WITH PROCEDURE Visit (Item: Element);

PACKAGE Tcibles_Generic IS

Specification of the abstract data type for a table of
element records, each containing a key.
This version has type definitions to implement the table as cui
array. The client ceuinot see or use these types
because Table is LIMITED PRIVATE.

Author: Michael B. Feldman, The George Washington University
Last Modified: September 1995

— Data Structure

TYPE TableType IS LIMITED PRIVATE;

— Exported exceptions

UninitializedTable: EXCEPTION;

NoSpaceLeft : EXCEPTION;

— Operators

PROCEDURE InitializeTable (Table : IN OUT TableType);
— initializes a Table.

— Pre : None

— Post: TcQsle is an initialized TableType

FUNCTION SizeOfTable (Table : TableType) RETURN Natural;
— Returns the number of elements in a Table

— Pre : Table is an initialized TableType
— Post: Returns the number of elements in Table
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PROCEDURE Search (Table : TableType;

Target : KeyType;

Success : OUT Boolean);

— Searches a Table for Target.

— Pre : TeJale is an initialized TableType
— Post: Success is True if Target is found; otherwise,

Success is False.

PROCEDURE Insert (Table : IN OUT TableType;
Item : Element;

Success : OUT Boolean);

— Inserts Item into a Table.

— Pre : Table and Item are defined; Table is initialized.
— Post: Success is True if insertion is performed; Success is False

if insertion is not performed because there is already
an element with the same Jcey as Item.

— Raises: NoSpaceLeft if there is no space available for Item.

PROCEDURE Delete (Table : IN OUT TableType;
Target : KeyType;

Success : OUT Boolean);
— Deletes the element with key Target from a Table.
— Pre : Table and Target are defined; Table is initialized.
— Post: Success is True if deletion is performed; Success is False

if deletion is not performed because there is no element
whose key is Target.

PROCEDURE Replace (Table : IN OUT TableType;
Item : Element;

Success : OUT Boolean);
— Replaces the element of a Tedale with the same key as
— Item by the contents of Item.

— Pre : Table and Item are defined; Table is initialized.
— Post: Success is True if the replacement is performed; Success is

False if there is no element with the same key as Item.

TableType;
KeyType;
OUT Element;

OUT Boolean);

PROCEDURE Retrieve (Table

Target

Item

Success

— Copies the element whose key is Target into Item.
— Pre : Table is an initialized TableType.
— Post: Success is True if the copy is performed; Success is False

if there is no element whose key is Target.

PROCEDURE Traverse (Table : TableType);
— Repeatedly calls procedure Visit (a generic parameter) to

process each element of a Table.

— Pre : Table is an initialized TableType.
— Post: Each element is operated on in turn by procedure Visit.

PRIVATE

SUBTYPE Tablelndex IS Positive RANGE 1..Capacity;
SUBTYPE Tcd>leSize IS Natural RANGE 0..Capacity;

TYPE TableData IS ARRAY(Tablelndex RANGE <>) OF Element;

TYPE TableType IS RECORD
CurrentSize : TableSize := 0;
Data : TableData(Tablelndex);

END RECORD;

End Tcibles_Generic;
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Note the declaration of a package-defined exception UninitializedTable,
which will be raised by several of the package operators if the client sends to them a
table that was not initialized by a call to InitializeTable. Also declared is
NoSpaceLef t, which is raised if the client attempts to insert a new element into a full
table.

We have added the operations SizeOfTable, Search, and Replace to the
specification; their postconditions explain their rather obvious purpose. The PRIVATE
implementation section shows type declarations for an array implementation similar to
that of the employee example of Section 3.5. Program 5.20 gives a skeleton for the pack
age body, with stubs for most of the operations. These stubs use the enter and exit mes
sages provided by the package Debugging_Support, as introduced in Section 3.5.

Program 5.20 Body of Generic Tables Package

WITH Binary_Search_Generic;
WITH Debugging_Support;
PACKAGE BODY Tables_Generic IS

— I Body of the abstract data type for a table of
— I element records, each element containing a key.
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: October 1995

PROCEDURE Locate IS

NEW Binary_Search_Generic{
ElementType => Element,
KeyType => KeyType,

KeyOf => KeyOf,
"<" => *<",

indexType => Tablelndex,
ListType => TableData);

PROCEDURE InitializeTable (Table : IN OUT TeibleType) IS

BEGIN — stub

Debugging_Support.Enter (Subprogram => •InitializeTable",
Message => "Under Construction ");

Debugging_Support.Leave (Subprogram => "InitializeTable ")
END InitializeTable;

FUNCTION SizeOfTable(Table: TableType) RETURN Natural IS
BEGIN — stub

Debugging_Support.Enter (Subprogram => "SizeOfTable ",
Message => "Under Construction ");

Debugging_Support.Leave (Subprogram => "SizeOfTable ");
RETURN 0;

END SizeOfTable;

PROCEDURE Search (Table : TableType;
Target : KeyType;

Success : OUT Boolean) IS

BEGIN — stub

Debugging_Support.Enter (Subprogram => "Search ",
Message => "Under Construction ");

Debugging_Support.Leave (Subprogram => "Search ");
END Search;
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PROCEDURE Insert (Table : IN OUT TableType;
Item : Element;

Success : OUT Boolean) IS
BEGIN — stub

Debugging_Support.Enter (Subprogram => "Insert
Message => "Under Construction "};

Debugging_Support.Leave (Subprogram => "Insert ");
END Insert;

PROCEDURE Delete (Table : IN OUT TableType;
Target : KeyType;
Success : OUT Boolean) IS

BEGIN — stub

Debugging_Support.Enter (Subprogram => "Delete
Message => "Under Construction ");

Debugging_Support.Leave (Subprogram => "Delete ");
END Delete;

PROCEDURE Replace (Table ; IN OUT TableType;
Item : Element;

Success : OUT Boolean) IS
BEGIN -- stub

Debugging_Support.Enter (Subprogram => "Replace ",
Message => "Under Construction ");

Debugging_Support.Leave (Subprogram => "Replace");
END Replace;

PROCEDURE Retrieve (Table : TableType;
Target : KeyType;
Item : OUT Element;
Success : OUT Booleein) IS

BEGIN — stub

Debugging_Support.Enter (Subprogram => "Retrieve",
Message => "Under Construction");

Debugging_Support.Leave (Subprogram => "Retrieve");
END Retrieve;

PROCEDURE Traverse (Table : TableType) IS
BEGIN -- stub

Debugging_Support.Enter (Subprogram => "Traverse">,
Message => "Under Construction");

Debugging_Support.Leave (Subprogram => "Traverse");
END Traverse;

END Tables_Generic;

This body implements the table as an ordered array; therefore, Binary_
Search_Generic can be instantiated and used for the basic search operation. The
instantiating statement

PROCEDURE Locate IS

NEW Binary_Search_Generic(
ElementType => Element,
KeyType => KeyType,

KeyOf => KeyOf,
"<• »<»^

IndexType => Tablelndex,
ListType => TableData);
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takes the generic table parameters and "passes them through" to the generic search;
make sure you understand how this works. Locate can now be called to locate an ele
ment in the table, or to discover where it should be placed; this is the critical part of
almost all the table operations. You can complete the body, and test it, as an exercise.

Your test program can be a modification of Program 3.15, suitably extended to cover
all the operations. In your test program, instantiate Tables_Generic as follows;

PACKAGE EmployeeTables IS NEW Tables_Generic(
Capacity => 25,
Element => Employees.Employee,
KeyType => Employees.NameType,
KeyOf => Employees.RetrieveName,
"<" => "<",

Visit => Employees.10.Display);

Declare some variables in your test program:

Company: EmployeeTables.TableType;
OneEmployee: Employees.Employee;
Done: Boolean;

Now you can use the various operations:

Employees.10.ReadEmployee(Item => OneEmployee);
EmployeeTables.Insert(T => Company, E => OneEmployee, Success => Done);

and so on.

You might even want to develop a simple modification of the menu-driven inter
face Employee_UI (Program 3.16) that uses the generic package.

5.9 ADT DESIGN: A GENERIC BACKUP PACKAGE

Our table package provides useful operations for maintaining a table in main memory.
How was that table originally placed in main memory? There are several possibiities:

• Write a main program, consisting of a number of Insert calls containing "hard
wired" data—that is, with the values of the record fields written out in the program.
This is a useful practice for testing the package operations, but it is not a very prac
tical method for maintaining the table dynamically.

• Write an interactive program such as Employee_UI, to enter the data into the
table. This is the most common way to input the data, but requires the data to be
entered anew each time the program is run.

• Provide a way to save the entire contents of the table to an external disk file and then
restore the table from that file at a later date.

The last approach is the subject of this section. Save-and-restore capabilities are
provided with almost every realistic application program. Word processors, data base
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managers, even game programs, all have commands that enable the user to save work
to, and restore work from, external files.

In this section, we use an Ada generic child package to add save and restore opera
tions to the generic table package. Program 5.21 is the specification for this package,
which is called Tables_Generic. Backup.

Program 5.21 Specification for Generic Backup Package

WITH Ada.Text_I0;

GENERIC

WITH PROCEDURE Get

(File: IN Ada.Text_IO.File_Type; Item: OUT Element) IS <>;
WITH PROCEDURE Put

(File: IN Ada.Text_IO.File_Type; Item: IN Element) IS <>;
PACKAGE Tables_Generic.Baclcup IS

— I Generic Child Package for Save and Restore of a Table
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

PROCEDURE Save (T: IN TableType; FileName: IN String);
— Pre: T and FileName are defined

— Post: The given file is created and the contents of T
are written to the file.

PROCEDURE Restore (T: OUT TableType; FileName: IN String);
— Pre: T and FileName are defined

— Post: T is restored from the given file

END Tables_Generic.Backup;

You can see from the comments and postconditions that the Save operation takes
a table parameter and a string that gives the name of the desired external file. Save cre
ates the desired file and then copies the current table contents into that file. Restore
takes a string as its file parameter, opens that file, and copies the file contents into the
table.

Save must repeatedly call a Put operation that can write a single table element
into a file; Restore must repeatedly call a Get operation that reads a single element
from a file. Because the table package is generic and the element type can vary, the
backup package must be generic as well and depends upon the client program provid
ing the single-element Get and Put. This is done, as usual, with generic procedure
parameters.

The details of Save and Restore are shown in the package body. Program
5.22.

Program 5.22 Body of Generic Backup Package

WITH Ada.Text_I0;

WITH Ada.Integer_Text_IO;
WITH Debugging_Support;
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PACKAGE BODY Tables_Generic.Backup IS

Body of generic backup/restore. Save simply copies the occupied
part of the array into the file, one record per line. The first
line of the file gives the number of records, T.CurrentSize.
Note that because this is a child package, it can "see" into the
private part of the parent and "knows" the structure of a table.
Author: Michael B. Feldman, The George Washington University
Last Modified: January 1996

PROCEDURE Save (T: IN TableType; FileName: IN String) IS
BackupFile: Ada.Text_IO.File_Type;

BEGIN — Save

Debugging_Support.Enter(Subprogram => "Save");

Ada.Text_IO.Create(File => BackupFile,
Mode => Ada.Text_IO.Out_File,
Name => FileName);

Ada.Integer_Text_IO.Put(File => BackupFile, Item => T.CurrentSize);
Ada.Text_IO.New_Line(File => BackupFile);

FOR Count IN 1..T.CurrentSize LOOP

Put(File => BackupFile, Item => T.Data(Count));
END LOOP;

Ada.Text_IO.Close(File => BackupFile);

Debugging_Support. Leave (Subprogram => " Save") ;
END Save;

PROCEDURE Restore (T: OUT Ted)leType; FileName: IN String) IS
BackupFile: Ada.Text_IO.File_Type;
Count: TableSize;

BEGIN — Restore

Debugging_Support.Enter(Subprogram => "Restore");

Ada.Text_IO.Open (File => BackupFile,
Mode => Ada.Text_IO.In_File,

Name => FileName);

Ada.Integer_Text_IO.Get(File => BackupFile, Item => T.CurrentSize);
Ada.Text_IO.Skip_Line(File => BackupFile);
FOR Count IN 1..T.CurrentSize LOOP

Get(File => BackupFile, Item => T.Data(Count));
END LOOP;

Ada.Text_IO.Close(File => BackupFile);

Debugging_Support.Leave(Subprogram => "Restore");
END Restore;

END Tables_Generic. Backup ;

As the comments indicate, this backup package is tailored to our table package. The
table is represented as an unordered array. Therefore, Save can operate by simply loop
ing through the array and writing each element to the file, using the client-provided
Put. To keep the file in a standard form, each record is written to one line of the file.
The number of records is T. Currents! ze; this value is written to the file before the

records are copied out, so that Restore will know how many records to read back.
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As with earlier input/output packages we have introduced, this package is written
as a child of Tables_Generic. As we know, a child package can "see into" the pri
vate section of its parent. We wish to allow Save and Restore to know the details of
a table, so they can loop through the table directly and directly reference
T. Current Size. We reiterate that child packages should be used sparingly, because
they can violate the PRIVATE nature of the data structures. Do not use a child package
where a client program or client package is more appropriate.

Program 5.23 demonstrates the workings of the Save and Restore operations.

Program 5.23 Demonstration of Generic Backup Package

WITH Tables_Generic;

WITH Tables_Generic.Backup;
WITH Dates;

WITH Dates.IO;

WITH Debugging_Support;
USE Debugging_Support;
PROCEDURE Test_Backup IS

— I Demonstration of generic backup/restore package.
--I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

— set up simple name/birthday record
SUBTYPE NameType IS String(1..10);

TYPE BirthRecord IS RECORD

Name: NameType;

Birthday: Dates.Date;
END RECORD;

— The next two subprograms satisfy the KeyOf and Visit
— parameters of Tables_Generic

FUNCTION KeyOf (Item: BirthRecord) RETURN NameType IS
BEGIN

RETURN Item.Name;

END KeyOf;

PROCEDURE Put(Item: IN BirthRecord) IS
BEGIN

Ada.Text_IO.Put(Item => Item.Name);
Dates.ID.Put(Item => Item.Birthday);
Ada.Text_I0.New_Line;

END Put;

— Now we can instantiate Tables_Generic

PACKAGE BirthdayTables IS
NEW Ted3les_Generic

(Element => BirthRecord,

KeyType => NameType,

Capacity => 50,
Visit => Put);

— We need file-oriented Get and Put to satisfy Tables_Generic.Backup
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PROCEDURE Get(File: IN Ada.Text_IO.File_Type; Item: OUT BirthRecord) IS
BEGIN

Ada.Text_IO.Get(File => File, Item => Item.Name);
Dates.10.Get(File => File, Item => Item.Birthday);
Ada.Text_IO.Skip_Line(File => File);

END Get;

PROCEDURE Put(File: IN Ada.Text_IO.File_Type; Item: IN BirthRecord) IS
BEGIN

Ada.Text_IO.Put(File => File, Item => Item.Name);
Dates.10.Put(File => File, Item => Item.Birthday);
Ada.Text_IO.New_Line(File => File);

END Put;

— Now we can instantiate the baclcup paclcage. Note that we refer to
— the instance BirthdayTables, not the generic Tables_Generic.

PACKAGE BirthdayBaclcup IS
NEW BirthdayTables.Baclcup; — note - instance used, not generic

Friends: BirthdayTables.TableType;

BEGIN — Test_Backup

Debugging_Support.SetDebug(WhichWay => On);

— The file birthdays.new should be a copy of birthdays.dat

BirthdayBackup.Restore(T => Friends, FileName => "birthdays.dat");
BirthdayBackup.Save(T => Friends, FileName => "birthdays.new");

END Test_Backup;

A simple birthday record is defined, consisting of a name and a date. KeyOf and
Put operations are defined and Tables_Generic is instantiated:

PACKAGE BirthdayTables IS
NEW Tables_Generic

(Element => BirthRecord,

KeyType => NameType,

Capacity => 50,
Visit => Put);

Next, Get and Put operations are written to provide the necessary file operations,
and then Tables_Generic. Backup is instantiated as follows:

PACKAGE BirthdayBackup IS

NEW BirthdayTables.Backup; — note - instance used, not generic

When instantiating a generic child of a generic parent, Ada requires that the parent
instance—in this case, BirthdayTables—and not the parent generic—
Tables_Generic—^be mentioned in the instantiation statement.

How should we test the backup package? We could write a program to create a
table, call Save to produce the backup, and so on. A simpler approach is simply to
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1. Create a small file using an ordinary editor

2. Use Restore to load it into a table

3. Use Save to save it back into another file

4. Compare the two files

Program 5.23 assumes that step 1 has been done, then carries out steps 2 and 3.
Suppose the initial file birthdays. dat has the following contents:

4

Benjamin Nov 2 1971
Keith Get 21 1977

Michael Dec 15 1944

Ruth Jul 8 1947

Executing test_backup will produce the following result on the screen:

»»> Entering Restore
»»> Leaving Restore
»»> Entering Save

»»> Leaving Save

Finally, the file birthdays . new should contain the same contents as the initial
file.

5.10 APPLICATION: AIRLINE PASSENGER LIST

Problem

Develop an interactive program for maintaining a list of airline reservations for a par
ticular flight, given a record for each passenger consisting of the passenger's name,
class of travel (First, Business, Economy, and Standby), and number of seats reserved
by that passenger. We must provide the abilities to add, to change, and to delete a reser
vation, and to save and restore the passenger list.

Analysis

We must first find a representation for a passenger record, then build a table to hold the
reservations, and create a "front end" program with which the user can interact.

Design

A detailed discussion of the design is left as a programming project; we choose now to
specify a package implementing passenger records. Given such a package, we can use
our generic table manager to maintain the passenger reservation list.
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We leave it as an exercise to provide an ADT package for passenger records, with
the record represented as a PRIVATE type. You can use Employees and

Employees. 10 (Programs 3.7 through 3.9) as models for Passengers and
Passengers. 10. Your interactive program can be modeled on Employee_UI
(Program 3.16); this program will instantiate the generic table handler as follows:

PACKAGE FlightLists IS NEW Tables_Generic{
Capacity => 50,
Element => Passengers.Passenger,

KeyType => Passengers.NameType,

KeyOf => Passengers.RetrieveName,
"<" => "<",

Visit => Passengers.10.Put);

5.11 ADT DESIGN: ADTs VERSUS ABSTRACT

DATA OBJECTS

In using the generic table package from Section 5.8, each instantiation allows the client
program to declare and use an arbitrary number of tables, just by declaring variables of the
provided table type. Since in many applications only one table is needed, an altemative
design for the table manager is to encapsulate the table type declarations, as well as a sin
gle table variable, inside the package body. This changes the table handler fixjm an ADT to
an abstract data object (ADO) design. The operations no longer require a table parameter.

In an ADO design, each instantiation of the package creates a single table, together
with its own associated operations. Program 5.24 shows the modified package
specification.

Program 5.24 Specification for Generic Table Object Package

GENERIC

TYPE Element IS PRIVATE; — assignment and equality predefined
TYPE KeyType IS PRIVATE; — here too

Capacity; IN Positive; — maximum table size

WITH FUNCTION KeyOf (Item: Element) RETURN KeyType;

WITH FUNCTION "<* (Keyl, Key2: KeyType) RETURN Boolean;

— This parameter specifies what to do with each element during
— a traversal of a table;

WITH PROCEDURE Visit (Item: Element);

PACKAGE Table_ADO_Generic IS

Specification of the abstract data object for a table of
element records, each containing a key.

Author: Michael B. Feldman, The George Washington University
Last Modified: October 1995
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— Exported exceptions

UninitializedTable: EXCEPTION;

NoSpaceLeft : EXCEPTION;

— Operations

PROCEDURE InitializeTable;

— Pre : None

-- Post: the Table ADO is initialized

FUNCTION SizeOfTable RETURN Natural;

— Pre : the Table ADO is initialized

— Post: Returns the number of elements in the Table ADO

PROCEDURE Search (Target : KeyType;
Success : OUT Boolean);

— Pre : the Table ADO is initialized

— Post: Success is True if Target is found; otherwise.
Success is False.

PROCEDURE Insert (Item : Element;

Success : OUT Boolean);

— Pre : Item is defined; the Table ADO is initialized.

— Post: Success is True if insertion is performed; Success is False
if insertion is not performed because there is already
an element with the same key as Item.

— Raises: NoSpaceLeft if there is no space available for Item.

PROCEDURE Delete (Target : KeyType;
Success : OUT Boolean);

— Pre : Target are defined; Teible ADO is initialized.
— Post: Success is True if deletion is performed; Success is False

if deletion is not performed because there is no element
whose key is Target.

PROCEDURE Replace (Item : Element;

Success : OXJT BoolecUi) ;

— Item by the contents of Item.
— Pre : Item is defined; Table ADO is initialized.

— Post: Success is True if the replacement is performed; Success is
False if there is no element with the same key as Item.

PROCEDURE Retrieve (Target : KeyType;
Item : OUT Element;

Success : OUT Boolean);
— Pre : Table ADO is initialized

— Post: Success is True if the copy is performed; Success is False
if there is no element whose key is Target.

PROCEDURE Traverse;

— Repeatedly calls procedure Visit (a generic parameter) to
process each element of the Table ADO.

— Pre : Table ADO is initialized

— Post: Each element is operated on in turn by procedure Visit.

END Table_ADO_Generic;

Note that there is no TableType declaration here; this package does not provide a
type, but rather encapsulates a single object. The declarations from the PRIVATE sec
tion of the ADT package are now moved inside the ADO package body:
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WITH Binary_Search_Generic;
PACIW^GE BODY Table_ADO_Generic IS

SUBTYPE Tablelndex IS Positive RANGE 1..Capacity;
SUBTYPE TableSize IS Natural RANGE 0..Capacity;

TYPE TableData IS ARRAY(Tablelndex RANGE <>) OF Element;

TYPE TableType IS RECORD
CurrentSize : TableSize := 0;

Data : TableData(Tablelndex);

END RECORD;

OneTable: TableType;

END Table_ADO_Generic;

An instantiation, modified from the one in the previous section, might be

PACKAGE Flight23 IS NEW Table_ADO_Generic(

Capacity => 50,
Element => Passengers.Passenger,

KeyType => Passengers.NameType,

KeyOf => Passengers.RetrieveName,
"<" =>

Visit => Passengers.10.Display);

A typical operation now looks like this:

Flightl23.Insert(Item => OnePassenger, Success => Done);

We leave it to you to complete the body and modify the passenger-list application
accordingly. Also modify the backup package.

The ADO style of design is very effective if only one or two tables will be needed.
However, because some compilers copy the object code for the entire generic package
body into every instantiation, the ADO style uses a great deal of space if many objects
are required. In this case, the ADT style is recommended.

SUMMARY

When writing generic specifications, it is sometimes difficult to figure out exactly
which formal parameters to write. We have studied generic type parameters only
briefly, and you would be wise to keep your generic specifications simple, following
the examples in this chapter. Neglecting to supply a generic procedure or function para
meter (such as " +" in the Vectors package) will result in a compilation error if the
compiler encounters that procedure or function in the body. We always need to reassure
the compiler that an appropriate operation will be supplied at instantiation, and the way
to do this is by defining appropriate formal parameters.

Generic definition allows us to create templates, or recipes, for subprograms and
packages. These templates allow us to leave such things as parameter types, sizes, and
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operations unspecified until instantiation time. Once a generic template is compiled,
multiple versions of it, called instances, can then be created, each with a single state
ment. The availability of generic definition and instantiation gives us the ability to build
large and powerful libraries of reusable software components with much less effort and
with much greater maintainability. In this chapter, we have seen a number of useful
generic components for exchanging values, finding the maximum, sorting, vector han
dling, sets, and keyed tables. Throughout the remainder of this book, ADTs will almost
always be presented as generic units.

EXERCISES

1. Given a generic parameter

WITH FUNCTION Compare(L,R; ValueType) RETURN Boolean;

explain why it is legal to match this with an operator " <" or " >" at instantiation.
2. One generic parameter form we did not discuss in this chapter is

TYPE SomeParameterName IS LIMITED PRIVATE;

which allows any type, even a LIMITED PRIVATE one, to be supplied as a
match at instantiation. Suppose we used one of these type forms in a generic
package specification. What limitations would this place on the kinds of state
ments that could appear in the body of the package?

3. Demonstrate Maximum_Array_Generic for some interesting instantiations.
4. A useful function, similar to Maxiinuin_Array_Generic, is one that flnds the

location of the "maximum" value in an array or slice, rather than the value itself.
Write such a function as a generic, then write a generic sort program that uses it.

5. Modify Program 5.13 for the case in which the array to be searched consists sim
ply of Integer elements.

6. Modify Program 5.13 for the case in which the array to be searched consists sim
ply of Rational elements.

7. Ada provides an interesting feature for working with Boolean arrays: The logical
operators NOT, AND, OR, and XOR (exclusive OR) are predefined for these
arrays. This allows us to simplify the operators in the sets package by removing
the loops and replacing them by expressions of the form S.St ore AND
T. Store. Modify the package to take advantage of this feature.

8. The feature described in Exercise 7 can also lead to a very nice code optimization.
The PRAGMA (compiler directive) Pack, applied to a Boolean array type, will
often allocate space for objects of this type using a single bit per Boolean value.
Because many computers have hardware logical instructions that operate on
binary words, the compiler can often implement an intersection, for example,
using a small number of "word-wise" machine instructions. If your compiler
allows you to examine the machine code it produces, and if you can understand
machine or assembly language, check to see whether your compiler is indeed tak
ing advantage of the optimization we have just described.



Exercises 229

9. Invent some interesting kinds of sets and instantiate and test the generic sets pack
age for these.

10. Modify Program 5.18 to create some musical ensembles that interest you.
11. Implement the body of the generic vectors package. Test for some interesting

index and element types.
12. Revise the matrix package of Section 4.5 to make it generic. Instantiate for matrix

elements of types Integer, Float, and Rational.
13. Implement and test the body of the generic keyed table package, then test using

the employee example of Section 5.8.
14. Improve the generic backup package (Programs 5.21 and 5.22) so that exceptions

raised by the file system are handled within the package operations Save and
Restore.

15. Complete the passenger list project outlined in Section 5.10.
16. Do Exercises 13 and 14 using the abstract data object design instead of the ADT

design.



CHAPTER 6

Variant and Tagged Record
Types

6.1 Ada Structures: Variant Records

6.2 ADT Design: Geometric Figures

6.3 ADT Design: Metric System

6.4 ADT Design: Variable-Length Strings

6.5 Ada Structures: Strings in Ada 95

6.6 Ada Structures: Tagged Types

A variant record is one with several different possible structures (instead of just one
structure, as seen in earlier chapters). The structure of the record is determined, at exe
cution time, by the value of a special field called the discriminant field; CASE constructs
are used to declare the record type and, often, to process variables of the type.

The examples in this chapter are taken from four areas: employee records, geometric
figures, dimensioned quantities for use in programs modeling physical situations, and vari
able-length strings. Each of the Ada 95-specific topics—^support for variable-length strings,
and tagged types—is important enough to be discussed in its own section of the chapter.

6.1 ADA STRUCTURES: VARIANT RECORDS

The records we have seen so far are such that all records of a given record type have
exactly the same form and structure. However, it is possible and often very useful to
define record types that have some fields that are the same for all variables of that type
(fixed part) and some fields that may be different (variant part). Such a structure is
called a variant record.

Consider an application from business information systems. There are three cate
gories of employee in a particular company: One group (professionals) receives a fixed
monthly salary, one group (sales) receives a fixed monthly salary plus commissions on
their sales, and the third group (clerical) receives an hourly wage and is paid weekly
based on number of hours worked.

230
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How shall we represent a pay record for employees? The record type we saw in
Section 3.5 is oversimplified; it does not take into account the different categories. We
require a record type that can represent any of several structures, depending on the cat
egory. This is a perfect application for a variant record type.

A pay record for a given pay period has a fixed party giving the employee's ID and
name and the ending date of the pay period, and a variant part, giving the pay infor
mation according to the pay status. We start with these basic type declarations:

SUBTYPE NameRange IS Positive RANGE 1. .20;
SUBTYPE NameType IS String(NameRange);
SUBTYPE IDType IS Positive RANGE 1111. .9999;
SUBTYPE WorkHours IS Float RANGE 0.0. .168.0;

SUBTYPE CommissionPercentage IS Float RANGE 0.00. .0.50;

TYPE PayCategories IS (Unknown, Professional, Sales, Clerical);

Given these declarations, here is a declaration of the variant record type:

TYPE Employee (PayStatus : PayCategories := Unknown) IS RECORD
ID : IDType;

NameLength : NameRange;

Name : NeuneType;

PayPeriod : Dates.Date;

CASE PayStatus IS

WHEN Professional =>

MonthSalary : Currency.Quantity;
WHEN Sales =>

WeekSalary : Currency.Quantity;
CommRate : CommissionPercentage;
SalesAmovint : Currency. Quant ity ;

WHEN Clerical =>

HourlyWage ; Currency.Quantity;
HoursWorked : WorkHours;

WHEN Unknown =>

NULL;

END CASE;

END RECORD;

The line at the beginning of the record declaration,

TYPE Employee (PayStatus : PayCategories := Unknown) IS RECORD

indicates to the compiler that the record is a discriminated record which may have a
variant part and that the discriminant field, which indicates which of several variants is
present, is PayStatus. The discriminant is a special field that looks like a parameter
of a procedure; indeed, it has many of the aspects of a parameter in that the record is
parametrized, or varies, according to the value of the discriminant. The reason for hav
ing a value Unknown used as a default will be explained shortly.

The fixed part of a record always precedes the variant part. The variant part begins
with the phrase

CASE PayStatus IS
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and declares the different forms the variant part can have. The NULL case indicates that
there is no variant part for PayStatus equal to Unknown. There are three different
pay records, each of a different variant.

For each variable of type PayRecord, the compiler will usually allocate sufficient
storage space to accommodate the largest of the record variants shown in Figure 6.1.
However, only one of the variants is defined at any given time; this particular variant
is determined by the discriminant field value.

Suppose we declare

Jane: Employee(PayStatus => Professional);

Then Jane's record will look like the fixed part and variant 2 of the record in Figure 6.1.
Because the value of Jane. PayStatus is Professional, only the variant field
MonthSalary may be correctly referenced. All other variant fields are undefined.
The program fragment

Ada.Text_IO.Put("Jane's full name is ");
Ada.Text_IO.Put (Jane.Named .. Jane.NameLength)) ;
Ada.Text_IO.New_Line;
Ada.Text_IO.Put("and her monthly salary is $ ");
Ada. Float_Text_IO. Put (Jane. MonSalary, Fore => 1, Aft => 2, Exp => 0);
Ada.Text_IO.New_Line;

displays the lines

Jane's full name is Jane Smith

and her monthly salary is $5000.00

In Ada, the compiler and run-time system are very careful to check the consistency of the
discriminant value with the references to fields in the record. If, at execution time, an attempt
is made to access a field that is not defined in the current variant (i.e., the variant determined by

Fixed

Part

4522
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Jane S m i t h

1996 104

Unknown Professional

5000.00

Varieuit 1 Variant 2

Sales

500.00

0.15

25000.00

Clerical

6.50

37.5

Variant 3 Variant 4

Figure 6.1 Four Variants of a Variant Record
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the current discriminant value), Constraint_Error is raised. For this reason, a CASE
statement is often used to process the variant part of a record. By using the discriminant field
as the CASE selector, we can ensure that only the currently defined variant is manipulated.

Displaying a Variant Record

The fragment in Figure 6.2 displays the data stored in the variant part of a record
CurrentEmp. The value of CurrentEmp. PayStatus determines what informa
tion will be displayed.

Ada.Text_IO.Put{Item => "Employee ID ");
Ada.Integer_Text_IO.Put(Item => CurrentEmp.ID, Width => 4
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Itern => "Employee Name ");
Ada.Text_IO.Put(Item => CurrentEmp.Name(1..CurrentEmp.NameLength))
Ada.Text_IO.New_Line;
Ada.Text_I0.Put(Item => "Pay Period Ending ");
Dates.Put(Item => CurrentEmp.PayPeriod);
Ada.Text_IO.New_Line;

CASE CurrentEmp.PayStatus IS

WHEN Unknovm =>

Ada.Text_I0.Put(Item => "Unknown pay status!*);

Ada.Text_I0.New_Line;

WHEN Professional =>

Ada.Text_IO.Put("Monthly Salary is $");
Ada.Float_Text_IO.Put
(Item=>CurrentEn®.MonthSalary, Fore=>l, Aft=>2. Exp=>0);

Ada.Text_I0•New_Line;

WHEN Sales =>

Ada.Text_IO.Put("Weekly Salary is $ ");
Ada.Float_Text_IO.Put
(Item=>CurrentEmp.WeekSalary, Fore=>l, Aft=>2, Exp=>0);

Ada.Text_I0.New_Line;
Ada.Text_I0.Put("Commission percent is ");
My_Flt_I0.Put

(Item=>CurrentEmp.ConimRate, Fore=>l, Aft=>2, Exp=>0) ;
Ada.Text_I0.New_Line;

Ada.Text_I0.Put("Sales this week $");
Ada.Float_Text_IO.Put
(Item=>CurrentEmp.SalesAmount, Fore=>l, Aft=>2, Exp=>0);

Ada.Text_I0.New_Line;

WHEN Clerical =>

Ada.Text_I0.Put("Hourly wage is $");
Ada.Float_Text_I0.Put

(Item=>CurrentEmp.HourlyWage, Fore=>l, Aft=>2, Exp=>0);
Ada.Text_IO.New_Line;
Ada.Text_IO.Put("Hours worked this week ");
Ada.Float_Text_lO.Put
(Item=>CurrentEmp.HoursWorked, Fore=>l, Aft=>2, Exp=>0);

Ada.Text_I0.New_Line;

END CASE;

Figure 6.2 Displaying a Variant Record
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Declaring Variant Record Types

Consider this rather foolish but illustrative record type:

TYPE Face (Bald : Boolean) IS RECORD

Eyes : Color;

Height: Inches;
CASE Bald IS

WHEN True =>

WearsWig : Boolean;
WHEN False =>

HairColor : Color;
END CASE;

END RECORD;

In both this record and the employee record above, note that the fixed part must be
defined first. The CASE values are lists of values of the discriminant field. All field
names must be unique. The same field name may not appear in the fixed and variant
parts or in two field lists of the variant part. An empty field list (no variant part for that
CASE label) is indicated by NULL instead of a field list. As in all CASE forms, all val
ues of the discriminant must be covered by WHEN clauses. Values not covered other
wise can be covered by a WHEN OTHERS clause.

What is the main difference between the two type declarations? In the
employee record, the discriminant field is given a default value (in this case.
Unknown); in the face record, no default is given. This looks like a simple differ
ence, but in fact it is very important. If a default is omitted from the discriminant
declaration, all variables of the type must be constrained when they are declared;
that is, a value for the discriminant mwjr be supplied. If the default is present,
unconstrained variables—^that is, variables without an explicit discriminant value—
may be declared.

Constrained and Unconstrained Variant Records

Ada has very strict rules to guarantee two things:

• The discriminant of a variant record is always defined; that is, it always has some
value.

• The discriminant value is always consistent with the actual data stored in the
record.

The first condition is ensured by requiring that if a default value for the discrim
inant is not present in the record declaration, all declarations of variables must
supply a value for the discriminant. In the pay status case above, a default of
Unknown is supplied; therefore, it is possible to declare a record without a dis
criminant value, as in

CurrentEmp : PayRecord;
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Supplying a discriminant value is not prohibited, however:

AnotherEmp : PayRecord{PayStatus=>Professional);

is allowed. In the case of the Face record above, it would be a compilation error to
declare

JohnsFace : Face;

and in this case a discriminant value is required:

JohnsFace : Face(Bald=>False);

An unconstrained record variable is one that has a default discriminant value while

none is supplied in the variable declaration. It is permissible to change the discriminant
value of an unconstrained record at execution time, under rules to be specified in the
next section. This means that the variable CurrentEmp can hold a professional
employee at one moment and a sales employee at another. This is a common use of
variant records in data processing.

A constrained record variable is one whose discriminant value is supplied when
the variable is declared. Both AnotherEmp and the second JohnsFace are con

strained. It is not permitted to change the discriminant value of a constrained record at
execution time; this means that we are "stuck" with the discriminant value.

AnotherEmp is constrained because we chose to make it so even though the dis
criminant has a default; JohnsFace is constrained because we have no choice,

because no default is supplied for Bald. JohnsFace cannot take into account his
losing his hair at a later date.

Storing Values into Variant Records

Ada's rules for variant records may seem cumbersome, but the rules are designed to
guarantee that the contents of a variant record are always consistent. Here are the basic
rules for storing values into a variant-record variable;

• Any field of the variable may be selected and read individually, by a field selector,
at any time.

Any field of the variable may be selected and changed individually (by, say, an
assignment statement) except a discriminant field; if the change is not consistent
with the current discriminant value, Constraint_Error is raised.

The discriminant field of a constrained record cannot be changed under any circum
stances.

The discriminant field of an unconstrained record can be changed, but only if the
entire record is changed at the same time. There are two ways to do this: Use a
record aggregate or copy another record.
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A common application of variant records is to read the value of a discriminant from
the terminal or from a file, then to create a record variable with that variant. By the rules
given above, the value cannot be stored directly into the discriminant. The discriminant
value and the other fields of the record must be held in temporary variables and stored
as a unit into the variant record using an aggregate.

As we have seen, there is often a distinct advantage in supplying a default value for
the discriminant. If we do not, all variables of the type must be constrained when they
are declared, and much of the flexibility of variant records—especially their ability to
change structure at execution time—is lost. As we shall see in Sections 6.2 and 6.3,
there is sometimes an advantage in not supplying a discriminant—that is, in forcing all
variables to be constrained.

Operations on Variant Records

As always in Ada, assignment and equality testing are derined for variant records.
However, certain rules apply:

• A variant record value can always be assigned to an unconstrained variable of the
same record type. This is possible because it is permissible to change the discrimi
nant of an unconstrained variable.

• A variant record value can be assigned to a constrained variable of the same record
type only if the discriminant values match. This restriction follows from the fact that
the discriminant value of a constrained variable can never be changed.

• Two variant record values can be compared for equality only if the discriminant val
ues agree; otherwise Constraint_Error is raised.

Section 3.5 developed an ADT for handling a keyed table of employee records. As an
exercise, you can modify that ADT, and the associated interactive client program, to
handle the more realistic variant employee records described in the present section.

6.2 ADT DESIGN: GEOMETRIC FIGURES

Requirements

Provide a package to represent, read, and display various geometric figures, including
their areas and perimeters.

Analysis

We need to provide, first, a representation scheme for geometric figures, with a useful set
of operations, and, second, a means for interactive users to read and display these figures.
As in other ADTs we have developed, it is useful to separate these two concerns.
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Design

We first develop an abstract data type that allows a client program to construct a geomet
ric figure. The characteristics of a circle are different from those of a rectangle (a square is
a rectangle whose width and height are equal), so we use a record with a variant part. In this
case, the fixed part of the record will contain its area and perimeter, which are computed
automatically as the figure is constmcted. Here is the variant type Figure:

SUBTYPE NonNegFloat IS Float RANGE 0.0 . . Float'Last;
TYPE FigKind IS (Rectangle, Square, Circle);

TYPE Figure (FigShape ; FigKind := Rectangle) IS RECORD
Area : NonNegFloat := 0.0;
Perimeter ; NonNegFloat := 0.0;
CASE FigShape IS
WHEN Rect I Square =>
Width : NonNegFloat := 0.0;

Height ; NonNegFloat ;= 0.0;
WHEN Circle =>

Radius : NonNegFloat := 0.0;
END CASE;

END RECORD;

Implementing the Specification of Geometry

The package specification is presented as Program 6.1.

Program 6.1 Specification for Geometry Package

PACKAGE Geometry IS

Defines an abstract data type for a geometric figure.
Operations include constructors for rectangles, circles,
and squares, and selectors for width, height, side,
area cuid perimeter.
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1995

— Data Types

SUBTYPE NonNegFloat IS Float RANGE 0.0 . . Float'Last;
TYPE FigKind IS (Rectangle, Square, Circle);

TYPE Figure (FigShape : FigKind := Rectangle) IS PRIVATE;

— Exported Exception

ShapeError: EXCEPTION;

— Constructor Operations

FUNCTION MakeRectangle (Width, Height : NonNegFloat) RETURN Figure;
— Pre : Width and Height are defined
— Post: returns a rectangle
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FUNCTION MakeCircle (Radius :

— Pre : Radius is defined

— Post: returns a circle

FUNCTION MakeSquare (Side
— Pre : Side is defined

— Post: returns a square

N

NonNegFloat) RETURN Figure;

onNegFloat) RETURN Figure;

— selectors

FUNCTION Shape

FUNCTION Height
FUNCTION Width

FUNCTION Radius

FUNCTION Side

FUNCTION Perimeter

FUNCTION Area

— Pre

— Post

— Raises

PRIVATE

(OneFig : Figure)
(OneFig : Figure)
(OneFig : Figure)
(OneFig : Figure)
(OneFig : Figure)
(OneFig : Figure)
(OneFig : Figure)

OneFig is defined.
Returns the appropriate characteristic
ShapeError if the requested characteristic is
undefined for the shape of OneFig

RETURN FigKind;
RETURN NonNegFloat;
RETURN NonNegFloat;

RETURN NonNegFloat;

RETURN NonNegFloat;

RETURN NonNegFloat;
RETURN NonNegFloat;

TYPE Figure (FigShape : FigKind :=
Area : NonNegFloat := 0.0;

Perimeter : NonNegFloat := 0.0;
CASE FigShape IS
WHEN Rectangle | Square =>

Width : NonNegFloat := 0.0;
Height : NonNegFloat := 0.0;

WHEN Circle =>

Radius : NonNegFloat := 0.0;
END CASE;

END RECORD;

END Geometry;

Rectangle) IS PvECORD

We have defined the data type Figure as a PRIVATE type. Why? If the client pro
gram had access to the details of the record representing the figure, it could, for example,
change the Perimeter field by simply plugging in a new number. Because the figure
would no longer make geometric sense, this action would violate the abstraction. Note the
syntax for declaring a PRIVATE type with a variant: The discriminant appears first in the
partial declaration and later in the complete declaration in the PRIVATE part of the spec
ification.

The following design decisions make the data type safe from accidental misuse:

• The data type is declared PRIVATE to keep client programs from prying into, and
changing, fields of the record such as the area and the perimeter, or changing the
length of the side without changing the area and perimeter fields accordingly.

• All fields of the type are initialized to 0.0 by default, so that every variable of the
type is automatically well defined (a figure with sides of 0.0 also has area and
perimeter of 0.0).

• The area and perimeter are calculated automatically when the figure is constructed,
because these are uniquely determined by the other characteristics.
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The operations in the package are three constructors, MakeRectangle,
MakeCircle, and MakeSquare, which construct the appropriate variant given the
relevant characteristics, and a set of selectors. Shape, Width, Height, Side,

Radius, Area, and Perimeter, which return these characteristics of the figure.
Note that even though a square and a rectangle use the same variant, their construc
tors and selectors are different. Also, we export an exception ShapeError to pre
vent a client from applying an inappropriate selector—for example, finding the radius
of a square.

A client program can declare variables of type Figure in either constrained or
unconstrained form:

SomeShape : Figure;

can hold, at different moments, a circle, a square, or a rectangle; it is unconstrained.
However,

BigSguare : Figure (FigShape => Square);

can hold only a square, because it is constrained; that is, we plugged a discriminant
value into the declaration of the variable and are now "locked into" that value.

Implementing the Package Body

Program 6.2 shows the package body for Geometry.

Program 6.2 Body of Geometry Package

WITH Ada.Numerics; USE Ada.Numerics;

PACKAGE BODY Geometry IS

— I Body of abstract data type package for geometric figures.
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

— Body of abstract data type package for geometric figures.

— internal functions, not exported to client. ComputePerimeter
— euid ComputeArea are used to ensure that all figures are
— constructed with these attributes automatically inserted.
— The exported selectors Perimeter and Area assume that these
— fields have been set by the internal functions.

FUNCTION ComputePerimeter (OneFig : Figure) RETURN NonNegFloat IS
-- Pre : The discriminant and characteristics of OneFig are defined.
— Post: Returns Perimeter of OneFig.

BEGIN -- ComputePerimeter

CASE OneFig.FigShape IS
WHEN RectcUigle =>
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RETURN 2.0 * (OneFig.Width + OneFig.Height);
WHEN Square =>

RETURN 4.0 * OneFig.Width;
WHEN Circle =>

RETURN 2.0 * Pi * OneFig.Radius;
END CASE;

END ComputePerimeter;

FtJNCTION ComputeArea (OneFig : Figure) RETURN NonNegFloat IS
— Pre : The discriminant and characteristics of OneFig are defined.
-- Post: Returns Area of OneFig.

BEGIN — ComputeArea

CASE OneFig.FigShape IS
WHEN Rectangle =>

RETURN OneFig.Width * OneFig.Height;
WHEN Square =>

RETURN OneFig.Width ** 2;
WHEN Circle =>

RETURN Pi * OneFig.Radius ** 2 ;
END CASE;

END ComputeArea;

— Exported Operations

FUNCTION MakeRectangle (Width, Height : NonNegFloat) RETURN Figure IS

Result : Figure(FigShape => Rectemgle);

BEGIN — Ma]ceRec tangle

Result.Height
Result.Width

Result.Area

Result.Perimeter

= Height;
= Width;

= ComputeArea(Result) ;

= ComputePerimeter(Result);

RETURN Result;

END MakeRectamgle;

FUNCTION MakeCircle (Radius : NonNegFloat) RETURN Figure IS

Result: Figure (FigShape => Circle);

BEGIN — MakeCircle

Result.Radius

Result.Area

Result.Perimeter

= Radius;

= ComputeArea(Result);

= ComputePerimeter(Result);

RETURN Result;

END MakeCircle;

FUNCTION MakeSquare (Side : NonNegFloat) RETURN Figure IS

Result; Figure (FigShape => Square);
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BEGIN — MakeSquare

Result.Height

Result.Width

Result.Area

Result.Perimeter

= Side;

= Side;

= ComputeArea{Result);
= CoraputePerimeter(Result);

RETURN Result;

END MakeSquare ;

FUNCTION Shape (OnePig : Figure) RETURN FigKind IS

BEGIN — Perimeter

RETURN OneFig.FigShape;
END Shape;

FUNCTION Perimeter (OneFig : Figure) RETURN NonNegFloat IS

BEGIN — Perimeter

RETURN OneFig.Perimeter;
END Perimeter;

FUNCTION Area (OneFig : Figure) RETURN NonNegFloat IS

BEGIN — Area

RETURN OneFig.Area;
END Area;

FUNCTION Height (OneFig : Figure) RETURN NonNegFloat IS

BEGIN — Height
CASE OneFig.FigShape IS
WHEN Rectangle | Square =>
RETURN OneFig.Height;

WHEN OTHERS =>

RAISE ShapeError;

END CASE;

END Height;

FUNCTION Width (OneFig : Figure) RETURN NonNegFloat IS

BEGIN — Width

CASE OneFig.FigShape IS
WHEN Rectangle | Square =>
RETURN OneFig.Width;

WHEN OTHERS =>

RAISE ShapeError;
END CASE;

END Width;

FUNCTION Side (OneFig : Figure) RETURN NonNegFloat IS

BEGIN — Side

CASE OneFig.FigShape IS
WHEN Square =>

RETURN OneFig.Height;
WHEN OTHERS =>

RAISE ShapeError;

END CASE;

END Side;
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FUNCTION Radius (OneFig : Figure) RETURN NonNegFloat IS

BEGIN -- Radius

CASE OneFig.FigShape IS

WHEN Circle =>

RETURN OneFig.Radius;

WHEN OTHERS =>

RAISE ShapeError;

END CASE;

END Radius;

END Geometry;

The constructor functions create the appropriate variant of the record from the
relevant components, then calculate the area and the perimeter. Local functions
ComputeArea and ComputePerimeter arie used to assist. These are not given
in the specification. The user can find out the area and perimeter by calling the
appropriate selector, whose code is straightforward. Note that even though a square
is also a rectangle, we distinguish between them in many of the operations. Note, in
many of these operations, how a CASE statement is used to control the processing of
the variant data.

The Package Geometry. lO

Programs 6.3 and 6.4 give the specification and body for a child package
Geometry. 10. Procedure Get reads in thb enumeration value denoting the kind
of figure, reads the data required for the kind of figure indicated by the discrimi
nant field, and calls the appropriate constructor. This procedure serves as a good
example of how to read a variant record from the interactive user. As before, in the
Get and Put procedures, a CASE statement controls the processing of the data in
the variant part. Note also that in Program 6.4 we have a procediure RobustGet,
which uses an exception loop to ensure that interactive numeric input is valid and
in range.

Program 6.3 Specification for Geometry. lo Package

PACKAGE Geometry.lO IS

— I Child Package: Input/Output for Geometric Figures
— I Author: Michael B. Feldman, The George Washington University
— Last Modified: September 1995

PROCEDURE Get (Item : OUT Geometry•Figure);
— Pre : None

-- Post: Item contains a geometric figure.

PROCEDURE Put (Item : IN Geometry.Figure);
-- Pre : Item is defined.

-- Post: Item is displayed.

END Geometry.10;



6.2 ADT Design: Geometric Figures 243

Program 6.4 Body of Geometry. lo Package

WITH Ada.Float_Text_IO;

WITH Ada.Text_IO;

PACKAGE BODY Geometry.ID IS

— I Body of Input/Output Package for Geometric Figures
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

MaxSize: CONSTANT NonNegFloat := 1_000_000.0;

PACKAGE FigKind_IO IS
NEW Ada.Text_IO.Enumeration_IO (Enum => FigKind);

— Local procedure ReadShape cuid RobustGet are used only within
— the package, therefore not exported.

PROCEDURE ReadShape (Item : OUT FigKind) IS
— Pre: none

— Post: Item contains a figure kind. ReadShape reads robustly.

Templtem: FigKind;

BEGIN -- ReadShape

LOOP

BEGIN

Ada.Text_IO.Put

(Item => "Enter a shape: rectangle, circle, square > *);
FigKind_IO.Get(Item => Templtem);
Item := Templtem;

EXIT;

EXCEPTION

WHEN :Ada.Text_IO.Data_Error =>

Ada.Text_IO.Put

("Value not a valid shape. Please try again.");
Ada.Text_IO.New_Line;

Ada.Text_IO.Skip_Line;
END;

END LOOP;

— assert: Item is rect, circle, or square

END ReadShape;

PROCEDURE RobustGet (Item : OUT NonNegFloat;
MinVal : IN NonNegFloat;
MaxVal : IN NonNegFloat) IS

— Pre: MinVal auid MaxVal are defined

— Post: MinVal <= Item <= MaocVal

SUBTYPE TempType IS NonNegFloat RANGE MinVal. .MaxVal;
Templtem : TempType; — temporary copy of MinVal

BEGIN — RobustGet

LOOP

BEGIN — exception handler block
Ada.Text_IO.Put

(Item => "Enter a floating-point value between ");
Ada.Float_Text_IO.Put

(Item => MinVal, Fore=> 1, Aft => 2, Exp => 0);
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Ada.Text_IO.Put(Item => " and ");
Ada.Ploat_Text_IO.Put

(Item => MaxVal, Fore=> 1, Aft => 2, Exp => 0);
Ada,Text_IO.Put(Item => " > ");
Ada.Float_Text_lO.Get(Item => Tempitem);
Item := Tempitem;

EXIT; — valid data

EXCEPTION — invalid data

WHEN Constraint_Error =>
Ada.Text_IO.Put

("Value entered is out of range. Please try again.");
Ada.Text_IO.New_Line;
Ada.Text_IO.Skip_Line;

WHEN Ada.Text_IO.Data_Error =>
Ada.Text_IO.Put

("Value entered not floating point. Please try again.")
Ada.Text_IO.New_Line;
Ada. Text_IO. Slcip_Line;

END; — exception handler block
END LOOP;

— assert: Item is in the range MinVal to MaxVal

END RobustGet;

PROCEDURE Get (Item : OUT Figure) IS

Shape

Height
Width

Side

Radius

FigKind;

NonNegFloat

NonNegFloat

NonNegFloat

NonNegFloat

BEGIN — Get

— Read the shape character and define the discriminant
ReadShape(Shape);

— Select the proper variant and read pertinent data
CASE Shape IS

WHEN Rectangle =>

Ada.Text_IO.Put(Item => "Enter width.");
Ada.Text_IO.New_Line;
RobustGet(Item => Width, MinVal => 0.0, MaxVal => MaxSize);
Ada.Text_IO.Put(Item => "Enter height.");
Ada.Text_IO.New_Line;
RobustGet(Item => Height, MinVal => 0.0, MaxVal => MaxSize)
Item := MakeRectangle(Width, Height);

WHEN Square =>

Ada.Text_IO.Put(Item => "Enter length of side.");
Ada.Text_IO.New_Line;
RobustGet(Item => Side, MinVal => 0.0, MaxVal => MaxSize);
Item := MakeSquare(Side);

WHEN Circle =>

Ada.Text_IO.Put(Item => "Enter circle radius.");
Ada.Text_IO.New_Line;
RobustGet(Item => Radius, MinVal => 0.0, MaxVal => MaxSize);
Item := MakeCircle(Radius);

END CASE;

END Get;
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PROCEDURE Put (Item: IN Figure) IS

BEGIN — DisplayFigure

-- Display shape and characteristics
Ada.Text_IO.Put(Item => "Figure shape: ");
FigKind_IO.Put(Item => Shape(Item), Width => 1);
Ada,Text_IO.New_Line;

CASE Item.FigShape IS
WHEN Rectangle =>

Ada.Text_IO.Put(Item => "height = ");

Ada.Float_Text_IO.Put

(Item => Height(Item), Fore=>l, Aft=>2, Exp=>0);
Ada.Text_IO.Put(Item => width = ");
Ada.Float_Text_IO.Put

(Item => Width(Item), Fore=>l, Aft=>2, Exp=>0);

WHEN Square =>

Ada.Text_IO.Put(Item => "side = ");
Ada.Float_Text_IO.Put

(Item => Height(Item), Fore=>l, Aft=>2, Exp=>0);

WHEN Circle =>

Ada.Text_IO.Put(Item => "radius = ");
Ada.Float_Text_IO.Put

(Item => Radius(Item), Fore=>l, Aft=>2, Exp=>0);

END CASE;

Ada.Text_IO.Put(Item => "; perimeter = ");

Ada.Float_Text_IO.Put

(Item => Perimeter(Item), Fore=>l, Aft=>2, Exp=>0);

Ada.Text_IO.Put(Item => area = ");

Ada.Float_Text_lO.Put

(Item => Area(Item), Fore=>l, Aft=>2, Exp=>0);

Ada.Text_IO.New_Line;

END Put;

END Geometry.ID;

Program 6.5 is a brief and straightforward test program for the package.

Program 6.5 Demonstration of Geometry Package

WITH Ada.Text_IO;

WITH Ada.Integer_Text_IO;

WITH Geometry;

WITH Geometry.ID;

PROCEDURE Test_Geometry IS

--| Program to test pacJcage Geometry
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

MyFig : Geometry.Figure; — a figure

BEGIN — Test_Geometry

FOR TestTrial IN 1. .3 LOOP
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Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => " Trial #");
Ada.lnteger_Text_lO.Put(Item => TestTrial, Width => 1)
Ada.Text_IO.New_Line;

Geometry.10.Get (Item => MyFig);
Geometry.10.Put (Item => MyFig);

END LOOP;

END Test_Geometry;

6.3 ADT DESIGN: METRIC SYSTEM

In many science and engineering problems that model situations in the physical world,
the dimensions of a quantity are important. Vehicles travel lengths (distances), moving
at certain velocities. Objects have mass. In the physical world, only certain operations
on dimensioned quantities make sense:

• The area of a figure is given by multiplying two lengths.

• Multiplying a velocity by a time gives a distance; multiplying a velocity by another
velocity gives no meaningful physical result.

• Adding one velocity to another, or one length to another, is appropriate, but adding
a velocity to a length is not physically meaningful.

In writing modeling programs, we do not get much help from our programming lan
guages in making sure that operations on dimensioned quantities make physical sense.
Through package Calendar, Ada ensures in certain ways that operations on times and
elapsed times are meaningful, but that is as far as Ada goes directly. This case study
shows how variant records can be used to give a useful representation of dimensioned
quantities. Ada's constrained variant records, combined with operator overloading and
private types, can be used to great advantage to save a client program from debugging
difficulties stemming fix)m mistakes in operations on dimensioned quantities.

Requirements

Develop a means of representing dimensioned quantities so that only physically sensi
ble operations are allowed.

Analysis

We will develop a representation of the metric system's mass, length, and time dimen
sions. In the physical world, the following rules hold:

• Adding and subtracting dimensioned quantities makes sense only if the two quanti
ties have the same dimensions.
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* Multiplying and dividing dimensioned quantities is permitted, but the result of a
complex calculation must be a physically meaningful quantity. For example,

(Area * area * area) / (area * length)

is meaningful because it results in a quantity with volume dimensions.

* Assignment is meaningful only if the dimensions agree on both sides of the
assignment.

* Equality and other comparison operations are meaningful only if the dimensions
agree; that is, "you can't compare apples and oranges."

Design

We will develop an abstract data type Metric for a physical quantity; to do this, we
will store the dimensions of the quantity in the three discriminants of a variant record.

Coding the Package Specification

The package specification for Metric_Systein is given in Program 6.6.

Program 6.6 Specification for Metric_System Package

PACKAGE Metric_Systein IS

— I Specification for Metric System Paclcage
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

— Type definition

TYPE Metric(Mass, Length, Time : Integer) IS PRIVATE;

— constrained subtypes

SUBTYPE Scalar IS Metric(0, 0, 0);

SUBTYPE Accel ISMetric(0, 1, -2);

SUBTYPE Area IS Metric(0, 2, 0);

SUBTYPE Length IS Metric(0, 1, 0);
SUBTYPE DistcUice IS Metric(0, 1, 0);

SUBTYPE Mass IS Metric(1, 0, 0);

SUBTYPE Time IS Metric(0, 0, 1);

SUBTYPE Velocity IS Metric(0, 1, -1);
SUBTYPE Volume IS Metric(0, 3, 0);

— exported exception

Diraension_Error : EXCEPTION;

— exported unit constants; these will be defined in full below
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Gram

METER

SEC

Square_M

Cubic_M

M_per_Sec

M_per_Sec2

CONSTANT

CONSTANT

CONSTANT

CONSTANT

CONSTANT

CONSTANT

CONSTANT

Metri

Metri

Metri

Metri

Metri

Metri

Metric

FXJNCTION (Left : Float; Right : Metric) RETURN Metric;
— Pre: Left and Right are defined
— Post: constructor: produces a metric quantity from a Float one

FUNCTION Value(Left : Metric) RETURN Float;
-- Pre: Left is defined

— Post: selector: returns the Float (dimensionless) part
of a metric quantity

FUNCTION

FUNCTION

FUNCTION

FUNCTION

— Pre:

— Post:

— Raises

have

'<" (Left, Right : Metric)
'<=* (Left, Right : Metric)
*>" (Left, Right : Metric)
•>=" (Left, Right : Metric)

RETURN Boolean;

RETURN Boolean;

RETURN Boolean;

RETURN Boolean;
Left and Right are defined
the usual comparison operations
Dimension_Error if Left and Right

different dimensions

FUNCTION "+" (Right : Metric) RETURN Metric;
FUNCTION (Right : Metric) RETURN Metric;
FUNCTION "abs " (Right : Metric) RETURN Metric;
— Pre: Right is defined
— Post: the usual monadic arithmetic operations;

the dimensions of Right are, of course, preserved

FUNCTION "+" (Left, Right : Metric) RETURN Metric;
FUNCTION (Left, Right : Metric) RETURN Metric;
— Pre: Left and Right are defined

Post: the usual additive operations are performed on the
-- numeric parts of Left and Right; the dimensions are preserved
— Raises: Dimension_Error if Left eind Right

have different dimensions

FUNCTION (Left, Right : Metric) RETURN Metric;
FUNCTION "/" (Left, Right : Metric) RETURN Metric;
— Pre: Left and Right are defined
— Post: the usual multiplication and division operations

are performed on the numeric parts of Left and Right;
the dimensions are added pairwise (multiplication)
or subtracted pairwise (division)
Left and Right need not have the same dimensions.

PRIVATE

— A Metric quantity is a 3-discrimineuit variant record,
— with no default values. Each object of the type must
-- therefore be constrained to a subtype, that is, to a
— fixed set of dimensions. This is physically realistic.

TYPE Metric(Mass, Length, Time
Value ; Float := 0.0;

END RECORD;

Integer) IS RECORD
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Gram

Meter

Sec

Square_M

Cubic_M

M_per_Sec

M_per_Sec2

CONSTANT Metric := (1, 0, 0, 1.0)

CONSTANT Metric := (0, 1, 0, 1.0)

CONSTANT Metric := (0, 0, 1, 1.0)

CONSTANT Metric := (0, 2, 0, 1.0)

CONSTANT Metric := (0, 3, 0, 1.0)

CONSTANT Metric := (0, 1, -1, 1.0);

CONSTANT Metric := (0, 1, -2, 1.0)

END Metric_System;

Note the way in which the type Metric is defined: At the top of the speciflcation,
the following lines appear:

TYPE Metric(Mass, Length, Time : Integer) IS PRIVATE;

SUBTYPE Scalar IS Metric(0, 0, 0);

SUBTYPE Mass IS Metric(1, 0, 0);
SUBTYPE Length IS Metric(0, 1, 0);
SUBTYPE Time IS Metric(0, 0, 1);

SUBTYPE Accel IS Metric(0, 1, -2);

SUBTYPE Area IS Metric(0, 2, 0);

SUBTYPE Distance IS Metric(0, 1, 0);
SUBTYPE Velocity IS Metric(0, 1, -1);
SUBTYPE Volume IS Metric(0, 3, 0);

Type Metric is a variant record with three discriminants for each of the three dimen
sions. Note that no defaults are given for the discriminants. This is done so that no vari
able can be unconstrained. It does not make sense for a variable representing length, for
example, to change into one representing mass: Physical quantities simply do not change
their dimensions.

The type is made PRIVATE so that we canprecisely exert control over which oper
ations are available and how they operate We have also declared anumbe of subtypes
representing some of the more common physical dimensions. In supplying discriminant
values, we have made all these subtypes constrained. A variable of type Length will
always represent a length. Note that lengths and distances have the same dimensions,
and thus are synonymous.

The discriminant values correspond to the physical dimensions: A length value has
dimension length' and no mass or time component; a volume value has dimension
length X length x length, or length'; a velocity value has diniensions length/time, or
length^ and time-*.

Several constants are also partially declared here:

Gram

Meter

Sec

Square_M

Cubic_M

M_per_Sec

M_per_Sec2

CONSTANT Metric;

CONSTANT Metric;

CONSTANT Metric;

CONSTANT Metric;

CONSTANT Metric;
CONSTANT Metric;

CONSTANT Metric;

This is done to allow a client program to label numerical values in expressions:

Speed; Velocity;

Speed := 35.7 * M_per_Sec;
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Looking at the PRIVATE part of the specification, we see the completion of the
type definition and the constant declarations:

PRIVATE

TYPE Metric(Mass, Length, Time
Value : Float := 0.0;

END RECORD;

Integer) IS RECORD

Gram

METER

SEC

Square_M

Cubic_M
M_per_Sec

M_per_Sec2

CONSTANT

CONSTANT

CONSTANT

CONSTANT

CONSTANT

CONSTANT

CONSTANT

Metric

Metric

Metric

Metric

Metric

Metric

Metric

=  (1, 0, 0, 1.0)

=  (0, 1, 0, 1.0)
=  (0, 0, 1, 1.0)

=  (0, 2, 0, 1.0)

=  (0, 3, 0, 1.0)
=  (0, 1, -1, 1.0)

=  (0, 1, -2, 1.0)

The record Metric actually has only a fixed part—^a Float value— and no variant
part. This is an unusual use of variant records, but it works because of Ada's strict rules
about operations on constrained variables. The constants simply give "unit" values for
each of the dimensions, so that multiplying them by other values does not change those
values.

The constants could not be fully declared above the PRIVATE part because the
field structure of the metric type (i.e., its Float value) is not included above. If it were,
the type could not be made PRIVATE, but it must be so in order for the entire package
to work reliably.

The operations of Metric_System are similar to the ones already available for
Float, as given in package Standard. The only operation worthy of note is the first
one, which permits values to be given dimensions:

FUNCTION (Left : Float; Right : Metric) RETURN Metric;

It was this operation that was used above in the assignment to Speed. Finally, an
exception Dimension_Error is provided to signal a client program if it attempts a
physically meaningless operation, such as adding a length to a time.

Coding the Package Body

Program 6.7 shows the body of the package Metric_Systein. The operations are
repetitive and straightforward, requiring no explanation except to point out the local
function SameDimensions, which compares the three dimensions of its two para
meters. This function is called by many other operations in the package body.

Program 6.7 Body of Metric_Systein Package

PACKAGE BODY Metric_Systera IS

— I This is the implementation of the pac)cage Metric_Systera.
--I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

local function to check whether its arguments have the same dimensions
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FUNCTION SameDimensions(Left. Right :Metric) RETURN Boolean IS
BEGIN

RETURN (Left.Length = Right.Length) AND
(Left.Mass = Right.Mass) AND

(Left.Time = Right.Time);
END SameDimensions;

FUNCTION (Left : Float; Right : Metric) RETURN Metric IS
BEGIN

RETURN (Right.Mass, Right.Length, Right.Time, Left * Right.Value);
END

FUNCTION Value(Left : Metric) RETURN Float IS

BEGIN

RETURN Left.Value;

END Value;

— comparison operators

FUNCTION "<" (Left, Right : Metric) RETURN Boolean IS
BEGIN

IF SameDimensions(Left, Right) THEN
RETURN Left.Value < Right.Value;

ELSE

RAISE Diraension_Error;

END IF;

end "<";

FUNCTION ">=" (Left, Right : Metric) RETURN Boolean IS
BEGIN

IF ScimeDimensions (Left, Right) THEN
RETURN Left.Value >= Right.Value;

ELSE

RAISE Dimension_Error;

END IF;

END ">=";

FUNCTION ">" (Left, Right : Metric) RETURN Boolean IS
BEGIN

IF SeuneDimensions(Left. Right) THEN
RETURN Left.Value > Right.Value;

ELSE

RAISE Dimension_Error;

END IF;

END ">";

FUNCTION ">=" (Left, Right : Metric) RETURN Boolean IS
BEGIN

IF SameDimensions(Left. Right) THEN
RETURN Left.Value >= Right.Value;

ELSE

RAISE Dimension_Error;

END IF;

END ">=•■;

— monadic arithmetic operators

FUNCTION "+" (Right : Metric) RETURN Metric IS
BEGIN

RETURN Right;
END "+";
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FUNCTION (Right : Metric) RETURN Metric IS
BEGIN

RETURN (Right.Mass, Right.Length, Right.Time, -Right.Value);
END "-";

FUNCTION "ABS " (Right : Metric) RETURN Metric IS
BEGIN

RETURN (Right.Mass, Right.Length, Right.Time, ABS(Right.Value));
END "ABS

dyadic aritlimetic operators

"+" and require two variables of the same subtype,
they return a variable of the same subtype passed

FUNCTION •+"(Left, Right : Metric) RETURN Metric IS
BEGIN

IF SameDimensions(Left, Right) THEN
RETURN

(Left.Mass, Left.Length, Left.Time, Left.Value + Right.Value);
ELSE

RAISE Dimension_Error;
END IF;

END

FUNCTION (Left, Right : Metric) RETURN Metric IS
BEGIN

IF SameDimensions(Left, Right) THEN
RETURN

(Left.Mass, Left.Length, Left.Time, Left.Value - Right.Value);
ELSE

RAISE Dimension_Error;
END IF;

END

and "/" require variables of any subtype
of Metric. The subtype of the variable returned depends on

— the types passed and how the operation combines the units.

FUNCTION (Left, Right : Metric) RETURN Metric IS
BEGIN

RETURN (Left.Mass + Right.Mass, Left.Length + Right.Length,
Left.Time + Right.Time, Left.Value * Right.Value);

END

FUNCTION "/" (Left, Right : Metric) RETURN Metric IS
BEGIN

RETURN (Left.Mass - Right.Mass, Left.Length - Right.Length,
Left.Time - Right.Time, Left.Value / Right.Value);

END "/";

END Metric_System;

Testing the Package

Finally, Program 6.8 shows a short program to test some operators in the package.
Notice how the exception blocks are used to report whether an exception was raised
without causing the program to terminate. You are encouraged to use this program as
a basis for writing your own test programs and applications of Metric_Systein.
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Program 6.8 Using the Metric_system Package

WITH Ada.Text_IO;

WITH Ada.Float_Text_IO;

WITH Metric_System; USE Metric_System;
PROCEDURE Test_Metric IS

— I Test some of the operations of the metric system package
— I Author: Michael B. Feldman, The George Washington University

Last Modified: September 1995

V

T

D

A

Vol

Velocity;
Time ;

Length;

Area;

Volume ;

BEGIN

— these operations should all work correctly

V := 23.0 * M_per_Sec;

T := 3600.0 * Sec;

D := V * T;

Ada.Text_IO.Put("Distance = Rate * Time works as advertised ");
Ada.Text_IO.New_Line;
Ada.Text_IO.Put("Distance is ");
Ada.Float_Text_IO.Put

(Item => Value(D), Fore => 1, Aft => 2, Exp => 0);
Ada.Text_IO.Put(" meters.");

Ada.Text_IO.New_Line;

Ada.Text_IO.New_Line;

D := 3.0 * Meter;

A := D * D.

Ada. Text_IO. Put ("Area = Distance * Distance works as advertised
Ada.Text_IO.New_Line;
Ada.Text_IO.Put("Area is ");

Ada.Float_Text_IO.Put

(Item => Value(A), Fore => 1, Aft => 2, Exp => 0);
Ada.Text_IO.Put(" square meters.");

Ada.Text_IO.New_Line;
Ada.Text_IO.New_Line;

Vol := A * D;

Ada.Text_IO.Put("Vol^lme = Area * Distance works as advertised *);
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(">Volume is ");
Ada.Float_Text_IO.Put
(Item => Value(Vol), Fore => 1, Aft => 2, Exp => 0);

Ada.Text_IO.Put("cubic meters.");
Ada.Text_IO.New_Line;
Ada.Text_IO.New_Line;

D := D + D;

Ada.Text_IO.Put("Distance = Distance + Distance works as advertised ")
Ada.Text_IO.New_Line;
Ada.Text_IO.Put("Distance is ");
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Ada.Float_Text_IO.Put
(Item => Value(D), Fore => I, Aft => 2, Exp => 0);

Ada.Text_IO.Put(" meters.");

Ada.Text_IO.New_Line;
Ada, Text_IO. New_ljine ;

BEGIN -- block for exception handler
D := D * D;

Ada.Text_IO.Put

("Distance = Distance * Distance worked, but should not ");
Ada.Text_IO.New_Line;

EXCEPTION

WHEN Constraint_Error =>
Ada,Text_IO.Put

("Constraint Error Raised on Distance = Distance * Distance ")
Ada.Text_IO.New_Line;

WHEN Dimension_Error =>
Ada.Text_IO.Put

("Dimension Error Raised on Distance = Distance * Distance ");
Ada.Text_IO.New_Line;

END; -- exception block

BEGIN -- block for exception handler
D := T + D.

Ada .Text_IO.Put

("Distance = Time + Distance worked, but should not ");
Ada.Text_IO.New_Line;

EXCEPTION

WHEN Constraint_Error =>

Ada.Text_IO.Put
("Constraint Error Raised on Distance = Time + Distance ");

Ada.Text_IO.New_Line;
WHEN Dimension_Error =>

Ada.Text_IO.Put

("Dimension Error Raised on Distance = Time + Distance ");
Ada.Text_IO.New_Line;

END; — exception block

END Testjletric;

6.4 ADT DESIGN: VARIABLE-LENGTH STRINGS

As we have seen, Ada has no predefined support for variable-length character strings.
The predefined type String is nothing but a character aixay and needs to be declared
with a fixed length. On the other hand, it is conunon in applications to use string objects
with a fixed maximum length but a variable actual length. If we use only Ada string
objects, there is nothing built into Ada to keep track of the number of useful characters
that are in the string at any given moment.

Specifying the vstrings Package

We can use Ada's package capability to design and build what we need to support vari
able-length strings in a way similar to those of other languages like PL/I and Fortran-
77. Let us create an ADT VStrings, in which each string variable is declared to have
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its own fixed maximum or physical length but a variable actual or logical length.
Program 6.9 is a package specification for VSbrings.

Program 6.9 Specification for Variable-Length String Package

PACKAGE VStrings IS

— I Specification for ADT to handle strings of variable length.
— 1 Maximum length must be at least 1.
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

TYPE VString(MaxLength: Positive) IS PRIVATE;

— exceptions

StringOverflow : EXCEPTION;

EmptyString : EXCEPTION;
InvalidArgxunents : EXCEPTION;

— operators

— constructors

FUNCTION MakeVString{S : String; MaxLength: Positive) RETURN VString;
— Pre: S and MaxLength are defined
— Post: returns a VString with S as the Value part,

MaxLength as the MaxLength part and S'Length as the Length part

— Raises: StringOverflow if S is longer than MaxLength characters

FUNCTION MakeVString(C : Character; MaxLength: Positive)
RETURN VString;

— Pre: C and MaxLength are defined
— Post: returns a VString with C as the Value part. Length = 1

FUNCTION EmptyVString(MaxLength: Positive) RETURN VString;
— Pre: MaxLength is defined
— Post: returns a empty VString with the given McOcLength

— selectors

FUNCTION Length(S ; VString) RETURN Natural;
FUNCTION MaxLength(S : VString) RETURN Positive;
FUNCTION Value(S : VString) RETURN String;
— Pre: S is defined

— Post: returns the Length and Value of S, respectively

FUNCTION Head(S : VString) RETURN Character;
— Pre: S is defined

— Post: returns the first character of S

— Raises: EmptyString if S is empty

— inquiry

FUNCTION IsEmptyCS : VString) RETURN Boolean;

— Pre: S is defined

— Post: returns True if S is empty. False otherwise

— concatenation
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FUNCTION ■&" (SI, S2 : VString) RETURN VString;
FUNCTION (SI : VString; C : Character) RETURN VString;
FUNCTION ■&" (C : Character; SI : VString) RETURN VString;
FUNCTION ■&" (SI : VString; S : String) RETURN VString;
FUNCTION S : string; SI : VString) RETURN VString;
— Pre; parameters are defined
— Post: each operator returns the concatenation of its arguments;

the maxiraiun length of the result is the larger of the two
mciximum lengths.

— Raises: StringOverflow if the result would be longer than
the longer of the two argximents

— lexical comparison

FUNCTION ■<" (SI, S2 : VString) RETURN Boolean;
FUNCTION •<=" (SI, S2 : VString) RETURN Boolean;
FUNCTION ">" (SI, S2 : VString) RETURN Boolean;
FUNCTION ■>=■ (SI, S2 : VString) RETURN Boolean;
— Pre: SI and S2 are defined
— Post: carries out the desired comparison, returning True or False

— search

FUNCTION Locate(Sub : VString; Within : VString) RETURN Natural;
FUNCTION Locate(Sub : String; Within : VString) RETURN Natural;
FUNCTION Locate(C : Character; Within : VString) RETURN Natural;
— Pre: Sxib, Within, and C are defined
— Post: returns the index of the first character of Sub in Within;

returns 0 if Sub is not present in Within

FUNCTION Tail(S : VString) RETURN VString;
— Pre: S is defined
— Post: returns a string like S but with the first character removed
— Raises: EmptyString if S is empty

FUNCTION Slice(S : VString; Start, Finish : Positive) RETURN VString;
— Pre: parameters are defined
— Post: returns a VString whose value is

the substring slice starting at position Start in S.
This behaves consistently with Ada's predefined slice.

— Raises: InvalidParameters if Start or Finish > Length(S) .

PRIVATE

TYPE VString(MaxLength: Positive) IS RECORD
CurrentLength : Natural := 0;
StringPart : String(1 . . MaxLength) := (OTHERS => ASCII.NUL);

END RECORD;

END VStrings;

The type VString provided by this package is a PRIVATE type; it is also an inter
esting kind of variant record type. As before, we know that Ada already gives us assign
ment and equality operators for such types; any additional operators need to be provided
by us in the package. Here is the type definition for VString:

TYPE VString (MaxLength: Positive) IS RECORD
CurrentLength : Index := 0;
StringPart : String(1. .MaxLength) := (OTHERS => ASCII.NUL);

END RECORD;
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A diagram of a string SI containing John Brown's body is given in Figure 6.3.
In the type definition, we are making use of the ability provided by Ada to initialize

fields of a record to a known value. This means that every time a VString variable is
declared, we can be sure that its current length is set to zero and all its other characters are
set to something predictable. It is conventional to use the ASCII character ASCII. Nul
for this predictable value; this character is used for almost nothing else in programming.
(We do not use the "blank" character—which is a different character-set value—for this,

so that we can embed blanks in our variable-length strings with no ambiguity.) We make
the VString type PRIVATE so that a client program cannot tinker with the string part of
a variable (by, say, adding a character to the end) without adjusting the length field.

A VString variable with maximum length 80 is declared as

S: VString(MaxLength => 80);

or just as

S: VString(80);

if we are using positional parameter association. The compiler allocates enough space
to hold the full 80-character string.

What operations should apply to VStr ings? First of all, we need a constructor to cre-
atea VS tringfromanormal Adastring. We call this operationMakeVS t ring, and in fact
we use overloading to define two MakeVString operations so that VStrings can be
madefromsinglecharacters as well as fromstiings. Note that we mustsupply aMaxLeng th
parameter to MakeVString in both cases. Given a declaration and a statement

S  : VStrings.VString(80);
T ; VStrings.VString{80);

S  := VStrings.MakeVString("Do you like Ada?", 80);

the variable S, after the assignment, will have a Current Length value of 16 (the
length of the string literal) and a StringPart value of the letters in Do you like
Ada? followed by 64 (80 - 16) ASCII .Nul characters.

Note that in an assignment, the following Ada rule still holds: The length of the right
side and the length of the left side must match. The advantage of our representation is
that even though the physical lengths must match, the actual (meaningful) lengths need
not This gives us the variable-length flexibility we have been seeking, and is consistent
with the conventions of other languages as well.

Next, we need selectors so that a client program can get the string length and string
value back from a VString object. We call these selectors Length and Value,
respectively.

MaxLength

CurrentLength

StringPart

20

17

J o h n B r o w n ■ s B o d y 0 0 0

Figure 6.3 A Variable-Length String
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Another useful operation on VStrings is concatenation, represented by the infix
operator Ada already provides string concatenation; we will use the built-in opera
tions to build our own operation that works with VStrings instead of predefined
strings.

The concatenation of two VStrings, SI and S2, returns a VString contain
ing the useful characters of SI (not the nulls!) followed by those of S2. The current
length of the result is, obviously, the sum of the two current lengths. We choose to
make the maximum length of the result equal to the larger of the two maximum
lengths, not the sum of the two. This enables us to declare a number of variables of the
same maximum length and use them for concatenations, without any worries about
mismatched lengths.

The function call

VStrings (

VStrings.MakeVStringl"ABC",10),VStrings.MakeVString("DBF ",20))

or the simpler form (if USE VStrings appears at the top of the client program)

MakeVString{"ABC ",10) & MakeVString("DBF ",20)

returns a VString with maximum length 20, actual length 6, and value "abCDEF".
Assuming that USE is present, the statement

T := S & MakeVString(" I do.");

stores in the string part of T the characters

Do you like Ada? I do.

and a Current Length value of 22 (16 + 6). T still has maximum length 80.
For convenience, we define, in fact, five overloaded operators for concatenation, all

called so that a client program can, without extra calls to MakeVString, con
catenate normal Ada strings and characters with VString values.

FUNCTION (SI, S2 : VString) RBTURN VString;

FUNCTION (SI : VString; C : Character) RBTURN VString;
FUNCTION (C : Character; SI : VString) RBTURN VString;

FUNCTION (SI : VString; S : String) RBTURN VString;
FUNCTION (S : String; SI : VString) RBTURN VString;

Recall that the pairs of operations are necessary to ensure that either parameter can
appear on the left or the right. The statement

T := "I have a question. " & S;

returns the VString with string part

I have a question. Do you like Ada?

and current length 35. As is always the case with overloading, the compiler can discern
which operation you mean by looking at its parameters and return type: Here we have a
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String on the left and a VString on the right, so the last of the five operations is
selected.

The list of operations includes some comparison operations, >vhich need no
explanation except that the comparison assumes "dictionary" or "lexical" order, so
that "BCD" < "BCDE" (obvious) but also "BCD" < "CD" (perhaps less obvious).
As it happens, operations similar to these are also predefined for normal Ada strings.

As we know, equality checking is provided by Ada for all types, including PRIVATE
ones. Does equality work correctly for VStrings?The answer is yes: Built-in equality
always compares the entire data objects. By this principle, Ada states that two VS brings
are equal if and only if the length fields are equal and the string parts are equal. All
MaxLength positions of the strings are compared! You can appreciate the advantage of
preinitializing all characters in a VString to something predictable, namely
ASCII.Nul.

Keep in mind that if the maximum lengths of the two strings are not equal,
Constraint_Error is raised, as will always be the case if equality is applied to two
discriminated records with unequal discriminants.

A number of additional operators are in the specification: Head (S), which returns
the first character of its VString argument, and Tail(S), which returns a
VString equivalent to S with its first character removed. Other useful operations are
three Locate functions, which search a target VString for the presence of another
given character, string, or VString, returning the position in the target where the sub
string begins, or 0 if the substring cannot be found in the target. Finally, we have
Slice (S, Start, Finish), which returns the VString containing the required
slice of S and a maximum length equal to that of S. For example.

Locate("BC".MakeVString("ABCDEF"))

returns 2,

Locate(G',MakeVString("AH"))

returns 0 because ' G' is not in " AB ", and

Locate("Ada", T)

returns 32. The statement

S  := Slice (T, 10, 17)

stores in S a VString with maximum length 80, actual length 8, and string part
question.

The Body of VStrings

In Program 6.10, we present the body of this package. The various operations make
quite heavy use of string slicing; you should study them carefully. Notice also how the
exceptions EmptyString, StringOverflow, and InvalidArguments are
used to signal a client program that violates an assumption of the package—for exam-
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pie, one that tries to concatenate two 42-character VStrings whose maximum lengths
are 80.

Program 6.10 Body of Variable-Length String Package

PACKAGE BODY VStrings IS

— I Body of ADT to handle strings of variable length.
— I Mcocimiiin length must be at least 1.
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

— local function

FUNCTION Maximum(L, R: Positive) RETURN Positive IS

BEGIN

IF L > R THEN

RETURN L;

ELSE

RETURN R;

.  END IF;

END Maximum;

FUNCTION Length(S : VString) RETURN Natural IS

BEGIN

RETURN S.CurrentLength;

END Length;

FUNCTION MaxLength(S : VString) RETURN Positive IS
BEGIN

RETURN S.McixLength;
END McUcLength;

FUNCTION Value(S : VString) RETURN String IS
BEGIN

IF S.CurrentLength = 0 THEN

RETURN

ELSE

RETURN S.StringPart(1..S.CurrentLength);
END IF;

END Value;

FUNCTION TaiKS : VString) RETURN VString IS
Result: VString(S.MaxLength);
CurrLength: Natural;

BEGIN

CurrLength := S.CurrentLength;
IF CurrLength = 0 THEN

RAISE EmptyString;
ELSIF CurrLength = 1 THEN

RETURN Result; — other fields default

ELSE

Result.CurrentLength := CurrLength - 1;
Result.StringPart(1..CurrLength-1)
:= S.StringPart(2..CurrLength);
RETURN Result;

END IF;

END Tail;
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FUNCTION Head(S : VString) RETURN Character IS

BEGIN

IPS.CurrentLength = 0 THEN
ElAISE EmptyString;

ELSE

RETURN S.StringPart(1);
END IP;

END Head;

FUNCTION IsEmpty(S : VString) RETURN Boolean IS
BEGIN

RETURN S.CurrentLength = 0;

END IsEmpty;

FUNCTION MakeVString(S : String; MaxLength : Positive) RETURN VString IS
Result: VString(MaxLength);

BEGIN

IF S'Length > MaxLength THEN
RAISE StringOverflow;

ELSE

Result.CurrentLength := S'Length;
Result.StringPartd. .S'Length) := S;

END IF;

RETURN Result;

END MaJceVString;

FUNCTION EnptyVString(MaxLength : Positive) RETURN VString IS
Result: VString(MaxLength);

BEGIN

RETURN Result; — CurrentLength, StringPart both defaulted
END EmptyVString;

FUNCTION MalceVString(C: Character; MaxLength: Positive) RETURN VString IS
Result: VString(MaxLength);

BEGIN

Result.CurrentLength := 1;

Result.StringPart(1) := C;

RETURN Result;

END MalceVString;

FUNCTION (SI, S2 : VString) RETURN VString IS
Max: Positive := Maximum(SI.MaxLength, S2.MaxLength);
CurrLength: Natural;
Result: VString(Max);

BEGIN

CurrLength := SI.CurrentLength + S2.CurrentLength;
IF CurrLength > Max THEN
RAISE StringOverflow;

ELSE

Result.CurrentLength := CurrLength;
Result.StringPartd. .CurrLength) := Value(Sl) & Value(S2);

END IF;

RETURN Result;

END •&";

FUNCTION (SI : VString; C : Character) RETURN VString IS
Result: VString(SI.MaxLength);
CurrLength: Natural;

BEGIN

CurrLength := SI.CurrentLength;
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IF CurrLength + 1 > Sl.MaxLength THEN

RAISE StringOverflow;
ELSE

Result.CurrentLength := CurrLength + 1;
Result.StringPartd. .CurrLength + 1) := Value{Sl) & C;
RETURN Result;

END IF;

END

FUNCTION "&• (C : Character; SI : VString) RETURN VString IS
Result: VString(SI.MaxLength);
CurrLength: Natural;

BEGIN

CurrLength := SI.CurrentLength;

IF CurrLength + 1 > Sl.MaxLength THEN
RAISE StringOverflow;

ELSE

Result.CurrentLength := CurrLength + 1;
Result.StringPart(1..CurrLength +1) := C & Value(SI);
RETURN Result;

END IF;

END

FUNCTION (SI : VString; S : String) RETURN VString IS
Meix: Positive := Sl.MaxLength;
CurrLength: Natural;

Result: VString(Max);
BEGIN

CurrLength := SI.CurrentLength + S'Length;
IF CurrLength > Max THEN

RAISE StringOverflow;
ELSE

Result.CurrentLength := CurrLength;
Result.StringPartd. .CurrLength) := Value(Sl) & S;

END IF;

RETURN Result;

END

FUNCTION (S : String; SI : VString) RETURN VString IS
Max: Positive := Sl.MaxLength;
CurrLength: Natural;

Result: VString(Max);
BEGIN

CurrLength := SI.CurrentLength + S'Length;
IF CurrLength > Max THEN

RAISE StringOverflow;
ELSE

Result.CurrentLength := CurrLength;
Result.StringPart(l..CurrLength) := S & Value(Sl);

END IF;

RETURN Result;

END

FUNCTION "<=" (SI, S2 : VString) RETURN Boolean IS
BEGIN

RETURN Value(SI) <= Value(S2);

END "<=•

FUNCTION "<" (SI, S2 : VString) RETURN Boolean IS
BEGIN

RETURN Value(SI) < Value(S2);
END "<";
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FUNCTION ">=" (SI, 32 : VString) RETURN Boolean IS
BEGIN

RETURN Value(SI) >= Value(S2);

END

FUNCTION •>" (SI, S2 : VString) RETURN Boolean IS
BEGIN

RETURN Value(SI) > Value(S2);

END

FUNCTION Locate(Sub : String; Within : VString) RETURN Natural IS

Result : Natural;

LSub : Natural;

LWithin : Natural;

BEGIN

LSxib := Sub'Length;

LWithin i- Within.CurrentLength;
Result := 0;

IF LSub > 0

AND LWithin > 0

AND LSub <= LWithin THEN

FOR Start IN l..(LWithin - LSub + 1) LOOP

IF Sub = Within.StringPart(Start..(Start + LSub - 1)) THEN
Result := Start;

EXIT;

END IF

END LOOP

END IF;

RETURN Result;

END Locate;

FUNCTION Locate(Sub : VString; Within : VString) RETURN Natural IS
BEGIN

RETURN Locate(Value(Sub), Within);

END Locate;

FUNCTION Locate(C : Character; Within : VString) RETURN Natural IS

Temp : String(1..1);

BEGIN

Teirp(l) := C;

RETURN Locate(Temp, Within);

END Locate;

FUNCTION Slice(S : VString; Start, Finish : Positive) RETURN VString IS
Result: VString(S.MaxLength);

BEGIN

IF Start > Length(S) OR

Finish > Length(S) THEN
RAISE InvalidArgviments;

ELSIF Start > Finish THEN

RETURN Result; — empty; consistent with Ada slice

ELSE

Result.CurrentLength := Finish - Start + 1;
Result.StringPart(1..Result.CurrentLength)
:= S.StringPart(Start. .Finish);
RETURN Result;
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END IF;

END Slice;

END VStrings;

It is useful to have the ADT VStrings available; we shall use it several times
in this and the remaining chapters. Programs 6.11 and 6.12 give, respectively, the
specification and body of VString. 10, which is used for reading and writing
VString values.

Program 6.11 Specification for Variable-Length String 10 Package

WITH Ada.Text_I0;
PACKAGE VStrings.10 IS

input/output for variable-length strings
input is done using Ada.Text_IO.Get_Line, so the rules for
this procedure are followed.

Author; Michael B. Feldman, The George Washington University
Last Modified: September 1995

PROCEDURE Get_Line(Item : OUT VString; MaxLength: IN Positive);
— Pre: MaxLength is defined
— Post: Item contains the contents of the next line entered

from the keyboard.

PROCEDURE Get_Line(File: Ada.Text_IO.File_Type;
Item: OUT VString; MaxLength: IN Positive);

— Pre: File and MaxLength are defined
— Post: Item contains the contents of the next line of the file.

PROCEDURE Put(File: Ada.Text_IO.File_Type; Item : VString);
— Pre: File and Item are defined

— Post: Item is written to the file

PROCEDURE Put(Item : VString);
— Pre: Item is defined

— Post: Item is displayed on the screen.

END VStrings.10;

Program 6.12 Body of Variable-Length String lO Package

WITH Ada.Text_IO;
PACKAGE BODY VStrings.10 IS

--] Body of I/O package for variable-length strings
--I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

PROCEDURE Get_Line(File : Ada.Text_IO.File_Type;
Item : OUT VString; MaxLength: IN Positive) IS

— reads a VString object from File, using Ada.Text_IO.Get_Line
— reading stops if a line terminator is encountered, or if
— MEkxLength characters have been read.
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S  : String(1..MaxLength);
Count : Natural;

BEGIN

Ada.Text_IO.Get_Line(File => File, Item => S, Last => Count);
IF Count > 0 THEN

Item := MakeVstring(S{1..Count), MaxLength => MsocLength);
ELSE

Item ;= EmptyVstring(McUcLength => MaxLength);
END IF;

END Get_Line;

PROCEDURE Get_Line(Item : OUT VString; MaxLength: IN Positive) IS
BEGIN

Get_Line(File => Ada.Text_IO.Standard_Input,
Item => Item, MaxLength => MaxLength);

END Get_Line;

PROCEDURE Put(File: Ada.Text_IO.File_Type; Item : VString) IS
BEGIN

Ada.Text_IO.Put(File=>File, Item=>Value(Item));

END Put;

PROCEDURE Put(Item : VString) IS

BEGIN

Put(File=>Ada.Text_IO.Standard_Output, Item=>Item) ;
END Put;

END VStrings.IO;

Program 6.13 shows a test of some of the operations in the package, specifically the
file-oriented operations. As an exercise, you can extend this program to test the other
operations.

Program 6.13 Using the vstring Package

WITH Ada.Text_IO;
WITH VStrings;

WITH VStrings.IO;
PROCEDURE Test_VStrings IS

program copies its input file test.dat into its output file
test.out, then closes test.out, re-opens it for input,
and displays its contents on the screen.
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1995

MaxLineLength: CONSTANT Positive := 255;

InData : Ada.Text_IO.File_Type;
OutData : Ada.Text_IO.File_Type;
S  : VStrings.VString(MaxLength => MaxLineLength);
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BEGIN — Test_VStrings

Ada.Text_IO.Open

(File=>InData, Mode=>Ada.Text_IO.In_File, Naine=>*test.dat ");
Ada.Text_IO.Create

(File=>OutData, Mode=>Ada.Text_IO.Out_File, Narae=>"test.out ");

WHILE NOT Ada.Text_IO.End_of_File(File => InData) LOOP

VStrings.IO.Get_Line(File => InData,

Item => S, MaxLength => MaxLineLength);
VStrings.IO.Put(File => OutData, Item => S);
Ada.Text_IO.New_Line(File => OutData);

END LOOP;

Ada.Text_IO.Close(File => InData);

Ada.Text_IO.Close(File => OutData);
Ada.Text_IO.Open

(File=>InData, Mode=>Ada.Text_IO.In_FileName=>"test.out") ;

WHILE NOT Ada.Text_IO.End_of_File(File => InData) LOOP

VStrings.10.Get_Line(File => InData,
Item => S, MaxLength => MaxLineLength);

VStrings.10.Put(Item => S);
Ada.Text_IO.New_Line;

END LOOP;

Ada.Text_IO.Close(File => InData);

EXCEPTION

WHEN Ada.Text_IO.Name_Error =>

Ada.Text_IO.Put

(Item => "File test.dat doesn't exist in this directory!");
Ada.Text_IO.New_Line;

END Test_V Strings;

Why No Default Discriminant Value?

One final question arises from this discussion of VStrings: Why did we not assign a
default value to MaxLength, so that variables could be left unconstrained and there
fore "float" in size? Doing so would cause some difficulties because of the way many
Ada compilers allocate space for an unconstrained variable. Some compilers allocate
very little space for such a variable, and therefore must reallocate it dynamically, every
time a variable's size changes. Other compilers avoid the time cost of firequent reallo-
cation by simply allocating the maximum space necessary. For example, if we declared
VString as

TYPE VString (MaxLength: Positive := 16) IS RECORD
CurrentLength : Index := 0;

StringPart : Stringd. .MaxLength) := (OTHERS => ASCII.NUL);
END RECORD;
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certain compilers would allocate only the 16 characters of the default, reallocating if
necessary. However, other compilers, to save the reallocation costs, would try to allo
cate the largest possible record, so as never to have to reallocate it. How large is this
record? Suppose Positive is represented in 16 bits. Such compilers would allocate
32767 characters (Positive' Last) for each string, even if their actual lengths were
only a few characters. You can compute for yourself how much space would be needed
if Positive were represented in 32 bits!

An alternative is to use some subtype, say 0. .255, as the range of MaxLength,
instead of Positive. The disadvantage here is that the compiler might still allocate
255 characters per string. Also, it would be impossible for us ever to declare a string
variable with maximum length greater than 255.

This is a good example of a trade-off situation. There is no perfect solution here,
so we choose the one that seems best. Requiring VString variables to be constrained
is inconvenient because these variables can never float in physical size, but in return
we get the ability to declare a variable of any reasonable size at all, without concern
about exceeding a predetermined maximum. Furthermore, we have a portability
advantage in that we know, for all Ada compilers, the sizes of our string variables.
There are no surprises here.

6.5 ADA STRUCTURES: STRINGS IN ADA 95

As you know, Ada 83 provides only limited support for strings, as discussed in
Section 1.12. This has made it necessary to develop additional packages such as
the one just introduced in Section 6.4. Ada 95, on the other hand, provides sev
eral standard packages for variable-length strings; these offer a rich collection of
operations and make nonstandard packages such as our vstrings entirely
unnecessary. We include and use VSbrings in this book because the implemen
tation of variable-length strings is an appropriate, and important, subject in a book
of this kind.

Covering the Ada 95 string packages here in much detail would go beyond our
available space. Instead, we give a summary of the capabilities, referring the reader to
Appendix G, in which the specifications and explanations for the character and string
facilities are reproduced verbatim from the Ada 95 LRM.

Type Character

In Ada 83, the type Character is defined in terms of the 128-character ASCII
code. In Ada 95, Character is given a more international flavor; this type is
defined in terms of the Latin-1 character set, which has 256 values and allows for the

additional letters used in non-English languages, such as the French k, the German ii,
and the JE used in Scandinavian languages. Since the first 128 characters are the
same as those in the familiar ASCII set, the change causes few problems for most
work in English.
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Package Ada. Characters. Handling

This package provides a number of useful functions for classifiying and converting
characters—for example,

• Is_Digit, Is_Letter, Is_Upper, and Is_Lower, Boolean functions that
return True if their Character parameter falls into the given category

• To_Upper and To_Lower, which convert the letters in their character or string
parameters to uppercase or lowercase.

Packages Ada • strings and Ada • Strings.Maps

Ada.Strings is brief enough to be reproduced as Figure 6.4. It provides some
miscellaneous exceptions and enumeration types for string alignment and string
searching.

Ada. Maps provides an interesting set of types and functions used for creating sets
of characters and mapping between them. For example, if M is of type
CharacterJMapping and C is of type Character,

M := To_Mapping("ABCD", "PQRS");

returns in M a mapping that maps 'A' into 'P', 'D' into ' S', and so on, and

C  := Value(M, 'D');

retums 'S' to the variable C.

Packages Ada. strings. Fixed, Ada. Strings.
Bounded, and Ada.Strings.Unbounded

Ada. Strings. Fixed provides a large number of search, delete, replace, trim, and
other operations on normal Ada fixed-length strings.

PACKAGE Ada.Strings IS
Space : consteuit Character := ■

Wide_Space : constant Wide_Character ;= ' ';
Length_Error, Pattem_Error, Index^Error,
Translation_Error : EXCEPTION;

TYPE Alignment IS (Left, Right, Center);
TYPE Truncation IS (Left, Right, Error);
TYPE Membership IS (Inside, Outside);
TYPE Direction IS (Forward, Baclcward) ;

TYPE Trirr\_End IS (Left, Right, Both) ;

END Ada.Strings;

Figure 6.4 Package Ada. strings
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Ada.Strings.Bounded is a generic package that provides a similar set of
operations on bounded strings, which are strings with a given maximum length, similar
to our VString type in Section 6.4. The package is generic, with a single parameter
Max to give the maximum length of all strings created by a given instance of the pack
age. For example, consider an instance

MaxName: CONSTANT Positive := 30;

PACKAGE Names IS

NEW Ada, Strings. Bounded. Generic_Bounded_Length (Max => MaxName) ;

A string object, say

Name: Names.Bounded_String;

can be at most 30 characters long. The package keeps track of the actual length, and is
quite similar in behavior to VStrings.

Finally, Ada. Strings. Unbounded provides similar operations for unbounded
strings—that is, strings for which no maximum length is given. The actual length of a
string object such as

VeryLongString: Ada.Strings.Unbounded.Unbounded_String;

can range from 0 to Posi t ive' Last. This package is a more elaborate version of the
one we will present in Section 7.7, but of course it is standard and is provided with all
Ada 95 compilers.

6.6 ADA STRUCTURES: TAGGED TYPES

The variant records we have studied in this chapter provide much expressive power to
create complex types with several different parts. However, they have an important
limitation: A variant record must be fully defined and compiled, and CASE statements
are used to control processing its various parts.

Now suppose a new variant must be added. For example, suppose a new category
of employee is added to a company. The variant type declaration must be modified to
account for the new variant, and all operations on objects of the type must be similarly
changed. Further, because the type declaration appeared in a package specification,
every client of that package must at least be recompiled, and perhaps even modified.
It would be nice if we could somehow extend a type, adding new fields and opera
tions, but without modifying or recompiling existing packages or programs.

Ada 95 and Object-Oriented Programming

Ada 95 provides a facility to extend types, as part of the new Ada 95 capabilities in
object-oriented programming (OOP). Recall from Chapter 1 that OOP relies on a num
ber of language features:

• Encapsulation, provided very well by Ada 83's packages.

• Genericity, provided by Ada 83's generics capability, as we saw in Chapter 5.
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Inheritance, through which a new type inherits the properties of an existing one.
This is provided in part by Ada 83's derived types and is extended considerably in
tagged types, the subject of this section.

• Polymorphism, partially supported by Ada 83's procedure and function overloading
and extended significantly in Ada 95. We will see examples of what is known as
dynamic polymorphism in Chapter 9.

Tagged Types

In Ada 95, a record type can be declared as TAGGED to indicate that it may later be
extended by adding additional fields. Each object of a tagged type is given a tag by the
compiler; you can think of a tag as analogous to a hidden discriminant. Whereas the
progranuner writes explicit code to manipulate a discriminant, a tag is manipulated
automatically in the executing program.

As an example of a tagged type, consider representing a person by three gen
eral characteristics: a name, a gender, and a date of birth. We can declare this as
follows:

TYPE Person IS TAGGED RECORD

Name: NameType ;

Gender: Genders;

BirthDate: Date;
END RECORD;

where Genders has been declared as

TYPE Genders IS (Female, Male);

and the name and birth date fields are, respectively, some string type and a date from
our package Dates.

Suppose that Person is declared in a package Persons, together with a
number of operations, and some programs are written to use this package. At a
later date, we discover a need to represent personnel, or persons working in a
company. An employee is a person with a company identifier and a second date
indicating when he or she joined the company. Note the "is a" relationship: An
employee is a person with additional characteristics. Without tagged types, we
would either develop an entire new personnel type or go back and modify our
original person type. Using tagged types, we can derive a new type based on the
existing one:

TYPE Employee IS NEW Person WITH RECORD
ID: IDRange;

StartDate: Date;

END RECORD;

This declares a new type and reflects the "is a" relationship directly. Each employee
now has five fields: the two new ones and the three it inherited from the person type.
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Furthermore, the new type can be declared in a new package, with a new set of opera
tions, without disturbing the existing package or any programs that use it. This tech
nique is called programming by extension.

We can carry this further, of course. The payroll department in our company wishes
to extend our employee type for payroll purposes, and thus needs three special cate
gories of employees, as we saw in Section 6.1. The new types can be derived from the
employee type:

TYPE Professional IS NEIV Employee WITH RECORD

MonthSalary : Quantity;
END RECORD;

TYPE Sales IS NEW Employee WITH RECORD
WeekSalary : Quantity;
CommRate : CommissionPercentage;

END RECORD;

TYPE Clerical IS NEW Employee WITH RECORD
HourlyWage : Quantity;

END RECORD;

where the Quantity values are taken from package Currency. In a further
refinement of the "is a" relationship, a professional is an employee, which in turn is
a person. As before, the new types can be declared and used in one or more new
packages, without causing any modiHcation of the older packages or any of their
clients.

It is instructive to note that in Ada 83 new types can be derived from ordinary Ada
83 types. The new type has the same structure (set of values) as the original, and the
operations of the original type are generally inherited by the new one. Ada 95 adds to
this the ability to extend the type.

Converting Among Derived Tagged Types

The five types declared above form a type hierarchy:

Person

En^loyee
Professional

Sales

Clerical

Ada 95 allows us to convert explicitly from a lower type to a higher one. If P is a
Person, E is an Employee, and R is a Professional, we can write an aggre
gate

R := (Name => "Nancy",

Gender => Female,

BirthDate => MakeDate(1950, 10, 21),

ID => 2345,

StartDate => MakeDate(1990, 7, 1),
MonthSalary => 5000.00);
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and can "up-convert" to P:

P  := Person(R);

which is a familiar conversion construct In the case of tagged types, the conversion
"strips off' the extra fields.

How do we "down-convert?" Since a conversion to a lower type generally adds
fields, Ada 95 gives a special aggregate structure for this. If we had

P  := (Name => "Nancy",
Gender => Female,

BirthDate => MakeDate(1950, 10, 21);

we could make E by writing

E  := (P WITH ID => 2345, StartDate => MakeDate(1990, 7, 1));

The text following WITH is called an extension aggregate. Generally, of course,
client programs will not use the aggregate form because types like these will, in gen
eral, be PRIVATE. This brings us to the subject of operations on tagged types.

Primitive and Nonprimitive Operations on Tagged Types

The operations on tagged types are rather special. A fundamental Ada 95 idea is the
primitive operation. Put simply, a primitive operation of a type is either a predefined
operator on the type—^such as the operators on Integer, for example—or an opera
tion (function, subprogram, or operator) that is declared in the same package specifica
tion as the type and has a parameter of that type. Nearly all the operations in the
packages so far in this book have been, in Ada 95 terminology, primitive. The term
becomes important in the context of tagged types. Each primitive operation of a tagged
type T is inherited by all types derived from T; sometimes we desire the inheritance, but
sometimes we do not.

We shall explain this in the context of three package specifications. Persons,
Personnel, and Payroll, which are shown as Programs 6.14, 6.15, and 6.16,
respectively.

Program 6.14 Specification for Persons

WITH Dates;

WITH VStrings;
PACKAGE Persons IS

Specification for Persons. This package provides a root type
Person, with the fields Name, Gender, and BirthDate. Person
is a tagged private type, which means that it has all the
characteristics of an ordinary private type but also that it
Cekn be extended by derivation.
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1995
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TYPE Genders IS (Female, Male);

MaxName: CONSTANT Positive := 30;

SUBTYPE NameType IS VStrings.VString(MaxName);

TYPE Person IS TAGGED PRIVATE;

— selectors

FUNCTION NameOf (Whom: Person) RETURN NameType;

FUNCTION GenderOf(Whom: Person) RETURN Genders;

FUNCTION DOBOf (Whom: Person) RETURN Dates.Date;

— Pre: Whom is defined

— Post: returns the appropriate field value

PROCEDURE Put(Item: IN Person);

— Pre: Item is defined

— Post: Item's fields are displayed

PACKAGE Constructors IS

— this inner paclcage is necessary so that Ma)cePerson is not a
— "primitive" function, that is, so that it is not inherited
— by types derived from Person.

FUNCTION Ma]cePerson(Name : String;
Gender : Genders;

BirthDate: Dates.Date) RETURN Person;

— Pre: Name, Gender, and BirthDate are defined
— Post: returns a Person with the given field values

END Constructors;

PRIVATE

TYPE Person IS TAGGED RECORD

Name : NameType := VStrings.EmptyVString(MaxName);
Gender : Genders := Female;

BirthDate : Dates.Date;

END RECORD;

END Persons;

In Program 6.14, we declare the type Person, almost exactly as above, except that
here Person is a PRIVATE type with initialized fields, as in most of our packages. Note
that in the visible part of the specification (above the PRIVATE line), the declaration

TYPE Person IS TAGGED PRIVATE;

which is consistent with our understanding of PRIVATE declarations, with the addi
tion of TAGGED. The package specification further gives four operations in the selec
tor category; this style is familiar to you from packages discussed earlier. However, the
constructor operation is declared not here, but rather in an inner package.
Constructors. Why the unfamiliar structure?

Our intention in writing Persons is to allow new types to be derived and extended
from Person. Consider the type Employee, introduced earlier. An employee is a per-
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son with additional fields; the type Employee inherits all the primitive operations of
Person; that is, for each primitive Person operation, there is a similar one for
Employee, with a similar parameter profile. Thus, the Employee type also has oper
ations NameOf, GenderOf, and DOBOf.

Inheritance is fine for the selectors. For example, a client will certainly wish to find
out an employee's name, and an inherited operation just like the Person selector is a
perfectly good operation to return the name. The constructor is a different story, how
ever, because we need to pass all the field values into it. A person has three fields; an
employee has five. If we wrote a person constructor as a primitive operation—for
instance, MakePerson—it would be inherited by the employee type, so a client could
call MakePerspn with a parameter of type Employee. But this would be wrong!
The object woiild be constructed with only three of its fields filled in!

Writing a separate constructor for Employee is a useful thing to do, and we shall
do it shortly. However, it does not solve our problem, because MakePerson would
still be available for the client to call.

Because it would be very unsafe and therefore unwise to allow MakePerson
to be inherited by derived types, we need to take preventive action. There are
several ways to do this; here, we handle the problem by realizing that—by
Ada's rules of primitive operations—^an operation declared in an inner package,
such as Persons .Constructors in Program 6.14, is not primitive and is
therefore not inherited. Putting the constructor in an inner package puts a small
burden on the client programmer, who can write Persons.NameOf but must
write Persons. Cons true tors. MakePerson. This is a small price to pay for
the added safety.

Deriving New Tagged Types

Program 6.15 gives the specification for Personnel.

Program 6.15 Specification for Personnel

WITH Persons; USE Persons;

WITH Dates; USE Dates;

PACKAGE Personnel IS

Specification for Personnel, which provides a type Employee,
a derivative of Persons.Person. Note that the operations on
objects of type Persons.Person are inherited by objects of
type Employee, so we need selectors only for the new
fields! As in the case of Persons, we place the constructor
in an inner package.
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1995

TYPE Employee IS NEW Person WITH PRIVATE;
— Here is where Employee is derived; the extension fields are
— also PRIVATE, so clients cannot access them directly.
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TYPE IDType IS NEW Positive RANGE 1111. ,9999;

-- selectors

FUNCTION StartOf (Whom: Employee) RETURN Date;

FUNCTION IDOf (Whom: Employee) RETURN IDType;

— Pre: Whom is defined

— Post: return the appropriate field values

PROCEDURE Put(Item: Employee);

— Pre: Item is defined

— Post: Item is displayed

PACKAGE Constructors IS

-- as in Persons, we use an inner package to prevent the

-- constructor from being inherited by further derivatives
— of Employee

FUNCTION MakeEmployee(Name : String;
Gender : Genders;

BirthDate: Date;

StartDate: Date;

ID : IDType) RETURN Employee;
— Pre: Name, Gender, BirthDate, StateDate, and ID are defined

— Post: Whom contains the desired field values

END Constructors;

PRIVATE

TYPE Employee IS NEW Person WITH RECORD
ID : IDType := 1111;
StartDate : Date;

END RECORD;

END Personnel;

Its Structure is similar to that of Persons, but note how the type Employee is
declared:

TYPE Employee IS NEW Person WITH PRIVATE;

The syntax with PRIVATE indicates a private extension; it allows Employee to be
a PRIVATE type just as Person is. Personnel also provides selectors StartOf
and IDOf, and a constructor MakeEihployee in an inner package.

The type Employee inherits the primitive operations of Person: NameOf,
GenderOf, and DOBOf. This is fine; employees also have these fields. What about
Put? Persons. Put displays the fields of a person. If Put were inherited by
Employee, it would, of course, display only the fields that Employee and
Person have in common, which is not what we desire. We therefore supply
another Put for the employee type. Because it has a similar parameter profile, the
only difference being the substitution of Employee for Person, this new
employee operation is said to override the corresponding person operation. The
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body of Personnel. Put, as we will show shortly, displays all five fields of an
employee.

Why were we able to override Person. Put so simply, without using an inner
package? The key is that the two Put parameter profiles are so similar. The construc
tors' parameter profiles are very different from one another, so writing a MakePerson
in Personnel, with a profile appropriate for Employee, simply would not have
solved that problem.

Program 6.16 gives the specification for Payroll, which gives the three pay cat
egories we sketched earlier.

Program 6.16 Specification for Payroll

WITH Ada.Text_I0;

WITH Ada.Integer_Text_IO;

WITH Ada.Float_Text_IO;
WITH Currency; USE Currency;

wiTH Dates; USE Dates;
WITH Persons; USE Persons;

WITH Personnel; USE Personnel;

PACKAGE Payroll IS

Specification for Payroll, a set of payroll categories
derived from Personnel. Each type has a primitive operation
Put, which overrides the one inherited from Employee.
Author: Michael B. Feldmeui, The George Washington University
Last Modified: September 1995

SUBTYPE CommissionPercentage IS Float RANGE 0.00. .0.50;

TYPE Professional IS NEW Employee WITH PRIVATE;
TYPE Sales IS NEW Employee WITH PRIVATE;
TYPE Clerical IS NEW Employee WITH PRIVATE;

PROCEDURE Put(Item: Professional);

PROCEDURE Put(Item: Sales);

PROCEDURE Put(Item: Clerical);

PACKAGE Constructors IS

— constructors for the three new types
FUNCTION MalceProfessional (Name : String;

Gender : Genders;

BirthDate : Date;
StartDate : Date;
ID : IDType;

MonthSalary: Quantity)
RETURN Professional;

FUNCTION MakeSales (Name

Gender

BirthDate

StartDate

ID

WeekSalary
CommRate

String;
Genders;

Date;

Date;

IDType;

(Quantity;
Commi s s i onPerc entage)

RETURN Sales;
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FUNCTION MakeClerical (Name

Gender

BirthDate

StartDate

ID

HourlyWage

String;

Genders;

Date;

Date;

IDType;

Quantity)

RETURN Clerical;

— Pre: All input fields are defined
-- Post: Returns an initialized value of the respective type

END Constructors;

PRIVATE

— full extensions for the three types

TYPE Professional IS NEW Employee WITH RECORD
MonthSalary : Quantity;

END RECORD;

TYPE Sales IS NEW Employee WITH RECORD
WeekSalary : Quantity;
CommRate : CommissionPercentage;

END RECORDS-

TYPE Clerical IS NEW Employee WITH RECORD
HourlyWage : Quantity;

END RECORD;

END Payroll;

The three types are closely related—all are used by the payroll department—so it is
sensible to collect them into a single package as we have done here. Note the three
derived PRIVATE type declarations, the three overriding Put operations, and the three
constructors in the inner package. We have not included field selectors; we prefer to
leave that as an exercise.

Before going on to the package bodies, look at Program 6.17, which illustrates the
use of these packages.

Program 6.17 Creating a Company of Employees

WITH Ada.Text_I0; USE Ada.Text_IO;
WITH Currency; USE Currency;

WITH Dates; USE Dates;

WITH Persons; USE Persons;

WITH Personnel; USE Personnel;

WITH Payroll; USE Payroll;
PROCEDURE Use_Payroll IS

— I demonstrates the use of tagged types
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

— demonstrates the use of tagged types

George: Person;

Mary : Employee;
Martha: Professional;
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Virginia: Sales;

Herman: Clerical;

BEGIN — Use_Payroll

— first construct all the people

George := Persons.Constructors.MakePerson{

Name => "George",

Gender => Male,

BirthDate => MakeDate(1971,11,2));

Mary := Personnel.Constructors.MakeEmployee(
Ncime => "Mary",

Gender => Female,

BirthDate => MakeDate(1950,10,21),
ID => 1234,

StartDate => MakeDate(1989,7,1));

Martha := Payroll.Constructors.MakeProfessional(
Name => "Martha",

Gender -> Female,

BirthDate => MakeDate(1947,7,8),
ID => 2222,

StartDate => MakeDate(1985,6,6),
MonthSalary => MakeCurrency(50000.00));

Virginia := Payroll.Constructors.MakeSales(
Name => "Virginia",
Gender => Female,

BirthDate => MakeDate(1955,2,1),
ID => 3456,

StartDate => MakeDate(1990,1,1),
WeekSalary => MakeCurrency(2500.00),
CommRate => 0.25);

Herman := Payroll.Constructors.MakeClerical(

Name => "Herman",

Gender => Male,

BirthDate => MakeDate(1975,5,13),
ID => 1557,

StartDate => MakeDate(1991,7,1),

HourlyWage => MakeCurrency(7.50));

— Now display them all. Note that each Put is a different

— primitive operation.

Put(Item => George);

Ada.Text_IO.Put_Line(Item => "

Put(Item => Mary);

Ada.Text_IO.Put_Line(Item => "
Put(Item => Martha);

Ada.Text_IO.Put_Line(Item => "
Put(Item => Virginia);

Ada.Text_IO.Put_Line(Item => "
Putdtem => Herman);

Ada.Text_IO.Put_Line(Item => "

END Use_Payroll;
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Each of the five variables is of a different type; in each case, the appropriate con
structor is called—^an Ada compiler would reject an attempt to call an inappropriate
one—^and the appropriate Put is used to display the contents.

Bodies of the Tagged Type Packages

The bodies of Persons, Personnel, and Payroll are given as Programs 6.18,
6.19, and 6.20, respectively. They are quite straightforward, but a few things are worth
pointing out.

Program 6.18 Body of Persons

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;

WITH Dates; USE Dates;

WITH VStrings;
WITH VStrings.10;

PACKAGE BODY Persons IS

--| Body of Persons package
— I Author: Michael B. Feldman, The George Washington University
--| Last Modified: September 1995

PACKAGE Gender_IO IS NEW Ada.Text_IO.Enumeration_IO(Enum => Genders);

FUNCTION NameOf(Whom: Person) RETURN NameType IS

BEGIN

RETURN Whom.Name;

END NameOf;

FUNCTION GenderOf(Whom: Person) RETURN Genders IS

BEGIN

RETURN Whom.Gender;

END GenderOf;

FUNCTION DOBOf(Whora: Person) RETURN Date IS

BEGIN

RETURN Whom.BirthDate;

END DOBOf;

PROCEDURE Put(Item: Person) IS

BEGIN

Ada.Text_IO.Put(Item => "Name: ");
VStrings.10.Put(Item => Item.Name);

Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => "Gender: ");
Gender_IO.Put(Item => Item.Gender, Set => Ada.Text_IO.Lower_Case);
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => "Birth Date: ");
Ada. Integer_Text_lO. Put (Item => Month (Item. BirthDate), Width => D.
Ada .Text_IO.Put('/■ );
Ada.Integer_Text_IO.Put

(Item=>DayOfMonth(Item.BirthDate),Width=>l);
Ada.Text_IO.Put('/');
Ada.Integer_Text_lO.Put

(Item=>Year(Item.BirthDate) REM 100,Width=>l);
Ada.Text_IO.New_Line;

END Put;
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PACKAGE BODY Constructors IS

FUNCTION MakePerson(Naine : String;
Gender : Genders;

BirthDate: Date) RETURN Person IS
Result: Person;

BEGIN

RETURN (Name => VStrings .MakeVString(Name, MaixName),
Gender => Gender,
BirthDate => BirthDate);

END MakePerson;

END Constructors;

END Persons;

Program 6.19 Body of Personnel

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
WITH Persons; USE Persons;

WITH Dates; USE Dates;

PACKAGE BODY Personnel IS

— I Body of Personnel package
--I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

PACKAGE BODY Constructors IS

FUNCTION MakeEmployee(Name : String;
Gender : Genders;

BirthDate: Date;
StartDate: Date;
ID : IDType) RETURN Employee IS

BEGIN

— note how the Persons constructor is used, with an
-- aggregate for the Person fields and an

-- extension aggregate to add in the extra fields.
RETURN (Persons.Constructors.MakePerson(
Name => Name,

Gender => Gender,

BirthDate => Birthdate)
WITH StartDate => StartDate, ID => ID);

END MakeEmployee;

END Constructors;

FUNCTION StartOf (Whom: Employee) RETURN Date IS
BEGIN

RETURN Whom.StartDate;
END StartOf;

FUNCTION IDOf (Whom: Employee) RETURN IDType IS
BEGIN

RETURN Whom.ID;

END IDOf;

PROCEDURE Put(Item: Employee) IS
BEGIN

— Note that we can up-convert Employee to Person and
— call Persons.Put for the common fields
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Persons,Put(Item => Persons.Person(Item));

Ada.Text_IO. Put (Item => "ID Nvimber: ");

Ada.Integer_Text_IO.Put(Item => Positive(Item.ID), Width => 1);
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => "Start Date; ");
Ada.Integer_Text_IO.Put(Item => Month(Item.StartDate), Width => 1);
Ada.Text_IO.Put('/');

Ada. Integer_Text_IO.Put (Item =>DayOfMonth(Item. StartDate), Width => 1) ;
Ada.Text_IO.Put('/');
Ada.Integer_Text_IO.Put(Item=>Year(Item.StartDate) REM 100, Width=>l) ;
Ada.Text_IO.New_Line;

EUD Put;

END Personnel;

Program 6.20 Body of Payroll

WITH Ada.Text_IO;

WITH Ada.Integer_Text_IO;

WITH Ada.Float_Text_IO;

WITH Currency; USE Currency;

WITH Currency.10;

WITH Dates; USE Dates;

WITH Personnel; USE Personnel;

PACKAGE BODY Payroll IS

— I Body of Payroll package
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

PACKAGE BODY Constructors IS

— constructors for the three new types

FUNCTION MakeProfessional (Name
Gender

BirthDate

StartDate

ID

MonthSalary

String;

Genders;

Date;"

Date ;

IDType;

Queintity)
RETURN Professional IS

BEGIN

RETURN (Personnel.Constructors.MakeEmployee(

Name => Name,

Gender => Gender,

BirthDate => Birthdate,

StartDate => StartDate,

ID => ID)

WITH MonthSalary => MonthSalary);
END MakeProfessional;

FUNCTION MakeSales (Name : String;
Gender : Genders;

BirthDate : Date;

StartDate : Date;
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ID : IDType;
WeekSalary: Quantity;
CommRate : CommissionPercentage)
RETURN Sales IS

BEGIN

RETURN (Personnel.Constructors.MakeEmployee
(Name => Name,
Gender => Gender,
BirthDate => Birthdate,
StartDate => StartDate,
ID => ID)
WITH WeekSalary => WeekSalary, CommRate => CommRate)

END MakeSales;

FUNCTION MakeClerical (Name : String;
Gender : Genders;
BirthDate : Date;
StartDate : Date;
ID : IDType;
HourlyWage: Quantity)
RETURN Clerical IS

BEGIN

RETURN (Personnel.Constructors.MakeEmployee
(Ncune => Name,
Gender => Gender,
BirthDate => Birthdate,
StartDate => StartDate,
ID => ID)

WITH HourlyWage => HourlyWage);
END MakeClerical;

END Constructors;

PROCEDURE Putdtem: Professional) IS
BEGIN

Putdtem => Employee (Item)) ;
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => "Category: Professional");
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => "Monthly Salary: ");
Currency.10.Put(Item => Item.MonthSalary);
Ada.Text_IO.New_Line;

END Put;

PROCEDURE Putdtem: Sales) IS
BEGIN

Putdtem => Employee (Item)) ;
Ada.Text_IO.New_Line;

•Category: Sales");Ada.Text_IO.Put(Item =>
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item =>
Currency.10.Put(Item =>
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item =>

Ada.Float_Text_IO.Put(Item => Item.CommRate,
Ada.Text_IO.New_Line;

END Put;

"Weekly Salary: ");
Item.WeekSalary);

'Commission Rate: ")

Fore=>l,Aft=>2,Exp=>0)

PROCEDURE Putdtem:

BEGIN

Clerical) IS
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Putdtem => Employee (Item)) ;

Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => "Category: Clerical ");
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => "Hourly Wage: ");

Currency.10.Put{Itern => Itern.HourlyWage);

Ada.Text_IO.New_Line;

END Put;

END Payroll;

Looking at Program 6.19, in the body of the constructor MakeEmployee we "up-
convert" the employee to a person, then use MakePerson to fill in the person fields.
Finally, we use an extension aggregate to fill in the remaining fields. Similarly, in the
Put: procedure, we "up-convert" as before and reuse the Persons. Put to display the
person fields; then we display the additional employee fields.

Variables of Tagged Types

Throughout this development, we have declared each variable to be of a specific
tagged type. This is, in fact, analogous to declaring constrained variant variables, as
in the earlier sections of this chapter. A plausible question is, then, whether there
exists something analogous to unconstrained variant types and variables. The
answer to the question is yes, but for further details we must wait for Chapter 9. A
related question is whether, and how, we can create a "database" or table of tagged
records—that is, an array of them. We will return to this important and interesting
question in Chapter 9.

SUMMARY

In this chapter, we have introduced variant records. A variant record is one that can
have one of several structures, depending on the value of a special field called the dis
criminant. We used variant records to represent employee records, variable-length
strings, and dimensioned metric quantities.

Understanding variant records is not always easy. In defining variant record struc
tures, remember that the only way to allow for changing the variant stored in a variant
record variable is to supply a default value for the discriminant. This action makes the
variable unconstrained.

In using variant record variables, keep in mind that the value of the discriminant
field determines the form of the variant part that is currently defined; attempting to
manipulate any other variant will cause either a compilation error or the raising of
Cons traint_Error. It is the programmer's responsibility to ensure that the correct
variant is being processed; consequently, a variant record should always be manipu
lated in a CASE statement with the discriminant field used as the CASE selector to

ensure that the proper variant part is being manipulated.
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We also introduced Ada 95 support for strings, as well as some introductory mate
rial on tagged types. The latter is a very important capability of Ada 95, because it facil
itates object-oriented progranuning.

EXERCISES

1. Write the variant declaration for Supplies, which consist of either Paper,
Ribbon, or Labels. For Paper, the information needed is the number of sheets
per box and the size of the paper. For Ribbon, the size, color, and kind (Carbon
or Cloth) are needed. For Labels, the size and number per box are needed. For
each supply, the cost, the number on hand, and the reorder point must also be
stored. Use whatever data types are appropriate for each field.

2. Write the declaration for Vehicle. If the vehicle is a Truck, then BedSize
and CabSize are needed. If the vehicle is a Wagon, then third seat or not is
needed (Boolean). If the vehicle is a Sedan, then the information needed is
TwoDoor or FourDoor. For every vehicle, we need to know whether the trans
mission is Manual or Automatic; whether it has AirConditioning,
Powers tearing, or PowerBrakes (all Boolean); and its gas mileage. Use
whatever data types are appropriate for each field.

3. How many bytes of storage are required for each of the variants of PayRecord?
You will probably have to check your Ada compiler documentation to determine
the storage required by each of the fields comprised by this record.

4. Write a procedure to display a record of type Face as declared in Section 6.1.
5. Revise the employee database program from Chapter 5 so that the variant

Employee record is used instead of the simple one.
6. Draw a diagram of a VString with your full name stored in it. Write a call to

VStrings. Slice showing how your last name could be retrieved.
7. Extend Program 6.8 to test and demonstrate the remaining operations of

VStrings. Make sure you include tests for conditions that will raise exceptions,
to be certain that the exceptions are raised properly.

8. Revise the metric system package of Section 6.3 so that the value part of a dimen
sioned value is a generic parameter. Instantiate the package for Integer, Float,
and Rational. (Hint: You will be required to provide a generic parameter for
each arithmetic and comparison operation on the value type.)

9. Modify the geometric shapes example from Section 6.2, so that the basic shape is
a tagged type with perimeter and area fields, and other shapes are derived from the
basic one.
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Queues and Stacks

7.1 Queues and Stacks Introduced

7.2 ADT Design: FIFO Queues

7.3 ADT Design: Priority Queues

7.4 ADT Design: Stacks

7.5 Expression Evaluation and Polish Notation

7.6 Application: An Infix-to-RPN Translator Program

7.7 Application: An Event-Driven Simulation

Two very common, important, and easy-to-understand structures in computing are the
queue and the stack. These are distinguished from each other, and from vectors and lists,
by the rules by which their elements are accessed for storage and retrieval.

Recall that in a vector the access is random in the sense that we can store a value at

an arbitrary location, or retrieve a value from an arbitrary location, without having to
search any other locations. In a list, the access is sequential in that a sequential search
must be performed to locate the position of an arbitrary element. However, in stacks and
queues we are allowed only a controlled method of access. In queues, this is First-In,
First-Out, or FIFO', in stacks, it is Last-In, First-Out, or UFO.

In this chapter you will see ADTs for these two structures and implementation schemes
for them. Specifically, you will see how stacks and queues can be constructed using arrays.

An important application of stacks, namely evaluating and translating arithmetic
expressions, is shown in this chapter. Two application sections develop an algorithm for
translating an expression into reverse Polish notation (RPN) form and a discrete event
simulation.

7.1 QUEUES AND STACKS INTRODUCED

The queue is analogous to the waiting line at a supermarket checkout or bank teller's sta
tion: customers are served one at a time, in the exact order of their arrival. Because of

this first-come, first-served serving strategy, the queue is often called a First-In, First-

US
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Out, or FIFO, structure. Notice that this means that customers must always go to the
end of the line when they arrive, and the server—the checkout clerk or bank teller—
serves whoever is first in line. (We assume that all customers are polite and that "break
ing in" never occurs.) That customer then leaves the line, and the line moves up.
Obviously, it doesn't make sense for the server to try to serve an empty queue.

The stack, on the other hand, finds its intuitive analogy in the spring-loaded tray
stackers often found in self-service restaurants. In such a stacker, only the top tray is
visible. Only the top tray may be removed; when a new clean tray is placed on top of
the stack, all the others are pushed down, and when a tray is removed all the others
move up. It doesn't make sense to remove the top tray from an empty stacker.

We shall see that there are a number of computing applications for the stack, which
is often called a Last-In, First-Out, or LIFO, device because, continuing with the
restaurant analogy, the last tray put on the stacker is the first one removed.

With this intuitive introduction, let us formalize our consideration of queues and
stacks.

7.2 ADT DESIGN: FIFO QUEUES

Let us think of a queue as an abstract entity. It has a head and a tail; at any given time,
it has a certain length (the number of items awaiting service); and items arrive on the
queue and are removed firom it (the actual type of these items obviously depends on the
application, so we shall leave it abstract and unspecified).

An item joins the queue only at the tail and leaves the queue only at the head, and
only the head item can be examined. Thus, the appropriate set of operations on queues
are MakeEmpty (reset a queue to the empty condition), isEmpty (test whether a queue
is empty), Enqueue (put an item on the queue), and Dequeue (take an item off the
queue). It is convenient to add another operation First, which examines the item at the
fiont of the queue without removing it. Accordingly, we will write the Dequeue opera
tion so that it just "throws away" the first item. This corresponds with the reality of most
queues, in which the object at the front of the queue is first served, then leaves the queue.

Array Implementation of Queues

A fnst attempt at implementing a queue uses an array with a cursor indicating the tail of
the queue. The capacity of the queue is then determined by the length of the array. Initially
the tail cursor is set to 1; a new arrival is inserted into the array at the location indicated
by the cursor, then the cursor is incremented to indicate the next available location.

What happens when an item is removed from the head of the queue? In a supermar
ket, when a customer is finished at the checkout, the remaining customers move up one
position in the queue. Our implementation works in an exactly analogous manner. The
Enqueue and Dequeue operations in this implementation are shown in Figure 7.1.

In Ada, we can set up this implementation by declaring a type Queue, which is a
record containing the tail cursor and the queue array as its fields. Program 7.1 gives a
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??

XYZ

Head
Capacity

*>0 ?? ?? ??

Tail Initial Condition: Queue is Empty

Head
Capacity

XYZ ?? ?? ?? ?? ??

T
Tail

Head

Enqueue(Q, "XYZ")

Capacity

XYZ GHI ?? ?? ?? ??

T
Tail Enqueue(Q, "GHI")

Head

I Capacity

XYZ GHI ABC ?? ?? ??

Head

Tail Enqueue(Q, "ABC")

Capacity

Q GHI ABC ?? ?? ?? ??

T
Tail Y := First(Q); Dequeue(Q)

Figure 7.1 Operations on a Queue: Enqueue. Dequeue, and First

generic specification for the queue ADT. The only generic parameter is the element
type. We use an unconstrained array type for the queue data; the array is contained in a
variant record with a discriminant that gives the queue capacity. There is no default, so
the client program must declare each queue variable with a fixed capacity. This is a rea
sonable requirement.

PROGRAM 7.1 Specification for Generic FIFO Queues Package

GENERIC

TYPE Element IS PRIVATE;

PACKAGE Queues_Generic IS
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— I Specification for Generic FIFO Queues Package
--j Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

— type definition

TYPE Queue (Capacity: Positive) IS LIMITED PRIVATE;

— exported exceptions

QueueFull : EXCEPTION;

QueueEmpty : EXCEPTION;

— constructors

PROCEDURE MakeEmpty (Q : IN OUT Queue);
— Pre: Q is defined
— Post: Q is empty

PROCEDURE Enqueue (Q : IN OUT Queue; E : IN Element);
— Pre; Q and E are defined

— Post: Q is returned with E as the top Element
— Raises: QueueFull if Q already contains Capacity Elements

PROCEDURE Dequeue (Q : IN OUT Queue);
— Pre: Q is defined

— Post: Q is returned with the top Element discarded
— Raises: QueueEmpty if Q contains no Elements

— selector

FUNCTION First (Q : IN Queue) RETURN Element;
— Pre: Q is defined
— Post: The first Element of Q is returned
— Raises: QueueEmpty if Q contains no Elements

— inquiry operations

FUNCTION IsEmpty (Q : IN Queue) RETURN Boolean;
— Pre: Q is defined
— Post: returns True if Q is empty, False otherwise

FUNCTION IsFull (Q : IN Queue) RETURN Boolean;
— Pre: Q is defined
— Post: returns True if Q is full. False otherwise

PRIVATE

TYPE List IS ARRAY (Positive RANGE <>) OF Element;
TYPE Queue (Capacity: Positive) IS RECORD
Tail : Natural := 0;
Store : List(1..Capacity);

END RECORD;

END Queues_Generic;

The package provides the required queue operations, as well as inquiry functions
IsFull and isEmpty so that the client program can test for these conditions. Also
provided are exceptions QueueFull and QueueEmpty. An unwitting attempt to
remove an item from an empty queue usually indicates a misuse of the queue abstrac
tion; since in this implementation a queue can also become full, we need a way to sig
nal that pragmatic condition as well. In this way, we can guarantee the integrity of the
queue ADT.

Why is the queue type LIMITED PRIVATE? As before, we do this to prevent
a client program from using the predeHned := and = operations. In this case, com-
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paring two queues for equality using the predefined operator is not meaningful,
because the part of the queue that is not occupied at any given moment contains
unpredictable "garbage." We also wish to keep open the option to reimplement the
queue using another structure, and we do not wish to require any receding of the
client program.

Program 7.2 shows the body of the queue package; note that the Dequeue opera
tion uses array slicing to move the elements. This may be a single statement in Ada, but
in the executable program, the time required to execute the copy is still generally pro
portional to the number of elements in the queue.

PROGRAM 7.2 Body of Generic Queues Package, Array Implementation

PACKAGE BODY Queues_Generic IS

— I Body of Generic Queues Package, Array Implementation
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

PROCEDURE MakeEmpty (Q : IN OUT queue) IS

BEGIN

Q.Tail := 0;

END MakeEmpty;

PROCEDURE Enqueue (Q : IN OUT Queue;
E : IN Element) IS

BEGIN

IF Q.Tail = Q.Capacity THEN
RAISE QueueFull;

ELSE

Q.Tail := Q.Tail + 1;
Q.Store (Q.Tail) := E;

END IF;

END Enqueue;

PROCEDURE Dequeue (Q : IN OUT Queue) IS
BEGIN

IF Q.Tail = 0 THEN
RAISE QueueEmpty;

ELSE

Q.Store (1..Q.Tail - 1) := Q.Store (2..Q.Tail); — slice
Q.Tail := Q.Tail -1;

END IF;

END Dequeue;

FUNCTION First (Q : IN Queue) RETURN Element IS
BEGIN

IF Q.Tail = 0 THEN
RAISE QueueEmpty;

ELSE

RETURN Q.Store (1);

END IF;

END First;

FUNCTION IsEmpty (Q : IN Queue) RETURN Boolean IS
BEGIN

RETURN Q.Tail = 0;
END IsEmpty;

FUNCTION IsFull (Q : IN Queue) RETURN Boolean IS
BEGIN
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RETURN Q.Tail = Q.Capacity;
END IsFull;

END Queues_Generic;

Circular Array Implementation of Queues

The array implementation discussed previously has a major problem associated with it.
The Enqueue operation is 0(1), requiring only a one-position move of the tail cursor.
However, because the entire queue is moved up every time an element is removed from
the head (as in real-life supermarket queues), this Dequeue operation is 0(N). Let's
see how we can do better.

Instead of requiring the queue to move whenever a Dequeue is done, let us "move
the cash register" instead. Let's start with the queue in this initial state:

Head

i Capacity

Y ?? Q XYZ GHI ABC PQR ?? ?? ??

+
Tail

A Dequeue operation will then leave the queue as follows:

Head

♦ Capacity

Y XYZ Q XYZ GHI ABC PQR ?? ?? ??

t
Tail

XYZ is still physically present in the array, but logically it has become "garbage.
Another Enqueue and another Dequeue have the following effects on the queue:

Head

+ Capacity

Y XYZ Q XYZ GHI ABC PQR STU ?? ??

t
Tail

Head
Capacity

Y GHI Q XYZ GHI ABC PQR STU ?? ??

Tail
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We maintain a cursor to the current head of the queue, and move it ahead one posi
tion when an element is removed. Thus, a constant amount of time will be needed to
remove an element, since only the head cursor moves, and then only by one position.
The new Dequeue operation is, therefore, 0(1).

This scheme works smoothly until the tail cursor reaches the upper limit of the
array. After two more Enqueue operations, we have

Head
Capacity

GHI XYZ GHI ABC PQR STU DEF MNO

Tail

No new elements can be enqueued. Note that the queue is not really full: it has the
capacity for seven elements, but we are using only five. The Dequeue operations left
us with available space; we need only discover how to use it.

One solution is to reorganize the queue whenever the tail cursor reaches the end
of the array: Simply copy all the elements currently in the queue—the slice bounded
by the Head and Tail cursors—up to the front of the array. The queue would look
like this:

Head
Capacity

GHI ABC PQR STU DEF MNO DEF MNO

Tail

The last two elements are "garbage" now. The reorganization is, of course, 0(AO,
but it is done much less frequently.

A more elegant and "self-regulating" solution that gives 0(1) Enqueue and
Dequeue operations is to treat the array as though the last position were "glued" back
to the first position. The tail cursor "wraps around," using empty space at the beginning
of the array for new arrivals—space that was vacated by previous departures. This "cir
cular" arrangement is depicted in Figure 7.2. The initial condition shows the state of the
queue when Tail points to the last physical array element; the other two diagrams
show the state after an additional Enqueue and another Dequeue. Note how Tail
wraps around to element 1 of the array.

We can implement this structure with some modifications to our generic package.
We keep track of the number of elements currently in the queue with a
CurrentSize field in the data structure. Here are the declarations in the modified
PRIVATE section:
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1

Initial Condition

1  Capacity

After Enqueue Operation

1  Capacity

After Dequeue Operation

Head

Figure 7.2 A Circular Queue

TYPE List IS ARRAY (Positive RANGE <>) OF Element;
TYPE Queue (Capacity: Positive) IS RECORD
CurrentSize ; Natural := Oj

Head : Natural := 1

Tail : Natural := 0;

Store : List(1..Capacity);
END RECORD;

Here are the bodies of IsFull and Enqueue:

FUNCTION IsFull (Q : IN Queue) RETURN Boolean IS

BEGIN

RETURN Q.CurrentSize = Q.Capacity;
END IsFull;

PROCEDURE Enqueue (Q : IN OUT Queue;

E  : IN Element) IS



7.4 ADT Design: Stacks 293

BEGIN

IF IsFull(Q) THEN

RAISE QueueFull;

ELSE

Q.CurrentSize := Q.CurrentSize + 1;
Q.Tail := (Q.Tail REM Q.Capacity) + 1;
Q.Store (Q.Tail) := E;

END IF;

END Enqueue;

Note how REM is used to effect the wraparound; REM would be used in a similar
way to implement Dequeue. Exercise 1 invites you to modify the queue package
according to this scheme, completing the other operations yourself. Circular queues are
very commonly used in operating systems and real-time systems. They are often called
"ring buffers" in those systems.

7.3 ADT DESIGN: PRIORITY QUEUES

The previous section discussed queues whose processing method is strictly FIFO.
Another important kind of queue is the priority queue. In this structure, each element in
the queue has a priority, or level of importance, associated with it. Elements must be
processed in order of priority.

There are really two ways to handle priority queues. We can take the priority into
account in the Enqueue operation, inserting the new arrival into the queue in priority
order, then use the same Dequeue as in the FIFO case. Alternatively, we can use the
FIFO Enqueue, then search for and delete the element of highest priority during
Dequeue. It is easier to use the first method.

A priority-queue ADT can be implemented analogously to a keyed table: the key is
the element's priority. An Enqueue operation is then nothing but an ordered Insert;
a Dequeue operation removes the first element, as usual. You can, as Exercise 2, build
this ADT by using the implementation of the keyed table as a model.

Later in this book, we will examine another, more commonly used, implementation
of a priority queue, namely the heap.

7.4 ADT DESIGN: STACKS

Recall the intuitive explanation of a stack given at the beginning of the chapter. Here
we make this intuition more concrete, defining a stack or LIFO device in ADT
terms.

An item is inserted in the stack ("pushed") and deleted from it ("popped") only at
the top, and only the top item can be examined. So the appropriate operations are
MakeEmpty, IsEmpty, Push, and Pop. As in the queue case, we will add an oper
ation Top, which examines the top item, and then write Pop so that it just "throws
away" the top item.
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Array implementation of Stacks

Program 7.3 gives a generic package specification.

PROGRAM 7.3 Specification for Generic Stack Package

GENERIC

TYPE Element IS PRIVATE;

PACKAGE Stacks_Gen,eric IS

— I Specification for Generic Stacks Package, Array Implementation.
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

— type definition

TYPE Stack {Capacity: Positive) IS LIMITED PRIVATE;

— exported exceptions

StackFull : EXCEPTION;

StackEmpty : EXCEPTION;

— constructors

PROCEDURE MakeEmpty (S : IN OUT Stack);
— Pre: S is defined

— Post: S is empty

PROCEDURE Push (S : IN OUT Stack; E : IN Element);
— Pre: S and E are defined

— Post: S is returned with E as the top Element
— Raises: StackFull if S already contains Capacity Elements

PROCEDURE Pop (S : IN OUT Stack);

— Pre: S is defined

— Post: S is returned with the top Element discarded
— Raises: StackEmpty if S contains no Elements

— selector

FUNCTION Top {S : IN Stack) RETURN Element;
-- Pre: S is defined

-- Post: The top Element of S is returned
— Raises: StackEmpty if S contains no Elements

— inquiry operations

FUNCTION IsEmpty (S : IN Stack) RETURN Boolean;
-- Pre: S is defined

— Post: returns True if S is empty. False otherwise

FUNCTION IsFull (S : IN Stack) RETURN Boolean;
— Pre: S is defined

— Post: returns True if S is full. False otherwise

PRIVATE



7.5 Expression Evaluation and Polish Notation 295

TYPE List IS ARRAY {Positive RANGE <>) OF Element;

TYPE Stack (Capacity: Positive) IS RECORD
Latest : Natural := 0;

Store : List(1..Capacity);
END RECORD;

END Stacks_Generic;

In the array implementation of a stack, we will consider the stack to be a record
consisting of a cursor. Latest:, pointing to the current stack top, and an array repre
senting the stack itself. Notice that the "top" of the stack really keeps moving toward
the "bottom" of the array; this avoids the necessity of moving any other items when a
new one arrives. Thus, Push and Pop operations are 0(I), done in fixed time, inde
pendent of the current stack depth.

Figure 7.3 illustrates the array structure and a few operations. In Exercise 3, you
can complete the stack package body.

7.5 EXPRESSION EVALUATION AND POLISH

NOTATION

Consider the sort of lengthy computation often carried out on a hand-held calculator;
for instance,

{5*2)-(({3+4*7)+8/6)*9)

A Brand X calculator allows the user to enter the above expression, parentheses and
all; this form is called parenthesized, or infix, notation. On the other hand, a Brand Y
calculator requires the user to convert the expression into what is called reverse Polish
notation (RPN), often called postfix notation. The corresponding RPN form would be:

52*347* + 86/ + 9*-

which looks thoroughly unintelligible. Most people seem to prefer the parenthesized
form.

Since the calculator is just a special-purpose computer, it follows some algorithm
to evaluate (find the final result of) the expression, given in one form or the other. The
purpose of this section is to introduce the relationship between a parenthesized or infix
expression and RPN. You will see how a stack can be used to evaluate an RPN expres
sion and also how to convert "by hand" from the parenthesized form to the RPN form
(which is what the Brand X calculator does internally). Section 7.5 will develop an
algorithm for this conversion.

Polish notation got its name from the Polish mathematician Jan -Lukasiewicz, who
first published it in 1951. Lukasiewicz was more interested in mathematical logic than
in computers per se (computers weren't very common in the early 1950s!); his notation
was developed as a convenient, parenthesis-free way to represent logic expressions.
Today, Polish notation is very widely used in interpreters and compilers as an interme
diate representational form for statements (a hand-held calculator is nothing but a kind
of interpreter).
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Capacity

?? ?? ?? ?? ?? ?? ??

I
Latest Initial Condition: Stack is Empty

Capacity

XYZ ?? ?? ?? ?? ??

Latest Push(S, "XYZ")

Capacity

XYZ ABC ?? ?? ?? ??

Latest Push(S, "ABC")

??

Capacity

XYZ ABC PQR ?? ?? ??

Latest Push(S, "PQR")

PQR

PQR

Capacity

XYZ ABC PQR ?? ?? ??

Latest Y := Top(S); Pop(S)

Capacity

XYZ ABC TUV ?? ?? ??

T
Latest Push(S, "TUV")

Figure 7.3 Array Implementation of a Stack, with Severai Push and Pop
Operations

The term reverse or pos0x is used to indicate that an operator follows its operands
instead of appearing between them; there is also a prefix, or forward Polish, notation,
in which the operator precedes its operands. The latter form will be considered in an
exercise.
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WITH Stacks_Generic;

PACKAGE Integer_Stacks IS NEW Stacks_Generic (Element => integer);

Infix Expression RPN Expression

3  3

3+2 iijL2j +

(3+2)*4 .32+..4.*

3+{2*4) .3..24*.+

(3/5) + (2*4) .35/..24*.+

(3+5)*(2-4)/6 ..35+..24-.*..6./

(5*2)-((3+4*7)+8/6)*9

Figure 7.4 Infix and RPN Expressions

A bit later on, we will consider how to convert an infix expression to its corre
sponding RPN form. For the moment, examine the examples in Figure 7.4. Brackets are
used to indicate the two operands of each operator; they are not part of the RPN. Notice
that the numerical quantities in each RPN expression occur in the same order as they do
in the original infix form. This is always true.

Evaluating RPN Expressions

We will evaluate an RPN expression using a left-to-right scan. An operator is preceded by
its two operands, so in evaluating the expression we need a way to remember what the
operands are until we encounter the corresponding operator. This is easy if the expression
has only one operator in it (for instance, 3 5 +). We somehow store the first operand, 3,
then store the second operand, 5, then, when the operator arrives, we determine that it is
indeed + and therefore add the two operands together, obviously getting 8 as the result.

But suppose the RPN has more than one operator. Take the expression 3 5 + 10 *
(the equivalent of (3+5)* 10, or 80). If we scan the expression left-to-right, we store 3,
then store S, then add them, getting 8 as before. But what do we do with the 8? We need
to store it, then store the 10, then discover the * and multiply the 8 by the 10, getting 80.

Evidently we have to save intermediate results as well as input numbers, and then,
when we see an operator, apply it to the last two things we stored. The expression 3 5 2
* - (equivalent to 3-(5*2) or -7) makes this even clearer. We need to store the 3, then
the S, then the 2. When the * is scanned, we multiply the last two numbers stored (2 and
5), then store this intermediate result. When the - arrives, we have two operands for
it—^3 and the intermediate result from the multiplication, 10—so we get -7.

We have been saving values in such a way that the last two values saved become
the first two retrieved. This is a perfect application for a stack. Let's represent the RPN
expression in the form of a VString object using the variable-length string package
of Chapter 6, and assume it is well-formed—^that is, that it follows the rules given above
for forming an RPN expression. For simplicity, we just use single digits to represent
numbers. We'll also use the array-stack package from this chapter, instantiated and
compiled as follows:
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An Ada function is shown in Program 7.4.

PROGRAM 7.4 RPN Expression Evaluator

WITH Integer_Stacks; USE Integer_Stacks;

WITH VStrings; USE VStrings;
FUNCTION Evaluate_RPN (X : IN VString) RETURN Integer IS
— Pre: X is defined and represents an RPN arithmetic expression

of single digits and operators
— Post: returns the value of the expression.

ZeroPos

C

T

S

Y, Z

Integer := Character'Pos ('0')

Character;

VString(MaxLength(X)) ;= X;
Stack(Capacity => 100);
Integer;

BEGIN — Evaluate_RPN

IF IsEmpty (T) THEN

RETURN 0;

END IF;

LOOP

C := Head (T);

IF C IN •0• .. •9' THEN

Push (S, Character'POS (C) - ZeroPos); — convert to integer
ELSE

Y := Top (S);

Pop (S);

Z  := Top (S);
Pop (S);

CASE C IS

WHEN '+• =>

Push (S, Z + Y)

WHEN =>

Push (S, Z - Y)

WHEN •*' =>

Push (S, Z ★ Y)

WHEN •/' =>

Push (S, Z / Y)

WHEN OTHERS =:>

NULL; — skip bad characters, if any
END CASE;

END IF;

T := Tail (T);

EXIT WHEN IsEmpty (T);
END LOOP;

RETURN Top (S);

END Evaluate_RPN;

Here's how the algorithm works. We scan the text from left to right, removing the
first character as we go, checking to see whether it's a number—^we'll use only single
numeric digits here for simplicity—or an operator (+, -, *, or /). If it's a numeric digit,
we need to convert it to its integer form so we can do arithmetic with it, then push it
onto the stack. If it's an operator, we remove the top two items from the stack, do the
operation, then push the result back onto the stack.

Assuming we started with a legal RPN expression, when all the characters in it have
been exhausted, the final value will be the only value left on top of the stack.
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Figure 7.5 shows the evaluation of an RPN expression by this algorithm; you should
try the program "by hand" on a number of examples to be sure how it works. Make sure
you understand that it works correctly even when the RPN expression is just a single digit.

Converting Manually from Infix to RPN Form

In this section, we'll discuss the notions of operator associativity and operator priority

or precedence and develop an informal method for doing the translation "by hand."
Section 7.5 will present a program for carrying out the translation.

The program in the preceding section, which emulates a hand-held calculator, works
with RPN expressions containing only numeric values. Most other applications need to
work with expressions containing variables as well. Thus, we need a more general
understanding of an expression. For our purposes, an arithmetic expression is a restricted
version of the expressions you are familiar with from whatever programming languages

stack

©

©

©

©

©

©

©

©

©

6^0)

-16

-96

RPN Expression

■ .354-..24-.*..6.*

5+24-*6*

+24-*6*

24-*6*

4-*6*

-*6^

Figure 7.5 Evaluation of an RPN Expression (Each "snapshot" is taken before the
leftmost input character is examined.)
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Infix Expression RPN Expression

A  A

A - B A B -

(A-B) +C AB-C +

A- (B + C) ABC + -

(A + B) * {C - D) A B + C D - *

Figure 7.6 More Infix and RPN Expressions

you have used. An expression consists of identifiers or variable names (limited to single
letters for simplicity), numerical constants (limited to one-digit integers for simplicity),
the operators +, -, *, and / (which have their familiar meanings), and parentheses.

In the first instance, we consider only fully parenthesized expressions—that is,
expressions in which parentheses are always used to indicate the order in which opera
tions are to be performed—^and show how these are transformed into RPN form.

An RPN expression is of one of two forms: It is either a single variable or constant,
or it is two RPN expressions followed by an operator. The last (rightmost) operator in
the RPN form is the "main" operator of the expression—that is, the operator that is per
formed last as the expression is evaluated, to produce the final result of the evaluation.

To give a few examples. Figure 7.6 shows several infix expressions and their RPN
equivalents.

Notice carefully how these are constructed, and make sure that you understand well
how (A-B) +C and A- (B+C) give rise to different expressions. In (A-B) +C, the + is
the main operation, since it is performed last; in A- (B+C), it is the - that is the main
operation. If numerical values were assigned to A, B, and C—say 2,3, and A—^it is easy
to see that the result of evaluating (A-B) +C is 3 and the result of evaluating A- (B+C)
is-5. Try (A*B) - (c+(D/E)) and ((A-B) + (C/D)) *E to make certain you under
stand how their RPN forms are produced.

Now we are ready to relax the condition that expressions must be fully parenthe
sized. We do this by stating some assumptions about the order in which operations will
be done. For example, in the expression A-B-C, how do we know whether to evaluate
it as though it were (A-B) -C, or as though it were A- (B-C) ? Most programming lan
guages use the rule that a sequence of + and - operations, without parentheses, is eval
uated left-to-right, so that A-B-C is treated as though it were (A-B) -c and A-B+C is
done as though it were (A-B) +C. That's the rule we'll use here. The mathematical term
for a mle like this is an association or associativity rule; our addition and subtraction
operators associate left-to-right.

Look at Figure 7.7 and compare the unparenthesized forms with the parenthesized
forms and the RPN expressions.

Unparenthesized Assumed Parenthesized Form RPN

A + B + C (A + B) + C A B + C +

A-B-C (A-B) - C A B-C -

W - X + Y (W - X) + Y W X - Y +

W + X - Y + Z ((W + X) - Y) + Z W X + Y - Z

Figure 7.7 Left-to-Rlght Associativity of + and -
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Unpaienthesized Assumed Parenthesized Form RPN

A*B*C (A*B) *C AB*C*

K/G/Z (K/G) /Z KG/Z/

Q/S*D (Q/S) *D QS/D*

P * D / E * K ((P * D) / E) * K P D ♦ E / K *

Figure 7.8 Left-to-Right Associativity of' and /

The same associativity rule applies to sequences of * and / operators. These are also
evaluated in left-to-right order. So A/B/C is always done as though it were (A/B) /C
and A/B*C as though it were (A/B) *C. Figure 7.8 shows a number of expressions
involving only * and /, their assumed parenthesized forms, and the corresponding
RPN forms.

Left-to-right associativity is not the only possible way. Programming languages
with a built-in exponentiation operator, often represented as * *, often apply a right-to-
left rule for this operator, so that A* *B* *C is treated like A* * (B* *C). In an exercise,
you will be asked to explain why this rule is chosen. In this section, we are ignoring
exponentiation and using only left-to-right associativity.

What happens in the case of expressions where mixtures of all four operators can
occur? This is usually handled by assigning priorities or precedences to the different
operators. Usually, + and - have the same priority and * and / have the same priority. For
definiteness, let + and - be called priority 2 operators, and let * and / be called priority 1
operators. Given two adjacent operators, one of priority 1 and the other of priority 2, the
priority 1 operator will be performed first. So the expression A+B*C will be evaluated as
though it were parenthesized A+ (B*C); A/B-C will be evaluated as though it were
parenthesized (A/B) -C. Thus, in the first expression, + is the main operator, in the sec
ond it is -. These expressions and their RPN forms are shown in Figure 7.9.

You can now see how to convert, manually, an arbitrary expression, in which paren
theses are sometimes used to group subexpressions. Following the two rules given just
above, add the necessary parentheses (on paper until you have gained enough experience
to do it by inspection), then produce the RPN from the fully parenthesized version.

Let's examine two examples. Consider first A+B-C+D. Since adjacent operators of
equal priority are handled left-to-right, we get ( (A+B)-C)+D. Now look at
A- (B+C) *D. Here, the two adjacent operators of interest are - and * (the + doesn't
count because it's inside a subexpression!), and the * is done first because it's priority 1.
So this expression is handled as though it were A- ((B+C) *D). These RPN forms are
shown in Figure 7.10.

Try A-B*C/ (D-E) and A*B- (C+D) +E to be sure you've got it.

Unparenthesized Assumed Parenthesized Form RPN

A+B*C A+ (B*C) ABC*+

A*B + C (A*B) +C AB*C +

A + B*C + D A* (B*C) +D ABC* + D

Figure 7.9 Operator Priorities
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Original Assumed Parenthesized Form RPN

A*B-C + D {(A + B) -C) +D AB+C-D +

A-(B+C) *D A- {(B+C) *D) ABC+D*-

Figure7.10 Parenthesized Expressions

7.6 APPLICATION: AN INFIX-TO-RPN

TRANSLATOR PROGRAM

In the preceding section, you learned how to translate an expression manually from
infix form to RPN. Here, we will develop a program to do it. Our program will be a
function, taking as its input the infix expression and returning the RPN expression as
its result.

Consider first an unparenthesized expression with all operators of the same priority
and left-to-right associativity. The operators and operands alternate in such an expres
sion; the operands in the RPN appear in the same order as in the original.

Assume that the input and result expressions are represented as VString objects,
as in Program 7.4. We scan the input expression from left to right. If the first character
we see is an operand, we can immediately output it (concatenate it to the RPN string).
If it is an operator, we need to remember it until after we've seen its other operand,
which will be when the next operator is scanned. We then output the saved operator and
save the new one.

An example of this operation is shown in Figure 7.11; an Ada function is given as
Program 7.5.

RPN OP Input Expression

© A+B-C+D

© A -B-C+D

© A + B-C+D

© AB + -C+D

© AB+
- C+D

© AB+C
- +D

© AB+C- + P

© AB+C-D +

© AB+C-D+

Figure 7.11 Simple Inflx-to-RPN Translation

PROGRAM 7.5 Simple Inflx-to-RPN Translator

WITH VStrings; USE VStrings;
FUNCTION RPN_Simple (X : IN VString) RETURN VString IS
— Pre: X is defined and represents an arithmetic expression

with single-letter variable names
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— Post: returns the RPN_Simple of X;

no operator priorities are taken into account.

C  : Character;

T  : VString(MaxLength(X)) := X;
Op : Character := '
Result : VString(MaxLength{X)); — empty by default

BEGIN -- RPN_Simple

IF NOT IsEmpty (T) THEN

LOOP

C := Head (T);

CASE C IS

WHEN 'A' .. -Z' I "a" .. 'z' | '0' .. '9' =>
Result := Result & C;

WHEN ■+■ I I •*• I '/■ =>
IF Op = ' ' THEN — first operator seen

Op := C;
ELSE

Result := Result & Op; — get rid of old op
Op := C;

END IF;

WHEN OTHERS =>
NULL; — skip bad character

END CASE;

T := Tail (T);
EXIT WHEN IsEmpty (T);

END LOOP;

Result := Result & Op;

RETURN Result;
END IF;

END RPN_Simple;

Taking Operator Priorities into Account

Now assume that operators of different priorities are allowed. Consider the infix
expression A+B*C. Its RPN form is A B C * +. We cannot just output the + when
the B is scanned, because the *, having higher priority, must be done first. So the +
must be remembered longer, and we need to tackle the problem a bit more systemati
cally. The priority of the incoming operator needs to be checked against the priority of
the previous one; if the new operator has higher priority, we need to remember it as
well, until we've scanned its second operand! When its second operand has been
scanned and output, we can output the operator.

We have, in this case, remembered two operators, and the last one remembered is
the first one output. This suggests that the best way to remember the operators is to put
them in a stack, which, after all, is precisely a LIFO device. This is shown in Figure
7.12, where an example is worked through.

A modified version of the Infix-to-RPN algorithm that uses priorities is shown
as Program 7.6. The function includes a simple local function for determining the
priority of an operator in the set (+, -,*,/) and uses an instantiation of the stacks
package.
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RPN

©

© A

© A

@ AB

© ab

@ ABC

© ABC*

© ABC*D

© ABC*D/+

@ ABC*D/+E

® ABC*D/+E-

Input

Stack Expression

A+B*C/D-E

+B*C/D-E

B*C/D-E

*C/D-E

C/D-E

/D-E

D-E

-E

Figure 7.12 Infix-to-RPN Translation with Priorities

PROGRAM 7.6 Infix-to-RPN Translator That Considers Priorities

WITH VStrings; USE VStrings;
WITH Character_Stacks; USE Character_Stacks;
FUNCTION RPN_Priorities (X : VString) RETURN VString IS
— Pre: X is defined

— Post: returns a string containing the RPN_Priorities for X;
operator priority and association, but no parentheses,
are taken into account. Parentheses are simply skipped.

C  ; Character;

T  : VString(MaxLength(X)) := X;
S  : Stack(MaxLength(X));

Result : VString(MaxLength(X)); — empty by default

FUNCTION Priority (Operator : IN character) RETURN integer IS
BEGIN

IF Operator = '+' OR Operator = '-' THEN
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RETURN 1;

ELSE

RETURN 2;

END IF;

END Priority;

BEGIN

IF NOT IsEmpty (T) THEN

LOOP

C  := Head (T);

CASE C IS

WHEN 'A' .. 'Z' I 'a' .. 'z' | '0' .. '9' =>
Result := Result & C;

WHEN '+' I I I '/' =>
IF IsEmpty (S) THEN

Push (S, C) ;

ELSIF Priority (Top (S)) < Priority (C) THEN
Push (S, C);

ELSE

LOOP — clear stack of higher priority operators
Result := Result & Top (S);

Pop (S);
EXIT WHEN IsEmpty (S)
OR ELSE Priority (Top (S)) < Priority (C);

END LOOP;

Push (S, C);

END IF;

WHEN OTHERS =>

NULL; — skip bad characters

END CASE;

T := Tail (T);

EXIT WHEN IsEmpty (T);
END LOOP;

WHILE NOT IsEmpty (S) LOOP

Result := Result & Top (S);
Pop (S);

END LOOP;

RETURN Result;

END IF;

END RPN_Priorities;

In this new algorithm an operator is stacked until one of equal or lower priority
comes along; then it is popped and added to the RPN. The new operator is then pushed
onto the stack. The process continues until the input is empty, at which time the stack is
emptied of all remaining operators. Try the function on a few examples of your own, to
make sure you understand its operation.

Taking Parentheses into Account

The final modincation accommodates parentheses. The way this is done becomes
clear when it is realized that parentheses really override the priority scheme, essen
tially creating a whole new expression inside. We can change our algorithm to allow
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parentheses by pushing a left paren onto the stack, which creates a sort of 'false bot
tom' in the stack. The algorithm progresses as in the previous case, but when a right
paren is seen, the stack is emptied as far back as the 'false bottom,' then the 'false
bottom' is discarded.

In Figure 7.13, an example is worked; we leave it to you to modify the program as
Exercise 6.

7.7 APPLICATION: AN EVENT-DRIVEN SIMULATION

As an example of the application of queues, we consider the simulation of a real-life sit
uation in which people must wait in line for some service. It might be a bank, post
office, or supermarket checkout. For definiteness, we choose the last.

A supermarket manager miist think carefully about the number of checkout lines
that will be open at a given time. Clearly, enough lines must be open to permit a cus
tomer to check out in a reasonable amount of time; otherwise, the shopper will find
another store with shorter lines. On the other hand, the cashiers must be paid, so the
manager doesn't want unnecessaiy lanes to be open. A computer simulation of the store
at different levels of shopping traffic can aid the manager in finding the right number.

Input

RPN Stack Expression RPN

©

©

©

©

©

©

©

©

AB

AB

AB

ABC

A+(B*(C-D)/E) @ ABC

+(B*{C-D)/E)

(BMC-D)/E)

B*(C-D)/E)

*{C-D)/E)

{C-D)/E)

C-D)/E)

-D)/E)

(lO) ABCD

(11) ABCD-

(12) ABCD-*

(13) ABCD-*E

0.4) ABCD-*E/

(15) ABCD-*E/ +

Input

Stack Expression

D)/E)

)/E)

/E)

E)

Figure 7.13 Infix-to-RPN Translation with Priorities and Parentheses
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In a simulation of this type, we try to model the real-world situation as closely as possi
ble with our program objects and algorithms.

Here is the scenario: A shopper arrives at the checkout area of the store at a certain
time of day with a certain number of items in a shopping cart. The shopper finds the short
est line and joins it. For simplicity, we will assume that the shopper cannot see into other
shoppers' carts, and that therefore the choice of line is not influenced by how full or empty
they are. Another simplifying assumption is that the path to the checkout area is narrow
and therefore two shoppers cannot enter it at the same instant. We also assume that no
shopper gets tired of waiting and abandons a cart, leaving the store without checking out.

We will represent the time of day as an integer representing the number of time
units since the store opened that day, and will assume that each item requires an average
of one time unit to ring up and put in a bag. We define average checkout time as the sum
of the length of time a shopper waits in line and the length of time taken to check out all
his or her items. The goal of the simulation is to find, for a given store opening period,
and a given group of shoppers and cart loads, the average checkout time as a function of
the number of open lines.

To set up the simulation, we provide a set of FIFO queues, each representing one
checkout line in the market. We define departure time as the time when a customer
reaches the front of his or her queue, departs from that queue, and begins to be checked
out by the cashier. Thus, the first customer in line is waiting to be served; the customer
being served is thought of as having left the queue. If this seems unrealistic, consider the
queueing system in use in many banks, post offices, and airports, where a single queue
is processed by many servers. In such a system, the customer leaves the queue to be
processed by the next available server. The assumption that a customer leaves the queue
just before being served allows the simulation model to be changed easily to acconuno-
date the single-queue scheme just described.

How will our simulation prograip operate? In a real supermarket, all the people are
independent processes needing no external control; in a program, we need a control
mechanism. This kind of simulation, in which there are a number of queues all moving
at different rates, can be controlled by means of an event list, and is called an event-dri
ven simulation.

There is no direct supermarket analogy to the event list; it is a special queue con
taining scheduled arrival and departure events. The event list is not FIFO; the events
must be ordered by time. We therefore use a priority queue for the event list; the item
with the earliest time is processed with the highest priority.

The event list contains, at any given time, no more than one arrival event, and at
most as many departure events as there are open queues. The event list is initialized with
the first arrival record, and the simulation proceeds, processing arrival and departure
events until the event list is empty.

When an arriving shopper record is read from a file, mi arrival event is placed on the
event list (sorted by time because there may be departure events ̂ eady scheduled). When
the arrival record reaches the fiont of the event list, it is removed and joins the shortest
checkout queue. If it is the only customer in the queue, it can be served immediately; its
arrival and departure times are the same and a departure event, indicating the scheduled
departure time and queue number, is placed on the event list. At this point, another arrival
record is read from the file to replace the one just removed from the event list.
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When a departure event reaches the front of the event list, we remove the first node
from the corresponding queue, say queue k. We know its arrival time, its time of depar
ture from the queue, and the time required to process all its purchased items, so we can
compute its checkout time and add it to a grand total from which we can, at the end of the
simulation, compute the average service time. We can also compute the scheduled depar
ture time for the next customer in queue k: Because the next customer begins to be served
just as the previous customer finishes, the next customer's departure time is the sum of
the current customer's departure time and that customer's processing time. Having com
puted the scheduled departure time for the customer at the front of queue k (the customer
waiting to be served), we place the associated departure event on the event list.

Program 7.7 shows a sketch of the main program of the simulation, with the neces
sary declarations.

PROGRAM 7.7 Sketch of Event-Driven Simulation

WITH Queues_Circular_Generic;

WITH Queues_Priority_Generic;
PROCEDURE Simulation IS

— I Sketch of event-driven simulation
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: Jcuiuary 1996

NumQueues : CONSTANT Positive := — number of open checkouts

TYPE CustomerRecord IS RECORD — put these records on the queues
ArrivalTime: Posi tive;
Numltems: Positive;

END RECORD;

PACKAGE MarketQueues IS

NEW Queues_Circular_Generic (Element => CustomerRecord);
USE MarketQueues;

TYPE Market IS ARRAY(1..NumQueues) OF Queue;
Queues: Market;

TYPE EventType IS (Arrival, Departure);

TYPE Event (...) IS RECORD — these records go on the event list

— remember that sm arrival event holds

.  ■ . — an arrival time emd number of items

— and a departure event holds a departure
END RECORD; — time and a queue number

PACKAGE EventQueues IS

NEW Queues_Priority_Generic (Element => Event);

EventList: EventQueue (Capacity => 4);

PROCEDURE Process_Arrival(ArrivalTime: IN Positive;
Numltems: IN Positive) IS SEPARATE;

PROCEDURE Process_Departure{DepartureTime: IN Positive;

Q: IN OUT Queue) IS SEPARATE;

BEGIN — main simulation
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— initialize queues, event list, other variables
— read ArrivalTime and Numltems from customer file

-- place arrival event on event list

WHILE — there are still events on the event list LOOP

— remove first event from event list

IF — this event is an arrival event THEN

ProcessArrival( — pass time, number of items );
ELSE — it is a departure event
ProcessDeparture( -- pass time, which queue );

END IF;

END LOOP;

-- compute and print average checkout time

END Simulation;

The generic ADTs for queues and priority queues are instantiated as needed. To
show the two key procedures in the simulation as separate program examples, we
have used an Ada feature called subunits. A subunit is simply a separate file contain
ing a local procedure or function, or one in a package body. To indicate to the com
piler that a given procedure, say, Process_Arrival, is moved to a subunit, we
put the lines

PROCEDURE Process_Arrival(ArrivalTime: IN Positive;
Numltems : IN Positive) IS SEPARATE;

in the main procedure.
The arrival-processing subunit itself, ProcessArrival in this case, is shown as

Program 7.8, which begins with the lines

SEPARATE(Simulation)

PROCEDURE Process_Arrival(ArrivalTime: IN Positive;
Numltems : IN Positive) IS . . .;

Note the syntax: No semicolon appears at the end of the first line, because that line
is not a statement by itself; it is just a prefix of the second line.

PROGRAM 7.8 Subunit Process_Arrival

SEPARATE (Simulation)

PROCEDURE Process_Arrival(ArrivalTime: Positive;
Numltems: Positive) IS

sketch of procedure to process arrival event

BEGIN -- Process_Arrival

— find k, index of shortest queue

— enqueue ArrivalTime and Numltems on Queues(k)

IF -- p is the only node on Queues(k) THEN
— this customer can be served immediately, so
— departure time = arrival time; therefore
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— place departure event (from Queues(k))
— on event list (ordered by time]

END IF;

IF —customer file is not empty THEN
— read ArrivalTime and Numltems from customer file
— place arrival event on event list (ordered by time)

END IF;

END Process_Arrival;

Ada subunits are frequently used in large programs in industry, to divide a large
package body up into smaller pieces, possibly for assignment to different members of a
programming team. We use them here for convenience in the presentation.

Program 7.9, another subunit Process_Departure, shows how a departure is
processed. Completing the simulation is left as an exercise.

PROGRAM 7.9 Subunit Process_Departure

SEPARATE (Simulation)
PROCEDURE Process_Departure(DepartureTime : Positive;

Q ; IN OUT Queue) IS

— sketch of procedure to process departure from queue k

BEGIN — Process_Departure

-- dequeue node from Queues(k); store its info in
— ArrivalTime and Numltems

— calculate elapsed checkout time
CheckoutTime := DepartureTime + Numltems - ArrivalTime;

— update values which contribute to the average
TotalCheckoutTime := TotalCheckoutTime + CheckoutTime;
NumCustomers := NumCustomers + 1;

IF — Queues(k) is not empty THEN
—compute departure time for next node

NextDepartureTime := DepartureTime + Numltems;

— place departure event (from queue k) on event list
— using NextDepartureTime, ordered by time

END IF;

END Process_Departure;

SUMMARY

Stacks and queues are two important data structures with restricted access. The stack is
a Last-In, First-Out (LEFO) device; the queue is a First-In, First-Out (FIFO) device. The
FIFO and LEFO access methods have many uses in computing applications: Stacks are
used in implementing general procedure calling and returning, and in language transla
tion such as in the RPN example given here. Queues turn up in operating systems, and
in any number of simulation problems where the physical system being simulated
involves waiting lines.
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EXERCISES

1. Modify the generic queues package (Programs 7.1 and 7.2) to implement the cir
cular queue scheme described in Section 7.2.

2. Develop and test a generic package for priority queues.
3. In some applications where two stacks are necessary, a bit of space can be saved

by using an array representation but allowing the two stacks to share the same
array. This is done by having one stack fill from the low-subscript end of the array
forward, and the other stack fill from the high-subscript end backward. An excep
tion must be raised if the two stacks "collide" in the middle somewhere. Design
and implement a package to handle such a "double stack." {Note: Such a double
stack is often called a "deque," which is an abbreviation of "double-ended
queue." This is odd, because the structure represents two stacks, not a queue of
any kind.)

4. In most programming languages that have a built-in exponentiation (**) operator,
this operator associates right-to-left; that is, is treated as though it were
written A**(B**C). Explain why this is a sensible convention.

5. A common parenthesis-free notation is forward Polish or prefix Polish notation.
In this scheme an operator precedes its operands, so that, for example, A+B
becomes +AB. For the infix expressions of Sections 5.5 and 5.6, find the forward
Polish forms.

6. Modify the Infix-to-RPN translator of Section 7.6 so that parenthesized expres
sions are handled correctly.

7. Modify the Infix-to-RPN translator of Section 7.6 so that the exponentiation oper
ator is allowed and is handled correctly.

8. Write a translator that converts an infix expression to its forward Polish notation
(FPN) form.

9. Write a translator that converts an RPN expression to its forward Polish notation
(FPN) form.

10. Modify the hand-held-calculator example of Section 7.5 so that the numbers in
the input can have more than one digit.

11. Complete the event-driven simulation of Section 7.7.
12. Modify the simulation so that the standard deviation of the average checkout time

is computed along with the mean.
13. Many banks, post offices, and airline ticket counters have adopted a scheme in

which there is only one waiting line and a customer reaching the front of the line
goes to whichever server is available. Change the simulation to support this
scheme. For the same set of customer records, are the mean and the standard devi

ation the same as in the multiqueue scheme?
14. Change the simulation so that instead of having arrivals come from a file cre

ated in advance, they are generated by a random number generator. Let the
transaction time be uniformly distributed over some reasonable interval; also,
let an arrival time occur a random (but reasonable) number of time units after
the previous one.
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Dynamic data structures are data structures that expand and contract as a program exe
cutes. A dynamic data structure is a collection of elements (called nodes) that are gen
erally implemented as records. Whereas an array always contains storage for a fixed
number of elements, in a dynamic data structure the programmer can increase or reduce
the allocated storage, as elements are added to or deleted from the structure.

Dynamic data structures are extremely flexible. It is relatively easy to add new
information by creating a new node and inserting it between two existing nodes. It is
also relatively easy to delete a node. In this chapter, we introduce dynamic data struc
tures and a new kind of Ada type, called an access type. Access types—often called
pointer types—^are an essential part of using dynamic data structures. We examine inter
esting applications of dynamic data structures starting in Chapter 8 and continuing
through the rest of the book.

8.1 ADA STRUCTURES: ACCESS TYPES AND THE
NEW OPERATOR

You know how to use arrays to store collections of data. We know that it is possible for
each array element to be a record, and have seen a number of examples of such data struc
tures. One characteristic of data collections is that they can vary considerably in size from

312
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one run of a program to the next, or even during a run. In such cases, an array is not the best
structure in which to store the records, because the array size is fixed, and therefore must
be estimated before the records are read in. If only a few records are present, much space
is wasted. Worse, the array cannot expand to hold a number of records greater than its size.

There is a solution to this problem, known as dynamic data structures or linked
data structures. Using dynamic data structures, the programmer can increase or
decrease the allocated storage in order to add or delete data items in the collection. In
languages, such as Ada, that provide built-in support for linked structures, the compiler
associates with an executable program a special storage area, called the dynamic stor
age pooly or sometimes just the pool, which it initially leaves unassigned to any pro
gram variable. (The storage pool is often called the "heap"; we avoid this term to avoid
confusion with the heap data structure introduced in Chapter 11.)

A system module called the storage allocator is linked into the program and
assumes responsibility for allocating blocks of storage from the pool, and returning
extra blocks to the pool, at execution time. The pool is like a "storage account" from
which a program can "borrow" storage to expand a structure, returning the storage
when it is no longer needed. The storage allocator can then use that storage to satisfy
another storage request from the program.

A special kind of variable is provided for referencing space allocated dynamically
from the pool. In Ada, these are called access variables; in other languages, such as
Pascal and C, they are referred to as pointer variables. Ada allows us to declare access
types; each access variable is an object of an access type. The values of each access type
are called access values or, informally, pointers. A pointer, or access value, is an
abstraction for a hardware address, but often does not have the same form.

Consider a record type called RecType, defined as

TYPE RecType IS RECORD

.  . . fields . . .

END RECORD;

the type definition

TYPE RecPointer IS ACCESS RecType;

gives us the ability to declare access variables of type RecPointer—that is, vari
ables that can designate, or hold pointers to, things of type RecType. For example,
the declaration

PI, P2, P3: RecPointer;

allocates storage for three such variables.
When an access variable is created in Ada, its value is always initialized to a spe

cial, unique internal value known as NULL. This indicates that the pointer doesn't point
to anything (yet). It is important to realize that declaring such variables does not cause
any records to be allocated; each variable is given just enough space to hold the address
of a record.

How do the records themselves come into being? The Ada operator NEW exists to
create them. An assignment statement such as

PI := NEW RecType;
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causes the storage allocator to search the pool, looking for a block of space large
enough to hold a record of type RecType. When such a block is found, an access value
designating (pointing to) this block is stored in the variable PI. Figure 8.1 shows dia-
grammatically how dynamic allocation works. The cloud-like shape represents the
pool, arrows represent pointers, and diagonal lines represent NULL.

INITIAL CONDITION

PI, P2, P3 : RecPointer•  \z\
STORAGE POOL

P2

P3

0
0

PI :=NEW RecType;

P3 :=P1;

PI :=NEW RecType;

PI :=NEW RecType;

PI

P2

P3

PI

P2

P3

PI

P2

P3

PI

P2

P3

Figure 8.1 Dynamic Allocation
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An access variable can acquire a value in only two ways: A value can be delivered by
a NEW operation, as above, or it can be copied firom another access value. For example,

P3 := PI;

causes P3 to point to the same record to which PI points. An assignment statement to
an access variable copies only an access value; it does not copy the designated value]

If we write

Pi := NEW RecType;

a second time, then space for another record is found in the pool, its address is stored in
PI, and P3 is left pointing to the "old" record. If we write

PI := NEW RecType;

a third time, the record previously pointed to by PI is left with nothing pointing to it,
thus making it inaccessible. This space, in general, remains allocated and unavailable
for other use. This situation is often called, picturesquely, a "storage leak," because the
storage "leaks away" and can no longer be used. We will return to this subject later in
this chapter.

Creating a Linked Structure

Because we do not know beforehand how many nodes will be needed in a dynamic data
structure, we cannot allocate storage for it in the conventional way—that is, through a
variable declaration. Instead, we must allocate storage for each individual node as
needed and somehow join that node to the rest of the structure.

We can connect two nodes if we include a pointer field in each node. The declarations

TYPE ElectricityType IS (DC, AC);

TYPE Node;

TYPE NodePointer IS ACCESS Node;

TYPE Node IS RECORD

Power : ElectricityType;
Volts : Natural;

Next : NodePointer;

END RECORD;

identify NodePointer as a pointer type. A pointer variable of type NodePointer
points to a record of type Node with three fields: Power, Volts, and Next. The
Next field is also of type NodePointer. We can use this field to point to the next
node in a dynamic data structure.

Note that the first declaration of Node is incomplete', it just mentions the name Node
without filling in the details. This device is used to inform the compiler of the existence
of the type Node, so that the next type definition can use it. Using an incomplete type def
inition meets Ada's requirement that types must be defined before they can be used.

Now let us declare some pointer variables:

P : NodePointer;

Q : NodePointer;

R : NodePointer;
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As in the previous example, P, Q, and R are automatically given initial NULL values.
The assignment statements

P  := NEW Node;

Q := NEW Node;

allocate storage for two records of type Node, storing their addresses in P and Q.
Initially, the Power and Volts fields of these records are undefined; the Next fields
of both are initially NULL. Pointer initialization is one of the few cases in Ada in which
objects are given initial values at declaration.

In Ada terminology, a nonnull access object designates a value. The block of space
pointed to by P is P's designated value. We can refer to the designated value of P using
the expression P.ALL, and to the Power field of P.ALL by the expression
P. ALL. Power. The assignment statements

P.ALL.Power := AC;

P.ALL.Volts := 115;

Q.ALL.Power := DC;

Q.ALL.Volts := 12;

define the nonlink fields of these nodes, as shown in Figure 8.2. The Next fields are
still NULL.

P  Power Volts Next

AC 115

Q Power Volts Next

DC 12

Figure 8.2 Nodes p. all and Q. all

The . ALL construct is the way Ada represents a dereferencing operation, that is, an
operation to find that value to which a pointer points. To simplify the syntax necessary
to select a field of a designated value, Ada allows us to omit the . ALL part and just
select the field directly. Therefore, the following four assignment statements are equiv
alent to the ones just given. We will use the abbreviated form throughout this chapter.
Because p is an access variable, we can read the expression P. Power as "Find the
value designated by P and select its Power field."

P.Power

P.Volts

Q.Power

Q.Volts

= AC;

= 115;

= DC;

= 12;

Let us do some more pointer manipulation. The assignment statement

R := P;

copies the value of pointer variable P into pointer variable R. This means that point
ers P and R contain the same access value and, therefore, point to the same node, as
shown in Figure 8.3. Here and in later figures, we have left out the cloud symbol for
simplicity.



8.1 Ada Structures: Access Types and the New Operator 317

Power Volts Next

AC 115

Q Power Volts Next

DC 12

Figure 8.3 Nodes r . all / p. all and q . all

The pointer assignment statements

P := Q;

Q := R;

have the effect of exchanging the nodes pointed to by P and Q, as shown in Figure 8.4.
The statements

Electricity_IO. Put (Item => Q. Power, Width => 4) ,•
Electricity_IO.Put (Item => P.Power, Width => 4);

display the Power fields of the records designated by Q and P. For the situation
depicted in Figure 8.4, the line

AC DC

would be displayed. (As usual, Electricity_IO is an instance of
Enuineration_IO.)

Power Volts Next

Power Volts Next

DC 12

AC 115

Figure 8.4 Nodes R. all / q . all and p. all

The statement

Q := NEW Node;

changes the value of Q to designate a new node, thereby disconnecting Q from its previ
ous node. The new values of pointer variables P, Q, and R are shown in Figure 8.5. The
data fields of the new node designated by Q are, of course, initially undefined.

It is important to understand the difference between P and P's designated value. P
is an access variable (type NodePointer) and is used to store the address of a data
structure of type Node. P can be assigned a new value either by calling NEW or by
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Power Volts Next

AC 115

Power Volts Next

DC 12

Power Volts Next

7 7

Figure 8.5 Nodes R. all, p . all and q , all

copying another access value of the same type. P. ALL is the name of the record desig
nated by P and can be manipulated like any other Ada record. The field selectors
P. Power and P. Volts may be used to reference data (in this case, an enumeration
value and an integer) stored in this record.

Connecting Nodes

One purpose of introducing dynamically allocated nodes is to be able to grow data
structures of varying size. We can accomplish this by connecting individual nodes. If
we look at the nodes allocated in the last section, we see that their Next fields are cur
rently NULL. Since the link fields are of type NodePointer, they can themselves be
used to designate values. The assignment statement

R.Next := P;

copies the value stored in P (an access value) into the Next field of node R. ALL. In
this way, nodes R and P become connected. Similarly, the assignment statement

p.Next := Q;

copies the access value stored in access variable Q into the link field of node P. ALL,
thereby connecting nodes P and Q. The situation after execution of these two assign
ment statements is shown in Figure 8.6.

Power Volts Next

P;

AC 115

Power Volts Next

P.Next :P.Next :

Power Volts Next

DC 12

= Q;

Figure 8.6 Connecting Nodes R. all, p . all and Q. all
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The data structure pointed to by R has now grown to form a chain of all three nodes.
The first node is referenced by R. ALL. The second node can be referenced by P. ALL
or R. Next. ALL, because they both have the same value. Finally, the third node may
be referenced by Q. ALL or P. Next. ALL, or even R. Next. Next. ALL.

Summary of Operations on Access Values

Let us summarize the operations available for access values. Access types are actually
similar to private types. Given types

TYPE Something IS . . . ;
TYPE PointerToSomething IS ACCESS Something;

if PI and P2 are variables of type PointerToSomething and S is a variable of type
Something, the available operations are.

• A/tocatlOW, for example: PI := new something;

which allocates a block of type Something, returning to PI an access value desig
nating the new block.

• Assignment, for example: P2 : = pi ;

which copies the access value from PI to P2 .

• Dereferencing, for example: s := pi.all;

which copies the value designated by PI into S.

• Equality/inequality, for example: if pi = P2 then . . .

which is true if and only if PI and P2 are equal.
Make sure you understand the difference between the line above and

IF PI.ALL = P2.ALL THEN . . .

which compares the designated values.
You may be aware that in some other programming languages, especially C, other

operations, for example incrementation and decrementation, are available for pointer
values. These operations are not available in Ada.

Returning Dynamic Storage to the Pool

In Figure 8.1, we allocated a block of storage from the pool but later caused its pointer to
point elsewhere (see the last two diagrams in Figure 8.1). Because no other access value
designated it, the block became inaccessible. What happens to an inaccessible block?

In theory, the Ada storage allocator could include a module that automatically
keeps track of inaccessible blocks and makes them available to be reallocated. Such a
module is often called a garbage collector, because it keeps track of discarded memory
blocks. Garbage collectors are provided in some languages, especially Lisp and Snobol,
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but are very rarely included in Ada systems. This is because Ada was designed for use
in real-time systems, in which program timing is very important. Garbage collection is
a complex process whose time performance can be unpredictable because it depends on
how badly fragmented the storage pool is. For this reason, many Ada users prefer not to
have a garbage collector and therefore compiler implementers usually do not provide it.

An Ada program that continually allocates blocks, then discards them just by mak
ing them inaccessible, could well run out of pool storage at some point in operation.
Because an Ada system is unlikely to provide an automatic garbage collector, the pro
grammer is responsible for recycling the garbage. Ada provides a standard operation,
Unchecked_Deallocation, to return dynamically allocated storage to the pool.
This is a generic procedure, with the specification

GENERIC

TYPE Object IS LIMITED PRIVATE;
TYPE Name IS ACCESS Object;

PROCEDURE Unchecked_Deallocation (X: IN OUT Name);

To use this procedure, it must be WITH-ed in a context clause, and instantiated using
the access type and the designated type as actual parameters. For example,

PROCEDURE Dispose IS
NEW Unchecked_Deallocation (Object => Node, Name => NodePointer);

creates an instance for the types used in this section, and the procedure call statement

Dispose (X => P);

will return P's designated value to the pool. Paraphrasing the Ada standard, we describe
this operation as follows:

• After execution of the Dispose call, the value of P is NULL.

• If P is already NULL, the call has no effect.

• If P is not NULL, the call indicates that P. ALL is no longer needed and may be
returned to the pool.

Because we can copy access values, a situation can arise in which more than one
access value designates the same block of storage. For this reason, we must be careful
when returning storage to the pool. Errors will result if the cells returned are later ref
erenced by another access value that still designates them; indeed, the Ada standard
says specifically that the effect of doing so is unpredictable. Suppose P designates a
node. If we write

Q := P;

Dispose(X => P);

the cells designated by P are returned to the pool and the meaning of Q. ALL or
Q.Volts is unpredictable. In this situation, a variable such as Q is usually called a
dangling pointer. It is important to make sure that there is no need for a particular
record before returning the storage occupied by it. Also, we must be careful when
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coding not to create dangling pointers; these lead to execution errors that will not
always give rise to nice Ada exceptions.

Running Out of Dynamic Storage?

It is possible to exhaust the supply of cells in the pool. If this happens in Ada, the stor
age allocator raises the predefined exception Storage_Error.

Normally, we can assume that there are enough memory cells available in the pool.
However, when writing large programs that create sizable dynamic data structures, it is
advisable to code an exception handler for Storage_Error in the part of the pro
gram that does the allocation. Later in this chapter, we will discuss some methods for
avoiding unnecessary calls to the allocator.

8.2 DATA STRUCTURES: LINKED LISTS AND

THEIR OPERATIONS

A linked list is a sequence of list elements, or nodes^ in which each node is linked, or
connected, to the node following it. A linked list with three nodes follows.

Ll Hat >1 Boy Cat

Each node in this list has two fields: The first field contains data and the second

field is a pointer to the next node. There is a pointer (Head) to the first node, or list
head. The last node always has a NULL pointer value, indicated as usual by a diagonal
line.

Lists are an important data structure because a list can be modified easily, regard
less of how many elements may be in the list. For example, a new node containing the
string "Bye" can be inserted between the strings "Boy" and "Cat" by changing only
one pointer value (the one from "Boy") and setting the pointer from the new node to
point to "Cat":

Ll Hat Boy Bye Cat

Similarly, it is easy to delete a list element. Only one pointer value has to be
changed—the pointer that currently points to the element being deleted. For example,
we can delete the string "Boy" from the previous linked list by changing the pointer
from the node "Ace". The node containing string "Boy" is effectively disconnected
from the list because there is no longer a pointer to it. The new list consists of the strings
"Hat", "Bye", and "Cat".

Ll Hat Boy Bye Cat
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In Section 8.1, we saw how to connect three nodes with pointer fields. The data
structure shown in Figure 8.6 could be considered a list of three nodes with pointer vari
able R as the pointer to its head. Each node has two data fields (Power and Vol t s) and
one pointer field (Next). The pointer value NULL is once again drawn as a diagonal
line.

AC 115 DC 12 7 7

Some Linked-List Operations

This section and those that follow will treat some common list-processing operations
and explain how they are implemented using access types and variables. We will start
out with a simple package specification, shown in Program 8.1.

Program 8.1 Specification for Linked-List Package

PACKAGE Singly_Linked_Lists IS

— I Specification for simple linked lists with a single pointer
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

SUBTYPE WordType IS String(1. . 3) ;

TYPE List IS PRIVATE;

PROCEDURE AddToFront (L: IN OUT List; Word: IN WordType);
— Pre: Word is defined; L may be empty
— Post: Word is inserted at the beginning of L

PROCEDURE AddToEnd (L: IN OUT List; Word: IN WordType);
— Pre: Word is defined; L may be empty
— Post: Word is appended to the end of L

FUNCTION Copy(L: IN List) RETURN List;
— Pre: L may be empty
— Post: returns a complete copy of the list L

PROCEDURE Traverse(L: IN List);

— Pre: L may be empty
— Post: displays the contents of L's Word fields, in the

order in which they appear in L

PRIVATE

TYPE ListNode;

TYPE List IS ACCESS ListNode;
TYPE ListNode IS RECORD

Word: WordType := "###";
Next: List;

END RECORD;

END Singly_Linked_Lists;

This package provides a private type List:

TYPE List IS PRIVATE;
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The type declarations in the PRIVATE part are as follows:

TYPE ListNode;

TYPE List IS ACCESS ListNode;

TYPE ListNode IS RECORD

Word: WordType := "###";
Next: List;

END RECORD;

The package provides four operations:

• AddToFront, which adds a new node to the beginning of a list

• Traverse, which displays all the values in the list, in the order in which the nodes
occur

• AddToEnd, which adds a new value to a list by first storing the value in a node, then
connecting this node to the end of the list

• Copy, which returns a complete copy of the list

Given a list LI as follows:

Ll Hat Boy Cat

Traverse displays

Hat . . . Boy , . . Cat

and the statement

AddToEnd(Ll, "Dog *);

changes Ll as follows:

Ll Hat Boy Cat Dog

Program 8.2 is an illustration of these linked-list operations.

Program 8.2 A Demonstration of the Linked-Llst Package

WITH Ada.Text_I0; USE Ada.Text_IO;

WITH Singly_Linked_Lists; USE Singly_Linked_Lists;
PROCEDURE Test_Lists IS

— I Illustrates the singly linked list package operations
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

Ll: List;

L2: Lxst;
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BEGIN -- Test_ListS

— first test the traverse and copy operations for empty list

Ada.Text_IO.Put_Line(Item => " ");
Traverse(LI);

Ada.Text_IO.New_Line;

L2 := Copy(LI);
Traverse(L2);

Ada.Text_IO.New_Line;
Ada.Text_IO.Put_Line(Itern => " ");

-- add to end of empty list

AddToEnd(LI, "Hat");

Traverse(LI);

Ada.Text_IO.New_Line;

L2 := Copy(LI);

Traverse(L2);

Ada.Text_IO.New_Line;

Ada. Text_IO.Put_Line( Item => " ");

— add to end of nonempty list

AddToEnd(LI, "Boy");
Traverse(Li);

Ada.Text_IO.New_Line;

Ada.Text_IO.E>ut_Line(Item => " ");

-- add again to end of nonempty list

AddToEnd(LI, "Cat");

Traverse(LI);

Ada.Text_IO.New_Line;
Ada.Text_IO.Put_Line(Item => " ");

— add to front of nonempty list emd copy result

AddToFront(LI, "Top");
Traverse(LI);

Ada.Text_IO.New_Line;
L2 := Copy(Ll);
Traverse(L2);

Ada.Text_IO.New_Line;
Ada.Text_IO.Put_Line(Item => " ");

END Test_ListS;

If the package were completed and compiled, compiling and executing this program
would produce the output

Hat.

Hat.

Hat. ..Boy..
•

Hat. ..Boy...Cat.

Top. .

Top. .

.Hat..

.Hat..

.Boy.

.Boy.

.Cat

.Cat



8.2 Data Structures: Linked Lists and Their Operations 325

Program 8.3 gives the body of the package. In order to show the bodies of the
various operations as separate programs, we have again used Ada subunits as in
Section 7.7.

Program 8.3 Body of Linked-List Package

WITH Ada.Text_I0;
PACKAGE BODY Singly_Linked_Lists IS

— I skeleton of package body for singly-linked lists;
— I the operations are provided as subunits of the package.
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

PROCEDURE AddToPront (L: IN OUT List; Word: IN WordType) IS SEPARATE;

PROCEDURE AddToEnd (L: IN OUT List; Word: IN WordType) IS SEPARATE;

FUNCTION Copy(L: IN List) RETURN List IS SEPARATE;

PROCEDURE Traverse(L: IN List) IS SEPARATE;

END Singly_Linked_Lists;

We are now ready to examine how the various linked-list operations are imple
mented. For absolute clarity in this set of program illustrations, we include the explicit
dereferencing operations (the .ALLs). Be certain you understand exactly how each
operation works before moving to the next.

Program 8.4 shows the implementation of AddToFront. It is simple and straight
forward, but one must be very careful, in writing operations like this, to get the order of
statements exactly right.

Program 8.4 Implementation of AddToFront

SEPARATE (Singly_Linked_Lists)
PROCEDURE AddToFront (L: IN OUT List; Word: IN WordType) IS

— I Subunit of singly linked list package
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

Temp: List;

BEGIN -- AddToFront

Temp := NEW ListNode;
Temp.ALL.Word := Word;
Temp.ALL.Next := L;

L := Temp;

END AddToFront;

1. Allocate a new node, returning an access value in Temp.

2. Store the word value in the new node.
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3. Copy the access value in L—pointing to the first node in the list, if any—to the
Next field of our new node.

4. Copy Temp's value back into L, which makes L point to the new first node.

Suppose we wrote these statements in the wrong order—for instance, we copied
Temp to L before copying L to Temp. This would overwrite L's old value, and we
would lose access to the entire list!

In writing linked-list operations, one must always ask whether the operation
behaves properly if its list parameter is empty. In this case, if L is initially empty, its
NULL value is copied into the Next field of the new node, and all is well.

In the next two sections, we implement the remaining three operations, first recur
sively and then iteratively.

8.3 RECURSIVE IMPLEMENTATIONS

OF LINKED-LIST OPERATIONS

Linked lists are sometimes called recursive data structures, because each node contains
a pointer to a node of the same type, which is a bit like a recursive procedure contain
ing a call to the same procedure. Indeed, linked-list operations can easily be imple
mented as recursive subprograms.

Traverse

Program 8.5 gives the implementation of Traverse.

Program 8.5 Recursive Implementation of Linked-List Traversal

SEPARATE (Singly_Linked_Lists)
PROCEDURE Traverse(L: IN List) IS

— I Recursive implementation of Traverse
— I subunit of singly linked list package
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

BEGIN — Traverse

IF L = NULL THEN

RETURN; -- stopping case
ELSE

Ada.Text_I0.Put(Item => L.ALL.Word);
Ada.Text_I0.Put(Item => ". . .");

Traverse(L => L.ALL.Next); -- recursion

END IF;

END Traverse;
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Note carefully that like every recursive subprogram. Traverse has a stopping
case; namely, the end of the list is reached when a NULL link is encountered. If the link
is not NULL, we are not yet at the end of the list, so we display the value in the node,
then invoke Traverse recursively for a smaller set of the data—that is, the remainder
of the list following the first node.

AddToEnd

Program 8.6 shows the recursive implementation of AddToEnd.

Program 8.6 Recursive Implementation of AddToEnd

SEPARATE (Singly_Linked_Lists)
PROCEDURE AddToEnd (L: IN OUT List; Word: IN WordType) IS

— I Recursive implementation of AddToEnd
— I subunit of singly linked list package
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

BEGIN — AddToEnd

IF L = NULL THEN

L := NEW ListNode'(Word,NULL); — stopping case
ELSE

AddToEnd(L.ALL.Next, Word); — recursive case

END IF;

END AddToEnd;

Note again that it has the required stopping case, namely that its parameter is NULL.
In this stopping case, the IN OUT parameter representing the list is simply made to
point to a new list node containing the desired word. The syntax of the line

L  := NEW ListNode'(Word,NULL);

warrants explanation. Here, we are calling NEW and plugging in the fields of the newly
allocated block with a record aggregate (Word, NULL). The apostrophe preceding the
aggregate it is required. The construct

ListNode'(Word,NULL)

is called a qualified aggregate.
Returning to Program 8.6, if we are not at the stopping case—^that is, not yet at the

end of the list—we make a recursive call of AddToEnd, which attempts to add the new
value to the end of a list that is shorter by one node.

Copy

You might think that Copy is a very simple, almost trivial operation. Suppose we
implemented Copy with the following body:
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SEPARATE (SinglyLinkedLists)
FUNCTION Copy(L: IN List) RETURN List IS
BEGIN

RETURN L;

END Copy;

Would a client program with the line

L2 ;= Copy(LI);

receive a correct result in L2? No, indeed! Simply copying the access value in LI does
not copy the list; it only copies the pointer to the beginning of the list! The result would
be that LI and L2 would both point to the same node. Now suppose a modification is
made to LI; for example, a new node is added to its end. Since L2 points to the same
list, changing the list headed by LI would also change the list headed by L2, because
they are exactly the same list.

This is not what "copying" a value usually means in programming. If you copy an
array A into another one B of the same type, A and B are distinct, and changing a value
in A does not change B at all. In order to get a faithful copy of a list, we must copy the
entire list; that is, the word in each node of the original must be copied to a newly allo
cated node of the result.

Program 8.7 shows a recursive implementation of Copy. In the stopping case, the
parameter is NULL so we just return that value. If the parameter is nonnull, the result of
the recursive call is a node whose word value is copied from the original, and whose
link is a pointer to a copy of the remainder of the original.

Program 8.7 Recursive implementation of copy

SEPARATE (Singly_Linlced_Lists)
FUNCTION Copy(L: IN List) RETURN List IS

— I Recursive implementation of Copy
— I subunit of singly linlced list paclcage
— I Author; Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

BEGIN — Copy

IF L = NULL THEN

RETURN NULL; — stopping case
ELSE

RETURN — recursive case
NEW ListNode'(L.ALL.Word, Copy(L.ALL.Next));

END IF;

END Copy;

If you are having any trouble understanding this, there is nothing more effective
than pretending you are the copy function and drawing a picture of the input list and the
result list as it is constructed at each level of recursion.

Copying an entire list structure in this manner is often called deep copying-, simi
larly, copying only the pointer to the beginning of the list is called shallow copying, or,
sometimes, sharing the list.
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8.4 ITERATIVE IMPLEMENTATION

OF LINKED-LIST OPERATIONS

Recursively implemented linked-list operations are clean and sometimes even ele
gantly simple. On the other hand, consider their time and space performance.
Traverse, for example, requires 0{N) time for a list with N nodes. This is to be
expected: After all, the list is linear. But the recursive Traverse also requires 0{N)
space, because of the N recursive calls. For a long list, the space requirements can add
up; for a very long list, they could exhaust the memory available for nested procedure
calls. Looking at the recursive implementations of AddToEnd and Copy, you can see
that they too require 0{N) time and 0{N) space for recursive calls.

Linked-list operations generally require 0{N) time, because they usually involve
visiting each node once in sequence. That is the nature of linear lists. However, we can
eliminate the OiN) space requirement by eliminating the recursive calls. We will
develop iterative versions of the list routines; in most real applications of linked lists,
iterative operations are used. The price we pay for eliminating the recursion is that the
iterative versions are often more complicated, and sometimes more difficult to under
stand, than their recursive counterparts.

Traverse

Program 8.8 shows an iterative version of Traverse.

Program 8.8 Iterative Implementation of Linked-List Traversal

SEPARATE (Singly_Linked_Lists)
PROCEDURE Traverse(L: IN List) IS

— I Iterative implementation of Traverse
— I subunit of singly lin)ced list package
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

Current: List; — designates each node in turn

BEGIN — Traverse

— initialize loop
Current := L;

WHILE Current /= NULL LOOP

Ada.Text_IO.Put(Item => Current.ALL.Word);

Ada.Text_IO.Put(Item => *. . .*);

— be sure to advance the pointer!
Current := Current.ALL.Next;

END LOOP;

END Traverse;
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Iterative list operations generally consist of a main WHILE loop, and, in fact, are
generally quite similar to many array algorithms. Every WHILE loop must contain three
distinct features:

• Initialization that appears before the WHILE

• A condition, given in the WHILE statement itself, for continuing the loop

• Incrementation, in which some variable is modified to keep the loop moving for
ward toward completion

These three features are present in Program 8.8: A pointer Current, declared to
serve as the loop variable, is initialized by

Current := L;

which sets Current to point to the beginning of the list. The test to continue the
loop is

WHILE Current /= NULL LOOP

which indicates that the loop continues until the end of the list is reached—^that is, until
Current becomes null. Finally, the incrementation step is

Current ;= Current.ALL.Next;

in which Current is dereferenced and set to the Next value in the designated node.
To be certain you understand Traverse, practice tracing its execution. Draw a
pointer variable Current and move it down the list during each loop iteration.
Practice on the following list:

Ll Hat Boy Cat Dog

Make sure it is clear why the output should be

Hat...Boy...Cat...Dog...

AddToEnd

The iterative AddToEnd is shown as Program 8.9.

Program 8.9 Iterative implementation of AddToEnd

SEPARATE (Singly_Linked_Lists)
PROCEDURE AddToEnd (L; IN OUT List; Word: IN WordType) IS

— I Iterative implementation of AddToEnd
— 1 we must do a linear search to find the end of the list
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995
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Current: List; — designates each node of input list in turn

BEGIN — AddToEnd

IF L = NULL THEN

L := NEW ListNode'(Word,NULL);

ELSE

— initialize the loop

Current := L;

— search until the end

WHILE Current.ALL.Next /= NULL LOOP

Current := Current.ALL.Next;

END LOOP;

— we found the end; Current designates last node

— so attach a new node to the node Current designates
Current.ALL.Next := NEW ListNode'(Word, NULL);

END IF;

END AddToEnd;

Here we need a special case to see whether the head pointer L itself needs to be
modified; this will happen only if L is initially empty. Assuming L is nonempty, we
have another WHILE loop, with Current initialized (as in Traverse) to the start of
the list. In this case, the loop body consists only of the incrementation step, because we
are simply searching to find the end of the list.

Note that in Traverse, the loop-continuation condition was

WHILE Current /= NULL LOOP

but in this case, it is

WHILE Current.ALL.Next /= NULL LOOP

After this loop is finished, we wish Current's value to be pointing to the last node of
the list. This is so that we can connect the new node to the last node's Next field. This

is accomplished by the statement

Current.ALL.Link := NEW ListNode'(Word, NULL);

Once again, you should practice on the list given above. Try tracing AddToEnd to
add a new node containing " Art" to the list.

Copy

Finally, Program 8.10 gives an iterative version of Copy.

Program 8.10 Iterative Implementation of Copy

SEPARATE (Singly_Linked_Lists)
FUNCTION Copy(L: IN List) RETURN List IS

— I Iterative implementation of Copy
— I Author: Michael B. Feldman, The George Washington University
— Last Modified: September 1995
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Result : List; -- points to head of new list
NewTail: List; — points to tail of new list
Current: List; — points to current node of input list

BEGIN — Copy

IF L = NULL THEN

RETURN Result;

END IF;

— "prime" the algorithm with the first node

Result := NEW ListNode;

Result.ALL.Word := L.ALL.Word;

-- initialize loop

NewTail := Result;

Current := L.ALL.Next;

WHILE Current /= NULL LOOP

— allocate new node, attach to tail of new list
NewTai1.ALL.Next := NEW ListNode'(Current.ALL.Word, NULL);

NewTail := NewTail.ALL.Next; — move Newtail to new node, and
Current := Current.ALL.Next; -- Current to next node in old list

END LOOP;

RETURN Result;

END Copy;

Here we need two pointer variables: one, Current, to travel down the input list L,
and the other, NewTai 1, to keep track of the last node of the new list Resul t. Note the
statement

NewTail.ALL.Link := NEW ListNode'(Current.ALL.Word, NULL);

which allocates a new node, copies the Word field into it, and connects it to the end of
the new list. As before, make sure you understand the workings of this procedure by
carefully tracing its execution.

8.5 LINKED LISTS WITH HEAD AND TAIL

POINTERS

The operations AddToFront and AddToEnd are two of the most common and
important list operations. We have seen that AddToFront is very simple: A node is
allocated and a few values copied. Clearly the performance of AddToFront does not
depend on the length of the list, so its performance is 0(1). On the other hand, we have
seen in the previous section that AddToEnd is 0{N), because the entire list is searched
in order to find the last node.

We can turn AddToEnd into a 0(1) operation by making a very simple change to
our data structures: Keep track of the last node by building in a pointer to it. All we need
to do is change the declarations in the PRIVATE part to
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TYPE ListNode;

TYPE ListPtr IS ACCESS ListNode;

TYPE ListNode IS RECORD

Word: WordType := "###";
Next: ListPtr;

END RECORD;

TYPE List IS RECORD

Head; ListPtr;

Tail: ListPtr;

END RECORD;

We introduce a new type ListPtr, which serves the role of our former List
type. We also change our List type from a simple pointer into a header record con
taining two pointers, one to the head of the list and one to the tail. This gives a list like

Ll Hat Boy Cat Dog

The various operations must be modified to reflect the changed data structures. The
key change is to AddToEnd, which is shown as Program 8.11. Note that the WHILE
loop or recursive call is gone; no search is necessary, because we know immediately
where the last node is.

Program 8.11 AddToEnd with Head and Tall Pointers

SEPARATE (Singly_Linked_Lists)
PROCEDURE AddToEnd (L: IN OUT List; Word: IN WordType) IS

— I AddToEnd using head and tail pointers
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

— if we have a pointer to the tail of the list,
— adding a new node is very easy.

BEGIN AddToEnd

IF L.Head = NULL THEN

L.Head := NEW ListNode'(Word,NULL);

L.Tail := L.Head;

ELSE — L.Tail points to a node; new node goes after it

L.Tail.ALL.Next := NEW ListNode'(Word,NULL);

L.Tail := L.Tail.ALL.Next;

END IF;

END AddToEnd;

This is a very good example of the way a small change to a data structure can result



334 Access Types and Dynamic Data Structures

in a large change in performance. Here we have used a bit more space for the extra
pointer, but have speeded up an important operation from 0{N) to 0(1).

We leave it as an exercise to modify the entire package so that the operations are
consistent with the two-pointer header record.

8.6 ORDERED INSERTIONS IN LINKED LISTS

A linked list is often used as an implementation for an ordered sequence of elements,
which appear in order according to some key. This can be thought of as a linked-list
analogy to a sorted array. It is therefore important to understand how to insert a new
value into a linked list that is already sorted.

The insertion process has four distinct cases:

Case 1

Case 2

Case 3.

An inserted node is the first one to be added to an empty list.

The inserted node's key is less than those of all others in the list; thus, the
node goes at the beginning of a nonempty list.

The key is greater than all the others; thus, the node goes at the end of the list.

Case 4. The key lies between two others; thus, the node goes in the middle of the
list somewhere.

For the list representation we have been using, these four cases are illustrated in
Figure 8.7. A procedure InsertlnOrder is shown as Program 8.12.

Initial Condition

Ll

Case 1:

InsertlnOrder(Ll,"Hat")

Ll

Hat

Case 2:

InsertlnOrder(Ll,"Ago")

Ll

1 Ago '—y
I

Case 3:

InsertlnOrder(Ll,"Toy")

Ll

Ago HHat 1^1

Case 4:

InsertlnOrder(Ll,"Lab")

Ll

Ago Hat Lab H Toy 1^.^^

Figure 8.7 Ordered Insertion In Linked List
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Program 8.12 Ordered Linked-List Insertion

SEPARATE (Singly_Linked_Lists)
PROCEDURE InsertlnOrder (L: IN OUT List; Word: IN WordType) IS

— I Iterative implementation of InsertlnOrder
— I if Word already in list, second occurrence must follow first one
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

Current: ListPtr; — designates each node of input list in turn
Previous: ListPtr; — trailer - one node behind Current
Temp: ListPtr; — holds pointer to newly allocated node

BEGIN -- InsertlnOrder

IF L.Head = NULL THEN — case (1)

AddToFront (L, Word);

ELSIF Word < L.Head.ALL.Word THEN — case (2)

AddToFront (L, Word);

ELSIF Word >= L.Tail.ALL.Word THEN — case (3)

AddToEnd (L, Word);

else — case (4)

— at this point, we )cnow L is not empty and
— first word <= Word < last word

Temp

Previous

Current

= NEW ListNode'(Word, NULL);

= L.Head; — first node
= Previous.ALL.Next; — second node, if any

WHILE Word >= Current.ALL.Word LOOP

Previous := Current;

Current := Current.ALL.Next;

END LOOP;

— assert: Previous.ALL.Word <= Word < Current.ALL.Word

— insert new node between Previous and Current

Temp.ALL.Next := Current;
Previous.ALL.Next := Temp;

END IF;

END InsertlnOrder;

Notice how the each of the four cases is handled: Only Case 4 requires a search
through the list. Note also that two pointers are used to search the list, because the new
node is inserted between two others, in this case those designated by Previous and
Current, respectively. Make sure you understand exactly how the procedure operates
by tracing its actions on the example cases shown in the figure. This succession of calls
to InsertlnOrder builds and maintains a sorted list.

/
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8.7 DEBUGGING PROGRAMS WITH LINKED LISTS

The three most common errors in writing programs using dynamic structures are deref
erencing a null pointer, infinite loops, infinite recursion, and off-by-one problems.

Dereferencing a Null Pointer

When processing linked data structures, make sure that the pointer to the next node is
not NULL. If pointer P has the value NULL, the record P. ALL is undefined. Therefore,
the condition

(P.ALL.ID /= 9999) AND (P /= NULL)

will cause Cons train t_Error to be raised when P is NULL. You can prevent this
by writing the expression using the short-circuit operator AND THEN:

(P /= NULL) AND THEN (P.ALL.ID /= 9999)

This causes the left side to be evaluated first and evaluates the right side only if the
left side is True.

Infinite Loops

A linked-list program can get into an infinite loop in two ways. First, if you write a
WHILE loop and forget to write an incrementation step, the loop has no way to progress
toward completion. In this case, the program either will appear to "hang," or, possibly,
will display the same value over and over.

Second, your program could get stuck in an infinite loop or an infinite recursion
while creating a dynamic data structure. If this happens, it is quite possible that the
program will keep allocating new blocks and consume all memory cells in the storage
pool. If this happens, Storage_Error is raised. For both of these reasons, be espe
cially careful in writing the WHILE condition and the loop incrementation statement.
Be certain the loop is always initialized properly and incremented each time through.
Also, make sure that your recursive programs will eventually reach a stopping case.

Off-by-One Errors

Off-by-one errors are common in linked-list programs. In traversing a list with K
elements, for example, sometimes only the first K-\ elements, or the last /T-l, are
displayed. These logic errors will not raise exceptions but will give incorrect results.
They are usually caused by careless loop initialization or termination conditions. Note
that a program that tries to go one step too far will generally "fall off the end of the
list," causing Cons traint_Error to be raised upon dereferencing a null pointer.

Some debugging tools allow you to display the value of a pointer variable, but such
a value cannot normally be displayed with Text_IO procedures. It is therefore diffi
cult to debug programs that manipulate pointers. You will have to trace the execution
of such a program by printing an information field that uniquely identifies the list ele-
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ment being processed instead of the pointer value itself. In doing a trace, drawing a
picture of the list as it is built and manipulated is enormously helpful.

When writing driver programs, it is often helpful to create a sample linked structure
using the technique shown in Section 8.1. The data and pointer fields of the structure
can be defined using assignment statements.

SUMMARY

Access types and dynamic data structures are used to create linked lists, which are
extremely important data structures in computing. Linked lists are found in nearly
every kind of computer application: Spreadsheet processing, operating system mod
ules, compilers, and many others commonly employ linked lists and other dynamic data
structures. Armed with your understanding of simple linked lists, you are now ready to
proceed to Chapter 9 and the remaining chapters, in which various applications of
dynamic data structures are introduced.

EXERCISES

1. Write a function to return the number of nodes in a singly linked list with head
and tail pointers.

2. Write a procedure that attaches one list to the end of another. Note that this pro
cedure destroys the original lists.

3. Write a function that returns the concatenation of two lists LI and L2—that is, a

list containing copies of all the nodes of LI followed by copies of all the nodes of
L2. Note that this function must not destroy either Ll or L2.

4. Write a procedure that deletes from an ordered list L the first node containing a
given word.

5. Write a procedure that deletes from an ordered list L the last node containing a
given word.

6. Write a procedure DeleteAll (L: List; K: KeyType), that deletes from an
ordered list L all nodes containing a given word.

7. Write a function that searches a list L with a dummy node, returning a pointer to the
first node containng a given word. Do this for both an unordered and an ordered list.

8. Write a function that takes two ordered lists as inputs, then returns a list in which
the two input lists are merged. That is, if Ll contains "ABC", "HIJ", and "PQR",
and L2 contains "DEF", "HIJ", "MNO", and "STU", the result list contains "ABC",

"DEE", "HIJ", "HIJ", "MNO", "PQR", and "STU".

9. Sometimes a list node is declared to have two pointers, one to the next node and
one to the previous node. Develop a package for such doubly linked lists; write
the operations so that advantage is taken of the fact that each node points to its
predecessor as well as to its successor. Specifically, how does having the extra
pointers simplify operations such as ordered insertion and deletion?

10. Starting with the package for singly linked lists, develop a generic list package
that enables a client program to specify the nonlink information—that is, to
instantiate with any type for which assignment and equality are defined.



CHAPTER 9

Linked-List Applications

9.1 ADT Design: A Generic ADT for Singly Linked Lists

9.2 Allocation Using a List of Available Space (LAVS)

9.3 ADT Design: Unbounded Queues and Stacks

9.4 ADT Design: The Keyed Table as a Linked List

9.5 Application: The Airline Passenger List Again

9.6 ADT Design: Passive and Active iterators

9.7 ADT Design: Unbounded Variable-Length Strings

9.8 Application: Sparse Vectors and Matrices

9.9 Simulating Dynamic Memory Management

9.10 Ada Structures: Ada 95 Unbounded Strings

9.11 Ada Structures: Ada 95 General Access Types

9.12 Heterogeneous Structures and Dynamic Dispatching

Now that you are familiar with the basics of dynamic data structures, let us look at some
applications. After first setting up a generic ADT package for singly linked lists, we will
examine unbounded (linked-list) implementations of stacks and queues, a linked-list
implementation of the generic keyed table handler, a design for variable-length strings
of unbounded length, and sparse vectors and matrices. Along the way, we will consider
active iterators, an important ADT design technique. Finally, we will discuss how
dynamic memory management can be simulated using arrays, without records, access
types, or storage pools.

The Ada 95 sections discuss unbounded strings, general access types (which can
designate declared variables as well as dynamically allocated blocks) and composite
types—^arrays and records—with tagged-type objects as their components.

338
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9.1 ADT DESIGN: A GENERIC ADT FOR SINGLY

LINKED LISTS

We now develop an ADT for singly linked lists. Naturally, it is generic; it provides a
useful collection of operations on linked lists in such a way that a client program can
just instantiate for a given element type. The advantage of providing an ADT is that the
client program does not have to deal with implementation details; furthermore, the
implementation of the list structure can be changed if desired. Later in the chapter, we
will explain how to change the implementation of Singly_Linked_Lists so that
nodes are stored in an array of nodes instead of in the pool.

Specification of the Generic List ADT

The specification for Lists_Generic is given in Program 9.1. Two types are pro
vided: Position, which is PRIVATE and represents a pointer, and List, which is
LIMITED PRIVATE because the := and = operations are obviously not meaningful
for a linked structure.

Program 9.1 Specification of Generic Linked-List Package

GENERIC

TYPE ElementType IS PRIVATE;

PACKAGE Lists_Generic IS

--j Generic ADT for singly-linked lists
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

— exported types

TYPE Position IS PRIVATE;

TYPE List IS LIMITED PRIVATE;

— raised if no space left for a new node

— raised if a Position is past the end
— raised if a Position is before the begin

— exported exceptions

OutOfSpace: EXCEPTION

PastEnd : EXCEPTION

PastBegin : EXCEPTION
EmptyList : EXCEPTION

— basic constructors

PROCEDURE Initialize(L: IN OUT List);

— Pre: none

— Post: L is initialized. If L contained nodes, these are deleted.

PROCEDURE AddToFront(L: IN OUT List; X: ElementType);
PROCEDURE AddToRear (L: IN OUT List; X: ElementType);

— Pre: L and X are defined

— Post: a node containing X is inserted
at the front or rear of L, respectively

— basic selectors
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FUNCTION First (L: List) RETURN Position;
FUNCTION Last (L: List) RETURN Position;
— Pre: L is defined

-- Post: returns the position of the first or last node
of L, respectively; return NULL if L is empty

FUNCTION Retrieve (L: IN List; P: IN Position) RETURN ElementType;
— Pre: L and P are defined; P designates a node in L
— Post: returns the value of the element at position P
— Raises: EmptyList if L is empty

PastBegin if P points before the beginning of L
PastEnd if P points beyond the end of L

— other constructors

PROCEDURE Insert (L: IN OUT List; X: ElementType; P: Position);
— Pre: L, X, and P are defined; P designates a node in L
— Post: X is inserted into L at position P; equivalent to

AddToRear if P is NULL

PROCEDURE Replace (L: IN OUT List; X: ElementType; P: Position);
— Pre: L, X, and P are defined; P designates a node in L
— Post: X replace the element in L at position P
-- Raises: PastEnd if P is NULL

PROCEDURE Delete (L: IN OUT List; P: Position);
-- Pre: L euid P are defined; P designates a node in L
— Post: the node at position P of L is deleted
— Raises: EmptyList if L is en^ty

PastBegin if P is NULL

PROCEDURE Copy (To: IN OUT List; From: IN List);
— Pre: From is defined

— Post: To is a list whose elements are the same as those

of From, in the same order.

— iterator operations

PROCEDURE GoAhead (L; List; P: IN OUT Position);
— Pre: L and P are defined; P designates a node in L
— Post: P is advanced to designate the next node of L
— Raises: EmptyList if L is empty

PastEnd if P points beyond the end of L

PROCEDURE GoBaclc (L; List; P: IN OUT Position);
— Pre: L and P are defined; P designates a node in L
— Post: P is moved to designate the previous node of L
-- Raises: EmptyList if L is empty

PastBegin if P points beyond the end of L

— inquiry operators

FUNCTION IsEn^ty (L: List) RETURN Boolean;
FUNCTION IsFirst (L: List; P: Position) RETURN Boolean;
FUNCTION IsLast (L: List; P: Position) RETURN Boolean;
FUNCTION IsPastEnd (L: List; P: Position) RETURN Boolean;
FUNCTION IsPastBegin (L: List; P: Position) RETURN Boolean;
— Pre; L and P are defined

— Post; return True iff the condition is met; False otherwise

PRIVATE

TYPE Node;
TYPE Position IS ACCESS Node;
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TYPE Node IS RECORD

Info: EleraentType;

Link: Position;

END RECORD;

TYPE List IS RECORD

Head: Position;

Tail: Position;

END RECORD;

END Lists_Generic;

The operations are grouped as usual into constructors, selectors, and inquiry oper
ations. The postconditions in the specification describe these operations; the descrip
tions are straightforward and should be easy to understand.

Several of the operations and exceptions merit discussion: The exceptions
PastBegin and PastEnd are used to indicate that a pointer (rather, a Position
value) has "fallen off" either the beginning or the end of the list. Similarly, the inquiry
operations IsPastBegin and isPastEnd are for the client programs, to test for
these conditions. Once again, we are providing inquiry operations for the client and also
exceptions to be raised in case the client errs in testing for the conditions. Our package
must be as "bulletproof as possible.

The type declarations given in the private part of Program 9.1 should be familiar to
you by now. We represent a List as a record with pointers to the beginning and head of
the list; these are NULL if the list is empty. A Node is as before; note that the node con
tains just a field of type Element (the generic parameter) and a pointer to the next node.

Body of the Generic List ADT

Look now at Program 9.2, which gives the body of the package. We first instantiate
Unchecked_Deallocation to provide an operation to return nodes to the pool.
We will return to this issue shortly.

Program 9.2 Body of Genenc Linked-List Package

WITH Unchecked_Deallocation;
PACKAGE BODY Lists_Generic IS

— I Body of Generic Linked List Package
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

PROCEDURE Dispose IS

NEW Unchecked_Deallocation(Object => Node, Name => Position);

FUNCTION Allocate (X: ElementType; P: Position) RETURN Position IS
Result: Position;

BEGIN

Result := NEW Node'(Info => X, Link => P);

RETURN Result;

EXCEPTION

WHEN Storage_Error =>
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RAISE OutOfSpace;
END Allocate;

PROCEDURE Deallocate (P: IN OUT Position) IS
BEGIN

Dispose (X => P);
END Deallocate;

PROCEDURE Initialize(L: IN OUT List) IS
Previous: Position;

Current : Position;

BEGIN

IF L.Head /= NULL THEN

Current := L.Head;

WHILE Current /= NULL LOOP

Previous := Current;

Current := Current.Link;

Deallocate{Previous);
END LOOP;

L := (Head => NULL, Tail => NULL);
END IF;

END Initialize;

PROCEDURE AddToFront(L: IN OUT List; X: ElementType) IS
BEGIN

L.Head := Allocate(X, L.Head);
IF L.Tail = NULL THEN

L.Tail := L.Head;

END IF;

END AddToFront;

PROCEDURE AddToRear (L: IN OUT List; X: ElementType) IS
P: Position;

BEGIN

P  := Allocate(X, NULL);

IF L.Head = NULL THEN

L.Head := P;
ELSE

L.Tail.Link := P;
END IF;

L.Tail := P;
END AddToRear;

FUNCTION IsEmpty (L: List) RETURN Boolean IS
.  BEGIN

RETURN L.Head = NULL;

END IsEmpty;

FUNCTION IsFirst (L: List; P: Position) RETURN Boolean IS
BEGIN

RETURN (L.Head /= NULL) AND (P = L.Head);
END IsFirst;

FUNCTION IsLast (L: List; P: Position) RETURN Boolean IS
BEGIN

RETURN (L.Tail /= NULL) AND (P = L.Tail);
END IsLast;

FUNCTION IsPastEnd (L: List; P: Position) RETURN Boolean IS
BEGIN

RETURN P = NULL;

END IsPastEnd;

FUNCTION IsPastBegin (L: List; P; Position) RETURN Boolean IS
BEGIN
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RETURN P = NULL;

END IsPastBegin;

FUNCTION First (L: List) RETURN Position IS

BEGIN

RETURN L.Head;

END First;

FUNCTION Last (L: List) RETURN Position IS

BEGIN

RETURN L.Tail;

END Last;

FUNCTION Retrieve

(L: IN List; P: IN Position) RETURN ElementType IS

BEGIN

IF IsEmpty(L) THEN

RAISE EmptyList;
ELSIF IsPastBegin(L, P) THEN
RAISE PastBegin;

ELSIF IsPastEnd(L, P) THEN

RAISE PastEnd;

ELSE

RETURN P.Info;

END IF;

END Retrieve;

PROCEDURE GoAhead (L; List; P: IN OUT Position) IS

BEGIN

IF IsEmpty(L) THEN

RAISE EmptyList;
ELSIF IsPastEnd(L, P) THEN

RAISE PastEnd;

ELSE

P  := P.Linlc;

END IF;

END GoAhead;

PROCEDURE GoBaclc (L: List; P: IN OUT Position) IS

Current: Position;

BEGIN

IF IsEnipty(L) THEN

RAISE EmptyList;
ELSIF IsPastBegin(L, P) THEN

RAISE PastBegin;
ELSIF IsFirst{L, P) THEN

P  := NULL;

ELSE — see whether P is in the list

Current := L.Head;

WHILE (Current /= NULL) AND THEN (Current.Linlc /= P) LOOP

Current := Current.Link;

END LOOP;

IF Current = NULL THEN — P was not in the list

RAISE PastEnd;

ELSE

P := Current; — return predecessor pointer
END IF;

END IF;

END GoBack;

PROCEDURE Delete (L: IN OUT List; P: Position) IS

Previous: Position;

Current : Position;
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BEGIN

Current := P;
IF IsEmpty(L) THEN

RAISE EmptyList;
ELSIF IsPastBegin(L, Current) THEN

RAISE PastBegin;
ELSIF IsFirst(L, Current) THEN — must adjust list header
L. Head : = Current. Linlc ;

IF L.Head = NULL THEN -- deleted the only node
L.Tail := NULL;

END IF;

else — "normal" situation
Previous := Current;
GoBaclc(L, Previous) ;

Previous .Linlc : = Current.Linlc;
IF IsLast(L, Current) THEN — deleted the last node
L.Tail := Previous;

END IF;

END IF;

Deallocate(Current);

END Delete;

PROCEDURE Insert (L: IN OUT List; X: ElementType; P: Position) IS
BEGIN

IF P = NULL THEN

AddToRear(L, X);
ELSE

P.Link := Allocate{X, P.Link);
END IF;

END Insert;

PROCEDURE Replace (L: IN OUT List; X: ElementType; P: Position) IS
BEGIN

IF P = NULL THEN

RAISE PastEnd;

ELSE

P.Info := X;

END IF;

END Replace;

PROCEDURE Copy (To: IN OUT List; From; IN List) IS
Current: Position;

BEGIN

Initialize(To);
Current := First(From);

WHILE NOT IsPastEnd(From, Current) LOOP

AddToRear(To, Retrieve(From, Current));
GoAhead(From, Current);

END LOOP;

END Copy;

END Lists_Generic;

The first two operations are internal to the package: They are called by other pack
age operations when a node must be allocated or released. We write these as subpro
grams so that the method of allocation or deallocation can be changed without requiring
receding of other operations.

The next operation is Initialize, which makes a list empty. Note that we cannot
simply set the head and tail pointers to NULL, because that would only disconnect the
header from the nodes in the list, leaving them inaccessible! Instead, we must loop
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through the entire list (in time proportional to the list length!), disconnecting and dispos
ing of each node as we arrive at it. To do this, we need to maintain two pointer variables,
Previous and Current. Be certain you understand exactly how this operation works.

The next two operations, AddToFront and AddToRear, are the basic construc
tors for adding nodes to the beginning and end of a list. These are similar to the same-
named operations in the simple list package of Chapter 8.

The inquiry and selector operations are straightforward; we skip to GoAhead and
GoBack, which move forward and backward in the list, respectively. Going forward is
easy; we do need to check to be sure that we can go forward—that is, that we are not
already off the end. Going backward from a node designated by P is not so easy. We
need, somehow, to find the predecessor pointer—the pointer in the list that designates
the same node that P does. In a singly linked list, the only way we can accomplish this
is to start at the beginning, moving down the list until we reach a Link field equal to
P. This field will be in some other node; it is the pointer to that node that we must return
to the calling program. Trace GoBack very carefully to persuade yourself that you
understand it. What is its "big O"?

The next operation is Delete, which disconnects from a list the node designated
by a pointer P. The only way we can do this is to go back to the node preceding the one
we wish to delete; we use GoBack for this. Once we find the predecessor node, we
connect it to the t\o<ie following the deleted one, then deallocate the deleted node.

Finally we examine Copy, which makes a copy of the elements in the list. As in the
case of Initialize, copying a list is not just a matter of copying the pointers in the
header; that would make both headers point to the same list. If we changed the contents
of one, the contents of the other one would change! This is not a copy! To copy a list
From to a list To, we must start at the beginning of From, then move through From,
copying each node's contents (not its links!) into newly allocated nodes, which are then
attached to To.

Look closely at Copy: We are able to write it purely in terms of the other list oper
ations, with no direct reference to the list implementation. Indeed, strictly speaking, it
need not even be a part of the package; a client could write it without knowing the list
details. We include Copy in the package as a convenience.

Testing the List ADT

Program 9.3 uses most of the operations in the list ADT. It is actually more useful than
that; we have included in it a number of local procedures that use the list operations in
interesting ways. You can use these procedures as models for writing your own list-
handling procedures.

Program 9.3 Demonstration of Generic Linked-List Package

WITH Lists_Generic;
WITH Ada.Text_I0;

PROCEDURE Test_Lists_Generic IS

— I Test program for generic one-way lists
— I illustrates how to use the basic operations of the package
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— I Author: Michael B. Felciman, The George Washington University
— I Last Modified: September 1995

PACKAGE CharLists IS

NEW Lists_Generic (ElementType => Character);
USE CharLists;

Cl, C2, C3: List;

Ch: Character;

PROCEDURE PrintList(L: List) IS
— Pre: L is defined

— Post: displays the (character) contents of L
Current: Position;

BEGIN

Current := First(L);

WHILE NOT IsPastEnd(L, Current) LOOP

Ada.Text_IO.Put(Item => Retrieve(L, Current));
GoAhead(L, Current);

END LOOP;

Ada.Text_IO.Put(Item => '#');
Ada.Text_IO.New_Line;

END PrintList;

PROCEDURE CopyBaclc (To: IN OUT List; From: IN List) IS
— Pre: From is defined

-- Post: copies From to To, starting with the last node of
From and moving forward.

Current: Position;

BEGIN

Initialize(To);
Current := Last(From);

WHILE NOT IsPastBegin(From, Current) LOOP
AddToFront(To, Retrieve(From, Current));
GoBacJc (From, Curren t) ;

END LOOP;

END CopyBaclc;

PROCEDURE Weave (From: IN OUT List) IS
— Pre: From is defined

— Post: inserts a character after each node of From
Current: Position;

BEGIN

Current := Last(From);
WHILE NOT IsPastBegin(From, Current) LOOP
Insert(From, '%', Current);

GoBac)c (From, Current) ;
END LOOP;

END Weave;

PROCEDURE Subst (From: IN OUT List) IS

— Pre: From is defined

— Post: replaces each character of From by
Current: Position;

BEGIN

Current := Last(From);

WHILE NOT IsPastBegin(From, Current) LOOP
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Replace(From, Current);
GoBack(From, Current);

END LOOP;

END Subst;

BEGIN — Test_Lists_Generic

AddToFront(C1, 'a')

PrintList (CD ;

AddToFront(Cl, 'b*)

PrintList (CD ;

AddToFront(Cl, 'c')

PrintList (CD ;

AddToFront(Cl, 'd')

PrintList (CD ;

Copy(To => C2, From => Cl);

PrintList(C2);

Copy(To => C3, From => Cl);

PrintList(C3);

FOR Count IN 1..2 LOOP

Delete(Cl, First(Cl));

PrintList(Cl);

Ada.Text_IO.Put(Retrieve(Cl, Last(CD));
Ada.Text_IO.Put('*');

Delete (Cl, Last (CD);

PrintList (CD ;

END LOOP;

FOR Count IN 1..2 LOOP

Delete{C2, First(C2));

PrintList(C2);

Ada.Text_IO.Put(Retrieve(C2, Last(C2)));

Ada.Text_IO.Put{'*');

Delete(C2, Last(C2));

PrintList(C2);

END LOOP;

AddToFront(Cl, 'a');

PrintList (CD ;

AddToFront(Cl, 'b');

PrintList(Cl);

AddToFront(Cl, 'c');

PrintList (CD ;

AddToFront(Cl, 'd');

PrintList(Cl);

Weave(Cl);

PrintList(Cl);

Copy(To => C2, From => Cl);

PrintList(C2);

Initialize (CD ;

PrintList (CD ;

CopyBaclc(To => Cl, From => C2) ;

PrintList(Cl);

FOR Count IN 1..4 LOOP

Delete (Cl, First (CD);

PrintList(Cl);

Ada.Text_IO,Put(Retrieve(Cl, Last(CD));
Ada.Text_IO.Put('*');

Delete(Cl, Last(Cl));

PrintList (CD ;

END LOOP;

Subst(C2);

PrintList(C2);

END Test_Lists_Generic;
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9.2 ALLOCATION USING A LIST OF AVAILABLE

SPACE (LAVS)

As written in Program 9.2, our Allocate and Deallocate operations use NEW and
an instance of Unchecked_Deallocation to allocate and release nodes. In fact,
there is a better way. Dynamic data structures are used because they can grow and
shrink with time; for each node deleted, it is quite likely that another will be allocated.
This is especially true in applications where a number of lists of the same type are
active at the same time. Some are longer; others are shorter.

Let us use this fact to set up a "recycling system" for deleted nodes. Instead of
releasing a node back to the pool, which can be fairly costly in terms of machine
instructions, let us recognize that it is likely to be needed later and simply attach it to an
extra list that is the package's property and, therefore, is declared within the package
body itself. Historically this list was called LAVS, for List of Available 5pace.
Sometimes it is called FreeList or a similar name.

Here is a client's list LI and the LAVS. We assume that, as a result of previous dele
tions, LAVS currently has two nodes in it.

Ll Hat Boy Cat Dog

LAVS ?? ■ '

Each time a node is deleted from an active list, we add it to the front or rear of
LAVS. In our example, deleting Boy from Ll will have these results:

Ll Hat Boy

LAVS

Cat Dog

??
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The same physical node is detached from one list (LI) and attached to another
(LAVS). Each time a node must be allocated, we first check LAVS to see if there are any
"recycled" nodes. If LAVS is not empty, we just disconnect the first node from LAVS
and return a pointer designating it. If LAVS is empty, there are "no recycled" nodes and
we must call NEW to allocate a new one from the storage pool.

The advantage of the LAVS approach is that it does not depend on the particular
deallocation scheme used by the Ada system and uses NEW, which can be expensive in
machine instructions, only when absolutely necessary. You can also carry your knowl
edge of the LAVS scheme to other languages; it is a universally useful method that has
been employed almost since the very beginning of computer history.

As an exercise, you can modify the package body, specifically Allocate and
Deallocate, so that LAVS is used instead of Unchecked_Deallocation to

recycle deleted nodes.

9.3 UNBOUNDED QUEUES AND STACKS

In Chapter 7, we introduced LIFO stacks and FIFO queues, implementing them with
array structures. Because an array has a lower bound and an upper bound, and therefore
has a fixed number of components, we call them bounded implementations. A linked-
list implementation, where there is no fixed bound on the size of the stack or queue, is
usually called an unbounded implementation.

Linked implementation of Queues

An unbounded queue implementation is very straightforward. We allocate a new list
node (using LAVS or not) whenever an item is to be enqueued; we use whatever deallo
cation mechanism is available to free the node when an item is dequeued. As it happens,
we can get all the services we need directly from an instantiation of Lists_Generic:
Enqueue is implemented by a call to AddToRear; Dequeue is implemented just by
deleting the first node in the list.

Program 9.4 shows the revised package specification for the linked-list implemen
tation; completing the package body is left as an exercise.

Program 9.4 Specification for Generic Queues, Implemented with Linked Lists

WITH Lists_Generic;

GENERIC

TYPE Element IS PRIVATE;

PACKAGE Queues_Generic_List IS

— I Specification for Generic Queues, Implemented with Linked Lists
— I Author: Michael B. Feldmeui, The George Washington University
— I Last Modified: September 1995

— type definition
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TYPE Queue (Capacity: Positive) IS LIMITED PRIVATE;

-- exported exceptions

QueueFull : EXCEPTION;

QueueEmpty : EXCEPTION;

-- constructors

PROCEDURE MakeEmpty (Q : IN OUT Queue);
— Pre: Q is defined

-- Post: Q is empty

PROCEDURE Enqueue (Q : IN OUT Queue; E : IN Element);
— Pre: Q and E are defined
— Post: Q is returned with E as the top Element
-- Raises: QueueFull if Q already contains Capacity Elements

PROCEDURE Dequeue (Q : IN OUT Queue);

— Pre: Q is defined
— Post: Q is returned with the top Element discarded
— Raises: QueueEmpty if Q contains no Elements

— selector

FUNCTION First (Q : IN Queue) RETURN Element;
— Pre: Q is defined
— Post: The first Element of Q is returned
— Raises: QueueEmpty if Q contains no Elements

— inquiry operations

FUNCTION IsEmpty (Q : IN Queue) RETURN Boolean;
— Pre: Q is defined
— Post: returns True if Q is empty. False otherwise

FiraCTION IsFull (Q : IN Queue) RETURN Boolean;
— Pre: Q is defined

— Post: returns True if Q is full, False otherwise

PRIVATE

PACKAGE Lists IS

NEW Lists_Generic(EleraentType => Element);

TYPE Queue (Capacity: Positive) IS RECORD

Count : Natural := 0;

Store : Lists.List;
END RECORD;

END Queues_Generic_List;

Linked Implementation of Stacks

An unbounded stack implementation is analogous. Items are both pushed and popped at
the head of the list; both operations are thus done in fixed time. Given the specification
for stacks (Program 7.5), you should have little difficulty in writing a generic package
specification and body for the unbounded implementation of stacks. This is left as an
exercise.
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9.4 ADT DESIGN: THE KEYED TABLE AS A

LINKED LIST

So far in this chapter, we have seen many advantages of using pointer variables and
dynamic allocation to implement linked lists. We have repeatedly emphasized the ease
with which insertions and deletions can be performed on such a list. Let us therefore
reimplement the keyed table first introduced in Section 5.8 as a linked list, using the
ADT from Section 9.1 to support us. Program 9.5 shows the specification of
Tables_Generic_List. Comparing it with Program 5.20 reveals that the two are
nearly identical. The only difference is the context clause

WITH Lists_Generic;

at the top, and a different PRIVATE section, as follows:

PACKAGE Lists IS

NEW Lists_Generic (ElementType => Element);

TYPE TableType IS RECORD

Data : Lists.List;

Numltems: Natural;

END RECORD;

The data field of a table, formerly an array in Program 5.20, is now just a list taken
from an instance of Lists_Generic. Numltems is a count of the number of items
in the table, as before.

Program 9.5 Specification for Generic Tables, Implemented with Linked Lists

WITH Lists_Generic;

GENERIC

TYPE Element IS PRIVATE; — assignment and equality predefined
TYPE KeyType IS PRIVATE; -- here too

Capacity: IN Positive; — maximum table size

— These generic parameters specify how to insert a key in an
— element, retrieve the key from an element, compare elements
WITH FUNCTION KeyOf (Item: Element) RETURN KeyType IS o;
WITH FUNCTION "<" (Keyl, Key2: KeyType) RETURN Boolean IS o;

— This parameter specifies what to do with each element during
— a traversal of a table;

WITH PROCEDURE Visit (Item: Element);

PACKAGE Tables_Generic_List IS

Specification of the abstract data type for an ordered table of
element records, each containing a key.
This version has type definitions to implement the table as a
singly-linked list. The client cannot see or use these types
because Table is LIMITED PRIVATE.

Author: Michael B. Feldman, The George Washington University
Last Modified: September 1995
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-- Data Structure

TYPE TableType IS LIMITED PRIVATE;

-- Exported exceptions

UninitializedTable: EXCEPTION;

NoSpaceLeft : EXCEPTION;

— Operators

PROCEDURE InitializeTable (Table : IN OUT TableType);
— initializes a Table.

— Pre : None

— Post: Table is an initialized TableType

FUNCTION SizeOfTable (Table : TableType) RETURN Natural;
— Returns the number of elements in a Table

— Pre : Table is an initialized TableType
— Post: Returns the number of elements in Table

PROCEDURE Search (Table : TableType;
Target : KeyType;

Success : OUT BoolecUi) ;

— Searches a Table for Target.
— Pre : Table is ein initialized TableType
— Post: Success is True if Target is found; otherwise.

Success is False.

PROCEDURE Insert (Table : IN OUT TableType;
Item : Element;

Success : OUT Boolean);

— Inserts Item into a Table.

— Pre : Table and Item are defined; Table is initialized.

— Post: Success is True if insertion is performed; Success is False
if insertion is not performed because there is already
an element with the same Icey as Item.

— Raises: NoSpaceLeft if there is no space available for Item.

PROCEDURE Delete (Table : IN OUT TableType;
Target : KeyType;

Success : OUT Boolean);

— Deletes the element with Jcey Target from a Table.
— Pre : Tcible and Target are defined; Table is initialized.

— Post: Success is True if deletion is performed; Success is False
if deletion is not performed because there is no element
whose key is Target.

PROCEDURE Replace (Table : IN OUT TableType;
Item : Element;

Success : OUT Boolean);

— Replaces the element of a Table with the same key as
— Item by the contents of Item.

— Pre : Table and Item are defined; Table is initialized.

— Post: Success is True if the replacement is performed; Success is
False if there is no element with the same key as Item.

PROCEDURE Retrieve (Table : TableType;
Target : KeyType;

Item : OUT Element;

Success : OUT Boolean);

— Copies the element whose key is Target into Item.
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— Pre : Table is an initialized TableType.
— Post: Success is True if the copy is performed; Success is False

if there is no element whose key is Target.

PROCEDURE Traverse (Table : TableType);

— Pre : Table is an initialized TableType.
— Post: Each element is operated on in turn by procedure Visit.

PRIVATE

SUBTYPE Tablelndex IS Positive RANGE 1..Capacity;
SUBTYPE TableSize IS Natural RANGE 0..Capacity;

PACKAGE Lists IS

NEW Lists_Generic(ElementType => Element);

TYPE TableType IS RECORD

CurrentSize: TableSize := 0;

Data: Lists.List;

END RECORD;

END Tables_Generic_List;

Dummy Nodes in an Ordered List

It will simplify the list-processing operations if we assume that an ordered list always
begins with a dummy node.

The dummy node is analogous to a sentinel. The presence of the first dummy node
means that we never have to change the value of Table. Data. Head when a new
node is inserted. In this implementation, an "empty" table is not really empty; it always
contains a dununy node, as shown in Figure 9.1. The symbols "?" indicate that we are
not concerned with the element value in the dummy node. The statement

InitializeTable (MyTable);

builds this list with one physical node in it—the dummy—but no actual table elements.

The Package Body

Program 9.6 shows the package body of Tables_Generic_List. Note that
InitializeTable just adds a dummy node to the list header.

T

CurrentSize

Data

Figure 9.1 Initialized Table T (Note Dummy Node)
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Program 9.6 Body of Generic Tables, Implemented with Linked Lists

PACKAGE BODY Tables_Generic_List IS

Implementation of the abstract data type for a table of
element records, each containing a key.
This implementation uses an instantiation of singly-linked lists,
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1995

USE Lists;

PROCEDURE InitializeTable (Table : IN OUT TableType) IS
— initialize the table by creating the dummy node
Dummy: Element;

BEGIN — InitializeTable

Lists.AddToRear (L => Table.Data, X => Dummy);
Table.CurrentSize := 0; ~ dummy node doesn't count

END InitializeTable;

— local procedure, not exported to client, just used by the others.

PROCEDURE Locate(Table : IN OUT TableType;
Target : KeyType;

Previous : OUT Position;
Current : OUT Position;

SearchSuccess: OUT Boolean) IS

Attempts to locate a node with key value Target in the
list whose first node is pointed to by Previous.
Pre : Target is defined; L is initialized.

— Post: If Target is located, SearchSuccess is set to True;
otherwise, SearchSuccess is set to False.

Previous points to the last list node with key < Target,
Current points to the first one with key >= Target.
We need the Temps because Previous and Current are OUT

CurrentKey : KeyType;

TempPrevious : Position;
TempCurrent : Position; — keeps track of current node
Found : Boolean;

BEGIN — Locate

IF IsEmpty(Table.Data) THEN — no dummy nodes!
RAISE UninitializedTable; — unlikely; Locate not user operation

END IF;

— Search for first node with key >= Target.
— Start with first actual node.

Found := False;

TempCurrent := First(Table.Data); — points to dummy node
TempPrevious := TempCurrent;

IF IsLast(Table.Data,TempCurrent) THEN — tcible empty
Previous := TempPrevious;
Current := TempCurrent;

SearchSuccess := False;
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RETURN;

END IF;

TempPrevious := TempCurrent;
GoAhead(Table.Data, TempCurrent); — to first "real" node

WHILE NOT IsPastEnd{Table.Data, TempCurrent)

AND THEN NOT Found LOOP

— invariant:

Target > Icey of each node pointed to by Current so far.
CurrentKey := KeyOf (Retrieve(Table.Data, TempCurrent));
IF Target < CurrentKey THEN

Found := True;

ELSE

TempPrevious := TempCurrent; — advance Previous
GoAhead(Table.Data, TempCurrent);

END IP;

END LOOP;

— assert: Target is located or CurrentKey is larger than Target.

— Set Next and flag to indicate search results.
Previous := TempPrevious;
Current := TempCurrent;

SearchSuccess :=

(NOT IsPastEnd(Table.Data, TempCurrent))

AND THEN CurrentKey = Target;

END Locate;

- Operators

FUNCTION SizeOfTable (Table : TableType) RETURN Natural IS

BEGIN

RETURN Table.CurrentSize;

END SizeOfTable;

PROCEDURE Search (Table : TableType;
Target : KeyType;

Success : OUT Boolean) IS

BEGIN — stub

NULL;

END Search;

PROCEDURE Insert (Table : IN OUT TableType;
Item : Element;

Success : OUT Boolean) IS

Previous : Position; -- pointer to node preceding Item
Current : Position; -- pointer to node following Item
SearchSuccess : Boolean; -- search result

ItemKey : KeyType; — key of record Item

BEGIN — Insert

IF IsEmpty(Teible.Data) THEN

RAISE UninitializedTable;

END IF;

— Validate ItemKey and search for a valid key.
ItemKey := KeyOf (Item);
— Search the list for ItemKey.

Locate (Table, ItemKey, Previous, Current, SearchSuccess);

— Insert if ItemKey is in range and is a new key
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IF NOT SearchSuccess THEN — insert after Previous

Success := True; — Key is new iff search failed
Insert(Table.Data, Item, Previous); — insert right here
Table.CurrentSize := Table.Currents!ze + 1;

ELSE

Success := False;

END IF;

END Insert;

PROCEDURE Delete (Table : IN OUT TableType;
Target : KeyType;

Success : OUT Boolean) IS

BEGIN — stub

NULL;

END Delete;

PROCEDURE Replace (Table : IN OUT TableType;
Item : Element;

Success : OUT Boolean) IS
BEGIN -- stub

NULL;

END Replace;

PROCEDURE Retrieve (Table : TableType;
Target : KeyType;

Item : OUT Element;

Success : OUT Boolean) IS
BEGIN -- stub

NULL;

END Retrieve;

PROCEDURE Traverse (Table : TableType) IS
Current: Position;

BEGIN -- Traverse

IF IsEmpty(Table.Data) THEN

RAISE UninitializedTable;

END IF;

Current := First(Table.Data);

GoAhead(Table.Data, Current); -- start at first node after dummy
WHILE NOT IsPastEnd(Table.Data, Current) LOOP

Visit (Retrieve(Table.Data, Current)); — visit node
GoAhead (Tcible. Data, Current);

END LOOP;

END Traverse;

END Tables_Generic_List;

Recall from Chapter 5 that procedure Search is used to determine whether a par
ticular target key is present in the list; it returns a Boolean value to indicate the search
result. Search calls procedure Locate—a procedure internal to the package body
and not available to clients—^to perform the actual search.

Locate is the critical procedure to understand. It returns a pointer to the node con
taining the target key, and also a pointer to that node's predecessor. In writing Locate,
we can take advantage of the fact that the key values are in ascending sequence.
Consequently, while searching for the target key, if we reach a list element whose key
value is larger than the target key, we know that the target key cannot be present in the
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list. In this case, the SearchSuccess flag is set to False but the Previous and
Current pointers are returned anyway. If SearchSuccess is True, we know the
location of both the target and its predecessor; if SearchSuccess is False, we
know where the key would go if it were inserted. In this way, we can use Locate as a
step not only in Search, but in Insert, Delete, and Replace as well. Because
Locate is so critical to the other operations, you should study it very carefully, draw
ing a diagram if necessary. Also study the procedure Insert to see how it uses
Locate.

Procedures Search, Delete, Retrieve, and Replace are quite similar and
are left as an exercise along with function SizeOfTable. Finally, procedure
Traverse traverses the ordered list, visiting each actual node but not the dummy node.

Analysis of Operations on an Ordered List

We have gone to considerable effort to maintain our linked list in ascending order by
key value; however, the improvement in search efficiency that results is relatively mod
est. If we assume that a target key is as likely to be at the front of a list as at the end of
the list, then on the average we will have to examine half of the list elements. This is
true whether or not the target key is in the list. If a list is not ordered, we will have to
examine all of its elements to determine that a key is not in the list, but only half of its
elements, on the average, to find a key that is in the list. Therefore, list search is an 0(AO
process for both ordered and unordered lists.

It takes considerably longer to insert an item into an ordered list than into an
unordered list. In an unordered list, we can arbitrarily insert a new element at the list
head. In an ordered list, we must first search for the appropriate position of the new
element before inserting it. The main advantage of using ordered lists occurs when
displaying the list contents. An ordered list is always ready to be printed or displayed.
If the list is unordered, we must find some way to sort it before we can display it. We
shall see later that using a different linked structure—a search tree—can reduce the
time required for most table operations to 0(log2 AO-

9.5 APPLICATION: THE AIRLINE PASSENGER
LIST AGAIN

In Section 5.9, we used an airline passenger list as an example of the use of a generic
table ADT. In the preceding section, we have reimplemented the table ADT using a
singly linked list, but we have not changed the public part of the specification. It is
therefore very easy to reuse the airline passenger example: Simply recompile and relink
everything, this time using the linked-list version of the table ADT. The client program
BuildFlightList should work exactly as it did before. This serves as a very good
example of the benefits of LIMITED PRIVATE types and carefiil package specifica
tions: A data structure can be reimplemented without causing any change at all to client
programs.
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9.6 ADT DESIGN: PASSIVE AND ACTIVE

ITERATORS

The generic table-handler specification introduced in Section 9.4 provides an operation
called Traverse, which moves through the table, one element at a time, until each
element has been "visited" once. Recall that a generic procedure parameter Visit
must be supplied by the client program; this procedure contains the actual work to be
done in visiting each table element.

Formally, Traverse operation is an example of a passive iterator operation. An
iterator is any operation that iterates through a data structure one element at a time;
we call itpassive because the client program simply calls it once and "stands back" pas
sively while the iterator roams through the entire table.

Sometimes an application requires iterating through a table but allowing the client
program the flexibility to decide just when to proceed to the next element, or indeed to
stop the iteration early, before the entire table is processed. Moving through a table in
this fashion is called active iteration, because the client program is actively involved in
the process at every step.

Active Iterator Operations

To be actively involved in the iteration, the client program must execute a loop, using
operations provided by the table package for loop initialization, termination, and incre
mentation and for retrieval of the current element in the traversal. We will call these
operations StartTraversal, MoreElements, MoveToNextElement, and
RetrieveCurrentElement, respectively. If the table being used by the client is
called T, and E is a variable of type Element, then the basic client-program algorithm is

StartTraversal(T);
LOOP

E  := RetrieveCurrentElement(T);

—process the current element E here

EXIT WHEN NOT MoreElements(T);

MoveToNextElement(T);
END LOOP;

The details of these operations depend on the way the table is implemented.
Suppose, for example, that the table is implemented as a sorted array. We might include,
as a field in the record defining the table type, an array index, WhichElement, indi
cating which element of the array is being processed, and another. Currents!ze,
indicating the current number of elements in the array. In this implementation,

• StartTraversal sets WhichElement to its initial value at the beginning of
the array.

• MoreElements returns True if and only if WhichElement has not reached
NumElements—^that is, has not reached the end of the currently filled part of the array.
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• MoveToNextElement increments WhichElement.

• RetrieveCurrentElement returns the value of the current element.

Protecting the Table During an Active Iteration

Given that a traversal is performed element by element and, by definition, must visit
each element exactly once, it is not reasonable to change the number of elements during
a traversal. Adding an element to the part of the table already visited would probably
ruin the iteration; so would deleting an element from that part of the table. Modifying a
previously visited element would be equally unwise. On the other hand, modifying the
element currently being visited might be the very purpose of the iteration.

In the interest of reliability, therefore, during a traversal the table should be locked
against certain table operations. This can be done by adding a Boolean field—say.
Iterating—to the table record and exporting an exception from the table package—
say, TableLocked. The flag is set to True at the start of a traversal and to False at
the end of the traversal. Each of the operations that modifies the table will raise the
exception where appropriate.

Because the client cannot be prevented from ending the iteration early—that is,
before the entire table has been visited—it is reasonable for the table package to pro
vide an operation StopTr aver sal, which the client can call at any point to end the
traversal. This operation unlocks the table.

To support active iteration, we change the type declaration for TableType as
follows:

TYPE Table IS RECORD

Numltems : Positive := 0;

Store : Lists.List;

Iterating : Boolean := False;
WhichElement: Lists.Position;

END RECORD;

We leave it as an exercise to modify the list version of GenericTables so that
active iteration is supported. Note that, in effect, Lists_Generic already supports
active iteration over a list, providing the operations First, GoAhead,
Retrieve, IsLast, and IsPastEnd. You can use these to build the iterator

operations for GenericTables.

9.7 ADT DESIGN: UNBOUNDED VARIABLE-

LENGTH STRINGS

In this section, we return to the package for variable-length-string handling that we devel
oped back in Section 6.4. Recall that in that design, a VString object consisted of a dis
criminant giving the maximum length, a string array of that length, and a current-length
field. The design is seriously limited for general text-handling work by the fact that every
text object must have a specified maximum length and occupies that amount of space. This
wastes a lot of space, especially if many of the objects have only a few characters in use.
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McixLength 32
T := MakeVString("ABCDEFGHIJ", 32)

CurrentLength 10

StringPart A B C D E fIg H I J 0 . . . 0

1 2 3 4 5 6 7 8 9 10 11

(a) Original scheme from Section 6.4

32

T  := MakeVString{"ABCDEFGHIJ")

10 .8 8

/8

r

8

A B C D E F G|h I 1J 0 0 0  0 1 0 0

(b) New scheme Using Singly-linked List

Figure 9.2 Bounded and Unbounded Structures for Variable-Length Strings

We can solve this problem with an alternative design, namely letting a VString
object consist of a linked list of smaller objects, for example with a length of eight char
acters. If the actual length of the string is not a multiple of eight, some space is wasted
at the end, but it is probably much less than in the other design. A comparison showing
how a p^cular ten-character string would be stored in both schemes appears in Figure
9.2. This new style of VString need not have a specified maximum length and is
essentially unlimited in length; like all dynamic objects, it is limited in practice by the
size of the pool, but that is usually quite large.

We can easily reuse the work we did developing VStrings in Section 6.4; our
new package need only WITH VStrings, then define a short subtype—for example,

SUBTYPE ShortText IS VString(MaxLength => 8);

and use this as the element type with which to instantiate Lists_Generic.
Concatenating one VString object to another is now a matter of copying the first

object to a result list (using the Copy already provided in ListsGeneric), then
copying the second VString object, character by character, onto the end of the result.
The character-by-character copy is necessary to fill in the empty space at the end of the
first list. This makes substring searching and equality checking much easier.

A diagram showing the concatenation of two of these new VString objects is given
in Figure 9.3; writing this function and completing the package is left as an exercise.

9.8 APPLICATION: SPARSE VECTORS AND

MATRICES

Vectors and matrices with a high proportion of zeros—sometimes as high as 95 per
cent—^are common in real-world numerical applications; the number of elements is
often very large, sometimes too large to fit in main memory if all elements are stored.
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T1 := MakeVString("ABCDEFGHIJ">

10 8 8

/8 2

r4-
A B C D E F G H I J 0 0 0  0 0 0

T2 := MakeVString("PQRSTUV")
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Figure 9.3 Concatenation of Unbounded VStrlngs

It is thus important to think about how to store such structures economically. The idea
is to devise a way to store only those elements that are not zero, in some data structure
such that if an element does not appear at all, it is treated as being zero.

Generally, in such applications, the values are constantly changing as a numerical
problem is iteratively solved.

We can therefore think of this situation as strongly analogous to our keyed tables.
Indeed, we can use a keyed table to represent a sparse vector. A vector element, as dis
cussed in Chapter 4, has a subscript and a value. To represent that vector in a sparse
form, we represent a nonzero vector element as a record, using as the key field the sub
script (the one the element would have had in an ordinary vector), and the nonzero
value as a nonkey field. A ten-element vector V of Float values, with only three
nonzero values—for example,

V := (0.0, 1.5, -3.7, 0.0., 0.0, 0.0, 2.4, 0.0, 0.0, 0.0);

will be represented as a keyed table with three pairs inserted, namely <2, 1. 5>, <3,
-3 . 7>, and <7,2.4>.

Sparse Vector Operations

Recall from the discussion in Section 4.6 that two of the operations on vectors are store
an element into a vector with a given subscript and retrieve a given elerhent from a vec
tor. If an array is used to represent an ordinary vector, these operations are just the usual
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array-element operations. If V is a vector of Float values and x is a Float variable,
then store and retrieve are, respectively, just

V(5) := 23.7;

X ;= V(K);

If the vector is represented in some sort of sparse structure, we cannot use ordinary
array subscripting. Instead, we write a procedure Store and a function Retrieve so
that the two lines above become

Store(Vector => V, Subscript => 5, Value => 23.7);
X := Retrieve(Vector => V, Subscript => K);

If we use a keyed table, we must be careful to retain only nonzero elements in the
table. Therefore, the algorithms for Retrieve and Store are as follows:

To Retrieve a Sparse Vector Element by Subscript:

1. Search the table for an element with the desired subscript.

2. If the search is successful, return the associated value.

3. If the search is unsuccessful, return 0.

To Store a Sparse Vector Element by Subscript:

1. If the element value is 0.0, delete it from the table (recall that our keyed-table
Delete just retums a false success flag if the element was not already in the table).

2. If the element value is not 0.0, search the table for an element with the desired

subscript.

3. If the search is successful, replace that element with the new element.

4. If the search is unsuccessful, insert the new element.

Given Retrieve and Store, we can sketch out the algorithm for adding two
sparse vectors, by analogy with the corresponding algorithm from Section 4.6. Recall
that the two vectors must be conformable, so assume that vectors Left and Right
both have bounds LowBound and HighBound. The potential number of compo
nents—if they were all nonzero—is HighBound-LowBound+1; let us call this num
ber MaxNonZero. The algorithm is

FOR Which IN LowBound. .HighBound LOOP
Store(Vector => Result, Subscript => Which,
Value => Retrieve(Vector => Left, Subscript => Which) +

Retrieve(Vector => Right, Subscript => Which));
END LOOP;

or, using positional instead of named parameters, the simpler form

FOR Which IN LowBound. .HighBound LOOP
Store(Result, Which,

Retrieve(Left, Which) + Retrieve(Right, Which));
END LOOP;
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Let's look at the performance of vector addition using this scheme. Assume that
each vector has ActualNonZero nonzero components (i.e., the list has
ActualNonZero nodes). Then each Retrieve operation is O(ActualNonZero),

since on the average half the list must be searched.
Now, since the vector is defined for MaxNonZero components, MaxNonZero

calls to Retrieve must be executed for each of the two vectors, and—in the worst

case—^MaxNonZero insertions must be done. Since each insertion is also

O(ActualNonZero), the overall addition operation is C>(MaxNonZero *
ActualNonZero)! But vector addition as done in Section 4.6 is 0(MaxNonZero),

since the two arrays are traversed only once. Thus, we have paid a price in time
performance in return for the economy of space achieved by storing vectors in sparse
form.

Actually, the trade-off is between abstraction and performance; The slow perfor
mance came from our unwillingness to let the addition function know the details of a
sparse vector. We required the addition algorithm to use calls to Store and
Retrieve, which in turn used table operations. If we are willing to let that function use
knowledge of the fact that sparse vectors are stored as lists, we can speed it up consider
ably. Only one pass through the two lists is required: Since the lists are stored in order
on the subscripts, we use a "merge" algorithm, whose effect is illustrated in Figure 9.4.

Begin at the beginning of both vectors Left and Right. If the subscript of the
first node of Left is less than that of Right, we know the corresponding element of
Right is zero. So we just copy the element of Left onto the end of the sum vector
Result. Then we find the successor node in Left and try again.

On the other hand, if the Right subscript is less, we copy the node from Right
onto the end of the Result list, moving to its successor.

If the two subscripts are ever equal, both Left and Right have nonzero values in
that position and we add the values together before adding a node for that subscript onto
the end of Result.

Eventually, we reach the end of one of the vectors. Suppose we reach Lef t' s end
first. At that point, we just copy the rest of Right onto Result, since all remaining
components of Lef t are zero.

Our merge algorithm is somewhat more complicated to code than the earlier ver
sion, but it is a lot faster, since its performance is 0(ActualNonZero) instead of
0(MaxNonZero * ActualNonZero)! If MaxNonZero is much larger than
ActualNonZero—a good assumption, of course, in the case of sparse vectors—the
speedup is really significant.

Implementation of sparse vectors in this fashion, instead of a keyed table, is
straightforward given the generic singly linked list package of Section 9.1. This is left
as an exercise.

Sparse Matrices

The linked-list implementation of sparse vectors can be extended to two dimensions to
handle sparse matrices. Several operations on "normal" matrices represented as arrays
were presented in Section 4.5; you should review those operations before continuing here.
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(b) Sparse representation using lists

Figure 9.4 Dense and Sparse Vector Representations

Moving now to a sparse matrix situation, to implement the operations as efficiently
as we did in the vector case, we will need to be able to scan rows or colunms with equal
ease. We thus define a node of a sparse matrix as having row and column subscripts and
row and colunm pointers.

The "header" of a sparse matrix contains two arrays, to serve as heads of the respec
tive row and colunm lists. Each node is thus on two lists, a row list and a column list. To
scan a row, we follow its row pointers; to scan a column, we follow its column pointers.

Filling in the details of a package for sparse-matrix arithmetic is left as an exercise.
An example of the structure of a sparse matrix is given in Figure 9.5, where both the
"normal" and the sparse forms of a 5 x 5 matrix of integers are shown.

This sparse matrix implementation is often called cross lists or orthogonal lists. It
is a special case of a more general one in which each node has N keys and N pointers;
the values may be, for example, information records of some sort. In the general situa
tion, the structure is often called a multilist structure and appears in discussions of data
base organization.



9.9 Stimulating Dynamic Memory Management 365

1.0 2.1 0 0 0

0  -3.2 0 4.5 1.1

0  0 0 2.1 0

5.6 0 -3.0 0 0

0  0 -1.3 0 0 _

Abstract View

Col Body

mm

I I 2 I 2 1-3.2

1  1 1 1  I I 1 I I I !
1

2 t 4 |4.S 2  1 5 jl.ll

T

1  1 1 1  5 1 3 1-1.3|

Implementation

Figure 9.5 Sparse Matrix Represented as Cross-List Structure (Tail Pointers Are
Omitted to Avoid Clutter)

9.9 SIMULATING DYNAMIC MEMORY
MANAGEMENT

Let us use the sparse vector example of Section 9.8 to illustrate how dynamic memory
management might be done in a system where no access type or storage pool is avail
able. We will pretend that Ada has no access types and no storage pool; we will go a step
further by pretending that Ada has no record types either. This gives a realistic emula
tion of the data structures actually available in older languages, such as Fortran-77.

We simulate an array of records using parallel arrays—^that is, a separate one-
dimensional array to represent each field. We simulate pointers using subscripts in
these parallel arrays. Our basic routines for handling list and vector elements can then
easily be recoded to suit the new implementation.

In this example, we assume that the application requires storage of many vectors
at one time. Let the vector range be 1. .1000 as before; assume that no more than 500
vector elements will be nonzero at any one time, independent of the number of vectors
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McixElements: CONSTANT Integer := 1000;
MaxNonZero: CONSTANT Integer := 500;

SUBTYPE VectorRange IS Integer RANGE 1. .MaxElements;
SUBTYPE NodePointer IS Integer RANGE 0. .MaxNonZero;
SUBTYPE ValueType IS Integer; — (or whatever)

Subscripts: ARRAY(1. .MaxNonZero) OF VectorRange;
Values: ARRAY(1. .MaxNonZero) OF ValueType;
Links: ARRAY(1. .McucNonZero) OF NodePointer;

LAVS: NodePointer;

TYPE SparseVector IS ARRAY{1. .2) OF NodePointer;

Figure 9.6 Definitions for Sparse Vectors in Simulated Storage Pool Implementation.

currently active. We now redefine the type NodePointer to be an integer link; the
null pointer value is represented by 0. Figure 9.6 gives the declarations for a number
of structures. Make sure you understand why there are three arrays and why the
dimensions and types are what they are! A sparse vector is, now, just a one-dimen
sional array of two elements—a head "pointer" and a tail "pointer," as shown in the
figure.

To handle allocation of nodes in this simulated storage pool, let's declare another
vector, called LAVS, that will let us know the location of the next available node in the
array, and initialize the whole array by calling a routine StoragePoollnit that just
sets the link of each node to point at the next physical node, so that the entire pool
becomes a list of available space. The Ada code for StoragePoollnit is given in
Figure 9.7; a diagram of the initialized space is shown in Figure 9.8.

This scheme is a miniature version of the NEW operation in Ada and its equiva
lents in other languages. As a new node is required to store a vector value, it is allo
cated from LAVS. If a node is deleted, it is just returned to LAVS by adding it to the
front of the list. This is really just another example of the approach discussed in
Section 7.2, translated to a situation where a "real" NEW operation is no longer
available.

A number of vectors can be sto red in our simulated storage pool and they can grow
and shrink as required. The link structure maintains the logical order of each list; all the

PROCEDURE StoragePoollnit IS

BEGIN

LAVS := 1;

FOR k IN 1 . . MaxNonZero-1 LOOP

Links(k) := k + 1;
END LOOP;

Links(MaxNonZero) := 0;

END StoragePoollnit;

Figure 9.7 Storage Pool Initialization for Array-Based Simulated Storage Pool
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Figure 9.8 Simulated Storage Pool Using Parallel Arrays

lists share the same physical array space. The only time it is necessary to refuse to add
a new item to a vector is in the event that all nodes in the list space are simultaneously
occupied and allocated to vectors.

The name "cursor" is often given to a pointer that is simulated by a value in an
array; the name is just used to distinguish this case from the "real" pointers available in
Ada and other such languages.

9.10 ADA STRUCTURES: ADA 95
UNBOUNDED STRINGS

As we have discussed previously, Ada 95 provides a set of packages for dealing with
strings. In earlier sections, we discussed fixed-length and bounded strings; here, we
mention Ada.Strings.Unbounded, which provides a PRIVATE type
Unbo\mded_String. An object of this type represents a string whose lower bound
is 1 and whose upper bound can vary conceptually between 0 and Natural' Last.
The operations are similar to those for fixed-length strings. The details appear in
Appendix G, which contains the full LRM descriptions of the predefined string pack
ages.

The LRM does not, of course, specify an implementation for Unbounded_String;
this is left to the provider of the package. However, it is typical to implement unbounded
strings as linked lists of some sort, similarly to the implementation we described in
Section 9.7.
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9.11 ADA STRUCTURES: ADA 95 GENERAL

ACCESS TYPES

We have seen in Chapters 8 and 9 that access types can acquire values in only two ways;
as the result of an allocator (NEW) operation or as a copy of another access value. In par
ticular, there is no direct way to cause an access value to designate a declared variable
or constant. This has caused problems in certain applications, and so Ada 95 extends the
access-type concept to allow access values to designate variables and constants.

In order to provide a safe pointer construct that minimizes the likelihood of unde
fined or dangling pointers, Ada 95 now provides two kinds of access types:

• Pool-specific access types, which are just the access types of Ada 83, the ones we've
been working with in Chapters 8 and 9

• General access types, which can designate variables, constants, and dynamically
allocated values

Here are three versions of an access type declaration:

TYPE IntegerPointer IS ACCESS Integer;
TYPE IntegerPointer IS ACCESS ALL Integer;
TYPE IntegerPointer IS ACCESS CONSTANT Integer;

The first declares a familiar access type, which Ada 95 now calls pool-specific. It can
designate only an Integer value allocated from the pool. The second declares a gen
eral access type that can designate an integer variable, integer constant, or pool value.
The third is a restricted "read-only" form of the second: If P is of this type, it can be
dereferenced only to read the designated value, not to write it. That is, P. ALL is not
valid on the left side of an assignment statement. This is analogous to an IN parameter.

Given a general access type of the second kind, can its values point to any integer
variable or constant? No. In keeping with Ada's general philosophy of explicitness in
operations, Ada 95 requires the programmer to indicate explicitly that a variable or con
stant is intended to be "pointed to." For example, the integer variable X, declared as

X :Integer;

cannot be designated by an access value, but the variable Y, declared as

Y: ALIASED Integer;

can indeed be so designated. In everyday English, an alias is a nickname, or a name a
person uses in addition to his or her given name. (A criminal might use a number of
aliases to avoid detection.) In programming, the term "aliased" is a fairly standard one,
and means, by analogy, that the variable can be referred to not only by its name but by
any number of aliases (access values).

Suppose P is a general access type, as above. How does P acquire a value? Of
course, P can still be copied from another access variable, or assigned the result of a
NEW, but we are interested in designating variables. We can cause P to designate Y, for
example, by writing
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P := Y'Access;

The ' Access attribute returns an access value designating Y, or, informally, a pointer
toY.

Program 9.7 illustrates general access types. An array, PromptTable, is made to
contain access values that designate strings of different lengths. The four prompts are
declared as ALIASED, to allow them to be designated. If we wished the prompts to be
CONSTANT strings, the access type would then be written

TYPE StringPointer IS ACCESS CONSTANT String;

Program 9.7 Illustration of Ada 95 General Access Types

WITH Ada.Text_IO;

PROCEDURE General_Access_Types IS

— I Illustrates general access types
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

TYPE StringPointer IS ACCESS ALL String;
— ALL makes StringPointer a "general access type" as opposed to
— a "pool-specific access type." StringPointer values
— can designate declared variables and constants,
— as well as dynamically allocated (NEW) values

Proraptl: ALIASED String := "Enter a command >";
Prompt2: ALIASED String := "Thank you.";
Prompts: ALIASED String := "Invalid; try again.";
Prompt4: ALIASED String := "Bye now.";
— ALIASED means

"able to be designated by a general access value"

PromptTable; ARRAY (1. .4) OF StringPointer :=
{Promptl'Access, Prompts'Access,
Prompts'Access, Prompt4'Access);

— We fill the array with access values: for example,
— Promptl'Access returns an access value designating Promptl

BEGIN — General_Access_Types

— display all the prompts in the table
FOR Which IN PromptTable'Range LOOP
Ada.Text_IO.Put(Item => PromptTable(Which).ALL); — dereference
Ada.Text_IO.New_Line;

END LOOP;

END General_Access_Types;

9.12 HETEROGENEOUS STRUCTURES AND

DYNAMIC DISPATCHING

Recall that in Section 6.6 we introduced Ada 95 tagged types, which can be extended
by deriving new types from them, adding rields and operations as appropriate. We
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introduced the notion of primitive operations^ which, for a given tagged type, are those
declared in the same place as the type. A primitive operation is inherited by a new type
derived from the original, but can be overridden for the new type, in case the inheritance
is not desired.

We used Programs 6.14 through 6.20 to illustrate a hierarchy of tagged types, defin
ing Person, Employee, Professional, Sales, and Clerical. We declared
one variable of each type, George, Mary, Martha, Virginia, and Herman,
demonstrating the appropriate constructors and selectors for each. The time has come to
answer two questions left open in Section 6.6:

• How can we declare a variable that can hold a value of any type in the hierarchy?

• How can we declare an array each of whose elements can be a value of any type in
the hierarchy?

Class-Wide Types

For a tagged type T, Ada 95 provides an attribute T' Class, which represents the entire
type hierarchy for which T is the parent. In our example, a variable of type
Person' Class can hold a value of any of our five types, or indeed of any type
derived from any of these in the future. Person' Class is known as a class-wide type,
and the variable is known as a class-wide variable.

We are getting closer to answering our questions. However, there is a small 'catch":
Ada 95 requires that a class-wide variable be immediately initialized to a specific value
of one of the types, and thereafter the variable can change its value but not its type.

This rule is analogous to the rules for constrained variant records. The reason for the
rule here is that a tagged type can be extended indefinitely, with an unknown number of
derived types, each with an unknown number of extension fields. The compiler cannot
know which types might be derived—^added to T' Class—in the future, so it cannot
even guess at the size of a variable of such an unknown type.

This is not very helpful when we contemplate setting up a dynamic table of tagged
objects. Suppose we wanted to use a table to represent a company. Since there are differ
ent types of employee, each element of the array could be of a different type. Furthermore,
these elements could not all be immediately initialized, because we might obtain the
employee data interactively or from an external file. Moreover, we might later wish to add
new types of employees without having to modify the table structure. Indeed, the possibil
ity of future modifications is exactly what first motivated our use of tagged types.

All this leads Us to ask—continuing the analogy with variant records—^whether there
is a tagged-type Analogue to an unconstrained variant record (that is, a variable whose
type—within a class—can be left initially unspecified and can change over time).

The answer here is yes, but the solution is not quite as simple as that for variant
records. The difference is that by the time an unconstrained variant object is declared,
the compiler knows all the possible variants, and can therefore know how to arrange for
the space to be allocated. In contrast, as we have just seen, a class-wide variable can be
declared and the class later extended.
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Class-Wide General Access Types and
Heterogeneous Arrays

We solve the problem using access types in Program 9.8.

Program 9.8 Creating an Array of Payroll Records

WITH Ada.Text_IO; USE Ada.Text_IO;

WITH Currency; USE Currency;

WITH Dates; USE Dates;

WITH Persons; USE Persons;

WITH Personnel; USE Personnel;

WITH Payroll; USE Payroll;

PROCEDURE Payroll_Array IS

— I demonstrates the use of classwide general access types
— I and dispatching operations
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

George : ALIASED Person;

Mary : ALIASED Employee;

Martha : ALIASED Professional;

Virginia: ALIASED Sales;
Herman : ALIASED Clerical;

— These values can now be designated by general access values

TYPE PayrollPointer IS ACCESS ALL Person'Class;
--a PayrollPointer value can designate a value of type
— Person, or of any type derived from Person, such as
— Employee, Sales, Professional, or Clerical

TYPE PayrollArray IS ARRAY (1. .5) OF PayrollPointer;
— We can put all our employees in an array by designating
— them with PayrollPointer values

Company: Payro11Array;

BEGIN

— first construct all the people, as before

George := Persons.Constructors.MakePerson{
Name => "George",

Gender => Male,

BirthDate => MakeDate(1971,11,2)>;

Mary := Personnel.Construetors.MakeEmployee(
Name => "Mary",

Gender => Female,

BirthDate => MakeDate(1950,10,21),

ID => 1234,

StartDate => MakeDate(1989,7,1));

Martha := Payroll.Constructors.MakeProfessional(
Name => "Martha",

Gender => Female,

BirthDate => MakeDate(1947,7,8),

ID => 2222,
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StartDate => MakeDate(1985,6,6),
MonthSalary => MakeCurrency(50000.00));

Virginia := Payrol1.Construetors.MakeSales(
Name => "Virginia",
Gender => Female,
BirthDate => MakeDate(1955,2,1),
ID => 3456,

StartDate => MakeDate(1990,1,1) ,
WeekSalary => MakeCurrency(2500.00),
CommRate => 0.25);

Herman := Payroll.Constructors.MakeClerical(
Name => "Herman",

Gender => Male,

BirthDate => MakeDate(1975,5,13),
ID => 1557,

StartDate => MakeDate(1991,7,1),
HourlyWage => MakeCurrency(7.50));

-- Now put the people into the company; each array element is
— a different type!

Company := (Herman'Access, Martha'Access, Virginia'Access,
Mary'Access, George'Access);

— Now display them all. Note that each time Put is invoked,
— precisely the appropriate Put is "dispatched".

FOR Which IN Company'Range LOOP
Put(Company(Which).ALL);
Ada.Text_IO.Put_Line(Item => " ■);

END LOOP;

END Payroll_Array;

Here our five people are declared as before, but now they are ALIASED. We have
further declared a general access type PayroliPointer and an array of values of
this type:

TYPE PayrollPointer IS ACCESS ALL Person'Class;
TYPE PayrollArray IS ARRAY (1. .5) OF PayrollPointer;

The access type can designate any type in Person' Class; each array element is
a value of that access type. We can now declare a variable

Company: Payro11Array;

and, after constructing all the people as in Section 6.6, we can put them into the com
pany, using an array aggregate:

Company ;= (Herman"Access, Martha'Access, Virginia'Access,
Mary'Access, George'Access);

The type PayrollArray is an example of the way Ada 95 provides for hetero
geneous arrays—ihai is, arrays each of whose values is a different type. Strictly speak
ing, the values in Company are all just class-wide access values, but each designated
values is a different type, so the desired behavior is obtained. Our questions are
answered.
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Dynamic Dispatching

Given our array of values, we can display the entire company just by looping through
the array, dereferencing each pointer to obtain the value to display:

FOR Which IN Company'Range LOOP
Put(Company(Which).ALL);
Ada.Text_I0.Put_Line(Item => " ");

END LOOP;

There is more to the Put in the above loop than meets the eye. Note that each value
being displayed is of a different type, each of which has its own Put as defined in the
three packages of Section 6.6. If we had used variant records, we would need a CASE to
decide which variant to display. Here, the appropriate Put is selected, at execution
time, automatically. This is called dynamic dispatching; it is an extremely important
technique in object-oriented progranuning. The correct Put is said to be dispatched.

Dispatching is closely related to primitive operations. In our example. Put is a
primitive operation of Person. For Person and for each type derived from Person,
that is, each type in Person' Class—Put is inherited by default, or, as in our situa
tion, overridden. The five Puts have the same name, and parameters differing only by
the type within Person 'Class. The correct Put can thus be dispatched.

We note that the values designated by Company (Which) could have been placed
in Company by dynamic allocation instead of by using aliased variables. In fact, the
next section shows how to make Company fiilly dynamic.

Heterogeneous Linked Lists

To end our discussion of tagged types and also of linked lists, we show in Program 9.9
a fully dynamic example.

Program 9.9 Creating a Linked List of Payroii Records

WITH Ada.Text_I0; USE Ada.Text_I0;

WITH Currency; USE Currency;

WITH Dates; USE Dates;

WITH Persons; USE Persons;

WITH Personnel; USE Personnel;

WITH Payroll; USE Payroll;

WITH Lists_Generic;
PROCEDURE Payroll_List IS

— I Demonstrates the use of a heterogeneous list.
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1995

TYPE PayrollPointer IS ACCESS ALL Person'Class;
— as before, this can designate a Person or anything
— derived from Person

PACKAGE PayrollLists IS NEW Lists_Generic
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(ElementType => PayrollPointer);
USE PayrollLists;
— The list element type is now a classwide pointer

Company: List;
Which : Position;

Temp : PayrollPointer;

BEGIN — Payroll_List

— Construct all the people dyneunically, and add each one
— to the end of the list as it is constructed. We no longer
— need an explicit variable for each person.

Temp := NEW Person'(Persons.Construetors.MakePerson(
Name => "George",

Gender => Male,

BirthDate => MalceDate (1971,11, 2)) ) ;
AddToRear(Company, Temp);

Temp := NEW Employee'(Personnel.Constructors.MalceEmployee(
Name => "Mary",

Gender => Female,

BirthDate => Ma)ceDate(1950,10,21),
ID => 1234,

StartDate => MalceDate (1989,7,1)));
AddToRear(Company, Temp);

Temp := NEW Professional'(Payroll.Constructors.MalceProfessional(
Name => "Martha",

Gender => Female,

BirthDate => Ma)ceDate(1947, 7, 8) ,
ID => 2222,

StartDate => MalceDate(1985, 6, 6),
MonthSalary => MalceCurrency(50000.00))) ;

AddToRear(Company, Temp);

Temp := NEW Sales' (Payroll.Constructors.MalceSales(
Name => "Virginia",
Gender => Female,

BirthDate => MalceDate(1955,2,1),
ID => 3456,

StartDate => MalceDate (1990,1,1),
WeeJcSalary => MalceCurrency (2500.00) ,
CommRate => 0.25));

AddToRear (Company, Temp) ,*

Temp := NEW Clerical'(Payroll.Constructors.Ma)ceClerical(
Name => "Hermeui",

Gender => Male,

BirthDate => MalceDate(1975,5,13) ,
ID => 1557,

StartDate => MalceDate(1991,7,1),
HourlyWage => MalceCurrency(7 .50))) ;

AddToRear(Company, Temp);

— Now we can traverse the list. Note again that Put is a
— dispatching operation; the correct Put is dispatched at
— execution time.

Which := First(Company);
WHILE NOT IsPastEnd(Company, Which) LOOP

Putdtem => Retrieve (Company, Which) .ALL); — dispatching
Ada.Text_IO.Put_Line(Item => " •);
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GoAheadiCompany, Which);
END LOOP;

END Payroll_List;

Here we use our generic singly linked list package from Section 9.1, instantiating it
for our class-wide access type and declaring a few useful variables:

TYPE PayrollPointer IS ACCESS ALL Person'Class,•

PACKAGE PayrollLists IS NEW Lists_Generic
(ElementType => PayrollPointer);

USE PayrollLists;

Company: List;

Which : Position;

Temp : PayrollPointer;

Note that the element type in each list node is one of our class-wide pointers. We
can now use Temp as a "holding area" for a dynamically allocated Professional,
for example, and then add it to the end of our company list:

Temp := NEW Professional'(Payroll.Constructors.MakeProfessional)
Name => "Martha",

Gender => Female,

BirthDate => MakeDate(1947,7,8),

ID => 2222,

StartDate => MakeDate(1985,6,6),

MonthSalary => MakeCurrency(50000.00)));
AddToRear(Company, Temp);

After building a linked list of five persons constructed in this manner, the program
traverses the list, using various operations from the linked-list package, and dispatching
the appropriate Put to display each person:

Which := First(Company);
WHILE NOT IsPastEnd(Company, Which) LOOP
Put (Item => Retrieve (Compciny, Which) .ALL); — dispatching
Ada.Text_I0.Put_Line(Item => " ");
GoAhead(Company, Which);

END LOOP;

This presentation has only scratched the surface of Ada 95's facilities for object-
oriented programming; a full treatment is beyond the scope of this book. The discussion
here should give you an indication of the power of type extension and dynamic dis
patching, and perhaps an appreciation of why object-oriented programming has
become such a popular technique for building software systems.

No technique is perfect, and there is a price to be paid for inheritance. Large, deep
type hierarchies, while very powerful, can also be difficult to work with and maintain,
because all the derived types and operations depend very intimately on types and oper
ations that are higher in the hierarchy. A change at the top can cause a "ripple effect"
through the hierarchy; this may be an advantage, but the high degree of coupling among
types might also have unanticipated effects. There can also be a performance penalty in
excessive use of dynamic dispatching. Compare this to the ADT approach used heavily
in this book, in which packages and clients depend mostly on other units in their imme
diate "neighborhoods."
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Like any other powerful tool, inheritance must be used with common sense and
moderation, and the trade-offs carefully considered. Use it to build hierarchical struc
tures of types that are truly related in some obvious way; avoid the trap of using it solely
because it is there.

SUMMARY

This chapter has introduced a number of interesting techniques for using linked lists
and several representative applications. With this background in dynamic data struc
tures, you are ready to proceed to the remaining chapters, in which linked structures are
used to implement graphs, trees, and hash tables.

EXERCISES

1. Write an algorithm to remove a node (identified by TargetID) from an ordered
list that does not contain a dummy record at the beginning.

2. Write the necessary procedures to duplicate all elements widi a GPA of 3.5 or above
in one linked list in another linked list. The original list is ordered by ID number; the
new list should be ordered by GPA. Do not remove nodes from the existing list.

3. Write a procedure to delete all males over 25 from an existing linear linked list.
Define an appropriate node type with which to instantiate Lists_Generic.

4. Complete the procedure stubs in Program 9.6 and test these with a driver program.
5. Use the generic table package shown in Section 9.4 to maintain an airline passen

ger list. The main program should be menu-driven and should allow its user to
display the data for a particular passenger, display the entire list, create a list,
insert a node, delete a node, and replace the data for a particular passenger.

6. Modify your employee database system from Chapters 3, 4, and 5 so that the
database is represented as an instance of the generic keyed table package from
Section 9.4.

7. In specifying the keyed table ADT, the assumption was made that there would be
no insertion if the key of a new record was already present in the table. Modify
procedure Insert from Program 9.8 so that it allows several occurrences of
records with the same key. Change Insert so that a record with a duplicate key
is placed in a position immediately following all other records in the table record
with the same key. Discuss various possible meanings for the other table opera
tions under this assumption.

8. Modify Tables_Generic_List to support active iterators, as described in
Section 9.6.

9. Develop a linked-list representation to store sets. Write the routines necessary to
insert and delete integer values from a set. Also write the routines necessary to
implement the set operations of difference, intersection, and union. To verify the
results, display the contents of the sets before and after each operation.

10. A polynomial may be represented as a linked list in which each node contains the
coefficient and exponent of a term of the polynomial. The polynomial 4x^ + 3x^ -
5 would be represented as the following linked list:
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4x3 3x2 -5x0

4 3 3 2 -5 0

Write an abstract data type for polynomials that has operators for creating a poly
nomial, reading a polynomial, and adding and subtracting a pair of polynomials.
(Hint: To add or subtract two polynomials, traverse both lists. If a particular expo
nent value is present in either one, it should be present in the result polynomial
unless its coefficient is zero.)

11. Because each student in the university takes a different number of courses, the
registrar has decided to use a linked list to store each student's class schedule and
a table to represent the whole student body. Each table element is a student record,
containing, among other information, the linked list just described.

For example, one student (ID 1111) is taking section 1 of CIS120 for 3
credits and section 2 of HI S 0 01 for 4 credits; a second student (ID 13 5 7) is not

enrolled, and so on. Develop an implementation for this system using the generic-
linked list and keyed-table packages. Write a menu-driven client program so that
the registrar can specify appropriate operations.

12. Develop a linked-list implementation for sparse vectors as discussed in Section 9.8.
13. Develop a cross-list implementation for sparse matrices as discussed in Section 9.8.



CHAPTER 10

Directed Graphs

10.1 Undirected and Directed Graphs

10.2 Properties of Digraphs

10.3 implementations of Directed Graphs

10.4 Graph T raversals

10.5 A Generic ADT for Directed Graphs

10.6 Application: A Simple Lexical Scanner

The graph is an important mathematical structure, with wide application in computing
problems. While this book is not the place for a really general treatment of the graph, we
can introduce the mathematical structure and go ftom it to a discussion of directed graphs.

A directed graph consists of a set of points, or vertices, and a set of arcs, or edges,
which represent connections between the points. We will consider a number of impor
tant mathematical properties of directed graphs and look at some implementation meth
ods. These implementations are the adjacency matrix, the adjacency list, the weighted
adjacency matrix, and the state table.

You will learn two important traversal algorithms for directed graphs. A traversal
is a "walk" around a graph in a systematic fashion, in such a way that each vertex is offi
cially "touched," or visited, exactly once. The algorithms to be introduced are called
depth-first search and breadth-first search. These algorithms use the generic packages
for sets and queues developed in earlier chapters.

The "Application" section of this chapter shows how to build a very simple lexical
scanner, representing it as a state table.

One of the most important characteristics of the directed graph is that the tree, to be
introduced in Chapter 11, is a special case of the graph.

10.1 UNDIRECTED AND DIRECTED GRAPHS

A graph G is an ordered pair of sets <V, E>, where Y is a set of vertices (which may be
thought of as points) and E is a set of edges (which may be thought of as lines connect
ing the points). Other authors refer to vertices as points or, frequently, nodes', they
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G1 G2 G3 G4

Figure 10.1 Some Undirected Graphs

sometimes refer to edges as arcs. An edge is given as a pair {m, n), where m and n are
in the vertex set V. Notice that no direction is given to the edge, so {m, n} and {n,m}
really represent the same edge.

Figure 10.1 shows some undirected graphs. This is all we will do with undirected
graphs, since in this book we are interested mainly in directed graphs, or graphs in
which the edges have direction.

A directed graph G (often abbreviated digraph) is a graph G = <V, E>. In a
digraph an edge is given as an ordered pair <s, d>, where s and d are in the vertex set
V. The vertex s is called the source vertex; the vertex d is called the destination vertex.

This imposes a certain directionality on the edge; that is why G is called a directed
graph.

Figure 10.2 shows some directed graphs. Note that in graph G7, the edge <1,3>, for
example, is not the same as the edge <3,1>, because even though they connect the same
pair of vertices, the direction is different.

For convenience later, we will write sGd to mean "the edge <y, d> is in the edge set
of G." If sGd, we say that d is adjacent to s. The set of all vertices adjacent to s is called
the adjacency set of s.

10.2 PROPERTIES OF DIGRAPHS

It is interesting to study a number of properties of digraphs that have important
applications. In defining these properties, we will always use G to refer to an
arbitrary digraph and lowercase letters to refer to vertices in G's vertex set. Also,
the abbreviation iff will be used—as is common in mathematics—to mean if and
only if.

1  1 2

^2 O O K)

G1 G2 G3 G4

Figure 10.2 Some Directed Graphs
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Reflexivity

G is reflexive iff xGx for all vertices x in V. If we refer to <*:, ;o as a self-loop, then G
is reflexive iff every vertex in G's vertex set has a self-loop.

Irreflexivity

G is irreflexive if no vertex has a self-loop. Note that it is quite possible for G to be nei
ther reflexive nor irreflexive. This will be true if some vertices, but not all, have self-
loops. Be careful not to confuse the assertion "G is not reflexive" with the assertion "G
is irreflexive."

Figure 10.3 shows some digraphs that are reflexive, some that are irreflexive, and
some that are neither.

(a) Reflexive.

O

(b) Irreflexive.

(c) Neither.

Figure 10.3 Reflexivity and Irreflexivity
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Symmetry

G is symmetric iff for every case where xGy it is also true that yGx. Note carefully that
this does not say that every pair of vertices must be connected by an edge, but only
that j/there is an edge -cc, y>, then there must be an edge <y, x> for G to be symmet
ric. For example, a digraph consisting of a single vertex with no edges is symmetric.
Such a digraph is possible because nothing in the definition of a graph requires E to
be nonempty. You might consider this to be a "pathological" situation, but it does
make the point.

Antisymmetry

G is antisymmetric iff xGy and yGx imply x = y. This is a way of saying that no two dis
tinct vertices have edges in both directions, but that self-loops are permitted. As in the
case of reflexivity, be careful with your language: Saying "G is not symmetric" is not
the same as saying "G is antisymmetric," since G may have some pairs of vertices with
edges both ways and some pairs with edges only one way. In this case, G is neither
symmetric nor antisymmetric. To get pathological again, it is interesting that the
digraph with one vertex and no edges is both symmetric and antisymmetric!

Some authors do not permit antisymmetric graphs to have any vertices with
self-loops. This would make the definition simpler: We could just say that if we
have xGy, then we cannot have yGx. On the other hand, in that case a reflexive
graph could never be antisymmetric—indeed, an antisymmetric graph would nec
essarily be irreflexive—and this would mix up two properties that we prefer to keep
independent.

In Figure 10.4, you can see some symmetric digraphs, some antisymmetric ones,
and some that are neither.

Transitivity

G is transitive iff for each triple of vertices such that xGy and yGz, it is true that xGz. In
other words, if we can get fix)m x to z by way of y, we can get there directly if G is transi
tive. Note again that this does not mean that there must ever be edges <x, y> and <y, z>.
It says only that if there are, then if G is to be transitive there must be an edge <x, z>.
There is also no requirement that x, y, and z be distinct, so that self-loops must be consid
ered in determining transitivity. Is it possible for a digraph to be symmetric and transitive
without being reflexive?

Figure 10.5 shows some transitive digraphs and some others that (as it is explained)
are not transitive.

Paths

A path is a sequence of edges <Vi, V2>, <V2, V3>,..., <Vjt.i, Vjt>—that is, a sequence of
edges such that the destination of one is the source of the next. The path is simple iff all



382 Directed Graphs

(a) Symmetric.

(b) Antisymmetric.

(c) Neither.

Figure 10.4 Symmetry and Antisymmetry

vertices in the path, except possibly for the first and the last, are distinct. The length of
the path is the number of edges (not vertices) in it. Thus, a single edge <*, y> is a path
of length 1. Note that a self-loop <x, x> is a path of length 1. If there is a path from x to
y, we say that y is reachable from x.

Cycles

A cycle is a path such that the destination of the last edge is the source of the first
edge (it gets back to where it started). Note, then, that a self-loop is a cycle of length
1. A digraph is acyclic if it has no cycles in it. A simple cycle is a simple path that is
a cycle.
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b  b

c  a

(a) Transitive.

aGb and bGc

but a0c

<zs>
aGb and bGa

but aj^a

cGa and aGb

but c0b

(b) Not transitive.

Figure 10.5 Transitivity

Connectivity

Intuitively, a graph (directed or otherwise) is connected iff it is "all one piece." In other
words, a digraph is connected iff, treating all edges as though they were two-way, we
can find a path from any vertex to any other. The "pieces" of a graph that is in several
pieces are called connected components.

Strong Connectivity

A digraph G is strongly connected iff from each vertex there is at least one path (not
necessarily of length 1!) to all the other vertices, even if we take directionality into
account. Can a strongly connected digraph ever be acyclic?

Strong connectivity differs from connectivity in that in determining strong connec
tivity, we examine the graph as it is; in determining ordinary connectivity, we ignore
the directions on the edges.



384 Directed Graphs

Figure 10.6 illustrates connectivity and strong connectivity.

In-Degree and Out-Degree

The in-degree of a vertex z in a digraph G is the number of edges that have z as their
destination (visually, the number of arrowheads arriving at z). The out-degree of a
vertex z is the number of edges with z as their source (or the number of arrowtails
leaving z). Note that these two properties apply to an individual vertex, not to the
graph as a whole.

10.3 IMPLEMENTATIONS OF DIRECTED GRAPHS

In this section, we will look at several of the common ways of implementing directed
graphs in programs. These are the adjacency matrix, the adjacency list, the weighted
adjacency matrix, and the state graph.

(a) Not connected.

(b) Connected but not strongly connected
(a cannot be reached from b or c).

(c) Strongly connected.

Figure 10.6 Connectivity and Strong Connectivity
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Adjacency Matrix

The most straightforward way to represent a digraph G with K vertices isby a Kx K
Boolean matrix G ', called the adjacency matrix, where G'ix,y) is Trae iff xGy and False
otherwise. In this representation, row x of the matrix indicates the adjacency set of vertex x.

In this matrix, it is easy to determine whether y is adjacent to jc and this is done in
0(1) time, since only a subscript calculation is involved. However, a disadvantage of
using this scheme is that even if the graph has few edges, cells are needed to store it
and any algorithm to examine the whole graph, or even read or print it, must be 0(A^).
A digraph and its adjacency matrix are given in Figure 10.7.

Adjacency List

In most graphs, the vertices have relatively small adjacency sets, so the adjacency
matrix is sparse, and most of its elements are false. For this reason, a variant of the
sparse-matrix technique is often used to implement a digraph. This representation is the
adjacency list. Each vertex jc is a header for a linear list, each cell of which represents a

(a) A digraph

(b) Adjacency matrix for this diagram

Figure 10.7 Adjacency Matrix for a Digraph
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destination vertex for edges leaving x. The headers can be stored in an array. This struc
ture is shown in Figure 10.8.

Assuming that Booleans, pointers, and integers identifying vertices all occupy
the same number of bytes of storage, when is this scheme more economical than an
adjacency matrix? Let L be the average number of cells in a single vertex list. The
pointer array requires K cells, each of one storage unit; each list cell requires two
storage units and there are KxL such cells. So the structure requires K+(2x KxL)
or Kx (I +2x L) storage units. To find the crossover point, we set = /iT x (1 + 2 x
L), or L = (K- l)/2.

The assumption we just made—that Booleans, pointers, and vertex identifiers are
all the same size—is often wrong. Many progranuning languages, including Ada, give
the programmer a way of implementing an array of Booleans in such a way that each
array entiy is represented by a single bit. In such a situation, the "dense" matrix (two-
dimensional array) can be considerably more economical in its use of space than the
"sparse" matrix (list).

We cannot neglect differences in time performance, though. To print the entire
adjacency list takes O^K x L) operations, which is usually much less than x On
the other hand, simply determining whether xGy requires 0{L) operations (on the
average), whereas it was 0(1) in the adjacency matrix representation. We have here
another clear example of the trade-offs inherent in selecting implementations for
abstract objects.

Weighted Adjacency Matrix

The implementations just described give the structure of a digraph, but provide no
information about its content. In many graph applications, vertices or edges are associ
ated with data values of one kind or another. These are often called weights. For exam
ple, Figure 10.9 contains a digraph with numbers attached to its edges.

±0

Figure 10.8 Adjacency List Structure for Digraph of Figure 10.7
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■©

(a) A weighted digraph.

5  0

3  0

0  2

0  0

0  0

(b) Weighted adjacency matrix for this digraph.

Figure 10.9 Weighted Digraph and Weighted Adjacency Matrix

One interpretation of such a number might be the distance between points on a graph
representing a road map. Another interpretation might be the time required to perform a
certain task in a complex project. Yet another interpretation is the number of flights from
city A to city B in an airline service table such as the Cloud Nine service table of Figure
4.2. Implementing such a weighted graph is a straightforward extension of the adjacency
matrix: Each entry of the matrix contains the weight, instead of just a Boolean; entries
that correspond to missing edges contain some indication to that effect, for example zero
or null.

Weights can also be used in the list implementation: Weights for edges emanating
from a given vertex are just stored in the vertices of the corresponding adjacency list.

State Table

A special kind of weighted digraph, the state graph, comes from the field of abstract
machine theory. It is useful in hardware design and also in building language translators.
Section 10.9 will discuss an application of state graphs, but here we limit ourselves to a
description of the structure. We will also return to state graphs in Chapter 11.

In most cases, the weights in a weighted digraph can be arbitrary values. In a state
graph, however, it is required that the weights be a (usually small) discrete set of values,
for example, the letters of the alphabet or the numeric characters.
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0

Figure 10.10 A State Graph

The graph is implemented as a two-dimensional array, with a row for each vertex
and a column for each weight. Each row represents a source vertex; entries in the matrix
represent destination vertices, not weights as before. For an example, look at the graph
in Figure 10.10. The vertices of this state graph are called A. B. C, and D; the weights
are just the digits 0 and 1. The corresponding state table is shown in Figure 10.11.

10.4 GRAPH TRAVERSALS

Some applications of graphs require the graph to be traversed. (As we have mentioned,
this means that, starting from some designated vertex, the graph is "walked around" in
a systematic way such that every vertex reachable from that starting vertex is officially
"touched" or visited, exactly once.) Two frequently-used traversal algorithms are called
depth-first search (DFS) and breadth-first search (BFS).

The DFS algorithm finds all graph vertices reachable from a particular starting ver
tex, in a way that explores a given path from the starting vertex before starting another
path. The search strategy, then, is to probe deeper and deeper along a path; hence, the
designation depth-first.

The BFS algorithm visits all vertices adjacent to the starting vertex, then visits all
vertices adjacent to those vertices, and so on. Since all adjacent vertices are visited
before probing farther away, the search is broad rather than deep; hence, the name
breadth-first.

These algorithms are introduced in this section and programs are given for them.

Figure 10.11 A State Table
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Depth-First Search

A traversal algorithm requires that each vertex be officially visited exactly once. Since
a vertex can be adjacent to many other vertices, and since graphs can have cycles, we
need a way of keeping track of the vertices that have already been visited. Accordingly,
the DFS algorithm uses an auxiliary set, called Visited, which is initially empty. A ver
tex of G is added to the set when it is visited. The algorithm is recursive and operates
as follows:

Algorithm for DFS

1. Place the designated starting vertex jc in the set Visited.

2. Do whatever application-dependent things need to be done upon visiting a
vertex.

3. For each vertex y adjacent to x, if y has not been visited, call DFS recursively
with y as the starting vertex.

This algorithm pursues a given path until a previously visited vertex is reached, then
returns to the original vertex and pursues another path. If it terminates with the entire
vertex set in Visited, all vertices were reachable from the given starting vertex.

Figure 10.12 shows an example of DFS in action.

{al A directed graph.

starting at 1 : 1-2-5-7-3-6-4

starting at 2 : 2-5-7

(graph isn't strongly connected, so only
three nodes are visited!)

starting at 3 : 3-1-2-5-7-4-6

(b) Some depth-first searches of the digraph.

Figure 10.12 Depth-First Search on a Graph
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Breadth-First Search

In BFS, we start from a vertex x and first visit all vertices adjacent to x. Then all vertices
adjacent to those vertices are visited, and so on. We use a queue to keep track of vertices
we have visited but whose adjacent vertices we haven't yet visited. The same set Visited
is used to keep a record of visited vertices.

Algorithm for BFS

1. Make the queue Q empty.

2. Place the designated starting vertex x in the set Visited.

3. Enqueue x on Q.

4. Do whatever application-dependent things need to be done upon visiting a
vertex.

5. Repeat Steps 6 and 7 until Q is empty:

6. Dequeue a value y from Q.

7. FOR each vertex z adjacent to y, LOOP

IF z is not in Visited THEN

Place z in Visited

Do the application-dependent task for z

Enqueue zonQ

END IF

END LOOP

Figure 10.13 shows examples of BFS.

10.5 A GENERIC ADT FOR DIRECTED GRAPHS

Program 10.1 gives the specification for a generic package for directed graphs, using the
adjacency matrix representation. Note that the vertex set is permitted to be any discrete
(integer or enumeration) type and that the adjacency matrix is doubly indexed by the
vertex set used as a generic parameter.
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(a) A directed graph.

starting at 1

starting at 3

1-2-3-4-5-6-7

3-1-5-6-2-4-7

(b) Some breadth-first searches of the digraph.

Figure 10.13 Breadth-First Search on a Graph

Program 10.1 Specification for Generic Digraphs Package

GENERIC

TYPE Vertices IS (<>);

PACKAGE Digraphs_Generic IS

— I Specification for unweighted digraphs with discrete vertex sets
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

TYPE Digraph IS LIMITED PRIVATE;

— constructors

PROCEDURE InitializeGraph (G:
— Pre: none

— Post: G has no edges

IN OUT Digraph);

PROCEDURE AddEdge
(G: IN OUT Digraph; Source, Destination: IN Vertices);

PROCEDURE DeleteEdge

(G: IN OUT Digraph; Source, Destination: IN Vertices);
-- Pre: G, Source, and Destination are defined

— Post: returns G with the edge <Source, Destination> added or
deleted respectively; AddEdge has no effect if the edge is
already in G; DeleteEdge has no effect if edge is not in G
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FUNCTION IsEmpty (G: Digraph) RETURN Boolean;
— Pre: G is defined

— Post: returns True if and only if G has no edges

FUNCTION NuinberOfEdges (G: Digraph) RETURN Natural;
— Pre; G is defined

— Post; returns the number of edges in G

FXJNCTION IsAdjacent {G: Digraph; Source, Destination: Vertices)
RETURN Boolean;

— Pre; G, Source, and Destination are defined

— Post: returns True if and only if
G has an edge <Source, Destination>

PROCEDURE DisplayGraph(G: Digraph);
— Pre: G is defined

— Post; displays G in matrix form using T or F
for presence or absence of edge

GENERIC

WITH PROCEDURE Visit(V: Vertices);
PROCEDURE Traverse_BFS (G: IN Digraph; Start: Vertices);
— Pre: G and V are defined

— Post: performs breadth-first traversal of G starting at vertex V

GENERIC

WITH PROCEDURE Visit(V: Vertices);

PROCEDURE Traverse_DFS (G: IN Digraph; Start: Vertices);
— Pre: G and V are defined

— Post: performs depth-first traversal of G starting at vertex V

PRIVATE

TYPE AdjacencyMatrix IS ARRAY (Vertices, Vertices) OF Boolean;
TYPE Digraph IS RECORD
Store: AdjacencyMatrix := (Others => (OTHERS => False));

END RECORD;

END Digraphs_Generic;

The two traversal operations warrant attention because they are themselves generic.
Making a traversal operation generic allows it to be specialized to the kind of operation
performed as each vertex is visited; instead of making Visit a generic parameter of
the package, we make it a parameter of the traversals, so that several different instances
of a traversal, each with its own Visit, can be created for the same instance of the
overall package.

Program 10.2 gives the body of this package, with the traversal operations shown as
subunits. The traversals use the generic packages for sets (Programs 5.15 and 5.16) and
queues (Programs 7.1 and 7.2); the package body therefore contains the following
instantiations:

PACKAGE VertexSets IS NEW Sets_Generic (Universe => Vertices);
USE VertexSets;

PACKAGE VertexQueues IS NEW Queues_Generic (Element => Vertices);
USE VertexQueues;
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Program 10.2 Body of Generic Digraphs Package

WITH Sets_Generic;
WITH Queues_Generic;
WITH Text_IO;

PACKAGE BODY Digraphs_Generic IS

— I Body for unweighted digraphs with discrete vertex sets
--| Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

PACKAGE VertexSets IS

NEW Sets_Generic(Universe => Vertices);
USE VertexSets;

PACKAGE VertexQueues IS

NEW Queues_Generic(Element => Vertices);
USE VertexQueues;

— constructors

PROCEDURE InitializeGraph (G: IN OUT Digraph) IS
BEGIN

G.Store := (OTHERS => (OTHERS => False));
END InitializeGraph;

PROCEDURE AddEdge

(G: IN OUT Digraph; Source, Destination: IN Vertices) IS
BEGIN

G.Store(Source, Destination) := True;
END AddEdge;

PROCEDURE DeleteEdge

(G: IN OUT Digraph; Source, Destination: IN Vertices) IS
BEGIN

G.Store(Source, Destination) := False;
END DeleteEdge;

FUNCTION IsEmpty (G: Digraph) RETURN Boolean IS
BEGIN

FOR Row IN Vertices LOOP

FOR Column IN Vertices LOOP

IF G.Store(Row, Column) THEN
RETURN False;

END IF;

END LOOP;

END LOOP;

RETURN True;

END IsEmpty;

FUNCTION NumberOfEdges (G: Digraph) RETURN Natural IS
Total: Natural := 0;

BEGIN

FOR Row IN Vertices LOOP

FOR Column IN Vertices LOOP

IF G.Store(Row, Column) THEN
Total := Total + 1;

END IF;

END LOOP;

END LOOP;

RETURN Total;

END NumberOfEdges;
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FUNCTION IsAdjacent (G: Digraph; Source, Destination; Vertices)
RETURN Boolean

IS

BEGIN

RETURN G.Store(Source, Destination);
END IsAdjacent;

PROCEDURE DisplayGraph(G: Digraph) IS
BEGIN

FOR Row IN Vertices LOOP

FOR Colunm IN Vertices LOOP

IF G. Store (Row, Coliimn) THEN

Text_IO.Put (Item => "T");
ELSE

Text_IO.Put (Item => "F");
END IF;

END LOOP;

Text_IO.New_Line;

END LOOP;

END DisplayGraph;

PROCEDURE Traverse_BFS (G: IN Digraph; Start: Vertices) IS SEPARATE;

PROCEDURE Traverse_DFS (G: IN Digraph; Start: Vertices) IS SEPARATE;
END Digraphs_Generic;

Program 10.3 shows the procedure Traverse_DFS; note that the set Visited
is declared as an object of type VertexSets, and that Traverse_DFS contains an
inner procedure DepthFirst. The inner procedure is called recursively; the set
Visited is modified by each recursive call. We could have avoided the inner proce
dure by making Visited an IN OUT parameter of Traverse_DFS; we chose not
to give the user responsibility for declaring and passing this set. In some applications,
the client might wish to have access to this set after the traversal; you can make the nec
essary modifications to provide this.

Program 10.3 Depth-First Search Procedure

SEPARATE (Digraphs_Generic)
PROCEDURE Traverse_DFS (G: IN Digraph; Start: Vertices) IS

— I Depth_First_Search, subunit of Digraphs_Generic
--I Author; Michael B. Feldman, The George Washington University
— 1 Last Modified: January 1996

Visited: VertexSets.Set;

PROCEDURE DepthFirst (Start: Vertices) IS
BEGIN

Visit (Start);
Visited := Visited + Start;
FOR Destination IN Vertices LOOP

IF IsAdjacent (G, Start, Destination) AND NOT
Isin (Visited, Destination) THEN

DepthFirst (Start => Destination);
END IF;

END LOOP;

END DepthFirst;
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BEGIN

DepthPirst(Start => Start);
END Traverse_DFS;

Program 10.4 gives the procedure Traverse_BFS. The queue Q is "sized" accord
ing to the number of vertices in the graph; clearly it can never contain more elements than
there are vertices, because a vertex is added to the queue if and only if it has not been vis
ited. Because the vertex set can be an enumeration type, we calculate the queue capacity
by doing arithmetic on the positions of the first and last values of the vertex set.

Program 10.4 Breadth-First Search Procedure

SEPARATE (Digraphs_Generic)
PROCEDURE Traverse_BFS (G: IN Digraph; Start: Vertices) IS

— I Breadth_First_Search procedure, subunit of Digraphs_Generic
— I Author: Michael B. Feldman, The George Washington University
--j Last Modified: January 1996

Visited : VertexSets.Set;

Source, Dest : Vertices;
Q  : VertexQueues.Queue(Capacity =>

Vertices'Pos(Vertices'Last)

- Vertices"Pos(Vertices'First)

+ 1);

BEGIN — Traverse_BFS

Visit (Start);

Visited := Visited + Start;

Enqueue (Q, start);
WHILE NOT IsEmpty (Q) LOOP

Source := First (Q);

Dequeue (Q);
FOR Dest IN Vertices LOOP

IF IsAdjacent (G, Source, Dest) AND NOT Isin (Visited, Dest) THEN
Visit (Dest);

Visited := Visited + Dest;

Enqueue (Q, Dest);

END IF;

END LOOP;

END LOOP;

END Traverse_BFS;

10.6 APPLICATION: A SIMPLE LEXICAL

SCANNER

An Ada identifier consists of a letter followed by zero or more letters, digits, and under
score characters. In this section, we describe a program or algorithm capable of decid
ing whether an arbitrary string of characters is a valid Ada identifier. The program is a
simple lexical scanner, lexical scanners are used for the initial phase of a language
translation, for checking the validity of commands in an interactive system, and for
other, similar applications.



396 Directed Graphs

invalid (starts with _)
L valid

L5 valid

5 invalid (starts with a digit)
L valid

_L invalid (starts with _)
LL5L valid

L  5 valid

L@5L invalid (contains @)
5LLL invalid (starts with a digit)

Figure 10.14 Valid and Invalid Words in a Language over a Limited Alphabet

We represent the scanner by a state graph. In this graph, one vertex is designated as
the start state and two other vertices are designated as the accepting and rejecting
states. A vertex that is a source is called a current state; a vertex that is a destination is
called a next state. A weight is used to represent each possible character in the string.

The state graph operates as a little computer: It is started in its start state, "reads"
the first character of the string, then moves to the next state corresponding to the char
acter just seen. The next state thus becomes a current state. The machine reads another
character, moves to a new state, and so on. If the machine is in its accepting state when
the input string is empty, the string was a valid identifier; if it is in its rejecting state, the
string had an invalid character in it.

To keep this example simple, we use a very small alphabet for our identifiers. The
only letter allowed is L; the only digit is 5. Underscore characters are permitted; all ille
gal characters are represented by @. These a-e the only characters that ever appear in a
string. A valid identifier must begin with a letter. Figure 10.14 gives a number of legal
and illegal identifiers in this limited alphabet.

Figure 10.15 shows the state graph for this machine; Figure 10.16 gives a diagram
of the state table.

In Figure 10.17 are shown some Ada type definitions and a variable for the state
table implementation. Note the use of enumeration types to list the states (the vertex set
of the graph) and the input alphabet (discrete set of weights).

ACCEPTING

START

REJECTING

Figure 10.15 State Graph for Simple Scanner
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5  - @

START

ACCEPTING

REJECTING

ACCEPTING REJECTING REJECTING REJECTING

ACCEPTING ACCEPTING ACCEPTING REJECTING

REJECTING REJECTING REJECTING REJECTING

Figure 10.16 State Table for Simple Scanner

TYPE State IS (Start, Accepting, Rejecting);
TYPE InputClass IS (Letter, Digit, Underscore, Illegal)
TYPE StateTable IS ARRAY (State, InputClass) OF State;

SimplelD: StateTable :=
((Accepting, Rejecting, Rejecting, Rejecting),
(Accepting, Accepting, Accepting, Rejecting),
(Rejecting, Rejecting, Rejecting, Rejecting));

Figure 10.17 Type Definitions and a State Table

To make this data structure work as a machine, we need a program to "run" it. We'll
write this as an Ada function Valid._Ident, which accepts a VString object, starts
the state graph in its start state, then reads characters, returning a Boolean that indicates
whether the input string was a valid identifier. Formally, a machine like this is called a
finite state machine', in this case, the finite-state machine keeps running until its input
string is empty; if it ever gets to the rejecting state, it keeps reading characters and cycling
in that state until the input is empty. This program is shown in Program 10.5.

Program 10.5 A Simple Lexical Scanner

WITH VStrings; USE VStrings;
FUNCTION Valid_Ident (T : IN VString) RETURN Boolean IS

— I Simple Lexical Scanner to Determine Validity of an Identifier
— I Author; Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

TYPE State IS (Start, Accepting, Rejecting);
TYPE InputClass IS (Letter, Digit, Underscore, Illegal);
TYPE StateTable IS ARRAY (State, InputClass) OF State;
SimplelD : StateTable :=.

((Accepting, Rejecting, Rejecting, Rejecting),
(Accepting, Accepting, Accepting, Rejecting),
(Rejecting, Rejecting, Rejecting, Rejecting));

S  : VString(MaxLength(T));

C  : Character;

Class : InputClass;
Currentstate : State;
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BEGIN — Valid_Ident

S  := T;

CurrentState := Start;

IF IsEmpty (S) THEN

RETURN False;

END IF;

LOOP

C  := Head (S);

IF C = 'L* THEN

Class := Letter;

ELSIF C = '5' THEN

Class := Digit;
ELSIF C = THEN

Class := Underscore;
ELSE

Class := Illegal;
END IF;

CurrentState := SimplelD (CurrentState, Class);

S  := Tail (S);

EXIT WHEN IsEmpty (S);

END LOOP;

RETURN (CurrentState = Accepting);

END Valid_Ident;

We will return to the lexical scanner idea in Chapter 11, where we introduce a finite-
state machine for scanning English text in order to build a cross-reference generator.

SUMMARY

Graphs have many uses: They are used to show relationships between elements in a set,
for example, orderings or precedences, sequencing of activities in a project, sequences
of characters in a string, and others. This book cannot treat graphs in a completely gen
eral way; graph theory and application is an entire mathematical discipline in itself.
However, we have presented a number of important concepts of directed graphs: math
ematical properties such as reflexivity, symmetry, transitivity, connectedness; traversals
such as depth-first and breadth-first search; and a bit of application.

We are now ready to proceed to the study of trees, which are directed graphs with
certain special properties. Chapters 11 and 12 consider trees at length.

EXERCISES

1. One interpretation of a digraph is a relation on a set. The vertices in the graph rep
resent elements of the set; an edge from vertex x to vertex y means "x is related to
y." A relation is called an equivalence relation if it is reflexive, transitive, and
symmetric. Clearly a relation has these properties iff its digraph representation
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does. Write a function to determine whether a graph G, implemented as an adja
cency matrix, represents an equivalence relation.

2. A relation is called a partial ordering if it is reflexive, transitive, and antisym
metric. Using the graph interpretation from the preceding problem, write a func
tion to determine whether a graph G represents a partial ordering.

3. Given a digraph with vertex set [A, 5, C, D} and edge set {</l, A>, <A, fi>, <A,
D>, <B, B>, <C, B>, <C, £)>, <D, C>}, draw the graph and its adjacency matrix
and adjacency list forms.

4. For the digraph specified in the preceding problem, indicate whether or not the
graph has each of the following properties: reflexive, irreflexive, symmetric, anti
symmetric, transitive, connected, strongly connected, acyclic. For each property
the graph does not have, make a list of the minimum number of changes necessary
to give the graph that property.

5. For the digraph specified above, find the depth-first and breadth-fu-st searches
starting with each of the four vertices.

6. Repeat the preceding three problems for the digraph with vertex set (A, B,C,D]
and edge set {<A, B>, <A, C>, <B, B>, <B, C>, <C, C>, <C, A>, <C, C>, <C, D>}.

7. Given a graph 0 represented by its unweighted adjacency matrix Af, consider the
matrix product of M with itself (the square of M) obtained by using or and and as
the addition and multiplication operators in the matrix product. Calling this
matrix MAf, show that MM(r, c) = True iff there is a path of length 2 or less from
vertex r to vertex c.

8. Starting from the previous problem, show that in the matrix representing the pth
power of Af, a True entry in the rth row and cth colunm indicates that there is a
path of length p or less from vertex r to vertex c of the matrix M.

9. Reimplement the generic digraph package so that it is possible to represent
weighted digraphs. In this case, three generic parameters are needed: one for the
vertex set, one for the vertex weights, and one for the edge weights. Be sure to
take into account the need to indicate the absence of an edge; this can be some
special value of the weight.

10. Construct a generic weighted digraph package that uses a sparse-matrix imple
mentation for the graph.
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Binary Trees

11.1 Trees

11.2 Properties of Binary Trees

11.3 Implementing Binary Trees

11.4 Treversals of Binary Trees

11.5 Expression Trees

11.6 Application: Building an Expression Tree

11.7 Binary Search Trees (BSTs)

11.8 ADT Design: The Keyed Table as a BST

11.9 Application: A Cross-Reference Generator

11.10 Subprogram Pointers and Table-Driven Programming

A tree is a special case of a directed graph, with many applications in computing.
More formally, a tree is just a connected digraph such that exactly one vertex (called
the rooi) has an in-degree of 0 and all other vertices have an in-degree of I. The con
sequence of this definition is that starting from the root, there is exactly one path to
each of the other vertices. This makes a tree useful for representing hierarchical rela
tionships.

This chapter focuses mainly on the important special case of the binary tree^ in
which no vertex has more than two outgoing edges. Two important applications of
binary trees are the expression tree, which is used in translating or interpreting pro-
granuning language statements; the other is the binary search tree, or BST, which is yet
another implementation of a dynamic table.

An important concept in the study of trees is the traversal. As in directed graphs and
other structures, a traversal is an algorithm for "walking around" the tree so that all its
vertices are visited exactly once in some systematic sequence. There are many possible
traversals; we shall smdy three of them. All are written as recursive algorithms.

There are three applications in this chapter. The first shows how to construct a
parser for simple arithmetic expressions, the second gives a reimplementation of the

400



11.1 Trees 401

generic table-handler package as a binary search tree, and the third shows how an index
ing or cross-reference program can be constructed using a binary search tree.

Chapter 12 presents some useful, more advanced material on trees, based on the
foundation presented in this chapter.

11.1 TREES

A tree is a special case of a directed graph whose main application is expressing purely
hierarchical relationships of some kind. For example. Figure 11.1 shows the basic struc
ture of a hypothetical company, with a single president, a few vice-presidents, some
managers, and some workers.

VICE-PRESIDENT

SALES AND MARKETING

PRESIDENT

VICE-PRESIDENT

PRODUCTION

JflTTK

VICE-PRESIDENT

FINANCE AND

ADMINISTRATION

MANAGER MANAGER PLANT MANAGER MANAGER MANAGER

SALES MARKETING MANAGER PURCHASING FINANCE ADMINISTRATION

Figure 11.1 Hypothetical Corporate Structure

Figure 11.2 shows a family tree, representing three generations of descendants of
one person.

Figure 11.3 illustrates the operator-operand relationship in a programming language
assignment statement.

The common characteristics of all these examples are that there is a single vertex—
the root—^that can be identified as the "top" of the tree and that from the root to any other
vertex in the tree there is exactly one path. Formally, a tree has these properties:

1. A tree is a connected digraph.

2. A tree has exactly one vertex with in-degree = 0. This vertex is called the root.

3. In a tree, all vertices except the root have in-degree = 1.

Notice that the definition says nothing about out-degree. In a general tree, there is no
restriction on the out-degree of a vertex, nor indeed on whether the vertex set must
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JOE

SMITH

MARY ANNE

JOHN ) I ED ( RUTH

FRANK I children

KEN ) (GEORGE) (ELLEN) grandchildren

(^ui^

Figure 11.2 Descendants of Joe Smith

y  ̂^JAN^ ^^IK^ ^EVII^ ^PHIL^ ^AME^ great-grandchildren

X ;= Y+Z-(A*.B)/W)+G

/ \
Y  Z

Figure 11.3 Operator-Operand Relationships in an Arithmetic Assignment
Statement

even be finite. In most of the important applications, however, the tree has a finite num
ber of vertices, so there is necessarily a subset of the vertex set with out-degree = 0.
These vertices are at the "bottom" of the tree; we call them leaves or sometimes termi
nal vertices. The remaining vertices are called interior or sometimes nonterminal ver
tices. In this book, you can assume that all trees are finite.

Look at Figure 11.4 and make sure you understand why the structures in Figure
11.4a are trees and those in Figure 11.4b are not.
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©

(a) These digraphs are trees.

(b) These digraphs are hot trees.

Figure 11.4 Some Trees and Some Digraphs That Are Not Trees

Because a tree is a digraph, it makes sense to consider which graph properties per
tain to trees. Because a vertex of a tree has at most one edge leading to it, all trees have
certain graph properties and lack others. For instance, because there is at most one path
from any vertex to any other vertex, and because there is exactly one path from the root
to any leaf, a tree is necessarily antisymmetric and irreflexive; we leave consideration
of other graph properties as an exercise.

From the way we have defined trees, the vertex at the destination end of an edge for
which the root is the source is itself the root of a tree. We shall call this structure a sub

tree. Note that a single vertex, by itself, is a tree.
The depth of a tree is defined to be the length of the longest of the paths from the

root to the various leaves. The level of a vertex is the length of the path (remember,
there is only one path!) from the root to that vertex. The level of the root itself is then
0. Figure 11.5 shows some trees and indicates their depths.

Drawing some terminology from genealogical (family) trees, we will refer to the
destination vertices of a vertex as its children, and to a vertex from which one or more

children grow as the parent of those children. Children of the same parent are referred
to as siblings, and all vertices reachable from a given vertex are called that vertex's
descerulants. Also, note that a child of any vertex is itself the root of a tree. That tree is
called a subtree of the parent.
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Depth=0 Depth=l

Depth=4

Figure 11.5 Some Trees and Their Depths

Depth=2

Despite the genealogical terminology, the analogy with family trees is imperfect,
though, because whereas humans and most animals have precisely two parents, a ver
tex in our type of trees has precisely one parent!

In applications of trees in computing, there is often information associated with
each of the vertices of a tree. Obviously, the nature and interpretation of this informa
tion depend on the application; we will refer to it generically by a number of names—
for example, label, data, value, or key.

In general, we do not bother to draw the arrowheads on the edges of a tree, but write
the root at the top and "grow" the tree in a downward direction on the page. Thus, it is
obvious which direction is meant. Also, it is sometimes convenient to omit the circle
indicating a vertex, simply writing the data instead, as in Figure 11.6.

We will return to the subject of general trees in Chapter 12; for now, let us limit our
attention to the special and useful case of binary trees.

11.2 PROPERTIES OF BINARY TREES

A binary tree is a tree all of whose vertices have out-degree < 2. Furthermore, the sub
trees of a binary tree are ordered in the sense that there is a left child and a right child.
If a vertex has only one child, it must be clearly identified as left or right. The two trees
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D  E F

G  H

Figure 11.6 Simplified Tree Notation

shown in Figure 11.7a are different binary trees; so are the two trees in Figure 11.7b.
Here are two important properties of binary trees.

Strictly Binary

r is a strictly binary tree iff each of its vertices has out-degree = 0 or out-degree = 2.
Vertices with out-degree = 1 are not allowed in strictly binary trees.

B  B

(a) These are different binary trees

D  F

(b) So are these

Figure 11.7 Binary Trees Have Ordered Children
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Balanced

Intuitively, a binary tree is balanced if it is not "heavy" on either side. There are several
alternative balance conditions, each with its areas of application. For our purposes here,
we will say that Tis a balanced (sometimes called height-balanced) binary tree iff for
each vertex v in T, the depths of v's right and left subtrees differ by at most one. If one
subtree is null, the other subtree must either be null or be a leaf.

It is important to understand that for a tree to be balanced, the property must hold
for every vertex in the tree, not just its root. For all the trees in Figure 11.8, make sure
you know why each is either balanced or not balanced.

The definition of balance can also be stated recursively:

1. A binary tree consisting of a single vertex is balanced.

2. A vertex with a single subtree is balanced iff that subtree is a leaf.

(a) These binary trees are height-balanced.

(b) These binary trees are not height-balanced.

Figure 11.8 Balanced (or Height-Balanced) Binary Trees
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3. A binary tree is balanced iff its left and right subtrees are balanced and their
depths differ by at most 1.

Balance is an important property of binary search trees.

11.3 IMPLEMENTING BINARY TREES

Since a binary tree is really a digraph, we could implement it using one of the graph rep
resentations. However, it is usually better to make use of our knowledge that a binary
tree has right and left subtrees and create a more specialized structure.

Accordingly, we represent each vertex as a linked node—that is, a record with an
information field, a pointer to the left subtree, and a pointer to the right subtree. Thus,
a tree can be built as a linked structure using either dynamic storage allocation, if such
a feature is available in the coding language, or cursor allocation otherwise.

In Figure 11.9, we show some Ada type definitions for these vertices and pointers
(using, of course, the built-in pointer and allocation facilities of the language).

A sequence of statements declaring and manipulating vertices is given in Figure
11.10, along with diagrams showing the results of each operation. For simplicity, we
have used single characters to represent Inf oType. Also recall that in Ada, pointer
fields are initialized by default to NULL.

Generally, we will avoid drawing boxes to represent the vertices and simply use the
more abstract diagrams, as in all the other previous examples.

11.4 TRAVERSALS OF BINARY TREES

Many applications require traversing a tree in a particular way so that all the vertices are
visited in a certain order. Three traversal algorithms are particularly useful in dealing
with binary trees. These are sometimes called preorder, inorder, and postorder, but dif
ferent authors occasionally disagree on what these three terms should mean. To avoid
any confusion, we will call these algorithms by names that are more descriptive once
they are understood, namely Traverse_NLR, Traverse_LNR, and

TYPE InfoType IS ...; — some type

TYPE BinaryTreeNode;

TYPE Tree IS ACCESS BinaryTreeNode;

TYPE BinaryTreeNode IS RECORD

Info: InfoType;

Left: Tree;

Right:Tree;
END;

Figure 11.9 Type Definitions for Binary Tree Node
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Statement

Tl: Tree; T: Tree;

T1 := NEW BinaryTreeNode
Tl.Key := 'D';

Resulting Structure

ti|2| ti|21

•D'

0

Tl.Left

Tl.Left.Key
Tl.Left.Right
Tl.Left.Right.Key

= NEW BinaryTreeNode;
=  'B';

= NEW BinaryTreeNode;
=  ' C' ;

Tl

•D'

0

■B'

/
'C

//

T  := NEW BinaryTreeNode;
T.Key := 'F';

Tl.right := T;

00
Tl ■D'

■B' ,p,

/v
E]t

'C

02
Figure 11.10 Operations on Binary Tree Nodes

Traverse_LKN, respectively. In these names, L stands for "left subtree," R stands for
"right subtree," and N stands for "node." The order of the letters indicates the traversal
order. For example, in Traverse_NLR, a node is visited, then its left subtree is tra
versed, then its right subtree is traversed; in Traverse_LNR, the left subtree is tra
versed before the node is visited, then the right subtree is traversed.

How do these algorithms work? Since a binary tree is recursively defined (every
subtree of a binary tree is a binary tree), a traversal defined for a tree is also defined for
any subtree. We can thus write the three traversal algorithms recursively, as shown in
Figure 11.11. In each one, the details of the Vis it operation are deferred, because pre
cisely what Visit should accomplish is application-dependent.
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PROCEDURE Traverse_NLR{T: Tree) IS

BEGIN

IF T = NULL THEN

RETURN;

ELSE

Visit(T);

Traverse_NLR(T.left);
Traverse_NLR(T.right);

END IF;

END Traverse_NLR;

PROCEDURE Traverse_LNR(T; Tree) IS

BEGIN

IF T = NULL THEN

RETURN;

ELSE

Traverse_LNR(T.left);

Visit(T);

Traverse_LNR(T.right);

END IF;

END Traverse_LNR;

PROCEDURE Traverse_LRN(T: Tree) IS

BEGIN

IF T = NULL THEN

RETURN;

ELSE

Traverse_LRN(T.left);
Traverse_LRN(T.right);
Visit(T);

END IF;

END Traverse_LRN;

Figure 11.11 Recursive Tree Treversals

The three parts of Figure 11.12 show the steps in performing these three traversals
for the given tree.

11.5 EXPRESSION TREES

One conunon application of binary trees is in interpreters or compilers for program
ming languages, where the statements of a source program are converted into trees so
that the structure of the statements is apparent. As a simple case of this type, we will
consider expression trees, which are transformations of arithmetic expressions into
binary trees.

We will use, for simplicity, the same restricted expressions that we used in Chapter
7 in the discussion of stacks and RPN. Recall that an expression consists of single-let
ter identifiers or variable names, one-digit integer constants, the four arithmetic opera
tors +, *, and /, and parentheses.
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(a) A binatv tree.

1 2 4 7 5 3 6 8 9

(b) NLR (node-left-right or Preorder) traversal.

(c) LNR (left-node-rlght or Inorder) traversal.

(d) LRN (left-right-node or Postorder) traversal.

Figure 11.12 Three Traversals of a Binary Tree

Constructing Expression Trees

The next section shows how to construct a scanner or parser program that can construct
an expression tree for these simple expressions. For now, let us just see how to con
struct an expression tree manually. The general idea is very similar to the way we con
structed an RPN expression from an infix one.

We consider first only fully parenthesized expressions. An expression tree always
has an operator at its root and identifiers or constants at its leaves. (The exception is an
expression consisting only of a single identifier or constant; here, there is just one ver
tex, both root and leaf.) The root operator is the "main" operator of the expression—
that is, the operator that is performed last as the expression is evaluated. Interior
vertices are the operators of subexpressions.

To give a few examples. Figure 11.13 shows the expression trees for A, A-B,
(A-B) +C, A- (B+C), and (A+B) * (C-D). Notice carefully how these trees are
constructed and make sure you understand well how (A-B) +C and A- (B+C) give
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Expression Expression Tree

A  A

A-B

(A-B)+C

A-(B+C)

(A+B) * (C-D)

A  B C D

Figure 11.13 Some Expression Trees

rise to different trees. In (A-B) +C, the + is the main operation, since it is performed
last; in A- (B+C), it is the - that is the main operation.

Try building expression trees from (A*B) - (C+ (D/E)) and ((A-B) + (C/D)) *E
to make sure you understand how these trees are produced.

As we did in Chapter 7, let us now relax the condition that expressions must be fully
parenthesized. We use the association and priority rules developed in Chapter 7: + and
- are priority 2 operators, * and / are priority 1 operators, and adjacent operators of
equal priority associate left-to-right. The expression A+B*C will be treated as though it
were parenthesized A+ (B*C); A/B-C will be evaluated as though it were parenthe
sized (A/B) -C. So in the first expression the main operator is + and in the second it is
-. Their expression trees are as shown in Figure 11.14.
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Expression Expression Tree

A+B*C

A/B-C

Figure 11.14 More Expression Trees

Using the left-to-right rule in the case of equal-priority operators, A-B-C is treated
as though it were written (A-B) -C and A/B*C is treated as though it were written
(A/B) *C.

As we did in Chapter 7, let's look at expressions containing a mixture of parenthe
ses and operators of both priorities. Consider first A+B-C+D. Since adjacent operators
of equal priority are handled left-to-right, we treat it as though it were ({A+B) -C) +D.
Now look at A- (B+C) *D. As before, the two operators of interest are — and * (the +
doesn't count because it's inside a subexpression) and the ♦ is done first because its pri
ority is 1. So this expression is handled as though it were A- ((B+C) *D). These trees
are shown in Figure 11.15. Try A-B*C/ (D-E) and A*B-(C+D)+E.

Traversing Expression Trees

The three parts of Figure 11.16 show the three traversals Traverse_NLR,
Traverse_LNR, and Traverse_LRN performed on the given expression trees. It is
interesting that Traverse_NLR produces the forward Polish, or prefix, form of the
original expression, and Traverse_LRN produces the RPN form.

What about Traverse_LNR? This traversal turns out not to be terribly useful for
expression trees, since it produces an infix form of the expression with the parentheses
removed. Thus, it can lead to ambiguities, since, for example, the expressions
(A- (B-C)) and ((A-B) -C), which clearly have different expression trees, have the
same Traverse_LNR infix form, namely A-B-C. Indeed, if numerical values were
substituted for A, B, and C, the two original expressions would evaluate to different
results, only one of which would result from evaluating the infix form.
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Expression Expression Tree

A+B-C+D

A-(B+C)*D

Figure 11.15 Still More Expression Trees

Note that no similar ambiguities arise in the prefix and postfix cases. Even though
Traverse_LNR is not very useful for expression trees, we will see in the next section
that it does have a very useful application.

You have seen that there is an intimate relationship between an infix expression, its
tree, and its forward and reverse Polish forms. In compiler applications, some form of
the expression tree is often used as a convenient intermediate internal representation of
a program. An expression tree is a structure that can easily be manipulated by a pro
gram and can even be restructured to optimize the object-program instructions that are
generated.

11.6 APPLICATION: BUILDING AN EXPRESSION

TREE

In Section 7.6, a function was developed to translate an arithmetic expression to its
RPN form. It turns out that the algorithm to produce the expression tree is very similar,
and the decision process for pushing and popping operators on and off the stack is
exactly the same.
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Expression Tree Traverse NLR

A  A A

A-B -AB

(A-B)+C / \. +-ABC

A-(B+C) / \ -A+BC

(a) NLR traversals.

Figure 11.16 Traversals of Expression Trees

There is a difference, though. In the previous case, when an operand (letter or num
ber) was scanned, it was immediately output (concatenated to the RPN string).
Similarly, an operator that was popped from the stack was immediately output.

In this situation, we need to retain those operands and operators, connecting them
together in a tree. We do this by maintaining a separate stack for intermediate tree
results, letting items in the stack be pointers to subtrees instead of just characters. Our
operator stack is also converted to hold pointers to tree nodes; an operator is placed in
such a node before being pushed.

At the end of the algorithm, a pointer to the root of the resultant tree is left on top
of the node stack. Figure 11.17 shows the conversion of an expression to a tree. All the
details of the nodes are illustrated.

An Ada function for the translator is given as Program 11.1. This function needs the
following type definitions:

TYPE TreeNode;

TYPE Tree IS ACCESS TreeNode;

TYPE TreeNode IS RECORD

Info: Character;
Left: Tree;

Right: Tree;
END RECORD;
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Expression

A

Tree

A

Traverse LNR

A

A-B A-B

(A-B)+C A-B+C

A-(B+C) A-B+C

(b) LNR traversals (note ambiguity!).

Figure 11.16 {Continued)

and the following instantiation of the generic stacks package:

PACKAGE TreeStacks IS NEW Stacks_Generic (Element => Tree)
USE TreeStacks;

Program 11.1 Expression-to-T ree T ranslator

FUNCTION Exp_to_Tree (X : VString) RETURN Tree IS

— I Function to Convert Infix Expression to Expression Tree
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

C  : Character;

T  : VString(MaxLength(X)) := X;
OpStack : Stack(Capacity => Length(T));
NodeStack ; Stack(Capacity => Length(T));
Temp : Tree := NULL;

PROCEDURE PopConnectPush IS

BEGIN

Temp := Top (OpStack);
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Expression

A

Tree

A

Traverse LRN

A

A-B AB-

(A-B)+C AB-C+

A-(B+C) ABC+-

B  C

(b) LRN traversals.

Figure 11.16 (Continued)

Pop (OpStack);

Temp,Right := Top (NodeStack);
Pop (NodeStack);
Temp.left := Top (NodeStack);
Pop (NodeStack);

Push (NodeStack, Temp);
END PopCormectPush;

BEGIN — Exp_to_Tree
IF IsEmpty (T) THEN

RETURN NULL;

END IF;

LOOP

C := Head (T);

CASE C IS

WHEN 'A' . . 'Z' I 'a' , . 'z' | 'O' .
Push (NodeStack, MakeNode (C));

WHEN •+■ I I •*' I </' =>
IF IsEmpty (OpStack) THEN

Push (OpStack, MakeNode (C));
ELSIF Top (OpStack) .Info = • (' THEN

'9' =>
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Push (OpStack, MakeNode (C));

ELSIF Priority (Top (OpStack).Info) < Priority (C) THEN
Push (OpStack, MakeNode (C));

ELSE

LOOP — clear stack of higher priority operators
PopConnectPush;
EXIT WHEN IsEmpty (OpStack)
OR ELSE Top (OpStack).Info = '('

OR ELSE Priority (Top (OpStack).Info) < Priority (C);
END LOOP;

Push (OpStack, MakeNode (C));
END IF;

WHEN •(' =>

Push (OpStack, MakeNode (C));

WHEN •)' =>

WHILE Top (OpStack).Info /= '(' LOOP

PopConnec t Push;
END LOOP;

Pop (OpStack); -- throw away the '('

WHEN OTHERS =>

NULL;

END CASE;

T := Tail (T);

EXIT WHEN IsEmpty (T);
END LOOP;

WHILE NOT IsEnpty (OpStack) LOOP
PopConnectPush;

END LOOP;

RETURN Top (NodeStack);

END Exp_to_Tree;

Note the declarations in Program 11.1, specifically the two stacks OpStack and
NodeStack. The translator uses a local procedure, PopConnectPush, which pops
an operator node from the operator stack, pops the two top nodes from the node stack,
connects the operator node as the root of the new tree, then pushes this node back onto
the node stack. This procedure is really the difference between the expression-to-RPN
translator and this expression-to-tree translator.

The similarity of these two algorithms illustrates once again the intimacy of the rela
tionship of infix expressions, trees, and Polish notation.

11.7 BINARY SEARCH TREES (BSTS)

Another useful application of binary trees is in the implementation of efficient inser
tions and deletions in tables with dynamically varying entries. We define a binary
search tree (BST) as a binary tree with the property that the value of the key at any ver
tex is greater than all values in that vertex's left subtree and less than or equal to all val
ues in that vertex's right subtree. We can state this property recursively as follows:
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1. A leaf vertex is a BST.

2. A vertex is the root of a BST if its key value is greater than that of its left child
and less than or equal to that of its right child, and if both of its children are
either null or the roots of BSTs.

Figure 11.18 shows some trees that are BSTs and some that are not. As usual, make
sure you can distinguish between them.

(a) These trees are BSTs.

(b) These trees are not BSTs.

Figure 11.18 Binary Search Trees
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Operations on Binary Search Trees

Program 11.2 shows a specification for a generic package implementing these opera
tions. The generic parameters will be familiar to you from earlier examples.

Program 11.2 Specification for Generic Binary Search Tree Package

GENERIC

TYPE Element IS PRIVATE; -- assignment and equality predefined
TYPE KeyType IS PRIVATE; — here too

— These generic parameters specify how to
— retrieve the key from an element, compare elements
WITH FUNCTION KeyOf (Item: Element) RETURN KeyType IS <>;
WITH FUNCTION "<" (Keyl, Key2: KeyType) RETURN Boolean IS <>;

PACKAGE Binary_Search_Trees_Generic IS

— I Specification for Generic Binary Search Tree Package
--| Author: Michael B. Feldman, The George Washington University
—( Last Modified: January 1996

TYPE Tree IS LIMITED PRIVATE;

NotFound; EXCEPTION;

PROCEDURE Initialize (T: IN OUT Tree);
— Pre: none

— Post: T is an empty tree

PROCEDURE Insert (T : IN OUT Tree; E : Element);
— Pre: T and E are defined

— Post: T is returned with E stored in a node in

its proper place in T. If E is already in the tree.
Insert has no effect.

FUNCTION Search (T: Tree; K : KeyType) RETURN Tree;
— Pre: T and K are defined

— Post: if T has an node with an element E that contains K,
returns a pointer to E's location;

— Raises: NotFound if no such E is in T

FUNCTION Retrieve (T: Tree) RETURN Element;
— Pre: T is defined

— Post: returns the element stored at the node designated by T
— Raises: NotFound if T is NULL

PROCEDURE Delete (T : IN OUT Tree; K : IN KeyType);
— Pre: T emd K are defined

— Post; If T has a node that contains K, T is returned
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with that node deleted

— Raises: NotFound if E is not in the tree.

GENERIC

WITH PROCEDURE Visit (E : Element);

PROCEDURE Traverse_IiNR (T : Tree);

— Pre: T is defined

— Post: T is traversed in left-node-right order

PRIVATE

TYPE BinaryTreeNode;
TYPE Tree IS ACCESS BinaryTreeNode;
TYPE BinaryTreeNode IS RECORD
Info : Element;

Left : Tree := NULL;

Right : Tree := NULL;
END RECORD;

END Binary_Search_Trees_Generic;

Program 11.3 shows a simple test of some of the operations. The output of this pro
gram is

K

CK

CKL

CKLV

CDKLV

CDKV

CDKQV

CDQV

CQV

CQ

C

Program 11.3 Simple Test of Generic Binary Search Tree Package

WITH Ada.Text_IO;

WITH Binary_Search_Trees_Generic;
PROCEDURE Test_BST IS

— I Simple test of generic binary search tree pac)cage
— I Author; Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

FUNCTION KeyOf(C: Character) RETURN Character IS
BEGIN

RETURN C;

END KeyOf;

PACKAGE Trees IS NEW Binary_Search_Trees_Generic
(Element => Character, KeyType => Character); USE Trees;

PROCEDURE PrintTree IS

NEW Trees.Traverse_LNR(Visit => Ada.Text_IO.Put);

Treel: Tree;

C: Character;

BEGIN — Test_BST

Initialize(Treel);
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Insert(Treel, 'K');

PrintTree(Tree!);
Ada.Text_IO.New_Line;

Insert(Treel, 'C');

PrintTree(Treel);
Ada.Text_IO.New_Line;

Insert(Treel, 'L');

PrintTree(Treel);
Ada.Text_IO.New_Line;

Insert(Treel, 'V);
PrintTree(Treel);
Ada.Text_IO.New_Line;

Insert(Treel, * D');

PrintTree(Treel);
Ada.Text_IO.New_Line;

Delete(Treel, 'L');
PrintTree(Treel);
Ada.Text_IO.New_Line;

Insert(Treel, 'Q');

PrintTree(Treel);
Ada.Text_IO.New_Line;

Delete(Treel, 'K');
PrintTree(Treel);
Ada.Text_IO.New_Line;

Delete(Treel, 'D');
PrintTree(Treel);
Ada.Text_IO.New_Line;

Delete(Treel, 'V);
PrintTree(Treel);
Ada.Text_IO.New_Line;

Delete(Treel, 'Q');
PrintTree(Treel);
Ada.Text_IO.New_Line;

END Teat_BST;

Program 11.4 shows the body of the BST package, with several of the operations
shown as subunits. We will discuss the operations one by one.

Program 11.4 Body of Generic Binary Search Tree Package

PACKAGE BODY Binary_Search_Trees_Generic IS

--| Body of Generic Binary Search Tree Package
Author; Michael B. Feldman, The George Washington University

--| Last Modified: January 1996
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•- local operations, not exported

FUNCTION MakeNode (E : Element) RETURN Tree IS

— Pre: E is defined

— Post: returns a pointer to a tree node containing E.
Result: Tree;

BEGIN

Result := NEW BinaryTreeNode;
Result.Info := E;

RETURN Result;

END MakeNode;

PROCEDURE ConnectLeft (T : IN OUT Tree; E : Element) IS
— Pre: T and E are defined; T.Left = NULL

-- Post: creates a node containing E and connects it to
the left subtree of T

BEGIN

T.Left := MakeNode (E);

END ConnectLeft;

PROCEDURE ConnectRight (T ; IN OUT Tree; E : Element) IS
— Pre: T and E are defined; T.Right = NULL
-- Post: creates a node containing E and connects it to

the right subtree of T
BEGIN

T.Right := MakeNode (E);
END ConnectRight;

PROCEDURE Initialize (T: IN. OUT Tree) IS

BEGIN

T := NULL;

END Initialize;

FUNCTION Retrieve (T: Tree) RETURN Element IS
BEGIN

IF T = NULL THEN

RAISE NotFound;

ELSE

RETURN T.Info;

END IF;

END Retrieve;

FUNCTION Search (T: Tree; K : KeyType) RETURN Tree IS SEPARATE;

PROCEDURE Insert (T : IN OUT Tree; E : Element) IS SEPARATE;

FUNCTION FindSmallest (T : Tree) RETURN Tree IS SEPARATE;

PROCEDURE Delete (T : IN OUT Tree; K : IN KeyType) IS SEPARATE;

PROCEDURE Traverse_LNR (T : Tree) IS SEPARATE;

END Binary_Search_Trees_Generic;

The package body in Program 11.4 shows three auxiliary routines that are needed by
the Insert operation. Two of these procedures, ConnectLeft and
ConnectRight, are responsible for connecting a leaf node, created by the function
MakeNode, as the left or right child of its parent respectively.
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Initialize

The initialization procedure in Program 11.4 just sets the root node to NULL, making all
the nodes in the tree inaccessible. This policy is not a particularly good one, because it
causes storage leaks. We leave it as an exercise to modify Initialize so that it deal
locates all the nodes in the tree.

Retrieve

The retrieve function in Program 11.4 simply retums the information part of the node
to its calling program.

Search

By the definition of a BST, at any given node, key values in that node's left subtree are
less than the node's key value; key values in the node's right subtree are greater or
equal. Therefore, trying to locate an item in a binary search tree is analogous to per
forming a binary search on an array that has already been sorted. To find a particular
item, we compare its key (the target key) to the key of the root node. If the target key is
less than the root key, we can eliminate the right subtree and search only the left sub
tree, thereby cutting the number of nodes to be searched in half. For this reason, the
binary tree search is an 0{]og2N) algorithm.

A recursive function for searching a binary tree is given as the subunit in Program
11.5. From this algorithm, it is easy to see how the binary search tree got its name: It
can be seen as a binary tree used for searching (binary (search tree)) or as a tree that
implements binary search ((binary search) tree).

Program 11.5 BST Search Operation

SEPARATE (Binary_Search_Trees_Generic)
FUNCTION Search (T: Tree; K : KeyType) RETURN Tree IS

— I BST Search Operation, subunit of Binary_Search_Trees_Generic
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

BEGIN — Search

IF T = NULL THEN -- not in tree

RAISE NotFound;

ELSIF K < KeyOf(T.Info) THEN — search left subtree
RETURN Search(T.Left, K);

ELSIF KeyOf(T.Info) < K THEN — search right subtree
RETURN Search(T.Right, K);

ELSE -- found it!

RETURN T;

END IF;

END Search;
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Traverse_LNR

We have mentioned that the LNR or inorder traversal of a binary tree has an interesting
use. A BST has the property that an LNR traversal will visit the vertices in the order of
their key values. This can be readily understood by realizing that every key in the root's
left subtree is necessarily less than the root key (otherwise it wouldn't be a BST!), so
visiting all the nodes in the left subtree prior to visiting the root will visit smaller keys.
Similarly, visiting vertices in the right subtree after visiting the root will visit the root
before visiting any keys greater than or equal to the root. This operation is shown in
Program 11.6.

Program 11.6 BST Treverse Operation

SEPARATE (Binary_Search_Trees_Generic)
PROCEDURE Traverse_LNR (T : Tree) IS

--| Binary Search Tree Traverse Operation, subunit of
— I Binary_Search_Trees_Generic
— I Author: Michael B. Feldinan, The George Washington University
— I Last Modified: January 1996

BEGIN — Traverse_LNR

IF T = NULL THEN

RETURN;

ELSE

Traverse_LNR (T.Left);

Visit (T.Info);

Traverse_LNR (T.Right);
END IF;

END Traverse_LNR;

Since LNR traversal is recursive and the left and right subtrees of the root are them
selves BSTs, the vertices must be visited in sorted order. This is illustrated in Figure 11.19.

Insert

Since BSTs are recursively defined, we can discover a very natural recursive algo
rithm for inserting a new key in the tree. Assuming first that the tree is not empty, we
just test the key against the root key. If it is less, we insert it in the left subtree; if it is
equal or greater, we insert it in the right subtree. Eventually, after several recursive
calls, we will reach a point where the subtree into which the new key is to be inserted
is empty. At this point, we just create a new node for it and link it to the appropriate
pointer in the parent node.

How shall we handle the case where a "duplicate key" is encountered—that is,
where a given key is seen for the second time? The action to be taken is application-
dependent: Sometimes duplicate keys are not allowed, in which case Insert should
raise an exception. In the present example. Insert simply does nothing. Another
approach might be to treat the second occurrence of a key as though it were greater than



426 Binary Trees
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(a) Binary search tree. (b) LNR Traversal.

Figure 11.19 LNR Traversal of a Binary Search Tree

the original; this forces the second occurrence into the right subtree. This strategy gives
what is known as a stable sort, in which equal keys appear in the LNR traversal in pre
cisely the order in which they arrived.

The BST insertion operation is shown as a subunit in Program 11.7.

Program 11.7 BST Insertion Operation

SEPARATE (Binary_Search_Trees_Generic)
PROCEDURE Insert (T : IN OUT Tree; E : IN Element) IS

— I BST Insert Operation, subunit of Binary_Search_Trees_Generic
--| Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

BEGIN — Insert

IF T = NULL THEN

T  := MakeNode (E);

ELSIF KeyOf(E) < KeyOf{T.Info) THEN
IF T.Left = NULL THEN

ConnectLeft (T, E);
ELSE

Insert (T.Left, E);

END IF;

ELSIF KeyOf(T.Info) < KeyOf(E) THEN
IF T.Right = NULL THEN

ConnectRight (T, E);
ELSE

Insert (T.Right, E);
END IF;
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ELSE

Insert{T.Right, E);

END IF;

END Insert;

What is the time performance of Insert? Suppose the BST is balanced. Then if
there are K vertices in the tree, the number of levels will be (approximately) log K, and
finding the right place for a new arrival will take (approximately) log K comparisons.

But will the BST be balanced? There is no guarantee whatever that it will be,
because this property depends on the order of arrival of the new keys.

How bad can it get? Suppose that the keys arrive in sequential order—for example,
sorted ascending. Then each new arrival will necessarily be greater than the previous
one, and will thus go into the right subtree. No arrival ever goes into a left subtree!
Thus, the tree will be badly deformed: It will look like a linear list! So adding a new
arrival will be a linear function of the number of keys already there, instead of a loga
rithmic one. Figure 11.20 shows this worst-case situation.

Insert(T,'A') A

Insert (T, 'C ) A

Insert(T,'D') A

Insert(T,'G') A

G

Figure 11.20 A Worst-Case Situation for BST Insertion
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The best-case performance of Insert, then, is logarithmic; the worst-case one is
linear; the average case will be somewhere in between. In practice, BSTs are not useful
for applications in which there is a high probability that the inconiing data items are
already sorted. In situations where the data is reasonably "mixed up," the average per
formance is acceptable.

As it happens, algorithms exist for balancing BSTs. A balanced BST is some
times called an AVL tree, after Adel'son-Verskii and Landis. The algorithm they
discovered is interesting but rather complicated; its discussion is deferred until the
next chapter.

Delete

We are studying BSTs in part because they are useful for storing dynamically varying
sets of records. Thus, records are deleted as well as added. Deletions need to be done,
of course, in such a way that the BST property of the remaining tree is preserved.

Assuming that deletion of a vertex from a BST always takes the form "delete the
record containing a given key," what is the algorithm? If the desired vertex is a leaf, we
have an easy problem: Just cut it off the tree. Otherwise, it has subtrees and we need to
rearrange the subtrees so that the BST property is not disturbed. If only one subtree is
present, we can just delete the vertex by making its parent point to whichever child is
there. If both subtrees are present, we replace the vertex by its LNR, or inorder, suc
cessor. Formally, we have:

To delete a node from a BST:

1. Locate the desired vertex by a search; call it t.

2. If r is a leaf, disconnect it from its parent (set the pointer in the parent's node
equal to null).

3. If t has a left child but no right child, remove t from the tree by making r's par
ent point to f's left child.

4. If t has a right child but no left child, remove t from the tree by making r's par
ent point to r's right child.

5. Otherwise, find r's LNR successor, which is the node in r's right subtree with
the smallest key. Copy this node's information into /; delete the node.

In Figure 11.21, you will see some deletions from a BST that illustrate each case
above.

To arrive at a procedure for Delete, consider the last case in the algorithm shown
above. To handle that case, we write an auxiliary procedure FindSmallest (T),
which finds the node in a tree T with the smallest key, just by moving recursively down
to the left from the given node. Program 11.8 shows this auxiliary function; Program
11.9 shows the overall deletion procedure. This procedure depends on the fact that the
tree is an IN OUT parameter; make sure you understand how it works. You might find
it helpful to draw pictures of the process.
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Program 11.8 Find Smallest Key In a BST

SEPARATE (Binary_Search_Trees_Generic)
FUNCTION FindSmallest (T : Tree) RETURN Tree IS

— I Find Smallest Key in Binary Search Tree
— I Author: Michael B. Feldnicui, The George Washington University
— I Last Modified: January 1996

— Pre: T is defined

— Post: returns a pointer to the node of T containing the
"smallest" value, namely the leaf at the far left side
of the tree.

BEGIN — FindSmallest

IF T = NULL THEN

RETURN NULL;

ELSIF T.Left = NULL THEN

RETURN T;

ELSE

RETURN FindSmallest(T.Left);
END IF;

END FindSmallest;

Program11.9 BST Deletion Operation

SEPARATE (Binary_Search_Trees_Generic)
PROCEDURE Delete (T : IN OUT Tree; K : IN KeyType) IS

— I BST Delete Operation, sub\init of Binary_Search_Trees_Generic
— I Author: Michael B. Feldman, The George Washington University
--j Last Modified: January 1996

Temp: Tree;

BEGIN — Delete

IF T = NULL THEN

RAISE NotFound;

END IF;

IF K < KeyOf (T. Info) THEN — chec)c left subtree
Delete (T.Left, K);

ELSIF KeyOf(T.Info) < K THEN -- check right subtree
Delete (T.Right, K);

else — delete this node
IF T.Left = NULL AND T.Right = NULL THEN
T := NULL; — T is a leaf; delete it

ELSIF T.Right = NULL THEIN — replace T by its predecessor
T := T.Left;

ELSIF T.Left = NULL THEN — replace T by its successor
T := T.Right;

else — both children there
Temp := FindSmallest(T.Right);
T.Info := Temp.Info;

Delete(T.Right, KeyOf(T.Info));
END IF;

END IF;

END Delete;
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There are really two possible deletion algorithms; we could just as well have used
f's in order predecessor, the node in its left subtree with the largest key. Finding an
algorithm for this is left as an exercise.

Notice that a deletion clearly affects the tree's balance. Experimental results have
shown that in a practical BST, with many insertions and deletions, all coming in ran
dom order, the tree's balance is best maintained by alternating successor and predeces
sor deletions. In an exercise, you can write such a deletion operation.

11.8 ADT DESIGN: THE KEYED TABLE AS A BST

Recall that in Sections 5.8 and 9.4, we implemented the keyed table using an array and
a linear linked list, respectively. We show in Program 11.10 the specification of a ver
sion of the table package using a BST as a storage structure. This package uses the
generic BST package from Programs 11.2 and 11.4; we leave it as an exercise to com
plete the body of the table package, and to retest using the passenger list example first
developed in Section 5.9.

Program 11.10 Implementing the Keyed Table as a BST

WITH Binary_Search_Trees_Generic;
GENERIC

TYPE Element IS PRIVATE; — assignment and equality predefined
TYPE KeyType IS PRIVATE; — here too

Capacity: IN Positive; — maximum table size

— These generic parameters specify how to
— retrieve the key from an element, compare elements
WITH FUNCTION KeyOf (Item: Element) RETURN KeyType IS <>;
WITH FUNCTION "<" (Keyl, Key2: KeyType) RETURN Boolean IS <>;

— This parameter specifies what to do with each element during
— a traversal of a table;

WITH PROCEDURE Visit (Item: Element);

PACKAGE Tables_Generic_BST IS

Specification of the abstract data type for cm ordered table of
element records, each containing a key.
This version has type definitions to implement the table as a
binary search tree. The client cannot see or use these types
because Tetble is LIMITED PRIVATE.

Author: Michael B. Feldman, The George Washington University
Last Modified: January 1996

— Data Structure

TYPE TableType IS LIMITED PRIVATE;

— Exported exceptions

UninitializedTable: EXCEPTION;

NoSpaceLeft : EXCEPTION;

— Operators
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PROCEDURE InitializeTable (Table : IN OUT TableType);
— initializes a Table.

— Pre ; None

— Post: Table is an initialized TableType

FUNCTION SizeOfTable (Tcible : TableType) RETURN Natural;
— Returns the number of elements in a Table

— Pre : Table is an initialized TableType
— Post: Returns the number of elements in Table

PROCEDURE Search (Table : TableType;
Target ; KeyType;
Success : OUT Boolean);

— Searches a Table for Target.
— Pre : Table is an initialized TableType
— Post: Success is True if Target is found; otherwise.

Success is False.

PROCEDURE Insert (Table : IN OUT TableType;
Item : Element;

Success : OUT Boolecui) ;
— Inserts Item into a Table.

— Pre : Table and Item are defined; Table is initialized.
— Post: Success is True if insertion is performed; Success is False

if insertion is not performed because there is already
an element with the same )cey as Item.

— Raises: NoSpaceLeft if there is no space available for Item.

PROCEDURE Delete (Table : IN OUT TableType;
Target : KeyType;

Success : OUT Boolean);
— Deletes the element with )cey Target from a Table.
— Pre : Table cuid Target are defined; Table is initialized.
— Post: Success is True if deletion is performed; Success is False

if deletion is not performed because there is no element
whose )cey is Target.

PROCEDURE Replace (Table : IN OUT TadaleType;
Item : Element;

Success : OUT Boolean);
— Replaces the element of a Table with the same Icey as
— Item by the contents of Item.

— Pre : Table and Item are defined; Table is initialized.
— Post: Success is True if the replacement is perfoimed; Success is

False if there is no element with the same key as Item.

PROCEDURE Retrieve (Table : TableType;
Target : KeyType;
Item : OUT Element;

Success : OUT Boolean);
— Copies the element whose key is Target into Item.
— Pre ; Table is an initialized TableType.
— Post: Success is True if the copy is performed; Success is False

if there is no element whose key is Target.

PROCEDURE Traverse (Table : TableType);
— Repeatedly calls procedure Visit (a generic parameter) to
— process each element of a Table.

— Pre : Table is cui initialized TableType.
-- Post: Each element is operated on in turn by procedure Visit.

PRIVATE

PACKAGE Trees IS NEW

Binary_Search_Trees_Generic
(Element => Element, KeyType => KeyType);
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TYPE TableType IS RECORD

Data : Trees.Tree,•

Numltems: Natural;

END RECORD;

END Tables_Generic_BST;

In developing the original specification for Tables_Generic (Section 5.8), we
wrote very general and fundamental operations on keyed tables and took care not to
allow client programs direct access to details of our table representation. We argued
there that making the table type LIMITED PRIVATE gave us the flexibility to choose
our implementation. In Section 9.4, we saw how the table implementation could be
changed to a linked list. Here the careful ADT design pays off again: We can change to
a search tree implementation by changing only the package body, with very little
change to the package specification. More important, the identical client programs can
be used with no change at all!

Saving and Restoring a BST Table

It is convenient to provide clients of our table package with a version of the generic
backup package first introduced in Section 5.9. How shall we save a BST to a disk file?
With the array and linked-list table implementations, we could do a simple traversal
because both structures are linear. In the case of a BST, we must consider what sort of

traversal would be best.

Suppose we simply called Traverse_LNR to copy the tree to a disk file, using a
file-oriented element Put as our Visit procedure. This would result in a file con
taining all the elements in the tree, but it would be disastrous from a performance point
of view. As we know, Traverse_LNR is designed specifically to visit the nodes in
order by key. The file would thus contain the records in key order. Assuming we
implemented Restore as a series of Insert operations, this would result in a
worst-case, linear BST!

The solution is to implement Save as a traversal that preserves the structure of
the actual tree, writing the records to disk so that reading them back in and insert
ing them will produce a tree whose shape is the same as that of the original one. As
it happens, Traverse_NLR will do exactly this. As an exercise, you can show that
this is the case and implement a generic table backup child package tailored to the
BST implementation.

11.9 APPLICATION: A CROSS-REFERENCE

GENERATOR

A cross-reference generator is an example of an indexing program. Two common
applications come from the fields of progranuning and text analysis.
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Figure 11.22 A Cross-Reference Listing

A programmer uses a cross-reference listing of a program to help debug that pro
gram. The cross-reference listing indicates, for each identifier in the program, the state
ments in which that identifier appears. A person analyzing text in a natural language
uses a cross-reference listing of that text (this kind of cross-reference listing is some
times called a concordance) to indicate how frequently and in which lines each impor
tant word occurs. For example, centuries ago—long before computers, in any case—a
number of monks in England produced a concordance of the entire Bible, all by hand,
of course!

An example of a cross-reference listing, for a small sample of English text, appears
in Figure 11.22.

A cross-reference generator, whatever its application, consists of two parts. One
part is some kind of dynamic table handler to hold the words read from the text, and all
their references, in some efficient way. The other part is some kind of scanner, or
parser, that knows the specifics of the language being analyzed and therefore how to
distinguish a meaningful word from other things.

In our case, the scanner and table packages are called EngLexer and
Trees_Xref_Generic, respectively; their specifications appear as Programs 11.11
and 11.12. The scanner provides a VString subtype WordType, and a procedure
GetWord to read text from the input file and retum the next word it finds; GetWord
also indicates end-of-line and reports end-of-file at the right time. The table handler
provides Insert, to put a word and its line number into the table, and Display, to
display the table after all text is read.

Program 11.11 Specification for Cross-Reference Trees

GENERIC

TYPE KeyType IS PRIVATE;

TYPE NonKeylnfoType IS PRIVATE;
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WITH FUNCTION "<" (Left. Right : KeyType) RETURN Boolean;
WITH PROCEDURE DisplayKey (K : IN KeyType);

WITH PROCEDURE DisplayRef (N : IN NonKeylnfoType);

PACKAGE Trees_Xref_Generic IS

— I Soecification for Cross-Reference-Tree Pac)cage
— I Author: Michael B. Feldman, The George Washington University
--| Last Modified: January 1996

TYPE Tree IS LIMITED PRIVATE;

PROCEDURE Insert (T : IN OUT Tree;

K : KeyType;

N : NonKeylnfoType);

— Pre: T, K, N are defined

-- Post: T is returned with K and N stored in a node in

its proper place in T.

PROCEDURE Display (T : Tree);
-- Pre: T is defined

-- Post: The contents of T are displayed in key order

PRIVATE

TYPE BinaryTreeNode;

TYPE Tree IS ACCESS BinaryTreeNode;

END Trees_Xref_Generic;

Program 11.12 Specification for English Lexical Scanner

WITH Ada.Text_IO, VStrings;

PACKAGE English_Lexer IS

— I Simple English Lexical Scanner
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

MaxWordSize : CONSTANT Positive := 20;

SUBTYPE WordType IS VStrings.VString(MaxLength => MaxWordSize);

PROCEDURE GetWord (F : IN Ada.Text_IO.File_Type;
Word : OUT WordType;
Success: OUT Boolean;

EOL : OUT Boolean;

EOF : OUT Boolean);

— Pre: F is defined

-- Post: reads the next simple English word from F, returning
it in Word. Success is True if and only if Word is non-empty.
EOL is True if and only if the end of the current line was
reached; EOF is true if and only if end of file was reached.

END English_Lexer;

The main program of the cross-reference generator is shown as Program 11.13.
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Program 11.13 Main Program for English Cross-Referencer

WITH Ada.Text_IO;

WITH Ada.Integer_Text_IO;
WITH Trees_Xref_Generic;

WITH English_Lexer;
WITH VStrings, VStrings.10;
PROCEDURE English_Xref IS

— I Cross-Reference Builder for Simple English
— I Author; Michael B. Feldraan, The George Washington University
--| Last Modified: January 1996

PROCEDURE DisplayKeydtera : IN English_Lexer .WordType) ; — foirward
PROCEDURE DisplayRef(Item : IN Positive); — forward

PACKAGE XrefTrees IS

NEW Trees_Xref_Generic (KeyType => English_Lexer.WordType,
NonKeylnfoType => Positive,
"<" => VStrings."<",

DisplayKey => DisplayKey,
DisplayRef => DisplayRef);

FileName : VStrings.VString(80);
F  : Ada.Text_IO.File_Type;
T  : XrefTrees.Tree;

LineNumber : Positive := 1;
ThisWord : English_Lexer.WordType;
EOF : Boolean := False;

EOL : Boolean := False;

Success: Boolean;

PROCEDURE DisplayKey(Item : IN English_Lexer.WordType) IS
BEGIN

Ada.Text_IO.New_Line;

VStrings.10.Put(Item => Item);
Ada.Text_IO.Set_Col(Ada.Text_IO.Positive_Count(22) );

END DisplayKey;

PROCEDURE DisplayRef(Item ; IN Positive) IS
BEGIN

Ada.Integer_Text_IO.Put(Item => Item, Width => 4);
END DisplayRef;

BEGIN — English_Xref

Ada.Text_IO.Put_Line ("Please enter name of data file");
VStrings.10.Get_Line(FileName, 80);
Ada.Text_IO.Open(F, Ada.Text_IO.In_File, VStrings.Value(FileName));
Ada.Text_IO.New_Line;

Ada.lnteger_Text_IO.Put (Item => LineNiunber, Width => 4) ;
Ada.Text_IO.Put(Item => ' ');
LOOP

English_Lexer.GetWord (F, ThisWord, Success, EOL, EOF);
IF Success THEN

XRefTrees.Insert (T, ThisWord, LineNumber);
END IF;
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IF EOL THEN

LineNumber := LineNumber +1;

Ada.Text_IO.New_Line;
Ada.Integer_Text_IO.Put{Item => LineNumber, Width => 4);
Ada.Text_IO.Put(Item => ' ');

END IF;

EXIT WHEN EOF;

END LOOP;

Ada.Text_IO.New_Line(Spacing => 2);
Ada.Text_IO.Put {"Cross Reference Listing for ");

VStrings.IO.Put {FileName);
Ada.Text_IO.New_Line;
XrefTrees.Display{T);

END English_Xref;

The tree package is instantiated for VString words and Positive line num
bers. The main loop of this program is very simple: EngLexer. GetWord is called
repeatedly, and if GetWord returns a nonempty word, that word and the current line
number are put into the table with a call to XRefTrees. Insert. When the input
file is exhausted, XRefTrees .Display is called to print out the cross-reference
listing. Notice how all the details of the scanning and table handling are encapsulated
in the respective bodies.

The Body of the Table Handler

Let us look first at the requirements for the table handler. We assume that the distinct
words in the text or program are few enough in number that the table can be constructed
in main memory. The input text will be scanned, the cross-reference built, then the
results reported once. Also, we do not know either precisely how many different words
will arrive or how many references each will have. Furthermore, words and references
are only added, never deleted. These facts argue for a table structure whose Insert is
efficient. The Display operation is not worrisome, since it is performed only once per
run, and Delete is never done at all.

Unless the total number of words is very large, the BST structure is a useful solu

tion. Since people don't often write either programs or essays with the words in alpha
betical order, the chances of getting a badly unbalanced tree are slim. Each Insert
performs in roughly C?(log AO time.

A first attempt to build a BST package would carry a node for each word and ref
erence (line number): The word would be the key and the reference would be the non-
key information. A moment's thought reveals that this is wasteful of space, since we
really need only one copy of each word. Let's put all the references to a given word in
a one-way list, then use the value part of the tree vertex as the list header. A diagram for
this is shown in Figure 11.23.

The body of the tree package is shown as Program 11.14. The declarations at the
top indicate that our generic singly linked list package is instantiated, and the BST node
contains two fields in addition to the pointers: the Key field, which contains a word,
and the Ref s field, containing the list of line numbers.
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Figure 11.23 A Cross-Reference Tree for English Text

Program 11.14 Body of Cross-Reference Tree Package

WITH Lists_Generic;
PACKAGE BODY Trees_Xref_Generic IS

— I Body of generic cross-reference tree package
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

PACKAGE XrefLists IS

NEW Lists_Generic (EleraentType => NonKeylnfoType);
USE XrefLists;

TYPE BinaryTreeNode IS RECORD
Key : KeyType;
Refs : List;

Left : Tree;

Right : Tree;
END RECORD;

— procedure definitions, not exported

FUNCTION MakeNode (K : IN KeyType;
V : IN NonKeylnfoType) RETURN Tree IS

— Pre: K and V are defined

— Post: returns a pointer to a tree node, with K in
the key field and V in the first node of a reference list
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Result : Tree;

BEGIN

Result := NEW BinaryTreeNode;
Result.Key := K;

AddToRear(Result. Refs, V);

RETURN Result;

END MakeNode;

PROCEDURE ConnectLeft (T : IN OUT tree;

K  : KeyType;

V : NonKeylnfoType) IS

— Pre: T, K, and V are defined; T.Left is NULL
— Post: creates a tree node using MakeNode, then attaches

this new node to the left subtree of T

BEGIN

T.Left := MakeNode (K, V);

END ConnectLeft;

PROCEDURE ConnectRight (T : IN OUT tree;
K : KeyType;

V : NonKeylnfoType) IS

— Pre: T, K, and V are defined; T.Right is NULL
— Post: creates a tree node using MakeNode, then attaches

this new node to the right subtree of T
BEGIN

T.Right := MakeNode (K, V);
END ConnectRight;

PROCEDURE ProcessDuplicate (T : IN OUT tree;
K : IN KeyType;

V : IN NonKeylnfoType) IS
— Pre: T, K, and V are defined
— Post: attaches V to the end of the reference list headed at T
BEGIN

AddToRear (T.Refs, V);

END ProcessDuplicate;

PROCEDURE Insert (T : IN OUT tree;

K : KeyType;

N : NonKeylnfoType) IS

BEGIN

IF T = NULL THEN

T := MakeNode (K, N);

ELSIE K < T.key THEN
IF T.left = NULL THEN

ConnectLeft (T, K, N);

ELSE

Insert (T.left, K, N);

END IF;

ELSIE T.Key < K THEN

IF T.right = NULL THEN
CormectRight (T, K, N) ;

ELSE

Insert (T.right, K, N);
END IF;

ELSE

ProcessDuplicate (T, K, N);

END IF;

END Insert;
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PROCEDURE VisitTree (T : Tree) IS
-- Pre: T is defined

— Post: traverses the list of references headed at T

Current: Position;

BEGIN

DisplayKey (T.Key);
Current := First(T.Refs);

WHILE NOT IsPastEnd(T.Refs, Current) LOOP

DisplayRef (Retrieve(T.Refs, Current));
GoAhead (T.Refs, Current);

END LOOP;

END VisitTree;

PROCEDURE Display (T : tree) IS
BEGIN

IF T = NULL THEN

RETURN;

ELSE

Display (T.Left);
VisitTree (T);

Display (T.Right);
END IF;

END Display;

END Trees_Xref_Generic;

How does Insert work? The first time a given word is seen, Insert sets up a tree
node for it and then creates the reference list with the current line number in the first node
of the list. For subsequent references to the same word, an auxiliary procedure
ProcessDuplicate just calls AddToRear to add this reference to the end of the list.

Display, just a variation of Traverse_LNR, calls an auxiliary routine
VisitTree, which prints the word in the tree node and then traverses the reference
list, printing out line numbers as it goes.

The Scanner as a Finite-State Machine

Developing scanners for languages is a science in itself; a general treatment is beyond
the scope of this book. For this example, we'll simplify the scanner by relying on some
key assumptions about the text to be scanned. We assume that the text is English, that
uppercase and lowercase letters are treated separately, and that numeric characters are
treated just like letters, so dates, phone numbers, and so on, will be indexed along with
normal words. Punctuation is not to be indexed; there is no embedded punctuation,
such as an apostrophe or a hyphen. A word is never broken across two lines. In the
exercises, you have the chance to relax some of these assumptions.

Our scanner can be implemented using an important structure which generalizes
nicely to many other scanning applications, namely the finite-state machine. Figure
11.24 shows a simple diagram for this structure, which was introduced in Chapter 10
as a state graph, or transition graph. The circles represent states of the machine. The
arrows represent transitions from one state to another. An arrow is labeled to indicate

two things: The left part is the input class of the character just scanned and the right
part is an action to be taken just before the machine moves to its new state.
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Figure 11.24 Graph and Table Notations for Finite-State Machine

Figure 11.25 gives the state graph for our simple English scanner. It begins in its
Start state and continues to cycle in that state until it sees a letter. If a carriage
return is seen, the scanner updates the line counter and returns to the Start state (we
need to account for the possibility of a line's containing all blanks or all punctuation).

Once a letter is seen (remember, digits count as letters!), the machine executes an
action called StartWord, which initializes a string in which to store the word, stores
the letter in this string, and transfers to a state called Build.

While in the Build state, the machine reads characters, adding the letters it finds
on to the word string using an action called AddLetter. When a nonletter character

Letter/AddLetter

Build

Letter/StartWord
AnythingElse/Nothing

AnythingElse/Nothing
Start

CR/Bumpline

CR/Bumpline

Anything/NothingFinish

Figure 11.25 State Graph for Scanner for Simple English
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is seen, the word is complete and the machine transfers to its Finish state. If the non-
letter was a carriage return, the line counter is incremented.

How is the flnite-state machine implemented? This is all shown in the package
body. Program 11.15. The state names, input classes, and actions are written as enu
meration types. The transition graph is implemented as a two-dimensional array,
which uses the states as its row subscripts and classes of inputs as its column sub
scripts. Each entry in the array is itself a record, containing an action field and a new-
state field.

Program 11.15 Body of Lexical Scanner for Simple English

WITH Ada.Text_IO, VStrings;

USE Ada.Text_IO, VStrings;
PACKAGE BODY English_Lexer IS

— I Body of English Lexical Scanner
--I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

TYPE State IS (Start, Build, Finish);
TYPE InputClass IS (Letter, OR, AnythingElse);
TYPE Action IS (Nothing, StartWord, BumpLine, AddLetter);

TYPE LexicalEntry IS RECORD
NewState : State;

ThisAction : Action;
END RECORD;

TYPE FSM_Table IS ARRAY (State, InputClass) OF LexicalEntry;

FUNCTION Classify (Ch: Character) RETURN InputClass IS
BEGIN

CASE Ch IS

WHEN 'A'..'Z' I ■a" . . 'z' I •0' . . '9' =>
RETURN Letter;

WHEN OTHERS =>
RETURN AnythingElse;

END CASE;
END Classify;

PROCEDURE GetWord (F : IN File_Type;
Word : OUT WordType;
Success: OUT Boolean;
EOL : OUT Boolean;
EOF : OUT Boolesui) IS

Char

ThisClass
PresentState
ThisEntry
NewAction
TempWord

character;
InputClass;
State;
LexicalEntry;
Action;
WordType;

Lexical table for simplified English text.

EnglishText : CONSTANT FSM_Table :=

(  — entries for current state = Start, current input
((Build, StartWord), — Letter
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(Finish, BumpLine), — CR
(Start, Nothing)), — AnythingElse

entries for current state = Build, current input =
((Build, AddLetter), — Letter

(Finish, BumpLine), — CR
(Finish, Nothing)), — AnythingElse

entries for current state = Finish, current input =
((Finish, Nothing), — Letter

(Finish, Nothing), — CR
(Finish, Nothing))); — AnythingElse

End of lexical tcible for simple English

BEGIN body of GetWord

EOL ;= false;

EOF := false;

PresentState := Start;

LOOP

IF PresentState = Finish THEN

EXIT;

END IF;

IF End_of_File (F) THEN

EOF := true;

EXIT;

ELSIF End_of_Line (F) THEN
Skip_Line (F);
ThisClass := CR;

ELSE

Get (F, Char);

Put(Char);

ThisClass := Classify (Char);
END IF;

NewAction := EnglishText (PresentState, ThisClass).ThisAction;

CASE NewAction IS

WHEN Nothing =>
NULL;

WHEN StartWord =>

TempWord := TempWord & Char;
WHEN AddLetter =>

TempWord := TempWord & Char;
WHEN BumpLine =>
EOL := true;

END CASE;

PresentState := EnglishText (PresentState, ThisClass).NewState;

END LOOP;

Word := TempWord;
Success := NOT VStrings.IsEmpty(Word);

END GetWord;

END English_Lexer;

The procedure GetWord is the "machine" that actually moves around the state
graph. It reads a character, classifies it, determines the action to be taken by looking in
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the array using its current state and input class as subscripts, executes the action, then
goes to its new state. If the new state is Finish, the procedure returns to its caller.

This design example has shown the advantages of separating the independent func
tions of scanning and table handling into manageable pieces; it has also illustrated the
clarity with which structures such as tables can be written using enumeration types. A
number of the exercises invite the reader to develop various modifications to this design.

11.10 SUBPROGRAM POINTERS AND

TABLErDRIVEN PROGRAMMING

In this section, we introduce an altemative design for the lexical scanner, using table-
driven programming.

In certain kinds of programs, such as numerical applications or graphic user inter
faces, it is useful to be able to select dynamically which of a number of functions or pro
cedures is to be called, depending upon circumstances in the program or its
environment. This is typically done by providing a type whose values represent names
of subprograms. The progranuner can then

1. declare a variable of that type;

2. store in that variable the name of a subprogram;

3. execute precisely the subprogram whose name is in that variable.

Some capabilities for this are provided in other languages, in particular Fortran,
Pascal, and C; Ada 83 does not include such facilities.

Of course, in Ada 83 we can select among several subprograms using an IF or CASE
structure, but the selection, and the subprograms to be called, are predetermined at com
pilation time and cannot be changed without modifying and re-compiling the program.

Ada 95 Subprogram Pointers

This is a situation analogous to the variant record case we examined in Section 6.6, in
which the Ada 95 solution was to provide tagged types. Recall further that in Section
9.11, we introduced general access types and used them to designate tagged objects.
The Ada 95 solution to provide dynamic selection of subprograms is to allow the dec
laration of access types that designate subprograms. For example,

TYPE IntegerProcPointer IS ACCESS PROCEDURE (Item: IN Integer);

declares a type whose value can designate a procedure with a single IN parameter of
type Integer, and

TYPE FloatFuncPointer IS

ACCESS FUNCTION (Left, Right: Float) RETURN Float;

declares a type whose values designate fimctions with Float parameters and return
types. Suppose we had a function Maximiam, such as
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FUNCTION Maximum (X. Y: Float) RETURN Float IS

BEGIN

IF X > Y THEN

RETURN X;

ELSE

RETURN Y;

END IF;

END Maximum;

and variables

F  : Float;

WhichFunction: FloatFuncPointer;

then, using the 'Access attribute as we did in Section 9.II, we could set this variable
to designate Maximum:

WhichFunction := Maximum*Access;

and, finally, call whichever function is designated by this variable:

F  := WhichFunction.ALL(3.5, -27.4);

which, in this case, calls Maximum.

Consistent with Ada's commitment to type safety, a subprogram access type
declares only a specific parameter profile—Integer ProcPointer designates pro
cedures with a single IN parameter of type integer—and a variable of the type can
then designate only subprograms with that profile. For example, suppose a variable of
type IntegerProcPointer were assigned a value P 'Access, where P is a pro
cedure that expects two Integer parameters instead of one. The mismatch between
the calling program's expectation and the subprogram's behavior would be unpre
dictable, causing either an incorrect result or even an unexpected program termination.
For this reason, Ada 95 enforces the argument profile rule very strictly.

Another Design for the Lexical Scanner

As an example of how subprogram access types can be used, we consider an illustration
of what is often called table-driven programming—namely, programming in which a
table contains references to subprograms, which are executed as the table is traversed
in some manner.

In our case, we revise the lexical scanner of Section 11.9 so that in the finite-state
machine transition table, the action fields are no longer enumeration values but actual
pointers to action procedures. This structure is often used in table-driven language
scanners such as those found in compilers.

The revised scanner is shown in Program 11.16.

Program 11.16 An Altemative Body for the Lexical Scanner

WITH Ada.Text_IO. VStrings;

USE Ada.Text_I0, VStrings;
PACKAGE BODY English_Lexer IS
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Ada 95 version of lexical scanner for simple English.
This version uses procedure pointers for the actions
of the finite-state machine. The FSM executes the actions
directly instead of using a CASE statement.
Author: Michael B. Feldman, The George Washington University
Last Modified: January 1996

TYPE State IS (Start, Build, Finish);
TYPE InputClass IS (Letter, CR, AnythingElse);

— Ada 95 feature: access-to-procedure type
TYPE Action IS ACCESS PROCEDURE;

TYPE LexicalEntry IS RECORD
NewState : State;

ThisAction : Action;
END RECORD;

TYPE FSM_Table IS ARRAY (State, InputClass) OF LexicalEntry;

FUNCTION Classify (Ch: Character) RETURN InputClass IS
BEGIN

CASE Ch IS

WHEN •A'..*Z' I 'a'..'z' I •0'..'9' =>
RETURN Letter;

WHEN OTHERS =>

RETURN AnythingElse;
END CASE;

END Classify;

PROCEDURE GetWord (F : IN File_Type;
Word : OUT WordType;
Success: OUT Boolean;

EOL : OUT Boolean;

EOF : OUT Boolean) IS

Char

ThisClass

Presentstate

ThisEntry
NewAction

TempWord

character;

InputClass;
State;

LexicalEntry;
Action;

WordType;

— Action procedures - will be designated in the lexical table,
— then dereferenced to dispatch the appropriate action

PROCEDURE Nothing IS
BEGIN

NULL;

END Nothing;

PROCEDURE StartWord IS

BEGIN

TempWord := TempWord & Char;

END StartWord;

PROCEDURE AddLetter IS

BEGIN

TempWord := TempWord & Char;
END AddLetter;

PROCEDURE BumpLine IS
BEGIN
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EOL := True;

END Bun^Line;

— Lexical table for simplified English text.
— Note values like StartWord*Access, etc., in the action fields

EnglishText : CONSTANT FSM_Table ;=

(  — entries for current state = Start, current input =

{{Build, StartWord'Access), — Letter

{Finish, BumpLine'Access), -- OR
{Start, Nothing'Access)), -- AnythingElse

entries for current state = Build, current input =

{{Build, AddLetter'Access), — Letter

{Finish, BumpLine'Access), -- OR
{Finish, Nothing'Access)), — AnythingElse

entries for current state = Finish, current input =

{{Finish, Nothing'Access), — Letter
{Finish, Nothing'Access), — CR
{Finish, Nothing'Access))); — AnythingElse

End of lexical tcQsle for simple English

BEGIN body of GetWord

EOL := false;

EOF := false;

PresentState := Start;

LOOP

IF PresentState = Finish THEN

EXIT;

END IF;

IF End_of_File {F) THEN
EOF := true;

EXIT;

ELSIF End_of_Line {F) THEN
Skip_Line {F);
ThisClass ;= CR;

ELSE

Get {F, Char);

Put{Char);

ThisClass := Classify (Char);
END IF;

— Dereference the appropriate action, which causes it to
— be dispatched (called).
EnglishText (PresentState, ThisClass).ThisAction.ALL;

— Just get new state from the table.
PresentState := EnglishText{PresentState,ThisClass).NewState;

END LOOP;

Word := TempWord;
Success := NOT VStrings.IsEmpty(Word);
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END GetWord;

END English_Lexer;

Note that within the exported procedure GetWord, we declare four small parame-
terless procedures: Nothing, StartWord, AddLetter, and BumpLine. For
example, AddLetter is

PROCEDURE AddLetter IS

BEGIN

TempWord := TempWord & Char;
END AddLetter;

These procedures correspond exactly to the actions specified in the state graph of
Figure 11.25, and the FSM table EnglishText now contains actions such as
AddLetter 'Access. Instead of the CASE statement we used to select an action in

Program 11.10, here we dispatch an action directly from the table:

EnglishText (PresentState, ThisClass).ThisAction.ALL;

which executes the action procedure designated by the pointer in that spot in the table.
This greatly simplifies the main loop of the scanner.

SUMMARY

This chapter has presented a number of definitions pertaining to trees. Binary trees
were emphasized, and the two applications covered in detail were expression trees and
binary search trees (BSTs).

An important part of this chapter has been the traversal of a binary tree—that is,
visiting each node of the tree in some specified order. The usefulness of three of these
traversal schemes—the NLR, LNR, and LRN algorithms—^has been considered in
detail, and you have seen the close connection between trees and expressions in infix or
Polish form.

Finally, we presented a design for a cross-reference generator, using a finite-state
machine (FSM) to scan an input file and a BST to store the words and line numbers.
Finally, we showed how to use procedure pointers to implement a table-driven
program.

EXERCISES

1. Given a connected diagraph represented by its adjacency matrix G, write a Boolean
function IsTree (G) that returns True iff G represents a tree. {Hint: Review the
definition of a tree!)

2. Given a connected digraph represented by its adjacency matrix G, write a Boolean
function IsBinaryTree (G) that retums True iff G represents a binary tree.
{Hint: You can use the results of Exercise 1 to simplify your work.)

3. Given a connected digraph represented by its adjacency matrix G, write a boolean
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function IsStrictlyBinaryTree (G) that returns True iff G represents a
strictly binary tree. Which properties of digraphs must all trees have? Which prop
erties does no tree have?

4. Given a binary tree T, write a boolean function IsBalanced (T) which returns
True iff T is height-balanced. False otherwise. {Hinv. Think recursively.)

5. Given a binary tree T, write a function Depth (T) that returns the depth of the
tree. {HinV. Think recursively.)

6. In a binary tree T, each leaf vertex can be reached by only one path from the root.
Write a function MinPathLength (T) that returns the length of the shortest of
all such paths. {Hint: Think recursively.)

7. Modify the Initialize and Delete operations of Program 11.4 so that no
storage leaks occur when these operations are performed. This can be done in one
of two ways: Use Unchecked_Deallocation to return nodes to the storage
pool, or use a LAVS (list of available space; review Section 9.2) to build a list of
deleted nodes.

8. Write a procedure implementing a BST Delete operation in which, if the element
to be deleted possesses both children, it is replaced by its LNR predecessor instead
of its successor.

9. Write a BST Delete operation in which successive deletions are done alternately
by the successor and predecessor methods.

10. Show that if in the BST backup package. Save is implemented using
Traverse_NLR, implementing Restore as a series of Insert operations will
produce a tree shaped like the original saved one. Implement this child package for
Tcibles_Generic_BST.

11. Develop a procedure implementing the Delete operation for a cross-reference
tree. Be careful: This depends on whether all references associated with a key are
to be deleted, or only one.

12. A limitation of the scanner in Section 11.9 is that it is case-sensitive—that is, the

words we and We would be indexed separately. This is not usually desirable in a
concordance. Modify the scanner so that no distinction is made between the cases
of the letters of a word. (fiinV. Change the input classes to distinguish the case, and
change the scanner table actions so that an uppercase letter is converted to lower
case before adding it onto the current word.)

13. Further modify the scanner of Section 11.9 so that words containing digits are
skipped instead of inserted into the cross-reference tree.



CHAPTER 12

Advanced Tree Concepts

12.1 Threaded Binary Search Trees

12.2 Heaps

12.3 Application: The Priority Queue as a Heap

12.4 Digital Search Trees

12.5 AVL Balanced Binary Search Trees

12.6 B-Trees

In this chapter, we will present some more advanced examples of the use of tree struc
tures. We first show how a binary search tree can be threaded to facilitate nonrecursive
operations on it. Next, we consider another binary tree structure, called the heap, and
show its use for representing priority queues. The next example is the digital search
tree, an application of a tree in which a node has a number of children that is potentially
large and highly variable.

Finally, we show two very important extensions of the binary search tree (BST).
The AVL tree is a BST that is maintained in a balanced state every time an insertion or
deletion is performed. The B-tree is a generalization of the AVL tree and is used fre
quently in structuring large files on secondary storage devices. A B-tree node of order K
can hold up to K keys and AT + 1 pointers.

12.1 THREADED BINARY SEARCH TREES

The recursive algorithms for tree insertion and traversal operations are elegant and not
difficult to understand. However, it is sometimes useful to have iterative algorithms
available, for two main reasons:

1. Recursion requires extra storage and time for all those subprogram calls.

2. Recursive traversal algorithms can provide only passive iteration; it is not possi
ble to separate a recursive traversal into the parts needed to support active iteration.

450
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In this section, we show a technique called threading. Threading is a modification to
the data structure of a tree to support iterative operations. We illustrate threading for the
case of a BST. It is equally applicable to expression trees; the details are left as an exercise.

Threading is a very simple idea: As we build a BST, we utilize empty pointer fields
to contain pointers helping us move up the tree as well as down. A thread, if it exists,
points to the LNR successor of a node—^that is, to the next node to be visited during a
Traverse_LNR operation. Figure 12.1 shows several threaded BSTs with the threads
represented by dashed lines. Such a tree is sometimes called right in-threaded, because
it contains threads to facilitate its right inorder traversal.

Where are the threads stored? If a node has a nonempty right child, its LNR succes
sor is below it, somewhere in the right subtree. Otherwise, its LNR successor is above it
in the tree. Because a node has a thread only if it has no right child, it is common practice
to store the thread in the right-child field of a node with a null right child, using a flag to
indicate that it is a thread that points upward and not an ordinary downward pointer. We
add to each vertex a Boolean field called Thread, which is True if a thread is stored in

the right child field and False otherwise. Figure 12.2 gives the modified type definitions.
Now let us give a modified Traverse_LNR procedure. Essentially, the procedure

just moves all the way down the left side of the tree to find the first vertex to be visited,
follows the threads back up until a vertex with a right child is encountered, then starts
back down that child's left subtree. This procedure is shown as Program 12.1, a subunit
of a generic package BST_Threaded_Generic. The full package is not included
here and is left as an exercise. Note that Traverse_LNR is nonrecursive.

©

Figure 12.1 Some Threaded Binary Search Trees
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TYPE BinaryTreeNode;
TYPE Tree IS ACCESS BinaryTreeNode;
TYPE BinaryTreeNode IS RECORD
Info : ElementType;
Left : Tree;

Right : Tree;
Thread : Boolectn := False;

END RECORD;

Figure 12.2 Type Definitions for Threaded Binary Tree Node

Program 12.1 Nonrecursive Traverse_LNR for Threaded BST

SEPARATE (BST_Threaded_Generic)
PROCEDURE Traverse_LNR (T: Tree) IS

— I Nonrecursive Traverse_LNR for Threaded BST
--| Author: Michael B. Feldman, The George Washington University
— 1 Last Modified: January 1996

Current : Tree;

Previous: Tree;

BEGIN — Traverse_LNR

Current := T;

LOOP

Previous := NULL;

-- down left branch to bottom

WHILE Current /= NULL LOOP

Previous := Current;
Current := Current.Left;

END LOOP;

IF Previous /= NULL THEN

Visit(Previous.Info);
Current := Previous.Right;

— now back up following threads
WHILE Previous.Thread LOOP

Visit (Current.Info);
Previous := Current;
Current := Previous.Right;

END LOOP;

END IF;

EXIT WHEN Previous = NULL;

END LOOP;

END Traverse_LNR;

Finally, we develop a nonrecursive Insert procedure that threads the tree as it
goes along. When a node is inserted as the left child of another node, its parent is its
LNR successor. When a node is inserted as the right child of another node, it becomes
its parent's LNR successor; the LNR successor of the new vertex is the parent's former
LNR successor. Figure 12.3 gives several examples of how new vertices are added. The
new procedure is shown as Program 12.2.
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Initial Condition

Insert(T,'F')

Insert {T, 'C )

Insert(T,'E')

Figure 12.3 inserting In a Threaded BST



454 Advanced Tree Concepts

Program 12.2 Nonrecursive insert for Threaded BST

SEPARATE (BST_Threaded_Generic)
PROCEDURE Insert (T : IN OUT Tree; E : ElementType) IS

— I Nonrecursive Insert procedure for Threaded BST
--I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

Current: Tree;

Temp : Tree;

FUNCTION MakeNode(E: ElementType) RETURN Tree IS
Result: Tree;

BEGIN

Result := NEW BinaryTreeNode;
Result.Info := E;
RETURN Result;

END MakeNode;

BEGIN — Insert

IF T = NULL THEN

T := MakeNode (E);

RETURN;

END IF;

Current := T;

LOOP

IF E < Current.Info THEN

IF Current.Left = NULL THEN — Coimect to left subtree
Current.Left := MakeNode (E);
Current.Left.Thread := True;
Current.Left.Right := Current;
EXIT;

ELSE

Current := Current.Left;

END IF;

else — Equal treated as greater
IF Current.Right = NULL OR Current.Thread THEN

Current.Thread := False;
Temp ;= MakeNode (E) ; -- Connect to right subtree
IF Current.Right /= NULL THEN
Temp.Thread := True;
Temp.Right := Current.Right;

END IF;

Current.Right := Temp;
EXIT;

ELSE

Current := Current.Right;
END IF;

END IF;

END LOOP

END Insert

Completing a package for right in-threaded BSTs is left as an exercise.
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12.2 HEAPS

A heap is a rather special binary tree. One of its main virtues is that it can be stored as a
simple array without the use of pointer fields. This makes the heap an important struc
ture in implementing priority queues, as we shall see in this section, and in sorting, as we
shall see in Chapter 14. First we need a few key definitions.

Complete Binary Trees

ris a complete binary tree of depth K iff each vertex at level AT is a leaf and each vertex
whose level is less than K has nonempty left and right children. So a complete binary
tree has all its leaves at the same level and every nonleaf vertex has both children pre
sent. Notice that a complete binary tree of depth K always has exactly - 1 vertices:
A tree consisting of a single vertex has depth 0; a complete binary tree of depth 1 has
three vertices; one of depth 2 has seven vertices; and so on.

Viewed another way, a complete binary tree of N vertices has depth equal to

log2(V+l)-l.

Almost-Complete Binary Trees

ris an almost-complete binary tree (ACBT) of depth K iff it either is complete, or fails
to be complete only because some of its leaves are at the right-hand end of level AT - 1.
This has the effect of concentrating all the level-AT leaves at the left end of the level and
all the level-(Af-1) leaves at the right end. The three parts of Figure 12.4 show complete
and almost-complete binary trees and some trees with neither property.

An ACBT is useful because an ordinary array may be viewed as an implementation
of an ACBT. The first element of the array is considered to be the root of the tree; the
second and third elements are the children of the root; and so on. If we number the ver

tices of an ACBT, starting at the root and proceeding level by level and left to right
within a level, these numbers correspond to the subscripts of the array, as indicated in
Figure 12.5.

This representation is extremely convenient, because we can represent an ACBT
without using any pointers. In fact, given the array subscript Current of a vertex in an
ACBT, we can calculate the subscript of its parent as Current/2 (integer division!)
and calculate the subscripts of Current's left and right child as 2 *Current and
2*Current+l, respectively.

ACBTs become useful when we turn our view around and notice that we can view

a partially filled array as an ACBT, then move up and down the tree by the above-
described calculations. The practicality of this will be apparent in the next section.

A note on terminology: Some authors use the term full binary tree for a tree we
call complete-, those authors use the term complete for a tree we call almost complete.
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O

(a) These binary trees are complete

O

(b) These binary trees are almost complete,
(note: a complete tree is almost complete).

(c) These binary trees have neither property.

Figure 12.4 Complete and Almost-Complete Binary Trees

Heaps and Their Operations

A heap is an ACBT in which the key at every node is greater than or equal to the keys
of its children. Note that a leaf is a heap by this definition. Note also that a heap is
very different from a binary search tree. In a BST, the value of a parent lies between
the values of its children, whereas in a heap the parent's value cannot be smaller than
its children's values. There is also no requirement that a left child must be smaller
than a right child.
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4 VLj 5 1 ©
12>

8 9 10> HiAJ t'J f E

W R T M E G S A F D C E 7 ? ?

1  2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 12.5 An Array, Viewed as an Almost-Complete Binary Tree (The tree
would be complete if elements 13,14, and 15 were present.)

One more definition will allow us to proceed. An almost-heap is an ACBT that fails
to be a heap only because its root key may be smaller than one or both of its children's
keys. Figure 12.6 shows some heaps; Figure 12.7 shows some almost-heaps.

Creating a Heap

Let us show first how to extend an existing heap by adding a new value to it. This is
shown in Figure 12.8.

Taking the heap from Figure 12.8a as an example, let us add a key 13 to it. Let us
temporarily position this new value in the next available leaf in the heap (note that
because a heap is an ACBT, this position is always known!). Now, in order to maintain
the heap property, the new arrivd must be no larger than its parent. If it is, we are fin
ished. Otherwise, we exchange the new arrival with its parent.

(a) (b) (c)

Figure 12.6 Some Heaps
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(a) (b)

Figure 12.7 Some Almost-Heaps

(0

(a) Original heap.

(c) Add 43 to the heap.

Figure 12.8 Adding New Keys to a Heap

(b) Add 13 to the heap.

(d) Add 95 to the heap.
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This has the effect of moving the new arrival one level up in the heap. Notice that
the subtree consisting of the new arrival and its children must still be a heap. But the
new arrival may still be greater than its new parent. So we just continue the exchange
process, moving the new arrival up in the heap until it is no greater than its parent.
Convince yourself that we maintain the heap property throughout. Figure 12.8b shows
our heap with 13 added. As it happens, 13 is added as a leaf.

Let us now add key 43 to the heap. Notice in Figure 12.8c how the other nodes are
displaced in order to preserve the heap property. Similarly, adding 95 to the heap entails
putting the 95 at the root, as shown in Figure 12.8d.

Let us refer to this algorithm as ExtendHeap.

Converting an Aimost-Heap to a Heap

Let us look at the almost-heap from Figure 12.7c and consider how to convert it
into a heap. We need first to exchange the root with the larger of its two children—
which, of course, imposes the heap property with respect to the other branch. We
now have the former root located one level down, and possibly smaller than its chil
dren. So we exchange again with the larger child, and continue this process until the
former root key finds its proper place (i.e., no smaller than either of its children).
Since only the root was out of place to begin with, the process leaves us with a
heap. The steps in this process are shown in Figure 12.9. We refer to this algorithm as
Almos tHeapToHeap.

Performance of Heap Operations

In ExtendHeap, a new element starts at the lowest level of an ACBT, moving up one
level at a time until it reaches its proper place. Since it may be required to move all the
way to the root, the maximum number of moves is logarithmically related to the num
ber of existing vertices, so ExtendHeap is 0(log AO- Similarly, in an
Almos tHeapToHeap operation, a value starts at the root and moves downward until
it reaches its proper place. Since it may need to move all the way down,
Almos tHeapToHeap is also 0(log N).

A Heap Package

Program 12.3 shows the specification of a generic heap package.

Program 12.3 Specification for Generic Heap Package

GENERIC

TYPE KeyType IS PRIVATE;

TYPE ElementType IS PRIVATE;

TYPE IndexType IS RANGE <>; — integer subscripts
TYPE ListType IS ARRAY (IndexType RANGE <>) OF ElementType;
WITH FUNCTION KeyOf (Element: ElementType) RETURN KeyType IS <>;
WITH FUNCTION "<"(Left, Right: KeyType) RETURN Boolean IS <>;
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(a) Original almost-heap. (b) 17 is 10's larger child, so exchange 10,17.

(c) Now 13 is 10's larger child, so
exchange 10,13.

(d) Now 11 is 10's larger child, so exchange
10,11; we have a heap!

Figure 12.9 Converting an Almost-Heap to a Heap

PACKAGE Heaps_Generic IS

I  Specification for Generic Heaps Package
I Author: Michael B. Feldman, The George Washington University
I  Last Modified: January 1996

PROCEDURE ExtendHeap(List: IN OUT ListType);
— Pre: List(List'First. .List'Last-1) is a heap such that

List(List'First) is the "largest" element.
— Post: extends heap by adding List(List'Last) to it.

PROCEDURE AlmostHeapToHeap(List: IN OUT ListType);
— Pre: List(List'First. .List'Last) is an "almost heap",

that is, it would be a heap except that List(List'First) may be
"smaller" than one or both of its children

-- Post: List(List'First. .List'Last) is a heap

END Heaps_Generic;

This package is designed to be used in heap applications in which it is desirable
for the client program to create an array directly and manipulate its array; we there
fore do not provide a heap type, but require the client to pass us the array type as a
generic parameter.
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The specification calls for two operations, ExtendHeap and AlmostHeap
ToHeap; details of these are given in the pre- and post-conditions. Program 12.4
shows the body of this package, with the two operations given in detail.

Program 12.4 Body of Generic Heap Package

WITH Swap_Generic;
PACKAGE BODY Heaps_Generic IS

— I Body of Generic Heaps Package
— I Author: Michael B. Feldroan, The George Washington tJniversity
— I Last Modified: January 1996

PROCEDURE Exchange IS NEW Swap_Generic(ValueType => ElementType);
FUNCTION ">="(Left, Right: KeyType) RETURN Boolean IS
BEGIN

RETURN NOT (Left < Right);

END

PROCEDURE ExtendHeap(List: IN OUT ListType) IS

Top : CONSTANT Integer := Integer(List'First);

Child : Integer;
Parent : Integer;

IChild : IndexType; — to satisfy type compatibility rules
IParent: IndexType;

BEGIN — ExtendHeap

IF List'First = List'Last THEN — heap has only one element
RETURN;

END IF;

Child := Integer(List'Last);
Parent := Child / 2;

WHILE (Parent >= Top) LOOP

IParent := IndexType(Parent);
IChild := IndexType(Child);
EXIT WHEN KeyOf(List(IParent)) >= KeyOf(List(IChild));

Exchange(List(IChild),List(IParent));
Child := Parent;

Parent:= Parent / 2;

END LOOP;

END ExtendHeap;

PROCEDURE AlmostHeapToHeap(List: IN OUT ListType) IS
Bottom : CONSTANT Integer:= Integer(List'Last);
Parent : Integer;

Child : Integer;
IParent: IndexType; — for type compatibility
IChild ; IndexType;
Placed : Boolean := False;

BEGIN — AlmostHeapToHeap
IF List'First = List'Last THEN — only one element
RETURN;

END IF;
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Parent := Integer(List'First);
Child := Integer(List'First) + 1;

WHILE (Child <= Bottom) AND NOT Placed LOOP

IChild := IndexType(Child);
IParent := IndexType(Parent);

IF Child+1 <= Bottom THEN — Parent has 2 Children

IF KeyOf(List(IParent)) >= KeyOf(List(IChild))
AND KeyOf(List(IParent)) >= KeyOf(List(IChild + 1)) THEN
Placed := True;

ELSIF KeyOf(List(IChild+1)) < KeyOf(List(IndexType(Child))) THEN
Exchcinge(List (IParent) .List (IChild)) ;
Parent := Child; —left Child was larger
Child := 2 * Parent;

ELSE

Exchange(List(IParent).List(IChild+1));
Parent ;= Child+1; —right Child was larger
Child := 2 * Parent;
END IF;

ELSE — Parent has only one Child
IF KeyOf(List(IParent)) < KeyOf(List(IChild)) THEN

Exchange(List(IParent).List(IChild));
END IF;

Placed := True;

END IF;

END LOOP;

END AlmostHeapToHeap;

END Heaps_Generic;

Several aspects of these operations are noteworthy. First, notice the halving and
doubling of array subscripts in these subprograms. Second, in these operations, we
have declared variables of two types: IndexType and Integer. For example, the
declarations

Top : CONSTANT Integer := Integer(List'First);
Bottom : Integer;

Parent ; Integer;

Child : Integer;
IParent : IndexType;
IChild : IndexType;

appear in ExtendHeap. We do this to satisfy Ada's type compatibility rules. The
basic WHILE loop to move a new arrival up the tree to its proper home is given by

Child List'Last;

Parent := Child / 2;

WHILE (Parent >= Top) LOOP
EXIT WHEN KeyOf(List(Parent)) >= KeyOf(List(Child));

Exchange(List(Child).List(Parent));
Child := Parent;

Parent;= Parent / 2;

END LOOP;
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This would be fine if we could count on subscripts of type Integer, but we can
not, because we want the array index type to be any integer type or subtype. On the
other hand, we cannot use IndexType exclusively either, because the statement

Parent:= Parent / 2;

may cause Constraint_Error to be raised. To see this, note that the WHILE loop
termination condition is Parent < Top. However, Top is List' First, so Parent

cannot be less than Top unless it is out of range! To allow the temporary out-of-range
condition, we let Parent and Child be of type Integer. However, now we cannot

use these to subscript the array, whose subscript type must be IndexType. Therefore,
we declare IParent and iChild. Under Ada's type-conversion rules, we can con
vert between the two integer-valued types as necessary. The final loop is

Child := Integer(List'Last);
Parent := Child / 2;

WHILE (Parent >= Top) LOOP

IParent := IndexType(Parent);

IChild := IndexType(Child);

EXIT WHEN KeyOf(List(IParent)) >= KeyOf(List(IChild));

Exchange(List(IChild),List(IParent));
Child := Parent;

Parent:= Parent / 2;

END LOOP;

Study this procedures ExtendHeap and AlmostHeapToHeap carefully; draw the
array views of the heaps in Figures 12.8 and 12.9 and trace the actions of the opera
tions on them.

The next section shows how a priority queue can be represented as a heap; in
Chapter 14, we will consider how to use a heap as a part of a popular sorting algorithm.

12.3 APPLICATION; THE PRIORITY QUEUE

AS A HEAP

Recall from Section 7.3 that a priority queue is a queue in which elements are en
queued and dequeued according to some priority scheme. Priority queues have many
applications; a common one is the queueing system used in a multiuser operating
system.

Assuming that each arriving element has a key field indicating its priority, we
could imagine implementing a priority queue as a circular array with a difference.
An element is inserted (enqueued) according to its priority; a dequeue operation is
just like that of a FIFO queue—the head element is removed and the queue adjusted.
The performance of an enqueue operation is clearly linear; that of a dequeue opera
tion is clearly constant.

An implementation using a linked list would use as an enqueue operation the
ordered-list insertion algorithm from Section 8.6; a dequeue operation would simply
remove the first element Performance here is similar to that in the array implementation.

One particularly clever implementation of a priority queue uses a heap. Since a
heap is just an array viewed differently, no more space is necessary than that required
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for a normal array queue. An enqueue operation is implemented as an ExtendHeap:
The new element is added to the end of the array, then moved up the heap until its pri
ority (key) is greater than its children's priorities. In a dequeue operation, the first ele
ment of the array is removed (it is obviously the one with the largest key!), then the
last element is moved to the first position. This leaves, precisely, an almost-heap. A
call of AlmostHeapToHeap moves it into its proper place.

As we discovered in Section 12.2, both of these operations are logarithmic.
Comparing this implementation of priority queues with the others discussed above,
we have traded one constant-time operation and one linear operation for two loga
rithmic ones. In cases where the queue is likely to grow long, the trade-off is
advantageous.

Programs 12.5 and 12.6 show the specification and the body, respectively, of a pri
ority queue package using a heap implementation.

Program 12.5 Specification for Generic Priority Queue Package

GENERIC

TYPE KeyType IS PRIVATE;

TYPE ElementType IS PRIVATE;
WITH FUNCTION KeyOf (Element: ElementType) RETURN KeyType IS <>;
WITH FUNCTION "<" (Left, Right: KeyType) RETURN Boolean IS <>;

PACKAGE Queues_Generic_Priority IS

Generic pacltage for Priority Queues
"<" is used as the means of assigning priority;
"<" means lower priority
Author: Michael B. Feldman, The George Washington University
Last Modified: January 1996

— type definition

TYPE Queue (Capacity: Positive) IS LIMITED PRIVATE;

— exported exceptions

QueueFull : EXCEPTION;

QueueEmpty : EXCEPTION;

— constructors

PROCEDURE MakeEmpty (Q : IN OUT Queue);
— Pre: Q is defined
— Post: Q is empty

PROCEDURE Enqueue (Q : IN OUT Queue; E : IN ElementType);
— Pre: Q and E are defined

-- Post: Q is returned with E inserted in its proper
— position according to Smaller: the largest Element is at
— the head of the queue.
— Raises:QueueFull if Q already contains Capacity Elements

PROCEDURE Dequeue (Q : IN OUT Queue);

— Pre: Q is defined

— Post: Q is returned with the first Element discarded
— Raises:QueueEmpty if Q contains no Elements
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— selector

FUNCTION First (Q : IN Queue) RETURN ElementType;
— Pre: Q is defined
— Post: The first Element of Q is returned
-- Raises:QueueEmpty if Q contains no Elements

— inquiry operations

FUNCTION IsEmpty (Q : IN Queue) RETURN Boolean;
— Pre: Q is defined

— Post: returns True if Q is empty. False otherwise

—FUNCTION IsFull (Q : IN Queue) RETURN Boolean;
— Pre: Q is defined
-- Post: returns True if Q is full, False otherwise

PRIVATE

TYPE List IS ARRAY (Positive RANGE <>) OF ElementType;
TYPE Queue (Capacity: Positive) IS RECORD

CurrentSize: Natural := 0;

Store : List(1..Capacity);
END RECORD;

END Queues_Generic_Priority;

Program 12.6 Body of Generic Priority Queue Package

WITH Heaps_Generic;
PACKAGE BODY Queues_Generic_Priority IS

— I Body of Generic Priority Queue Package
— I Author: Michael B. Feldman, The George Washington University
— Last Modified: Jemuary 1996

— instcuitiate generic heap package for these conditions
PACKAGE Heaps IS

NEW Heaps_Generic(ElementType => ElementType,
KeyType => KeyType,
IndexType => Positive,
ListType => List);

PROCEDURE MakeEmpty (Q : IN OUT Queue) IS
BEGIN

Q.CurrentSize := 0;
END MakeEmpty;

PROCEDURE Enqueue (Q : IN OUT Queue; E : IN ElementType) IS
BEGIN

F IsFull(Q) THEN

RAISE QueueFull;

ELSE

— put new item at end of heap, then filter it up.
Q.CurrentSize := Q.CurrentSize + 1;
Q.Store (Q.CurrentSize) := E;
Heaps.ExtendHeap(Q.Store(1..Q.CurrentSize));

END IF;

END Enqueue;
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PROCEDURE Dequeue (Q : IN OUT Queue) IS

BEGIN

IF IsEmpty (Q) THEN

RAISE QueueEmpty;

ELSE

-- overwrite first item with last item,
— then decrease heap size by 1 and filter down
Q.Stored) := Q.Store(Q.CurrentSize) ;

Q.CurrentSize ;= Q.CurrentSize - 1;

Heaps.AlmostHeapToHeap(Q.Stored. .Q.CurrentSize))
END IF;

END Dequeue;

FUNCTION First (Q : IN Queue) RETURN ElementType IS
BEGIN

IF IsEmpty(Q) THEN

RAISE QueueEmpty;

ELSE

RETURN Q.Store (1);

END IF;

END First;

FUNCTION IsEmpty (Q : IN Queue) RETURN Booleein IS
BEGIN

RETURN Q.CurrentSize = 0;
END IsEmpty;

FUNCTION IsFull (Q : IN Queue) RETURN Boolean IS
BEGIN

RETURN Q.CurrentSize = Q.Capacity;
END IsFull;

END Queues_Generic_Priority;

12.4 DIGITAL SEARCH TREES

Consider the problem of designing a program to check whether the words in a report are
spelled correctly. This is usually solved by creating a dictionary of all those words likely
to be used in the report. Then the report is scanned, word by word, and all words not
appearing in the dictionary are reported to the user as possible spelling errors. A word
will be reported if it is misspelled, but also if it is a valid word that just isn't in the
dictionary.

Theoretically, any kind of table can be used to represent the dictionary: an ordered
array or a balanced BST, for example. The difHculty is that for real-world dictionaries,
the amount of space required would be enormous, since in the usual tables each word
would have to be stored in full.

The digital search tree provides a solution: Only a single character is stored in each
node. There are as many separate trees as there are possible first letters (such a collec
tion of trees is usually called a forest); each tree has a different first letter at its root. The
children of the root contain the second letters of all the words with the given first letter;
the children of a given second-letter node contain the third letters of words with the
given second letter, and so on.
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A search for a word in such a forest then involves starting with its first letter and try
ing, letter by letter, to find a path through the appropriate tree. If one is found, the word is
valid; otherwise, it is reported.

Figure 12.10 shows a diagram of a pair of digital search trees for some words
beginning with C and D. Notice that we have added a special character # to indicate
"end of word," so that, for example, the word DEE (not a valid English word) would not
be erroneously reported as correct by going part-way down the path for DEER.

CAN,CANE,CON,CONE,COP,COPE,CURE,CURT,CUT,CUTE,CUTS

(a)

DEBT,DEBTOR,DEEP,DEEPLY,DO,DON,DONATE,DONE

(b)

Figure 12.10 Two Digital Search Trees
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If we can find an appropriate implementation of this tree, great storage savings can
be achieved; indeed, this savings can make it feasible to build a dictionary that can be
loaded into primary memory in its entirety, thus avoiding time-consuming disk
accesses.

A possible implementation is to represent a node by an array of 27 pointers, one for
each letter and the end-of-word character, so a parent can have up to 27 children. This
has the advantage of letting us determine in constant time whether, say, the letter s in a
given node has a child for the letter q: We just check to see whether the pointer for q in
the s node is null or not. On the other hand, this implementation uses space very inef
ficiently, since such arrays will normally be sparse—^whatever the language of the dic
tionary, many letter combinations do not appear. A given letter, at a given "level" of the
words being indexed, will have only a few successors.

A better approach is to represent the children of a given parent as an ordered linear
list, as shown in Figure 12.11.

Now each node has only two pointers: one to its leftmost child, the other to its
immediate right sibling. The trees in the forest are all connected at the top level to an
artificial "super-root," representing "beginning of word" (we can use the same artificial
"end of word" # here). A part of the dictionary used in the preceding figure is shown in
this form in Figure 12.12.

(a) Abstraction.

(b) Implementation.

Figure 12.11 Left Child/Right Sibling Implementation of a General Tree
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Figure 12.12 Digital Search Tree Implementation

In using this technique, we have traded space for time. Determining whether a cer
tain letter has another given letter as a child requires a linear search through the child
list. On the other hand, the child lists are likely to be short for this type of application.
You can write an appropriate package for the digital search tree as an exercise; another
exercise examines the space and time requirements.

The use of a linked list to represent the siblings is not limited to the spelling-
checker application; it is a common implementation structure for general trees.
Sometimes each node carries a pointer back up to its parent as well. As an exercise,
you can consider how to represent a family tree, such as that of Figure 11.2, in this
fashion.

12.5 AVL BALANCED BINARY SEARCH TREES

We discovered in Section 11.7 that the binary search tree can be an efficient data
structure. BST insert, search, and delete operations are, for randomly distributed
input data, approximately 0(log AO, because in this average case, the tree remains
relatively balanced and therefore the number of levels is roughly the log of the num
ber of nodes.

We also saw in Section 11.7 that the BST has a very undesirable worst case: If the
input data happen to arrive in approximately sorted order (either upward or downward),
the BST operations degenerate from 0(log AO to 0(N), which, for a tree with many
nodes in it, is a very large difference indeed.

Adelson-Velskii and Landis published, in 1962, a very interesting insertion algo
rithm to guard against this performance degradation. Though conceptually simple, this
algorithm is a bit involved in detail, so we give it an extensive treatment here. The goal
of the algorithm is to maintain the tree constantly in a height-balanced state, adjusting
it with each insertion as necessary.



470 Advanced Tree Concepts

The AVL Algorithm

Recall that a tree is balanced iff, at every node, the heights of that node's subtrees dif
fer by at most 1. The AVL algorithm operates during an insertion. The height of each
node is tracked using an extra field in each node that carries its height. Program 12.7
shows a function that returns the height of a node, or -1 if its argument is a null pointer.
This function and the other procedures we will show in this section are assumed to be
subunits of a package AVL_Trees_Generic.

Program 12.7 Returning the Height of a Node

SEPARATE (AVL_Trees_Generic)

FUNCTION Height (T: Tree) RETURN Integer IS

— I Returns the height of a node in an AVL tree
--I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

BEGIN

IF T = NULL THEN

RETURN -1;

ELSE

RETURN T.Height;
END IF;

END Height;

Every time an insertion is performed, the height field is adjusted and the subtree in
question is reshaped if the latest insertion disturbs the balance at any node. We illustrate
the method using a series of examples. See the code of Program 12.8 to understand how
it is related to the illustrations. You should draw a picture of the pointer manipulations.

Program 12.8 Right Rotation in an AVL Tree

SEPARATE (AVL_Trees_Generic)

PROCEDURE Rotate_R (T: IN OUT Tree) IS

— I Right rotation of a node in an AVL tree
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

Temp: Tree := T.Right;

BEGIN — Rotate_R

T.Right := Temp.Left;
Temp.Left := T;

T.Height := Max(Height(T.Right),Height(T.Left)) + 1;
Temp.Height := Max(Height(Temp.Right), T.Height) + 1;
T := Temp;

END Rotate_R;
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Consider the BST consisting only of the node A, as shown in Fig. 12.13. This is
clearly balanced: its two (nonexistent) subtrees are of equal height. The two subtrees
are null. It is convenient to think of a null tree's height as -1; this gives the node A a
height of 0. Let us identify a node by the letter stored in its info field, and represent its
height by h(...) so that A(A) = 0.

Figure 12.13 A Balanced BST

Inserting C in the tree, in normal BST fashion (Figure 12.14), results in h(C) = 0 and
h(A) = 1. A's two subtrees differ in height by 1 (its left subtree still has height -1), so the
tree is still balanced.

Figure 12.14 The Tree Is Still Balanced

Now insert E. Its normal place in a BST is in Cs right subtree (Fig. 12.15a), but this
unbalances the tree rooted at A: h{A.left) - -1 but h(A.right) = 1. We adjust the tree by
"pulling up" C to make it the root, letting A drop into the left subtree (Figure 12.15b).
This is called a right rotation because the unbalance is caused by adding a node to the
right child of a right child. Note that now h(Q - 1 and h(A) = 0.

®
_  ©

V  ® ®
(a) (b)

Figure 12.15 A Right-Subtree Rotation

We call this a right rotation because inserting a node in the right subtree caused the
imbalance. The rotation is in a counterclockwise direction. We now insert G (Figure

12.16). This does not disturb the balance.



472 Advanced Tree Concepts

©

©

I

Figure 12.16 Still Balanced; No Rotation Needed

Inserting /, however (Figure 12.17), unbalances the subtree rooted at E, so we do a
right (counterclockwise) rotation of that subtree.

©  ©

®  © —- ® ©

©.

®
Figure 12.17 Another Right-Subtree Rotation

Now we insert K (Figure 12.18). In this case, the subtree rooted at G is still bal
anced, but the one rooted at C is not—its left subtree, rooted at A, is two levels shal
lower than its right subtree, rooted at G. Again we do a right rotation to move G to the
root, but this time note that G itself has a left subtree, which, in a larger tree, could con
tain more than one node. This subtree—^all of whose key values lie between C and G
(why?)—^is moved below C.

Note in this case that we did not discover the imbalance at the lowest possible level,
but farther up in the tree. This is an important consideration in the algorithm we will
develop shortly.

©  ©

®^ ̂ © — ©^
©  O ®^ ̂ © ©

©
Figure 12.18 Another Right-Subtree Rotation

Inserting Af in the tree (Figure 12.19) produces a right rotation of the subtree rooted at/.
Inserting Z (Figure 12.20) requires no rotation.
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©

®  © ® ®

Figure 12.19 Still Another Right-Subtree Rotation

©

©^
®  © ® ®

^©
Figure 12.20 No Rotation Needed

We now insert X in the tree (Figure 12,21). This causes an unbalance in the subtree
rooted at M. This is a bit different from the previous cases, because X is inserted into a
node's left subtree (the one rooted at Z). We handle this by a double rotation. First we
rotate the subtree rooted at Z clockwise, producing the M-X-Z subtree similar to previ
ous cases. This is shown in the middle diagram in the figure and is a mirror image of
the counterclockwise rotations in previous cases. Now rotating the subtree rooted at M,
as we did before, completes the rebalancing.

©  © _

XX XX XX®©®®^®(|)®®^ ©©(T)^
©  ®^ ® ©

®  ©
Figure 12.21 Double Rotation: First Left Subtree, Then Right

This double rotation is called a left-right rotation. It was necessitated by inserting a
node in the left subtree of a right subtree. First the left subtree (Z-X in this case) is
rotated clockwise, then its parent—in this case, the right subtree M-X-Z—^is rotated
counterclockwise. Procedures implementing left and left-right rotations are shown as
Programs 12.9 and 12.10, respectively.
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Program 12.9 Left Rotation In an AVL Tree

SEPARATE {AVL_Trees_Generic)

PROCEDURE Rotate_L (T; IN OUT Tree) IS

— I Left Rotation in am AVL Tree
I Author: Michael B. Feldman, The George Washington University

—j Last Modified: January 1996

Temp: Tree := T.Left;

BEGIN

T.Left := Temp.Right;
Temp.Right := T;

T.Height := Max(Height(T.Left),Height(T.Right)) + 1;
Temp.Height := Max(Height(Temp.Left), T.Height) + 1;
T  := Temp;

END Rotate_L;

Program 12.10 Left-Right Rotation in an AVL Tree

SEPARATE (AVL_Trees_Generic)

PROCEDURE Rotate_LR(T: IN OUT Tree) IS

— I Left-Right Rotation in an AVL Tree
I Author: Michael B. Feldman, The George Washington University

— I Last Modified: January 1996

BEGIN

Rotate_L(T.Right);
Rotate_R(T);

END Rotate_LR;

Continuing with the example, we insert V (Figure 12.22). The imbalance is discov
ered hot at X, but at K. V was inserted in the left subtree (A/) of a right subtree (J^. Again

_  © (§)

X A* ^
@ 0 0 0 (^ ©
0  0

Figure 12.22 Another Left-Subtree-Then-Rlght-Subtree Rotation
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we do a left-right rotation, first rotating ATs right subtree clockwise, then rotating K
counterclockwise.

Inserting U in the tree (Figure 12.23) causes an imbalance that is discovered only
when we get all the way to G. The addition was to G*s right subtree, so we do a right
rotation. Note that, as in the rotation of Fig. 12.18, M's left subtree becomes G's right
subtree.

x'X *
® ©® 0

© ® 0
/
0

Figure 12.23 A Right-Subtree Rotation

© ^ ® 0
® ©® ®

Several more insertions complete this lengthy example. Inserting T (Figure 12.24)
causes imbalance to the subtree rooted at V\ the insertion was in a left subtree, so a left
rotation—a clockwise one—corrects the situation.

P\ / A\
® ©0 ® ®

Figure 12.24 A Left-Subtree Rotation

Inserting R (Figure 12.25) causes an imbalance in the subtree rooted at X, so we do
a left rotation, which also moves CPs left subtree into X's left subtree.
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A ̂  A® A
® ©® ® ® ® ®

Figure 12.25 Another Left-Subtree Rotation

Inserting P causes another left rotation (Figure 12.26); inserting Q (Figure 12.27)
leaves the tree balanced.

X A
® ©CD®® ©® ©CD © ®® Q

®
Figure 12.26 Still Another Left-Subtree Rotation

® ©® © ®®

<d
Figure 12.27 No Rotation Needed



12.6 AVL Balanced Binary Search Trees 477

We have shown three small rotation procedures; you can write the fourth,
Rotate_RL, as an exercise. Let us now develop the overall AVL insertion operation.
This is shown in Program 12.11.

Program 12.11 Insertion in an AVL Tree

SEPARATE (AVL_Trees_Generic)

PROCEDURE Insert (T : IN OUT Tree; E : ElementType) IS

— I Insertion in an AVL Tree
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

BEGIN — Insert

IF T = NULL THEN

T := MakeNode (E);

ELSIF E < T.Info THEN

IF T.Left = NULL THEN

ConnectLeft(T,E);

ELSE

Insert (T.Left, E);

END IF;

— now rotate from this level, if necessary
IF Height(T.Left) - Height(T.Right) = 2 THEN
IF E < T.Left.Info THEN

Rotate_L(T);

ELSE

Rotate_RL(T);

END IF;

ELSE

T.Height := Max(Height(T.Left), Height(T.Right)) + 1;
END IF;

ELSIF T.Info < E THEN

IF T.Right = NULL THEN
ConnectRight(T,E);

ELSE

Insert (T.Right, E);
END IF;

— now rotate from this level, if necessary
IF Height(T.Right) - Height(T.Left) = 2 THEN
IF T.Right.Info < E THEN

Rotate_R(T);

ELSE

Rotate_LR(T) ;

END IF;

ELSE

T.Height := Max(Height(T.Left), Height(T.Right)) + 1;
END IF;

END IF;

END Insert;
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The recursive AVL insertion procedure is similar to a normal BST insertion, but
after a recursive insertion call, the balance must be checked. If the recursive insertion
was into the left subtree of a node T, we check to see if h(T .Left) - h(T. Right) is
now 2 (it can never be greater than 2). If so, the tree is out of balance and either a left
rotation or a left-right double rotation is invoked. If the insertion was into the right sub
tree, the action is mirror-imaged. Finally, the height of the current node T must be
adjusted; it is 1 plus the larger of the two subtree heights.

The maximum is computed by calling a function Max; this function should be part
of the package body and can be just an instantiation of Maxiinum_Generic (Programs
5.4 and 5.5).

Because the insertion operation is recursive, the height is adjusted at each level as
the recursive call to lower levels is completed. This ensures that the tree is rebalanced at
just the point where the imbalance occurs.

As an exercise, you can complete the AVL tree package.

Lazy Deletion

Physical deletion from an AVL tree is complicated and in fact is often unnecessary. In
many applications, deletions occur much less frequently than insertions, so it is conve
nient to use "lazy deletion." In this method, the node structure is modified to contain a
Boolean flag Deleted to indicate when a node is logically deleted. This flag is set by
the delete operation; other operations are changed to pretend that the "deleted" node is
no longer there.

One final word on AVL trees. Since the purpose of the AVL algorithm is to main
tain the balanced structure of a BST, it is helpful to have a debugging tool that allows us
to observe this structure directly. As we mentioned in Chapter 11 in the context of the
generic backup package, calling Traverse_LNR will not really show us the tree struc
ture, but calling Traverse_NLR will do so.

12.6 B-TREES

The B-tree is a generalization of the balanced BST (or AVL tree), frequently used as a
basis for structuring large files on external devices such as disks.

The BST can obviously be generalized to allow the nodes of the tree to be stored on
disk instead of in memory: all that is involved is to use a disk input/output package that
permits addressing individual records on disk, then letting node pointers represent disk-
record addresses rather than main-memoiy locations.

For a BST large enough to provoke consideration of storing it externally, this
scheme could use too many disk accesses, and disk accesses are slow because of the
time required to search for a given record on the device. A balanced BST with N nodes,
however stored, requires 0(log N) record accesses in the worst case. For really large
files, 10,20, or 30 disk operations to cany out a search are just too many.
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K1 K2

(a) B-tree node, order 2.

K1 K2 K3

rm
(b) B-tree node, order 3.

Figure 12.28 B-Tree Nodes

On the other hand, if the entire tree is large enough to justify disk storage, we do not
usually need more than a few records at a time in main memory, so these records can be
rather large. Disk storage is relatively inexpensive as well, and the time for retrieving a
large record from disk is about the same as the time for retrieving a small one, since
most of the time is used to find the record, not to transfer it to main memory.

This all gives rise to the idea of a B-tree of order K, in which each node is of fixed
size, capable of holding K keys and K -i- 1 child pointers, as shown in Figure 12.28. A
balanced BST is a special case: a B-tree of order 1. Another special case, the B-tree of
order two, often goes by the name 2-3 tree.

The keys in a given node are ordered. Looking at the diagram in the figure, we con
struct the tree so that the two pointers surrounding a given key point to subtrees in such
a way that the BST property is preserved! All the values in a given key's left subtree are
less than that key; the values in its right subtree are greater than it but less than the adja
cent key. A 2-3 tree, or B-tree of order 2, is shown in Figure 12.29b; its corresponding
balanced BST is shown in Figure 12.29a for comparison.

Note the difference in the depths of the two trees. In this particular case, the depths
differ by only 1, but notice that there is still a good bit of "extra capacity" for keys in the
2-3 tree, which can be filled before more levels are added. Generally speaking, we
maintain the balance in a B-tree by requiring that a node must always be at least half
full. Combining a number of keys into each node leads to a "flatter" tree, and thus to
fewer disk accesses.

For completeness, we should add that B-tree nodes don't usually carry the entire
record around, since that would require more space per node, much of it unused. The tree
is used as a directory structure: Along with the AT keys, the actual disk addresses of the cor
responding records are often stored; addresses take a lot less space than fiill records!

Detailed implementation of the B-tree structure is left for the exercises.
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(a) A balanced BST (or AVL tree).

(b) A 2-3 tree (or B-tree of order 2) for the same data.

Figure 12.29 Balanced BST Compared with B-Tree

SUMMARY

This chapter has illustrated some important advanced applications of trees: threaded
binary trees, heaps, digital search trees, AVL trees, and B-trees.

This chapter is the last one in which data structures per se are presented. The next
two chapters will take up two important applications, namely hash tables and sorting
arrays. In these chapters, much use is made of all the structures we have used until now;
there is also serious emphasis on performance issues.

EXERCISES

1. Develop a nonrecursive Search operation for a threaded BST.
2. Develop a nonrecursive Delete operation for a threaded BST.
3. Develop a procedure implementing the Traverse operation for a digital search tree.



Summary 481

4. Develop a procedure implementing the Insert operation for a digital search tree.
5. Develop a procedure implementing the Delete operation for a digital search

tree.

6. An interesting application of the digital search tree is the implementation of a mul
tidimensional array. One of the difficulties with row- and column-major imple
mentations is that the storage mapping functions contain multiplications, which
may be rather slow to execute. Instead, use a digital search tree that has as many
levels as the array has dimensions. For example, an array dimensioned (1..10,1..5,
1..8) has three levels. The root has ten children; each child points to a vertex with
five children; each of these points to a one-dimensional, eight-element array.
Storing and retrieving values becomes a matter of following pointers instead of
doing a subscript calculation. Design a package implementing such a scheme.

7. Another interesting digital search tree application is in code translators. As one
example, consider Morse Code, developed by Samuel F. B. Morse when he devel
oped the telegraph system in the 1840s. This code, which is still used occasionally
in telegraphy and radio communications, assigns to each alphabet character a code
consisting of "dots" and "dashes." These are transmitted via telegraph or radio as
short and long pulses. Here is a version of the code, now called the International
Morse Code:

A  •-

B

C

D

E  •

F

G

H  ••••

I  ••

J

K

L

M - -

N -•

O

p

Q

R

S  •••

T -

U

V

w

X

Y

Z
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The human telegrapher transmits a message by closing a hand-operated switch
called a telegraph key, sending dots and dashes as short and long pulses, and leav
ing a brief interval between letters. It is interesting that the code makes efficient
use of the telegrapher, in that the length of each letter's code is inversely propor
tional to the frequency of that letter's occurrence in typical message texts. For
example, E and Thave the shortest codes; J. Q, and 7 have the longest ones.

The programming exercise is to use a digital search tree to represent the Morse
Code translator—that is, when a letter in Morse arrives, to use the tree to discover
which letter the code represents. Use the # symbol to indicate the end of a letter, so
that the famous SOS international distress call would be represented as
...# #...#

Write a program that uses this search tree to decode an entire incoming Morse
message.

8. Complete the implementation of the AVL tree package. Use lazy deletion to imple
ment the Delete operation.

9. Write a package implementing the abstract table operations for a 2-3 tree.



CHAPTER 13

Hash Table Methods

13.1 Sequential and Binary Search Revisited

13.2 The Hash Table

13.3 Choosing a Hash Function

13.4 Resolving Collisions in Hash Tables

13.5 Hybrid Search Strategies

We now take up again the problem of updating and searching for items in a table, imple
mented as an array, whose contents vary dynamically, with a mixture of insertions,
searches, and deletions. After a reconsideration of the issues and time performance
associated with our old friends linear search and binary search, we wll develop the idea
of a hash table, or scatter storage, method. This is a table scheme in which updates,
searches, and deletions are done, ideally, in constant time. As we shall see, in actuality
the performance of these operations can be made to approximate constant time, but
rarely to achieve it exactly.

In a hash table scheme, we identify a record by its key field and assume that there
are many more possible key values than there are storage positions in the table. We then
seek a mathematical function called a hash Junction, or key-to-address transformation,
which produces a table address when supplied with a key.

Since there are many more possible key values than addresses, this is a many-to-one
function, in which many different key values can lead to the same table address. Since
we do not know which keys will actually arrive for placement in the table, it is possible
that two keys with the same address actually will arrive. Two or more keys with the
same hash address are called synonyms of each other; an arrival of a second key after its
synonym has already been placed in the table is called a collision, or sometimes a hash
clash.

There are many different hash functions. In fact, there are a number of classes of
hash functions; the details depend on the structure and distribution of the keys.
Designing a hash table involves two essential parts: finding a hash function that mini
mizes the likelihood of collisions and finding an appropriate scheme for resolving the
collisions that do occur.

483
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13.1 SEQUENTIAL AND BINARY SEARCH
REVISITED

Let us go back to the table-searching strategies we considered in Chapter 3. Remember
that these are grouped into two main strategies: sequential (or linear) and binary (or
logarithmic).

In the sequential case, the items in the array, which we always assume have a key
part and a value part, are maintained in unordered form. The Insert operation
depends upon simply keeping track of the location of the next "empty" position in the
array, then inserting a new arrival just by placing it in that position. On the other hand,
the Search and Delete operations require looking sequentially through the array,
item by item, until either the desired item is found or the end of the array is reached.

In the binary case, we store the table elements in order, sorted by their keys.
Insert then requires a logarithmic operation (finding the correct position), followed
by a linear one (moving the elements to make room for the new one). For tables that are
large enough for us to care about performance, the linear component dominates.
Search is purely logarithmic; Delete is similar to Insert.

Figure 13.1 repeats the table of Figure 3.17, giving the "big Os" of these operations
for the two implementations. In the next section, we introduce the notion of a hash table,
where insert, search, and delete operations are carried out in approximately constant time.

13.2 THE HASH TABLE

In most applications, the set of possible keys K is much larger than the table we wish to
maintain. Suppose you have about 100 friends whose phone numbers you wish to keep
in your list, and you want to retrieve a fnend's number according to, say, the first four
letters of his or her name. Since you keep making new fnends and you don't know in
advance what their names will be, you have to assume a large number of possible four-
letter combinations. There are 26\ or 456,976, four-letter combinations in the English
alphabet. Of course, not every combination shows up in people's names—QQQQ
would be very unlikely, for instance—but the realistic number is still quite large.

Another example is a university with 10,(XX) students, in which each student is
assigned, say, a six-digit number on first arriving at the school. There are one million
possible numbers, but only about 10,000 students at any given time. A teacher keeping
a list of students in a given course may be dealing with only 100 or so of those. Of

In^lementation 1 Implementation 2
Unordered Ordered

Initialize Table 0(1) o(l)
Insert o(l) 0(N)
Search o(N) o(log N)
Delete o(n) o(N)
Traverse 0(N log N) o(n)

Figure 13.1 Comparative Performance of Table Operations for Linear and Binary
Strategies
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course, since the numbers are assigned purely sequentially, the group of numbers in use
will tend to drift over time, so that at a given moment all currently registered students
have numbers with a leftmost digit of, say, 3 or 4. But this still leaves 200,000 possible
keys for a table of only 100 or so students.

Yet a third example is the symbol table used by a compiler or assembler to keep
track of the machine addresses it allocates to program variables or identifiers. The keys
are the identifiers; the values are the assigned addresses. The number of possible iden
tifiers is huge: Programming languages allow identifier names to be very long. In prac
tice, of course, a given program will have only a few dozen variables or so, but
obviously the compiler writer cannot predict which ones a programmer will choose.

In the hash table, or scatter storage, technique, the entries are scattered around the
table in an approximately uniform fashion. This involves designing a mathematical
transformation, called the hash function, or key-to-address transformation, which
accepts a key as its input and returns a table address (array subscript) as its result. Such
a function is usually designated h(k), where k represents a key. A pictorial representa
tion of this is shown in Figure 13.2.

In the next section, you will be introduced to a number of these transformations; for
the moment, realize that a typical transformation might be simply to take the first few
digits or the last few digits of the key, or to multiply the key by some number and select
the middle few digits of the result. The point is that these computations generally have
constant performance, since arithmetic operations generally don't depend on the value
of their arguments and therefore are independent of the number of items in the table and
usually of the table size as well. Given a well-chosen transformation, a table address
can be delivered in 0(1) time.

If, for a given key structure and desired table size, we can invent a good h(k), then
the Insert operation consists simply of passing the key of an arriving item through
this "transformer" to get a table address, usually called the hash address or hash code,
then storing the item there (in constant time, of course!).

Search works in similar fashion, passing the key whose value is sought through
h(k), then looking in that table location. Similarly, Delete just removes the item to be
deleted by finding its location and marking that location as available.

All this would work wonderfully—and with guaranteed 0(1) performance—were it
not for the fact that there are usually many more possible keys than there are locations in
the table, and we don't know just which keys will arrive. Therefore, the h(k) function
cannot, in general, be one-to-one, and hence will deliver the same table address for many
different keys. Thus, potentially, many items will compete for the same table location.

As mentioned in the introduction to this chapter, we denote by synonyms the set of
keys for which a given h(k) will deliver the same hash address. An entire set of syn
onyms is, mathematically, an equivalence class. A situation in which a given table loca-

k: KeyType
h(k)

IndexType

Figure 13.2 A Key-to-Address Transformer
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tion is occupied by one item, and then one of its synonyms arrives, is called a collision
or hash clash. Designing a good hash table depends upon finding good solutions to the
following two problems:

1. Find an hik) that will minimize the number of collisions by spreading arriving
records around the table as evenly and uniformly as possible.

2. Since any h(k) must be many-to-one, and therefore collisions are inevitable,
find a good way of resolving them.

One meaning of the verb to hash is to chop. The term hash function derives from
our desire to "chop up" or "hash together" the characters or digits of the key to get a
high degree of randonmess in the hash code. The next two sections of this chapter intro
duce, respectively, a number of different kinds of h(k) functions and some methods of
resolving collisions.

A word about one operation we haven't mentioned: Traverse. The items in a
hash table are, by definition, scattered around the table in no particular order.
Moreover, in any good hashing scheme, they're not even stored in contiguous loca
tions. So Traverse is a rather expensive operation involving a sort. This is, of
course, not much worse than Traverse for an unordered array, but it's worth point
ing out.

13.3 CHOOSING A HASH FUNCTION

In this section, we will introduce three classes of h(k) functions: truncation, division,
and partitioning otfolding. There is no one "best" hash function in general. The choice
of a particular h(k) depends heavily on the structure of the keys, the degree of unpre
dictability, and the amount of extra table space the designer is willing to tolerate in the
interest of achieving a fast search. The only generalizations to be made are that certain
hash functions can tmn out to be disastrous, and that in the end the best way to know
whether a hash function is effective is to try it in practice on real data.

Truncation

By truncation, we mean just taking the first few or the last few characters or digits of
the key as the hash code. We cannot do this naively: in some cases the method will
work acceptably; in other cases it can be disastrous.

Consider a student ID consisting of six decimal digits, as described above. The
school assigns these numbers on a first-come first-served basis, so of the million possi
ble numbers, only a fairly dense subset will be in active use at a given time. For exam
ple, at the author's university at one point, almost all active student IDs had a
high-order digit of 4 or 5.

Now take the three high-order digits of the ID as a hash code into a 1000-item
table. Almost all codes will begin with 4 or 5, and thus only about 200 of the 1000 pos-
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sible codes from 000 to 999 will actually be generated by this code. Frequent colli
sions are guaranteed by the fact that arriving items are really competing for only 20
percent of the available positions! On the other hand, taking the low-order three digits
is much better, since at least any of the 1000 combinations has an equal likelihood of
occurrence.

This example shows one of the criteria of a good h(k): It must at least be cr.'jable of
generating the full range of table addresses! Taking the first three digits of the student
ID is obviously wrong because it is so extreme; other key sets can have biases hat are

less obvious but just as damaging. It is important, then, in designing an h(k), to study
the set of keys thoroughly to determine what bias there might be and then to design a
function that will minimize the e^ect of the bias.

How, exactly, do we write such a hashing function? Suppose that the six-digit stu
dent ID is represented as a numeric string. It is easy to find the last three digits: Just take
the corresponding string slice. Now we need to produce an integer value t > use in sub
scripting the array: Just use the attribute function Integer' Value, w lich takes a
numeric string as input and returns the corresponding integer value. If the string does
not represent a valid integer literal, Constraint_Error is raised.

Program 13.1 shows a function that behaves as described here.

Program 13.1 A Truncation Hashing Function

FUNCTION Hash_Truncation (K: String) RETURN Natural IS

— I Truncation Hash Function
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: February 1996

Last3: String(1. .3);

BEGIN — Hash_Truncation

Last3 := K {K'Last - 2 . . K'Last);

RETURN Integer'Value (Last3);

END Hash_Truncation;

Program 13.2 is designed to test the hash function. We use an instance of
Ada.Numeric .Discrete_Randoin (details of this package can be found in
Appendix F) to generate 100 random keys in the range 111111. .999999, passing each
key in turn to Hash_Truncation, and displaying the key and the hash value.

Program 13.2 A Test Program for Hash_Truncatlon

WITH Ada.Text_I0;

WITH Ada.Integer_Text_IO;

WITH Ada. Numerics. Discrete_Randoin ;
WITH Hash_Truncation;

PROCEDURE Random_Nuinbers IS

— I Generates 100 random hash codes in the range 0. .999
— I Keys are in the range 111111. .999999
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— I Uses the random number generator from Ada.Numerics
—j Author: Michael B. Feldman, The George Washington University
— I Last Modified: February 1996

SUBTYPE KeyRange IS Positive RANGE 111111. .999999;
SUBTYPE HashRange IS Natural RANGE 0. .999;

RandomKey: KeyRange;
KeyString: String(1. .7); — to hold string form of key
HashValue: HashReuige ;

PACKAGE RandomKeys IS NEW Ada.Numerics.Discrete_Randora
(Result_Subtype => KeyRange);

G: RandomKeys.Generator;

BEGIN — Random_Numbers

RandomKeys.Reset (Gen => G); — starts G from time of day clock

FOR Row IN 1. .20 LOOP — displays 20 rows of 5 pairs <k, h(k)>

FOR Num IN 1. .5 LOOP

RandomKey := RandomKeys.Rcuidom(Gen => G); — integer
KeyString := Integer'Image(RandomKey); — to string
HashValue := Hash_Truncation(K => KeyString);

Ada.Text_IO.Put(Item => KeyString);
Ada.Integer_Text_IO.Put(Item => HashValue, Width => 4);
Ada.Text_IO.Put(Item => • •);

END LOOP;

Ada.Text_IO.New_Line;

END LOOP;

END Random_Nunibers;

Figure 13.3 shows the output from a run of this program. Running the program
several times should produce different sets of output, because the program resets the
random-number generator using the time-of-day clock. Note that in this 100-number
sample, there are very few collisions.

Division

An alternative to truncation, which works reasonably well given a hardware imple
mentation of fixed-point division, is dividing the key by the size of the table, which
we will call Capacity, then taking the remainder as the hash code. It can be
shown that the best policy here is to choose a prime number as Capacity—that
is, to make the table size a prime number. You can consider why this is so in an
exercise.
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174350 350 920057 57 945642 642 598215 215 119983 983

673725 725 347498 498 264258 258 246691 691 423448 448

904650 650 179293 293 552868 868 834003 3 749919 919

648213 213 876455 455 155758 758 670787 787 560695 695

242749 749 643613 613 293895 895 125730 730 876408 408

196635 635 797344 344 589509 509 404378 378 139008 8

698515 515 369633 633 902006 6 847367 367 505989 989

555697 697 316996 996 523991 991 166753 753 426048 48

737952 952 623089 89 559033 33 933953 953 576389 389

608330 330 396168 168 565459 459 539608 608 157467 467

502455 455 363858 858 893914 914 453368 368 595841 841

726192 192 795610 610 480360 360 406990 990 757176 176

471946 946 572864 864 413413 413 301621 621 711119 119

431493 493 918663 663 510301 301 841887 887 581708 708

264228 228 580890 890 478330 330 956139 139 172564 564

250656 656 579179 179 484324 324 813403 403 535971 971

516782 782 183404 404 547244 244 526124 124 687010 10

512905 905 598373 373 864146 146 365730 730 629069 69

506912 912 288563 563 946359 359 283420 420 835999 999

877175 175 775353 353 349589 589 478999 999 825968 968

Figure 13.3 Output from a Run of Random_Niiinbers

Program 13.3 shows a function that implements a division method. Note again that
we assume the key is a numeric string.

Program 13.3 A Division Hashing Function (Keys are Numeric)

FUNCTION Hash_Division_Integer

(K: String; Capacity: Positive) RETURN Natural IS

— I Division_Integer Hash Function
— I Assumes K is a numeric string
— 1 Author: Michael B. Feldman, The George Washington University
--j Last Modified: February 1996

BEGIN — Hash_Division_Integer

RETURN Integer'Value (K) REM Capacity;

END Hash_Division_Integer;

Suppose Ada did not provide the Integer' Value function. We could convert
the numeric string to an integer digit by digit. Look at Program 13.4, which finds the
integer value in this manner. We just loop through the digits, starting with the high-
order position. In each iteration, we multiply the previous result by 10, which shifts it
one decimal digit to the left, and add the value

Result + (Character • Pos (K(Covint)) - Zero_pos)

where

Zero_pos : Natural := Character'Pos('0');

to the sum. This is a very well-known algorithm for converting a numeric string to an
integer value; indeed. Integer' Value itself is probably implemented by a very sim
ilar algorithm.
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Program 13.4 A Division Hashing Function (Does Not Use integer 'Value)

FUNCTION Hash_Division_Integer_2
(K: String; Capacity: Positive) RETURN Natural IS

Division_lnteger Hash Function
Assumes K is a numeric string;
pretends Integer'Value did not exist.
Author: Michael B. Feldman, The George Washington University
Last Modified: February 1996

Result: Natural := 0;

Zero_pos : Natural := Character'Pos('0');

BEGIN — Hash_Division_Integer_2

FOR Count IN K"Range LOOP

Result := 10 * Result + (Character'Pos(K(Count)) - Zero_pos);
END LOOP;

RETURN Result REM Capacity;

END Hash_Division_Integer_2;

Now suppose the keys are not necessarily numeric. For example, in programming
languages, the identifiers begin with a letter and contain letters and digits (and, in Ada,
underscores as well). In cases such as this, it is common to find the sum of the relative

ASCII positions of the characters and then take the remainder, as in the preceding
example.

Program 13.5 shows such a hash function; it assumes that the keys are strings of
lowercase letters.

Program 13.5 Another Division Hashing Function (Keys Are Lowercase Letter
Strings)

FUNCTION Hash_Division_Letter
(K: String; Capacity: Positive) RETURN Natural IS

Division_Letter Hash Function
Assumes K is a string of lowercase letters;
hash just sums the relative positions of the letters.
Author: Michael B. Feldman, The George Washington University
Last Modified: February 1996

Result: Natural := 0;

a_pos : CONSTANT Natural := Character•Pos('a');

BEGIN — Hash_Division_Letter

FOR Count IN K'Range LOOP

Result := Result + (Character'Pos(K(Count)) - a_pos);
END LOOP;

RETURN Result REM Capacity;

END Hash_Division_Letter;
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This algorithm is acceptable for small hash tables, but fails for large ones. Suppose
that no key is longer than six letters. This means that the largest key is zzzzzz, so the
largest hash code is 6 x 25 (the relative position of z), or 150. If a table is larger than
151 positions (0. .150), no matter how large it is, this algorithm will use only the first
150 positions. This is not a very good "spread" of hash values!

ftogram 13.6 finds 100 random values using the hash function above. The random key
strings are produced using two instances of Ada.Numerics .Discrete_Randoin—
one generates random string lengths in the range 1. .6; the other generates random letters.

Program 13.6 A Test Program for Hash_Division_Letter

WITH Ada.Text_IO;

WITH Ada.Integer_Text_IO;

WITH Ada .NiJinerics. Discrete_Random;

WITH Hash_Division_Letter;
PROCEDURE Random_Strings IS

Generates 100 random hash codes in the range 0. .997

Keys are in the range a . . zzzzzz
Uses the random nvunber generator from Ada.Numerics
Author: Michael B. Feldman, The George Washington University
Last Modified: February 1996

SUBTYPE LengthRange IS Positive RANGE 1. .6;
SUBTYPE LetterRange IS Character RANGE 'a'. . ' z' ;

SUBTYPE HashRange IS Natural RANGE 0. .996;

KeyString: String(1. .6); — to hold string form of key
HashValue: HashReUige;
KeyLength; LengthRange;

PACKAGE RandomLength IS NEW Ada.Numerics.Discrete_RcUidom
(Result_Subtype => LengthRange);

G1: RandomLength.Generator;

PACKAGE RandomLetter IS NEW Ada.Numerics.Discrete_Random

(Result_Subtype => LetterRange);

G2: RandomLetter.Generator;

BEGIN — Random_Strings

RandomLength.Reset (Gen => Gl); — starts G from time of day clock
RandomLetter.Reset (Gen => G2); — starts G from time of day clock

FOR Row IN 1. .20 LOOP -- displays 20 rows of 5 pairs <k, h(k)>

FOR Num IN 1. .5 LOOP

KeyString := "
KeyLength := RandomLength.Random(Gen => Gl); — length

FOR Count IN 1. .KeyLength LOOP
KeyString(Count) := RandomLetter.Random(Gen => G2);

END LOOP;
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HashValue := Hash_Division_Letter (KeyStringd. .KeyLength), 997);

Ada.Text_IO.Put(Item => KeyString);
Ada.Integer_Text_IO.Put(Item => HashValue, Width => 4);
Ada.Text_IO.Put(Item => " ");

END LOOP;

Ada.Text_IO.New_Line;

END LOOP;

END Random_Strings;

The output from a run of this program is shown in Figure 13.4. Note that even
though we are trying to use a 1000-element table, no hash value is larger than 150!

We can improve the distribution of hash values in the table by using an algorithm
similar to that in Program 13.4. Instead of finding a decimal integer from a numeric
string, we treat the letter string as though it represented a base-26 number, then convert
that number to decimal. To do this, we multiply by 26 instead of by 10.

Program 13.7 Improved Division Hashing Function (Keys are Lowercase
Letter Strings)

FUNCTION Hash_Division_Letter_2
(K: String; Capacity: Positive) RETURN Natural IS

Division_Letter_2 Hash Function
Assumes K is a string of lowercase letters; treats Icey as a l>ase
26 ntomber and converts to decimal.

Author: Michael B. Feldman, The George Washington University
Last Modified: February 1996

Result: Natural := 0;

a_pos : Natural := Character'Pos('a');

BEGIN — Hash_Division_Letter_2

FOR Count IN K'Range LOOP

Result := 26 * Result + (Character'Pos(K(Count)) - a_pos);
END LOOP;

RETURN Result REM Capacity;

END Hash_Division_Letter_2;

The program Random_Sbrings (Program 13,6), modified to use this new hash
function, produced the output shown in Figure 13.5 in a sample run. Note the far better
distribution of hash values.

Folding, or Partitioning

The folding, or partitioning, method is another way of ensuring a good randomizing of
the digits of the key. The key is partitioned, or divided into several pieces; then the
pieces are operated on together in some way—^typically by adding them together—and
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ij 17 euro 55 f 5 hsyzpp 104 blxwdy 84

Irkq 54 usjyvt 111 vfz 51 fgwr 50 kh 17

z 25 wlax 56 wrlkjd 72 exlzn 76 glmtag 54

e 4 itdl 41 Iv 32 s 18 yboe 41

mhpq 50 j 9 houjp 65 tsqeyk 91 xz 48

kyoemv 85 yk 34 z 25 jodu 46 y 24

ufrv 63 pgsyu 83 zw 47 wls 51 vpjvz 91

vusg 65 eg 8 psmtre 83 sylbt 73 aseoh 41

z 25 owe 38 u 20 byv 46 lulz 67

px 38 snqdk 60 gumta 57 jfkt 43 j 9

rojckb 34 ugfvmp 79 ejnekv 59 zxnffp 86 inbj 22

<3 16 nige 29 bterj 48 woefm 55 enn 33

d 3 baeznl 52 sxjxi 81 u 20 ey 28

eog 24 fuq 41 negspp 71 wepk 51 hfzs 55

zypzqt 124 pd 18 s 18 xexe 52 xr 40

icrzqr 85 gy 30 aduxo 60 f 5 r 17

vduobe 63 vl 32 xurrk 87 bupxzb 85 em 14

vkcieq 61 erhyv 73 edy 29 qfyn 58 yb 25

kndxv 70 kuuuad 73 f 5 plqqps 91 arh 24

uvgkht 83 yeek 40 eh 11 nsqqzx 111 uknlt 73

Figure 13.4 Output from a Run of Random_strings

then taking the necessary number of digits of the result as the hash code. Two different
ways of doing this are shown in Figure 13.6.

How can we implement the folding algorithm? Suppose the key is represented as a
six-digit numeric string. The appropriate string slices are converted to integer values,
then these values are summed to find the hash value. Implementing a hash function
using the folding method is left as an exercise.

Having discussed a number of methods for arriving at a hash code for each arriving
item, let's move on to look at some steps we can take to resolve collisions when they
occur.

ninhg 499 eegav 9 ig 214 rb 443 f 5

xztqk 106 urn 532 pers 605 y 24 f 5

box 66 fd 133 sr 485 kbimx 897 denixs 301

ddef 30 f 5 qk 426 ws 590 efvpib 849

w 22 kxme 198 seywn 435 rmzju 718 ickql 274

iohn 717 o 14 eraj 51 li 294 q 16

imysg 103 uuqv 575 egyjo 697 xps 4 fsgtst 100

j edxth 533 V 21 mglw 921 bxhs 423 ewll 725

kymzhy 402 euqv 513 pe 392 u 20 es 70

bpfdo 266 wtrvss 887 iqov 265 xkfe 376 sa 468

xsob 35 rs 460 hym 383 qmd 164 ssgbk 741

io 222 PP 405 pxdvro 566 junfre 178 pkving 396

zoefw 444 jyu 746 roahhb 10 mux 679 nlgk 798

px 413 hjgtkj 974 ys 642 gwk 650 helmk 495

Id 289 evr 276 jshtti 253 gu 176 idfua 605

rpeo 925 vevp 480 1 11 hpmm 895 snftdw 981

zllkj 421 pg 396 twn 468 dw 100 j 9

byyj 535 jsypnq 84 vtqj 514 nyik 665 li 294

ye 626 Ijojks 744 t 19 ud 523 pjfdp 408

Figure 13.5 Output from a Second Run of Randoin_strings
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(a) A key.

51

03

+ 24

78

K=510324

51

03

24

for a 1000-element table,h(k)=078

(b) Folding method 1; "slide" left and right sections.

41
78

for a lOOO-element table,h(k)=060

(c) Folding method 2: "fold" left and right sections.

Figure 13.6 The Folding Method

13.4 RESOLVING COLLISiONS IN HASH TABLES

If a collision arises in attempting to place an item in the table, we need to search in a sys
tematic and repeatable fashion for an alternative position. This is called probing; and sev
eral different methods exist for doing it. They all depend upon selecting an increment
function, which we shall denote inc(i), which takes a hash address (not a key) i and pro
duces another hash address. If that position is occupied, we take that hash address and
pass it again through the increment function, and so on until we find an open position.
With luck and good choices of h(k) and inc(i), we should be able to do this, in most cases,
with only a few additional probes, so we still have approximately Oi\) performance.

Finding an unoccupied position in the table depends upon our being able to tell that
the position is empty. The two most common ways of doing this are as follows:

• The InitializeTable operation initializes all the positions of the table with
some value we can use to indicate "unoccupied."

• Each table position contains a flag or code indicating "unoccupied."

You will see shortly that we need to make a distinction between currently "unoccu
pied" and "never occupied," so whatever indicator we use will need three states, not two.

Program 13.8 adapts the generic table specification of Program 5.15.
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Program 13.8 Generic Table Handler, Hash Table Implementation

GENERIC

TYPE Element IS PRIVATE; — assignment and equality predefined
TYPE KeyType IS RANGE <>; — must be an integer-valued type!

Capacity; IN Positive; — maximum table size

— These generic parameters specify how to
— retrieve the key from an element, compare elements
WITH FUNCTION KeyOf (Item: Element) RETURN KeyType IS <>;

-- WITH FUNCTION "<" (Keyl, Key2: KeyType) RETURN Boolean IS <>;
— This no longer must be a parameter; we know the key is integer

— This parameter specifies what to do with each element during
— a traversal of a table;

WITH PROCEDURE Visit (Item: Element);

PACKAGE Tables_Generic_Hash IS

Specification of the adistract data type for an ordered table of
element records, each containing a key.
This version has type definitions to implement the table as a
hash table. The client cannot see or use these types

because Table is LIMITED PRIVATE.

Author: Michael B. Feldman, The George Washington University
Last Modified: February 1996

— Data Structure

TYPE TableType IS LIMITED PRIVATE;

— Exported exceptions

UninitializedTable: EXCEPTION;

NoSpaceLeft : EXCEPTION;

— Operators

PROCEDURE InitializeTcible (Table : IN OUT TableType);
— Pre : None

Post: Table is an initialized TableType

FUNCTION SizeOfTable (Table : TableType) RETURN Natural;
— Pre : Table is an initialized TableType
— Post: Returns the number of elements in Table

PROCEDURE Search (Table : TableType;
Target : KeyType;

Success : OUT Boolean);

Pre : Table is an initialized TableType
Post: Success is True if Target is found; otherwise.

Success is False.

PROCEDURE Insert (Tedsle : IN OUT TableType;
Item : Element;

Success : OUT Boolean);
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— Pre : Table and Item are defined; Table is initialized.
— Post: Success is True if insertion is performed; Success is False

if insertion is not performed because there is already
—  an element with the same key as Item.
— Raises: NoSpaceLeft if there is no space available for Item.

PROCEDURE Delete (Table : IN OUT TableType;
Target : KeyType;

Success : OUT Boolean);
— Pre : Table and Target are defined; Table is initialized.
— Post: Success is True if deletion is performed; Success is False

if deletion is not performed because there is no element
whose key is Target.

PROCEDURE Replace (Table : IN OUT TableType;
Item : Elements-

Success : OUT Boolean);
— Pre : Table and Item are defined; Table is initialized.
— Post: Success is True if the replacement is performed; Success is

False if there is no element with the same key as Item.

PROCEDURE Retrieve (Table : TableType;
Target : KeyType;
Item : OUT Elements-
Success : OUT Boolean);

Pre : Table is an initialized TableType.
Post: Success is True if the copy is performed; Success is False

if there is no element whose key is Target.

PROCEDURE Traverse (Table : TableType);
Pre : Table is eui initialized TableType.
Post: Each element is operated on in turn by procedure Visit.

PRIVATE

SUBTYPE Tablelndex IS Positive RANGE 1. .Capacity;
SUBTYPE TableSize IS Natural RANGE 0. .Capacity;

TYPE Occupancylndicator IS

(NeverOccupied, FormerlyOccupied, CurrentlyOccupied);

TYPE ElementRecord IS RECORD

Info : Element;

Occupied: Occupancylndicator;
END RECORD;

TYPE TableData IS ARRAY(Tablelndex RANGE <>) OF ElementRecord;

TYPE TableType IS RECORD
CurrentSize : TableSize := 0;
Data : TableData(Tablelndex);

END RECORD;

END Tables_Generic_Hash;

This specification differs from Program 5.15 in two respects. First, note the pres
ence of an occupancy indicator in each table element. Second, we have changed two
of the generic parameters. KeyType can no longer be an arbitrary type, because we
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would then have no knowledge of how to find a hash value. We therefore declare
KeyType as

TYPE KeyType IS RANGE <>;

which indicates that any integer-valued type or subtype can be a key type. Also, we
have eliminated the "<" function as a generic parameter. Because we (and the com
piler) know the type is integer-valued, we (and the compiler) can rely on the predefined
"<" for integers.

The framework for the body, which implements a hash table, is given in Program
13.9.

Program 13.9 Body of Generic Table Handler, Hash Table implementation

PACKAGE BODY Tables_Generic_Hash IS

— I Body of Generic Hash Table Package
— I Author: Michael B- Feldman, The George Washington University
— I Last Modified: February 1996

— these two functions are not exported to the user

FUNCTION Hash(K: KeyType) RETURN Tablelndex IS
BEGIN — stub

RETURN Tablelndex'First;

END Hash;

FUNCTION Increment(I: Tablelndex) RETURN Tablelndex IS

BEGIN — stub

RETURN Tablelndex'First;

END Increment;

FUNCTION Available(T: TableType; Probe: Tablelndex) RETURN Boolean IS
BEGIN

RETURN T.Data(Probe).Occupied /= CurrentlyOccupied;
END Available;

FUNCTION NeverOccupied
(T: TableType; Probe: Tablelndex) RETURN Boolean IS

BEGIN

RETtJRN T.Data (Probe) .Occupied = NeverOccupied;
END NeverOccupied;

— exported operations

PROCEDURE Search (Table : TableType;

Target : KeyType;

Success : OUT Booleem) IS

ProperHome: Tablelndex;

Probe : Tablelndex;

TempKey : KeyType;

BEGIN — Search

ProperHome := Hash(Target);
Probe := ProperHome;
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LOOP

TempKey := KeyOf(Table.Data(Probe).Info);
IF TempKey = Target THEN

Success := True;

EXIT;

ELSIE NeverOccupied(Table, Probe) THEN
Success := False;

EXIT;

ELSE

Probe := Increment(Probe);

IF Probe = ProperHome THEN

Success := False;

EXIT;

END IF;

END IF;

END LOOP;

END Search;

PROCEDURE Insert (Table : IN OUT TableType;
Item : Element;

Success : OUT Boolean) IS

ProperHome: Tablelndex;
Probe : Tablelndex;

Target : KeyType;

BEGIN -- Insert

Target := KeyOf (Item);

ProperHome := Hash(Target);

Probe := ProperHome;

LOOP

EXIT WHEN Available(Table, Probe);

Probe := Increment(Probe);

IF Probe = ProperHome THEN
RAISE NoSpaceLeft;

END IF;

END LOOP;

Table.Data(Probe) :=

(Info => Item, Occupied => CurrentlyOccupied);
END Insert;

PROCEDURE InitializeTable (Table : IN OUT TableType) IS
BEGIN — stub

NULL;

END InitializeTable;

FUNCTION SizeOfTable (Table : TableType) RETUEUJ Natural IS
BEGIN — stub

RETURN 0;

END SizeOfTable;

PROCEDURE Delete (Table : IN OUT TableType;
Target : KeyType;

Success : OUT Boolean) IS

BEGIN — stub

NULL;

END Delete;

PROCEDURE Replace (Table : IN OUT TableType;
Item : Element;

Success : OUT Boolean) IS
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BEGIN -- stub

NULL;

END Replace;

PROCEDURE Retrieve {Table : TableType;
Target : KeyType;

Item : OUT Element;

Success : OUT Boolean) IS

BEGIN — stub

NULL;

END Retrieve;

PROCEDURE Traverse (Table : TableType) IS

BEGIN — stub

NULL;

END Traverse;

END Tables_Generic_Hash;

The hash and increment functions are not given in detail; one could choose any of
the hash methods described above, and any of the increment methods shown below.
Insert and Search operations are shown, as are the two functions Available
and NeverOccupied, which hide the details of the occupancy indicator. The rest of
the operations are left as stubs for you to complete as an exercise.

An alternative design is to allow the key type to be arbitrary, but to add the hash
function as a generic parameter. The disadvantage of this approach, of course, is that it
requires the client to supply the hash function. In our other table implementations, we
took care of all the details and did not bother the client with them.

This kind of hash table scheme is often called closed hashing, because all items are
stored in the same table, which is of fixed size. In the next section you will see other
schemes, called open hashing and bucket hashing.

Linear Probing

In linear probing, we let the increment function be

inc(i) := (i + I) REM Capacity

That is, we just add I to the hash address and "wrap around" if we reach the end of the
table. If that position is occupied, we add 1 again, continuing to search linearly for an
open position. As long as there is "enough" extra space in the table and it doesn't become
too densely filled, we should be able to find a position in a reasonable number of tries.

Now let's see how Search and Delete work in such a scheme. Intuitively, we
should just apply the same sequence of h(k) followed by as many calls to inc(i) as we
need, checking the key of every item we find along the way until we arrive at the right
one. A problem arises when we ask how we know that we've searched long enough.
The simple answer—^stop when we reach an "open" position—just isn't enough.

Consider the example in Figure 13.7.
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K2
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Initial; h(Kl)=138

h(K2)=140

h(K3)=:138,
So it is placed

at 139

h(K4)=138,
So it is placed
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Figure 13.7 Linear Probing and the Clustering Problem

Suppose keys K1 and K2 are successfully placed in their "own" positions—that is,
just after being transformed by h(k}. Now suppose K3, a synonym of Kl, arrives. By lin
ear probing, it will be placed adjacent to Kl. K4, another synonym of KI, arrives and, of
course, is placed just beyond K2. At this point a search for any of the items will succeed.

Now suppose we need to delete K3. No problem yet: Kl is in the "official" position
for K3, so we try the next position, find K3, then mark the position as "open." Now
comes trouble: Let's try to search for K4l We'll stop at the position formerly occupied
by K3 and think K4 isn't there!

The problem arises because we haven't distinguished between two meanings of
"open": "never occupied" and "formerly occupied." We really need three, not two,
states for the status indicator. One state indicates "never occupied," another indicates
"formerly occupied," and the third indicates "currently occupied." We use "never occu
pied" as an indicator that we can stop looking in a Search or Delete operation:
Finding a "never occupied" position indicates that the target item isn't in the table. In
an Insert operation, either the "never occupied" or the "formerly occupied" state can
be used to place the arriving item.

Clearly, linear probing will result in a situation called "clustering," in which a group
of synonyms will all be placed adjacently and mixed together with some "official" occu
pants. As the table system runs, these clusters will inevitably grow larger and larger, mak
ing the Insert, Search, and Delete operations run progressively more slowly.

NonLinear Probing

Other probing methods have been proposed and analyzed, to reduce clustering and thus
speed up the average search performance. One way is to keep track of the number of
probes, then give the increment function two arguments: the value of the previous hash
address and the number of probes carried out thus far to place the current item. So
instead of

inc(i) := (/ + 1) REM Capacity
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we get

inc(i, p) := (i + p) REM Capacity

where p is the number of probes. The first increment will be one position away; the next
probe will move two positions from the last, the next probe three positions, and so on.
This scheme tends to put more space between successive synonyms and thus reduces
clustering.

Another method is the so-called quadratic hashing method, where

inc(i, p) := (i + ap + bp^) REM Capacity

where a and b are constants, usually +1 or -1. You can show in an exercise that this
method spreads items out over the table and will cover exactly half the table before
repeating. There is little clustering, because—as you can show in the exercise—if one
search starts at location il and continues over i2, iS, i4,..., iN, then another search that

starts at, say, i2 will not touch any of the locations i3, i4,... ,iN.
Still another method is to use a pseudo-random number generator as an increment

function. This will eliminate clustering, but may be a slower computation than those
previously described.

All these methods assume that successive synonyms are placed in the same closed
or fixed-size table. In the next section we discuss another strategy, called bucket hash
ing or chained hashing.

Bucket Hashing

The bucket hashing method establishes a bucket, or separate storage area, for all mem
bers of a given synonym (equivalence) class. Then h(k) is used just to determine in
which bucket the new arrival belongs.

The most conunon way to do this is to use a linear-list structure for the buckets. In
this case, the original table contains not records but list headers; each arriving entry
goes into its appropriate list. An illustration of this appears in Figure 13.8.

This method has the obvious disadvantage of requiring extra space for the lists, but
that is offset by the fact that the list nodes can be allocated dynamically (given a pro
gramming language with that feature) and thus the space not used is shared with other
program structures. Furthermore, the amount of space allocated to the original table can
be reduced.

There is a time/space trade-off operating here: if the number of buckets is B, then
the average list length is T.CurrentSize/B (assuming a decently random h(k)).
The linear search to find an item in the list is obviously (?(T. CurrentSize/B), so a
larger B results in a shorter search.

A minute's thought reveals that the bucket method is really a miniaturization of the
other sequential table-handling strategies. The bucket idea just cuts down the length of
the sequential searches by reducing the list length from T. Cur rent Size to (an aver
age of) T. Cur rents ize/B.
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Ordered Hashing

In an application where it frequently happens that a search operation frequently reports
"The item is not in the table"—^we call this an unsuccessful search—and the unsuc
cessful search is not immediately followed by an insertion of that item, we can cut
down the time for an unsuccessful search by inserting synonyms into a bucket in an
ordered sequence, say in ascending order. Thus, an unsuccessful search takes the same
time as a successful one, because the search can stop when an item with a key greater
than the target is found. Of course, this strategy also increases the time for an insertion,
because a new arrival cannot just be placed at the end of a bucket.

Note that this ordering can also be used in a closed-hashing scheme (the details are
left to an exercise). Remember that it is only worth the trouble where there are frequent
unsuccessful searches that are not followed by insertions. For example, it is useless in
compiler symbol-table applications, in which an unsuccessful search is almost always
followed by an insertion!

13.5 HYBRID SEARCH STRATEGIES

There is no law requiring an application to use only a single search strategy. Often sev
eral methods can be combined, perhaps in earlier and later stages of the application's task.

A good example of this is a translator—compiler or assembler—symbol table.
When the translator makes an early pass over the source program, the main goal is to
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discover the first appearance of an identifier or program variable, so that an object-pro
gram address can be assigned to it. A fast Insert operation is then of interest:
Unsuccessful searches are always followed by insertions; successful searches (the iden
tifier is already in the table!) are not interesting at all.

In the code-generation pass of the translation, each time an identifier is discovered
in the source program its address must be looked up in the symbol table. Therefore, a
fast search is most desirable; insertions don't occur after the table has been built, and

deletions never occur at all in this application!
Some translator designers use different table structures for these two passes. For

example, a binary search tree or bucket hash table is used for the scanning pass, because
neither the number of identifiers nor their spelling is known before the source program
is scanned, and in most language a tremendous number of possible identifiers exists.
The BST insertion will probably perform in a time reasonably close to C?(log N)
because programmers rarely, if ever, declare or use their identifiers in alphabetical
order. Both the BST and bucket hash methods handle dynamic space allocation with
ease.

On the other hand, once that pass is completed, the table contents are Bxed and only
search operations are ever done. Therefore compiler designers sometimes reorganize
the symbol table between passes, sorting it and storing it in an ordered array, so that the
search operation—ordinary binary search—is guaranteed to perform in 0(log N) time.

Working out the details of this hybrid structure is left to an exercise.

SUMMARY

Our goal has been to establish a method for maintaining a dynamic table such that the
performance of the Insert, Search, and Delete operations approximates 0(1) or
constant time. We have seen that by constructing an appropriate hash function h(k)y just
a mathematical transformation of the key, the "official" position of an item can cer
tainly be calculated in 0(1) time.

Unfortunately, hash functions are inherently many-to-one, with many different
keys—synonyms—all yielding the same hash address. Therefore, the problem is really
twofold: Find an h(k) that minimizes the likelihood of these coincidences or collisions,
then find a good way of resolving those collisions that do occur.

The truncation, division, and partitioning methods are all commonly used as hash
functions. There is no mechanical way to decide on a best h(k), but two important con
siderations are (1) the uniformity with which h(k) spreads the items around the table
and (2) speed of calculation.

The two most common ways of resolving collisions are the closed method and the
open, or bucket, method. In the closed method, when the "official" position of an arriv
ing item is already occupied, a search ensues that probes for the first open position by
using an increment function inc(i), then places the arriving item there. Several different
increment functions are possible—^for example, linear, quadratic, and random. Each of
these methods has its strengths and weaknesses regarding uniform spread and speed;
what they have in common is a sequential search, whose linear performance damages
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the ability to place or search for an item in constant time. So in practice, our goal of
0(1) performance is achieved only approximately.

In the open, or bucket, collision-resolution method, items in the same synonym
class are all placed in a bucket, typically a linear list. Though detailed implementations
vary and small optimizations are possible, a linear search is usually involved in at least
one of the operations.

EXERCISES

1. In designing a hash table where h(k) is a division-method function, show why it is
best that the divisor, and therefore the table size, be a prime number.

2. A certain computer does all its arithmetic and array subscripting in binary-coded
decimal^ not the usual binary integers. A word in this machine consists of eight
decimal digits; characters are coded as two decimal digits, according to the fol
lowing code:

character code

0-9 00 through 09
A-I 11 through 19
J-R 21 through 29
S-Z 32 through 39

Now consider this hash-coding problem. There is a table of 100 items, indexed by
two-digit decimal subscripts. The key part of each item is a four-letter sequence. A
hashing method is proposed in which h(k) is computed by dividing the key by 10
(integer division!), then taking the rightmost two digits of the result. Find h(k) for
each of the keys MARY, JACK, WILL, and MACK. Is this a good hashing
method? Why or why not?

3. Implement a hash function using the folding method.
4. Suggest strategies for implementing the Traverse operation for a hash table.

Don't forget that Traverse must print out the table in sorted order by key.
5. Show that the quadratic method of collision resolution eliminates clustering and

covers exactly one half the table before repeating.
6. Reimplement the generic table handler using a hash table. Design your own hash

function and incrementation scheme.

7. Design a symbol-table scheme for a high-level or assembler language with which
you are familiar, using a bucket hash method for the scanning pass of the transla
tor and an ordered array for the code-generation pass. Show how you will reorga
nize the table between passes.
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14.2 0(A/2) Sorts: Simple Selection Sort
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Sorting, or putting a list of records in sequence, is an important part of all aspects of
computing. To take a somewhat extreme example, one data processing installation with
which the author is familiar conducted a survey of its applications that were being run
on a multi-million-dollar large-mainframe computer. It tumed out that somewhere near
50 percent of the central-processor machine cycles were absorbed just in sorting!

In smaller-scale situations, putting a list in order is often a part of a larger program,
and so it is important to understand how to develop sort procedures that will work cor
rectly and speedily to cany out this function.

Also, the technology of sorting is well understood and many different and varied
algorithms exist. Therefore, comparative study of sorting algorithms gives useful expe
rience in predicting run-time performance.

In Section 5.2, we introduced a generic anay-sorting procedure. In this chapter, we
formalize the earlier discussion with a comparative study of various sorting algorithms.
We assume that the number of records is small enough for all of them to frt simultane
ously into main memory. We call this internal sorting. For each of the algorithms we
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consider, we will study briefly how each one performs, in "big O" terms. Most algo
rithms are 0(1^) or 0(N log N), but there are some exceptions.

14.1 INTRODUCTION

In this discussion, we will focus on sorting an array of data. It is, strictly speaking, not
necessary to limit ourselves in this manner, but doing so will help us compare the algo
rithms more easily. Suppose we are given an array A (1. . N) of records, each record
containing its key field. (In the simplest case, the record consists only of the key.) That
array is said to be upward sorted, or sorted in ascending order, if for every index I
from 1 toNit is true that A(I) <= A (l+l). If, on the other hand, for each I, A(I)
>= A (I+l), the array is said to be downward sorted, or sorted in descending order.

A sort algorithm (or sort procedure) will, given A in some original state (sorted or
unsorted), produce a sorted array. For simplicity, we will limit our discussion to
ascending sorts, and so "sorted" will mean "upward sorted." As we saw in Programs 5.9
through 5.11, using generic sort procedures makes the extension to descending sorts
simple and straightforward.

An internal sort is one that assumes that the array is of sufficiently small size that
all records can fit into main memory at one time. An external sort is one that assumes
the number of records is so large that some of them must reside on external storage
(tape or disk) at any given instant. External sorting is beyond the scope of this book.

Given an array A, we say that a record R1 precedes a record R2 if R1 is located at
A (I) , R2 is located at A (J), and I < J. A sort is said to be stable if for any pair of
records R1 and R2 such that Rl precedes R2 and KeyOf (R1) = KeyOf (R2) in the
unsorted array, Rl precedes R2 in the sorted array. In other words, a stable sort pre
serves the relative positions of records with equal keys.

An in situ sort is one in which the unsorted and sorted arrays occupy the same
space, possibly with the use of a small amount of auxiliary working storage to carry out
the sort. In other words, no copy of the array is needed for an in situ sort.

In this chapter, we present various internal sorting methods and consider their per
formance. Each of these algorithms is designed to operate on an array of arbitrary size,
whose contents are initially in arbitrary order. Accordingly, in predicting their perfor
mance, we can make no assumptions about the initial ordering of the records. We will,
though, try to find the best-case, average-case, and worst-case performance wherever
possible. Decades of work on sorting theory and practice have established that most
internal sorts are of growth rate 0{hP) or 0{N log(AO).

The simplest and most straightforward sort methods are those with growth rate
0{N^). These methods are easy to understand and require little additional memory; they
also have relatively small time-per-operation characteristics. For occasional sorting of
reasonably small arrays, the payoff of these methods in simplicity and ease of debug
ging is often worth the price of quadratic performance.

We first present four 0(A/2)sorts; simple selection, delayed selection, bubble sort,
and linear insertion. We then give three sort algorithms with performance 0(N log A/):
merge sort, heap sort, and quick sort. You will notice inunediately that in each of the
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three a price is paid for the improved "big O" performance, either in extra space
required or in increased complexity of the algorithm, or in both.

Finally, three interesting additional sort algorithms are presented. These are shell
sort, quadratic selection sort, and radix sort.

All these sort algorithms show clearly that there are time-space and time-complex
ity tradeoffs that just cannot be avoided.

14.2 0(A/2) SORTS: SIMPLE SELECTION SORT

Our first sort is intuitively very easy to understand. Given the array A (1. . N) to be
sorted, we select the smallest element in the array and place it in the first position,
then select the second smallest and place it in the second position, and so on. This is
done, say, for the first position by comparing KeyOf (A (1) ) with KeyOf (A (2))
and exchanging them if KeyOf (A (2) ) is smaller. We then compare (the possibly
new) KeyOf (A (1) ) with KeyOf (A (3) ), exchanging them if necessary, and so
on until KeyOf (A(l)) and KeyOf (A(N)) are compared. It should be clear to
you that this procedure will guarantee that the smallest element ends up in the first
position.

This being the case, we can forget about A (1) and do the same thing with A (2)
through A (N), which will bring the second smallest element to the second position. If
we call each scan of the partial array a pass, then we will finally execute a pass such that
A(N-l) and A(N) find their proper places, and the array will be sorted. The sort
process is illustrated in Figure 14.1.

The specification of a generic procedure is shown in Program 14.1. As in many pre
vious examples, the generic specification allows the element and key types to be any
types for which assignment and equality are predefined, and requires the client to pro
vide comparison and key-extraction (KeyOf) functions. Furthermore, in this specifi
cation—as in all the sorts presented in this chapter—the array index type can be any
integer type or subtype.
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Figure 14.1 Simple Seiection Sort
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Program 14.1 Specification of Simple Selection Sort

GENERIC

TYPE KeyType IS PRIVATE;

TYPE ElementType IS PRIVATE;
TYPE IndexType IS RANGE <>; — integer subscripts
TYPE ListType IS ARRAY (IndexType RANGE <>) OF ElementType;
WITH FUNCTION KeyOf (Element: ElementType) RETURN KeyType IS <>;
WITH FUNCTION *<" (Left, Right: KeyType) RETURN Boolean IS <>;

PROCEDURE Sort_SimpleSelection_Generic(List: IN OUT ListType);

--| Pre: The procedure has been instantiated and List is defined
— I Post: The contents of List are in order defined lay "<"
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: Jeuiuary 1996

The body appears in Program 14.2. This procedure, like many in this chapter, uses
an instantiation of the generic swap procedure that was given as Programs 5.1 and 5.2.
We will not provide test programs for these sorts, but refer you instead to Program 5.11
as a starting point.

Program 14.2 Body of Simple Selection Sort

WITH Swap_Generic;

PROCEDURE Sort_SimpleSelection_Generic(List: IN OUT ListType) IS

— I Procedure body for Sort_SimpleSelection_Generic
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

PROCEDURE Exchange IS NEW Swap_Generic(ValueType => ElementType);

BEGIN — Sort_SimpleSelection_Generic

FOR PositionToFill IN List'First. .List'Last - 1 LOOP

Store in List(PositionToFill) the "smallest" element remaining
— in the subarray List(PositionToFill + 1. .List'Last)

FOR ItemToCompare IN PositionToFill + 1. .List'Last LOOP
IF KeyOf(List(ItemToCompare)) < KeyOf(List(PositionToFill)) THEN

Exchange(List(PositionToFill), List(ItemToCompare));
END IF;

END LOOP;

END LOOP;

END Sort_SimpleSelection_Generic;

What is the time performance of this algorithm? The structure of this program is a
double loop with a decision inside. We accommodate the decision, as outlined in
Chapter 3, by assuming that the slower leg is always executed. So we assume that an
exchange is done every time a comparison is done. The first pass requires N-l opera
tions, the second N-2 operations, and so on. The AMst pass requires one operation.



143 0{bP) Sorts: Delayed Selection Sort 509

Thus the total number of operations is (N-l)+(N-2)+.. .+l or Nx {N-\)/2, as you will
remember from Chapter 3. Multiplying out, we get (N x N/2) - NI2, and so the algo
rithm is 0(A/2), since the squared term will dominate the linear term for nontrivial N
(even for N = 10, we are off by only 10 percent).

Our assumption that an exchange is done for each comparison corresponds to worst-
case conditions, in which the original array is sorted downward. If the original array is
sorted upward, no exchanges at all will be done. The actual execution time, then, will be
faster, but the growth rate will still be proportional to the square of the array size.

14.3 0(/V2) SORTS: DELAYED SELECTION SORT

We can speed up the selection sort a bit if we try to reduce the number of exchanges that
are made, under less-than-best-case conditions. We do this by delaying any exchange
until the end of the pass. Instead of, for example, exchanging A (1) and A {2) if A (2)
is smaller, we note in an auxiliary variable IndexOfMin that A(2) is the smallest
element we've seen in this pass, by setting this variable to 2. This is the location that we
test against A (3), keeping track of which is smaller. At the end of the first pass, this
variable will clearly have the location of the smallest key. We then exchange that record
with the one at A (1).

Since in this improved algorithm we perform at most one exchange per pass, the
overall running time will generally be faster even though it is still an 0{N^) algorithm.
Programs 14.3 and 14.4 show the generic procedure for this algorithm.

Program 14.3 Specification of Delayed Selection Sort

GENERIC

TYPE KeyType IS PRIVATE;

TYPE ElementType IS PRIVATE;

TYPE IndexType IS RANGE <>; — integer siabscripts
TYPE ListType IS ARRAY (IndexType RANGE <>) OF ElementType;
WITH FUNCTION KeyOf (Element: ElementType) RETURN KeyType IS <>;
WITH FUNCTION "<"(Left, Right: KeyType) RETURN Boolean IS <>;

PROCEDURE Sort_DelayedSelection_Generic(List: IN OUT ListType);

--| Pre: The procedure has been instantiated and List is defined
—j Post: The contents of List are in order defined by "<"
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

Program 14.4 Body of Delayed Selection Sort

WITH Swap_Generic;
PROCEDURE Sort_DelayedSelection_Generic(List; IN OUT ListType) IS

— I Body of generic Delayed Selection Sort
— I Author: Michael B. Feldman, The George Washington University
— Last Modified: January 1996
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PROCEDURE Exchange IS NEW Swap_Generic(ValueType => ElementType);

IndexOfMin: IndexType;

BEGIN — Sort_DelayedSelection_Generic

FOR PositionToFill IN List'First. .List'Last - 1 LOOP

IndexOfMin := PositionToFill;

FOR ItemToCompare IN PositionToFill + 1. .List'Last LOOP
IF KeyOf(List(ItemToCompare)) < KeyOf(List(IndexOfMin)) THEN

IndexOfMin := ItemToCompare;
END IF;

END LOOP;

Exchange(List(PositionToFill), List(IndexOfMin));

END LOOP;

END Sort_DelayedSelection_Generic;

14.4 0(/V2) SORTS: BUBBLE SORT

Bubble sort is another simple sort with 0(I\P) worst-case performance. In this algorithm
we compare the keys of adjacent elements, exchanging if necessary. We begin with
KeyOf (A(l)) and KeyOf (A (2)), then KeyOf (A (2)) and KeyOf (A(3) ),and
so on. At the end of the first pass, as shown in Figure 14.2, the "heaviest" element will
have "sunk" to the bottom, one location at a time.
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Continuing as in the first two sorts above, we then start a second pass that runs
through A (1) to A (N-1), sinking the second heaviest element down to the next-to-
last position. As before, we will, after N-\ passes, have a sorted array.

At first glance, this looks no better than the simple selection sort. But there is a way
to improve it that can make a difference. Since only adjacent elements are ever com
pared, if we ever make a complete pass in which no exchanges are necessary, we know
that the array is sorted. Indeed, if the array is received in sorted order, only one pass is
necessary to make that determination, so the best-case performance is 0(N)\

What we need to do, then, is maintain a Boolean variable. AnotherPassNeeded,

which is initialized to false at the start of each pass, then set to true whenever an
exchange is made. If AnotherPassNeeded is false at the end of a pass, we can stop
the sort. A generic procedure for this is given in Programs 14.5 and 14.6. Once again, we
allow the index type to be any integer type or subtype.

Program 14.5 Specification for Bubble Sort

GENERIC

TYPE KeyType IS PRIVATE;

TYPE ElementType IS PRIVATE;
TYPE IndexType IS RANGE <>; — integer subscripts
TYPE ListType IS ARRAY (IndexType RANGE <>) OF ElementType;
WITH FUNCTION KeyOf (Element: ElementType) RETURN KeyType IS <>;
WITH FUNCTION "•<" (Left, Right: KeyType) RETURN Boolean IS <>;

PROCEDURE Sort_Bubble_Generic(List: IN OUT ListType);

— I Pre: The procedure has been instantiated euid List is defined
— I Post: The contents of List are in order defined by "<"
— I Author: Michael B. Feldman, The George Washington University
— Last Modified: January 1996

Program 14.6 Body of Bubble Sort

WITH Swap_Generic;
PROCEDURE Sort_Bubble_Generic(List: IN OUT ListType) IS

— I Body of generic Bubble Sort Procedure
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: Jeuiuary 1996

PROCEDURE Exchange IS NEW Swap_Generic(ValueType => ElementType)

AnotherPassNeeded: Boolecui := True;

CurrentBottom: IndexType := List'Last;

BEGIN — Sort_Bubble_Generic

WHILE AnotherPassNeeded LOOP

AnotherPassNeeded := False;

FOR Current IN List'First . . CurrentBottom - 1 LOOP

IF KeyOf(List(Current + 1)) < KeyOf(List(Current)) THEN
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Exchange(List(Current), List(Current + 1));
AnotherPassNeeded := True;

END IF;

END LOOP;

END LOOP;

END Sort_B\ibble_Generic ;

We have seen that bubble sort has a running time of 0{N) in the best case and 0{PP)
in the worst case (where the array is originally in reverse order). In general, of course,
it will lie somewhere in between.

You may be wondering why this algorithm is called bubble sort. Taking a close
look at the process, you can see that a pass can just as easily be run "upside down,"
comparing first, say, A (N) and A (N-1), so that "light" elements "bubble up," instead
of "heavy" ones "sinking down." We chose the algorithm the way we did to make it
more intuitively comparable with the selection sort.

What factors determine how many passes will be required? It turns out that the most
important factor is the fact that even though a "heavy" element can move all the way
from top to bottom in one pass, a "light" one moves up only one position at a time! So the
number of passes is determined by the number of positions in the longest upward trip. For
this reason, the overall performance of bubble sort can often be improved by running
alternate passes in opposite directions, so that a "light" element that moved only one
position in a given pass will get to move much farther in the next pass. You are asked in
an exercise to write a program for this algorithm, which is sometimes called shaker sort.

14.5 0(A/2) SORTS: LINEAR INSERTION SORT

Linear insertion is yet another simple sort with 0{N^) running time. This method is very
similar to what one does in preparing to play a game of cards, when one receives cards
one at a time and orders them in the hand. As each new card arrives, the player scans
his hand, right-to-left, searching for the correct place for the new arrival, then inserts
the arrival in that place.

In a programming context, let us assume that an A^-element array A exists, with K <
N elements in ascending order already in the first K locations. Here is an algorithm to
put a new arrival in its place.

To Place a New Arrival:

1. Insert the new arrival at A (K+1).

2. Repeat Step 3 as long as the new arrival's key is less than the key of the element
immediately above it in the array.

3. Exchange the new arrival with the element immediately above it.

To sort N new arrivals, then, we begin by inserting the first arrival in A (1), then
looping 1 times through the above algorithm.
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Figure 14.3 Linear insertion Sort

The preceding has assumed that there are "arrivals." Where do they arrive from?
We can make this an in situ sort by having the new arrivals simply come from the array
itself. Since the first K arrivals are sorted into the first K locations of the array, the

i^+lst will fit in somewhere in the first K+l locations. In other words, the unsorted

array "shrinks" from N elements down to none as the sorted one grows from no ele
ments to N, and we can use the same physical space for both arrays, "back to back."
This is shown in Figure 14.3.

We have mentioned that this sort has 0(N^) running time. To see this, consider how
many comparisons need to be made to place the AT+lst "arrival." If we assume that all
original orderings are equally probable, then on the average KI2 comparisons will be
necessary to find the proper place for the K+lst element. Furthermore, an average of
Kll moves will be required to make space.

To sort the whole array, then, involves a number of operations characterized by a
series that will sum once again to (A^- 1) x AV2, giving us 0(AP). Programs 14.7 and
14.8 provide a generic procedure.

Program 14.7 Specification for Linear insertion Sort

GENERIC

TYPE KeyType IS PRIVATE;

TYPE ElementType IS PRIVATE;

TYPE IndexType IS RANGE <>; -- integer subscripts
TYPE ListType IS ARRAY (IndexType RANGE <>) OF ElementType;
WITH FUNCTION KeyOf (Element: ElementType) RETURN KeyType IS <>;
WITH FUNCTION "<" (Left, Right: KeyType) RETURN Boolean IS <>;
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PROCEDURE Sort_LinearInsertion_Generic(List: IN OUT ListType);

— I Pre: The procedure has been instantiated and List is defined
— I Post: The contents of List are in order defined by "<"
--j Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

Program 14.8 Body of Linear Insertion Sort

WITH Swap_Generic;
PROCEDURE Sort_LinearInsertion_Generic(List: IN OUT ListType) IS

— I Body of generic Linear Insertion Sort
I Author: Michael B. Feldman, The George Washington University

— I Last Modified: January 1996

PROCEDURE Exchange IS NEW Swap_Generic(ValueType => ElementType);

Top: IndexType := List'First;
Bottom: IndexType := List'Last,•
Position: IndexType;

BEGIN — Sort_LinearInsertion_Generic

FOR CurrentBottom IN Top+1. .Bottom LOOP

Position := CurrentBottom;

WHILE Position /= Top

AND THEN KeyOf{List(Position)) < KeyOf(List(Position-1)) LOOP

Exchange(List(Position), List(Position - 1));
Position := Position - 1;

END LOOP;

END LOOP;

END Sort_LinearInsertion_Generic;

14.6 0(N LOG N) SORTS: MERGE SORT

In Chapter 3, we gave a sketch of a recursive algorithm to sort a list by merging. In this
section we will develop a nonrecursive version of merge sort, which sorts an array with
performance OiN log N). The price paid for the improved performance is that a second
copy of the array is needed.

Consider the general algorithm for merging two sorted lists LI and L2 to create a
third list L3. (These are not necessarily linked lists; we are thinking abstractly here.)
The sparse-vector addition algorithm shown in Section 9.8 is a special case of this.

The algorithm proceeds by comparing the key of the first element in LI with the
key of the first element in L2. The element with the smaller key is removed from its list
and placed at the end of L3. (If the keys are equal, act as though LI had the smaller
one). At this stage, one of the lists has been shortened by one element.

Now compare the two first elements again, removing the one with the smaller key
and attaching it to L3. If we continue this process, eventually either LI or L2 becomes
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empty. The remaining elements in the nonempty list are then just removed and copied
to L3. Each list is traversed exactly once, and every element is copied exactly once, so
the performance of the merge is directly proportional to the total number of elements in
the two lists.

Several illustrations of the merge algorithm are given in Figure 14.4. We now need

to consider how to use this merge to create a merge sort.
In any sort, we are given an unsorted array of N elements. Let us think of this array

as a collection of N sorted lists, each with one element in it. For simplicity, let's assume
that N is exactly a power of 2; we'll remove this limitation later.

Now create a "blank" array to use as a result array. Go through the original array,
merging each pair of elements into this result array. So elements 1 and 2 are merged
into positions 1 and 2 of the result, and so on. When we are all finished, the result array
will contain A//2 sorted lists, each with two elements.

Copy the result array back to the original, then merge, from the original array, each
pair of lists of length 2 into the result. This will give N/4 lists of length 4. Again, copy
the result array back, and continue merging and copying longer and longer lists, until
two lists of length NH are left in the original array. Merge these into the result array,
which is then sorted! This process is illustrated in Figure 14.5.

To see the performance of this algorithm, note that each merge pass performs
exactly 2N operations—each element is merged once, then copied back once. If N is a

Ll L2 L3=Merge(Ll,L2)

~3 4 3
5  4

9  5

9

Ll L2 L3 =Merge(Ll,L2)

13 2 2

5  5

10 10

13

Ll ^ L3=Merge(Ll,L2)
2  1 1

4  3 3

8  6 4

10 11 6

13 15 8

10

11

13

15

Figure 14.4 Several Examples of Merging
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Initially After 1st pass After 2nd pass After 3rd pass Finally
List Length=l List Length=2 List Length=4 List Length=8 List Length=16

23 14 -1 -1 -9

21 0 0 -3
_0 -1 14 3 -1

Jli _0 21 4 0
_1 3 3 7 1
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12 29 1 -3 8
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^  ̂ 2i 2 12
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21 2 12 15
_2 2 10 15 19

21 21 21 21 21

Figure 14.5 Merge Sort

power of 2, there are log N passes, so the growth rate of the whole algorithm is 0{N log
N). If N is not a power of 2, the number of passes is the logarithm of the next higher
power of 2. You can show this in an exercise.

Program 14.9 gives the specification for merge sort. We have added an extra
generic parameter,

WITH PROCEDURE Put(List: ListType); -- for debugging

just as a debugging aid. In debugging a sort algorithm, it is helpful to be able to display
the contents of the array at various times during the sort process. Because the key, ele
ment, and array types can vary from instantiation to instantiation, we cannot simply
include a display routine in the body of the sort; the client must supply a procedure with
knowledge of the array details.

Program 14.9 Specification for Merge Sort

GENERIC

TYPE KeyType IS PRIVATE;

TYPE ElementType IS PRIVATE;
TYPE IndexType IS RANGE <>; — integer subscripts
TYPE ListType IS ARRAY (IndexType RANGE <>) OF ElementType;
WITH FUNCTION KeyOf (Element: ElementType) RETURN KeyType IS <>;
WITH FUNCTION "<" (Left, Right: KeyType) RETURN Boolean IS <>;

WITH PROCEDURE Put(List: ListType); — for debugging

PROCEDURE Sort_Merge_Generic(List: IN OUT ListTj^e);

— I Pre: The procedure has been instantiated and List is defined
— I Post: The contents of List are in order defined by "<"
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996
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Program 14.10 shows the body of this sort procedure. Here we have used variables
whose type is Integer, to make the algorithm independent of the actual index type.
In particular, because the algorithm depends on WHILE loop conditions for termina
tion, the loop control variables can go temporarily out of the array's subscript range. An
example of this is

VJHILE Left <= Max LOOP

where

Max : CONSTANT Integer := Integer(List'Last);

Left's value is Max+1 at the end of the last iteration, to cause the loop to terminate. If
we declared Left as having type IndexType, this temporary out-of-range condition
would cause Constraint_Error to be raised. To prevent this, we use Integer
variables. Because these are incompatible with the actual index type of the array, we
must then use type conversion for our subscript references. An example is

Li s t(IndexType(M)) := TempArray(IndexType(Right});

in which the subscript variables are converted to IndexType. This conversion is car
ried out at compilation time, to satisfy Ada's type-compatibility mles, and normally
imposes no execution-time overhead.

Program 14.10 Body of Nonrecursive Merge Sort

WITH Swap_Generic;
PROCEDURE Sort_Merge_Generic(List: IN OUT ListType) IS

— I Body of generic Merge Sort
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

PROCEDURE Exchange IS NEW Swap_Generic(ValueType => EleraentType);

TempArray

Max

CurrentLength

M

Left, TopLeft

Right, TopRight

BEGIN

ListType(List'Range);
CONSTANT Integer := Integer(List'Last);

Integer; — Length of subarrays
Integer; — Position in Result
Integer; — Position and end of Left
Integer; — Position and end of Right

CurrentLength := 1;
VJHILE CurrentLength < Max LOOP — New phase

TempArray := List;
Left := Integer(List'First) ;

M := Integer(List'First);

WHILE Left <= Max LOOP — Find pair of subarrays

IF Left + CurrentLength <= Max THEN

TopLeft := Left + CurrentLength;
ELSE

TopLeft := Max + 1;
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END IF;

Right := TopLeft;

IF Right + CurrentLength <= Max THEN
TopRight := Right + CurrentLength;

ELSE

TopRight ;= Max + 1;
END IF;

— Go until one subarray runs out
WHILE Left < TopLeft AND Right < TopRight LOOP

IF KeyOf (T^pArray (IndexType (Lef t)))
< KeyOf{TempArray(IndexType(Right))) THEN
List(IndexType(M)) := TempArray(IndexType(Left));
Left := Left + 1;

ELSE

List(IndexType(M)) := TempArray(IndexType(Right));
Right := Right + 1;

END IF;

M ;= M + 1;

END LOOP;

— Now "copy tail" of whichever subarray remains
WHILE Left < TopLeft LOOP

List(IndexType(M)) ;= TempArray(IndexType(Left));
Left := Left + 1;

M := M + 1;

END LOOP;

WHILE Right < TopRight LOOP
List(IndexType(M)) := TempArray(IndexType(Right));
Right := Right + 1;
M := M + 1;

END LOOP;

Left ;= TopRight; — Next pair of subarrays
END LOOP;

— Now double size of subarrays
— and go back for next phase

Put (List); — for debugging; display array at end of each phase

CurrentLength := 2 * CurrentLength;
END LOOP;

END Sort_Merge_Generic;

Notice that near the end of the procedure, the Put procedure is called. This call
causes the array to be displayed at the end of each sort phase.

It is convenient to include such a Put parameter as part of the generic specifica
tion, while the procedure is in the debugging stage; once the program is fiilly debugged,
you should remove this "extra" parameter from the specification and the body.

The merge sort algorithm can be speeded up by avoiding the extra copying of the
temporary array back to the original. This is done by alternating the "original" and
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"temporary" arrays, using a flag to keep track of which array is which. We leave the
development of a program for this as an exercise.

14.7 0{N LOG N) SORTS: HEAP SORT

Heap sort is an important N log N algorithm for internal sorting. It is an unusual method
in that no space penalty is exacted for the good performance: indeed, it is an in situ sort.

Recall the discussion of heaps in Section 12.2. There we developed the algorithms
Ext endHeap, which adds a new value to an existing heap, and Almos tHeapToHeap,
which moves a value down an existing heap until it finds its proper position.

In Section 12.2, we represented a heap as an array, or—to look at it another way—
we viewed an array as a heap. Given an unsorted array to sort, we can view our unsorted
array as a heap and use heap operations to sort it. To do this, we first turn the unsorted
array A into a heap, by calling ExtendHeap repeatedly, using increasing slices of the
array each time. The first time, we add A (1) to an empty heap, then we add A (2) to
the heap consisting of the slice A (1. . 1), then we add A (3) to the slice A (1. . 2),
and so on until we have added all values to the heap.

This application of ExtendHeap is slightly different from its use as an Enqueue
operation for a priority queue, as in Section 12.3. There, we supposed that each new
value to be enqueued was newly arrived; here, all the values are in the array right from
the start. The ExtendHeap algorithm works just as well in both cases. Figure 14.6

18 14 29 40 15 52 17 20 21 7 7 ? 7 7 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) Array View

^  N
✓  \

/  \
/  \
/  \

(g)
/  \
/  \
/  \

t  \
/  \

(g)

(b) ACBTView

Figure 14.6 An Unsorted Array
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shows an unsorted array and its ACBT view; Figure 14.7 shows the same array after
some of its elements have been added to the heap; Figure 14.8 shows the final heap. Be
sure you understand how the heap was built; practice the sequence of ExtendHeap
operations on an array of your own.

Once we have turned our unsorted array into a heap by repeatedly calling
ExtendHeap, we can sort the array. Note that the largest element in the original
list is now necessarily at the root of the heap. Now take this largest key and
exchange it with the key in the rightmost position of the lowest level of the heap.
This puts the largest value in its final position in the sorted array. If we then (con
ceptually) cut this leaf off the tree, what are we left with? If the original heap had N
nodes, we are left with an almost-heap of N - I nodes (remember, we are ignoring
the rightmost lowest leaf).

Now we convert the almost-heap to a heap (of iV - 1 nodes), by just calling
Almos tHeapToHeap. It is clear that the second-largest key in the original list is now
at the root. Exchange it with the rightmost lowest leaf of the {N - 1-node) heap.
Conceptually cut this leaf off, producing an N - 2-node almost-heap. Convert it to a
heap, then continue the process until all N keys have been removed from the heap and
swapped into their final positions. At this point, the heap is empty and the array is
sorted! This is illustrated in Figure 14.9.

40 29 18 14 15 52 17 20 21 ? 7 ? 7 7 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) Array View

(g) ^

(g)

(b) ACBT View

Figure 14.7 Array after First Five Elements Have Been Added to the Heap
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52 29 40 21 15 18 17 14 20 ? ? ? ? ? 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) Array View

(b) ACBTView

Figure 14.8 Array, Fully Converted to Heap

The heap sort algorithm can be summarized as follows:

Heap Sort:

1. A(l) is a heap trivially.

2. Make a heap of the entire array by adding the values in A (2) through A (N) in
turn. The heap "grows" in the left end of the array; the values yet to be added
dwindle in the right end.

3. Remembering that the rightmost lowest key is now at A (N), exchange it with
A (1) and convert this almost-heap A (1. , N-1) into a heap.

4. Continue the process in (3) by exchanging A (N-1) with A (1), converting to a
heap, and so on.

The heap is now dwindling in the left end of the array and the sorted list is growing in
the right end.

Programs 14.11 and 14.12 show a generic procedure for heap sort. This procedure
uses the generic heap package given in Programs 12.3 and 12.4; note that, given the
procedures ExtendHeap and AlmostHeapToHeap, the heap sort procedure is
quite brief.
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(a) Original heap.

<S)
(c) Convert to heap.

& ̂
(e) Convert to heap.

(b) Exchange 17,9
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(d) Exchange 14,10.
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Figure 14.9 Sorting with a Heap
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Figure 14.9 (continued)
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Program 14.11 Specification for Heap Sort

GENERIC

TYPE KeyType IS PRIVATE;

TYPE ElementType IS PRIVATE;
TYPE IndexType IS RANGE <>; — integer subscripts
TYPE ListType IS ARRAY {IndexType RANGE <>) OF ElementType;
WITH FUNCTION KeyOf {Element: ElementType) RETURN KeyType IS <>;
WITH FUNCTION '<" {Left, Right: KeyType) RETURN Boolean IS <>;

PROCEDURE Sort_Heap_Generic{List: IN OUT ListType);

— I Pre: The procedure has been instantiated and List is defined
— I Post: The contents of List are in order defined by "<"
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996
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Program 14.12 Body of Heap Sort

WITH Heaps_Generic;
WITH Swap_Generic;
PROCEDURE Sort_Heap_Generic(List: IN OUT ListType) IS

— I Body of Generic Heap Sort Procedure
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

PROCEDURE Exchange IS NEW Swap_Generic(ValueType => ElementType);

PACKAGE Heaps IS NEW Heaps_Generic
(ElementType => ElementType,

indexType => IndexType,
ListType => ListType,
KeyType => KeyType);

USE Heaps;

BEGIN -- Sort_Heap_Generic

— first build a heap

FOR WhichElement IN List'First. .List'Last LOOP

ExtendHeap(List(List'First. .WhichElement));
END LOOP;

— now sort the heap

FOR WhichElement IN REVERSE List'First. .List'Last LOOP

Exchange(List(List'First),List(WhichElement));
AlmostHeapToHeap(List(List'First. .WhichElement-1));

END LOOP;

END Sort_Heap_Generic;

What is the performance of heap sort? We can estimate it conservatively by noting
that since the tree we are using is—^by definition—^balanced, its depth is equal to log
N~ I, where N is the number of nodes rounded up to the next higher power of 2. To
build the heap, we call ExtendHeap approximately N times. Since ExtendHeap is
a log N operation, building the heap is, conservatively, 0(N log N). In fact, it is faster
than that, for two reasons: first, an element may not have to travel all the way up the
heap; second, because the number of levels in the heap grows as the heap grows, even
the maximum travel for most elements is less than log N. A similar argument can be
made for the N calls of AlmostHeapToHeap. Estimating conservatively, then, heap
sort has two phases, each 0(N log N), so the overall algorithm is 0(N log N).

Suppose the original array is already sorted. Since all the larger elements are at the
right-hand end of the array, they are at the bottom of the tree to be turned into a heap.
Thus elements will have farther to move into their "heap" positions if the array is sorted
or nearly so. Ironically, then, heap sort's worst-case performance is for a sorted array.
On the other hand, heap sort's best-case performance is achieved when the original
array is sorted downward, because in that case it is already a heap!

Heap Sort is interesting partly because it can be made to run with a relatively small
time per operation. Because parents and children are calculated by dividing and multi
plying by 2, respectively, finding the parent or a child of a node can be implemented as
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a single-bit shift in assembly language or in a high-level language in which the com
piler implements a division or multiplication by 2 as a single shift.

14.8 0{N LOG N) SORTS: QUICK SORT

Quick sort is one sorting method that has been shown by much experimenting to per
form well in the average case: On the average quick sort requires OiN log N), even
though its worst-case performance is 0(1^).

Quick sort is often called partition sort. It is in fact a recursive method, in which the
unsorted array is first rearranged so that there is some record, somewhere in the middle
of the array, whose key is greater than all keys to its left and less than or equal to all
keys to its right.

Once this "middle" record (which is probably not really in the middle of the array)
is found, the same method can be applied again to sort the section of the array to its left,
then to sort the section of array to its right.

This algorithm is thus another example of a "divide and conquer" method, in which
a structure is divided into two pieces by some criterion, then the two pieces are attacked
separately. Each piece is then subdivided, and so on, until the whole structure is
processed.

Philosophically this method is in the same category with binary search, and with
the binary search tree methods we have seen earlier.

The Quick Sort Algorithm

The idea is to take a guess at a "median" or "middle" value, one an element in the array
such that half the other elements are less than, and the other half greater than, the
median. It would be a true median if exactly half the elements were greater, half less,
and we could partition into equal-sized pieces. In general, we won't guess correctly, but
whichever value we guess will clearly let us partition the array into two pieces—^gener
ally of unequal size—such that one piece has all the smaller elements and the other
piece has all the larger ones.

How shall we take a guess? Since we're not assuming any prior ordering in the
array, any element has as good a chance of being the median as any other. So we might
just as well take the first element in the array. In fact, we'll be a little more clever than
that; since the first few elements in the array could all be the same value, we'll choose
the leftmost distinct element. Since our guessed "median" really isn't a median, because
in general it doesn't fall in the middle of the array, it's conventional to call it a pivot
instead.

Now, having found the location of the pivot, how do we partition? The idea is to
start two cursors moving: one will move rightward from the left end of the array, the
other leftward from the right end. The rightward-moving cursor (which we'll call "up")
will keep moving as long as the elements it scans are less than the pivot; the leftward-
moving one (which we'll call "down") will keep moving as long as the elements it scans
are greater than the pivot.
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Figure 14.10 Quicksort

If the "up" cursor finds a value greater than the pivot and the "down" cursor finds
one less than the pivot, those two values are exchanged. Then the cursors are started
again from those points.

Eventually, the two cursors will meet. At the point where they meet, all values to
the left are guaranteed to be less than the pivot and all values to the right are guaranteed
to be greater than the pivot. We call that meeting point the partition point.

Now we can write a procedure Quick, which first finds a pivot, then finds the par
tition point for that pivot. At that stage, the array is partitioned into a section with
smaller values on the left and a section with larger values on the right. But the two sec
tions are not yet sorted. On the other hand, we can sort them by calling Quick recur
sively, first to sort the left section, then to sort the right section.

All that remains is to write a "driver" called Quicksort, which just calls Quick
with the entire initial array as input. In Figure 14.10, you can see the various phases of
the process as applied to a 10-element array.

The entire procedure is shown in Programs 14.13 and 14.14.

Program 14.13 Specification for Quick Sort

GENERIC

TYPE KeyType IS PRIVATE;

TYPE ElementType IS PRIVATE;

TYPE IndexType IS RANGE <>; -- integer subscripts
TYPE ListType IS ARRAY (IndexType RANGE <>) OF ElementType;
WITH FUNCTION KeyOf (Element: ElementType) RETURN KeyType IS <>;
WITH FUNCTION "<" (Left, Right: KeyType) RETURN Boolean IS <>;
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PROCEDURE Sort_Quick_Generic(List: IN OUT ListType);

— I Pre: The procedure has been instantiated and List is defined
— I Post: The contents of List are in order defined by "<"
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

Program 14.14 Body of Quick Sort

WITH Swap_Generic;

PROCEDURE Sort_Quick_Generic(List: IN OUT ListType) IS

— I Body of generic Quick Sort Procedure
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

— main procedure, which calls recursive procedure
-- Quick to do the sorting.

PROCEDURE Exchange IS NEW Swap_Generic (ValueType => ElementType);

FUNCTION "<="(Left, Right: KeyType) RETURN Boolean IS
BEGIN

RETURN (Left < Right) OR (Left = Right);
END

PROCEDURE Partition (List : IN OUT ListType;
Pivlndex : OUT IndexType) IS

— Partitions the array slice List with bounds List'First and
— List'Last into two subarrays.
— Pre : List is defined euid T'First <= T'Last.
— Post: Pivlndex is defined such that all values less than or equal

to List(Pivlndex) have subscripts < Pivlndex; all values
greater than List (Pivlndex) have sijbscripts > Pivlndex.

Pivot : ElementType; — the pivot value
Up ; IndexType; — pointer to values > Pivot
Down : IndexType; — pointer to values <= Pivot

BEGIN — Partition

Pivot := List(List'First); — define leftmost element as the pivot

— Find and exchange values that are out of place.
Up := List'First; — set Up to point to leftmost element
Down := List'Last; — set Down to point to rightmost element

LOOP

— Move Up to the next value larger than Pivot.
WHILE (KeyOf(List(Up)) <= KeyOf(Pivot)) AND (Up < List'Last) LOOP
Up := Up + 1;

END LOOP;

— assertion: List(Up) > Pivot or Up is equal to List'Last

-- Move Down to the next value less than or equal to Pivot.
WHILE (KeyOf(Pivot) < KeyOf(List(Down)))
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AND (Dovm > List'First) LOOP

Down := Down - 1;

END LOOP;

-- assertion: List(Down) <= Pivot

— Exchange out of order values.
IF Up < Down THEN

Exchange (List(Up), List(Down));
END IF;

EXIT WHEN Up >= Down; -- until Up meets or passes Down
END LOOP;

— Assertion: values <= Pivot have subscripts <= Down and
values > Pivot have subscripts > Down

— Put pivot value where it belongs and define Pivlndex.
Exchamge (List(List'First), List(Down));
Pivlndex := Down;

END Partition;

PROCEDURE Quick(List: IN OUT ListType) IS
-- Recursive procedure to sort the array slice List with
-- bounds List"First and List'Last.

— Pre : array List is defined and List"First <= List'Last
— Post: List is sorted.

Pivlndex : IndexType; — subscript of pivot value
— returned by Partition

BEGIN -- Quick

IF List'First < List'Last THEN

— Split into two subarrays separated by value at Pivlndex
Partition (List, Pivlndex);
— sort the two subarrays

IF Pivlndex > List'First THEN

Quick (List(List'First. .Pivlndex - 1));
END IF;

IF Pivlndex < List'Last THEN

Quick (List(Pivlndex + 1. .List'Last));
END IF;

END IF;

Put(List);

END Quick;

BEGIN — Sort_Quick_Generic

Quick(List => List);

END Sort_Quick_Generic;

Quick Sort performs, for the average case, in 0(N log N) time. Interestingly, its
worst case, which approaches 0{N^X occurs when the original array is already sorted.
In that situation, every attempt to partition the array results in a left subairay of length
1 and all the rest of the elements in the right subarray.

In practical applications of Quick Sort, to save some of the overhead of recursive
calls, the recursive procedure is not called for small subarrays, say, of four or less.
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Instead, a simple AP sort such as linear insertion is used to sort these. We leave it as an
exercise to implement quick sort in this fashion.

14.9 OTHER SORTS: SHELL SORT

The quite popular Shell sort (named for its inventor, D. Shell) can be viewed as a modi
fication of either the bubble sort or the linear insertion sort. In both of these sorts, an ele
ment moves toward its proper place only one "slot" at a time. The distance each element
moves determines the overall running time; Shell sort tries to reduce this time by first
putting the array in rough order. The algorithm does this by comparing elements that are
separated from each other rather than immediately adjacent ones. This is done by choos
ing a distance and sorting subfiles, each of which is made up of elements separated from
each other by that distance. For instance, suppose the distance—call it d—is 3 and the
total length of the array is 15. Then, as in the second colunm of Figure 14.11, we first use
linearinsertiontosortthesubarray {A(l) , A(4) , A(7) , A{10), A(13)},then
the subarray {A(2) , A(5) , A(8), A(ll), A(14) }, followed by {A(3),
A(6), A(9), A(12), A (15)}. This constitutes one phase.

Having put all these subarrays in mutual order—which moves small elements
nearer the top and large elements nearer the bottom in larger steps than normal linear
insertion—we reduce the distance. Each phase reduces the distance until, eventually,
d=\ and we sort the entire array by a final phase of linear insertion. By now each ele
ment needs to move only a very short distance to reach its home.

There is no general agreement in the literature on how best to choose the distances.
Shell originally chose di=: N/2 and dk+\ = dk/2 (integer division, of course!). Other authors
advocate choosing a set of mutually prime distances. For simplicity, we choose the for-
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Figure 14.11 Shell Sort
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mer method. Programs 14.15 and 14.16 show the generic procedure. Note in the body that
the algorithm for each phase (each value of Di stance) is very similar to linear insertion.

Program 14.15 Specification for Shell Sort

GENERIC

TYPE KeyType IS PRIVATE;

TYPE ElementType IS PRIVATE;

TYPE IndexType IS RANGE <>; — integer subscripts
TYPE ListType IS ARRAY (IndexType RANGE <>) OF ElementType;
WITH FUNCTION KeyOf (Element: ElementType) RETURN KeyType IS <>;
WITH FUNCTION "<" (Left, Right: KeyType) RETURN Boolean IS <>;

PROCEDURE Sort_Shell_Generic(List: IN OUT ListType);

— I Pre: The procedure has been instcuitiated and List is defined
— I Post: The contents of List are in order defined by "<"
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

Program 14.16 Body of Shell Sort

WITH Swap_Generic;
PROCEDURE Sort_Shell_Generic(List: IN OUT ListType) IS

— I Body of generic Shell Sort
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

PROCEDURE Exchange IS NEW Swap_Generic(ValueType => ElementType);

NewArrival: ElementType;

Top: IndexType := List'First;
Bottom: IndexType := List'Last;
Position: IndexType;

Distance: IndexType;
IntegerDistance: Integer;

BEGIN

IntegerDistance := Integer(Bottom/2);
vmiLE IntegerDistance > 0 LOOP

Distance := IndexType(IntegerDistance);

FOR CurrentBottom IN Top+Distance. .Bottom LOOP
Position := CurrentBottom;

WHILE Position >= Top + Distance AND THEN
KeyOf(List(Position)) < KeyOf(List(Position - Distance)) LOOP

Exchange(List(Position), List(Position - Distance));
Position := Position - Distance;

END LOOP;

END LOOP;
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IntegerDistance := IntegerDistance / 2;

END LOOP;

END Sort_Shell_Generic;

The performance of the Shell sort is in the neighborhood of 0{N ̂N)-, the analysis
is beyond the scope of this book.

14.10 OTHER SORTS: QUADRATIC SELECTION
SORT

An interesting sort algorithm trades a penalty in space for a payoff in running time,
where the running time is 0{N^). Let VFbe denoted by M. The unsorted array is
divided up into segments of M (rounded up to the nearest integer, of course) and copied
into a square M-by-M array. Call this array A'. The algorithm then proceeds as follows:

Quadratic Selection Sort:

1. By comparing and swapping as in the delayed selection sort, get the smallest
element in each row of A' into the first position of that row.

2. Find the smallest element in the first column of A', then output it to the sorted
array.

3. Replace that element in A' with the smallest element in the row from which it
came, then "compress" the row by replacing the element just removed with the
current last element in the row.

4. Continue the process until all rows are empty. The original array is then sorted.

An example of this algorithm in action is shown in Figure 14.12; writing a proce
dure for it is suggested as an exercise.

What is the running time of quadratic selection? Since when we first create A\ each
row has at most M elements, and there are M rows, initializing the first column as in
step 1 takes at most M x M — N operations. Step 2 takes M —\ opierations; step 3 takes
a variable number, but surely no more than Af- 1. But we carry out steps 2 and 3 once
for each element in the original array, or N times. So we have the sum of an 0{N) term
and an 0{]N x M) term; for nontrivial N the second term dominates, and thus the over
all algorithm is 0{N xM) = 0{N x ).

14.11 OTHER SORTS: RADIX SORT

This sort is probably best explained in terms of electromechanical punched-card sort
ing machines. These machines were widely used during the 1930s, 1940s, and 1950s,
before computers became widespread; their popularity declined through the 1960s
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26 5 37 1 61 11 59 15 48 19

(a) Orginal unsorted array

-3

26 61 48 7

5 11 19

37 59 0

1 15 -3

7 61 48 26

5 11 19

0 59 37

-3 15 1

(b) Initial square array made from the
array above.

(c) Row minima located and placed at
heads of rows.

7 61 48 26

5 11 19

0 59 37

1 15

7 61 48 26

5 11 19

37 59

1 15

7 61 48 26

5 11 19

37 59

1 15

Result Array -3 -3 0

(d) A few steps of the algorithm (the reader can complete it).

Figure 14.12 Quadratic Selection Sort

-3 0 1

and 1970s, and they are hardly to be found anymore. The author recalls having to
operate such a machine for several consecutive weeks as part of a summer job he held

in 1965.

A punched card, as you probably know, has 80 data positions or columns, each with
12 rows. Ten of these rows are numbered 0 through 9. Each position can hold one char
acter of data. If we assume for simplicity that all the data is numeric, then each charac
ter is one of the digits 0 through 9, and a digit in a given column is encoded by a single
punch in the appropriate row of that column. A numerical value—a sequence of
numeric digits—is encoded by a single punch in each of several consecutive columns.
Figure 14.13 shows a section of a punched card with a six-digit number punched into it
in positions 5 through 10.

The card sorter has 13 bins or pockets, each capable of holding several hundred

cards, and an equally large input hopper. The machine operates on one column at a time.
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Figure 14.13 A Punched Card

The operator sets an indicator to the desired column, loads the input hopper with a face
up stack of cards, then presses the start button. The machine, with much noise and furi
ous movement of cards, places each card in the bin corresponding to the row in which a
punch appears in the chosen column. The thirteenth bin collects those cards with no
punch at all in the chosen column. Figure 14.14 shows a diagram of the machine.

How is such a machine used to sort a deck of cards on an entire key? The deck
must be run through the card sorter once for each digit of the key! Here is a sketch of
an algorithm:

Card Sorter Algorithm:

1. Set column indicator to rightmost (low-order) column of key to be sorted.

2. Place deck, face up, in input hopper.

3. Start sorter; wait until input hopper is empty (the machine stops by itself).

4. Remove the decks of cards from each bin, making one deck with the contents of
bin 0 on top and the contents of bin 9 on the bottom.

5. If all columns have not yet been processed, move column indicator one position
to the left and repeat steps 2 through 5.

In Figure 14.15, we illustrate this sort for an eight-card deck to be sorted on a three-
digit key. Be sure you understand why the sort must begin with the rightmost digit and
move to the left, and why it won't work the other way around.
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Figure 14.14 Electromechanical Punched-Card Sorter

This sort algorithm can be adapted to operate on a computer, and works rather well
if we realize that the keys are represented as binary sequences (like everything else on
most computers!). If the keys are unsigned binary integers, or character strings, we can
just treat Ae keys as bit sequences. We just use two "bins," generally anays, and sort
bit by bit, from the rightmost bit to the leftmost. This sort is called radix sort because
the number of bins is determined by the radix, or base, of the digits being sorted.

What is the performance of this algorithm? The number of passes is determined,
clearly, by the number of bits in the key. For a fixed-size key, the number of passes is
fixed. Each pass examines each record exactly once, so the total number of operations is
a constant (the number of passes) times the number of records {N)\ in other words, this
sort has growth rate 0{N). It is not very widely used because of the extra space required
for the bins and because the usually large number of passes means that the 0{N) growth
rate may well be dominated by the very large constant of proportionality.

SUMMARY

In this chapter, you have seen a number of sorting methods, along with performance
estimation discussions. You should be equipped to make a sensible choice of a method
for whatever sorting problem faces you.

Clearly, if you only need to sort a small list, the best method is the one that's easi
est for you to write, since in that case your time is more expensive than the computer's.
On the other hand, if you have a large list to sort, particularly as part of an application
that will be run frequently, it pays to think the problem through and choose wisely,
because the computer time used in the sort will no longer be negligible.
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Figure 14.15 Radix Sort

EXERCISES

1. Examine the bubble sort procedure presented in Section 14.4. Define trip length
as the number of upward moves an element in the array must make on its way to
its final position. Show that the number of passes required by the bubble sort algo
rithm depends on the maximum of all the trip lengths in the array.
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2. In the bubble sort algorithm of Section 14.4, we begin at the top of the array and
move elements downward. Write a procedure for a bubble sort in which we start
at the bottom of the array and move elements upward.

3. In the modified bubble sort often called shaker sort, we run successive passes
alternately in the upward and downward directions. Write a procedure for this
sort. Why does this method sometimes offer improved performance?

4. Calculate the number of passes in the merge sort when the number of elements in
the array is not exactly a power of 2.

5. Write a modified merge sort procedure in which it is not necessary to recopy the
array after each pass. Hint: Do this by "switching" alternately the input and out
put arrays.

6. Modify the quick sort procedure of Section 14.8 so that a simple sort such as lin
ear insertion is used to sort subarrays of length 4 or less.

7. Write a procedure implementing the quadratic selection sort of Section 14.10.
8. Write a procedure implementing a decimal radix sort, assuming that the keys are

all the same length and are represented as strings of digits.
9. Write a procedure implementing a binary radix sort, as suggested in Section

14.11. Note that since only two bins are required, only one additional array is
needed because the array can be filled from both ends: all "0" elements inserted
from the top of the array, all "1" elements from the bottom.

10. Design an experiment to do some measurements on a group of sort algorithms.
Use a version of CPUClock (Programs 3.17 through 3.19) appropriate for your
computer. Test the various sort procedures on arrays of length 4 to length 1024,
doubling the array size each time (i.e., 4, 8, 16,..., 1024). Try best, worst, and
random cases. How do the actual running times compare with the theoretical ones
predicted by "big O" analysis?
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Introduction to Concurrent

Programming

15.1 What Is Concurrent Programming?

15.2 Ada Structures: Task Types and Task Objects

15.3 Ada Structures: Protected Types and Protected Objects

15.4 Data Structures: The Task as a Data Structure

15.5 Application: Simulation of a Bank

15.6 Application: The Djning Philosophers

Each program we have seen so far has been a sequential, or single-threaded, one; that
is, it has consisted of a series of steps that are executed in sequence, one after the other.
In this chapter, we introduce the idea of a concurrent, or multithreaded, program, one in
which several things can happen—or at least appear to happen—^simultaneously.

Concurrent actions are really part of most interesting programs. For example, a
time-shared operating system must deal with a number of human users working
simultaneously at their terminals. Further, many real-time applications, especially
those controlling physical processes, are composed of concurrent program seg
ments, each responsible for its own physical subsystem. Finally, the world is con
current, filled with people doing different things all at the same time, and a
program that would model that world is best seen as comprising concurrent pro
gram segments.

This chapter introduces you to the fascinating field of concurrent programming,
which is the writing of concurrent programs. Ada provides an especially rich and inter
esting set of structures for concurrent programming; this chapter presents some of these
structures. In particular, we introduce Ada task types and protected types. A task object
is an active program, carrying on its activities independently of other tasks and interact
ing with others only when necessary. A protected object is passive; its purpose is to
encapsulate a data structure and provide services to tasks on request, allowing many
tasks to view the structure simultaneously but authorizing only one task at a time to
modify the structure.

538
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15.1 WHAT IS CONCURRENT PROGRAMMING?

Much of the programming world involves concurrent applications. Here are some
examples from operating systems, real-time systems, and simulation.

Operating Systems

When you and your colleagues all log in at terminals connected to the same time-shar
ing system, each of you works separately, but you are all using the same computer.
Each of you has the feeling that the computer is working only on your task, yet many of
you are working simultaneously. How is this seeming paradox possible?

The illusion that you are alone on the time-shared computer is caused by a combi
nation of fast computers and clever programming. Suppose you are using the computer
to edit a program or read electronic mail. You read and type at human speed. A very fast
typist can enter 100 words per minute, or—at an average of six characters per word^—
about 10 characters per second. In the tenth of a second between two of your key
strokes, a modern computer can execute hundreds of thousands of machine
instructions. If those "extra" machine instructions could be put to productive use, the
computer would have plenty of time between your keystrokes to service other human
users. It is not unusual for a modem time-shared computer to handle 100 or more simul
taneous users, each working at human speed.

Managing all those instmctions and users is part of the responsibility of a modem
operating system. An operating system is, as you know by now, just a sophisticated pro
gram; in fact, it is a concurrent program, capable of managing many devices and human
users to give the illusion of simultaneity.

Some time-shared computers consist of a single CPU; others consist of a set of
identical CPUs. With more than one CPU, programs can be executed in parallel—that
is, literally at the same time. With a single CPU, no real parallel execution is possible,
but that one CPU can be shared in such a way that many programs seem to be execut
ing in parallel. Concurrent programming is the creation of programs that consist of seg
ments that have the potential for parallel execution; depending upon the actual number
of CPUs available, execution of a concurrent program may be literally parallel, entirely
time-shared, or some combination of the two.

Real-Time Systems

Many computer systems exist to control physical systems of one kind or another.
Examples abound in medical technology, manufacturing and robotics, and trans
portation. In the latter domain, real-time computer programs control modem auto
motive fuel systems, aircraft such as the Boeing 777, and railroads such as the
Channel Tunnel between France and England and the subway system in
Washington, DC. These are, of necessity, concurrent programs: They must manage
a number of electronic devices simultaneously; these devices, in turn, are connected
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to physical machines such as an automobile's fuel injection system or a railroad's
"turnout" (a movable section of track that allows a train to enter one or the other of
two rail lines).

Modeling and Simulation

Concurrent programnung is useful in modeling or simulating physical systems, even if
those systems are not directly controlled by a computer. For example, the waiting and
service times in a bank, supermarket, or other service organization can be studied by
writing a program in which each customer and each server—bank teller, supermarket
checker, airline reservation clerk—^is represented by its own program segment, which
interacts with the other segments.

Similarly, a subway system can be modeled by a program in which each train, sta
tion, turnout, and block (section of track that is permitted to hold at most one train) is
represented by a program segment. The flow of simulated customers in the bank, or of
simulated trains in the subway, can be controlled or varied at will.

Simulation is an important tool in optimizing physical systems—for example,
choosing the most effective number of open checkout lines in a supermarket or the fre
quency and maximum speed of trains in a subway. Studying the computer model pro
vides information and insight into the behavior of the physical system if the former is a
faithful representation of the latter; concurrent programming provides a natural way of
assigning program segments to represent physical objects and therefore aids greatly in
developing good simulations.

Ada is one of only a few programming languages—and the only popular one—to
provide built-in structures for concurrent programming. In this chapter, we use a series
of examples to present a few of the basic Ada structures and end with two simulations:
one of a bank and the other of a group of philosophers in a Chinese restaurant.

Ada Structures for Concurrent Programming

In concurrent programming, an execution of a program segment is called a process. For
example, when, logged into a time-sharing system, you invoke the electronic mail pro
gram, a process is created. The mail program itself is just a file on disk; when it is
loaded into memory and executed, that execution is a process. If you and several friends
all log in at the same time and invoke the e-mail program, several copies of that pro
gram are executing simultaneously on the same computer. One program has given rise
to multiple simultaneous processes. Ada's term for process is task\ Ada provides task
types to allow the creation of multiple processes, which Ada calls task objects, result
ing from a single program declaration.

Generally, your incoming e-mail is stored in a system file called the electronic
mailbox, or just the mailbox. Suppose you are reading your mail when a friend sends
you a message. The new message must be added to your mailbox file; your reading
must be momentarily suspended while the file is modified (you may not notice the
temporary suspension, but it happens anyway). Now suppose that two incoming
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messages arrive at the same time. Not only must your reading be suspended, but
something in the mail software must update your mailbox one message at a time. If
this protection were not provided—if two messages could update the mailbox liter
ally at the same time—the mailbox would become hopelessly garbled and therefore
useless.

The e-mail situation is an example of a readers-writers problem^ a category of
computing problems in which multiple readers of, and multiple writers to, a data struc
ture must be prevented from interfering with one another. The prevention technique is
called mutual exclusion', update actions on the data stmcture are handled one at a time
while other actions are excluded. Ada's protected types provide mutual exclusion; we
can declare a protected type, and variables of that type, with read operations (called
protected Junctions) and update operations {protected procedures), which Ada guaran
tees it will execute correctly. Specifically, multiple calls to a protected procedure are
executed one at a time.

Section 15.2 introduces task types and task objects; Section 15.3 introduces pro
tected types and protected objects.

15.2 ADA STRUCTURES: TASK TYPES AND TASK
OBJECTS

An Ada task is an interesting structure. It has aspects of a package, of a procedure, and
of a data structure, but is really none of these; it is something different altogether:

• Like a package, a task has a specification and a body. Unlike a package, it must
be declared in an enclosing structure, not put in a separate file and compiled
separately.

• Like a procedure, a task has a declaration section and a sequence of executable state
ments. However, it is not called like a procedure; rather, it starts executing implic
itly, automatically, as part of its enclosing block.

• Like a data structure, it has a type and is brought into existence by declaring a vari
able of the type. Indeed, like a variant record, it can have one or more discriminants.

Program 15.1 illustrates these aspects of tasks.

Program 15.1 A Task within a Main Program

WITH Ada.Text_IO;
PROCEDURE One_Task IS

— I Show the declaration of a simple task type and one
— 1 variable of that type.
—j Author: Michael B. Feldman, The George Washington University

Last Modified: December 1995
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— A task type has a specification
TASK TYPE SimpleTask (Message: Character);

— A task type has a body
TASK BODY SimpleTask IS

BEGIN — SimpleTask

FOR Count IN 1..10 LOOP

Ada.Text_IO.Put(Item => "Hello from Task " & Message);
Ada.Text_IO.New_Line;

END LOOP;

END SimpleTask;

Task_A: SimpleTask(Message => 'A');

BEGIN — One_Task

— Unlike procedures, tasks are not "called" but are activated
— automatically.

— Task_A will start executing as soon as control reaches this
-- point, just after the BEGIN but before any of the main program's
— statements are executed.

NULL;

END One_Task;

A sample run of this program would look like this:

Hello from Task A

Hello from Task A

Hello from Task A

Hello from Task A

Hello from Task A

Hello from Task A

Hello from Task A

Hello from Task A

Hello from Task A

Hello from Task A

First note the overall structure of the program. A task type, SimpleTask, is
declared with a discriminant. Message. This task specification is followed by a task
body in which the message is displayed 10 times. Next, Task_A is declared as a task
variable, usually called a task object, with a discriminant value of ' A'.

Reaching the main BEGIN of this program, we discover that the program has no
executable statements, just a NULL statement to satisfy the rule that a procedure must
have at least one statement. Yet the sample run shows the task actually displaying
Hello from Task A 10 times. The task was never called from the main program,
but it executed anyway.

In fact, the task began its execution just after the main BEGIN was reached.
In Ada, this is called "task activation": All tasks declared in a given block are
activated just after the BEGIN of that block. Here, there is only one task,
Task A.
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Multiple Task Objects of the Same Type

Program 15,2 shows the declaration of two task objects, Task_A and Task_B.
Further, the task type is modified to allow two discriminants, the message and the num
ber of times the message is to be displayed. Here, a discriminant acts like a parameter
of the task, but it is not a fully general parameter; like a variant-record discriminant, it
must be of a discrete—integer or enumeration—^type. A string, for example, cannot be
used as a task discrinninant.

Program 15.2 Two Tasks within a Main Program

WITH Ada.Text_IO;
PROCEDURE Two_Tasks IS

— I Show the declaration of a simple task type and two
— I variables of that type.
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: December 1995

— A task type has a specification
TASK TYPE SimpleTask (Message: Character; HowMany: Positive);

— A task type has a body
TASK BODY SimpleTask IS

BEGIN — SimpleTask

FOR Count IN 1..HowMany LOOP
Ada.Text_IO.Put(Item => "Hello from Task " & Message);
Ada.Text_IO.New_Line;

END LOOP;

END SimpleTask;

— Now we declare two variables of the type
Task_A: SimpleTask(Message => 'A', HowMany => 5);
Task_B: SimpleTask(Message => 'B', HowMany => 7);

BEGIN — Two_Tasks

— Task_A and Task_B will both start executing as soon as control
— reaches this point, again before any of the main program's
— statements are executed. The Ada standard does not specify
— which task will start first,

NULL;

END Two_Tasks;

This time, the program execution might look like this:

Hello from Task B

Hello from Task B

Hello from Task B

Hello from Task B

Hello from Task B

Hello from Task B

Hello from Task B
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Hello from Task A

Hello from Task A

Hello from Task A

Hello from Task A

Hello from Task A

As in Program 15.1, Task_A and Task_B are activated just after the main
BEGIN. Now there are two tasks. In which order are they activated? The Ada standard
does not specify this, leaving it up to the compiler implementer instead. In a short
while, we will see how to control the order in which tasks start their work.

Looking at the sample run from Program 15.2, we see that Task_B evidently
started—and completed—^its work before Task_A even started its own work. This tells
us first that the compiler we used activated Task_B first, and also that, once scheduled
for the CPU, Task_B was allowed to continue executing until it completed its run.
This seems odd: The tasks do not really execute as though they were running in paral
lel; there is, apparently, no time-sharing. If there were, we would expect Task_A and
Task_B output to be interleaved in some fashion.

In fact, the Ada standard allows, but does not require, time-slicing. Time-slic
ing, implemented in the run-time support software, supports "parallel" execution
by giving each task a slice, usually called a quantum, which is a certain amount of
time on the CPU. At the end of the quantum, the run-time system steps in and
gives the CPU to another task, allowing it a quantum, and so on, in "round-robin"
fashion.

Cooperating Tasks

If Program 15.2 were compiled for a computer with several processors, in theory
Task_A and Task_B could have been executed—truly in parallel—on separate
CPUs, and no time-slicing would be needed. With a single CPU, we'd like to emulate
the parallel operation, ensuring concurrent execution of a set of tasks even if the Ada
run-time system does not time-slice.

To get "parallel" behavior portably, using one CPU or many, with or without time-
slicing, we code the tasks in a style called cooperative multitasking', that is, we design
each task so that it periodically "goes to sleep," giving up its turn on the CPU so that
another task can execute for a while.

Program 15.3 shows how this is done, using a DELAY statement in each iteration of
the task body's FOR loop. The DELAY causes the task to suspend its execution, or
"sleep." Now while Task_A is "sleeping," Task_B can be executing, and so on. The
cooperating nature of the two tasks is easily seen in the sample output.

Program 15.3 Using delay to Achieve Cooperation

WITH Ada.Text_IO;

PROCEDURE Two_Cooperating_Tasks IS

— I Show the declaration of a simple task type and two
~| variables of that type. The tasks use DELAYs to cooperate.
— I The DELAY causes another task to get a turn in the CPU.
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--| Author: Michael B. Feldman, The George Washington University
— I Last Modified: December 1995

— A task type has a specification
TASK TYPE SimpleTask (Message: Character; HowMany: Positive);

— A task type has a body

TASK BODY SimpleTask IS

BEGIN — SimpleTask

FOR Count IN 1..HowMany LOOP
Ada.Text_IO.Put(Item => "Hello from Task " & Message);

Ada.Text_IO.New_Line;

DELAY 0.1; -- lets another task have the CPU

END LOOP;

END SimpleTask;

-- Now we declare two variables of the type
Task_A: SimpleTask(Message => 'A', HowMany => 5);
Task_B: SimpleTask(Message => 'B', HowMemy => 7);

BEGIN — Two_Cooperating_Tasks

— Task_A and Task_B will both start executing as soon as control
-- reaches this point, again before any of the main program's
— statements are executed. The Ada standard does not specify
— which task will start first.

NULL;

END Two_Cooperating_Tasks;

This time, the execution output is interleaved.

Hello from Task B

Hello from Task A

Hello from Task B

Hello from Task A

Hello from Task B

Hello from Task A

Hello from Task B

Hello from Task A

Hello from Task B

Hello from Task A

Hello from Task B

Hello from Task B

Controlling the Starting Order of Tasks

We know that the Ada standard does not specify an order of activation for multi
ple tasks in the same program. Each compiler can use a different order; indeed, a
compiler is—theoretically—free to use a different starting order each time the
program is run, though practical compilers rarely, if ever, take advantage of this
freedom.
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Although we cannot control the actual activation order of tasks, we can gain con
trol of the order in which these tasks start to do their work by using a so-called "start
button." This is a special case of a task entry, which is a point in a task at which it can
synchronize with other tasks. This is illustrated in Program 15.4.

Program 15.4 Using "Start Buttons" to Control Tasks' Starting Order

WITH Ada.Text_I0;

PROCEDURE Start_Buttons IS

Show the declaration of a simple task type and three
variables of that type. The tasks use DELAYs to cooperate.
"Start button" entries are used to to control starting order.
Author: Michael B. Feldman, The George Washington University
Last Modified: December 1995

TASK TYPE SimpleTask (Message: Character; HowMany: Positive) IS

-- This specification provides a "start button" entry.
ENTRY StartRunning;

END SimpleTask;

TASK BODY SimpleTask IS

BEGIN — SimpleTask

— The task will "block" at the ACCEPT, waiting for the "button'
-- to be "pushed" (called from another task. Main in this case).
ACCEPT StartR\inning;

FOR Count IN 1..HowMany LOOP

Ada.Text_IO.Put(Item => "Hello from Task " & Message);
Ada.Text_IO.New_Line;

DELAY 0.1; — lets another task have the CPU
END LOOP;

END SimpleTask;

— Now we declare three variables of the type
Task_A: SimpleTask(Message => 'A', HowMany => 5)
Task_B: SimpleTask(Message => 'B', HowMany => 7)
Task_C: SimpleTask (Message => 'C, HowMany => 4)

BEGIN — Start_Buttons

— Tasks will all start executing as soon as control
— reaches this point, but each will block on its ACCEPT
— until the entry is called. In this way we control the starting
— order of the tasks.

Task_B.StartRunning;
Task_A.StartRunning;
Tas)c^C. StartRunning;

END Start_Buttons;
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The execution output is

Hello from Task B

Hello from Task A

Hello from Task C

Hello from Task B

Hello from Task A

Hello from Task C

Hello from Task B

Hello from Task A

Hello from Task C

Hello from Task B

Hello from Task A

Hello from Task C

Hello from Task B

Hello from Task A

Hello from Task B

Hello from Task B

In this program, the task specification is expanded to include an entry specification:

ENTRY StartRunning;

This is, syntactically, similar to the subprogram speciHcations that usually appear in
package specifications. The task body includes, immediately after its BEGIN, the cor
responding line

ACCEPT StartRunning;

According to the rules of Ada, a SimpleTask object, upon reaching an ACCEPT
statement, must wait at that statement until the corresponding entry is called by another
task. In Program 15.4, then, each task—^Task_A, Task_B, and Task_C—is
activated just after the main program's BEGIN, but—^before it starts any work—each
reaches its respective ACCEPT and must wait there (in this simple case, possibly for
ever) until the entry is called.

How is the entry called? In our first three examples, the main program had nothing
to do. In this case, its job is to "press the start buttons" of the three tasks, with the entry
call statements

Task_B.StartRunning;
Task_J^. Star tRtinning;
Task_C.StartRunning;

These statements are syntactically similar to procedure calls. The first statement
"presses the start button" of Task_B. Since Task_B was waiting for the button to be
pressed, it accepts the call and proceeds with its work.

The main program is apparently executing—in this case, pressing the start but
tons—^"in parallel" with the three tasks. In fact, this is true. In a program with multiple
tasks, the Ada run-time system treats the main program as a task as well.

A task body can contain code that is much more interesting than what we have seen.
Ada provides the SELECT statement to give a programmer much flexibility in coding
task bodies. For example, using the SELECT,

• The ACCEPT statement can be written to "time out" if a call is not received within a

given time interval.
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• The task can be made to terminate—end its execution—if the call is never received.

• The task specification can provide a number of entries and its body can be made to
respond to whichever of a set of different entry calls occurs first, then loop around
and respond again.

The SELECT construct is one of the most interesting in all of programming. We
will return to it a bit later, in Section 15.4, when we introduce a bank simulation.

In this section, we have seen the basics of task types and objects. We will now
introduce protected types and objects.

15.3 ADA STRUCTURES: PROTECTED TYPES
AND PROTECTED OBJECTS

In Section 15.1, we discussed mutual exclusion, using the example of an e-mail reader.
Here we look at an analogous, but simpler, situation. Suppose we have a three-task pro
gram like Program 15.4, but we want each task to write its output in its own area of the
screen. The desired output is

Hello from Task A Hello from Task B Hello from Task C
Hello from Task A Hello from Task B Hello from Task C
Hello from Task A Hello from Task B Hello from Task C
Hello from Task A Hello from Task B Hello from Task C
Hello from Task A Hello from Task B

Hello from Task B

Hello from Task B

This simple example is representative of multiwindow programs. We modify the
task specification to read

TASK TYPE SimpleTask (Message: Character;
HowMany: Screen.Depth;
Column : Screen.Width) IS . . .

adding a third discriminant, Column, to indicate which screen column each task should
use for the first character of its repeated message. Further, we modify the main loop of
the task body as follows:

FOR Count IN 1..HowMany LOOP

Screen.MoveCursor(Row => Count, Column => Column);
Ada.Text_IO.Put(Item => "Hello from Task " & Message);
DELAY 0.5; —lets another task have the CPU

END LOOP;

That is, the task positions the screen cursor in the proper column before writing the
message. Program 15.5 shows the full program.

Program 15.5 Several Tasks Using the Screen

WITH Ada.Text_IO;

WITH Screen;

PROCEDURE Columns IS
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— I Shows tasks writing into their respective columns on the
— I screen. This will not always work correctly, because if the
— I tasks are time-sliced, one task may lose the CPU before
— I sending its entire "message" to the screen. This may result
—j in strange "garbage" on the screen.
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: DecemMr 1995

TASK TYPE SimpleTask (Mes^ge: Character;
HowMwy: Screen. Depth;
Column : Screen.Width) IS

— This specification provides a "start button" entry.
ENTRY StartRunning;

END SimpleTask;

TASK BODY SimpleTask IS

BEGIN — SimpleTask

— Each task will write its message in its own column
ACCEPT StartRunning;

FOR Coxmt IN 1.. HowMany LOOP
Screen.MoveCursor(Row => Count, Coltunn => Column);
Ada.Text_IO.Put(Item => "Hello from Task " & Message);
DELAY 0.5; — lets another task have the CPU

END LOOP;

END SimpleTask;

— Now we declare three variables of the type

Task_A: SimpleTask (Message => 'A', HowMany => 5, Colvimn =>1);
Task_B: SimpleTask(Message => 'B', Hovrtlany => 7, Column => 26);
Task_C: SimpleTask (Message => 'C, HovMany => 4, Column => 51);

BEGIN — Columns

Screen.ClearScreen;

Task_B,StartRunning;
Task^. StartRunning;
Taslc^C. StartRunning;

END Columns;

Here is the execution output:

Hello from Task A Hello from Task B Hello from Task C
2Hello from Task C;

26f(2;lfHello

from Task AHello from Task B [[3;lfHello from Task A3;
26fHello

from Task BHello from Task C4;4;IfHello from Task A51fHello from Task
C26fHello

from Task B5;526;flfHello from Task BHello from Task A
Hello from Task B

Hello from Task B

The output from running this program is not exactly what we intended! Instead of
the desired neat columns, we got messages displayed in seemingly random locations,
interspersed with apparent "garbage" like

C;26f[2;lf
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What happened here? To understand this, recall the body of Screen.Move
Cursor (Program 2.16):

PROCEDURE MoveCursor (Column : Width; Row : Depth) IS
BEGIN

Ada.Text_I0.Put (Item => ASCII.ESC);
Ada.Text_I0.Put ("[");

Ada.Integer_Text_IO.Put (Item => Row, Width => 1);
Ada.Text_I0.Put (Item => ';');
Ada.Integer_Text_IO.Put (Item => Column, Width => 1);
Ada.Text_I0.Put (Item => 'f');

END MoveCursor;

Positioning the cursor requires an instruction, up to eight characters in length,
to the ANSI terminal software: the ESC character, then • [', followed by a possi
bly two-digit Row, then ' ; ', then a possibly two-digit Column value, and finally
' F'. Once it receives the entire instruction, the terminal actually moves the cursor
on the screen.

Suppose the MoveCursor call is issued from within a task, as in the present
example. Suppose further that in this case the Ada run-time system does provide time-
slicing to produce "parallel" behavior by multiple tasks. It is quite possible that the
task's quantum will expire after only some of the eight characters have been sent to
the terminal, and then another task will attempt to write something to the terminal. In
this case, the terminal never recognized the first instruction, because it received only
part of it, so instead of obeying the instruction, it just displays the characters. The
"garbage" string above, C; 26f [2; If, consists of pieces from several different
intended instructions.

This problem arose because a task was interrupted in mid-instruction and then
another task was allowed to begin its own screen instruction. This is called a race con
dition, because two tasks are, effectively, in a race to write to the screen, with unpre
dictable results. It is actually a readers-writers problem: Multiple tasks are interfering
with each other's attempts to write to the screen.

To prevent this problem from ruining our columnar output, we must protect the
screen so that—whether or not we have time-slicing—a task is allowed to finish an
entire display operation before another task can begin one. We do this in Ada with a pro
tected type, as shown in Program 15.6.

Program 15.6 Using a Protected Type to Ensure Completion of a Screen
Action

WITH Ada.Text_I0;
WITH Screen;

PROCEDURE Protect_Screen IS

— I Shows tasks writing into their respective columns on the
— I screen. This time we use a protected type, whose procedure
— I can be executed by only one task at a time.
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: December 1995
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PROTECTED TYPE ScreenManagerType IS

— If multiple calls of Write are made simultaneously, each is
— executed in its entirety before the next is begun.
— The Ada standard does not specify an order of execution.

PROCEDURE Write (Item: IN String;
Row: IN Screen.Depth;
Column: IN Screen.Width);

END ScreenManagerType;

PROTECTED BODY ScreenManagerType IS

PROCEDURE Write (Item: IN String;
Row: IN Screen.Depth;
Column: IN Screen.Width) IS

BEGIN — Write

Screen.MoveCursor(Row => Row, Column => Column);

Ada.Text_lO.Put(Item => Item);

END Write;

END ScreenManagerType;

Manager: ScreenManagerType;

TASK TYPE SimpleTaslc (Message: Character;
Hovdlany: Screen.Depth;

Column: Screen.Width) IS

— This specification provides a "start button" entry.
ENTRY StartRunning;

END SimpleTask;

TASK BODY SinpleTaslc IS

BEGIN — SimpleTaslc

— Each task will write its message in its own coliunn
— Now the task locks the screen before moving the cursor,
— unlocking it when writing is completed.

ACCEPT StartRunning;

FOR Count IN 1..HowMany LOOP

— No need to lock the screen explicitly; just call the
— protected procedure.
Manager.Write(Row => Coiuit, Column => Column,

Item => "Hello from Task " & Message);

DELAY 0.5; — lets another task have the CPU

END LOOP;

END SimpleTask;

— Now we declare three varicOsles of the type

Task_A: Sin^leTask(Message => 'A', Hov^any => 5, Column => 1);
Task_B: SimpleTask(Message => 'B', HowMany => 7, Column => 26);
Task_C: SimpleTask (Message => 'C, HowMany => 4, Column => 51);
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BEGIN — Protect_Screen

Screen.ClearScreen;

Task_B.StartRunning;
Task_A.StartRunning;
Task_C.StartRunning;

END Protect_Screen;

In this program, we declare a type

PROTECTED TYPE ScreenManagerType IS

PROCEDURE Write (Item: IN String;
Row: IN Screen.Depth;

Column: IN Screen.Width);

END ScreenManagerType;

Manager: ScreenManagerType;

An object of this type—in this case. Manager—^provides a procedure Write to
which all the parameters of the desired screen operation are passed: the string to be
written, the row, and the colunm. Any task wishing to write to the screen must do so by
passing these parameters to the screen manager. The SimpleTask body now contains
the call

Manager.Write(Row => Count, Column => Column,
Item => "Hello from Task " & Message);

as required. The body of the protected type is

PROTECTED BODY ScreenManagerType IS

PROCEDURE Write (Item: IN String;
Row: IN Screen.Depth;
Column: IN Screen.Width) IS

BEGIN — Write

Screen.MoveCursor(Row => Row, Column => Column);
Ada.Text_IO.Put(Item => Item);

END Write;

END ScreenManagerType;

and the Write procedure encapsulates the MoveCursor and Put operations. Write
is B. protected procedure.

What is the difference between this protected write procedure and an ordinary
procedure? Ada guarantees that each call of a protected procedure will complete
before another call can be started. Even if several tasks are running, trading control
of the CPU among them, a task will not be allowed to start a protected procedure call
if another call of the same procedure, or any other procedure of the same protected
object, is still incomplete. In our case, this provides the necessary mutual exclusion
for the screen.
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Protected types can provide functions and entries in addition to procedures.
Protected functions allow multiple tasks to examine a data structure simultaneously but
not to modify the data structure. Protected entries have some of the properties of both
task entries and protected procedures. A detailed discussion of these is beyond our
scope here.

15.4 DATA STRUCTURES: THE TASK AS A DATA
STRUCTURE

We mentioned earlier in this chapter that a task has characteristics resembling those of
a procedure, of a package, and of a data structure. We have seen examples of the first
two; we will now consider the third.

So far, we have declared task types and task variables. In Program 15.7, we declare
an array of tasks, with the declaration

Family: ARRAY (1..3) OF SimpleTask;

Program 15.7 Creating an Array of Tasks

WITH Ada.Text_IO;

WITH Screen;

PROCEDURE Task_Array IS

Shows tasks writing into their respective columns on the
screen. This time we use a protected type, whose procedure
can be executed by only one task at a time.
The task objects are stored in an array, auid receive their
configuration parameters through "start buttons" rather than
discriminants.

Author: Michael B. Feldman, The George Washington University
Last Modified: December 1995

PROTECTED TYPE ScreenManagerType IS

— If multiple calls of Write are made simultaneously, each is
— executed in its entirety before the next is begun.
— The Ada standard does not specify an order of execution.

PROCEDURE Write (Item: IN String;
Row: IN Screen.Depth;

Column: IN Screen.Width);

END ScreenManagerType;

PROTECTED BODY ScreenManagerType IS

PROCEDURE Write (Item: IN String;
Row: IN Screen.Depth;

Column: IN Screen.Width) IS

BEGIN — Write

Screen.MoveCursor(Row => Row, Column => Column);

Ada.Text_IO.Put(Item => Item);

END Write;
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END ScreenManagerType;

Manager: ScreenManagerType;

TASK TYPE SimpleTask IS

-- Task receives its parameters through a start-button entry
— instead of discriminants This is more flexible..
ENTRY StartRunning (Message: Character;

HowMany: Screen.Dep th;
Column: Screen.Width);

END SimpleTask;

TASK BODY SimpleTask IS

MyMessage: Character;

MyCount : Screen.Depth;
MyColumn : Screen.Width;

BEGIN — SimpleTask

-- Each task will write its message in its own column
-- Now the task locks the screen before moving the cursor,
— unlocking it when writing is completed.

ACCEPT StartRunning (Message: Character;
HowMany: Screen.Depth;
Column: Screen.Width) DO

MyMessage

MyCount

MyColxunn

= Message;

= HowMany;

= Column;

END StartRunning;

FOR Count IN 1..MyCount LOOP

— No need to lock the screen explicitly; just call the
— protected procedure.

Manager.Write(Row => Count, Column => MyColumn,
Item => "Hello from Task " & MyMessage);

DELAY 0.5; — lets another task have the CPU
END LOOP;

END SimpleTask;

Family: ARRAY (1..3) OF SimpleTask;
Char : CONSTANT Character := 'A';

BEGIN — Task_Array;

Screen.ClearScreen;
FOR Which IN Family'Range LOOP

Family(Which).StartRunning
(Message => Character'Val(Character'Pos(Char) + Which),
HowMany => 3 * Which,

Colxiinn => 3 + (24 * (Which - 1)));
END LOOP;

END Task_Array;
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This program creates three task objects, just as declaring an array of three
integers would create three integer objects. We refer to the task objects with array
subscripts, as in an ordinary array. In this case, each task has a "start button"
entry

ENTRY StartRunning (Message: Character;
HowMany: Screen.Depth;

Column : Screen.Width);

and we call each task's respective entry in the loop

FOR Which IN Family'Range LOOP
Family(Which).StartRunning
(Message => Character'Val(Character'Pos(Char) + Which),
HowMany => 3 * Which,
Column => 3 + (24 * (Which - 1)));

END LOOP;

In this program, we have passed each task's parameters in the "start button" instead
of using the discriminants of earlier examples.

It is also possible to declare a task as a field of a record. Finally, it is possible to
declare an access type such as

TYPE TaslcPointer IS ACCESS SimpleTaslc;

Then, given a variable

Task_l: TaskPointer;

we can allocate a task dynamically, like any other dynamic data structure:

Task_l := NEW SimpleTask;

The task starts running when it is allocated; we can call its entry with a statement such
as

Task_l.ALL.StartRunning(Message =>'Z', HowMany => 10, Column => 20);

or, more concisely,

Task_l.StartRunning(Message =>'Z', HowMany => 10, Column => 20);

Further examples of tasks as record fields, and of dynamically allocated tasks, are
beyond the scope of this book.

Because a task type is a type, it makes sense to ask how it is related to the over
all Ada type system. Specifically, which operations are available for task types? The
answer is that task types are similar to LIMITED PRIVATE types—no operations
at all are predefined for them. Task objects can be declared, but the only operations
are those provided by entries. In particular, assignment and equality test are not
available.

Having introduced the basics of task types and protected types through a series of
simple examples, we now proceed to two extended aplications: a bank simulation and
the Dining Philosophers.
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15.5 APPLICATION: SIMULATION OF A BANK

One interesting application of concurrent programming is simulating the behavior of a
physical system or a real-life situation. For example, it is relatively straightforward to sim
ulate a customer/server environment such as a bank. The objects in our model of a bank are:

• The itself

• A set of customers, who visit the bank periodically to open accounts, deposit money,
and withdraw money

• A set of tellers, the bank employees who are responsible for interacting with the
customers

• The database, a file of account information to which the tellers have access

We will model the bank using a main program for the bank and packages for the
database, tellers, and customers. The dependencies are shown in Figure 15.1; the bank
and the three packages are shown in the middle column; to the right and the left are
other packages that provide services to them. As in other dependency diagrams, an
arrow from one unit to a second unit means that the second is a client of the first.
CPUClock refers to the package introduced in Programs 3.17 and 3.18; Random
refers to Ada.Numerics.Diserete_Random (details in Appendix F). We will
shortly introduce Types and Reporter.

Bank

Database

CPUClock

Bank

Reporter

Customers

Types

Random

Tellers

Figure 15.1 Package Dependencies for Bank Simulation
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Executing the main program simulates a time period in the life of the bank. Here is
a sample of the line-by-line output from the simulation after it has been running for a
while:

T = 11 Account 3 depositing 398 with Teller C
T = 11 Teller B: Acct 1 - Balance is 0

T = 11 Account 1 will return after 2 sec

T = 13 Account 1 withdrawing 179 with Teller B
T = 13 Teller B: Transaction will take 6 sec

T = 15 Account 2 checking balance with Teller A
T = 15 Teller A: Transaction will take 7 sec

T = 15 Teller C; Acct 5 - Balance, is 0

T = 15 Teller C: Transaction will take 1 sec

T = 15 Account 5 alive.

T = 15 Account 5 will return after 5 sec

T = 16 Teller C: Acct 3 - Balance is 398

T = 16 Account 3 will return after 6 sec

T = 17 Account 4 withdrawing 816 with Teller C
T = 17 Teller C: Transaction will take 1 sec

T = 18 Teller C: Acct 4 - InsufficientFunds

T = 18 Account 4 will return after 9 sec

Each line of the output begins with a "time stamp"—for example, T = 15—^that
gives the number of seconds that elapsed since the start of the run. The line

T = 11 Accotint 1 will return after 2 sec

indicates that Customer 1 has completed a transaction, and will come back for another
one after 2 seconds have elapsed. The line

T = 13 Account 1 withdrawing 179 with Teller B

indicates that Customer 1 conununicates to Teller B its desire to withdraw $179. The

line

T = 13 Teller B: Transaction will take 6 sec

indicates that Teller B expects this transaction to take 6 seconds. We will see shortly
how these times and amounts are generated.

The Bank Main Program and the Package Specifications

First we examine Program 15.8, the main program Bank. This program has nothing to do
but cause the Customers and Tellers packages to be elaborated (by the WITH clauses).

Program 15.8 Body of the Bank Main Program

WITH Customers; USE Customers;

WITH Tellers; USE Tellers;

PROCEDURE Bank IS

— I Main program for bank simulation; it does nothing but cause
— I the customers and tellers to come into existence.
— I Author: Michael B. Feldman, The George Washington University

Last Modified: January 1996
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BEGIN — Bank

NULL;

END Bank;

Next, we look at the various package specifications. Program 15.9 provides a set of
types that are used by all the other packages.

Program 15.9 Some Types Needed by the Bank Simulation

PACKAGE Types IS

— I Types package for the bank simulation. This contains only public
— I declarations, and therefore needs no package body.
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

— These 2 constants can be altered to change
the behavior of the simulation

SUBTYPE TellerRange IS Character RANGE ■A' .. 'C';
NiunberOfCustomers : CONSTANT Integer := 5;

— These 2 ranges can be altered to change
— the behavior of the simulation
SUBTYPE TransactionTimeRange IS Integer RANGE 1 .. 7;
SUBTYPE TimeBetweenVisitsRange IS Integer RANGE 1 . . 11;

— Global types
SUBTYPE Money IS Integer RANGE 0 .. Integer"LAST;
TYPE Status IS (OK, Insuf f icientFvinds, BadCustId);
SUBTYPE Custid IS Integer RANGE 0 .. NumberOfCustomers;

END Types;

How shall we model the customers? We declare a task type Chistomer; each task
object represents one human customer. This task type has no entries because the cus
tomer objects are created at the start of the run, but do not need to be called. They sim
ply live out their lives, occasionally making transactions at the bank. The customer
type, and an array of customers, are defined in Program 15.10.

Program 15.10 Specification of the Customer Package

WITH Types; USE Types;
PACKAGE Customers IS

— I Customer package for bank siiomulation. Each customer is
— I a task object.

I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

TASK TYPE Customer IS — Requestor task type, no entries
END Customer;

CustomerGroup : ARRAY (1 .. NiomberOfCustomers) OF Customer;

END Customers;
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Program 15.11 shows the specification for Tellers.

Program 15.11 Specification of the Teiler Package

WITH Types; USE Types;

PACKAGE Tellers IS

— I Teller package for beuik siumulation
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

TASK TYPE Teller (TellerlD: TellerRange) IS
— Entries to do simple transactions and return status
ENTRY NewAcct (ID : OUT CustID;

Stat: OUT Status);

ENTRY Deposit (ID : CustID;
Val : IN Money;

Stat: OUT Status);

ENTRY Withdraw (ID : CustID;

Val : IN Money;

Stat: OUT Status);

ENTRY Balance (ID : CustID;

Stat: OUT Status);

END Teller;

— declare tellers euid give them "names"
A: ALIASED Teller(TellerlD => 'A')
B: ALIASED Teller(TellerlD => 'B')
C: ALIASED Teller (TellerlD => 'O

TYPE TellerPointer IS ACCESS ALL Teller;

— a bcink full of tellers

TellerGroup : ARRAY (TellerRange) OF TellerPointer :=
(A'Access, B'Access, CAccess);

END Tellers;

Here we have declared the task type Teller with a discriminant to initialize the
teller's "name."

Each teller object has four entries that customers can call:

• NewAcct opens a new account for a customer.

• Deposit processes a customer's deposit transaction.

• Withdraw processes a customer's withdrawal transaction.

• Balance allows a customer to view its account balance.

Bach operation returns a status code to the customer; the codes—OK,
Insuf f icientFimds, and BadCustId—are defined in Types.

Because each teller object needs a different value of the discriminant (each teller
needs a unique name), an array of tellers is heterogeneous. We cannot simply declare an
array of tellers, but must instead declare an array of pointers to tellers, and initialize this
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array with pointers to the three teller objects. This is similar to the technique used in
Program 9.8.

Program 15.12 gives the specification for Database. The database manager pro
vides operations documented by the postconditions. It is a protected object, which provides
mutual exclusion in case several tellers make concurrent calls of the database operations.

Program 15.12 Specification of the Database Package

WITH Types; USE Types;

PACKAGE Database IS

— 1 Maintains bank's internal data about open accounts and balances
— I Author: Michael B. Feldmcui, The George Washington University
— I Last Modified: January 1996

PROTECTED Manager IS

-- All these procedures are protected, so only one call at a time
— will be executed, even if the calls arrive concurrently.

PROCEDURE EnterCustID (ID : OUT CustID; Stat : OUT Status);
— Pre: None

— Post: ID is the next available customer ID; Stat is OK.

PROCEDURE Deposit (ID : IN CustID; Amount : IN Money;
NewBalance : OUT Money; Stat : OUT Status);

— Pre: ID euid Amovint are defined

— Post: If ID is valid, NewBalance is the resulting balance
and Stat is OK; otherwise, Stat is BadCustlD.

PROCEDURE Withdraw (ID : IN CustID; Amount : IN Money;
NewBalance : OUT Money; Stat : OUT Status);

— Pre: ID and Amount are defined

Post: If ID is valid and NewBalance would be nonnegative,
—  Stat is OK and NewBalance is returned.

If ID is invalid, Stat is BadCustlD; if NewBalance
would be negative, Stat is InsufficientFiinds

PROCEDURE Balance (ID : IN CustID; Amount : OUT Money;
Stat : OUT Status);

— Pre: ID is defined

— Post: If ID is invalid, Stat is BadCustlD; otherwise,
Stat is OK and Amount is current balance

END Manager;

END Database;

Finally, we turn to the specification for Reporter, shown in Program 15.13. The
protected object ScreenManager provides an operation Put, which is protected, so
only one call at a time can be executed.

Program 15.13 Specification of the Reporter Package

PACKAGE Reporter IS

— I Reporter package for bank simulation; Put is protected
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996



15.5 Application: Simulation of a Bank 561

PROTECTED ScreenManager IS

PROCEDURE Put(Message: IN String);

END ScreenManager;

END Reporter;

The Package Bodies in the Bank Simulation

We now turn to the bodies of the various packages. First look at Reporter, in
Program 15.14. The Put procedure uses CPUClock to produce a "time stamp" that
indicates the number of seconds elapsed since the start of the simulation. Note that this
package body has its own executable statement part, following the BEGIN. The state
ment there is executed once, when Reporter is elaborated at the start of the program
execution. The Flush statement is in Put because Ada input/output is usually

buffered, and "flushing" (emptying) the buffer ensures that screen output appears as
soon as possible after it is generated.

Program 15.14 Body of the Reporter Package

WITH Ada.Text_IO;

WITH CPUClock; USE CPUClock;
PACKAGE BODY Reporter IS

— 1 Body of Reporter - a simple screen protector
—j Author: Michael B. Feldman, The George Washington University
--j Last Modified: January 1996

PROTECTED BODY ScreenManager IS

PROCEDURE Put(Message: IN String) IS
BEGIN — Put

Ada.Text_IO.Put("T =" & Integer'Image(Integer(CPUTime))
& " " & Message);

Ada.Text_IO.New_Line;
Ada. Text_IO. Flush ;

END Put;

END ScreenManager;

BEGIN — Reporter

-- These two lines are executed once, when the package is elaborated.
ResetCPUTime;

END Reporter;

Let us look next at the body of Customers. Each customer task opens an
account, then executes a main loop that waits a random amount of time before begin
ning a transaction, then constructs a transaction from a random teller, a random trans
action type, and a random amount of money. The customer then calls the appropriate
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entry of the selected teller. This requires four random number generators—instances
of Ada. Numerics . Diserete_Randoin—each with its own range of random
quantities.

Program 15.15 Body of the Customer Package

WITH Reporter; USE Reporter;
WITH Ada.Numerics. Discrete_Randoni;
WITH Tellers; USE Tellers;
WITH Types; USE Types;
PACKAGE BODY Customers IS

— I Body of customer package. Each customer executes ten random
— I transactions with random tellers before terminating.
--| Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

TYPE Transactions IS (Deposit, Withdraw, Balance);

PACKAGE RandomTransactions IS

NEW Ada.Numerics.Discrete_Random (Transactions);

PACKAGE RandomTellers IS

NEW Ada.Numerics.Discrete_Random (TellerRange);

SUBTYPE MoneyRange IS Money RANGE 1 .. 999;
PACKAGE RandoraAmounts IS

NEW Ada.Numerics.Discrete_Random (MoneyRange);

PACKAGE RandomTimesBetweenVisits IS
NEW Ada.Numerics.Discrete_Random (TimeBetweenVisitsRange);

TASK BODY Customer IS

-- Local variables

ID

Amount

Stat

WaitTime

Teller

Tramsaction

NumTransactions

CustID;

Money;

Status;

TimeBetweenVisitsRange;
TellerRange;
Transactions;
CONSTANT Integer := 10;

T: RandomTransactions.Generator;
R: RandomTellers.Generator;
A: RandomAmounts.Generator;
V: RandomTimesBetweenVisits.Generator;

BEGIN — Customer

RandomTransactions.Reset(T);
RandomTellers.Reset(R);
RandomAmounts.Reset (A) ;
RandomTimesBetweenVisits.Reset(V);

Teller ;= RandomTellers.Random(R);
TellerGroup(Teller).NewAcct(ID, Stat); — Get new oust id
ScreenManager.Put ("Account" & Integer'Image(ID) & " alive.");

FOR I IN 1 .. NumTransactions LOOP

WaitTime := RandomTimesBetweenVisits.Random(V);
ScreenManager.Put("Account" & Integer'Image(ID)
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& " will return after" & Integer'Image(WaitTime)
& " sec") ;

DELAY Duration (WaitTime);

Teller := RandomTellers.Random(R);

Transaction := RandomTransactions.Random(T);

Amount := RandomAmounts.Random(A);

CASE Transaction IS -- Pick random transaction

WHEN Deposit =>
ScreenManager.Put("Account" & Integer'Image(ID)

& " depositing" & Integer'Image(Amount)
& " with Teller " & Teller);

TellerGroup (Teller).Deposit (ID, Amount, Stat);

WHEN Withdraw =>

ScreenManager.Put("Account" & Integer'Image(ID)

& " withdrawing" & Integer'Image(Amount)
& " with Teller " & Teller);

TellerGroup (Teller).Withdraw (ID, Amount, Stat);
WHEN Balance =>

ScreenManager.Put("Account" & Integer'Image(ID)
& " checking balance"

& " with Teller " & Teller);

TellerGroup (Teller).Balance (ID, Stat);
END CASE;

END LOOP;

ScreenManager.Put("Account" & Integer'Image(ID) & * closed.");

END Customer;

END Customers;

Program 15.16 shows the body of Database. This is very straightforward; the
protected object Manager performs operations on the array Accounts. Each
account is represented by a record that contains a flag (which is set when the account is
opened) and shows the current balance. The four operations of the database manager
are all protected: Only one at a time can be executed even if there are simultaneous calls
from multiple tasks.

Program 15.16 Body of the Database Package

WITH Reporter; USE Reporter;

WITH Types; USE Types;

PACKAGE BODY Database IS

— I Body of database package. The protected procedures ensure that
— I only one call at a time is exexuted.
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

TYPE AccountRecord IS RECORD

Valid: Boolean := False;

Balance: Money := 0;

END RECORD;

TYPE AccountType IS ARRAY (CustID) OF AccountRecord;

Next: CustID;

Accounts: AccountType;
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PROTECTED BODY Manager IS

PROCEDURE EnterCustID (ID: OUT CustID; Stat: OUT Status) IS
BEGIN

Next := Next + 1;

ID := Next;

Accounts(ID).Valid := True;
Stat := OK;

END EnterCustID;

PROCEDURE Deposit (ID: CustID; Amount: IN Money;
NewBalance: OUT Money; Stat: OUT Status) IS

BEGIN

IF NOT Accounts(ID).Valid THEN

Stat := BadCustID;

ELSE

Accounts(ID).Balance := Accounts(ID).Balance + Amount;
NewBalance := Accounts(ID).Balance;
Stat := OK;

END IF;

END Deposit;

PROCEDURE Withdraw (ID: CustID; Amount IN Money;
NewBalance: OUT Money; Stat: OUT Status) IS

BEGIN

IF NOT Accounts(ID).Valid THEN

Stat := BadCustID;
ELSIF Accounts(ID).Balance - Amount <= 0 THEN
Stat := InsufficientFunds;

ELSE

Accounts (ID) .Balance := Accoxints(ID) .Balance + Amount;
NewBalance := Accounts(ID).Balance;
Stat := OK;

END IF;

END Withdraw;

PROCEDURE Balance (ID: CustID; Amount: OUT Money;
Stat: OUT Status) IS

BEGIN

IF NOT Accounts(ID).Valid THEN

Stat := BadCustID;

ELSE

Amount := Accounts (ID) .Baleuice;
Stat := OK;

END IF;

END Balance;

END Manager;

END Database;

Finally, Program 15.17 shows the body of Tellers. The Teller task body
contains two auxiliary procedures: SimulateWait selects a random length of time
and then waits that long. This simulates the varying length of time taken by a transac
tion in an actual bank. ReportResult just assembles a message and sends it to
Reporter; the message contents depend on the status code returned by the
transaction.
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Program 15.17 Body of the Tellers Package

WITH Reporter; USE Reporter;

WITH Types; USE Types;

WITH Database; USE Database;

WITH Ada.Numerics.Discrete_Random;

PACKAGE BODY Tellers IS

Body of teller package. A teller object just waits a random
length of time (to simulate the time of a transaction), then
waits for a customer to ask for a transaction.

Author: Michael B. Feldman, The George Washington University
Last Modified: January 1996

PACKAGE RandomTransactionTimes IS

NEW Ada.Numerics.Discrete_Random (TransactionTimeRange);
T: ReuidomTransactionTimes.Generator;

TASK BODY Teller IS

NewBalance : Money;

Del : Integer;

Stat : Status;

PROCEDURE SimulateWait IS

WaitTime: TransactionTimeRemge
:= RandomTransactionTimes.Random(T);

BEGIN

ScreenManager.Put

{" Teller " & TellerlD & ": Transaction will take"
& Integer'Image(WaitTime) & " sec");

DELAY Duration(WaitTime);

END SimulateWait;

PROCEDURE ReportResult (Stat: Status; TelllD: TellerRange;
ID: CustID; NewBalance: Money) IS

BEGIN

CASE Stat IS

WHEN OK =>

ScreenManager.Put(" Teller " & TellerlD
& ": Acct" & Integer'Image(ID)
& " - Balance is" & Integer'Image(NewBalance));

WHEN BadCustID =>

ScreenManager.Put(" Teller * & TellerlD
& ": Acct" & Integer'Image(ID)

& " - Invalid Account Number");

WHEN InsufficientFunds =>

ScreenManager. E>ut (" Teller " & TellerlD
St ": Acct" & Integer' Image (ID)

& " - InsufficientFunds");

END CASE;

END ReportResult;

BEGIN — Teller

RcUtidomTransactionTimes.Reset (T); — seed random sequence

ScreenManager.Put(" Teller " & TellerlD & " - at your service")
LOOP

SELECT — Wait for any transaction request
ACCEPT NewAcctdd : OUT Custid; Stat: OUT Status) DO

SimulateWait;
Database.Manager.EnterCustID(Id, Stat);

NewBalance := 0;
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ReportResult (Stat, TellerlD, ID, NewBalance);
END NewAcct;

OR

ACCEPT Deposit (Id: Custid; Val: IN Money; Stat: OUT Status) DO
SimulateWait;

Database.Manager.Deposit (Id, Val, NewBalance, Stat);
ReportResult (Stat, TellerlD, ID, NewBalance);

END Deposit;
OR

ACCEPT Withdraw (Id: Custid; Val: IN Money; Stat: OUT Status) DO
SimulateWait;

Database.Manager.Withdraw (Id, Val, NewBalance, Stat);
ReportResult (Stat, TellerlD, ID, NewBalance);

END Withdraw;

OR

ACCEPT Balance (Id: Custid; Stat: OUT Status) DO
SimulateWait;

Database.Manager.Balance (Id, NewBalance, Stat);
ReportResult (Stat, TellerlD, ID, NewBalance);

END Balance;

OR

TERMINATE; -- if no more customers
END SELECT;

END LOOP;

END Teller;

END Tellers;

The SELECT statement

The teller task body also introduces a very interesting new Ada statement type, the
SELECT Statement. Figure 15.2 gives a flowchart-like depiction of the statement

LOOP

SELECT — Wait for any transaction request
ACCEPT NewAcct(Id : OUT Custid; Stat: OUT Status) DO

END NewAcct;

OR

ACCEPT Deposit (Id: Custid; Val: IN Money; Stat: OUT Status) DO

END Deposit;
OR

ACCEPT Withdraw (Id: Custid; Val: IN Money; Stat: OUT Status) DO

END Withdraw;
OR

ACCEPT Balance (Id: Custid; Stat: OUT Status) DO

END Balance;

OR

TERMINATE; — if no more customers

END SELECT;

END LOOP;

The diagram shows that the teller processes one transaction at each iteration of the
loop. The Ada run-time system provides each entry with a FIFO queue; entry calls are
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<•4 LOOP J
1

SELECT TERMINATE

ACCEPT

Wi thdraw
ACCEPT

NewAcct

END SELECT

END LOOP

Figure 15.2 A Loop with a select Statement

placed in the queues in the order of their arrival. Now consider several cases, assuming
the teller has just arrived at the SELECT statement;

1. The bank is quiet; no customers are calling entries. In this case, the teller waits
at the SELECT until a customer entry call arrives, accepts that call, and executes
the statements within that DO-END block. The DO-END block is called a ren

dezvous'^ as in a real bank, the customer waits while the transaction is processed.
After executing the rendezvous code, the teller loops around to the SELECT
again and the customer goes about its other business.

2. Several customers have called the same entry of the same teller. In this case, the
teller accepts the first call. The teller can accept only the first call because the
queue is HFO. The entry call is dequeued, the teller loops around to the
SELECT, and the customer proceeds with other matters.

3. Calls are waiting at the heads of more than one entry queue. In this case, the
teller chooses one of these callers and proceeds as in case 2. The mechanism
for choosing a caller is not specified by the Ada standard and, therefore,
depends on the specific Ada run-time system. To give just two possibilities,
the choice can rotate among the queue heads—one queue per iteration—or it
can be random.
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The fifth SELECT alternative, TERMINATE, is provided to allow the teller to ter
minate when there is no more activity on any of its entry queues. Termination condi
tions are rather complicated to explain for the full generality of Ada tasks; this is a
subject beyond the scope of this book. Here we simply say that the teller will select the
TERMINATE alternative, leave its apparently infinite loop, and quit when there is noth
ing left for it to do.

This example has shown the use of tasks to simulate real-life situations. The
next, and last, section introduces a more humorous example, which has served for
more than 20 years as a vehicle for studying problems of resource allocation and
deadlock.

15.6 APPLICATION: THE DINING PHILOSOPHERS

Imagine a group of five brilliant philosophers who lead very sheltered lives: Each has
nothing to do but think deep thoughts, stopping occasionally to eat a meal. Their
plates are automatically refilled from an infinite supply of delicious Chinese food.
However, like most philosophers, these thinkers must interrupt their simple lives to
solve an especially difficult problem: They sit around a circular table and only five
chopsticks—made of titanium and therefore unbreakable—are provided, one chop-
stick between each pair of plates. Figure 15.3 depicts the philosophers and their din
ing table.

\= chopstick

Dijk^tia

= plate

Bums

/\
Ichbiah iCung

Pao

Chicken

Anderson

Figure 15.3 The Ada 95 Philosophical Society
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It has become traditional to name the philosophers for major contributors to the
field. Our philosophers are (counterclockwise from the top of the cartoon)

• Edsger Dijkstra, the Dutch computer science professor who first described the
Dining Philosophers in 1971

• Jean Ichbiah, the French software engineer who led the original Ada design team
beginning in the late 1970s

• Tucker Taft, the American software engineer who led the Ada 9X design team and
whose work resulted in the Ada 95 standard

• Christine Anderson, the American aerospace engineer who managed the Ada 95
design project for the U.S. government

• Alan Bums, the British professor who has written very wisely and well about con
currency in Ada

How should the philosophers behave? To eat, a philosopher must pick up the chop
sticks to his or her immediate left and right. The problem is caused by the circularity of
the table: Each left chopstick is also another philosopher's right chopstick. Suppose each
philosopher first grabs his or her left-hand chopstick and refuses to put it down while
waiting for the right-hand chopstick. In this case, nobody will get to eat and all the
philosophers will die of hunger. This state of affairs—each philosopher waiting indefi
nitely for his or her right-hand neighbor to act—^is called deadlock^ or, sometimes, deadly
embrace. We will discuss some deadlock-avoiding philosopher algorithms a bit later.

Modeling the Philosophers

Let us model the philosophical society with an Ada program. As with the bank simula
tion, a small excerpt from the program's execution looks like this:

T = 3 Jean Ichbiah Eating meal 1 for 3 seconds.

T = 6 Jean Ichbiah Yum-yum (burp)
T = 6 Chris Anderson Second chopstick 3
T = 6 Jean Ichbiah Thinking 6 seconds.
T = 6 Chris Anderson Eating meal 1 for 3 seconds.
T = 9 Tucker Taft First chopstick 4
T = 9 Tucker Taft Second chopstick 5
T = 9 Tucker Taft Eating meal 2 for 10 seconds.
T = 9 Chris Anderson Yum-yum (burp)

T = 9 Chris Anderson Thinking 5 seconds.
T = 9 Edsger Dijkstra Second chopstick 2
T = 9 Edsger Dijkstra Eating meal 1 for 5 seconds.

Figure 15.4 shows the various units of the program and the dependencies among
them.

Program 15.18 is the specification for Society, a types package similar to the one
in the bank example. As you can see, it just provides a subtype to index the philoso
phers and a set of philosopher names in string form.
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Random

Main

Society ChopsticksRoom

Philosophers

Figure 15.4 Package Dependencies for Dining Philosophers

Program 15.18 The Society Package

PACKAGE Society IS

— I Dining Philosophers - Ada 95 edition
I  Society gives unique ZD's to people, and registers their names
I Author: Michael B. Feldman, The George Washington University

— I Last Modified: January 1996

SUBTYPE Unique_DNA_Codes IS Positive RANGE 1..5;

Name_Register : ARRAY{Unique_DNA_Codes) OF String(1..18) :=

("Edsger Dijkstra
"Alan Burns ",
"Chris Anderson

"Tucker Taft

"Jean Ichbiah ");

END Society;

Next, we examine Program 15.19, the main program. As you can see, it consists
only of an entry call.

Room.Maitre_D.Start_Serving;
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which presses the "start button" of the maitre d', or manager, of the dining room. We
will see the details of Room shortly.

Program 15.19 The Diners Main Program

WITH Ada.Text_IO;

WITH Room;

PROCEDURE Diners IS

Dining Philosophers - Ada 95 edition
This is the main program, responsible only for telling the
Maitre_D to get busy.

Author: Michael B. Feldman, The George Washington University
Last Modified: January 1996

BEGIN -- Diners

Ada.Text_IO.New_Line; -- artifice to flush output buffer
Room.Maitre_D.Start_Serving;

END Diners;

Program 15.20 shows the specification of the philosophers package. Each philoso
pher is a task object with a discriminant to assign its name and a "start button" to cause
it to begin its lifetime of eating and thinking. The "start button" parameters
Chopstickl and Chopstick2 are used to assign chopsticks to the philosophers;
each philosopher will always pick up Chopstickl first, then Chopstick2. In this
way, the task that presses the "start button" can determine each philospher's eating
algorithm.

Philosophers exist only to eat and think, not to communicate with the outside world.
However, to allow us to observe their behavior, each philosopher reports his or her cur
rent state to the maitre d', who will broadcast a running account of the happenings in the
dining room. To make this possible, this package also provides an enumeration type
States:

TYPE States IS (Breathing, Thinking, Eating, Done_Eating,
Got_One_Stick, Got_Other_Stick, Dying);

Program 15.20 Philosopher Specification

WITH Society;
PACKAGE Phil IS

— I Dining Philosophers - Ada 95 edition
— I Philosopher is an Ada 95 task type with discriminant
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

TASK TYPE Philosopher (My_ID : Society.Unique_DNA_Codes) IS

ENTRY Start_Eating (Chopstickl : IN Positive;
Chopstick2 : IN Positive);
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END Philosopher;

TYPE States IS (Breathing, Thinking, Eating, Done_Eating,
Got_One_Stick, Got_Other_Stick, Dying);

END Phil;

The dining room specification is given in Program 15.21. This is where the set of
chopsticks, an array of type Chop. Stick, is defined. Maitre_D is a task, with a
"start button," as mentioned above, and a second entry, Report_State, that is called
by the various philosophers.

Program 15.21 Room Specification

WITH Chop;
WITH Phil;

WITH Society;
PACKAGE Room IS

Dining Philosophers - Ada 95 edition
Room.Maitre_D IS responsible for assigning seats at the

table, "left" and "right" chopsticks, and for reporting
interesting events to the outside world.

Author: Michael B. Feldman, The George Washington University
Last Modified: January 1996

Table_Size : CONSTANT := 5;
SUBTYPE Teible_Type IS Positive RANGE 1 . . Table_Size;

Sticks : ARRAY (Table_Type) OF Chop.Stick;

TASK Maitre_D IS

ENTRY Start_Serving;
ENTRY Report_State (Which_Phil : IN Society.Unique_DNA_Codes;

State : IN Phil.States;
How_Long : IN Natural := 0;
Which_Meal ; IN Natural := 0);

END Maitre_D;

END Room;

We have not yet shown a specification for chopsticks; we will come back to this
after looking at the philosopher and room package bodies.

Implementing the Philosophers and the Dining Room

The body of the philosopher package is shown in Program 15.22. As in the bank customer
case, each philosopher task draws random numbers to simulate its eating and thinking times.
The start-button parameters Chopstickl and Chopstick2 are saved in the variables
First_Grab and Second_Grab, respectively. The basic philosopher algorithm is

FOR Meal IN Life_Time LOOP

Room.Sticks (First_Grab).Pick_Up;
Room.Sticks (Second_Grab).Pick_Up;
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Meal_Time := Meal_Length.Random(M);
DELAY Duration (Meal_Time);

Room.Sticks (First_Grab).Put_Down;

Room.Sticks (Second_Grab).Put_Dovm;

Think_Time : = Think_Length. Rcuidom (T) ;
DELAY Duration (Think_Time);

END LOOP;

The code in Program 15.22 is slightly more elaborate, to allow the philosopher to
report its current state to the maitre d

Program 15.22 Philosopher Body

WITH Society;
WITH Room;

WITH Ada.Numerics.Discrete_Random;

PACKAGE BODY Phil IS

Dining Philosophers - Ada 95 edition
Philosopher is an Ada 95 task type with discriminant.
Chopsticks are assigned by a higher authority, which
cam vary the assignments to show different algorithms.

Philosopher always greibs First_Grab, then Second_Grab.
Philosopher is oblivious to outside world, but needs to
communicate its life-cycle events to the Maitre_D.

Author: Michael B. Feldman, The George Washington University
Last Modified: Jamuary 1996

SUBTYPE Think_Times IS Positive RANGE 1..8;
PACKAGE Think_Length IS
new Ada.Numerics.Discrete_Remdom (Result_Subtype => Think_Times);

SUBTYPE Meal_Times IS Positive RANGE 1..10;
PACKAGE Meal_Length IS

new Ada.Nvimerics.Discrete_Random <Result_Subtype => Meal_Times);

TASK BODY Philosopher IS — My_ID is discriminant

SUBTYPE LifeTime IS Positive RANGE 1..5;

Who_Am_I

First_Grcib

Second_Grab

Meal_Time
Think^Time
T

M

BEGIN

Society.Unique_DNA_Codes := My_ID; — discrim
Positive;

Positive;
Meal_Times;
Think_Times;

Think_Length.Generator;
Meal_Length.Generator;

Think_Length.Reset(T);
Meal_Length.Reset(M);

— get assigned the first amd second chopsticks here

ACCEPT Start_Eating (Chopstickl : IN Positive;
Chopstick2 : IN Positive) do

First_Grab := Chopstickl;
Second_Grab := Chopstick2;

END Start_Eating;
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Room.Maitre_D.Report_State (Who_Ain_I, Breathing);

FOR Meal IN Life_Time LOOP

Room.Sticks (Pirst_Grab).Pick_Up;
Room.Maitre_D.Report_State
(Who_Am_I, Got_One_Stick, First_Grab);

Room.Sticks (Second_Grab).Pick_Up;
Room.Maitre_D.Report_State
(Who_Am_I, Got_Other_Stick, Second_Grab);

Meal_Time := Meal_Length.Random{M);
Room.Maitre_D.Report_State Who_Am_I, Eating, Meal_Time, Meal);

DELAY Duration (Meal_Time);

Room.Mai tre_D.Report_State (Who_Am_I, Done_Eating);

Room.Sticks (First_Grab).Put_Dovni;
Room.Sticks (Second_Grab).Put_Down;
Think_Time := Think_Length.Random(T);
Room.Maitre_D.Report_State (Who_Ain_I, Thinking, Think_Time);
DELAY Duration (Think^Time);

END LOOP;

Room.Maitre_D.Report_State (Who_Am_I, Dying);

END Philosopher;

END Phil;

Program 15.23 shows the body of the dining room package. As with the bank
tellers, the philosophers are declared as ALIASED variables, each with its own discrim
inant value. The maitre d* task has the job of assigning seats and chopsticks to philoso
phers. Seats are assigned by the statement

Phils :=

(Dij kstra'Access,
Anderson'Access,

Taft'Access,

Ichbiah'Access,

Burns'Access);

Chopsticks are assigned by pressing the "start buttons" as follows:

Phils (1).Start_Eating (1, 2)
Phils (3).Start_Eating (3, 4)
Phils (2).Start_Eating (2, 3)
Phils (5).Start_Eating (1, 5)
Phils (4).Start_Eating (4, 5)

The peculiar order of starting the tasks is just to ensure that the action starts early;
note that philosophers 1 and 3 can begin eating immediately. Philosophers 1,2,3, and
4 are told to grab their left chopsticks first, but philosopher 5 (Burns) is told to grab
its right chopstick first. This ensures that the situation in which all the philosophers
hold only their left chopsticks cannot occur. The circularity is broken and there is no
deadlock.
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Program 15.23 Room Body

WITH Ada.Text_IO;

WITH Chop;

WITH Phil;

WITH Society;
WITH Calendar;

PRAGMA Elaborate (Phil);

PACKAGE BODY Room IS

— I Dining Philosophers, Ada 95 edition
— I A line-oriented version of the Room package
— I Author: Michael B. Feldman, The George Washington University

Last Modified: January 1996

philosophers sign into dining room, giving Maitre_D their DNA code

Dijkstra

Burns

Anderson

Ichbiah

Taf t

ALIASED Phil.Philosopher {My_ID => 1)
ALIASED Phil.Philosopher (My_ID => 2)

ALIASED Phil.Philosopher (My_ID => 3)

ALIASED Phil.Philosopher {My_ID => 4)

ALIASED Phil.Philosopher (My_ID => 5)

TYPE Philosopher_Ptr IS ACCESS ALL Phil.Philosopher;
Phils : ARRAY (Table_Type) OF Philosopher_Ptr;

TASK BODY Maitre_D IS

T  : Natural;

Start_Time : Calendar.Time;

Blanks ; CONSTANT String := " ";

BEGIN

ACCEPT Start_Serving;

Ada.Text_IO.New_Line;

Ada.Text_IO.Put_Line
("Ada 95 Philosophical Society is Open for Business!")

Start_Time := Calendar.Clock;

— now Maitre_D assigns phils to seats at the table

Phils :=

(Dijkstra'Access,
Anderson'Access,

Taft'Access,

Ichbiah'Access,

Burns•Access);

— and assigns them their chopsticks

Phils (1).Start_Eating (1. 2);

Phils (3).Start_Eating (3, 4);

Phils (2).Start_Eating (2, 3) ;

Phils (5).Start_Eating (1. 5) ;

Phils (4).Start_Eating (4, 5) ;

LOOP

SELECT

ACCEPT Report_State (Which_Phil
State

How_Long

Which Meal

IN Society.Unique_DNA_Codesi
IN Phil.States;

IN Natural := 0;

IN Natural := 0) do

T := Natural (Calendar. (Calendar.Clock, Start_Time));
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CASE State IS

WHEN Phil.Breathing =>

Ada.Text_IO.Put_Line ("T =" & Integer•Image (T) & ■ "
& Blanks(1..Which_Phil)
& Society.Name_Register(Which_Phil)
& "Breathing");

WHEN Phil.Thinking =>

Ada.Text_IO.Put_Line ("T =- & Integer'Image (T) & " "
& Blanks(1..Which_Phil)
& Society.Name_Register(Which_Phil)
& "Thinking"
& Integer'Image (How_Long) & " seconds.");

WHEN Phil.Eating =>

Ada.Text_IO.Put_Line ("T =" & Integer'Image (T) & " "
& Blanks(1..which_Phil)
& Society.Name_Register(Which_Phil)
& "Eating meal"
& Integer•Image (Which_Meal)
& " for"

& Integer'Image (How_Long) & " seconds.");
WHEN Phil.Done_Eating =>
Ada.Text_IO.Put_Line ("T =" & Integer'Image (T) & " "

& Blanks(1..Which_Phil)
& Society.Name_Register(Which_Phil)
& "Yiom-yum (burp)");

WHEN Phil.Got_One_Stick =>

Ada.Text_IO.Put_Line ("T =" & Integer'Image (T) & " "
& Blanks(1..Which_Phil)
& Society.Name_Register(Which_Phil)
& "First chopstick"
& Integer•Image (How_Long));

WHEN Phil.Got_Other_Stick =>
Ada.Text_IO.Put_Line ("T =" & Integer'Image (T) & " "

& Blanks(1..Which_Phil)
& Society.Name_Register(Which_Phil)
& "Second chopstick"
& Integer'Image (How_Long));

WHEN Phil.Dying =>

Ada.Text_IO.Put_Line {"T =" & Integer'Image (T) & " "
& Blanks(1..Which_Phil)
& Society.Name_Register(Which_Phil)
& "Croak");

END CASE; - State

Ada.Text_IO.Flush;

END Report_State;

OR

TERMINATE;
END SELECT;

END LOOP;

END Maitre_D;

END Room;

Having assigned seats and chopsticks, bringing the philosophers to life, the maitre
d enters its main loop, which is just to wait for a philosopher to report a state, use a
CASE statement to determine which state was reported, and display an appropriate mes
sage on the screen.
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The Chopsticks Package

We have left the chopstick package for last because it introduces some new material
about protected types. Program 15.24 shows the specification for the chopsticks
package. A chopstick is a protected object with a data structure of its own, declared
in its PRIVATE section. The Boolean flag In_Use reflects the fact that a chopstick
cannot be picked up while it is in use by another philosopher. Also, the Pick_Up
operation is specified as an entry, rather than a protected procedure as in earlier
examples.

Program 15.24 Chopstick Specification

PACKAGE Chop IS

— I Dining Philosophers - Ada 95 edition
— 1 Each chopstick is an Ada 95 protected object
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: January 1996

PROTECTED TYPE Stick IS

ENTRY Pick_Up;
PROCEDURE Put_Down;

PRIVATE

In_Use: Boolean := False;

END Stick;

END Chop;

Program 15.25 gives the body of the chopsticks package. The chopstick's protected
procedure Put_Down sets the flag In_Use to False. The entry Pick_Up behaves
like a protected procedure, but with one important difference: The entry body—which
sets ln_Use to True—is executed only when it makes sense to do so, namely when
the chopstick is not in use. The clause

WHEN NOT In_Use

is called a barrier condition, and serves to ensure that a chopstick can be held by at most
one philosopher.

Program 15.25 Chopstick Body

PACKAGE BODY Chop IS

— I Chopstick Body
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: Jsuiuary 1996

PROTECTED BODY Stick IS

ENTRY Pick_Up WHEN NOT In_Use IS

BEGIN

In_Use := True;

END PIck_Up;
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PROCEDURE Put_Down IS

BEGIN

In_Use := False;

END Put_Down;

END Stick;

END Chop;

A More Interesting Philosophers Display

As a final example, consider Figure 15.5. Here each philosopher is given its own win
dow, in which its activity is displayed. Such a screen display would give an animated
depiction of the philosophers as shown in Figure 15.3. Because all input/output activity
in the philosophical society is carried out by the maitre d', this window-oriented display
can be achieved by modifying only the body of Room so that the maitre d" task uses
operations from the windows package of Programs 2.19 and 2.20. We leave this inter
esting modification as an exercise.

As we pointed out at the beginning of this chapter, a single chapter in a book of this
kind cannot really do justice to a topic as rich and interesting as concurrent program
ming. Our intention here has been to introduce you to the subject through some brief
examples and two longer simulations. We hope this chapter has stimulated your interest
in pursuing concurrency, and Ada's concurrency facilities in particular, through further
reading and projects.

jEdsger Dijkstra
I
(T = 21 First chopstick 1
|T = 26 Second chopstick 2
T = 26 Iteal 2, 7 seconds.
+ +

I Jean Ichbiah 1
I  1
|T = 29 Thinking 2 seconds. |
|t = 31 First chopstick j
|T = 29 Yuin-yum (burp) (

I Alan Bums
I
|T = 16 Meal 1, 5 seconds.
|T = 21 Yum-yum (burp)
|T = 21 Thinking 2 seconds.

+

[Tucker Taft

[T = 29 Meal 4, 5 seconds.
|T = 29 First chopstick 4
|T = 29 Second chopstick 5
+

+

IChris Anderson
I
|T = 26 Yum-yum (burp)
|T = 26 Thinking 1 seconds.
|T = 18 Meal 2, 8 seconds.

+

Figure 15.5 The Dining Room with Windows
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EXERCISES

1. Investigate whether your Ada implementation supports time-slicing and, if it does,
whether time-slicing can be turned on and off at will. Experiment with doing so,
using Program 15.2 as a test program.

2. Experiment with using different starting orders in Program 15.4. Is there any dif
ference in the behavior?

3. In the bank example, each teller has four entries and, therefore, four distinct queues.
This is not very realistic; in a real bank, a teller has only one queue and processes
whichever transaction is at the head of that queue. Modify the tellers package, and
other units as necessary, so that each teller task has a single entry with an additional
parameter to indicate the nature of the transaction. Use an enumeration type to rep
resent the transaction types.

4. In the dining philosophers example, modify the body of the Room package
(Program 15.23) so that the maitre d' task uses operations from the Windows pack
age (Programs 2.19 and 2.20) to display each philosopher's activity in a window as
shown in Figure 15.5. Hint: The maitre d' should open all the windows before
bringing the philosophers to life.
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APPENDIX A

The Ada Character Set,
Delimiters, and Reserved
Words

This appendix is adapted from the Ada 95 Reference Manual, Sections 2.1,2.2, and 2.9.

THE ADA CHARACTER SET

The Ada 95 standard uses the ISO 8859-1 (Latin-1) character set. This character set
includes the usual letters A-Z, but also a number of additional characters to provide for

the additional letters used in non-English languages. For example, French uses accented
letters like e and k; German has letters using the umlaut such as u, the Scandinavian lan
guages have dipthongs such as ae, and so forth. For the purposes of this book, we use just
the 26 letters of English; if you are in another country and wish to use its additional let
ters, you can find out locally how to do so on your computer or terminal. The following
characters have been used in constructing the programs in this book:

1. Uppercase letters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

2. Lowercase letters:

abcdefghijklmnopqrstuvwxyz

3. Digits:

0123456789

4. Special characters:

5. The space character

Format effectors are the characters called horizontal tabulation, vertical tabulation,

carriage return, line feed, and form feed.
The characters included in each of the remaining categories of graphic characters

are defined as follows:
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6. Other special characters

{ }-

The following names are used when referring to special characters (4.) and other
special characters (6.):

mbol name symbol name

n quotation > greater than
# sharp underline

& ampersand 1 vertical bar
f apostrophe, tick 1 exclamation mark

( left parenthesis $ dollar

) right parenthesis % percent
•k star, multiply 7 question mark
+ plus @ commercial at

/ comma [ left square bracket
- hyphen, minus \ back-slash

• dot, point, period ] right square bracket
/ slash, divide A

circumflex

colon
V

grave accent

} semicolon { left brace
< less than } right brace
= equal tilde

DELIMITERS

A delimiter is either one of the following special characters:

or one of the following compound delimiters^ each composed of two adjacent special
characters:

=> . . ** := /= >= <= « » <>

The following names are used when referring to compound delimiters:

Delimiter Name

arrow

double dot

double star, exponentiate
assignment (read as "becomes")
inequality (read as "not equal")
greater than or equal
less than or equal
left label bracket

right label bracket
box

/=

>=

<=

«

»

<>
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RESERVED WORDS

The identifiers listed below are called reserved words and are reserved for special signif
icance in the Ada language. In this book, the reserved words always appear in uppercase.

ABORT ELSE NEW RETURN

ABS ELSIF NOT REVERSE

ABSTRACT END NULL

ACCEPT ENTRY SELECT

ACCESS EXCEPTION SEPARATE

ALIASED EXIT OF SUBTYPE

ALL OR

AND FOR OTHERS TAGGED

ARRAY FUNCTION OUT TASK

AT TERMINATE

GENERIC PACKAGE THEN

BEGIN GOTO PRAGMA TYPE

BODY

IF

PRIVATE

PROCEDURE

CASE IN PROTECTED UNTIL

CONSTANT IS

RAISE

USE

DECLARE RANGE WHEN

DELAY LIMITED RECORD WHILE

DELTA LOOP REM WITH

DIGITS RENAMES

DO MOD REQUEUE XOR

A reserved word must not be used as a declared identifier.
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Ada 95 Syntax Rules

This Appendix is adapted from Annex P of the Ada 95 Reference Manual.
The syntactic form of an Ada program is described by means of a context-free

notation called Extended Backus-Naur Form or EBNF. EBNF describes a language in
terms of a set of syntax rules of the form X : : = Y (read "X is defined as Y"), where X
is always a single syntactic category or nonterminal and Y can be one or more symbols.

Lowercase words, some containing embedded underlines, are used to denote non
terminals; for example,

case_statement

Reserved words are given in the Ada standard in lowercase, but appear here in
uppercase for consistency with the text; for example,

ARRAY

Square brackets enclose optional items; the two following rules are equivalent.

return_statement RETURN [expression];

return_statement ::= RETURN; | RETURN expression;

Curly brackets enclose a repeated item. The item may appear zero or more times;
the two following rules are equivalent.

term :;= factor {multiplying_operator factor)
term ::= factor | term multiplying_operator factor

A vertical line separates alternative items unless it occurs immediately after an
opening curly bracket, in which case it stands for itself;

constraint ::= scalar_constraint | composite_cbnstraint
discrete_choice_list : discrete_choice [j discrete_choice)

We have organized the syntax rules in strict alphabetical order by the left side of the
rule. In tracing a syntax error in a student program, the reader will probably wish to
begin with the nonterminal compilation_unit.

abort_statement ::= ABORT task_name {, task_name};

abortable_part sequence_of_statements

abstract_subprogram_declaration ::=
subprogram_specification IS ABSTRACT;

accept_alternative ::=
accept_statement [sequence_of_statements)
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accept_statement ::=

ACCEPT entry_direct_name [(entry_index)] paraineter_profile DO
handled_sequence_of_statements

END [entry_identifier]];

access_def inition :: = ACCESS siibtype_mark

access_type_definition
access_to_object_definition

I  access_to_subprograin_definition

access_to_object_definition ::=

ACCESS [general_access_modifier] subtype_indication

access_to_subprograin_definition :: =
ACCESS [PROTECTED] PROCEDURE parameter_profile

I  ACCESS [PROTECTED] FUNCTION parameter_and_result_profile

actual_paraineter_part : : =
(parameter_association {, paraineter_association})

aggregate ::= record_aggregate | extension_aggregate | array_aggregate

allocator ::=

NEW subtype_indicaticn | NEW qualified_expression

ancestor part ::= expression j subtype_mark

array_aggregate ::=
positional_array_aggregate | named_array_aggregate

array_component_association ::=
discrete_choice_list => expression

array_type_definition ::=
unconstrained_array_definition | constrained_array_definition

assignment_statement ::=
variable_name := expression;

asynchronous_select ::=
SELECT

triggering_alternative

THEN ABORT

abortable_part

END SELECT;

at_clause ::= FOR direct_naine USE AT expression;

attribute_definition_clause ::=

FOR local_naine'attribute_designator USE expression;
I  FOR local_name•attribute_designator USE name;

attribute_designator ::=

identifier[(static_expression)]
I Access I Delta | Digits

attribute_reference ::= prefix'attribute.designator

base : := nvimeral
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based_literal ::=
base # based_miineral [ .based_numeral] # [exponent]

based_numeral ::=

extended_digit {[underline] extended_digit}

basic_declaration ::=
type_declaration
obj ec t_declarat i on

subprogram_declaration
package_declaration
exception_declaration
generic_instantiation

subtype_declaration
nuinber_declara t i on
abs t rac t_subpr ograin_dec 1 ara t ion
renaming_declaration
generi c_declara t i on

basic_declarative_item ::=
basic_declaration | representation_clause | use_clause

binary_adding_operator ::= + | - | &

block_statement ::=

[block_statement_identifier;]
[DECLARE

declarative_part]
BEGIN

handled_sequence_of_statements
END [block_identifier];

body :;= proper_body | body_stub

body_stub ::=

subprograin_body_stub | package_body_stub
I  task_body_stub | protected_body_stub

case_statement ::=

CASE expression IS

case_statement_altemative

{case_statenient_alternative)
END CASE;

case_stateinent_alternative : ; =
WHEN discrete_choice_list =>

sequence_of_statements

character ::=

graphic_character | fonnat_effector | other_control_function

character_literal 'graphic_character'

choice_paraineter_specification ::= defining_identifier

code_stateinent ::= qualified_expression;

compilation ::= {compilation_unit}

compilation_unit ::=

context_clause library_item
I  context_clause subunit

component_choice_list ::=
component_selector_name {| component_selector_name}

I  OTHERS
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component_clause ::=

component_local_name AT position RANGE first_bit .. last_bit;

component_definition [ALIASED] svibtype_indication

component_item ::= component_declaration | representation_clause

component_list ::=
coinponent_item {component_itein)

I  {component_item} variant_part
I  NULL;

composite_constraint
index_constraint | discriininant_constraint

compound_statement ::=
if_statement | case_stateinent

I  loop_statement j block_statement
I  accept_statement j select_stateinent

condition ::= boolecm_expression

conditional_entry_call ::=
SELECT

entry_call_alternative
ELSE

sequence_of_statements
END SELECT;

constrained_array_definition ::=
ARRAY (discrete_subtype_definition {, discrete_subtype_definition))
OF component_definition

constraint ::= scalar_constraint | composite_constraint

context_clause ::= {context_item}

context_item ::= with_clause | use_clause

decimal_fixed_point_definition ::=
DELTA static_expression
DIGITS static_expression (real_range_specification]

decitaal_literal numeral [.numeral] [exponent]

declarative_item ::=

basic_declarative_item | body

declarative_part ::= {declarative_item}

default_expression ::= expression

default_name ::= name

defining_character_literal ;:= character_literal

defining_designator ::=

defining_program_vinit_name | defining_operator_symbol

defining_identifier ::= identifier
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defining_identifier_list ::=
defining_identifier {, defining_identifier)

def ining_operator_syinbol : : = operator_synibol

defining_prograin_unit_name ::= [parent_unit_name . Jdefining_identifier

delay_alternative ::=
delay_statement tsequence_of_statements]

delay_relative_statement ;;= DELAY delay_expression;

delay_statement ::= delay_until_statement | delay_relative_statement

delay_until_statement ::= DELAY UNTIL delay_expression;

delta_constraint :;= DELTA static_exprGSsion [range_constraint]

derived_type_definition ::=
[ABSTRACT] NEW parent_subtype_indication [record_extension_part]

designator ::= [parent_unit_naine . ]identifier | operator_syinbol

digits_constraint ::=
digits static_expression [range_constraint]

direct_naine ; := identifier ( operator_symbol

discrete_choice ::= expression | discrete_range | OTHERS

discrete_choice_list ::= discrete_choice {| discrete_choice}

discrete_range :;= discrete_subtype_indication | range

discrete_s\ibtype_definition ::= discrete_subtype_indication | range

discriminant_association :;=

[discriminant_selector_name
(I discriminant_selector_name} =>] expression

discriminant_constraint ::=

(discriminant_association {, discriininant_association})

discriininant_part ;: =
unknown_discriminant_part | known_discriminant_part

discrimincmt_specification ::=
defining_identifier_list : subtypejnark [:= defauit_expression]

I  defining_identifier_list : access_definition [:= default_expression]

entry_barrier ::= WHEN condition

entry_body ::=
ENTRY defining_identifier entry_body_fonnal_part entry_barrier IS
declarative_part

BEGIN

handled_sequence_of_statements
END (entry_identifier3;

entry_body_fornial_part :: =
[(entry_index_specification)] paraineter_profile



Appendix B: Ada 95 Syntax Rules 591

entry_call_alternative ::=
entry_call_stateraent [sequence_of_statements]

entry_call_stateinent ::= entry_name [actual_parameter_part];

entry_declaration ::=
ENTRY defining_identifier
[ (discrete_s\ibtype_definition) ] paraineter_prof ile;

entry_index ::= expression

entry_index_specification ::=
FOR defining_identifier IN discrete_subtype_definition

enuineration_aggregate ::= array_aggregate

enuineration_literal_specification : : =
defining_identifier | defining_character_literal

en\imeration_representation_clause :; =

FOR first_subtype_local_naine USE enumeration_aggregate;

enumeration_type_definition ;:=
(enumeration_li teral_specification
{, enumeration_literal_specification))

exception_declaration ::= defining_identifier_list ; EXCEPTION;

exception_choice ::= exception_naine | OTHERS

exception_handler ;:=
WHEN [choice_paraineter_specification:] exception_choice
{I exception_choice} =>
s equence_o f_s tatement s

exception_renaming_declaration ::=
defining_identifier : EXCEPTION RENAMES exception_naine;

exit_statement :;=

EXIT tloop_naine] [WHEN condition];

explicit_actual_parameter ::= expression | variable_name

explicit_dereference ::= name.ALL

explicit generic actual parameter :;=
expression | varied3le_name

I  subprogram_name | entry_name
I  subtype_mark | package_instance_name

exponent ::= E [+] numeral | E - numeral

expression ::=
relation (AND relation) | relation (AND THEN relation)

I  relation (OR relation) | relation {OR ELSE relation)
I  relation (XOR relation)

extension_aggregate ::=
(ancestor_part with record_component_association_list)

factor ::= primary [** primary] | ABS primary | NOT primary
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first_bit ;:= static_simple_expression

fixed_point_definition ::=
ordinarY_fixed_point_definition | decimal_fixecLpoint_definition

floating_point_definition ::=
DIGITS static_expression [real_range_specification]

fonnal_access_type_definition ::= access_type_definition

formal_array_type_definition ::= array_type_definition

formai_decimal_fixed_point_definition ::= DELTA <> DIGITS <>

fonnal_derived_type_definition ::=
[ABSTRACT] NEW subtype_mark [WITH PRIVATE]

fonnal_discrete_type_definition ::= (<>)

fonnal_floating_point_definition ::= DIGITS <>

forTnal_modular_type_definition : : = MOD <>

formal_object_declaration ::=
defining_identifier_list :
mode subtype_mark [:= default_expression];

formal_ordinary_fixed_point_definition :;= DELTA <>

formal_package_actual_part ::=

(<>) I [generic_actual_part]

formal_package_declaration ::=
WITH package defining_identifier
IS NEW generic_package_name fonnal_package_actual_part;

fonnal_part ::=
(paraineter_specification {; parameter_specification))

fonnal_private_type_definition :; =
[[ABSTRACT] TAGGED] [LIMITED] PRIVATE

formal_signed^integer_type_definition ;:= RANGE <>

formal_subprogram_declaration ::=

WITH subprogram_specification [IS subprogram_default];

£ormal_type_declaration ::-
TYPE defining_identifier[discriminant_part]

IS fonnal_type_definition;

formal_type_definition ::=

formal_private_type_definition
fo nnal_derived_type_definition
formal_discrete_type_definition
forma l_s igned_int eger_type_de finition
fonnal_modular_type_definition
fonnal_floating_point_definition
formal_ordinary_fixed_point_definition
formal_decimal_fixed_point_definition



Appendix B: Ada 95 Syntax Rules 593

I  fonnal_array_type_definition
I  formal_access_type_definition

fonnat_effector???

full_type_declaration ::=
TYPE defining_identifier [knovm_discriminant_part]

IS type_definition;
I  task_type_declaration
I protected_type_declaration

function_call ::=

f unc t i on_naine
I  function_prefix actual_parameter_part

general_access_modifier ::= ALL | CONSTANT

generic_actual_part ::=
(generic_association {, generic_association})

generic_association ::=
[ gener i c_f orma l_par cime t er_s e 1 ec tor_name = > ]
explicit generic actual parameter

generic_declaration ::=
generic_subprogranL_declaration | generic_package_declaration

generic_fonnal_paraineter_declaration : : =
f orTnal_ob j ect_declaration

I  fonnal_type_declaration
I  formal_subprogram_declaration
I  formal_package_declaration

generic_fonaal_part ::=
generic {generic_formal_parameter_declaration | use_clause}

generic_instantiation ::=
PACKAGE defining_program_unit_naine IS

NEW generic_package_name [generic_actual_part];
I  PROCEDURE defining_prograitt_unit_name IS

NEW generic_procedure_name (generic_actual_part];
I  FUNCTION defining_designator IS

NEW generic_function_name [generic_actual_part];

generic_package_declaration :: =
generic_formal_part package_specification;

generic_rencuning_declaration :: =
GENERIC PACKAGE defining_program_unit_name

RENAMES generic_package_name;
I  GENERIC PROCEDURE defining_prograiit.unit_name

RENAMES generic_procedure_name;
I  GENERIC FUNCTION defining_program_unit_naine

RENAMES generic_function_naine;

generic_subprogranudeclaration ;:=
generic_formal_part subprogram_specification;

goto_statement ;;= GOTO label_name;

graphic_character ::=
identifier_letter | digit | space_character | special_character
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guard ::= WHEN condition =>

handled_sequence_of_statements ::=
sequence_of_statements

tEXCEPTION

excep t i on_handler

{exception_handler}]

identifier ::=

identifier_letter {[underline] letter_or_digit)

if_statement ::=
IF condition THEN

sequence_of_statements
(ELSIE condition THEN

sequence_of_statements}
[ELSE

sequence_of_statem6nts]
END IF;

implicit_dereference ::= name

incomplete_type_declaration ::=
TYPE defining_identifier [discriminant_part];

index_constraint ::= (discrete_range {, discrete_range})

index_subtype_definition ::= subtype_mark range <>

indexed_component ;:= prefix(expression {, expression})

integer_type_definition ::=
signed_integer_type_definition | modular_type_definition

iteration_scheme ::= WHILE condition
I  FOR loop_parameter_specification

known_discriminant_part ::=
(discriminant_specification {; discrimineuit_specification))

Icdael «leJDel_statement_identifier»

last_bit static_simple_expression

letter_or_digit ::= identifier_letter | digit

library_item ::= [PRIVATE] library_\init_declaration
I  library_unit_body
I  [private] library_unit_renaming_declaration

library_unit_body ::= subprogram_body | package_body

library_unit_declaration ::=
subprogram_declaration | package_declaration

I  generic_declaration | generic_instantiation

library_unit_renaming_declaration ;:=
pac kage_renaming_dec1aration

I  generic_renaming_declaration
I  subprogram_renaming_declaration
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local_name :;= direct_naine

1 direct_naine' attribute_designator
1  library_unit_naine

loop_parameter_specification ::=
defining_identifier IN [REVERSE] discrete_subtype_definition

loop_stateraent ::=

[loop_statement_identifier:]
[iteration_scheme] LOOP

sequence_of_statements

END LOOP (loop_identifier];

mod_clause ::= AT MOD static_expression;

mode :;= [IN] | IN OUT | OUT

modular_type_definition MOD static_expression

multiplying_operator ::= * | / | MOD | REM

name ::=

direct_name | explicit_dereference
I  indexed_component j slice
I  selected_component ] attribute_reference
I  type_conversion | function_call
j  character_literal

named_array_aggregate ;:=
(array_component_association {, array_component_association))

null_statement ;:= NULL;

nuinber_declaration :: =

defining_identifier_list : CONSTANT := static_expression;

numeral ::= digit [[underline] digit}

numeric_literal ::= decimal_literal | based_literal

object_declaration ;:=
defining_identifier_list :

[ALIASED] [CONSTANT) subtype_indication [;= expression];
I defining_identifier_list :

[ALIASED] [CONSTANT] array_type_definition [:= expression];
I  single_task_declaration
I  single_protected_declaration

object_renaming_declaration ::=
defining_identifier : subtype_mark RENAMES object_name;

operator_symbol ::= string_literal

ordinary_fixed_point_definition ::=
DELTA static_expression real_range_specification

other_control_function???

package_body ::=
PACKAGE BODY defining_program_unit_name IS

declaretive_part
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[BEGIN

handled_sequence_o f_s tatements]
END [[parent_unit_name.)identifier);

package_body_stub PACKAGE BODY defining_identifier IS SEPARATE;

package_declaration ::= package_specification;

package_renaining_declaration :: =
PACKAGE defining_program_unit_naine RENAMES package_name;

package_specification
PACKAGE defining_program_unit_name IS
{bas ic_declarative_i tem)

[PRIVATE

{basic_declarative_itera}]
END [[parent_unit_name.]identifier]

parameter_and_result_profile ::= [formal_part] RETURN subtype_raark

parameter_association ::=

[formal_parameter_selector_name =>] explicit_actual_parameter

parameter_profile ;:= [formal_part]

parameter_specification ::=

defining_identifier_list :
mode subtypejnark [:= default_expression]

I  defining_identifier_list :
access_definition [:= default_expression]

parent_unit_name ::= name

position ;:= static_expression

positional_array_aggregate ::=
(expression, expression {, expression)}

I  (expression {, expression), OTHERS => expression)

pragma ;:= PRAGMA identifier

[ (pragma_argument_association {, pragma_argiiment_association))) ,-

prefix ::= name | iraplicit_dereference

primary ::=
numeric_literal | NULL | string_literal | aggregate

I  name | qualified_expression | allocator j (expression)

private_extension_declaration ::=
TYPE defining_identifier [discrimineuit_part] IS

[ABSTRACT) NEW ancestor_subtype_indication WITH PRIVATE;

private_type_declaration ::=
TYPE defining_identifier [discriminant_part]

IS [[ABSTRACT] TAGGED] [LIMITED] PRIVATE;

procedure_call_statement ::=
proc edure_name;

I  procedure_prefix actual_parameter_part;

proper_body :;=
subprogram_body | package_body | task_body | protected_body
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protected_body ::=
PROTECTED BODY defining_identifier IS
{ protected_operation_itein }

END [protected_identifieri;

protected_body_stub ::= PROTECTED BODY defining_identifier IS SEPARATE;

protected_definition ::=
{ protected_operation_declaration }

[ PRIVATE

{ protected_eleinent_declaration ) ]
END [protected_identifier]

protected_element_declaration ::=
protected_operation_declaration | component_declaration

protectecLoperation_declaration ::= subprogranudeclaration
I  entry_declaration
I  representation_clause

protected_operation_item ;:= sxibprograin_declaration
I  s\ibprograin_body
I  entry_body
I  representation_clause

protected_type_declaration ::=
PROTECTED TYPE defining_identifier [known_discrirainant_part]
IS protected_definition;

qualified_expression ::=
subtype_mark•(expression) | subtype_mark'aggregate

raise_statement ::= RAISE [exception_name1;

range ::= RANGE | simple_expression . . siinple_expression

range_attribute_designator ::= RcUigeE(static_expression))

range_attribute_reference ::= prefix'range_attribute_designator

range_constraint :;= RANGE range

real_range_specification ::=
RANGE static_simple_expression . . static_simple_expression

real_type_definition ::=
floating_point_definition | fixed_point_definition

record_aggregate ::= (record_component_association_list)

record_coinponent_association :: =

[ coirponent_choice_list => ] expression

record_component_association_list ::=
record_component_association {, record^component_association)

I NULL RECORD

record_definition ::=

RECORD

componen t_list
END RECORD

I NULL RECORD
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record_extension_part ::= WITH record_definition

record_representation_clause ::=
FOR first_subtype_local_name USE

RECORD (mod_clause]

{coraponent_clause}

END RECORD;

record_type_definition ::=

t(ABSTRACT] TAGGED] [LIMITED] record_definition

relation ::=

simple_expression [relational_operator sin^le_expression]
I  simple_expression [NOT] IN range
I  simple.expression [NOT] IN subtype_mark

relational_operator ::= = I /= I < I <= I > I >=

renaiaing_declaration :: =
obj ect_renaining_declaration

I  exception_renaining_declaration
I  package_renaming_declaration
I  subprograin_renaining_declaration
I  generic_renaining_declaration

representation_clause ::= attribute_definition_clause
I  enuineration_representation_clause
I  record_representation_clause
I  at_clause

requeue_statement ::= REQUEUE entry_naine [WITH ABORT];

retum_stateinent ::= RETURN [expression];

scalar_constraint ;:=

range_constraint | digits_constraint | delta_constraint

select_alternative ::=

accept_alternative
I  delay_alternative
I  terminate_altemative

select_statement ::=

selective_accept
I  timed_entry_call
I  conditional_entry_call
I  asynchronous_select

selected_component ::= prefix . selector_naine

selective_accept ::=
SELECT

[guard]

select_altemative
{ OR

[guard]
select_altemative }

[ ELSE

sequence_of_statements ]
END SELECT;
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selector_name ::= identifier | character_literal | operator_sytnbol

sequence_of_statements ::= statement {statement}

signed_integer_type_definition ::=
RANGE static_simple_expression . . static_simple_expression

simple_expression ::=
tunary_adding_operator] term {binary_adding_operator term)

simple_statement ::= null_statement
I  assignment.statement
I  goto_statement
j  return_statement
I  requeue_statement
I  abort_statement
code_statement

exit_statement

procedure_ca1l_s ta tement

entry_call_statement

delay_statement

raise_statement

single_protected_declaration ::=
PROTECTED defining_identifier IS protected_definition;

single_task_declaration :: =
TASK defining_identifier [IS task_definition];

slice ::= prefix(discrete_range)

space_charac ter ? ? ?

special_character? ? ?

statement ::=

{label} simple_statement | {label} compound_statement

statement_identifier ::= direct_name

string_element ::= "" | non_quotation_mark_graphic_character

string_literal ::= "{string_element}"

subprogram_body ::=
subprogram_specification IS

declarative jpart
BEGIN

heunidled_sequence_o f_s ta tement s

END [designator];

subprograiiL.body_stub ::= subprogram_specification IS SEPARATE;

subprogreun_declaration :;= subprograirt_specification;

s\ibprogram_default ::= default_name | <>

subprogram_renaming_declaration ::=
subprogram_specification RENAMES callable_entity_name;

subprogranuspecification ;:=
PROCEDURE defining_program_unit_name parameter_profile

I  FUNCTION defining_designator parameter_and_result_profile

subtype_declaration ::=
SUBTYPE defining_identifier IS subtype_indication;
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subtype_indication ;;= subtype_mark [constraint]

subtype_niark : := subtype_naine

subunit ::= SEPARATE (parent_\init_naine) proper_body

task_body ::=
TASK BODY defining_identifier IS

declarative__part
BEGIN

hsuidled_sequence_of_statements
END [task_identifier];

task_body_stub ::= TASK BODY defining_identifier IS SEPARATE;

task_definition ::=

{task_itein}
[ PRIVATE

{task_item}]
END [task_identifier]

task.item ::= entry_declaration | representation_clause

task_type_declaration :;=
TASK TYPE defining_identifier [known_discrimincint_part]

(IS task_definition];

term factor {multiplying_operator factor}

terminate_alternative ::= TERMINATE;

timed_entry_call ::=
SELECT

entry_call_altemative
OR

delay_altemative
END SELECT;

triggering_alternative ::=
triggering_s tatemen t [ sec[uence_o f_s tat ements ]

triggering_statement ::= entry_call_statement | delay_statement

type_conversion ::=
subtype_piark (expression)

I  subtype_inark (ncime)

type_declaration full_type_declaration
I  incomplete_type_declaration
I private_type_declaration
I  private_extension_declaration

type_definition ::=

enumeration_type_definition | integer_type_definition
I  real_type_definition | array_type_definition
I  record_type_definition j access_type_definition
I  derived_type_definition

unary_adding_operator :;= + I -
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vmconstrained_array_definition ::=
ARRAY(index_subtype_definition
{, index_subtype_definition}) OF component_definition

unknovm_discriininant_part ;:= (<>)

use_clause ::= use_package_clause | use_type_clause

use_package_clause ::= USE package_name {, package_naine};

use_type_clause ::= USE TYPE subtype_mark {, subtype_mark);

variant ;;=

WHEN discrete_choice_list =>
coinponent_l i s t

variant_part ::=
CASE discriininant_direct_naine IS

variant

{variant)

END CASE;

with_clause :;= WITH library_unit_naine {, library_unit_name};



APPENDIX C

The Package standard-
Ada's Predefined

Environment

This appendix, adapted from the Ada 95 Reference Manual, Section A.l, outlines the
specification of the package St:andard containing all predefined identifiers in the lan
guage. The corresponding package body is not specified by the language.

The operators that are predefined for the types declared in the package Standard
are given in comments because they are implicitly declared. Italics are used for
pseudonames of anonymous types (such as root_real) and for undefined informa
tion (such as implementation-defined).

PACKAGE Stsmdard is

PRAGMA Pure(Standard);

TYPE Boolean IS (False, True);

— The predefined relational operators for this type are as follows:

— FUNCTION "=" (Left, Right : Boolean) RETURN Boolean;
— FUNCTION "/=" (Left, Right : Boolean) RETURN Boolean;
— FUNCTION •<" (Left, Right : Boolean) RETURN Boolean;
— FUNCTION "<=" (Left, Right : Boolean) RETURN Boolean;
— FUNCTION ">" (Left, Right : Boolean) RETURN Boolean;
-- FUNCTION ">=" (Left, Right : Boolean) RETURN Boolean;

— The predefined logical operators and the predefined logical
— negation operator are as follows:

-- FUNCTION "AND" (Left, Right : Boolean) RETURN Boolean;
— FUNCTION "OR" (Left, Right : Boolean) RETURN Boolean;
— FUNCTION "XOR" (Left, Right : Boolean) RETURN Boolean;

-- FUNCTION "NOT" (Right : Boolean) RETURN Boolean;

-- The integer type root_integer is predefined.
— The corresponding universal type is universal_inCeger.

TYPE Integer IS RANGE implementation-dafined;

SUBTYPE Natural IS Integer RANGE 0 . . Integer'Last;

SUBTYPE Positive IS Integer RANGE 1 . . Integer'Last;

— The predefined operators for type Integer are as follows:

602
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FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

'/ = '

'<='

I > H

(Left, Right

(Left, Right

(Left, Right

(Left, Right
(Left, Right

(Left, Right

Integer)

Integer)

Integer)

Integer)

Integer)

Integer)

RETURN

RETURN

RETURN

RETURN

RETURN

RETURN

Boolean;

Boolean;

Boolean;

Boolean;

Boolean;

Boolean;

-- FUNCTION "+"

— FUNCTION

— FUNCTION "ABS*

(Right : Integer) RETURN Integer;

(Right : Integer) RETURN Integer;
(Right : Integer) RETURN Integer;

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

•/"

•REM'

•MOD'

(Left, Right
(Left, Right
(Left, Right
(Left, Right
(Left, Right
(Left, Right

Integer)
Integer)

Integer)

Integer)

Integer)

Integer)

RETURN Integer;

RETURN Integer;

RETURN Integer;

RETURN Integer;

RETURN Integer;

RETURN Integer;

— FUNCTION "**" (Left : Integer; Right : Natural) RETURN Integer;

— The specification of each operator for the type
— root_integer, or for any additional predefined integer
— type, is obtained by replacing Integer by the name of the type
— in the specification of the corresponding operator of the type
— Integer. The right operand of the exponentiation operator
— remains as subtype Natural.

— The floating point type root_real is predefined.
— The corresponding universal type is universal_real.

TYPE Float IS DIGITS implementation-defined;

— The predefined operators for this type are as follows:

- FUNCTION " = » (Left, Right : Float) RETURN Boolean;

— FUNCTION -/ = " (Left, Right : Float) RETURN Boolean;

- FXmCTION (Left, Right : Float) RETURN Boolean;

- FUNCTION " <=" (Left, Right : Float) RETURN Boolean;

- FUNCTION (Left, Right : Float) RETURN Boolean;

-
FUNCTION »>_« (Left, Right : Float) RETURN Boolean;

FUNCTION " + ■ (Right :  Float) RETURN Float;

- FUNCTION (Right :  Float) RETURN Float;

-
FUNCTION » ABS " (Right :  Float) RETURN Float;

_ FUNCTION (Left, Right : Float) RETURN Float;

- FUNCTION (Left, Right : Float) RETURN Float;

- FUNCTION » * » (Left, Right : Float) RETURN Float;

-
FUNCTION V (Left, Right : Float) RETURN Float;

_ FUNCTION •1 * ★ w (Left ;:  Float; Right 1;  Integer) RETURN

The specification of each operator for the type root_real, or
for any additional predefined floating point type, is
obtained by replacing Float by the name of the type in the
specification of the corresponding operator of the type Float.

In addition, the following operators are predefined for the
root numeric types:

FUNCTION "*• (Left

RETURN root_reaJ;

root_integer; Right : root_real)
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FUNCTION (Left ; root_real;
RETURN root_real;

FUNCTION -/" (Left : root_reaI;
RETURN root_reaI;

Right : root_integer)

Right : root_integer)

— The type universal_fixe6, is predefined.
— The only multiplying operators defined between
— fixed point types are

FUNCTION (Left : universal_fixed; Right : universal_fixed)
RETURN universal_fixed;

FUNCTION "/" (Left : universal_fixed; Right : universal_fixed)
RETURN universal_fixed;

— The declaration of type Character is based on the standard ISO
— 8859-1 character set.

— There are no character literals corresponding to the positions
— for control characters.

- They are indicated in italics in this definition

'YPE Character IS

(nul. soh. stx. etx. eat. enq. aek. bel.
bs. ht. If, vt. ff. er. so. si.

die. del. dc2. dc3. de4. nak. syn. etb.
can. em. sub. esc. fs. gs. rs. us.

'  ', ' ! '
,

•  . .

• * 1

'0', '4',
•8', '9', ' <' / ' =' / 1 o'

'0', 'A* , ■B' , •c, •D" , •E* , •F' , •G' ,
'H' , 'I' , ' J' , 'K' , 'L' , •M' , 'N' , '0' ,

•P' , •Q' . •R' , 'S' , •T', 'U' , 'V , 'W ,
'X' , 1 A •

'a', 'b' , •c', •d' , 'e' , •f' , 'g' f
•h' , ' i'» ■ j ' . 'k', '1' . 'm' , •n', 'o*,

•P*. 'q'. 'r', 's' , 'f , 'u', ' V, 'w' ,
•x' , ■y. ' z', • 1 ' . - ' del.

reserved_l28, reserve(l_129. bph. nbh.
reserved_132, nel. ssa. esa.

hts. htj. vts. pld. plu. ri. ss2. ss3.

das. pul. pu2. sts. eeh. im. spa. epa.

SOS, reserved_153,,  sci. esi.
St, osc. pm. ape.

•  • . ) ;
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— The predefined operators for the type Character are the same as
— for autiy enumeration type.

— The declaration of type Wide_Character is based on the standard
— ISO 10646 BMP character set.

-- The first 256 positions have the same contents as type
-- Character.

TYPE Wide_Character IS (nul, soh . . . FFFE, FFFF);

PACKAGE ASCII IS . . . END ASCII; —Obsolescent; see J.

-- Predefined string types:

TYPE String IS ARRAY(Positive RANGE <>) OF Character;
PRAGMA Pack(String);

— The predefined operators for this type are as follows:

—FUNCTION (Left, Right: String) RETURN Boolean;
—FUNCTION "/=" (Left, Right: String) RETURN BooleeUl;
—FUNCTION "<" (Left, Right: String) RETURN Boolean;
—FUNCTION "<=* (Left, Right: String) RETURN Boolean;
—FUNCTION *>" (Left, Right: String) RETURN Boolean;
—FUNCTION ">=" (Left, Right: String) RETURN Boolean;

—FUNCTION (Left; String; Right: String) RETURN String;
—FUNCTION (Left: Character; Right: String) RETURN String;
—FUNCTION (Left: String; Right: Character) RETURN String;
—FUNCTION (Left: Character; Right: Character) RETURN String;

TYPE Wide_String IS ARRAY(Positive RANGE <>) OF Wide_Character;
PRAGMA Pack(Wide_String);

— The predefined operators for this type correspond to
— those for String

TYPE Duration IS

DELTA implementation-defined RANGE implementation-defined;

— The predefined operators for the type Duration are the same
— as for euiy fixed point type.

— The predefined exceptions:

Constraint_Error

Program_Error

Storage_Error

Tasking_Error

END Stcindard;

EXCEPTION

EXCEPTION

EXCEPTION

EXCEPTION



APPENDIX D

Specification of the Package
Ada•Text lO

This appendix, adapted from the Ada 95 Reference Manual, Section A. 10.1, gives the
specification for Ada. Text_IO. Note that the numeric sub-packages Integer_IO
and Float_IO are given here as generic. The standard also provides for the preinstan-
tiated packages Ada. Integer_Text_IO and Ada. Float_Text_IO as we have
used them in this book. These last two packages are part of the standard libraries and do
not need to be created or compiled by the user.

Explanations of the most common input/output exceptions are given in Appendix
H, along with the other exceptions likely to be encountered by a student.

WITH Ada.IO_Exceptions;
PACKAGE Ada.Text_IO IS

TYPE File_Type IS LIMITED PRIVATE;

TYPE File_Mode IS (In_File, Out_File, Append_File);

TYPE Count IS RANGE 0 . . implementation-defined',
SUBTYPE Positive_Count IS Count RANGE 1 .. Count'Last;
Unboiinded : CONSTANT Count : = ; — line and page length

SUBTYPE Field IS Integer RANGE 0 .. implementation-defined;
SUBTYPE Nuinber_Base IS Integer RANGE 2 .. 16;

TYPE Type_Set IS {Lower_Case, Upper_Case);

— File Management

PROCEDURE Create (File : IN out File_Type;
Mode : IN File_Mode := Out_File;
Name : IN String : = ;
Form ; IN String ;= "");

PROCEDURE Open (File : IN out File_Type;
Mode : IN FileJMode;
Name : IN String;
Form : IN String := "");

PROCEDURE Close (File : IN out File_Type);
PROCEDURE Delete (File : IN out File_Type);
PROCEDURE Reset (File : IN out File_Type; Mode : IN File_Mode)
PROCEDURE Reset (File : IN out File_Type);

FUNCTION Mode (File : IN File_Type) RETURN File_Mode;
FUNCTION Ncune (File : IN File_Type) RETURN String;
FUNCTION Form (File : IN File_Type) RETURN String;
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FUNCTION Is_Open(File : IN File_Type) RETURN Boolean;

— Control of default input and output files

PROCEDURE Set_Input (File : IN File_Type);
PROCEDURE Set_Output(File : IN File_Type);
PROCEDURE Set_Error (File : IN File_Type);

FUNCTION Standard_Input RETURN File_Type;
FUNCTION Standard_Output RETURN File_Type;
FUNCTION Standard_Error RETURN File_Type;

FUNCTION Current_Input RETURN File_Type;
FUNCTION Current_Output RETURN File_Type;
FUNCTION Current_Error RETURN File_Type;

TYPE File_Access IS ACCESS CONSTANT File_Type;

FUNCTION Standard_Input RETURN File_Access;
FUNCTION Standard_Output RETURN File_Access;
FUNCTION Standard_Error RETURN File_Access;

FUNCTION Current_Input RETURN File_Access;
FUNCTION Current_Output RETURN File_Acceiss;
FUNCTION Current_Error RETURN File_Access;

—Buffer control

PROCEDURE Flush (File : IN OUT File_Type);
PROCEDURE Flush;

— Specification of line and page lengths

PROCEDURE Set_Line_Length(File : IN File_Type; To : IN Count);
PROCEDURE Set_Line_Length(To : IN Count);

PROCEDURE Set_Page_Length(File : IN File_Type; To : IN Count);
PROCEDURE Set_Page_Length(To : IN Count);

FUNCTION Line_Length(File : IN File_Type) RETURN Count;
FUNCTION Line_Length RETURN Count;

FUNCTION Page_Length(File : IN File_Type) RETURN Count;
FUNCTION Page_Length RETURN Count;

— Column, Line, and Page Control

PROCEDURE New_Line

PROCEDURE NewLine

(File
Spacing
(Spacing

IN File_Type;
IN Positive_Count := 1);

IN Positive_Count := 1);

PROCEDURE Skip_Line (File
Spacing

PROCEDURE S]cip_Line (Spacing

IN File_Type;
IN Positive_Count := 1);

IN Positive_Count := 1);

FUNCTION End_Of_Line{File : IN File_Type) RETURN Boolean;
FUNCTION End^Of_Line RETURN Boolean;

PROCEDURE New_Page (File : IN File_Type);
PROCEDURE New_Page;

PROCEDURE S)cip_Page (File : IN File_Type) ;
PROCEDURE Slcip_Page;
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FUNCTION End_Of_Page(File ; IN File_Type) RETURN Boolean;
FUNCTION End_Of_Page RETURN Boolean;

FUNCTION End_Of_File(File : IN File_Type) RETURN Boolean;
FUNCTION End_Of_File RETURN Boolean;

PROCEDURE Set_Col (File : IN File_Type; To : IN Positive_Count)
PROCEDURE Set_Col (To : IN Positive_Count);

PROCEDURE Set_Line(File : IN File_Type; To : IN Positive_Count)
PROCEDURE Set_Line(To : IN Positive_Count);

FUNCTION Col (File : IN File_Type) RETURN Positive_Count;
FUNCTION Col RETURN Positive_Co\mt;

FUNCTION Line(File : IN File_Type) RETURN Positive_Count;
FUNCTION Line RETURN Positive_Count;

FUNCTION Page(File : IN File_Type) RETURN Positive_Count;
FUNCTION Page RETURN Positive_Count;

— Character Input-Output

PROCEDURE Get(File : IN File_Type; Item
PROCEDURE Get(Item : OUT Character);

PROCEDURE Put(File

PROCEDURE Put(Item
IN File_Type; Item
IN Character);

OUT Character);

IN Character);

PROCEDURE Loolc_Ahead (File : IN File_Type;
Item : OUTCharacter;
End_Of_Line : OUT Boolesui) ;

PROCEDURE Look_J^ead (Item

End_Of_Line

PROCEDURE Get_Immediate(File

Item

PROCEDURE Get_Immediate(Item

PROCEDURE Get_Immediate(File

Item

Available
PROCEDURE Get_Immediate(Item

Availcible

— String Input-Output

OUT Character;

OUT Boolean);

IN File_Type;
OUT Character);

OUT Character);

IN File_Type;
OUT Character;
OUT Boolean);

OUT Character;
OUT Boolean);

PROCEDURE Get(File : IN File_Type; Item
PROCEDURE Get(Item : OUT String);

PROCEDURE Put(File : IN File_Type; Item
PROCEDURE Put(Item : IN String);

PROCEDURE Get_Line(File

Item

Last

PROCEDURE Get_Line(Item

PROCEDURE Put_Line(File

PROCEDURE Put_Line(Item

IN File_lVpe;
OUT String;
OUT Natural);
OUT String; Last

OUT String);

IN String);

OUT Natural);

IN File_Type; Item : IN String);
IN String);

— Generic packages for Input-Output of Integer Types
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GENERIC

TYPE Num IS RANGE <>;

PACKAGE Integer_IO IS

Default_Width : Field := Ntun'Width;
Default_Base : Nuinber_Base := 10;

PROCEDURE Get(File

Item

Width

PROCEDURE Get(Item

Width

PROCEDURE Put(File

Item

Width

Base

PROCEDURE Put(Item

Width

Base

PROCEDURE Get(From :

Item :

Last :

PROCEDURE Put(To :

Item :

Base :

END Integer_IO;

GENERIC

TYPE Niam IS mod <>;

PACKAGE Modular_IO IS

:  IN File_Type;
: OUT Num;

:  IN Field := 0);

: OUT Num;

:  IN Field := 0);

:  IN File_Type;
:  IN Num;

:  IN Field ;= Default_Width;
:  IN Number_Base := Default_Base)

!  IN Num;

:  IN Field := Default_Width;
:  IN Number_Base := Default_Base)

IN String;

OUT Num;

OUT Positive);

OUT String;
IN Num;

IN Number_Base := Default_Base);

Default_Width

Default_Base

Field := Ntim*Width;

Nuinber_Base := 10;

PROCEDURE Get(File

Item

Width

PROCEDURE Get(Item

Width

PROCEDURE Put(File

Item

Width

Base

PROCEDURE Put(Item

Width

Base

PROCEDURE Get(From :

Item ;

Last :

PROCEDURE Put(To :

Item :

Base :

IN File_Type;
OUT Num;

IN Field := 0);
OUT Num;

IN Field := 0);

IN File_Type;
IN Num;

IN Field := Default_Width;
IN Number_Base := Default_Base)

IN Num;

IN Field := Default_Width;
IN Nuinber_Base := Default_Base)

IN String;
OUT Num;

OUT Positive);

OUT String;
IN Num;

IN Number_Base := Default_Base);

END Modular_IO;

— Generic PACKAGES for Input-Output of Real Types

GENERIC

TYPE Num IS digits <>;
PACKAGE Float_IO IS
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Default_Fore: Field
Default_Aft : Field
Default_Exp : Field

PROCEDURE Get{File

Item

Width

PROCEDURE Get(Item

Width

= 2;

= Num'Digits-1 ;

= 3;

IN File_Type;
OUT N\im;

IN Field := 0)

OUT Num;

IN Field := 0)

PROCEDURE Put(File IN File_Type;
Item IN Niim;

■ Fore IN Field := Default_Fore
Aft IN Field := Default_Aft;
Exp IN Field := Default_Exp)

PROCEDURE Put(Item IN Num;

Fore IN Field := Default_Fore
Aft IN Field := Default_Aft;
Exp IN Field := Default_Exp)

PROCEDURE Get(From IN String;
Item

Last

PROCEDURE Put(To

Item

Aft

Exp

END Float_IO;

OUT Num;

OUT Positive);

OUT String;
IN Num;

IN Field := Default_Aft;
IN Field := Default_Exp)

GENERIC

TYPE Niun IS delta <>;

PACKAGE Fixed 10 IS

Default_Fore!
Default_Aft :

Default_Exp :

Field := Nxim'Fore;
Field := Num'Aft;

Field := 0;

PROCEDURE Get(File

Item

Width

PROCEDURE Get(Item

Width

:  IN File_Type;
: OUT Num;

:  IN Field := 0);

: OUT Num;

:  IN Field := 0);

PROCEDURE Put(File IN File_Type;
Item IN Num;

Fore IN Field := Default_Fore
Aft IN Field := Default_Aft;
Exp IN Field := Default_Exp)

PROCEDURE Put(Item IN Num;

Fore IN Field := Default_Fore
Aft IN Field := Default_Aft;
Exp IN Field := Default_Exp)

PROCEDURE Get(From IN String;
Item

Last

PROCEDURE Put(To

Item

Aft

Exp

END Fixed_IO;

OUT Num;

OUT Positive);

OUT String;
IN Num;

IN Field := Default_Aft;
IN Field := Default_Exp)
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GENERIC

TYPE Num IS DELTA <> DIGITS <>;

PACKAGE Decimal_IO IS

Default_Fore

Default_Aft

Default_Exp

Field := Num'Fore;

Field := Nvim'Aft;

Field := 0;

PROCEDURE Get(File

Item

Width

PROCEDURE Get(Item

Width

IN File_Type;
OUT Num;

IN Field := 0)

OUT Num;

IN Field := 0)

PROCEDURE Put(File

Item

Fore

Aft

Exp

PROCEDURE Put(Item

Fore

Aft

Exp

PROCEDURE Get(From

Item

Last

PROCEDURE Put(To

Item

Aft

Exp

END Decimal_IO;

IN File_Type;
IN Num;

IN Field

IN Field

IN Field

IN Num;

IN Field

IN Field

IN Field

Default_Fore

Default^ft;

Default_Exp)

Default_Fore

Default^f t;
Default_Exp)

IN String;
OUT Num;

OUT Positive);

OUT String;

IN Num;

IN Field := Default_Aft;

IN Field := Default_Exp)

-- Generic package for Input-Output of Enumeration Types

GENERIC

TYPE Enum IS (<>);

PACKAGE Enumeration_IO IS

Default_Width
Default_Setting

PROCEDURE Get(File

Item

PROCEDURE Get(Item

Field := 0;

Type_Set := Upper_Case;

:  IN File_Type;
: OUT En\im) ;

: OUT Enum);

PROCEDURE Put(File

Item

Width

Set

PROCEDURE Put(Item

Width

Set

IN File_Type;

IN Enum;

IN Field

IN Type_Set :^

IN Enum;

IN Field : ■

IN Type_Set :=

Default_Width;

Default_Setting)

Default_Width;

Default_Setting)

PROCEDURE Get(From

Item

Last

PROCEDURE Put(To

Item

Set

END En\imeration_IO;

IN String;

OUT Enum;

OUT Positive);

OUT String;

IN Enum;

IN Type_Set := Default_Setting)
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-- Exceptions

Status_Error

Mode_Error

Naine_Error

Use_Error

Device_Error

End_Error

Data_Error

Layout_Error

EXCEPTION

EXCEPTION

EXCEPTION

EXCEPTION

EXCEPTION

EXCEPTION

EXCEPTION

EXCEPTION

RENAMES

RENAMES

RENAMES

RENAMES

RENAMES

RENAMES

RENAMES

RENAMES

IO_Exceptions.

IO_Exceptions.
IO_Exceptions,
IO_Exceptions,
IO_Exceptions,

IO_Exceptions,
IO_Exceptions.
IO_Exceptions.

Status_Error;

Mode_Error;

Name_Error;

Use_Error;

Device_Error;

End_Error;

Data_Error;

Layout_Error;

PRIVATE

... — not specified by the language
END Ada.Text_IO;
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Specification of the Package
Ada.Calendar

This appendix, adapted from the Ada 95 Reference Manual, Section 9.6, gives the spec
ification for the package Ada. Calendar.

PACKAGE Ada.Calendar IS

TYPE Time IS PRIVATE;

2099;SUBTYPE Year_Nuraber IS Integer RANGE 1901

SUBTYPE Month_JJuinber IS Integer RANGE 1 . . 12 ;

SUBTYPE Day_Number IS Integer RANGE 1 .. 31;
SUBTYPE Day_Duration IS Duration RANGE 0.0 .. 86_400;

FUNCTION Time_Of (Year :

Month

Day

Seconds;

Year_Number;

Month_Number;

DayJNumber ;

Day_Duration:=0.0) RETURN Time;

FUNCTION Year (Date : Time) RETURN Year_Number;

FUNCTION Month (Date : Time) RETURN Month_Number;

FUNCTION Day (Date : Time) RETURN Day_Number;
FUNCTION Seconds (Date : Time) RETURN Day_Duration;

PROCEDURE Split (Date: IN
Year

Month

Day

Seconds

Time;

OUT Year_Number;

OUT Month_Nuinber ;

OUT Day_Number;

OUT Day_Duration);

FUNCTION Clock RETURN Time;

FUNCTION "<" (Left, Right : Time)
FUNCTION "<=" (Left, Right : Time)
FUNCTION ">" (Left, Right : Time)
FUNCTION ">=" (Left, Right : Time)

RETURN Boolean;

RETTFRN Boolean;

RETURN Boolean;

RETURN Boolean;

FUNCTION "+'

FtJNCTION " + ■

FUNCTION

FUNCTION

Time_Error :

(Left : Time; Right
(Left : Duration; Right
(Left : Time; Right
(Left : Time; Right
EXCEPTION;

Duration)

Time)

Duration)

Time)

RETURN Time;

RETURN Time;

RETURN Time;

RETURN Duration;

PRIVATE

— not specified by the language

END Ada.Calendar;
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Specifications of the Ada
Math Libraries

This appendix, adapted from the Ada 95 Reference Manual, Sections A.5.1 and A.5.2,
gives the specifications for the packages Ada .Numerics, Ada .Numerics.
Elementary_Functions, and Ada.Numerics.Float_Random, and the
generic package Ada .Numerics. Discrete_Random.

PACKAGE Ada.Numerics IS

Argument_Error : EXCEPTION;

Pi : CONSTANT :=

3.14159_26535_89793_23846_26433_83279_50288_41971_69399_37511;
e  : CONSTANT :=

2.71828_18284_59045_23536_02874_71352_66249_77572_47093_69996;

END Ada.Nvimerics;

PACKAGE Ada.Numerics.Elementary_Functions IS

FUNCTION Sqrt (X ;  Float) RETURN Float
FUNCTION Log (X : Float) RETURN Float
FUNCTION Log (X, Base : Float) RETURN Float
FUNCTION Exp (X :  Float) RETURN Float
FUNCTION •« *" (Left, Right :  Float) RETURN Float

FUNCTION Sin (X Float) RETURN Float
FUNCTION Sin (X, Cycle Float) RETURN Float
FUNCTION Cos (X Float) RETURN Float
FUNCTION Cos (X. Cycle Float) RETURN Float
FUNCTION Tan (X Float) RETURN Float
FUNCTION Tan (X, Cycle Float) RETURN Float
FUNCTION Cot (X Float) RETURN Float
FUNCTION Cot (X. Cycle Float) RETURN Float

FUNCTION Arcsin (X Float) RETURN Float
FUNCTION Arcsin (X, Cycle Float) RETURN Float
FUNCTION Arccos (X Float) RETURN Float
FUNCTION Arccos {X, Cycle Float) RETURN Float
FUNCTION Arctan (Y Float;

X Float := 1.0) RETURN Float
FUNCTION Arctan (Y Float;

X Float := 1.0;
Cycle Float) RETURN Float;

FUNCTION Arccot (X Float;
Y Float := 1.0) RETURN Float;

FUNCTION Arccot (X Float;
Y Float = 1.0;

Cycle Float) RETURN Float;
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FUNCTION Sinh (X Float) RETURN Float

FUNCTION Cosh (X Float) RETURN Float;

FUNCTION Tanh (X Float) RETURN Float;

FUNCTION Coth (X Float) RETURN Float;

FUNCTION Arcsinh (X Float) RETURN Floats-

FUNCTION Arccosh (X Float) RETURN Float;

FUNCTION Arctanh (X Float) RETURN Float;

FUNCTION Arccoth (X Float) RETURN Float;

END Ada.Numerics.Elementary_Functions;

PACKAGE Ada.Numerics.Fleat_Random IS

— Basic facilities

TYPE Generator IS limited private;
SUBTYPE Uniformly_Distributed IS Float RANGE 0.0 . . 1.0;
FUNCTION Random (Gen : Generator) RETURN Uniformly_Distributed;

PROCEDURE Reset (Gen

Initiator

PROCEDURE Reset (Gen

— Adveinced facilities

TYPE State IS private;

PROCEDURE Save (Gen

To_State

PROCEDURE Reset (Gen

IN Generator;

IN Integer);

IN Generator);

:  IN Generator;

; OUT State);

:  IN Generator;

From_State : IN State);

Max_Image_Width : constcuit := implementation-defined integer value;

FUNCTION Image (Of_State : State) RETURN String;
FUNCTION Value (Coded_State : String) RETURN State;

PRIVATE

... — not specified by the language
END Ada.Numerics.Float_Random;

GENERIC

TYPE Result_SubTYPE IS (<>);

PACKAGE Ada.Numerics.Discrete_Random IS

-- Basic facilities

TYPE Generator IS limited private;

FUNCTION Random (Gen : Generator) RETURN Result_SubTYPE;

PROCEDURE Reset (Gen : IN Generator;

Initiator : IN Integer);
PROCEDURE Reset (Gen : IN Generator);

— Advanced facilities

TYPE State IS private;

PROCEDURE Save (Gen

To_State

IN Generator;

OUT State);
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PROCEDURE Reset (Gen : IN Generator;
From_State : IN State);

Max_Iniage_Width : constant := implementation-defined integer value;

FUNCTION Image (Of_State : State) RETURN String;
FUNCTION Value (Coded_State : String) RETURN State;

PRIVATE

... — not specified by the language
END Ada.Numerics.Discrete_Random;
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Specification of the Ada
String Libraries Used
in this Book

This appendix, adapted from the Ada 95 Reference Manualy Section A.3, gives the spec
ifications for the packages Ada.Characters .Handling, Ada.Strings,
Ada. Strings .Maps, and Ada. Strings. Fixed. Not shown are
Ada. Strings. Bounded and Ada. Strings. Unbounded, which have function
ality similar to Ada. Strings. Fixed.

PACKAGE Ada.Characters.Handling IS
PRAGMA Preelaborate(Hcuidling);

—Character classification FUNCTIONS

FtJNCTION Is_Control (Item :;  IN Character) RETURN Boolean;

FUNCTION Is_Graphic (Item ::  IN Character) RETURN Boolean;

FUNCTION Is_Letter (Item :;  IN Character) RETURN Boolean;

FUNCTION Is_Lower (Item :;  IN Character) RETURN Boolean;

FUNCTION Is_Upper (Item :;  IN Character) RETURN Boolean;

FUNCTION Is_Basic (Item ::  IN Character) RETURN Boolean;

FUNCTION Is_Digit (Item :;  IN Character) RETURN Boolean;

FUNCTION Is_Decimal_Digit (Item ;;  IN Character) RETURN Boolean

RENAMES Is_Digit;
FUNCTION Is_Hexadecimal_Digit (Item :;  IN Character) RETURN Boolecui;

FUNCTION Is_Alphemumeric (Item :;  IN Character) RETURN Boolean;

FUNCTION Is_Special (Item :;  IN Character) RETURN Boolean;

-Conversion fiinctions for Character and String

FUNCTION To_.Lower (Item :;  IN

FUNCTION To_.Upper (Item :;  IN

FUNCTION To_.Basic (Item :;  IN

FUNCTION To..Lower (Item ;;  IN

FUNCTION To..Upper (Item :;  IN

FUNCTION To..Basic (Item :;  IN

RETURN Character;

—Classifications of and conversions between

—Character and ISO_646

SUBTYPE ISO_646 IS

Character RANGE Character'Val(0) Character'Val{127);
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FUNCTION Is_ISO_646 (Item : IN Character) RETURN Boolean;
FUNCTION Is_ISO_646 (Item : IN String) RETURN Boolean;

FUNCTION To_ISO_646 (Item

Substitute

RETURN ISO_646;

FUNCTION To_ISO_646 (Item

Substitute

;  IN Character;

IN ISO_646 :=

IN String;

IN ISO_646 :=

RETURN String;

-- Classifications of and conversions between
— Wide_Character and Character.

FUNCTION Is_Character (Item : IN Wide_Character) RETURN Boolean;
FUNCTION Is_String (Item : IN Wide_String) RETURN Boolean;

FUNCTION To_Character (Item

Substitute

RETURN Character;

IN Wide_Character;
IN Character := '

FUNCTION To_String

RETURN String;

(Item

Substitute

IN Wide_String;
IN Character :=

FUNCTION To_Wide_Character (Item : IN Character)
RETURN Wide_Character;

FUNCTION To_Wide_String

END Ada.Characters.Handling;

(Item : IN String) RETURN Wide_String;

PACKAGE Ada.Strings IS
PRAGMA Pure(Strings);

Space : constant Character := ' •;
Wide_Space : consteint Wide_Character : = ' ■ ;

Length_Error, Pattern_Error, lndex_Error, Translation_Error
EXCEPTION;

TYPE Alignment IS (Left, Right, Center);
TYPE Truncation IS (Left, Right, Error);
TYPE Membership IS (Inside, Outside);
TYPE Direction IS (Forward, Backward);
TYPE Trim_End IS (Left, Right, Both);

END Ada.Strings;

PACKAGE Ada.Strings.Maps IS
PRAGMA Preelaborate(Maps);

— Representation for a set of character values:
TYPE Character_Set IS private;

Null_Set : constant Character_Set;
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TYPE Character_Range IS
RECORD

Low : Character;

High : Character;

END RECORD;

-- Represents Character RANGE Low. .High

TYPE Character_Ranges IS array (Positive RANGE <>) OF Character_Range;

FUNCTION To_Set (Ranges : IN Character_Ranges)
RETURN Character_Set;

FUNCTION To_Set (Span : IN Character_Range)
RETURN Character_Set;

FUNCTION To_Ranges (Set : IN Character_Set)
RETURN Character_Ranges;

FUNCTION "=" (Left, Right : IN Character_Set) RETURN Boolean;

FUNCTION "NOT" (Right : IN Character_Set)
RETURN Character_Set;

FUNCTION "AND" (Left, Right : IN Character_Set)
RETURN Character_Set;

FUNCTION "OR" (Left, Right : IN Character_Set)
RETURN Character_Set;

FUNCTION "XOR" (Left, Right : IN Character_Set)
RETURN Character_Set;

FUNCTION (Left, Right : IN Character_Set)
RETURN Character_Set;

FUNCTION Is_ln (Element : IN Character;
Set : IN Character_Set)

RETURN Boolean;

FUNCTION Is_Subset (Elements : IN Character_Set;
Set : IN Character_Set)

RETURN Boolean;

FUNCTION "<=" (Left : IN Character_Set;
Right : IN Character_Set)

RETURN Boolean RENAMES Is_Subset;

— Alternative representation for a set of character values:
SUBTYPE Character_Sequence IS String;

FUNCTION To_Set (Sequence : IN Character_Sequence)
RETURN Character_Set;

FUNCTION To_Set (Singleton : IN Character) RETURN Character_Set;

FUNCTION To_Sequence (Set : IN Character_Set)
RETURN Character_Sequence;

— Representation for a character to character mapping:
TYPE Character_Mapping IS PRIVATE;

FUNCTION Value (Map : IN Character_Mapping;
Element : IN Character)

RETURN Character;

Identity : constant Character_Mapping;
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FUNCTION To_Mapping (From, To : IN Character_Sequence)
RETURN Character_Mapping;

FUNCTION To_Domain (Map : IN Character_Mapping)
RETURN Charac t er_Sequenc e;

FUNCTION To_Range (Map ; IN Character_Mapping)
RETURN Character_Sequence;

TYPE Character_Mapping_Function IS
ACCESS FUNCTION (From : IN Character) RETURN Character;

PRIVATE

.  . . not specified by the language
END Ada.Strings.Maps;

WITH Ada.Strings.Maps;
PACKAGE Ada.Strings.Fixed IS
PRAGMA Preelaborate(Fixed);

— "Copy" PROCEDURE for strings of possibly different lengths

PROCEDURE Move (Source

Target

Drop

Justify
Pad

-- Search subprograms

FUNCTION Index (Source

Pattern

Going
Mapping

RETURN Natural;

FUNCTION Index (Source

Pattern

Going
Mapping

RETURN Natural;

FUNCTION Index (Source :

Set :

Test :

Going :
RETURN Natural;

IN String;
OUT String;
IN Truncation

IN Alignment
IN Character

= Error;

= Left;

= Space);

IN String;
IN String;
IN Direction := Forward;
IN Maps.Character_Mapping
:= Maps.Identity)

IN String;
IN String;
IN Direction := Forward;
IN Maps.Character_Mapping_Function)

IN String;
IN Maps.Character_Set;
IN Membership ;= Inside;
IN Direction := Forward)

FUNCTION Index_Non_Blank

RETURN Natural;

FUNCTION Count (Source

Pattern

Mapping

RETURN Natural;

FUNCTION Count (Source

Pattern

Mapping
RETURN Natural;

(Source

Going
IN String;
IN Direction := Forward)

IN String;
IN String;
IN Maps.Character_Mapping

:= Maps.Identity)

IN String;
IN String;
IN Maps.Character_Mapping_Function)
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FUNCTION Count (Source

Set

RETURN Natural;

IN String;
IN Maps.Character_Set)

PROCEDURE Find_Token (Source
Set

Test

First

Last

IN String;

IN Maps .Character.Setf-

lN Membership;
OUT Positive;

OUT Natural);

— String translation subprograms

FUNCTION Translate (Source :

Mapping :

RETURN String;

PROCEDURE Translate (Source

Mapping

IN String;
IN Maps.Character_Mapping)

IN out String;
IN Maps.Character_Mapping);

FUNCTION Translate (Source

Mapping :

RETURN String;

PROCEDURE Translate (Source
Mapping

IN String;

IN Maps.Character_Mapping_Function)

IN out String;
IN Maps.Character_Mapping_Function)

String transformation subprograms

FUNCTION Replace_Slice (Source
Low

High

By

RETURN String;

PROCEDURE Replace_Slice (Source
Low

High

By

Drop

Justify
Pad

IN String;

IN Positive;

IN Natural;

IN String)

IN out String;
IN Positive;

IN Natural;

IN String;
IN Truncation

IN Aligrnment
IN Character

= Error;

= Left;

= Space);

FUNCTION Insert (Source

Before

New_Item

RETURN String;

PROCEDURE Insert (Source

Before

New_Item

Drop

IN String;

IN Positive;

IN String)

IN out String;

IN Positive;

IN String;
IN Truncation := Error)

FUNCTION Overwrite

RETURN String;

(Source

Position

New_Item

PROCEDURE Overwrite (Source

Position

New_Item

Drop

IN String;
IN Positive;

IN String)

IN out String;

IN Positive;

IN String;

IN Truncation ;= Right);
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FUNCTION Delete (Source

From

Through
RETURN String;

PROCEDURE Delete (Source

From

Through
Justify
Pad

IN String;

IN Positive;
IN Natural)

IN out String;
IN Positive;

IN Natural;

IN Alignment :
IN Character :

= Left;

= Space)

-String selector subprograms

FUNCTION Trim (Source

Side

IN String;
IN Trim_End)

RETURN String;

PROCEDURE Trim (Source

Side

Justify
Pad

FUNCTION Trim (Source :

Left :

Right :
RETURN String;

PROCEDURE Trim (Source

Left

Right

Justify
Pad

FUNCTION Head (Source :

Count :

Pad :

RETURN String;

PROCEDURE Head (Source

Count

Justify
Pad

FUNCTION Tail (Source :

Count :

Pad :

RETURN String;

PROCEDURE Tail (Source

Count

Justify
Pad

IN out String;
IN Trim_End;
IN Alignment := Left;

:  IN Character := Space)

IN String;
IN Maps.Character_Set;
IN Maps.Character_Set)

IN out String;

IN Maps.Character_Set;
IN Maps.Character_Set;
IN Alignment := Strings.Left;

:  IN Character := Space);

IN String;
IN Natural;

IN Character := Space)

IN out String;

IN Natural;

IN Alignment := Left;
IN Character := Space)

IN String;
IN Natural;

IN Character := Space)

IN out String;
IN Natural;

IN Alignment := Left;
IN Character := Space);

—String constructor FUNCTIONS

FUNCTION (Left : IN Natural;
Right : IN Character) RETURN String;

FUNCTION "** (Left : IN Natural;

Right : IN String) RETURN String;

END Ada.Strings.Fixed;
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Summary of Ada
Execution-Time Exceptions

This appendix summarizes the predefined Ada exceptions. Ada distinguishes excep
tions defined in the language from those defined in standard packages. The summary
should help students to write exception handlers and to interpret run-time messages that
report unhandled exceptions propagated out of a main program.

EXCEPTIONS DEFiNED IN THE LANGUAGE

The following exceptions are predefined in the Ada language:

• Constraint_Error is raised if an attempt is made to store a value in a variable
that is out of range for that variable—^that is, out of the range of the variable's type or
subtype. It will also be raised if an attempt is made to dereference a null access value
(pointer), or to copy a string or similar array into another of a different size, or to
copy a variant record object into another that is constrained to a different value of the
discriminant.

• Prograin_Error is raised in a number of situations unlikely to arise in courses
that use this book. For example, WITH-ing a number of packages may cause an
attempted call of a subprogram whose body has not yet been elaborated. This occur
rence is rare in student projects with simple package dependencies, but arises occa
sionally in industry.

• Storage_Error is raised if the storage pool is exhausted by dynamic allocation,
typically in an inflnite loop in whose body a NEW call is executed. The exception is
also raised if the run-time stack is exhausted by subprogram calls—for example, by
an infinite recursion.

• Tasking_Error is raised if two concurrent Ada tasks are unable to communicate.
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EXCEPTION DEFINED IN ADA.CALENDAR

One exception is defined in the package Ada. Calendar:

Ada.Calendar .Time_Error is raised if the actual parameters in a call of
Ada. Calendar. Time_Of do not form a valid date, or if subtracting two values
of type Ada. Calendar. Time results in a value that lies outside the range of the
predefined type Dura t i on.

EXCEPTION DEFINED IN ADA.NUMERICS

One exception is defined in the package Ada. Numerics:

• The Argument_Error exception is raised by a subprogram in a child unit of
Ada.Numerics to signal that one or more of the actual subprogram parameters
are outside the domain of the corresponding mathematical function.

EXCEPTIONS DEFINED IN ada.text_io

The following exceptions can be raised by Ada. Text_lO operations:

• Ada. Text_lO. Status_Error is raised by an attempt to operate on a file that
is not open, and by an attempt to open a file that is already open.

Ada. Text_IO. Mode_Error is raised by an attempt to read fiom, or to test for the
end of, a file whose current mode is Out_File, and also by an attempt to write to a
file whose current mode is In_File. This exception is also raised by specifying a file
whose current mode is Out_File in a call of Set_Input, Skip_Line,
End_Of_Line, Skip_Page, or End_Of_Page, or by specifying a file whose
current mode is In_FilG in a call of Set_Output, Set_Line_Length,
SGt_Page_Length, Line_Length, Page_Length, New_Line,orNew_Page.

Ada.Text_IO.Name_Error is raised by a call of Create or Open if the
string given for the parameter Name does not allow the identification of an exter
nal file. For example, this exception is raised if the string is improper, or, alterna
tively, if either no external file or more than one external file corresponds to the
string. In student programs, this exception is often raised if the case of the file
name given in the procedure call does not agree with the case of the name in the
student's directory. This is especially common in UNIX, in which file names are
case-sensitive.

Ada. Text_IO. Use_Error is raised if an operation is attempted that is not pos
sible for reasons that depend on characteristics of the external file. For example, this
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exception is raised by the procedure Create if, among other circumstances, the
given mode is Out_File but the form specifies an input-only device, or the para
meter Form specifies invalid access rights, or an external file with the given name
already exists and overwriting is not allowed.

Ada. Text_IO. Device_Error is raised if an input-output operation cannot be
completed because of a malfunction of the underlying system. This should rarely
occur in a student program.

Ada. Text_IO. End_Error is raised by an attempt to skip (read past) the end of
a file. In student programs, this may happen if the file terminator is immediately pre
ceded by a line terminator. In this case, a solution is to include a handler for this
exception in the file input section of the program. Sometimes inserting a
Ada. Text_IO. Skip_Line call in the file input loop will work as well.

Ada. Text_IO. Data_Error is raised by a procedure Get if the input character
sequence fails to satisfy the required syntax or if the value input does not belong to
the range of the required type or subtype. Common causes are entering an integer or
character literal where a Float literal is required, and entering an invalid enumer
ation literal.

Ada. Text_IO. Layout_Error is raised by Col, Line, or Page if the value
returned exceeds Count' Last. The exception Layout_Error is also raised on
output by an attempt to set colunm or line numbers in excess of specified maximum
line or page lengths, respectively (excluding the unbounded cases). It is also raised
by an attempt to Put too many characters to a string.
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Ada Hints for Pascal Users

Ada is a language that is, in many respects, similar to Pascal. However, it is not a
"superset" of Pascal. The statement syntax is slightly different (simpler, in the opinion
of many) and many familiar Pascal features are implemented somewhat differently. As
a learning aid to those experienced in Pascal but new to Ada, this appendix summarizes
areas in which the languages differ enough to cause some difficulty in the form of com
pilation errors.

The most important difference between Ada and Pascal is that the strong Ada stan
dard, coupled with the compiler validation process, ensures that the same Ada language
is accepted by all compilers. Syntactic extensions, such as those found in most useful
Pascal systems, do not occur in Ada. On the other hand, the Ada language defined by
the standard covers nearly all the features of the Pascal extensions.

DECLARATIONS AND DECLARATION ORDER

The Pascal standard requires a rigid declaration order (constants, types, variables,
subprograms) that is relaxed by some implementations. Ada declaration order is
somewhat more flexible. The Ada standard refers to "basic declarative items" and

"later declarative items." Among the former are declarations of constants, types,
and variables; among the latter are functions and procedures. (Other declarations
are beyond the scope of this book.) In the declarative part of a program or subpro
gram, basic declarative items can be freely intermixed—with the understanding, of
course, that everything must be declared before it is referenced. All basic items
must precede all later items; put simply, subprogram declarations must follow the
others.

In Pascal, the words TYPE, CONST, and VAR appear only once in a declarative sec
tion. In Ada, each type or subtype declaration must be opened by TYPE or SUBTYPE,
respectively. A constant is declared as, for example,

FirstLetter: CONSTANT Character := 'A';

and the reserved word VAR is not used at all; a variable is simply declared as, for
example.

Sum : Integer;

A record type declaration must be closed by END RECORD.
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CONTROL STRUCTURES

All control structures are fully bracketed in Ada, including IF-END IF, LOOP-END
LOOP, CASE-END CASE. Further, a semicolon terminates a statement; it does not sep
arate statements, as in Pascal. This yields a syntax that is easier to use correctly than
Pascal's. For example, the Pascal statement

IF X < Y THEN

A := B;

is written in Ada as

IF X < Y THEN

A := B;

END IF;

and the Pascal statement

IF X < Y THEN

BEGIN

A := B;

Z  := X

END

ELSE

BEGIN

A := X;

Z  := B

END;

is written in Ada as

IF X < Y THEN

A := B;

Z  := X;

ELSE

A := X;

Z  := B;

END IF;

The fully bracketed syntax ensures that a "dangling ELSE" cannot be written.
FOR loop control variables are declared implicitly; this is the only exception to the

rule that everything must be explicitly declared. A FOR counter is local to the loop
body. Declaring the loop counter as a variable, as in Pascal, does no real harm, but it
declares a different variable, which is then hidden by the actual loop counter and there
fore is not visible in the loop body.

FOR loop ranges are often stated as type or subtype names, as in

FOR Count IN IndexRange LOOP

Ada has no REPEAT loop structure; instead, use LOOP-END LOOP with an EXIT
WHEN clause at the bottom of the loop.

The choice variable in a CASE statement must be of a discrete (integer or enumer
ation) type; the various CASE choices must cover, in a nonoverlapping fzishion, all pos
sible values of the choice variable.
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TYPES AND DATA STRUCTURES

Two-dimensional arrays are not arrays of arrays. Therefore, A (J) (K) is nor the same
as A (J, K): The former indeed refers to an array of arrays, the latter to a two-dimen
sional array. One reason these are different structures in Ada is that the standard does
not specify the storage mapping (row- or colunm-major) for multidimensional arrays.
This allows a clever implementer to use a nonlinear mapping, for example. In practice,
most current Ada compilers use a row-major mapping, in keeping with Pascal and
C rules.

The type of a record field must always be a type name; it cannot be an anonymous
type such as ARRAY or RECORD. To build hierarchical record types, build the lower-
level ones first, then use their names as fields in the higher-level ones.

There is nothing in Ada that corresponds to Pascal's WITH. All record and array
references must always be fully qualified.

Variant records are much more tightly controlled in Ada than in Pascal. It is not pos
sible to write a free union, or variant record without a discriminant (tag field). In Pascal
and C, free unions are frequently used to evade type checking, but cannot be used for this
purpose in Ada. (Ada has a generic function c^ed Unchecked_Conversion that
indeed is used to evade type checking, but its use is beyond the scope of this book).

There is no SET type in Ada. A package giving the equivalent functionality is pre
sented in full as Programs 5.15 and 5.16.

TYPE AND SUBTYPE COMPATIBILITY

This matter is discussed at length throughout the book. The most important thing to
remember is that Ada uses named type equivalence, not structural equivalence. For
example, given the declarations

A, B: ARRAYd. .10) OF Float;

C  : ARRAYd. .10) OF Float;

the array assignment statements

A := B;

C  := B;

are both invalid, because each of the three arrays has a different anonymous type,
assigned by the compiler. (Some Pascal compilers would allow the first assignment.)
To allow the array assignments, one must give a type name:

TYPE List IS ARRAYd. .10) OF Float;
A, B: List;

C: List;

Both assignments are now valid. The Pascal style of using anonymous types is not
used in this book, and we reconunend not using it.
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SUBPROGRAM PARAMETERS

Ada's parameter modes IN, OUT, and IN OUT are only roughly equivalent to the value
and VAR parameters of Pascal.

Within the body of a subprogram, IN parameters can only be read, never written.
The main difference between OUT and IN OUT parameters is that the current value of
an actual IN OUT parameter is passed to the procedure, whereas, in general, the value
of an actual OUT parameter is not passed, and can therefore be assumed to be undefined
until given a value by the subprogram. Functions cannot have OUT or IN OUT para
meters.

No efficiency is gained by passing as IN OUT an array to be used as an IN para
meter. This is common in Pascal, where large arrays are usually passed as VAR para
meters. Pascal requires VAR parameters to be passed by reference and value parameters
to be copied. The rules in Ada are different: Scalar parameters are always passed by
value/result, whatever their mode. Ada permits composite (array and record) parame
ters to be passed by value/result, but compilers almost never do this, especially if the
composites are large. Practical compilers pass arrays and large records by reference
even if they are IN; since IN parameters cannot be written, there is no danger of chang
ing their values in the calling program.

In the case of scalar OUT and IN OUT parameters, the values are copied back to the
calling program at normal completion of the procedure call. That is, if the procedure
call completes by propagating an exception to the caller, the parameter values are not
copied back and therefore the caller still has the original values.

The input/output statements in Ada are ordinary procedure calls, which means that
only a single integer, float, character, string, or enumeration value can be read or dis
played with each call of Get or Put. One cannot supply an arbitrary number of para
meters to input/output statements, as one would do in Pascal. Doing so will surely result
in compilation errors of the form "unmatched procedure call" when the compiler
searches for a Get or Put whose expected parameters match the supplied ones.

PACKAGES AND THEIR RELATION TO UNITS

Units are not part of the ISO Pascal standard, but are provided by many extended Pascal
systems, including Borland's Turbo and Symantec's Think series. Units are a rough
equivalent of Ada packages, with two important differences:

• Whereas a unit interface is generally a part of the same file as the corresponding
body, an Ada package should normally be divided into separate files for the specifi
cation and the body. Some compilers require this separation. Separation is, in any
case, highly recommended, because in Ada, recompiling a package specification
usually forces recompilation of all clients of that package, whereas recompiling a
package body does not.

• Pascal systems provide no direct equivalent to an Ada PRIVATE type.
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THE USE OF IS AND THE SEMICOLON

Endless grief awaits Ada users who confuse the use of the semicolon with the use of
IS; with some compilers, this leads to long sequences of propagation error messages.
The worst offense is using a semicolon instead of IS in a subprogram declaration, as
one would do in Pascal.

PROCEDURE DoSomething(X : Integer); < this means TROUBLE!

— declarations

BEGIN

— statements

END DoSomething;

The problem is that it is legal to use the semicolon, but the meaning is not what you
expect. The line

PROCEDURE DoSomething(X : Integer);

is not a declaration, but a procedure specification, similar to a Pascal FORWARD speci
fication. Confusing the semicolon with the IS is therefore almost guaranteed to lead to
a large number of propagation errors from the compiler: Since the Ada parser treats the
statement as a specification, it is confused by the declarations and BEGIN-END block
that follow, which seem to be out of context and not well-formed. IS is precisely the
way that Ada knows a procedure body is expected next; the user forgets this at his or
her peril.

Subprogram specifications appear as a part of package specifications, and can also
be useful in contexts where a Pascal FORWARD would be written. In the latter case, the
first line of the body must be identical to the specification, except for replacing the
semicolon with IS. This is different from Pascal, where the parameter list is not
repeated.
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Timing an Ada Program on
a Time-Sharing System

Section 3.6 presents some ideas for measuring the execution time of an Ada program or
part of a program. That section points out that Ada. Calendar .Clock returns the
actual time of day, not the CPU time of the program. On a single-user personal computer,
the result of subtracting one time-of-day value from another is a close approximation to
the elapsed CPU time. However, on a time-sharing system the difference between two
time-of-day values may not even roughly approximate the CPU time, because the user's
program may be getting only small slices of time along with many other user programs.

Unfortunately, Ada provides no standard CPU-time service analogous to Ada.
Calendar. Clock. It is, therefore, necessary to call an operating system (OS) service
to get the CPU time. The form and structure of the system service varies from one OS
to another, and differences can be found even among the various dialects of UNIX. This
appendix shows a single example of a CPU time function, which has been tested under
Sun/Solaris and seems to be similar to that of other UNIX versions. Check your local
OS manuals for further details.

THE CPUCLOCK PACKAGE REVISITED

Programs 3.17 and 3.18 presented a CPU timing package suitable for use on single-user
personal computers. For convenience, the specification and body are repeated here as
Programs J. 1 and J.2, respectively.

Program J.1 Specification for CPU Timing Package (Repeated from Program 3.17)

PACKAGE CPUClock IS

— I Specification for a package to do CPU timing of algorithms
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: October 1995

SUBTYPE CPUSecond IS Float RANGE 0.0 .. Float'Last;

-- We make CPUSecond a Float type so the usual operations are available

PROCEDURE ResetCPUTime;

— Pre: none

— Post: resets a CPU timer
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FUNCTION CPUTirae RETURN CPUSecond;
— Pre: none

— Post: returns the number of CPUSeconds since the last reset

END CPUClock;

Program J.2 Body of CPU Timing Package, Personal Computer Version

WITH Ada.Calendar; USE Ada.Calendar;
PACKAGE BODY CPUClock IS

I  This body is compatible with Ada compilers whose output
--| runs on single-user IBM-PC-family and Apple Macintosh computers

I Author: Michael B. Feldmcin, The George Washington University
— I Last Modified: October 1995

SavedTime : Ada.Calendar.Time;

PROCEDURE ResetCPUTime IS

BEGIN

SavedTime := Ada.Calendar.Clock;
END ResetCPUTime;

FUNCTION CPUTime RETURN CPUSecond IS

BEGIN

RETURN CPUSecond (Ada.Calendar. (Ada.Calendar.Clock,SavedTime));
END CPUTime;

BEGIN — initialization of package

— this statement is executed once, when the package is elaborated,
— i.e., just before its client program starts executing

ResetCPUTime;

END CPUClock;

Section 3.6 points out that the package specification is portable; using the package
with a time-sharing system entails rewriting the body to suit the requirements of the
local OS.

Program J,3 repeats the test program from Program 3.19, which should be usable
without change on a time-sharing system.

Program J.3 Test of CPU Timing Package

WITH Ada.Text_IO;
WITH CPUClock;

USE TYPE CPUClock.CPUSecond;

WITH Ada.Integer_Text_IO;
WITH Ada.Float_Text_IO;
PROCEDURE TestClok IS

— I An example program to show how the CPUClock operations
— I can be used
— I Author: Michael B. Feldman, The George Washington University
— Last Modified: October 1995
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TrialTime : CPUClock.CPUSecond; — CPU time for each trial

TotalTime : CPUClock.CPUSecond; -- total time for all trials

NumberOfTrials : CONSTANT Integer := 10;

NumberOfCycles : CONSTANT Integer := 5;

Maxindex : CONSTANT Integer := 50;

A  : ARRAY (1 . . Maxindex, 1 . . Maxindex) OF Integer;

BEGIN — TestClok

TotalTime := 0.0;

FOR Trial IN 1 .. NumberOfTrials LOOP

CPUClock.ResetCPUTime;

— this loop runs each trial a number of times before
— reading the clock, which allows the time to build up to
— a more easily measured value

FOR Cycle IN 1 .. NumberOfCycles LOOP

— this pair of loops is really the algorithm being timed;
-- for Maxindex = 50 we are doing 2,500 multiplications

FOR Row IN 1 .. Maxindex LOOP

FOR Col IN 1 .. Maxindex LOOP

A {Row, Col) := Row * Col;

END LOOP;

END LOOP;

END LOOP;

— read clock; accumulate total time

TrialTime := CPUClock.CPUTime;

TotalTime := TotalTime + TrialTime;

— display results for this trial
Ada.Text_IO.Put(Item => "Trial ");
Ada.Integer_Text_IO.Put(Item => Trial, Width => 1);
Ada.Text_IO.Put (Item => " time used ");
Ada.Float_Text_IO.Put
(Item => TrialTime, Fore => 1, Aft => 2, Exp => 0);

Ada.Text_IO.Put (Item => " seconds; total time so far ");
Ada.Ploat_Text_IO.Put
(Item => TotalTime, Fore => 1, Aft => 2, Exp => 0);

Ada.Text_IO.Put(Item => " seconds.");
Ada.Text_IO.New_Line;

Ada.Text_IO.New_Line;

END LOOP;

END TestClok;

A UNIX VERSION OF THE CPUCLOCK BODY

Program J.4 shows a package body suitable for Sun/Soiaris (the version of UNIX deliv
ered by Sun Microsystems).



634 Appendix]

Program J.4 Body of CPU Timing Package, Solaris Version

PACKAGE BODY CPUClock IS

— I Body of CPUClock, suitable for Sun/Solaris.
--j Other Unix systems may be similar but not identical.
— 1 Author: Michael B. Feldman, The George Washington University
--| Last Modified: January 1996

FUNCTION unixtime RETURN Integer;
PRAGMA Import (Convention => C, Entity => unixtime);
— We are writing a little C function to get the time from Unix,
— and importing it into this Ada package.

Saved_Time: Integer;

FUNCTION CPUTime RETURN CPUSecond IS

BEGIN

RETURN CPUSecond (unixtime - Saved_Time) / 60.0;
— The division by 60 is because UNIX is reporting the time in
— 60th's of a second.

END CPUTime;

PROCEDURE ResetCPUTime IS

BEGIN

Saved_Time := unixtime;
END ResetCPUTime;

BEGIN — initialization of package
ResetCPUTime;

END CPUClock;

Comparing the two package bodies reveals much similarity between them; the dif
ference in the UNIX version is that ResetCPUTime and CPUTime both call a small
routine written in C, unixtime. The specification of this function is an ordinary Ada
function specification:

FUNCTION unixtime RETURN Integer;

Instead of supplying an Ada body for this function, we indicate to the Ada compiler
that the body is written in C and will be "imported" into the Ada program at link time:

PRAGMA Import (Convention => C, Entity => unixtime);

The function unixtime delivers the elapsed CPU time in units of 1/60 second. To
meet the requirements of our package specification for a Float value in seconds, we
divide by 60.0.

Finally, Program J.5 shows our small C routine. The details will be obvious to a pro
grammer with some C experience; if you have none, the comments may be helpful. In
any case, you may be able to use this function directly without understanding its details.

Program J.5 C Function to Retrieve CPU Time from UNIX

#include (sys/types.h)
#include <sys/times.h)
/*

/*| C function to report UNIX user-program execution time; */
/*| returns time from program start to call time in units of 1/60 sec */
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/*! This works with Sun/Solaris. Not all UNIX versions have the same */
/*! CPU time calls; check your local UNIX manuals. */
/*| Author: Michael B. Feldman, The George Washington University */
/*| Last Modified: February 1996 */
/* */

int unixtimeO /* C function returning an integer value */

{

struct tms TiraeReading; /* tms declared in sys/times.h */

times(&TimeReading); /* times declared in sys/times.h */
return(TimeReading.tms_utime); /* returning the user time field */

/* in 60ths of a second */

>

As an example of putting this all together, consider the UNIX commands to com
pile and link everything using the GNAT compiler on Solaris. First, we compile the C
function, which we assume is in the file unixtime. c:

gcc -c unixtime.c

which produces an object file unixtime.o. We then compile the specification
and body of the Ada package, stored as cpuclock.ads and cpuclock.adb,
respectively:

gcc -c cpuclock.ads

gcc -c cpuclock.adb

The package and C interface function are now compiled and ready to be used
repeatedly. We now compile testclok. adb, the test program:

gcc -c testclok.adb

and then bind and link as follows:

gnatbl testclok.ali unixtime.o

which creates an executable testclok. Including unixtime.o on the command
line is essential; it informs the linker that the C object file must be linked in with the
overall program.

In this brief appendix, we have only scratched the surface of the interesting subject
of multilanguage programming. In particular, this is sometimes necessary in order to
have access to operating system services that are not directly provided by Ada.
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variable-length strings, 254-267

Algorithms
and algorithm design, 107-108
AVL, 470-478

books on, 581

divide-and-conquer, 115

estimating the growth rate of, 118-125
counting loops, 120-122
decision, 119

multiplicatively controlled loops, 122-124
sequence of simple statements, 119
simple statements, 118-119
subprogram calls, 124-125

ExtendHeap, 519-521

for GCDs, 55-56

growth rates, 117-118
infix-to-RPM, 303-304

quick sort, 526-530
recursive, 106,108-116

sort, 506

timing an, 149-152
traversal, 388-390

AlmostHeapToHeap, 519-521,525

ANSI (American National Standards Institute), 2

Applications
airline passenger list, 224-225,357
problem, 224

analysis, 224

design, 224
building an expression tree, 413-418
a cross-reference generator, 433-444
the dining philosophers, 568-578
an event-driven simulation, 306-310

a general sorting program
requirements, 164
analysis and design, 164
algorithm, 164-165
coding, 165-167

a generic binary search program, 197-202
a generic sorting program, 192-196
an inHx-to-RPN translator program, 302-306
linked-list, 338-377

music makers, 208-210

priority queue as a heap, 463-466
a simple employee data base, 131-148
a simple lexical scanner, 395-398
simulation of a bank, 556-568

sparse vectors and matrices, 360-365
time around the world, 38-42

Arrays

aggregate, 26-27
attribute functions for unconstrained, 161-163

attributes, 114

generic parameters, 190-192
heterogeneous, 371-372

higher-dimensional, 179
implementation of queues, 286-290
multidimensional, 27,156-183,157-160

one-dimensional, 174-176

ordered by keys, 130-131

parallel, 365
slices, 114

slicing and unconstrained, 163
two-dimensional, 11-13,176-179

types, 25-26
aggregate array assignment, 26-27
multidimensional arrays, 27

operations on unconstrained, 161
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Arrays (continued)

strings, 27

unconstrained, 156-183,160-163

unordered, 129-130

Associativity rules, 3CX)
Attributes, array, 114
AVL

algorithms, 470-478

balanced binary search trees, 469-478
trees, 478

B

Backus, John, 167

Bank (body), 557-558
Banks

main programs and the package specifications,
557-561

and package bodies, 561-566
simulation of, 556-568

Barrier condition defined, 577

Benchmarks defined, 116

BPS (breadth-first search), 388-390
"Big O" notation, 106

Binary_Search_Generic (body), 201-202
Binary_Search_Generic (spec), 197-198
Binary_Search_Trees_Generic (body),
422-423

Binary_Search_Trees_Generic (spec),
419-421

Binary search, 484
Binary search, recursive, 113-115,126
Binary search trees, AVL balanced, 469-478

Binary trees, 400-449

almost-complete, 455-456
balanced. 406-407

complete, 455

height-balanced, 406
implementing, 407
properties of, 404-407
strictly, 405
traversals of, 407-409

Bounded implementations, 349
Breadth-first searches, 378

BSTs (binary search trees), 400,418-431,450-454
insertions, 503

keyed table as, 431-433
operations on, 419-431

initialize, 424

retrieve, 424

search, 424

traverse_LNR, 425

insert, 425-427

delete, 427-431 \
saving and restoring tables, 433

B-trees, 478-479

Bubble sorts, 510-512

Bucket hashing, 499,501-502
Bugs, presence of, 7

Caesar, Julius, 78

Calendar, Julian, 78

Calendar dates, 78-87

Calls, subprogram, 124-125
Character set, Ada, 583-584

Child packages, 3
Employees. 10,132-136

Rationals. 10,59-61

Children, 403

Chop (body), 577-578

Chop (spec), 577

Chopsticks package, 577-578
Class-wide types, 370
Class-wide variables, 370

Client program defined, 31
Closed hashing defined, 499
CNA (Cloud Nine Airways), 158-160
Collision defined, 483

Coliimns 548-549

Coiranand_Arguments, 103

Command-line parameters, 102-103
Components, connected, 383
Composite types, 17
Computers
multiuser, 152

personal, 149-152

Concurrent programming
and Ada structures, 540-541

defined, 539-541

introduction to, 538-579

modeling and simulation, 540
operating systems, 539
real-time systems, 539-540

Connected components, 383
Connected digraph, 401
Connectivity, 383
Constrained record variable defined, 235

Constructor operations, 37
Cooperating tasks, 544-545
Copy. 327-328, 331-332

Counting loops, 120-122
CPUClock (body), 150,632

CPUClock package, 631-633

CPUClock (spec), 149,631-632
CPUs (central processing units), 539
Creation defined, 12

Cross lists, 364

Cross-reference generator, 433-444
Currency ADT body, 72-78
add two positive Currency values, 72
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algorithm, 72
Currency (body), 73-76
Currency. 10 (body), 77-78
Currency. 10 (spec), 76-77
Currency (spec), 70-71

Cunent states, 396

Cursor, 367

Customers (body), 562-563
Customers (spec), 558

Data abstraction and software components, 15-16
Database (body), 563-564
Data bases

packages, 137-139
simple employee, 131-148

Database (spec), 560
Data structures

books on, 581

dynamic, 312-337

linked lists and their operations, 321-326
multidimensional arrays, 157-160

the task as a data structure, 553-555

tasks as, 553-555

unconstrained array types, 160-163
Dates (body), 80-85

Dates (spec), 79-80
Deadlock defined, 569

Deadly embrace defined, 569
Debugging_Support (body), 140-142
Debugging_Support (spec), 140

Debugging programs with linked lists, 336-337
Declarations, and string variables, 43
Delete,430

Deletion, lazy, 478

Delimiters, 584

Depth-first searches, 378
Descendants, 403

DFS (depth-first search), 388-389
Digital search trees, 466-469
Digraphs_Generic (body), 393-394
Digraphs_Generic (spec), 391-392
Digraphs

connected, 401

properties of, 379-384
antisymmetry, 381
connectivity, 383
cycles, 382
in-degree and out-degree, 384
ineflexivity, 380
paths, 381-382
reflexivity, 380

strong connectivity, 383
symmetry, 381

transitivity, 381

Dijkstra, Edsger, 7
Diners, 571

Dining philosophers, 568-578
Directed graphs, 378-399
generic ADT for, 390-395
undirected and, 378-379

Discriminant field defined, 230

Discriminant values, no default, 266-267

Disk, sequential files on, 14-15

Dispatching, dynamic, 369-376, 373

Dummy nodes, 353
Dynamic data structures, 312-337
Dynamic dispatching, 369-376,373

Edges defined, 378
Employee_UI, 146-148

Employee data base package tables, 137-139
Employeesand Employees. 10 tests,

136-137

Employees. ID (body), 135-136
Employees. 10 child package, 132-136
Employees. 10 (spec), 134
Employees packages, 132-136

Employees (spec), 133-134
English_Lexer, 435

English_Lexer (body), 442-443,445-447

English_Xref, 436-437

Enhancement defined, 8

Errors, off-by-one, 336-337
Evaluate_RPN, 298

Exceptions
defined in Ada. Calendar, 624

defined in Ada. Numerics, 624

defined in Ada. Text_IO, 624-625

defined in the language, 623

execution-time, 623-625

Exp_to_Tree, 415-418

Expression, RPN, 410
Expression evaluation and Polish notation, 295-302
Expression trees, 400,409-413
building an, 413-418
constructing, 410-412

traversing, 412-413
Extend_Heap, 525

ExtendHeap algorithms, 519-521

Factorial, 108-109

Field, discriminant, 230

FIFO (first-in, first-out), 285-286,293, 567
queues, 286-293,307,463
stacks, 349

FindSmallest, 430

Flip, 111
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Roat-to-integer type conversion, 100
Folding or partitioning methods, 492-494
Fortran, 167

Four_Pieces, 90

FSM (finite-state machine), 440-444,448

Functions

hash, 483

storage mapping, 156

CCDs (greatest conunon divisors), algorithms
for, 55-56

General_Access_Types, 369
General access types, 368-369, 371-372
Generator, cross-reference, 433-444

Generic array parameters, 190-192
Generic backup package, 219-224
Generic binary search
body of the, 201-202

programs, 197-202

specification of the, 197-200

Generic component (package or subprogram)
defined, 184

Generic keyed table handler, 214-219
Generic list ADT

body, 341-345

specification, 339-341

Generic package specification, 214-219
Generic sorting program, 192-196
Generic specifications, suiiunary of, 213
Generic subprogram parameters, 188-190,
211-213

Generic subprograms and packages, 184-229
Generic type parameters, 186-188
Generic units, 185-192

Generic vector packages, 210-213
Geometric figures
requirements, 236
analysis, 236

design, 237
Geometry, implementing the specification of,
237-239

Geometry (body), 239-242
Geometry. 10 (body), 243-245
Geometry.IO package, 242-246
Geometry. 10 (spec), 242
Geometry package body, 239-242
Geometry (spec), 237-238
Graphs
directed, 378-399

implementations of directed, 384-388
adjacency list, 385-386
adjacency mauix, 385
state tables, 387-388

weighted adjacency matrix, 386-387

state, 387

traversals, 388-390

undirected and directed, 378-379

H

Handlers, the body of table, 437^0

Hash_Division_Integer_2,490

Hash_Division_Integer, 489

Hash_Division_Letter_2,492

Hash_Division_Letter, 490

Hash_Truncation, 487

Hash clash defined, 483

Hash functions, 483

choosing, 486-494
division, 488-492

folding or partitioning methods, 492-494
truncation, 486-488

Hashing
bucket, 499,501-502

closed, 499

open, 499
ordered, 502

Hash tables, 483-504

Heaps_Generic (body), 461-462

Heaps_Generic (spec), 459-460
Heaps, 455-463

converting an almost-heap to, 459
operations, 456-463
creating a, 457-459
performance of, 459

packages, 459-463
priority queues as, 463-466
sorts, 519-526

Height, 470

Heterogeneous arrays, 371-372
Heterogeneous linked lists, 373-376
Heterogeneous structures, 369-376
Hierarchical packages defined, 3
Higher-dimensional arrays, 179
HLL (high-level-language) programmer, 11
Hybrid search strategies, 502-503

I

Immediate, 102

Implementations
bounded, 349

defined, 11

unbounded, 349

Infinite loops, 336
Infix notations, 295

Infix-to-RPN algorithms, 303-304
Infix-to-RPN translator programs, 302-306
operator priorities, 303-305
parentheses, 305-306

Information hiding, 11
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Initialization steps, 123

Insert, 426-427,454,477

insertlnOrder, 334-335

Integers and floating-point representations, 11
Interfacing deflned, 152

Interior vertices, 402

Internal sorting deflned, 505-506

Internal sorting methods, 505-537
ISO (International Standards Organization), 2

Iterators, passive and active, 358-359

Jacobstal, W., 85

Julian calendar, 78

K

Keyed tables, 106-107
as a BST, 431^33

ADTfor, 127-131

arrays ordered by keys, 130-131
specifying keyed tables, 127-129
unordered arrays, 129-130

as a linked list, 351-357

generic handler, 214-219

specifying, 127-129
Key-to-address transformations, 483,485

LAVS (list of available space), allocation using a,
348-349

Lazy deletion, 478
Leaves, 402

Lexical scanners, 445-448

Libraries

math, 614-616

string, 617-622
LIFO (last-in, first-out), 285-286, 293,303,349

Linear probing, 499-500
Linked data structures, 313

Linked implementation
of queues, 349-350
of stacks, 350

Linked lists

applications, 338-377
debugging programs with, 336-337
a generic ADT for singly, 339-347
with head and tail pointers, 332-334
heterogeneous, 373-376
keyed tables as, 351-357
operations, 322-326
iterative implementation of, 329-332
recursive implementations of, 326-328

ordered insertions in, 334-335

and their operations, 321-326
Lists_Generic (body), 341-344

Lists_Generic (spec), 339-341
Lists

adjacency, 385-386
ADT testing the, 345-347
analysis of operations on an ordered, 357
cross, 364

dummy nodes in an ordered, 353

orthogonal, 364
LNR traversal, 425

Logical records, 14

LookUpName, 114

Loops
counting, 120-122

infinite, 336

multiplicatively controlled, 122-124

Lukasiewicz, Jan, 295

M

Magnetic tape, storage of information on,
13-14

Maintenance deflned, 8

Mappings
non-speciflcation storage, 179-181
storage, 174-181
storage functions, 156

Mathematical matrices, 172-174

Mathematical vectors, 167-172

Mathematics packages, 97-100
Math libraries, 614-616

Matrices

adjacency, 385
mathematical, 172-174

sparse, 363-365
sparse vectors and, 360-365
weighted adjacency, 386-387

Matrices (spec), 172-173
Maximum_Array_Generic (body), 191

Maximuin_Array_Generic (spec), 191

McUcimum_Generic (body), 189
Maxiinum_Generic (spec), 188-189
Memory management, simulating dynamic,
365-367

Methods

hash table, 483-504

scatter storage, 483
Metric_Systein (body), 250-252

Metric_System (spec), 247-250

Metric system

requirements, 246
analysis, 246-247
design, 247
coding the package specification, 247-250
coding the package body, 250-252

testing the package, 252-254
Modiflcation steps, 123
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Multidimensional arrays, 27,156-183,157-160
defined, 156

using, 160
Multiplicatively controlled loops, 122-124
Multithreaded programs, 538

Music_Makers, 208-209

N

Next states, 396

Nodes

connecting, 318-319
defined, 312, 321

Nonlinear probing, 500-501
Nonterminal vertices, 402

Notations

infix, 295

parenthesized, 295

postfix, 295

reverse Polish, 295

Null pointers, 336

Numbers, rational, 49-67

Numeric types, 24,29-30

Object-oriented design defined, 6
Object-oriented programming, 33-34
Objects
defined, 6

multiple task, 543-544
protected, 548-553

task, 541-548

VString, 359
VString, 360

Off-by-one errors, 336-337
0(N2) sorts

bubble sorts, 510-512

delayed selection sorts, 509-510
heap sorts, 519-526
linear insertion sort, 512-514

merge sorts, 514-519
quick sorts, 526-530
simple selection sorts, 507-509

One_Task, 541-542

One-dimensional arrays, 174-176
OOP (object-oriented programming), 269-270
Open hashing, 499
Operations
constructor, 37

primitive, 370
selector, 37

Operator associativity, 299
Operator priority, 299
Ordered hashing, 502
Orthogonal lists, 364

Package bodies
in the bank simulation, 561-566

design and implementation, 55-64

algorithms for CCDs, 55-56

miscellaneous operations, 57-59
rational constructor 56-57

Packages

Ada. Calendar, 35-38

Ada. Calendar specification, 613

Ada. Text_lO specification, 606-612

child, 3

chopsticks, 577-578
CPUClock, 631-633

design of vector, 169-170

Employees, 132-136

generic backup, 219-224
and generic subprograms, 184-229
generic vector, 210-213

heap, 459-463
mathematics, 97-100

names of standard, 3

reusable, 139-142

specifications, 214-219,557-561

Standard, 602-605

Palindrome, 111

Palindrome defined, 110

PAL (Public Ada Library), 580
Parallel arrays, 365
Parameters

command-line, 102-103

generic array, 190-192

generic subprogram, 188-190
generic type, 186-188

Parenthesized notations, 295

Parents, 403

Pascal users, Ada hints for, 626-630

control structures, 627

declarations and declaration order, 626

packages and relation to units, 629
subprogram parameters, 629

type and subtype compatibility, 628
types and data structures, 628

the use of IS and the semicolon, 630

Passive and active iterators, 358-359

Payroll_Array, 371-372

Payroll_List, 373-375

Payroll (body), 281-283

Payroll (spec), 276-277

Performance prediction, 106, 116-127
Performance prediction examples, 125-127
factorial, 125

permutations of a set, 126

recursive binary search, 126
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recursive merge sort, 126-127

string reversal, 125-126
Permutations

printing all, 112
ofa set, 111-113,126

Personal computer, 149-152
Personnel (body), 280-281
Personnel (spec), 274-275
Persons (body), 279-280
Persons (spec), 272-273
Phil,571-572

Phil (body), 573-574
Philosophers

dining, 568-578
display of, 578
modeling the, 569

Phone_Service, 165-167

Physical records, 14
Pointers

linked lists with head and tail, 332-334

subprogram, ̂^^-^'18
types, 312-227

Polish notation, 295-302

Pool-specific access types, 368
Postconditions, 53

Postfix notations, 295

Precedence, 299

Preconditions, 53

Primitive operations, 370
PrintPermutations, 113

Priority queues, 293,463-466
Private types, 29
PRIVATE types advantages, 65-67
Probing
defined, 494

linear, 499-5(X)

nonlinear, 500-501

Procedures

protected, 552
sort, 506

Process_Arrival, 309-310
Process_Departure, 310

Process defined, 540

Programming
bottom-up development, 15
concurrent, 538-579

object-oriented, 33-34
table-driven, 444-448,445

top-down development, 15

Programs

client, 31

debugging, 336-337
general sorting, 163-167
generic binary search, 197-202
measuring performance, 148-152

timing an algorithm, 149-152
what should be measured?, 148

Multithreaded, 538

single-threaded, 538
Protect_Screen, 550-552

Protected objects, 548-553
Protected procedures, 552
Protected types, 548-553

Quadratic selection sorts, 532
Qualified aggregate defined, 327
Queues_Generic_list (spec), 349-350
Queues_Generic_Priority (body),

465-466

Queues_Generic_Priority (spec),

464-465

Queues_Generic (body), 289-290
Queues_Generic (spec), 287-288
Queues

array implementation of, 286-290
circular array implementation of, 290-293
FIFO, 286-293,310,463

linked implementation of, 349-350
priority, 293,463-466

Queues and stacks, 285-311,349-350
Quick sort algorithms, 526-530

Race condition defined, 550

Radix sorts, 532-535

Random_Nuinbers, 487-488

Random_Strings, 491-492

Rational constructor "/", 56-57

Rational numbers, 49-67

requirements, 50

analysis, 50
design of the RaClonals package, 51-52
Rationals specification, 52-54

Rationals, 51-52

Rationals (body), 57-59
Rationals. 10 (body), 60-61
Rationals. ID (spec), 60
Rationals package

exception propagation, 62-64
testing the, 61-64

Rationals specification
operator overloading, 54
preconditions and postconditions, 53-54

Records

logical, 14

physical, 14
types, 25
variant, 230-236



644 Index

Records {continued)

variant and tagged, 230-284
RectangularArrays, 12
Recursion, 106,108-116

Recursive algorithm
permutations of a set, 111-113

recursive binary search, 113-1 IS
recursive merge sort, 115-116
reversal of string, 110-111

Recursive algorithms, 106,108-116
factorial, 108

finding N!;, 108
Recursive binary search, 115,126
Recursive data structures, 326

Regression testing, 7
Rejecting states, 396
Reliable defined, 9

Reporter (body), 561
Reporter (spec), 560-561

Reserved words, 585

Retrieval, operations of, 12
Right in-threaded defined, 451

Robustness defined, 9

Room (body), 575-576

Room (spec), 572

Root, 400-401

Rotate_L, 474

Rotate_LR, 474

Rotate_R, 470

RPN_Priorities, 304-305

RPN_Simple, 302-303

RPN, 412-413

RPN (reverse Polish notation), 285,295

converting manually from infix to, 299-302
evaluating expressions, 297-299
expression, 410

Rules, syntax, 586-601

Scalar types, 17-21
attributes of, 21-23

predefined enumeration types, 20-21
predefined numeric types, 18-20

Scarmer, lexical, 445-448

Scanner as an FSM (finite-state machine),
ilO 111

Scatter storage, 483,485
Screen (body), 89

Screen handlers, 87-90

Screen package
specification and body of the, 87-90
using the, 89-90

Screen (spec), 87-88
Search, 424

Searches

breadth-first, 378,388-390

depth-first, 378,388-389
hybrid strategies, 502-503
sequential and binary, 484
trees, 466-469

Selector operations, 37
SELECT statements, 566-568

Sequential and binary search, 484
Sets_Generic (body), 206-208

Sets_Generic (spec), 205-206
Sets

operation on, 203

permutations of, 111-113, 126
Shaker sorts defined, 512
Shell sorts, 530-532

Siblings, 403
SIGAda (ACM Special Interest Group on Ada), 580
Simple types, 17
Simulation, 308-309

Sine_Curve, 99-100

Single-threaded programs, 538
Singly_Linked_Lists (body), 325
Singly_Linked_Lists (spec), 322
Slice, array, 114

Society, 570

Software

components, 15-16

developer, 8
development, 8
development, life cycle, 5-8
specification, 5

Software engineering, goals of, 8-9
1. correctness, 8

2. predictability, 8-9
3. understandability, 9
4. modifiability, 9

5. reusability, 9
6. efficiency, 9

Software life cycle
phases, 5-8
1. requirements specification, 5-6
2. analysis, 6
3. design, 6
4. developing a test plan, 6-7
5. implementation or coding, 7
6. testing, 7
7. operation, 7
8. maintenance, 7-8

Sort_Bubble_Generic (body), 511-512
Sort_Bubble_Generic (spec), 511
Sort_DelayedSelection_Generic

(body), 509-510

Sort_DelayedSelection_Generic
(spec), 509
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Sort_Generic (body), 193

Sort_Generic (spec), 192-193
Sort_Heap_Generic (body), 525

Sort_Heap_Generic (spec), 524
Sor t_Linear Ins e r t i on_Gener i c (body),
514

Sort_LinearInsertion_Generic (spec),
513-514

Sort_Merge_Generic (body), 517-518

Sort_Merge_Generic (spec), 516
Sort_Quick_Generic (body), 528-529
Sort_Quick_Generic (spec), 527-528

Sort_Shell_Generic (body), 531-532
Sort_Shell_Generic (spec), 531
Sort_SimpleSelection_Generic (body),

508

Sort_SimpleSelection_Generic (spec),

508

Sorting methods, 505-537
Sorting programs, 163-167,192-196
Sorts

algorithms, 506
miscellaneous

quadratic selection sorts, 532
radix sorts, 532-535

shell sorts, 530-532

procedures, 506
recursive merge, 115-116,126-127
shaker, 512

Sparse matrices, 363-365
Sparse vectors
and matrices, 360-365

operations, 361-363
Specifications
of the generic list ADT, 339-341
package, 557-561

Square_Root_Table, 99

Stacks_Generic (spec), 294-295
Stacks, 285-311,293-295

array implementation of, 294-295
FIFO, 349

LIFO, 349

LIFO (last-in first-out) device, 310

linked implementation of, 350
and queues, 349-350

Standard packages, 3,602-605
Start_Buttons, 546

Start states, 396

State graphs, 387
Statements

Select, 566-568

simple, 118-119
States

accepting, 396
current, 396

next, 396

rejecting, 396

start, 396

State tables, 387-388

Static typing, 17

Storage

allocator, 313

defined, 12

returning to the pool, 319-321

running out of, 321
Storage mappings, 174-181
functions, 156

higher-dimensional arrays, 179
non-specification, 179-181
one-dimensional arrays, 174-176
two-dimensional arrays, 176-179

Strings, 27

Ada structures, tagged types, 269-283
assigning, comparing, and displaying, 44-45
attributes, 47-48

concatenation, 47

libraries, 617-622

one-character, 44

packages
Ada.Characters.Handling, 268

Ada.Strings and

Ada.Strings.Maps, 268

Ada. Strings. Bounded, 268-269

Ada. Strings. Fixed, 268-269

Ada. Strings. Unbounded, 268-269

reading, 45-46
referencing individual characters in, 43
reversal of, 110-111

slicing, 46
type Character, 267
unbounded, 359-360, 367

variable, 43

variable-length, 254-267
variables, 42

Strong typing, 17

Structures

creating linked, 315-318
generic units, 185-192

heterogeneous, 369-376
linked data, 313

recursive data, 326

types, 17
Stubs, 57

Subprograms
calls, 124-125

generic parameters, 188-190
and packages, 184-229

pointers, 444-448

Subtrees, 403

Subtypes, 23-24
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Swap_Generic (body), 186-187
Swap_Generic (spec), 186
Synonyms deflned, 483
Syntax rules, Ada 95,586-601

Table_ADO_Generic (spec), 225-227
Table_Generic_List (spec), 351-353

Table-driven programming, 444-448,445
Tables_Generic_BST, 431-433

Tables_Generic_Hash, 495-496

Tables_Generic_Hash (body), 497-499
Tables_Generic_List (body), 353-357
Tables_Generic. Backup (body), 220-221

Tables_Generic. Backup (spec), 220
Tables_Generic (body), 217-219
Tables_Generic (spec), 215-216
Tables

ADT for keyed, 127-131
body of the employee data base package,

142-145

employee data base package, 137-139
handlers, 437-440

hash methods, 483-504

keyed, 106-107
as LIMITED PRIVATE type, 139
saving and restoring BST, 433

state, 387-388

Tables (body), 142-143
Tables (spec), 127-128,137-138
Tagged types, 369-370
Ada 95 and OOP (object-oriented program

ming), 269-270
bodies of packages, 279-283
converting among derived, 271-272
deriving new, 274-279
primitive and nonprimitive operations on,
272-274

variables of, 283

Tapes, records blocked on, 13
Task_Array, 553-554

Tasks

cooperating, 544-545

as data structures, 553-555

objects, 541-548

starting order of, 545-548
types and data objects
controlling the starting order of tasks,

545-548

cooperating tasks, 544-545

multiple task objects of the same types,
543-544

types and task objects, 541-548
Tellers (body), 565-566

Tellers (spec), 559

Terminal vertices, 402

Termination conditions, 123

Test_Backup, 222-224

Test_Binary_Search, 198-200

Test_BST, 421-422

Test_Dates, 86-87

Test_Employee_Table, 143-144

Test_Employees, 136-137

Test:_Factorial, 109

Test_Geometry, 245-246

Test_Lists_Generic, 345-347

Test_Lists, 323-324

Test_Max_Value, 162-163

Test_Maximiim_Generic, 189-190

Test_Met:ric, 253-254

Test:_Rationals_l, 62

Test:_Rationals_2,63-64

Test_Rationals_3,66

Test_Sort_Generic, 194-196

Test_Swap_Generic, 187-188

Test_Vectors, 171-172

Test_VS brings, 265-266

Test_WindowSi 91-92

TestClok, 150-151,632-633

Testing, regression, 7

Test plan development, 67-69
Tests, Employees and Employees. 10,

136-137

Threading, 450-454
Time-sharing system, 631-635
Timing
an Ada program, 631-635
an algorithm, 149-152

Traversals

algorithms, 388-390
of binary trees, 407-409

graphs, 388-390

Traverse_BFS, 395

Traverse_DFS, 394-395

Traverse_LNR, 425,452

Traverse, 326, 329

Trees_Xref_Generic, 434—435

Trees_Xref_Generic (body), 438-440
Trees, 401-404

advanced concepts, 450-482

AVL, 469-478

B, 478-^79

binary, 400^9,404-407
binary search, 400,418-431
depth of a, 403
digital search, 466-469

expression, 400,409-413
strictly binary, 405
traversing expression, 412-413

Truncation, 486-488

Two_Cooperating_Tasks, 544-545
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Two_Tasks, 543

Two-dimensional arrays, 11-13, 176-179
Type composition, 28
Type conversion, float-to-integer, 100
Types, 558
Types

access, 312-337

in Ada. 17-18

array, 25-26

attributes of scalar, 21-23

class-wide, 370

composite, 17
conversions among numeric, 24
derived, 28

new,28-29

numeric, 29-30

pointer, 312-337
predeflned enumeration, 20-21

predefined numeric, 18-20

private, 29
protected, 548-553

record, 25

scalar, 17-21

simple, 17
and strong typing, 16-17
structured, 17

system, 16-29

tagged, 369-370
task, 541-548

Typing
static, 17

strong, 17

u

Unbounded implementations, 349

Unbounded queues and stacks, 349-350
Unbounded strings, 367
Unbounded variable-length strings, 359-360
Unconstrained arrays
attribute functions for, 161-163

slicing and, 163
Unconstrained array types, 156-183,160-163
defined, 156

operations on, 161
Unconstrained record variable defined, 235

Unconstrained variant records, 370

Undirected and directed graphs, 378-379
UNIX

C function to retrieve CPU time from, 634-635
CPUClock (body), 634
version of the CPUClock body, 633-635

Use_Payroll, 277-278

USE clause, 64-65

User interface, interactive, 146-148

USE TYPE clause, 65

Valid_Ident, 397-398

Variable-length strings, 254-267; see also
VStrings
no default discriminant value, 266-267

specifying the VStrings package, 254-259
unbounded, 359-360

Variables

class-wide, 370

string, 42-43

Variant and tagged record, 230-284
Variant records, 230-236

constrained and unconstrained, 234-235

declaring types, 234
defined, 230

displaying, 233
operations on, 236

storing values into, 235-236

unconstrained, 370

Vectars_Generic (spec), 210-211

Vectors, coding the body of, 170-172
Vectors

mathematical, 167-172

and matrices, 360-365

sparse, 361-363

Vectors (body), 170-171
Vectors (spec), 169
Vertices, 378,403

interior, 402

nonterminal, 402

terminal, 402

VString objects, 359
VString objects, 360

VStrings (body), 259-266

VStrings (spec), 255-256
VStrings. lO (body), 264-265

VStrings. 10 (spec), 264

w

Wall-clock time defined, 152

Weights defined, 386

Window defined, 91-92

Window manager, 90-97

Windows (body), 94-96
Windows (spec), 93-94
Windows package, body of the, 94-97
Windows package, specification of the, 93-94
Words, reserved, 585

World_Time, 39-42

World-wide web resources on Ada, 580


